Linux Audio

Check our new training course

Loading...
v4.6
   1#include <linux/mm.h>
   2#include <linux/vmacache.h>
   3#include <linux/hugetlb.h>
   4#include <linux/huge_mm.h>
   5#include <linux/mount.h>
   6#include <linux/seq_file.h>
   7#include <linux/highmem.h>
   8#include <linux/ptrace.h>
   9#include <linux/slab.h>
  10#include <linux/pagemap.h>
  11#include <linux/mempolicy.h>
  12#include <linux/rmap.h>
  13#include <linux/swap.h>
  14#include <linux/swapops.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/page_idle.h>
  17#include <linux/shmem_fs.h>
  18
  19#include <asm/elf.h>
  20#include <asm/uaccess.h>
  21#include <asm/tlbflush.h>
  22#include "internal.h"
  23
  24void task_mem(struct seq_file *m, struct mm_struct *mm)
  25{
  26	unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
  27	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  28
  29	anon = get_mm_counter(mm, MM_ANONPAGES);
  30	file = get_mm_counter(mm, MM_FILEPAGES);
  31	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  32
  33	/*
  34	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  35	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  36	 * collector of these hiwater stats must therefore get total_vm
  37	 * and rss too, which will usually be the higher.  Barriers? not
  38	 * worth the effort, such snapshots can always be inconsistent.
  39	 */
  40	hiwater_vm = total_vm = mm->total_vm;
  41	if (hiwater_vm < mm->hiwater_vm)
  42		hiwater_vm = mm->hiwater_vm;
  43	hiwater_rss = total_rss = anon + file + shmem;
  44	if (hiwater_rss < mm->hiwater_rss)
  45		hiwater_rss = mm->hiwater_rss;
  46
 
  47	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  48	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  49	swap = get_mm_counter(mm, MM_SWAPENTS);
  50	ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
  51	pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
  52	seq_printf(m,
  53		"VmPeak:\t%8lu kB\n"
  54		"VmSize:\t%8lu kB\n"
  55		"VmLck:\t%8lu kB\n"
  56		"VmPin:\t%8lu kB\n"
  57		"VmHWM:\t%8lu kB\n"
  58		"VmRSS:\t%8lu kB\n"
  59		"RssAnon:\t%8lu kB\n"
  60		"RssFile:\t%8lu kB\n"
  61		"RssShmem:\t%8lu kB\n"
  62		"VmData:\t%8lu kB\n"
  63		"VmStk:\t%8lu kB\n"
  64		"VmExe:\t%8lu kB\n"
  65		"VmLib:\t%8lu kB\n"
  66		"VmPTE:\t%8lu kB\n"
  67		"VmPMD:\t%8lu kB\n"
  68		"VmSwap:\t%8lu kB\n",
  69		hiwater_vm << (PAGE_SHIFT-10),
  70		total_vm << (PAGE_SHIFT-10),
  71		mm->locked_vm << (PAGE_SHIFT-10),
  72		mm->pinned_vm << (PAGE_SHIFT-10),
  73		hiwater_rss << (PAGE_SHIFT-10),
  74		total_rss << (PAGE_SHIFT-10),
  75		anon << (PAGE_SHIFT-10),
  76		file << (PAGE_SHIFT-10),
  77		shmem << (PAGE_SHIFT-10),
  78		mm->data_vm << (PAGE_SHIFT-10),
  79		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  80		ptes >> 10,
  81		pmds >> 10,
  82		swap << (PAGE_SHIFT-10));
  83	hugetlb_report_usage(m, mm);
  84}
  85
  86unsigned long task_vsize(struct mm_struct *mm)
  87{
  88	return PAGE_SIZE * mm->total_vm;
  89}
  90
  91unsigned long task_statm(struct mm_struct *mm,
  92			 unsigned long *shared, unsigned long *text,
  93			 unsigned long *data, unsigned long *resident)
  94{
  95	*shared = get_mm_counter(mm, MM_FILEPAGES) +
  96			get_mm_counter(mm, MM_SHMEMPAGES);
  97	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  98								>> PAGE_SHIFT;
  99	*data = mm->data_vm + mm->stack_vm;
 100	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
 101	return mm->total_vm;
 102}
 103
 104#ifdef CONFIG_NUMA
 105/*
 106 * Save get_task_policy() for show_numa_map().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107 */
 108static void hold_task_mempolicy(struct proc_maps_private *priv)
 109{
 110	struct task_struct *task = priv->task;
 111
 112	task_lock(task);
 113	priv->task_mempolicy = get_task_policy(task);
 114	mpol_get(priv->task_mempolicy);
 115	task_unlock(task);
 116}
 117static void release_task_mempolicy(struct proc_maps_private *priv)
 118{
 119	mpol_put(priv->task_mempolicy);
 120}
 121#else
 122static void hold_task_mempolicy(struct proc_maps_private *priv)
 123{
 124}
 125static void release_task_mempolicy(struct proc_maps_private *priv)
 126{
 127}
 128#endif
 129
 130static void vma_stop(struct proc_maps_private *priv)
 131{
 132	struct mm_struct *mm = priv->mm;
 133
 134	release_task_mempolicy(priv);
 135	up_read(&mm->mmap_sem);
 136	mmput(mm);
 137}
 138
 139static struct vm_area_struct *
 140m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
 141{
 142	if (vma == priv->tail_vma)
 143		return NULL;
 144	return vma->vm_next ?: priv->tail_vma;
 145}
 146
 147static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
 148{
 149	if (m->count < m->size)	/* vma is copied successfully */
 150		m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
 151}
 152
 153static void *m_start(struct seq_file *m, loff_t *ppos)
 154{
 155	struct proc_maps_private *priv = m->private;
 156	unsigned long last_addr = m->version;
 157	struct mm_struct *mm;
 158	struct vm_area_struct *vma;
 159	unsigned int pos = *ppos;
 
 
 
 
 
 
 
 
 
 
 
 160
 161	/* See m_cache_vma(). Zero at the start or after lseek. */
 162	if (last_addr == -1UL)
 163		return NULL;
 164
 165	priv->task = get_proc_task(priv->inode);
 166	if (!priv->task)
 167		return ERR_PTR(-ESRCH);
 168
 169	mm = priv->mm;
 170	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
 171		return NULL;
 172
 173	down_read(&mm->mmap_sem);
 174	hold_task_mempolicy(priv);
 175	priv->tail_vma = get_gate_vma(mm);
 176
 177	if (last_addr) {
 178		vma = find_vma(mm, last_addr);
 179		if (vma && (vma = m_next_vma(priv, vma)))
 180			return vma;
 
 
 
 
 181	}
 182
 183	m->version = 0;
 184	if (pos < mm->map_count) {
 185		for (vma = mm->mmap; pos; pos--) {
 186			m->version = vma->vm_start;
 
 
 
 
 187			vma = vma->vm_next;
 188		}
 189		return vma;
 190	}
 191
 192	/* we do not bother to update m->version in this case */
 193	if (pos == mm->map_count && priv->tail_vma)
 194		return priv->tail_vma;
 195
 196	vma_stop(priv);
 197	return NULL;
 
 
 
 
 
 
 
 
 198}
 199
 200static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 201{
 202	struct proc_maps_private *priv = m->private;
 203	struct vm_area_struct *next;
 
 204
 205	(*pos)++;
 206	next = m_next_vma(priv, v);
 207	if (!next)
 208		vma_stop(priv);
 209	return next;
 210}
 211
 212static void m_stop(struct seq_file *m, void *v)
 213{
 214	struct proc_maps_private *priv = m->private;
 
 215
 216	if (!IS_ERR_OR_NULL(v))
 217		vma_stop(priv);
 218	if (priv->task) {
 219		put_task_struct(priv->task);
 220		priv->task = NULL;
 221	}
 222}
 223
 224static int proc_maps_open(struct inode *inode, struct file *file,
 225			const struct seq_operations *ops, int psize)
 226{
 227	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
 228
 229	if (!priv)
 230		return -ENOMEM;
 231
 232	priv->inode = inode;
 233	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 234	if (IS_ERR(priv->mm)) {
 235		int err = PTR_ERR(priv->mm);
 236
 237		seq_release_private(inode, file);
 238		return err;
 239	}
 240
 241	return 0;
 242}
 243
 244static int proc_map_release(struct inode *inode, struct file *file)
 245{
 246	struct seq_file *seq = file->private_data;
 247	struct proc_maps_private *priv = seq->private;
 248
 249	if (priv->mm)
 250		mmdrop(priv->mm);
 251
 252	return seq_release_private(inode, file);
 253}
 254
 255static int do_maps_open(struct inode *inode, struct file *file,
 256			const struct seq_operations *ops)
 257{
 258	return proc_maps_open(inode, file, ops,
 259				sizeof(struct proc_maps_private));
 260}
 261
 262/*
 263 * Indicate if the VMA is a stack for the given task; for
 264 * /proc/PID/maps that is the stack of the main task.
 265 */
 266static int is_stack(struct proc_maps_private *priv,
 267		    struct vm_area_struct *vma, int is_pid)
 268{
 269	int stack = 0;
 270
 271	if (is_pid) {
 272		stack = vma->vm_start <= vma->vm_mm->start_stack &&
 273			vma->vm_end >= vma->vm_mm->start_stack;
 274	} else {
 275		struct inode *inode = priv->inode;
 276		struct task_struct *task;
 277
 278		rcu_read_lock();
 279		task = pid_task(proc_pid(inode), PIDTYPE_PID);
 280		if (task)
 281			stack = vma_is_stack_for_task(vma, task);
 282		rcu_read_unlock();
 283	}
 284	return stack;
 285}
 286
 287static void
 288show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
 289{
 290	struct mm_struct *mm = vma->vm_mm;
 291	struct file *file = vma->vm_file;
 292	struct proc_maps_private *priv = m->private;
 
 293	vm_flags_t flags = vma->vm_flags;
 294	unsigned long ino = 0;
 295	unsigned long long pgoff = 0;
 296	unsigned long start, end;
 297	dev_t dev = 0;
 298	const char *name = NULL;
 299
 300	if (file) {
 301		struct inode *inode = file_inode(vma->vm_file);
 302		dev = inode->i_sb->s_dev;
 303		ino = inode->i_ino;
 304		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 305	}
 306
 307	/* We don't show the stack guard page in /proc/maps */
 308	start = vma->vm_start;
 309	if (stack_guard_page_start(vma, start))
 310		start += PAGE_SIZE;
 311	end = vma->vm_end;
 312	if (stack_guard_page_end(vma, end))
 313		end -= PAGE_SIZE;
 314
 315	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 316	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
 317			start,
 318			end,
 319			flags & VM_READ ? 'r' : '-',
 320			flags & VM_WRITE ? 'w' : '-',
 321			flags & VM_EXEC ? 'x' : '-',
 322			flags & VM_MAYSHARE ? 's' : 'p',
 323			pgoff,
 324			MAJOR(dev), MINOR(dev), ino);
 325
 326	/*
 327	 * Print the dentry name for named mappings, and a
 328	 * special [heap] marker for the heap:
 329	 */
 330	if (file) {
 331		seq_pad(m, ' ');
 332		seq_file_path(m, file, "\n");
 333		goto done;
 334	}
 335
 336	if (vma->vm_ops && vma->vm_ops->name) {
 337		name = vma->vm_ops->name(vma);
 338		if (name)
 339			goto done;
 340	}
 341
 342	name = arch_vma_name(vma);
 343	if (!name) {
 
 
 344		if (!mm) {
 345			name = "[vdso]";
 346			goto done;
 347		}
 348
 349		if (vma->vm_start <= mm->brk &&
 350		    vma->vm_end >= mm->start_brk) {
 351			name = "[heap]";
 352			goto done;
 353		}
 354
 355		if (is_stack(priv, vma, is_pid))
 356			name = "[stack]";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357	}
 358
 359done:
 360	if (name) {
 361		seq_pad(m, ' ');
 362		seq_puts(m, name);
 363	}
 364	seq_putc(m, '\n');
 365}
 366
 367static int show_map(struct seq_file *m, void *v, int is_pid)
 368{
 369	show_map_vma(m, v, is_pid);
 370	m_cache_vma(m, v);
 
 
 
 
 
 
 
 371	return 0;
 372}
 373
 374static int show_pid_map(struct seq_file *m, void *v)
 375{
 376	return show_map(m, v, 1);
 377}
 378
 379static int show_tid_map(struct seq_file *m, void *v)
 380{
 381	return show_map(m, v, 0);
 382}
 383
 384static const struct seq_operations proc_pid_maps_op = {
 385	.start	= m_start,
 386	.next	= m_next,
 387	.stop	= m_stop,
 388	.show	= show_pid_map
 389};
 390
 391static const struct seq_operations proc_tid_maps_op = {
 392	.start	= m_start,
 393	.next	= m_next,
 394	.stop	= m_stop,
 395	.show	= show_tid_map
 396};
 397
 398static int pid_maps_open(struct inode *inode, struct file *file)
 399{
 400	return do_maps_open(inode, file, &proc_pid_maps_op);
 401}
 402
 403static int tid_maps_open(struct inode *inode, struct file *file)
 404{
 405	return do_maps_open(inode, file, &proc_tid_maps_op);
 406}
 407
 408const struct file_operations proc_pid_maps_operations = {
 409	.open		= pid_maps_open,
 410	.read		= seq_read,
 411	.llseek		= seq_lseek,
 412	.release	= proc_map_release,
 413};
 414
 415const struct file_operations proc_tid_maps_operations = {
 416	.open		= tid_maps_open,
 417	.read		= seq_read,
 418	.llseek		= seq_lseek,
 419	.release	= proc_map_release,
 420};
 421
 422/*
 423 * Proportional Set Size(PSS): my share of RSS.
 424 *
 425 * PSS of a process is the count of pages it has in memory, where each
 426 * page is divided by the number of processes sharing it.  So if a
 427 * process has 1000 pages all to itself, and 1000 shared with one other
 428 * process, its PSS will be 1500.
 429 *
 430 * To keep (accumulated) division errors low, we adopt a 64bit
 431 * fixed-point pss counter to minimize division errors. So (pss >>
 432 * PSS_SHIFT) would be the real byte count.
 433 *
 434 * A shift of 12 before division means (assuming 4K page size):
 435 * 	- 1M 3-user-pages add up to 8KB errors;
 436 * 	- supports mapcount up to 2^24, or 16M;
 437 * 	- supports PSS up to 2^52 bytes, or 4PB.
 438 */
 439#define PSS_SHIFT 12
 440
 441#ifdef CONFIG_PROC_PAGE_MONITOR
 442struct mem_size_stats {
 
