Linux Audio

Check our new training course

Loading...
v4.6
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
  27#include <linux/prefetch.h>
  28#include <net/busy_poll.h>
 
  29#include "i40e.h"
 
  30#include "i40e_prototype.h"
 
 
  31
  32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  33				u32 td_tag)
 
 
 
 
 
 
 
 
  34{
  35	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  36			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  37			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  38			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  39			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40}
  41
  42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  43#define I40E_FD_CLEAN_DELAY 10
  44/**
  45 * i40e_program_fdir_filter - Program a Flow Director filter
  46 * @fdir_data: Packet data that will be filter parameters
  47 * @raw_packet: the pre-allocated packet buffer for FDir
  48 * @pf: The PF pointer
  49 * @add: True for add/update, False for remove
  50 **/
  51int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
  52			     struct i40e_pf *pf, bool add)
 
  53{
  54	struct i40e_filter_program_desc *fdir_desc;
  55	struct i40e_tx_buffer *tx_buf, *first;
  56	struct i40e_tx_desc *tx_desc;
  57	struct i40e_ring *tx_ring;
  58	unsigned int fpt, dcc;
  59	struct i40e_vsi *vsi;
  60	struct device *dev;
  61	dma_addr_t dma;
  62	u32 td_cmd = 0;
  63	u16 delay = 0;
  64	u16 i;
  65
  66	/* find existing FDIR VSI */
  67	vsi = NULL;
  68	for (i = 0; i < pf->num_alloc_vsi; i++)
  69		if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
  70			vsi = pf->vsi[i];
  71	if (!vsi)
  72		return -ENOENT;
  73
  74	tx_ring = vsi->tx_rings[0];
  75	dev = tx_ring->dev;
  76
  77	/* we need two descriptors to add/del a filter and we can wait */
  78	do {
  79		if (I40E_DESC_UNUSED(tx_ring) > 1)
  80			break;
  81		msleep_interruptible(1);
  82		delay++;
  83	} while (delay < I40E_FD_CLEAN_DELAY);
  84
  85	if (!(I40E_DESC_UNUSED(tx_ring) > 1))
  86		return -EAGAIN;
  87
  88	dma = dma_map_single(dev, raw_packet,
  89			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
  90	if (dma_mapping_error(dev, dma))
  91		goto dma_fail;
  92
  93	/* grab the next descriptor */
  94	i = tx_ring->next_to_use;
  95	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  96	first = &tx_ring->tx_bi[i];
  97	memset(first, 0, sizeof(struct i40e_tx_buffer));
  98
  99	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 100
 101	fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
 102	      I40E_TXD_FLTR_QW0_QINDEX_MASK;
 103
 104	fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
 105	       I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
 106
 107	fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
 108	       I40E_TXD_FLTR_QW0_PCTYPE_MASK;
 109
 110	/* Use LAN VSI Id if not programmed by user */
 111	if (fdir_data->dest_vsi == 0)
 112		fpt |= (pf->vsi[pf->lan_vsi]->id) <<
 113		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
 114	else
 115		fpt |= ((u32)fdir_data->dest_vsi <<
 116			I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
 117		       I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
 118
 119	dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
 120
 121	if (add)
 122		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
 123		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 124	else
 125		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
 126		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 127
 128	dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
 129	       I40E_TXD_FLTR_QW1_DEST_MASK;
 130
 131	dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
 132	       I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
 133
 134	if (fdir_data->cnt_index != 0) {
 135		dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
 136		dcc |= ((u32)fdir_data->cnt_index <<
 137			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
 138			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
 139	}
 140
 141	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
 142	fdir_desc->rsvd = cpu_to_le32(0);
 143	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
 144	fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
 145
 146	/* Now program a dummy descriptor */
 147	i = tx_ring->next_to_use;
 148	tx_desc = I40E_TX_DESC(tx_ring, i);
 149	tx_buf = &tx_ring->tx_bi[i];
 150
 151	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 152
 153	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 154
 155	/* record length, and DMA address */
 156	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 157	dma_unmap_addr_set(tx_buf, dma, dma);
 158
 159	tx_desc->buffer_addr = cpu_to_le64(dma);
 160	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 161
 162	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 163	tx_buf->raw_buf = (void *)raw_packet;
 164
 165	tx_desc->cmd_type_offset_bsz =
 166		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 167
 168	/* Force memory writes to complete before letting h/w
 169	 * know there are new descriptors to fetch.
 170	 */
 171	wmb();
 172
 173	/* Mark the data descriptor to be watched */
 174	first->next_to_watch = tx_desc;
 175
 176	writel(tx_ring->next_to_use, tx_ring->tail);
 177	return 0;
 178
 179dma_fail:
 180	return -1;
 181}
 182
 183#define IP_HEADER_OFFSET 14
 184#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 185/**
 186 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 187 * @vsi: pointer to the targeted VSI
 188 * @fd_data: the flow director data required for the FDir descriptor
 189 * @add: true adds a filter, false removes it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190 *
 191 * Returns 0 if the filters were successfully added or removed
 192 **/
 193static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 194				   struct i40e_fdir_filter *fd_data,
 195				   bool add)
 196{
 197	struct i40e_pf *pf = vsi->back;
 198	struct udphdr *udp;
 199	struct iphdr *ip;
 200	bool err = false;
 201	u8 *raw_packet;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202	int ret;
 203	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 204		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 205		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 206
 207	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 208	if (!raw_packet)
 209		return -ENOMEM;
 210	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 
 
 211
 212	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 213	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 214	      + sizeof(struct iphdr));
 215
 216	ip->daddr = fd_data->dst_ip[0];
 217	udp->dest = fd_data->dst_port;
 218	ip->saddr = fd_data->src_ip[0];
 219	udp->source = fd_data->src_port;
 220
 221	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 222	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 223	if (ret) {
 224		dev_info(&pf->pdev->dev,
 225			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 226			 fd_data->pctype, fd_data->fd_id, ret);
 227		err = true;
 
 228	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 229		if (add)
 230			dev_info(&pf->pdev->dev,
 231				 "Filter OK for PCTYPE %d loc = %d\n",
 232				 fd_data->pctype, fd_data->fd_id);
 233		else
 234			dev_info(&pf->pdev->dev,
 235				 "Filter deleted for PCTYPE %d loc = %d\n",
 236				 fd_data->pctype, fd_data->fd_id);
 237	}
 238	if (err)
 239		kfree(raw_packet);
 240
 241	return err ? -EOPNOTSUPP : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242}
 243
 244#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 
 
 245/**
 246 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 247 * @vsi: pointer to the targeted VSI
 248 * @fd_data: the flow director data required for the FDir descriptor
 249 * @add: true adds a filter, false removes it
 
 250 *
 251 * Returns 0 if the filters were successfully added or removed
 252 **/
 253static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 254				   struct i40e_fdir_filter *fd_data,
 255				   bool add)
 
 256{
 257	struct i40e_pf *pf = vsi->back;
 258	struct tcphdr *tcp;
 259	struct iphdr *ip;
 260	bool err = false;
 261	u8 *raw_packet;
 262	int ret;
 263	/* Dummy packet */
 264	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 265		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 266		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 267		0x0, 0x72, 0, 0, 0, 0};
 268
 269	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 270	if (!raw_packet)
 271		return -ENOMEM;
 272	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 273
 274	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 275	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 276	      + sizeof(struct iphdr));
 277
 278	ip->daddr = fd_data->dst_ip[0];
 279	tcp->dest = fd_data->dst_port;
 280	ip->saddr = fd_data->src_ip[0];
 281	tcp->source = fd_data->src_port;
 282
 283	if (add) {
 284		pf->fd_tcp_rule++;
 285		if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
 286			if (I40E_DEBUG_FD & pf->hw.debug_mask)
 287				dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 288			pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 289		}
 290	} else {
 291		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
 292				  (pf->fd_tcp_rule - 1) : 0;
 293		if (pf->fd_tcp_rule == 0) {
 294			pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
 295			if (I40E_DEBUG_FD & pf->hw.debug_mask)
 296				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
 297		}
 298	}
 299
 300	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 301	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302
 303	if (ret) {
 304		dev_info(&pf->pdev->dev,
 305			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 306			 fd_data->pctype, fd_data->fd_id, ret);
 307		err = true;
 308	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 309		if (add)
 310			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 311				 fd_data->pctype, fd_data->fd_id);
 312		else
 313			dev_info(&pf->pdev->dev,
 314				 "Filter deleted for PCTYPE %d loc = %d\n",
 315				 fd_data->pctype, fd_data->fd_id);
 316	}
 317
 318	if (err)
 319		kfree(raw_packet);
 320
 321	return err ? -EOPNOTSUPP : 0;
 
 
 
 
 
 
 322}
 323
 
 
 324/**
 325 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 326 * a specific flow spec
 327 * @vsi: pointer to the targeted VSI
 328 * @fd_data: the flow director data required for the FDir descriptor
 329 * @add: true adds a filter, false removes it
 
 330 *
 331 * Returns 0 if the filters were successfully added or removed
 332 **/
 333static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 334				    struct i40e_fdir_filter *fd_data,
 335				    bool add)
 
 336{
 337	return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338}
 339
 340#define I40E_IP_DUMMY_PACKET_LEN 34
 
 341/**
 342 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 343 * a specific flow spec
 344 * @vsi: pointer to the targeted VSI
 345 * @fd_data: the flow director data required for the FDir descriptor
 346 * @add: true adds a filter, false removes it
 
 347 *
 348 * Returns 0 if the filters were successfully added or removed
 349 **/
 350static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 351				  struct i40e_fdir_filter *fd_data,
 352				  bool add)
 
 353{
 354	struct i40e_pf *pf = vsi->back;
 355	struct iphdr *ip;
 356	bool err = false;
 357	u8 *raw_packet;
 
 
 358	int ret;
 359	int i;
 360	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 361		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 362		0, 0, 0, 0};
 363
 364	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 365	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 
 
 
 
 
 
 
 366		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 367		if (!raw_packet)
 368			return -ENOMEM;
 369		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 370		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 371
 372		ip->saddr = fd_data->src_ip[0];
 373		ip->daddr = fd_data->dst_ip[0];
 374		ip->protocol = 0;
 375
 376		fd_data->pctype = i;
 377		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 378
 379		if (ret) {
 380			dev_info(&pf->pdev->dev,
 381				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 382				 fd_data->pctype, fd_data->fd_id, ret);
 383			err = true;
 384		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 385			if (add)
 386				dev_info(&pf->pdev->dev,
 387					 "Filter OK for PCTYPE %d loc = %d\n",
 388					 fd_data->pctype, fd_data->fd_id);
 389			else
 390				dev_info(&pf->pdev->dev,
 391					 "Filter deleted for PCTYPE %d loc = %d\n",
 392					 fd_data->pctype, fd_data->fd_id);
 393		}
 394	}
 395
 396	if (err)
 397		kfree(raw_packet);
 398
 399	return err ? -EOPNOTSUPP : 0;
 
 
 
 400}
 401
 402/**
 403 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 404 * @vsi: pointer to the targeted VSI
 405 * @cmd: command to get or set RX flow classification rules
 406 * @add: true adds a filter, false removes it
 407 *
 408 **/
 409int i40e_add_del_fdir(struct i40e_vsi *vsi,
 410		      struct i40e_fdir_filter *input, bool add)
 411{
 
 412	struct i40e_pf *pf = vsi->back;
 413	int ret;
 414
 415	switch (input->flow_type & ~FLOW_EXT) {
 416	case TCP_V4_FLOW:
 417		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 418		break;
 419	case UDP_V4_FLOW:
 420		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 421		break;
 422	case SCTP_V4_FLOW:
 423		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 
 
 
 
 
 
 424		break;
 425	case IPV4_FLOW:
 426		ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 427		break;
 428	case IP_USER_FLOW:
 429		switch (input->ip4_proto) {
 430		case IPPROTO_TCP:
 431			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 432			break;
 433		case IPPROTO_UDP:
 434			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 435			break;
 436		case IPPROTO_SCTP:
 437			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 
 
 
 438			break;
 439		default:
 440			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 
 
 
 
 
 
 
 
 
 
 
 
 441			break;
 
 
 
 
 
 
 
 
 
 
 
 442		}
 443		break;
 444	default:
 445		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
 446			 input->flow_type);
 447		ret = -EINVAL;
 448	}
 449
 450	/* The buffer allocated here is freed by the i40e_clean_tx_ring() */
 
 
 
 
 
 451	return ret;
 452}
 453
 454/**
 455 * i40e_fd_handle_status - check the Programming Status for FD
 456 * @rx_ring: the Rx ring for this descriptor
 457 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 
 458 * @prog_id: the id originally used for programming
 459 *
 460 * This is used to verify if the FD programming or invalidation
 461 * requested by SW to the HW is successful or not and take actions accordingly.
 462 **/
 463static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 464				  union i40e_rx_desc *rx_desc, u8 prog_id)
 465{
 466	struct i40e_pf *pf = rx_ring->vsi->back;
 467	struct pci_dev *pdev = pf->pdev;
 
 468	u32 fcnt_prog, fcnt_avail;
 469	u32 error;
 470	u64 qw;
 471
 472	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 473	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 474		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 475
 476	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 477		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 478		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 479		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 480			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 481				 pf->fd_inv);
 482
 483		/* Check if the programming error is for ATR.
 484		 * If so, auto disable ATR and set a state for
 485		 * flush in progress. Next time we come here if flush is in
 486		 * progress do nothing, once flush is complete the state will
 487		 * be cleared.
 488		 */
 489		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
 490			return;
 491
 492		pf->fd_add_err++;
 493		/* store the current atr filter count */
 494		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 495
 496		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 497		    (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
 498			pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
 499			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
 
 
 
 
 
 
 500		}
 501
 502		/* filter programming failed most likely due to table full */
 503		fcnt_prog = i40e_get_global_fd_count(pf);
 504		fcnt_avail = pf->fdir_pf_filter_count;
 505		/* If ATR is running fcnt_prog can quickly change,
 506		 * if we are very close to full, it makes sense to disable
 507		 * FD ATR/SB and then re-enable it when there is room.
 508		 */
 509		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 510			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 511			    !(pf->auto_disable_flags &
 512				     I40E_FLAG_FD_SB_ENABLED)) {
 513				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 514					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 515				pf->auto_disable_flags |=
 516							I40E_FLAG_FD_SB_ENABLED;
 517			}
 518		}
 519	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 520		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 521			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 522				 rx_desc->wb.qword0.hi_dword.fd_id);
 523	}
 524}
 525
 526/**
 527 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 528 * @ring:      the ring that owns the buffer
 529 * @tx_buffer: the buffer to free
 530 **/
 531static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 532					    struct i40e_tx_buffer *tx_buffer)
 533{
 534	if (tx_buffer->skb) {
 535		dev_kfree_skb_any(tx_buffer->skb);
 
 
 
 
 
 536		if (dma_unmap_len(tx_buffer, len))
 537			dma_unmap_single(ring->dev,
 538					 dma_unmap_addr(tx_buffer, dma),
 539					 dma_unmap_len(tx_buffer, len),
 540					 DMA_TO_DEVICE);
 541	} else if (dma_unmap_len(tx_buffer, len)) {
 542		dma_unmap_page(ring->dev,
 543			       dma_unmap_addr(tx_buffer, dma),
 544			       dma_unmap_len(tx_buffer, len),
 545			       DMA_TO_DEVICE);
 546	}
 547
 548	if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 549		kfree(tx_buffer->raw_buf);
 550
 551	tx_buffer->next_to_watch = NULL;
 552	tx_buffer->skb = NULL;
 553	dma_unmap_len_set(tx_buffer, len, 0);
 554	/* tx_buffer must be completely set up in the transmit path */
 555}
 556
 557/**
 558 * i40e_clean_tx_ring - Free any empty Tx buffers
 559 * @tx_ring: ring to be cleaned
 560 **/
 561void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 562{
 563	unsigned long bi_size;
 564	u16 i;
 565
 566	/* ring already cleared, nothing to do */
 567	if (!tx_ring->tx_bi)
 568		return;
 
 
 
 569
 570	/* Free all the Tx ring sk_buffs */
 571	for (i = 0; i < tx_ring->count; i++)
 572		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 
 
 573
 574	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 575	memset(tx_ring->tx_bi, 0, bi_size);
 576
 577	/* Zero out the descriptor ring */
 578	memset(tx_ring->desc, 0, tx_ring->size);
 579
 580	tx_ring->next_to_use = 0;
 581	tx_ring->next_to_clean = 0;
 582
 583	if (!tx_ring->netdev)
 584		return;
 585
 586	/* cleanup Tx queue statistics */
 587	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
 588						  tx_ring->queue_index));
 589}
 590
 591/**
 592 * i40e_free_tx_resources - Free Tx resources per queue
 593 * @tx_ring: Tx descriptor ring for a specific queue
 594 *
 595 * Free all transmit software resources
 596 **/
 597void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 598{
 599	i40e_clean_tx_ring(tx_ring);
 600	kfree(tx_ring->tx_bi);
 601	tx_ring->tx_bi = NULL;
 
 
 602
 603	if (tx_ring->desc) {
 604		dma_free_coherent(tx_ring->dev, tx_ring->size,
 605				  tx_ring->desc, tx_ring->dma);
 606		tx_ring->desc = NULL;
 607	}
 608}
 609
 610/**
 611 * i40e_get_tx_pending - how many tx descriptors not processed
 612 * @tx_ring: the ring of descriptors
 613 * @in_sw: is tx_pending being checked in SW or HW
 614 *
 615 * Since there is no access to the ring head register
 616 * in XL710, we need to use our local copies
 617 **/
 618u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 619{
 620	u32 head, tail;
 621
 622	if (!in_sw)
 623		head = i40e_get_head(ring);
 624	else
 
 625		head = ring->next_to_clean;
 626	tail = readl(ring->tail);
 
 627
 628	if (head != tail)
 629		return (head < tail) ?
 630			tail - head : (tail + ring->count - head);
 631
 632	return 0;
 633}
 634
 635#define WB_STRIDE 0x3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636
 637/**
 638 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 639 * @tx_ring:  tx ring to clean
 640 * @budget:   how many cleans we're allowed
 
 641 *
 642 * Returns true if there's any budget left (e.g. the clean is finished)
 643 **/
 644static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
 
 645{
 646	u16 i = tx_ring->next_to_clean;
 647	struct i40e_tx_buffer *tx_buf;
 648	struct i40e_tx_desc *tx_head;
 649	struct i40e_tx_desc *tx_desc;
 650	unsigned int total_packets = 0;
 651	unsigned int total_bytes = 0;
 652
 653	tx_buf = &tx_ring->tx_bi[i];
 654	tx_desc = I40E_TX_DESC(tx_ring, i);
 655	i -= tx_ring->count;
 656
 657	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 658
 659	do {
 660		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 661
 662		/* if next_to_watch is not set then there is no work pending */
 663		if (!eop_desc)
 664			break;
 665
 666		/* prevent any other reads prior to eop_desc */
 667		read_barrier_depends();
 668
 
 669		/* we have caught up to head, no work left to do */
 670		if (tx_head == tx_desc)
 671			break;
 672
 673		/* clear next_to_watch to prevent false hangs */
 674		tx_buf->next_to_watch = NULL;
 675
 676		/* update the statistics for this packet */
 677		total_bytes += tx_buf->bytecount;
 678		total_packets += tx_buf->gso_segs;
 679
 680		/* free the skb */
 681		dev_consume_skb_any(tx_buf->skb);
 
 
 
 682
 683		/* unmap skb header data */
 684		dma_unmap_single(tx_ring->dev,
 685				 dma_unmap_addr(tx_buf, dma),
 686				 dma_unmap_len(tx_buf, len),
 687				 DMA_TO_DEVICE);
 688
 689		/* clear tx_buffer data */
 690		tx_buf->skb = NULL;
 691		dma_unmap_len_set(tx_buf, len, 0);
 692
 693		/* unmap remaining buffers */
 694		while (tx_desc != eop_desc) {
 
 
 695
 696			tx_buf++;
 697			tx_desc++;
 698			i++;
 699			if (unlikely(!i)) {
 700				i -= tx_ring->count;
 701				tx_buf = tx_ring->tx_bi;
 702				tx_desc = I40E_TX_DESC(tx_ring, 0);
 703			}
 704
 705			/* unmap any remaining paged data */
 706			if (dma_unmap_len(tx_buf, len)) {
 707				dma_unmap_page(tx_ring->dev,
 708					       dma_unmap_addr(tx_buf, dma),
 709					       dma_unmap_len(tx_buf, len),
 710					       DMA_TO_DEVICE);
 711				dma_unmap_len_set(tx_buf, len, 0);
 712			}
 713		}
 714
 715		/* move us one more past the eop_desc for start of next pkt */
 716		tx_buf++;
 717		tx_desc++;
 718		i++;
 719		if (unlikely(!i)) {
 720			i -= tx_ring->count;
 721			tx_buf = tx_ring->tx_bi;
 722			tx_desc = I40E_TX_DESC(tx_ring, 0);
 723		}
 724
 725		prefetch(tx_desc);
 726
 727		/* update budget accounting */
 728		budget--;
 729	} while (likely(budget));
 730
 731	i += tx_ring->count;
 732	tx_ring->next_to_clean = i;
 733	u64_stats_update_begin(&tx_ring->syncp);
 734	tx_ring->stats.bytes += total_bytes;
 735	tx_ring->stats.packets += total_packets;
 736	u64_stats_update_end(&tx_ring->syncp);
 737	tx_ring->q_vector->tx.total_bytes += total_bytes;
 738	tx_ring->q_vector->tx.total_packets += total_packets;
 739
 740	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 741		unsigned int j = 0;
 742
 743		/* check to see if there are < 4 descriptors
 744		 * waiting to be written back, then kick the hardware to force
 745		 * them to be written back in case we stay in NAPI.
 746		 * In this mode on X722 we do not enable Interrupt.
 747		 */
 748		j = i40e_get_tx_pending(tx_ring, false);
 749
 750		if (budget &&
 751		    ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
 752		    !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
 753		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 754			tx_ring->arm_wb = true;
 755	}
 756
 757	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
 758						      tx_ring->queue_index),
 759				  total_packets, total_bytes);
 760
 761#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 762	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 763		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 764		/* Make sure that anybody stopping the queue after this
 765		 * sees the new next_to_clean.
 766		 */
 767		smp_mb();
 768		if (__netif_subqueue_stopped(tx_ring->netdev,
 769					     tx_ring->queue_index) &&
 770		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
 771			netif_wake_subqueue(tx_ring->netdev,
 772					    tx_ring->queue_index);
 773			++tx_ring->tx_stats.restart_queue;
 774		}
 775	}
 776
 777	return !!budget;
 778}
 779
 780/**
 781 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 782 * @vsi: the VSI we care about
 783 * @q_vector: the vector on which to enable writeback
 784 *
 785 **/
 786static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 787				  struct i40e_q_vector *q_vector)
 788{
 789	u16 flags = q_vector->tx.ring[0].flags;
 790	u32 val;
 791
 792	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 793		return;
 794
 795	if (q_vector->arm_wb_state)
 796		return;
 797
 798	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 799		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 800		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 801
 802		wr32(&vsi->back->hw,
 803		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
 804		     val);
 805	} else {
 806		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 807		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 808
 809		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 810	}
 811	q_vector->arm_wb_state = true;
 812}
 813
 814/**
 815 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 816 * @vsi: the VSI we care about
 817 * @q_vector: the vector  on which to force writeback
 818 *
 819 **/
 820void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 821{
 822	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 823		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 824			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 825			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 826			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 827			  /* allow 00 to be written to the index */
 828
 829		wr32(&vsi->back->hw,
 830		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
 831					 vsi->base_vector - 1), val);
 832	} else {
 833		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 834			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 835			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 836			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 837			/* allow 00 to be written to the index */
 838
 839		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 840	}
 841}
 842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843/**
 844 * i40e_set_new_dynamic_itr - Find new ITR level
 
 845 * @rc: structure containing ring performance data
 846 *
 847 * Returns true if ITR changed, false if not
 848 *
 849 * Stores a new ITR value based on packets and byte counts during
 850 * the last interrupt.  The advantage of per interrupt computation
 851 * is faster updates and more accurate ITR for the current traffic
 852 * pattern.  Constants in this function were computed based on
 853 * theoretical maximum wire speed and thresholds were set based on
 854 * testing data as well as attempting to minimize response time
 855 * while increasing bulk throughput.
 856 **/
 857static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 
 858{
 859	enum i40e_latency_range new_latency_range = rc->latency_range;
 860	struct i40e_q_vector *qv = rc->ring->q_vector;
 861	u32 new_itr = rc->itr;
 862	int bytes_per_int;
 863	int usecs;
 864
 865	if (rc->total_packets == 0 || !rc->itr)
 866		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867
 868	/* simple throttlerate management
 869	 *   0-10MB/s   lowest (50000 ints/s)
 870	 *  10-20MB/s   low    (20000 ints/s)
 871	 *  20-1249MB/s bulk   (18000 ints/s)
 872	 *  > 40000 Rx packets per second (8000 ints/s)
 873	 *
 874	 * The math works out because the divisor is in 10^(-6) which
 875	 * turns the bytes/us input value into MB/s values, but
 876	 * make sure to use usecs, as the register values written
 877	 * are in 2 usec increments in the ITR registers, and make sure
 878	 * to use the smoothed values that the countdown timer gives us.
 879	 */
 880	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
 881	bytes_per_int = rc->total_bytes / usecs;
 882
 883	switch (new_latency_range) {
 884	case I40E_LOWEST_LATENCY:
 885		if (bytes_per_int > 10)
 886			new_latency_range = I40E_LOW_LATENCY;
 887		break;
 888	case I40E_LOW_LATENCY:
 889		if (bytes_per_int > 20)
 890			new_latency_range = I40E_BULK_LATENCY;
 891		else if (bytes_per_int <= 10)
 892			new_latency_range = I40E_LOWEST_LATENCY;
 893		break;
 894	case I40E_BULK_LATENCY:
 895	case I40E_ULTRA_LATENCY:
 896	default:
 897		if (bytes_per_int <= 20)
 898			new_latency_range = I40E_LOW_LATENCY;
 899		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900	}
 901
 902	/* this is to adjust RX more aggressively when streaming small
 903	 * packets.  The value of 40000 was picked as it is just beyond
 904	 * what the hardware can receive per second if in low latency
 905	 * mode.
 906	 */
 907#define RX_ULTRA_PACKET_RATE 40000
 908
 909	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
 910	    (&qv->rx == rc))
 911		new_latency_range = I40E_ULTRA_LATENCY;
 912
 913	rc->latency_range = new_latency_range;
 914
 915	switch (new_latency_range) {
 916	case I40E_LOWEST_LATENCY:
 917		new_itr = I40E_ITR_50K;
 918		break;
 919	case I40E_LOW_LATENCY:
 920		new_itr = I40E_ITR_20K;
 921		break;
 922	case I40E_BULK_LATENCY:
 923		new_itr = I40E_ITR_18K;
 924		break;
 925	case I40E_ULTRA_LATENCY:
 926		new_itr = I40E_ITR_8K;
 927		break;
 928	default:
 929		break;
 930	}
 931
 
