Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
  41
  42#define rdev_crit(rdev, fmt, ...)					\
  43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)					\
  45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)					\
  47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)					\
  49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)					\
  51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
  53static DEFINE_MUTEX(regulator_list_mutex);
 
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
  57static bool has_full_constraints;
 
  58
  59static struct dentry *debugfs_root;
  60
  61static struct class regulator_class;
  62
  63/*
  64 * struct regulator_map
  65 *
  66 * Used to provide symbolic supply names to devices.
  67 */
  68struct regulator_map {
  69	struct list_head list;
  70	const char *dev_name;   /* The dev_name() for the consumer */
  71	const char *supply;
  72	struct regulator_dev *regulator;
  73};
  74
  75/*
  76 * struct regulator_enable_gpio
  77 *
  78 * Management for shared enable GPIO pin
  79 */
  80struct regulator_enable_gpio {
  81	struct list_head list;
  82	struct gpio_desc *gpiod;
  83	u32 enable_count;	/* a number of enabled shared GPIO */
  84	u32 request_count;	/* a number of requested shared GPIO */
  85	unsigned int ena_gpio_invert:1;
  86};
  87
  88/*
  89 * struct regulator_supply_alias
  90 *
  91 * Used to map lookups for a supply onto an alternative device.
  92 */
  93struct regulator_supply_alias {
  94	struct list_head list;
  95	struct device *src_dev;
  96	const char *src_supply;
  97	struct device *alias_dev;
  98	const char *alias_supply;
 
 
 
 
  99};
 100
 101static int _regulator_is_enabled(struct regulator_dev *rdev);
 102static int _regulator_disable(struct regulator_dev *rdev);
 103static int _regulator_get_voltage(struct regulator_dev *rdev);
 104static int _regulator_get_current_limit(struct regulator_dev *rdev);
 105static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 106static int _notifier_call_chain(struct regulator_dev *rdev,
 107				  unsigned long event, void *data);
 108static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 109				     int min_uV, int max_uV);
 110static struct regulator *create_regulator(struct regulator_dev *rdev,
 111					  struct device *dev,
 112					  const char *supply_name);
 113static void _regulator_put(struct regulator *regulator);
 114
 115static struct regulator_dev *dev_to_rdev(struct device *dev)
 116{
 117	return container_of(dev, struct regulator_dev, dev);
 118}
 119
 120static const char *rdev_get_name(struct regulator_dev *rdev)
 121{
 122	if (rdev->constraints && rdev->constraints->name)
 123		return rdev->constraints->name;
 124	else if (rdev->desc->name)
 125		return rdev->desc->name;
 126	else
 127		return "";
 128}
 129
 130static bool have_full_constraints(void)
 131{
 132	return has_full_constraints || of_have_populated_dt();
 133}
 134
 135static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
 136{
 137	if (rdev && rdev->supply)
 138		return rdev->supply->rdev;
 139
 140	return NULL;
 141}
 142
 143/**
 144 * regulator_lock_supply - lock a regulator and its supplies
 145 * @rdev:         regulator source
 146 */
 147static void regulator_lock_supply(struct regulator_dev *rdev)
 148{
 149	int i;
 150
 151	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
 152		mutex_lock_nested(&rdev->mutex, i);
 153}
 154
 155/**
 156 * regulator_unlock_supply - unlock a regulator and its supplies
 157 * @rdev:         regulator source
 158 */
 159static void regulator_unlock_supply(struct regulator_dev *rdev)
 160{
 161	struct regulator *supply;
 
 162
 163	while (1) {
 
 
 
 
 
 
 
 
 
 164		mutex_unlock(&rdev->mutex);
 165		supply = rdev->supply;
 166
 167		if (!rdev->supply)
 168			return;
 169
 170		rdev = supply->rdev;
 171	}
 
 
 172}
 173
 174/**
 175 * of_get_regulator - get a regulator device node based on supply name
 176 * @dev: Device pointer for the consumer (of regulator) device
 177 * @supply: regulator supply name
 178 *
 179 * Extract the regulator device node corresponding to the supply name.
 180 * returns the device node corresponding to the regulator if found, else
 181 * returns NULL.
 182 */
 183static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 184{
 185	struct device_node *regnode = NULL;
 186	char prop_name[32]; /* 32 is max size of property name */
 187
 188	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 189
 190	snprintf(prop_name, 32, "%s-supply", supply);
 191	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 192
 193	if (!regnode) {
 194		dev_dbg(dev, "Looking up %s property in node %s failed",
 195				prop_name, dev->of_node->full_name);
 196		return NULL;
 197	}
 198	return regnode;
 199}
 200
 201static int _regulator_can_change_status(struct regulator_dev *rdev)
 202{
 203	if (!rdev->constraints)
 204		return 0;
 205
 206	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 207		return 1;
 208	else
 209		return 0;
 210}
 211
 212/* Platform voltage constraint check */
 213static int regulator_check_voltage(struct regulator_dev *rdev,
 214				   int *min_uV, int *max_uV)
 215{
 216	BUG_ON(*min_uV > *max_uV);
 217
 218	if (!rdev->constraints) {
 219		rdev_err(rdev, "no constraints\n");
 220		return -ENODEV;
 221	}
 222	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 223		rdev_err(rdev, "voltage operation not allowed\n");
 224		return -EPERM;
 225	}
 226
 227	if (*max_uV > rdev->constraints->max_uV)
 228		*max_uV = rdev->constraints->max_uV;
 229	if (*min_uV < rdev->constraints->min_uV)
 230		*min_uV = rdev->constraints->min_uV;
 231
 232	if (*min_uV > *max_uV) {
 233		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 234			 *min_uV, *max_uV);
 235		return -EINVAL;
 236	}
 237
 238	return 0;
 239}
 240
 241/* Make sure we select a voltage that suits the needs of all
 242 * regulator consumers
 243 */
 244static int regulator_check_consumers(struct regulator_dev *rdev,
 245				     int *min_uV, int *max_uV)
 246{
 247	struct regulator *regulator;
 248
 249	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 250		/*
 251		 * Assume consumers that didn't say anything are OK
 252		 * with anything in the constraint range.
 253		 */
 254		if (!regulator->min_uV && !regulator->max_uV)
 255			continue;
 256
 257		if (*max_uV > regulator->max_uV)
 258			*max_uV = regulator->max_uV;
 259		if (*min_uV < regulator->min_uV)
 260			*min_uV = regulator->min_uV;
 261	}
 262
 263	if (*min_uV > *max_uV) {
 264		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 265			*min_uV, *max_uV);
 266		return -EINVAL;
 267	}
 268
 269	return 0;
 270}
 271
 272/* current constraint check */
 273static int regulator_check_current_limit(struct regulator_dev *rdev,
 274					int *min_uA, int *max_uA)
 275{
 276	BUG_ON(*min_uA > *max_uA);
 277
 278	if (!rdev->constraints) {
 279		rdev_err(rdev, "no constraints\n");
 280		return -ENODEV;
 281	}
 282	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 283		rdev_err(rdev, "current operation not allowed\n");
 284		return -EPERM;
 285	}
 286
 287	if (*max_uA > rdev->constraints->max_uA)
 288		*max_uA = rdev->constraints->max_uA;
 289	if (*min_uA < rdev->constraints->min_uA)
 290		*min_uA = rdev->constraints->min_uA;
 291
 292	if (*min_uA > *max_uA) {
 293		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 294			 *min_uA, *max_uA);
 295		return -EINVAL;
 296	}
 297
 298	return 0;
 299}
 300
 301/* operating mode constraint check */
 302static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 303{
 304	switch (*mode) {
 305	case REGULATOR_MODE_FAST:
 306	case REGULATOR_MODE_NORMAL:
 307	case REGULATOR_MODE_IDLE:
 308	case REGULATOR_MODE_STANDBY:
 309		break;
 310	default:
 311		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 312		return -EINVAL;
 313	}
 314
 315	if (!rdev->constraints) {
 316		rdev_err(rdev, "no constraints\n");
 317		return -ENODEV;
 318	}
 319	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 320		rdev_err(rdev, "mode operation not allowed\n");
 321		return -EPERM;
 322	}
 323
 324	/* The modes are bitmasks, the most power hungry modes having
 325	 * the lowest values. If the requested mode isn't supported
 326	 * try higher modes. */
 327	while (*mode) {
 328		if (rdev->constraints->valid_modes_mask & *mode)
 329			return 0;
 330		*mode /= 2;
 331	}
 332
 333	return -EINVAL;
 334}
 335
 336/* dynamic regulator mode switching constraint check */
 337static int regulator_check_drms(struct regulator_dev *rdev)
 338{
 339	if (!rdev->constraints) {
 340		rdev_err(rdev, "no constraints\n");
 341		return -ENODEV;
 342	}
 343	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 344		rdev_dbg(rdev, "drms operation not allowed\n");
 345		return -EPERM;
 346	}
 347	return 0;
 348}
 349
 
 
 
 
 
 
 
 
 
 
 
 
 350static ssize_t regulator_uV_show(struct device *dev,
 351				struct device_attribute *attr, char *buf)
 352{
 353	struct regulator_dev *rdev = dev_get_drvdata(dev);
 354	ssize_t ret;
 355
 356	mutex_lock(&rdev->mutex);
 357	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 358	mutex_unlock(&rdev->mutex);
 359
 360	return ret;
 361}
 362static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 363
 364static ssize_t regulator_uA_show(struct device *dev,
 365				struct device_attribute *attr, char *buf)
 366{
 367	struct regulator_dev *rdev = dev_get_drvdata(dev);
 368
 369	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 370}
 371static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 372
 373static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 374			 char *buf)
 375{
 376	struct regulator_dev *rdev = dev_get_drvdata(dev);
 377
 378	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 379}
 380static DEVICE_ATTR_RO(name);
 381
 382static ssize_t regulator_print_opmode(char *buf, int mode)
 383{
 384	switch (mode) {
 385	case REGULATOR_MODE_FAST:
 386		return sprintf(buf, "fast\n");
 387	case REGULATOR_MODE_NORMAL:
 388		return sprintf(buf, "normal\n");
 389	case REGULATOR_MODE_IDLE:
 390		return sprintf(buf, "idle\n");
 391	case REGULATOR_MODE_STANDBY:
 392		return sprintf(buf, "standby\n");
 393	}
 394	return sprintf(buf, "unknown\n");
 395}
 396
 397static ssize_t regulator_opmode_show(struct device *dev,
 398				    struct device_attribute *attr, char *buf)
 399{
 400	struct regulator_dev *rdev = dev_get_drvdata(dev);
 401
 402	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 403}
 404static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 405
 406static ssize_t regulator_print_state(char *buf, int state)
 407{
 408	if (state > 0)
 409		return sprintf(buf, "enabled\n");
 410	else if (state == 0)
 411		return sprintf(buf, "disabled\n");
 412	else
 413		return sprintf(buf, "unknown\n");
 414}
 415
 416static ssize_t regulator_state_show(struct device *dev,
 417				   struct device_attribute *attr, char *buf)
 418{
 419	struct regulator_dev *rdev = dev_get_drvdata(dev);
 420	ssize_t ret;
 421
 422	mutex_lock(&rdev->mutex);
 423	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 424	mutex_unlock(&rdev->mutex);
 425
 426	return ret;
 427}
 428static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 429
 430static ssize_t regulator_status_show(struct device *dev,
 431				   struct device_attribute *attr, char *buf)
 432{
 433	struct regulator_dev *rdev = dev_get_drvdata(dev);
 434	int status;
 435	char *label;
 436
 437	status = rdev->desc->ops->get_status(rdev);
 438	if (status < 0)
 439		return status;
 440
 441	switch (status) {
 442	case REGULATOR_STATUS_OFF:
 443		label = "off";
 444		break;
 445	case REGULATOR_STATUS_ON:
 446		label = "on";
 447		break;
 448	case REGULATOR_STATUS_ERROR:
 449		label = "error";
 450		break;
 451	case REGULATOR_STATUS_FAST:
 452		label = "fast";
 453		break;
 454	case REGULATOR_STATUS_NORMAL:
 455		label = "normal";
 456		break;
 457	case REGULATOR_STATUS_IDLE:
 458		label = "idle";
 459		break;
 460	case REGULATOR_STATUS_STANDBY:
 461		label = "standby";
 462		break;
 463	case REGULATOR_STATUS_BYPASS:
 464		label = "bypass";
 465		break;
 466	case REGULATOR_STATUS_UNDEFINED:
 467		label = "undefined";
 468		break;
 469	default:
 470		return -ERANGE;
 471	}
 472
 473	return sprintf(buf, "%s\n", label);
 474}
 475static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 476
 477static ssize_t regulator_min_uA_show(struct device *dev,
 478				    struct device_attribute *attr, char *buf)
 479{
 480	struct regulator_dev *rdev = dev_get_drvdata(dev);
 481
 482	if (!rdev->constraints)
 483		return sprintf(buf, "constraint not defined\n");
 484
 485	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 486}
 487static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 488
 489static ssize_t regulator_max_uA_show(struct device *dev,
 490				    struct device_attribute *attr, char *buf)
 491{
 492	struct regulator_dev *rdev = dev_get_drvdata(dev);
 493
 494	if (!rdev->constraints)
 495		return sprintf(buf, "constraint not defined\n");
 496
 497	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 498}
 499static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 500
 501static ssize_t regulator_min_uV_show(struct device *dev,
 502				    struct device_attribute *attr, char *buf)
 503{
 504	struct regulator_dev *rdev = dev_get_drvdata(dev);
 505
 506	if (!rdev->constraints)
 507		return sprintf(buf, "constraint not defined\n");
 508
 509	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 510}
 511static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 512
 513static ssize_t regulator_max_uV_show(struct device *dev,
 514				    struct device_attribute *attr, char *buf)
 515{
 516	struct regulator_dev *rdev = dev_get_drvdata(dev);
 517
 518	if (!rdev->constraints)
 519		return sprintf(buf, "constraint not defined\n");
 520
 521	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 522}
 523static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 524
 525static ssize_t regulator_total_uA_show(struct device *dev,
 526				      struct device_attribute *attr, char *buf)
 527{
 528	struct regulator_dev *rdev = dev_get_drvdata(dev);
 529	struct regulator *regulator;
 530	int uA = 0;
 531
 532	mutex_lock(&rdev->mutex);
 533	list_for_each_entry(regulator, &rdev->consumer_list, list)
 534		uA += regulator->uA_load;
 535	mutex_unlock(&rdev->mutex);
 536	return sprintf(buf, "%d\n", uA);
 537}
 538static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 539
 540static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 541			      char *buf)
 542{
 543	struct regulator_dev *rdev = dev_get_drvdata(dev);
 544	return sprintf(buf, "%d\n", rdev->use_count);
 545}
 546static DEVICE_ATTR_RO(num_users);
 547
 548static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 549			 char *buf)
 550{
 551	struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553	switch (rdev->desc->type) {
 554	case REGULATOR_VOLTAGE:
 555		return sprintf(buf, "voltage\n");
 556	case REGULATOR_CURRENT:
 557		return sprintf(buf, "current\n");
 558	}
 559	return sprintf(buf, "unknown\n");
 560}
 561static DEVICE_ATTR_RO(type);
 562
 563static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 564				struct device_attribute *attr, char *buf)
 565{
 566	struct regulator_dev *rdev = dev_get_drvdata(dev);
 567
 568	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 569}
 570static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 571		regulator_suspend_mem_uV_show, NULL);
 572
 573static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 574				struct device_attribute *attr, char *buf)
 575{
 576	struct regulator_dev *rdev = dev_get_drvdata(dev);
 577
 578	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 579}
 580static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 581		regulator_suspend_disk_uV_show, NULL);
 582
 583static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 584				struct device_attribute *attr, char *buf)
 585{
 586	struct regulator_dev *rdev = dev_get_drvdata(dev);
 587
 588	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 589}
 590static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 591		regulator_suspend_standby_uV_show, NULL);
 592
 593static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 594				struct device_attribute *attr, char *buf)
 595{
 596	struct regulator_dev *rdev = dev_get_drvdata(dev);
 597
 598	return regulator_print_opmode(buf,
 599		rdev->constraints->state_mem.mode);
 600}
 601static DEVICE_ATTR(suspend_mem_mode, 0444,
 602		regulator_suspend_mem_mode_show, NULL);
 603
 604static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 605				struct device_attribute *attr, char *buf)
 606{
 607	struct regulator_dev *rdev = dev_get_drvdata(dev);
 608
 609	return regulator_print_opmode(buf,
 610		rdev->constraints->state_disk.mode);
 611}
 612static DEVICE_ATTR(suspend_disk_mode, 0444,
 613		regulator_suspend_disk_mode_show, NULL);
 614
 615static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 616				struct device_attribute *attr, char *buf)
 617{
 618	struct regulator_dev *rdev = dev_get_drvdata(dev);
 619
 620	return regulator_print_opmode(buf,
 621		rdev->constraints->state_standby.mode);
 622}
 623static DEVICE_ATTR(suspend_standby_mode, 0444,
 624		regulator_suspend_standby_mode_show, NULL);
 625
 626static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 627				   struct device_attribute *attr, char *buf)
 628{
 629	struct regulator_dev *rdev = dev_get_drvdata(dev);
 630
 631	return regulator_print_state(buf,
 632			rdev->constraints->state_mem.enabled);
 633}
 634static DEVICE_ATTR(suspend_mem_state, 0444,
 635		regulator_suspend_mem_state_show, NULL);
 636
 637static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 638				   struct device_attribute *attr, char *buf)
 639{
 640	struct regulator_dev *rdev = dev_get_drvdata(dev);
 641
 642	return regulator_print_state(buf,
 643			rdev->constraints->state_disk.enabled);
 644}
 645static DEVICE_ATTR(suspend_disk_state, 0444,
 646		regulator_suspend_disk_state_show, NULL);
 647
 648static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 649				   struct device_attribute *attr, char *buf)
 650{
 651	struct regulator_dev *rdev = dev_get_drvdata(dev);
 652
 653	return regulator_print_state(buf,
 654			rdev->constraints->state_standby.enabled);
 655}
 656static DEVICE_ATTR(suspend_standby_state, 0444,
 657		regulator_suspend_standby_state_show, NULL);
 658
 659static ssize_t regulator_bypass_show(struct device *dev,
 660				     struct device_attribute *attr, char *buf)
 661{
 662	struct regulator_dev *rdev = dev_get_drvdata(dev);
 663	const char *report;
 664	bool bypass;
 665	int ret;
 666
 667	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 668
 669	if (ret != 0)
 670		report = "unknown";
 671	else if (bypass)
 672		report = "enabled";
 673	else
 674		report = "disabled";
 
 
 
 
 675
 676	return sprintf(buf, "%s\n", report);
 
 
 
 677}
 678static DEVICE_ATTR(bypass, 0444,
 679		   regulator_bypass_show, NULL);
 
 
 
 
 680
 681/* Calculate the new optimum regulator operating mode based on the new total
 682 * consumer load. All locks held by caller */
 683static int drms_uA_update(struct regulator_dev *rdev)
 684{
 685	struct regulator *sibling;
 686	int current_uA = 0, output_uV, input_uV, err;
 687	unsigned int mode;
 688
 689	lockdep_assert_held_once(&rdev->mutex);
 690
 691	/*
 692	 * first check to see if we can set modes at all, otherwise just
 693	 * tell the consumer everything is OK.
 694	 */
 695	err = regulator_check_drms(rdev);
 696	if (err < 0)
 697		return 0;
 698
 699	if (!rdev->desc->ops->get_optimum_mode &&
 700	    !rdev->desc->ops->set_load)
 701		return 0;
 702
 703	if (!rdev->desc->ops->set_mode &&
 704	    !rdev->desc->ops->set_load)
 705		return -EINVAL;
 706
 707	/* get output voltage */
 708	output_uV = _regulator_get_voltage(rdev);
 709	if (output_uV <= 0) {
 710		rdev_err(rdev, "invalid output voltage found\n");
 711		return -EINVAL;
 712	}
 713
 714	/* get input voltage */
 715	input_uV = 0;
 716	if (rdev->supply)
 717		input_uV = regulator_get_voltage(rdev->supply);
 718	if (input_uV <= 0)
 719		input_uV = rdev->constraints->input_uV;
 720	if (input_uV <= 0) {
 721		rdev_err(rdev, "invalid input voltage found\n");
 722		return -EINVAL;
 723	}
 724
 725	/* calc total requested load */
 726	list_for_each_entry(sibling, &rdev->consumer_list, list)
 727		current_uA += sibling->uA_load;
 728
 729	current_uA += rdev->constraints->system_load;
 730
 731	if (rdev->desc->ops->set_load) {
 732		/* set the optimum mode for our new total regulator load */
 733		err = rdev->desc->ops->set_load(rdev, current_uA);
 734		if (err < 0)
 735			rdev_err(rdev, "failed to set load %d\n", current_uA);
 736	} else {
 737		/* now get the optimum mode for our new total regulator load */
 738		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 739							 output_uV, current_uA);
 740
 741		/* check the new mode is allowed */
 742		err = regulator_mode_constrain(rdev, &mode);
 743		if (err < 0) {
 744			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 745				 current_uA, input_uV, output_uV);
 746			return err;
 747		}
 748
 749		err = rdev->desc->ops->set_mode(rdev, mode);
 750		if (err < 0)
 751			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 752	}
 753
 754	return err;
 755}
 756
 757static int suspend_set_state(struct regulator_dev *rdev,
 758	struct regulator_state *rstate)
 759{
 760	int ret = 0;
 761
 762	/* If we have no suspend mode configration don't set anything;
 763	 * only warn if the driver implements set_suspend_voltage or
 764	 * set_suspend_mode callback.
 765	 */
 766	if (!rstate->enabled && !rstate->disabled) {
 767		if (rdev->desc->ops->set_suspend_voltage ||
 768		    rdev->desc->ops->set_suspend_mode)
 769			rdev_warn(rdev, "No configuration\n");
 770		return 0;
 771	}
 772
 773	if (rstate->enabled && rstate->disabled) {
 774		rdev_err(rdev, "invalid configuration\n");
 775		return -EINVAL;
 776	}
 777
 778	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 779		ret = rdev->desc->ops->set_suspend_enable(rdev);
 780	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 781		ret = rdev->desc->ops->set_suspend_disable(rdev);
 782	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 783		ret = 0;
 784
 785	if (ret < 0) {
 786		rdev_err(rdev, "failed to enabled/disable\n");
 787		return ret;
 788	}
 789
 790	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 791		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 792		if (ret < 0) {
 793			rdev_err(rdev, "failed to set voltage\n");
 794			return ret;
 795		}
 796	}
 797
 798	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 799		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 800		if (ret < 0) {
 801			rdev_err(rdev, "failed to set mode\n");
 802			return ret;
 803		}
 804	}
 805	return ret;
 806}
 807
 808/* locks held by caller */
 809static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 810{
 811	lockdep_assert_held_once(&rdev->mutex);
 812
 813	if (!rdev->constraints)
 814		return -EINVAL;
 815
 816	switch (state) {
 817	case PM_SUSPEND_STANDBY:
 818		return suspend_set_state(rdev,
 819			&rdev->constraints->state_standby);
 820	case PM_SUSPEND_MEM:
 821		return suspend_set_state(rdev,
 822			&rdev->constraints->state_mem);
 823	case PM_SUSPEND_MAX:
 824		return suspend_set_state(rdev,
 825			&rdev->constraints->state_disk);
 826	default:
 827		return -EINVAL;
 828	}
 829}
 830
 831static void print_constraints(struct regulator_dev *rdev)
 832{
 833	struct regulation_constraints *constraints = rdev->constraints;
 834	char buf[160] = "";
 835	size_t len = sizeof(buf) - 1;
 836	int count = 0;
 837	int ret;
 838
 839	if (constraints->min_uV && constraints->max_uV) {
 840		if (constraints->min_uV == constraints->max_uV)
 841			count += scnprintf(buf + count, len - count, "%d mV ",
 842					   constraints->min_uV / 1000);
 843		else
 844			count += scnprintf(buf + count, len - count,
 845					   "%d <--> %d mV ",
 846					   constraints->min_uV / 1000,
 847					   constraints->max_uV / 1000);
 848	}
 849
 850	if (!constraints->min_uV ||
 851	    constraints->min_uV != constraints->max_uV) {
 852		ret = _regulator_get_voltage(rdev);
 853		if (ret > 0)
 854			count += scnprintf(buf + count, len - count,
 855					   "at %d mV ", ret / 1000);
 856	}
 857
 858	if (constraints->uV_offset)
 859		count += scnprintf(buf + count, len - count, "%dmV offset ",
 860				   constraints->uV_offset / 1000);
 861
 862	if (constraints->min_uA && constraints->max_uA) {
 863		if (constraints->min_uA == constraints->max_uA)
 864			count += scnprintf(buf + count, len - count, "%d mA ",
 865					   constraints->min_uA / 1000);
 866		else
 867			count += scnprintf(buf + count, len - count,
 868					   "%d <--> %d mA ",
 869					   constraints->min_uA / 1000,
 870					   constraints->max_uA / 1000);
 871	}
 872
 873	if (!constraints->min_uA ||
 874	    constraints->min_uA != constraints->max_uA) {
 875		ret = _regulator_get_current_limit(rdev);
 876		if (ret > 0)
 877			count += scnprintf(buf + count, len - count,
 878					   "at %d mA ", ret / 1000);
 879	}
 880
 881	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 882		count += scnprintf(buf + count, len - count, "fast ");
 883	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 884		count += scnprintf(buf + count, len - count, "normal ");
 885	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 886		count += scnprintf(buf + count, len - count, "idle ");
 887	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 888		count += scnprintf(buf + count, len - count, "standby");
 889
 890	if (!count)
 891		scnprintf(buf, len, "no parameters");
 892
 893	rdev_dbg(rdev, "%s\n", buf);
 894
 895	if ((constraints->min_uV != constraints->max_uV) &&
 896	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 897		rdev_warn(rdev,
 898			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 899}
 900
 901static int machine_constraints_voltage(struct regulator_dev *rdev,
 902	struct regulation_constraints *constraints)
 903{
 904	const struct regulator_ops *ops = rdev->desc->ops;
 905	int ret;
 906
 907	/* do we need to apply the constraint voltage */
 908	if (rdev->constraints->apply_uV &&
 909	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 910		int current_uV = _regulator_get_voltage(rdev);
 911		if (current_uV < 0) {
 912			rdev_err(rdev,
 913				 "failed to get the current voltage(%d)\n",
 914				 current_uV);
 915			return current_uV;
 916		}
 917		if (current_uV < rdev->constraints->min_uV ||
 918		    current_uV > rdev->constraints->max_uV) {
 919			ret = _regulator_do_set_voltage(
 920				rdev, rdev->constraints->min_uV,
 921				rdev->constraints->max_uV);
 922			if (ret < 0) {
 923				rdev_err(rdev,
 924					"failed to apply %duV constraint(%d)\n",
 925					rdev->constraints->min_uV, ret);
 926				return ret;
 927			}
 928		}
 929	}
 930
 931	/* constrain machine-level voltage specs to fit
 932	 * the actual range supported by this regulator.
 933	 */
 934	if (ops->list_voltage && rdev->desc->n_voltages) {
 935		int	count = rdev->desc->n_voltages;
 936		int	i;
 937		int	min_uV = INT_MAX;
 938		int	max_uV = INT_MIN;
 939		int	cmin = constraints->min_uV;
 940		int	cmax = constraints->max_uV;
 941
 942		/* it's safe to autoconfigure fixed-voltage supplies
 943		   and the constraints are used by list_voltage. */
 944		if (count == 1 && !cmin) {
 945			cmin = 1;
 946			cmax = INT_MAX;
 947			constraints->min_uV = cmin;
 948			constraints->max_uV = cmax;
 949		}
 950
 951		/* voltage constraints are optional */
 952		if ((cmin == 0) && (cmax == 0))
 953			return 0;
 954
 955		/* else require explicit machine-level constraints */
 956		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 957			rdev_err(rdev, "invalid voltage constraints\n");
 958			return -EINVAL;
 959		}
 960
 961		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 962		for (i = 0; i < count; i++) {
 963			int	value;
 964
 965			value = ops->list_voltage(rdev, i);
 966			if (value <= 0)
 967				continue;
 968
 969			/* maybe adjust [min_uV..max_uV] */
 970			if (value >= cmin && value < min_uV)
 971				min_uV = value;
 972			if (value <= cmax && value > max_uV)
 973				max_uV = value;
 974		}
 975
 976		/* final: [min_uV..max_uV] valid iff constraints valid */
 977		if (max_uV < min_uV) {
 978			rdev_err(rdev,
 979				 "unsupportable voltage constraints %u-%uuV\n",
 980				 min_uV, max_uV);
 981			return -EINVAL;
 982		}
 983
 984		/* use regulator's subset of machine constraints */
 985		if (constraints->min_uV < min_uV) {
 986			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 987				 constraints->min_uV, min_uV);
 988			constraints->min_uV = min_uV;
 989		}
 990		if (constraints->max_uV > max_uV) {
 991			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 992				 constraints->max_uV, max_uV);
 993			constraints->max_uV = max_uV;
 994		}
 995	}
 996
 997	return 0;
 998}
 999
1000static int machine_constraints_current(struct regulator_dev *rdev,
1001	struct regulation_constraints *constraints)
1002{
1003	const struct regulator_ops *ops = rdev->desc->ops;
1004	int ret;
1005
1006	if (!constraints->min_uA && !constraints->max_uA)
1007		return 0;
1008
1009	if (constraints->min_uA > constraints->max_uA) {
1010		rdev_err(rdev, "Invalid current constraints\n");
1011		return -EINVAL;
1012	}
1013
1014	if (!ops->set_current_limit || !ops->get_current_limit) {
1015		rdev_warn(rdev, "Operation of current configuration missing\n");
1016		return 0;
1017	}
1018
1019	/* Set regulator current in constraints range */
1020	ret = ops->set_current_limit(rdev, constraints->min_uA,
1021			constraints->max_uA);
1022	if (ret < 0) {
1023		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024		return ret;
1025	}
1026
1027	return 0;
1028}
1029
1030static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032/**
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1036 *
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041 * set_mode.
1042 */
1043static int set_machine_constraints(struct regulator_dev *rdev,
1044	const struct regulation_constraints *constraints)
1045{
1046	int ret = 0;
1047	const struct regulator_ops *ops = rdev->desc->ops;
1048
1049	if (constraints)
1050		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051					    GFP_KERNEL);
1052	else
1053		rdev->constraints = kzalloc(sizeof(*constraints),
1054					    GFP_KERNEL);
1055	if (!rdev->constraints)
1056		return -ENOMEM;
1057
1058	ret = machine_constraints_voltage(rdev, rdev->constraints);
1059	if (ret != 0)
1060		return ret;
1061
1062	ret = machine_constraints_current(rdev, rdev->constraints);
1063	if (ret != 0)
1064		return ret;
1065
1066	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067		ret = ops->set_input_current_limit(rdev,
1068						   rdev->constraints->ilim_uA);
1069		if (ret < 0) {
1070			rdev_err(rdev, "failed to set input limit\n");
1071			return ret;
1072		}
1073	}
1074
1075	/* do we need to setup our suspend state */
1076	if (rdev->constraints->initial_state) {
1077		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078		if (ret < 0) {
1079			rdev_err(rdev, "failed to set suspend state\n");
1080			return ret;
1081		}
1082	}
1083
1084	if (rdev->constraints->initial_mode) {
1085		if (!ops->set_mode) {
1086			rdev_err(rdev, "no set_mode operation\n");
1087			return -EINVAL;
 
