Loading...
Note: File does not exist in v4.6.
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf.h"
5#include "iavf_prototype.h"
6#include "iavf_client.h"
7/* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11#define CREATE_TRACE_POINTS
12#include "iavf_trace.h"
13
14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16static int iavf_close(struct net_device *netdev);
17static int iavf_init_get_resources(struct iavf_adapter *adapter);
18static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20char iavf_driver_name[] = "iavf";
21static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24static const char iavf_copyright[] =
25 "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27/* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 * Class, Class Mask, private data (not used) }
34 */
35static const struct pci_device_id iavf_pci_tbl[] = {
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 /* required last entry */
41 {0, }
42};
43
44MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46MODULE_ALIAS("i40evf");
47MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49MODULE_LICENSE("GPL v2");
50
51static const struct net_device_ops iavf_netdev_ops;
52struct workqueue_struct *iavf_wq;
53
54/**
55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56 * @hw: pointer to the HW structure
57 * @mem: ptr to mem struct to fill out
58 * @size: size of memory requested
59 * @alignment: what to align the allocation to
60 **/
61enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 struct iavf_dma_mem *mem,
63 u64 size, u32 alignment)
64{
65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66
67 if (!mem)
68 return IAVF_ERR_PARAM;
69
70 mem->size = ALIGN(size, alignment);
71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 if (mem->va)
74 return 0;
75 else
76 return IAVF_ERR_NO_MEMORY;
77}
78
79/**
80 * iavf_free_dma_mem_d - OS specific memory free for shared code
81 * @hw: pointer to the HW structure
82 * @mem: ptr to mem struct to free
83 **/
84enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 struct iavf_dma_mem *mem)
86{
87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88
89 if (!mem || !mem->va)
90 return IAVF_ERR_PARAM;
91 dma_free_coherent(&adapter->pdev->dev, mem->size,
92 mem->va, (dma_addr_t)mem->pa);
93 return 0;
94}
95
96/**
97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98 * @hw: pointer to the HW structure
99 * @mem: ptr to mem struct to fill out
100 * @size: size of memory requested
101 **/
102enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 struct iavf_virt_mem *mem, u32 size)
104{
105 if (!mem)
106 return IAVF_ERR_PARAM;
107
108 mem->size = size;
109 mem->va = kzalloc(size, GFP_KERNEL);
110
111 if (mem->va)
112 return 0;
113 else
114 return IAVF_ERR_NO_MEMORY;
115}
116
117/**
118 * iavf_free_virt_mem_d - OS specific memory free for shared code
119 * @hw: pointer to the HW structure
120 * @mem: ptr to mem struct to free
121 **/
122enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 struct iavf_virt_mem *mem)
124{
125 if (!mem)
126 return IAVF_ERR_PARAM;
127
128 /* it's ok to kfree a NULL pointer */
129 kfree(mem->va);
130
131 return 0;
132}
133
134/**
135 * iavf_lock_timeout - try to lock mutex but give up after timeout
136 * @lock: mutex that should be locked
137 * @msecs: timeout in msecs
138 *
139 * Returns 0 on success, negative on failure
140 **/
141static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
142{
143 unsigned int wait, delay = 10;
144
145 for (wait = 0; wait < msecs; wait += delay) {
146 if (mutex_trylock(lock))
147 return 0;
148
149 msleep(delay);
150 }
151
152 return -1;
153}
154
155/**
156 * iavf_schedule_reset - Set the flags and schedule a reset event
157 * @adapter: board private structure
158 **/
159void iavf_schedule_reset(struct iavf_adapter *adapter)
160{
161 if (!(adapter->flags &
162 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
163 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
164 queue_work(iavf_wq, &adapter->reset_task);
165 }
166}
167
168/**
169 * iavf_tx_timeout - Respond to a Tx Hang
170 * @netdev: network interface device structure
171 * @txqueue: queue number that is timing out
172 **/
173static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
174{
175 struct iavf_adapter *adapter = netdev_priv(netdev);
176
177 adapter->tx_timeout_count++;
178 iavf_schedule_reset(adapter);
179}
180
181/**
182 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
183 * @adapter: board private structure
184 **/
185static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
186{
187 struct iavf_hw *hw = &adapter->hw;
188
189 if (!adapter->msix_entries)
190 return;
191
192 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
193
194 iavf_flush(hw);
195
196 synchronize_irq(adapter->msix_entries[0].vector);
197}
198
199/**
200 * iavf_misc_irq_enable - Enable default interrupt generation settings
201 * @adapter: board private structure
202 **/
203static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
204{
205 struct iavf_hw *hw = &adapter->hw;
206
207 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
208 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
209 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
210
211 iavf_flush(hw);
212}
213
214/**
215 * iavf_irq_disable - Mask off interrupt generation on the NIC
216 * @adapter: board private structure
217 **/
218static void iavf_irq_disable(struct iavf_adapter *adapter)
219{
220 int i;
221 struct iavf_hw *hw = &adapter->hw;
222
223 if (!adapter->msix_entries)
224 return;
225
226 for (i = 1; i < adapter->num_msix_vectors; i++) {
227 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
228 synchronize_irq(adapter->msix_entries[i].vector);
229 }
230 iavf_flush(hw);
231}
232
233/**
234 * iavf_irq_enable_queues - Enable interrupt for specified queues
235 * @adapter: board private structure
236 * @mask: bitmap of queues to enable
237 **/
238void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
239{
240 struct iavf_hw *hw = &adapter->hw;
241 int i;
242
243 for (i = 1; i < adapter->num_msix_vectors; i++) {
244 if (mask & BIT(i - 1)) {
245 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
246 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
247 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
248 }
249 }
250}
251
252/**
253 * iavf_irq_enable - Enable default interrupt generation settings
254 * @adapter: board private structure
255 * @flush: boolean value whether to run rd32()
256 **/
257void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
258{
259 struct iavf_hw *hw = &adapter->hw;
260
261 iavf_misc_irq_enable(adapter);
262 iavf_irq_enable_queues(adapter, ~0);
263
264 if (flush)
265 iavf_flush(hw);
266}
267
268/**
269 * iavf_msix_aq - Interrupt handler for vector 0
270 * @irq: interrupt number
271 * @data: pointer to netdev
272 **/
273static irqreturn_t iavf_msix_aq(int irq, void *data)
274{
275 struct net_device *netdev = data;
276 struct iavf_adapter *adapter = netdev_priv(netdev);
277 struct iavf_hw *hw = &adapter->hw;
278
279 /* handle non-queue interrupts, these reads clear the registers */
280 rd32(hw, IAVF_VFINT_ICR01);
281 rd32(hw, IAVF_VFINT_ICR0_ENA1);
282
283 /* schedule work on the private workqueue */
284 queue_work(iavf_wq, &adapter->adminq_task);
285
286 return IRQ_HANDLED;
287}
288
289/**
290 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
291 * @irq: interrupt number
292 * @data: pointer to a q_vector
293 **/
294static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
295{
296 struct iavf_q_vector *q_vector = data;
297
298 if (!q_vector->tx.ring && !q_vector->rx.ring)
299 return IRQ_HANDLED;
300
301 napi_schedule_irqoff(&q_vector->napi);
302
303 return IRQ_HANDLED;
304}
305
306/**
307 * iavf_map_vector_to_rxq - associate irqs with rx queues
308 * @adapter: board private structure
309 * @v_idx: interrupt number
310 * @r_idx: queue number
311 **/
312static void
313iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
314{
315 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
316 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
317 struct iavf_hw *hw = &adapter->hw;
318
319 rx_ring->q_vector = q_vector;
320 rx_ring->next = q_vector->rx.ring;
321 rx_ring->vsi = &adapter->vsi;
322 q_vector->rx.ring = rx_ring;
323 q_vector->rx.count++;
324 q_vector->rx.next_update = jiffies + 1;
325 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
326 q_vector->ring_mask |= BIT(r_idx);
327 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
328 q_vector->rx.current_itr >> 1);
329 q_vector->rx.current_itr = q_vector->rx.target_itr;
330}
331
332/**
333 * iavf_map_vector_to_txq - associate irqs with tx queues
334 * @adapter: board private structure
335 * @v_idx: interrupt number
336 * @t_idx: queue number
337 **/
338static void
339iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
340{
341 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
342 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
343 struct iavf_hw *hw = &adapter->hw;
344
345 tx_ring->q_vector = q_vector;
346 tx_ring->next = q_vector->tx.ring;
347 tx_ring->vsi = &adapter->vsi;
348 q_vector->tx.ring = tx_ring;
349 q_vector->tx.count++;
350 q_vector->tx.next_update = jiffies + 1;
351 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
352 q_vector->num_ringpairs++;
353 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
354 q_vector->tx.target_itr >> 1);
355 q_vector->tx.current_itr = q_vector->tx.target_itr;
356}
357
358/**
359 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
360 * @adapter: board private structure to initialize
361 *
362 * This function maps descriptor rings to the queue-specific vectors
363 * we were allotted through the MSI-X enabling code. Ideally, we'd have
364 * one vector per ring/queue, but on a constrained vector budget, we
365 * group the rings as "efficiently" as possible. You would add new
366 * mapping configurations in here.
367 **/
368static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
369{
370 int rings_remaining = adapter->num_active_queues;
371 int ridx = 0, vidx = 0;
372 int q_vectors;
373
374 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
375
376 for (; ridx < rings_remaining; ridx++) {
377 iavf_map_vector_to_rxq(adapter, vidx, ridx);
378 iavf_map_vector_to_txq(adapter, vidx, ridx);
379
380 /* In the case where we have more queues than vectors, continue
381 * round-robin on vectors until all queues are mapped.
382 */
383 if (++vidx >= q_vectors)
384 vidx = 0;
385 }
386
387 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
388}
389
390/**
391 * iavf_irq_affinity_notify - Callback for affinity changes
392 * @notify: context as to what irq was changed
393 * @mask: the new affinity mask
394 *
395 * This is a callback function used by the irq_set_affinity_notifier function
396 * so that we may register to receive changes to the irq affinity masks.
397 **/
398static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
399 const cpumask_t *mask)
400{
401 struct iavf_q_vector *q_vector =
402 container_of(notify, struct iavf_q_vector, affinity_notify);
403
404 cpumask_copy(&q_vector->affinity_mask, mask);
405}
406
407/**
408 * iavf_irq_affinity_release - Callback for affinity notifier release
409 * @ref: internal core kernel usage
410 *
411 * This is a callback function used by the irq_set_affinity_notifier function
412 * to inform the current notification subscriber that they will no longer
413 * receive notifications.
414 **/
415static void iavf_irq_affinity_release(struct kref *ref) {}
416
417/**
418 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
419 * @adapter: board private structure
420 * @basename: device basename
421 *
422 * Allocates MSI-X vectors for tx and rx handling, and requests
423 * interrupts from the kernel.
424 **/
425static int
426iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
427{
428 unsigned int vector, q_vectors;
429 unsigned int rx_int_idx = 0, tx_int_idx = 0;
430 int irq_num, err;
431 int cpu;
432
433 iavf_irq_disable(adapter);
434 /* Decrement for Other and TCP Timer vectors */
435 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
436
437 for (vector = 0; vector < q_vectors; vector++) {
438 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
439
440 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
441
442 if (q_vector->tx.ring && q_vector->rx.ring) {
443 snprintf(q_vector->name, sizeof(q_vector->name),
444 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
445 tx_int_idx++;
446 } else if (q_vector->rx.ring) {
447 snprintf(q_vector->name, sizeof(q_vector->name),
448 "iavf-%s-rx-%d", basename, rx_int_idx++);
449 } else if (q_vector->tx.ring) {
450 snprintf(q_vector->name, sizeof(q_vector->name),
451 "iavf-%s-tx-%d", basename, tx_int_idx++);
452 } else {
453 /* skip this unused q_vector */
454 continue;
455 }
456 err = request_irq(irq_num,
457 iavf_msix_clean_rings,
458 0,
459 q_vector->name,
460 q_vector);
461 if (err) {
462 dev_info(&adapter->pdev->dev,
463 "Request_irq failed, error: %d\n", err);
464 goto free_queue_irqs;
465 }
466 /* register for affinity change notifications */
467 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
468 q_vector->affinity_notify.release =
469 iavf_irq_affinity_release;
470 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
471 /* Spread the IRQ affinity hints across online CPUs. Note that
472 * get_cpu_mask returns a mask with a permanent lifetime so
473 * it's safe to use as a hint for irq_set_affinity_hint.
474 */
475 cpu = cpumask_local_spread(q_vector->v_idx, -1);
476 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
477 }
478
479 return 0;
480
481free_queue_irqs:
482 while (vector) {
483 vector--;
484 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
485 irq_set_affinity_notifier(irq_num, NULL);
486 irq_set_affinity_hint(irq_num, NULL);
487 free_irq(irq_num, &adapter->q_vectors[vector]);
488 }
489 return err;
490}
491
492/**
493 * iavf_request_misc_irq - Initialize MSI-X interrupts
494 * @adapter: board private structure
495 *
496 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
497 * vector is only for the admin queue, and stays active even when the netdev
498 * is closed.
499 **/
500static int iavf_request_misc_irq(struct iavf_adapter *adapter)
501{
502 struct net_device *netdev = adapter->netdev;
503 int err;
504
505 snprintf(adapter->misc_vector_name,
506 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
507 dev_name(&adapter->pdev->dev));
508 err = request_irq(adapter->msix_entries[0].vector,
509 &iavf_msix_aq, 0,
510 adapter->misc_vector_name, netdev);
511 if (err) {
512 dev_err(&adapter->pdev->dev,
513 "request_irq for %s failed: %d\n",
514 adapter->misc_vector_name, err);
515 free_irq(adapter->msix_entries[0].vector, netdev);
516 }
517 return err;
518}
519
520/**
521 * iavf_free_traffic_irqs - Free MSI-X interrupts
522 * @adapter: board private structure
523 *
524 * Frees all MSI-X vectors other than 0.
525 **/
526static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
527{
528 int vector, irq_num, q_vectors;
529
530 if (!adapter->msix_entries)
531 return;
532
533 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
534
535 for (vector = 0; vector < q_vectors; vector++) {
536 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
537 irq_set_affinity_notifier(irq_num, NULL);
538 irq_set_affinity_hint(irq_num, NULL);
539 free_irq(irq_num, &adapter->q_vectors[vector]);
540 }
541}
542
543/**
544 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
545 * @adapter: board private structure
546 *
547 * Frees MSI-X vector 0.
548 **/
549static void iavf_free_misc_irq(struct iavf_adapter *adapter)
550{
551 struct net_device *netdev = adapter->netdev;
552
553 if (!adapter->msix_entries)
554 return;
555
556 free_irq(adapter->msix_entries[0].vector, netdev);
557}
558
559/**
560 * iavf_configure_tx - Configure Transmit Unit after Reset
561 * @adapter: board private structure
562 *
563 * Configure the Tx unit of the MAC after a reset.
