Linux Audio

Check our new training course

Loading...
v4.6
   1#include <linux/mm.h>
 
   2#include <linux/vmacache.h>
   3#include <linux/hugetlb.h>
   4#include <linux/huge_mm.h>
   5#include <linux/mount.h>
   6#include <linux/seq_file.h>
   7#include <linux/highmem.h>
   8#include <linux/ptrace.h>
   9#include <linux/slab.h>
  10#include <linux/pagemap.h>
  11#include <linux/mempolicy.h>
  12#include <linux/rmap.h>
  13#include <linux/swap.h>
 
  14#include <linux/swapops.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/page_idle.h>
  17#include <linux/shmem_fs.h>
 
 
  18
  19#include <asm/elf.h>
  20#include <asm/uaccess.h>
  21#include <asm/tlbflush.h>
  22#include "internal.h"
  23
 
 
  24void task_mem(struct seq_file *m, struct mm_struct *mm)
  25{
  26	unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
  27	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  28
  29	anon = get_mm_counter(mm, MM_ANONPAGES);
  30	file = get_mm_counter(mm, MM_FILEPAGES);
  31	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  32
  33	/*
  34	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  35	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  36	 * collector of these hiwater stats must therefore get total_vm
  37	 * and rss too, which will usually be the higher.  Barriers? not
  38	 * worth the effort, such snapshots can always be inconsistent.
  39	 */
  40	hiwater_vm = total_vm = mm->total_vm;
  41	if (hiwater_vm < mm->hiwater_vm)
  42		hiwater_vm = mm->hiwater_vm;
  43	hiwater_rss = total_rss = anon + file + shmem;
  44	if (hiwater_rss < mm->hiwater_rss)
  45		hiwater_rss = mm->hiwater_rss;
  46
  47	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  48	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
 
 
 
  49	swap = get_mm_counter(mm, MM_SWAPENTS);
  50	ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
  51	pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
  52	seq_printf(m,
  53		"VmPeak:\t%8lu kB\n"
  54		"VmSize:\t%8lu kB\n"
  55		"VmLck:\t%8lu kB\n"
  56		"VmPin:\t%8lu kB\n"
  57		"VmHWM:\t%8lu kB\n"
  58		"VmRSS:\t%8lu kB\n"
  59		"RssAnon:\t%8lu kB\n"
  60		"RssFile:\t%8lu kB\n"
  61		"RssShmem:\t%8lu kB\n"
  62		"VmData:\t%8lu kB\n"
  63		"VmStk:\t%8lu kB\n"
  64		"VmExe:\t%8lu kB\n"
  65		"VmLib:\t%8lu kB\n"
  66		"VmPTE:\t%8lu kB\n"
  67		"VmPMD:\t%8lu kB\n"
  68		"VmSwap:\t%8lu kB\n",
  69		hiwater_vm << (PAGE_SHIFT-10),
  70		total_vm << (PAGE_SHIFT-10),
  71		mm->locked_vm << (PAGE_SHIFT-10),
  72		mm->pinned_vm << (PAGE_SHIFT-10),
  73		hiwater_rss << (PAGE_SHIFT-10),
  74		total_rss << (PAGE_SHIFT-10),
  75		anon << (PAGE_SHIFT-10),
  76		file << (PAGE_SHIFT-10),
  77		shmem << (PAGE_SHIFT-10),
  78		mm->data_vm << (PAGE_SHIFT-10),
  79		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  80		ptes >> 10,
  81		pmds >> 10,
  82		swap << (PAGE_SHIFT-10));
  83	hugetlb_report_usage(m, mm);
  84}
 
  85
  86unsigned long task_vsize(struct mm_struct *mm)
  87{
  88	return PAGE_SIZE * mm->total_vm;
  89}
  90
  91unsigned long task_statm(struct mm_struct *mm,
  92			 unsigned long *shared, unsigned long *text,
  93			 unsigned long *data, unsigned long *resident)
  94{
  95	*shared = get_mm_counter(mm, MM_FILEPAGES) +
  96			get_mm_counter(mm, MM_SHMEMPAGES);
  97	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  98								>> PAGE_SHIFT;
  99	*data = mm->data_vm + mm->stack_vm;
 100	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
 101	return mm->total_vm;
 102}
 103
 104#ifdef CONFIG_NUMA
 105/*
 106 * Save get_task_policy() for show_numa_map().
 107 */
 108static void hold_task_mempolicy(struct proc_maps_private *priv)
 109{
 110	struct task_struct *task = priv->task;
 111
 112	task_lock(task);
 113	priv->task_mempolicy = get_task_policy(task);
 114	mpol_get(priv->task_mempolicy);
 115	task_unlock(task);
 116}
 117static void release_task_mempolicy(struct proc_maps_private *priv)
 118{
 119	mpol_put(priv->task_mempolicy);
 120}
 121#else
 122static void hold_task_mempolicy(struct proc_maps_private *priv)
 123{
 124}
 125static void release_task_mempolicy(struct proc_maps_private *priv)
 126{
 127}
 128#endif
 129
 130static void vma_stop(struct proc_maps_private *priv)
 131{
 132	struct mm_struct *mm = priv->mm;
 133
 134	release_task_mempolicy(priv);
 135	up_read(&mm->mmap_sem);
 136	mmput(mm);
 137}
 138
 139static struct vm_area_struct *
 140m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
 141{
 142	if (vma == priv->tail_vma)
 143		return NULL;
 144	return vma->vm_next ?: priv->tail_vma;
 145}
 146
 147static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
 148{
 149	if (m->count < m->size)	/* vma is copied successfully */
 150		m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
 151}
 152
 153static void *m_start(struct seq_file *m, loff_t *ppos)
 154{
 155	struct proc_maps_private *priv = m->private;
 156	unsigned long last_addr = m->version;
 157	struct mm_struct *mm;
 158	struct vm_area_struct *vma;
 159	unsigned int pos = *ppos;
 160
 161	/* See m_cache_vma(). Zero at the start or after lseek. */
 162	if (last_addr == -1UL)
 163		return NULL;
 164
 165	priv->task = get_proc_task(priv->inode);
 166	if (!priv->task)
 167		return ERR_PTR(-ESRCH);
 168
 169	mm = priv->mm;
 170	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
 171		return NULL;
 172
 173	down_read(&mm->mmap_sem);
 
 
 
 
 174	hold_task_mempolicy(priv);
 175	priv->tail_vma = get_gate_vma(mm);
 176
 177	if (last_addr) {
 178		vma = find_vma(mm, last_addr);
 179		if (vma && (vma = m_next_vma(priv, vma)))
 
 
 180			return vma;
 181	}
 182
 183	m->version = 0;
 184	if (pos < mm->map_count) {
 185		for (vma = mm->mmap; pos; pos--) {
 186			m->version = vma->vm_start;
 187			vma = vma->vm_next;
 188		}
 189		return vma;
 190	}
 191
 192	/* we do not bother to update m->version in this case */
 193	if (pos == mm->map_count && priv->tail_vma)
 194		return priv->tail_vma;
 195
 196	vma_stop(priv);
 197	return NULL;
 198}
 199
 200static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 201{
 202	struct proc_maps_private *priv = m->private;
 203	struct vm_area_struct *next;
 204
 205	(*pos)++;
 206	next = m_next_vma(priv, v);
 207	if (!next)
 208		vma_stop(priv);
 209	return next;
 210}
 211
 212static void m_stop(struct seq_file *m, void *v)
 213{
 214	struct proc_maps_private *priv = m->private;
 215
 216	if (!IS_ERR_OR_NULL(v))
 217		vma_stop(priv);
 218	if (priv->task) {
 219		put_task_struct(priv->task);
 220		priv->task = NULL;
 221	}
 222}
 223
 224static int proc_maps_open(struct inode *inode, struct file *file,
 225			const struct seq_operations *ops, int psize)
 226{
 227	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
 228
 229	if (!priv)
 230		return -ENOMEM;
 231
 232	priv->inode = inode;
 233	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 234	if (IS_ERR(priv->mm)) {
 235		int err = PTR_ERR(priv->mm);
 236
 237		seq_release_private(inode, file);
 238		return err;
 239	}
 240
 241	return 0;
 242}
 243
 244static int proc_map_release(struct inode *inode, struct file *file)
 245{
 246	struct seq_file *seq = file->private_data;
 247	struct proc_maps_private *priv = seq->private;
 248
 249	if (priv->mm)
 250		mmdrop(priv->mm);
 251
 252	return seq_release_private(inode, file);
 253}
 254
 255static int do_maps_open(struct inode *inode, struct file *file,
 256			const struct seq_operations *ops)
 257{
 258	return proc_maps_open(inode, file, ops,
 259				sizeof(struct proc_maps_private));
 260}
 261
 262/*
 263 * Indicate if the VMA is a stack for the given task; for
 264 * /proc/PID/maps that is the stack of the main task.
 265 */
 266static int is_stack(struct proc_maps_private *priv,
 267		    struct vm_area_struct *vma, int is_pid)
 268{
 269	int stack = 0;
 270
 271	if (is_pid) {
 272		stack = vma->vm_start <= vma->vm_mm->start_stack &&
 273			vma->vm_end >= vma->vm_mm->start_stack;
 274	} else {
 275		struct inode *inode = priv->inode;
 276		struct task_struct *task;
 277
 278		rcu_read_lock();
 279		task = pid_task(proc_pid(inode), PIDTYPE_PID);
 280		if (task)
 281			stack = vma_is_stack_for_task(vma, task);
 282		rcu_read_unlock();
 283	}
 284	return stack;
 
 
 
 
 
 
 
 
 
 
 
 285}
 286
 287static void
 288show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
 289{
 290	struct mm_struct *mm = vma->vm_mm;
 291	struct file *file = vma->vm_file;
 292	struct proc_maps_private *priv = m->private;
 293	vm_flags_t flags = vma->vm_flags;
 294	unsigned long ino = 0;
 295	unsigned long long pgoff = 0;
 296	unsigned long start, end;
 297	dev_t dev = 0;
 298	const char *name = NULL;
 299
 300	if (file) {
 301		struct inode *inode = file_inode(vma->vm_file);
 302		dev = inode->i_sb->s_dev;
 303		ino = inode->i_ino;
 304		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 305	}
 306
 307	/* We don't show the stack guard page in /proc/maps */
 308	start = vma->vm_start;
 309	if (stack_guard_page_start(vma, start))
 310		start += PAGE_SIZE;
 311	end = vma->vm_end;
 312	if (stack_guard_page_end(vma, end))
 313		end -= PAGE_SIZE;
 314
 315	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 316	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
 317			start,
 318			end,
 319			flags & VM_READ ? 'r' : '-',
 320			flags & VM_WRITE ? 'w' : '-',
 321			flags & VM_EXEC ? 'x' : '-',
 322			flags & VM_MAYSHARE ? 's' : 'p',
 323			pgoff,
 324			MAJOR(dev), MINOR(dev), ino);
 325
 326	/*
 327	 * Print the dentry name for named mappings, and a
 328	 * special [heap] marker for the heap:
 329	 */
 330	if (file) {
 331		seq_pad(m, ' ');
 332		seq_file_path(m, file, "\n");
 333		goto done;
 334	}
 335
 336	if (vma->vm_ops && vma->vm_ops->name) {
 337		name = vma->vm_ops->name(vma);
 338		if (name)
 339			goto done;
 340	}
 341
 342	name = arch_vma_name(vma);
 343	if (!name) {
 344		if (!mm) {
 345			name = "[vdso]";
 346			goto done;
 347		}
 348
 349		if (vma->vm_start <= mm->brk &&
 350		    vma->vm_end >= mm->start_brk) {
 351			name = "[heap]";
 352			goto done;
 353		}
 354
 355		if (is_stack(priv, vma, is_pid))
 356			name = "[stack]";
 357	}
 358
 359done:
 360	if (name) {
 361		seq_pad(m, ' ');
 362		seq_puts(m, name);
 363	}
 364	seq_putc(m, '\n');
 365}
 366
 367static int show_map(struct seq_file *m, void *v, int is_pid)
 368{
 369	show_map_vma(m, v, is_pid);
 370	m_cache_vma(m, v);
 371	return 0;
 372}
 373
 374static int show_pid_map(struct seq_file *m, void *v)
 375{
 376	return show_map(m, v, 1);
 377}
 378
 379static int show_tid_map(struct seq_file *m, void *v)
 380{
 381	return show_map(m, v, 0);
 382}
 383
 384static const struct seq_operations proc_pid_maps_op = {
 385	.start	= m_start,
 386	.next	= m_next,
 387	.stop	= m_stop,
 388	.show	= show_pid_map
 389};
 390
 391static const struct seq_operations proc_tid_maps_op = {
 392	.start	= m_start,
 393	.next	= m_next,
 394	.stop	= m_stop,
 395	.show	= show_tid_map
 396};
 397
 398static int pid_maps_open(struct inode *inode, struct file *file)
 399{
 400	return do_maps_open(inode, file, &proc_pid_maps_op);
 401}
 402
 403static int tid_maps_open(struct inode *inode, struct file *file)
 404{
 405	return do_maps_open(inode, file, &proc_tid_maps_op);
 406}
 407
 408const struct file_operations proc_pid_maps_operations = {
 409	.open		= pid_maps_open,
 410	.read		= seq_read,
 411	.llseek		= seq_lseek,
 412	.release	= proc_map_release,
 413};
 414
 415const struct file_operations proc_tid_maps_operations = {
 416	.open		= tid_maps_open,
 417	.read		= seq_read,
 418	.llseek		= seq_lseek,
 419	.release	= proc_map_release,
 420};
 421
 422/*
 423 * Proportional Set Size(PSS): my share of RSS.
 424 *
 425 * PSS of a process is the count of pages it has in memory, where each
 426 * page is divided by the number of processes sharing it.  So if a
 427 * process has 1000 pages all to itself, and 1000 shared with one other
 428 * process, its PSS will be 1500.
 429 *
 430 * To keep (accumulated) division errors low, we adopt a 64bit
 431 * fixed-point pss counter to minimize division errors. So (pss >>
 432 * PSS_SHIFT) would be the real byte count.
 433 *
 434 * A shift of 12 before division means (assuming 4K page size):
 435 * 	- 1M 3-user-pages add up to 8KB errors;
 436 * 	- supports mapcount up to 2^24, or 16M;
 437 * 	- supports PSS up to 2^52 bytes, or 4PB.
 438 */
 439#define PSS_SHIFT 12
 440
 441#ifdef CONFIG_PROC_PAGE_MONITOR
 442struct mem_size_stats {
 443	unsigned long resident;
 444	unsigned long shared_clean;
 445	unsigned long shared_dirty;
 446	unsigned long private_clean;
 447	unsigned long private_dirty;
 448	unsigned long referenced;
 449	unsigned long anonymous;
 