1088		}
1089
1090		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091		if (ret < 0) {
1092			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093			return ret;
1094		}
1095	}
1096
1097	/* If the constraints say the regulator should be on at this point
1098	 * and we have control then make sure it is enabled.
1099	 */
1100	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101		ret = _regulator_do_enable(rdev);
1102		if (ret < 0 && ret != -EINVAL) {
1103			rdev_err(rdev, "failed to enable\n");
1104			return ret;
1105		}
1106	}
1107
1108	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109		&& ops->set_ramp_delay) {
1110		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111		if (ret < 0) {
1112			rdev_err(rdev, "failed to set ramp_delay\n");
1113			return ret;
1114		}
1115	}
1116
1117	if (rdev->constraints->pull_down && ops->set_pull_down) {
1118		ret = ops->set_pull_down(rdev);
1119		if (ret < 0) {
1120			rdev_err(rdev, "failed to set pull down\n");
1121			return ret;
1122		}
1123	}
1124
1125	if (rdev->constraints->soft_start && ops->set_soft_start) {
1126		ret = ops->set_soft_start(rdev);
1127		if (ret < 0) {
1128			rdev_err(rdev, "failed to set soft start\n");
1129			return ret;
1130		}
1131	}
1132
1133	if (rdev->constraints->over_current_protection
1134		&& ops->set_over_current_protection) {
1135		ret = ops->set_over_current_protection(rdev);
1136		if (ret < 0) {
1137			rdev_err(rdev, "failed to set over current protection\n");
1138			return ret;
1139		}
1140	}
1141
1142	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1143		bool ad_state = (rdev->constraints->active_discharge ==
1144			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1145
1146		ret = ops->set_active_discharge(rdev, ad_state);
1147		if (ret < 0) {
1148			rdev_err(rdev, "failed to set active discharge\n");
1149			return ret;
1150		}
1151	}
1152
1153	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1154		bool ad_state = (rdev->constraints->active_discharge ==
1155			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1156
1157		ret = ops->set_active_discharge(rdev, ad_state);
1158		if (ret < 0) {
1159			rdev_err(rdev, "failed to set active discharge\n");
1160			return ret;
1161		}
1162	}
1163
1164	print_constraints(rdev);
1165	return 0;
 
 
 
 
1166}
1167
1168/**
1169 * set_supply - set regulator supply regulator
1170 * @rdev: regulator name
1171 * @supply_rdev: supply regulator name
1172 *
1173 * Called by platform initialisation code to set the supply regulator for this
1174 * regulator. This ensures that a regulators supply will also be enabled by the
1175 * core if it's child is enabled.
1176 */
1177static int set_supply(struct regulator_dev *rdev,
1178		      struct regulator_dev *supply_rdev)
1179{
1180	int err;
1181
1182	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1183
1184	if (!try_module_get(supply_rdev->owner))
1185		return -ENODEV;
1186
1187	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1188	if (rdev->supply == NULL) {
1189		err = -ENOMEM;
1190		return err;
1191	}
1192	supply_rdev->open_count++;
1193
1194	return 0;
1195}
1196
1197/**
1198 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199 * @rdev:         regulator source
1200 * @consumer_dev_name: dev_name() string for device supply applies to
1201 * @supply:       symbolic name for supply
1202 *
1203 * Allows platform initialisation code to map physical regulator
1204 * sources to symbolic names for supplies for use by devices.  Devices
1205 * should use these symbolic names to request regulators, avoiding the
1206 * need to provide board-specific regulator names as platform data.
1207 */
1208static int set_consumer_device_supply(struct regulator_dev *rdev,
1209				      const char *consumer_dev_name,
1210				      const char *supply)
1211{
1212	struct regulator_map *node;
1213	int has_dev;
1214
1215	if (supply == NULL)
1216		return -EINVAL;
1217
1218	if (consumer_dev_name != NULL)
1219		has_dev = 1;
1220	else
1221		has_dev = 0;
1222
1223	list_for_each_entry(node, &regulator_map_list, list) {
1224		if (node->dev_name && consumer_dev_name) {
1225			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1226				continue;
1227		} else if (node->dev_name || consumer_dev_name) {
1228			continue;
1229		}
1230
1231		if (strcmp(node->supply, supply) != 0)
1232			continue;
1233
1234		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1235			 consumer_dev_name,
1236			 dev_name(&node->regulator->dev),
1237			 node->regulator->desc->name,
1238			 supply,
1239			 dev_name(&rdev->dev), rdev_get_name(rdev));
1240		return -EBUSY;
1241	}
1242
1243	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1244	if (node == NULL)
1245		return -ENOMEM;
1246
1247	node->regulator = rdev;
1248	node->supply = supply;
1249
1250	if (has_dev) {
1251		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1252		if (node->dev_name == NULL) {
1253			kfree(node);
1254			return -ENOMEM;
1255		}
1256	}
1257
1258	list_add(&node->list, &regulator_map_list);
1259	return 0;
1260}
1261
1262static void unset_regulator_supplies(struct regulator_dev *rdev)
1263{
1264	struct regulator_map *node, *n;
1265
1266	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1267		if (rdev == node->regulator) {
1268			list_del(&node->list);
1269			kfree(node->dev_name);
1270			kfree(node);
1271		}
1272	}
1273}
1274
1275#define REG_STR_SIZE	64
1276
1277static struct regulator *create_regulator(struct regulator_dev *rdev,
1278					  struct device *dev,
1279					  const char *supply_name)
1280{
1281	struct regulator *regulator;
1282	char buf[REG_STR_SIZE];
1283	int err, size;
1284
1285	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1286	if (regulator == NULL)
1287		return NULL;
1288
1289	mutex_lock(&rdev->mutex);
1290	regulator->rdev = rdev;
1291	list_add(&regulator->list, &rdev->consumer_list);
1292
1293	if (dev) {
 
 
 
 
 
 
 
1294		regulator->dev = dev;
 
 
 
 
 
 
 
 
 
 
 
 
1295
1296		/* Add a link to the device sysfs entry */
1297		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1298				 dev->kobj.name, supply_name);
1299		if (size >= REG_STR_SIZE)
1300			goto overflow_err;
1301
1302		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1303		if (regulator->supply_name == NULL)
1304			goto overflow_err;
1305
1306		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1307					buf);
1308		if (err) {
1309			rdev_dbg(rdev, "could not add device link %s err %d\n",
1310				  dev->kobj.name, err);
1311			/* non-fatal */
1312		}
1313	} else {
1314		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1315		if (regulator->supply_name == NULL)
1316			goto overflow_err;
1317	}
1318
1319	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1320						rdev->debugfs);
1321	if (!regulator->debugfs) {
1322		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1323	} else {
1324		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1325				   &regulator->uA_load);
1326		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1327				   &regulator->min_uV);
1328		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1329				   &regulator->max_uV);
1330	}
1331
1332	/*
1333	 * Check now if the regulator is an always on regulator - if
1334	 * it is then we don't need to do nearly so much work for
1335	 * enable/disable calls.
1336	 */
1337	if (!_regulator_can_change_status(rdev) &&
1338	    _regulator_is_enabled(rdev))
1339		regulator->always_on = true;
1340
1341	mutex_unlock(&rdev->mutex);
1342	return regulator;
 
 
 
 
 
 
1343overflow_err:
1344	list_del(&regulator->list);
1345	kfree(regulator);
1346	mutex_unlock(&rdev->mutex);
1347	return NULL;
1348}
1349
1350static int _regulator_get_enable_time(struct regulator_dev *rdev)
1351{
1352	if (rdev->constraints && rdev->constraints->enable_time)
1353		return rdev->constraints->enable_time;
1354	if (!rdev->desc->ops->enable_time)
1355		return rdev->desc->enable_time;
1356	return rdev->desc->ops->enable_time(rdev);
1357}
1358
1359static struct regulator_supply_alias *regulator_find_supply_alias(
1360		struct device *dev, const char *supply)
1361{
1362	struct regulator_supply_alias *map;
1363
1364	list_for_each_entry(map, &regulator_supply_alias_list, list)
1365		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1366			return map;
1367
1368	return NULL;
1369}
1370
1371static void regulator_supply_alias(struct device **dev, const char **supply)
1372{
1373	struct regulator_supply_alias *map;
1374
1375	map = regulator_find_supply_alias(*dev, *supply);
1376	if (map) {
1377		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1378				*supply, map->alias_supply,
1379				dev_name(map->alias_dev));
1380		*dev = map->alias_dev;
1381		*supply = map->alias_supply;
1382	}
1383}
1384
1385static int of_node_match(struct device *dev, const void *data)
1386{
1387	return dev->of_node == data;
1388}
1389
1390static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1391{
1392	struct device *dev;
1393
1394	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1395
1396	return dev ? dev_to_rdev(dev) : NULL;
1397}
1398
1399static int regulator_match(struct device *dev, const void *data)
1400{
1401	struct regulator_dev *r = dev_to_rdev(dev);
1402
1403	return strcmp(rdev_get_name(r), data) == 0;
1404}
1405
1406static struct regulator_dev *regulator_lookup_by_name(const char *name)
1407{
1408	struct device *dev;
1409
1410	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1411
1412	return dev ? dev_to_rdev(dev) : NULL;
1413}
1414
1415/**
1416 * regulator_dev_lookup - lookup a regulator device.
1417 * @dev: device for regulator "consumer".
1418 * @supply: Supply name or regulator ID.
1419 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1420 * lookup could succeed in the future.
1421 *
1422 * If successful, returns a struct regulator_dev that corresponds to the name
1423 * @supply and with the embedded struct device refcount incremented by one,
1424 * or NULL on failure. The refcount must be dropped by calling put_device().
1425 */
1426static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1427						  const char *supply,
1428						  int *ret)
1429{
1430	struct regulator_dev *r;
1431	struct device_node *node;
1432	struct regulator_map *map;
1433	const char *devname = NULL;
1434
1435	regulator_supply_alias(&dev, &supply);
1436
1437	/* first do a dt based lookup */
1438	if (dev && dev->of_node) {
1439		node = of_get_regulator(dev, supply);
1440		if (node) {
1441			r = of_find_regulator_by_node(node);
1442			if (r)
1443				return r;
1444			*ret = -EPROBE_DEFER;
1445			return NULL;
1446		} else {
1447			/*
1448			 * If we couldn't even get the node then it's
1449			 * not just that the device didn't register
1450			 * yet, there's no node and we'll never
1451			 * succeed.
1452			 */
1453			*ret = -ENODEV;
1454		}
1455	}
1456
1457	/* if not found, try doing it non-dt way */
1458	if (dev)
1459		devname = dev_name(dev);
1460
1461	r = regulator_lookup_by_name(supply);
1462	if (r)
1463		return r;
1464
1465	mutex_lock(&regulator_list_mutex);
1466	list_for_each_entry(map, &regulator_map_list, list) {
1467		/* If the mapping has a device set up it must match */
1468		if (map->dev_name &&
1469		    (!devname || strcmp(map->dev_name, devname)))
1470			continue;
1471
1472		if (strcmp(map->supply, supply) == 0 &&
1473		    get_device(&map->regulator->dev)) {
1474			mutex_unlock(&regulator_list_mutex);
1475			return map->regulator;
1476		}
1477	}
1478	mutex_unlock(&regulator_list_mutex);
1479
1480	return NULL;
1481}
1482
1483static int regulator_resolve_supply(struct regulator_dev *rdev)
1484{
1485	struct regulator_dev *r;
1486	struct device *dev = rdev->dev.parent;
1487	int ret;
1488
1489	/* No supply to resovle? */
1490	if (!rdev->supply_name)
1491		return 0;
1492
1493	/* Supply already resolved? */
1494	if (rdev->supply)
1495		return 0;
1496
1497	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1498	if (!r) {
1499		if (ret == -ENODEV) {
1500			/*
1501			 * No supply was specified for this regulator and
1502			 * there will never be one.
1503			 */
1504			return 0;
1505		}
1506
1507		/* Did the lookup explicitly defer for us? */
1508		if (ret == -EPROBE_DEFER)
1509			return ret;
1510
1511		if (have_full_constraints()) {
1512			r = dummy_regulator_rdev;
1513			get_device(&r->dev);
1514		} else {
1515			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1516				rdev->supply_name, rdev->desc->name);
1517			return -EPROBE_DEFER;
1518		}
1519	}
1520
1521	/* Recursively resolve the supply of the supply */
1522	ret = regulator_resolve_supply(r);
1523	if (ret < 0) {
1524		put_device(&r->dev);
1525		return ret;
1526	}
1527
1528	ret = set_supply(rdev, r);
1529	if (ret < 0) {
1530		put_device(&r->dev);
1531		return ret;
1532	}
1533
1534	/* Cascade always-on state to supply */
1535	if (_regulator_is_enabled(rdev) && rdev->supply) {
1536		ret = regulator_enable(rdev->supply);
1537		if (ret < 0) {
1538			_regulator_put(rdev->supply);
1539			return ret;
1540		}
1541	}
1542
1543	return 0;
1544}
1545
1546/* Internal regulator request function */
1547static struct regulator *_regulator_get(struct device *dev, const char *id,
1548					bool exclusive, bool allow_dummy)
1549{
1550	struct regulator_dev *rdev;
1551	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1552	const char *devname = NULL;
1553	int ret;
1554
1555	if (id == NULL) {
1556		pr_err("get() with no identifier\n");
1557		return ERR_PTR(-EINVAL);
1558	}
1559
1560	if (dev)
1561		devname = dev_name(dev);
1562
1563	if (have_full_constraints())
1564		ret = -ENODEV;
1565	else
1566		ret = -EPROBE_DEFER;
1567
1568	rdev = regulator_dev_lookup(dev, id, &ret);
1569	if (rdev)
1570		goto found;
1571
1572	regulator = ERR_PTR(ret);
1573
1574	/*
1575	 * If we have return value from dev_lookup fail, we do not expect to
1576	 * succeed, so, quit with appropriate error value
1577	 */
1578	if (ret && ret != -ENODEV)
1579		return regulator;
1580
 
1581	if (!devname)
1582		devname = "deviceless";
1583
1584	/*
1585	 * Assume that a regulator is physically present and enabled
1586	 * even if it isn't hooked up and just provide a dummy.
1587	 */
1588	if (have_full_constraints() && allow_dummy) {
1589		pr_warn("%s supply %s not found, using dummy regulator\n",
1590			devname, id);
1591
1592		rdev = dummy_regulator_rdev;
1593		get_device(&rdev->dev);
1594		goto found;
1595	/* Don't log an error when called from regulator_get_optional() */
1596	} else if (!have_full_constraints() || exclusive) {
1597		dev_warn(dev, "dummy supplies not allowed\n");
1598	}
 
1599
 
1600	return regulator;
1601
1602found:
1603	if (rdev->exclusive) {
1604		regulator = ERR_PTR(-EPERM);
1605		put_device(&rdev->dev);
1606		return regulator;
1607	}
1608
1609	if (exclusive && rdev->open_count) {
1610		regulator = ERR_PTR(-EBUSY);
1611		put_device(&rdev->dev);
1612		return regulator;
1613	}
1614
1615	ret = regulator_resolve_supply(rdev);
1616	if (ret < 0) {
1617		regulator = ERR_PTR(ret);
1618		put_device(&rdev->dev);
1619		return regulator;
1620	}
1621
1622	if (!try_module_get(rdev->owner)) {
1623		put_device(&rdev->dev);
1624		return regulator;
1625	}
1626
1627	regulator = create_regulator(rdev, dev, id);
1628	if (regulator == NULL) {
1629		regulator = ERR_PTR(-ENOMEM);
1630		put_device(&rdev->dev);
1631		module_put(rdev->owner);
1632		return regulator;
1633	}
1634
1635	rdev->open_count++;
1636	if (exclusive) {
1637		rdev->exclusive = 1;
1638
1639		ret = _regulator_is_enabled(rdev);
1640		if (ret > 0)
1641			rdev->use_count = 1;
1642		else
1643			rdev->use_count = 0;
1644	}
1645
 
 
 
1646	return regulator;
1647}
1648
1649/**
1650 * regulator_get - lookup and obtain a reference to a regulator.
1651 * @dev: device for regulator "consumer"
1652 * @id: Supply name or regulator ID.
1653 *
1654 * Returns a struct regulator corresponding to the regulator producer,
1655 * or IS_ERR() condition containing errno.
1656 *
1657 * Use of supply names configured via regulator_set_device_supply() is
1658 * strongly encouraged.  It is recommended that the supply name used
1659 * should match the name used for the supply and/or the relevant
1660 * device pins in the datasheet.
1661 */
1662struct regulator *regulator_get(struct device *dev, const char *id)
1663{
1664	return _regulator_get(dev, id, false, true);
1665}
1666EXPORT_SYMBOL_GPL(regulator_get);
1667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1668/**
1669 * regulator_get_exclusive - obtain exclusive access to a regulator.
1670 * @dev: device for regulator "consumer"
1671 * @id: Supply name or regulator ID.
1672 *
1673 * Returns a struct regulator corresponding to the regulator producer,
1674 * or IS_ERR() condition containing errno.  Other consumers will be
1675 * unable to obtain this regulator while this reference is held and the
1676 * use count for the regulator will be initialised to reflect the current
1677 * state of the regulator.
1678 *
1679 * This is intended for use by consumers which cannot tolerate shared
1680 * use of the regulator such as those which need to force the
1681 * regulator off for correct operation of the hardware they are
1682 * controlling.
1683 *
1684 * Use of supply names configured via regulator_set_device_supply() is
1685 * strongly encouraged.  It is recommended that the supply name used
1686 * should match the name used for the supply and/or the relevant
1687 * device pins in the datasheet.
1688 */
1689struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1690{
1691	return _regulator_get(dev, id, true, false);
1692}
1693EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1694
1695/**
1696 * regulator_get_optional - obtain optional access to a regulator.
1697 * @dev: device for regulator "consumer"
1698 * @id: Supply name or regulator ID.
1699 *
1700 * Returns a struct regulator corresponding to the regulator producer,
1701 * or IS_ERR() condition containing errno.
1702 *
1703 * This is intended for use by consumers for devices which can have
1704 * some supplies unconnected in normal use, such as some MMC devices.
1705 * It can allow the regulator core to provide stub supplies for other
1706 * supplies requested using normal regulator_get() calls without
1707 * disrupting the operation of drivers that can handle absent
1708 * supplies.
1709 *
1710 * Use of supply names configured via regulator_set_device_supply() is
1711 * strongly encouraged.  It is recommended that the supply name used
1712 * should match the name used for the supply and/or the relevant
1713 * device pins in the datasheet.
1714 */
1715struct regulator *regulator_get_optional(struct device *dev, const char *id)
1716{
1717	return _regulator_get(dev, id, false, false);
1718}
1719EXPORT_SYMBOL_GPL(regulator_get_optional);
1720
1721/* regulator_list_mutex lock held by regulator_put() */
1722static void _regulator_put(struct regulator *regulator)
1723{
1724	struct regulator_dev *rdev;
1725
1726	if (IS_ERR_OR_NULL(regulator))
1727		return;
1728
1729	lockdep_assert_held_once(&regulator_list_mutex);
1730
1731	rdev = regulator->rdev;
1732
1733	debugfs_remove_recursive(regulator->debugfs);
1734
1735	/* remove any sysfs entries */
1736	if (regulator->dev)
1737		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1738	mutex_lock(&rdev->mutex);
 
 
 
1739	list_del(&regulator->list);
 
1740
1741	rdev->open_count--;
1742	rdev->exclusive = 0;
1743	put_device(&rdev->dev);
1744	mutex_unlock(&rdev->mutex);
1745
1746	kfree(regulator->supply_name);
1747	kfree(regulator);
1748
1749	module_put(rdev->owner);
1750}
1751
1752/**
1753 * regulator_put - "free" the regulator source
1754 * @regulator: regulator source
1755 *
1756 * Note: drivers must ensure that all regulator_enable calls made on this
1757 * regulator source are balanced by regulator_disable calls prior to calling
1758 * this function.
1759 */
1760void regulator_put(struct regulator *regulator)
1761{
1762	mutex_lock(&regulator_list_mutex);
1763	_regulator_put(regulator);
1764	mutex_unlock(&regulator_list_mutex);
1765}
1766EXPORT_SYMBOL_GPL(regulator_put);
1767
1768/**
1769 * regulator_register_supply_alias - Provide device alias for supply lookup
1770 *
1771 * @dev: device that will be given as the regulator "consumer"
1772 * @id: Supply name or regulator ID
1773 * @alias_dev: device that should be used to lookup the supply
1774 * @alias_id: Supply name or regulator ID that should be used to lookup the
1775 * supply
1776 *
1777 * All lookups for id on dev will instead be conducted for alias_id on
1778 * alias_dev.
1779 */
1780int regulator_register_supply_alias(struct device *dev, const char *id,
1781				    struct device *alias_dev,
1782				    const char *alias_id)
1783{
1784	struct regulator_supply_alias *map;
1785
1786	map = regulator_find_supply_alias(dev, id);
1787	if (map)
1788		return -EEXIST;
1789
1790	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1791	if (!map)
1792		return -ENOMEM;
1793
1794	map->src_dev = dev;
1795	map->src_supply = id;
1796	map->alias_dev = alias_dev;
1797	map->alias_supply = alias_id;
1798
1799	list_add(&map->list, &regulator_supply_alias_list);
1800
1801	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1802		id, dev_name(dev), alias_id, dev_name(alias_dev));
1803
1804	return 0;
1805}
1806EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1807
1808/**
1809 * regulator_unregister_supply_alias - Remove device alias
1810 *
1811 * @dev: device that will be given as the regulator "consumer"
1812 * @id: Supply name or regulator ID
1813 *
1814 * Remove a lookup alias if one exists for id on dev.
1815 */
1816void regulator_unregister_supply_alias(struct device *dev, const char *id)
1817{
1818	struct regulator_supply_alias *map;
1819
1820	map = regulator_find_supply_alias(dev, id);
1821	if (map) {
1822		list_del(&map->list);
1823		kfree(map);
1824	}
1825}
1826EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1827
1828/**
1829 * regulator_bulk_register_supply_alias - register multiple aliases
1830 *
1831 * @dev: device that will be given as the regulator "consumer"
1832 * @id: List of supply names or regulator IDs
1833 * @alias_dev: device that should be used to lookup the supply
1834 * @alias_id: List of supply names or regulator IDs that should be used to
1835 * lookup the supply
1836 * @num_id: Number of aliases to register
1837 *
1838 * @return 0 on success, an errno on failure.
1839 *
1840 * This helper function allows drivers to register several supply
1841 * aliases in one operation.  If any of the aliases cannot be
1842 * registered any aliases that were registered will be removed
1843 * before returning to the caller.
1844 */
1845int regulator_bulk_register_supply_alias(struct device *dev,
1846					 const char *const *id,
1847					 struct device *alias_dev,
1848					 const char *const *alias_id,
1849					 int num_id)
1850{
1851	int i;
1852	int ret;
1853
1854	for (i = 0; i < num_id; ++i) {
1855		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1856						      alias_id[i]);
1857		if (ret < 0)
1858			goto err;
1859	}
1860
1861	return 0;
1862
1863err:
1864	dev_err(dev,
1865		"Failed to create supply alias %s,%s -> %s,%s\n",
1866		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1867
1868	while (--i >= 0)
1869		regulator_unregister_supply_alias(dev, id[i]);
1870
1871	return ret;
1872}
1873EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1874
1875/**
1876 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1877 *
1878 * @dev: device that will be given as the regulator "consumer"
1879 * @id: List of supply names or regulator IDs
1880 * @num_id: Number of aliases to unregister
1881 *
1882 * This helper function allows drivers to unregister several supply
1883 * aliases in one operation.
1884 */
1885void regulator_bulk_unregister_supply_alias(struct device *dev,
1886					    const char *const *id,
1887					    int num_id)
1888{
1889	int i;
1890
1891	for (i = 0; i < num_id; ++i)
1892		regulator_unregister_supply_alias(dev, id[i]);
1893}
1894EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1895
1896
1897/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1898static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1899				const struct regulator_config *config)
1900{
1901	struct regulator_enable_gpio *pin;
1902	struct gpio_desc *gpiod;
1903	int ret;
1904
1905	gpiod = gpio_to_desc(config->ena_gpio);
1906
1907	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1908		if (pin->gpiod == gpiod) {
1909			rdev_dbg(rdev, "GPIO %d is already used\n",
1910				config->ena_gpio);
1911			goto update_ena_gpio_to_rdev;
1912		}
1913	}
1914
1915	ret = gpio_request_one(config->ena_gpio,
1916				GPIOF_DIR_OUT | config->ena_gpio_flags,
1917				rdev_get_name(rdev));
1918	if (ret)
1919		return ret;
1920
1921	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1922	if (pin == NULL) {
1923		gpio_free(config->ena_gpio);
1924		return -ENOMEM;
1925	}
1926
1927	pin->gpiod = gpiod;
1928	pin->ena_gpio_invert = config->ena_gpio_invert;
1929	list_add(&pin->list, &regulator_ena_gpio_list);
1930
1931update_ena_gpio_to_rdev:
1932	pin->request_count++;
1933	rdev->ena_pin = pin;
1934	return 0;
1935}
1936
1937static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1938{
1939	struct regulator_enable_gpio *pin, *n;
1940
1941	if (!rdev->ena_pin)
1942		return;
1943
1944	/* Free the GPIO only in case of no use */
1945	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1946		if (pin->gpiod == rdev->ena_pin->gpiod) {
1947			if (pin->request_count <= 1) {
1948				pin->request_count = 0;
1949				gpiod_put(pin->gpiod);
1950				list_del(&pin->list);
1951				kfree(pin);
1952				rdev->ena_pin = NULL;
1953				return;
1954			} else {
1955				pin->request_count--;
1956			}
1957		}
1958	}
1959}
1960
1961/**
1962 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1963 * @rdev: regulator_dev structure
1964 * @enable: enable GPIO at initial use?
1965 *
1966 * GPIO is enabled in case of initial use. (enable_count is 0)
1967 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1968 */
1969static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1970{
1971	struct regulator_enable_gpio *pin = rdev->ena_pin;
1972
1973	if (!pin)
1974		return -EINVAL;
1975
1976	if (enable) {
1977		/* Enable GPIO at initial use */
1978		if (pin->enable_count == 0)
1979			gpiod_set_value_cansleep(pin->gpiod,
1980						 !pin->ena_gpio_invert);
1981
1982		pin->enable_count++;
1983	} else {
1984		if (pin->enable_count > 1) {
1985			pin->enable_count--;
1986			return 0;
1987		}
1988
1989		/* Disable GPIO if not used */
1990		if (pin->enable_count <= 1) {
1991			gpiod_set_value_cansleep(pin->gpiod,
1992						 pin->ena_gpio_invert);
1993			pin->enable_count = 0;
1994		}
1995	}
1996
1997	return 0;
1998}
1999
2000/**
2001 * _regulator_enable_delay - a delay helper function
2002 * @delay: time to delay in microseconds
2003 *
2004 * Delay for the requested amount of time as per the guidelines in:
2005 *
2006 *     Documentation/timers/timers-howto.txt
2007 *
2008 * The assumption here is that regulators will never be enabled in
2009 * atomic context and therefore sleeping functions can be used.
2010 */
2011static void _regulator_enable_delay(unsigned int delay)
2012{
2013	unsigned int ms = delay / 1000;
2014	unsigned int us = delay % 1000;
2015
2016	if (ms > 0) {
2017		/*
2018		 * For small enough values, handle super-millisecond
2019		 * delays in the usleep_range() call below.
2020		 */
2021		if (ms < 20)
2022			us += ms * 1000;
2023		else
2024			msleep(ms);
2025	}
2026
2027	/*
2028	 * Give the scheduler some room to coalesce with any other
2029	 * wakeup sources. For delays shorter than 10 us, don't even
2030	 * bother setting up high-resolution timers and just busy-
2031	 * loop.
2032	 */
2033	if (us >= 10)
2034		usleep_range(us, us + 100);
2035	else
2036		udelay(us);
2037}
2038
2039static int _regulator_do_enable(struct regulator_dev *rdev)
2040{
2041	int ret, delay;
2042
2043	/* Query before enabling in case configuration dependent.  */
2044	ret = _regulator_get_enable_time(rdev);
2045	if (ret >= 0) {
2046		delay = ret;
2047	} else {
2048		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2049		delay = 0;
2050	}
2051
2052	trace_regulator_enable(rdev_get_name(rdev));
2053
2054	if (rdev->desc->off_on_delay) {
2055		/* if needed, keep a distance of off_on_delay from last time
2056		 * this regulator was disabled.
2057		 */
2058		unsigned long start_jiffy = jiffies;
2059		unsigned long intended, max_delay, remaining;
2060
2061		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2062		intended = rdev->last_off_jiffy + max_delay;
2063
2064		if (time_before(start_jiffy, intended)) {
2065			/* calc remaining jiffies to deal with one-time
2066			 * timer wrapping.
2067			 * in case of multiple timer wrapping, either it can be
2068			 * detected by out-of-range remaining, or it cannot be
2069			 * detected and we gets a panelty of
2070			 * _regulator_enable_delay().
2071			 */
2072			remaining = intended - start_jiffy;
2073			if (remaining <= max_delay)
2074				_regulator_enable_delay(
2075						jiffies_to_usecs(remaining));
2076		}
2077	}
2078
2079	if (rdev->ena_pin) {
2080		if (!rdev->ena_gpio_state) {
2081			ret = regulator_ena_gpio_ctrl(rdev, true);
2082			if (ret < 0)
2083				return ret;
2084			rdev->ena_gpio_state = 1;
2085		}
2086	} else if (rdev->desc->ops->enable) {
2087		ret = rdev->desc->ops->enable(rdev);
2088		if (ret < 0)
2089			return ret;
2090	} else {
2091		return -EINVAL;
2092	}
2093
2094	/* Allow the regulator to ramp; it would be useful to extend
2095	 * this for bulk operations so that the regulators can ramp
2096	 * together.  */
2097	trace_regulator_enable_delay(rdev_get_name(rdev));
2098
2099	_regulator_enable_delay(delay);
2100
2101	trace_regulator_enable_complete(rdev_get_name(rdev));
2102
2103	return 0;
2104}
 
