Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
 
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
  41
  42#define rdev_crit(rdev, fmt, ...)					\
  43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)					\
  45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)					\
  47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)					\
  49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)					\
  51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
 
 
  53static DEFINE_MUTEX(regulator_list_mutex);
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
 
  57static bool has_full_constraints;
  58
  59static struct dentry *debugfs_root;
  60
  61static struct class regulator_class;
  62
  63/*
  64 * struct regulator_map
  65 *
  66 * Used to provide symbolic supply names to devices.
  67 */
  68struct regulator_map {
  69	struct list_head list;
  70	const char *dev_name;   /* The dev_name() for the consumer */
  71	const char *supply;
  72	struct regulator_dev *regulator;
  73};
  74
  75/*
  76 * struct regulator_enable_gpio
  77 *
  78 * Management for shared enable GPIO pin
  79 */
  80struct regulator_enable_gpio {
  81	struct list_head list;
  82	struct gpio_desc *gpiod;
  83	u32 enable_count;	/* a number of enabled shared GPIO */
  84	u32 request_count;	/* a number of requested shared GPIO */
  85	unsigned int ena_gpio_invert:1;
  86};
  87
  88/*
  89 * struct regulator_supply_alias
  90 *
  91 * Used to map lookups for a supply onto an alternative device.
  92 */
  93struct regulator_supply_alias {
  94	struct list_head list;
  95	struct device *src_dev;
  96	const char *src_supply;
  97	struct device *alias_dev;
  98	const char *alias_supply;
  99};
 100
 101static int _regulator_is_enabled(struct regulator_dev *rdev);
 102static int _regulator_disable(struct regulator_dev *rdev);
 103static int _regulator_get_voltage(struct regulator_dev *rdev);
 104static int _regulator_get_current_limit(struct regulator_dev *rdev);
 105static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 106static int _notifier_call_chain(struct regulator_dev *rdev,
 107				  unsigned long event, void *data);
 108static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 109				     int min_uV, int max_uV);
 
 
 110static struct regulator *create_regulator(struct regulator_dev *rdev,
 111					  struct device *dev,
 112					  const char *supply_name);
 113static void _regulator_put(struct regulator *regulator);
 114
 115static struct regulator_dev *dev_to_rdev(struct device *dev)
 116{
 117	return container_of(dev, struct regulator_dev, dev);
 118}
 119
 120static const char *rdev_get_name(struct regulator_dev *rdev)
 121{
 122	if (rdev->constraints && rdev->constraints->name)
 123		return rdev->constraints->name;
 124	else if (rdev->desc->name)
 125		return rdev->desc->name;
 126	else
 127		return "";
 128}
 129
 130static bool have_full_constraints(void)
 131{
 132	return has_full_constraints || of_have_populated_dt();
 133}
 134
 135static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
 136{
 137	if (rdev && rdev->supply)
 138		return rdev->supply->rdev;
 
 
 139
 140	return NULL;
 
 
 
 141}
 142
 143/**
 144 * regulator_lock_supply - lock a regulator and its supplies
 145 * @rdev:         regulator source
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146 */
 147static void regulator_lock_supply(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148{
 
 149	int i;
 150
 151	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
 152		mutex_lock_nested(&rdev->mutex, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153}
 154
 155/**
 156 * regulator_unlock_supply - unlock a regulator and its supplies
 157 * @rdev:         regulator source
 
 
 
 
 158 */
 159static void regulator_unlock_supply(struct regulator_dev *rdev)
 
 160{
 161	struct regulator *supply;
 
 
 162
 163	while (1) {
 164		mutex_unlock(&rdev->mutex);
 165		supply = rdev->supply;
 
 
 
 
 
 
 
 
 
 
 
 166
 167		if (!rdev->supply)
 168			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169
 170		rdev = supply->rdev;
 
 
 
 
 
 
 
 
 
 171	}
 
 
 
 
 
 172}
 173
 174/**
 175 * of_get_regulator - get a regulator device node based on supply name
 176 * @dev: Device pointer for the consumer (of regulator) device
 177 * @supply: regulator supply name
 178 *
 179 * Extract the regulator device node corresponding to the supply name.
 180 * returns the device node corresponding to the regulator if found, else
 181 * returns NULL.
 182 */
 183static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 184{
 185	struct device_node *regnode = NULL;
 186	char prop_name[32]; /* 32 is max size of property name */
 187
 188	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 189
 190	snprintf(prop_name, 32, "%s-supply", supply);
 191	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 192
 193	if (!regnode) {
 194		dev_dbg(dev, "Looking up %s property in node %s failed",
 195				prop_name, dev->of_node->full_name);
 
 
 
 
 196		return NULL;
 197	}
 198	return regnode;
 199}
 200
 201static int _regulator_can_change_status(struct regulator_dev *rdev)
 202{
 203	if (!rdev->constraints)
 204		return 0;
 205
 206	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 207		return 1;
 208	else
 209		return 0;
 210}
 211
 212/* Platform voltage constraint check */
 213static int regulator_check_voltage(struct regulator_dev *rdev,
 214				   int *min_uV, int *max_uV)
 215{
 216	BUG_ON(*min_uV > *max_uV);
 217
 218	if (!rdev->constraints) {
 219		rdev_err(rdev, "no constraints\n");
 220		return -ENODEV;
 221	}
 222	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 223		rdev_err(rdev, "voltage operation not allowed\n");
 224		return -EPERM;
 225	}
 226
 227	if (*max_uV > rdev->constraints->max_uV)
 228		*max_uV = rdev->constraints->max_uV;
 229	if (*min_uV < rdev->constraints->min_uV)
 230		*min_uV = rdev->constraints->min_uV;
 231
 232	if (*min_uV > *max_uV) {
 233		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 234			 *min_uV, *max_uV);
 235		return -EINVAL;
 236	}
 237
 238	return 0;
 239}
 240
 
 
 
 
 
 
 241/* Make sure we select a voltage that suits the needs of all
 242 * regulator consumers
 243 */
 244static int regulator_check_consumers(struct regulator_dev *rdev,
 245				     int *min_uV, int *max_uV)
 
 246{
 247	struct regulator *regulator;
 
 248
 249	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 
 250		/*
 251		 * Assume consumers that didn't say anything are OK
 252		 * with anything in the constraint range.
 253		 */
 254		if (!regulator->min_uV && !regulator->max_uV)
 255			continue;
 256
 257		if (*max_uV > regulator->max_uV)
 258			*max_uV = regulator->max_uV;
 259		if (*min_uV < regulator->min_uV)
 260			*min_uV = regulator->min_uV;
 261	}
 262
 263	if (*min_uV > *max_uV) {
 264		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 265			*min_uV, *max_uV);
 266		return -EINVAL;
 267	}
 268
 269	return 0;
 270}
 271
 272/* current constraint check */
 273static int regulator_check_current_limit(struct regulator_dev *rdev,
 274					int *min_uA, int *max_uA)
 275{
 276	BUG_ON(*min_uA > *max_uA);
 277
 278	if (!rdev->constraints) {
 279		rdev_err(rdev, "no constraints\n");
 280		return -ENODEV;
 281	}
 282	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 283		rdev_err(rdev, "current operation not allowed\n");
 284		return -EPERM;
 285	}
 286
 287	if (*max_uA > rdev->constraints->max_uA)
 288		*max_uA = rdev->constraints->max_uA;
 289	if (*min_uA < rdev->constraints->min_uA)
 290		*min_uA = rdev->constraints->min_uA;
 291
 292	if (*min_uA > *max_uA) {
 293		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 294			 *min_uA, *max_uA);
 295		return -EINVAL;
 296	}
 297
 298	return 0;
 299}
 300
 301/* operating mode constraint check */
 302static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 
 303{
 304	switch (*mode) {
 305	case REGULATOR_MODE_FAST:
 306	case REGULATOR_MODE_NORMAL:
 307	case REGULATOR_MODE_IDLE:
 308	case REGULATOR_MODE_STANDBY:
 309		break;
 310	default:
 311		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 312		return -EINVAL;
 313	}
 314
 315	if (!rdev->constraints) {
 316		rdev_err(rdev, "no constraints\n");
 317		return -ENODEV;
 318	}
 319	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 320		rdev_err(rdev, "mode operation not allowed\n");
 321		return -EPERM;
 322	}
 323
 324	/* The modes are bitmasks, the most power hungry modes having
 325	 * the lowest values. If the requested mode isn't supported
 326	 * try higher modes. */
 327	while (*mode) {
 328		if (rdev->constraints->valid_modes_mask & *mode)
 329			return 0;
 330		*mode /= 2;
 331	}
 332
 333	return -EINVAL;
 334}
 335
 336/* dynamic regulator mode switching constraint check */
 337static int regulator_check_drms(struct regulator_dev *rdev)
 338{
 339	if (!rdev->constraints) {
 340		rdev_err(rdev, "no constraints\n");
 341		return -ENODEV;
 342	}
 343	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 344		rdev_dbg(rdev, "drms operation not allowed\n");
 345		return -EPERM;
 
 
 
 
 
 346	}
 347	return 0;
 348}
 349
 350static ssize_t regulator_uV_show(struct device *dev,
 351				struct device_attribute *attr, char *buf)
 352{
 353	struct regulator_dev *rdev = dev_get_drvdata(dev);
 354	ssize_t ret;
 355
 356	mutex_lock(&rdev->mutex);
 357	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 358	mutex_unlock(&rdev->mutex);
 359
 360	return ret;
 
 
 361}
 362static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 363
 364static ssize_t regulator_uA_show(struct device *dev,
 365				struct device_attribute *attr, char *buf)
 366{
 367	struct regulator_dev *rdev = dev_get_drvdata(dev);
 368
 369	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 370}
 371static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 372
 373static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 374			 char *buf)
 375{
 376	struct regulator_dev *rdev = dev_get_drvdata(dev);
 377
 378	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 379}
 380static DEVICE_ATTR_RO(name);
 381
 382static ssize_t regulator_print_opmode(char *buf, int mode)
 383{
 384	switch (mode) {
 385	case REGULATOR_MODE_FAST:
 386		return sprintf(buf, "fast\n");
 387	case REGULATOR_MODE_NORMAL:
 388		return sprintf(buf, "normal\n");
 389	case REGULATOR_MODE_IDLE:
 390		return sprintf(buf, "idle\n");
 391	case REGULATOR_MODE_STANDBY:
 392		return sprintf(buf, "standby\n");
 393	}
 394	return sprintf(buf, "unknown\n");
 
 
 
 
 
 395}
 396
 397static ssize_t regulator_opmode_show(struct device *dev,
 398				    struct device_attribute *attr, char *buf)
 399{
 400	struct regulator_dev *rdev = dev_get_drvdata(dev);
 401
 402	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 403}
 404static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 405
 406static ssize_t regulator_print_state(char *buf, int state)
 407{
 408	if (state > 0)
 409		return sprintf(buf, "enabled\n");
 410	else if (state == 0)
 411		return sprintf(buf, "disabled\n");
 412	else
 413		return sprintf(buf, "unknown\n");
 414}
 415
 416static ssize_t regulator_state_show(struct device *dev,
 417				   struct device_attribute *attr, char *buf)
 418{
 419	struct regulator_dev *rdev = dev_get_drvdata(dev);
 420	ssize_t ret;
 421
 422	mutex_lock(&rdev->mutex);
 423	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 424	mutex_unlock(&rdev->mutex);
 425
 426	return ret;
 427}
 428static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 429
 430static ssize_t regulator_status_show(struct device *dev,
 431				   struct device_attribute *attr, char *buf)
 432{
 433	struct regulator_dev *rdev = dev_get_drvdata(dev);
 434	int status;
 435	char *label;
 436
 437	status = rdev->desc->ops->get_status(rdev);
 438	if (status < 0)
 439		return status;
 440
 441	switch (status) {
 442	case REGULATOR_STATUS_OFF:
 443		label = "off";
 444		break;
 445	case REGULATOR_STATUS_ON:
 446		label = "on";
 447		break;
 448	case REGULATOR_STATUS_ERROR:
 449		label = "error";
 450		break;
 451	case REGULATOR_STATUS_FAST:
 452		label = "fast";
 453		break;
 454	case REGULATOR_STATUS_NORMAL:
 455		label = "normal";
 456		break;
 457	case REGULATOR_STATUS_IDLE:
 458		label = "idle";
 459		break;
 460	case REGULATOR_STATUS_STANDBY:
 461		label = "standby";
 462		break;
 463	case REGULATOR_STATUS_BYPASS:
 464		label = "bypass";
 465		break;
 466	case REGULATOR_STATUS_UNDEFINED:
 467		label = "undefined";
 468		break;
 469	default:
 470		return -ERANGE;
 471	}
 472
 473	return sprintf(buf, "%s\n", label);
 474}
 475static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 476
 477static ssize_t regulator_min_uA_show(struct device *dev,
 478				    struct device_attribute *attr, char *buf)
 479{
 480	struct regulator_dev *rdev = dev_get_drvdata(dev);
 481
 482	if (!rdev->constraints)
 483		return sprintf(buf, "constraint not defined\n");
 484
 485	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 486}
 487static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 488
 489static ssize_t regulator_max_uA_show(struct device *dev,
 490				    struct device_attribute *attr, char *buf)
 491{
 492	struct regulator_dev *rdev = dev_get_drvdata(dev);
 493
 494	if (!rdev->constraints)
 495		return sprintf(buf, "constraint not defined\n");
 496
 497	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 498}
 499static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 500
 501static ssize_t regulator_min_uV_show(struct device *dev,
 502				    struct device_attribute *attr, char *buf)
 503{
 504	struct regulator_dev *rdev = dev_get_drvdata(dev);
 505
 506	if (!rdev->constraints)
 507		return sprintf(buf, "constraint not defined\n");
 508
 509	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 510}
 511static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 512
 513static ssize_t regulator_max_uV_show(struct device *dev,
 514				    struct device_attribute *attr, char *buf)
 515{
 516	struct regulator_dev *rdev = dev_get_drvdata(dev);
 517
 518	if (!rdev->constraints)
 519		return sprintf(buf, "constraint not defined\n");
 520
 521	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 522}
 523static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 524
 525static ssize_t regulator_total_uA_show(struct device *dev,
 526				      struct device_attribute *attr, char *buf)
 527{
 528	struct regulator_dev *rdev = dev_get_drvdata(dev);
 529	struct regulator *regulator;
 530	int uA = 0;
 531
 532	mutex_lock(&rdev->mutex);
 533	list_for_each_entry(regulator, &rdev->consumer_list, list)
 534		uA += regulator->uA_load;
 535	mutex_unlock(&rdev->mutex);
 
 
 536	return sprintf(buf, "%d\n", uA);
 537}
 538static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 539
 540static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 541			      char *buf)
 542{
 543	struct regulator_dev *rdev = dev_get_drvdata(dev);
 544	return sprintf(buf, "%d\n", rdev->use_count);
 545}
 546static DEVICE_ATTR_RO(num_users);
 547
 548static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 549			 char *buf)
 550{
 551	struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553	switch (rdev->desc->type) {
 554	case REGULATOR_VOLTAGE:
 555		return sprintf(buf, "voltage\n");
 556	case REGULATOR_CURRENT:
 557		return sprintf(buf, "current\n");
 558	}
 559	return sprintf(buf, "unknown\n");
 560}
 561static DEVICE_ATTR_RO(type);
 562
 563static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 564				struct device_attribute *attr, char *buf)
 565{
 566	struct regulator_dev *rdev = dev_get_drvdata(dev);
 567
 568	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 569}
 570static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 571		regulator_suspend_mem_uV_show, NULL);
 572
 573static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 574				struct device_attribute *attr, char *buf)
 575{
 576	struct regulator_dev *rdev = dev_get_drvdata(dev);
 577
 578	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 579}
 580static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 581		regulator_suspend_disk_uV_show, NULL);
 582
 583static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 584				struct device_attribute *attr, char *buf)
 585{
 586	struct regulator_dev *rdev = dev_get_drvdata(dev);
 587
 588	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 589}
 590static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 591		regulator_suspend_standby_uV_show, NULL);
 592
 593static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 594				struct device_attribute *attr, char *buf)
 595{
 596	struct regulator_dev *rdev = dev_get_drvdata(dev);
 597
 598	return regulator_print_opmode(buf,
 599		rdev->constraints->state_mem.mode);
 600}
 601static DEVICE_ATTR(suspend_mem_mode, 0444,
 602		regulator_suspend_mem_mode_show, NULL);
 603
 604static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 605				struct device_attribute *attr, char *buf)
 606{
 607	struct regulator_dev *rdev = dev_get_drvdata(dev);
 608
 609	return regulator_print_opmode(buf,
 610		rdev->constraints->state_disk.mode);
 611}
 612static DEVICE_ATTR(suspend_disk_mode, 0444,
 613		regulator_suspend_disk_mode_show, NULL);
 614
 615static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 616				struct device_attribute *attr, char *buf)
 617{
 618	struct regulator_dev *rdev = dev_get_drvdata(dev);
 619
 620	return regulator_print_opmode(buf,
 621		rdev->constraints->state_standby.mode);
 622}
 623static DEVICE_ATTR(suspend_standby_mode, 0444,
 624		regulator_suspend_standby_mode_show, NULL);
 625
 626static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 627				   struct device_attribute *attr, char *buf)
 628{
 629	struct regulator_dev *rdev = dev_get_drvdata(dev);
 630
 631	return regulator_print_state(buf,
 632			rdev->constraints->state_mem.enabled);
 633}
 634static DEVICE_ATTR(suspend_mem_state, 0444,
 635		regulator_suspend_mem_state_show, NULL);
 636
 637static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 638				   struct device_attribute *attr, char *buf)
 639{
 640	struct regulator_dev *rdev = dev_get_drvdata(dev);
 641
 642	return regulator_print_state(buf,
 643			rdev->constraints->state_disk.enabled);
 644}
 645static DEVICE_ATTR(suspend_disk_state, 0444,
 646		regulator_suspend_disk_state_show, NULL);
 647
 648static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 649				   struct device_attribute *attr, char *buf)
 650{
 651	struct regulator_dev *rdev = dev_get_drvdata(dev);
 652
 653	return regulator_print_state(buf,
 654			rdev->constraints->state_standby.enabled);
 655}
 656static DEVICE_ATTR(suspend_standby_state, 0444,
 657		regulator_suspend_standby_state_show, NULL);
 658
 659static ssize_t regulator_bypass_show(struct device *dev,
 660				     struct device_attribute *attr, char *buf)
 661{
 662	struct regulator_dev *rdev = dev_get_drvdata(dev);
 663	const char *report;
 664	bool bypass;
 665	int ret;
 666
 667	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 668
 669	if (ret != 0)
 670		report = "unknown";
 671	else if (bypass)
 672		report = "enabled";
 673	else
 674		report = "disabled";
 675
 676	return sprintf(buf, "%s\n", report);
 677}
 678static DEVICE_ATTR(bypass, 0444,
 679		   regulator_bypass_show, NULL);
 680
 681/* Calculate the new optimum regulator operating mode based on the new total
 682 * consumer load. All locks held by caller */
 683static int drms_uA_update(struct regulator_dev *rdev)
 684{
 685	struct regulator *sibling;
 686	int current_uA = 0, output_uV, input_uV, err;
 687	unsigned int mode;
 688
 689	lockdep_assert_held_once(&rdev->mutex);
 690
 691	/*
 692	 * first check to see if we can set modes at all, otherwise just
 693	 * tell the consumer everything is OK.
 694	 */
 695	err = regulator_check_drms(rdev);
 696	if (err < 0)
 697		return 0;
 
 698
 699	if (!rdev->desc->ops->get_optimum_mode &&
 700	    !rdev->desc->ops->set_load)
 701		return 0;
 702
 703	if (!rdev->desc->ops->set_mode &&
 704	    !rdev->desc->ops->set_load)
 705		return -EINVAL;
 706
 707	/* get output voltage */
 708	output_uV = _regulator_get_voltage(rdev);
 709	if (output_uV <= 0) {
 710		rdev_err(rdev, "invalid output voltage found\n");
 711		return -EINVAL;
 712	}
 713
 714	/* get input voltage */
 715	input_uV = 0;
 716	if (rdev->supply)
 717		input_uV = regulator_get_voltage(rdev->supply);
 718	if (input_uV <= 0)
 719		input_uV = rdev->constraints->input_uV;
 720	if (input_uV <= 0) {
 721		rdev_err(rdev, "invalid input voltage found\n");
 722		return -EINVAL;
 723	}
 724
 725	/* calc total requested load */
 726	list_for_each_entry(sibling, &rdev->consumer_list, list)
 727		current_uA += sibling->uA_load;
 
 
 728
 729	current_uA += rdev->constraints->system_load;
 730
 731	if (rdev->desc->ops->set_load) {
 732		/* set the optimum mode for our new total regulator load */
 733		err = rdev->desc->ops->set_load(rdev, current_uA);
 734		if (err < 0)
 735			rdev_err(rdev, "failed to set load %d\n", current_uA);
 736	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737		/* now get the optimum mode for our new total regulator load */
 738		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 739							 output_uV, current_uA);
 740
 741		/* check the new mode is allowed */
 742		err = regulator_mode_constrain(rdev, &mode);
 743		if (err < 0) {
 744			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 745				 current_uA, input_uV, output_uV);
 746			return err;
 747		}
 748
 749		err = rdev->desc->ops->set_mode(rdev, mode);
 750		if (err < 0)
 751			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 752	}
 753
 754	return err;
 755}
 756
 757static int suspend_set_state(struct regulator_dev *rdev,
 758	struct regulator_state *rstate)
 759{
 760	int ret = 0;
 
 
 
 
 
 761
 762	/* If we have no suspend mode configration don't set anything;
 763	 * only warn if the driver implements set_suspend_voltage or
 764	 * set_suspend_mode callback.
 765	 */
 766	if (!rstate->enabled && !rstate->disabled) {
 
 767		if (rdev->desc->ops->set_suspend_voltage ||
 768		    rdev->desc->ops->set_suspend_mode)
 769			rdev_warn(rdev, "No configuration\n");
 770		return 0;
 771	}
 772
 773	if (rstate->enabled && rstate->disabled) {
 774		rdev_err(rdev, "invalid configuration\n");
 775		return -EINVAL;
 776	}
 777
 778	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 779		ret = rdev->desc->ops->set_suspend_enable(rdev);
 780	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 
 781		ret = rdev->desc->ops->set_suspend_disable(rdev);
 782	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 783		ret = 0;
 784
 785	if (ret < 0) {
 786		rdev_err(rdev, "failed to enabled/disable\n");
 787		return ret;
 788	}
 789
 790	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 791		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 792		if (ret < 0) {
 793			rdev_err(rdev, "failed to set voltage\n");
 794			return ret;
 795		}
 796	}
 797
 798	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 799		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 800		if (ret < 0) {
 801			rdev_err(rdev, "failed to set mode\n");
 802			return ret;
 803		}
 804	}
 805	return ret;
 806}
 807
 808/* locks held by caller */
 809static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 810{
 811	lockdep_assert_held_once(&rdev->mutex);
 812
 813	if (!rdev->constraints)
 814		return -EINVAL;
 815
 816	switch (state) {
 817	case PM_SUSPEND_STANDBY:
 818		return suspend_set_state(rdev,
 819			&rdev->constraints->state_standby);
 820	case PM_SUSPEND_MEM:
 821		return suspend_set_state(rdev,
 822			&rdev->constraints->state_mem);
 823	case PM_SUSPEND_MAX:
 824		return suspend_set_state(rdev,
 825			&rdev->constraints->state_disk);
 826	default:
 827		return -EINVAL;
 828	}
 829}
 830
 831static void print_constraints(struct regulator_dev *rdev)
 832{
 833	struct regulation_constraints *constraints = rdev->constraints;
 834	char buf[160] = "";
 835	size_t len = sizeof(buf) - 1;
 836	int count = 0;
 837	int ret;
 838
 839	if (constraints->min_uV && constraints->max_uV) {
 840		if (constraints->min_uV == constraints->max_uV)
 841			count += scnprintf(buf + count, len - count, "%d mV ",
 842					   constraints->min_uV / 1000);
 843		else
 844			count += scnprintf(buf + count, len - count,
 845					   "%d <--> %d mV ",
 846					   constraints->min_uV / 1000,
 847					   constraints->max_uV / 1000);
 848	}
 849
 850	if (!constraints->min_uV ||
 851	    constraints->min_uV != constraints->max_uV) {
 852		ret = _regulator_get_voltage(rdev);
 853		if (ret > 0)
 854			count += scnprintf(buf + count, len - count,
 855					   "at %d mV ", ret / 1000);
 856	}
 857
 858	if (constraints->uV_offset)
 859		count += scnprintf(buf + count, len - count, "%dmV offset ",
 860				   constraints->uV_offset / 1000);
 861
 862	if (constraints->min_uA && constraints->max_uA) {
 863		if (constraints->min_uA == constraints->max_uA)
 864			count += scnprintf(buf + count, len - count, "%d mA ",
 865					   constraints->min_uA / 1000);
 866		else
 867			count += scnprintf(buf + count, len - count,
 868					   "%d <--> %d mA ",
 869					   constraints->min_uA / 1000,
 870					   constraints->max_uA / 1000);
 871	}
 872
 873	if (!constraints->min_uA ||
 874	    constraints->min_uA != constraints->max_uA) {
 875		ret = _regulator_get_current_limit(rdev);
 876		if (ret > 0)
 877			count += scnprintf(buf + count, len - count,
 878					   "at %d mA ", ret / 1000);
 879	}
 880
 881	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 882		count += scnprintf(buf + count, len - count, "fast ");
 883	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 884		count += scnprintf(buf + count, len - count, "normal ");
 885	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 886		count += scnprintf(buf + count, len - count, "idle ");
 887	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 888		count += scnprintf(buf + count, len - count, "standby");
 889
 890	if (!count)
 891		scnprintf(buf, len, "no parameters");
 892
 893	rdev_dbg(rdev, "%s\n", buf);
 894
 895	if ((constraints->min_uV != constraints->max_uV) &&
 896	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 897		rdev_warn(rdev,
 898			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 899}
 900
 901static int machine_constraints_voltage(struct regulator_dev *rdev,
 902	struct regulation_constraints *constraints)
 903{
 904	const struct regulator_ops *ops = rdev->desc->ops;
 905	int ret;
 906
 907	/* do we need to apply the constraint voltage */
 908	if (rdev->constraints->apply_uV &&
 909	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 910		int current_uV = _regulator_get_voltage(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 911		if (current_uV < 0) {
 912			rdev_err(rdev,
 913				 "failed to get the current voltage(%d)\n",
 914				 current_uV);
 915			return current_uV;
 916		}
 917		if (current_uV < rdev->constraints->min_uV ||
 918		    current_uV > rdev->constraints->max_uV) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919			ret = _regulator_do_set_voltage(
 920				rdev, rdev->constraints->min_uV,
 921				rdev->constraints->max_uV);
 922			if (ret < 0) {
 923				rdev_err(rdev,
 924					"failed to apply %duV constraint(%d)\n",
 925					rdev->constraints->min_uV, ret);
 926				return ret;
 927			}
 928		}
 929	}
 930
 931	/* constrain machine-level voltage specs to fit
 932	 * the actual range supported by this regulator.
 933	 */
 934	if (ops->list_voltage && rdev->desc->n_voltages) {
 935		int	count = rdev->desc->n_voltages;
 936		int	i;
 937		int	min_uV = INT_MAX;
 938		int	max_uV = INT_MIN;
 939		int	cmin = constraints->min_uV;
 940		int	cmax = constraints->max_uV;
 941
 942		/* it's safe to autoconfigure fixed-voltage supplies
 943		   and the constraints are used by list_voltage. */
 944		if (count == 1 && !cmin) {
 945			cmin = 1;
 946			cmax = INT_MAX;
 947			constraints->min_uV = cmin;
 948			constraints->max_uV = cmax;
 949		}
 950
 951		/* voltage constraints are optional */
 952		if ((cmin == 0) && (cmax == 0))
 953			return 0;
 954
 955		/* else require explicit machine-level constraints */
 956		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 957			rdev_err(rdev, "invalid voltage constraints\n");
 958			return -EINVAL;
 959		}
 960
 961		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 962		for (i = 0; i < count; i++) {
 963			int	value;
 964
 965			value = ops->list_voltage(rdev, i);
 966			if (value <= 0)
 967				continue;
 968
 969			/* maybe adjust [min_uV..max_uV] */
 970			if (value >= cmin && value < min_uV)
 971				min_uV = value;
 972			if (value <= cmax && value > max_uV)
 973				max_uV = value;
 974		}
 975
 976		/* final: [min_uV..max_uV] valid iff constraints valid */
 977		if (max_uV < min_uV) {
 978			rdev_err(rdev,
 979				 "unsupportable voltage constraints %u-%uuV\n",
 980				 min_uV, max_uV);
 981			return -EINVAL;
 982		}
 983
 984		/* use regulator's subset of machine constraints */
 985		if (constraints->min_uV < min_uV) {
 986			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 987				 constraints->min_uV, min_uV);
 988			constraints->min_uV = min_uV;
 989		}
 990		if (constraints->max_uV > max_uV) {
 991			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 992				 constraints->max_uV, max_uV);
 993			constraints->max_uV = max_uV;
 994		}
 995	}
 996
 997	return 0;
 998}
 999
1000static int machine_constraints_current(struct regulator_dev *rdev,
1001	struct regulation_constraints *constraints)
1002{
1003	const struct regulator_ops *ops = rdev->desc->ops;
1004	int ret;
1005
1006	if (!constraints->min_uA && !constraints->max_uA)
1007		return 0;
1008
1009	if (constraints->min_uA > constraints->max_uA) {
1010		rdev_err(rdev, "Invalid current constraints\n");
1011		return -EINVAL;
1012	}
1013
1014	if (!ops->set_current_limit || !ops->get_current_limit) {
1015		rdev_warn(rdev, "Operation of current configuration missing\n");
1016		return 0;
1017	}
1018
1019	/* Set regulator current in constraints range */
1020	ret = ops->set_current_limit(rdev, constraints->min_uA,
1021			constraints->max_uA);
1022	if (ret < 0) {
1023		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024		return ret;
1025	}
1026
1027	return 0;
1028}
1029
1030static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032/**
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1036 *
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041 * set_mode.
1042 */
1043static int set_machine_constraints(struct regulator_dev *rdev,
1044	const struct regulation_constraints *constraints)
1045{
1046	int ret = 0;
1047	const struct regulator_ops *ops = rdev->desc->ops;
1048
1049	if (constraints)
1050		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051					    GFP_KERNEL);
1052	else
1053		rdev->constraints = kzalloc(sizeof(*constraints),
1054					    GFP_KERNEL);
1055	if (!rdev->constraints)
1056		return -ENOMEM;
1057
1058	ret = machine_constraints_voltage(rdev, rdev->constraints);
1059	if (ret != 0)
1060		return ret;
1061
1062	ret = machine_constraints_current(rdev, rdev->constraints);
1063	if (ret != 0)
1064		return ret;
1065
1066	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067		ret = ops->set_input_current_limit(rdev,
1068						   rdev->constraints->ilim_uA);
1069		if (ret < 0) {
1070			rdev_err(rdev, "failed to set input limit\n");
1071			return ret;
1072		}
1073	}
1074
1075	/* do we need to setup our suspend state */
1076	if (rdev->constraints->initial_state) {
1077		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078		if (ret < 0) {
1079			rdev_err(rdev, "failed to set suspend state\n");
1080			return ret;
1081		}
1082	}
1083
1084	if (rdev->constraints->initial_mode) {
1085		if (!ops->set_mode) {
1086			rdev_err(rdev, "no set_mode operation\n");
1087			return -EINVAL;
1088		}
1089
1090		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091		if (ret < 0) {
1092			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093			return ret;
1094		}
1095	}
1096
1097	/* If the constraints say the regulator should be on at this point
1098	 * and we have control then make sure it is enabled.
1099	 */
1100	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101		ret = _regulator_do_enable(rdev);
1102		if (ret < 0 && ret != -EINVAL) {
1103			rdev_err(rdev, "failed to enable\n");
1104			return ret;
1105		}
1106	}
1107
1108	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109		&& ops->set_ramp_delay) {
1110		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111		if (ret < 0) {
1112			rdev_err(rdev, "failed to set ramp_delay\n");
1113			return ret;
1114		}
1115	}
1116
1117	if (rdev->constraints->pull_down && ops->set_pull_down) {
1118		ret = ops->set_pull_down(rdev);
1119		if (ret < 0) {
1120			rdev_err(rdev, "failed to set pull down\n");
1121			return ret;
1122		}
1123	}
1124
1125	if (rdev->constraints->soft_start && ops->set_soft_start) {
1126		ret = ops->set_soft_start(rdev);
1127		if (ret < 0) {
1128			rdev_err(rdev, "failed to set soft start\n");
1129			return ret;
1130		}
1131	}
1132
1133	if (rdev->constraints->over_current_protection
1134		&& ops->set_over_current_protection) {
1135		ret = ops->set_over_current_protection(rdev);
1136		if (ret < 0) {
1137			rdev_err(rdev, "failed to set over current protection\n");
1138			return ret;
1139		}
1140	}
1141
1142	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1143		bool ad_state = (rdev->constraints->active_discharge ==
1144			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1145
1146		ret = ops->set_active_discharge(rdev, ad_state);
1147		if (ret < 0) {
1148			rdev_err(rdev, "failed to set active discharge\n");
1149			return ret;
1150		}
1151	}
1152
1153	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1154		bool ad_state = (rdev->constraints->active_discharge ==
1155			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
 
 
 
 
 
 
 
 
 
1156
1157		ret = ops->set_active_discharge(rdev, ad_state);
1158		if (ret < 0) {
1159			rdev_err(rdev, "failed to set active discharge\n");
1160			return ret;
1161		}
 
1162	}
1163
1164	print_constraints(rdev);
1165	return 0;
1166}
1167
1168/**
1169 * set_supply - set regulator supply regulator
1170 * @rdev: regulator name
1171 * @supply_rdev: supply regulator name
1172 *
1173 * Called by platform initialisation code to set the supply regulator for this
1174 * regulator. This ensures that a regulators supply will also be enabled by the
1175 * core if it's child is enabled.
1176 */
1177static int set_supply(struct regulator_dev *rdev,
1178		      struct regulator_dev *supply_rdev)
1179{
1180	int err;
1181
1182	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1183
1184	if (!try_module_get(supply_rdev->owner))
1185		return -ENODEV;
1186
1187	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1188	if (rdev->supply == NULL) {
1189		err = -ENOMEM;
1190		return err;
1191	}
1192	supply_rdev->open_count++;
1193
1194	return 0;
1195}
1196
1197/**
1198 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199 * @rdev:         regulator source
1200 * @consumer_dev_name: dev_name() string for device supply applies to
1201 * @supply:       symbolic name for supply
1202 *
1203 * Allows platform initialisation code to map physical regulator
1204 * sources to symbolic names for supplies for use by devices.  Devices
1205 * should use these symbolic names to request regulators, avoiding the
1206 * need to provide board-specific regulator names as platform data.
1207 */
1208static int set_consumer_device_supply(struct regulator_dev *rdev,
1209				      const char *consumer_dev_name,
1210				      const char *supply)
1211{
1212	struct regulator_map *node;
1213	int has_dev;
1214
1215	if (supply == NULL)
1216		return -EINVAL;
1217
1218	if (consumer_dev_name != NULL)
1219		has_dev = 1;
1220	else
1221		has_dev = 0;
1222
1223	list_for_each_entry(node, &regulator_map_list, list) {
1224		if (node->dev_name && consumer_dev_name) {
1225			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1226				continue;
1227		} else if (node->dev_name || consumer_dev_name) {
1228			continue;
1229		}
1230
1231		if (strcmp(node->supply, supply) != 0)
1232			continue;
1233
1234		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1235			 consumer_dev_name,
1236			 dev_name(&node->regulator->dev),
1237			 node->regulator->desc->name,
1238			 supply,
1239			 dev_name(&rdev->dev), rdev_get_name(rdev));
1240		return -EBUSY;
1241	}
1242
1243	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1244	if (node == NULL)
1245		return -ENOMEM;
1246
1247	node->regulator = rdev;
1248	node->supply = supply;
1249
1250	if (has_dev) {
1251		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1252		if (node->dev_name == NULL) {
1253			kfree(node);
1254			return -ENOMEM;
1255		}
1256	}
1257
1258	list_add(&node->list, &regulator_map_list);
1259	return 0;
1260}
1261
1262static void unset_regulator_supplies(struct regulator_dev *rdev)
1263{
1264	struct regulator_map *node, *n;
1265
1266	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1267		if (rdev == node->regulator) {
1268			list_del(&node->list);
1269			kfree(node->dev_name);
1270			kfree(node);
1271		}
1272	}
1273}
1274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275#define REG_STR_SIZE	64
1276
1277static struct regulator *create_regulator(struct regulator_dev *rdev,
1278					  struct device *dev,
1279					  const char *supply_name)
1280{
1281	struct regulator *regulator;
1282	char buf[REG_STR_SIZE];
1283	int err, size;
1284
1285	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1286	if (regulator == NULL)
1287		return NULL;
1288
1289	mutex_lock(&rdev->mutex);
1290	regulator->rdev = rdev;
1291	list_add(&regulator->list, &rdev->consumer_list);
1292
1293	if (dev) {
1294		regulator->dev = dev;
1295
1296		/* Add a link to the device sysfs entry */
1297		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1298				 dev->kobj.name, supply_name);
1299		if (size >= REG_STR_SIZE)
1300			goto overflow_err;
1301
1302		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1303		if (regulator->supply_name == NULL)
1304			goto overflow_err;
1305
1306		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1307					buf);
1308		if (err) {
1309			rdev_dbg(rdev, "could not add device link %s err %d\n",
1310				  dev->kobj.name, err);
1311			/* non-fatal */
1312		}
1313	} else {
1314		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1315		if (regulator->supply_name == NULL)
1316			goto overflow_err;
1317	}
1318
1319	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1320						rdev->debugfs);
1321	if (!regulator->debugfs) {
1322		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1323	} else {
1324		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1325				   &regulator->uA_load);
1326		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1327				   &regulator->min_uV);
1328		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1329				   &regulator->max_uV);
 
 
 
1330	}
1331
1332	/*
1333	 * Check now if the regulator is an always on regulator - if
1334	 * it is then we don't need to do nearly so much work for
1335	 * enable/disable calls.
1336	 */
1337	if (!_regulator_can_change_status(rdev) &&
1338	    _regulator_is_enabled(rdev))
1339		regulator->always_on = true;
1340
1341	mutex_unlock(&rdev->mutex);
1342	return regulator;
1343overflow_err:
1344	list_del(&regulator->list);
1345	kfree(regulator);
1346	mutex_unlock(&rdev->mutex);
1347	return NULL;
1348}
1349
1350static int _regulator_get_enable_time(struct regulator_dev *rdev)
1351{
1352	if (rdev->constraints && rdev->constraints->enable_time)
1353		return rdev->constraints->enable_time;
1354	if (!rdev->desc->ops->enable_time)
1355		return rdev->desc->enable_time;
1356	return rdev->desc->ops->enable_time(rdev);
1357}
1358
1359static struct regulator_supply_alias *regulator_find_supply_alias(
1360		struct device *dev, const char *supply)
1361{
1362	struct regulator_supply_alias *map;
1363
1364	list_for_each_entry(map, &regulator_supply_alias_list, list)
1365		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1366			return map;
1367
1368	return NULL;
1369}
1370
1371static void regulator_supply_alias(struct device **dev, const char **supply)
1372{
1373	struct regulator_supply_alias *map;
1374
1375	map = regulator_find_supply_alias(*dev, *supply);
1376	if (map) {
1377		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1378				*supply, map->alias_supply,
1379				dev_name(map->alias_dev));
1380		*dev = map->alias_dev;
1381		*supply = map->alias_supply;
1382	}
1383}
1384
1385static int of_node_match(struct device *dev, const void *data)
1386{
1387	return dev->of_node == data;
1388}
1389
1390static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1391{
1392	struct device *dev;
1393
1394	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1395
1396	return dev ? dev_to_rdev(dev) : NULL;
1397}
1398
1399static int regulator_match(struct device *dev, const void *data)
1400{
1401	struct regulator_dev *r = dev_to_rdev(dev);
1402
1403	return strcmp(rdev_get_name(r), data) == 0;
1404}
1405
1406static struct regulator_dev *regulator_lookup_by_name(const char *name)
1407{
1408	struct device *dev;
1409
1410	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1411
1412	return dev ? dev_to_rdev(dev) : NULL;
1413}
1414
1415/**
1416 * regulator_dev_lookup - lookup a regulator device.
1417 * @dev: device for regulator "consumer".
1418 * @supply: Supply name or regulator ID.
1419 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1420 * lookup could succeed in the future.
1421 *
1422 * If successful, returns a struct regulator_dev that corresponds to the name
1423 * @supply and with the embedded struct device refcount incremented by one,
1424 * or NULL on failure. The refcount must be dropped by calling put_device().
 
