Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
  41
  42#define rdev_crit(rdev, fmt, ...)					\
  43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)					\
  45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)					\
  47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)					\
  49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)					\
  51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
  53static DEFINE_MUTEX(regulator_list_mutex);
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
  57static bool has_full_constraints;
  58
  59static struct dentry *debugfs_root;
  60
  61static struct class regulator_class;
  62
  63/*
  64 * struct regulator_map
  65 *
  66 * Used to provide symbolic supply names to devices.
  67 */
  68struct regulator_map {
  69	struct list_head list;
  70	const char *dev_name;   /* The dev_name() for the consumer */
  71	const char *supply;
  72	struct regulator_dev *regulator;
  73};
  74
  75/*
  76 * struct regulator_enable_gpio
  77 *
  78 * Management for shared enable GPIO pin
  79 */
  80struct regulator_enable_gpio {
  81	struct list_head list;
  82	struct gpio_desc *gpiod;
  83	u32 enable_count;	/* a number of enabled shared GPIO */
  84	u32 request_count;	/* a number of requested shared GPIO */
  85	unsigned int ena_gpio_invert:1;
  86};
  87
  88/*
  89 * struct regulator_supply_alias
  90 *
  91 * Used to map lookups for a supply onto an alternative device.
  92 */
  93struct regulator_supply_alias {
  94	struct list_head list;
  95	struct device *src_dev;
  96	const char *src_supply;
  97	struct device *alias_dev;
  98	const char *alias_supply;
  99};
 100
 101static int _regulator_is_enabled(struct regulator_dev *rdev);
 102static int _regulator_disable(struct regulator_dev *rdev);
 103static int _regulator_get_voltage(struct regulator_dev *rdev);
 104static int _regulator_get_current_limit(struct regulator_dev *rdev);
 105static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 106static int _notifier_call_chain(struct regulator_dev *rdev,
 107				  unsigned long event, void *data);
 108static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 109				     int min_uV, int max_uV);
 110static struct regulator *create_regulator(struct regulator_dev *rdev,
 111					  struct device *dev,
 112					  const char *supply_name);
 113static void _regulator_put(struct regulator *regulator);
 114
 115static struct regulator_dev *dev_to_rdev(struct device *dev)
 116{
 117	return container_of(dev, struct regulator_dev, dev);
 118}
 119
 120static const char *rdev_get_name(struct regulator_dev *rdev)
 121{
 122	if (rdev->constraints && rdev->constraints->name)
 123		return rdev->constraints->name;
 124	else if (rdev->desc->name)
 125		return rdev->desc->name;
 126	else
 127		return "";
 128}
 129
 130static bool have_full_constraints(void)
 131{
 132	return has_full_constraints || of_have_populated_dt();
 133}
 134
 
 
 
 
 
 
 
 
 
 
 
 
 
 135static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
 136{
 137	if (rdev && rdev->supply)
 138		return rdev->supply->rdev;
 139
 140	return NULL;
 141}
 142
 143/**
 144 * regulator_lock_supply - lock a regulator and its supplies
 145 * @rdev:         regulator source
 146 */
 147static void regulator_lock_supply(struct regulator_dev *rdev)
 148{
 149	int i;
 150
 151	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
 152		mutex_lock_nested(&rdev->mutex, i);
 153}
 154
 155/**
 156 * regulator_unlock_supply - unlock a regulator and its supplies
 157 * @rdev:         regulator source
 158 */
 159static void regulator_unlock_supply(struct regulator_dev *rdev)
 160{
 161	struct regulator *supply;
 162
 163	while (1) {
 164		mutex_unlock(&rdev->mutex);
 165		supply = rdev->supply;
 166
 167		if (!rdev->supply)
 168			return;
 169
 170		rdev = supply->rdev;
 171	}
 172}
 173
 174/**
 175 * of_get_regulator - get a regulator device node based on supply name
 176 * @dev: Device pointer for the consumer (of regulator) device
 177 * @supply: regulator supply name
 178 *
 179 * Extract the regulator device node corresponding to the supply name.
 180 * returns the device node corresponding to the regulator if found, else
 181 * returns NULL.
 182 */
 183static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 184{
 185	struct device_node *regnode = NULL;
 186	char prop_name[32]; /* 32 is max size of property name */
 187
 188	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 189
 190	snprintf(prop_name, 32, "%s-supply", supply);
 191	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 192
 193	if (!regnode) {
 194		dev_dbg(dev, "Looking up %s property in node %s failed",
 195				prop_name, dev->of_node->full_name);
 196		return NULL;
 197	}
 198	return regnode;
 199}
 200
 201static int _regulator_can_change_status(struct regulator_dev *rdev)
 202{
 203	if (!rdev->constraints)
 204		return 0;
 205
 206	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 207		return 1;
 208	else
 209		return 0;
 210}
 211
 212/* Platform voltage constraint check */
 213static int regulator_check_voltage(struct regulator_dev *rdev,
 214				   int *min_uV, int *max_uV)
 215{
 216	BUG_ON(*min_uV > *max_uV);
 217
 218	if (!rdev->constraints) {
 219		rdev_err(rdev, "no constraints\n");
 220		return -ENODEV;
 221	}
 222	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 223		rdev_err(rdev, "voltage operation not allowed\n");
 224		return -EPERM;
 225	}
 226
 227	if (*max_uV > rdev->constraints->max_uV)
 228		*max_uV = rdev->constraints->max_uV;
 229	if (*min_uV < rdev->constraints->min_uV)
 230		*min_uV = rdev->constraints->min_uV;
 231
 232	if (*min_uV > *max_uV) {
 233		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 234			 *min_uV, *max_uV);
 235		return -EINVAL;
 236	}
 237
 238	return 0;
 239}
 240
 241/* Make sure we select a voltage that suits the needs of all
 242 * regulator consumers
 243 */
 244static int regulator_check_consumers(struct regulator_dev *rdev,
 245				     int *min_uV, int *max_uV)
 246{
 247	struct regulator *regulator;
 248
 249	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 250		/*
 251		 * Assume consumers that didn't say anything are OK
 252		 * with anything in the constraint range.
 253		 */
 254		if (!regulator->min_uV && !regulator->max_uV)
 255			continue;
 256
 257		if (*max_uV > regulator->max_uV)
 258			*max_uV = regulator->max_uV;
 259		if (*min_uV < regulator->min_uV)
 260			*min_uV = regulator->min_uV;
 261	}
 262
 263	if (*min_uV > *max_uV) {
 264		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 265			*min_uV, *max_uV);
 266		return -EINVAL;
 267	}
 268
 269	return 0;
 270}
 271
 272/* current constraint check */
 273static int regulator_check_current_limit(struct regulator_dev *rdev,
 274					int *min_uA, int *max_uA)
 275{
 276	BUG_ON(*min_uA > *max_uA);
 277
 278	if (!rdev->constraints) {
 279		rdev_err(rdev, "no constraints\n");
 280		return -ENODEV;
 281	}
 282	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 283		rdev_err(rdev, "current operation not allowed\n");
 284		return -EPERM;
 285	}
 286
 287	if (*max_uA > rdev->constraints->max_uA)
 288		*max_uA = rdev->constraints->max_uA;
 289	if (*min_uA < rdev->constraints->min_uA)
 290		*min_uA = rdev->constraints->min_uA;
 291
 292	if (*min_uA > *max_uA) {
 293		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 294			 *min_uA, *max_uA);
 295		return -EINVAL;
 296	}
 297
 298	return 0;
 299}
 300
 301/* operating mode constraint check */
 302static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 
 303{
 304	switch (*mode) {
 305	case REGULATOR_MODE_FAST:
 306	case REGULATOR_MODE_NORMAL:
 307	case REGULATOR_MODE_IDLE:
 308	case REGULATOR_MODE_STANDBY:
 309		break;
 310	default:
 311		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 312		return -EINVAL;
 313	}
 314
 315	if (!rdev->constraints) {
 316		rdev_err(rdev, "no constraints\n");
 317		return -ENODEV;
 318	}
 319	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 320		rdev_err(rdev, "mode operation not allowed\n");
 321		return -EPERM;
 322	}
 323
 324	/* The modes are bitmasks, the most power hungry modes having
 325	 * the lowest values. If the requested mode isn't supported
 326	 * try higher modes. */
 327	while (*mode) {
 328		if (rdev->constraints->valid_modes_mask & *mode)
 329			return 0;
 330		*mode /= 2;
 331	}
 332
 333	return -EINVAL;
 334}
 335
 336/* dynamic regulator mode switching constraint check */
 337static int regulator_check_drms(struct regulator_dev *rdev)
 338{
 339	if (!rdev->constraints) {
 340		rdev_err(rdev, "no constraints\n");
 341		return -ENODEV;
 342	}
 343	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 344		rdev_dbg(rdev, "drms operation not allowed\n");
 345		return -EPERM;
 346	}
 347	return 0;
 348}
 349
 350static ssize_t regulator_uV_show(struct device *dev,
 351				struct device_attribute *attr, char *buf)
 352{
 353	struct regulator_dev *rdev = dev_get_drvdata(dev);
 354	ssize_t ret;
 355
 356	mutex_lock(&rdev->mutex);
 357	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 358	mutex_unlock(&rdev->mutex);
 359
 360	return ret;
 361}
 362static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 363
 364static ssize_t regulator_uA_show(struct device *dev,
 365				struct device_attribute *attr, char *buf)
 366{
 367	struct regulator_dev *rdev = dev_get_drvdata(dev);
 368
 369	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 370}
 371static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 372
 373static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 374			 char *buf)
 375{
 376	struct regulator_dev *rdev = dev_get_drvdata(dev);
 377
 378	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 379}
 380static DEVICE_ATTR_RO(name);
 381
 382static ssize_t regulator_print_opmode(char *buf, int mode)
 383{
 384	switch (mode) {
 385	case REGULATOR_MODE_FAST:
 386		return sprintf(buf, "fast\n");
 387	case REGULATOR_MODE_NORMAL:
 388		return sprintf(buf, "normal\n");
 389	case REGULATOR_MODE_IDLE:
 390		return sprintf(buf, "idle\n");
 391	case REGULATOR_MODE_STANDBY:
 392		return sprintf(buf, "standby\n");
 393	}
 394	return sprintf(buf, "unknown\n");
 395}
 396
 397static ssize_t regulator_opmode_show(struct device *dev,
 398				    struct device_attribute *attr, char *buf)
 399{
 400	struct regulator_dev *rdev = dev_get_drvdata(dev);
 401
 402	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 403}
 404static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 405
 406static ssize_t regulator_print_state(char *buf, int state)
 407{
 408	if (state > 0)
 409		return sprintf(buf, "enabled\n");
 410	else if (state == 0)
 411		return sprintf(buf, "disabled\n");
 412	else
 413		return sprintf(buf, "unknown\n");
 414}
 415
 416static ssize_t regulator_state_show(struct device *dev,
 417				   struct device_attribute *attr, char *buf)
 418{
 419	struct regulator_dev *rdev = dev_get_drvdata(dev);
 420	ssize_t ret;
 421
 422	mutex_lock(&rdev->mutex);
 423	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 424	mutex_unlock(&rdev->mutex);
 425
 426	return ret;
 427}
 428static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 429
 430static ssize_t regulator_status_show(struct device *dev,
 431				   struct device_attribute *attr, char *buf)
 432{
 433	struct regulator_dev *rdev = dev_get_drvdata(dev);
 434	int status;
 435	char *label;
 436
 437	status = rdev->desc->ops->get_status(rdev);
 438	if (status < 0)
 439		return status;
 440
 441	switch (status) {
 442	case REGULATOR_STATUS_OFF:
 443		label = "off";
 444		break;
 445	case REGULATOR_STATUS_ON:
 446		label = "on";
 447		break;
 448	case REGULATOR_STATUS_ERROR:
 449		label = "error";
 450		break;
 451	case REGULATOR_STATUS_FAST:
 452		label = "fast";
 453		break;
 454	case REGULATOR_STATUS_NORMAL:
 455		label = "normal";
 456		break;
 457	case REGULATOR_STATUS_IDLE:
 458		label = "idle";
 459		break;
 460	case REGULATOR_STATUS_STANDBY:
 461		label = "standby";
 462		break;
 463	case REGULATOR_STATUS_BYPASS:
 464		label = "bypass";
 465		break;
 466	case REGULATOR_STATUS_UNDEFINED:
 467		label = "undefined";
 468		break;
 469	default:
 470		return -ERANGE;
 471	}
 472
 473	return sprintf(buf, "%s\n", label);
 474}
 475static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 476
 477static ssize_t regulator_min_uA_show(struct device *dev,
 478				    struct device_attribute *attr, char *buf)
 479{
 480	struct regulator_dev *rdev = dev_get_drvdata(dev);
 481
 482	if (!rdev->constraints)
 483		return sprintf(buf, "constraint not defined\n");
 484
 485	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 486}
 487static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 488
 489static ssize_t regulator_max_uA_show(struct device *dev,
 490				    struct device_attribute *attr, char *buf)
 491{
 492	struct regulator_dev *rdev = dev_get_drvdata(dev);
 493
 494	if (!rdev->constraints)
 495		return sprintf(buf, "constraint not defined\n");
 496
 497	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 498}
 499static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 500
 501static ssize_t regulator_min_uV_show(struct device *dev,
 502				    struct device_attribute *attr, char *buf)
 503{
 504	struct regulator_dev *rdev = dev_get_drvdata(dev);
 505
 506	if (!rdev->constraints)
 507		return sprintf(buf, "constraint not defined\n");
 508
 509	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 510}
 511static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 512
 513static ssize_t regulator_max_uV_show(struct device *dev,
 514				    struct device_attribute *attr, char *buf)
 515{
 516	struct regulator_dev *rdev = dev_get_drvdata(dev);
 517
 518	if (!rdev->constraints)
 519		return sprintf(buf, "constraint not defined\n");
 520
 521	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 522}
 523static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 524
 525static ssize_t regulator_total_uA_show(struct device *dev,
 526				      struct device_attribute *attr, char *buf)
 527{
 528	struct regulator_dev *rdev = dev_get_drvdata(dev);
 529	struct regulator *regulator;
 530	int uA = 0;
 531
 532	mutex_lock(&rdev->mutex);
 533	list_for_each_entry(regulator, &rdev->consumer_list, list)
 534		uA += regulator->uA_load;
 535	mutex_unlock(&rdev->mutex);
 536	return sprintf(buf, "%d\n", uA);
 537}
 538static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 539
 540static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 541			      char *buf)
 542{
 543	struct regulator_dev *rdev = dev_get_drvdata(dev);
 544	return sprintf(buf, "%d\n", rdev->use_count);
 545}
 546static DEVICE_ATTR_RO(num_users);
 547
 548static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 549			 char *buf)
 550{
 551	struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553	switch (rdev->desc->type) {
 554	case REGULATOR_VOLTAGE:
 555		return sprintf(buf, "voltage\n");
 556	case REGULATOR_CURRENT:
 557		return sprintf(buf, "current\n");
 558	}
 559	return sprintf(buf, "unknown\n");
 560}
 561static DEVICE_ATTR_RO(type);
 562
 563static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 564				struct device_attribute *attr, char *buf)
 565{
 566	struct regulator_dev *rdev = dev_get_drvdata(dev);
 567
 568	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 569}
 570static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 571		regulator_suspend_mem_uV_show, NULL);
 572
 573static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 574				struct device_attribute *attr, char *buf)
 575{
 576	struct regulator_dev *rdev = dev_get_drvdata(dev);
 577
 578	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 579}
 580static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 581		regulator_suspend_disk_uV_show, NULL);
 582
 583static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 584				struct device_attribute *attr, char *buf)
 585{
 586	struct regulator_dev *rdev = dev_get_drvdata(dev);
 587
 588	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 589}
 590static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 591		regulator_suspend_standby_uV_show, NULL);
 592
 593static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 594				struct device_attribute *attr, char *buf)
 595{
 596	struct regulator_dev *rdev = dev_get_drvdata(dev);
 597
 598	return regulator_print_opmode(buf,
 599		rdev->constraints->state_mem.mode);
 600}
 601static DEVICE_ATTR(suspend_mem_mode, 0444,
 602		regulator_suspend_mem_mode_show, NULL);
 603
 604static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 605				struct device_attribute *attr, char *buf)
 606{
 607	struct regulator_dev *rdev = dev_get_drvdata(dev);
 608
 609	return regulator_print_opmode(buf,
 610		rdev->constraints->state_disk.mode);
 611}
 612static DEVICE_ATTR(suspend_disk_mode, 0444,
 613		regulator_suspend_disk_mode_show, NULL);
 614
 615static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 616				struct device_attribute *attr, char *buf)
 617{
 618	struct regulator_dev *rdev = dev_get_drvdata(dev);
 619
 620	return regulator_print_opmode(buf,
 621		rdev->constraints->state_standby.mode);
 622}
 623static DEVICE_ATTR(suspend_standby_mode, 0444,
 624		regulator_suspend_standby_mode_show, NULL);
 625
 626static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 627				   struct device_attribute *attr, char *buf)
 628{
 629	struct regulator_dev *rdev = dev_get_drvdata(dev);
 630
 631	return regulator_print_state(buf,
 632			rdev->constraints->state_mem.enabled);
 633}
 634static DEVICE_ATTR(suspend_mem_state, 0444,
 635		regulator_suspend_mem_state_show, NULL);
 636
 637static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 638				   struct device_attribute *attr, char *buf)
 639{
 640	struct regulator_dev *rdev = dev_get_drvdata(dev);
 641
 642	return regulator_print_state(buf,
 643			rdev->constraints->state_disk.enabled);
 644}
 645static DEVICE_ATTR(suspend_disk_state, 0444,
 646		regulator_suspend_disk_state_show, NULL);
 647
 648static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 649				   struct device_attribute *attr, char *buf)
 650{
 651	struct regulator_dev *rdev = dev_get_drvdata(dev);
 652
 653	return regulator_print_state(buf,
 654			rdev->constraints->state_standby.enabled);
 655}
 656static DEVICE_ATTR(suspend_standby_state, 0444,
 657		regulator_suspend_standby_state_show, NULL);
 658
 659static ssize_t regulator_bypass_show(struct device *dev,
 660				     struct device_attribute *attr, char *buf)
 661{
 662	struct regulator_dev *rdev = dev_get_drvdata(dev);
 663	const char *report;
 664	bool bypass;
 665	int ret;
 666
 667	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 668
 669	if (ret != 0)
 670		report = "unknown";
 671	else if (bypass)
 672		report = "enabled";
 673	else
 674		report = "disabled";
 675
 676	return sprintf(buf, "%s\n", report);
 677}
 678static DEVICE_ATTR(bypass, 0444,
 679		   regulator_bypass_show, NULL);
 680
 681/* Calculate the new optimum regulator operating mode based on the new total
 682 * consumer load. All locks held by caller */
 683static int drms_uA_update(struct regulator_dev *rdev)
 684{
 685	struct regulator *sibling;
 686	int current_uA = 0, output_uV, input_uV, err;
 687	unsigned int mode;
 688
 689	lockdep_assert_held_once(&rdev->mutex);
 690
 691	/*
 692	 * first check to see if we can set modes at all, otherwise just
 693	 * tell the consumer everything is OK.
 694	 */
 695	err = regulator_check_drms(rdev);
 696	if (err < 0)
 697		return 0;
 698
 699	if (!rdev->desc->ops->get_optimum_mode &&
 700	    !rdev->desc->ops->set_load)
 701		return 0;
 702
 703	if (!rdev->desc->ops->set_mode &&
 704	    !rdev->desc->ops->set_load)
 705		return -EINVAL;
 706
 707	/* get output voltage */
 708	output_uV = _regulator_get_voltage(rdev);
 709	if (output_uV <= 0) {
 710		rdev_err(rdev, "invalid output voltage found\n");
 711		return -EINVAL;
 712	}
 713
 714	/* get input voltage */
 715	input_uV = 0;
 716	if (rdev->supply)
 717		input_uV = regulator_get_voltage(rdev->supply);
 718	if (input_uV <= 0)
 719		input_uV = rdev->constraints->input_uV;
 720	if (input_uV <= 0) {
 721		rdev_err(rdev, "invalid input voltage found\n");
 722		return -EINVAL;
 723	}
 724
 725	/* calc total requested load */
 726	list_for_each_entry(sibling, &rdev->consumer_list, list)
 727		current_uA += sibling->uA_load;
 728
 729	current_uA += rdev->constraints->system_load;
 730
 731	if (rdev->desc->ops->set_load) {
 732		/* set the optimum mode for our new total regulator load */
 733		err = rdev->desc->ops->set_load(rdev, current_uA);
 734		if (err < 0)
 735			rdev_err(rdev, "failed to set load %d\n", current_uA);
 736	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737		/* now get the optimum mode for our new total regulator load */
 738		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 739							 output_uV, current_uA);
 740
 741		/* check the new mode is allowed */
 742		err = regulator_mode_constrain(rdev, &mode);
 743		if (err < 0) {
 744			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 745				 current_uA, input_uV, output_uV);
 746			return err;
 747		}
 748
 749		err = rdev->desc->ops->set_mode(rdev, mode);
 750		if (err < 0)
 751			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 752	}
 753
 754	return err;
 755}
 756
 757static int suspend_set_state(struct regulator_dev *rdev,
 758	struct regulator_state *rstate)
 759{
 760	int ret = 0;
 761
 762	/* If we have no suspend mode configration don't set anything;
 763	 * only warn if the driver implements set_suspend_voltage or
 764	 * set_suspend_mode callback.
 765	 */
 766	if (!rstate->enabled && !rstate->disabled) {
 767		if (rdev->desc->ops->set_suspend_voltage ||
 768		    rdev->desc->ops->set_suspend_mode)
 769			rdev_warn(rdev, "No configuration\n");
 770		return 0;
 771	}
 772
 773	if (rstate->enabled && rstate->disabled) {
 774		rdev_err(rdev, "invalid configuration\n");
 775		return -EINVAL;
 776	}
 777
 778	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 779		ret = rdev->desc->ops->set_suspend_enable(rdev);
 780	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 781		ret = rdev->desc->ops->set_suspend_disable(rdev);
 782	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 783		ret = 0;
 784
 785	if (ret < 0) {
 786		rdev_err(rdev, "failed to enabled/disable\n");
 787		return ret;
 788	}
 789
 790	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 791		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 792		if (ret < 0) {
 793			rdev_err(rdev, "failed to set voltage\n");
 794			return ret;
 795		}
 796	}
 797
 798	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 799		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 800		if (ret < 0) {
 801			rdev_err(rdev, "failed to set mode\n");
 802			return ret;
 803		}
 804	}
 805	return ret;
 806}
 807
 808/* locks held by caller */
 809static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 810{
 811	lockdep_assert_held_once(&rdev->mutex);
 812
 813	if (!rdev->constraints)
 814		return -EINVAL;
 815
 816	switch (state) {
 817	case PM_SUSPEND_STANDBY:
 818		return suspend_set_state(rdev,
 819			&rdev->constraints->state_standby);
 820	case PM_SUSPEND_MEM:
 821		return suspend_set_state(rdev,
 822			&rdev->constraints->state_mem);
 823	case PM_SUSPEND_MAX:
 824		return suspend_set_state(rdev,
 825			&rdev->constraints->state_disk);
 826	default:
 827		return -EINVAL;
 828	}
 829}
 830
 831static void print_constraints(struct regulator_dev *rdev)
 832{
 833	struct regulation_constraints *constraints = rdev->constraints;
 834	char buf[160] = "";
 835	size_t len = sizeof(buf) - 1;
 836	int count = 0;
 837	int ret;
 838
 839	if (constraints->min_uV && constraints->max_uV) {
 840		if (constraints->min_uV == constraints->max_uV)
 841			count += scnprintf(buf + count, len - count, "%d mV ",
 842					   constraints->min_uV / 1000);
 843		else
 844			count += scnprintf(buf + count, len - count,
 845					   "%d <--> %d mV ",
 846					   constraints->min_uV / 1000,
 847					   constraints->max_uV / 1000);
 848	}
 849
 850	if (!constraints->min_uV ||
 851	    constraints->min_uV != constraints->max_uV) {
 852		ret = _regulator_get_voltage(rdev);
 853		if (ret > 0)
 854			count += scnprintf(buf + count, len - count,
 855					   "at %d mV ", ret / 1000);
 856	}
 857
 858	if (constraints->uV_offset)
 859		count += scnprintf(buf + count, len - count, "%dmV offset ",
 860				   constraints->uV_offset / 1000);
 861
 862	if (constraints->min_uA && constraints->max_uA) {
 863		if (constraints->min_uA == constraints->max_uA)
 864			count += scnprintf(buf + count, len - count, "%d mA ",
 865					   constraints->min_uA / 1000);
 866		else
 867			count += scnprintf(buf + count, len - count,
 868					   "%d <--> %d mA ",
 869					   constraints->min_uA / 1000,
 870					   constraints->max_uA / 1000);
 871	}
 872
 873	if (!constraints->min_uA ||
 874	    constraints->min_uA != constraints->max_uA) {
 875		ret = _regulator_get_current_limit(rdev);
 876		if (ret > 0)
 877			count += scnprintf(buf + count, len - count,
 878					   "at %d mA ", ret / 1000);
 879	}
 880
 881	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 882		count += scnprintf(buf + count, len - count, "fast ");
 883	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 884		count += scnprintf(buf + count, len - count, "normal ");
 885	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 886		count += scnprintf(buf + count, len - count, "idle ");
 887	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 888		count += scnprintf(buf + count, len - count, "standby");
 889
 890	if (!count)
 891		scnprintf(buf, len, "no parameters");
 892
 893	rdev_dbg(rdev, "%s\n", buf);
 894
 895	if ((constraints->min_uV != constraints->max_uV) &&
 896	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 897		rdev_warn(rdev,
 898			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 899}
 900
 901static int machine_constraints_voltage(struct regulator_dev *rdev,
 902	struct regulation_constraints *constraints)
 903{
 904	const struct regulator_ops *ops = rdev->desc->ops;
 905	int ret;
 906
 907	/* do we need to apply the constraint voltage */
 908	if (rdev->constraints->apply_uV &&
 909	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 
 910		int current_uV = _regulator_get_voltage(rdev);
 911		if (current_uV < 0) {
 912			rdev_err(rdev,
 913				 "failed to get the current voltage(%d)\n",
 914				 current_uV);
 915			return current_uV;
 916		}
 917		if (current_uV < rdev->constraints->min_uV ||
 918		    current_uV > rdev->constraints->max_uV) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919			ret = _regulator_do_set_voltage(
 920				rdev, rdev->constraints->min_uV,
 921				rdev->constraints->max_uV);
 922			if (ret < 0) {
 923				rdev_err(rdev,
 924					"failed to apply %duV constraint(%d)\n",
 925					rdev->constraints->min_uV, ret);
 926				return ret;
 927			}
 928		}
 929	}
 930
 931	/* constrain machine-level voltage specs to fit
 932	 * the actual range supported by this regulator.
 933	 */
 934	if (ops->list_voltage && rdev->desc->n_voltages) {
 935		int	count = rdev->desc->n_voltages;
 936		int	i;
 937		int	min_uV = INT_MAX;
 938		int	max_uV = INT_MIN;
 939		int	cmin = constraints->min_uV;
 940		int	cmax = constraints->max_uV;
 941
 942		/* it's safe to autoconfigure fixed-voltage supplies
 943		   and the constraints are used by list_voltage. */
 944		if (count == 1 && !cmin) {
 945			cmin = 1;
 946			cmax = INT_MAX;
 947			constraints->min_uV = cmin;
 948			constraints->max_uV = cmax;
 949		}
 950
 951		/* voltage constraints are optional */
 952		if ((cmin == 0) && (cmax == 0))
 953			return 0;
 954
 955		/* else require explicit machine-level constraints */
 956		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 957			rdev_err(rdev, "invalid voltage constraints\n");
 958			return -EINVAL;
 959		}
 960
 961		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 962		for (i = 0; i < count; i++) {
 963			int	value;
 964
 965			value = ops->list_voltage(rdev, i);
 966			if (value <= 0)
 967				continue;
 968
 969			/* maybe adjust [min_uV..max_uV] */
 970			if (value >= cmin && value < min_uV)
 971				min_uV = value;
 972			if (value <= cmax && value > max_uV)
 973				max_uV = value;
 974		}
 975
 976		/* final: [min_uV..max_uV] valid iff constraints valid */
 977		if (max_uV < min_uV) {
 978			rdev_err(rdev,
 979				 "unsupportable voltage constraints %u-%uuV\n",
 980				 min_uV, max_uV);
 981			return -EINVAL;
 982		}
 983
 984		/* use regulator's subset of machine constraints */
 985		if (constraints->min_uV < min_uV) {
 986			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 987				 constraints->min_uV, min_uV);
 988			constraints->min_uV = min_uV;
 989		}
 990		if (constraints->max_uV > max_uV) {
 991			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 992				 constraints->max_uV, max_uV);
 993			constraints->max_uV = max_uV;
 994		}
 995	}
 996
 997	return 0;
 998}
 999
1000static int machine_constraints_current(struct regulator_dev *rdev,
1001	struct regulation_constraints *constraints)
1002{
1003	const struct regulator_ops *ops = rdev->desc->ops;
1004	int ret;
1005
1006	if (!constraints->min_uA && !constraints->max_uA)
1007		return 0;
1008
1009	if (constraints->min_uA > constraints->max_uA) {
1010		rdev_err(rdev, "Invalid current constraints\n");
1011		return -EINVAL;
1012	}
1013
1014	if (!ops->set_current_limit || !ops->get_current_limit) {
1015		rdev_warn(rdev, "Operation of current configuration missing\n");
1016		return 0;
1017	}
1018
1019	/* Set regulator current in constraints range */
1020	ret = ops->set_current_limit(rdev, constraints->min_uA,
1021			constraints->max_uA);
1022	if (ret < 0) {
1023		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024		return ret;
1025	}
1026
1027	return 0;
1028}
1029
1030static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032/**
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1036 *
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041 * set_mode.
1042 */
1043static int set_machine_constraints(struct regulator_dev *rdev,
1044	const struct regulation_constraints *constraints)
1045{
1046	int ret = 0;
1047	const struct regulator_ops *ops = rdev->desc->ops;
1048
1049	if (constraints)
1050		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051					    GFP_KERNEL);
1052	else
1053		rdev->constraints = kzalloc(sizeof(*constraints),
1054					    GFP_KERNEL);
1055	if (!rdev->constraints)
1056		return -ENOMEM;
1057
1058	ret = machine_constraints_voltage(rdev, rdev->constraints);
1059	if (ret != 0)
1060		return ret;
1061
1062	ret = machine_constraints_current(rdev, rdev->constraints);
1063	if (ret != 0)
1064		return ret;
1065
1066	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067		ret = ops->set_input_current_limit(rdev,
1068						   rdev->constraints->ilim_uA);
1069		if (ret < 0) {
1070			rdev_err(rdev, "failed to set input limit\n");
1071			return ret;
1072		}
1073	}
1074
1075	/* do we need to setup our suspend state */
1076	if (rdev->constraints->initial_state) {
1077		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078		if (ret < 0) {
1079			rdev_err(rdev, "failed to set suspend state\n");
1080			return ret;
1081		}
1082	}
1083
1084	if (rdev->constraints->initial_mode) {
1085		if (!ops->set_mode) {
1086			rdev_err(rdev, "no set_mode operation\n");
1087			return -EINVAL;
1088		}
1089
1090		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091		if (ret < 0) {
1092			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093			return ret;
1094		}
1095	}
1096
1097	/* If the constraints say the regulator should be on at this point
1098	 * and we have control then make sure it is enabled.
1099	 */
1100	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101		ret = _regulator_do_enable(rdev);
1102		if (ret < 0 && ret != -EINVAL) {
1103			rdev_err(rdev, "failed to enable\n");
1104			return ret;
1105		}
1106	}
1107
1108	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109		&& ops->set_ramp_delay) {
1110		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111		if (ret < 0) {
1112			rdev_err(rdev, "failed to set ramp_delay\n");
1113			return ret;
1114		}
1115	}
1116
1117	if (rdev->constraints->pull_down && ops->set_pull_down) {
1118		ret = ops->set_pull_down(rdev);
1119		if (ret < 0) {
1120			rdev_err(rdev, "failed to set pull down\n");
1121			return ret;
1122		}
1123	}
1124
1125	if (rdev->constraints->soft_start && ops->set_soft_start) {
1126		ret = ops->set_soft_start(rdev);
1127		if (ret < 0) {
1128			rdev_err(rdev, "failed to set soft start\n");
1129			return ret;
1130		}
1131	}
1132
1133	if (rdev->constraints->over_current_protection
1134		&& ops->set_over_current_protection) {
1135		ret = ops->set_over_current_protection(rdev);
1136		if (ret < 0) {
1137			rdev_err(rdev, "failed to set over current protection\n");
1138			return ret;
1139		}
1140	}
1141
1142	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1143		bool ad_state = (rdev->constraints->active_discharge ==
1144			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1145
1146		ret = ops->set_active_discharge(rdev, ad_state);
1147		if (ret < 0) {
1148			rdev_err(rdev, "failed to set active discharge\n");
1149			return ret;
1150		}
1151	}
1152
1153	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1154		bool ad_state = (rdev->constraints->active_discharge ==
1155			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1156
1157		ret = ops->set_active_discharge(rdev, ad_state);
1158		if (ret < 0) {
1159			rdev_err(rdev, "failed to set active discharge\n");
1160			return ret;
1161		}
1162	}
1163
1164	print_constraints(rdev);
1165	return 0;
1166}
1167
1168/**
1169 * set_supply - set regulator supply regulator
1170 * @rdev: regulator name
1171 * @supply_rdev: supply regulator name
1172 *
1173 * Called by platform initialisation code to set the supply regulator for this
1174 * regulator. This ensures that a regulators supply will also be enabled by the
1175 * core if it's child is enabled.
1176 */
1177static int set_supply(struct regulator_dev *rdev,
1178		      struct regulator_dev *supply_rdev)
1179{
1180	int err;
1181
1182	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1183
1184	if (!try_module_get(supply_rdev->owner))
1185		return -ENODEV;
1186
1187	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1188	if (rdev->supply == NULL) {
1189		err = -ENOMEM;
1190		return err;
1191	}
1192	supply_rdev->open_count++;
1193
1194	return 0;
1195}
1196
1197/**
1198 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199 * @rdev:         regulator source
1200 * @consumer_dev_name: dev_name() string for device supply applies to
1201 * @supply:       symbolic name for supply
1202 *
1203 * Allows platform initialisation code to map physical regulator
1204 * sources to symbolic names for supplies for use by devices.  Devices
1205 * should use these symbolic names to request regulators, avoiding the
1206 * need to provide board-specific regulator names as platform data.
1207 */
1208static int set_consumer_device_supply(struct regulator_dev *rdev,
1209				      const char *consumer_dev_name,
1210				      const char *supply)
1211{
1212	struct regulator_map *node;
1213	int has_dev;
1214
1215	if (supply == NULL)
1216		return -EINVAL;
1217
1218	if (consumer_dev_name != NULL)
1219		has_dev = 1;
1220	else
1221		has_dev = 0;
1222
1223	list_for_each_entry(node, &regulator_map_list, list) {
1224		if (node->dev_name && consumer_dev_name) {
1225			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1226				continue;
1227		} else if (node->dev_name || consumer_dev_name) {
1228			continue;
1229		}
1230
1231		if (strcmp(node->supply, supply) != 0)
1232			continue;
1233
1234		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1235			 consumer_dev_name,
1236			 dev_name(&node->regulator->dev),
1237			 node->regulator->desc->name,
1238			 supply,
1239			 dev_name(&rdev->dev), rdev_get_name(rdev));
1240		return -EBUSY;
1241	}
1242
1243	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1244	if (node == NULL)
1245		return -ENOMEM;
1246
1247	node->regulator = rdev;
1248	node->supply = supply;
1249
1250	if (has_dev) {
1251		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1252		if (node->dev_name == NULL) {
1253			kfree(node);
1254			return -ENOMEM;
1255		}
1256	}
1257
1258	list_add(&node->list, &regulator_map_list);
1259	return 0;
1260}
1261
1262static void unset_regulator_supplies(struct regulator_dev *rdev)
1263{
1264	struct regulator_map *node, *n;
1265
1266	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1267		if (rdev == node->regulator) {
1268			list_del(&node->list);
1269			kfree(node->dev_name);
1270			kfree(node);
1271		}
1272	}
1273}
1274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275#define REG_STR_SIZE	64
1276
1277static struct regulator *create_regulator(struct regulator_dev *rdev,
1278					  struct device *dev,
1279					  const char *supply_name)
1280{
1281	struct regulator *regulator;
1282	char buf[REG_STR_SIZE];
1283	int err, size;
1284
1285	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1286	if (regulator == NULL)
1287		return NULL;
1288
1289	mutex_lock(&rdev->mutex);
1290	regulator->rdev = rdev;
1291	list_add(&regulator->list, &rdev->consumer_list);
1292
1293	if (dev) {
1294		regulator->dev = dev;
1295
1296		/* Add a link to the device sysfs entry */
1297		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1298				 dev->kobj.name, supply_name);
1299		if (size >= REG_STR_SIZE)
1300			goto overflow_err;
1301
1302		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1303		if (regulator->supply_name == NULL)
1304			goto overflow_err;
1305
1306		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1307					buf);
1308		if (err) {
1309			rdev_dbg(rdev, "could not add device link %s err %d\n",
1310				  dev->kobj.name, err);
1311			/* non-fatal */
1312		}
1313	} else {
1314		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1315		if (regulator->supply_name == NULL)
1316			goto overflow_err;
1317	}
1318
1319	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1320						rdev->debugfs);
1321	if (!regulator->debugfs) {
1322		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1323	} else {
1324		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1325				   &regulator->uA_load);
1326		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1327				   &regulator->min_uV);
1328		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1329				   &regulator->max_uV);
 
