Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * AArch64 loadable module support.
  3 *
  4 * Copyright (C) 2012 ARM Limited
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 17 *
 18 * Author: Will Deacon <will.deacon@arm.com>
 19 */
 20
 
 
 21#include <linux/bitops.h>
 22#include <linux/elf.h>
 
 23#include <linux/gfp.h>
 24#include <linux/kasan.h>
 25#include <linux/kernel.h>
 26#include <linux/mm.h>
 27#include <linux/moduleloader.h>
 
 
 28#include <linux/vmalloc.h>
 
 29#include <asm/alternative.h>
 30#include <asm/insn.h>
 
 31#include <asm/sections.h>
 32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33void *module_alloc(unsigned long size)
 34{
 35	void *p;
 36
 37	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 38				module_alloc_base + MODULES_VSIZE,
 39				GFP_KERNEL, PAGE_KERNEL_EXEC, 0,
 40				NUMA_NO_NODE, __builtin_return_address(0));
 
 
 
 
 
 
 
 
 41
 42	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
 43	    !IS_ENABLED(CONFIG_KASAN))
 44		/*
 45		 * KASAN can only deal with module allocations being served
 46		 * from the reserved module region, since the remainder of
 47		 * the vmalloc region is already backed by zero shadow pages,
 48		 * and punching holes into it is non-trivial. Since the module
 49		 * region is not randomized when KASAN is enabled, it is even
 50		 * less likely that the module region gets exhausted, so we
 51		 * can simply omit this fallback in that case.
 52		 */
 53		p = __vmalloc_node_range(size, MODULE_ALIGN, VMALLOC_START,
 54				VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_EXEC, 0,
 55				NUMA_NO_NODE, __builtin_return_address(0));
 56
 57	if (p && (kasan_module_alloc(p, size) < 0)) {
 
 
 
 
 
 58		vfree(p);
 59		return NULL;
 60	}
 61
 62	return p;
 
 63}
 64
 65enum aarch64_reloc_op {
 66	RELOC_OP_NONE,
 67	RELOC_OP_ABS,
 68	RELOC_OP_PREL,
 69	RELOC_OP_PAGE,
 70};
 71
 72static u64 do_reloc(enum aarch64_reloc_op reloc_op, void *place, u64 val)
 73{
 74	switch (reloc_op) {
 75	case RELOC_OP_ABS:
 76		return val;
 77	case RELOC_OP_PREL:
 78		return val - (u64)place;
 79	case RELOC_OP_PAGE:
 80		return (val & ~0xfff) - ((u64)place & ~0xfff);
 81	case RELOC_OP_NONE:
 82		return 0;
 83	}
 84
 85	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
 86	return 0;
 87}
 88
 89static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
 90{
 91	s64 sval = do_reloc(op, place, val);
 92
 
 
 
 
 
 
 
 
 
 
 
 
 93	switch (len) {
 94	case 16:
 95		*(s16 *)place = sval;
 96		if (sval < S16_MIN || sval > U16_MAX)
 97			return -ERANGE;
 
 
 
 
 
 
 
 
 
 
 
 98		break;
 99	case 32:
100		*(s32 *)place = sval;
101		if (sval < S32_MIN || sval > U32_MAX)
102			return -ERANGE;
 
 
 
 
 
 
 
 
 
 
 
