Linux Audio

Check our new training course

Loading...
v4.6
 
   1#
   2# Generic algorithms support
   3#
   4config XOR_BLOCKS
   5	tristate
   6
   7#
   8# async_tx api: hardware offloaded memory transfer/transform support
   9#
  10source "crypto/async_tx/Kconfig"
  11
  12#
  13# Cryptographic API Configuration
  14#
  15menuconfig CRYPTO
  16	tristate "Cryptographic API"
  17	help
  18	  This option provides the core Cryptographic API.
  19
  20if CRYPTO
  21
  22comment "Crypto core or helper"
  23
  24config CRYPTO_FIPS
  25	bool "FIPS 200 compliance"
  26	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  27	depends on MODULE_SIG
  28	help
  29	  This options enables the fips boot option which is
  30	  required if you want to system to operate in a FIPS 200
  31	  certification.  You should say no unless you know what
  32	  this is.
  33
  34config CRYPTO_ALGAPI
  35	tristate
  36	select CRYPTO_ALGAPI2
  37	help
  38	  This option provides the API for cryptographic algorithms.
  39
  40config CRYPTO_ALGAPI2
  41	tristate
  42
  43config CRYPTO_AEAD
  44	tristate
  45	select CRYPTO_AEAD2
  46	select CRYPTO_ALGAPI
  47
  48config CRYPTO_AEAD2
  49	tristate
  50	select CRYPTO_ALGAPI2
  51	select CRYPTO_NULL2
  52	select CRYPTO_RNG2
  53
  54config CRYPTO_BLKCIPHER
  55	tristate
  56	select CRYPTO_BLKCIPHER2
  57	select CRYPTO_ALGAPI
  58
  59config CRYPTO_BLKCIPHER2
  60	tristate
  61	select CRYPTO_ALGAPI2
  62	select CRYPTO_RNG2
  63	select CRYPTO_WORKQUEUE
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_RSA
  97	tristate "RSA algorithm"
  98	select CRYPTO_AKCIPHER
  99	select CRYPTO_MANAGER
 100	select MPILIB
 101	select ASN1
 102	help
 103	  Generic implementation of the RSA public key algorithm.
 
 
 
 
 
 
 
 
 
 
 104
 105config CRYPTO_MANAGER
 106	tristate "Cryptographic algorithm manager"
 107	select CRYPTO_MANAGER2
 108	help
 109	  Create default cryptographic template instantiations such as
 110	  cbc(aes).
 111
 112config CRYPTO_MANAGER2
 113	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 114	select CRYPTO_AEAD2
 115	select CRYPTO_HASH2
 116	select CRYPTO_BLKCIPHER2
 117	select CRYPTO_AKCIPHER2
 
 
 118
 119config CRYPTO_USER
 120	tristate "Userspace cryptographic algorithm configuration"
 121	depends on NET
 122	select CRYPTO_MANAGER
 123	help
 124	  Userspace configuration for cryptographic instantiations such as
 125	  cbc(aes).
 126
 127config CRYPTO_MANAGER_DISABLE_TESTS
 128	bool "Disable run-time self tests"
 129	default y
 130	depends on CRYPTO_MANAGER2
 131	help
 132	  Disable run-time self tests that normally take place at
 133	  algorithm registration.
 134
 135config CRYPTO_GF128MUL
 136	tristate "GF(2^128) multiplication functions"
 
 137	help
 138	  Efficient table driven implementation of multiplications in the
 139	  field GF(2^128).  This is needed by some cypher modes. This
 140	  option will be selected automatically if you select such a
 141	  cipher mode.  Only select this option by hand if you expect to load
 142	  an external module that requires these functions.
 
 
 
 143
 144config CRYPTO_NULL
 145	tristate "Null algorithms"
 146	select CRYPTO_NULL2
 147	help
 148	  These are 'Null' algorithms, used by IPsec, which do nothing.
 149
 150config CRYPTO_NULL2
 151	tristate
 152	select CRYPTO_ALGAPI2
 153	select CRYPTO_BLKCIPHER2
 154	select CRYPTO_HASH2
 155
 156config CRYPTO_PCRYPT
 157	tristate "Parallel crypto engine"
 158	depends on SMP
 159	select PADATA
 160	select CRYPTO_MANAGER
 161	select CRYPTO_AEAD
 162	help
 163	  This converts an arbitrary crypto algorithm into a parallel
 164	  algorithm that executes in kernel threads.
 165
 166config CRYPTO_WORKQUEUE
 167       tristate
 168
 169config CRYPTO_CRYPTD
 170	tristate "Software async crypto daemon"
 171	select CRYPTO_BLKCIPHER
 172	select CRYPTO_HASH
 173	select CRYPTO_MANAGER
 174	select CRYPTO_WORKQUEUE
 175	help
 176	  This is a generic software asynchronous crypto daemon that
 177	  converts an arbitrary synchronous software crypto algorithm
 178	  into an asynchronous algorithm that executes in a kernel thread.
 179
 180config CRYPTO_MCRYPTD
 181	tristate "Software async multi-buffer crypto daemon"
 182	select CRYPTO_BLKCIPHER
 183	select CRYPTO_HASH
 184	select CRYPTO_MANAGER
 185	select CRYPTO_WORKQUEUE
 186	help
 187	  This is a generic software asynchronous crypto daemon that
 188	  provides the kernel thread to assist multi-buffer crypto
 189	  algorithms for submitting jobs and flushing jobs in multi-buffer
 190	  crypto algorithms.  Multi-buffer crypto algorithms are executed
 191	  in the context of this kernel thread and drivers can post
 192	  their crypto request asynchronously to be processed by this daemon.
 193
 194config CRYPTO_AUTHENC
 195	tristate "Authenc support"
 196	select CRYPTO_AEAD
 197	select CRYPTO_BLKCIPHER
 198	select CRYPTO_MANAGER
 199	select CRYPTO_HASH
 200	select CRYPTO_NULL
 201	help
 202	  Authenc: Combined mode wrapper for IPsec.
 203	  This is required for IPSec.
 204
 205config CRYPTO_TEST
 206	tristate "Testing module"
 207	depends on m
 208	select CRYPTO_MANAGER
 209	help
 210	  Quick & dirty crypto test module.
 211
 212config CRYPTO_ABLK_HELPER
 213	tristate
 214	select CRYPTO_CRYPTD
 215
 216config CRYPTO_GLUE_HELPER_X86
 217	tristate
 218	depends on X86
 219	select CRYPTO_ALGAPI
 220
 221config CRYPTO_ENGINE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222	tristate
 223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224comment "Authenticated Encryption with Associated Data"
 225
 226config CRYPTO_CCM
 227	tristate "CCM support"
 228	select CRYPTO_CTR
 
 229	select CRYPTO_AEAD
 
 230	help
 231	  Support for Counter with CBC MAC. Required for IPsec.
 232
 233config CRYPTO_GCM
 234	tristate "GCM/GMAC support"
 235	select CRYPTO_CTR
 236	select CRYPTO_AEAD
 237	select CRYPTO_GHASH
 238	select CRYPTO_NULL
 
 239	help
 240	  Support for Galois/Counter Mode (GCM) and Galois Message
 241	  Authentication Code (GMAC). Required for IPSec.
 242
 243config CRYPTO_CHACHA20POLY1305
 244	tristate "ChaCha20-Poly1305 AEAD support"
 245	select CRYPTO_CHACHA20
 246	select CRYPTO_POLY1305
 247	select CRYPTO_AEAD
 
 248	help
 249	  ChaCha20-Poly1305 AEAD support, RFC7539.
 250
 251	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 252	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 253	  IETF protocols.
 254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255config CRYPTO_SEQIV
 256	tristate "Sequence Number IV Generator"
 257	select CRYPTO_AEAD
 258	select CRYPTO_BLKCIPHER
 259	select CRYPTO_NULL
 260	select CRYPTO_RNG_DEFAULT
 
 261	help
 262	  This IV generator generates an IV based on a sequence number by
 263	  xoring it with a salt.  This algorithm is mainly useful for CTR
 264
 265config CRYPTO_ECHAINIV
 266	tristate "Encrypted Chain IV Generator"
 267	select CRYPTO_AEAD
 268	select CRYPTO_NULL
 269	select CRYPTO_RNG_DEFAULT
 270	default m
 271	help
 272	  This IV generator generates an IV based on the encryption of
 273	  a sequence number xored with a salt.  This is the default
 274	  algorithm for CBC.
 275
 276comment "Block modes"
 277
 278config CRYPTO_CBC
 279	tristate "CBC support"
 280	select CRYPTO_BLKCIPHER
 281	select CRYPTO_MANAGER
 282	help
 283	  CBC: Cipher Block Chaining mode
 284	  This block cipher algorithm is required for IPSec.
 285
 
 
 
 
 
 
 
 
 286config CRYPTO_CTR
 287	tristate "CTR support"
 288	select CRYPTO_BLKCIPHER
 289	select CRYPTO_SEQIV
 290	select CRYPTO_MANAGER
 291	help
 292	  CTR: Counter mode
 293	  This block cipher algorithm is required for IPSec.
 294
 295config CRYPTO_CTS
 296	tristate "CTS support"
 297	select CRYPTO_BLKCIPHER
 
 298	help
 299	  CTS: Cipher Text Stealing
 300	  This is the Cipher Text Stealing mode as described by
 301	  Section 8 of rfc2040 and referenced by rfc3962.
 302	  (rfc3962 includes errata information in its Appendix A)
 
 303	  This mode is required for Kerberos gss mechanism support
 304	  for AES encryption.
 305
 
 
 306config CRYPTO_ECB
 307	tristate "ECB support"
 308	select CRYPTO_BLKCIPHER
 309	select CRYPTO_MANAGER
 310	help
 311	  ECB: Electronic CodeBook mode
 312	  This is the simplest block cipher algorithm.  It simply encrypts
 313	  the input block by block.
 314
 315config CRYPTO_LRW
 316	tristate "LRW support"
 317	select CRYPTO_BLKCIPHER
 318	select CRYPTO_MANAGER
 319	select CRYPTO_GF128MUL
 320	help
 321	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 322	  narrow block cipher mode for dm-crypt.  Use it with cipher
 323	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 324	  The first 128, 192 or 256 bits in the key are used for AES and the
 325	  rest is used to tie each cipher block to its logical position.
 326
 
 
 
 
 
 
 
 
 
 
 
 
 327config CRYPTO_PCBC
 328	tristate "PCBC support"
 329	select CRYPTO_BLKCIPHER
 330	select CRYPTO_MANAGER
 331	help
 332	  PCBC: Propagating Cipher Block Chaining mode
 333	  This block cipher algorithm is required for RxRPC.
 334
 335config CRYPTO_XTS
 336	tristate "XTS support"
 337	select CRYPTO_BLKCIPHER
 338	select CRYPTO_MANAGER
 339	select CRYPTO_GF128MUL
 340	help
 341	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 342	  key size 256, 384 or 512 bits. This implementation currently
 343	  can't handle a sectorsize which is not a multiple of 16 bytes.
 344
 345config CRYPTO_KEYWRAP
 346	tristate "Key wrapping support"
 347	select CRYPTO_BLKCIPHER
 
 348	help
 349	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 350	  padding.
 351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352comment "Hash modes"
 353
 354config CRYPTO_CMAC
 355	tristate "CMAC support"
 356	select CRYPTO_HASH
 357	select CRYPTO_MANAGER
 358	help
 359	  Cipher-based Message Authentication Code (CMAC) specified by
 360	  The National Institute of Standards and Technology (NIST).
 361
 362	  https://tools.ietf.org/html/rfc4493
 363	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 364
 365config CRYPTO_HMAC
 366	tristate "HMAC support"
 367	select CRYPTO_HASH
 368	select CRYPTO_MANAGER
 369	help
 370	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 371	  This is required for IPSec.
 372
 373config CRYPTO_XCBC
 374	tristate "XCBC support"
 375	select CRYPTO_HASH
 376	select CRYPTO_MANAGER
 377	help
 378	  XCBC: Keyed-Hashing with encryption algorithm
 379		http://www.ietf.org/rfc/rfc3566.txt
 380		http://csrc.nist.gov/encryption/modes/proposedmodes/
 381		 xcbc-mac/xcbc-mac-spec.pdf
 382
 383config CRYPTO_VMAC
 384	tristate "VMAC support"
 385	select CRYPTO_HASH
 386	select CRYPTO_MANAGER
 387	help
 388	  VMAC is a message authentication algorithm designed for
 389	  very high speed on 64-bit architectures.
 390
 391	  See also:
 392	  <http://fastcrypto.org/vmac>
 393
 394comment "Digest"
 395
 396config CRYPTO_CRC32C
 397	tristate "CRC32c CRC algorithm"
 398	select CRYPTO_HASH
 399	select CRC32
 400	help
 401	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 402	  by iSCSI for header and data digests and by others.
 403	  See Castagnoli93.  Module will be crc32c.
 404
 405config CRYPTO_CRC32C_INTEL
 406	tristate "CRC32c INTEL hardware acceleration"
 407	depends on X86
 408	select CRYPTO_HASH
 409	help
 410	  In Intel processor with SSE4.2 supported, the processor will
 411	  support CRC32C implementation using hardware accelerated CRC32
 412	  instruction. This option will create 'crc32c-intel' module,
 413	  which will enable any routine to use the CRC32 instruction to
 414	  gain performance compared with software implementation.
 415	  Module will be crc32c-intel.
 416
 
 
 
 
 
 
 
 
 
 
 
 417config CRYPTO_CRC32C_SPARC64
 418	tristate "CRC32c CRC algorithm (SPARC64)"
 419	depends on SPARC64
 420	select CRYPTO_HASH
 421	select CRC32
 422	help
 423	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 424	  when available.
 425
 426config CRYPTO_CRC32
 427	tristate "CRC32 CRC algorithm"
 428	select CRYPTO_HASH
 429	select CRC32
 430	help
 431	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 432	  Shash crypto api wrappers to crc32_le function.
 433
 434config CRYPTO_CRC32_PCLMUL
 435	tristate "CRC32 PCLMULQDQ hardware acceleration"
 436	depends on X86
 437	select CRYPTO_HASH
 438	select CRC32
 439	help
 440	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 441	  and PCLMULQDQ supported, the processor will support
 442	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 443	  instruction. This option will create 'crc32-plcmul' module,
 444	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 445	  and gain better performance as compared with the table implementation.
 446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447config CRYPTO_CRCT10DIF
 448	tristate "CRCT10DIF algorithm"
 449	select CRYPTO_HASH
 450	help
 451	  CRC T10 Data Integrity Field computation is being cast as
 452	  a crypto transform.  This allows for faster crc t10 diff
 453	  transforms to be used if they are available.
 454
 455config CRYPTO_CRCT10DIF_PCLMUL
 456	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 457	depends on X86 && 64BIT && CRC_T10DIF
 458	select CRYPTO_HASH
 459	help
 460	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 461	  CRC T10 DIF PCLMULQDQ computation can be hardware
 462	  accelerated PCLMULQDQ instruction. This option will create
 463	  'crct10dif-plcmul' module, which is faster when computing the
 464	  crct10dif checksum as compared with the generic table implementation.
 465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466config CRYPTO_GHASH
 467	tristate "GHASH digest algorithm"
 468	select CRYPTO_GF128MUL
 469	select CRYPTO_HASH
 470	help
 471	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 
 472
 473config CRYPTO_POLY1305
 474	tristate "Poly1305 authenticator algorithm"
 475	select CRYPTO_HASH
 