 
 
 
 
 
 
 932	rc->total_bytes = 0;
 933	rc->total_packets = 0;
 
 934
 935	if (new_itr != rc->itr) {
 936		rc->itr = new_itr;
 937		return true;
 938	}
 939
 940	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941}
 942
 943/**
 944 * i40e_clean_programming_status - clean the programming status descriptor
 945 * @rx_ring: the rx ring that has this descriptor
 946 * @rx_desc: the rx descriptor written back by HW
 
 947 *
 948 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 949 * status being successful or not and take actions accordingly. FCoE should
 950 * handle its context/filter programming/invalidation status and take actions.
 951 *
 
 952 **/
 953static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
 954					  union i40e_rx_desc *rx_desc)
 955{
 956	u64 qw;
 957	u8 id;
 958
 959	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 960	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
 961		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
 962
 963	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
 964		i40e_fd_handle_status(rx_ring, rx_desc, id);
 965#ifdef I40E_FCOE
 966	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
 967		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
 968		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
 969#endif
 970}
 971
 972/**
 973 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 974 * @tx_ring: the tx ring to set up
 975 *
 976 * Return 0 on success, negative on error
 977 **/
 978int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
 979{
 980	struct device *dev = tx_ring->dev;
 981	int bi_size;
 982
 983	if (!dev)
 984		return -ENOMEM;
 985
 986	/* warn if we are about to overwrite the pointer */
 987	WARN_ON(tx_ring->tx_bi);
 988	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 989	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 990	if (!tx_ring->tx_bi)
 991		goto err;
 992
 
 
 
 
 
 
 
 
 
 993	/* round up to nearest 4K */
 994	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 995	/* add u32 for head writeback, align after this takes care of
 996	 * guaranteeing this is at least one cache line in size
 997	 */
 998	tx_ring->size += sizeof(u32);
 999	tx_ring->size = ALIGN(tx_ring->size, 4096);
1000	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1001					   &tx_ring->dma, GFP_KERNEL);
1002	if (!tx_ring->desc) {
1003		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1004			 tx_ring->size);
1005		goto err;
1006	}
1007
1008	tx_ring->next_to_use = 0;
1009	tx_ring->next_to_clean = 0;
 
1010	return 0;
1011
1012err:
 
 
1013	kfree(tx_ring->tx_bi);
1014	tx_ring->tx_bi = NULL;
1015	return -ENOMEM;
1016}
1017
 
 
 
 
 
 
 
 
 
 
 
 
 
1018/**
1019 * i40e_clean_rx_ring - Free Rx buffers
1020 * @rx_ring: ring to be cleaned
1021 **/
1022void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1023{
1024	struct device *dev = rx_ring->dev;
1025	struct i40e_rx_buffer *rx_bi;
1026	unsigned long bi_size;
1027	u16 i;
1028
1029	/* ring already cleared, nothing to do */
1030	if (!rx_ring->rx_bi)
1031		return;
1032
1033	if (ring_is_ps_enabled(rx_ring)) {
1034		int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
 
 
1035
1036		rx_bi = &rx_ring->rx_bi[0];
1037		if (rx_bi->hdr_buf) {
1038			dma_free_coherent(dev,
1039					  bufsz,
1040					  rx_bi->hdr_buf,
1041					  rx_bi->dma);
1042			for (i = 0; i < rx_ring->count; i++) {
1043				rx_bi = &rx_ring->rx_bi[i];
1044				rx_bi->dma = 0;
1045				rx_bi->hdr_buf = NULL;
1046			}
1047		}
1048	}
 
1049	/* Free all the Rx ring sk_buffs */
1050	for (i = 0; i < rx_ring->count; i++) {
1051		rx_bi = &rx_ring->rx_bi[i];
1052		if (rx_bi->dma) {
1053			dma_unmap_single(dev,
1054					 rx_bi->dma,
1055					 rx_ring->rx_buf_len,
1056					 DMA_FROM_DEVICE);
1057			rx_bi->dma = 0;
1058		}
1059		if (rx_bi->skb) {
1060			dev_kfree_skb(rx_bi->skb);
1061			rx_bi->skb = NULL;
1062		}
1063		if (rx_bi->page) {
1064			if (rx_bi->page_dma) {
1065				dma_unmap_page(dev,
1066					       rx_bi->page_dma,
1067					       PAGE_SIZE,
1068					       DMA_FROM_DEVICE);
1069				rx_bi->page_dma = 0;
1070			}
1071			__free_page(rx_bi->page);
1072			rx_bi->page = NULL;
1073			rx_bi->page_offset = 0;
1074		}
1075	}
1076
1077	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1078	memset(rx_ring->rx_bi, 0, bi_size);
 
 
 
1079
1080	/* Zero out the descriptor ring */
1081	memset(rx_ring->desc, 0, rx_ring->size);
1082
 
1083	rx_ring->next_to_clean = 0;
1084	rx_ring->next_to_use = 0;
1085}
1086
1087/**
1088 * i40e_free_rx_resources - Free Rx resources
1089 * @rx_ring: ring to clean the resources from
1090 *
1091 * Free all receive software resources
1092 **/
1093void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1094{
1095	i40e_clean_rx_ring(rx_ring);
 
 
 
1096	kfree(rx_ring->rx_bi);
1097	rx_ring->rx_bi = NULL;
1098
1099	if (rx_ring->desc) {
1100		dma_free_coherent(rx_ring->dev, rx_ring->size,
1101				  rx_ring->desc, rx_ring->dma);
1102		rx_ring->desc = NULL;
1103	}
1104}
1105
1106/**
1107 * i40e_alloc_rx_headers - allocate rx header buffers
1108 * @rx_ring: ring to alloc buffers
1109 *
1110 * Allocate rx header buffers for the entire ring. As these are static,
1111 * this is only called when setting up a new ring.
1112 **/
1113void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1114{
1115	struct device *dev = rx_ring->dev;
1116	struct i40e_rx_buffer *rx_bi;
1117	dma_addr_t dma;
1118	void *buffer;
1119	int buf_size;
1120	int i;
1121
1122	if (rx_ring->rx_bi[0].hdr_buf)
1123		return;
1124	/* Make sure the buffers don't cross cache line boundaries. */
1125	buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1126	buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1127				    &dma, GFP_KERNEL);
1128	if (!buffer)
1129		return;
1130	for (i = 0; i < rx_ring->count; i++) {
1131		rx_bi = &rx_ring->rx_bi[i];
1132		rx_bi->dma = dma + (i * buf_size);
1133		rx_bi->hdr_buf = buffer + (i * buf_size);
1134	}
1135}
1136
1137/**
1138 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1139 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1140 *
1141 * Returns 0 on success, negative on failure
1142 **/
1143int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1144{
1145	struct device *dev = rx_ring->dev;
1146	int bi_size;
1147
1148	/* warn if we are about to overwrite the pointer */
1149	WARN_ON(rx_ring->rx_bi);
1150	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1151	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1152	if (!rx_ring->rx_bi)
1153		goto err;
1154
1155	u64_stats_init(&rx_ring->syncp);
1156
1157	/* Round up to nearest 4K */
1158	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1159		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1160		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1161	rx_ring->size = ALIGN(rx_ring->size, 4096);
1162	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1163					   &rx_ring->dma, GFP_KERNEL);
1164
1165	if (!rx_ring->desc) {
1166		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1167			 rx_ring->size);
1168		goto err;
1169	}
1170
 
1171	rx_ring->next_to_clean = 0;
1172	rx_ring->next_to_use = 0;
1173
 
 
 
 
 
 
 
 
 
 
1174	return 0;
1175err:
1176	kfree(rx_ring->rx_bi);
1177	rx_ring->rx_bi = NULL;
1178	return -ENOMEM;
1179}
1180
1181/**
1182 * i40e_release_rx_desc - Store the new tail and head values
1183 * @rx_ring: ring to bump
1184 * @val: new head index
1185 **/
1186static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1187{
1188	rx_ring->next_to_use = val;
 
 
 
 
1189	/* Force memory writes to complete before letting h/w
1190	 * know there are new descriptors to fetch.  (Only
1191	 * applicable for weak-ordered memory model archs,
1192	 * such as IA-64).
1193	 */
1194	wmb();
1195	writel(val, rx_ring->tail);
1196}
1197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198/**
1199 * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1200 * @rx_ring: ring to place buffers on
1201 * @cleaned_count: number of buffers to replace
1202 *
1203 * Returns true if any errors on allocation
 
1204 **/
1205bool i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
 
1206{
1207	u16 i = rx_ring->next_to_use;
1208	union i40e_rx_desc *rx_desc;
1209	struct i40e_rx_buffer *bi;
1210	const int current_node = numa_node_id();
1211
1212	/* do nothing if no valid netdev defined */
1213	if (!rx_ring->netdev || !cleaned_count)
1214		return false;
1215
1216	while (cleaned_count--) {
1217		rx_desc = I40E_RX_DESC(rx_ring, i);
1218		bi = &rx_ring->rx_bi[i];
1219
1220		if (bi->skb) /* desc is in use */
1221			goto no_buffers;
1222
1223	/* If we've been moved to a different NUMA node, release the
1224	 * page so we can get a new one on the current node.
1225	 */
1226		if (bi->page &&  page_to_nid(bi->page) != current_node) {
1227			dma_unmap_page(rx_ring->dev,
1228				       bi->page_dma,
1229				       PAGE_SIZE,
1230				       DMA_FROM_DEVICE);
1231			__free_page(bi->page);
1232			bi->page = NULL;
1233			bi->page_dma = 0;
1234			rx_ring->rx_stats.realloc_count++;
1235		} else if (bi->page) {
1236			rx_ring->rx_stats.page_reuse_count++;
1237		}
1238
1239		if (!bi->page) {
1240			bi->page = alloc_page(GFP_ATOMIC);
1241			if (!bi->page) {
1242				rx_ring->rx_stats.alloc_page_failed++;
1243				goto no_buffers;
1244			}
1245			bi->page_dma = dma_map_page(rx_ring->dev,
1246						    bi->page,
1247						    0,
1248						    PAGE_SIZE,
1249						    DMA_FROM_DEVICE);
1250			if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
1251				rx_ring->rx_stats.alloc_page_failed++;
1252				__free_page(bi->page);
1253				bi->page = NULL;
1254				bi->page_dma = 0;
1255				bi->page_offset = 0;
1256				goto no_buffers;
1257			}
1258			bi->page_offset = 0;
1259		}
1260
1261		/* Refresh the desc even if buffer_addrs didn't change
1262		 * because each write-back erases this info.
1263		 */
1264		rx_desc->read.pkt_addr =
1265				cpu_to_le64(bi->page_dma + bi->page_offset);
1266		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1267		i++;
1268		if (i == rx_ring->count)
1269			i = 0;
1270	}
1271
1272	if (rx_ring->next_to_use != i)
1273		i40e_release_rx_desc(rx_ring, i);
 
 
 
 
1274
1275	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
1276
1277no_buffers:
1278	if (rx_ring->next_to_use != i)
1279		i40e_release_rx_desc(rx_ring, i);
 
 
1280
1281	/* make sure to come back via polling to try again after
1282	 * allocation failure
1283	 */
1284	return true;
1285}
1286
1287/**
1288 * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1289 * @rx_ring: ring to place buffers on
1290 * @cleaned_count: number of buffers to replace
1291 *
1292 * Returns true if any errors on allocation
1293 **/
1294bool i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1295{
1296	u16 i = rx_ring->next_to_use;
1297	union i40e_rx_desc *rx_desc;
1298	struct i40e_rx_buffer *bi;
1299	struct sk_buff *skb;
1300
1301	/* do nothing if no valid netdev defined */
1302	if (!rx_ring->netdev || !cleaned_count)
1303		return false;
1304
1305	while (cleaned_count--) {
1306		rx_desc = I40E_RX_DESC(rx_ring, i);
1307		bi = &rx_ring->rx_bi[i];
1308		skb = bi->skb;
1309
1310		if (!skb) {
1311			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1312							  rx_ring->rx_buf_len,
1313							  GFP_ATOMIC |
1314							  __GFP_NOWARN);
1315			if (!skb) {
1316				rx_ring->rx_stats.alloc_buff_failed++;
1317				goto no_buffers;
1318			}
1319			/* initialize queue mapping */
1320			skb_record_rx_queue(skb, rx_ring->queue_index);
1321			bi->skb = skb;
1322		}
1323
1324		if (!bi->dma) {
1325			bi->dma = dma_map_single(rx_ring->dev,
1326						 skb->data,
1327						 rx_ring->rx_buf_len,
1328						 DMA_FROM_DEVICE);
1329			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1330				rx_ring->rx_stats.alloc_buff_failed++;
1331				bi->dma = 0;
1332				dev_kfree_skb(bi->skb);
1333				bi->skb = NULL;
1334				goto no_buffers;
1335			}
 
 
 
 
 
 
1336		}
1337
1338		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1339		rx_desc->read.hdr_addr = 0;
1340		i++;
1341		if (i == rx_ring->count)
1342			i = 0;
1343	}
1344
1345	if (rx_ring->next_to_use != i)
1346		i40e_release_rx_desc(rx_ring, i);
1347
1348	return false;
1349
1350no_buffers:
1351	if (rx_ring->next_to_use != i)
1352		i40e_release_rx_desc(rx_ring, i);
1353
1354	/* make sure to come back via polling to try again after
1355	 * allocation failure
1356	 */
1357	return true;
1358}
1359
1360/**
1361 * i40e_receive_skb - Send a completed packet up the stack
1362 * @rx_ring:  rx ring in play
1363 * @skb: packet to send up
1364 * @vlan_tag: vlan tag for packet
1365 **/
1366static void i40e_receive_skb(struct i40e_ring *rx_ring,
1367			     struct sk_buff *skb, u16 vlan_tag)
1368{
1369	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1370
1371	if (vlan_tag & VLAN_VID_MASK)
1372		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1373
1374	napi_gro_receive(&q_vector->napi, skb);
1375}
1376
1377/**
1378 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1379 * @vsi: the VSI we care about
1380 * @skb: skb currently being received and modified
1381 * @rx_status: status value of last descriptor in packet
1382 * @rx_error: error value of last descriptor in packet
1383 * @rx_ptype: ptype value of last descriptor in packet
1384 **/
1385static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1386				    struct sk_buff *skb,
1387				    u32 rx_status,
1388				    u32 rx_error,
1389				    u16 rx_ptype)
1390{
1391	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1392	bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
 
 
 
 
 
 
 
 
 
 
 
1393
1394	skb->ip_summed = CHECKSUM_NONE;
1395
 
 
1396	/* Rx csum enabled and ip headers found? */
1397	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1398		return;
1399
1400	/* did the hardware decode the packet and checksum? */
1401	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1402		return;
1403
1404	/* both known and outer_ip must be set for the below code to work */
1405	if (!(decoded.known && decoded.outer_ip))
1406		return;
1407
1408	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1409	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1410	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1411	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1412
1413	if (ipv4 &&
1414	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1415			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1416		goto checksum_fail;
1417
1418	/* likely incorrect csum if alternate IP extension headers found */
1419	if (ipv6 &&
1420	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1421		/* don't increment checksum err here, non-fatal err */
1422		return;
1423
1424	/* there was some L4 error, count error and punt packet to the stack */
1425	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1426		goto checksum_fail;
1427
1428	/* handle packets that were not able to be checksummed due
1429	 * to arrival speed, in this case the stack can compute
1430	 * the csum.
1431	 */
1432	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1433		return;
1434
1435	/* The hardware supported by this driver does not validate outer
1436	 * checksums for tunneled VXLAN or GENEVE frames.  I don't agree
1437	 * with it but the specification states that you "MAY validate", it
1438	 * doesn't make it a hard requirement so if we have validated the
1439	 * inner checksum report CHECKSUM_UNNECESSARY.
1440	 */
1441
1442	ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1443		     (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1444	ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1445		     (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1446
1447	skb->ip_summed = CHECKSUM_UNNECESSARY;
1448	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
 
 
 
1449
1450	return;
1451
1452checksum_fail:
1453	vsi->back->hw_csum_rx_error++;
1454}
1455
1456/**
1457 * i40e_ptype_to_htype - get a hash type
1458 * @ptype: the ptype value from the descriptor
1459 *
1460 * Returns a hash type to be used by skb_set_hash
1461 **/
1462static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
1463{
1464	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1465
1466	if (!decoded.known)
1467		return PKT_HASH_TYPE_NONE;
1468
1469	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1470	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1471		return PKT_HASH_TYPE_L4;
1472	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1473		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1474		return PKT_HASH_TYPE_L3;
1475	else
1476		return PKT_HASH_TYPE_L2;
1477}
1478
1479/**
1480 * i40e_rx_hash - set the hash value in the skb
1481 * @ring: descriptor ring
1482 * @rx_desc: specific descriptor
 
 
1483 **/
1484static inline void i40e_rx_hash(struct i40e_ring *ring,
1485				union i40e_rx_desc *rx_desc,
1486				struct sk_buff *skb,
1487				u8 rx_ptype)
1488{
1489	u32 hash;
1490	const __le64 rss_mask  =
1491		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1492			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1493
1494	if (ring->netdev->features & NETIF_F_RXHASH)
1495		return;
1496
1497	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1498		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1499		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1500	}
1501}
1502
1503/**
1504 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1505 * @rx_ring:  rx ring to clean
1506 * @budget:   how many cleans we're allowed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507 *
1508 * Returns true if there's any budget left (e.g. the clean is finished)
 
 
 
1509 **/
1510static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
 
 
1511{
1512	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1513	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1514	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1515	struct i40e_vsi *vsi = rx_ring->vsi;
1516	u16 i = rx_ring->next_to_clean;
1517	union i40e_rx_desc *rx_desc;
1518	u32 rx_error, rx_status;
1519	bool failure = false;
1520	u8 rx_ptype;
1521	u64 qword;
1522	u32 copysize;
1523
1524	if (budget <= 0)
1525		return 0;
 
1526
1527	do {
1528		struct i40e_rx_buffer *rx_bi;
1529		struct sk_buff *skb;
1530		u16 vlan_tag;
1531		/* return some buffers to hardware, one at a time is too slow */
1532		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1533			failure = failure ||
1534				  i40e_alloc_rx_buffers_ps(rx_ring,
1535							   cleaned_count);
1536			cleaned_count = 0;
1537		}
1538
1539		i = rx_ring->next_to_clean;
1540		rx_desc = I40E_RX_DESC(rx_ring, i);
1541		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1542		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1543			I40E_RXD_QW1_STATUS_SHIFT;
 
 
 
 
 
 
 
 
 
 
1544
1545		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1546			break;
 
1547
1548		/* This memory barrier is needed to keep us from reading
1549		 * any other fields out of the rx_desc until we know the
1550		 * DD bit is set.
1551		 */
1552		dma_rmb();
1553		/* sync header buffer for reading */
1554		dma_sync_single_range_for_cpu(rx_ring->dev,
1555					      rx_ring->rx_bi[0].dma,
1556					      i * rx_ring->rx_hdr_len,
1557					      rx_ring->rx_hdr_len,
1558					      DMA_FROM_DEVICE);
1559		if (i40e_rx_is_programming_status(qword)) {
1560			i40e_clean_programming_status(rx_ring, rx_desc);
1561			I40E_RX_INCREMENT(rx_ring, i);
1562			continue;
1563		}
1564		rx_bi = &rx_ring->rx_bi[i];
1565		skb = rx_bi->skb;
1566		if (likely(!skb)) {
1567			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1568							  rx_ring->rx_hdr_len,
1569							  GFP_ATOMIC |
1570							  __GFP_NOWARN);
1571			if (!skb) {
1572				rx_ring->rx_stats.alloc_buff_failed++;
1573				failure = true;
1574				break;
1575			}
1576
1577			/* initialize queue mapping */
1578			skb_record_rx_queue(skb, rx_ring->queue_index);
1579			/* we are reusing so sync this buffer for CPU use */
1580			dma_sync_single_range_for_cpu(rx_ring->dev,
1581						      rx_ring->rx_bi[0].dma,
1582						      i * rx_ring->rx_hdr_len,
1583						      rx_ring->rx_hdr_len,
1584						      DMA_FROM_DEVICE);
1585		}
1586		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1587				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1588		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1589				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1590		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1591			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1592
1593		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1594			   I40E_RXD_QW1_ERROR_SHIFT;
1595		rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1596		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1597
1598		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1599			   I40E_RXD_QW1_PTYPE_SHIFT;
1600		/* sync half-page for reading */
1601		dma_sync_single_range_for_cpu(rx_ring->dev,
1602					      rx_bi->page_dma,
1603					      rx_bi->page_offset,
1604					      PAGE_SIZE / 2,
1605					      DMA_FROM_DEVICE);
1606		prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
1607		rx_bi->skb = NULL;
1608		cleaned_count++;
1609		copysize = 0;
1610		if (rx_hbo || rx_sph) {
1611			int len;
1612
1613			if (rx_hbo)
1614				len = I40E_RX_HDR_SIZE;
1615			else
1616				len = rx_header_len;
1617			memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1618		} else if (skb->len == 0) {
1619			int len;
1620			unsigned char *va = page_address(rx_bi->page) +
1621					    rx_bi->page_offset;
1622
1623			len = min(rx_packet_len, rx_ring->rx_hdr_len);
1624			memcpy(__skb_put(skb, len), va, len);
1625			copysize = len;
1626			rx_packet_len -= len;
1627		}
1628		/* Get the rest of the data if this was a header split */
1629		if (rx_packet_len) {
1630			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1631					rx_bi->page,
1632					rx_bi->page_offset + copysize,
1633					rx_packet_len, I40E_RXBUFFER_2048);
1634
1635			/* If the page count is more than 2, then both halves
1636			 * of the page are used and we need to free it. Do it
1637			 * here instead of in the alloc code. Otherwise one
1638			 * of the half-pages might be released between now and
1639			 * then, and we wouldn't know which one to use.
1640			 * Don't call get_page and free_page since those are
1641			 * both expensive atomic operations that just change
1642			 * the refcount in opposite directions. Just give the
1643			 * page to the stack; he can have our refcount.
1644			 */
1645			if (page_count(rx_bi->page) > 2) {
1646				dma_unmap_page(rx_ring->dev,
1647					       rx_bi->page_dma,
1648					       PAGE_SIZE,
1649					       DMA_FROM_DEVICE);
1650				rx_bi->page = NULL;
1651				rx_bi->page_dma = 0;
1652				rx_ring->rx_stats.realloc_count++;
1653			} else {
1654				get_page(rx_bi->page);
1655				/* switch to the other half-page here; the
1656				 * allocation code programs the right addr
1657				 * into HW. If we haven't used this half-page,
1658				 * the address won't be changed, and HW can
1659				 * just use it next time through.
1660				 */
1661				rx_bi->page_offset ^= PAGE_SIZE / 2;
1662			}
1663
1664		}
1665		I40E_RX_INCREMENT(rx_ring, i);
1666
1667		if (unlikely(
1668		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1669			struct i40e_rx_buffer *next_buffer;
1670
1671			next_buffer = &rx_ring->rx_bi[i];
1672			next_buffer->skb = skb;
1673			rx_ring->rx_stats.non_eop_descs++;
1674			continue;
1675		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1676
1677		/* ERR_MASK will only have valid bits if EOP set */
1678		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1679			dev_kfree_skb_any(skb);
1680			continue;
1681		}
1682
1683		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
 
 
 
 
 
 
1684
1685		if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1686			i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1687					   I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1688					   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1689			rx_ring->last_rx_timestamp = jiffies;
1690		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691
1692		/* probably a little skewed due to removing CRC */
1693		total_rx_bytes += skb->len;
1694		total_rx_packets++;
 
 
 
 
 
 
 
 
 
1695
1696		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1697
1698		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
 
1699
1700		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1701			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1702			 : 0;
1703#ifdef I40E_FCOE
1704		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1705			dev_kfree_skb_any(skb);
1706			continue;
1707		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708#endif
1709		i40e_receive_skb(rx_ring, skb, vlan_tag);
 
 
 
1710
1711		rx_desc->wb.qword1.status_error_len = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712
1713	} while (likely(total_rx_packets < budget));
 