564 **/
565static void iavf_configure_tx(struct iavf_adapter *adapter)
566{
567 struct iavf_hw *hw = &adapter->hw;
568 int i;
569
570 for (i = 0; i < adapter->num_active_queues; i++)
571 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
572}
573
574/**
575 * iavf_configure_rx - Configure Receive Unit after Reset
576 * @adapter: board private structure
577 *
578 * Configure the Rx unit of the MAC after a reset.
579 **/
580static void iavf_configure_rx(struct iavf_adapter *adapter)
581{
582 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
583 struct iavf_hw *hw = &adapter->hw;
584 int i;
585
586 /* Legacy Rx will always default to a 2048 buffer size. */
587#if (PAGE_SIZE < 8192)
588 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
589 struct net_device *netdev = adapter->netdev;
590
591 /* For jumbo frames on systems with 4K pages we have to use
592 * an order 1 page, so we might as well increase the size
593 * of our Rx buffer to make better use of the available space
594 */
595 rx_buf_len = IAVF_RXBUFFER_3072;
596
597 /* We use a 1536 buffer size for configurations with
598 * standard Ethernet mtu. On x86 this gives us enough room
599 * for shared info and 192 bytes of padding.
600 */
601 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
602 (netdev->mtu <= ETH_DATA_LEN))
603 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
604 }
605#endif
606
607 for (i = 0; i < adapter->num_active_queues; i++) {
608 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
609 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
610
611 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
612 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
613 else
614 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
615 }
616}
617
618/**
619 * iavf_find_vlan - Search filter list for specific vlan filter
620 * @adapter: board private structure
621 * @vlan: vlan tag
622 *
623 * Returns ptr to the filter object or NULL. Must be called while holding the
624 * mac_vlan_list_lock.
625 **/
626static struct
627iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
628{
629 struct iavf_vlan_filter *f;
630
631 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
632 if (vlan == f->vlan)
633 return f;
634 }
635 return NULL;
636}
637
638/**
639 * iavf_add_vlan - Add a vlan filter to the list
640 * @adapter: board private structure
641 * @vlan: VLAN tag
642 *
643 * Returns ptr to the filter object or NULL when no memory available.
644 **/
645static struct
646iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
647{
648 struct iavf_vlan_filter *f = NULL;
649
650 spin_lock_bh(&adapter->mac_vlan_list_lock);
651
652 f = iavf_find_vlan(adapter, vlan);
653 if (!f) {
654 f = kzalloc(sizeof(*f), GFP_ATOMIC);
655 if (!f)
656 goto clearout;
657
658 f->vlan = vlan;
659
660 list_add_tail(&f->list, &adapter->vlan_filter_list);
661 f->add = true;
662 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
663 }
664
665clearout:
666 spin_unlock_bh(&adapter->mac_vlan_list_lock);
667 return f;
668}
669
670/**
671 * iavf_del_vlan - Remove a vlan filter from the list
672 * @adapter: board private structure
673 * @vlan: VLAN tag
674 **/
675static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
676{
677 struct iavf_vlan_filter *f;
678
679 spin_lock_bh(&adapter->mac_vlan_list_lock);
680
681 f = iavf_find_vlan(adapter, vlan);
682 if (f) {
683 f->remove = true;
684 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
685 }
686
687 spin_unlock_bh(&adapter->mac_vlan_list_lock);
688}
689
690/**
691 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
692 * @netdev: network device struct
693 * @proto: unused protocol data
694 * @vid: VLAN tag
695 **/
696static int iavf_vlan_rx_add_vid(struct net_device *netdev,
697 __always_unused __be16 proto, u16 vid)
698{
699 struct iavf_adapter *adapter = netdev_priv(netdev);
700
701 if (!VLAN_ALLOWED(adapter))
702 return -EIO;
703 if (iavf_add_vlan(adapter, vid) == NULL)
704 return -ENOMEM;
705 return 0;
706}
707
708/**
709 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
710 * @netdev: network device struct
711 * @proto: unused protocol data
712 * @vid: VLAN tag
713 **/
714static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
715 __always_unused __be16 proto, u16 vid)
716{
717 struct iavf_adapter *adapter = netdev_priv(netdev);
718
719 if (VLAN_ALLOWED(adapter)) {
720 iavf_del_vlan(adapter, vid);
721 return 0;
722 }
723 return -EIO;
724}
725
726/**
727 * iavf_find_filter - Search filter list for specific mac filter
728 * @adapter: board private structure
729 * @macaddr: the MAC address
730 *
731 * Returns ptr to the filter object or NULL. Must be called while holding the
732 * mac_vlan_list_lock.
733 **/
734static struct
735iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
736 const u8 *macaddr)
737{
738 struct iavf_mac_filter *f;
739
740 if (!macaddr)
741 return NULL;
742
743 list_for_each_entry(f, &adapter->mac_filter_list, list) {
744 if (ether_addr_equal(macaddr, f->macaddr))
745 return f;
746 }
747 return NULL;
748}
749
750/**
751 * iavf_add_filter - Add a mac filter to the filter list
752 * @adapter: board private structure
753 * @macaddr: the MAC address
754 *
755 * Returns ptr to the filter object or NULL when no memory available.
756 **/
757struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
758 const u8 *macaddr)
759{
760 struct iavf_mac_filter *f;
761
762 if (!macaddr)
763 return NULL;
764
765 f = iavf_find_filter(adapter, macaddr);
766 if (!f) {
767 f = kzalloc(sizeof(*f), GFP_ATOMIC);
768 if (!f)
769 return f;
770
771 ether_addr_copy(f->macaddr, macaddr);
772
773 list_add_tail(&f->list, &adapter->mac_filter_list);
774 f->add = true;
775 f->is_new_mac = true;
776 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
777 } else {
778 f->remove = false;
779 }
780
781 return f;
782}
783
784/**
785 * iavf_set_mac - NDO callback to set port mac address
786 * @netdev: network interface device structure
787 * @p: pointer to an address structure
788 *
789 * Returns 0 on success, negative on failure
790 **/
791static int iavf_set_mac(struct net_device *netdev, void *p)
792{
793 struct iavf_adapter *adapter = netdev_priv(netdev);
794 struct iavf_hw *hw = &adapter->hw;
795 struct iavf_mac_filter *f;
796 struct sockaddr *addr = p;
797
798 if (!is_valid_ether_addr(addr->sa_data))
799 return -EADDRNOTAVAIL;
800
801 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
802 return 0;
803
804 spin_lock_bh(&adapter->mac_vlan_list_lock);
805
806 f = iavf_find_filter(adapter, hw->mac.addr);
807 if (f) {
808 f->remove = true;
809 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
810 }
811
812 f = iavf_add_filter(adapter, addr->sa_data);
813
814 spin_unlock_bh(&adapter->mac_vlan_list_lock);
815
816 if (f) {
817 ether_addr_copy(hw->mac.addr, addr->sa_data);
818 }
819
820 return (f == NULL) ? -ENOMEM : 0;
821}
822
823/**
824 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
825 * @netdev: the netdevice
826 * @addr: address to add
827 *
828 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
829 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
830 */
831static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
832{
833 struct iavf_adapter *adapter = netdev_priv(netdev);
834
835 if (iavf_add_filter(adapter, addr))
836 return 0;
837 else
838 return -ENOMEM;
839}
840
841/**
842 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
843 * @netdev: the netdevice
844 * @addr: address to add
845 *
846 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
847 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
848 */
849static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
850{
851 struct iavf_adapter *adapter = netdev_priv(netdev);
852 struct iavf_mac_filter *f;
853
854 /* Under some circumstances, we might receive a request to delete
855 * our own device address from our uc list. Because we store the
856 * device address in the VSI's MAC/VLAN filter list, we need to ignore
857 * such requests and not delete our device address from this list.
858 */
859 if (ether_addr_equal(addr, netdev->dev_addr))
860 return 0;
861
862 f = iavf_find_filter(adapter, addr);
863 if (f) {
864 f->remove = true;
865 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
866 }
867 return 0;
868}
869
870/**
871 * iavf_set_rx_mode - NDO callback to set the netdev filters
872 * @netdev: network interface device structure
873 **/
874static void iavf_set_rx_mode(struct net_device *netdev)
875{
876 struct iavf_adapter *adapter = netdev_priv(netdev);
877
878 spin_lock_bh(&adapter->mac_vlan_list_lock);
879 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
880 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
881 spin_unlock_bh(&adapter->mac_vlan_list_lock);
882
883 if (netdev->flags & IFF_PROMISC &&
884 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
885 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
886 else if (!(netdev->flags & IFF_PROMISC) &&
887 adapter->flags & IAVF_FLAG_PROMISC_ON)
888 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
889
890 if (netdev->flags & IFF_ALLMULTI &&
891 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
892 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
893 else if (!(netdev->flags & IFF_ALLMULTI) &&
894 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
895 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
896}
897
898/**
899 * iavf_napi_enable_all - enable NAPI on all queue vectors
900 * @adapter: board private structure
901 **/
902static void iavf_napi_enable_all(struct iavf_adapter *adapter)
903{
904 int q_idx;
905 struct iavf_q_vector *q_vector;
906 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
907
908 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
909 struct napi_struct *napi;
910
911 q_vector = &adapter->q_vectors[q_idx];
912 napi = &q_vector->napi;
913 napi_enable(napi);
914 }
915}
916
917/**
918 * iavf_napi_disable_all - disable NAPI on all queue vectors
919 * @adapter: board private structure
920 **/
921static void iavf_napi_disable_all(struct iavf_adapter *adapter)
922{
923 int q_idx;
924 struct iavf_q_vector *q_vector;
925 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
926
927 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
928 q_vector = &adapter->q_vectors[q_idx];
929 napi_disable(&q_vector->napi);
930 }
931}
932
933/**
934 * iavf_configure - set up transmit and receive data structures
935 * @adapter: board private structure
936 **/
937static void iavf_configure(struct iavf_adapter *adapter)
938{
939 struct net_device *netdev = adapter->netdev;
940 int i;
941
942 iavf_set_rx_mode(netdev);
943
944 iavf_configure_tx(adapter);
945 iavf_configure_rx(adapter);
946 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
947
948 for (i = 0; i < adapter->num_active_queues; i++) {
949 struct iavf_ring *ring = &adapter->rx_rings[i];
950
951 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
952 }
953}
954
955/**
956 * iavf_up_complete - Finish the last steps of bringing up a connection
957 * @adapter: board private structure
958 *
959 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
960 **/
961static void iavf_up_complete(struct iavf_adapter *adapter)
962{
963 adapter->state = __IAVF_RUNNING;
964 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
965
966 iavf_napi_enable_all(adapter);
967
968 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
969 if (CLIENT_ENABLED(adapter))
970 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
971 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
972}
973
974/**
975 * iavf_down - Shutdown the connection processing
976 * @adapter: board private structure
977 *
978 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
979 **/
980void iavf_down(struct iavf_adapter *adapter)
981{
982 struct net_device *netdev = adapter->netdev;
983 struct iavf_vlan_filter *vlf;
984 struct iavf_cloud_filter *cf;
985 struct iavf_fdir_fltr *fdir;
986 struct iavf_mac_filter *f;
987 struct iavf_adv_rss *rss;
988
989 if (adapter->state <= __IAVF_DOWN_PENDING)
990 return;
991
992 netif_carrier_off(netdev);
993 netif_tx_disable(netdev);
994 adapter->link_up = false;
995 iavf_napi_disable_all(adapter);
996 iavf_irq_disable(adapter);
997
998 spin_lock_bh(&adapter->mac_vlan_list_lock);
999
1000 /* clear the sync flag on all filters */
1001 __dev_uc_unsync(adapter->netdev, NULL);
1002 __dev_mc_unsync(adapter->netdev, NULL);
1003
1004 /* remove all MAC filters */
1005 list_for_each_entry(f, &adapter->mac_filter_list, list) {
1006 f->remove = true;
1007 }
1008
1009 /* remove all VLAN filters */
1010 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1011 vlf->remove = true;
1012 }
1013
1014 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015
1016 /* remove all cloud filters */
1017 spin_lock_bh(&adapter->cloud_filter_list_lock);
1018 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1019 cf->del = true;
1020 }
1021 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1022
1023 /* remove all Flow Director filters */
1024 spin_lock_bh(&adapter->fdir_fltr_lock);
1025 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1026 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1027 }
1028 spin_unlock_bh(&adapter->fdir_fltr_lock);
1029
1030 /* remove all advance RSS configuration */
1031 spin_lock_bh(&adapter->adv_rss_lock);
1032 list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1033 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1034 spin_unlock_bh(&adapter->adv_rss_lock);
1035
1036 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1037 adapter->state != __IAVF_RESETTING) {
1038 /* cancel any current operation */
1039 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1040 /* Schedule operations to close down the HW. Don't wait
1041 * here for this to complete. The watchdog is still running
1042 * and it will take care of this.
1043 */
1044 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1045 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1046 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1047 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1048 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1049 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1050 }
1051
1052 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1053}
1054
1055/**
1056 * iavf_acquire_msix_vectors - Setup the MSIX capability
1057 * @adapter: board private structure
1058 * @vectors: number of vectors to request
1059 *
1060 * Work with the OS to set up the MSIX vectors needed.
1061 *
1062 * Returns 0 on success, negative on failure
1063 **/
1064static int
1065iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1066{
1067 int err, vector_threshold;
1068
1069 /* We'll want at least 3 (vector_threshold):
1070 * 0) Other (Admin Queue and link, mostly)
1071 * 1) TxQ[0] Cleanup
1072 * 2) RxQ[0] Cleanup
1073 */
1074 vector_threshold = MIN_MSIX_COUNT;
1075
1076 /* The more we get, the more we will assign to Tx/Rx Cleanup
1077 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1078 * Right now, we simply care about how many we'll get; we'll
1079 * set them up later while requesting irq's.
1080 */
1081 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1082 vector_threshold, vectors);
1083 if (err < 0) {
1084 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1085 kfree(adapter->msix_entries);
1086 adapter->msix_entries = NULL;
1087 return err;
1088 }
1089
1090 /* Adjust for only the vectors we'll use, which is minimum
1091 * of max_msix_q_vectors + NONQ_VECS, or the number of
1092 * vectors we were allocated.
1093 */
1094 adapter->num_msix_vectors = err;
1095 return 0;
1096}
1097
1098/**
1099 * iavf_free_queues - Free memory for all rings
1100 * @adapter: board private structure to initialize
1101 *
1102 * Free all of the memory associated with queue pairs.