 
 
1330	}
1331
1332	/*
1333	 * Check now if the regulator is an always on regulator - if
1334	 * it is then we don't need to do nearly so much work for
1335	 * enable/disable calls.
1336	 */
1337	if (!_regulator_can_change_status(rdev) &&
1338	    _regulator_is_enabled(rdev))
1339		regulator->always_on = true;
1340
1341	mutex_unlock(&rdev->mutex);
1342	return regulator;
1343overflow_err:
1344	list_del(&regulator->list);
1345	kfree(regulator);
1346	mutex_unlock(&rdev->mutex);
1347	return NULL;
1348}
1349
1350static int _regulator_get_enable_time(struct regulator_dev *rdev)
1351{
1352	if (rdev->constraints && rdev->constraints->enable_time)
1353		return rdev->constraints->enable_time;
1354	if (!rdev->desc->ops->enable_time)
1355		return rdev->desc->enable_time;
1356	return rdev->desc->ops->enable_time(rdev);
1357}
1358
1359static struct regulator_supply_alias *regulator_find_supply_alias(
1360		struct device *dev, const char *supply)
1361{
1362	struct regulator_supply_alias *map;
1363
1364	list_for_each_entry(map, &regulator_supply_alias_list, list)
1365		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1366			return map;
1367
1368	return NULL;
1369}
1370
1371static void regulator_supply_alias(struct device **dev, const char **supply)
1372{
1373	struct regulator_supply_alias *map;
1374
1375	map = regulator_find_supply_alias(*dev, *supply);
1376	if (map) {
1377		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1378				*supply, map->alias_supply,
1379				dev_name(map->alias_dev));
1380		*dev = map->alias_dev;
1381		*supply = map->alias_supply;
1382	}
1383}
1384
1385static int of_node_match(struct device *dev, const void *data)
1386{
1387	return dev->of_node == data;
1388}
1389
1390static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1391{
1392	struct device *dev;
1393
1394	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1395
1396	return dev ? dev_to_rdev(dev) : NULL;
1397}
1398
1399static int regulator_match(struct device *dev, const void *data)
1400{
1401	struct regulator_dev *r = dev_to_rdev(dev);
1402
1403	return strcmp(rdev_get_name(r), data) == 0;
1404}
1405
1406static struct regulator_dev *regulator_lookup_by_name(const char *name)
1407{
1408	struct device *dev;
1409
1410	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1411
1412	return dev ? dev_to_rdev(dev) : NULL;
1413}
1414
1415/**
1416 * regulator_dev_lookup - lookup a regulator device.
1417 * @dev: device for regulator "consumer".
1418 * @supply: Supply name or regulator ID.
1419 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1420 * lookup could succeed in the future.
1421 *
1422 * If successful, returns a struct regulator_dev that corresponds to the name
1423 * @supply and with the embedded struct device refcount incremented by one,
1424 * or NULL on failure. The refcount must be dropped by calling put_device().
1425 */
1426static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1427						  const char *supply,
1428						  int *ret)
1429{
1430	struct regulator_dev *r;
1431	struct device_node *node;
1432	struct regulator_map *map;
1433	const char *devname = NULL;
1434
1435	regulator_supply_alias(&dev, &supply);
1436
1437	/* first do a dt based lookup */
1438	if (dev && dev->of_node) {
1439		node = of_get_regulator(dev, supply);
1440		if (node) {
1441			r = of_find_regulator_by_node(node);
1442			if (r)
1443				return r;
1444			*ret = -EPROBE_DEFER;
1445			return NULL;
1446		} else {
1447			/*
1448			 * If we couldn't even get the node then it's
1449			 * not just that the device didn't register
1450			 * yet, there's no node and we'll never
1451			 * succeed.
1452			 */
1453			*ret = -ENODEV;
1454		}
1455	}
1456
1457	/* if not found, try doing it non-dt way */
1458	if (dev)
1459		devname = dev_name(dev);
1460
1461	r = regulator_lookup_by_name(supply);
1462	if (r)
1463		return r;
1464
1465	mutex_lock(&regulator_list_mutex);
1466	list_for_each_entry(map, &regulator_map_list, list) {
1467		/* If the mapping has a device set up it must match */
1468		if (map->dev_name &&
1469		    (!devname || strcmp(map->dev_name, devname)))
1470			continue;
1471
1472		if (strcmp(map->supply, supply) == 0 &&
1473		    get_device(&map->regulator->dev)) {
1474			mutex_unlock(&regulator_list_mutex);
1475			return map->regulator;
1476		}
1477	}
1478	mutex_unlock(&regulator_list_mutex);
1479
1480	return NULL;
1481}
1482
1483static int regulator_resolve_supply(struct regulator_dev *rdev)
1484{
1485	struct regulator_dev *r;
1486	struct device *dev = rdev->dev.parent;
1487	int ret;
1488
1489	/* No supply to resovle? */
1490	if (!rdev->supply_name)
1491		return 0;
1492
1493	/* Supply already resolved? */
1494	if (rdev->supply)
1495		return 0;
1496
1497	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1498	if (!r) {
1499		if (ret == -ENODEV) {
1500			/*
1501			 * No supply was specified for this regulator and
1502			 * there will never be one.
1503			 */
1504			return 0;
1505		}
1506
1507		/* Did the lookup explicitly defer for us? */
1508		if (ret == -EPROBE_DEFER)
1509			return ret;
1510
1511		if (have_full_constraints()) {
1512			r = dummy_regulator_rdev;
1513			get_device(&r->dev);
1514		} else {
1515			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1516				rdev->supply_name, rdev->desc->name);
1517			return -EPROBE_DEFER;
1518		}
1519	}
1520
1521	/* Recursively resolve the supply of the supply */
1522	ret = regulator_resolve_supply(r);
1523	if (ret < 0) {
1524		put_device(&r->dev);
1525		return ret;
1526	}
1527
1528	ret = set_supply(rdev, r);
1529	if (ret < 0) {
1530		put_device(&r->dev);
1531		return ret;
1532	}
1533
1534	/* Cascade always-on state to supply */
1535	if (_regulator_is_enabled(rdev) && rdev->supply) {
1536		ret = regulator_enable(rdev->supply);
1537		if (ret < 0) {
1538			_regulator_put(rdev->supply);
 
1539			return ret;
1540		}
1541	}
1542
1543	return 0;
1544}
1545
1546/* Internal regulator request function */
1547static struct regulator *_regulator_get(struct device *dev, const char *id,
1548					bool exclusive, bool allow_dummy)
1549{
1550	struct regulator_dev *rdev;
1551	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1552	const char *devname = NULL;
1553	int ret;
1554
1555	if (id == NULL) {
1556		pr_err("get() with no identifier\n");
1557		return ERR_PTR(-EINVAL);
1558	}
1559
1560	if (dev)
1561		devname = dev_name(dev);
1562
1563	if (have_full_constraints())
1564		ret = -ENODEV;
1565	else
1566		ret = -EPROBE_DEFER;
1567
1568	rdev = regulator_dev_lookup(dev, id, &ret);
1569	if (rdev)
1570		goto found;
1571
1572	regulator = ERR_PTR(ret);
1573
1574	/*
1575	 * If we have return value from dev_lookup fail, we do not expect to
1576	 * succeed, so, quit with appropriate error value
1577	 */
1578	if (ret && ret != -ENODEV)
1579		return regulator;
1580
1581	if (!devname)
1582		devname = "deviceless";
1583
1584	/*
1585	 * Assume that a regulator is physically present and enabled
1586	 * even if it isn't hooked up and just provide a dummy.
1587	 */
1588	if (have_full_constraints() && allow_dummy) {
1589		pr_warn("%s supply %s not found, using dummy regulator\n",
1590			devname, id);
1591
1592		rdev = dummy_regulator_rdev;
1593		get_device(&rdev->dev);
1594		goto found;
1595	/* Don't log an error when called from regulator_get_optional() */
1596	} else if (!have_full_constraints() || exclusive) {
1597		dev_warn(dev, "dummy supplies not allowed\n");
1598	}
1599
1600	return regulator;
1601
1602found:
1603	if (rdev->exclusive) {
1604		regulator = ERR_PTR(-EPERM);
1605		put_device(&rdev->dev);
1606		return regulator;
1607	}
1608
1609	if (exclusive && rdev->open_count) {
1610		regulator = ERR_PTR(-EBUSY);
1611		put_device(&rdev->dev);
1612		return regulator;
1613	}
1614
1615	ret = regulator_resolve_supply(rdev);
1616	if (ret < 0) {
1617		regulator = ERR_PTR(ret);
1618		put_device(&rdev->dev);
1619		return regulator;
1620	}
1621
1622	if (!try_module_get(rdev->owner)) {
1623		put_device(&rdev->dev);
1624		return regulator;
1625	}
1626
1627	regulator = create_regulator(rdev, dev, id);
1628	if (regulator == NULL) {
1629		regulator = ERR_PTR(-ENOMEM);
1630		put_device(&rdev->dev);
1631		module_put(rdev->owner);
1632		return regulator;
1633	}
1634
1635	rdev->open_count++;
1636	if (exclusive) {
1637		rdev->exclusive = 1;
1638
1639		ret = _regulator_is_enabled(rdev);
1640		if (ret > 0)
1641			rdev->use_count = 1;
1642		else
1643			rdev->use_count = 0;
1644	}
1645
1646	return regulator;
1647}
1648
1649/**
1650 * regulator_get - lookup and obtain a reference to a regulator.
1651 * @dev: device for regulator "consumer"
1652 * @id: Supply name or regulator ID.
1653 *
1654 * Returns a struct regulator corresponding to the regulator producer,
1655 * or IS_ERR() condition containing errno.
1656 *
1657 * Use of supply names configured via regulator_set_device_supply() is
1658 * strongly encouraged.  It is recommended that the supply name used
1659 * should match the name used for the supply and/or the relevant
1660 * device pins in the datasheet.
1661 */
1662struct regulator *regulator_get(struct device *dev, const char *id)
1663{
1664	return _regulator_get(dev, id, false, true);
1665}
1666EXPORT_SYMBOL_GPL(regulator_get);
1667
1668/**
1669 * regulator_get_exclusive - obtain exclusive access to a regulator.
1670 * @dev: device for regulator "consumer"
1671 * @id: Supply name or regulator ID.
1672 *
1673 * Returns a struct regulator corresponding to the regulator producer,
1674 * or IS_ERR() condition containing errno.  Other consumers will be
1675 * unable to obtain this regulator while this reference is held and the
1676 * use count for the regulator will be initialised to reflect the current
1677 * state of the regulator.
1678 *
1679 * This is intended for use by consumers which cannot tolerate shared
1680 * use of the regulator such as those which need to force the
1681 * regulator off for correct operation of the hardware they are
1682 * controlling.
1683 *
1684 * Use of supply names configured via regulator_set_device_supply() is
1685 * strongly encouraged.  It is recommended that the supply name used
1686 * should match the name used for the supply and/or the relevant
1687 * device pins in the datasheet.
1688 */
1689struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1690{
1691	return _regulator_get(dev, id, true, false);
1692}
1693EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1694
1695/**
1696 * regulator_get_optional - obtain optional access to a regulator.
1697 * @dev: device for regulator "consumer"
1698 * @id: Supply name or regulator ID.
1699 *
1700 * Returns a struct regulator corresponding to the regulator producer,
1701 * or IS_ERR() condition containing errno.
1702 *
1703 * This is intended for use by consumers for devices which can have
1704 * some supplies unconnected in normal use, such as some MMC devices.
1705 * It can allow the regulator core to provide stub supplies for other
1706 * supplies requested using normal regulator_get() calls without
1707 * disrupting the operation of drivers that can handle absent
1708 * supplies.
1709 *
1710 * Use of supply names configured via regulator_set_device_supply() is
1711 * strongly encouraged.  It is recommended that the supply name used
1712 * should match the name used for the supply and/or the relevant
1713 * device pins in the datasheet.
1714 */
1715struct regulator *regulator_get_optional(struct device *dev, const char *id)
1716{
1717	return _regulator_get(dev, id, false, false);
1718}
1719EXPORT_SYMBOL_GPL(regulator_get_optional);
1720
1721/* regulator_list_mutex lock held by regulator_put() */
1722static void _regulator_put(struct regulator *regulator)
1723{
1724	struct regulator_dev *rdev;
1725
1726	if (IS_ERR_OR_NULL(regulator))
1727		return;
1728
1729	lockdep_assert_held_once(&regulator_list_mutex);
1730
1731	rdev = regulator->rdev;
1732
1733	debugfs_remove_recursive(regulator->debugfs);
1734
1735	/* remove any sysfs entries */
1736	if (regulator->dev)
1737		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1738	mutex_lock(&rdev->mutex);
1739	list_del(&regulator->list);
1740
1741	rdev->open_count--;
1742	rdev->exclusive = 0;
1743	put_device(&rdev->dev);
1744	mutex_unlock(&rdev->mutex);
1745
1746	kfree(regulator->supply_name);
1747	kfree(regulator);
1748
1749	module_put(rdev->owner);
1750}
1751
1752/**
1753 * regulator_put - "free" the regulator source
1754 * @regulator: regulator source
1755 *
1756 * Note: drivers must ensure that all regulator_enable calls made on this
1757 * regulator source are balanced by regulator_disable calls prior to calling
1758 * this function.
1759 */
1760void regulator_put(struct regulator *regulator)
1761{
1762	mutex_lock(&regulator_list_mutex);
1763	_regulator_put(regulator);
1764	mutex_unlock(&regulator_list_mutex);
1765}
1766EXPORT_SYMBOL_GPL(regulator_put);
1767
1768/**
1769 * regulator_register_supply_alias - Provide device alias for supply lookup
1770 *
1771 * @dev: device that will be given as the regulator "consumer"
1772 * @id: Supply name or regulator ID
1773 * @alias_dev: device that should be used to lookup the supply
1774 * @alias_id: Supply name or regulator ID that should be used to lookup the
1775 * supply
1776 *
1777 * All lookups for id on dev will instead be conducted for alias_id on
1778 * alias_dev.
1779 */
1780int regulator_register_supply_alias(struct device *dev, const char *id,
1781				    struct device *alias_dev,
1782				    const char *alias_id)
1783{
1784	struct regulator_supply_alias *map;
1785
1786	map = regulator_find_supply_alias(dev, id);
1787	if (map)
1788		return -EEXIST;
1789
1790	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1791	if (!map)
1792		return -ENOMEM;
1793
1794	map->src_dev = dev;
1795	map->src_supply = id;
1796	map->alias_dev = alias_dev;
1797	map->alias_supply = alias_id;
1798
1799	list_add(&map->list, &regulator_supply_alias_list);
1800
1801	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1802		id, dev_name(dev), alias_id, dev_name(alias_dev));
1803
1804	return 0;
1805}
1806EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1807
1808/**
1809 * regulator_unregister_supply_alias - Remove device alias
1810 *
1811 * @dev: device that will be given as the regulator "consumer"
1812 * @id: Supply name or regulator ID
1813 *
1814 * Remove a lookup alias if one exists for id on dev.
1815 */
1816void regulator_unregister_supply_alias(struct device *dev, const char *id)
1817{
1818	struct regulator_supply_alias *map;
1819
1820	map = regulator_find_supply_alias(dev, id);
1821	if (map) {
1822		list_del(&map->list);
1823		kfree(map);
1824	}
1825}
1826EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1827
1828/**
1829 * regulator_bulk_register_supply_alias - register multiple aliases
1830 *
1831 * @dev: device that will be given as the regulator "consumer"
1832 * @id: List of supply names or regulator IDs
1833 * @alias_dev: device that should be used to lookup the supply
1834 * @alias_id: List of supply names or regulator IDs that should be used to
1835 * lookup the supply
1836 * @num_id: Number of aliases to register
1837 *
1838 * @return 0 on success, an errno on failure.
1839 *
1840 * This helper function allows drivers to register several supply
1841 * aliases in one operation.  If any of the aliases cannot be
1842 * registered any aliases that were registered will be removed
1843 * before returning to the caller.
1844 */
1845int regulator_bulk_register_supply_alias(struct device *dev,
1846					 const char *const *id,
1847					 struct device *alias_dev,
1848					 const char *const *alias_id,
1849					 int num_id)
1850{
1851	int i;
1852	int ret;
1853
1854	for (i = 0; i < num_id; ++i) {
1855		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1856						      alias_id[i]);
1857		if (ret < 0)
1858			goto err;
1859	}
1860
1861	return 0;
1862
1863err:
1864	dev_err(dev,
1865		"Failed to create supply alias %s,%s -> %s,%s\n",
1866		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1867
1868	while (--i >= 0)
1869		regulator_unregister_supply_alias(dev, id[i]);
1870
1871	return ret;
1872}
1873EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1874
1875/**
1876 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1877 *
1878 * @dev: device that will be given as the regulator "consumer"
1879 * @id: List of supply names or regulator IDs
1880 * @num_id: Number of aliases to unregister
1881 *
1882 * This helper function allows drivers to unregister several supply
1883 * aliases in one operation.
1884 */
1885void regulator_bulk_unregister_supply_alias(struct device *dev,
1886					    const char *const *id,
1887					    int num_id)
1888{
1889	int i;
1890
1891	for (i = 0; i < num_id; ++i)
1892		regulator_unregister_supply_alias(dev, id[i]);
1893}
1894EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1895
1896
1897/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1898static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1899				const struct regulator_config *config)
1900{
1901	struct regulator_enable_gpio *pin;
1902	struct gpio_desc *gpiod;
1903	int ret;
1904
1905	gpiod = gpio_to_desc(config->ena_gpio);
1906
1907	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1908		if (pin->gpiod == gpiod) {
1909			rdev_dbg(rdev, "GPIO %d is already used\n",
1910				config->ena_gpio);
1911			goto update_ena_gpio_to_rdev;
1912		}
1913	}
1914
1915	ret = gpio_request_one(config->ena_gpio,
1916				GPIOF_DIR_OUT | config->ena_gpio_flags,
1917				rdev_get_name(rdev));
1918	if (ret)
1919		return ret;
1920
1921	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1922	if (pin == NULL) {
1923		gpio_free(config->ena_gpio);
1924		return -ENOMEM;
1925	}
1926
1927	pin->gpiod = gpiod;
1928	pin->ena_gpio_invert = config->ena_gpio_invert;
1929	list_add(&pin->list, &regulator_ena_gpio_list);
1930
1931update_ena_gpio_to_rdev:
1932	pin->request_count++;
1933	rdev->ena_pin = pin;
1934	return 0;
1935}
1936
1937static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1938{
1939	struct regulator_enable_gpio *pin, *n;
1940
1941	if (!rdev->ena_pin)
1942		return;
1943
1944	/* Free the GPIO only in case of no use */
1945	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1946		if (pin->gpiod == rdev->ena_pin->gpiod) {
1947			if (pin->request_count <= 1) {
1948				pin->request_count = 0;
1949				gpiod_put(pin->gpiod);
1950				list_del(&pin->list);
1951				kfree(pin);
1952				rdev->ena_pin = NULL;
1953				return;
1954			} else {
1955				pin->request_count--;
1956			}
1957		}
1958	}
1959}
1960
1961/**
1962 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1963 * @rdev: regulator_dev structure
1964 * @enable: enable GPIO at initial use?
1965 *
1966 * GPIO is enabled in case of initial use. (enable_count is 0)
1967 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1968 */
1969static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1970{
1971	struct regulator_enable_gpio *pin = rdev->ena_pin;
1972
1973	if (!pin)
1974		return -EINVAL;
1975
1976	if (enable) {
1977		/* Enable GPIO at initial use */
1978		if (pin->enable_count == 0)
1979			gpiod_set_value_cansleep(pin->gpiod,
1980						 !pin->ena_gpio_invert);
1981
1982		pin->enable_count++;
1983	} else {
1984		if (pin->enable_count > 1) {
1985			pin->enable_count--;
1986			return 0;
1987		}
1988
1989		/* Disable GPIO if not used */
1990		if (pin->enable_count <= 1) {
1991			gpiod_set_value_cansleep(pin->gpiod,
1992						 pin->ena_gpio_invert);
1993			pin->enable_count = 0;
1994		}
1995	}
1996
1997	return 0;
1998}
1999
2000/**
2001 * _regulator_enable_delay - a delay helper function
2002 * @delay: time to delay in microseconds
2003 *
2004 * Delay for the requested amount of time as per the guidelines in:
2005 *
2006 *     Documentation/timers/timers-howto.txt
2007 *
2008 * The assumption here is that regulators will never be enabled in
2009 * atomic context and therefore sleeping functions can be used.
2010 */
2011static void _regulator_enable_delay(unsigned int delay)
2012{
2013	unsigned int ms = delay / 1000;
2014	unsigned int us = delay % 1000;
2015
2016	if (ms > 0) {
2017		/*
2018		 * For small enough values, handle super-millisecond
2019		 * delays in the usleep_range() call below.
2020		 */
2021		if (ms < 20)
2022			us += ms * 1000;
2023		else
2024			msleep(ms);
2025	}
2026
2027	/*
2028	 * Give the scheduler some room to coalesce with any other
2029	 * wakeup sources. For delays shorter than 10 us, don't even
2030	 * bother setting up high-resolution timers and just busy-
2031	 * loop.
2032	 */
2033	if (us >= 10)
2034		usleep_range(us, us + 100);
2035	else
2036		udelay(us);
2037}
2038
2039static int _regulator_do_enable(struct regulator_dev *rdev)
2040{
2041	int ret, delay;
2042
2043	/* Query before enabling in case configuration dependent.  */
2044	ret = _regulator_get_enable_time(rdev);
2045	if (ret >= 0) {
2046		delay = ret;
2047	} else {
2048		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2049		delay = 0;
2050	}
2051
2052	trace_regulator_enable(rdev_get_name(rdev));
2053
2054	if (rdev->desc->off_on_delay) {
2055		/* if needed, keep a distance of off_on_delay from last time
2056		 * this regulator was disabled.
2057		 */
2058		unsigned long start_jiffy = jiffies;
2059		unsigned long intended, max_delay, remaining;
2060
2061		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2062		intended = rdev->last_off_jiffy + max_delay;
2063
2064		if (time_before(start_jiffy, intended)) {
2065			/* calc remaining jiffies to deal with one-time
2066			 * timer wrapping.
2067			 * in case of multiple timer wrapping, either it can be
2068			 * detected by out-of-range remaining, or it cannot be
2069			 * detected and we gets a panelty of
2070			 * _regulator_enable_delay().
2071			 */
2072			remaining = intended - start_jiffy;
2073			if (remaining <= max_delay)
2074				_regulator_enable_delay(
2075						jiffies_to_usecs(remaining));
2076		}
2077	}
2078
2079	if (rdev->ena_pin) {
2080		if (!rdev->ena_gpio_state) {
2081			ret = regulator_ena_gpio_ctrl(rdev, true);
2082			if (ret < 0)
2083				return ret;
2084			rdev->ena_gpio_state = 1;
2085		}
2086	} else if (rdev->desc->ops->enable) {
2087		ret = rdev->desc->ops->enable(rdev);
2088		if (ret < 0)
2089			return ret;
2090	} else {
2091		return -EINVAL;
2092	}
2093
2094	/* Allow the regulator to ramp; it would be useful to extend
2095	 * this for bulk operations so that the regulators can ramp
2096	 * together.  */
2097	trace_regulator_enable_delay(rdev_get_name(rdev));
2098
2099	_regulator_enable_delay(delay);
2100
2101	trace_regulator_enable_complete(rdev_get_name(rdev));
2102
2103	return 0;
2104}
2105
2106/* locks held by regulator_enable() */
2107static int _regulator_enable(struct regulator_dev *rdev)
2108{
2109	int ret;
2110
2111	lockdep_assert_held_once(&rdev->mutex);
2112
2113	/* check voltage and requested load before enabling */
2114	if (rdev->constraints &&
2115	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2116		drms_uA_update(rdev);
2117
2118	if (rdev->use_count == 0) {
2119		/* The regulator may on if it's not switchable or left on */
2120		ret = _regulator_is_enabled(rdev);
2121		if (ret == -EINVAL || ret == 0) {
2122			if (!_regulator_can_change_status(rdev))
 