2105
2106/* locks held by regulator_enable() */
2107static int _regulator_enable(struct regulator_dev *rdev)
2108{
2109	int ret;
2110
2111	lockdep_assert_held_once(&rdev->mutex);
2112
2113	/* check voltage and requested load before enabling */
2114	if (rdev->constraints &&
2115	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2116		drms_uA_update(rdev);
2117
2118	if (rdev->use_count == 0) {
2119		/* The regulator may on if it's not switchable or left on */
2120		ret = _regulator_is_enabled(rdev);
2121		if (ret == -EINVAL || ret == 0) {
2122			if (!_regulator_can_change_status(rdev))
2123				return -EPERM;
2124
2125			ret = _regulator_do_enable(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2126			if (ret < 0)
2127				return ret;
2128
 
 
 
 
 
 
 
 
 
 
 
2129		} else if (ret < 0) {
2130			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2131			return ret;
2132		}
2133		/* Fallthrough on positive return values - already enabled */
2134	}
2135
2136	rdev->use_count++;
2137
2138	return 0;
2139}
2140
2141/**
2142 * regulator_enable - enable regulator output
2143 * @regulator: regulator source
2144 *
2145 * Request that the regulator be enabled with the regulator output at
2146 * the predefined voltage or current value.  Calls to regulator_enable()
2147 * must be balanced with calls to regulator_disable().
2148 *
2149 * NOTE: the output value can be set by other drivers, boot loader or may be
2150 * hardwired in the regulator.
2151 */
2152int regulator_enable(struct regulator *regulator)
2153{
2154	struct regulator_dev *rdev = regulator->rdev;
2155	int ret = 0;
2156
2157	if (regulator->always_on)
2158		return 0;
2159
2160	if (rdev->supply) {
2161		ret = regulator_enable(rdev->supply);
2162		if (ret != 0)
2163			return ret;
2164	}
2165
2166	mutex_lock(&rdev->mutex);
2167	ret = _regulator_enable(rdev);
2168	mutex_unlock(&rdev->mutex);
2169
2170	if (ret != 0 && rdev->supply)
2171		regulator_disable(rdev->supply);
2172
2173	return ret;
2174}
2175EXPORT_SYMBOL_GPL(regulator_enable);
2176
2177static int _regulator_do_disable(struct regulator_dev *rdev)
2178{
2179	int ret;
2180
2181	trace_regulator_disable(rdev_get_name(rdev));
2182
2183	if (rdev->ena_pin) {
2184		if (rdev->ena_gpio_state) {
2185			ret = regulator_ena_gpio_ctrl(rdev, false);
2186			if (ret < 0)
2187				return ret;
2188			rdev->ena_gpio_state = 0;
2189		}
2190
2191	} else if (rdev->desc->ops->disable) {
2192		ret = rdev->desc->ops->disable(rdev);
2193		if (ret != 0)
2194			return ret;
2195	}
2196
2197	/* cares about last_off_jiffy only if off_on_delay is required by
2198	 * device.
2199	 */
2200	if (rdev->desc->off_on_delay)
2201		rdev->last_off_jiffy = jiffies;
2202
2203	trace_regulator_disable_complete(rdev_get_name(rdev));
2204
2205	return 0;
2206}
2207
2208/* locks held by regulator_disable() */
2209static int _regulator_disable(struct regulator_dev *rdev)
2210{
2211	int ret = 0;
2212
2213	lockdep_assert_held_once(&rdev->mutex);
2214
2215	if (WARN(rdev->use_count <= 0,
2216		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2217		return -EIO;
2218
2219	/* are we the last user and permitted to disable ? */
2220	if (rdev->use_count == 1 &&
2221	    (rdev->constraints && !rdev->constraints->always_on)) {
2222
2223		/* we are last user */
2224		if (_regulator_can_change_status(rdev)) {
2225			ret = _notifier_call_chain(rdev,
2226						   REGULATOR_EVENT_PRE_DISABLE,
2227						   NULL);
2228			if (ret & NOTIFY_STOP_MASK)
2229				return -EINVAL;
2230
2231			ret = _regulator_do_disable(rdev);
2232			if (ret < 0) {
2233				rdev_err(rdev, "failed to disable\n");
2234				_notifier_call_chain(rdev,
2235						REGULATOR_EVENT_ABORT_DISABLE,
2236						NULL);
2237				return ret;
2238			}
 
 
 
2239			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2240					NULL);
2241		}
2242
2243		rdev->use_count = 0;
2244	} else if (rdev->use_count > 1) {
2245
2246		if (rdev->constraints &&
2247			(rdev->constraints->valid_ops_mask &
2248			REGULATOR_CHANGE_DRMS))
2249			drms_uA_update(rdev);
2250
2251		rdev->use_count--;
2252	}
2253
2254	return ret;
2255}
2256
2257/**
2258 * regulator_disable - disable regulator output
2259 * @regulator: regulator source
2260 *
2261 * Disable the regulator output voltage or current.  Calls to
2262 * regulator_enable() must be balanced with calls to
2263 * regulator_disable().
2264 *
2265 * NOTE: this will only disable the regulator output if no other consumer
2266 * devices have it enabled, the regulator device supports disabling and
2267 * machine constraints permit this operation.
2268 */
2269int regulator_disable(struct regulator *regulator)
2270{
2271	struct regulator_dev *rdev = regulator->rdev;
2272	int ret = 0;
2273
2274	if (regulator->always_on)
2275		return 0;
2276
2277	mutex_lock(&rdev->mutex);
2278	ret = _regulator_disable(rdev);
2279	mutex_unlock(&rdev->mutex);
2280
2281	if (ret == 0 && rdev->supply)
2282		regulator_disable(rdev->supply);
2283
2284	return ret;
2285}
2286EXPORT_SYMBOL_GPL(regulator_disable);
2287
2288/* locks held by regulator_force_disable() */
2289static int _regulator_force_disable(struct regulator_dev *rdev)
2290{
2291	int ret = 0;
2292
2293	lockdep_assert_held_once(&rdev->mutex);
2294
2295	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2296			REGULATOR_EVENT_PRE_DISABLE, NULL);
2297	if (ret & NOTIFY_STOP_MASK)
2298		return -EINVAL;
2299
2300	ret = _regulator_do_disable(rdev);
2301	if (ret < 0) {
2302		rdev_err(rdev, "failed to force disable\n");
2303		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2304				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2305		return ret;
2306	}
2307
2308	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2309			REGULATOR_EVENT_DISABLE, NULL);
 
2310
2311	return 0;
2312}
2313
2314/**
2315 * regulator_force_disable - force disable regulator output
2316 * @regulator: regulator source
2317 *
2318 * Forcibly disable the regulator output voltage or current.
2319 * NOTE: this *will* disable the regulator output even if other consumer
2320 * devices have it enabled. This should be used for situations when device
2321 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2322 */
2323int regulator_force_disable(struct regulator *regulator)
2324{
2325	struct regulator_dev *rdev = regulator->rdev;
2326	int ret;
2327
2328	mutex_lock(&rdev->mutex);
2329	regulator->uA_load = 0;
2330	ret = _regulator_force_disable(regulator->rdev);
2331	mutex_unlock(&rdev->mutex);
2332
2333	if (rdev->supply)
2334		while (rdev->open_count--)
2335			regulator_disable(rdev->supply);
2336
2337	return ret;
2338}
2339EXPORT_SYMBOL_GPL(regulator_force_disable);
2340
2341static void regulator_disable_work(struct work_struct *work)
2342{
2343	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2344						  disable_work.work);
2345	int count, i, ret;
2346
2347	mutex_lock(&rdev->mutex);
2348
2349	BUG_ON(!rdev->deferred_disables);
2350
2351	count = rdev->deferred_disables;
2352	rdev->deferred_disables = 0;
2353
2354	for (i = 0; i < count; i++) {
2355		ret = _regulator_disable(rdev);
2356		if (ret != 0)
2357			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2358	}
2359
2360	mutex_unlock(&rdev->mutex);
2361
2362	if (rdev->supply) {
2363		for (i = 0; i < count; i++) {
2364			ret = regulator_disable(rdev->supply);
2365			if (ret != 0) {
2366				rdev_err(rdev,
2367					 "Supply disable failed: %d\n", ret);
2368			}
2369		}
2370	}
2371}
2372
2373/**
2374 * regulator_disable_deferred - disable regulator output with delay
2375 * @regulator: regulator source
2376 * @ms: miliseconds until the regulator is disabled
2377 *
2378 * Execute regulator_disable() on the regulator after a delay.  This
2379 * is intended for use with devices that require some time to quiesce.
2380 *
2381 * NOTE: this will only disable the regulator output if no other consumer
2382 * devices have it enabled, the regulator device supports disabling and
2383 * machine constraints permit this operation.
2384 */
2385int regulator_disable_deferred(struct regulator *regulator, int ms)
2386{
2387	struct regulator_dev *rdev = regulator->rdev;
 
2388
2389	if (regulator->always_on)
2390		return 0;
2391
2392	if (!ms)
2393		return regulator_disable(regulator);
2394
2395	mutex_lock(&rdev->mutex);
2396	rdev->deferred_disables++;
2397	mutex_unlock(&rdev->mutex);
2398
2399	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2400			   msecs_to_jiffies(ms));
2401	return 0;
 
 
 
2402}
2403EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2404
2405static int _regulator_is_enabled(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
2406{
2407	/* A GPIO control always takes precedence */
2408	if (rdev->ena_pin)
2409		return rdev->ena_gpio_state;
2410
2411	/* If we don't know then assume that the regulator is always on */
2412	if (!rdev->desc->ops->is_enabled)
2413		return 1;
2414
2415	return rdev->desc->ops->is_enabled(rdev);
2416}
 
2417
2418static int _regulator_list_voltage(struct regulator *regulator,
2419				    unsigned selector, int lock)
 
 
 
 
 
 
 
 
2420{
2421	struct regulator_dev *rdev = regulator->rdev;
2422	const struct regulator_ops *ops = rdev->desc->ops;
2423	int ret;
2424
2425	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2426		return rdev->desc->fixed_uV;
2427
2428	if (ops->list_voltage) {
2429		if (selector >= rdev->desc->n_voltages)
2430			return -EINVAL;
2431		if (lock)
2432			mutex_lock(&rdev->mutex);
2433		ret = ops->list_voltage(rdev, selector);
2434		if (lock)
2435			mutex_unlock(&rdev->mutex);
2436	} else if (rdev->supply) {
2437		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2438	} else {
2439		return -EINVAL;
2440	}
 
 
2441
2442	if (ret > 0) {
2443		if (ret < rdev->constraints->min_uV)
2444			ret = 0;
2445		else if (ret > rdev->constraints->max_uV)
2446			ret = 0;
2447	}
2448
2449	return ret;
2450}
2451
2452/**
2453 * regulator_is_enabled - is the regulator output enabled
2454 * @regulator: regulator source
2455 *
2456 * Returns positive if the regulator driver backing the source/client
2457 * has requested that the device be enabled, zero if it hasn't, else a
2458 * negative errno code.
2459 *
2460 * Note that the device backing this regulator handle can have multiple
2461 * users, so it might be enabled even if regulator_enable() was never
2462 * called for this particular source.
2463 */
2464int regulator_is_enabled(struct regulator *regulator)
2465{
2466	int ret;
2467
2468	if (regulator->always_on)
2469		return 1;
2470
2471	mutex_lock(&regulator->rdev->mutex);
2472	ret = _regulator_is_enabled(regulator->rdev);
2473	mutex_unlock(&regulator->rdev->mutex);
2474
2475	return ret;
2476}
2477EXPORT_SYMBOL_GPL(regulator_is_enabled);
2478
2479/**
2480 * regulator_can_change_voltage - check if regulator can change voltage
2481 * @regulator: regulator source
2482 *
2483 * Returns positive if the regulator driver backing the source/client
2484 * can change its voltage, false otherwise. Useful for detecting fixed
2485 * or dummy regulators and disabling voltage change logic in the client
2486 * driver.
2487 */
2488int regulator_can_change_voltage(struct regulator *regulator)
2489{
2490	struct regulator_dev	*rdev = regulator->rdev;
2491
2492	if (rdev->constraints &&
2493	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2494		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2495			return 1;
2496
2497		if (rdev->desc->continuous_voltage_range &&
2498		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2499		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2500			return 1;
2501	}
2502
2503	return 0;
2504}
2505EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2506
2507/**
2508 * regulator_count_voltages - count regulator_list_voltage() selectors
2509 * @regulator: regulator source
2510 *
2511 * Returns number of selectors, or negative errno.  Selectors are
2512 * numbered starting at zero, and typically correspond to bitfields
2513 * in hardware registers.
2514 */
2515int regulator_count_voltages(struct regulator *regulator)
2516{
2517	struct regulator_dev	*rdev = regulator->rdev;
2518
2519	if (rdev->desc->n_voltages)
2520		return rdev->desc->n_voltages;
2521
2522	if (!rdev->supply)
2523		return -EINVAL;
2524
2525	return regulator_count_voltages(rdev->supply);
2526}
2527EXPORT_SYMBOL_GPL(regulator_count_voltages);
2528
2529/**
2530 * regulator_list_voltage - enumerate supported voltages
2531 * @regulator: regulator source
2532 * @selector: identify voltage to list
2533 * Context: can sleep
2534 *
2535 * Returns a voltage that can be passed to @regulator_set_voltage(),
2536 * zero if this selector code can't be used on this system, or a
2537 * negative errno.
2538 */
2539int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2540{
2541	return _regulator_list_voltage(regulator, selector, 1);
2542}
2543EXPORT_SYMBOL_GPL(regulator_list_voltage);
2544
2545/**
2546 * regulator_get_regmap - get the regulator's register map
2547 * @regulator: regulator source
2548 *
2549 * Returns the register map for the given regulator, or an ERR_PTR value
2550 * if the regulator doesn't use regmap.
 
2551 */
2552struct regmap *regulator_get_regmap(struct regulator *regulator)
 
2553{
2554	struct regmap *map = regulator->rdev->regmap;
2555
2556	return map ? map : ERR_PTR(-EOPNOTSUPP);
2557}
2558
2559/**
2560 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2561 * @regulator: regulator source
2562 * @vsel_reg: voltage selector register, output parameter
2563 * @vsel_mask: mask for voltage selector bitfield, output parameter
2564 *
2565 * Returns the hardware register offset and bitmask used for setting the
2566 * regulator voltage. This might be useful when configuring voltage-scaling
2567 * hardware or firmware that can make I2C requests behind the kernel's back,
2568 * for example.
2569 *
2570 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2571 * and 0 is returned, otherwise a negative errno is returned.
2572 */
2573int regulator_get_hardware_vsel_register(struct regulator *regulator,
2574					 unsigned *vsel_reg,
2575					 unsigned *vsel_mask)
2576{
2577	struct regulator_dev *rdev = regulator->rdev;
2578	const struct regulator_ops *ops = rdev->desc->ops;
2579
2580	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2581		return -EOPNOTSUPP;
2582
2583	 *vsel_reg = rdev->desc->vsel_reg;
2584	 *vsel_mask = rdev->desc->vsel_mask;
2585
2586	 return 0;
2587}
2588EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2589
2590/**
2591 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2592 * @regulator: regulator source
2593 * @selector: identify voltage to list
 
2594 *
2595 * Converts the selector to a hardware-specific voltage selector that can be
2596 * directly written to the regulator registers. The address of the voltage
2597 * register can be determined by calling @regulator_get_hardware_vsel_register.
2598 *
2599 * On error a negative errno is returned.
2600 */
2601int regulator_list_hardware_vsel(struct regulator *regulator,
2602				 unsigned selector)
2603{
2604	struct regulator_dev *rdev = regulator->rdev;
2605	const struct regulator_ops *ops = rdev->desc->ops;
 
2606
2607	if (selector >= rdev->desc->n_voltages)
2608		return -EINVAL;
2609	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2610		return -EOPNOTSUPP;
2611
2612	return selector;
2613}
2614EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2615
2616/**
2617 * regulator_get_linear_step - return the voltage step size between VSEL values
2618 * @regulator: regulator source
2619 *
2620 * Returns the voltage step size between VSEL values for linear
2621 * regulators, or return 0 if the regulator isn't a linear regulator.
2622 */
2623unsigned int regulator_get_linear_step(struct regulator *regulator)
2624{
2625	struct regulator_dev *rdev = regulator->rdev;
2626
2627	return rdev->desc->uV_step;
2628}
2629EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2630
2631/**
2632 * regulator_is_supported_voltage - check if a voltage range can be supported
2633 *
2634 * @regulator: Regulator to check.
2635 * @min_uV: Minimum required voltage in uV.
2636 * @max_uV: Maximum required voltage in uV.
2637 *
2638 * Returns a boolean or a negative error code.
2639 */
2640int regulator_is_supported_voltage(struct regulator *regulator,
2641				   int min_uV, int max_uV)
2642{
2643	struct regulator_dev *rdev = regulator->rdev;
2644	int i, voltages, ret;
2645
2646	/* If we can't change voltage check the current voltage */
2647	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2648		ret = regulator_get_voltage(regulator);
2649		if (ret >= 0)
2650			return min_uV <= ret && ret <= max_uV;
2651		else
2652			return ret;
2653	}
2654
2655	/* Any voltage within constrains range is fine? */
2656	if (rdev->desc->continuous_voltage_range)
2657		return min_uV >= rdev->constraints->min_uV &&
2658				max_uV <= rdev->constraints->max_uV;
2659
2660	ret = regulator_count_voltages(regulator);
2661	if (ret < 0)
2662		return ret;
2663	voltages = ret;
2664
2665	for (i = 0; i < voltages; i++) {
2666		ret = regulator_list_voltage(regulator, i);
2667
2668		if (ret >= min_uV && ret <= max_uV)
2669			return 1;
2670	}
2671
2672	return 0;
2673}
2674EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2675
2676static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2677				 int max_uV)
 
 
 
 
 
 
 
 
2678{
2679	const struct regulator_desc *desc = rdev->desc;
2680
2681	if (desc->ops->map_voltage)
2682		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2683
2684	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2685		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
 
2686
2687	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2688		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2689
2690	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2691}
 
2692
2693static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2694				       int min_uV, int max_uV,
2695				       unsigned *selector)
 
 
 
 
 
 
 
 
2696{
2697	struct pre_voltage_change_data data;
2698	int ret;
2699
2700	data.old_uV = _regulator_get_voltage(rdev);
2701	data.min_uV = min_uV;
2702	data.max_uV = max_uV;
2703	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2704				   &data);
2705	if (ret & NOTIFY_STOP_MASK)
2706		return -EINVAL;
2707
2708	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2709	if (ret >= 0)
2710		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2711
2712	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2713			     (void *)data.old_uV);
 
 
 
 
 
2714
2715	return ret;
 
 
 
 
 
 
 
 
 
2716}
 
2717
2718static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2719					   int uV, unsigned selector)
 
 
 
 
 
 
 
 
 
 
2720{
2721	struct pre_voltage_change_data data;
2722	int ret;
2723
2724	data.old_uV = _regulator_get_voltage(rdev);
2725	data.min_uV = uV;
2726	data.max_uV = uV;
2727	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2728				   &data);
2729	if (ret & NOTIFY_STOP_MASK)
2730		return -EINVAL;
 
 
 
 
2731
2732	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2733	if (ret >= 0)
2734		return ret;
2735
2736	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2737			     (void *)data.old_uV);
 
 
2738
2739	return ret;
2740}
 
2741
2742static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2743				     int min_uV, int max_uV)
2744{
2745	int ret;
2746	int delay = 0;
2747	int best_val = 0;
2748	unsigned int selector;
2749	int old_selector = -1;
2750
2751	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2752
2753	min_uV += rdev->constraints->uV_offset;
2754	max_uV += rdev->constraints->uV_offset;
2755
2756	/*
2757	 * If we can't obtain the old selector there is not enough
2758	 * info to call set_voltage_time_sel().
2759	 */
2760	if (_regulator_is_enabled(rdev) &&
2761	    rdev->desc->ops->set_voltage_time_sel &&
2762	    rdev->desc->ops->get_voltage_sel) {
2763		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2764		if (old_selector < 0)
2765			return old_selector;
2766	}
2767
2768	if (rdev->desc->ops->set_voltage) {
2769		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2770						  &selector);
2771
2772		if (ret >= 0) {
2773			if (rdev->desc->ops->list_voltage)
2774				best_val = rdev->desc->ops->list_voltage(rdev,
2775									 selector);
2776			else
2777				best_val = _regulator_get_voltage(rdev);
2778		}
2779
2780	} else if (rdev->desc->ops->set_voltage_sel) {
2781		ret = regulator_map_voltage(rdev, min_uV, max_uV);
 
 
 
 
 
 
2782		if (ret >= 0) {
2783			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2784			if (min_uV <= best_val && max_uV >= best_val) {
2785				selector = ret;
2786				if (old_selector == selector)
2787					ret = 0;
2788				else
2789					ret = _regulator_call_set_voltage_sel(
2790						rdev, best_val, selector);
2791			} else {
2792				ret = -EINVAL;
2793			}
2794		}
2795	} else {
2796		ret = -EINVAL;
2797	}
2798
 
 
 
 
 
2799	/* Call set_voltage_time_sel if successfully obtained old_selector */
2800	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2801		&& old_selector != selector) {
2802
2803		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2804						old_selector, selector);
2805		if (delay < 0) {
2806			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2807				  delay);
2808			delay = 0;
2809		}
2810
2811		/* Insert any necessary delays */
2812		if (delay >= 1000) {
2813			mdelay(delay / 1000);
2814			udelay(delay % 1000);
2815		} else if (delay) {
2816			udelay(delay);
2817		}
2818	}
2819
2820	if (ret == 0 && best_val >= 0) {
2821		unsigned long data = best_val;
 
 
 
 
 