1103 **/
1104static void iavf_free_queues(struct iavf_adapter *adapter)
1105{
1106 if (!adapter->vsi_res)
1107 return;
1108 adapter->num_active_queues = 0;
1109 kfree(adapter->tx_rings);
1110 adapter->tx_rings = NULL;
1111 kfree(adapter->rx_rings);
1112 adapter->rx_rings = NULL;
1113}
1114
1115/**
1116 * iavf_alloc_queues - Allocate memory for all rings
1117 * @adapter: board private structure to initialize
1118 *
1119 * We allocate one ring per queue at run-time since we don't know the
1120 * number of queues at compile-time. The polling_netdev array is
1121 * intended for Multiqueue, but should work fine with a single queue.
1122 **/
1123static int iavf_alloc_queues(struct iavf_adapter *adapter)
1124{
1125 int i, num_active_queues;
1126
1127 /* If we're in reset reallocating queues we don't actually know yet for
1128 * certain the PF gave us the number of queues we asked for but we'll
1129 * assume it did. Once basic reset is finished we'll confirm once we
1130 * start negotiating config with PF.
1131 */
1132 if (adapter->num_req_queues)
1133 num_active_queues = adapter->num_req_queues;
1134 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1135 adapter->num_tc)
1136 num_active_queues = adapter->ch_config.total_qps;
1137 else
1138 num_active_queues = min_t(int,
1139 adapter->vsi_res->num_queue_pairs,
1140 (int)(num_online_cpus()));
1141
1142
1143 adapter->tx_rings = kcalloc(num_active_queues,
1144 sizeof(struct iavf_ring), GFP_KERNEL);
1145 if (!adapter->tx_rings)
1146 goto err_out;
1147 adapter->rx_rings = kcalloc(num_active_queues,
1148 sizeof(struct iavf_ring), GFP_KERNEL);
1149 if (!adapter->rx_rings)
1150 goto err_out;
1151
1152 for (i = 0; i < num_active_queues; i++) {
1153 struct iavf_ring *tx_ring;
1154 struct iavf_ring *rx_ring;
1155
1156 tx_ring = &adapter->tx_rings[i];
1157
1158 tx_ring->queue_index = i;
1159 tx_ring->netdev = adapter->netdev;
1160 tx_ring->dev = &adapter->pdev->dev;
1161 tx_ring->count = adapter->tx_desc_count;
1162 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1163 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1164 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1165
1166 rx_ring = &adapter->rx_rings[i];
1167 rx_ring->queue_index = i;
1168 rx_ring->netdev = adapter->netdev;
1169 rx_ring->dev = &adapter->pdev->dev;
1170 rx_ring->count = adapter->rx_desc_count;
1171 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1172 }
1173
1174 adapter->num_active_queues = num_active_queues;
1175
1176 return 0;
1177
1178err_out:
1179 iavf_free_queues(adapter);
1180 return -ENOMEM;
1181}
1182
1183/**
1184 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1185 * @adapter: board private structure to initialize
1186 *
1187 * Attempt to configure the interrupts using the best available
1188 * capabilities of the hardware and the kernel.
1189 **/
1190static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1191{
1192 int vector, v_budget;
1193 int pairs = 0;
1194 int err = 0;
1195
1196 if (!adapter->vsi_res) {
1197 err = -EIO;
1198 goto out;
1199 }
1200 pairs = adapter->num_active_queues;
1201
1202 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1203 * us much good if we have more vectors than CPUs. However, we already
1204 * limit the total number of queues by the number of CPUs so we do not
1205 * need any further limiting here.
1206 */
1207 v_budget = min_t(int, pairs + NONQ_VECS,
1208 (int)adapter->vf_res->max_vectors);
1209
1210 adapter->msix_entries = kcalloc(v_budget,
1211 sizeof(struct msix_entry), GFP_KERNEL);
1212 if (!adapter->msix_entries) {
1213 err = -ENOMEM;
1214 goto out;
1215 }
1216
1217 for (vector = 0; vector < v_budget; vector++)
1218 adapter->msix_entries[vector].entry = vector;
1219
1220 err = iavf_acquire_msix_vectors(adapter, v_budget);
1221
1222out:
1223 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1224 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1225 return err;
1226}
1227
1228/**
1229 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1230 * @adapter: board private structure
1231 *
1232 * Return 0 on success, negative on failure
1233 **/
1234static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1235{
1236 struct iavf_aqc_get_set_rss_key_data *rss_key =
1237 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1238 struct iavf_hw *hw = &adapter->hw;
1239 int ret = 0;
1240
1241 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1242 /* bail because we already have a command pending */
1243 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1244 adapter->current_op);
1245 return -EBUSY;
1246 }
1247
1248 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1249 if (ret) {
1250 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1251 iavf_stat_str(hw, ret),
1252 iavf_aq_str(hw, hw->aq.asq_last_status));
1253 return ret;
1254
1255 }
1256
1257 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1258 adapter->rss_lut, adapter->rss_lut_size);
1259 if (ret) {
1260 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1261 iavf_stat_str(hw, ret),
1262 iavf_aq_str(hw, hw->aq.asq_last_status));
1263 }
1264
1265 return ret;
1266
1267}
1268
1269/**
1270 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1271 * @adapter: board private structure
1272 *
1273 * Returns 0 on success, negative on failure
1274 **/
1275static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1276{
1277 struct iavf_hw *hw = &adapter->hw;
1278 u32 *dw;
1279 u16 i;
1280
1281 dw = (u32 *)adapter->rss_key;
1282 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1283 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1284
1285 dw = (u32 *)adapter->rss_lut;
1286 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1287 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1288
1289 iavf_flush(hw);
1290
1291 return 0;
1292}
1293
1294/**
1295 * iavf_config_rss - Configure RSS keys and lut
1296 * @adapter: board private structure
1297 *
1298 * Returns 0 on success, negative on failure
1299 **/
1300int iavf_config_rss(struct iavf_adapter *adapter)
1301{
1302
1303 if (RSS_PF(adapter)) {
1304 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1305 IAVF_FLAG_AQ_SET_RSS_KEY;
1306 return 0;
1307 } else if (RSS_AQ(adapter)) {
1308 return iavf_config_rss_aq(adapter);
1309 } else {
1310 return iavf_config_rss_reg(adapter);
1311 }
1312}
1313
1314/**
1315 * iavf_fill_rss_lut - Fill the lut with default values
1316 * @adapter: board private structure
1317 **/
1318static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1319{
1320 u16 i;
1321
1322 for (i = 0; i < adapter->rss_lut_size; i++)
1323 adapter->rss_lut[i] = i % adapter->num_active_queues;
1324}
1325
1326/**
1327 * iavf_init_rss - Prepare for RSS
1328 * @adapter: board private structure
1329 *
1330 * Return 0 on success, negative on failure
1331 **/
1332static int iavf_init_rss(struct iavf_adapter *adapter)
1333{
1334 struct iavf_hw *hw = &adapter->hw;
1335 int ret;
1336
1337 if (!RSS_PF(adapter)) {
1338 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1339 if (adapter->vf_res->vf_cap_flags &
1340 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1341 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1342 else
1343 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1344
1345 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1346 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1347 }
1348
1349 iavf_fill_rss_lut(adapter);
1350 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1351 ret = iavf_config_rss(adapter);
1352
1353 return ret;
1354}
1355
1356/**
1357 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1358 * @adapter: board private structure to initialize
1359 *
1360 * We allocate one q_vector per queue interrupt. If allocation fails we
1361 * return -ENOMEM.
1362 **/
1363static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1364{
1365 int q_idx = 0, num_q_vectors;
1366 struct iavf_q_vector *q_vector;
1367
1368 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1369 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1370 GFP_KERNEL);
1371 if (!adapter->q_vectors)
1372 return -ENOMEM;
1373
1374 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1375 q_vector = &adapter->q_vectors[q_idx];
1376 q_vector->adapter = adapter;
1377 q_vector->vsi = &adapter->vsi;
1378 q_vector->v_idx = q_idx;
1379 q_vector->reg_idx = q_idx;
1380 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1381 netif_napi_add(adapter->netdev, &q_vector->napi,
1382 iavf_napi_poll, NAPI_POLL_WEIGHT);
1383 }
1384
1385 return 0;
1386}
1387
1388/**
1389 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1390 * @adapter: board private structure to initialize
1391 *
1392 * This function frees the memory allocated to the q_vectors. In addition if
1393 * NAPI is enabled it will delete any references to the NAPI struct prior
1394 * to freeing the q_vector.
1395 **/
1396static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1397{
1398 int q_idx, num_q_vectors;
1399 int napi_vectors;
1400
1401 if (!adapter->q_vectors)
1402 return;
1403
1404 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1405 napi_vectors = adapter->num_active_queues;
1406
1407 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1408 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1409
1410 if (q_idx < napi_vectors)
1411 netif_napi_del(&q_vector->napi);
1412 }
1413 kfree(adapter->q_vectors);
1414 adapter->q_vectors = NULL;
1415}
1416
1417/**
1418 * iavf_reset_interrupt_capability - Reset MSIX setup
1419 * @adapter: board private structure
1420 *
1421 **/
1422void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1423{
1424 if (!adapter->msix_entries)
1425 return;
1426
1427 pci_disable_msix(adapter->pdev);
1428 kfree(adapter->msix_entries);
1429 adapter->msix_entries = NULL;
1430}
1431
1432/**
1433 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1434 * @adapter: board private structure to initialize
1435 *
1436 **/
1437int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1438{
1439 int err;
1440
1441 err = iavf_alloc_queues(adapter);
1442 if (err) {
1443 dev_err(&adapter->pdev->dev,
1444 "Unable to allocate memory for queues\n");
1445 goto err_alloc_queues;
1446 }
1447
1448 rtnl_lock();
1449 err = iavf_set_interrupt_capability(adapter);
1450 rtnl_unlock();
1451 if (err) {
1452 dev_err(&adapter->pdev->dev,
1453 "Unable to setup interrupt capabilities\n");
1454 goto err_set_interrupt;
1455 }
1456
1457 err = iavf_alloc_q_vectors(adapter);
1458 if (err) {
1459 dev_err(&adapter->pdev->dev,
1460 "Unable to allocate memory for queue vectors\n");
1461 goto err_alloc_q_vectors;
1462 }
1463
1464 /* If we've made it so far while ADq flag being ON, then we haven't
1465 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1466 * resources have been allocated in the reset path.
1467 * Now we can truly claim that ADq is enabled.
1468 */
1469 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1470 adapter->num_tc)
1471 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1472 adapter->num_tc);
1473
1474 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1475 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1476 adapter->num_active_queues);
1477
1478 return 0;
1479err_alloc_q_vectors:
1480 iavf_reset_interrupt_capability(adapter);
1481err_set_interrupt:
1482 iavf_free_queues(adapter);
1483err_alloc_queues:
1484 return err;
1485}
1486
1487/**
1488 * iavf_free_rss - Free memory used by RSS structs
1489 * @adapter: board private structure
1490 **/
1491static void iavf_free_rss(struct iavf_adapter *adapter)
1492{
1493 kfree(adapter->rss_key);
1494 adapter->rss_key = NULL;
1495
1496 kfree(adapter->rss_lut);
1497 adapter->rss_lut = NULL;
1498}
1499
1500/**
1501 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1502 * @adapter: board private structure
1503 *
1504 * Returns 0 on success, negative on failure
1505 **/
1506static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1507{
1508 struct net_device *netdev = adapter->netdev;
1509 int err;
1510
1511 if (netif_running(netdev))
1512 iavf_free_traffic_irqs(adapter);
1513 iavf_free_misc_irq(adapter);
1514 iavf_reset_interrupt_capability(adapter);
1515 iavf_free_q_vectors(adapter);
1516 iavf_free_queues(adapter);
1517
1518 err = iavf_init_interrupt_scheme(adapter);
1519 if (err)
1520 goto err;
1521
1522 netif_tx_stop_all_queues(netdev);
1523
1524 err = iavf_request_misc_irq(adapter);
1525 if (err)
1526 goto err;
1527
1528 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1529
1530 iavf_map_rings_to_vectors(adapter);
1531err:
1532 return err;
1533}
1534
1535/**
1536 * iavf_process_aq_command - process aq_required flags
1537 * and sends aq command
1538 * @adapter: pointer to iavf adapter structure
1539 *
1540 * Returns 0 on success
1541 * Returns error code if no command was sent
1542 * or error code if the command failed.
1543 **/
1544static int iavf_process_aq_command(struct iavf_adapter *adapter)
1545{
1546 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1547 return iavf_send_vf_config_msg(adapter);
1548 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1549 iavf_disable_queues(adapter);
1550 return 0;
1551 }
1552
1553 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1554 iavf_map_queues(adapter);
1555 return 0;
1556 }
1557
1558 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1559 iavf_add_ether_addrs(adapter);
1560 return 0;
1561 }
1562
1563 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1564 iavf_add_vlans(adapter);
1565 return 0;
1566 }
1567
1568 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1569 iavf_del_ether_addrs(adapter);
1570 return 0;
1571 }
1572
1573 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1574 iavf_del_vlans(adapter);
1575 return 0;
1576 }
1577
1578 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1579 iavf_enable_vlan_stripping(adapter);
1580 return 0;
1581 }
1582
1583 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1584 iavf_disable_vlan_stripping(adapter);
1585 return 0;
1586 }
1587
1588 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1589 iavf_configure_queues(adapter);
1590 return 0;
1591 }
1592
1593 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1594 iavf_enable_queues(adapter);
1595 return 0;
1596 }
1597
1598 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1599 /* This message goes straight to the firmware, not the
1600 * PF, so we don't have to set current_op as we will
1601 * not get a response through the ARQ.
1602 */
1603 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1604 return 0;
1605 }
1606 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1607 iavf_get_hena(adapter);
1608 return 0;
1609 }
1610 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1611 iavf_set_hena(adapter);
1612 return 0;
1613 }
1614 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1615 iavf_set_rss_key(adapter);
1616 return 0;
1617 }
1618 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1619 iavf_set_rss_lut(adapter);
1620 return 0;
1621 }
1622
1623 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1624 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1625 FLAG_VF_MULTICAST_PROMISC);
1626 return 0;
1627 }
1628
1629 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1630 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1631 return 0;
1632 }
1633
1634 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1635 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1636 iavf_set_promiscuous(adapter, 0);
1637 return 0;
1638 }
1639
1640 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1641 iavf_enable_channels(adapter);
1642 return 0;
1643 }
1644
1645 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1646 iavf_disable_channels(adapter);
1647 return 0;
1648 }
1649 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1650 iavf_add_cloud_filter(adapter);
1651 return 0;
1652 }
1653
1654 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1655 iavf_del_cloud_filter(adapter);
1656 return 0;
1657 }
1658 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1659 iavf_del_cloud_filter(adapter);
1660 return 0;
1661 }
1662 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1663 iavf_add_cloud_filter(adapter);
1664 return 0;
1665 }
1666 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1667 iavf_add_fdir_filter(adapter);
1668 return IAVF_SUCCESS;
1669 }
1670 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1671 iavf_del_fdir_filter(adapter);
1672 return IAVF_SUCCESS;
1673 }
1674 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1675 iavf_add_adv_rss_cfg(adapter);
1676 return 0;
1677 }
1678 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1679 iavf_del_adv_rss_cfg(adapter);
1680 return 0;
1681 }
1682 return -EAGAIN;
1683}
1684
1685/**
1686 * iavf_startup - first step of driver startup
1687 * @adapter: board private structure
1688 *
1689 * Function process __IAVF_STARTUP driver state.
