Linux Audio

Check our new training course

Loading...
v4.6
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
  27#include <linux/prefetch.h>
  28#include <net/busy_poll.h>
  29#include "i40e.h"
  30#include "i40e_prototype.h"
  31
  32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  33				u32 td_tag)
  34{
  35	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  36			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  37			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  38			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  39			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  40}
  41
  42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43#define I40E_FD_CLEAN_DELAY 10
  44/**
  45 * i40e_program_fdir_filter - Program a Flow Director filter
  46 * @fdir_data: Packet data that will be filter parameters
  47 * @raw_packet: the pre-allocated packet buffer for FDir
  48 * @pf: The PF pointer
  49 * @add: True for add/update, False for remove
  50 **/
  51int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
  52			     struct i40e_pf *pf, bool add)
 
  53{
  54	struct i40e_filter_program_desc *fdir_desc;
  55	struct i40e_tx_buffer *tx_buf, *first;
  56	struct i40e_tx_desc *tx_desc;
  57	struct i40e_ring *tx_ring;
  58	unsigned int fpt, dcc;
  59	struct i40e_vsi *vsi;
  60	struct device *dev;
  61	dma_addr_t dma;
  62	u32 td_cmd = 0;
  63	u16 delay = 0;
  64	u16 i;
  65
  66	/* find existing FDIR VSI */
  67	vsi = NULL;
  68	for (i = 0; i < pf->num_alloc_vsi; i++)
  69		if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
  70			vsi = pf->vsi[i];
  71	if (!vsi)
  72		return -ENOENT;
  73
  74	tx_ring = vsi->tx_rings[0];
  75	dev = tx_ring->dev;
  76
  77	/* we need two descriptors to add/del a filter and we can wait */
  78	do {
  79		if (I40E_DESC_UNUSED(tx_ring) > 1)
  80			break;
  81		msleep_interruptible(1);
  82		delay++;
  83	} while (delay < I40E_FD_CLEAN_DELAY);
  84
  85	if (!(I40E_DESC_UNUSED(tx_ring) > 1))
  86		return -EAGAIN;
  87
  88	dma = dma_map_single(dev, raw_packet,
  89			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
  90	if (dma_mapping_error(dev, dma))
  91		goto dma_fail;
  92
  93	/* grab the next descriptor */
  94	i = tx_ring->next_to_use;
  95	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  96	first = &tx_ring->tx_bi[i];
  97	memset(first, 0, sizeof(struct i40e_tx_buffer));
  98
  99	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 100
 101	fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
 102	      I40E_TXD_FLTR_QW0_QINDEX_MASK;
 103
 104	fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
 105	       I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
 106
 107	fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
 108	       I40E_TXD_FLTR_QW0_PCTYPE_MASK;
 109
 110	/* Use LAN VSI Id if not programmed by user */
 111	if (fdir_data->dest_vsi == 0)
 112		fpt |= (pf->vsi[pf->lan_vsi]->id) <<
 113		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
 114	else
 115		fpt |= ((u32)fdir_data->dest_vsi <<
 116			I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
 117		       I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
 118
 119	dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
 120
 121	if (add)
 122		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
 123		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 124	else
 125		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
 126		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 127
 128	dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
 129	       I40E_TXD_FLTR_QW1_DEST_MASK;
 130
 131	dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
 132	       I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
 133
 134	if (fdir_data->cnt_index != 0) {
 135		dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
 136		dcc |= ((u32)fdir_data->cnt_index <<
 137			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
 138			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
 139	}
 140
 141	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
 142	fdir_desc->rsvd = cpu_to_le32(0);
 143	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
 144	fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
 145
 146	/* Now program a dummy descriptor */
 147	i = tx_ring->next_to_use;
 148	tx_desc = I40E_TX_DESC(tx_ring, i);
 149	tx_buf = &tx_ring->tx_bi[i];
 150
 151	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 152
 153	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 154
 155	/* record length, and DMA address */
 156	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 157	dma_unmap_addr_set(tx_buf, dma, dma);