 443	unsigned long resident;
 444	unsigned long shared_clean;
 445	unsigned long shared_dirty;
 446	unsigned long private_clean;
 447	unsigned long private_dirty;
 448	unsigned long referenced;
 449	unsigned long anonymous;
 450	unsigned long anonymous_thp;
 451	unsigned long swap;
 452	unsigned long shared_hugetlb;
 453	unsigned long private_hugetlb;
 454	u64 pss;
 455	u64 swap_pss;
 456	bool check_shmem_swap;
 457};
 458
 459static void smaps_account(struct mem_size_stats *mss, struct page *page,
 460		bool compound, bool young, bool dirty)
 461{
 462	int i, nr = compound ? 1 << compound_order(page) : 1;
 463	unsigned long size = nr * PAGE_SIZE;
 464
 465	if (PageAnon(page))
 466		mss->anonymous += size;
 467
 468	mss->resident += size;
 469	/* Accumulate the size in pages that have been accessed. */
 470	if (young || page_is_young(page) || PageReferenced(page))
 471		mss->referenced += size;
 472
 473	/*
 474	 * page_count(page) == 1 guarantees the page is mapped exactly once.
 475	 * If any subpage of the compound page mapped with PTE it would elevate
 476	 * page_count().
 477	 */
 478	if (page_count(page) == 1) {
 479		if (dirty || PageDirty(page))
 480			mss->private_dirty += size;
 481		else
 482			mss->private_clean += size;
 483		mss->pss += (u64)size << PSS_SHIFT;
 484		return;
 485	}
 486
 487	for (i = 0; i < nr; i++, page++) {
 488		int mapcount = page_mapcount(page);
 489
 490		if (mapcount >= 2) {
 491			if (dirty || PageDirty(page))
 492				mss->shared_dirty += PAGE_SIZE;
 493			else
 494				mss->shared_clean += PAGE_SIZE;
 495			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
 496		} else {
 497			if (dirty || PageDirty(page))
 498				mss->private_dirty += PAGE_SIZE;
 499			else
 500				mss->private_clean += PAGE_SIZE;
 501			mss->pss += PAGE_SIZE << PSS_SHIFT;
 502		}
 503	}
 504}
 505
 506#ifdef CONFIG_SHMEM
 507static int smaps_pte_hole(unsigned long addr, unsigned long end,
 508		struct mm_walk *walk)
 509{
 510	struct mem_size_stats *mss = walk->private;
 511
 512	mss->swap += shmem_partial_swap_usage(
 513			walk->vma->vm_file->f_mapping, addr, end);
 514
 515	return 0;
 516}
 517#endif
 518
 519static void smaps_pte_entry(pte_t *pte, unsigned long addr,
 520		struct mm_walk *walk)
 521{
 522	struct mem_size_stats *mss = walk->private;
 523	struct vm_area_struct *vma = walk->vma;
 524	struct page *page = NULL;
 
 525
 526	if (pte_present(*pte)) {
 527		page = vm_normal_page(vma, addr, *pte);
 528	} else if (is_swap_pte(*pte)) {
 529		swp_entry_t swpent = pte_to_swp_entry(*pte);
 530
 531		if (!non_swap_entry(swpent)) {
 532			int mapcount;
 533
 534			mss->swap += PAGE_SIZE;
 535			mapcount = swp_swapcount(swpent);
 536			if (mapcount >= 2) {
 537				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
 538
 539				do_div(pss_delta, mapcount);
 540				mss->swap_pss += pss_delta;
 541			} else {
 542				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
 543			}
 544		} else if (is_migration_entry(swpent))
 545			page = migration_entry_to_page(swpent);
 546	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
 547							&& pte_none(*pte))) {
 548		page = find_get_entry(vma->vm_file->f_mapping,
 549						linear_page_index(vma, addr));
 550		if (!page)
 551			return;
 552
 553		if (radix_tree_exceptional_entry(page))
 554			mss->swap += PAGE_SIZE;
 555		else
 556			put_page(page);
 557
 558		return;
 559	}
 560
 561	if (!page)
 562		return;
 563
 564	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
 565}
 566
 567#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 568static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 569		struct mm_walk *walk)
 570{
 571	struct mem_size_stats *mss = walk->private;
 572	struct vm_area_struct *vma = walk->vma;
 573	struct page *page;
 574
 575	/* FOLL_DUMP will return -EFAULT on huge zero page */
 576	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
 577	if (IS_ERR_OR_NULL(page))
 578		return;
 579	mss->anonymous_thp += HPAGE_PMD_SIZE;
 580	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
 581}
 582#else
 583static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 584		struct mm_walk *walk)
 585{
 
 
 
 
 
 
 
 586}
 587#endif
 588
 589static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 590			   struct mm_walk *walk)
 591{
 592	struct vm_area_struct *vma = walk->vma;
 
 593	pte_t *pte;
 594	spinlock_t *ptl;
 595
 596	ptl = pmd_trans_huge_lock(pmd, vma);
 597	if (ptl) {
 598		smaps_pmd_entry(pmd, addr, walk);
 599		spin_unlock(ptl);
 
 600		return 0;
 601	}
 602
 603	if (pmd_trans_unstable(pmd))
 604		return 0;
 605	/*
 606	 * The mmap_sem held all the way back in m_start() is what
 607	 * keeps khugepaged out of here and from collapsing things
 608	 * in here.
 609	 */
 610	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 611	for (; addr != end; pte++, addr += PAGE_SIZE)
 612		smaps_pte_entry(pte, addr, walk);
 613	pte_unmap_unlock(pte - 1, ptl);
 614	cond_resched();
 615	return 0;
 616}
 617
 618static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 619{
 620	/*
 621	 * Don't forget to update Documentation/ on changes.
 622	 */
 623	static const char mnemonics[BITS_PER_LONG][2] = {
 624		/*
 625		 * In case if we meet a flag we don't know about.
 626		 */
 627		[0 ... (BITS_PER_LONG-1)] = "??",
 628
 629		[ilog2(VM_READ)]	= "rd",
 630		[ilog2(VM_WRITE)]	= "wr",
 631		[ilog2(VM_EXEC)]	= "ex",
 632		[ilog2(VM_SHARED)]	= "sh",
 633		[ilog2(VM_MAYREAD)]	= "mr",
 634		[ilog2(VM_MAYWRITE)]	= "mw",
 635		[ilog2(VM_MAYEXEC)]	= "me",
 636		[ilog2(VM_MAYSHARE)]	= "ms",
 637		[ilog2(VM_GROWSDOWN)]	= "gd",
 638		[ilog2(VM_PFNMAP)]	= "pf",
 639		[ilog2(VM_DENYWRITE)]	= "dw",
 640#ifdef CONFIG_X86_INTEL_MPX
 641		[ilog2(VM_MPX)]		= "mp",
 642#endif
 643		[ilog2(VM_LOCKED)]	= "lo",
 644		[ilog2(VM_IO)]		= "io",
 645		[ilog2(VM_SEQ_READ)]	= "sr",
 646		[ilog2(VM_RAND_READ)]	= "rr",
 647		[ilog2(VM_DONTCOPY)]	= "dc",
 648		[ilog2(VM_DONTEXPAND)]	= "de",
 649		[ilog2(VM_ACCOUNT)]	= "ac",
 650		[ilog2(VM_NORESERVE)]	= "nr",
 651		[ilog2(VM_HUGETLB)]	= "ht",
 
 652		[ilog2(VM_ARCH_1)]	= "ar",
 653		[ilog2(VM_DONTDUMP)]	= "dd",
 654#ifdef CONFIG_MEM_SOFT_DIRTY
 655		[ilog2(VM_SOFTDIRTY)]	= "sd",
 656#endif
 657		[ilog2(VM_MIXEDMAP)]	= "mm",
 658		[ilog2(VM_HUGEPAGE)]	= "hg",
 659		[ilog2(VM_NOHUGEPAGE)]	= "nh",
 660		[ilog2(VM_MERGEABLE)]	= "mg",
 661		[ilog2(VM_UFFD_MISSING)]= "um",
 662		[ilog2(VM_UFFD_WP)]	= "uw",
 663#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 664		/* These come out via ProtectionKey: */
 665		[ilog2(VM_PKEY_BIT0)]	= "",
 666		[ilog2(VM_PKEY_BIT1)]	= "",
 667		[ilog2(VM_PKEY_BIT2)]	= "",
 668		[ilog2(VM_PKEY_BIT3)]	= "",
 669#endif
 670	};
 671	size_t i;
 672
 673	seq_puts(m, "VmFlags: ");
 674	for (i = 0; i < BITS_PER_LONG; i++) {
 675		if (!mnemonics[i][0])
 676			continue;
 677		if (vma->vm_flags & (1UL << i)) {
 678			seq_printf(m, "%c%c ",
 679				   mnemonics[i][0], mnemonics[i][1]);
 680		}
 681	}
 682	seq_putc(m, '\n');
 683}
 684
 685#ifdef CONFIG_HUGETLB_PAGE
 686static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
 687				 unsigned long addr, unsigned long end,
 688				 struct mm_walk *walk)
 689{
 690	struct mem_size_stats *mss = walk->private;
 691	struct vm_area_struct *vma = walk->vma;
 692	struct page *page = NULL;
 693
 694	if (pte_present(*pte)) {
 695		page = vm_normal_page(vma, addr, *pte);
 696	} else if (is_swap_pte(*pte)) {
 697		swp_entry_t swpent = pte_to_swp_entry(*pte);
 698
 699		if (is_migration_entry(swpent))
 700			page = migration_entry_to_page(swpent);
 701	}
 702	if (page) {
 703		int mapcount = page_mapcount(page);
 704
 705		if (mapcount >= 2)
 706			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
 707		else
 708			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
 709	}
 710	return 0;
 711}
 712#endif /* HUGETLB_PAGE */
 713
 714void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
 715{
 716}
 717
 718static int show_smap(struct seq_file *m, void *v, int is_pid)
 719{
 
 
 720	struct vm_area_struct *vma = v;
 721	struct mem_size_stats mss;
 722	struct mm_walk smaps_walk = {
 723		.pmd_entry = smaps_pte_range,
 724#ifdef CONFIG_HUGETLB_PAGE
 725		.hugetlb_entry = smaps_hugetlb_range,
 726#endif
 727		.mm = vma->vm_mm,
 728		.private = &mss,
 729	};
 730
 731	memset(&mss, 0, sizeof mss);
 732
 733#ifdef CONFIG_SHMEM
 734	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
 735		/*
 736		 * For shared or readonly shmem mappings we know that all
 737		 * swapped out pages belong to the shmem object, and we can
 738		 * obtain the swap value much more efficiently. For private
 739		 * writable mappings, we might have COW pages that are
 740		 * not affected by the parent swapped out pages of the shmem
 741		 * object, so we have to distinguish them during the page walk.
 742		 * Unless we know that the shmem object (or the part mapped by
 743		 * our VMA) has no swapped out pages at all.
 744		 */
 745		unsigned long shmem_swapped = shmem_swap_usage(vma);
 746
 747		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
 748					!(vma->vm_flags & VM_WRITE)) {
 749			mss.swap = shmem_swapped;
 750		} else {
 751			mss.check_shmem_swap = true;
 752			smaps_walk.pte_hole = smaps_pte_hole;
 753		}
 754	}
 755#endif
 756
 757	/* mmap_sem is held in m_start */
 758	walk_page_vma(vma, &smaps_walk);
 
 759
 760	show_map_vma(m, vma, is_pid);
 761
 762	seq_printf(m,
 763		   "Size:           %8lu kB\n"
 764		   "Rss:            %8lu kB\n"
 765		   "Pss:            %8lu kB\n"
 766		   "Shared_Clean:   %8lu kB\n"
 767		   "Shared_Dirty:   %8lu kB\n"
 768		   "Private_Clean:  %8lu kB\n"
 769		   "Private_Dirty:  %8lu kB\n"
 770		   "Referenced:     %8lu kB\n"
 771		   "Anonymous:      %8lu kB\n"
 772		   "AnonHugePages:  %8lu kB\n"
 773		   "Shared_Hugetlb: %8lu kB\n"
 774		   "Private_Hugetlb: %7lu kB\n"
 775		   "Swap:           %8lu kB\n"
 776		   "SwapPss:        %8lu kB\n"
 777		   "KernelPageSize: %8lu kB\n"
 778		   "MMUPageSize:    %8lu kB\n"
 779		   "Locked:         %8lu kB\n",
 780		   (vma->vm_end - vma->vm_start) >> 10,
 781		   mss.resident >> 10,
 782		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
 783		   mss.shared_clean  >> 10,
 784		   mss.shared_dirty  >> 10,
 785		   mss.private_clean >> 10,
 786		   mss.private_dirty >> 10,
 787		   mss.referenced >> 10,
 788		   mss.anonymous >> 10,
 789		   mss.anonymous_thp >> 10,
 790		   mss.shared_hugetlb >> 10,
 791		   mss.private_hugetlb >> 10,
 792		   mss.swap >> 10,
 793		   (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
 794		   vma_kernel_pagesize(vma) >> 10,
 795		   vma_mmu_pagesize(vma) >> 10,
 796		   (vma->vm_flags & VM_LOCKED) ?
 797			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
 798
 799	arch_show_smap(m, vma);
 