1690 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1691 * when fails it returns -EAGAIN
1692 **/
1693static int iavf_startup(struct iavf_adapter *adapter)
1694{
1695 struct pci_dev *pdev = adapter->pdev;
1696 struct iavf_hw *hw = &adapter->hw;
1697 int err;
1698
1699 WARN_ON(adapter->state != __IAVF_STARTUP);
1700
1701 /* driver loaded, probe complete */
1702 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1703 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1704 err = iavf_set_mac_type(hw);
1705 if (err) {
1706 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1707 goto err;
1708 }
1709
1710 err = iavf_check_reset_complete(hw);
1711 if (err) {
1712 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1713 err);
1714 goto err;
1715 }
1716 hw->aq.num_arq_entries = IAVF_AQ_LEN;
1717 hw->aq.num_asq_entries = IAVF_AQ_LEN;
1718 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1719 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1720
1721 err = iavf_init_adminq(hw);
1722 if (err) {
1723 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1724 goto err;
1725 }
1726 err = iavf_send_api_ver(adapter);
1727 if (err) {
1728 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1729 iavf_shutdown_adminq(hw);
1730 goto err;
1731 }
1732 adapter->state = __IAVF_INIT_VERSION_CHECK;
1733err:
1734 return err;
1735}
1736
1737/**
1738 * iavf_init_version_check - second step of driver startup
1739 * @adapter: board private structure
1740 *
1741 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1742 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1743 * when fails it returns -EAGAIN
1744 **/
1745static int iavf_init_version_check(struct iavf_adapter *adapter)
1746{
1747 struct pci_dev *pdev = adapter->pdev;
1748 struct iavf_hw *hw = &adapter->hw;
1749 int err = -EAGAIN;
1750
1751 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1752
1753 if (!iavf_asq_done(hw)) {
1754 dev_err(&pdev->dev, "Admin queue command never completed\n");
1755 iavf_shutdown_adminq(hw);
1756 adapter->state = __IAVF_STARTUP;
1757 goto err;
1758 }
1759
1760 /* aq msg sent, awaiting reply */
1761 err = iavf_verify_api_ver(adapter);
1762 if (err) {
1763 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1764 err = iavf_send_api_ver(adapter);
1765 else
1766 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1767 adapter->pf_version.major,
1768 adapter->pf_version.minor,
1769 VIRTCHNL_VERSION_MAJOR,
1770 VIRTCHNL_VERSION_MINOR);
1771 goto err;
1772 }
1773 err = iavf_send_vf_config_msg(adapter);
1774 if (err) {
1775 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1776 err);
1777 goto err;
1778 }
1779 adapter->state = __IAVF_INIT_GET_RESOURCES;
1780
1781err:
1782 return err;
1783}
1784
1785/**
1786 * iavf_init_get_resources - third step of driver startup
1787 * @adapter: board private structure
1788 *
1789 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1790 * finishes driver initialization procedure.
1791 * When success the state is changed to __IAVF_DOWN
1792 * when fails it returns -EAGAIN
1793 **/
1794static int iavf_init_get_resources(struct iavf_adapter *adapter)
1795{
1796 struct net_device *netdev = adapter->netdev;
1797 struct pci_dev *pdev = adapter->pdev;
1798 struct iavf_hw *hw = &adapter->hw;
1799 int err;
1800
1801 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1802 /* aq msg sent, awaiting reply */
1803 if (!adapter->vf_res) {
1804 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1805 GFP_KERNEL);
1806 if (!adapter->vf_res) {
1807 err = -ENOMEM;
1808 goto err;
1809 }
1810 }
1811 err = iavf_get_vf_config(adapter);
1812 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1813 err = iavf_send_vf_config_msg(adapter);
1814 goto err;
1815 } else if (err == IAVF_ERR_PARAM) {
1816 /* We only get ERR_PARAM if the device is in a very bad
1817 * state or if we've been disabled for previous bad
1818 * behavior. Either way, we're done now.
1819 */
1820 iavf_shutdown_adminq(hw);
1821 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1822 return 0;
1823 }
1824 if (err) {
1825 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1826 goto err_alloc;
1827 }
1828
1829 err = iavf_process_config(adapter);
1830 if (err)
1831 goto err_alloc;
1832 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1833
1834 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1835
1836 netdev->netdev_ops = &iavf_netdev_ops;
1837 iavf_set_ethtool_ops(netdev);
1838 netdev->watchdog_timeo = 5 * HZ;
1839
1840 /* MTU range: 68 - 9710 */
1841 netdev->min_mtu = ETH_MIN_MTU;
1842 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1843
1844 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1845 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1846 adapter->hw.mac.addr);
1847 eth_hw_addr_random(netdev);
1848 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1849 } else {
1850 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1851 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1852 }
1853
1854 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1855 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1856 err = iavf_init_interrupt_scheme(adapter);
1857 if (err)
1858 goto err_sw_init;
1859 iavf_map_rings_to_vectors(adapter);
1860 if (adapter->vf_res->vf_cap_flags &
1861 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1862 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1863
1864 err = iavf_request_misc_irq(adapter);
1865 if (err)
1866 goto err_sw_init;
1867
1868 netif_carrier_off(netdev);
1869 adapter->link_up = false;
1870
1871 /* set the semaphore to prevent any callbacks after device registration
1872 * up to time when state of driver will be set to __IAVF_DOWN
1873 */
1874 rtnl_lock();
1875 if (!adapter->netdev_registered) {
1876 err = register_netdevice(netdev);
1877 if (err) {
1878 rtnl_unlock();
1879 goto err_register;
1880 }
1881 }
1882
1883 adapter->netdev_registered = true;
1884
1885 netif_tx_stop_all_queues(netdev);
1886 if (CLIENT_ALLOWED(adapter)) {
1887 err = iavf_lan_add_device(adapter);
1888 if (err)
1889 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1890 err);
1891 }
1892 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1893 if (netdev->features & NETIF_F_GRO)
1894 dev_info(&pdev->dev, "GRO is enabled\n");
1895
1896 adapter->state = __IAVF_DOWN;
1897 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1898 rtnl_unlock();
1899
1900 iavf_misc_irq_enable(adapter);
1901 wake_up(&adapter->down_waitqueue);
1902
1903 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1904 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1905 if (!adapter->rss_key || !adapter->rss_lut) {
1906 err = -ENOMEM;
1907 goto err_mem;
1908 }
1909 if (RSS_AQ(adapter))
1910 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1911 else
1912 iavf_init_rss(adapter);
1913
1914 return err;
1915err_mem:
1916 iavf_free_rss(adapter);
1917err_register:
1918 iavf_free_misc_irq(adapter);
1919err_sw_init:
1920 iavf_reset_interrupt_capability(adapter);
1921err_alloc:
1922 kfree(adapter->vf_res);
1923 adapter->vf_res = NULL;
1924err:
1925 return err;
1926}
1927
1928/**
1929 * iavf_watchdog_task - Periodic call-back task
1930 * @work: pointer to work_struct
1931 **/
1932static void iavf_watchdog_task(struct work_struct *work)
1933{
1934 struct iavf_adapter *adapter = container_of(work,
1935 struct iavf_adapter,
1936 watchdog_task.work);
1937 struct iavf_hw *hw = &adapter->hw;
1938 u32 reg_val;
1939
1940 if (!mutex_trylock(&adapter->crit_lock))
1941 goto restart_watchdog;
1942
1943 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1944 adapter->state = __IAVF_COMM_FAILED;
1945
1946 switch (adapter->state) {
1947 case __IAVF_COMM_FAILED:
1948 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1949 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1950 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1951 reg_val == VIRTCHNL_VFR_COMPLETED) {
1952 /* A chance for redemption! */
1953 dev_err(&adapter->pdev->dev,
1954 "Hardware came out of reset. Attempting reinit.\n");
1955 adapter->state = __IAVF_STARTUP;
1956 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1957 queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1958 mutex_unlock(&adapter->crit_lock);
1959 /* Don't reschedule the watchdog, since we've restarted
1960 * the init task. When init_task contacts the PF and
1961 * gets everything set up again, it'll restart the
1962 * watchdog for us. Down, boy. Sit. Stay. Woof.
1963 */
1964 return;
1965 }
1966 adapter->aq_required = 0;
1967 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1968 queue_delayed_work(iavf_wq,
1969 &adapter->watchdog_task,
1970 msecs_to_jiffies(10));
1971 goto watchdog_done;
1972 case __IAVF_RESETTING:
1973 mutex_unlock(&adapter->crit_lock);
1974 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1975 return;
1976 case __IAVF_DOWN:
1977 case __IAVF_DOWN_PENDING:
1978 case __IAVF_TESTING:
1979 case __IAVF_RUNNING:
1980 if (adapter->current_op) {
1981 if (!iavf_asq_done(hw)) {
1982 dev_dbg(&adapter->pdev->dev,
1983 "Admin queue timeout\n");
1984 iavf_send_api_ver(adapter);
1985 }
1986 } else {
1987 /* An error will be returned if no commands were
1988 * processed; use this opportunity to update stats
1989 */
1990 if (iavf_process_aq_command(adapter) &&
1991 adapter->state == __IAVF_RUNNING)
1992 iavf_request_stats(adapter);
1993 }
1994 break;
1995 case __IAVF_REMOVE:
1996 mutex_unlock(&adapter->crit_lock);
1997 return;
1998 default:
1999 goto restart_watchdog;
2000 }
2001
2002 /* check for hw reset */
2003 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2004 if (!reg_val) {
2005 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2006 adapter->aq_required = 0;
2007 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2008 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2009 queue_work(iavf_wq, &adapter->reset_task);
2010 goto watchdog_done;
2011 }
2012
2013 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2014watchdog_done:
2015 if (adapter->state == __IAVF_RUNNING ||
2016 adapter->state == __IAVF_COMM_FAILED)
2017 iavf_detect_recover_hung(&adapter->vsi);
2018 mutex_unlock(&adapter->crit_lock);
2019restart_watchdog:
2020 if (adapter->aq_required)
2021 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2022 msecs_to_jiffies(20));
2023 else
2024 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2025 queue_work(iavf_wq, &adapter->adminq_task);
2026}
2027
2028static void iavf_disable_vf(struct iavf_adapter *adapter)
2029{
2030 struct iavf_mac_filter *f, *ftmp;
2031 struct iavf_vlan_filter *fv, *fvtmp;
2032 struct iavf_cloud_filter *cf, *cftmp;
2033
2034 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2035
2036 /* We don't use netif_running() because it may be true prior to
2037 * ndo_open() returning, so we can't assume it means all our open
2038 * tasks have finished, since we're not holding the rtnl_lock here.
2039 */
2040 if (adapter->state == __IAVF_RUNNING) {
2041 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2042 netif_carrier_off(adapter->netdev);
2043 netif_tx_disable(adapter->netdev);
2044 adapter->link_up = false;
2045 iavf_napi_disable_all(adapter);
2046 iavf_irq_disable(adapter);
2047 iavf_free_traffic_irqs(adapter);
2048 iavf_free_all_tx_resources(adapter);
2049 iavf_free_all_rx_resources(adapter);
2050 }
2051
2052 spin_lock_bh(&adapter->mac_vlan_list_lock);
2053
2054 /* Delete all of the filters */
2055 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2056 list_del(&f->list);
2057 kfree(f);
2058 }
2059
2060 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2061 list_del(&fv->list);
2062 kfree(fv);
2063 }
2064
2065 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2066
2067 spin_lock_bh(&adapter->cloud_filter_list_lock);
2068 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2069 list_del(&cf->list);
2070 kfree(cf);
2071 adapter->num_cloud_filters--;
2072 }
2073 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2074
2075 iavf_free_misc_irq(adapter);
2076 iavf_reset_interrupt_capability(adapter);
2077 iavf_free_queues(adapter);
2078 iavf_free_q_vectors(adapter);
2079 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2080 iavf_shutdown_adminq(&adapter->hw);
2081 adapter->netdev->flags &= ~IFF_UP;
2082 mutex_unlock(&adapter->crit_lock);
2083 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2084 adapter->state = __IAVF_DOWN;
2085 wake_up(&adapter->down_waitqueue);
2086 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2087}
2088
2089/**
2090 * iavf_reset_task - Call-back task to handle hardware reset
2091 * @work: pointer to work_struct
2092 *
2093 * During reset we need to shut down and reinitialize the admin queue
2094 * before we can use it to communicate with the PF again. We also clear
2095 * and reinit the rings because that context is lost as well.
2096 **/
2097static void iavf_reset_task(struct work_struct *work)
2098{
2099 struct iavf_adapter *adapter = container_of(work,
2100 struct iavf_adapter,
2101 reset_task);
2102 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2103 struct net_device *netdev = adapter->netdev;
2104 struct iavf_hw *hw = &adapter->hw;
2105 struct iavf_mac_filter *f, *ftmp;
2106 struct iavf_vlan_filter *vlf;
2107 struct iavf_cloud_filter *cf;
2108 u32 reg_val;
2109 int i = 0, err;
2110 bool running;
2111
2112 /* When device is being removed it doesn't make sense to run the reset
2113 * task, just return in such a case.
2114 */
2115 if (mutex_is_locked(&adapter->remove_lock))
2116 return;
2117
2118 if (iavf_lock_timeout(&adapter->crit_lock, 200)) {
2119 schedule_work(&adapter->reset_task);
2120 return;
2121 }
2122 while (!mutex_trylock(&adapter->client_lock))
2123 usleep_range(500, 1000);
2124 if (CLIENT_ENABLED(adapter)) {
2125 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2126 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2127 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2128 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2129 cancel_delayed_work_sync(&adapter->client_task);
2130 iavf_notify_client_close(&adapter->vsi, true);
2131 }
2132 iavf_misc_irq_disable(adapter);
2133 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2134 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2135 /* Restart the AQ here. If we have been reset but didn't
2136 * detect it, or if the PF had to reinit, our AQ will be hosed.
