Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include "iavf.h"
   5#include "iavf_prototype.h"
   6#include "iavf_client.h"
   7/* All iavf tracepoints are defined by the include below, which must
   8 * be included exactly once across the whole kernel with
   9 * CREATE_TRACE_POINTS defined
  10 */
  11#define CREATE_TRACE_POINTS
  12#include "iavf_trace.h"
  13
  14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
  15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
  16static int iavf_close(struct net_device *netdev);
  17static int iavf_init_get_resources(struct iavf_adapter *adapter);
  18static int iavf_check_reset_complete(struct iavf_hw *hw);
  19
  20char iavf_driver_name[] = "iavf";
  21static const char iavf_driver_string[] =
  22	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
  23
  24static const char iavf_copyright[] =
  25	"Copyright (c) 2013 - 2018 Intel Corporation.";
  26
  27/* iavf_pci_tbl - PCI Device ID Table
  28 *
  29 * Wildcard entries (PCI_ANY_ID) should come last
  30 * Last entry must be all 0s
  31 *
  32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  33 *   Class, Class Mask, private data (not used) }
  34 */
  35static const struct pci_device_id iavf_pci_tbl[] = {
  36	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
  37	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
  38	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
  39	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
  40	/* required last entry */
  41	{0, }
  42};
  43
  44MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
  45
  46MODULE_ALIAS("i40evf");
  47MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
  49MODULE_LICENSE("GPL v2");
  50
  51static const struct net_device_ops iavf_netdev_ops;
  52struct workqueue_struct *iavf_wq;
  53
  54/**
  55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
  56 * @hw:   pointer to the HW structure
  57 * @mem:  ptr to mem struct to fill out
  58 * @size: size of memory requested
  59 * @alignment: what to align the allocation to
  60 **/
  61enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
  62					 struct iavf_dma_mem *mem,
  63					 u64 size, u32 alignment)
  64{
  65	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  66
  67	if (!mem)
  68		return IAVF_ERR_PARAM;
  69
  70	mem->size = ALIGN(size, alignment);
  71	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
  72				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
  73	if (mem->va)
  74		return 0;
  75	else
  76		return IAVF_ERR_NO_MEMORY;
  77}
  78
  79/**
  80 * iavf_free_dma_mem_d - OS specific memory free for shared code
  81 * @hw:   pointer to the HW structure
  82 * @mem:  ptr to mem struct to free
  83 **/
  84enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
  85				     struct iavf_dma_mem *mem)
  86{
  87	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  88
  89	if (!mem || !mem->va)
  90		return IAVF_ERR_PARAM;
  91	dma_free_coherent(&adapter->pdev->dev, mem->size,
  92			  mem->va, (dma_addr_t)mem->pa);
  93	return 0;
  94}
  95
  96/**
  97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
  98 * @hw:   pointer to the HW structure
  99 * @mem:  ptr to mem struct to fill out
 100 * @size: size of memory requested
 101 **/
 102enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
 103					  struct iavf_virt_mem *mem, u32 size)
 104{
 105	if (!mem)
 106		return IAVF_ERR_PARAM;
 107
 108	mem->size = size;
 109	mem->va = kzalloc(size, GFP_KERNEL);
 110
 111	if (mem->va)
 112		return 0;
 113	else
 114		return IAVF_ERR_NO_MEMORY;
 115}
 116
 117/**
 118 * iavf_free_virt_mem_d - OS specific memory free for shared code
 119 * @hw:   pointer to the HW structure
 120 * @mem:  ptr to mem struct to free
 121 **/
 122enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
 123				      struct iavf_virt_mem *mem)
 124{
 125	if (!mem)
 126		return IAVF_ERR_PARAM;
 127
 128	/* it's ok to kfree a NULL pointer */
 129	kfree(mem->va);
 130
 131	return 0;
 132}
 133
 134/**
 135 * iavf_lock_timeout - try to lock mutex but give up after timeout
 136 * @lock: mutex that should be locked
 137 * @msecs: timeout in msecs
 138 *
 139 * Returns 0 on success, negative on failure
 140 **/
 141static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
 142{
 143	unsigned int wait, delay = 10;
 144
 145	for (wait = 0; wait < msecs; wait += delay) {
 146		if (mutex_trylock(lock))
 147			return 0;
 148
 149		msleep(delay);
 150	}
 151
 152	return -1;
 153}
 154
 155/**
 156 * iavf_schedule_reset - Set the flags and schedule a reset event
 157 * @adapter: board private structure
 158 **/
 159void iavf_schedule_reset(struct iavf_adapter *adapter)
 160{
 161	if (!(adapter->flags &
 162	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
 163		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
 164		queue_work(iavf_wq, &adapter->reset_task);
 165	}
 166}
 167
 168/**
 169 * iavf_tx_timeout - Respond to a Tx Hang
 170 * @netdev: network interface device structure
 171 * @txqueue: queue number that is timing out
 172 **/
 173static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
 174{
 175	struct iavf_adapter *adapter = netdev_priv(netdev);
 176
 177	adapter->tx_timeout_count++;
 178	iavf_schedule_reset(adapter);
 179}
 180
 181/**
 182 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
 183 * @adapter: board private structure
 184 **/
 185static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
 186{
 187	struct iavf_hw *hw = &adapter->hw;
 188
 189	if (!adapter->msix_entries)
 190		return;
 191
 192	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
 193
 194	iavf_flush(hw);
 195
 196	synchronize_irq(adapter->msix_entries[0].vector);
 197}
 198
 199/**
 200 * iavf_misc_irq_enable - Enable default interrupt generation settings
 201 * @adapter: board private structure
 202 **/
 203static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
 204{
 205	struct iavf_hw *hw = &adapter->hw;
 206
 207	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
 208				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
 209	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
 210
 211	iavf_flush(hw);
 212}
 213
 214/**
 215 * iavf_irq_disable - Mask off interrupt generation on the NIC
 216 * @adapter: board private structure
 217 **/
 218static void iavf_irq_disable(struct iavf_adapter *adapter)
 219{
 220	int i;
 221	struct iavf_hw *hw = &adapter->hw;
 222
 223	if (!adapter->msix_entries)
 224		return;
 225
 226	for (i = 1; i < adapter->num_msix_vectors; i++) {
 227		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
 228		synchronize_irq(adapter->msix_entries[i].vector);
 229	}
 230	iavf_flush(hw);
 231}
 232
 233/**
 234 * iavf_irq_enable_queues - Enable interrupt for specified queues
 235 * @adapter: board private structure
 236 * @mask: bitmap of queues to enable
 237 **/
 238void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
 239{
 240	struct iavf_hw *hw = &adapter->hw;
 241	int i;
 242
 243	for (i = 1; i < adapter->num_msix_vectors; i++) {
 244		if (mask & BIT(i - 1)) {
 245			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
 246			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 247			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
 248		}
 249	}
 250}
 251
 252/**
 253 * iavf_irq_enable - Enable default interrupt generation settings
 254 * @adapter: board private structure
 255 * @flush: boolean value whether to run rd32()
 256 **/
 257void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
 258{
 259	struct iavf_hw *hw = &adapter->hw;
 260
 261	iavf_misc_irq_enable(adapter);
 262	iavf_irq_enable_queues(adapter, ~0);
 263
 264	if (flush)
 265		iavf_flush(hw);
 266}
 267
 268/**
 269 * iavf_msix_aq - Interrupt handler for vector 0
 270 * @irq: interrupt number
 271 * @data: pointer to netdev
 272 **/
 273static irqreturn_t iavf_msix_aq(int irq, void *data)
 274{
 275	struct net_device *netdev = data;
 276	struct iavf_adapter *adapter = netdev_priv(netdev);
 277	struct iavf_hw *hw = &adapter->hw;
 278
 279	/* handle non-queue interrupts, these reads clear the registers */
 280	rd32(hw, IAVF_VFINT_ICR01);
 281	rd32(hw, IAVF_VFINT_ICR0_ENA1);
 282
 283	/* schedule work on the private workqueue */
 284	queue_work(iavf_wq, &adapter->adminq_task);
 285
 286	return IRQ_HANDLED;
 287}
 288
 289/**
 290 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
 291 * @irq: interrupt number
 292 * @data: pointer to a q_vector
 293 **/
 294static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
 295{
 296	struct iavf_q_vector *q_vector = data;
 297
 298	if (!q_vector->tx.ring && !q_vector->rx.ring)
 299		return IRQ_HANDLED;
 300
 301	napi_schedule_irqoff(&q_vector->napi);
 302
 303	return IRQ_HANDLED;
 304}
 305
 306/**
 307 * iavf_map_vector_to_rxq - associate irqs with rx queues
 308 * @adapter: board private structure
 309 * @v_idx: interrupt number
 310 * @r_idx: queue number
 311 **/
 312static void
 313iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
 314{
 315	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 316	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
 317	struct iavf_hw *hw = &adapter->hw;
 318
 319	rx_ring->q_vector = q_vector;
 320	rx_ring->next = q_vector->rx.ring;
 321	rx_ring->vsi = &adapter->vsi;
 322	q_vector->rx.ring = rx_ring;
 323	q_vector->rx.count++;
 324	q_vector->rx.next_update = jiffies + 1;
 325	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 326	q_vector->ring_mask |= BIT(r_idx);
 327	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
 328	     q_vector->rx.current_itr >> 1);
 329	q_vector->rx.current_itr = q_vector->rx.target_itr;
 330}
 331
 332/**
 333 * iavf_map_vector_to_txq - associate irqs with tx queues
 334 * @adapter: board private structure
 335 * @v_idx: interrupt number
 336 * @t_idx: queue number
 337 **/
 338static void
 339iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
 340{
 341	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 342	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
 343	struct iavf_hw *hw = &adapter->hw;
 344
 345	tx_ring->q_vector = q_vector;
 346	tx_ring->next = q_vector->tx.ring;
 347	tx_ring->vsi = &adapter->vsi;
 348	q_vector->tx.ring = tx_ring;
 349	q_vector->tx.count++;
 350	q_vector->tx.next_update = jiffies + 1;
 351	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 352	q_vector->num_ringpairs++;
 353	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
 354	     q_vector->tx.target_itr >> 1);
 355	q_vector->tx.current_itr = q_vector->tx.target_itr;
 356}
 357
 358/**
 359 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
 360 * @adapter: board private structure to initialize
 361 *
 362 * This function maps descriptor rings to the queue-specific vectors
 363 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
 364 * one vector per ring/queue, but on a constrained vector budget, we
 365 * group the rings as "efficiently" as possible.  You would add new
 366 * mapping configurations in here.
 367 **/
 368static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
 369{
 370	int rings_remaining = adapter->num_active_queues;
 371	int ridx = 0, vidx = 0;
 372	int q_vectors;
 373
 374	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 375
 376	for (; ridx < rings_remaining; ridx++) {
 377		iavf_map_vector_to_rxq(adapter, vidx, ridx);
 378		iavf_map_vector_to_txq(adapter, vidx, ridx);
 379
 380		/* In the case where we have more queues than vectors, continue
 381		 * round-robin on vectors until all queues are mapped.
 382		 */
 383		if (++vidx >= q_vectors)
 384			vidx = 0;
 385	}
 386
 387	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
 388}
 389
 390/**
 391 * iavf_irq_affinity_notify - Callback for affinity changes
 392 * @notify: context as to what irq was changed
 393 * @mask: the new affinity mask
 394 *
 395 * This is a callback function used by the irq_set_affinity_notifier function
 396 * so that we may register to receive changes to the irq affinity masks.
 397 **/
 398static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
 399				     const cpumask_t *mask)
 400{
 401	struct iavf_q_vector *q_vector =
 402		container_of(notify, struct iavf_q_vector, affinity_notify);
 403
 404	cpumask_copy(&q_vector->affinity_mask, mask);
 405}
 406
 407/**
 408 * iavf_irq_affinity_release - Callback for affinity notifier release
 409 * @ref: internal core kernel usage
 410 *
 411 * This is a callback function used by the irq_set_affinity_notifier function
 412 * to inform the current notification subscriber that they will no longer
 413 * receive notifications.
 414 **/
 415static void iavf_irq_affinity_release(struct kref *ref) {}
 416
 417/**
 418 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
 419 * @adapter: board private structure
 420 * @basename: device basename
 421 *
 422 * Allocates MSI-X vectors for tx and rx handling, and requests
 423 * interrupts from the kernel.
 424 **/
 425static int
 426iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
 427{
 428	unsigned int vector, q_vectors;
 429	unsigned int rx_int_idx = 0, tx_int_idx = 0;
 430	int irq_num, err;
 431	int cpu;
 432
 433	iavf_irq_disable(adapter);
 434	/* Decrement for Other and TCP Timer vectors */
 435	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 436
 437	for (vector = 0; vector < q_vectors; vector++) {
 438		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
 439
 440		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 441
 442		if (q_vector->tx.ring && q_vector->rx.ring) {
 443			snprintf(q_vector->name, sizeof(q_vector->name),
 444				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
 445			tx_int_idx++;
 446		} else if (q_vector->rx.ring) {
 447			snprintf(q_vector->name, sizeof(q_vector->name),
 448				 "iavf-%s-rx-%d", basename, rx_int_idx++);
 449		} else if (q_vector->tx.ring) {
 450			snprintf(q_vector->name, sizeof(q_vector->name),
 451				 "iavf-%s-tx-%d", basename, tx_int_idx++);
 452		} else {
 453			/* skip this unused q_vector */
 454			continue;
 455		}
 456		err = request_irq(irq_num,
 457				  iavf_msix_clean_rings,
 458				  0,
 459				  q_vector->name,
 460				  q_vector);
 461		if (err) {
 462			dev_info(&adapter->pdev->dev,
 463				 "Request_irq failed, error: %d\n", err);
 464			goto free_queue_irqs;
 465		}
 466		/* register for affinity change notifications */
 467		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
 468		q_vector->affinity_notify.release =
 469						   iavf_irq_affinity_release;
 470		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 471		/* Spread the IRQ affinity hints across online CPUs. Note that
 472		 * get_cpu_mask returns a mask with a permanent lifetime so
 473		 * it's safe to use as a hint for irq_set_affinity_hint.
 474		 */
 475		cpu = cpumask_local_spread(q_vector->v_idx, -1);
 476		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
 477	}
 478
 479	return 0;
 480
 481free_queue_irqs:
 482	while (vector) {
 483		vector--;
 484		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 485		irq_set_affinity_notifier(irq_num, NULL);
 486		irq_set_affinity_hint(irq_num, NULL);
 487		free_irq(irq_num, &adapter->q_vectors[vector]);
 488	}
 489	return err;
 490}
 491
 492/**
 493 * iavf_request_misc_irq - Initialize MSI-X interrupts
 494 * @adapter: board private structure
 495 *
 496 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
 497 * vector is only for the admin queue, and stays active even when the netdev
 498 * is closed.