 476	help
 477	  Poly1305 authenticator algorithm, RFC7539.
 478
 479	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 480	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 481	  in IETF protocols. This is the portable C implementation of Poly1305.
 482
 483config CRYPTO_POLY1305_X86_64
 484	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 485	depends on X86 && 64BIT
 486	select CRYPTO_POLY1305
 
 487	help
 488	  Poly1305 authenticator algorithm, RFC7539.
 489
 490	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 491	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 492	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 493	  instructions.
 494
 
 
 
 
 
 495config CRYPTO_MD4
 496	tristate "MD4 digest algorithm"
 497	select CRYPTO_HASH
 498	help
 499	  MD4 message digest algorithm (RFC1320).
 500
 501config CRYPTO_MD5
 502	tristate "MD5 digest algorithm"
 503	select CRYPTO_HASH
 504	help
 505	  MD5 message digest algorithm (RFC1321).
 506
 507config CRYPTO_MD5_OCTEON
 508	tristate "MD5 digest algorithm (OCTEON)"
 509	depends on CPU_CAVIUM_OCTEON
 510	select CRYPTO_MD5
 511	select CRYPTO_HASH
 512	help
 513	  MD5 message digest algorithm (RFC1321) implemented
 514	  using OCTEON crypto instructions, when available.
 515
 516config CRYPTO_MD5_PPC
 517	tristate "MD5 digest algorithm (PPC)"
 518	depends on PPC
 519	select CRYPTO_HASH
 520	help
 521	  MD5 message digest algorithm (RFC1321) implemented
 522	  in PPC assembler.
 523
 524config CRYPTO_MD5_SPARC64
 525	tristate "MD5 digest algorithm (SPARC64)"
 526	depends on SPARC64
 527	select CRYPTO_MD5
 528	select CRYPTO_HASH
 529	help
 530	  MD5 message digest algorithm (RFC1321) implemented
 531	  using sparc64 crypto instructions, when available.
 532
 533config CRYPTO_MICHAEL_MIC
 534	tristate "Michael MIC keyed digest algorithm"
 535	select CRYPTO_HASH
 536	help
 537	  Michael MIC is used for message integrity protection in TKIP
 538	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 539	  should not be used for other purposes because of the weakness
 540	  of the algorithm.
 541
 542config CRYPTO_RMD128
 543	tristate "RIPEMD-128 digest algorithm"
 544	select CRYPTO_HASH
 545	help
 546	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 547
 548	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 549	  be used as a secure replacement for RIPEMD. For other use cases,
 550	  RIPEMD-160 should be used.
 551
 552	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 553	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 554
 555config CRYPTO_RMD160
 556	tristate "RIPEMD-160 digest algorithm"
 557	select CRYPTO_HASH
 558	help
 559	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 560
 561	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 562	  to be used as a secure replacement for the 128-bit hash functions
 563	  MD4, MD5 and it's predecessor RIPEMD
 564	  (not to be confused with RIPEMD-128).
 565
 566	  It's speed is comparable to SHA1 and there are no known attacks
 567	  against RIPEMD-160.
 568
 569	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 570	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 571
 572config CRYPTO_RMD256
 573	tristate "RIPEMD-256 digest algorithm"
 574	select CRYPTO_HASH
 575	help
 576	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 577	  256 bit hash. It is intended for applications that require
 578	  longer hash-results, without needing a larger security level
 579	  (than RIPEMD-128).
 580
 581	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 582	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 583
 584config CRYPTO_RMD320
 585	tristate "RIPEMD-320 digest algorithm"
 586	select CRYPTO_HASH
 587	help
 588	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 589	  320 bit hash. It is intended for applications that require
 590	  longer hash-results, without needing a larger security level
 591	  (than RIPEMD-160).
 592
 593	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 594	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 595
 596config CRYPTO_SHA1
 597	tristate "SHA1 digest algorithm"
 598	select CRYPTO_HASH
 599	help
 600	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 601
 602config CRYPTO_SHA1_SSSE3
 603	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 604	depends on X86 && 64BIT
 605	select CRYPTO_SHA1
 606	select CRYPTO_HASH
 607	help
 608	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 609	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 610	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 611	  when available.
 612
 613config CRYPTO_SHA256_SSSE3
 614	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 615	depends on X86 && 64BIT
 616	select CRYPTO_SHA256
 617	select CRYPTO_HASH
 618	help
 619	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 620	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 621	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 622	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 623	  Instructions) when available.
 624
 625config CRYPTO_SHA512_SSSE3
 626	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 627	depends on X86 && 64BIT
 628	select CRYPTO_SHA512
 629	select CRYPTO_HASH
 630	help
 631	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 632	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 633	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 634	  version 2 (AVX2) instructions, when available.
 635
 636config CRYPTO_SHA1_OCTEON
 637	tristate "SHA1 digest algorithm (OCTEON)"
 638	depends on CPU_CAVIUM_OCTEON
 639	select CRYPTO_SHA1
 640	select CRYPTO_HASH
 641	help
 642	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 643	  using OCTEON crypto instructions, when available.
 644
 645config CRYPTO_SHA1_SPARC64
 646	tristate "SHA1 digest algorithm (SPARC64)"
 647	depends on SPARC64
 648	select CRYPTO_SHA1
 649	select CRYPTO_HASH
 650	help
 651	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 652	  using sparc64 crypto instructions, when available.
 653
 654config CRYPTO_SHA1_PPC
 655	tristate "SHA1 digest algorithm (powerpc)"
 656	depends on PPC
 657	help
 658	  This is the powerpc hardware accelerated implementation of the
 659	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 660
 661config CRYPTO_SHA1_PPC_SPE
 662	tristate "SHA1 digest algorithm (PPC SPE)"
 663	depends on PPC && SPE
 664	help
 665	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 666	  using powerpc SPE SIMD instruction set.
 667
 668config CRYPTO_SHA1_MB
 669	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 670	depends on X86 && 64BIT
 671	select CRYPTO_SHA1
 672	select CRYPTO_HASH
 673	select CRYPTO_MCRYPTD
 674	help
 675	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 676	  using multi-buffer technique.  This algorithm computes on
 677	  multiple data lanes concurrently with SIMD instructions for
 678	  better throughput.  It should not be enabled by default but
 679	  used when there is significant amount of work to keep the keep
 680	  the data lanes filled to get performance benefit.  If the data
 681	  lanes remain unfilled, a flush operation will be initiated to
 682	  process the crypto jobs, adding a slight latency.
 683
 684config CRYPTO_SHA256
 685	tristate "SHA224 and SHA256 digest algorithm"
 686	select CRYPTO_HASH
 
 687	help
 688	  SHA256 secure hash standard (DFIPS 180-2).
 689
 690	  This version of SHA implements a 256 bit hash with 128 bits of
 691	  security against collision attacks.
 692
 693	  This code also includes SHA-224, a 224 bit hash with 112 bits
 694	  of security against collision attacks.
 695
 696config CRYPTO_SHA256_PPC_SPE
 697	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 698	depends on PPC && SPE
 699	select CRYPTO_SHA256
 700	select CRYPTO_HASH
 701	help
 702	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 703	  implemented using powerpc SPE SIMD instruction set.
 704
 705config CRYPTO_SHA256_OCTEON
 706	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 707	depends on CPU_CAVIUM_OCTEON
 708	select CRYPTO_SHA256
 709	select CRYPTO_HASH
 710	help
 711	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 712	  using OCTEON crypto instructions, when available.
 713
 714config CRYPTO_SHA256_SPARC64
 715	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 716	depends on SPARC64
 717	select CRYPTO_SHA256
 718	select CRYPTO_HASH
 719	help
 720	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 721	  using sparc64 crypto instructions, when available.
 722
 723config CRYPTO_SHA512
 724	tristate "SHA384 and SHA512 digest algorithms"
 725	select CRYPTO_HASH
 726	help
 727	  SHA512 secure hash standard (DFIPS 180-2).
 728
 729	  This version of SHA implements a 512 bit hash with 256 bits of
 730	  security against collision attacks.
 731
 732	  This code also includes SHA-384, a 384 bit hash with 192 bits
 733	  of security against collision attacks.
 734
 735config CRYPTO_SHA512_OCTEON
 736	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 737	depends on CPU_CAVIUM_OCTEON
 738	select CRYPTO_SHA512
 739	select CRYPTO_HASH
 740	help
 741	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 742	  using OCTEON crypto instructions, when available.
 743
 744config CRYPTO_SHA512_SPARC64
 745	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 746	depends on SPARC64
 747	select CRYPTO_SHA512
 748	select CRYPTO_HASH
 749	help
 750	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 751	  using sparc64 crypto instructions, when available.
 752
 753config CRYPTO_TGR192
 754	tristate "Tiger digest algorithms"
 755	select CRYPTO_HASH
 756	help
 757	  Tiger hash algorithm 192, 160 and 128-bit hashes
 
 758
 759	  Tiger is a hash function optimized for 64-bit processors while
 760	  still having decent performance on 32-bit processors.
 761	  Tiger was developed by Ross Anderson and Eli Biham.
 762
 763	  See also:
 764	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765
 766config CRYPTO_WP512
 767	tristate "Whirlpool digest algorithms"
 768	select CRYPTO_HASH
 769	help
 770	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 771
 772	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 773	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 774
 775	  See also:
 776	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 777
 778config CRYPTO_GHASH_CLMUL_NI_INTEL
 779	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 780	depends on X86 && 64BIT
 781	select CRYPTO_CRYPTD
 782	help
 783	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 784	  The implementation is accelerated by CLMUL-NI of Intel.
 785
 786comment "Ciphers"
 787
 788config CRYPTO_AES
 789	tristate "AES cipher algorithms"
 790	select CRYPTO_ALGAPI
 
 791	help
 792	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 793	  algorithm.
 794
 795	  Rijndael appears to be consistently a very good performer in
 796	  both hardware and software across a wide range of computing
 797	  environments regardless of its use in feedback or non-feedback
 798	  modes. Its key setup time is excellent, and its key agility is
 799	  good. Rijndael's very low memory requirements make it very well
 800	  suited for restricted-space environments, in which it also
 801	  demonstrates excellent performance. Rijndael's operations are
 802	  among the easiest to defend against power and timing attacks.
 803
 804	  The AES specifies three key sizes: 128, 192 and 256 bits
 805
 806	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 807
 808config CRYPTO_AES_586
 809	tristate "AES cipher algorithms (i586)"
 810	depends on (X86 || UML_X86) && !64BIT
 811	select CRYPTO_ALGAPI
 812	select CRYPTO_AES
 813	help
 814	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 815	  algorithm.
 816
 817	  Rijndael appears to be consistently a very good performer in
 818	  both hardware and software across a wide range of computing
 819	  environments regardless of its use in feedback or non-feedback
 820	  modes. Its key setup time is excellent, and its key agility is
 821	  good. Rijndael's very low memory requirements make it very well
 822	  suited for restricted-space environments, in which it also
 823	  demonstrates excellent performance. Rijndael's operations are
 824	  among the easiest to defend against power and timing attacks.
 825
 826	  The AES specifies three key sizes: 128, 192 and 256 bits
 827
 828	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 829
 830config CRYPTO_AES_X86_64
 831	tristate "AES cipher algorithms (x86_64)"
 832	depends on (X86 || UML_X86) && 64BIT
 833	select CRYPTO_ALGAPI
 834	select CRYPTO_AES
 835	help
 836	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 837	  algorithm.
 838
 839	  Rijndael appears to be consistently a very good performer in
 840	  both hardware and software across a wide range of computing
 841	  environments regardless of its use in feedback or non-feedback
 842	  modes. Its key setup time is excellent, and its key agility is
 843	  good. Rijndael's very low memory requirements make it very well
 844	  suited for restricted-space environments, in which it also
 845	  demonstrates excellent performance. Rijndael's operations are
 846	  among the easiest to defend against power and timing attacks.
 847
 848	  The AES specifies three key sizes: 128, 192 and 256 bits
 849
 850	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 851
 852config CRYPTO_AES_NI_INTEL
 853	tristate "AES cipher algorithms (AES-NI)"
 854	depends on X86
 855	select CRYPTO_AES_X86_64 if 64BIT
 856	select CRYPTO_AES_586 if !64BIT
 857	select CRYPTO_CRYPTD
 858	select CRYPTO_ABLK_HELPER
 859	select CRYPTO_ALGAPI
 860	select CRYPTO_GLUE_HELPER_X86 if 64BIT
 861	select CRYPTO_LRW
 862	select CRYPTO_XTS
 863	help
 864	  Use Intel AES-NI instructions for AES algorithm.
 865
 866	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 867	  algorithm.
 868
 869	  Rijndael appears to be consistently a very good performer in
 870	  both hardware and software across a wide range of computing
 871	  environments regardless of its use in feedback or non-feedback
 872	  modes. Its key setup time is excellent, and its key agility is
 873	  good. Rijndael's very low memory requirements make it very well
 874	  suited for restricted-space environments, in which it also
 875	  demonstrates excellent performance. Rijndael's operations are
 876	  among the easiest to defend against power and timing attacks.
 877
 878	  The AES specifies three key sizes: 128, 192 and 256 bits
 879
 880	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 881
 882	  In addition to AES cipher algorithm support, the acceleration
 883	  for some popular block cipher mode is supported too, including
 884	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
 885	  acceleration for CTR.
 886
 887config CRYPTO_AES_SPARC64
 888	tristate "AES cipher algorithms (SPARC64)"
 889	depends on SPARC64
 890	select CRYPTO_CRYPTD
 891	select CRYPTO_ALGAPI
 892	help
 893	  Use SPARC64 crypto opcodes for AES algorithm.
 894
 895	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 896	  algorithm.
 897
 898	  Rijndael appears to be consistently a very good performer in
 899	  both hardware and software across a wide range of computing
 900	  environments regardless of its use in feedback or non-feedback
 901	  modes. Its key setup time is excellent, and its key agility is
 902	  good. Rijndael's very low memory requirements make it very well
 903	  suited for restricted-space environments, in which it also
 904	  demonstrates excellent performance. Rijndael's operations are
 905	  among the easiest to defend against power and timing attacks.
 906
 907	  The AES specifies three key sizes: 128, 192 and 256 bits
 908
 909	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 910
 911	  In addition to AES cipher algorithm support, the acceleration
 912	  for some popular block cipher mode is supported too, including
 913	  ECB and CBC.
 914
 915config CRYPTO_AES_PPC_SPE
 916	tristate "AES cipher algorithms (PPC SPE)"
 917	depends on PPC && SPE
 