1714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715	u64_stats_update_begin(&rx_ring->syncp);
1716	rx_ring->stats.packets += total_rx_packets;
1717	rx_ring->stats.bytes += total_rx_bytes;
1718	u64_stats_update_end(&rx_ring->syncp);
1719	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1720	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721
1722	return failure ? budget : total_rx_packets;
 
1723}
1724
1725/**
1726 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1727 * @rx_ring:  rx ring to clean
1728 * @budget:   how many cleans we're allowed
 
 
 
 
 
 
 
 
 
 
 
 
 
1729 *
1730 * Returns number of packets cleaned
 
 
 
 
 
1731 **/
1732static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1733{
1734	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1735	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1736	struct i40e_vsi *vsi = rx_ring->vsi;
1737	union i40e_rx_desc *rx_desc;
1738	u32 rx_error, rx_status;
1739	u16 rx_packet_len;
1740	bool failure = false;
1741	u8 rx_ptype;
1742	u64 qword;
1743	u16 i;
 
 
 
 
 
 
 
 
 
 
 
1744
1745	do {
1746		struct i40e_rx_buffer *rx_bi;
1747		struct sk_buff *skb;
1748		u16 vlan_tag;
1749		/* return some buffers to hardware, one at a time is too slow */
1750		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1751			failure = failure ||
1752				  i40e_alloc_rx_buffers_1buf(rx_ring,
1753							     cleaned_count);
1754			cleaned_count = 0;
1755		}
1756
1757		i = rx_ring->next_to_clean;
1758		rx_desc = I40E_RX_DESC(rx_ring, i);
1759		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1760		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1761			I40E_RXD_QW1_STATUS_SHIFT;
1762
1763		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1764			break;
 
 
 
 
1765
1766		/* This memory barrier is needed to keep us from reading
1767		 * any other fields out of the rx_desc until we know the
1768		 * DD bit is set.
1769		 */
1770		dma_rmb();
1771
1772		if (i40e_rx_is_programming_status(qword)) {
1773			i40e_clean_programming_status(rx_ring, rx_desc);
1774			I40E_RX_INCREMENT(rx_ring, i);
 
 
 
 
 
1775			continue;
1776		}
1777		rx_bi = &rx_ring->rx_bi[i];
1778		skb = rx_bi->skb;
1779		prefetch(skb->data);
1780
1781		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1782				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1783
1784		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1785			   I40E_RXD_QW1_ERROR_SHIFT;
1786		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1787
1788		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1789			   I40E_RXD_QW1_PTYPE_SHIFT;
1790		rx_bi->skb = NULL;
1791		cleaned_count++;
1792
1793		/* Get the header and possibly the whole packet
1794		 * If this is an skb from previous receive dma will be 0
1795		 */
1796		skb_put(skb, rx_packet_len);
1797		dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1798				 DMA_FROM_DEVICE);
1799		rx_bi->dma = 0;
1800
1801		I40E_RX_INCREMENT(rx_ring, i);
1802
1803		if (unlikely(
1804		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1805			rx_ring->rx_stats.non_eop_descs++;
1806			continue;
 
 
 
 
 
 
1807		}
1808
1809		/* ERR_MASK will only have valid bits if EOP set */
1810		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1811			dev_kfree_skb_any(skb);
1812			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813		}
1814
1815		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1816		if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1817			i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1818					   I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1819					   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1820			rx_ring->last_rx_timestamp = jiffies;
 
 
 
 
1821		}
1822
1823		/* probably a little skewed due to removing CRC */
1824		total_rx_bytes += skb->len;
1825		total_rx_packets++;
1826
1827		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 
1828
1829		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
 
 
1830
1831		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1832			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1833			 : 0;
1834#ifdef I40E_FCOE
1835		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1836			dev_kfree_skb_any(skb);
1837			continue;
1838		}
1839#endif
1840		i40e_receive_skb(rx_ring, skb, vlan_tag);
1841
1842		rx_desc->wb.qword1.status_error_len = 0;
1843	} while (likely(total_rx_packets < budget));
1844
1845	u64_stats_update_begin(&rx_ring->syncp);
1846	rx_ring->stats.packets += total_rx_packets;
1847	rx_ring->stats.bytes += total_rx_bytes;
1848	u64_stats_update_end(&rx_ring->syncp);
1849	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1850	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1851
1852	return failure ? budget : total_rx_packets;
 
1853}
1854
1855static u32 i40e_buildreg_itr(const int type, const u16 itr)
1856{
1857	u32 val;
1858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1860	      /* Don't clear PBA because that can cause lost interrupts that
1861	       * came in while we were cleaning/polling
1862	       */
1863	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1864	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1865
1866	return val;
1867}
1868
1869/* a small macro to shorten up some long lines */
1870#define INTREG I40E_PFINT_DYN_CTLN
1871
 
 
 
 
 
 
 
 
 
1872/**
1873 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1874 * @vsi: the VSI we care about
1875 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1876 *
1877 **/
1878static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1879					  struct i40e_q_vector *q_vector)
1880{
1881	struct i40e_hw *hw = &vsi->back->hw;
1882	bool rx = false, tx = false;
1883	u32 rxval, txval;
1884	int vector;
1885	int idx = q_vector->v_idx;
1886
1887	vector = (q_vector->v_idx + vsi->base_vector);
1888
1889	/* avoid dynamic calculation if in countdown mode OR if
1890	 * all dynamic is disabled
1891	 */
1892	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1893
1894	if (q_vector->itr_countdown > 0 ||
1895	    (!ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting) &&
1896	     !ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting))) {
1897		goto enable_int;
1898	}
1899
1900	if (ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting)) {
1901		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1902		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1903	}
1904
1905	if (ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting)) {
1906		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1907		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1908	}
1909
1910	if (rx || tx) {
1911		/* get the higher of the two ITR adjustments and
1912		 * use the same value for both ITR registers
1913		 * when in adaptive mode (Rx and/or Tx)
1914		 */
1915		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1916
1917		q_vector->tx.itr = q_vector->rx.itr = itr;
1918		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1919		tx = true;
1920		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1921		rx = true;
1922	}
1923
1924	/* only need to enable the interrupt once, but need
1925	 * to possibly update both ITR values
1926	 */
1927	if (rx) {
1928		/* set the INTENA_MSK_MASK so that this first write
1929		 * won't actually enable the interrupt, instead just
1930		 * updating the ITR (it's bit 31 PF and VF)
1931		 */
1932		rxval |= BIT(31);
1933		/* don't check _DOWN because interrupt isn't being enabled */
1934		wr32(hw, INTREG(vector - 1), rxval);
 
 
 
 
 
 
 
 
 
 
 
 
1935	}
1936
1937enable_int:
1938	if (!test_bit(__I40E_DOWN, &vsi->state))
1939		wr32(hw, INTREG(vector - 1), txval);
1940
1941	if (q_vector->itr_countdown)
1942		q_vector->itr_countdown--;
1943	else
1944		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1945}
1946
1947/**
1948 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1949 * @napi: napi struct with our devices info in it
1950 * @budget: amount of work driver is allowed to do this pass, in packets
1951 *
1952 * This function will clean all queues associated with a q_vector.
1953 *
1954 * Returns the amount of work done
1955 **/
1956int i40e_napi_poll(struct napi_struct *napi, int budget)
1957{
1958	struct i40e_q_vector *q_vector =
1959			       container_of(napi, struct i40e_q_vector, napi);
1960	struct i40e_vsi *vsi = q_vector->vsi;
1961	struct i40e_ring *ring;
1962	bool clean_complete = true;
1963	bool arm_wb = false;
1964	int budget_per_ring;
1965	int work_done = 0;
1966
1967	if (test_bit(__I40E_DOWN, &vsi->state)) {
1968		napi_complete(napi);
1969		return 0;
1970	}
1971
1972	/* Clear hung_detected bit */
1973	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1974	/* Since the actual Tx work is minimal, we can give the Tx a larger
1975	 * budget and be more aggressive about cleaning up the Tx descriptors.
1976	 */
1977	i40e_for_each_ring(ring, q_vector->tx) {
1978		clean_complete = clean_complete &&
1979				 i40e_clean_tx_irq(ring, vsi->work_limit);
1980		arm_wb = arm_wb || ring->arm_wb;
 
 
 
 
 
 
1981		ring->arm_wb = false;
1982	}
1983
1984	/* Handle case where we are called by netpoll with a budget of 0 */
1985	if (budget <= 0)
1986		goto tx_only;
1987
1988	/* We attempt to distribute budget to each Rx queue fairly, but don't
1989	 * allow the budget to go below 1 because that would exit polling early.
1990	 */
1991	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
 
 
 
 
 
 
1992
1993	i40e_for_each_ring(ring, q_vector->rx) {
1994		int cleaned;
1995
1996		if (ring_is_ps_enabled(ring))
1997			cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1998		else
1999			cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
2000
2001		work_done += cleaned;
2002		/* if we didn't clean as many as budgeted, we must be done */
2003		clean_complete = clean_complete && (budget_per_ring > cleaned);
 
2004	}
2005
2006	/* If work not completed, return budget and polling will return */
2007	if (!clean_complete) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008tx_only:
2009		if (arm_wb) {
2010			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2011			i40e_enable_wb_on_itr(vsi, q_vector);
2012		}
2013		return budget;
2014	}
2015
2016	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2017		q_vector->arm_wb_state = false;
2018
2019	/* Work is done so exit the polling mode and re-enable the interrupt */
2020	napi_complete_done(napi, work_done);
2021	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 
2022		i40e_update_enable_itr(vsi, q_vector);
2023	} else { /* Legacy mode */
2024		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2025	}
2026	return 0;
2027}
2028
2029/**
2030 * i40e_atr - Add a Flow Director ATR filter
2031 * @tx_ring:  ring to add programming descriptor to
2032 * @skb:      send buffer
2033 * @tx_flags: send tx flags
2034 **/
2035static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2036		     u32 tx_flags)
2037{
2038	struct i40e_filter_program_desc *fdir_desc;
2039	struct i40e_pf *pf = tx_ring->vsi->back;
2040	union {
2041		unsigned char *network;
2042		struct iphdr *ipv4;
2043		struct ipv6hdr *ipv6;
2044	} hdr;
2045	struct tcphdr *th;
2046	unsigned int hlen;
2047	u32 flex_ptype, dtype_cmd;
2048	int l4_proto;
2049	u16 i;
2050
2051	/* make sure ATR is enabled */
2052	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2053		return;
2054
2055	if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2056		return;
2057
2058	/* if sampling is disabled do nothing */
2059	if (!tx_ring->atr_sample_rate)
2060		return;
2061
2062	/* Currently only IPv4/IPv6 with TCP is supported */
2063	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2064		return;
2065
2066	/* snag network header to get L4 type and address */
2067	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2068		      skb_inner_network_header(skb) : skb_network_header(skb);
2069
2070	/* Note: tx_flags gets modified to reflect inner protocols in
2071	 * tx_enable_csum function if encap is enabled.
2072	 */
2073	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2074		/* access ihl as u8 to avoid unaligned access on ia64 */
2075		hlen = (hdr.network[0] & 0x0F) << 2;
2076		l4_proto = hdr.ipv4->protocol;
2077	} else {
2078		hlen = hdr.network - skb->data;
2079		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2080		hlen -= hdr.network - skb->data;
 
 
 
 
 
 
2081	}
2082
2083	if (l4_proto != IPPROTO_TCP)
2084		return;
2085
2086	th = (struct tcphdr *)(hdr.network + hlen);
2087
2088	/* Due to lack of space, no more new filters can be programmed */
2089	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2090		return;
2091	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2092	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2093		/* HW ATR eviction will take care of removing filters on FIN
2094		 * and RST packets.
2095		 */
2096		if (th->fin || th->rst)
2097			return;
2098	}
2099
2100	tx_ring->atr_count++;
2101
2102	/* sample on all syn/fin/rst packets or once every atr sample rate */
2103	if (!th->fin &&
2104	    !th->syn &&
2105	    !th->rst &&
2106	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2107		return;
2108
2109	tx_ring->atr_count = 0;
2110
2111	/* grab the next descriptor */
2112	i = tx_ring->next_to_use;
2113	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2114
2115	i++;
2116	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2117
2118	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2119		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2120	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2121		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2122		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2123		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2124		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2125
2126	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2127
2128	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2129
2130	dtype_cmd |= (th->fin || th->rst) ?
2131		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2132		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2133		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2134		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2135
2136	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2137		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2138
2139	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2140		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2141
2142	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2143	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2144		dtype_cmd |=
2145			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2146			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2147			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2148	else
2149		dtype_cmd |=
2150			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2151			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2152			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2153
2154	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2155	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2156		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2157
2158	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2159	fdir_desc->rsvd = cpu_to_le32(0);
2160	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2161	fdir_desc->fd_id = cpu_to_le32(0);
2162}
2163
2164/**
2165 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2166 * @skb:     send buffer
2167 * @tx_ring: ring to send buffer on
2168 * @flags:   the tx flags to be set
2169 *
2170 * Checks the skb and set up correspondingly several generic transmit flags
2171 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2172 *
2173 * Returns error code indicate the frame should be dropped upon error and the
2174 * otherwise  returns 0 to indicate the flags has been set properly.
2175 **/
2176#ifdef I40E_FCOE
2177inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2178				      struct i40e_ring *tx_ring,
2179				      u32 *flags)
2180#else
2181static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2182					     struct i40e_ring *tx_ring,
2183					     u32 *flags)
2184#endif
2185{
2186	__be16 protocol = skb->protocol;
2187	u32  tx_flags = 0;
2188
2189	if (protocol == htons(ETH_P_8021Q) &&
2190	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2191		/* When HW VLAN acceleration is turned off by the user the
2192		 * stack sets the protocol to 8021q so that the driver
2193		 * can take any steps required to support the SW only
2194		 * VLAN handling.  In our case the driver doesn't need
2195		 * to take any further steps so just set the protocol
2196		 * to the encapsulated ethertype.
2197		 */
2198		skb->protocol = vlan_get_protocol(skb);
2199		goto out;
2200	}
2201
2202	/* if we have a HW VLAN tag being added, default to the HW one */
2203	if (skb_vlan_tag_present(skb)) {
2204		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2205		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2206	/* else if it is a SW VLAN, check the next protocol and store the tag */
2207	} else if (protocol == htons(ETH_P_8021Q)) {
2208		struct vlan_hdr *vhdr, _vhdr;
2209
2210		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2211		if (!vhdr)
2212			return -EINVAL;
2213
2214		protocol = vhdr->h_vlan_encapsulated_proto;
2215		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2216		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2217	}
2218
2219	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2220		goto out;
2221
2222	/* Insert 802.1p priority into VLAN header */
2223	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2224	    (skb->priority != TC_PRIO_CONTROL)) {
2225		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2226		tx_flags |= (skb->priority & 0x7) <<
2227				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2228		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2229			struct vlan_ethhdr *vhdr;
2230			int rc;
2231
2232			rc = skb_cow_head(skb, 0);
2233			if (rc < 0)
2234				return rc;
2235			vhdr = (struct vlan_ethhdr *)skb->data;
2236			vhdr->h_vlan_TCI = htons(tx_flags >>
2237						 I40E_TX_FLAGS_VLAN_SHIFT);
2238		} else {
2239			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2240		}
2241	}
2242
2243out:
2244	*flags = tx_flags;
2245	return 0;
2246}
2247
2248/**
2249 * i40e_tso - set up the tso context descriptor
2250 * @tx_ring:  ptr to the ring to send
2251 * @skb:      ptr to the skb we're sending
2252 * @hdr_len:  ptr to the size of the packet header
2253 * @cd_type_cmd_tso_mss: Quad Word 1
2254 *
2255 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2256 **/
2257static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2258		    u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2259{
 
2260	u64 cd_cmd, cd_tso_len, cd_mss;
2261	union {
2262		struct iphdr *v4;
2263		struct ipv6hdr *v6;
2264		unsigned char *hdr;
2265	} ip;
2266	union {
2267		struct tcphdr *tcp;
2268		struct udphdr *udp;
2269		unsigned char *hdr;
2270	} l4;
2271	u32 paylen, l4_offset;
 
2272	int err;
2273
2274	if (skb->ip_summed != CHECKSUM_PARTIAL)
2275		return 0;
2276
2277	if (!skb_is_gso(skb))
2278		return 0;
2279
2280	err = skb_cow_head(skb, 0);
2281	if (err < 0)
2282		return err;
2283
2284	ip.hdr = skb_network_header(skb);
2285	l4.hdr = skb_transport_header(skb);
2286
2287	/* initialize outer IP header fields */
2288	if (ip.v4->version == 4) {
2289		ip.v4->tot_len = 0;
2290		ip.v4->check = 0;
2291	} else {
2292		ip.v6->payload_len = 0;
2293	}
2294
2295	if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE |
 
 
 
 
2296					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2297		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
 
 
 
2298			/* determine offset of outer transport header */
2299			l4_offset = l4.hdr - skb->data;
2300
2301			/* remove payload length from outer checksum */
2302			paylen = (__force u16)l4.udp->check;
2303			paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
2304			l4.udp->check = ~csum_fold((__force __wsum)paylen);
2305		}
2306
2307		/* reset pointers to inner headers */
2308		ip.hdr = skb_inner_network_header(skb);
2309		l4.hdr = skb_inner_transport_header(skb);
2310
2311		/* initialize inner IP header fields */
2312		if (ip.v4->version == 4) {
2313			ip.v4->tot_len = 0;
2314			ip.v4->check = 0;
2315		} else {
2316			ip.v6->payload_len = 0;
2317		}
2318	}
2319
2320	/* determine offset of inner transport header */
2321	l4_offset = l4.hdr - skb->data;
2322
2323	/* remove payload length from inner checksum */
2324	paylen = (__force u16)l4.tcp->check;
2325	paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
2326	l4.tcp->check = ~csum_fold((__force __wsum)paylen);
 
 
 
 
 
 
 
 
 
 
 
 
2327
2328	/* compute length of segmentation header */
2329	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 
2330
2331	/* find the field values */
2332	cd_cmd = I40E_TX_CTX_DESC_TSO;
2333	cd_tso_len = skb->len - *hdr_len;
2334	cd_mss = skb_shinfo(skb)->gso_size;
2335	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2336				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2337				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2338	return 1;
2339}
2340
2341/**
2342 * i40e_tsyn - set up the tsyn context descriptor
2343 * @tx_ring:  ptr to the ring to send
2344 * @skb:      ptr to the skb we're sending
2345 * @tx_flags: the collected send information
2346 * @cd_type_cmd_tso_mss: Quad Word 1
2347 *
2348 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2349 **/
2350static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2351		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2352{
2353	struct i40e_pf *pf;
2354
2355	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2356		return 0;
2357
2358	/* Tx timestamps cannot be sampled when doing TSO */
2359	if (tx_flags & I40E_TX_FLAGS_TSO)
2360		return 0;
2361
2362	/* only timestamp the outbound packet if the user has requested it and
2363	 * we are not already transmitting a packet to be timestamped
2364	 */
2365	pf = i40e_netdev_to_pf(tx_ring->netdev);
2366	if (!(pf->flags & I40E_FLAG_PTP))
2367		return 0;
2368
2369	if (pf->ptp_tx &&
2370	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2371		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
2372		pf->ptp_tx_skb = skb_get(skb);
2373	} else {
 
2374		return 0;
2375	}
2376
2377	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2378				I40E_TXD_CTX_QW1_CMD_SHIFT;
2379
2380	return 1;
2381}
2382
2383/**
2384 * i40e_tx_enable_csum - Enable Tx checksum offloads
2385 * @skb: send buffer
2386 * @tx_flags: pointer to Tx flags currently set
2387 * @td_cmd: Tx descriptor command bits to set
2388 * @td_offset: Tx descriptor header offsets to set
2389 * @tx_ring: Tx descriptor ring
2390 * @cd_tunneling: ptr to context desc bits
2391 **/
2392static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2393			       u32 *td_cmd, u32 *td_offset,
2394			       struct i40e_ring *tx_ring,
2395			       u32 *cd_tunneling)
2396{
2397	union {
2398		struct iphdr *v4;
2399		struct ipv6hdr *v6;
2400		unsigned char *hdr;
2401	} ip;
2402	union {
2403		struct tcphdr *tcp;
2404		struct udphdr *udp;
2405		unsigned char *hdr;
2406	} l4;
2407	unsigned char *exthdr;
2408	u32 offset, cmd = 0, tunnel = 0;
2409	__be16 frag_off;
2410	u8 l4_proto = 0;
2411
2412	if (skb->ip_summed != CHECKSUM_PARTIAL)
2413		return 0;
2414
2415	ip.hdr = skb_network_header(skb);
2416	l4.hdr = skb_transport_header(skb);
2417
2418	/* compute outer L2 header size */
2419	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2420
2421	if (skb->encapsulation) {
 
2422		/* define outer network header type */
2423		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2424			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2425				  I40E_TX_CTX_EXT_IP_IPV4 :
2426				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2427
2428			l4_proto = ip.v4->protocol;
2429		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
 
 
2430			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2431
2432			exthdr = ip.hdr + sizeof(*ip.v6);
2433			l4_proto = ip.v6->nexthdr;
2434			if (l4.hdr != exthdr)
2435				ipv6_skip_exthdr(skb, exthdr - skb->data,
2436						 &l4_proto, &frag_off);
 
2437		}
2438
2439		/* compute outer L3 header size */
2440		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2441			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2442
2443		/* switch IP header pointer from outer to inner header */
2444		ip.hdr = skb_inner_network_header(skb);
2445
2446		/* define outer transport */
2447		switch (l4_proto) {
2448		case IPPROTO_UDP:
2449			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2450			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2451			break;
2452		case IPPROTO_GRE:
2453			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2454			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2455			break;
 
 
 
 
 
2456		default:
2457			if (*tx_flags & I40E_TX_FLAGS_TSO)
2458				return -1;
2459
2460			skb_checksum_help(skb);
2461			return 0;
2462		}
2463
 
 
 
 
 
 
 
2464		/* compute tunnel header size */
2465		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2466			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2467
2468		/* indicate if we need to offload outer UDP header */
2469		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
 
2470		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2471			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2472
2473		/* record tunnel offload values */
2474		*cd_tunneling |= tunnel;
2475
2476		/* switch L4 header pointer from outer to inner */
2477		l4.hdr = skb_inner_transport_header(skb);
2478		l4_proto = 0;
2479
2480		/* reset type as we transition from outer to inner headers */
2481		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2482		if (ip.v4->version == 4)
2483			*tx_flags |= I40E_TX_FLAGS_IPV4;
2484		if (ip.v6->version == 6)
2485			*tx_flags |= I40E_TX_FLAGS_IPV6;
2486	}
2487
2488	/* Enable IP checksum offloads */
2489	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2490		l4_proto = ip.v4->protocol;
2491		/* the stack computes the IP header already, the only time we
2492		 * need the hardware to recompute it is in the case of TSO.
2493		 */
2494		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2495		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2496		       I40E_TX_DESC_CMD_IIPT_IPV4;
2497	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2498		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2499
2500		exthdr = ip.hdr + sizeof(*ip.v6);
2501		l4_proto = ip.v6->nexthdr;
2502		if (l4.hdr != exthdr)
2503			ipv6_skip_exthdr(skb, exthdr - skb->data,
2504					 &l4_proto, &frag_off);
2505	}
2506
2507	/* compute inner L3 header size */
2508	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2509
2510	/* Enable L4 checksum offloads */
2511	switch (l4_proto) {
2512	case IPPROTO_TCP:
2513		/* enable checksum offloads */
2514		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2515		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2516		break;
2517	case IPPROTO_SCTP:
2518		/* enable SCTP checksum offload */
2519		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2520		offset |= (sizeof(struct sctphdr) >> 2) <<
2521			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2522		break;
2523	case IPPROTO_UDP:
2524		/* enable UDP checksum offload */
2525		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2526		offset |= (sizeof(struct udphdr) >> 2) <<
2527			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2528		break;
2529	default:
2530		if (*tx_flags & I40E_TX_FLAGS_TSO)
2531			return -1;
2532		skb_checksum_help(skb);
2533		return 0;
2534	}
2535
2536	*td_cmd |= cmd;
2537	*td_offset |= offset;
2538
2539	return 1;
2540}
2541
2542/**
2543 * i40e_create_tx_ctx Build the Tx context descriptor
2544 * @tx_ring:  ring to create the descriptor on
2545 * @cd_type_cmd_tso_mss: Quad Word 1
2546 * @cd_tunneling: Quad Word 0 - bits 0-31
2547 * @cd_l2tag2: Quad Word 0 - bits 32-63
2548 **/
2549static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2550			       const u64 cd_type_cmd_tso_mss,
2551			       const u32 cd_tunneling, const u32 cd_l2tag2)
2552{
2553	struct i40e_tx_context_desc *context_desc;
2554	int i = tx_ring->next_to_use;
2555
2556	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2557	    !cd_tunneling && !cd_l2tag2)
2558		return;
2559
2560	/* grab the next descriptor */
2561	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2562
2563	i++;
2564	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2565
2566	/* cpu_to_le32 and assign to struct fields */
2567	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2568	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2569	context_desc->rsvd = cpu_to_le16(0);
2570	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2571}
2572
2573/**
2574 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2575 * @tx_ring: the ring to be checked
2576 * @size:    the size buffer we want to assure is available
2577 *
2578 * Returns -EBUSY if a stop is needed, else 0
2579 **/
2580int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2581{
2582	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2583	/* Memory barrier before checking head and tail */
2584	smp_mb();
2585
2586	/* Check again in a case another CPU has just made room available. */
2587	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2588		return -EBUSY;
2589
2590	/* A reprieve! - use start_queue because it doesn't call schedule */
2591	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2592	++tx_ring->tx_stats.restart_queue;
2593	return 0;
2594}
2595
2596/**
2597 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2598 * @skb:      send buffer
2599 *
2600 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2601 * and so we need to figure out the cases where we need to linearize the skb.
2602 *
2603 * For TSO we need to count the TSO header and segment payload separately.
2604 * As such we need to check cases where we have 7 fragments or more as we
2605 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2606 * the segment payload in the first descriptor, and another 7 for the
2607 * fragments.
2608 **/
2609bool __i40e_chk_linearize(struct sk_buff *skb)
2610{
2611	const struct skb_frag_struct *frag, *stale;
2612	int nr_frags, sum;
2613
2614	/* no need to check if number of frags is less than 7 */
2615	nr_frags = skb_shinfo(skb)->nr_frags;
2616	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2617		return false;
2618
2619	/* We need to walk through the list and validate that each group
2620	 * of 6 fragments totals at least gso_size.  However we don't need
2621	 * to perform such validation on the last 6 since the last 6 cannot
2622	 * inherit any data from a descriptor after them.
2623	 */
2624	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2625	frag = &skb_shinfo(skb)->frags[0];
2626
2627	/* Initialize size to the negative value of gso_size minus 1.  We
2628	 * use this as the worst case scenerio in which the frag ahead
2629	 * of us only provides one byte which is why we are limited to 6
2630	 * descriptors for a single transmit as the header and previous
2631	 * fragment are already consuming 2 descriptors.
2632	 */
2633	sum = 1 - skb_shinfo(skb)->gso_size;
2634
2635	/* Add size of frags 0 through 4 to create our initial sum */
2636	sum += skb_frag_size(frag++);
2637	sum += skb_frag_size(frag++);
2638	sum += skb_frag_size(frag++);
2639	sum += skb_frag_size(frag++);
2640	sum += skb_frag_size(frag++);
2641
2642	/* Walk through fragments adding latest fragment, testing it, and
2643	 * then removing stale fragments from the sum.
2644	 */
2645	stale = &skb_shinfo(skb)->frags[0];
2646	for (;;) {
 