 499 **/
 500static int iavf_request_misc_irq(struct iavf_adapter *adapter)
 501{
 502	struct net_device *netdev = adapter->netdev;
 503	int err;
 504
 505	snprintf(adapter->misc_vector_name,
 506		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
 507		 dev_name(&adapter->pdev->dev));
 508	err = request_irq(adapter->msix_entries[0].vector,
 509			  &iavf_msix_aq, 0,
 510			  adapter->misc_vector_name, netdev);
 511	if (err) {
 512		dev_err(&adapter->pdev->dev,
 513			"request_irq for %s failed: %d\n",
 514			adapter->misc_vector_name, err);
 515		free_irq(adapter->msix_entries[0].vector, netdev);
 516	}
 517	return err;
 518}
 519
 520/**
 521 * iavf_free_traffic_irqs - Free MSI-X interrupts
 522 * @adapter: board private structure
 523 *
 524 * Frees all MSI-X vectors other than 0.
 525 **/
 526static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
 527{
 528	int vector, irq_num, q_vectors;
 529
 530	if (!adapter->msix_entries)
 531		return;
 532
 533	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 534
 535	for (vector = 0; vector < q_vectors; vector++) {
 536		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 537		irq_set_affinity_notifier(irq_num, NULL);
 538		irq_set_affinity_hint(irq_num, NULL);
 539		free_irq(irq_num, &adapter->q_vectors[vector]);
 540	}
 541}
 542
 543/**
 544 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
 545 * @adapter: board private structure
 546 *
 547 * Frees MSI-X vector 0.
 548 **/
 549static void iavf_free_misc_irq(struct iavf_adapter *adapter)
 550{
 551	struct net_device *netdev = adapter->netdev;
 552
 553	if (!adapter->msix_entries)
 554		return;
 555
 556	free_irq(adapter->msix_entries[0].vector, netdev);
 557}
 558
 559/**
 560 * iavf_configure_tx - Configure Transmit Unit after Reset
 561 * @adapter: board private structure
 562 *
 563 * Configure the Tx unit of the MAC after a reset.
 564 **/
 565static void iavf_configure_tx(struct iavf_adapter *adapter)
 566{
 567	struct iavf_hw *hw = &adapter->hw;
 568	int i;
 569
 570	for (i = 0; i < adapter->num_active_queues; i++)
 571		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
 572}
 573
 574/**
 575 * iavf_configure_rx - Configure Receive Unit after Reset
 576 * @adapter: board private structure
 577 *
 578 * Configure the Rx unit of the MAC after a reset.
 579 **/
 580static void iavf_configure_rx(struct iavf_adapter *adapter)
 581{
 582	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
 583	struct iavf_hw *hw = &adapter->hw;
 584	int i;
 585
 586	/* Legacy Rx will always default to a 2048 buffer size. */
 587#if (PAGE_SIZE < 8192)
 588	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
 589		struct net_device *netdev = adapter->netdev;
 590
 591		/* For jumbo frames on systems with 4K pages we have to use
 592		 * an order 1 page, so we might as well increase the size
 593		 * of our Rx buffer to make better use of the available space
 594		 */
 595		rx_buf_len = IAVF_RXBUFFER_3072;
 596
 597		/* We use a 1536 buffer size for configurations with
 598		 * standard Ethernet mtu.  On x86 this gives us enough room
 599		 * for shared info and 192 bytes of padding.
 600		 */
 601		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
 602		    (netdev->mtu <= ETH_DATA_LEN))
 603			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
 604	}
 605#endif
 606
 607	for (i = 0; i < adapter->num_active_queues; i++) {
 608		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
 609		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
 610
 611		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
 612			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
 613		else
 614			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
 615	}
 616}
 617
 618/**
 619 * iavf_find_vlan - Search filter list for specific vlan filter
 620 * @adapter: board private structure
 621 * @vlan: vlan tag
 622 *
 623 * Returns ptr to the filter object or NULL. Must be called while holding the
 624 * mac_vlan_list_lock.
 625 **/
 626static struct
 627iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
 628{
 629	struct iavf_vlan_filter *f;
 630
 631	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 632		if (vlan == f->vlan)
 633			return f;
 634	}
 635	return NULL;
 636}
 637
 638/**
 639 * iavf_add_vlan - Add a vlan filter to the list
 640 * @adapter: board private structure
 641 * @vlan: VLAN tag
 642 *
 643 * Returns ptr to the filter object or NULL when no memory available.
 644 **/
 645static struct
 646iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
 647{
 648	struct iavf_vlan_filter *f = NULL;
 649
 650	spin_lock_bh(&adapter->mac_vlan_list_lock);
 651
 652	f = iavf_find_vlan(adapter, vlan);
 653	if (!f) {
 654		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 655		if (!f)
 656			goto clearout;
 657
 658		f->vlan = vlan;
 659
 660		list_add_tail(&f->list, &adapter->vlan_filter_list);
 661		f->add = true;
 662		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
 663	}
 664
 665clearout:
 666	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 667	return f;
 668}
 669
 670/**
 671 * iavf_del_vlan - Remove a vlan filter from the list
 672 * @adapter: board private structure
 673 * @vlan: VLAN tag
 674 **/
 675static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
 676{
 677	struct iavf_vlan_filter *f;
 678
 679	spin_lock_bh(&adapter->mac_vlan_list_lock);
 680
 681	f = iavf_find_vlan(adapter, vlan);
 682	if (f) {
 683		f->remove = true;
 684		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
 685	}
 686
 687	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 688}
 689
 690/**
 691 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
 692 * @netdev: network device struct
 693 * @proto: unused protocol data
 694 * @vid: VLAN tag
 695 **/
 696static int iavf_vlan_rx_add_vid(struct net_device *netdev,
 697				__always_unused __be16 proto, u16 vid)
 698{
 699	struct iavf_adapter *adapter = netdev_priv(netdev);
 700
 701	if (!VLAN_ALLOWED(adapter))
 702		return -EIO;
 703	if (iavf_add_vlan(adapter, vid) == NULL)
 704		return -ENOMEM;
 705	return 0;
 706}
 707
 708/**
 709 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
 710 * @netdev: network device struct
 711 * @proto: unused protocol data
 712 * @vid: VLAN tag
 713 **/
 714static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
 715				 __always_unused __be16 proto, u16 vid)
 716{
 717	struct iavf_adapter *adapter = netdev_priv(netdev);
 718
 719	if (VLAN_ALLOWED(adapter)) {
 720		iavf_del_vlan(adapter, vid);
 721		return 0;
 722	}
 723	return -EIO;
 724}
 725
 726/**
 727 * iavf_find_filter - Search filter list for specific mac filter
 728 * @adapter: board private structure
 729 * @macaddr: the MAC address
 730 *
 731 * Returns ptr to the filter object or NULL. Must be called while holding the
 732 * mac_vlan_list_lock.
 733 **/
 734static struct
 735iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
 736				  const u8 *macaddr)
 737{
 738	struct iavf_mac_filter *f;
 739
 740	if (!macaddr)
 741		return NULL;
 742
 743	list_for_each_entry(f, &adapter->mac_filter_list, list) {
 744		if (ether_addr_equal(macaddr, f->macaddr))
 745			return f;
 746	}
 747	return NULL;
 748}
 749
 750/**
 751 * iavf_add_filter - Add a mac filter to the filter list
 752 * @adapter: board private structure
 753 * @macaddr: the MAC address
 754 *
 755 * Returns ptr to the filter object or NULL when no memory available.
 756 **/
 757struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
 758					const u8 *macaddr)
 759{
 760	struct iavf_mac_filter *f;
 761
 762	if (!macaddr)
 763		return NULL;
 764
 765	f = iavf_find_filter(adapter, macaddr);
 766	if (!f) {
 767		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 768		if (!f)
 769			return f;
 770
 771		ether_addr_copy(f->macaddr, macaddr);
 772
 773		list_add_tail(&f->list, &adapter->mac_filter_list);
 774		f->add = true;
 775		f->is_new_mac = true;
 776		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 777	} else {
 778		f->remove = false;
 779	}
 780
 781	return f;
 782}
 783
 784/**
 785 * iavf_set_mac - NDO callback to set port mac address
 786 * @netdev: network interface device structure
 787 * @p: pointer to an address structure
 788 *
 789 * Returns 0 on success, negative on failure
 790 **/
 791static int iavf_set_mac(struct net_device *netdev, void *p)
 792{
 793	struct iavf_adapter *adapter = netdev_priv(netdev);
 794	struct iavf_hw *hw = &adapter->hw;
 795	struct iavf_mac_filter *f;
 796	struct sockaddr *addr = p;
 797
 798	if (!is_valid_ether_addr(addr->sa_data))
 799		return -EADDRNOTAVAIL;
 800
 801	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
 802		return 0;
 803
 804	spin_lock_bh(&adapter->mac_vlan_list_lock);
 805
 806	f = iavf_find_filter(adapter, hw->mac.addr);
 807	if (f) {
 808		f->remove = true;
 809		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 810	}
 811
 812	f = iavf_add_filter(adapter, addr->sa_data);
 813
 814	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 815
 816	if (f) {
 817		ether_addr_copy(hw->mac.addr, addr->sa_data);
 818	}
 819
 820	return (f == NULL) ? -ENOMEM : 0;
 821}
 822
 823/**
 824 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
 825 * @netdev: the netdevice
 826 * @addr: address to add
 827 *
 828 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
 829 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 830 */
 831static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
 832{
 833	struct iavf_adapter *adapter = netdev_priv(netdev);
 834
 835	if (iavf_add_filter(adapter, addr))
 836		return 0;
 837	else
 838		return -ENOMEM;
 839}
 840
 841/**
 842 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
 843 * @netdev: the netdevice
 844 * @addr: address to add
 845 *
 846 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
 847 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 848 */
 849static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
 850{
 851	struct iavf_adapter *adapter = netdev_priv(netdev);
 852	struct iavf_mac_filter *f;
 853
 854	/* Under some circumstances, we might receive a request to delete
 855	 * our own device address from our uc list. Because we store the
 856	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
 857	 * such requests and not delete our device address from this list.
 858	 */
 859	if (ether_addr_equal(addr, netdev->dev_addr))
 860		return 0;
 861
 862	f = iavf_find_filter(adapter, addr);
 863	if (f) {
 864		f->remove = true;
 865		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 866	}
 867	return 0;
 868}
 869
 870/**
 871 * iavf_set_rx_mode - NDO callback to set the netdev filters
 872 * @netdev: network interface device structure
 873 **/
 874static void iavf_set_rx_mode(struct net_device *netdev)
 875{
 876	struct iavf_adapter *adapter = netdev_priv(netdev);
 877
 878	spin_lock_bh(&adapter->mac_vlan_list_lock);
 879	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 880	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 881	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 882
 883	if (netdev->flags & IFF_PROMISC &&
 884	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
 885		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
 886	else if (!(netdev->flags & IFF_PROMISC) &&
 887		 adapter->flags & IAVF_FLAG_PROMISC_ON)
 888		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
 889
 890	if (netdev->flags & IFF_ALLMULTI &&
 891	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
 892		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
 893	else if (!(netdev->flags & IFF_ALLMULTI) &&
 894		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
 895		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
 896}
 897
 898/**
 899 * iavf_napi_enable_all - enable NAPI on all queue vectors
 900 * @adapter: board private structure
 901 **/
 902static void iavf_napi_enable_all(struct iavf_adapter *adapter)
 903{
 904	int q_idx;
 905	struct iavf_q_vector *q_vector;
 906	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 907
 908	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 909		struct napi_struct *napi;
 910
 911		q_vector = &adapter->q_vectors[q_idx];
 912		napi = &q_vector->napi;
 913		napi_enable(napi);
 914	}
 915}
 916
 917/**
 918 * iavf_napi_disable_all - disable NAPI on all queue vectors
 919 * @adapter: board private structure
 920 **/
 921static void iavf_napi_disable_all(struct iavf_adapter *adapter)
 922{
 923	int q_idx;
 924	struct iavf_q_vector *q_vector;
 925	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 926
 927	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 928		q_vector = &adapter->q_vectors[q_idx];
 929		napi_disable(&q_vector->napi);
 930	}
 931}
 932
 933/**
 934 * iavf_configure - set up transmit and receive data structures
 935 * @adapter: board private structure
 936 **/
 937static void iavf_configure(struct iavf_adapter *adapter)
 938{
 939	struct net_device *netdev = adapter->netdev;
 940	int i;
 941
 942	iavf_set_rx_mode(netdev);
 943
 944	iavf_configure_tx(adapter);
 945	iavf_configure_rx(adapter);
 946	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
 947
 948	for (i = 0; i < adapter->num_active_queues; i++) {
 949		struct iavf_ring *ring = &adapter->rx_rings[i];
 950
 951		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
 952	}
 953}
 954
 955/**
 956 * iavf_up_complete - Finish the last steps of bringing up a connection
 957 * @adapter: board private structure
 958 *
 959 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 960 **/
 961static void iavf_up_complete(struct iavf_adapter *adapter)
 962{
 963	adapter->state = __IAVF_RUNNING;
 964	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
 965
 966	iavf_napi_enable_all(adapter);
 967
 968	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
 969	if (CLIENT_ENABLED(adapter))
 970		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
 971	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
 972}
 973
 974/**
 975 * iavf_down - Shutdown the connection processing
 976 * @adapter: board private structure
 977 *
 978 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 979 **/
 980void iavf_down(struct iavf_adapter *adapter)
 981{
 982	struct net_device *netdev = adapter->netdev;
 983	struct iavf_vlan_filter *vlf;
 984	struct iavf_cloud_filter *cf;
 985	struct iavf_fdir_fltr *fdir;
 986	struct iavf_mac_filter *f;
 987	struct iavf_adv_rss *rss;
 988
 989	if (adapter->state <= __IAVF_DOWN_PENDING)
 990		return;
 991
 992	netif_carrier_off(netdev);
 993	netif_tx_disable(netdev);
 994	adapter->link_up = false;
 995	iavf_napi_disable_all(adapter);
 996	iavf_irq_disable(adapter);
 997
 998	spin_lock_bh(&adapter->mac_vlan_list_lock);
 999
1000	/* clear the sync flag on all filters */
1001	__dev_uc_unsync(adapter->netdev, NULL);
1002	__dev_mc_unsync(adapter->netdev, NULL);
1003
1004	/* remove all MAC filters */
1005	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1006		f->remove = true;
1007	}
1008
1009	/* remove all VLAN filters */
1010	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1011		vlf->remove = true;
1012	}
1013
1014	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015
1016	/* remove all cloud filters */
1017	spin_lock_bh(&adapter->cloud_filter_list_lock);
1018	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1019		cf->del = true;
1020	}
1021	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1022
1023	/* remove all Flow Director filters */
1024	spin_lock_bh(&adapter->fdir_fltr_lock);
1025	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1026		fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1027	}
1028	spin_unlock_bh(&adapter->fdir_fltr_lock);
1029
1030	/* remove all advance RSS configuration */
1031	spin_lock_bh(&adapter->adv_rss_lock);
1032	list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1033		rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1034	spin_unlock_bh(&adapter->adv_rss_lock);
1035
1036	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1037	    adapter->state != __IAVF_RESETTING) {
1038		/* cancel any current operation */
1039		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1040		/* Schedule operations to close down the HW. Don't wait
1041		 * here for this to complete. The watchdog is still running
1042		 * and it will take care of this.