2137 */
2138 iavf_shutdown_adminq(hw);
2139 iavf_init_adminq(hw);
2140 iavf_request_reset(adapter);
2141 }
2142 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2143
2144 /* poll until we see the reset actually happen */
2145 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2146 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2147 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2148 if (!reg_val)
2149 break;
2150 usleep_range(5000, 10000);
2151 }
2152 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2153 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2154 goto continue_reset; /* act like the reset happened */
2155 }
2156
2157 /* wait until the reset is complete and the PF is responding to us */
2158 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2159 /* sleep first to make sure a minimum wait time is met */
2160 msleep(IAVF_RESET_WAIT_MS);
2161
2162 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2163 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2164 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2165 break;
2166 }
2167
2168 pci_set_master(adapter->pdev);
2169
2170 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2171 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2172 reg_val);
2173 iavf_disable_vf(adapter);
2174 mutex_unlock(&adapter->client_lock);
2175 return; /* Do not attempt to reinit. It's dead, Jim. */
2176 }
2177
2178continue_reset:
2179 /* We don't use netif_running() because it may be true prior to
2180 * ndo_open() returning, so we can't assume it means all our open
2181 * tasks have finished, since we're not holding the rtnl_lock here.
2182 */
2183 running = ((adapter->state == __IAVF_RUNNING) ||
2184 (adapter->state == __IAVF_RESETTING));
2185
2186 if (running) {
2187 netif_carrier_off(netdev);
2188 netif_tx_stop_all_queues(netdev);
2189 adapter->link_up = false;
2190 iavf_napi_disable_all(adapter);
2191 }
2192 iavf_irq_disable(adapter);
2193
2194 adapter->state = __IAVF_RESETTING;
2195 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2196
2197 /* free the Tx/Rx rings and descriptors, might be better to just
2198 * re-use them sometime in the future
2199 */
2200 iavf_free_all_rx_resources(adapter);
2201 iavf_free_all_tx_resources(adapter);
2202
2203 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2204 /* kill and reinit the admin queue */
2205 iavf_shutdown_adminq(hw);
2206 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2207 err = iavf_init_adminq(hw);
2208 if (err)
2209 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2210 err);
2211 adapter->aq_required = 0;
2212
2213 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2214 err = iavf_reinit_interrupt_scheme(adapter);
2215 if (err)
2216 goto reset_err;
2217 }
2218
2219 if (RSS_AQ(adapter)) {
2220 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2221 } else {
2222 err = iavf_init_rss(adapter);
2223 if (err)
2224 goto reset_err;
2225 }
2226
2227 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2228 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2229
2230 spin_lock_bh(&adapter->mac_vlan_list_lock);
2231
2232 /* Delete filter for the current MAC address, it could have
2233 * been changed by the PF via administratively set MAC.
2234 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2235 */
2236 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2237 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2238 list_del(&f->list);
2239 kfree(f);
2240 }
2241 }
2242 /* re-add all MAC filters */
2243 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2244 f->add = true;
2245 }
2246 /* re-add all VLAN filters */
2247 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2248 vlf->add = true;
2249 }
2250
2251 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2252
2253 /* check if TCs are running and re-add all cloud filters */
2254 spin_lock_bh(&adapter->cloud_filter_list_lock);
2255 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2256 adapter->num_tc) {
2257 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2258 cf->add = true;
2259 }
2260 }
2261 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2262
2263 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2264 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2265 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2266 iavf_misc_irq_enable(adapter);
2267
2268 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2269
2270 /* We were running when the reset started, so we need to restore some
2271 * state here.
2272 */
2273 if (running) {
2274 /* allocate transmit descriptors */
2275 err = iavf_setup_all_tx_resources(adapter);
2276 if (err)
2277 goto reset_err;
2278
2279 /* allocate receive descriptors */
2280 err = iavf_setup_all_rx_resources(adapter);
2281 if (err)
2282 goto reset_err;
2283
2284 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2285 err = iavf_request_traffic_irqs(adapter, netdev->name);
2286 if (err)
2287 goto reset_err;
2288
2289 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2290 }
2291
2292 iavf_configure(adapter);
2293
2294 iavf_up_complete(adapter);
2295
2296 iavf_irq_enable(adapter, true);
2297 } else {
2298 adapter->state = __IAVF_DOWN;
2299 wake_up(&adapter->down_waitqueue);
2300 }
2301 mutex_unlock(&adapter->client_lock);
2302 mutex_unlock(&adapter->crit_lock);
2303
2304 return;
2305reset_err:
2306 mutex_unlock(&adapter->client_lock);
2307 mutex_unlock(&adapter->crit_lock);
2308 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2309 iavf_close(netdev);
2310}
2311
2312/**
2313 * iavf_adminq_task - worker thread to clean the admin queue
2314 * @work: pointer to work_struct containing our data
2315 **/
2316static void iavf_adminq_task(struct work_struct *work)
2317{
2318 struct iavf_adapter *adapter =
2319 container_of(work, struct iavf_adapter, adminq_task);
2320 struct iavf_hw *hw = &adapter->hw;
2321 struct iavf_arq_event_info event;
2322 enum virtchnl_ops v_op;
2323 enum iavf_status ret, v_ret;
2324 u32 val, oldval;
2325 u16 pending;
2326
2327 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2328 goto out;
2329
2330 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2331 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2332 if (!event.msg_buf)
2333 goto out;
2334
2335 if (iavf_lock_timeout(&adapter->crit_lock, 200))
2336 goto freedom;
2337 do {
2338 ret = iavf_clean_arq_element(hw, &event, &pending);
2339 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2340 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2341
2342 if (ret || !v_op)
2343 break; /* No event to process or error cleaning ARQ */
2344
2345 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2346 event.msg_len);
2347 if (pending != 0)
2348 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2349 } while (pending);
2350 mutex_unlock(&adapter->crit_lock);
2351
2352 if ((adapter->flags &
2353 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2354 adapter->state == __IAVF_RESETTING)
2355 goto freedom;
2356
2357 /* check for error indications */
2358 val = rd32(hw, hw->aq.arq.len);
2359 if (val == 0xdeadbeef) /* indicates device in reset */
2360 goto freedom;
2361 oldval = val;
2362 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2363 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2364 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2365 }
2366 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2367 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2368 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2369 }
2370 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2371 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2372 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2373 }
2374 if (oldval != val)
2375 wr32(hw, hw->aq.arq.len, val);
2376
2377 val = rd32(hw, hw->aq.asq.len);
2378 oldval = val;
2379 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2380 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2381 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2382 }
2383 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2384 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2385 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2386 }
2387 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2388 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2389 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2390 }
2391 if (oldval != val)
2392 wr32(hw, hw->aq.asq.len, val);
2393
2394freedom:
2395 kfree(event.msg_buf);
2396out:
2397 /* re-enable Admin queue interrupt cause */
2398 iavf_misc_irq_enable(adapter);
2399}
2400
2401/**
2402 * iavf_client_task - worker thread to perform client work
2403 * @work: pointer to work_struct containing our data
2404 *
2405 * This task handles client interactions. Because client calls can be
2406 * reentrant, we can't handle them in the watchdog.
2407 **/
2408static void iavf_client_task(struct work_struct *work)
2409{
2410 struct iavf_adapter *adapter =
2411 container_of(work, struct iavf_adapter, client_task.work);
2412
2413 /* If we can't get the client bit, just give up. We'll be rescheduled
2414 * later.
2415 */
2416
2417 if (!mutex_trylock(&adapter->client_lock))
2418 return;
2419
2420 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2421 iavf_client_subtask(adapter);
2422 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2423 goto out;
2424 }
2425 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2426 iavf_notify_client_l2_params(&adapter->vsi);
2427 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2428 goto out;
2429 }
2430 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2431 iavf_notify_client_close(&adapter->vsi, false);
2432 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2433 goto out;
2434 }
2435 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2436 iavf_notify_client_open(&adapter->vsi);
2437 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2438 }
2439out:
2440 mutex_unlock(&adapter->client_lock);
2441}
2442
2443/**
2444 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2445 * @adapter: board private structure
2446 *
2447 * Free all transmit software resources
2448 **/
2449void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2450{
2451 int i;
2452
2453 if (!adapter->tx_rings)
2454 return;
2455
2456 for (i = 0; i < adapter->num_active_queues; i++)
2457 if (adapter->tx_rings[i].desc)
2458 iavf_free_tx_resources(&adapter->tx_rings[i]);
2459}
2460
2461/**
2462 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2463 * @adapter: board private structure
2464 *
2465 * If this function returns with an error, then it's possible one or
2466 * more of the rings is populated (while the rest are not). It is the
2467 * callers duty to clean those orphaned rings.
2468 *
2469 * Return 0 on success, negative on failure
2470 **/
2471static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2472{
2473 int i, err = 0;
2474
2475 for (i = 0; i < adapter->num_active_queues; i++) {
2476 adapter->tx_rings[i].count = adapter->tx_desc_count;
2477 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2478 if (!err)
2479 continue;
2480 dev_err(&adapter->pdev->dev,
2481 "Allocation for Tx Queue %u failed\n", i);
2482 break;
2483 }
2484
2485 return err;
2486}
2487
2488/**
2489 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2490 * @adapter: board private structure
2491 *
2492 * If this function returns with an error, then it's possible one or
2493 * more of the rings is populated (while the rest are not). It is the
2494 * callers duty to clean those orphaned rings.
2495 *
2496 * Return 0 on success, negative on failure
2497 **/
2498static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2499{
2500 int i, err = 0;
2501
2502 for (i = 0; i < adapter->num_active_queues; i++) {
2503 adapter->rx_rings[i].count = adapter->rx_desc_count;
2504 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2505 if (!err)
2506 continue;
2507 dev_err(&adapter->pdev->dev,
2508 "Allocation for Rx Queue %u failed\n", i);
2509 break;
2510 }
2511 return err;
2512}
2513
2514/**
2515 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2516 * @adapter: board private structure
2517 *
2518 * Free all receive software resources
2519 **/
2520void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2521{
2522 int i;
2523
2524 if (!adapter->rx_rings)
2525 return;
2526
2527 for (i = 0; i < adapter->num_active_queues; i++)
2528 if (adapter->rx_rings[i].desc)
2529 iavf_free_rx_resources(&adapter->rx_rings[i]);
2530}
2531
2532/**
2533 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2534 * @adapter: board private structure
2535 * @max_tx_rate: max Tx bw for a tc
2536 **/
2537static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2538 u64 max_tx_rate)
2539{
2540 int speed = 0, ret = 0;
2541
2542 if (ADV_LINK_SUPPORT(adapter)) {
2543 if (adapter->link_speed_mbps < U32_MAX) {
2544 speed = adapter->link_speed_mbps;
2545 goto validate_bw;
2546 } else {
2547 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2548 return -EINVAL;
2549 }
2550 }
2551
2552 switch (adapter->link_speed) {
2553 case VIRTCHNL_LINK_SPEED_40GB:
2554 speed = SPEED_40000;
2555 break;
2556 case VIRTCHNL_LINK_SPEED_25GB:
2557 speed = SPEED_25000;
2558 break;
2559 case VIRTCHNL_LINK_SPEED_20GB:
2560 speed = SPEED_20000;
2561 break;
2562 case VIRTCHNL_LINK_SPEED_10GB:
2563 speed = SPEED_10000;
2564 break;
2565 case VIRTCHNL_LINK_SPEED_5GB:
2566 speed = SPEED_5000;
2567 break;
2568 case VIRTCHNL_LINK_SPEED_2_5GB:
2569 speed = SPEED_2500;
2570 break;
2571 case VIRTCHNL_LINK_SPEED_1GB:
2572 speed = SPEED_1000;
2573 break;
2574 case VIRTCHNL_LINK_SPEED_100MB:
2575 speed = SPEED_100;
2576 break;
2577 default:
2578 break;
2579 }
2580
2581validate_bw:
2582 if (max_tx_rate > speed) {
2583 dev_err(&adapter->pdev->dev,
2584 "Invalid tx rate specified\n");
2585 ret = -EINVAL;
2586 }
2587
2588 return ret;
2589}
2590
2591/**
2592 * iavf_validate_ch_config - validate queue mapping info
2593 * @adapter: board private structure
2594 * @mqprio_qopt: queue parameters
2595 *
2596 * This function validates if the config provided by the user to
2597 * configure queue channels is valid or not. Returns 0 on a valid
2598 * config.
2599 **/
2600static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2601 struct tc_mqprio_qopt_offload *mqprio_qopt)
2602{
2603 u64 total_max_rate = 0;
2604 int i, num_qps = 0;
2605 u64 tx_rate = 0;
2606 int ret = 0;
2607
2608 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2609 mqprio_qopt->qopt.num_tc < 1)
2610 return -EINVAL;
2611
2612 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2613 if (!mqprio_qopt->qopt.count[i] ||
2614 mqprio_qopt->qopt.offset[i] != num_qps)
2615 return -EINVAL;
2616 if (mqprio_qopt->min_rate[i]) {
2617 dev_err(&adapter->pdev->dev,
2618 "Invalid min tx rate (greater than 0) specified\n");
2619 return -EINVAL;
2620 }
2621 /*convert to Mbps */
2622 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2623 IAVF_MBPS_DIVISOR);
2624 total_max_rate += tx_rate;
2625 num_qps += mqprio_qopt->qopt.count[i];
2626 }
2627 if (num_qps > IAVF_MAX_REQ_QUEUES)
2628 return -EINVAL;
2629
2630 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2631 return ret;
2632}
2633
2634/**
2635 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2636 * @adapter: board private structure
2637 **/
2638static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2639{
2640 struct iavf_cloud_filter *cf, *cftmp;
2641
2642 spin_lock_bh(&adapter->cloud_filter_list_lock);
2643 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2644 list) {
2645 list_del(&cf->list);
2646 kfree(cf);
2647 adapter->num_cloud_filters--;
2648 }
2649 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2650}
2651
2652/**
2653 * __iavf_setup_tc - configure multiple traffic classes
2654 * @netdev: network interface device structure
2655 * @type_data: tc offload data
2656 *
2657 * This function processes the config information provided by the
2658 * user to configure traffic classes/queue channels and packages the
2659 * information to request the PF to setup traffic classes.
2660 *
2661 * Returns 0 on success.