2647		sum += skb_frag_size(frag++);
2648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649		/* if sum is negative we failed to make sufficient progress */
2650		if (sum < 0)
2651			return true;
2652
2653		/* use pre-decrement to avoid processing last fragment */
2654		if (!--nr_frags)
2655			break;
2656
2657		sum -= skb_frag_size(stale++);
2658	}
2659
2660	return false;
2661}
2662
2663/**
2664 * i40e_tx_map - Build the Tx descriptor
2665 * @tx_ring:  ring to send buffer on
2666 * @skb:      send buffer
2667 * @first:    first buffer info buffer to use
2668 * @tx_flags: collected send information
2669 * @hdr_len:  size of the packet header
2670 * @td_cmd:   the command field in the descriptor
2671 * @td_offset: offset for checksum or crc
 
 
2672 **/
2673#ifdef I40E_FCOE
2674inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2675			struct i40e_tx_buffer *first, u32 tx_flags,
2676			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2677#else
2678static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2679			       struct i40e_tx_buffer *first, u32 tx_flags,
2680			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2681#endif
2682{
2683	unsigned int data_len = skb->data_len;
2684	unsigned int size = skb_headlen(skb);
2685	struct skb_frag_struct *frag;
2686	struct i40e_tx_buffer *tx_bi;
2687	struct i40e_tx_desc *tx_desc;
2688	u16 i = tx_ring->next_to_use;
2689	u32 td_tag = 0;
2690	dma_addr_t dma;
2691	u16 gso_segs;
2692	u16 desc_count = 0;
2693	bool tail_bump = true;
2694	bool do_rs = false;
2695
2696	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2697		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2698		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2699			 I40E_TX_FLAGS_VLAN_SHIFT;
2700	}
2701
2702	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2703		gso_segs = skb_shinfo(skb)->gso_segs;
2704	else
2705		gso_segs = 1;
2706
2707	/* multiply data chunks by size of headers */
2708	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2709	first->gso_segs = gso_segs;
2710	first->skb = skb;
2711	first->tx_flags = tx_flags;
2712
2713	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2714
2715	tx_desc = I40E_TX_DESC(tx_ring, i);
2716	tx_bi = first;
2717
2718	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 
 
2719		if (dma_mapping_error(tx_ring->dev, dma))
2720			goto dma_error;
2721
2722		/* record length, and DMA address */
2723		dma_unmap_len_set(tx_bi, len, size);
2724		dma_unmap_addr_set(tx_bi, dma, dma);
2725
 
 
2726		tx_desc->buffer_addr = cpu_to_le64(dma);
2727
2728		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2729			tx_desc->cmd_type_offset_bsz =
2730				build_ctob(td_cmd, td_offset,
2731					   I40E_MAX_DATA_PER_TXD, td_tag);
2732
2733			tx_desc++;
2734			i++;
2735			desc_count++;
2736
2737			if (i == tx_ring->count) {
2738				tx_desc = I40E_TX_DESC(tx_ring, 0);
2739				i = 0;
2740			}
2741
2742			dma += I40E_MAX_DATA_PER_TXD;
2743			size -= I40E_MAX_DATA_PER_TXD;
2744
 
2745			tx_desc->buffer_addr = cpu_to_le64(dma);
2746		}
2747
2748		if (likely(!data_len))
2749			break;
2750
2751		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2752							  size, td_tag);
2753
2754		tx_desc++;
2755		i++;
2756		desc_count++;
2757
2758		if (i == tx_ring->count) {
2759			tx_desc = I40E_TX_DESC(tx_ring, 0);
2760			i = 0;
2761		}
2762
2763		size = skb_frag_size(frag);
2764		data_len -= size;
2765
2766		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2767				       DMA_TO_DEVICE);
2768
2769		tx_bi = &tx_ring->tx_bi[i];
2770	}
2771
2772	/* set next_to_watch value indicating a packet is present */
2773	first->next_to_watch = tx_desc;
2774
2775	i++;
2776	if (i == tx_ring->count)
2777		i = 0;
2778
2779	tx_ring->next_to_use = i;
2780
2781	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2782						 tx_ring->queue_index),
2783						 first->bytecount);
2784	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2785
2786	/* Algorithm to optimize tail and RS bit setting:
2787	 * if xmit_more is supported
2788	 *	if xmit_more is true
2789	 *		do not update tail and do not mark RS bit.
2790	 *	if xmit_more is false and last xmit_more was false
2791	 *		if every packet spanned less than 4 desc
2792	 *			then set RS bit on 4th packet and update tail
2793	 *			on every packet
2794	 *		else
2795	 *			update tail and set RS bit on every packet.
2796	 *	if xmit_more is false and last_xmit_more was true
2797	 *		update tail and set RS bit.
2798	 *
2799	 * Optimization: wmb to be issued only in case of tail update.
2800	 * Also optimize the Descriptor WB path for RS bit with the same
2801	 * algorithm.
2802	 *
2803	 * Note: If there are less than 4 packets
2804	 * pending and interrupts were disabled the service task will
2805	 * trigger a force WB.
2806	 */
2807	if (skb->xmit_more  &&
2808	    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2809						    tx_ring->queue_index))) {
2810		tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2811		tail_bump = false;
2812	} else if (!skb->xmit_more &&
2813		   !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2814						       tx_ring->queue_index)) &&
2815		   (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2816		   (tx_ring->packet_stride < WB_STRIDE) &&
2817		   (desc_count < WB_STRIDE)) {
2818		tx_ring->packet_stride++;
2819	} else {
2820		tx_ring->packet_stride = 0;
2821		tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2822		do_rs = true;
2823	}
2824	if (do_rs)
2825		tx_ring->packet_stride = 0;
2826
2827	tx_desc->cmd_type_offset_bsz =
2828			build_ctob(td_cmd, td_offset, size, td_tag) |
2829			cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2830						  I40E_TX_DESC_CMD_EOP) <<
2831						  I40E_TXD_QW1_CMD_SHIFT);
2832
2833	/* notify HW of packet */
2834	if (!tail_bump)
2835		prefetchw(tx_desc + 1);
2836
2837	if (tail_bump) {
2838		/* Force memory writes to complete before letting h/w
2839		 * know there are new descriptors to fetch.  (Only
2840		 * applicable for weak-ordered memory model archs,
2841		 * such as IA-64).
2842		 */
2843		wmb();
 
 
 
 
 
 
2844		writel(i, tx_ring->tail);
2845	}
2846
2847	return;
2848
2849dma_error:
2850	dev_info(tx_ring->dev, "TX DMA map failed\n");
2851
2852	/* clear dma mappings for failed tx_bi map */
2853	for (;;) {
2854		tx_bi = &tx_ring->tx_bi[i];
2855		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2856		if (tx_bi == first)
2857			break;
2858		if (i == 0)
2859			i = tx_ring->count;
2860		i--;
2861	}
2862
2863	tx_ring->next_to_use = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864}
2865
2866/**
2867 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2868 * @skb:     send buffer
2869 * @tx_ring: ring to send buffer on
2870 *
2871 * Returns NETDEV_TX_OK if sent, else an error code
2872 **/
2873static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2874					struct i40e_ring *tx_ring)
2875{
2876	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2877	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2878	struct i40e_tx_buffer *first;
2879	u32 td_offset = 0;
2880	u32 tx_flags = 0;
2881	__be16 protocol;
2882	u32 td_cmd = 0;
2883	u8 hdr_len = 0;
2884	int tso, count;
2885	int tsyn;
2886
2887	/* prefetch the data, we'll need it later */
2888	prefetch(skb->data);
2889
 
 
2890	count = i40e_xmit_descriptor_count(skb);
2891	if (i40e_chk_linearize(skb, count)) {
2892		if (__skb_linearize(skb))
2893			goto out_drop;
2894		count = TXD_USE_COUNT(skb->len);
 
 
2895		tx_ring->tx_stats.tx_linearize++;
2896	}
2897
2898	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2899	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2900	 *       + 4 desc gap to avoid the cache line where head is,
2901	 *       + 1 desc for context descriptor,
2902	 * otherwise try next time
2903	 */
2904	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2905		tx_ring->tx_stats.tx_busy++;
2906		return NETDEV_TX_BUSY;
2907	}
2908
 
 
 
 
 
 
2909	/* prepare the xmit flags */
2910	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2911		goto out_drop;
2912
2913	/* obtain protocol of skb */
2914	protocol = vlan_get_protocol(skb);
2915
2916	/* record the location of the first descriptor for this packet */
2917	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2918
2919	/* setup IPv4/IPv6 offloads */
2920	if (protocol == htons(ETH_P_IP))
2921		tx_flags |= I40E_TX_FLAGS_IPV4;
2922	else if (protocol == htons(ETH_P_IPV6))
2923		tx_flags |= I40E_TX_FLAGS_IPV6;
2924
2925	tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2926
2927	if (tso < 0)
2928		goto out_drop;
2929	else if (tso)
2930		tx_flags |= I40E_TX_FLAGS_TSO;
2931
2932	/* Always offload the checksum, since it's in the data descriptor */
2933	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2934				  tx_ring, &cd_tunneling);
2935	if (tso < 0)
2936		goto out_drop;
2937
2938	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2939
2940	if (tsyn)
2941		tx_flags |= I40E_TX_FLAGS_TSYN;
2942
2943	skb_tx_timestamp(skb);
2944
2945	/* always enable CRC insertion offload */
2946	td_cmd |= I40E_TX_DESC_CMD_ICRC;
2947
2948	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2949			   cd_tunneling, cd_l2tag2);
2950
2951	/* Add Flow Director ATR if it's enabled.
2952	 *
2953	 * NOTE: this must always be directly before the data descriptor.
2954	 */
2955	i40e_atr(tx_ring, skb, tx_flags);
2956
2957	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2958		    td_cmd, td_offset);
 
2959
2960	return NETDEV_TX_OK;
2961
2962out_drop:
2963	dev_kfree_skb_any(skb);
 
 
 
 
 
 
 
 
 
 
 
2964	return NETDEV_TX_OK;
2965}
2966
2967/**
2968 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2969 * @skb:    send buffer
2970 * @netdev: network interface device structure
2971 *
2972 * Returns NETDEV_TX_OK if sent, else an error code
2973 **/
2974netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2975{
2976	struct i40e_netdev_priv *np = netdev_priv(netdev);
2977	struct i40e_vsi *vsi = np->vsi;
2978	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2979
2980	/* hardware can't handle really short frames, hardware padding works
2981	 * beyond this point
2982	 */
2983	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2984		return NETDEV_TX_OK;
2985
2986	return i40e_xmit_frame_ring(skb, tx_ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2987}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/prefetch.h>
   5#include <linux/bpf_trace.h>
   6#include <net/xdp.h>
   7#include "i40e.h"
   8#include "i40e_trace.h"
   9#include "i40e_prototype.h"
  10#include "i40e_txrx_common.h"
  11#include "i40e_xsk.h"
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22		      struct i40e_fdir_filter *fdata, bool add)
  23{
  24	struct i40e_filter_program_desc *fdir_desc;
  25	struct i40e_pf *pf = tx_ring->vsi->back;
  26	u32 flex_ptype, dtype_cmd;
  27	u16 i;
  28
  29	/* grab the next descriptor */
  30	i = tx_ring->next_to_use;
  31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33	i++;
  34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  37		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  38
  39	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  40		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  41
  42	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  43		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  44
  45	/* Use LAN VSI Id if not programmed by user */
  46	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  47		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  48		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  49
  50	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  51
  52	dtype_cmd |= add ?
  53		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  54		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  55		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  56		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  57
  58	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  59		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  60
  61	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  62		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  63
  64	if (fdata->cnt_index) {
  65		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  66		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  67			     ((u32)fdata->cnt_index <<
  68			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  69	}
  70
  71	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  72	fdir_desc->rsvd = cpu_to_le32(0);
  73	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  74	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  75}
  76
 
  77#define I40E_FD_CLEAN_DELAY 10
  78/**
  79 * i40e_program_fdir_filter - Program a Flow Director filter
  80 * @fdir_data: Packet data that will be filter parameters
  81 * @raw_packet: the pre-allocated packet buffer for FDir
  82 * @pf: The PF pointer
  83 * @add: True for add/update, False for remove
  84 **/
  85static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  86				    u8 *raw_packet, struct i40e_pf *pf,
  87				    bool add)
  88{
 
  89	struct i40e_tx_buffer *tx_buf, *first;
  90	struct i40e_tx_desc *tx_desc;
  91	struct i40e_ring *tx_ring;
 
  92	struct i40e_vsi *vsi;
  93	struct device *dev;
  94	dma_addr_t dma;
  95	u32 td_cmd = 0;
 
  96	u16 i;
  97
  98	/* find existing FDIR VSI */
  99	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 
 
 
 100	if (!vsi)
 101		return -ENOENT;
 102
 103	tx_ring = vsi->tx_rings[0];
 104	dev = tx_ring->dev;
 105
 106	/* we need two descriptors to add/del a filter and we can wait */
 107	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 108		if (!i)
 109			return -EAGAIN;
 110		msleep_interruptible(1);
 111	}
 
 
 
 
 112
 113	dma = dma_map_single(dev, raw_packet,
 114			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 115	if (dma_mapping_error(dev, dma))
 116		goto dma_fail;
 117
 118	/* grab the next descriptor */
 119	i = tx_ring->next_to_use;
 
 120	first = &tx_ring->tx_bi[i];
 121	i40e_fdir(tx_ring, fdir_data, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122
 123	/* Now program a dummy descriptor */
 124	i = tx_ring->next_to_use;
 125	tx_desc = I40E_TX_DESC(tx_ring, i);
 126	tx_buf = &tx_ring->tx_bi[i];
 127
 128	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 129
 130	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 131
 132	/* record length, and DMA address */
 133	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 134	dma_unmap_addr_set(tx_buf, dma, dma);
 135
 136	tx_desc->buffer_addr = cpu_to_le64(dma);
 137	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 138
 139	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 140	tx_buf->raw_buf = (void *)raw_packet;
 141
 142	tx_desc->cmd_type_offset_bsz =
 143		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 144
 145	/* Force memory writes to complete before letting h/w
 146	 * know there are new descriptors to fetch.
 147	 */
 148	wmb();
 149
 150	/* Mark the data descriptor to be watched */
 151	first->next_to_watch = tx_desc;
 152
 153	writel(tx_ring->next_to_use, tx_ring->tail);
 154	return 0;
 155
 156dma_fail:
 157	return -1;
 158}
 159
 
 
 160/**
 161 * i40e_create_dummy_packet - Constructs dummy packet for HW
 162 * @dummy_packet: preallocated space for dummy packet
 163 * @ipv4: is layer 3 packet of version 4 or 6
 164 * @l4proto: next level protocol used in data portion of l3
 165 * @data: filter data
 166 *
 167 * Returns address of layer 4 protocol dummy packet.
 168 **/
 169static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 170				      struct i40e_fdir_filter *data)
 171{
 172	bool is_vlan = !!data->vlan_tag;
 173	struct vlan_hdr vlan;
 174	struct ipv6hdr ipv6;
 175	struct ethhdr eth;
 176	struct iphdr ip;
 177	u8 *tmp;
 178
 179	if (ipv4) {
 180		eth.h_proto = cpu_to_be16(ETH_P_IP);
 181		ip.protocol = l4proto;
 182		ip.version = 0x4;
 183		ip.ihl = 0x5;
 184
 185		ip.daddr = data->dst_ip;
 186		ip.saddr = data->src_ip;
 187	} else {
 188		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 189		ipv6.nexthdr = l4proto;
 190		ipv6.version = 0x6;
 191
 192		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 193		       sizeof(__be32) * 4);
 194		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 195		       sizeof(__be32) * 4);
 196	}
 197
 198	if (is_vlan) {
 199		vlan.h_vlan_TCI = data->vlan_tag;
 200		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 201		eth.h_proto = data->vlan_etype;
 202	}
 203
 204	tmp = dummy_packet;
 205	memcpy(tmp, &eth, sizeof(eth));
 206	tmp += sizeof(eth);
 207
 208	if (is_vlan) {
 209		memcpy(tmp, &vlan, sizeof(vlan));
 210		tmp += sizeof(vlan);
 211	}
 212
 213	if (ipv4) {
 214		memcpy(tmp, &ip, sizeof(ip));
 215		tmp += sizeof(ip);
 216	} else {
 217		memcpy(tmp, &ipv6, sizeof(ipv6));
 218		tmp += sizeof(ipv6);
 219	}
 220
 221	return tmp;
 222}
 223
 224/**
 225 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 226 * @raw_packet: preallocated space for dummy packet
 227 * @ipv4: is layer 3 packet of version 4 or 6
 228 * @l4proto: next level protocol used in data portion of l3
 229 * @data: filter data
 230 *
 231 * Helper function to populate udp fields.
 232 **/
 233static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 234					 struct i40e_fdir_filter *data)
 
 235{
 
 236	struct udphdr *udp;
 237	u8 *tmp;
 238
 239	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 240	udp = (struct udphdr *)(tmp);
 241	udp->dest = data->dst_port;
 242	udp->source = data->src_port;
 243}
 244
 245/**
 246 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 247 * @raw_packet: preallocated space for dummy packet
 248 * @ipv4: is layer 3 packet of version 4 or 6
 249 * @l4proto: next level protocol used in data portion of l3
 250 * @data: filter data
 251 *
 252 * Helper function to populate tcp fields.
 253 **/
 254static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 255					 struct i40e_fdir_filter *data)
 256{
 257	struct tcphdr *tcp;
 258	u8 *tmp;
 259	/* Dummy tcp packet */
 260	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 261		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 262
 263	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 264
 265	tcp = (struct tcphdr *)tmp;
 266	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 267	tcp->dest = data->dst_port;
 268	tcp->source = data->src_port;
 269}
 270
 271/**
 272 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 273 * @raw_packet: preallocated space for dummy packet
 274 * @ipv4: is layer 3 packet of version 4 or 6
 275 * @l4proto: next level protocol used in data portion of l3
 276 * @data: filter data
 277 *
 278 * Helper function to populate sctp fields.
 279 **/
 280static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 281					  u8 l4proto,
 282					  struct i40e_fdir_filter *data)
 283{
 284	struct sctphdr *sctp;
 285	u8 *tmp;
 286
 287	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 288
 289	sctp = (struct sctphdr *)tmp;
 290	sctp->dest = data->dst_port;
 291	sctp->source = data->src_port;
 292}
 293
 294/**
 295 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 296 * @pf: physical function to attach filter to
 297 * @fd_data: filter data
 298 * @add: add or delete filter
 299 * @packet_addr: address of dummy packet, used in filtering
 300 * @payload_offset: offset from dummy packet address to user defined data
 301 * @pctype: Packet type for which filter is used
 302 *
 303 * Helper function to offset data of dummy packet, program it and
 304 * handle errors.
 305 **/
 306static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 307				    struct i40e_fdir_filter *fd_data,
 308				    bool add, char *packet_addr,
 309				    int payload_offset, u8 pctype)
 310{
 311	int ret;
 
 
 
 312
 313	if (fd_data->flex_filter) {
 314		u8 *payload;
 315		__be16 pattern = fd_data->flex_word;
 316		u16 off = fd_data->flex_offset;
 317
 318		payload = packet_addr + payload_offset;
 319
 320		/* If user provided vlan, offset payload by vlan header length */
 321		if (!!fd_data->vlan_tag)
 322			payload += VLAN_HLEN;
 323
 324		*((__force __be16 *)(payload + off)) = pattern;
 325	}
 
 
 326
 327	fd_data->pctype = pctype;
 328	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 329	if (ret) {
 330		dev_info(&pf->pdev->dev,
 331			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 332			 fd_data->pctype, fd_data->fd_id, ret);
 333		/* Free the packet buffer since it wasn't added to the ring */
 334		return -EOPNOTSUPP;
 335	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 336		if (add)
 337			dev_info(&pf->pdev->dev,
 338				 "Filter OK for PCTYPE %d loc = %d\n",
 339				 fd_data->pctype, fd_data->fd_id);
 340		else
 341			dev_info(&pf->pdev->dev,
 342				 "Filter deleted for PCTYPE %d loc = %d\n",
 343				 fd_data->pctype, fd_data->fd_id);
 344	}
 
 
 345
 346	return ret;
 347}
 348
 349/**
 350 * i40e_change_filter_num - Prepare and program fdir filter
 351 * @ipv4: is layer 3 packet of version 4 or 6
 352 * @add: add or delete filter
 353 * @ipv4_filter_num: field to update
 354 * @ipv6_filter_num: field to update
 355 *
 356 * Update filter number field for pf.
 357 **/
 358static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 359				   u16 *ipv6_filter_num)
 360{
 361	if (add) {
 362		if (ipv4)
 363			(*ipv4_filter_num)++;
 364		else
 365			(*ipv6_filter_num)++;
 366	} else {
 367		if (ipv4)
 368			(*ipv4_filter_num)--;
 369		else
 370			(*ipv6_filter_num)--;
 371	}
 372}
 373
 374#define IP_HEADER_OFFSET		14
 375#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 376#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 377/**
 378 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 379 * @vsi: pointer to the targeted VSI
 380 * @fd_data: the flow director data required for the FDir descriptor
 381 * @add: true adds a filter, false removes it
 382 * @ipv4: true is v4, false is v6
 383 *
 384 * Returns 0 if the filters were successfully added or removed
 385 **/
 386static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 387				 struct i40e_fdir_filter *fd_data,
 388				 bool add,
 389				 bool ipv4)
 390{
 391	struct i40e_pf *pf = vsi->back;
 
 
 
 392	u8 *raw_packet;
 393	int ret;
 
 
 
 
 
 394
 395	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 396	if (!raw_packet)
 397		return -ENOMEM;
 
 398
 399	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 
 
 
 
 
 
 
 400
 401	if (ipv4)
 402		ret = i40e_prepare_fdir_filter
 403			(pf, fd_data, add, raw_packet,
 404			 I40E_UDPIP_DUMMY_PACKET_LEN,
 405			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 406	else
 407		ret = i40e_prepare_fdir_filter
 408			(pf, fd_data, add, raw_packet,
 409			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 410			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 411
 412	if (ret) {
 413		kfree(raw_packet);
 414		return ret;
 
 415	}
 416
 417	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 418			       &pf->fd_udp6_filter_cnt);
 419
 420	return 0;
 421}
 422
 423#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 424#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 425/**
 426 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 427 * @vsi: pointer to the targeted VSI
 428 * @fd_data: the flow director data required for the FDir descriptor
 429 * @add: true adds a filter, false removes it
 430 * @ipv4: true is v4, false is v6
 431 *
 432 * Returns 0 if the filters were successfully added or removed
 433 **/
 434static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 435				 struct i40e_fdir_filter *fd_data,
 436				 bool add,
 437				 bool ipv4)
 438{
 439	struct i40e_pf *pf = vsi->back;
 440	u8 *raw_packet;
 441	int ret;
 442
 443	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 444	if (!raw_packet)
 445		return -ENOMEM;
 446
 447	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 448	if (ipv4)
 449		ret = i40e_prepare_fdir_filter
 450			(pf, fd_data, add, raw_packet,
 451			 I40E_TCPIP_DUMMY_PACKET_LEN,
 452			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 453	else
 454		ret = i40e_prepare_fdir_filter
 455			(pf, fd_data, add, raw_packet,
 456			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 457			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 458
 459	if (ret) {
 460		kfree(raw_packet);
 461		return ret;
 
 
 
 
 
 
 
 
 