 450	unsigned long anonymous_thp;
 
 
 451	unsigned long swap;
 452	unsigned long shared_hugetlb;
 453	unsigned long private_hugetlb;
 454	u64 pss;
 
 
 
 
 455	u64 swap_pss;
 456	bool check_shmem_swap;
 457};
 458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459static void smaps_account(struct mem_size_stats *mss, struct page *page,
 460		bool compound, bool young, bool dirty)
 461{
 462	int i, nr = compound ? 1 << compound_order(page) : 1;
 463	unsigned long size = nr * PAGE_SIZE;
 464
 465	if (PageAnon(page))
 
 
 
 
 466		mss->anonymous += size;
 
 
 
 467
 468	mss->resident += size;
 469	/* Accumulate the size in pages that have been accessed. */
 470	if (young || page_is_young(page) || PageReferenced(page))
 471		mss->referenced += size;
 472
 473	/*
 
 
 
 474	 * page_count(page) == 1 guarantees the page is mapped exactly once.
 475	 * If any subpage of the compound page mapped with PTE it would elevate
 476	 * page_count().
 477	 */
 478	if (page_count(page) == 1) {
 479		if (dirty || PageDirty(page))
 480			mss->private_dirty += size;
 481		else
 482			mss->private_clean += size;
 483		mss->pss += (u64)size << PSS_SHIFT;
 484		return;
 485	}
 486
 487	for (i = 0; i < nr; i++, page++) {
 488		int mapcount = page_mapcount(page);
 489
 490		if (mapcount >= 2) {
 491			if (dirty || PageDirty(page))
 492				mss->shared_dirty += PAGE_SIZE;
 493			else
 494				mss->shared_clean += PAGE_SIZE;
 495			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
 496		} else {
 497			if (dirty || PageDirty(page))
 498				mss->private_dirty += PAGE_SIZE;
 499			else
 500				mss->private_clean += PAGE_SIZE;
 501			mss->pss += PAGE_SIZE << PSS_SHIFT;
 502		}
 503	}
 504}
 505
 506#ifdef CONFIG_SHMEM
 507static int smaps_pte_hole(unsigned long addr, unsigned long end,
 508		struct mm_walk *walk)
 509{
 510	struct mem_size_stats *mss = walk->private;
 511
 512	mss->swap += shmem_partial_swap_usage(
 513			walk->vma->vm_file->f_mapping, addr, end);
 514
 515	return 0;
 516}
 517#endif
 
 
 518
 519static void smaps_pte_entry(pte_t *pte, unsigned long addr,
 520		struct mm_walk *walk)
 521{
 522	struct mem_size_stats *mss = walk->private;
 523	struct vm_area_struct *vma = walk->vma;
 
 524	struct page *page = NULL;
 525
 526	if (pte_present(*pte)) {
 527		page = vm_normal_page(vma, addr, *pte);
 528	} else if (is_swap_pte(*pte)) {
 529		swp_entry_t swpent = pte_to_swp_entry(*pte);
 530
 531		if (!non_swap_entry(swpent)) {
 532			int mapcount;
 533
 534			mss->swap += PAGE_SIZE;
 535			mapcount = swp_swapcount(swpent);
 536			if (mapcount >= 2) {
 537				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
 538
 539				do_div(pss_delta, mapcount);
 540				mss->swap_pss += pss_delta;
 541			} else {
 542				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
 543			}
 544		} else if (is_migration_entry(swpent))
 545			page = migration_entry_to_page(swpent);
 
 
 546	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
 547							&& pte_none(*pte))) {
 548		page = find_get_entry(vma->vm_file->f_mapping,
 549						linear_page_index(vma, addr));
 550		if (!page)
 551			return;
 552
 553		if (radix_tree_exceptional_entry(page))
 554			mss->swap += PAGE_SIZE;
 555		else
 556			put_page(page);
 557
 558		return;
 559	}
 560
 561	if (!page)
 562		return;
 563
 564	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
 565}
 566
 567#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 568static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 569		struct mm_walk *walk)
 570{
 571	struct mem_size_stats *mss = walk->private;
 572	struct vm_area_struct *vma = walk->vma;
 
 573	struct page *page;
 574
 575	/* FOLL_DUMP will return -EFAULT on huge zero page */
 576	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
 577	if (IS_ERR_OR_NULL(page))
 578		return;
 579	mss->anonymous_thp += HPAGE_PMD_SIZE;
 580	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
 
 
 
 
 
 
 
 581}
 582#else
 583static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 584		struct mm_walk *walk)
 585{
 586}
 587#endif
 588
 589static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 590			   struct mm_walk *walk)
 591{
 592	struct vm_area_struct *vma = walk->vma;
 593	pte_t *pte;
 594	spinlock_t *ptl;
 595
 596	ptl = pmd_trans_huge_lock(pmd, vma);
 597	if (ptl) {
 598		smaps_pmd_entry(pmd, addr, walk);
 
 599		spin_unlock(ptl);
 600		return 0;
 601	}
 602
 603	if (pmd_trans_unstable(pmd))
 604		return 0;
 605	/*
 606	 * The mmap_sem held all the way back in m_start() is what
 607	 * keeps khugepaged out of here and from collapsing things
 608	 * in here.
 609	 */
 610	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 611	for (; addr != end; pte++, addr += PAGE_SIZE)
 612		smaps_pte_entry(pte, addr, walk);
 613	pte_unmap_unlock(pte - 1, ptl);
 
 614	cond_resched();
 615	return 0;
 616}
 617
 618static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 619{
 620	/*
 621	 * Don't forget to update Documentation/ on changes.
 622	 */
 623	static const char mnemonics[BITS_PER_LONG][2] = {
 624		/*
 625		 * In case if we meet a flag we don't know about.
 626		 */
 627		[0 ... (BITS_PER_LONG-1)] = "??",
 628
 629		[ilog2(VM_READ)]	= "rd",
 630		[ilog2(VM_WRITE)]	= "wr",
 631		[ilog2(VM_EXEC)]	= "ex",
 632		[ilog2(VM_SHARED)]	= "sh",
 633		[ilog2(VM_MAYREAD)]	= "mr",
 634		[ilog2(VM_MAYWRITE)]	= "mw",
 635		[ilog2(VM_MAYEXEC)]	= "me",
 636		[ilog2(VM_MAYSHARE)]	= "ms",
 637		[ilog2(VM_GROWSDOWN)]	= "gd",
 638		[ilog2(VM_PFNMAP)]	= "pf",
 639		[ilog2(VM_DENYWRITE)]	= "dw",
 640#ifdef CONFIG_X86_INTEL_MPX
 641		[ilog2(VM_MPX)]		= "mp",
 642#endif
 643		[ilog2(VM_LOCKED)]	= "lo",
 644		[ilog2(VM_IO)]		= "io",
 645		[ilog2(VM_SEQ_READ)]	= "sr",
 646		[ilog2(VM_RAND_READ)]	= "rr",
 647		[ilog2(VM_DONTCOPY)]	= "dc",
 648		[ilog2(VM_DONTEXPAND)]	= "de",
 649		[ilog2(VM_ACCOUNT)]	= "ac",
 650		[ilog2(VM_NORESERVE)]	= "nr",
 651		[ilog2(VM_HUGETLB)]	= "ht",
 
 652		[ilog2(VM_ARCH_1)]	= "ar",
 
 653		[ilog2(VM_DONTDUMP)]	= "dd",
 654#ifdef CONFIG_MEM_SOFT_DIRTY
 655		[ilog2(VM_SOFTDIRTY)]	= "sd",
 656#endif
 657		[ilog2(VM_MIXEDMAP)]	= "mm",
 658		[ilog2(VM_HUGEPAGE)]	= "hg",
 659		[ilog2(VM_NOHUGEPAGE)]	= "nh",
 660		[ilog2(VM_MERGEABLE)]	= "mg",
 661		[ilog2(VM_UFFD_MISSING)]= "um",
 662		[ilog2(VM_UFFD_WP)]	= "uw",
 663#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 664		/* These come out via ProtectionKey: */
 665		[ilog2(VM_PKEY_BIT0)]	= "",
 666		[ilog2(VM_PKEY_BIT1)]	= "",
 667		[ilog2(VM_PKEY_BIT2)]	= "",
 668		[ilog2(VM_PKEY_BIT3)]	= "",
 
 
 669#endif
 
 670	};
 671	size_t i;
 672
 673	seq_puts(m, "VmFlags: ");
 674	for (i = 0; i < BITS_PER_LONG; i++) {
 675		if (!mnemonics[i][0])
 676			continue;
 677		if (vma->vm_flags & (1UL << i)) {
 678			seq_printf(m, "%c%c ",
 679				   mnemonics[i][0], mnemonics[i][1]);
 
 680		}
 681	}
 682	seq_putc(m, '\n');
 683}
 684
 685#ifdef CONFIG_HUGETLB_PAGE
 686static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
 687				 unsigned long addr, unsigned long end,
 688				 struct mm_walk *walk)
 689{
 690	struct mem_size_stats *mss = walk->private;
 691	struct vm_area_struct *vma = walk->vma;
 692	struct page *page = NULL;
 693
 694	if (pte_present(*pte)) {
 695		page = vm_normal_page(vma, addr, *pte);
 696	} else if (is_swap_pte(*pte)) {
 697		swp_entry_t swpent = pte_to_swp_entry(*pte);
 698
 699		if (is_migration_entry(swpent))
 700			page = migration_entry_to_page(swpent);
 
 
 701	}
 702	if (page) {
 703		int mapcount = page_mapcount(page);
 704
 705		if (mapcount >= 2)
 706			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
 707		else
 708			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
 709	}
 710	return 0;
 711}
 
 
 712#endif /* HUGETLB_PAGE */
 713
 714void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
 715{
 716}
 717
 718static int show_smap(struct seq_file *m, void *v, int is_pid)
 719{
 720	struct vm_area_struct *vma = v;
 721	struct mem_size_stats mss;
 722	struct mm_walk smaps_walk = {
 723		.pmd_entry = smaps_pte_range,
 724#ifdef CONFIG_HUGETLB_PAGE
 725		.hugetlb_entry = smaps_hugetlb_range,
 726#endif
 727		.mm = vma->vm_mm,
 728		.private = &mss,
 729	};
 730
 731	memset(&mss, 0, sizeof mss);
 
 
 
 
 732
 
 
 
 733#ifdef CONFIG_SHMEM
 
 
 734	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
 735		/*
 736		 * For shared or readonly shmem mappings we know that all
 737		 * swapped out pages belong to the shmem object, and we can
 738		 * obtain the swap value much more efficiently. For private
 739		 * writable mappings, we might have COW pages that are
 740		 * not affected by the parent swapped out pages of the shmem
 741		 * object, so we have to distinguish them during the page walk.
 742		 * Unless we know that the shmem object (or the part mapped by
 743		 * our VMA) has no swapped out pages at all.
 744		 */
 745		unsigned long shmem_swapped = shmem_swap_usage(vma);
 746
 747		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
 748					!(vma->vm_flags & VM_WRITE)) {
 749			mss.swap = shmem_swapped;
 750		} else {
 751			mss.check_shmem_swap = true;
 752			smaps_walk.pte_hole = smaps_pte_hole;
 
 753		}
 754	}
 755#endif
 756
 757	/* mmap_sem is held in m_start */
 758	walk_page_vma(vma, &smaps_walk);
 
 759
 760	show_map_vma(m, vma, is_pid);
 
 761
 762	seq_printf(m,
 763		   "Size:           %8lu kB\n"
 764		   "Rss:            %8lu kB\n"
 765		   "Pss:            %8lu kB\n"
 766		   "Shared_Clean:   %8lu kB\n"
 767		   "Shared_Dirty:   %8lu kB\n"
 768		   "Private_Clean:  %8lu kB\n"
 769		   "Private_Dirty:  %8lu kB\n"
 770		   "Referenced:     %8lu kB\n"
 771		   "Anonymous:      %8lu kB\n"
 772		   "AnonHugePages:  %8lu kB\n"
 773		   "Shared_Hugetlb: %8lu kB\n"
 774		   "Private_Hugetlb: %7lu kB\n"
 775		   "Swap:           %8lu kB\n"
 776		   "SwapPss:        %8lu kB\n"
 777		   "KernelPageSize: %8lu kB\n"
 778		   "MMUPageSize:    %8lu kB\n"
 779		   "Locked:         %8lu kB\n",
 780		   (vma->vm_end - vma->vm_start) >> 10,
 781		   mss.resident >> 10,
 782		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
 783		   mss.shared_clean  >> 10,
 784		   mss.shared_dirty  >> 10,
 785		   mss.private_clean >> 10,
 786		   mss.private_dirty >> 10,
 787		   mss.referenced >> 10,
 788		   mss.anonymous >> 10,
 789		   mss.anonymous_thp >> 10,
 790		   mss.shared_hugetlb >> 10,
 791		   mss.private_hugetlb >> 10,
 792		   mss.swap >> 10,
 793		   (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
 794		   vma_kernel_pagesize(vma) >> 10,
 795		   vma_mmu_pagesize(vma) >> 10,
 796		   (vma->vm_flags & VM_LOCKED) ?
 797			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798
 799	arch_show_smap(m, vma);
 
 800	show_smap_vma_flags(m, vma);
 
 801	m_cache_vma(m, vma);
 
 802	return 0;
 803}
 804
 805static int show_pid_smap(struct seq_file *m, void *v)
 806{
 807	return show_smap(m, v, 1);
 808}
 
 
 
 
 809
 810static int show_tid_smap(struct seq_file *m, void *v)
 811{
 812	return show_smap(m, v, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813}
 
 814
 815static const struct seq_operations proc_pid_smaps_op = {
 816	.start	= m_start,
 817	.next	= m_next,
 818	.stop	= m_stop,
 819	.show	= show_pid_smap
 820};
 821
 822static const struct seq_operations proc_tid_smaps_op = {
 823	.start	= m_start,
 824	.next	= m_next,
 825	.stop	= m_stop,
 826	.show	= show_tid_smap
 827};
 828
 829static int pid_smaps_open(struct inode *inode, struct file *file)
 830{
 831	return do_maps_open(inode, file, &proc_pid_smaps_op);
 832}
 833
 834static int tid_smaps_open(struct inode *inode, struct file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835{
 836	return do_maps_open(inode, file, &proc_tid_smaps_op);
 
 
 
 
 
 
 