2822
 
2823		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2824				     (void *)data);
2825	}
2826
2827	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2828
2829	return ret;
2830}
2831
2832static int regulator_set_voltage_unlocked(struct regulator *regulator,
2833					  int min_uV, int max_uV)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2834{
2835	struct regulator_dev *rdev = regulator->rdev;
2836	int ret = 0;
2837	int old_min_uV, old_max_uV;
2838	int current_uV;
2839	int best_supply_uV = 0;
2840	int supply_change_uV = 0;
2841
2842	/* If we're setting the same range as last time the change
2843	 * should be a noop (some cpufreq implementations use the same
2844	 * voltage for multiple frequencies, for example).
2845	 */
2846	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2847		goto out;
2848
2849	/* If we're trying to set a range that overlaps the current voltage,
2850	 * return successfully even though the regulator does not support
2851	 * changing the voltage.
2852	 */
2853	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2854		current_uV = _regulator_get_voltage(rdev);
2855		if (min_uV <= current_uV && current_uV <= max_uV) {
2856			regulator->min_uV = min_uV;
2857			regulator->max_uV = max_uV;
2858			goto out;
2859		}
2860	}
2861
2862	/* sanity check */
2863	if (!rdev->desc->ops->set_voltage &&
2864	    !rdev->desc->ops->set_voltage_sel) {
2865		ret = -EINVAL;
2866		goto out;
2867	}
2868
2869	/* constraints check */
2870	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2871	if (ret < 0)
2872		goto out;
2873
2874	/* restore original values in case of error */
2875	old_min_uV = regulator->min_uV;
2876	old_max_uV = regulator->max_uV;
2877	regulator->min_uV = min_uV;
2878	regulator->max_uV = max_uV;
2879
2880	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2881	if (ret < 0)
2882		goto out2;
2883
2884	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2885				!rdev->desc->ops->get_voltage)) {
2886		int current_supply_uV;
2887		int selector;
2888
2889		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2890		if (selector < 0) {
2891			ret = selector;
2892			goto out2;
2893		}
2894
2895		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2896		if (best_supply_uV < 0) {
2897			ret = best_supply_uV;
2898			goto out2;
2899		}
2900
2901		best_supply_uV += rdev->desc->min_dropout_uV;
2902
2903		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2904		if (current_supply_uV < 0) {
2905			ret = current_supply_uV;
2906			goto out2;
2907		}
2908
2909		supply_change_uV = best_supply_uV - current_supply_uV;
2910	}
2911
2912	if (supply_change_uV > 0) {
2913		ret = regulator_set_voltage_unlocked(rdev->supply,
2914				best_supply_uV, INT_MAX);
2915		if (ret) {
2916			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2917					ret);
2918			goto out2;
2919		}
2920	}
2921
2922	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2923	if (ret < 0)
2924		goto out2;
2925
2926	if (supply_change_uV < 0) {
2927		ret = regulator_set_voltage_unlocked(rdev->supply,
2928				best_supply_uV, INT_MAX);
2929		if (ret)
2930			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2931					ret);
2932		/* No need to fail here */
2933		ret = 0;
2934	}
2935
2936out:
2937	return ret;
2938out2:
2939	regulator->min_uV = old_min_uV;
2940	regulator->max_uV = old_max_uV;
2941
2942	return ret;
2943}
2944
2945/**
2946 * regulator_set_voltage - set regulator output voltage
2947 * @regulator: regulator source
2948 * @min_uV: Minimum required voltage in uV
2949 * @max_uV: Maximum acceptable voltage in uV
2950 *
2951 * Sets a voltage regulator to the desired output voltage. This can be set
2952 * during any regulator state. IOW, regulator can be disabled or enabled.
2953 *
2954 * If the regulator is enabled then the voltage will change to the new value
2955 * immediately otherwise if the regulator is disabled the regulator will
2956 * output at the new voltage when enabled.
2957 *
2958 * NOTE: If the regulator is shared between several devices then the lowest
2959 * request voltage that meets the system constraints will be used.
2960 * Regulator system constraints must be set for this regulator before
2961 * calling this function otherwise this call will fail.
2962 */
2963int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2964{
2965	int ret = 0;
2966
2967	regulator_lock_supply(regulator->rdev);
2968
2969	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2970
2971	regulator_unlock_supply(regulator->rdev);
2972
2973	return ret;
2974}
2975EXPORT_SYMBOL_GPL(regulator_set_voltage);
2976
2977/**
2978 * regulator_set_voltage_time - get raise/fall time
2979 * @regulator: regulator source
2980 * @old_uV: starting voltage in microvolts
2981 * @new_uV: target voltage in microvolts
2982 *
2983 * Provided with the starting and ending voltage, this function attempts to
2984 * calculate the time in microseconds required to rise or fall to this new
2985 * voltage.
2986 */
2987int regulator_set_voltage_time(struct regulator *regulator,
2988			       int old_uV, int new_uV)
2989{
2990	struct regulator_dev *rdev = regulator->rdev;
2991	const struct regulator_ops *ops = rdev->desc->ops;
2992	int old_sel = -1;
2993	int new_sel = -1;
2994	int voltage;
2995	int i;
2996
2997	/* Currently requires operations to do this */
2998	if (!ops->list_voltage || !ops->set_voltage_time_sel
2999	    || !rdev->desc->n_voltages)
3000		return -EINVAL;
3001
3002	for (i = 0; i < rdev->desc->n_voltages; i++) {
3003		/* We only look for exact voltage matches here */
3004		voltage = regulator_list_voltage(regulator, i);
3005		if (voltage < 0)
3006			return -EINVAL;
3007		if (voltage == 0)
3008			continue;
3009		if (voltage == old_uV)
3010			old_sel = i;
3011		if (voltage == new_uV)
3012			new_sel = i;
3013	}
3014
3015	if (old_sel < 0 || new_sel < 0)
3016		return -EINVAL;
3017
3018	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3019}
3020EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3021
3022/**
3023 * regulator_set_voltage_time_sel - get raise/fall time
3024 * @rdev: regulator source device
3025 * @old_selector: selector for starting voltage
3026 * @new_selector: selector for target voltage
3027 *
3028 * Provided with the starting and target voltage selectors, this function
3029 * returns time in microseconds required to rise or fall to this new voltage
3030 *
3031 * Drivers providing ramp_delay in regulation_constraints can use this as their
3032 * set_voltage_time_sel() operation.
3033 */
3034int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3035				   unsigned int old_selector,
3036				   unsigned int new_selector)
3037{
3038	unsigned int ramp_delay = 0;
3039	int old_volt, new_volt;
3040
3041	if (rdev->constraints->ramp_delay)
3042		ramp_delay = rdev->constraints->ramp_delay;
3043	else if (rdev->desc->ramp_delay)
3044		ramp_delay = rdev->desc->ramp_delay;
3045
3046	if (ramp_delay == 0) {
3047		rdev_warn(rdev, "ramp_delay not set\n");
3048		return 0;
3049	}
3050
3051	/* sanity check */
3052	if (!rdev->desc->ops->list_voltage)
3053		return -EINVAL;
3054
3055	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3056	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3057
3058	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3059}
3060EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3061
3062/**
3063 * regulator_sync_voltage - re-apply last regulator output voltage
3064 * @regulator: regulator source
3065 *
3066 * Re-apply the last configured voltage.  This is intended to be used
3067 * where some external control source the consumer is cooperating with
3068 * has caused the configured voltage to change.
3069 */
3070int regulator_sync_voltage(struct regulator *regulator)
3071{
3072	struct regulator_dev *rdev = regulator->rdev;
3073	int ret, min_uV, max_uV;
3074
3075	mutex_lock(&rdev->mutex);
3076
3077	if (!rdev->desc->ops->set_voltage &&
3078	    !rdev->desc->ops->set_voltage_sel) {
3079		ret = -EINVAL;
3080		goto out;
3081	}
3082
3083	/* This is only going to work if we've had a voltage configured. */
3084	if (!regulator->min_uV && !regulator->max_uV) {
3085		ret = -EINVAL;
3086		goto out;
3087	}
3088
3089	min_uV = regulator->min_uV;
3090	max_uV = regulator->max_uV;
3091
3092	/* This should be a paranoia check... */
3093	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3094	if (ret < 0)
3095		goto out;
3096
3097	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3098	if (ret < 0)
3099		goto out;
3100
3101	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3102
3103out:
3104	mutex_unlock(&rdev->mutex);
3105	return ret;
3106}
3107EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3108
3109static int _regulator_get_voltage(struct regulator_dev *rdev)
3110{
3111	int sel, ret;
3112
3113	if (rdev->desc->ops->get_voltage_sel) {
3114		sel = rdev->desc->ops->get_voltage_sel(rdev);
3115		if (sel < 0)
3116			return sel;
3117		ret = rdev->desc->ops->list_voltage(rdev, sel);
3118	} else if (rdev->desc->ops->get_voltage) {
3119		ret = rdev->desc->ops->get_voltage(rdev);
3120	} else if (rdev->desc->ops->list_voltage) {
3121		ret = rdev->desc->ops->list_voltage(rdev, 0);
3122	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3123		ret = rdev->desc->fixed_uV;
3124	} else if (rdev->supply) {
3125		ret = _regulator_get_voltage(rdev->supply->rdev);
3126	} else {
3127		return -EINVAL;
3128	}
3129
3130	if (ret < 0)
3131		return ret;
3132	return ret - rdev->constraints->uV_offset;
3133}
3134
3135/**
3136 * regulator_get_voltage - get regulator output voltage
3137 * @regulator: regulator source
3138 *
3139 * This returns the current regulator voltage in uV.
3140 *
3141 * NOTE: If the regulator is disabled it will return the voltage value. This
3142 * function should not be used to determine regulator state.
3143 */
3144int regulator_get_voltage(struct regulator *regulator)
3145{
3146	int ret;
3147
3148	regulator_lock_supply(regulator->rdev);
3149
3150	ret = _regulator_get_voltage(regulator->rdev);
3151
3152	regulator_unlock_supply(regulator->rdev);
3153
3154	return ret;
3155}
3156EXPORT_SYMBOL_GPL(regulator_get_voltage);
3157
3158/**
3159 * regulator_set_current_limit - set regulator output current limit
3160 * @regulator: regulator source
3161 * @min_uA: Minimum supported current in uA
3162 * @max_uA: Maximum supported current in uA
3163 *
3164 * Sets current sink to the desired output current. This can be set during
3165 * any regulator state. IOW, regulator can be disabled or enabled.
3166 *
3167 * If the regulator is enabled then the current will change to the new value
3168 * immediately otherwise if the regulator is disabled the regulator will
3169 * output at the new current when enabled.
3170 *
3171 * NOTE: Regulator system constraints must be set for this regulator before
3172 * calling this function otherwise this call will fail.
3173 */
3174int regulator_set_current_limit(struct regulator *regulator,
3175			       int min_uA, int max_uA)
3176{
3177	struct regulator_dev *rdev = regulator->rdev;
3178	int ret;
3179
3180	mutex_lock(&rdev->mutex);
3181
3182	/* sanity check */
3183	if (!rdev->desc->ops->set_current_limit) {
3184		ret = -EINVAL;
3185		goto out;
3186	}
3187
3188	/* constraints check */
3189	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3190	if (ret < 0)
3191		goto out;
3192
3193	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3194out:
3195	mutex_unlock(&rdev->mutex);
3196	return ret;
3197}
3198EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3199
3200static int _regulator_get_current_limit(struct regulator_dev *rdev)
3201{
3202	int ret;
3203
3204	mutex_lock(&rdev->mutex);
3205
3206	/* sanity check */
3207	if (!rdev->desc->ops->get_current_limit) {
3208		ret = -EINVAL;
3209		goto out;
3210	}
3211
3212	ret = rdev->desc->ops->get_current_limit(rdev);
3213out:
3214	mutex_unlock(&rdev->mutex);
3215	return ret;
3216}
3217
3218/**
3219 * regulator_get_current_limit - get regulator output current
3220 * @regulator: regulator source
3221 *
3222 * This returns the current supplied by the specified current sink in uA.
3223 *
3224 * NOTE: If the regulator is disabled it will return the current value. This
3225 * function should not be used to determine regulator state.
3226 */
3227int regulator_get_current_limit(struct regulator *regulator)
3228{
3229	return _regulator_get_current_limit(regulator->rdev);
3230}
3231EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3232
3233/**
3234 * regulator_set_mode - set regulator operating mode
3235 * @regulator: regulator source
3236 * @mode: operating mode - one of the REGULATOR_MODE constants
3237 *
3238 * Set regulator operating mode to increase regulator efficiency or improve
3239 * regulation performance.
3240 *
3241 * NOTE: Regulator system constraints must be set for this regulator before
3242 * calling this function otherwise this call will fail.
3243 */
3244int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3245{
3246	struct regulator_dev *rdev = regulator->rdev;
3247	int ret;
3248	int regulator_curr_mode;
3249
3250	mutex_lock(&rdev->mutex);
3251
3252	/* sanity check */
3253	if (!rdev->desc->ops->set_mode) {
3254		ret = -EINVAL;
3255		goto out;
3256	}
3257
3258	/* return if the same mode is requested */
3259	if (rdev->desc->ops->get_mode) {
3260		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3261		if (regulator_curr_mode == mode) {
3262			ret = 0;
3263			goto out;
3264		}
3265	}
3266
3267	/* constraints check */
3268	ret = regulator_mode_constrain(rdev, &mode);
3269	if (ret < 0)
3270		goto out;
3271
3272	ret = rdev->desc->ops->set_mode(rdev, mode);
3273out:
3274	mutex_unlock(&rdev->mutex);
3275	return ret;
3276}
3277EXPORT_SYMBOL_GPL(regulator_set_mode);
3278
3279static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3280{
3281	int ret;
3282
3283	mutex_lock(&rdev->mutex);
3284
3285	/* sanity check */
3286	if (!rdev->desc->ops->get_mode) {
3287		ret = -EINVAL;
3288		goto out;
3289	}
3290
3291	ret = rdev->desc->ops->get_mode(rdev);
3292out:
3293	mutex_unlock(&rdev->mutex);
3294	return ret;
3295}
3296
3297/**
3298 * regulator_get_mode - get regulator operating mode
3299 * @regulator: regulator source
3300 *
3301 * Get the current regulator operating mode.
3302 */
3303unsigned int regulator_get_mode(struct regulator *regulator)
3304{
3305	return _regulator_get_mode(regulator->rdev);
3306}
3307EXPORT_SYMBOL_GPL(regulator_get_mode);
3308
3309/**
3310 * regulator_set_load - set regulator load
3311 * @regulator: regulator source
3312 * @uA_load: load current
3313 *
3314 * Notifies the regulator core of a new device load. This is then used by
3315 * DRMS (if enabled by constraints) to set the most efficient regulator
3316 * operating mode for the new regulator loading.
3317 *
3318 * Consumer devices notify their supply regulator of the maximum power
3319 * they will require (can be taken from device datasheet in the power
3320 * consumption tables) when they change operational status and hence power
3321 * state. Examples of operational state changes that can affect power
3322 * consumption are :-
3323 *
3324 *    o Device is opened / closed.
3325 *    o Device I/O is about to begin or has just finished.
3326 *    o Device is idling in between work.
3327 *
3328 * This information is also exported via sysfs to userspace.
3329 *
3330 * DRMS will sum the total requested load on the regulator and change
3331 * to the most efficient operating mode if platform constraints allow.
3332 *
3333 * On error a negative errno is returned.
3334 */
3335int regulator_set_load(struct regulator *regulator, int uA_load)
3336{
3337	struct regulator_dev *rdev = regulator->rdev;
3338	int ret;
3339
3340	mutex_lock(&rdev->mutex);
3341	regulator->uA_load = uA_load;
3342	ret = drms_uA_update(rdev);
3343	mutex_unlock(&rdev->mutex);
3344
3345	return ret;
3346}
3347EXPORT_SYMBOL_GPL(regulator_set_load);
3348
3349/**
3350 * regulator_allow_bypass - allow the regulator to go into bypass mode
3351 *
3352 * @regulator: Regulator to configure
3353 * @enable: enable or disable bypass mode
3354 *
3355 * Allow the regulator to go into bypass mode if all other consumers
3356 * for the regulator also enable bypass mode and the machine
3357 * constraints allow this.  Bypass mode means that the regulator is
3358 * simply passing the input directly to the output with no regulation.
3359 */
3360int regulator_allow_bypass(struct regulator *regulator, bool enable)
3361{
3362	struct regulator_dev *rdev = regulator->rdev;
3363	int ret = 0;
3364
3365	if (!rdev->desc->ops->set_bypass)
3366		return 0;
3367
3368	if (rdev->constraints &&
3369	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3370		return 0;
 
 
 
 
 
 
 
3371
3372	mutex_lock(&rdev->mutex);
 
3373
3374	if (enable && !regulator->bypass) {
3375		rdev->bypass_count++;
 
 
 
3376
3377		if (rdev->bypass_count == rdev->open_count) {
3378			ret = rdev->desc->ops->set_bypass(rdev, enable);
3379			if (ret != 0)
3380				rdev->bypass_count--;
3381		}
3382
3383	} else if (!enable && regulator->bypass) {
3384		rdev->bypass_count--;
 
 
 
 
3385
3386		if (rdev->bypass_count != rdev->open_count) {
3387			ret = rdev->desc->ops->set_bypass(rdev, enable);
3388			if (ret != 0)
3389				rdev->bypass_count++;
3390		}
 
3391	}
3392
3393	if (ret == 0)
3394		regulator->bypass = enable;
 
 
 
 
 
 
 
 
 
 
 
3395
 
 
 
 
 
 
 
3396	mutex_unlock(&rdev->mutex);
3397
3398	return ret;
3399}
3400EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3401
3402/**
3403 * regulator_register_notifier - register regulator event notifier
3404 * @regulator: regulator source
3405 * @nb: notifier block
3406 *
3407 * Register notifier block to receive regulator events.
3408 */
3409int regulator_register_notifier(struct regulator *regulator,
3410			      struct notifier_block *nb)
3411{
3412	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3413						nb);
3414}
3415EXPORT_SYMBOL_GPL(regulator_register_notifier);
3416
3417/**
3418 * regulator_unregister_notifier - unregister regulator event notifier
3419 * @regulator: regulator source
3420 * @nb: notifier block
3421 *
3422 * Unregister regulator event notifier block.
3423 */
3424int regulator_unregister_notifier(struct regulator *regulator,
3425				struct notifier_block *nb)
3426{
3427	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3428						  nb);
3429}
3430EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3431
3432/* notify regulator consumers and downstream regulator consumers.
3433 * Note mutex must be held by caller.
3434 */
3435static int _notifier_call_chain(struct regulator_dev *rdev,
3436				  unsigned long event, void *data)
3437{
3438	/* call rdev chain first */
3439	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3440}
3441
3442/**
3443 * regulator_bulk_get - get multiple regulator consumers
3444 *
3445 * @dev:           Device to supply
3446 * @num_consumers: Number of consumers to register
3447 * @consumers:     Configuration of consumers; clients are stored here.
3448 *
3449 * @return 0 on success, an errno on failure.
3450 *
3451 * This helper function allows drivers to get several regulator
3452 * consumers in one operation.  If any of the regulators cannot be
3453 * acquired then any regulators that were allocated will be freed
3454 * before returning to the caller.
3455 */
3456int regulator_bulk_get(struct device *dev, int num_consumers,
3457		       struct regulator_bulk_data *consumers)
3458{
3459	int i;
3460	int ret;
3461
3462	for (i = 0; i < num_consumers; i++)
3463		consumers[i].consumer = NULL;
3464
3465	for (i = 0; i < num_consumers; i++) {
3466		consumers[i].consumer = _regulator_get(dev,
3467						       consumers[i].supply,
3468						       false,
3469						       !consumers[i].optional);
3470		if (IS_ERR(consumers[i].consumer)) {
3471			ret = PTR_ERR(consumers[i].consumer);
3472			dev_err(dev, "Failed to get supply '%s': %d\n",
3473				consumers[i].supply, ret);
3474			consumers[i].consumer = NULL;
3475			goto err;
3476		}
3477	}
3478
3479	return 0;
3480
3481err:
3482	while (--i >= 0)
3483		regulator_put(consumers[i].consumer);
3484
3485	return ret;
3486}
3487EXPORT_SYMBOL_GPL(regulator_bulk_get);
3488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3489static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3490{
3491	struct regulator_bulk_data *bulk = data;
3492
3493	bulk->ret = regulator_enable(bulk->consumer);
3494}
3495
3496/**
3497 * regulator_bulk_enable - enable multiple regulator consumers
3498 *
3499 * @num_consumers: Number of consumers
3500 * @consumers:     Consumer data; clients are stored here.
3501 * @return         0 on success, an errno on failure
3502 *
3503 * This convenience API allows consumers to enable multiple regulator
3504 * clients in a single API call.  If any consumers cannot be enabled
3505 * then any others that were enabled will be disabled again prior to
3506 * return.
3507 */
3508int regulator_bulk_enable(int num_consumers,
3509			  struct regulator_bulk_data *consumers)
3510{
3511	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3512	int i;
3513	int ret = 0;
3514
3515	for (i = 0; i < num_consumers; i++) {
3516		if (consumers[i].consumer->always_on)
3517			consumers[i].ret = 0;
3518		else
3519			async_schedule_domain(regulator_bulk_enable_async,
3520					      &consumers[i], &async_domain);
3521	}
3522
3523	async_synchronize_full_domain(&async_domain);
3524
3525	/* If any consumer failed we need to unwind any that succeeded */
3526	for (i = 0; i < num_consumers; i++) {
3527		if (consumers[i].ret != 0) {
3528			ret = consumers[i].ret;
3529			goto err;
3530		}
3531	}
3532
3533	return 0;
3534
3535err:
3536	for (i = 0; i < num_consumers; i++) {
3537		if (consumers[i].ret < 0)
3538			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3539			       consumers[i].ret);
3540		else
3541			regulator_disable(consumers[i].consumer);
3542	}
3543
3544	return ret;
3545}
3546EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3547
3548/**
3549 * regulator_bulk_disable - disable multiple regulator consumers
3550 *
3551 * @num_consumers: Number of consumers
3552 * @consumers:     Consumer data; clients are stored here.
3553 * @return         0 on success, an errno on failure
3554 *
3555 * This convenience API allows consumers to disable multiple regulator
3556 * clients in a single API call.  If any consumers cannot be disabled
3557 * then any others that were disabled will be enabled again prior to
3558 * return.
3559 */
3560int regulator_bulk_disable(int num_consumers,
3561			   struct regulator_bulk_data *consumers)
3562{
3563	int i;
3564	int ret, r;
3565
3566	for (i = num_consumers - 1; i >= 0; --i) {
3567		ret = regulator_disable(consumers[i].consumer);
3568		if (ret != 0)
3569			goto err;
3570	}
3571
3572	return 0;
3573
3574err:
3575	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3576	for (++i; i < num_consumers; ++i) {
3577		r = regulator_enable(consumers[i].consumer);
3578		if (r != 0)
3579			pr_err("Failed to reename %s: %d\n",
3580			       consumers[i].supply, r);
3581	}
3582
3583	return ret;
3584}
3585EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3586
3587/**
3588 * regulator_bulk_force_disable - force disable multiple regulator consumers
3589 *
3590 * @num_consumers: Number of consumers
3591 * @consumers:     Consumer data; clients are stored here.
3592 * @return         0 on success, an errno on failure
3593 *
3594 * This convenience API allows consumers to forcibly disable multiple regulator
3595 * clients in a single API call.
3596 * NOTE: This should be used for situations when device damage will
3597 * likely occur if the regulators are not disabled (e.g. over temp).
3598 * Although regulator_force_disable function call for some consumers can
3599 * return error numbers, the function is called for all consumers.
3600 */
3601int regulator_bulk_force_disable(int num_consumers,
3602			   struct regulator_bulk_data *consumers)
3603{
3604	int i;
3605	int ret;
3606
3607	for (i = 0; i < num_consumers; i++)
3608		consumers[i].ret =
3609			    regulator_force_disable(consumers[i].consumer);
3610
3611	for (i = 0; i < num_consumers; i++) {
3612		if (consumers[i].ret != 0) {
3613			ret = consumers[i].ret;
3614			goto out;
3615		}
3616	}
3617
3618	return 0;
3619out:
3620	return ret;
3621}
3622EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3623
3624/**
3625 * regulator_bulk_free - free multiple regulator consumers
3626 *
3627 * @num_consumers: Number of consumers
3628 * @consumers:     Consumer data; clients are stored here.
3629 *
3630 * This convenience API allows consumers to free multiple regulator
3631 * clients in a single API call.
3632 */
3633void regulator_bulk_free(int num_consumers,
3634			 struct regulator_bulk_data *consumers)
3635{
3636	int i;
3637
3638	for (i = 0; i < num_consumers; i++) {
3639		regulator_put(consumers[i].consumer);
3640		consumers[i].consumer = NULL;
3641	}
3642}
3643EXPORT_SYMBOL_GPL(regulator_bulk_free);
3644
3645/**
3646 * regulator_notifier_call_chain - call regulator event notifier
3647 * @rdev: regulator source
3648 * @event: notifier block
3649 * @data: callback-specific data.
3650 *
3651 * Called by regulator drivers to notify clients a regulator event has
3652 * occurred. We also notify regulator clients downstream.
3653 * Note lock must be held by caller.
3654 */
3655int regulator_notifier_call_chain(struct regulator_dev *rdev,
3656				  unsigned long event, void *data)
3657{
3658	lockdep_assert_held_once(&rdev->mutex);
3659
3660	_notifier_call_chain(rdev, event, data);
3661	return NOTIFY_DONE;
3662
3663}
3664EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3665
3666/**
3667 * regulator_mode_to_status - convert a regulator mode into a status
3668 *
3669 * @mode: Mode to convert
3670 *
3671 * Convert a regulator mode into a status.
3672 */
3673int regulator_mode_to_status(unsigned int mode)
3674{
3675	switch (mode) {
3676	case REGULATOR_MODE_FAST:
3677		return REGULATOR_STATUS_FAST;
3678	case REGULATOR_MODE_NORMAL:
3679		return REGULATOR_STATUS_NORMAL;
3680	case REGULATOR_MODE_IDLE:
3681		return REGULATOR_STATUS_IDLE;
3682	case REGULATOR_MODE_STANDBY:
3683		return REGULATOR_STATUS_STANDBY;
3684	default:
3685		return REGULATOR_STATUS_UNDEFINED;
3686	}
3687}
3688EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3689
3690static struct attribute *regulator_dev_attrs[] = {
3691	&dev_attr_name.attr,
3692	&dev_attr_num_users.attr,
3693	&dev_attr_type.attr,
3694	&dev_attr_microvolts.attr,
3695	&dev_attr_microamps.attr,
3696	&dev_attr_opmode.attr,
3697	&dev_attr_state.attr,
3698	&dev_attr_status.attr,
3699	&dev_attr_bypass.attr,
3700	&dev_attr_requested_microamps.attr,
3701	&dev_attr_min_microvolts.attr,
3702	&dev_attr_max_microvolts.attr,
3703	&dev_attr_min_microamps.attr,
3704	&dev_attr_max_microamps.attr,
3705	&dev_attr_suspend_standby_state.attr,
3706	&dev_attr_suspend_mem_state.attr,
3707	&dev_attr_suspend_disk_state.attr,
3708	&dev_attr_suspend_standby_microvolts.attr,
3709	&dev_attr_suspend_mem_microvolts.attr,
3710	&dev_attr_suspend_disk_microvolts.attr,
3711	&dev_attr_suspend_standby_mode.attr,
3712	&dev_attr_suspend_mem_mode.attr,
3713	&dev_attr_suspend_disk_mode.attr,
3714	NULL
3715};
3716
3717/*
3718 * To avoid cluttering sysfs (and memory) with useless state, only
3719 * create attributes that can be meaningfully displayed.
3720 */
3721static umode_t regulator_attr_is_visible(struct kobject *kobj,
3722					 struct attribute *attr, int idx)
3723{
3724	struct device *dev = kobj_to_dev(kobj);
3725	struct regulator_dev *rdev = dev_to_rdev(dev);
3726	const struct regulator_ops *ops = rdev->desc->ops;
3727	umode_t mode = attr->mode;
3728
3729	/* these three are always present */
3730	if (attr == &dev_attr_name.attr ||
3731	    attr == &dev_attr_num_users.attr ||
3732	    attr == &dev_attr_type.attr)
3733		return mode;
3734
3735	/* some attributes need specific methods to be displayed */
3736	if (attr == &dev_attr_microvolts.attr) {
3737		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3738		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3739		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3740		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3741			return mode;
3742		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3743	}
3744
3745	if (attr == &dev_attr_microamps.attr)
3746		return ops->get_current_limit ? mode : 0;
3747
3748	if (attr == &dev_attr_opmode.attr)
3749		return ops->get_mode ? mode : 0;
3750
3751	if (attr == &dev_attr_state.attr)
3752		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3753
3754	if (attr == &dev_attr_status.attr)
3755		return ops->get_status ? mode : 0;
3756
3757	if (attr == &dev_attr_bypass.attr)
3758		return ops->get_bypass ? mode : 0;
3759
3760	/* some attributes are type-specific */
3761	if (attr == &dev_attr_requested_microamps.attr)
3762		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
 
 
 
 
 
 
 
 
 
 
3763
3764	/* constraints need specific supporting methods */
3765	if (attr == &dev_attr_min_microvolts.attr ||
3766	    attr == &dev_attr_max_microvolts.attr)
3767		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3768
3769	if (attr == &dev_attr_min_microamps.attr ||
3770	    attr == &dev_attr_max_microamps.attr)
3771		return ops->set_current_limit ? mode : 0;
3772
3773	if (attr == &dev_attr_suspend_standby_state.attr ||
3774	    attr == &dev_attr_suspend_mem_state.attr ||
3775	    attr == &dev_attr_suspend_disk_state.attr)
3776		return mode;
3777
3778	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3779	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3780	    attr == &dev_attr_suspend_disk_microvolts.attr)
3781		return ops->set_suspend_voltage ? mode : 0;
3782
3783	if (attr == &dev_attr_suspend_standby_mode.attr ||
3784	    attr == &dev_attr_suspend_mem_mode.attr ||
3785	    attr == &dev_attr_suspend_disk_mode.attr)
3786		return ops->set_suspend_mode ? mode : 0;
3787
3788	return mode;
3789}
3790
3791static const struct attribute_group regulator_dev_group = {
3792	.attrs = regulator_dev_attrs,
3793	.is_visible = regulator_attr_is_visible,
3794};
3795
3796static const struct attribute_group *regulator_dev_groups[] = {
3797	&regulator_dev_group,
3798	NULL
3799};
 
 
 
 
 
3800
3801static void regulator_dev_release(struct device *dev)
3802{
3803	struct regulator_dev *rdev = dev_get_drvdata(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3804
3805	kfree(rdev->constraints);
3806	of_node_put(rdev->dev.of_node);
3807	kfree(rdev);
3808}
3809
3810static struct class regulator_class = {
3811	.name = "regulator",
3812	.dev_release = regulator_dev_release,
3813	.dev_groups = regulator_dev_groups,
3814};
3815
3816static void rdev_init_debugfs(struct regulator_dev *rdev)
3817{
3818	struct device *parent = rdev->dev.parent;
3819	const char *rname = rdev_get_name(rdev);
3820	char name[NAME_MAX];
3821
3822	/* Avoid duplicate debugfs directory names */
3823	if (parent && rname == rdev->desc->name) {
3824		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3825			 rname);
3826		rname = name;
3827	}
3828
3829	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3830	if (!rdev->debugfs) {
3831		rdev_warn(rdev, "Failed to create debugfs directory\n");
3832		return;
3833	}
3834
3835	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3836			   &rdev->use_count);
3837	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3838			   &rdev->open_count);
3839	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3840			   &rdev->bypass_count);
3841}
3842
3843/**
3844 * regulator_register - register regulator
3845 * @regulator_desc: regulator to register
3846 * @cfg: runtime configuration for regulator
3847 *
3848 * Called by regulator drivers to register a regulator.
3849 * Returns a valid pointer to struct regulator_dev on success
3850 * or an ERR_PTR() on error.
3851 */
3852struct regulator_dev *
3853regulator_register(const struct regulator_desc *regulator_desc,
3854		   const struct regulator_config *cfg)
3855{
3856	const struct regulation_constraints *constraints = NULL;
3857	const struct regulator_init_data *init_data;
3858	struct regulator_config *config = NULL;
3859	static atomic_t regulator_no = ATOMIC_INIT(-1);
3860	struct regulator_dev *rdev;
3861	struct device *dev;
3862	int ret, i;
 
3863
3864	if (regulator_desc == NULL || cfg == NULL)
3865		return ERR_PTR(-EINVAL);
3866
3867	dev = cfg->dev;
3868	WARN_ON(!dev);
3869
3870	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3871		return ERR_PTR(-EINVAL);
3872
3873	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3874	    regulator_desc->type != REGULATOR_CURRENT)
3875		return ERR_PTR(-EINVAL);
3876
3877	/* Only one of each should be implemented */
3878	WARN_ON(regulator_desc->ops->get_voltage &&
3879		regulator_desc->ops->get_voltage_sel);
3880	WARN_ON(regulator_desc->ops->set_voltage &&
3881		regulator_desc->ops->set_voltage_sel);
3882
3883	/* If we're using selectors we must implement list_voltage. */
3884	if (regulator_desc->ops->get_voltage_sel &&
3885	    !regulator_desc->ops->list_voltage) {
3886		return ERR_PTR(-EINVAL);
3887	}
3888	if (regulator_desc->ops->set_voltage_sel &&
3889	    !regulator_desc->ops->list_voltage) {
3890		return ERR_PTR(-EINVAL);
3891	}
3892
 
 
3893	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3894	if (rdev == NULL)
3895		return ERR_PTR(-ENOMEM);
3896
3897	/*
3898	 * Duplicate the config so the driver could override it after
3899	 * parsing init data.
3900	 */
3901	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3902	if (config == NULL) {
3903		kfree(rdev);
3904		return ERR_PTR(-ENOMEM);
3905	}
3906
3907	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3908					       &rdev->dev.of_node);
3909	if (!init_data) {
3910		init_data = config->init_data;
3911		rdev->dev.of_node = of_node_get(config->of_node);
3912	}
3913
3914	mutex_lock(&regulator_list_mutex);
3915
3916	mutex_init(&rdev->mutex);
3917	rdev->reg_data = config->driver_data;
3918	rdev->owner = regulator_desc->owner;
3919	rdev->desc = regulator_desc;
3920	if (config->regmap)
3921		rdev->regmap = config->regmap;
3922	else if (dev_get_regmap(dev, NULL))
3923		rdev->regmap = dev_get_regmap(dev, NULL);
3924	else if (dev->parent)
3925		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3926	INIT_LIST_HEAD(&rdev->consumer_list);
3927	INIT_LIST_HEAD(&rdev->list);
3928	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3929	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3930
3931	/* preform any regulator specific init */
3932	if (init_data && init_data->regulator_init) {
3933		ret = init_data->regulator_init(rdev->reg_data);
3934		if (ret < 0)
3935			goto clean;
3936	}
3937
3938	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3939	    gpio_is_valid(config->ena_gpio)) {
3940		ret = regulator_ena_gpio_request(rdev, config);
3941		if (ret != 0) {
3942			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3943				 config->ena_gpio, ret);
3944			goto clean;
3945		}
3946	}
3947
3948	/* register with sysfs */
3949	rdev->dev.class = &regulator_class;
 
3950	rdev->dev.parent = dev;
3951	dev_set_name(&rdev->dev, "regulator.%lu",
3952		    (unsigned long) atomic_inc_return(&regulator_no));
3953	ret = device_register(&rdev->dev);
3954	if (ret != 0) {
3955		put_device(&rdev->dev);
3956		goto wash;
3957	}
3958
3959	dev_set_drvdata(&rdev->dev, rdev);
3960
3961	/* set regulator constraints */
3962	if (init_data)
3963		constraints = &init_data->constraints;
3964
3965	ret = set_machine_constraints(rdev, constraints);
3966	if (ret < 0)
3967		goto scrub;
3968
 
 
 
 
 
3969	if (init_data && init_data->supply_regulator)
3970		rdev->supply_name = init_data->supply_regulator;
3971	else if (regulator_desc->supply_name)
3972		rdev->supply_name = regulator_desc->supply_name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3973
3974	/* add consumers devices */
3975	if (init_data) {
3976		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3977			ret = set_consumer_device_supply(rdev,
3978				init_data->consumer_supplies[i].dev_name,
3979				init_data->consumer_supplies[i].supply);
3980			if (ret < 0) {
3981				dev_err(dev, "Failed to set supply %s\n",
3982					init_data->consumer_supplies[i].supply);
3983				goto unset_supplies;
3984			}
3985		}
3986	}
3987
 
 
3988	rdev_init_debugfs(rdev);
3989out:
3990	mutex_unlock(&regulator_list_mutex);
3991	kfree(config);
3992	return rdev;
3993
3994unset_supplies:
3995	unset_regulator_supplies(rdev);
3996
3997scrub:
3998	regulator_ena_gpio_free(rdev);
 