1043		 */
1044		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1045		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1046		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1047		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1048		adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1049		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1050	}
1051
1052	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1053}
1054
1055/**
1056 * iavf_acquire_msix_vectors - Setup the MSIX capability
1057 * @adapter: board private structure
1058 * @vectors: number of vectors to request
1059 *
1060 * Work with the OS to set up the MSIX vectors needed.
1061 *
1062 * Returns 0 on success, negative on failure
1063 **/
1064static int
1065iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1066{
1067	int err, vector_threshold;
1068
1069	/* We'll want at least 3 (vector_threshold):
1070	 * 0) Other (Admin Queue and link, mostly)
1071	 * 1) TxQ[0] Cleanup
1072	 * 2) RxQ[0] Cleanup
1073	 */
1074	vector_threshold = MIN_MSIX_COUNT;
1075
1076	/* The more we get, the more we will assign to Tx/Rx Cleanup
1077	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1078	 * Right now, we simply care about how many we'll get; we'll
1079	 * set them up later while requesting irq's.
1080	 */
1081	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1082				    vector_threshold, vectors);
1083	if (err < 0) {
1084		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1085		kfree(adapter->msix_entries);
1086		adapter->msix_entries = NULL;
1087		return err;
1088	}
1089
1090	/* Adjust for only the vectors we'll use, which is minimum
1091	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1092	 * vectors we were allocated.
1093	 */
1094	adapter->num_msix_vectors = err;
1095	return 0;
1096}
1097
1098/**
1099 * iavf_free_queues - Free memory for all rings
1100 * @adapter: board private structure to initialize
1101 *
1102 * Free all of the memory associated with queue pairs.
1103 **/
1104static void iavf_free_queues(struct iavf_adapter *adapter)
1105{
1106	if (!adapter->vsi_res)
1107		return;
1108	adapter->num_active_queues = 0;
1109	kfree(adapter->tx_rings);
1110	adapter->tx_rings = NULL;
1111	kfree(adapter->rx_rings);
1112	adapter->rx_rings = NULL;
1113}
1114
1115/**
1116 * iavf_alloc_queues - Allocate memory for all rings
1117 * @adapter: board private structure to initialize
1118 *
1119 * We allocate one ring per queue at run-time since we don't know the
1120 * number of queues at compile-time.  The polling_netdev array is
1121 * intended for Multiqueue, but should work fine with a single queue.
1122 **/
1123static int iavf_alloc_queues(struct iavf_adapter *adapter)
1124{
1125	int i, num_active_queues;
1126
1127	/* If we're in reset reallocating queues we don't actually know yet for
1128	 * certain the PF gave us the number of queues we asked for but we'll
1129	 * assume it did.  Once basic reset is finished we'll confirm once we
1130	 * start negotiating config with PF.
1131	 */
1132	if (adapter->num_req_queues)
1133		num_active_queues = adapter->num_req_queues;
1134	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1135		 adapter->num_tc)
1136		num_active_queues = adapter->ch_config.total_qps;
1137	else
1138		num_active_queues = min_t(int,
1139					  adapter->vsi_res->num_queue_pairs,
1140					  (int)(num_online_cpus()));
1141
1142
1143	adapter->tx_rings = kcalloc(num_active_queues,
1144				    sizeof(struct iavf_ring), GFP_KERNEL);
1145	if (!adapter->tx_rings)
1146		goto err_out;
1147	adapter->rx_rings = kcalloc(num_active_queues,
1148				    sizeof(struct iavf_ring), GFP_KERNEL);
1149	if (!adapter->rx_rings)
1150		goto err_out;
1151
1152	for (i = 0; i < num_active_queues; i++) {
1153		struct iavf_ring *tx_ring;
1154		struct iavf_ring *rx_ring;
1155
1156		tx_ring = &adapter->tx_rings[i];
1157
1158		tx_ring->queue_index = i;
1159		tx_ring->netdev = adapter->netdev;
1160		tx_ring->dev = &adapter->pdev->dev;
1161		tx_ring->count = adapter->tx_desc_count;
1162		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1163		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1164			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1165
1166		rx_ring = &adapter->rx_rings[i];
1167		rx_ring->queue_index = i;
1168		rx_ring->netdev = adapter->netdev;
1169		rx_ring->dev = &adapter->pdev->dev;
1170		rx_ring->count = adapter->rx_desc_count;
1171		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1172	}
1173
1174	adapter->num_active_queues = num_active_queues;
1175
1176	return 0;
1177
1178err_out:
1179	iavf_free_queues(adapter);
1180	return -ENOMEM;
1181}
1182
1183/**
1184 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1185 * @adapter: board private structure to initialize
1186 *
1187 * Attempt to configure the interrupts using the best available
1188 * capabilities of the hardware and the kernel.
1189 **/
1190static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1191{
1192	int vector, v_budget;
1193	int pairs = 0;
1194	int err = 0;
1195
1196	if (!adapter->vsi_res) {
1197		err = -EIO;
1198		goto out;
1199	}
1200	pairs = adapter->num_active_queues;
1201
1202	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1203	 * us much good if we have more vectors than CPUs. However, we already
1204	 * limit the total number of queues by the number of CPUs so we do not
1205	 * need any further limiting here.
1206	 */
1207	v_budget = min_t(int, pairs + NONQ_VECS,
1208			 (int)adapter->vf_res->max_vectors);
1209
1210	adapter->msix_entries = kcalloc(v_budget,
1211					sizeof(struct msix_entry), GFP_KERNEL);
1212	if (!adapter->msix_entries) {
1213		err = -ENOMEM;
1214		goto out;
1215	}
1216
1217	for (vector = 0; vector < v_budget; vector++)
1218		adapter->msix_entries[vector].entry = vector;
1219
1220	err = iavf_acquire_msix_vectors(adapter, v_budget);
1221
1222out:
1223	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1224	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1225	return err;
1226}
1227
1228/**
1229 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1230 * @adapter: board private structure
1231 *
1232 * Return 0 on success, negative on failure
1233 **/
1234static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1235{
1236	struct iavf_aqc_get_set_rss_key_data *rss_key =
1237		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1238	struct iavf_hw *hw = &adapter->hw;
1239	int ret = 0;
1240
1241	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1242		/* bail because we already have a command pending */
1243		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1244			adapter->current_op);
1245		return -EBUSY;
1246	}
1247
1248	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1249	if (ret) {
1250		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1251			iavf_stat_str(hw, ret),
1252			iavf_aq_str(hw, hw->aq.asq_last_status));
1253		return ret;
1254
1255	}
1256
1257	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1258				  adapter->rss_lut, adapter->rss_lut_size);
1259	if (ret) {
1260		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1261			iavf_stat_str(hw, ret),
1262			iavf_aq_str(hw, hw->aq.asq_last_status));
1263	}
1264
1265	return ret;
1266
1267}
1268
1269/**
1270 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1271 * @adapter: board private structure
1272 *
1273 * Returns 0 on success, negative on failure
1274 **/
1275static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1276{
1277	struct iavf_hw *hw = &adapter->hw;
1278	u32 *dw;
1279	u16 i;
1280
1281	dw = (u32 *)adapter->rss_key;
1282	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1283		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1284
1285	dw = (u32 *)adapter->rss_lut;
1286	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1287		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1288
1289	iavf_flush(hw);
1290
1291	return 0;
1292}
1293
1294/**
1295 * iavf_config_rss - Configure RSS keys and lut
1296 * @adapter: board private structure
1297 *
1298 * Returns 0 on success, negative on failure
1299 **/
1300int iavf_config_rss(struct iavf_adapter *adapter)
1301{
1302
1303	if (RSS_PF(adapter)) {
1304		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1305					IAVF_FLAG_AQ_SET_RSS_KEY;
1306		return 0;
1307	} else if (RSS_AQ(adapter)) {
1308		return iavf_config_rss_aq(adapter);
1309	} else {
1310		return iavf_config_rss_reg(adapter);
1311	}
1312}
1313
1314/**
1315 * iavf_fill_rss_lut - Fill the lut with default values
1316 * @adapter: board private structure
1317 **/
1318static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1319{
1320	u16 i;
1321
1322	for (i = 0; i < adapter->rss_lut_size; i++)
1323		adapter->rss_lut[i] = i % adapter->num_active_queues;
1324}
1325
1326/**
1327 * iavf_init_rss - Prepare for RSS
1328 * @adapter: board private structure
1329 *
1330 * Return 0 on success, negative on failure
1331 **/
1332static int iavf_init_rss(struct iavf_adapter *adapter)
1333{
1334	struct iavf_hw *hw = &adapter->hw;
1335	int ret;
1336
1337	if (!RSS_PF(adapter)) {
1338		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1339		if (adapter->vf_res->vf_cap_flags &
1340		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1341			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1342		else
1343			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1344
1345		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1346		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1347	}
1348
1349	iavf_fill_rss_lut(adapter);
1350	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1351	ret = iavf_config_rss(adapter);
1352
1353	return ret;
1354}
1355
1356/**
1357 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1358 * @adapter: board private structure to initialize
1359 *
1360 * We allocate one q_vector per queue interrupt.  If allocation fails we
1361 * return -ENOMEM.
1362 **/
1363static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1364{
1365	int q_idx = 0, num_q_vectors;
1366	struct iavf_q_vector *q_vector;
1367
1368	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1369	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1370				     GFP_KERNEL);
1371	if (!adapter->q_vectors)
1372		return -ENOMEM;
1373
1374	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1375		q_vector = &adapter->q_vectors[q_idx];
1376		q_vector->adapter = adapter;
1377		q_vector->vsi = &adapter->vsi;
1378		q_vector->v_idx = q_idx;
1379		q_vector->reg_idx = q_idx;
1380		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1381		netif_napi_add(adapter->netdev, &q_vector->napi,
1382			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1383	}
1384
1385	return 0;
1386}
1387
1388/**
1389 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1390 * @adapter: board private structure to initialize
1391 *
1392 * This function frees the memory allocated to the q_vectors.  In addition if
1393 * NAPI is enabled it will delete any references to the NAPI struct prior
1394 * to freeing the q_vector.
1395 **/
1396static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1397{
1398	int q_idx, num_q_vectors;
1399	int napi_vectors;
1400
1401	if (!adapter->q_vectors)
1402		return;
1403
1404	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1405	napi_vectors = adapter->num_active_queues;
1406
1407	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1408		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1409
1410		if (q_idx < napi_vectors)
1411			netif_napi_del(&q_vector->napi);
1412	}
1413	kfree(adapter->q_vectors);
1414	adapter->q_vectors = NULL;
1415}
1416
1417/**
1418 * iavf_reset_interrupt_capability - Reset MSIX setup
1419 * @adapter: board private structure
1420 *
1421 **/
1422void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1423{
1424	if (!adapter->msix_entries)
1425		return;
1426
1427	pci_disable_msix(adapter->pdev);
1428	kfree(adapter->msix_entries);
1429	adapter->msix_entries = NULL;
1430}
1431
1432/**
1433 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1434 * @adapter: board private structure to initialize
1435 *
1436 **/
1437int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1438{
1439	int err;
1440
1441	err = iavf_alloc_queues(adapter);
1442	if (err) {
1443		dev_err(&adapter->pdev->dev,
1444			"Unable to allocate memory for queues\n");
1445		goto err_alloc_queues;
1446	}
1447
1448	rtnl_lock();
1449	err = iavf_set_interrupt_capability(adapter);
1450	rtnl_unlock();
1451	if (err) {
1452		dev_err(&adapter->pdev->dev,
1453			"Unable to setup interrupt capabilities\n");
1454		goto err_set_interrupt;
1455	}
1456
1457	err = iavf_alloc_q_vectors(adapter);
1458	if (err) {
1459		dev_err(&adapter->pdev->dev,
1460			"Unable to allocate memory for queue vectors\n");
1461		goto err_alloc_q_vectors;
1462	}
1463
1464	/* If we've made it so far while ADq flag being ON, then we haven't
1465	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1466	 * resources have been allocated in the reset path.
1467	 * Now we can truly claim that ADq is enabled.
1468	 */
1469	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1470	    adapter->num_tc)
1471		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1472			 adapter->num_tc);
1473
1474	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1475		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1476		 adapter->num_active_queues);
1477
1478	return 0;
1479err_alloc_q_vectors:
1480	iavf_reset_interrupt_capability(adapter);
1481err_set_interrupt:
1482	iavf_free_queues(adapter);
1483err_alloc_queues:
1484	return err;
1485}
1486
1487/**
1488 * iavf_free_rss - Free memory used by RSS structs
1489 * @adapter: board private structure
1490 **/
1491static void iavf_free_rss(struct iavf_adapter *adapter)
1492{
1493	kfree(adapter->rss_key);
1494	adapter->rss_key = NULL;
1495
1496	kfree(adapter->rss_lut);
1497	adapter->rss_lut = NULL;
1498}
1499
1500/**
1501 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1502 * @adapter: board private structure
1503 *
1504 * Returns 0 on success, negative on failure
1505 **/
1506static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1507{
1508	struct net_device *netdev = adapter->netdev;
1509	int err;
1510
1511	if (netif_running(netdev))
1512		iavf_free_traffic_irqs(adapter);
1513	iavf_free_misc_irq(adapter);
1514	iavf_reset_interrupt_capability(adapter);
1515	iavf_free_q_vectors(adapter);
1516	iavf_free_queues(adapter);
1517
1518	err =  iavf_init_interrupt_scheme(adapter);
1519	if (err)
1520		goto err;
1521
1522	netif_tx_stop_all_queues(netdev);
1523
1524	err = iavf_request_misc_irq(adapter);
1525	if (err)
1526		goto err;
1527
1528	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1529
1530	iavf_map_rings_to_vectors(adapter);
1531err:
1532	return err;
1533}
1534
1535/**
1536 * iavf_process_aq_command - process aq_required flags
1537 * and sends aq command
1538 * @adapter: pointer to iavf adapter structure
1539 *
1540 * Returns 0 on success
1541 * Returns error code if no command was sent
1542 * or error code if the command failed.
1543 **/
1544static int iavf_process_aq_command(struct iavf_adapter *adapter)
1545{
1546	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1547		return iavf_send_vf_config_msg(adapter);
1548	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1549		iavf_disable_queues(adapter);
1550		return 0;
1551	}
1552
1553	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1554		iavf_map_queues(adapter);
1555		return 0;
1556	}
1557
1558	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1559		iavf_add_ether_addrs(adapter);
1560		return 0;
1561	}
1562
1563	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1564		iavf_add_vlans(adapter);
1565		return 0;
1566	}
1567
1568	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1569		iavf_del_ether_addrs(adapter);
1570		return 0;
1571	}
1572
1573	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1574		iavf_del_vlans(adapter);
1575		return 0;
1576	}
1577
1578	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1579		iavf_enable_vlan_stripping(adapter);
1580		return 0;
1581	}
1582
1583	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1584		iavf_disable_vlan_stripping(adapter);
1585		return 0;
1586	}
1587
1588	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1589		iavf_configure_queues(adapter);
1590		return 0;
1591	}
1592
1593	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1594		iavf_enable_queues(adapter);
1595		return 0;
1596	}
1597
1598	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1599		/* This message goes straight to the firmware, not the
1600		 * PF, so we don't have to set current_op as we will
1601		 * not get a response through the ARQ.