103		break;
104	case 64:
105		*(s64 *)place = sval;
106		break;
107	default:
108		pr_err("Invalid length (%d) for data relocation\n", len);
109		return 0;
110	}
111	return 0;
112}
113
114enum aarch64_insn_movw_imm_type {
115	AARCH64_INSN_IMM_MOVNZ,
116	AARCH64_INSN_IMM_MOVKZ,
117};
118
119static int reloc_insn_movw(enum aarch64_reloc_op op, void *place, u64 val,
120			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
121{
122	u64 imm;
123	s64 sval;
124	u32 insn = le32_to_cpu(*(u32 *)place);
125
126	sval = do_reloc(op, place, val);
127	imm = sval >> lsb;
128
129	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
130		/*
131		 * For signed MOVW relocations, we have to manipulate the
132		 * instruction encoding depending on whether or not the
133		 * immediate is less than zero.
134		 */
135		insn &= ~(3 << 29);
136		if (sval >= 0) {
137			/* >=0: Set the instruction to MOVZ (opcode 10b). */
138			insn |= 2 << 29;
139		} else {
140			/*
141			 * <0: Set the instruction to MOVN (opcode 00b).
142			 *     Since we've masked the opcode already, we
143			 *     don't need to do anything other than
144			 *     inverting the new immediate field.
145			 */
146			imm = ~imm;
147		}
148	}
149
150	/* Update the instruction with the new encoding. */
151	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
152	*(u32 *)place = cpu_to_le32(insn);
153
154	if (imm > U16_MAX)
155		return -ERANGE;
156
157	return 0;
158}
159
160static int reloc_insn_imm(enum aarch64_reloc_op op, void *place, u64 val,
161			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
162{
163	u64 imm, imm_mask;
164	s64 sval;
165	u32 insn = le32_to_cpu(*(u32 *)place);
166
167	/* Calculate the relocation value. */
168	sval = do_reloc(op, place, val);
169	sval >>= lsb;
170
171	/* Extract the value bits and shift them to bit 0. */
172	imm_mask = (BIT(lsb + len) - 1) >> lsb;
173	imm = sval & imm_mask;
174
175	/* Update the instruction's immediate field. */
176	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
177	*(u32 *)place = cpu_to_le32(insn);
178
179	/*
180	 * Extract the upper value bits (including the sign bit) and
181	 * shift them to bit 0.
182	 */
183	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
184
185	/*
186	 * Overflow has occurred if the upper bits are not all equal to
187	 * the sign bit of the value.
188	 */
189	if ((u64)(sval + 1) >= 2)
190		return -ERANGE;
191
192	return 0;
193}
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195int apply_relocate_add(Elf64_Shdr *sechdrs,
196		       const char *strtab,
197		       unsigned int symindex,
198		       unsigned int relsec,
199		       struct module *me)
200{
201	unsigned int i;
202	int ovf;
203	bool overflow_check;
204	Elf64_Sym *sym;
205	void *loc;
206	u64 val;
207	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
208
209	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
210		/* loc corresponds to P in the AArch64 ELF document. */
211		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
212			+ rel[i].r_offset;
213
214		/* sym is the ELF symbol we're referring to. */
215		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
216			+ ELF64_R_SYM(rel[i].r_info);
217
218		/* val corresponds to (S + A) in the AArch64 ELF document. */
219		val = sym->st_value + rel[i].r_addend;
220
221		/* Check for overflow by default. */
222		overflow_check = true;
223
224		/* Perform the static relocation. */
225		switch (ELF64_R_TYPE(rel[i].r_info)) {
226		/* Null relocations. */
227		case R_ARM_NONE:
228		case R_AARCH64_NONE:
229			ovf = 0;
230			break;
231
232		/* Data relocations. */
233		case R_AARCH64_ABS64:
234			overflow_check = false;
235			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
236			break;
237		case R_AARCH64_ABS32:
238			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
239			break;
240		case R_AARCH64_ABS16:
241			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
242			break;
243		case R_AARCH64_PREL64:
244			overflow_check = false;
245			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
246			break;
247		case R_AARCH64_PREL32:
248			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
249			break;
250		case R_AARCH64_PREL16:
251			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
252			break;
253
254		/* MOVW instruction relocations. */
255		case R_AARCH64_MOVW_UABS_G0_NC:
256			overflow_check = false;
 
257		case R_AARCH64_MOVW_UABS_G0:
258			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
259					      AARCH64_INSN_IMM_MOVKZ);
260			break;
261		case R_AARCH64_MOVW_UABS_G1_NC:
262			overflow_check = false;
 
