Linux Audio

Check our new training course

Loading...
v4.6
   1/**
 
   2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   3 *		http://www.samsung.com
   4 *
   5 * Copyright 2008 Openmoko, Inc.
   6 * Copyright 2008 Simtec Electronics
   7 *      Ben Dooks <ben@simtec.co.uk>
   8 *      http://armlinux.simtec.co.uk/
   9 *
  10 * S3C USB2.0 High-speed / OtG driver
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/platform_device.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/mutex.h>
  24#include <linux/seq_file.h>
  25#include <linux/delay.h>
  26#include <linux/io.h>
  27#include <linux/slab.h>
  28#include <linux/of_platform.h>
  29
  30#include <linux/usb/ch9.h>
  31#include <linux/usb/gadget.h>
  32#include <linux/usb/phy.h>
 
 
  33
  34#include "core.h"
  35#include "hw.h"
  36
  37/* conversion functions */
  38static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  39{
  40	return container_of(req, struct dwc2_hsotg_req, req);
  41}
  42
  43static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  44{
  45	return container_of(ep, struct dwc2_hsotg_ep, ep);
  46}
  47
  48static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  49{
  50	return container_of(gadget, struct dwc2_hsotg, gadget);
  51}
  52
  53static inline void __orr32(void __iomem *ptr, u32 val)
  54{
  55	dwc2_writel(dwc2_readl(ptr) | val, ptr);
  56}
  57
  58static inline void __bic32(void __iomem *ptr, u32 val)
  59{
  60	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
  61}
  62
  63static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  64						u32 ep_index, u32 dir_in)
  65{
  66	if (dir_in)
  67		return hsotg->eps_in[ep_index];
  68	else
  69		return hsotg->eps_out[ep_index];
  70}
  71
  72/* forward declaration of functions */
  73static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  74
  75/**
  76 * using_dma - return the DMA status of the driver.
  77 * @hsotg: The driver state.
  78 *
  79 * Return true if we're using DMA.
  80 *
  81 * Currently, we have the DMA support code worked into everywhere
  82 * that needs it, but the AMBA DMA implementation in the hardware can
  83 * only DMA from 32bit aligned addresses. This means that gadgets such
  84 * as the CDC Ethernet cannot work as they often pass packets which are
  85 * not 32bit aligned.
  86 *
  87 * Unfortunately the choice to use DMA or not is global to the controller
  88 * and seems to be only settable when the controller is being put through
  89 * a core reset. This means we either need to fix the gadgets to take
  90 * account of DMA alignment, or add bounce buffers (yuerk).
  91 *
  92 * g_using_dma is set depending on dts flag.
  93 */
  94static inline bool using_dma(struct dwc2_hsotg *hsotg)
  95{
  96	return hsotg->g_using_dma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97}
  98
  99/**
 100 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 101 * @hsotg: The device state
 102 * @ints: A bitmask of the interrupts to enable
 103 */
 104static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 105{
 106	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 107	u32 new_gsintmsk;
 108
 109	new_gsintmsk = gsintmsk | ints;
 110
 111	if (new_gsintmsk != gsintmsk) {
 112		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 113		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 114	}
 115}
 116
 117/**
 118 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 119 * @hsotg: The device state
 120 * @ints: A bitmask of the interrupts to enable
 121 */
 122static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 123{
 124	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 125	u32 new_gsintmsk;
 126
 127	new_gsintmsk = gsintmsk & ~ints;
 128
 129	if (new_gsintmsk != gsintmsk)
 130		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 131}
 132
 133/**
 134 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 135 * @hsotg: The device state
 136 * @ep: The endpoint index
 137 * @dir_in: True if direction is in.
 138 * @en: The enable value, true to enable
 139 *
 140 * Set or clear the mask for an individual endpoint's interrupt
 141 * request.
 142 */
 143static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 144				 unsigned int ep, unsigned int dir_in,
 145				 unsigned int en)
 146{
 147	unsigned long flags;
 148	u32 bit = 1 << ep;
 149	u32 daint;
 150
 151	if (!dir_in)
 152		bit <<= 16;
 153
 154	local_irq_save(flags);
 155	daint = dwc2_readl(hsotg->regs + DAINTMSK);
 156	if (en)
 157		daint |= bit;
 158	else
 159		daint &= ~bit;
 160	dwc2_writel(daint, hsotg->regs + DAINTMSK);
 161	local_irq_restore(flags);
 162}
 163
 164/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 166 * @hsotg: The device instance.
 167 */
 168static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 169{
 170	unsigned int ep;
 171	unsigned int addr;
 172	int timeout;
 
 173	u32 val;
 
 174
 175	/* Reset fifo map if not correctly cleared during previous session */
 176	WARN_ON(hsotg->fifo_map);
 177	hsotg->fifo_map = 0;
 178
 179	/* set RX/NPTX FIFO sizes */
 180	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
 181	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
 182		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
 183		hsotg->regs + GNPTXFSIZ);
 
 184
 185	/*
 186	 * arange all the rest of the TX FIFOs, as some versions of this
 187	 * block have overlapping default addresses. This also ensures
 188	 * that if the settings have been changed, then they are set to
 189	 * known values.
 190	 */
 191
 192	/* start at the end of the GNPTXFSIZ, rounded up */
 193	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
 194
 195	/*
 196	 * Configure fifos sizes from provided configuration and assign
 197	 * them to endpoints dynamically according to maxpacket size value of
 198	 * given endpoint.
 199	 */
 200	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 201		if (!hsotg->g_tx_fifo_sz[ep])
 202			continue;
 203		val = addr;
 204		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
 205		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
 206			  "insufficient fifo memory");
 207		addr += hsotg->g_tx_fifo_sz[ep];
 208
 209		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
 
 210	}
 211
 
 
 
 212	/*
 213	 * according to p428 of the design guide, we need to ensure that
 214	 * all fifos are flushed before continuing
 215	 */
 216
 217	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 218	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
 219
 220	/* wait until the fifos are both flushed */
 221	timeout = 100;
 222	while (1) {
 223		val = dwc2_readl(hsotg->regs + GRSTCTL);
 224
 225		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 226			break;
 227
 228		if (--timeout == 0) {
 229			dev_err(hsotg->dev,
 230				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 231				__func__, val);
 232			break;
 233		}
 234
 235		udelay(1);
 236	}
 237
 238	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 239}
 240
 241/**
 
 242 * @ep: USB endpoint to allocate request for.
 243 * @flags: Allocation flags
 244 *
 245 * Allocate a new USB request structure appropriate for the specified endpoint
 246 */
 247static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 248						      gfp_t flags)
 249{
 250	struct dwc2_hsotg_req *req;
 251
 252	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
 253	if (!req)
 254		return NULL;
 255
 256	INIT_LIST_HEAD(&req->queue);
 257
 258	return &req->req;
 259}
 260
 261/**
 262 * is_ep_periodic - return true if the endpoint is in periodic mode.
 263 * @hs_ep: The endpoint to query.
 264 *
 265 * Returns true if the endpoint is in periodic mode, meaning it is being
 266 * used for an Interrupt or ISO transfer.
 267 */
 268static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 269{
 270	return hs_ep->periodic;
 271}
 272
 273/**
 274 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 275 * @hsotg: The device state.
 276 * @hs_ep: The endpoint for the request
 277 * @hs_req: The request being processed.
 278 *
 279 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 280 * of a request to ensure the buffer is ready for access by the caller.
 281 */
 282static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 283				struct dwc2_hsotg_ep *hs_ep,
 284				struct dwc2_hsotg_req *hs_req)
 285{
 286	struct usb_request *req = &hs_req->req;
 287
 288	/* ignore this if we're not moving any data */
 289	if (hs_req->req.length == 0)
 290		return;
 291
 292	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293}
 294
 295/**
 296 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 297 * @hsotg: The controller state.
 298 * @hs_ep: The endpoint we're going to write for.
 299 * @hs_req: The request to write data for.
 300 *
 301 * This is called when the TxFIFO has some space in it to hold a new
 302 * transmission and we have something to give it. The actual setup of
 303 * the data size is done elsewhere, so all we have to do is to actually
 304 * write the data.
 305 *
 306 * The return value is zero if there is more space (or nothing was done)
 307 * otherwise -ENOSPC is returned if the FIFO space was used up.
 308 *
 309 * This routine is only needed for PIO
 310 */
 311static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 312				struct dwc2_hsotg_ep *hs_ep,
 313				struct dwc2_hsotg_req *hs_req)
 314{
 315	bool periodic = is_ep_periodic(hs_ep);
 316	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
 317	int buf_pos = hs_req->req.actual;
 318	int to_write = hs_ep->size_loaded;
 319	void *data;
 320	int can_write;
 321	int pkt_round;
 322	int max_transfer;
 323
 324	to_write -= (buf_pos - hs_ep->last_load);
 325
 326	/* if there's nothing to write, get out early */
 327	if (to_write == 0)
 328		return 0;
 329
 330	if (periodic && !hsotg->dedicated_fifos) {
 331		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
 332		int size_left;
 333		int size_done;
 334
 335		/*
 336		 * work out how much data was loaded so we can calculate
 337		 * how much data is left in the fifo.
 338		 */
 339
 340		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 341
 342		/*
 343		 * if shared fifo, we cannot write anything until the
 344		 * previous data has been completely sent.
 345		 */
 346		if (hs_ep->fifo_load != 0) {
 347			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 348			return -ENOSPC;
 349		}
 350
 351		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 352			__func__, size_left,
 353			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 354
 355		/* how much of the data has moved */
 356		size_done = hs_ep->size_loaded - size_left;
 357
 358		/* how much data is left in the fifo */
 359		can_write = hs_ep->fifo_load - size_done;
 360		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 361			__func__, can_write);
 362
 363		can_write = hs_ep->fifo_size - can_write;
 364		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 365			__func__, can_write);
 366
 367		if (can_write <= 0) {
 368			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 369			return -ENOSPC;
 370		}
 371	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 372		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
 
 373
 374		can_write &= 0xffff;
 375		can_write *= 4;
 376	} else {
 377		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 378			dev_dbg(hsotg->dev,
 379				"%s: no queue slots available (0x%08x)\n",
 380				__func__, gnptxsts);
 381
 382			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 383			return -ENOSPC;
 384		}
 385
 386		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 387		can_write *= 4;	/* fifo size is in 32bit quantities. */
 388	}
 389
 390	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 391
 392	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 393		 __func__, gnptxsts, can_write, to_write, max_transfer);
 394
 395	/*
 396	 * limit to 512 bytes of data, it seems at least on the non-periodic
 397	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 398	 * fragment of the end of the transfer in it.
 399	 */
 400	if (can_write > 512 && !periodic)
 401		can_write = 512;
 402
 403	/*
 404	 * limit the write to one max-packet size worth of data, but allow
 405	 * the transfer to return that it did not run out of fifo space
 406	 * doing it.
 407	 */
 408	if (to_write > max_transfer) {
 409		to_write = max_transfer;
 410
 411		/* it's needed only when we do not use dedicated fifos */
 412		if (!hsotg->dedicated_fifos)
 413			dwc2_hsotg_en_gsint(hsotg,
 414					   periodic ? GINTSTS_PTXFEMP :
 415					   GINTSTS_NPTXFEMP);
 416	}
 417
 418	/* see if we can write data */
 419
 420	if (to_write > can_write) {
 421		to_write = can_write;
 422		pkt_round = to_write % max_transfer;
 423
 424		/*
 425		 * Round the write down to an
 426		 * exact number of packets.
 427		 *
 428		 * Note, we do not currently check to see if we can ever
 429		 * write a full packet or not to the FIFO.
 430		 */
 431
 432		if (pkt_round)
 433			to_write -= pkt_round;
 434
 435		/*
 436		 * enable correct FIFO interrupt to alert us when there
 437		 * is more room left.
 438		 */
 439
 440		/* it's needed only when we do not use dedicated fifos */
 441		if (!hsotg->dedicated_fifos)
 442			dwc2_hsotg_en_gsint(hsotg,
 443					   periodic ? GINTSTS_PTXFEMP :
 444					   GINTSTS_NPTXFEMP);
 445	}
 446
 447	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 448		 to_write, hs_req->req.length, can_write, buf_pos);
 449
 450	if (to_write <= 0)
 451		return -ENOSPC;
 452
 453	hs_req->req.actual = buf_pos + to_write;
 454	hs_ep->total_data += to_write;
 455
 456	if (periodic)
 457		hs_ep->fifo_load += to_write;
 458
 459	to_write = DIV_ROUND_UP(to_write, 4);
 460	data = hs_req->req.buf + buf_pos;
 461
 462	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
 463
 464	return (to_write >= can_write) ? -ENOSPC : 0;
 465}
 466
 467/**
 468 * get_ep_limit - get the maximum data legnth for this endpoint
 469 * @hs_ep: The endpoint
 470 *
 471 * Return the maximum data that can be queued in one go on a given endpoint
 472 * so that transfers that are too long can be split.
 473 */
 474static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 475{
 476	int index = hs_ep->index;
 477	unsigned maxsize;
 478	unsigned maxpkt;
 479
 480	if (index != 0) {
 481		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 482		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 483	} else {
 484		maxsize = 64+64;
 485		if (hs_ep->dir_in)
 486			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 487		else
 488			maxpkt = 2;
 489	}
 490
 491	/* we made the constant loading easier above by using +1 */
 492	maxpkt--;
 493	maxsize--;
 494
 495	/*
 496	 * constrain by packet count if maxpkts*pktsize is greater
 497	 * than the length register size.
 498	 */
 499
 500	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 501		maxsize = maxpkt * hs_ep->ep.maxpacket;
 502
 503	return maxsize;
 504}
 505
 506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
 508 * @hsotg: The controller state.
 509 * @hs_ep: The endpoint to process a request for
 510 * @hs_req: The request to start.
 511 * @continuing: True if we are doing more for the current request.
 512 *
 513 * Start the given request running by setting the endpoint registers
 514 * appropriately, and writing any data to the FIFOs.
 515 */
 516static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
 517				struct dwc2_hsotg_ep *hs_ep,
 518				struct dwc2_hsotg_req *hs_req,
 519				bool continuing)
 520{
 521	struct usb_request *ureq = &hs_req->req;
 522	int index = hs_ep->index;
 523	int dir_in = hs_ep->dir_in;
 524	u32 epctrl_reg;
 525	u32 epsize_reg;
 526	u32 epsize;
 527	u32 ctrl;
 528	unsigned length;
 529	unsigned packets;
 530	unsigned maxreq;
 
 531
 532	if (index != 0) {
 533		if (hs_ep->req && !continuing) {
 534			dev_err(hsotg->dev, "%s: active request\n", __func__);
 535			WARN_ON(1);
 536			return;
 537		} else if (hs_ep->req != hs_req && continuing) {
 538			dev_err(hsotg->dev,
 539				"%s: continue different req\n", __func__);
 540			WARN_ON(1);
 541			return;
 542		}
 543	}
 544
 
 545	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
 546	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
 547
 548	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 549		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
 550		hs_ep->dir_in ? "in" : "out");
 551
 552	/* If endpoint is stalled, we will restart request later */
 553	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
 554
 555	if (index && ctrl & DXEPCTL_STALL) {
 556		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 557		return;
 558	}
 559
 560	length = ureq->length - ureq->actual;
 561	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
 562		ureq->length, ureq->actual);
 563
 564	maxreq = get_ep_limit(hs_ep);
 
 
 
 
 565	if (length > maxreq) {
 566		int round = maxreq % hs_ep->ep.maxpacket;
 567
 568		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 569			__func__, length, maxreq, round);
 570
 571		/* round down to multiple of packets */
 572		if (round)
 573			maxreq -= round;
 574
 575		length = maxreq;
 576	}
 577
 578	if (length)
 579		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
 580	else
 581		packets = 1;	/* send one packet if length is zero. */
 582
 583	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
 584		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
 585		return;
 586	}
 587
 588	if (dir_in && index != 0)
 589		if (hs_ep->isochronous)
 590			epsize = DXEPTSIZ_MC(packets);
 591		else
 592			epsize = DXEPTSIZ_MC(1);
 593	else
 594		epsize = 0;
 595
 596	/*
 597	 * zero length packet should be programmed on its own and should not
 598	 * be counted in DIEPTSIZ.PktCnt with other packets.
 599	 */
 600	if (dir_in && ureq->zero && !continuing) {
 601		/* Test if zlp is actually required. */
 602		if ((ureq->length >= hs_ep->ep.maxpacket) &&
 603					!(ureq->length % hs_ep->ep.maxpacket))
 604			hs_ep->send_zlp = 1;
 605	}
 606
 607	epsize |= DXEPTSIZ_PKTCNT(packets);
 608	epsize |= DXEPTSIZ_XFERSIZE(length);
 609
 610	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
 611		__func__, packets, length, ureq->length, epsize, epsize_reg);
 612
 613	/* store the request as the current one we're doing */
 614	hs_ep->req = hs_req;
 615
 616	/* write size / packets */
 617	dwc2_writel(epsize, hsotg->regs + epsize_reg);
 
 
 
 
 
 
 
 
 
 618
 619	if (using_dma(hsotg) && !continuing) {
 620		unsigned int dma_reg;
 621
 622		/*
 623		 * write DMA address to control register, buffer already
 624		 * synced by dwc2_hsotg_ep_queue().
 625		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626
 627		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
 628		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
 
 
 629
 630		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
 631			__func__, &ureq->dma, dma_reg);
 
 
 
 
 
 
 
 
 
 
 
 632	}
 633
 634	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
 635	ctrl |= DXEPCTL_USBACTEP;
 636
 637	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
 638
 639	/* For Setup request do not clear NAK */
 640	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
 641		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
 642
 643	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
 644	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
 645
 646	/*
 647	 * set these, it seems that DMA support increments past the end
 648	 * of the packet buffer so we need to calculate the length from
 649	 * this information.
 650	 */
 651	hs_ep->size_loaded = length;
 652	hs_ep->last_load = ureq->actual;
 653
 654	if (dir_in && !using_dma(hsotg)) {
 655		/* set these anyway, we may need them for non-periodic in */
 656		hs_ep->fifo_load = 0;
 657
 658		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
 659	}
 660
 661	/*
 662	 * clear the INTknTXFEmpMsk when we start request, more as a aide
 663	 * to debugging to see what is going on.
 664	 */
 665	if (dir_in)
 666		dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
 667		       hsotg->regs + DIEPINT(index));
 668
 669	/*
 670	 * Note, trying to clear the NAK here causes problems with transmit
 671	 * on the S3C6400 ending up with the TXFIFO becoming full.
 672	 */
 673
 674	/* check ep is enabled */
 675	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
 676		dev_dbg(hsotg->dev,
 677			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
 678			 index, dwc2_readl(hsotg->regs + epctrl_reg));
 679
 680	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
 681		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
 682
 683	/* enable ep interrupts */
 684	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
 685}
 686
 687/**
 688 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
 689 * @hsotg: The device state.
 690 * @hs_ep: The endpoint the request is on.
 691 * @req: The request being processed.
 692 *
 693 * We've been asked to queue a request, so ensure that the memory buffer
 694 * is correctly setup for DMA. If we've been passed an extant DMA address
 695 * then ensure the buffer has been synced to memory. If our buffer has no
 696 * DMA memory, then we map the memory and mark our request to allow us to
 697 * cleanup on completion.
 698 */
 699static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
 700			     struct dwc2_hsotg_ep *hs_ep,
 701			     struct usb_request *req)
 702{
 703	struct dwc2_hsotg_req *hs_req = our_req(req);
 704	int ret;
 705
 706	/* if the length is zero, ignore the DMA data */
 707	if (hs_req->req.length == 0)
 708		return 0;
 709
 710	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
 711	if (ret)
 712		goto dma_error;
 713
 714	return 0;
 715
 716dma_error:
 717	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
 718		__func__, req->buf, req->length);
 719
 720	return -EIO;
 721}
 722
 723static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
 724	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
 725{
 726	void *req_buf = hs_req->req.buf;
 727
 728	/* If dma is not being used or buffer is aligned */
 729	if (!using_dma(hsotg) || !((long)req_buf & 3))
 730		return 0;
 731
 732	WARN_ON(hs_req->saved_req_buf);
 733
 734	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
 735			hs_ep->ep.name, req_buf, hs_req->req.length);
 736
 737	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
 738	if (!hs_req->req.buf) {
 739		hs_req->req.buf = req_buf;
 740		dev_err(hsotg->dev,
 741			"%s: unable to allocate memory for bounce buffer\n",
 742			__func__);
 743		return -ENOMEM;
 744	}
 745
 746	/* Save actual buffer */
 747	hs_req->saved_req_buf = req_buf;
 748
 749	if (hs_ep->dir_in)
 750		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
 751	return 0;
 752}
 753
 754static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
 755	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
 
 756{
 757	/* If dma is not being used or buffer was aligned */
 758	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
 759		return;
 760
 761	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
 762		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
 763
 764	/* Copy data from bounce buffer on successful out transfer */
 765	if (!hs_ep->dir_in && !hs_req->req.status)
 766		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
 767							hs_req->req.actual);
 768
 769	/* Free bounce buffer */
 770	kfree(hs_req->req.buf);
 771
 772	hs_req->req.buf = hs_req->saved_req_buf;
 773	hs_req->saved_req_buf = NULL;
 774}
 775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
 777			      gfp_t gfp_flags)
 778{
 779	struct dwc2_hsotg_req *hs_req = our_req(req);
 780	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 781	struct dwc2_hsotg *hs = hs_ep->parent;
 782	bool first;
 783	int ret;
 
 
 
 784
 785	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
 786		ep->name, req, req->length, req->buf, req->no_interrupt,
 787		req->zero, req->short_not_ok);
 788
 789	/* Prevent new request submission when controller is suspended */
 790	if (hs->lx_state == DWC2_L2) {
 791		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
 792				__func__);
 793		return -EAGAIN;
 794	}
 795
 796	/* initialise status of the request */
 797	INIT_LIST_HEAD(&hs_req->queue);
 798	req->actual = 0;
 799	req->status = -EINPROGRESS;
 800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
 802	if (ret)
 803		return ret;
 804
 805	/* if we're using DMA, sync the buffers as necessary */
 806	if (using_dma(hs)) {
 807		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
 808		if (ret)
 809			return ret;
 810	}
 
 
 
 
 
 
 811
 812	first = list_empty(&hs_ep->queue);
 813	list_add_tail(&hs_req->queue, &hs_ep->queue);
 814
 815	if (first)
 816		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817
 
 
 
 818	return 0;
 819}
 820
 821static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
 822			      gfp_t gfp_flags)
 823{
 824	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 825	struct dwc2_hsotg *hs = hs_ep->parent;
 826	unsigned long flags = 0;
 827	int ret = 0;
 828
 829	spin_lock_irqsave(&hs->lock, flags);
 830	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
 831	spin_unlock_irqrestore(&hs->lock, flags);
 832
 833	return ret;
 834}
 835
 836static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
 837				      struct usb_request *req)
 838{
 839	struct dwc2_hsotg_req *hs_req = our_req(req);
 840
 841	kfree(hs_req);
 842}
 843
 844/**
 845 * dwc2_hsotg_complete_oursetup - setup completion callback
 846 * @ep: The endpoint the request was on.
 847 * @req: The request completed.
 848 *
 849 * Called on completion of any requests the driver itself
 850 * submitted that need cleaning up.
 851 */
 852static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
 853					struct usb_request *req)
 854{
 855	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 856	struct dwc2_hsotg *hsotg = hs_ep->parent;
 857
 858	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
 859
 860	dwc2_hsotg_ep_free_request(ep, req);
 861}
 862
 863/**
 864 * ep_from_windex - convert control wIndex value to endpoint
 865 * @hsotg: The driver state.
 866 * @windex: The control request wIndex field (in host order).
 867 *
 868 * Convert the given wIndex into a pointer to an driver endpoint
 869 * structure, or return NULL if it is not a valid endpoint.
 870 */
 871static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
 872					   u32 windex)
 873{
 874	struct dwc2_hsotg_ep *ep;
 875	int dir = (windex & USB_DIR_IN) ? 1 : 0;
 876	int idx = windex & 0x7F;
 877
 878	if (windex >= 0x100)
 879		return NULL;
 880
 881	if (idx > hsotg->num_of_eps)
 882		return NULL;
 883
 884	ep = index_to_ep(hsotg, idx, dir);
 885
 886	if (idx && ep->dir_in != dir)
 887		return NULL;
 888
 889	return ep;
 890}
 891
 892/**
 893 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
 894 * @hsotg: The driver state.
 895 * @testmode: requested usb test mode
 896 * Enable usb Test Mode requested by the Host.
 897 */
 898int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
 899{
 900	int dctl = dwc2_readl(hsotg->regs + DCTL);
 901
 902	dctl &= ~DCTL_TSTCTL_MASK;
 903	switch (testmode) {
 904	case TEST_J:
 905	case TEST_K:
 906	case TEST_SE0_NAK:
 907	case TEST_PACKET:
 908	case TEST_FORCE_EN:
 909		dctl |= testmode << DCTL_TSTCTL_SHIFT;
 910		break;
 911	default:
 912		return -EINVAL;
 913	}
 914	dwc2_writel(dctl, hsotg->regs + DCTL);
 915	return 0;
 916}
 917
 918/**
 919 * dwc2_hsotg_send_reply - send reply to control request
 920 * @hsotg: The device state
 921 * @ep: Endpoint 0
 922 * @buff: Buffer for request
 923 * @length: Length of reply.
 924 *
 925 * Create a request and queue it on the given endpoint. This is useful as
 926 * an internal method of sending replies to certain control requests, etc.
 927 */
 928static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
 929				struct dwc2_hsotg_ep *ep,
 930				void *buff,
 931				int length)
 932{
 933	struct usb_request *req;
 934	int ret;
 935
 936	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
 937
 938	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
 939	hsotg->ep0_reply = req;
 940	if (!req) {
 941		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
 942		return -ENOMEM;
 943	}
 944
 945	req->buf = hsotg->ep0_buff;
 946	req->length = length;
 947	/*
 948	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
 949	 * STATUS stage.
 950	 */
 951	req->zero = 0;
 952	req->complete = dwc2_hsotg_complete_oursetup;
 953
 954	if (length)
 955		memcpy(req->buf, buff, length);
 956
 957	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
 958	if (ret) {
 959		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
 960		return ret;
 961	}
 962
 963	return 0;
 964}
 965
 966/**
 967 * dwc2_hsotg_process_req_status - process request GET_STATUS
 968 * @hsotg: The device state
 969 * @ctrl: USB control request
 970 */
 971static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
 972					struct usb_ctrlrequest *ctrl)
 973{
 974	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
 975	struct dwc2_hsotg_ep *ep;
 976	__le16 reply;
 
 977	int ret;
 978
 979	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
 980
 981	if (!ep0->dir_in) {
 982		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
 983		return -EINVAL;
 984	}
 985
 986	switch (ctrl->bRequestType & USB_RECIP_MASK) {
 987	case USB_RECIP_DEVICE:
 988		reply = cpu_to_le16(0); /* bit 0 => self powered,
 989					 * bit 1 => remote wakeup */
 
 
 
 990		break;
 991
 992	case USB_RECIP_INTERFACE:
 993		/* currently, the data result should be zero */
 994		reply = cpu_to_le16(0);
 995		break;
 996
 997	case USB_RECIP_ENDPOINT:
 998		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
 999		if (!ep)
1000			return -ENOENT;
1001
1002		reply = cpu_to_le16(ep->halted ? 1 : 0);
1003		break;
1004
1005	default:
1006		return 0;
1007	}
1008
1009	if (le16_to_cpu(ctrl->wLength) != 2)
1010		return -EINVAL;
1011
1012	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1013	if (ret) {
1014		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1015		return ret;
1016	}
1017
1018	return 1;
1019}
1020
1021static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1022
1023/**
1024 * get_ep_head - return the first request on the endpoint
1025 * @hs_ep: The controller endpoint to get
1026 *
1027 * Get the first request on the endpoint.
1028 */
1029static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1030{
1031	if (list_empty(&hs_ep->queue))
1032		return NULL;
 
1033
1034	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037/**
1038 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1039 * @hsotg: The device state
1040 * @ctrl: USB control request
1041 */
1042static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1043					 struct usb_ctrlrequest *ctrl)
1044{
1045	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1046	struct dwc2_hsotg_req *hs_req;
1047	bool restart;
1048	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1049	struct dwc2_hsotg_ep *ep;
1050	int ret;
1051	bool halted;
1052	u32 recip;
1053	u32 wValue;
1054	u32 wIndex;
1055
1056	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1057		__func__, set ? "SET" : "CLEAR");
1058
1059	wValue = le16_to_cpu(ctrl->wValue);
1060	wIndex = le16_to_cpu(ctrl->wIndex);
1061	recip = ctrl->bRequestType & USB_RECIP_MASK;
1062
1063	switch (recip) {
1064	case USB_RECIP_DEVICE:
1065		switch (wValue) {
 
 
 
 
 
 
 
1066		case USB_DEVICE_TEST_MODE:
1067			if ((wIndex & 0xff) != 0)
1068				return -EINVAL;
1069			if (!set)
1070				return -EINVAL;
1071
1072			hsotg->test_mode = wIndex >> 8;
1073			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1074			if (ret) {
1075				dev_err(hsotg->dev,
1076					"%s: failed to send reply\n", __func__);
1077				return ret;
1078			}
1079			break;
1080		default:
1081			return -ENOENT;
1082		}
 
 
 
 
 
 
 
1083		break;
1084
1085	case USB_RECIP_ENDPOINT:
1086		ep = ep_from_windex(hsotg, wIndex);
1087		if (!ep) {
1088			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1089				__func__, wIndex);
1090			return -ENOENT;
1091		}
1092
1093		switch (wValue) {
1094		case USB_ENDPOINT_HALT:
1095			halted = ep->halted;
1096
1097			dwc2_hsotg_ep_sethalt(&ep->ep, set);
1098
1099			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1100			if (ret) {
1101				dev_err(hsotg->dev,
1102					"%s: failed to send reply\n", __func__);
1103				return ret;
1104			}
1105
1106			/*
1107			 * we have to complete all requests for ep if it was
1108			 * halted, and the halt was cleared by CLEAR_FEATURE
1109			 */
1110
1111			if (!set && halted) {
1112				/*
1113				 * If we have request in progress,
1114				 * then complete it
1115				 */
1116				if (ep->req) {
1117					hs_req = ep->req;
1118					ep->req = NULL;
1119					list_del_init(&hs_req->queue);
1120					if (hs_req->req.complete) {
1121						spin_unlock(&hsotg->lock);
1122						usb_gadget_giveback_request(
1123							&ep->ep, &hs_req->req);
1124						spin_lock(&hsotg->lock);
1125					}
1126				}
1127
1128				/* If we have pending request, then start it */
1129				if (!ep->req) {
1130					restart = !list_empty(&ep->queue);
1131					if (restart) {
1132						hs_req = get_ep_head(ep);
1133						dwc2_hsotg_start_req(hsotg, ep,
1134								hs_req, false);
1135					}
1136				}
1137			}
1138
1139			break;
1140
1141		default:
1142			return -ENOENT;
1143		}
1144		break;
1145	default:
1146		return -ENOENT;
1147	}
1148	return 1;
1149}
1150
1151static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1152
1153/**
1154 * dwc2_hsotg_stall_ep0 - stall ep0
1155 * @hsotg: The device state
1156 *
1157 * Set stall for ep0 as response for setup request.
1158 */
1159static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1160{
1161	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1162	u32 reg;
1163	u32 ctrl;
1164
1165	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1166	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1167
1168	/*
1169	 * DxEPCTL_Stall will be cleared by EP once it has
1170	 * taken effect, so no need to clear later.
1171	 */
1172
1173	ctrl = dwc2_readl(hsotg->regs + reg);
1174	ctrl |= DXEPCTL_STALL;
1175	ctrl |= DXEPCTL_CNAK;
1176	dwc2_writel(ctrl, hsotg->regs + reg);
1177
1178	dev_dbg(hsotg->dev,
1179		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1180		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1181
1182	 /*
1183	  * complete won't be called, so we enqueue
1184	  * setup request here
1185	  */
1186	 dwc2_hsotg_enqueue_setup(hsotg);
1187}
1188
1189/**
1190 * dwc2_hsotg_process_control - process a control request
1191 * @hsotg: The device state
1192 * @ctrl: The control request received
1193 *
1194 * The controller has received the SETUP phase of a control request, and
1195 * needs to work out what to do next (and whether to pass it on to the
1196 * gadget driver).
1197 */
1198static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1199				      struct usb_ctrlrequest *ctrl)
1200{
1201	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1202	int ret = 0;
1203	u32 dcfg;
1204
1205	dev_dbg(hsotg->dev,
1206		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1207		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1208		ctrl->wIndex, ctrl->wLength);
1209
1210	if (ctrl->wLength == 0) {
1211		ep0->dir_in = 1;
1212		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1213	} else if (ctrl->bRequestType & USB_DIR_IN) {
1214		ep0->dir_in = 1;
1215		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1216	} else {
1217		ep0->dir_in = 0;
1218		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1219	}
1220
1221	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1222		switch (ctrl->bRequest) {
1223		case USB_REQ_SET_ADDRESS:
1224			hsotg->connected = 1;
1225			dcfg = dwc2_readl(hsotg->regs + DCFG);
1226			dcfg &= ~DCFG_DEVADDR_MASK;
1227			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1228				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1229			dwc2_writel(dcfg, hsotg->regs + DCFG);
1230
1231			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1232
1233			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1234			return;
1235
1236		case USB_REQ_GET_STATUS:
1237			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1238			break;
1239
1240		case USB_REQ_CLEAR_FEATURE:
1241		case USB_REQ_SET_FEATURE:
1242			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1243			break;
1244		}
1245	}
1246
1247	/* as a fallback, try delivering it to the driver to deal with */
1248
1249	if (ret == 0 && hsotg->driver) {
1250		spin_unlock(&hsotg->lock);
1251		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1252		spin_lock(&hsotg->lock);
1253		if (ret < 0)
1254			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1255	}
1256
 