1602		 */
1603		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1604		return 0;
1605	}
1606	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1607		iavf_get_hena(adapter);
1608		return 0;
1609	}
1610	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1611		iavf_set_hena(adapter);
1612		return 0;
1613	}
1614	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1615		iavf_set_rss_key(adapter);
1616		return 0;
1617	}
1618	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1619		iavf_set_rss_lut(adapter);
1620		return 0;
1621	}
1622
1623	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1624		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1625				       FLAG_VF_MULTICAST_PROMISC);
1626		return 0;
1627	}
1628
1629	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1630		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1631		return 0;
1632	}
1633
1634	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1635	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1636		iavf_set_promiscuous(adapter, 0);
1637		return 0;
1638	}
1639
1640	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1641		iavf_enable_channels(adapter);
1642		return 0;
1643	}
1644
1645	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1646		iavf_disable_channels(adapter);
1647		return 0;
1648	}
1649	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1650		iavf_add_cloud_filter(adapter);
1651		return 0;
1652	}
1653
1654	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1655		iavf_del_cloud_filter(adapter);
1656		return 0;
1657	}
1658	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1659		iavf_del_cloud_filter(adapter);
1660		return 0;
1661	}
1662	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1663		iavf_add_cloud_filter(adapter);
1664		return 0;
1665	}
1666	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1667		iavf_add_fdir_filter(adapter);
1668		return IAVF_SUCCESS;
1669	}
1670	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1671		iavf_del_fdir_filter(adapter);
1672		return IAVF_SUCCESS;
1673	}
1674	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1675		iavf_add_adv_rss_cfg(adapter);
1676		return 0;
1677	}
1678	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1679		iavf_del_adv_rss_cfg(adapter);
1680		return 0;
1681	}
1682	return -EAGAIN;
1683}
1684
1685/**
1686 * iavf_startup - first step of driver startup
1687 * @adapter: board private structure
1688 *
1689 * Function process __IAVF_STARTUP driver state.
1690 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1691 * when fails it returns -EAGAIN
1692 **/
1693static int iavf_startup(struct iavf_adapter *adapter)
1694{
1695	struct pci_dev *pdev = adapter->pdev;
1696	struct iavf_hw *hw = &adapter->hw;
1697	int err;
1698
1699	WARN_ON(adapter->state != __IAVF_STARTUP);
1700
1701	/* driver loaded, probe complete */
1702	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1703	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1704	err = iavf_set_mac_type(hw);
1705	if (err) {
1706		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1707		goto err;
1708	}
1709
1710	err = iavf_check_reset_complete(hw);
1711	if (err) {
1712		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1713			 err);
1714		goto err;
1715	}
1716	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1717	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1718	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1719	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1720
1721	err = iavf_init_adminq(hw);
1722	if (err) {
1723		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1724		goto err;
1725	}
1726	err = iavf_send_api_ver(adapter);
1727	if (err) {
1728		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1729		iavf_shutdown_adminq(hw);
1730		goto err;
1731	}
1732	adapter->state = __IAVF_INIT_VERSION_CHECK;
1733err:
1734	return err;
1735}
1736
1737/**
1738 * iavf_init_version_check - second step of driver startup
1739 * @adapter: board private structure
1740 *
1741 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1742 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1743 * when fails it returns -EAGAIN
1744 **/
1745static int iavf_init_version_check(struct iavf_adapter *adapter)
1746{
1747	struct pci_dev *pdev = adapter->pdev;
1748	struct iavf_hw *hw = &adapter->hw;
1749	int err = -EAGAIN;
1750
1751	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1752
1753	if (!iavf_asq_done(hw)) {
1754		dev_err(&pdev->dev, "Admin queue command never completed\n");
1755		iavf_shutdown_adminq(hw);
1756		adapter->state = __IAVF_STARTUP;
1757		goto err;
1758	}
1759
1760	/* aq msg sent, awaiting reply */
1761	err = iavf_verify_api_ver(adapter);
1762	if (err) {
1763		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1764			err = iavf_send_api_ver(adapter);
1765		else
1766			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1767				adapter->pf_version.major,
1768				adapter->pf_version.minor,
1769				VIRTCHNL_VERSION_MAJOR,
1770				VIRTCHNL_VERSION_MINOR);
1771		goto err;
1772	}
1773	err = iavf_send_vf_config_msg(adapter);
1774	if (err) {
1775		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1776			err);
1777		goto err;
1778	}
1779	adapter->state = __IAVF_INIT_GET_RESOURCES;
1780
1781err:
1782	return err;
1783}
1784
1785/**
1786 * iavf_init_get_resources - third step of driver startup
1787 * @adapter: board private structure
1788 *
1789 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1790 * finishes driver initialization procedure.
1791 * When success the state is changed to __IAVF_DOWN
1792 * when fails it returns -EAGAIN
1793 **/
1794static int iavf_init_get_resources(struct iavf_adapter *adapter)
1795{
1796	struct net_device *netdev = adapter->netdev;
1797	struct pci_dev *pdev = adapter->pdev;
1798	struct iavf_hw *hw = &adapter->hw;
1799	int err;
1800
1801	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1802	/* aq msg sent, awaiting reply */
1803	if (!adapter->vf_res) {
1804		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1805					  GFP_KERNEL);
1806		if (!adapter->vf_res) {
1807			err = -ENOMEM;
1808			goto err;
1809		}
1810	}
1811	err = iavf_get_vf_config(adapter);
1812	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1813		err = iavf_send_vf_config_msg(adapter);
1814		goto err;
1815	} else if (err == IAVF_ERR_PARAM) {
1816		/* We only get ERR_PARAM if the device is in a very bad
1817		 * state or if we've been disabled for previous bad
1818		 * behavior. Either way, we're done now.
1819		 */
1820		iavf_shutdown_adminq(hw);
1821		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1822		return 0;
1823	}
1824	if (err) {
1825		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1826		goto err_alloc;
1827	}
1828
1829	err = iavf_process_config(adapter);
1830	if (err)
1831		goto err_alloc;
1832	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1833
1834	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1835
1836	netdev->netdev_ops = &iavf_netdev_ops;
1837	iavf_set_ethtool_ops(netdev);
1838	netdev->watchdog_timeo = 5 * HZ;
1839
1840	/* MTU range: 68 - 9710 */
1841	netdev->min_mtu = ETH_MIN_MTU;
1842	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1843
1844	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1845		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1846			 adapter->hw.mac.addr);
1847		eth_hw_addr_random(netdev);
1848		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1849	} else {
1850		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1851		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1852	}
1853
1854	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1855	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1856	err = iavf_init_interrupt_scheme(adapter);
1857	if (err)
1858		goto err_sw_init;
1859	iavf_map_rings_to_vectors(adapter);
1860	if (adapter->vf_res->vf_cap_flags &
1861		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1862		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1863
1864	err = iavf_request_misc_irq(adapter);
1865	if (err)
1866		goto err_sw_init;
1867
1868	netif_carrier_off(netdev);
1869	adapter->link_up = false;
1870
1871	/* set the semaphore to prevent any callbacks after device registration
1872	 * up to time when state of driver will be set to __IAVF_DOWN
1873	 */
1874	rtnl_lock();
1875	if (!adapter->netdev_registered) {
1876		err = register_netdevice(netdev);
1877		if (err) {
1878			rtnl_unlock();
1879			goto err_register;
1880		}
1881	}
1882
1883	adapter->netdev_registered = true;
1884
1885	netif_tx_stop_all_queues(netdev);
1886	if (CLIENT_ALLOWED(adapter)) {
1887		err = iavf_lan_add_device(adapter);
1888		if (err)
1889			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1890				 err);
1891	}
1892	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1893	if (netdev->features & NETIF_F_GRO)
1894		dev_info(&pdev->dev, "GRO is enabled\n");
1895
1896	adapter->state = __IAVF_DOWN;
1897	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1898	rtnl_unlock();
1899
1900	iavf_misc_irq_enable(adapter);
1901	wake_up(&adapter->down_waitqueue);
1902
1903	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1904	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1905	if (!adapter->rss_key || !adapter->rss_lut) {
1906		err = -ENOMEM;
1907		goto err_mem;
1908	}
1909	if (RSS_AQ(adapter))
1910		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1911	else
1912		iavf_init_rss(adapter);
1913
1914	return err;
1915err_mem:
1916	iavf_free_rss(adapter);
1917err_register:
1918	iavf_free_misc_irq(adapter);
1919err_sw_init:
1920	iavf_reset_interrupt_capability(adapter);
1921err_alloc:
1922	kfree(adapter->vf_res);
1923	adapter->vf_res = NULL;
1924err:
1925	return err;
1926}
1927
1928/**
1929 * iavf_watchdog_task - Periodic call-back task
1930 * @work: pointer to work_struct
1931 **/
1932static void iavf_watchdog_task(struct work_struct *work)
1933{
1934	struct iavf_adapter *adapter = container_of(work,
1935						    struct iavf_adapter,
1936						    watchdog_task.work);
1937	struct iavf_hw *hw = &adapter->hw;
1938	u32 reg_val;
1939
1940	if (!mutex_trylock(&adapter->crit_lock))
1941		goto restart_watchdog;
1942
1943	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1944		adapter->state = __IAVF_COMM_FAILED;
1945
1946	switch (adapter->state) {
1947	case __IAVF_COMM_FAILED:
1948		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1949			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1950		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1951		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1952			/* A chance for redemption! */
1953			dev_err(&adapter->pdev->dev,
1954				"Hardware came out of reset. Attempting reinit.\n");
1955			adapter->state = __IAVF_STARTUP;
1956			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1957			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1958			mutex_unlock(&adapter->crit_lock);
1959			/* Don't reschedule the watchdog, since we've restarted
1960			 * the init task. When init_task contacts the PF and
1961			 * gets everything set up again, it'll restart the
1962			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1963			 */
1964			return;
1965		}
1966		adapter->aq_required = 0;
1967		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1968		queue_delayed_work(iavf_wq,
1969				   &adapter->watchdog_task,
1970				   msecs_to_jiffies(10));
1971		goto watchdog_done;
1972	case __IAVF_RESETTING:
1973		mutex_unlock(&adapter->crit_lock);
1974		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1975		return;
1976	case __IAVF_DOWN:
1977	case __IAVF_DOWN_PENDING:
1978	case __IAVF_TESTING:
1979	case __IAVF_RUNNING:
1980		if (adapter->current_op) {
1981			if (!iavf_asq_done(hw)) {
1982				dev_dbg(&adapter->pdev->dev,
1983					"Admin queue timeout\n");
1984				iavf_send_api_ver(adapter);
1985			}
1986		} else {
1987			/* An error will be returned if no commands were
1988			 * processed; use this opportunity to update stats
1989			 */
1990			if (iavf_process_aq_command(adapter) &&
1991			    adapter->state == __IAVF_RUNNING)
1992				iavf_request_stats(adapter);
1993		}
1994		break;
1995	case __IAVF_REMOVE:
1996		mutex_unlock(&adapter->crit_lock);
1997		return;
1998	default:
1999		goto restart_watchdog;
2000	}
2001
2002		/* check for hw reset */
2003	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2004	if (!reg_val) {
2005		adapter->flags |= IAVF_FLAG_RESET_PENDING;
2006		adapter->aq_required = 0;
2007		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2008		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2009		queue_work(iavf_wq, &adapter->reset_task);
2010		goto watchdog_done;
2011	}
2012
2013	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2014watchdog_done:
2015	if (adapter->state == __IAVF_RUNNING ||
2016	    adapter->state == __IAVF_COMM_FAILED)
2017		iavf_detect_recover_hung(&adapter->vsi);
2018	mutex_unlock(&adapter->crit_lock);
2019restart_watchdog:
2020	if (adapter->aq_required)
2021		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2022				   msecs_to_jiffies(20));
2023	else
2024		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2025	queue_work(iavf_wq, &adapter->adminq_task);
2026}
2027
2028static void iavf_disable_vf(struct iavf_adapter *adapter)
2029{
2030	struct iavf_mac_filter *f, *ftmp;
2031	struct iavf_vlan_filter *fv, *fvtmp;
2032	struct iavf_cloud_filter *cf, *cftmp;
2033
2034	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2035
2036	/* We don't use netif_running() because it may be true prior to
2037	 * ndo_open() returning, so we can't assume it means all our open
2038	 * tasks have finished, since we're not holding the rtnl_lock here.
2039	 */
2040	if (adapter->state == __IAVF_RUNNING) {
2041		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2042		netif_carrier_off(adapter->netdev);
2043		netif_tx_disable(adapter->netdev);
2044		adapter->link_up = false;
2045		iavf_napi_disable_all(adapter);
2046		iavf_irq_disable(adapter);
2047		iavf_free_traffic_irqs(adapter);
2048		iavf_free_all_tx_resources(adapter);
2049		iavf_free_all_rx_resources(adapter);
2050	}
2051
2052	spin_lock_bh(&adapter->mac_vlan_list_lock);
2053
2054	/* Delete all of the filters */
2055	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2056		list_del(&f->list);
2057		kfree(f);
2058	}
2059
2060	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2061		list_del(&fv->list);
2062		kfree(fv);
2063	}
2064
2065	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2066
2067	spin_lock_bh(&adapter->cloud_filter_list_lock);
2068	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2069		list_del(&cf->list);
2070		kfree(cf);
2071		adapter->num_cloud_filters--;
2072	}
2073	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2074
2075	iavf_free_misc_irq(adapter);
2076	iavf_reset_interrupt_capability(adapter);
2077	iavf_free_queues(adapter);
2078	iavf_free_q_vectors(adapter);
2079	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2080	iavf_shutdown_adminq(&adapter->hw);
2081	adapter->netdev->flags &= ~IFF_UP;
2082	mutex_unlock(&adapter->crit_lock);
2083	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2084	adapter->state = __IAVF_DOWN;
2085	wake_up(&adapter->down_waitqueue);
2086	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2087}
2088
2089/**
2090 * iavf_reset_task - Call-back task to handle hardware reset
2091 * @work: pointer to work_struct
2092 *
2093 * During reset we need to shut down and reinitialize the admin queue
2094 * before we can use it to communicate with the PF again. We also clear
2095 * and reinit the rings because that context is lost as well.
2096 **/
2097static void iavf_reset_task(struct work_struct *work)
2098{
2099	struct iavf_adapter *adapter = container_of(work,
2100						      struct iavf_adapter,
2101						      reset_task);
2102	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2103	struct net_device *netdev = adapter->netdev;
2104	struct iavf_hw *hw = &adapter->hw;
2105	struct iavf_mac_filter *f, *ftmp;
2106	struct iavf_vlan_filter *vlf;
2107	struct iavf_cloud_filter *cf;
2108	u32 reg_val;
2109	int i = 0, err;
2110	bool running;
2111
2112	/* When device is being removed it doesn't make sense to run the reset
2113	 * task, just return in such a case.