 
 
 800	show_smap_vma_flags(m, vma);
 801	m_cache_vma(m, vma);
 
 
 
 802	return 0;
 803}
 804
 805static int show_pid_smap(struct seq_file *m, void *v)
 806{
 807	return show_smap(m, v, 1);
 808}
 809
 810static int show_tid_smap(struct seq_file *m, void *v)
 811{
 812	return show_smap(m, v, 0);
 813}
 814
 815static const struct seq_operations proc_pid_smaps_op = {
 816	.start	= m_start,
 817	.next	= m_next,
 818	.stop	= m_stop,
 819	.show	= show_pid_smap
 820};
 821
 822static const struct seq_operations proc_tid_smaps_op = {
 823	.start	= m_start,
 824	.next	= m_next,
 825	.stop	= m_stop,
 826	.show	= show_tid_smap
 827};
 828
 829static int pid_smaps_open(struct inode *inode, struct file *file)
 830{
 831	return do_maps_open(inode, file, &proc_pid_smaps_op);
 832}
 833
 834static int tid_smaps_open(struct inode *inode, struct file *file)
 835{
 836	return do_maps_open(inode, file, &proc_tid_smaps_op);
 837}
 838
 839const struct file_operations proc_pid_smaps_operations = {
 840	.open		= pid_smaps_open,
 841	.read		= seq_read,
 842	.llseek		= seq_lseek,
 843	.release	= proc_map_release,
 844};
 845
 846const struct file_operations proc_tid_smaps_operations = {
 847	.open		= tid_smaps_open,
 848	.read		= seq_read,
 849	.llseek		= seq_lseek,
 850	.release	= proc_map_release,
 851};
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853enum clear_refs_types {
 854	CLEAR_REFS_ALL = 1,
 855	CLEAR_REFS_ANON,
 856	CLEAR_REFS_MAPPED,
 857	CLEAR_REFS_SOFT_DIRTY,
 858	CLEAR_REFS_MM_HIWATER_RSS,
 859	CLEAR_REFS_LAST,
 860};
 861
 862struct clear_refs_private {
 
 863	enum clear_refs_types type;
 864};
 865
 866#ifdef CONFIG_MEM_SOFT_DIRTY
 867static inline void clear_soft_dirty(struct vm_area_struct *vma,
 868		unsigned long addr, pte_t *pte)
 869{
 
 870	/*
 871	 * The soft-dirty tracker uses #PF-s to catch writes
 872	 * to pages, so write-protect the pte as well. See the
 873	 * Documentation/vm/soft-dirty.txt for full description
 874	 * of how soft-dirty works.
 875	 */
 876	pte_t ptent = *pte;
 877
 878	if (pte_present(ptent)) {
 879		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
 880		ptent = pte_wrprotect(ptent);
 881		ptent = pte_clear_soft_dirty(ptent);
 882		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
 883	} else if (is_swap_pte(ptent)) {
 884		ptent = pte_swp_clear_soft_dirty(ptent);
 885		set_pte_at(vma->vm_mm, addr, pte, ptent);
 
 886	}
 887}
 888#else
 889static inline void clear_soft_dirty(struct vm_area_struct *vma,
 890		unsigned long addr, pte_t *pte)
 891{
 892}
 893#endif
 894
 895#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
 896static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
 897		unsigned long addr, pmd_t *pmdp)
 898{
 899	pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
 900
 901	pmd = pmd_wrprotect(pmd);
 902	pmd = pmd_clear_soft_dirty(pmd);
 903
 904	set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
 905}
 906#else
 907static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
 908		unsigned long addr, pmd_t *pmdp)
 909{
 910}
 911#endif
 
 912
 913static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
 914				unsigned long end, struct mm_walk *walk)
 915{
 916	struct clear_refs_private *cp = walk->private;
 917	struct vm_area_struct *vma = walk->vma;
 918	pte_t *pte, ptent;
 919	spinlock_t *ptl;
 920	struct page *page;
 921
 922	ptl = pmd_trans_huge_lock(pmd, vma);
 923	if (ptl) {
 924		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
 925			clear_soft_dirty_pmd(vma, addr, pmd);
 926			goto out;
 927		}
 928
 929		page = pmd_page(*pmd);
 930
 931		/* Clear accessed and referenced bits. */
 932		pmdp_test_and_clear_young(vma, addr, pmd);
 933		test_and_clear_page_young(page);
 934		ClearPageReferenced(page);
 935out:
 936		spin_unlock(ptl);
 937		return 0;
 938	}
 939
 940	if (pmd_trans_unstable(pmd))
 941		return 0;
 942
 943	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 944	for (; addr != end; pte++, addr += PAGE_SIZE) {
 945		ptent = *pte;
 946
 947		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
 948			clear_soft_dirty(vma, addr, pte);
 949			continue;
 950		}
 951
 952		if (!pte_present(ptent))
 953			continue;
 954
 955		page = vm_normal_page(vma, addr, ptent);
 956		if (!page)
 957			continue;
 958
 959		/* Clear accessed and referenced bits. */
 960		ptep_test_and_clear_young(vma, addr, pte);
 961		test_and_clear_page_young(page);
 962		ClearPageReferenced(page);
 963	}
 964	pte_unmap_unlock(pte - 1, ptl);
 965	cond_resched();
 966	return 0;
 967}
 968
 969static int clear_refs_test_walk(unsigned long start, unsigned long end,
 970				struct mm_walk *walk)
 971{
 972	struct clear_refs_private *cp = walk->private;
 973	struct vm_area_struct *vma = walk->vma;
 974
 975	if (vma->vm_flags & VM_PFNMAP)
 976		return 1;
 977
 978	/*
 979	 * Writing 1 to /proc/pid/clear_refs affects all pages.
 980	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
 981	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
 982	 * Writing 4 to /proc/pid/clear_refs affects all pages.
 983	 */
 984	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
 985		return 1;
 986	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
 987		return 1;
 988	return 0;
 989}
 990
 991static ssize_t clear_refs_write(struct file *file, const char __user *buf,
 992				size_t count, loff_t *ppos)
 993{
 994	struct task_struct *task;
 995	char buffer[PROC_NUMBUF];
 996	struct mm_struct *mm;
 997	struct vm_area_struct *vma;
 998	enum clear_refs_types type;
 999	int itype;
1000	int rv;
1001
1002	memset(buffer, 0, sizeof(buffer));
1003	if (count > sizeof(buffer) - 1)
1004		count = sizeof(buffer) - 1;
1005	if (copy_from_user(buffer, buf, count))
1006		return -EFAULT;
1007	rv = kstrtoint(strstrip(buffer), 10, &itype);
1008	if (rv < 0)
1009		return rv;
1010	type = (enum clear_refs_types)itype;
1011	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1012		return -EINVAL;
1013
 
 
 
 
 
 
1014	task = get_proc_task(file_inode(file));
1015	if (!task)
1016		return -ESRCH;
1017	mm = get_task_mm(task);
1018	if (mm) {
1019		struct clear_refs_private cp = {
1020			.type = type,
1021		};
1022		struct mm_walk clear_refs_walk = {
1023			.pmd_entry = clear_refs_pte_range,
1024			.test_walk = clear_refs_test_walk,
1025			.mm = mm,
1026			.private = &cp,
1027		};
1028
1029		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1030			/*
1031			 * Writing 5 to /proc/pid/clear_refs resets the peak
1032			 * resident set size to this mm's current rss value.
1033			 */
1034			down_write(&mm->mmap_sem);
1035			reset_mm_hiwater_rss(mm);
1036			up_write(&mm->mmap_sem);
1037			goto out_mm;
1038		}
1039
1040		down_read(&mm->mmap_sem);
1041		if (type == CLEAR_REFS_SOFT_DIRTY) {
1042			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1043				if (!(vma->vm_flags & VM_SOFTDIRTY))
1044					continue;
1045				up_read(&mm->mmap_sem);
1046				down_write(&mm->mmap_sem);
1047				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1048					vma->vm_flags &= ~VM_SOFTDIRTY;
1049					vma_set_page_prot(vma);
1050				}
1051				downgrade_write(&mm->mmap_sem);
1052				break;
1053			}
1054			mmu_notifier_invalidate_range_start(mm, 0, -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055		}
1056		walk_page_range(0, ~0UL, &clear_refs_walk);
1057		if (type == CLEAR_REFS_SOFT_DIRTY)
1058			mmu_notifier_invalidate_range_end(mm, 0, -1);
1059		flush_tlb_mm(mm);
1060		up_read(&mm->mmap_sem);
1061out_mm:
1062		mmput(mm);
1063	}
1064	put_task_struct(task);
1065
1066	return count;
1067}
1068
1069const struct file_operations proc_clear_refs_operations = {
1070	.write		= clear_refs_write,
1071	.llseek		= noop_llseek,
1072};
1073
1074typedef struct {
1075	u64 pme;
1076} pagemap_entry_t;
1077
1078struct pagemapread {
1079	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1080	pagemap_entry_t *buffer;
1081	bool show_pfn;
1082};
1083
1084#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1085#define PAGEMAP_WALK_MASK	(PMD_MASK)
1086
1087#define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1088#define PM_PFRAME_BITS		55
1089#define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1090#define PM_SOFT_DIRTY		BIT_ULL(55)
1091#define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1092#define PM_FILE			BIT_ULL(61)
1093#define PM_SWAP			BIT_ULL(62)
1094#define PM_PRESENT		BIT_ULL(63)
1095
 
 
 
 
 
 
 
 
 
 
1096#define PM_END_OF_BUFFER    1
1097
1098static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1099{
1100	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1101}
1102
1103static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1104			  struct pagemapread *pm)
1105{
1106	pm->buffer[pm->pos++] = *pme;
1107	if (pm->pos >= pm->len)
1108		return PM_END_OF_BUFFER;
1109	return 0;
1110}
1111
1112static int pagemap_pte_hole(unsigned long start, unsigned long end,
1113				struct mm_walk *walk)
1114{
1115	struct pagemapread *pm = walk->private;
1116	unsigned long addr = start;
1117	int err = 0;
 
1118
1119	while (addr < end) {
1120		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1121		pagemap_entry_t pme = make_pme(0, 0);
1122		/* End of address space hole, which we mark as non-present. */
1123		unsigned long hole_end;
1124
1125		if (vma)
1126			hole_end = min(end, vma->vm_start);
1127		else
1128			hole_end = end;
1129
1130		for (; addr < hole_end; addr += PAGE_SIZE) {
1131			err = add_to_pagemap(addr, &pme, pm);
1132			if (err)
1133				goto out;
1134		}
1135
1136		if (!vma)
1137			break;
1138
1139		/* Addresses in the VMA. */
1140		if (vma->vm_flags & VM_SOFTDIRTY)
1141			pme = make_pme(0, PM_SOFT_DIRTY);
1142		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1143			err = add_to_pagemap(addr, &pme, pm);
1144			if (err)
1145				goto out;
1146		}
1147	}
1148out:
1149	return err;
1150}
1151
1152static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1153		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1154{
1155	u64 frame = 0, flags = 0;
1156	struct page *page = NULL;
 
1157
1158	if (pte_present(pte)) {
1159		if (pm->show_pfn)
1160			frame = pte_pfn(pte);
1161		flags |= PM_PRESENT;
1162		page = vm_normal_page(vma, addr, pte);
1163		if (pte_soft_dirty(pte))
1164			flags |= PM_SOFT_DIRTY;
1165	} else if (is_swap_pte(pte)) {
1166		swp_entry_t entry;
1167		if (pte_swp_soft_dirty(pte))
1168			flags |= PM_SOFT_DIRTY;
1169		entry = pte_to_swp_entry(pte);
1170		frame = swp_type(entry) |
1171			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1172		flags |= PM_SWAP;
1173		if (is_migration_entry(entry))
1174			page = migration_entry_to_page(entry);
 
 
 
 
 
1175	}
1176
1177	if (page && !PageAnon(page))
1178		flags |= PM_FILE;
1179	if (page && page_mapcount(page) == 1)
1180		flags |= PM_MMAP_EXCLUSIVE;
1181	if (vma->vm_flags & VM_SOFTDIRTY)
1182		flags |= PM_SOFT_DIRTY;
1183
1184	return make_pme(frame, flags);
1185}
1186
1187static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188			     struct mm_walk *walk)
1189{
1190	struct vm_area_struct *vma = walk->vma;
1191	struct pagemapread *pm = walk->private;
1192	spinlock_t *ptl;
1193	pte_t *pte, *orig_pte;
1194	int err = 0;
 
1195
1196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1197	ptl = pmd_trans_huge_lock(pmdp, vma);
1198	if (ptl) {
1199		u64 flags = 0, frame = 0;
1200		pmd_t pmd = *pmdp;
1201
1202		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1203			flags |= PM_SOFT_DIRTY;
1204
1205		/*
1206		 * Currently pmd for thp is always present because thp
1207		 * can not be swapped-out, migrated, or HWPOISONed
1208		 * (split in such cases instead.)
1209		 * This if-check is just to prepare for future implementation.
1210		 */
1211		if (pmd_present(pmd)) {
1212			struct page *page = pmd_page(pmd);
1213
1214			if (page_mapcount(page) == 1)
1215				flags |= PM_MMAP_EXCLUSIVE;
1216
1217			flags |= PM_PRESENT;
1218			if (pm->show_pfn)
1219				frame = pmd_pfn(pmd) +
1220					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1221		}
1222
1223		for (; addr != end; addr += PAGE_SIZE) {
1224			pagemap_entry_t pme = make_pme(frame, flags);
1225
 