263		case R_AARCH64_MOVW_UABS_G1:
264			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
265					      AARCH64_INSN_IMM_MOVKZ);
266			break;
267		case R_AARCH64_MOVW_UABS_G2_NC:
268			overflow_check = false;
 
269		case R_AARCH64_MOVW_UABS_G2:
270			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
271					      AARCH64_INSN_IMM_MOVKZ);
272			break;
273		case R_AARCH64_MOVW_UABS_G3:
274			/* We're using the top bits so we can't overflow. */
275			overflow_check = false;
276			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
277					      AARCH64_INSN_IMM_MOVKZ);
278			break;
279		case R_AARCH64_MOVW_SABS_G0:
280			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
281					      AARCH64_INSN_IMM_MOVNZ);
282			break;
283		case R_AARCH64_MOVW_SABS_G1:
284			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
285					      AARCH64_INSN_IMM_MOVNZ);
286			break;
287		case R_AARCH64_MOVW_SABS_G2:
288			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
289					      AARCH64_INSN_IMM_MOVNZ);
290			break;
291		case R_AARCH64_MOVW_PREL_G0_NC:
292			overflow_check = false;
293			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
294					      AARCH64_INSN_IMM_MOVKZ);
295			break;
296		case R_AARCH64_MOVW_PREL_G0:
297			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
298					      AARCH64_INSN_IMM_MOVNZ);
299			break;
300		case R_AARCH64_MOVW_PREL_G1_NC:
301			overflow_check = false;
302			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
303					      AARCH64_INSN_IMM_MOVKZ);
304			break;
305		case R_AARCH64_MOVW_PREL_G1:
306			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
307					      AARCH64_INSN_IMM_MOVNZ);
308			break;
309		case R_AARCH64_MOVW_PREL_G2_NC:
310			overflow_check = false;
311			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
312					      AARCH64_INSN_IMM_MOVKZ);
313			break;
314		case R_AARCH64_MOVW_PREL_G2:
315			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
316					      AARCH64_INSN_IMM_MOVNZ);
317			break;
318		case R_AARCH64_MOVW_PREL_G3:
319			/* We're using the top bits so we can't overflow. */
320			overflow_check = false;
321			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
322					      AARCH64_INSN_IMM_MOVNZ);
323			break;
324
325		/* Immediate instruction relocations. */
326		case R_AARCH64_LD_PREL_LO19:
327			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
328					     AARCH64_INSN_IMM_19);
329			break;
330		case R_AARCH64_ADR_PREL_LO21:
331			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
332					     AARCH64_INSN_IMM_ADR);
333			break;
334#ifndef CONFIG_ARM64_ERRATUM_843419
335		case R_AARCH64_ADR_PREL_PG_HI21_NC:
336			overflow_check = false;
 
337		case R_AARCH64_ADR_PREL_PG_HI21:
338			ovf = reloc_insn_imm(RELOC_OP_PAGE, loc, val, 12, 21,
339					     AARCH64_INSN_IMM_ADR);
 