 
 
1425 */
1426static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1427						  const char *supply,
1428						  int *ret)
1429{
1430	struct regulator_dev *r;
1431	struct device_node *node;
1432	struct regulator_map *map;
1433	const char *devname = NULL;
1434
1435	regulator_supply_alias(&dev, &supply);
1436
1437	/* first do a dt based lookup */
1438	if (dev && dev->of_node) {
1439		node = of_get_regulator(dev, supply);
1440		if (node) {
1441			r = of_find_regulator_by_node(node);
1442			if (r)
1443				return r;
1444			*ret = -EPROBE_DEFER;
1445			return NULL;
1446		} else {
1447			/*
1448			 * If we couldn't even get the node then it's
1449			 * not just that the device didn't register
1450			 * yet, there's no node and we'll never
1451			 * succeed.
1452			 */
1453			*ret = -ENODEV;
1454		}
1455	}
1456
1457	/* if not found, try doing it non-dt way */
1458	if (dev)
1459		devname = dev_name(dev);
1460
1461	r = regulator_lookup_by_name(supply);
1462	if (r)
1463		return r;
1464
1465	mutex_lock(&regulator_list_mutex);
1466	list_for_each_entry(map, &regulator_map_list, list) {
1467		/* If the mapping has a device set up it must match */
1468		if (map->dev_name &&
1469		    (!devname || strcmp(map->dev_name, devname)))
1470			continue;
1471
1472		if (strcmp(map->supply, supply) == 0 &&
1473		    get_device(&map->regulator->dev)) {
1474			mutex_unlock(&regulator_list_mutex);
1475			return map->regulator;
1476		}
1477	}
1478	mutex_unlock(&regulator_list_mutex);
1479
1480	return NULL;
 
 
 
 
 
 
 
1481}
1482
1483static int regulator_resolve_supply(struct regulator_dev *rdev)
1484{
1485	struct regulator_dev *r;
1486	struct device *dev = rdev->dev.parent;
1487	int ret;
1488
1489	/* No supply to resovle? */
1490	if (!rdev->supply_name)
1491		return 0;
1492
1493	/* Supply already resolved? */
1494	if (rdev->supply)
1495		return 0;
1496
1497	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1498	if (!r) {
1499		if (ret == -ENODEV) {
1500			/*
1501			 * No supply was specified for this regulator and
1502			 * there will never be one.
1503			 */
1504			return 0;
1505		}
1506
1507		/* Did the lookup explicitly defer for us? */
1508		if (ret == -EPROBE_DEFER)
1509			return ret;
1510
1511		if (have_full_constraints()) {
1512			r = dummy_regulator_rdev;
1513			get_device(&r->dev);
1514		} else {
1515			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1516				rdev->supply_name, rdev->desc->name);
1517			return -EPROBE_DEFER;
1518		}
1519	}
1520
 
 
 
 
 
 
 
 
 
 
 
 
 
1521	/* Recursively resolve the supply of the supply */
1522	ret = regulator_resolve_supply(r);
1523	if (ret < 0) {
1524		put_device(&r->dev);
1525		return ret;
1526	}
1527
1528	ret = set_supply(rdev, r);
1529	if (ret < 0) {
1530		put_device(&r->dev);
1531		return ret;
1532	}
1533
1534	/* Cascade always-on state to supply */
1535	if (_regulator_is_enabled(rdev) && rdev->supply) {
 
 
 
 
1536		ret = regulator_enable(rdev->supply);
1537		if (ret < 0) {
1538			_regulator_put(rdev->supply);
 
1539			return ret;
1540		}
1541	}
1542
1543	return 0;
1544}
1545
1546/* Internal regulator request function */
1547static struct regulator *_regulator_get(struct device *dev, const char *id,
1548					bool exclusive, bool allow_dummy)
1549{
1550	struct regulator_dev *rdev;
1551	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1552	const char *devname = NULL;
1553	int ret;
1554
 
 
 
 
 
1555	if (id == NULL) {
1556		pr_err("get() with no identifier\n");
1557		return ERR_PTR(-EINVAL);
1558	}
1559
1560	if (dev)
1561		devname = dev_name(dev);
1562
1563	if (have_full_constraints())
1564		ret = -ENODEV;
1565	else
1566		ret = -EPROBE_DEFER;
1567
1568	rdev = regulator_dev_lookup(dev, id, &ret);
1569	if (rdev)
1570		goto found;
 
 
 
1571
1572	regulator = ERR_PTR(ret);
 
 
 
 
1573
1574	/*
1575	 * If we have return value from dev_lookup fail, we do not expect to
1576	 * succeed, so, quit with appropriate error value
1577	 */
1578	if (ret && ret != -ENODEV)
1579		return regulator;
 
 
 
 
 
 
 
1580
1581	if (!devname)
1582		devname = "deviceless";
 
 
1583
1584	/*
1585	 * Assume that a regulator is physically present and enabled
1586	 * even if it isn't hooked up and just provide a dummy.
1587	 */
1588	if (have_full_constraints() && allow_dummy) {
1589		pr_warn("%s supply %s not found, using dummy regulator\n",
1590			devname, id);
1591
1592		rdev = dummy_regulator_rdev;
1593		get_device(&rdev->dev);
1594		goto found;
1595	/* Don't log an error when called from regulator_get_optional() */
1596	} else if (!have_full_constraints() || exclusive) {
1597		dev_warn(dev, "dummy supplies not allowed\n");
1598	}
1599
1600	return regulator;
1601
1602found:
1603	if (rdev->exclusive) {
1604		regulator = ERR_PTR(-EPERM);
1605		put_device(&rdev->dev);
1606		return regulator;
1607	}
1608
1609	if (exclusive && rdev->open_count) {
1610		regulator = ERR_PTR(-EBUSY);
1611		put_device(&rdev->dev);
1612		return regulator;
1613	}
1614
 
 
 
 
 
 
 
 
 
 
1615	ret = regulator_resolve_supply(rdev);
1616	if (ret < 0) {
1617		regulator = ERR_PTR(ret);
1618		put_device(&rdev->dev);
1619		return regulator;
1620	}
1621
1622	if (!try_module_get(rdev->owner)) {
 
1623		put_device(&rdev->dev);
1624		return regulator;
1625	}
1626
1627	regulator = create_regulator(rdev, dev, id);
1628	if (regulator == NULL) {
1629		regulator = ERR_PTR(-ENOMEM);
1630		put_device(&rdev->dev);
1631		module_put(rdev->owner);
1632		return regulator;
1633	}
1634
1635	rdev->open_count++;
1636	if (exclusive) {
1637		rdev->exclusive = 1;
1638
1639		ret = _regulator_is_enabled(rdev);
1640		if (ret > 0)
1641			rdev->use_count = 1;
1642		else
1643			rdev->use_count = 0;
1644	}
1645
 
 
1646	return regulator;
1647}
1648
1649/**
1650 * regulator_get - lookup and obtain a reference to a regulator.
1651 * @dev: device for regulator "consumer"
1652 * @id: Supply name or regulator ID.
1653 *
1654 * Returns a struct regulator corresponding to the regulator producer,
1655 * or IS_ERR() condition containing errno.
1656 *
1657 * Use of supply names configured via regulator_set_device_supply() is
1658 * strongly encouraged.  It is recommended that the supply name used
1659 * should match the name used for the supply and/or the relevant
1660 * device pins in the datasheet.
1661 */
1662struct regulator *regulator_get(struct device *dev, const char *id)
1663{
1664	return _regulator_get(dev, id, false, true);
1665}
1666EXPORT_SYMBOL_GPL(regulator_get);
1667
1668/**
1669 * regulator_get_exclusive - obtain exclusive access to a regulator.
1670 * @dev: device for regulator "consumer"
1671 * @id: Supply name or regulator ID.
1672 *
1673 * Returns a struct regulator corresponding to the regulator producer,
1674 * or IS_ERR() condition containing errno.  Other consumers will be
1675 * unable to obtain this regulator while this reference is held and the
1676 * use count for the regulator will be initialised to reflect the current
1677 * state of the regulator.
1678 *
1679 * This is intended for use by consumers which cannot tolerate shared
1680 * use of the regulator such as those which need to force the
1681 * regulator off for correct operation of the hardware they are
1682 * controlling.
1683 *
1684 * Use of supply names configured via regulator_set_device_supply() is
1685 * strongly encouraged.  It is recommended that the supply name used
1686 * should match the name used for the supply and/or the relevant
1687 * device pins in the datasheet.
1688 */
1689struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1690{
1691	return _regulator_get(dev, id, true, false);
1692}
1693EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1694
1695/**
1696 * regulator_get_optional - obtain optional access to a regulator.
1697 * @dev: device for regulator "consumer"
1698 * @id: Supply name or regulator ID.
1699 *
1700 * Returns a struct regulator corresponding to the regulator producer,
1701 * or IS_ERR() condition containing errno.
1702 *
1703 * This is intended for use by consumers for devices which can have
1704 * some supplies unconnected in normal use, such as some MMC devices.
1705 * It can allow the regulator core to provide stub supplies for other
1706 * supplies requested using normal regulator_get() calls without
1707 * disrupting the operation of drivers that can handle absent
1708 * supplies.
1709 *
1710 * Use of supply names configured via regulator_set_device_supply() is
1711 * strongly encouraged.  It is recommended that the supply name used
1712 * should match the name used for the supply and/or the relevant
1713 * device pins in the datasheet.
1714 */
1715struct regulator *regulator_get_optional(struct device *dev, const char *id)
1716{
1717	return _regulator_get(dev, id, false, false);
1718}
1719EXPORT_SYMBOL_GPL(regulator_get_optional);
1720
1721/* regulator_list_mutex lock held by regulator_put() */
1722static void _regulator_put(struct regulator *regulator)
1723{
1724	struct regulator_dev *rdev;
1725
1726	if (IS_ERR_OR_NULL(regulator))
1727		return;
1728
1729	lockdep_assert_held_once(&regulator_list_mutex);
1730
 
 
 
1731	rdev = regulator->rdev;
1732
1733	debugfs_remove_recursive(regulator->debugfs);
1734
1735	/* remove any sysfs entries */
1736	if (regulator->dev)
 
 
1737		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1738	mutex_lock(&rdev->mutex);
 
 
1739	list_del(&regulator->list);
1740
1741	rdev->open_count--;
1742	rdev->exclusive = 0;
1743	put_device(&rdev->dev);
1744	mutex_unlock(&rdev->mutex);
1745
1746	kfree(regulator->supply_name);
1747	kfree(regulator);
1748
1749	module_put(rdev->owner);
1750}
1751
1752/**
1753 * regulator_put - "free" the regulator source
1754 * @regulator: regulator source
1755 *
1756 * Note: drivers must ensure that all regulator_enable calls made on this
1757 * regulator source are balanced by regulator_disable calls prior to calling
1758 * this function.
1759 */
1760void regulator_put(struct regulator *regulator)
1761{
1762	mutex_lock(&regulator_list_mutex);
1763	_regulator_put(regulator);
1764	mutex_unlock(&regulator_list_mutex);
1765}
1766EXPORT_SYMBOL_GPL(regulator_put);
1767
1768/**
1769 * regulator_register_supply_alias - Provide device alias for supply lookup
1770 *
1771 * @dev: device that will be given as the regulator "consumer"
1772 * @id: Supply name or regulator ID
1773 * @alias_dev: device that should be used to lookup the supply
1774 * @alias_id: Supply name or regulator ID that should be used to lookup the
1775 * supply
1776 *
1777 * All lookups for id on dev will instead be conducted for alias_id on
1778 * alias_dev.
1779 */
1780int regulator_register_supply_alias(struct device *dev, const char *id,
1781				    struct device *alias_dev,
1782				    const char *alias_id)
1783{
1784	struct regulator_supply_alias *map;
1785
1786	map = regulator_find_supply_alias(dev, id);
1787	if (map)
1788		return -EEXIST;
1789
1790	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1791	if (!map)
1792		return -ENOMEM;
1793
1794	map->src_dev = dev;
1795	map->src_supply = id;
1796	map->alias_dev = alias_dev;
1797	map->alias_supply = alias_id;
1798
1799	list_add(&map->list, &regulator_supply_alias_list);
1800
1801	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1802		id, dev_name(dev), alias_id, dev_name(alias_dev));
1803
1804	return 0;
1805}
1806EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1807
1808/**
1809 * regulator_unregister_supply_alias - Remove device alias
1810 *
1811 * @dev: device that will be given as the regulator "consumer"
1812 * @id: Supply name or regulator ID
1813 *
1814 * Remove a lookup alias if one exists for id on dev.
1815 */
1816void regulator_unregister_supply_alias(struct device *dev, const char *id)
1817{
1818	struct regulator_supply_alias *map;
1819
1820	map = regulator_find_supply_alias(dev, id);
1821	if (map) {
1822		list_del(&map->list);
1823		kfree(map);
1824	}
1825}
1826EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1827
1828/**
1829 * regulator_bulk_register_supply_alias - register multiple aliases
1830 *
1831 * @dev: device that will be given as the regulator "consumer"
1832 * @id: List of supply names or regulator IDs
1833 * @alias_dev: device that should be used to lookup the supply
1834 * @alias_id: List of supply names or regulator IDs that should be used to
1835 * lookup the supply
1836 * @num_id: Number of aliases to register
1837 *
1838 * @return 0 on success, an errno on failure.
1839 *
1840 * This helper function allows drivers to register several supply
1841 * aliases in one operation.  If any of the aliases cannot be
1842 * registered any aliases that were registered will be removed
1843 * before returning to the caller.
1844 */
1845int regulator_bulk_register_supply_alias(struct device *dev,
1846					 const char *const *id,
1847					 struct device *alias_dev,
1848					 const char *const *alias_id,
1849					 int num_id)
1850{
1851	int i;
1852	int ret;
1853
1854	for (i = 0; i < num_id; ++i) {
1855		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1856						      alias_id[i]);
1857		if (ret < 0)
1858			goto err;
1859	}
1860
1861	return 0;
1862
1863err:
1864	dev_err(dev,
1865		"Failed to create supply alias %s,%s -> %s,%s\n",
1866		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1867
1868	while (--i >= 0)
1869		regulator_unregister_supply_alias(dev, id[i]);
1870
1871	return ret;
1872}
1873EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1874
1875/**
1876 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1877 *
1878 * @dev: device that will be given as the regulator "consumer"
1879 * @id: List of supply names or regulator IDs
1880 * @num_id: Number of aliases to unregister
1881 *
1882 * This helper function allows drivers to unregister several supply
1883 * aliases in one operation.
1884 */
1885void regulator_bulk_unregister_supply_alias(struct device *dev,
1886					    const char *const *id,
1887					    int num_id)
1888{
1889	int i;
1890
1891	for (i = 0; i < num_id; ++i)
1892		regulator_unregister_supply_alias(dev, id[i]);
1893}
1894EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1895
1896
1897/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1898static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1899				const struct regulator_config *config)
1900{
1901	struct regulator_enable_gpio *pin;
1902	struct gpio_desc *gpiod;
1903	int ret;
1904
1905	gpiod = gpio_to_desc(config->ena_gpio);
1906
1907	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1908		if (pin->gpiod == gpiod) {
1909			rdev_dbg(rdev, "GPIO %d is already used\n",
1910				config->ena_gpio);
1911			goto update_ena_gpio_to_rdev;
1912		}
1913	}
1914
1915	ret = gpio_request_one(config->ena_gpio,
1916				GPIOF_DIR_OUT | config->ena_gpio_flags,
1917				rdev_get_name(rdev));
1918	if (ret)
1919		return ret;
1920
1921	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1922	if (pin == NULL) {
1923		gpio_free(config->ena_gpio);
1924		return -ENOMEM;
1925	}
1926
1927	pin->gpiod = gpiod;
1928	pin->ena_gpio_invert = config->ena_gpio_invert;
1929	list_add(&pin->list, &regulator_ena_gpio_list);
1930
1931update_ena_gpio_to_rdev:
1932	pin->request_count++;
1933	rdev->ena_pin = pin;
1934	return 0;
1935}
1936
1937static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1938{
1939	struct regulator_enable_gpio *pin, *n;
1940
1941	if (!rdev->ena_pin)
1942		return;
1943
1944	/* Free the GPIO only in case of no use */
1945	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1946		if (pin->gpiod == rdev->ena_pin->gpiod) {
1947			if (pin->request_count <= 1) {
1948				pin->request_count = 0;
1949				gpiod_put(pin->gpiod);
1950				list_del(&pin->list);
1951				kfree(pin);
1952				rdev->ena_pin = NULL;
1953				return;
1954			} else {
1955				pin->request_count--;
1956			}
1957		}
1958	}
1959}
1960
1961/**
1962 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1963 * @rdev: regulator_dev structure
1964 * @enable: enable GPIO at initial use?
1965 *
1966 * GPIO is enabled in case of initial use. (enable_count is 0)
1967 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1968 */
1969static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1970{
1971	struct regulator_enable_gpio *pin = rdev->ena_pin;
1972
1973	if (!pin)
1974		return -EINVAL;
1975
1976	if (enable) {
1977		/* Enable GPIO at initial use */
1978		if (pin->enable_count == 0)
1979			gpiod_set_value_cansleep(pin->gpiod,
1980						 !pin->ena_gpio_invert);
1981
1982		pin->enable_count++;
1983	} else {
1984		if (pin->enable_count > 1) {
1985			pin->enable_count--;
1986			return 0;
1987		}
1988
1989		/* Disable GPIO if not used */
1990		if (pin->enable_count <= 1) {
1991			gpiod_set_value_cansleep(pin->gpiod,
1992						 pin->ena_gpio_invert);
1993			pin->enable_count = 0;
1994		}
1995	}
1996
1997	return 0;
1998}
1999
2000/**
2001 * _regulator_enable_delay - a delay helper function
2002 * @delay: time to delay in microseconds
2003 *
2004 * Delay for the requested amount of time as per the guidelines in:
2005 *
2006 *     Documentation/timers/timers-howto.txt
2007 *
2008 * The assumption here is that regulators will never be enabled in
2009 * atomic context and therefore sleeping functions can be used.
2010 */
2011static void _regulator_enable_delay(unsigned int delay)
2012{
2013	unsigned int ms = delay / 1000;
2014	unsigned int us = delay % 1000;
2015
2016	if (ms > 0) {
2017		/*
2018		 * For small enough values, handle super-millisecond
2019		 * delays in the usleep_range() call below.
2020		 */
2021		if (ms < 20)
2022			us += ms * 1000;
2023		else
2024			msleep(ms);
2025	}
2026
2027	/*
2028	 * Give the scheduler some room to coalesce with any other
2029	 * wakeup sources. For delays shorter than 10 us, don't even
2030	 * bother setting up high-resolution timers and just busy-
2031	 * loop.
2032	 */
2033	if (us >= 10)
2034		usleep_range(us, us + 100);
2035	else
2036		udelay(us);
2037}
2038
2039static int _regulator_do_enable(struct regulator_dev *rdev)
2040{
2041	int ret, delay;
2042
2043	/* Query before enabling in case configuration dependent.  */
2044	ret = _regulator_get_enable_time(rdev);
2045	if (ret >= 0) {
2046		delay = ret;
2047	} else {
2048		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2049		delay = 0;
2050	}
2051
2052	trace_regulator_enable(rdev_get_name(rdev));
2053
2054	if (rdev->desc->off_on_delay) {
2055		/* if needed, keep a distance of off_on_delay from last time
2056		 * this regulator was disabled.
2057		 */
2058		unsigned long start_jiffy = jiffies;
2059		unsigned long intended, max_delay, remaining;
2060
2061		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2062		intended = rdev->last_off_jiffy + max_delay;
2063
2064		if (time_before(start_jiffy, intended)) {
2065			/* calc remaining jiffies to deal with one-time
2066			 * timer wrapping.
2067			 * in case of multiple timer wrapping, either it can be
2068			 * detected by out-of-range remaining, or it cannot be
2069			 * detected and we gets a panelty of
2070			 * _regulator_enable_delay().
2071			 */
2072			remaining = intended - start_jiffy;
2073			if (remaining <= max_delay)
2074				_regulator_enable_delay(
2075						jiffies_to_usecs(remaining));
2076		}
2077	}
2078
2079	if (rdev->ena_pin) {
2080		if (!rdev->ena_gpio_state) {
2081			ret = regulator_ena_gpio_ctrl(rdev, true);
2082			if (ret < 0)
2083				return ret;
2084			rdev->ena_gpio_state = 1;
2085		}
2086	} else if (rdev->desc->ops->enable) {
2087		ret = rdev->desc->ops->enable(rdev);
2088		if (ret < 0)
2089			return ret;
2090	} else {
2091		return -EINVAL;
2092	}
2093
2094	/* Allow the regulator to ramp; it would be useful to extend
2095	 * this for bulk operations so that the regulators can ramp
2096	 * together.  */
2097	trace_regulator_enable_delay(rdev_get_name(rdev));
2098
2099	_regulator_enable_delay(delay);
2100
2101	trace_regulator_enable_complete(rdev_get_name(rdev));
2102
2103	return 0;
2104}
2105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2106/* locks held by regulator_enable() */
2107static int _regulator_enable(struct regulator_dev *rdev)
2108{
 
2109	int ret;
2110
2111	lockdep_assert_held_once(&rdev->mutex);
2112
2113	/* check voltage and requested load before enabling */
2114	if (rdev->constraints &&
2115	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2116		drms_uA_update(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
2117
2118	if (rdev->use_count == 0) {
2119		/* The regulator may on if it's not switchable or left on */
2120		ret = _regulator_is_enabled(rdev);
2121		if (ret == -EINVAL || ret == 0) {
2122			if (!_regulator_can_change_status(rdev))
2123				return -EPERM;
 
 
 
2124
2125			ret = _regulator_do_enable(rdev);
2126			if (ret < 0)
2127				return ret;
2128
 
 
2129		} else if (ret < 0) {
2130			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2131			return ret;
2132		}
2133		/* Fallthrough on positive return values - already enabled */
2134	}
2135
2136	rdev->use_count++;
2137
2138	return 0;
 
 
 
 
 
 
 
 
 
2139}
2140
2141/**
2142 * regulator_enable - enable regulator output
2143 * @regulator: regulator source
2144 *
2145 * Request that the regulator be enabled with the regulator output at
2146 * the predefined voltage or current value.  Calls to regulator_enable()
2147 * must be balanced with calls to regulator_disable().
2148 *
2149 * NOTE: the output value can be set by other drivers, boot loader or may be
2150 * hardwired in the regulator.
2151 */
2152int regulator_enable(struct regulator *regulator)
2153{
2154	struct regulator_dev *rdev = regulator->rdev;
2155	int ret = 0;
2156
2157	if (regulator->always_on)
2158		return 0;
2159
2160	if (rdev->supply) {
2161		ret = regulator_enable(rdev->supply);
2162		if (ret != 0)
2163			return ret;
2164	}
2165
2166	mutex_lock(&rdev->mutex);
2167	ret = _regulator_enable(rdev);
2168	mutex_unlock(&rdev->mutex);
2169
2170	if (ret != 0 && rdev->supply)
2171		regulator_disable(rdev->supply);
 
2172
2173	return ret;
2174}
2175EXPORT_SYMBOL_GPL(regulator_enable);
2176
2177static int _regulator_do_disable(struct regulator_dev *rdev)
2178{
2179	int ret;
2180
2181	trace_regulator_disable(rdev_get_name(rdev));
2182
2183	if (rdev->ena_pin) {
2184		if (rdev->ena_gpio_state) {
2185			ret = regulator_ena_gpio_ctrl(rdev, false);
2186			if (ret < 0)
2187				return ret;
2188			rdev->ena_gpio_state = 0;
2189		}
2190
2191	} else if (rdev->desc->ops->disable) {
2192		ret = rdev->desc->ops->disable(rdev);
2193		if (ret != 0)
2194			return ret;
2195	}
2196
2197	/* cares about last_off_jiffy only if off_on_delay is required by
2198	 * device.
2199	 */
2200	if (rdev->desc->off_on_delay)
2201		rdev->last_off_jiffy = jiffies;
2202
2203	trace_regulator_disable_complete(rdev_get_name(rdev));
2204
2205	return 0;
2206}
2207
2208/* locks held by regulator_disable() */
2209static int _regulator_disable(struct regulator_dev *rdev)
2210{
 
2211	int ret = 0;
2212
2213	lockdep_assert_held_once(&rdev->mutex);
2214
2215	if (WARN(rdev->use_count <= 0,
2216		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2217		return -EIO;
2218
2219	/* are we the last user and permitted to disable ? */
2220	if (rdev->use_count == 1 &&
2221	    (rdev->constraints && !rdev->constraints->always_on)) {
2222
2223		/* we are last user */
2224		if (_regulator_can_change_status(rdev)) {
2225			ret = _notifier_call_chain(rdev,
2226						   REGULATOR_EVENT_PRE_DISABLE,
2227						   NULL);
2228			if (ret & NOTIFY_STOP_MASK)
2229				return -EINVAL;
2230
2231			ret = _regulator_do_disable(rdev);
2232			if (ret < 0) {
2233				rdev_err(rdev, "failed to disable\n");
2234				_notifier_call_chain(rdev,
2235						REGULATOR_EVENT_ABORT_DISABLE,
2236						NULL);
2237				return ret;
2238			}
2239			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2240					NULL);
2241		}
2242
2243		rdev->use_count = 0;
2244	} else if (rdev->use_count > 1) {
2245
2246		if (rdev->constraints &&
2247			(rdev->constraints->valid_ops_mask &
2248			REGULATOR_CHANGE_DRMS))
2249			drms_uA_update(rdev);
2250
2251		rdev->use_count--;
2252	}
2253
 
 
 
 
 
 
 
 
 
2254	return ret;
2255}
2256
2257/**
2258 * regulator_disable - disable regulator output
2259 * @regulator: regulator source
2260 *
2261 * Disable the regulator output voltage or current.  Calls to
2262 * regulator_enable() must be balanced with calls to
2263 * regulator_disable().
2264 *
2265 * NOTE: this will only disable the regulator output if no other consumer
2266 * devices have it enabled, the regulator device supports disabling and
2267 * machine constraints permit this operation.
2268 */
2269int regulator_disable(struct regulator *regulator)
2270{
2271	struct regulator_dev *rdev = regulator->rdev;
2272	int ret = 0;
2273
2274	if (regulator->always_on)
2275		return 0;
2276
2277	mutex_lock(&rdev->mutex);
2278	ret = _regulator_disable(rdev);
2279	mutex_unlock(&rdev->mutex);
2280
2281	if (ret == 0 && rdev->supply)
2282		regulator_disable(rdev->supply);
 
2283
2284	return ret;
2285}
2286EXPORT_SYMBOL_GPL(regulator_disable);
2287
2288/* locks held by regulator_force_disable() */
2289static int _regulator_force_disable(struct regulator_dev *rdev)
2290{
2291	int ret = 0;
2292
2293	lockdep_assert_held_once(&rdev->mutex);
2294
2295	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2296			REGULATOR_EVENT_PRE_DISABLE, NULL);
2297	if (ret & NOTIFY_STOP_MASK)
2298		return -EINVAL;
2299
2300	ret = _regulator_do_disable(rdev);
2301	if (ret < 0) {
2302		rdev_err(rdev, "failed to force disable\n");
2303		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2304				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2305		return ret;
2306	}
2307
2308	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2309			REGULATOR_EVENT_DISABLE, NULL);
2310
2311	return 0;
2312}
2313
2314/**
2315 * regulator_force_disable - force disable regulator output
2316 * @regulator: regulator source
2317 *
2318 * Forcibly disable the regulator output voltage or current.
2319 * NOTE: this *will* disable the regulator output even if other consumer
2320 * devices have it enabled. This should be used for situations when device
2321 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2322 */
2323int regulator_force_disable(struct regulator *regulator)
2324{
2325	struct regulator_dev *rdev = regulator->rdev;
 
2326	int ret;
2327
2328	mutex_lock(&rdev->mutex);
2329	regulator->uA_load = 0;
2330	ret = _regulator_force_disable(regulator->rdev);
2331	mutex_unlock(&rdev->mutex);
2332
2333	if (rdev->supply)
2334		while (rdev->open_count--)
2335			regulator_disable(rdev->supply);
 
 
 
 
 
 
 
 
 
2336
2337	return ret;
2338}
2339EXPORT_SYMBOL_GPL(regulator_force_disable);
2340
2341static void regulator_disable_work(struct work_struct *work)
2342{
2343	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2344						  disable_work.work);
 
2345	int count, i, ret;
 
 
2346
2347	mutex_lock(&rdev->mutex);
2348
2349	BUG_ON(!rdev->deferred_disables);
 
 
 
 
 
 
2350
2351	count = rdev->deferred_disables;
2352	rdev->deferred_disables = 0;
2353
2354	for (i = 0; i < count; i++) {
2355		ret = _regulator_disable(rdev);
2356		if (ret != 0)
2357			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2358	}
2359
2360	mutex_unlock(&rdev->mutex);
 
2361
2362	if (rdev->supply) {
2363		for (i = 0; i < count; i++) {
2364			ret = regulator_disable(rdev->supply);
2365			if (ret != 0) {
2366				rdev_err(rdev,
2367					 "Supply disable failed: %d\n", ret);
2368			}
2369		}
2370	}
 
 
 
 
 
 
2371}
2372
2373/**
2374 * regulator_disable_deferred - disable regulator output with delay
2375 * @regulator: regulator source
2376 * @ms: miliseconds until the regulator is disabled
2377 *
2378 * Execute regulator_disable() on the regulator after a delay.  This
2379 * is intended for use with devices that require some time to quiesce.
2380 *
2381 * NOTE: this will only disable the regulator output if no other consumer
2382 * devices have it enabled, the regulator device supports disabling and
2383 * machine constraints permit this operation.
2384 */
2385int regulator_disable_deferred(struct regulator *regulator, int ms)
2386{
2387	struct regulator_dev *rdev = regulator->rdev;
2388
2389	if (regulator->always_on)
2390		return 0;
2391
2392	if (!ms)
2393		return regulator_disable(regulator);
2394
2395	mutex_lock(&rdev->mutex);
2396	rdev->deferred_disables++;
2397	mutex_unlock(&rdev->mutex);
 
 
2398
2399	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2400			   msecs_to_jiffies(ms));
2401	return 0;
2402}
2403EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2404
2405static int _regulator_is_enabled(struct regulator_dev *rdev)
2406{
2407	/* A GPIO control always takes precedence */
2408	if (rdev->ena_pin)
2409		return rdev->ena_gpio_state;
2410
2411	/* If we don't know then assume that the regulator is always on */
2412	if (!rdev->desc->ops->is_enabled)
2413		return 1;
2414
2415	return rdev->desc->ops->is_enabled(rdev);
2416}
2417
2418static int _regulator_list_voltage(struct regulator *regulator,
2419				    unsigned selector, int lock)
2420{
2421	struct regulator_dev *rdev = regulator->rdev;
2422	const struct regulator_ops *ops = rdev->desc->ops;
2423	int ret;
2424
2425	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2426		return rdev->desc->fixed_uV;
2427
2428	if (ops->list_voltage) {
2429		if (selector >= rdev->desc->n_voltages)
2430			return -EINVAL;
2431		if (lock)
2432			mutex_lock(&rdev->mutex);
2433		ret = ops->list_voltage(rdev, selector);
2434		if (lock)
2435			mutex_unlock(&rdev->mutex);
2436	} else if (rdev->supply) {
2437		ret = _regulator_list_voltage(rdev->supply, selector, lock);
 
2438	} else {
2439		return -EINVAL;
2440	}
2441
2442	if (ret > 0) {
2443		if (ret < rdev->constraints->min_uV)
2444			ret = 0;
2445		else if (ret > rdev->constraints->max_uV)
2446			ret = 0;
2447	}
2448
2449	return ret;
2450}
2451
2452/**
2453 * regulator_is_enabled - is the regulator output enabled
2454 * @regulator: regulator source
2455 *
2456 * Returns positive if the regulator driver backing the source/client
2457 * has requested that the device be enabled, zero if it hasn't, else a
2458 * negative errno code.
2459 *
2460 * Note that the device backing this regulator handle can have multiple
2461 * users, so it might be enabled even if regulator_enable() was never
2462 * called for this particular source.
2463 */
2464int regulator_is_enabled(struct regulator *regulator)
2465{
2466	int ret;
2467
2468	if (regulator->always_on)
2469		return 1;
2470
2471	mutex_lock(&regulator->rdev->mutex);
2472	ret = _regulator_is_enabled(regulator->rdev);
2473	mutex_unlock(&regulator->rdev->mutex);
2474
2475	return ret;
2476}
2477EXPORT_SYMBOL_GPL(regulator_is_enabled);
2478
2479/**
2480 * regulator_can_change_voltage - check if regulator can change voltage
2481 * @regulator: regulator source
2482 *
2483 * Returns positive if the regulator driver backing the source/client
2484 * can change its voltage, false otherwise. Useful for detecting fixed
2485 * or dummy regulators and disabling voltage change logic in the client
2486 * driver.
2487 */
2488int regulator_can_change_voltage(struct regulator *regulator)
2489{
2490	struct regulator_dev	*rdev = regulator->rdev;
2491
2492	if (rdev->constraints &&
2493	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2494		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2495			return 1;
2496
2497		if (rdev->desc->continuous_voltage_range &&
2498		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2499		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2500			return 1;
2501	}
2502
2503	return 0;
2504}
2505EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2506
2507/**
2508 * regulator_count_voltages - count regulator_list_voltage() selectors
2509 * @regulator: regulator source
2510 *
2511 * Returns number of selectors, or negative errno.  Selectors are
2512 * numbered starting at zero, and typically correspond to bitfields
2513 * in hardware registers.
2514 */
2515int regulator_count_voltages(struct regulator *regulator)
2516{
2517	struct regulator_dev	*rdev = regulator->rdev;
2518
2519	if (rdev->desc->n_voltages)
2520		return rdev->desc->n_voltages;
2521
2522	if (!rdev->supply)
2523		return -EINVAL;
2524
2525	return regulator_count_voltages(rdev->supply);
2526}
2527EXPORT_SYMBOL_GPL(regulator_count_voltages);
2528
2529/**
2530 * regulator_list_voltage - enumerate supported voltages
2531 * @regulator: regulator source
2532 * @selector: identify voltage to list
2533 * Context: can sleep
2534 *
2535 * Returns a voltage that can be passed to @regulator_set_voltage(),
2536 * zero if this selector code can't be used on this system, or a
2537 * negative errno.
2538 */
2539int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2540{
2541	return _regulator_list_voltage(regulator, selector, 1);
2542}
2543EXPORT_SYMBOL_GPL(regulator_list_voltage);
2544
2545/**
2546 * regulator_get_regmap - get the regulator's register map
2547 * @regulator: regulator source
2548 *
2549 * Returns the register map for the given regulator, or an ERR_PTR value
2550 * if the regulator doesn't use regmap.
2551 */
2552struct regmap *regulator_get_regmap(struct regulator *regulator)
2553{
2554	struct regmap *map = regulator->rdev->regmap;
2555
2556	return map ? map : ERR_PTR(-EOPNOTSUPP);
2557}
2558
2559/**
2560 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2561 * @regulator: regulator source
2562 * @vsel_reg: voltage selector register, output parameter
2563 * @vsel_mask: mask for voltage selector bitfield, output parameter
2564 *
2565 * Returns the hardware register offset and bitmask used for setting the
2566 * regulator voltage. This might be useful when configuring voltage-scaling
2567 * hardware or firmware that can make I2C requests behind the kernel's back,
2568 * for example.
2569 *
2570 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2571 * and 0 is returned, otherwise a negative errno is returned.
2572 */
2573int regulator_get_hardware_vsel_register(struct regulator *regulator,
2574					 unsigned *vsel_reg,
2575					 unsigned *vsel_mask)
2576{
2577	struct regulator_dev *rdev = regulator->rdev;
2578	const struct regulator_ops *ops = rdev->desc->ops;
2579
2580	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2581		return -EOPNOTSUPP;
2582
2583	 *vsel_reg = rdev->desc->vsel_reg;
2584	 *vsel_mask = rdev->desc->vsel_mask;
2585
2586	 return 0;
2587}
2588EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2589
2590/**
2591 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2592 * @regulator: regulator source
2593 * @selector: identify voltage to list
2594 *
2595 * Converts the selector to a hardware-specific voltage selector that can be
2596 * directly written to the regulator registers. The address of the voltage
2597 * register can be determined by calling @regulator_get_hardware_vsel_register.
2598 *
2599 * On error a negative errno is returned.
2600 */
2601int regulator_list_hardware_vsel(struct regulator *regulator,
2602				 unsigned selector)
2603{
2604	struct regulator_dev *rdev = regulator->rdev;
2605	const struct regulator_ops *ops = rdev->desc->ops;
2606
2607	if (selector >= rdev->desc->n_voltages)
2608		return -EINVAL;
2609	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2610		return -EOPNOTSUPP;
2611
2612	return selector;
2613}
2614EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2615
2616/**
2617 * regulator_get_linear_step - return the voltage step size between VSEL values
2618 * @regulator: regulator source
2619 *
2620 * Returns the voltage step size between VSEL values for linear
2621 * regulators, or return 0 if the regulator isn't a linear regulator.
2622 */
2623unsigned int regulator_get_linear_step(struct regulator *regulator)
2624{
2625	struct regulator_dev *rdev = regulator->rdev;
2626
2627	return rdev->desc->uV_step;
2628}
2629EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2630
2631/**
2632 * regulator_is_supported_voltage - check if a voltage range can be supported
2633 *
2634 * @regulator: Regulator to check.
2635 * @min_uV: Minimum required voltage in uV.
2636 * @max_uV: Maximum required voltage in uV.
2637 *
2638 * Returns a boolean or a negative error code.
2639 */
2640int regulator_is_supported_voltage(struct regulator *regulator,
2641				   int min_uV, int max_uV)
2642{
2643	struct regulator_dev *rdev = regulator->rdev;
2644	int i, voltages, ret;
2645
2646	/* If we can't change voltage check the current voltage */
2647	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2648		ret = regulator_get_voltage(regulator);
2649		if (ret >= 0)
2650			return min_uV <= ret && ret <= max_uV;
2651		else
2652			return ret;
2653	}
2654
2655	/* Any voltage within constrains range is fine? */
2656	if (rdev->desc->continuous_voltage_range)
2657		return min_uV >= rdev->constraints->min_uV &&
2658				max_uV <= rdev->constraints->max_uV;
2659
2660	ret = regulator_count_voltages(regulator);
2661	if (ret < 0)
2662		return ret;
2663	voltages = ret;
2664
2665	for (i = 0; i < voltages; i++) {
2666		ret = regulator_list_voltage(regulator, i);
2667
2668		if (ret >= min_uV && ret <= max_uV)
2669			return 1;
2670	}
2671
2672	return 0;
2673}
2674EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2675
2676static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2677				 int max_uV)
2678{
2679	const struct regulator_desc *desc = rdev->desc;
2680
2681	if (desc->ops->map_voltage)
2682		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2683
2684	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2685		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2686
2687	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2688		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2689
 