 
 
1226			err = add_to_pagemap(addr, &pme, pm);
1227			if (err)
1228				break;
1229			if (pm->show_pfn && (flags & PM_PRESENT))
1230				frame++;
1231		}
1232		spin_unlock(ptl);
1233		return err;
1234	}
1235
1236	if (pmd_trans_unstable(pmdp))
1237		return 0;
1238#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 
1239
1240	/*
1241	 * We can assume that @vma always points to a valid one and @end never
1242	 * goes beyond vma->vm_end.
1243	 */
1244	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1245	for (; addr < end; pte++, addr += PAGE_SIZE) {
1246		pagemap_entry_t pme;
 
 
 
1247
1248		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
 
 
 
 
 
 
 
 
1249		err = add_to_pagemap(addr, &pme, pm);
1250		if (err)
1251			break;
1252	}
1253	pte_unmap_unlock(orig_pte, ptl);
1254
1255	cond_resched();
1256
1257	return err;
1258}
1259
1260#ifdef CONFIG_HUGETLB_PAGE
 
 
 
 
 
 
 
 
 
 
 
 
1261/* This function walks within one hugetlb entry in the single call */
1262static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1263				 unsigned long addr, unsigned long end,
1264				 struct mm_walk *walk)
1265{
1266	struct pagemapread *pm = walk->private;
1267	struct vm_area_struct *vma = walk->vma;
1268	u64 flags = 0, frame = 0;
1269	int err = 0;
1270	pte_t pte;
 
1271
1272	if (vma->vm_flags & VM_SOFTDIRTY)
1273		flags |= PM_SOFT_DIRTY;
1274
1275	pte = huge_ptep_get(ptep);
1276	if (pte_present(pte)) {
1277		struct page *page = pte_page(pte);
1278
1279		if (!PageAnon(page))
1280			flags |= PM_FILE;
1281
1282		if (page_mapcount(page) == 1)
1283			flags |= PM_MMAP_EXCLUSIVE;
1284
1285		flags |= PM_PRESENT;
1286		if (pm->show_pfn)
1287			frame = pte_pfn(pte) +
1288				((addr & ~hmask) >> PAGE_SHIFT);
1289	}
1290
1291	for (; addr != end; addr += PAGE_SIZE) {
1292		pagemap_entry_t pme = make_pme(frame, flags);
1293
1294		err = add_to_pagemap(addr, &pme, pm);
1295		if (err)
1296			return err;
1297		if (pm->show_pfn && (flags & PM_PRESENT))
1298			frame++;
1299	}
1300
1301	cond_resched();
1302
1303	return err;
1304}
1305#endif /* HUGETLB_PAGE */
1306
1307/*
1308 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1309 *
1310 * For each page in the address space, this file contains one 64-bit entry
1311 * consisting of the following:
1312 *
1313 * Bits 0-54  page frame number (PFN) if present
1314 * Bits 0-4   swap type if swapped
1315 * Bits 5-54  swap offset if swapped
1316 * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1317 * Bit  56    page exclusively mapped
1318 * Bits 57-60 zero
1319 * Bit  61    page is file-page or shared-anon
1320 * Bit  62    page swapped
1321 * Bit  63    page present
1322 *
1323 * If the page is not present but in swap, then the PFN contains an
1324 * encoding of the swap file number and the page's offset into the
1325 * swap. Unmapped pages return a null PFN. This allows determining
1326 * precisely which pages are mapped (or in swap) and comparing mapped
1327 * pages between processes.
1328 *
1329 * Efficient users of this interface will use /proc/pid/maps to
1330 * determine which areas of memory are actually mapped and llseek to
1331 * skip over unmapped regions.
1332 */
1333static ssize_t pagemap_read(struct file *file, char __user *buf,
1334			    size_t count, loff_t *ppos)
1335{
1336	struct mm_struct *mm = file->private_data;
 
1337	struct pagemapread pm;
 
1338	struct mm_walk pagemap_walk = {};
1339	unsigned long src;
1340	unsigned long svpfn;
1341	unsigned long start_vaddr;
1342	unsigned long end_vaddr;
1343	int ret = 0, copied = 0;
1344
1345	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1346		goto out;
1347
1348	ret = -EINVAL;
1349	/* file position must be aligned */
1350	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1351		goto out_mm;
1352
1353	ret = 0;
1354	if (!count)
1355		goto out_mm;
1356
1357	/* do not disclose physical addresses: attack vector */
1358	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1359
 
1360	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1361	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1362	ret = -ENOMEM;
1363	if (!pm.buffer)
1364		goto out_mm;
 
 
 
 
 
1365
1366	pagemap_walk.pmd_entry = pagemap_pmd_range;
1367	pagemap_walk.pte_hole = pagemap_pte_hole;
1368#ifdef CONFIG_HUGETLB_PAGE
1369	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1370#endif
1371	pagemap_walk.mm = mm;
1372	pagemap_walk.private = &pm;
1373
1374	src = *ppos;
1375	svpfn = src / PM_ENTRY_BYTES;
1376	start_vaddr = svpfn << PAGE_SHIFT;
1377	end_vaddr = mm->task_size;
1378
1379	/* watch out for wraparound */
1380	if (svpfn > mm->task_size >> PAGE_SHIFT)
1381		start_vaddr = end_vaddr;
1382
1383	/*
1384	 * The odds are that this will stop walking way
1385	 * before end_vaddr, because the length of the
1386	 * user buffer is tracked in "pm", and the walk
1387	 * will stop when we hit the end of the buffer.
1388	 */
1389	ret = 0;
1390	while (count && (start_vaddr < end_vaddr)) {
1391		int len;
1392		unsigned long end;
1393
1394		pm.pos = 0;
1395		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1396		/* overflow ? */
1397		if (end < start_vaddr || end > end_vaddr)
1398			end = end_vaddr;
1399		down_read(&mm->mmap_sem);
1400		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1401		up_read(&mm->mmap_sem);
1402		start_vaddr = end;
1403
1404		len = min(count, PM_ENTRY_BYTES * pm.pos);
1405		if (copy_to_user(buf, pm.buffer, len)) {
1406			ret = -EFAULT;
1407			goto out_free;
1408		}
1409		copied += len;
1410		buf += len;
1411		count -= len;
1412	}
1413	*ppos += copied;
1414	if (!ret || ret == PM_END_OF_BUFFER)
1415		ret = copied;
1416
1417out_free:
1418	kfree(pm.buffer);
1419out_mm:
1420	mmput(mm);
 
 
 
 
1421out:
1422	return ret;
1423}
1424
1425static int pagemap_open(struct inode *inode, struct file *file)
1426{
1427	struct mm_struct *mm;
1428
1429	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1430	if (IS_ERR(mm))
1431		return PTR_ERR(mm);
1432	file->private_data = mm;
1433	return 0;
1434}
1435
1436static int pagemap_release(struct inode *inode, struct file *file)
1437{
1438	struct mm_struct *mm = file->private_data;
1439
1440	if (mm)
1441		mmdrop(mm);
1442	return 0;
1443}
1444
1445const struct file_operations proc_pagemap_operations = {
1446	.llseek		= mem_lseek, /* borrow this */
1447	.read		= pagemap_read,
1448	.open		= pagemap_open,
1449	.release	= pagemap_release,
1450};
1451#endif /* CONFIG_PROC_PAGE_MONITOR */
1452
1453#ifdef CONFIG_NUMA
1454
1455struct numa_maps {
 
1456	unsigned long pages;
1457	unsigned long anon;
1458	unsigned long active;
1459	unsigned long writeback;
1460	unsigned long mapcount_max;
1461	unsigned long dirty;
1462	unsigned long swapcache;
1463	unsigned long node[MAX_NUMNODES];
1464};
1465
1466struct numa_maps_private {
1467	struct proc_maps_private proc_maps;
1468	struct numa_maps md;
1469};
1470
1471static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1472			unsigned long nr_pages)
1473{
1474	int count = page_mapcount(page);
1475
1476	md->pages += nr_pages;
1477	if (pte_dirty || PageDirty(page))
1478		md->dirty += nr_pages;
1479
1480	if (PageSwapCache(page))
1481		md->swapcache += nr_pages;
1482
1483	if (PageActive(page) || PageUnevictable(page))
1484		md->active += nr_pages;
1485
1486	if (PageWriteback(page))
1487		md->writeback += nr_pages;
1488
1489	if (PageAnon(page))
1490		md->anon += nr_pages;
1491
1492	if (count > md->mapcount_max)
1493		md->mapcount_max = count;
1494
1495	md->node[page_to_nid(page)] += nr_pages;
1496}
1497
1498static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1499		unsigned long addr)
1500{
1501	struct page *page;
1502	int nid;
1503
1504	if (!pte_present(pte))
1505		return NULL;
1506
1507	page = vm_normal_page(vma, addr, pte);
1508	if (!page)
1509		return NULL;
1510
1511	if (PageReserved(page))
1512		return NULL;
1513
1514	nid = page_to_nid(page);
1515	if (!node_isset(nid, node_states[N_MEMORY]))
1516		return NULL;
1517
1518	return page;
1519}
1520
1521#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1522static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1523					      struct vm_area_struct *vma,
1524					      unsigned long addr)
1525{
1526	struct page *page;
1527	int nid;
1528
1529	if (!pmd_present(pmd))
1530		return NULL;
1531
1532	page = vm_normal_page_pmd(vma, addr, pmd);
1533	if (!page)
1534		return NULL;
1535
1536	if (PageReserved(page))
1537		return NULL;
1538
1539	nid = page_to_nid(page);
1540	if (!node_isset(nid, node_states[N_MEMORY]))
1541		return NULL;
1542
1543	return page;
1544}
1545#endif
1546
1547static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1548		unsigned long end, struct mm_walk *walk)
1549{
1550	struct numa_maps *md = walk->private;
1551	struct vm_area_struct *vma = walk->vma;
1552	spinlock_t *ptl;
1553	pte_t *orig_pte;
1554	pte_t *pte;
1555
1556#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1557	ptl = pmd_trans_huge_lock(pmd, vma);
1558	if (ptl) {
 
1559		struct page *page;
1560
1561		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1562		if (page)
1563			gather_stats(page, md, pmd_dirty(*pmd),
1564				     HPAGE_PMD_SIZE/PAGE_SIZE);
1565		spin_unlock(ptl);
1566		return 0;
1567	}
1568
1569	if (pmd_trans_unstable(pmd))
1570		return 0;
1571#endif
1572	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1573	do {
1574		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1575		if (!page)
1576			continue;
1577		gather_stats(page, md, pte_dirty(*pte), 1);
1578
1579	} while (pte++, addr += PAGE_SIZE, addr != end);
1580	pte_unmap_unlock(orig_pte, ptl);
1581	return 0;
1582}
1583#ifdef CONFIG_HUGETLB_PAGE
1584static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1585		unsigned long addr, unsigned long end, struct mm_walk *walk)
1586{
1587	pte_t huge_pte = huge_ptep_get(pte);
1588	struct numa_maps *md;
1589	struct page *page;
1590
1591	if (!pte_present(huge_pte))
1592		return 0;
1593
1594	page = pte_page(huge_pte);
1595	if (!page)
1596		return 0;
1597
1598	md = walk->private;
1599	gather_stats(page, md, pte_dirty(huge_pte), 1);
1600	return 0;
1601}
1602
1603#else
1604static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1605		unsigned long addr, unsigned long end, struct mm_walk *walk)
1606{
1607	return 0;
1608}
1609#endif
1610
1611/*
1612 * Display pages allocated per node and memory policy via /proc.
1613 */
1614static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1615{
1616	struct numa_maps_private *numa_priv = m->private;
1617	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1618	struct vm_area_struct *vma = v;
1619	struct numa_maps *md = &numa_priv->md;
1620	struct file *file = vma->vm_file;
 
1621	struct mm_struct *mm = vma->vm_mm;
1622	struct mm_walk walk = {
1623		.hugetlb_entry = gather_hugetlb_stats,
1624		.pmd_entry = gather_pte_stats,
1625		.private = md,
1626		.mm = mm,
1627	};
1628	struct mempolicy *pol;
1629	char buffer[64];
1630	int nid;
1631
1632	if (!mm)
1633		return 0;
1634
1635	/* Ensure we start with an empty set of numa_maps statistics. */
1636	memset(md, 0, sizeof(*md));
1637
1638	pol = __get_vma_policy(vma, vma->vm_start);
1639	if (pol) {
1640		mpol_to_str(buffer, sizeof(buffer), pol);
1641		mpol_cond_put(pol);
1642	} else {
1643		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1644	}
 
 
 
1645
1646	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1647
1648	if (file) {
1649		seq_puts(m, " file=");
1650		seq_file_path(m, file, "\n\t= ");
1651	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1652		seq_puts(m, " heap");
1653	} else if (is_stack(proc_priv, vma, is_pid)) {
1654		seq_puts(m, " stack");
 
 
 
 
 
 
 
 
 
 
 
