Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include "iavf.h"
   5#include "iavf_prototype.h"
   6#include "iavf_client.h"
   7/* All iavf tracepoints are defined by the include below, which must
   8 * be included exactly once across the whole kernel with
   9 * CREATE_TRACE_POINTS defined
  10 */
  11#define CREATE_TRACE_POINTS
  12#include "iavf_trace.h"
  13
  14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
  15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
  16static int iavf_close(struct net_device *netdev);
  17static int iavf_init_get_resources(struct iavf_adapter *adapter);
  18static int iavf_check_reset_complete(struct iavf_hw *hw);
  19
  20char iavf_driver_name[] = "iavf";
  21static const char iavf_driver_string[] =
  22	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
  23
  24static const char iavf_copyright[] =
  25	"Copyright (c) 2013 - 2018 Intel Corporation.";
  26
  27/* iavf_pci_tbl - PCI Device ID Table
  28 *
  29 * Wildcard entries (PCI_ANY_ID) should come last
  30 * Last entry must be all 0s
  31 *
  32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  33 *   Class, Class Mask, private data (not used) }
  34 */
  35static const struct pci_device_id iavf_pci_tbl[] = {
  36	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
  37	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
  38	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
  39	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
  40	/* required last entry */
  41	{0, }
  42};
  43
  44MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
  45
  46MODULE_ALIAS("i40evf");
  47MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
  49MODULE_LICENSE("GPL v2");
  50
  51static const struct net_device_ops iavf_netdev_ops;
  52struct workqueue_struct *iavf_wq;
  53
  54/**
  55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
  56 * @hw:   pointer to the HW structure
  57 * @mem:  ptr to mem struct to fill out
  58 * @size: size of memory requested
  59 * @alignment: what to align the allocation to
  60 **/
  61enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
  62					 struct iavf_dma_mem *mem,
  63					 u64 size, u32 alignment)
  64{
  65	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  66
  67	if (!mem)
  68		return IAVF_ERR_PARAM;
  69
  70	mem->size = ALIGN(size, alignment);
  71	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
  72				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
  73	if (mem->va)
  74		return 0;
  75	else
  76		return IAVF_ERR_NO_MEMORY;
  77}
  78
  79/**
  80 * iavf_free_dma_mem_d - OS specific memory free for shared code
  81 * @hw:   pointer to the HW structure
  82 * @mem:  ptr to mem struct to free
  83 **/
  84enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
  85				     struct iavf_dma_mem *mem)
  86{
  87	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  88
  89	if (!mem || !mem->va)
  90		return IAVF_ERR_PARAM;
  91	dma_free_coherent(&adapter->pdev->dev, mem->size,
  92			  mem->va, (dma_addr_t)mem->pa);
  93	return 0;
  94}
  95
  96/**
  97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
  98 * @hw:   pointer to the HW structure
  99 * @mem:  ptr to mem struct to fill out
 100 * @size: size of memory requested
 101 **/
 102enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
 103					  struct iavf_virt_mem *mem, u32 size)
 104{
 105	if (!mem)
 106		return IAVF_ERR_PARAM;
 107
 108	mem->size = size;
 109	mem->va = kzalloc(size, GFP_KERNEL);
 110
 111	if (mem->va)
 112		return 0;
 113	else
 114		return IAVF_ERR_NO_MEMORY;
 115}
 116
 117/**
 118 * iavf_free_virt_mem_d - OS specific memory free for shared code
 119 * @hw:   pointer to the HW structure
 120 * @mem:  ptr to mem struct to free
 121 **/
 122enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
 123				      struct iavf_virt_mem *mem)
 124{
 125	if (!mem)
 126		return IAVF_ERR_PARAM;
 127
 128	/* it's ok to kfree a NULL pointer */
 129	kfree(mem->va);
 130
 131	return 0;
 132}
 133
 134/**
 135 * iavf_schedule_reset - Set the flags and schedule a reset event
 136 * @adapter: board private structure
 137 **/
 138void iavf_schedule_reset(struct iavf_adapter *adapter)
 139{
 140	if (!(adapter->flags &
 141	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
 142		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
 143		queue_work(iavf_wq, &adapter->reset_task);
 144	}
 145}
 146
 147/**
 148 * iavf_tx_timeout - Respond to a Tx Hang
 149 * @netdev: network interface device structure
 150 **/
 151static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
 152{
 153	struct iavf_adapter *adapter = netdev_priv(netdev);
 154
 155	adapter->tx_timeout_count++;
 156	iavf_schedule_reset(adapter);
 157}
 158
 159/**
 160 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
 161 * @adapter: board private structure
 162 **/
 163static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
 164{
 165	struct iavf_hw *hw = &adapter->hw;
 166
 167	if (!adapter->msix_entries)
 168		return;
 169
 170	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
 171
 172	iavf_flush(hw);
 173
 174	synchronize_irq(adapter->msix_entries[0].vector);
 175}
 176
 177/**
 178 * iavf_misc_irq_enable - Enable default interrupt generation settings
 179 * @adapter: board private structure
 180 **/
 181static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
 182{
 183	struct iavf_hw *hw = &adapter->hw;
 184
 185	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
 186				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
 187	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
 188
 189	iavf_flush(hw);
 190}
 191
 192/**
 193 * iavf_irq_disable - Mask off interrupt generation on the NIC
 194 * @adapter: board private structure
 195 **/
 196static void iavf_irq_disable(struct iavf_adapter *adapter)
 197{
 198	int i;
 199	struct iavf_hw *hw = &adapter->hw;
 200
 201	if (!adapter->msix_entries)
 202		return;
 203
 204	for (i = 1; i < adapter->num_msix_vectors; i++) {
 205		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
 206		synchronize_irq(adapter->msix_entries[i].vector);
 207	}
 208	iavf_flush(hw);
 209}
 210
 211/**
 212 * iavf_irq_enable_queues - Enable interrupt for specified queues
 213 * @adapter: board private structure
 214 * @mask: bitmap of queues to enable
 215 **/
 216void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
 217{
 218	struct iavf_hw *hw = &adapter->hw;
 219	int i;
 220
 221	for (i = 1; i < adapter->num_msix_vectors; i++) {
 222		if (mask & BIT(i - 1)) {
 223			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
 224			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 225			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
 226		}
 227	}
 228}
 229
 230/**
 231 * iavf_irq_enable - Enable default interrupt generation settings
 232 * @adapter: board private structure
 233 * @flush: boolean value whether to run rd32()
 234 **/
 235void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
 236{
 237	struct iavf_hw *hw = &adapter->hw;
 238
 239	iavf_misc_irq_enable(adapter);
 240	iavf_irq_enable_queues(adapter, ~0);
 241
 242	if (flush)
 243		iavf_flush(hw);
 244}
 245
 246/**
 247 * iavf_msix_aq - Interrupt handler for vector 0
 248 * @irq: interrupt number
 249 * @data: pointer to netdev
 250 **/
 251static irqreturn_t iavf_msix_aq(int irq, void *data)
 252{
 253	struct net_device *netdev = data;
 254	struct iavf_adapter *adapter = netdev_priv(netdev);
 255	struct iavf_hw *hw = &adapter->hw;
 256
 257	/* handle non-queue interrupts, these reads clear the registers */
 258	rd32(hw, IAVF_VFINT_ICR01);
 259	rd32(hw, IAVF_VFINT_ICR0_ENA1);
 260
 261	/* schedule work on the private workqueue */
 262	queue_work(iavf_wq, &adapter->adminq_task);
 263
 264	return IRQ_HANDLED;
 265}
 266
 267/**
 268 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
 269 * @irq: interrupt number
 270 * @data: pointer to a q_vector
 271 **/
 272static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
 273{
 274	struct iavf_q_vector *q_vector = data;
 275
 276	if (!q_vector->tx.ring && !q_vector->rx.ring)
 277		return IRQ_HANDLED;
 278
 279	napi_schedule_irqoff(&q_vector->napi);
 280
 281	return IRQ_HANDLED;
 282}
 283
 284/**
 285 * iavf_map_vector_to_rxq - associate irqs with rx queues
 286 * @adapter: board private structure
 287 * @v_idx: interrupt number
 288 * @r_idx: queue number
 289 **/
 290static void
 291iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
 292{
 293	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 294	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
 295	struct iavf_hw *hw = &adapter->hw;
 296
 297	rx_ring->q_vector = q_vector;
 298	rx_ring->next = q_vector->rx.ring;
 299	rx_ring->vsi = &adapter->vsi;
 300	q_vector->rx.ring = rx_ring;
 301	q_vector->rx.count++;
 302	q_vector->rx.next_update = jiffies + 1;
 303	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 304	q_vector->ring_mask |= BIT(r_idx);
 305	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
 306	     q_vector->rx.current_itr >> 1);
 307	q_vector->rx.current_itr = q_vector->rx.target_itr;
 308}
 309
 310/**
 311 * iavf_map_vector_to_txq - associate irqs with tx queues
 312 * @adapter: board private structure
 313 * @v_idx: interrupt number
 314 * @t_idx: queue number
 315 **/
 316static void
 317iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
 318{
 319	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 320	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
 321	struct iavf_hw *hw = &adapter->hw;
 322
 323	tx_ring->q_vector = q_vector;
 324	tx_ring->next = q_vector->tx.ring;
 325	tx_ring->vsi = &adapter->vsi;
 326	q_vector->tx.ring = tx_ring;
 327	q_vector->tx.count++;
 328	q_vector->tx.next_update = jiffies + 1;
 329	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 330	q_vector->num_ringpairs++;
 331	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
 332	     q_vector->tx.target_itr >> 1);
 333	q_vector->tx.current_itr = q_vector->tx.target_itr;
 334}
 335
 336/**
 337 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
 338 * @adapter: board private structure to initialize
 339 *
 340 * This function maps descriptor rings to the queue-specific vectors
 341 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
 342 * one vector per ring/queue, but on a constrained vector budget, we
 343 * group the rings as "efficiently" as possible.  You would add new
 344 * mapping configurations in here.
 345 **/
 346static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
 347{
 348	int rings_remaining = adapter->num_active_queues;
 349	int ridx = 0, vidx = 0;
 350	int q_vectors;
 351
 352	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 353
 354	for (; ridx < rings_remaining; ridx++) {
 355		iavf_map_vector_to_rxq(adapter, vidx, ridx);
 356		iavf_map_vector_to_txq(adapter, vidx, ridx);
 357
 358		/* In the case where we have more queues than vectors, continue
 359		 * round-robin on vectors until all queues are mapped.
 360		 */
 361		if (++vidx >= q_vectors)
 362			vidx = 0;
 363	}
 364
 365	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
 366}
 367
 368/**
 369 * iavf_irq_affinity_notify - Callback for affinity changes
 370 * @notify: context as to what irq was changed
 371 * @mask: the new affinity mask
 372 *
 373 * This is a callback function used by the irq_set_affinity_notifier function
 374 * so that we may register to receive changes to the irq affinity masks.
 375 **/
 376static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
 377				     const cpumask_t *mask)
 378{
 379	struct iavf_q_vector *q_vector =
 380		container_of(notify, struct iavf_q_vector, affinity_notify);
 381
 382	cpumask_copy(&q_vector->affinity_mask, mask);
 383}
 384
 385/**
 386 * iavf_irq_affinity_release - Callback for affinity notifier release
 387 * @ref: internal core kernel usage
 388 *
 389 * This is a callback function used by the irq_set_affinity_notifier function
 390 * to inform the current notification subscriber that they will no longer
 391 * receive notifications.
 392 **/
 393static void iavf_irq_affinity_release(struct kref *ref) {}
 394
 395/**
 396 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
 397 * @adapter: board private structure
 398 * @basename: device basename
 399 *
 400 * Allocates MSI-X vectors for tx and rx handling, and requests
 401 * interrupts from the kernel.
 402 **/
 403static int
 404iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
 405{
 406	unsigned int vector, q_vectors;
 407	unsigned int rx_int_idx = 0, tx_int_idx = 0;
 408	int irq_num, err;
 409	int cpu;
 410
 411	iavf_irq_disable(adapter);
 412	/* Decrement for Other and TCP Timer vectors */
 413	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 414
 415	for (vector = 0; vector < q_vectors; vector++) {
 416		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
 417
 418		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 419
 420		if (q_vector->tx.ring && q_vector->rx.ring) {
 421			snprintf(q_vector->name, sizeof(q_vector->name),
 422				 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
 423			tx_int_idx++;
 424		} else if (q_vector->rx.ring) {
 425			snprintf(q_vector->name, sizeof(q_vector->name),
 426				 "iavf-%s-rx-%d", basename, rx_int_idx++);
 427		} else if (q_vector->tx.ring) {
 428			snprintf(q_vector->name, sizeof(q_vector->name),
 429				 "iavf-%s-tx-%d", basename, tx_int_idx++);
 430		} else {
 431			/* skip this unused q_vector */
 432			continue;
 433		}
 434		err = request_irq(irq_num,
 435				  iavf_msix_clean_rings,
 436				  0,
 437				  q_vector->name,
 438				  q_vector);
 439		if (err) {
 440			dev_info(&adapter->pdev->dev,
 441				 "Request_irq failed, error: %d\n", err);
 442			goto free_queue_irqs;
 443		}
 444		/* register for affinity change notifications */
 445		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
 446		q_vector->affinity_notify.release =
 447						   iavf_irq_affinity_release;
 448		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 449		/* Spread the IRQ affinity hints across online CPUs. Note that
 450		 * get_cpu_mask returns a mask with a permanent lifetime so
 451		 * it's safe to use as a hint for irq_set_affinity_hint.
 452		 */
 453		cpu = cpumask_local_spread(q_vector->v_idx, -1);
 454		irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
 455	}
 456
 457	return 0;
 458
 459free_queue_irqs:
 460	while (vector) {
 461		vector--;
 462		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 463		irq_set_affinity_notifier(irq_num, NULL);
 464		irq_set_affinity_hint(irq_num, NULL);
 465		free_irq(irq_num, &adapter->q_vectors[vector]);
 466	}
 467	return err;
 468}
 469
 470/**
 471 * iavf_request_misc_irq - Initialize MSI-X interrupts
 472 * @adapter: board private structure
 473 *
 474 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
 475 * vector is only for the admin queue, and stays active even when the netdev
 476 * is closed.