 158
 159	tx_desc->buffer_addr = cpu_to_le64(dma);
 160	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 161
 162	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 163	tx_buf->raw_buf = (void *)raw_packet;
 164
 165	tx_desc->cmd_type_offset_bsz =
 166		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 167
 168	/* Force memory writes to complete before letting h/w
 169	 * know there are new descriptors to fetch.
 170	 */
 171	wmb();
 172
 173	/* Mark the data descriptor to be watched */
 174	first->next_to_watch = tx_desc;
 175
 176	writel(tx_ring->next_to_use, tx_ring->tail);
 177	return 0;
 178
 179dma_fail:
 180	return -1;
 181}
 182
 183#define IP_HEADER_OFFSET 14
 184#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 185/**
 186 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 187 * @vsi: pointer to the targeted VSI
 188 * @fd_data: the flow director data required for the FDir descriptor
 189 * @add: true adds a filter, false removes it
 190 *
 191 * Returns 0 if the filters were successfully added or removed
 192 **/
 193static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 194				   struct i40e_fdir_filter *fd_data,
 195				   bool add)
 196{
 197	struct i40e_pf *pf = vsi->back;
 198	struct udphdr *udp;
 199	struct iphdr *ip;
 200	bool err = false;
 201	u8 *raw_packet;
 202	int ret;
 203	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 204		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 205		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 206
 207	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 208	if (!raw_packet)
 209		return -ENOMEM;
 210	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 211
 212	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 213	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 214	      + sizeof(struct iphdr));
 215
 216	ip->daddr = fd_data->dst_ip[0];
 217	udp->dest = fd_data->dst_port;
 218	ip->saddr = fd_data->src_ip[0];
 219	udp->source = fd_data->src_port;
 220
 221	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 222	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 223	if (ret) {
 224		dev_info(&pf->pdev->dev,
 225			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 226			 fd_data->pctype, fd_data->fd_id, ret);
 227		err = true;
 228	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 229		if (add)
 230			dev_info(&pf->pdev->dev,
 231				 "Filter OK for PCTYPE %d loc = %d\n",
 232				 fd_data->pctype, fd_data->fd_id);
 233		else
 234			dev_info(&pf->pdev->dev,
 235				 "Filter deleted for PCTYPE %d loc = %d\n",
 236				 fd_data->pctype, fd_data->fd_id);
 237	}
 238	if (err)
 239		kfree(raw_packet);
 240
 241	return err ? -EOPNOTSUPP : 0;
 242}
 243
 244#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 245/**
 246 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 247 * @vsi: pointer to the targeted VSI
 248 * @fd_data: the flow director data required for the FDir descriptor
 249 * @add: true adds a filter, false removes it
 250 *
 251 * Returns 0 if the filters were successfully added or removed
 252 **/
 253static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 254				   struct i40e_fdir_filter *fd_data,
 255				   bool add)
 256{
 257	struct i40e_pf *pf = vsi->back;
 258	struct tcphdr *tcp;
 259	struct iphdr *ip;
 260	bool err = false;
 261	u8 *raw_packet;
 262	int ret;
 263	/* Dummy packet */
 264	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 265		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 266		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 267		0x0, 0x72, 0, 0, 0, 0};
 268
 269	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 270	if (!raw_packet)
 271		return -ENOMEM;
 272	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 273
 274	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 275	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 276	      + sizeof(struct iphdr));
 277
 278	ip->daddr = fd_data->dst_ip[0];
 279	tcp->dest = fd_data->dst_port;
 280	ip->saddr = fd_data->src_ip[0];
 281	tcp->source = fd_data->src_port;
 282
 283	if (add) {
 284		pf->fd_tcp_rule++;
 285		if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
 286			if (I40E_DEBUG_FD & pf->hw.debug_mask)
 287				dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 288			pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 289		}
 290	} else {
 291		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
 292				  (pf->fd_tcp_rule - 1) : 0;
 293		if (pf->fd_tcp_rule == 0) {
 294			pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
 295			if (I40E_DEBUG_FD & pf->hw.debug_mask)
 296				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
 