2114	 */
2115	if (mutex_is_locked(&adapter->remove_lock))
2116		return;
2117
2118	if (iavf_lock_timeout(&adapter->crit_lock, 200)) {
2119		schedule_work(&adapter->reset_task);
2120		return;
2121	}
2122	while (!mutex_trylock(&adapter->client_lock))
2123		usleep_range(500, 1000);
2124	if (CLIENT_ENABLED(adapter)) {
2125		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2126				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2127				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2128				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2129		cancel_delayed_work_sync(&adapter->client_task);
2130		iavf_notify_client_close(&adapter->vsi, true);
2131	}
2132	iavf_misc_irq_disable(adapter);
2133	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2134		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2135		/* Restart the AQ here. If we have been reset but didn't
2136		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2137		 */
2138		iavf_shutdown_adminq(hw);
2139		iavf_init_adminq(hw);
2140		iavf_request_reset(adapter);
2141	}
2142	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2143
2144	/* poll until we see the reset actually happen */
2145	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2146		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2147			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2148		if (!reg_val)
2149			break;
2150		usleep_range(5000, 10000);
2151	}
2152	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2153		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2154		goto continue_reset; /* act like the reset happened */
2155	}
2156
2157	/* wait until the reset is complete and the PF is responding to us */
2158	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2159		/* sleep first to make sure a minimum wait time is met */
2160		msleep(IAVF_RESET_WAIT_MS);
2161
2162		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2163			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2164		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2165			break;
2166	}
2167
2168	pci_set_master(adapter->pdev);
2169
2170	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2171		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2172			reg_val);
2173		iavf_disable_vf(adapter);
2174		mutex_unlock(&adapter->client_lock);
2175		return; /* Do not attempt to reinit. It's dead, Jim. */
2176	}
2177
2178continue_reset:
2179	/* We don't use netif_running() because it may be true prior to
2180	 * ndo_open() returning, so we can't assume it means all our open
2181	 * tasks have finished, since we're not holding the rtnl_lock here.
2182	 */
2183	running = ((adapter->state == __IAVF_RUNNING) ||
2184		   (adapter->state == __IAVF_RESETTING));
2185
2186	if (running) {
2187		netif_carrier_off(netdev);
2188		netif_tx_stop_all_queues(netdev);
2189		adapter->link_up = false;
2190		iavf_napi_disable_all(adapter);
2191	}
2192	iavf_irq_disable(adapter);
2193
2194	adapter->state = __IAVF_RESETTING;
2195	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2196
2197	/* free the Tx/Rx rings and descriptors, might be better to just
2198	 * re-use them sometime in the future
2199	 */
2200	iavf_free_all_rx_resources(adapter);
2201	iavf_free_all_tx_resources(adapter);
2202
2203	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2204	/* kill and reinit the admin queue */
2205	iavf_shutdown_adminq(hw);
2206	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2207	err = iavf_init_adminq(hw);
2208	if (err)
2209		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2210			 err);
2211	adapter->aq_required = 0;
2212
2213	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2214		err = iavf_reinit_interrupt_scheme(adapter);
2215		if (err)
2216			goto reset_err;
2217	}
2218
2219	if (RSS_AQ(adapter)) {
2220		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2221	} else {
2222		err = iavf_init_rss(adapter);
2223		if (err)
2224			goto reset_err;
2225	}
2226
2227	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2228	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2229
2230	spin_lock_bh(&adapter->mac_vlan_list_lock);
2231
2232	/* Delete filter for the current MAC address, it could have
2233	 * been changed by the PF via administratively set MAC.
2234	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2235	 */
2236	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2237		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2238			list_del(&f->list);
2239			kfree(f);
2240		}
2241	}
2242	/* re-add all MAC filters */
2243	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2244		f->add = true;
2245	}
2246	/* re-add all VLAN filters */
2247	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2248		vlf->add = true;
2249	}
2250
2251	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2252
2253	/* check if TCs are running and re-add all cloud filters */
2254	spin_lock_bh(&adapter->cloud_filter_list_lock);
2255	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2256	    adapter->num_tc) {
2257		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2258			cf->add = true;
2259		}
2260	}
2261	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2262
2263	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2264	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2265	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2266	iavf_misc_irq_enable(adapter);
2267
2268	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2269
2270	/* We were running when the reset started, so we need to restore some
2271	 * state here.
2272	 */
2273	if (running) {
2274		/* allocate transmit descriptors */
2275		err = iavf_setup_all_tx_resources(adapter);
2276		if (err)
2277			goto reset_err;
2278
2279		/* allocate receive descriptors */
2280		err = iavf_setup_all_rx_resources(adapter);
2281		if (err)
2282			goto reset_err;
2283
2284		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2285			err = iavf_request_traffic_irqs(adapter, netdev->name);
2286			if (err)
2287				goto reset_err;
2288
2289			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2290		}
2291
2292		iavf_configure(adapter);
2293
2294		iavf_up_complete(adapter);
2295
2296		iavf_irq_enable(adapter, true);
2297	} else {
2298		adapter->state = __IAVF_DOWN;
2299		wake_up(&adapter->down_waitqueue);
2300	}
2301	mutex_unlock(&adapter->client_lock);
2302	mutex_unlock(&adapter->crit_lock);
2303
2304	return;
2305reset_err:
2306	mutex_unlock(&adapter->client_lock);
2307	mutex_unlock(&adapter->crit_lock);
2308	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2309	iavf_close(netdev);
2310}
2311
2312/**
2313 * iavf_adminq_task - worker thread to clean the admin queue
2314 * @work: pointer to work_struct containing our data
2315 **/
2316static void iavf_adminq_task(struct work_struct *work)
2317{
2318	struct iavf_adapter *adapter =
2319		container_of(work, struct iavf_adapter, adminq_task);
2320	struct iavf_hw *hw = &adapter->hw;
2321	struct iavf_arq_event_info event;
2322	enum virtchnl_ops v_op;
2323	enum iavf_status ret, v_ret;
2324	u32 val, oldval;
2325	u16 pending;
2326
2327	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2328		goto out;
2329
2330	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2331	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2332	if (!event.msg_buf)
2333		goto out;
2334
2335	if (iavf_lock_timeout(&adapter->crit_lock, 200))
2336		goto freedom;
2337	do {
2338		ret = iavf_clean_arq_element(hw, &event, &pending);
2339		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2340		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2341
2342		if (ret || !v_op)
2343			break; /* No event to process or error cleaning ARQ */
2344
2345		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2346					 event.msg_len);
2347		if (pending != 0)
2348			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2349	} while (pending);
2350	mutex_unlock(&adapter->crit_lock);
2351
2352	if ((adapter->flags &
2353	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2354	    adapter->state == __IAVF_RESETTING)
2355		goto freedom;
2356
2357	/* check for error indications */
2358	val = rd32(hw, hw->aq.arq.len);
2359	if (val == 0xdeadbeef) /* indicates device in reset */
2360		goto freedom;
2361	oldval = val;
2362	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2363		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2364		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2365	}
2366	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2367		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2368		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2369	}
2370	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2371		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2372		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2373	}
2374	if (oldval != val)
2375		wr32(hw, hw->aq.arq.len, val);
2376
2377	val = rd32(hw, hw->aq.asq.len);
2378	oldval = val;
2379	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2380		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2381		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2382	}
2383	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2384		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2385		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2386	}
2387	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2388		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2389		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2390	}
2391	if (oldval != val)
2392		wr32(hw, hw->aq.asq.len, val);
2393
2394freedom:
2395	kfree(event.msg_buf);
2396out:
2397	/* re-enable Admin queue interrupt cause */
2398	iavf_misc_irq_enable(adapter);
2399}
2400
2401/**
2402 * iavf_client_task - worker thread to perform client work
2403 * @work: pointer to work_struct containing our data
2404 *
2405 * This task handles client interactions. Because client calls can be
2406 * reentrant, we can't handle them in the watchdog.
2407 **/
2408static void iavf_client_task(struct work_struct *work)
2409{
2410	struct iavf_adapter *adapter =
2411		container_of(work, struct iavf_adapter, client_task.work);
2412
2413	/* If we can't get the client bit, just give up. We'll be rescheduled
2414	 * later.
2415	 */
2416
2417	if (!mutex_trylock(&adapter->client_lock))
2418		return;
2419
2420	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2421		iavf_client_subtask(adapter);
2422		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2423		goto out;
2424	}
2425	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2426		iavf_notify_client_l2_params(&adapter->vsi);
2427		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2428		goto out;
2429	}
2430	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2431		iavf_notify_client_close(&adapter->vsi, false);
2432		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2433		goto out;
2434	}
2435	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2436		iavf_notify_client_open(&adapter->vsi);
2437		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2438	}
2439out:
2440	mutex_unlock(&adapter->client_lock);
2441}
2442
2443/**
2444 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2445 * @adapter: board private structure
2446 *
2447 * Free all transmit software resources
2448 **/
2449void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2450{
2451	int i;
2452
2453	if (!adapter->tx_rings)
2454		return;
2455
2456	for (i = 0; i < adapter->num_active_queues; i++)
2457		if (adapter->tx_rings[i].desc)
2458			iavf_free_tx_resources(&adapter->tx_rings[i]);
2459}
2460
2461/**
2462 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2463 * @adapter: board private structure
2464 *
2465 * If this function returns with an error, then it's possible one or
2466 * more of the rings is populated (while the rest are not).  It is the
2467 * callers duty to clean those orphaned rings.
2468 *
2469 * Return 0 on success, negative on failure
2470 **/
2471static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2472{
2473	int i, err = 0;
2474
2475	for (i = 0; i < adapter->num_active_queues; i++) {
2476		adapter->tx_rings[i].count = adapter->tx_desc_count;
2477		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2478		if (!err)
2479			continue;
2480		dev_err(&adapter->pdev->dev,
2481			"Allocation for Tx Queue %u failed\n", i);
2482		break;
2483	}
2484
2485	return err;
2486}
2487
2488/**
2489 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2490 * @adapter: board private structure
2491 *
2492 * If this function returns with an error, then it's possible one or
2493 * more of the rings is populated (while the rest are not).  It is the
2494 * callers duty to clean those orphaned rings.
2495 *
2496 * Return 0 on success, negative on failure
2497 **/
2498static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2499{
2500	int i, err = 0;
2501
2502	for (i = 0; i < adapter->num_active_queues; i++) {
2503		adapter->rx_rings[i].count = adapter->rx_desc_count;
2504		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2505		if (!err)
2506			continue;
2507		dev_err(&adapter->pdev->dev,
2508			"Allocation for Rx Queue %u failed\n", i);
2509		break;
2510	}
2511	return err;
2512}
2513
2514/**
2515 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2516 * @adapter: board private structure
2517 *
2518 * Free all receive software resources
2519 **/
2520void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2521{
2522	int i;
2523
2524	if (!adapter->rx_rings)
2525		return;
2526
2527	for (i = 0; i < adapter->num_active_queues; i++)
2528		if (adapter->rx_rings[i].desc)
2529			iavf_free_rx_resources(&adapter->rx_rings[i]);
2530}
2531
2532/**
2533 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2534 * @adapter: board private structure
2535 * @max_tx_rate: max Tx bw for a tc
2536 **/
2537static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2538				      u64 max_tx_rate)
2539{
2540	int speed = 0, ret = 0;
2541
2542	if (ADV_LINK_SUPPORT(adapter)) {
2543		if (adapter->link_speed_mbps < U32_MAX) {
2544			speed = adapter->link_speed_mbps;
2545			goto validate_bw;
2546		} else {
2547			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2548			return -EINVAL;
2549		}
2550	}
2551
2552	switch (adapter->link_speed) {
2553	case VIRTCHNL_LINK_SPEED_40GB:
2554		speed = SPEED_40000;
2555		break;
2556	case VIRTCHNL_LINK_SPEED_25GB:
2557		speed = SPEED_25000;
2558		break;
2559	case VIRTCHNL_LINK_SPEED_20GB:
2560		speed = SPEED_20000;
2561		break;
2562	case VIRTCHNL_LINK_SPEED_10GB:
2563		speed = SPEED_10000;
2564		break;
2565	case VIRTCHNL_LINK_SPEED_5GB:
2566		speed = SPEED_5000;
2567		break;
2568	case VIRTCHNL_LINK_SPEED_2_5GB:
2569		speed = SPEED_2500;
2570		break;
2571	case VIRTCHNL_LINK_SPEED_1GB:
2572		speed = SPEED_1000;
2573		break;
2574	case VIRTCHNL_LINK_SPEED_100MB:
2575		speed = SPEED_100;
2576		break;
2577	default:
2578		break;
2579	}
2580
2581validate_bw:
2582	if (max_tx_rate > speed) {
2583		dev_err(&adapter->pdev->dev,
2584			"Invalid tx rate specified\n");
2585		ret = -EINVAL;
2586	}
2587
2588	return ret;
2589}
2590
2591/**
2592 * iavf_validate_ch_config - validate queue mapping info
2593 * @adapter: board private structure
2594 * @mqprio_qopt: queue parameters
2595 *
2596 * This function validates if the config provided by the user to
2597 * configure queue channels is valid or not. Returns 0 on a valid
2598 * config.
2599 **/
2600static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2601				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2602{
2603	u64 total_max_rate = 0;
2604	int i, num_qps = 0;
2605	u64 tx_rate = 0;
2606	int ret = 0;
2607
2608	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2609	    mqprio_qopt->qopt.num_tc < 1)
2610		return -EINVAL;
2611
2612	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2613		if (!mqprio_qopt->qopt.count[i] ||
2614		    mqprio_qopt->qopt.offset[i] != num_qps)
2615			return -EINVAL;
2616		if (mqprio_qopt->min_rate[i]) {
2617			dev_err(&adapter->pdev->dev,
2618				"Invalid min tx rate (greater than 0) specified\n");
2619			return -EINVAL;
2620		}
2621		/*convert to Mbps */
2622		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2623				  IAVF_MBPS_DIVISOR);
2624		total_max_rate += tx_rate;
2625		num_qps += mqprio_qopt->qopt.count[i];
2626	}
2627	if (num_qps > IAVF_MAX_REQ_QUEUES)
2628		return -EINVAL;
2629
2630	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2631	return ret;
2632}
2633
2634/**
2635 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2636 * @adapter: board private structure
2637 **/
2638static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2639{
2640	struct iavf_cloud_filter *cf, *cftmp;
2641
2642	spin_lock_bh(&adapter->cloud_filter_list_lock);
2643	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2644				 list) {
2645		list_del(&cf->list);
2646		kfree(cf);
2647		adapter->num_cloud_filters--;
2648	}
2649	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2650}
2651
2652/**
2653 * __iavf_setup_tc - configure multiple traffic classes
2654 * @netdev: network interface device structure
2655 * @type_data: tc offload data
2656 *
2657 * This function processes the config information provided by the
2658 * user to configure traffic classes/queue channels and packages the
2659 * information to request the PF to setup traffic classes.