2123				return -EPERM;
2124
2125			ret = _regulator_do_enable(rdev);
2126			if (ret < 0)
2127				return ret;
2128
2129		} else if (ret < 0) {
2130			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2131			return ret;
2132		}
2133		/* Fallthrough on positive return values - already enabled */
2134	}
2135
2136	rdev->use_count++;
2137
2138	return 0;
2139}
2140
2141/**
2142 * regulator_enable - enable regulator output
2143 * @regulator: regulator source
2144 *
2145 * Request that the regulator be enabled with the regulator output at
2146 * the predefined voltage or current value.  Calls to regulator_enable()
2147 * must be balanced with calls to regulator_disable().
2148 *
2149 * NOTE: the output value can be set by other drivers, boot loader or may be
2150 * hardwired in the regulator.
2151 */
2152int regulator_enable(struct regulator *regulator)
2153{
2154	struct regulator_dev *rdev = regulator->rdev;
2155	int ret = 0;
2156
2157	if (regulator->always_on)
2158		return 0;
2159
2160	if (rdev->supply) {
2161		ret = regulator_enable(rdev->supply);
2162		if (ret != 0)
2163			return ret;
2164	}
2165
2166	mutex_lock(&rdev->mutex);
2167	ret = _regulator_enable(rdev);
2168	mutex_unlock(&rdev->mutex);
2169
2170	if (ret != 0 && rdev->supply)
2171		regulator_disable(rdev->supply);
2172
2173	return ret;
2174}
2175EXPORT_SYMBOL_GPL(regulator_enable);
2176
2177static int _regulator_do_disable(struct regulator_dev *rdev)
2178{
2179	int ret;
2180
2181	trace_regulator_disable(rdev_get_name(rdev));
2182
2183	if (rdev->ena_pin) {
2184		if (rdev->ena_gpio_state) {
2185			ret = regulator_ena_gpio_ctrl(rdev, false);
2186			if (ret < 0)
2187				return ret;
2188			rdev->ena_gpio_state = 0;
2189		}
2190
2191	} else if (rdev->desc->ops->disable) {
2192		ret = rdev->desc->ops->disable(rdev);
2193		if (ret != 0)
2194			return ret;
2195	}
2196
2197	/* cares about last_off_jiffy only if off_on_delay is required by
2198	 * device.
2199	 */
2200	if (rdev->desc->off_on_delay)
2201		rdev->last_off_jiffy = jiffies;
2202
2203	trace_regulator_disable_complete(rdev_get_name(rdev));
2204
2205	return 0;
2206}
2207
2208/* locks held by regulator_disable() */
2209static int _regulator_disable(struct regulator_dev *rdev)
2210{
2211	int ret = 0;
2212
2213	lockdep_assert_held_once(&rdev->mutex);
2214
2215	if (WARN(rdev->use_count <= 0,
2216		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2217		return -EIO;
2218
2219	/* are we the last user and permitted to disable ? */
2220	if (rdev->use_count == 1 &&
2221	    (rdev->constraints && !rdev->constraints->always_on)) {
2222
2223		/* we are last user */
2224		if (_regulator_can_change_status(rdev)) {
2225			ret = _notifier_call_chain(rdev,
2226						   REGULATOR_EVENT_PRE_DISABLE,
2227						   NULL);
2228			if (ret & NOTIFY_STOP_MASK)
2229				return -EINVAL;
2230
2231			ret = _regulator_do_disable(rdev);
2232			if (ret < 0) {
2233				rdev_err(rdev, "failed to disable\n");
2234				_notifier_call_chain(rdev,
2235						REGULATOR_EVENT_ABORT_DISABLE,
2236						NULL);
2237				return ret;
2238			}
2239			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2240					NULL);
2241		}
2242
2243		rdev->use_count = 0;
2244	} else if (rdev->use_count > 1) {
2245
2246		if (rdev->constraints &&
2247			(rdev->constraints->valid_ops_mask &
2248			REGULATOR_CHANGE_DRMS))
2249			drms_uA_update(rdev);
2250
2251		rdev->use_count--;
2252	}
2253
2254	return ret;
2255}
2256
2257/**
2258 * regulator_disable - disable regulator output
2259 * @regulator: regulator source
2260 *
2261 * Disable the regulator output voltage or current.  Calls to
2262 * regulator_enable() must be balanced with calls to
2263 * regulator_disable().
2264 *
2265 * NOTE: this will only disable the regulator output if no other consumer
2266 * devices have it enabled, the regulator device supports disabling and
2267 * machine constraints permit this operation.
2268 */
2269int regulator_disable(struct regulator *regulator)
2270{
2271	struct regulator_dev *rdev = regulator->rdev;
2272	int ret = 0;
2273
2274	if (regulator->always_on)
2275		return 0;
2276
2277	mutex_lock(&rdev->mutex);
2278	ret = _regulator_disable(rdev);
2279	mutex_unlock(&rdev->mutex);
2280
2281	if (ret == 0 && rdev->supply)
2282		regulator_disable(rdev->supply);
2283
2284	return ret;
2285}
2286EXPORT_SYMBOL_GPL(regulator_disable);
2287
2288/* locks held by regulator_force_disable() */
2289static int _regulator_force_disable(struct regulator_dev *rdev)
2290{
2291	int ret = 0;
2292
2293	lockdep_assert_held_once(&rdev->mutex);
2294
2295	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2296			REGULATOR_EVENT_PRE_DISABLE, NULL);
2297	if (ret & NOTIFY_STOP_MASK)
2298		return -EINVAL;
2299
2300	ret = _regulator_do_disable(rdev);
2301	if (ret < 0) {
2302		rdev_err(rdev, "failed to force disable\n");
2303		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2304				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2305		return ret;
2306	}
2307
2308	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2309			REGULATOR_EVENT_DISABLE, NULL);
2310
2311	return 0;
2312}
2313
2314/**
2315 * regulator_force_disable - force disable regulator output
2316 * @regulator: regulator source
2317 *
2318 * Forcibly disable the regulator output voltage or current.
2319 * NOTE: this *will* disable the regulator output even if other consumer
2320 * devices have it enabled. This should be used for situations when device
2321 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2322 */
2323int regulator_force_disable(struct regulator *regulator)
2324{
2325	struct regulator_dev *rdev = regulator->rdev;
2326	int ret;
2327
2328	mutex_lock(&rdev->mutex);
2329	regulator->uA_load = 0;
2330	ret = _regulator_force_disable(regulator->rdev);
2331	mutex_unlock(&rdev->mutex);
2332
2333	if (rdev->supply)
2334		while (rdev->open_count--)
2335			regulator_disable(rdev->supply);
2336
2337	return ret;
2338}
2339EXPORT_SYMBOL_GPL(regulator_force_disable);
2340
2341static void regulator_disable_work(struct work_struct *work)
2342{
2343	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2344						  disable_work.work);
2345	int count, i, ret;
2346
2347	mutex_lock(&rdev->mutex);
2348
2349	BUG_ON(!rdev->deferred_disables);
2350
2351	count = rdev->deferred_disables;
2352	rdev->deferred_disables = 0;
2353
2354	for (i = 0; i < count; i++) {
2355		ret = _regulator_disable(rdev);
2356		if (ret != 0)
2357			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2358	}
2359
2360	mutex_unlock(&rdev->mutex);
2361
2362	if (rdev->supply) {
2363		for (i = 0; i < count; i++) {
2364			ret = regulator_disable(rdev->supply);
2365			if (ret != 0) {
2366				rdev_err(rdev,
2367					 "Supply disable failed: %d\n", ret);
2368			}
2369		}
2370	}
2371}
2372
2373/**
2374 * regulator_disable_deferred - disable regulator output with delay
2375 * @regulator: regulator source
2376 * @ms: miliseconds until the regulator is disabled
2377 *
2378 * Execute regulator_disable() on the regulator after a delay.  This
2379 * is intended for use with devices that require some time to quiesce.
2380 *
2381 * NOTE: this will only disable the regulator output if no other consumer
2382 * devices have it enabled, the regulator device supports disabling and
2383 * machine constraints permit this operation.
2384 */
2385int regulator_disable_deferred(struct regulator *regulator, int ms)
2386{
2387	struct regulator_dev *rdev = regulator->rdev;
2388
2389	if (regulator->always_on)
2390		return 0;
2391
2392	if (!ms)
2393		return regulator_disable(regulator);
2394
2395	mutex_lock(&rdev->mutex);
2396	rdev->deferred_disables++;
2397	mutex_unlock(&rdev->mutex);
2398
2399	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2400			   msecs_to_jiffies(ms));
2401	return 0;
2402}
2403EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2404
2405static int _regulator_is_enabled(struct regulator_dev *rdev)
2406{
2407	/* A GPIO control always takes precedence */
2408	if (rdev->ena_pin)
2409		return rdev->ena_gpio_state;
2410
2411	/* If we don't know then assume that the regulator is always on */
2412	if (!rdev->desc->ops->is_enabled)
2413		return 1;
2414
2415	return rdev->desc->ops->is_enabled(rdev);
2416}
2417
2418static int _regulator_list_voltage(struct regulator *regulator,
2419				    unsigned selector, int lock)
2420{
2421	struct regulator_dev *rdev = regulator->rdev;
2422	const struct regulator_ops *ops = rdev->desc->ops;
2423	int ret;
2424
2425	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2426		return rdev->desc->fixed_uV;
2427
2428	if (ops->list_voltage) {
2429		if (selector >= rdev->desc->n_voltages)
2430			return -EINVAL;
2431		if (lock)
2432			mutex_lock(&rdev->mutex);
2433		ret = ops->list_voltage(rdev, selector);
2434		if (lock)
2435			mutex_unlock(&rdev->mutex);
2436	} else if (rdev->supply) {
2437		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2438	} else {
2439		return -EINVAL;
2440	}
2441
2442	if (ret > 0) {
2443		if (ret < rdev->constraints->min_uV)
2444			ret = 0;
2445		else if (ret > rdev->constraints->max_uV)
2446			ret = 0;
2447	}
2448
2449	return ret;
2450}
2451
2452/**
2453 * regulator_is_enabled - is the regulator output enabled
2454 * @regulator: regulator source
2455 *
2456 * Returns positive if the regulator driver backing the source/client
2457 * has requested that the device be enabled, zero if it hasn't, else a
2458 * negative errno code.
2459 *
2460 * Note that the device backing this regulator handle can have multiple
2461 * users, so it might be enabled even if regulator_enable() was never
2462 * called for this particular source.
2463 */
2464int regulator_is_enabled(struct regulator *regulator)
2465{
2466	int ret;
2467
2468	if (regulator->always_on)
2469		return 1;
2470
2471	mutex_lock(&regulator->rdev->mutex);
2472	ret = _regulator_is_enabled(regulator->rdev);
2473	mutex_unlock(&regulator->rdev->mutex);
2474
2475	return ret;
2476}
2477EXPORT_SYMBOL_GPL(regulator_is_enabled);
2478
2479/**
2480 * regulator_can_change_voltage - check if regulator can change voltage
2481 * @regulator: regulator source
2482 *
2483 * Returns positive if the regulator driver backing the source/client
2484 * can change its voltage, false otherwise. Useful for detecting fixed
2485 * or dummy regulators and disabling voltage change logic in the client
2486 * driver.
2487 */
2488int regulator_can_change_voltage(struct regulator *regulator)
2489{
2490	struct regulator_dev	*rdev = regulator->rdev;
2491
2492	if (rdev->constraints &&
2493	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2494		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2495			return 1;
2496
2497		if (rdev->desc->continuous_voltage_range &&
2498		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2499		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2500			return 1;
2501	}
2502
2503	return 0;
2504}
2505EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2506
2507/**
2508 * regulator_count_voltages - count regulator_list_voltage() selectors
2509 * @regulator: regulator source
2510 *
2511 * Returns number of selectors, or negative errno.  Selectors are
2512 * numbered starting at zero, and typically correspond to bitfields
2513 * in hardware registers.
2514 */
2515int regulator_count_voltages(struct regulator *regulator)
2516{
2517	struct regulator_dev	*rdev = regulator->rdev;
2518
2519	if (rdev->desc->n_voltages)
2520		return rdev->desc->n_voltages;
2521
2522	if (!rdev->supply)
2523		return -EINVAL;
2524
2525	return regulator_count_voltages(rdev->supply);
2526}
2527EXPORT_SYMBOL_GPL(regulator_count_voltages);
2528
2529/**
2530 * regulator_list_voltage - enumerate supported voltages
2531 * @regulator: regulator source
2532 * @selector: identify voltage to list
2533 * Context: can sleep
2534 *
2535 * Returns a voltage that can be passed to @regulator_set_voltage(),
2536 * zero if this selector code can't be used on this system, or a
2537 * negative errno.
2538 */
2539int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2540{
2541	return _regulator_list_voltage(regulator, selector, 1);
2542}
2543EXPORT_SYMBOL_GPL(regulator_list_voltage);
2544
2545/**
2546 * regulator_get_regmap - get the regulator's register map
2547 * @regulator: regulator source
2548 *
2549 * Returns the register map for the given regulator, or an ERR_PTR value
2550 * if the regulator doesn't use regmap.
2551 */
2552struct regmap *regulator_get_regmap(struct regulator *regulator)
2553{
2554	struct regmap *map = regulator->rdev->regmap;
2555
2556	return map ? map : ERR_PTR(-EOPNOTSUPP);
2557}
2558
2559/**
2560 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2561 * @regulator: regulator source
2562 * @vsel_reg: voltage selector register, output parameter
2563 * @vsel_mask: mask for voltage selector bitfield, output parameter
2564 *
2565 * Returns the hardware register offset and bitmask used for setting the
2566 * regulator voltage. This might be useful when configuring voltage-scaling
2567 * hardware or firmware that can make I2C requests behind the kernel's back,
2568 * for example.
2569 *
2570 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2571 * and 0 is returned, otherwise a negative errno is returned.
2572 */
2573int regulator_get_hardware_vsel_register(struct regulator *regulator,
2574					 unsigned *vsel_reg,
2575					 unsigned *vsel_mask)
2576{
2577	struct regulator_dev *rdev = regulator->rdev;
2578	const struct regulator_ops *ops = rdev->desc->ops;
2579
2580	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2581		return -EOPNOTSUPP;
2582
2583	 *vsel_reg = rdev->desc->vsel_reg;
2584	 *vsel_mask = rdev->desc->vsel_mask;
2585
2586	 return 0;
2587}
2588EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2589
2590/**
2591 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2592 * @regulator: regulator source
2593 * @selector: identify voltage to list
2594 *
2595 * Converts the selector to a hardware-specific voltage selector that can be
2596 * directly written to the regulator registers. The address of the voltage
2597 * register can be determined by calling @regulator_get_hardware_vsel_register.
2598 *
2599 * On error a negative errno is returned.
2600 */
2601int regulator_list_hardware_vsel(struct regulator *regulator,
2602				 unsigned selector)
2603{
2604	struct regulator_dev *rdev = regulator->rdev;
2605	const struct regulator_ops *ops = rdev->desc->ops;
2606
2607	if (selector >= rdev->desc->n_voltages)
2608		return -EINVAL;
2609	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2610		return -EOPNOTSUPP;
2611
2612	return selector;
2613}
2614EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2615
2616/**
2617 * regulator_get_linear_step - return the voltage step size between VSEL values
2618 * @regulator: regulator source
2619 *
2620 * Returns the voltage step size between VSEL values for linear
2621 * regulators, or return 0 if the regulator isn't a linear regulator.
2622 */
2623unsigned int regulator_get_linear_step(struct regulator *regulator)
2624{
2625	struct regulator_dev *rdev = regulator->rdev;
2626
2627	return rdev->desc->uV_step;
2628}
2629EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2630
2631/**
2632 * regulator_is_supported_voltage - check if a voltage range can be supported
2633 *
2634 * @regulator: Regulator to check.
2635 * @min_uV: Minimum required voltage in uV.
2636 * @max_uV: Maximum required voltage in uV.
2637 *
2638 * Returns a boolean or a negative error code.
2639 */
2640int regulator_is_supported_voltage(struct regulator *regulator,
2641				   int min_uV, int max_uV)
2642{
2643	struct regulator_dev *rdev = regulator->rdev;
2644	int i, voltages, ret;
2645
2646	/* If we can't change voltage check the current voltage */
2647	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2648		ret = regulator_get_voltage(regulator);
2649		if (ret >= 0)
2650			return min_uV <= ret && ret <= max_uV;
2651		else
2652			return ret;
2653	}
2654
2655	/* Any voltage within constrains range is fine? */
2656	if (rdev->desc->continuous_voltage_range)
2657		return min_uV >= rdev->constraints->min_uV &&
2658				max_uV <= rdev->constraints->max_uV;
2659
2660	ret = regulator_count_voltages(regulator);
2661	if (ret < 0)
2662		return ret;
2663	voltages = ret;
2664
2665	for (i = 0; i < voltages; i++) {
2666		ret = regulator_list_voltage(regulator, i);
2667
2668		if (ret >= min_uV && ret <= max_uV)
2669			return 1;
2670	}
2671
2672	return 0;
2673}
2674EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2675
2676static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2677				 int max_uV)
2678{
2679	const struct regulator_desc *desc = rdev->desc;
2680
2681	if (desc->ops->map_voltage)
2682		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2683
2684	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2685		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2686
2687	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2688		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2689
2690	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2691}
2692
2693static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2694				       int min_uV, int max_uV,
2695				       unsigned *selector)
2696{
2697	struct pre_voltage_change_data data;
2698	int ret;
2699
2700	data.old_uV = _regulator_get_voltage(rdev);
2701	data.min_uV = min_uV;
2702	data.max_uV = max_uV;
2703	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2704				   &data);
2705	if (ret & NOTIFY_STOP_MASK)
2706		return -EINVAL;
2707
2708	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2709	if (ret >= 0)
2710		return ret;
2711
2712	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2713			     (void *)data.old_uV);
2714
2715	return ret;
2716}
2717
2718static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2719					   int uV, unsigned selector)
2720{
2721	struct pre_voltage_change_data data;
2722	int ret;
2723
2724	data.old_uV = _regulator_get_voltage(rdev);
2725	data.min_uV = uV;
2726	data.max_uV = uV;
2727	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2728				   &data);
2729	if (ret & NOTIFY_STOP_MASK)
2730		return -EINVAL;
2731
2732	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2733	if (ret >= 0)
2734		return ret;
2735
2736	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2737			     (void *)data.old_uV);
2738
2739	return ret;
2740}
2741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2742static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2743				     int min_uV, int max_uV)
2744{
2745	int ret;
2746	int delay = 0;
2747	int best_val = 0;
2748	unsigned int selector;
2749	int old_selector = -1;
 
 
2750
2751	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2752
2753	min_uV += rdev->constraints->uV_offset;
2754	max_uV += rdev->constraints->uV_offset;
2755
2756	/*
2757	 * If we can't obtain the old selector there is not enough
2758	 * info to call set_voltage_time_sel().
2759	 */
2760	if (_regulator_is_enabled(rdev) &&
2761	    rdev->desc->ops->set_voltage_time_sel &&
2762	    rdev->desc->ops->get_voltage_sel) {
2763		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2764		if (old_selector < 0)
2765			return old_selector;
2766	}
2767
2768	if (rdev->desc->ops->set_voltage) {
2769		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2770						  &selector);
2771
2772		if (ret >= 0) {
2773			if (rdev->desc->ops->list_voltage)
2774				best_val = rdev->desc->ops->list_voltage(rdev,
2775									 selector);
2776			else
2777				best_val = _regulator_get_voltage(rdev);
2778		}
2779
2780	} else if (rdev->desc->ops->set_voltage_sel) {
2781		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2782		if (ret >= 0) {
2783			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2784			if (min_uV <= best_val && max_uV >= best_val) {
2785				selector = ret;
2786				if (old_selector == selector)
2787					ret = 0;
2788				else
2789					ret = _regulator_call_set_voltage_sel(
2790						rdev, best_val, selector);
2791			} else {
2792				ret = -EINVAL;
2793			}
2794		}
2795	} else {
2796		ret = -EINVAL;
2797	}
2798
2799	/* Call set_voltage_time_sel if successfully obtained old_selector */
2800	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2801		&& old_selector != selector) {
2802
2803		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2804						old_selector, selector);
2805		if (delay < 0) {
2806			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2807				  delay);
2808			delay = 0;
 
 
 
 
 
 
 
 
 
 
 
2809		}
 
2810
2811		/* Insert any necessary delays */
2812		if (delay >= 1000) {
2813			mdelay(delay / 1000);
2814			udelay(delay % 1000);
2815		} else if (delay) {
2816			udelay(delay);
2817		}
2818	}
2819
2820	if (ret == 0 && best_val >= 0) {
 
 
 
 
 
 
 
 
2821		unsigned long data = best_val;
2822
2823		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2824				     (void *)data);
2825	}
2826
 
2827	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2828
2829	return ret;
2830}
2831
2832static int regulator_set_voltage_unlocked(struct regulator *regulator,
2833					  int min_uV, int max_uV)
2834{
2835	struct regulator_dev *rdev = regulator->rdev;
2836	int ret = 0;
2837	int old_min_uV, old_max_uV;
2838	int current_uV;
2839	int best_supply_uV = 0;
2840	int supply_change_uV = 0;
2841
2842	/* If we're setting the same range as last time the change
2843	 * should be a noop (some cpufreq implementations use the same
2844	 * voltage for multiple frequencies, for example).
2845	 */
2846	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2847		goto out;
2848
2849	/* If we're trying to set a range that overlaps the current voltage,
2850	 * return successfully even though the regulator does not support
2851	 * changing the voltage.
2852	 */
2853	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2854		current_uV = _regulator_get_voltage(rdev);
2855		if (min_uV <= current_uV && current_uV <= max_uV) {
2856			regulator->min_uV = min_uV;
2857			regulator->max_uV = max_uV;
2858			goto out;
2859		}
2860	}
2861
2862	/* sanity check */
2863	if (!rdev->desc->ops->set_voltage &&
2864	    !rdev->desc->ops->set_voltage_sel) {
2865		ret = -EINVAL;
2866		goto out;
2867	}
2868
2869	/* constraints check */
2870	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2871	if (ret < 0)
2872		goto out;
2873
2874	/* restore original values in case of error */
2875	old_min_uV = regulator->min_uV;
2876	old_max_uV = regulator->max_uV;
2877	regulator->min_uV = min_uV;
2878	regulator->max_uV = max_uV;
2879
2880	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2881	if (ret < 0)
2882		goto out2;
2883
2884	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2885				!rdev->desc->ops->get_voltage)) {
2886		int current_supply_uV;
2887		int selector;
2888
2889		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2890		if (selector < 0) {
2891			ret = selector;
2892			goto out2;
2893		}
2894
2895		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2896		if (best_supply_uV < 0) {
2897			ret = best_supply_uV;
2898			goto out2;
2899		}
2900
2901		best_supply_uV += rdev->desc->min_dropout_uV;
2902
2903		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2904		if (current_supply_uV < 0) {
2905			ret = current_supply_uV;
2906			goto out2;
2907		}
2908
2909		supply_change_uV = best_supply_uV - current_supply_uV;
2910	}
2911
2912	if (supply_change_uV > 0) {
2913		ret = regulator_set_voltage_unlocked(rdev->supply,
2914				best_supply_uV, INT_MAX);
2915		if (ret) {
2916			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2917					ret);
2918			goto out2;
2919		}
2920	}
2921
2922	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2923	if (ret < 0)
2924		goto out2;
2925
2926	if (supply_change_uV < 0) {
2927		ret = regulator_set_voltage_unlocked(rdev->supply,
2928				best_supply_uV, INT_MAX);
2929		if (ret)
2930			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2931					ret);
2932		/* No need to fail here */
2933		ret = 0;
2934	}
2935
2936out:
2937	return ret;
2938out2:
2939	regulator->min_uV = old_min_uV;
2940	regulator->max_uV = old_max_uV;
2941
2942	return ret;
2943}
2944
2945/**
2946 * regulator_set_voltage - set regulator output voltage
2947 * @regulator: regulator source
2948 * @min_uV: Minimum required voltage in uV
2949 * @max_uV: Maximum acceptable voltage in uV
2950 *
2951 * Sets a voltage regulator to the desired output voltage. This can be set
2952 * during any regulator state. IOW, regulator can be disabled or enabled.
2953 *
2954 * If the regulator is enabled then the voltage will change to the new value
2955 * immediately otherwise if the regulator is disabled the regulator will
2956 * output at the new voltage when enabled.
2957 *
2958 * NOTE: If the regulator is shared between several devices then the lowest
2959 * request voltage that meets the system constraints will be used.
2960 * Regulator system constraints must be set for this regulator before
2961 * calling this function otherwise this call will fail.
2962 */
2963int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2964{
2965	int ret = 0;
2966
2967	regulator_lock_supply(regulator->rdev);
2968
2969	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2970
2971	regulator_unlock_supply(regulator->rdev);
2972
2973	return ret;
2974}
2975EXPORT_SYMBOL_GPL(regulator_set_voltage);
2976
2977/**
2978 * regulator_set_voltage_time - get raise/fall time
2979 * @regulator: regulator source
2980 * @old_uV: starting voltage in microvolts
2981 * @new_uV: target voltage in microvolts
2982 *
2983 * Provided with the starting and ending voltage, this function attempts to
2984 * calculate the time in microseconds required to rise or fall to this new
2985 * voltage.
2986 */
2987int regulator_set_voltage_time(struct regulator *regulator,
2988			       int old_uV, int new_uV)
2989{
2990	struct regulator_dev *rdev = regulator->rdev;
2991	const struct regulator_ops *ops = rdev->desc->ops;
2992	int old_sel = -1;
2993	int new_sel = -1;
2994	int voltage;
2995	int i;
2996
 
 
 
 
 
2997	/* Currently requires operations to do this */
2998	if (!ops->list_voltage || !ops->set_voltage_time_sel
2999	    || !rdev->desc->n_voltages)
3000		return -EINVAL;
3001
3002	for (i = 0; i < rdev->desc->n_voltages; i++) {
3003		/* We only look for exact voltage matches here */
3004		voltage = regulator_list_voltage(regulator, i);
3005		if (voltage < 0)
3006			return -EINVAL;
3007		if (voltage == 0)
3008			continue;
3009		if (voltage == old_uV)
3010			old_sel = i;
3011		if (voltage == new_uV)
3012			new_sel = i;
3013	}
3014
3015	if (old_sel < 0 || new_sel < 0)
3016		return -EINVAL;
3017
3018	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3019}
3020EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3021
3022/**
3023 * regulator_set_voltage_time_sel - get raise/fall time
3024 * @rdev: regulator source device
3025 * @old_selector: selector for starting voltage
3026 * @new_selector: selector for target voltage
3027 *
3028 * Provided with the starting and target voltage selectors, this function
3029 * returns time in microseconds required to rise or fall to this new voltage
3030 *
3031 * Drivers providing ramp_delay in regulation_constraints can use this as their
3032 * set_voltage_time_sel() operation.
3033 */
3034int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3035				   unsigned int old_selector,
3036				   unsigned int new_selector)
3037{
3038	unsigned int ramp_delay = 0;
3039	int old_volt, new_volt;
3040
3041	if (rdev->constraints->ramp_delay)
3042		ramp_delay = rdev->constraints->ramp_delay;
3043	else if (rdev->desc->ramp_delay)
3044		ramp_delay = rdev->desc->ramp_delay;
3045
3046	if (ramp_delay == 0) {
3047		rdev_warn(rdev, "ramp_delay not set\n");
3048		return 0;
3049	}
3050
3051	/* sanity check */
3052	if (!rdev->desc->ops->list_voltage)
3053		return -EINVAL;
3054
3055	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3056	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3057
3058	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
 
 
 