 477 **/
 478static int iavf_request_misc_irq(struct iavf_adapter *adapter)
 479{
 480	struct net_device *netdev = adapter->netdev;
 481	int err;
 482
 483	snprintf(adapter->misc_vector_name,
 484		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
 485		 dev_name(&adapter->pdev->dev));
 486	err = request_irq(adapter->msix_entries[0].vector,
 487			  &iavf_msix_aq, 0,
 488			  adapter->misc_vector_name, netdev);
 489	if (err) {
 490		dev_err(&adapter->pdev->dev,
 491			"request_irq for %s failed: %d\n",
 492			adapter->misc_vector_name, err);
 493		free_irq(adapter->msix_entries[0].vector, netdev);
 494	}
 495	return err;
 496}
 497
 498/**
 499 * iavf_free_traffic_irqs - Free MSI-X interrupts
 500 * @adapter: board private structure
 501 *
 502 * Frees all MSI-X vectors other than 0.
 503 **/
 504static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
 505{
 506	int vector, irq_num, q_vectors;
 507
 508	if (!adapter->msix_entries)
 509		return;
 510
 511	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 512
 513	for (vector = 0; vector < q_vectors; vector++) {
 514		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 515		irq_set_affinity_notifier(irq_num, NULL);
 516		irq_set_affinity_hint(irq_num, NULL);
 517		free_irq(irq_num, &adapter->q_vectors[vector]);
 518	}
 519}
 520
 521/**
 522 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
 523 * @adapter: board private structure
 524 *
 525 * Frees MSI-X vector 0.
 526 **/
 527static void iavf_free_misc_irq(struct iavf_adapter *adapter)
 528{
 529	struct net_device *netdev = adapter->netdev;
 530
 531	if (!adapter->msix_entries)
 532		return;
 533
 534	free_irq(adapter->msix_entries[0].vector, netdev);
 535}
 536
 537/**
 538 * iavf_configure_tx - Configure Transmit Unit after Reset
 539 * @adapter: board private structure
 540 *
 541 * Configure the Tx unit of the MAC after a reset.
 542 **/
 543static void iavf_configure_tx(struct iavf_adapter *adapter)
 544{
 545	struct iavf_hw *hw = &adapter->hw;
 546	int i;
 547
 548	for (i = 0; i < adapter->num_active_queues; i++)
 549		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
 550}
 551
 552/**
 553 * iavf_configure_rx - Configure Receive Unit after Reset
 554 * @adapter: board private structure
 555 *
 556 * Configure the Rx unit of the MAC after a reset.
 557 **/
 558static void iavf_configure_rx(struct iavf_adapter *adapter)
 559{
 560	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
 561	struct iavf_hw *hw = &adapter->hw;
 562	int i;
 563
 564	/* Legacy Rx will always default to a 2048 buffer size. */
 565#if (PAGE_SIZE < 8192)
 566	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
 567		struct net_device *netdev = adapter->netdev;
 568
 569		/* For jumbo frames on systems with 4K pages we have to use
 570		 * an order 1 page, so we might as well increase the size
 571		 * of our Rx buffer to make better use of the available space
 572		 */
 573		rx_buf_len = IAVF_RXBUFFER_3072;
 574
 575		/* We use a 1536 buffer size for configurations with
 576		 * standard Ethernet mtu.  On x86 this gives us enough room
 577		 * for shared info and 192 bytes of padding.
 578		 */
 579		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
 580		    (netdev->mtu <= ETH_DATA_LEN))
 581			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
 582	}
 583#endif
 584
 585	for (i = 0; i < adapter->num_active_queues; i++) {
 586		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
 587		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
 588
 589		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
 590			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
 591		else
 592			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
 593	}
 594}
 595
 596/**
 597 * iavf_find_vlan - Search filter list for specific vlan filter
 598 * @adapter: board private structure
 599 * @vlan: vlan tag
 600 *
 601 * Returns ptr to the filter object or NULL. Must be called while holding the
 602 * mac_vlan_list_lock.
 603 **/
 604static struct
 605iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
 606{
 607	struct iavf_vlan_filter *f;
 608
 609	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 610		if (vlan == f->vlan)
 611			return f;
 612	}
 613	return NULL;
 614}
 615
 616/**
 617 * iavf_add_vlan - Add a vlan filter to the list
 618 * @adapter: board private structure
 619 * @vlan: VLAN tag
 620 *
 621 * Returns ptr to the filter object or NULL when no memory available.
 622 **/
 623static struct
 624iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
 625{
 626	struct iavf_vlan_filter *f = NULL;
 627
 628	spin_lock_bh(&adapter->mac_vlan_list_lock);
 629
 630	f = iavf_find_vlan(adapter, vlan);
 631	if (!f) {
 632		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 633		if (!f)
 634			goto clearout;
 635
 636		f->vlan = vlan;
 637
 638		list_add_tail(&f->list, &adapter->vlan_filter_list);
 639		f->add = true;
 640		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
 641	}
 642
 643clearout:
 644	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 645	return f;
 646}
 647
 648/**
 649 * iavf_del_vlan - Remove a vlan filter from the list
 650 * @adapter: board private structure
 651 * @vlan: VLAN tag
 652 **/
 653static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
 654{
 655	struct iavf_vlan_filter *f;
 656
 657	spin_lock_bh(&adapter->mac_vlan_list_lock);
 658
 659	f = iavf_find_vlan(adapter, vlan);
 660	if (f) {
 661		f->remove = true;
 662		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
 663	}
 664
 665	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 666}
 667
 668/**
 669 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
 670 * @netdev: network device struct
 671 * @proto: unused protocol data
 672 * @vid: VLAN tag
 673 **/
 674static int iavf_vlan_rx_add_vid(struct net_device *netdev,
 675				__always_unused __be16 proto, u16 vid)
 676{
 677	struct iavf_adapter *adapter = netdev_priv(netdev);
 678
 679	if (!VLAN_ALLOWED(adapter))
 680		return -EIO;
 681	if (iavf_add_vlan(adapter, vid) == NULL)
 682		return -ENOMEM;
 683	return 0;
 684}
 685
 686/**
 687 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
 688 * @netdev: network device struct
 689 * @proto: unused protocol data
 690 * @vid: VLAN tag
 691 **/
 692static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
 693				 __always_unused __be16 proto, u16 vid)
 694{
 695	struct iavf_adapter *adapter = netdev_priv(netdev);
 696
 697	if (VLAN_ALLOWED(adapter)) {
 698		iavf_del_vlan(adapter, vid);
 699		return 0;
 700	}
 701	return -EIO;
 702}
 703
 704/**
 705 * iavf_find_filter - Search filter list for specific mac filter
 706 * @adapter: board private structure
 707 * @macaddr: the MAC address
 708 *
 709 * Returns ptr to the filter object or NULL. Must be called while holding the
 710 * mac_vlan_list_lock.
 711 **/
 712static struct
 713iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
 714				  const u8 *macaddr)
 715{
 716	struct iavf_mac_filter *f;
 717
 718	if (!macaddr)
 719		return NULL;
 720
 721	list_for_each_entry(f, &adapter->mac_filter_list, list) {
 722		if (ether_addr_equal(macaddr, f->macaddr))
 723			return f;
 724	}
 725	return NULL;
 726}
 727
 728/**
 729 * iavf_add_filter - Add a mac filter to the filter list
 730 * @adapter: board private structure
 731 * @macaddr: the MAC address
 732 *
 733 * Returns ptr to the filter object or NULL when no memory available.
 734 **/
 735struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
 736					const u8 *macaddr)
 737{
 738	struct iavf_mac_filter *f;
 739
 740	if (!macaddr)
 741		return NULL;
 742
 743	f = iavf_find_filter(adapter, macaddr);
 744	if (!f) {
 745		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 746		if (!f)
 747			return f;
 748
 749		ether_addr_copy(f->macaddr, macaddr);
 750
 751		list_add_tail(&f->list, &adapter->mac_filter_list);
 752		f->add = true;
 753		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 754	} else {
 755		f->remove = false;
 756	}
 757
 758	return f;
 759}
 760
 761/**
 762 * iavf_set_mac - NDO callback to set port mac address
 763 * @netdev: network interface device structure
 764 * @p: pointer to an address structure
 765 *
 766 * Returns 0 on success, negative on failure
 767 **/
 768static int iavf_set_mac(struct net_device *netdev, void *p)
 769{
 770	struct iavf_adapter *adapter = netdev_priv(netdev);
 771	struct iavf_hw *hw = &adapter->hw;
 772	struct iavf_mac_filter *f;
 773	struct sockaddr *addr = p;
 774
 775	if (!is_valid_ether_addr(addr->sa_data))
 776		return -EADDRNOTAVAIL;
 777
 778	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
 779		return 0;
 780
 781	spin_lock_bh(&adapter->mac_vlan_list_lock);
 782
 783	f = iavf_find_filter(adapter, hw->mac.addr);
 784	if (f) {
 785		f->remove = true;
 786		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 787	}
 788
 789	f = iavf_add_filter(adapter, addr->sa_data);
 790
 791	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 792
 793	if (f) {
 794		ether_addr_copy(hw->mac.addr, addr->sa_data);
 795	}
 796
 797	return (f == NULL) ? -ENOMEM : 0;
 798}
 799
 800/**
 801 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
 802 * @netdev: the netdevice
 803 * @addr: address to add
 804 *
 805 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
 806 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 807 */
 808static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
 809{
 810	struct iavf_adapter *adapter = netdev_priv(netdev);
 811
 812	if (iavf_add_filter(adapter, addr))
 813		return 0;
 814	else
 815		return -ENOMEM;
 816}
 817
 818/**
 819 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
 820 * @netdev: the netdevice
 821 * @addr: address to add
 822 *
 823 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
 824 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 825 */
 826static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
 827{
 828	struct iavf_adapter *adapter = netdev_priv(netdev);
 829	struct iavf_mac_filter *f;
 830
 831	/* Under some circumstances, we might receive a request to delete
 832	 * our own device address from our uc list. Because we store the
 833	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
 834	 * such requests and not delete our device address from this list.
 835	 */
 836	if (ether_addr_equal(addr, netdev->dev_addr))
 837		return 0;
 838
 839	f = iavf_find_filter(adapter, addr);
 840	if (f) {
 841		f->remove = true;
 842		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 843	}
 844	return 0;
 845}
 846
 847/**
 848 * iavf_set_rx_mode - NDO callback to set the netdev filters
 849 * @netdev: network interface device structure
 850 **/
 851static void iavf_set_rx_mode(struct net_device *netdev)
 852{
 853	struct iavf_adapter *adapter = netdev_priv(netdev);
 854
 855	spin_lock_bh(&adapter->mac_vlan_list_lock);
 856	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 857	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 858	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 859
 860	if (netdev->flags & IFF_PROMISC &&
 861	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
 862		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
 863	else if (!(netdev->flags & IFF_PROMISC) &&
 864		 adapter->flags & IAVF_FLAG_PROMISC_ON)
 865		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
 866
 867	if (netdev->flags & IFF_ALLMULTI &&
 868	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
 869		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
 870	else if (!(netdev->flags & IFF_ALLMULTI) &&
 871		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
 872		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
 873}
 874
 875/**
 876 * iavf_napi_enable_all - enable NAPI on all queue vectors
 877 * @adapter: board private structure
 878 **/
 879static void iavf_napi_enable_all(struct iavf_adapter *adapter)
 880{
 881	int q_idx;
 882	struct iavf_q_vector *q_vector;
 883	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 884
 885	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 886		struct napi_struct *napi;
 887
 888		q_vector = &adapter->q_vectors[q_idx];
 889		napi = &q_vector->napi;
 890		napi_enable(napi);
 891	}
 892}
 893
 894/**
 895 * iavf_napi_disable_all - disable NAPI on all queue vectors
 896 * @adapter: board private structure
 897 **/
 898static void iavf_napi_disable_all(struct iavf_adapter *adapter)
 899{
 900	int q_idx;
 901	struct iavf_q_vector *q_vector;
 902	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 903
 904	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 905		q_vector = &adapter->q_vectors[q_idx];
 906		napi_disable(&q_vector->napi);
 907	}
 908}
 909
 910/**
 911 * iavf_configure - set up transmit and receive data structures
 912 * @adapter: board private structure
 913 **/
 914static void iavf_configure(struct iavf_adapter *adapter)
 915{
 916	struct net_device *netdev = adapter->netdev;
 917	int i;
 918
 919	iavf_set_rx_mode(netdev);
 920
 921	iavf_configure_tx(adapter);
 922	iavf_configure_rx(adapter);
 923	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
 924
 925	for (i = 0; i < adapter->num_active_queues; i++) {
 926		struct iavf_ring *ring = &adapter->rx_rings[i];
 927
 928		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
 929	}
 930}
 931
 932/**
 933 * iavf_up_complete - Finish the last steps of bringing up a connection
 934 * @adapter: board private structure
 935 *
 936 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 937 **/
 938static void iavf_up_complete(struct iavf_adapter *adapter)
 939{
 940	adapter->state = __IAVF_RUNNING;
 941	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
 942
 943	iavf_napi_enable_all(adapter);
 944
 945	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
 946	if (CLIENT_ENABLED(adapter))
 947		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
 948	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
 949}
 950
 951/**
 952 * iavf_down - Shutdown the connection processing
 953 * @adapter: board private structure
 954 *
 955 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 956 **/
 957void iavf_down(struct iavf_adapter *adapter)
 958{
 959	struct net_device *netdev = adapter->netdev;
 960	struct iavf_vlan_filter *vlf;
 961	struct iavf_mac_filter *f;
 962	struct iavf_cloud_filter *cf;
 963
 964	if (adapter->state <= __IAVF_DOWN_PENDING)
 965		return;
 966
 967	netif_carrier_off(netdev);
 968	netif_tx_disable(netdev);
 969	adapter->link_up = false;
 970	iavf_napi_disable_all(adapter);
 971	iavf_irq_disable(adapter);
 972
 973	spin_lock_bh(&adapter->mac_vlan_list_lock);
 974
 975	/* clear the sync flag on all filters */
 976	__dev_uc_unsync(adapter->netdev, NULL);
 977	__dev_mc_unsync(adapter->netdev, NULL);
 978
 979	/* remove all MAC filters */
 980	list_for_each_entry(f, &adapter->mac_filter_list, list) {
 981		f->remove = true;
 982	}
 983
 984	/* remove all VLAN filters */
 985	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
 986		vlf->remove = true;
 987	}
 988
 989	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 990
 991	/* remove all cloud filters */
 992	spin_lock_bh(&adapter->cloud_filter_list_lock);
 993	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
 994		cf->del = true;
 995	}
 996	spin_unlock_bh(&adapter->cloud_filter_list_lock);
 997
 998	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
 999	    adapter->state != __IAVF_RESETTING) {
1000		/* cancel any current operation */
1001		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1002		/* Schedule operations to close down the HW. Don't wait
1003		 * here for this to complete. The watchdog is still running
1004		 * and it will take care of this.