 918	help
 919	  AES cipher algorithms (FIPS-197). Additionally the acceleration
 920	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
 921	  This module should only be used for low power (router) devices
 922	  without hardware AES acceleration (e.g. caam crypto). It reduces the
 923	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
 924	  timining attacks. Nevertheless it might be not as secure as other
 925	  architecture specific assembler implementations that work on 1KB
 926	  tables or 256 bytes S-boxes.
 927
 928config CRYPTO_ANUBIS
 929	tristate "Anubis cipher algorithm"
 
 930	select CRYPTO_ALGAPI
 931	help
 932	  Anubis cipher algorithm.
 933
 934	  Anubis is a variable key length cipher which can use keys from
 935	  128 bits to 320 bits in length.  It was evaluated as a entrant
 936	  in the NESSIE competition.
 937
 938	  See also:
 939	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
 940	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
 941
 942config CRYPTO_ARC4
 943	tristate "ARC4 cipher algorithm"
 944	select CRYPTO_BLKCIPHER
 
 
 945	help
 946	  ARC4 cipher algorithm.
 947
 948	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 949	  bits in length.  This algorithm is required for driver-based
 950	  WEP, but it should not be for other purposes because of the
 951	  weakness of the algorithm.
 952
 953config CRYPTO_BLOWFISH
 954	tristate "Blowfish cipher algorithm"
 955	select CRYPTO_ALGAPI
 956	select CRYPTO_BLOWFISH_COMMON
 957	help
 958	  Blowfish cipher algorithm, by Bruce Schneier.
 959
 960	  This is a variable key length cipher which can use keys from 32
 961	  bits to 448 bits in length.  It's fast, simple and specifically
 962	  designed for use on "large microprocessors".
 963
 964	  See also:
 965	  <http://www.schneier.com/blowfish.html>
 966
 967config CRYPTO_BLOWFISH_COMMON
 968	tristate
 969	help
 970	  Common parts of the Blowfish cipher algorithm shared by the
 971	  generic c and the assembler implementations.
 972
 973	  See also:
 974	  <http://www.schneier.com/blowfish.html>
 975
 976config CRYPTO_BLOWFISH_X86_64
 977	tristate "Blowfish cipher algorithm (x86_64)"
 978	depends on X86 && 64BIT
 979	select CRYPTO_ALGAPI
 980	select CRYPTO_BLOWFISH_COMMON
 
 981	help
 982	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
 983
 984	  This is a variable key length cipher which can use keys from 32
 985	  bits to 448 bits in length.  It's fast, simple and specifically
 986	  designed for use on "large microprocessors".
 987
 988	  See also:
 989	  <http://www.schneier.com/blowfish.html>
 990
 991config CRYPTO_CAMELLIA
 992	tristate "Camellia cipher algorithms"
 993	depends on CRYPTO
 994	select CRYPTO_ALGAPI
 995	help
 996	  Camellia cipher algorithms module.
 997
 998	  Camellia is a symmetric key block cipher developed jointly
 999	  at NTT and Mitsubishi Electric Corporation.
1000
1001	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1002
1003	  See also:
1004	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1005
1006config CRYPTO_CAMELLIA_X86_64
1007	tristate "Camellia cipher algorithm (x86_64)"
1008	depends on X86 && 64BIT
1009	depends on CRYPTO
1010	select CRYPTO_ALGAPI
1011	select CRYPTO_GLUE_HELPER_X86
1012	select CRYPTO_LRW
1013	select CRYPTO_XTS
1014	help
1015	  Camellia cipher algorithm module (x86_64).
1016
1017	  Camellia is a symmetric key block cipher developed jointly
1018	  at NTT and Mitsubishi Electric Corporation.
1019
1020	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1021
1022	  See also:
1023	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1024
1025config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1026	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1027	depends on X86 && 64BIT
1028	depends on CRYPTO
1029	select CRYPTO_ALGAPI
1030	select CRYPTO_CRYPTD
1031	select CRYPTO_ABLK_HELPER
1032	select CRYPTO_GLUE_HELPER_X86
1033	select CRYPTO_CAMELLIA_X86_64
1034	select CRYPTO_LRW
1035	select CRYPTO_XTS
1036	help
1037	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1038
1039	  Camellia is a symmetric key block cipher developed jointly
1040	  at NTT and Mitsubishi Electric Corporation.
1041
1042	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1043
1044	  See also:
1045	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1046
1047config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1048	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1049	depends on X86 && 64BIT
1050	depends on CRYPTO
1051	select CRYPTO_ALGAPI
1052	select CRYPTO_CRYPTD
1053	select CRYPTO_ABLK_HELPER
1054	select CRYPTO_GLUE_HELPER_X86
1055	select CRYPTO_CAMELLIA_X86_64
1056	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1057	select CRYPTO_LRW
1058	select CRYPTO_XTS
1059	help
1060	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1061
1062	  Camellia is a symmetric key block cipher developed jointly
1063	  at NTT and Mitsubishi Electric Corporation.
1064
1065	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1066
1067	  See also:
1068	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1069
1070config CRYPTO_CAMELLIA_SPARC64
1071	tristate "Camellia cipher algorithm (SPARC64)"
1072	depends on SPARC64
1073	depends on CRYPTO
1074	select CRYPTO_ALGAPI
 
1075	help
1076	  Camellia cipher algorithm module (SPARC64).
1077
1078	  Camellia is a symmetric key block cipher developed jointly
1079	  at NTT and Mitsubishi Electric Corporation.
1080
1081	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1082
1083	  See also:
1084	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1085
1086config CRYPTO_CAST_COMMON
1087	tristate
1088	help
1089	  Common parts of the CAST cipher algorithms shared by the
1090	  generic c and the assembler implementations.
1091
1092config CRYPTO_CAST5
1093	tristate "CAST5 (CAST-128) cipher algorithm"
1094	select CRYPTO_ALGAPI
1095	select CRYPTO_CAST_COMMON
1096	help
1097	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1098	  described in RFC2144.
1099
1100config CRYPTO_CAST5_AVX_X86_64
1101	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1102	depends on X86 && 64BIT
1103	select CRYPTO_ALGAPI
1104	select CRYPTO_CRYPTD
1105	select CRYPTO_ABLK_HELPER
1106	select CRYPTO_CAST_COMMON
1107	select CRYPTO_CAST5
 
 
 
1108	help
1109	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1110	  described in RFC2144.
1111
1112	  This module provides the Cast5 cipher algorithm that processes
1113	  sixteen blocks parallel using the AVX instruction set.
1114
1115config CRYPTO_CAST6
1116	tristate "CAST6 (CAST-256) cipher algorithm"
1117	select CRYPTO_ALGAPI
1118	select CRYPTO_CAST_COMMON
1119	help
1120	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1121	  described in RFC2612.
1122
1123config CRYPTO_CAST6_AVX_X86_64
1124	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1125	depends on X86 && 64BIT
1126	select CRYPTO_ALGAPI
1127	select CRYPTO_CRYPTD
1128	select CRYPTO_ABLK_HELPER
1129	select CRYPTO_GLUE_HELPER_X86
1130	select CRYPTO_CAST_COMMON
1131	select CRYPTO_CAST6
1132	select CRYPTO_LRW
1133	select CRYPTO_XTS
 
 
1134	help
1135	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1136	  described in RFC2612.
1137
1138	  This module provides the Cast6 cipher algorithm that processes
1139	  eight blocks parallel using the AVX instruction set.
1140
1141config CRYPTO_DES
1142	tristate "DES and Triple DES EDE cipher algorithms"
1143	select CRYPTO_ALGAPI
 
1144	help
1145	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1146
1147config CRYPTO_DES_SPARC64
1148	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1149	depends on SPARC64
1150	select CRYPTO_ALGAPI
1151	select CRYPTO_DES
 
1152	help
1153	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1154	  optimized using SPARC64 crypto opcodes.
1155
1156config CRYPTO_DES3_EDE_X86_64
1157	tristate "Triple DES EDE cipher algorithm (x86-64)"
1158	depends on X86 && 64BIT
1159	select CRYPTO_ALGAPI
1160	select CRYPTO_DES
 
1161	help
1162	  Triple DES EDE (FIPS 46-3) algorithm.
1163
1164	  This module provides implementation of the Triple DES EDE cipher
1165	  algorithm that is optimized for x86-64 processors. Two versions of
1166	  algorithm are provided; regular processing one input block and
1167	  one that processes three blocks parallel.
1168
1169config CRYPTO_FCRYPT
1170	tristate "FCrypt cipher algorithm"
1171	select CRYPTO_ALGAPI
1172	select CRYPTO_BLKCIPHER
1173	help
1174	  FCrypt algorithm used by RxRPC.
1175
1176config CRYPTO_KHAZAD
1177	tristate "Khazad cipher algorithm"
 
1178	select CRYPTO_ALGAPI
1179	help
1180	  Khazad cipher algorithm.
1181
1182	  Khazad was a finalist in the initial NESSIE competition.  It is
1183	  an algorithm optimized for 64-bit processors with good performance
1184	  on 32-bit processors.  Khazad uses an 128 bit key size.
1185
1186	  See also:
1187	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1188
1189config CRYPTO_SALSA20
1190	tristate "Salsa20 stream cipher algorithm"
1191	select CRYPTO_BLKCIPHER
1192	help
1193	  Salsa20 stream cipher algorithm.
1194
1195	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1196	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1197
1198	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1199	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1200
1201config CRYPTO_SALSA20_586
1202	tristate "Salsa20 stream cipher algorithm (i586)"
1203	depends on (X86 || UML_X86) && !64BIT
1204	select CRYPTO_BLKCIPHER
1205	help
1206	  Salsa20 stream cipher algorithm.
1207
1208	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1209	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1210
1211	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1212	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1213
1214config CRYPTO_SALSA20_X86_64
1215	tristate "Salsa20 stream cipher algorithm (x86_64)"
1216	depends on (X86 || UML_X86) && 64BIT
1217	select CRYPTO_BLKCIPHER
1218	help
1219	  Salsa20 stream cipher algorithm.
1220
1221	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1222	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1223
1224	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1225	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1226
1227config CRYPTO_CHACHA20
1228	tristate "ChaCha20 cipher algorithm"
1229	select CRYPTO_BLKCIPHER
 
1230	help
1231	  ChaCha20 cipher algorithm, RFC7539.
1232
1233	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1234	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1235	  This is the portable C implementation of ChaCha20.
 
1236
1237	  See also:
1238	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
 
 
 
 
 
 
 
1239
1240config CRYPTO_CHACHA20_X86_64
1241	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1242	depends on X86 && 64BIT
1243	select CRYPTO_BLKCIPHER
1244	select CRYPTO_CHACHA20
1245	help
1246	  ChaCha20 cipher algorithm, RFC7539.
1247
1248	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1249	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1250	  This is the x86_64 assembler implementation using SIMD instructions.
1251
1252	  See also:
1253	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
 
1254
1255config CRYPTO_SEED
1256	tristate "SEED cipher algorithm"
 
1257	select CRYPTO_ALGAPI
1258	help
1259	  SEED cipher algorithm (RFC4269).
1260
1261	  SEED is a 128-bit symmetric key block cipher that has been
1262	  developed by KISA (Korea Information Security Agency) as a
1263	  national standard encryption algorithm of the Republic of Korea.
1264	  It is a 16 round block cipher with the key size of 128 bit.
1265
1266	  See also:
1267	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1268
1269config CRYPTO_SERPENT
1270	tristate "Serpent cipher algorithm"
1271	select CRYPTO_ALGAPI
1272	help
1273	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1274
1275	  Keys are allowed to be from 0 to 256 bits in length, in steps
1276	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1277	  variant of Serpent for compatibility with old kerneli.org code.
1278
1279	  See also:
1280	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1281
1282config CRYPTO_SERPENT_SSE2_X86_64
1283	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1284	depends on X86 && 64BIT
1285	select CRYPTO_ALGAPI
1286	select CRYPTO_CRYPTD
1287	select CRYPTO_ABLK_HELPER
1288	select CRYPTO_GLUE_HELPER_X86
1289	select CRYPTO_SERPENT
1290	select CRYPTO_LRW
1291	select CRYPTO_XTS
1292	help
1293	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1294
1295	  Keys are allowed to be from 0 to 256 bits in length, in steps
1296	  of 8 bits.
1297
1298	  This module provides Serpent cipher algorithm that processes eight
1299	  blocks parallel using SSE2 instruction set.
1300
1301	  See also:
1302	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1303
1304config CRYPTO_SERPENT_SSE2_586
1305	tristate "Serpent cipher algorithm (i586/SSE2)"
1306	depends on X86 && !64BIT
1307	select CRYPTO_ALGAPI
1308	select CRYPTO_CRYPTD
1309	select CRYPTO_ABLK_HELPER
1310	select CRYPTO_GLUE_HELPER_X86
1311	select CRYPTO_SERPENT
1312	select CRYPTO_LRW
1313	select CRYPTO_XTS
1314	help
1315	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1316
1317	  Keys are allowed to be from 0 to 256 bits in length, in steps
1318	  of 8 bits.
1319
1320	  This module provides Serpent cipher algorithm that processes four
1321	  blocks parallel using SSE2 instruction set.
1322
1323	  See also:
1324	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1325
1326config CRYPTO_SERPENT_AVX_X86_64
1327	tristate "Serpent cipher algorithm (x86_64/AVX)"
1328	depends on X86 && 64BIT
1329	select CRYPTO_ALGAPI
1330	select CRYPTO_CRYPTD
1331	select CRYPTO_ABLK_HELPER
1332	select CRYPTO_GLUE_HELPER_X86
1333	select CRYPTO_SERPENT
1334	select CRYPTO_LRW
1335	select CRYPTO_XTS
 