 
3059}
3060EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3061
3062/**
3063 * regulator_sync_voltage - re-apply last regulator output voltage
3064 * @regulator: regulator source
3065 *
3066 * Re-apply the last configured voltage.  This is intended to be used
3067 * where some external control source the consumer is cooperating with
3068 * has caused the configured voltage to change.
3069 */
3070int regulator_sync_voltage(struct regulator *regulator)
3071{
3072	struct regulator_dev *rdev = regulator->rdev;
3073	int ret, min_uV, max_uV;
3074
3075	mutex_lock(&rdev->mutex);
3076
3077	if (!rdev->desc->ops->set_voltage &&
3078	    !rdev->desc->ops->set_voltage_sel) {
3079		ret = -EINVAL;
3080		goto out;
3081	}
3082
3083	/* This is only going to work if we've had a voltage configured. */
3084	if (!regulator->min_uV && !regulator->max_uV) {
3085		ret = -EINVAL;
3086		goto out;
3087	}
3088
3089	min_uV = regulator->min_uV;
3090	max_uV = regulator->max_uV;
3091
3092	/* This should be a paranoia check... */
3093	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3094	if (ret < 0)
3095		goto out;
3096
3097	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3098	if (ret < 0)
3099		goto out;
3100
3101	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3102
3103out:
3104	mutex_unlock(&rdev->mutex);
3105	return ret;
3106}
3107EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3108
3109static int _regulator_get_voltage(struct regulator_dev *rdev)
3110{
3111	int sel, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3112
3113	if (rdev->desc->ops->get_voltage_sel) {
3114		sel = rdev->desc->ops->get_voltage_sel(rdev);
3115		if (sel < 0)
3116			return sel;
3117		ret = rdev->desc->ops->list_voltage(rdev, sel);
3118	} else if (rdev->desc->ops->get_voltage) {
3119		ret = rdev->desc->ops->get_voltage(rdev);
3120	} else if (rdev->desc->ops->list_voltage) {
3121		ret = rdev->desc->ops->list_voltage(rdev, 0);
3122	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3123		ret = rdev->desc->fixed_uV;
3124	} else if (rdev->supply) {
3125		ret = _regulator_get_voltage(rdev->supply->rdev);
3126	} else {
3127		return -EINVAL;
3128	}
3129
3130	if (ret < 0)
3131		return ret;
3132	return ret - rdev->constraints->uV_offset;
3133}
3134
3135/**
3136 * regulator_get_voltage - get regulator output voltage
3137 * @regulator: regulator source
3138 *
3139 * This returns the current regulator voltage in uV.
3140 *
3141 * NOTE: If the regulator is disabled it will return the voltage value. This
3142 * function should not be used to determine regulator state.
3143 */
3144int regulator_get_voltage(struct regulator *regulator)
3145{
3146	int ret;
3147
3148	regulator_lock_supply(regulator->rdev);
3149
3150	ret = _regulator_get_voltage(regulator->rdev);
3151
3152	regulator_unlock_supply(regulator->rdev);
3153
3154	return ret;
3155}
3156EXPORT_SYMBOL_GPL(regulator_get_voltage);
3157
3158/**
3159 * regulator_set_current_limit - set regulator output current limit
3160 * @regulator: regulator source
3161 * @min_uA: Minimum supported current in uA
3162 * @max_uA: Maximum supported current in uA
3163 *
3164 * Sets current sink to the desired output current. This can be set during
3165 * any regulator state. IOW, regulator can be disabled or enabled.
3166 *
3167 * If the regulator is enabled then the current will change to the new value
3168 * immediately otherwise if the regulator is disabled the regulator will
3169 * output at the new current when enabled.
3170 *
3171 * NOTE: Regulator system constraints must be set for this regulator before
3172 * calling this function otherwise this call will fail.
3173 */
3174int regulator_set_current_limit(struct regulator *regulator,
3175			       int min_uA, int max_uA)
3176{
3177	struct regulator_dev *rdev = regulator->rdev;
3178	int ret;
3179
3180	mutex_lock(&rdev->mutex);
3181
3182	/* sanity check */
3183	if (!rdev->desc->ops->set_current_limit) {
3184		ret = -EINVAL;
3185		goto out;
3186	}
3187
3188	/* constraints check */
3189	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3190	if (ret < 0)
3191		goto out;
3192
3193	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3194out:
3195	mutex_unlock(&rdev->mutex);
3196	return ret;
3197}
3198EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3199
3200static int _regulator_get_current_limit(struct regulator_dev *rdev)
3201{
3202	int ret;
3203
3204	mutex_lock(&rdev->mutex);
3205
3206	/* sanity check */
3207	if (!rdev->desc->ops->get_current_limit) {
3208		ret = -EINVAL;
3209		goto out;
3210	}
3211
3212	ret = rdev->desc->ops->get_current_limit(rdev);
3213out:
3214	mutex_unlock(&rdev->mutex);
3215	return ret;
3216}
3217
3218/**
3219 * regulator_get_current_limit - get regulator output current
3220 * @regulator: regulator source
3221 *
3222 * This returns the current supplied by the specified current sink in uA.
3223 *
3224 * NOTE: If the regulator is disabled it will return the current value. This
3225 * function should not be used to determine regulator state.
3226 */
3227int regulator_get_current_limit(struct regulator *regulator)
3228{
3229	return _regulator_get_current_limit(regulator->rdev);
3230}
3231EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3232
3233/**
3234 * regulator_set_mode - set regulator operating mode
3235 * @regulator: regulator source
3236 * @mode: operating mode - one of the REGULATOR_MODE constants
3237 *
3238 * Set regulator operating mode to increase regulator efficiency or improve
3239 * regulation performance.
3240 *
3241 * NOTE: Regulator system constraints must be set for this regulator before
3242 * calling this function otherwise this call will fail.
3243 */
3244int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3245{
3246	struct regulator_dev *rdev = regulator->rdev;
3247	int ret;
3248	int regulator_curr_mode;
3249
3250	mutex_lock(&rdev->mutex);
3251
3252	/* sanity check */
3253	if (!rdev->desc->ops->set_mode) {
3254		ret = -EINVAL;
3255		goto out;
3256	}
3257
3258	/* return if the same mode is requested */
3259	if (rdev->desc->ops->get_mode) {
3260		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3261		if (regulator_curr_mode == mode) {
3262			ret = 0;
3263			goto out;
3264		}
3265	}
3266
3267	/* constraints check */
3268	ret = regulator_mode_constrain(rdev, &mode);
3269	if (ret < 0)
3270		goto out;
3271
3272	ret = rdev->desc->ops->set_mode(rdev, mode);
3273out:
3274	mutex_unlock(&rdev->mutex);
3275	return ret;
3276}
3277EXPORT_SYMBOL_GPL(regulator_set_mode);
3278
3279static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3280{
3281	int ret;
3282
3283	mutex_lock(&rdev->mutex);
3284
3285	/* sanity check */
3286	if (!rdev->desc->ops->get_mode) {
3287		ret = -EINVAL;
3288		goto out;
3289	}
3290
3291	ret = rdev->desc->ops->get_mode(rdev);
3292out:
3293	mutex_unlock(&rdev->mutex);
3294	return ret;
3295}
3296
3297/**
3298 * regulator_get_mode - get regulator operating mode
3299 * @regulator: regulator source
3300 *
3301 * Get the current regulator operating mode.
3302 */
3303unsigned int regulator_get_mode(struct regulator *regulator)
3304{
3305	return _regulator_get_mode(regulator->rdev);
3306}
3307EXPORT_SYMBOL_GPL(regulator_get_mode);
3308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3309/**
3310 * regulator_set_load - set regulator load
3311 * @regulator: regulator source
3312 * @uA_load: load current
3313 *
3314 * Notifies the regulator core of a new device load. This is then used by
3315 * DRMS (if enabled by constraints) to set the most efficient regulator
3316 * operating mode for the new regulator loading.
3317 *
3318 * Consumer devices notify their supply regulator of the maximum power
3319 * they will require (can be taken from device datasheet in the power
3320 * consumption tables) when they change operational status and hence power
3321 * state. Examples of operational state changes that can affect power
3322 * consumption are :-
3323 *
3324 *    o Device is opened / closed.
3325 *    o Device I/O is about to begin or has just finished.
3326 *    o Device is idling in between work.
3327 *
3328 * This information is also exported via sysfs to userspace.
3329 *
3330 * DRMS will sum the total requested load on the regulator and change
3331 * to the most efficient operating mode if platform constraints allow.
3332 *
3333 * On error a negative errno is returned.
3334 */
3335int regulator_set_load(struct regulator *regulator, int uA_load)
3336{
3337	struct regulator_dev *rdev = regulator->rdev;
3338	int ret;
3339
3340	mutex_lock(&rdev->mutex);
3341	regulator->uA_load = uA_load;
3342	ret = drms_uA_update(rdev);
3343	mutex_unlock(&rdev->mutex);
3344
3345	return ret;
3346}
3347EXPORT_SYMBOL_GPL(regulator_set_load);
3348
3349/**
3350 * regulator_allow_bypass - allow the regulator to go into bypass mode
3351 *
3352 * @regulator: Regulator to configure
3353 * @enable: enable or disable bypass mode
3354 *
3355 * Allow the regulator to go into bypass mode if all other consumers
3356 * for the regulator also enable bypass mode and the machine
3357 * constraints allow this.  Bypass mode means that the regulator is
3358 * simply passing the input directly to the output with no regulation.
3359 */
3360int regulator_allow_bypass(struct regulator *regulator, bool enable)
3361{
3362	struct regulator_dev *rdev = regulator->rdev;
3363	int ret = 0;
3364
3365	if (!rdev->desc->ops->set_bypass)
3366		return 0;
3367
3368	if (rdev->constraints &&
3369	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3370		return 0;
3371
3372	mutex_lock(&rdev->mutex);
3373
3374	if (enable && !regulator->bypass) {
3375		rdev->bypass_count++;
3376
3377		if (rdev->bypass_count == rdev->open_count) {
3378			ret = rdev->desc->ops->set_bypass(rdev, enable);
3379			if (ret != 0)
3380				rdev->bypass_count--;
3381		}
3382
3383	} else if (!enable && regulator->bypass) {
3384		rdev->bypass_count--;
3385
3386		if (rdev->bypass_count != rdev->open_count) {
3387			ret = rdev->desc->ops->set_bypass(rdev, enable);
3388			if (ret != 0)
3389				rdev->bypass_count++;
3390		}
3391	}
3392
3393	if (ret == 0)
3394		regulator->bypass = enable;
3395
3396	mutex_unlock(&rdev->mutex);
3397
3398	return ret;
3399}
3400EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3401
3402/**
3403 * regulator_register_notifier - register regulator event notifier
3404 * @regulator: regulator source
3405 * @nb: notifier block
3406 *
3407 * Register notifier block to receive regulator events.
3408 */
3409int regulator_register_notifier(struct regulator *regulator,
3410			      struct notifier_block *nb)
3411{
3412	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3413						nb);
3414}
3415EXPORT_SYMBOL_GPL(regulator_register_notifier);
3416
3417/**
3418 * regulator_unregister_notifier - unregister regulator event notifier
3419 * @regulator: regulator source
3420 * @nb: notifier block
3421 *
3422 * Unregister regulator event notifier block.
3423 */
3424int regulator_unregister_notifier(struct regulator *regulator,
3425				struct notifier_block *nb)
3426{
3427	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3428						  nb);
3429}
3430EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3431
3432/* notify regulator consumers and downstream regulator consumers.
3433 * Note mutex must be held by caller.
3434 */
3435static int _notifier_call_chain(struct regulator_dev *rdev,
3436				  unsigned long event, void *data)
3437{
3438	/* call rdev chain first */
3439	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3440}
3441
3442/**
3443 * regulator_bulk_get - get multiple regulator consumers
3444 *
3445 * @dev:           Device to supply
3446 * @num_consumers: Number of consumers to register
3447 * @consumers:     Configuration of consumers; clients are stored here.
3448 *
3449 * @return 0 on success, an errno on failure.
3450 *
3451 * This helper function allows drivers to get several regulator
3452 * consumers in one operation.  If any of the regulators cannot be
3453 * acquired then any regulators that were allocated will be freed
3454 * before returning to the caller.
3455 */
3456int regulator_bulk_get(struct device *dev, int num_consumers,
3457		       struct regulator_bulk_data *consumers)
3458{
3459	int i;
3460	int ret;
3461
3462	for (i = 0; i < num_consumers; i++)
3463		consumers[i].consumer = NULL;
3464
3465	for (i = 0; i < num_consumers; i++) {
3466		consumers[i].consumer = _regulator_get(dev,
3467						       consumers[i].supply,
3468						       false,
3469						       !consumers[i].optional);
3470		if (IS_ERR(consumers[i].consumer)) {
3471			ret = PTR_ERR(consumers[i].consumer);
3472			dev_err(dev, "Failed to get supply '%s': %d\n",
3473				consumers[i].supply, ret);
3474			consumers[i].consumer = NULL;
3475			goto err;
3476		}
3477	}
3478
3479	return 0;
3480
3481err:
3482	while (--i >= 0)
3483		regulator_put(consumers[i].consumer);
3484
3485	return ret;
3486}
3487EXPORT_SYMBOL_GPL(regulator_bulk_get);
3488
3489static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3490{
3491	struct regulator_bulk_data *bulk = data;
3492
3493	bulk->ret = regulator_enable(bulk->consumer);
3494}
3495
3496/**
3497 * regulator_bulk_enable - enable multiple regulator consumers
3498 *
3499 * @num_consumers: Number of consumers
3500 * @consumers:     Consumer data; clients are stored here.
3501 * @return         0 on success, an errno on failure
3502 *
3503 * This convenience API allows consumers to enable multiple regulator
3504 * clients in a single API call.  If any consumers cannot be enabled
3505 * then any others that were enabled will be disabled again prior to
3506 * return.
3507 */
3508int regulator_bulk_enable(int num_consumers,
3509			  struct regulator_bulk_data *consumers)
3510{
3511	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3512	int i;
3513	int ret = 0;
3514
3515	for (i = 0; i < num_consumers; i++) {
3516		if (consumers[i].consumer->always_on)
3517			consumers[i].ret = 0;
3518		else
3519			async_schedule_domain(regulator_bulk_enable_async,
3520					      &consumers[i], &async_domain);
3521	}
3522
3523	async_synchronize_full_domain(&async_domain);
3524
3525	/* If any consumer failed we need to unwind any that succeeded */
3526	for (i = 0; i < num_consumers; i++) {
3527		if (consumers[i].ret != 0) {
3528			ret = consumers[i].ret;
3529			goto err;
3530		}
3531	}
3532
3533	return 0;
3534
3535err:
3536	for (i = 0; i < num_consumers; i++) {
3537		if (consumers[i].ret < 0)
3538			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3539			       consumers[i].ret);
3540		else
3541			regulator_disable(consumers[i].consumer);
3542	}
3543
3544	return ret;
3545}
3546EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3547
3548/**
3549 * regulator_bulk_disable - disable multiple regulator consumers
3550 *
3551 * @num_consumers: Number of consumers
3552 * @consumers:     Consumer data; clients are stored here.
3553 * @return         0 on success, an errno on failure
3554 *
3555 * This convenience API allows consumers to disable multiple regulator
3556 * clients in a single API call.  If any consumers cannot be disabled
3557 * then any others that were disabled will be enabled again prior to
3558 * return.
3559 */
3560int regulator_bulk_disable(int num_consumers,
3561			   struct regulator_bulk_data *consumers)
3562{
3563	int i;
3564	int ret, r;
3565
3566	for (i = num_consumers - 1; i >= 0; --i) {
3567		ret = regulator_disable(consumers[i].consumer);
3568		if (ret != 0)
3569			goto err;
3570	}
3571
3572	return 0;
3573
3574err:
3575	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3576	for (++i; i < num_consumers; ++i) {
3577		r = regulator_enable(consumers[i].consumer);
3578		if (r != 0)
3579			pr_err("Failed to reename %s: %d\n",
3580			       consumers[i].supply, r);
3581	}
3582
3583	return ret;
3584}
3585EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3586
3587/**
3588 * regulator_bulk_force_disable - force disable multiple regulator consumers
3589 *
3590 * @num_consumers: Number of consumers
3591 * @consumers:     Consumer data; clients are stored here.
3592 * @return         0 on success, an errno on failure
3593 *
3594 * This convenience API allows consumers to forcibly disable multiple regulator
3595 * clients in a single API call.
3596 * NOTE: This should be used for situations when device damage will
3597 * likely occur if the regulators are not disabled (e.g. over temp).
3598 * Although regulator_force_disable function call for some consumers can
3599 * return error numbers, the function is called for all consumers.
3600 */
3601int regulator_bulk_force_disable(int num_consumers,
3602			   struct regulator_bulk_data *consumers)
3603{
3604	int i;
3605	int ret;
3606
3607	for (i = 0; i < num_consumers; i++)
3608		consumers[i].ret =
3609			    regulator_force_disable(consumers[i].consumer);
3610
3611	for (i = 0; i < num_consumers; i++) {
3612		if (consumers[i].ret != 0) {
3613			ret = consumers[i].ret;
3614			goto out;
3615		}
3616	}
3617
3618	return 0;
3619out:
3620	return ret;
3621}
3622EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3623
3624/**
3625 * regulator_bulk_free - free multiple regulator consumers
3626 *
3627 * @num_consumers: Number of consumers
3628 * @consumers:     Consumer data; clients are stored here.
3629 *
3630 * This convenience API allows consumers to free multiple regulator
3631 * clients in a single API call.
3632 */
3633void regulator_bulk_free(int num_consumers,
3634			 struct regulator_bulk_data *consumers)
3635{
3636	int i;
3637
3638	for (i = 0; i < num_consumers; i++) {
3639		regulator_put(consumers[i].consumer);
3640		consumers[i].consumer = NULL;
3641	}
3642}
3643EXPORT_SYMBOL_GPL(regulator_bulk_free);
3644
3645/**
3646 * regulator_notifier_call_chain - call regulator event notifier
3647 * @rdev: regulator source
3648 * @event: notifier block
3649 * @data: callback-specific data.
3650 *
3651 * Called by regulator drivers to notify clients a regulator event has
3652 * occurred. We also notify regulator clients downstream.
3653 * Note lock must be held by caller.
3654 */
3655int regulator_notifier_call_chain(struct regulator_dev *rdev,
3656				  unsigned long event, void *data)
3657{
3658	lockdep_assert_held_once(&rdev->mutex);
3659
3660	_notifier_call_chain(rdev, event, data);
3661	return NOTIFY_DONE;
3662
3663}
3664EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3665
3666/**
3667 * regulator_mode_to_status - convert a regulator mode into a status
3668 *
3669 * @mode: Mode to convert
3670 *
3671 * Convert a regulator mode into a status.
3672 */
3673int regulator_mode_to_status(unsigned int mode)
3674{
3675	switch (mode) {
3676	case REGULATOR_MODE_FAST:
3677		return REGULATOR_STATUS_FAST;
3678	case REGULATOR_MODE_NORMAL:
3679		return REGULATOR_STATUS_NORMAL;
3680	case REGULATOR_MODE_IDLE:
3681		return REGULATOR_STATUS_IDLE;
3682	case REGULATOR_MODE_STANDBY:
3683		return REGULATOR_STATUS_STANDBY;
3684	default:
3685		return REGULATOR_STATUS_UNDEFINED;
3686	}
3687}
3688EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3689
3690static struct attribute *regulator_dev_attrs[] = {
3691	&dev_attr_name.attr,
3692	&dev_attr_num_users.attr,
3693	&dev_attr_type.attr,
3694	&dev_attr_microvolts.attr,
3695	&dev_attr_microamps.attr,
3696	&dev_attr_opmode.attr,
3697	&dev_attr_state.attr,
3698	&dev_attr_status.attr,
3699	&dev_attr_bypass.attr,
3700	&dev_attr_requested_microamps.attr,
3701	&dev_attr_min_microvolts.attr,
3702	&dev_attr_max_microvolts.attr,
3703	&dev_attr_min_microamps.attr,
3704	&dev_attr_max_microamps.attr,
3705	&dev_attr_suspend_standby_state.attr,
3706	&dev_attr_suspend_mem_state.attr,
3707	&dev_attr_suspend_disk_state.attr,
3708	&dev_attr_suspend_standby_microvolts.attr,
3709	&dev_attr_suspend_mem_microvolts.attr,
3710	&dev_attr_suspend_disk_microvolts.attr,
3711	&dev_attr_suspend_standby_mode.attr,
3712	&dev_attr_suspend_mem_mode.attr,
3713	&dev_attr_suspend_disk_mode.attr,
3714	NULL
3715};
3716
3717/*
3718 * To avoid cluttering sysfs (and memory) with useless state, only
3719 * create attributes that can be meaningfully displayed.
3720 */
3721static umode_t regulator_attr_is_visible(struct kobject *kobj,
3722					 struct attribute *attr, int idx)
3723{
3724	struct device *dev = kobj_to_dev(kobj);
3725	struct regulator_dev *rdev = dev_to_rdev(dev);
3726	const struct regulator_ops *ops = rdev->desc->ops;
3727	umode_t mode = attr->mode;
3728
3729	/* these three are always present */
3730	if (attr == &dev_attr_name.attr ||
3731	    attr == &dev_attr_num_users.attr ||
3732	    attr == &dev_attr_type.attr)
3733		return mode;
3734
3735	/* some attributes need specific methods to be displayed */
3736	if (attr == &dev_attr_microvolts.attr) {
3737		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3738		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3739		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3740		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3741			return mode;
3742		return 0;
3743	}
3744
3745	if (attr == &dev_attr_microamps.attr)
3746		return ops->get_current_limit ? mode : 0;
3747
3748	if (attr == &dev_attr_opmode.attr)
3749		return ops->get_mode ? mode : 0;
3750
3751	if (attr == &dev_attr_state.attr)
3752		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3753
3754	if (attr == &dev_attr_status.attr)
3755		return ops->get_status ? mode : 0;
3756
3757	if (attr == &dev_attr_bypass.attr)
3758		return ops->get_bypass ? mode : 0;
3759
3760	/* some attributes are type-specific */
3761	if (attr == &dev_attr_requested_microamps.attr)
3762		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3763
3764	/* constraints need specific supporting methods */
3765	if (attr == &dev_attr_min_microvolts.attr ||
3766	    attr == &dev_attr_max_microvolts.attr)
3767		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3768
3769	if (attr == &dev_attr_min_microamps.attr ||
3770	    attr == &dev_attr_max_microamps.attr)
3771		return ops->set_current_limit ? mode : 0;
3772
3773	if (attr == &dev_attr_suspend_standby_state.attr ||
3774	    attr == &dev_attr_suspend_mem_state.attr ||
3775	    attr == &dev_attr_suspend_disk_state.attr)
3776		return mode;
3777
3778	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3779	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3780	    attr == &dev_attr_suspend_disk_microvolts.attr)
3781		return ops->set_suspend_voltage ? mode : 0;
3782
3783	if (attr == &dev_attr_suspend_standby_mode.attr ||
3784	    attr == &dev_attr_suspend_mem_mode.attr ||
3785	    attr == &dev_attr_suspend_disk_mode.attr)
3786		return ops->set_suspend_mode ? mode : 0;
3787
3788	return mode;
3789}
3790
3791static const struct attribute_group regulator_dev_group = {
3792	.attrs = regulator_dev_attrs,
3793	.is_visible = regulator_attr_is_visible,
3794};
3795
3796static const struct attribute_group *regulator_dev_groups[] = {
3797	&regulator_dev_group,
3798	NULL
3799};
3800
3801static void regulator_dev_release(struct device *dev)
3802{
3803	struct regulator_dev *rdev = dev_get_drvdata(dev);
3804
3805	kfree(rdev->constraints);
3806	of_node_put(rdev->dev.of_node);
3807	kfree(rdev);
3808}
3809
3810static struct class regulator_class = {
3811	.name = "regulator",
3812	.dev_release = regulator_dev_release,
3813	.dev_groups = regulator_dev_groups,
3814};
3815
3816static void rdev_init_debugfs(struct regulator_dev *rdev)
3817{
3818	struct device *parent = rdev->dev.parent;
3819	const char *rname = rdev_get_name(rdev);
3820	char name[NAME_MAX];
3821
3822	/* Avoid duplicate debugfs directory names */
3823	if (parent && rname == rdev->desc->name) {
3824		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3825			 rname);
3826		rname = name;
3827	}
3828
3829	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3830	if (!rdev->debugfs) {
3831		rdev_warn(rdev, "Failed to create debugfs directory\n");
3832		return;
3833	}
3834
3835	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3836			   &rdev->use_count);
3837	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3838			   &rdev->open_count);
3839	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3840			   &rdev->bypass_count);
3841}
3842
 
 
 
 
 
 
 
 
 
 
3843/**
3844 * regulator_register - register regulator
3845 * @regulator_desc: regulator to register
3846 * @cfg: runtime configuration for regulator
3847 *
3848 * Called by regulator drivers to register a regulator.
3849 * Returns a valid pointer to struct regulator_dev on success
3850 * or an ERR_PTR() on error.
3851 */
3852struct regulator_dev *
3853regulator_register(const struct regulator_desc *regulator_desc,
3854		   const struct regulator_config *cfg)
3855{
3856	const struct regulation_constraints *constraints = NULL;
3857	const struct regulator_init_data *init_data;
3858	struct regulator_config *config = NULL;
3859	static atomic_t regulator_no = ATOMIC_INIT(-1);
3860	struct regulator_dev *rdev;
3861	struct device *dev;
3862	int ret, i;
3863
3864	if (regulator_desc == NULL || cfg == NULL)
3865		return ERR_PTR(-EINVAL);
3866
3867	dev = cfg->dev;
3868	WARN_ON(!dev);
3869
3870	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3871		return ERR_PTR(-EINVAL);
3872
3873	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3874	    regulator_desc->type != REGULATOR_CURRENT)
3875		return ERR_PTR(-EINVAL);
3876
3877	/* Only one of each should be implemented */
3878	WARN_ON(regulator_desc->ops->get_voltage &&
3879		regulator_desc->ops->get_voltage_sel);
3880	WARN_ON(regulator_desc->ops->set_voltage &&
3881		regulator_desc->ops->set_voltage_sel);
3882
3883	/* If we're using selectors we must implement list_voltage. */
3884	if (regulator_desc->ops->get_voltage_sel &&
3885	    !regulator_desc->ops->list_voltage) {
3886		return ERR_PTR(-EINVAL);
3887	}
3888	if (regulator_desc->ops->set_voltage_sel &&
3889	    !regulator_desc->ops->list_voltage) {
3890		return ERR_PTR(-EINVAL);
3891	}
3892
3893	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3894	if (rdev == NULL)
3895		return ERR_PTR(-ENOMEM);
3896
3897	/*
3898	 * Duplicate the config so the driver could override it after
3899	 * parsing init data.
3900	 */
3901	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3902	if (config == NULL) {
3903		kfree(rdev);
3904		return ERR_PTR(-ENOMEM);
3905	}
3906
3907	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3908					       &rdev->dev.of_node);
3909	if (!init_data) {
3910		init_data = config->init_data;
3911		rdev->dev.of_node = of_node_get(config->of_node);
3912	}
3913
3914	mutex_lock(&regulator_list_mutex);
3915
3916	mutex_init(&rdev->mutex);
3917	rdev->reg_data = config->driver_data;
3918	rdev->owner = regulator_desc->owner;
3919	rdev->desc = regulator_desc;
3920	if (config->regmap)
3921		rdev->regmap = config->regmap;
3922	else if (dev_get_regmap(dev, NULL))
3923		rdev->regmap = dev_get_regmap(dev, NULL);
3924	else if (dev->parent)
3925		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3926	INIT_LIST_HEAD(&rdev->consumer_list);
3927	INIT_LIST_HEAD(&rdev->list);
3928	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3929	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3930
3931	/* preform any regulator specific init */
3932	if (init_data && init_data->regulator_init) {
3933		ret = init_data->regulator_init(rdev->reg_data);
3934		if (ret < 0)
3935			goto clean;
3936	}
3937
3938	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3939	    gpio_is_valid(config->ena_gpio)) {
 
3940		ret = regulator_ena_gpio_request(rdev, config);
 
3941		if (ret != 0) {
3942			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3943				 config->ena_gpio, ret);
3944			goto clean;
3945		}
3946	}
3947
3948	/* register with sysfs */
3949	rdev->dev.class = &regulator_class;
3950	rdev->dev.parent = dev;
3951	dev_set_name(&rdev->dev, "regulator.%lu",
3952		    (unsigned long) atomic_inc_return(&regulator_no));
3953	ret = device_register(&rdev->dev);
3954	if (ret != 0) {
3955		put_device(&rdev->dev);
3956		goto wash;
3957	}
3958
3959	dev_set_drvdata(&rdev->dev, rdev);
3960
3961	/* set regulator constraints */
3962	if (init_data)
3963		constraints = &init_data->constraints;
3964
3965	ret = set_machine_constraints(rdev, constraints);
3966	if (ret < 0)
3967		goto scrub;
3968
3969	if (init_data && init_data->supply_regulator)
3970		rdev->supply_name = init_data->supply_regulator;
3971	else if (regulator_desc->supply_name)
3972		rdev->supply_name = regulator_desc->supply_name;
3973
 
 
 
 
 
 
 
 
 
 
 
 
3974	/* add consumers devices */
3975	if (init_data) {
 
3976		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3977			ret = set_consumer_device_supply(rdev,
3978				init_data->consumer_supplies[i].dev_name,
3979				init_data->consumer_supplies[i].supply);
3980			if (ret < 0) {
 
3981				dev_err(dev, "Failed to set supply %s\n",
3982					init_data->consumer_supplies[i].supply);
3983				goto unset_supplies;
3984			}
3985		}
 
3986	}
3987
 
 
 
 
 
 
 
3988	rdev_init_debugfs(rdev);
3989out:
3990	mutex_unlock(&regulator_list_mutex);
 
 
3991	kfree(config);
3992	return rdev;
3993
3994unset_supplies:
 
3995	unset_regulator_supplies(rdev);
3996
3997scrub:
3998	regulator_ena_gpio_free(rdev);
3999	device_unregister(&rdev->dev);
4000	/* device core frees rdev */
4001	rdev = ERR_PTR(ret);
4002	goto out;
4003
4004wash:
 
 
4005	regulator_ena_gpio_free(rdev);
 
4006clean:
4007	kfree(rdev);
4008	rdev = ERR_PTR(ret);
4009	goto out;
4010}
4011EXPORT_SYMBOL_GPL(regulator_register);
4012
4013/**
4014 * regulator_unregister - unregister regulator
4015 * @rdev: regulator to unregister
4016 *
4017 * Called by regulator drivers to unregister a regulator.
4018 */
4019void regulator_unregister(struct regulator_dev *rdev)
4020{
4021	if (rdev == NULL)
4022		return;
4023
4024	if (rdev->supply) {
4025		while (rdev->use_count--)
4026			regulator_disable(rdev->supply);
4027		regulator_put(rdev->supply);
4028	}
4029	mutex_lock(&regulator_list_mutex);
4030	debugfs_remove_recursive(rdev->debugfs);
4031	flush_work(&rdev->disable_work.work);
4032	WARN_ON(rdev->open_count);
4033	unset_regulator_supplies(rdev);
4034	list_del(&rdev->list);
4035	mutex_unlock(&regulator_list_mutex);
4036	regulator_ena_gpio_free(rdev);
 
4037	device_unregister(&rdev->dev);
4038}
4039EXPORT_SYMBOL_GPL(regulator_unregister);
4040
4041static int _regulator_suspend_prepare(struct device *dev, void *data)
4042{
4043	struct regulator_dev *rdev = dev_to_rdev(dev);
4044	const suspend_state_t *state = data;
4045	int ret;
4046
4047	mutex_lock(&rdev->mutex);
4048	ret = suspend_prepare(rdev, *state);
4049	mutex_unlock(&rdev->mutex);
4050
4051	return ret;
4052}
4053
4054/**
4055 * regulator_suspend_prepare - prepare regulators for system wide suspend
4056 * @state: system suspend state
4057 *
4058 * Configure each regulator with it's suspend operating parameters for state.
4059 * This will usually be called by machine suspend code prior to supending.
4060 */
4061int regulator_suspend_prepare(suspend_state_t state)
4062{
4063	/* ON is handled by regulator active state */
4064	if (state == PM_SUSPEND_ON)
4065		return -EINVAL;
4066
4067	return class_for_each_device(&regulator_class, NULL, &state,
4068				     _regulator_suspend_prepare);
4069}
4070EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4071
4072static int _regulator_suspend_finish(struct device *dev, void *data)
4073{
4074	struct regulator_dev *rdev = dev_to_rdev(dev);
4075	int ret;
4076
4077	mutex_lock(&rdev->mutex);
4078	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4079		if (!_regulator_is_enabled(rdev)) {
4080			ret = _regulator_do_enable(rdev);
4081			if (ret)
4082				dev_err(dev,
4083					"Failed to resume regulator %d\n",
4084					ret);
4085		}
4086	} else {
4087		if (!have_full_constraints())
4088			goto unlock;
4089		if (!_regulator_is_enabled(rdev))
4090			goto unlock;
4091
4092		ret = _regulator_do_disable(rdev);
4093		if (ret)
4094			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4095	}
4096unlock:
4097	mutex_unlock(&rdev->mutex);
4098
4099	/* Keep processing regulators in spite of any errors */
4100	return 0;
4101}
4102
4103/**
4104 * regulator_suspend_finish - resume regulators from system wide suspend
4105 *
4106 * Turn on regulators that might be turned off by regulator_suspend_prepare
4107 * and that should be turned on according to the regulators properties.
4108 */
4109int regulator_suspend_finish(void)
4110{
4111	return class_for_each_device(&regulator_class, NULL, NULL,
4112				     _regulator_suspend_finish);
4113}
4114EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4115
4116/**
4117 * regulator_has_full_constraints - the system has fully specified constraints
4118 *
4119 * Calling this function will cause the regulator API to disable all
4120 * regulators which have a zero use count and don't have an always_on
4121 * constraint in a late_initcall.
4122 *
4123 * The intention is that this will become the default behaviour in a
4124 * future kernel release so users are encouraged to use this facility
4125 * now.
4126 */
4127void regulator_has_full_constraints(void)
4128{
4129	has_full_constraints = 1;
4130}
4131EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4132
4133/**
4134 * rdev_get_drvdata - get rdev regulator driver data
4135 * @rdev: regulator
4136 *
4137 * Get rdev regulator driver private data. This call can be used in the
4138 * regulator driver context.
4139 */
4140void *rdev_get_drvdata(struct regulator_dev *rdev)
4141{
4142	return rdev->reg_data;
4143}
4144EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4145
4146/**
4147 * regulator_get_drvdata - get regulator driver data
4148 * @regulator: regulator
4149 *
4150 * Get regulator driver private data. This call can be used in the consumer
4151 * driver context when non API regulator specific functions need to be called.
4152 */
4153void *regulator_get_drvdata(struct regulator *regulator)
4154{
4155	return regulator->rdev->reg_data;
4156}
4157EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4158
4159/**
4160 * regulator_set_drvdata - set regulator driver data
4161 * @regulator: regulator
4162 * @data: data
4163 */
4164void regulator_set_drvdata(struct regulator *regulator, void *data)
4165{
4166	regulator->rdev->reg_data = data;
4167}
4168EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4169
4170/**
4171 * regulator_get_id - get regulator ID
4172 * @rdev: regulator
4173 */
4174int rdev_get_id(struct regulator_dev *rdev)
4175{
4176	return rdev->desc->id;
4177}
4178EXPORT_SYMBOL_GPL(rdev_get_id);
4179
4180struct device *rdev_get_dev(struct regulator_dev *rdev)
4181{
4182	return &rdev->dev;
4183}
4184EXPORT_SYMBOL_GPL(rdev_get_dev);
4185
4186void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4187{
4188	return reg_init_data->driver_data;
4189}
4190EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4191
4192#ifdef CONFIG_DEBUG_FS
4193static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4194				    size_t count, loff_t *ppos)
4195{
4196	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4197	ssize_t len, ret = 0;
4198	struct regulator_map *map;
4199
4200	if (!buf)
4201		return -ENOMEM;
4202
4203	list_for_each_entry(map, &regulator_map_list, list) {
4204		len = snprintf(buf + ret, PAGE_SIZE - ret,
4205			       "%s -> %s.%s\n",
4206			       rdev_get_name(map->regulator), map->dev_name,
4207			       map->supply);
4208		if (len >= 0)
4209			ret += len;
4210		if (ret > PAGE_SIZE) {
4211			ret = PAGE_SIZE;
4212			break;
4213		}
4214	}
4215
4216	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4217
4218	kfree(buf);
4219
4220	return ret;
4221}
4222#endif
4223
4224static const struct file_operations supply_map_fops = {
4225#ifdef CONFIG_DEBUG_FS
4226	.read = supply_map_read_file,
4227	.llseek = default_llseek,
4228#endif
4229};
4230
4231#ifdef CONFIG_DEBUG_FS
4232struct summary_data {
4233	struct seq_file *s;
4234	struct regulator_dev *parent;
4235	int level;
4236};
4237
4238static void regulator_summary_show_subtree(struct seq_file *s,
4239					   struct regulator_dev *rdev,
4240					   int level);
4241
4242static int regulator_summary_show_children(struct device *dev, void *data)
4243{
4244	struct regulator_dev *rdev = dev_to_rdev(dev);
4245	struct summary_data *summary_data = data;
4246
4247	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4248		regulator_summary_show_subtree(summary_data->s, rdev,
4249					       summary_data->level + 1);
4250
4251	return 0;
4252}
4253
4254static void regulator_summary_show_subtree(struct seq_file *s,
4255					   struct regulator_dev *rdev,
4256					   int level)
4257{
4258	struct regulation_constraints *c;
4259	struct regulator *consumer;
4260	struct summary_data summary_data;
4261
4262	if (!rdev)
4263		return;
4264
4265	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4266		   level * 3 + 1, "",
4267		   30 - level * 3, rdev_get_name(rdev),
4268		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4269
4270	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4271	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4272
4273	c = rdev->constraints;
4274	if (c) {
4275		switch (rdev->desc->type) {
4276		case REGULATOR_VOLTAGE:
4277			seq_printf(s, "%5dmV %5dmV ",
4278				   c->min_uV / 1000, c->max_uV / 1000);
4279			break;
4280		case REGULATOR_CURRENT:
4281			seq_printf(s, "%5dmA %5dmA ",
4282				   c->min_uA / 1000, c->max_uA / 1000);
4283			break;
4284		}
4285	}
4286
4287	seq_puts(s, "\n");
4288
4289	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4290		if (consumer->dev->class == &regulator_class)
4291			continue;
4292
4293		seq_printf(s, "%*s%-*s ",
4294			   (level + 1) * 3 + 1, "",
4295			   30 - (level + 1) * 3, dev_name(consumer->dev));
 
4296
4297		switch (rdev->desc->type) {
4298		case REGULATOR_VOLTAGE:
4299			seq_printf(s, "%37dmV %5dmV",
4300				   consumer->min_uV / 1000,
4301				   consumer->max_uV / 1000);
4302			break;
4303		case REGULATOR_CURRENT:
4304			break;
4305		}
4306
4307		seq_puts(s, "\n");
4308	}
4309
4310	summary_data.s = s;
4311	summary_data.level = level;
4312	summary_data.parent = rdev;
4313
4314	class_for_each_device(&regulator_class, NULL, &summary_data,
4315			      regulator_summary_show_children);
4316}
4317
4318static int regulator_summary_show_roots(struct device *dev, void *data)
4319{
4320	struct regulator_dev *rdev = dev_to_rdev(dev);
4321	struct seq_file *s = data;
4322
4323	if (!rdev->supply)
4324		regulator_summary_show_subtree(s, rdev, 0);
4325
4326	return 0;
4327}
4328
4329static int regulator_summary_show(struct seq_file *s, void *data)
4330{
4331	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4332	seq_puts(s, "-------------------------------------------------------------------------------\n");
4333
4334	class_for_each_device(&regulator_class, NULL, s,
4335			      regulator_summary_show_roots);
4336
4337	return 0;
4338}
4339
4340static int regulator_summary_open(struct inode *inode, struct file *file)
4341{
4342	return single_open(file, regulator_summary_show, inode->i_private);
4343}
4344#endif
4345
4346static const struct file_operations regulator_summary_fops = {
4347#ifdef CONFIG_DEBUG_FS
4348	.open		= regulator_summary_open,
4349	.read		= seq_read,
4350	.llseek		= seq_lseek,
4351	.release	= single_release,
4352#endif
4353};
4354
4355static int __init regulator_init(void)
4356{
4357	int ret;
4358
4359	ret = class_register(&regulator_class);
4360
4361	debugfs_root = debugfs_create_dir("regulator", NULL);
4362	if (!debugfs_root)
4363		pr_warn("regulator: Failed to create debugfs directory\n");
4364
4365	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4366			    &supply_map_fops);
4367
4368	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4369			    NULL, &regulator_summary_fops);
4370
4371	regulator_dummy_init();
4372
4373	return ret;
4374}
4375
4376/* init early to allow our consumers to complete system booting */
4377core_initcall(regulator_init);
4378
4379static int __init regulator_late_cleanup(struct device *dev, void *data)
4380{
4381	struct regulator_dev *rdev = dev_to_rdev(dev);
4382	const struct regulator_ops *ops = rdev->desc->ops;
4383	struct regulation_constraints *c = rdev->constraints;
4384	int enabled, ret;
4385
4386	if (c && c->always_on)
4387		return 0;
4388
4389	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4390		return 0;
4391
4392	mutex_lock(&rdev->mutex);
4393
4394	if (rdev->use_count)
4395		goto unlock;
4396
4397	/* If we can't read the status assume it's on. */
4398	if (ops->is_enabled)
4399		enabled = ops->is_enabled(rdev);
4400	else
4401		enabled = 1;
4402
4403	if (!enabled)
4404		goto unlock;
4405
4406	if (have_full_constraints()) {
4407		/* We log since this may kill the system if it goes
4408		 * wrong. */
4409		rdev_info(rdev, "disabling\n");
4410		ret = _regulator_do_disable(rdev);
4411		if (ret != 0)
4412			rdev_err(rdev, "couldn't disable: %d\n", ret);
4413	} else {
4414		/* The intention is that in future we will
4415		 * assume that full constraints are provided
4416		 * so warn even if we aren't going to do
4417		 * anything here.
4418		 */
4419		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4420	}
4421
4422unlock:
4423	mutex_unlock(&rdev->mutex);
4424
4425	return 0;
4426}
4427
4428static int __init regulator_init_complete(void)
4429{
4430	/*
4431	 * Since DT doesn't provide an idiomatic mechanism for
4432	 * enabling full constraints and since it's much more natural
4433	 * with DT to provide them just assume that a DT enabled
4434	 * system has full constraints.
4435	 */
4436	if (of_have_populated_dt())
4437		has_full_constraints = true;
4438
4439	/* If we have a full configuration then disable any regulators
4440	 * we have permission to change the status for and which are
4441	 * not in use or always_on.  This is effectively the default
4442	 * for DT and ACPI as they have full constraints.
4443	 */
4444	class_for_each_device(&regulator_class, NULL, NULL,
4445			      regulator_late_cleanup);
4446
4447	return 0;
4448}
4449late_initcall_sync(regulator_init_complete);
v4.10.11
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
  41
  42#define rdev_crit(rdev, fmt, ...)					\
  43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)					\
  45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)					\
  47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)					\
  49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)					\
  51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
  53static DEFINE_MUTEX(regulator_list_mutex);
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
  57static bool has_full_constraints;
  58
  59static struct dentry *debugfs_root;
  60
  61static struct class regulator_class;
  62
  63/*
  64 * struct regulator_map
  65 *
  66 * Used to provide symbolic supply names to devices.
  67 */
  68struct regulator_map {
  69	struct list_head list;
  70	const char *dev_name;   /* The dev_name() for the consumer */
  71	const char *supply;
  72	struct regulator_dev *regulator;
  73};
  74
  75/*
  76 * struct regulator_enable_gpio
  77 *
  78 * Management for shared enable GPIO pin
  79 */
  80struct regulator_enable_gpio {
  81	struct list_head list;
  82	struct gpio_desc *gpiod;
  83	u32 enable_count;	/* a number of enabled shared GPIO */
  84	u32 request_count;	/* a number of requested shared GPIO */
  85	unsigned int ena_gpio_invert:1;
  86};
  87
  88/*
  89 * struct regulator_supply_alias
  90 *
  91 * Used to map lookups for a supply onto an alternative device.
  92 */
  93struct regulator_supply_alias {
  94	struct list_head list;
  95	struct device *src_dev;
  96	const char *src_supply;
  97	struct device *alias_dev;
  98	const char *alias_supply;
  99};
 100
 101static int _regulator_is_enabled(struct regulator_dev *rdev);
 102static int _regulator_disable(struct regulator_dev *rdev);
 103static int _regulator_get_voltage(struct regulator_dev *rdev);
 104static int _regulator_get_current_limit(struct regulator_dev *rdev);
 105static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 106static int _notifier_call_chain(struct regulator_dev *rdev,
 107				  unsigned long event, void *data);
 108static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 109				     int min_uV, int max_uV);
 110static struct regulator *create_regulator(struct regulator_dev *rdev,
 111					  struct device *dev,
 112					  const char *supply_name);
 113static void _regulator_put(struct regulator *regulator);
 114
 115static struct regulator_dev *dev_to_rdev(struct device *dev)
 116{
 117	return container_of(dev, struct regulator_dev, dev);
 118}
 119
 120static const char *rdev_get_name(struct regulator_dev *rdev)
 121{
 122	if (rdev->constraints && rdev->constraints->name)
 123		return rdev->constraints->name;
 124	else if (rdev->desc->name)
 125		return rdev->desc->name;
 126	else
 127		return "";
 128}
 129
 130static bool have_full_constraints(void)
 131{
 132	return has_full_constraints || of_have_populated_dt();
 133}
 134
 135static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 136{
 137	if (!rdev->constraints) {
 138		rdev_err(rdev, "no constraints\n");
 139		return false;
 140	}
 141
 142	if (rdev->constraints->valid_ops_mask & ops)
 143		return true;
 144
 145	return false;
 146}
 147
 148static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
 149{
 150	if (rdev && rdev->supply)
 151		return rdev->supply->rdev;
 152
 153	return NULL;
 154}
 155
 156/**
 157 * regulator_lock_supply - lock a regulator and its supplies
 158 * @rdev:         regulator source
 159 */
 160static void regulator_lock_supply(struct regulator_dev *rdev)
 161{
 162	int i;
 163
 164	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
 165		mutex_lock_nested(&rdev->mutex, i);
 166}
 167
 168/**
 169 * regulator_unlock_supply - unlock a regulator and its supplies
 170 * @rdev:         regulator source
 171 */
 172static void regulator_unlock_supply(struct regulator_dev *rdev)
 173{
 174	struct regulator *supply;
 175
 176	while (1) {
 177		mutex_unlock(&rdev->mutex);
 178		supply = rdev->supply;
 179
 180		if (!rdev->supply)
 181			return;
 182
 183		rdev = supply->rdev;
 184	}
 185}
 186
 187/**
 188 * of_get_regulator - get a regulator device node based on supply name
 189 * @dev: Device pointer for the consumer (of regulator) device
 190 * @supply: regulator supply name
 191 *
 192 * Extract the regulator device node corresponding to the supply name.
 193 * returns the device node corresponding to the regulator if found, else
 194 * returns NULL.
 195 */
 196static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 197{
 198	struct device_node *regnode = NULL;
 199	char prop_name[32]; /* 32 is max size of property name */
 200
 201	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 202
 203	snprintf(prop_name, 32, "%s-supply", supply);
 204	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 205
 206	if (!regnode) {
 207		dev_dbg(dev, "Looking up %s property in node %s failed\n",
 208				prop_name, dev->of_node->full_name);
 209		return NULL;
 210	}
 211	return regnode;
 212}
 213
 