340			break;
341#endif
342		case R_AARCH64_ADD_ABS_LO12_NC:
343		case R_AARCH64_LDST8_ABS_LO12_NC:
344			overflow_check = false;
345			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
346					     AARCH64_INSN_IMM_12);
347			break;
348		case R_AARCH64_LDST16_ABS_LO12_NC:
349			overflow_check = false;
350			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
351					     AARCH64_INSN_IMM_12);
352			break;
353		case R_AARCH64_LDST32_ABS_LO12_NC:
354			overflow_check = false;
355			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
356					     AARCH64_INSN_IMM_12);
357			break;
358		case R_AARCH64_LDST64_ABS_LO12_NC:
359			overflow_check = false;
360			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
361					     AARCH64_INSN_IMM_12);
362			break;
363		case R_AARCH64_LDST128_ABS_LO12_NC:
364			overflow_check = false;
365			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
366					     AARCH64_INSN_IMM_12);
367			break;
368		case R_AARCH64_TSTBR14:
369			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
370					     AARCH64_INSN_IMM_14);
371			break;
372		case R_AARCH64_CONDBR19:
373			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
374					     AARCH64_INSN_IMM_19);
375			break;
376		case R_AARCH64_JUMP26:
377		case R_AARCH64_CALL26:
378			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
379					     AARCH64_INSN_IMM_26);
380
381			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
382			    ovf == -ERANGE) {
383				val = module_emit_plt_entry(me, &rel[i], sym);
384				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
385						     26, AARCH64_INSN_IMM_26);
386			}
387			break;
388
389		default:
390			pr_err("module %s: unsupported RELA relocation: %llu\n",
391			       me->name, ELF64_R_TYPE(rel[i].r_info));
392			return -ENOEXEC;
393		}
394
395		if (overflow_check && ovf == -ERANGE)
396			goto overflow;
397
398	}
399
400	return 0;
401
402overflow:
403	pr_err("module %s: overflow in relocation type %d val %Lx\n",
404	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
405	return -ENOEXEC;
406}
407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408int module_finalize(const Elf_Ehdr *hdr,
409		    const Elf_Shdr *sechdrs,
410		    struct module *me)
411{
412	const Elf_Shdr *s, *se;
413	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
414
415	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
416		if (strcmp(".altinstructions", secstrs + s->sh_name) == 0) {
417			apply_alternatives((void *)s->sh_addr, s->sh_size);
418			return 0;
419		}
 
420	}
421
422	return 0;
423}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * AArch64 loadable module support.
  4 *
  5 * Copyright (C) 2012 ARM Limited
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Author: Will Deacon <will.deacon@arm.com>
  8 */
  9
 10#define pr_fmt(fmt) "Modules: " fmt
 11
 12#include <linux/bitops.h>
 13#include <linux/elf.h>
 14#include <linux/ftrace.h>
 15#include <linux/gfp.h>
 16#include <linux/kasan.h>
 17#include <linux/kernel.h>
 18#include <linux/mm.h>
 19#include <linux/moduleloader.h>
 20#include <linux/random.h>
 21#include <linux/scs.h>
 22#include <linux/vmalloc.h>
 23
 24#include <asm/alternative.h>
 25#include <asm/insn.h>
 26#include <asm/scs.h>
 27#include <asm/sections.h>
 28
 29static u64 module_direct_base __ro_after_init = 0;
 30static u64 module_plt_base __ro_after_init = 0;
 31
 32/*
 33 * Choose a random page-aligned base address for a window of 'size' bytes which
 34 * entirely contains the interval [start, end - 1].
 35 */
 36static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