 
 
 
 
2690	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2691}
2692
2693static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2694				       int min_uV, int max_uV,
2695				       unsigned *selector)
2696{
2697	struct pre_voltage_change_data data;
2698	int ret;
2699
2700	data.old_uV = _regulator_get_voltage(rdev);
2701	data.min_uV = min_uV;
2702	data.max_uV = max_uV;
2703	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2704				   &data);
2705	if (ret & NOTIFY_STOP_MASK)
2706		return -EINVAL;
2707
2708	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2709	if (ret >= 0)
2710		return ret;
2711
2712	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2713			     (void *)data.old_uV);
2714
2715	return ret;
2716}
2717
2718static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2719					   int uV, unsigned selector)
2720{
2721	struct pre_voltage_change_data data;
2722	int ret;
2723
2724	data.old_uV = _regulator_get_voltage(rdev);
2725	data.min_uV = uV;
2726	data.max_uV = uV;
2727	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2728				   &data);
2729	if (ret & NOTIFY_STOP_MASK)
2730		return -EINVAL;
2731
2732	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2733	if (ret >= 0)
2734		return ret;
2735
2736	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2737			     (void *)data.old_uV);
2738
2739	return ret;
2740}
2741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2742static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2743				     int min_uV, int max_uV)
2744{
2745	int ret;
2746	int delay = 0;
2747	int best_val = 0;
2748	unsigned int selector;
2749	int old_selector = -1;
 
 
2750
2751	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2752
2753	min_uV += rdev->constraints->uV_offset;
2754	max_uV += rdev->constraints->uV_offset;
2755
2756	/*
2757	 * If we can't obtain the old selector there is not enough
2758	 * info to call set_voltage_time_sel().
2759	 */
2760	if (_regulator_is_enabled(rdev) &&
2761	    rdev->desc->ops->set_voltage_time_sel &&
2762	    rdev->desc->ops->get_voltage_sel) {
2763		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2764		if (old_selector < 0)
2765			return old_selector;
2766	}
2767
2768	if (rdev->desc->ops->set_voltage) {
2769		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2770						  &selector);
2771
2772		if (ret >= 0) {
2773			if (rdev->desc->ops->list_voltage)
2774				best_val = rdev->desc->ops->list_voltage(rdev,
2775									 selector);
2776			else
2777				best_val = _regulator_get_voltage(rdev);
2778		}
2779
2780	} else if (rdev->desc->ops->set_voltage_sel) {
2781		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2782		if (ret >= 0) {
2783			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2784			if (min_uV <= best_val && max_uV >= best_val) {
2785				selector = ret;
2786				if (old_selector == selector)
2787					ret = 0;
 
 
 
2788				else
2789					ret = _regulator_call_set_voltage_sel(
2790						rdev, best_val, selector);
2791			} else {
2792				ret = -EINVAL;
2793			}
2794		}
2795	} else {
2796		ret = -EINVAL;
2797	}
2798
2799	/* Call set_voltage_time_sel if successfully obtained old_selector */
2800	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2801		&& old_selector != selector) {
2802
2803		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2804						old_selector, selector);
2805		if (delay < 0) {
2806			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2807				  delay);
2808			delay = 0;
 
 
 
 
 
 
 
 
 
 
 
2809		}
 
2810
2811		/* Insert any necessary delays */
2812		if (delay >= 1000) {
2813			mdelay(delay / 1000);
2814			udelay(delay % 1000);
2815		} else if (delay) {
2816			udelay(delay);
2817		}
2818	}
2819
2820	if (ret == 0 && best_val >= 0) {
 
 
 
 
 
 
 
 
2821		unsigned long data = best_val;
2822
2823		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2824				     (void *)data);
2825	}
2826
 
2827	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2828
2829	return ret;
2830}
2831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2832static int regulator_set_voltage_unlocked(struct regulator *regulator,
2833					  int min_uV, int max_uV)
 
2834{
2835	struct regulator_dev *rdev = regulator->rdev;
 
2836	int ret = 0;
2837	int old_min_uV, old_max_uV;
2838	int current_uV;
2839	int best_supply_uV = 0;
2840	int supply_change_uV = 0;
2841
2842	/* If we're setting the same range as last time the change
2843	 * should be a noop (some cpufreq implementations use the same
2844	 * voltage for multiple frequencies, for example).
2845	 */
2846	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2847		goto out;
2848
2849	/* If we're trying to set a range that overlaps the current voltage,
2850	 * return successfully even though the regulator does not support
2851	 * changing the voltage.
2852	 */
2853	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2854		current_uV = _regulator_get_voltage(rdev);
2855		if (min_uV <= current_uV && current_uV <= max_uV) {
2856			regulator->min_uV = min_uV;
2857			regulator->max_uV = max_uV;
2858			goto out;
2859		}
2860	}
2861
2862	/* sanity check */
2863	if (!rdev->desc->ops->set_voltage &&
2864	    !rdev->desc->ops->set_voltage_sel) {
2865		ret = -EINVAL;
2866		goto out;
2867	}
2868
2869	/* constraints check */
2870	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2871	if (ret < 0)
2872		goto out;
2873
2874	/* restore original values in case of error */
2875	old_min_uV = regulator->min_uV;
2876	old_max_uV = regulator->max_uV;
2877	regulator->min_uV = min_uV;
2878	regulator->max_uV = max_uV;
2879
2880	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2881	if (ret < 0)
2882		goto out2;
 
 
 
 
 
 
 
2883
2884	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2885				!rdev->desc->ops->get_voltage)) {
 
 
 
 
 
 
 
 
 
 
2886		int current_supply_uV;
2887		int selector;
2888
2889		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2890		if (selector < 0) {
2891			ret = selector;
2892			goto out2;
2893		}
2894
2895		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2896		if (best_supply_uV < 0) {
2897			ret = best_supply_uV;
2898			goto out2;
2899		}
2900
2901		best_supply_uV += rdev->desc->min_dropout_uV;
2902
2903		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2904		if (current_supply_uV < 0) {
2905			ret = current_supply_uV;
2906			goto out2;
2907		}
2908
2909		supply_change_uV = best_supply_uV - current_supply_uV;
2910	}
2911
2912	if (supply_change_uV > 0) {
2913		ret = regulator_set_voltage_unlocked(rdev->supply,
2914				best_supply_uV, INT_MAX);
2915		if (ret) {
2916			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2917					ret);
2918			goto out2;
2919		}
2920	}
2921
2922	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
2923	if (ret < 0)
2924		goto out2;
2925
2926	if (supply_change_uV < 0) {
2927		ret = regulator_set_voltage_unlocked(rdev->supply,
2928				best_supply_uV, INT_MAX);
2929		if (ret)
2930			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2931					ret);
2932		/* No need to fail here */
2933		ret = 0;
2934	}
2935
2936out:
2937	return ret;
2938out2:
2939	regulator->min_uV = old_min_uV;
2940	regulator->max_uV = old_max_uV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2942	return ret;
2943}
2944
2945/**
2946 * regulator_set_voltage - set regulator output voltage
2947 * @regulator: regulator source
2948 * @min_uV: Minimum required voltage in uV
2949 * @max_uV: Maximum acceptable voltage in uV
2950 *
2951 * Sets a voltage regulator to the desired output voltage. This can be set
2952 * during any regulator state. IOW, regulator can be disabled or enabled.
2953 *
2954 * If the regulator is enabled then the voltage will change to the new value
2955 * immediately otherwise if the regulator is disabled the regulator will
2956 * output at the new voltage when enabled.
2957 *
2958 * NOTE: If the regulator is shared between several devices then the lowest
2959 * request voltage that meets the system constraints will be used.
2960 * Regulator system constraints must be set for this regulator before
2961 * calling this function otherwise this call will fail.
2962 */
2963int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2964{
2965	int ret = 0;
 
2966
2967	regulator_lock_supply(regulator->rdev);
2968
2969	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
 
2970
2971	regulator_unlock_supply(regulator->rdev);
2972
2973	return ret;
2974}
2975EXPORT_SYMBOL_GPL(regulator_set_voltage);
2976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2977/**
2978 * regulator_set_voltage_time - get raise/fall time
2979 * @regulator: regulator source
2980 * @old_uV: starting voltage in microvolts
2981 * @new_uV: target voltage in microvolts
2982 *
2983 * Provided with the starting and ending voltage, this function attempts to
2984 * calculate the time in microseconds required to rise or fall to this new
2985 * voltage.
2986 */
2987int regulator_set_voltage_time(struct regulator *regulator,
2988			       int old_uV, int new_uV)
2989{
2990	struct regulator_dev *rdev = regulator->rdev;
2991	const struct regulator_ops *ops = rdev->desc->ops;
2992	int old_sel = -1;
2993	int new_sel = -1;
2994	int voltage;
2995	int i;
2996
 
 
 
 
 
2997	/* Currently requires operations to do this */
2998	if (!ops->list_voltage || !ops->set_voltage_time_sel
2999	    || !rdev->desc->n_voltages)
3000		return -EINVAL;
3001
3002	for (i = 0; i < rdev->desc->n_voltages; i++) {
3003		/* We only look for exact voltage matches here */
3004		voltage = regulator_list_voltage(regulator, i);
3005		if (voltage < 0)
3006			return -EINVAL;
3007		if (voltage == 0)
3008			continue;
3009		if (voltage == old_uV)
3010			old_sel = i;
3011		if (voltage == new_uV)
3012			new_sel = i;
3013	}
3014
3015	if (old_sel < 0 || new_sel < 0)
3016		return -EINVAL;
3017
3018	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3019}
3020EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3021
3022/**
3023 * regulator_set_voltage_time_sel - get raise/fall time
3024 * @rdev: regulator source device
3025 * @old_selector: selector for starting voltage
3026 * @new_selector: selector for target voltage
3027 *
3028 * Provided with the starting and target voltage selectors, this function
3029 * returns time in microseconds required to rise or fall to this new voltage
3030 *
3031 * Drivers providing ramp_delay in regulation_constraints can use this as their
3032 * set_voltage_time_sel() operation.
3033 */
3034int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3035				   unsigned int old_selector,
3036				   unsigned int new_selector)
3037{
3038	unsigned int ramp_delay = 0;
3039	int old_volt, new_volt;
3040
3041	if (rdev->constraints->ramp_delay)
3042		ramp_delay = rdev->constraints->ramp_delay;
3043	else if (rdev->desc->ramp_delay)
3044		ramp_delay = rdev->desc->ramp_delay;
3045
3046	if (ramp_delay == 0) {
3047		rdev_warn(rdev, "ramp_delay not set\n");
3048		return 0;
3049	}
3050
3051	/* sanity check */
3052	if (!rdev->desc->ops->list_voltage)
3053		return -EINVAL;
3054
3055	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3056	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3057
3058	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
 
 
 
 
3059}
3060EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3061
3062/**
3063 * regulator_sync_voltage - re-apply last regulator output voltage
3064 * @regulator: regulator source
3065 *
3066 * Re-apply the last configured voltage.  This is intended to be used
3067 * where some external control source the consumer is cooperating with
3068 * has caused the configured voltage to change.
3069 */
3070int regulator_sync_voltage(struct regulator *regulator)
3071{
3072	struct regulator_dev *rdev = regulator->rdev;
 
3073	int ret, min_uV, max_uV;
3074
3075	mutex_lock(&rdev->mutex);
3076
3077	if (!rdev->desc->ops->set_voltage &&
3078	    !rdev->desc->ops->set_voltage_sel) {
3079		ret = -EINVAL;
3080		goto out;
3081	}
3082
3083	/* This is only going to work if we've had a voltage configured. */
3084	if (!regulator->min_uV && !regulator->max_uV) {
3085		ret = -EINVAL;
3086		goto out;
3087	}
3088
3089	min_uV = regulator->min_uV;
3090	max_uV = regulator->max_uV;
3091
3092	/* This should be a paranoia check... */
3093	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3094	if (ret < 0)
3095		goto out;
3096
3097	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3098	if (ret < 0)
3099		goto out;
3100
3101	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3102
3103out:
3104	mutex_unlock(&rdev->mutex);
3105	return ret;
3106}
3107EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3108
3109static int _regulator_get_voltage(struct regulator_dev *rdev)
3110{
3111	int sel, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3112
3113	if (rdev->desc->ops->get_voltage_sel) {
3114		sel = rdev->desc->ops->get_voltage_sel(rdev);
3115		if (sel < 0)
3116			return sel;
3117		ret = rdev->desc->ops->list_voltage(rdev, sel);
3118	} else if (rdev->desc->ops->get_voltage) {
3119		ret = rdev->desc->ops->get_voltage(rdev);
3120	} else if (rdev->desc->ops->list_voltage) {
3121		ret = rdev->desc->ops->list_voltage(rdev, 0);
3122	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3123		ret = rdev->desc->fixed_uV;
3124	} else if (rdev->supply) {
3125		ret = _regulator_get_voltage(rdev->supply->rdev);
3126	} else {
3127		return -EINVAL;
3128	}
3129
3130	if (ret < 0)
3131		return ret;
3132	return ret - rdev->constraints->uV_offset;
3133}
3134
3135/**
3136 * regulator_get_voltage - get regulator output voltage
3137 * @regulator: regulator source
3138 *
3139 * This returns the current regulator voltage in uV.
3140 *
3141 * NOTE: If the regulator is disabled it will return the voltage value. This
3142 * function should not be used to determine regulator state.
3143 */
3144int regulator_get_voltage(struct regulator *regulator)
3145{
 
3146	int ret;
3147
3148	regulator_lock_supply(regulator->rdev);
3149
3150	ret = _regulator_get_voltage(regulator->rdev);
3151
3152	regulator_unlock_supply(regulator->rdev);
3153
3154	return ret;
3155}
3156EXPORT_SYMBOL_GPL(regulator_get_voltage);
3157
3158/**
3159 * regulator_set_current_limit - set regulator output current limit
3160 * @regulator: regulator source
3161 * @min_uA: Minimum supported current in uA
3162 * @max_uA: Maximum supported current in uA
3163 *
3164 * Sets current sink to the desired output current. This can be set during
3165 * any regulator state. IOW, regulator can be disabled or enabled.
3166 *
3167 * If the regulator is enabled then the current will change to the new value
3168 * immediately otherwise if the regulator is disabled the regulator will
3169 * output at the new current when enabled.
3170 *
3171 * NOTE: Regulator system constraints must be set for this regulator before
3172 * calling this function otherwise this call will fail.
3173 */
3174int regulator_set_current_limit(struct regulator *regulator,
3175			       int min_uA, int max_uA)
3176{
3177	struct regulator_dev *rdev = regulator->rdev;
3178	int ret;
3179
3180	mutex_lock(&rdev->mutex);
3181
3182	/* sanity check */
3183	if (!rdev->desc->ops->set_current_limit) {
3184		ret = -EINVAL;
3185		goto out;
3186	}
3187
3188	/* constraints check */
3189	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3190	if (ret < 0)
3191		goto out;
3192
3193	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3194out:
3195	mutex_unlock(&rdev->mutex);
3196	return ret;
3197}
3198EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3199
 
 
 
 
 
 
 
 
 
3200static int _regulator_get_current_limit(struct regulator_dev *rdev)
3201{
3202	int ret;
3203
3204	mutex_lock(&rdev->mutex);
3205
3206	/* sanity check */
3207	if (!rdev->desc->ops->get_current_limit) {
3208		ret = -EINVAL;
3209		goto out;
3210	}
3211
3212	ret = rdev->desc->ops->get_current_limit(rdev);
3213out:
3214	mutex_unlock(&rdev->mutex);
3215	return ret;
3216}
3217
3218/**
3219 * regulator_get_current_limit - get regulator output current
3220 * @regulator: regulator source
3221 *
3222 * This returns the current supplied by the specified current sink in uA.
3223 *
3224 * NOTE: If the regulator is disabled it will return the current value. This
3225 * function should not be used to determine regulator state.
3226 */
3227int regulator_get_current_limit(struct regulator *regulator)
3228{
3229	return _regulator_get_current_limit(regulator->rdev);
3230}
3231EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3232
3233/**
3234 * regulator_set_mode - set regulator operating mode
3235 * @regulator: regulator source
3236 * @mode: operating mode - one of the REGULATOR_MODE constants
3237 *
3238 * Set regulator operating mode to increase regulator efficiency or improve
3239 * regulation performance.
3240 *
3241 * NOTE: Regulator system constraints must be set for this regulator before
3242 * calling this function otherwise this call will fail.
3243 */
3244int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3245{
3246	struct regulator_dev *rdev = regulator->rdev;
3247	int ret;
3248	int regulator_curr_mode;
3249
3250	mutex_lock(&rdev->mutex);
3251
3252	/* sanity check */
3253	if (!rdev->desc->ops->set_mode) {
3254		ret = -EINVAL;
3255		goto out;
3256	}
3257
3258	/* return if the same mode is requested */
3259	if (rdev->desc->ops->get_mode) {
3260		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3261		if (regulator_curr_mode == mode) {
3262			ret = 0;
3263			goto out;
3264		}
3265	}
3266
3267	/* constraints check */
3268	ret = regulator_mode_constrain(rdev, &mode);
3269	if (ret < 0)
3270		goto out;
3271
3272	ret = rdev->desc->ops->set_mode(rdev, mode);
3273out:
3274	mutex_unlock(&rdev->mutex);
3275	return ret;
3276}
3277EXPORT_SYMBOL_GPL(regulator_set_mode);
3278
 
 
 
 
 
 
 
 
 
3279static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3280{
3281	int ret;
3282
3283	mutex_lock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3284
3285	/* sanity check */
3286	if (!rdev->desc->ops->get_mode) {
3287		ret = -EINVAL;
3288		goto out;
3289	}
3290
3291	ret = rdev->desc->ops->get_mode(rdev);
3292out:
3293	mutex_unlock(&rdev->mutex);
3294	return ret;
3295}
3296
3297/**
3298 * regulator_get_mode - get regulator operating mode
3299 * @regulator: regulator source
 
3300 *
3301 * Get the current regulator operating mode.
3302 */
3303unsigned int regulator_get_mode(struct regulator *regulator)
 
3304{
3305	return _regulator_get_mode(regulator->rdev);
3306}
3307EXPORT_SYMBOL_GPL(regulator_get_mode);
3308
3309/**
3310 * regulator_set_load - set regulator load
3311 * @regulator: regulator source
3312 * @uA_load: load current
3313 *
3314 * Notifies the regulator core of a new device load. This is then used by
3315 * DRMS (if enabled by constraints) to set the most efficient regulator
3316 * operating mode for the new regulator loading.
3317 *
3318 * Consumer devices notify their supply regulator of the maximum power
3319 * they will require (can be taken from device datasheet in the power
3320 * consumption tables) when they change operational status and hence power
3321 * state. Examples of operational state changes that can affect power
3322 * consumption are :-
3323 *
3324 *    o Device is opened / closed.
3325 *    o Device I/O is about to begin or has just finished.
3326 *    o Device is idling in between work.
3327 *
3328 * This information is also exported via sysfs to userspace.
3329 *
3330 * DRMS will sum the total requested load on the regulator and change
3331 * to the most efficient operating mode if platform constraints allow.
3332 *
 
 
 
 
 
 
 
 
3333 * On error a negative errno is returned.
3334 */
3335int regulator_set_load(struct regulator *regulator, int uA_load)
3336{
3337	struct regulator_dev *rdev = regulator->rdev;
3338	int ret;
 
3339
3340	mutex_lock(&rdev->mutex);
 
3341	regulator->uA_load = uA_load;
3342	ret = drms_uA_update(rdev);
3343	mutex_unlock(&rdev->mutex);
 
 
 
 
3344
3345	return ret;
3346}
3347EXPORT_SYMBOL_GPL(regulator_set_load);
3348
3349/**
3350 * regulator_allow_bypass - allow the regulator to go into bypass mode
3351 *
3352 * @regulator: Regulator to configure
3353 * @enable: enable or disable bypass mode
3354 *
3355 * Allow the regulator to go into bypass mode if all other consumers
3356 * for the regulator also enable bypass mode and the machine
3357 * constraints allow this.  Bypass mode means that the regulator is
3358 * simply passing the input directly to the output with no regulation.
3359 */
3360int regulator_allow_bypass(struct regulator *regulator, bool enable)
3361{
3362	struct regulator_dev *rdev = regulator->rdev;
3363	int ret = 0;
3364
3365	if (!rdev->desc->ops->set_bypass)
3366		return 0;
3367
3368	if (rdev->constraints &&
3369	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3370		return 0;
3371
3372	mutex_lock(&rdev->mutex);
3373
3374	if (enable && !regulator->bypass) {
3375		rdev->bypass_count++;
3376
3377		if (rdev->bypass_count == rdev->open_count) {
3378			ret = rdev->desc->ops->set_bypass(rdev, enable);
3379			if (ret != 0)
3380				rdev->bypass_count--;
3381		}
3382
3383	} else if (!enable && regulator->bypass) {
3384		rdev->bypass_count--;
3385
3386		if (rdev->bypass_count != rdev->open_count) {
3387			ret = rdev->desc->ops->set_bypass(rdev, enable);
3388			if (ret != 0)
3389				rdev->bypass_count++;
3390		}
3391	}
3392
3393	if (ret == 0)
3394		regulator->bypass = enable;
3395
3396	mutex_unlock(&rdev->mutex);
3397
3398	return ret;
3399}
3400EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3401
3402/**
3403 * regulator_register_notifier - register regulator event notifier
3404 * @regulator: regulator source
3405 * @nb: notifier block
3406 *
3407 * Register notifier block to receive regulator events.
3408 */
3409int regulator_register_notifier(struct regulator *regulator,
3410			      struct notifier_block *nb)
3411{
3412	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3413						nb);
3414}
3415EXPORT_SYMBOL_GPL(regulator_register_notifier);
3416
3417/**
3418 * regulator_unregister_notifier - unregister regulator event notifier
3419 * @regulator: regulator source
3420 * @nb: notifier block
3421 *
3422 * Unregister regulator event notifier block.
3423 */
3424int regulator_unregister_notifier(struct regulator *regulator,
3425				struct notifier_block *nb)
3426{
3427	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3428						  nb);
3429}
3430EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3431
3432/* notify regulator consumers and downstream regulator consumers.
3433 * Note mutex must be held by caller.
3434 */
3435static int _notifier_call_chain(struct regulator_dev *rdev,
3436				  unsigned long event, void *data)
3437{
3438	/* call rdev chain first */
3439	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3440}
3441
3442/**
3443 * regulator_bulk_get - get multiple regulator consumers
3444 *
3445 * @dev:           Device to supply
3446 * @num_consumers: Number of consumers to register
3447 * @consumers:     Configuration of consumers; clients are stored here.
3448 *
3449 * @return 0 on success, an errno on failure.
3450 *
3451 * This helper function allows drivers to get several regulator
3452 * consumers in one operation.  If any of the regulators cannot be
3453 * acquired then any regulators that were allocated will be freed
3454 * before returning to the caller.
3455 */
3456int regulator_bulk_get(struct device *dev, int num_consumers,
3457		       struct regulator_bulk_data *consumers)
3458{
3459	int i;
3460	int ret;
3461
3462	for (i = 0; i < num_consumers; i++)
3463		consumers[i].consumer = NULL;
3464
3465	for (i = 0; i < num_consumers; i++) {
3466		consumers[i].consumer = _regulator_get(dev,
3467						       consumers[i].supply,
3468						       false,
3469						       !consumers[i].optional);
3470		if (IS_ERR(consumers[i].consumer)) {
3471			ret = PTR_ERR(consumers[i].consumer);
3472			dev_err(dev, "Failed to get supply '%s': %d\n",
3473				consumers[i].supply, ret);
3474			consumers[i].consumer = NULL;
3475			goto err;
3476		}
3477	}
3478
3479	return 0;
3480
3481err:
 
 
 
 
 
 
 
3482	while (--i >= 0)
3483		regulator_put(consumers[i].consumer);
3484
3485	return ret;
3486}
3487EXPORT_SYMBOL_GPL(regulator_bulk_get);
3488
3489static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3490{
3491	struct regulator_bulk_data *bulk = data;
3492
3493	bulk->ret = regulator_enable(bulk->consumer);
3494}
3495
3496/**
3497 * regulator_bulk_enable - enable multiple regulator consumers
3498 *
3499 * @num_consumers: Number of consumers
3500 * @consumers:     Consumer data; clients are stored here.
3501 * @return         0 on success, an errno on failure
3502 *
3503 * This convenience API allows consumers to enable multiple regulator
3504 * clients in a single API call.  If any consumers cannot be enabled
3505 * then any others that were enabled will be disabled again prior to
3506 * return.
3507 */
3508int regulator_bulk_enable(int num_consumers,
3509			  struct regulator_bulk_data *consumers)
3510{
3511	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3512	int i;
3513	int ret = 0;
3514
3515	for (i = 0; i < num_consumers; i++) {
3516		if (consumers[i].consumer->always_on)
3517			consumers[i].ret = 0;
3518		else
3519			async_schedule_domain(regulator_bulk_enable_async,
3520					      &consumers[i], &async_domain);
3521	}
3522
3523	async_synchronize_full_domain(&async_domain);
3524
3525	/* If any consumer failed we need to unwind any that succeeded */
3526	for (i = 0; i < num_consumers; i++) {
3527		if (consumers[i].ret != 0) {
3528			ret = consumers[i].ret;
3529			goto err;
3530		}
3531	}
3532
3533	return 0;
3534
3535err:
3536	for (i = 0; i < num_consumers; i++) {
3537		if (consumers[i].ret < 0)
3538			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3539			       consumers[i].ret);
3540		else
3541			regulator_disable(consumers[i].consumer);
3542	}
3543
3544	return ret;
3545}
3546EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3547
3548/**
3549 * regulator_bulk_disable - disable multiple regulator consumers
3550 *
3551 * @num_consumers: Number of consumers
3552 * @consumers:     Consumer data; clients are stored here.
3553 * @return         0 on success, an errno on failure
3554 *
3555 * This convenience API allows consumers to disable multiple regulator
3556 * clients in a single API call.  If any consumers cannot be disabled
3557 * then any others that were disabled will be enabled again prior to
3558 * return.
3559 */
3560int regulator_bulk_disable(int num_consumers,
3561			   struct regulator_bulk_data *consumers)
3562{
3563	int i;
3564	int ret, r;
3565
3566	for (i = num_consumers - 1; i >= 0; --i) {
3567		ret = regulator_disable(consumers[i].consumer);
3568		if (ret != 0)
3569			goto err;
3570	}
3571
3572	return 0;
3573
3574err:
3575	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3576	for (++i; i < num_consumers; ++i) {
3577		r = regulator_enable(consumers[i].consumer);
3578		if (r != 0)
3579			pr_err("Failed to reename %s: %d\n",
3580			       consumers[i].supply, r);
3581	}
3582
3583	return ret;
3584}
3585EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3586
3587/**
3588 * regulator_bulk_force_disable - force disable multiple regulator consumers
3589 *
3590 * @num_consumers: Number of consumers
3591 * @consumers:     Consumer data; clients are stored here.
3592 * @return         0 on success, an errno on failure
3593 *
3594 * This convenience API allows consumers to forcibly disable multiple regulator
3595 * clients in a single API call.
3596 * NOTE: This should be used for situations when device damage will
3597 * likely occur if the regulators are not disabled (e.g. over temp).
3598 * Although regulator_force_disable function call for some consumers can
3599 * return error numbers, the function is called for all consumers.
3600 */
3601int regulator_bulk_force_disable(int num_consumers,
3602			   struct regulator_bulk_data *consumers)
3603{
3604	int i;
3605	int ret;
3606
3607	for (i = 0; i < num_consumers; i++)
3608		consumers[i].ret =
3609			    regulator_force_disable(consumers[i].consumer);
3610
3611	for (i = 0; i < num_consumers; i++) {
3612		if (consumers[i].ret != 0) {
3613			ret = consumers[i].ret;
3614			goto out;
3615		}
3616	}
3617
3618	return 0;
3619out:
3620	return ret;
3621}
3622EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3623
3624/**
3625 * regulator_bulk_free - free multiple regulator consumers
3626 *
3627 * @num_consumers: Number of consumers
3628 * @consumers:     Consumer data; clients are stored here.
3629 *
3630 * This convenience API allows consumers to free multiple regulator
3631 * clients in a single API call.
3632 */
3633void regulator_bulk_free(int num_consumers,
3634			 struct regulator_bulk_data *consumers)
3635{
3636	int i;
3637
3638	for (i = 0; i < num_consumers; i++) {
3639		regulator_put(consumers[i].consumer);
3640		consumers[i].consumer = NULL;
3641	}
3642}
3643EXPORT_SYMBOL_GPL(regulator_bulk_free);
3644
3645/**
3646 * regulator_notifier_call_chain - call regulator event notifier
3647 * @rdev: regulator source
3648 * @event: notifier block
3649 * @data: callback-specific data.
3650 *
3651 * Called by regulator drivers to notify clients a regulator event has
3652 * occurred. We also notify regulator clients downstream.
3653 * Note lock must be held by caller.
3654 */
3655int regulator_notifier_call_chain(struct regulator_dev *rdev,
3656				  unsigned long event, void *data)
3657{
3658	lockdep_assert_held_once(&rdev->mutex);
3659
3660	_notifier_call_chain(rdev, event, data);
3661	return NOTIFY_DONE;
3662
3663}
3664EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3665
3666/**
3667 * regulator_mode_to_status - convert a regulator mode into a status
3668 *
3669 * @mode: Mode to convert
3670 *
3671 * Convert a regulator mode into a status.
3672 */
3673int regulator_mode_to_status(unsigned int mode)
3674{
3675	switch (mode) {
3676	case REGULATOR_MODE_FAST:
3677		return REGULATOR_STATUS_FAST;
3678	case REGULATOR_MODE_NORMAL:
3679		return REGULATOR_STATUS_NORMAL;
3680	case REGULATOR_MODE_IDLE:
3681		return REGULATOR_STATUS_IDLE;
3682	case REGULATOR_MODE_STANDBY:
3683		return REGULATOR_STATUS_STANDBY;
3684	default:
3685		return REGULATOR_STATUS_UNDEFINED;
3686	}
3687}
3688EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3689
3690static struct attribute *regulator_dev_attrs[] = {
3691	&dev_attr_name.attr,
3692	&dev_attr_num_users.attr,
3693	&dev_attr_type.attr,
3694	&dev_attr_microvolts.attr,
3695	&dev_attr_microamps.attr,
3696	&dev_attr_opmode.attr,
3697	&dev_attr_state.attr,
3698	&dev_attr_status.attr,
3699	&dev_attr_bypass.attr,
3700	&dev_attr_requested_microamps.attr,
3701	&dev_attr_min_microvolts.attr,
3702	&dev_attr_max_microvolts.attr,
3703	&dev_attr_min_microamps.attr,
3704	&dev_attr_max_microamps.attr,
3705	&dev_attr_suspend_standby_state.attr,
3706	&dev_attr_suspend_mem_state.attr,
3707	&dev_attr_suspend_disk_state.attr,
3708	&dev_attr_suspend_standby_microvolts.attr,
3709	&dev_attr_suspend_mem_microvolts.attr,
3710	&dev_attr_suspend_disk_microvolts.attr,
3711	&dev_attr_suspend_standby_mode.attr,
3712	&dev_attr_suspend_mem_mode.attr,
3713	&dev_attr_suspend_disk_mode.attr,
3714	NULL
3715};
3716
3717/*
3718 * To avoid cluttering sysfs (and memory) with useless state, only
3719 * create attributes that can be meaningfully displayed.
3720 */
3721static umode_t regulator_attr_is_visible(struct kobject *kobj,
3722					 struct attribute *attr, int idx)
3723{
3724	struct device *dev = kobj_to_dev(kobj);
3725	struct regulator_dev *rdev = dev_to_rdev(dev);
3726	const struct regulator_ops *ops = rdev->desc->ops;
3727	umode_t mode = attr->mode;
3728
3729	/* these three are always present */
3730	if (attr == &dev_attr_name.attr ||
3731	    attr == &dev_attr_num_users.attr ||
3732	    attr == &dev_attr_type.attr)
3733		return mode;
3734
3735	/* some attributes need specific methods to be displayed */
3736	if (attr == &dev_attr_microvolts.attr) {
3737		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3738		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3739		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3740		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3741			return mode;
3742		return 0;
3743	}
3744
3745	if (attr == &dev_attr_microamps.attr)
3746		return ops->get_current_limit ? mode : 0;
3747
3748	if (attr == &dev_attr_opmode.attr)
3749		return ops->get_mode ? mode : 0;
3750
3751	if (attr == &dev_attr_state.attr)
3752		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3753
3754	if (attr == &dev_attr_status.attr)
3755		return ops->get_status ? mode : 0;
3756
3757	if (attr == &dev_attr_bypass.attr)
3758		return ops->get_bypass ? mode : 0;
3759
3760	/* some attributes are type-specific */
3761	if (attr == &dev_attr_requested_microamps.attr)
3762		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3763
3764	/* constraints need specific supporting methods */
3765	if (attr == &dev_attr_min_microvolts.attr ||
3766	    attr == &dev_attr_max_microvolts.attr)
3767		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3768
3769	if (attr == &dev_attr_min_microamps.attr ||
3770	    attr == &dev_attr_max_microamps.attr)
3771		return ops->set_current_limit ? mode : 0;
3772
3773	if (attr == &dev_attr_suspend_standby_state.attr ||
3774	    attr == &dev_attr_suspend_mem_state.attr ||
3775	    attr == &dev_attr_suspend_disk_state.attr)
3776		return mode;
3777
3778	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3779	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3780	    attr == &dev_attr_suspend_disk_microvolts.attr)
3781		return ops->set_suspend_voltage ? mode : 0;
3782
3783	if (attr == &dev_attr_suspend_standby_mode.attr ||
3784	    attr == &dev_attr_suspend_mem_mode.attr ||
3785	    attr == &dev_attr_suspend_disk_mode.attr)
3786		return ops->set_suspend_mode ? mode : 0;
3787
3788	return mode;
3789}
3790
3791static const struct attribute_group regulator_dev_group = {
3792	.attrs = regulator_dev_attrs,
3793	.is_visible = regulator_attr_is_visible,
3794};
3795
3796static const struct attribute_group *regulator_dev_groups[] = {
3797	&regulator_dev_group,
3798	NULL
3799};
3800
3801static void regulator_dev_release(struct device *dev)
3802{
3803	struct regulator_dev *rdev = dev_get_drvdata(dev);
3804
3805	kfree(rdev->constraints);
3806	of_node_put(rdev->dev.of_node);
3807	kfree(rdev);
3808}
3809
3810static struct class regulator_class = {
3811	.name = "regulator",
3812	.dev_release = regulator_dev_release,
3813	.dev_groups = regulator_dev_groups,
3814};
3815
3816static void rdev_init_debugfs(struct regulator_dev *rdev)
3817{
3818	struct device *parent = rdev->dev.parent;
3819	const char *rname = rdev_get_name(rdev);
3820	char name[NAME_MAX];
3821
3822	/* Avoid duplicate debugfs directory names */
3823	if (parent && rname == rdev->desc->name) {
3824		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3825			 rname);
3826		rname = name;
3827	}
3828
3829	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3830	if (!rdev->debugfs) {
3831		rdev_warn(rdev, "Failed to create debugfs directory\n");
3832		return;
3833	}
3834
3835	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3836			   &rdev->use_count);
3837	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3838			   &rdev->open_count);
3839	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3840			   &rdev->bypass_count);
3841}
3842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3843/**
3844 * regulator_register - register regulator
3845 * @regulator_desc: regulator to register
3846 * @cfg: runtime configuration for regulator
3847 *
3848 * Called by regulator drivers to register a regulator.
3849 * Returns a valid pointer to struct regulator_dev on success
3850 * or an ERR_PTR() on error.
3851 */
3852struct regulator_dev *
3853regulator_register(const struct regulator_desc *regulator_desc,
3854		   const struct regulator_config *cfg)
3855{
3856	const struct regulation_constraints *constraints = NULL;
3857	const struct regulator_init_data *init_data;
3858	struct regulator_config *config = NULL;
3859	static atomic_t regulator_no = ATOMIC_INIT(-1);
3860	struct regulator_dev *rdev;
 