 
 462	}
 463
 464	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 465			       &pf->fd_tcp6_filter_cnt);
 466
 467	if (add) {
 468		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 469		    I40E_DEBUG_FD & pf->hw.debug_mask)
 470			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 471		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 472	}
 473	return 0;
 474}
 475
 476#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 477#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 478/**
 479 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 480 * a specific flow spec
 481 * @vsi: pointer to the targeted VSI
 482 * @fd_data: the flow director data required for the FDir descriptor
 483 * @add: true adds a filter, false removes it
 484 * @ipv4: true is v4, false is v6
 485 *
 486 * Returns 0 if the filters were successfully added or removed
 487 **/
 488static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 489				  struct i40e_fdir_filter *fd_data,
 490				  bool add,
 491				  bool ipv4)
 492{
 493	struct i40e_pf *pf = vsi->back;
 494	u8 *raw_packet;
 495	int ret;
 496
 497	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 498	if (!raw_packet)
 499		return -ENOMEM;
 500
 501	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 502
 503	if (ipv4)
 504		ret = i40e_prepare_fdir_filter
 505			(pf, fd_data, add, raw_packet,
 506			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 507			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 508	else
 509		ret = i40e_prepare_fdir_filter
 510			(pf, fd_data, add, raw_packet,
 511			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 512			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 513
 514	if (ret) {
 515		kfree(raw_packet);
 516		return ret;
 517	}
 518
 519	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 520			       &pf->fd_sctp6_filter_cnt);
 521
 522	return 0;
 523}
 524
 525#define I40E_IP_DUMMY_PACKET_LEN	34
 526#define I40E_IP6_DUMMY_PACKET_LEN	54
 527/**
 528 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 529 * a specific flow spec
 530 * @vsi: pointer to the targeted VSI
 531 * @fd_data: the flow director data required for the FDir descriptor
 532 * @add: true adds a filter, false removes it
 533 * @ipv4: true is v4, false is v6
 534 *
 535 * Returns 0 if the filters were successfully added or removed
 536 **/
 537static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 538				struct i40e_fdir_filter *fd_data,
 539				bool add,
 540				bool ipv4)
 541{
 542	struct i40e_pf *pf = vsi->back;
 543	int payload_offset;
 
 544	u8 *raw_packet;
 545	int iter_start;
 546	int iter_end;
 547	int ret;
 548	int i;
 
 
 
 549
 550	if (ipv4) {
 551		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 552		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 553	} else {
 554		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 555		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 556	}
 557
 558	for (i = iter_start; i <= iter_end; i++) {
 559		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 560		if (!raw_packet)
 561			return -ENOMEM;
 
 
 562
 563		/* IPv6 no header option differs from IPv4 */
 564		(void)i40e_create_dummy_packet
 565			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 566			 fd_data);
 567
 568		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 569			I40E_IP6_DUMMY_PACKET_LEN;
 570		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 571					       payload_offset, i);
 572		if (ret)
 573			goto err;
 
 
 
 
 
 
 
 
 
 
 
 574	}
 575
 576	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 577			       &pf->fd_ip6_filter_cnt);
 578
 579	return 0;
 580err:
 581	kfree(raw_packet);
 582	return ret;
 583}
 584
 585/**
 586 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 587 * @vsi: pointer to the targeted VSI
 588 * @input: filter to add or delete
 589 * @add: true adds a filter, false removes it
 590 *
 591 **/
 592int i40e_add_del_fdir(struct i40e_vsi *vsi,
 593		      struct i40e_fdir_filter *input, bool add)
 594{
 595	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 596	struct i40e_pf *pf = vsi->back;
 597	int ret;
 598
 599	switch (input->flow_type & ~FLOW_EXT) {
 600	case TCP_V4_FLOW:
 601		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 602		break;
 603	case UDP_V4_FLOW:
 604		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 605		break;
 606	case SCTP_V4_FLOW:
 607		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 608		break;
 609	case TCP_V6_FLOW:
 610		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 611		break;
 612	case UDP_V6_FLOW:
 613		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 614		break;
 615	case SCTP_V6_FLOW:
 616		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 617		break;
 618	case IP_USER_FLOW:
 619		switch (input->ipl4_proto) {
 620		case IPPROTO_TCP:
 621			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 622			break;
 623		case IPPROTO_UDP:
 624			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 625			break;
 626		case IPPROTO_SCTP:
 627			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 628			break;
 629		case IPPROTO_IP:
 630			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 631			break;
 632		default:
 633			/* We cannot support masking based on protocol */
 634			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 635				 input->ipl4_proto);
 636			return -EINVAL;
 637		}
 638		break;
 639	case IPV6_USER_FLOW:
 640		switch (input->ipl4_proto) {
 641		case IPPROTO_TCP:
 642			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 643			break;
 644		case IPPROTO_UDP:
 645			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 646			break;
 647		case IPPROTO_SCTP:
 648			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 649			break;
 650		case IPPROTO_IP:
 651			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 652			break;
 653		default:
 654			/* We cannot support masking based on protocol */
 655			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 656				 input->ipl4_proto);
 657			return -EINVAL;
 658		}
 659		break;
 660	default:
 661		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 662			 input->flow_type);
 663		return -EINVAL;
 664	}
 665
 666	/* The buffer allocated here will be normally be freed by
 667	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 668	 * completion. In the event of an error adding the buffer to the FDIR
 669	 * ring, it will immediately be freed. It may also be freed by
 670	 * i40e_clean_tx_ring() when closing the VSI.
 671	 */
 672	return ret;
 673}
 674
 675/**
 676 * i40e_fd_handle_status - check the Programming Status for FD
 677 * @rx_ring: the Rx ring for this descriptor
 678 * @qword0_raw: qword0
 679 * @qword1: qword1 after le_to_cpu
 680 * @prog_id: the id originally used for programming
 681 *
 682 * This is used to verify if the FD programming or invalidation
 683 * requested by SW to the HW is successful or not and take actions accordingly.
 684 **/
 685static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 686				  u64 qword1, u8 prog_id)
 687{
 688	struct i40e_pf *pf = rx_ring->vsi->back;
 689	struct pci_dev *pdev = pf->pdev;
 690	struct i40e_16b_rx_wb_qw0 *qw0;
 691	u32 fcnt_prog, fcnt_avail;
 692	u32 error;
 
 693
 694	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 695	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 696		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 697
 698	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 699		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 700		if (qw0->hi_dword.fd_id != 0 ||
 701		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 702			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 703				 pf->fd_inv);
 704
 705		/* Check if the programming error is for ATR.
 706		 * If so, auto disable ATR and set a state for
 707		 * flush in progress. Next time we come here if flush is in
 708		 * progress do nothing, once flush is complete the state will
 709		 * be cleared.
 710		 */
 711		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 712			return;
 713
 714		pf->fd_add_err++;
 715		/* store the current atr filter count */
 716		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 717
 718		if (qw0->hi_dword.fd_id == 0 &&
 719		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 720			/* These set_bit() calls aren't atomic with the
 721			 * test_bit() here, but worse case we potentially
 722			 * disable ATR and queue a flush right after SB
 723			 * support is re-enabled. That shouldn't cause an
 724			 * issue in practice
 725			 */
 726			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 727			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 728		}
 729
 730		/* filter programming failed most likely due to table full */
 731		fcnt_prog = i40e_get_global_fd_count(pf);
 732		fcnt_avail = pf->fdir_pf_filter_count;
 733		/* If ATR is running fcnt_prog can quickly change,
 734		 * if we are very close to full, it makes sense to disable
 735		 * FD ATR/SB and then re-enable it when there is room.
 736		 */
 737		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 738			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 739			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 740					      pf->state))
 741				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 742					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 
 
 
 743		}
 744	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 745		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 746			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 747				 qw0->hi_dword.fd_id);
 748	}
 749}
 750
 751/**
 752 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 753 * @ring:      the ring that owns the buffer
 754 * @tx_buffer: the buffer to free
 755 **/
 756static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 757					    struct i40e_tx_buffer *tx_buffer)
 758{
 759	if (tx_buffer->skb) {
 760		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 761			kfree(tx_buffer->raw_buf);
 762		else if (ring_is_xdp(ring))
 763			xdp_return_frame(tx_buffer->xdpf);
 764		else
 765			dev_kfree_skb_any(tx_buffer->skb);
 766		if (dma_unmap_len(tx_buffer, len))
 767			dma_unmap_single(ring->dev,
 768					 dma_unmap_addr(tx_buffer, dma),
 769					 dma_unmap_len(tx_buffer, len),
 770					 DMA_TO_DEVICE);
 771	} else if (dma_unmap_len(tx_buffer, len)) {
 772		dma_unmap_page(ring->dev,
 773			       dma_unmap_addr(tx_buffer, dma),
 774			       dma_unmap_len(tx_buffer, len),
 775			       DMA_TO_DEVICE);
 776	}
 777
 
 
 
 778	tx_buffer->next_to_watch = NULL;
 779	tx_buffer->skb = NULL;
 780	dma_unmap_len_set(tx_buffer, len, 0);
 781	/* tx_buffer must be completely set up in the transmit path */
 782}
 783
 784/**
 785 * i40e_clean_tx_ring - Free any empty Tx buffers
 786 * @tx_ring: ring to be cleaned
 787 **/
 788void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 789{
 790	unsigned long bi_size;
 791	u16 i;
 792
 793	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 794		i40e_xsk_clean_tx_ring(tx_ring);
 795	} else {
 796		/* ring already cleared, nothing to do */
 797		if (!tx_ring->tx_bi)
 798			return;
 799
 800		/* Free all the Tx ring sk_buffs */
 801		for (i = 0; i < tx_ring->count; i++)
 802			i40e_unmap_and_free_tx_resource(tx_ring,
 803							&tx_ring->tx_bi[i]);
 804	}
 805
 806	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 807	memset(tx_ring->tx_bi, 0, bi_size);
 808
 809	/* Zero out the descriptor ring */
 810	memset(tx_ring->desc, 0, tx_ring->size);
 811
 812	tx_ring->next_to_use = 0;
 813	tx_ring->next_to_clean = 0;
 814
 815	if (!tx_ring->netdev)
 816		return;
 817
 818	/* cleanup Tx queue statistics */
 819	netdev_tx_reset_queue(txring_txq(tx_ring));
 
 820}
 821
 822/**
 823 * i40e_free_tx_resources - Free Tx resources per queue
 824 * @tx_ring: Tx descriptor ring for a specific queue
 825 *
 826 * Free all transmit software resources
 827 **/
 828void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 829{
 830	i40e_clean_tx_ring(tx_ring);
 831	kfree(tx_ring->tx_bi);
 832	tx_ring->tx_bi = NULL;
 833	kfree(tx_ring->xsk_descs);
 834	tx_ring->xsk_descs = NULL;
 835
 836	if (tx_ring->desc) {
 837		dma_free_coherent(tx_ring->dev, tx_ring->size,
 838				  tx_ring->desc, tx_ring->dma);
 839		tx_ring->desc = NULL;
 840	}
 841}
 842
 843/**
 844 * i40e_get_tx_pending - how many tx descriptors not processed
 845 * @ring: the ring of descriptors
 846 * @in_sw: use SW variables
 847 *
 848 * Since there is no access to the ring head register
 849 * in XL710, we need to use our local copies
 850 **/
 851u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 852{
 853	u32 head, tail;
 854
 855	if (!in_sw) {
 856		head = i40e_get_head(ring);
 857		tail = readl(ring->tail);
 858	} else {
 859		head = ring->next_to_clean;
 860		tail = ring->next_to_use;
 861	}
 862
 863	if (head != tail)
 864		return (head < tail) ?
 865			tail - head : (tail + ring->count - head);
 866
 867	return 0;
 868}
 869
 870/**
 871 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 872 * @vsi:  pointer to vsi struct with tx queues
 873 *
 874 * VSI has netdev and netdev has TX queues. This function is to check each of
 875 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 876 **/
 877void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 878{
 879	struct i40e_ring *tx_ring = NULL;
 880	struct net_device *netdev;
 881	unsigned int i;
 882	int packets;
 883
 884	if (!vsi)
 885		return;
 886
 887	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 888		return;
 889
 890	netdev = vsi->netdev;
 891	if (!netdev)
 892		return;
 893
 894	if (!netif_carrier_ok(netdev))
 895		return;
 896
 897	for (i = 0; i < vsi->num_queue_pairs; i++) {
 898		tx_ring = vsi->tx_rings[i];
 899		if (tx_ring && tx_ring->desc) {
 900			/* If packet counter has not changed the queue is
 901			 * likely stalled, so force an interrupt for this
 902			 * queue.
 903			 *
 904			 * prev_pkt_ctr would be negative if there was no
 905			 * pending work.
 906			 */
 907			packets = tx_ring->stats.packets & INT_MAX;
 908			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 909				i40e_force_wb(vsi, tx_ring->q_vector);
 910				continue;
 911			}
 912
 913			/* Memory barrier between read of packet count and call
 914			 * to i40e_get_tx_pending()
 915			 */
 916			smp_rmb();
 917			tx_ring->tx_stats.prev_pkt_ctr =
 918			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 919		}
 920	}
 921}
 922
 923/**
 924 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 925 * @vsi: the VSI we care about
 926 * @tx_ring: Tx ring to clean
 927 * @napi_budget: Used to determine if we are in netpoll
 928 *
 929 * Returns true if there's any budget left (e.g. the clean is finished)
 930 **/
 931static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 932			      struct i40e_ring *tx_ring, int napi_budget)
 933{
 934	int i = tx_ring->next_to_clean;
 935	struct i40e_tx_buffer *tx_buf;
 936	struct i40e_tx_desc *tx_head;
 937	struct i40e_tx_desc *tx_desc;
 938	unsigned int total_bytes = 0, total_packets = 0;
 939	unsigned int budget = vsi->work_limit;
 940
 941	tx_buf = &tx_ring->tx_bi[i];
 942	tx_desc = I40E_TX_DESC(tx_ring, i);
 943	i -= tx_ring->count;
 944
 945	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 946
 947	do {
 948		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 949
 950		/* if next_to_watch is not set then there is no work pending */
 951		if (!eop_desc)
 952			break;
 953
 954		/* prevent any other reads prior to eop_desc */
 955		smp_rmb();
 956
 957		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 958		/* we have caught up to head, no work left to do */
 959		if (tx_head == tx_desc)
 960			break;
 961
 962		/* clear next_to_watch to prevent false hangs */
 963		tx_buf->next_to_watch = NULL;
 964
 965		/* update the statistics for this packet */
 966		total_bytes += tx_buf->bytecount;
 967		total_packets += tx_buf->gso_segs;
 968
 969		/* free the skb/XDP data */
 970		if (ring_is_xdp(tx_ring))
 971			xdp_return_frame(tx_buf->xdpf);
 972		else
 973			napi_consume_skb(tx_buf->skb, napi_budget);
 974
 975		/* unmap skb header data */
 976		dma_unmap_single(tx_ring->dev,
 977				 dma_unmap_addr(tx_buf, dma),
 978				 dma_unmap_len(tx_buf, len),
 979				 DMA_TO_DEVICE);
 980
 981		/* clear tx_buffer data */
 982		tx_buf->skb = NULL;
 983		dma_unmap_len_set(tx_buf, len, 0);
 984
 985		/* unmap remaining buffers */
 986		while (tx_desc != eop_desc) {
 987			i40e_trace(clean_tx_irq_unmap,
 988				   tx_ring, tx_desc, tx_buf);
 989
 990			tx_buf++;
 991			tx_desc++;
 992			i++;
 993			if (unlikely(!i)) {
 994				i -= tx_ring->count;
 995				tx_buf = tx_ring->tx_bi;
 996				tx_desc = I40E_TX_DESC(tx_ring, 0);
 997			}
 998
 999			/* unmap any remaining paged data */
1000			if (dma_unmap_len(tx_buf, len)) {
1001				dma_unmap_page(tx_ring->dev,
1002					       dma_unmap_addr(tx_buf, dma),
1003					       dma_unmap_len(tx_buf, len),
1004					       DMA_TO_DEVICE);
1005				dma_unmap_len_set(tx_buf, len, 0);
1006			}
1007		}
1008
1009		/* move us one more past the eop_desc for start of next pkt */
1010		tx_buf++;
1011		tx_desc++;
1012		i++;
1013		if (unlikely(!i)) {
1014			i -= tx_ring->count;
1015			tx_buf = tx_ring->tx_bi;
1016			tx_desc = I40E_TX_DESC(tx_ring, 0);
1017		}
1018
1019		prefetch(tx_desc);
1020
1021		/* update budget accounting */
1022		budget--;
1023	} while (likely(budget));
1024
1025	i += tx_ring->count;
1026	tx_ring->next_to_clean = i;
1027	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1028	i40e_arm_wb(tx_ring, vsi, budget);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029
1030	if (ring_is_xdp(tx_ring))
1031		return !!budget;
 
 
 
 
1032
1033	/* notify netdev of completed buffers */
1034	netdev_tx_completed_queue(txring_txq(tx_ring),
1035				  total_packets, total_bytes);
1036
1037#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1038	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1039		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1040		/* Make sure that anybody stopping the queue after this
1041		 * sees the new next_to_clean.
1042		 */
1043		smp_mb();
1044		if (__netif_subqueue_stopped(tx_ring->netdev,
1045					     tx_ring->queue_index) &&
1046		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1047			netif_wake_subqueue(tx_ring->netdev,
1048					    tx_ring->queue_index);
1049			++tx_ring->tx_stats.restart_queue;
1050		}
1051	}
1052
1053	return !!budget;
1054}
1055
1056/**
1057 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1058 * @vsi: the VSI we care about
1059 * @q_vector: the vector on which to enable writeback
1060 *
1061 **/
1062static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1063				  struct i40e_q_vector *q_vector)
1064{
1065	u16 flags = q_vector->tx.ring[0].flags;
1066	u32 val;
1067
1068	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1069		return;
1070
1071	if (q_vector->arm_wb_state)
1072		return;
1073
1074	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1075		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1076		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1077
1078		wr32(&vsi->back->hw,
1079		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1080		     val);
1081	} else {
1082		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1083		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1084
1085		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1086	}
1087	q_vector->arm_wb_state = true;
1088}
1089
1090/**
1091 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1092 * @vsi: the VSI we care about
1093 * @q_vector: the vector  on which to force writeback
1094 *
1095 **/
1096void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1097{
1098	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1099		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1100			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1101			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1102			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1103			  /* allow 00 to be written to the index */
1104
1105		wr32(&vsi->back->hw,
1106		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 
1107	} else {
1108		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1109			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1110			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1111			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1112			/* allow 00 to be written to the index */
1113
1114		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1115	}
1116}
1117
1118static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1119					struct i40e_ring_container *rc)
1120{
1121	return &q_vector->rx == rc;
1122}
1123
1124static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1125{
1126	unsigned int divisor;
1127
1128	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1129	case I40E_LINK_SPEED_40GB:
1130		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1131		break;
1132	case I40E_LINK_SPEED_25GB:
1133	case I40E_LINK_SPEED_20GB:
1134		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1135		break;
1136	default:
1137	case I40E_LINK_SPEED_10GB:
1138		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1139		break;
1140	case I40E_LINK_SPEED_1GB:
1141	case I40E_LINK_SPEED_100MB:
1142		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1143		break;
1144	}
1145
1146	return divisor;
1147}
1148
1149/**
1150 * i40e_update_itr - update the dynamic ITR value based on statistics
1151 * @q_vector: structure containing interrupt and ring information
1152 * @rc: structure containing ring performance data
1153 *
1154 * Stores a new ITR value based on packets and byte
1155 * counts during the last interrupt.  The advantage of per interrupt
1156 * computation is faster updates and more accurate ITR for the current
1157 * traffic pattern.  Constants in this function were computed
1158 * based on theoretical maximum wire speed and thresholds were set based
1159 * on testing data as well as attempting to minimize response time
 
 
1160 * while increasing bulk throughput.
1161 **/
1162static void i40e_update_itr(struct i40e_q_vector *q_vector,
1163			    struct i40e_ring_container *rc)
1164{
1165	unsigned int avg_wire_size, packets, bytes, itr;
1166	unsigned long next_update = jiffies;
 
 
 
1167
1168	/* If we don't have any rings just leave ourselves set for maximum
1169	 * possible latency so we take ourselves out of the equation.
1170	 */
1171	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1172		return;
1173
1174	/* For Rx we want to push the delay up and default to low latency.
1175	 * for Tx we want to pull the delay down and default to high latency.
1176	 */
1177	itr = i40e_container_is_rx(q_vector, rc) ?
1178	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1179	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1180
1181	/* If we didn't update within up to 1 - 2 jiffies we can assume
1182	 * that either packets are coming in so slow there hasn't been
1183	 * any work, or that there is so much work that NAPI is dealing
1184	 * with interrupt moderation and we don't need to do anything.
1185	 */
1186	if (time_after(next_update, rc->next_update))
1187		goto clear_counts;
1188
1189	/* If itr_countdown is set it means we programmed an ITR within
1190	 * the last 4 interrupt cycles. This has a side effect of us
1191	 * potentially firing an early interrupt. In order to work around
1192	 * this we need to throw out any data received for a few
1193	 * interrupts following the update.
1194	 */
1195	if (q_vector->itr_countdown) {
1196		itr = rc->target_itr;
1197		goto clear_counts;
1198	}
1199
1200	packets = rc->total_packets;
1201	bytes = rc->total_bytes;
1202
1203	if (i40e_container_is_rx(q_vector, rc)) {
1204		/* If Rx there are 1 to 4 packets and bytes are less than
1205		 * 9000 assume insufficient data to use bulk rate limiting
1206		 * approach unless Tx is already in bulk rate limiting. We
1207		 * are likely latency driven.
1208		 */
1209		if (packets && packets < 4 && bytes < 9000 &&
1210		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1211			itr = I40E_ITR_ADAPTIVE_LATENCY;
1212			goto adjust_by_size;
1213		}
1214	} else if (packets < 4) {
1215		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1216		 * bulk mode and we are receiving 4 or fewer packets just
1217		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1218		 * that the Rx can relax.
1219		 */
1220		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1221		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1222		     I40E_ITR_ADAPTIVE_MAX_USECS)
1223			goto clear_counts;
1224	} else if (packets > 32) {
1225		/* If we have processed over 32 packets in a single interrupt
1226		 * for Tx assume we need to switch over to "bulk" mode.
1227		 */
1228		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1229	}
1230
1231	/* We have no packets to actually measure against. This means
1232	 * either one of the other queues on this vector is active or
1233	 * we are a Tx queue doing TSO with too high of an interrupt rate.
 