1005		 */
1006		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1007		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1008		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1009		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1010	}
1011
1012	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1013}
1014
1015/**
1016 * iavf_acquire_msix_vectors - Setup the MSIX capability
1017 * @adapter: board private structure
1018 * @vectors: number of vectors to request
1019 *
1020 * Work with the OS to set up the MSIX vectors needed.
1021 *
1022 * Returns 0 on success, negative on failure
1023 **/
1024static int
1025iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1026{
1027	int err, vector_threshold;
1028
1029	/* We'll want at least 3 (vector_threshold):
1030	 * 0) Other (Admin Queue and link, mostly)
1031	 * 1) TxQ[0] Cleanup
1032	 * 2) RxQ[0] Cleanup
1033	 */
1034	vector_threshold = MIN_MSIX_COUNT;
1035
1036	/* The more we get, the more we will assign to Tx/Rx Cleanup
1037	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1038	 * Right now, we simply care about how many we'll get; we'll
1039	 * set them up later while requesting irq's.
1040	 */
1041	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1042				    vector_threshold, vectors);
1043	if (err < 0) {
1044		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1045		kfree(adapter->msix_entries);
1046		adapter->msix_entries = NULL;
1047		return err;
1048	}
1049
1050	/* Adjust for only the vectors we'll use, which is minimum
1051	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1052	 * vectors we were allocated.
1053	 */
1054	adapter->num_msix_vectors = err;
1055	return 0;
1056}
1057
1058/**
1059 * iavf_free_queues - Free memory for all rings
1060 * @adapter: board private structure to initialize
1061 *
1062 * Free all of the memory associated with queue pairs.
1063 **/
1064static void iavf_free_queues(struct iavf_adapter *adapter)
1065{
1066	if (!adapter->vsi_res)
1067		return;
1068	adapter->num_active_queues = 0;
1069	kfree(adapter->tx_rings);
1070	adapter->tx_rings = NULL;
1071	kfree(adapter->rx_rings);
1072	adapter->rx_rings = NULL;
1073}
1074
1075/**
1076 * iavf_alloc_queues - Allocate memory for all rings
1077 * @adapter: board private structure to initialize
1078 *
1079 * We allocate one ring per queue at run-time since we don't know the
1080 * number of queues at compile-time.  The polling_netdev array is
1081 * intended for Multiqueue, but should work fine with a single queue.
1082 **/
1083static int iavf_alloc_queues(struct iavf_adapter *adapter)
1084{
1085	int i, num_active_queues;
1086
1087	/* If we're in reset reallocating queues we don't actually know yet for
1088	 * certain the PF gave us the number of queues we asked for but we'll
1089	 * assume it did.  Once basic reset is finished we'll confirm once we
1090	 * start negotiating config with PF.
1091	 */
1092	if (adapter->num_req_queues)
1093		num_active_queues = adapter->num_req_queues;
1094	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1095		 adapter->num_tc)
1096		num_active_queues = adapter->ch_config.total_qps;
1097	else
1098		num_active_queues = min_t(int,
1099					  adapter->vsi_res->num_queue_pairs,
1100					  (int)(num_online_cpus()));
1101
1102
1103	adapter->tx_rings = kcalloc(num_active_queues,
1104				    sizeof(struct iavf_ring), GFP_KERNEL);
1105	if (!adapter->tx_rings)
1106		goto err_out;
1107	adapter->rx_rings = kcalloc(num_active_queues,
1108				    sizeof(struct iavf_ring), GFP_KERNEL);
1109	if (!adapter->rx_rings)
1110		goto err_out;
1111
1112	for (i = 0; i < num_active_queues; i++) {
1113		struct iavf_ring *tx_ring;
1114		struct iavf_ring *rx_ring;
1115
1116		tx_ring = &adapter->tx_rings[i];
1117
1118		tx_ring->queue_index = i;
1119		tx_ring->netdev = adapter->netdev;
1120		tx_ring->dev = &adapter->pdev->dev;
1121		tx_ring->count = adapter->tx_desc_count;
1122		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1123		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1124			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1125
1126		rx_ring = &adapter->rx_rings[i];
1127		rx_ring->queue_index = i;
1128		rx_ring->netdev = adapter->netdev;
1129		rx_ring->dev = &adapter->pdev->dev;
1130		rx_ring->count = adapter->rx_desc_count;
1131		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1132	}
1133
1134	adapter->num_active_queues = num_active_queues;
1135
1136	return 0;
1137
1138err_out:
1139	iavf_free_queues(adapter);
1140	return -ENOMEM;
1141}
1142
1143/**
1144 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1145 * @adapter: board private structure to initialize
1146 *
1147 * Attempt to configure the interrupts using the best available
1148 * capabilities of the hardware and the kernel.
1149 **/
1150static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1151{
1152	int vector, v_budget;
1153	int pairs = 0;
1154	int err = 0;
1155
1156	if (!adapter->vsi_res) {
1157		err = -EIO;
1158		goto out;
1159	}
1160	pairs = adapter->num_active_queues;
1161
1162	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1163	 * us much good if we have more vectors than CPUs. However, we already
1164	 * limit the total number of queues by the number of CPUs so we do not
1165	 * need any further limiting here.
1166	 */
1167	v_budget = min_t(int, pairs + NONQ_VECS,
1168			 (int)adapter->vf_res->max_vectors);
1169
1170	adapter->msix_entries = kcalloc(v_budget,
1171					sizeof(struct msix_entry), GFP_KERNEL);
1172	if (!adapter->msix_entries) {
1173		err = -ENOMEM;
1174		goto out;
1175	}
1176
1177	for (vector = 0; vector < v_budget; vector++)
1178		adapter->msix_entries[vector].entry = vector;
1179
1180	err = iavf_acquire_msix_vectors(adapter, v_budget);
1181
1182out:
1183	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1184	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1185	return err;
1186}
1187
1188/**
1189 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1190 * @adapter: board private structure
1191 *
1192 * Return 0 on success, negative on failure
1193 **/
1194static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1195{
1196	struct iavf_aqc_get_set_rss_key_data *rss_key =
1197		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1198	struct iavf_hw *hw = &adapter->hw;
1199	int ret = 0;
1200
1201	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1202		/* bail because we already have a command pending */
1203		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1204			adapter->current_op);
1205		return -EBUSY;
1206	}
1207
1208	ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1209	if (ret) {
1210		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1211			iavf_stat_str(hw, ret),
1212			iavf_aq_str(hw, hw->aq.asq_last_status));
1213		return ret;
1214
1215	}
1216
1217	ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1218				  adapter->rss_lut, adapter->rss_lut_size);
1219	if (ret) {
1220		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1221			iavf_stat_str(hw, ret),
1222			iavf_aq_str(hw, hw->aq.asq_last_status));
1223	}
1224
1225	return ret;
1226
1227}
1228
1229/**
1230 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1231 * @adapter: board private structure
1232 *
1233 * Returns 0 on success, negative on failure
1234 **/
1235static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1236{
1237	struct iavf_hw *hw = &adapter->hw;
1238	u32 *dw;
1239	u16 i;
1240
1241	dw = (u32 *)adapter->rss_key;
1242	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1243		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1244
1245	dw = (u32 *)adapter->rss_lut;
1246	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1247		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1248
1249	iavf_flush(hw);
1250
1251	return 0;
1252}
1253
1254/**
1255 * iavf_config_rss - Configure RSS keys and lut
1256 * @adapter: board private structure
1257 *
1258 * Returns 0 on success, negative on failure
1259 **/
1260int iavf_config_rss(struct iavf_adapter *adapter)
1261{
1262
1263	if (RSS_PF(adapter)) {
1264		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1265					IAVF_FLAG_AQ_SET_RSS_KEY;
1266		return 0;
1267	} else if (RSS_AQ(adapter)) {
1268		return iavf_config_rss_aq(adapter);
1269	} else {
1270		return iavf_config_rss_reg(adapter);
1271	}
1272}
1273
1274/**
1275 * iavf_fill_rss_lut - Fill the lut with default values
1276 * @adapter: board private structure
1277 **/
1278static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1279{
1280	u16 i;
1281
1282	for (i = 0; i < adapter->rss_lut_size; i++)
1283		adapter->rss_lut[i] = i % adapter->num_active_queues;
1284}
1285
1286/**
1287 * iavf_init_rss - Prepare for RSS
1288 * @adapter: board private structure
1289 *
1290 * Return 0 on success, negative on failure
1291 **/
1292static int iavf_init_rss(struct iavf_adapter *adapter)
1293{
1294	struct iavf_hw *hw = &adapter->hw;
1295	int ret;
1296
1297	if (!RSS_PF(adapter)) {
1298		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1299		if (adapter->vf_res->vf_cap_flags &
1300		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1301			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1302		else
1303			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1304
1305		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1306		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1307	}
1308
1309	iavf_fill_rss_lut(adapter);
1310	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1311	ret = iavf_config_rss(adapter);
1312
1313	return ret;
1314}
1315
1316/**
1317 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1318 * @adapter: board private structure to initialize
1319 *
1320 * We allocate one q_vector per queue interrupt.  If allocation fails we
1321 * return -ENOMEM.
1322 **/
1323static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1324{
1325	int q_idx = 0, num_q_vectors;
1326	struct iavf_q_vector *q_vector;
1327
1328	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1329	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1330				     GFP_KERNEL);
1331	if (!adapter->q_vectors)
1332		return -ENOMEM;
1333
1334	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1335		q_vector = &adapter->q_vectors[q_idx];
1336		q_vector->adapter = adapter;
1337		q_vector->vsi = &adapter->vsi;
1338		q_vector->v_idx = q_idx;
1339		q_vector->reg_idx = q_idx;
1340		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1341		netif_napi_add(adapter->netdev, &q_vector->napi,
1342			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1343	}
1344
1345	return 0;
1346}
1347
1348/**
1349 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1350 * @adapter: board private structure to initialize
1351 *
1352 * This function frees the memory allocated to the q_vectors.  In addition if
1353 * NAPI is enabled it will delete any references to the NAPI struct prior
1354 * to freeing the q_vector.
1355 **/
1356static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1357{
1358	int q_idx, num_q_vectors;
1359	int napi_vectors;
1360
1361	if (!adapter->q_vectors)
1362		return;
1363
1364	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1365	napi_vectors = adapter->num_active_queues;
1366
1367	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1368		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1369
1370		if (q_idx < napi_vectors)
1371			netif_napi_del(&q_vector->napi);
1372	}
1373	kfree(adapter->q_vectors);
1374	adapter->q_vectors = NULL;
1375}
1376
1377/**
1378 * iavf_reset_interrupt_capability - Reset MSIX setup
1379 * @adapter: board private structure
1380 *
1381 **/
1382void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1383{
1384	if (!adapter->msix_entries)
1385		return;
1386
1387	pci_disable_msix(adapter->pdev);
1388	kfree(adapter->msix_entries);
1389	adapter->msix_entries = NULL;
1390}
1391
1392/**
1393 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1394 * @adapter: board private structure to initialize
1395 *
1396 **/
1397int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1398{
1399	int err;
1400
1401	err = iavf_alloc_queues(adapter);
1402	if (err) {
1403		dev_err(&adapter->pdev->dev,
1404			"Unable to allocate memory for queues\n");
1405		goto err_alloc_queues;
1406	}
1407
1408	rtnl_lock();
1409	err = iavf_set_interrupt_capability(adapter);
1410	rtnl_unlock();
1411	if (err) {
1412		dev_err(&adapter->pdev->dev,
1413			"Unable to setup interrupt capabilities\n");
1414		goto err_set_interrupt;
1415	}
1416
1417	err = iavf_alloc_q_vectors(adapter);
1418	if (err) {
1419		dev_err(&adapter->pdev->dev,
1420			"Unable to allocate memory for queue vectors\n");
1421		goto err_alloc_q_vectors;
1422	}
1423
1424	/* If we've made it so far while ADq flag being ON, then we haven't
1425	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1426	 * resources have been allocated in the reset path.
1427	 * Now we can truly claim that ADq is enabled.
1428	 */
1429	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1430	    adapter->num_tc)
1431		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1432			 adapter->num_tc);
1433
1434	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1435		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1436		 adapter->num_active_queues);
1437
1438	return 0;
1439err_alloc_q_vectors:
1440	iavf_reset_interrupt_capability(adapter);
1441err_set_interrupt:
1442	iavf_free_queues(adapter);
1443err_alloc_queues:
1444	return err;
1445}
1446
1447/**
1448 * iavf_free_rss - Free memory used by RSS structs
1449 * @adapter: board private structure
1450 **/
1451static void iavf_free_rss(struct iavf_adapter *adapter)
1452{
1453	kfree(adapter->rss_key);
1454	adapter->rss_key = NULL;
1455
1456	kfree(adapter->rss_lut);
1457	adapter->rss_lut = NULL;
1458}
1459
1460/**
1461 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1462 * @adapter: board private structure
1463 *
1464 * Returns 0 on success, negative on failure
1465 **/
1466static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1467{
1468	struct net_device *netdev = adapter->netdev;
1469	int err;
1470
1471	if (netif_running(netdev))
1472		iavf_free_traffic_irqs(adapter);
1473	iavf_free_misc_irq(adapter);
1474	iavf_reset_interrupt_capability(adapter);
1475	iavf_free_q_vectors(adapter);
1476	iavf_free_queues(adapter);
1477
1478	err =  iavf_init_interrupt_scheme(adapter);
1479	if (err)
1480		goto err;
1481
1482	netif_tx_stop_all_queues(netdev);
1483
1484	err = iavf_request_misc_irq(adapter);
1485	if (err)
1486		goto err;
1487
1488	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1489
1490	iavf_map_rings_to_vectors(adapter);
1491
1492	if (RSS_AQ(adapter))
1493		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1494	else
1495		err = iavf_init_rss(adapter);
1496err:
1497	return err;
1498}
1499
1500/**
1501 * iavf_process_aq_command - process aq_required flags
1502 * and sends aq command
1503 * @adapter: pointer to iavf adapter structure
1504 *
1505 * Returns 0 on success
1506 * Returns error code if no command was sent
1507 * or error code if the command failed.
1508 **/
1509static int iavf_process_aq_command(struct iavf_adapter *adapter)
1510{
1511	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1512		return iavf_send_vf_config_msg(adapter);
1513	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1514		iavf_disable_queues(adapter);
1515		return 0;
1516	}
1517
1518	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1519		iavf_map_queues(adapter);
1520		return 0;
1521	}
1522
1523	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1524		iavf_add_ether_addrs(adapter);
1525		return 0;
1526	}
1527
1528	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1529		iavf_add_vlans(adapter);
1530		return 0;
1531	}
1532
1533	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1534		iavf_del_ether_addrs(adapter);
1535		return 0;
1536	}
1537
1538	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1539		iavf_del_vlans(adapter);
1540		return 0;
1541	}
1542
1543	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1544		iavf_enable_vlan_stripping(adapter);
1545		return 0;
1546	}
1547
1548	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1549		iavf_disable_vlan_stripping(adapter);
1550		return 0;
1551	}
1552
1553	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1554		iavf_configure_queues(adapter);
1555		return 0;
1556	}
1557
1558	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1559		iavf_enable_queues(adapter);
1560		return 0;
1561	}
1562
1563	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1564		/* This message goes straight to the firmware, not the
1565		 * PF, so we don't have to set current_op as we will
1566		 * not get a response through the ARQ.