 
3861	struct device *dev;
3862	int ret, i;
3863
3864	if (regulator_desc == NULL || cfg == NULL)
3865		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
3866
3867	dev = cfg->dev;
3868	WARN_ON(!dev);
3869
3870	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3871		return ERR_PTR(-EINVAL);
 
 
3872
3873	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3874	    regulator_desc->type != REGULATOR_CURRENT)
3875		return ERR_PTR(-EINVAL);
 
 
3876
3877	/* Only one of each should be implemented */
3878	WARN_ON(regulator_desc->ops->get_voltage &&
3879		regulator_desc->ops->get_voltage_sel);
3880	WARN_ON(regulator_desc->ops->set_voltage &&
3881		regulator_desc->ops->set_voltage_sel);
3882
3883	/* If we're using selectors we must implement list_voltage. */
3884	if (regulator_desc->ops->get_voltage_sel &&
3885	    !regulator_desc->ops->list_voltage) {
3886		return ERR_PTR(-EINVAL);
 
3887	}
3888	if (regulator_desc->ops->set_voltage_sel &&
3889	    !regulator_desc->ops->list_voltage) {
3890		return ERR_PTR(-EINVAL);
 
3891	}
3892
3893	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3894	if (rdev == NULL)
3895		return ERR_PTR(-ENOMEM);
 
 
3896
3897	/*
3898	 * Duplicate the config so the driver could override it after
3899	 * parsing init data.
3900	 */
3901	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3902	if (config == NULL) {
3903		kfree(rdev);
3904		return ERR_PTR(-ENOMEM);
 
3905	}
3906
3907	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3908					       &rdev->dev.of_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3909	if (!init_data) {
3910		init_data = config->init_data;
3911		rdev->dev.of_node = of_node_get(config->of_node);
3912	}
3913
3914	mutex_lock(&regulator_list_mutex);
3915
3916	mutex_init(&rdev->mutex);
3917	rdev->reg_data = config->driver_data;
3918	rdev->owner = regulator_desc->owner;
3919	rdev->desc = regulator_desc;
3920	if (config->regmap)
3921		rdev->regmap = config->regmap;
3922	else if (dev_get_regmap(dev, NULL))
3923		rdev->regmap = dev_get_regmap(dev, NULL);
3924	else if (dev->parent)
3925		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3926	INIT_LIST_HEAD(&rdev->consumer_list);
3927	INIT_LIST_HEAD(&rdev->list);
3928	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3929	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3930
3931	/* preform any regulator specific init */
3932	if (init_data && init_data->regulator_init) {
3933		ret = init_data->regulator_init(rdev->reg_data);
3934		if (ret < 0)
3935			goto clean;
3936	}
3937
3938	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3939	    gpio_is_valid(config->ena_gpio)) {
3940		ret = regulator_ena_gpio_request(rdev, config);
 
3941		if (ret != 0) {
3942			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3943				 config->ena_gpio, ret);
3944			goto clean;
3945		}
 
 
 
3946	}
3947
3948	/* register with sysfs */
3949	rdev->dev.class = &regulator_class;
3950	rdev->dev.parent = dev;
3951	dev_set_name(&rdev->dev, "regulator.%lu",
3952		    (unsigned long) atomic_inc_return(&regulator_no));
3953	ret = device_register(&rdev->dev);
3954	if (ret != 0) {
3955		put_device(&rdev->dev);
3956		goto wash;
3957	}
3958
3959	dev_set_drvdata(&rdev->dev, rdev);
3960
3961	/* set regulator constraints */
3962	if (init_data)
3963		constraints = &init_data->constraints;
3964
3965	ret = set_machine_constraints(rdev, constraints);
3966	if (ret < 0)
3967		goto scrub;
3968
3969	if (init_data && init_data->supply_regulator)
3970		rdev->supply_name = init_data->supply_regulator;
3971	else if (regulator_desc->supply_name)
3972		rdev->supply_name = regulator_desc->supply_name;
3973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3974	/* add consumers devices */
3975	if (init_data) {
 
3976		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3977			ret = set_consumer_device_supply(rdev,
3978				init_data->consumer_supplies[i].dev_name,
3979				init_data->consumer_supplies[i].supply);
3980			if (ret < 0) {
 
3981				dev_err(dev, "Failed to set supply %s\n",
3982					init_data->consumer_supplies[i].supply);
3983				goto unset_supplies;
3984			}
3985		}
 
 
 
 
 
 
 
 
 
 
 
 
 
3986	}
3987
3988	rdev_init_debugfs(rdev);
3989out:
 
 
 
3990	mutex_unlock(&regulator_list_mutex);
 
 
 
 
3991	kfree(config);
3992	return rdev;
3993
3994unset_supplies:
 
3995	unset_regulator_supplies(rdev);
3996
3997scrub:
3998	regulator_ena_gpio_free(rdev);
3999	device_unregister(&rdev->dev);
4000	/* device core frees rdev */
4001	rdev = ERR_PTR(ret);
4002	goto out;
4003
4004wash:
 
 
4005	regulator_ena_gpio_free(rdev);
 
4006clean:
 
 
4007	kfree(rdev);
4008	rdev = ERR_PTR(ret);
4009	goto out;
 
 
 
4010}
4011EXPORT_SYMBOL_GPL(regulator_register);
4012
4013/**
4014 * regulator_unregister - unregister regulator
4015 * @rdev: regulator to unregister
4016 *
4017 * Called by regulator drivers to unregister a regulator.
4018 */
4019void regulator_unregister(struct regulator_dev *rdev)
4020{
4021	if (rdev == NULL)
4022		return;
4023
4024	if (rdev->supply) {
4025		while (rdev->use_count--)
4026			regulator_disable(rdev->supply);
4027		regulator_put(rdev->supply);
4028	}
 
 
 
4029	mutex_lock(&regulator_list_mutex);
 
4030	debugfs_remove_recursive(rdev->debugfs);
4031	flush_work(&rdev->disable_work.work);
4032	WARN_ON(rdev->open_count);
 
4033	unset_regulator_supplies(rdev);
4034	list_del(&rdev->list);
4035	mutex_unlock(&regulator_list_mutex);
4036	regulator_ena_gpio_free(rdev);
4037	device_unregister(&rdev->dev);
 
 
4038}
4039EXPORT_SYMBOL_GPL(regulator_unregister);
4040
4041static int _regulator_suspend_prepare(struct device *dev, void *data)
 
 
 
 
 
 
 
4042{
4043	struct regulator_dev *rdev = dev_to_rdev(dev);
4044	const suspend_state_t *state = data;
4045	int ret;
4046
4047	mutex_lock(&rdev->mutex);
4048	ret = suspend_prepare(rdev, *state);
4049	mutex_unlock(&rdev->mutex);
4050
4051	return ret;
4052}
4053
4054/**
4055 * regulator_suspend_prepare - prepare regulators for system wide suspend
4056 * @state: system suspend state
4057 *
4058 * Configure each regulator with it's suspend operating parameters for state.
4059 * This will usually be called by machine suspend code prior to supending.
4060 */
4061int regulator_suspend_prepare(suspend_state_t state)
4062{
4063	/* ON is handled by regulator active state */
4064	if (state == PM_SUSPEND_ON)
4065		return -EINVAL;
 
4066
4067	return class_for_each_device(&regulator_class, NULL, &state,
4068				     _regulator_suspend_prepare);
4069}
4070EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4071
4072static int _regulator_suspend_finish(struct device *dev, void *data)
4073{
4074	struct regulator_dev *rdev = dev_to_rdev(dev);
4075	int ret;
4076
4077	mutex_lock(&rdev->mutex);
4078	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4079		if (!_regulator_is_enabled(rdev)) {
4080			ret = _regulator_do_enable(rdev);
4081			if (ret)
4082				dev_err(dev,
4083					"Failed to resume regulator %d\n",
4084					ret);
4085		}
4086	} else {
4087		if (!have_full_constraints())
4088			goto unlock;
4089		if (!_regulator_is_enabled(rdev))
4090			goto unlock;
4091
4092		ret = _regulator_do_disable(rdev);
4093		if (ret)
4094			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4095	}
4096unlock:
4097	mutex_unlock(&rdev->mutex);
4098
4099	/* Keep processing regulators in spite of any errors */
4100	return 0;
4101}
 
4102
4103/**
4104 * regulator_suspend_finish - resume regulators from system wide suspend
4105 *
4106 * Turn on regulators that might be turned off by regulator_suspend_prepare
4107 * and that should be turned on according to the regulators properties.
4108 */
4109int regulator_suspend_finish(void)
4110{
4111	return class_for_each_device(&regulator_class, NULL, NULL,
4112				     _regulator_suspend_finish);
4113}
4114EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4116/**
4117 * regulator_has_full_constraints - the system has fully specified constraints
4118 *
4119 * Calling this function will cause the regulator API to disable all
4120 * regulators which have a zero use count and don't have an always_on
4121 * constraint in a late_initcall.
4122 *
4123 * The intention is that this will become the default behaviour in a
4124 * future kernel release so users are encouraged to use this facility
4125 * now.
4126 */
4127void regulator_has_full_constraints(void)
4128{
4129	has_full_constraints = 1;
4130}
4131EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4132
4133/**
4134 * rdev_get_drvdata - get rdev regulator driver data
4135 * @rdev: regulator
4136 *
4137 * Get rdev regulator driver private data. This call can be used in the
4138 * regulator driver context.
4139 */
4140void *rdev_get_drvdata(struct regulator_dev *rdev)
4141{
4142	return rdev->reg_data;
4143}
4144EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4145
4146/**
4147 * regulator_get_drvdata - get regulator driver data
4148 * @regulator: regulator
4149 *
4150 * Get regulator driver private data. This call can be used in the consumer
4151 * driver context when non API regulator specific functions need to be called.
4152 */
4153void *regulator_get_drvdata(struct regulator *regulator)
4154{
4155	return regulator->rdev->reg_data;
4156}
4157EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4158
4159/**
4160 * regulator_set_drvdata - set regulator driver data
4161 * @regulator: regulator
4162 * @data: data
4163 */
4164void regulator_set_drvdata(struct regulator *regulator, void *data)
4165{
4166	regulator->rdev->reg_data = data;
4167}
4168EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4169
4170/**
4171 * regulator_get_id - get regulator ID
4172 * @rdev: regulator
4173 */
4174int rdev_get_id(struct regulator_dev *rdev)
4175{
4176	return rdev->desc->id;
4177}
4178EXPORT_SYMBOL_GPL(rdev_get_id);
4179
4180struct device *rdev_get_dev(struct regulator_dev *rdev)
4181{
4182	return &rdev->dev;
4183}
4184EXPORT_SYMBOL_GPL(rdev_get_dev);
4185
 
 
 
 
 
 
4186void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4187{
4188	return reg_init_data->driver_data;
4189}
4190EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4191
4192#ifdef CONFIG_DEBUG_FS
4193static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4194				    size_t count, loff_t *ppos)
4195{
4196	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4197	ssize_t len, ret = 0;
4198	struct regulator_map *map;
4199
4200	if (!buf)
4201		return -ENOMEM;
4202
4203	list_for_each_entry(map, &regulator_map_list, list) {
4204		len = snprintf(buf + ret, PAGE_SIZE - ret,
4205			       "%s -> %s.%s\n",
4206			       rdev_get_name(map->regulator), map->dev_name,
4207			       map->supply);
4208		if (len >= 0)
4209			ret += len;
4210		if (ret > PAGE_SIZE) {
4211			ret = PAGE_SIZE;
4212			break;
4213		}
4214	}
4215
4216	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4217
4218	kfree(buf);
4219
4220	return ret;
4221}
4222#endif
4223
4224static const struct file_operations supply_map_fops = {
4225#ifdef CONFIG_DEBUG_FS
4226	.read = supply_map_read_file,
4227	.llseek = default_llseek,
4228#endif
4229};
4230
4231#ifdef CONFIG_DEBUG_FS
4232struct summary_data {
4233	struct seq_file *s;
4234	struct regulator_dev *parent;
4235	int level;
4236};
4237
4238static void regulator_summary_show_subtree(struct seq_file *s,
4239					   struct regulator_dev *rdev,
4240					   int level);
4241
4242static int regulator_summary_show_children(struct device *dev, void *data)
4243{
4244	struct regulator_dev *rdev = dev_to_rdev(dev);
4245	struct summary_data *summary_data = data;
4246
4247	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4248		regulator_summary_show_subtree(summary_data->s, rdev,
4249					       summary_data->level + 1);
4250
4251	return 0;
4252}
4253
4254static void regulator_summary_show_subtree(struct seq_file *s,
4255					   struct regulator_dev *rdev,
4256					   int level)
4257{
4258	struct regulation_constraints *c;
4259	struct regulator *consumer;
4260	struct summary_data summary_data;
 
4261
4262	if (!rdev)
4263		return;
4264
4265	seq_printf(s, "%*s%-*s %3d %4d %6d ",
 
4266		   level * 3 + 1, "",
4267		   30 - level * 3, rdev_get_name(rdev),
4268		   rdev->use_count, rdev->open_count, rdev->bypass_count);
 
4269
4270	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4271	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
 
4272
4273	c = rdev->constraints;
4274	if (c) {
4275		switch (rdev->desc->type) {
4276		case REGULATOR_VOLTAGE:
4277			seq_printf(s, "%5dmV %5dmV ",
4278				   c->min_uV / 1000, c->max_uV / 1000);
4279			break;
4280		case REGULATOR_CURRENT:
4281			seq_printf(s, "%5dmA %5dmA ",
4282				   c->min_uA / 1000, c->max_uA / 1000);
4283			break;
4284		}
4285	}
4286
4287	seq_puts(s, "\n");
4288
4289	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4290		if (consumer->dev->class == &regulator_class)
4291			continue;
4292
4293		seq_printf(s, "%*s%-*s ",
4294			   (level + 1) * 3 + 1, "",
4295			   30 - (level + 1) * 3, dev_name(consumer->dev));
 
4296
4297		switch (rdev->desc->type) {
4298		case REGULATOR_VOLTAGE:
4299			seq_printf(s, "%37dmV %5dmV",
4300				   consumer->min_uV / 1000,
4301				   consumer->max_uV / 1000);
 
 
 
 
4302			break;
4303		case REGULATOR_CURRENT:
4304			break;
4305		}
4306
4307		seq_puts(s, "\n");
4308	}
4309
4310	summary_data.s = s;
4311	summary_data.level = level;
4312	summary_data.parent = rdev;
4313
4314	class_for_each_device(&regulator_class, NULL, &summary_data,
4315			      regulator_summary_show_children);
4316}
4317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4318static int regulator_summary_show_roots(struct device *dev, void *data)
4319{
4320	struct regulator_dev *rdev = dev_to_rdev(dev);
4321	struct seq_file *s = data;
4322
4323	if (!rdev->supply)
4324		regulator_summary_show_subtree(s, rdev, 0);
4325
4326	return 0;
4327}
4328
4329static int regulator_summary_show(struct seq_file *s, void *data)
4330{
4331	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4332	seq_puts(s, "-------------------------------------------------------------------------------\n");
 
 
 
 
4333
4334	class_for_each_device(&regulator_class, NULL, s,
4335			      regulator_summary_show_roots);
4336
4337	return 0;
4338}
4339
4340static int regulator_summary_open(struct inode *inode, struct file *file)
4341{
4342	return single_open(file, regulator_summary_show, inode->i_private);
4343}
4344#endif
4345
4346static const struct file_operations regulator_summary_fops = {
4347#ifdef CONFIG_DEBUG_FS
4348	.open		= regulator_summary_open,
4349	.read		= seq_read,
4350	.llseek		= seq_lseek,
4351	.release	= single_release,
4352#endif
4353};
4354
4355static int __init regulator_init(void)
4356{
4357	int ret;
4358
4359	ret = class_register(&regulator_class);
4360
4361	debugfs_root = debugfs_create_dir("regulator", NULL);
4362	if (!debugfs_root)
4363		pr_warn("regulator: Failed to create debugfs directory\n");
4364
 
4365	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4366			    &supply_map_fops);
4367
4368	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4369			    NULL, &regulator_summary_fops);
4370
4371	regulator_dummy_init();
4372
 
 
4373	return ret;
4374}
4375
4376/* init early to allow our consumers to complete system booting */
4377core_initcall(regulator_init);
4378
4379static int __init regulator_late_cleanup(struct device *dev, void *data)
4380{
4381	struct regulator_dev *rdev = dev_to_rdev(dev);
4382	const struct regulator_ops *ops = rdev->desc->ops;
4383	struct regulation_constraints *c = rdev->constraints;
4384	int enabled, ret;
4385
4386	if (c && c->always_on)
4387		return 0;
4388
4389	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4390		return 0;
4391
4392	mutex_lock(&rdev->mutex);
4393
4394	if (rdev->use_count)
4395		goto unlock;
4396
4397	/* If we can't read the status assume it's on. */
4398	if (ops->is_enabled)
4399		enabled = ops->is_enabled(rdev);
4400	else
4401		enabled = 1;
4402
4403	if (!enabled)
4404		goto unlock;
4405
4406	if (have_full_constraints()) {
4407		/* We log since this may kill the system if it goes
4408		 * wrong. */
4409		rdev_info(rdev, "disabling\n");
4410		ret = _regulator_do_disable(rdev);
4411		if (ret != 0)
4412			rdev_err(rdev, "couldn't disable: %d\n", ret);
4413	} else {
4414		/* The intention is that in future we will
4415		 * assume that full constraints are provided
4416		 * so warn even if we aren't going to do
4417		 * anything here.
4418		 */
4419		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4420	}
4421
4422unlock:
4423	mutex_unlock(&rdev->mutex);
4424
4425	return 0;
4426}
4427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4428static int __init regulator_init_complete(void)
4429{
4430	/*
4431	 * Since DT doesn't provide an idiomatic mechanism for
4432	 * enabling full constraints and since it's much more natural
4433	 * with DT to provide them just assume that a DT enabled
4434	 * system has full constraints.
4435	 */
4436	if (of_have_populated_dt())
4437		has_full_constraints = true;
4438
4439	/* If we have a full configuration then disable any regulators
4440	 * we have permission to change the status for and which are
4441	 * not in use or always_on.  This is effectively the default
4442	 * for DT and ACPI as they have full constraints.
 
 
 
 
 
 
4443	 */
4444	class_for_each_device(&regulator_class, NULL, NULL,
4445			      regulator_late_cleanup);
4446
4447	return 0;
4448}
4449late_initcall_sync(regulator_init_complete);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
 
 
 
 
 
 
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
 
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
  35
  36#define rdev_crit(rdev, fmt, ...)					\
  37	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  38#define rdev_err(rdev, fmt, ...)					\
  39	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  40#define rdev_warn(rdev, fmt, ...)					\
  41	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_info(rdev, fmt, ...)					\
  43	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_dbg(rdev, fmt, ...)					\
  45	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46
  47static DEFINE_WW_CLASS(regulator_ww_class);
  48static DEFINE_MUTEX(regulator_nesting_mutex);
  49static DEFINE_MUTEX(regulator_list_mutex);
  50static LIST_HEAD(regulator_map_list);
  51static LIST_HEAD(regulator_ena_gpio_list);
  52static LIST_HEAD(regulator_supply_alias_list);
  53static LIST_HEAD(regulator_coupler_list);
  54static bool has_full_constraints;
  55
  56static struct dentry *debugfs_root;
  57
 
 
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator_enable_gpio
  72 *
  73 * Management for shared enable GPIO pin
  74 */
  75struct regulator_enable_gpio {
  76	struct list_head list;
  77	struct gpio_desc *gpiod;
  78	u32 enable_count;	/* a number of enabled shared GPIO */
  79	u32 request_count;	/* a number of requested shared GPIO */
 
  80};
  81
  82/*
  83 * struct regulator_supply_alias
  84 *
  85 * Used to map lookups for a supply onto an alternative device.
  86 */
  87struct regulator_supply_alias {
  88	struct list_head list;
  89	struct device *src_dev;
  90	const char *src_supply;
  91	struct device *alias_dev;
  92	const char *alias_supply;
  93};
  94
  95static int _regulator_is_enabled(struct regulator_dev *rdev);
  96static int _regulator_disable(struct regulator *regulator);
 
  97static int _regulator_get_current_limit(struct regulator_dev *rdev);
  98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  99static int _notifier_call_chain(struct regulator_dev *rdev,
 100				  unsigned long event, void *data);
 101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 102				     int min_uV, int max_uV);
 103static int regulator_balance_voltage(struct regulator_dev *rdev,
 104				     suspend_state_t state);
 105static struct regulator *create_regulator(struct regulator_dev *rdev,
 106					  struct device *dev,
 107					  const char *supply_name);
 108static void _regulator_put(struct regulator *regulator);
 109
 110const char *rdev_get_name(struct regulator_dev *rdev)
 
 
 
 
 
 111{
 112	if (rdev->constraints && rdev->constraints->name)
 113		return rdev->constraints->name;
 114	else if (rdev->desc->name)
 115		return rdev->desc->name;
 116	else
 117		return "";
 118}
 119
 120static bool have_full_constraints(void)
 121{
 122	return has_full_constraints || of_have_populated_dt();
 123}
 124
 125static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 126{
 127	if (!rdev->constraints) {
 128		rdev_err(rdev, "no constraints\n");
 129		return false;
 130	}
 131
 132	if (rdev->constraints->valid_ops_mask & ops)
 133		return true;
 134
 135	return false;
 136}
 137
 138/**
 139 * regulator_lock_nested - lock a single regulator
 140 * @rdev:		regulator source
 141 * @ww_ctx:		w/w mutex acquire context
 142 *
 143 * This function can be called many times by one task on
 144 * a single regulator and its mutex will be locked only
 145 * once. If a task, which is calling this function is other
 146 * than the one, which initially locked the mutex, it will
 147 * wait on mutex.
 148 */
 149static inline int regulator_lock_nested(struct regulator_dev *rdev,
 150					struct ww_acquire_ctx *ww_ctx)
 151{
 152	bool lock = false;
 153	int ret = 0;
 154
 155	mutex_lock(&regulator_nesting_mutex);
 156
 157	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 158		if (rdev->mutex_owner == current)
 159			rdev->ref_cnt++;
 160		else
 161			lock = true;
 162
 163		if (lock) {
 164			mutex_unlock(&regulator_nesting_mutex);
 165			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 166			mutex_lock(&regulator_nesting_mutex);
 167		}
 168	} else {
 169		lock = true;
 170	}
 171
 172	if (lock && ret != -EDEADLK) {
 173		rdev->ref_cnt++;
 174		rdev->mutex_owner = current;
 175	}
 176
 177	mutex_unlock(&regulator_nesting_mutex);
 178
 179	return ret;
 180}
 181
 182/**
 183 * regulator_lock - lock a single regulator
 184 * @rdev:		regulator source
 185 *
 186 * This function can be called many times by one task on
 187 * a single regulator and its mutex will be locked only
 188 * once. If a task, which is calling this function is other
 189 * than the one, which initially locked the mutex, it will
 190 * wait on mutex.
 191 */
 192void regulator_lock(struct regulator_dev *rdev)
 193{
 194	regulator_lock_nested(rdev, NULL);
 195}
 196EXPORT_SYMBOL_GPL(regulator_lock);
 197
 198/**
 199 * regulator_unlock - unlock a single regulator
 200 * @rdev:		regulator_source
 201 *
 202 * This function unlocks the mutex when the
 203 * reference counter reaches 0.
 204 */
 205void regulator_unlock(struct regulator_dev *rdev)
 206{
 207	mutex_lock(&regulator_nesting_mutex);
 208
 209	if (--rdev->ref_cnt == 0) {
 210		rdev->mutex_owner = NULL;
 211		ww_mutex_unlock(&rdev->mutex);
 212	}
 213
 214	WARN_ON_ONCE(rdev->ref_cnt < 0);
 215
 216	mutex_unlock(&regulator_nesting_mutex);
 217}
 218EXPORT_SYMBOL_GPL(regulator_unlock);
 219
 220static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 221{
 222	struct regulator_dev *c_rdev;
 223	int i;
 224
 225	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 226		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 227
 228		if (rdev->supply->rdev == c_rdev)
 229			return true;
 230	}
 231
 232	return false;
 233}
 234
 235static void regulator_unlock_recursive(struct regulator_dev *rdev,
 236				       unsigned int n_coupled)
 237{
 238	struct regulator_dev *c_rdev;
 239	int i;
 240
 241	for (i = n_coupled; i > 0; i--) {
 242		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 243
 244		if (!c_rdev)
 245			continue;
 246
 247		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
 248			regulator_unlock_recursive(
 249					c_rdev->supply->rdev,
 250					c_rdev->coupling_desc.n_coupled);
 251
 252		regulator_unlock(c_rdev);
 253	}
 254}
 255
 256static int regulator_lock_recursive(struct regulator_dev *rdev,
 257				    struct regulator_dev **new_contended_rdev,
 258				    struct regulator_dev **old_contended_rdev,
 259				    struct ww_acquire_ctx *ww_ctx)
 260{
 261	struct regulator_dev *c_rdev;
 262	int i, err;
 263
 264	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 265		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 266
 267		if (!c_rdev)
 268			continue;
 269
 270		if (c_rdev != *old_contended_rdev) {
 271			err = regulator_lock_nested(c_rdev, ww_ctx);
 272			if (err) {
 273				if (err == -EDEADLK) {
 274					*new_contended_rdev = c_rdev;
 275					goto err_unlock;
 276				}
 277
 278				/* shouldn't happen */
 279				WARN_ON_ONCE(err != -EALREADY);
 280			}
 281		} else {
 282			*old_contended_rdev = NULL;
 283		}
 284
 285		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 286			err = regulator_lock_recursive(c_rdev->supply->rdev,
 287						       new_contended_rdev,
 288						       old_contended_rdev,
 289						       ww_ctx);
 290			if (err) {
 291				regulator_unlock(c_rdev);
 292				goto err_unlock;
 293			}
 294		}
 295	}
 296
 297	return 0;
 298
 299err_unlock:
 300	regulator_unlock_recursive(rdev, i);
 301
 302	return err;
 303}
 304
 305/**
 306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 307 *				regulators
 308 * @rdev:			regulator source
 309 * @ww_ctx:			w/w mutex acquire context
 310 *
 311 * Unlock all regulators related with rdev by coupling or supplying.
 312 */
 313static void regulator_unlock_dependent(struct regulator_dev *rdev,
 314				       struct ww_acquire_ctx *ww_ctx)
 315{
 316	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 317	ww_acquire_fini(ww_ctx);
 318}
 319
 320/**
 321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 322 * @rdev:			regulator source
 323 * @ww_ctx:			w/w mutex acquire context
 324 *
 325 * This function as a wrapper on regulator_lock_recursive(), which locks
 326 * all regulators related with rdev by coupling or supplying.
 327 */
 328static void regulator_lock_dependent(struct regulator_dev *rdev,
 329				     struct ww_acquire_ctx *ww_ctx)
 330{
 331	struct regulator_dev *new_contended_rdev = NULL;
 332	struct regulator_dev *old_contended_rdev = NULL;
 333	int err;
 334
 335	mutex_lock(&regulator_list_mutex);
 336
 337	ww_acquire_init(ww_ctx, &regulator_ww_class);
 338
 339	do {
 340		if (new_contended_rdev) {
 341			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 342			old_contended_rdev = new_contended_rdev;
 343			old_contended_rdev->ref_cnt++;
 344		}
 345
 346		err = regulator_lock_recursive(rdev,
 347					       &new_contended_rdev,
 348					       &old_contended_rdev,
 349					       ww_ctx);
 350
 351		if (old_contended_rdev)
 352			regulator_unlock(old_contended_rdev);
 353
 354	} while (err == -EDEADLK);
 355
 356	ww_acquire_done(ww_ctx);
 357
 358	mutex_unlock(&regulator_list_mutex);
 359}
 360
 361/**
 362 * of_get_child_regulator - get a child regulator device node
 363 * based on supply name
 364 * @parent: Parent device node
 365 * @prop_name: Combination regulator supply name and "-supply"
 366 *
 367 * Traverse all child nodes.
 368 * Extract the child regulator device node corresponding to the supply name.
 369 * returns the device node corresponding to the regulator if found, else
 370 * returns NULL.
 371 */
 372static struct device_node *of_get_child_regulator(struct device_node *parent,
 373						  const char *prop_name)
 374{
 375	struct device_node *regnode = NULL;
 376	struct device_node *child = NULL;
 377
 378	for_each_child_of_node(parent, child) {
 379		regnode = of_parse_phandle(child, prop_name, 0);
 380
 381		if (!regnode) {
 382			regnode = of_get_child_regulator(child, prop_name);
 383			if (regnode)
 384				goto err_node_put;
 385		} else {
 386			goto err_node_put;
 387		}
 388	}
 389	return NULL;
 390
 391err_node_put:
 392	of_node_put(child);
 393	return regnode;
 394}
 395
 396/**
 397 * of_get_regulator - get a regulator device node based on supply name
 398 * @dev: Device pointer for the consumer (of regulator) device
 399 * @supply: regulator supply name
 400 *
 401 * Extract the regulator device node corresponding to the supply name.
 402 * returns the device node corresponding to the regulator if found, else
 403 * returns NULL.
 404 */
 405static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 406{
 407	struct device_node *regnode = NULL;
 408	char prop_name[32]; /* 32 is max size of property name */
 409
 410	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 411
 412	snprintf(prop_name, 32, "%s-supply", supply);
 413	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 414
 415	if (!regnode) {
 416		regnode = of_get_child_regulator(dev->of_node, prop_name);
 417		if (regnode)
 418			return regnode;
 419
 420		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 421				prop_name, dev->of_node);
 422		return NULL;
 423	}
 424	return regnode;
 425}
 426
 
 
 
 
 
 
 
 
 
 
 
 427/* Platform voltage constraint check */
 428int regulator_check_voltage(struct regulator_dev *rdev,
 429			    int *min_uV, int *max_uV)
 430{
 431	BUG_ON(*min_uV > *max_uV);
 432
 433	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 
 
 
 
 434		rdev_err(rdev, "voltage operation not allowed\n");
 435		return -EPERM;
 436	}
 437
 438	if (*max_uV > rdev->constraints->max_uV)
 439		*max_uV = rdev->constraints->max_uV;
 440	if (*min_uV < rdev->constraints->min_uV)
 441		*min_uV = rdev->constraints->min_uV;
 442
 443	if (*min_uV > *max_uV) {
 444		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 445			 *min_uV, *max_uV);
 446		return -EINVAL;
 447	}
 448
 449	return 0;
 450}
 451
 452/* return 0 if the state is valid */
 453static int regulator_check_states(suspend_state_t state)
 454{
 455	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 456}
 457
 458/* Make sure we select a voltage that suits the needs of all
 459 * regulator consumers
 460 */
 461int regulator_check_consumers(struct regulator_dev *rdev,
 462			      int *min_uV, int *max_uV,
 463			      suspend_state_t state)
 464{
 465	struct regulator *regulator;
 466	struct regulator_voltage *voltage;
 467
 468	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 469		voltage = &regulator->voltage[state];
 470		/*
 471		 * Assume consumers that didn't say anything are OK
 472		 * with anything in the constraint range.
 473		 */
 474		if (!voltage->min_uV && !voltage->max_uV)
 475			continue;
 476
 477		if (*max_uV > voltage->max_uV)
 478			*max_uV = voltage->max_uV;
 479		if (*min_uV < voltage->min_uV)
 480			*min_uV = voltage->min_uV;
 481	}
 482
 483	if (*min_uV > *max_uV) {
 484		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 485			*min_uV, *max_uV);
 486		return -EINVAL;
 487	}
 488
 489	return 0;
 490}
 491
 492/* current constraint check */
 493static int regulator_check_current_limit(struct regulator_dev *rdev,
 494					int *min_uA, int *max_uA)
 495{
 496	BUG_ON(*min_uA > *max_uA);
 497
 498	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 
 
 
 
 499		rdev_err(rdev, "current operation not allowed\n");
 500		return -EPERM;
 501	}
 502
 503	if (*max_uA > rdev->constraints->max_uA)
 504		*max_uA = rdev->constraints->max_uA;
 505	if (*min_uA < rdev->constraints->min_uA)
 506		*min_uA = rdev->constraints->min_uA;
 507
 508	if (*min_uA > *max_uA) {
 509		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 510			 *min_uA, *max_uA);
 511		return -EINVAL;
 512	}
 513
 514	return 0;
 515}
 516
 517/* operating mode constraint check */
 518static int regulator_mode_constrain(struct regulator_dev *rdev,
 519				    unsigned int *mode)
 520{
 521	switch (*mode) {
 522	case REGULATOR_MODE_FAST:
 523	case REGULATOR_MODE_NORMAL:
 524	case REGULATOR_MODE_IDLE:
 525	case REGULATOR_MODE_STANDBY:
 526		break;
 527	default:
 528		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 529		return -EINVAL;
 530	}
 531
 532	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 
 
 
 
 533		rdev_err(rdev, "mode operation not allowed\n");
 534		return -EPERM;
 535	}
 536
 537	/* The modes are bitmasks, the most power hungry modes having
 538	 * the lowest values. If the requested mode isn't supported
 539	 * try higher modes. */
 540	while (*mode) {
 541		if (rdev->constraints->valid_modes_mask & *mode)
 542			return 0;
 543		*mode /= 2;
 544	}
 545
 546	return -EINVAL;
 547}
 548
 549static inline struct regulator_state *
 550regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 551{
 552	if (rdev->constraints == NULL)
 553		return NULL;
 554
 555	switch (state) {
 556	case PM_SUSPEND_STANDBY:
 557		return &rdev->constraints->state_standby;
 558	case PM_SUSPEND_MEM:
 559		return &rdev->constraints->state_mem;
 560	case PM_SUSPEND_MAX:
 561		return &rdev->constraints->state_disk;
 562	default:
 563		return NULL;
 564	}
 