 837}
 838
 839const struct file_operations proc_pid_smaps_operations = {
 840	.open		= pid_smaps_open,
 841	.read		= seq_read,
 842	.llseek		= seq_lseek,
 843	.release	= proc_map_release,
 844};
 845
 846const struct file_operations proc_tid_smaps_operations = {
 847	.open		= tid_smaps_open,
 848	.read		= seq_read,
 849	.llseek		= seq_lseek,
 850	.release	= proc_map_release,
 851};
 852
 853enum clear_refs_types {
 854	CLEAR_REFS_ALL = 1,
 855	CLEAR_REFS_ANON,
 856	CLEAR_REFS_MAPPED,
 857	CLEAR_REFS_SOFT_DIRTY,
 858	CLEAR_REFS_MM_HIWATER_RSS,
 859	CLEAR_REFS_LAST,
 860};
 861
 862struct clear_refs_private {
 863	enum clear_refs_types type;
 864};
 865
 866#ifdef CONFIG_MEM_SOFT_DIRTY
 867static inline void clear_soft_dirty(struct vm_area_struct *vma,
 868		unsigned long addr, pte_t *pte)
 869{
 870	/*
 871	 * The soft-dirty tracker uses #PF-s to catch writes
 872	 * to pages, so write-protect the pte as well. See the
 873	 * Documentation/vm/soft-dirty.txt for full description
 874	 * of how soft-dirty works.
 875	 */
 876	pte_t ptent = *pte;
 877
 878	if (pte_present(ptent)) {
 879		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
 880		ptent = pte_wrprotect(ptent);
 
 
 881		ptent = pte_clear_soft_dirty(ptent);
 882		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
 883	} else if (is_swap_pte(ptent)) {
 884		ptent = pte_swp_clear_soft_dirty(ptent);
 885		set_pte_at(vma->vm_mm, addr, pte, ptent);
 886	}
 887}
 888#else
 889static inline void clear_soft_dirty(struct vm_area_struct *vma,
 890		unsigned long addr, pte_t *pte)
 891{
 892}
 893#endif
 894
 895#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
 896static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
 897		unsigned long addr, pmd_t *pmdp)
 898{
 899	pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
 900
 901	pmd = pmd_wrprotect(pmd);
 902	pmd = pmd_clear_soft_dirty(pmd);
 903
 904	set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905}
 906#else
 907static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
 908		unsigned long addr, pmd_t *pmdp)
 909{
 910}
 911#endif
 912
 913static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
 914				unsigned long end, struct mm_walk *walk)
 915{
 916	struct clear_refs_private *cp = walk->private;
 917	struct vm_area_struct *vma = walk->vma;
 918	pte_t *pte, ptent;
 919	spinlock_t *ptl;
 920	struct page *page;
 921
 922	ptl = pmd_trans_huge_lock(pmd, vma);
 923	if (ptl) {
 924		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
 925			clear_soft_dirty_pmd(vma, addr, pmd);
 926			goto out;
 927		}
 928
 
 
 
 929		page = pmd_page(*pmd);
 930
 931		/* Clear accessed and referenced bits. */
 932		pmdp_test_and_clear_young(vma, addr, pmd);
 933		test_and_clear_page_young(page);
 934		ClearPageReferenced(page);
 935out:
 936		spin_unlock(ptl);
 937		return 0;
 938	}
 939
 940	if (pmd_trans_unstable(pmd))
 941		return 0;
 942
 943	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 944	for (; addr != end; pte++, addr += PAGE_SIZE) {
 945		ptent = *pte;
 946
 947		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
 948			clear_soft_dirty(vma, addr, pte);
 949			continue;
 950		}
 951
 952		if (!pte_present(ptent))
 953			continue;
 954
 955		page = vm_normal_page(vma, addr, ptent);
 956		if (!page)
 957			continue;
 958
 959		/* Clear accessed and referenced bits. */
 960		ptep_test_and_clear_young(vma, addr, pte);
 961		test_and_clear_page_young(page);
 962		ClearPageReferenced(page);
 963	}
 964	pte_unmap_unlock(pte - 1, ptl);
 965	cond_resched();
 966	return 0;
 967}
 968
 969static int clear_refs_test_walk(unsigned long start, unsigned long end,
 970				struct mm_walk *walk)
 971{
 972	struct clear_refs_private *cp = walk->private;
 973	struct vm_area_struct *vma = walk->vma;
 974
 975	if (vma->vm_flags & VM_PFNMAP)
 976		return 1;
 977
 978	/*
 979	 * Writing 1 to /proc/pid/clear_refs affects all pages.
 980	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
 981	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
 982	 * Writing 4 to /proc/pid/clear_refs affects all pages.
 983	 */
 984	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
 985		return 1;
 986	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
 987		return 1;
 988	return 0;
 989}
 990
 
 
 
 
 
 991static ssize_t clear_refs_write(struct file *file, const char __user *buf,
 992				size_t count, loff_t *ppos)
 993{
 994	struct task_struct *task;
 995	char buffer[PROC_NUMBUF];
 996	struct mm_struct *mm;
 997	struct vm_area_struct *vma;
 998	enum clear_refs_types type;
 
 999	int itype;
1000	int rv;
1001
1002	memset(buffer, 0, sizeof(buffer));
1003	if (count > sizeof(buffer) - 1)
1004		count = sizeof(buffer) - 1;
1005	if (copy_from_user(buffer, buf, count))
1006		return -EFAULT;
1007	rv = kstrtoint(strstrip(buffer), 10, &itype);
1008	if (rv < 0)
1009		return rv;
1010	type = (enum clear_refs_types)itype;
1011	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1012		return -EINVAL;
1013
1014	task = get_proc_task(file_inode(file));
1015	if (!task)
1016		return -ESRCH;
1017	mm = get_task_mm(task);
1018	if (mm) {
 
1019		struct clear_refs_private cp = {
1020			.type = type,
1021		};
1022		struct mm_walk clear_refs_walk = {
1023			.pmd_entry = clear_refs_pte_range,
1024			.test_walk = clear_refs_test_walk,
1025			.mm = mm,
1026			.private = &cp,
1027		};
1028
1029		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
 
 
 
 
 
1030			/*
1031			 * Writing 5 to /proc/pid/clear_refs resets the peak
1032			 * resident set size to this mm's current rss value.
1033			 */
1034			down_write(&mm->mmap_sem);
1035			reset_mm_hiwater_rss(mm);
1036			up_write(&mm->mmap_sem);
1037			goto out_mm;
1038		}
1039
1040		down_read(&mm->mmap_sem);
 
 
 
 
1041		if (type == CLEAR_REFS_SOFT_DIRTY) {
1042			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1043				if (!(vma->vm_flags & VM_SOFTDIRTY))
1044					continue;
1045				up_read(&mm->mmap_sem);
1046				down_write(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1048					vma->vm_flags &= ~VM_SOFTDIRTY;
1049					vma_set_page_prot(vma);
1050				}
1051				downgrade_write(&mm->mmap_sem);
1052				break;
1053			}
1054			mmu_notifier_invalidate_range_start(mm, 0, -1);
 
 
 
1055		}
1056		walk_page_range(0, ~0UL, &clear_refs_walk);
 
1057		if (type == CLEAR_REFS_SOFT_DIRTY)
1058			mmu_notifier_invalidate_range_end(mm, 0, -1);
1059		flush_tlb_mm(mm);
1060		up_read(&mm->mmap_sem);
1061out_mm:
1062		mmput(mm);
1063	}
1064	put_task_struct(task);
1065
1066	return count;
1067}
1068
1069const struct file_operations proc_clear_refs_operations = {
1070	.write		= clear_refs_write,
1071	.llseek		= noop_llseek,
1072};
1073
1074typedef struct {
1075	u64 pme;
1076} pagemap_entry_t;
1077
1078struct pagemapread {
1079	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1080	pagemap_entry_t *buffer;
1081	bool show_pfn;
1082};
1083
1084#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1085#define PAGEMAP_WALK_MASK	(PMD_MASK)
1086
1087#define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1088#define PM_PFRAME_BITS		55
1089#define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1090#define PM_SOFT_DIRTY		BIT_ULL(55)
1091#define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1092#define PM_FILE			BIT_ULL(61)
1093#define PM_SWAP			BIT_ULL(62)
1094#define PM_PRESENT		BIT_ULL(63)
1095
1096#define PM_END_OF_BUFFER    1
1097
1098static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1099{
1100	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1101}
1102
1103static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1104			  struct pagemapread *pm)
1105{
1106	pm->buffer[pm->pos++] = *pme;
1107	if (pm->pos >= pm->len)
1108		return PM_END_OF_BUFFER;
1109	return 0;
1110}
1111
1112static int pagemap_pte_hole(unsigned long start, unsigned long end,
1113				struct mm_walk *walk)
1114{
1115	struct pagemapread *pm = walk->private;
1116	unsigned long addr = start;
1117	int err = 0;
1118
1119	while (addr < end) {
1120		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1121		pagemap_entry_t pme = make_pme(0, 0);
1122		/* End of address space hole, which we mark as non-present. */
1123		unsigned long hole_end;
1124
1125		if (vma)
1126			hole_end = min(end, vma->vm_start);
1127		else
1128			hole_end = end;
1129
1130		for (; addr < hole_end; addr += PAGE_SIZE) {
1131			err = add_to_pagemap(addr, &pme, pm);
1132			if (err)
1133				goto out;
1134		}
1135
1136		if (!vma)
1137			break;
1138
1139		/* Addresses in the VMA. */
1140		if (vma->vm_flags & VM_SOFTDIRTY)
1141			pme = make_pme(0, PM_SOFT_DIRTY);
1142		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1143			err = add_to_pagemap(addr, &pme, pm);
1144			if (err)
1145				goto out;
1146		}
1147	}
1148out:
1149	return err;
1150}
1151
1152static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1153		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1154{
1155	u64 frame = 0, flags = 0;
1156	struct page *page = NULL;
1157
1158	if (pte_present(pte)) {
1159		if (pm->show_pfn)
1160			frame = pte_pfn(pte);
1161		flags |= PM_PRESENT;
1162		page = vm_normal_page(vma, addr, pte);
1163		if (pte_soft_dirty(pte))
1164			flags |= PM_SOFT_DIRTY;
1165	} else if (is_swap_pte(pte)) {
1166		swp_entry_t entry;
1167		if (pte_swp_soft_dirty(pte))
1168			flags |= PM_SOFT_DIRTY;
1169		entry = pte_to_swp_entry(pte);
1170		frame = swp_type(entry) |
1171			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
 
1172		flags |= PM_SWAP;
1173		if (is_migration_entry(entry))
1174			page = migration_entry_to_page(entry);
 
 
 
1175	}
1176
1177	if (page && !PageAnon(page))
1178		flags |= PM_FILE;
1179	if (page && page_mapcount(page) == 1)
1180		flags |= PM_MMAP_EXCLUSIVE;
1181	if (vma->vm_flags & VM_SOFTDIRTY)
1182		flags |= PM_SOFT_DIRTY;
1183
1184	return make_pme(frame, flags);
1185}
1186
1187static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1188			     struct mm_walk *walk)
1189{
1190	struct vm_area_struct *vma = walk->vma;
1191	struct pagemapread *pm = walk->private;
1192	spinlock_t *ptl;
1193	pte_t *pte, *orig_pte;
1194	int err = 0;
1195
1196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1197	ptl = pmd_trans_huge_lock(pmdp, vma);
1198	if (ptl) {
1199		u64 flags = 0, frame = 0;
1200		pmd_t pmd = *pmdp;
 
1201
1202		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1203			flags |= PM_SOFT_DIRTY;
1204
1205		/*
1206		 * Currently pmd for thp is always present because thp
1207		 * can not be swapped-out, migrated, or HWPOISONed
1208		 * (split in such cases instead.)
1209		 * This if-check is just to prepare for future implementation.
1210		 */
1211		if (pmd_present(pmd)) {
1212			struct page *page = pmd_page(pmd);
1213
1214			if (page_mapcount(page) == 1)
1215				flags |= PM_MMAP_EXCLUSIVE;
1216
1217			flags |= PM_PRESENT;
 
 
1218			if (pm->show_pfn)
1219				frame = pmd_pfn(pmd) +
1220					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1221		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222
1223		for (; addr != end; addr += PAGE_SIZE) {
1224			pagemap_entry_t pme = make_pme(frame, flags);
1225
1226			err = add_to_pagemap(addr, &pme, pm);
1227			if (err)
1228				break;
1229			if (pm->show_pfn && (flags & PM_PRESENT))
1230				frame++;
 
 
 
 
1231		}
1232		spin_unlock(ptl);
1233		return err;
1234	}
1235
1236	if (pmd_trans_unstable(pmdp))
1237		return 0;
1238#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1239
1240	/*
1241	 * We can assume that @vma always points to a valid one and @end never
1242	 * goes beyond vma->vm_end.
1243	 */
1244	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1245	for (; addr < end; pte++, addr += PAGE_SIZE) {
1246		pagemap_entry_t pme;
1247
1248		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1249		err = add_to_pagemap(addr, &pme, pm);
1250		if (err)
1251			break;
1252	}
1253	pte_unmap_unlock(orig_pte, ptl);
1254
1255	cond_resched();
1256
1257	return err;
1258}
1259
1260#ifdef CONFIG_HUGETLB_PAGE
1261/* This function walks within one hugetlb entry in the single call */
1262static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1263				 unsigned long addr, unsigned long end,
1264				 struct mm_walk *walk)
1265{
1266	struct pagemapread *pm = walk->private;
1267	struct vm_area_struct *vma = walk->vma;
1268	u64 flags = 0, frame = 0;
1269	int err = 0;
1270	pte_t pte;
1271
1272	if (vma->vm_flags & VM_SOFTDIRTY)
1273		flags |= PM_SOFT_DIRTY;
1274
1275	pte = huge_ptep_get(ptep);
1276	if (pte_present(pte)) {
1277		struct page *page = pte_page(pte);
1278
1279		if (!PageAnon(page))
1280			flags |= PM_FILE;
1281
1282		if (page_mapcount(page) == 1)
1283			flags |= PM_MMAP_EXCLUSIVE;
1284
1285		flags |= PM_PRESENT;
1286		if (pm->show_pfn)
1287			frame = pte_pfn(pte) +
1288				((addr & ~hmask) >> PAGE_SHIFT);
1289	}
1290
1291	for (; addr != end; addr += PAGE_SIZE) {
1292		pagemap_entry_t pme = make_pme(frame, flags);
1293
1294		err = add_to_pagemap(addr, &pme, pm);
1295		if (err)
1296			return err;
1297		if (pm->show_pfn && (flags & PM_PRESENT))
1298			frame++;
1299	}
1300
1301	cond_resched();
1302
1303	return err;
1304}
 
 
1305#endif /* HUGETLB_PAGE */
1306
 
 
 
 
 