1567		 */
1568		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1569		return 0;
1570	}
1571	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1572		iavf_get_hena(adapter);
1573		return 0;
1574	}
1575	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1576		iavf_set_hena(adapter);
1577		return 0;
1578	}
1579	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1580		iavf_set_rss_key(adapter);
1581		return 0;
1582	}
1583	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1584		iavf_set_rss_lut(adapter);
1585		return 0;
1586	}
1587
1588	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1589		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1590				       FLAG_VF_MULTICAST_PROMISC);
1591		return 0;
1592	}
1593
1594	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1595		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1596		return 0;
1597	}
1598
1599	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1600	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1601		iavf_set_promiscuous(adapter, 0);
1602		return 0;
1603	}
1604
1605	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1606		iavf_enable_channels(adapter);
1607		return 0;
1608	}
1609
1610	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1611		iavf_disable_channels(adapter);
1612		return 0;
1613	}
1614	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1615		iavf_add_cloud_filter(adapter);
1616		return 0;
1617	}
1618
1619	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1620		iavf_del_cloud_filter(adapter);
1621		return 0;
1622	}
1623	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1624		iavf_del_cloud_filter(adapter);
1625		return 0;
1626	}
1627	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1628		iavf_add_cloud_filter(adapter);
1629		return 0;
1630	}
1631	return -EAGAIN;
1632}
1633
1634/**
1635 * iavf_startup - first step of driver startup
1636 * @adapter: board private structure
1637 *
1638 * Function process __IAVF_STARTUP driver state.
1639 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1640 * when fails it returns -EAGAIN
1641 **/
1642static int iavf_startup(struct iavf_adapter *adapter)
1643{
1644	struct pci_dev *pdev = adapter->pdev;
1645	struct iavf_hw *hw = &adapter->hw;
1646	int err;
1647
1648	WARN_ON(adapter->state != __IAVF_STARTUP);
1649
1650	/* driver loaded, probe complete */
1651	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1652	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1653	err = iavf_set_mac_type(hw);
1654	if (err) {
1655		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1656		goto err;
1657	}
1658
1659	err = iavf_check_reset_complete(hw);
1660	if (err) {
1661		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1662			 err);
1663		goto err;
1664	}
1665	hw->aq.num_arq_entries = IAVF_AQ_LEN;
1666	hw->aq.num_asq_entries = IAVF_AQ_LEN;
1667	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1668	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1669
1670	err = iavf_init_adminq(hw);
1671	if (err) {
1672		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1673		goto err;
1674	}
1675	err = iavf_send_api_ver(adapter);
1676	if (err) {
1677		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1678		iavf_shutdown_adminq(hw);
1679		goto err;
1680	}
1681	adapter->state = __IAVF_INIT_VERSION_CHECK;
1682err:
1683	return err;
1684}
1685
1686/**
1687 * iavf_init_version_check - second step of driver startup
1688 * @adapter: board private structure
1689 *
1690 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1691 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1692 * when fails it returns -EAGAIN
1693 **/
1694static int iavf_init_version_check(struct iavf_adapter *adapter)
1695{
1696	struct pci_dev *pdev = adapter->pdev;
1697	struct iavf_hw *hw = &adapter->hw;
1698	int err = -EAGAIN;
1699
1700	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1701
1702	if (!iavf_asq_done(hw)) {
1703		dev_err(&pdev->dev, "Admin queue command never completed\n");
1704		iavf_shutdown_adminq(hw);
1705		adapter->state = __IAVF_STARTUP;
1706		goto err;
1707	}
1708
1709	/* aq msg sent, awaiting reply */
1710	err = iavf_verify_api_ver(adapter);
1711	if (err) {
1712		if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1713			err = iavf_send_api_ver(adapter);
1714		else
1715			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1716				adapter->pf_version.major,
1717				adapter->pf_version.minor,
1718				VIRTCHNL_VERSION_MAJOR,
1719				VIRTCHNL_VERSION_MINOR);
1720		goto err;
1721	}
1722	err = iavf_send_vf_config_msg(adapter);
1723	if (err) {
1724		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1725			err);
1726		goto err;
1727	}
1728	adapter->state = __IAVF_INIT_GET_RESOURCES;
1729
1730err:
1731	return err;
1732}
1733
1734/**
1735 * iavf_init_get_resources - third step of driver startup
1736 * @adapter: board private structure
1737 *
1738 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1739 * finishes driver initialization procedure.
1740 * When success the state is changed to __IAVF_DOWN
1741 * when fails it returns -EAGAIN
1742 **/
1743static int iavf_init_get_resources(struct iavf_adapter *adapter)
1744{
1745	struct net_device *netdev = adapter->netdev;
1746	struct pci_dev *pdev = adapter->pdev;
1747	struct iavf_hw *hw = &adapter->hw;
1748	int err;
1749
1750	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1751	/* aq msg sent, awaiting reply */
1752	if (!adapter->vf_res) {
1753		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1754					  GFP_KERNEL);
1755		if (!adapter->vf_res) {
1756			err = -ENOMEM;
1757			goto err;
1758		}
1759	}
1760	err = iavf_get_vf_config(adapter);
1761	if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1762		err = iavf_send_vf_config_msg(adapter);
1763		goto err;
1764	} else if (err == IAVF_ERR_PARAM) {
1765		/* We only get ERR_PARAM if the device is in a very bad
1766		 * state or if we've been disabled for previous bad
1767		 * behavior. Either way, we're done now.
1768		 */
1769		iavf_shutdown_adminq(hw);
1770		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1771		return 0;
1772	}
1773	if (err) {
1774		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1775		goto err_alloc;
1776	}
1777
1778	if (iavf_process_config(adapter))
1779		goto err_alloc;
1780	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1781
1782	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1783
1784	netdev->netdev_ops = &iavf_netdev_ops;
1785	iavf_set_ethtool_ops(netdev);
1786	netdev->watchdog_timeo = 5 * HZ;
1787
1788	/* MTU range: 68 - 9710 */
1789	netdev->min_mtu = ETH_MIN_MTU;
1790	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1791
1792	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1793		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1794			 adapter->hw.mac.addr);
1795		eth_hw_addr_random(netdev);
1796		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1797	} else {
1798		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1799		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1800	}
1801
1802	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1803	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1804	err = iavf_init_interrupt_scheme(adapter);
1805	if (err)
1806		goto err_sw_init;
1807	iavf_map_rings_to_vectors(adapter);
1808	if (adapter->vf_res->vf_cap_flags &
1809		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1810		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1811
1812	err = iavf_request_misc_irq(adapter);
1813	if (err)
1814		goto err_sw_init;
1815
1816	netif_carrier_off(netdev);
1817	adapter->link_up = false;
1818
1819	/* set the semaphore to prevent any callbacks after device registration
1820	 * up to time when state of driver will be set to __IAVF_DOWN
1821	 */
1822	rtnl_lock();
1823	if (!adapter->netdev_registered) {
1824		err = register_netdevice(netdev);
1825		if (err) {
1826			rtnl_unlock();
1827			goto err_register;
1828		}
1829	}
1830
1831	adapter->netdev_registered = true;
1832
1833	netif_tx_stop_all_queues(netdev);
1834	if (CLIENT_ALLOWED(adapter)) {
1835		err = iavf_lan_add_device(adapter);
1836		if (err) {
1837			rtnl_unlock();
1838			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1839				 err);
1840		}
1841	}
1842	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1843	if (netdev->features & NETIF_F_GRO)
1844		dev_info(&pdev->dev, "GRO is enabled\n");
1845
1846	adapter->state = __IAVF_DOWN;
1847	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1848	rtnl_unlock();
1849
1850	iavf_misc_irq_enable(adapter);
1851	wake_up(&adapter->down_waitqueue);
1852
1853	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1854	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1855	if (!adapter->rss_key || !adapter->rss_lut) {
1856		err = -ENOMEM;
1857		goto err_mem;
1858	}
1859	if (RSS_AQ(adapter))
1860		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1861	else
1862		iavf_init_rss(adapter);
1863
1864	return err;
1865err_mem:
1866	iavf_free_rss(adapter);
1867err_register:
1868	iavf_free_misc_irq(adapter);
1869err_sw_init:
1870	iavf_reset_interrupt_capability(adapter);
1871err_alloc:
1872	kfree(adapter->vf_res);
1873	adapter->vf_res = NULL;
1874err:
1875	return err;
1876}
1877
1878/**
1879 * iavf_watchdog_task - Periodic call-back task
1880 * @work: pointer to work_struct
1881 **/
1882static void iavf_watchdog_task(struct work_struct *work)
1883{
1884	struct iavf_adapter *adapter = container_of(work,
1885						    struct iavf_adapter,
1886						    watchdog_task.work);
1887	struct iavf_hw *hw = &adapter->hw;
1888	u32 reg_val;
1889
1890	if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1891		goto restart_watchdog;
1892
1893	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1894		adapter->state = __IAVF_COMM_FAILED;
1895
1896	switch (adapter->state) {
1897	case __IAVF_COMM_FAILED:
1898		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1899			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1900		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1901		    reg_val == VIRTCHNL_VFR_COMPLETED) {
1902			/* A chance for redemption! */
1903			dev_err(&adapter->pdev->dev,
1904				"Hardware came out of reset. Attempting reinit.\n");
1905			adapter->state = __IAVF_STARTUP;
1906			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1907			queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1908			clear_bit(__IAVF_IN_CRITICAL_TASK,
1909				  &adapter->crit_section);
1910			/* Don't reschedule the watchdog, since we've restarted
1911			 * the init task. When init_task contacts the PF and
1912			 * gets everything set up again, it'll restart the
1913			 * watchdog for us. Down, boy. Sit. Stay. Woof.
1914			 */
1915			return;
1916		}
1917		adapter->aq_required = 0;
1918		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1919		clear_bit(__IAVF_IN_CRITICAL_TASK,
1920			  &adapter->crit_section);
1921		queue_delayed_work(iavf_wq,
1922				   &adapter->watchdog_task,
1923				   msecs_to_jiffies(10));
1924		goto watchdog_done;
1925	case __IAVF_RESETTING:
1926		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1927		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1928		return;
1929	case __IAVF_DOWN:
1930	case __IAVF_DOWN_PENDING:
1931	case __IAVF_TESTING:
1932	case __IAVF_RUNNING:
1933		if (adapter->current_op) {
1934			if (!iavf_asq_done(hw)) {
1935				dev_dbg(&adapter->pdev->dev,
1936					"Admin queue timeout\n");
1937				iavf_send_api_ver(adapter);
1938			}
1939		} else {
1940			/* An error will be returned if no commands were
1941			 * processed; use this opportunity to update stats
1942			 */
1943			if (iavf_process_aq_command(adapter) &&
1944			    adapter->state == __IAVF_RUNNING)
1945				iavf_request_stats(adapter);
1946		}
1947		break;
1948	case __IAVF_REMOVE:
1949		clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1950		return;
1951	default:
1952		goto restart_watchdog;
1953	}
1954
1955		/* check for hw reset */
1956	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1957	if (!reg_val) {
1958		adapter->state = __IAVF_RESETTING;
1959		adapter->flags |= IAVF_FLAG_RESET_PENDING;
1960		adapter->aq_required = 0;
1961		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1962		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1963		queue_work(iavf_wq, &adapter->reset_task);
1964		goto watchdog_done;
1965	}
1966
1967	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1968watchdog_done:
1969	if (adapter->state == __IAVF_RUNNING ||
1970	    adapter->state == __IAVF_COMM_FAILED)
1971		iavf_detect_recover_hung(&adapter->vsi);
1972	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1973restart_watchdog:
1974	if (adapter->aq_required)
1975		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1976				   msecs_to_jiffies(20));
1977	else
1978		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1979	queue_work(iavf_wq, &adapter->adminq_task);
1980}
1981
1982static void iavf_disable_vf(struct iavf_adapter *adapter)
1983{
1984	struct iavf_mac_filter *f, *ftmp;
1985	struct iavf_vlan_filter *fv, *fvtmp;
1986	struct iavf_cloud_filter *cf, *cftmp;
1987
1988	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1989
1990	/* We don't use netif_running() because it may be true prior to
1991	 * ndo_open() returning, so we can't assume it means all our open
1992	 * tasks have finished, since we're not holding the rtnl_lock here.
1993	 */
1994	if (adapter->state == __IAVF_RUNNING) {
1995		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1996		netif_carrier_off(adapter->netdev);
1997		netif_tx_disable(adapter->netdev);
1998		adapter->link_up = false;
1999		iavf_napi_disable_all(adapter);
2000		iavf_irq_disable(adapter);
2001		iavf_free_traffic_irqs(adapter);
2002		iavf_free_all_tx_resources(adapter);
2003		iavf_free_all_rx_resources(adapter);
2004	}
2005
2006	spin_lock_bh(&adapter->mac_vlan_list_lock);
2007
2008	/* Delete all of the filters */
2009	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2010		list_del(&f->list);
2011		kfree(f);
2012	}
2013
2014	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2015		list_del(&fv->list);
2016		kfree(fv);
2017	}
2018
2019	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2020
2021	spin_lock_bh(&adapter->cloud_filter_list_lock);
2022	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2023		list_del(&cf->list);
2024		kfree(cf);
2025		adapter->num_cloud_filters--;
2026	}
2027	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2028
2029	iavf_free_misc_irq(adapter);
2030	iavf_reset_interrupt_capability(adapter);
2031	iavf_free_queues(adapter);
2032	iavf_free_q_vectors(adapter);
2033	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2034	iavf_shutdown_adminq(&adapter->hw);
2035	adapter->netdev->flags &= ~IFF_UP;
2036	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2037	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2038	adapter->state = __IAVF_DOWN;
2039	wake_up(&adapter->down_waitqueue);
2040	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2041}
2042
2043/**
2044 * iavf_reset_task - Call-back task to handle hardware reset
2045 * @work: pointer to work_struct
2046 *
2047 * During reset we need to shut down and reinitialize the admin queue
2048 * before we can use it to communicate with the PF again. We also clear
2049 * and reinit the rings because that context is lost as well.