1336	help
1337	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1338
1339	  Keys are allowed to be from 0 to 256 bits in length, in steps
1340	  of 8 bits.
1341
1342	  This module provides the Serpent cipher algorithm that processes
1343	  eight blocks parallel using the AVX instruction set.
1344
1345	  See also:
1346	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1347
1348config CRYPTO_SERPENT_AVX2_X86_64
1349	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1350	depends on X86 && 64BIT
1351	select CRYPTO_ALGAPI
1352	select CRYPTO_CRYPTD
1353	select CRYPTO_ABLK_HELPER
1354	select CRYPTO_GLUE_HELPER_X86
1355	select CRYPTO_SERPENT
1356	select CRYPTO_SERPENT_AVX_X86_64
1357	select CRYPTO_LRW
1358	select CRYPTO_XTS
1359	help
1360	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1361
1362	  Keys are allowed to be from 0 to 256 bits in length, in steps
1363	  of 8 bits.
1364
1365	  This module provides Serpent cipher algorithm that processes 16
1366	  blocks parallel using AVX2 instruction set.
1367
1368	  See also:
1369	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370
1371config CRYPTO_TEA
1372	tristate "TEA, XTEA and XETA cipher algorithms"
 
1373	select CRYPTO_ALGAPI
1374	help
1375	  TEA cipher algorithm.
1376
1377	  Tiny Encryption Algorithm is a simple cipher that uses
1378	  many rounds for security.  It is very fast and uses
1379	  little memory.
1380
1381	  Xtendend Tiny Encryption Algorithm is a modification to
1382	  the TEA algorithm to address a potential key weakness
1383	  in the TEA algorithm.
1384
1385	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1386	  of the XTEA algorithm for compatibility purposes.
1387
1388config CRYPTO_TWOFISH
1389	tristate "Twofish cipher algorithm"
1390	select CRYPTO_ALGAPI
1391	select CRYPTO_TWOFISH_COMMON
1392	help
1393	  Twofish cipher algorithm.
1394
1395	  Twofish was submitted as an AES (Advanced Encryption Standard)
1396	  candidate cipher by researchers at CounterPane Systems.  It is a
1397	  16 round block cipher supporting key sizes of 128, 192, and 256
1398	  bits.
1399
1400	  See also:
1401	  <http://www.schneier.com/twofish.html>
1402
1403config CRYPTO_TWOFISH_COMMON
1404	tristate
1405	help
1406	  Common parts of the Twofish cipher algorithm shared by the
1407	  generic c and the assembler implementations.
1408
1409config CRYPTO_TWOFISH_586
1410	tristate "Twofish cipher algorithms (i586)"
1411	depends on (X86 || UML_X86) && !64BIT
1412	select CRYPTO_ALGAPI
1413	select CRYPTO_TWOFISH_COMMON
 
1414	help
1415	  Twofish cipher algorithm.
1416
1417	  Twofish was submitted as an AES (Advanced Encryption Standard)
1418	  candidate cipher by researchers at CounterPane Systems.  It is a
1419	  16 round block cipher supporting key sizes of 128, 192, and 256
1420	  bits.
1421
1422	  See also:
1423	  <http://www.schneier.com/twofish.html>
1424
1425config CRYPTO_TWOFISH_X86_64
1426	tristate "Twofish cipher algorithm (x86_64)"
1427	depends on (X86 || UML_X86) && 64BIT
1428	select CRYPTO_ALGAPI
1429	select CRYPTO_TWOFISH_COMMON
 
1430	help
1431	  Twofish cipher algorithm (x86_64).
1432
1433	  Twofish was submitted as an AES (Advanced Encryption Standard)
1434	  candidate cipher by researchers at CounterPane Systems.  It is a
1435	  16 round block cipher supporting key sizes of 128, 192, and 256
1436	  bits.
1437
1438	  See also:
1439	  <http://www.schneier.com/twofish.html>
1440
1441config CRYPTO_TWOFISH_X86_64_3WAY
1442	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1443	depends on X86 && 64BIT
1444	select CRYPTO_ALGAPI
1445	select CRYPTO_TWOFISH_COMMON
1446	select CRYPTO_TWOFISH_X86_64
1447	select CRYPTO_GLUE_HELPER_X86
1448	select CRYPTO_LRW
1449	select CRYPTO_XTS
1450	help
1451	  Twofish cipher algorithm (x86_64, 3-way parallel).
1452
1453	  Twofish was submitted as an AES (Advanced Encryption Standard)
1454	  candidate cipher by researchers at CounterPane Systems.  It is a
1455	  16 round block cipher supporting key sizes of 128, 192, and 256
1456	  bits.
1457
1458	  This module provides Twofish cipher algorithm that processes three
1459	  blocks parallel, utilizing resources of out-of-order CPUs better.
1460
1461	  See also:
1462	  <http://www.schneier.com/twofish.html>
1463
1464config CRYPTO_TWOFISH_AVX_X86_64
1465	tristate "Twofish cipher algorithm (x86_64/AVX)"
1466	depends on X86 && 64BIT
1467	select CRYPTO_ALGAPI
1468	select CRYPTO_CRYPTD
1469	select CRYPTO_ABLK_HELPER
1470	select CRYPTO_GLUE_HELPER_X86
1471	select CRYPTO_TWOFISH_COMMON
1472	select CRYPTO_TWOFISH_X86_64
1473	select CRYPTO_TWOFISH_X86_64_3WAY
1474	select CRYPTO_LRW
1475	select CRYPTO_XTS
1476	help
1477	  Twofish cipher algorithm (x86_64/AVX).
1478
1479	  Twofish was submitted as an AES (Advanced Encryption Standard)
1480	  candidate cipher by researchers at CounterPane Systems.  It is a
1481	  16 round block cipher supporting key sizes of 128, 192, and 256
1482	  bits.
1483
1484	  This module provides the Twofish cipher algorithm that processes
1485	  eight blocks parallel using the AVX Instruction Set.
1486
1487	  See also:
1488	  <http://www.schneier.com/twofish.html>
1489
1490comment "Compression"
1491
1492config CRYPTO_DEFLATE
1493	tristate "Deflate compression algorithm"
1494	select CRYPTO_ALGAPI
 
1495	select ZLIB_INFLATE
1496	select ZLIB_DEFLATE
1497	help
1498	  This is the Deflate algorithm (RFC1951), specified for use in
1499	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1500
1501	  You will most probably want this if using IPSec.
1502
1503config CRYPTO_LZO
1504	tristate "LZO compression algorithm"
1505	select CRYPTO_ALGAPI
 
1506	select LZO_COMPRESS
1507	select LZO_DECOMPRESS
1508	help
1509	  This is the LZO algorithm.
1510
1511config CRYPTO_842
1512	tristate "842 compression algorithm"
1513	select CRYPTO_ALGAPI
 
1514	select 842_COMPRESS
1515	select 842_DECOMPRESS
1516	help
1517	  This is the 842 algorithm.
1518
1519config CRYPTO_LZ4
1520	tristate "LZ4 compression algorithm"
1521	select CRYPTO_ALGAPI
 
1522	select LZ4_COMPRESS
1523	select LZ4_DECOMPRESS
1524	help
1525	  This is the LZ4 algorithm.
1526
1527config CRYPTO_LZ4HC
1528	tristate "LZ4HC compression algorithm"
1529	select CRYPTO_ALGAPI
 
1530	select LZ4HC_COMPRESS
1531	select LZ4_DECOMPRESS
1532	help
1533	  This is the LZ4 high compression mode algorithm.
1534
 
 
 
 
 
 
 
 
 
1535comment "Random Number Generation"
1536
1537config CRYPTO_ANSI_CPRNG
1538	tristate "Pseudo Random Number Generation for Cryptographic modules"
1539	select CRYPTO_AES
1540	select CRYPTO_RNG
1541	help
1542	  This option enables the generic pseudo random number generator
1543	  for cryptographic modules.  Uses the Algorithm specified in
1544	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1545	  CRYPTO_FIPS is selected
1546
1547menuconfig CRYPTO_DRBG_MENU
1548	tristate "NIST SP800-90A DRBG"
1549	help
1550	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1551	  more of the DRBG types must be selected.
1552
1553if CRYPTO_DRBG_MENU
1554
1555config CRYPTO_DRBG_HMAC
1556	bool
1557	default y
1558	select CRYPTO_HMAC
1559	select CRYPTO_SHA256
1560
1561config CRYPTO_DRBG_HASH
1562	bool "Enable Hash DRBG"
1563	select CRYPTO_SHA256
1564	help
1565	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1566
1567config CRYPTO_DRBG_CTR
1568	bool "Enable CTR DRBG"
1569	select CRYPTO_AES
 
1570	help
1571	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1572
1573config CRYPTO_DRBG
1574	tristate
1575	default CRYPTO_DRBG_MENU
1576	select CRYPTO_RNG
1577	select CRYPTO_JITTERENTROPY
1578
1579endif	# if CRYPTO_DRBG_MENU
1580
1581config CRYPTO_JITTERENTROPY
1582	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1583	select CRYPTO_RNG
1584	help
1585	  The Jitterentropy RNG is a noise that is intended
1586	  to provide seed to another RNG. The RNG does not
1587	  perform any cryptographic whitening of the generated
1588	  random numbers. This Jitterentropy RNG registers with
1589	  the kernel crypto API and can be used by any caller.
1590
1591config CRYPTO_USER_API
1592	tristate
1593
1594config CRYPTO_USER_API_HASH
1595	tristate "User-space interface for hash algorithms"
1596	depends on NET
1597	select CRYPTO_HASH
1598	select CRYPTO_USER_API
1599	help
1600	  This option enables the user-spaces interface for hash
1601	  algorithms.
1602
1603config CRYPTO_USER_API_SKCIPHER
1604	tristate "User-space interface for symmetric key cipher algorithms"
1605	depends on NET
1606	select CRYPTO_BLKCIPHER
1607	select CRYPTO_USER_API
1608	help
1609	  This option enables the user-spaces interface for symmetric
1610	  key cipher algorithms.
1611
1612config CRYPTO_USER_API_RNG
1613	tristate "User-space interface for random number generator algorithms"
1614	depends on NET
1615	select CRYPTO_RNG
1616	select CRYPTO_USER_API
1617	help
1618	  This option enables the user-spaces interface for random
1619	  number generator algorithms.
1620
 
 
 
 
 
 
 
 
 
1621config CRYPTO_USER_API_AEAD
1622	tristate "User-space interface for AEAD cipher algorithms"
1623	depends on NET
1624	select CRYPTO_AEAD
 
 
1625	select CRYPTO_USER_API
1626	help
1627	  This option enables the user-spaces interface for AEAD
1628	  cipher algorithms.
1629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630config CRYPTO_HASH_INFO
1631	bool
1632
 
1633source "drivers/crypto/Kconfig"
1634source crypto/asymmetric_keys/Kconfig
1635source certs/Kconfig
1636
1637endif	# if CRYPTO
v5.14.15
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	help
  19	  This option provides the core Cryptographic API.
  20
  21if CRYPTO
  22
  23comment "Crypto core or helper"
  24
  25config CRYPTO_FIPS
  26	bool "FIPS 200 compliance"
  27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  28	depends on (MODULE_SIG || !MODULES)
  29	help
  30	  This option enables the fips boot option which is
  31	  required if you want the system to operate in a FIPS 200
  32	  certification.  You should say no unless you know what
  33	  this is.
  34
  35config CRYPTO_ALGAPI
  36	tristate
  37	select CRYPTO_ALGAPI2
  38	help
  39	  This option provides the API for cryptographic algorithms.
  40
  41config CRYPTO_ALGAPI2
  42	tristate
  43
  44config CRYPTO_AEAD
  45	tristate
  46	select CRYPTO_AEAD2
  47	select CRYPTO_ALGAPI
  48
  49config CRYPTO_AEAD2
  50	tristate
  51	select CRYPTO_ALGAPI2
  52	select CRYPTO_NULL2
  53	select CRYPTO_RNG2
  54
  55config CRYPTO_SKCIPHER
  56	tristate
  57	select CRYPTO_SKCIPHER2
  58	select CRYPTO_ALGAPI
  59
  60config CRYPTO_SKCIPHER2
  61	tristate
  62	select CRYPTO_ALGAPI2
  63	select CRYPTO_RNG2
 
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 108	select SGL_ALLOC
 109
 110config CRYPTO_ACOMP
 111	tristate
 112	select CRYPTO_ALGAPI
 113	select CRYPTO_ACOMP2
 114
 115config CRYPTO_MANAGER
 116	tristate "Cryptographic algorithm manager"
 117	select CRYPTO_MANAGER2
 118	help
 119	  Create default cryptographic template instantiations such as
 120	  cbc(aes).
 121
 122config CRYPTO_MANAGER2
 123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 124	select CRYPTO_AEAD2
 125	select CRYPTO_HASH2
 126	select CRYPTO_SKCIPHER2
 127	select CRYPTO_AKCIPHER2
 128	select CRYPTO_KPP2
 129	select CRYPTO_ACOMP2
 130
 131config CRYPTO_USER
 132	tristate "Userspace cryptographic algorithm configuration"
 133	depends on NET
 134	select CRYPTO_MANAGER
 135	help
 136	  Userspace configuration for cryptographic instantiations such as
 137	  cbc(aes).
 138
 139config CRYPTO_MANAGER_DISABLE_TESTS
 140	bool "Disable run-time self tests"
 141	default y
 
 142	help
 143	  Disable run-time self tests that normally take place at
 144	  algorithm registration.
 145
 146config CRYPTO_MANAGER_EXTRA_TESTS
 147	bool "Enable extra run-time crypto self tests"
 148	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 149	help
 150	  Enable extra run-time self tests of registered crypto algorithms,
 151	  including randomized fuzz tests.
 152
 153	  This is intended for developer use only, as these tests take much
 154	  longer to run than the normal self tests.
 155
 156config CRYPTO_GF128MUL
 157	tristate
 158
 159config CRYPTO_NULL
 160	tristate "Null algorithms"
 161	select CRYPTO_NULL2
 162	help
 163	  These are 'Null' algorithms, used by IPsec, which do nothing.
 164
 165config CRYPTO_NULL2
 166	tristate
 167	select CRYPTO_ALGAPI2
 168	select CRYPTO_SKCIPHER2
 169	select CRYPTO_HASH2
 170
 171config CRYPTO_PCRYPT
 172	tristate "Parallel crypto engine"
 173	depends on SMP
 174	select PADATA
 175	select CRYPTO_MANAGER
 176	select CRYPTO_AEAD
 177	help
 178	  This converts an arbitrary crypto algorithm into a parallel
 179	  algorithm that executes in kernel threads.
 180
 