1655	}
1656
1657	if (is_vm_hugetlb_page(vma))
1658		seq_puts(m, " huge");
1659
1660	/* mmap_sem is held by m_start */
1661	walk_page_vma(vma, &walk);
1662
1663	if (!md->pages)
1664		goto out;
1665
1666	if (md->anon)
1667		seq_printf(m, " anon=%lu", md->anon);
1668
1669	if (md->dirty)
1670		seq_printf(m, " dirty=%lu", md->dirty);
1671
1672	if (md->pages != md->anon && md->pages != md->dirty)
1673		seq_printf(m, " mapped=%lu", md->pages);
1674
1675	if (md->mapcount_max > 1)
1676		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1677
1678	if (md->swapcache)
1679		seq_printf(m, " swapcache=%lu", md->swapcache);
1680
1681	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1682		seq_printf(m, " active=%lu", md->active);
1683
1684	if (md->writeback)
1685		seq_printf(m, " writeback=%lu", md->writeback);
1686
1687	for_each_node_state(nid, N_MEMORY)
1688		if (md->node[nid])
1689			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1690
1691	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1692out:
1693	seq_putc(m, '\n');
1694	m_cache_vma(m, vma);
 
 
1695	return 0;
1696}
1697
1698static int show_pid_numa_map(struct seq_file *m, void *v)
1699{
1700	return show_numa_map(m, v, 1);
1701}
1702
1703static int show_tid_numa_map(struct seq_file *m, void *v)
1704{
1705	return show_numa_map(m, v, 0);
1706}
1707
1708static const struct seq_operations proc_pid_numa_maps_op = {
1709	.start  = m_start,
1710	.next   = m_next,
1711	.stop   = m_stop,
1712	.show   = show_pid_numa_map,
1713};
1714
1715static const struct seq_operations proc_tid_numa_maps_op = {
1716	.start  = m_start,
1717	.next   = m_next,
1718	.stop   = m_stop,
1719	.show   = show_tid_numa_map,
1720};
1721
1722static int numa_maps_open(struct inode *inode, struct file *file,
1723			  const struct seq_operations *ops)
1724{
1725	return proc_maps_open(inode, file, ops,
1726				sizeof(struct numa_maps_private));
 
 
 
 
 
 
 
 
 
 
 
 
1727}
1728
1729static int pid_numa_maps_open(struct inode *inode, struct file *file)
1730{
1731	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1732}
1733
1734static int tid_numa_maps_open(struct inode *inode, struct file *file)
1735{
1736	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1737}
1738
1739const struct file_operations proc_pid_numa_maps_operations = {
1740	.open		= pid_numa_maps_open,
1741	.read		= seq_read,
1742	.llseek		= seq_lseek,
1743	.release	= proc_map_release,
1744};
1745
1746const struct file_operations proc_tid_numa_maps_operations = {
1747	.open		= tid_numa_maps_open,
1748	.read		= seq_read,
1749	.llseek		= seq_lseek,
1750	.release	= proc_map_release,
1751};
1752#endif /* CONFIG_NUMA */
v3.15
   1#include <linux/mm.h>
   2#include <linux/vmacache.h>
   3#include <linux/hugetlb.h>
   4#include <linux/huge_mm.h>
   5#include <linux/mount.h>
   6#include <linux/seq_file.h>
   7#include <linux/highmem.h>
   8#include <linux/ptrace.h>
   9#include <linux/slab.h>
  10#include <linux/pagemap.h>
  11#include <linux/mempolicy.h>
  12#include <linux/rmap.h>
  13#include <linux/swap.h>
  14#include <linux/swapops.h>
  15#include <linux/mmu_notifier.h>
 
 
  16
  17#include <asm/elf.h>
  18#include <asm/uaccess.h>
  19#include <asm/tlbflush.h>
  20#include "internal.h"
  21
  22void task_mem(struct seq_file *m, struct mm_struct *mm)
  23{
  24	unsigned long data, text, lib, swap;
  25	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  26
 
 
 
 
  27	/*
  28	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  29	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  30	 * collector of these hiwater stats must therefore get total_vm
  31	 * and rss too, which will usually be the higher.  Barriers? not
  32	 * worth the effort, such snapshots can always be inconsistent.
  33	 */
  34	hiwater_vm = total_vm = mm->total_vm;
  35	if (hiwater_vm < mm->hiwater_vm)
  36		hiwater_vm = mm->hiwater_vm;
  37	hiwater_rss = total_rss = get_mm_rss(mm);
  38	if (hiwater_rss < mm->hiwater_rss)
  39		hiwater_rss = mm->hiwater_rss;
  40
  41	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  42	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  43	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  44	swap = get_mm_counter(mm, MM_SWAPENTS);
 
 
  45	seq_printf(m,
  46		"VmPeak:\t%8lu kB\n"
  47		"VmSize:\t%8lu kB\n"
  48		"VmLck:\t%8lu kB\n"
  49		"VmPin:\t%8lu kB\n"
  50		"VmHWM:\t%8lu kB\n"
  51		"VmRSS:\t%8lu kB\n"
 
 
 
  52		"VmData:\t%8lu kB\n"
  53		"VmStk:\t%8lu kB\n"
  54		"VmExe:\t%8lu kB\n"
  55		"VmLib:\t%8lu kB\n"
  56		"VmPTE:\t%8lu kB\n"
 
  57		"VmSwap:\t%8lu kB\n",
  58		hiwater_vm << (PAGE_SHIFT-10),
  59		total_vm << (PAGE_SHIFT-10),
  60		mm->locked_vm << (PAGE_SHIFT-10),
  61		mm->pinned_vm << (PAGE_SHIFT-10),
  62		hiwater_rss << (PAGE_SHIFT-10),
  63		total_rss << (PAGE_SHIFT-10),
  64		data << (PAGE_SHIFT-10),
 
 
 
  65		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  66		(PTRS_PER_PTE * sizeof(pte_t) *
  67		 atomic_long_read(&mm->nr_ptes)) >> 10,
  68		swap << (PAGE_SHIFT-10));
 
  69}
  70
  71unsigned long task_vsize(struct mm_struct *mm)
  72{
  73	return PAGE_SIZE * mm->total_vm;
  74}
  75
  76unsigned long task_statm(struct mm_struct *mm,
  77			 unsigned long *shared, unsigned long *text,
  78			 unsigned long *data, unsigned long *resident)
  79{
  80	*shared = get_mm_counter(mm, MM_FILEPAGES);
 
  81	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  82								>> PAGE_SHIFT;
  83	*data = mm->total_vm - mm->shared_vm;
  84	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  85	return mm->total_vm;
  86}
  87
  88#ifdef CONFIG_NUMA
  89/*
  90 * These functions are for numa_maps but called in generic **maps seq_file
  91 * ->start(), ->stop() ops.
  92 *
  93 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
  94 * Each mempolicy object is controlled by reference counting. The problem here
  95 * is how to avoid accessing dead mempolicy object.
  96 *
  97 * Because we're holding mmap_sem while reading seq_file, it's safe to access
  98 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
  99 *
 100 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
 101 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
 102 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
 103 * gurantee the task never exits under us. But taking task_lock() around
 104 * get_vma_plicy() causes lock order problem.
 105 *
 106 * To access task->mempolicy without lock, we hold a reference count of an
 107 * object pointed by task->mempolicy and remember it. This will guarantee
 108 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
 109 */
 110static void hold_task_mempolicy(struct proc_maps_private *priv)
 111{
 112	struct task_struct *task = priv->task;
 113
 114	task_lock(task);
 115	priv->task_mempolicy = task->mempolicy;
 116	mpol_get(priv->task_mempolicy);
 117	task_unlock(task);
 118}
 119static void release_task_mempolicy(struct proc_maps_private *priv)
 120{
 121	mpol_put(priv->task_mempolicy);
 122}
 123#else
 124static void hold_task_mempolicy(struct proc_maps_private *priv)
 125{
 126}
 127static void release_task_mempolicy(struct proc_maps_private *priv)
 128{
 129}
 130#endif
 131
 132static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 133{
 134	if (vma && vma != priv->tail_vma) {
 135		struct mm_struct *mm = vma->vm_mm;
 136		release_task_mempolicy(priv);
 137		up_read(&mm->mmap_sem);
 138		mmput(mm);
 139	}
 
 
 
 140}
 141
 142static void *m_start(struct seq_file *m, loff_t *pos)
 143{
 144	struct proc_maps_private *priv = m->private;
 145	unsigned long last_addr = m->version;
 146	struct mm_struct *mm;
 147	struct vm_area_struct *vma, *tail_vma = NULL;
 148	loff_t l = *pos;
 149
 150	/* Clear the per syscall fields in priv */
 151	priv->task = NULL;
 152	priv->tail_vma = NULL;
 153
 154	/*
 155	 * We remember last_addr rather than next_addr to hit with
 156	 * vmacache most of the time. We have zero last_addr at
 157	 * the beginning and also after lseek. We will have -1 last_addr
 158	 * after the end of the vmas.
 159	 */
 160
 
 161	if (last_addr == -1UL)
 162		return NULL;
 163
 164	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
 165	if (!priv->task)
 166		return ERR_PTR(-ESRCH);
 167
 168	mm = mm_access(priv->task, PTRACE_MODE_READ);
 169	if (!mm || IS_ERR(mm))
 170		return mm;
 
 171	down_read(&mm->mmap_sem);
 
 
 172
 173	tail_vma = get_gate_vma(priv->task->mm);
 174	priv->tail_vma = tail_vma;
 175	hold_task_mempolicy(priv);
 176	/* Start with last addr hint */
 177	vma = find_vma(mm, last_addr);
 178	if (last_addr && vma) {
 179		vma = vma->vm_next;
 180		goto out;
 181	}
 182
 183	/*
 184	 * Check the vma index is within the range and do
 185	 * sequential scan until m_index.
 186	 */
 187	vma = NULL;
 188	if ((unsigned long)l < mm->map_count) {
 189		vma = mm->mmap;
 190		while (l-- && vma)
 191			vma = vma->vm_next;
 192		goto out;
 
 193	}
 194
 195	if (l != mm->map_count)
 196		tail_vma = NULL; /* After gate vma */
 
 197
 198out:
 199	if (vma)
 200		return vma;
 201
 202	release_task_mempolicy(priv);
 203	/* End of vmas has been reached */
 204	m->version = (tail_vma != NULL)? 0: -1UL;
 205	up_read(&mm->mmap_sem);
 206	mmput(mm);
 207	return tail_vma;
 208}
 209
 210static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 211{
 212	struct proc_maps_private *priv = m->private;
 213	struct vm_area_struct *vma = v;
 214	struct vm_area_struct *tail_vma = priv->tail_vma;
 215
 216	(*pos)++;
 217	if (vma && (vma != tail_vma) && vma->vm_next)
 218		return vma->vm_next;
 219	vma_stop(priv, vma);
 220	return (vma != tail_vma)? tail_vma: NULL;
 221}
 222
 223static void m_stop(struct seq_file *m, void *v)
 224{
 225	struct proc_maps_private *priv = m->private;
 226	struct vm_area_struct *vma = v;
 227
 228	if (!IS_ERR(vma))
 229		vma_stop(priv, vma);
 230	if (priv->task)
 231		put_task_struct(priv->task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232}
 233
 234static int do_maps_open(struct inode *inode, struct file *file,
 235			const struct seq_operations *ops)
 236{
 237	struct proc_maps_private *priv;
 238	int ret = -ENOMEM;
 239	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 240	if (priv) {
 241		priv->pid = proc_pid(inode);
 242		ret = seq_open(file, ops);
 243		if (!ret) {
 244			struct seq_file *m = file->private_data;
 245			m->private = priv;
 246		} else {
 247			kfree(priv);
 248		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 249	}
 250	return ret;
 251}
 252
 253static void
 254show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
 255{
 256	struct mm_struct *mm = vma->vm_mm;
 257	struct file *file = vma->vm_file;
 258	struct proc_maps_private *priv = m->private;
 259	struct task_struct *task = priv->task;
 260	vm_flags_t flags = vma->vm_flags;
 261	unsigned long ino = 0;
 262	unsigned long long pgoff = 0;
 263	unsigned long start, end;
 264	dev_t dev = 0;
 265	const char *name = NULL;
 266
 267	if (file) {
 268		struct inode *inode = file_inode(vma->vm_file);
 269		dev = inode->i_sb->s_dev;
 270		ino = inode->i_ino;
 271		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 272	}
 273
 274	/* We don't show the stack guard page in /proc/maps */
 275	start = vma->vm_start;
 276	if (stack_guard_page_start(vma, start))
 277		start += PAGE_SIZE;
 278	end = vma->vm_end;
 279	if (stack_guard_page_end(vma, end))
 280		end -= PAGE_SIZE;
 281
 282	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 283	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
 284			start,
 285			end,
 286			flags & VM_READ ? 'r' : '-',
 287			flags & VM_WRITE ? 'w' : '-',
 288			flags & VM_EXEC ? 'x' : '-',
 289			flags & VM_MAYSHARE ? 's' : 'p',
 290			pgoff,
 291			MAJOR(dev), MINOR(dev), ino);
 292
 293	/*
 294	 * Print the dentry name for named mappings, and a
 295	 * special [heap] marker for the heap:
 296	 */
 297	if (file) {
 298		seq_pad(m, ' ');
 299		seq_path(m, &file->f_path, "\n");
 300		goto done;
 301	}
 302
 
 
 
 
 