 297		}
 298	}
 299
 300	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 301	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 302
 303	if (ret) {
 304		dev_info(&pf->pdev->dev,
 305			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 306			 fd_data->pctype, fd_data->fd_id, ret);
 307		err = true;
 308	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 309		if (add)
 310			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 311				 fd_data->pctype, fd_data->fd_id);
 312		else
 313			dev_info(&pf->pdev->dev,
 314				 "Filter deleted for PCTYPE %d loc = %d\n",
 315				 fd_data->pctype, fd_data->fd_id);
 316	}
 317
 318	if (err)
 319		kfree(raw_packet);
 320
 321	return err ? -EOPNOTSUPP : 0;
 322}
 323
 324/**
 325 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 326 * a specific flow spec
 327 * @vsi: pointer to the targeted VSI
 328 * @fd_data: the flow director data required for the FDir descriptor
 329 * @add: true adds a filter, false removes it
 330 *
 331 * Returns 0 if the filters were successfully added or removed
 332 **/
 333static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 334				    struct i40e_fdir_filter *fd_data,
 335				    bool add)
 336{
 337	return -EOPNOTSUPP;
 338}
 339
 340#define I40E_IP_DUMMY_PACKET_LEN 34
 341/**
 342 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 343 * a specific flow spec
 344 * @vsi: pointer to the targeted VSI
 345 * @fd_data: the flow director data required for the FDir descriptor
 346 * @add: true adds a filter, false removes it
 347 *
 348 * Returns 0 if the filters were successfully added or removed
 349 **/
 350static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 351				  struct i40e_fdir_filter *fd_data,
 352				  bool add)
 353{
 354	struct i40e_pf *pf = vsi->back;
 355	struct iphdr *ip;
 356	bool err = false;
 357	u8 *raw_packet;
 358	int ret;
 359	int i;
 360	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 361		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 362		0, 0, 0, 0};
 363
 364	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 365	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 366		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 367		if (!raw_packet)
 368			return -ENOMEM;
 369		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 370		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 371
 372		ip->saddr = fd_data->src_ip[0];
 373		ip->daddr = fd_data->dst_ip[0];
 374		ip->protocol = 0;
 375
 376		fd_data->pctype = i;
 377		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 378
 379		if (ret) {
 380			dev_info(&pf->pdev->dev,
 381				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 382				 fd_data->pctype, fd_data->fd_id, ret);
 383			err = true;
 384		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 385			if (add)
 386				dev_info(&pf->pdev->dev,
 387					 "Filter OK for PCTYPE %d loc = %d\n",
 388					 fd_data->pctype, fd_data->fd_id);
 389			else
 390				dev_info(&pf->pdev->dev,
 391					 "Filter deleted for PCTYPE %d loc = %d\n",
 392					 fd_data->pctype, fd_data->fd_id);
 393		}
 394	}
 395
 396	if (err)
 397		kfree(raw_packet);
 398
 399	return err ? -EOPNOTSUPP : 0;
 400}
 401
 402/**
 403 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 404 * @vsi: pointer to the targeted VSI
 405 * @cmd: command to get or set RX flow classification rules
 406 * @add: true adds a filter, false removes it
 407 *
 408 **/
 409int i40e_add_del_fdir(struct i40e_vsi *vsi,
 410		      struct i40e_fdir_filter *input, bool add)
 411{
 412	struct i40e_pf *pf = vsi->back;
 413	int ret;
 414
 415	switch (input->flow_type & ~FLOW_EXT) {
 416	case TCP_V4_FLOW:
 417		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 418		break;
 419	case UDP_V4_FLOW:
 420		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 421		break;
 422	case SCTP_V4_FLOW:
 423		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 424		break;
 425	case IPV4_FLOW:
 426		ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 427		break;
 428	case IP_USER_FLOW:
 429		switch (input->ip4_proto) {
 430		case IPPROTO_TCP:
 431			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 432			break;
 433		case IPPROTO_UDP:
 434			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 435			break;
 436		case IPPROTO_SCTP:
 437			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 438			break;
 439		default:
 440			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 441			break;
 
 
 
 442		}
 443		break;
 444	default:
 