2662 **/
2663static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2664{
2665 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2666 struct iavf_adapter *adapter = netdev_priv(netdev);
2667 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2668 u8 num_tc = 0, total_qps = 0;
2669 int ret = 0, netdev_tc = 0;
2670 u64 max_tx_rate;
2671 u16 mode;
2672 int i;
2673
2674 num_tc = mqprio_qopt->qopt.num_tc;
2675 mode = mqprio_qopt->mode;
2676
2677 /* delete queue_channel */
2678 if (!mqprio_qopt->qopt.hw) {
2679 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2680 /* reset the tc configuration */
2681 netdev_reset_tc(netdev);
2682 adapter->num_tc = 0;
2683 netif_tx_stop_all_queues(netdev);
2684 netif_tx_disable(netdev);
2685 iavf_del_all_cloud_filters(adapter);
2686 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2687 goto exit;
2688 } else {
2689 return -EINVAL;
2690 }
2691 }
2692
2693 /* add queue channel */
2694 if (mode == TC_MQPRIO_MODE_CHANNEL) {
2695 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2696 dev_err(&adapter->pdev->dev, "ADq not supported\n");
2697 return -EOPNOTSUPP;
2698 }
2699 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2700 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2701 return -EINVAL;
2702 }
2703
2704 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2705 if (ret)
2706 return ret;
2707 /* Return if same TC config is requested */
2708 if (adapter->num_tc == num_tc)
2709 return 0;
2710 adapter->num_tc = num_tc;
2711
2712 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2713 if (i < num_tc) {
2714 adapter->ch_config.ch_info[i].count =
2715 mqprio_qopt->qopt.count[i];
2716 adapter->ch_config.ch_info[i].offset =
2717 mqprio_qopt->qopt.offset[i];
2718 total_qps += mqprio_qopt->qopt.count[i];
2719 max_tx_rate = mqprio_qopt->max_rate[i];
2720 /* convert to Mbps */
2721 max_tx_rate = div_u64(max_tx_rate,
2722 IAVF_MBPS_DIVISOR);
2723 adapter->ch_config.ch_info[i].max_tx_rate =
2724 max_tx_rate;
2725 } else {
2726 adapter->ch_config.ch_info[i].count = 1;
2727 adapter->ch_config.ch_info[i].offset = 0;
2728 }
2729 }
2730 adapter->ch_config.total_qps = total_qps;
2731 netif_tx_stop_all_queues(netdev);
2732 netif_tx_disable(netdev);
2733 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2734 netdev_reset_tc(netdev);
2735 /* Report the tc mapping up the stack */
2736 netdev_set_num_tc(adapter->netdev, num_tc);
2737 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2738 u16 qcount = mqprio_qopt->qopt.count[i];
2739 u16 qoffset = mqprio_qopt->qopt.offset[i];
2740
2741 if (i < num_tc)
2742 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2743 qoffset);
2744 }
2745 }
2746exit:
2747 return ret;
2748}
2749
2750/**
2751 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2752 * @adapter: board private structure
2753 * @f: pointer to struct flow_cls_offload
2754 * @filter: pointer to cloud filter structure
2755 */
2756static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2757 struct flow_cls_offload *f,
2758 struct iavf_cloud_filter *filter)
2759{
2760 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2761 struct flow_dissector *dissector = rule->match.dissector;
2762 u16 n_proto_mask = 0;
2763 u16 n_proto_key = 0;
2764 u8 field_flags = 0;
2765 u16 addr_type = 0;
2766 u16 n_proto = 0;
2767 int i = 0;
2768 struct virtchnl_filter *vf = &filter->f;
2769
2770 if (dissector->used_keys &
2771 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2772 BIT(FLOW_DISSECTOR_KEY_BASIC) |
2773 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2774 BIT(FLOW_DISSECTOR_KEY_VLAN) |
2775 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2776 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2777 BIT(FLOW_DISSECTOR_KEY_PORTS) |
2778 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2779 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2780 dissector->used_keys);
2781 return -EOPNOTSUPP;
2782 }
2783
2784 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2785 struct flow_match_enc_keyid match;
2786
2787 flow_rule_match_enc_keyid(rule, &match);
2788 if (match.mask->keyid != 0)
2789 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2790 }
2791
2792 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2793 struct flow_match_basic match;
2794
2795 flow_rule_match_basic(rule, &match);
2796 n_proto_key = ntohs(match.key->n_proto);
2797 n_proto_mask = ntohs(match.mask->n_proto);
2798
2799 if (n_proto_key == ETH_P_ALL) {
2800 n_proto_key = 0;
2801 n_proto_mask = 0;
2802 }
2803 n_proto = n_proto_key & n_proto_mask;
2804 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2805 return -EINVAL;
2806 if (n_proto == ETH_P_IPV6) {
2807 /* specify flow type as TCP IPv6 */
2808 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2809 }
2810
2811 if (match.key->ip_proto != IPPROTO_TCP) {
2812 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2813 return -EINVAL;
2814 }
2815 }
2816
2817 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2818 struct flow_match_eth_addrs match;
2819
2820 flow_rule_match_eth_addrs(rule, &match);
2821
2822 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2823 if (!is_zero_ether_addr(match.mask->dst)) {
2824 if (is_broadcast_ether_addr(match.mask->dst)) {
2825 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2826 } else {
2827 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2828 match.mask->dst);
2829 return IAVF_ERR_CONFIG;
2830 }
2831 }
2832
2833 if (!is_zero_ether_addr(match.mask->src)) {
2834 if (is_broadcast_ether_addr(match.mask->src)) {
2835 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2836 } else {
2837 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2838 match.mask->src);
2839 return IAVF_ERR_CONFIG;
2840 }
2841 }
2842
2843 if (!is_zero_ether_addr(match.key->dst))
2844 if (is_valid_ether_addr(match.key->dst) ||
2845 is_multicast_ether_addr(match.key->dst)) {
2846 /* set the mask if a valid dst_mac address */
2847 for (i = 0; i < ETH_ALEN; i++)
2848 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2849 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2850 match.key->dst);
2851 }
2852
2853 if (!is_zero_ether_addr(match.key->src))
2854 if (is_valid_ether_addr(match.key->src) ||
2855 is_multicast_ether_addr(match.key->src)) {
2856 /* set the mask if a valid dst_mac address */
2857 for (i = 0; i < ETH_ALEN; i++)
2858 vf->mask.tcp_spec.src_mac[i] |= 0xff;
2859 ether_addr_copy(vf->data.tcp_spec.src_mac,
2860 match.key->src);
2861 }
2862 }
2863
2864 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2865 struct flow_match_vlan match;
2866
2867 flow_rule_match_vlan(rule, &match);
2868 if (match.mask->vlan_id) {
2869 if (match.mask->vlan_id == VLAN_VID_MASK) {
2870 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2871 } else {
2872 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2873 match.mask->vlan_id);
2874 return IAVF_ERR_CONFIG;
2875 }
2876 }
2877 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2878 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2879 }
2880
2881 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2882 struct flow_match_control match;
2883
2884 flow_rule_match_control(rule, &match);
2885 addr_type = match.key->addr_type;
2886 }
2887
2888 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2889 struct flow_match_ipv4_addrs match;
2890
2891 flow_rule_match_ipv4_addrs(rule, &match);
2892 if (match.mask->dst) {
2893 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2894 field_flags |= IAVF_CLOUD_FIELD_IIP;
2895 } else {
2896 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2897 be32_to_cpu(match.mask->dst));
2898 return IAVF_ERR_CONFIG;
2899 }
2900 }
2901
2902 if (match.mask->src) {
2903 if (match.mask->src == cpu_to_be32(0xffffffff)) {
2904 field_flags |= IAVF_CLOUD_FIELD_IIP;
2905 } else {
2906 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2907 be32_to_cpu(match.mask->dst));
2908 return IAVF_ERR_CONFIG;
2909 }
2910 }
2911
2912 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2913 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2914 return IAVF_ERR_CONFIG;
2915 }
2916 if (match.key->dst) {
2917 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2918 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2919 }
2920 if (match.key->src) {
2921 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2922 vf->data.tcp_spec.src_ip[0] = match.key->src;
2923 }
2924 }
2925
2926 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2927 struct flow_match_ipv6_addrs match;
2928
2929 flow_rule_match_ipv6_addrs(rule, &match);
2930
2931 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2932 if (ipv6_addr_any(&match.mask->dst)) {
2933 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2934 IPV6_ADDR_ANY);
2935 return IAVF_ERR_CONFIG;
2936 }
2937
2938 /* src and dest IPv6 address should not be LOOPBACK
2939 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2940 */
2941 if (ipv6_addr_loopback(&match.key->dst) ||
2942 ipv6_addr_loopback(&match.key->src)) {
2943 dev_err(&adapter->pdev->dev,
2944 "ipv6 addr should not be loopback\n");
2945 return IAVF_ERR_CONFIG;
2946 }
2947 if (!ipv6_addr_any(&match.mask->dst) ||
2948 !ipv6_addr_any(&match.mask->src))
2949 field_flags |= IAVF_CLOUD_FIELD_IIP;
2950
2951 for (i = 0; i < 4; i++)
2952 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2953 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2954 sizeof(vf->data.tcp_spec.dst_ip));
2955 for (i = 0; i < 4; i++)
2956 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2957 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2958 sizeof(vf->data.tcp_spec.src_ip));
2959 }
2960 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2961 struct flow_match_ports match;
2962
2963 flow_rule_match_ports(rule, &match);
2964 if (match.mask->src) {
2965 if (match.mask->src == cpu_to_be16(0xffff)) {
2966 field_flags |= IAVF_CLOUD_FIELD_IIP;
2967 } else {
2968 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2969 be16_to_cpu(match.mask->src));
2970 return IAVF_ERR_CONFIG;
2971 }
2972 }
2973
2974 if (match.mask->dst) {
2975 if (match.mask->dst == cpu_to_be16(0xffff)) {
2976 field_flags |= IAVF_CLOUD_FIELD_IIP;
2977 } else {
2978 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2979 be16_to_cpu(match.mask->dst));
2980 return IAVF_ERR_CONFIG;
2981 }
2982 }
2983 if (match.key->dst) {
2984 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2985 vf->data.tcp_spec.dst_port = match.key->dst;
2986 }
2987
2988 if (match.key->src) {
2989 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2990 vf->data.tcp_spec.src_port = match.key->src;
2991 }
2992 }
2993 vf->field_flags = field_flags;
2994
2995 return 0;
2996}
2997
2998/**
2999 * iavf_handle_tclass - Forward to a traffic class on the device
3000 * @adapter: board private structure
3001 * @tc: traffic class index on the device
3002 * @filter: pointer to cloud filter structure
3003 */
3004static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3005 struct iavf_cloud_filter *filter)
3006{
3007 if (tc == 0)
3008 return 0;
3009 if (tc < adapter->num_tc) {
3010 if (!filter->f.data.tcp_spec.dst_port) {
3011 dev_err(&adapter->pdev->dev,
3012 "Specify destination port to redirect to traffic class other than TC0\n");
3013 return -EINVAL;
3014 }
3015 }
3016 /* redirect to a traffic class on the same device */
3017 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3018 filter->f.action_meta = tc;
3019 return 0;
3020}
3021
3022/**
3023 * iavf_configure_clsflower - Add tc flower filters
3024 * @adapter: board private structure
3025 * @cls_flower: Pointer to struct flow_cls_offload
3026 */
3027static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3028 struct flow_cls_offload *cls_flower)
3029{
3030 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3031 struct iavf_cloud_filter *filter = NULL;
3032 int err = -EINVAL, count = 50;
3033
3034 if (tc < 0) {
3035 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3036 return -EINVAL;
3037 }
3038
3039 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3040 if (!filter)
3041 return -ENOMEM;
3042
3043 while (!mutex_trylock(&adapter->crit_lock)) {
3044 if (--count == 0)
3045 goto err;
3046 udelay(1);
3047 }
3048
3049 filter->cookie = cls_flower->cookie;
3050
3051 /* set the mask to all zeroes to begin with */
3052 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3053 /* start out with flow type and eth type IPv4 to begin with */
3054 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3055 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3056 if (err < 0)
3057 goto err;
3058
3059 err = iavf_handle_tclass(adapter, tc, filter);
3060 if (err < 0)
3061 goto err;
3062
3063 /* add filter to the list */
3064 spin_lock_bh(&adapter->cloud_filter_list_lock);
3065 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3066 adapter->num_cloud_filters++;
3067 filter->add = true;
3068 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3069 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3070err:
3071 if (err)
3072 kfree(filter);
3073
3074 mutex_unlock(&adapter->crit_lock);
3075 return err;
3076}
3077
3078/* iavf_find_cf - Find the cloud filter in the list
3079 * @adapter: Board private structure
3080 * @cookie: filter specific cookie
3081 *
3082 * Returns ptr to the filter object or NULL. Must be called while holding the
3083 * cloud_filter_list_lock.
3084 */
3085static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3086 unsigned long *cookie)
3087{
3088 struct iavf_cloud_filter *filter = NULL;
3089
3090 if (!cookie)
3091 return NULL;
3092
3093 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3094 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3095 return filter;
3096 }
3097 return NULL;
3098}
3099
3100/**
3101 * iavf_delete_clsflower - Remove tc flower filters
3102 * @adapter: board private structure
3103 * @cls_flower: Pointer to struct flow_cls_offload
3104 */
3105static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3106 struct flow_cls_offload *cls_flower)
3107{
3108 struct iavf_cloud_filter *filter = NULL;
3109 int err = 0;
3110
3111 spin_lock_bh(&adapter->cloud_filter_list_lock);
3112 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3113 if (filter) {
3114 filter->del = true;
3115 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3116 } else {
3117 err = -EINVAL;
3118 }
3119 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3120
3121 return err;
3122}
3123
3124/**
3125 * iavf_setup_tc_cls_flower - flower classifier offloads
3126 * @adapter: board private structure
3127 * @cls_flower: pointer to flow_cls_offload struct with flow info
3128 */
3129static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3130 struct flow_cls_offload *cls_flower)
3131{
3132 switch (cls_flower->command) {
3133 case FLOW_CLS_REPLACE:
3134 return iavf_configure_clsflower(adapter, cls_flower);
3135 case FLOW_CLS_DESTROY:
3136 return iavf_delete_clsflower(adapter, cls_flower);
3137 case FLOW_CLS_STATS:
3138 return -EOPNOTSUPP;
3139 default:
3140 return -EOPNOTSUPP;
3141 }
3142}
3143
3144/**
3145 * iavf_setup_tc_block_cb - block callback for tc
3146 * @type: type of offload
3147 * @type_data: offload data
3148 * @cb_priv:
3149 *
3150 * This function is the block callback for traffic classes
3151 **/
3152static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3153 void *cb_priv)
3154{
3155 struct iavf_adapter *adapter = cb_priv;
3156
3157 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3158 return -EOPNOTSUPP;
3159
3160 switch (type) {
3161 case TC_SETUP_CLSFLOWER:
3162 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3163 default:
3164 return -EOPNOTSUPP;
3165 }
3166}
3167
3168static LIST_HEAD(iavf_block_cb_list);
3169
3170/**
3171 * iavf_setup_tc - configure multiple traffic classes
3172 * @netdev: network interface device structure
3173 * @type: type of offload
3174 * @type_data: tc offload data
3175 *
3176 * This function is the callback to ndo_setup_tc in the
3177 * netdev_ops.