 37{
 38	u64 max_pgoff, pgoff;
 39
 40	if ((end - start) >= size)
 41		return 0;
 42
 43	max_pgoff = (size - (end - start)) / PAGE_SIZE;
 44	pgoff = get_random_u32_inclusive(0, max_pgoff);
 45
 46	return start - pgoff * PAGE_SIZE;
 47}
 48
 49/*
 50 * Modules may directly reference data and text anywhere within the kernel
 51 * image and other modules. References using PREL32 relocations have a +/-2G
 52 * range, and so we need to ensure that the entire kernel image and all modules
 53 * fall within a 2G window such that these are always within range.
 54 *
 55 * Modules may directly branch to functions and code within the kernel text,
 56 * and to functions and code within other modules. These branches will use
 57 * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
 58 * that the entire kernel text and all module text falls within a 128M window
 59 * such that these are always within range. With PLTs, we can expand this to a
 60 * 2G window.
 61 *
 62 * We chose the 128M region to surround the entire kernel image (rather than
 63 * just the text) as using the same bounds for the 128M and 2G regions ensures
 64 * by construction that we never select a 128M region that is not a subset of
 65 * the 2G region. For very large and unusual kernel configurations this means
 66 * we may fall back to PLTs where they could have been avoided, but this keeps
 67 * the logic significantly simpler.
 68 */
 69static int __init module_init_limits(void)
 70{
 71	u64 kernel_end = (u64)_end;
 72	u64 kernel_start = (u64)_text;
 73	u64 kernel_size = kernel_end - kernel_start;
 74
 75	/*
 76	 * The default modules region is placed immediately below the kernel
 77	 * image, and is large enough to use the full 2G relocation range.
 78	 */
 79	BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
 80	BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
 81
 82	if (!kaslr_enabled()) {
 83		if (kernel_size < SZ_128M)
 84			module_direct_base = kernel_end - SZ_128M;
 85		if (kernel_size < SZ_2G)
 86			module_plt_base = kernel_end - SZ_2G;
 87	} else {
 88		u64 min = kernel_start;
 89		u64 max = kernel_end;
 90
 91		if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
 92			pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
 93		} else {
 94			module_direct_base = random_bounding_box(SZ_128M, min, max);
 95			if (module_direct_base) {
 96				min = module_direct_base;
 97				max = module_direct_base + SZ_128M;
 98			}
 99		}
100
101		module_plt_base = random_bounding_box(SZ_2G, min, max);
102	}
103
104	pr_info("%llu pages in range for non-PLT usage",
105		module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
106	pr_info("%llu pages in range for PLT usage",
107		module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
108
109	return 0;
110}
111subsys_initcall(module_init_limits);
112
113void *module_alloc(unsigned long size)
114{
115	void *p = NULL;
116
117	/*
118	 * Where possible, prefer to allocate within direct branch range of the
119	 * kernel such that no PLTs are necessary.
120	 */
121	if (module_direct_base) {
122		p = __vmalloc_node_range(size, MODULE_ALIGN,
123					 module_direct_base,
124					 module_direct_base + SZ_128M,
125					 GFP_KERNEL | __GFP_NOWARN,
126					 PAGE_KERNEL, 0, NUMA_NO_NODE,
127					 __builtin_return_address(0));
128	}
129
130	if (!p && module_plt_base) {
131		p = __vmalloc_node_range(size, MODULE_ALIGN,
132					 module_plt_base,
133					 module_plt_base + SZ_2G,
134					 GFP_KERNEL | __GFP_NOWARN,
135					 PAGE_KERNEL, 0, NUMA_NO_NODE,
136					 __builtin_return_address(0));
137	}
 