 
 303	name = arch_vma_name(vma);
 304	if (!name) {
 305		pid_t tid;
 306
 307		if (!mm) {
 308			name = "[vdso]";
 309			goto done;
 310		}
 311
 312		if (vma->vm_start <= mm->brk &&
 313		    vma->vm_end >= mm->start_brk) {
 314			name = "[heap]";
 315			goto done;
 316		}
 317
 318		tid = vm_is_stack(task, vma, is_pid);
 319
 320		if (tid != 0) {
 321			/*
 322			 * Thread stack in /proc/PID/task/TID/maps or
 323			 * the main process stack.
 324			 */
 325			if (!is_pid || (vma->vm_start <= mm->start_stack &&
 326			    vma->vm_end >= mm->start_stack)) {
 327				name = "[stack]";
 328			} else {
 329				/* Thread stack in /proc/PID/maps */
 330				seq_pad(m, ' ');
 331				seq_printf(m, "[stack:%d]", tid);
 332			}
 333		}
 334	}
 335
 336done:
 337	if (name) {
 338		seq_pad(m, ' ');
 339		seq_puts(m, name);
 340	}
 341	seq_putc(m, '\n');
 342}
 343
 344static int show_map(struct seq_file *m, void *v, int is_pid)
 345{
 346	struct vm_area_struct *vma = v;
 347	struct proc_maps_private *priv = m->private;
 348	struct task_struct *task = priv->task;
 349
 350	show_map_vma(m, vma, is_pid);
 351
 352	if (m->count < m->size)  /* vma is copied successfully */
 353		m->version = (vma != get_gate_vma(task->mm))
 354			? vma->vm_start : 0;
 355	return 0;
 356}
 357
 358static int show_pid_map(struct seq_file *m, void *v)
 359{
 360	return show_map(m, v, 1);
 361}
 362
 363static int show_tid_map(struct seq_file *m, void *v)
 364{
 365	return show_map(m, v, 0);
 366}
 367
 368static const struct seq_operations proc_pid_maps_op = {
 369	.start	= m_start,
 370	.next	= m_next,
 371	.stop	= m_stop,
 372	.show	= show_pid_map
 373};
 374
 375static const struct seq_operations proc_tid_maps_op = {
 376	.start	= m_start,
 377	.next	= m_next,
 378	.stop	= m_stop,
 379	.show	= show_tid_map
 380};
 381
 382static int pid_maps_open(struct inode *inode, struct file *file)
 383{
 384	return do_maps_open(inode, file, &proc_pid_maps_op);
 385}
 386
 387static int tid_maps_open(struct inode *inode, struct file *file)
 388{
 389	return do_maps_open(inode, file, &proc_tid_maps_op);
 390}
 391
 392const struct file_operations proc_pid_maps_operations = {
 393	.open		= pid_maps_open,
 394	.read		= seq_read,
 395	.llseek		= seq_lseek,
 396	.release	= seq_release_private,
 397};
 398
 399const struct file_operations proc_tid_maps_operations = {
 400	.open		= tid_maps_open,
 401	.read		= seq_read,
 402	.llseek		= seq_lseek,
 403	.release	= seq_release_private,
 404};
 405
 406/*
 407 * Proportional Set Size(PSS): my share of RSS.
 408 *
 409 * PSS of a process is the count of pages it has in memory, where each
 410 * page is divided by the number of processes sharing it.  So if a
 411 * process has 1000 pages all to itself, and 1000 shared with one other
 412 * process, its PSS will be 1500.
 413 *
 414 * To keep (accumulated) division errors low, we adopt a 64bit
 415 * fixed-point pss counter to minimize division errors. So (pss >>
 416 * PSS_SHIFT) would be the real byte count.
 417 *
 418 * A shift of 12 before division means (assuming 4K page size):
 419 * 	- 1M 3-user-pages add up to 8KB errors;
 420 * 	- supports mapcount up to 2^24, or 16M;
 421 * 	- supports PSS up to 2^52 bytes, or 4PB.
 422 */
 423#define PSS_SHIFT 12
 424
 425#ifdef CONFIG_PROC_PAGE_MONITOR
 426struct mem_size_stats {
 427	struct vm_area_struct *vma;
 428	unsigned long resident;
 429	unsigned long shared_clean;
 430	unsigned long shared_dirty;
 431	unsigned long private_clean;
 432	unsigned long private_dirty;
 433	unsigned long referenced;
 434	unsigned long anonymous;
 435	unsigned long anonymous_thp;
 436	unsigned long swap;
 437	unsigned long nonlinear;
 
 438	u64 pss;
 
 
 439};
 440
 
 
 
 
 
 
 
 
 441
 442static void smaps_pte_entry(pte_t ptent, unsigned long addr,
 443		unsigned long ptent_size, struct mm_walk *walk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444{
 445	struct mem_size_stats *mss = walk->private;
 446	struct vm_area_struct *vma = mss->vma;
 447	pgoff_t pgoff = linear_page_index(vma, addr);
 
 
 
 
 
 
 
 
 
 
 
 448	struct page *page = NULL;
 449	int mapcount;
 450
 451	if (pte_present(ptent)) {
 452		page = vm_normal_page(vma, addr, ptent);
 453	} else if (is_swap_pte(ptent)) {
 454		swp_entry_t swpent = pte_to_swp_entry(ptent);
 
 
 
 
 
 
 
 
 455
 456		if (!non_swap_entry(swpent))
 457			mss->swap += ptent_size;
 458		else if (is_migration_entry(swpent))
 
 
 
 459			page = migration_entry_to_page(swpent);
 460	} else if (pte_file(ptent)) {
 461		if (pte_to_pgoff(ptent) != pgoff)
 462			mss->nonlinear += ptent_size;
 
 
 
 
 
 
 
 
 
 
 463	}
 464
 465	if (!page)
 466		return;
 467
 468	if (PageAnon(page))
 469		mss->anonymous += ptent_size;
 470
 471	if (page->index != pgoff)
 472		mss->nonlinear += ptent_size;
 
 
 
 
 
 473
 474	mss->resident += ptent_size;
 475	/* Accumulate the size in pages that have been accessed. */
 476	if (pte_young(ptent) || PageReferenced(page))
 477		mss->referenced += ptent_size;
 478	mapcount = page_mapcount(page);
 479	if (mapcount >= 2) {
 480		if (pte_dirty(ptent) || PageDirty(page))
 481			mss->shared_dirty += ptent_size;
 482		else
 483			mss->shared_clean += ptent_size;
 484		mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
 485	} else {
 486		if (pte_dirty(ptent) || PageDirty(page))
 487			mss->private_dirty += ptent_size;
 488		else
 489			mss->private_clean += ptent_size;
 490		mss->pss += (ptent_size << PSS_SHIFT);
 491	}
 492}
 
 493
 494static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 495			   struct mm_walk *walk)
 496{
 497	struct mem_size_stats *mss = walk->private;
 498	struct vm_area_struct *vma = mss->vma;
 499	pte_t *pte;
 500	spinlock_t *ptl;
 501
 502	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
 503		smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
 
 504		spin_unlock(ptl);
 505		mss->anonymous_thp += HPAGE_PMD_SIZE;
 506		return 0;
 507	}
 508
 509	if (pmd_trans_unstable(pmd))
 510		return 0;
 511	/*
 512	 * The mmap_sem held all the way back in m_start() is what
 513	 * keeps khugepaged out of here and from collapsing things
 514	 * in here.
 515	 */
 516	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 517	for (; addr != end; pte++, addr += PAGE_SIZE)
 518		smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
 519	pte_unmap_unlock(pte - 1, ptl);
 520	cond_resched();
 521	return 0;
 522}
 523
 524static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 525{
 526	/*
 527	 * Don't forget to update Documentation/ on changes.
 528	 */
 529	static const char mnemonics[BITS_PER_LONG][2] = {
 530		/*
 531		 * In case if we meet a flag we don't know about.
 532		 */
 533		[0 ... (BITS_PER_LONG-1)] = "??",
 534
 535		[ilog2(VM_READ)]	= "rd",
 536		[ilog2(VM_WRITE)]	= "wr",
 537		[ilog2(VM_EXEC)]	= "ex",
 538		[ilog2(VM_SHARED)]	= "sh",
 539		[ilog2(VM_MAYREAD)]	= "mr",
 540		[ilog2(VM_MAYWRITE)]	= "mw",
 541		[ilog2(VM_MAYEXEC)]	= "me",
 542		[ilog2(VM_MAYSHARE)]	= "ms",
 543		[ilog2(VM_GROWSDOWN)]	= "gd",
 544		[ilog2(VM_PFNMAP)]	= "pf",
 545		[ilog2(VM_DENYWRITE)]	= "dw",
 
 
 
 546		[ilog2(VM_LOCKED)]	= "lo",
 547		[ilog2(VM_IO)]		= "io",
 548		[ilog2(VM_SEQ_READ)]	= "sr",
 549		[ilog2(VM_RAND_READ)]	= "rr",
 550		[ilog2(VM_DONTCOPY)]	= "dc",
 551		[ilog2(VM_DONTEXPAND)]	= "de",
 552		[ilog2(VM_ACCOUNT)]	= "ac",
 553		[ilog2(VM_NORESERVE)]	= "nr",
 554		[ilog2(VM_HUGETLB)]	= "ht",
 555		[ilog2(VM_NONLINEAR)]	= "nl",
 556		[ilog2(VM_ARCH_1)]	= "ar",
 557		[ilog2(VM_DONTDUMP)]	= "dd",
 558#ifdef CONFIG_MEM_SOFT_DIRTY
 559		[ilog2(VM_SOFTDIRTY)]	= "sd",
 560#endif
 561		[ilog2(VM_MIXEDMAP)]	= "mm",
 562		[ilog2(VM_HUGEPAGE)]	= "hg",
 563		[ilog2(VM_NOHUGEPAGE)]	= "nh",
 564		[ilog2(VM_MERGEABLE)]	= "mg",
 
 
 
 
 
 
 
 
 
 565	};
 566	size_t i;
 567
 568	seq_puts(m, "VmFlags: ");
 569	for (i = 0; i < BITS_PER_LONG; i++) {
 
 
 570		if (vma->vm_flags & (1UL << i)) {
 571			seq_printf(m, "%c%c ",
 572				   mnemonics[i][0], mnemonics[i][1]);
 573		}
 574	}
 575	seq_putc(m, '\n');
 576}
 577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578static int show_smap(struct seq_file *m, void *v, int is_pid)
 579{
 580	struct proc_maps_private *priv = m->private;
 581	struct task_struct *task = priv->task;
 582	struct vm_area_struct *vma = v;
 583	struct mem_size_stats mss;
 584	struct mm_walk smaps_walk = {
 585		.pmd_entry = smaps_pte_range,
 
 
 
 586		.mm = vma->vm_mm,
 587		.private = &mss,
 588	};
 589
 590	memset(&mss, 0, sizeof mss);
 591	mss.vma = vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592	/* mmap_sem is held in m_start */
 593	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
 594		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
 595
 596	show_map_vma(m, vma, is_pid);
 597
 598	seq_printf(m,
 599		   "Size:           %8lu kB\n"
 600		   "Rss:            %8lu kB\n"
 601		   "Pss:            %8lu kB\n"
 602		   "Shared_Clean:   %8lu kB\n"
 603		   "Shared_Dirty:   %8lu kB\n"
 604		   "Private_Clean:  %8lu kB\n"
 605		   "Private_Dirty:  %8lu kB\n"
 606		   "Referenced:     %8lu kB\n"
 607		   "Anonymous:      %8lu kB\n"
 608		   "AnonHugePages:  %8lu kB\n"
 
 
 609		   "Swap:           %8lu kB\n"
 
 610		   "KernelPageSize: %8lu kB\n"
 611		   "MMUPageSize:    %8lu kB\n"
 612		   "Locked:         %8lu kB\n",
 613		   (vma->vm_end - vma->vm_start) >> 10,
 614		   mss.resident >> 10,
 615		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
 616		   mss.shared_clean  >> 10,
 617		   mss.shared_dirty  >> 10,
 618		   mss.private_clean >> 10,
 619		   mss.private_dirty >> 10,
 620		   mss.referenced >> 10,
 621		   mss.anonymous >> 10,
 622		   mss.anonymous_thp >> 10,
 
 
 623		   mss.swap >> 10,
 
 624		   vma_kernel_pagesize(vma) >> 10,
 625		   vma_mmu_pagesize(vma) >> 10,
 626		   (vma->vm_flags & VM_LOCKED) ?
 627			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
 628
 629	if (vma->vm_flags & VM_NONLINEAR)
 630		seq_printf(m, "Nonlinear:      %8lu kB\n",
 631				mss.nonlinear >> 10);
 632
 633	show_smap_vma_flags(m, vma);
 634
 635	if (m->count < m->size)  /* vma is copied successfully */
 636		m->version = (vma != get_gate_vma(task->mm))
 637			? vma->vm_start : 0;
 638	return 0;
 639}
 640
 641static int show_pid_smap(struct seq_file *m, void *v)
 642{
 643	return show_smap(m, v, 1);
 644}
 645
 646static int show_tid_smap(struct seq_file *m, void *v)
 647{
 648	return show_smap(m, v, 0);
 649}
 650
 651static const struct seq_operations proc_pid_smaps_op = {
 652	.start	= m_start,
 653	.next	= m_next,
 654	.stop	= m_stop,
 655	.show	= show_pid_smap
 656};
 657
 658static const struct seq_operations proc_tid_smaps_op = {
 659	.start	= m_start,
 660	.next	= m_next,
 661	.stop	= m_stop,
 662	.show	= show_tid_smap
 663};
 664
 665static int pid_smaps_open(struct inode *inode, struct file *file)
 666{
 667	return do_maps_open(inode, file, &proc_pid_smaps_op);
 668}
 669
 670static int tid_smaps_open(struct inode *inode, struct file *file)
 671{
 672	return do_maps_open(inode, file, &proc_tid_smaps_op);
 673}
 674
 675const struct file_operations proc_pid_smaps_operations = {
 676	.open		= pid_smaps_open,
 677	.read		= seq_read,
 678	.llseek		= seq_lseek,
 679	.release	= seq_release_private,
 680};
 681
 682const struct file_operations proc_tid_smaps_operations = {
 683	.open		= tid_smaps_open,
 684	.read		= seq_read,
 685	.llseek		= seq_lseek,
 686	.release	= seq_release_private,
 687};
 688
 689/*
 690 * We do not want to have constant page-shift bits sitting in
 691 * pagemap entries and are about to reuse them some time soon.
 692 *
 693 * Here's the "migration strategy":
 694 * 1. when the system boots these bits remain what they are,
 695 *    but a warning about future change is printed in log;
 696 * 2. once anyone clears soft-dirty bits via clear_refs file,
 697 *    these flag is set to denote, that user is aware of the
 698 *    new API and those page-shift bits change their meaning.
 699 *    The respective warning is printed in dmesg;
 700 * 3. In a couple of releases we will remove all the mentions
 701 *    of page-shift in pagemap entries.
 702 */
 703
 704static bool soft_dirty_cleared __read_mostly;
 705
 706enum clear_refs_types {
 707	CLEAR_REFS_ALL = 1,
 708	CLEAR_REFS_ANON,
 709	CLEAR_REFS_MAPPED,
 710	CLEAR_REFS_SOFT_DIRTY,
 