 
 
 
 
 
 
 
 
 
 
 214/* Platform voltage constraint check */
 215static int regulator_check_voltage(struct regulator_dev *rdev,
 216				   int *min_uV, int *max_uV)
 217{
 218	BUG_ON(*min_uV > *max_uV);
 219
 220	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 
 
 
 
 221		rdev_err(rdev, "voltage operation not allowed\n");
 222		return -EPERM;
 223	}
 224
 225	if (*max_uV > rdev->constraints->max_uV)
 226		*max_uV = rdev->constraints->max_uV;
 227	if (*min_uV < rdev->constraints->min_uV)
 228		*min_uV = rdev->constraints->min_uV;
 229
 230	if (*min_uV > *max_uV) {
 231		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 232			 *min_uV, *max_uV);
 233		return -EINVAL;
 234	}
 235
 236	return 0;
 237}
 238
 239/* Make sure we select a voltage that suits the needs of all
 240 * regulator consumers
 241 */
 242static int regulator_check_consumers(struct regulator_dev *rdev,
 243				     int *min_uV, int *max_uV)
 244{
 245	struct regulator *regulator;
 246
 247	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 248		/*
 249		 * Assume consumers that didn't say anything are OK
 250		 * with anything in the constraint range.
 251		 */
 252		if (!regulator->min_uV && !regulator->max_uV)
 253			continue;
 254
 255		if (*max_uV > regulator->max_uV)
 256			*max_uV = regulator->max_uV;
 257		if (*min_uV < regulator->min_uV)
 258			*min_uV = regulator->min_uV;
 259	}
 260
 261	if (*min_uV > *max_uV) {
 262		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 263			*min_uV, *max_uV);
 264		return -EINVAL;
 265	}
 266
 267	return 0;
 268}
 269
 270/* current constraint check */
 271static int regulator_check_current_limit(struct regulator_dev *rdev,
 272					int *min_uA, int *max_uA)
 273{
 274	BUG_ON(*min_uA > *max_uA);
 275
 276	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 
 
 
 
 277		rdev_err(rdev, "current operation not allowed\n");
 278		return -EPERM;
 279	}
 280
 281	if (*max_uA > rdev->constraints->max_uA)
 282		*max_uA = rdev->constraints->max_uA;
 283	if (*min_uA < rdev->constraints->min_uA)
 284		*min_uA = rdev->constraints->min_uA;
 285
 286	if (*min_uA > *max_uA) {
 287		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 288			 *min_uA, *max_uA);
 289		return -EINVAL;
 290	}
 291
 292	return 0;
 293}
 294
 295/* operating mode constraint check */
 296static int regulator_mode_constrain(struct regulator_dev *rdev,
 297				    unsigned int *mode)
 298{
 299	switch (*mode) {
 300	case REGULATOR_MODE_FAST:
 301	case REGULATOR_MODE_NORMAL:
 302	case REGULATOR_MODE_IDLE:
 303	case REGULATOR_MODE_STANDBY:
 304		break;
 305	default:
 306		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 307		return -EINVAL;
 308	}
 309
 310	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 
 
 
 
 311		rdev_err(rdev, "mode operation not allowed\n");
 312		return -EPERM;
 313	}
 314
 315	/* The modes are bitmasks, the most power hungry modes having
 316	 * the lowest values. If the requested mode isn't supported
 317	 * try higher modes. */
 318	while (*mode) {
 319		if (rdev->constraints->valid_modes_mask & *mode)
 320			return 0;
 321		*mode /= 2;
 322	}
 323
 324	return -EINVAL;
 325}
 326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327static ssize_t regulator_uV_show(struct device *dev,
 328				struct device_attribute *attr, char *buf)
 329{
 330	struct regulator_dev *rdev = dev_get_drvdata(dev);
 331	ssize_t ret;
 332
 333	mutex_lock(&rdev->mutex);
 334	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 335	mutex_unlock(&rdev->mutex);
 336
 337	return ret;
 338}
 339static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 340
 341static ssize_t regulator_uA_show(struct device *dev,
 342				struct device_attribute *attr, char *buf)
 343{
 344	struct regulator_dev *rdev = dev_get_drvdata(dev);
 345
 346	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 347}
 348static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 349
 350static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 351			 char *buf)
 352{
 353	struct regulator_dev *rdev = dev_get_drvdata(dev);
 354
 355	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 356}
 357static DEVICE_ATTR_RO(name);
 358
 359static ssize_t regulator_print_opmode(char *buf, int mode)
 360{
 361	switch (mode) {
 362	case REGULATOR_MODE_FAST:
 363		return sprintf(buf, "fast\n");
 364	case REGULATOR_MODE_NORMAL:
 365		return sprintf(buf, "normal\n");
 366	case REGULATOR_MODE_IDLE:
 367		return sprintf(buf, "idle\n");
 368	case REGULATOR_MODE_STANDBY:
 369		return sprintf(buf, "standby\n");
 370	}
 371	return sprintf(buf, "unknown\n");
 372}
 373
 374static ssize_t regulator_opmode_show(struct device *dev,
 375				    struct device_attribute *attr, char *buf)
 376{
 377	struct regulator_dev *rdev = dev_get_drvdata(dev);
 378
 379	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 380}
 381static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 382
 383static ssize_t regulator_print_state(char *buf, int state)
 384{
 385	if (state > 0)
 386		return sprintf(buf, "enabled\n");
 387	else if (state == 0)
 388		return sprintf(buf, "disabled\n");
 389	else
 390		return sprintf(buf, "unknown\n");
 391}
 392
 393static ssize_t regulator_state_show(struct device *dev,
 394				   struct device_attribute *attr, char *buf)
 395{
 396	struct regulator_dev *rdev = dev_get_drvdata(dev);
 397	ssize_t ret;
 398
 399	mutex_lock(&rdev->mutex);
 400	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 401	mutex_unlock(&rdev->mutex);
 402
 403	return ret;
 404}
 405static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 406
 407static ssize_t regulator_status_show(struct device *dev,
 408				   struct device_attribute *attr, char *buf)
 409{
 410	struct regulator_dev *rdev = dev_get_drvdata(dev);
 411	int status;
 412	char *label;
 413
 414	status = rdev->desc->ops->get_status(rdev);
 415	if (status < 0)
 416		return status;
 417
 418	switch (status) {
 419	case REGULATOR_STATUS_OFF:
 420		label = "off";
 421		break;
 422	case REGULATOR_STATUS_ON:
 423		label = "on";
 424		break;
 425	case REGULATOR_STATUS_ERROR:
 426		label = "error";
 427		break;
 428	case REGULATOR_STATUS_FAST:
 429		label = "fast";
 430		break;
 431	case REGULATOR_STATUS_NORMAL:
 432		label = "normal";
 433		break;
 434	case REGULATOR_STATUS_IDLE:
 435		label = "idle";
 436		break;
 437	case REGULATOR_STATUS_STANDBY:
 438		label = "standby";
 439		break;
 440	case REGULATOR_STATUS_BYPASS:
 441		label = "bypass";
 442		break;
 443	case REGULATOR_STATUS_UNDEFINED:
 444		label = "undefined";
 445		break;
 446	default:
 447		return -ERANGE;
 448	}
 449
 450	return sprintf(buf, "%s\n", label);
 451}
 452static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 453
 454static ssize_t regulator_min_uA_show(struct device *dev,
 455				    struct device_attribute *attr, char *buf)
 456{
 457	struct regulator_dev *rdev = dev_get_drvdata(dev);
 458
 459	if (!rdev->constraints)
 460		return sprintf(buf, "constraint not defined\n");
 461
 462	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 463}
 464static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 465
 466static ssize_t regulator_max_uA_show(struct device *dev,
 467				    struct device_attribute *attr, char *buf)
 468{
 469	struct regulator_dev *rdev = dev_get_drvdata(dev);
 470
 471	if (!rdev->constraints)
 472		return sprintf(buf, "constraint not defined\n");
 473
 474	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 475}
 476static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 477
 478static ssize_t regulator_min_uV_show(struct device *dev,
 479				    struct device_attribute *attr, char *buf)
 480{
 481	struct regulator_dev *rdev = dev_get_drvdata(dev);
 482
 483	if (!rdev->constraints)
 484		return sprintf(buf, "constraint not defined\n");
 485
 486	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 487}
 488static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 489
 490static ssize_t regulator_max_uV_show(struct device *dev,
 491				    struct device_attribute *attr, char *buf)
 492{
 493	struct regulator_dev *rdev = dev_get_drvdata(dev);
 494
 495	if (!rdev->constraints)
 496		return sprintf(buf, "constraint not defined\n");
 497
 498	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 499}
 500static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 501
 502static ssize_t regulator_total_uA_show(struct device *dev,
 503				      struct device_attribute *attr, char *buf)
 504{
 505	struct regulator_dev *rdev = dev_get_drvdata(dev);
 506	struct regulator *regulator;
 507	int uA = 0;
 508
 509	mutex_lock(&rdev->mutex);
 510	list_for_each_entry(regulator, &rdev->consumer_list, list)
 511		uA += regulator->uA_load;
 512	mutex_unlock(&rdev->mutex);
 513	return sprintf(buf, "%d\n", uA);
 514}
 515static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 516
 517static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 518			      char *buf)
 519{
 520	struct regulator_dev *rdev = dev_get_drvdata(dev);
 521	return sprintf(buf, "%d\n", rdev->use_count);
 522}
 523static DEVICE_ATTR_RO(num_users);
 524
 525static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 526			 char *buf)
 527{
 528	struct regulator_dev *rdev = dev_get_drvdata(dev);
 529
 530	switch (rdev->desc->type) {
 531	case REGULATOR_VOLTAGE:
 532		return sprintf(buf, "voltage\n");
 533	case REGULATOR_CURRENT:
 534		return sprintf(buf, "current\n");
 535	}
 536	return sprintf(buf, "unknown\n");
 537}
 538static DEVICE_ATTR_RO(type);
 539
 540static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 541				struct device_attribute *attr, char *buf)
 542{
 543	struct regulator_dev *rdev = dev_get_drvdata(dev);
 544
 545	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 546}
 547static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 548		regulator_suspend_mem_uV_show, NULL);
 549
 550static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 551				struct device_attribute *attr, char *buf)
 552{
 553	struct regulator_dev *rdev = dev_get_drvdata(dev);
 554
 555	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 556}
 557static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 558		regulator_suspend_disk_uV_show, NULL);
 559
 560static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 561				struct device_attribute *attr, char *buf)
 562{
 563	struct regulator_dev *rdev = dev_get_drvdata(dev);
 564
 565	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 566}
 567static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 568		regulator_suspend_standby_uV_show, NULL);
 569
 570static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 571				struct device_attribute *attr, char *buf)
 572{
 573	struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575	return regulator_print_opmode(buf,
 576		rdev->constraints->state_mem.mode);
 577}
 578static DEVICE_ATTR(suspend_mem_mode, 0444,
 579		regulator_suspend_mem_mode_show, NULL);
 580
 581static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 582				struct device_attribute *attr, char *buf)
 583{
 584	struct regulator_dev *rdev = dev_get_drvdata(dev);
 585
 586	return regulator_print_opmode(buf,
 587		rdev->constraints->state_disk.mode);
 588}
 589static DEVICE_ATTR(suspend_disk_mode, 0444,
 590		regulator_suspend_disk_mode_show, NULL);
 591
 592static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 593				struct device_attribute *attr, char *buf)
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596
 597	return regulator_print_opmode(buf,
 598		rdev->constraints->state_standby.mode);
 599}
 600static DEVICE_ATTR(suspend_standby_mode, 0444,
 601		regulator_suspend_standby_mode_show, NULL);
 602
 603static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 604				   struct device_attribute *attr, char *buf)
 605{
 606	struct regulator_dev *rdev = dev_get_drvdata(dev);
 607
 608	return regulator_print_state(buf,
 609			rdev->constraints->state_mem.enabled);
 610}
 611static DEVICE_ATTR(suspend_mem_state, 0444,
 612		regulator_suspend_mem_state_show, NULL);
 613
 614static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 615				   struct device_attribute *attr, char *buf)
 616{
 617	struct regulator_dev *rdev = dev_get_drvdata(dev);
 618
 619	return regulator_print_state(buf,
 620			rdev->constraints->state_disk.enabled);
 621}
 622static DEVICE_ATTR(suspend_disk_state, 0444,
 623		regulator_suspend_disk_state_show, NULL);
 624
 625static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 626				   struct device_attribute *attr, char *buf)
 627{
 628	struct regulator_dev *rdev = dev_get_drvdata(dev);
 629
 630	return regulator_print_state(buf,
 631			rdev->constraints->state_standby.enabled);
 632}
 633static DEVICE_ATTR(suspend_standby_state, 0444,
 634		regulator_suspend_standby_state_show, NULL);
 635
 636static ssize_t regulator_bypass_show(struct device *dev,
 637				     struct device_attribute *attr, char *buf)
 638{
 639	struct regulator_dev *rdev = dev_get_drvdata(dev);
 640	const char *report;
 641	bool bypass;
 642	int ret;
 643
 644	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 645
 646	if (ret != 0)
 647		report = "unknown";
 648	else if (bypass)
 649		report = "enabled";
 650	else
 651		report = "disabled";
 652
 653	return sprintf(buf, "%s\n", report);
 654}
 655static DEVICE_ATTR(bypass, 0444,
 656		   regulator_bypass_show, NULL);
 657
 658/* Calculate the new optimum regulator operating mode based on the new total
 659 * consumer load. All locks held by caller */
 660static int drms_uA_update(struct regulator_dev *rdev)
 661{
 662	struct regulator *sibling;
 663	int current_uA = 0, output_uV, input_uV, err;
 664	unsigned int mode;
 665
 666	lockdep_assert_held_once(&rdev->mutex);
 667
 668	/*
 669	 * first check to see if we can set modes at all, otherwise just
 670	 * tell the consumer everything is OK.
 671	 */
 672	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 
 673		return 0;
 674
 675	if (!rdev->desc->ops->get_optimum_mode &&
 676	    !rdev->desc->ops->set_load)
 677		return 0;
 678
 679	if (!rdev->desc->ops->set_mode &&
 680	    !rdev->desc->ops->set_load)
 681		return -EINVAL;
 682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683	/* calc total requested load */
 684	list_for_each_entry(sibling, &rdev->consumer_list, list)
 685		current_uA += sibling->uA_load;
 686
 687	current_uA += rdev->constraints->system_load;
 688
 689	if (rdev->desc->ops->set_load) {
 690		/* set the optimum mode for our new total regulator load */
 691		err = rdev->desc->ops->set_load(rdev, current_uA);
 692		if (err < 0)
 693			rdev_err(rdev, "failed to set load %d\n", current_uA);
 694	} else {
 695		/* get output voltage */
 696		output_uV = _regulator_get_voltage(rdev);
 697		if (output_uV <= 0) {
 698			rdev_err(rdev, "invalid output voltage found\n");
 699			return -EINVAL;
 700		}
 701
 702		/* get input voltage */
 703		input_uV = 0;
 704		if (rdev->supply)
 705			input_uV = regulator_get_voltage(rdev->supply);
 706		if (input_uV <= 0)
 707			input_uV = rdev->constraints->input_uV;
 708		if (input_uV <= 0) {
 709			rdev_err(rdev, "invalid input voltage found\n");
 710			return -EINVAL;
 711		}
 712
 713		/* now get the optimum mode for our new total regulator load */
 714		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 715							 output_uV, current_uA);
 716
 717		/* check the new mode is allowed */
 718		err = regulator_mode_constrain(rdev, &mode);
 719		if (err < 0) {
 720			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 721				 current_uA, input_uV, output_uV);
 722			return err;
 723		}
 724
 725		err = rdev->desc->ops->set_mode(rdev, mode);
 726		if (err < 0)
 727			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 728	}
 729
 730	return err;
 731}
 732
 733static int suspend_set_state(struct regulator_dev *rdev,
 734	struct regulator_state *rstate)
 735{
 736	int ret = 0;
 737
 738	/* If we have no suspend mode configration don't set anything;
 739	 * only warn if the driver implements set_suspend_voltage or
 740	 * set_suspend_mode callback.
 741	 */
 742	if (!rstate->enabled && !rstate->disabled) {
 743		if (rdev->desc->ops->set_suspend_voltage ||
 744		    rdev->desc->ops->set_suspend_mode)
 745			rdev_warn(rdev, "No configuration\n");
 746		return 0;
 747	}
 748
 749	if (rstate->enabled && rstate->disabled) {
 750		rdev_err(rdev, "invalid configuration\n");
 751		return -EINVAL;
 752	}
 753
 754	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 755		ret = rdev->desc->ops->set_suspend_enable(rdev);
 756	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 757		ret = rdev->desc->ops->set_suspend_disable(rdev);
 758	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 759		ret = 0;
 760
 761	if (ret < 0) {
 762		rdev_err(rdev, "failed to enabled/disable\n");
 763		return ret;
 764	}
 765
 766	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 767		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 768		if (ret < 0) {
 769			rdev_err(rdev, "failed to set voltage\n");
 770			return ret;
 771		}
 772	}
 773
 774	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 775		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 776		if (ret < 0) {
 777			rdev_err(rdev, "failed to set mode\n");
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784/* locks held by caller */
 785static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 786{
 
 
 787	if (!rdev->constraints)
 788		return -EINVAL;
 789
 790	switch (state) {
 791	case PM_SUSPEND_STANDBY:
 792		return suspend_set_state(rdev,
 793			&rdev->constraints->state_standby);
 794	case PM_SUSPEND_MEM:
 795		return suspend_set_state(rdev,
 796			&rdev->constraints->state_mem);
 797	case PM_SUSPEND_MAX:
 798		return suspend_set_state(rdev,
 799			&rdev->constraints->state_disk);
 800	default:
 801		return -EINVAL;
 802	}
 803}
 804
 805static void print_constraints(struct regulator_dev *rdev)
 806{
 807	struct regulation_constraints *constraints = rdev->constraints;
 808	char buf[160] = "";
 809	size_t len = sizeof(buf) - 1;
 810	int count = 0;
 811	int ret;
 812
 813	if (constraints->min_uV && constraints->max_uV) {
 814		if (constraints->min_uV == constraints->max_uV)
 815			count += scnprintf(buf + count, len - count, "%d mV ",
 816					   constraints->min_uV / 1000);
 817		else
 818			count += scnprintf(buf + count, len - count,
 819					   "%d <--> %d mV ",
 820					   constraints->min_uV / 1000,
 821					   constraints->max_uV / 1000);
 822	}
 823
 824	if (!constraints->min_uV ||
 825	    constraints->min_uV != constraints->max_uV) {
 826		ret = _regulator_get_voltage(rdev);
 827		if (ret > 0)
 828			count += scnprintf(buf + count, len - count,
 829					   "at %d mV ", ret / 1000);
 830	}
 831
 832	if (constraints->uV_offset)
 833		count += scnprintf(buf + count, len - count, "%dmV offset ",
 834				   constraints->uV_offset / 1000);
 835
 836	if (constraints->min_uA && constraints->max_uA) {
 837		if (constraints->min_uA == constraints->max_uA)
 838			count += scnprintf(buf + count, len - count, "%d mA ",
 839					   constraints->min_uA / 1000);
 840		else
 841			count += scnprintf(buf + count, len - count,
 842					   "%d <--> %d mA ",
 843					   constraints->min_uA / 1000,
 844					   constraints->max_uA / 1000);
 845	}
 846
 847	if (!constraints->min_uA ||
 848	    constraints->min_uA != constraints->max_uA) {
 849		ret = _regulator_get_current_limit(rdev);
 850		if (ret > 0)
 851			count += scnprintf(buf + count, len - count,
 852					   "at %d mA ", ret / 1000);
 853	}
 854
 855	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 856		count += scnprintf(buf + count, len - count, "fast ");
 857	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 858		count += scnprintf(buf + count, len - count, "normal ");
 859	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 860		count += scnprintf(buf + count, len - count, "idle ");
 861	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 862		count += scnprintf(buf + count, len - count, "standby");
 863
 864	if (!count)
 865		scnprintf(buf, len, "no parameters");
 866
 867	rdev_dbg(rdev, "%s\n", buf);
 868
 869	if ((constraints->min_uV != constraints->max_uV) &&
 870	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
 871		rdev_warn(rdev,
 872			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 873}
 874
 875static int machine_constraints_voltage(struct regulator_dev *rdev,
 876	struct regulation_constraints *constraints)
 877{
 878	const struct regulator_ops *ops = rdev->desc->ops;
 879	int ret;
 880
 881	/* do we need to apply the constraint voltage */
 882	if (rdev->constraints->apply_uV &&
 883	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
 884		int target_min, target_max;
 885		int current_uV = _regulator_get_voltage(rdev);
 886		if (current_uV < 0) {
 887			rdev_err(rdev,
 888				 "failed to get the current voltage(%d)\n",
 889				 current_uV);
 890			return current_uV;
 891		}
 892
 893		/*
 894		 * If we're below the minimum voltage move up to the
 895		 * minimum voltage, if we're above the maximum voltage
 896		 * then move down to the maximum.
 897		 */
 898		target_min = current_uV;
 899		target_max = current_uV;
 900
 901		if (current_uV < rdev->constraints->min_uV) {
 902			target_min = rdev->constraints->min_uV;
 903			target_max = rdev->constraints->min_uV;
 904		}
 905
 906		if (current_uV > rdev->constraints->max_uV) {
 907			target_min = rdev->constraints->max_uV;
 908			target_max = rdev->constraints->max_uV;
 909		}
 910
 911		if (target_min != current_uV || target_max != current_uV) {
 912			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
 913				  current_uV, target_min, target_max);
 914			ret = _regulator_do_set_voltage(
 915				rdev, target_min, target_max);
 
 916			if (ret < 0) {
 917				rdev_err(rdev,
 918					"failed to apply %d-%duV constraint(%d)\n",
 919					target_min, target_max, ret);
 920				return ret;
 921			}
 922		}
 923	}
 924
 925	/* constrain machine-level voltage specs to fit
 926	 * the actual range supported by this regulator.
 927	 */
 928	if (ops->list_voltage && rdev->desc->n_voltages) {
 929		int	count = rdev->desc->n_voltages;
 930		int	i;
 931		int	min_uV = INT_MAX;
 932		int	max_uV = INT_MIN;
 933		int	cmin = constraints->min_uV;
 934		int	cmax = constraints->max_uV;
 935
 936		/* it's safe to autoconfigure fixed-voltage supplies
 937		   and the constraints are used by list_voltage. */
 938		if (count == 1 && !cmin) {
 939			cmin = 1;
 940			cmax = INT_MAX;
 941			constraints->min_uV = cmin;
 942			constraints->max_uV = cmax;
 943		}
 944
 945		/* voltage constraints are optional */
 946		if ((cmin == 0) && (cmax == 0))
 947			return 0;
 948
 949		/* else require explicit machine-level constraints */
 950		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 951			rdev_err(rdev, "invalid voltage constraints\n");
 952			return -EINVAL;
 953		}
 954
 955		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 956		for (i = 0; i < count; i++) {
 957			int	value;
 958
 959			value = ops->list_voltage(rdev, i);
 960			if (value <= 0)
 961				continue;
 962
 963			/* maybe adjust [min_uV..max_uV] */
 964			if (value >= cmin && value < min_uV)
 965				min_uV = value;
 966			if (value <= cmax && value > max_uV)
 967				max_uV = value;
 968		}
 969
 970		/* final: [min_uV..max_uV] valid iff constraints valid */
 971		if (max_uV < min_uV) {
 972			rdev_err(rdev,
 973				 "unsupportable voltage constraints %u-%uuV\n",
 974				 min_uV, max_uV);
 975			return -EINVAL;
 976		}
 977
 978		/* use regulator's subset of machine constraints */
 979		if (constraints->min_uV < min_uV) {
 980			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 981				 constraints->min_uV, min_uV);
 982			constraints->min_uV = min_uV;
 983		}
 984		if (constraints->max_uV > max_uV) {
 985			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 986				 constraints->max_uV, max_uV);
 987			constraints->max_uV = max_uV;
 988		}
 989	}
 990
 991	return 0;
 992}
 993
 994static int machine_constraints_current(struct regulator_dev *rdev,
 995	struct regulation_constraints *constraints)
 996{
 997	const struct regulator_ops *ops = rdev->desc->ops;
 998	int ret;
 999
1000	if (!constraints->min_uA && !constraints->max_uA)
1001		return 0;
1002
1003	if (constraints->min_uA > constraints->max_uA) {
1004		rdev_err(rdev, "Invalid current constraints\n");
1005		return -EINVAL;
1006	}
1007
1008	if (!ops->set_current_limit || !ops->get_current_limit) {
1009		rdev_warn(rdev, "Operation of current configuration missing\n");
1010		return 0;
1011	}
1012
1013	/* Set regulator current in constraints range */
1014	ret = ops->set_current_limit(rdev, constraints->min_uA,
1015			constraints->max_uA);
1016	if (ret < 0) {
1017		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018		return ret;
1019	}
1020
1021	return 0;
1022}
1023
1024static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026/**
1027 * set_machine_constraints - sets regulator constraints
1028 * @rdev: regulator source
1029 * @constraints: constraints to apply
1030 *
1031 * Allows platform initialisation code to define and constrain
1032 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033 * Constraints *must* be set by platform code in order for some
1034 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035 * set_mode.
1036 */
1037static int set_machine_constraints(struct regulator_dev *rdev,
1038	const struct regulation_constraints *constraints)
1039{
1040	int ret = 0;
1041	const struct regulator_ops *ops = rdev->desc->ops;
1042
1043	if (constraints)
1044		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045					    GFP_KERNEL);
1046	else
1047		rdev->constraints = kzalloc(sizeof(*constraints),
1048					    GFP_KERNEL);
1049	if (!rdev->constraints)
1050		return -ENOMEM;
1051
1052	ret = machine_constraints_voltage(rdev, rdev->constraints);
1053	if (ret != 0)
1054		return ret;
1055
1056	ret = machine_constraints_current(rdev, rdev->constraints);
1057	if (ret != 0)
1058		return ret;
1059
1060	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061		ret = ops->set_input_current_limit(rdev,
1062						   rdev->constraints->ilim_uA);
1063		if (ret < 0) {
1064			rdev_err(rdev, "failed to set input limit\n");
1065			return ret;
1066		}
1067	}
1068
1069	/* do we need to setup our suspend state */
1070	if (rdev->constraints->initial_state) {
1071		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072		if (ret < 0) {
1073			rdev_err(rdev, "failed to set suspend state\n");
1074			return ret;
1075		}
1076	}
1077
1078	if (rdev->constraints->initial_mode) {
1079		if (!ops->set_mode) {
1080			rdev_err(rdev, "no set_mode operation\n");
1081			return -EINVAL;
1082		}
1083
1084		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085		if (ret < 0) {
1086			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087			return ret;
1088		}
1089	}
1090
1091	/* If the constraints say the regulator should be on at this point
1092	 * and we have control then make sure it is enabled.
1093	 */
1094	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095		ret = _regulator_do_enable(rdev);
1096		if (ret < 0 && ret != -EINVAL) {
1097			rdev_err(rdev, "failed to enable\n");
1098			return ret;
1099		}
1100	}
1101
1102	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103		&& ops->set_ramp_delay) {
1104		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105		if (ret < 0) {
1106			rdev_err(rdev, "failed to set ramp_delay\n");
1107			return ret;
1108		}
1109	}
1110
1111	if (rdev->constraints->pull_down && ops->set_pull_down) {
1112		ret = ops->set_pull_down(rdev);
1113		if (ret < 0) {
1114			rdev_err(rdev, "failed to set pull down\n");
1115			return ret;
1116		}
1117	}
1118
1119	if (rdev->constraints->soft_start && ops->set_soft_start) {
1120		ret = ops->set_soft_start(rdev);
1121		if (ret < 0) {
1122			rdev_err(rdev, "failed to set soft start\n");
1123			return ret;
1124		}
1125	}
1126
1127	if (rdev->constraints->over_current_protection
1128		&& ops->set_over_current_protection) {
1129		ret = ops->set_over_current_protection(rdev);
1130		if (ret < 0) {
1131			rdev_err(rdev, "failed to set over current protection\n");
1132			return ret;
1133		}
1134	}
1135
1136	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137		bool ad_state = (rdev->constraints->active_discharge ==
1138			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140		ret = ops->set_active_discharge(rdev, ad_state);
1141		if (ret < 0) {
1142			rdev_err(rdev, "failed to set active discharge\n");
1143			return ret;
1144		}
1145	}
1146
 
 
 
 
 
 
 
 
 
 
 