 
 
 
1257	/*
1258	 * the request is either unhandlable, or is not formatted correctly
1259	 * so respond with a STALL for the status stage to indicate failure.
1260	 */
1261
1262	if (ret < 0)
1263		dwc2_hsotg_stall_ep0(hsotg);
1264}
1265
1266/**
1267 * dwc2_hsotg_complete_setup - completion of a setup transfer
1268 * @ep: The endpoint the request was on.
1269 * @req: The request completed.
1270 *
1271 * Called on completion of any requests the driver itself submitted for
1272 * EP0 setup packets
1273 */
1274static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1275				     struct usb_request *req)
1276{
1277	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1278	struct dwc2_hsotg *hsotg = hs_ep->parent;
1279
1280	if (req->status < 0) {
1281		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1282		return;
1283	}
1284
1285	spin_lock(&hsotg->lock);
1286	if (req->actual == 0)
1287		dwc2_hsotg_enqueue_setup(hsotg);
1288	else
1289		dwc2_hsotg_process_control(hsotg, req->buf);
1290	spin_unlock(&hsotg->lock);
1291}
1292
1293/**
1294 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1295 * @hsotg: The device state.
1296 *
1297 * Enqueue a request on EP0 if necessary to received any SETUP packets
1298 * received from the host.
1299 */
1300static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1301{
1302	struct usb_request *req = hsotg->ctrl_req;
1303	struct dwc2_hsotg_req *hs_req = our_req(req);
1304	int ret;
1305
1306	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1307
1308	req->zero = 0;
1309	req->length = 8;
1310	req->buf = hsotg->ctrl_buff;
1311	req->complete = dwc2_hsotg_complete_setup;
1312
1313	if (!list_empty(&hs_req->queue)) {
1314		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1315		return;
1316	}
1317
1318	hsotg->eps_out[0]->dir_in = 0;
1319	hsotg->eps_out[0]->send_zlp = 0;
1320	hsotg->ep0_state = DWC2_EP0_SETUP;
1321
1322	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1323	if (ret < 0) {
1324		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1325		/*
1326		 * Don't think there's much we can do other than watch the
1327		 * driver fail.
1328		 */
1329	}
1330}
1331
1332static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1333					struct dwc2_hsotg_ep *hs_ep)
1334{
1335	u32 ctrl;
1336	u8 index = hs_ep->index;
1337	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1338	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1339
1340	if (hs_ep->dir_in)
1341		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1342									index);
1343	else
1344		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1345									index);
 
 
 
1346
1347	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1348		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1349		    epsiz_reg);
1350
1351	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
 
 
 
 
 
 
 
1352	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1353	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1354	ctrl |= DXEPCTL_USBACTEP;
1355	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1356}
1357
1358/**
1359 * dwc2_hsotg_complete_request - complete a request given to us
1360 * @hsotg: The device state.
1361 * @hs_ep: The endpoint the request was on.
1362 * @hs_req: The request to complete.
1363 * @result: The result code (0 => Ok, otherwise errno)
1364 *
1365 * The given request has finished, so call the necessary completion
1366 * if it has one and then look to see if we can start a new request
1367 * on the endpoint.
1368 *
1369 * Note, expects the ep to already be locked as appropriate.
1370 */
1371static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1372				       struct dwc2_hsotg_ep *hs_ep,
1373				       struct dwc2_hsotg_req *hs_req,
1374				       int result)
1375{
1376	bool restart;
1377
1378	if (!hs_req) {
1379		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1380		return;
1381	}
1382
1383	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1384		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1385
1386	/*
1387	 * only replace the status if we've not already set an error
1388	 * from a previous transaction
1389	 */
1390
1391	if (hs_req->req.status == -EINPROGRESS)
1392		hs_req->req.status = result;
1393
1394	if (using_dma(hsotg))
1395		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1396
1397	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1398
1399	hs_ep->req = NULL;
1400	list_del_init(&hs_req->queue);
1401
1402	/*
1403	 * call the complete request with the locks off, just in case the
1404	 * request tries to queue more work for this endpoint.
1405	 */
1406
1407	if (hs_req->req.complete) {
1408		spin_unlock(&hsotg->lock);
1409		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1410		spin_lock(&hsotg->lock);
1411	}
1412
 
 
 
 
1413	/*
1414	 * Look to see if there is anything else to do. Note, the completion
1415	 * of the previous request may have caused a new request to be started
1416	 * so be careful when doing this.
1417	 */
1418
1419	if (!hs_ep->req && result >= 0) {
1420		restart = !list_empty(&hs_ep->queue);
1421		if (restart) {
1422			hs_req = get_ep_head(hs_ep);
1423			dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425	}
1426}
1427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428/**
1429 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1430 * @hsotg: The device state.
1431 * @ep_idx: The endpoint index for the data
1432 * @size: The size of data in the fifo, in bytes
1433 *
1434 * The FIFO status shows there is data to read from the FIFO for a given
1435 * endpoint, so sort out whether we need to read the data into a request
1436 * that has been made for that endpoint.
1437 */
1438static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1439{
1440	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1441	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1442	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1443	int to_read;
1444	int max_req;
1445	int read_ptr;
1446
1447
1448	if (!hs_req) {
1449		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1450		int ptr;
1451
1452		dev_dbg(hsotg->dev,
1453			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1454			 __func__, size, ep_idx, epctl);
1455
1456		/* dump the data from the FIFO, we've nothing we can do */
1457		for (ptr = 0; ptr < size; ptr += 4)
1458			(void)dwc2_readl(fifo);
1459
1460		return;
1461	}
1462
1463	to_read = size;
1464	read_ptr = hs_req->req.actual;
1465	max_req = hs_req->req.length - read_ptr;
1466
1467	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1468		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1469
1470	if (to_read > max_req) {
1471		/*
1472		 * more data appeared than we where willing
1473		 * to deal with in this request.
1474		 */
1475
1476		/* currently we don't deal this */
1477		WARN_ON_ONCE(1);
1478	}
1479
1480	hs_ep->total_data += to_read;
1481	hs_req->req.actual += to_read;
1482	to_read = DIV_ROUND_UP(to_read, 4);
1483
1484	/*
1485	 * note, we might over-write the buffer end by 3 bytes depending on
1486	 * alignment of the data.
1487	 */
1488	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
 
1489}
1490
1491/**
1492 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1493 * @hsotg: The device instance
1494 * @dir_in: If IN zlp
1495 *
1496 * Generate a zero-length IN packet request for terminating a SETUP
1497 * transaction.
1498 *
1499 * Note, since we don't write any data to the TxFIFO, then it is
1500 * currently believed that we do not need to wait for any space in
1501 * the TxFIFO.
1502 */
1503static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1504{
1505	/* eps_out[0] is used in both directions */
1506	hsotg->eps_out[0]->dir_in = dir_in;
1507	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1508
1509	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1510}
1511
1512static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
1513			u32 epctl_reg)
 
 
 
 
 
 
1514{
1515	u32 ctrl;
 
 
 
 
 
 
 
 
1516
1517	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1518	if (ctrl & DXEPCTL_EOFRNUM)
1519		ctrl |= DXEPCTL_SETEVENFR;
1520	else
1521		ctrl |= DXEPCTL_SETODDFR;
1522	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523}
1524
1525/**
1526 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1527 * @hsotg: The device instance
1528 * @epnum: The endpoint received from
1529 *
1530 * The RXFIFO has delivered an OutDone event, which means that the data
1531 * transfer for an OUT endpoint has been completed, either by a short
1532 * packet or by the finish of a transfer.
1533 */
1534static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1535{
1536	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1537	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1538	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1539	struct usb_request *req = &hs_req->req;
1540	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1541	int result = 0;
1542
1543	if (!hs_req) {
1544		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1545		return;
1546	}
1547
1548	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1549		dev_dbg(hsotg->dev, "zlp packet received\n");
1550		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1551		dwc2_hsotg_enqueue_setup(hsotg);
1552		return;
1553	}
1554
 
 
 
1555	if (using_dma(hsotg)) {
1556		unsigned size_done;
1557
1558		/*
1559		 * Calculate the size of the transfer by checking how much
1560		 * is left in the endpoint size register and then working it
1561		 * out from the amount we loaded for the transfer.
1562		 *
1563		 * We need to do this as DMA pointers are always 32bit aligned
1564		 * so may overshoot/undershoot the transfer.
1565		 */
1566
1567		size_done = hs_ep->size_loaded - size_left;
1568		size_done += hs_ep->last_load;
1569
1570		req->actual = size_done;
1571	}
1572
1573	/* if there is more request to do, schedule new transfer */
1574	if (req->actual < req->length && size_left == 0) {
1575		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1576		return;
1577	}
1578
1579	if (req->actual < req->length && req->short_not_ok) {
1580		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1581			__func__, req->actual, req->length);
1582
1583		/*
1584		 * todo - what should we return here? there's no one else
1585		 * even bothering to check the status.
1586		 */
1587	}
1588
1589	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
 
 
1590		/* Move to STATUS IN */
1591		dwc2_hsotg_ep0_zlp(hsotg, true);
1592		return;
1593	}
1594
1595	/*
1596	 * Slave mode OUT transfers do not go through XferComplete so
1597	 * adjust the ISOC parity here.
1598	 */
1599	if (!using_dma(hsotg)) {
1600		hs_ep->has_correct_parity = 1;
1601		if (hs_ep->isochronous && hs_ep->interval == 1)
1602			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1603	}
1604
1605	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1606}
1607
1608/**
1609 * dwc2_hsotg_read_frameno - read current frame number
1610 * @hsotg: The device instance
1611 *
1612 * Return the current frame number
1613 */
1614static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1615{
1616	u32 dsts;
1617
1618	dsts = dwc2_readl(hsotg->regs + DSTS);
1619	dsts &= DSTS_SOFFN_MASK;
1620	dsts >>= DSTS_SOFFN_SHIFT;
1621
1622	return dsts;
1623}
1624
1625/**
1626 * dwc2_hsotg_handle_rx - RX FIFO has data
1627 * @hsotg: The device instance
1628 *
1629 * The IRQ handler has detected that the RX FIFO has some data in it
1630 * that requires processing, so find out what is in there and do the
1631 * appropriate read.
1632 *
1633 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1634 * chunks, so if you have x packets received on an endpoint you'll get x
1635 * FIFO events delivered, each with a packet's worth of data in it.
1636 *
1637 * When using DMA, we should not be processing events from the RXFIFO
1638 * as the actual data should be sent to the memory directly and we turn
1639 * on the completion interrupts to get notifications of transfer completion.
1640 */
1641static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1642{
1643	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1644	u32 epnum, status, size;
1645
1646	WARN_ON(using_dma(hsotg));
1647
1648	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1649	status = grxstsr & GRXSTS_PKTSTS_MASK;
1650
1651	size = grxstsr & GRXSTS_BYTECNT_MASK;
1652	size >>= GRXSTS_BYTECNT_SHIFT;
1653
1654	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1655			__func__, grxstsr, size, epnum);
1656
1657	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1658	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1659		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1660		break;
1661
1662	case GRXSTS_PKTSTS_OUTDONE:
1663		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1664			dwc2_hsotg_read_frameno(hsotg));
1665
1666		if (!using_dma(hsotg))
1667			dwc2_hsotg_handle_outdone(hsotg, epnum);
1668		break;
1669
1670	case GRXSTS_PKTSTS_SETUPDONE:
1671		dev_dbg(hsotg->dev,
1672			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1673			dwc2_hsotg_read_frameno(hsotg),
1674			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1675		/*
1676		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1677		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1678		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1679		 */
1680		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1681			dwc2_hsotg_handle_outdone(hsotg, epnum);
1682		break;
1683
1684	case GRXSTS_PKTSTS_OUTRX:
1685		dwc2_hsotg_rx_data(hsotg, epnum, size);
1686		break;
1687
1688	case GRXSTS_PKTSTS_SETUPRX:
1689		dev_dbg(hsotg->dev,
1690			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1691			dwc2_hsotg_read_frameno(hsotg),
1692			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1693
1694		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1695
1696		dwc2_hsotg_rx_data(hsotg, epnum, size);
1697		break;
1698
1699	default:
1700		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1701			 __func__, grxstsr);
1702
1703		dwc2_hsotg_dump(hsotg);
1704		break;
1705	}
1706}
1707
1708/**
1709 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1710 * @mps: The maximum packet size in bytes.
1711 */
1712static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1713{
1714	switch (mps) {
1715	case 64:
1716		return D0EPCTL_MPS_64;
1717	case 32:
1718		return D0EPCTL_MPS_32;
1719	case 16:
1720		return D0EPCTL_MPS_16;
1721	case 8:
1722		return D0EPCTL_MPS_8;
1723	}
1724
1725	/* bad max packet size, warn and return invalid result */
1726	WARN_ON(1);
1727	return (u32)-1;
1728}
1729
1730/**
1731 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1732 * @hsotg: The driver state.
1733 * @ep: The index number of the endpoint
1734 * @mps: The maximum packet size in bytes
 
 
1735 *
1736 * Configure the maximum packet size for the given endpoint, updating
1737 * the hardware control registers to reflect this.
1738 */
1739static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1740			unsigned int ep, unsigned int mps, unsigned int dir_in)
 
1741{
1742	struct dwc2_hsotg_ep *hs_ep;
1743	void __iomem *regs = hsotg->regs;
1744	u32 mpsval;
1745	u32 mcval;
1746	u32 reg;
1747
1748	hs_ep = index_to_ep(hsotg, ep, dir_in);
1749	if (!hs_ep)
1750		return;
1751
1752	if (ep == 0) {
 
 
1753		/* EP0 is a special case */
1754		mpsval = dwc2_hsotg_ep0_mps(mps);
1755		if (mpsval > 3)
1756			goto bad_mps;
1757		hs_ep->ep.maxpacket = mps;
1758		hs_ep->mc = 1;
1759	} else {
1760		mpsval = mps & DXEPCTL_MPS_MASK;
1761		if (mpsval > 1024)
1762			goto bad_mps;
1763		mcval = ((mps >> 11) & 0x3) + 1;
1764		hs_ep->mc = mcval;
1765		if (mcval > 3)
1766			goto bad_mps;
1767		hs_ep->ep.maxpacket = mpsval;
1768	}
1769
1770	if (dir_in) {
1771		reg = dwc2_readl(regs + DIEPCTL(ep));
1772		reg &= ~DXEPCTL_MPS_MASK;
1773		reg |= mpsval;
1774		dwc2_writel(reg, regs + DIEPCTL(ep));
1775	} else {
1776		reg = dwc2_readl(regs + DOEPCTL(ep));
1777		reg &= ~DXEPCTL_MPS_MASK;
1778		reg |= mpsval;
1779		dwc2_writel(reg, regs + DOEPCTL(ep));
1780	}
1781
1782	return;
1783
1784bad_mps:
1785	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1786}
1787
1788/**
1789 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1790 * @hsotg: The driver state
1791 * @idx: The index for the endpoint (0..15)
1792 */
1793static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1794{
1795	int timeout;
1796	int val;
1797
1798	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1799		    hsotg->regs + GRSTCTL);
1800
1801	/* wait until the fifo is flushed */
1802	timeout = 100;
1803
1804	while (1) {
1805		val = dwc2_readl(hsotg->regs + GRSTCTL);
1806
1807		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1808			break;
1809
1810		if (--timeout == 0) {
1811			dev_err(hsotg->dev,
1812				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1813				__func__, val);
1814			break;
1815		}
1816
1817		udelay(1);
1818	}
1819}
1820
1821/**
1822 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1823 * @hsotg: The driver state
1824 * @hs_ep: The driver endpoint to check.
1825 *
1826 * Check to see if there is a request that has data to send, and if so
1827 * make an attempt to write data into the FIFO.
1828 */
1829static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
1830			   struct dwc2_hsotg_ep *hs_ep)
1831{
1832	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1833
1834	if (!hs_ep->dir_in || !hs_req) {
1835		/**
1836		 * if request is not enqueued, we disable interrupts
1837		 * for endpoints, excepting ep0
1838		 */
1839		if (hs_ep->index != 0)
1840			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1841					     hs_ep->dir_in, 0);
1842		return 0;
1843	}
1844
1845	if (hs_req->req.actual < hs_req->req.length) {
1846		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1847			hs_ep->index);
1848		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1849	}
1850
1851	return 0;
1852}
1853
1854/**
1855 * dwc2_hsotg_complete_in - complete IN transfer
1856 * @hsotg: The device state.
1857 * @hs_ep: The endpoint that has just completed.
1858 *
1859 * An IN transfer has been completed, update the transfer's state and then
1860 * call the relevant completion routines.
1861 */
1862static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1863				  struct dwc2_hsotg_ep *hs_ep)
1864{
1865	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1866	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1867	int size_left, size_done;
1868
1869	if (!hs_req) {
1870		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1871		return;
1872	}
1873
1874	/* Finish ZLP handling for IN EP0 transactions */
1875	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1876		dev_dbg(hsotg->dev, "zlp packet sent\n");
 
 
 
 
 
 
 
1877		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1878		if (hsotg->test_mode) {
1879			int ret;
1880
1881			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1882			if (ret < 0) {
1883				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1884						hsotg->test_mode);
1885				dwc2_hsotg_stall_ep0(hsotg);
1886				return;
1887			}
1888		}
1889		dwc2_hsotg_enqueue_setup(hsotg);
1890		return;
1891	}
1892
1893	/*
1894	 * Calculate the size of the transfer by checking how much is left
1895	 * in the endpoint size register and then working it out from
1896	 * the amount we loaded for the transfer.
1897	 *
1898	 * We do this even for DMA, as the transfer may have incremented
1899	 * past the end of the buffer (DMA transfers are always 32bit
1900	 * aligned).
1901	 */
1902
1903	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 
 
 
 
 
 
1904
1905	size_done = hs_ep->size_loaded - size_left;
1906	size_done += hs_ep->last_load;
1907
1908	if (hs_req->req.actual != size_done)
1909		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1910			__func__, hs_req->req.actual, size_done);
1911
1912	hs_req->req.actual = size_done;
1913	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1914		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1915
1916	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1917		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1918		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1919		return;
1920	}
1921
1922	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1923	if (hs_ep->send_zlp) {
1924		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1925		hs_ep->send_zlp = 0;
1926		/* transfer will be completed on next complete interrupt */
1927		return;
 
 
 
1928	}
1929
1930	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1931		/* Move to STATUS OUT */
1932		dwc2_hsotg_ep0_zlp(hsotg, false);
1933		return;
1934	}
1935
 
 
 
 
 
 
1936	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1937}
1938
1939/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1940 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1941 * @hsotg: The driver state
1942 * @idx: The index for the endpoint (0..15)
1943 * @dir_in: Set if this is an IN endpoint
1944 *
1945 * Process and clear any interrupt pending for an individual endpoint
1946 */
1947static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1948			    int dir_in)
1949{
1950	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1951	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1952	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1953	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1954	u32 ints;
1955	u32 ctrl;
1956
1957	ints = dwc2_readl(hsotg->regs + epint_reg);
1958	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1959
1960	/* Clear endpoint interrupts */
1961	dwc2_writel(ints, hsotg->regs + epint_reg);
1962
1963	if (!hs_ep) {
1964		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1965					__func__, idx, dir_in ? "in" : "out");
1966		return;
1967	}
1968
1969	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1970		__func__, idx, dir_in ? "in" : "out", ints);
1971
1972	/* Don't process XferCompl interrupt if it is a setup packet */
1973	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1974		ints &= ~DXEPINT_XFERCOMPL;
1975
1976	if (ints & DXEPINT_XFERCOMPL) {
1977		hs_ep->has_correct_parity = 1;
1978		if (hs_ep->isochronous && hs_ep->interval == 1)
1979			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
 
 
 
 
 
1980
 
1981		dev_dbg(hsotg->dev,
1982			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1983			__func__, dwc2_readl(hsotg->regs + epctl_reg),
1984			dwc2_readl(hsotg->regs + epsiz_reg));
1985
1986		/*
1987		 * we get OutDone from the FIFO, so we only need to look
1988		 * at completing IN requests here
1989		 */
1990		if (dir_in) {
1991			dwc2_hsotg_complete_in(hsotg, hs_ep);
 
 
 
 
 
1992
1993			if (idx == 0 && !hs_ep->req)
1994				dwc2_hsotg_enqueue_setup(hsotg);
1995		} else if (using_dma(hsotg)) {
1996			/*
1997			 * We're using DMA, we need to fire an OutDone here
1998			 * as we ignore the RXFIFO.
1999			 */
2000
2001			dwc2_hsotg_handle_outdone(hsotg, idx);
2002		}
2003	}
2004
2005	if (ints & DXEPINT_EPDISBLD) {
2006		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2007
2008		if (dir_in) {
2009			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2010
2011			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2012
2013			if ((epctl & DXEPCTL_STALL) &&
2014				(epctl & DXEPCTL_EPTYPE_BULK)) {
2015				int dctl = dwc2_readl(hsotg->regs + DCTL);
2016
2017				dctl |= DCTL_CGNPINNAK;
2018				dwc2_writel(dctl, hsotg->regs + DCTL);
2019			}
2020		}
2021	}
2022
2023	if (ints & DXEPINT_AHBERR)
2024		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2025
2026	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2027		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2028
2029		if (using_dma(hsotg) && idx == 0) {
2030			/*
2031			 * this is the notification we've received a
2032			 * setup packet. In non-DMA mode we'd get this
2033			 * from the RXFIFO, instead we need to process
2034			 * the setup here.
2035			 */
2036
2037			if (dir_in)
2038				WARN_ON_ONCE(1);
2039			else
2040				dwc2_hsotg_handle_outdone(hsotg, 0);
2041		}
2042	}
2043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044	if (ints & DXEPINT_BACK2BACKSETUP)
2045		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2046
 
 
 
 
 
 
2047	if (dir_in && !hs_ep->isochronous) {
2048		/* not sure if this is important, but we'll clear it anyway */
2049		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2050			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2051				__func__, idx);
2052		}
2053
2054		/* this probably means something bad is happening */
2055		if (ints & DIEPMSK_INTKNEPMISMSK) {
2056			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2057				 __func__, idx);
2058		}
2059
2060		/* FIFO has space or is empty (see GAHBCFG) */
2061		if (hsotg->dedicated_fifos &&
2062		    ints & DIEPMSK_TXFIFOEMPTY) {
2063			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2064				__func__, idx);
2065			if (!using_dma(hsotg))
2066				dwc2_hsotg_trytx(hsotg, hs_ep);
2067		}
2068	}
2069}
2070
2071/**
2072 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2073 * @hsotg: The device state.
2074 *
2075 * Handle updating the device settings after the enumeration phase has
2076 * been completed.
2077 */
2078static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2079{
2080	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2081	int ep0_mps = 0, ep_mps = 8;
2082
2083	/*
2084	 * This should signal the finish of the enumeration phase
2085	 * of the USB handshaking, so we should now know what rate
2086	 * we connected at.
2087	 */
2088
2089	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2090
2091	/*
2092	 * note, since we're limited by the size of transfer on EP0, and
2093	 * it seems IN transfers must be a even number of packets we do
2094	 * not advertise a 64byte MPS on EP0.
2095	 */
2096
2097	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2098	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2099	case DSTS_ENUMSPD_FS:
2100	case DSTS_ENUMSPD_FS48:
2101		hsotg->gadget.speed = USB_SPEED_FULL;
2102		ep0_mps = EP0_MPS_LIMIT;
2103		ep_mps = 1023;
2104		break;
2105
2106	case DSTS_ENUMSPD_HS:
2107		hsotg->gadget.speed = USB_SPEED_HIGH;
2108		ep0_mps = EP0_MPS_LIMIT;
2109		ep_mps = 1024;
2110		break;
2111
2112	case DSTS_ENUMSPD_LS:
2113		hsotg->gadget.speed = USB_SPEED_LOW;
 
 
2114		/*
2115		 * note, we don't actually support LS in this driver at the
2116		 * moment, and the documentation seems to imply that it isn't
2117		 * supported by the PHYs on some of the devices.
2118		 */
2119		break;
2120	}
2121	dev_info(hsotg->dev, "new device is %s\n",
2122		 usb_speed_string(hsotg->gadget.speed));
2123
2124	/*
2125	 * we should now know the maximum packet size for an
2126	 * endpoint, so set the endpoints to a default value.
2127	 */
2128
2129	if (ep0_mps) {
2130		int i;
2131		/* Initialize ep0 for both in and out directions */
2132		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2133		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2134		for (i = 1; i < hsotg->num_of_eps; i++) {
2135			if (hsotg->eps_in[i])
2136				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
 
2137			if (hsotg->eps_out[i])
2138				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
 
2139		}
2140	}
2141
2142	/* ensure after enumeration our EP0 is active */
2143
2144	dwc2_hsotg_enqueue_setup(hsotg);
2145
2146	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2147		dwc2_readl(hsotg->regs + DIEPCTL0),
2148		dwc2_readl(hsotg->regs + DOEPCTL0));
2149}
2150
2151/**
2152 * kill_all_requests - remove all requests from the endpoint's queue
2153 * @hsotg: The device state.
2154 * @ep: The endpoint the requests may be on.
2155 * @result: The result code to use.
2156 *
2157 * Go through the requests on the given endpoint and mark them
2158 * completed with the given result code.
2159 */
2160static void kill_all_requests(struct dwc2_hsotg *hsotg,
2161			      struct dwc2_hsotg_ep *ep,
2162			      int result)
2163{
2164	struct dwc2_hsotg_req *req, *treq;
2165	unsigned size;
2166
2167	ep->req = NULL;
2168
2169	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2170		dwc2_hsotg_complete_request(hsotg, ep, req,
2171					   result);
 
 
2172
2173	if (!hsotg->dedicated_fifos)
2174		return;
2175	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2176	if (size < ep->fifo_size)
2177		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2178}
2179
2180/**
2181 * dwc2_hsotg_disconnect - disconnect service
2182 * @hsotg: The device state.
2183 *
2184 * The device has been disconnected. Remove all current
2185 * transactions and signal the gadget driver that this
2186 * has happened.
2187 */
2188void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2189{
2190	unsigned ep;
2191
2192	if (!hsotg->connected)
2193		return;
2194
2195	hsotg->connected = 0;
2196	hsotg->test_mode = 0;
2197
 
2198	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2199		if (hsotg->eps_in[ep])
2200			kill_all_requests(hsotg, hsotg->eps_in[ep],
2201								-ESHUTDOWN);
2202		if (hsotg->eps_out[ep])
2203			kill_all_requests(hsotg, hsotg->eps_out[ep],
2204								-ESHUTDOWN);
2205	}
2206
2207	call_gadget(hsotg, disconnect);
2208	hsotg->lx_state = DWC2_L3;
 
 
2209}
2210
2211/**
2212 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2213 * @hsotg: The device state:
2214 * @periodic: True if this is a periodic FIFO interrupt
2215 */
2216static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2217{
2218	struct dwc2_hsotg_ep *ep;
2219	int epno, ret;
2220
2221	/* look through for any more data to transmit */
2222	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2223		ep = index_to_ep(hsotg, epno, 1);
2224
2225		if (!ep)
2226			continue;
2227
2228		if (!ep->dir_in)
2229			continue;
2230
2231		if ((periodic && !ep->periodic) ||
2232		    (!periodic && ep->periodic))
2233			continue;
2234
2235		ret = dwc2_hsotg_trytx(hsotg, ep);
2236		if (ret < 0)
2237			break;
2238	}
2239}
2240
2241/* IRQ flags which will trigger a retry around the IRQ loop */
2242#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2243			GINTSTS_PTXFEMP |  \
2244			GINTSTS_RXFLVL)
2245
 
2246/**
2247 * dwc2_hsotg_core_init - issue softreset to the core
2248 * @hsotg: The device state
 
2249 *
2250 * Issue a soft reset to the core, and await the core finishing it.
2251 */
2252void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2253						bool is_usb_reset)
2254{
2255	u32 intmsk;
2256	u32 val;
2257	u32 usbcfg;
 
 
2258
2259	/* Kill any ep0 requests as controller will be reinitialized */
2260	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
2261
2262	if (!is_usb_reset)
2263		if (dwc2_core_reset(hsotg))
2264			return;
 
 
 
 
 
 
 
 
 
2265
2266	/*
2267	 * we must now enable ep0 ready for host detection and then
2268	 * set configuration.
2269	 */
2270
2271	/* keep other bits untouched (so e.g. forced modes are not lost) */
2272	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2273	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
2274		GUSBCFG_HNPCAP);
2275
2276	/* set the PLL on, remove the HNP/SRP and set the PHY */
2277	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2278	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2279		(val << GUSBCFG_USBTRDTIM_SHIFT);
2280	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2281
2282	dwc2_hsotg_init_fifo(hsotg);
2283
2284	if (!is_usb_reset)
2285		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2286
2287	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288
2289	/* Clear any pending OTG interrupts */
2290	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2291
2292	/* Clear any pending interrupts */
2293	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2294	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2295		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2296		GINTSTS_USBRST | GINTSTS_RESETDET |
2297		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2298		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
2299		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
 
 
 
2300
2301	if (hsotg->core_params->external_id_pin_ctl <= 0)
2302		intmsk |= GINTSTS_CONIDSTSCHNG;
2303
2304	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2305
2306	if (using_dma(hsotg))
2307		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2308			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2309			    hsotg->regs + GAHBCFG);
2310	else
2311		dwc2_writel(((hsotg->dedicated_fifos) ?
 