 711	CLEAR_REFS_LAST,
 712};
 713
 714struct clear_refs_private {
 715	struct vm_area_struct *vma;
 716	enum clear_refs_types type;
 717};
 718
 
 719static inline void clear_soft_dirty(struct vm_area_struct *vma,
 720		unsigned long addr, pte_t *pte)
 721{
 722#ifdef CONFIG_MEM_SOFT_DIRTY
 723	/*
 724	 * The soft-dirty tracker uses #PF-s to catch writes
 725	 * to pages, so write-protect the pte as well. See the
 726	 * Documentation/vm/soft-dirty.txt for full description
 727	 * of how soft-dirty works.
 728	 */
 729	pte_t ptent = *pte;
 730
 731	if (pte_present(ptent)) {
 
 732		ptent = pte_wrprotect(ptent);
 733		ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
 
 734	} else if (is_swap_pte(ptent)) {
 735		ptent = pte_swp_clear_soft_dirty(ptent);
 736	} else if (pte_file(ptent)) {
 737		ptent = pte_file_clear_soft_dirty(ptent);
 738	}
 
 
 
 
 
 
 
 739
 740	if (vma->vm_flags & VM_SOFTDIRTY)
 741		vma->vm_flags &= ~VM_SOFTDIRTY;
 
 
 
 
 
 
 742
 743	set_pte_at(vma->vm_mm, addr, pte, ptent);
 
 
 
 
 
 
 744#endif
 745}
 746
 747static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
 748				unsigned long end, struct mm_walk *walk)
 749{
 750	struct clear_refs_private *cp = walk->private;
 751	struct vm_area_struct *vma = cp->vma;
 752	pte_t *pte, ptent;
 753	spinlock_t *ptl;
 754	struct page *page;
 755
 756	split_huge_page_pmd(vma, addr, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757	if (pmd_trans_unstable(pmd))
 758		return 0;
 759
 760	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 761	for (; addr != end; pte++, addr += PAGE_SIZE) {
 762		ptent = *pte;
 763
 764		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
 765			clear_soft_dirty(vma, addr, pte);
 766			continue;
 767		}
 768
 769		if (!pte_present(ptent))
 770			continue;
 771
 772		page = vm_normal_page(vma, addr, ptent);
 773		if (!page)
 774			continue;
 775
 776		/* Clear accessed and referenced bits. */
 777		ptep_test_and_clear_young(vma, addr, pte);
 
 778		ClearPageReferenced(page);
 779	}
 780	pte_unmap_unlock(pte - 1, ptl);
 781	cond_resched();
 782	return 0;
 783}
 784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785static ssize_t clear_refs_write(struct file *file, const char __user *buf,
 786				size_t count, loff_t *ppos)
 787{
 788	struct task_struct *task;
 789	char buffer[PROC_NUMBUF];
 790	struct mm_struct *mm;
 791	struct vm_area_struct *vma;
 792	enum clear_refs_types type;
 793	int itype;
 794	int rv;
 795
 796	memset(buffer, 0, sizeof(buffer));
 797	if (count > sizeof(buffer) - 1)
 798		count = sizeof(buffer) - 1;
 799	if (copy_from_user(buffer, buf, count))
 800		return -EFAULT;
 801	rv = kstrtoint(strstrip(buffer), 10, &itype);
 802	if (rv < 0)
 803		return rv;
 804	type = (enum clear_refs_types)itype;
 805	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
 806		return -EINVAL;
 807
 808	if (type == CLEAR_REFS_SOFT_DIRTY) {
 809		soft_dirty_cleared = true;
 810		pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
 811				"See the linux/Documentation/vm/pagemap.txt for details.\n");
 812	}
 813
 814	task = get_proc_task(file_inode(file));
 815	if (!task)
 816		return -ESRCH;
 817	mm = get_task_mm(task);
 818	if (mm) {
 819		struct clear_refs_private cp = {
 820			.type = type,
 821		};
 822		struct mm_walk clear_refs_walk = {
 823			.pmd_entry = clear_refs_pte_range,
 
 824			.mm = mm,
 825			.private = &cp,
 826		};
 
 
 
 
 
 
 
 
 
 
 
 
 827		down_read(&mm->mmap_sem);
 828		if (type == CLEAR_REFS_SOFT_DIRTY)
 
 
 
 
 
 
 
 
 
 
 
 
 829			mmu_notifier_invalidate_range_start(mm, 0, -1);
 830		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 831			cp.vma = vma;
 832			if (is_vm_hugetlb_page(vma))
 833				continue;
 834			/*
 835			 * Writing 1 to /proc/pid/clear_refs affects all pages.
 836			 *
 837			 * Writing 2 to /proc/pid/clear_refs only affects
 838			 * Anonymous pages.
 839			 *
 840			 * Writing 3 to /proc/pid/clear_refs only affects file
 841			 * mapped pages.
 842			 */
 843			if (type == CLEAR_REFS_ANON && vma->vm_file)
 844				continue;
 845			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
 846				continue;
 847			walk_page_range(vma->vm_start, vma->vm_end,
 848					&clear_refs_walk);
 849		}
 
 850		if (type == CLEAR_REFS_SOFT_DIRTY)
 851			mmu_notifier_invalidate_range_end(mm, 0, -1);
 852		flush_tlb_mm(mm);
 853		up_read(&mm->mmap_sem);
 
 854		mmput(mm);
 855	}
 856	put_task_struct(task);
 857
 858	return count;
 859}
 860
 861const struct file_operations proc_clear_refs_operations = {
 862	.write		= clear_refs_write,
 863	.llseek		= noop_llseek,
 864};
 865
 866typedef struct {
 867	u64 pme;
 868} pagemap_entry_t;
 869
 870struct pagemapread {
 871	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
 872	pagemap_entry_t *buffer;
 873	bool v2;
 874};
 875
 876#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
 877#define PAGEMAP_WALK_MASK	(PMD_MASK)
 878
 879#define PM_ENTRY_BYTES      sizeof(pagemap_entry_t)
 880#define PM_STATUS_BITS      3
 881#define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
 882#define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
 883#define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
 884#define PM_PSHIFT_BITS      6
 885#define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
 886#define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
 887#define __PM_PSHIFT(x)      (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
 888#define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
 889#define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
 890/* in "new" pagemap pshift bits are occupied with more status bits */
 891#define PM_STATUS2(v2, x)   (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
 892
 893#define __PM_SOFT_DIRTY      (1LL)
 894#define PM_PRESENT          PM_STATUS(4LL)
 895#define PM_SWAP             PM_STATUS(2LL)
 896#define PM_FILE             PM_STATUS(1LL)
 897#define PM_NOT_PRESENT(v2)  PM_STATUS2(v2, 0)
 898#define PM_END_OF_BUFFER    1
 899
 900static inline pagemap_entry_t make_pme(u64 val)
 901{
 902	return (pagemap_entry_t) { .pme = val };
 903}
 904
 905static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
 906			  struct pagemapread *pm)
 907{
 908	pm->buffer[pm->pos++] = *pme;
 909	if (pm->pos >= pm->len)
 910		return PM_END_OF_BUFFER;
 911	return 0;
 912}
 913
 914static int pagemap_pte_hole(unsigned long start, unsigned long end,
 915				struct mm_walk *walk)
 916{
 917	struct pagemapread *pm = walk->private;
 918	unsigned long addr;
 919	int err = 0;
 920	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
 921
 922	for (addr = start; addr < end; addr += PAGE_SIZE) {
 923		err = add_to_pagemap(addr, &pme, pm);
 924		if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925			break;
 
 
 
 
 
 
 
 
 
 926	}
 
 927	return err;
 928}
 929
 930static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 931		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
 932{
 933	u64 frame, flags;
 934	struct page *page = NULL;
 935	int flags2 = 0;
 936
 937	if (pte_present(pte)) {
 938		frame = pte_pfn(pte);
 939		flags = PM_PRESENT;
 
 940		page = vm_normal_page(vma, addr, pte);
 941		if (pte_soft_dirty(pte))
 942			flags2 |= __PM_SOFT_DIRTY;
 943	} else if (is_swap_pte(pte)) {
 944		swp_entry_t entry;
 945		if (pte_swp_soft_dirty(pte))
 946			flags2 |= __PM_SOFT_DIRTY;
 947		entry = pte_to_swp_entry(pte);
 948		frame = swp_type(entry) |
 949			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
 950		flags = PM_SWAP;
 951		if (is_migration_entry(entry))
 952			page = migration_entry_to_page(entry);
 953	} else {
 954		if (vma->vm_flags & VM_SOFTDIRTY)
 955			flags2 |= __PM_SOFT_DIRTY;
 956		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
 957		return;
 958	}
 959
 960	if (page && !PageAnon(page))
 961		flags |= PM_FILE;
 962	if ((vma->vm_flags & VM_SOFTDIRTY))
 963		flags2 |= __PM_SOFT_DIRTY;
 
 
 964
 965	*pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
 966}
 967
 968#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 969static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 970		pmd_t pmd, int offset, int pmd_flags2)
 971{
 972	/*
 973	 * Currently pmd for thp is always present because thp can not be
 974	 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
 975	 * This if-check is just to prepare for future implementation.
 976	 */
 977	if (pmd_present(pmd))
 978		*pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
 979				| PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
 980	else
 981		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
 982}
 983#else
 984static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 985		pmd_t pmd, int offset, int pmd_flags2)
 986{
 987}
 988#endif
 989
 990static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 991			     struct mm_walk *walk)
 992{
 993	struct vm_area_struct *vma;
 994	struct pagemapread *pm = walk->private;
 995	spinlock_t *ptl;
 996	pte_t *pte;
 997	int err = 0;
 998	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
 999
1000	/* find the first VMA at or above 'addr' */
1001	vma = find_vma(walk->mm, addr);
1002	if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1003		int pmd_flags2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004
1005		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1006			pmd_flags2 = __PM_SOFT_DIRTY;
1007		else
1008			pmd_flags2 = 0;
 
1009
1010		for (; addr != end; addr += PAGE_SIZE) {
1011			unsigned long offset;
1012
1013			offset = (addr & ~PAGEMAP_WALK_MASK) >>
1014					PAGE_SHIFT;
1015			thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1016			err = add_to_pagemap(addr, &pme, pm);
1017			if (err)
1018				break;
 
 
1019		}
1020		spin_unlock(ptl);
1021		return err;
1022	}
1023
1024	if (pmd_trans_unstable(pmd))
1025		return 0;
1026	for (; addr != end; addr += PAGE_SIZE) {
1027		int flags2;
1028
1029		/* check to see if we've left 'vma' behind
1030		 * and need a new, higher one */
1031		if (vma && (addr >= vma->vm_end)) {
1032			vma = find_vma(walk->mm, addr);
1033			if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1034				flags2 = __PM_SOFT_DIRTY;
1035			else
1036				flags2 = 0;
1037			pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1038		}
1039
1040		/* check that 'vma' actually covers this address,
1041		 * and that it isn't a huge page vma */
1042		if (vma && (vma->vm_start <= addr) &&
1043		    !is_vm_hugetlb_page(vma)) {
1044			pte = pte_offset_map(pmd, addr);
1045			pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1046			/* unmap before userspace copy */
1047			pte_unmap(pte);
1048		}
1049		err = add_to_pagemap(addr, &pme, pm);
1050		if (err)
1051			return err;
1052	}
 
1053
1054	cond_resched();
1055
1056	return err;
1057}
1058
1059#ifdef CONFIG_HUGETLB_PAGE
1060static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1061					pte_t pte, int offset, int flags2)
1062{
1063	if (pte_present(pte))
1064		*pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)	|
1065				PM_STATUS2(pm->v2, flags2)		|
1066				PM_PRESENT);
1067	else
1068		*pme = make_pme(PM_NOT_PRESENT(pm->v2)			|
1069				PM_STATUS2(pm->v2, flags2));
1070}
1071
1072/* This function walks within one hugetlb entry in the single call */
1073static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1074				 unsigned long addr, unsigned long end,
1075				 struct mm_walk *walk)
1076{
1077	struct pagemapread *pm = walk->private;
1078	struct vm_area_struct *vma;
 
1079	int err = 0;
1080	int flags2;
1081	pagemap_entry_t pme;
1082
1083	vma = find_vma(walk->mm, addr);
1084	WARN_ON_ONCE(!vma);
 
 
 
 
1085
1086	if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1087		flags2 = __PM_SOFT_DIRTY;
1088	else
1089		flags2 = 0;
 
 
 
 
 
 
 