 
1307/*
1308 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1309 *
1310 * For each page in the address space, this file contains one 64-bit entry
1311 * consisting of the following:
1312 *
1313 * Bits 0-54  page frame number (PFN) if present
1314 * Bits 0-4   swap type if swapped
1315 * Bits 5-54  swap offset if swapped
1316 * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1317 * Bit  56    page exclusively mapped
1318 * Bits 57-60 zero
1319 * Bit  61    page is file-page or shared-anon
1320 * Bit  62    page swapped
1321 * Bit  63    page present
1322 *
1323 * If the page is not present but in swap, then the PFN contains an
1324 * encoding of the swap file number and the page's offset into the
1325 * swap. Unmapped pages return a null PFN. This allows determining
1326 * precisely which pages are mapped (or in swap) and comparing mapped
1327 * pages between processes.
1328 *
1329 * Efficient users of this interface will use /proc/pid/maps to
1330 * determine which areas of memory are actually mapped and llseek to
1331 * skip over unmapped regions.
1332 */
1333static ssize_t pagemap_read(struct file *file, char __user *buf,
1334			    size_t count, loff_t *ppos)
1335{
1336	struct mm_struct *mm = file->private_data;
1337	struct pagemapread pm;
1338	struct mm_walk pagemap_walk = {};
1339	unsigned long src;
1340	unsigned long svpfn;
1341	unsigned long start_vaddr;
1342	unsigned long end_vaddr;
1343	int ret = 0, copied = 0;
1344
1345	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1346		goto out;
1347
1348	ret = -EINVAL;
1349	/* file position must be aligned */
1350	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1351		goto out_mm;
1352
1353	ret = 0;
1354	if (!count)
1355		goto out_mm;
1356
1357	/* do not disclose physical addresses: attack vector */
1358	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1359
1360	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1361	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1362	ret = -ENOMEM;
1363	if (!pm.buffer)
1364		goto out_mm;
1365
1366	pagemap_walk.pmd_entry = pagemap_pmd_range;
1367	pagemap_walk.pte_hole = pagemap_pte_hole;
1368#ifdef CONFIG_HUGETLB_PAGE
1369	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1370#endif
1371	pagemap_walk.mm = mm;
1372	pagemap_walk.private = &pm;
1373
1374	src = *ppos;
1375	svpfn = src / PM_ENTRY_BYTES;
1376	start_vaddr = svpfn << PAGE_SHIFT;
1377	end_vaddr = mm->task_size;
1378
1379	/* watch out for wraparound */
1380	if (svpfn > mm->task_size >> PAGE_SHIFT)
1381		start_vaddr = end_vaddr;
1382
1383	/*
1384	 * The odds are that this will stop walking way
1385	 * before end_vaddr, because the length of the
1386	 * user buffer is tracked in "pm", and the walk
1387	 * will stop when we hit the end of the buffer.
1388	 */
1389	ret = 0;
1390	while (count && (start_vaddr < end_vaddr)) {
1391		int len;
1392		unsigned long end;
1393
1394		pm.pos = 0;
1395		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1396		/* overflow ? */
1397		if (end < start_vaddr || end > end_vaddr)
1398			end = end_vaddr;
1399		down_read(&mm->mmap_sem);
1400		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
 
 
1401		up_read(&mm->mmap_sem);
1402		start_vaddr = end;
1403
1404		len = min(count, PM_ENTRY_BYTES * pm.pos);
1405		if (copy_to_user(buf, pm.buffer, len)) {
1406			ret = -EFAULT;
1407			goto out_free;
1408		}
1409		copied += len;
1410		buf += len;
1411		count -= len;
1412	}
1413	*ppos += copied;
1414	if (!ret || ret == PM_END_OF_BUFFER)
1415		ret = copied;
1416
1417out_free:
1418	kfree(pm.buffer);
1419out_mm:
1420	mmput(mm);
1421out:
1422	return ret;
1423}
1424
1425static int pagemap_open(struct inode *inode, struct file *file)
1426{
1427	struct mm_struct *mm;
1428
1429	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1430	if (IS_ERR(mm))
1431		return PTR_ERR(mm);
1432	file->private_data = mm;
1433	return 0;
1434}
1435
1436static int pagemap_release(struct inode *inode, struct file *file)
1437{
1438	struct mm_struct *mm = file->private_data;
1439
1440	if (mm)
1441		mmdrop(mm);
1442	return 0;
1443}
1444
1445const struct file_operations proc_pagemap_operations = {
1446	.llseek		= mem_lseek, /* borrow this */
1447	.read		= pagemap_read,
1448	.open		= pagemap_open,
1449	.release	= pagemap_release,
1450};
1451#endif /* CONFIG_PROC_PAGE_MONITOR */
1452
1453#ifdef CONFIG_NUMA
1454
1455struct numa_maps {
1456	unsigned long pages;
1457	unsigned long anon;
1458	unsigned long active;
1459	unsigned long writeback;
1460	unsigned long mapcount_max;
1461	unsigned long dirty;
1462	unsigned long swapcache;
1463	unsigned long node[MAX_NUMNODES];
1464};
1465
1466struct numa_maps_private {
1467	struct proc_maps_private proc_maps;
1468	struct numa_maps md;
1469};
1470
1471static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1472			unsigned long nr_pages)
1473{
1474	int count = page_mapcount(page);
1475
1476	md->pages += nr_pages;
1477	if (pte_dirty || PageDirty(page))
1478		md->dirty += nr_pages;
1479
1480	if (PageSwapCache(page))
1481		md->swapcache += nr_pages;
1482
1483	if (PageActive(page) || PageUnevictable(page))
1484		md->active += nr_pages;
1485
1486	if (PageWriteback(page))
1487		md->writeback += nr_pages;
1488
1489	if (PageAnon(page))
1490		md->anon += nr_pages;
1491
1492	if (count > md->mapcount_max)
1493		md->mapcount_max = count;
1494
1495	md->node[page_to_nid(page)] += nr_pages;
1496}
1497
1498static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1499		unsigned long addr)
1500{
1501	struct page *page;
1502	int nid;
1503
1504	if (!pte_present(pte))
1505		return NULL;
1506
1507	page = vm_normal_page(vma, addr, pte);
1508	if (!page)
1509		return NULL;
1510
1511	if (PageReserved(page))
1512		return NULL;
1513
1514	nid = page_to_nid(page);
1515	if (!node_isset(nid, node_states[N_MEMORY]))
1516		return NULL;
1517
1518	return page;
1519}
1520
1521#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1522static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1523					      struct vm_area_struct *vma,
1524					      unsigned long addr)
1525{
1526	struct page *page;
1527	int nid;
1528
1529	if (!pmd_present(pmd))
1530		return NULL;
1531
1532	page = vm_normal_page_pmd(vma, addr, pmd);
1533	if (!page)
1534		return NULL;
1535
1536	if (PageReserved(page))
1537		return NULL;
1538
1539	nid = page_to_nid(page);
1540	if (!node_isset(nid, node_states[N_MEMORY]))
1541		return NULL;
1542
1543	return page;
1544}
1545#endif
1546
1547static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1548		unsigned long end, struct mm_walk *walk)
1549{
1550	struct numa_maps *md = walk->private;
1551	struct vm_area_struct *vma = walk->vma;
1552	spinlock_t *ptl;
1553	pte_t *orig_pte;
1554	pte_t *pte;
1555
1556#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1557	ptl = pmd_trans_huge_lock(pmd, vma);
1558	if (ptl) {
1559		struct page *page;
1560
1561		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1562		if (page)
1563			gather_stats(page, md, pmd_dirty(*pmd),
1564				     HPAGE_PMD_SIZE/PAGE_SIZE);
1565		spin_unlock(ptl);
1566		return 0;
1567	}
1568
1569	if (pmd_trans_unstable(pmd))
1570		return 0;
1571#endif
1572	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1573	do {
1574		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1575		if (!page)
1576			continue;
1577		gather_stats(page, md, pte_dirty(*pte), 1);
1578
1579	} while (pte++, addr += PAGE_SIZE, addr != end);
1580	pte_unmap_unlock(orig_pte, ptl);
 
1581	return 0;
1582}
1583#ifdef CONFIG_HUGETLB_PAGE
1584static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1585		unsigned long addr, unsigned long end, struct mm_walk *walk)
1586{
1587	pte_t huge_pte = huge_ptep_get(pte);
1588	struct numa_maps *md;
1589	struct page *page;
1590
1591	if (!pte_present(huge_pte))
1592		return 0;
1593
1594	page = pte_page(huge_pte);
1595	if (!page)
1596		return 0;
1597
1598	md = walk->private;
1599	gather_stats(page, md, pte_dirty(huge_pte), 1);
1600	return 0;
1601}
1602
1603#else
1604static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1605		unsigned long addr, unsigned long end, struct mm_walk *walk)
1606{
1607	return 0;
1608}
1609#endif
1610
 
 
 
 
 