 
 
 
 
 
138
139	if (!p) {
140		pr_warn_ratelimited("%s: unable to allocate memory\n",
141				    __func__);
142	}
143
144	if (p && (kasan_alloc_module_shadow(p, size, GFP_KERNEL) < 0)) {
145		vfree(p);
146		return NULL;
147	}
148
149	/* Memory is intended to be executable, reset the pointer tag. */
150	return kasan_reset_tag(p);
151}
152
153enum aarch64_reloc_op {
154	RELOC_OP_NONE,
155	RELOC_OP_ABS,
156	RELOC_OP_PREL,
157	RELOC_OP_PAGE,
158};
159
160static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
161{
162	switch (reloc_op) {
163	case RELOC_OP_ABS:
164		return val;
165	case RELOC_OP_PREL:
166		return val - (u64)place;
167	case RELOC_OP_PAGE:
168		return (val & ~0xfff) - ((u64)place & ~0xfff);
169	case RELOC_OP_NONE:
170		return 0;
171	}
172
173	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
174	return 0;
175}
176
177static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
178{
179	s64 sval = do_reloc(op, place, val);
180
181	/*
182	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
183	 * relative and absolute relocations as having a range of [-2^15, 2^16)
184	 * or [-2^31, 2^32), respectively. However, in order to be able to
185	 * detect overflows reliably, we have to choose whether we interpret
186	 * such quantities as signed or as unsigned, and stick with it.
187	 * The way we organize our address space requires a signed
188	 * interpretation of 32-bit relative references, so let's use that
189	 * for all R_AARCH64_PRELxx relocations. This means our upper
190	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
191	 */
192
193	switch (len) {
194	case 16:
195		*(s16 *)place = sval;
196		switch (op) {
197		case RELOC_OP_ABS:
198			if (sval < 0 || sval > U16_MAX)
199				return -ERANGE;
200			break;
201		case RELOC_OP_PREL:
202			if (sval < S16_MIN || sval > S16_MAX)
203				return -ERANGE;
204			break;
205		default:
206			pr_err("Invalid 16-bit data relocation (%d)\n", op);
207			return 0;
208		}
209		break;
210	case 32:
211		*(s32 *)place = sval;
212		switch (op) {
213		case RELOC_OP_ABS:
214			if (sval < 0 || sval > U32_MAX)
215				return -ERANGE;
216			break;
217		case RELOC_OP_PREL:
218			if (sval < S32_MIN || sval > S32_MAX)
219				return -ERANGE;
220			break;
221		default:
222			pr_err("Invalid 32-bit data relocation (%d)\n", op);
223			return 0;
224		}
225		break;
226	case 64:
227		*(s64 *)place = sval;
228		break;
229	default:
230		pr_err("Invalid length (%d) for data relocation\n", len);
231		return 0;
232	}
233	return 0;
234}
235
236enum aarch64_insn_movw_imm_type {
237	AARCH64_INSN_IMM_MOVNZ,
238	AARCH64_INSN_IMM_MOVKZ,
239};
240
241static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
242			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
243{
244	u64 imm;
245	s64 sval;
246	u32 insn = le32_to_cpu(*place);
247
248	sval = do_reloc(op, place, val);
249	imm = sval >> lsb;
250
251	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
252		/*
253		 * For signed MOVW relocations, we have to manipulate the
254		 * instruction encoding depending on whether or not the
255		 * immediate is less than zero.
256		 */
257		insn &= ~(3 << 29);
258		if (sval >= 0) {
259			/* >=0: Set the instruction to MOVZ (opcode 10b). */
260			insn |= 2 << 29;
261		} else {
262			/*
263			 * <0: Set the instruction to MOVN (opcode 00b).
264			 *     Since we've masked the opcode already, we
265			 *     don't need to do anything other than
266			 *     inverting the new immediate field.
267			 */
268			imm = ~imm;
269		}
270	}
271
272	/* Update the instruction with the new encoding. */
273	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
274	*place = cpu_to_le32(insn);
275
276	if (imm > U16_MAX)
277		return -ERANGE;
278
279	return 0;
280}
281
282static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
283			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
284{
285	u64 imm, imm_mask;
286	s64 sval;
287	u32 insn = le32_to_cpu(*place);
288
289	/* Calculate the relocation value. */
290	sval = do_reloc(op, place, val);
291	sval >>= lsb;
292
293	/* Extract the value bits and shift them to bit 0. */
294	imm_mask = (BIT(lsb + len) - 1) >> lsb;
295	imm = sval & imm_mask;
296
297	/* Update the instruction's immediate field. */
298	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
299	*place = cpu_to_le32(insn);
300
301	/*
302	 * Extract the upper value bits (including the sign bit) and
303	 * shift them to bit 0.
304	 */
305	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
306
307	/*
308	 * Overflow has occurred if the upper bits are not all equal to
309	 * the sign bit of the value.
310	 */
311	if ((u64)(sval + 1) >= 2)
312		return -ERANGE;
313
314	return 0;
315}
316
317static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
318			   __le32 *place, u64 val)
319{
320	u32 insn;
321
322	if (!is_forbidden_offset_for_adrp(place))
323		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
324				      AARCH64_INSN_IMM_ADR);
325
326	/* patch ADRP to ADR if it is in range */
327	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
328			    AARCH64_INSN_IMM_ADR)) {
329		insn = le32_to_cpu(*place);