2050 **/
2051static void iavf_reset_task(struct work_struct *work)
2052{
2053	struct iavf_adapter *adapter = container_of(work,
2054						      struct iavf_adapter,
2055						      reset_task);
2056	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2057	struct net_device *netdev = adapter->netdev;
2058	struct iavf_hw *hw = &adapter->hw;
2059	struct iavf_mac_filter *f, *ftmp;
2060	struct iavf_vlan_filter *vlf;
2061	struct iavf_cloud_filter *cf;
2062	u32 reg_val;
2063	int i = 0, err;
2064	bool running;
2065
2066	/* When device is being removed it doesn't make sense to run the reset
2067	 * task, just return in such a case.
2068	 */
2069	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2070		return;
2071
2072	while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2073				&adapter->crit_section))
2074		usleep_range(500, 1000);
2075	if (CLIENT_ENABLED(adapter)) {
2076		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2077				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2078				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2079				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2080		cancel_delayed_work_sync(&adapter->client_task);
2081		iavf_notify_client_close(&adapter->vsi, true);
2082	}
2083	iavf_misc_irq_disable(adapter);
2084	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2085		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2086		/* Restart the AQ here. If we have been reset but didn't
2087		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2088		 */
2089		iavf_shutdown_adminq(hw);
2090		iavf_init_adminq(hw);
2091		iavf_request_reset(adapter);
2092	}
2093	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2094
2095	/* poll until we see the reset actually happen */
2096	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2097		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2098			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2099		if (!reg_val)
2100			break;
2101		usleep_range(5000, 10000);
2102	}
2103	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2104		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2105		goto continue_reset; /* act like the reset happened */
2106	}
2107
2108	/* wait until the reset is complete and the PF is responding to us */
2109	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2110		/* sleep first to make sure a minimum wait time is met */
2111		msleep(IAVF_RESET_WAIT_MS);
2112
2113		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2114			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2115		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2116			break;
2117	}
2118
2119	pci_set_master(adapter->pdev);
2120
2121	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2122		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2123			reg_val);
2124		iavf_disable_vf(adapter);
2125		clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2126		return; /* Do not attempt to reinit. It's dead, Jim. */
2127	}
2128
2129continue_reset:
2130	/* We don't use netif_running() because it may be true prior to
2131	 * ndo_open() returning, so we can't assume it means all our open
2132	 * tasks have finished, since we're not holding the rtnl_lock here.
2133	 */
2134	running = ((adapter->state == __IAVF_RUNNING) ||
2135		   (adapter->state == __IAVF_RESETTING));
2136
2137	if (running) {
2138		netif_carrier_off(netdev);
2139		netif_tx_stop_all_queues(netdev);
2140		adapter->link_up = false;
2141		iavf_napi_disable_all(adapter);
2142	}
2143	iavf_irq_disable(adapter);
2144
2145	adapter->state = __IAVF_RESETTING;
2146	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2147
2148	/* free the Tx/Rx rings and descriptors, might be better to just
2149	 * re-use them sometime in the future
2150	 */
2151	iavf_free_all_rx_resources(adapter);
2152	iavf_free_all_tx_resources(adapter);
2153
2154	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2155	/* kill and reinit the admin queue */
2156	iavf_shutdown_adminq(hw);
2157	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2158	err = iavf_init_adminq(hw);
2159	if (err)
2160		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2161			 err);
2162	adapter->aq_required = 0;
2163
2164	if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2165		err = iavf_reinit_interrupt_scheme(adapter);
2166		if (err)
2167			goto reset_err;
2168	}
2169
2170	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2171	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2172
2173	spin_lock_bh(&adapter->mac_vlan_list_lock);
2174
2175	/* Delete filter for the current MAC address, it could have
2176	 * been changed by the PF via administratively set MAC.
2177	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2178	 */
2179	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2180		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2181			list_del(&f->list);
2182			kfree(f);
2183		}
2184	}
2185	/* re-add all MAC filters */
2186	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2187		f->add = true;
2188	}
2189	/* re-add all VLAN filters */
2190	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2191		vlf->add = true;
2192	}
2193
2194	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2195
2196	/* check if TCs are running and re-add all cloud filters */
2197	spin_lock_bh(&adapter->cloud_filter_list_lock);
2198	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2199	    adapter->num_tc) {
2200		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2201			cf->add = true;
2202		}
2203	}
2204	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2205
2206	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2207	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2208	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2209	iavf_misc_irq_enable(adapter);
2210
2211	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2212
2213	/* We were running when the reset started, so we need to restore some
2214	 * state here.
2215	 */
2216	if (running) {
2217		/* allocate transmit descriptors */
2218		err = iavf_setup_all_tx_resources(adapter);
2219		if (err)
2220			goto reset_err;
2221
2222		/* allocate receive descriptors */
2223		err = iavf_setup_all_rx_resources(adapter);
2224		if (err)
2225			goto reset_err;
2226
2227		if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2228			err = iavf_request_traffic_irqs(adapter, netdev->name);
2229			if (err)
2230				goto reset_err;
2231
2232			adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2233		}
2234
2235		iavf_configure(adapter);
2236
2237		iavf_up_complete(adapter);
2238
2239		iavf_irq_enable(adapter, true);
2240	} else {
2241		adapter->state = __IAVF_DOWN;
2242		wake_up(&adapter->down_waitqueue);
2243	}
2244	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2245	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2246
2247	return;
2248reset_err:
2249	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2250	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2251	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2252	iavf_close(netdev);
2253}
2254
2255/**
2256 * iavf_adminq_task - worker thread to clean the admin queue
2257 * @work: pointer to work_struct containing our data
2258 **/
2259static void iavf_adminq_task(struct work_struct *work)
2260{
2261	struct iavf_adapter *adapter =
2262		container_of(work, struct iavf_adapter, adminq_task);
2263	struct iavf_hw *hw = &adapter->hw;
2264	struct iavf_arq_event_info event;
2265	enum virtchnl_ops v_op;
2266	enum iavf_status ret, v_ret;
2267	u32 val, oldval;
2268	u16 pending;
2269
2270	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2271		goto out;
2272
2273	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2274	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2275	if (!event.msg_buf)
2276		goto out;
2277
2278	do {
2279		ret = iavf_clean_arq_element(hw, &event, &pending);
2280		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2281		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2282
2283		if (ret || !v_op)
2284			break; /* No event to process or error cleaning ARQ */
2285
2286		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2287					 event.msg_len);
2288		if (pending != 0)
2289			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2290	} while (pending);
2291
2292	if ((adapter->flags &
2293	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2294	    adapter->state == __IAVF_RESETTING)
2295		goto freedom;
2296
2297	/* check for error indications */
2298	val = rd32(hw, hw->aq.arq.len);
2299	if (val == 0xdeadbeef) /* indicates device in reset */
2300		goto freedom;
2301	oldval = val;
2302	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2303		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2304		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2305	}
2306	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2307		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2308		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2309	}
2310	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2311		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2312		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2313	}
2314	if (oldval != val)
2315		wr32(hw, hw->aq.arq.len, val);
2316
2317	val = rd32(hw, hw->aq.asq.len);
2318	oldval = val;
2319	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2320		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2321		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2322	}
2323	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2324		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2325		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2326	}
2327	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2328		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2329		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2330	}
2331	if (oldval != val)
2332		wr32(hw, hw->aq.asq.len, val);
2333
2334freedom:
2335	kfree(event.msg_buf);
2336out:
2337	/* re-enable Admin queue interrupt cause */
2338	iavf_misc_irq_enable(adapter);
2339}
2340
2341/**
2342 * iavf_client_task - worker thread to perform client work
2343 * @work: pointer to work_struct containing our data
2344 *
2345 * This task handles client interactions. Because client calls can be
2346 * reentrant, we can't handle them in the watchdog.
2347 **/
2348static void iavf_client_task(struct work_struct *work)
2349{
2350	struct iavf_adapter *adapter =
2351		container_of(work, struct iavf_adapter, client_task.work);
2352
2353	/* If we can't get the client bit, just give up. We'll be rescheduled
2354	 * later.
2355	 */
2356
2357	if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2358		return;
2359
2360	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2361		iavf_client_subtask(adapter);
2362		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2363		goto out;
2364	}
2365	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2366		iavf_notify_client_l2_params(&adapter->vsi);
2367		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2368		goto out;
2369	}
2370	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2371		iavf_notify_client_close(&adapter->vsi, false);
2372		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2373		goto out;
2374	}
2375	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2376		iavf_notify_client_open(&adapter->vsi);
2377		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2378	}
2379out:
2380	clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2381}
2382
2383/**
2384 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2385 * @adapter: board private structure
2386 *
2387 * Free all transmit software resources
2388 **/
2389void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2390{
2391	int i;
2392
2393	if (!adapter->tx_rings)
2394		return;
2395
2396	for (i = 0; i < adapter->num_active_queues; i++)
2397		if (adapter->tx_rings[i].desc)
2398			iavf_free_tx_resources(&adapter->tx_rings[i]);
2399}
2400
2401/**
2402 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2403 * @adapter: board private structure
2404 *
2405 * If this function returns with an error, then it's possible one or
2406 * more of the rings is populated (while the rest are not).  It is the
2407 * callers duty to clean those orphaned rings.
2408 *
2409 * Return 0 on success, negative on failure
2410 **/
2411static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2412{
2413	int i, err = 0;
2414
2415	for (i = 0; i < adapter->num_active_queues; i++) {
2416		adapter->tx_rings[i].count = adapter->tx_desc_count;
2417		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2418		if (!err)
2419			continue;
2420		dev_err(&adapter->pdev->dev,
2421			"Allocation for Tx Queue %u failed\n", i);
2422		break;
2423	}
2424
2425	return err;
2426}
2427
2428/**
2429 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2430 * @adapter: board private structure
2431 *
2432 * If this function returns with an error, then it's possible one or
2433 * more of the rings is populated (while the rest are not).  It is the
2434 * callers duty to clean those orphaned rings.
2435 *
2436 * Return 0 on success, negative on failure
2437 **/
2438static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2439{
2440	int i, err = 0;
2441
2442	for (i = 0; i < adapter->num_active_queues; i++) {
2443		adapter->rx_rings[i].count = adapter->rx_desc_count;
2444		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2445		if (!err)
2446			continue;
2447		dev_err(&adapter->pdev->dev,
2448			"Allocation for Rx Queue %u failed\n", i);
2449		break;
2450	}
2451	return err;
2452}
2453
2454/**
2455 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2456 * @adapter: board private structure
2457 *
2458 * Free all receive software resources
2459 **/
2460void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2461{
2462	int i;
2463
2464	if (!adapter->rx_rings)
2465		return;
2466
2467	for (i = 0; i < adapter->num_active_queues; i++)
2468		if (adapter->rx_rings[i].desc)
2469			iavf_free_rx_resources(&adapter->rx_rings[i]);
2470}
2471
2472/**
2473 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2474 * @adapter: board private structure
2475 * @max_tx_rate: max Tx bw for a tc
2476 **/
2477static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2478				      u64 max_tx_rate)
2479{
2480	int speed = 0, ret = 0;
2481
2482	if (ADV_LINK_SUPPORT(adapter)) {
2483		if (adapter->link_speed_mbps < U32_MAX) {
2484			speed = adapter->link_speed_mbps;
2485			goto validate_bw;
2486		} else {
2487			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2488			return -EINVAL;
2489		}
2490	}
2491
2492	switch (adapter->link_speed) {
2493	case VIRTCHNL_LINK_SPEED_40GB:
2494		speed = SPEED_40000;
2495		break;
2496	case VIRTCHNL_LINK_SPEED_25GB:
2497		speed = SPEED_25000;
2498		break;
2499	case VIRTCHNL_LINK_SPEED_20GB:
2500		speed = SPEED_20000;
2501		break;
2502	case VIRTCHNL_LINK_SPEED_10GB:
2503		speed = SPEED_10000;
2504		break;
2505	case VIRTCHNL_LINK_SPEED_5GB:
2506		speed = SPEED_5000;
2507		break;
2508	case VIRTCHNL_LINK_SPEED_2_5GB:
2509		speed = SPEED_2500;
2510		break;
2511	case VIRTCHNL_LINK_SPEED_1GB:
2512		speed = SPEED_1000;
2513		break;
2514	case VIRTCHNL_LINK_SPEED_100MB:
2515		speed = SPEED_100;
2516		break;
2517	default:
2518		break;
2519	}
2520
2521validate_bw:
2522	if (max_tx_rate > speed) {
2523		dev_err(&adapter->pdev->dev,
2524			"Invalid tx rate specified\n");
2525		ret = -EINVAL;
2526	}
2527
2528	return ret;
2529}
2530
2531/**
2532 * iavf_validate_channel_config - validate queue mapping info
2533 * @adapter: board private structure
2534 * @mqprio_qopt: queue parameters
2535 *
2536 * This function validates if the config provided by the user to
2537 * configure queue channels is valid or not. Returns 0 on a valid
2538 * config.
2539 **/
2540static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2541				   struct tc_mqprio_qopt_offload *mqprio_qopt)
2542{
2543	u64 total_max_rate = 0;
2544	int i, num_qps = 0;
2545	u64 tx_rate = 0;
2546	int ret = 0;
2547
2548	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2549	    mqprio_qopt->qopt.num_tc < 1)
2550		return -EINVAL;
2551
2552	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2553		if (!mqprio_qopt->qopt.count[i] ||
2554		    mqprio_qopt->qopt.offset[i] != num_qps)
2555			return -EINVAL;
2556		if (mqprio_qopt->min_rate[i]) {
2557			dev_err(&adapter->pdev->dev,
2558				"Invalid min tx rate (greater than 0) specified\n");
2559			return -EINVAL;
2560		}
2561		/*convert to Mbps */
2562		tx_rate = div_u64(mqprio_qopt->max_rate[i],
2563				  IAVF_MBPS_DIVISOR);
2564		total_max_rate += tx_rate;
2565		num_qps += mqprio_qopt->qopt.count[i];
2566	}
2567	if (num_qps > IAVF_MAX_REQ_QUEUES)
2568		return -EINVAL;
2569
2570	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2571	return ret;
2572}
2573
2574/**
2575 * iavf_del_all_cloud_filters - delete all cloud filters
2576 * on the traffic classes
2577 **/
2578static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2579{
2580	struct iavf_cloud_filter *cf, *cftmp;
2581
2582	spin_lock_bh(&adapter->cloud_filter_list_lock);
2583	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2584				 list) {
2585		list_del(&cf->list);
2586		kfree(cf);
2587		adapter->num_cloud_filters--;
2588	}
2589	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2590}
2591
2592/**
2593 * __iavf_setup_tc - configure multiple traffic classes
2594 * @netdev: network interface device structure
2595 * @type_date: tc offload data
2596 *
2597 * This function processes the config information provided by the
2598 * user to configure traffic classes/queue channels and packages the
2599 * information to request the PF to setup traffic classes.