 
1234	 *
1235	 * Between 4 and 56 we can assume that our current interrupt delay
1236	 * is only slightly too low. As such we should increase it by a small
1237	 * fixed amount.
1238	 */
1239	if (packets < 56) {
1240		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1241		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1242			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1243			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1244		}
1245		goto clear_counts;
1246	}
1247
1248	if (packets <= 256) {
1249		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1250		itr &= I40E_ITR_MASK;
1251
1252		/* Between 56 and 112 is our "goldilocks" zone where we are
1253		 * working out "just right". Just report that our current
1254		 * ITR is good for us.
1255		 */
1256		if (packets <= 112)
1257			goto clear_counts;
1258
1259		/* If packet count is 128 or greater we are likely looking
1260		 * at a slight overrun of the delay we want. Try halving
1261		 * our delay to see if that will cut the number of packets
1262		 * in half per interrupt.
1263		 */
1264		itr /= 2;
1265		itr &= I40E_ITR_MASK;
1266		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1267			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1268
1269		goto clear_counts;
1270	}
1271
1272	/* The paths below assume we are dealing with a bulk ITR since
1273	 * number of packets is greater than 256. We are just going to have
1274	 * to compute a value and try to bring the count under control,
1275	 * though for smaller packet sizes there isn't much we can do as
1276	 * NAPI polling will likely be kicking in sooner rather than later.
1277	 */
1278	itr = I40E_ITR_ADAPTIVE_BULK;
1279
1280adjust_by_size:
1281	/* If packet counts are 256 or greater we can assume we have a gross
1282	 * overestimation of what the rate should be. Instead of trying to fine
1283	 * tune it just use the formula below to try and dial in an exact value
1284	 * give the current packet size of the frame.
1285	 */
1286	avg_wire_size = bytes / packets;
1287
1288	/* The following is a crude approximation of:
1289	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1290	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1291	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1292	 *
1293	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1294	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1295	 * formula down to
1296	 *
1297	 *  (170 * (size + 24)) / (size + 640) = ITR
1298	 *
1299	 * We first do some math on the packet size and then finally bitshift
1300	 * by 8 after rounding up. We also have to account for PCIe link speed
1301	 * difference as ITR scales based on this.
1302	 */
1303	if (avg_wire_size <= 60) {
1304		/* Start at 250k ints/sec */
1305		avg_wire_size = 4096;
1306	} else if (avg_wire_size <= 380) {
1307		/* 250K ints/sec to 60K ints/sec */
1308		avg_wire_size *= 40;
1309		avg_wire_size += 1696;
1310	} else if (avg_wire_size <= 1084) {
1311		/* 60K ints/sec to 36K ints/sec */
1312		avg_wire_size *= 15;
1313		avg_wire_size += 11452;
1314	} else if (avg_wire_size <= 1980) {
1315		/* 36K ints/sec to 30K ints/sec */
1316		avg_wire_size *= 5;
1317		avg_wire_size += 22420;
1318	} else {
1319		/* plateau at a limit of 30K ints/sec */
1320		avg_wire_size = 32256;
1321	}
1322
1323	/* If we are in low latency mode halve our delay which doubles the
1324	 * rate to somewhere between 100K to 16K ints/sec
1325	 */
1326	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1327		avg_wire_size /= 2;
1328
1329	/* Resultant value is 256 times larger than it needs to be. This
1330	 * gives us room to adjust the value as needed to either increase
1331	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1332	 *
1333	 * Use addition as we have already recorded the new latency flag
1334	 * for the ITR value.
1335	 */
1336	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1337	       I40E_ITR_ADAPTIVE_MIN_INC;
1338
1339	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1340		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1341		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
 
 
 
 
 
 
 
 
 
1342	}
1343
1344clear_counts:
1345	/* write back value */
1346	rc->target_itr = itr;
1347
1348	/* next update should occur within next jiffy */
1349	rc->next_update = next_update + 1;
1350
1351	rc->total_bytes = 0;
1352	rc->total_packets = 0;
1353}
1354
1355static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1356{
1357	return &rx_ring->rx_bi[idx];
1358}
1359
1360/**
1361 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1362 * @rx_ring: rx descriptor ring to store buffers on
1363 * @old_buff: donor buffer to have page reused
1364 *
1365 * Synchronizes page for reuse by the adapter
1366 **/
1367static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1368			       struct i40e_rx_buffer *old_buff)
1369{
1370	struct i40e_rx_buffer *new_buff;
1371	u16 nta = rx_ring->next_to_alloc;
1372
1373	new_buff = i40e_rx_bi(rx_ring, nta);
1374
1375	/* update, and store next to alloc */
1376	nta++;
1377	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1378
1379	/* transfer page from old buffer to new buffer */
1380	new_buff->dma		= old_buff->dma;
1381	new_buff->page		= old_buff->page;
1382	new_buff->page_offset	= old_buff->page_offset;
1383	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1384
1385	rx_ring->rx_stats.page_reuse_count++;
1386
1387	/* clear contents of buffer_info */
1388	old_buff->page = NULL;
1389}
1390
1391/**
1392 * i40e_clean_programming_status - clean the programming status descriptor
1393 * @rx_ring: the rx ring that has this descriptor
1394 * @qword0_raw: qword0
1395 * @qword1: qword1 representing status_error_len in CPU ordering
1396 *
1397 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1398 * status being successful or not and take actions accordingly. FCoE should
1399 * handle its context/filter programming/invalidation status and take actions.
1400 *
1401 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1402 **/
1403void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1404				   u64 qword1)
1405{
 
1406	u8 id;
1407
1408	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
 
1409		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1410
1411	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1412		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
 
 
 
 
 
1413}
1414
1415/**
1416 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1417 * @tx_ring: the tx ring to set up
1418 *
1419 * Return 0 on success, negative on error
1420 **/
1421int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1422{
1423	struct device *dev = tx_ring->dev;
1424	int bi_size;
1425
1426	if (!dev)
1427		return -ENOMEM;
1428
1429	/* warn if we are about to overwrite the pointer */
1430	WARN_ON(tx_ring->tx_bi);
1431	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1432	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1433	if (!tx_ring->tx_bi)
1434		goto err;
1435
1436	if (ring_is_xdp(tx_ring)) {
1437		tx_ring->xsk_descs = kcalloc(I40E_MAX_NUM_DESCRIPTORS, sizeof(*tx_ring->xsk_descs),
1438					     GFP_KERNEL);
1439		if (!tx_ring->xsk_descs)
1440			goto err;
1441	}
1442
1443	u64_stats_init(&tx_ring->syncp);
1444
1445	/* round up to nearest 4K */
1446	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1447	/* add u32 for head writeback, align after this takes care of
1448	 * guaranteeing this is at least one cache line in size
1449	 */
1450	tx_ring->size += sizeof(u32);
1451	tx_ring->size = ALIGN(tx_ring->size, 4096);
1452	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1453					   &tx_ring->dma, GFP_KERNEL);
1454	if (!tx_ring->desc) {
1455		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1456			 tx_ring->size);
1457		goto err;
1458	}
1459
1460	tx_ring->next_to_use = 0;
1461	tx_ring->next_to_clean = 0;
1462	tx_ring->tx_stats.prev_pkt_ctr = -1;
1463	return 0;
1464
1465err:
1466	kfree(tx_ring->xsk_descs);
1467	tx_ring->xsk_descs = NULL;
1468	kfree(tx_ring->tx_bi);
1469	tx_ring->tx_bi = NULL;
1470	return -ENOMEM;
1471}
1472
1473int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1474{
1475	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1476
1477	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1478	return rx_ring->rx_bi ? 0 : -ENOMEM;
1479}
1480
1481static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1482{
1483	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1484}
1485
1486/**
1487 * i40e_clean_rx_ring - Free Rx buffers
1488 * @rx_ring: ring to be cleaned
1489 **/
1490void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1491{
 
 
 
1492	u16 i;
1493
1494	/* ring already cleared, nothing to do */
1495	if (!rx_ring->rx_bi)
1496		return;
1497
1498	if (rx_ring->skb) {
1499		dev_kfree_skb(rx_ring->skb);
1500		rx_ring->skb = NULL;
1501	}
1502
1503	if (rx_ring->xsk_pool) {
1504		i40e_xsk_clean_rx_ring(rx_ring);
1505		goto skip_free;
 
 
 
 
 
 
 
 
 
1506	}
1507
1508	/* Free all the Rx ring sk_buffs */
1509	for (i = 0; i < rx_ring->count; i++) {
1510		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1511
1512		if (!rx_bi->page)
1513			continue;
1514
1515		/* Invalidate cache lines that may have been written to by
1516		 * device so that we avoid corrupting memory.
1517		 */
1518		dma_sync_single_range_for_cpu(rx_ring->dev,
1519					      rx_bi->dma,
1520					      rx_bi->page_offset,
1521					      rx_ring->rx_buf_len,
1522					      DMA_FROM_DEVICE);
1523
1524		/* free resources associated with mapping */
1525		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1526				     i40e_rx_pg_size(rx_ring),
1527				     DMA_FROM_DEVICE,
1528				     I40E_RX_DMA_ATTR);
1529
1530		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1531
1532		rx_bi->page = NULL;
1533		rx_bi->page_offset = 0;
1534	}
1535
1536skip_free:
1537	if (rx_ring->xsk_pool)
1538		i40e_clear_rx_bi_zc(rx_ring);
1539	else
1540		i40e_clear_rx_bi(rx_ring);
1541
1542	/* Zero out the descriptor ring */
1543	memset(rx_ring->desc, 0, rx_ring->size);
1544
1545	rx_ring->next_to_alloc = 0;
1546	rx_ring->next_to_clean = 0;
1547	rx_ring->next_to_use = 0;
1548}
1549
1550/**
1551 * i40e_free_rx_resources - Free Rx resources
1552 * @rx_ring: ring to clean the resources from
1553 *
1554 * Free all receive software resources
1555 **/
1556void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1557{
1558	i40e_clean_rx_ring(rx_ring);
1559	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1560		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1561	rx_ring->xdp_prog = NULL;
1562	kfree(rx_ring->rx_bi);
1563	rx_ring->rx_bi = NULL;
1564
1565	if (rx_ring->desc) {
1566		dma_free_coherent(rx_ring->dev, rx_ring->size,
1567				  rx_ring->desc, rx_ring->dma);
1568		rx_ring->desc = NULL;
1569	}
1570}
1571
1572/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1574 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1575 *
1576 * Returns 0 on success, negative on failure
1577 **/
1578int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1579{
1580	struct device *dev = rx_ring->dev;
1581	int err;
 
 
 
 
 
 
 
1582
1583	u64_stats_init(&rx_ring->syncp);
1584
1585	/* Round up to nearest 4K */
1586	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
 
 
1587	rx_ring->size = ALIGN(rx_ring->size, 4096);
1588	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1589					   &rx_ring->dma, GFP_KERNEL);
1590
1591	if (!rx_ring->desc) {
1592		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1593			 rx_ring->size);
1594		return -ENOMEM;
1595	}
1596
1597	rx_ring->next_to_alloc = 0;
1598	rx_ring->next_to_clean = 0;
1599	rx_ring->next_to_use = 0;
1600
1601	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1602	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1603		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1604				       rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1605		if (err < 0)
1606			return err;
1607	}
1608
1609	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1610
1611	return 0;
 
 
 
 
1612}
1613
1614/**
1615 * i40e_release_rx_desc - Store the new tail and head values
1616 * @rx_ring: ring to bump
1617 * @val: new head index
1618 **/
1619void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1620{
1621	rx_ring->next_to_use = val;
1622
1623	/* update next to alloc since we have filled the ring */
1624	rx_ring->next_to_alloc = val;
1625
1626	/* Force memory writes to complete before letting h/w
1627	 * know there are new descriptors to fetch.  (Only
1628	 * applicable for weak-ordered memory model archs,
1629	 * such as IA-64).
1630	 */
1631	wmb();
1632	writel(val, rx_ring->tail);
1633}
1634
1635static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1636					   unsigned int size)
1637{
1638	unsigned int truesize;
1639
1640#if (PAGE_SIZE < 8192)
1641	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1642#else
1643	truesize = rx_ring->rx_offset ?
1644		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1645		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1646		SKB_DATA_ALIGN(size);
1647#endif
1648	return truesize;
1649}
1650
1651/**
1652 * i40e_alloc_mapped_page - recycle or make a new page
1653 * @rx_ring: ring to use
1654 * @bi: rx_buffer struct to modify
1655 *
1656 * Returns true if the page was successfully allocated or
1657 * reused.
1658 **/
1659static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1660				   struct i40e_rx_buffer *bi)
1661{
1662	struct page *page = bi->page;
1663	dma_addr_t dma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664
1665	/* since we are recycling buffers we should seldom need to alloc */
1666	if (likely(page)) {
1667		rx_ring->rx_stats.page_reuse_count++;
1668		return true;
 
 
 
 
 
1669	}
1670
1671	/* alloc new page for storage */
1672	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1673	if (unlikely(!page)) {
1674		rx_ring->rx_stats.alloc_page_failed++;
1675		return false;
1676	}
1677
1678	/* map page for use */
1679	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1680				 i40e_rx_pg_size(rx_ring),
1681				 DMA_FROM_DEVICE,
1682				 I40E_RX_DMA_ATTR);
1683
1684	/* if mapping failed free memory back to system since
1685	 * there isn't much point in holding memory we can't use
1686	 */
1687	if (dma_mapping_error(rx_ring->dev, dma)) {
1688		__free_pages(page, i40e_rx_pg_order(rx_ring));
1689		rx_ring->rx_stats.alloc_page_failed++;
1690		return false;
1691	}
1692
1693	bi->dma = dma;
1694	bi->page = page;
1695	bi->page_offset = rx_ring->rx_offset;
1696	page_ref_add(page, USHRT_MAX - 1);
1697	bi->pagecnt_bias = USHRT_MAX;
1698
 
 
 
1699	return true;
1700}
1701
1702/**
1703 * i40e_alloc_rx_buffers - Replace used receive buffers
1704 * @rx_ring: ring to place buffers on
1705 * @cleaned_count: number of buffers to replace
1706 *
1707 * Returns false if all allocations were successful, true if any fail
1708 **/
1709bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1710{
1711	u16 ntu = rx_ring->next_to_use;
1712	union i40e_rx_desc *rx_desc;
1713	struct i40e_rx_buffer *bi;
 
1714
1715	/* do nothing if no valid netdev defined */
1716	if (!rx_ring->netdev || !cleaned_count)
1717		return false;
1718
1719	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1720	bi = i40e_rx_bi(rx_ring, ntu);
 
 
1721
1722	do {
1723		if (!i40e_alloc_mapped_page(rx_ring, bi))
1724			goto no_buffers;
 
 
 
 
 
 
 
 
 
 
1725
1726		/* sync the buffer for use by the device */
1727		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1728						 bi->page_offset,
1729						 rx_ring->rx_buf_len,
1730						 DMA_FROM_DEVICE);
1731
1732		/* Refresh the desc even if buffer_addrs didn't change
1733		 * because each write-back erases this info.
1734		 */
1735		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1736
1737		rx_desc++;
1738		bi++;
1739		ntu++;
1740		if (unlikely(ntu == rx_ring->count)) {
1741			rx_desc = I40E_RX_DESC(rx_ring, 0);
1742			bi = i40e_rx_bi(rx_ring, 0);
1743			ntu = 0;
1744		}
1745
1746		/* clear the status bits for the next_to_use descriptor */
1747		rx_desc->wb.qword1.status_error_len = 0;
1748
1749		cleaned_count--;
1750	} while (cleaned_count);
 
1751
1752	if (rx_ring->next_to_use != ntu)
1753		i40e_release_rx_desc(rx_ring, ntu);
1754
1755	return false;
1756
1757no_buffers:
1758	if (rx_ring->next_to_use != ntu)
1759		i40e_release_rx_desc(rx_ring, ntu);
1760
1761	/* make sure to come back via polling to try again after
1762	 * allocation failure
1763	 */
1764	return true;
1765}
1766
1767/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1769 * @vsi: the VSI we care about
1770 * @skb: skb currently being received and modified
1771 * @rx_desc: the receive descriptor
 
 
1772 **/
1773static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1774				    struct sk_buff *skb,
1775				    union i40e_rx_desc *rx_desc)
 
 
1776{
1777	struct i40e_rx_ptype_decoded decoded;
1778	u32 rx_error, rx_status;
1779	bool ipv4, ipv6;
1780	u8 ptype;
1781	u64 qword;
1782
1783	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1784	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1785	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1786		   I40E_RXD_QW1_ERROR_SHIFT;
1787	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1788		    I40E_RXD_QW1_STATUS_SHIFT;
1789	decoded = decode_rx_desc_ptype(ptype);
1790
1791	skb->ip_summed = CHECKSUM_NONE;
1792
1793	skb_checksum_none_assert(skb);
1794
1795	/* Rx csum enabled and ip headers found? */
1796	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1797		return;
1798
1799	/* did the hardware decode the packet and checksum? */
1800	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1801		return;
1802
1803	/* both known and outer_ip must be set for the below code to work */
1804	if (!(decoded.known && decoded.outer_ip))
1805		return;
1806
1807	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1808	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1809	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1810	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1811
1812	if (ipv4 &&
1813	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1814			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1815		goto checksum_fail;
1816
1817	/* likely incorrect csum if alternate IP extension headers found */
1818	if (ipv6 &&
1819	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1820		/* don't increment checksum err here, non-fatal err */
1821		return;
1822
1823	/* there was some L4 error, count error and punt packet to the stack */
1824	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1825		goto checksum_fail;
1826
1827	/* handle packets that were not able to be checksummed due
1828	 * to arrival speed, in this case the stack can compute
1829	 * the csum.
1830	 */
1831	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1832		return;
1833
1834	/* If there is an outer header present that might contain a checksum
1835	 * we need to bump the checksum level by 1 to reflect the fact that
1836	 * we are indicating we validated the inner checksum.
1837	 */
1838	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1839		skb->csum_level = 1;
1840
1841	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1842	switch (decoded.inner_prot) {
1843	case I40E_RX_PTYPE_INNER_PROT_TCP:
1844	case I40E_RX_PTYPE_INNER_PROT_UDP:
1845	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1846		skb->ip_summed = CHECKSUM_UNNECESSARY;
1847		fallthrough;
1848	default:
1849		break;
1850	}
1851
1852	return;
1853
1854checksum_fail:
1855	vsi->back->hw_csum_rx_error++;
1856}
1857
1858/**
1859 * i40e_ptype_to_htype - get a hash type
1860 * @ptype: the ptype value from the descriptor
1861 *
1862 * Returns a hash type to be used by skb_set_hash
1863 **/
1864static inline int i40e_ptype_to_htype(u8 ptype)
1865{
1866	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1867
1868	if (!decoded.known)
1869		return PKT_HASH_TYPE_NONE;
1870
1871	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1872	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1873		return PKT_HASH_TYPE_L4;
1874	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1875		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1876		return PKT_HASH_TYPE_L3;
1877	else
1878		return PKT_HASH_TYPE_L2;
1879}
1880
1881/**
1882 * i40e_rx_hash - set the hash value in the skb
1883 * @ring: descriptor ring
1884 * @rx_desc: specific descriptor
1885 * @skb: skb currently being received and modified
1886 * @rx_ptype: Rx packet type
1887 **/
1888static inline void i40e_rx_hash(struct i40e_ring *ring,
1889				union i40e_rx_desc *rx_desc,
1890				struct sk_buff *skb,
1891				u8 rx_ptype)
1892{
1893	u32 hash;
1894	const __le64 rss_mask =
1895		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1896			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1897
1898	if (!(ring->netdev->features & NETIF_F_RXHASH))
1899		return;
1900
1901	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1902		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1903		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1904	}
1905}
1906
1907/**
1908 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1909 * @rx_ring: rx descriptor ring packet is being transacted on
1910 * @rx_desc: pointer to the EOP Rx descriptor
1911 * @skb: pointer to current skb being populated
1912 *
1913 * This function checks the ring, descriptor, and packet information in
1914 * order to populate the hash, checksum, VLAN, protocol, and
1915 * other fields within the skb.
1916 **/
1917void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1918			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1919{
1920	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1921	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1922			I40E_RXD_QW1_STATUS_SHIFT;
1923	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1924	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1925		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1926	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1927		      I40E_RXD_QW1_PTYPE_SHIFT;
1928
1929	if (unlikely(tsynvalid))
1930		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1931
1932	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1933
1934	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1935
1936	skb_record_rx_queue(skb, rx_ring->queue_index);
1937
1938	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1939		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1940
1941		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1942				       le16_to_cpu(vlan_tag));
1943	}
1944
1945	/* modifies the skb - consumes the enet header */
1946	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1947}
1948
1949/**
1950 * i40e_cleanup_headers - Correct empty headers
1951 * @rx_ring: rx descriptor ring packet is being transacted on
1952 * @skb: pointer to current skb being fixed
1953 * @rx_desc: pointer to the EOP Rx descriptor
1954 *
1955 * In addition if skb is not at least 60 bytes we need to pad it so that
1956 * it is large enough to qualify as a valid Ethernet frame.
1957 *
1958 * Returns true if an error was encountered and skb was freed.
1959 **/
1960static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1961				 union i40e_rx_desc *rx_desc)
1962
1963{
1964	/* ERR_MASK will only have valid bits if EOP set, and
1965	 * what we are doing here is actually checking
1966	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1967	 * the error field
1968	 */
1969	if (unlikely(i40e_test_staterr(rx_desc,
1970				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1971		dev_kfree_skb_any(skb);
1972		return true;
1973	}
 
1974
1975	/* if eth_skb_pad returns an error the skb was freed */
1976	if (eth_skb_pad(skb))
1977		return true;
1978
1979	return false;
1980}
 
 
 
 
 
 
 
 
 
1981
1982/**
1983 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1984 * @rx_buffer: buffer containing the page
1985 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1986 *
1987 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1988 * which will assign the current buffer to the buffer that next_to_alloc is
1989 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1990 * page freed
1991 */
1992static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1993				   int rx_buffer_pgcnt)
1994{
1995	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1996	struct page *page = rx_buffer->page;
1997
1998	/* Is any reuse possible? */
1999	if (!dev_page_is_reusable(page))
2000		return false;
2001
2002#if (PAGE_SIZE < 8192)
2003	/* if we are only owner of page we can reuse it */
2004	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2005		return false;
2006#else
2007#define I40E_LAST_OFFSET \
2008	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2009	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
2010		return false;
2011#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012
2013	/* If we have drained the page fragment pool we need to update
2014	 * the pagecnt_bias and page count so that we fully restock the
2015	 * number of references the driver holds.
2016	 */
2017	if (unlikely(pagecnt_bias == 1)) {
2018		page_ref_add(page, USHRT_MAX - 1);
2019		rx_buffer->pagecnt_bias = USHRT_MAX;
2020	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2021
2022	return true;
2023}
2024
2025/**
2026 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
2027 * @rx_ring: rx descriptor ring to transact packets on
2028 * @rx_buffer: buffer containing page to add
2029 * @skb: sk_buff to place the data into
2030 * @size: packet length from rx_desc
2031 *
2032 * This function will add the data contained in rx_buffer->page to the skb.
2033 * It will just attach the page as a frag to the skb.
2034 *
2035 * The function will then update the page offset.
2036 **/
2037static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
2038			     struct i40e_rx_buffer *rx_buffer,
2039			     struct sk_buff *skb,
2040			     unsigned int size)
2041{
2042#if (PAGE_SIZE < 8192)
2043	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2044#else
2045	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
2046#endif
2047
2048	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
2049			rx_buffer->page_offset, size, truesize);
 
 
 