1147	print_constraints(rdev);
1148	return 0;
1149}
1150
1151/**
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1155 *
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1159 */
1160static int set_supply(struct regulator_dev *rdev,
1161		      struct regulator_dev *supply_rdev)
1162{
1163	int err;
1164
1165	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167	if (!try_module_get(supply_rdev->owner))
1168		return -ENODEV;
1169
1170	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171	if (rdev->supply == NULL) {
1172		err = -ENOMEM;
1173		return err;
1174	}
1175	supply_rdev->open_count++;
1176
1177	return 0;
1178}
1179
1180/**
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev:         regulator source
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply:       symbolic name for supply
1185 *
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices.  Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
1190 */
1191static int set_consumer_device_supply(struct regulator_dev *rdev,
1192				      const char *consumer_dev_name,
1193				      const char *supply)
1194{
1195	struct regulator_map *node;
1196	int has_dev;
1197
1198	if (supply == NULL)
1199		return -EINVAL;
1200
1201	if (consumer_dev_name != NULL)
1202		has_dev = 1;
1203	else
1204		has_dev = 0;
1205
1206	list_for_each_entry(node, &regulator_map_list, list) {
1207		if (node->dev_name && consumer_dev_name) {
1208			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209				continue;
1210		} else if (node->dev_name || consumer_dev_name) {
1211			continue;
1212		}
1213
1214		if (strcmp(node->supply, supply) != 0)
1215			continue;
1216
1217		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218			 consumer_dev_name,
1219			 dev_name(&node->regulator->dev),
1220			 node->regulator->desc->name,
1221			 supply,
1222			 dev_name(&rdev->dev), rdev_get_name(rdev));
1223		return -EBUSY;
1224	}
1225
1226	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227	if (node == NULL)
1228		return -ENOMEM;
1229
1230	node->regulator = rdev;
1231	node->supply = supply;
1232
1233	if (has_dev) {
1234		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235		if (node->dev_name == NULL) {
1236			kfree(node);
1237			return -ENOMEM;
1238		}
1239	}
1240
1241	list_add(&node->list, &regulator_map_list);
1242	return 0;
1243}
1244
1245static void unset_regulator_supplies(struct regulator_dev *rdev)
1246{
1247	struct regulator_map *node, *n;
1248
1249	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250		if (rdev == node->regulator) {
1251			list_del(&node->list);
1252			kfree(node->dev_name);
1253			kfree(node);
1254		}
1255	}
1256}
1257
1258#ifdef CONFIG_DEBUG_FS
1259static ssize_t constraint_flags_read_file(struct file *file,
1260					  char __user *user_buf,
1261					  size_t count, loff_t *ppos)
1262{
1263	const struct regulator *regulator = file->private_data;
1264	const struct regulation_constraints *c = regulator->rdev->constraints;
1265	char *buf;
1266	ssize_t ret;
1267
1268	if (!c)
1269		return 0;
1270
1271	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272	if (!buf)
1273		return -ENOMEM;
1274
1275	ret = snprintf(buf, PAGE_SIZE,
1276			"always_on: %u\n"
1277			"boot_on: %u\n"
1278			"apply_uV: %u\n"
1279			"ramp_disable: %u\n"
1280			"soft_start: %u\n"
1281			"pull_down: %u\n"
1282			"over_current_protection: %u\n",
1283			c->always_on,
1284			c->boot_on,
1285			c->apply_uV,
1286			c->ramp_disable,
1287			c->soft_start,
1288			c->pull_down,
1289			c->over_current_protection);
1290
1291	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292	kfree(buf);
1293
1294	return ret;
1295}
1296
1297#endif
1298
1299static const struct file_operations constraint_flags_fops = {
1300#ifdef CONFIG_DEBUG_FS
1301	.open = simple_open,
1302	.read = constraint_flags_read_file,
1303	.llseek = default_llseek,
1304#endif
1305};
1306
1307#define REG_STR_SIZE	64
1308
1309static struct regulator *create_regulator(struct regulator_dev *rdev,
1310					  struct device *dev,
1311					  const char *supply_name)
1312{
1313	struct regulator *regulator;
1314	char buf[REG_STR_SIZE];
1315	int err, size;
1316
1317	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318	if (regulator == NULL)
1319		return NULL;
1320
1321	mutex_lock(&rdev->mutex);
1322	regulator->rdev = rdev;
1323	list_add(&regulator->list, &rdev->consumer_list);
1324
1325	if (dev) {
1326		regulator->dev = dev;
1327
1328		/* Add a link to the device sysfs entry */
1329		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330				 dev->kobj.name, supply_name);
1331		if (size >= REG_STR_SIZE)
1332			goto overflow_err;
1333
1334		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335		if (regulator->supply_name == NULL)
1336			goto overflow_err;
1337
1338		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339					buf);
1340		if (err) {
1341			rdev_dbg(rdev, "could not add device link %s err %d\n",
1342				  dev->kobj.name, err);
1343			/* non-fatal */
1344		}
1345	} else {
1346		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347		if (regulator->supply_name == NULL)
1348			goto overflow_err;
1349	}
1350
1351	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352						rdev->debugfs);
1353	if (!regulator->debugfs) {
1354		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355	} else {
1356		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357				   &regulator->uA_load);
1358		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359				   &regulator->min_uV);
1360		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361				   &regulator->max_uV);
1362		debugfs_create_file("constraint_flags", 0444,
1363				    regulator->debugfs, regulator,
1364				    &constraint_flags_fops);
1365	}
1366
1367	/*
1368	 * Check now if the regulator is an always on regulator - if
1369	 * it is then we don't need to do nearly so much work for
1370	 * enable/disable calls.
1371	 */
1372	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373	    _regulator_is_enabled(rdev))
1374		regulator->always_on = true;
1375
1376	mutex_unlock(&rdev->mutex);
1377	return regulator;
1378overflow_err:
1379	list_del(&regulator->list);
1380	kfree(regulator);
1381	mutex_unlock(&rdev->mutex);
1382	return NULL;
1383}
1384
1385static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386{
1387	if (rdev->constraints && rdev->constraints->enable_time)
1388		return rdev->constraints->enable_time;
1389	if (!rdev->desc->ops->enable_time)
1390		return rdev->desc->enable_time;
1391	return rdev->desc->ops->enable_time(rdev);
1392}
1393
1394static struct regulator_supply_alias *regulator_find_supply_alias(
1395		struct device *dev, const char *supply)
1396{
1397	struct regulator_supply_alias *map;
1398
1399	list_for_each_entry(map, &regulator_supply_alias_list, list)
1400		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401			return map;
1402
1403	return NULL;
1404}
1405
1406static void regulator_supply_alias(struct device **dev, const char **supply)
1407{
1408	struct regulator_supply_alias *map;
1409
1410	map = regulator_find_supply_alias(*dev, *supply);
1411	if (map) {
1412		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413				*supply, map->alias_supply,
1414				dev_name(map->alias_dev));
1415		*dev = map->alias_dev;
1416		*supply = map->alias_supply;
1417	}
1418}
1419
1420static int of_node_match(struct device *dev, const void *data)
1421{
1422	return dev->of_node == data;
1423}
1424
1425static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426{
1427	struct device *dev;
1428
1429	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431	return dev ? dev_to_rdev(dev) : NULL;
1432}
1433
1434static int regulator_match(struct device *dev, const void *data)
1435{
1436	struct regulator_dev *r = dev_to_rdev(dev);
1437
1438	return strcmp(rdev_get_name(r), data) == 0;
1439}
1440
1441static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442{
1443	struct device *dev;
1444
1445	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447	return dev ? dev_to_rdev(dev) : NULL;
1448}
1449
1450/**
1451 * regulator_dev_lookup - lookup a regulator device.
1452 * @dev: device for regulator "consumer".
1453 * @supply: Supply name or regulator ID.
1454 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455 * lookup could succeed in the future.
1456 *
1457 * If successful, returns a struct regulator_dev that corresponds to the name
1458 * @supply and with the embedded struct device refcount incremented by one,
1459 * or NULL on failure. The refcount must be dropped by calling put_device().
1460 */
1461static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1462						  const char *supply,
1463						  int *ret)
1464{
1465	struct regulator_dev *r;
1466	struct device_node *node;
1467	struct regulator_map *map;
1468	const char *devname = NULL;
1469
1470	regulator_supply_alias(&dev, &supply);
1471
1472	/* first do a dt based lookup */
1473	if (dev && dev->of_node) {
1474		node = of_get_regulator(dev, supply);
1475		if (node) {
1476			r = of_find_regulator_by_node(node);
1477			if (r)
1478				return r;
1479			*ret = -EPROBE_DEFER;
1480			return NULL;
1481		} else {
1482			/*
1483			 * If we couldn't even get the node then it's
1484			 * not just that the device didn't register
1485			 * yet, there's no node and we'll never
1486			 * succeed.
1487			 */
1488			*ret = -ENODEV;
1489		}
1490	}
1491
1492	/* if not found, try doing it non-dt way */
1493	if (dev)
1494		devname = dev_name(dev);
1495
1496	r = regulator_lookup_by_name(supply);
1497	if (r)
1498		return r;
1499
1500	mutex_lock(&regulator_list_mutex);
1501	list_for_each_entry(map, &regulator_map_list, list) {
1502		/* If the mapping has a device set up it must match */
1503		if (map->dev_name &&
1504		    (!devname || strcmp(map->dev_name, devname)))
1505			continue;
1506
1507		if (strcmp(map->supply, supply) == 0 &&
1508		    get_device(&map->regulator->dev)) {
1509			mutex_unlock(&regulator_list_mutex);
1510			return map->regulator;
1511		}
1512	}
1513	mutex_unlock(&regulator_list_mutex);
1514
1515	return NULL;
1516}
1517
1518static int regulator_resolve_supply(struct regulator_dev *rdev)
1519{
1520	struct regulator_dev *r;
1521	struct device *dev = rdev->dev.parent;
1522	int ret;
1523
1524	/* No supply to resovle? */
1525	if (!rdev->supply_name)
1526		return 0;
1527
1528	/* Supply already resolved? */
1529	if (rdev->supply)
1530		return 0;
1531
1532	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1533	if (!r) {
1534		if (ret == -ENODEV) {
1535			/*
1536			 * No supply was specified for this regulator and
1537			 * there will never be one.
1538			 */
1539			return 0;
1540		}
1541
1542		/* Did the lookup explicitly defer for us? */
1543		if (ret == -EPROBE_DEFER)
1544			return ret;
1545
1546		if (have_full_constraints()) {
1547			r = dummy_regulator_rdev;
1548			get_device(&r->dev);
1549		} else {
1550			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1551				rdev->supply_name, rdev->desc->name);
1552			return -EPROBE_DEFER;
1553		}
1554	}
1555
1556	/* Recursively resolve the supply of the supply */
1557	ret = regulator_resolve_supply(r);
1558	if (ret < 0) {
1559		put_device(&r->dev);
1560		return ret;
1561	}
1562
1563	ret = set_supply(rdev, r);
1564	if (ret < 0) {
1565		put_device(&r->dev);
1566		return ret;
1567	}
1568
1569	/* Cascade always-on state to supply */
1570	if (_regulator_is_enabled(rdev)) {
1571		ret = regulator_enable(rdev->supply);
1572		if (ret < 0) {
1573			_regulator_put(rdev->supply);
1574			rdev->supply = NULL;
1575			return ret;
1576		}
1577	}
1578
1579	return 0;
1580}
1581
1582/* Internal regulator request function */
1583static struct regulator *_regulator_get(struct device *dev, const char *id,
1584					bool exclusive, bool allow_dummy)
1585{
1586	struct regulator_dev *rdev;
1587	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1588	const char *devname = NULL;
1589	int ret;
1590
1591	if (id == NULL) {
1592		pr_err("get() with no identifier\n");
1593		return ERR_PTR(-EINVAL);
1594	}
1595
1596	if (dev)
1597		devname = dev_name(dev);
1598
1599	if (have_full_constraints())
1600		ret = -ENODEV;
1601	else
1602		ret = -EPROBE_DEFER;
1603
1604	rdev = regulator_dev_lookup(dev, id, &ret);
1605	if (rdev)
1606		goto found;
1607
1608	regulator = ERR_PTR(ret);
1609
1610	/*
1611	 * If we have return value from dev_lookup fail, we do not expect to
1612	 * succeed, so, quit with appropriate error value
1613	 */
1614	if (ret && ret != -ENODEV)
1615		return regulator;
1616
1617	if (!devname)
1618		devname = "deviceless";
1619
1620	/*
1621	 * Assume that a regulator is physically present and enabled
1622	 * even if it isn't hooked up and just provide a dummy.
1623	 */
1624	if (have_full_constraints() && allow_dummy) {
1625		pr_warn("%s supply %s not found, using dummy regulator\n",
1626			devname, id);
1627
1628		rdev = dummy_regulator_rdev;
1629		get_device(&rdev->dev);
1630		goto found;
1631	/* Don't log an error when called from regulator_get_optional() */
1632	} else if (!have_full_constraints() || exclusive) {
1633		dev_warn(dev, "dummy supplies not allowed\n");
1634	}
1635
1636	return regulator;
1637
1638found:
1639	if (rdev->exclusive) {
1640		regulator = ERR_PTR(-EPERM);
1641		put_device(&rdev->dev);
1642		return regulator;
1643	}
1644
1645	if (exclusive && rdev->open_count) {
1646		regulator = ERR_PTR(-EBUSY);
1647		put_device(&rdev->dev);
1648		return regulator;
1649	}
1650
1651	ret = regulator_resolve_supply(rdev);
1652	if (ret < 0) {
1653		regulator = ERR_PTR(ret);
1654		put_device(&rdev->dev);
1655		return regulator;
1656	}
1657
1658	if (!try_module_get(rdev->owner)) {
1659		put_device(&rdev->dev);
1660		return regulator;
1661	}
1662
1663	regulator = create_regulator(rdev, dev, id);
1664	if (regulator == NULL) {
1665		regulator = ERR_PTR(-ENOMEM);
1666		put_device(&rdev->dev);
1667		module_put(rdev->owner);
1668		return regulator;
1669	}
1670
1671	rdev->open_count++;
1672	if (exclusive) {
1673		rdev->exclusive = 1;
1674
1675		ret = _regulator_is_enabled(rdev);
1676		if (ret > 0)
1677			rdev->use_count = 1;
1678		else
1679			rdev->use_count = 0;
1680	}
1681
1682	return regulator;
1683}
1684
1685/**
1686 * regulator_get - lookup and obtain a reference to a regulator.
1687 * @dev: device for regulator "consumer"
1688 * @id: Supply name or regulator ID.
1689 *
1690 * Returns a struct regulator corresponding to the regulator producer,
1691 * or IS_ERR() condition containing errno.
1692 *
1693 * Use of supply names configured via regulator_set_device_supply() is
1694 * strongly encouraged.  It is recommended that the supply name used
1695 * should match the name used for the supply and/or the relevant
1696 * device pins in the datasheet.
1697 */
1698struct regulator *regulator_get(struct device *dev, const char *id)
1699{
1700	return _regulator_get(dev, id, false, true);
1701}
1702EXPORT_SYMBOL_GPL(regulator_get);
1703
1704/**
1705 * regulator_get_exclusive - obtain exclusive access to a regulator.
1706 * @dev: device for regulator "consumer"
1707 * @id: Supply name or regulator ID.
1708 *
1709 * Returns a struct regulator corresponding to the regulator producer,
1710 * or IS_ERR() condition containing errno.  Other consumers will be
1711 * unable to obtain this regulator while this reference is held and the
1712 * use count for the regulator will be initialised to reflect the current
1713 * state of the regulator.
1714 *
1715 * This is intended for use by consumers which cannot tolerate shared
1716 * use of the regulator such as those which need to force the
1717 * regulator off for correct operation of the hardware they are
1718 * controlling.
1719 *
1720 * Use of supply names configured via regulator_set_device_supply() is
1721 * strongly encouraged.  It is recommended that the supply name used
1722 * should match the name used for the supply and/or the relevant
1723 * device pins in the datasheet.
1724 */
1725struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1726{
1727	return _regulator_get(dev, id, true, false);
1728}
1729EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1730
1731/**
1732 * regulator_get_optional - obtain optional access to a regulator.
1733 * @dev: device for regulator "consumer"
1734 * @id: Supply name or regulator ID.
1735 *
1736 * Returns a struct regulator corresponding to the regulator producer,
1737 * or IS_ERR() condition containing errno.
1738 *
1739 * This is intended for use by consumers for devices which can have
1740 * some supplies unconnected in normal use, such as some MMC devices.
1741 * It can allow the regulator core to provide stub supplies for other
1742 * supplies requested using normal regulator_get() calls without
1743 * disrupting the operation of drivers that can handle absent
1744 * supplies.
1745 *
1746 * Use of supply names configured via regulator_set_device_supply() is
1747 * strongly encouraged.  It is recommended that the supply name used
1748 * should match the name used for the supply and/or the relevant
1749 * device pins in the datasheet.
1750 */
1751struct regulator *regulator_get_optional(struct device *dev, const char *id)
1752{
1753	return _regulator_get(dev, id, false, false);
1754}
1755EXPORT_SYMBOL_GPL(regulator_get_optional);
1756
1757/* regulator_list_mutex lock held by regulator_put() */
1758static void _regulator_put(struct regulator *regulator)
1759{
1760	struct regulator_dev *rdev;
1761
1762	if (IS_ERR_OR_NULL(regulator))
1763		return;
1764
1765	lockdep_assert_held_once(&regulator_list_mutex);
1766
1767	rdev = regulator->rdev;
1768
1769	debugfs_remove_recursive(regulator->debugfs);
1770
1771	/* remove any sysfs entries */
1772	if (regulator->dev)
1773		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1774	mutex_lock(&rdev->mutex);
1775	list_del(&regulator->list);
1776
1777	rdev->open_count--;
1778	rdev->exclusive = 0;
1779	put_device(&rdev->dev);
1780	mutex_unlock(&rdev->mutex);
1781
1782	kfree(regulator->supply_name);
1783	kfree(regulator);
1784
1785	module_put(rdev->owner);
1786}
1787
1788/**
1789 * regulator_put - "free" the regulator source
1790 * @regulator: regulator source
1791 *
1792 * Note: drivers must ensure that all regulator_enable calls made on this
1793 * regulator source are balanced by regulator_disable calls prior to calling
1794 * this function.
1795 */
1796void regulator_put(struct regulator *regulator)
1797{
1798	mutex_lock(&regulator_list_mutex);
1799	_regulator_put(regulator);
1800	mutex_unlock(&regulator_list_mutex);
1801}
1802EXPORT_SYMBOL_GPL(regulator_put);
1803
1804/**
1805 * regulator_register_supply_alias - Provide device alias for supply lookup
1806 *
1807 * @dev: device that will be given as the regulator "consumer"
1808 * @id: Supply name or regulator ID
1809 * @alias_dev: device that should be used to lookup the supply
1810 * @alias_id: Supply name or regulator ID that should be used to lookup the
1811 * supply
1812 *
1813 * All lookups for id on dev will instead be conducted for alias_id on
1814 * alias_dev.
1815 */
1816int regulator_register_supply_alias(struct device *dev, const char *id,
1817				    struct device *alias_dev,
1818				    const char *alias_id)
1819{
1820	struct regulator_supply_alias *map;
1821
1822	map = regulator_find_supply_alias(dev, id);
1823	if (map)
1824		return -EEXIST;
1825
1826	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1827	if (!map)
1828		return -ENOMEM;
1829
1830	map->src_dev = dev;
1831	map->src_supply = id;
1832	map->alias_dev = alias_dev;
1833	map->alias_supply = alias_id;
1834
1835	list_add(&map->list, &regulator_supply_alias_list);
1836
1837	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1838		id, dev_name(dev), alias_id, dev_name(alias_dev));
1839
1840	return 0;
1841}
1842EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1843
1844/**
1845 * regulator_unregister_supply_alias - Remove device alias
1846 *
1847 * @dev: device that will be given as the regulator "consumer"
1848 * @id: Supply name or regulator ID
1849 *
1850 * Remove a lookup alias if one exists for id on dev.
1851 */
1852void regulator_unregister_supply_alias(struct device *dev, const char *id)
1853{
1854	struct regulator_supply_alias *map;
1855
1856	map = regulator_find_supply_alias(dev, id);
1857	if (map) {
1858		list_del(&map->list);
1859		kfree(map);
1860	}
1861}
1862EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1863
1864/**
1865 * regulator_bulk_register_supply_alias - register multiple aliases
1866 *
1867 * @dev: device that will be given as the regulator "consumer"
1868 * @id: List of supply names or regulator IDs
1869 * @alias_dev: device that should be used to lookup the supply
1870 * @alias_id: List of supply names or regulator IDs that should be used to
1871 * lookup the supply
1872 * @num_id: Number of aliases to register
1873 *
1874 * @return 0 on success, an errno on failure.
1875 *
1876 * This helper function allows drivers to register several supply
1877 * aliases in one operation.  If any of the aliases cannot be
1878 * registered any aliases that were registered will be removed
1879 * before returning to the caller.
1880 */
1881int regulator_bulk_register_supply_alias(struct device *dev,
1882					 const char *const *id,
1883					 struct device *alias_dev,
1884					 const char *const *alias_id,
1885					 int num_id)
1886{
1887	int i;
1888	int ret;
1889
1890	for (i = 0; i < num_id; ++i) {
1891		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1892						      alias_id[i]);
1893		if (ret < 0)
1894			goto err;
1895	}
1896
1897	return 0;
1898
1899err:
1900	dev_err(dev,
1901		"Failed to create supply alias %s,%s -> %s,%s\n",
1902		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1903
1904	while (--i >= 0)
1905		regulator_unregister_supply_alias(dev, id[i]);
1906
1907	return ret;
1908}
1909EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1910
1911/**
1912 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1913 *
1914 * @dev: device that will be given as the regulator "consumer"
1915 * @id: List of supply names or regulator IDs
1916 * @num_id: Number of aliases to unregister
1917 *
1918 * This helper function allows drivers to unregister several supply
1919 * aliases in one operation.
1920 */
1921void regulator_bulk_unregister_supply_alias(struct device *dev,
1922					    const char *const *id,
1923					    int num_id)
1924{
1925	int i;
1926
1927	for (i = 0; i < num_id; ++i)
1928		regulator_unregister_supply_alias(dev, id[i]);
1929}
1930EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1931
1932
1933/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1934static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1935				const struct regulator_config *config)
1936{
1937	struct regulator_enable_gpio *pin;
1938	struct gpio_desc *gpiod;
1939	int ret;
1940
1941	gpiod = gpio_to_desc(config->ena_gpio);
1942
1943	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1944		if (pin->gpiod == gpiod) {
1945			rdev_dbg(rdev, "GPIO %d is already used\n",
1946				config->ena_gpio);
1947			goto update_ena_gpio_to_rdev;
1948		}
1949	}
1950
1951	ret = gpio_request_one(config->ena_gpio,
1952				GPIOF_DIR_OUT | config->ena_gpio_flags,
1953				rdev_get_name(rdev));
1954	if (ret)
1955		return ret;
1956
1957	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1958	if (pin == NULL) {
1959		gpio_free(config->ena_gpio);
1960		return -ENOMEM;
1961	}
1962
1963	pin->gpiod = gpiod;
1964	pin->ena_gpio_invert = config->ena_gpio_invert;
1965	list_add(&pin->list, &regulator_ena_gpio_list);
1966
1967update_ena_gpio_to_rdev:
1968	pin->request_count++;
1969	rdev->ena_pin = pin;
1970	return 0;
1971}
1972
1973static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1974{
1975	struct regulator_enable_gpio *pin, *n;
1976
1977	if (!rdev->ena_pin)
1978		return;
1979
1980	/* Free the GPIO only in case of no use */
1981	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1982		if (pin->gpiod == rdev->ena_pin->gpiod) {
1983			if (pin->request_count <= 1) {
1984				pin->request_count = 0;
1985				gpiod_put(pin->gpiod);
1986				list_del(&pin->list);
1987				kfree(pin);
1988				rdev->ena_pin = NULL;
1989				return;
1990			} else {
1991				pin->request_count--;
1992			}
1993		}
1994	}
1995}
1996
1997/**
1998 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1999 * @rdev: regulator_dev structure
2000 * @enable: enable GPIO at initial use?
2001 *
2002 * GPIO is enabled in case of initial use. (enable_count is 0)
2003 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2004 */
2005static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2006{
2007	struct regulator_enable_gpio *pin = rdev->ena_pin;
2008
2009	if (!pin)
2010		return -EINVAL;
2011
2012	if (enable) {
2013		/* Enable GPIO at initial use */
2014		if (pin->enable_count == 0)
2015			gpiod_set_value_cansleep(pin->gpiod,
2016						 !pin->ena_gpio_invert);
2017
2018		pin->enable_count++;
2019	} else {
2020		if (pin->enable_count > 1) {
2021			pin->enable_count--;
2022			return 0;
2023		}
2024
2025		/* Disable GPIO if not used */
2026		if (pin->enable_count <= 1) {
2027			gpiod_set_value_cansleep(pin->gpiod,
2028						 pin->ena_gpio_invert);
2029			pin->enable_count = 0;
2030		}
2031	}
2032
2033	return 0;
2034}
2035
2036/**
2037 * _regulator_enable_delay - a delay helper function
2038 * @delay: time to delay in microseconds
2039 *
2040 * Delay for the requested amount of time as per the guidelines in:
2041 *
2042 *     Documentation/timers/timers-howto.txt
2043 *
2044 * The assumption here is that regulators will never be enabled in
2045 * atomic context and therefore sleeping functions can be used.
2046 */
2047static void _regulator_enable_delay(unsigned int delay)
2048{
2049	unsigned int ms = delay / 1000;
2050	unsigned int us = delay % 1000;
2051
2052	if (ms > 0) {
2053		/*
2054		 * For small enough values, handle super-millisecond
2055		 * delays in the usleep_range() call below.
2056		 */
2057		if (ms < 20)
2058			us += ms * 1000;
2059		else
2060			msleep(ms);
2061	}
2062
2063	/*
2064	 * Give the scheduler some room to coalesce with any other
2065	 * wakeup sources. For delays shorter than 10 us, don't even
2066	 * bother setting up high-resolution timers and just busy-
2067	 * loop.
2068	 */
2069	if (us >= 10)
2070		usleep_range(us, us + 100);
2071	else
2072		udelay(us);
2073}
2074
2075static int _regulator_do_enable(struct regulator_dev *rdev)
2076{
2077	int ret, delay;
2078
2079	/* Query before enabling in case configuration dependent.  */
2080	ret = _regulator_get_enable_time(rdev);
2081	if (ret >= 0) {
2082		delay = ret;
2083	} else {
2084		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2085		delay = 0;
2086	}
2087
2088	trace_regulator_enable(rdev_get_name(rdev));
2089
2090	if (rdev->desc->off_on_delay) {
2091		/* if needed, keep a distance of off_on_delay from last time
2092		 * this regulator was disabled.
2093		 */
2094		unsigned long start_jiffy = jiffies;
2095		unsigned long intended, max_delay, remaining;
2096
2097		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2098		intended = rdev->last_off_jiffy + max_delay;
2099
2100		if (time_before(start_jiffy, intended)) {
2101			/* calc remaining jiffies to deal with one-time
2102			 * timer wrapping.
2103			 * in case of multiple timer wrapping, either it can be
2104			 * detected by out-of-range remaining, or it cannot be
2105			 * detected and we gets a panelty of
2106			 * _regulator_enable_delay().
2107			 */
2108			remaining = intended - start_jiffy;
2109			if (remaining <= max_delay)
2110				_regulator_enable_delay(
2111						jiffies_to_usecs(remaining));
2112		}
2113	}
2114
2115	if (rdev->ena_pin) {
2116		if (!rdev->ena_gpio_state) {
2117			ret = regulator_ena_gpio_ctrl(rdev, true);
2118			if (ret < 0)
2119				return ret;
2120			rdev->ena_gpio_state = 1;
2121		}
2122	} else if (rdev->desc->ops->enable) {
2123		ret = rdev->desc->ops->enable(rdev);
2124		if (ret < 0)
2125			return ret;
2126	} else {
2127		return -EINVAL;
2128	}
2129
2130	/* Allow the regulator to ramp; it would be useful to extend
2131	 * this for bulk operations so that the regulators can ramp
2132	 * together.  */
2133	trace_regulator_enable_delay(rdev_get_name(rdev));
2134
2135	_regulator_enable_delay(delay);
2136
2137	trace_regulator_enable_complete(rdev_get_name(rdev));
2138
2139	return 0;
2140}
2141
2142/* locks held by regulator_enable() */
2143static int _regulator_enable(struct regulator_dev *rdev)
2144{
2145	int ret;
2146
2147	lockdep_assert_held_once(&rdev->mutex);
2148
2149	/* check voltage and requested load before enabling */
2150	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 
2151		drms_uA_update(rdev);
2152
2153	if (rdev->use_count == 0) {
2154		/* The regulator may on if it's not switchable or left on */
2155		ret = _regulator_is_enabled(rdev);
2156		if (ret == -EINVAL || ret == 0) {
2157			if (!regulator_ops_is_valid(rdev,
2158					REGULATOR_CHANGE_STATUS))
2159				return -EPERM;
2160
2161			ret = _regulator_do_enable(rdev);
2162			if (ret < 0)
2163				return ret;
2164
2165		} else if (ret < 0) {
2166			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2167			return ret;
2168		}
2169		/* Fallthrough on positive return values - already enabled */
2170	}
2171
2172	rdev->use_count++;
2173
2174	return 0;
2175}
2176
2177/**
2178 * regulator_enable - enable regulator output
2179 * @regulator: regulator source
2180 *
2181 * Request that the regulator be enabled with the regulator output at
2182 * the predefined voltage or current value.  Calls to regulator_enable()
2183 * must be balanced with calls to regulator_disable().
2184 *
2185 * NOTE: the output value can be set by other drivers, boot loader or may be
2186 * hardwired in the regulator.
2187 */
2188int regulator_enable(struct regulator *regulator)
2189{
2190	struct regulator_dev *rdev = regulator->rdev;
2191	int ret = 0;
2192
2193	if (regulator->always_on)
2194		return 0;
2195
2196	if (rdev->supply) {
2197		ret = regulator_enable(rdev->supply);
2198		if (ret != 0)
2199			return ret;
2200	}
2201
2202	mutex_lock(&rdev->mutex);
2203	ret = _regulator_enable(rdev);
2204	mutex_unlock(&rdev->mutex);
2205
2206	if (ret != 0 && rdev->supply)
2207		regulator_disable(rdev->supply);
2208
2209	return ret;
2210}
2211EXPORT_SYMBOL_GPL(regulator_enable);
2212
2213static int _regulator_do_disable(struct regulator_dev *rdev)
2214{
2215	int ret;
2216
2217	trace_regulator_disable(rdev_get_name(rdev));
2218
2219	if (rdev->ena_pin) {
2220		if (rdev->ena_gpio_state) {
2221			ret = regulator_ena_gpio_ctrl(rdev, false);
2222			if (ret < 0)
2223				return ret;
2224			rdev->ena_gpio_state = 0;
2225		}
2226
2227	} else if (rdev->desc->ops->disable) {
2228		ret = rdev->desc->ops->disable(rdev);
2229		if (ret != 0)
2230			return ret;
2231	}
2232
2233	/* cares about last_off_jiffy only if off_on_delay is required by
2234	 * device.
2235	 */
2236	if (rdev->desc->off_on_delay)
2237		rdev->last_off_jiffy = jiffies;
2238
2239	trace_regulator_disable_complete(rdev_get_name(rdev));
2240
2241	return 0;
2242}
2243
2244/* locks held by regulator_disable() */
2245static int _regulator_disable(struct regulator_dev *rdev)
2246{
2247	int ret = 0;
2248
2249	lockdep_assert_held_once(&rdev->mutex);
2250
2251	if (WARN(rdev->use_count <= 0,
2252		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2253		return -EIO;
2254
2255	/* are we the last user and permitted to disable ? */
2256	if (rdev->use_count == 1 &&
2257	    (rdev->constraints && !rdev->constraints->always_on)) {
2258
2259		/* we are last user */
2260		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2261			ret = _notifier_call_chain(rdev,
2262						   REGULATOR_EVENT_PRE_DISABLE,
2263						   NULL);
2264			if (ret & NOTIFY_STOP_MASK)
2265				return -EINVAL;
2266
2267			ret = _regulator_do_disable(rdev);
2268			if (ret < 0) {
2269				rdev_err(rdev, "failed to disable\n");
2270				_notifier_call_chain(rdev,
2271						REGULATOR_EVENT_ABORT_DISABLE,
2272						NULL);
2273				return ret;
2274			}
2275			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2276					NULL);
2277		}
2278
2279		rdev->use_count = 0;
2280	} else if (rdev->use_count > 1) {
2281		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 
 