2600 *
2601 * Returns 0 on success.
2602 **/
2603static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2604{
2605	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2606	struct iavf_adapter *adapter = netdev_priv(netdev);
2607	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2608	u8 num_tc = 0, total_qps = 0;
2609	int ret = 0, netdev_tc = 0;
2610	u64 max_tx_rate;
2611	u16 mode;
2612	int i;
2613
2614	num_tc = mqprio_qopt->qopt.num_tc;
2615	mode = mqprio_qopt->mode;
2616
2617	/* delete queue_channel */
2618	if (!mqprio_qopt->qopt.hw) {
2619		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2620			/* reset the tc configuration */
2621			netdev_reset_tc(netdev);
2622			adapter->num_tc = 0;
2623			netif_tx_stop_all_queues(netdev);
2624			netif_tx_disable(netdev);
2625			iavf_del_all_cloud_filters(adapter);
2626			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2627			goto exit;
2628		} else {
2629			return -EINVAL;
2630		}
2631	}
2632
2633	/* add queue channel */
2634	if (mode == TC_MQPRIO_MODE_CHANNEL) {
2635		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2636			dev_err(&adapter->pdev->dev, "ADq not supported\n");
2637			return -EOPNOTSUPP;
2638		}
2639		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2640			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2641			return -EINVAL;
2642		}
2643
2644		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2645		if (ret)
2646			return ret;
2647		/* Return if same TC config is requested */
2648		if (adapter->num_tc == num_tc)
2649			return 0;
2650		adapter->num_tc = num_tc;
2651
2652		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2653			if (i < num_tc) {
2654				adapter->ch_config.ch_info[i].count =
2655					mqprio_qopt->qopt.count[i];
2656				adapter->ch_config.ch_info[i].offset =
2657					mqprio_qopt->qopt.offset[i];
2658				total_qps += mqprio_qopt->qopt.count[i];
2659				max_tx_rate = mqprio_qopt->max_rate[i];
2660				/* convert to Mbps */
2661				max_tx_rate = div_u64(max_tx_rate,
2662						      IAVF_MBPS_DIVISOR);
2663				adapter->ch_config.ch_info[i].max_tx_rate =
2664					max_tx_rate;
2665			} else {
2666				adapter->ch_config.ch_info[i].count = 1;
2667				adapter->ch_config.ch_info[i].offset = 0;
2668			}
2669		}
2670		adapter->ch_config.total_qps = total_qps;
2671		netif_tx_stop_all_queues(netdev);
2672		netif_tx_disable(netdev);
2673		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2674		netdev_reset_tc(netdev);
2675		/* Report the tc mapping up the stack */
2676		netdev_set_num_tc(adapter->netdev, num_tc);
2677		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2678			u16 qcount = mqprio_qopt->qopt.count[i];
2679			u16 qoffset = mqprio_qopt->qopt.offset[i];
2680
2681			if (i < num_tc)
2682				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2683						    qoffset);
2684		}
2685	}
2686exit:
2687	return ret;
2688}
2689
2690/**
2691 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2692 * @adapter: board private structure
2693 * @cls_flower: pointer to struct flow_cls_offload
2694 * @filter: pointer to cloud filter structure
2695 */
2696static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2697				 struct flow_cls_offload *f,
2698				 struct iavf_cloud_filter *filter)
2699{
2700	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2701	struct flow_dissector *dissector = rule->match.dissector;
2702	u16 n_proto_mask = 0;
2703	u16 n_proto_key = 0;
2704	u8 field_flags = 0;
2705	u16 addr_type = 0;
2706	u16 n_proto = 0;
2707	int i = 0;
2708	struct virtchnl_filter *vf = &filter->f;
2709
2710	if (dissector->used_keys &
2711	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2712	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
2713	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2714	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
2715	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2716	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2717	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
2718	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2719		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2720			dissector->used_keys);
2721		return -EOPNOTSUPP;
2722	}
2723
2724	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2725		struct flow_match_enc_keyid match;
2726
2727		flow_rule_match_enc_keyid(rule, &match);
2728		if (match.mask->keyid != 0)
2729			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2730	}
2731
2732	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2733		struct flow_match_basic match;
2734
2735		flow_rule_match_basic(rule, &match);
2736		n_proto_key = ntohs(match.key->n_proto);
2737		n_proto_mask = ntohs(match.mask->n_proto);
2738
2739		if (n_proto_key == ETH_P_ALL) {
2740			n_proto_key = 0;
2741			n_proto_mask = 0;
2742		}
2743		n_proto = n_proto_key & n_proto_mask;
2744		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2745			return -EINVAL;
2746		if (n_proto == ETH_P_IPV6) {
2747			/* specify flow type as TCP IPv6 */
2748			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2749		}
2750
2751		if (match.key->ip_proto != IPPROTO_TCP) {
2752			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2753			return -EINVAL;
2754		}
2755	}
2756
2757	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2758		struct flow_match_eth_addrs match;
2759
2760		flow_rule_match_eth_addrs(rule, &match);
2761
2762		/* use is_broadcast and is_zero to check for all 0xf or 0 */
2763		if (!is_zero_ether_addr(match.mask->dst)) {
2764			if (is_broadcast_ether_addr(match.mask->dst)) {
2765				field_flags |= IAVF_CLOUD_FIELD_OMAC;
2766			} else {
2767				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2768					match.mask->dst);
2769				return IAVF_ERR_CONFIG;
2770			}
2771		}
2772
2773		if (!is_zero_ether_addr(match.mask->src)) {
2774			if (is_broadcast_ether_addr(match.mask->src)) {
2775				field_flags |= IAVF_CLOUD_FIELD_IMAC;
2776			} else {
2777				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2778					match.mask->src);
2779				return IAVF_ERR_CONFIG;
2780			}
2781		}
2782
2783		if (!is_zero_ether_addr(match.key->dst))
2784			if (is_valid_ether_addr(match.key->dst) ||
2785			    is_multicast_ether_addr(match.key->dst)) {
2786				/* set the mask if a valid dst_mac address */
2787				for (i = 0; i < ETH_ALEN; i++)
2788					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2789				ether_addr_copy(vf->data.tcp_spec.dst_mac,
2790						match.key->dst);
2791			}
2792
2793		if (!is_zero_ether_addr(match.key->src))
2794			if (is_valid_ether_addr(match.key->src) ||
2795			    is_multicast_ether_addr(match.key->src)) {
2796				/* set the mask if a valid dst_mac address */
2797				for (i = 0; i < ETH_ALEN; i++)
2798					vf->mask.tcp_spec.src_mac[i] |= 0xff;
2799				ether_addr_copy(vf->data.tcp_spec.src_mac,
2800						match.key->src);
2801		}
2802	}
2803
2804	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2805		struct flow_match_vlan match;
2806
2807		flow_rule_match_vlan(rule, &match);
2808		if (match.mask->vlan_id) {
2809			if (match.mask->vlan_id == VLAN_VID_MASK) {
2810				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2811			} else {
2812				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2813					match.mask->vlan_id);
2814				return IAVF_ERR_CONFIG;
2815			}
2816		}
2817		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2818		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2819	}
2820
2821	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2822		struct flow_match_control match;
2823
2824		flow_rule_match_control(rule, &match);
2825		addr_type = match.key->addr_type;
2826	}
2827
2828	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2829		struct flow_match_ipv4_addrs match;
2830
2831		flow_rule_match_ipv4_addrs(rule, &match);
2832		if (match.mask->dst) {
2833			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2834				field_flags |= IAVF_CLOUD_FIELD_IIP;
2835			} else {
2836				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2837					be32_to_cpu(match.mask->dst));
2838				return IAVF_ERR_CONFIG;
2839			}
2840		}
2841
2842		if (match.mask->src) {
2843			if (match.mask->src == cpu_to_be32(0xffffffff)) {
2844				field_flags |= IAVF_CLOUD_FIELD_IIP;
2845			} else {
2846				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2847					be32_to_cpu(match.mask->dst));
2848				return IAVF_ERR_CONFIG;
2849			}
2850		}
2851
2852		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2853			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2854			return IAVF_ERR_CONFIG;
2855		}
2856		if (match.key->dst) {
2857			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2858			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2859		}
2860		if (match.key->src) {
2861			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2862			vf->data.tcp_spec.src_ip[0] = match.key->src;
2863		}
2864	}
2865
2866	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2867		struct flow_match_ipv6_addrs match;
2868
2869		flow_rule_match_ipv6_addrs(rule, &match);
2870
2871		/* validate mask, make sure it is not IPV6_ADDR_ANY */
2872		if (ipv6_addr_any(&match.mask->dst)) {
2873			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2874				IPV6_ADDR_ANY);
2875			return IAVF_ERR_CONFIG;
2876		}
2877
2878		/* src and dest IPv6 address should not be LOOPBACK
2879		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2880		 */
2881		if (ipv6_addr_loopback(&match.key->dst) ||
2882		    ipv6_addr_loopback(&match.key->src)) {
2883			dev_err(&adapter->pdev->dev,
2884				"ipv6 addr should not be loopback\n");
2885			return IAVF_ERR_CONFIG;
2886		}
2887		if (!ipv6_addr_any(&match.mask->dst) ||
2888		    !ipv6_addr_any(&match.mask->src))
2889			field_flags |= IAVF_CLOUD_FIELD_IIP;
2890
2891		for (i = 0; i < 4; i++)
2892			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2893		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2894		       sizeof(vf->data.tcp_spec.dst_ip));
2895		for (i = 0; i < 4; i++)
2896			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2897		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2898		       sizeof(vf->data.tcp_spec.src_ip));
2899	}
2900	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2901		struct flow_match_ports match;
2902
2903		flow_rule_match_ports(rule, &match);
2904		if (match.mask->src) {
2905			if (match.mask->src == cpu_to_be16(0xffff)) {
2906				field_flags |= IAVF_CLOUD_FIELD_IIP;
2907			} else {
2908				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2909					be16_to_cpu(match.mask->src));
2910				return IAVF_ERR_CONFIG;
2911			}
2912		}
2913
2914		if (match.mask->dst) {
2915			if (match.mask->dst == cpu_to_be16(0xffff)) {
2916				field_flags |= IAVF_CLOUD_FIELD_IIP;
2917			} else {
2918				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2919					be16_to_cpu(match.mask->dst));
2920				return IAVF_ERR_CONFIG;
2921			}
2922		}
2923		if (match.key->dst) {
2924			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2925			vf->data.tcp_spec.dst_port = match.key->dst;
2926		}
2927
2928		if (match.key->src) {
2929			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2930			vf->data.tcp_spec.src_port = match.key->src;
2931		}
2932	}
2933	vf->field_flags = field_flags;
2934
2935	return 0;
2936}
2937
2938/**
2939 * iavf_handle_tclass - Forward to a traffic class on the device
2940 * @adapter: board private structure
2941 * @tc: traffic class index on the device
2942 * @filter: pointer to cloud filter structure
2943 */
2944static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2945			      struct iavf_cloud_filter *filter)
2946{
2947	if (tc == 0)
2948		return 0;
2949	if (tc < adapter->num_tc) {
2950		if (!filter->f.data.tcp_spec.dst_port) {
2951			dev_err(&adapter->pdev->dev,
2952				"Specify destination port to redirect to traffic class other than TC0\n");
2953			return -EINVAL;
2954		}
2955	}
2956	/* redirect to a traffic class on the same device */
2957	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2958	filter->f.action_meta = tc;
2959	return 0;
2960}
2961
2962/**
2963 * iavf_configure_clsflower - Add tc flower filters
2964 * @adapter: board private structure
2965 * @cls_flower: Pointer to struct flow_cls_offload
2966 */
2967static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2968				    struct flow_cls_offload *cls_flower)
2969{
2970	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2971	struct iavf_cloud_filter *filter = NULL;
2972	int err = -EINVAL, count = 50;
2973
2974	if (tc < 0) {
2975		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2976		return -EINVAL;
2977	}
2978
2979	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2980	if (!filter)
2981		return -ENOMEM;
2982
2983	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2984				&adapter->crit_section)) {
2985		if (--count == 0)
2986			goto err;
2987		udelay(1);
2988	}
2989
2990	filter->cookie = cls_flower->cookie;
2991
2992	/* set the mask to all zeroes to begin with */
2993	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2994	/* start out with flow type and eth type IPv4 to begin with */
2995	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2996	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2997	if (err < 0)
2998		goto err;
2999
3000	err = iavf_handle_tclass(adapter, tc, filter);
3001	if (err < 0)
3002		goto err;
3003
3004	/* add filter to the list */
3005	spin_lock_bh(&adapter->cloud_filter_list_lock);
3006	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3007	adapter->num_cloud_filters++;
3008	filter->add = true;
3009	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3010	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3011err:
3012	if (err)
3013		kfree(filter);
3014
3015	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3016	return err;
3017}
3018
3019/* iavf_find_cf - Find the cloud filter in the list
3020 * @adapter: Board private structure
3021 * @cookie: filter specific cookie
3022 *
3023 * Returns ptr to the filter object or NULL. Must be called while holding the
3024 * cloud_filter_list_lock.
3025 */
3026static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3027					      unsigned long *cookie)
3028{
3029	struct iavf_cloud_filter *filter = NULL;
3030
3031	if (!cookie)
3032		return NULL;
3033
3034	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3035		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3036			return filter;
3037	}
3038	return NULL;
3039}
3040
3041/**
3042 * iavf_delete_clsflower - Remove tc flower filters
3043 * @adapter: board private structure
3044 * @cls_flower: Pointer to struct flow_cls_offload
3045 */
3046static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3047				 struct flow_cls_offload *cls_flower)
3048{
3049	struct iavf_cloud_filter *filter = NULL;
3050	int err = 0;
3051
3052	spin_lock_bh(&adapter->cloud_filter_list_lock);
3053	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3054	if (filter) {
3055		filter->del = true;
3056		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3057	} else {
3058		err = -EINVAL;
3059	}
3060	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3061
3062	return err;
3063}
3064
3065/**
3066 * iavf_setup_tc_cls_flower - flower classifier offloads
3067 * @netdev: net device to configure
3068 * @type_data: offload data
3069 */
3070static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3071				    struct flow_cls_offload *cls_flower)
3072{
3073	switch (cls_flower->command) {
3074	case FLOW_CLS_REPLACE:
3075		return iavf_configure_clsflower(adapter, cls_flower);
3076	case FLOW_CLS_DESTROY:
3077		return iavf_delete_clsflower(adapter, cls_flower);
3078	case FLOW_CLS_STATS:
3079		return -EOPNOTSUPP;
3080	default:
3081		return -EOPNOTSUPP;
3082	}
3083}
3084
3085/**
3086 * iavf_setup_tc_block_cb - block callback for tc
3087 * @type: type of offload
3088 * @type_data: offload data
3089 * @cb_priv:
3090 *
3091 * This function is the block callback for traffic classes
3092 **/
3093static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3094				  void *cb_priv)
3095{
3096	struct iavf_adapter *adapter = cb_priv;
3097
3098	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3099		return -EOPNOTSUPP;
3100
3101	switch (type) {
3102	case TC_SETUP_CLSFLOWER:
3103		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3104	default:
3105		return -EOPNOTSUPP;
3106	}
3107}
3108
3109static LIST_HEAD(iavf_block_cb_list);
3110
3111/**
3112 * iavf_setup_tc - configure multiple traffic classes
3113 * @netdev: network interface device structure
3114 * @type: type of offload
3115 * @type_date: tc offload data
3116 *
3117 * This function is the callback to ndo_setup_tc in the
3118 * netdev_ops.