1611/*
1612 * Display pages allocated per node and memory policy via /proc.
1613 */
1614static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1615{
1616	struct numa_maps_private *numa_priv = m->private;
1617	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1618	struct vm_area_struct *vma = v;
1619	struct numa_maps *md = &numa_priv->md;
1620	struct file *file = vma->vm_file;
1621	struct mm_struct *mm = vma->vm_mm;
1622	struct mm_walk walk = {
1623		.hugetlb_entry = gather_hugetlb_stats,
1624		.pmd_entry = gather_pte_stats,
1625		.private = md,
1626		.mm = mm,
1627	};
1628	struct mempolicy *pol;
1629	char buffer[64];
1630	int nid;
1631
1632	if (!mm)
1633		return 0;
1634
1635	/* Ensure we start with an empty set of numa_maps statistics. */
1636	memset(md, 0, sizeof(*md));
1637
1638	pol = __get_vma_policy(vma, vma->vm_start);
1639	if (pol) {
1640		mpol_to_str(buffer, sizeof(buffer), pol);
1641		mpol_cond_put(pol);
1642	} else {
1643		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1644	}
1645
1646	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1647
1648	if (file) {
1649		seq_puts(m, " file=");
1650		seq_file_path(m, file, "\n\t= ");
1651	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1652		seq_puts(m, " heap");
1653	} else if (is_stack(proc_priv, vma, is_pid)) {
1654		seq_puts(m, " stack");
1655	}
1656
1657	if (is_vm_hugetlb_page(vma))
1658		seq_puts(m, " huge");
1659
1660	/* mmap_sem is held by m_start */
1661	walk_page_vma(vma, &walk);
1662
1663	if (!md->pages)
1664		goto out;
1665
1666	if (md->anon)
1667		seq_printf(m, " anon=%lu", md->anon);
1668
1669	if (md->dirty)
1670		seq_printf(m, " dirty=%lu", md->dirty);
1671
1672	if (md->pages != md->anon && md->pages != md->dirty)
1673		seq_printf(m, " mapped=%lu", md->pages);
1674
1675	if (md->mapcount_max > 1)
1676		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1677
1678	if (md->swapcache)
1679		seq_printf(m, " swapcache=%lu", md->swapcache);
1680
1681	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1682		seq_printf(m, " active=%lu", md->active);
1683
1684	if (md->writeback)
1685		seq_printf(m, " writeback=%lu", md->writeback);
1686
1687	for_each_node_state(nid, N_MEMORY)
1688		if (md->node[nid])
1689			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1690
1691	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1692out:
1693	seq_putc(m, '\n');
1694	m_cache_vma(m, vma);
1695	return 0;
1696}
1697
1698static int show_pid_numa_map(struct seq_file *m, void *v)
1699{
1700	return show_numa_map(m, v, 1);
1701}
1702
1703static int show_tid_numa_map(struct seq_file *m, void *v)
1704{
1705	return show_numa_map(m, v, 0);
1706}
1707
1708static const struct seq_operations proc_pid_numa_maps_op = {
1709	.start  = m_start,
1710	.next   = m_next,
1711	.stop   = m_stop,
1712	.show   = show_pid_numa_map,
1713};
1714
1715static const struct seq_operations proc_tid_numa_maps_op = {
1716	.start  = m_start,
1717	.next   = m_next,
1718	.stop   = m_stop,
1719	.show   = show_tid_numa_map,
1720};
1721
1722static int numa_maps_open(struct inode *inode, struct file *file,
1723			  const struct seq_operations *ops)
1724{
1725	return proc_maps_open(inode, file, ops,
1726				sizeof(struct numa_maps_private));
1727}
1728
1729static int pid_numa_maps_open(struct inode *inode, struct file *file)
1730{
1731	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1732}
1733
1734static int tid_numa_maps_open(struct inode *inode, struct file *file)
1735{
1736	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1737}
1738
1739const struct file_operations proc_pid_numa_maps_operations = {
1740	.open		= pid_numa_maps_open,
1741	.read		= seq_read,
1742	.llseek		= seq_lseek,
1743	.release	= proc_map_release,
1744};
1745
1746const struct file_operations proc_tid_numa_maps_operations = {
1747	.open		= tid_numa_maps_open,
1748	.read		= seq_read,
1749	.llseek		= seq_lseek,
1750	.release	= proc_map_release,
1751};
1752#endif /* CONFIG_NUMA */
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/pagewalk.h>
   3#include <linux/vmacache.h>
   4#include <linux/hugetlb.h>
   5#include <linux/huge_mm.h>
   6#include <linux/mount.h>
   7#include <linux/seq_file.h>
   8#include <linux/highmem.h>
   9#include <linux/ptrace.h>
  10#include <linux/slab.h>
  11#include <linux/pagemap.h>
  12#include <linux/mempolicy.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/sched/mm.h>
  16#include <linux/swapops.h>
  17#include <linux/mmu_notifier.h>
  18#include <linux/page_idle.h>
  19#include <linux/shmem_fs.h>
  20#include <linux/uaccess.h>
  21#include <linux/pkeys.h>
  22
  23#include <asm/elf.h>
  24#include <asm/tlb.h>
  25#include <asm/tlbflush.h>
  26#include "internal.h"
  27
  28#define SEQ_PUT_DEC(str, val) \
  29		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  30void task_mem(struct seq_file *m, struct mm_struct *mm)
  31{
  32	unsigned long text, lib, swap, anon, file, shmem;
  33	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  34
  35	anon = get_mm_counter(mm, MM_ANONPAGES);
  36	file = get_mm_counter(mm, MM_FILEPAGES);
  37	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  38
  39	/*
  40	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  41	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  42	 * collector of these hiwater stats must therefore get total_vm
  43	 * and rss too, which will usually be the higher.  Barriers? not
  44	 * worth the effort, such snapshots can always be inconsistent.
  45	 */
  46	hiwater_vm = total_vm = mm->total_vm;
  47	if (hiwater_vm < mm->hiwater_vm)
  48		hiwater_vm = mm->hiwater_vm;
  49	hiwater_rss = total_rss = anon + file + shmem;
  50	if (hiwater_rss < mm->hiwater_rss)
  51		hiwater_rss = mm->hiwater_rss;
  52
  53	/* split executable areas between text and lib */
  54	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  55	text = min(text, mm->exec_vm << PAGE_SHIFT);
  56	lib = (mm->exec_vm << PAGE_SHIFT) - text;
  57
  58	swap = get_mm_counter(mm, MM_SWAPENTS);
  59	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  60	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  61	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  62	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
  63	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  64	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  65	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  66	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  67	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  68	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  69	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  70	seq_put_decimal_ull_width(m,
  71		    " kB\nVmExe:\t", text >> 10, 8);
  72	seq_put_decimal_ull_width(m,
  73		    " kB\nVmLib:\t", lib >> 10, 8);
  74	seq_put_decimal_ull_width(m,
  75		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  76	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  77	seq_puts(m, " kB\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78	hugetlb_report_usage(m, mm);
  79}
  80#undef SEQ_PUT_DEC
  81
  82unsigned long task_vsize(struct mm_struct *mm)
  83{
  84	return PAGE_SIZE * mm->total_vm;
  85}
  86
  87unsigned long task_statm(struct mm_struct *mm,
  88			 unsigned long *shared, unsigned long *text,
  89			 unsigned long *data, unsigned long *resident)
  90{
  91	*shared = get_mm_counter(mm, MM_FILEPAGES) +
  92			get_mm_counter(mm, MM_SHMEMPAGES);
  93	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  94								>> PAGE_SHIFT;
  95	*data = mm->data_vm + mm->stack_vm;
  96	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  97	return mm->total_vm;
  98}
  99
 100#ifdef CONFIG_NUMA
 101/*
 102 * Save get_task_policy() for show_numa_map().
 103 */
 104static void hold_task_mempolicy(struct proc_maps_private *priv)
 105{
 106	struct task_struct *task = priv->task;
 107
 108	task_lock(task);
 109	priv->task_mempolicy = get_task_policy(task);
 110	mpol_get(priv->task_mempolicy);
 111	task_unlock(task);
 112}
 113static void release_task_mempolicy(struct proc_maps_private *priv)
 114{
 115	mpol_put(priv->task_mempolicy);
 116}
 117#else
 118static void hold_task_mempolicy(struct proc_maps_private *priv)
 119{
 120}
 121static void release_task_mempolicy(struct proc_maps_private *priv)
 122{
 123}
 124#endif
 125
 126static void vma_stop(struct proc_maps_private *priv)
 127{
 128	struct mm_struct *mm = priv->mm;
 129
 130	release_task_mempolicy(priv);
 131	up_read(&mm->mmap_sem);
 132	mmput(mm);
 133}
 134
 135static struct vm_area_struct *
 136m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
 137{
 138	if (vma == priv->tail_vma)
 139		return NULL;
 140	return vma->vm_next ?: priv->tail_vma;
 141}
 142
 143static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
 144{
 145	if (m->count < m->size)	/* vma is copied successfully */
 146		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
 147}
 148
 149static void *m_start(struct seq_file *m, loff_t *ppos)
 150{
 151	struct proc_maps_private *priv = m->private;
 152	unsigned long last_addr = m->version;
 153	struct mm_struct *mm;
 154	struct vm_area_struct *vma;
 155	unsigned int pos = *ppos;
 156
 157	/* See m_cache_vma(). Zero at the start or after lseek. */
 158	if (last_addr == -1UL)
 159		return NULL;
 160
 161	priv->task = get_proc_task(priv->inode);
 162	if (!priv->task)
 163		return ERR_PTR(-ESRCH);
 164
 165	mm = priv->mm;
 166	if (!mm || !mmget_not_zero(mm))
 167		return NULL;
 168
 169	if (down_read_killable(&mm->mmap_sem)) {
 170		mmput(mm);
 171		return ERR_PTR(-EINTR);
 172	}
 173
 174	hold_task_mempolicy(priv);
 175	priv->tail_vma = get_gate_vma(mm);
 176
 177	if (last_addr) {
 178		vma = find_vma(mm, last_addr - 1);
 179		if (vma && vma->vm_start <= last_addr)
 180			vma = m_next_vma(priv, vma);
 181		if (vma)
 182			return vma;
 183	}
 184
 185	m->version = 0;
 186	if (pos < mm->map_count) {
 187		for (vma = mm->mmap; pos; pos--) {
 188			m->version = vma->vm_start;
 189			vma = vma->vm_next;
 190		}
 191		return vma;
 192	}
 193
 194	/* we do not bother to update m->version in this case */
 195	if (pos == mm->map_count && priv->tail_vma)
 196		return priv->tail_vma;
 197
 198	vma_stop(priv);
 199	return NULL;
 200}
 201
 202static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 203{
 204	struct proc_maps_private *priv = m->private;
 205	struct vm_area_struct *next;
 206
 207	(*pos)++;
 208	next = m_next_vma(priv, v);
 209	if (!next)
 210		vma_stop(priv);
 211	return next;
 212}
 213
 214static void m_stop(struct seq_file *m, void *v)
 215{
 216	struct proc_maps_private *priv = m->private;
 217
 218	if (!IS_ERR_OR_NULL(v))
 219		vma_stop(priv);
 220	if (priv->task) {
 221		put_task_struct(priv->task);
 222		priv->task = NULL;
 223	}
 224}
 225
 226static int proc_maps_open(struct inode *inode, struct file *file,
 227			const struct seq_operations *ops, int psize)
 228{
 229	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
 230
 231	if (!priv)
 232		return -ENOMEM;
 233
 234	priv->inode = inode;
 235	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 236	if (IS_ERR(priv->mm)) {
 237		int err = PTR_ERR(priv->mm);
 238
 239		seq_release_private(inode, file);
 240		return err;
 241	}
 242
 243	return 0;
 244}
 245
 246static int proc_map_release(struct inode *inode, struct file *file)
 247{
 248	struct seq_file *seq = file->private_data;
 249	struct proc_maps_private *priv = seq->private;
 250
 251	if (priv->mm)
 252		mmdrop(priv->mm);
 253
 254	return seq_release_private(inode, file);
 255}
 256
 257static int do_maps_open(struct inode *inode, struct file *file,
 258			const struct seq_operations *ops)
 259{
 260	return proc_maps_open(inode, file, ops,
 261				sizeof(struct proc_maps_private));
 262}
 263
 264/*
 265 * Indicate if the VMA is a stack for the given task; for
 266 * /proc/PID/maps that is the stack of the main task.
 267 */
 268static int is_stack(struct vm_area_struct *vma)
 
 269{
 270	/*
 271	 * We make no effort to guess what a given thread considers to be
 272	 * its "stack".  It's not even well-defined for programs written
 273	 * languages like Go.
 274	 */
 275	return vma->vm_start <= vma->vm_mm->start_stack &&
 276		vma->vm_end >= vma->vm_mm->start_stack;
 277}
 278
 279static void show_vma_header_prefix(struct seq_file *m,
 280				   unsigned long start, unsigned long end,
 281				   vm_flags_t flags, unsigned long long pgoff,
 282				   dev_t dev, unsigned long ino)
 283{
 284	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 285	seq_put_hex_ll(m, NULL, start, 8);
 286	seq_put_hex_ll(m, "-", end, 8);
 287	seq_putc(m, ' ');
 288	seq_putc(m, flags & VM_READ ? 'r' : '-');
 289	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
 290	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
 291	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
 292	seq_put_hex_ll(m, " ", pgoff, 8);
 293	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
 294	seq_put_hex_ll(m, ":", MINOR(dev), 2);
 295	seq_put_decimal_ull(m, " ", ino);
 296	seq_putc(m, ' ');
 297}
 298
 299static void
 300show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
 301{
 302	struct mm_struct *mm = vma->vm_mm;
 303	struct file *file = vma->vm_file;
 
 304	vm_flags_t flags = vma->vm_flags;
 305	unsigned long ino = 0;
 306	unsigned long long pgoff = 0;
 307	unsigned long start, end;
 308	dev_t dev = 0;
 309	const char *name = NULL;
 310
 311	if (file) {
 312		struct inode *inode = file_inode(vma->vm_file);
 313		dev = inode->i_sb->s_dev;
 314		ino = inode->i_ino;
 315		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 316	}
 317
 
 318	start = vma->vm_start;
 
 
 319	end = vma->vm_end;
 320	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
 
 
 
 
 
 
 
 
 
 
 
 
 321
 322	/*
 323	 * Print the dentry name for named mappings, and a
 324	 * special [heap] marker for the heap:
 325	 */
 326	if (file) {
 327		seq_pad(m, ' ');
 328		seq_file_path(m, file, "\n");
 329		goto done;
 330	}
 331
 332	if (vma->vm_ops && vma->vm_ops->name) {
 333		name = vma->vm_ops->name(vma);
 334		if (name)
 335			goto done;
 336	}
 337
 338	name = arch_vma_name(vma);
 339	if (!name) {
 340		if (!mm) {
 341			name = "[vdso]";
 342			goto done;
 343		}
 344
 345		if (vma->vm_start <= mm->brk &&
 346		    vma->vm_end >= mm->start_brk) {
 347			name = "[heap]";
 348			goto done;
 349		}
 350
 351		if (is_stack(vma))
 352			name = "[stack]";
 353	}
 354
 355done:
 356	if (name) {
 357		seq_pad(m, ' ');
 358		seq_puts(m, name);
 359	}
 360	seq_putc(m, '\n');
 361}
 362
 363static int show_map(struct seq_file *m, void *v)
 364{
 365	show_map_vma(m, v);
 366	m_cache_vma(m, v);
 367	return 0;
 368}
 369
 
 
 
 
 
 
 
 
 
 
 370static const struct seq_operations proc_pid_maps_op = {
 371	.start	= m_start,
 372	.next	= m_next,
 373	.stop	= m_stop,
 374	.show	= show_map
 
 
 
 
 
 
 
 375};
 376
 377static int pid_maps_open(struct inode *inode, struct file *file)
 378{
 379	return do_maps_open(inode, file, &proc_pid_maps_op);
 380}
 381
 
 
 
 
 
 382const struct file_operations proc_pid_maps_operations = {
 383	.open		= pid_maps_open,
 384	.read		= seq_read,
 385	.llseek		= seq_lseek,
 386	.release	= proc_map_release,
 387};
 388
 
 
 
 
 
 
 
 389/*
 390 * Proportional Set Size(PSS): my share of RSS.
 391 *
 392 * PSS of a process is the count of pages it has in memory, where each
 393 * page is divided by the number of processes sharing it.  So if a
 394 * process has 1000 pages all to itself, and 1000 shared with one other
 395 * process, its PSS will be 1500.
 396 *
 397 * To keep (accumulated) division errors low, we adopt a 64bit
 398 * fixed-point pss counter to minimize division errors. So (pss >>
 399 * PSS_SHIFT) would be the real byte count.
 400 *
 401 * A shift of 12 before division means (assuming 4K page size):
 402 * 	- 1M 3-user-pages add up to 8KB errors;
 403 * 	- supports mapcount up to 2^24, or 16M;
 404 * 	- supports PSS up to 2^52 bytes, or 4PB.
 405 */
 406#define PSS_SHIFT 12
 407
 408#ifdef CONFIG_PROC_PAGE_MONITOR
 409struct mem_size_stats {
 410	unsigned long resident;
 411	unsigned long shared_clean;
 412	unsigned long shared_dirty;
 413	unsigned long private_clean;
 414	unsigned long private_dirty;
 415	unsigned long referenced;
 416	unsigned long anonymous;
 417	unsigned long lazyfree;
 418	unsigned long anonymous_thp;
 419	unsigned long shmem_thp;
 420	unsigned long file_thp;
 421	unsigned long swap;
 422	unsigned long shared_hugetlb;
 423	unsigned long private_hugetlb;
 424	u64 pss;
 425	u64 pss_anon;
 426	u64 pss_file;
 427	u64 pss_shmem;
 428	u64 pss_locked;
 429	u64 swap_pss;
 430	bool check_shmem_swap;
 431};
 432
 433static void smaps_page_accumulate(struct mem_size_stats *mss,
 434		struct page *page, unsigned long size, unsigned long pss,
 435		bool dirty, bool locked, bool private)
 436{
 437	mss->pss += pss;
 438
 439	if (PageAnon(page))
 440		mss->pss_anon += pss;
 441	else if (PageSwapBacked(page))
 442		mss->pss_shmem += pss;
 443	else
 444		mss->pss_file += pss;
 445
 446	if (locked)
 447		mss->pss_locked += pss;
 448
 449	if (dirty || PageDirty(page)) {
 450		if (private)
 451			mss->private_dirty += size;
 452		else
 453			mss->shared_dirty += size;
 454	} else {
 455		if (private)
 456			mss->private_clean += size;
 457		else
 458			mss->shared_clean += size;
 459	}
 460}
 461
 462static void smaps_account(struct mem_size_stats *mss, struct page *page,
 463		bool compound, bool young, bool dirty, bool locked)
 464{
 465	int i, nr = compound ? compound_nr(page) : 1;
 466	unsigned long size = nr * PAGE_SIZE;
 467
 468	/*
 469	 * First accumulate quantities that depend only on |size| and the type
 470	 * of the compound page.
 471	 */
 472	if (PageAnon(page)) {
 473		mss->anonymous += size;
 474		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
 475			mss->lazyfree += size;
 476	}
 477
 478	mss->resident += size;
 479	/* Accumulate the size in pages that have been accessed. */
 480	if (young || page_is_young(page) || PageReferenced(page))
 481		mss->referenced += size;
 482
 483	/*
 484	 * Then accumulate quantities that may depend on sharing, or that may
 485	 * differ page-by-page.
 486	 *
 487	 * page_count(page) == 1 guarantees the page is mapped exactly once.
 488	 * If any subpage of the compound page mapped with PTE it would elevate
 489	 * page_count().
 490	 */
 491	if (page_count(page) == 1) {
 492		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
 493			locked, true);
 
 
 
 494		return;
 495	}
 
 496	for (i = 0; i < nr; i++, page++) {
 497		int mapcount = page_mapcount(page);
 498		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
 499		if (mapcount >= 2)
 500			pss /= mapcount;
 501		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
 502				      mapcount < 2);
 
 
 
 
 
 
 
 
 