 
 
 
 
2312						(GAHBCFG_NP_TXF_EMP_LVL |
2313						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2314			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
 
2315
2316	/*
2317	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2318	 * when we have no data to transfer. Otherwise we get being flooded by
2319	 * interrupts.
2320	 */
2321
2322	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2323		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2324		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2325		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2326		DIEPMSK_INTKNEPMISMSK,
2327		hsotg->regs + DIEPMSK);
2328
2329	/*
2330	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2331	 * DMA mode we may need this.
2332	 */
2333	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2334				    DIEPMSK_TIMEOUTMSK) : 0) |
2335		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2336		DOEPMSK_SETUPMSK,
2337		hsotg->regs + DOEPMSK);
2338
2339	dwc2_writel(0, hsotg->regs + DAINTMSK);
 
 
 
 
 
 
 
 
 
 
2340
2341	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2342		dwc2_readl(hsotg->regs + DIEPCTL0),
2343		dwc2_readl(hsotg->regs + DOEPCTL0));
2344
2345	/* enable in and out endpoint interrupts */
2346	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2347
2348	/*
2349	 * Enable the RXFIFO when in slave mode, as this is how we collect
2350	 * the data. In DMA mode, we get events from the FIFO but also
2351	 * things we cannot process, so do not use it.
2352	 */
2353	if (!using_dma(hsotg))
2354		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2355
2356	/* Enable interrupts for EP0 in and out */
2357	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2358	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2359
2360	if (!is_usb_reset) {
2361		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2362		udelay(10);  /* see openiboot */
2363		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2364	}
2365
2366	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2367
2368	/*
2369	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2370	 * writing to the EPCTL register..
2371	 */
2372
2373	/* set to read 1 8byte packet */
2374	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2375	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2376
2377	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2378	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2379	       DXEPCTL_USBACTEP,
2380	       hsotg->regs + DOEPCTL0);
2381
2382	/* enable, but don't activate EP0in */
2383	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2384	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2385
2386	dwc2_hsotg_enqueue_setup(hsotg);
2387
2388	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2389		dwc2_readl(hsotg->regs + DIEPCTL0),
2390		dwc2_readl(hsotg->regs + DOEPCTL0));
2391
2392	/* clear global NAKs */
2393	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2394	if (!is_usb_reset)
2395		val |= DCTL_SFTDISCON;
2396	__orr32(hsotg->regs + DCTL, val);
 
 
 
 
 
 
 
2397
2398	/* must be at-least 3ms to allow bus to see disconnect */
2399	mdelay(3);
2400
2401	hsotg->lx_state = DWC2_L0;
 
 
 
 
 
 
2402}
2403
2404static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2405{
2406	/* set the soft-disconnect bit */
2407	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2408}
2409
2410void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2411{
2412	/* remove the soft-disconnect and let's go */
2413	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414}
2415
2416/**
2417 * dwc2_hsotg_irq - handle device interrupt
2418 * @irq: The IRQ number triggered
2419 * @pw: The pw value when registered the handler.
2420 */
2421static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2422{
2423	struct dwc2_hsotg *hsotg = pw;
2424	int retry_count = 8;
2425	u32 gintsts;
2426	u32 gintmsk;
2427
 
 
 
2428	spin_lock(&hsotg->lock);
2429irq_retry:
2430	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
2431	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2432
2433	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2434		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2435
2436	gintsts &= gintmsk;
2437
2438	if (gintsts & GINTSTS_RESETDET) {
2439		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2440
2441		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2442
2443		/* This event must be used only if controller is suspended */
2444		if (hsotg->lx_state == DWC2_L2) {
2445			dwc2_exit_hibernation(hsotg, true);
2446			hsotg->lx_state = DWC2_L0;
2447		}
2448	}
2449
2450	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2451
2452		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
2453		u32 connected = hsotg->connected;
2454
2455		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2456		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2457			dwc2_readl(hsotg->regs + GNPTXSTS));
2458
2459		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2460
2461		/* Report disconnection if it is not already done. */
2462		dwc2_hsotg_disconnect(hsotg);
2463
 
 
 
2464		if (usb_status & GOTGCTL_BSESVLD && connected)
2465			dwc2_hsotg_core_init_disconnected(hsotg, true);
2466	}
2467
2468	if (gintsts & GINTSTS_ENUMDONE) {
2469		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2470
2471		dwc2_hsotg_irq_enumdone(hsotg);
2472	}
2473
2474	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2475		u32 daint = dwc2_readl(hsotg->regs + DAINT);
2476		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2477		u32 daint_out, daint_in;
2478		int ep;
2479
2480		daint &= daintmsk;
2481		daint_out = daint >> DAINT_OUTEP_SHIFT;
2482		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2483
2484		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2485
2486		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2487						ep++, daint_out >>= 1) {
2488			if (daint_out & 1)
2489				dwc2_hsotg_epint(hsotg, ep, 0);
2490		}
2491
2492		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2493						ep++, daint_in >>= 1) {
2494			if (daint_in & 1)
2495				dwc2_hsotg_epint(hsotg, ep, 1);
2496		}
2497	}
2498
2499	/* check both FIFOs */
2500
2501	if (gintsts & GINTSTS_NPTXFEMP) {
2502		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2503
2504		/*
2505		 * Disable the interrupt to stop it happening again
2506		 * unless one of these endpoint routines decides that
2507		 * it needs re-enabling
2508		 */
2509
2510		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2511		dwc2_hsotg_irq_fifoempty(hsotg, false);
2512	}
2513
2514	if (gintsts & GINTSTS_PTXFEMP) {
2515		dev_dbg(hsotg->dev, "PTxFEmp\n");
2516
2517		/* See note in GINTSTS_NPTxFEmp */
2518
2519		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2520		dwc2_hsotg_irq_fifoempty(hsotg, true);
2521	}
2522
2523	if (gintsts & GINTSTS_RXFLVL) {
2524		/*
2525		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2526		 * we need to retry dwc2_hsotg_handle_rx if this is still
2527		 * set.
2528		 */
2529
2530		dwc2_hsotg_handle_rx(hsotg);
2531	}
2532
2533	if (gintsts & GINTSTS_ERLYSUSP) {
2534		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2535		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2536	}
2537
2538	/*
2539	 * these next two seem to crop-up occasionally causing the core
2540	 * to shutdown the USB transfer, so try clearing them and logging
2541	 * the occurrence.
2542	 */
2543
2544	if (gintsts & GINTSTS_GOUTNAKEFF) {
2545		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
 
 
 
 
2546
2547		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
 
 
 
 
 
2548
2549		dwc2_hsotg_dump(hsotg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550	}
2551
2552	if (gintsts & GINTSTS_GINNAKEFF) {
2553		dev_info(hsotg->dev, "GINNakEff triggered\n");
2554
2555		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2556
2557		dwc2_hsotg_dump(hsotg);
2558	}
2559
2560	if (gintsts & GINTSTS_INCOMPL_SOIN) {
2561		u32 idx, epctl_reg;
2562		struct dwc2_hsotg_ep *hs_ep;
2563
2564		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
2565		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2566			hs_ep = hsotg->eps_in[idx];
2567
2568			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2569				continue;
 
 
2570
2571			epctl_reg = DIEPCTL(idx);
2572			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2573		}
2574		dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
2575	}
2576
2577	if (gintsts & GINTSTS_INCOMPL_SOOUT) {
2578		u32 idx, epctl_reg;
2579		struct dwc2_hsotg_ep *hs_ep;
2580
2581		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
2582		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2583			hs_ep = hsotg->eps_out[idx];
2584
2585			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2586				continue;
2587
2588			epctl_reg = DOEPCTL(idx);
2589			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590		}
2591		dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
 
 
 
 
 
2592	}
2593
2594	/*
2595	 * if we've had fifo events, we should try and go around the
2596	 * loop again to see if there's any point in returning yet.
2597	 */
2598
2599	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2600			goto irq_retry;
 
 
2601
2602	spin_unlock(&hsotg->lock);
 
2603
2604	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605}
2606
2607/**
2608 * dwc2_hsotg_ep_enable - enable the given endpoint
2609 * @ep: The USB endpint to configure
2610 * @desc: The USB endpoint descriptor to configure with.
2611 *
2612 * This is called from the USB gadget code's usb_ep_enable().
2613 */
2614static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2615			       const struct usb_endpoint_descriptor *desc)
2616{
2617	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2618	struct dwc2_hsotg *hsotg = hs_ep->parent;
2619	unsigned long flags;
2620	unsigned int index = hs_ep->index;
2621	u32 epctrl_reg;
2622	u32 epctrl;
2623	u32 mps;
 
 
2624	unsigned int dir_in;
2625	unsigned int i, val, size;
2626	int ret = 0;
 
 
2627
2628	dev_dbg(hsotg->dev,
2629		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2630		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2631		desc->wMaxPacketSize, desc->bInterval);
2632
2633	/* not to be called for EP0 */
2634	WARN_ON(index == 0);
 
 
 
2635
2636	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2637	if (dir_in != hs_ep->dir_in) {
2638		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2639		return -EINVAL;
2640	}
2641
 
2642	mps = usb_endpoint_maxp(desc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2643
2644	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2645
2646	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2647	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2648
2649	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2650		__func__, epctrl, epctrl_reg);
2651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2652	spin_lock_irqsave(&hsotg->lock, flags);
2653
2654	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2655	epctrl |= DXEPCTL_MPS(mps);
2656
2657	/*
2658	 * mark the endpoint as active, otherwise the core may ignore
2659	 * transactions entirely for this endpoint
2660	 */
2661	epctrl |= DXEPCTL_USBACTEP;
2662
2663	/*
2664	 * set the NAK status on the endpoint, otherwise we might try and
2665	 * do something with data that we've yet got a request to process
2666	 * since the RXFIFO will take data for an endpoint even if the
2667	 * size register hasn't been set.
2668	 */
2669
2670	epctrl |= DXEPCTL_SNAK;
2671
2672	/* update the endpoint state */
2673	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2674
2675	/* default, set to non-periodic */
2676	hs_ep->isochronous = 0;
2677	hs_ep->periodic = 0;
2678	hs_ep->halted = 0;
2679	hs_ep->interval = desc->bInterval;
2680	hs_ep->has_correct_parity = 0;
2681
2682	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2683		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2684
2685	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2686	case USB_ENDPOINT_XFER_ISOC:
2687		epctrl |= DXEPCTL_EPTYPE_ISO;
2688		epctrl |= DXEPCTL_SETEVENFR;
2689		hs_ep->isochronous = 1;
2690		if (dir_in)
 
 
 
 
2691			hs_ep->periodic = 1;
 
 
 
 
 
 
 
 
 
2692		break;
2693
2694	case USB_ENDPOINT_XFER_BULK:
2695		epctrl |= DXEPCTL_EPTYPE_BULK;
2696		break;
2697
2698	case USB_ENDPOINT_XFER_INT:
2699		if (dir_in)
2700			hs_ep->periodic = 1;
2701
 
 
 
2702		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2703		break;
2704
2705	case USB_ENDPOINT_XFER_CONTROL:
2706		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2707		break;
2708	}
2709
2710	/* If fifo is already allocated for this ep */
2711	if (hs_ep->fifo_index) {
2712		size =  hs_ep->ep.maxpacket * hs_ep->mc;
2713		/* If bigger fifo is required deallocate current one */
2714		if (size > hs_ep->fifo_size) {
2715			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2716			hs_ep->fifo_index = 0;
2717			hs_ep->fifo_size = 0;
2718		}
2719	}
2720
2721	/*
2722	 * if the hardware has dedicated fifos, we must give each IN EP
2723	 * a unique tx-fifo even if it is non-periodic.
2724	 */
2725	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
 
2726		u32 fifo_index = 0;
2727		u32 fifo_size = UINT_MAX;
2728		size = hs_ep->ep.maxpacket*hs_ep->mc;
2729		for (i = 1; i < hsotg->num_of_eps; ++i) {
2730			if (hsotg->fifo_map & (1<<i))
 
2731				continue;
2732			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2733			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2734			if (val < size)
2735				continue;
2736			/* Search for smallest acceptable fifo */
2737			if (val < fifo_size) {
2738				fifo_size = val;
2739				fifo_index = i;
2740			}
2741		}
2742		if (!fifo_index) {
2743			dev_err(hsotg->dev,
2744				"%s: No suitable fifo found\n", __func__);
2745			ret = -ENOMEM;
2746			goto error;
2747		}
 
2748		hsotg->fifo_map |= 1 << fifo_index;
2749		epctrl |= DXEPCTL_TXFNUM(fifo_index);
2750		hs_ep->fifo_index = fifo_index;
2751		hs_ep->fifo_size = fifo_size;
2752	}
2753
2754	/* for non control endpoints, set PID to D0 */
2755	if (index)
2756		epctrl |= DXEPCTL_SETD0PID;
2757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2758	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2759		__func__, epctrl);
2760
2761	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2762	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2763		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2764
2765	/* enable the endpoint interrupt */
2766	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2767
2768error:
2769	spin_unlock_irqrestore(&hsotg->lock, flags);
 
 
 
 
 
 
 
 
 
2770	return ret;
2771}
2772
2773/**
2774 * dwc2_hsotg_ep_disable - disable given endpoint
2775 * @ep: The endpoint to disable.
2776 */
2777static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2778{
2779	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2780	struct dwc2_hsotg *hsotg = hs_ep->parent;
2781	int dir_in = hs_ep->dir_in;
2782	int index = hs_ep->index;
2783	unsigned long flags;
2784	u32 epctrl_reg;
2785	u32 ctrl;
2786
2787	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2788
2789	if (ep == &hsotg->eps_out[0]->ep) {
2790		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2791		return -EINVAL;
2792	}
2793
 
 
 
 
 
2794	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2795
2796	spin_lock_irqsave(&hsotg->lock, flags);
2797
2798	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2799	hs_ep->fifo_index = 0;
2800	hs_ep->fifo_size = 0;
2801
2802	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2803	ctrl &= ~DXEPCTL_EPENA;
2804	ctrl &= ~DXEPCTL_USBACTEP;
2805	ctrl |= DXEPCTL_SNAK;
2806
2807	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2808	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2809
2810	/* disable endpoint interrupts */
2811	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2812
2813	/* terminate all requests with shutdown */
2814	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2815
2816	spin_unlock_irqrestore(&hsotg->lock, flags);
 
 
 
2817	return 0;
2818}
2819
 
 
 
 
 
 
 
 
 
 
 
 
 
2820/**
2821 * on_list - check request is on the given endpoint
2822 * @ep: The endpoint to check.
2823 * @test: The request to test if it is on the endpoint.
2824 */
2825static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2826{
2827	struct dwc2_hsotg_req *req, *treq;
2828
2829	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2830		if (req == test)
2831			return true;
2832	}
2833
2834	return false;
2835}
2836
2837static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
2838							u32 bit, u32 timeout)
2839{
2840	u32 i;
2841
2842	for (i = 0; i < timeout; i++) {
2843		if (dwc2_readl(hs_otg->regs + reg) & bit)
2844			return 0;
2845		udelay(1);
2846	}
2847
2848	return -ETIMEDOUT;
2849}
2850
2851static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2852						struct dwc2_hsotg_ep *hs_ep)
2853{
2854	u32 epctrl_reg;
2855	u32 epint_reg;
2856
2857	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
2858		DOEPCTL(hs_ep->index);
2859	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
2860		DOEPINT(hs_ep->index);
2861
2862	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
2863			hs_ep->name);
2864	if (hs_ep->dir_in) {
2865		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
2866		/* Wait for Nak effect */
2867		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
2868						DXEPINT_INEPNAKEFF, 100))
2869			dev_warn(hsotg->dev,
2870				"%s: timeout DIEPINT.NAKEFF\n", __func__);
2871	} else {
2872		/* Clear any pending nak effect interrupt */
2873		dwc2_writel(GINTSTS_GOUTNAKEFF, hsotg->regs + GINTSTS);
2874
2875		__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2876
2877		/* Wait for global nak to take effect */
2878		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2879						GINTSTS_GOUTNAKEFF, 100))
2880			dev_warn(hsotg->dev,
2881				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
2882	}
2883
2884	/* Disable ep */
2885	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
2886
2887	/* Wait for ep to be disabled */
2888	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
2889		dev_warn(hsotg->dev,
2890			"%s: timeout DOEPCTL.EPDisable\n", __func__);
2891
2892	if (hs_ep->dir_in) {
2893		if (hsotg->dedicated_fifos) {
2894			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
2895				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
2896			/* Wait for fifo flush */
2897			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
2898							GRSTCTL_TXFFLSH, 100))
2899				dev_warn(hsotg->dev,
2900					"%s: timeout flushing fifos\n",
2901					__func__);
2902		}
2903		/* TODO: Flush shared tx fifo */
2904	} else {
2905		/* Remove global NAKs */
2906		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2907	}
2908}
2909
2910/**
2911 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2912 * @ep: The endpoint to dequeue.
2913 * @req: The request to be removed from a queue.
2914 */
2915static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2916{
2917	struct dwc2_hsotg_req *hs_req = our_req(req);
2918	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2919	struct dwc2_hsotg *hs = hs_ep->parent;
2920	unsigned long flags;
2921
2922	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2923
2924	spin_lock_irqsave(&hs->lock, flags);
2925
2926	if (!on_list(hs_ep, hs_req)) {
2927		spin_unlock_irqrestore(&hs->lock, flags);
2928		return -EINVAL;
2929	}
2930
2931	/* Dequeue already started request */
2932	if (req == &hs_ep->req->req)
2933		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
2934
2935	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2936	spin_unlock_irqrestore(&hs->lock, flags);
2937
2938	return 0;
2939}
2940
2941/**
2942 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2943 * @ep: The endpoint to set halt.
2944 * @value: Set or unset the halt.
 
 
 
 
 
2945 */
2946static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2947{
2948	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2949	struct dwc2_hsotg *hs = hs_ep->parent;
2950	int index = hs_ep->index;
2951	u32 epreg;
2952	u32 epctl;
2953	u32 xfertype;
2954
2955	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2956
2957	if (index == 0) {
2958		if (value)
2959			dwc2_hsotg_stall_ep0(hs);
2960		else
2961			dev_warn(hs->dev,
2962				 "%s: can't clear halt on ep0\n", __func__);
2963		return 0;
2964	}
2965
 
 
 
 
 
 
 
 
 
 
 
2966	if (hs_ep->dir_in) {
2967		epreg = DIEPCTL(index);
2968		epctl = dwc2_readl(hs->regs + epreg);
2969
2970		if (value) {
2971			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
2972			if (epctl & DXEPCTL_EPENA)
2973				epctl |= DXEPCTL_EPDIS;
2974		} else {
2975			epctl &= ~DXEPCTL_STALL;
2976			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2977			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2978				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2979					epctl |= DXEPCTL_SETD0PID;
2980		}
2981		dwc2_writel(epctl, hs->regs + epreg);
2982	} else {
2983
2984		epreg = DOEPCTL(index);
2985		epctl = dwc2_readl(hs->regs + epreg);
2986
2987		if (value)
2988			epctl |= DXEPCTL_STALL;
2989		else {
 
 
 
 
 
2990			epctl &= ~DXEPCTL_STALL;
2991			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2992			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2993				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2994					epctl |= DXEPCTL_SETD0PID;
 
2995		}
2996		dwc2_writel(epctl, hs->regs + epreg);
2997	}
2998
2999	hs_ep->halted = value;
3000
3001	return 0;
3002}
3003
3004/**
3005 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3006 * @ep: The endpoint to set halt.
3007 * @value: Set or unset the halt.
3008 */
3009static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3010{
3011	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3012	struct dwc2_hsotg *hs = hs_ep->parent;
3013	unsigned long flags = 0;
3014	int ret = 0;
3015
3016	spin_lock_irqsave(&hs->lock, flags);
3017	ret = dwc2_hsotg_ep_sethalt(ep, value);
3018	spin_unlock_irqrestore(&hs->lock, flags);
3019
3020	return ret;
3021}
3022
3023static struct usb_ep_ops dwc2_hsotg_ep_ops = {
3024	.enable		= dwc2_hsotg_ep_enable,
3025	.disable	= dwc2_hsotg_ep_disable,
3026	.alloc_request	= dwc2_hsotg_ep_alloc_request,
3027	.free_request	= dwc2_hsotg_ep_free_request,
3028	.queue		= dwc2_hsotg_ep_queue_lock,
3029	.dequeue	= dwc2_hsotg_ep_dequeue,
3030	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
3031	/* note, don't believe we have any call for the fifo routines */
3032};
3033
3034/**
3035 * dwc2_hsotg_init - initalize the usb core
3036 * @hsotg: The driver state
3037 */
3038static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3039{
3040	u32 trdtim;
3041	u32 usbcfg;
3042	/* unmask subset of endpoint interrupts */
3043
3044	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3045		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3046		    hsotg->regs + DIEPMSK);
3047
3048	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3049		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3050		    hsotg->regs + DOEPMSK);
3051
3052	dwc2_writel(0, hsotg->regs + DAINTMSK);
3053
3054	/* Be in disconnected state until gadget is registered */
3055	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3056
3057	/* setup fifos */
3058
3059	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3060		dwc2_readl(hsotg->regs + GRXFSIZ),
3061		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3062
3063	dwc2_hsotg_init_fifo(hsotg);
3064
3065	/* keep other bits untouched (so e.g. forced modes are not lost) */
3066	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3067	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3068		GUSBCFG_HNPCAP);
3069
3070	/* set the PLL on, remove the HNP/SRP and set the PHY */
3071	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3072	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3073		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
3074	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3075
3076	if (using_dma(hsotg))
3077		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3078}
3079
3080/**
3081 * dwc2_hsotg_udc_start - prepare the udc for work
3082 * @gadget: The usb gadget state
3083 * @driver: The usb gadget driver
3084 *
3085 * Perform initialization to prepare udc device and driver
3086 * to work.
3087 */
3088static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3089			   struct usb_gadget_driver *driver)
3090{
3091	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3092	unsigned long flags;
3093	int ret;
3094
3095	if (!hsotg) {
3096		pr_err("%s: called with no device\n", __func__);
3097		return -ENODEV;
3098	}
3099
3100	if (!driver) {
3101		dev_err(hsotg->dev, "%s: no driver\n", __func__);
3102		return -EINVAL;
3103	}
3104
3105	if (driver->max_speed < USB_SPEED_FULL)
3106		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3107
3108	if (!driver->setup) {
3109		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3110		return -EINVAL;
3111	}
3112
3113	WARN_ON(hsotg->driver);
3114
3115	driver->driver.bus = NULL;
3116	hsotg->driver = driver;
3117	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3118	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3119
3120	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
3121		ret = dwc2_lowlevel_hw_enable(hsotg);
3122		if (ret)
3123			goto err;
3124	}
3125
3126	if (!IS_ERR_OR_NULL(hsotg->uphy))
3127		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3128
3129	spin_lock_irqsave(&hsotg->lock, flags);
3130	dwc2_hsotg_init(hsotg);
3131	dwc2_hsotg_core_init_disconnected(hsotg, false);
 
 
 
3132	hsotg->enabled = 0;
3133	spin_unlock_irqrestore(&hsotg->lock, flags);
3134
 
3135	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3136
3137	return 0;
3138
3139err:
3140	hsotg->driver = NULL;
3141	return ret;
3142}
3143
3144/**
3145 * dwc2_hsotg_udc_stop - stop the udc
3146 * @gadget: The usb gadget state
3147 * @driver: The usb gadget driver
3148 *
3149 * Stop udc hw block and stay tunned for future transmissions
3150 */
3151static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3152{
3153	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3154	unsigned long flags = 0;
3155	int ep;
3156
3157	if (!hsotg)
3158		return -ENODEV;
3159
3160	/* all endpoints should be shutdown */
3161	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3162		if (hsotg->eps_in[ep])
3163			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3164		if (hsotg->eps_out[ep])
3165			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3166	}
3167
3168	spin_lock_irqsave(&hsotg->lock, flags);
3169
3170	hsotg->driver = NULL;
3171	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3172	hsotg->enabled = 0;
3173
3174	spin_unlock_irqrestore(&hsotg->lock, flags);
3175
3176	if (!IS_ERR_OR_NULL(hsotg->uphy))
3177		otg_set_peripheral(hsotg->uphy->otg, NULL);
3178
3179	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3180		dwc2_lowlevel_hw_disable(hsotg);
3181
3182	return 0;
3183}
3184
3185/**
3186 * dwc2_hsotg_gadget_getframe - read the frame number
3187 * @gadget: The usb gadget state
3188 *
3189 * Read the {micro} frame number
3190 */
3191static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3192{
3193	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3194}
3195
3196/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3198 * @gadget: The usb gadget state
3199 * @is_on: Current state of the USB PHY
3200 *
3201 * Connect/Disconnect the USB PHY pullup
3202 */
3203static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3204{
3205	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3206	unsigned long flags = 0;
3207
3208	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
3209			hsotg->op_state);
3210
3211	/* Don't modify pullup state while in host mode */
3212	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3213		hsotg->enabled = is_on;
3214		return 0;
3215	}
3216
3217	spin_lock_irqsave(&hsotg->lock, flags);
3218	if (is_on) {
3219		hsotg->enabled = 1;
3220		dwc2_hsotg_core_init_disconnected(hsotg, false);
 
 
3221		dwc2_hsotg_core_connect(hsotg);
3222	} else {
3223		dwc2_hsotg_core_disconnect(hsotg);
3224		dwc2_hsotg_disconnect(hsotg);
3225		hsotg->enabled = 0;
3226	}
3227
3228	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3229	spin_unlock_irqrestore(&hsotg->lock, flags);
3230
3231	return 0;
3232}
3233
3234static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3235{
3236	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3237	unsigned long flags;
3238
3239	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3240	spin_lock_irqsave(&hsotg->lock, flags);
3241
3242	/*
3243	 * If controller is hibernated, it must exit from hibernation
3244	 * before being initialized / de-initialized
3245	 */
3246	if (hsotg->lx_state == DWC2_L2)
3247		dwc2_exit_hibernation(hsotg, false);
 
 
 
 
3248
3249	if (is_active) {
3250		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3251
3252		dwc2_hsotg_core_init_disconnected(hsotg, false);
3253		if (hsotg->enabled)
 
 
3254			dwc2_hsotg_core_connect(hsotg);
 
3255	} else {
3256		dwc2_hsotg_core_disconnect(hsotg);
3257		dwc2_hsotg_disconnect(hsotg);
3258	}
3259
3260	spin_unlock_irqrestore(&hsotg->lock, flags);
3261	return 0;
3262}
3263
3264/**
3265 * dwc2_hsotg_vbus_draw - report bMaxPower field
3266 * @gadget: The usb gadget state
3267 * @mA: Amount of current
3268 *
3269 * Report how much power the device may consume to the phy.
3270 */
3271static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3272{
3273	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3274
3275	if (IS_ERR_OR_NULL(hsotg->uphy))
3276		return -ENOTSUPP;
3277	return usb_phy_set_power(hsotg->uphy, mA);
3278}
3279
3280static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
3281	.get_frame	= dwc2_hsotg_gadget_getframe,
 
3282	.udc_start		= dwc2_hsotg_udc_start,
3283	.udc_stop		= dwc2_hsotg_udc_stop,
3284	.pullup                 = dwc2_hsotg_pullup,
3285	.vbus_session		= dwc2_hsotg_vbus_session,
3286	.vbus_draw		= dwc2_hsotg_vbus_draw,
3287};
3288
3289/**
3290 * dwc2_hsotg_initep - initialise a single endpoint
3291 * @hsotg: The device state.
3292 * @hs_ep: The endpoint to be initialised.
3293 * @epnum: The endpoint number
 
3294 *
3295 * Initialise the given endpoint (as part of the probe and device state
3296 * creation) to give to the gadget driver. Setup the endpoint name, any
3297 * direction information and other state that may be required.
3298 */
3299static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
3300				       struct dwc2_hsotg_ep *hs_ep,
3301				       int epnum,
3302				       bool dir_in)
3303{
3304	char *dir;
3305
3306	if (epnum == 0)
3307		dir = "";
3308	else if (dir_in)
3309		dir = "in";
3310	else
3311		dir = "out";
3312
3313	hs_ep->dir_in = dir_in;
3314	hs_ep->index = epnum;
3315
3316	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3317
3318	INIT_LIST_HEAD(&hs_ep->queue);
3319	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3320
3321	/* add to the list of endpoints known by the gadget driver */
3322	if (epnum)
3323		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3324
3325	hs_ep->parent = hsotg;
3326	hs_ep->ep.name = hs_ep->name;
3327	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
 
 
 
 
 
3328	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3329
3330	if (epnum == 0) {
3331		hs_ep->ep.caps.type_control = true;
3332	} else {
3333		hs_ep->ep.caps.type_iso = true;
3334		hs_ep->ep.caps.type_bulk = true;
 
 
3335		hs_ep->ep.caps.type_int = true;
3336	}
3337
3338	if (dir_in)
3339		hs_ep->ep.caps.dir_in = true;
3340	else
3341		hs_ep->ep.caps.dir_out = true;
3342
3343	/*
3344	 * if we're using dma, we need to set the next-endpoint pointer
3345	 * to be something valid.
3346	 */
3347
3348	if (using_dma(hsotg)) {
3349		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
 
3350		if (dir_in)
3351			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3352		else
3353			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3354	}
3355}
3356
3357/**
3358 * dwc2_hsotg_hw_cfg - read HW configuration registers
3359 * @param: The device state
3360 *
3361 * Read the USB core HW configuration registers
3362 */
3363static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3364{
3365	u32 cfg;
3366	u32 ep_type;
3367	u32 i;
3368
3369	/* check hardware configuration */
3370
3371	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
3372
3373	/* Add ep0 */
3374	hsotg->num_of_eps++;
3375
3376	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3377								GFP_KERNEL);
 
3378	if (!hsotg->eps_in[0])
3379		return -ENOMEM;
3380	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3381	hsotg->eps_out[0] = hsotg->eps_in[0];
3382
3383	cfg = hsotg->hw_params.dev_ep_dirs;
3384	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3385		ep_type = cfg & 3;
3386		/* Direction in or both */
3387		if (!(ep_type & 2)) {
3388			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3389				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3390			if (!hsotg->eps_in[i])
3391				return -ENOMEM;
3392		}
3393		/* Direction out or both */
3394		if (!(ep_type & 1)) {
3395			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3396				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3397			if (!hsotg->eps_out[i])
3398				return -ENOMEM;
3399		}
3400	}
3401
3402	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
3403	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3404
3405	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3406		 hsotg->num_of_eps,
3407		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3408		 hsotg->fifo_mem);
3409	return 0;
3410}
3411
3412/**
3413 * dwc2_hsotg_dump - dump state of the udc
3414 * @param: The device state
 
3415 */
3416static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3417{
3418#ifdef DEBUG
3419	struct device *dev = hsotg->dev;
3420	void __iomem *regs = hsotg->regs;
3421	u32 val;
3422	int idx;
3423
3424	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3425		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
3426		 dwc2_readl(regs + DIEPMSK));
3427
3428	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3429		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3430
3431	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3432		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3433
3434	/* show periodic fifo settings */
3435
3436	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3437		val = dwc2_readl(regs + DPTXFSIZN(idx));
3438		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3439			 val >> FIFOSIZE_DEPTH_SHIFT,
3440			 val & FIFOSIZE_STARTADDR_MASK);
3441	}
3442
3443	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3444		dev_info(dev,
3445			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3446			 dwc2_readl(regs + DIEPCTL(idx)),
3447			 dwc2_readl(regs + DIEPTSIZ(idx)),
3448			 dwc2_readl(regs + DIEPDMA(idx)));
3449
3450		val = dwc2_readl(regs + DOEPCTL(idx));
3451		dev_info(dev,
3452			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3453			 idx, dwc2_readl(regs + DOEPCTL(idx)),
3454			 dwc2_readl(regs + DOEPTSIZ(idx)),
3455			 dwc2_readl(regs + DOEPDMA(idx)));
3456
3457	}
3458
3459	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3460		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
3461#endif
3462}
3463
3464#ifdef CONFIG_OF
3465static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3466{
3467	struct device_node *np = hsotg->dev->of_node;
3468	u32 len = 0;
3469	u32 i = 0;
3470
3471	/* Enable dma if requested in device tree */
3472	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3473
3474	/*
3475	* Register TX periodic fifo size per endpoint.
3476	* EP0 is excluded since it has no fifo configuration.
3477	*/
3478	if (!of_find_property(np, "g-tx-fifo-size", &len))
3479		goto rx_fifo;
3480
3481	len /= sizeof(u32);
3482
3483	/* Read tx fifo sizes other than ep0 */
3484	if (of_property_read_u32_array(np, "g-tx-fifo-size",
3485						&hsotg->g_tx_fifo_sz[1], len))
3486		goto rx_fifo;
3487
3488	/* Add ep0 */
3489	len++;
3490
3491	/* Make remaining TX fifos unavailable */
3492	if (len < MAX_EPS_CHANNELS) {
3493		for (i = len; i < MAX_EPS_CHANNELS; i++)
3494			hsotg->g_tx_fifo_sz[i] = 0;
3495	}
3496
3497rx_fifo:
3498	/* Register RX fifo size */
3499	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3500
3501	/* Register NPTX fifo size */
3502	of_property_read_u32(np, "g-np-tx-fifo-size",
3503						&hsotg->g_np_g_tx_fifo_sz);
3504}
3505#else
3506static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3507#endif
3508
3509/**
3510 * dwc2_gadget_init - init function for gadget
3511 * @dwc2: The data structure for the DWC2 driver.
3512 * @irq: The IRQ number for the controller.
3513 */
3514int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3515{
3516	struct device *dev = hsotg->dev;
3517	int epnum;
3518	int ret;
3519	int i;
3520	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3521
3522	/* Initialize to legacy fifo configuration values */
3523	hsotg->g_rx_fifo_sz = 2048;
3524	hsotg->g_np_g_tx_fifo_sz = 1024;
3525	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3526	/* Device tree specific probe */
3527	dwc2_hsotg_of_probe(hsotg);
3528
3529	/* Check against largest possible value. */
3530	if (hsotg->g_np_g_tx_fifo_sz >
3531	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
3532		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
3533			 hsotg->g_np_g_tx_fifo_sz,
3534			 hsotg->hw_params.dev_nperio_tx_fifo_size);
3535		hsotg->g_np_g_tx_fifo_sz =
3536			hsotg->hw_params.dev_nperio_tx_fifo_size;
3537	}
3538
3539	/* Dump fifo information */
3540	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3541						hsotg->g_np_g_tx_fifo_sz);
3542	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3543	for (i = 0; i < MAX_EPS_CHANNELS; i++)
3544		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3545						hsotg->g_tx_fifo_sz[i]);
3546
3547	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3548	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3549	hsotg->gadget.name = dev_name(dev);
 