 
3999	device_unregister(&rdev->dev);
4000	/* device core frees rdev */
4001	rdev = ERR_PTR(ret);
4002	goto out;
4003
4004wash:
4005	regulator_ena_gpio_free(rdev);
4006clean:
4007	kfree(rdev);
4008	rdev = ERR_PTR(ret);
4009	goto out;
4010}
4011EXPORT_SYMBOL_GPL(regulator_register);
4012
4013/**
4014 * regulator_unregister - unregister regulator
4015 * @rdev: regulator to unregister
4016 *
4017 * Called by regulator drivers to unregister a regulator.
4018 */
4019void regulator_unregister(struct regulator_dev *rdev)
4020{
4021	if (rdev == NULL)
4022		return;
4023
4024	if (rdev->supply) {
4025		while (rdev->use_count--)
4026			regulator_disable(rdev->supply);
4027		regulator_put(rdev->supply);
4028	}
4029	mutex_lock(&regulator_list_mutex);
4030	debugfs_remove_recursive(rdev->debugfs);
4031	flush_work(&rdev->disable_work.work);
4032	WARN_ON(rdev->open_count);
4033	unset_regulator_supplies(rdev);
4034	list_del(&rdev->list);
4035	mutex_unlock(&regulator_list_mutex);
4036	regulator_ena_gpio_free(rdev);
4037	device_unregister(&rdev->dev);
 
4038}
4039EXPORT_SYMBOL_GPL(regulator_unregister);
4040
4041static int _regulator_suspend_prepare(struct device *dev, void *data)
4042{
4043	struct regulator_dev *rdev = dev_to_rdev(dev);
4044	const suspend_state_t *state = data;
4045	int ret;
4046
4047	mutex_lock(&rdev->mutex);
4048	ret = suspend_prepare(rdev, *state);
4049	mutex_unlock(&rdev->mutex);
4050
4051	return ret;
4052}
4053
4054/**
4055 * regulator_suspend_prepare - prepare regulators for system wide suspend
4056 * @state: system suspend state
4057 *
4058 * Configure each regulator with it's suspend operating parameters for state.
4059 * This will usually be called by machine suspend code prior to supending.
4060 */
4061int regulator_suspend_prepare(suspend_state_t state)
4062{
 
 
 
4063	/* ON is handled by regulator active state */
4064	if (state == PM_SUSPEND_ON)
4065		return -EINVAL;
4066
4067	return class_for_each_device(&regulator_class, NULL, &state,
4068				     _regulator_suspend_prepare);
4069}
4070EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4071
4072static int _regulator_suspend_finish(struct device *dev, void *data)
4073{
4074	struct regulator_dev *rdev = dev_to_rdev(dev);
4075	int ret;
4076
4077	mutex_lock(&rdev->mutex);
4078	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4079		if (!_regulator_is_enabled(rdev)) {
4080			ret = _regulator_do_enable(rdev);
4081			if (ret)
4082				dev_err(dev,
4083					"Failed to resume regulator %d\n",
4084					ret);
4085		}
4086	} else {
4087		if (!have_full_constraints())
4088			goto unlock;
4089		if (!_regulator_is_enabled(rdev))
4090			goto unlock;
4091
4092		ret = _regulator_do_disable(rdev);
4093		if (ret)
4094			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4095	}
4096unlock:
4097	mutex_unlock(&rdev->mutex);
4098
4099	/* Keep processing regulators in spite of any errors */
4100	return 0;
4101}
 
4102
4103/**
4104 * regulator_suspend_finish - resume regulators from system wide suspend
4105 *
4106 * Turn on regulators that might be turned off by regulator_suspend_prepare
4107 * and that should be turned on according to the regulators properties.
4108 */
4109int regulator_suspend_finish(void)
4110{
4111	return class_for_each_device(&regulator_class, NULL, NULL,
4112				     _regulator_suspend_finish);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4113}
4114EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4115
4116/**
4117 * regulator_has_full_constraints - the system has fully specified constraints
4118 *
4119 * Calling this function will cause the regulator API to disable all
4120 * regulators which have a zero use count and don't have an always_on
4121 * constraint in a late_initcall.
4122 *
4123 * The intention is that this will become the default behaviour in a
4124 * future kernel release so users are encouraged to use this facility
4125 * now.
4126 */
4127void regulator_has_full_constraints(void)
4128{
4129	has_full_constraints = 1;
4130}
4131EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4132
4133/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4134 * rdev_get_drvdata - get rdev regulator driver data
4135 * @rdev: regulator
4136 *
4137 * Get rdev regulator driver private data. This call can be used in the
4138 * regulator driver context.
4139 */
4140void *rdev_get_drvdata(struct regulator_dev *rdev)
4141{
4142	return rdev->reg_data;
4143}
4144EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4145
4146/**
4147 * regulator_get_drvdata - get regulator driver data
4148 * @regulator: regulator
4149 *
4150 * Get regulator driver private data. This call can be used in the consumer
4151 * driver context when non API regulator specific functions need to be called.
4152 */
4153void *regulator_get_drvdata(struct regulator *regulator)
4154{
4155	return regulator->rdev->reg_data;
4156}
4157EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4158
4159/**
4160 * regulator_set_drvdata - set regulator driver data
4161 * @regulator: regulator
4162 * @data: data
4163 */
4164void regulator_set_drvdata(struct regulator *regulator, void *data)
4165{
4166	regulator->rdev->reg_data = data;
4167}
4168EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4169
4170/**
4171 * regulator_get_id - get regulator ID
4172 * @rdev: regulator
4173 */
4174int rdev_get_id(struct regulator_dev *rdev)
4175{
4176	return rdev->desc->id;
4177}
4178EXPORT_SYMBOL_GPL(rdev_get_id);
4179
4180struct device *rdev_get_dev(struct regulator_dev *rdev)
4181{
4182	return &rdev->dev;
4183}
4184EXPORT_SYMBOL_GPL(rdev_get_dev);
4185
4186void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4187{
4188	return reg_init_data->driver_data;
4189}
4190EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4191
4192#ifdef CONFIG_DEBUG_FS
4193static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4194				    size_t count, loff_t *ppos)
4195{
4196	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4197	ssize_t len, ret = 0;
4198	struct regulator_map *map;
4199
4200	if (!buf)
4201		return -ENOMEM;
4202
4203	list_for_each_entry(map, &regulator_map_list, list) {
4204		len = snprintf(buf + ret, PAGE_SIZE - ret,
4205			       "%s -> %s.%s\n",
4206			       rdev_get_name(map->regulator), map->dev_name,
4207			       map->supply);
4208		if (len >= 0)
4209			ret += len;
4210		if (ret > PAGE_SIZE) {
4211			ret = PAGE_SIZE;
4212			break;
4213		}
4214	}
4215
4216	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4217
4218	kfree(buf);
4219
4220	return ret;
4221}
4222#endif
4223
4224static const struct file_operations supply_map_fops = {
4225#ifdef CONFIG_DEBUG_FS
4226	.read = supply_map_read_file,
4227	.llseek = default_llseek,
4228#endif
4229};
4230
4231#ifdef CONFIG_DEBUG_FS
4232struct summary_data {
4233	struct seq_file *s;
4234	struct regulator_dev *parent;
4235	int level;
4236};
4237
4238static void regulator_summary_show_subtree(struct seq_file *s,
4239					   struct regulator_dev *rdev,
4240					   int level);
4241
4242static int regulator_summary_show_children(struct device *dev, void *data)
4243{
4244	struct regulator_dev *rdev = dev_to_rdev(dev);
4245	struct summary_data *summary_data = data;
4246
4247	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4248		regulator_summary_show_subtree(summary_data->s, rdev,
4249					       summary_data->level + 1);
4250
4251	return 0;
4252}
4253
4254static void regulator_summary_show_subtree(struct seq_file *s,
4255					   struct regulator_dev *rdev,
4256					   int level)
4257{
4258	struct regulation_constraints *c;
4259	struct regulator *consumer;
4260	struct summary_data summary_data;
4261
4262	if (!rdev)
4263		return;
4264
4265	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4266		   level * 3 + 1, "",
4267		   30 - level * 3, rdev_get_name(rdev),
4268		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4269
4270	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4271	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4272
4273	c = rdev->constraints;
4274	if (c) {
4275		switch (rdev->desc->type) {
4276		case REGULATOR_VOLTAGE:
4277			seq_printf(s, "%5dmV %5dmV ",
4278				   c->min_uV / 1000, c->max_uV / 1000);
4279			break;
4280		case REGULATOR_CURRENT:
4281			seq_printf(s, "%5dmA %5dmA ",
4282				   c->min_uA / 1000, c->max_uA / 1000);
4283			break;
4284		}
4285	}
4286
4287	seq_puts(s, "\n");
4288
4289	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4290		if (consumer->dev->class == &regulator_class)
4291			continue;
4292
4293		seq_printf(s, "%*s%-*s ",
4294			   (level + 1) * 3 + 1, "",
4295			   30 - (level + 1) * 3, dev_name(consumer->dev));
4296
4297		switch (rdev->desc->type) {
4298		case REGULATOR_VOLTAGE:
4299			seq_printf(s, "%37dmV %5dmV",
4300				   consumer->min_uV / 1000,
4301				   consumer->max_uV / 1000);
4302			break;
4303		case REGULATOR_CURRENT:
4304			break;
4305		}
4306
4307		seq_puts(s, "\n");
4308	}
4309
4310	summary_data.s = s;
4311	summary_data.level = level;
4312	summary_data.parent = rdev;
4313
4314	class_for_each_device(&regulator_class, NULL, &summary_data,
4315			      regulator_summary_show_children);
4316}
4317
4318static int regulator_summary_show_roots(struct device *dev, void *data)
4319{
4320	struct regulator_dev *rdev = dev_to_rdev(dev);
4321	struct seq_file *s = data;
4322
4323	if (!rdev->supply)
4324		regulator_summary_show_subtree(s, rdev, 0);
4325
4326	return 0;
4327}
4328
4329static int regulator_summary_show(struct seq_file *s, void *data)
4330{
4331	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4332	seq_puts(s, "-------------------------------------------------------------------------------\n");
4333
4334	class_for_each_device(&regulator_class, NULL, s,
4335			      regulator_summary_show_roots);
4336
4337	return 0;
4338}
4339
4340static int regulator_summary_open(struct inode *inode, struct file *file)
4341{
4342	return single_open(file, regulator_summary_show, inode->i_private);
4343}
4344#endif
4345
4346static const struct file_operations regulator_summary_fops = {
4347#ifdef CONFIG_DEBUG_FS
4348	.open		= regulator_summary_open,
4349	.read		= seq_read,
4350	.llseek		= seq_lseek,
4351	.release	= single_release,
4352#endif
4353};
4354
4355static int __init regulator_init(void)
4356{
4357	int ret;
4358
4359	ret = class_register(&regulator_class);
4360
4361	debugfs_root = debugfs_create_dir("regulator", NULL);
4362	if (!debugfs_root)
4363		pr_warn("regulator: Failed to create debugfs directory\n");
4364
4365	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4366			    &supply_map_fops);
4367
4368	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4369			    NULL, &regulator_summary_fops);
4370
4371	regulator_dummy_init();
4372
4373	return ret;
4374}
4375
4376/* init early to allow our consumers to complete system booting */
4377core_initcall(regulator_init);
4378
4379static int __init regulator_late_cleanup(struct device *dev, void *data)
4380{
4381	struct regulator_dev *rdev = dev_to_rdev(dev);
4382	const struct regulator_ops *ops = rdev->desc->ops;
4383	struct regulation_constraints *c = rdev->constraints;
4384	int enabled, ret;
4385
4386	if (c && c->always_on)
4387		return 0;
4388
4389	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4390		return 0;
4391
4392	mutex_lock(&rdev->mutex);
 
 
 
 
 
 
4393
4394	if (rdev->use_count)
4395		goto unlock;
4396
4397	/* If we can't read the status assume it's on. */
4398	if (ops->is_enabled)
4399		enabled = ops->is_enabled(rdev);
4400	else
4401		enabled = 1;
4402
4403	if (!enabled)
4404		goto unlock;
4405
4406	if (have_full_constraints()) {
4407		/* We log since this may kill the system if it goes
4408		 * wrong. */
4409		rdev_info(rdev, "disabling\n");
4410		ret = _regulator_do_disable(rdev);
4411		if (ret != 0)
4412			rdev_err(rdev, "couldn't disable: %d\n", ret);
4413	} else {
4414		/* The intention is that in future we will
4415		 * assume that full constraints are provided
4416		 * so warn even if we aren't going to do
4417		 * anything here.
4418		 */
4419		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4420	}
4421
4422unlock:
4423	mutex_unlock(&rdev->mutex);
4424
4425	return 0;
4426}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4427
4428static int __init regulator_init_complete(void)
4429{
4430	/*
4431	 * Since DT doesn't provide an idiomatic mechanism for
4432	 * enabling full constraints and since it's much more natural
4433	 * with DT to provide them just assume that a DT enabled
4434	 * system has full constraints.
4435	 */
4436	if (of_have_populated_dt())
4437		has_full_constraints = true;
4438
4439	/* If we have a full configuration then disable any regulators
4440	 * we have permission to change the status for and which are
4441	 * not in use or always_on.  This is effectively the default
4442	 * for DT and ACPI as they have full constraints.
4443	 */
4444	class_for_each_device(&regulator_class, NULL, NULL,
4445			      regulator_late_cleanup);
4446
4447	return 0;
4448}
4449late_initcall_sync(regulator_init_complete);
v3.5.6
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
 
 
  26#include <linux/of.h>
  27#include <linux/regmap.h>
  28#include <linux/regulator/of_regulator.h>
  29#include <linux/regulator/consumer.h>
  30#include <linux/regulator/driver.h>
  31#include <linux/regulator/machine.h>
  32#include <linux/module.h>
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/regulator.h>
  36
  37#include "dummy.h"
 
  38
  39#define rdev_crit(rdev, fmt, ...)					\
  40	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  41#define rdev_err(rdev, fmt, ...)					\
  42	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_warn(rdev, fmt, ...)					\
  44	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_info(rdev, fmt, ...)					\
  46	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47#define rdev_dbg(rdev, fmt, ...)					\
  48	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  49
  50static DEFINE_MUTEX(regulator_list_mutex);
  51static LIST_HEAD(regulator_list);
  52static LIST_HEAD(regulator_map_list);
 
 
  53static bool has_full_constraints;
  54static bool board_wants_dummy_regulator;
  55
  56static struct dentry *debugfs_root;
  57
 
 
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator
  72 *
  73 * One for each consumer device.
  74 */
  75struct regulator {
  76	struct device *dev;
 
 
 
 
 
 
 
 
 
 
 
 
  77	struct list_head list;
  78	unsigned int always_on:1;
  79	int uA_load;
  80	int min_uV;
  81	int max_uV;
  82	char *supply_name;
  83	struct device_attribute dev_attr;
  84	struct regulator_dev *rdev;
  85	struct dentry *debugfs;
  86};
  87
  88static int _regulator_is_enabled(struct regulator_dev *rdev);
  89static int _regulator_disable(struct regulator_dev *rdev);
  90static int _regulator_get_voltage(struct regulator_dev *rdev);
  91static int _regulator_get_current_limit(struct regulator_dev *rdev);
  92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  93static void _notifier_call_chain(struct regulator_dev *rdev,
  94				  unsigned long event, void *data);
  95static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  96				     int min_uV, int max_uV);
  97static struct regulator *create_regulator(struct regulator_dev *rdev,
  98					  struct device *dev,
  99					  const char *supply_name);
 
 
 
 
 
 
 100
 101static const char *rdev_get_name(struct regulator_dev *rdev)
 102{
 103	if (rdev->constraints && rdev->constraints->name)
 104		return rdev->constraints->name;
 105	else if (rdev->desc->name)
 106		return rdev->desc->name;
 107	else
 108		return "";
 109}
 110
 111/* gets the regulator for a given consumer device */
 112static struct regulator *get_device_regulator(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113{
 114	struct regulator *regulator = NULL;
 115	struct regulator_dev *rdev;
 116
 117	mutex_lock(&regulator_list_mutex);
 118	list_for_each_entry(rdev, &regulator_list, list) {
 119		mutex_lock(&rdev->mutex);
 120		list_for_each_entry(regulator, &rdev->consumer_list, list) {
 121			if (regulator->dev == dev) {
 122				mutex_unlock(&rdev->mutex);
 123				mutex_unlock(&regulator_list_mutex);
 124				return regulator;
 125			}
 126		}
 127		mutex_unlock(&rdev->mutex);
 
 
 
 
 
 
 128	}
 129	mutex_unlock(&regulator_list_mutex);
 130	return NULL;
 131}
 132
 133/**
 134 * of_get_regulator - get a regulator device node based on supply name
 135 * @dev: Device pointer for the consumer (of regulator) device
 136 * @supply: regulator supply name
 137 *
 138 * Extract the regulator device node corresponding to the supply name.
 139 * retruns the device node corresponding to the regulator if found, else
 140 * returns NULL.
 141 */
 142static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 143{
 144	struct device_node *regnode = NULL;
 145	char prop_name[32]; /* 32 is max size of property name */
 146
 147	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 148
 149	snprintf(prop_name, 32, "%s-supply", supply);
 150	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 151
 152	if (!regnode) {
 153		dev_dbg(dev, "Looking up %s property in node %s failed",
 154				prop_name, dev->of_node->full_name);
 155		return NULL;
 156	}
 157	return regnode;
 158}
 159
 160static int _regulator_can_change_status(struct regulator_dev *rdev)
 161{
 162	if (!rdev->constraints)
 163		return 0;
 164
 165	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 166		return 1;
 167	else
 168		return 0;
 169}
 170
 171/* Platform voltage constraint check */
 172static int regulator_check_voltage(struct regulator_dev *rdev,
 173				   int *min_uV, int *max_uV)
 174{
 175	BUG_ON(*min_uV > *max_uV);
 176
 177	if (!rdev->constraints) {
 178		rdev_err(rdev, "no constraints\n");
 179		return -ENODEV;
 180	}
 181	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 182		rdev_err(rdev, "operation not allowed\n");
 183		return -EPERM;
 184	}
 185
 186	if (*max_uV > rdev->constraints->max_uV)
 187		*max_uV = rdev->constraints->max_uV;
 188	if (*min_uV < rdev->constraints->min_uV)
 189		*min_uV = rdev->constraints->min_uV;
 190
 191	if (*min_uV > *max_uV) {
 192		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 193			 *min_uV, *max_uV);
 194		return -EINVAL;
 195	}
 196
 197	return 0;
 198}
 199
 200/* Make sure we select a voltage that suits the needs of all
 201 * regulator consumers
 202 */
 203static int regulator_check_consumers(struct regulator_dev *rdev,
 204				     int *min_uV, int *max_uV)
 205{
 206	struct regulator *regulator;
 207
 208	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 209		/*
 210		 * Assume consumers that didn't say anything are OK
 211		 * with anything in the constraint range.
 212		 */
 213		if (!regulator->min_uV && !regulator->max_uV)
 214			continue;
 215
 216		if (*max_uV > regulator->max_uV)
 217			*max_uV = regulator->max_uV;
 218		if (*min_uV < regulator->min_uV)
 219			*min_uV = regulator->min_uV;
 220	}
 221
 222	if (*min_uV > *max_uV)
 
 
 223		return -EINVAL;
 
 224
 225	return 0;
 226}
 227
 228/* current constraint check */
 229static int regulator_check_current_limit(struct regulator_dev *rdev,
 230					int *min_uA, int *max_uA)
 231{
 232	BUG_ON(*min_uA > *max_uA);
 233
 234	if (!rdev->constraints) {
 235		rdev_err(rdev, "no constraints\n");
 236		return -ENODEV;
 237	}
 238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 239		rdev_err(rdev, "operation not allowed\n");
 240		return -EPERM;
 241	}
 242
 243	if (*max_uA > rdev->constraints->max_uA)
 244		*max_uA = rdev->constraints->max_uA;
 245	if (*min_uA < rdev->constraints->min_uA)
 246		*min_uA = rdev->constraints->min_uA;
 247
 248	if (*min_uA > *max_uA) {
 249		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 250			 *min_uA, *max_uA);
 251		return -EINVAL;
 252	}
 253
 254	return 0;
 255}
 256
 257/* operating mode constraint check */
 258static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 259{
 260	switch (*mode) {
 261	case REGULATOR_MODE_FAST:
 262	case REGULATOR_MODE_NORMAL:
 263	case REGULATOR_MODE_IDLE:
 264	case REGULATOR_MODE_STANDBY:
 265		break;
 266	default:
 267		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 268		return -EINVAL;
 269	}
 270
 271	if (!rdev->constraints) {
 272		rdev_err(rdev, "no constraints\n");
 273		return -ENODEV;
 274	}
 275	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 276		rdev_err(rdev, "operation not allowed\n");
 277		return -EPERM;
 278	}
 279
 280	/* The modes are bitmasks, the most power hungry modes having
 281	 * the lowest values. If the requested mode isn't supported
 282	 * try higher modes. */
 283	while (*mode) {
 284		if (rdev->constraints->valid_modes_mask & *mode)
 285			return 0;
 286		*mode /= 2;
 287	}
 288
 289	return -EINVAL;
 290}
 291
 292/* dynamic regulator mode switching constraint check */
 293static int regulator_check_drms(struct regulator_dev *rdev)
 294{
 295	if (!rdev->constraints) {
 296		rdev_err(rdev, "no constraints\n");
 297		return -ENODEV;
 298	}
 299	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 300		rdev_err(rdev, "operation not allowed\n");
 301		return -EPERM;
 302	}
 303	return 0;
 304}
 305
 306static ssize_t device_requested_uA_show(struct device *dev,
 307			     struct device_attribute *attr, char *buf)
 308{
 309	struct regulator *regulator;
 310
 311	regulator = get_device_regulator(dev);
 312	if (regulator == NULL)
 313		return 0;
 314
 315	return sprintf(buf, "%d\n", regulator->uA_load);
 316}
 317
 318static ssize_t regulator_uV_show(struct device *dev,
 319				struct device_attribute *attr, char *buf)
 320{
 321	struct regulator_dev *rdev = dev_get_drvdata(dev);
 322	ssize_t ret;
 323
 324	mutex_lock(&rdev->mutex);
 325	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 326	mutex_unlock(&rdev->mutex);
 327
 328	return ret;
 329}
 330static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 331
 332static ssize_t regulator_uA_show(struct device *dev,
 333				struct device_attribute *attr, char *buf)
 334{
 335	struct regulator_dev *rdev = dev_get_drvdata(dev);
 336
 337	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 338}
 339static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 340
 341static ssize_t regulator_name_show(struct device *dev,
 342			     struct device_attribute *attr, char *buf)
 343{
 344	struct regulator_dev *rdev = dev_get_drvdata(dev);
 345
 346	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 347}
 
 348
 349static ssize_t regulator_print_opmode(char *buf, int mode)
 350{
 351	switch (mode) {
 352	case REGULATOR_MODE_FAST:
 353		return sprintf(buf, "fast\n");
 354	case REGULATOR_MODE_NORMAL:
 355		return sprintf(buf, "normal\n");
 356	case REGULATOR_MODE_IDLE:
 357		return sprintf(buf, "idle\n");
 358	case REGULATOR_MODE_STANDBY:
 359		return sprintf(buf, "standby\n");
 360	}
 361	return sprintf(buf, "unknown\n");
 362}
 363
 364static ssize_t regulator_opmode_show(struct device *dev,
 365				    struct device_attribute *attr, char *buf)
 366{
 367	struct regulator_dev *rdev = dev_get_drvdata(dev);
 368
 369	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 370}
 371static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 372
 373static ssize_t regulator_print_state(char *buf, int state)
 374{
 375	if (state > 0)
 376		return sprintf(buf, "enabled\n");
 377	else if (state == 0)
 378		return sprintf(buf, "disabled\n");
 379	else
 380		return sprintf(buf, "unknown\n");
 381}
 382
 383static ssize_t regulator_state_show(struct device *dev,
 384				   struct device_attribute *attr, char *buf)
 385{
 386	struct regulator_dev *rdev = dev_get_drvdata(dev);
 387	ssize_t ret;
 388
 389	mutex_lock(&rdev->mutex);
 390	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 391	mutex_unlock(&rdev->mutex);
 392
 393	return ret;
 394}
 395static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 396
 397static ssize_t regulator_status_show(struct device *dev,
 398				   struct device_attribute *attr, char *buf)
 399{
 400	struct regulator_dev *rdev = dev_get_drvdata(dev);
 401	int status;
 402	char *label;
 403
 404	status = rdev->desc->ops->get_status(rdev);
 405	if (status < 0)
 406		return status;
 407
 408	switch (status) {
 409	case REGULATOR_STATUS_OFF:
 410		label = "off";
 411		break;
 412	case REGULATOR_STATUS_ON:
 413		label = "on";
 414		break;
 415	case REGULATOR_STATUS_ERROR:
 416		label = "error";
 417		break;
 418	case REGULATOR_STATUS_FAST:
 419		label = "fast";
 420		break;
 421	case REGULATOR_STATUS_NORMAL:
 422		label = "normal";
 423		break;
 424	case REGULATOR_STATUS_IDLE:
 425		label = "idle";
 426		break;
 427	case REGULATOR_STATUS_STANDBY:
 428		label = "standby";
 429		break;
 
 
 
 
 
 
 430	default:
 431		return -ERANGE;
 432	}
 433
 434	return sprintf(buf, "%s\n", label);
 435}
 436static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 437
 438static ssize_t regulator_min_uA_show(struct device *dev,
 439				    struct device_attribute *attr, char *buf)
 440{
 441	struct regulator_dev *rdev = dev_get_drvdata(dev);
 442
 443	if (!rdev->constraints)
 444		return sprintf(buf, "constraint not defined\n");
 445
 446	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 447}
 448static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 449
 450static ssize_t regulator_max_uA_show(struct device *dev,
 451				    struct device_attribute *attr, char *buf)
 452{
 453	struct regulator_dev *rdev = dev_get_drvdata(dev);
 454
 455	if (!rdev->constraints)
 456		return sprintf(buf, "constraint not defined\n");
 457
 458	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 459}
 460static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 461
 462static ssize_t regulator_min_uV_show(struct device *dev,
 463				    struct device_attribute *attr, char *buf)
 464{
 465	struct regulator_dev *rdev = dev_get_drvdata(dev);
 466
 467	if (!rdev->constraints)
 468		return sprintf(buf, "constraint not defined\n");
 469
 470	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 471}
 472static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 473
 474static ssize_t regulator_max_uV_show(struct device *dev,
 475				    struct device_attribute *attr, char *buf)
 476{
 477	struct regulator_dev *rdev = dev_get_drvdata(dev);
 478
 479	if (!rdev->constraints)
 480		return sprintf(buf, "constraint not defined\n");
 481
 482	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 483}
 484static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 485
 486static ssize_t regulator_total_uA_show(struct device *dev,
 487				      struct device_attribute *attr, char *buf)
 488{
 489	struct regulator_dev *rdev = dev_get_drvdata(dev);
 490	struct regulator *regulator;
 491	int uA = 0;
 492
 493	mutex_lock(&rdev->mutex);
 494	list_for_each_entry(regulator, &rdev->consumer_list, list)
 495		uA += regulator->uA_load;
 496	mutex_unlock(&rdev->mutex);
 497	return sprintf(buf, "%d\n", uA);
 498}
 499static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 500
 501static ssize_t regulator_num_users_show(struct device *dev,
 502				      struct device_attribute *attr, char *buf)
 503{
 504	struct regulator_dev *rdev = dev_get_drvdata(dev);
 505	return sprintf(buf, "%d\n", rdev->use_count);
 506}
 
 507
 508static ssize_t regulator_type_show(struct device *dev,
 509				  struct device_attribute *attr, char *buf)
 510{
 511	struct regulator_dev *rdev = dev_get_drvdata(dev);
 512
 513	switch (rdev->desc->type) {
 514	case REGULATOR_VOLTAGE:
 515		return sprintf(buf, "voltage\n");
 516	case REGULATOR_CURRENT:
 517		return sprintf(buf, "current\n");
 518	}
 519	return sprintf(buf, "unknown\n");
 520}
 
 521
 522static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 523				struct device_attribute *attr, char *buf)
 524{
 525	struct regulator_dev *rdev = dev_get_drvdata(dev);
 526
 527	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 528}
 529static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 530		regulator_suspend_mem_uV_show, NULL);
 531
 532static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 533				struct device_attribute *attr, char *buf)
 534{
 535	struct regulator_dev *rdev = dev_get_drvdata(dev);
 536
 537	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 538}
 539static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 540		regulator_suspend_disk_uV_show, NULL);
 541
 542static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 543				struct device_attribute *attr, char *buf)
 544{
 545	struct regulator_dev *rdev = dev_get_drvdata(dev);
 546
 547	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 548}
 549static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 550		regulator_suspend_standby_uV_show, NULL);
 551
 552static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 553				struct device_attribute *attr, char *buf)
 554{
 555	struct regulator_dev *rdev = dev_get_drvdata(dev);
 556
 557	return regulator_print_opmode(buf,
 558		rdev->constraints->state_mem.mode);
 559}
 560static DEVICE_ATTR(suspend_mem_mode, 0444,
 561		regulator_suspend_mem_mode_show, NULL);
 562
 563static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 564				struct device_attribute *attr, char *buf)
 565{
 566	struct regulator_dev *rdev = dev_get_drvdata(dev);
 567
 568	return regulator_print_opmode(buf,
 569		rdev->constraints->state_disk.mode);
 570}
 571static DEVICE_ATTR(suspend_disk_mode, 0444,
 572		regulator_suspend_disk_mode_show, NULL);
 573
 574static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 575				struct device_attribute *attr, char *buf)
 576{
 577	struct regulator_dev *rdev = dev_get_drvdata(dev);
 578
 579	return regulator_print_opmode(buf,
 580		rdev->constraints->state_standby.mode);
 581}
 582static DEVICE_ATTR(suspend_standby_mode, 0444,
 583		regulator_suspend_standby_mode_show, NULL);
 584
 585static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 586				   struct device_attribute *attr, char *buf)
 587{
 588	struct regulator_dev *rdev = dev_get_drvdata(dev);
 589
 590	return regulator_print_state(buf,
 591			rdev->constraints->state_mem.enabled);
 592}
 593static DEVICE_ATTR(suspend_mem_state, 0444,
 594		regulator_suspend_mem_state_show, NULL);
 595
 596static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 597				   struct device_attribute *attr, char *buf)
 598{
 599	struct regulator_dev *rdev = dev_get_drvdata(dev);
 600
 601	return regulator_print_state(buf,
 602			rdev->constraints->state_disk.enabled);
 603}
 604static DEVICE_ATTR(suspend_disk_state, 0444,
 605		regulator_suspend_disk_state_show, NULL);
 606
 607static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 608				   struct device_attribute *attr, char *buf)
 609{
 610	struct regulator_dev *rdev = dev_get_drvdata(dev);
 611
 612	return regulator_print_state(buf,
 613			rdev->constraints->state_standby.enabled);
 614}
 615static DEVICE_ATTR(suspend_standby_state, 0444,
 616		regulator_suspend_standby_state_show, NULL);
 617
 