2050
2051	/* page is being used so we must update the page offset */
2052#if (PAGE_SIZE < 8192)
2053	rx_buffer->page_offset ^= truesize;
2054#else
2055	rx_buffer->page_offset += truesize;
2056#endif
2057}
2058
2059/**
2060 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2061 * @rx_ring: rx descriptor ring to transact packets on
2062 * @size: size of buffer to add to skb
2063 * @rx_buffer_pgcnt: buffer page refcount
2064 *
2065 * This function will pull an Rx buffer from the ring and synchronize it
2066 * for use by the CPU.
2067 */
2068static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2069						 const unsigned int size,
2070						 int *rx_buffer_pgcnt)
2071{
2072	struct i40e_rx_buffer *rx_buffer;
2073
2074	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2075	*rx_buffer_pgcnt =
2076#if (PAGE_SIZE < 8192)
2077		page_count(rx_buffer->page);
2078#else
2079		0;
2080#endif
2081	prefetch_page_address(rx_buffer->page);
2082
2083	/* we are reusing so sync this buffer for CPU use */
2084	dma_sync_single_range_for_cpu(rx_ring->dev,
2085				      rx_buffer->dma,
2086				      rx_buffer->page_offset,
2087				      size,
2088				      DMA_FROM_DEVICE);
2089
2090	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2091	rx_buffer->pagecnt_bias--;
2092
2093	return rx_buffer;
2094}
2095
2096/**
2097 * i40e_construct_skb - Allocate skb and populate it
2098 * @rx_ring: rx descriptor ring to transact packets on
2099 * @rx_buffer: rx buffer to pull data from
2100 * @xdp: xdp_buff pointing to the data
2101 *
2102 * This function allocates an skb.  It then populates it with the page
2103 * data from the current receive descriptor, taking care to set up the
2104 * skb correctly.
2105 */
2106static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2107					  struct i40e_rx_buffer *rx_buffer,
2108					  struct xdp_buff *xdp)
2109{
2110	unsigned int size = xdp->data_end - xdp->data;
2111#if (PAGE_SIZE < 8192)
2112	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2113#else
2114	unsigned int truesize = SKB_DATA_ALIGN(size);
2115#endif
2116	unsigned int headlen;
2117	struct sk_buff *skb;
2118
2119	/* prefetch first cache line of first page */
2120	net_prefetch(xdp->data);
2121
2122	/* Note, we get here by enabling legacy-rx via:
2123	 *
2124	 *    ethtool --set-priv-flags <dev> legacy-rx on
2125	 *
2126	 * In this mode, we currently get 0 extra XDP headroom as
2127	 * opposed to having legacy-rx off, where we process XDP
2128	 * packets going to stack via i40e_build_skb(). The latter
2129	 * provides us currently with 192 bytes of headroom.
2130	 *
2131	 * For i40e_construct_skb() mode it means that the
2132	 * xdp->data_meta will always point to xdp->data, since
2133	 * the helper cannot expand the head. Should this ever
2134	 * change in future for legacy-rx mode on, then lets also
2135	 * add xdp->data_meta handling here.
2136	 */
2137
2138	/* allocate a skb to store the frags */
2139	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2140			       I40E_RX_HDR_SIZE,
2141			       GFP_ATOMIC | __GFP_NOWARN);
2142	if (unlikely(!skb))
2143		return NULL;
2144
2145	/* Determine available headroom for copy */
2146	headlen = size;
2147	if (headlen > I40E_RX_HDR_SIZE)
2148		headlen = eth_get_headlen(skb->dev, xdp->data,
2149					  I40E_RX_HDR_SIZE);
2150
2151	/* align pull length to size of long to optimize memcpy performance */
2152	memcpy(__skb_put(skb, headlen), xdp->data,
2153	       ALIGN(headlen, sizeof(long)));
2154
2155	/* update all of the pointers */
2156	size -= headlen;
2157	if (size) {
2158		skb_add_rx_frag(skb, 0, rx_buffer->page,
2159				rx_buffer->page_offset + headlen,
2160				size, truesize);
2161
2162		/* buffer is used by skb, update page_offset */
2163#if (PAGE_SIZE < 8192)
2164		rx_buffer->page_offset ^= truesize;
2165#else
2166		rx_buffer->page_offset += truesize;
2167#endif
2168	} else {
2169		/* buffer is unused, reset bias back to rx_buffer */
2170		rx_buffer->pagecnt_bias++;
2171	}
2172
2173	return skb;
2174}
2175
2176/**
2177 * i40e_build_skb - Build skb around an existing buffer
2178 * @rx_ring: Rx descriptor ring to transact packets on
2179 * @rx_buffer: Rx buffer to pull data from
2180 * @xdp: xdp_buff pointing to the data
2181 *
2182 * This function builds an skb around an existing Rx buffer, taking care
2183 * to set up the skb correctly and avoid any memcpy overhead.
2184 */
2185static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2186				      struct i40e_rx_buffer *rx_buffer,
2187				      struct xdp_buff *xdp)
2188{
2189	unsigned int metasize = xdp->data - xdp->data_meta;
2190#if (PAGE_SIZE < 8192)
2191	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2192#else
2193	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2194				SKB_DATA_ALIGN(xdp->data_end -
2195					       xdp->data_hard_start);
2196#endif
2197	struct sk_buff *skb;
2198
2199	/* Prefetch first cache line of first page. If xdp->data_meta
2200	 * is unused, this points exactly as xdp->data, otherwise we
2201	 * likely have a consumer accessing first few bytes of meta
2202	 * data, and then actual data.
2203	 */
2204	net_prefetch(xdp->data_meta);
2205
2206	/* build an skb around the page buffer */
2207	skb = build_skb(xdp->data_hard_start, truesize);
2208	if (unlikely(!skb))
2209		return NULL;
2210
2211	/* update pointers within the skb to store the data */
2212	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2213	__skb_put(skb, xdp->data_end - xdp->data);
2214	if (metasize)
2215		skb_metadata_set(skb, metasize);
2216
2217	/* buffer is used by skb, update page_offset */
2218#if (PAGE_SIZE < 8192)
2219	rx_buffer->page_offset ^= truesize;
2220#else
2221	rx_buffer->page_offset += truesize;
2222#endif
2223
2224	return skb;
2225}
2226
2227/**
2228 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2229 * @rx_ring: rx descriptor ring to transact packets on
2230 * @rx_buffer: rx buffer to pull data from
2231 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2232 *
2233 * This function will clean up the contents of the rx_buffer.  It will
2234 * either recycle the buffer or unmap it and free the associated resources.
2235 */
2236static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2237			       struct i40e_rx_buffer *rx_buffer,
2238			       int rx_buffer_pgcnt)
2239{
2240	if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2241		/* hand second half of page back to the ring */
2242		i40e_reuse_rx_page(rx_ring, rx_buffer);
2243	} else {
2244		/* we are not reusing the buffer so unmap it */
2245		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2246				     i40e_rx_pg_size(rx_ring),
2247				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2248		__page_frag_cache_drain(rx_buffer->page,
2249					rx_buffer->pagecnt_bias);
2250		/* clear contents of buffer_info */
2251		rx_buffer->page = NULL;
2252	}
2253}
2254
2255/**
2256 * i40e_is_non_eop - process handling of non-EOP buffers
2257 * @rx_ring: Rx ring being processed
2258 * @rx_desc: Rx descriptor for current buffer
2259 *
2260 * If the buffer is an EOP buffer, this function exits returning false,
2261 * otherwise return true indicating that this is in fact a non-EOP buffer.
2262 */
2263static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2264			    union i40e_rx_desc *rx_desc)
2265{
2266	/* if we are the last buffer then there is nothing else to do */
2267#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2268	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2269		return false;
2270
2271	rx_ring->rx_stats.non_eop_descs++;
2272
2273	return true;
2274}
2275
2276static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2277			      struct i40e_ring *xdp_ring);
2278
2279int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2280{
2281	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2282
2283	if (unlikely(!xdpf))
2284		return I40E_XDP_CONSUMED;
2285
2286	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2287}
2288
2289/**
2290 * i40e_run_xdp - run an XDP program
2291 * @rx_ring: Rx ring being processed
2292 * @xdp: XDP buffer containing the frame
2293 **/
2294static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
2295{
2296	int err, result = I40E_XDP_PASS;
2297	struct i40e_ring *xdp_ring;
2298	struct bpf_prog *xdp_prog;
2299	u32 act;
2300
2301	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2302
2303	if (!xdp_prog)
2304		goto xdp_out;
2305
2306	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2307
2308	act = bpf_prog_run_xdp(xdp_prog, xdp);
2309	switch (act) {
2310	case XDP_PASS:
2311		break;
2312	case XDP_TX:
2313		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2314		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2315		if (result == I40E_XDP_CONSUMED)
2316			goto out_failure;
2317		break;
2318	case XDP_REDIRECT:
2319		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2320		if (err)
2321			goto out_failure;
2322		result = I40E_XDP_REDIR;
2323		break;
2324	default:
2325		bpf_warn_invalid_xdp_action(act);
2326		fallthrough;
2327	case XDP_ABORTED:
2328out_failure:
2329		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2330		fallthrough; /* handle aborts by dropping packet */
2331	case XDP_DROP:
2332		result = I40E_XDP_CONSUMED;
2333		break;
2334	}
2335xdp_out:
2336	return result;
2337}
2338
2339/**
2340 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2341 * @rx_ring: Rx ring
2342 * @rx_buffer: Rx buffer to adjust
2343 * @size: Size of adjustment
2344 **/
2345static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2346				struct i40e_rx_buffer *rx_buffer,
2347				unsigned int size)
2348{
2349	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2350
2351#if (PAGE_SIZE < 8192)
2352	rx_buffer->page_offset ^= truesize;
2353#else
2354	rx_buffer->page_offset += truesize;
2355#endif
2356}
2357
2358/**
2359 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2360 * @xdp_ring: XDP Tx ring
2361 *
2362 * This function updates the XDP Tx ring tail register.
2363 **/
2364void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2365{
2366	/* Force memory writes to complete before letting h/w
2367	 * know there are new descriptors to fetch.
2368	 */
2369	wmb();
2370	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2371}
2372
2373/**
2374 * i40e_update_rx_stats - Update Rx ring statistics
2375 * @rx_ring: rx descriptor ring
2376 * @total_rx_bytes: number of bytes received
2377 * @total_rx_packets: number of packets received
2378 *
2379 * This function updates the Rx ring statistics.
2380 **/
2381void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2382			  unsigned int total_rx_bytes,
2383			  unsigned int total_rx_packets)
2384{
2385	u64_stats_update_begin(&rx_ring->syncp);
2386	rx_ring->stats.packets += total_rx_packets;
2387	rx_ring->stats.bytes += total_rx_bytes;
2388	u64_stats_update_end(&rx_ring->syncp);
2389	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2390	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2391}
2392
2393/**
2394 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2395 * @rx_ring: Rx ring
2396 * @xdp_res: Result of the receive batch
2397 *
2398 * This function bumps XDP Tx tail and/or flush redirect map, and
2399 * should be called when a batch of packets has been processed in the
2400 * napi loop.
2401 **/
2402void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2403{
2404	if (xdp_res & I40E_XDP_REDIR)
2405		xdp_do_flush_map();
2406
2407	if (xdp_res & I40E_XDP_TX) {
2408		struct i40e_ring *xdp_ring =
2409			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2410
2411		i40e_xdp_ring_update_tail(xdp_ring);
2412	}
2413}
2414
2415/**
2416 * i40e_inc_ntc: Advance the next_to_clean index
2417 * @rx_ring: Rx ring
2418 **/
2419static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2420{
2421	u32 ntc = rx_ring->next_to_clean + 1;
2422
2423	ntc = (ntc < rx_ring->count) ? ntc : 0;
2424	rx_ring->next_to_clean = ntc;
2425	prefetch(I40E_RX_DESC(rx_ring, ntc));
2426}
2427
2428/**
2429 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2430 * @rx_ring: rx descriptor ring to transact packets on
2431 * @budget: Total limit on number of packets to process
2432 *
2433 * This function provides a "bounce buffer" approach to Rx interrupt
2434 * processing.  The advantage to this is that on systems that have
2435 * expensive overhead for IOMMU access this provides a means of avoiding
2436 * it by maintaining the mapping of the page to the system.
2437 *
2438 * Returns amount of work completed
2439 **/
2440static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2441{
2442	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2443	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444	unsigned int offset = rx_ring->rx_offset;
2445	struct sk_buff *skb = rx_ring->skb;
2446	unsigned int xdp_xmit = 0;
 
2447	bool failure = false;
2448	struct xdp_buff xdp;
2449	int xdp_res = 0;
2450
2451#if (PAGE_SIZE < 8192)
2452	frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2453#endif
2454	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2455
2456	while (likely(total_rx_packets < (unsigned int)budget)) {
2457		struct i40e_rx_buffer *rx_buffer;
2458		union i40e_rx_desc *rx_desc;
2459		int rx_buffer_pgcnt;
2460		unsigned int size;
2461		u64 qword;
2462
 
 
 
 
2463		/* return some buffers to hardware, one at a time is too slow */
2464		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2465			failure = failure ||
2466				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
 
2467			cleaned_count = 0;
2468		}
2469
2470		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
 
 
 
 
2471
2472		/* status_error_len will always be zero for unused descriptors
2473		 * because it's cleared in cleanup, and overlaps with hdr_addr
2474		 * which is always zero because packet split isn't used, if the
2475		 * hardware wrote DD then the length will be non-zero
2476		 */
2477		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2478
2479		/* This memory barrier is needed to keep us from reading
2480		 * any other fields out of the rx_desc until we have
2481		 * verified the descriptor has been written back.
2482		 */
2483		dma_rmb();
2484
2485		if (i40e_rx_is_programming_status(qword)) {
2486			i40e_clean_programming_status(rx_ring,
2487						      rx_desc->raw.qword[0],
2488						      qword);
2489			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2490			i40e_inc_ntc(rx_ring);
2491			i40e_reuse_rx_page(rx_ring, rx_buffer);
2492			cleaned_count++;
2493			continue;
2494		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2495
2496		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2497		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2498		if (!size)
2499			break;
2500
2501		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2502		rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2503
2504		/* retrieve a buffer from the ring */
2505		if (!skb) {
2506			unsigned char *hard_start;
2507
2508			hard_start = page_address(rx_buffer->page) +
2509				     rx_buffer->page_offset - offset;
2510			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2511#if (PAGE_SIZE > 4096)
2512			/* At larger PAGE_SIZE, frame_sz depend on len size */
2513			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2514#endif
2515			xdp_res = i40e_run_xdp(rx_ring, &xdp);
2516		}
2517
2518		if (xdp_res) {
2519			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2520				xdp_xmit |= xdp_res;
2521				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2522			} else {
2523				rx_buffer->pagecnt_bias++;
2524			}
2525			total_rx_bytes += size;
2526			total_rx_packets++;
2527		} else if (skb) {
2528			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2529		} else if (ring_uses_build_skb(rx_ring)) {
2530			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2531		} else {
2532			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2533		}
2534
2535		/* exit if we failed to retrieve a buffer */
2536		if (!xdp_res && !skb) {
2537			rx_ring->rx_stats.alloc_buff_failed++;
2538			rx_buffer->pagecnt_bias++;
2539			break;
2540		}
2541
2542		i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2543		cleaned_count++;
2544
2545		i40e_inc_ntc(rx_ring);
2546		if (i40e_is_non_eop(rx_ring, rx_desc))
2547			continue;
2548
2549		if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2550			skb = NULL;
2551			continue;
2552		}
2553
2554		/* probably a little skewed due to removing CRC */
2555		total_rx_bytes += skb->len;
 
2556
2557		/* populate checksum, VLAN, and protocol */
2558		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2559
2560		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2561		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2562		skb = NULL;
2563
2564		/* update budget accounting */
2565		total_rx_packets++;
2566	}
 
 
 
 
 
 
 
2567
2568	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2569	rx_ring->skb = skb;
2570
2571	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
 
 
 
 
 
2572
2573	/* guarantee a trip back through this routine if there was a failure */
2574	return failure ? budget : (int)total_rx_packets;
2575}
2576
2577static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2578{
2579	u32 val;
2580
2581	/* We don't bother with setting the CLEARPBA bit as the data sheet
2582	 * points out doing so is "meaningless since it was already
2583	 * auto-cleared". The auto-clearing happens when the interrupt is
2584	 * asserted.
2585	 *
2586	 * Hardware errata 28 for also indicates that writing to a
2587	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2588	 * an event in the PBA anyway so we need to rely on the automask
2589	 * to hold pending events for us until the interrupt is re-enabled
2590	 *
2591	 * The itr value is reported in microseconds, and the register
2592	 * value is recorded in 2 microsecond units. For this reason we
2593	 * only need to shift by the interval shift - 1 instead of the
2594	 * full value.
2595	 */
2596	itr &= I40E_ITR_MASK;
2597
2598	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 
 
 
2599	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2600	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2601
2602	return val;
2603}
2604
2605/* a small macro to shorten up some long lines */
2606#define INTREG I40E_PFINT_DYN_CTLN
2607
2608/* The act of updating the ITR will cause it to immediately trigger. In order
2609 * to prevent this from throwing off adaptive update statistics we defer the
2610 * update so that it can only happen so often. So after either Tx or Rx are
2611 * updated we make the adaptive scheme wait until either the ITR completely
2612 * expires via the next_update expiration or we have been through at least
2613 * 3 interrupts.
2614 */
2615#define ITR_COUNTDOWN_START 3
2616
2617/**
2618 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2619 * @vsi: the VSI we care about
2620 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2621 *
2622 **/
2623static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2624					  struct i40e_q_vector *q_vector)
2625{
2626	struct i40e_hw *hw = &vsi->back->hw;
2627	u32 intval;
 
 
 
 
 
2628
2629	/* If we don't have MSIX, then we only need to re-enable icr0 */
2630	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2631		i40e_irq_dynamic_enable_icr0(vsi->back);
2632		return;
 
 
 
 
 
 
 
 
 
 
2633	}
2634
2635	/* These will do nothing if dynamic updates are not enabled */
2636	i40e_update_itr(q_vector, &q_vector->tx);
2637	i40e_update_itr(q_vector, &q_vector->rx);
 
2638
2639	/* This block of logic allows us to get away with only updating
2640	 * one ITR value with each interrupt. The idea is to perform a
2641	 * pseudo-lazy update with the following criteria.
2642	 *
2643	 * 1. Rx is given higher priority than Tx if both are in same state
2644	 * 2. If we must reduce an ITR that is given highest priority.
2645	 * 3. We then give priority to increasing ITR based on amount.
2646	 */
2647	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2648		/* Rx ITR needs to be reduced, this is highest priority */
2649		intval = i40e_buildreg_itr(I40E_RX_ITR,
2650					   q_vector->rx.target_itr);
2651		q_vector->rx.current_itr = q_vector->rx.target_itr;
2652		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2653	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2654		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2655		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2656		/* Tx ITR needs to be reduced, this is second priority
2657		 * Tx ITR needs to be increased more than Rx, fourth priority
 
 
2658		 */
2659		intval = i40e_buildreg_itr(I40E_TX_ITR,
2660					   q_vector->tx.target_itr);
2661		q_vector->tx.current_itr = q_vector->tx.target_itr;
2662		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2663	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2664		/* Rx ITR needs to be increased, third priority */
2665		intval = i40e_buildreg_itr(I40E_RX_ITR,
2666					   q_vector->rx.target_itr);
2667		q_vector->rx.current_itr = q_vector->rx.target_itr;
2668		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2669	} else {
2670		/* No ITR update, lowest priority */
2671		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2672		if (q_vector->itr_countdown)
2673			q_vector->itr_countdown--;
2674	}
2675
2676	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2677		wr32(hw, INTREG(q_vector->reg_idx), intval);
 
 
 
 
 
 
2678}
2679
2680/**
2681 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2682 * @napi: napi struct with our devices info in it
2683 * @budget: amount of work driver is allowed to do this pass, in packets
2684 *
2685 * This function will clean all queues associated with a q_vector.
2686 *
2687 * Returns the amount of work done
2688 **/
2689int i40e_napi_poll(struct napi_struct *napi, int budget)
2690{
2691	struct i40e_q_vector *q_vector =
2692			       container_of(napi, struct i40e_q_vector, napi);
2693	struct i40e_vsi *vsi = q_vector->vsi;
2694	struct i40e_ring *ring;
2695	bool clean_complete = true;
2696	bool arm_wb = false;
2697	int budget_per_ring;
2698	int work_done = 0;
2699
2700	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2701		napi_complete(napi);
2702		return 0;
2703	}
2704
 
 
2705	/* Since the actual Tx work is minimal, we can give the Tx a larger
2706	 * budget and be more aggressive about cleaning up the Tx descriptors.
2707	 */
2708	i40e_for_each_ring(ring, q_vector->tx) {
2709		bool wd = ring->xsk_pool ?
2710			  i40e_clean_xdp_tx_irq(vsi, ring) :
2711			  i40e_clean_tx_irq(vsi, ring, budget);
2712
2713		if (!wd) {
2714			clean_complete = false;
2715			continue;
2716		}
2717		arm_wb |= ring->arm_wb;
2718		ring->arm_wb = false;
2719	}
2720
2721	/* Handle case where we are called by netpoll with a budget of 0 */
2722	if (budget <= 0)
2723		goto tx_only;
2724
2725	/* normally we have 1 Rx ring per q_vector */
2726	if (unlikely(q_vector->num_ringpairs > 1))
2727		/* We attempt to distribute budget to each Rx queue fairly, but
2728		 * don't allow the budget to go below 1 because that would exit
2729		 * polling early.
2730		 */
2731		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2732	else
2733		/* Max of 1 Rx ring in this q_vector so give it the budget */
2734		budget_per_ring = budget;
2735
2736	i40e_for_each_ring(ring, q_vector->rx) {
2737		int cleaned = ring->xsk_pool ?
2738			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2739			      i40e_clean_rx_irq(ring, budget_per_ring);
 
 
 
2740
2741		work_done += cleaned;
2742		/* if we clean as many as budgeted, we must not be done */
2743		if (cleaned >= budget_per_ring)
2744			clean_complete = false;
2745	}
2746
2747	/* If work not completed, return budget and polling will return */
2748	if (!clean_complete) {
2749		int cpu_id = smp_processor_id();
2750
2751		/* It is possible that the interrupt affinity has changed but,
2752		 * if the cpu is pegged at 100%, polling will never exit while
2753		 * traffic continues and the interrupt will be stuck on this
2754		 * cpu.  We check to make sure affinity is correct before we
2755		 * continue to poll, otherwise we must stop polling so the
2756		 * interrupt can move to the correct cpu.
2757		 */
2758		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2759			/* Tell napi that we are done polling */
2760			napi_complete_done(napi, work_done);
2761
2762			/* Force an interrupt */
2763			i40e_force_wb(vsi, q_vector);
2764
2765			/* Return budget-1 so that polling stops */
2766			return budget - 1;
2767		}
2768tx_only:
2769		if (arm_wb) {
2770			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2771			i40e_enable_wb_on_itr(vsi, q_vector);
2772		}
2773		return budget;
2774	}
2775
2776	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2777		q_vector->arm_wb_state = false;
2778
2779	/* Exit the polling mode, but don't re-enable interrupts if stack might
2780	 * poll us due to busy-polling
2781	 */
2782	if (likely(napi_complete_done(napi, work_done)))
2783		i40e_update_enable_itr(vsi, q_vector);
2784
2785	return min(work_done, budget - 1);
 
 
2786}
2787
2788/**
2789 * i40e_atr - Add a Flow Director ATR filter
2790 * @tx_ring:  ring to add programming descriptor to
2791 * @skb:      send buffer
2792 * @tx_flags: send tx flags
2793 **/
2794static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2795		     u32 tx_flags)
2796{
2797	struct i40e_filter_program_desc *fdir_desc;
2798	struct i40e_pf *pf = tx_ring->vsi->back;
2799	union {
2800		unsigned char *network;
2801		struct iphdr *ipv4;
2802		struct ipv6hdr *ipv6;
2803	} hdr;
2804	struct tcphdr *th;
2805	unsigned int hlen;
2806	u32 flex_ptype, dtype_cmd;
2807	int l4_proto;
2808	u16 i;
2809
2810	/* make sure ATR is enabled */
2811	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2812		return;
2813
2814	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2815		return;
2816
2817	/* if sampling is disabled do nothing */
2818	if (!tx_ring->atr_sample_rate)
2819		return;
2820
2821	/* Currently only IPv4/IPv6 with TCP is supported */
2822	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2823		return;
2824
2825	/* snag network header to get L4 type and address */
2826	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2827		      skb_inner_network_header(skb) : skb_network_header(skb);
2828
2829	/* Note: tx_flags gets modified to reflect inner protocols in
2830	 * tx_enable_csum function if encap is enabled.
2831	 */
2832	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2833		/* access ihl as u8 to avoid unaligned access on ia64 */
2834		hlen = (hdr.network[0] & 0x0F) << 2;
2835		l4_proto = hdr.ipv4->protocol;
2836	} else {
2837		/* find the start of the innermost ipv6 header */
2838		unsigned int inner_hlen = hdr.network - skb->data;
2839		unsigned int h_offset = inner_hlen;
2840
2841		/* this function updates h_offset to the end of the header */
2842		l4_proto =
2843		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2844		/* hlen will contain our best estimate of the tcp header */
2845		hlen = h_offset - inner_hlen;
2846	}
2847
2848	if (l4_proto != IPPROTO_TCP)
2849		return;
2850
2851	th = (struct tcphdr *)(hdr.network + hlen);
2852
2853	/* Due to lack of space, no more new filters can be programmed */
2854	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2855		return;
2856	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
 
2857		/* HW ATR eviction will take care of removing filters on FIN
2858		 * and RST packets.
2859		 */
2860		if (th->fin || th->rst)
2861			return;
2862	}
2863
2864	tx_ring->atr_count++;
2865
2866	/* sample on all syn/fin/rst packets or once every atr sample rate */
2867	if (!th->fin &&
2868	    !th->syn &&
2869	    !th->rst &&
2870	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2871		return;
2872
2873	tx_ring->atr_count = 0;
2874
2875	/* grab the next descriptor */
2876	i = tx_ring->next_to_use;
2877	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2878
2879	i++;
2880	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2881
2882	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2883		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2884	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2885		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2886		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2887		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2888		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2889
2890	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2891
2892	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2893
2894	dtype_cmd |= (th->fin || th->rst) ?
2895		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2896		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2897		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2898		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2899
2900	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2901		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2902
2903	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2904		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2905
2906	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2907	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2908		dtype_cmd |=
2909			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2910			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2911			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2912	else
2913		dtype_cmd |=
2914			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2915			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2916			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2917
2918	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
 
2919		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2920
2921	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2922	fdir_desc->rsvd = cpu_to_le32(0);
2923	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2924	fdir_desc->fd_id = cpu_to_le32(0);
2925}
2926
2927/**
2928 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2929 * @skb:     send buffer
2930 * @tx_ring: ring to send buffer on
2931 * @flags:   the tx flags to be set
2932 *
2933 * Checks the skb and set up correspondingly several generic transmit flags
2934 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2935 *
2936 * Returns error code indicate the frame should be dropped upon error and the
2937 * otherwise  returns 0 to indicate the flags has been set properly.
2938 **/
 
 
 
 
 
2939static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2940					     struct i40e_ring *tx_ring,
2941					     u32 *flags)
 
2942{
2943	__be16 protocol = skb->protocol;
2944	u32  tx_flags = 0;
2945
2946	if (protocol == htons(ETH_P_8021Q) &&
2947	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2948		/* When HW VLAN acceleration is turned off by the user the
2949		 * stack sets the protocol to 8021q so that the driver
2950		 * can take any steps required to support the SW only
2951		 * VLAN handling.  In our case the driver doesn't need
2952		 * to take any further steps so just set the protocol
2953		 * to the encapsulated ethertype.
2954		 */
2955		skb->protocol = vlan_get_protocol(skb);
2956		goto out;
2957	}
2958
2959	/* if we have a HW VLAN tag being added, default to the HW one */
2960	if (skb_vlan_tag_present(skb)) {
2961		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2962		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2963	/* else if it is a SW VLAN, check the next protocol and store the tag */
2964	} else if (protocol == htons(ETH_P_8021Q)) {
2965		struct vlan_hdr *vhdr, _vhdr;
2966
2967		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2968		if (!vhdr)
2969			return -EINVAL;
2970
2971		protocol = vhdr->h_vlan_encapsulated_proto;
2972		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2973		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2974	}
2975
2976	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2977		goto out;
2978
2979	/* Insert 802.1p priority into VLAN header */
2980	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2981	    (skb->priority != TC_PRIO_CONTROL)) {
2982		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2983		tx_flags |= (skb->priority & 0x7) <<
2984				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2985		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2986			struct vlan_ethhdr *vhdr;
2987			int rc;
2988
2989			rc = skb_cow_head(skb, 0);
2990			if (rc < 0)
2991				return rc;
2992			vhdr = (struct vlan_ethhdr *)skb->data;
2993			vhdr->h_vlan_TCI = htons(tx_flags >>
2994						 I40E_TX_FLAGS_VLAN_SHIFT);
2995		} else {
2996			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2997		}
2998	}
2999
3000out:
3001	*flags = tx_flags;
3002	return 0;
3003}
3004
3005/**
3006 * i40e_tso - set up the tso context descriptor
3007 * @first:    pointer to first Tx buffer for xmit
 