 
 
 
 
3550	if (hsotg->dr_mode == USB_DR_MODE_OTG)
3551		hsotg->gadget.is_otg = 1;
3552	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3553		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3554
3555	ret = dwc2_hsotg_hw_cfg(hsotg);
3556	if (ret) {
3557		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3558		return ret;
3559	}
3560
3561	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3562			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3563	if (!hsotg->ctrl_buff) {
3564		dev_err(dev, "failed to allocate ctrl request buff\n");
3565		return -ENOMEM;
3566	}
3567
3568	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3569			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3570	if (!hsotg->ep0_buff) {
3571		dev_err(dev, "failed to allocate ctrl reply buff\n");
3572		return -ENOMEM;
 
 
 
 
 
3573	}
3574
3575	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3576				dev_name(hsotg->dev), hsotg);
3577	if (ret < 0) {
3578		dev_err(dev, "cannot claim IRQ for gadget\n");
3579		return ret;
3580	}
3581
3582	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3583
3584	if (hsotg->num_of_eps == 0) {
3585		dev_err(dev, "wrong number of EPs (zero)\n");
3586		return -EINVAL;
3587	}
3588
3589	/* setup endpoint information */
3590
3591	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3592	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3593
3594	/* allocate EP0 request */
3595
3596	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3597						     GFP_KERNEL);
3598	if (!hsotg->ctrl_req) {
3599		dev_err(dev, "failed to allocate ctrl req\n");
3600		return -ENOMEM;
3601	}
3602
3603	/* initialise the endpoints now the core has been initialised */
3604	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3605		if (hsotg->eps_in[epnum])
3606			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3607								epnum, 1);
3608		if (hsotg->eps_out[epnum])
3609			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3610								epnum, 0);
3611	}
3612
3613	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3614	if (ret)
3615		return ret;
3616
3617	dwc2_hsotg_dump(hsotg);
3618
3619	return 0;
3620}
3621
3622/**
3623 * dwc2_hsotg_remove - remove function for hsotg driver
3624 * @pdev: The platform information for the driver
 
3625 */
3626int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3627{
3628	usb_del_gadget_udc(&hsotg->gadget);
 
3629
3630	return 0;
3631}
3632
3633int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3634{
3635	unsigned long flags;
3636
3637	if (hsotg->lx_state != DWC2_L0)
3638		return 0;
3639
3640	if (hsotg->driver) {
3641		int ep;
3642
3643		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3644			 hsotg->driver->driver.name);
3645
3646		spin_lock_irqsave(&hsotg->lock, flags);
3647		if (hsotg->enabled)
3648			dwc2_hsotg_core_disconnect(hsotg);
3649		dwc2_hsotg_disconnect(hsotg);
3650		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3651		spin_unlock_irqrestore(&hsotg->lock, flags);
3652
3653		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3654			if (hsotg->eps_in[ep])
3655				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3656			if (hsotg->eps_out[ep])
3657				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3658		}
3659	}
3660
3661	return 0;
3662}
3663
3664int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3665{
3666	unsigned long flags;
3667
3668	if (hsotg->lx_state == DWC2_L2)
3669		return 0;
3670
3671	if (hsotg->driver) {
3672		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3673			 hsotg->driver->driver.name);
3674
3675		spin_lock_irqsave(&hsotg->lock, flags);
3676		dwc2_hsotg_core_init_disconnected(hsotg, false);
3677		if (hsotg->enabled)
 
 
3678			dwc2_hsotg_core_connect(hsotg);
 
3679		spin_unlock_irqrestore(&hsotg->lock, flags);
3680	}
3681
3682	return 0;
3683}
3684
3685/**
3686 * dwc2_backup_device_registers() - Backup controller device registers.
3687 * When suspending usb bus, registers needs to be backuped
3688 * if controller power is disabled once suspended.
3689 *
3690 * @hsotg: Programming view of the DWC_otg controller
3691 */
3692int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
3693{
3694	struct dwc2_dregs_backup *dr;
3695	int i;
3696
3697	dev_dbg(hsotg->dev, "%s\n", __func__);
3698
3699	/* Backup dev regs */
3700	dr = &hsotg->dr_backup;
3701
3702	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
3703	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
3704	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3705	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
3706	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
3707
3708	for (i = 0; i < hsotg->num_of_eps; i++) {
3709		/* Backup IN EPs */
3710		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
3711
3712		/* Ensure DATA PID is correctly configured */
3713		if (dr->diepctl[i] & DXEPCTL_DPID)
3714			dr->diepctl[i] |= DXEPCTL_SETD1PID;
3715		else
3716			dr->diepctl[i] |= DXEPCTL_SETD0PID;
3717
3718		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
3719		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
3720
3721		/* Backup OUT EPs */
3722		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
3723
3724		/* Ensure DATA PID is correctly configured */
3725		if (dr->doepctl[i] & DXEPCTL_DPID)
3726			dr->doepctl[i] |= DXEPCTL_SETD1PID;
3727		else
3728			dr->doepctl[i] |= DXEPCTL_SETD0PID;
3729
3730		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
3731		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
 
3732	}
3733	dr->valid = true;
3734	return 0;
3735}
3736
3737/**
3738 * dwc2_restore_device_registers() - Restore controller device registers.
3739 * When resuming usb bus, device registers needs to be restored
3740 * if controller power were disabled.
3741 *
3742 * @hsotg: Programming view of the DWC_otg controller
 
 
 
3743 */
3744int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
3745{
3746	struct dwc2_dregs_backup *dr;
3747	u32 dctl;
3748	int i;
3749
3750	dev_dbg(hsotg->dev, "%s\n", __func__);
3751
3752	/* Restore dev regs */
3753	dr = &hsotg->dr_backup;
3754	if (!dr->valid) {
3755		dev_err(hsotg->dev, "%s: no device registers to restore\n",
3756			__func__);
3757		return -EINVAL;
3758	}
3759	dr->valid = false;
3760
3761	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
3762	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
3763	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
3764	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
3765	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
 
3766
3767	for (i = 0; i < hsotg->num_of_eps; i++) {
3768		/* Restore IN EPs */
3769		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
3770		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
3771		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
3772
 
 
 
 
 
 
 
 
 
3773		/* Restore OUT EPs */
3774		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
3775		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
3776		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3777	}
3778
3779	/* Set the Power-On Programming done bit */
3780	dctl = dwc2_readl(hsotg->regs + DCTL);
3781	dctl |= DCTL_PWRONPRGDONE;
3782	dwc2_writel(dctl, hsotg->regs + DCTL);
3783
3784	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3785}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 *
   6 * Copyright 2008 Openmoko, Inc.
   7 * Copyright 2008 Simtec Electronics
   8 *      Ben Dooks <ben@simtec.co.uk>
   9 *      http://armlinux.simtec.co.uk/
  10 *
  11 * S3C USB2.0 High-speed / OtG driver
 
 
 
 
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/platform_device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/mutex.h>
  21#include <linux/seq_file.h>
  22#include <linux/delay.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/of_platform.h>
  26
  27#include <linux/usb/ch9.h>
  28#include <linux/usb/gadget.h>
  29#include <linux/usb/phy.h>
  30#include <linux/usb/composite.h>
  31
  32
  33#include "core.h"
  34#include "hw.h"
  35
  36/* conversion functions */
  37static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  38{
  39	return container_of(req, struct dwc2_hsotg_req, req);
  40}
  41
  42static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  43{
  44	return container_of(ep, struct dwc2_hsotg_ep, ep);
  45}
  46
  47static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  48{
  49	return container_of(gadget, struct dwc2_hsotg, gadget);
  50}
  51
  52static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  53{
  54	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
  55}
  56
  57static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  58{
  59	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
  60}
  61
  62static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  63						u32 ep_index, u32 dir_in)
  64{
  65	if (dir_in)
  66		return hsotg->eps_in[ep_index];
  67	else
  68		return hsotg->eps_out[ep_index];
  69}
  70
  71/* forward declaration of functions */
  72static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  73
  74/**
  75 * using_dma - return the DMA status of the driver.
  76 * @hsotg: The driver state.
  77 *
  78 * Return true if we're using DMA.
  79 *
  80 * Currently, we have the DMA support code worked into everywhere
  81 * that needs it, but the AMBA DMA implementation in the hardware can
  82 * only DMA from 32bit aligned addresses. This means that gadgets such
  83 * as the CDC Ethernet cannot work as they often pass packets which are
  84 * not 32bit aligned.
  85 *
  86 * Unfortunately the choice to use DMA or not is global to the controller
  87 * and seems to be only settable when the controller is being put through
  88 * a core reset. This means we either need to fix the gadgets to take
  89 * account of DMA alignment, or add bounce buffers (yuerk).
  90 *
  91 * g_using_dma is set depending on dts flag.
  92 */
  93static inline bool using_dma(struct dwc2_hsotg *hsotg)
  94{
  95	return hsotg->params.g_dma;
  96}
  97
  98/*
  99 * using_desc_dma - return the descriptor DMA status of the driver.
 100 * @hsotg: The driver state.
 101 *
 102 * Return true if we're using descriptor DMA.
 103 */
 104static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 105{
 106	return hsotg->params.g_dma_desc;
 107}
 108
 109/**
 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 111 * @hs_ep: The endpoint
 112 *
 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 115 */
 116static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 117{
 118	struct dwc2_hsotg *hsotg = hs_ep->parent;
 119	u16 limit = DSTS_SOFFN_LIMIT;
 120
 121	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 122		limit >>= 3;
 123
 124	hs_ep->target_frame += hs_ep->interval;
 125	if (hs_ep->target_frame > limit) {
 126		hs_ep->frame_overrun = true;
 127		hs_ep->target_frame &= limit;
 128	} else {
 129		hs_ep->frame_overrun = false;
 130	}
 131}
 132
 133/**
 134 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
 135 *                                    by one.
 136 * @hs_ep: The endpoint.
 137 *
 138 * This function used in service interval based scheduling flow to calculate
 139 * descriptor frame number filed value. For service interval mode frame
 140 * number in descriptor should point to last (u)frame in the interval.
 141 *
 142 */
 143static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
 144{
 145	struct dwc2_hsotg *hsotg = hs_ep->parent;
 146	u16 limit = DSTS_SOFFN_LIMIT;
 147
 148	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 149		limit >>= 3;
 150
 151	if (hs_ep->target_frame)
 152		hs_ep->target_frame -= 1;
 153	else
 154		hs_ep->target_frame = limit;
 155}
 156
 157/**
 158 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 159 * @hsotg: The device state
 160 * @ints: A bitmask of the interrupts to enable
 161 */
 162static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 163{
 164	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 165	u32 new_gsintmsk;
 166
 167	new_gsintmsk = gsintmsk | ints;
 168
 169	if (new_gsintmsk != gsintmsk) {
 170		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 171		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 172	}
 173}
 174
 175/**
 176 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 177 * @hsotg: The device state
 178 * @ints: A bitmask of the interrupts to enable
 179 */
 180static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 181{
 182	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 183	u32 new_gsintmsk;
 184
 185	new_gsintmsk = gsintmsk & ~ints;
 186
 187	if (new_gsintmsk != gsintmsk)
 188		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 189}
 190
 191/**
 192 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 193 * @hsotg: The device state
 194 * @ep: The endpoint index
 195 * @dir_in: True if direction is in.
 196 * @en: The enable value, true to enable
 197 *
 198 * Set or clear the mask for an individual endpoint's interrupt
 199 * request.
 200 */
 201static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 202				  unsigned int ep, unsigned int dir_in,
 203				 unsigned int en)
 204{
 205	unsigned long flags;
 206	u32 bit = 1 << ep;
 207	u32 daint;
 208
 209	if (!dir_in)
 210		bit <<= 16;
 211
 212	local_irq_save(flags);
 213	daint = dwc2_readl(hsotg, DAINTMSK);
 214	if (en)
 215		daint |= bit;
 216	else
 217		daint &= ~bit;
 218	dwc2_writel(hsotg, daint, DAINTMSK);
 219	local_irq_restore(flags);
 220}
 221
 222/**
 223 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 224 *
 225 * @hsotg: Programming view of the DWC_otg controller
 226 */
 227int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
 228{
 229	if (hsotg->hw_params.en_multiple_tx_fifo)
 230		/* In dedicated FIFO mode we need count of IN EPs */
 231		return hsotg->hw_params.num_dev_in_eps;
 232	else
 233		/* In shared FIFO mode we need count of Periodic IN EPs */
 234		return hsotg->hw_params.num_dev_perio_in_ep;
 235}
 236
 237/**
 238 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 239 * device mode TX FIFOs
 240 *
 241 * @hsotg: Programming view of the DWC_otg controller
 242 */
 243int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
 244{
 245	int addr;
 246	int tx_addr_max;
 247	u32 np_tx_fifo_size;
 248
 249	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
 250				hsotg->params.g_np_tx_fifo_size);
 251
 252	/* Get Endpoint Info Control block size in DWORDs. */
 253	tx_addr_max = hsotg->hw_params.total_fifo_size;
 254
 255	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
 256	if (tx_addr_max <= addr)
 257		return 0;
 258
 259	return tx_addr_max - addr;
 260}
 261
 262/**
 263 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
 264 *
 265 * @hsotg: Programming view of the DWC_otg controller
 266 *
 267 */
 268static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
 269{
 270	u32 gintsts2;
 271	u32 gintmsk2;
 272
 273	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
 274	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
 275	gintsts2 &= gintmsk2;
 276
 277	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
 278		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
 279		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
 280		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
 281	}
 282}
 283
 284/**
 285 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 286 * TX FIFOs
 287 *
 288 * @hsotg: Programming view of the DWC_otg controller
 289 */
 290int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
 291{
 292	int tx_fifo_count;
 293	int tx_fifo_depth;
 294
 295	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
 296
 297	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
 298
 299	if (!tx_fifo_count)
 300		return tx_fifo_depth;
 301	else
 302		return tx_fifo_depth / tx_fifo_count;
 303}
 304
 305/**
 306 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 307 * @hsotg: The device instance.
 308 */
 309static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 310{
 311	unsigned int ep;
 312	unsigned int addr;
 313	int timeout;
 314
 315	u32 val;
 316	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 317
 318	/* Reset fifo map if not correctly cleared during previous session */
 319	WARN_ON(hsotg->fifo_map);
 320	hsotg->fifo_map = 0;
 321
 322	/* set RX/NPTX FIFO sizes */
 323	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
 324	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
 325		    FIFOSIZE_STARTADDR_SHIFT) |
 326		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 327		    GNPTXFSIZ);
 328
 329	/*
 330	 * arange all the rest of the TX FIFOs, as some versions of this
 331	 * block have overlapping default addresses. This also ensures
 332	 * that if the settings have been changed, then they are set to
 333	 * known values.
 334	 */
 335
 336	/* start at the end of the GNPTXFSIZ, rounded up */
 337	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 338
 339	/*
 340	 * Configure fifos sizes from provided configuration and assign
 341	 * them to endpoints dynamically according to maxpacket size value of
 342	 * given endpoint.
 343	 */
 344	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 345		if (!txfsz[ep])
 346			continue;
 347		val = addr;
 348		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 349		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 350			  "insufficient fifo memory");
 351		addr += txfsz[ep];
 352
 353		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
 354		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
 355	}
 356
 357	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
 358		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
 359		    GDFIFOCFG);
 360	/*
 361	 * according to p428 of the design guide, we need to ensure that
 362	 * all fifos are flushed before continuing
 363	 */
 364
 365	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 366	       GRSTCTL_RXFFLSH, GRSTCTL);
 367
 368	/* wait until the fifos are both flushed */
 369	timeout = 100;
 370	while (1) {
 371		val = dwc2_readl(hsotg, GRSTCTL);
 372
 373		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 374			break;
 375
 376		if (--timeout == 0) {
 377			dev_err(hsotg->dev,
 378				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 379				__func__, val);
 380			break;
 381		}
 382
 383		udelay(1);
 384	}
 385
 386	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 387}
 388
 389/**
 390 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
 391 * @ep: USB endpoint to allocate request for.
 392 * @flags: Allocation flags
 393 *
 394 * Allocate a new USB request structure appropriate for the specified endpoint
 395 */
 396static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 397						       gfp_t flags)
 398{
 399	struct dwc2_hsotg_req *req;
 400
 401	req = kzalloc(sizeof(*req), flags);
 402	if (!req)
 403		return NULL;
 404
 405	INIT_LIST_HEAD(&req->queue);
 406
 407	return &req->req;
 408}
 409
 410/**
 411 * is_ep_periodic - return true if the endpoint is in periodic mode.
 412 * @hs_ep: The endpoint to query.
 413 *
 414 * Returns true if the endpoint is in periodic mode, meaning it is being
 415 * used for an Interrupt or ISO transfer.
 416 */
 417static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 418{
 419	return hs_ep->periodic;
 420}
 421
 422/**
 423 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 424 * @hsotg: The device state.
 425 * @hs_ep: The endpoint for the request
 426 * @hs_req: The request being processed.
 427 *
 428 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 429 * of a request to ensure the buffer is ready for access by the caller.
 430 */
 431static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 432				 struct dwc2_hsotg_ep *hs_ep,
 433				struct dwc2_hsotg_req *hs_req)
 434{
 435	struct usb_request *req = &hs_req->req;
 436
 437	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
 438}
 
 439
 440/*
 441 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 442 * for Control endpoint
 443 * @hsotg: The device state.
 444 *
 445 * This function will allocate 4 descriptor chains for EP 0: 2 for
 446 * Setup stage, per one for IN and OUT data/status transactions.
 447 */
 448static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 449{
 450	hsotg->setup_desc[0] =
 451		dmam_alloc_coherent(hsotg->dev,
 452				    sizeof(struct dwc2_dma_desc),
 453				    &hsotg->setup_desc_dma[0],
 454				    GFP_KERNEL);
 455	if (!hsotg->setup_desc[0])
 456		goto fail;
 457
 458	hsotg->setup_desc[1] =
 459		dmam_alloc_coherent(hsotg->dev,
 460				    sizeof(struct dwc2_dma_desc),
 461				    &hsotg->setup_desc_dma[1],
 462				    GFP_KERNEL);
 463	if (!hsotg->setup_desc[1])
 464		goto fail;
 465
 466	hsotg->ctrl_in_desc =
 467		dmam_alloc_coherent(hsotg->dev,
 468				    sizeof(struct dwc2_dma_desc),
 469				    &hsotg->ctrl_in_desc_dma,
 470				    GFP_KERNEL);
 471	if (!hsotg->ctrl_in_desc)
 472		goto fail;
 473
 474	hsotg->ctrl_out_desc =
 475		dmam_alloc_coherent(hsotg->dev,
 476				    sizeof(struct dwc2_dma_desc),
 477				    &hsotg->ctrl_out_desc_dma,
 478				    GFP_KERNEL);
 479	if (!hsotg->ctrl_out_desc)
 480		goto fail;
 481
 482	return 0;
 483
 484fail:
 485	return -ENOMEM;
 486}
 487
 488/**
 489 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 490 * @hsotg: The controller state.
 491 * @hs_ep: The endpoint we're going to write for.
 492 * @hs_req: The request to write data for.
 493 *
 494 * This is called when the TxFIFO has some space in it to hold a new
 495 * transmission and we have something to give it. The actual setup of
 496 * the data size is done elsewhere, so all we have to do is to actually
 497 * write the data.
 498 *
 499 * The return value is zero if there is more space (or nothing was done)
 500 * otherwise -ENOSPC is returned if the FIFO space was used up.
 501 *
 502 * This routine is only needed for PIO
 503 */
 504static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 505				 struct dwc2_hsotg_ep *hs_ep,
 506				struct dwc2_hsotg_req *hs_req)
 507{
 508	bool periodic = is_ep_periodic(hs_ep);
 509	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
 510	int buf_pos = hs_req->req.actual;
 511	int to_write = hs_ep->size_loaded;
 512	void *data;
 513	int can_write;
 514	int pkt_round;
 515	int max_transfer;
 516
 517	to_write -= (buf_pos - hs_ep->last_load);
 518
 519	/* if there's nothing to write, get out early */
 520	if (to_write == 0)
 521		return 0;
 522
 523	if (periodic && !hsotg->dedicated_fifos) {
 524		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
 525		int size_left;
 526		int size_done;
 527
 528		/*
 529		 * work out how much data was loaded so we can calculate
 530		 * how much data is left in the fifo.
 531		 */
 532
 533		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 534
 535		/*
 536		 * if shared fifo, we cannot write anything until the
 537		 * previous data has been completely sent.
 538		 */
 539		if (hs_ep->fifo_load != 0) {
 540			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 541			return -ENOSPC;
 542		}
 543
 544		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 545			__func__, size_left,
 546			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 547
 548		/* how much of the data has moved */
 549		size_done = hs_ep->size_loaded - size_left;
 550
 551		/* how much data is left in the fifo */
 552		can_write = hs_ep->fifo_load - size_done;
 553		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 554			__func__, can_write);
 555
 556		can_write = hs_ep->fifo_size - can_write;
 557		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 558			__func__, can_write);
 559
 560		if (can_write <= 0) {
 561			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 562			return -ENOSPC;
 563		}
 564	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 565		can_write = dwc2_readl(hsotg,
 566				       DTXFSTS(hs_ep->fifo_index));
 567
 568		can_write &= 0xffff;
 569		can_write *= 4;
 570	} else {
 571		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 572			dev_dbg(hsotg->dev,
 573				"%s: no queue slots available (0x%08x)\n",
 574				__func__, gnptxsts);
 575
 576			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 577			return -ENOSPC;
 578		}
 579
 580		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 581		can_write *= 4;	/* fifo size is in 32bit quantities. */
 582	}
 583
 584	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 585
 586	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 587		__func__, gnptxsts, can_write, to_write, max_transfer);
 588
 589	/*
 590	 * limit to 512 bytes of data, it seems at least on the non-periodic
 591	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 592	 * fragment of the end of the transfer in it.
 593	 */
 594	if (can_write > 512 && !periodic)
 595		can_write = 512;
 596
 597	/*
 598	 * limit the write to one max-packet size worth of data, but allow
 599	 * the transfer to return that it did not run out of fifo space
 600	 * doing it.
 601	 */
 602	if (to_write > max_transfer) {
 603		to_write = max_transfer;
 604
 605		/* it's needed only when we do not use dedicated fifos */
 606		if (!hsotg->dedicated_fifos)
 607			dwc2_hsotg_en_gsint(hsotg,
 608					    periodic ? GINTSTS_PTXFEMP :
 609					   GINTSTS_NPTXFEMP);
 610	}
 611
 612	/* see if we can write data */
 613
 614	if (to_write > can_write) {
 615		to_write = can_write;
 616		pkt_round = to_write % max_transfer;
 617
 618		/*
 619		 * Round the write down to an
 620		 * exact number of packets.
 621		 *
 622		 * Note, we do not currently check to see if we can ever
 623		 * write a full packet or not to the FIFO.
 624		 */
 625
 626		if (pkt_round)
 627			to_write -= pkt_round;
 628
 629		/*
 630		 * enable correct FIFO interrupt to alert us when there
 631		 * is more room left.
 632		 */
 633
 634		/* it's needed only when we do not use dedicated fifos */
 635		if (!hsotg->dedicated_fifos)
 636			dwc2_hsotg_en_gsint(hsotg,
 637					    periodic ? GINTSTS_PTXFEMP :
 638					   GINTSTS_NPTXFEMP);
 639	}
 640
 641	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 642		to_write, hs_req->req.length, can_write, buf_pos);
 643
 644	if (to_write <= 0)
 645		return -ENOSPC;
 646
 647	hs_req->req.actual = buf_pos + to_write;
 648	hs_ep->total_data += to_write;
 649
 650	if (periodic)
 651		hs_ep->fifo_load += to_write;
 652
 653	to_write = DIV_ROUND_UP(to_write, 4);
 654	data = hs_req->req.buf + buf_pos;
 655
 656	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
 657
 658	return (to_write >= can_write) ? -ENOSPC : 0;
 659}
 660
 661/**
 662 * get_ep_limit - get the maximum data legnth for this endpoint
 663 * @hs_ep: The endpoint
 664 *
 665 * Return the maximum data that can be queued in one go on a given endpoint
 666 * so that transfers that are too long can be split.
 667 */
 668static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 669{
 670	int index = hs_ep->index;
 671	unsigned int maxsize;
 672	unsigned int maxpkt;
 673
 674	if (index != 0) {
 675		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 676		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 677	} else {
 678		maxsize = 64 + 64;
 679		if (hs_ep->dir_in)
 680			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 681		else
 682			maxpkt = 2;
 683	}
 684
 685	/* we made the constant loading easier above by using +1 */
 686	maxpkt--;
 687	maxsize--;
 688
 689	/*
 690	 * constrain by packet count if maxpkts*pktsize is greater
 691	 * than the length register size.
 692	 */
 693
 694	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 695		maxsize = maxpkt * hs_ep->ep.maxpacket;
 696
 697	return maxsize;
 698}
 699
 700/**
 701 * dwc2_hsotg_read_frameno - read current frame number
 702 * @hsotg: The device instance
 703 *
 704 * Return the current frame number
 705 */
 706static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 707{
 708	u32 dsts;
 709
 710	dsts = dwc2_readl(hsotg, DSTS);
 711	dsts &= DSTS_SOFFN_MASK;
 712	dsts >>= DSTS_SOFFN_SHIFT;
 713
 714	return dsts;
 715}
 716
 717/**
 718 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 719 * DMA descriptor chain prepared for specific endpoint
 720 * @hs_ep: The endpoint
 721 *
 722 * Return the maximum data that can be queued in one go on a given endpoint
 723 * depending on its descriptor chain capacity so that transfers that
 724 * are too long can be split.
 725 */
 726static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 727{
 728	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 729	int is_isoc = hs_ep->isochronous;
 730	unsigned int maxsize;
 731	u32 mps = hs_ep->ep.maxpacket;
 732	int dir_in = hs_ep->dir_in;
 733
 734	if (is_isoc)
 735		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 736					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
 737					   MAX_DMA_DESC_NUM_HS_ISOC;
 738	else
 739		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
 740
 741	/* Interrupt OUT EP with mps not multiple of 4 */
 742	if (hs_ep->index)
 743		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
 744			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
 745
 746	return maxsize;
 747}
 748
 749/*
 750 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 751 * @hs_ep: The endpoint
 752 * @mask: RX/TX bytes mask to be defined
 753 *
 754 * Returns maximum data payload for one descriptor after analyzing endpoint
 755 * characteristics.
 756 * DMA descriptor transfer bytes limit depends on EP type:
 757 * Control out - MPS,
 758 * Isochronous - descriptor rx/tx bytes bitfield limit,
 759 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 760 * have concatenations from various descriptors within one packet.
 761 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
 762 * to a single descriptor.
 763 *
 764 * Selects corresponding mask for RX/TX bytes as well.
 765 */
 766static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 767{
 768	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 769	u32 mps = hs_ep->ep.maxpacket;
 770	int dir_in = hs_ep->dir_in;
 771	u32 desc_size = 0;
 772
 773	if (!hs_ep->index && !dir_in) {
 774		desc_size = mps;
 775		*mask = DEV_DMA_NBYTES_MASK;
 776	} else if (hs_ep->isochronous) {
 777		if (dir_in) {
 778			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 779			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 780		} else {
 781			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 782			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 783		}
 784	} else {
 785		desc_size = DEV_DMA_NBYTES_LIMIT;
 786		*mask = DEV_DMA_NBYTES_MASK;
 787
 788		/* Round down desc_size to be mps multiple */
 789		desc_size -= desc_size % mps;
 790	}
 791
 792	/* Interrupt OUT EP with mps not multiple of 4 */
 793	if (hs_ep->index)
 794		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
 795			desc_size = mps;
 796			*mask = DEV_DMA_NBYTES_MASK;
 797		}
 798
 799	return desc_size;
 800}
 801
 802static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
 803						 struct dwc2_dma_desc **desc,
 804						 dma_addr_t dma_buff,
 805						 unsigned int len,
 806						 bool true_last)
 807{
 808	int dir_in = hs_ep->dir_in;
 809	u32 mps = hs_ep->ep.maxpacket;
 810	u32 maxsize = 0;
 811	u32 offset = 0;
 812	u32 mask = 0;
 813	int i;
 814
 815	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 816
 817	hs_ep->desc_count = (len / maxsize) +
 818				((len % maxsize) ? 1 : 0);
 819	if (len == 0)
 820		hs_ep->desc_count = 1;
 821
 822	for (i = 0; i < hs_ep->desc_count; ++i) {
 823		(*desc)->status = 0;
 824		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
 825				 << DEV_DMA_BUFF_STS_SHIFT);
 826
 827		if (len > maxsize) {
 828			if (!hs_ep->index && !dir_in)
 829				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 830
 831			(*desc)->status |=
 832				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
 833			(*desc)->buf = dma_buff + offset;
 834
 835			len -= maxsize;
 836			offset += maxsize;
 837		} else {
 838			if (true_last)
 839				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 840
 841			if (dir_in)
 842				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
 843					((hs_ep->send_zlp && true_last) ?
 844					DEV_DMA_SHORT : 0);
 845
 846			(*desc)->status |=
 847				len << DEV_DMA_NBYTES_SHIFT & mask;
 848			(*desc)->buf = dma_buff + offset;
 849		}
 850
 851		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
 852		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
 853				 << DEV_DMA_BUFF_STS_SHIFT);
 854		(*desc)++;
 855	}
 856}
 857
 858/*
 859 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 860 * @hs_ep: The endpoint
 861 * @ureq: Request to transfer
 862 * @offset: offset in bytes
 863 * @len: Length of the transfer
 864 *
 865 * This function will iterate over descriptor chain and fill its entries
 866 * with corresponding information based on transfer data.
 867 */
 868static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 869						 dma_addr_t dma_buff,
 870						 unsigned int len)
 871{
 872	struct usb_request *ureq = NULL;
 873	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 874	struct scatterlist *sg;
 875	int i;
 876	u8 desc_count = 0;
 877
 878	if (hs_ep->req)
 879		ureq = &hs_ep->req->req;
 880
 881	/* non-DMA sg buffer */
 882	if (!ureq || !ureq->num_sgs) {
 883		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 884			dma_buff, len, true);
 885		return;
 886	}
 887
 888	/* DMA sg buffer */
 889	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
 890		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 891			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
 892			sg_is_last(sg));
 893		desc_count += hs_ep->desc_count;
 894	}
 895
 896	hs_ep->desc_count = desc_count;
 897}
 898
 899/*
 900 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 901 * @hs_ep: The isochronous endpoint.
 902 * @dma_buff: usb requests dma buffer.
 903 * @len: usb request transfer length.
 904 *
 905 * Fills next free descriptor with the data of the arrived usb request,
 906 * frame info, sets Last and IOC bits increments next_desc. If filled
 907 * descriptor is not the first one, removes L bit from the previous descriptor
 908 * status.
 909 */
 910static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 911				      dma_addr_t dma_buff, unsigned int len)
 912{
 913	struct dwc2_dma_desc *desc;
 914	struct dwc2_hsotg *hsotg = hs_ep->parent;
 915	u32 index;
 916	u32 mask = 0;
 917	u8 pid = 0;
 918
 919	dwc2_gadget_get_desc_params(hs_ep, &mask);
 920
 921	index = hs_ep->next_desc;
 922	desc = &hs_ep->desc_list[index];
 923
 924	/* Check if descriptor chain full */
 925	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
 926	    DEV_DMA_BUFF_STS_HREADY) {
 927		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 928		return 1;
 929	}
 930
 931	/* Clear L bit of previous desc if more than one entries in the chain */
 932	if (hs_ep->next_desc)
 933		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 934
 935	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 936		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 937
 938	desc->status = 0;
 939	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 940
 941	desc->buf = dma_buff;
 942	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 943			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 944
 945	if (hs_ep->dir_in) {
 946		if (len)
 947			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
 948		else
 949			pid = 1;
 950		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
 951				 DEV_DMA_ISOC_PID_MASK) |
 952				((len % hs_ep->ep.maxpacket) ?
 953				 DEV_DMA_SHORT : 0) |
 954				((hs_ep->target_frame <<
 955				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 956				 DEV_DMA_ISOC_FRNUM_MASK);
 957	}
 958
 959	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 960	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 961
 962	/* Increment frame number by interval for IN */
 963	if (hs_ep->dir_in)
 964		dwc2_gadget_incr_frame_num(hs_ep);
 965
 966	/* Update index of last configured entry in the chain */
 967	hs_ep->next_desc++;
 968	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
 969		hs_ep->next_desc = 0;
 970
 971	return 0;
 972}
 973
 974/*
 975 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 976 * @hs_ep: The isochronous endpoint.
 977 *
 978 * Prepare descriptor chain for isochronous endpoints. Afterwards
 979 * write DMA address to HW and enable the endpoint.
 980 */
 981static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 982{
 983	struct dwc2_hsotg *hsotg = hs_ep->parent;
 984	struct dwc2_hsotg_req *hs_req, *treq;
 985	int index = hs_ep->index;
 986	int ret;
 987	int i;
 988	u32 dma_reg;
 989	u32 depctl;
 990	u32 ctrl;
 991	struct dwc2_dma_desc *desc;
 992
 993	if (list_empty(&hs_ep->queue)) {
 994		hs_ep->target_frame = TARGET_FRAME_INITIAL;
 995		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 996		return;
 997	}
 998
 999	/* Initialize descriptor chain by Host Busy status */
1000	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1001		desc = &hs_ep->desc_list[i];
1002		desc->status = 0;
1003		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1004				    << DEV_DMA_BUFF_STS_SHIFT);
1005	}
1006
1007	hs_ep->next_desc = 0;
1008	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1009		dma_addr_t dma_addr = hs_req->req.dma;
1010
1011		if (hs_req->req.num_sgs) {
1012			WARN_ON(hs_req->req.num_sgs > 1);
1013			dma_addr = sg_dma_address(hs_req->req.sg);
1014		}
1015		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1016						 hs_req->req.length);
1017		if (ret)
1018			break;
1019	}
1020
1021	hs_ep->compl_desc = 0;
1022	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1023	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1024
1025	/* write descriptor chain address to control register */
1026	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1027
1028	ctrl = dwc2_readl(hsotg, depctl);
1029	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1030	dwc2_writel(hsotg, ctrl, depctl);
1031}
1032
1033static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1034static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1035					struct dwc2_hsotg_ep *hs_ep,
1036				       struct dwc2_hsotg_req *hs_req,
1037				       int result);
1038
1039/**
1040 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1041 * @hsotg: The controller state.
1042 * @hs_ep: The endpoint to process a request for
1043 * @hs_req: The request to start.
1044 * @continuing: True if we are doing more for the current request.
1045 *
1046 * Start the given request running by setting the endpoint registers
1047 * appropriately, and writing any data to the FIFOs.
1048 */
1049static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1050				 struct dwc2_hsotg_ep *hs_ep,
1051				struct dwc2_hsotg_req *hs_req,
1052				bool continuing)
1053{
1054	struct usb_request *ureq = &hs_req->req;
1055	int index = hs_ep->index;
1056	int dir_in = hs_ep->dir_in;
1057	u32 epctrl_reg;
1058	u32 epsize_reg;
1059	u32 epsize;
1060	u32 ctrl;
1061	unsigned int length;
1062	unsigned int packets;
1063	unsigned int maxreq;
1064	unsigned int dma_reg;
1065
1066	if (index != 0) {
1067		if (hs_ep->req && !continuing) {
1068			dev_err(hsotg->dev, "%s: active request\n", __func__);
1069			WARN_ON(1);
1070			return;
1071		} else if (hs_ep->req != hs_req && continuing) {
1072			dev_err(hsotg->dev,
1073				"%s: continue different req\n", __func__);
1074			WARN_ON(1);
1075			return;
1076		}
1077	}
1078
1079	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1080	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1081	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1082
1083	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1084		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1085		hs_ep->dir_in ? "in" : "out");
1086
1087	/* If endpoint is stalled, we will restart request later */
1088	ctrl = dwc2_readl(hsotg, epctrl_reg);
1089
1090	if (index && ctrl & DXEPCTL_STALL) {
1091		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1092		return;
1093	}
1094
1095	length = ureq->length - ureq->actual;
1096	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1097		ureq->length, ureq->actual);
1098
1099	if (!using_desc_dma(hsotg))
1100		maxreq = get_ep_limit(hs_ep);
1101	else
1102		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1103
1104	if (length > maxreq) {
1105		int round = maxreq % hs_ep->ep.maxpacket;
1106
1107		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1108			__func__, length, maxreq, round);
1109
1110		/* round down to multiple of packets */
1111		if (round)
1112			maxreq -= round;
1113
1114		length = maxreq;
1115	}
1116
1117	if (length)
1118		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1119	else
1120		packets = 1;	/* send one packet if length is zero. */
1121
 