 
 
 
 
 
 
 
 
 618
 619/*
 620 * These are the only attributes are present for all regulators.
 621 * Other attributes are a function of regulator functionality.
 622 */
 623static struct device_attribute regulator_dev_attrs[] = {
 624	__ATTR(name, 0444, regulator_name_show, NULL),
 625	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
 626	__ATTR(type, 0444, regulator_type_show, NULL),
 627	__ATTR_NULL,
 628};
 629
 630static void regulator_dev_release(struct device *dev)
 631{
 632	struct regulator_dev *rdev = dev_get_drvdata(dev);
 633	kfree(rdev);
 634}
 635
 636static struct class regulator_class = {
 637	.name = "regulator",
 638	.dev_release = regulator_dev_release,
 639	.dev_attrs = regulator_dev_attrs,
 640};
 641
 642/* Calculate the new optimum regulator operating mode based on the new total
 643 * consumer load. All locks held by caller */
 644static void drms_uA_update(struct regulator_dev *rdev)
 645{
 646	struct regulator *sibling;
 647	int current_uA = 0, output_uV, input_uV, err;
 648	unsigned int mode;
 649
 
 
 
 
 
 
 650	err = regulator_check_drms(rdev);
 651	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 652	    (!rdev->desc->ops->get_voltage &&
 653	     !rdev->desc->ops->get_voltage_sel) ||
 654	    !rdev->desc->ops->set_mode)
 655		return;
 
 
 
 
 
 656
 657	/* get output voltage */
 658	output_uV = _regulator_get_voltage(rdev);
 659	if (output_uV <= 0)
 660		return;
 
 
 661
 662	/* get input voltage */
 663	input_uV = 0;
 664	if (rdev->supply)
 665		input_uV = regulator_get_voltage(rdev->supply);
 666	if (input_uV <= 0)
 667		input_uV = rdev->constraints->input_uV;
 668	if (input_uV <= 0)
 669		return;
 
 
 670
 671	/* calc total requested load */
 672	list_for_each_entry(sibling, &rdev->consumer_list, list)
 673		current_uA += sibling->uA_load;
 674
 675	/* now get the optimum mode for our new total regulator load */
 676	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 677						  output_uV, current_uA);
 678
 679	/* check the new mode is allowed */
 680	err = regulator_mode_constrain(rdev, &mode);
 681	if (err == 0)
 682		rdev->desc->ops->set_mode(rdev, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683}
 684
 685static int suspend_set_state(struct regulator_dev *rdev,
 686	struct regulator_state *rstate)
 687{
 688	int ret = 0;
 689
 690	/* If we have no suspend mode configration don't set anything;
 691	 * only warn if the driver implements set_suspend_voltage or
 692	 * set_suspend_mode callback.
 693	 */
 694	if (!rstate->enabled && !rstate->disabled) {
 695		if (rdev->desc->ops->set_suspend_voltage ||
 696		    rdev->desc->ops->set_suspend_mode)
 697			rdev_warn(rdev, "No configuration\n");
 698		return 0;
 699	}
 700
 701	if (rstate->enabled && rstate->disabled) {
 702		rdev_err(rdev, "invalid configuration\n");
 703		return -EINVAL;
 704	}
 705
 706	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 707		ret = rdev->desc->ops->set_suspend_enable(rdev);
 708	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 709		ret = rdev->desc->ops->set_suspend_disable(rdev);
 710	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 711		ret = 0;
 712
 713	if (ret < 0) {
 714		rdev_err(rdev, "failed to enabled/disable\n");
 715		return ret;
 716	}
 717
 718	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 719		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 720		if (ret < 0) {
 721			rdev_err(rdev, "failed to set voltage\n");
 722			return ret;
 723		}
 724	}
 725
 726	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 727		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 728		if (ret < 0) {
 729			rdev_err(rdev, "failed to set mode\n");
 730			return ret;
 731		}
 732	}
 733	return ret;
 734}
 735
 736/* locks held by caller */
 737static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 738{
 
 
 739	if (!rdev->constraints)
 740		return -EINVAL;
 741
 742	switch (state) {
 743	case PM_SUSPEND_STANDBY:
 744		return suspend_set_state(rdev,
 745			&rdev->constraints->state_standby);
 746	case PM_SUSPEND_MEM:
 747		return suspend_set_state(rdev,
 748			&rdev->constraints->state_mem);
 749	case PM_SUSPEND_MAX:
 750		return suspend_set_state(rdev,
 751			&rdev->constraints->state_disk);
 752	default:
 753		return -EINVAL;
 754	}
 755}
 756
 757static void print_constraints(struct regulator_dev *rdev)
 758{
 759	struct regulation_constraints *constraints = rdev->constraints;
 760	char buf[80] = "";
 
 761	int count = 0;
 762	int ret;
 763
 764	if (constraints->min_uV && constraints->max_uV) {
 765		if (constraints->min_uV == constraints->max_uV)
 766			count += sprintf(buf + count, "%d mV ",
 767					 constraints->min_uV / 1000);
 768		else
 769			count += sprintf(buf + count, "%d <--> %d mV ",
 770					 constraints->min_uV / 1000,
 771					 constraints->max_uV / 1000);
 
 772	}
 773
 774	if (!constraints->min_uV ||
 775	    constraints->min_uV != constraints->max_uV) {
 776		ret = _regulator_get_voltage(rdev);
 777		if (ret > 0)
 778			count += sprintf(buf + count, "at %d mV ", ret / 1000);
 
 779	}
 780
 781	if (constraints->uV_offset)
 782		count += sprintf(buf, "%dmV offset ",
 783				 constraints->uV_offset / 1000);
 784
 785	if (constraints->min_uA && constraints->max_uA) {
 786		if (constraints->min_uA == constraints->max_uA)
 787			count += sprintf(buf + count, "%d mA ",
 788					 constraints->min_uA / 1000);
 789		else
 790			count += sprintf(buf + count, "%d <--> %d mA ",
 791					 constraints->min_uA / 1000,
 792					 constraints->max_uA / 1000);
 
 793	}
 794
 795	if (!constraints->min_uA ||
 796	    constraints->min_uA != constraints->max_uA) {
 797		ret = _regulator_get_current_limit(rdev);
 798		if (ret > 0)
 799			count += sprintf(buf + count, "at %d mA ", ret / 1000);
 
 800	}
 801
 802	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 803		count += sprintf(buf + count, "fast ");
 804	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 805		count += sprintf(buf + count, "normal ");
 806	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 807		count += sprintf(buf + count, "idle ");
 808	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 809		count += sprintf(buf + count, "standby");
 
 
 
 810
 811	rdev_info(rdev, "%s\n", buf);
 812
 813	if ((constraints->min_uV != constraints->max_uV) &&
 814	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 815		rdev_warn(rdev,
 816			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 817}
 818
 819static int machine_constraints_voltage(struct regulator_dev *rdev,
 820	struct regulation_constraints *constraints)
 821{
 822	struct regulator_ops *ops = rdev->desc->ops;
 823	int ret;
 824
 825	/* do we need to apply the constraint voltage */
 826	if (rdev->constraints->apply_uV &&
 827	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 828		ret = _regulator_do_set_voltage(rdev,
 829						rdev->constraints->min_uV,
 830						rdev->constraints->max_uV);
 831		if (ret < 0) {
 832			rdev_err(rdev, "failed to apply %duV constraint\n",
 833				 rdev->constraints->min_uV);
 834			return ret;
 
 
 
 
 
 
 
 
 
 
 
 835		}
 836	}
 837
 838	/* constrain machine-level voltage specs to fit
 839	 * the actual range supported by this regulator.
 840	 */
 841	if (ops->list_voltage && rdev->desc->n_voltages) {
 842		int	count = rdev->desc->n_voltages;
 843		int	i;
 844		int	min_uV = INT_MAX;
 845		int	max_uV = INT_MIN;
 846		int	cmin = constraints->min_uV;
 847		int	cmax = constraints->max_uV;
 848
 849		/* it's safe to autoconfigure fixed-voltage supplies
 850		   and the constraints are used by list_voltage. */
 851		if (count == 1 && !cmin) {
 852			cmin = 1;
 853			cmax = INT_MAX;
 854			constraints->min_uV = cmin;
 855			constraints->max_uV = cmax;
 856		}
 857
 858		/* voltage constraints are optional */
 859		if ((cmin == 0) && (cmax == 0))
 860			return 0;
 861
 862		/* else require explicit machine-level constraints */
 863		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 864			rdev_err(rdev, "invalid voltage constraints\n");
 865			return -EINVAL;
 866		}
 867
 868		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 869		for (i = 0; i < count; i++) {
 870			int	value;
 871
 872			value = ops->list_voltage(rdev, i);
 873			if (value <= 0)
 874				continue;
 875
 876			/* maybe adjust [min_uV..max_uV] */
 877			if (value >= cmin && value < min_uV)
 878				min_uV = value;
 879			if (value <= cmax && value > max_uV)
 880				max_uV = value;
 881		}
 882
 883		/* final: [min_uV..max_uV] valid iff constraints valid */
 884		if (max_uV < min_uV) {
 885			rdev_err(rdev, "unsupportable voltage constraints\n");
 
 
 886			return -EINVAL;
 887		}
 888
 889		/* use regulator's subset of machine constraints */
 890		if (constraints->min_uV < min_uV) {
 891			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 892				 constraints->min_uV, min_uV);
 893			constraints->min_uV = min_uV;
 894		}
 895		if (constraints->max_uV > max_uV) {
 896			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 897				 constraints->max_uV, max_uV);
 898			constraints->max_uV = max_uV;
 899		}
 900	}
 901
 902	return 0;
 903}
 904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905/**
 906 * set_machine_constraints - sets regulator constraints
 907 * @rdev: regulator source
 908 * @constraints: constraints to apply
 909 *
 910 * Allows platform initialisation code to define and constrain
 911 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 912 * Constraints *must* be set by platform code in order for some
 913 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 914 * set_mode.
 915 */
 916static int set_machine_constraints(struct regulator_dev *rdev,
 917	const struct regulation_constraints *constraints)
 918{
 919	int ret = 0;
 920	struct regulator_ops *ops = rdev->desc->ops;
 921
 922	if (constraints)
 923		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 924					    GFP_KERNEL);
 925	else
 926		rdev->constraints = kzalloc(sizeof(*constraints),
 927					    GFP_KERNEL);
 928	if (!rdev->constraints)
 929		return -ENOMEM;
 930
 931	ret = machine_constraints_voltage(rdev, rdev->constraints);
 932	if (ret != 0)
 933		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 934
 935	/* do we need to setup our suspend state */
 936	if (rdev->constraints->initial_state) {
 937		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 938		if (ret < 0) {
 939			rdev_err(rdev, "failed to set suspend state\n");
 940			goto out;
 941		}
 942	}
 943
 944	if (rdev->constraints->initial_mode) {
 945		if (!ops->set_mode) {
 946			rdev_err(rdev, "no set_mode operation\n");
 947			ret = -EINVAL;
 948			goto out;
 949		}
 950
 951		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 952		if (ret < 0) {
 953			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 954			goto out;
 955		}
 956	}
 957
 958	/* If the constraints say the regulator should be on at this point
 959	 * and we have control then make sure it is enabled.
 960	 */
 961	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 962	    ops->enable) {
 963		ret = ops->enable(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964		if (ret < 0) {
 965			rdev_err(rdev, "failed to enable\n");
 966			goto out;
 
 
 
 
 
 
 
 
 
 
 
 967		}
 968	}
 969
 970	print_constraints(rdev);
 971	return 0;
 972out:
 973	kfree(rdev->constraints);
 974	rdev->constraints = NULL;
 975	return ret;
 976}
 977
 978/**
 979 * set_supply - set regulator supply regulator
 980 * @rdev: regulator name
 981 * @supply_rdev: supply regulator name
 982 *
 983 * Called by platform initialisation code to set the supply regulator for this
 984 * regulator. This ensures that a regulators supply will also be enabled by the
 985 * core if it's child is enabled.
 986 */
 987static int set_supply(struct regulator_dev *rdev,
 988		      struct regulator_dev *supply_rdev)
 989{
 990	int err;
 991
 992	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 993
 
 
 
 994	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 995	if (rdev->supply == NULL) {
 996		err = -ENOMEM;
 997		return err;
 998	}
 
 999
1000	return 0;
1001}
1002
1003/**
1004 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1005 * @rdev:         regulator source
1006 * @consumer_dev_name: dev_name() string for device supply applies to
1007 * @supply:       symbolic name for supply
1008 *
1009 * Allows platform initialisation code to map physical regulator
1010 * sources to symbolic names for supplies for use by devices.  Devices
1011 * should use these symbolic names to request regulators, avoiding the
1012 * need to provide board-specific regulator names as platform data.
1013 */
1014static int set_consumer_device_supply(struct regulator_dev *rdev,
1015				      const char *consumer_dev_name,
1016				      const char *supply)
1017{
1018	struct regulator_map *node;
1019	int has_dev;
1020
1021	if (supply == NULL)
1022		return -EINVAL;
1023
1024	if (consumer_dev_name != NULL)
1025		has_dev = 1;
1026	else
1027		has_dev = 0;
1028
1029	list_for_each_entry(node, &regulator_map_list, list) {
1030		if (node->dev_name && consumer_dev_name) {
1031			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032				continue;
1033		} else if (node->dev_name || consumer_dev_name) {
1034			continue;
1035		}
1036
1037		if (strcmp(node->supply, supply) != 0)
1038			continue;
1039
1040		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1041			 consumer_dev_name,
1042			 dev_name(&node->regulator->dev),
1043			 node->regulator->desc->name,
1044			 supply,
1045			 dev_name(&rdev->dev), rdev_get_name(rdev));
1046		return -EBUSY;
1047	}
1048
1049	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1050	if (node == NULL)
1051		return -ENOMEM;
1052
1053	node->regulator = rdev;
1054	node->supply = supply;
1055
1056	if (has_dev) {
1057		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058		if (node->dev_name == NULL) {
1059			kfree(node);
1060			return -ENOMEM;
1061		}
1062	}
1063
1064	list_add(&node->list, &regulator_map_list);
1065	return 0;
1066}
1067
1068static void unset_regulator_supplies(struct regulator_dev *rdev)
1069{
1070	struct regulator_map *node, *n;
1071
1072	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073		if (rdev == node->regulator) {
1074			list_del(&node->list);
1075			kfree(node->dev_name);
1076			kfree(node);
1077		}
1078	}
1079}
1080
1081#define REG_STR_SIZE	64
1082
1083static struct regulator *create_regulator(struct regulator_dev *rdev,
1084					  struct device *dev,
1085					  const char *supply_name)
1086{
1087	struct regulator *regulator;
1088	char buf[REG_STR_SIZE];
1089	int err, size;
1090
1091	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092	if (regulator == NULL)
1093		return NULL;
1094
1095	mutex_lock(&rdev->mutex);
1096	regulator->rdev = rdev;
1097	list_add(&regulator->list, &rdev->consumer_list);
1098
1099	if (dev) {
1100		/* create a 'requested_microamps_name' sysfs entry */
1101		size = scnprintf(buf, REG_STR_SIZE,
1102				 "microamps_requested_%s-%s",
1103				 dev_name(dev), supply_name);
1104		if (size >= REG_STR_SIZE)
1105			goto overflow_err;
1106
1107		regulator->dev = dev;
1108		sysfs_attr_init(&regulator->dev_attr.attr);
1109		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110		if (regulator->dev_attr.attr.name == NULL)
1111			goto attr_name_err;
1112
1113		regulator->dev_attr.attr.mode = 0444;
1114		regulator->dev_attr.show = device_requested_uA_show;
1115		err = device_create_file(dev, &regulator->dev_attr);
1116		if (err < 0) {
1117			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1118			goto attr_name_err;
1119		}
1120
1121		/* also add a link to the device sysfs entry */
1122		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123				 dev->kobj.name, supply_name);
1124		if (size >= REG_STR_SIZE)
1125			goto attr_err;
1126
1127		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128		if (regulator->supply_name == NULL)
1129			goto attr_err;
1130
1131		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132					buf);
1133		if (err) {
1134			rdev_warn(rdev, "could not add device link %s err %d\n",
1135				  dev->kobj.name, err);
1136			goto link_name_err;
1137		}
1138	} else {
1139		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140		if (regulator->supply_name == NULL)
1141			goto attr_err;
1142	}
1143
1144	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145						rdev->debugfs);
1146	if (!regulator->debugfs) {
1147		rdev_warn(rdev, "Failed to create debugfs directory\n");
1148	} else {
1149		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150				   &regulator->uA_load);
1151		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152				   &regulator->min_uV);
1153		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154				   &regulator->max_uV);
1155	}
1156
1157	/*
1158	 * Check now if the regulator is an always on regulator - if
1159	 * it is then we don't need to do nearly so much work for
1160	 * enable/disable calls.
1161	 */
1162	if (!_regulator_can_change_status(rdev) &&
1163	    _regulator_is_enabled(rdev))
1164		regulator->always_on = true;
1165
1166	mutex_unlock(&rdev->mutex);
1167	return regulator;
1168link_name_err:
1169	kfree(regulator->supply_name);
1170attr_err:
1171	device_remove_file(regulator->dev, &regulator->dev_attr);
1172attr_name_err:
1173	kfree(regulator->dev_attr.attr.name);
1174overflow_err:
1175	list_del(&regulator->list);
1176	kfree(regulator);
1177	mutex_unlock(&rdev->mutex);
1178	return NULL;
1179}
1180
1181static int _regulator_get_enable_time(struct regulator_dev *rdev)
1182{
 
 
1183	if (!rdev->desc->ops->enable_time)
1184		return 0;
1185	return rdev->desc->ops->enable_time(rdev);
1186}
1187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1189						  const char *supply,
1190						  int *ret)
1191{
1192	struct regulator_dev *r;
1193	struct device_node *node;
1194	struct regulator_map *map;
1195	const char *devname = NULL;
1196
 
 
1197	/* first do a dt based lookup */
1198	if (dev && dev->of_node) {
1199		node = of_get_regulator(dev, supply);
1200		if (node) {
1201			list_for_each_entry(r, &regulator_list, list)
1202				if (r->dev.parent &&
1203					node == r->dev.of_node)
1204					return r;
 
1205		} else {
1206			/*
1207			 * If we couldn't even get the node then it's
1208			 * not just that the device didn't register
1209			 * yet, there's no node and we'll never
1210			 * succeed.
1211			 */
1212			*ret = -ENODEV;
1213		}
1214	}
1215
1216	/* if not found, try doing it non-dt way */
1217	if (dev)
1218		devname = dev_name(dev);
1219
1220	list_for_each_entry(r, &regulator_list, list)
1221		if (strcmp(rdev_get_name(r), supply) == 0)
1222			return r;
1223
 
1224	list_for_each_entry(map, &regulator_map_list, list) {
1225		/* If the mapping has a device set up it must match */
1226		if (map->dev_name &&
1227		    (!devname || strcmp(map->dev_name, devname)))
1228			continue;
1229
1230		if (strcmp(map->supply, supply) == 0)
 
 
1231			return map->regulator;
 
1232	}
 
1233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234
1235	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236}
1237
1238/* Internal regulator request function */
1239static struct regulator *_regulator_get(struct device *dev, const char *id,
1240					int exclusive)
1241{
1242	struct regulator_dev *rdev;
1243	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1244	const char *devname = NULL;
1245	int ret;
1246
1247	if (id == NULL) {
1248		pr_err("get() with no identifier\n");
1249		return regulator;
1250	}
1251
1252	if (dev)
1253		devname = dev_name(dev);
1254
1255	mutex_lock(&regulator_list_mutex);
 
 
 
1256
1257	rdev = regulator_dev_lookup(dev, id, &ret);
1258	if (rdev)
1259		goto found;
1260
1261	if (board_wants_dummy_regulator) {
1262		rdev = dummy_regulator_rdev;
1263		goto found;
1264	}
 
 
 
 
1265
1266#ifdef CONFIG_REGULATOR_DUMMY
1267	if (!devname)
1268		devname = "deviceless";
1269
1270	/* If the board didn't flag that it was fully constrained then
1271	 * substitute in a dummy regulator so consumers can continue.
 
1272	 */
1273	if (!has_full_constraints) {
1274		pr_warn("%s supply %s not found, using dummy regulator\n",
1275			devname, id);
 
1276		rdev = dummy_regulator_rdev;
 
1277		goto found;
 
 
 
1278	}
1279#endif
1280
1281	mutex_unlock(&regulator_list_mutex);
1282	return regulator;
1283
1284found:
1285	if (rdev->exclusive) {
1286		regulator = ERR_PTR(-EPERM);
1287		goto out;
 
1288	}
1289
1290	if (exclusive && rdev->open_count) {
1291		regulator = ERR_PTR(-EBUSY);
1292		goto out;
 
 
 
 
 
 
 
 
1293	}
1294
1295	if (!try_module_get(rdev->owner))
1296		goto out;
 
 
1297
1298	regulator = create_regulator(rdev, dev, id);
1299	if (regulator == NULL) {
1300		regulator = ERR_PTR(-ENOMEM);
 
1301		module_put(rdev->owner);
1302		goto out;
1303	}
1304
1305	rdev->open_count++;
1306	if (exclusive) {
1307		rdev->exclusive = 1;
1308
1309		ret = _regulator_is_enabled(rdev);
1310		if (ret > 0)
1311			rdev->use_count = 1;
1312		else
1313			rdev->use_count = 0;
1314	}
1315
1316out:
1317	mutex_unlock(&regulator_list_mutex);
1318
1319	return regulator;
1320}
1321
1322/**
1323 * regulator_get - lookup and obtain a reference to a regulator.
1324 * @dev: device for regulator "consumer"
1325 * @id: Supply name or regulator ID.
1326 *
1327 * Returns a struct regulator corresponding to the regulator producer,
1328 * or IS_ERR() condition containing errno.
1329 *
1330 * Use of supply names configured via regulator_set_device_supply() is
1331 * strongly encouraged.  It is recommended that the supply name used
1332 * should match the name used for the supply and/or the relevant
1333 * device pins in the datasheet.
1334 */
1335struct regulator *regulator_get(struct device *dev, const char *id)
1336{
1337	return _regulator_get(dev, id, 0);
1338}
1339EXPORT_SYMBOL_GPL(regulator_get);
1340
1341static void devm_regulator_release(struct device *dev, void *res)
1342{
1343	regulator_put(*(struct regulator **)res);
1344}
1345
1346/**
1347 * devm_regulator_get - Resource managed regulator_get()
1348 * @dev: device for regulator "consumer"
1349 * @id: Supply name or regulator ID.
1350 *
1351 * Managed regulator_get(). Regulators returned from this function are
1352 * automatically regulator_put() on driver detach. See regulator_get() for more
1353 * information.
1354 */
1355struct regulator *devm_regulator_get(struct device *dev, const char *id)
1356{
1357	struct regulator **ptr, *regulator;
1358
1359	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1360	if (!ptr)
1361		return ERR_PTR(-ENOMEM);
1362
1363	regulator = regulator_get(dev, id);
1364	if (!IS_ERR(regulator)) {
1365		*ptr = regulator;
1366		devres_add(dev, ptr);
1367	} else {
1368		devres_free(ptr);
1369	}
1370
1371	return regulator;
1372}
1373EXPORT_SYMBOL_GPL(devm_regulator_get);
1374
1375/**
1376 * regulator_get_exclusive - obtain exclusive access to a regulator.
1377 * @dev: device for regulator "consumer"
1378 * @id: Supply name or regulator ID.
1379 *
1380 * Returns a struct regulator corresponding to the regulator producer,
1381 * or IS_ERR() condition containing errno.  Other consumers will be
1382 * unable to obtain this reference is held and the use count for the
1383 * regulator will be initialised to reflect the current state of the
1384 * regulator.
1385 *
1386 * This is intended for use by consumers which cannot tolerate shared
1387 * use of the regulator such as those which need to force the
1388 * regulator off for correct operation of the hardware they are
1389 * controlling.
1390 *
1391 * Use of supply names configured via regulator_set_device_supply() is
1392 * strongly encouraged.  It is recommended that the supply name used
1393 * should match the name used for the supply and/or the relevant
1394 * device pins in the datasheet.
1395 */
1396struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1397{
1398	return _regulator_get(dev, id, 1);
1399}
1400EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1401
1402/**
1403 * regulator_put - "free" the regulator source
1404 * @regulator: regulator source
 
 
 
 
 
 
 
 
 
 
 
1405 *
1406 * Note: drivers must ensure that all regulator_enable calls made on this
1407 * regulator source are balanced by regulator_disable calls prior to calling
1408 * this function.
 
1409 */
1410void regulator_put(struct regulator *regulator)
 
 
 
 
 
 
 
1411{
1412	struct regulator_dev *rdev;
1413
1414	if (regulator == NULL || IS_ERR(regulator))
1415		return;
1416
1417	mutex_lock(&regulator_list_mutex);
 
1418	rdev = regulator->rdev;
1419
1420	debugfs_remove_recursive(regulator->debugfs);
1421
1422	/* remove any sysfs entries */
1423	if (regulator->dev) {
1424		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1425		device_remove_file(regulator->dev, &regulator->dev_attr);
1426		kfree(regulator->dev_attr.attr.name);
1427	}
1428	kfree(regulator->supply_name);
1429	list_del(&regulator->list);
1430	kfree(regulator);
1431
1432	rdev->open_count--;
1433	rdev->exclusive = 0;
 
 
 
 
 
1434
1435	module_put(rdev->owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436	mutex_unlock(&regulator_list_mutex);
1437}
1438EXPORT_SYMBOL_GPL(regulator_put);
1439
1440static int devm_regulator_match(struct device *dev, void *res, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441{
1442	struct regulator **r = res;
1443	if (!r || !*r) {
1444		WARN_ON(!r || !*r);
1445		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446	}
1447	return *r == data;
 
1448}
1449
1450/**
1451 * devm_regulator_put - Resource managed regulator_put()
1452 * @regulator: regulator to free
1453 *
1454 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1455 * this function will not need to be called and the resource management
1456 * code will ensure that the resource is freed.
 