 565}
 566
 567static ssize_t regulator_uV_show(struct device *dev,
 568				struct device_attribute *attr, char *buf)
 569{
 570	struct regulator_dev *rdev = dev_get_drvdata(dev);
 571	int uV;
 572
 573	regulator_lock(rdev);
 574	uV = regulator_get_voltage_rdev(rdev);
 575	regulator_unlock(rdev);
 576
 577	if (uV < 0)
 578		return uV;
 579	return sprintf(buf, "%d\n", uV);
 580}
 581static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 582
 583static ssize_t regulator_uA_show(struct device *dev,
 584				struct device_attribute *attr, char *buf)
 585{
 586	struct regulator_dev *rdev = dev_get_drvdata(dev);
 587
 588	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 589}
 590static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 591
 592static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 593			 char *buf)
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596
 597	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 598}
 599static DEVICE_ATTR_RO(name);
 600
 601static const char *regulator_opmode_to_str(int mode)
 602{
 603	switch (mode) {
 604	case REGULATOR_MODE_FAST:
 605		return "fast";
 606	case REGULATOR_MODE_NORMAL:
 607		return "normal";
 608	case REGULATOR_MODE_IDLE:
 609		return "idle";
 610	case REGULATOR_MODE_STANDBY:
 611		return "standby";
 612	}
 613	return "unknown";
 614}
 615
 616static ssize_t regulator_print_opmode(char *buf, int mode)
 617{
 618	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 619}
 620
 621static ssize_t regulator_opmode_show(struct device *dev,
 622				    struct device_attribute *attr, char *buf)
 623{
 624	struct regulator_dev *rdev = dev_get_drvdata(dev);
 625
 626	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 627}
 628static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 629
 630static ssize_t regulator_print_state(char *buf, int state)
 631{
 632	if (state > 0)
 633		return sprintf(buf, "enabled\n");
 634	else if (state == 0)
 635		return sprintf(buf, "disabled\n");
 636	else
 637		return sprintf(buf, "unknown\n");
 638}
 639
 640static ssize_t regulator_state_show(struct device *dev,
 641				   struct device_attribute *attr, char *buf)
 642{
 643	struct regulator_dev *rdev = dev_get_drvdata(dev);
 644	ssize_t ret;
 645
 646	regulator_lock(rdev);
 647	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 648	regulator_unlock(rdev);
 649
 650	return ret;
 651}
 652static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 653
 654static ssize_t regulator_status_show(struct device *dev,
 655				   struct device_attribute *attr, char *buf)
 656{
 657	struct regulator_dev *rdev = dev_get_drvdata(dev);
 658	int status;
 659	char *label;
 660
 661	status = rdev->desc->ops->get_status(rdev);
 662	if (status < 0)
 663		return status;
 664
 665	switch (status) {
 666	case REGULATOR_STATUS_OFF:
 667		label = "off";
 668		break;
 669	case REGULATOR_STATUS_ON:
 670		label = "on";
 671		break;
 672	case REGULATOR_STATUS_ERROR:
 673		label = "error";
 674		break;
 675	case REGULATOR_STATUS_FAST:
 676		label = "fast";
 677		break;
 678	case REGULATOR_STATUS_NORMAL:
 679		label = "normal";
 680		break;
 681	case REGULATOR_STATUS_IDLE:
 682		label = "idle";
 683		break;
 684	case REGULATOR_STATUS_STANDBY:
 685		label = "standby";
 686		break;
 687	case REGULATOR_STATUS_BYPASS:
 688		label = "bypass";
 689		break;
 690	case REGULATOR_STATUS_UNDEFINED:
 691		label = "undefined";
 692		break;
 693	default:
 694		return -ERANGE;
 695	}
 696
 697	return sprintf(buf, "%s\n", label);
 698}
 699static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 700
 701static ssize_t regulator_min_uA_show(struct device *dev,
 702				    struct device_attribute *attr, char *buf)
 703{
 704	struct regulator_dev *rdev = dev_get_drvdata(dev);
 705
 706	if (!rdev->constraints)
 707		return sprintf(buf, "constraint not defined\n");
 708
 709	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 710}
 711static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 712
 713static ssize_t regulator_max_uA_show(struct device *dev,
 714				    struct device_attribute *attr, char *buf)
 715{
 716	struct regulator_dev *rdev = dev_get_drvdata(dev);
 717
 718	if (!rdev->constraints)
 719		return sprintf(buf, "constraint not defined\n");
 720
 721	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 722}
 723static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 724
 725static ssize_t regulator_min_uV_show(struct device *dev,
 726				    struct device_attribute *attr, char *buf)
 727{
 728	struct regulator_dev *rdev = dev_get_drvdata(dev);
 729
 730	if (!rdev->constraints)
 731		return sprintf(buf, "constraint not defined\n");
 732
 733	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 734}
 735static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 736
 737static ssize_t regulator_max_uV_show(struct device *dev,
 738				    struct device_attribute *attr, char *buf)
 739{
 740	struct regulator_dev *rdev = dev_get_drvdata(dev);
 741
 742	if (!rdev->constraints)
 743		return sprintf(buf, "constraint not defined\n");
 744
 745	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 746}
 747static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 748
 749static ssize_t regulator_total_uA_show(struct device *dev,
 750				      struct device_attribute *attr, char *buf)
 751{
 752	struct regulator_dev *rdev = dev_get_drvdata(dev);
 753	struct regulator *regulator;
 754	int uA = 0;
 755
 756	regulator_lock(rdev);
 757	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 758		if (regulator->enable_count)
 759			uA += regulator->uA_load;
 760	}
 761	regulator_unlock(rdev);
 762	return sprintf(buf, "%d\n", uA);
 763}
 764static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 765
 766static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 767			      char *buf)
 768{
 769	struct regulator_dev *rdev = dev_get_drvdata(dev);
 770	return sprintf(buf, "%d\n", rdev->use_count);
 771}
 772static DEVICE_ATTR_RO(num_users);
 773
 774static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 775			 char *buf)
 776{
 777	struct regulator_dev *rdev = dev_get_drvdata(dev);
 778
 779	switch (rdev->desc->type) {
 780	case REGULATOR_VOLTAGE:
 781		return sprintf(buf, "voltage\n");
 782	case REGULATOR_CURRENT:
 783		return sprintf(buf, "current\n");
 784	}
 785	return sprintf(buf, "unknown\n");
 786}
 787static DEVICE_ATTR_RO(type);
 788
 789static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 790				struct device_attribute *attr, char *buf)
 791{
 792	struct regulator_dev *rdev = dev_get_drvdata(dev);
 793
 794	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 795}
 796static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 797		regulator_suspend_mem_uV_show, NULL);
 798
 799static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 800				struct device_attribute *attr, char *buf)
 801{
 802	struct regulator_dev *rdev = dev_get_drvdata(dev);
 803
 804	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 805}
 806static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 807		regulator_suspend_disk_uV_show, NULL);
 808
 809static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 810				struct device_attribute *attr, char *buf)
 811{
 812	struct regulator_dev *rdev = dev_get_drvdata(dev);
 813
 814	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 815}
 816static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 817		regulator_suspend_standby_uV_show, NULL);
 818
 819static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 820				struct device_attribute *attr, char *buf)
 821{
 822	struct regulator_dev *rdev = dev_get_drvdata(dev);
 823
 824	return regulator_print_opmode(buf,
 825		rdev->constraints->state_mem.mode);
 826}
 827static DEVICE_ATTR(suspend_mem_mode, 0444,
 828		regulator_suspend_mem_mode_show, NULL);
 829
 830static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 831				struct device_attribute *attr, char *buf)
 832{
 833	struct regulator_dev *rdev = dev_get_drvdata(dev);
 834
 835	return regulator_print_opmode(buf,
 836		rdev->constraints->state_disk.mode);
 837}
 838static DEVICE_ATTR(suspend_disk_mode, 0444,
 839		regulator_suspend_disk_mode_show, NULL);
 840
 841static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 842				struct device_attribute *attr, char *buf)
 843{
 844	struct regulator_dev *rdev = dev_get_drvdata(dev);
 845
 846	return regulator_print_opmode(buf,
 847		rdev->constraints->state_standby.mode);
 848}
 849static DEVICE_ATTR(suspend_standby_mode, 0444,
 850		regulator_suspend_standby_mode_show, NULL);
 851
 852static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 853				   struct device_attribute *attr, char *buf)
 854{
 855	struct regulator_dev *rdev = dev_get_drvdata(dev);
 856
 857	return regulator_print_state(buf,
 858			rdev->constraints->state_mem.enabled);
 859}
 860static DEVICE_ATTR(suspend_mem_state, 0444,
 861		regulator_suspend_mem_state_show, NULL);
 862
 863static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 864				   struct device_attribute *attr, char *buf)
 865{
 866	struct regulator_dev *rdev = dev_get_drvdata(dev);
 867
 868	return regulator_print_state(buf,
 869			rdev->constraints->state_disk.enabled);
 870}
 871static DEVICE_ATTR(suspend_disk_state, 0444,
 872		regulator_suspend_disk_state_show, NULL);
 873
 874static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 875				   struct device_attribute *attr, char *buf)
 876{
 877	struct regulator_dev *rdev = dev_get_drvdata(dev);
 878
 879	return regulator_print_state(buf,
 880			rdev->constraints->state_standby.enabled);
 881}
 882static DEVICE_ATTR(suspend_standby_state, 0444,
 883		regulator_suspend_standby_state_show, NULL);
 884
 885static ssize_t regulator_bypass_show(struct device *dev,
 886				     struct device_attribute *attr, char *buf)
 887{
 888	struct regulator_dev *rdev = dev_get_drvdata(dev);
 889	const char *report;
 890	bool bypass;
 891	int ret;
 892
 893	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 894
 895	if (ret != 0)
 896		report = "unknown";
 897	else if (bypass)
 898		report = "enabled";
 899	else
 900		report = "disabled";
 901
 902	return sprintf(buf, "%s\n", report);
 903}
 904static DEVICE_ATTR(bypass, 0444,
 905		   regulator_bypass_show, NULL);
 906
 907/* Calculate the new optimum regulator operating mode based on the new total
 908 * consumer load. All locks held by caller */
 909static int drms_uA_update(struct regulator_dev *rdev)
 910{
 911	struct regulator *sibling;
 912	int current_uA = 0, output_uV, input_uV, err;
 913	unsigned int mode;
 914
 
 
 915	/*
 916	 * first check to see if we can set modes at all, otherwise just
 917	 * tell the consumer everything is OK.
 918	 */
 919	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 920		rdev_dbg(rdev, "DRMS operation not allowed\n");
 921		return 0;
 922	}
 923
 924	if (!rdev->desc->ops->get_optimum_mode &&
 925	    !rdev->desc->ops->set_load)
 926		return 0;
 927
 928	if (!rdev->desc->ops->set_mode &&
 929	    !rdev->desc->ops->set_load)
 930		return -EINVAL;
 931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	/* calc total requested load */
 933	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 934		if (sibling->enable_count)
 935			current_uA += sibling->uA_load;
 936	}
 937
 938	current_uA += rdev->constraints->system_load;
 939
 940	if (rdev->desc->ops->set_load) {
 941		/* set the optimum mode for our new total regulator load */
 942		err = rdev->desc->ops->set_load(rdev, current_uA);
 943		if (err < 0)
 944			rdev_err(rdev, "failed to set load %d\n", current_uA);
 945	} else {
 946		/* get output voltage */
 947		output_uV = regulator_get_voltage_rdev(rdev);
 948		if (output_uV <= 0) {
 949			rdev_err(rdev, "invalid output voltage found\n");
 950			return -EINVAL;
 951		}
 952
 953		/* get input voltage */
 954		input_uV = 0;
 955		if (rdev->supply)
 956			input_uV = regulator_get_voltage(rdev->supply);
 957		if (input_uV <= 0)
 958			input_uV = rdev->constraints->input_uV;
 959		if (input_uV <= 0) {
 960			rdev_err(rdev, "invalid input voltage found\n");
 961			return -EINVAL;
 962		}
 963
 964		/* now get the optimum mode for our new total regulator load */
 965		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 966							 output_uV, current_uA);
 967
 968		/* check the new mode is allowed */
 969		err = regulator_mode_constrain(rdev, &mode);
 970		if (err < 0) {
 971			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 972				 current_uA, input_uV, output_uV);
 973			return err;
 974		}
 975
 976		err = rdev->desc->ops->set_mode(rdev, mode);
 977		if (err < 0)
 978			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 979	}
 980
 981	return err;
 982}
 983
 984static int suspend_set_state(struct regulator_dev *rdev,
 985				    suspend_state_t state)
 986{
 987	int ret = 0;
 988	struct regulator_state *rstate;
 989
 990	rstate = regulator_get_suspend_state(rdev, state);
 991	if (rstate == NULL)
 992		return 0;
 993
 994	/* If we have no suspend mode configuration don't set anything;
 995	 * only warn if the driver implements set_suspend_voltage or
 996	 * set_suspend_mode callback.
 997	 */
 998	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 999	    rstate->enabled != DISABLE_IN_SUSPEND) {
1000		if (rdev->desc->ops->set_suspend_voltage ||
1001		    rdev->desc->ops->set_suspend_mode)
1002			rdev_warn(rdev, "No configuration\n");
1003		return 0;
1004	}
1005
1006	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007		rdev->desc->ops->set_suspend_enable)
 
 
 
 
1008		ret = rdev->desc->ops->set_suspend_enable(rdev);
1009	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010		rdev->desc->ops->set_suspend_disable)
1011		ret = rdev->desc->ops->set_suspend_disable(rdev);
1012	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013		ret = 0;
1014
1015	if (ret < 0) {
1016		rdev_err(rdev, "failed to enabled/disable\n");
1017		return ret;
1018	}
1019
1020	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022		if (ret < 0) {
1023			rdev_err(rdev, "failed to set voltage\n");
1024			return ret;
1025		}
1026	}
1027
1028	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030		if (ret < 0) {
1031			rdev_err(rdev, "failed to set mode\n");
1032			return ret;
1033		}
1034	}
 
 
1035
1036	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037}
1038
1039static void print_constraints(struct regulator_dev *rdev)
1040{
1041	struct regulation_constraints *constraints = rdev->constraints;
1042	char buf[160] = "";
1043	size_t len = sizeof(buf) - 1;
1044	int count = 0;
1045	int ret;
1046
1047	if (constraints->min_uV && constraints->max_uV) {
1048		if (constraints->min_uV == constraints->max_uV)
1049			count += scnprintf(buf + count, len - count, "%d mV ",
1050					   constraints->min_uV / 1000);
1051		else
1052			count += scnprintf(buf + count, len - count,
1053					   "%d <--> %d mV ",
1054					   constraints->min_uV / 1000,
1055					   constraints->max_uV / 1000);
1056	}
1057
1058	if (!constraints->min_uV ||
1059	    constraints->min_uV != constraints->max_uV) {
1060		ret = regulator_get_voltage_rdev(rdev);
1061		if (ret > 0)
1062			count += scnprintf(buf + count, len - count,
1063					   "at %d mV ", ret / 1000);
1064	}
1065
1066	if (constraints->uV_offset)
1067		count += scnprintf(buf + count, len - count, "%dmV offset ",
1068				   constraints->uV_offset / 1000);
1069
1070	if (constraints->min_uA && constraints->max_uA) {
1071		if (constraints->min_uA == constraints->max_uA)
1072			count += scnprintf(buf + count, len - count, "%d mA ",
1073					   constraints->min_uA / 1000);
1074		else
1075			count += scnprintf(buf + count, len - count,
1076					   "%d <--> %d mA ",
1077					   constraints->min_uA / 1000,
1078					   constraints->max_uA / 1000);
1079	}
1080
1081	if (!constraints->min_uA ||
1082	    constraints->min_uA != constraints->max_uA) {
1083		ret = _regulator_get_current_limit(rdev);
1084		if (ret > 0)
1085			count += scnprintf(buf + count, len - count,
1086					   "at %d mA ", ret / 1000);
1087	}
1088
1089	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090		count += scnprintf(buf + count, len - count, "fast ");
1091	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092		count += scnprintf(buf + count, len - count, "normal ");
1093	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094		count += scnprintf(buf + count, len - count, "idle ");
1095	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096		count += scnprintf(buf + count, len - count, "standby");
1097
1098	if (!count)
1099		scnprintf(buf, len, "no parameters");
1100
1101	rdev_dbg(rdev, "%s\n", buf);
1102
1103	if ((constraints->min_uV != constraints->max_uV) &&
1104	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105		rdev_warn(rdev,
1106			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107}
1108
1109static int machine_constraints_voltage(struct regulator_dev *rdev,
1110	struct regulation_constraints *constraints)
1111{
1112	const struct regulator_ops *ops = rdev->desc->ops;
1113	int ret;
1114
1115	/* do we need to apply the constraint voltage */
1116	if (rdev->constraints->apply_uV &&
1117	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118		int target_min, target_max;
1119		int current_uV = regulator_get_voltage_rdev(rdev);
1120
1121		if (current_uV == -ENOTRECOVERABLE) {
1122			/* This regulator can't be read and must be initialized */
1123			rdev_info(rdev, "Setting %d-%duV\n",
1124				  rdev->constraints->min_uV,
1125				  rdev->constraints->max_uV);
1126			_regulator_do_set_voltage(rdev,
1127						  rdev->constraints->min_uV,
1128						  rdev->constraints->max_uV);
1129			current_uV = regulator_get_voltage_rdev(rdev);
1130		}
1131
1132		if (current_uV < 0) {
1133			rdev_err(rdev,
1134				 "failed to get the current voltage(%d)\n",
1135				 current_uV);
1136			return current_uV;
1137		}
1138
1139		/*
1140		 * If we're below the minimum voltage move up to the
1141		 * minimum voltage, if we're above the maximum voltage
1142		 * then move down to the maximum.
1143		 */
1144		target_min = current_uV;
1145		target_max = current_uV;
1146
1147		if (current_uV < rdev->constraints->min_uV) {
1148			target_min = rdev->constraints->min_uV;
1149			target_max = rdev->constraints->min_uV;
1150		}
1151
1152		if (current_uV > rdev->constraints->max_uV) {
1153			target_min = rdev->constraints->max_uV;
1154			target_max = rdev->constraints->max_uV;
1155		}
1156
1157		if (target_min != current_uV || target_max != current_uV) {
1158			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159				  current_uV, target_min, target_max);
1160			ret = _regulator_do_set_voltage(
1161				rdev, target_min, target_max);
 
1162			if (ret < 0) {
1163				rdev_err(rdev,
1164					"failed to apply %d-%duV constraint(%d)\n",
1165					target_min, target_max, ret);
1166				return ret;
1167			}
1168		}
1169	}
1170
1171	/* constrain machine-level voltage specs to fit
1172	 * the actual range supported by this regulator.
1173	 */
1174	if (ops->list_voltage && rdev->desc->n_voltages) {
1175		int	count = rdev->desc->n_voltages;
1176		int	i;
1177		int	min_uV = INT_MAX;
1178		int	max_uV = INT_MIN;
1179		int	cmin = constraints->min_uV;
1180		int	cmax = constraints->max_uV;
1181
1182		/* it's safe to autoconfigure fixed-voltage supplies
1183		   and the constraints are used by list_voltage. */
1184		if (count == 1 && !cmin) {
1185			cmin = 1;
1186			cmax = INT_MAX;
1187			constraints->min_uV = cmin;
1188			constraints->max_uV = cmax;
1189		}
1190
1191		/* voltage constraints are optional */
1192		if ((cmin == 0) && (cmax == 0))
1193			return 0;
1194
1195		/* else require explicit machine-level constraints */
1196		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197			rdev_err(rdev, "invalid voltage constraints\n");
1198			return -EINVAL;
1199		}
1200
1201		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202		for (i = 0; i < count; i++) {
1203			int	value;
1204
1205			value = ops->list_voltage(rdev, i);
1206			if (value <= 0)
1207				continue;
1208
1209			/* maybe adjust [min_uV..max_uV] */
1210			if (value >= cmin && value < min_uV)
1211				min_uV = value;
1212			if (value <= cmax && value > max_uV)
1213				max_uV = value;
1214		}
1215
1216		/* final: [min_uV..max_uV] valid iff constraints valid */
1217		if (max_uV < min_uV) {
1218			rdev_err(rdev,
1219				 "unsupportable voltage constraints %u-%uuV\n",
1220				 min_uV, max_uV);
1221			return -EINVAL;
1222		}
1223
1224		/* use regulator's subset of machine constraints */
1225		if (constraints->min_uV < min_uV) {
1226			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1227				 constraints->min_uV, min_uV);
1228			constraints->min_uV = min_uV;
1229		}
1230		if (constraints->max_uV > max_uV) {
1231			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1232				 constraints->max_uV, max_uV);
1233			constraints->max_uV = max_uV;
1234		}
1235	}
1236
1237	return 0;
1238}
1239
1240static int machine_constraints_current(struct regulator_dev *rdev,
1241	struct regulation_constraints *constraints)
1242{
1243	const struct regulator_ops *ops = rdev->desc->ops;
1244	int ret;
1245
1246	if (!constraints->min_uA && !constraints->max_uA)
1247		return 0;
1248
1249	if (constraints->min_uA > constraints->max_uA) {
1250		rdev_err(rdev, "Invalid current constraints\n");
1251		return -EINVAL;
1252	}
1253
1254	if (!ops->set_current_limit || !ops->get_current_limit) {
1255		rdev_warn(rdev, "Operation of current configuration missing\n");
1256		return 0;
1257	}
1258
1259	/* Set regulator current in constraints range */
1260	ret = ops->set_current_limit(rdev, constraints->min_uA,
1261			constraints->max_uA);
1262	if (ret < 0) {
1263		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1264		return ret;
1265	}
1266
1267	return 0;
1268}
1269
1270static int _regulator_do_enable(struct regulator_dev *rdev);
1271
1272/**
1273 * set_machine_constraints - sets regulator constraints
1274 * @rdev: regulator source
1275 * @constraints: constraints to apply
1276 *
1277 * Allows platform initialisation code to define and constrain
1278 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1279 * Constraints *must* be set by platform code in order for some
1280 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1281 * set_mode.
1282 */
1283static int set_machine_constraints(struct regulator_dev *rdev,
1284	const struct regulation_constraints *constraints)
1285{
1286	int ret = 0;
1287	const struct regulator_ops *ops = rdev->desc->ops;
1288
1289	if (constraints)
1290		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1291					    GFP_KERNEL);
1292	else
1293		rdev->constraints = kzalloc(sizeof(*constraints),
1294					    GFP_KERNEL);
1295	if (!rdev->constraints)
1296		return -ENOMEM;
1297
1298	ret = machine_constraints_voltage(rdev, rdev->constraints);
1299	if (ret != 0)
1300		return ret;
1301
1302	ret = machine_constraints_current(rdev, rdev->constraints);
1303	if (ret != 0)
1304		return ret;
1305
1306	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1307		ret = ops->set_input_current_limit(rdev,
1308						   rdev->constraints->ilim_uA);
1309		if (ret < 0) {
1310			rdev_err(rdev, "failed to set input limit\n");
1311			return ret;
1312		}
1313	}
1314
1315	/* do we need to setup our suspend state */
1316	if (rdev->constraints->initial_state) {
1317		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318		if (ret < 0) {
1319			rdev_err(rdev, "failed to set suspend state\n");
1320			return ret;
1321		}
1322	}
1323
1324	if (rdev->constraints->initial_mode) {
1325		if (!ops->set_mode) {
1326			rdev_err(rdev, "no set_mode operation\n");
1327			return -EINVAL;
1328		}
1329
1330		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331		if (ret < 0) {
1332			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333			return ret;
1334		}
1335	} else if (rdev->constraints->system_load) {
1336		/*
1337		 * We'll only apply the initial system load if an
1338		 * initial mode wasn't specified.
1339		 */
1340		drms_uA_update(rdev);
 
 
 
 
 
1341	}
1342
1343	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1344		&& ops->set_ramp_delay) {
1345		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1346		if (ret < 0) {
1347			rdev_err(rdev, "failed to set ramp_delay\n");
1348			return ret;
1349		}
1350	}
1351
1352	if (rdev->constraints->pull_down && ops->set_pull_down) {
1353		ret = ops->set_pull_down(rdev);
1354		if (ret < 0) {
1355			rdev_err(rdev, "failed to set pull down\n");
1356			return ret;
1357		}
1358	}
1359
1360	if (rdev->constraints->soft_start && ops->set_soft_start) {
1361		ret = ops->set_soft_start(rdev);
1362		if (ret < 0) {
1363			rdev_err(rdev, "failed to set soft start\n");
1364			return ret;
1365		}
1366	}
1367
1368	if (rdev->constraints->over_current_protection
1369		&& ops->set_over_current_protection) {
1370		ret = ops->set_over_current_protection(rdev);
1371		if (ret < 0) {
1372			rdev_err(rdev, "failed to set over current protection\n");
1373			return ret;
1374		}
1375	}
1376
1377	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1378		bool ad_state = (rdev->constraints->active_discharge ==
1379			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1380
1381		ret = ops->set_active_discharge(rdev, ad_state);
1382		if (ret < 0) {
1383			rdev_err(rdev, "failed to set active discharge\n");
1384			return ret;
1385		}
1386	}
1387
1388	/* If the constraints say the regulator should be on at this point
1389	 * and we have control then make sure it is enabled.
1390	 */
1391	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392		if (rdev->supply) {
1393			ret = regulator_enable(rdev->supply);
1394			if (ret < 0) {
1395				_regulator_put(rdev->supply);
1396				rdev->supply = NULL;
1397				return ret;
1398			}
1399		}
1400
1401		ret = _regulator_do_enable(rdev);
1402		if (ret < 0 && ret != -EINVAL) {
1403			rdev_err(rdev, "failed to enable\n");
1404			return ret;
1405		}
1406		rdev->use_count++;
1407	}
1408
1409	print_constraints(rdev);
1410	return 0;
1411}
1412
1413/**
1414 * set_supply - set regulator supply regulator
1415 * @rdev: regulator name
1416 * @supply_rdev: supply regulator name
1417 *
1418 * Called by platform initialisation code to set the supply regulator for this
1419 * regulator. This ensures that a regulators supply will also be enabled by the
1420 * core if it's child is enabled.
1421 */
1422static int set_supply(struct regulator_dev *rdev,
1423		      struct regulator_dev *supply_rdev)
1424{
1425	int err;
1426
1427	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1428
1429	if (!try_module_get(supply_rdev->owner))
1430		return -ENODEV;
1431
1432	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1433	if (rdev->supply == NULL) {
1434		err = -ENOMEM;
1435		return err;
1436	}
1437	supply_rdev->open_count++;
1438
1439	return 0;
1440}
1441
1442/**
1443 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1444 * @rdev:         regulator source
1445 * @consumer_dev_name: dev_name() string for device supply applies to
1446 * @supply:       symbolic name for supply
1447 *
1448 * Allows platform initialisation code to map physical regulator
1449 * sources to symbolic names for supplies for use by devices.  Devices
1450 * should use these symbolic names to request regulators, avoiding the
1451 * need to provide board-specific regulator names as platform data.
1452 */
1453static int set_consumer_device_supply(struct regulator_dev *rdev,
1454				      const char *consumer_dev_name,
1455				      const char *supply)
1456{
1457	struct regulator_map *node;
1458	int has_dev;
1459
1460	if (supply == NULL)
1461		return -EINVAL;
1462
1463	if (consumer_dev_name != NULL)
1464		has_dev = 1;
1465	else
1466		has_dev = 0;
1467
1468	list_for_each_entry(node, &regulator_map_list, list) {
1469		if (node->dev_name && consumer_dev_name) {
1470			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1471				continue;
1472		} else if (node->dev_name || consumer_dev_name) {
1473			continue;
1474		}
1475
1476		if (strcmp(node->supply, supply) != 0)
1477			continue;
1478
1479		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1480			 consumer_dev_name,
1481			 dev_name(&node->regulator->dev),
1482			 node->regulator->desc->name,
1483			 supply,
1484			 dev_name(&rdev->dev), rdev_get_name(rdev));
1485		return -EBUSY;
1486	}
1487
1488	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1489	if (node == NULL)
1490		return -ENOMEM;
1491
1492	node->regulator = rdev;
1493	node->supply = supply;
1494
1495	if (has_dev) {
1496		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1497		if (node->dev_name == NULL) {
1498			kfree(node);
1499			return -ENOMEM;
1500		}
1501	}
1502
1503	list_add(&node->list, &regulator_map_list);
1504	return 0;
1505}
1506
1507static void unset_regulator_supplies(struct regulator_dev *rdev)
1508{
1509	struct regulator_map *node, *n;
1510
1511	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1512		if (rdev == node->regulator) {
1513			list_del(&node->list);
1514			kfree(node->dev_name);
1515			kfree(node);
1516		}
1517	}
1518}
1519
1520#ifdef CONFIG_DEBUG_FS
1521static ssize_t constraint_flags_read_file(struct file *file,
1522					  char __user *user_buf,
1523					  size_t count, loff_t *ppos)
1524{
1525	const struct regulator *regulator = file->private_data;
1526	const struct regulation_constraints *c = regulator->rdev->constraints;
1527	char *buf;
1528	ssize_t ret;
1529
1530	if (!c)
1531		return 0;
1532
1533	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1534	if (!buf)
1535		return -ENOMEM;
1536
1537	ret = snprintf(buf, PAGE_SIZE,
1538			"always_on: %u\n"
1539			"boot_on: %u\n"
1540			"apply_uV: %u\n"
1541			"ramp_disable: %u\n"
1542			"soft_start: %u\n"
1543			"pull_down: %u\n"
1544			"over_current_protection: %u\n",
1545			c->always_on,
1546			c->boot_on,
1547			c->apply_uV,
1548			c->ramp_disable,
1549			c->soft_start,
1550			c->pull_down,
1551			c->over_current_protection);
1552
1553	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1554	kfree(buf);
1555
1556	return ret;
1557}
1558
1559#endif
1560
1561static const struct file_operations constraint_flags_fops = {
1562#ifdef CONFIG_DEBUG_FS
1563	.open = simple_open,
1564	.read = constraint_flags_read_file,
1565	.llseek = default_llseek,
1566#endif
1567};
1568
1569#define REG_STR_SIZE	64
1570
1571static struct regulator *create_regulator(struct regulator_dev *rdev,
1572					  struct device *dev,
1573					  const char *supply_name)
1574{
1575	struct regulator *regulator;
1576	char buf[REG_STR_SIZE];
1577	int err, size;
1578
1579	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1580	if (regulator == NULL)
1581		return NULL;
1582
1583	regulator_lock(rdev);
1584	regulator->rdev = rdev;
1585	list_add(&regulator->list, &rdev->consumer_list);
1586
1587	if (dev) {
1588		regulator->dev = dev;
1589
1590		/* Add a link to the device sysfs entry */
1591		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1592				dev->kobj.name, supply_name);
1593		if (size >= REG_STR_SIZE)
1594			goto overflow_err;
1595
1596		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1597		if (regulator->supply_name == NULL)
1598			goto overflow_err;
1599
1600		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1601					buf);
1602		if (err) {
1603			rdev_dbg(rdev, "could not add device link %s err %d\n",
1604				  dev->kobj.name, err);
1605			/* non-fatal */
1606		}
1607	} else {
1608		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1609		if (regulator->supply_name == NULL)
1610			goto overflow_err;
1611	}
1612
1613	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1614						rdev->debugfs);
1615	if (!regulator->debugfs) {
1616		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1617	} else {
1618		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1619				   &regulator->uA_load);
1620		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1621				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1622		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1623				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1624		debugfs_create_file("constraint_flags", 0444,
1625				    regulator->debugfs, regulator,
1626				    &constraint_flags_fops);
1627	}
1628
1629	/*
1630	 * Check now if the regulator is an always on regulator - if
1631	 * it is then we don't need to do nearly so much work for
1632	 * enable/disable calls.
1633	 */
1634	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1635	    _regulator_is_enabled(rdev))
1636		regulator->always_on = true;
1637
1638	regulator_unlock(rdev);
1639	return regulator;
1640overflow_err:
1641	list_del(&regulator->list);
1642	kfree(regulator);
1643	regulator_unlock(rdev);
1644	return NULL;
1645}
1646
1647static int _regulator_get_enable_time(struct regulator_dev *rdev)
1648{
1649	if (rdev->constraints && rdev->constraints->enable_time)
1650		return rdev->constraints->enable_time;
1651	if (rdev->desc->ops->enable_time)
1652		return rdev->desc->ops->enable_time(rdev);
1653	return rdev->desc->enable_time;
1654}
1655
1656static struct regulator_supply_alias *regulator_find_supply_alias(
1657		struct device *dev, const char *supply)
1658{
1659	struct regulator_supply_alias *map;
1660
1661	list_for_each_entry(map, &regulator_supply_alias_list, list)
1662		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1663			return map;
1664
1665	return NULL;
1666}
1667
1668static void regulator_supply_alias(struct device **dev, const char **supply)
1669{
1670	struct regulator_supply_alias *map;
1671
1672	map = regulator_find_supply_alias(*dev, *supply);
1673	if (map) {
1674		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1675				*supply, map->alias_supply,
1676				dev_name(map->alias_dev));
1677		*dev = map->alias_dev;
1678		*supply = map->alias_supply;
1679	}
1680}
1681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1682static int regulator_match(struct device *dev, const void *data)
1683{
1684	struct regulator_dev *r = dev_to_rdev(dev);
1685
1686	return strcmp(rdev_get_name(r), data) == 0;
1687}
1688
1689static struct regulator_dev *regulator_lookup_by_name(const char *name)
1690{
1691	struct device *dev;
1692
1693	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1694
1695	return dev ? dev_to_rdev(dev) : NULL;
1696}
1697
1698/**
1699 * regulator_dev_lookup - lookup a regulator device.
1700 * @dev: device for regulator "consumer".
1701 * @supply: Supply name or regulator ID.
 
 
1702 *
1703 * If successful, returns a struct regulator_dev that corresponds to the name
1704 * @supply and with the embedded struct device refcount incremented by one.
1705 * The refcount must be dropped by calling put_device().
1706 * On failure one of the following ERR-PTR-encoded values is returned:
1707 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1708 * in the future.
1709 */
1710static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1711						  const char *supply)
 
1712{
1713	struct regulator_dev *r = NULL;
1714	struct device_node *node;
1715	struct regulator_map *map;
1716	const char *devname = NULL;
1717
1718	regulator_supply_alias(&dev, &supply);
1719
1720	/* first do a dt based lookup */
1721	if (dev && dev->of_node) {
1722		node = of_get_regulator(dev, supply);
1723		if (node) {
1724			r = of_find_regulator_by_node(node);
1725			if (r)
1726				return r;
1727
 
 
1728			/*
1729			 * We have a node, but there is no device.
1730			 * assume it has not registered yet.
 
 
1731			 */
1732			return ERR_PTR(-EPROBE_DEFER);
1733		}
1734	}
1735
1736	/* if not found, try doing it non-dt way */
1737	if (dev)
1738		devname = dev_name(dev);
1739
 
 
 
 
1740	mutex_lock(&regulator_list_mutex);
1741	list_for_each_entry(map, &regulator_map_list, list) {
1742		/* If the mapping has a device set up it must match */
1743		if (map->dev_name &&
1744		    (!devname || strcmp(map->dev_name, devname)))
1745			continue;
1746
1747		if (strcmp(map->supply, supply) == 0 &&
1748		    get_device(&map->regulator->dev)) {
1749			r = map->regulator;
1750			break;
1751		}
1752	}
1753	mutex_unlock(&regulator_list_mutex);
1754
1755	if (r)
1756		return r;
1757
1758	r = regulator_lookup_by_name(supply);
1759	if (r)
1760		return r;
1761
1762	return ERR_PTR(-ENODEV);
1763}
1764
1765static int regulator_resolve_supply(struct regulator_dev *rdev)
1766{
1767	struct regulator_dev *r;
1768	struct device *dev = rdev->dev.parent;
1769	int ret;
1770
1771	/* No supply to resolve? */
1772	if (!rdev->supply_name)
1773		return 0;
1774
1775	/* Supply already resolved? */
1776	if (rdev->supply)
1777		return 0;
1778
1779	r = regulator_dev_lookup(dev, rdev->supply_name);
1780	if (IS_ERR(r)) {
1781		ret = PTR_ERR(r);
 
 
 
 
 
 
1782
1783		/* Did the lookup explicitly defer for us? */
1784		if (ret == -EPROBE_DEFER)
1785			return ret;
1786
1787		if (have_full_constraints()) {
1788			r = dummy_regulator_rdev;
1789			get_device(&r->dev);
1790		} else {
1791			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1792				rdev->supply_name, rdev->desc->name);
1793			return -EPROBE_DEFER;
1794		}
1795	}
1796
1797	/*
1798	 * If the supply's parent device is not the same as the
1799	 * regulator's parent device, then ensure the parent device
1800	 * is bound before we resolve the supply, in case the parent
1801	 * device get probe deferred and unregisters the supply.
1802	 */
1803	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1804		if (!device_is_bound(r->dev.parent)) {
1805			put_device(&r->dev);
1806			return -EPROBE_DEFER;
1807		}
1808	}
1809
1810	/* Recursively resolve the supply of the supply */
1811	ret = regulator_resolve_supply(r);
1812	if (ret < 0) {
1813		put_device(&r->dev);
1814		return ret;
1815	}
1816
1817	ret = set_supply(rdev, r);
1818	if (ret < 0) {
1819		put_device(&r->dev);
1820		return ret;
1821	}
1822
1823	/*
1824	 * In set_machine_constraints() we may have turned this regulator on
1825	 * but we couldn't propagate to the supply if it hadn't been resolved
1826	 * yet.  Do it now.
1827	 */
1828	if (rdev->use_count) {
1829		ret = regulator_enable(rdev->supply);
1830		if (ret < 0) {
1831			_regulator_put(rdev->supply);
1832			rdev->supply = NULL;
1833			return ret;
1834		}
1835	}
1836
1837	return 0;
1838}
1839
1840/* Internal regulator request function */
1841struct regulator *_regulator_get(struct device *dev, const char *id,
1842				 enum regulator_get_type get_type)
1843{
1844	struct regulator_dev *rdev;
1845	struct regulator *regulator;
1846	const char *devname = dev ? dev_name(dev) : "deviceless";
1847	int ret;
1848
1849	if (get_type >= MAX_GET_TYPE) {
1850		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1851		return ERR_PTR(-EINVAL);
1852	}
1853
1854	if (id == NULL) {
1855		pr_err("get() with no identifier\n");
1856		return ERR_PTR(-EINVAL);
1857	}
1858
1859	rdev = regulator_dev_lookup(dev, id);
1860	if (IS_ERR(rdev)) {
1861		ret = PTR_ERR(rdev);
 
 
 
 
1862
1863		/*
1864		 * If regulator_dev_lookup() fails with error other
1865		 * than -ENODEV our job here is done, we simply return it.
1866		 */
1867		if (ret != -ENODEV)
1868			return ERR_PTR(ret);
1869
1870		if (!have_full_constraints()) {
1871			dev_warn(dev,
1872				 "incomplete constraints, dummy supplies not allowed\n");
1873			return ERR_PTR(-ENODEV);
1874		}
1875
1876		switch (get_type) {
1877		case NORMAL_GET:
1878			/*
1879			 * Assume that a regulator is physically present and
1880			 * enabled, even if it isn't hooked up, and just
1881			 * provide a dummy.
1882			 */
1883			dev_warn(dev,
1884				 "%s supply %s not found, using dummy regulator\n",
1885				 devname, id);
1886			rdev = dummy_regulator_rdev;
1887			get_device(&rdev->dev);
1888			break;
1889
1890		case EXCLUSIVE_GET:
1891			dev_warn(dev,
1892				 "dummy supplies not allowed for exclusive requests\n");
1893			/* fall through */
1894
1895		default:
1896			return ERR_PTR(-ENODEV);
1897		}
 
 
 
 
 
 
 
 
 
 
 
1898	}
1899
 
 
 