 
 
 
 
1122	if (dir_in && index != 0)
1123		if (hs_ep->isochronous)
1124			epsize = DXEPTSIZ_MC(packets);
1125		else
1126			epsize = DXEPTSIZ_MC(1);
1127	else
1128		epsize = 0;
1129
1130	/*
1131	 * zero length packet should be programmed on its own and should not
1132	 * be counted in DIEPTSIZ.PktCnt with other packets.
1133	 */
1134	if (dir_in && ureq->zero && !continuing) {
1135		/* Test if zlp is actually required. */
1136		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1137		    !(ureq->length % hs_ep->ep.maxpacket))
1138			hs_ep->send_zlp = 1;
1139	}
1140
1141	epsize |= DXEPTSIZ_PKTCNT(packets);
1142	epsize |= DXEPTSIZ_XFERSIZE(length);
1143
1144	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1145		__func__, packets, length, ureq->length, epsize, epsize_reg);
1146
1147	/* store the request as the current one we're doing */
1148	hs_ep->req = hs_req;
1149
1150	if (using_desc_dma(hsotg)) {
1151		u32 offset = 0;
1152		u32 mps = hs_ep->ep.maxpacket;
1153
1154		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1155		if (!dir_in) {
1156			if (!index)
1157				length = mps;
1158			else if (length % mps)
1159				length += (mps - (length % mps));
1160		}
1161
1162		if (continuing)
1163			offset = ureq->actual;
1164
1165		/* Fill DDMA chain entries */
1166		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1167						     length);
1168
1169		/* write descriptor chain address to control register */
1170		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1171
1172		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1173			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1174	} else {
1175		/* write size / packets */
1176		dwc2_writel(hsotg, epsize, epsize_reg);
1177
1178		if (using_dma(hsotg) && !continuing && (length != 0)) {
1179			/*
1180			 * write DMA address to control register, buffer
1181			 * already synced by dwc2_hsotg_ep_queue().
1182			 */
1183
1184			dwc2_writel(hsotg, ureq->dma, dma_reg);
1185
1186			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1187				__func__, &ureq->dma, dma_reg);
1188		}
1189	}
1190
1191	if (hs_ep->isochronous) {
1192		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1193			if (hs_ep->interval == 1) {
1194				if (hs_ep->target_frame & 0x1)
1195					ctrl |= DXEPCTL_SETODDFR;
1196				else
1197					ctrl |= DXEPCTL_SETEVENFR;
1198			}
1199			ctrl |= DXEPCTL_CNAK;
1200		} else {
1201			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1202			return;
1203		}
1204	}
1205
1206	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
 
1207
1208	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1209
1210	/* For Setup request do not clear NAK */
1211	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1212		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1213
1214	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1215	dwc2_writel(hsotg, ctrl, epctrl_reg);
1216
1217	/*
1218	 * set these, it seems that DMA support increments past the end
1219	 * of the packet buffer so we need to calculate the length from
1220	 * this information.
1221	 */
1222	hs_ep->size_loaded = length;
1223	hs_ep->last_load = ureq->actual;
1224
1225	if (dir_in && !using_dma(hsotg)) {
1226		/* set these anyway, we may need them for non-periodic in */
1227		hs_ep->fifo_load = 0;
1228
1229		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1230	}
1231
1232	/*
 
 
 
 
 
 
 
 
1233	 * Note, trying to clear the NAK here causes problems with transmit
1234	 * on the S3C6400 ending up with the TXFIFO becoming full.
1235	 */
1236
1237	/* check ep is enabled */
1238	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1239		dev_dbg(hsotg->dev,
1240			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1241			 index, dwc2_readl(hsotg, epctrl_reg));
1242
1243	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1244		__func__, dwc2_readl(hsotg, epctrl_reg));
1245
1246	/* enable ep interrupts */
1247	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1248}
1249
1250/**
1251 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1252 * @hsotg: The device state.
1253 * @hs_ep: The endpoint the request is on.
1254 * @req: The request being processed.
1255 *
1256 * We've been asked to queue a request, so ensure that the memory buffer
1257 * is correctly setup for DMA. If we've been passed an extant DMA address
1258 * then ensure the buffer has been synced to memory. If our buffer has no
1259 * DMA memory, then we map the memory and mark our request to allow us to
1260 * cleanup on completion.
1261 */
1262static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1263			      struct dwc2_hsotg_ep *hs_ep,
1264			     struct usb_request *req)
1265{
 
1266	int ret;
1267
1268	hs_ep->map_dir = hs_ep->dir_in;
 
 
 
1269	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1270	if (ret)
1271		goto dma_error;
1272
1273	return 0;
1274
1275dma_error:
1276	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1277		__func__, req->buf, req->length);
1278
1279	return -EIO;
1280}
1281
1282static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1283						 struct dwc2_hsotg_ep *hs_ep,
1284						 struct dwc2_hsotg_req *hs_req)
1285{
1286	void *req_buf = hs_req->req.buf;
1287
1288	/* If dma is not being used or buffer is aligned */
1289	if (!using_dma(hsotg) || !((long)req_buf & 3))
1290		return 0;
1291
1292	WARN_ON(hs_req->saved_req_buf);
1293
1294	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1295		hs_ep->ep.name, req_buf, hs_req->req.length);
1296
1297	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1298	if (!hs_req->req.buf) {
1299		hs_req->req.buf = req_buf;
1300		dev_err(hsotg->dev,
1301			"%s: unable to allocate memory for bounce buffer\n",
1302			__func__);
1303		return -ENOMEM;
1304	}
1305
1306	/* Save actual buffer */
1307	hs_req->saved_req_buf = req_buf;
1308
1309	if (hs_ep->dir_in)
1310		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1311	return 0;
1312}
1313
1314static void
1315dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1316					 struct dwc2_hsotg_ep *hs_ep,
1317					 struct dwc2_hsotg_req *hs_req)
1318{
1319	/* If dma is not being used or buffer was aligned */
1320	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1321		return;
1322
1323	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1324		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1325
1326	/* Copy data from bounce buffer on successful out transfer */
1327	if (!hs_ep->dir_in && !hs_req->req.status)
1328		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1329		       hs_req->req.actual);
1330
1331	/* Free bounce buffer */
1332	kfree(hs_req->req.buf);
1333
1334	hs_req->req.buf = hs_req->saved_req_buf;
1335	hs_req->saved_req_buf = NULL;
1336}
1337
1338/**
1339 * dwc2_gadget_target_frame_elapsed - Checks target frame
1340 * @hs_ep: The driver endpoint to check
1341 *
1342 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1343 * corresponding transfer.
1344 */
1345static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1346{
1347	struct dwc2_hsotg *hsotg = hs_ep->parent;
1348	u32 target_frame = hs_ep->target_frame;
1349	u32 current_frame = hsotg->frame_number;
1350	bool frame_overrun = hs_ep->frame_overrun;
1351	u16 limit = DSTS_SOFFN_LIMIT;
1352
1353	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1354		limit >>= 3;
1355
1356	if (!frame_overrun && current_frame >= target_frame)
1357		return true;
1358
1359	if (frame_overrun && current_frame >= target_frame &&
1360	    ((current_frame - target_frame) < limit / 2))
1361		return true;
1362
1363	return false;
1364}
1365
1366/*
1367 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1368 * @hsotg: The driver state
1369 * @hs_ep: the ep descriptor chain is for
1370 *
1371 * Called to update EP0 structure's pointers depend on stage of
1372 * control transfer.
1373 */
1374static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1375					  struct dwc2_hsotg_ep *hs_ep)
1376{
1377	switch (hsotg->ep0_state) {
1378	case DWC2_EP0_SETUP:
1379	case DWC2_EP0_STATUS_OUT:
1380		hs_ep->desc_list = hsotg->setup_desc[0];
1381		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1382		break;
1383	case DWC2_EP0_DATA_IN:
1384	case DWC2_EP0_STATUS_IN:
1385		hs_ep->desc_list = hsotg->ctrl_in_desc;
1386		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1387		break;
1388	case DWC2_EP0_DATA_OUT:
1389		hs_ep->desc_list = hsotg->ctrl_out_desc;
1390		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1391		break;
1392	default:
1393		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1394			hsotg->ep0_state);
1395		return -EINVAL;
1396	}
1397
1398	return 0;
1399}
1400
1401static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1402			       gfp_t gfp_flags)
1403{
1404	struct dwc2_hsotg_req *hs_req = our_req(req);
1405	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1406	struct dwc2_hsotg *hs = hs_ep->parent;
1407	bool first;
1408	int ret;
1409	u32 maxsize = 0;
1410	u32 mask = 0;
1411
1412
1413	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1414		ep->name, req, req->length, req->buf, req->no_interrupt,
1415		req->zero, req->short_not_ok);
1416
1417	/* Prevent new request submission when controller is suspended */
1418	if (hs->lx_state != DWC2_L0) {
1419		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1420			__func__);
1421		return -EAGAIN;
1422	}
1423
1424	/* initialise status of the request */
1425	INIT_LIST_HEAD(&hs_req->queue);
1426	req->actual = 0;
1427	req->status = -EINPROGRESS;
1428
1429	/* Don't queue ISOC request if length greater than mps*mc */
1430	if (hs_ep->isochronous &&
1431	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1432		dev_err(hs->dev, "req length > maxpacket*mc\n");
1433		return -EINVAL;
1434	}
1435
1436	/* In DDMA mode for ISOC's don't queue request if length greater
1437	 * than descriptor limits.
1438	 */
1439	if (using_desc_dma(hs) && hs_ep->isochronous) {
1440		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1441		if (hs_ep->dir_in && req->length > maxsize) {
1442			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1443				req->length, maxsize);
1444			return -EINVAL;
1445		}
1446
1447		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1448			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1449				req->length, hs_ep->ep.maxpacket);
1450			return -EINVAL;
1451		}
1452	}
1453
1454	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1455	if (ret)
1456		return ret;
1457
1458	/* if we're using DMA, sync the buffers as necessary */
1459	if (using_dma(hs)) {
1460		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1461		if (ret)
1462			return ret;
1463	}
1464	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1465	if (using_desc_dma(hs) && !hs_ep->index) {
1466		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1467		if (ret)
1468			return ret;
1469	}
1470
1471	first = list_empty(&hs_ep->queue);
1472	list_add_tail(&hs_req->queue, &hs_ep->queue);
1473
1474	/*
1475	 * Handle DDMA isochronous transfers separately - just add new entry
1476	 * to the descriptor chain.
1477	 * Transfer will be started once SW gets either one of NAK or
1478	 * OutTknEpDis interrupts.
1479	 */
1480	if (using_desc_dma(hs) && hs_ep->isochronous) {
1481		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1482			dma_addr_t dma_addr = hs_req->req.dma;
1483
1484			if (hs_req->req.num_sgs) {
1485				WARN_ON(hs_req->req.num_sgs > 1);
1486				dma_addr = sg_dma_address(hs_req->req.sg);
1487			}
1488			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1489						   hs_req->req.length);
1490		}
1491		return 0;
1492	}
1493
1494	/* Change EP direction if status phase request is after data out */
1495	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1496	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1497		hs_ep->dir_in = 1;
1498
1499	if (first) {
1500		if (!hs_ep->isochronous) {
1501			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1502			return 0;
1503		}
1504
1505		/* Update current frame number value. */
1506		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1507		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1508			dwc2_gadget_incr_frame_num(hs_ep);
1509			/* Update current frame number value once more as it
1510			 * changes here.
1511			 */
1512			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1513		}
1514
1515		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1516			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1517	}
1518	return 0;
1519}
1520
1521static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1522				    gfp_t gfp_flags)
1523{
1524	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1525	struct dwc2_hsotg *hs = hs_ep->parent;
1526	unsigned long flags;
1527	int ret;
1528
1529	spin_lock_irqsave(&hs->lock, flags);
1530	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1531	spin_unlock_irqrestore(&hs->lock, flags);
1532
1533	return ret;
1534}
1535
1536static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1537				       struct usb_request *req)
1538{
1539	struct dwc2_hsotg_req *hs_req = our_req(req);
1540
1541	kfree(hs_req);
1542}
1543
1544/**
1545 * dwc2_hsotg_complete_oursetup - setup completion callback
1546 * @ep: The endpoint the request was on.
1547 * @req: The request completed.
1548 *
1549 * Called on completion of any requests the driver itself
1550 * submitted that need cleaning up.
1551 */
1552static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1553					 struct usb_request *req)
1554{
1555	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1556	struct dwc2_hsotg *hsotg = hs_ep->parent;
1557
1558	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1559
1560	dwc2_hsotg_ep_free_request(ep, req);
1561}
1562
1563/**
1564 * ep_from_windex - convert control wIndex value to endpoint
1565 * @hsotg: The driver state.
1566 * @windex: The control request wIndex field (in host order).
1567 *
1568 * Convert the given wIndex into a pointer to an driver endpoint
1569 * structure, or return NULL if it is not a valid endpoint.
1570 */
1571static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1572					    u32 windex)
1573{
 
1574	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1575	int idx = windex & 0x7F;
1576
1577	if (windex >= 0x100)
1578		return NULL;
1579
1580	if (idx > hsotg->num_of_eps)
1581		return NULL;
1582
1583	return index_to_ep(hsotg, idx, dir);
 
 
 
 
 
1584}
1585
1586/**
1587 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1588 * @hsotg: The driver state.
1589 * @testmode: requested usb test mode
1590 * Enable usb Test Mode requested by the Host.
1591 */
1592int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1593{
1594	int dctl = dwc2_readl(hsotg, DCTL);
1595
1596	dctl &= ~DCTL_TSTCTL_MASK;
1597	switch (testmode) {
1598	case USB_TEST_J:
1599	case USB_TEST_K:
1600	case USB_TEST_SE0_NAK:
1601	case USB_TEST_PACKET:
1602	case USB_TEST_FORCE_ENABLE:
1603		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1604		break;
1605	default:
1606		return -EINVAL;
1607	}
1608	dwc2_writel(hsotg, dctl, DCTL);
1609	return 0;
1610}
1611
1612/**
1613 * dwc2_hsotg_send_reply - send reply to control request
1614 * @hsotg: The device state
1615 * @ep: Endpoint 0
1616 * @buff: Buffer for request
1617 * @length: Length of reply.
1618 *
1619 * Create a request and queue it on the given endpoint. This is useful as
1620 * an internal method of sending replies to certain control requests, etc.
1621 */
1622static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1623				 struct dwc2_hsotg_ep *ep,
1624				void *buff,
1625				int length)
1626{
1627	struct usb_request *req;
1628	int ret;
1629
1630	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1631
1632	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1633	hsotg->ep0_reply = req;
1634	if (!req) {
1635		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1636		return -ENOMEM;
1637	}
1638
1639	req->buf = hsotg->ep0_buff;
1640	req->length = length;
1641	/*
1642	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1643	 * STATUS stage.
1644	 */
1645	req->zero = 0;
1646	req->complete = dwc2_hsotg_complete_oursetup;
1647
1648	if (length)
1649		memcpy(req->buf, buff, length);
1650
1651	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1652	if (ret) {
1653		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1654		return ret;
1655	}
1656
1657	return 0;
1658}
1659
1660/**
1661 * dwc2_hsotg_process_req_status - process request GET_STATUS
1662 * @hsotg: The device state
1663 * @ctrl: USB control request
1664 */
1665static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1666					 struct usb_ctrlrequest *ctrl)
1667{
1668	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1669	struct dwc2_hsotg_ep *ep;
1670	__le16 reply;
1671	u16 status;
1672	int ret;
1673
1674	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1675
1676	if (!ep0->dir_in) {
1677		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1678		return -EINVAL;
1679	}
1680
1681	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1682	case USB_RECIP_DEVICE:
1683		status = hsotg->gadget.is_selfpowered <<
1684			 USB_DEVICE_SELF_POWERED;
1685		status |= hsotg->remote_wakeup_allowed <<
1686			  USB_DEVICE_REMOTE_WAKEUP;
1687		reply = cpu_to_le16(status);
1688		break;
1689
1690	case USB_RECIP_INTERFACE:
1691		/* currently, the data result should be zero */
1692		reply = cpu_to_le16(0);
1693		break;
1694
1695	case USB_RECIP_ENDPOINT:
1696		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1697		if (!ep)
1698			return -ENOENT;
1699
1700		reply = cpu_to_le16(ep->halted ? 1 : 0);
1701		break;
1702
1703	default:
1704		return 0;
1705	}
1706
1707	if (le16_to_cpu(ctrl->wLength) != 2)
1708		return -EINVAL;
1709
1710	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1711	if (ret) {
1712		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1713		return ret;
1714	}
1715
1716	return 1;
1717}
1718
1719static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1720
1721/**
1722 * get_ep_head - return the first request on the endpoint
1723 * @hs_ep: The controller endpoint to get
1724 *
1725 * Get the first request on the endpoint.
1726 */
1727static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1728{
1729	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1730					queue);
1731}
1732
1733/**
1734 * dwc2_gadget_start_next_request - Starts next request from ep queue
1735 * @hs_ep: Endpoint structure
1736 *
1737 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1738 * in its handler. Hence we need to unmask it here to be able to do
1739 * resynchronization.
1740 */
1741static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1742{
1743	struct dwc2_hsotg *hsotg = hs_ep->parent;
1744	int dir_in = hs_ep->dir_in;
1745	struct dwc2_hsotg_req *hs_req;
1746
1747	if (!list_empty(&hs_ep->queue)) {
1748		hs_req = get_ep_head(hs_ep);
1749		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1750		return;
1751	}
1752	if (!hs_ep->isochronous)
1753		return;
1754
1755	if (dir_in) {
1756		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1757			__func__);
1758	} else {
1759		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1760			__func__);
1761	}
1762}
1763
1764/**
1765 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1766 * @hsotg: The device state
1767 * @ctrl: USB control request
1768 */
1769static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1770					  struct usb_ctrlrequest *ctrl)
1771{
1772	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1773	struct dwc2_hsotg_req *hs_req;
 
1774	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1775	struct dwc2_hsotg_ep *ep;
1776	int ret;
1777	bool halted;
1778	u32 recip;
1779	u32 wValue;
1780	u32 wIndex;
1781
1782	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1783		__func__, set ? "SET" : "CLEAR");
1784
1785	wValue = le16_to_cpu(ctrl->wValue);
1786	wIndex = le16_to_cpu(ctrl->wIndex);
1787	recip = ctrl->bRequestType & USB_RECIP_MASK;
1788
1789	switch (recip) {
1790	case USB_RECIP_DEVICE:
1791		switch (wValue) {
1792		case USB_DEVICE_REMOTE_WAKEUP:
1793			if (set)
1794				hsotg->remote_wakeup_allowed = 1;
1795			else
1796				hsotg->remote_wakeup_allowed = 0;
1797			break;
1798
1799		case USB_DEVICE_TEST_MODE:
1800			if ((wIndex & 0xff) != 0)
1801				return -EINVAL;
1802			if (!set)
1803				return -EINVAL;
1804
1805			hsotg->test_mode = wIndex >> 8;
 
 
 
 
 
 
1806			break;
1807		default:
1808			return -ENOENT;
1809		}
1810
1811		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1812		if (ret) {
1813			dev_err(hsotg->dev,
1814				"%s: failed to send reply\n", __func__);
1815			return ret;
1816		}
1817		break;
1818
1819	case USB_RECIP_ENDPOINT:
1820		ep = ep_from_windex(hsotg, wIndex);
1821		if (!ep) {
1822			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1823				__func__, wIndex);
1824			return -ENOENT;
1825		}
1826
1827		switch (wValue) {
1828		case USB_ENDPOINT_HALT:
1829			halted = ep->halted;
1830
1831			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1832
1833			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1834			if (ret) {
1835				dev_err(hsotg->dev,
1836					"%s: failed to send reply\n", __func__);
1837				return ret;
1838			}
1839
1840			/*
1841			 * we have to complete all requests for ep if it was
1842			 * halted, and the halt was cleared by CLEAR_FEATURE
1843			 */
1844
1845			if (!set && halted) {
1846				/*
1847				 * If we have request in progress,
1848				 * then complete it
1849				 */
1850				if (ep->req) {
1851					hs_req = ep->req;
1852					ep->req = NULL;
1853					list_del_init(&hs_req->queue);
1854					if (hs_req->req.complete) {
1855						spin_unlock(&hsotg->lock);
1856						usb_gadget_giveback_request(
1857							&ep->ep, &hs_req->req);
1858						spin_lock(&hsotg->lock);
1859					}
1860				}
1861
1862				/* If we have pending request, then start it */
1863				if (!ep->req)
1864					dwc2_gadget_start_next_request(ep);
 
 
 
 
 
 
1865			}
1866
1867			break;
1868
1869		default:
1870			return -ENOENT;
1871		}
1872		break;
1873	default:
1874		return -ENOENT;
1875	}
1876	return 1;
1877}
1878
1879static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1880
1881/**
1882 * dwc2_hsotg_stall_ep0 - stall ep0
1883 * @hsotg: The device state
1884 *
1885 * Set stall for ep0 as response for setup request.
1886 */
1887static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1888{
1889	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1890	u32 reg;
1891	u32 ctrl;
1892
1893	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1894	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1895
1896	/*
1897	 * DxEPCTL_Stall will be cleared by EP once it has
1898	 * taken effect, so no need to clear later.
1899	 */
1900
1901	ctrl = dwc2_readl(hsotg, reg);
1902	ctrl |= DXEPCTL_STALL;
1903	ctrl |= DXEPCTL_CNAK;
1904	dwc2_writel(hsotg, ctrl, reg);
1905
1906	dev_dbg(hsotg->dev,
1907		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1908		ctrl, reg, dwc2_readl(hsotg, reg));
1909
1910	 /*
1911	  * complete won't be called, so we enqueue
1912	  * setup request here
1913	  */
1914	 dwc2_hsotg_enqueue_setup(hsotg);
1915}
1916
1917/**
1918 * dwc2_hsotg_process_control - process a control request
1919 * @hsotg: The device state
1920 * @ctrl: The control request received
1921 *
1922 * The controller has received the SETUP phase of a control request, and
1923 * needs to work out what to do next (and whether to pass it on to the
1924 * gadget driver).
1925 */
1926static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1927				       struct usb_ctrlrequest *ctrl)
1928{
1929	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1930	int ret = 0;
1931	u32 dcfg;
1932
1933	dev_dbg(hsotg->dev,
1934		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1935		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1936		ctrl->wIndex, ctrl->wLength);
1937
1938	if (ctrl->wLength == 0) {
1939		ep0->dir_in = 1;
1940		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1941	} else if (ctrl->bRequestType & USB_DIR_IN) {
1942		ep0->dir_in = 1;
1943		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1944	} else {
1945		ep0->dir_in = 0;
1946		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1947	}
1948
1949	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1950		switch (ctrl->bRequest) {
1951		case USB_REQ_SET_ADDRESS:
1952			hsotg->connected = 1;
1953			dcfg = dwc2_readl(hsotg, DCFG);
1954			dcfg &= ~DCFG_DEVADDR_MASK;
1955			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1956				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1957			dwc2_writel(hsotg, dcfg, DCFG);
1958
1959			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1960
1961			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1962			return;
1963
1964		case USB_REQ_GET_STATUS:
1965			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1966			break;
1967
1968		case USB_REQ_CLEAR_FEATURE:
1969		case USB_REQ_SET_FEATURE:
1970			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1971			break;
1972		}
1973	}
1974
1975	/* as a fallback, try delivering it to the driver to deal with */
1976
1977	if (ret == 0 && hsotg->driver) {
1978		spin_unlock(&hsotg->lock);
1979		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1980		spin_lock(&hsotg->lock);
1981		if (ret < 0)
1982			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1983	}
1984
1985	hsotg->delayed_status = false;
1986	if (ret == USB_GADGET_DELAYED_STATUS)
1987		hsotg->delayed_status = true;
1988
1989	/*
1990	 * the request is either unhandlable, or is not formatted correctly
1991	 * so respond with a STALL for the status stage to indicate failure.
1992	 */
1993
1994	if (ret < 0)
1995		dwc2_hsotg_stall_ep0(hsotg);
1996}
1997
1998/**
1999 * dwc2_hsotg_complete_setup - completion of a setup transfer
2000 * @ep: The endpoint the request was on.
2001 * @req: The request completed.
2002 *
2003 * Called on completion of any requests the driver itself submitted for
2004 * EP0 setup packets
2005 */
2006static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2007				      struct usb_request *req)
2008{
2009	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2010	struct dwc2_hsotg *hsotg = hs_ep->parent;
2011
2012	if (req->status < 0) {
2013		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2014		return;
2015	}
2016
2017	spin_lock(&hsotg->lock);
2018	if (req->actual == 0)
2019		dwc2_hsotg_enqueue_setup(hsotg);
2020	else
2021		dwc2_hsotg_process_control(hsotg, req->buf);
2022	spin_unlock(&hsotg->lock);
2023}
2024
2025/**
2026 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2027 * @hsotg: The device state.
2028 *
2029 * Enqueue a request on EP0 if necessary to received any SETUP packets
2030 * received from the host.
2031 */
2032static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2033{
2034	struct usb_request *req = hsotg->ctrl_req;
2035	struct dwc2_hsotg_req *hs_req = our_req(req);
2036	int ret;
2037
2038	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2039
2040	req->zero = 0;
2041	req->length = 8;
2042	req->buf = hsotg->ctrl_buff;
2043	req->complete = dwc2_hsotg_complete_setup;
2044
2045	if (!list_empty(&hs_req->queue)) {
2046		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2047		return;
2048	}
2049
2050	hsotg->eps_out[0]->dir_in = 0;
2051	hsotg->eps_out[0]->send_zlp = 0;
2052	hsotg->ep0_state = DWC2_EP0_SETUP;
2053
2054	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2055	if (ret < 0) {
2056		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2057		/*
2058		 * Don't think there's much we can do other than watch the
2059		 * driver fail.
2060		 */
2061	}
2062}
2063
2064static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2065				   struct dwc2_hsotg_ep *hs_ep)
2066{
2067	u32 ctrl;
2068	u8 index = hs_ep->index;
2069	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2070	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2071
2072	if (hs_ep->dir_in)
2073		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2074			index);
2075	else
2076		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2077			index);
2078	if (using_desc_dma(hsotg)) {
2079		/* Not specific buffer needed for ep0 ZLP */
2080		dma_addr_t dma = hs_ep->desc_list_dma;
2081
2082		if (!index)
2083			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
 