 
 
 181config CRYPTO_CRYPTD
 182	tristate "Software async crypto daemon"
 183	select CRYPTO_SKCIPHER
 184	select CRYPTO_HASH
 185	select CRYPTO_MANAGER
 
 186	help
 187	  This is a generic software asynchronous crypto daemon that
 188	  converts an arbitrary synchronous software crypto algorithm
 189	  into an asynchronous algorithm that executes in a kernel thread.
 190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191config CRYPTO_AUTHENC
 192	tristate "Authenc support"
 193	select CRYPTO_AEAD
 194	select CRYPTO_SKCIPHER
 195	select CRYPTO_MANAGER
 196	select CRYPTO_HASH
 197	select CRYPTO_NULL
 198	help
 199	  Authenc: Combined mode wrapper for IPsec.
 200	  This is required for IPSec.
 201
 202config CRYPTO_TEST
 203	tristate "Testing module"
 204	depends on m || EXPERT
 205	select CRYPTO_MANAGER
 206	help
 207	  Quick & dirty crypto test module.
 208
 209config CRYPTO_SIMD
 210	tristate
 211	select CRYPTO_CRYPTD
 212
 213config CRYPTO_ENGINE
 214	tristate
 
 
 215
 216comment "Public-key cryptography"
 217
 218config CRYPTO_RSA
 219	tristate "RSA algorithm"
 220	select CRYPTO_AKCIPHER
 221	select CRYPTO_MANAGER
 222	select MPILIB
 223	select ASN1
 224	help
 225	  Generic implementation of the RSA public key algorithm.
 226
 227config CRYPTO_DH
 228	tristate "Diffie-Hellman algorithm"
 229	select CRYPTO_KPP
 230	select MPILIB
 231	help
 232	  Generic implementation of the Diffie-Hellman algorithm.
 233
 234config CRYPTO_ECC
 235	tristate
 236
 237config CRYPTO_ECDH
 238	tristate "ECDH algorithm"
 239	select CRYPTO_ECC
 240	select CRYPTO_KPP
 241	select CRYPTO_RNG_DEFAULT
 242	help
 243	  Generic implementation of the ECDH algorithm
 244
 245config CRYPTO_ECDSA
 246	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
 247	select CRYPTO_ECC
 248	select CRYPTO_AKCIPHER
 249	select ASN1
 250	help
 251	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
 252	  is A NIST cryptographic standard algorithm. Only signature verification
 253	  is implemented.
 254
 255config CRYPTO_ECRDSA
 256	tristate "EC-RDSA (GOST 34.10) algorithm"
 257	select CRYPTO_ECC
 258	select CRYPTO_AKCIPHER
 259	select CRYPTO_STREEBOG
 260	select OID_REGISTRY
 261	select ASN1
 262	help
 263	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 264	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
 265	  standard algorithms (called GOST algorithms). Only signature verification
 266	  is implemented.
 267
 268config CRYPTO_SM2
 269	tristate "SM2 algorithm"
 270	select CRYPTO_SM3
 271	select CRYPTO_AKCIPHER
 272	select CRYPTO_MANAGER
 273	select MPILIB
 274	select ASN1
 275	help
 276	  Generic implementation of the SM2 public key algorithm. It was
 277	  published by State Encryption Management Bureau, China.
 278	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 279
 280	  References:
 281	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
 282	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
 283	  http://www.gmbz.org.cn/main/bzlb.html
 284
 285config CRYPTO_CURVE25519
 286	tristate "Curve25519 algorithm"
 287	select CRYPTO_KPP
 288	select CRYPTO_LIB_CURVE25519_GENERIC
 289
 290config CRYPTO_CURVE25519_X86
 291	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
 292	depends on X86 && 64BIT
 293	select CRYPTO_LIB_CURVE25519_GENERIC
 294	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
 295
 296comment "Authenticated Encryption with Associated Data"
 297
 298config CRYPTO_CCM
 299	tristate "CCM support"
 300	select CRYPTO_CTR
 301	select CRYPTO_HASH
 302	select CRYPTO_AEAD
 303	select CRYPTO_MANAGER
 304	help
 305	  Support for Counter with CBC MAC. Required for IPsec.
 306
 307config CRYPTO_GCM
 308	tristate "GCM/GMAC support"
 309	select CRYPTO_CTR
 310	select CRYPTO_AEAD
 311	select CRYPTO_GHASH
 312	select CRYPTO_NULL
 313	select CRYPTO_MANAGER
 314	help
 315	  Support for Galois/Counter Mode (GCM) and Galois Message
 316	  Authentication Code (GMAC). Required for IPSec.
 317
 318config CRYPTO_CHACHA20POLY1305
 319	tristate "ChaCha20-Poly1305 AEAD support"
 320	select CRYPTO_CHACHA20
 321	select CRYPTO_POLY1305
 322	select CRYPTO_AEAD
 323	select CRYPTO_MANAGER
 324	help
 325	  ChaCha20-Poly1305 AEAD support, RFC7539.
 326
 327	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 328	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 329	  IETF protocols.
 330
 331config CRYPTO_AEGIS128
 332	tristate "AEGIS-128 AEAD algorithm"
 333	select CRYPTO_AEAD
 334	select CRYPTO_AES  # for AES S-box tables
 335	help
 336	 Support for the AEGIS-128 dedicated AEAD algorithm.
 337
 338config CRYPTO_AEGIS128_SIMD
 339	bool "Support SIMD acceleration for AEGIS-128"
 340	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 341	default y
 342
 343config CRYPTO_AEGIS128_AESNI_SSE2
 344	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
 345	depends on X86 && 64BIT
 346	select CRYPTO_AEAD
 347	select CRYPTO_SIMD
 348	help
 349	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
 350
 351config CRYPTO_SEQIV
 352	tristate "Sequence Number IV Generator"
 353	select CRYPTO_AEAD
 354	select CRYPTO_SKCIPHER
 355	select CRYPTO_NULL
 356	select CRYPTO_RNG_DEFAULT
 357	select CRYPTO_MANAGER
 358	help
 359	  This IV generator generates an IV based on a sequence number by
 360	  xoring it with a salt.  This algorithm is mainly useful for CTR
 361
 362config CRYPTO_ECHAINIV
 363	tristate "Encrypted Chain IV Generator"
 364	select CRYPTO_AEAD
 365	select CRYPTO_NULL
 366	select CRYPTO_RNG_DEFAULT
 367	select CRYPTO_MANAGER
 368	help
 369	  This IV generator generates an IV based on the encryption of
 370	  a sequence number xored with a salt.  This is the default
 371	  algorithm for CBC.
 372
 373comment "Block modes"
 374
 375config CRYPTO_CBC
 376	tristate "CBC support"
 377	select CRYPTO_SKCIPHER
 378	select CRYPTO_MANAGER
 379	help
 380	  CBC: Cipher Block Chaining mode
 381	  This block cipher algorithm is required for IPSec.
 382
 383config CRYPTO_CFB
 384	tristate "CFB support"
 385	select CRYPTO_SKCIPHER
 386	select CRYPTO_MANAGER
 387	help
 388	  CFB: Cipher FeedBack mode
 389	  This block cipher algorithm is required for TPM2 Cryptography.
 390
 391config CRYPTO_CTR
 392	tristate "CTR support"
 393	select CRYPTO_SKCIPHER
 