1090
1091	for (; addr != end; addr += PAGE_SIZE) {
1092		int offset = (addr & ~hmask) >> PAGE_SHIFT;
1093		huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1094		err = add_to_pagemap(addr, &pme, pm);
1095		if (err)
1096			return err;
 
 
1097	}
1098
1099	cond_resched();
1100
1101	return err;
1102}
1103#endif /* HUGETLB_PAGE */
1104
1105/*
1106 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1107 *
1108 * For each page in the address space, this file contains one 64-bit entry
1109 * consisting of the following:
1110 *
1111 * Bits 0-54  page frame number (PFN) if present
1112 * Bits 0-4   swap type if swapped
1113 * Bits 5-54  swap offset if swapped
1114 * Bits 55-60 page shift (page size = 1<<page shift)
 
 
1115 * Bit  61    page is file-page or shared-anon
1116 * Bit  62    page swapped
1117 * Bit  63    page present
1118 *
1119 * If the page is not present but in swap, then the PFN contains an
1120 * encoding of the swap file number and the page's offset into the
1121 * swap. Unmapped pages return a null PFN. This allows determining
1122 * precisely which pages are mapped (or in swap) and comparing mapped
1123 * pages between processes.
1124 *
1125 * Efficient users of this interface will use /proc/pid/maps to
1126 * determine which areas of memory are actually mapped and llseek to
1127 * skip over unmapped regions.
1128 */
1129static ssize_t pagemap_read(struct file *file, char __user *buf,
1130			    size_t count, loff_t *ppos)
1131{
1132	struct task_struct *task = get_proc_task(file_inode(file));
1133	struct mm_struct *mm;
1134	struct pagemapread pm;
1135	int ret = -ESRCH;
1136	struct mm_walk pagemap_walk = {};
1137	unsigned long src;
1138	unsigned long svpfn;
1139	unsigned long start_vaddr;
1140	unsigned long end_vaddr;
1141	int copied = 0;
1142
1143	if (!task)
1144		goto out;
1145
1146	ret = -EINVAL;
1147	/* file position must be aligned */
1148	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1149		goto out_task;
1150
1151	ret = 0;
1152	if (!count)
1153		goto out_task;
 
 
 
1154
1155	pm.v2 = soft_dirty_cleared;
1156	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1157	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1158	ret = -ENOMEM;
1159	if (!pm.buffer)
1160		goto out_task;
1161
1162	mm = mm_access(task, PTRACE_MODE_READ);
1163	ret = PTR_ERR(mm);
1164	if (!mm || IS_ERR(mm))
1165		goto out_free;
1166
1167	pagemap_walk.pmd_entry = pagemap_pte_range;
1168	pagemap_walk.pte_hole = pagemap_pte_hole;
1169#ifdef CONFIG_HUGETLB_PAGE
1170	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1171#endif
1172	pagemap_walk.mm = mm;
1173	pagemap_walk.private = &pm;
1174
1175	src = *ppos;
1176	svpfn = src / PM_ENTRY_BYTES;
1177	start_vaddr = svpfn << PAGE_SHIFT;
1178	end_vaddr = TASK_SIZE_OF(task);
1179
1180	/* watch out for wraparound */
1181	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1182		start_vaddr = end_vaddr;
1183
1184	/*
1185	 * The odds are that this will stop walking way
1186	 * before end_vaddr, because the length of the
1187	 * user buffer is tracked in "pm", and the walk
1188	 * will stop when we hit the end of the buffer.
1189	 */
1190	ret = 0;
1191	while (count && (start_vaddr < end_vaddr)) {
1192		int len;
1193		unsigned long end;
1194
1195		pm.pos = 0;
1196		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1197		/* overflow ? */
1198		if (end < start_vaddr || end > end_vaddr)
1199			end = end_vaddr;
1200		down_read(&mm->mmap_sem);
1201		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1202		up_read(&mm->mmap_sem);
1203		start_vaddr = end;
1204
1205		len = min(count, PM_ENTRY_BYTES * pm.pos);
1206		if (copy_to_user(buf, pm.buffer, len)) {
1207			ret = -EFAULT;
1208			goto out_mm;
1209		}
1210		copied += len;
1211		buf += len;
1212		count -= len;
1213	}
1214	*ppos += copied;
1215	if (!ret || ret == PM_END_OF_BUFFER)
1216		ret = copied;
1217
 
 
1218out_mm:
1219	mmput(mm);
1220out_free:
1221	kfree(pm.buffer);
1222out_task:
1223	put_task_struct(task);
1224out:
1225	return ret;
1226}
1227
1228static int pagemap_open(struct inode *inode, struct file *file)
1229{
1230	pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1231			"to stop being page-shift some time soon. See the "
1232			"linux/Documentation/vm/pagemap.txt for details.\n");
 
 
 
 
 
 
 
 
 
 
 
 
1233	return 0;
1234}
1235
1236const struct file_operations proc_pagemap_operations = {
1237	.llseek		= mem_lseek, /* borrow this */
1238	.read		= pagemap_read,
1239	.open		= pagemap_open,
 
1240};
1241#endif /* CONFIG_PROC_PAGE_MONITOR */
1242
1243#ifdef CONFIG_NUMA
1244
1245struct numa_maps {
1246	struct vm_area_struct *vma;
1247	unsigned long pages;
1248	unsigned long anon;
1249	unsigned long active;
1250	unsigned long writeback;
1251	unsigned long mapcount_max;
1252	unsigned long dirty;
1253	unsigned long swapcache;
1254	unsigned long node[MAX_NUMNODES];
1255};
1256
1257struct numa_maps_private {
1258	struct proc_maps_private proc_maps;
1259	struct numa_maps md;
1260};
1261
1262static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1263			unsigned long nr_pages)
1264{
1265	int count = page_mapcount(page);
1266
1267	md->pages += nr_pages;
1268	if (pte_dirty || PageDirty(page))
1269		md->dirty += nr_pages;
1270
1271	if (PageSwapCache(page))
1272		md->swapcache += nr_pages;
1273
1274	if (PageActive(page) || PageUnevictable(page))
1275		md->active += nr_pages;
1276
1277	if (PageWriteback(page))
1278		md->writeback += nr_pages;
1279
1280	if (PageAnon(page))
1281		md->anon += nr_pages;
1282
1283	if (count > md->mapcount_max)
1284		md->mapcount_max = count;
1285
1286	md->node[page_to_nid(page)] += nr_pages;
1287}
1288
1289static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1290		unsigned long addr)
1291{
1292	struct page *page;
1293	int nid;
1294
1295	if (!pte_present(pte))
1296		return NULL;
1297
1298	page = vm_normal_page(vma, addr, pte);
1299	if (!page)
1300		return NULL;
1301
1302	if (PageReserved(page))
1303		return NULL;
1304
1305	nid = page_to_nid(page);
1306	if (!node_isset(nid, node_states[N_MEMORY]))
1307		return NULL;
1308
1309	return page;
1310}
1311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1313		unsigned long end, struct mm_walk *walk)
1314{
1315	struct numa_maps *md;
 
1316	spinlock_t *ptl;
1317	pte_t *orig_pte;
1318	pte_t *pte;
1319
1320	md = walk->private;
1321
1322	if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
1323		pte_t huge_pte = *(pte_t *)pmd;
1324		struct page *page;
1325
1326		page = can_gather_numa_stats(huge_pte, md->vma, addr);
1327		if (page)
1328			gather_stats(page, md, pte_dirty(huge_pte),
1329				     HPAGE_PMD_SIZE/PAGE_SIZE);
1330		spin_unlock(ptl);
1331		return 0;
1332	}
1333
1334	if (pmd_trans_unstable(pmd))
1335		return 0;
 
1336	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1337	do {
1338		struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1339		if (!page)
1340			continue;
1341		gather_stats(page, md, pte_dirty(*pte), 1);
1342
1343	} while (pte++, addr += PAGE_SIZE, addr != end);
1344	pte_unmap_unlock(orig_pte, ptl);
1345	return 0;
1346}
1347#ifdef CONFIG_HUGETLB_PAGE
1348static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1349		unsigned long addr, unsigned long end, struct mm_walk *walk)
1350{
 
1351	struct numa_maps *md;
1352	struct page *page;
1353
1354	if (!pte_present(*pte))
1355		return 0;
1356
1357	page = pte_page(*pte);
1358	if (!page)
1359		return 0;
1360
1361	md = walk->private;
1362	gather_stats(page, md, pte_dirty(*pte), 1);
1363	return 0;
1364}
1365
1366#else
1367static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1368		unsigned long addr, unsigned long end, struct mm_walk *walk)
1369{
1370	return 0;
1371}
1372#endif
1373
1374/*
1375 * Display pages allocated per node and memory policy via /proc.
1376 */
1377static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1378{
1379	struct numa_maps_private *numa_priv = m->private;
1380	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1381	struct vm_area_struct *vma = v;
1382	struct numa_maps *md = &numa_priv->md;
1383	struct file *file = vma->vm_file;
1384	struct task_struct *task = proc_priv->task;
1385	struct mm_struct *mm = vma->vm_mm;
1386	struct mm_walk walk = {};
 
 
 
 
 
1387	struct mempolicy *pol;
1388	char buffer[64];
1389	int nid;
1390
1391	if (!mm)
1392		return 0;
1393
1394	/* Ensure we start with an empty set of numa_maps statistics. */
1395	memset(md, 0, sizeof(*md));
1396
1397	md->vma = vma;
1398
1399	walk.hugetlb_entry = gather_hugetbl_stats;
1400	walk.pmd_entry = gather_pte_stats;
1401	walk.private = md;
1402	walk.mm = mm;
1403
1404	pol = get_vma_policy(task, vma, vma->vm_start);
1405	mpol_to_str(buffer, sizeof(buffer), pol);
1406	mpol_cond_put(pol);
1407
1408	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1409
1410	if (file) {
1411		seq_printf(m, " file=");
1412		seq_path(m, &file->f_path, "\n\t= ");
1413	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1414		seq_printf(m, " heap");
1415	} else {
1416		pid_t tid = vm_is_stack(task, vma, is_pid);
1417		if (tid != 0) {
1418			/*
1419			 * Thread stack in /proc/PID/task/TID/maps or
1420			 * the main process stack.
1421			 */
1422			if (!is_pid || (vma->vm_start <= mm->start_stack &&
1423			    vma->vm_end >= mm->start_stack))
1424				seq_printf(m, " stack");
1425			else
1426				seq_printf(m, " stack:%d", tid);
1427		}
1428	}
1429
1430	if (is_vm_hugetlb_page(vma))
1431		seq_printf(m, " huge");
1432
1433	walk_page_range(vma->vm_start, vma->vm_end, &walk);
 
1434
1435	if (!md->pages)
1436		goto out;
1437
1438	if (md->anon)
1439		seq_printf(m, " anon=%lu", md->anon);
1440
1441	if (md->dirty)
1442		seq_printf(m, " dirty=%lu", md->dirty);
1443
1444	if (md->pages != md->anon && md->pages != md->dirty)
1445		seq_printf(m, " mapped=%lu", md->pages);
1446
1447	if (md->mapcount_max > 1)
1448		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1449
1450	if (md->swapcache)
1451		seq_printf(m, " swapcache=%lu", md->swapcache);
1452
1453	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1454		seq_printf(m, " active=%lu", md->active);
1455
1456	if (md->writeback)
1457		seq_printf(m, " writeback=%lu", md->writeback);
1458
1459	for_each_node_state(nid, N_MEMORY)
1460		if (md->node[nid])
1461			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
 
 
1462out:
1463	seq_putc(m, '\n');
1464
1465	if (m->count < m->size)
1466		m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1467	return 0;
1468}
1469
1470static int show_pid_numa_map(struct seq_file *m, void *v)
1471{
1472	return show_numa_map(m, v, 1);
1473}
1474
1475static int show_tid_numa_map(struct seq_file *m, void *v)
1476{
1477	return show_numa_map(m, v, 0);
1478}
1479
1480static const struct seq_operations proc_pid_numa_maps_op = {
1481	.start  = m_start,
1482	.next   = m_next,
1483	.stop   = m_stop,
1484	.show   = show_pid_numa_map,
1485};
1486
1487static const struct seq_operations proc_tid_numa_maps_op = {
1488	.start  = m_start,
1489	.next   = m_next,
1490	.stop   = m_stop,
1491	.show   = show_tid_numa_map,
1492};
1493
1494static int numa_maps_open(struct inode *inode, struct file *file,
1495			  const struct seq_operations *ops)
1496{
1497	struct numa_maps_private *priv;
1498	int ret = -ENOMEM;
1499	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1500	if (priv) {
1501		priv->proc_maps.pid = proc_pid(inode);
1502		ret = seq_open(file, ops);
1503		if (!ret) {
1504			struct seq_file *m = file->private_data;
1505			m->private = priv;
1506		} else {
1507			kfree(priv);
1508		}
1509	}
1510	return ret;
1511}
1512
1513static int pid_numa_maps_open(struct inode *inode, struct file *file)
1514{
1515	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1516}
1517
1518static int tid_numa_maps_open(struct inode *inode, struct file *file)
1519{
1520	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1521}
1522
1523const struct file_operations proc_pid_numa_maps_operations = {
1524	.open		= pid_numa_maps_open,
1525	.read		= seq_read,
1526	.llseek		= seq_lseek,
1527	.release	= seq_release_private,
1528};
1529
1530const struct file_operations proc_tid_numa_maps_operations = {
1531	.open		= tid_numa_maps_open,
1532	.read		= seq_read,
1533	.llseek		= seq_lseek,
1534	.release	= seq_release_private,
1535};
1536#endif /* CONFIG_NUMA */