 503	}
 504}
 505
 506#ifdef CONFIG_SHMEM
 507static int smaps_pte_hole(unsigned long addr, unsigned long end,
 508		struct mm_walk *walk)
 509{
 510	struct mem_size_stats *mss = walk->private;
 511
 512	mss->swap += shmem_partial_swap_usage(
 513			walk->vma->vm_file->f_mapping, addr, end);
 514
 515	return 0;
 516}
 517#else
 518#define smaps_pte_hole		NULL
 519#endif /* CONFIG_SHMEM */
 520
 521static void smaps_pte_entry(pte_t *pte, unsigned long addr,
 522		struct mm_walk *walk)
 523{
 524	struct mem_size_stats *mss = walk->private;
 525	struct vm_area_struct *vma = walk->vma;
 526	bool locked = !!(vma->vm_flags & VM_LOCKED);
 527	struct page *page = NULL;
 528
 529	if (pte_present(*pte)) {
 530		page = vm_normal_page(vma, addr, *pte);
 531	} else if (is_swap_pte(*pte)) {
 532		swp_entry_t swpent = pte_to_swp_entry(*pte);
 533
 534		if (!non_swap_entry(swpent)) {
 535			int mapcount;
 536
 537			mss->swap += PAGE_SIZE;
 538			mapcount = swp_swapcount(swpent);
 539			if (mapcount >= 2) {
 540				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
 541
 542				do_div(pss_delta, mapcount);
 543				mss->swap_pss += pss_delta;
 544			} else {
 545				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
 546			}
 547		} else if (is_migration_entry(swpent))
 548			page = migration_entry_to_page(swpent);
 549		else if (is_device_private_entry(swpent))
 550			page = device_private_entry_to_page(swpent);
 551	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
 552							&& pte_none(*pte))) {
 553		page = find_get_entry(vma->vm_file->f_mapping,
 554						linear_page_index(vma, addr));
 555		if (!page)
 556			return;
 557
 558		if (xa_is_value(page))
 559			mss->swap += PAGE_SIZE;
 560		else
 561			put_page(page);
 562
 563		return;
 564	}
 565
 566	if (!page)
 567		return;
 568
 569	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
 570}
 571
 572#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 573static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 574		struct mm_walk *walk)
 575{
 576	struct mem_size_stats *mss = walk->private;
 577	struct vm_area_struct *vma = walk->vma;
 578	bool locked = !!(vma->vm_flags & VM_LOCKED);
 579	struct page *page;
 580
 581	/* FOLL_DUMP will return -EFAULT on huge zero page */
 582	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
 583	if (IS_ERR_OR_NULL(page))
 584		return;
 585	if (PageAnon(page))
 586		mss->anonymous_thp += HPAGE_PMD_SIZE;
 587	else if (PageSwapBacked(page))
 588		mss->shmem_thp += HPAGE_PMD_SIZE;
 589	else if (is_zone_device_page(page))
 590		/* pass */;
 591	else
 592		mss->file_thp += HPAGE_PMD_SIZE;
 593	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
 594}
 595#else
 596static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 597		struct mm_walk *walk)
 598{
 599}
 600#endif
 601
 602static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 603			   struct mm_walk *walk)
 604{
 605	struct vm_area_struct *vma = walk->vma;
 606	pte_t *pte;
 607	spinlock_t *ptl;
 608
 609	ptl = pmd_trans_huge_lock(pmd, vma);
 610	if (ptl) {
 611		if (pmd_present(*pmd))
 612			smaps_pmd_entry(pmd, addr, walk);
 613		spin_unlock(ptl);
 614		goto out;
 615	}
 616
 617	if (pmd_trans_unstable(pmd))
 618		goto out;
 619	/*
 620	 * The mmap_sem held all the way back in m_start() is what
 621	 * keeps khugepaged out of here and from collapsing things
 622	 * in here.
 623	 */
 624	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 625	for (; addr != end; pte++, addr += PAGE_SIZE)
 626		smaps_pte_entry(pte, addr, walk);
 627	pte_unmap_unlock(pte - 1, ptl);
 628out:
 629	cond_resched();
 630	return 0;
 631}
 632
 633static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 634{
 635	/*
 636	 * Don't forget to update Documentation/ on changes.
 637	 */
 638	static const char mnemonics[BITS_PER_LONG][2] = {
 639		/*
 640		 * In case if we meet a flag we don't know about.
 641		 */
 642		[0 ... (BITS_PER_LONG-1)] = "??",
 643
 644		[ilog2(VM_READ)]	= "rd",
 645		[ilog2(VM_WRITE)]	= "wr",
 646		[ilog2(VM_EXEC)]	= "ex",
 647		[ilog2(VM_SHARED)]	= "sh",
 648		[ilog2(VM_MAYREAD)]	= "mr",
 649		[ilog2(VM_MAYWRITE)]	= "mw",
 650		[ilog2(VM_MAYEXEC)]	= "me",
 651		[ilog2(VM_MAYSHARE)]	= "ms",
 652		[ilog2(VM_GROWSDOWN)]	= "gd",
 653		[ilog2(VM_PFNMAP)]	= "pf",
 654		[ilog2(VM_DENYWRITE)]	= "dw",
 655#ifdef CONFIG_X86_INTEL_MPX
 656		[ilog2(VM_MPX)]		= "mp",
 657#endif
 658		[ilog2(VM_LOCKED)]	= "lo",
 659		[ilog2(VM_IO)]		= "io",
 660		[ilog2(VM_SEQ_READ)]	= "sr",
 661		[ilog2(VM_RAND_READ)]	= "rr",
 662		[ilog2(VM_DONTCOPY)]	= "dc",
 663		[ilog2(VM_DONTEXPAND)]	= "de",
 664		[ilog2(VM_ACCOUNT)]	= "ac",
 665		[ilog2(VM_NORESERVE)]	= "nr",
 666		[ilog2(VM_HUGETLB)]	= "ht",
 667		[ilog2(VM_SYNC)]	= "sf",
 668		[ilog2(VM_ARCH_1)]	= "ar",
 669		[ilog2(VM_WIPEONFORK)]	= "wf",
 670		[ilog2(VM_DONTDUMP)]	= "dd",
 671#ifdef CONFIG_MEM_SOFT_DIRTY
 672		[ilog2(VM_SOFTDIRTY)]	= "sd",
 673#endif
 674		[ilog2(VM_MIXEDMAP)]	= "mm",
 675		[ilog2(VM_HUGEPAGE)]	= "hg",
 676		[ilog2(VM_NOHUGEPAGE)]	= "nh",
 677		[ilog2(VM_MERGEABLE)]	= "mg",
 678		[ilog2(VM_UFFD_MISSING)]= "um",
 679		[ilog2(VM_UFFD_WP)]	= "uw",
 680#ifdef CONFIG_ARCH_HAS_PKEYS
 681		/* These come out via ProtectionKey: */
 682		[ilog2(VM_PKEY_BIT0)]	= "",
 683		[ilog2(VM_PKEY_BIT1)]	= "",
 684		[ilog2(VM_PKEY_BIT2)]	= "",
 685		[ilog2(VM_PKEY_BIT3)]	= "",
 686#if VM_PKEY_BIT4
 687		[ilog2(VM_PKEY_BIT4)]	= "",
 688#endif
 689#endif /* CONFIG_ARCH_HAS_PKEYS */
 690	};
 691	size_t i;
 692
 693	seq_puts(m, "VmFlags: ");
 694	for (i = 0; i < BITS_PER_LONG; i++) {
 695		if (!mnemonics[i][0])
 696			continue;
 697		if (vma->vm_flags & (1UL << i)) {
 698			seq_putc(m, mnemonics[i][0]);
 699			seq_putc(m, mnemonics[i][1]);
 700			seq_putc(m, ' ');
 701		}
 702	}
 703	seq_putc(m, '\n');
 704}
 705
 706#ifdef CONFIG_HUGETLB_PAGE
 707static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
 708				 unsigned long addr, unsigned long end,
 709				 struct mm_walk *walk)
 710{
 711	struct mem_size_stats *mss = walk->private;
 712	struct vm_area_struct *vma = walk->vma;
 713	struct page *page = NULL;
 714
 715	if (pte_present(*pte)) {
 716		page = vm_normal_page(vma, addr, *pte);
 717	} else if (is_swap_pte(*pte)) {
 718		swp_entry_t swpent = pte_to_swp_entry(*pte);
 719
 720		if (is_migration_entry(swpent))
 721			page = migration_entry_to_page(swpent);
 722		else if (is_device_private_entry(swpent))
 723			page = device_private_entry_to_page(swpent);
 724	}
 725	if (page) {
 726		int mapcount = page_mapcount(page);
 727
 728		if (mapcount >= 2)
 729			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
 730		else
 731			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
 732	}
 733	return 0;
 734}
 735#else
 736#define smaps_hugetlb_range	NULL
 737#endif /* HUGETLB_PAGE */
 738
 739static const struct mm_walk_ops smaps_walk_ops = {
 740	.pmd_entry		= smaps_pte_range,
 741	.hugetlb_entry		= smaps_hugetlb_range,
 742};
 
 
 
 
 
 
 
 
 
 
 
 
 743
 744static const struct mm_walk_ops smaps_shmem_walk_ops = {
 745	.pmd_entry		= smaps_pte_range,
 746	.hugetlb_entry		= smaps_hugetlb_range,
 747	.pte_hole		= smaps_pte_hole,
 748};
 749
 750static void smap_gather_stats(struct vm_area_struct *vma,
 751			     struct mem_size_stats *mss)
 752{
 753#ifdef CONFIG_SHMEM
 754	/* In case of smaps_rollup, reset the value from previous vma */
 755	mss->check_shmem_swap = false;
 756	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
 757		/*
 758		 * For shared or readonly shmem mappings we know that all
 759		 * swapped out pages belong to the shmem object, and we can
 760		 * obtain the swap value much more efficiently. For private
 761		 * writable mappings, we might have COW pages that are
 762		 * not affected by the parent swapped out pages of the shmem
 763		 * object, so we have to distinguish them during the page walk.
 764		 * Unless we know that the shmem object (or the part mapped by
 765		 * our VMA) has no swapped out pages at all.
 766		 */
 767		unsigned long shmem_swapped = shmem_swap_usage(vma);
 768
 769		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
 770					!(vma->vm_flags & VM_WRITE)) {
 771			mss->swap += shmem_swapped;
 772		} else {
 773			mss->check_shmem_swap = true;
 774			walk_page_vma(vma, &smaps_shmem_walk_ops, mss);
 775			return;
 776		}
 777	}
 778#endif
 
 779	/* mmap_sem is held in m_start */
 780	walk_page_vma(vma, &smaps_walk_ops, mss);
 781}
 782
 783#define SEQ_PUT_DEC(str, val) \
 784		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
 785
 786/* Show the contents common for smaps and smaps_rollup */
 787static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
 788	bool rollup_mode)
 789{
 790	SEQ_PUT_DEC("Rss:            ", mss->resident);
 791	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
 792	if (rollup_mode) {
 793		/*
 794		 * These are meaningful only for smaps_rollup, otherwise two of
 795		 * them are zero, and the other one is the same as Pss.
 796		 */
 797		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
 798			mss->pss_anon >> PSS_SHIFT);
 799		SEQ_PUT_DEC(" kB\nPss_File:       ",
 800			mss->pss_file >> PSS_SHIFT);
 801		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
 802			mss->pss_shmem >> PSS_SHIFT);
 803	}
 804	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
 805	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
 806	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
 807	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
 808	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
 809	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
 810	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
 811	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
 812	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
 813	SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
 814	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
 815	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
 816				  mss->private_hugetlb >> 10, 7);
 817	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
 818	SEQ_PUT_DEC(" kB\nSwapPss:        ",
 819					mss->swap_pss >> PSS_SHIFT);
 820	SEQ_PUT_DEC(" kB\nLocked:         ",
 821					mss->pss_locked >> PSS_SHIFT);
 822	seq_puts(m, " kB\n");
 823}
 824
 825static int show_smap(struct seq_file *m, void *v)
 826{
 827	struct vm_area_struct *vma = v;
 828	struct mem_size_stats mss;
 829
 830	memset(&mss, 0, sizeof(mss));
 831
 832	smap_gather_stats(vma, &mss);
 833
 834	show_map_vma(m, vma);
 835
 836	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
 837	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
 838	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
 839	seq_puts(m, " kB\n");
 840
 841	__show_smap(m, &mss, false);
 842
 843	seq_printf(m, "THPeligible:		%d\n",
 844		   transparent_hugepage_enabled(vma));
 845
 846	if (arch_pkeys_enabled())
 847		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
 848	show_smap_vma_flags(m, vma);
 849
 850	m_cache_vma(m, vma);
 851
 852	return 0;
 853}
 854
 855static int show_smaps_rollup(struct seq_file *m, void *v)
 856{
 857	struct proc_maps_private *priv = m->private;
 858	struct mem_size_stats mss;
 859	struct mm_struct *mm;
 860	struct vm_area_struct *vma;
 861	unsigned long last_vma_end = 0;
 862	int ret = 0;
 863
 864	priv->task = get_proc_task(priv->inode);
 865	if (!priv->task)
 866		return -ESRCH;
 867
 868	mm = priv->mm;
 869	if (!mm || !mmget_not_zero(mm)) {
 870		ret = -ESRCH;
 871		goto out_put_task;
 872	}
 873
 874	memset(&mss, 0, sizeof(mss));
 875
 876	ret = down_read_killable(&mm->mmap_sem);
 877	if (ret)
 878		goto out_put_mm;
 879
 880	hold_task_mempolicy(priv);
 881
 882	for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
 883		smap_gather_stats(vma, &mss);
 884		last_vma_end = vma->vm_end;
 885	}
 886
 887	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
 888			       last_vma_end, 0, 0, 0, 0);
 889	seq_pad(m, ' ');
 890	seq_puts(m, "[rollup]\n");
 891
 892	__show_smap(m, &mss, true);
 893
 894	release_task_mempolicy(priv);
 895	up_read(&mm->mmap_sem);
 896
 897out_put_mm:
 898	mmput(mm);
 899out_put_task:
 900	put_task_struct(priv->task);
 901	priv->task = NULL;
 902
 903	return ret;
 904}
 905#undef SEQ_PUT_DEC
 906
 907static const struct seq_operations proc_pid_smaps_op = {
 908	.start	= m_start,
 909	.next	= m_next,
 910	.stop	= m_stop,
 911	.show	= show_smap
 
 
 
 
 
 
 