3119 *
3120 * Returns 0 on success
3121 **/
3122static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3123			 void *type_data)
3124{
3125	struct iavf_adapter *adapter = netdev_priv(netdev);
3126
3127	switch (type) {
3128	case TC_SETUP_QDISC_MQPRIO:
3129		return __iavf_setup_tc(netdev, type_data);
3130	case TC_SETUP_BLOCK:
3131		return flow_block_cb_setup_simple(type_data,
3132						  &iavf_block_cb_list,
3133						  iavf_setup_tc_block_cb,
3134						  adapter, adapter, true);
3135	default:
3136		return -EOPNOTSUPP;
3137	}
3138}
3139
3140/**
3141 * iavf_open - Called when a network interface is made active
3142 * @netdev: network interface device structure
3143 *
3144 * Returns 0 on success, negative value on failure
3145 *
3146 * The open entry point is called when a network interface is made
3147 * active by the system (IFF_UP).  At this point all resources needed
3148 * for transmit and receive operations are allocated, the interrupt
3149 * handler is registered with the OS, the watchdog is started,
3150 * and the stack is notified that the interface is ready.
3151 **/
3152static int iavf_open(struct net_device *netdev)
3153{
3154	struct iavf_adapter *adapter = netdev_priv(netdev);
3155	int err;
3156
3157	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3158		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3159		return -EIO;
3160	}
3161
3162	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3163				&adapter->crit_section))
3164		usleep_range(500, 1000);
3165
3166	if (adapter->state != __IAVF_DOWN) {
3167		err = -EBUSY;
3168		goto err_unlock;
3169	}
3170
3171	/* allocate transmit descriptors */
3172	err = iavf_setup_all_tx_resources(adapter);
3173	if (err)
3174		goto err_setup_tx;
3175
3176	/* allocate receive descriptors */
3177	err = iavf_setup_all_rx_resources(adapter);
3178	if (err)
3179		goto err_setup_rx;
3180
3181	/* clear any pending interrupts, may auto mask */
3182	err = iavf_request_traffic_irqs(adapter, netdev->name);
3183	if (err)
3184		goto err_req_irq;
3185
3186	spin_lock_bh(&adapter->mac_vlan_list_lock);
3187
3188	iavf_add_filter(adapter, adapter->hw.mac.addr);
3189
3190	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3191
3192	iavf_configure(adapter);
3193
3194	iavf_up_complete(adapter);
3195
3196	iavf_irq_enable(adapter, true);
3197
3198	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3199
3200	return 0;
3201
3202err_req_irq:
3203	iavf_down(adapter);
3204	iavf_free_traffic_irqs(adapter);
3205err_setup_rx:
3206	iavf_free_all_rx_resources(adapter);
3207err_setup_tx:
3208	iavf_free_all_tx_resources(adapter);
3209err_unlock:
3210	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3211
3212	return err;
3213}
3214
3215/**
3216 * iavf_close - Disables a network interface
3217 * @netdev: network interface device structure
3218 *
3219 * Returns 0, this is not allowed to fail
3220 *
3221 * The close entry point is called when an interface is de-activated
3222 * by the OS.  The hardware is still under the drivers control, but
3223 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3224 * are freed, along with all transmit and receive resources.
3225 **/
3226static int iavf_close(struct net_device *netdev)
3227{
3228	struct iavf_adapter *adapter = netdev_priv(netdev);
3229	int status;
3230
3231	if (adapter->state <= __IAVF_DOWN_PENDING)
3232		return 0;
3233
3234	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3235				&adapter->crit_section))
3236		usleep_range(500, 1000);
3237
3238	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3239	if (CLIENT_ENABLED(adapter))
3240		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3241
3242	iavf_down(adapter);
3243	adapter->state = __IAVF_DOWN_PENDING;
3244	iavf_free_traffic_irqs(adapter);
3245
3246	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3247
3248	/* We explicitly don't free resources here because the hardware is
3249	 * still active and can DMA into memory. Resources are cleared in
3250	 * iavf_virtchnl_completion() after we get confirmation from the PF
3251	 * driver that the rings have been stopped.
3252	 *
3253	 * Also, we wait for state to transition to __IAVF_DOWN before
3254	 * returning. State change occurs in iavf_virtchnl_completion() after
3255	 * VF resources are released (which occurs after PF driver processes and
3256	 * responds to admin queue commands).
3257	 */
3258
3259	status = wait_event_timeout(adapter->down_waitqueue,
3260				    adapter->state == __IAVF_DOWN,
3261				    msecs_to_jiffies(500));
3262	if (!status)
3263		netdev_warn(netdev, "Device resources not yet released\n");
3264	return 0;
3265}
3266
3267/**
3268 * iavf_change_mtu - Change the Maximum Transfer Unit
3269 * @netdev: network interface device structure
3270 * @new_mtu: new value for maximum frame size
3271 *
3272 * Returns 0 on success, negative on failure
3273 **/
3274static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3275{
3276	struct iavf_adapter *adapter = netdev_priv(netdev);
3277
3278	netdev->mtu = new_mtu;
3279	if (CLIENT_ENABLED(adapter)) {
3280		iavf_notify_client_l2_params(&adapter->vsi);
3281		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3282	}
3283	adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3284	queue_work(iavf_wq, &adapter->reset_task);
3285
3286	return 0;
3287}
3288
3289/**
3290 * iavf_set_features - set the netdev feature flags
3291 * @netdev: ptr to the netdev being adjusted
3292 * @features: the feature set that the stack is suggesting
3293 * Note: expects to be called while under rtnl_lock()
3294 **/
3295static int iavf_set_features(struct net_device *netdev,
3296			     netdev_features_t features)
3297{
3298	struct iavf_adapter *adapter = netdev_priv(netdev);
3299
3300	/* Don't allow changing VLAN_RX flag when adapter is not capable
3301	 * of VLAN offload
3302	 */
3303	if (!VLAN_ALLOWED(adapter)) {
3304		if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3305			return -EINVAL;
3306	} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3307		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3308			adapter->aq_required |=
3309				IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3310		else
3311			adapter->aq_required |=
3312				IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3313	}
3314
3315	return 0;
3316}
3317
3318/**
3319 * iavf_features_check - Validate encapsulated packet conforms to limits
3320 * @skb: skb buff
3321 * @dev: This physical port's netdev
3322 * @features: Offload features that the stack believes apply
3323 **/
3324static netdev_features_t iavf_features_check(struct sk_buff *skb,
3325					     struct net_device *dev,
3326					     netdev_features_t features)
3327{
3328	size_t len;
3329
3330	/* No point in doing any of this if neither checksum nor GSO are
3331	 * being requested for this frame.  We can rule out both by just
3332	 * checking for CHECKSUM_PARTIAL
3333	 */
3334	if (skb->ip_summed != CHECKSUM_PARTIAL)
3335		return features;
3336
3337	/* We cannot support GSO if the MSS is going to be less than
3338	 * 64 bytes.  If it is then we need to drop support for GSO.
3339	 */
3340	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3341		features &= ~NETIF_F_GSO_MASK;
3342
3343	/* MACLEN can support at most 63 words */
3344	len = skb_network_header(skb) - skb->data;
3345	if (len & ~(63 * 2))
3346		goto out_err;
3347
3348	/* IPLEN and EIPLEN can support at most 127 dwords */
3349	len = skb_transport_header(skb) - skb_network_header(skb);
3350	if (len & ~(127 * 4))
3351		goto out_err;
3352
3353	if (skb->encapsulation) {
3354		/* L4TUNLEN can support 127 words */
3355		len = skb_inner_network_header(skb) - skb_transport_header(skb);
3356		if (len & ~(127 * 2))
3357			goto out_err;
3358
3359		/* IPLEN can support at most 127 dwords */
3360		len = skb_inner_transport_header(skb) -
3361		      skb_inner_network_header(skb);
3362		if (len & ~(127 * 4))
3363			goto out_err;
3364	}
3365
3366	/* No need to validate L4LEN as TCP is the only protocol with a
3367	 * a flexible value and we support all possible values supported
3368	 * by TCP, which is at most 15 dwords
3369	 */
3370
3371	return features;
3372out_err:
3373	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3374}
3375
3376/**
3377 * iavf_fix_features - fix up the netdev feature bits
3378 * @netdev: our net device
3379 * @features: desired feature bits
3380 *
3381 * Returns fixed-up features bits
3382 **/
3383static netdev_features_t iavf_fix_features(struct net_device *netdev,
3384					   netdev_features_t features)
3385{
3386	struct iavf_adapter *adapter = netdev_priv(netdev);
3387
3388	if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3389		features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3390			      NETIF_F_HW_VLAN_CTAG_RX |
3391			      NETIF_F_HW_VLAN_CTAG_FILTER);
3392
3393	return features;
3394}
3395
3396static const struct net_device_ops iavf_netdev_ops = {
3397	.ndo_open		= iavf_open,
3398	.ndo_stop		= iavf_close,
3399	.ndo_start_xmit		= iavf_xmit_frame,
3400	.ndo_set_rx_mode	= iavf_set_rx_mode,
3401	.ndo_validate_addr	= eth_validate_addr,
3402	.ndo_set_mac_address	= iavf_set_mac,
3403	.ndo_change_mtu		= iavf_change_mtu,
3404	.ndo_tx_timeout		= iavf_tx_timeout,
3405	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
3406	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
3407	.ndo_features_check	= iavf_features_check,
3408	.ndo_fix_features	= iavf_fix_features,
3409	.ndo_set_features	= iavf_set_features,
3410	.ndo_setup_tc		= iavf_setup_tc,
3411};
3412
3413/**
3414 * iavf_check_reset_complete - check that VF reset is complete
3415 * @hw: pointer to hw struct
3416 *
3417 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3418 **/
3419static int iavf_check_reset_complete(struct iavf_hw *hw)
3420{
3421	u32 rstat;
3422	int i;
3423
3424	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3425		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3426			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3427		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3428		    (rstat == VIRTCHNL_VFR_COMPLETED))
3429			return 0;
3430		usleep_range(10, 20);
3431	}
3432	return -EBUSY;
3433}
3434
3435/**
3436 * iavf_process_config - Process the config information we got from the PF
3437 * @adapter: board private structure
3438 *
3439 * Verify that we have a valid config struct, and set up our netdev features
3440 * and our VSI struct.
3441 **/
3442int iavf_process_config(struct iavf_adapter *adapter)
3443{
3444	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3445	int i, num_req_queues = adapter->num_req_queues;
3446	struct net_device *netdev = adapter->netdev;
3447	struct iavf_vsi *vsi = &adapter->vsi;
3448	netdev_features_t hw_enc_features;
3449	netdev_features_t hw_features;
3450
3451	/* got VF config message back from PF, now we can parse it */
3452	for (i = 0; i < vfres->num_vsis; i++) {
3453		if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3454			adapter->vsi_res = &vfres->vsi_res[i];
3455	}
3456	if (!adapter->vsi_res) {
3457		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3458		return -ENODEV;
3459	}
3460
3461	if (num_req_queues &&
3462	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
3463		/* Problem.  The PF gave us fewer queues than what we had
3464		 * negotiated in our request.  Need a reset to see if we can't
3465		 * get back to a working state.
3466		 */
3467		dev_err(&adapter->pdev->dev,
3468			"Requested %d queues, but PF only gave us %d.\n",
3469			num_req_queues,
3470			adapter->vsi_res->num_queue_pairs);
3471		adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3472		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3473		iavf_schedule_reset(adapter);
3474		return -ENODEV;
3475	}
3476	adapter->num_req_queues = 0;
3477
3478	hw_enc_features = NETIF_F_SG			|
3479			  NETIF_F_IP_CSUM		|
3480			  NETIF_F_IPV6_CSUM		|
3481			  NETIF_F_HIGHDMA		|
3482			  NETIF_F_SOFT_FEATURES	|
3483			  NETIF_F_TSO			|
3484			  NETIF_F_TSO_ECN		|
3485			  NETIF_F_TSO6			|
3486			  NETIF_F_SCTP_CRC		|
3487			  NETIF_F_RXHASH		|
3488			  NETIF_F_RXCSUM		|
3489			  0;
3490
3491	/* advertise to stack only if offloads for encapsulated packets is
3492	 * supported
3493	 */
3494	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3495		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
3496				   NETIF_F_GSO_GRE		|
3497				   NETIF_F_GSO_GRE_CSUM		|
3498				   NETIF_F_GSO_IPXIP4		|
3499				   NETIF_F_GSO_IPXIP6		|
3500				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3501				   NETIF_F_GSO_PARTIAL		|
3502				   0;
3503
3504		if (!(vfres->vf_cap_flags &
3505		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3506			netdev->gso_partial_features |=
3507				NETIF_F_GSO_UDP_TUNNEL_CSUM;
3508
3509		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3510		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3511		netdev->hw_enc_features |= hw_enc_features;
3512	}
3513	/* record features VLANs can make use of */
3514	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3515
3516	/* Write features and hw_features separately to avoid polluting
3517	 * with, or dropping, features that are set when we registered.
3518	 */
3519	hw_features = hw_enc_features;
3520
3521	/* Enable VLAN features if supported */
3522	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3523		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3524				NETIF_F_HW_VLAN_CTAG_RX);
3525	/* Enable cloud filter if ADQ is supported */
3526	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3527		hw_features |= NETIF_F_HW_TC;
3528
3529	netdev->hw_features |= hw_features;
3530
3531	netdev->features |= hw_features;
3532
3533	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3534		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3535
3536	netdev->priv_flags |= IFF_UNICAST_FLT;
3537
3538	/* Do not turn on offloads when they are requested to be turned off.
3539	 * TSO needs minimum 576 bytes to work correctly.