1900	if (rdev->exclusive) {
1901		regulator = ERR_PTR(-EPERM);
1902		put_device(&rdev->dev);
1903		return regulator;
1904	}
1905
1906	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1907		regulator = ERR_PTR(-EBUSY);
1908		put_device(&rdev->dev);
1909		return regulator;
1910	}
1911
1912	mutex_lock(&regulator_list_mutex);
1913	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1914	mutex_unlock(&regulator_list_mutex);
1915
1916	if (ret != 0) {
1917		regulator = ERR_PTR(-EPROBE_DEFER);
1918		put_device(&rdev->dev);
1919		return regulator;
1920	}
1921
1922	ret = regulator_resolve_supply(rdev);
1923	if (ret < 0) {
1924		regulator = ERR_PTR(ret);
1925		put_device(&rdev->dev);
1926		return regulator;
1927	}
1928
1929	if (!try_module_get(rdev->owner)) {
1930		regulator = ERR_PTR(-EPROBE_DEFER);
1931		put_device(&rdev->dev);
1932		return regulator;
1933	}
1934
1935	regulator = create_regulator(rdev, dev, id);
1936	if (regulator == NULL) {
1937		regulator = ERR_PTR(-ENOMEM);
1938		put_device(&rdev->dev);
1939		module_put(rdev->owner);
1940		return regulator;
1941	}
1942
1943	rdev->open_count++;
1944	if (get_type == EXCLUSIVE_GET) {
1945		rdev->exclusive = 1;
1946
1947		ret = _regulator_is_enabled(rdev);
1948		if (ret > 0)
1949			rdev->use_count = 1;
1950		else
1951			rdev->use_count = 0;
1952	}
1953
1954	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1955
1956	return regulator;
1957}
1958
1959/**
1960 * regulator_get - lookup and obtain a reference to a regulator.
1961 * @dev: device for regulator "consumer"
1962 * @id: Supply name or regulator ID.
1963 *
1964 * Returns a struct regulator corresponding to the regulator producer,
1965 * or IS_ERR() condition containing errno.
1966 *
1967 * Use of supply names configured via regulator_set_device_supply() is
1968 * strongly encouraged.  It is recommended that the supply name used
1969 * should match the name used for the supply and/or the relevant
1970 * device pins in the datasheet.
1971 */
1972struct regulator *regulator_get(struct device *dev, const char *id)
1973{
1974	return _regulator_get(dev, id, NORMAL_GET);
1975}
1976EXPORT_SYMBOL_GPL(regulator_get);
1977
1978/**
1979 * regulator_get_exclusive - obtain exclusive access to a regulator.
1980 * @dev: device for regulator "consumer"
1981 * @id: Supply name or regulator ID.
1982 *
1983 * Returns a struct regulator corresponding to the regulator producer,
1984 * or IS_ERR() condition containing errno.  Other consumers will be
1985 * unable to obtain this regulator while this reference is held and the
1986 * use count for the regulator will be initialised to reflect the current
1987 * state of the regulator.
1988 *
1989 * This is intended for use by consumers which cannot tolerate shared
1990 * use of the regulator such as those which need to force the
1991 * regulator off for correct operation of the hardware they are
1992 * controlling.
1993 *
1994 * Use of supply names configured via regulator_set_device_supply() is
1995 * strongly encouraged.  It is recommended that the supply name used
1996 * should match the name used for the supply and/or the relevant
1997 * device pins in the datasheet.
1998 */
1999struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2000{
2001	return _regulator_get(dev, id, EXCLUSIVE_GET);
2002}
2003EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2004
2005/**
2006 * regulator_get_optional - obtain optional access to a regulator.
2007 * @dev: device for regulator "consumer"
2008 * @id: Supply name or regulator ID.
2009 *
2010 * Returns a struct regulator corresponding to the regulator producer,
2011 * or IS_ERR() condition containing errno.
2012 *
2013 * This is intended for use by consumers for devices which can have
2014 * some supplies unconnected in normal use, such as some MMC devices.
2015 * It can allow the regulator core to provide stub supplies for other
2016 * supplies requested using normal regulator_get() calls without
2017 * disrupting the operation of drivers that can handle absent
2018 * supplies.
2019 *
2020 * Use of supply names configured via regulator_set_device_supply() is
2021 * strongly encouraged.  It is recommended that the supply name used
2022 * should match the name used for the supply and/or the relevant
2023 * device pins in the datasheet.
2024 */
2025struct regulator *regulator_get_optional(struct device *dev, const char *id)
2026{
2027	return _regulator_get(dev, id, OPTIONAL_GET);
2028}
2029EXPORT_SYMBOL_GPL(regulator_get_optional);
2030
2031/* regulator_list_mutex lock held by regulator_put() */
2032static void _regulator_put(struct regulator *regulator)
2033{
2034	struct regulator_dev *rdev;
2035
2036	if (IS_ERR_OR_NULL(regulator))
2037		return;
2038
2039	lockdep_assert_held_once(&regulator_list_mutex);
2040
2041	/* Docs say you must disable before calling regulator_put() */
2042	WARN_ON(regulator->enable_count);
2043
2044	rdev = regulator->rdev;
2045
2046	debugfs_remove_recursive(regulator->debugfs);
2047
2048	if (regulator->dev) {
2049		device_link_remove(regulator->dev, &rdev->dev);
2050
2051		/* remove any sysfs entries */
2052		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2053	}
2054
2055	regulator_lock(rdev);
2056	list_del(&regulator->list);
2057
2058	rdev->open_count--;
2059	rdev->exclusive = 0;
2060	put_device(&rdev->dev);
2061	regulator_unlock(rdev);
2062
2063	kfree_const(regulator->supply_name);
2064	kfree(regulator);
2065
2066	module_put(rdev->owner);
2067}
2068
2069/**
2070 * regulator_put - "free" the regulator source
2071 * @regulator: regulator source
2072 *
2073 * Note: drivers must ensure that all regulator_enable calls made on this
2074 * regulator source are balanced by regulator_disable calls prior to calling
2075 * this function.
2076 */
2077void regulator_put(struct regulator *regulator)
2078{
2079	mutex_lock(&regulator_list_mutex);
2080	_regulator_put(regulator);
2081	mutex_unlock(&regulator_list_mutex);
2082}
2083EXPORT_SYMBOL_GPL(regulator_put);
2084
2085/**
2086 * regulator_register_supply_alias - Provide device alias for supply lookup
2087 *
2088 * @dev: device that will be given as the regulator "consumer"
2089 * @id: Supply name or regulator ID
2090 * @alias_dev: device that should be used to lookup the supply
2091 * @alias_id: Supply name or regulator ID that should be used to lookup the
2092 * supply
2093 *
2094 * All lookups for id on dev will instead be conducted for alias_id on
2095 * alias_dev.
2096 */
2097int regulator_register_supply_alias(struct device *dev, const char *id,
2098				    struct device *alias_dev,
2099				    const char *alias_id)
2100{
2101	struct regulator_supply_alias *map;
2102
2103	map = regulator_find_supply_alias(dev, id);
2104	if (map)
2105		return -EEXIST;
2106
2107	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2108	if (!map)
2109		return -ENOMEM;
2110
2111	map->src_dev = dev;
2112	map->src_supply = id;
2113	map->alias_dev = alias_dev;
2114	map->alias_supply = alias_id;
2115
2116	list_add(&map->list, &regulator_supply_alias_list);
2117
2118	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2119		id, dev_name(dev), alias_id, dev_name(alias_dev));
2120
2121	return 0;
2122}
2123EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2124
2125/**
2126 * regulator_unregister_supply_alias - Remove device alias
2127 *
2128 * @dev: device that will be given as the regulator "consumer"
2129 * @id: Supply name or regulator ID
2130 *
2131 * Remove a lookup alias if one exists for id on dev.
2132 */
2133void regulator_unregister_supply_alias(struct device *dev, const char *id)
2134{
2135	struct regulator_supply_alias *map;
2136
2137	map = regulator_find_supply_alias(dev, id);
2138	if (map) {
2139		list_del(&map->list);
2140		kfree(map);
2141	}
2142}
2143EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2144
2145/**
2146 * regulator_bulk_register_supply_alias - register multiple aliases
2147 *
2148 * @dev: device that will be given as the regulator "consumer"
2149 * @id: List of supply names or regulator IDs
2150 * @alias_dev: device that should be used to lookup the supply
2151 * @alias_id: List of supply names or regulator IDs that should be used to
2152 * lookup the supply
2153 * @num_id: Number of aliases to register
2154 *
2155 * @return 0 on success, an errno on failure.
2156 *
2157 * This helper function allows drivers to register several supply
2158 * aliases in one operation.  If any of the aliases cannot be
2159 * registered any aliases that were registered will be removed
2160 * before returning to the caller.
2161 */
2162int regulator_bulk_register_supply_alias(struct device *dev,
2163					 const char *const *id,
2164					 struct device *alias_dev,
2165					 const char *const *alias_id,
2166					 int num_id)
2167{
2168	int i;
2169	int ret;
2170
2171	for (i = 0; i < num_id; ++i) {
2172		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2173						      alias_id[i]);
2174		if (ret < 0)
2175			goto err;
2176	}
2177
2178	return 0;
2179
2180err:
2181	dev_err(dev,
2182		"Failed to create supply alias %s,%s -> %s,%s\n",
2183		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2184
2185	while (--i >= 0)
2186		regulator_unregister_supply_alias(dev, id[i]);
2187
2188	return ret;
2189}
2190EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2191
2192/**
2193 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2194 *
2195 * @dev: device that will be given as the regulator "consumer"
2196 * @id: List of supply names or regulator IDs
2197 * @num_id: Number of aliases to unregister
2198 *
2199 * This helper function allows drivers to unregister several supply
2200 * aliases in one operation.
2201 */
2202void regulator_bulk_unregister_supply_alias(struct device *dev,
2203					    const char *const *id,
2204					    int num_id)
2205{
2206	int i;
2207
2208	for (i = 0; i < num_id; ++i)
2209		regulator_unregister_supply_alias(dev, id[i]);
2210}
2211EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2212
2213
2214/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2215static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2216				const struct regulator_config *config)
2217{
2218	struct regulator_enable_gpio *pin;
2219	struct gpio_desc *gpiod;
 
2220
2221	gpiod = config->ena_gpiod;
2222
2223	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2224		if (pin->gpiod == gpiod) {
2225			rdev_dbg(rdev, "GPIO is already used\n");
 
2226			goto update_ena_gpio_to_rdev;
2227		}
2228	}
2229
 
 
 
 
 
 
2230	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2231	if (pin == NULL)
 
2232		return -ENOMEM;
 
2233
2234	pin->gpiod = gpiod;
 
2235	list_add(&pin->list, &regulator_ena_gpio_list);
2236
2237update_ena_gpio_to_rdev:
2238	pin->request_count++;
2239	rdev->ena_pin = pin;
2240	return 0;
2241}
2242
2243static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2244{
2245	struct regulator_enable_gpio *pin, *n;
2246
2247	if (!rdev->ena_pin)
2248		return;
2249
2250	/* Free the GPIO only in case of no use */
2251	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2252		if (pin->gpiod == rdev->ena_pin->gpiod) {
2253			if (pin->request_count <= 1) {
2254				pin->request_count = 0;
2255				gpiod_put(pin->gpiod);
2256				list_del(&pin->list);
2257				kfree(pin);
2258				rdev->ena_pin = NULL;
2259				return;
2260			} else {
2261				pin->request_count--;
2262			}
2263		}
2264	}
2265}
2266
2267/**
2268 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2269 * @rdev: regulator_dev structure
2270 * @enable: enable GPIO at initial use?
2271 *
2272 * GPIO is enabled in case of initial use. (enable_count is 0)
2273 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2274 */
2275static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2276{
2277	struct regulator_enable_gpio *pin = rdev->ena_pin;
2278
2279	if (!pin)
2280		return -EINVAL;
2281
2282	if (enable) {
2283		/* Enable GPIO at initial use */
2284		if (pin->enable_count == 0)
2285			gpiod_set_value_cansleep(pin->gpiod, 1);
 
2286
2287		pin->enable_count++;
2288	} else {
2289		if (pin->enable_count > 1) {
2290			pin->enable_count--;
2291			return 0;
2292		}
2293
2294		/* Disable GPIO if not used */
2295		if (pin->enable_count <= 1) {
2296			gpiod_set_value_cansleep(pin->gpiod, 0);
 
2297			pin->enable_count = 0;
2298		}
2299	}
2300
2301	return 0;
2302}
2303
2304/**
2305 * _regulator_enable_delay - a delay helper function
2306 * @delay: time to delay in microseconds
2307 *
2308 * Delay for the requested amount of time as per the guidelines in:
2309 *
2310 *     Documentation/timers/timers-howto.rst
2311 *
2312 * The assumption here is that regulators will never be enabled in
2313 * atomic context and therefore sleeping functions can be used.
2314 */
2315static void _regulator_enable_delay(unsigned int delay)
2316{
2317	unsigned int ms = delay / 1000;
2318	unsigned int us = delay % 1000;
2319
2320	if (ms > 0) {
2321		/*
2322		 * For small enough values, handle super-millisecond
2323		 * delays in the usleep_range() call below.
2324		 */
2325		if (ms < 20)
2326			us += ms * 1000;
2327		else
2328			msleep(ms);
2329	}
2330
2331	/*
2332	 * Give the scheduler some room to coalesce with any other
2333	 * wakeup sources. For delays shorter than 10 us, don't even
2334	 * bother setting up high-resolution timers and just busy-
2335	 * loop.
2336	 */
2337	if (us >= 10)
2338		usleep_range(us, us + 100);
2339	else
2340		udelay(us);
2341}
2342
2343static int _regulator_do_enable(struct regulator_dev *rdev)
2344{
2345	int ret, delay;
2346
2347	/* Query before enabling in case configuration dependent.  */
2348	ret = _regulator_get_enable_time(rdev);
2349	if (ret >= 0) {
2350		delay = ret;
2351	} else {
2352		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2353		delay = 0;
2354	}
2355
2356	trace_regulator_enable(rdev_get_name(rdev));
2357
2358	if (rdev->desc->off_on_delay) {
2359		/* if needed, keep a distance of off_on_delay from last time
2360		 * this regulator was disabled.
2361		 */
2362		unsigned long start_jiffy = jiffies;
2363		unsigned long intended, max_delay, remaining;
2364
2365		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2366		intended = rdev->last_off_jiffy + max_delay;
2367
2368		if (time_before(start_jiffy, intended)) {
2369			/* calc remaining jiffies to deal with one-time
2370			 * timer wrapping.
2371			 * in case of multiple timer wrapping, either it can be
2372			 * detected by out-of-range remaining, or it cannot be
2373			 * detected and we get a penalty of
2374			 * _regulator_enable_delay().
2375			 */
2376			remaining = intended - start_jiffy;
2377			if (remaining <= max_delay)
2378				_regulator_enable_delay(
2379						jiffies_to_usecs(remaining));
2380		}
2381	}
2382
2383	if (rdev->ena_pin) {
2384		if (!rdev->ena_gpio_state) {
2385			ret = regulator_ena_gpio_ctrl(rdev, true);
2386			if (ret < 0)
2387				return ret;
2388			rdev->ena_gpio_state = 1;
2389		}
2390	} else if (rdev->desc->ops->enable) {
2391		ret = rdev->desc->ops->enable(rdev);
2392		if (ret < 0)
2393			return ret;
2394	} else {
2395		return -EINVAL;
2396	}
2397
2398	/* Allow the regulator to ramp; it would be useful to extend
2399	 * this for bulk operations so that the regulators can ramp
2400	 * together.  */
2401	trace_regulator_enable_delay(rdev_get_name(rdev));
2402
2403	_regulator_enable_delay(delay);
2404
2405	trace_regulator_enable_complete(rdev_get_name(rdev));
2406
2407	return 0;
2408}
2409
2410/**
2411 * _regulator_handle_consumer_enable - handle that a consumer enabled
2412 * @regulator: regulator source
2413 *
2414 * Some things on a regulator consumer (like the contribution towards total
2415 * load on the regulator) only have an effect when the consumer wants the
2416 * regulator enabled.  Explained in example with two consumers of the same
2417 * regulator:
2418 *   consumer A: set_load(100);       => total load = 0
2419 *   consumer A: regulator_enable();  => total load = 100
2420 *   consumer B: set_load(1000);      => total load = 100
2421 *   consumer B: regulator_enable();  => total load = 1100
2422 *   consumer A: regulator_disable(); => total_load = 1000
2423 *
2424 * This function (together with _regulator_handle_consumer_disable) is
2425 * responsible for keeping track of the refcount for a given regulator consumer
2426 * and applying / unapplying these things.
2427 *
2428 * Returns 0 upon no error; -error upon error.
2429 */
2430static int _regulator_handle_consumer_enable(struct regulator *regulator)
2431{
2432	struct regulator_dev *rdev = regulator->rdev;
2433
2434	lockdep_assert_held_once(&rdev->mutex.base);
2435
2436	regulator->enable_count++;
2437	if (regulator->uA_load && regulator->enable_count == 1)
2438		return drms_uA_update(rdev);
2439
2440	return 0;
2441}
2442
2443/**
2444 * _regulator_handle_consumer_disable - handle that a consumer disabled
2445 * @regulator: regulator source
2446 *
2447 * The opposite of _regulator_handle_consumer_enable().
2448 *
2449 * Returns 0 upon no error; -error upon error.
2450 */
2451static int _regulator_handle_consumer_disable(struct regulator *regulator)
2452{
2453	struct regulator_dev *rdev = regulator->rdev;
2454
2455	lockdep_assert_held_once(&rdev->mutex.base);
2456
2457	if (!regulator->enable_count) {
2458		rdev_err(rdev, "Underflow of regulator enable count\n");
2459		return -EINVAL;
2460	}
2461
2462	regulator->enable_count--;
2463	if (regulator->uA_load && regulator->enable_count == 0)
2464		return drms_uA_update(rdev);
2465
2466	return 0;
2467}
2468
2469/* locks held by regulator_enable() */
2470static int _regulator_enable(struct regulator *regulator)
2471{
2472	struct regulator_dev *rdev = regulator->rdev;
2473	int ret;
2474
2475	lockdep_assert_held_once(&rdev->mutex.base);
2476
2477	if (rdev->use_count == 0 && rdev->supply) {
2478		ret = _regulator_enable(rdev->supply);
2479		if (ret < 0)
2480			return ret;
2481	}
2482
2483	/* balance only if there are regulators coupled */
2484	if (rdev->coupling_desc.n_coupled > 1) {
2485		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2486		if (ret < 0)
2487			goto err_disable_supply;
2488	}
2489
2490	ret = _regulator_handle_consumer_enable(regulator);
2491	if (ret < 0)
2492		goto err_disable_supply;
2493
2494	if (rdev->use_count == 0) {
2495		/* The regulator may on if it's not switchable or left on */
2496		ret = _regulator_is_enabled(rdev);
2497		if (ret == -EINVAL || ret == 0) {
2498			if (!regulator_ops_is_valid(rdev,
2499					REGULATOR_CHANGE_STATUS)) {
2500				ret = -EPERM;
2501				goto err_consumer_disable;
2502			}
2503
2504			ret = _regulator_do_enable(rdev);
2505			if (ret < 0)
2506				goto err_consumer_disable;
2507
2508			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2509					     NULL);
2510		} else if (ret < 0) {
2511			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2512			goto err_consumer_disable;
2513		}
2514		/* Fallthrough on positive return values - already enabled */
2515	}
2516
2517	rdev->use_count++;
2518
2519	return 0;
2520
2521err_consumer_disable:
2522	_regulator_handle_consumer_disable(regulator);
2523
2524err_disable_supply:
2525	if (rdev->use_count == 0 && rdev->supply)
2526		_regulator_disable(rdev->supply);
2527
2528	return ret;
2529}
2530
2531/**
2532 * regulator_enable - enable regulator output
2533 * @regulator: regulator source
2534 *
2535 * Request that the regulator be enabled with the regulator output at
2536 * the predefined voltage or current value.  Calls to regulator_enable()
2537 * must be balanced with calls to regulator_disable().
2538 *
2539 * NOTE: the output value can be set by other drivers, boot loader or may be
2540 * hardwired in the regulator.
2541 */
2542int regulator_enable(struct regulator *regulator)
2543{
2544	struct regulator_dev *rdev = regulator->rdev;
2545	struct ww_acquire_ctx ww_ctx;
2546	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
2547
2548	regulator_lock_dependent(rdev, &ww_ctx);
2549	ret = _regulator_enable(regulator);
2550	regulator_unlock_dependent(rdev, &ww_ctx);
2551
2552	return ret;
2553}
2554EXPORT_SYMBOL_GPL(regulator_enable);
2555
2556static int _regulator_do_disable(struct regulator_dev *rdev)
2557{
2558	int ret;
2559
2560	trace_regulator_disable(rdev_get_name(rdev));
2561
2562	if (rdev->ena_pin) {
2563		if (rdev->ena_gpio_state) {
2564			ret = regulator_ena_gpio_ctrl(rdev, false);
2565			if (ret < 0)
2566				return ret;
2567			rdev->ena_gpio_state = 0;
2568		}
2569
2570	} else if (rdev->desc->ops->disable) {
2571		ret = rdev->desc->ops->disable(rdev);
2572		if (ret != 0)
2573			return ret;
2574	}
2575
2576	/* cares about last_off_jiffy only if off_on_delay is required by
2577	 * device.
2578	 */
2579	if (rdev->desc->off_on_delay)
2580		rdev->last_off_jiffy = jiffies;
2581
2582	trace_regulator_disable_complete(rdev_get_name(rdev));
2583
2584	return 0;
2585}
2586
2587/* locks held by regulator_disable() */
2588static int _regulator_disable(struct regulator *regulator)
2589{
2590	struct regulator_dev *rdev = regulator->rdev;
2591	int ret = 0;
2592
2593	lockdep_assert_held_once(&rdev->mutex.base);
2594
2595	if (WARN(rdev->use_count <= 0,
2596		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2597		return -EIO;
2598
2599	/* are we the last user and permitted to disable ? */
2600	if (rdev->use_count == 1 &&
2601	    (rdev->constraints && !rdev->constraints->always_on)) {
2602
2603		/* we are last user */
2604		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2605			ret = _notifier_call_chain(rdev,
2606						   REGULATOR_EVENT_PRE_DISABLE,
2607						   NULL);
2608			if (ret & NOTIFY_STOP_MASK)
2609				return -EINVAL;
2610
2611			ret = _regulator_do_disable(rdev);
2612			if (ret < 0) {
2613				rdev_err(rdev, "failed to disable\n");
2614				_notifier_call_chain(rdev,
2615						REGULATOR_EVENT_ABORT_DISABLE,
2616						NULL);
2617				return ret;
2618			}
2619			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2620					NULL);
2621		}
2622
2623		rdev->use_count = 0;
2624	} else if (rdev->use_count > 1) {
 
 
 
 
 
 
2625		rdev->use_count--;
2626	}
2627
2628	if (ret == 0)
2629		ret = _regulator_handle_consumer_disable(regulator);
2630
2631	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2632		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2633
2634	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2635		ret = _regulator_disable(rdev->supply);
2636
2637	return ret;
2638}
2639
2640/**
2641 * regulator_disable - disable regulator output
2642 * @regulator: regulator source
2643 *
2644 * Disable the regulator output voltage or current.  Calls to
2645 * regulator_enable() must be balanced with calls to
2646 * regulator_disable().
2647 *
2648 * NOTE: this will only disable the regulator output if no other consumer
2649 * devices have it enabled, the regulator device supports disabling and
2650 * machine constraints permit this operation.
2651 */
2652int regulator_disable(struct regulator *regulator)
2653{
2654	struct regulator_dev *rdev = regulator->rdev;
2655	struct ww_acquire_ctx ww_ctx;
2656	int ret;
 
 
 
 
 
 
2657
2658	regulator_lock_dependent(rdev, &ww_ctx);
2659	ret = _regulator_disable(regulator);
2660	regulator_unlock_dependent(rdev, &ww_ctx);
2661
2662	return ret;
2663}
2664EXPORT_SYMBOL_GPL(regulator_disable);
2665
2666/* locks held by regulator_force_disable() */
2667static int _regulator_force_disable(struct regulator_dev *rdev)
2668{
2669	int ret = 0;
2670
2671	lockdep_assert_held_once(&rdev->mutex.base);
2672
2673	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2674			REGULATOR_EVENT_PRE_DISABLE, NULL);
2675	if (ret & NOTIFY_STOP_MASK)
2676		return -EINVAL;
2677
2678	ret = _regulator_do_disable(rdev);
2679	if (ret < 0) {
2680		rdev_err(rdev, "failed to force disable\n");
2681		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2682				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2683		return ret;
2684	}
2685
2686	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2687			REGULATOR_EVENT_DISABLE, NULL);
2688
2689	return 0;
2690}
2691
2692/**
2693 * regulator_force_disable - force disable regulator output
2694 * @regulator: regulator source
2695 *
2696 * Forcibly disable the regulator output voltage or current.
2697 * NOTE: this *will* disable the regulator output even if other consumer
2698 * devices have it enabled. This should be used for situations when device
2699 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2700 */
2701int regulator_force_disable(struct regulator *regulator)
2702{
2703	struct regulator_dev *rdev = regulator->rdev;
2704	struct ww_acquire_ctx ww_ctx;
2705	int ret;
2706
2707	regulator_lock_dependent(rdev, &ww_ctx);
2708
2709	ret = _regulator_force_disable(regulator->rdev);
 
2710
2711	if (rdev->coupling_desc.n_coupled > 1)
2712		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2713
2714	if (regulator->uA_load) {
2715		regulator->uA_load = 0;
2716		ret = drms_uA_update(rdev);
2717	}
2718
2719	if (rdev->use_count != 0 && rdev->supply)
2720		_regulator_disable(rdev->supply);
2721
2722	regulator_unlock_dependent(rdev, &ww_ctx);
2723
2724	return ret;
2725}
2726EXPORT_SYMBOL_GPL(regulator_force_disable);
2727
2728static void regulator_disable_work(struct work_struct *work)
2729{
2730	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2731						  disable_work.work);
2732	struct ww_acquire_ctx ww_ctx;
2733	int count, i, ret;
2734	struct regulator *regulator;
2735	int total_count = 0;
2736
2737	regulator_lock_dependent(rdev, &ww_ctx);
2738
2739	/*
2740	 * Workqueue functions queue the new work instance while the previous
2741	 * work instance is being processed. Cancel the queued work instance
2742	 * as the work instance under processing does the job of the queued
2743	 * work instance.
2744	 */
2745	cancel_delayed_work(&rdev->disable_work);
2746
2747	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2748		count = regulator->deferred_disables;
2749
2750		if (!count)
2751			continue;
 
 
 
2752
2753		total_count += count;
2754		regulator->deferred_disables = 0;
2755
 
2756		for (i = 0; i < count; i++) {
2757			ret = _regulator_disable(regulator);
2758			if (ret != 0)
2759				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
 
 
2760		}
2761	}
2762	WARN_ON(!total_count);
2763
2764	if (rdev->coupling_desc.n_coupled > 1)
2765		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2766
2767	regulator_unlock_dependent(rdev, &ww_ctx);
2768}
2769
2770/**
2771 * regulator_disable_deferred - disable regulator output with delay
2772 * @regulator: regulator source
2773 * @ms: milliseconds until the regulator is disabled
2774 *
2775 * Execute regulator_disable() on the regulator after a delay.  This
2776 * is intended for use with devices that require some time to quiesce.
2777 *
2778 * NOTE: this will only disable the regulator output if no other consumer
2779 * devices have it enabled, the regulator device supports disabling and
2780 * machine constraints permit this operation.
2781 */
2782int regulator_disable_deferred(struct regulator *regulator, int ms)
2783{
2784	struct regulator_dev *rdev = regulator->rdev;
2785
 
 
 
2786	if (!ms)
2787		return regulator_disable(regulator);
2788
2789	regulator_lock(rdev);
2790	regulator->deferred_disables++;
2791	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2792			 msecs_to_jiffies(ms));
2793	regulator_unlock(rdev);
2794
 
 
2795	return 0;
2796}
2797EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2798
2799static int _regulator_is_enabled(struct regulator_dev *rdev)
2800{
2801	/* A GPIO control always takes precedence */
2802	if (rdev->ena_pin)
2803		return rdev->ena_gpio_state;
2804
2805	/* If we don't know then assume that the regulator is always on */
2806	if (!rdev->desc->ops->is_enabled)
2807		return 1;
2808
2809	return rdev->desc->ops->is_enabled(rdev);
2810}
2811
2812static int _regulator_list_voltage(struct regulator_dev *rdev,
2813				   unsigned selector, int lock)
2814{
 
2815	const struct regulator_ops *ops = rdev->desc->ops;
2816	int ret;
2817
2818	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2819		return rdev->desc->fixed_uV;
2820
2821	if (ops->list_voltage) {
2822		if (selector >= rdev->desc->n_voltages)
2823			return -EINVAL;
2824		if (lock)
2825			regulator_lock(rdev);
2826		ret = ops->list_voltage(rdev, selector);
2827		if (lock)
2828			regulator_unlock(rdev);
2829	} else if (rdev->is_switch && rdev->supply) {
2830		ret = _regulator_list_voltage(rdev->supply->rdev,
2831					      selector, lock);
2832	} else {
2833		return -EINVAL;
2834	}
2835
2836	if (ret > 0) {
2837		if (ret < rdev->constraints->min_uV)
2838			ret = 0;
2839		else if (ret > rdev->constraints->max_uV)
2840			ret = 0;
2841	}
2842
2843	return ret;
2844}
2845
2846/**
2847 * regulator_is_enabled - is the regulator output enabled
2848 * @regulator: regulator source
2849 *
2850 * Returns positive if the regulator driver backing the source/client
2851 * has requested that the device be enabled, zero if it hasn't, else a
2852 * negative errno code.
2853 *
2854 * Note that the device backing this regulator handle can have multiple
2855 * users, so it might be enabled even if regulator_enable() was never
2856 * called for this particular source.
2857 */
2858int regulator_is_enabled(struct regulator *regulator)
2859{
2860	int ret;
2861
2862	if (regulator->always_on)
2863		return 1;
2864
2865	regulator_lock(regulator->rdev);
2866	ret = _regulator_is_enabled(regulator->rdev);
2867	regulator_unlock(regulator->rdev);
2868
2869	return ret;
2870}
2871EXPORT_SYMBOL_GPL(regulator_is_enabled);
2872
2873/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2874 * regulator_count_voltages - count regulator_list_voltage() selectors
2875 * @regulator: regulator source
2876 *
2877 * Returns number of selectors, or negative errno.  Selectors are
2878 * numbered starting at zero, and typically correspond to bitfields
2879 * in hardware registers.
2880 */
2881int regulator_count_voltages(struct regulator *regulator)
2882{
2883	struct regulator_dev	*rdev = regulator->rdev;
2884
2885	if (rdev->desc->n_voltages)
2886		return rdev->desc->n_voltages;
2887
2888	if (!rdev->is_switch || !rdev->supply)
2889		return -EINVAL;
2890
2891	return regulator_count_voltages(rdev->supply);
2892}
2893EXPORT_SYMBOL_GPL(regulator_count_voltages);
2894
2895/**
2896 * regulator_list_voltage - enumerate supported voltages
2897 * @regulator: regulator source
2898 * @selector: identify voltage to list
2899 * Context: can sleep
2900 *
2901 * Returns a voltage that can be passed to @regulator_set_voltage(),
2902 * zero if this selector code can't be used on this system, or a
2903 * negative errno.
2904 */
2905int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2906{
2907	return _regulator_list_voltage(regulator->rdev, selector, 1);
2908}
2909EXPORT_SYMBOL_GPL(regulator_list_voltage);
2910
2911/**
2912 * regulator_get_regmap - get the regulator's register map
2913 * @regulator: regulator source
2914 *
2915 * Returns the register map for the given regulator, or an ERR_PTR value
2916 * if the regulator doesn't use regmap.
2917 */
2918struct regmap *regulator_get_regmap(struct regulator *regulator)
2919{
2920	struct regmap *map = regulator->rdev->regmap;
2921
2922	return map ? map : ERR_PTR(-EOPNOTSUPP);
2923}
2924
2925/**
2926 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2927 * @regulator: regulator source
2928 * @vsel_reg: voltage selector register, output parameter
2929 * @vsel_mask: mask for voltage selector bitfield, output parameter
2930 *
2931 * Returns the hardware register offset and bitmask used for setting the
2932 * regulator voltage. This might be useful when configuring voltage-scaling
2933 * hardware or firmware that can make I2C requests behind the kernel's back,
2934 * for example.
2935 *
2936 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2937 * and 0 is returned, otherwise a negative errno is returned.
2938 */
2939int regulator_get_hardware_vsel_register(struct regulator *regulator,
2940					 unsigned *vsel_reg,
2941					 unsigned *vsel_mask)
2942{
2943	struct regulator_dev *rdev = regulator->rdev;
2944	const struct regulator_ops *ops = rdev->desc->ops;
2945
2946	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2947		return -EOPNOTSUPP;
2948
2949	*vsel_reg = rdev->desc->vsel_reg;
2950	*vsel_mask = rdev->desc->vsel_mask;
2951
2952	 return 0;
2953}
2954EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2955
2956/**
2957 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2958 * @regulator: regulator source
2959 * @selector: identify voltage to list
2960 *
2961 * Converts the selector to a hardware-specific voltage selector that can be
2962 * directly written to the regulator registers. The address of the voltage
2963 * register can be determined by calling @regulator_get_hardware_vsel_register.
2964 *
2965 * On error a negative errno is returned.
2966 */
2967int regulator_list_hardware_vsel(struct regulator *regulator,
2968				 unsigned selector)
2969{
2970	struct regulator_dev *rdev = regulator->rdev;
2971	const struct regulator_ops *ops = rdev->desc->ops;
2972
2973	if (selector >= rdev->desc->n_voltages)
2974		return -EINVAL;
2975	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2976		return -EOPNOTSUPP;
2977
2978	return selector;
2979}
2980EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2981
2982/**
2983 * regulator_get_linear_step - return the voltage step size between VSEL values
2984 * @regulator: regulator source
2985 *
2986 * Returns the voltage step size between VSEL values for linear
2987 * regulators, or return 0 if the regulator isn't a linear regulator.
2988 */
2989unsigned int regulator_get_linear_step(struct regulator *regulator)
2990{
2991	struct regulator_dev *rdev = regulator->rdev;
2992
2993	return rdev->desc->uV_step;
2994}
2995EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2996
2997/**
2998 * regulator_is_supported_voltage - check if a voltage range can be supported
2999 *
3000 * @regulator: Regulator to check.
3001 * @min_uV: Minimum required voltage in uV.
3002 * @max_uV: Maximum required voltage in uV.
3003 *
3004 * Returns a boolean.
3005 */
3006int regulator_is_supported_voltage(struct regulator *regulator,
3007				   int min_uV, int max_uV)
3008{
3009	struct regulator_dev *rdev = regulator->rdev;
3010	int i, voltages, ret;
3011
3012	/* If we can't change voltage check the current voltage */
3013	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3014		ret = regulator_get_voltage(regulator);
3015		if (ret >= 0)
3016			return min_uV <= ret && ret <= max_uV;
3017		else
3018			return ret;
3019	}
3020
3021	/* Any voltage within constrains range is fine? */
3022	if (rdev->desc->continuous_voltage_range)
3023		return min_uV >= rdev->constraints->min_uV &&
3024				max_uV <= rdev->constraints->max_uV;
3025
3026	ret = regulator_count_voltages(regulator);
3027	if (ret < 0)
3028		return 0;
3029	voltages = ret;
3030
3031	for (i = 0; i < voltages; i++) {
3032		ret = regulator_list_voltage(regulator, i);
3033
3034		if (ret >= min_uV && ret <= max_uV)
3035			return 1;
3036	}
3037
3038	return 0;
3039}
3040EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3041
3042static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3043				 int max_uV)
3044{
3045	const struct regulator_desc *desc = rdev->desc;
3046
3047	if (desc->ops->map_voltage)
3048		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3049
3050	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3051		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3052
3053	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3054		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3055
3056	if (desc->ops->list_voltage ==
3057		regulator_list_voltage_pickable_linear_range)
3058		return regulator_map_voltage_pickable_linear_range(rdev,
3059							min_uV, max_uV);
3060
3061	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3062}
3063
3064static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3065				       int min_uV, int max_uV,
3066				       unsigned *selector)
3067{
3068	struct pre_voltage_change_data data;
3069	int ret;
3070
3071	data.old_uV = regulator_get_voltage_rdev(rdev);
3072	data.min_uV = min_uV;
3073	data.max_uV = max_uV;
3074	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3075				   &data);
3076	if (ret & NOTIFY_STOP_MASK)
3077		return -EINVAL;
3078
3079	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3080	if (ret >= 0)
3081		return ret;
3082
3083	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3084			     (void *)data.old_uV);
3085
3086	return ret;
3087}
3088
3089static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3090					   int uV, unsigned selector)
3091{
3092	struct pre_voltage_change_data data;
3093	int ret;
3094
3095	data.old_uV = regulator_get_voltage_rdev(rdev);
3096	data.min_uV = uV;
3097	data.max_uV = uV;
3098	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3099				   &data);
3100	if (ret & NOTIFY_STOP_MASK)
3101		return -EINVAL;
3102
3103	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3104	if (ret >= 0)
3105		return ret;
3106
3107	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3108			     (void *)data.old_uV);
3109
3110	return ret;
3111}
3112
3113static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3114					   int uV, int new_selector)
3115{
3116	const struct regulator_ops *ops = rdev->desc->ops;
3117	int diff, old_sel, curr_sel, ret;
3118
3119	/* Stepping is only needed if the regulator is enabled. */
3120	if (!_regulator_is_enabled(rdev))
3121		goto final_set;
3122
3123	if (!ops->get_voltage_sel)
3124		return -EINVAL;
3125
3126	old_sel = ops->get_voltage_sel(rdev);
3127	if (old_sel < 0)
3128		return old_sel;
3129
3130	diff = new_selector - old_sel;
3131	if (diff == 0)
3132		return 0; /* No change needed. */
3133
3134	if (diff > 0) {
3135		/* Stepping up. */
3136		for (curr_sel = old_sel + rdev->desc->vsel_step;
3137		     curr_sel < new_selector;
3138		     curr_sel += rdev->desc->vsel_step) {
3139			/*
3140			 * Call the callback directly instead of using
3141			 * _regulator_call_set_voltage_sel() as we don't
3142			 * want to notify anyone yet. Same in the branch
3143			 * below.
3144			 */
3145			ret = ops->set_voltage_sel(rdev, curr_sel);
3146			if (ret)
3147				goto try_revert;
3148		}
3149	} else {
3150		/* Stepping down. */
3151		for (curr_sel = old_sel - rdev->desc->vsel_step;
3152		     curr_sel > new_selector;
3153		     curr_sel -= rdev->desc->vsel_step) {
3154			ret = ops->set_voltage_sel(rdev, curr_sel);
3155			if (ret)
3156				goto try_revert;
3157		}
3158	}
3159
3160final_set:
3161	/* The final selector will trigger the notifiers. */
3162	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3163
3164try_revert:
3165	/*
3166	 * At least try to return to the previous voltage if setting a new
3167	 * one failed.
3168	 */
3169	(void)ops->set_voltage_sel(rdev, old_sel);
3170	return ret;
3171}
3172
3173static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3174				       int old_uV, int new_uV)
3175{
3176	unsigned int ramp_delay = 0;
3177
3178	if (rdev->constraints->ramp_delay)
3179		ramp_delay = rdev->constraints->ramp_delay;
3180	else if (rdev->desc->ramp_delay)
3181		ramp_delay = rdev->desc->ramp_delay;
3182	else if (rdev->constraints->settling_time)
3183		return rdev->constraints->settling_time;
3184	else if (rdev->constraints->settling_time_up &&
3185		 (new_uV > old_uV))
3186		return rdev->constraints->settling_time_up;
3187	else if (rdev->constraints->settling_time_down &&
3188		 (new_uV < old_uV))
3189		return rdev->constraints->settling_time_down;
3190
3191	if (ramp_delay == 0) {
3192		rdev_dbg(rdev, "ramp_delay not set\n");
3193		return 0;
3194	}
3195
3196	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3197}
3198
3199static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3200				     int min_uV, int max_uV)
3201{
3202	int ret;
3203	int delay = 0;
3204	int best_val = 0;
3205	unsigned int selector;
3206	int old_selector = -1;
3207	const struct regulator_ops *ops = rdev->desc->ops;
3208	int old_uV = regulator_get_voltage_rdev(rdev);
3209
3210	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3211
3212	min_uV += rdev->constraints->uV_offset;
3213	max_uV += rdev->constraints->uV_offset;
3214
3215	/*
3216	 * If we can't obtain the old selector there is not enough
3217	 * info to call set_voltage_time_sel().
3218	 */
3219	if (_regulator_is_enabled(rdev) &&
3220	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3221		old_selector = ops->get_voltage_sel(rdev);
 
3222		if (old_selector < 0)
3223			return old_selector;
3224	}
3225
3226	if (ops->set_voltage) {
3227		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3228						  &selector);
3229
3230		if (ret >= 0) {
3231			if (ops->list_voltage)
3232				best_val = ops->list_voltage(rdev,
3233							     selector);
3234			else
3235				best_val = regulator_get_voltage_rdev(rdev);
3236		}
3237
3238	} else if (ops->set_voltage_sel) {
3239		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3240		if (ret >= 0) {
3241			best_val = ops->list_voltage(rdev, ret);
3242			if (min_uV <= best_val && max_uV >= best_val) {
3243				selector = ret;
3244				if (old_selector == selector)
3245					ret = 0;
3246				else if (rdev->desc->vsel_step)
3247					ret = _regulator_set_voltage_sel_step(
3248						rdev, best_val, selector);
3249				else
3250					ret = _regulator_call_set_voltage_sel(
3251						rdev, best_val, selector);
3252			} else {
3253				ret = -EINVAL;
3254			}
3255		}
3256	} else {
3257		ret = -EINVAL;
3258	}
3259
3260	if (ret)
3261		goto out;
 