 445		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
 446			 input->flow_type);
 447		ret = -EINVAL;
 448	}
 449
 450	/* The buffer allocated here is freed by the i40e_clean_tx_ring() */
 451	return ret;
 452}
 453
 454/**
 455 * i40e_fd_handle_status - check the Programming Status for FD
 456 * @rx_ring: the Rx ring for this descriptor
 457 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 458 * @prog_id: the id originally used for programming
 459 *
 460 * This is used to verify if the FD programming or invalidation
 461 * requested by SW to the HW is successful or not and take actions accordingly.
 462 **/
 463static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 464				  union i40e_rx_desc *rx_desc, u8 prog_id)
 465{
 466	struct i40e_pf *pf = rx_ring->vsi->back;
 467	struct pci_dev *pdev = pf->pdev;
 468	u32 fcnt_prog, fcnt_avail;
 469	u32 error;
 470	u64 qw;
 471
 472	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 473	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 474		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 475
 476	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 477		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 478		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 479		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 480			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 481				 pf->fd_inv);
 482
 483		/* Check if the programming error is for ATR.
 484		 * If so, auto disable ATR and set a state for
 485		 * flush in progress. Next time we come here if flush is in
 486		 * progress do nothing, once flush is complete the state will
 487		 * be cleared.
 488		 */
 489		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
 490			return;
 491
 492		pf->fd_add_err++;
 493		/* store the current atr filter count */
 494		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 495
 496		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 497		    (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
 498			pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
 499			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
 500		}
 501
 502		/* filter programming failed most likely due to table full */
 503		fcnt_prog = i40e_get_global_fd_count(pf);
 504		fcnt_avail = pf->fdir_pf_filter_count;
 505		/* If ATR is running fcnt_prog can quickly change,
 506		 * if we are very close to full, it makes sense to disable
 507		 * FD ATR/SB and then re-enable it when there is room.
 508		 */
 509		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 510			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 511			    !(pf->auto_disable_flags &
 512				     I40E_FLAG_FD_SB_ENABLED)) {
 513				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 514					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 515				pf->auto_disable_flags |=
 516							I40E_FLAG_FD_SB_ENABLED;
 517			}
 518		}
 519	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 520		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 521			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 522				 rx_desc->wb.qword0.hi_dword.fd_id);
 523	}
 524}
 525
 526/**
 527 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 528 * @ring:      the ring that owns the buffer
 529 * @tx_buffer: the buffer to free
 530 **/
 531static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 532					    struct i40e_tx_buffer *tx_buffer)
 533{
 534	if (tx_buffer->skb) {
 535		dev_kfree_skb_any(tx_buffer->skb);
 
 
 
 536		if (dma_unmap_len(tx_buffer, len))
 537			dma_unmap_single(ring->dev,
 538					 dma_unmap_addr(tx_buffer, dma),
 539					 dma_unmap_len(tx_buffer, len),
 540					 DMA_TO_DEVICE);
 541	} else if (dma_unmap_len(tx_buffer, len)) {
 542		dma_unmap_page(ring->dev,
 543			       dma_unmap_addr(tx_buffer, dma),
 544			       dma_unmap_len(tx_buffer, len),
 545			       DMA_TO_DEVICE);
 546	}
 547
 548	if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 549		kfree(tx_buffer->raw_buf);
 550
 551	tx_buffer->next_to_watch = NULL;
 552	tx_buffer->skb = NULL;
 553	dma_unmap_len_set(tx_buffer, len, 0);
 554	/* tx_buffer must be completely set up in the transmit path */
 555}
 556
 557/**
 558 * i40e_clean_tx_ring - Free any empty Tx buffers
 559 * @tx_ring: ring to be cleaned
 560 **/
 561void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 562{
 563	unsigned long bi_size;
 564	u16 i;
 565
 566	/* ring already cleared, nothing to do */
 567	if (!tx_ring->tx_bi)
 568		return;
 569
 570	/* Free all the Tx ring sk_buffs */
 571	for (i = 0; i < tx_ring->count; i++)
 572		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 573
 574	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 575	memset(tx_ring->tx_bi, 0, bi_size);
 576
 577	/* Zero out the descriptor ring */
 578	memset(tx_ring->desc, 0, tx_ring->size);
 579
 580	tx_ring->next_to_use = 0;
 581	tx_ring->next_to_clean = 0;
 582
 583	if (!tx_ring->netdev)
 584		return;
 585
 586	/* cleanup Tx queue statistics */
 587	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
 588						  tx_ring->queue_index));
 589}
 590
 591/**
 592 * i40e_free_tx_resources - Free Tx resources per queue
 593 * @tx_ring: Tx descriptor ring for a specific queue
 594 *
 595 * Free all transmit software resources
 596 **/
 597void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 598{
 599	i40e_clean_tx_ring(tx_ring);
 600	kfree(tx_ring->tx_bi);
 601	tx_ring->tx_bi = NULL;
 602
 603	if (tx_ring->desc) {
 604		dma_free_coherent(tx_ring->dev, tx_ring->size,
 605				  tx_ring->desc, tx_ring->dma);
 606		tx_ring->desc = NULL;
 607	}
 608}
 609
 610/**
 611 * i40e_get_tx_pending - how many tx descriptors not processed
 612 * @tx_ring: the ring of descriptors
 613 * @in_sw: is tx_pending being checked in SW or HW
 614 *
 615 * Since there is no access to the ring head register
 616 * in XL710, we need to use our local copies
 617 **/
 618u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 619{
 620	u32 head, tail;
 621
 622	if (!in_sw)
 623		head = i40e_get_head(ring);
 624	else
 625		head = ring->next_to_clean;
 626	tail = readl(ring->tail);
 627
 628	if (head != tail)
 629		return (head < tail) ?
 630			tail - head : (tail + ring->count - head);
 631
 632	return 0;
 633}
 634
 635#define WB_STRIDE 0x3
 636
 637/**
 638 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 639 * @tx_ring:  tx ring to clean
 640 * @budget:   how many cleans we're allowed
 