330		insn &= ~BIT(31);
331	} else {
332		/* out of range for ADR -> emit a veneer */
333		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
334		if (!val)
335			return -ENOEXEC;
336		insn = aarch64_insn_gen_branch_imm((u64)place, val,
337						   AARCH64_INSN_BRANCH_NOLINK);
338	}
339
340	*place = cpu_to_le32(insn);
341	return 0;
342}
343
344int apply_relocate_add(Elf64_Shdr *sechdrs,
345		       const char *strtab,
346		       unsigned int symindex,
347		       unsigned int relsec,
348		       struct module *me)
349{
350	unsigned int i;
351	int ovf;
352	bool overflow_check;
353	Elf64_Sym *sym;
354	void *loc;
355	u64 val;
356	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
357
358	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
359		/* loc corresponds to P in the AArch64 ELF document. */
360		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
361			+ rel[i].r_offset;
362
363		/* sym is the ELF symbol we're referring to. */
364		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
365			+ ELF64_R_SYM(rel[i].r_info);
366
367		/* val corresponds to (S + A) in the AArch64 ELF document. */
368		val = sym->st_value + rel[i].r_addend;
369
370		/* Check for overflow by default. */
371		overflow_check = true;
372
373		/* Perform the static relocation. */
374		switch (ELF64_R_TYPE(rel[i].r_info)) {
375		/* Null relocations. */
376		case R_ARM_NONE:
377		case R_AARCH64_NONE:
378			ovf = 0;
379			break;
380
381		/* Data relocations. */
382		case R_AARCH64_ABS64:
383			overflow_check = false;
384			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
385			break;
386		case R_AARCH64_ABS32:
387			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
388			break;
389		case R_AARCH64_ABS16:
390			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
391			break;
392		case R_AARCH64_PREL64:
393			overflow_check = false;
394			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
395			break;
396		case R_AARCH64_PREL32:
397			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
398			break;
399		case R_AARCH64_PREL16:
400			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
401			break;
402
403		/* MOVW instruction relocations. */
404		case R_AARCH64_MOVW_UABS_G0_NC:
405			overflow_check = false;
406			fallthrough;
407		case R_AARCH64_MOVW_UABS_G0:
408			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
409					      AARCH64_INSN_IMM_MOVKZ);
410			break;
411		case R_AARCH64_MOVW_UABS_G1_NC:
412			overflow_check = false;
413			fallthrough;
414		case R_AARCH64_MOVW_UABS_G1:
415			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
416					      AARCH64_INSN_IMM_MOVKZ);
417			break;
418		case R_AARCH64_MOVW_UABS_G2_NC:
419			overflow_check = false;
420			fallthrough;
421		case R_AARCH64_MOVW_UABS_G2:
422			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
423					      AARCH64_INSN_IMM_MOVKZ);
424			break;
425		case R_AARCH64_MOVW_UABS_G3:
426			/* We're using the top bits so we can't overflow. */
427			overflow_check = false;
428			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
429					      AARCH64_INSN_IMM_MOVKZ);
430			break;
431		case R_AARCH64_MOVW_SABS_G0:
432			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
433					      AARCH64_INSN_IMM_MOVNZ);
434			break;
435		case R_AARCH64_MOVW_SABS_G1:
436			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
437					      AARCH64_INSN_IMM_MOVNZ);
438			break;
439		case R_AARCH64_MOVW_SABS_G2:
440			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
441					      AARCH64_INSN_IMM_MOVNZ);
442			break;
443		case R_AARCH64_MOVW_PREL_G0_NC:
444			overflow_check = false;
445			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
446					      AARCH64_INSN_IMM_MOVKZ);
447			break;
448		case R_AARCH64_MOVW_PREL_G0:
449			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
450					      AARCH64_INSN_IMM_MOVNZ);
451			break;
452		case R_AARCH64_MOVW_PREL_G1_NC:
453			overflow_check = false;
454			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
455					      AARCH64_INSN_IMM_MOVKZ);
456			break;
457		case R_AARCH64_MOVW_PREL_G1:
458			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
459					      AARCH64_INSN_IMM_MOVNZ);
460			break;
461		case R_AARCH64_MOVW_PREL_G2_NC:
462			overflow_check = false;
463			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
464					      AARCH64_INSN_IMM_MOVKZ);
465			break;
466		case R_AARCH64_MOVW_PREL_G2:
467			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
468					      AARCH64_INSN_IMM_MOVNZ);
469			break;
470		case R_AARCH64_MOVW_PREL_G3:
471			/* We're using the top bits so we can't overflow. */
472			overflow_check = false;
473			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
474					      AARCH64_INSN_IMM_MOVNZ);
475			break;
476
477		/* Immediate instruction relocations. */
478		case R_AARCH64_LD_PREL_LO19:
479			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
480					     AARCH64_INSN_IMM_19);
481			break;
482		case R_AARCH64_ADR_PREL_LO21:
483			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
484					     AARCH64_INSN_IMM_ADR);
485			break;
 