3262
3263	if (ops->set_voltage_time_sel) {
3264		/*
3265		 * Call set_voltage_time_sel if successfully obtained
3266		 * old_selector
3267		 */
3268		if (old_selector >= 0 && old_selector != selector)
3269			delay = ops->set_voltage_time_sel(rdev, old_selector,
3270							  selector);
3271	} else {
3272		if (old_uV != best_val) {
3273			if (ops->set_voltage_time)
3274				delay = ops->set_voltage_time(rdev, old_uV,
3275							      best_val);
3276			else
3277				delay = _regulator_set_voltage_time(rdev,
3278								    old_uV,
3279								    best_val);
3280		}
3281	}
3282
3283	if (delay < 0) {
3284		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3285		delay = 0;
 
 
 
 
3286	}
3287
3288	/* Insert any necessary delays */
3289	if (delay >= 1000) {
3290		mdelay(delay / 1000);
3291		udelay(delay % 1000);
3292	} else if (delay) {
3293		udelay(delay);
3294	}
3295
3296	if (best_val >= 0) {
3297		unsigned long data = best_val;
3298
3299		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3300				     (void *)data);
3301	}
3302
3303out:
3304	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3305
3306	return ret;
3307}
3308
3309static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3310				  int min_uV, int max_uV, suspend_state_t state)
3311{
3312	struct regulator_state *rstate;
3313	int uV, sel;
3314
3315	rstate = regulator_get_suspend_state(rdev, state);
3316	if (rstate == NULL)
3317		return -EINVAL;
3318
3319	if (min_uV < rstate->min_uV)
3320		min_uV = rstate->min_uV;
3321	if (max_uV > rstate->max_uV)
3322		max_uV = rstate->max_uV;
3323
3324	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3325	if (sel < 0)
3326		return sel;
3327
3328	uV = rdev->desc->ops->list_voltage(rdev, sel);
3329	if (uV >= min_uV && uV <= max_uV)
3330		rstate->uV = uV;
3331
3332	return 0;
3333}
3334
3335static int regulator_set_voltage_unlocked(struct regulator *regulator,
3336					  int min_uV, int max_uV,
3337					  suspend_state_t state)
3338{
3339	struct regulator_dev *rdev = regulator->rdev;
3340	struct regulator_voltage *voltage = &regulator->voltage[state];
3341	int ret = 0;
3342	int old_min_uV, old_max_uV;
3343	int current_uV;
 
 
3344
3345	/* If we're setting the same range as last time the change
3346	 * should be a noop (some cpufreq implementations use the same
3347	 * voltage for multiple frequencies, for example).
3348	 */
3349	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3350		goto out;
3351
3352	/* If we're trying to set a range that overlaps the current voltage,
3353	 * return successfully even though the regulator does not support
3354	 * changing the voltage.
3355	 */
3356	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3357		current_uV = regulator_get_voltage_rdev(rdev);
3358		if (min_uV <= current_uV && current_uV <= max_uV) {
3359			voltage->min_uV = min_uV;
3360			voltage->max_uV = max_uV;
3361			goto out;
3362		}
3363	}
3364
3365	/* sanity check */
3366	if (!rdev->desc->ops->set_voltage &&
3367	    !rdev->desc->ops->set_voltage_sel) {
3368		ret = -EINVAL;
3369		goto out;
3370	}
3371
3372	/* constraints check */
3373	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3374	if (ret < 0)
3375		goto out;
3376
3377	/* restore original values in case of error */
3378	old_min_uV = voltage->min_uV;
3379	old_max_uV = voltage->max_uV;
3380	voltage->min_uV = min_uV;
3381	voltage->max_uV = max_uV;
3382
3383	/* for not coupled regulators this will just set the voltage */
3384	ret = regulator_balance_voltage(rdev, state);
3385	if (ret < 0) {
3386		voltage->min_uV = old_min_uV;
3387		voltage->max_uV = old_max_uV;
3388	}
3389
3390out:
3391	return ret;
3392}
3393
3394int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3395			       int max_uV, suspend_state_t state)
3396{
3397	int best_supply_uV = 0;
3398	int supply_change_uV = 0;
3399	int ret;
3400
3401	if (rdev->supply &&
3402	    regulator_ops_is_valid(rdev->supply->rdev,
3403				   REGULATOR_CHANGE_VOLTAGE) &&
3404	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3405					   rdev->desc->ops->get_voltage_sel))) {
3406		int current_supply_uV;
3407		int selector;
3408
3409		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3410		if (selector < 0) {
3411			ret = selector;
3412			goto out;
3413		}
3414
3415		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3416		if (best_supply_uV < 0) {
3417			ret = best_supply_uV;
3418			goto out;
3419		}
3420
3421		best_supply_uV += rdev->desc->min_dropout_uV;
3422
3423		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3424		if (current_supply_uV < 0) {
3425			ret = current_supply_uV;
3426			goto out;
3427		}
3428
3429		supply_change_uV = best_supply_uV - current_supply_uV;
3430	}
3431
3432	if (supply_change_uV > 0) {
3433		ret = regulator_set_voltage_unlocked(rdev->supply,
3434				best_supply_uV, INT_MAX, state);
3435		if (ret) {
3436			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3437					ret);
3438			goto out;
3439		}
3440	}
3441
3442	if (state == PM_SUSPEND_ON)
3443		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3444	else
3445		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3446							max_uV, state);
3447	if (ret < 0)
3448		goto out;
3449
3450	if (supply_change_uV < 0) {
3451		ret = regulator_set_voltage_unlocked(rdev->supply,
3452				best_supply_uV, INT_MAX, state);
3453		if (ret)
3454			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3455					ret);
3456		/* No need to fail here */
3457		ret = 0;
3458	}
3459
3460out:
3461	return ret;
3462}
3463
3464static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3465					int *current_uV, int *min_uV)
3466{
3467	struct regulation_constraints *constraints = rdev->constraints;
3468
3469	/* Limit voltage change only if necessary */
3470	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3471		return 1;
3472
3473	if (*current_uV < 0) {
3474		*current_uV = regulator_get_voltage_rdev(rdev);
3475
3476		if (*current_uV < 0)
3477			return *current_uV;
3478	}
3479
3480	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3481		return 1;
3482
3483	/* Clamp target voltage within the given step */
3484	if (*current_uV < *min_uV)
3485		*min_uV = min(*current_uV + constraints->max_uV_step,
3486			      *min_uV);
3487	else
3488		*min_uV = max(*current_uV - constraints->max_uV_step,
3489			      *min_uV);
3490
3491	return 0;
3492}
3493
3494static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3495					 int *current_uV,
3496					 int *min_uV, int *max_uV,
3497					 suspend_state_t state,
3498					 int n_coupled)
3499{
3500	struct coupling_desc *c_desc = &rdev->coupling_desc;
3501	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3502	struct regulation_constraints *constraints = rdev->constraints;
3503	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3504	int max_current_uV = 0, min_current_uV = INT_MAX;
3505	int highest_min_uV = 0, target_uV, possible_uV;
3506	int i, ret, max_spread;
3507	bool done;
3508
3509	*current_uV = -1;
3510
3511	/*
3512	 * If there are no coupled regulators, simply set the voltage
3513	 * demanded by consumers.
3514	 */
3515	if (n_coupled == 1) {
3516		/*
3517		 * If consumers don't provide any demands, set voltage
3518		 * to min_uV
3519		 */
3520		desired_min_uV = constraints->min_uV;
3521		desired_max_uV = constraints->max_uV;
3522
3523		ret = regulator_check_consumers(rdev,
3524						&desired_min_uV,
3525						&desired_max_uV, state);
3526		if (ret < 0)
3527			return ret;
3528
3529		possible_uV = desired_min_uV;
3530		done = true;
3531
3532		goto finish;
3533	}
3534
3535	/* Find highest min desired voltage */
3536	for (i = 0; i < n_coupled; i++) {
3537		int tmp_min = 0;
3538		int tmp_max = INT_MAX;
3539
3540		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3541
3542		ret = regulator_check_consumers(c_rdevs[i],
3543						&tmp_min,
3544						&tmp_max, state);
3545		if (ret < 0)
3546			return ret;
3547
3548		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3549		if (ret < 0)
3550			return ret;
3551
3552		highest_min_uV = max(highest_min_uV, tmp_min);
3553
3554		if (i == 0) {
3555			desired_min_uV = tmp_min;
3556			desired_max_uV = tmp_max;
3557		}
3558	}
3559
3560	max_spread = constraints->max_spread[0];
3561
3562	/*
3563	 * Let target_uV be equal to the desired one if possible.
3564	 * If not, set it to minimum voltage, allowed by other coupled
3565	 * regulators.
3566	 */
3567	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3568
3569	/*
3570	 * Find min and max voltages, which currently aren't violating
3571	 * max_spread.
3572	 */
3573	for (i = 1; i < n_coupled; i++) {
3574		int tmp_act;
3575
3576		if (!_regulator_is_enabled(c_rdevs[i]))
3577			continue;
3578
3579		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3580		if (tmp_act < 0)
3581			return tmp_act;
3582
3583		min_current_uV = min(tmp_act, min_current_uV);
3584		max_current_uV = max(tmp_act, max_current_uV);
3585	}
3586
3587	/* There aren't any other regulators enabled */
3588	if (max_current_uV == 0) {
3589		possible_uV = target_uV;
3590	} else {
3591		/*
3592		 * Correct target voltage, so as it currently isn't
3593		 * violating max_spread
3594		 */
3595		possible_uV = max(target_uV, max_current_uV - max_spread);
3596		possible_uV = min(possible_uV, min_current_uV + max_spread);
3597	}
3598
3599	if (possible_uV > desired_max_uV)
3600		return -EINVAL;
3601
3602	done = (possible_uV == target_uV);
3603	desired_min_uV = possible_uV;
3604
3605finish:
3606	/* Apply max_uV_step constraint if necessary */
3607	if (state == PM_SUSPEND_ON) {
3608		ret = regulator_limit_voltage_step(rdev, current_uV,
3609						   &desired_min_uV);
3610		if (ret < 0)
3611			return ret;
3612
3613		if (ret == 0)
3614			done = false;
3615	}
3616
3617	/* Set current_uV if wasn't done earlier in the code and if necessary */
3618	if (n_coupled > 1 && *current_uV == -1) {
3619
3620		if (_regulator_is_enabled(rdev)) {
3621			ret = regulator_get_voltage_rdev(rdev);
3622			if (ret < 0)
3623				return ret;
3624
3625			*current_uV = ret;
3626		} else {
3627			*current_uV = desired_min_uV;
3628		}
3629	}
3630
3631	*min_uV = desired_min_uV;
3632	*max_uV = desired_max_uV;
3633
3634	return done;
3635}
3636
3637static int regulator_balance_voltage(struct regulator_dev *rdev,
3638				     suspend_state_t state)
3639{
3640	struct regulator_dev **c_rdevs;
3641	struct regulator_dev *best_rdev;
3642	struct coupling_desc *c_desc = &rdev->coupling_desc;
3643	struct regulator_coupler *coupler = c_desc->coupler;
3644	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3645	unsigned int delta, best_delta;
3646	unsigned long c_rdev_done = 0;
3647	bool best_c_rdev_done;
3648
3649	c_rdevs = c_desc->coupled_rdevs;
3650	n_coupled = c_desc->n_coupled;
3651
3652	/*
3653	 * If system is in a state other than PM_SUSPEND_ON, don't check
3654	 * other coupled regulators.
3655	 */
3656	if (state != PM_SUSPEND_ON)
3657		n_coupled = 1;
3658
3659	if (c_desc->n_resolved < n_coupled) {
3660		rdev_err(rdev, "Not all coupled regulators registered\n");
3661		return -EPERM;
3662	}
3663
3664	/* Invoke custom balancer for customized couplers */
3665	if (coupler && coupler->balance_voltage)
3666		return coupler->balance_voltage(coupler, rdev, state);
3667
3668	/*
3669	 * Find the best possible voltage change on each loop. Leave the loop
3670	 * if there isn't any possible change.
3671	 */
3672	do {
3673		best_c_rdev_done = false;
3674		best_delta = 0;
3675		best_min_uV = 0;
3676		best_max_uV = 0;
3677		best_c_rdev = 0;
3678		best_rdev = NULL;
3679
3680		/*
3681		 * Find highest difference between optimal voltage
3682		 * and current voltage.
3683		 */
3684		for (i = 0; i < n_coupled; i++) {
3685			/*
3686			 * optimal_uV is the best voltage that can be set for
3687			 * i-th regulator at the moment without violating
3688			 * max_spread constraint in order to balance
3689			 * the coupled voltages.
3690			 */
3691			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3692
3693			if (test_bit(i, &c_rdev_done))
3694				continue;
3695
3696			ret = regulator_get_optimal_voltage(c_rdevs[i],
3697							    &current_uV,
3698							    &optimal_uV,
3699							    &optimal_max_uV,
3700							    state, n_coupled);
3701			if (ret < 0)
3702				goto out;
3703
3704			delta = abs(optimal_uV - current_uV);
3705
3706			if (delta && best_delta <= delta) {
3707				best_c_rdev_done = ret;
3708				best_delta = delta;
3709				best_rdev = c_rdevs[i];
3710				best_min_uV = optimal_uV;
3711				best_max_uV = optimal_max_uV;
3712				best_c_rdev = i;
3713			}
3714		}
3715
3716		/* Nothing to change, return successfully */
3717		if (!best_rdev) {
3718			ret = 0;
3719			goto out;
3720		}
3721
3722		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3723						 best_max_uV, state);
3724
3725		if (ret < 0)
3726			goto out;
3727
3728		if (best_c_rdev_done)
3729			set_bit(best_c_rdev, &c_rdev_done);
3730
3731	} while (n_coupled > 1);
3732
3733out:
3734	return ret;
3735}
3736
3737/**
3738 * regulator_set_voltage - set regulator output voltage
3739 * @regulator: regulator source
3740 * @min_uV: Minimum required voltage in uV
3741 * @max_uV: Maximum acceptable voltage in uV
3742 *
3743 * Sets a voltage regulator to the desired output voltage. This can be set
3744 * during any regulator state. IOW, regulator can be disabled or enabled.
3745 *
3746 * If the regulator is enabled then the voltage will change to the new value
3747 * immediately otherwise if the regulator is disabled the regulator will
3748 * output at the new voltage when enabled.
3749 *
3750 * NOTE: If the regulator is shared between several devices then the lowest
3751 * request voltage that meets the system constraints will be used.
3752 * Regulator system constraints must be set for this regulator before
3753 * calling this function otherwise this call will fail.
3754 */
3755int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3756{
3757	struct ww_acquire_ctx ww_ctx;
3758	int ret;
3759
3760	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3761
3762	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3763					     PM_SUSPEND_ON);
3764
3765	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3766
3767	return ret;
3768}
3769EXPORT_SYMBOL_GPL(regulator_set_voltage);
3770
3771static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3772					   suspend_state_t state, bool en)
3773{
3774	struct regulator_state *rstate;
3775
3776	rstate = regulator_get_suspend_state(rdev, state);
3777	if (rstate == NULL)
3778		return -EINVAL;
3779
3780	if (!rstate->changeable)
3781		return -EPERM;
3782
3783	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3784
3785	return 0;
3786}
3787
3788int regulator_suspend_enable(struct regulator_dev *rdev,
3789				    suspend_state_t state)
3790{
3791	return regulator_suspend_toggle(rdev, state, true);
3792}
3793EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3794
3795int regulator_suspend_disable(struct regulator_dev *rdev,
3796				     suspend_state_t state)
3797{
3798	struct regulator *regulator;
3799	struct regulator_voltage *voltage;
3800
3801	/*
3802	 * if any consumer wants this regulator device keeping on in
3803	 * suspend states, don't set it as disabled.
3804	 */
3805	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3806		voltage = &regulator->voltage[state];
3807		if (voltage->min_uV || voltage->max_uV)
3808			return 0;
3809	}
3810
3811	return regulator_suspend_toggle(rdev, state, false);
3812}
3813EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3814
3815static int _regulator_set_suspend_voltage(struct regulator *regulator,
3816					  int min_uV, int max_uV,
3817					  suspend_state_t state)
3818{
3819	struct regulator_dev *rdev = regulator->rdev;
3820	struct regulator_state *rstate;
3821
3822	rstate = regulator_get_suspend_state(rdev, state);
3823	if (rstate == NULL)
3824		return -EINVAL;
3825
3826	if (rstate->min_uV == rstate->max_uV) {
3827		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3828		return -EPERM;
3829	}
3830
3831	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3832}
3833
3834int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3835				  int max_uV, suspend_state_t state)
3836{
3837	struct ww_acquire_ctx ww_ctx;
3838	int ret;
3839
3840	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3841	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3842		return -EINVAL;
3843
3844	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3845
3846	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3847					     max_uV, state);
3848
3849	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3850
3851	return ret;
3852}
3853EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3854
3855/**
3856 * regulator_set_voltage_time - get raise/fall time
3857 * @regulator: regulator source
3858 * @old_uV: starting voltage in microvolts
3859 * @new_uV: target voltage in microvolts
3860 *
3861 * Provided with the starting and ending voltage, this function attempts to
3862 * calculate the time in microseconds required to rise or fall to this new
3863 * voltage.
3864 */
3865int regulator_set_voltage_time(struct regulator *regulator,
3866			       int old_uV, int new_uV)
3867{
3868	struct regulator_dev *rdev = regulator->rdev;
3869	const struct regulator_ops *ops = rdev->desc->ops;
3870	int old_sel = -1;
3871	int new_sel = -1;
3872	int voltage;
3873	int i;
3874
3875	if (ops->set_voltage_time)
3876		return ops->set_voltage_time(rdev, old_uV, new_uV);
3877	else if (!ops->set_voltage_time_sel)
3878		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3879
3880	/* Currently requires operations to do this */
3881	if (!ops->list_voltage || !rdev->desc->n_voltages)
 
3882		return -EINVAL;
3883
3884	for (i = 0; i < rdev->desc->n_voltages; i++) {
3885		/* We only look for exact voltage matches here */
3886		voltage = regulator_list_voltage(regulator, i);
3887		if (voltage < 0)
3888			return -EINVAL;
3889		if (voltage == 0)
3890			continue;
3891		if (voltage == old_uV)
3892			old_sel = i;
3893		if (voltage == new_uV)
3894			new_sel = i;
3895	}
3896
3897	if (old_sel < 0 || new_sel < 0)
3898		return -EINVAL;
3899
3900	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3901}
3902EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3903
3904/**
3905 * regulator_set_voltage_time_sel - get raise/fall time
3906 * @rdev: regulator source device
3907 * @old_selector: selector for starting voltage
3908 * @new_selector: selector for target voltage
3909 *
3910 * Provided with the starting and target voltage selectors, this function
3911 * returns time in microseconds required to rise or fall to this new voltage
3912 *
3913 * Drivers providing ramp_delay in regulation_constraints can use this as their
3914 * set_voltage_time_sel() operation.
3915 */
3916int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3917				   unsigned int old_selector,
3918				   unsigned int new_selector)
3919{
 
3920	int old_volt, new_volt;
3921
 
 
 
 
 
 
 
 
 
 
3922	/* sanity check */
3923	if (!rdev->desc->ops->list_voltage)
3924		return -EINVAL;
3925
3926	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3927	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3928
3929	if (rdev->desc->ops->set_voltage_time)
3930		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3931							 new_volt);
3932	else
3933		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3934}
3935EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3936
3937/**
3938 * regulator_sync_voltage - re-apply last regulator output voltage
3939 * @regulator: regulator source
3940 *
3941 * Re-apply the last configured voltage.  This is intended to be used
3942 * where some external control source the consumer is cooperating with
3943 * has caused the configured voltage to change.
3944 */
3945int regulator_sync_voltage(struct regulator *regulator)
3946{
3947	struct regulator_dev *rdev = regulator->rdev;
3948	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3949	int ret, min_uV, max_uV;
3950
3951	regulator_lock(rdev);
3952
3953	if (!rdev->desc->ops->set_voltage &&
3954	    !rdev->desc->ops->set_voltage_sel) {
3955		ret = -EINVAL;
3956		goto out;
3957	}
3958
3959	/* This is only going to work if we've had a voltage configured. */
3960	if (!voltage->min_uV && !voltage->max_uV) {
3961		ret = -EINVAL;
3962		goto out;
3963	}
3964
3965	min_uV = voltage->min_uV;
3966	max_uV = voltage->max_uV;
3967
3968	/* This should be a paranoia check... */
3969	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3970	if (ret < 0)
3971		goto out;
3972
3973	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3974	if (ret < 0)
3975		goto out;
3976
3977	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3978
3979out:
3980	regulator_unlock(rdev);
3981	return ret;
3982}
3983EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3984
3985int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3986{
3987	int sel, ret;
3988	bool bypassed;
3989
3990	if (rdev->desc->ops->get_bypass) {
3991		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3992		if (ret < 0)
3993			return ret;
3994		if (bypassed) {
3995			/* if bypassed the regulator must have a supply */
3996			if (!rdev->supply) {
3997				rdev_err(rdev,
3998					 "bypassed regulator has no supply!\n");
3999				return -EPROBE_DEFER;
4000			}
4001
4002			return regulator_get_voltage_rdev(rdev->supply->rdev);
4003		}
4004	}
4005
4006	if (rdev->desc->ops->get_voltage_sel) {
4007		sel = rdev->desc->ops->get_voltage_sel(rdev);
4008		if (sel < 0)
4009			return sel;
4010		ret = rdev->desc->ops->list_voltage(rdev, sel);
4011	} else if (rdev->desc->ops->get_voltage) {
4012		ret = rdev->desc->ops->get_voltage(rdev);
4013	} else if (rdev->desc->ops->list_voltage) {
4014		ret = rdev->desc->ops->list_voltage(rdev, 0);
4015	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4016		ret = rdev->desc->fixed_uV;
4017	} else if (rdev->supply) {
4018		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4019	} else {
4020		return -EINVAL;
4021	}
4022
4023	if (ret < 0)
4024		return ret;
4025	return ret - rdev->constraints->uV_offset;
4026}
4027
4028/**
4029 * regulator_get_voltage - get regulator output voltage
4030 * @regulator: regulator source
4031 *
4032 * This returns the current regulator voltage in uV.
4033 *
4034 * NOTE: If the regulator is disabled it will return the voltage value. This
4035 * function should not be used to determine regulator state.
4036 */
4037int regulator_get_voltage(struct regulator *regulator)
4038{
4039	struct ww_acquire_ctx ww_ctx;
4040	int ret;
4041
4042	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4043	ret = regulator_get_voltage_rdev(regulator->rdev);
4044	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
 
 
4045
4046	return ret;
4047}
4048EXPORT_SYMBOL_GPL(regulator_get_voltage);
4049
4050/**
4051 * regulator_set_current_limit - set regulator output current limit
4052 * @regulator: regulator source
4053 * @min_uA: Minimum supported current in uA
4054 * @max_uA: Maximum supported current in uA
4055 *
4056 * Sets current sink to the desired output current. This can be set during
4057 * any regulator state. IOW, regulator can be disabled or enabled.
4058 *
4059 * If the regulator is enabled then the current will change to the new value
4060 * immediately otherwise if the regulator is disabled the regulator will
4061 * output at the new current when enabled.
4062 *
4063 * NOTE: Regulator system constraints must be set for this regulator before
4064 * calling this function otherwise this call will fail.
4065 */
4066int regulator_set_current_limit(struct regulator *regulator,
4067			       int min_uA, int max_uA)
4068{
4069	struct regulator_dev *rdev = regulator->rdev;
4070	int ret;
4071
4072	regulator_lock(rdev);
4073
4074	/* sanity check */
4075	if (!rdev->desc->ops->set_current_limit) {
4076		ret = -EINVAL;
4077		goto out;
4078	}
4079
4080	/* constraints check */
4081	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4082	if (ret < 0)
4083		goto out;
4084
4085	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4086out:
4087	regulator_unlock(rdev);
4088	return ret;
4089}
4090EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4091
4092static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4093{
4094	/* sanity check */
4095	if (!rdev->desc->ops->get_current_limit)
4096		return -EINVAL;
4097
4098	return rdev->desc->ops->get_current_limit(rdev);
4099}
4100
4101static int _regulator_get_current_limit(struct regulator_dev *rdev)
4102{
4103	int ret;
4104
4105	regulator_lock(rdev);
4106	ret = _regulator_get_current_limit_unlocked(rdev);
4107	regulator_unlock(rdev);
 
 
 
 
4108
 
 
 
4109	return ret;
4110}
4111
4112/**
4113 * regulator_get_current_limit - get regulator output current
4114 * @regulator: regulator source
4115 *
4116 * This returns the current supplied by the specified current sink in uA.
4117 *
4118 * NOTE: If the regulator is disabled it will return the current value. This
4119 * function should not be used to determine regulator state.
4120 */
4121int regulator_get_current_limit(struct regulator *regulator)
4122{
4123	return _regulator_get_current_limit(regulator->rdev);
4124}
4125EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4126
4127/**
4128 * regulator_set_mode - set regulator operating mode
4129 * @regulator: regulator source
4130 * @mode: operating mode - one of the REGULATOR_MODE constants
4131 *
4132 * Set regulator operating mode to increase regulator efficiency or improve
4133 * regulation performance.
4134 *
4135 * NOTE: Regulator system constraints must be set for this regulator before
4136 * calling this function otherwise this call will fail.
4137 */
4138int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4139{
4140	struct regulator_dev *rdev = regulator->rdev;
4141	int ret;
4142	int regulator_curr_mode;
4143
4144	regulator_lock(rdev);
4145
4146	/* sanity check */
4147	if (!rdev->desc->ops->set_mode) {
4148		ret = -EINVAL;
4149		goto out;
4150	}
4151
4152	/* return if the same mode is requested */
4153	if (rdev->desc->ops->get_mode) {
4154		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4155		if (regulator_curr_mode == mode) {
4156			ret = 0;
4157			goto out;
4158		}
4159	}
4160
4161	/* constraints check */
4162	ret = regulator_mode_constrain(rdev, &mode);
4163	if (ret < 0)
4164		goto out;
4165
4166	ret = rdev->desc->ops->set_mode(rdev, mode);
4167out:
4168	regulator_unlock(rdev);
4169	return ret;
4170}
4171EXPORT_SYMBOL_GPL(regulator_set_mode);
4172
4173static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4174{
4175	/* sanity check */
4176	if (!rdev->desc->ops->get_mode)
4177		return -EINVAL;
4178
4179	return rdev->desc->ops->get_mode(rdev);
4180}
4181
4182static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4183{
4184	int ret;
4185
4186	regulator_lock(rdev);
4187	ret = _regulator_get_mode_unlocked(rdev);
4188	regulator_unlock(rdev);
4189
4190	return ret;
4191}
4192
4193/**
4194 * regulator_get_mode - get regulator operating mode
4195 * @regulator: regulator source
4196 *
4197 * Get the current regulator operating mode.
4198 */
4199unsigned int regulator_get_mode(struct regulator *regulator)
4200{
4201	return _regulator_get_mode(regulator->rdev);
4202}
4203EXPORT_SYMBOL_GPL(regulator_get_mode);
4204
4205static int _regulator_get_error_flags(struct regulator_dev *rdev,
4206					unsigned int *flags)
4207{
4208	int ret;
4209
4210	regulator_lock(rdev);
4211
4212	/* sanity check */
4213	if (!rdev->desc->ops->get_error_flags) {
4214		ret = -EINVAL;
4215		goto out;
4216	}
4217
4218	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4219out:
4220	regulator_unlock(rdev);
4221	return ret;
4222}
4223
4224/**
4225 * regulator_get_error_flags - get regulator error information
4226 * @regulator: regulator source
4227 * @flags: pointer to store error flags
4228 *
4229 * Get the current regulator error information.
4230 */
4231int regulator_get_error_flags(struct regulator *regulator,
4232				unsigned int *flags)
4233{
4234	return _regulator_get_error_flags(regulator->rdev, flags);
4235}
4236EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4237
4238/**
4239 * regulator_set_load - set regulator load
4240 * @regulator: regulator source
4241 * @uA_load: load current
4242 *
4243 * Notifies the regulator core of a new device load. This is then used by
4244 * DRMS (if enabled by constraints) to set the most efficient regulator
4245 * operating mode for the new regulator loading.
4246 *
4247 * Consumer devices notify their supply regulator of the maximum power
4248 * they will require (can be taken from device datasheet in the power
4249 * consumption tables) when they change operational status and hence power
4250 * state. Examples of operational state changes that can affect power
4251 * consumption are :-
4252 *
4253 *    o Device is opened / closed.
4254 *    o Device I/O is about to begin or has just finished.
4255 *    o Device is idling in between work.
4256 *
4257 * This information is also exported via sysfs to userspace.
4258 *
4259 * DRMS will sum the total requested load on the regulator and change
4260 * to the most efficient operating mode if platform constraints allow.
4261 *
4262 * NOTE: when a regulator consumer requests to have a regulator
4263 * disabled then any load that consumer requested no longer counts
4264 * toward the total requested load.  If the regulator is re-enabled
4265 * then the previously requested load will start counting again.
4266 *
4267 * If a regulator is an always-on regulator then an individual consumer's
4268 * load will still be removed if that consumer is fully disabled.
4269 *
4270 * On error a negative errno is returned.
4271 */
4272int regulator_set_load(struct regulator *regulator, int uA_load)
4273{
4274	struct regulator_dev *rdev = regulator->rdev;
4275	int old_uA_load;
4276	int ret = 0;
4277
4278	regulator_lock(rdev);
4279	old_uA_load = regulator->uA_load;
4280	regulator->uA_load = uA_load;
4281	if (regulator->enable_count && old_uA_load != uA_load) {
4282		ret = drms_uA_update(rdev);
4283		if (ret < 0)
4284			regulator->uA_load = old_uA_load;
4285	}
4286	regulator_unlock(rdev);
4287
4288	return ret;
4289}
4290EXPORT_SYMBOL_GPL(regulator_set_load);
4291
4292/**
4293 * regulator_allow_bypass - allow the regulator to go into bypass mode
4294 *
4295 * @regulator: Regulator to configure
4296 * @enable: enable or disable bypass mode
4297 *
4298 * Allow the regulator to go into bypass mode if all other consumers
4299 * for the regulator also enable bypass mode and the machine
4300 * constraints allow this.  Bypass mode means that the regulator is
4301 * simply passing the input directly to the output with no regulation.
4302 */
4303int regulator_allow_bypass(struct regulator *regulator, bool enable)
4304{
4305	struct regulator_dev *rdev = regulator->rdev;
4306	int ret = 0;
4307
4308	if (!rdev->desc->ops->set_bypass)
4309		return 0;
4310
4311	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
 
4312		return 0;
4313
4314	regulator_lock(rdev);
4315
4316	if (enable && !regulator->bypass) {
4317		rdev->bypass_count++;
4318
4319		if (rdev->bypass_count == rdev->open_count) {
4320			ret = rdev->desc->ops->set_bypass(rdev, enable);
4321			if (ret != 0)
4322				rdev->bypass_count--;
4323		}
4324
4325	} else if (!enable && regulator->bypass) {
4326		rdev->bypass_count--;
4327
4328		if (rdev->bypass_count != rdev->open_count) {
4329			ret = rdev->desc->ops->set_bypass(rdev, enable);
4330			if (ret != 0)
4331				rdev->bypass_count++;
4332		}
4333	}
4334
4335	if (ret == 0)
4336		regulator->bypass = enable;
4337
4338	regulator_unlock(rdev);
4339
4340	return ret;
4341}
4342EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4343
4344/**
4345 * regulator_register_notifier - register regulator event notifier
4346 * @regulator: regulator source
4347 * @nb: notifier block
4348 *
4349 * Register notifier block to receive regulator events.
4350 */
4351int regulator_register_notifier(struct regulator *regulator,
4352			      struct notifier_block *nb)
4353{
4354	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4355						nb);
4356}
4357EXPORT_SYMBOL_GPL(regulator_register_notifier);
4358
4359/**
4360 * regulator_unregister_notifier - unregister regulator event notifier
4361 * @regulator: regulator source
4362 * @nb: notifier block
4363 *
4364 * Unregister regulator event notifier block.
4365 */
4366int regulator_unregister_notifier(struct regulator *regulator,
4367				struct notifier_block *nb)
4368{
4369	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4370						  nb);
4371}
4372EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4373
4374/* notify regulator consumers and downstream regulator consumers.
4375 * Note mutex must be held by caller.
4376 */
4377static int _notifier_call_chain(struct regulator_dev *rdev,
4378				  unsigned long event, void *data)
4379{
4380	/* call rdev chain first */
4381	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4382}
4383
4384/**
4385 * regulator_bulk_get - get multiple regulator consumers
4386 *
4387 * @dev:           Device to supply
4388 * @num_consumers: Number of consumers to register
4389 * @consumers:     Configuration of consumers; clients are stored here.
4390 *
4391 * @return 0 on success, an errno on failure.
4392 *
4393 * This helper function allows drivers to get several regulator
4394 * consumers in one operation.  If any of the regulators cannot be
4395 * acquired then any regulators that were allocated will be freed
4396 * before returning to the caller.
4397 */
4398int regulator_bulk_get(struct device *dev, int num_consumers,
4399		       struct regulator_bulk_data *consumers)
4400{
4401	int i;
4402	int ret;
4403
4404	for (i = 0; i < num_consumers; i++)
4405		consumers[i].consumer = NULL;
4406
4407	for (i = 0; i < num_consumers; i++) {
4408		consumers[i].consumer = regulator_get(dev,
4409						      consumers[i].supply);
 
 
4410		if (IS_ERR(consumers[i].consumer)) {
4411			ret = PTR_ERR(consumers[i].consumer);
 
 
4412			consumers[i].consumer = NULL;
4413			goto err;
4414		}
4415	}
4416
4417	return 0;
4418
4419err:
4420	if (ret != -EPROBE_DEFER)
4421		dev_err(dev, "Failed to get supply '%s': %d\n",
4422			consumers[i].supply, ret);
4423	else
4424		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4425			consumers[i].supply);
4426
4427	while (--i >= 0)
4428		regulator_put(consumers[i].consumer);
4429
4430	return ret;
4431}
4432EXPORT_SYMBOL_GPL(regulator_bulk_get);
4433
4434static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4435{
4436	struct regulator_bulk_data *bulk = data;
4437
4438	bulk->ret = regulator_enable(bulk->consumer);
4439}
4440
4441/**
4442 * regulator_bulk_enable - enable multiple regulator consumers
4443 *
4444 * @num_consumers: Number of consumers
4445 * @consumers:     Consumer data; clients are stored here.
4446 * @return         0 on success, an errno on failure
4447 *
4448 * This convenience API allows consumers to enable multiple regulator
4449 * clients in a single API call.  If any consumers cannot be enabled
4450 * then any others that were enabled will be disabled again prior to
4451 * return.
4452 */
4453int regulator_bulk_enable(int num_consumers,
4454			  struct regulator_bulk_data *consumers)
4455{
4456	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4457	int i;
4458	int ret = 0;
4459
4460	for (i = 0; i < num_consumers; i++) {
4461		async_schedule_domain(regulator_bulk_enable_async,
4462				      &consumers[i], &async_domain);
 
 
 
4463	}
4464
4465	async_synchronize_full_domain(&async_domain);
4466
4467	/* If any consumer failed we need to unwind any that succeeded */
4468	for (i = 0; i < num_consumers; i++) {
4469		if (consumers[i].ret != 0) {
4470			ret = consumers[i].ret;
4471			goto err;
4472		}
4473	}
4474
4475	return 0;
4476
4477err:
4478	for (i = 0; i < num_consumers; i++) {
4479		if (consumers[i].ret < 0)
4480			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4481			       consumers[i].ret);
4482		else
4483			regulator_disable(consumers[i].consumer);
4484	}
4485
4486	return ret;
4487}
4488EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4489
4490/**
4491 * regulator_bulk_disable - disable multiple regulator consumers
4492 *
4493 * @num_consumers: Number of consumers
4494 * @consumers:     Consumer data; clients are stored here.
4495 * @return         0 on success, an errno on failure
4496 *
4497 * This convenience API allows consumers to disable multiple regulator
4498 * clients in a single API call.  If any consumers cannot be disabled
4499 * then any others that were disabled will be enabled again prior to
4500 * return.
4501 */
4502int regulator_bulk_disable(int num_consumers,
4503			   struct regulator_bulk_data *consumers)
4504{
4505	int i;
4506	int ret, r;
4507
4508	for (i = num_consumers - 1; i >= 0; --i) {
4509		ret = regulator_disable(consumers[i].consumer);
4510		if (ret != 0)
4511			goto err;
4512	}
4513
4514	return 0;
4515
4516err:
4517	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4518	for (++i; i < num_consumers; ++i) {
4519		r = regulator_enable(consumers[i].consumer);
4520		if (r != 0)
4521			pr_err("Failed to re-enable %s: %d\n",
4522			       consumers[i].supply, r);
4523	}
4524
4525	return ret;
4526}
4527EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4528
4529/**
4530 * regulator_bulk_force_disable - force disable multiple regulator consumers
4531 *
4532 * @num_consumers: Number of consumers
4533 * @consumers:     Consumer data; clients are stored here.
4534 * @return         0 on success, an errno on failure
4535 *
4536 * This convenience API allows consumers to forcibly disable multiple regulator
4537 * clients in a single API call.
4538 * NOTE: This should be used for situations when device damage will
4539 * likely occur if the regulators are not disabled (e.g. over temp).
4540 * Although regulator_force_disable function call for some consumers can
4541 * return error numbers, the function is called for all consumers.
4542 */
4543int regulator_bulk_force_disable(int num_consumers,
4544			   struct regulator_bulk_data *consumers)
4545{
4546	int i;
4547	int ret = 0;
4548
4549	for (i = 0; i < num_consumers; i++) {
4550		consumers[i].ret =
4551			    regulator_force_disable(consumers[i].consumer);
4552
4553		/* Store first error for reporting */
4554		if (consumers[i].ret && !ret)
4555			ret = consumers[i].ret;
 