 912};
 913
 914static int pid_smaps_open(struct inode *inode, struct file *file)
 915{
 916	return do_maps_open(inode, file, &proc_pid_smaps_op);
 917}
 918
 919static int smaps_rollup_open(struct inode *inode, struct file *file)
 920{
 921	int ret;
 922	struct proc_maps_private *priv;
 923
 924	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
 925	if (!priv)
 926		return -ENOMEM;
 927
 928	ret = single_open(file, show_smaps_rollup, priv);
 929	if (ret)
 930		goto out_free;
 931
 932	priv->inode = inode;
 933	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 934	if (IS_ERR(priv->mm)) {
 935		ret = PTR_ERR(priv->mm);
 936
 937		single_release(inode, file);
 938		goto out_free;
 939	}
 940
 941	return 0;
 942
 943out_free:
 944	kfree(priv);
 945	return ret;
 946}
 947
 948static int smaps_rollup_release(struct inode *inode, struct file *file)
 949{
 950	struct seq_file *seq = file->private_data;
 951	struct proc_maps_private *priv = seq->private;
 952
 953	if (priv->mm)
 954		mmdrop(priv->mm);
 955
 956	kfree(priv);
 957	return single_release(inode, file);
 958}
 959
 960const struct file_operations proc_pid_smaps_operations = {
 961	.open		= pid_smaps_open,
 962	.read		= seq_read,
 963	.llseek		= seq_lseek,
 964	.release	= proc_map_release,
 965};
 966
 967const struct file_operations proc_pid_smaps_rollup_operations = {
 968	.open		= smaps_rollup_open,
 969	.read		= seq_read,
 970	.llseek		= seq_lseek,
 971	.release	= smaps_rollup_release,
 972};
 973
 974enum clear_refs_types {
 975	CLEAR_REFS_ALL = 1,
 976	CLEAR_REFS_ANON,
 977	CLEAR_REFS_MAPPED,
 978	CLEAR_REFS_SOFT_DIRTY,
 979	CLEAR_REFS_MM_HIWATER_RSS,
 980	CLEAR_REFS_LAST,
 981};
 982
 983struct clear_refs_private {
 984	enum clear_refs_types type;
 985};
 986
 987#ifdef CONFIG_MEM_SOFT_DIRTY
 988static inline void clear_soft_dirty(struct vm_area_struct *vma,
 989		unsigned long addr, pte_t *pte)
 990{
 991	/*
 992	 * The soft-dirty tracker uses #PF-s to catch writes
 993	 * to pages, so write-protect the pte as well. See the
 994	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
 995	 * of how soft-dirty works.
 996	 */
 997	pte_t ptent = *pte;
 998
 999	if (pte_present(ptent)) {
1000		pte_t old_pte;
1001
1002		old_pte = ptep_modify_prot_start(vma, addr, pte);
1003		ptent = pte_wrprotect(old_pte);
1004		ptent = pte_clear_soft_dirty(ptent);
1005		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1006	} else if (is_swap_pte(ptent)) {
1007		ptent = pte_swp_clear_soft_dirty(ptent);
1008		set_pte_at(vma->vm_mm, addr, pte, ptent);
1009	}
1010}
1011#else
1012static inline void clear_soft_dirty(struct vm_area_struct *vma,
1013		unsigned long addr, pte_t *pte)
1014{
1015}
1016#endif
1017
1018#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1019static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1020		unsigned long addr, pmd_t *pmdp)
1021{
1022	pmd_t old, pmd = *pmdp;
 
 
 
1023
1024	if (pmd_present(pmd)) {
1025		/* See comment in change_huge_pmd() */
1026		old = pmdp_invalidate(vma, addr, pmdp);
1027		if (pmd_dirty(old))
1028			pmd = pmd_mkdirty(pmd);
1029		if (pmd_young(old))
1030			pmd = pmd_mkyoung(pmd);
1031
1032		pmd = pmd_wrprotect(pmd);
1033		pmd = pmd_clear_soft_dirty(pmd);
1034
1035		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1036	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1037		pmd = pmd_swp_clear_soft_dirty(pmd);
1038		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1039	}
1040}
1041#else
1042static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1043		unsigned long addr, pmd_t *pmdp)
1044{
1045}
1046#endif
1047
1048static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1049				unsigned long end, struct mm_walk *walk)
1050{
1051	struct clear_refs_private *cp = walk->private;
1052	struct vm_area_struct *vma = walk->vma;
1053	pte_t *pte, ptent;
1054	spinlock_t *ptl;
1055	struct page *page;
1056
1057	ptl = pmd_trans_huge_lock(pmd, vma);
1058	if (ptl) {
1059		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1060			clear_soft_dirty_pmd(vma, addr, pmd);
1061			goto out;
1062		}
1063
1064		if (!pmd_present(*pmd))
1065			goto out;
1066
1067		page = pmd_page(*pmd);
1068
1069		/* Clear accessed and referenced bits. */
1070		pmdp_test_and_clear_young(vma, addr, pmd);
1071		test_and_clear_page_young(page);
1072		ClearPageReferenced(page);
1073out:
1074		spin_unlock(ptl);
1075		return 0;
1076	}
1077
1078	if (pmd_trans_unstable(pmd))
1079		return 0;
1080
1081	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1082	for (; addr != end; pte++, addr += PAGE_SIZE) {
1083		ptent = *pte;
1084
1085		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1086			clear_soft_dirty(vma, addr, pte);
1087			continue;
1088		}
1089
1090		if (!pte_present(ptent))
1091			continue;
1092
1093		page = vm_normal_page(vma, addr, ptent);
1094		if (!page)
1095			continue;
1096
1097		/* Clear accessed and referenced bits. */
1098		ptep_test_and_clear_young(vma, addr, pte);
1099		test_and_clear_page_young(page);
1100		ClearPageReferenced(page);
1101	}
1102	pte_unmap_unlock(pte - 1, ptl);
1103	cond_resched();
1104	return 0;
1105}
1106
1107static int clear_refs_test_walk(unsigned long start, unsigned long end,
1108				struct mm_walk *walk)
1109{
1110	struct clear_refs_private *cp = walk->private;
1111	struct vm_area_struct *vma = walk->vma;
1112
1113	if (vma->vm_flags & VM_PFNMAP)
1114		return 1;
1115
1116	/*
1117	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1118	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1119	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1120	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1121	 */
1122	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1123		return 1;
1124	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1125		return 1;
1126	return 0;
1127}
1128
1129static const struct mm_walk_ops clear_refs_walk_ops = {
1130	.pmd_entry		= clear_refs_pte_range,
1131	.test_walk		= clear_refs_test_walk,
1132};
1133
1134static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1135				size_t count, loff_t *ppos)
1136{
1137	struct task_struct *task;
1138	char buffer[PROC_NUMBUF];
1139	struct mm_struct *mm;
1140	struct vm_area_struct *vma;
1141	enum clear_refs_types type;
1142	struct mmu_gather tlb;
1143	int itype;
1144	int rv;
1145
1146	memset(buffer, 0, sizeof(buffer));
1147	if (count > sizeof(buffer) - 1)
1148		count = sizeof(buffer) - 1;
1149	if (copy_from_user(buffer, buf, count))
1150		return -EFAULT;
1151	rv = kstrtoint(strstrip(buffer), 10, &itype);
1152	if (rv < 0)
1153		return rv;
1154	type = (enum clear_refs_types)itype;
1155	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1156		return -EINVAL;
1157
1158	task = get_proc_task(file_inode(file));
1159	if (!task)
1160		return -ESRCH;
1161	mm = get_task_mm(task);
1162	if (mm) {
1163		struct mmu_notifier_range range;
1164		struct clear_refs_private cp = {
1165			.type = type,
1166		};
 
 
 
 
 
 
1167
1168		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1169			if (down_write_killable(&mm->mmap_sem)) {
1170				count = -EINTR;
1171				goto out_mm;
1172			}
1173
1174			/*
1175			 * Writing 5 to /proc/pid/clear_refs resets the peak
1176			 * resident set size to this mm's current rss value.
1177			 */
 
1178			reset_mm_hiwater_rss(mm);
1179			up_write(&mm->mmap_sem);
1180			goto out_mm;
1181		}
1182
1183		if (down_read_killable(&mm->mmap_sem)) {
1184			count = -EINTR;
1185			goto out_mm;
1186		}
1187		tlb_gather_mmu(&tlb, mm, 0, -1);
1188		if (type == CLEAR_REFS_SOFT_DIRTY) {
1189			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1190				if (!(vma->vm_flags & VM_SOFTDIRTY))
1191					continue;
1192				up_read(&mm->mmap_sem);
1193				if (down_write_killable(&mm->mmap_sem)) {
1194					count = -EINTR;
1195					goto out_mm;
1196				}
1197				/*
1198				 * Avoid to modify vma->vm_flags
1199				 * without locked ops while the
1200				 * coredump reads the vm_flags.
1201				 */
1202				if (!mmget_still_valid(mm)) {
1203					/*
1204					 * Silently return "count"
1205					 * like if get_task_mm()
1206					 * failed. FIXME: should this
1207					 * function have returned
1208					 * -ESRCH if get_task_mm()
1209					 * failed like if
1210					 * get_proc_task() fails?
1211					 */
1212					up_write(&mm->mmap_sem);
1213					goto out_mm;
1214				}
1215				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1216					vma->vm_flags &= ~VM_SOFTDIRTY;
1217					vma_set_page_prot(vma);
1218				}
1219				downgrade_write(&mm->mmap_sem);
1220				break;
1221			}
1222
1223			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1224						0, NULL, mm, 0, -1UL);
1225			mmu_notifier_invalidate_range_start(&range);
1226		}
1227		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1228				&cp);
1229		if (type == CLEAR_REFS_SOFT_DIRTY)
1230			mmu_notifier_invalidate_range_end(&range);
1231		tlb_finish_mmu(&tlb, 0, -1);
1232		up_read(&mm->mmap_sem);
1233out_mm:
1234		mmput(mm);
1235	}
1236	put_task_struct(task);
1237
1238	return count;
1239}
1240
1241const struct file_operations proc_clear_refs_operations = {
1242	.write		= clear_refs_write,
1243	.llseek		= noop_llseek,
1244};
1245
1246typedef struct {
1247	u64 pme;
1248} pagemap_entry_t;
1249
1250struct pagemapread {
1251	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1252	pagemap_entry_t *buffer;
1253	bool show_pfn;
1254};
1255
1256#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1257#define PAGEMAP_WALK_MASK	(PMD_MASK)
1258
1259#define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1260#define PM_PFRAME_BITS		55
1261#define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1262#define PM_SOFT_DIRTY		BIT_ULL(55)
1263#define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1264#define PM_FILE			BIT_ULL(61)
1265#define PM_SWAP			BIT_ULL(62)
1266#define PM_PRESENT		BIT_ULL(63)
1267
1268#define PM_END_OF_BUFFER    1
1269
1270static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1271{
1272	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1273}
1274
1275static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1276			  struct pagemapread *pm)
1277{
1278	pm->buffer[pm->pos++] = *pme;
1279	if (pm->pos >= pm->len)
1280		return PM_END_OF_BUFFER;
1281	return 0;
1282}
1283
1284static int pagemap_pte_hole(unsigned long start, unsigned long end,
1285				struct mm_walk *walk)
1286{
1287	struct pagemapread *pm = walk->private;
1288	unsigned long addr = start;
1289	int err = 0;
1290
1291	while (addr < end) {
1292		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1293		pagemap_entry_t pme = make_pme(0, 0);
1294		/* End of address space hole, which we mark as non-present. */
1295		unsigned long hole_end;
1296
1297		if (vma)
1298			hole_end = min(end, vma->vm_start);
1299		else
1300			hole_end = end;
1301
1302		for (; addr < hole_end; addr += PAGE_SIZE) {
1303			err = add_to_pagemap(addr, &pme, pm);
1304			if (err)
1305				goto out;
1306		}
1307
1308		if (!vma)
1309			break;
1310
1311		/* Addresses in the VMA. */
1312		if (vma->vm_flags & VM_SOFTDIRTY)
1313			pme = make_pme(0, PM_SOFT_DIRTY);
1314		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1315			err = add_to_pagemap(addr, &pme, pm);
1316			if (err)
1317				goto out;
1318		}
1319	}
1320out:
1321	return err;
1322}
1323
1324static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1325		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1326{
1327	u64 frame = 0, flags = 0;
1328	struct page *page = NULL;
1329
1330	if (pte_present(pte)) {
1331		if (pm->show_pfn)
1332			frame = pte_pfn(pte);
1333		flags |= PM_PRESENT;
1334		page = vm_normal_page(vma, addr, pte);
1335		if (pte_soft_dirty(pte))
1336			flags |= PM_SOFT_DIRTY;
1337	} else if (is_swap_pte(pte)) {
1338		swp_entry_t entry;
1339		if (pte_swp_soft_dirty(pte))
1340			flags |= PM_SOFT_DIRTY;
1341		entry = pte_to_swp_entry(pte);
1342		if (pm->show_pfn)
1343			frame = swp_type(entry) |
1344				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1345		flags |= PM_SWAP;
1346		if (is_migration_entry(entry))
1347			page = migration_entry_to_page(entry);
1348
1349		if (is_device_private_entry(entry))
1350			page = device_private_entry_to_page(entry);
1351	}
1352
1353	if (page && !PageAnon(page))
1354		flags |= PM_FILE;
1355	if (page && page_mapcount(page) == 1)
1356		flags |= PM_MMAP_EXCLUSIVE;
1357	if (vma->vm_flags & VM_SOFTDIRTY)
1358		flags |= PM_SOFT_DIRTY;
1359
1360	return make_pme(frame, flags);
1361}
1362
1363static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1364			     struct mm_walk *walk)
1365{
1366	struct vm_area_struct *vma = walk->vma;
1367	struct pagemapread *pm = walk->private;
1368	spinlock_t *ptl;
1369	pte_t *pte, *orig_pte;
1370	int err = 0;
1371
1372#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1373	ptl = pmd_trans_huge_lock(pmdp, vma);
1374	if (ptl) {
1375		u64 flags = 0, frame = 0;
1376		pmd_t pmd = *pmdp;
1377		struct page *page = NULL;
1378
1379		if (vma->vm_flags & VM_SOFTDIRTY)
1380			flags |= PM_SOFT_DIRTY;
1381
 
 
 
 
 
 
1382		if (pmd_present(pmd)) {
1383			page = pmd_page(pmd);
 
 
 