2660 *
2661 * Returns 0 on success.
2662 **/
2663static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2664{
2665	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2666	struct iavf_adapter *adapter = netdev_priv(netdev);
2667	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2668	u8 num_tc = 0, total_qps = 0;
2669	int ret = 0, netdev_tc = 0;
2670	u64 max_tx_rate;
2671	u16 mode;
2672	int i;
2673
2674	num_tc = mqprio_qopt->qopt.num_tc;
2675	mode = mqprio_qopt->mode;
2676
2677	/* delete queue_channel */
2678	if (!mqprio_qopt->qopt.hw) {
2679		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2680			/* reset the tc configuration */
2681			netdev_reset_tc(netdev);
2682			adapter->num_tc = 0;
2683			netif_tx_stop_all_queues(netdev);
2684			netif_tx_disable(netdev);
2685			iavf_del_all_cloud_filters(adapter);
2686			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2687			goto exit;
2688		} else {
2689			return -EINVAL;
2690		}
2691	}
2692
2693	/* add queue channel */
2694	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2695		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2696			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2697			return -EOPNOTSUPP;
2698		}
2699		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2700			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2701			return -EINVAL;
2702		}
2703
2704		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2705		if (ret)
2706			return ret;
2707		/* Return if same TC config is requested */
2708		if (adapter->num_tc == num_tc)
2709			return 0;
2710		adapter->num_tc = num_tc;
2711
2712		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2713			if (i < num_tc) {
2714				adapter->ch_config.ch_info[i].count =
2715					mqprio_qopt->qopt.count[i];
2716				adapter->ch_config.ch_info[i].offset =
2717					mqprio_qopt->qopt.offset[i];
2718				total_qps += mqprio_qopt->qopt.count[i];
2719				max_tx_rate = mqprio_qopt->max_rate[i];
2720				/* convert to Mbps */
2721				max_tx_rate = div_u64(max_tx_rate,
2722						      IAVF_MBPS_DIVISOR);
2723				adapter->ch_config.ch_info[i].max_tx_rate =
2724					max_tx_rate;
2725			} else {
2726				adapter->ch_config.ch_info[i].count = 1;
2727				adapter->ch_config.ch_info[i].offset = 0;
2728			}
2729		}
2730		adapter->ch_config.total_qps = total_qps;
2731		netif_tx_stop_all_queues(netdev);
2732		netif_tx_disable(netdev);
2733		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2734		netdev_reset_tc(netdev);
2735		/* Report the tc mapping up the stack */
2736		netdev_set_num_tc(adapter->netdev, num_tc);
2737		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2738			u16 qcount = mqprio_qopt->qopt.count[i];
2739			u16 qoffset = mqprio_qopt->qopt.offset[i];
2740
2741			if (i < num_tc)
2742				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2743						    qoffset);
2744		}
2745	}
2746exit:
2747	return ret;
2748}
2749
2750/**
2751 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2752 * @adapter: board private structure
2753 * @f: pointer to struct flow_cls_offload
2754 * @filter: pointer to cloud filter structure
2755 */
2756static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2757				 struct flow_cls_offload *f,
2758				 struct iavf_cloud_filter *filter)
2759{
2760	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2761	struct flow_dissector *dissector = rule->match.dissector;
2762	u16 n_proto_mask = 0;
2763	u16 n_proto_key = 0;
2764	u8 field_flags = 0;
2765	u16 addr_type = 0;
2766	u16 n_proto = 0;
2767	int i = 0;
2768	struct virtchnl_filter *vf = &filter->f;
2769
2770	if (dissector->used_keys &
2771	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2772	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2773	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2774	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2775	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2776	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2777	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2778	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2779		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2780			dissector->used_keys);
2781		return -EOPNOTSUPP;
2782	}
2783
2784	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2785		struct flow_match_enc_keyid match;
2786
2787		flow_rule_match_enc_keyid(rule, &match);
2788		if (match.mask->keyid != 0)
2789			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2790	}
2791
2792	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2793		struct flow_match_basic match;
2794
2795		flow_rule_match_basic(rule, &match);
2796		n_proto_key = ntohs(match.key->n_proto);
2797		n_proto_mask = ntohs(match.mask->n_proto);
2798
2799		if (n_proto_key == ETH_P_ALL) {
2800			n_proto_key = 0;
2801			n_proto_mask = 0;
2802		}
2803		n_proto = n_proto_key & n_proto_mask;
2804		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2805			return -EINVAL;
2806		if (n_proto == ETH_P_IPV6) {
2807			/* specify flow type as TCP IPv6 */
2808			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2809		}
2810
2811		if (match.key->ip_proto != IPPROTO_TCP) {
2812			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2813			return -EINVAL;
2814		}
2815	}
2816
2817	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2818		struct flow_match_eth_addrs match;
2819
2820		flow_rule_match_eth_addrs(rule, &match);
2821
2822		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2823		if (!is_zero_ether_addr(match.mask->dst)) {
2824			if (is_broadcast_ether_addr(match.mask->dst)) {
2825				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2826			} else {
2827				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2828					match.mask->dst);
2829				return IAVF_ERR_CONFIG;
2830			}
2831		}
2832
2833		if (!is_zero_ether_addr(match.mask->src)) {
2834			if (is_broadcast_ether_addr(match.mask->src)) {
2835				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2836			} else {
2837				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2838					match.mask->src);
2839				return IAVF_ERR_CONFIG;
2840			}
2841		}
2842
2843		if (!is_zero_ether_addr(match.key->dst))
2844			if (is_valid_ether_addr(match.key->dst) ||
2845			    is_multicast_ether_addr(match.key->dst)) {
2846				/* set the mask if a valid dst_mac address */
2847				for (i = 0; i < ETH_ALEN; i++)
2848					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2849				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2850						match.key->dst);
2851			}
2852
2853		if (!is_zero_ether_addr(match.key->src))
2854			if (is_valid_ether_addr(match.key->src) ||
2855			    is_multicast_ether_addr(match.key->src)) {
2856				/* set the mask if a valid dst_mac address */
2857				for (i = 0; i < ETH_ALEN; i++)
2858					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2859				ether_addr_copy(vf->data.tcp_spec.src_mac,
2860						match.key->src);
2861		}
2862	}
2863
2864	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2865		struct flow_match_vlan match;
2866
2867		flow_rule_match_vlan(rule, &match);
2868		if (match.mask->vlan_id) {
2869			if (match.mask->vlan_id == VLAN_VID_MASK) {
2870				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2871			} else {
2872				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2873					match.mask->vlan_id);
2874				return IAVF_ERR_CONFIG;
2875			}
2876		}
2877		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2878		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2879	}
2880
2881	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2882		struct flow_match_control match;
2883
2884		flow_rule_match_control(rule, &match);
2885		addr_type = match.key->addr_type;
2886	}
2887
2888	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2889		struct flow_match_ipv4_addrs match;
2890
2891		flow_rule_match_ipv4_addrs(rule, &match);
2892		if (match.mask->dst) {
2893			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2894				field_flags |= IAVF_CLOUD_FIELD_IIP;
2895			} else {
2896				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2897					be32_to_cpu(match.mask->dst));
2898				return IAVF_ERR_CONFIG;
2899			}
2900		}
2901
2902		if (match.mask->src) {
2903			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2904				field_flags |= IAVF_CLOUD_FIELD_IIP;
2905			} else {
2906				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2907					be32_to_cpu(match.mask->dst));
2908				return IAVF_ERR_CONFIG;
2909			}
2910		}
2911
2912		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2913			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2914			return IAVF_ERR_CONFIG;
2915		}
2916		if (match.key->dst) {
2917			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2918			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2919		}
2920		if (match.key->src) {
2921			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2922			vf->data.tcp_spec.src_ip[0] = match.key->src;
2923		}
2924	}
2925
2926	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2927		struct flow_match_ipv6_addrs match;
2928
2929		flow_rule_match_ipv6_addrs(rule, &match);
2930
2931		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2932		if (ipv6_addr_any(&match.mask->dst)) {
2933			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2934				IPV6_ADDR_ANY);
2935			return IAVF_ERR_CONFIG;
2936		}
2937
2938		/* src and dest IPv6 address should not be LOOPBACK
2939		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2940		 */
2941		if (ipv6_addr_loopback(&match.key->dst) ||
2942		    ipv6_addr_loopback(&match.key->src)) {
2943			dev_err(&adapter->pdev->dev,
2944				"ipv6 addr should not be loopback\n");
2945			return IAVF_ERR_CONFIG;
2946		}
2947		if (!ipv6_addr_any(&match.mask->dst) ||
2948		    !ipv6_addr_any(&match.mask->src))
2949			field_flags |= IAVF_CLOUD_FIELD_IIP;
2950
2951		for (i = 0; i < 4; i++)
2952			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2953		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2954		       sizeof(vf->data.tcp_spec.dst_ip));
2955		for (i = 0; i < 4; i++)
2956			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2957		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2958		       sizeof(vf->data.tcp_spec.src_ip));
2959	}
2960	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2961		struct flow_match_ports match;
2962
2963		flow_rule_match_ports(rule, &match);
2964		if (match.mask->src) {
2965			if (match.mask->src == cpu_to_be16(0xffff)) {
2966				field_flags |= IAVF_CLOUD_FIELD_IIP;
2967			} else {
2968				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2969					be16_to_cpu(match.mask->src));
2970				return IAVF_ERR_CONFIG;
2971			}
2972		}
2973
2974		if (match.mask->dst) {
2975			if (match.mask->dst == cpu_to_be16(0xffff)) {
2976				field_flags |= IAVF_CLOUD_FIELD_IIP;
2977			} else {
2978				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2979					be16_to_cpu(match.mask->dst));
2980				return IAVF_ERR_CONFIG;
2981			}
2982		}
2983		if (match.key->dst) {
2984			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2985			vf->data.tcp_spec.dst_port = match.key->dst;
2986		}
2987
2988		if (match.key->src) {
2989			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2990			vf->data.tcp_spec.src_port = match.key->src;
2991		}
2992	}
2993	vf->field_flags = field_flags;
2994
2995	return 0;
2996}
2997
2998/**
2999 * iavf_handle_tclass - Forward to a traffic class on the device
3000 * @adapter: board private structure
3001 * @tc: traffic class index on the device
3002 * @filter: pointer to cloud filter structure
3003 */
3004static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3005			      struct iavf_cloud_filter *filter)
3006{
3007	if (tc == 0)
3008		return 0;
3009	if (tc < adapter->num_tc) {
3010		if (!filter->f.data.tcp_spec.dst_port) {
3011			dev_err(&adapter->pdev->dev,
3012				"Specify destination port to redirect to traffic class other than TC0\n");
3013			return -EINVAL;
3014		}
3015	}
3016	/* redirect to a traffic class on the same device */
3017	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3018	filter->f.action_meta = tc;
3019	return 0;
3020}
3021
3022/**
3023 * iavf_configure_clsflower - Add tc flower filters
3024 * @adapter: board private structure
3025 * @cls_flower: Pointer to struct flow_cls_offload
3026 */
3027static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3028				    struct flow_cls_offload *cls_flower)
3029{
3030	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3031	struct iavf_cloud_filter *filter = NULL;
3032	int err = -EINVAL, count = 50;
3033
3034	if (tc < 0) {
3035		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3036		return -EINVAL;
3037	}
3038
3039	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3040	if (!filter)
3041		return -ENOMEM;
3042
3043	while (!mutex_trylock(&adapter->crit_lock)) {
3044		if (--count == 0)
3045			goto err;
3046		udelay(1);
3047	}
3048
3049	filter->cookie = cls_flower->cookie;
3050
3051	/* set the mask to all zeroes to begin with */
3052	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3053	/* start out with flow type and eth type IPv4 to begin with */
3054	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3055	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3056	if (err < 0)
3057		goto err;
3058
3059	err = iavf_handle_tclass(adapter, tc, filter);
3060	if (err < 0)
3061		goto err;
3062
3063	/* add filter to the list */
3064	spin_lock_bh(&adapter->cloud_filter_list_lock);
3065	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3066	adapter->num_cloud_filters++;
3067	filter->add = true;
3068	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3069	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3070err:
3071	if (err)
3072		kfree(filter);
3073
3074	mutex_unlock(&adapter->crit_lock);
3075	return err;
3076}
3077
3078/* iavf_find_cf - Find the cloud filter in the list
3079 * @adapter: Board private structure
3080 * @cookie: filter specific cookie
3081 *
3082 * Returns ptr to the filter object or NULL. Must be called while holding the
3083 * cloud_filter_list_lock.
3084 */
3085static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3086					      unsigned long *cookie)
3087{
3088	struct iavf_cloud_filter *filter = NULL;
3089
3090	if (!cookie)
3091		return NULL;
3092
3093	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3094		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3095			return filter;
3096	}
3097	return NULL;
3098}
3099
3100/**
3101 * iavf_delete_clsflower - Remove tc flower filters
3102 * @adapter: board private structure
3103 * @cls_flower: Pointer to struct flow_cls_offload
3104 */
3105static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3106				 struct flow_cls_offload *cls_flower)
3107{
3108	struct iavf_cloud_filter *filter = NULL;
3109	int err = 0;
3110
3111	spin_lock_bh(&adapter->cloud_filter_list_lock);
3112	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3113	if (filter) {
3114		filter->del = true;
3115		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3116	} else {
3117		err = -EINVAL;
3118	}
3119	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3120
3121	return err;
3122}
3123
3124/**
3125 * iavf_setup_tc_cls_flower - flower classifier offloads
3126 * @adapter: board private structure
3127 * @cls_flower: pointer to flow_cls_offload struct with flow info
3128 */
3129static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3130				    struct flow_cls_offload *cls_flower)
3131{
3132	switch (cls_flower->command) {
3133	case FLOW_CLS_REPLACE:
3134		return iavf_configure_clsflower(adapter, cls_flower);
3135	case FLOW_CLS_DESTROY:
3136		return iavf_delete_clsflower(adapter, cls_flower);
3137	case FLOW_CLS_STATS:
3138		return -EOPNOTSUPP;
3139	default:
3140		return -EOPNOTSUPP;
3141	}
3142}
3143
3144/**
3145 * iavf_setup_tc_block_cb - block callback for tc
3146 * @type: type of offload
3147 * @type_data: offload data
3148 * @cb_priv:
3149 *
3150 * This function is the block callback for traffic classes
3151 **/
3152static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3153				  void *cb_priv)
3154{
3155	struct iavf_adapter *adapter = cb_priv;
3156
3157	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3158		return -EOPNOTSUPP;
3159
3160	switch (type) {
3161	case TC_SETUP_CLSFLOWER:
3162		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3163	default:
3164		return -EOPNOTSUPP;
3165	}
3166}
3167
3168static LIST_HEAD(iavf_block_cb_list);
3169
3170/**
3171 * iavf_setup_tc - configure multiple traffic classes
3172 * @netdev: network interface device structure
3173 * @type: type of offload
3174 * @type_data: tc offload data
3175 *
3176 * This function is the callback to ndo_setup_tc in the
3177 * netdev_ops.