 
2282			drms_uA_update(rdev);
2283
2284		rdev->use_count--;
2285	}
2286
2287	return ret;
2288}
2289
2290/**
2291 * regulator_disable - disable regulator output
2292 * @regulator: regulator source
2293 *
2294 * Disable the regulator output voltage or current.  Calls to
2295 * regulator_enable() must be balanced with calls to
2296 * regulator_disable().
2297 *
2298 * NOTE: this will only disable the regulator output if no other consumer
2299 * devices have it enabled, the regulator device supports disabling and
2300 * machine constraints permit this operation.
2301 */
2302int regulator_disable(struct regulator *regulator)
2303{
2304	struct regulator_dev *rdev = regulator->rdev;
2305	int ret = 0;
2306
2307	if (regulator->always_on)
2308		return 0;
2309
2310	mutex_lock(&rdev->mutex);
2311	ret = _regulator_disable(rdev);
2312	mutex_unlock(&rdev->mutex);
2313
2314	if (ret == 0 && rdev->supply)
2315		regulator_disable(rdev->supply);
2316
2317	return ret;
2318}
2319EXPORT_SYMBOL_GPL(regulator_disable);
2320
2321/* locks held by regulator_force_disable() */
2322static int _regulator_force_disable(struct regulator_dev *rdev)
2323{
2324	int ret = 0;
2325
2326	lockdep_assert_held_once(&rdev->mutex);
2327
2328	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2329			REGULATOR_EVENT_PRE_DISABLE, NULL);
2330	if (ret & NOTIFY_STOP_MASK)
2331		return -EINVAL;
2332
2333	ret = _regulator_do_disable(rdev);
2334	if (ret < 0) {
2335		rdev_err(rdev, "failed to force disable\n");
2336		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2337				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2338		return ret;
2339	}
2340
2341	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2342			REGULATOR_EVENT_DISABLE, NULL);
2343
2344	return 0;
2345}
2346
2347/**
2348 * regulator_force_disable - force disable regulator output
2349 * @regulator: regulator source
2350 *
2351 * Forcibly disable the regulator output voltage or current.
2352 * NOTE: this *will* disable the regulator output even if other consumer
2353 * devices have it enabled. This should be used for situations when device
2354 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2355 */
2356int regulator_force_disable(struct regulator *regulator)
2357{
2358	struct regulator_dev *rdev = regulator->rdev;
2359	int ret;
2360
2361	mutex_lock(&rdev->mutex);
2362	regulator->uA_load = 0;
2363	ret = _regulator_force_disable(regulator->rdev);
2364	mutex_unlock(&rdev->mutex);
2365
2366	if (rdev->supply)
2367		while (rdev->open_count--)
2368			regulator_disable(rdev->supply);
2369
2370	return ret;
2371}
2372EXPORT_SYMBOL_GPL(regulator_force_disable);
2373
2374static void regulator_disable_work(struct work_struct *work)
2375{
2376	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2377						  disable_work.work);
2378	int count, i, ret;
2379
2380	mutex_lock(&rdev->mutex);
2381
2382	BUG_ON(!rdev->deferred_disables);
2383
2384	count = rdev->deferred_disables;
2385	rdev->deferred_disables = 0;
2386
2387	for (i = 0; i < count; i++) {
2388		ret = _regulator_disable(rdev);
2389		if (ret != 0)
2390			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2391	}
2392
2393	mutex_unlock(&rdev->mutex);
2394
2395	if (rdev->supply) {
2396		for (i = 0; i < count; i++) {
2397			ret = regulator_disable(rdev->supply);
2398			if (ret != 0) {
2399				rdev_err(rdev,
2400					 "Supply disable failed: %d\n", ret);
2401			}
2402		}
2403	}
2404}
2405
2406/**
2407 * regulator_disable_deferred - disable regulator output with delay
2408 * @regulator: regulator source
2409 * @ms: miliseconds until the regulator is disabled
2410 *
2411 * Execute regulator_disable() on the regulator after a delay.  This
2412 * is intended for use with devices that require some time to quiesce.
2413 *
2414 * NOTE: this will only disable the regulator output if no other consumer
2415 * devices have it enabled, the regulator device supports disabling and
2416 * machine constraints permit this operation.
2417 */
2418int regulator_disable_deferred(struct regulator *regulator, int ms)
2419{
2420	struct regulator_dev *rdev = regulator->rdev;
2421
2422	if (regulator->always_on)
2423		return 0;
2424
2425	if (!ms)
2426		return regulator_disable(regulator);
2427
2428	mutex_lock(&rdev->mutex);
2429	rdev->deferred_disables++;
2430	mutex_unlock(&rdev->mutex);
2431
2432	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2433			   msecs_to_jiffies(ms));
2434	return 0;
2435}
2436EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2437
2438static int _regulator_is_enabled(struct regulator_dev *rdev)
2439{
2440	/* A GPIO control always takes precedence */
2441	if (rdev->ena_pin)
2442		return rdev->ena_gpio_state;
2443
2444	/* If we don't know then assume that the regulator is always on */
2445	if (!rdev->desc->ops->is_enabled)
2446		return 1;
2447
2448	return rdev->desc->ops->is_enabled(rdev);
2449}
2450
2451static int _regulator_list_voltage(struct regulator *regulator,
2452				    unsigned selector, int lock)
2453{
2454	struct regulator_dev *rdev = regulator->rdev;
2455	const struct regulator_ops *ops = rdev->desc->ops;
2456	int ret;
2457
2458	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2459		return rdev->desc->fixed_uV;
2460
2461	if (ops->list_voltage) {
2462		if (selector >= rdev->desc->n_voltages)
2463			return -EINVAL;
2464		if (lock)
2465			mutex_lock(&rdev->mutex);
2466		ret = ops->list_voltage(rdev, selector);
2467		if (lock)
2468			mutex_unlock(&rdev->mutex);
2469	} else if (rdev->supply) {
2470		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2471	} else {
2472		return -EINVAL;
2473	}
2474
2475	if (ret > 0) {
2476		if (ret < rdev->constraints->min_uV)
2477			ret = 0;
2478		else if (ret > rdev->constraints->max_uV)
2479			ret = 0;
2480	}
2481
2482	return ret;
2483}
2484
2485/**
2486 * regulator_is_enabled - is the regulator output enabled
2487 * @regulator: regulator source
2488 *
2489 * Returns positive if the regulator driver backing the source/client
2490 * has requested that the device be enabled, zero if it hasn't, else a
2491 * negative errno code.
2492 *
2493 * Note that the device backing this regulator handle can have multiple
2494 * users, so it might be enabled even if regulator_enable() was never
2495 * called for this particular source.
2496 */
2497int regulator_is_enabled(struct regulator *regulator)
2498{
2499	int ret;
2500
2501	if (regulator->always_on)
2502		return 1;
2503
2504	mutex_lock(&regulator->rdev->mutex);
2505	ret = _regulator_is_enabled(regulator->rdev);
2506	mutex_unlock(&regulator->rdev->mutex);
2507
2508	return ret;
2509}
2510EXPORT_SYMBOL_GPL(regulator_is_enabled);
2511
2512/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2513 * regulator_count_voltages - count regulator_list_voltage() selectors
2514 * @regulator: regulator source
2515 *
2516 * Returns number of selectors, or negative errno.  Selectors are
2517 * numbered starting at zero, and typically correspond to bitfields
2518 * in hardware registers.
2519 */
2520int regulator_count_voltages(struct regulator *regulator)
2521{
2522	struct regulator_dev	*rdev = regulator->rdev;
2523
2524	if (rdev->desc->n_voltages)
2525		return rdev->desc->n_voltages;
2526
2527	if (!rdev->supply)
2528		return -EINVAL;
2529
2530	return regulator_count_voltages(rdev->supply);
2531}
2532EXPORT_SYMBOL_GPL(regulator_count_voltages);
2533
2534/**
2535 * regulator_list_voltage - enumerate supported voltages
2536 * @regulator: regulator source
2537 * @selector: identify voltage to list
2538 * Context: can sleep
2539 *
2540 * Returns a voltage that can be passed to @regulator_set_voltage(),
2541 * zero if this selector code can't be used on this system, or a
2542 * negative errno.
2543 */
2544int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2545{
2546	return _regulator_list_voltage(regulator, selector, 1);
2547}
2548EXPORT_SYMBOL_GPL(regulator_list_voltage);
2549
2550/**
2551 * regulator_get_regmap - get the regulator's register map
2552 * @regulator: regulator source
2553 *
2554 * Returns the register map for the given regulator, or an ERR_PTR value
2555 * if the regulator doesn't use regmap.
2556 */
2557struct regmap *regulator_get_regmap(struct regulator *regulator)
2558{
2559	struct regmap *map = regulator->rdev->regmap;
2560
2561	return map ? map : ERR_PTR(-EOPNOTSUPP);
2562}
2563
2564/**
2565 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2566 * @regulator: regulator source
2567 * @vsel_reg: voltage selector register, output parameter
2568 * @vsel_mask: mask for voltage selector bitfield, output parameter
2569 *
2570 * Returns the hardware register offset and bitmask used for setting the
2571 * regulator voltage. This might be useful when configuring voltage-scaling
2572 * hardware or firmware that can make I2C requests behind the kernel's back,
2573 * for example.
2574 *
2575 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2576 * and 0 is returned, otherwise a negative errno is returned.
2577 */
2578int regulator_get_hardware_vsel_register(struct regulator *regulator,
2579					 unsigned *vsel_reg,
2580					 unsigned *vsel_mask)
2581{
2582	struct regulator_dev *rdev = regulator->rdev;
2583	const struct regulator_ops *ops = rdev->desc->ops;
2584
2585	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2586		return -EOPNOTSUPP;
2587
2588	 *vsel_reg = rdev->desc->vsel_reg;
2589	 *vsel_mask = rdev->desc->vsel_mask;
2590
2591	 return 0;
2592}
2593EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2594
2595/**
2596 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2597 * @regulator: regulator source
2598 * @selector: identify voltage to list
2599 *
2600 * Converts the selector to a hardware-specific voltage selector that can be
2601 * directly written to the regulator registers. The address of the voltage
2602 * register can be determined by calling @regulator_get_hardware_vsel_register.
2603 *
2604 * On error a negative errno is returned.
2605 */
2606int regulator_list_hardware_vsel(struct regulator *regulator,
2607				 unsigned selector)
2608{
2609	struct regulator_dev *rdev = regulator->rdev;
2610	const struct regulator_ops *ops = rdev->desc->ops;
2611
2612	if (selector >= rdev->desc->n_voltages)
2613		return -EINVAL;
2614	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2615		return -EOPNOTSUPP;
2616
2617	return selector;
2618}
2619EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2620
2621/**
2622 * regulator_get_linear_step - return the voltage step size between VSEL values
2623 * @regulator: regulator source
2624 *
2625 * Returns the voltage step size between VSEL values for linear
2626 * regulators, or return 0 if the regulator isn't a linear regulator.
2627 */
2628unsigned int regulator_get_linear_step(struct regulator *regulator)
2629{
2630	struct regulator_dev *rdev = regulator->rdev;
2631
2632	return rdev->desc->uV_step;
2633}
2634EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2635
2636/**
2637 * regulator_is_supported_voltage - check if a voltage range can be supported
2638 *
2639 * @regulator: Regulator to check.
2640 * @min_uV: Minimum required voltage in uV.
2641 * @max_uV: Maximum required voltage in uV.
2642 *
2643 * Returns a boolean or a negative error code.
2644 */
2645int regulator_is_supported_voltage(struct regulator *regulator,
2646				   int min_uV, int max_uV)
2647{
2648	struct regulator_dev *rdev = regulator->rdev;
2649	int i, voltages, ret;
2650
2651	/* If we can't change voltage check the current voltage */
2652	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2653		ret = regulator_get_voltage(regulator);
2654		if (ret >= 0)
2655			return min_uV <= ret && ret <= max_uV;
2656		else
2657			return ret;
2658	}
2659
2660	/* Any voltage within constrains range is fine? */
2661	if (rdev->desc->continuous_voltage_range)
2662		return min_uV >= rdev->constraints->min_uV &&
2663				max_uV <= rdev->constraints->max_uV;
2664
2665	ret = regulator_count_voltages(regulator);
2666	if (ret < 0)
2667		return ret;
2668	voltages = ret;
2669
2670	for (i = 0; i < voltages; i++) {
2671		ret = regulator_list_voltage(regulator, i);
2672
2673		if (ret >= min_uV && ret <= max_uV)
2674			return 1;
2675	}
2676
2677	return 0;
2678}
2679EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2680
2681static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2682				 int max_uV)
2683{
2684	const struct regulator_desc *desc = rdev->desc;
2685
2686	if (desc->ops->map_voltage)
2687		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2688
2689	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2690		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2691
2692	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2693		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2694
2695	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2696}
2697
2698static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2699				       int min_uV, int max_uV,
2700				       unsigned *selector)
2701{
2702	struct pre_voltage_change_data data;
2703	int ret;
2704
2705	data.old_uV = _regulator_get_voltage(rdev);
2706	data.min_uV = min_uV;
2707	data.max_uV = max_uV;
2708	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2709				   &data);
2710	if (ret & NOTIFY_STOP_MASK)
2711		return -EINVAL;
2712
2713	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2714	if (ret >= 0)
2715		return ret;
2716
2717	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2718			     (void *)data.old_uV);
2719
2720	return ret;
2721}
2722
2723static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2724					   int uV, unsigned selector)
2725{
2726	struct pre_voltage_change_data data;
2727	int ret;
2728
2729	data.old_uV = _regulator_get_voltage(rdev);
2730	data.min_uV = uV;
2731	data.max_uV = uV;
2732	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2733				   &data);
2734	if (ret & NOTIFY_STOP_MASK)
2735		return -EINVAL;
2736
2737	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2738	if (ret >= 0)
2739		return ret;
2740
2741	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2742			     (void *)data.old_uV);
2743
2744	return ret;
2745}
2746
2747static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2748				       int old_uV, int new_uV)
2749{
2750	unsigned int ramp_delay = 0;
2751
2752	if (rdev->constraints->ramp_delay)
2753		ramp_delay = rdev->constraints->ramp_delay;
2754	else if (rdev->desc->ramp_delay)
2755		ramp_delay = rdev->desc->ramp_delay;
2756
2757	if (ramp_delay == 0) {
2758		rdev_dbg(rdev, "ramp_delay not set\n");
2759		return 0;
2760	}
2761
2762	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2763}
2764
2765static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2766				     int min_uV, int max_uV)
2767{
2768	int ret;
2769	int delay = 0;
2770	int best_val = 0;
2771	unsigned int selector;
2772	int old_selector = -1;
2773	const struct regulator_ops *ops = rdev->desc->ops;
2774	int old_uV = _regulator_get_voltage(rdev);
2775
2776	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2777
2778	min_uV += rdev->constraints->uV_offset;
2779	max_uV += rdev->constraints->uV_offset;
2780
2781	/*
2782	 * If we can't obtain the old selector there is not enough
2783	 * info to call set_voltage_time_sel().
2784	 */
2785	if (_regulator_is_enabled(rdev) &&
2786	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2787		old_selector = ops->get_voltage_sel(rdev);
 
2788		if (old_selector < 0)
2789			return old_selector;
2790	}
2791
2792	if (ops->set_voltage) {
2793		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2794						  &selector);
2795
2796		if (ret >= 0) {
2797			if (ops->list_voltage)
2798				best_val = ops->list_voltage(rdev,
2799							     selector);
2800			else
2801				best_val = _regulator_get_voltage(rdev);
2802		}
2803
2804	} else if (ops->set_voltage_sel) {
2805		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2806		if (ret >= 0) {
2807			best_val = ops->list_voltage(rdev, ret);
2808			if (min_uV <= best_val && max_uV >= best_val) {
2809				selector = ret;
2810				if (old_selector == selector)
2811					ret = 0;
2812				else
2813					ret = _regulator_call_set_voltage_sel(
2814						rdev, best_val, selector);
2815			} else {
2816				ret = -EINVAL;
2817			}
2818		}
2819	} else {
2820		ret = -EINVAL;
2821	}
2822
2823	if (ret)
2824		goto out;
 
2825
2826	if (ops->set_voltage_time_sel) {
2827		/*
2828		 * Call set_voltage_time_sel if successfully obtained
2829		 * old_selector
2830		 */
2831		if (old_selector >= 0 && old_selector != selector)
2832			delay = ops->set_voltage_time_sel(rdev, old_selector,
2833							  selector);
2834	} else {
2835		if (old_uV != best_val) {
2836			if (ops->set_voltage_time)
2837				delay = ops->set_voltage_time(rdev, old_uV,
2838							      best_val);
2839			else
2840				delay = _regulator_set_voltage_time(rdev,
2841								    old_uV,
2842								    best_val);
2843		}
2844	}
2845
2846	if (delay < 0) {
2847		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2848		delay = 0;
 
 
 
 
2849	}
2850
2851	/* Insert any necessary delays */
2852	if (delay >= 1000) {
2853		mdelay(delay / 1000);
2854		udelay(delay % 1000);
2855	} else if (delay) {
2856		udelay(delay);
2857	}
2858
2859	if (best_val >= 0) {
2860		unsigned long data = best_val;
2861
2862		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2863				     (void *)data);
2864	}
2865
2866out:
2867	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2868
2869	return ret;
2870}
2871
2872static int regulator_set_voltage_unlocked(struct regulator *regulator,
2873					  int min_uV, int max_uV)
2874{
2875	struct regulator_dev *rdev = regulator->rdev;
2876	int ret = 0;
2877	int old_min_uV, old_max_uV;
2878	int current_uV;
2879	int best_supply_uV = 0;
2880	int supply_change_uV = 0;
2881
2882	/* If we're setting the same range as last time the change
2883	 * should be a noop (some cpufreq implementations use the same
2884	 * voltage for multiple frequencies, for example).
2885	 */
2886	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2887		goto out;
2888
2889	/* If we're trying to set a range that overlaps the current voltage,
2890	 * return successfully even though the regulator does not support
2891	 * changing the voltage.
2892	 */
2893	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2894		current_uV = _regulator_get_voltage(rdev);
2895		if (min_uV <= current_uV && current_uV <= max_uV) {
2896			regulator->min_uV = min_uV;
2897			regulator->max_uV = max_uV;
2898			goto out;
2899		}
2900	}
2901
2902	/* sanity check */
2903	if (!rdev->desc->ops->set_voltage &&
2904	    !rdev->desc->ops->set_voltage_sel) {
2905		ret = -EINVAL;
2906		goto out;
2907	}
2908
2909	/* constraints check */
2910	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2911	if (ret < 0)
2912		goto out;
2913
2914	/* restore original values in case of error */
2915	old_min_uV = regulator->min_uV;
2916	old_max_uV = regulator->max_uV;
2917	regulator->min_uV = min_uV;
2918	regulator->max_uV = max_uV;
2919
2920	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2921	if (ret < 0)
2922		goto out2;
2923
2924	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2925				!rdev->desc->ops->get_voltage)) {
2926		int current_supply_uV;
2927		int selector;
2928
2929		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2930		if (selector < 0) {
2931			ret = selector;
2932			goto out2;
2933		}
2934
2935		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2936		if (best_supply_uV < 0) {
2937			ret = best_supply_uV;
2938			goto out2;
2939		}
2940
2941		best_supply_uV += rdev->desc->min_dropout_uV;
2942
2943		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2944		if (current_supply_uV < 0) {
2945			ret = current_supply_uV;
2946			goto out2;
2947		}
2948
2949		supply_change_uV = best_supply_uV - current_supply_uV;
2950	}
2951
2952	if (supply_change_uV > 0) {
2953		ret = regulator_set_voltage_unlocked(rdev->supply,
2954				best_supply_uV, INT_MAX);
2955		if (ret) {
2956			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2957					ret);
2958			goto out2;
2959		}
2960	}
2961
2962	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2963	if (ret < 0)
2964		goto out2;
2965
2966	if (supply_change_uV < 0) {
2967		ret = regulator_set_voltage_unlocked(rdev->supply,
2968				best_supply_uV, INT_MAX);
2969		if (ret)
2970			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2971					ret);
2972		/* No need to fail here */
2973		ret = 0;
2974	}
2975
2976out:
2977	return ret;
2978out2:
2979	regulator->min_uV = old_min_uV;
2980	regulator->max_uV = old_max_uV;
2981
2982	return ret;
2983}
2984
2985/**
2986 * regulator_set_voltage - set regulator output voltage
2987 * @regulator: regulator source
2988 * @min_uV: Minimum required voltage in uV
2989 * @max_uV: Maximum acceptable voltage in uV
2990 *
2991 * Sets a voltage regulator to the desired output voltage. This can be set
2992 * during any regulator state. IOW, regulator can be disabled or enabled.
2993 *
2994 * If the regulator is enabled then the voltage will change to the new value
2995 * immediately otherwise if the regulator is disabled the regulator will
2996 * output at the new voltage when enabled.
2997 *
2998 * NOTE: If the regulator is shared between several devices then the lowest
2999 * request voltage that meets the system constraints will be used.
3000 * Regulator system constraints must be set for this regulator before
3001 * calling this function otherwise this call will fail.
3002 */
3003int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3004{
3005	int ret = 0;
3006
3007	regulator_lock_supply(regulator->rdev);
3008
3009	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3010
3011	regulator_unlock_supply(regulator->rdev);
3012
3013	return ret;
3014}
3015EXPORT_SYMBOL_GPL(regulator_set_voltage);
3016
3017/**
3018 * regulator_set_voltage_time - get raise/fall time
3019 * @regulator: regulator source
3020 * @old_uV: starting voltage in microvolts
3021 * @new_uV: target voltage in microvolts
3022 *
3023 * Provided with the starting and ending voltage, this function attempts to
3024 * calculate the time in microseconds required to rise or fall to this new
3025 * voltage.
3026 */
3027int regulator_set_voltage_time(struct regulator *regulator,
3028			       int old_uV, int new_uV)
3029{
3030	struct regulator_dev *rdev = regulator->rdev;
3031	const struct regulator_ops *ops = rdev->desc->ops;
3032	int old_sel = -1;
3033	int new_sel = -1;
3034	int voltage;
3035	int i;
3036
3037	if (ops->set_voltage_time)
3038		return ops->set_voltage_time(rdev, old_uV, new_uV);
3039	else if (!ops->set_voltage_time_sel)
3040		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3041
3042	/* Currently requires operations to do this */
3043	if (!ops->list_voltage || !rdev->desc->n_voltages)
 
3044		return -EINVAL;
3045
3046	for (i = 0; i < rdev->desc->n_voltages; i++) {
3047		/* We only look for exact voltage matches here */
3048		voltage = regulator_list_voltage(regulator, i);
3049		if (voltage < 0)
3050			return -EINVAL;
3051		if (voltage == 0)
3052			continue;
3053		if (voltage == old_uV)
3054			old_sel = i;
3055		if (voltage == new_uV)
3056			new_sel = i;
3057	}
3058
3059	if (old_sel < 0 || new_sel < 0)
3060		return -EINVAL;
3061
3062	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3063}
3064EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3065
3066/**
3067 * regulator_set_voltage_time_sel - get raise/fall time
3068 * @rdev: regulator source device
3069 * @old_selector: selector for starting voltage
3070 * @new_selector: selector for target voltage
3071 *
3072 * Provided with the starting and target voltage selectors, this function
3073 * returns time in microseconds required to rise or fall to this new voltage
3074 *
3075 * Drivers providing ramp_delay in regulation_constraints can use this as their
3076 * set_voltage_time_sel() operation.
3077 */
3078int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3079				   unsigned int old_selector,
3080				   unsigned int new_selector)
3081{
 
3082	int old_volt, new_volt;
3083
 
 
 
 
 
 
 
 
 
 
3084	/* sanity check */
3085	if (!rdev->desc->ops->list_voltage)
3086		return -EINVAL;
3087
3088	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3089	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3090
3091	if (rdev->desc->ops->set_voltage_time)
3092		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3093							 new_volt);
3094	else
3095		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3096}
3097EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3098
3099/**
3100 * regulator_sync_voltage - re-apply last regulator output voltage
3101 * @regulator: regulator source
3102 *
3103 * Re-apply the last configured voltage.  This is intended to be used
3104 * where some external control source the consumer is cooperating with
3105 * has caused the configured voltage to change.
3106 */
3107int regulator_sync_voltage(struct regulator *regulator)
3108{
3109	struct regulator_dev *rdev = regulator->rdev;
3110	int ret, min_uV, max_uV;
3111
3112	mutex_lock(&rdev->mutex);
3113
3114	if (!rdev->desc->ops->set_voltage &&
3115	    !rdev->desc->ops->set_voltage_sel) {
3116		ret = -EINVAL;
3117		goto out;
3118	}
3119
3120	/* This is only going to work if we've had a voltage configured. */
3121	if (!regulator->min_uV && !regulator->max_uV) {
3122		ret = -EINVAL;
3123		goto out;
3124	}
3125
3126	min_uV = regulator->min_uV;
3127	max_uV = regulator->max_uV;
3128
3129	/* This should be a paranoia check... */
3130	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3131	if (ret < 0)
3132		goto out;
3133
3134	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3135	if (ret < 0)
3136		goto out;
3137
3138	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3139
3140out:
3141	mutex_unlock(&rdev->mutex);
3142	return ret;
3143}
3144EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3145
3146static int _regulator_get_voltage(struct regulator_dev *rdev)
3147{
3148	int sel, ret;
3149	bool bypassed;
3150
3151	if (rdev->desc->ops->get_bypass) {
3152		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3153		if (ret < 0)
3154			return ret;
3155		if (bypassed) {
3156			/* if bypassed the regulator must have a supply */
3157			if (!rdev->supply) {
3158				rdev_err(rdev,
3159					 "bypassed regulator has no supply!\n");
3160				return -EPROBE_DEFER;
3161			}
3162
3163			return _regulator_get_voltage(rdev->supply->rdev);
3164		}
3165	}
3166
3167	if (rdev->desc->ops->get_voltage_sel) {
3168		sel = rdev->desc->ops->get_voltage_sel(rdev);
3169		if (sel < 0)
3170			return sel;
3171		ret = rdev->desc->ops->list_voltage(rdev, sel);
3172	} else if (rdev->desc->ops->get_voltage) {
3173		ret = rdev->desc->ops->get_voltage(rdev);
3174	} else if (rdev->desc->ops->list_voltage) {
3175		ret = rdev->desc->ops->list_voltage(rdev, 0);
3176	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3177		ret = rdev->desc->fixed_uV;
3178	} else if (rdev->supply) {
3179		ret = _regulator_get_voltage(rdev->supply->rdev);
3180	} else {
3181		return -EINVAL;
3182	}
3183
3184	if (ret < 0)
3185		return ret;
3186	return ret - rdev->constraints->uV_offset;
3187}
3188
3189/**
3190 * regulator_get_voltage - get regulator output voltage
3191 * @regulator: regulator source
3192 *
3193 * This returns the current regulator voltage in uV.
3194 *
3195 * NOTE: If the regulator is disabled it will return the voltage value. This
3196 * function should not be used to determine regulator state.
3197 */
3198int regulator_get_voltage(struct regulator *regulator)
3199{
3200	int ret;
3201
3202	regulator_lock_supply(regulator->rdev);
3203
3204	ret = _regulator_get_voltage(regulator->rdev);
3205
3206	regulator_unlock_supply(regulator->rdev);
3207
3208	return ret;
3209}
3210EXPORT_SYMBOL_GPL(regulator_get_voltage);
3211
3212/**
3213 * regulator_set_current_limit - set regulator output current limit
3214 * @regulator: regulator source
3215 * @min_uA: Minimum supported current in uA
3216 * @max_uA: Maximum supported current in uA
3217 *
3218 * Sets current sink to the desired output current. This can be set during
3219 * any regulator state. IOW, regulator can be disabled or enabled.
3220 *
3221 * If the regulator is enabled then the current will change to the new value
3222 * immediately otherwise if the regulator is disabled the regulator will
3223 * output at the new current when enabled.
3224 *
3225 * NOTE: Regulator system constraints must be set for this regulator before
3226 * calling this function otherwise this call will fail.
3227 */
3228int regulator_set_current_limit(struct regulator *regulator,
3229			       int min_uA, int max_uA)
3230{
3231	struct regulator_dev *rdev = regulator->rdev;
3232	int ret;
3233
3234	mutex_lock(&rdev->mutex);
3235
3236	/* sanity check */
3237	if (!rdev->desc->ops->set_current_limit) {
3238		ret = -EINVAL;
3239		goto out;
3240	}
3241
3242	/* constraints check */
3243	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3244	if (ret < 0)
3245		goto out;
3246
3247	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3248out:
3249	mutex_unlock(&rdev->mutex);
3250	return ret;
3251}
3252EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3253
3254static int _regulator_get_current_limit(struct regulator_dev *rdev)
3255{
3256	int ret;
3257
3258	mutex_lock(&rdev->mutex);
3259
3260	/* sanity check */
3261	if (!rdev->desc->ops->get_current_limit) {
3262		ret = -EINVAL;
3263		goto out;
3264	}
3265
3266	ret = rdev->desc->ops->get_current_limit(rdev);
3267out:
3268	mutex_unlock(&rdev->mutex);
3269	return ret;
3270}
3271
3272/**
3273 * regulator_get_current_limit - get regulator output current
3274 * @regulator: regulator source
3275 *
3276 * This returns the current supplied by the specified current sink in uA.
3277 *
3278 * NOTE: If the regulator is disabled it will return the current value. This
3279 * function should not be used to determine regulator state.
3280 */
3281int regulator_get_current_limit(struct regulator *regulator)
3282{
3283	return _regulator_get_current_limit(regulator->rdev);
3284}
3285EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3286
3287/**
3288 * regulator_set_mode - set regulator operating mode
3289 * @regulator: regulator source
3290 * @mode: operating mode - one of the REGULATOR_MODE constants
3291 *
3292 * Set regulator operating mode to increase regulator efficiency or improve
3293 * regulation performance.
3294 *
3295 * NOTE: Regulator system constraints must be set for this regulator before
3296 * calling this function otherwise this call will fail.
3297 */
3298int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3299{
3300	struct regulator_dev *rdev = regulator->rdev;
3301	int ret;
3302	int regulator_curr_mode;
3303
3304	mutex_lock(&rdev->mutex);
3305
3306	/* sanity check */
3307	if (!rdev->desc->ops->set_mode) {
3308		ret = -EINVAL;
3309		goto out;
3310	}
3311
3312	/* return if the same mode is requested */
3313	if (rdev->desc->ops->get_mode) {
3314		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3315		if (regulator_curr_mode == mode) {
3316			ret = 0;
3317			goto out;
3318		}
3319	}
3320
3321	/* constraints check */
3322	ret = regulator_mode_constrain(rdev, &mode);
3323	if (ret < 0)
3324		goto out;
3325
3326	ret = rdev->desc->ops->set_mode(rdev, mode);
3327out:
3328	mutex_unlock(&rdev->mutex);
3329	return ret;
3330}
3331EXPORT_SYMBOL_GPL(regulator_set_mode);
3332
3333static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3334{
3335	int ret;
3336
3337	mutex_lock(&rdev->mutex);
3338
3339	/* sanity check */
3340	if (!rdev->desc->ops->get_mode) {
3341		ret = -EINVAL;
3342		goto out;
3343	}
3344
3345	ret = rdev->desc->ops->get_mode(rdev);
3346out:
3347	mutex_unlock(&rdev->mutex);
3348	return ret;
3349}
3350
3351/**
3352 * regulator_get_mode - get regulator operating mode
3353 * @regulator: regulator source
3354 *
3355 * Get the current regulator operating mode.
3356 */
3357unsigned int regulator_get_mode(struct regulator *regulator)
3358{
3359	return _regulator_get_mode(regulator->rdev);
3360}
3361EXPORT_SYMBOL_GPL(regulator_get_mode);
3362
3363static int _regulator_get_error_flags(struct regulator_dev *rdev,
3364					unsigned int *flags)
3365{
3366	int ret;
3367
3368	mutex_lock(&rdev->mutex);
3369
3370	/* sanity check */
3371	if (!rdev->desc->ops->get_error_flags) {
3372		ret = -EINVAL;
3373		goto out;
3374	}
3375
3376	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3377out:
3378	mutex_unlock(&rdev->mutex);
3379	return ret;
3380}
3381
3382/**
3383 * regulator_get_error_flags - get regulator error information
3384 * @regulator: regulator source
3385 * @flags: pointer to store error flags
3386 *
3387 * Get the current regulator error information.
3388 */
3389int regulator_get_error_flags(struct regulator *regulator,
3390				unsigned int *flags)
3391{
3392	return _regulator_get_error_flags(regulator->rdev, flags);
3393}
3394EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3395
3396/**
3397 * regulator_set_load - set regulator load
3398 * @regulator: regulator source
3399 * @uA_load: load current
3400 *
3401 * Notifies the regulator core of a new device load. This is then used by
3402 * DRMS (if enabled by constraints) to set the most efficient regulator
3403 * operating mode for the new regulator loading.
3404 *
3405 * Consumer devices notify their supply regulator of the maximum power
3406 * they will require (can be taken from device datasheet in the power
3407 * consumption tables) when they change operational status and hence power
3408 * state. Examples of operational state changes that can affect power
3409 * consumption are :-
3410 *
3411 *    o Device is opened / closed.
3412 *    o Device I/O is about to begin or has just finished.
3413 *    o Device is idling in between work.
3414 *
3415 * This information is also exported via sysfs to userspace.
3416 *
3417 * DRMS will sum the total requested load on the regulator and change
3418 * to the most efficient operating mode if platform constraints allow.
3419 *
3420 * On error a negative errno is returned.
3421 */
3422int regulator_set_load(struct regulator *regulator, int uA_load)
3423{
3424	struct regulator_dev *rdev = regulator->rdev;
3425	int ret;
3426
3427	mutex_lock(&rdev->mutex);
3428	regulator->uA_load = uA_load;
3429	ret = drms_uA_update(rdev);
3430	mutex_unlock(&rdev->mutex);
3431
3432	return ret;
3433}
3434EXPORT_SYMBOL_GPL(regulator_set_load);
3435
3436/**
3437 * regulator_allow_bypass - allow the regulator to go into bypass mode
3438 *
3439 * @regulator: Regulator to configure
3440 * @enable: enable or disable bypass mode
3441 *
3442 * Allow the regulator to go into bypass mode if all other consumers
3443 * for the regulator also enable bypass mode and the machine
3444 * constraints allow this.  Bypass mode means that the regulator is
3445 * simply passing the input directly to the output with no regulation.
3446 */
3447int regulator_allow_bypass(struct regulator *regulator, bool enable)
3448{
3449	struct regulator_dev *rdev = regulator->rdev;
3450	int ret = 0;
3451
3452	if (!rdev->desc->ops->set_bypass)
3453		return 0;
3454
3455	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
 