 
 
1457 */
1458void devm_regulator_put(struct regulator *regulator)
1459{
1460	int rc;
 
1461
1462	rc = devres_destroy(regulator->dev, devm_regulator_release,
1463			    devm_regulator_match, regulator);
1464	if (rc == 0)
1465		regulator_put(regulator);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466	else
1467		WARN_ON(rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1468}
1469EXPORT_SYMBOL_GPL(devm_regulator_put);
1470
1471/* locks held by regulator_enable() */
1472static int _regulator_enable(struct regulator_dev *rdev)
1473{
1474	int ret, delay;
 
 
1475
1476	/* check voltage and requested load before enabling */
1477	if (rdev->constraints &&
1478	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1479		drms_uA_update(rdev);
1480
1481	if (rdev->use_count == 0) {
1482		/* The regulator may on if it's not switchable or left on */
1483		ret = _regulator_is_enabled(rdev);
1484		if (ret == -EINVAL || ret == 0) {
1485			if (!_regulator_can_change_status(rdev))
1486				return -EPERM;
1487
1488			if (!rdev->desc->ops->enable)
1489				return -EINVAL;
1490
1491			/* Query before enabling in case configuration
1492			 * dependent.  */
1493			ret = _regulator_get_enable_time(rdev);
1494			if (ret >= 0) {
1495				delay = ret;
1496			} else {
1497				rdev_warn(rdev, "enable_time() failed: %d\n",
1498					   ret);
1499				delay = 0;
1500			}
1501
1502			trace_regulator_enable(rdev_get_name(rdev));
1503
1504			/* Allow the regulator to ramp; it would be useful
1505			 * to extend this for bulk operations so that the
1506			 * regulators can ramp together.  */
1507			ret = rdev->desc->ops->enable(rdev);
1508			if (ret < 0)
1509				return ret;
1510
1511			trace_regulator_enable_delay(rdev_get_name(rdev));
1512
1513			if (delay >= 1000) {
1514				mdelay(delay / 1000);
1515				udelay(delay % 1000);
1516			} else if (delay) {
1517				udelay(delay);
1518			}
1519
1520			trace_regulator_enable_complete(rdev_get_name(rdev));
1521
1522		} else if (ret < 0) {
1523			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1524			return ret;
1525		}
1526		/* Fallthrough on positive return values - already enabled */
1527	}
1528
1529	rdev->use_count++;
1530
1531	return 0;
1532}
1533
1534/**
1535 * regulator_enable - enable regulator output
1536 * @regulator: regulator source
1537 *
1538 * Request that the regulator be enabled with the regulator output at
1539 * the predefined voltage or current value.  Calls to regulator_enable()
1540 * must be balanced with calls to regulator_disable().
1541 *
1542 * NOTE: the output value can be set by other drivers, boot loader or may be
1543 * hardwired in the regulator.
1544 */
1545int regulator_enable(struct regulator *regulator)
1546{
1547	struct regulator_dev *rdev = regulator->rdev;
1548	int ret = 0;
1549
1550	if (regulator->always_on)
1551		return 0;
1552
1553	if (rdev->supply) {
1554		ret = regulator_enable(rdev->supply);
1555		if (ret != 0)
1556			return ret;
1557	}
1558
1559	mutex_lock(&rdev->mutex);
1560	ret = _regulator_enable(rdev);
1561	mutex_unlock(&rdev->mutex);
1562
1563	if (ret != 0 && rdev->supply)
1564		regulator_disable(rdev->supply);
1565
1566	return ret;
1567}
1568EXPORT_SYMBOL_GPL(regulator_enable);
1569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570/* locks held by regulator_disable() */
1571static int _regulator_disable(struct regulator_dev *rdev)
1572{
1573	int ret = 0;
1574
 
 
1575	if (WARN(rdev->use_count <= 0,
1576		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1577		return -EIO;
1578
1579	/* are we the last user and permitted to disable ? */
1580	if (rdev->use_count == 1 &&
1581	    (rdev->constraints && !rdev->constraints->always_on)) {
1582
1583		/* we are last user */
1584		if (_regulator_can_change_status(rdev) &&
1585		    rdev->desc->ops->disable) {
1586			trace_regulator_disable(rdev_get_name(rdev));
 
 
 
1587
1588			ret = rdev->desc->ops->disable(rdev);
1589			if (ret < 0) {
1590				rdev_err(rdev, "failed to disable\n");
 
 
 
1591				return ret;
1592			}
1593
1594			trace_regulator_disable_complete(rdev_get_name(rdev));
1595
1596			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1597					     NULL);
1598		}
1599
1600		rdev->use_count = 0;
1601	} else if (rdev->use_count > 1) {
1602
1603		if (rdev->constraints &&
1604			(rdev->constraints->valid_ops_mask &
1605			REGULATOR_CHANGE_DRMS))
1606			drms_uA_update(rdev);
1607
1608		rdev->use_count--;
1609	}
1610
1611	return ret;
1612}
1613
1614/**
1615 * regulator_disable - disable regulator output
1616 * @regulator: regulator source
1617 *
1618 * Disable the regulator output voltage or current.  Calls to
1619 * regulator_enable() must be balanced with calls to
1620 * regulator_disable().
1621 *
1622 * NOTE: this will only disable the regulator output if no other consumer
1623 * devices have it enabled, the regulator device supports disabling and
1624 * machine constraints permit this operation.
1625 */
1626int regulator_disable(struct regulator *regulator)
1627{
1628	struct regulator_dev *rdev = regulator->rdev;
1629	int ret = 0;
1630
1631	if (regulator->always_on)
1632		return 0;
1633
1634	mutex_lock(&rdev->mutex);
1635	ret = _regulator_disable(rdev);
1636	mutex_unlock(&rdev->mutex);
1637
1638	if (ret == 0 && rdev->supply)
1639		regulator_disable(rdev->supply);
1640
1641	return ret;
1642}
1643EXPORT_SYMBOL_GPL(regulator_disable);
1644
1645/* locks held by regulator_force_disable() */
1646static int _regulator_force_disable(struct regulator_dev *rdev)
1647{
1648	int ret = 0;
1649
1650	/* force disable */
1651	if (rdev->desc->ops->disable) {
1652		/* ah well, who wants to live forever... */
1653		ret = rdev->desc->ops->disable(rdev);
1654		if (ret < 0) {
1655			rdev_err(rdev, "failed to force disable\n");
1656			return ret;
1657		}
1658		/* notify other consumers that power has been forced off */
 
1659		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
 
 
 
 
 
1660			REGULATOR_EVENT_DISABLE, NULL);
1661	}
1662
1663	return ret;
1664}
1665
1666/**
1667 * regulator_force_disable - force disable regulator output
1668 * @regulator: regulator source
1669 *
1670 * Forcibly disable the regulator output voltage or current.
1671 * NOTE: this *will* disable the regulator output even if other consumer
1672 * devices have it enabled. This should be used for situations when device
1673 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1674 */
1675int regulator_force_disable(struct regulator *regulator)
1676{
1677	struct regulator_dev *rdev = regulator->rdev;
1678	int ret;
1679
1680	mutex_lock(&rdev->mutex);
1681	regulator->uA_load = 0;
1682	ret = _regulator_force_disable(regulator->rdev);
1683	mutex_unlock(&rdev->mutex);
1684
1685	if (rdev->supply)
1686		while (rdev->open_count--)
1687			regulator_disable(rdev->supply);
1688
1689	return ret;
1690}
1691EXPORT_SYMBOL_GPL(regulator_force_disable);
1692
1693static void regulator_disable_work(struct work_struct *work)
1694{
1695	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1696						  disable_work.work);
1697	int count, i, ret;
1698
1699	mutex_lock(&rdev->mutex);
1700
1701	BUG_ON(!rdev->deferred_disables);
1702
1703	count = rdev->deferred_disables;
1704	rdev->deferred_disables = 0;
1705
1706	for (i = 0; i < count; i++) {
1707		ret = _regulator_disable(rdev);
1708		if (ret != 0)
1709			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1710	}
1711
1712	mutex_unlock(&rdev->mutex);
1713
1714	if (rdev->supply) {
1715		for (i = 0; i < count; i++) {
1716			ret = regulator_disable(rdev->supply);
1717			if (ret != 0) {
1718				rdev_err(rdev,
1719					 "Supply disable failed: %d\n", ret);
1720			}
1721		}
1722	}
1723}
1724
1725/**
1726 * regulator_disable_deferred - disable regulator output with delay
1727 * @regulator: regulator source
1728 * @ms: miliseconds until the regulator is disabled
1729 *
1730 * Execute regulator_disable() on the regulator after a delay.  This
1731 * is intended for use with devices that require some time to quiesce.
1732 *
1733 * NOTE: this will only disable the regulator output if no other consumer
1734 * devices have it enabled, the regulator device supports disabling and
1735 * machine constraints permit this operation.
1736 */
1737int regulator_disable_deferred(struct regulator *regulator, int ms)
1738{
1739	struct regulator_dev *rdev = regulator->rdev;
1740	int ret;
1741
1742	if (regulator->always_on)
1743		return 0;
1744
 
 
 
1745	mutex_lock(&rdev->mutex);
1746	rdev->deferred_disables++;
1747	mutex_unlock(&rdev->mutex);
1748
1749	ret = schedule_delayed_work(&rdev->disable_work,
1750				    msecs_to_jiffies(ms));
1751	if (ret < 0)
1752		return ret;
1753	else
1754		return 0;
1755}
1756EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1757
1758/**
1759 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1760 *
1761 * @rdev: regulator to operate on
1762 *
1763 * Regulators that use regmap for their register I/O can set the
1764 * enable_reg and enable_mask fields in their descriptor and then use
1765 * this as their is_enabled operation, saving some code.
1766 */
1767int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1768{
1769	unsigned int val;
1770	int ret;
 
1771
1772	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1773	if (ret != 0)
1774		return ret;
1775
1776	return (val & rdev->desc->enable_mask) != 0;
1777}
1778EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1779
1780/**
1781 * regulator_enable_regmap - standard enable() for regmap users
1782 *
1783 * @rdev: regulator to operate on
1784 *
1785 * Regulators that use regmap for their register I/O can set the
1786 * enable_reg and enable_mask fields in their descriptor and then use
1787 * this as their enable() operation, saving some code.
1788 */
1789int regulator_enable_regmap(struct regulator_dev *rdev)
1790{
1791	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1792				  rdev->desc->enable_mask,
1793				  rdev->desc->enable_mask);
1794}
1795EXPORT_SYMBOL_GPL(regulator_enable_regmap);
 
1796
1797/**
1798 * regulator_disable_regmap - standard disable() for regmap users
1799 *
1800 * @rdev: regulator to operate on
1801 *
1802 * Regulators that use regmap for their register I/O can set the
1803 * enable_reg and enable_mask fields in their descriptor and then use
1804 * this as their disable() operation, saving some code.
1805 */
1806int regulator_disable_regmap(struct regulator_dev *rdev)
1807{
1808	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1809				  rdev->desc->enable_mask, 0);
1810}
1811EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1812
1813static int _regulator_is_enabled(struct regulator_dev *rdev)
1814{
1815	/* If we don't know then assume that the regulator is always on */
1816	if (!rdev->desc->ops->is_enabled)
1817		return 1;
 
1818
1819	return rdev->desc->ops->is_enabled(rdev);
1820}
1821
1822/**
1823 * regulator_is_enabled - is the regulator output enabled
1824 * @regulator: regulator source
1825 *
1826 * Returns positive if the regulator driver backing the source/client
1827 * has requested that the device be enabled, zero if it hasn't, else a
1828 * negative errno code.
1829 *
1830 * Note that the device backing this regulator handle can have multiple
1831 * users, so it might be enabled even if regulator_enable() was never
1832 * called for this particular source.
1833 */
1834int regulator_is_enabled(struct regulator *regulator)
1835{
1836	int ret;
1837
1838	if (regulator->always_on)
1839		return 1;
1840
1841	mutex_lock(&regulator->rdev->mutex);
1842	ret = _regulator_is_enabled(regulator->rdev);
1843	mutex_unlock(&regulator->rdev->mutex);
1844
1845	return ret;
1846}
1847EXPORT_SYMBOL_GPL(regulator_is_enabled);
1848
1849/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850 * regulator_count_voltages - count regulator_list_voltage() selectors
1851 * @regulator: regulator source
1852 *
1853 * Returns number of selectors, or negative errno.  Selectors are
1854 * numbered starting at zero, and typically correspond to bitfields
1855 * in hardware registers.
1856 */
1857int regulator_count_voltages(struct regulator *regulator)
1858{
1859	struct regulator_dev	*rdev = regulator->rdev;
1860
1861	return rdev->desc->n_voltages ? : -EINVAL;
 
 
 
 
 
 
1862}
1863EXPORT_SYMBOL_GPL(regulator_count_voltages);
1864
1865/**
1866 * regulator_list_voltage_linear - List voltages with simple calculation
 
 
 
1867 *
1868 * @rdev: Regulator device
1869 * @selector: Selector to convert into a voltage
 
 
 
 
 
 
 
 
 
 
 
1870 *
1871 * Regulators with a simple linear mapping between voltages and
1872 * selectors can set min_uV and uV_step in the regulator descriptor
1873 * and then use this function as their list_voltage() operation,
1874 */
1875int regulator_list_voltage_linear(struct regulator_dev *rdev,
1876				  unsigned int selector)
1877{
1878	if (selector >= rdev->desc->n_voltages)
1879		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880
1881	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1882}
1883EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1884
1885/**
1886 * regulator_list_voltage - enumerate supported voltages
1887 * @regulator: regulator source
1888 * @selector: identify voltage to list
1889 * Context: can sleep
1890 *
1891 * Returns a voltage that can be passed to @regulator_set_voltage(),
1892 * zero if this selector code can't be used on this system, or a
1893 * negative errno.
 
 
1894 */
1895int regulator_list_voltage(struct regulator *regulator, unsigned selector)
 
1896{
1897	struct regulator_dev	*rdev = regulator->rdev;
1898	struct regulator_ops	*ops = rdev->desc->ops;
1899	int			ret;
1900
1901	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1902		return -EINVAL;
 
 
1903
1904	mutex_lock(&rdev->mutex);
1905	ret = ops->list_voltage(rdev, selector);
1906	mutex_unlock(&rdev->mutex);
1907
1908	if (ret > 0) {
1909		if (ret < rdev->constraints->min_uV)
1910			ret = 0;
1911		else if (ret > rdev->constraints->max_uV)
1912			ret = 0;
1913	}
 
 
 
 
1914
1915	return ret;
1916}
1917EXPORT_SYMBOL_GPL(regulator_list_voltage);
1918
1919/**
1920 * regulator_is_supported_voltage - check if a voltage range can be supported
1921 *
1922 * @regulator: Regulator to check.
1923 * @min_uV: Minimum required voltage in uV.
1924 * @max_uV: Maximum required voltage in uV.
1925 *
1926 * Returns a boolean or a negative error code.
1927 */
1928int regulator_is_supported_voltage(struct regulator *regulator,
1929				   int min_uV, int max_uV)
1930{
 
1931	int i, voltages, ret;
1932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1933	ret = regulator_count_voltages(regulator);
1934	if (ret < 0)
1935		return ret;
1936	voltages = ret;
1937
1938	for (i = 0; i < voltages; i++) {
1939		ret = regulator_list_voltage(regulator, i);
1940
1941		if (ret >= min_uV && ret <= max_uV)
1942			return 1;
1943	}
1944
1945	return 0;
1946}
1947EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1948
1949/**
1950 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1951 *
1952 * @rdev: regulator to operate on
1953 *
1954 * Regulators that use regmap for their register I/O can set the
1955 * vsel_reg and vsel_mask fields in their descriptor and then use this
1956 * as their get_voltage_vsel operation, saving some code.
1957 */
1958int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1959{
1960	unsigned int val;
1961	int ret;
 
 
1962
1963	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1964	if (ret != 0)
1965		return ret;
1966
1967	val &= rdev->desc->vsel_mask;
1968	val >>= ffs(rdev->desc->vsel_mask) - 1;
1969
1970	return val;
1971}
1972EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1973
1974/**
1975 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1976 *
1977 * @rdev: regulator to operate on
1978 * @sel: Selector to set
1979 *
1980 * Regulators that use regmap for their register I/O can set the
1981 * vsel_reg and vsel_mask fields in their descriptor and then use this
1982 * as their set_voltage_vsel operation, saving some code.
1983 */
1984int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1985{
1986	sel <<= ffs(rdev->desc->vsel_mask) - 1;
 
1987
1988	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1989				  rdev->desc->vsel_mask, sel);
1990}
1991EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
 
 
 
1992
1993/**
1994 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
1995 *
1996 * @rdev: Regulator to operate on
1997 * @min_uV: Lower bound for voltage
1998 * @max_uV: Upper bound for voltage
1999 *
2000 * Drivers implementing set_voltage_sel() and list_voltage() can use
2001 * this as their map_voltage() operation.  It will find a suitable
2002 * voltage by calling list_voltage() until it gets something in bounds
2003 * for the requested voltages.
2004 */
2005int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2006				  int min_uV, int max_uV)
2007{
2008	int best_val = INT_MAX;
2009	int selector = 0;
2010	int i, ret;
2011
2012	/* Find the smallest voltage that falls within the specified
2013	 * range.
2014	 */
2015	for (i = 0; i < rdev->desc->n_voltages; i++) {
2016		ret = rdev->desc->ops->list_voltage(rdev, i);
2017		if (ret < 0)
2018			continue;
2019
2020		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2021			best_val = ret;
2022			selector = i;
2023		}
2024	}
2025
2026	if (best_val != INT_MAX)
2027		return selector;
2028	else
2029		return -EINVAL;
2030}
2031EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2032
2033/**
2034 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2035 *
2036 * @rdev: Regulator to operate on
2037 * @min_uV: Lower bound for voltage
2038 * @max_uV: Upper bound for voltage
2039 *
2040 * Drivers providing min_uV and uV_step in their regulator_desc can
2041 * use this as their map_voltage() operation.
2042 */
2043int regulator_map_voltage_linear(struct regulator_dev *rdev,
2044				 int min_uV, int max_uV)
2045{
2046	int ret, voltage;
 
2047
2048	if (!rdev->desc->uV_step) {
2049		BUG_ON(!rdev->desc->uV_step);
 
 
 
 
2050		return -EINVAL;
2051	}
2052
2053	if (min_uV < rdev->desc->min_uV)
2054		min_uV = rdev->desc->min_uV;
2055
2056	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2057	if (ret < 0)
2058		return ret;
2059
2060	/* Map back into a voltage to verify we're still in bounds */
2061	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2062	if (voltage < min_uV || voltage > max_uV)
2063		return -EINVAL;
2064
2065	return ret;
2066}
2067EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2068
2069static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2070				     int min_uV, int max_uV)
2071{
2072	int ret;
2073	int delay = 0;
2074	int best_val;
2075	unsigned int selector;
2076	int old_selector = -1;
2077
2078	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2079
2080	min_uV += rdev->constraints->uV_offset;
2081	max_uV += rdev->constraints->uV_offset;
2082
2083	/*
2084	 * If we can't obtain the old selector there is not enough
2085	 * info to call set_voltage_time_sel().
2086	 */
2087	if (rdev->desc->ops->set_voltage_time_sel &&
 
2088	    rdev->desc->ops->get_voltage_sel) {
2089		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2090		if (old_selector < 0)
2091			return old_selector;
2092	}
2093
2094	if (rdev->desc->ops->set_voltage) {
2095		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2096						   &selector);
 
 
 
 
 
 
 
 
 
2097	} else if (rdev->desc->ops->set_voltage_sel) {
2098		if (rdev->desc->ops->map_voltage)
2099			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2100							   max_uV);
2101		else
2102			ret = regulator_map_voltage_iterate(rdev, min_uV,
2103							    max_uV);
2104
2105		if (ret >= 0) {
2106			selector = ret;
2107			ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
 
 
 
 
 
 
 
 
 
2108		}
2109	} else {
2110		ret = -EINVAL;
2111	}
2112
2113	if (rdev->desc->ops->list_voltage)
2114		best_val = rdev->desc->ops->list_voltage(rdev, selector);
2115	else
2116		best_val = -1;
2117
2118	/* Call set_voltage_time_sel if successfully obtained old_selector */
2119	if (ret == 0 && old_selector >= 0 &&
2120	    rdev->desc->ops->set_voltage_time_sel) {
2121
2122		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2123						old_selector, selector);
2124		if (delay < 0) {
2125			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2126				  delay);
2127			delay = 0;
2128		}
 
 
 
 
 
 
 
 
2129	}
2130
2131	/* Insert any necessary delays */
2132	if (delay >= 1000) {
2133		mdelay(delay / 1000);
2134		udelay(delay % 1000);
2135	} else if (delay) {
2136		udelay(delay);
2137	}
2138
2139	if (ret == 0)
2140		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2141				     NULL);
 
2142
2143	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2144
2145	return ret;
2146}
2147
2148/**
2149 * regulator_set_voltage - set regulator output voltage
2150 * @regulator: regulator source
2151 * @min_uV: Minimum required voltage in uV
2152 * @max_uV: Maximum acceptable voltage in uV
2153 *
2154 * Sets a voltage regulator to the desired output voltage. This can be set
2155 * during any regulator state. IOW, regulator can be disabled or enabled.
2156 *
2157 * If the regulator is enabled then the voltage will change to the new value
2158 * immediately otherwise if the regulator is disabled the regulator will
2159 * output at the new voltage when enabled.
2160 *
2161 * NOTE: If the regulator is shared between several devices then the lowest
2162 * request voltage that meets the system constraints will be used.
2163 * Regulator system constraints must be set for this regulator before
2164 * calling this function otherwise this call will fail.
2165 */
2166int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2167{
2168	struct regulator_dev *rdev = regulator->rdev;
2169	int ret = 0;
2170
2171	mutex_lock(&rdev->mutex);
 
 
2172
2173	/* If we're setting the same range as last time the change
2174	 * should be a noop (some cpufreq implementations use the same
2175	 * voltage for multiple frequencies, for example).
2176	 */
2177	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2178		goto out;
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
2180	/* sanity check */
2181	if (!rdev->desc->ops->set_voltage &&
2182	    !rdev->desc->ops->set_voltage_sel) {
2183		ret = -EINVAL;
2184		goto out;
2185	}
2186
2187	/* constraints check */
2188	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2189	if (ret < 0)
2190		goto out;
 
 
 
 
2191	regulator->min_uV = min_uV;
2192	regulator->max_uV = max_uV;
2193
2194	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2195	if (ret < 0)
2196		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197
2198	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
 
 
 
 
 
 
 
 
2199
2200out:
2201	mutex_unlock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202	return ret;
2203}
2204EXPORT_SYMBOL_GPL(regulator_set_voltage);
2205
2206/**
2207 * regulator_set_voltage_time - get raise/fall time
2208 * @regulator: regulator source
2209 * @old_uV: starting voltage in microvolts
2210 * @new_uV: target voltage in microvolts
2211 *
2212 * Provided with the starting and ending voltage, this function attempts to
2213 * calculate the time in microseconds required to rise or fall to this new
2214 * voltage.
2215 */
2216int regulator_set_voltage_time(struct regulator *regulator,
2217			       int old_uV, int new_uV)
2218{
2219	struct regulator_dev	*rdev = regulator->rdev;
2220	struct regulator_ops	*ops = rdev->desc->ops;
2221	int old_sel = -1;
2222	int new_sel = -1;
2223	int voltage;
2224	int i;
2225
2226	/* Currently requires operations to do this */
2227	if (!ops->list_voltage || !ops->set_voltage_time_sel
2228	    || !rdev->desc->n_voltages)
2229		return -EINVAL;
2230
2231	for (i = 0; i < rdev->desc->n_voltages; i++) {
2232		/* We only look for exact voltage matches here */
2233		voltage = regulator_list_voltage(regulator, i);
2234		if (voltage < 0)
2235			return -EINVAL;
2236		if (voltage == 0)
2237			continue;
2238		if (voltage == old_uV)
2239			old_sel = i;
2240		if (voltage == new_uV)
2241			new_sel = i;
2242	}
2243
2244	if (old_sel < 0 || new_sel < 0)
2245		return -EINVAL;
2246
2247	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2248}
2249EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2250
2251/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2252 * regulator_sync_voltage - re-apply last regulator output voltage
2253 * @regulator: regulator source
2254 *
2255 * Re-apply the last configured voltage.  This is intended to be used
2256 * where some external control source the consumer is cooperating with
2257 * has caused the configured voltage to change.
2258 */
2259int regulator_sync_voltage(struct regulator *regulator)
2260{
2261	struct regulator_dev *rdev = regulator->rdev;
2262	int ret, min_uV, max_uV;
2263
2264	mutex_lock(&rdev->mutex);
2265
2266	if (!rdev->desc->ops->set_voltage &&
2267	    !rdev->desc->ops->set_voltage_sel) {
2268		ret = -EINVAL;
2269		goto out;
2270	}
2271
2272	/* This is only going to work if we've had a voltage configured. */
2273	if (!regulator->min_uV && !regulator->max_uV) {
2274		ret = -EINVAL;
2275		goto out;
2276	}
2277
2278	min_uV = regulator->min_uV;
2279	max_uV = regulator->max_uV;
2280
2281	/* This should be a paranoia check... */
2282	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2283	if (ret < 0)
2284		goto out;
2285
2286	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2287	if (ret < 0)
2288		goto out;
2289
2290	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2291
2292out:
2293	mutex_unlock(&rdev->mutex);
2294	return ret;
2295}
2296EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2297
2298static int _regulator_get_voltage(struct regulator_dev *rdev)
2299{
2300	int sel, ret;
2301
2302	if (rdev->desc->ops->get_voltage_sel) {
2303		sel = rdev->desc->ops->get_voltage_sel(rdev);
2304		if (sel < 0)
2305			return sel;
2306		ret = rdev->desc->ops->list_voltage(rdev, sel);
2307	} else if (rdev->desc->ops->get_voltage) {
2308		ret = rdev->desc->ops->get_voltage(rdev);
 
 
 
 
 
 
2309	} else {
2310		return -EINVAL;
2311	}
2312
2313	if (ret < 0)
2314		return ret;
2315	return ret - rdev->constraints->uV_offset;
2316}
2317
2318/**
2319 * regulator_get_voltage - get regulator output voltage
2320 * @regulator: regulator source
2321 *
2322 * This returns the current regulator voltage in uV.
2323 *
2324 * NOTE: If the regulator is disabled it will return the voltage value. This
2325 * function should not be used to determine regulator state.
2326 */
2327int regulator_get_voltage(struct regulator *regulator)
2328{
2329	int ret;
2330
2331	mutex_lock(&regulator->rdev->mutex);
2332
2333	ret = _regulator_get_voltage(regulator->rdev);
2334
2335	mutex_unlock(&regulator->rdev->mutex);
2336
2337	return ret;
2338}
2339EXPORT_SYMBOL_GPL(regulator_get_voltage);
2340
2341/**
2342 * regulator_set_current_limit - set regulator output current limit
2343 * @regulator: regulator source
2344 * @min_uA: Minimuum supported current in uA
2345 * @max_uA: Maximum supported current in uA
2346 *
2347 * Sets current sink to the desired output current. This can be set during
2348 * any regulator state. IOW, regulator can be disabled or enabled.
2349 *
2350 * If the regulator is enabled then the current will change to the new value
2351 * immediately otherwise if the regulator is disabled the regulator will
2352 * output at the new current when enabled.
2353 *
2354 * NOTE: Regulator system constraints must be set for this regulator before
2355 * calling this function otherwise this call will fail.
2356 */
2357int regulator_set_current_limit(struct regulator *regulator,
2358			       int min_uA, int max_uA)
2359{
2360	struct regulator_dev *rdev = regulator->rdev;
2361	int ret;
2362
2363	mutex_lock(&rdev->mutex);
2364
2365	/* sanity check */
2366	if (!rdev->desc->ops->set_current_limit) {
2367		ret = -EINVAL;
2368		goto out;
2369	}
2370
2371	/* constraints check */
2372	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2373	if (ret < 0)
2374		goto out;
2375
2376	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2377out:
2378	mutex_unlock(&rdev->mutex);
2379	return ret;
2380}
2381EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2382
2383static int _regulator_get_current_limit(struct regulator_dev *rdev)
2384{
2385	int ret;
2386
2387	mutex_lock(&rdev->mutex);
2388
2389	/* sanity check */
2390	if (!rdev->desc->ops->get_current_limit) {
2391		ret = -EINVAL;
2392		goto out;
2393	}
2394
2395	ret = rdev->desc->ops->get_current_limit(rdev);
2396out:
2397	mutex_unlock(&rdev->mutex);
2398	return ret;
2399}
2400
2401/**
2402 * regulator_get_current_limit - get regulator output current
2403 * @regulator: regulator source
2404 *
2405 * This returns the current supplied by the specified current sink in uA.
2406 *
2407 * NOTE: If the regulator is disabled it will return the current value. This
2408 * function should not be used to determine regulator state.
2409 */
2410int regulator_get_current_limit(struct regulator *regulator)
2411{
2412	return _regulator_get_current_limit(regulator->rdev);
2413}
2414EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2415
2416/**
2417 * regulator_set_mode - set regulator operating mode
2418 * @regulator: regulator source
2419 * @mode: operating mode - one of the REGULATOR_MODE constants
2420 *
2421 * Set regulator operating mode to increase regulator efficiency or improve
2422 * regulation performance.
2423 *
2424 * NOTE: Regulator system constraints must be set for this regulator before
2425 * calling this function otherwise this call will fail.
2426 */
2427int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2428{
2429	struct regulator_dev *rdev = regulator->rdev;
2430	int ret;
2431	int regulator_curr_mode;
2432
2433	mutex_lock(&rdev->mutex);
2434
2435	/* sanity check */
2436	if (!rdev->desc->ops->set_mode) {
2437		ret = -EINVAL;
2438		goto out;
2439	}
2440
2441	/* return if the same mode is requested */
2442	if (rdev->desc->ops->get_mode) {
2443		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2444		if (regulator_curr_mode == mode) {
2445			ret = 0;
2446			goto out;
2447		}
2448	}
2449
2450	/* constraints check */
2451	ret = regulator_mode_constrain(rdev, &mode);
2452	if (ret < 0)
2453		goto out;
2454
2455	ret = rdev->desc->ops->set_mode(rdev, mode);
2456out:
2457	mutex_unlock(&rdev->mutex);
2458	return ret;
2459}
2460EXPORT_SYMBOL_GPL(regulator_set_mode);
2461
2462static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2463{
2464	int ret;
2465
2466	mutex_lock(&rdev->mutex);
2467
2468	/* sanity check */
2469	if (!rdev->desc->ops->get_mode) {
2470		ret = -EINVAL;
2471		goto out;
2472	}
2473
2474	ret = rdev->desc->ops->get_mode(rdev);
2475out:
2476	mutex_unlock(&rdev->mutex);
2477	return ret;
2478}
2479
2480/**
2481 * regulator_get_mode - get regulator operating mode
2482 * @regulator: regulator source
2483 *
2484 * Get the current regulator operating mode.
2485 */
2486unsigned int regulator_get_mode(struct regulator *regulator)
2487{
2488	return _regulator_get_mode(regulator->rdev);
2489}
2490EXPORT_SYMBOL_GPL(regulator_get_mode);
2491
2492/**
2493 * regulator_set_optimum_mode - set regulator optimum operating mode
2494 * @regulator: regulator source
2495 * @uA_load: load current
2496 *
2497 * Notifies the regulator core of a new device load. This is then used by
2498 * DRMS (if enabled by constraints) to set the most efficient regulator
2499 * operating mode for the new regulator loading.
2500 *
2501 * Consumer devices notify their supply regulator of the maximum power
2502 * they will require (can be taken from device datasheet in the power
2503 * consumption tables) when they change operational status and hence power
2504 * state. Examples of operational state changes that can affect power
2505 * consumption are :-
2506 *
2507 *    o Device is opened / closed.
2508 *    o Device I/O is about to begin or has just finished.
2509 *    o Device is idling in between work.
2510 *
2511 * This information is also exported via sysfs to userspace.
2512 *
2513 * DRMS will sum the total requested load on the regulator and change
2514 * to the most efficient operating mode if platform constraints allow.
2515 *
2516 * Returns the new regulator mode or error.
2517 */
2518int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2519{
2520	struct regulator_dev *rdev = regulator->rdev;
2521	struct regulator *consumer;
2522	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2523	unsigned int mode;
 
 
 
 
 
 
 
2524
2525	if (rdev->supply)
2526		input_uV = regulator_get_voltage(rdev->supply);
 
 
 
 
 
 
 
 
 
 
 
 
 
2527
2528	mutex_lock(&rdev->mutex);
 
2529
2530	/*
2531	 * first check to see if we can set modes at all, otherwise just
2532	 * tell the consumer everything is OK.
2533	 */
2534	regulator->uA_load = uA_load;
2535	ret = regulator_check_drms(rdev);
2536	if (ret < 0) {
2537		ret = 0;
2538		goto out;
2539	}
2540
2541	if (!rdev->desc->ops->get_optimum_mode)
2542		goto out;
2543
2544	/*
2545	 * we can actually do this so any errors are indicators of
2546	 * potential real failure.
2547	 */
2548	ret = -EINVAL;
2549
2550	if (!rdev->desc->ops->set_mode)
2551		goto out;
 
 
 