486		case R_AARCH64_ADR_PREL_PG_HI21_NC:
487			overflow_check = false;
488			fallthrough;
489		case R_AARCH64_ADR_PREL_PG_HI21:
490			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
491			if (ovf && ovf != -ERANGE)
492				return ovf;
493			break;
 
494		case R_AARCH64_ADD_ABS_LO12_NC:
495		case R_AARCH64_LDST8_ABS_LO12_NC:
496			overflow_check = false;
497			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
498					     AARCH64_INSN_IMM_12);
499			break;
500		case R_AARCH64_LDST16_ABS_LO12_NC:
501			overflow_check = false;
502			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
503					     AARCH64_INSN_IMM_12);
504			break;
505		case R_AARCH64_LDST32_ABS_LO12_NC:
506			overflow_check = false;
507			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
508					     AARCH64_INSN_IMM_12);
509			break;
510		case R_AARCH64_LDST64_ABS_LO12_NC:
511			overflow_check = false;
512			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
513					     AARCH64_INSN_IMM_12);
514			break;
515		case R_AARCH64_LDST128_ABS_LO12_NC:
516			overflow_check = false;
517			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
518					     AARCH64_INSN_IMM_12);
519			break;
520		case R_AARCH64_TSTBR14:
521			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
522					     AARCH64_INSN_IMM_14);
523			break;
524		case R_AARCH64_CONDBR19:
525			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
526					     AARCH64_INSN_IMM_19);
527			break;
528		case R_AARCH64_JUMP26:
529		case R_AARCH64_CALL26:
530			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
531					     AARCH64_INSN_IMM_26);
532			if (ovf == -ERANGE) {
533				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
534				if (!val)
535					return -ENOEXEC;
536				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
537						     26, AARCH64_INSN_IMM_26);
538			}
539			break;
540
541		default:
542			pr_err("module %s: unsupported RELA relocation: %llu\n",
543			       me->name, ELF64_R_TYPE(rel[i].r_info));
544			return -ENOEXEC;
545		}
546
547		if (overflow_check && ovf == -ERANGE)
548			goto overflow;
549
550	}
551
552	return 0;
553
554overflow:
555	pr_err("module %s: overflow in relocation type %d val %Lx\n",
556	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
557	return -ENOEXEC;
558}
559
560static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
561{
562	*plt = get_plt_entry(addr, plt);
563}
564
565static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
566				  const Elf_Shdr *sechdrs,
567				  struct module *mod)
568{
569#if defined(CONFIG_DYNAMIC_FTRACE)
570	const Elf_Shdr *s;
571	struct plt_entry *plts;
572
573	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
574	if (!s)
575		return -ENOEXEC;
576
577	plts = (void *)s->sh_addr;
578
579	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
580
581	mod->arch.ftrace_trampolines = plts;
582#endif
583	return 0;
584}
585
586int module_finalize(const Elf_Ehdr *hdr,
587		    const Elf_Shdr *sechdrs,
588		    struct module *me)
589{
590	const Elf_Shdr *s;
591	s = find_section(hdr, sechdrs, ".altinstructions");
592	if (s)
593		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
594
595	if (scs_is_dynamic()) {
596		s = find_section(hdr, sechdrs, ".init.eh_frame");
597		if (s)
598			scs_patch((void *)s->sh_addr, s->sh_size);
599	}
600
601	return module_init_ftrace_plt(hdr, sechdrs, me);
602}