2084
2085		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2086	} else {
2087		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2088			    DXEPTSIZ_XFERSIZE(0),
2089			    epsiz_reg);
2090	}
2091
2092	ctrl = dwc2_readl(hsotg, epctl_reg);
2093	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2094	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2095	ctrl |= DXEPCTL_USBACTEP;
2096	dwc2_writel(hsotg, ctrl, epctl_reg);
2097}
2098
2099/**
2100 * dwc2_hsotg_complete_request - complete a request given to us
2101 * @hsotg: The device state.
2102 * @hs_ep: The endpoint the request was on.
2103 * @hs_req: The request to complete.
2104 * @result: The result code (0 => Ok, otherwise errno)
2105 *
2106 * The given request has finished, so call the necessary completion
2107 * if it has one and then look to see if we can start a new request
2108 * on the endpoint.
2109 *
2110 * Note, expects the ep to already be locked as appropriate.
2111 */
2112static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2113					struct dwc2_hsotg_ep *hs_ep,
2114				       struct dwc2_hsotg_req *hs_req,
2115				       int result)
2116{
 
 
2117	if (!hs_req) {
2118		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2119		return;
2120	}
2121
2122	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2123		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2124
2125	/*
2126	 * only replace the status if we've not already set an error
2127	 * from a previous transaction
2128	 */
2129
2130	if (hs_req->req.status == -EINPROGRESS)
2131		hs_req->req.status = result;
2132
2133	if (using_dma(hsotg))
2134		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2135
2136	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2137
2138	hs_ep->req = NULL;
2139	list_del_init(&hs_req->queue);
2140
2141	/*
2142	 * call the complete request with the locks off, just in case the
2143	 * request tries to queue more work for this endpoint.
2144	 */
2145
2146	if (hs_req->req.complete) {
2147		spin_unlock(&hsotg->lock);
2148		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2149		spin_lock(&hsotg->lock);
2150	}
2151
2152	/* In DDMA don't need to proceed to starting of next ISOC request */
2153	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2154		return;
2155
2156	/*
2157	 * Look to see if there is anything else to do. Note, the completion
2158	 * of the previous request may have caused a new request to be started
2159	 * so be careful when doing this.
2160	 */
2161
2162	if (!hs_ep->req && result >= 0)
2163		dwc2_gadget_start_next_request(hs_ep);
2164}
2165
2166/*
2167 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2168 * @hs_ep: The endpoint the request was on.
2169 *
2170 * Get first request from the ep queue, determine descriptor on which complete
2171 * happened. SW discovers which descriptor currently in use by HW, adjusts
2172 * dma_address and calculates index of completed descriptor based on the value
2173 * of DEPDMA register. Update actual length of request, giveback to gadget.
2174 */
2175static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2176{
2177	struct dwc2_hsotg *hsotg = hs_ep->parent;
2178	struct dwc2_hsotg_req *hs_req;
2179	struct usb_request *ureq;
2180	u32 desc_sts;
2181	u32 mask;
2182
2183	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2184
2185	/* Process only descriptors with buffer status set to DMA done */
2186	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2187		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2188
2189		hs_req = get_ep_head(hs_ep);
2190		if (!hs_req) {
2191			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2192			return;
2193		}
2194		ureq = &hs_req->req;
2195
2196		/* Check completion status */
2197		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2198			DEV_DMA_STS_SUCC) {
2199			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2200				DEV_DMA_ISOC_RX_NBYTES_MASK;
2201			ureq->actual = ureq->length - ((desc_sts & mask) >>
2202				DEV_DMA_ISOC_NBYTES_SHIFT);
2203
2204			/* Adjust actual len for ISOC Out if len is
2205			 * not align of 4
2206			 */
2207			if (!hs_ep->dir_in && ureq->length & 0x3)
2208				ureq->actual += 4 - (ureq->length & 0x3);
2209
2210			/* Set actual frame number for completed transfers */
2211			ureq->frame_number =
2212				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2213				DEV_DMA_ISOC_FRNUM_SHIFT;
2214		}
2215
2216		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2217
2218		hs_ep->compl_desc++;
2219		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2220			hs_ep->compl_desc = 0;
2221		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2222	}
2223}
2224
2225/*
2226 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2227 * @hs_ep: The isochronous endpoint.
2228 *
2229 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2230 * interrupt. Reset target frame and next_desc to allow to start
2231 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2232 * interrupt for OUT direction.
2233 */
2234static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2235{
2236	struct dwc2_hsotg *hsotg = hs_ep->parent;
2237
2238	if (!hs_ep->dir_in)
2239		dwc2_flush_rx_fifo(hsotg);
2240	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2241
2242	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2243	hs_ep->next_desc = 0;
2244	hs_ep->compl_desc = 0;
2245}
2246
2247/**
2248 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2249 * @hsotg: The device state.
2250 * @ep_idx: The endpoint index for the data
2251 * @size: The size of data in the fifo, in bytes
2252 *
2253 * The FIFO status shows there is data to read from the FIFO for a given
2254 * endpoint, so sort out whether we need to read the data into a request
2255 * that has been made for that endpoint.
2256 */
2257static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2258{
2259	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2260	struct dwc2_hsotg_req *hs_req = hs_ep->req;
 
2261	int to_read;
2262	int max_req;
2263	int read_ptr;
2264
 
2265	if (!hs_req) {
2266		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2267		int ptr;
2268
2269		dev_dbg(hsotg->dev,
2270			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2271			 __func__, size, ep_idx, epctl);
2272
2273		/* dump the data from the FIFO, we've nothing we can do */
2274		for (ptr = 0; ptr < size; ptr += 4)
2275			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2276
2277		return;
2278	}
2279
2280	to_read = size;
2281	read_ptr = hs_req->req.actual;
2282	max_req = hs_req->req.length - read_ptr;
2283
2284	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2285		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2286
2287	if (to_read > max_req) {
2288		/*
2289		 * more data appeared than we where willing
2290		 * to deal with in this request.
2291		 */
2292
2293		/* currently we don't deal this */
2294		WARN_ON_ONCE(1);
2295	}
2296
2297	hs_ep->total_data += to_read;
2298	hs_req->req.actual += to_read;
2299	to_read = DIV_ROUND_UP(to_read, 4);
2300
2301	/*
2302	 * note, we might over-write the buffer end by 3 bytes depending on
2303	 * alignment of the data.
2304	 */
2305	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2306		       hs_req->req.buf + read_ptr, to_read);
2307}
2308
2309/**
2310 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2311 * @hsotg: The device instance
2312 * @dir_in: If IN zlp
2313 *
2314 * Generate a zero-length IN packet request for terminating a SETUP
2315 * transaction.
2316 *
2317 * Note, since we don't write any data to the TxFIFO, then it is
2318 * currently believed that we do not need to wait for any space in
2319 * the TxFIFO.
2320 */
2321static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2322{
2323	/* eps_out[0] is used in both directions */
2324	hsotg->eps_out[0]->dir_in = dir_in;
2325	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2326
2327	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2328}
2329
2330/*
2331 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2332 * @hs_ep - The endpoint on which transfer went
2333 *
2334 * Iterate over endpoints descriptor chain and get info on bytes remained
2335 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2336 */
2337static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2338{
2339	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2340	struct dwc2_hsotg *hsotg = hs_ep->parent;
2341	unsigned int bytes_rem = 0;
2342	unsigned int bytes_rem_correction = 0;
2343	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2344	int i;
2345	u32 status;
2346	u32 mps = hs_ep->ep.maxpacket;
2347	int dir_in = hs_ep->dir_in;
2348
2349	if (!desc)
2350		return -EINVAL;
2351
2352	/* Interrupt OUT EP with mps not multiple of 4 */
2353	if (hs_ep->index)
2354		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2355			bytes_rem_correction = 4 - (mps % 4);
2356
2357	for (i = 0; i < hs_ep->desc_count; ++i) {
2358		status = desc->status;
2359		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2360		bytes_rem -= bytes_rem_correction;
2361
2362		if (status & DEV_DMA_STS_MASK)
2363			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2364				i, status & DEV_DMA_STS_MASK);
2365
2366		if (status & DEV_DMA_L)
2367			break;
2368
2369		desc++;
2370	}
2371
2372	return bytes_rem;
2373}
2374
2375/**
2376 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2377 * @hsotg: The device instance
2378 * @epnum: The endpoint received from
2379 *
2380 * The RXFIFO has delivered an OutDone event, which means that the data
2381 * transfer for an OUT endpoint has been completed, either by a short
2382 * packet or by the finish of a transfer.
2383 */
2384static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2385{
2386	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2387	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2388	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2389	struct usb_request *req = &hs_req->req;
2390	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2391	int result = 0;
2392
2393	if (!hs_req) {
2394		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2395		return;
2396	}
2397
2398	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2399		dev_dbg(hsotg->dev, "zlp packet received\n");
2400		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2401		dwc2_hsotg_enqueue_setup(hsotg);
2402		return;
2403	}
2404
2405	if (using_desc_dma(hsotg))
2406		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2407
2408	if (using_dma(hsotg)) {
2409		unsigned int size_done;
2410
2411		/*
2412		 * Calculate the size of the transfer by checking how much
2413		 * is left in the endpoint size register and then working it
2414		 * out from the amount we loaded for the transfer.
2415		 *
2416		 * We need to do this as DMA pointers are always 32bit aligned
2417		 * so may overshoot/undershoot the transfer.
2418		 */
2419
2420		size_done = hs_ep->size_loaded - size_left;
2421		size_done += hs_ep->last_load;
2422
2423		req->actual = size_done;
2424	}
2425
2426	/* if there is more request to do, schedule new transfer */
2427	if (req->actual < req->length && size_left == 0) {
2428		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2429		return;
2430	}
2431
2432	if (req->actual < req->length && req->short_not_ok) {
2433		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2434			__func__, req->actual, req->length);
2435
2436		/*
2437		 * todo - what should we return here? there's no one else
2438		 * even bothering to check the status.
2439		 */
2440	}
2441
2442	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2443	if (!using_desc_dma(hsotg) && epnum == 0 &&
2444	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2445		/* Move to STATUS IN */
2446		if (!hsotg->delayed_status)
2447			dwc2_hsotg_ep0_zlp(hsotg, true);
2448	}
2449
2450	/* Set actual frame number for completed transfers */
2451	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2452		req->frame_number = hs_ep->target_frame;
2453		dwc2_gadget_incr_frame_num(hs_ep);
 
 
 
 
2454	}
2455
2456	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2457}
2458
2459/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460 * dwc2_hsotg_handle_rx - RX FIFO has data
2461 * @hsotg: The device instance
2462 *
2463 * The IRQ handler has detected that the RX FIFO has some data in it
2464 * that requires processing, so find out what is in there and do the
2465 * appropriate read.
2466 *
2467 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2468 * chunks, so if you have x packets received on an endpoint you'll get x
2469 * FIFO events delivered, each with a packet's worth of data in it.
2470 *
2471 * When using DMA, we should not be processing events from the RXFIFO
2472 * as the actual data should be sent to the memory directly and we turn
2473 * on the completion interrupts to get notifications of transfer completion.
2474 */
2475static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2476{
2477	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2478	u32 epnum, status, size;
2479
2480	WARN_ON(using_dma(hsotg));
2481
2482	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2483	status = grxstsr & GRXSTS_PKTSTS_MASK;
2484
2485	size = grxstsr & GRXSTS_BYTECNT_MASK;
2486	size >>= GRXSTS_BYTECNT_SHIFT;
2487
2488	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2489		__func__, grxstsr, size, epnum);
2490
2491	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2492	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2493		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2494		break;
2495
2496	case GRXSTS_PKTSTS_OUTDONE:
2497		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2498			dwc2_hsotg_read_frameno(hsotg));
2499
2500		if (!using_dma(hsotg))
2501			dwc2_hsotg_handle_outdone(hsotg, epnum);
2502		break;
2503
2504	case GRXSTS_PKTSTS_SETUPDONE:
2505		dev_dbg(hsotg->dev,
2506			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2507			dwc2_hsotg_read_frameno(hsotg),
2508			dwc2_readl(hsotg, DOEPCTL(0)));
2509		/*
2510		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2511		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2512		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2513		 */
2514		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2515			dwc2_hsotg_handle_outdone(hsotg, epnum);
2516		break;
2517
2518	case GRXSTS_PKTSTS_OUTRX:
2519		dwc2_hsotg_rx_data(hsotg, epnum, size);
2520		break;
2521
2522	case GRXSTS_PKTSTS_SETUPRX:
2523		dev_dbg(hsotg->dev,
2524			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2525			dwc2_hsotg_read_frameno(hsotg),
2526			dwc2_readl(hsotg, DOEPCTL(0)));
2527
2528		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2529
2530		dwc2_hsotg_rx_data(hsotg, epnum, size);
2531		break;
2532
2533	default:
2534		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2535			 __func__, grxstsr);
2536
2537		dwc2_hsotg_dump(hsotg);
2538		break;
2539	}
2540}
2541
2542/**
2543 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2544 * @mps: The maximum packet size in bytes.
2545 */
2546static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2547{
2548	switch (mps) {
2549	case 64:
2550		return D0EPCTL_MPS_64;
2551	case 32:
2552		return D0EPCTL_MPS_32;
2553	case 16:
2554		return D0EPCTL_MPS_16;
2555	case 8:
2556		return D0EPCTL_MPS_8;
2557	}
2558
2559	/* bad max packet size, warn and return invalid result */
2560	WARN_ON(1);
2561	return (u32)-1;
2562}
2563
2564/**
2565 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2566 * @hsotg: The driver state.
2567 * @ep: The index number of the endpoint
2568 * @mps: The maximum packet size in bytes
2569 * @mc: The multicount value
2570 * @dir_in: True if direction is in.
2571 *
2572 * Configure the maximum packet size for the given endpoint, updating
2573 * the hardware control registers to reflect this.
2574 */
2575static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2576					unsigned int ep, unsigned int mps,
2577					unsigned int mc, unsigned int dir_in)
2578{
2579	struct dwc2_hsotg_ep *hs_ep;
 
 
 
2580	u32 reg;
2581
2582	hs_ep = index_to_ep(hsotg, ep, dir_in);
2583	if (!hs_ep)
2584		return;
2585
2586	if (ep == 0) {
2587		u32 mps_bytes = mps;
2588
2589		/* EP0 is a special case */
2590		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2591		if (mps > 3)
2592			goto bad_mps;
2593		hs_ep->ep.maxpacket = mps_bytes;
2594		hs_ep->mc = 1;
2595	} else {
2596		if (mps > 1024)
 
2597			goto bad_mps;
2598		hs_ep->mc = mc;
2599		if (mc > 3)
 
2600			goto bad_mps;
2601		hs_ep->ep.maxpacket = mps;
2602	}
2603
2604	if (dir_in) {
2605		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2606		reg &= ~DXEPCTL_MPS_MASK;
2607		reg |= mps;
2608		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2609	} else {
2610		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2611		reg &= ~DXEPCTL_MPS_MASK;
2612		reg |= mps;
2613		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2614	}
2615
2616	return;
2617
2618bad_mps:
2619	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2620}
2621
2622/**
2623 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2624 * @hsotg: The driver state
2625 * @idx: The index for the endpoint (0..15)
2626 */
2627static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2628{
2629	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2630		    GRSTCTL);
 
 
 
2631
2632	/* wait until the fifo is flushed */
2633	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2634		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2635			 __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636}
2637
2638/**
2639 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2640 * @hsotg: The driver state
2641 * @hs_ep: The driver endpoint to check.
2642 *
2643 * Check to see if there is a request that has data to send, and if so
2644 * make an attempt to write data into the FIFO.
2645 */
2646static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2647			    struct dwc2_hsotg_ep *hs_ep)
2648{
2649	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2650
2651	if (!hs_ep->dir_in || !hs_req) {
2652		/**
2653		 * if request is not enqueued, we disable interrupts
2654		 * for endpoints, excepting ep0
2655		 */
2656		if (hs_ep->index != 0)
2657			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2658					      hs_ep->dir_in, 0);
2659		return 0;
2660	}
2661
2662	if (hs_req->req.actual < hs_req->req.length) {
2663		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2664			hs_ep->index);
2665		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2666	}
2667
2668	return 0;
2669}
2670
2671/**
2672 * dwc2_hsotg_complete_in - complete IN transfer
2673 * @hsotg: The device state.
2674 * @hs_ep: The endpoint that has just completed.
2675 *
2676 * An IN transfer has been completed, update the transfer's state and then
2677 * call the relevant completion routines.
2678 */
2679static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2680				   struct dwc2_hsotg_ep *hs_ep)
2681{
2682	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2683	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2684	int size_left, size_done;
2685
2686	if (!hs_req) {
2687		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2688		return;
2689	}
2690
2691	/* Finish ZLP handling for IN EP0 transactions */
2692	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2693		dev_dbg(hsotg->dev, "zlp packet sent\n");
2694
2695		/*
2696		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2697		 * changed to IN. Change back to complete OUT transfer request
2698		 */
2699		hs_ep->dir_in = 0;
2700
2701		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2702		if (hsotg->test_mode) {
2703			int ret;
2704
2705			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2706			if (ret < 0) {
2707				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2708					hsotg->test_mode);
2709				dwc2_hsotg_stall_ep0(hsotg);
2710				return;
2711			}
2712		}
2713		dwc2_hsotg_enqueue_setup(hsotg);
2714		return;
2715	}
2716
2717	/*
2718	 * Calculate the size of the transfer by checking how much is left
2719	 * in the endpoint size register and then working it out from
2720	 * the amount we loaded for the transfer.
2721	 *
2722	 * We do this even for DMA, as the transfer may have incremented
2723	 * past the end of the buffer (DMA transfers are always 32bit
2724	 * aligned).
2725	 */
2726	if (using_desc_dma(hsotg)) {
2727		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2728		if (size_left < 0)
2729			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2730				size_left);
2731	} else {
2732		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2733	}
2734
2735	size_done = hs_ep->size_loaded - size_left;
2736	size_done += hs_ep->last_load;
2737
2738	if (hs_req->req.actual != size_done)
2739		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2740			__func__, hs_req->req.actual, size_done);
2741
2742	hs_req->req.actual = size_done;
2743	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2744		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2745
2746	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2747		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2748		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2749		return;
2750	}
2751
2752	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2753	if (hs_ep->send_zlp) {
 
2754		hs_ep->send_zlp = 0;
2755		if (!using_desc_dma(hsotg)) {
2756			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2757			/* transfer will be completed on next complete interrupt */
2758			return;
2759		}
2760	}
2761
2762	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2763		/* Move to STATUS OUT */
2764		dwc2_hsotg_ep0_zlp(hsotg, false);
2765		return;
2766	}
2767
2768	/* Set actual frame number for completed transfers */
2769	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2770		hs_req->req.frame_number = hs_ep->target_frame;
2771		dwc2_gadget_incr_frame_num(hs_ep);
2772	}
2773
2774	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2775}
2776
2777/**
2778 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2779 * @hsotg: The device state.
2780 * @idx: Index of ep.
2781 * @dir_in: Endpoint direction 1-in 0-out.
2782 *
2783 * Reads for endpoint with given index and direction, by masking
2784 * epint_reg with coresponding mask.
2785 */
2786static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2787					  unsigned int idx, int dir_in)
2788{
2789	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2790	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2791	u32 ints;
2792	u32 mask;
2793	u32 diepempmsk;
2794
2795	mask = dwc2_readl(hsotg, epmsk_reg);
2796	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2797	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2798	mask |= DXEPINT_SETUP_RCVD;
2799
2800	ints = dwc2_readl(hsotg, epint_reg);
2801	ints &= mask;
2802	return ints;
2803}
2804
2805/**
2806 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2807 * @hs_ep: The endpoint on which interrupt is asserted.
2808 *
2809 * This interrupt indicates that the endpoint has been disabled per the
2810 * application's request.
2811 *
2812 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2813 * in case of ISOC completes current request.
2814 *
2815 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2816 * request starts it.
2817 */
2818static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2819{
2820	struct dwc2_hsotg *hsotg = hs_ep->parent;
2821	struct dwc2_hsotg_req *hs_req;
2822	unsigned char idx = hs_ep->index;
2823	int dir_in = hs_ep->dir_in;
2824	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2825	int dctl = dwc2_readl(hsotg, DCTL);
2826
2827	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2828
2829	if (dir_in) {
2830		int epctl = dwc2_readl(hsotg, epctl_reg);
2831
2832		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2833
2834		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2835			int dctl = dwc2_readl(hsotg, DCTL);
2836
2837			dctl |= DCTL_CGNPINNAK;
2838			dwc2_writel(hsotg, dctl, DCTL);
2839		}
2840	} else {
2841
2842		if (dctl & DCTL_GOUTNAKSTS) {
2843			dctl |= DCTL_CGOUTNAK;
2844			dwc2_writel(hsotg, dctl, DCTL);
2845		}
2846	}
2847
2848	if (!hs_ep->isochronous)
2849		return;
2850
2851	if (list_empty(&hs_ep->queue)) {
2852		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2853			__func__, hs_ep);
2854		return;
2855	}
2856
2857	do {
2858		hs_req = get_ep_head(hs_ep);
2859		if (hs_req)
2860			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2861						    -ENODATA);
2862		dwc2_gadget_incr_frame_num(hs_ep);
2863		/* Update current frame number value. */
2864		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2865	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2866}
2867
2868/**
2869 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2870 * @ep: The endpoint on which interrupt is asserted.
2871 *
2872 * This is starting point for ISOC-OUT transfer, synchronization done with
2873 * first out token received from host while corresponding EP is disabled.
2874 *
2875 * Device does not know initial frame in which out token will come. For this
2876 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2877 * getting this interrupt SW starts calculation for next transfer frame.
2878 */
2879static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2880{
2881	struct dwc2_hsotg *hsotg = ep->parent;
2882	struct dwc2_hsotg_req *hs_req;
2883	int dir_in = ep->dir_in;
2884
2885	if (dir_in || !ep->isochronous)
2886		return;
2887
2888	if (using_desc_dma(hsotg)) {
2889		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2890			/* Start first ISO Out */
2891			ep->target_frame = hsotg->frame_number;
2892			dwc2_gadget_start_isoc_ddma(ep);
2893		}
2894		return;
2895	}
2896
2897	if (ep->target_frame == TARGET_FRAME_INITIAL) {
2898		u32 ctrl;
2899
2900		ep->target_frame = hsotg->frame_number;
2901		if (ep->interval > 1) {
2902			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2903			if (ep->target_frame & 0x1)
2904				ctrl |= DXEPCTL_SETODDFR;
2905			else
2906				ctrl |= DXEPCTL_SETEVENFR;
2907
2908			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2909		}
2910	}
2911
2912	while (dwc2_gadget_target_frame_elapsed(ep)) {
2913		hs_req = get_ep_head(ep);
2914		if (hs_req)
2915			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2916
2917		dwc2_gadget_incr_frame_num(ep);
2918		/* Update current frame number value. */
2919		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2920	}
2921
2922	if (!ep->req)
2923		dwc2_gadget_start_next_request(ep);
2924
2925}
2926
2927static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2928				   struct dwc2_hsotg_ep *hs_ep);
2929
2930/**
2931 * dwc2_gadget_handle_nak - handle NAK interrupt
2932 * @hs_ep: The endpoint on which interrupt is asserted.
2933 *
2934 * This is starting point for ISOC-IN transfer, synchronization done with
2935 * first IN token received from host while corresponding EP is disabled.
2936 *
2937 * Device does not know when first one token will arrive from host. On first
2938 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2939 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2940 * sent in response to that as there was no data in FIFO. SW is basing on this
2941 * interrupt to obtain frame in which token has come and then based on the
2942 * interval calculates next frame for transfer.
2943 */
2944static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2945{
2946	struct dwc2_hsotg *hsotg = hs_ep->parent;
2947	struct dwc2_hsotg_req *hs_req;
2948	int dir_in = hs_ep->dir_in;
2949	u32 ctrl;
2950
2951	if (!dir_in || !hs_ep->isochronous)
2952		return;
2953
2954	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2955
2956		if (using_desc_dma(hsotg)) {
2957			hs_ep->target_frame = hsotg->frame_number;
2958			dwc2_gadget_incr_frame_num(hs_ep);
2959
2960			/* In service interval mode target_frame must
2961			 * be set to last (u)frame of the service interval.
2962			 */
2963			if (hsotg->params.service_interval) {
2964				/* Set target_frame to the first (u)frame of
2965				 * the service interval
2966				 */
2967				hs_ep->target_frame &= ~hs_ep->interval + 1;
2968
2969				/* Set target_frame to the last (u)frame of
2970				 * the service interval
2971				 */
2972				dwc2_gadget_incr_frame_num(hs_ep);
2973				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2974			}
2975
2976			dwc2_gadget_start_isoc_ddma(hs_ep);
2977			return;
2978		}
2979
2980		hs_ep->target_frame = hsotg->frame_number;
2981		if (hs_ep->interval > 1) {
2982			u32 ctrl = dwc2_readl(hsotg,
2983					      DIEPCTL(hs_ep->index));
2984			if (hs_ep->target_frame & 0x1)
2985				ctrl |= DXEPCTL_SETODDFR;
2986			else
2987				ctrl |= DXEPCTL_SETEVENFR;
2988
2989			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2990		}
2991	}
2992
2993	if (using_desc_dma(hsotg))
2994		return;
2995
2996	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
2997	if (ctrl & DXEPCTL_EPENA)
2998		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
2999	else
3000		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3001
3002	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3003		hs_req = get_ep_head(hs_ep);
3004		if (hs_req)
3005			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3006
3007		dwc2_gadget_incr_frame_num(hs_ep);
3008		/* Update current frame number value. */
3009		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3010	}
3011
3012	if (!hs_ep->req)
3013		dwc2_gadget_start_next_request(hs_ep);
3014}
3015
3016/**
3017 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3018 * @hsotg: The driver state
3019 * @idx: The index for the endpoint (0..15)
3020 * @dir_in: Set if this is an IN endpoint
3021 *
3022 * Process and clear any interrupt pending for an individual endpoint
3023 */
3024static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3025			     int dir_in)
3026{
3027	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3028	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3029	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3030	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3031	u32 ints;
 
3032
3033	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
 
3034
3035	/* Clear endpoint interrupts */
3036	dwc2_writel(hsotg, ints, epint_reg);
3037
3038	if (!hs_ep) {
3039		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3040			__func__, idx, dir_in ? "in" : "out");
3041		return;
3042	}
3043
3044	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3045		__func__, idx, dir_in ? "in" : "out", ints);
3046
3047	/* Don't process XferCompl interrupt if it is a setup packet */
3048	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3049		ints &= ~DXEPINT_XFERCOMPL;
3050
3051	/*
3052	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3053	 * stage and xfercomplete was generated without SETUP phase done
3054	 * interrupt. SW should parse received setup packet only after host's
3055	 * exit from setup phase of control transfer.
3056	 */
3057	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3058	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3059		ints &= ~DXEPINT_XFERCOMPL;
3060
3061	if (ints & DXEPINT_XFERCOMPL) {
3062		dev_dbg(hsotg->dev,
3063			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3064			__func__, dwc2_readl(hsotg, epctl_reg),
3065			dwc2_readl(hsotg, epsiz_reg));
3066
3067		/* In DDMA handle isochronous requests separately */
3068		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3069			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3070		} else if (dir_in) {
3071			/*
3072			 * We get OutDone from the FIFO, so we only
3073			 * need to look at completing IN requests here
3074			 * if operating slave mode
3075			 */
3076			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3077				dwc2_hsotg_complete_in(hsotg, hs_ep);
3078
3079			if (idx == 0 && !hs_ep->req)
3080				dwc2_hsotg_enqueue_setup(hsotg);
3081		} else if (using_dma(hsotg)) {
3082			/*
3083			 * We're using DMA, we need to fire an OutDone here
3084			 * as we ignore the RXFIFO.
3085			 */
3086			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3087				dwc2_hsotg_handle_outdone(hsotg, idx);
3088		}
3089	}
3090
3091	if (ints & DXEPINT_EPDISBLD)
3092		dwc2_gadget_handle_ep_disabled(hs_ep);
3093
3094	if (ints & DXEPINT_OUTTKNEPDIS)
3095		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
 
 
3096
3097	if (ints & DXEPINT_NAKINTRPT)
3098		dwc2_gadget_handle_nak(hs_ep);
 
 
 
 
 
 
 
3099
3100	if (ints & DXEPINT_AHBERR)
3101		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3102
3103	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3104		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3105
3106		if (using_dma(hsotg) && idx == 0) {
3107			/*
3108			 * this is the notification we've received a
3109			 * setup packet. In non-DMA mode we'd get this
3110			 * from the RXFIFO, instead we need to process
3111			 * the setup here.
3112			 */
3113
3114			if (dir_in)
3115				WARN_ON_ONCE(1);
3116			else
3117				dwc2_hsotg_handle_outdone(hsotg, 0);
3118		}
3119	}
3120
3121	if (ints & DXEPINT_STSPHSERCVD) {
3122		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3123
3124		/* Safety check EP0 state when STSPHSERCVD asserted */
3125		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3126			/* Move to STATUS IN for DDMA */
3127			if (using_desc_dma(hsotg)) {
3128				if (!hsotg->delayed_status)
3129					dwc2_hsotg_ep0_zlp(hsotg, true);
3130				else
3131				/* In case of 3 stage Control Write with delayed
3132				 * status, when Status IN transfer started
3133				 * before STSPHSERCVD asserted, NAKSTS bit not
3134				 * cleared by CNAK in dwc2_hsotg_start_req()
3135				 * function. Clear now NAKSTS to allow complete
3136				 * transfer.
3137				 */
3138					dwc2_set_bit(hsotg, DIEPCTL(0),
3139						     DXEPCTL_CNAK);
3140			}
3141		}
3142
3143	}
3144
3145	if (ints & DXEPINT_BACK2BACKSETUP)
3146		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3147
3148	if (ints & DXEPINT_BNAINTR) {
3149		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3150		if (hs_ep->isochronous)
3151			dwc2_gadget_handle_isoc_bna(hs_ep);
3152	}
3153
3154	if (dir_in && !hs_ep->isochronous) {
3155		/* not sure if this is important, but we'll clear it anyway */
3156		if (ints & DXEPINT_INTKNTXFEMP) {
3157			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3158				__func__, idx);
3159		}
3160
3161		/* this probably means something bad is happening */
3162		if (ints & DXEPINT_INTKNEPMIS) {
3163			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3164				 __func__, idx);
3165		}
3166
3167		/* FIFO has space or is empty (see GAHBCFG) */
3168		if (hsotg->dedicated_fifos &&
3169		    ints & DXEPINT_TXFEMP) {
3170			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3171				__func__, idx);
3172			if (!using_dma(hsotg))
3173				dwc2_hsotg_trytx(hsotg, hs_ep);
3174		}
3175	}
3176}
3177
3178/**
3179 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3180 * @hsotg: The device state.
3181 *
3182 * Handle updating the device settings after the enumeration phase has
3183 * been completed.
3184 */
3185static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3186{
3187	u32 dsts = dwc2_readl(hsotg, DSTS);
3188	int ep0_mps = 0, ep_mps = 8;
3189
3190	/*
3191	 * This should signal the finish of the enumeration phase
3192	 * of the USB handshaking, so we should now know what rate
3193	 * we connected at.
3194	 */
3195
3196	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3197
3198	/*
3199	 * note, since we're limited by the size of transfer on EP0, and
3200	 * it seems IN transfers must be a even number of packets we do
3201	 * not advertise a 64byte MPS on EP0.
3202	 */
3203
3204	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3205	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3206	case DSTS_ENUMSPD_FS:
3207	case DSTS_ENUMSPD_FS48:
3208		hsotg->gadget.speed = USB_SPEED_FULL;
3209		ep0_mps = EP0_MPS_LIMIT;
3210		ep_mps = 1023;
3211		break;
3212
3213	case DSTS_ENUMSPD_HS:
3214		hsotg->gadget.speed = USB_SPEED_HIGH;
3215		ep0_mps = EP0_MPS_LIMIT;
3216		ep_mps = 1024;
3217		break;
3218
3219	case DSTS_ENUMSPD_LS:
3220		hsotg->gadget.speed = USB_SPEED_LOW;
3221		ep0_mps = 8;
3222		ep_mps = 8;
3223		/*
3224		 * note, we don't actually support LS in this driver at the
3225		 * moment, and the documentation seems to imply that it isn't
3226		 * supported by the PHYs on some of the devices.
3227		 */
3228		break;
3229	}
3230	dev_info(hsotg->dev, "new device is %s\n",
3231		 usb_speed_string(hsotg->gadget.speed));
3232
3233	/*
3234	 * we should now know the maximum packet size for an
3235	 * endpoint, so set the endpoints to a default value.
3236	 */
3237
3238	if (ep0_mps) {
3239		int i;
3240		/* Initialize ep0 for both in and out directions */
3241		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3242		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3243		for (i = 1; i < hsotg->num_of_eps; i++) {
3244			if (hsotg->eps_in[i])
3245				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3246							    0, 1);
3247			if (hsotg->eps_out[i])
3248				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3249							    0, 0);
3250		}
3251	}
3252
3253	/* ensure after enumeration our EP0 is active */
3254
3255	dwc2_hsotg_enqueue_setup(hsotg);
3256
3257	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3258		dwc2_readl(hsotg, DIEPCTL0),
3259		dwc2_readl(hsotg, DOEPCTL0));
3260}
3261
3262/**
3263 * kill_all_requests - remove all requests from the endpoint's queue
3264 * @hsotg: The device state.
3265 * @ep: The endpoint the requests may be on.
3266 * @result: The result code to use.
3267 *
3268 * Go through the requests on the given endpoint and mark them
3269 * completed with the given result code.
3270 */
3271static void kill_all_requests(struct dwc2_hsotg *hsotg,
3272			      struct dwc2_hsotg_ep *ep,
3273			      int result)
3274{
3275	unsigned int size;
 