2552
2553	/* get output voltage */
2554	output_uV = _regulator_get_voltage(rdev);
2555	if (output_uV <= 0) {
2556		rdev_err(rdev, "invalid output voltage found\n");
2557		goto out;
2558	}
2559
2560	/* No supply? Use constraint voltage */
2561	if (input_uV <= 0)
2562		input_uV = rdev->constraints->input_uV;
2563	if (input_uV <= 0) {
2564		rdev_err(rdev, "invalid input voltage found\n");
2565		goto out;
2566	}
2567
2568	/* calc total requested load for this regulator */
2569	list_for_each_entry(consumer, &rdev->consumer_list, list)
2570		total_uA_load += consumer->uA_load;
2571
2572	mode = rdev->desc->ops->get_optimum_mode(rdev,
2573						 input_uV, output_uV,
2574						 total_uA_load);
2575	ret = regulator_mode_constrain(rdev, &mode);
2576	if (ret < 0) {
2577		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2578			 total_uA_load, input_uV, output_uV);
2579		goto out;
2580	}
2581
2582	ret = rdev->desc->ops->set_mode(rdev, mode);
2583	if (ret < 0) {
2584		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2585		goto out;
2586	}
2587	ret = mode;
2588out:
2589	mutex_unlock(&rdev->mutex);
 
2590	return ret;
2591}
2592EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2593
2594/**
2595 * regulator_register_notifier - register regulator event notifier
2596 * @regulator: regulator source
2597 * @nb: notifier block
2598 *
2599 * Register notifier block to receive regulator events.
2600 */
2601int regulator_register_notifier(struct regulator *regulator,
2602			      struct notifier_block *nb)
2603{
2604	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2605						nb);
2606}
2607EXPORT_SYMBOL_GPL(regulator_register_notifier);
2608
2609/**
2610 * regulator_unregister_notifier - unregister regulator event notifier
2611 * @regulator: regulator source
2612 * @nb: notifier block
2613 *
2614 * Unregister regulator event notifier block.
2615 */
2616int regulator_unregister_notifier(struct regulator *regulator,
2617				struct notifier_block *nb)
2618{
2619	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2620						  nb);
2621}
2622EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2623
2624/* notify regulator consumers and downstream regulator consumers.
2625 * Note mutex must be held by caller.
2626 */
2627static void _notifier_call_chain(struct regulator_dev *rdev,
2628				  unsigned long event, void *data)
2629{
2630	/* call rdev chain first */
2631	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2632}
2633
2634/**
2635 * regulator_bulk_get - get multiple regulator consumers
2636 *
2637 * @dev:           Device to supply
2638 * @num_consumers: Number of consumers to register
2639 * @consumers:     Configuration of consumers; clients are stored here.
2640 *
2641 * @return 0 on success, an errno on failure.
2642 *
2643 * This helper function allows drivers to get several regulator
2644 * consumers in one operation.  If any of the regulators cannot be
2645 * acquired then any regulators that were allocated will be freed
2646 * before returning to the caller.
2647 */
2648int regulator_bulk_get(struct device *dev, int num_consumers,
2649		       struct regulator_bulk_data *consumers)
2650{
2651	int i;
2652	int ret;
2653
2654	for (i = 0; i < num_consumers; i++)
2655		consumers[i].consumer = NULL;
2656
2657	for (i = 0; i < num_consumers; i++) {
2658		consumers[i].consumer = regulator_get(dev,
2659						      consumers[i].supply);
 
 
2660		if (IS_ERR(consumers[i].consumer)) {
2661			ret = PTR_ERR(consumers[i].consumer);
2662			dev_err(dev, "Failed to get supply '%s': %d\n",
2663				consumers[i].supply, ret);
2664			consumers[i].consumer = NULL;
2665			goto err;
2666		}
2667	}
2668
2669	return 0;
2670
2671err:
2672	while (--i >= 0)
2673		regulator_put(consumers[i].consumer);
2674
2675	return ret;
2676}
2677EXPORT_SYMBOL_GPL(regulator_bulk_get);
2678
2679/**
2680 * devm_regulator_bulk_get - managed get multiple regulator consumers
2681 *
2682 * @dev:           Device to supply
2683 * @num_consumers: Number of consumers to register
2684 * @consumers:     Configuration of consumers; clients are stored here.
2685 *
2686 * @return 0 on success, an errno on failure.
2687 *
2688 * This helper function allows drivers to get several regulator
2689 * consumers in one operation with management, the regulators will
2690 * automatically be freed when the device is unbound.  If any of the
2691 * regulators cannot be acquired then any regulators that were
2692 * allocated will be freed before returning to the caller.
2693 */
2694int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2695			    struct regulator_bulk_data *consumers)
2696{
2697	int i;
2698	int ret;
2699
2700	for (i = 0; i < num_consumers; i++)
2701		consumers[i].consumer = NULL;
2702
2703	for (i = 0; i < num_consumers; i++) {
2704		consumers[i].consumer = devm_regulator_get(dev,
2705							   consumers[i].supply);
2706		if (IS_ERR(consumers[i].consumer)) {
2707			ret = PTR_ERR(consumers[i].consumer);
2708			dev_err(dev, "Failed to get supply '%s': %d\n",
2709				consumers[i].supply, ret);
2710			consumers[i].consumer = NULL;
2711			goto err;
2712		}
2713	}
2714
2715	return 0;
2716
2717err:
2718	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2719		devm_regulator_put(consumers[i].consumer);
2720
2721	return ret;
2722}
2723EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2724
2725static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2726{
2727	struct regulator_bulk_data *bulk = data;
2728
2729	bulk->ret = regulator_enable(bulk->consumer);
2730}
2731
2732/**
2733 * regulator_bulk_enable - enable multiple regulator consumers
2734 *
2735 * @num_consumers: Number of consumers
2736 * @consumers:     Consumer data; clients are stored here.
2737 * @return         0 on success, an errno on failure
2738 *
2739 * This convenience API allows consumers to enable multiple regulator
2740 * clients in a single API call.  If any consumers cannot be enabled
2741 * then any others that were enabled will be disabled again prior to
2742 * return.
2743 */
2744int regulator_bulk_enable(int num_consumers,
2745			  struct regulator_bulk_data *consumers)
2746{
2747	LIST_HEAD(async_domain);
2748	int i;
2749	int ret = 0;
2750
2751	for (i = 0; i < num_consumers; i++) {
2752		if (consumers[i].consumer->always_on)
2753			consumers[i].ret = 0;
2754		else
2755			async_schedule_domain(regulator_bulk_enable_async,
2756					      &consumers[i], &async_domain);
2757	}
2758
2759	async_synchronize_full_domain(&async_domain);
2760
2761	/* If any consumer failed we need to unwind any that succeeded */
2762	for (i = 0; i < num_consumers; i++) {
2763		if (consumers[i].ret != 0) {
2764			ret = consumers[i].ret;
2765			goto err;
2766		}
2767	}
2768
2769	return 0;
2770
2771err:
2772	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2773	while (--i >= 0)
2774		regulator_disable(consumers[i].consumer);
 
 
 
 
2775
2776	return ret;
2777}
2778EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2779
2780/**
2781 * regulator_bulk_disable - disable multiple regulator consumers
2782 *
2783 * @num_consumers: Number of consumers
2784 * @consumers:     Consumer data; clients are stored here.
2785 * @return         0 on success, an errno on failure
2786 *
2787 * This convenience API allows consumers to disable multiple regulator
2788 * clients in a single API call.  If any consumers cannot be disabled
2789 * then any others that were disabled will be enabled again prior to
2790 * return.
2791 */
2792int regulator_bulk_disable(int num_consumers,
2793			   struct regulator_bulk_data *consumers)
2794{
2795	int i;
2796	int ret, r;
2797
2798	for (i = num_consumers - 1; i >= 0; --i) {
2799		ret = regulator_disable(consumers[i].consumer);
2800		if (ret != 0)
2801			goto err;
2802	}
2803
2804	return 0;
2805
2806err:
2807	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2808	for (++i; i < num_consumers; ++i) {
2809		r = regulator_enable(consumers[i].consumer);
2810		if (r != 0)
2811			pr_err("Failed to reename %s: %d\n",
2812			       consumers[i].supply, r);
2813	}
2814
2815	return ret;
2816}
2817EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2818
2819/**
2820 * regulator_bulk_force_disable - force disable multiple regulator consumers
2821 *
2822 * @num_consumers: Number of consumers
2823 * @consumers:     Consumer data; clients are stored here.
2824 * @return         0 on success, an errno on failure
2825 *
2826 * This convenience API allows consumers to forcibly disable multiple regulator
2827 * clients in a single API call.
2828 * NOTE: This should be used for situations when device damage will
2829 * likely occur if the regulators are not disabled (e.g. over temp).
2830 * Although regulator_force_disable function call for some consumers can
2831 * return error numbers, the function is called for all consumers.
2832 */
2833int regulator_bulk_force_disable(int num_consumers,
2834			   struct regulator_bulk_data *consumers)
2835{
2836	int i;
2837	int ret;
2838
2839	for (i = 0; i < num_consumers; i++)
2840		consumers[i].ret =
2841			    regulator_force_disable(consumers[i].consumer);
2842
2843	for (i = 0; i < num_consumers; i++) {
2844		if (consumers[i].ret != 0) {
2845			ret = consumers[i].ret;
2846			goto out;
2847		}
2848	}
2849
2850	return 0;
2851out:
2852	return ret;
2853}
2854EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2855
2856/**
2857 * regulator_bulk_free - free multiple regulator consumers
2858 *
2859 * @num_consumers: Number of consumers
2860 * @consumers:     Consumer data; clients are stored here.
2861 *
2862 * This convenience API allows consumers to free multiple regulator
2863 * clients in a single API call.
2864 */
2865void regulator_bulk_free(int num_consumers,
2866			 struct regulator_bulk_data *consumers)
2867{
2868	int i;
2869
2870	for (i = 0; i < num_consumers; i++) {
2871		regulator_put(consumers[i].consumer);
2872		consumers[i].consumer = NULL;
2873	}
2874}
2875EXPORT_SYMBOL_GPL(regulator_bulk_free);
2876
2877/**
2878 * regulator_notifier_call_chain - call regulator event notifier
2879 * @rdev: regulator source
2880 * @event: notifier block
2881 * @data: callback-specific data.
2882 *
2883 * Called by regulator drivers to notify clients a regulator event has
2884 * occurred. We also notify regulator clients downstream.
2885 * Note lock must be held by caller.
2886 */
2887int regulator_notifier_call_chain(struct regulator_dev *rdev,
2888				  unsigned long event, void *data)
2889{
 
 
2890	_notifier_call_chain(rdev, event, data);
2891	return NOTIFY_DONE;
2892
2893}
2894EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2895
2896/**
2897 * regulator_mode_to_status - convert a regulator mode into a status
2898 *
2899 * @mode: Mode to convert
2900 *
2901 * Convert a regulator mode into a status.
2902 */
2903int regulator_mode_to_status(unsigned int mode)
2904{
2905	switch (mode) {
2906	case REGULATOR_MODE_FAST:
2907		return REGULATOR_STATUS_FAST;
2908	case REGULATOR_MODE_NORMAL:
2909		return REGULATOR_STATUS_NORMAL;
2910	case REGULATOR_MODE_IDLE:
2911		return REGULATOR_STATUS_IDLE;
2912	case REGULATOR_STATUS_STANDBY:
2913		return REGULATOR_STATUS_STANDBY;
2914	default:
2915		return 0;
2916	}
2917}
2918EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2920/*
2921 * To avoid cluttering sysfs (and memory) with useless state, only
2922 * create attributes that can be meaningfully displayed.
2923 */
2924static int add_regulator_attributes(struct regulator_dev *rdev)
 
2925{
2926	struct device		*dev = &rdev->dev;
2927	struct regulator_ops	*ops = rdev->desc->ops;
2928	int			status = 0;
 
 
 
 
 
 
 
2929
2930	/* some attributes need specific methods to be displayed */
2931	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2932	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2933		status = device_create_file(dev, &dev_attr_microvolts);
2934		if (status < 0)
2935			return status;
2936	}
2937	if (ops->get_current_limit) {
2938		status = device_create_file(dev, &dev_attr_microamps);
2939		if (status < 0)
2940			return status;
2941	}
2942	if (ops->get_mode) {
2943		status = device_create_file(dev, &dev_attr_opmode);
2944		if (status < 0)
2945			return status;
2946	}
2947	if (ops->is_enabled) {
2948		status = device_create_file(dev, &dev_attr_state);
2949		if (status < 0)
2950			return status;
2951	}
2952	if (ops->get_status) {
2953		status = device_create_file(dev, &dev_attr_status);
2954		if (status < 0)
2955			return status;
2956	}
2957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2958	/* some attributes are type-specific */
2959	if (rdev->desc->type == REGULATOR_CURRENT) {
2960		status = device_create_file(dev, &dev_attr_requested_microamps);
2961		if (status < 0)
2962			return status;
2963	}
2964
2965	/* all the other attributes exist to support constraints;
2966	 * don't show them if there are no constraints, or if the
2967	 * relevant supporting methods are missing.
2968	 */
2969	if (!rdev->constraints)
2970		return status;
2971
2972	/* constraints need specific supporting methods */
2973	if (ops->set_voltage || ops->set_voltage_sel) {
2974		status = device_create_file(dev, &dev_attr_min_microvolts);
2975		if (status < 0)
2976			return status;
2977		status = device_create_file(dev, &dev_attr_max_microvolts);
2978		if (status < 0)
2979			return status;
2980	}
2981	if (ops->set_current_limit) {
2982		status = device_create_file(dev, &dev_attr_min_microamps);
2983		if (status < 0)
2984			return status;
2985		status = device_create_file(dev, &dev_attr_max_microamps);
2986		if (status < 0)
2987			return status;
2988	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989
2990	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2991	if (status < 0)
2992		return status;
2993	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2994	if (status < 0)
2995		return status;
2996	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2997	if (status < 0)
2998		return status;
2999
3000	if (ops->set_suspend_voltage) {
3001		status = device_create_file(dev,
3002				&dev_attr_suspend_standby_microvolts);
3003		if (status < 0)
3004			return status;
3005		status = device_create_file(dev,
3006				&dev_attr_suspend_mem_microvolts);
3007		if (status < 0)
3008			return status;
3009		status = device_create_file(dev,
3010				&dev_attr_suspend_disk_microvolts);
3011		if (status < 0)
3012			return status;
3013	}
3014
3015	if (ops->set_suspend_mode) {
3016		status = device_create_file(dev,
3017				&dev_attr_suspend_standby_mode);
3018		if (status < 0)
3019			return status;
3020		status = device_create_file(dev,
3021				&dev_attr_suspend_mem_mode);
3022		if (status < 0)
3023			return status;
3024		status = device_create_file(dev,
3025				&dev_attr_suspend_disk_mode);
3026		if (status < 0)
3027			return status;
3028	}
3029
3030	return status;
 
 
3031}
3032
 
 
 
 
 
 
3033static void rdev_init_debugfs(struct regulator_dev *rdev)
3034{
3035	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
 
 
 
 
 
 
 
 
 
 
 
3036	if (!rdev->debugfs) {
3037		rdev_warn(rdev, "Failed to create debugfs directory\n");
3038		return;
3039	}
3040
3041	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3042			   &rdev->use_count);
3043	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3044			   &rdev->open_count);
 
 
3045}
3046
3047/**
3048 * regulator_register - register regulator
3049 * @regulator_desc: regulator to register
3050 * @config: runtime configuration for regulator
3051 *
3052 * Called by regulator drivers to register a regulator.
3053 * Returns 0 on success.
 
3054 */
3055struct regulator_dev *
3056regulator_register(const struct regulator_desc *regulator_desc,
3057		   const struct regulator_config *config)
3058{
3059	const struct regulation_constraints *constraints = NULL;
3060	const struct regulator_init_data *init_data;
3061	static atomic_t regulator_no = ATOMIC_INIT(0);
 
3062	struct regulator_dev *rdev;
3063	struct device *dev;
3064	int ret, i;
3065	const char *supply = NULL;
3066
3067	if (regulator_desc == NULL || config == NULL)
3068		return ERR_PTR(-EINVAL);
3069
3070	dev = config->dev;
3071	WARN_ON(!dev);
3072
3073	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3074		return ERR_PTR(-EINVAL);
3075
3076	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3077	    regulator_desc->type != REGULATOR_CURRENT)
3078		return ERR_PTR(-EINVAL);
3079
3080	/* Only one of each should be implemented */
3081	WARN_ON(regulator_desc->ops->get_voltage &&
3082		regulator_desc->ops->get_voltage_sel);
3083	WARN_ON(regulator_desc->ops->set_voltage &&
3084		regulator_desc->ops->set_voltage_sel);
3085
3086	/* If we're using selectors we must implement list_voltage. */
3087	if (regulator_desc->ops->get_voltage_sel &&
3088	    !regulator_desc->ops->list_voltage) {
3089		return ERR_PTR(-EINVAL);
3090	}
3091	if (regulator_desc->ops->set_voltage_sel &&
3092	    !regulator_desc->ops->list_voltage) {
3093		return ERR_PTR(-EINVAL);
3094	}
3095
3096	init_data = config->init_data;
3097
3098	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3099	if (rdev == NULL)
3100		return ERR_PTR(-ENOMEM);
3101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3102	mutex_lock(&regulator_list_mutex);
3103
3104	mutex_init(&rdev->mutex);
3105	rdev->reg_data = config->driver_data;
3106	rdev->owner = regulator_desc->owner;
3107	rdev->desc = regulator_desc;
3108	rdev->regmap = config->regmap;
 
 
 
 
 
3109	INIT_LIST_HEAD(&rdev->consumer_list);
3110	INIT_LIST_HEAD(&rdev->list);
3111	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3112	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3113
3114	/* preform any regulator specific init */
3115	if (init_data && init_data->regulator_init) {
3116		ret = init_data->regulator_init(rdev->reg_data);
3117		if (ret < 0)
3118			goto clean;
3119	}
3120
 
 
 
 
 
 
 
 
 
 
3121	/* register with sysfs */
3122	rdev->dev.class = &regulator_class;
3123	rdev->dev.of_node = config->of_node;
3124	rdev->dev.parent = dev;
3125	dev_set_name(&rdev->dev, "regulator.%d",
3126		     atomic_inc_return(&regulator_no) - 1);
3127	ret = device_register(&rdev->dev);
3128	if (ret != 0) {
3129		put_device(&rdev->dev);
3130		goto clean;
3131	}
3132
3133	dev_set_drvdata(&rdev->dev, rdev);
3134
3135	/* set regulator constraints */
3136	if (init_data)
3137		constraints = &init_data->constraints;
3138
3139	ret = set_machine_constraints(rdev, constraints);
3140	if (ret < 0)
3141		goto scrub;
3142
3143	/* add attributes supported by this regulator */
3144	ret = add_regulator_attributes(rdev);
3145	if (ret < 0)
3146		goto scrub;
3147
3148	if (init_data && init_data->supply_regulator)
3149		supply = init_data->supply_regulator;
3150	else if (regulator_desc->supply_name)
3151		supply = regulator_desc->supply_name;
3152
3153	if (supply) {
3154		struct regulator_dev *r;
3155
3156		r = regulator_dev_lookup(dev, supply, &ret);
3157
3158		if (!r) {
3159			dev_err(dev, "Failed to find supply %s\n", supply);
3160			ret = -EPROBE_DEFER;
3161			goto scrub;
3162		}
3163
3164		ret = set_supply(rdev, r);
3165		if (ret < 0)
3166			goto scrub;
3167
3168		/* Enable supply if rail is enabled */
3169		if (_regulator_is_enabled(rdev)) {
3170			ret = regulator_enable(rdev->supply);
3171			if (ret < 0)
3172				goto scrub;
3173		}
3174	}
3175
3176	/* add consumers devices */
3177	if (init_data) {
3178		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3179			ret = set_consumer_device_supply(rdev,
3180				init_data->consumer_supplies[i].dev_name,
3181				init_data->consumer_supplies[i].supply);
3182			if (ret < 0) {
3183				dev_err(dev, "Failed to set supply %s\n",
3184					init_data->consumer_supplies[i].supply);
3185				goto unset_supplies;
3186			}
3187		}
3188	}
3189
3190	list_add(&rdev->list, &regulator_list);
3191
3192	rdev_init_debugfs(rdev);
3193out:
3194	mutex_unlock(&regulator_list_mutex);
 
3195	return rdev;
3196
3197unset_supplies:
3198	unset_regulator_supplies(rdev);
3199
3200scrub:
3201	if (rdev->supply)
3202		regulator_put(rdev->supply);
3203	kfree(rdev->constraints);
3204	device_unregister(&rdev->dev);
3205	/* device core frees rdev */
3206	rdev = ERR_PTR(ret);
3207	goto out;
3208
 
 
3209clean:
3210	kfree(rdev);
3211	rdev = ERR_PTR(ret);
3212	goto out;
3213}
3214EXPORT_SYMBOL_GPL(regulator_register);
3215
3216/**
3217 * regulator_unregister - unregister regulator
3218 * @rdev: regulator to unregister
3219 *
3220 * Called by regulator drivers to unregister a regulator.
3221 */
3222void regulator_unregister(struct regulator_dev *rdev)
3223{
3224	if (rdev == NULL)
3225		return;
3226
3227	if (rdev->supply)
 
 
3228		regulator_put(rdev->supply);
 
3229	mutex_lock(&regulator_list_mutex);
3230	debugfs_remove_recursive(rdev->debugfs);
3231	flush_work_sync(&rdev->disable_work.work);
3232	WARN_ON(rdev->open_count);
3233	unset_regulator_supplies(rdev);
3234	list_del(&rdev->list);
3235	kfree(rdev->constraints);
 
3236	device_unregister(&rdev->dev);
3237	mutex_unlock(&regulator_list_mutex);
3238}
3239EXPORT_SYMBOL_GPL(regulator_unregister);
3240
 
 
 
 
 
 
 
 
 
 
 
 
 
3241/**
3242 * regulator_suspend_prepare - prepare regulators for system wide suspend
3243 * @state: system suspend state
3244 *
3245 * Configure each regulator with it's suspend operating parameters for state.
3246 * This will usually be called by machine suspend code prior to supending.
3247 */
3248int regulator_suspend_prepare(suspend_state_t state)
3249{
3250	struct regulator_dev *rdev;
3251	int ret = 0;
3252
3253	/* ON is handled by regulator active state */
3254	if (state == PM_SUSPEND_ON)
3255		return -EINVAL;
3256
3257	mutex_lock(&regulator_list_mutex);
3258	list_for_each_entry(rdev, &regulator_list, list) {
 
 
3259
3260		mutex_lock(&rdev->mutex);
3261		ret = suspend_prepare(rdev, state);
3262		mutex_unlock(&rdev->mutex);
 
3263
3264		if (ret < 0) {
3265			rdev_err(rdev, "failed to prepare\n");
3266			goto out;
 
 
 
 
 
3267		}
 
 
 
 
 
 
 
 
 
3268	}
3269out:
3270	mutex_unlock(&regulator_list_mutex);
3271	return ret;
 
 
3272}
3273EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3274
3275/**
3276 * regulator_suspend_finish - resume regulators from system wide suspend
3277 *
3278 * Turn on regulators that might be turned off by regulator_suspend_prepare
3279 * and that should be turned on according to the regulators properties.
3280 */
3281int regulator_suspend_finish(void)
3282{
3283	struct regulator_dev *rdev;
3284	int ret = 0, error;
3285
3286	mutex_lock(&regulator_list_mutex);
3287	list_for_each_entry(rdev, &regulator_list, list) {
3288		struct regulator_ops *ops = rdev->desc->ops;
3289
3290		mutex_lock(&rdev->mutex);
3291		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3292				ops->enable) {
3293			error = ops->enable(rdev);
3294			if (error)
3295				ret = error;
3296		} else {
3297			if (!has_full_constraints)
3298				goto unlock;
3299			if (!ops->disable)
3300				goto unlock;
3301			if (!_regulator_is_enabled(rdev))
3302				goto unlock;
3303
3304			error = ops->disable(rdev);
3305			if (error)
3306				ret = error;
3307		}
3308unlock:
3309		mutex_unlock(&rdev->mutex);
3310	}
3311	mutex_unlock(&regulator_list_mutex);
3312	return ret;
3313}
3314EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3315
3316/**
3317 * regulator_has_full_constraints - the system has fully specified constraints
3318 *
3319 * Calling this function will cause the regulator API to disable all
3320 * regulators which have a zero use count and don't have an always_on
3321 * constraint in a late_initcall.
3322 *
3323 * The intention is that this will become the default behaviour in a
3324 * future kernel release so users are encouraged to use this facility
3325 * now.
3326 */
3327void regulator_has_full_constraints(void)
3328{
3329	has_full_constraints = 1;
3330}
3331EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3332
3333/**
3334 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3335 *
3336 * Calling this function will cause the regulator API to provide a
3337 * dummy regulator to consumers if no physical regulator is found,
3338 * allowing most consumers to proceed as though a regulator were
3339 * configured.  This allows systems such as those with software
3340 * controllable regulators for the CPU core only to be brought up more
3341 * readily.
3342 */
3343void regulator_use_dummy_regulator(void)
3344{
3345	board_wants_dummy_regulator = true;
3346}
3347EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3348
3349/**
3350 * rdev_get_drvdata - get rdev regulator driver data
3351 * @rdev: regulator
3352 *
3353 * Get rdev regulator driver private data. This call can be used in the
3354 * regulator driver context.
3355 */
3356void *rdev_get_drvdata(struct regulator_dev *rdev)
3357{
3358	return rdev->reg_data;
3359}
3360EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3361
3362/**
3363 * regulator_get_drvdata - get regulator driver data
3364 * @regulator: regulator
3365 *
3366 * Get regulator driver private data. This call can be used in the consumer
3367 * driver context when non API regulator specific functions need to be called.
3368 */
3369void *regulator_get_drvdata(struct regulator *regulator)
3370{
3371	return regulator->rdev->reg_data;
3372}
3373EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3374
3375/**
3376 * regulator_set_drvdata - set regulator driver data
3377 * @regulator: regulator
3378 * @data: data
3379 */
3380void regulator_set_drvdata(struct regulator *regulator, void *data)
3381{
3382	regulator->rdev->reg_data = data;
3383}
3384EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3385
3386/**
3387 * regulator_get_id - get regulator ID
3388 * @rdev: regulator
3389 */
3390int rdev_get_id(struct regulator_dev *rdev)
3391{
3392	return rdev->desc->id;
3393}
3394EXPORT_SYMBOL_GPL(rdev_get_id);
3395
3396struct device *rdev_get_dev(struct regulator_dev *rdev)
3397{
3398	return &rdev->dev;
3399}
3400EXPORT_SYMBOL_GPL(rdev_get_dev);
3401
3402void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3403{
3404	return reg_init_data->driver_data;
3405}
3406EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3407
3408#ifdef CONFIG_DEBUG_FS
3409static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3410				    size_t count, loff_t *ppos)
3411{
3412	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3413	ssize_t len, ret = 0;
3414	struct regulator_map *map;
3415
3416	if (!buf)
3417		return -ENOMEM;
3418
3419	list_for_each_entry(map, &regulator_map_list, list) {
3420		len = snprintf(buf + ret, PAGE_SIZE - ret,
3421			       "%s -> %s.%s\n",
3422			       rdev_get_name(map->regulator), map->dev_name,
3423			       map->supply);
3424		if (len >= 0)
3425			ret += len;
3426		if (ret > PAGE_SIZE) {
3427			ret = PAGE_SIZE;
3428			break;
3429		}
3430	}
3431
3432	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3433
3434	kfree(buf);
3435
3436	return ret;
3437}
3438#endif
3439
3440static const struct file_operations supply_map_fops = {
3441#ifdef CONFIG_DEBUG_FS
3442	.read = supply_map_read_file,
3443	.llseek = default_llseek,
3444#endif
3445};
3446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3447static int __init regulator_init(void)
3448{
3449	int ret;
3450
3451	ret = class_register(&regulator_class);
3452
3453	debugfs_root = debugfs_create_dir("regulator", NULL);
3454	if (!debugfs_root)
3455		pr_warn("regulator: Failed to create debugfs directory\n");
3456
3457	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3458			    &supply_map_fops);
3459
 
 
 
3460	regulator_dummy_init();
3461
3462	return ret;
3463}
3464
3465/* init early to allow our consumers to complete system booting */
3466core_initcall(regulator_init);
3467
3468static int __init regulator_init_complete(void)
3469{
3470	struct regulator_dev *rdev;
3471	struct regulator_ops *ops;
3472	struct regulation_constraints *c;
3473	int enabled, ret;
3474
3475	mutex_lock(&regulator_list_mutex);
 
 
 
 
3476
3477	/* If we have a full configuration then disable any regulators
3478	 * which are not in use or always_on.  This will become the
3479	 * default behaviour in the future.
3480	 */
3481	list_for_each_entry(rdev, &regulator_list, list) {
3482		ops = rdev->desc->ops;
3483		c = rdev->constraints;
3484
3485		if (!ops->disable || (c && c->always_on))
3486			continue;
3487
3488		mutex_lock(&rdev->mutex);
 
 
 
 
3489
3490		if (rdev->use_count)
3491			goto unlock;
3492
3493		/* If we can't read the status assume it's on. */
3494		if (ops->is_enabled)
3495			enabled = ops->is_enabled(rdev);
3496		else
3497			enabled = 1;
 
 
 
 
 
 
 
 
 
 
3498
3499		if (!enabled)
3500			goto unlock;
3501
3502		if (has_full_constraints) {
3503			/* We log since this may kill the system if it
3504			 * goes wrong. */
3505			rdev_info(rdev, "disabling\n");
3506			ret = ops->disable(rdev);
3507			if (ret != 0) {
3508				rdev_err(rdev, "couldn't disable: %d\n", ret);
3509			}
3510		} else {
3511			/* The intention is that in future we will
3512			 * assume that full constraints are provided
3513			 * so warn even if we aren't going to do
3514			 * anything here.
3515			 */
3516			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3517		}
3518
3519unlock:
3520		mutex_unlock(&rdev->mutex);
3521	}
 
 
 
 
 
 
 
3522
3523	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
3524
3525	return 0;
3526}
3527late_initcall(regulator_init_complete);