3540	 */
3541	if (netdev->wanted_features) {
3542		if (!(netdev->wanted_features & NETIF_F_TSO) ||
3543		    netdev->mtu < 576)
3544			netdev->features &= ~NETIF_F_TSO;
3545		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3546		    netdev->mtu < 576)
3547			netdev->features &= ~NETIF_F_TSO6;
3548		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3549			netdev->features &= ~NETIF_F_TSO_ECN;
3550		if (!(netdev->wanted_features & NETIF_F_GRO))
3551			netdev->features &= ~NETIF_F_GRO;
3552		if (!(netdev->wanted_features & NETIF_F_GSO))
3553			netdev->features &= ~NETIF_F_GSO;
3554	}
3555
3556	adapter->vsi.id = adapter->vsi_res->vsi_id;
3557
3558	adapter->vsi.back = adapter;
3559	adapter->vsi.base_vector = 1;
3560	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3561	vsi->netdev = adapter->netdev;
3562	vsi->qs_handle = adapter->vsi_res->qset_handle;
3563	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3564		adapter->rss_key_size = vfres->rss_key_size;
3565		adapter->rss_lut_size = vfres->rss_lut_size;
3566	} else {
3567		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3568		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3569	}
3570
3571	return 0;
3572}
3573
3574/**
3575 * iavf_init_task - worker thread to perform delayed initialization
3576 * @work: pointer to work_struct containing our data
3577 *
3578 * This task completes the work that was begun in probe. Due to the nature
3579 * of VF-PF communications, we may need to wait tens of milliseconds to get
3580 * responses back from the PF. Rather than busy-wait in probe and bog down the
3581 * whole system, we'll do it in a task so we can sleep.
3582 * This task only runs during driver init. Once we've established
3583 * communications with the PF driver and set up our netdev, the watchdog
3584 * takes over.
3585 **/
3586static void iavf_init_task(struct work_struct *work)
3587{
3588	struct iavf_adapter *adapter = container_of(work,
3589						    struct iavf_adapter,
3590						    init_task.work);
3591	struct iavf_hw *hw = &adapter->hw;
3592
3593	switch (adapter->state) {
3594	case __IAVF_STARTUP:
3595		if (iavf_startup(adapter) < 0)
3596			goto init_failed;
3597		break;
3598	case __IAVF_INIT_VERSION_CHECK:
3599		if (iavf_init_version_check(adapter) < 0)
3600			goto init_failed;
3601		break;
3602	case __IAVF_INIT_GET_RESOURCES:
3603		if (iavf_init_get_resources(adapter) < 0)
3604			goto init_failed;
3605		return;
3606	default:
3607		goto init_failed;
3608	}
3609
3610	queue_delayed_work(iavf_wq, &adapter->init_task,
3611			   msecs_to_jiffies(30));
3612	return;
3613init_failed:
3614	if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3615		dev_err(&adapter->pdev->dev,
3616			"Failed to communicate with PF; waiting before retry\n");
3617		adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3618		iavf_shutdown_adminq(hw);
3619		adapter->state = __IAVF_STARTUP;
3620		queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3621		return;
3622	}
3623	queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3624}
3625
3626/**
3627 * iavf_shutdown - Shutdown the device in preparation for a reboot
3628 * @pdev: pci device structure
3629 **/
3630static void iavf_shutdown(struct pci_dev *pdev)
3631{
3632	struct net_device *netdev = pci_get_drvdata(pdev);
3633	struct iavf_adapter *adapter = netdev_priv(netdev);
3634
3635	netif_device_detach(netdev);
3636
3637	if (netif_running(netdev))
3638		iavf_close(netdev);
3639
3640	/* Prevent the watchdog from running. */
3641	adapter->state = __IAVF_REMOVE;
3642	adapter->aq_required = 0;
3643
3644#ifdef CONFIG_PM
3645	pci_save_state(pdev);
3646
3647#endif
3648	pci_disable_device(pdev);
3649}
3650
3651/**
3652 * iavf_probe - Device Initialization Routine
3653 * @pdev: PCI device information struct
3654 * @ent: entry in iavf_pci_tbl
3655 *
3656 * Returns 0 on success, negative on failure
3657 *
3658 * iavf_probe initializes an adapter identified by a pci_dev structure.
3659 * The OS initialization, configuring of the adapter private structure,
3660 * and a hardware reset occur.
3661 **/
3662static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3663{
3664	struct net_device *netdev;
3665	struct iavf_adapter *adapter = NULL;
3666	struct iavf_hw *hw = NULL;
3667	int err;
3668
3669	err = pci_enable_device(pdev);
3670	if (err)
3671		return err;
3672
3673	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3674	if (err) {
3675		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3676		if (err) {
3677			dev_err(&pdev->dev,
3678				"DMA configuration failed: 0x%x\n", err);
3679			goto err_dma;
3680		}
3681	}
3682
3683	err = pci_request_regions(pdev, iavf_driver_name);
3684	if (err) {
3685		dev_err(&pdev->dev,
3686			"pci_request_regions failed 0x%x\n", err);
3687		goto err_pci_reg;
3688	}
3689
3690	pci_enable_pcie_error_reporting(pdev);
3691
3692	pci_set_master(pdev);
3693
3694	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3695				   IAVF_MAX_REQ_QUEUES);
3696	if (!netdev) {
3697		err = -ENOMEM;
3698		goto err_alloc_etherdev;
3699	}
3700
3701	SET_NETDEV_DEV(netdev, &pdev->dev);
3702
3703	pci_set_drvdata(pdev, netdev);
3704	adapter = netdev_priv(netdev);
3705
3706	adapter->netdev = netdev;
3707	adapter->pdev = pdev;
3708
3709	hw = &adapter->hw;
3710	hw->back = adapter;
3711
3712	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3713	adapter->state = __IAVF_STARTUP;
3714
3715	/* Call save state here because it relies on the adapter struct. */
3716	pci_save_state(pdev);
3717
3718	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3719			      pci_resource_len(pdev, 0));
3720	if (!hw->hw_addr) {
3721		err = -EIO;
3722		goto err_ioremap;
3723	}
3724	hw->vendor_id = pdev->vendor;
3725	hw->device_id = pdev->device;
3726	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3727	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3728	hw->subsystem_device_id = pdev->subsystem_device;
3729	hw->bus.device = PCI_SLOT(pdev->devfn);
3730	hw->bus.func = PCI_FUNC(pdev->devfn);
3731	hw->bus.bus_id = pdev->bus->number;
3732
3733	/* set up the locks for the AQ, do this only once in probe
3734	 * and destroy them only once in remove
3735	 */
3736	mutex_init(&hw->aq.asq_mutex);
3737	mutex_init(&hw->aq.arq_mutex);
3738
3739	spin_lock_init(&adapter->mac_vlan_list_lock);
3740	spin_lock_init(&adapter->cloud_filter_list_lock);
3741
3742	INIT_LIST_HEAD(&adapter->mac_filter_list);
3743	INIT_LIST_HEAD(&adapter->vlan_filter_list);
3744	INIT_LIST_HEAD(&adapter->cloud_filter_list);
3745
3746	INIT_WORK(&adapter->reset_task, iavf_reset_task);
3747	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3748	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3749	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3750	INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3751	queue_delayed_work(iavf_wq, &adapter->init_task,
3752			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3753
3754	/* Setup the wait queue for indicating transition to down status */
3755	init_waitqueue_head(&adapter->down_waitqueue);
3756
3757	return 0;
3758
3759err_ioremap:
3760	free_netdev(netdev);
3761err_alloc_etherdev:
3762	pci_release_regions(pdev);
3763err_pci_reg:
3764err_dma:
3765	pci_disable_device(pdev);
3766	return err;
3767}
3768
3769/**
3770 * iavf_suspend - Power management suspend routine
3771 * @pdev: PCI device information struct
3772 * @state: unused
3773 *
3774 * Called when the system (VM) is entering sleep/suspend.
3775 **/
3776static int __maybe_unused iavf_suspend(struct device *dev_d)
3777{
3778	struct net_device *netdev = dev_get_drvdata(dev_d);
3779	struct iavf_adapter *adapter = netdev_priv(netdev);
3780
3781	netif_device_detach(netdev);
3782
3783	while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3784				&adapter->crit_section))
3785		usleep_range(500, 1000);
3786
3787	if (netif_running(netdev)) {
3788		rtnl_lock();
3789		iavf_down(adapter);
3790		rtnl_unlock();
3791	}
3792	iavf_free_misc_irq(adapter);
3793	iavf_reset_interrupt_capability(adapter);
3794
3795	clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3796
3797	return 0;
3798}
3799
3800/**
3801 * iavf_resume - Power management resume routine
3802 * @pdev: PCI device information struct
3803 *
3804 * Called when the system (VM) is resumed from sleep/suspend.
3805 **/
3806static int __maybe_unused iavf_resume(struct device *dev_d)
3807{
3808	struct pci_dev *pdev = to_pci_dev(dev_d);
3809	struct net_device *netdev = pci_get_drvdata(pdev);
3810	struct iavf_adapter *adapter = netdev_priv(netdev);
3811	u32 err;
3812
3813	pci_set_master(pdev);
3814
3815	rtnl_lock();
3816	err = iavf_set_interrupt_capability(adapter);
3817	if (err) {
3818		rtnl_unlock();
3819		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3820		return err;
3821	}
3822	err = iavf_request_misc_irq(adapter);
3823	rtnl_unlock();
3824	if (err) {
3825		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3826		return err;
3827	}
3828
3829	queue_work(iavf_wq, &adapter->reset_task);
3830
3831	netif_device_attach(netdev);
3832
3833	return err;
3834}
3835
3836/**
3837 * iavf_remove - Device Removal Routine
3838 * @pdev: PCI device information struct
3839 *
3840 * iavf_remove is called by the PCI subsystem to alert the driver
3841 * that it should release a PCI device.  The could be caused by a
3842 * Hot-Plug event, or because the driver is going to be removed from
3843 * memory.
3844 **/
3845static void iavf_remove(struct pci_dev *pdev)
3846{
3847	struct net_device *netdev = pci_get_drvdata(pdev);
3848	struct iavf_adapter *adapter = netdev_priv(netdev);
3849	struct iavf_vlan_filter *vlf, *vlftmp;
3850	struct iavf_mac_filter *f, *ftmp;
3851	struct iavf_cloud_filter *cf, *cftmp;
3852	struct iavf_hw *hw = &adapter->hw;
3853	int err;
3854	/* Indicate we are in remove and not to run reset_task */
3855	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856	cancel_delayed_work_sync(&adapter->init_task);
3857	cancel_work_sync(&adapter->reset_task);
3858	cancel_delayed_work_sync(&adapter->client_task);
3859	if (adapter->netdev_registered) {
3860		unregister_netdev(netdev);
3861		adapter->netdev_registered = false;
3862	}
3863	if (CLIENT_ALLOWED(adapter)) {
3864		err = iavf_lan_del_device(adapter);
3865		if (err)
3866			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867				 err);
3868	}
3869
3870	/* Shut down all the garbage mashers on the detention level */
3871	adapter->state = __IAVF_REMOVE;
3872	adapter->aq_required = 0;
3873	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874	iavf_request_reset(adapter);
3875	msleep(50);
3876	/* If the FW isn't responding, kick it once, but only once. */
3877	if (!iavf_asq_done(hw)) {
3878		iavf_request_reset(adapter);
3879		msleep(50);
3880	}
3881	iavf_free_all_tx_resources(adapter);
3882	iavf_free_all_rx_resources(adapter);
3883	iavf_misc_irq_disable(adapter);
3884	iavf_free_misc_irq(adapter);
3885	iavf_reset_interrupt_capability(adapter);
3886	iavf_free_q_vectors(adapter);
3887
3888	cancel_delayed_work_sync(&adapter->watchdog_task);
3889
3890	cancel_work_sync(&adapter->adminq_task);
3891
3892	iavf_free_rss(adapter);
3893
3894	if (hw->aq.asq.count)
3895		iavf_shutdown_adminq(hw);
3896
3897	/* destroy the locks only once, here */
3898	mutex_destroy(&hw->aq.arq_mutex);
3899	mutex_destroy(&hw->aq.asq_mutex);
3900
3901	iounmap(hw->hw_addr);
3902	pci_release_regions(pdev);
3903	iavf_free_all_tx_resources(adapter);
3904	iavf_free_all_rx_resources(adapter);
3905	iavf_free_queues(adapter);
3906	kfree(adapter->vf_res);
3907	spin_lock_bh(&adapter->mac_vlan_list_lock);
3908	/* If we got removed before an up/down sequence, we've got a filter
3909	 * hanging out there that we need to get rid of.
3910	 */
3911	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912		list_del(&f->list);
3913		kfree(f);
3914	}
3915	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916				 list) {
3917		list_del(&vlf->list);
3918		kfree(vlf);
3919	}
3920
3921	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922
3923	spin_lock_bh(&adapter->cloud_filter_list_lock);
3924	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925		list_del(&cf->list);
3926		kfree(cf);
3927	}
3928	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929
3930	free_netdev(netdev);
3931
3932	pci_disable_pcie_error_reporting(pdev);
3933
3934	pci_disable_device(pdev);
3935}
3936
3937static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
3938
3939static struct pci_driver iavf_driver = {
3940	.name      = iavf_driver_name,
3941	.id_table  = iavf_pci_tbl,
3942	.probe     = iavf_probe,
3943	.remove    = iavf_remove,
3944	.driver.pm = &iavf_pm_ops,
3945	.shutdown  = iavf_shutdown,
3946};
3947
3948/**
3949 * iavf_init_module - Driver Registration Routine
3950 *
3951 * iavf_init_module is the first routine called when the driver is
3952 * loaded. All it does is register with the PCI subsystem.
3953 **/
3954static int __init iavf_init_module(void)
3955{
3956	int ret;
3957
3958	pr_info("iavf: %s\n", iavf_driver_string);
3959
3960	pr_info("%s\n", iavf_copyright);
3961
3962	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3963				  iavf_driver_name);
3964	if (!iavf_wq) {
3965		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3966		return -ENOMEM;
3967	}
3968	ret = pci_register_driver(&iavf_driver);
3969	return ret;
3970}
3971
3972module_init(iavf_init_module);
3973
3974/**
3975 * iavf_exit_module - Driver Exit Cleanup Routine
3976 *
3977 * iavf_exit_module is called just before the driver is removed
3978 * from memory.
3979 **/
3980static void __exit iavf_exit_module(void)
3981{
3982	pci_unregister_driver(&iavf_driver);
3983	destroy_workqueue(iavf_wq);
3984}
3985
3986module_exit(iavf_exit_module);
3987
3988/* iavf_main.c */