3178 *
3179 * Returns 0 on success
3180 **/
3181static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3182			 void *type_data)
3183{
3184	struct iavf_adapter *adapter = netdev_priv(netdev);
3185
3186	switch (type) {
3187	case TC_SETUP_QDISC_MQPRIO:
3188		return __iavf_setup_tc(netdev, type_data);
3189	case TC_SETUP_BLOCK:
3190		return flow_block_cb_setup_simple(type_data,
3191						  &iavf_block_cb_list,
3192						  iavf_setup_tc_block_cb,
3193						  adapter, adapter, true);
3194	default:
3195		return -EOPNOTSUPP;
3196	}
3197}
3198
3199/**
3200 * iavf_open - Called when a network interface is made active
3201 * @netdev: network interface device structure
3202 *
3203 * Returns 0 on success, negative value on failure
3204 *
3205 * The open entry point is called when a network interface is made
3206 * active by the system (IFF_UP).  At this point all resources needed
3207 * for transmit and receive operations are allocated, the interrupt
3208 * handler is registered with the OS, the watchdog is started,
3209 * and the stack is notified that the interface is ready.
3210 **/
3211static int iavf_open(struct net_device *netdev)
3212{
3213	struct iavf_adapter *adapter = netdev_priv(netdev);
3214	int err;
3215
3216	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3217		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3218		return -EIO;
3219	}
3220
3221	while (!mutex_trylock(&adapter->crit_lock))
3222		usleep_range(500, 1000);
3223
3224	if (adapter->state != __IAVF_DOWN) {
3225		err = -EBUSY;
3226		goto err_unlock;
3227	}
3228
3229	/* allocate transmit descriptors */
3230	err = iavf_setup_all_tx_resources(adapter);
3231	if (err)
3232		goto err_setup_tx;
3233
3234	/* allocate receive descriptors */
3235	err = iavf_setup_all_rx_resources(adapter);
3236	if (err)
3237		goto err_setup_rx;
3238
3239	/* clear any pending interrupts, may auto mask */
3240	err = iavf_request_traffic_irqs(adapter, netdev->name);
3241	if (err)
3242		goto err_req_irq;
3243
3244	spin_lock_bh(&adapter->mac_vlan_list_lock);
3245
3246	iavf_add_filter(adapter, adapter->hw.mac.addr);
3247
3248	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3249
3250	iavf_configure(adapter);
3251
3252	iavf_up_complete(adapter);
3253
3254	iavf_irq_enable(adapter, true);
3255
3256	mutex_unlock(&adapter->crit_lock);
3257
3258	return 0;
3259
3260err_req_irq:
3261	iavf_down(adapter);
3262	iavf_free_traffic_irqs(adapter);
3263err_setup_rx:
3264	iavf_free_all_rx_resources(adapter);
3265err_setup_tx:
3266	iavf_free_all_tx_resources(adapter);
3267err_unlock:
3268	mutex_unlock(&adapter->crit_lock);
3269
3270	return err;
3271}
3272
3273/**
3274 * iavf_close - Disables a network interface
3275 * @netdev: network interface device structure
3276 *
3277 * Returns 0, this is not allowed to fail
3278 *
3279 * The close entry point is called when an interface is de-activated
3280 * by the OS.  The hardware is still under the drivers control, but
3281 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3282 * are freed, along with all transmit and receive resources.
3283 **/
3284static int iavf_close(struct net_device *netdev)
3285{
3286	struct iavf_adapter *adapter = netdev_priv(netdev);
3287	int status;
3288
3289	if (adapter->state <= __IAVF_DOWN_PENDING)
3290		return 0;
3291
3292	while (!mutex_trylock(&adapter->crit_lock))
3293		usleep_range(500, 1000);
3294
3295	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3296	if (CLIENT_ENABLED(adapter))
3297		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3298
3299	iavf_down(adapter);
3300	adapter->state = __IAVF_DOWN_PENDING;
3301	iavf_free_traffic_irqs(adapter);
3302
3303	mutex_unlock(&adapter->crit_lock);
3304
3305	/* We explicitly don't free resources here because the hardware is
3306	 * still active and can DMA into memory. Resources are cleared in
3307	 * iavf_virtchnl_completion() after we get confirmation from the PF
3308	 * driver that the rings have been stopped.
3309	 *
3310	 * Also, we wait for state to transition to __IAVF_DOWN before
3311	 * returning. State change occurs in iavf_virtchnl_completion() after
3312	 * VF resources are released (which occurs after PF driver processes and
3313	 * responds to admin queue commands).
3314	 */
3315
3316	status = wait_event_timeout(adapter->down_waitqueue,
3317				    adapter->state == __IAVF_DOWN,
3318				    msecs_to_jiffies(500));
3319	if (!status)
3320		netdev_warn(netdev, "Device resources not yet released\n");
3321	return 0;
3322}
3323
3324/**
3325 * iavf_change_mtu - Change the Maximum Transfer Unit
3326 * @netdev: network interface device structure
3327 * @new_mtu: new value for maximum frame size
3328 *
3329 * Returns 0 on success, negative on failure
3330 **/
3331static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3332{
3333	struct iavf_adapter *adapter = netdev_priv(netdev);
3334
3335	netdev->mtu = new_mtu;
3336	if (CLIENT_ENABLED(adapter)) {
3337		iavf_notify_client_l2_params(&adapter->vsi);
3338		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3339	}
3340	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3341	queue_work(iavf_wq, &adapter->reset_task);
3342
3343	return 0;
3344}
3345
3346/**
3347 * iavf_set_features - set the netdev feature flags
3348 * @netdev: ptr to the netdev being adjusted
3349 * @features: the feature set that the stack is suggesting
3350 * Note: expects to be called while under rtnl_lock()
3351 **/
3352static int iavf_set_features(struct net_device *netdev,
3353			     netdev_features_t features)
3354{
3355	struct iavf_adapter *adapter = netdev_priv(netdev);
3356
3357	/* Don't allow changing VLAN_RX flag when adapter is not capable
3358	 * of VLAN offload
3359	 */
3360	if (!VLAN_ALLOWED(adapter)) {
3361		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3362			return -EINVAL;
3363	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3364		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3365			adapter->aq_required |=
3366				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3367		else
3368			adapter->aq_required |=
3369				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3370	}
3371
3372	return 0;
3373}
3374
3375/**
3376 * iavf_features_check - Validate encapsulated packet conforms to limits
3377 * @skb: skb buff
3378 * @dev: This physical port's netdev
3379 * @features: Offload features that the stack believes apply
3380 **/
3381static netdev_features_t iavf_features_check(struct sk_buff *skb,
3382					     struct net_device *dev,
3383					     netdev_features_t features)
3384{
3385	size_t len;
3386
3387	/* No point in doing any of this if neither checksum nor GSO are
3388	 * being requested for this frame.  We can rule out both by just
3389	 * checking for CHECKSUM_PARTIAL
3390	 */
3391	if (skb->ip_summed != CHECKSUM_PARTIAL)
3392		return features;
3393
3394	/* We cannot support GSO if the MSS is going to be less than
3395	 * 64 bytes.  If it is then we need to drop support for GSO.
3396	 */
3397	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3398		features &= ~NETIF_F_GSO_MASK;
3399
3400	/* MACLEN can support at most 63 words */
3401	len = skb_network_header(skb) - skb->data;
3402	if (len & ~(63 * 2))
3403		goto out_err;
3404
3405	/* IPLEN and EIPLEN can support at most 127 dwords */
3406	len = skb_transport_header(skb) - skb_network_header(skb);
3407	if (len & ~(127 * 4))
3408		goto out_err;
3409
3410	if (skb->encapsulation) {
3411		/* L4TUNLEN can support 127 words */
3412		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3413		if (len & ~(127 * 2))
3414			goto out_err;
3415
3416		/* IPLEN can support at most 127 dwords */
3417		len = skb_inner_transport_header(skb) -
3418		      skb_inner_network_header(skb);
3419		if (len & ~(127 * 4))
3420			goto out_err;
3421	}
3422
3423	/* No need to validate L4LEN as TCP is the only protocol with a
3424	 * a flexible value and we support all possible values supported
3425	 * by TCP, which is at most 15 dwords
3426	 */
3427
3428	return features;
3429out_err:
3430	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3431}
3432
3433/**
3434 * iavf_fix_features - fix up the netdev feature bits
3435 * @netdev: our net device
3436 * @features: desired feature bits
3437 *
3438 * Returns fixed-up features bits
3439 **/
3440static netdev_features_t iavf_fix_features(struct net_device *netdev,
3441					   netdev_features_t features)
3442{
3443	struct iavf_adapter *adapter = netdev_priv(netdev);
3444
3445	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3446		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3447			      NETIF_F_HW_VLAN_CTAG_RX |
3448			      NETIF_F_HW_VLAN_CTAG_FILTER);
3449
3450	return features;
3451}
3452
3453static const struct net_device_ops iavf_netdev_ops = {
3454	.ndo_open		= iavf_open,
3455	.ndo_stop		= iavf_close,
3456	.ndo_start_xmit		= iavf_xmit_frame,
3457	.ndo_set_rx_mode	= iavf_set_rx_mode,
3458	.ndo_validate_addr	= eth_validate_addr,
3459	.ndo_set_mac_address	= iavf_set_mac,
3460	.ndo_change_mtu		= iavf_change_mtu,
3461	.ndo_tx_timeout		= iavf_tx_timeout,
3462	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3463	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3464	.ndo_features_check	= iavf_features_check,
3465	.ndo_fix_features	= iavf_fix_features,
3466	.ndo_set_features	= iavf_set_features,
3467	.ndo_setup_tc		= iavf_setup_tc,
3468};
3469
3470/**
3471 * iavf_check_reset_complete - check that VF reset is complete
3472 * @hw: pointer to hw struct
3473 *
3474 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3475 **/
3476static int iavf_check_reset_complete(struct iavf_hw *hw)
3477{
3478	u32 rstat;
3479	int i;
3480
3481	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3482		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3483			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3484		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3485		    (rstat == VIRTCHNL_VFR_COMPLETED))
3486			return 0;
3487		usleep_range(10, 20);
3488	}
3489	return -EBUSY;
3490}
3491
3492/**
3493 * iavf_process_config - Process the config information we got from the PF
3494 * @adapter: board private structure
3495 *
3496 * Verify that we have a valid config struct, and set up our netdev features
3497 * and our VSI struct.
3498 **/
3499int iavf_process_config(struct iavf_adapter *adapter)
3500{
3501	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3502	int i, num_req_queues = adapter->num_req_queues;
3503	struct net_device *netdev = adapter->netdev;
3504	struct iavf_vsi *vsi = &adapter->vsi;
3505	netdev_features_t hw_enc_features;
3506	netdev_features_t hw_features;
3507
3508	/* got VF config message back from PF, now we can parse it */
3509	for (i = 0; i < vfres->num_vsis; i++) {
3510		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3511			adapter->vsi_res = &vfres->vsi_res[i];
3512	}
3513	if (!adapter->vsi_res) {
3514		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3515		return -ENODEV;
3516	}
3517
3518	if (num_req_queues &&
3519	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
3520		/* Problem.  The PF gave us fewer queues than what we had
3521		 * negotiated in our request.  Need a reset to see if we can't
3522		 * get back to a working state.
3523		 */
3524		dev_err(&adapter->pdev->dev,
3525			"Requested %d queues, but PF only gave us %d.\n",
3526			num_req_queues,
3527			adapter->vsi_res->num_queue_pairs);
3528		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3529		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3530		iavf_schedule_reset(adapter);
3531		return -ENODEV;
3532	}
3533	adapter->num_req_queues = 0;
3534
3535	hw_enc_features = NETIF_F_SG			|
3536			  NETIF_F_IP_CSUM		|
3537			  NETIF_F_IPV6_CSUM		|
3538			  NETIF_F_HIGHDMA		|
3539			  NETIF_F_SOFT_FEATURES	|
3540			  NETIF_F_TSO			|
3541			  NETIF_F_TSO_ECN		|
3542			  NETIF_F_TSO6			|
3543			  NETIF_F_SCTP_CRC		|
3544			  NETIF_F_RXHASH		|
3545			  NETIF_F_RXCSUM		|
3546			  0;
3547
3548	/* advertise to stack only if offloads for encapsulated packets is
3549	 * supported
3550	 */
3551	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3552		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3553				   NETIF_F_GSO_GRE		|
3554				   NETIF_F_GSO_GRE_CSUM		|
3555				   NETIF_F_GSO_IPXIP4		|
3556				   NETIF_F_GSO_IPXIP6		|
3557				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3558				   NETIF_F_GSO_PARTIAL		|
3559				   0;
3560
3561		if (!(vfres->vf_cap_flags &
3562		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3563			netdev->gso_partial_features |=
3564				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3565
3566		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3567		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3568		netdev->hw_enc_features |= hw_enc_features;
3569	}
3570	/* record features VLANs can make use of */
3571	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3572
3573	/* Write features and hw_features separately to avoid polluting
3574	 * with, or dropping, features that are set when we registered.
3575	 */
3576	hw_features = hw_enc_features;
3577
3578	/* Enable VLAN features if supported */
3579	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3580		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3581				NETIF_F_HW_VLAN_CTAG_RX);
3582	/* Enable cloud filter if ADQ is supported */
3583	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3584		hw_features |= NETIF_F_HW_TC;
3585	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
3586		hw_features |= NETIF_F_GSO_UDP_L4;
3587
3588	netdev->hw_features |= hw_features;
3589
3590	netdev->features |= hw_features;
3591
3592	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3593		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3594
3595	netdev->priv_flags |= IFF_UNICAST_FLT;
3596
3597	/* Do not turn on offloads when they are requested to be turned off.
3598	 * TSO needs minimum 576 bytes to work correctly.
3599	 */
3600	if (netdev->wanted_features) {
3601		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3602		    netdev->mtu < 576)
3603			netdev->features &= ~NETIF_F_TSO;
3604		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3605		    netdev->mtu < 576)
3606			netdev->features &= ~NETIF_F_TSO6;
3607		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3608			netdev->features &= ~NETIF_F_TSO_ECN;
3609		if (!(netdev->wanted_features & NETIF_F_GRO))
3610			netdev->features &= ~NETIF_F_GRO;
3611		if (!(netdev->wanted_features & NETIF_F_GSO))
3612			netdev->features &= ~NETIF_F_GSO;
3613	}
3614
3615	adapter->vsi.id = adapter->vsi_res->vsi_id;
3616
3617	adapter->vsi.back = adapter;
3618	adapter->vsi.base_vector = 1;
3619	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3620	vsi->netdev = adapter->netdev;
3621	vsi->qs_handle = adapter->vsi_res->qset_handle;
3622	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3623		adapter->rss_key_size = vfres->rss_key_size;
3624		adapter->rss_lut_size = vfres->rss_lut_size;
3625	} else {
3626		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3627		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3628	}
3629
3630	return 0;
3631}
3632
3633/**
3634 * iavf_init_task - worker thread to perform delayed initialization
3635 * @work: pointer to work_struct containing our data
3636 *
3637 * This task completes the work that was begun in probe. Due to the nature
3638 * of VF-PF communications, we may need to wait tens of milliseconds to get
3639 * responses back from the PF. Rather than busy-wait in probe and bog down the
3640 * whole system, we'll do it in a task so we can sleep.