 
4556	}
4557
 
 
4558	return ret;
4559}
4560EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4561
4562/**
4563 * regulator_bulk_free - free multiple regulator consumers
4564 *
4565 * @num_consumers: Number of consumers
4566 * @consumers:     Consumer data; clients are stored here.
4567 *
4568 * This convenience API allows consumers to free multiple regulator
4569 * clients in a single API call.
4570 */
4571void regulator_bulk_free(int num_consumers,
4572			 struct regulator_bulk_data *consumers)
4573{
4574	int i;
4575
4576	for (i = 0; i < num_consumers; i++) {
4577		regulator_put(consumers[i].consumer);
4578		consumers[i].consumer = NULL;
4579	}
4580}
4581EXPORT_SYMBOL_GPL(regulator_bulk_free);
4582
4583/**
4584 * regulator_notifier_call_chain - call regulator event notifier
4585 * @rdev: regulator source
4586 * @event: notifier block
4587 * @data: callback-specific data.
4588 *
4589 * Called by regulator drivers to notify clients a regulator event has
4590 * occurred. We also notify regulator clients downstream.
4591 * Note lock must be held by caller.
4592 */
4593int regulator_notifier_call_chain(struct regulator_dev *rdev,
4594				  unsigned long event, void *data)
4595{
4596	lockdep_assert_held_once(&rdev->mutex.base);
4597
4598	_notifier_call_chain(rdev, event, data);
4599	return NOTIFY_DONE;
4600
4601}
4602EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4603
4604/**
4605 * regulator_mode_to_status - convert a regulator mode into a status
4606 *
4607 * @mode: Mode to convert
4608 *
4609 * Convert a regulator mode into a status.
4610 */
4611int regulator_mode_to_status(unsigned int mode)
4612{
4613	switch (mode) {
4614	case REGULATOR_MODE_FAST:
4615		return REGULATOR_STATUS_FAST;
4616	case REGULATOR_MODE_NORMAL:
4617		return REGULATOR_STATUS_NORMAL;
4618	case REGULATOR_MODE_IDLE:
4619		return REGULATOR_STATUS_IDLE;
4620	case REGULATOR_MODE_STANDBY:
4621		return REGULATOR_STATUS_STANDBY;
4622	default:
4623		return REGULATOR_STATUS_UNDEFINED;
4624	}
4625}
4626EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4627
4628static struct attribute *regulator_dev_attrs[] = {
4629	&dev_attr_name.attr,
4630	&dev_attr_num_users.attr,
4631	&dev_attr_type.attr,
4632	&dev_attr_microvolts.attr,
4633	&dev_attr_microamps.attr,
4634	&dev_attr_opmode.attr,
4635	&dev_attr_state.attr,
4636	&dev_attr_status.attr,
4637	&dev_attr_bypass.attr,
4638	&dev_attr_requested_microamps.attr,
4639	&dev_attr_min_microvolts.attr,
4640	&dev_attr_max_microvolts.attr,
4641	&dev_attr_min_microamps.attr,
4642	&dev_attr_max_microamps.attr,
4643	&dev_attr_suspend_standby_state.attr,
4644	&dev_attr_suspend_mem_state.attr,
4645	&dev_attr_suspend_disk_state.attr,
4646	&dev_attr_suspend_standby_microvolts.attr,
4647	&dev_attr_suspend_mem_microvolts.attr,
4648	&dev_attr_suspend_disk_microvolts.attr,
4649	&dev_attr_suspend_standby_mode.attr,
4650	&dev_attr_suspend_mem_mode.attr,
4651	&dev_attr_suspend_disk_mode.attr,
4652	NULL
4653};
4654
4655/*
4656 * To avoid cluttering sysfs (and memory) with useless state, only
4657 * create attributes that can be meaningfully displayed.
4658 */
4659static umode_t regulator_attr_is_visible(struct kobject *kobj,
4660					 struct attribute *attr, int idx)
4661{
4662	struct device *dev = kobj_to_dev(kobj);
4663	struct regulator_dev *rdev = dev_to_rdev(dev);
4664	const struct regulator_ops *ops = rdev->desc->ops;
4665	umode_t mode = attr->mode;
4666
4667	/* these three are always present */
4668	if (attr == &dev_attr_name.attr ||
4669	    attr == &dev_attr_num_users.attr ||
4670	    attr == &dev_attr_type.attr)
4671		return mode;
4672
4673	/* some attributes need specific methods to be displayed */
4674	if (attr == &dev_attr_microvolts.attr) {
4675		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4676		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4677		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4678		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4679			return mode;
4680		return 0;
4681	}
4682
4683	if (attr == &dev_attr_microamps.attr)
4684		return ops->get_current_limit ? mode : 0;
4685
4686	if (attr == &dev_attr_opmode.attr)
4687		return ops->get_mode ? mode : 0;
4688
4689	if (attr == &dev_attr_state.attr)
4690		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4691
4692	if (attr == &dev_attr_status.attr)
4693		return ops->get_status ? mode : 0;
4694
4695	if (attr == &dev_attr_bypass.attr)
4696		return ops->get_bypass ? mode : 0;
4697
 
 
 
 
4698	/* constraints need specific supporting methods */
4699	if (attr == &dev_attr_min_microvolts.attr ||
4700	    attr == &dev_attr_max_microvolts.attr)
4701		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4702
4703	if (attr == &dev_attr_min_microamps.attr ||
4704	    attr == &dev_attr_max_microamps.attr)
4705		return ops->set_current_limit ? mode : 0;
4706
4707	if (attr == &dev_attr_suspend_standby_state.attr ||
4708	    attr == &dev_attr_suspend_mem_state.attr ||
4709	    attr == &dev_attr_suspend_disk_state.attr)
4710		return mode;
4711
4712	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4713	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4714	    attr == &dev_attr_suspend_disk_microvolts.attr)
4715		return ops->set_suspend_voltage ? mode : 0;
4716
4717	if (attr == &dev_attr_suspend_standby_mode.attr ||
4718	    attr == &dev_attr_suspend_mem_mode.attr ||
4719	    attr == &dev_attr_suspend_disk_mode.attr)
4720		return ops->set_suspend_mode ? mode : 0;
4721
4722	return mode;
4723}
4724
4725static const struct attribute_group regulator_dev_group = {
4726	.attrs = regulator_dev_attrs,
4727	.is_visible = regulator_attr_is_visible,
4728};
4729
4730static const struct attribute_group *regulator_dev_groups[] = {
4731	&regulator_dev_group,
4732	NULL
4733};
4734
4735static void regulator_dev_release(struct device *dev)
4736{
4737	struct regulator_dev *rdev = dev_get_drvdata(dev);
4738
4739	kfree(rdev->constraints);
4740	of_node_put(rdev->dev.of_node);
4741	kfree(rdev);
4742}
4743
 
 
 
 
 
 
4744static void rdev_init_debugfs(struct regulator_dev *rdev)
4745{
4746	struct device *parent = rdev->dev.parent;
4747	const char *rname = rdev_get_name(rdev);
4748	char name[NAME_MAX];
4749
4750	/* Avoid duplicate debugfs directory names */
4751	if (parent && rname == rdev->desc->name) {
4752		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4753			 rname);
4754		rname = name;
4755	}
4756
4757	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4758	if (!rdev->debugfs) {
4759		rdev_warn(rdev, "Failed to create debugfs directory\n");
4760		return;
4761	}
4762
4763	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4764			   &rdev->use_count);
4765	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4766			   &rdev->open_count);
4767	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4768			   &rdev->bypass_count);
4769}
4770
4771static int regulator_register_resolve_supply(struct device *dev, void *data)
4772{
4773	struct regulator_dev *rdev = dev_to_rdev(dev);
4774
4775	if (regulator_resolve_supply(rdev))
4776		rdev_dbg(rdev, "unable to resolve supply\n");
4777
4778	return 0;
4779}
4780
4781int regulator_coupler_register(struct regulator_coupler *coupler)
4782{
4783	mutex_lock(&regulator_list_mutex);
4784	list_add_tail(&coupler->list, &regulator_coupler_list);
4785	mutex_unlock(&regulator_list_mutex);
4786
4787	return 0;
4788}
4789
4790static struct regulator_coupler *
4791regulator_find_coupler(struct regulator_dev *rdev)
4792{
4793	struct regulator_coupler *coupler;
4794	int err;
4795
4796	/*
4797	 * Note that regulators are appended to the list and the generic
4798	 * coupler is registered first, hence it will be attached at last
4799	 * if nobody cared.
4800	 */
4801	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4802		err = coupler->attach_regulator(coupler, rdev);
4803		if (!err) {
4804			if (!coupler->balance_voltage &&
4805			    rdev->coupling_desc.n_coupled > 2)
4806				goto err_unsupported;
4807
4808			return coupler;
4809		}
4810
4811		if (err < 0)
4812			return ERR_PTR(err);
4813
4814		if (err == 1)
4815			continue;
4816
4817		break;
4818	}
4819
4820	return ERR_PTR(-EINVAL);
4821
4822err_unsupported:
4823	if (coupler->detach_regulator)
4824		coupler->detach_regulator(coupler, rdev);
4825
4826	rdev_err(rdev,
4827		"Voltage balancing for multiple regulator couples is unimplemented\n");
4828
4829	return ERR_PTR(-EPERM);
4830}
4831
4832static void regulator_resolve_coupling(struct regulator_dev *rdev)
4833{
4834	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4835	struct coupling_desc *c_desc = &rdev->coupling_desc;
4836	int n_coupled = c_desc->n_coupled;
4837	struct regulator_dev *c_rdev;
4838	int i;
4839
4840	for (i = 1; i < n_coupled; i++) {
4841		/* already resolved */
4842		if (c_desc->coupled_rdevs[i])
4843			continue;
4844
4845		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4846
4847		if (!c_rdev)
4848			continue;
4849
4850		if (c_rdev->coupling_desc.coupler != coupler) {
4851			rdev_err(rdev, "coupler mismatch with %s\n",
4852				 rdev_get_name(c_rdev));
4853			return;
4854		}
4855
4856		regulator_lock(c_rdev);
4857
4858		c_desc->coupled_rdevs[i] = c_rdev;
4859		c_desc->n_resolved++;
4860
4861		regulator_unlock(c_rdev);
4862
4863		regulator_resolve_coupling(c_rdev);
4864	}
4865}
4866
4867static void regulator_remove_coupling(struct regulator_dev *rdev)
4868{
4869	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4870	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4871	struct regulator_dev *__c_rdev, *c_rdev;
4872	unsigned int __n_coupled, n_coupled;
4873	int i, k;
4874	int err;
4875
4876	n_coupled = c_desc->n_coupled;
4877
4878	for (i = 1; i < n_coupled; i++) {
4879		c_rdev = c_desc->coupled_rdevs[i];
4880
4881		if (!c_rdev)
4882			continue;
4883
4884		regulator_lock(c_rdev);
4885
4886		__c_desc = &c_rdev->coupling_desc;
4887		__n_coupled = __c_desc->n_coupled;
4888
4889		for (k = 1; k < __n_coupled; k++) {
4890			__c_rdev = __c_desc->coupled_rdevs[k];
4891
4892			if (__c_rdev == rdev) {
4893				__c_desc->coupled_rdevs[k] = NULL;
4894				__c_desc->n_resolved--;
4895				break;
4896			}
4897		}
4898
4899		regulator_unlock(c_rdev);
4900
4901		c_desc->coupled_rdevs[i] = NULL;
4902		c_desc->n_resolved--;
4903	}
4904
4905	if (coupler && coupler->detach_regulator) {
4906		err = coupler->detach_regulator(coupler, rdev);
4907		if (err)
4908			rdev_err(rdev, "failed to detach from coupler: %d\n",
4909				 err);
4910	}
4911
4912	kfree(rdev->coupling_desc.coupled_rdevs);
4913	rdev->coupling_desc.coupled_rdevs = NULL;
4914}
4915
4916static int regulator_init_coupling(struct regulator_dev *rdev)
4917{
4918	int err, n_phandles;
4919	size_t alloc_size;
4920
4921	if (!IS_ENABLED(CONFIG_OF))
4922		n_phandles = 0;
4923	else
4924		n_phandles = of_get_n_coupled(rdev);
4925
4926	alloc_size = sizeof(*rdev) * (n_phandles + 1);
4927
4928	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4929	if (!rdev->coupling_desc.coupled_rdevs)
4930		return -ENOMEM;
4931
4932	/*
4933	 * Every regulator should always have coupling descriptor filled with
4934	 * at least pointer to itself.
4935	 */
4936	rdev->coupling_desc.coupled_rdevs[0] = rdev;
4937	rdev->coupling_desc.n_coupled = n_phandles + 1;
4938	rdev->coupling_desc.n_resolved++;
4939
4940	/* regulator isn't coupled */
4941	if (n_phandles == 0)
4942		return 0;
4943
4944	if (!of_check_coupling_data(rdev))
4945		return -EPERM;
4946
4947	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4948	if (IS_ERR(rdev->coupling_desc.coupler)) {
4949		err = PTR_ERR(rdev->coupling_desc.coupler);
4950		rdev_err(rdev, "failed to get coupler: %d\n", err);
4951		return err;
4952	}
4953
4954	return 0;
4955}
4956
4957static int generic_coupler_attach(struct regulator_coupler *coupler,
4958				  struct regulator_dev *rdev)
4959{
4960	if (rdev->coupling_desc.n_coupled > 2) {
4961		rdev_err(rdev,
4962			 "Voltage balancing for multiple regulator couples is unimplemented\n");
4963		return -EPERM;
4964	}
4965
4966	return 0;
4967}
4968
4969static struct regulator_coupler generic_regulator_coupler = {
4970	.attach_regulator = generic_coupler_attach,
4971};
4972
4973/**
4974 * regulator_register - register regulator
4975 * @regulator_desc: regulator to register
4976 * @cfg: runtime configuration for regulator
4977 *
4978 * Called by regulator drivers to register a regulator.
4979 * Returns a valid pointer to struct regulator_dev on success
4980 * or an ERR_PTR() on error.
4981 */
4982struct regulator_dev *
4983regulator_register(const struct regulator_desc *regulator_desc,
4984		   const struct regulator_config *cfg)
4985{
4986	const struct regulation_constraints *constraints = NULL;
4987	const struct regulator_init_data *init_data;
4988	struct regulator_config *config = NULL;
4989	static atomic_t regulator_no = ATOMIC_INIT(-1);
4990	struct regulator_dev *rdev;
4991	bool dangling_cfg_gpiod = false;
4992	bool dangling_of_gpiod = false;
4993	struct device *dev;
4994	int ret, i;
4995
4996	if (cfg == NULL)
4997		return ERR_PTR(-EINVAL);
4998	if (cfg->ena_gpiod)
4999		dangling_cfg_gpiod = true;
5000	if (regulator_desc == NULL) {
5001		ret = -EINVAL;
5002		goto rinse;
5003	}
5004
5005	dev = cfg->dev;
5006	WARN_ON(!dev);
5007
5008	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5009		ret = -EINVAL;
5010		goto rinse;
5011	}
5012
5013	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5014	    regulator_desc->type != REGULATOR_CURRENT) {
5015		ret = -EINVAL;
5016		goto rinse;
5017	}
5018
5019	/* Only one of each should be implemented */
5020	WARN_ON(regulator_desc->ops->get_voltage &&
5021		regulator_desc->ops->get_voltage_sel);
5022	WARN_ON(regulator_desc->ops->set_voltage &&
5023		regulator_desc->ops->set_voltage_sel);
5024
5025	/* If we're using selectors we must implement list_voltage. */
5026	if (regulator_desc->ops->get_voltage_sel &&
5027	    !regulator_desc->ops->list_voltage) {
5028		ret = -EINVAL;
5029		goto rinse;
5030	}
5031	if (regulator_desc->ops->set_voltage_sel &&
5032	    !regulator_desc->ops->list_voltage) {
5033		ret = -EINVAL;
5034		goto rinse;
5035	}
5036
5037	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5038	if (rdev == NULL) {
5039		ret = -ENOMEM;
5040		goto rinse;
5041	}
5042
5043	/*
5044	 * Duplicate the config so the driver could override it after
5045	 * parsing init data.
5046	 */
5047	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5048	if (config == NULL) {
5049		kfree(rdev);
5050		ret = -ENOMEM;
5051		goto rinse;
5052	}
5053
5054	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5055					       &rdev->dev.of_node);
5056
5057	/*
5058	 * Sometimes not all resources are probed already so we need to take
5059	 * that into account. This happens most the time if the ena_gpiod comes
5060	 * from a gpio extender or something else.
5061	 */
5062	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5063		kfree(config);
5064		kfree(rdev);
5065		ret = -EPROBE_DEFER;
5066		goto rinse;
5067	}
5068
5069	/*
5070	 * We need to keep track of any GPIO descriptor coming from the
5071	 * device tree until we have handled it over to the core. If the
5072	 * config that was passed in to this function DOES NOT contain
5073	 * a descriptor, and the config after this call DOES contain
5074	 * a descriptor, we definitely got one from parsing the device
5075	 * tree.
5076	 */
5077	if (!cfg->ena_gpiod && config->ena_gpiod)
5078		dangling_of_gpiod = true;
5079	if (!init_data) {
5080		init_data = config->init_data;
5081		rdev->dev.of_node = of_node_get(config->of_node);
5082	}
5083
5084	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
 
 
5085	rdev->reg_data = config->driver_data;
5086	rdev->owner = regulator_desc->owner;
5087	rdev->desc = regulator_desc;
5088	if (config->regmap)
5089		rdev->regmap = config->regmap;
5090	else if (dev_get_regmap(dev, NULL))
5091		rdev->regmap = dev_get_regmap(dev, NULL);
5092	else if (dev->parent)
5093		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5094	INIT_LIST_HEAD(&rdev->consumer_list);
5095	INIT_LIST_HEAD(&rdev->list);
5096	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5097	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5098
5099	/* preform any regulator specific init */
5100	if (init_data && init_data->regulator_init) {
5101		ret = init_data->regulator_init(rdev->reg_data);
5102		if (ret < 0)
5103			goto clean;
5104	}
5105
5106	if (config->ena_gpiod) {
5107		mutex_lock(&regulator_list_mutex);
5108		ret = regulator_ena_gpio_request(rdev, config);
5109		mutex_unlock(&regulator_list_mutex);
5110		if (ret != 0) {
5111			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5112				 ret);
5113			goto clean;
5114		}
5115		/* The regulator core took over the GPIO descriptor */
5116		dangling_cfg_gpiod = false;
5117		dangling_of_gpiod = false;
5118	}
5119
5120	/* register with sysfs */
5121	rdev->dev.class = &regulator_class;
5122	rdev->dev.parent = dev;
5123	dev_set_name(&rdev->dev, "regulator.%lu",
5124		    (unsigned long) atomic_inc_return(&regulator_no));
 
 
 
 
 
 
 
5125
5126	/* set regulator constraints */
5127	if (init_data)
5128		constraints = &init_data->constraints;
5129
 
 
 
 
5130	if (init_data && init_data->supply_regulator)
5131		rdev->supply_name = init_data->supply_regulator;
5132	else if (regulator_desc->supply_name)
5133		rdev->supply_name = regulator_desc->supply_name;
5134
5135	/*
5136	 * Attempt to resolve the regulator supply, if specified,
5137	 * but don't return an error if we fail because we will try
5138	 * to resolve it again later as more regulators are added.
5139	 */
5140	if (regulator_resolve_supply(rdev))
5141		rdev_dbg(rdev, "unable to resolve supply\n");
5142
5143	ret = set_machine_constraints(rdev, constraints);
5144	if (ret < 0)
5145		goto wash;
5146
5147	mutex_lock(&regulator_list_mutex);
5148	ret = regulator_init_coupling(rdev);
5149	mutex_unlock(&regulator_list_mutex);
5150	if (ret < 0)
5151		goto wash;
5152
5153	/* add consumers devices */
5154	if (init_data) {
5155		mutex_lock(&regulator_list_mutex);
5156		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5157			ret = set_consumer_device_supply(rdev,
5158				init_data->consumer_supplies[i].dev_name,
5159				init_data->consumer_supplies[i].supply);
5160			if (ret < 0) {
5161				mutex_unlock(&regulator_list_mutex);
5162				dev_err(dev, "Failed to set supply %s\n",
5163					init_data->consumer_supplies[i].supply);
5164				goto unset_supplies;
5165			}
5166		}
5167		mutex_unlock(&regulator_list_mutex);
5168	}
5169
5170	if (!rdev->desc->ops->get_voltage &&
5171	    !rdev->desc->ops->list_voltage &&
5172	    !rdev->desc->fixed_uV)
5173		rdev->is_switch = true;
5174
5175	dev_set_drvdata(&rdev->dev, rdev);
5176	ret = device_register(&rdev->dev);
5177	if (ret != 0) {
5178		put_device(&rdev->dev);
5179		goto unset_supplies;
5180	}
5181
5182	rdev_init_debugfs(rdev);
5183
5184	/* try to resolve regulators coupling since a new one was registered */
5185	mutex_lock(&regulator_list_mutex);
5186	regulator_resolve_coupling(rdev);
5187	mutex_unlock(&regulator_list_mutex);
5188
5189	/* try to resolve regulators supply since a new one was registered */
5190	class_for_each_device(&regulator_class, NULL, NULL,
5191			      regulator_register_resolve_supply);
5192	kfree(config);
5193	return rdev;
5194
5195unset_supplies:
5196	mutex_lock(&regulator_list_mutex);
5197	unset_regulator_supplies(rdev);
5198	regulator_remove_coupling(rdev);
5199	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
5200wash:
5201	kfree(rdev->constraints);
5202	mutex_lock(&regulator_list_mutex);
5203	regulator_ena_gpio_free(rdev);
5204	mutex_unlock(&regulator_list_mutex);
5205clean:
5206	if (dangling_of_gpiod)
5207		gpiod_put(config->ena_gpiod);
5208	kfree(rdev);
5209	kfree(config);
5210rinse:
5211	if (dangling_cfg_gpiod)
5212		gpiod_put(cfg->ena_gpiod);
5213	return ERR_PTR(ret);
5214}
5215EXPORT_SYMBOL_GPL(regulator_register);
5216
5217/**
5218 * regulator_unregister - unregister regulator
5219 * @rdev: regulator to unregister
5220 *
5221 * Called by regulator drivers to unregister a regulator.
5222 */
5223void regulator_unregister(struct regulator_dev *rdev)
5224{
5225	if (rdev == NULL)
5226		return;
5227
5228	if (rdev->supply) {
5229		while (rdev->use_count--)
5230			regulator_disable(rdev->supply);
5231		regulator_put(rdev->supply);
5232	}
5233
5234	flush_work(&rdev->disable_work.work);
5235
5236	mutex_lock(&regulator_list_mutex);
5237
5238	debugfs_remove_recursive(rdev->debugfs);
 
5239	WARN_ON(rdev->open_count);
5240	regulator_remove_coupling(rdev);
5241	unset_regulator_supplies(rdev);
5242	list_del(&rdev->list);
 
5243	regulator_ena_gpio_free(rdev);
5244	device_unregister(&rdev->dev);
5245
5246	mutex_unlock(&regulator_list_mutex);
5247}
5248EXPORT_SYMBOL_GPL(regulator_unregister);
5249
5250#ifdef CONFIG_SUSPEND
5251/**
5252 * regulator_suspend - prepare regulators for system wide suspend
5253 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5254 *
5255 * Configure each regulator with it's suspend operating parameters for state.
5256 */
5257static int regulator_suspend(struct device *dev)
5258{
5259	struct regulator_dev *rdev = dev_to_rdev(dev);
5260	suspend_state_t state = pm_suspend_target_state;
5261	int ret;
5262
5263	regulator_lock(rdev);
5264	ret = suspend_set_state(rdev, state);
5265	regulator_unlock(rdev);
5266
5267	return ret;
5268}
5269
5270static int regulator_resume(struct device *dev)
 
 
 
 
 
 
 
5271{
5272	suspend_state_t state = pm_suspend_target_state;
5273	struct regulator_dev *rdev = dev_to_rdev(dev);
5274	struct regulator_state *rstate;
5275	int ret = 0;
5276
5277	rstate = regulator_get_suspend_state(rdev, state);
5278	if (rstate == NULL)
5279		return 0;
 
5280
5281	regulator_lock(rdev);
 
 
 
5282
5283	if (rdev->desc->ops->resume &&
5284	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5285	     rstate->enabled == DISABLE_IN_SUSPEND))
5286		ret = rdev->desc->ops->resume(rdev);
 
 
 
 
 
 
 
 
 
 
5287
5288	regulator_unlock(rdev);
 
 
 
 
 
5289
5290	return ret;
 
5291}
5292#else /* !CONFIG_SUSPEND */
5293
5294#define regulator_suspend	NULL
5295#define regulator_resume	NULL
5296
5297#endif /* !CONFIG_SUSPEND */
 
 
 
 
 
 
 
 
5298
5299#ifdef CONFIG_PM
5300static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5301	.suspend	= regulator_suspend,
5302	.resume		= regulator_resume,
5303};
5304#endif
5305
5306struct class regulator_class = {
5307	.name = "regulator",
5308	.dev_release = regulator_dev_release,
5309	.dev_groups = regulator_dev_groups,
5310#ifdef CONFIG_PM
5311	.pm = &regulator_pm_ops,
5312#endif
5313};
5314/**
5315 * regulator_has_full_constraints - the system has fully specified constraints
5316 *
5317 * Calling this function will cause the regulator API to disable all
5318 * regulators which have a zero use count and don't have an always_on
5319 * constraint in a late_initcall.
5320 *
5321 * The intention is that this will become the default behaviour in a
5322 * future kernel release so users are encouraged to use this facility
5323 * now.
5324 */
5325void regulator_has_full_constraints(void)
5326{
5327	has_full_constraints = 1;
5328}
5329EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5330
5331/**
5332 * rdev_get_drvdata - get rdev regulator driver data
5333 * @rdev: regulator
5334 *
5335 * Get rdev regulator driver private data. This call can be used in the
5336 * regulator driver context.
5337 */
5338void *rdev_get_drvdata(struct regulator_dev *rdev)
5339{
5340	return rdev->reg_data;
5341}
5342EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5343
5344/**
5345 * regulator_get_drvdata - get regulator driver data
5346 * @regulator: regulator
5347 *
5348 * Get regulator driver private data. This call can be used in the consumer
5349 * driver context when non API regulator specific functions need to be called.
5350 */
5351void *regulator_get_drvdata(struct regulator *regulator)
5352{
5353	return regulator->rdev->reg_data;
5354}
5355EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5356
5357/**
5358 * regulator_set_drvdata - set regulator driver data
5359 * @regulator: regulator
5360 * @data: data
5361 */
5362void regulator_set_drvdata(struct regulator *regulator, void *data)
5363{
5364	regulator->rdev->reg_data = data;
5365}
5366EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5367
5368/**
5369 * regulator_get_id - get regulator ID
5370 * @rdev: regulator
5371 */
5372int rdev_get_id(struct regulator_dev *rdev)
5373{
5374	return rdev->desc->id;
5375}
5376EXPORT_SYMBOL_GPL(rdev_get_id);
5377
5378struct device *rdev_get_dev(struct regulator_dev *rdev)
5379{
5380	return &rdev->dev;
5381}
5382EXPORT_SYMBOL_GPL(rdev_get_dev);
5383
5384struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5385{
5386	return rdev->regmap;
5387}
5388EXPORT_SYMBOL_GPL(rdev_get_regmap);
5389
5390void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5391{
5392	return reg_init_data->driver_data;
5393}
5394EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5395
5396#ifdef CONFIG_DEBUG_FS
5397static int supply_map_show(struct seq_file *sf, void *data)
 
5398{
 
 
5399	struct regulator_map *map;
5400
 
 
 
5401	list_for_each_entry(map, &regulator_map_list, list) {
5402		seq_printf(sf, "%s -> %s.%s\n",
5403				rdev_get_name(map->regulator), map->dev_name,
5404				map->supply);
 
 
 
 
 
 
 
5405	}
5406
5407	return 0;
 
 
 
 
5408}
5409DEFINE_SHOW_ATTRIBUTE(supply_map);
5410
 
 
 
 
 
 
 
 
5411struct summary_data {
5412	struct seq_file *s;
5413	struct regulator_dev *parent;
5414	int level;
5415};
5416
5417static void regulator_summary_show_subtree(struct seq_file *s,
5418					   struct regulator_dev *rdev,
5419					   int level);
5420
5421static int regulator_summary_show_children(struct device *dev, void *data)
5422{
5423	struct regulator_dev *rdev = dev_to_rdev(dev);
5424	struct summary_data *summary_data = data;
5425
5426	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5427		regulator_summary_show_subtree(summary_data->s, rdev,
5428					       summary_data->level + 1);
5429
5430	return 0;
5431}
5432
5433static void regulator_summary_show_subtree(struct seq_file *s,
5434					   struct regulator_dev *rdev,
5435					   int level)
5436{
5437	struct regulation_constraints *c;
5438	struct regulator *consumer;
5439	struct summary_data summary_data;
5440	unsigned int opmode;
5441
5442	if (!rdev)
5443		return;
5444
5445	opmode = _regulator_get_mode_unlocked(rdev);
5446	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5447		   level * 3 + 1, "",
5448		   30 - level * 3, rdev_get_name(rdev),
5449		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5450		   regulator_opmode_to_str(opmode));
5451
5452	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5453	seq_printf(s, "%5dmA ",
5454		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5455
5456	c = rdev->constraints;
5457	if (c) {
5458		switch (rdev->desc->type) {
5459		case REGULATOR_VOLTAGE:
5460			seq_printf(s, "%5dmV %5dmV ",
5461				   c->min_uV / 1000, c->max_uV / 1000);
5462			break;
5463		case REGULATOR_CURRENT:
5464			seq_printf(s, "%5dmA %5dmA ",
5465				   c->min_uA / 1000, c->max_uA / 1000);
5466			break;
5467		}
5468	}
5469
5470	seq_puts(s, "\n");
5471
5472	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5473		if (consumer->dev && consumer->dev->class == &regulator_class)
5474			continue;
5475
5476		seq_printf(s, "%*s%-*s ",
5477			   (level + 1) * 3 + 1, "",
5478			   30 - (level + 1) * 3,
5479			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5480
5481		switch (rdev->desc->type) {
5482		case REGULATOR_VOLTAGE:
5483			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5484				   consumer->enable_count,
5485				   consumer->uA_load / 1000,
5486				   consumer->uA_load && !consumer->enable_count ?
5487				   '*' : ' ',
5488				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5489				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5490			break;
5491		case REGULATOR_CURRENT:
5492			break;
5493		}
5494
5495		seq_puts(s, "\n");
5496	}
5497
5498	summary_data.s = s;
5499	summary_data.level = level;
5500	summary_data.parent = rdev;
5501
5502	class_for_each_device(&regulator_class, NULL, &summary_data,
5503			      regulator_summary_show_children);
5504}
5505
5506struct summary_lock_data {
5507	struct ww_acquire_ctx *ww_ctx;
5508	struct regulator_dev **new_contended_rdev;
5509	struct regulator_dev **old_contended_rdev;
5510};
5511
5512static int regulator_summary_lock_one(struct device *dev, void *data)
5513{
5514	struct regulator_dev *rdev = dev_to_rdev(dev);
5515	struct summary_lock_data *lock_data = data;
5516	int ret = 0;
5517
5518	if (rdev != *lock_data->old_contended_rdev) {
5519		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5520
5521		if (ret == -EDEADLK)
5522			*lock_data->new_contended_rdev = rdev;
5523		else
5524			WARN_ON_ONCE(ret);
5525	} else {
5526		*lock_data->old_contended_rdev = NULL;
5527	}
5528
5529	return ret;
5530}
5531
5532static int regulator_summary_unlock_one(struct device *dev, void *data)
5533{
5534	struct regulator_dev *rdev = dev_to_rdev(dev);
5535	struct summary_lock_data *lock_data = data;
5536
5537	if (lock_data) {
5538		if (rdev == *lock_data->new_contended_rdev)
5539			return -EDEADLK;
5540	}
5541
5542	regulator_unlock(rdev);
5543
5544	return 0;
5545}
5546
5547static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5548				      struct regulator_dev **new_contended_rdev,
5549				      struct regulator_dev **old_contended_rdev)
5550{
5551	struct summary_lock_data lock_data;
5552	int ret;
5553
5554	lock_data.ww_ctx = ww_ctx;
5555	lock_data.new_contended_rdev = new_contended_rdev;
5556	lock_data.old_contended_rdev = old_contended_rdev;
5557
5558	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5559				    regulator_summary_lock_one);
5560	if (ret)
5561		class_for_each_device(&regulator_class, NULL, &lock_data,
5562				      regulator_summary_unlock_one);
5563
5564	return ret;
5565}
5566
5567static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5568{
5569	struct regulator_dev *new_contended_rdev = NULL;
5570	struct regulator_dev *old_contended_rdev = NULL;
5571	int err;
5572
5573	mutex_lock(&regulator_list_mutex);
5574
5575	ww_acquire_init(ww_ctx, &regulator_ww_class);
5576
5577	do {
5578		if (new_contended_rdev) {
5579			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5580			old_contended_rdev = new_contended_rdev;
5581			old_contended_rdev->ref_cnt++;
5582		}
5583
5584		err = regulator_summary_lock_all(ww_ctx,
5585						 &new_contended_rdev,
5586						 &old_contended_rdev);
5587
5588		if (old_contended_rdev)
5589			regulator_unlock(old_contended_rdev);
5590
5591	} while (err == -EDEADLK);
5592
5593	ww_acquire_done(ww_ctx);
5594}
5595
5596static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5597{
5598	class_for_each_device(&regulator_class, NULL, NULL,
5599			      regulator_summary_unlock_one);
5600	ww_acquire_fini(ww_ctx);
5601
5602	mutex_unlock(&regulator_list_mutex);
5603}
5604
5605static int regulator_summary_show_roots(struct device *dev, void *data)
5606{
5607	struct regulator_dev *rdev = dev_to_rdev(dev);
5608	struct seq_file *s = data;
5609
5610	if (!rdev->supply)
5611		regulator_summary_show_subtree(s, rdev, 0);
5612
5613	return 0;
5614}
5615
5616static int regulator_summary_show(struct seq_file *s, void *data)
5617{
5618	struct ww_acquire_ctx ww_ctx;
5619
5620	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5621	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5622
5623	regulator_summary_lock(&ww_ctx);
5624
5625	class_for_each_device(&regulator_class, NULL, s,
5626			      regulator_summary_show_roots);
5627
5628	regulator_summary_unlock(&ww_ctx);
 
5629
5630	return 0;
 
 
5631}
5632DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5633#endif /* CONFIG_DEBUG_FS */
 
 
 
 
 
 
 
 
5634
5635static int __init regulator_init(void)
5636{
5637	int ret;
5638
5639	ret = class_register(&regulator_class);
5640
5641	debugfs_root = debugfs_create_dir("regulator", NULL);
5642	if (!debugfs_root)
5643		pr_warn("regulator: Failed to create debugfs directory\n");
5644
5645#ifdef CONFIG_DEBUG_FS
5646	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5647			    &supply_map_fops);
5648
5649	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5650			    NULL, &regulator_summary_fops);
5651#endif
5652	regulator_dummy_init();
5653
5654	regulator_coupler_register(&generic_regulator_coupler);
5655
5656	return ret;
5657}
5658
5659/* init early to allow our consumers to complete system booting */
5660core_initcall(regulator_init);
5661
5662static int regulator_late_cleanup(struct device *dev, void *data)
5663{
5664	struct regulator_dev *rdev = dev_to_rdev(dev);
5665	const struct regulator_ops *ops = rdev->desc->ops;
5666	struct regulation_constraints *c = rdev->constraints;
5667	int enabled, ret;
5668
5669	if (c && c->always_on)
5670		return 0;
5671
5672	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5673		return 0;
5674
5675	regulator_lock(rdev);
5676
5677	if (rdev->use_count)
5678		goto unlock;
5679
5680	/* If we can't read the status assume it's on. */
5681	if (ops->is_enabled)
5682		enabled = ops->is_enabled(rdev);
5683	else
5684		enabled = 1;
5685
5686	if (!enabled)
5687		goto unlock;
5688
5689	if (have_full_constraints()) {
5690		/* We log since this may kill the system if it goes
5691		 * wrong. */
5692		rdev_info(rdev, "disabling\n");
5693		ret = _regulator_do_disable(rdev);
5694		if (ret != 0)
5695			rdev_err(rdev, "couldn't disable: %d\n", ret);
5696	} else {
5697		/* The intention is that in future we will
5698		 * assume that full constraints are provided
5699		 * so warn even if we aren't going to do
5700		 * anything here.
5701		 */
5702		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5703	}
5704
5705unlock:
5706	regulator_unlock(rdev);
5707
5708	return 0;
5709}
5710
5711static void regulator_init_complete_work_function(struct work_struct *work)
5712{
5713	/*
5714	 * Regulators may had failed to resolve their input supplies
5715	 * when were registered, either because the input supply was
5716	 * not registered yet or because its parent device was not
5717	 * bound yet. So attempt to resolve the input supplies for
5718	 * pending regulators before trying to disable unused ones.
5719	 */
5720	class_for_each_device(&regulator_class, NULL, NULL,
5721			      regulator_register_resolve_supply);
5722
5723	/* If we have a full configuration then disable any regulators
5724	 * we have permission to change the status for and which are
5725	 * not in use or always_on.  This is effectively the default
5726	 * for DT and ACPI as they have full constraints.
5727	 */
5728	class_for_each_device(&regulator_class, NULL, NULL,
5729			      regulator_late_cleanup);
5730}
5731
5732static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5733			    regulator_init_complete_work_function);
5734
5735static int __init regulator_init_complete(void)
5736{
5737	/*
5738	 * Since DT doesn't provide an idiomatic mechanism for
5739	 * enabling full constraints and since it's much more natural
5740	 * with DT to provide them just assume that a DT enabled
5741	 * system has full constraints.
5742	 */
5743	if (of_have_populated_dt())
5744		has_full_constraints = true;
5745
5746	/*
5747	 * We punt completion for an arbitrary amount of time since
5748	 * systems like distros will load many drivers from userspace
5749	 * so consumers might not always be ready yet, this is
5750	 * particularly an issue with laptops where this might bounce
5751	 * the display off then on.  Ideally we'd get a notification
5752	 * from userspace when this happens but we don't so just wait
5753	 * a bit and hope we waited long enough.  It'd be better if
5754	 * we'd only do this on systems that need it, and a kernel
5755	 * command line option might be useful.
5756	 */
5757	schedule_delayed_work(&regulator_init_complete_work,
5758			      msecs_to_jiffies(30000));
5759
5760	return 0;
5761}
5762late_initcall_sync(regulator_init_complete);