3276
3277	ep->req = NULL;
3278
3279	while (!list_empty(&ep->queue)) {
3280		struct dwc2_hsotg_req *req = get_ep_head(ep);
3281
3282		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3283	}
3284
3285	if (!hsotg->dedicated_fifos)
3286		return;
3287	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3288	if (size < ep->fifo_size)
3289		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3290}
3291
3292/**
3293 * dwc2_hsotg_disconnect - disconnect service
3294 * @hsotg: The device state.
3295 *
3296 * The device has been disconnected. Remove all current
3297 * transactions and signal the gadget driver that this
3298 * has happened.
3299 */
3300void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3301{
3302	unsigned int ep;
3303
3304	if (!hsotg->connected)
3305		return;
3306
3307	hsotg->connected = 0;
3308	hsotg->test_mode = 0;
3309
3310	/* all endpoints should be shutdown */
3311	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3312		if (hsotg->eps_in[ep])
3313			kill_all_requests(hsotg, hsotg->eps_in[ep],
3314					  -ESHUTDOWN);
3315		if (hsotg->eps_out[ep])
3316			kill_all_requests(hsotg, hsotg->eps_out[ep],
3317					  -ESHUTDOWN);
3318	}
3319
3320	call_gadget(hsotg, disconnect);
3321	hsotg->lx_state = DWC2_L3;
3322
3323	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3324}
3325
3326/**
3327 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3328 * @hsotg: The device state:
3329 * @periodic: True if this is a periodic FIFO interrupt
3330 */
3331static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3332{
3333	struct dwc2_hsotg_ep *ep;
3334	int epno, ret;
3335
3336	/* look through for any more data to transmit */
3337	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3338		ep = index_to_ep(hsotg, epno, 1);
3339
3340		if (!ep)
3341			continue;
3342
3343		if (!ep->dir_in)
3344			continue;
3345
3346		if ((periodic && !ep->periodic) ||
3347		    (!periodic && ep->periodic))
3348			continue;
3349
3350		ret = dwc2_hsotg_trytx(hsotg, ep);
3351		if (ret < 0)
3352			break;
3353	}
3354}
3355
3356/* IRQ flags which will trigger a retry around the IRQ loop */
3357#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3358			GINTSTS_PTXFEMP |  \
3359			GINTSTS_RXFLVL)
3360
3361static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3362/**
3363 * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3364 * @hsotg: The device state
3365 * @is_usb_reset: Usb resetting flag
3366 *
3367 * Issue a soft reset to the core, and await the core finishing it.
3368 */
3369void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3370				       bool is_usb_reset)
3371{
3372	u32 intmsk;
3373	u32 val;
3374	u32 usbcfg;
3375	u32 dcfg = 0;
3376	int ep;
3377
3378	/* Kill any ep0 requests as controller will be reinitialized */
3379	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3380
3381	if (!is_usb_reset) {
3382		if (dwc2_core_reset(hsotg, true))
3383			return;
3384	} else {
3385		/* all endpoints should be shutdown */
3386		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3387			if (hsotg->eps_in[ep])
3388				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3389			if (hsotg->eps_out[ep])
3390				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3391		}
3392	}
3393
3394	/*
3395	 * we must now enable ep0 ready for host detection and then
3396	 * set configuration.
3397	 */
3398
3399	/* keep other bits untouched (so e.g. forced modes are not lost) */
3400	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3401	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3402	usbcfg |= GUSBCFG_TOUTCAL(7);
3403
3404	/* remove the HNP/SRP and set the PHY */
3405	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3406        dwc2_writel(hsotg, usbcfg, GUSBCFG);
3407
3408	dwc2_phy_init(hsotg, true);
3409
3410	dwc2_hsotg_init_fifo(hsotg);
3411
3412	if (!is_usb_reset)
3413		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3414
3415	dcfg |= DCFG_EPMISCNT(1);
3416
3417	switch (hsotg->params.speed) {
3418	case DWC2_SPEED_PARAM_LOW:
3419		dcfg |= DCFG_DEVSPD_LS;
3420		break;
3421	case DWC2_SPEED_PARAM_FULL:
3422		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3423			dcfg |= DCFG_DEVSPD_FS48;
3424		else
3425			dcfg |= DCFG_DEVSPD_FS;
3426		break;
3427	default:
3428		dcfg |= DCFG_DEVSPD_HS;
3429	}
3430
3431	if (hsotg->params.ipg_isoc_en)
3432		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3433
3434	dwc2_writel(hsotg, dcfg,  DCFG);
3435
3436	/* Clear any pending OTG interrupts */
3437	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3438
3439	/* Clear any pending interrupts */
3440	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3441	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3442		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3443		GINTSTS_USBRST | GINTSTS_RESETDET |
3444		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3445		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3446		GINTSTS_LPMTRANRCVD;
3447
3448	if (!using_desc_dma(hsotg))
3449		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3450
3451	if (!hsotg->params.external_id_pin_ctl)
3452		intmsk |= GINTSTS_CONIDSTSCHNG;
3453
3454	dwc2_writel(hsotg, intmsk, GINTMSK);
3455
3456	if (using_dma(hsotg)) {
3457		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3458			    hsotg->params.ahbcfg,
3459			    GAHBCFG);
3460
3461		/* Set DDMA mode support in the core if needed */
3462		if (using_desc_dma(hsotg))
3463			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3464
3465	} else {
3466		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3467						(GAHBCFG_NP_TXF_EMP_LVL |
3468						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3469			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3470	}
3471
3472	/*
3473	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3474	 * when we have no data to transfer. Otherwise we get being flooded by
3475	 * interrupts.
3476	 */
3477
3478	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3479		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3480		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3481		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3482		DIEPMSK);
 
3483
3484	/*
3485	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3486	 * DMA mode we may need this and StsPhseRcvd.
3487	 */
3488	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3489		DOEPMSK_STSPHSERCVDMSK) : 0) |
3490		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3491		DOEPMSK_SETUPMSK,
3492		DOEPMSK);
3493
3494	/* Enable BNA interrupt for DDMA */
3495	if (using_desc_dma(hsotg)) {
3496		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3497		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3498	}
3499
3500	/* Enable Service Interval mode if supported */
3501	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3502		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3503
3504	dwc2_writel(hsotg, 0, DAINTMSK);
3505
3506	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3507		dwc2_readl(hsotg, DIEPCTL0),
3508		dwc2_readl(hsotg, DOEPCTL0));
3509
3510	/* enable in and out endpoint interrupts */
3511	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3512
3513	/*
3514	 * Enable the RXFIFO when in slave mode, as this is how we collect
3515	 * the data. In DMA mode, we get events from the FIFO but also
3516	 * things we cannot process, so do not use it.
3517	 */
3518	if (!using_dma(hsotg))
3519		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3520
3521	/* Enable interrupts for EP0 in and out */
3522	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3523	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3524
3525	if (!is_usb_reset) {
3526		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3527		udelay(10);  /* see openiboot */
3528		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3529	}
3530
3531	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3532
3533	/*
3534	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3535	 * writing to the EPCTL register..
3536	 */
3537
3538	/* set to read 1 8byte packet */
3539	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3540	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3541
3542	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3543	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3544	       DXEPCTL_USBACTEP,
3545	       DOEPCTL0);
3546
3547	/* enable, but don't activate EP0in */
3548	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3549	       DXEPCTL_USBACTEP, DIEPCTL0);
 
 
 
 
 
 
3550
3551	/* clear global NAKs */
3552	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3553	if (!is_usb_reset)
3554		val |= DCTL_SFTDISCON;
3555	dwc2_set_bit(hsotg, DCTL, val);
3556
3557	/* configure the core to support LPM */
3558	dwc2_gadget_init_lpm(hsotg);
3559
3560	/* program GREFCLK register if needed */
3561	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3562		dwc2_gadget_program_ref_clk(hsotg);
3563
3564	/* must be at-least 3ms to allow bus to see disconnect */
3565	mdelay(3);
3566
3567	hsotg->lx_state = DWC2_L0;
3568
3569	dwc2_hsotg_enqueue_setup(hsotg);
3570
3571	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3572		dwc2_readl(hsotg, DIEPCTL0),
3573		dwc2_readl(hsotg, DOEPCTL0));
3574}
3575
3576void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3577{
3578	/* set the soft-disconnect bit */
3579	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3580}
3581
3582void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3583{
3584	/* remove the soft-disconnect and let's go */
3585	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3586}
3587
3588/**
3589 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3590 * @hsotg: The device state:
3591 *
3592 * This interrupt indicates one of the following conditions occurred while
3593 * transmitting an ISOC transaction.
3594 * - Corrupted IN Token for ISOC EP.
3595 * - Packet not complete in FIFO.
3596 *
3597 * The following actions will be taken:
3598 * - Determine the EP
3599 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3600 */
3601static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3602{
3603	struct dwc2_hsotg_ep *hs_ep;
3604	u32 epctrl;
3605	u32 daintmsk;
3606	u32 idx;
3607
3608	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3609
3610	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3611
3612	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3613		hs_ep = hsotg->eps_in[idx];
3614		/* Proceed only unmasked ISOC EPs */
3615		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3616			continue;
3617
3618		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3619		if ((epctrl & DXEPCTL_EPENA) &&
3620		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3621			epctrl |= DXEPCTL_SNAK;
3622			epctrl |= DXEPCTL_EPDIS;
3623			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3624		}
3625	}
3626
3627	/* Clear interrupt */
3628	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3629}
3630
3631/**
3632 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3633 * @hsotg: The device state:
3634 *
3635 * This interrupt indicates one of the following conditions occurred while
3636 * transmitting an ISOC transaction.
3637 * - Corrupted OUT Token for ISOC EP.
3638 * - Packet not complete in FIFO.
3639 *
3640 * The following actions will be taken:
3641 * - Determine the EP
3642 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3643 */
3644static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3645{
3646	u32 gintsts;
3647	u32 gintmsk;
3648	u32 daintmsk;
3649	u32 epctrl;
3650	struct dwc2_hsotg_ep *hs_ep;
3651	int idx;
3652
3653	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3654
3655	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3656	daintmsk >>= DAINT_OUTEP_SHIFT;
3657
3658	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3659		hs_ep = hsotg->eps_out[idx];
3660		/* Proceed only unmasked ISOC EPs */
3661		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3662			continue;
3663
3664		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3665		if ((epctrl & DXEPCTL_EPENA) &&
3666		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3667			/* Unmask GOUTNAKEFF interrupt */
3668			gintmsk = dwc2_readl(hsotg, GINTMSK);
3669			gintmsk |= GINTSTS_GOUTNAKEFF;
3670			dwc2_writel(hsotg, gintmsk, GINTMSK);
3671
3672			gintsts = dwc2_readl(hsotg, GINTSTS);
3673			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3674				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3675				break;
3676			}
3677		}
3678	}
3679
3680	/* Clear interrupt */
3681	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3682}
3683
3684/**
3685 * dwc2_hsotg_irq - handle device interrupt
3686 * @irq: The IRQ number triggered
3687 * @pw: The pw value when registered the handler.
3688 */
3689static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3690{
3691	struct dwc2_hsotg *hsotg = pw;
3692	int retry_count = 8;
3693	u32 gintsts;
3694	u32 gintmsk;
3695
3696	if (!dwc2_is_device_mode(hsotg))
3697		return IRQ_NONE;
3698
3699	spin_lock(&hsotg->lock);
3700irq_retry:
3701	gintsts = dwc2_readl(hsotg, GINTSTS);
3702	gintmsk = dwc2_readl(hsotg, GINTMSK);
3703
3704	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3705		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3706
3707	gintsts &= gintmsk;
3708
3709	if (gintsts & GINTSTS_RESETDET) {
3710		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3711
3712		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3713
3714		/* This event must be used only if controller is suspended */
3715		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3716			dwc2_exit_partial_power_down(hsotg, 0, true);
3717
3718		hsotg->lx_state = DWC2_L0;
3719	}
3720
3721	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3722		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
 
3723		u32 connected = hsotg->connected;
3724
3725		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3726		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3727			dwc2_readl(hsotg, GNPTXSTS));
3728
3729		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3730
3731		/* Report disconnection if it is not already done. */
3732		dwc2_hsotg_disconnect(hsotg);
3733
3734		/* Reset device address to zero */
3735		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3736
3737		if (usb_status & GOTGCTL_BSESVLD && connected)
3738			dwc2_hsotg_core_init_disconnected(hsotg, true);
3739	}
3740
3741	if (gintsts & GINTSTS_ENUMDONE) {
3742		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3743
3744		dwc2_hsotg_irq_enumdone(hsotg);
3745	}
3746
3747	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3748		u32 daint = dwc2_readl(hsotg, DAINT);
3749		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3750		u32 daint_out, daint_in;
3751		int ep;
3752
3753		daint &= daintmsk;
3754		daint_out = daint >> DAINT_OUTEP_SHIFT;
3755		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3756
3757		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3758
3759		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3760						ep++, daint_out >>= 1) {
3761			if (daint_out & 1)
3762				dwc2_hsotg_epint(hsotg, ep, 0);
3763		}
3764
3765		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3766						ep++, daint_in >>= 1) {
3767			if (daint_in & 1)
3768				dwc2_hsotg_epint(hsotg, ep, 1);
3769		}
3770	}
3771
3772	/* check both FIFOs */
3773
3774	if (gintsts & GINTSTS_NPTXFEMP) {
3775		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3776
3777		/*
3778		 * Disable the interrupt to stop it happening again
3779		 * unless one of these endpoint routines decides that
3780		 * it needs re-enabling
3781		 */
3782
3783		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3784		dwc2_hsotg_irq_fifoempty(hsotg, false);
3785	}
3786
3787	if (gintsts & GINTSTS_PTXFEMP) {
3788		dev_dbg(hsotg->dev, "PTxFEmp\n");
3789
3790		/* See note in GINTSTS_NPTxFEmp */
3791
3792		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3793		dwc2_hsotg_irq_fifoempty(hsotg, true);
3794	}
3795
3796	if (gintsts & GINTSTS_RXFLVL) {
3797		/*
3798		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3799		 * we need to retry dwc2_hsotg_handle_rx if this is still
3800		 * set.
3801		 */
3802
3803		dwc2_hsotg_handle_rx(hsotg);
3804	}
3805
3806	if (gintsts & GINTSTS_ERLYSUSP) {
3807		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3808		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3809	}
3810
3811	/*
3812	 * these next two seem to crop-up occasionally causing the core
3813	 * to shutdown the USB transfer, so try clearing them and logging
3814	 * the occurrence.
3815	 */
3816
3817	if (gintsts & GINTSTS_GOUTNAKEFF) {
3818		u8 idx;
3819		u32 epctrl;
3820		u32 gintmsk;
3821		u32 daintmsk;
3822		struct dwc2_hsotg_ep *hs_ep;
3823
3824		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3825		daintmsk >>= DAINT_OUTEP_SHIFT;
3826		/* Mask this interrupt */
3827		gintmsk = dwc2_readl(hsotg, GINTMSK);
3828		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3829		dwc2_writel(hsotg, gintmsk, GINTMSK);
3830
3831		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3832		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3833			hs_ep = hsotg->eps_out[idx];
3834			/* Proceed only unmasked ISOC EPs */
3835			if (BIT(idx) & ~daintmsk)
3836				continue;
3837
3838			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3839
3840			//ISOC Ep's only
3841			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3842				epctrl |= DXEPCTL_SNAK;
3843				epctrl |= DXEPCTL_EPDIS;
3844				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3845				continue;
3846			}
3847
3848			//Non-ISOC EP's
3849			if (hs_ep->halted) {
3850				if (!(epctrl & DXEPCTL_EPENA))
3851					epctrl |= DXEPCTL_EPENA;
3852				epctrl |= DXEPCTL_EPDIS;
3853				epctrl |= DXEPCTL_STALL;
3854				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3855			}
3856		}
3857
3858		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3859	}
3860
3861	if (gintsts & GINTSTS_GINNAKEFF) {
3862		dev_info(hsotg->dev, "GINNakEff triggered\n");
3863
3864		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3865
3866		dwc2_hsotg_dump(hsotg);
3867	}
3868
3869	if (gintsts & GINTSTS_INCOMPL_SOIN)
3870		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
 
3871
3872	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3873		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
 
3874
3875	/*
3876	 * if we've had fifo events, we should try and go around the
3877	 * loop again to see if there's any point in returning yet.
3878	 */
3879
3880	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3881		goto irq_retry;
 
 
 
3882
3883	/* Check WKUP_ALERT interrupt*/
3884	if (hsotg->params.service_interval)
3885		dwc2_gadget_wkup_alert_handler(hsotg);
3886
3887	spin_unlock(&hsotg->lock);
 
 
3888
3889	return IRQ_HANDLED;
3890}
3891
3892static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3893				   struct dwc2_hsotg_ep *hs_ep)
3894{
3895	u32 epctrl_reg;
3896	u32 epint_reg;
3897
3898	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3899		DOEPCTL(hs_ep->index);
3900	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3901		DOEPINT(hs_ep->index);
3902
3903	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3904		hs_ep->name);
3905
3906	if (hs_ep->dir_in) {
3907		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3908			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3909			/* Wait for Nak effect */
3910			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3911						    DXEPINT_INEPNAKEFF, 100))
3912				dev_warn(hsotg->dev,
3913					 "%s: timeout DIEPINT.NAKEFF\n",
3914					 __func__);
3915		} else {
3916			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3917			/* Wait for Nak effect */
3918			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3919						    GINTSTS_GINNAKEFF, 100))
3920				dev_warn(hsotg->dev,
3921					 "%s: timeout GINTSTS.GINNAKEFF\n",
3922					 __func__);
3923		}
3924	} else {
3925		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3926		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3927
3928		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3929			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3930
3931		if (!using_dma(hsotg)) {
3932			/* Wait for GINTSTS_RXFLVL interrupt */
3933			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3934						    GINTSTS_RXFLVL, 100)) {
3935				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3936					 __func__);
3937			} else {
3938				/*
3939				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3940				 * to assert GOUTNAKEFF interrupt
3941				 */
3942				dwc2_readl(hsotg, GRXSTSP);
3943			}
3944		}
3945
3946		/* Wait for global nak to take effect */
3947		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3948					    GINTSTS_GOUTNAKEFF, 100))
3949			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3950				 __func__);
3951	}
3952
3953	/* Disable ep */
3954	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
 
 
3955
3956	/* Wait for ep to be disabled */
3957	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3958		dev_warn(hsotg->dev,
3959			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3960
3961	/* Clear EPDISBLD interrupt */
3962	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3963
3964	if (hs_ep->dir_in) {
3965		unsigned short fifo_index;
3966
3967		if (hsotg->dedicated_fifos || hs_ep->periodic)
3968			fifo_index = hs_ep->fifo_index;
3969		else
3970			fifo_index = 0;
3971
3972		/* Flush TX FIFO */
3973		dwc2_flush_tx_fifo(hsotg, fifo_index);
3974
3975		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3976		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3977			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3978
3979	} else {
3980		/* Remove global NAKs */
3981		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3982	}
3983}
3984
3985/**
3986 * dwc2_hsotg_ep_enable - enable the given endpoint
3987 * @ep: The USB endpint to configure
3988 * @desc: The USB endpoint descriptor to configure with.
3989 *
3990 * This is called from the USB gadget code's usb_ep_enable().
3991 */
3992static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3993				const struct usb_endpoint_descriptor *desc)
3994{
3995	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3996	struct dwc2_hsotg *hsotg = hs_ep->parent;
3997	unsigned long flags;
3998	unsigned int index = hs_ep->index;
3999	u32 epctrl_reg;
4000	u32 epctrl;
4001	u32 mps;
4002	u32 mc;
4003	u32 mask;
4004	unsigned int dir_in;
4005	unsigned int i, val, size;
4006	int ret = 0;
4007	unsigned char ep_type;
4008	int desc_num;
4009
4010	dev_dbg(hsotg->dev,
4011		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4012		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4013		desc->wMaxPacketSize, desc->bInterval);
4014
4015	/* not to be called for EP0 */
4016	if (index == 0) {
4017		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4018		return -EINVAL;
4019	}
4020
4021	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4022	if (dir_in != hs_ep->dir_in) {
4023		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4024		return -EINVAL;
4025	}
4026
4027	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4028	mps = usb_endpoint_maxp(desc);
4029	mc = usb_endpoint_maxp_mult(desc);
4030
4031	/* ISOC IN in DDMA supported bInterval up to 10 */
4032	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4033	    dir_in && desc->bInterval > 10) {
4034		dev_err(hsotg->dev,
4035			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4036		return -EINVAL;
4037	}
4038
4039	/* High bandwidth ISOC OUT in DDMA not supported */
4040	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4041	    !dir_in && mc > 1) {
4042		dev_err(hsotg->dev,
4043			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4044		return -EINVAL;
4045	}
4046
4047	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4048
4049	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4050	epctrl = dwc2_readl(hsotg, epctrl_reg);
4051
4052	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4053		__func__, epctrl, epctrl_reg);
4054
4055	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4056		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4057	else
4058		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4059
4060	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4061	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4062		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4063			desc_num * sizeof(struct dwc2_dma_desc),
4064			&hs_ep->desc_list_dma, GFP_ATOMIC);
4065		if (!hs_ep->desc_list) {
4066			ret = -ENOMEM;
4067			goto error2;
4068		}
4069	}
4070
4071	spin_lock_irqsave(&hsotg->lock, flags);
4072
4073	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4074	epctrl |= DXEPCTL_MPS(mps);
4075
4076	/*
4077	 * mark the endpoint as active, otherwise the core may ignore
4078	 * transactions entirely for this endpoint
4079	 */
4080	epctrl |= DXEPCTL_USBACTEP;
4081
 
 
 
 
 
 
 
 
 
4082	/* update the endpoint state */
4083	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4084
4085	/* default, set to non-periodic */
4086	hs_ep->isochronous = 0;
4087	hs_ep->periodic = 0;
4088	hs_ep->halted = 0;
4089	hs_ep->interval = desc->bInterval;
 
4090
4091	switch (ep_type) {
 
 
 
4092	case USB_ENDPOINT_XFER_ISOC:
4093		epctrl |= DXEPCTL_EPTYPE_ISO;
4094		epctrl |= DXEPCTL_SETEVENFR;
4095		hs_ep->isochronous = 1;
4096		hs_ep->interval = 1 << (desc->bInterval - 1);
4097		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4098		hs_ep->next_desc = 0;
4099		hs_ep->compl_desc = 0;
4100		if (dir_in) {
4101			hs_ep->periodic = 1;
4102			mask = dwc2_readl(hsotg, DIEPMSK);
4103			mask |= DIEPMSK_NAKMSK;
4104			dwc2_writel(hsotg, mask, DIEPMSK);
4105		} else {
4106			epctrl |= DXEPCTL_SNAK;
4107			mask = dwc2_readl(hsotg, DOEPMSK);
4108			mask |= DOEPMSK_OUTTKNEPDISMSK;
4109			dwc2_writel(hsotg, mask, DOEPMSK);
4110		}
4111		break;
4112
4113	case USB_ENDPOINT_XFER_BULK:
4114		epctrl |= DXEPCTL_EPTYPE_BULK;
4115		break;
4116
4117	case USB_ENDPOINT_XFER_INT:
4118		if (dir_in)
4119			hs_ep->periodic = 1;
4120
4121		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4122			hs_ep->interval = 1 << (desc->bInterval - 1);
4123
4124		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4125		break;
4126
4127	case USB_ENDPOINT_XFER_CONTROL:
4128		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4129		break;
4130	}
4131
 
 
 
 
 
 
 
 
 
 
 
4132	/*
4133	 * if the hardware has dedicated fifos, we must give each IN EP
4134	 * a unique tx-fifo even if it is non-periodic.
4135	 */
4136	if (dir_in && hsotg->dedicated_fifos) {
4137		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4138		u32 fifo_index = 0;
4139		u32 fifo_size = UINT_MAX;
4140
4141		size = hs_ep->ep.maxpacket * hs_ep->mc;
4142		for (i = 1; i <= fifo_count; ++i) {
4143			if (hsotg->fifo_map & (1 << i))
4144				continue;
4145			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4146			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4147			if (val < size)
4148				continue;
4149			/* Search for smallest acceptable fifo */
4150			if (val < fifo_size) {
4151				fifo_size = val;
4152				fifo_index = i;
4153			}
4154		}
4155		if (!fifo_index) {
4156			dev_err(hsotg->dev,
4157				"%s: No suitable fifo found\n", __func__);
4158			ret = -ENOMEM;
4159			goto error1;
4160		}
4161		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4162		hsotg->fifo_map |= 1 << fifo_index;
4163		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4164		hs_ep->fifo_index = fifo_index;
4165		hs_ep->fifo_size = fifo_size;
4166	}
4167
4168	/* for non control endpoints, set PID to D0 */
4169	if (index && !hs_ep->isochronous)
4170		epctrl |= DXEPCTL_SETD0PID;
4171
4172	/* WA for Full speed ISOC IN in DDMA mode.
4173	 * By Clear NAK status of EP, core will send ZLP
4174	 * to IN token and assert NAK interrupt relying
4175	 * on TxFIFO status only
4176	 */
4177
4178	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4179	    hs_ep->isochronous && dir_in) {
4180		/* The WA applies only to core versions from 2.72a
4181		 * to 4.00a (including both). Also for FS_IOT_1.00a
4182		 * and HS_IOT_1.00a.
4183		 */
4184		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4185
4186		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4187		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4188		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4189		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4190			epctrl |= DXEPCTL_CNAK;
4191	}
4192
4193	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4194		__func__, epctrl);
4195
4196	dwc2_writel(hsotg, epctrl, epctrl_reg);
4197	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4198		__func__, dwc2_readl(hsotg, epctrl_reg));
4199
4200	/* enable the endpoint interrupt */
4201	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4202
4203error1:
4204	spin_unlock_irqrestore(&hsotg->lock, flags);
4205
4206error2:
4207	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4208		dmam_free_coherent(hsotg->dev, desc_num *
4209			sizeof(struct dwc2_dma_desc),
4210			hs_ep->desc_list, hs_ep->desc_list_dma);
4211		hs_ep->desc_list = NULL;
4212	}
4213
4214	return ret;
4215}
4216
4217/**
4218 * dwc2_hsotg_ep_disable - disable given endpoint
4219 * @ep: The endpoint to disable.
4220 */
4221static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4222{
4223	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4224	struct dwc2_hsotg *hsotg = hs_ep->parent;
4225	int dir_in = hs_ep->dir_in;
4226	int index = hs_ep->index;
 
4227	u32 epctrl_reg;
4228	u32 ctrl;
4229
4230	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4231
4232	if (ep == &hsotg->eps_out[0]->ep) {
4233		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4234		return -EINVAL;
4235	}
4236
4237	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4238		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4239		return -EINVAL;
4240	}
4241
4242	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4243
4244	ctrl = dwc2_readl(hsotg, epctrl_reg);
4245
4246	if (ctrl & DXEPCTL_EPENA)
4247		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
 
4248
 
4249	ctrl &= ~DXEPCTL_EPENA;
4250	ctrl &= ~DXEPCTL_USBACTEP;
4251	ctrl |= DXEPCTL_SNAK;
4252
4253	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4254	dwc2_writel(hsotg, ctrl, epctrl_reg);
4255
4256	/* disable endpoint interrupts */
4257	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4258
4259	/* terminate all requests with shutdown */
4260	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4261
4262	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4263	hs_ep->fifo_index = 0;
4264	hs_ep->fifo_size = 0;
4265
4266	return 0;
4267}
4268
4269static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4270{
4271	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4272	struct dwc2_hsotg *hsotg = hs_ep->parent;
4273	unsigned long flags;
4274	int ret;
4275
4276	spin_lock_irqsave(&hsotg->lock, flags);
4277	ret = dwc2_hsotg_ep_disable(ep);
4278	spin_unlock_irqrestore(&hsotg->lock, flags);
4279	return ret;
4280}
4281
4282/**
4283 * on_list - check request is on the given endpoint
4284 * @ep: The endpoint to check.
4285 * @test: The request to test if it is on the endpoint.
4286 */
4287static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4288{
4289	struct dwc2_hsotg_req *req, *treq;
4290
4291	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4292		if (req == test)
4293			return true;
4294	}
4295
4296	return false;
4297}
4298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4299/**
4300 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4301 * @ep: The endpoint to dequeue.
4302 * @req: The request to be removed from a queue.
4303 */
4304static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4305{
4306	struct dwc2_hsotg_req *hs_req = our_req(req);
4307	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4308	struct dwc2_hsotg *hs = hs_ep->parent;
4309	unsigned long flags;
4310
4311	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4312
4313	spin_lock_irqsave(&hs->lock, flags);
4314
4315	if (!on_list(hs_ep, hs_req)) {
4316		spin_unlock_irqrestore(&hs->lock, flags);
4317		return -EINVAL;
4318	}
4319
4320	/* Dequeue already started request */
4321	if (req == &hs_ep->req->req)
4322		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4323
4324	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4325	spin_unlock_irqrestore(&hs->lock, flags);
4326
4327	return 0;
4328}
4329
4330/**
4331 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4332 * @ep: The endpoint to set halt.
4333 * @value: Set or unset the halt.
4334 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4335 *       the endpoint is busy processing requests.
4336 *
4337 * We need to stall the endpoint immediately if request comes from set_feature
4338 * protocol command handler.
4339 */
4340static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4341{
4342	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4343	struct dwc2_hsotg *hs = hs_ep->parent;
4344	int index = hs_ep->index;
4345	u32 epreg;
4346	u32 epctl;
4347	u32 xfertype;
4348
4349	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4350
4351	if (index == 0) {
4352		if (value)
4353			dwc2_hsotg_stall_ep0(hs);
4354		else
4355			dev_warn(hs->dev,
4356				 "%s: can't clear halt on ep0\n", __func__);
4357		return 0;
4358	}
4359
4360	if (hs_ep->isochronous) {
4361		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4362		return -EINVAL;
4363	}
4364
4365	if (!now && value && !list_empty(&hs_ep->queue)) {
4366		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4367			ep->name);
4368		return -EAGAIN;
4369	}
4370
4371	if (hs_ep->dir_in) {
4372		epreg = DIEPCTL(index);
4373		epctl = dwc2_readl(hs, epreg);
4374
4375		if (value) {
4376			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4377			if (epctl & DXEPCTL_EPENA)
4378				epctl |= DXEPCTL_EPDIS;
4379		} else {
4380			epctl &= ~DXEPCTL_STALL;
4381			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4382			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4383			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4384				epctl |= DXEPCTL_SETD0PID;
4385		}
4386		dwc2_writel(hs, epctl, epreg);
4387	} else {
 