 394	select CRYPTO_MANAGER
 395	help
 396	  CTR: Counter mode
 397	  This block cipher algorithm is required for IPSec.
 398
 399config CRYPTO_CTS
 400	tristate "CTS support"
 401	select CRYPTO_SKCIPHER
 402	select CRYPTO_MANAGER
 403	help
 404	  CTS: Cipher Text Stealing
 405	  This is the Cipher Text Stealing mode as described by
 406	  Section 8 of rfc2040 and referenced by rfc3962
 407	  (rfc3962 includes errata information in its Appendix A) or
 408	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
 409	  This mode is required for Kerberos gss mechanism support
 410	  for AES encryption.
 411
 412	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
 413
 414config CRYPTO_ECB
 415	tristate "ECB support"
 416	select CRYPTO_SKCIPHER
 417	select CRYPTO_MANAGER
 418	help
 419	  ECB: Electronic CodeBook mode
 420	  This is the simplest block cipher algorithm.  It simply encrypts
 421	  the input block by block.
 422
 423config CRYPTO_LRW
 424	tristate "LRW support"
 425	select CRYPTO_SKCIPHER
 426	select CRYPTO_MANAGER
 427	select CRYPTO_GF128MUL
 428	help
 429	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 430	  narrow block cipher mode for dm-crypt.  Use it with cipher
 431	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 432	  The first 128, 192 or 256 bits in the key are used for AES and the
 433	  rest is used to tie each cipher block to its logical position.
 434
 435config CRYPTO_OFB
 436	tristate "OFB support"
 437	select CRYPTO_SKCIPHER
 438	select CRYPTO_MANAGER
 439	help
 440	  OFB: the Output Feedback mode makes a block cipher into a synchronous
 441	  stream cipher. It generates keystream blocks, which are then XORed
 442	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 443	  ciphertext produces a flipped bit in the plaintext at the same
 444	  location. This property allows many error correcting codes to function
 445	  normally even when applied before encryption.
 446
 447config CRYPTO_PCBC
 448	tristate "PCBC support"
 449	select CRYPTO_SKCIPHER
 450	select CRYPTO_MANAGER
 451	help
 452	  PCBC: Propagating Cipher Block Chaining mode
 453	  This block cipher algorithm is required for RxRPC.
 454
 455config CRYPTO_XTS
 456	tristate "XTS support"
 457	select CRYPTO_SKCIPHER
 458	select CRYPTO_MANAGER
 459	select CRYPTO_ECB
 460	help
 461	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 462	  key size 256, 384 or 512 bits. This implementation currently
 463	  can't handle a sectorsize which is not a multiple of 16 bytes.
 464
 465config CRYPTO_KEYWRAP
 466	tristate "Key wrapping support"
 467	select CRYPTO_SKCIPHER
 468	select CRYPTO_MANAGER
 469	help
 470	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 471	  padding.
 472
 473config CRYPTO_NHPOLY1305
 474	tristate
 475	select CRYPTO_HASH
 476	select CRYPTO_LIB_POLY1305_GENERIC
 477
 478config CRYPTO_NHPOLY1305_SSE2
 479	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
 480	depends on X86 && 64BIT
 481	select CRYPTO_NHPOLY1305
 482	help
 483	  SSE2 optimized implementation of the hash function used by the
 484	  Adiantum encryption mode.
 485
 486config CRYPTO_NHPOLY1305_AVX2
 487	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
 488	depends on X86 && 64BIT
 489	select CRYPTO_NHPOLY1305
 490	help
 491	  AVX2 optimized implementation of the hash function used by the
 492	  Adiantum encryption mode.
 493
 494config CRYPTO_ADIANTUM
 495	tristate "Adiantum support"
 496	select CRYPTO_CHACHA20
 497	select CRYPTO_LIB_POLY1305_GENERIC
 498	select CRYPTO_NHPOLY1305
 499	select CRYPTO_MANAGER
 500	help
 501	  Adiantum is a tweakable, length-preserving encryption mode
 502	  designed for fast and secure disk encryption, especially on
 503	  CPUs without dedicated crypto instructions.  It encrypts
 504	  each sector using the XChaCha12 stream cipher, two passes of
 505	  an ε-almost-∆-universal hash function, and an invocation of
 506	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 507	  without AES instructions, Adiantum is much faster than
 508	  AES-XTS.
 509
 510	  Adiantum's security is provably reducible to that of its
 511	  underlying stream and block ciphers, subject to a security
 512	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 513	  mode, so it actually provides an even stronger notion of
 514	  security than XTS, subject to the security bound.
 515
 516	  If unsure, say N.
 517
 518config CRYPTO_ESSIV
 519	tristate "ESSIV support for block encryption"
 520	select CRYPTO_AUTHENC
 521	help
 522	  Encrypted salt-sector initialization vector (ESSIV) is an IV
 523	  generation method that is used in some cases by fscrypt and/or
 524	  dm-crypt. It uses the hash of the block encryption key as the
 525	  symmetric key for a block encryption pass applied to the input
 526	  IV, making low entropy IV sources more suitable for block
 527	  encryption.
 528
 529	  This driver implements a crypto API template that can be
 530	  instantiated either as an skcipher or as an AEAD (depending on the
 531	  type of the first template argument), and which defers encryption
 532	  and decryption requests to the encapsulated cipher after applying
 533	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 534	  that the keys are presented in the same format used by the authenc
 535	  template, and that the IV appears at the end of the authenticated
 536	  associated data (AAD) region (which is how dm-crypt uses it.)
 537
 538	  Note that the use of ESSIV is not recommended for new deployments,
 539	  and so this only needs to be enabled when interoperability with
 540	  existing encrypted volumes of filesystems is required, or when
 541	  building for a particular system that requires it (e.g., when
 542	  the SoC in question has accelerated CBC but not XTS, making CBC
 543	  combined with ESSIV the only feasible mode for h/w accelerated
 544	  block encryption)
 545
 546comment "Hash modes"
 547
 548config CRYPTO_CMAC
 549	tristate "CMAC support"
 550	select CRYPTO_HASH
 551	select CRYPTO_MANAGER
 552	help
 553	  Cipher-based Message Authentication Code (CMAC) specified by
 554	  The National Institute of Standards and Technology (NIST).
 555
 556	  https://tools.ietf.org/html/rfc4493
 557	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 558
 559config CRYPTO_HMAC
 560	tristate "HMAC support"
 561	select CRYPTO_HASH
 562	select CRYPTO_MANAGER
 563	help
 564	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 565	  This is required for IPSec.
 566
 567config CRYPTO_XCBC
 568	tristate "XCBC support"
 569	select CRYPTO_HASH
 570	select CRYPTO_MANAGER
 571	help
 572	  XCBC: Keyed-Hashing with encryption algorithm
 573		https://www.ietf.org/rfc/rfc3566.txt
 574		http://csrc.nist.gov/encryption/modes/proposedmodes/
 575		 xcbc-mac/xcbc-mac-spec.pdf
 576
 577config CRYPTO_VMAC
 578	tristate "VMAC support"
 579	select CRYPTO_HASH
 580	select CRYPTO_MANAGER
 581	help
 582	  VMAC is a message authentication algorithm designed for
 583	  very high speed on 64-bit architectures.
 584
 585	  See also:
 586	  <https://fastcrypto.org/vmac>
 587
 588comment "Digest"
 589
 590config CRYPTO_CRC32C
 591	tristate "CRC32c CRC algorithm"
 592	select CRYPTO_HASH
 593	select CRC32
 594	help
 595	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 596	  by iSCSI for header and data digests and by others.
 597	  See Castagnoli93.  Module will be crc32c.
 598
 599config CRYPTO_CRC32C_INTEL
 600	tristate "CRC32c INTEL hardware acceleration"
 601	depends on X86
 602	select CRYPTO_HASH
 603	help
 604	  In Intel processor with SSE4.2 supported, the processor will
 605	  support CRC32C implementation using hardware accelerated CRC32
 606	  instruction. This option will create 'crc32c-intel' module,
 607	  which will enable any routine to use the CRC32 instruction to
 608	  gain performance compared with software implementation.
 609	  Module will be crc32c-intel.
 610
 611config CRYPTO_CRC32C_VPMSUM
 612	tristate "CRC32c CRC algorithm (powerpc64)"
 613	depends on PPC64 && ALTIVEC
 614	select CRYPTO_HASH
 615	select CRC32
 616	help
 617	  CRC32c algorithm implemented using vector polynomial multiply-sum
 618	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 619	  and newer processors for improved performance.
 620
 621
 622config CRYPTO_CRC32C_SPARC64
 623	tristate "CRC32c CRC algorithm (SPARC64)"
 624	depends on SPARC64
 625	select CRYPTO_HASH
 626	select CRC32
 627	help
 628	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 629	  when available.
 630
 631config CRYPTO_CRC32
 632	tristate "CRC32 CRC algorithm"
 633	select CRYPTO_HASH
 634	select CRC32
 635	help
 636	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 637	  Shash crypto api wrappers to crc32_le function.
 638
 639config CRYPTO_CRC32_PCLMUL
 640	tristate "CRC32 PCLMULQDQ hardware acceleration"
 641	depends on X86
 642	select CRYPTO_HASH
 643	select CRC32
 644	help
 645	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 646	  and PCLMULQDQ supported, the processor will support
 647	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 648	  instruction. This option will create 'crc32-pclmul' module,
 649	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 650	  and gain better performance as compared with the table implementation.
 651
 652config CRYPTO_CRC32_MIPS
 653	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
 654	depends on MIPS_CRC_SUPPORT
 655	select CRYPTO_HASH
 656	help
 657	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
 658	  instructions, when available.
 659
 660
 661config CRYPTO_XXHASH
 662	tristate "xxHash hash algorithm"
 663	select CRYPTO_HASH
 664	select XXHASH
 665	help
 666	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
 667	  speeds close to RAM limits.
 668
 669config CRYPTO_BLAKE2B
 670	tristate "BLAKE2b digest algorithm"
 671	select CRYPTO_HASH
 672	help
 673	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
 674	  optimized for 64bit platforms and can produce digests of any size
 675	  between 1 to 64.  The keyed hash is also implemented.
 676
 677	  This module provides the following algorithms:
 678
 679	  - blake2b-160
 680	  - blake2b-256
 681	  - blake2b-384
 682	  - blake2b-512
 683
 684	  See https://blake2.net for further information.
 685
 686config CRYPTO_BLAKE2S
 687	tristate "BLAKE2s digest algorithm"
 688	select CRYPTO_LIB_BLAKE2S_GENERIC
 689	select CRYPTO_HASH
 690	help
 691	  Implementation of cryptographic hash function BLAKE2s
 692	  optimized for 8-32bit platforms and can produce digests of any size
 693	  between 1 to 32.  The keyed hash is also implemented.
 694
 695	  This module provides the following algorithms:
 696
 697	  - blake2s-128
 698	  - blake2s-160
 699	  - blake2s-224
 700	  - blake2s-256
 701
 702	  See https://blake2.net for further information.
 703
 704config CRYPTO_BLAKE2S_X86
 705	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
 706	depends on X86 && 64BIT
 707	select CRYPTO_LIB_BLAKE2S_GENERIC
 708	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
 709
 710config CRYPTO_CRCT10DIF
 711	tristate "CRCT10DIF algorithm"
 712	select CRYPTO_HASH
 713	help
 714	  CRC T10 Data Integrity Field computation is being cast as
 715	  a crypto transform.  This allows for faster crc t10 diff
 716	  transforms to be used if they are available.
 717
 718config CRYPTO_CRCT10DIF_PCLMUL
 719	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 720	depends on X86 && 64BIT && CRC_T10DIF
 721	select CRYPTO_HASH
 722	help
 723	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 724	  CRC T10 DIF PCLMULQDQ computation can be hardware
 725	  accelerated PCLMULQDQ instruction. This option will create
 726	  'crct10dif-pclmul' module, which is faster when computing the
 727	  crct10dif checksum as compared with the generic table implementation.
 728
 729config CRYPTO_CRCT10DIF_VPMSUM
 730	tristate "CRC32T10DIF powerpc64 hardware acceleration"
 731	depends on PPC64 && ALTIVEC && CRC_T10DIF
 732	select CRYPTO_HASH
 733	help
 734	  CRC10T10DIF algorithm implemented using vector polynomial
 735	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
 736	  POWER8 and newer processors for improved performance.
 737
 738config CRYPTO_VPMSUM_TESTER
 739	tristate "Powerpc64 vpmsum hardware acceleration tester"
 740	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
 741	help
 742	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
 743	  POWER8 vpmsum instructions.
 744	  Unless you are testing these algorithms, you don't need this.
 745
 746config CRYPTO_GHASH
 747	tristate "GHASH hash function"
 748	select CRYPTO_GF128MUL
 749	select CRYPTO_HASH
 750	help
 751	  GHASH is the hash function used in GCM (Galois/Counter Mode).
 752	  It is not a general-purpose cryptographic hash function.
 753
 754config CRYPTO_POLY1305
 755	tristate "Poly1305 authenticator algorithm"
 756	select CRYPTO_HASH
 757	select CRYPTO_LIB_POLY1305_GENERIC
 758	help
 759	  Poly1305 authenticator algorithm, RFC7539.
 760
 761	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 762	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 763	  in IETF protocols. This is the portable C implementation of Poly1305.
 764
 765config CRYPTO_POLY1305_X86_64
 766	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 767	depends on X86 && 64BIT
 768	select CRYPTO_LIB_POLY1305_GENERIC
 769	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 770	help
 771	  Poly1305 authenticator algorithm, RFC7539.
 772
 773	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 774	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 775	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 776	  instructions.
 777
 778config CRYPTO_POLY1305_MIPS
 779	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
 780	depends on MIPS
 781	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 782
 783config CRYPTO_MD4
 784	tristate "MD4 digest algorithm"
 785	select CRYPTO_HASH
 786	help
 787	  MD4 message digest algorithm (RFC1320).
 788
 789config CRYPTO_MD5
 790	tristate "MD5 digest algorithm"
 791	select CRYPTO_HASH
 792	help
 793	  MD5 message digest algorithm (RFC1321).
 794
 795config CRYPTO_MD5_OCTEON
 796	tristate "MD5 digest algorithm (OCTEON)"
 797	depends on CPU_CAVIUM_OCTEON
 798	select CRYPTO_MD5
 799	select CRYPTO_HASH
 800	help
 801	  MD5 message digest algorithm (RFC1321) implemented
 802	  using OCTEON crypto instructions, when available.
 803
 804config CRYPTO_MD5_PPC
 805	tristate "MD5 digest algorithm (PPC)"
 806	depends on PPC
 807	select CRYPTO_HASH
 808	help
 809	  MD5 message digest algorithm (RFC1321) implemented
 810	  in PPC assembler.
 811
 812config CRYPTO_MD5_SPARC64
 813	tristate "MD5 digest algorithm (SPARC64)"
 814	depends on SPARC64
 815	select CRYPTO_MD5
 816	select CRYPTO_HASH
 817	help
 818	  MD5 message digest algorithm (RFC1321) implemented
 819	  using sparc64 crypto instructions, when available.
 820
 821config CRYPTO_MICHAEL_MIC
 822	tristate "Michael MIC keyed digest algorithm"
 823	select CRYPTO_HASH
 824	help
 825	  Michael MIC is used for message integrity protection in TKIP
 826	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 827	  should not be used for other purposes because of the weakness
 828	  of the algorithm.
 829
 
 
 
 
 
 
 
 
 
 
 
 
 
 830config CRYPTO_RMD160
 831	tristate "RIPEMD-160 digest algorithm"
 832	select CRYPTO_HASH
 833	help
 834	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 835
 836	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 837	  to be used as a secure replacement for the 128-bit hash functions
 838	  MD4, MD5 and it's predecessor RIPEMD
 839	  (not to be confused with RIPEMD-128).
 840
 841	  It's speed is comparable to SHA1 and there are no known attacks
 842	  against RIPEMD-160.
 843
 844	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 845	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846
 847config CRYPTO_SHA1
 848	tristate "SHA1 digest algorithm"
 849	select CRYPTO_HASH
 850	help
 851	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 852
 853config CRYPTO_SHA1_SSSE3
 854	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 855	depends on X86 && 64BIT
 856	select CRYPTO_SHA1
 857	select CRYPTO_HASH
 858	help
 859	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 860	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 861	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 862	  when available.
 863
 864config CRYPTO_SHA256_SSSE3
 865	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 866	depends on X86 && 64BIT
 867	select CRYPTO_SHA256
 868	select CRYPTO_HASH
 869	help
 870	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 871	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 872	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 873	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 874	  Instructions) when available.
 875
 876config CRYPTO_SHA512_SSSE3
 877	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 878	depends on X86 && 64BIT
 879	select CRYPTO_SHA512
 880	select CRYPTO_HASH
 881	help
 882	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 883	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 884	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 885	  version 2 (AVX2) instructions, when available.
 886
 887config CRYPTO_SHA1_OCTEON
 888	tristate "SHA1 digest algorithm (OCTEON)"
 889	depends on CPU_CAVIUM_OCTEON
 890	select CRYPTO_SHA1
 891	select CRYPTO_HASH
 892	help
 893	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 894	  using OCTEON crypto instructions, when available.
 895
 896config CRYPTO_SHA1_SPARC64
 897	tristate "SHA1 digest algorithm (SPARC64)"
 898	depends on SPARC64
 899	select CRYPTO_SHA1
 900	select CRYPTO_HASH
 901	help
 902	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 903	  using sparc64 crypto instructions, when available.
 904
 905config CRYPTO_SHA1_PPC
 906	tristate "SHA1 digest algorithm (powerpc)"
 907	depends on PPC
 908	help
 909	  This is the powerpc hardware accelerated implementation of the
 910	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 911
 912config CRYPTO_SHA1_PPC_SPE
 913	tristate "SHA1 digest algorithm (PPC SPE)"
 914	depends on PPC && SPE
 915	help
 916	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 917	  using powerpc SPE SIMD instruction set.
 918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919config CRYPTO_SHA256
 920	tristate "SHA224 and SHA256 digest algorithm"
 921	select CRYPTO_HASH
 922	select CRYPTO_LIB_SHA256
 923	help
 924	  SHA256 secure hash standard (DFIPS 180-2).
 925
 926	  This version of SHA implements a 256 bit hash with 128 bits of
 927	  security against collision attacks.
 928
 929	  This code also includes SHA-224, a 224 bit hash with 112 bits
 930	  of security against collision attacks.
 931
 932config CRYPTO_SHA256_PPC_SPE
 933	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 934	depends on PPC && SPE
 935	select CRYPTO_SHA256
 936	select CRYPTO_HASH
 937	help
 938	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 939	  implemented using powerpc SPE SIMD instruction set.
 940
 941config CRYPTO_SHA256_OCTEON
 942	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 943	depends on CPU_CAVIUM_OCTEON
 944	select CRYPTO_SHA256
 945	select CRYPTO_HASH
 946	help
 947	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 948	  using OCTEON crypto instructions, when available.
 949
 950config CRYPTO_SHA256_SPARC64
 951	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 952	depends on SPARC64
 953	select CRYPTO_SHA256
 954	select CRYPTO_HASH
 955	help
 956	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 957	  using sparc64 crypto instructions, when available.
 958
 959config CRYPTO_SHA512
 960	tristate "SHA384 and SHA512 digest algorithms"
 961	select CRYPTO_HASH
 962	help
 963	  SHA512 secure hash standard (DFIPS 180-2).
 964
 965	  This version of SHA implements a 512 bit hash with 256 bits of
 966	  security against collision attacks.
 967
 968	  This code also includes SHA-384, a 384 bit hash with 192 bits
 969	  of security against collision attacks.
 970
 971config CRYPTO_SHA512_OCTEON
 972	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 973	depends on CPU_CAVIUM_OCTEON
 974	select CRYPTO_SHA512
 975	select CRYPTO_HASH
 976	help
 977	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 978	  using OCTEON crypto instructions, when available.
 979
 980config CRYPTO_SHA512_SPARC64
 981	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 982	depends on SPARC64
 983	select CRYPTO_SHA512
 984	select CRYPTO_HASH
 985	help
 986	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 987	  using sparc64 crypto instructions, when available.
 988
 989config CRYPTO_SHA3
 990	tristate "SHA3 digest algorithm"
 991	select CRYPTO_HASH
 992	help
 993	  SHA-3 secure hash standard (DFIPS 202). It's based on
 994	  cryptographic sponge function family called Keccak.
 995
 996	  References:
 997	  http://keccak.noekeon.org/
 
 998
 999config CRYPTO_SM3
1000	tristate "SM3 digest algorithm"
1001	select CRYPTO_HASH
1002	help
1003	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1004	  It is part of the Chinese Commercial Cryptography suite.
1005
1006	  References:
1007	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1008	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1009
1010config CRYPTO_STREEBOG
1011	tristate "Streebog Hash Function"
1012	select CRYPTO_HASH
1013	help
1014	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1015	  cryptographic standard algorithms (called GOST algorithms).
1016	  This setting enables two hash algorithms with 256 and 512 bits output.
1017
1018	  References:
1019	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1020	  https://tools.ietf.org/html/rfc6986
1021
1022config CRYPTO_WP512
1023	tristate "Whirlpool digest algorithms"
1024	select CRYPTO_HASH
1025	help
1026	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
1027
1028	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1029	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1030
1031	  See also:
1032	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1033
1034config CRYPTO_GHASH_CLMUL_NI_INTEL
1035	tristate "GHASH hash function (CLMUL-NI accelerated)"
1036	depends on X86 && 64BIT
1037	select CRYPTO_CRYPTD
1038	help
1039	  This is the x86_64 CLMUL-NI accelerated implementation of
1040	  GHASH, the hash function used in GCM (Galois/Counter mode).
1041
1042comment "Ciphers"
1043
1044config CRYPTO_AES
1045	tristate "AES cipher algorithms"
1046	select CRYPTO_ALGAPI
1047	select CRYPTO_LIB_AES
1048	help
1049	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1050	  algorithm.
1051
1052	  Rijndael appears to be consistently a very good performer in
1053	  both hardware and software across a wide range of computing
1054	  environments regardless of its use in feedback or non-feedback
1055	  modes. Its key setup time is excellent, and its key agility is
1056	  good. Rijndael's very low memory requirements make it very well
1057	  suited for restricted-space environments, in which it also
1058	  demonstrates excellent performance. Rijndael's operations are
1059	  among the easiest to defend against power and timing attacks.
1060
1061	  The AES specifies three key sizes: 128, 192 and 256 bits
1062
1063	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1064
1065config CRYPTO_AES_TI
1066	tristate "Fixed time AES cipher"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067	select CRYPTO_ALGAPI
1068	select CRYPTO_LIB_AES
1069	help
1070	  This is a generic implementation of AES that attempts to eliminate
1071	  data dependent latencies as much as possible without affecting
1072	  performance too much. It is intended for use by the generic CCM
1073	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1074	  solely on encryption (although decryption is supported as well, but
1075	  with a more dramatic performance hit)
1076
1077	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1078	  8 for decryption), this implementation only uses just two S-boxes of
1079	  256 bytes each, and attempts to eliminate data dependent latencies by
1080	  prefetching the entire table into the cache at the start of each
1081	  block. Interrupts are also disabled to avoid races where cachelines
1082	  are evicted when the CPU is interrupted to do something else.
 