3456		return 0;
3457
3458	mutex_lock(&rdev->mutex);
3459
3460	if (enable && !regulator->bypass) {
3461		rdev->bypass_count++;
3462
3463		if (rdev->bypass_count == rdev->open_count) {
3464			ret = rdev->desc->ops->set_bypass(rdev, enable);
3465			if (ret != 0)
3466				rdev->bypass_count--;
3467		}
3468
3469	} else if (!enable && regulator->bypass) {
3470		rdev->bypass_count--;
3471
3472		if (rdev->bypass_count != rdev->open_count) {
3473			ret = rdev->desc->ops->set_bypass(rdev, enable);
3474			if (ret != 0)
3475				rdev->bypass_count++;
3476		}
3477	}
3478
3479	if (ret == 0)
3480		regulator->bypass = enable;
3481
3482	mutex_unlock(&rdev->mutex);
3483
3484	return ret;
3485}
3486EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3487
3488/**
3489 * regulator_register_notifier - register regulator event notifier
3490 * @regulator: regulator source
3491 * @nb: notifier block
3492 *
3493 * Register notifier block to receive regulator events.
3494 */
3495int regulator_register_notifier(struct regulator *regulator,
3496			      struct notifier_block *nb)
3497{
3498	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3499						nb);
3500}
3501EXPORT_SYMBOL_GPL(regulator_register_notifier);
3502
3503/**
3504 * regulator_unregister_notifier - unregister regulator event notifier
3505 * @regulator: regulator source
3506 * @nb: notifier block
3507 *
3508 * Unregister regulator event notifier block.
3509 */
3510int regulator_unregister_notifier(struct regulator *regulator,
3511				struct notifier_block *nb)
3512{
3513	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3514						  nb);
3515}
3516EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3517
3518/* notify regulator consumers and downstream regulator consumers.
3519 * Note mutex must be held by caller.
3520 */
3521static int _notifier_call_chain(struct regulator_dev *rdev,
3522				  unsigned long event, void *data)
3523{
3524	/* call rdev chain first */
3525	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3526}
3527
3528/**
3529 * regulator_bulk_get - get multiple regulator consumers
3530 *
3531 * @dev:           Device to supply
3532 * @num_consumers: Number of consumers to register
3533 * @consumers:     Configuration of consumers; clients are stored here.
3534 *
3535 * @return 0 on success, an errno on failure.
3536 *
3537 * This helper function allows drivers to get several regulator
3538 * consumers in one operation.  If any of the regulators cannot be
3539 * acquired then any regulators that were allocated will be freed
3540 * before returning to the caller.
3541 */
3542int regulator_bulk_get(struct device *dev, int num_consumers,
3543		       struct regulator_bulk_data *consumers)
3544{
3545	int i;
3546	int ret;
3547
3548	for (i = 0; i < num_consumers; i++)
3549		consumers[i].consumer = NULL;
3550
3551	for (i = 0; i < num_consumers; i++) {
3552		consumers[i].consumer = regulator_get(dev,
3553						      consumers[i].supply);
 
 
3554		if (IS_ERR(consumers[i].consumer)) {
3555			ret = PTR_ERR(consumers[i].consumer);
3556			dev_err(dev, "Failed to get supply '%s': %d\n",
3557				consumers[i].supply, ret);
3558			consumers[i].consumer = NULL;
3559			goto err;
3560		}
3561	}
3562
3563	return 0;
3564
3565err:
3566	while (--i >= 0)
3567		regulator_put(consumers[i].consumer);
3568
3569	return ret;
3570}
3571EXPORT_SYMBOL_GPL(regulator_bulk_get);
3572
3573static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3574{
3575	struct regulator_bulk_data *bulk = data;
3576
3577	bulk->ret = regulator_enable(bulk->consumer);
3578}
3579
3580/**
3581 * regulator_bulk_enable - enable multiple regulator consumers
3582 *
3583 * @num_consumers: Number of consumers
3584 * @consumers:     Consumer data; clients are stored here.
3585 * @return         0 on success, an errno on failure
3586 *
3587 * This convenience API allows consumers to enable multiple regulator
3588 * clients in a single API call.  If any consumers cannot be enabled
3589 * then any others that were enabled will be disabled again prior to
3590 * return.
3591 */
3592int regulator_bulk_enable(int num_consumers,
3593			  struct regulator_bulk_data *consumers)
3594{
3595	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3596	int i;
3597	int ret = 0;
3598
3599	for (i = 0; i < num_consumers; i++) {
3600		if (consumers[i].consumer->always_on)
3601			consumers[i].ret = 0;
3602		else
3603			async_schedule_domain(regulator_bulk_enable_async,
3604					      &consumers[i], &async_domain);
3605	}
3606
3607	async_synchronize_full_domain(&async_domain);
3608
3609	/* If any consumer failed we need to unwind any that succeeded */
3610	for (i = 0; i < num_consumers; i++) {
3611		if (consumers[i].ret != 0) {
3612			ret = consumers[i].ret;
3613			goto err;
3614		}
3615	}
3616
3617	return 0;
3618
3619err:
3620	for (i = 0; i < num_consumers; i++) {
3621		if (consumers[i].ret < 0)
3622			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3623			       consumers[i].ret);
3624		else
3625			regulator_disable(consumers[i].consumer);
3626	}
3627
3628	return ret;
3629}
3630EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3631
3632/**
3633 * regulator_bulk_disable - disable multiple regulator consumers
3634 *
3635 * @num_consumers: Number of consumers
3636 * @consumers:     Consumer data; clients are stored here.
3637 * @return         0 on success, an errno on failure
3638 *
3639 * This convenience API allows consumers to disable multiple regulator
3640 * clients in a single API call.  If any consumers cannot be disabled
3641 * then any others that were disabled will be enabled again prior to
3642 * return.
3643 */
3644int regulator_bulk_disable(int num_consumers,
3645			   struct regulator_bulk_data *consumers)
3646{
3647	int i;
3648	int ret, r;
3649
3650	for (i = num_consumers - 1; i >= 0; --i) {
3651		ret = regulator_disable(consumers[i].consumer);
3652		if (ret != 0)
3653			goto err;
3654	}
3655
3656	return 0;
3657
3658err:
3659	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3660	for (++i; i < num_consumers; ++i) {
3661		r = regulator_enable(consumers[i].consumer);
3662		if (r != 0)
3663			pr_err("Failed to reename %s: %d\n",
3664			       consumers[i].supply, r);
3665	}
3666
3667	return ret;
3668}
3669EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3670
3671/**
3672 * regulator_bulk_force_disable - force disable multiple regulator consumers
3673 *
3674 * @num_consumers: Number of consumers
3675 * @consumers:     Consumer data; clients are stored here.
3676 * @return         0 on success, an errno on failure
3677 *
3678 * This convenience API allows consumers to forcibly disable multiple regulator
3679 * clients in a single API call.
3680 * NOTE: This should be used for situations when device damage will
3681 * likely occur if the regulators are not disabled (e.g. over temp).
3682 * Although regulator_force_disable function call for some consumers can
3683 * return error numbers, the function is called for all consumers.
3684 */
3685int regulator_bulk_force_disable(int num_consumers,
3686			   struct regulator_bulk_data *consumers)
3687{
3688	int i;
3689	int ret;
3690
3691	for (i = 0; i < num_consumers; i++)
3692		consumers[i].ret =
3693			    regulator_force_disable(consumers[i].consumer);
3694
3695	for (i = 0; i < num_consumers; i++) {
3696		if (consumers[i].ret != 0) {
3697			ret = consumers[i].ret;
3698			goto out;
3699		}
3700	}
3701
3702	return 0;
3703out:
3704	return ret;
3705}
3706EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3707
3708/**
3709 * regulator_bulk_free - free multiple regulator consumers
3710 *
3711 * @num_consumers: Number of consumers
3712 * @consumers:     Consumer data; clients are stored here.
3713 *
3714 * This convenience API allows consumers to free multiple regulator
3715 * clients in a single API call.
3716 */
3717void regulator_bulk_free(int num_consumers,
3718			 struct regulator_bulk_data *consumers)
3719{
3720	int i;
3721
3722	for (i = 0; i < num_consumers; i++) {
3723		regulator_put(consumers[i].consumer);
3724		consumers[i].consumer = NULL;
3725	}
3726}
3727EXPORT_SYMBOL_GPL(regulator_bulk_free);
3728
3729/**
3730 * regulator_notifier_call_chain - call regulator event notifier
3731 * @rdev: regulator source
3732 * @event: notifier block
3733 * @data: callback-specific data.
3734 *
3735 * Called by regulator drivers to notify clients a regulator event has
3736 * occurred. We also notify regulator clients downstream.
3737 * Note lock must be held by caller.
3738 */
3739int regulator_notifier_call_chain(struct regulator_dev *rdev,
3740				  unsigned long event, void *data)
3741{
3742	lockdep_assert_held_once(&rdev->mutex);
3743
3744	_notifier_call_chain(rdev, event, data);
3745	return NOTIFY_DONE;
3746
3747}
3748EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3749
3750/**
3751 * regulator_mode_to_status - convert a regulator mode into a status
3752 *
3753 * @mode: Mode to convert
3754 *
3755 * Convert a regulator mode into a status.
3756 */
3757int regulator_mode_to_status(unsigned int mode)
3758{
3759	switch (mode) {
3760	case REGULATOR_MODE_FAST:
3761		return REGULATOR_STATUS_FAST;
3762	case REGULATOR_MODE_NORMAL:
3763		return REGULATOR_STATUS_NORMAL;
3764	case REGULATOR_MODE_IDLE:
3765		return REGULATOR_STATUS_IDLE;
3766	case REGULATOR_MODE_STANDBY:
3767		return REGULATOR_STATUS_STANDBY;
3768	default:
3769		return REGULATOR_STATUS_UNDEFINED;
3770	}
3771}
3772EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3773
3774static struct attribute *regulator_dev_attrs[] = {
3775	&dev_attr_name.attr,
3776	&dev_attr_num_users.attr,
3777	&dev_attr_type.attr,
3778	&dev_attr_microvolts.attr,
3779	&dev_attr_microamps.attr,
3780	&dev_attr_opmode.attr,
3781	&dev_attr_state.attr,
3782	&dev_attr_status.attr,
3783	&dev_attr_bypass.attr,
3784	&dev_attr_requested_microamps.attr,
3785	&dev_attr_min_microvolts.attr,
3786	&dev_attr_max_microvolts.attr,
3787	&dev_attr_min_microamps.attr,
3788	&dev_attr_max_microamps.attr,
3789	&dev_attr_suspend_standby_state.attr,
3790	&dev_attr_suspend_mem_state.attr,
3791	&dev_attr_suspend_disk_state.attr,
3792	&dev_attr_suspend_standby_microvolts.attr,
3793	&dev_attr_suspend_mem_microvolts.attr,
3794	&dev_attr_suspend_disk_microvolts.attr,
3795	&dev_attr_suspend_standby_mode.attr,
3796	&dev_attr_suspend_mem_mode.attr,
3797	&dev_attr_suspend_disk_mode.attr,
3798	NULL
3799};
3800
3801/*
3802 * To avoid cluttering sysfs (and memory) with useless state, only
3803 * create attributes that can be meaningfully displayed.
3804 */
3805static umode_t regulator_attr_is_visible(struct kobject *kobj,
3806					 struct attribute *attr, int idx)
3807{
3808	struct device *dev = kobj_to_dev(kobj);
3809	struct regulator_dev *rdev = dev_to_rdev(dev);
3810	const struct regulator_ops *ops = rdev->desc->ops;
3811	umode_t mode = attr->mode;
3812
3813	/* these three are always present */
3814	if (attr == &dev_attr_name.attr ||
3815	    attr == &dev_attr_num_users.attr ||
3816	    attr == &dev_attr_type.attr)
3817		return mode;
3818
3819	/* some attributes need specific methods to be displayed */
3820	if (attr == &dev_attr_microvolts.attr) {
3821		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3822		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3823		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3824		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3825			return mode;
3826		return 0;
3827	}
3828
3829	if (attr == &dev_attr_microamps.attr)
3830		return ops->get_current_limit ? mode : 0;
3831
3832	if (attr == &dev_attr_opmode.attr)
3833		return ops->get_mode ? mode : 0;
3834
3835	if (attr == &dev_attr_state.attr)
3836		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3837
3838	if (attr == &dev_attr_status.attr)
3839		return ops->get_status ? mode : 0;
3840
3841	if (attr == &dev_attr_bypass.attr)
3842		return ops->get_bypass ? mode : 0;
3843
3844	/* some attributes are type-specific */
3845	if (attr == &dev_attr_requested_microamps.attr)
3846		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3847
3848	/* constraints need specific supporting methods */
3849	if (attr == &dev_attr_min_microvolts.attr ||
3850	    attr == &dev_attr_max_microvolts.attr)
3851		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3852
3853	if (attr == &dev_attr_min_microamps.attr ||
3854	    attr == &dev_attr_max_microamps.attr)
3855		return ops->set_current_limit ? mode : 0;
3856
3857	if (attr == &dev_attr_suspend_standby_state.attr ||
3858	    attr == &dev_attr_suspend_mem_state.attr ||
3859	    attr == &dev_attr_suspend_disk_state.attr)
3860		return mode;
3861
3862	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3863	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3864	    attr == &dev_attr_suspend_disk_microvolts.attr)
3865		return ops->set_suspend_voltage ? mode : 0;
3866
3867	if (attr == &dev_attr_suspend_standby_mode.attr ||
3868	    attr == &dev_attr_suspend_mem_mode.attr ||
3869	    attr == &dev_attr_suspend_disk_mode.attr)
3870		return ops->set_suspend_mode ? mode : 0;
3871
3872	return mode;
3873}
3874
3875static const struct attribute_group regulator_dev_group = {
3876	.attrs = regulator_dev_attrs,
3877	.is_visible = regulator_attr_is_visible,
3878};
3879
3880static const struct attribute_group *regulator_dev_groups[] = {
3881	&regulator_dev_group,
3882	NULL
3883};
3884
3885static void regulator_dev_release(struct device *dev)
3886{
3887	struct regulator_dev *rdev = dev_get_drvdata(dev);
3888
3889	kfree(rdev->constraints);
3890	of_node_put(rdev->dev.of_node);
3891	kfree(rdev);
3892}
3893
3894static struct class regulator_class = {
3895	.name = "regulator",
3896	.dev_release = regulator_dev_release,
3897	.dev_groups = regulator_dev_groups,
3898};
3899
3900static void rdev_init_debugfs(struct regulator_dev *rdev)
3901{
3902	struct device *parent = rdev->dev.parent;
3903	const char *rname = rdev_get_name(rdev);
3904	char name[NAME_MAX];
3905
3906	/* Avoid duplicate debugfs directory names */
3907	if (parent && rname == rdev->desc->name) {
3908		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3909			 rname);
3910		rname = name;
3911	}
3912
3913	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3914	if (!rdev->debugfs) {
3915		rdev_warn(rdev, "Failed to create debugfs directory\n");
3916		return;
3917	}
3918
3919	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3920			   &rdev->use_count);
3921	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3922			   &rdev->open_count);
3923	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3924			   &rdev->bypass_count);
3925}
3926
3927static int regulator_register_resolve_supply(struct device *dev, void *data)
3928{
3929	struct regulator_dev *rdev = dev_to_rdev(dev);
3930
3931	if (regulator_resolve_supply(rdev))
3932		rdev_dbg(rdev, "unable to resolve supply\n");
3933
3934	return 0;
3935}
3936
3937/**
3938 * regulator_register - register regulator
3939 * @regulator_desc: regulator to register
3940 * @cfg: runtime configuration for regulator
3941 *
3942 * Called by regulator drivers to register a regulator.
3943 * Returns a valid pointer to struct regulator_dev on success
3944 * or an ERR_PTR() on error.
3945 */
3946struct regulator_dev *
3947regulator_register(const struct regulator_desc *regulator_desc,
3948		   const struct regulator_config *cfg)
3949{
3950	const struct regulation_constraints *constraints = NULL;
3951	const struct regulator_init_data *init_data;
3952	struct regulator_config *config = NULL;
3953	static atomic_t regulator_no = ATOMIC_INIT(-1);
3954	struct regulator_dev *rdev;
3955	struct device *dev;
3956	int ret, i;
3957
3958	if (regulator_desc == NULL || cfg == NULL)
3959		return ERR_PTR(-EINVAL);
3960
3961	dev = cfg->dev;
3962	WARN_ON(!dev);
3963
3964	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3965		return ERR_PTR(-EINVAL);
3966
3967	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3968	    regulator_desc->type != REGULATOR_CURRENT)
3969		return ERR_PTR(-EINVAL);
3970
3971	/* Only one of each should be implemented */
3972	WARN_ON(regulator_desc->ops->get_voltage &&
3973		regulator_desc->ops->get_voltage_sel);
3974	WARN_ON(regulator_desc->ops->set_voltage &&
3975		regulator_desc->ops->set_voltage_sel);
3976
3977	/* If we're using selectors we must implement list_voltage. */
3978	if (regulator_desc->ops->get_voltage_sel &&
3979	    !regulator_desc->ops->list_voltage) {
3980		return ERR_PTR(-EINVAL);
3981	}
3982	if (regulator_desc->ops->set_voltage_sel &&
3983	    !regulator_desc->ops->list_voltage) {
3984		return ERR_PTR(-EINVAL);
3985	}
3986
3987	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3988	if (rdev == NULL)
3989		return ERR_PTR(-ENOMEM);
3990
3991	/*
3992	 * Duplicate the config so the driver could override it after
3993	 * parsing init data.
3994	 */
3995	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3996	if (config == NULL) {
3997		kfree(rdev);
3998		return ERR_PTR(-ENOMEM);
3999	}
4000
4001	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4002					       &rdev->dev.of_node);
4003	if (!init_data) {
4004		init_data = config->init_data;
4005		rdev->dev.of_node = of_node_get(config->of_node);
4006	}
4007
 
 
4008	mutex_init(&rdev->mutex);
4009	rdev->reg_data = config->driver_data;
4010	rdev->owner = regulator_desc->owner;
4011	rdev->desc = regulator_desc;
4012	if (config->regmap)
4013		rdev->regmap = config->regmap;
4014	else if (dev_get_regmap(dev, NULL))
4015		rdev->regmap = dev_get_regmap(dev, NULL);
4016	else if (dev->parent)
4017		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4018	INIT_LIST_HEAD(&rdev->consumer_list);
4019	INIT_LIST_HEAD(&rdev->list);
4020	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4021	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4022
4023	/* preform any regulator specific init */
4024	if (init_data && init_data->regulator_init) {
4025		ret = init_data->regulator_init(rdev->reg_data);
4026		if (ret < 0)
4027			goto clean;
4028	}
4029
4030	if ((config->ena_gpio || config->ena_gpio_initialized) &&
4031	    gpio_is_valid(config->ena_gpio)) {
4032		mutex_lock(&regulator_list_mutex);
4033		ret = regulator_ena_gpio_request(rdev, config);
4034		mutex_unlock(&regulator_list_mutex);
4035		if (ret != 0) {
4036			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4037				 config->ena_gpio, ret);
4038			goto clean;
4039		}
4040	}
4041
4042	/* register with sysfs */
4043	rdev->dev.class = &regulator_class;
4044	rdev->dev.parent = dev;
4045	dev_set_name(&rdev->dev, "regulator.%lu",
4046		    (unsigned long) atomic_inc_return(&regulator_no));
 
 
 
 
 
 
 
4047
4048	/* set regulator constraints */
4049	if (init_data)
4050		constraints = &init_data->constraints;
4051
 
 
 
 
4052	if (init_data && init_data->supply_regulator)
4053		rdev->supply_name = init_data->supply_regulator;
4054	else if (regulator_desc->supply_name)
4055		rdev->supply_name = regulator_desc->supply_name;
4056
4057	/*
4058	 * Attempt to resolve the regulator supply, if specified,
4059	 * but don't return an error if we fail because we will try
4060	 * to resolve it again later as more regulators are added.
4061	 */
4062	if (regulator_resolve_supply(rdev))
4063		rdev_dbg(rdev, "unable to resolve supply\n");
4064
4065	ret = set_machine_constraints(rdev, constraints);
4066	if (ret < 0)
4067		goto wash;
4068
4069	/* add consumers devices */
4070	if (init_data) {
4071		mutex_lock(&regulator_list_mutex);
4072		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4073			ret = set_consumer_device_supply(rdev,
4074				init_data->consumer_supplies[i].dev_name,
4075				init_data->consumer_supplies[i].supply);
4076			if (ret < 0) {
4077				mutex_unlock(&regulator_list_mutex);
4078				dev_err(dev, "Failed to set supply %s\n",
4079					init_data->consumer_supplies[i].supply);
4080				goto unset_supplies;
4081			}
4082		}
4083		mutex_unlock(&regulator_list_mutex);
4084	}
4085
4086	ret = device_register(&rdev->dev);
4087	if (ret != 0) {
4088		put_device(&rdev->dev);
4089		goto unset_supplies;
4090	}
4091
4092	dev_set_drvdata(&rdev->dev, rdev);
4093	rdev_init_debugfs(rdev);
4094
4095	/* try to resolve regulators supply since a new one was registered */
4096	class_for_each_device(&regulator_class, NULL, NULL,
4097			      regulator_register_resolve_supply);
4098	kfree(config);
4099	return rdev;
4100
4101unset_supplies:
4102	mutex_lock(&regulator_list_mutex);
4103	unset_regulator_supplies(rdev);
4104	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
4105wash:
4106	kfree(rdev->constraints);
4107	mutex_lock(&regulator_list_mutex);
4108	regulator_ena_gpio_free(rdev);
4109	mutex_unlock(&regulator_list_mutex);
4110clean:
4111	kfree(rdev);
4112	kfree(config);
4113	return ERR_PTR(ret);
4114}
4115EXPORT_SYMBOL_GPL(regulator_register);
4116
4117/**
4118 * regulator_unregister - unregister regulator
4119 * @rdev: regulator to unregister
4120 *
4121 * Called by regulator drivers to unregister a regulator.
4122 */
4123void regulator_unregister(struct regulator_dev *rdev)
4124{
4125	if (rdev == NULL)
4126		return;
4127
4128	if (rdev->supply) {
4129		while (rdev->use_count--)
4130			regulator_disable(rdev->supply);
4131		regulator_put(rdev->supply);
4132	}
4133	mutex_lock(&regulator_list_mutex);
4134	debugfs_remove_recursive(rdev->debugfs);
4135	flush_work(&rdev->disable_work.work);
4136	WARN_ON(rdev->open_count);
4137	unset_regulator_supplies(rdev);
4138	list_del(&rdev->list);
 
4139	regulator_ena_gpio_free(rdev);
4140	mutex_unlock(&regulator_list_mutex);
4141	device_unregister(&rdev->dev);
4142}
4143EXPORT_SYMBOL_GPL(regulator_unregister);
4144
4145static int _regulator_suspend_prepare(struct device *dev, void *data)
4146{
4147	struct regulator_dev *rdev = dev_to_rdev(dev);
4148	const suspend_state_t *state = data;
4149	int ret;
4150
4151	mutex_lock(&rdev->mutex);
4152	ret = suspend_prepare(rdev, *state);
4153	mutex_unlock(&rdev->mutex);
4154
4155	return ret;
4156}
4157
4158/**
4159 * regulator_suspend_prepare - prepare regulators for system wide suspend
4160 * @state: system suspend state
4161 *
4162 * Configure each regulator with it's suspend operating parameters for state.
4163 * This will usually be called by machine suspend code prior to supending.
4164 */
4165int regulator_suspend_prepare(suspend_state_t state)
4166{
4167	/* ON is handled by regulator active state */
4168	if (state == PM_SUSPEND_ON)
4169		return -EINVAL;
4170
4171	return class_for_each_device(&regulator_class, NULL, &state,
4172				     _regulator_suspend_prepare);
4173}
4174EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4175
4176static int _regulator_suspend_finish(struct device *dev, void *data)
4177{
4178	struct regulator_dev *rdev = dev_to_rdev(dev);
4179	int ret;
4180
4181	mutex_lock(&rdev->mutex);
4182	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4183		if (!_regulator_is_enabled(rdev)) {
4184			ret = _regulator_do_enable(rdev);
4185			if (ret)
4186				dev_err(dev,
4187					"Failed to resume regulator %d\n",
4188					ret);
4189		}
4190	} else {
4191		if (!have_full_constraints())
4192			goto unlock;
4193		if (!_regulator_is_enabled(rdev))
4194			goto unlock;
4195
4196		ret = _regulator_do_disable(rdev);
4197		if (ret)
4198			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4199	}
4200unlock:
4201	mutex_unlock(&rdev->mutex);
4202
4203	/* Keep processing regulators in spite of any errors */
4204	return 0;
4205}
4206
4207/**
4208 * regulator_suspend_finish - resume regulators from system wide suspend
4209 *
4210 * Turn on regulators that might be turned off by regulator_suspend_prepare
4211 * and that should be turned on according to the regulators properties.
4212 */
4213int regulator_suspend_finish(void)
4214{
4215	return class_for_each_device(&regulator_class, NULL, NULL,
4216				     _regulator_suspend_finish);
4217}
4218EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4219
4220/**
4221 * regulator_has_full_constraints - the system has fully specified constraints
4222 *
4223 * Calling this function will cause the regulator API to disable all
4224 * regulators which have a zero use count and don't have an always_on
4225 * constraint in a late_initcall.
4226 *
4227 * The intention is that this will become the default behaviour in a
4228 * future kernel release so users are encouraged to use this facility
4229 * now.
4230 */
4231void regulator_has_full_constraints(void)
4232{
4233	has_full_constraints = 1;
4234}
4235EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4236
4237/**
4238 * rdev_get_drvdata - get rdev regulator driver data
4239 * @rdev: regulator
4240 *
4241 * Get rdev regulator driver private data. This call can be used in the
4242 * regulator driver context.
4243 */
4244void *rdev_get_drvdata(struct regulator_dev *rdev)
4245{
4246	return rdev->reg_data;
4247}
4248EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4249
4250/**
4251 * regulator_get_drvdata - get regulator driver data
4252 * @regulator: regulator
4253 *
4254 * Get regulator driver private data. This call can be used in the consumer
4255 * driver context when non API regulator specific functions need to be called.
4256 */
4257void *regulator_get_drvdata(struct regulator *regulator)
4258{
4259	return regulator->rdev->reg_data;
4260}
4261EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4262
4263/**
4264 * regulator_set_drvdata - set regulator driver data
4265 * @regulator: regulator
4266 * @data: data
4267 */
4268void regulator_set_drvdata(struct regulator *regulator, void *data)
4269{
4270	regulator->rdev->reg_data = data;
4271}
4272EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4273
4274/**
4275 * regulator_get_id - get regulator ID
4276 * @rdev: regulator
4277 */
4278int rdev_get_id(struct regulator_dev *rdev)
4279{
4280	return rdev->desc->id;
4281}
4282EXPORT_SYMBOL_GPL(rdev_get_id);
4283
4284struct device *rdev_get_dev(struct regulator_dev *rdev)
4285{
4286	return &rdev->dev;
4287}
4288EXPORT_SYMBOL_GPL(rdev_get_dev);
4289
4290void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4291{
4292	return reg_init_data->driver_data;
4293}
4294EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4295
4296#ifdef CONFIG_DEBUG_FS
4297static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4298				    size_t count, loff_t *ppos)
4299{
4300	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4301	ssize_t len, ret = 0;
4302	struct regulator_map *map;
4303
4304	if (!buf)
4305		return -ENOMEM;
4306
4307	list_for_each_entry(map, &regulator_map_list, list) {
4308		len = snprintf(buf + ret, PAGE_SIZE - ret,
4309			       "%s -> %s.%s\n",
4310			       rdev_get_name(map->regulator), map->dev_name,
4311			       map->supply);
4312		if (len >= 0)
4313			ret += len;
4314		if (ret > PAGE_SIZE) {
4315			ret = PAGE_SIZE;
4316			break;
4317		}
4318	}
4319
4320	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4321
4322	kfree(buf);
4323
4324	return ret;
4325}
4326#endif
4327
4328static const struct file_operations supply_map_fops = {
4329#ifdef CONFIG_DEBUG_FS
4330	.read = supply_map_read_file,
4331	.llseek = default_llseek,
4332#endif
4333};
4334
4335#ifdef CONFIG_DEBUG_FS
4336struct summary_data {
4337	struct seq_file *s;
4338	struct regulator_dev *parent;
4339	int level;
4340};
4341
4342static void regulator_summary_show_subtree(struct seq_file *s,
4343					   struct regulator_dev *rdev,
4344					   int level);
4345
4346static int regulator_summary_show_children(struct device *dev, void *data)
4347{
4348	struct regulator_dev *rdev = dev_to_rdev(dev);
4349	struct summary_data *summary_data = data;
4350
4351	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4352		regulator_summary_show_subtree(summary_data->s, rdev,
4353					       summary_data->level + 1);
4354
4355	return 0;
4356}
4357
4358static void regulator_summary_show_subtree(struct seq_file *s,
4359					   struct regulator_dev *rdev,
4360					   int level)
4361{
4362	struct regulation_constraints *c;
4363	struct regulator *consumer;
4364	struct summary_data summary_data;
4365
4366	if (!rdev)
4367		return;
4368
4369	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4370		   level * 3 + 1, "",
4371		   30 - level * 3, rdev_get_name(rdev),
4372		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4373
4374	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4375	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4376
4377	c = rdev->constraints;
4378	if (c) {
4379		switch (rdev->desc->type) {
4380		case REGULATOR_VOLTAGE:
4381			seq_printf(s, "%5dmV %5dmV ",
4382				   c->min_uV / 1000, c->max_uV / 1000);
4383			break;
4384		case REGULATOR_CURRENT:
4385			seq_printf(s, "%5dmA %5dmA ",
4386				   c->min_uA / 1000, c->max_uA / 1000);
4387			break;
4388		}
4389	}
4390
4391	seq_puts(s, "\n");
4392
4393	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4394		if (consumer->dev && consumer->dev->class == &regulator_class)
4395			continue;
4396
4397		seq_printf(s, "%*s%-*s ",
4398			   (level + 1) * 3 + 1, "",
4399			   30 - (level + 1) * 3,
4400			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4401
4402		switch (rdev->desc->type) {
4403		case REGULATOR_VOLTAGE:
4404			seq_printf(s, "%37dmV %5dmV",
4405				   consumer->min_uV / 1000,
4406				   consumer->max_uV / 1000);
4407			break;
4408		case REGULATOR_CURRENT:
4409			break;
4410		}
4411
4412		seq_puts(s, "\n");
4413	}
4414
4415	summary_data.s = s;
4416	summary_data.level = level;
4417	summary_data.parent = rdev;
4418
4419	class_for_each_device(&regulator_class, NULL, &summary_data,
4420			      regulator_summary_show_children);
4421}
4422
4423static int regulator_summary_show_roots(struct device *dev, void *data)
4424{
4425	struct regulator_dev *rdev = dev_to_rdev(dev);
4426	struct seq_file *s = data;
4427
4428	if (!rdev->supply)
4429		regulator_summary_show_subtree(s, rdev, 0);
4430
4431	return 0;
4432}
4433
4434static int regulator_summary_show(struct seq_file *s, void *data)
4435{
4436	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4437	seq_puts(s, "-------------------------------------------------------------------------------\n");
4438
4439	class_for_each_device(&regulator_class, NULL, s,
4440			      regulator_summary_show_roots);
4441
4442	return 0;
4443}
4444
4445static int regulator_summary_open(struct inode *inode, struct file *file)
4446{
4447	return single_open(file, regulator_summary_show, inode->i_private);
4448}
4449#endif
4450
4451static const struct file_operations regulator_summary_fops = {
4452#ifdef CONFIG_DEBUG_FS
4453	.open		= regulator_summary_open,
4454	.read		= seq_read,
4455	.llseek		= seq_lseek,
4456	.release	= single_release,
4457#endif
4458};
4459
4460static int __init regulator_init(void)
4461{
4462	int ret;
4463
4464	ret = class_register(&regulator_class);
4465
4466	debugfs_root = debugfs_create_dir("regulator", NULL);
4467	if (!debugfs_root)
4468		pr_warn("regulator: Failed to create debugfs directory\n");
4469
4470	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4471			    &supply_map_fops);
4472
4473	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4474			    NULL, &regulator_summary_fops);
4475
4476	regulator_dummy_init();
4477
4478	return ret;
4479}
4480
4481/* init early to allow our consumers to complete system booting */
4482core_initcall(regulator_init);
4483
4484static int __init regulator_late_cleanup(struct device *dev, void *data)
4485{
4486	struct regulator_dev *rdev = dev_to_rdev(dev);
4487	const struct regulator_ops *ops = rdev->desc->ops;
4488	struct regulation_constraints *c = rdev->constraints;
4489	int enabled, ret;
4490
4491	if (c && c->always_on)
4492		return 0;
4493
4494	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4495		return 0;
4496
4497	mutex_lock(&rdev->mutex);
4498
4499	if (rdev->use_count)
4500		goto unlock;
4501
4502	/* If we can't read the status assume it's on. */
4503	if (ops->is_enabled)
4504		enabled = ops->is_enabled(rdev);
4505	else
4506		enabled = 1;
4507
4508	if (!enabled)
4509		goto unlock;
4510
4511	if (have_full_constraints()) {
4512		/* We log since this may kill the system if it goes
4513		 * wrong. */
4514		rdev_info(rdev, "disabling\n");
4515		ret = _regulator_do_disable(rdev);
4516		if (ret != 0)
4517			rdev_err(rdev, "couldn't disable: %d\n", ret);
4518	} else {
4519		/* The intention is that in future we will
4520		 * assume that full constraints are provided
4521		 * so warn even if we aren't going to do
4522		 * anything here.
4523		 */
4524		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4525	}
4526
4527unlock:
4528	mutex_unlock(&rdev->mutex);
4529
4530	return 0;
4531}
4532
4533static int __init regulator_init_complete(void)
4534{
4535	/*
4536	 * Since DT doesn't provide an idiomatic mechanism for
4537	 * enabling full constraints and since it's much more natural
4538	 * with DT to provide them just assume that a DT enabled
4539	 * system has full constraints.
4540	 */
4541	if (of_have_populated_dt())
4542		has_full_constraints = true;
4543
4544	/* If we have a full configuration then disable any regulators
4545	 * we have permission to change the status for and which are
4546	 * not in use or always_on.  This is effectively the default
4547	 * for DT and ACPI as they have full constraints.
4548	 */
4549	class_for_each_device(&regulator_class, NULL, NULL,
4550			      regulator_late_cleanup);
4551
4552	return 0;
4553}
4554late_initcall_sync(regulator_init_complete);