3641 * This task only runs during driver init. Once we've established
3642 * communications with the PF driver and set up our netdev, the watchdog
3643 * takes over.
3644 **/
3645static void iavf_init_task(struct work_struct *work)
3646{
3647	struct iavf_adapter *adapter = container_of(work,
3648						    struct iavf_adapter,
3649						    init_task.work);
3650	struct iavf_hw *hw = &adapter->hw;
3651
3652	if (iavf_lock_timeout(&adapter->crit_lock, 5000)) {
3653		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3654		return;
3655	}
3656	switch (adapter->state) {
3657	case __IAVF_STARTUP:
3658		if (iavf_startup(adapter) < 0)
3659			goto init_failed;
3660		break;
3661	case __IAVF_INIT_VERSION_CHECK:
3662		if (iavf_init_version_check(adapter) < 0)
3663			goto init_failed;
3664		break;
3665	case __IAVF_INIT_GET_RESOURCES:
3666		if (iavf_init_get_resources(adapter) < 0)
3667			goto init_failed;
3668		goto out;
3669	default:
3670		goto init_failed;
3671	}
3672
3673	queue_delayed_work(iavf_wq, &adapter->init_task,
3674			   msecs_to_jiffies(30));
3675	goto out;
3676init_failed:
3677	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3678		dev_err(&adapter->pdev->dev,
3679			"Failed to communicate with PF; waiting before retry\n");
3680		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3681		iavf_shutdown_adminq(hw);
3682		adapter->state = __IAVF_STARTUP;
3683		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3684		goto out;
3685	}
3686	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3687out:
3688	mutex_unlock(&adapter->crit_lock);
3689}
3690
3691/**
3692 * iavf_shutdown - Shutdown the device in preparation for a reboot
3693 * @pdev: pci device structure
3694 **/
3695static void iavf_shutdown(struct pci_dev *pdev)
3696{
3697	struct net_device *netdev = pci_get_drvdata(pdev);
3698	struct iavf_adapter *adapter = netdev_priv(netdev);
3699
3700	netif_device_detach(netdev);
3701
3702	if (netif_running(netdev))
3703		iavf_close(netdev);
3704
3705	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
3706		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3707	/* Prevent the watchdog from running. */
3708	adapter->state = __IAVF_REMOVE;
3709	adapter->aq_required = 0;
3710	mutex_unlock(&adapter->crit_lock);
3711
3712#ifdef CONFIG_PM
3713	pci_save_state(pdev);
3714
3715#endif
3716	pci_disable_device(pdev);
3717}
3718
3719/**
3720 * iavf_probe - Device Initialization Routine
3721 * @pdev: PCI device information struct
3722 * @ent: entry in iavf_pci_tbl
3723 *
3724 * Returns 0 on success, negative on failure
3725 *
3726 * iavf_probe initializes an adapter identified by a pci_dev structure.
3727 * The OS initialization, configuring of the adapter private structure,
3728 * and a hardware reset occur.
3729 **/
3730static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3731{
3732	struct net_device *netdev;
3733	struct iavf_adapter *adapter = NULL;
3734	struct iavf_hw *hw = NULL;
3735	int err;
3736
3737	err = pci_enable_device(pdev);
3738	if (err)
3739		return err;
3740
3741	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3742	if (err) {
3743		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3744		if (err) {
3745			dev_err(&pdev->dev,
3746				"DMA configuration failed: 0x%x\n", err);
3747			goto err_dma;
3748		}
3749	}
3750
3751	err = pci_request_regions(pdev, iavf_driver_name);
3752	if (err) {
3753		dev_err(&pdev->dev,
3754			"pci_request_regions failed 0x%x\n", err);
3755		goto err_pci_reg;
3756	}
3757
3758	pci_enable_pcie_error_reporting(pdev);
3759
3760	pci_set_master(pdev);
3761
3762	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3763				   IAVF_MAX_REQ_QUEUES);
3764	if (!netdev) {
3765		err = -ENOMEM;
3766		goto err_alloc_etherdev;
3767	}
3768
3769	SET_NETDEV_DEV(netdev, &pdev->dev);
3770
3771	pci_set_drvdata(pdev, netdev);
3772	adapter = netdev_priv(netdev);
3773
3774	adapter->netdev = netdev;
3775	adapter->pdev = pdev;
3776
3777	hw = &adapter->hw;
3778	hw->back = adapter;
3779
3780	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3781	adapter->state = __IAVF_STARTUP;
3782
3783	/* Call save state here because it relies on the adapter struct. */
3784	pci_save_state(pdev);
3785
3786	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3787			      pci_resource_len(pdev, 0));
3788	if (!hw->hw_addr) {
3789		err = -EIO;
3790		goto err_ioremap;
3791	}
3792	hw->vendor_id = pdev->vendor;
3793	hw->device_id = pdev->device;
3794	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3795	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3796	hw->subsystem_device_id = pdev->subsystem_device;
3797	hw->bus.device = PCI_SLOT(pdev->devfn);
3798	hw->bus.func = PCI_FUNC(pdev->devfn);
3799	hw->bus.bus_id = pdev->bus->number;
3800
3801	/* set up the locks for the AQ, do this only once in probe
3802	 * and destroy them only once in remove
3803	 */
3804	mutex_init(&adapter->crit_lock);
3805	mutex_init(&adapter->client_lock);
3806	mutex_init(&adapter->remove_lock);
3807	mutex_init(&hw->aq.asq_mutex);
3808	mutex_init(&hw->aq.arq_mutex);
3809
3810	spin_lock_init(&adapter->mac_vlan_list_lock);
3811	spin_lock_init(&adapter->cloud_filter_list_lock);
3812	spin_lock_init(&adapter->fdir_fltr_lock);
3813	spin_lock_init(&adapter->adv_rss_lock);
3814
3815	INIT_LIST_HEAD(&adapter->mac_filter_list);
3816	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3817	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3818	INIT_LIST_HEAD(&adapter->fdir_list_head);
3819	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
3820
3821	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3822	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3823	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3824	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3825	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3826	queue_delayed_work(iavf_wq, &adapter->init_task,
3827			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3828
3829	/* Setup the wait queue for indicating transition to down status */
3830	init_waitqueue_head(&adapter->down_waitqueue);
3831
3832	return 0;
3833
3834err_ioremap:
3835	free_netdev(netdev);
3836err_alloc_etherdev:
3837	pci_disable_pcie_error_reporting(pdev);
3838	pci_release_regions(pdev);
3839err_pci_reg:
3840err_dma:
3841	pci_disable_device(pdev);
3842	return err;
3843}
3844
3845/**
3846 * iavf_suspend - Power management suspend routine
3847 * @dev_d: device info pointer
3848 *
3849 * Called when the system (VM) is entering sleep/suspend.
3850 **/
3851static int __maybe_unused iavf_suspend(struct device *dev_d)
3852{
3853	struct net_device *netdev = dev_get_drvdata(dev_d);
3854	struct iavf_adapter *adapter = netdev_priv(netdev);
3855
3856	netif_device_detach(netdev);
3857
3858	while (!mutex_trylock(&adapter->crit_lock))
3859		usleep_range(500, 1000);
3860
3861	if (netif_running(netdev)) {
3862		rtnl_lock();
3863		iavf_down(adapter);
3864		rtnl_unlock();
3865	}
3866	iavf_free_misc_irq(adapter);
3867	iavf_reset_interrupt_capability(adapter);
3868
3869	mutex_unlock(&adapter->crit_lock);
3870
3871	return 0;
3872}
3873
3874/**
3875 * iavf_resume - Power management resume routine
3876 * @dev_d: device info pointer
3877 *
3878 * Called when the system (VM) is resumed from sleep/suspend.
3879 **/
3880static int __maybe_unused iavf_resume(struct device *dev_d)
3881{
3882	struct pci_dev *pdev = to_pci_dev(dev_d);
3883	struct net_device *netdev = pci_get_drvdata(pdev);
3884	struct iavf_adapter *adapter = netdev_priv(netdev);
3885	u32 err;
3886
3887	pci_set_master(pdev);
3888
3889	rtnl_lock();
3890	err = iavf_set_interrupt_capability(adapter);
3891	if (err) {
3892		rtnl_unlock();
3893		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3894		return err;
3895	}
3896	err = iavf_request_misc_irq(adapter);
3897	rtnl_unlock();
3898	if (err) {
3899		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3900		return err;
3901	}
3902
3903	queue_work(iavf_wq, &adapter->reset_task);
3904
3905	netif_device_attach(netdev);
3906
3907	return err;
3908}
3909
3910/**
3911 * iavf_remove - Device Removal Routine
3912 * @pdev: PCI device information struct
3913 *
3914 * iavf_remove is called by the PCI subsystem to alert the driver
3915 * that it should release a PCI device.  The could be caused by a
3916 * Hot-Plug event, or because the driver is going to be removed from
3917 * memory.
3918 **/
3919static void iavf_remove(struct pci_dev *pdev)
3920{
3921	struct net_device *netdev = pci_get_drvdata(pdev);
3922	struct iavf_adapter *adapter = netdev_priv(netdev);
3923	struct iavf_fdir_fltr *fdir, *fdirtmp;
3924	struct iavf_vlan_filter *vlf, *vlftmp;
3925	struct iavf_adv_rss *rss, *rsstmp;
3926	struct iavf_mac_filter *f, *ftmp;
3927	struct iavf_cloud_filter *cf, *cftmp;
3928	struct iavf_hw *hw = &adapter->hw;
3929	int err;
3930	/* Indicate we are in remove and not to run reset_task */
3931	mutex_lock(&adapter->remove_lock);
3932	cancel_delayed_work_sync(&adapter->init_task);
3933	cancel_work_sync(&adapter->reset_task);
3934	cancel_delayed_work_sync(&adapter->client_task);
3935	if (adapter->netdev_registered) {
3936		unregister_netdev(netdev);
3937		adapter->netdev_registered = false;
3938	}
3939	if (CLIENT_ALLOWED(adapter)) {
3940		err = iavf_lan_del_device(adapter);
3941		if (err)
3942			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3943				 err);
3944	}
3945
3946	iavf_request_reset(adapter);
3947	msleep(50);
3948	/* If the FW isn't responding, kick it once, but only once. */
3949	if (!iavf_asq_done(hw)) {
3950		iavf_request_reset(adapter);
3951		msleep(50);
3952	}
3953	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
3954		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3955
3956	/* Shut down all the garbage mashers on the detention level */
3957	adapter->state = __IAVF_REMOVE;
3958	adapter->aq_required = 0;
3959	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3960	iavf_free_all_tx_resources(adapter);
3961	iavf_free_all_rx_resources(adapter);
3962	iavf_misc_irq_disable(adapter);
3963	iavf_free_misc_irq(adapter);
3964	iavf_reset_interrupt_capability(adapter);
3965	iavf_free_q_vectors(adapter);
3966
3967	cancel_delayed_work_sync(&adapter->watchdog_task);
3968
3969	cancel_work_sync(&adapter->adminq_task);
3970
3971	iavf_free_rss(adapter);
3972
3973	if (hw->aq.asq.count)
3974		iavf_shutdown_adminq(hw);
3975
3976	/* destroy the locks only once, here */
3977	mutex_destroy(&hw->aq.arq_mutex);
3978	mutex_destroy(&hw->aq.asq_mutex);
3979	mutex_destroy(&adapter->client_lock);
3980	mutex_unlock(&adapter->crit_lock);
3981	mutex_destroy(&adapter->crit_lock);
3982	mutex_unlock(&adapter->remove_lock);
3983	mutex_destroy(&adapter->remove_lock);
3984
3985	iounmap(hw->hw_addr);
3986	pci_release_regions(pdev);
3987	iavf_free_queues(adapter);
3988	kfree(adapter->vf_res);
3989	spin_lock_bh(&adapter->mac_vlan_list_lock);
3990	/* If we got removed before an up/down sequence, we've got a filter
3991	 * hanging out there that we need to get rid of.
3992	 */
3993	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3994		list_del(&f->list);
3995		kfree(f);
3996	}
3997	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3998				 list) {
3999		list_del(&vlf->list);
4000		kfree(vlf);
4001	}
4002
4003	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4004
4005	spin_lock_bh(&adapter->cloud_filter_list_lock);
4006	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4007		list_del(&cf->list);
4008		kfree(cf);
4009	}
4010	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4011
4012	spin_lock_bh(&adapter->fdir_fltr_lock);
4013	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4014		list_del(&fdir->list);
4015		kfree(fdir);
4016	}
4017	spin_unlock_bh(&adapter->fdir_fltr_lock);
4018
4019	spin_lock_bh(&adapter->adv_rss_lock);
4020	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4021				 list) {
4022		list_del(&rss->list);
4023		kfree(rss);
4024	}
4025	spin_unlock_bh(&adapter->adv_rss_lock);
4026
4027	free_netdev(netdev);
4028
4029	pci_disable_pcie_error_reporting(pdev);
4030
4031	pci_disable_device(pdev);
4032}
4033
4034static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4035
4036static struct pci_driver iavf_driver = {
4037	.name      = iavf_driver_name,
4038	.id_table  = iavf_pci_tbl,
4039	.probe     = iavf_probe,
4040	.remove    = iavf_remove,
4041	.driver.pm = &iavf_pm_ops,
4042	.shutdown  = iavf_shutdown,
4043};
4044
4045/**
4046 * iavf_init_module - Driver Registration Routine
4047 *
4048 * iavf_init_module is the first routine called when the driver is
4049 * loaded. All it does is register with the PCI subsystem.
4050 **/
4051static int __init iavf_init_module(void)
4052{
4053	int ret;
4054
4055	pr_info("iavf: %s\n", iavf_driver_string);
4056
4057	pr_info("%s\n", iavf_copyright);
4058
4059	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4060				  iavf_driver_name);
4061	if (!iavf_wq) {
4062		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4063		return -ENOMEM;
4064	}
4065	ret = pci_register_driver(&iavf_driver);
4066	return ret;
4067}
4068
4069module_init(iavf_init_module);
4070
4071/**
4072 * iavf_exit_module - Driver Exit Cleanup Routine
4073 *
4074 * iavf_exit_module is called just before the driver is removed
4075 * from memory.
4076 **/
4077static void __exit iavf_exit_module(void)
4078{
4079	pci_unregister_driver(&iavf_driver);
4080	destroy_workqueue(iavf_wq);
4081}
4082
4083module_exit(iavf_exit_module);
4084
4085/* iavf_main.c */