 
1083
1084config CRYPTO_AES_NI_INTEL
1085	tristate "AES cipher algorithms (AES-NI)"
1086	depends on X86
1087	select CRYPTO_AEAD
1088	select CRYPTO_LIB_AES
 
 
1089	select CRYPTO_ALGAPI
1090	select CRYPTO_SKCIPHER
1091	select CRYPTO_SIMD
 
1092	help
1093	  Use Intel AES-NI instructions for AES algorithm.
1094
1095	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1096	  algorithm.
1097
1098	  Rijndael appears to be consistently a very good performer in
1099	  both hardware and software across a wide range of computing
1100	  environments regardless of its use in feedback or non-feedback
1101	  modes. Its key setup time is excellent, and its key agility is
1102	  good. Rijndael's very low memory requirements make it very well
1103	  suited for restricted-space environments, in which it also
1104	  demonstrates excellent performance. Rijndael's operations are
1105	  among the easiest to defend against power and timing attacks.
1106
1107	  The AES specifies three key sizes: 128, 192 and 256 bits
1108
1109	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1110
1111	  In addition to AES cipher algorithm support, the acceleration
1112	  for some popular block cipher mode is supported too, including
1113	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1114	  acceleration for CTR.
1115
1116config CRYPTO_AES_SPARC64
1117	tristate "AES cipher algorithms (SPARC64)"
1118	depends on SPARC64
1119	select CRYPTO_SKCIPHER
 
1120	help
1121	  Use SPARC64 crypto opcodes for AES algorithm.
1122
1123	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1124	  algorithm.
1125
1126	  Rijndael appears to be consistently a very good performer in
1127	  both hardware and software across a wide range of computing
1128	  environments regardless of its use in feedback or non-feedback
1129	  modes. Its key setup time is excellent, and its key agility is
1130	  good. Rijndael's very low memory requirements make it very well
1131	  suited for restricted-space environments, in which it also
1132	  demonstrates excellent performance. Rijndael's operations are
1133	  among the easiest to defend against power and timing attacks.
1134
1135	  The AES specifies three key sizes: 128, 192 and 256 bits
1136
1137	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1138
1139	  In addition to AES cipher algorithm support, the acceleration
1140	  for some popular block cipher mode is supported too, including
1141	  ECB and CBC.
1142
1143config CRYPTO_AES_PPC_SPE
1144	tristate "AES cipher algorithms (PPC SPE)"
1145	depends on PPC && SPE
1146	select CRYPTO_SKCIPHER
1147	help
1148	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1149	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1150	  This module should only be used for low power (router) devices
1151	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1152	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1153	  timining attacks. Nevertheless it might be not as secure as other
1154	  architecture specific assembler implementations that work on 1KB
1155	  tables or 256 bytes S-boxes.
1156
1157config CRYPTO_ANUBIS
1158	tristate "Anubis cipher algorithm"
1159	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1160	select CRYPTO_ALGAPI
1161	help
1162	  Anubis cipher algorithm.
1163
1164	  Anubis is a variable key length cipher which can use keys from
1165	  128 bits to 320 bits in length.  It was evaluated as a entrant
1166	  in the NESSIE competition.
1167
1168	  See also:
1169	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1170	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1171
1172config CRYPTO_ARC4
1173	tristate "ARC4 cipher algorithm"
1174	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1175	select CRYPTO_SKCIPHER
1176	select CRYPTO_LIB_ARC4
1177	help
1178	  ARC4 cipher algorithm.
1179
1180	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1181	  bits in length.  This algorithm is required for driver-based
1182	  WEP, but it should not be for other purposes because of the
1183	  weakness of the algorithm.
1184
1185config CRYPTO_BLOWFISH
1186	tristate "Blowfish cipher algorithm"
1187	select CRYPTO_ALGAPI
1188	select CRYPTO_BLOWFISH_COMMON
1189	help
1190	  Blowfish cipher algorithm, by Bruce Schneier.
1191
1192	  This is a variable key length cipher which can use keys from 32
1193	  bits to 448 bits in length.  It's fast, simple and specifically
1194	  designed for use on "large microprocessors".
1195
1196	  See also:
1197	  <https://www.schneier.com/blowfish.html>
1198
1199config CRYPTO_BLOWFISH_COMMON
1200	tristate
1201	help
1202	  Common parts of the Blowfish cipher algorithm shared by the
1203	  generic c and the assembler implementations.
1204
1205	  See also:
1206	  <https://www.schneier.com/blowfish.html>
1207
1208config CRYPTO_BLOWFISH_X86_64
1209	tristate "Blowfish cipher algorithm (x86_64)"
1210	depends on X86 && 64BIT
1211	select CRYPTO_SKCIPHER
1212	select CRYPTO_BLOWFISH_COMMON
1213	imply CRYPTO_CTR
1214	help
1215	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1216
1217	  This is a variable key length cipher which can use keys from 32
1218	  bits to 448 bits in length.  It's fast, simple and specifically
1219	  designed for use on "large microprocessors".
1220
1221	  See also:
1222	  <https://www.schneier.com/blowfish.html>
1223
1224config CRYPTO_CAMELLIA
1225	tristate "Camellia cipher algorithms"
 
1226	select CRYPTO_ALGAPI
1227	help
1228	  Camellia cipher algorithms module.
1229
1230	  Camellia is a symmetric key block cipher developed jointly
1231	  at NTT and Mitsubishi Electric Corporation.
1232
1233	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1234
1235	  See also:
1236	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1237
1238config CRYPTO_CAMELLIA_X86_64
1239	tristate "Camellia cipher algorithm (x86_64)"
1240	depends on X86 && 64BIT
1241	select CRYPTO_SKCIPHER
1242	imply CRYPTO_CTR
 
 
 
1243	help
1244	  Camellia cipher algorithm module (x86_64).
1245
1246	  Camellia is a symmetric key block cipher developed jointly
1247	  at NTT and Mitsubishi Electric Corporation.
1248
1249	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1250
1251	  See also:
1252	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1253
1254config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1255	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1256	depends on X86 && 64BIT
1257	select CRYPTO_SKCIPHER
 
 
 
 
1258	select CRYPTO_CAMELLIA_X86_64
1259	select CRYPTO_SIMD
1260	imply CRYPTO_XTS
1261	help
1262	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1263
1264	  Camellia is a symmetric key block cipher developed jointly
1265	  at NTT and Mitsubishi Electric Corporation.
1266
1267	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1268
1269	  See also:
1270	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1271
1272config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1273	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1274	depends on X86 && 64BIT
 
 
 
 
 
 
1275	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
 
 
1276	help
1277	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1278
1279	  Camellia is a symmetric key block cipher developed jointly
1280	  at NTT and Mitsubishi Electric Corporation.
1281
1282	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1283
1284	  See also:
1285	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1286
1287config CRYPTO_CAMELLIA_SPARC64
1288	tristate "Camellia cipher algorithm (SPARC64)"
1289	depends on SPARC64
 
1290	select CRYPTO_ALGAPI
1291	select CRYPTO_SKCIPHER
1292	help
1293	  Camellia cipher algorithm module (SPARC64).
1294
1295	  Camellia is a symmetric key block cipher developed jointly
1296	  at NTT and Mitsubishi Electric Corporation.
1297
1298	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1299
1300	  See also:
1301	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1302
1303config CRYPTO_CAST_COMMON
1304	tristate
1305	help
1306	  Common parts of the CAST cipher algorithms shared by the
1307	  generic c and the assembler implementations.
1308
1309config CRYPTO_CAST5
1310	tristate "CAST5 (CAST-128) cipher algorithm"
1311	select CRYPTO_ALGAPI
1312	select CRYPTO_CAST_COMMON
1313	help
1314	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1315	  described in RFC2144.
1316
1317config CRYPTO_CAST5_AVX_X86_64
1318	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1319	depends on X86 && 64BIT
1320	select CRYPTO_SKCIPHER
 
 
 
1321	select CRYPTO_CAST5
1322	select CRYPTO_CAST_COMMON
1323	select CRYPTO_SIMD
1324	imply CRYPTO_CTR
1325	help
1326	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1327	  described in RFC2144.
1328
1329	  This module provides the Cast5 cipher algorithm that processes
1330	  sixteen blocks parallel using the AVX instruction set.
1331
1332config CRYPTO_CAST6
1333	tristate "CAST6 (CAST-256) cipher algorithm"
1334	select CRYPTO_ALGAPI
1335	select CRYPTO_CAST_COMMON
1336	help
1337	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1338	  described in RFC2612.
1339
1340config CRYPTO_CAST6_AVX_X86_64
1341	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1342	depends on X86 && 64BIT
1343	select CRYPTO_SKCIPHER
 
 
 
 
1344	select CRYPTO_CAST6
1345	select CRYPTO_CAST_COMMON
1346	select CRYPTO_SIMD
1347	imply CRYPTO_XTS
1348	imply CRYPTO_CTR
1349	help
1350	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1351	  described in RFC2612.
1352
1353	  This module provides the Cast6 cipher algorithm that processes
1354	  eight blocks parallel using the AVX instruction set.
1355
1356config CRYPTO_DES
1357	tristate "DES and Triple DES EDE cipher algorithms"
1358	select CRYPTO_ALGAPI
1359	select CRYPTO_LIB_DES
1360	help
1361	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1362
1363config CRYPTO_DES_SPARC64
1364	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1365	depends on SPARC64
1366	select CRYPTO_ALGAPI
1367	select CRYPTO_LIB_DES
1368	select CRYPTO_SKCIPHER
1369	help
1370	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1371	  optimized using SPARC64 crypto opcodes.
1372
1373config CRYPTO_DES3_EDE_X86_64
1374	tristate "Triple DES EDE cipher algorithm (x86-64)"
1375	depends on X86 && 64BIT
1376	select CRYPTO_SKCIPHER
1377	select CRYPTO_LIB_DES
1378	imply CRYPTO_CTR
1379	help
1380	  Triple DES EDE (FIPS 46-3) algorithm.
1381
1382	  This module provides implementation of the Triple DES EDE cipher
1383	  algorithm that is optimized for x86-64 processors. Two versions of
1384	  algorithm are provided; regular processing one input block and
1385	  one that processes three blocks parallel.
1386
1387config CRYPTO_FCRYPT
1388	tristate "FCrypt cipher algorithm"
1389	select CRYPTO_ALGAPI
1390	select CRYPTO_SKCIPHER
1391	help
1392	  FCrypt algorithm used by RxRPC.
1393
1394config CRYPTO_KHAZAD
1395	tristate "Khazad cipher algorithm"
1396	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1397	select CRYPTO_ALGAPI
1398	help
1399	  Khazad cipher algorithm.
1400
1401	  Khazad was a finalist in the initial NESSIE competition.  It is
1402	  an algorithm optimized for 64-bit processors with good performance
1403	  on 32-bit processors.  Khazad uses an 128 bit key size.
1404
1405	  See also:
1406	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408config CRYPTO_CHACHA20
1409	tristate "ChaCha stream cipher algorithms"
1410	select CRYPTO_LIB_CHACHA_GENERIC
1411	select CRYPTO_SKCIPHER
1412	help
1413	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1414
1415	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1416	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1417	  This is the portable C implementation of ChaCha20.  See also:
1418	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1419
1420	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1421	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1422	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1423	  while provably retaining ChaCha20's security.  See also:
1424	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1425
1426	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1427	  reduced security margin but increased performance.  It can be needed
1428	  in some performance-sensitive scenarios.
1429
1430config CRYPTO_CHACHA20_X86_64
1431	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1432	depends on X86 && 64BIT
1433	select CRYPTO_SKCIPHER
1434	select CRYPTO_LIB_CHACHA_GENERIC
1435	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1436	help
1437	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1438	  XChaCha20, and XChaCha12 stream ciphers.
1439
1440config CRYPTO_CHACHA_MIPS
1441	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1442	depends on CPU_MIPS32_R2
1443	select CRYPTO_SKCIPHER
1444	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1445
1446config CRYPTO_SEED
1447	tristate "SEED cipher algorithm"
1448	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1449	select CRYPTO_ALGAPI
1450	help
1451	  SEED cipher algorithm (RFC4269).
1452
1453	  SEED is a 128-bit symmetric key block cipher that has been
1454	  developed by KISA (Korea Information Security Agency) as a
1455	  national standard encryption algorithm of the Republic of Korea.
1456	  It is a 16 round block cipher with the key size of 128 bit.
1457
1458	  See also:
1459	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1460
1461config CRYPTO_SERPENT
1462	tristate "Serpent cipher algorithm"
1463	select CRYPTO_ALGAPI
1464	help
1465	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1466
1467	  Keys are allowed to be from 0 to 256 bits in length, in steps
1468	  of 8 bits.
 