4388		epreg = DOEPCTL(index);
4389		epctl = dwc2_readl(hs, epreg);
4390
4391		if (value) {
4392			/* Unmask GOUTNAKEFF interrupt */
4393			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4394
4395			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4396				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4397			// STALL bit will be set in GOUTNAKEFF interrupt handler
4398		} else {
4399			epctl &= ~DXEPCTL_STALL;
4400			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4401			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4402			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4403				epctl |= DXEPCTL_SETD0PID;
4404			dwc2_writel(hs, epctl, epreg);
4405		}
 
4406	}
4407
4408	hs_ep->halted = value;
 
4409	return 0;
4410}
4411
4412/**
4413 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4414 * @ep: The endpoint to set halt.
4415 * @value: Set or unset the halt.
4416 */
4417static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4418{
4419	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4420	struct dwc2_hsotg *hs = hs_ep->parent;
4421	unsigned long flags;
4422	int ret;
4423
4424	spin_lock_irqsave(&hs->lock, flags);
4425	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4426	spin_unlock_irqrestore(&hs->lock, flags);
4427
4428	return ret;
4429}
4430
4431static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4432	.enable		= dwc2_hsotg_ep_enable,
4433	.disable	= dwc2_hsotg_ep_disable_lock,
4434	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4435	.free_request	= dwc2_hsotg_ep_free_request,
4436	.queue		= dwc2_hsotg_ep_queue_lock,
4437	.dequeue	= dwc2_hsotg_ep_dequeue,
4438	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4439	/* note, don't believe we have any call for the fifo routines */
4440};
4441
4442/**
4443 * dwc2_hsotg_init - initialize the usb core
4444 * @hsotg: The driver state
4445 */
4446static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4447{
 
 
4448	/* unmask subset of endpoint interrupts */
4449
4450	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4451		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4452		    DIEPMSK);
4453
4454	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4455		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4456		    DOEPMSK);
4457
4458	dwc2_writel(hsotg, 0, DAINTMSK);
4459
4460	/* Be in disconnected state until gadget is registered */
4461	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4462
4463	/* setup fifos */
4464
4465	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4466		dwc2_readl(hsotg, GRXFSIZ),
4467		dwc2_readl(hsotg, GNPTXFSIZ));
4468
4469	dwc2_hsotg_init_fifo(hsotg);
4470
 
 
 
 
 
 
 
 
 
 
 
4471	if (using_dma(hsotg))
4472		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4473}
4474
4475/**
4476 * dwc2_hsotg_udc_start - prepare the udc for work
4477 * @gadget: The usb gadget state
4478 * @driver: The usb gadget driver
4479 *
4480 * Perform initialization to prepare udc device and driver
4481 * to work.
4482 */
4483static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4484				struct usb_gadget_driver *driver)
4485{
4486	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4487	unsigned long flags;
4488	int ret;
4489
4490	if (!hsotg) {
4491		pr_err("%s: called with no device\n", __func__);
4492		return -ENODEV;
4493	}
4494
4495	if (!driver) {
4496		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4497		return -EINVAL;
4498	}
4499
4500	if (driver->max_speed < USB_SPEED_FULL)
4501		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4502
4503	if (!driver->setup) {
4504		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4505		return -EINVAL;
4506	}
4507
4508	WARN_ON(hsotg->driver);
4509
4510	driver->driver.bus = NULL;
4511	hsotg->driver = driver;
4512	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4513	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4514
4515	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4516		ret = dwc2_lowlevel_hw_enable(hsotg);
4517		if (ret)
4518			goto err;
4519	}
4520
4521	if (!IS_ERR_OR_NULL(hsotg->uphy))
4522		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4523
4524	spin_lock_irqsave(&hsotg->lock, flags);
4525	if (dwc2_hw_is_device(hsotg)) {
4526		dwc2_hsotg_init(hsotg);
4527		dwc2_hsotg_core_init_disconnected(hsotg, false);
4528	}
4529
4530	hsotg->enabled = 0;
4531	spin_unlock_irqrestore(&hsotg->lock, flags);
4532
4533	gadget->sg_supported = using_desc_dma(hsotg);
4534	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4535
4536	return 0;
4537
4538err:
4539	hsotg->driver = NULL;
4540	return ret;
4541}
4542
4543/**
4544 * dwc2_hsotg_udc_stop - stop the udc
4545 * @gadget: The usb gadget state
 
4546 *
4547 * Stop udc hw block and stay tunned for future transmissions
4548 */
4549static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4550{
4551	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4552	unsigned long flags;
4553	int ep;
4554
4555	if (!hsotg)
4556		return -ENODEV;
4557
4558	/* all endpoints should be shutdown */
4559	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4560		if (hsotg->eps_in[ep])
4561			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4562		if (hsotg->eps_out[ep])
4563			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4564	}
4565
4566	spin_lock_irqsave(&hsotg->lock, flags);
4567
4568	hsotg->driver = NULL;
4569	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4570	hsotg->enabled = 0;
4571
4572	spin_unlock_irqrestore(&hsotg->lock, flags);
4573
4574	if (!IS_ERR_OR_NULL(hsotg->uphy))
4575		otg_set_peripheral(hsotg->uphy->otg, NULL);
4576
4577	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4578		dwc2_lowlevel_hw_disable(hsotg);
4579
4580	return 0;
4581}
4582
4583/**
4584 * dwc2_hsotg_gadget_getframe - read the frame number
4585 * @gadget: The usb gadget state
4586 *
4587 * Read the {micro} frame number
4588 */
4589static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4590{
4591	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4592}
4593
4594/**
4595 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4596 * @gadget: The usb gadget state
4597 * @is_selfpowered: Whether the device is self-powered
4598 *
4599 * Set if the device is self or bus powered.
4600 */
4601static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4602				      int is_selfpowered)
4603{
4604	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4605	unsigned long flags;
4606
4607	spin_lock_irqsave(&hsotg->lock, flags);
4608	gadget->is_selfpowered = !!is_selfpowered;
4609	spin_unlock_irqrestore(&hsotg->lock, flags);
4610
4611	return 0;
4612}
4613
4614/**
4615 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4616 * @gadget: The usb gadget state
4617 * @is_on: Current state of the USB PHY
4618 *
4619 * Connect/Disconnect the USB PHY pullup
4620 */
4621static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4622{
4623	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4624	unsigned long flags;
4625
4626	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4627		hsotg->op_state);
4628
4629	/* Don't modify pullup state while in host mode */
4630	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4631		hsotg->enabled = is_on;
4632		return 0;
4633	}
4634
4635	spin_lock_irqsave(&hsotg->lock, flags);
4636	if (is_on) {
4637		hsotg->enabled = 1;
4638		dwc2_hsotg_core_init_disconnected(hsotg, false);
4639		/* Enable ACG feature in device mode,if supported */
4640		dwc2_enable_acg(hsotg);
4641		dwc2_hsotg_core_connect(hsotg);
4642	} else {
4643		dwc2_hsotg_core_disconnect(hsotg);
4644		dwc2_hsotg_disconnect(hsotg);
4645		hsotg->enabled = 0;
4646	}
4647
4648	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4649	spin_unlock_irqrestore(&hsotg->lock, flags);
4650
4651	return 0;
4652}
4653
4654static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4655{
4656	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4657	unsigned long flags;
4658
4659	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4660	spin_lock_irqsave(&hsotg->lock, flags);
4661
4662	/*
4663	 * If controller is in partial power down state, it must exit from
4664	 * that state before being initialized / de-initialized
4665	 */
4666	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4667		/*
4668		 * No need to check the return value as
4669		 * registers are not being restored.
4670		 */
4671		dwc2_exit_partial_power_down(hsotg, 0, false);
4672
4673	if (is_active) {
4674		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4675
4676		dwc2_hsotg_core_init_disconnected(hsotg, false);
4677		if (hsotg->enabled) {
4678			/* Enable ACG feature in device mode,if supported */
4679			dwc2_enable_acg(hsotg);
4680			dwc2_hsotg_core_connect(hsotg);
4681		}
4682	} else {
4683		dwc2_hsotg_core_disconnect(hsotg);
4684		dwc2_hsotg_disconnect(hsotg);
4685	}
4686
4687	spin_unlock_irqrestore(&hsotg->lock, flags);
4688	return 0;
4689}
4690
4691/**
4692 * dwc2_hsotg_vbus_draw - report bMaxPower field
4693 * @gadget: The usb gadget state
4694 * @mA: Amount of current
4695 *
4696 * Report how much power the device may consume to the phy.
4697 */
4698static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4699{
4700	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4701
4702	if (IS_ERR_OR_NULL(hsotg->uphy))
4703		return -ENOTSUPP;
4704	return usb_phy_set_power(hsotg->uphy, mA);
4705}
4706
4707static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4708	.get_frame	= dwc2_hsotg_gadget_getframe,
4709	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4710	.udc_start		= dwc2_hsotg_udc_start,
4711	.udc_stop		= dwc2_hsotg_udc_stop,
4712	.pullup                 = dwc2_hsotg_pullup,
4713	.vbus_session		= dwc2_hsotg_vbus_session,
4714	.vbus_draw		= dwc2_hsotg_vbus_draw,
4715};
4716
4717/**
4718 * dwc2_hsotg_initep - initialise a single endpoint
4719 * @hsotg: The device state.
4720 * @hs_ep: The endpoint to be initialised.
4721 * @epnum: The endpoint number
4722 * @dir_in: True if direction is in.
4723 *
4724 * Initialise the given endpoint (as part of the probe and device state
4725 * creation) to give to the gadget driver. Setup the endpoint name, any
4726 * direction information and other state that may be required.
4727 */
4728static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4729			      struct dwc2_hsotg_ep *hs_ep,
4730				       int epnum,
4731				       bool dir_in)
4732{
4733	char *dir;
4734
4735	if (epnum == 0)
4736		dir = "";
4737	else if (dir_in)
4738		dir = "in";
4739	else
4740		dir = "out";
4741
4742	hs_ep->dir_in = dir_in;
4743	hs_ep->index = epnum;
4744
4745	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4746
4747	INIT_LIST_HEAD(&hs_ep->queue);
4748	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4749
4750	/* add to the list of endpoints known by the gadget driver */
4751	if (epnum)
4752		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4753
4754	hs_ep->parent = hsotg;
4755	hs_ep->ep.name = hs_ep->name;
4756
4757	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4758		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4759	else
4760		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4761					   epnum ? 1024 : EP0_MPS_LIMIT);
4762	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4763
4764	if (epnum == 0) {
4765		hs_ep->ep.caps.type_control = true;
4766	} else {
4767		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4768			hs_ep->ep.caps.type_iso = true;
4769			hs_ep->ep.caps.type_bulk = true;
4770		}
4771		hs_ep->ep.caps.type_int = true;
4772	}
4773
4774	if (dir_in)
4775		hs_ep->ep.caps.dir_in = true;
4776	else
4777		hs_ep->ep.caps.dir_out = true;
4778
4779	/*
4780	 * if we're using dma, we need to set the next-endpoint pointer
4781	 * to be something valid.
4782	 */
4783
4784	if (using_dma(hsotg)) {
4785		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4786
4787		if (dir_in)
4788			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4789		else
4790			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4791	}
4792}
4793
4794/**
4795 * dwc2_hsotg_hw_cfg - read HW configuration registers
4796 * @hsotg: Programming view of the DWC_otg controller
4797 *
4798 * Read the USB core HW configuration registers
4799 */
4800static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4801{
4802	u32 cfg;
4803	u32 ep_type;
4804	u32 i;
4805
4806	/* check hardware configuration */
4807
4808	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4809
4810	/* Add ep0 */
4811	hsotg->num_of_eps++;
4812
4813	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4814					sizeof(struct dwc2_hsotg_ep),
4815					GFP_KERNEL);
4816	if (!hsotg->eps_in[0])
4817		return -ENOMEM;
4818	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4819	hsotg->eps_out[0] = hsotg->eps_in[0];
4820
4821	cfg = hsotg->hw_params.dev_ep_dirs;
4822	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4823		ep_type = cfg & 3;
4824		/* Direction in or both */
4825		if (!(ep_type & 2)) {
4826			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4827				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4828			if (!hsotg->eps_in[i])
4829				return -ENOMEM;
4830		}
4831		/* Direction out or both */
4832		if (!(ep_type & 1)) {
4833			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4834				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4835			if (!hsotg->eps_out[i])
4836				return -ENOMEM;
4837		}
4838	}
4839
4840	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4841	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4842
4843	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4844		 hsotg->num_of_eps,
4845		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4846		 hsotg->fifo_mem);
4847	return 0;
4848}
4849
4850/**
4851 * dwc2_hsotg_dump - dump state of the udc
4852 * @hsotg: Programming view of the DWC_otg controller
4853 *
4854 */
4855static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4856{
4857#ifdef DEBUG
4858	struct device *dev = hsotg->dev;
 
4859	u32 val;
4860	int idx;
4861
4862	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4863		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4864		 dwc2_readl(hsotg, DIEPMSK));
4865
4866	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4867		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4868
4869	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4870		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4871
4872	/* show periodic fifo settings */
4873
4874	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4875		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4876		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4877			 val >> FIFOSIZE_DEPTH_SHIFT,
4878			 val & FIFOSIZE_STARTADDR_MASK);
4879	}
4880
4881	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4882		dev_info(dev,
4883			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4884			 dwc2_readl(hsotg, DIEPCTL(idx)),
4885			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4886			 dwc2_readl(hsotg, DIEPDMA(idx)));
4887
4888		val = dwc2_readl(hsotg, DOEPCTL(idx));
4889		dev_info(dev,
4890			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4891			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4892			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4893			 dwc2_readl(hsotg, DOEPDMA(idx)));
 
4894	}
4895
4896	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4897		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4898#endif
4899}
4900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4901/**
4902 * dwc2_gadget_init - init function for gadget
4903 * @hsotg: Programming view of the DWC_otg controller
4904 *
4905 */
4906int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4907{
4908	struct device *dev = hsotg->dev;
4909	int epnum;
4910	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4911
4912	/* Dump fifo information */
4913	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4914		hsotg->params.g_np_tx_fifo_size);
4915	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
 
 
 
4916
4917	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4918	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4919	hsotg->gadget.name = dev_name(dev);
4920	hsotg->remote_wakeup_allowed = 0;
4921
4922	if (hsotg->params.lpm)
4923		hsotg->gadget.lpm_capable = true;
4924
4925	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4926		hsotg->gadget.is_otg = 1;
4927	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4928		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4929
4930	ret = dwc2_hsotg_hw_cfg(hsotg);
4931	if (ret) {
4932		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4933		return ret;
4934	}
4935
4936	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4937			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4938	if (!hsotg->ctrl_buff)
 
4939		return -ENOMEM;
 
4940
4941	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4942			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4943	if (!hsotg->ep0_buff)
 
4944		return -ENOMEM;
4945
4946	if (using_desc_dma(hsotg)) {
4947		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4948		if (ret < 0)
4949			return ret;
4950	}
4951
4952	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4953			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4954	if (ret < 0) {
4955		dev_err(dev, "cannot claim IRQ for gadget\n");
4956		return ret;
4957	}
4958
4959	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4960
4961	if (hsotg->num_of_eps == 0) {
4962		dev_err(dev, "wrong number of EPs (zero)\n");
4963		return -EINVAL;
4964	}
4965
4966	/* setup endpoint information */
4967
4968	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4969	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4970
4971	/* allocate EP0 request */
4972
4973	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4974						     GFP_KERNEL);
4975	if (!hsotg->ctrl_req) {
4976		dev_err(dev, "failed to allocate ctrl req\n");
4977		return -ENOMEM;
4978	}
4979
4980	/* initialise the endpoints now the core has been initialised */
4981	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4982		if (hsotg->eps_in[epnum])
4983			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4984					  epnum, 1);
4985		if (hsotg->eps_out[epnum])
4986			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4987					  epnum, 0);
4988	}
4989
 
 
 
 
4990	dwc2_hsotg_dump(hsotg);
4991
4992	return 0;
4993}
4994
4995/**
4996 * dwc2_hsotg_remove - remove function for hsotg driver
4997 * @hsotg: Programming view of the DWC_otg controller
4998 *
4999 */
5000int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5001{
5002	usb_del_gadget_udc(&hsotg->gadget);
5003	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5004
5005	return 0;
5006}
5007
5008int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5009{
5010	unsigned long flags;
5011
5012	if (hsotg->lx_state != DWC2_L0)
5013		return 0;
5014
5015	if (hsotg->driver) {
5016		int ep;
5017
5018		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5019			 hsotg->driver->driver.name);
5020
5021		spin_lock_irqsave(&hsotg->lock, flags);
5022		if (hsotg->enabled)
5023			dwc2_hsotg_core_disconnect(hsotg);
5024		dwc2_hsotg_disconnect(hsotg);
5025		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5026		spin_unlock_irqrestore(&hsotg->lock, flags);
5027
5028		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
5029			if (hsotg->eps_in[ep])
5030				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5031			if (hsotg->eps_out[ep])
5032				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5033		}
5034	}
5035
5036	return 0;
5037}
5038
5039int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5040{
5041	unsigned long flags;
5042
5043	if (hsotg->lx_state == DWC2_L2)
5044		return 0;
5045
5046	if (hsotg->driver) {
5047		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5048			 hsotg->driver->driver.name);
5049
5050		spin_lock_irqsave(&hsotg->lock, flags);
5051		dwc2_hsotg_core_init_disconnected(hsotg, false);
5052		if (hsotg->enabled) {
5053			/* Enable ACG feature in device mode,if supported */
5054			dwc2_enable_acg(hsotg);
5055			dwc2_hsotg_core_connect(hsotg);
5056		}
5057		spin_unlock_irqrestore(&hsotg->lock, flags);
5058	}
5059
5060	return 0;
5061}
5062
5063/**
5064 * dwc2_backup_device_registers() - Backup controller device registers.
5065 * When suspending usb bus, registers needs to be backuped
5066 * if controller power is disabled once suspended.
5067 *
5068 * @hsotg: Programming view of the DWC_otg controller
5069 */
5070int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5071{
5072	struct dwc2_dregs_backup *dr;
5073	int i;
5074
5075	dev_dbg(hsotg->dev, "%s\n", __func__);
5076
5077	/* Backup dev regs */
5078	dr = &hsotg->dr_backup;
5079
5080	dr->dcfg = dwc2_readl(hsotg, DCFG);
5081	dr->dctl = dwc2_readl(hsotg, DCTL);
5082	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5083	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5084	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5085
5086	for (i = 0; i < hsotg->num_of_eps; i++) {
5087		/* Backup IN EPs */
5088		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5089
5090		/* Ensure DATA PID is correctly configured */
5091		if (dr->diepctl[i] & DXEPCTL_DPID)
5092			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5093		else
5094			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5095
5096		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5097		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5098
5099		/* Backup OUT EPs */
5100		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5101
5102		/* Ensure DATA PID is correctly configured */
5103		if (dr->doepctl[i] & DXEPCTL_DPID)
5104			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5105		else
5106			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5107
5108		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5109		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5110		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5111	}
5112	dr->valid = true;
5113	return 0;
5114}
5115
5116/**
5117 * dwc2_restore_device_registers() - Restore controller device registers.
5118 * When resuming usb bus, device registers needs to be restored
5119 * if controller power were disabled.
5120 *
5121 * @hsotg: Programming view of the DWC_otg controller
5122 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5123 *
5124 * Return: 0 if successful, negative error code otherwise
5125 */
5126int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5127{
5128	struct dwc2_dregs_backup *dr;
 
5129	int i;
5130
5131	dev_dbg(hsotg->dev, "%s\n", __func__);
5132
5133	/* Restore dev regs */
5134	dr = &hsotg->dr_backup;
5135	if (!dr->valid) {
5136		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5137			__func__);
5138		return -EINVAL;
5139	}
5140	dr->valid = false;
5141
5142	if (!remote_wakeup)
5143		dwc2_writel(hsotg, dr->dctl, DCTL);
5144
5145	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5146	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5147	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5148
5149	for (i = 0; i < hsotg->num_of_eps; i++) {
5150		/* Restore IN EPs */
5151		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5152		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5153		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5154		/** WA for enabled EPx's IN in DDMA mode. On entering to
5155		 * hibernation wrong value read and saved from DIEPDMAx,
5156		 * as result BNA interrupt asserted on hibernation exit
5157		 * by restoring from saved area.
5158		 */
5159		if (hsotg->params.g_dma_desc &&
5160		    (dr->diepctl[i] & DXEPCTL_EPENA))
5161			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5162		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5163		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5164		/* Restore OUT EPs */
5165		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5166		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5167		 * hibernation wrong value read and saved from DOEPDMAx,
5168		 * as result BNA interrupt asserted on hibernation exit
5169		 * by restoring from saved area.
5170		 */
5171		if (hsotg->params.g_dma_desc &&
5172		    (dr->doepctl[i] & DXEPCTL_EPENA))
5173			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5174		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5175		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5176	}
5177
5178	return 0;
5179}
5180
5181/**
5182 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5183 *
5184 * @hsotg: Programming view of DWC_otg controller
5185 *
5186 */
5187void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5188{
5189	u32 val;
5190
5191	if (!hsotg->params.lpm)
5192		return;
5193
5194	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5195	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5196	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5197	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5198	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5199	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5200	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5201	dwc2_writel(hsotg, val, GLPMCFG);
5202	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5203
5204	/* Unmask WKUP_ALERT Interrupt */
5205	if (hsotg->params.service_interval)
5206		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5207}
5208
5209/**
5210 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5211 *
5212 * @hsotg: Programming view of DWC_otg controller
5213 *
5214 */
5215void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5216{
5217	u32 val = 0;
5218
5219	val |= GREFCLK_REF_CLK_MODE;
5220	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5221	val |= hsotg->params.sof_cnt_wkup_alert <<
5222	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5223
5224	dwc2_writel(hsotg, val, GREFCLK);
5225	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5226}
5227
5228/**
5229 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5230 *
5231 * @hsotg: Programming view of the DWC_otg controller
5232 *
5233 * Return non-zero if failed to enter to hibernation.
5234 */
5235int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5236{
5237	u32 gpwrdn;
5238	int ret = 0;
5239
5240	/* Change to L2(suspend) state */
5241	hsotg->lx_state = DWC2_L2;
5242	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5243	ret = dwc2_backup_global_registers(hsotg);
5244	if (ret) {
5245		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5246			__func__);
5247		return ret;
5248	}
5249	ret = dwc2_backup_device_registers(hsotg);
5250	if (ret) {
5251		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5252			__func__);
5253		return ret;
5254	}
5255
5256	gpwrdn = GPWRDN_PWRDNRSTN;
5257	gpwrdn |= GPWRDN_PMUACTV;
5258	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5259	udelay(10);
5260
5261	/* Set flag to indicate that we are in hibernation */
5262	hsotg->hibernated = 1;
5263
5264	/* Enable interrupts from wake up logic */
5265	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5266	gpwrdn |= GPWRDN_PMUINTSEL;
5267	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5268	udelay(10);
5269
5270	/* Unmask device mode interrupts in GPWRDN */
5271	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5272	gpwrdn |= GPWRDN_RST_DET_MSK;
5273	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5274	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5275	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5276	udelay(10);
5277
5278	/* Enable Power Down Clamp */
5279	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5280	gpwrdn |= GPWRDN_PWRDNCLMP;
5281	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5282	udelay(10);
5283
5284	/* Switch off VDD */
5285	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5286	gpwrdn |= GPWRDN_PWRDNSWTCH;
5287	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5288	udelay(10);
5289
5290	/* Save gpwrdn register for further usage if stschng interrupt */
5291	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5292	dev_dbg(hsotg->dev, "Hibernation completed\n");
5293
5294	return ret;
5295}
5296
5297/**
5298 * dwc2_gadget_exit_hibernation()
5299 * This function is for exiting from Device mode hibernation by host initiated
5300 * resume/reset and device initiated remote-wakeup.
5301 *
5302 * @hsotg: Programming view of the DWC_otg controller
5303 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5304 * @reset: indicates whether resume is initiated by Reset.
5305 *
5306 * Return non-zero if failed to exit from hibernation.
5307 */
5308int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5309				 int rem_wakeup, int reset)
5310{
5311	u32 pcgcctl;
5312	u32 gpwrdn;
5313	u32 dctl;
5314	int ret = 0;
5315	struct dwc2_gregs_backup *gr;
5316	struct dwc2_dregs_backup *dr;
5317
5318	gr = &hsotg->gr_backup;
5319	dr = &hsotg->dr_backup;
5320
5321	if (!hsotg->hibernated) {
5322		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5323		return 1;
5324	}
5325	dev_dbg(hsotg->dev,
5326		"%s: called with rem_wakeup = %d reset = %d\n",
5327		__func__, rem_wakeup, reset);
5328
5329	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5330
5331	if (!reset) {
5332		/* Clear all pending interupts */
5333		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5334	}
5335
5336	/* De-assert Restore */
5337	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5338	gpwrdn &= ~GPWRDN_RESTORE;
5339	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5340	udelay(10);
5341
5342	if (!rem_wakeup) {
5343		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5344		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5345		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5346	}
5347
5348	/* Restore GUSBCFG, DCFG and DCTL */
5349	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5350	dwc2_writel(hsotg, dr->dcfg, DCFG);
5351	dwc2_writel(hsotg, dr->dctl, DCTL);
5352
5353	/* On USB Reset, reset device address to zero */
5354	if (reset)
5355		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5356
5357	/* De-assert Wakeup Logic */
5358	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5359	gpwrdn &= ~GPWRDN_PMUACTV;
5360	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5361
5362	if (rem_wakeup) {
5363		udelay(10);
5364		/* Start Remote Wakeup Signaling */
5365		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5366	} else {
5367		udelay(50);
5368		/* Set Device programming done bit */
5369		dctl = dwc2_readl(hsotg, DCTL);
5370		dctl |= DCTL_PWRONPRGDONE;
5371		dwc2_writel(hsotg, dctl, DCTL);
5372	}
5373	/* Wait for interrupts which must be cleared */
5374	mdelay(2);
5375	/* Clear all pending interupts */
5376	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5377
5378	/* Restore global registers */
5379	ret = dwc2_restore_global_registers(hsotg);
5380	if (ret) {
5381		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5382			__func__);
5383		return ret;
5384	}
5385
5386	/* Restore device registers */
5387	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5388	if (ret) {
5389		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5390			__func__);
5391		return ret;
5392	}
5393
5394	if (rem_wakeup) {
5395		mdelay(10);
5396		dctl = dwc2_readl(hsotg, DCTL);
5397		dctl &= ~DCTL_RMTWKUPSIG;
5398		dwc2_writel(hsotg, dctl, DCTL);
5399	}
5400
5401	hsotg->hibernated = 0;
5402	hsotg->lx_state = DWC2_L0;
5403	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5404
5405	return ret;
5406}
5407
5408/**
5409 * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5410 * power down.
5411 *
5412 * @hsotg: Programming view of the DWC_otg controller
5413 *
5414 * Return: non-zero if failed to enter device partial power down.
5415 *
5416 * This function is for entering device mode partial power down.
5417 */
5418int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5419{
5420	u32 pcgcctl;
5421	int ret = 0;
5422
5423	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5424
5425	/* Backup all registers */
5426	ret = dwc2_backup_global_registers(hsotg);
5427	if (ret) {
5428		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5429			__func__);
5430		return ret;
5431	}
5432
5433	ret = dwc2_backup_device_registers(hsotg);
5434	if (ret) {
5435		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5436			__func__);
5437		return ret;
5438	}
5439
5440	/*
5441	 * Clear any pending interrupts since dwc2 will not be able to
5442	 * clear them after entering partial_power_down.
5443	 */
5444	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5445
5446	/* Put the controller in low power state */
5447	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5448
5449	pcgcctl |= PCGCTL_PWRCLMP;
5450	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5451	udelay(5);
5452
5453	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5454	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5455	udelay(5);
5456
5457	pcgcctl |= PCGCTL_STOPPCLK;
5458	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5459
5460	/* Set in_ppd flag to 1 as here core enters suspend. */
5461	hsotg->in_ppd = 1;
5462	hsotg->lx_state = DWC2_L2;
5463
5464	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5465
5466	return ret;
5467}
5468
5469/*
5470 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5471 * power down.
5472 *
5473 * @hsotg: Programming view of the DWC_otg controller
5474 * @restore: indicates whether need to restore the registers or not.
5475 *
5476 * Return: non-zero if failed to exit device partial power down.
5477 *
5478 * This function is for exiting from device mode partial power down.
5479 */
5480int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5481					bool restore)
5482{
5483	u32 pcgcctl;
5484	u32 dctl;
5485	struct dwc2_dregs_backup *dr;
5486	int ret = 0;
5487
5488	dr = &hsotg->dr_backup;
5489
5490	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5491
5492	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5493	pcgcctl &= ~PCGCTL_STOPPCLK;
5494	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5495
5496	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5497	pcgcctl &= ~PCGCTL_PWRCLMP;
5498	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5499
5500	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5501	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5502	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5503
5504	udelay(100);
5505	if (restore) {
5506		ret = dwc2_restore_global_registers(hsotg);
5507		if (ret) {
5508			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5509				__func__);
5510			return ret;
5511		}
5512		/* Restore DCFG */
5513		dwc2_writel(hsotg, dr->dcfg, DCFG);
5514
5515		ret = dwc2_restore_device_registers(hsotg, 0);
5516		if (ret) {
5517			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5518				__func__);
5519			return ret;
5520		}
5521	}
5522
5523	/* Set the Power-On Programming done bit */
5524	dctl = dwc2_readl(hsotg, DCTL);
5525	dctl |= DCTL_PWRONPRGDONE;
5526	dwc2_writel(hsotg, dctl, DCTL);
5527
5528	/* Set in_ppd flag to 0 as here core exits from suspend. */
5529	hsotg->in_ppd = 0;
5530	hsotg->lx_state = DWC2_L0;
5531
5532	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5533	return ret;
5534}
5535
5536/**
5537 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5538 *
5539 * @hsotg: Programming view of the DWC_otg controller
5540 *
5541 * Return: non-zero if failed to enter device partial power down.
5542 *
5543 * This function is for entering device mode clock gating.
5544 */
5545void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5546{
5547	u32 pcgctl;
5548
5549	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5550
5551	/* Set the Phy Clock bit as suspend is received. */
5552	pcgctl = dwc2_readl(hsotg, PCGCTL);
5553	pcgctl |= PCGCTL_STOPPCLK;
5554	dwc2_writel(hsotg, pcgctl, PCGCTL);
5555	udelay(5);
5556
5557	/* Set the Gate hclk as suspend is received. */
5558	pcgctl = dwc2_readl(hsotg, PCGCTL);
5559	pcgctl |= PCGCTL_GATEHCLK;
5560	dwc2_writel(hsotg, pcgctl, PCGCTL);
5561	udelay(5);
5562
5563	hsotg->lx_state = DWC2_L2;
5564	hsotg->bus_suspended = true;
5565}
5566
5567/*
5568 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5569 *
5570 * @hsotg: Programming view of the DWC_otg controller
5571 * @rem_wakeup: indicates whether remote wake up is enabled.
5572 *
5573 * This function is for exiting from device mode clock gating.
5574 */
5575void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5576{
5577	u32 pcgctl;
5578	u32 dctl;
5579
5580	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5581
5582	/* Clear the Gate hclk. */
5583	pcgctl = dwc2_readl(hsotg, PCGCTL);
5584	pcgctl &= ~PCGCTL_GATEHCLK;
5585	dwc2_writel(hsotg, pcgctl, PCGCTL);
5586	udelay(5);
5587
5588	/* Phy Clock bit. */
5589	pcgctl = dwc2_readl(hsotg, PCGCTL);
5590	pcgctl &= ~PCGCTL_STOPPCLK;
5591	dwc2_writel(hsotg, pcgctl, PCGCTL);
5592	udelay(5);
5593
5594	if (rem_wakeup) {
5595		/* Set Remote Wakeup Signaling */
5596		dctl = dwc2_readl(hsotg, DCTL);
5597		dctl |= DCTL_RMTWKUPSIG;
5598		dwc2_writel(hsotg, dctl, DCTL);
5599	}
5600
5601	/* Change to L0 state */
5602	call_gadget(hsotg, resume);
5603	hsotg->lx_state = DWC2_L0;
5604	hsotg->bus_suspended = false;
5605}