1384
1385			flags |= PM_PRESENT;
1386			if (pmd_soft_dirty(pmd))
1387				flags |= PM_SOFT_DIRTY;
1388			if (pm->show_pfn)
1389				frame = pmd_pfn(pmd) +
1390					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1391		}
1392#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1393		else if (is_swap_pmd(pmd)) {
1394			swp_entry_t entry = pmd_to_swp_entry(pmd);
1395			unsigned long offset;
1396
1397			if (pm->show_pfn) {
1398				offset = swp_offset(entry) +
1399					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1400				frame = swp_type(entry) |
1401					(offset << MAX_SWAPFILES_SHIFT);
1402			}
1403			flags |= PM_SWAP;
1404			if (pmd_swp_soft_dirty(pmd))
1405				flags |= PM_SOFT_DIRTY;
1406			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1407			page = migration_entry_to_page(entry);
1408		}
1409#endif
1410
1411		if (page && page_mapcount(page) == 1)
1412			flags |= PM_MMAP_EXCLUSIVE;
1413
1414		for (; addr != end; addr += PAGE_SIZE) {
1415			pagemap_entry_t pme = make_pme(frame, flags);
1416
1417			err = add_to_pagemap(addr, &pme, pm);
1418			if (err)
1419				break;
1420			if (pm->show_pfn) {
1421				if (flags & PM_PRESENT)
1422					frame++;
1423				else if (flags & PM_SWAP)
1424					frame += (1 << MAX_SWAPFILES_SHIFT);
1425			}
1426		}
1427		spin_unlock(ptl);
1428		return err;
1429	}
1430
1431	if (pmd_trans_unstable(pmdp))
1432		return 0;
1433#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1434
1435	/*
1436	 * We can assume that @vma always points to a valid one and @end never
1437	 * goes beyond vma->vm_end.
1438	 */
1439	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1440	for (; addr < end; pte++, addr += PAGE_SIZE) {
1441		pagemap_entry_t pme;
1442
1443		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1444		err = add_to_pagemap(addr, &pme, pm);
1445		if (err)
1446			break;
1447	}
1448	pte_unmap_unlock(orig_pte, ptl);
1449
1450	cond_resched();
1451
1452	return err;
1453}
1454
1455#ifdef CONFIG_HUGETLB_PAGE
1456/* This function walks within one hugetlb entry in the single call */
1457static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1458				 unsigned long addr, unsigned long end,
1459				 struct mm_walk *walk)
1460{
1461	struct pagemapread *pm = walk->private;
1462	struct vm_area_struct *vma = walk->vma;
1463	u64 flags = 0, frame = 0;
1464	int err = 0;
1465	pte_t pte;
1466
1467	if (vma->vm_flags & VM_SOFTDIRTY)
1468		flags |= PM_SOFT_DIRTY;
1469
1470	pte = huge_ptep_get(ptep);
1471	if (pte_present(pte)) {
1472		struct page *page = pte_page(pte);
1473
1474		if (!PageAnon(page))
1475			flags |= PM_FILE;
1476
1477		if (page_mapcount(page) == 1)
1478			flags |= PM_MMAP_EXCLUSIVE;
1479
1480		flags |= PM_PRESENT;
1481		if (pm->show_pfn)
1482			frame = pte_pfn(pte) +
1483				((addr & ~hmask) >> PAGE_SHIFT);
1484	}
1485
1486	for (; addr != end; addr += PAGE_SIZE) {
1487		pagemap_entry_t pme = make_pme(frame, flags);
1488
1489		err = add_to_pagemap(addr, &pme, pm);
1490		if (err)
1491			return err;
1492		if (pm->show_pfn && (flags & PM_PRESENT))
1493			frame++;
1494	}
1495
1496	cond_resched();
1497
1498	return err;
1499}
1500#else
1501#define pagemap_hugetlb_range	NULL
1502#endif /* HUGETLB_PAGE */
1503
1504static const struct mm_walk_ops pagemap_ops = {
1505	.pmd_entry	= pagemap_pmd_range,
1506	.pte_hole	= pagemap_pte_hole,
1507	.hugetlb_entry	= pagemap_hugetlb_range,
1508};
1509
1510/*
1511 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1512 *
1513 * For each page in the address space, this file contains one 64-bit entry
1514 * consisting of the following:
1515 *
1516 * Bits 0-54  page frame number (PFN) if present
1517 * Bits 0-4   swap type if swapped
1518 * Bits 5-54  swap offset if swapped
1519 * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1520 * Bit  56    page exclusively mapped
1521 * Bits 57-60 zero
1522 * Bit  61    page is file-page or shared-anon
1523 * Bit  62    page swapped
1524 * Bit  63    page present
1525 *
1526 * If the page is not present but in swap, then the PFN contains an
1527 * encoding of the swap file number and the page's offset into the
1528 * swap. Unmapped pages return a null PFN. This allows determining
1529 * precisely which pages are mapped (or in swap) and comparing mapped
1530 * pages between processes.
1531 *
1532 * Efficient users of this interface will use /proc/pid/maps to
1533 * determine which areas of memory are actually mapped and llseek to
1534 * skip over unmapped regions.
1535 */
1536static ssize_t pagemap_read(struct file *file, char __user *buf,
1537			    size_t count, loff_t *ppos)
1538{
1539	struct mm_struct *mm = file->private_data;
1540	struct pagemapread pm;
 
1541	unsigned long src;
1542	unsigned long svpfn;
1543	unsigned long start_vaddr;
1544	unsigned long end_vaddr;
1545	int ret = 0, copied = 0;
1546
1547	if (!mm || !mmget_not_zero(mm))
1548		goto out;
1549
1550	ret = -EINVAL;
1551	/* file position must be aligned */
1552	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1553		goto out_mm;
1554
1555	ret = 0;
1556	if (!count)
1557		goto out_mm;
1558
1559	/* do not disclose physical addresses: attack vector */
1560	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1561
1562	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1563	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1564	ret = -ENOMEM;
1565	if (!pm.buffer)
1566		goto out_mm;
1567
 
 
 
 
 
 
 
 
1568	src = *ppos;
1569	svpfn = src / PM_ENTRY_BYTES;
1570	start_vaddr = svpfn << PAGE_SHIFT;
1571	end_vaddr = mm->task_size;
1572
1573	/* watch out for wraparound */
1574	if (svpfn > mm->task_size >> PAGE_SHIFT)
1575		start_vaddr = end_vaddr;
1576
1577	/*
1578	 * The odds are that this will stop walking way
1579	 * before end_vaddr, because the length of the
1580	 * user buffer is tracked in "pm", and the walk
1581	 * will stop when we hit the end of the buffer.
1582	 */
1583	ret = 0;
1584	while (count && (start_vaddr < end_vaddr)) {
1585		int len;
1586		unsigned long end;
1587
1588		pm.pos = 0;
1589		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1590		/* overflow ? */
1591		if (end < start_vaddr || end > end_vaddr)
1592			end = end_vaddr;
1593		ret = down_read_killable(&mm->mmap_sem);
1594		if (ret)
1595			goto out_free;
1596		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1597		up_read(&mm->mmap_sem);
1598		start_vaddr = end;
1599
1600		len = min(count, PM_ENTRY_BYTES * pm.pos);
1601		if (copy_to_user(buf, pm.buffer, len)) {
1602			ret = -EFAULT;
1603			goto out_free;
1604		}
1605		copied += len;
1606		buf += len;
1607		count -= len;
1608	}
1609	*ppos += copied;
1610	if (!ret || ret == PM_END_OF_BUFFER)
1611		ret = copied;
1612
1613out_free:
1614	kfree(pm.buffer);
1615out_mm:
1616	mmput(mm);
1617out:
1618	return ret;
1619}
1620
1621static int pagemap_open(struct inode *inode, struct file *file)
1622{
1623	struct mm_struct *mm;
1624
1625	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1626	if (IS_ERR(mm))
1627		return PTR_ERR(mm);
1628	file->private_data = mm;
1629	return 0;
1630}
1631
1632static int pagemap_release(struct inode *inode, struct file *file)
1633{
1634	struct mm_struct *mm = file->private_data;
1635
1636	if (mm)
1637		mmdrop(mm);
1638	return 0;
1639}
1640
1641const struct file_operations proc_pagemap_operations = {
1642	.llseek		= mem_lseek, /* borrow this */
1643	.read		= pagemap_read,
1644	.open		= pagemap_open,
1645	.release	= pagemap_release,
1646};
1647#endif /* CONFIG_PROC_PAGE_MONITOR */
1648
1649#ifdef CONFIG_NUMA
1650
1651struct numa_maps {
1652	unsigned long pages;
1653	unsigned long anon;
1654	unsigned long active;
1655	unsigned long writeback;
1656	unsigned long mapcount_max;
1657	unsigned long dirty;
1658	unsigned long swapcache;
1659	unsigned long node[MAX_NUMNODES];
1660};
1661
1662struct numa_maps_private {
1663	struct proc_maps_private proc_maps;
1664	struct numa_maps md;
1665};
1666
1667static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1668			unsigned long nr_pages)
1669{
1670	int count = page_mapcount(page);
1671
1672	md->pages += nr_pages;
1673	if (pte_dirty || PageDirty(page))
1674		md->dirty += nr_pages;
1675
1676	if (PageSwapCache(page))
1677		md->swapcache += nr_pages;
1678
1679	if (PageActive(page) || PageUnevictable(page))
1680		md->active += nr_pages;
1681
1682	if (PageWriteback(page))
1683		md->writeback += nr_pages;
1684
1685	if (PageAnon(page))
1686		md->anon += nr_pages;
1687
1688	if (count > md->mapcount_max)
1689		md->mapcount_max = count;
1690
1691	md->node[page_to_nid(page)] += nr_pages;
1692}
1693
1694static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1695		unsigned long addr)
1696{
1697	struct page *page;
1698	int nid;
1699
1700	if (!pte_present(pte))
1701		return NULL;
1702
1703	page = vm_normal_page(vma, addr, pte);
1704	if (!page)
1705		return NULL;
1706
1707	if (PageReserved(page))
1708		return NULL;
1709
1710	nid = page_to_nid(page);
1711	if (!node_isset(nid, node_states[N_MEMORY]))
1712		return NULL;
1713
1714	return page;
1715}
1716
1717#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1718static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1719					      struct vm_area_struct *vma,
1720					      unsigned long addr)
1721{
1722	struct page *page;
1723	int nid;
1724
1725	if (!pmd_present(pmd))
1726		return NULL;
1727
1728	page = vm_normal_page_pmd(vma, addr, pmd);
1729	if (!page)
1730		return NULL;
1731
1732	if (PageReserved(page))
1733		return NULL;
1734
1735	nid = page_to_nid(page);
1736	if (!node_isset(nid, node_states[N_MEMORY]))
1737		return NULL;
1738
1739	return page;
1740}
1741#endif
1742
1743static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1744		unsigned long end, struct mm_walk *walk)
1745{
1746	struct numa_maps *md = walk->private;
1747	struct vm_area_struct *vma = walk->vma;
1748	spinlock_t *ptl;
1749	pte_t *orig_pte;
1750	pte_t *pte;
1751
1752#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1753	ptl = pmd_trans_huge_lock(pmd, vma);
1754	if (ptl) {
1755		struct page *page;
1756
1757		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1758		if (page)
1759			gather_stats(page, md, pmd_dirty(*pmd),
1760				     HPAGE_PMD_SIZE/PAGE_SIZE);
1761		spin_unlock(ptl);
1762		return 0;
1763	}
1764
1765	if (pmd_trans_unstable(pmd))
1766		return 0;
1767#endif
1768	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1769	do {
1770		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1771		if (!page)
1772			continue;
1773		gather_stats(page, md, pte_dirty(*pte), 1);
1774
1775	} while (pte++, addr += PAGE_SIZE, addr != end);
1776	pte_unmap_unlock(orig_pte, ptl);
1777	cond_resched();
1778	return 0;
1779}
1780#ifdef CONFIG_HUGETLB_PAGE
1781static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1782		unsigned long addr, unsigned long end, struct mm_walk *walk)
1783{
1784	pte_t huge_pte = huge_ptep_get(pte);
1785	struct numa_maps *md;
1786	struct page *page;
1787
1788	if (!pte_present(huge_pte))
1789		return 0;
1790
1791	page = pte_page(huge_pte);
1792	if (!page)
1793		return 0;
1794
1795	md = walk->private;
1796	gather_stats(page, md, pte_dirty(huge_pte), 1);
1797	return 0;
1798}
1799
1800#else
1801static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1802		unsigned long addr, unsigned long end, struct mm_walk *walk)
1803{
1804	return 0;
1805}
1806#endif
1807
1808static const struct mm_walk_ops show_numa_ops = {
1809	.hugetlb_entry = gather_hugetlb_stats,
1810	.pmd_entry = gather_pte_stats,
1811};
1812
1813/*
1814 * Display pages allocated per node and memory policy via /proc.
1815 */
1816static int show_numa_map(struct seq_file *m, void *v)
1817{
1818	struct numa_maps_private *numa_priv = m->private;
1819	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1820	struct vm_area_struct *vma = v;
1821	struct numa_maps *md = &numa_priv->md;
1822	struct file *file = vma->vm_file;
1823	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 
1824	struct mempolicy *pol;
1825	char buffer[64];
1826	int nid;
1827
1828	if (!mm)
1829		return 0;
1830
1831	/* Ensure we start with an empty set of numa_maps statistics. */
1832	memset(md, 0, sizeof(*md));
1833
1834	pol = __get_vma_policy(vma, vma->vm_start);
1835	if (pol) {
1836		mpol_to_str(buffer, sizeof(buffer), pol);
1837		mpol_cond_put(pol);
1838	} else {
1839		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1840	}
1841
1842	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1843
1844	if (file) {
1845		seq_puts(m, " file=");
1846		seq_file_path(m, file, "\n\t= ");
1847	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1848		seq_puts(m, " heap");
1849	} else if (is_stack(vma)) {
1850		seq_puts(m, " stack");
1851	}
1852
1853	if (is_vm_hugetlb_page(vma))
1854		seq_puts(m, " huge");
1855
1856	/* mmap_sem is held by m_start */
1857	walk_page_vma(vma, &show_numa_ops, md);
1858
1859	if (!md->pages)
1860		goto out;
1861
1862	if (md->anon)
1863		seq_printf(m, " anon=%lu", md->anon);
1864
1865	if (md->dirty)
1866		seq_printf(m, " dirty=%lu", md->dirty);
1867
1868	if (md->pages != md->anon && md->pages != md->dirty)
1869		seq_printf(m, " mapped=%lu", md->pages);
1870
1871	if (md->mapcount_max > 1)
1872		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1873
1874	if (md->swapcache)
1875		seq_printf(m, " swapcache=%lu", md->swapcache);
1876
1877	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1878		seq_printf(m, " active=%lu", md->active);
1879
1880	if (md->writeback)
1881		seq_printf(m, " writeback=%lu", md->writeback);
1882
1883	for_each_node_state(nid, N_MEMORY)
1884		if (md->node[nid])
1885			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1886
1887	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1888out:
1889	seq_putc(m, '\n');
1890	m_cache_vma(m, vma);
1891	return 0;
1892}
1893
 
 
 
 
 
 
 
 
 
 
1894static const struct seq_operations proc_pid_numa_maps_op = {
1895	.start  = m_start,
1896	.next   = m_next,
1897	.stop   = m_stop,
1898	.show   = show_numa_map,
 
 
 
 
 
 
 
1899};
1900
 
 
 
 
 
 
 
1901static int pid_numa_maps_open(struct inode *inode, struct file *file)
1902{
1903	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1904				sizeof(struct numa_maps_private));
 
 
 
 
1905}
1906
1907const struct file_operations proc_pid_numa_maps_operations = {
1908	.open		= pid_numa_maps_open,
1909	.read		= seq_read,
1910	.llseek		= seq_lseek,
1911	.release	= proc_map_release,
1912};
1913
 
 
 
 
 
 
1914#endif /* CONFIG_NUMA */