1469
1470	  See also:
1471	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1472
1473config CRYPTO_SERPENT_SSE2_X86_64
1474	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1475	depends on X86 && 64BIT
1476	select CRYPTO_SKCIPHER
 
 
 
1477	select CRYPTO_SERPENT
1478	select CRYPTO_SIMD
1479	imply CRYPTO_CTR
1480	help
1481	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1482
1483	  Keys are allowed to be from 0 to 256 bits in length, in steps
1484	  of 8 bits.
1485
1486	  This module provides Serpent cipher algorithm that processes eight
1487	  blocks parallel using SSE2 instruction set.
1488
1489	  See also:
1490	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1491
1492config CRYPTO_SERPENT_SSE2_586
1493	tristate "Serpent cipher algorithm (i586/SSE2)"
1494	depends on X86 && !64BIT
1495	select CRYPTO_SKCIPHER
 
 
 
1496	select CRYPTO_SERPENT
1497	select CRYPTO_SIMD
1498	imply CRYPTO_CTR
1499	help
1500	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1501
1502	  Keys are allowed to be from 0 to 256 bits in length, in steps
1503	  of 8 bits.
1504
1505	  This module provides Serpent cipher algorithm that processes four
1506	  blocks parallel using SSE2 instruction set.
1507
1508	  See also:
1509	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1510
1511config CRYPTO_SERPENT_AVX_X86_64
1512	tristate "Serpent cipher algorithm (x86_64/AVX)"
1513	depends on X86 && 64BIT
1514	select CRYPTO_SKCIPHER
 
 
 
1515	select CRYPTO_SERPENT
1516	select CRYPTO_SIMD
1517	imply CRYPTO_XTS
1518	imply CRYPTO_CTR
1519	help
1520	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1521
1522	  Keys are allowed to be from 0 to 256 bits in length, in steps
1523	  of 8 bits.
1524
1525	  This module provides the Serpent cipher algorithm that processes
1526	  eight blocks parallel using the AVX instruction set.
1527
1528	  See also:
1529	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1530
1531config CRYPTO_SERPENT_AVX2_X86_64
1532	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1533	depends on X86 && 64BIT
 
 
 
 
 
1534	select CRYPTO_SERPENT_AVX_X86_64
 
 
1535	help
1536	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1537
1538	  Keys are allowed to be from 0 to 256 bits in length, in steps
1539	  of 8 bits.
1540
1541	  This module provides Serpent cipher algorithm that processes 16
1542	  blocks parallel using AVX2 instruction set.
1543
1544	  See also:
1545	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1546
1547config CRYPTO_SM4
1548	tristate "SM4 cipher algorithm"
1549	select CRYPTO_ALGAPI
1550	help
1551	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1552
1553	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1554	  Organization of State Commercial Administration of China (OSCCA)
1555	  as an authorized cryptographic algorithms for the use within China.
1556
1557	  SMS4 was originally created for use in protecting wireless
1558	  networks, and is mandated in the Chinese National Standard for
1559	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1560	  (GB.15629.11-2003).
1561
1562	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1563	  standardized through TC 260 of the Standardization Administration
1564	  of the People's Republic of China (SAC).
1565
1566	  The input, output, and key of SMS4 are each 128 bits.
1567
1568	  See also: <https://eprint.iacr.org/2008/329.pdf>
1569
1570	  If unsure, say N.
1571
1572config CRYPTO_TEA
1573	tristate "TEA, XTEA and XETA cipher algorithms"
1574	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1575	select CRYPTO_ALGAPI
1576	help
1577	  TEA cipher algorithm.
1578
1579	  Tiny Encryption Algorithm is a simple cipher that uses
1580	  many rounds for security.  It is very fast and uses
1581	  little memory.
1582
1583	  Xtendend Tiny Encryption Algorithm is a modification to
1584	  the TEA algorithm to address a potential key weakness
1585	  in the TEA algorithm.
1586
1587	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1588	  of the XTEA algorithm for compatibility purposes.
1589
1590config CRYPTO_TWOFISH
1591	tristate "Twofish cipher algorithm"
1592	select CRYPTO_ALGAPI
1593	select CRYPTO_TWOFISH_COMMON
1594	help
1595	  Twofish cipher algorithm.
1596
1597	  Twofish was submitted as an AES (Advanced Encryption Standard)
1598	  candidate cipher by researchers at CounterPane Systems.  It is a
1599	  16 round block cipher supporting key sizes of 128, 192, and 256
1600	  bits.
1601
1602	  See also:
1603	  <https://www.schneier.com/twofish.html>
1604
1605config CRYPTO_TWOFISH_COMMON
1606	tristate
1607	help
1608	  Common parts of the Twofish cipher algorithm shared by the
1609	  generic c and the assembler implementations.
1610
1611config CRYPTO_TWOFISH_586
1612	tristate "Twofish cipher algorithms (i586)"
1613	depends on (X86 || UML_X86) && !64BIT
1614	select CRYPTO_ALGAPI
1615	select CRYPTO_TWOFISH_COMMON
1616	imply CRYPTO_CTR
1617	help
1618	  Twofish cipher algorithm.
1619
1620	  Twofish was submitted as an AES (Advanced Encryption Standard)
1621	  candidate cipher by researchers at CounterPane Systems.  It is a
1622	  16 round block cipher supporting key sizes of 128, 192, and 256
1623	  bits.
1624
1625	  See also:
1626	  <https://www.schneier.com/twofish.html>
1627
1628config CRYPTO_TWOFISH_X86_64
1629	tristate "Twofish cipher algorithm (x86_64)"
1630	depends on (X86 || UML_X86) && 64BIT
1631	select CRYPTO_ALGAPI
1632	select CRYPTO_TWOFISH_COMMON
1633	imply CRYPTO_CTR
1634	help
1635	  Twofish cipher algorithm (x86_64).
1636
1637	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638	  candidate cipher by researchers at CounterPane Systems.  It is a
1639	  16 round block cipher supporting key sizes of 128, 192, and 256
1640	  bits.
1641
1642	  See also:
1643	  <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_X86_64_3WAY
1646	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1647	depends on X86 && 64BIT
1648	select CRYPTO_SKCIPHER
1649	select CRYPTO_TWOFISH_COMMON
1650	select CRYPTO_TWOFISH_X86_64
 
 
 
1651	help
1652	  Twofish cipher algorithm (x86_64, 3-way parallel).
1653
1654	  Twofish was submitted as an AES (Advanced Encryption Standard)
1655	  candidate cipher by researchers at CounterPane Systems.  It is a
1656	  16 round block cipher supporting key sizes of 128, 192, and 256
1657	  bits.
1658
1659	  This module provides Twofish cipher algorithm that processes three
1660	  blocks parallel, utilizing resources of out-of-order CPUs better.
1661
1662	  See also:
1663	  <https://www.schneier.com/twofish.html>
1664
1665config CRYPTO_TWOFISH_AVX_X86_64
1666	tristate "Twofish cipher algorithm (x86_64/AVX)"
1667	depends on X86 && 64BIT
1668	select CRYPTO_SKCIPHER
1669	select CRYPTO_SIMD
 
 
1670	select CRYPTO_TWOFISH_COMMON
1671	select CRYPTO_TWOFISH_X86_64
1672	select CRYPTO_TWOFISH_X86_64_3WAY
1673	imply CRYPTO_XTS
 
1674	help
1675	  Twofish cipher algorithm (x86_64/AVX).
1676
1677	  Twofish was submitted as an AES (Advanced Encryption Standard)
1678	  candidate cipher by researchers at CounterPane Systems.  It is a
1679	  16 round block cipher supporting key sizes of 128, 192, and 256
1680	  bits.
1681
1682	  This module provides the Twofish cipher algorithm that processes
1683	  eight blocks parallel using the AVX Instruction Set.
1684
1685	  See also:
1686	  <https://www.schneier.com/twofish.html>
1687
1688comment "Compression"
1689
1690config CRYPTO_DEFLATE
1691	tristate "Deflate compression algorithm"
1692	select CRYPTO_ALGAPI
1693	select CRYPTO_ACOMP2
1694	select ZLIB_INFLATE
1695	select ZLIB_DEFLATE
1696	help
1697	  This is the Deflate algorithm (RFC1951), specified for use in
1698	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1699
1700	  You will most probably want this if using IPSec.
1701
1702config CRYPTO_LZO
1703	tristate "LZO compression algorithm"
1704	select CRYPTO_ALGAPI
1705	select CRYPTO_ACOMP2
1706	select LZO_COMPRESS
1707	select LZO_DECOMPRESS
1708	help
1709	  This is the LZO algorithm.
1710
1711config CRYPTO_842
1712	tristate "842 compression algorithm"
1713	select CRYPTO_ALGAPI
1714	select CRYPTO_ACOMP2
1715	select 842_COMPRESS
1716	select 842_DECOMPRESS
1717	help
1718	  This is the 842 algorithm.
1719
1720config CRYPTO_LZ4
1721	tristate "LZ4 compression algorithm"
1722	select CRYPTO_ALGAPI
1723	select CRYPTO_ACOMP2
1724	select LZ4_COMPRESS
1725	select LZ4_DECOMPRESS
1726	help
1727	  This is the LZ4 algorithm.
1728
1729config CRYPTO_LZ4HC
1730	tristate "LZ4HC compression algorithm"
1731	select CRYPTO_ALGAPI
1732	select CRYPTO_ACOMP2
1733	select LZ4HC_COMPRESS
1734	select LZ4_DECOMPRESS
1735	help
1736	  This is the LZ4 high compression mode algorithm.
1737
1738config CRYPTO_ZSTD
1739	tristate "Zstd compression algorithm"
1740	select CRYPTO_ALGAPI
1741	select CRYPTO_ACOMP2
1742	select ZSTD_COMPRESS
1743	select ZSTD_DECOMPRESS
1744	help
1745	  This is the zstd algorithm.
1746
1747comment "Random Number Generation"
1748
1749config CRYPTO_ANSI_CPRNG
1750	tristate "Pseudo Random Number Generation for Cryptographic modules"
1751	select CRYPTO_AES
1752	select CRYPTO_RNG
1753	help
1754	  This option enables the generic pseudo random number generator
1755	  for cryptographic modules.  Uses the Algorithm specified in
1756	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1757	  CRYPTO_FIPS is selected
1758
1759menuconfig CRYPTO_DRBG_MENU
1760	tristate "NIST SP800-90A DRBG"
1761	help
1762	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1763	  more of the DRBG types must be selected.
1764
1765if CRYPTO_DRBG_MENU
1766
1767config CRYPTO_DRBG_HMAC
1768	bool
1769	default y
1770	select CRYPTO_HMAC
1771	select CRYPTO_SHA512
1772
1773config CRYPTO_DRBG_HASH
1774	bool "Enable Hash DRBG"
1775	select CRYPTO_SHA256
1776	help
1777	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1778
1779config CRYPTO_DRBG_CTR
1780	bool "Enable CTR DRBG"
1781	select CRYPTO_AES
1782	select CRYPTO_CTR
1783	help
1784	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1785
1786config CRYPTO_DRBG
1787	tristate
1788	default CRYPTO_DRBG_MENU
1789	select CRYPTO_RNG
1790	select CRYPTO_JITTERENTROPY
1791
1792endif	# if CRYPTO_DRBG_MENU
1793
1794config CRYPTO_JITTERENTROPY
1795	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1796	select CRYPTO_RNG
1797	help
1798	  The Jitterentropy RNG is a noise that is intended
1799	  to provide seed to another RNG. The RNG does not
1800	  perform any cryptographic whitening of the generated
1801	  random numbers. This Jitterentropy RNG registers with
1802	  the kernel crypto API and can be used by any caller.
1803
1804config CRYPTO_USER_API
1805	tristate
1806
1807config CRYPTO_USER_API_HASH
1808	tristate "User-space interface for hash algorithms"
1809	depends on NET
1810	select CRYPTO_HASH
1811	select CRYPTO_USER_API
1812	help
1813	  This option enables the user-spaces interface for hash
1814	  algorithms.
1815
1816config CRYPTO_USER_API_SKCIPHER
1817	tristate "User-space interface for symmetric key cipher algorithms"
1818	depends on NET
1819	select CRYPTO_SKCIPHER
1820	select CRYPTO_USER_API
1821	help
1822	  This option enables the user-spaces interface for symmetric
1823	  key cipher algorithms.
1824
1825config CRYPTO_USER_API_RNG
1826	tristate "User-space interface for random number generator algorithms"
1827	depends on NET
1828	select CRYPTO_RNG
1829	select CRYPTO_USER_API
1830	help
1831	  This option enables the user-spaces interface for random
1832	  number generator algorithms.
1833
1834config CRYPTO_USER_API_RNG_CAVP
1835	bool "Enable CAVP testing of DRBG"
1836	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1837	help
1838	  This option enables extra API for CAVP testing via the user-space
1839	  interface: resetting of DRBG entropy, and providing Additional Data.
1840	  This should only be enabled for CAVP testing. You should say
1841	  no unless you know what this is.
1842
1843config CRYPTO_USER_API_AEAD
1844	tristate "User-space interface for AEAD cipher algorithms"
1845	depends on NET
1846	select CRYPTO_AEAD
1847	select CRYPTO_SKCIPHER
1848	select CRYPTO_NULL
1849	select CRYPTO_USER_API
1850	help
1851	  This option enables the user-spaces interface for AEAD
1852	  cipher algorithms.
1853
1854config CRYPTO_USER_API_ENABLE_OBSOLETE
1855	bool "Enable obsolete cryptographic algorithms for userspace"
1856	depends on CRYPTO_USER_API
1857	default y
1858	help
1859	  Allow obsolete cryptographic algorithms to be selected that have
1860	  already been phased out from internal use by the kernel, and are
1861	  only useful for userspace clients that still rely on them.
1862
1863config CRYPTO_STATS
1864	bool "Crypto usage statistics for User-space"
1865	depends on CRYPTO_USER
1866	help
1867	  This option enables the gathering of crypto stats.
1868	  This will collect:
1869	  - encrypt/decrypt size and numbers of symmeric operations
1870	  - compress/decompress size and numbers of compress operations
1871	  - size and numbers of hash operations
1872	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1873	  - generate/seed numbers for rng operations
1874
1875config CRYPTO_HASH_INFO
1876	bool
1877
1878source "lib/crypto/Kconfig"
1879source "drivers/crypto/Kconfig"
1880source "crypto/asymmetric_keys/Kconfig"
1881source "certs/Kconfig"
1882
1883endif	# if CRYPTO