3178 *
3179 * Returns 0 on success
3180 **/
3181static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3182 void *type_data)
3183{
3184 struct iavf_adapter *adapter = netdev_priv(netdev);
3185
3186 switch (type) {
3187 case TC_SETUP_QDISC_MQPRIO:
3188 return __iavf_setup_tc(netdev, type_data);
3189 case TC_SETUP_BLOCK:
3190 return flow_block_cb_setup_simple(type_data,
3191 &iavf_block_cb_list,
3192 iavf_setup_tc_block_cb,
3193 adapter, adapter, true);
3194 default:
3195 return -EOPNOTSUPP;
3196 }
3197}
3198
3199/**
3200 * iavf_open - Called when a network interface is made active
3201 * @netdev: network interface device structure
3202 *
3203 * Returns 0 on success, negative value on failure
3204 *
3205 * The open entry point is called when a network interface is made
3206 * active by the system (IFF_UP). At this point all resources needed
3207 * for transmit and receive operations are allocated, the interrupt
3208 * handler is registered with the OS, the watchdog is started,
3209 * and the stack is notified that the interface is ready.
3210 **/
3211static int iavf_open(struct net_device *netdev)
3212{
3213 struct iavf_adapter *adapter = netdev_priv(netdev);
3214 int err;
3215
3216 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3217 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3218 return -EIO;
3219 }
3220
3221 while (!mutex_trylock(&adapter->crit_lock))
3222 usleep_range(500, 1000);
3223
3224 if (adapter->state != __IAVF_DOWN) {
3225 err = -EBUSY;
3226 goto err_unlock;
3227 }
3228
3229 /* allocate transmit descriptors */
3230 err = iavf_setup_all_tx_resources(adapter);
3231 if (err)
3232 goto err_setup_tx;
3233
3234 /* allocate receive descriptors */
3235 err = iavf_setup_all_rx_resources(adapter);
3236 if (err)
3237 goto err_setup_rx;
3238
3239 /* clear any pending interrupts, may auto mask */
3240 err = iavf_request_traffic_irqs(adapter, netdev->name);
3241 if (err)
3242 goto err_req_irq;
3243
3244 spin_lock_bh(&adapter->mac_vlan_list_lock);
3245
3246 iavf_add_filter(adapter, adapter->hw.mac.addr);
3247
3248 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3249
3250 iavf_configure(adapter);
3251
3252 iavf_up_complete(adapter);
3253
3254 iavf_irq_enable(adapter, true);
3255
3256 mutex_unlock(&adapter->crit_lock);
3257
3258 return 0;
3259
3260err_req_irq:
3261 iavf_down(adapter);
3262 iavf_free_traffic_irqs(adapter);
3263err_setup_rx:
3264 iavf_free_all_rx_resources(adapter);
3265err_setup_tx:
3266 iavf_free_all_tx_resources(adapter);
3267err_unlock:
3268 mutex_unlock(&adapter->crit_lock);
3269
3270 return err;
3271}
3272
3273/**
3274 * iavf_close - Disables a network interface
3275 * @netdev: network interface device structure
3276 *
3277 * Returns 0, this is not allowed to fail
3278 *
3279 * The close entry point is called when an interface is de-activated
3280 * by the OS. The hardware is still under the drivers control, but
3281 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3282 * are freed, along with all transmit and receive resources.
3283 **/
3284static int iavf_close(struct net_device *netdev)
3285{
3286 struct iavf_adapter *adapter = netdev_priv(netdev);
3287 int status;
3288
3289 if (adapter->state <= __IAVF_DOWN_PENDING)
3290 return 0;
3291
3292 while (!mutex_trylock(&adapter->crit_lock))
3293 usleep_range(500, 1000);
3294
3295 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3296 if (CLIENT_ENABLED(adapter))
3297 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3298
3299 iavf_down(adapter);
3300 adapter->state = __IAVF_DOWN_PENDING;
3301 iavf_free_traffic_irqs(adapter);
3302
3303 mutex_unlock(&adapter->crit_lock);
3304
3305 /* We explicitly don't free resources here because the hardware is
3306 * still active and can DMA into memory. Resources are cleared in
3307 * iavf_virtchnl_completion() after we get confirmation from the PF
3308 * driver that the rings have been stopped.
3309 *
3310 * Also, we wait for state to transition to __IAVF_DOWN before
3311 * returning. State change occurs in iavf_virtchnl_completion() after
3312 * VF resources are released (which occurs after PF driver processes and
3313 * responds to admin queue commands).
3314 */
3315
3316 status = wait_event_timeout(adapter->down_waitqueue,
3317 adapter->state == __IAVF_DOWN,
3318 msecs_to_jiffies(500));
3319 if (!status)
3320 netdev_warn(netdev, "Device resources not yet released\n");
3321 return 0;
3322}
3323
3324/**
3325 * iavf_change_mtu - Change the Maximum Transfer Unit
3326 * @netdev: network interface device structure
3327 * @new_mtu: new value for maximum frame size
3328 *
3329 * Returns 0 on success, negative on failure
3330 **/
3331static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3332{
3333 struct iavf_adapter *adapter = netdev_priv(netdev);
3334
3335 netdev->mtu = new_mtu;
3336 if (CLIENT_ENABLED(adapter)) {
3337 iavf_notify_client_l2_params(&adapter->vsi);
3338 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3339 }
3340 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3341 queue_work(iavf_wq, &adapter->reset_task);
3342
3343 return 0;
3344}
3345
3346/**
3347 * iavf_set_features - set the netdev feature flags
3348 * @netdev: ptr to the netdev being adjusted
3349 * @features: the feature set that the stack is suggesting
3350 * Note: expects to be called while under rtnl_lock()
3351 **/
3352static int iavf_set_features(struct net_device *netdev,
3353 netdev_features_t features)
3354{
3355 struct iavf_adapter *adapter = netdev_priv(netdev);
3356
3357 /* Don't allow changing VLAN_RX flag when adapter is not capable
3358 * of VLAN offload
3359 */
3360 if (!VLAN_ALLOWED(adapter)) {
3361 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3362 return -EINVAL;
3363 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3364 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3365 adapter->aq_required |=
3366 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3367 else
3368 adapter->aq_required |=
3369 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3370 }
3371
3372 return 0;
3373}
3374
3375/**
3376 * iavf_features_check - Validate encapsulated packet conforms to limits
3377 * @skb: skb buff
3378 * @dev: This physical port's netdev
3379 * @features: Offload features that the stack believes apply
3380 **/
3381static netdev_features_t iavf_features_check(struct sk_buff *skb,
3382 struct net_device *dev,
3383 netdev_features_t features)
3384{
3385 size_t len;
3386
3387 /* No point in doing any of this if neither checksum nor GSO are
3388 * being requested for this frame. We can rule out both by just
3389 * checking for CHECKSUM_PARTIAL
3390 */
3391 if (skb->ip_summed != CHECKSUM_PARTIAL)
3392 return features;
3393
3394 /* We cannot support GSO if the MSS is going to be less than
3395 * 64 bytes. If it is then we need to drop support for GSO.
3396 */
3397 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3398 features &= ~NETIF_F_GSO_MASK;
3399
3400 /* MACLEN can support at most 63 words */
3401 len = skb_network_header(skb) - skb->data;
3402 if (len & ~(63 * 2))
3403 goto out_err;
3404
3405 /* IPLEN and EIPLEN can support at most 127 dwords */
3406 len = skb_transport_header(skb) - skb_network_header(skb);
3407 if (len & ~(127 * 4))
3408 goto out_err;
3409
3410 if (skb->encapsulation) {
3411 /* L4TUNLEN can support 127 words */
3412 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3413 if (len & ~(127 * 2))
3414 goto out_err;
3415
3416 /* IPLEN can support at most 127 dwords */
3417 len = skb_inner_transport_header(skb) -
3418 skb_inner_network_header(skb);
3419 if (len & ~(127 * 4))
3420 goto out_err;
3421 }
3422
3423 /* No need to validate L4LEN as TCP is the only protocol with a
3424 * a flexible value and we support all possible values supported
3425 * by TCP, which is at most 15 dwords
3426 */
3427
3428 return features;
3429out_err:
3430 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3431}
3432
3433/**
3434 * iavf_fix_features - fix up the netdev feature bits
3435 * @netdev: our net device
3436 * @features: desired feature bits
3437 *
3438 * Returns fixed-up features bits
3439 **/
3440static netdev_features_t iavf_fix_features(struct net_device *netdev,
3441 netdev_features_t features)
3442{
3443 struct iavf_adapter *adapter = netdev_priv(netdev);
3444
3445 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3446 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3447 NETIF_F_HW_VLAN_CTAG_RX |
3448 NETIF_F_HW_VLAN_CTAG_FILTER);
3449
3450 return features;
3451}
3452
3453static const struct net_device_ops iavf_netdev_ops = {
3454 .ndo_open = iavf_open,
3455 .ndo_stop = iavf_close,
3456 .ndo_start_xmit = iavf_xmit_frame,
3457 .ndo_set_rx_mode = iavf_set_rx_mode,
3458 .ndo_validate_addr = eth_validate_addr,
3459 .ndo_set_mac_address = iavf_set_mac,
3460 .ndo_change_mtu = iavf_change_mtu,
3461 .ndo_tx_timeout = iavf_tx_timeout,
3462 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
3463 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
3464 .ndo_features_check = iavf_features_check,
3465 .ndo_fix_features = iavf_fix_features,
3466 .ndo_set_features = iavf_set_features,
3467 .ndo_setup_tc = iavf_setup_tc,
3468};
3469
3470/**
3471 * iavf_check_reset_complete - check that VF reset is complete
3472 * @hw: pointer to hw struct
3473 *
3474 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3475 **/
3476static int iavf_check_reset_complete(struct iavf_hw *hw)
3477{
3478 u32 rstat;
3479 int i;
3480
3481 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3482 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3483 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3484 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3485 (rstat == VIRTCHNL_VFR_COMPLETED))
3486 return 0;
3487 usleep_range(10, 20);
3488 }
3489 return -EBUSY;
3490}
3491
3492/**
3493 * iavf_process_config - Process the config information we got from the PF
3494 * @adapter: board private structure
3495 *
3496 * Verify that we have a valid config struct, and set up our netdev features
3497 * and our VSI struct.
3498 **/
3499int iavf_process_config(struct iavf_adapter *adapter)
3500{
3501 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3502 int i, num_req_queues = adapter->num_req_queues;
3503 struct net_device *netdev = adapter->netdev;
3504 struct iavf_vsi *vsi = &adapter->vsi;
3505 netdev_features_t hw_enc_features;
3506 netdev_features_t hw_features;
3507
3508 /* got VF config message back from PF, now we can parse it */
3509 for (i = 0; i < vfres->num_vsis; i++) {
3510 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3511 adapter->vsi_res = &vfres->vsi_res[i];
3512 }
3513 if (!adapter->vsi_res) {
3514 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3515 return -ENODEV;
3516 }
3517
3518 if (num_req_queues &&
3519 num_req_queues > adapter->vsi_res->num_queue_pairs) {
3520 /* Problem. The PF gave us fewer queues than what we had
3521 * negotiated in our request. Need a reset to see if we can't
3522 * get back to a working state.
3523 */
3524 dev_err(&adapter->pdev->dev,
3525 "Requested %d queues, but PF only gave us %d.\n",
3526 num_req_queues,
3527 adapter->vsi_res->num_queue_pairs);
3528 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3529 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3530 iavf_schedule_reset(adapter);
3531 return -ENODEV;
3532 }
3533 adapter->num_req_queues = 0;
3534
3535 hw_enc_features = NETIF_F_SG |
3536 NETIF_F_IP_CSUM |
3537 NETIF_F_IPV6_CSUM |
3538 NETIF_F_HIGHDMA |
3539 NETIF_F_SOFT_FEATURES |
3540 NETIF_F_TSO |
3541 NETIF_F_TSO_ECN |
3542 NETIF_F_TSO6 |
3543 NETIF_F_SCTP_CRC |
3544 NETIF_F_RXHASH |
3545 NETIF_F_RXCSUM |
3546 0;
3547
3548 /* advertise to stack only if offloads for encapsulated packets is
3549 * supported
3550 */
3551 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3552 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
3553 NETIF_F_GSO_GRE |
3554 NETIF_F_GSO_GRE_CSUM |
3555 NETIF_F_GSO_IPXIP4 |
3556 NETIF_F_GSO_IPXIP6 |
3557 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3558 NETIF_F_GSO_PARTIAL |
3559 0;
3560
3561 if (!(vfres->vf_cap_flags &
3562 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3563 netdev->gso_partial_features |=
3564 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3565
3566 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3567 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3568 netdev->hw_enc_features |= hw_enc_features;
3569 }
3570 /* record features VLANs can make use of */
3571 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3572
3573 /* Write features and hw_features separately to avoid polluting
3574 * with, or dropping, features that are set when we registered.
3575 */
3576 hw_features = hw_enc_features;
3577
3578 /* Enable VLAN features if supported */
3579 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3580 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3581 NETIF_F_HW_VLAN_CTAG_RX);
3582 /* Enable cloud filter if ADQ is supported */
3583 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3584 hw_features |= NETIF_F_HW_TC;
3585 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
3586 hw_features |= NETIF_F_GSO_UDP_L4;
3587
3588 netdev->hw_features |= hw_features;
3589
3590 netdev->features |= hw_features;
3591
3592 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3593 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3594
3595 netdev->priv_flags |= IFF_UNICAST_FLT;
3596
3597 /* Do not turn on offloads when they are requested to be turned off.
3598 * TSO needs minimum 576 bytes to work correctly.
3599 */
3600 if (netdev->wanted_features) {
3601 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3602 netdev->mtu < 576)
3603 netdev->features &= ~NETIF_F_TSO;
3604 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3605 netdev->mtu < 576)
3606 netdev->features &= ~NETIF_F_TSO6;
3607 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3608 netdev->features &= ~NETIF_F_TSO_ECN;
3609 if (!(netdev->wanted_features & NETIF_F_GRO))
3610 netdev->features &= ~NETIF_F_GRO;
3611 if (!(netdev->wanted_features & NETIF_F_GSO))
3612 netdev->features &= ~NETIF_F_GSO;
3613 }
3614
3615 adapter->vsi.id = adapter->vsi_res->vsi_id;
3616
3617 adapter->vsi.back = adapter;
3618 adapter->vsi.base_vector = 1;
3619 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3620 vsi->netdev = adapter->netdev;
3621 vsi->qs_handle = adapter->vsi_res->qset_handle;
3622 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3623 adapter->rss_key_size = vfres->rss_key_size;
3624 adapter->rss_lut_size = vfres->rss_lut_size;
3625 } else {
3626 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3627 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3628 }
3629
3630 return 0;
3631}
3632
3633/**
3634 * iavf_init_task - worker thread to perform delayed initialization
3635 * @work: pointer to work_struct containing our data
3636 *
3637 * This task completes the work that was begun in probe. Due to the nature
3638 * of VF-PF communications, we may need to wait tens of milliseconds to get
3639 * responses back from the PF. Rather than busy-wait in probe and bog down the
3640 * whole system, we'll do it in a task so we can sleep.