 641 *
 642 * Returns true if there's any budget left (e.g. the clean is finished)
 643 **/
 644static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
 
 645{
 646	u16 i = tx_ring->next_to_clean;
 647	struct i40e_tx_buffer *tx_buf;
 648	struct i40e_tx_desc *tx_head;
 649	struct i40e_tx_desc *tx_desc;
 650	unsigned int total_packets = 0;
 651	unsigned int total_bytes = 0;
 652
 653	tx_buf = &tx_ring->tx_bi[i];
 654	tx_desc = I40E_TX_DESC(tx_ring, i);
 655	i -= tx_ring->count;
 656
 657	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 658
 659	do {
 660		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 661
 662		/* if next_to_watch is not set then there is no work pending */
 663		if (!eop_desc)
 664			break;
 665
 666		/* prevent any other reads prior to eop_desc */
 667		read_barrier_depends();
 668
 669		/* we have caught up to head, no work left to do */
 670		if (tx_head == tx_desc)
 671			break;
 672
 673		/* clear next_to_watch to prevent false hangs */
 674		tx_buf->next_to_watch = NULL;
 675
 676		/* update the statistics for this packet */
 677		total_bytes += tx_buf->bytecount;
 678		total_packets += tx_buf->gso_segs;
 679
 680		/* free the skb */
 681		dev_consume_skb_any(tx_buf->skb);
 682
 683		/* unmap skb header data */
 684		dma_unmap_single(tx_ring->dev,
 685				 dma_unmap_addr(tx_buf, dma),
 686				 dma_unmap_len(tx_buf, len),
 687				 DMA_TO_DEVICE);
 688
 689		/* clear tx_buffer data */
 690		tx_buf->skb = NULL;
 691		dma_unmap_len_set(tx_buf, len, 0);
 692
 693		/* unmap remaining buffers */
 694		while (tx_desc != eop_desc) {
 695
 696			tx_buf++;
 697			tx_desc++;
 698			i++;
 699			if (unlikely(!i)) {
 700				i -= tx_ring->count;
 701				tx_buf = tx_ring->tx_bi;
 702				tx_desc = I40E_TX_DESC(tx_ring, 0);
 703			}
 704
 705			/* unmap any remaining paged data */
 706			if (dma_unmap_len(tx_buf, len)) {
 707				dma_unmap_page(tx_ring->dev,
 708					       dma_unmap_addr(tx_buf, dma),
 709					       dma_unmap_len(tx_buf, len),
 710					       DMA_TO_DEVICE);
 711				dma_unmap_len_set(tx_buf, len, 0);
 712			}
 713		}
 714
 715		/* move us one more past the eop_desc for start of next pkt */
 716		tx_buf++;
 717		tx_desc++;
 718		i++;
 719		if (unlikely(!i)) {
 720			i -= tx_ring->count;
 721			tx_buf = tx_ring->tx_bi;
 722			tx_desc = I40E_TX_DESC(tx_ring, 0);
 723		}
 724
 725		prefetch(tx_desc);
 726
 727		/* update budget accounting */
 728		budget--;
 729	} while (likely(budget));
 730
 731	i += tx_ring->count;
 732	tx_ring->next_to_clean = i;
 733	u64_stats_update_begin(&tx_ring->syncp);
 734	tx_ring->stats.bytes += total_bytes;
 735	tx_ring->stats.packets += total_packets;
 736	u64_stats_update_end(&tx_ring->syncp);
 737	tx_ring->q_vector->tx.total_bytes += total_bytes;
 738	tx_ring->q_vector->tx.total_packets += total_packets;
 739
 740	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 741		unsigned int j = 0;
 742
 743		/* check to see if there are < 4 descriptors
 744		 * waiting to be written back, then kick the hardware to force
 745		 * them to be written back in case we stay in NAPI.
 746		 * In this mode on X722 we do not enable Interrupt.
 747		 */
 748		j = i40e_get_tx_pending(tx_ring, false);
 749
 750		if (budget &&
 751		    ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
 752		    !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
 753		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 754			tx_ring->arm_wb = true;
 755	}
 756
 757	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
 758						      tx_ring->queue_index),
 759				  total_packets, total_bytes);
 760
 761#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 762	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 763		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 764		/* Make sure that anybody stopping the queue after this