3008 * @hdr_len:  ptr to the size of the packet header
3009 * @cd_type_cmd_tso_mss: Quad Word 1
3010 *
3011 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3012 **/
3013static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3014		    u64 *cd_type_cmd_tso_mss)
3015{
3016	struct sk_buff *skb = first->skb;
3017	u64 cd_cmd, cd_tso_len, cd_mss;
3018	union {
3019		struct iphdr *v4;
3020		struct ipv6hdr *v6;
3021		unsigned char *hdr;
3022	} ip;
3023	union {
3024		struct tcphdr *tcp;
3025		struct udphdr *udp;
3026		unsigned char *hdr;
3027	} l4;
3028	u32 paylen, l4_offset;
3029	u16 gso_segs, gso_size;
3030	int err;
3031
3032	if (skb->ip_summed != CHECKSUM_PARTIAL)
3033		return 0;
3034
3035	if (!skb_is_gso(skb))
3036		return 0;
3037
3038	err = skb_cow_head(skb, 0);
3039	if (err < 0)
3040		return err;
3041
3042	ip.hdr = skb_network_header(skb);
3043	l4.hdr = skb_transport_header(skb);
3044
3045	/* initialize outer IP header fields */
3046	if (ip.v4->version == 4) {
3047		ip.v4->tot_len = 0;
3048		ip.v4->check = 0;
3049	} else {
3050		ip.v6->payload_len = 0;
3051	}
3052
3053	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3054					 SKB_GSO_GRE_CSUM |
3055					 SKB_GSO_IPXIP4 |
3056					 SKB_GSO_IPXIP6 |
3057					 SKB_GSO_UDP_TUNNEL |
3058					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3059		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3060		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3061			l4.udp->len = 0;
3062
3063			/* determine offset of outer transport header */
3064			l4_offset = l4.hdr - skb->data;
3065
3066			/* remove payload length from outer checksum */
3067			paylen = skb->len - l4_offset;
3068			csum_replace_by_diff(&l4.udp->check,
3069					     (__force __wsum)htonl(paylen));
3070		}
3071
3072		/* reset pointers to inner headers */
3073		ip.hdr = skb_inner_network_header(skb);
3074		l4.hdr = skb_inner_transport_header(skb);
3075
3076		/* initialize inner IP header fields */
3077		if (ip.v4->version == 4) {
3078			ip.v4->tot_len = 0;
3079			ip.v4->check = 0;
3080		} else {
3081			ip.v6->payload_len = 0;
3082		}
3083	}
3084
3085	/* determine offset of inner transport header */
3086	l4_offset = l4.hdr - skb->data;
3087
3088	/* remove payload length from inner checksum */
3089	paylen = skb->len - l4_offset;
3090
3091	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3092		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3093		/* compute length of segmentation header */
3094		*hdr_len = sizeof(*l4.udp) + l4_offset;
3095	} else {
3096		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3097		/* compute length of segmentation header */
3098		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3099	}
3100
3101	/* pull values out of skb_shinfo */
3102	gso_size = skb_shinfo(skb)->gso_size;
3103	gso_segs = skb_shinfo(skb)->gso_segs;
3104
3105	/* update GSO size and bytecount with header size */
3106	first->gso_segs = gso_segs;
3107	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3108
3109	/* find the field values */
3110	cd_cmd = I40E_TX_CTX_DESC_TSO;
3111	cd_tso_len = skb->len - *hdr_len;
3112	cd_mss = gso_size;
3113	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3114				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3115				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3116	return 1;
3117}
3118
3119/**
3120 * i40e_tsyn - set up the tsyn context descriptor
3121 * @tx_ring:  ptr to the ring to send
3122 * @skb:      ptr to the skb we're sending
3123 * @tx_flags: the collected send information
3124 * @cd_type_cmd_tso_mss: Quad Word 1
3125 *
3126 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3127 **/
3128static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3129		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3130{
3131	struct i40e_pf *pf;
3132
3133	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3134		return 0;
3135
3136	/* Tx timestamps cannot be sampled when doing TSO */
3137	if (tx_flags & I40E_TX_FLAGS_TSO)
3138		return 0;
3139
3140	/* only timestamp the outbound packet if the user has requested it and
3141	 * we are not already transmitting a packet to be timestamped
3142	 */
3143	pf = i40e_netdev_to_pf(tx_ring->netdev);
3144	if (!(pf->flags & I40E_FLAG_PTP))
3145		return 0;
3146
3147	if (pf->ptp_tx &&
3148	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3149		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3150		pf->ptp_tx_start = jiffies;
3151		pf->ptp_tx_skb = skb_get(skb);
3152	} else {
3153		pf->tx_hwtstamp_skipped++;
3154		return 0;
3155	}
3156
3157	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3158				I40E_TXD_CTX_QW1_CMD_SHIFT;
3159
3160	return 1;
3161}
3162
3163/**
3164 * i40e_tx_enable_csum - Enable Tx checksum offloads
3165 * @skb: send buffer
3166 * @tx_flags: pointer to Tx flags currently set
3167 * @td_cmd: Tx descriptor command bits to set
3168 * @td_offset: Tx descriptor header offsets to set
3169 * @tx_ring: Tx descriptor ring
3170 * @cd_tunneling: ptr to context desc bits
3171 **/
3172static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3173			       u32 *td_cmd, u32 *td_offset,
3174			       struct i40e_ring *tx_ring,
3175			       u32 *cd_tunneling)
3176{
3177	union {
3178		struct iphdr *v4;
3179		struct ipv6hdr *v6;
3180		unsigned char *hdr;
3181	} ip;
3182	union {
3183		struct tcphdr *tcp;
3184		struct udphdr *udp;
3185		unsigned char *hdr;
3186	} l4;
3187	unsigned char *exthdr;
3188	u32 offset, cmd = 0;
3189	__be16 frag_off;
3190	u8 l4_proto = 0;
3191
3192	if (skb->ip_summed != CHECKSUM_PARTIAL)
3193		return 0;
3194
3195	ip.hdr = skb_network_header(skb);
3196	l4.hdr = skb_transport_header(skb);
3197
3198	/* compute outer L2 header size */
3199	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3200
3201	if (skb->encapsulation) {
3202		u32 tunnel = 0;
3203		/* define outer network header type */
3204		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3205			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3206				  I40E_TX_CTX_EXT_IP_IPV4 :
3207				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3208
3209			l4_proto = ip.v4->protocol;
3210		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3211			int ret;
3212
3213			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3214
3215			exthdr = ip.hdr + sizeof(*ip.v6);
3216			l4_proto = ip.v6->nexthdr;
3217			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3218					       &l4_proto, &frag_off);
3219			if (ret < 0)
3220				return -1;
3221		}
3222
 
 
 
 
 
 
 
3223		/* define outer transport */
3224		switch (l4_proto) {
3225		case IPPROTO_UDP:
3226			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3227			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3228			break;
3229		case IPPROTO_GRE:
3230			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3231			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3232			break;
3233		case IPPROTO_IPIP:
3234		case IPPROTO_IPV6:
3235			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3236			l4.hdr = skb_inner_network_header(skb);
3237			break;
3238		default:
3239			if (*tx_flags & I40E_TX_FLAGS_TSO)
3240				return -1;
3241
3242			skb_checksum_help(skb);
3243			return 0;
3244		}
3245
3246		/* compute outer L3 header size */
3247		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3248			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3249
3250		/* switch IP header pointer from outer to inner header */
3251		ip.hdr = skb_inner_network_header(skb);
3252
3253		/* compute tunnel header size */
3254		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3255			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3256
3257		/* indicate if we need to offload outer UDP header */
3258		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3259		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3260		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3261			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3262
3263		/* record tunnel offload values */
3264		*cd_tunneling |= tunnel;
3265
3266		/* switch L4 header pointer from outer to inner */
3267		l4.hdr = skb_inner_transport_header(skb);
3268		l4_proto = 0;
3269
3270		/* reset type as we transition from outer to inner headers */
3271		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3272		if (ip.v4->version == 4)
3273			*tx_flags |= I40E_TX_FLAGS_IPV4;
3274		if (ip.v6->version == 6)
3275			*tx_flags |= I40E_TX_FLAGS_IPV6;
3276	}
3277
3278	/* Enable IP checksum offloads */
3279	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3280		l4_proto = ip.v4->protocol;
3281		/* the stack computes the IP header already, the only time we
3282		 * need the hardware to recompute it is in the case of TSO.
3283		 */
3284		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3285		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3286		       I40E_TX_DESC_CMD_IIPT_IPV4;
3287	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3288		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3289
3290		exthdr = ip.hdr + sizeof(*ip.v6);
3291		l4_proto = ip.v6->nexthdr;
3292		if (l4.hdr != exthdr)
3293			ipv6_skip_exthdr(skb, exthdr - skb->data,
3294					 &l4_proto, &frag_off);
3295	}
3296
3297	/* compute inner L3 header size */
3298	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3299
3300	/* Enable L4 checksum offloads */
3301	switch (l4_proto) {
3302	case IPPROTO_TCP:
3303		/* enable checksum offloads */
3304		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3305		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3306		break;
3307	case IPPROTO_SCTP:
3308		/* enable SCTP checksum offload */
3309		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3310		offset |= (sizeof(struct sctphdr) >> 2) <<
3311			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3312		break;
3313	case IPPROTO_UDP:
3314		/* enable UDP checksum offload */
3315		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3316		offset |= (sizeof(struct udphdr) >> 2) <<
3317			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3318		break;
3319	default:
3320		if (*tx_flags & I40E_TX_FLAGS_TSO)
3321			return -1;
3322		skb_checksum_help(skb);
3323		return 0;
3324	}
3325
3326	*td_cmd |= cmd;
3327	*td_offset |= offset;
3328
3329	return 1;
3330}
3331
3332/**
3333 * i40e_create_tx_ctx - Build the Tx context descriptor
3334 * @tx_ring:  ring to create the descriptor on
3335 * @cd_type_cmd_tso_mss: Quad Word 1
3336 * @cd_tunneling: Quad Word 0 - bits 0-31
3337 * @cd_l2tag2: Quad Word 0 - bits 32-63
3338 **/
3339static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3340			       const u64 cd_type_cmd_tso_mss,
3341			       const u32 cd_tunneling, const u32 cd_l2tag2)
3342{
3343	struct i40e_tx_context_desc *context_desc;
3344	int i = tx_ring->next_to_use;
3345
3346	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3347	    !cd_tunneling && !cd_l2tag2)
3348		return;
3349
3350	/* grab the next descriptor */
3351	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3352
3353	i++;
3354	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3355
3356	/* cpu_to_le32 and assign to struct fields */
3357	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3358	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3359	context_desc->rsvd = cpu_to_le16(0);
3360	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3361}
3362
3363/**
3364 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3365 * @tx_ring: the ring to be checked
3366 * @size:    the size buffer we want to assure is available
3367 *
3368 * Returns -EBUSY if a stop is needed, else 0
3369 **/
3370int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3371{
3372	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3373	/* Memory barrier before checking head and tail */
3374	smp_mb();
3375
3376	/* Check again in a case another CPU has just made room available. */
3377	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3378		return -EBUSY;
3379
3380	/* A reprieve! - use start_queue because it doesn't call schedule */
3381	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3382	++tx_ring->tx_stats.restart_queue;
3383	return 0;
3384}
3385
3386/**
3387 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3388 * @skb:      send buffer
3389 *
3390 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3391 * and so we need to figure out the cases where we need to linearize the skb.
3392 *
3393 * For TSO we need to count the TSO header and segment payload separately.
3394 * As such we need to check cases where we have 7 fragments or more as we
3395 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3396 * the segment payload in the first descriptor, and another 7 for the
3397 * fragments.
3398 **/
3399bool __i40e_chk_linearize(struct sk_buff *skb)
3400{
3401	const skb_frag_t *frag, *stale;
3402	int nr_frags, sum;
3403
3404	/* no need to check if number of frags is less than 7 */
3405	nr_frags = skb_shinfo(skb)->nr_frags;
3406	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3407		return false;
3408
3409	/* We need to walk through the list and validate that each group
3410	 * of 6 fragments totals at least gso_size.
 
 
3411	 */
3412	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3413	frag = &skb_shinfo(skb)->frags[0];
3414
3415	/* Initialize size to the negative value of gso_size minus 1.  We
3416	 * use this as the worst case scenerio in which the frag ahead
3417	 * of us only provides one byte which is why we are limited to 6
3418	 * descriptors for a single transmit as the header and previous
3419	 * fragment are already consuming 2 descriptors.
3420	 */
3421	sum = 1 - skb_shinfo(skb)->gso_size;
3422
3423	/* Add size of frags 0 through 4 to create our initial sum */
3424	sum += skb_frag_size(frag++);
3425	sum += skb_frag_size(frag++);
3426	sum += skb_frag_size(frag++);
3427	sum += skb_frag_size(frag++);
3428	sum += skb_frag_size(frag++);
3429
3430	/* Walk through fragments adding latest fragment, testing it, and
3431	 * then removing stale fragments from the sum.
3432	 */
3433	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3434		int stale_size = skb_frag_size(stale);
3435
3436		sum += skb_frag_size(frag++);
3437
3438		/* The stale fragment may present us with a smaller
3439		 * descriptor than the actual fragment size. To account
3440		 * for that we need to remove all the data on the front and
3441		 * figure out what the remainder would be in the last
3442		 * descriptor associated with the fragment.
3443		 */
3444		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3445			int align_pad = -(skb_frag_off(stale)) &
3446					(I40E_MAX_READ_REQ_SIZE - 1);
3447
3448			sum -= align_pad;
3449			stale_size -= align_pad;
3450
3451			do {
3452				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3453				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3454			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3455		}
3456
3457		/* if sum is negative we failed to make sufficient progress */
3458		if (sum < 0)
3459			return true;
3460
3461		if (!nr_frags--)
 
3462			break;
3463
3464		sum -= stale_size;
3465	}
3466
3467	return false;
3468}
3469
3470/**
3471 * i40e_tx_map - Build the Tx descriptor
3472 * @tx_ring:  ring to send buffer on
3473 * @skb:      send buffer
3474 * @first:    first buffer info buffer to use
3475 * @tx_flags: collected send information
3476 * @hdr_len:  size of the packet header
3477 * @td_cmd:   the command field in the descriptor
3478 * @td_offset: offset for checksum or crc
3479 *
3480 * Returns 0 on success, -1 on failure to DMA
3481 **/
3482static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3483			      struct i40e_tx_buffer *first, u32 tx_flags,
3484			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
 
 
 
 
 
 
3485{
3486	unsigned int data_len = skb->data_len;
3487	unsigned int size = skb_headlen(skb);
3488	skb_frag_t *frag;
3489	struct i40e_tx_buffer *tx_bi;
3490	struct i40e_tx_desc *tx_desc;
3491	u16 i = tx_ring->next_to_use;
3492	u32 td_tag = 0;
3493	dma_addr_t dma;
3494	u16 desc_count = 1;
 
 
 
3495
3496	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3497		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3498		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3499			 I40E_TX_FLAGS_VLAN_SHIFT;
3500	}
3501
 
 
 
 
 
 
 
 
 
3502	first->tx_flags = tx_flags;
3503
3504	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3505
3506	tx_desc = I40E_TX_DESC(tx_ring, i);
3507	tx_bi = first;
3508
3509	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3510		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3511
3512		if (dma_mapping_error(tx_ring->dev, dma))
3513			goto dma_error;
3514
3515		/* record length, and DMA address */
3516		dma_unmap_len_set(tx_bi, len, size);
3517		dma_unmap_addr_set(tx_bi, dma, dma);
3518
3519		/* align size to end of page */
3520		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3521		tx_desc->buffer_addr = cpu_to_le64(dma);
3522
3523		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3524			tx_desc->cmd_type_offset_bsz =
3525				build_ctob(td_cmd, td_offset,
3526					   max_data, td_tag);
3527
3528			tx_desc++;
3529			i++;
3530			desc_count++;
3531
3532			if (i == tx_ring->count) {
3533				tx_desc = I40E_TX_DESC(tx_ring, 0);
3534				i = 0;
3535			}
3536
3537			dma += max_data;
3538			size -= max_data;
3539
3540			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3541			tx_desc->buffer_addr = cpu_to_le64(dma);
3542		}
3543
3544		if (likely(!data_len))
3545			break;
3546
3547		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3548							  size, td_tag);
3549
3550		tx_desc++;
3551		i++;
3552		desc_count++;
3553
3554		if (i == tx_ring->count) {
3555			tx_desc = I40E_TX_DESC(tx_ring, 0);
3556			i = 0;
3557		}
3558
3559		size = skb_frag_size(frag);
3560		data_len -= size;
3561
3562		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3563				       DMA_TO_DEVICE);
3564
3565		tx_bi = &tx_ring->tx_bi[i];
3566	}
3567
3568	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
 
3569
3570	i++;
3571	if (i == tx_ring->count)
3572		i = 0;
3573
3574	tx_ring->next_to_use = i;
3575
 
 
 
3576	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3577
3578	/* write last descriptor with EOP bit */
3579	td_cmd |= I40E_TX_DESC_CMD_EOP;
3580
3581	/* We OR these values together to check both against 4 (WB_STRIDE)
3582	 * below. This is safe since we don't re-use desc_count afterwards.
3583	 */
3584	desc_count |= ++tx_ring->packet_stride;
3585
3586	if (desc_count >= WB_STRIDE) {
3587		/* write last descriptor with RS bit set */
3588		td_cmd |= I40E_TX_DESC_CMD_RS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3589		tx_ring->packet_stride = 0;
 
 
3590	}
 
 
3591
3592	tx_desc->cmd_type_offset_bsz =
3593			build_ctob(td_cmd, td_offset, size, td_tag);
 
 
 
3594
3595	skb_tx_timestamp(skb);
 
 
3596
3597	/* Force memory writes to complete before letting h/w know there
3598	 * are new descriptors to fetch.
3599	 *
3600	 * We also use this memory barrier to make certain all of the
3601	 * status bits have been updated before next_to_watch is written.
3602	 */
3603	wmb();
3604
3605	/* set next_to_watch value indicating a packet is present */
3606	first->next_to_watch = tx_desc;
3607
3608	/* notify HW of packet */
3609	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3610		writel(i, tx_ring->tail);
3611	}
3612
3613	return 0;
3614
3615dma_error:
3616	dev_info(tx_ring->dev, "TX DMA map failed\n");
3617
3618	/* clear dma mappings for failed tx_bi map */
3619	for (;;) {
3620		tx_bi = &tx_ring->tx_bi[i];
3621		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3622		if (tx_bi == first)
3623			break;
3624		if (i == 0)
3625			i = tx_ring->count;
3626		i--;
3627	}
3628
3629	tx_ring->next_to_use = i;
3630
3631	return -1;
3632}
3633
3634static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3635				  const struct sk_buff *skb,
3636				  u16 num_tx_queues)
3637{
3638	u32 jhash_initval_salt = 0xd631614b;
3639	u32 hash;
3640
3641	if (skb->sk && skb->sk->sk_hash)
3642		hash = skb->sk->sk_hash;
3643	else
3644		hash = (__force u16)skb->protocol ^ skb->hash;
3645
3646	hash = jhash_1word(hash, jhash_initval_salt);
3647
3648	return (u16)(((u64)hash * num_tx_queues) >> 32);
3649}
3650
3651u16 i40e_lan_select_queue(struct net_device *netdev,
3652			  struct sk_buff *skb,
3653			  struct net_device __always_unused *sb_dev)
3654{
3655	struct i40e_netdev_priv *np = netdev_priv(netdev);
3656	struct i40e_vsi *vsi = np->vsi;
3657	struct i40e_hw *hw;
3658	u16 qoffset;
3659	u16 qcount;
3660	u8 tclass;
3661	u16 hash;
3662	u8 prio;
3663
3664	/* is DCB enabled at all? */
3665	if (vsi->tc_config.numtc == 1)
3666		return netdev_pick_tx(netdev, skb, sb_dev);
3667
3668	prio = skb->priority;
3669	hw = &vsi->back->hw;
3670	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3671	/* sanity check */
3672	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3673		tclass = 0;
3674
3675	/* select a queue assigned for the given TC */
3676	qcount = vsi->tc_config.tc_info[tclass].qcount;
3677	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3678
3679	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3680	return qoffset + hash;
3681}
3682
3683/**
3684 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3685 * @xdpf: data to transmit
3686 * @xdp_ring: XDP Tx ring
3687 **/
3688static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3689			      struct i40e_ring *xdp_ring)
3690{
3691	u16 i = xdp_ring->next_to_use;
3692	struct i40e_tx_buffer *tx_bi;
3693	struct i40e_tx_desc *tx_desc;
3694	void *data = xdpf->data;
3695	u32 size = xdpf->len;
3696	dma_addr_t dma;
3697
3698	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3699		xdp_ring->tx_stats.tx_busy++;
3700		return I40E_XDP_CONSUMED;
3701	}
3702	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3703	if (dma_mapping_error(xdp_ring->dev, dma))
3704		return I40E_XDP_CONSUMED;
3705
3706	tx_bi = &xdp_ring->tx_bi[i];
3707	tx_bi->bytecount = size;
3708	tx_bi->gso_segs = 1;
3709	tx_bi->xdpf = xdpf;
3710
3711	/* record length, and DMA address */
3712	dma_unmap_len_set(tx_bi, len, size);
3713	dma_unmap_addr_set(tx_bi, dma, dma);
3714
3715	tx_desc = I40E_TX_DESC(xdp_ring, i);
3716	tx_desc->buffer_addr = cpu_to_le64(dma);
3717	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3718						  | I40E_TXD_CMD,
3719						  0, size, 0);
3720
3721	/* Make certain all of the status bits have been updated
3722	 * before next_to_watch is written.
3723	 */
3724	smp_wmb();
3725
3726	xdp_ring->xdp_tx_active++;
3727	i++;
3728	if (i == xdp_ring->count)
3729		i = 0;
3730
3731	tx_bi->next_to_watch = tx_desc;
3732	xdp_ring->next_to_use = i;
3733
3734	return I40E_XDP_TX;
3735}
3736
3737/**
3738 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3739 * @skb:     send buffer
3740 * @tx_ring: ring to send buffer on
3741 *
3742 * Returns NETDEV_TX_OK if sent, else an error code
3743 **/
3744static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3745					struct i40e_ring *tx_ring)
3746{
3747	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3748	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3749	struct i40e_tx_buffer *first;
3750	u32 td_offset = 0;
3751	u32 tx_flags = 0;
3752	__be16 protocol;
3753	u32 td_cmd = 0;
3754	u8 hdr_len = 0;
3755	int tso, count;
3756	int tsyn;
3757
3758	/* prefetch the data, we'll need it later */
3759	prefetch(skb->data);
3760
3761	i40e_trace(xmit_frame_ring, skb, tx_ring);
3762
3763	count = i40e_xmit_descriptor_count(skb);
3764	if (i40e_chk_linearize(skb, count)) {
3765		if (__skb_linearize(skb)) {
3766			dev_kfree_skb_any(skb);
3767			return NETDEV_TX_OK;
3768		}
3769		count = i40e_txd_use_count(skb->len);
3770		tx_ring->tx_stats.tx_linearize++;
3771	}
3772
3773	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3774	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3775	 *       + 4 desc gap to avoid the cache line where head is,
3776	 *       + 1 desc for context descriptor,
3777	 * otherwise try next time
3778	 */
3779	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3780		tx_ring->tx_stats.tx_busy++;
3781		return NETDEV_TX_BUSY;
3782	}
3783
3784	/* record the location of the first descriptor for this packet */
3785	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3786	first->skb = skb;
3787	first->bytecount = skb->len;
3788	first->gso_segs = 1;
3789
3790	/* prepare the xmit flags */
3791	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3792		goto out_drop;
3793
3794	/* obtain protocol of skb */
3795	protocol = vlan_get_protocol(skb);
3796
 
 
 
3797	/* setup IPv4/IPv6 offloads */
3798	if (protocol == htons(ETH_P_IP))
3799		tx_flags |= I40E_TX_FLAGS_IPV4;
3800	else if (protocol == htons(ETH_P_IPV6))
3801		tx_flags |= I40E_TX_FLAGS_IPV6;
3802
3803	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3804
3805	if (tso < 0)
3806		goto out_drop;
3807	else if (tso)
3808		tx_flags |= I40E_TX_FLAGS_TSO;
3809
3810	/* Always offload the checksum, since it's in the data descriptor */
3811	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3812				  tx_ring, &cd_tunneling);
3813	if (tso < 0)
3814		goto out_drop;
3815
3816	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3817
3818	if (tsyn)
3819		tx_flags |= I40E_TX_FLAGS_TSYN;
3820
 
 
3821	/* always enable CRC insertion offload */
3822	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3823
3824	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3825			   cd_tunneling, cd_l2tag2);
3826
3827	/* Add Flow Director ATR if it's enabled.
3828	 *
3829	 * NOTE: this must always be directly before the data descriptor.
3830	 */
3831	i40e_atr(tx_ring, skb, tx_flags);
3832
3833	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3834			td_cmd, td_offset))
3835		goto cleanup_tx_tstamp;
3836
3837	return NETDEV_TX_OK;
3838
3839out_drop:
3840	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3841	dev_kfree_skb_any(first->skb);
3842	first->skb = NULL;
3843cleanup_tx_tstamp:
3844	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3845		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3846
3847		dev_kfree_skb_any(pf->ptp_tx_skb);
3848		pf->ptp_tx_skb = NULL;
3849		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3850	}
3851
3852	return NETDEV_TX_OK;
3853}
3854
3855/**
3856 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3857 * @skb:    send buffer
3858 * @netdev: network interface device structure
3859 *
3860 * Returns NETDEV_TX_OK if sent, else an error code
3861 **/
3862netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3863{
3864	struct i40e_netdev_priv *np = netdev_priv(netdev);
3865	struct i40e_vsi *vsi = np->vsi;
3866	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3867
3868	/* hardware can't handle really short frames, hardware padding works
3869	 * beyond this point
3870	 */
3871	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3872		return NETDEV_TX_OK;
3873
3874	return i40e_xmit_frame_ring(skb, tx_ring);
3875}
3876
3877/**
3878 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3879 * @dev: netdev
3880 * @n: number of frames
3881 * @frames: array of XDP buffer pointers
3882 * @flags: XDP extra info
3883 *
3884 * Returns number of frames successfully sent. Failed frames
3885 * will be free'ed by XDP core.
3886 *
3887 * For error cases, a negative errno code is returned and no-frames
3888 * are transmitted (caller must handle freeing frames).
3889 **/
3890int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3891		  u32 flags)
3892{
3893	struct i40e_netdev_priv *np = netdev_priv(dev);
3894	unsigned int queue_index = smp_processor_id();
3895	struct i40e_vsi *vsi = np->vsi;
3896	struct i40e_pf *pf = vsi->back;
3897	struct i40e_ring *xdp_ring;
3898	int nxmit = 0;
3899	int i;
3900
3901	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3902		return -ENETDOWN;
3903
3904	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3905	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3906		return -ENXIO;
3907
3908	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3909		return -EINVAL;
3910
3911	xdp_ring = vsi->xdp_rings[queue_index];
3912
3913	for (i = 0; i < n; i++) {
3914		struct xdp_frame *xdpf = frames[i];
3915		int err;
3916
3917		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3918		if (err != I40E_XDP_TX)
3919			break;
3920		nxmit++;
3921	}
3922
3923	if (unlikely(flags & XDP_XMIT_FLUSH))
3924		i40e_xdp_ring_update_tail(xdp_ring);
3925
3926	return nxmit;
3927}