3641 * This task only runs during driver init. Once we've established
3642 * communications with the PF driver and set up our netdev, the watchdog
3643 * takes over.
3644 **/
3645static void iavf_init_task(struct work_struct *work)
3646{
3647 struct iavf_adapter *adapter = container_of(work,
3648 struct iavf_adapter,
3649 init_task.work);
3650 struct iavf_hw *hw = &adapter->hw;
3651
3652 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) {
3653 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3654 return;
3655 }
3656 switch (adapter->state) {
3657 case __IAVF_STARTUP:
3658 if (iavf_startup(adapter) < 0)
3659 goto init_failed;
3660 break;
3661 case __IAVF_INIT_VERSION_CHECK:
3662 if (iavf_init_version_check(adapter) < 0)
3663 goto init_failed;
3664 break;
3665 case __IAVF_INIT_GET_RESOURCES:
3666 if (iavf_init_get_resources(adapter) < 0)
3667 goto init_failed;
3668 goto out;
3669 default:
3670 goto init_failed;
3671 }
3672
3673 queue_delayed_work(iavf_wq, &adapter->init_task,
3674 msecs_to_jiffies(30));
3675 goto out;
3676init_failed:
3677 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3678 dev_err(&adapter->pdev->dev,
3679 "Failed to communicate with PF; waiting before retry\n");
3680 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3681 iavf_shutdown_adminq(hw);
3682 adapter->state = __IAVF_STARTUP;
3683 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3684 goto out;
3685 }
3686 queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3687out:
3688 mutex_unlock(&adapter->crit_lock);
3689}
3690
3691/**
3692 * iavf_shutdown - Shutdown the device in preparation for a reboot
3693 * @pdev: pci device structure
3694 **/
3695static void iavf_shutdown(struct pci_dev *pdev)
3696{
3697 struct net_device *netdev = pci_get_drvdata(pdev);
3698 struct iavf_adapter *adapter = netdev_priv(netdev);
3699
3700 netif_device_detach(netdev);
3701
3702 if (netif_running(netdev))
3703 iavf_close(netdev);
3704
3705 if (iavf_lock_timeout(&adapter->crit_lock, 5000))
3706 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3707 /* Prevent the watchdog from running. */
3708 adapter->state = __IAVF_REMOVE;
3709 adapter->aq_required = 0;
3710 mutex_unlock(&adapter->crit_lock);
3711
3712#ifdef CONFIG_PM
3713 pci_save_state(pdev);
3714
3715#endif
3716 pci_disable_device(pdev);
3717}
3718
3719/**
3720 * iavf_probe - Device Initialization Routine
3721 * @pdev: PCI device information struct
3722 * @ent: entry in iavf_pci_tbl
3723 *
3724 * Returns 0 on success, negative on failure
3725 *
3726 * iavf_probe initializes an adapter identified by a pci_dev structure.
3727 * The OS initialization, configuring of the adapter private structure,
3728 * and a hardware reset occur.
3729 **/
3730static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3731{
3732 struct net_device *netdev;
3733 struct iavf_adapter *adapter = NULL;
3734 struct iavf_hw *hw = NULL;
3735 int err;
3736
3737 err = pci_enable_device(pdev);
3738 if (err)
3739 return err;
3740
3741 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3742 if (err) {
3743 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3744 if (err) {
3745 dev_err(&pdev->dev,
3746 "DMA configuration failed: 0x%x\n", err);
3747 goto err_dma;
3748 }
3749 }
3750
3751 err = pci_request_regions(pdev, iavf_driver_name);
3752 if (err) {
3753 dev_err(&pdev->dev,
3754 "pci_request_regions failed 0x%x\n", err);
3755 goto err_pci_reg;
3756 }
3757
3758 pci_enable_pcie_error_reporting(pdev);
3759
3760 pci_set_master(pdev);
3761
3762 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3763 IAVF_MAX_REQ_QUEUES);
3764 if (!netdev) {
3765 err = -ENOMEM;
3766 goto err_alloc_etherdev;
3767 }
3768
3769 SET_NETDEV_DEV(netdev, &pdev->dev);
3770
3771 pci_set_drvdata(pdev, netdev);
3772 adapter = netdev_priv(netdev);
3773
3774 adapter->netdev = netdev;
3775 adapter->pdev = pdev;
3776
3777 hw = &adapter->hw;
3778 hw->back = adapter;
3779
3780 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3781 adapter->state = __IAVF_STARTUP;
3782
3783 /* Call save state here because it relies on the adapter struct. */
3784 pci_save_state(pdev);
3785
3786 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3787 pci_resource_len(pdev, 0));
3788 if (!hw->hw_addr) {
3789 err = -EIO;
3790 goto err_ioremap;
3791 }
3792 hw->vendor_id = pdev->vendor;
3793 hw->device_id = pdev->device;
3794 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3795 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3796 hw->subsystem_device_id = pdev->subsystem_device;
3797 hw->bus.device = PCI_SLOT(pdev->devfn);
3798 hw->bus.func = PCI_FUNC(pdev->devfn);
3799 hw->bus.bus_id = pdev->bus->number;
3800
3801 /* set up the locks for the AQ, do this only once in probe
3802 * and destroy them only once in remove
3803 */
3804 mutex_init(&adapter->crit_lock);
3805 mutex_init(&adapter->client_lock);
3806 mutex_init(&adapter->remove_lock);
3807 mutex_init(&hw->aq.asq_mutex);
3808 mutex_init(&hw->aq.arq_mutex);
3809
3810 spin_lock_init(&adapter->mac_vlan_list_lock);
3811 spin_lock_init(&adapter->cloud_filter_list_lock);
3812 spin_lock_init(&adapter->fdir_fltr_lock);
3813 spin_lock_init(&adapter->adv_rss_lock);
3814
3815 INIT_LIST_HEAD(&adapter->mac_filter_list);
3816 INIT_LIST_HEAD(&adapter->vlan_filter_list);
3817 INIT_LIST_HEAD(&adapter->cloud_filter_list);
3818 INIT_LIST_HEAD(&adapter->fdir_list_head);
3819 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
3820
3821 INIT_WORK(&adapter->reset_task, iavf_reset_task);
3822 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3823 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3824 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3825 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3826 queue_delayed_work(iavf_wq, &adapter->init_task,
3827 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3828
3829 /* Setup the wait queue for indicating transition to down status */
3830 init_waitqueue_head(&adapter->down_waitqueue);
3831
3832 return 0;
3833
3834err_ioremap:
3835 free_netdev(netdev);
3836err_alloc_etherdev:
3837 pci_disable_pcie_error_reporting(pdev);
3838 pci_release_regions(pdev);
3839err_pci_reg:
3840err_dma:
3841 pci_disable_device(pdev);
3842 return err;
3843}
3844
3845/**
3846 * iavf_suspend - Power management suspend routine
3847 * @dev_d: device info pointer
3848 *
3849 * Called when the system (VM) is entering sleep/suspend.
3850 **/
3851static int __maybe_unused iavf_suspend(struct device *dev_d)
3852{
3853 struct net_device *netdev = dev_get_drvdata(dev_d);
3854 struct iavf_adapter *adapter = netdev_priv(netdev);
3855
3856 netif_device_detach(netdev);
3857
3858 while (!mutex_trylock(&adapter->crit_lock))
3859 usleep_range(500, 1000);
3860
3861 if (netif_running(netdev)) {
3862 rtnl_lock();
3863 iavf_down(adapter);
3864 rtnl_unlock();
3865 }
3866 iavf_free_misc_irq(adapter);
3867 iavf_reset_interrupt_capability(adapter);
3868
3869 mutex_unlock(&adapter->crit_lock);
3870
3871 return 0;
3872}
3873
3874/**
3875 * iavf_resume - Power management resume routine
3876 * @dev_d: device info pointer
3877 *
3878 * Called when the system (VM) is resumed from sleep/suspend.
3879 **/
3880static int __maybe_unused iavf_resume(struct device *dev_d)
3881{
3882 struct pci_dev *pdev = to_pci_dev(dev_d);
3883 struct net_device *netdev = pci_get_drvdata(pdev);
3884 struct iavf_adapter *adapter = netdev_priv(netdev);
3885 u32 err;
3886
3887 pci_set_master(pdev);
3888
3889 rtnl_lock();
3890 err = iavf_set_interrupt_capability(adapter);
3891 if (err) {
3892 rtnl_unlock();
3893 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3894 return err;
3895 }
3896 err = iavf_request_misc_irq(adapter);
3897 rtnl_unlock();
3898 if (err) {
3899 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3900 return err;
3901 }
3902
3903 queue_work(iavf_wq, &adapter->reset_task);
3904
3905 netif_device_attach(netdev);
3906
3907 return err;
3908}
3909
3910/**
3911 * iavf_remove - Device Removal Routine
3912 * @pdev: PCI device information struct
3913 *
3914 * iavf_remove is called by the PCI subsystem to alert the driver
3915 * that it should release a PCI device. The could be caused by a
3916 * Hot-Plug event, or because the driver is going to be removed from
3917 * memory.
3918 **/
3919static void iavf_remove(struct pci_dev *pdev)
3920{
3921 struct net_device *netdev = pci_get_drvdata(pdev);
3922 struct iavf_adapter *adapter = netdev_priv(netdev);
3923 struct iavf_fdir_fltr *fdir, *fdirtmp;
3924 struct iavf_vlan_filter *vlf, *vlftmp;
3925 struct iavf_adv_rss *rss, *rsstmp;
3926 struct iavf_mac_filter *f, *ftmp;
3927 struct iavf_cloud_filter *cf, *cftmp;
3928 struct iavf_hw *hw = &adapter->hw;
3929 int err;
3930 /* Indicate we are in remove and not to run reset_task */
3931 mutex_lock(&adapter->remove_lock);
3932 cancel_delayed_work_sync(&adapter->init_task);
3933 cancel_work_sync(&adapter->reset_task);
3934 cancel_delayed_work_sync(&adapter->client_task);
3935 if (adapter->netdev_registered) {
3936 unregister_netdev(netdev);
3937 adapter->netdev_registered = false;
3938 }
3939 if (CLIENT_ALLOWED(adapter)) {
3940 err = iavf_lan_del_device(adapter);
3941 if (err)
3942 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3943 err);
3944 }
3945
3946 iavf_request_reset(adapter);
3947 msleep(50);
3948 /* If the FW isn't responding, kick it once, but only once. */
3949 if (!iavf_asq_done(hw)) {
3950 iavf_request_reset(adapter);
3951 msleep(50);
3952 }
3953 if (iavf_lock_timeout(&adapter->crit_lock, 5000))
3954 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3955
3956 /* Shut down all the garbage mashers on the detention level */
3957 adapter->state = __IAVF_REMOVE;
3958 adapter->aq_required = 0;
3959 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3960 iavf_free_all_tx_resources(adapter);
3961 iavf_free_all_rx_resources(adapter);
3962 iavf_misc_irq_disable(adapter);
3963 iavf_free_misc_irq(adapter);
3964 iavf_reset_interrupt_capability(adapter);
3965 iavf_free_q_vectors(adapter);
3966
3967 cancel_delayed_work_sync(&adapter->watchdog_task);
3968
3969 cancel_work_sync(&adapter->adminq_task);
3970
3971 iavf_free_rss(adapter);
3972
3973 if (hw->aq.asq.count)
3974 iavf_shutdown_adminq(hw);
3975
3976 /* destroy the locks only once, here */
3977 mutex_destroy(&hw->aq.arq_mutex);
3978 mutex_destroy(&hw->aq.asq_mutex);
3979 mutex_destroy(&adapter->client_lock);
3980 mutex_unlock(&adapter->crit_lock);
3981 mutex_destroy(&adapter->crit_lock);
3982 mutex_unlock(&adapter->remove_lock);
3983 mutex_destroy(&adapter->remove_lock);
3984
3985 iounmap(hw->hw_addr);
3986 pci_release_regions(pdev);
3987 iavf_free_queues(adapter);
3988 kfree(adapter->vf_res);
3989 spin_lock_bh(&adapter->mac_vlan_list_lock);
3990 /* If we got removed before an up/down sequence, we've got a filter
3991 * hanging out there that we need to get rid of.
3992 */
3993 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3994 list_del(&f->list);
3995 kfree(f);
3996 }
3997 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3998 list) {
3999 list_del(&vlf->list);
4000 kfree(vlf);
4001 }
4002
4003 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4004
4005 spin_lock_bh(&adapter->cloud_filter_list_lock);
4006 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4007 list_del(&cf->list);
4008 kfree(cf);
4009 }
4010 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4011
4012 spin_lock_bh(&adapter->fdir_fltr_lock);
4013 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4014 list_del(&fdir->list);
4015 kfree(fdir);
4016 }
4017 spin_unlock_bh(&adapter->fdir_fltr_lock);
4018
4019 spin_lock_bh(&adapter->adv_rss_lock);
4020 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4021 list) {
4022 list_del(&rss->list);
4023 kfree(rss);
4024 }
4025 spin_unlock_bh(&adapter->adv_rss_lock);
4026
4027 free_netdev(netdev);
4028
4029 pci_disable_pcie_error_reporting(pdev);
4030
4031 pci_disable_device(pdev);
4032}
4033
4034static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4035
4036static struct pci_driver iavf_driver = {
4037 .name = iavf_driver_name,
4038 .id_table = iavf_pci_tbl,
4039 .probe = iavf_probe,
4040 .remove = iavf_remove,
4041 .driver.pm = &iavf_pm_ops,
4042 .shutdown = iavf_shutdown,
4043};
4044
4045/**
4046 * iavf_init_module - Driver Registration Routine
4047 *
4048 * iavf_init_module is the first routine called when the driver is
4049 * loaded. All it does is register with the PCI subsystem.
4050 **/
4051static int __init iavf_init_module(void)
4052{
4053 int ret;
4054
4055 pr_info("iavf: %s\n", iavf_driver_string);
4056
4057 pr_info("%s\n", iavf_copyright);
4058
4059 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4060 iavf_driver_name);
4061 if (!iavf_wq) {
4062 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4063 return -ENOMEM;
4064 }
4065 ret = pci_register_driver(&iavf_driver);
4066 return ret;
4067}
4068
4069module_init(iavf_init_module);
4070
4071/**
4072 * iavf_exit_module - Driver Exit Cleanup Routine
4073 *
4074 * iavf_exit_module is called just before the driver is removed
4075 * from memory.
4076 **/
4077static void __exit iavf_exit_module(void)
4078{
4079 pci_unregister_driver(&iavf_driver);
4080 destroy_workqueue(iavf_wq);
4081}
4082
4083module_exit(iavf_exit_module);
4084
4085/* iavf_main.c */