 765		 * sees the new next_to_clean.
 766		 */
 767		smp_mb();
 768		if (__netif_subqueue_stopped(tx_ring->netdev,
 769					     tx_ring->queue_index) &&
 770		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
 771			netif_wake_subqueue(tx_ring->netdev,
 772					    tx_ring->queue_index);
 773			++tx_ring->tx_stats.restart_queue;
 774		}
 775	}
 776
 777	return !!budget;
 778}
 779
 780/**
 781 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 782 * @vsi: the VSI we care about
 783 * @q_vector: the vector on which to enable writeback
 784 *
 785 **/
 786static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 787				  struct i40e_q_vector *q_vector)
 788{
 789	u16 flags = q_vector->tx.ring[0].flags;
 790	u32 val;
 791
 792	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 793		return;
 794
 795	if (q_vector->arm_wb_state)
 796		return;
 797
 798	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 799		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 800		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 801
 802		wr32(&vsi->back->hw,
 803		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
 804		     val);
 805	} else {
 806		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 807		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 808
 809		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 810	}
 811	q_vector->arm_wb_state = true;
 812}
 813
 814/**
 815 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 816 * @vsi: the VSI we care about
 817 * @q_vector: the vector  on which to force writeback
 818 *
 819 **/
 820void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 821{
 822	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 823		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 824			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 825			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 826			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 827			  /* allow 00 to be written to the index */
 828
 829		wr32(&vsi->back->hw,
 830		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
 831					 vsi->base_vector - 1), val);
 832	} else {
 833		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 834			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 835			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 836			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 837			/* allow 00 to be written to the index */
 838
 839		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 840	}
 841}
 842
 843/**
 844 * i40e_set_new_dynamic_itr - Find new ITR level
 845 * @rc: structure containing ring performance data
 846 *
 847 * Returns true if ITR changed, false if not
 848 *
 849 * Stores a new ITR value based on packets and byte counts during
 850 * the last interrupt.  The advantage of per interrupt computation
 851 * is faster updates and more accurate ITR for the current traffic
 852 * pattern.  Constants in this function were computed based on
 853 * theoretical maximum wire speed and thresholds were set based on
 854 * testing data as well as attempting to minimize response time
 855 * while increasing bulk throughput.
 856 **/
 857static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 858{
 859	enum i40e_latency_range new_latency_range = rc->latency_range;
 860	struct i40e_q_vector *qv = rc->ring->q_vector;
 861	u32 new_itr = rc->itr;
 862	int bytes_per_int;
 863	int usecs;
 864
 865	if (rc->total_packets == 0 || !rc->itr)
 866		return false;
 867
 868	/* simple throttlerate management
 869	 *   0-10MB/s   lowest (50000 ints/s)
 870	 *  10-20MB/s   low    (20000 ints/s)
 871	 *  20-1249MB/s bulk   (18000 ints/s)
 872	 *  > 40000 Rx packets per second (8000 ints/s)
 873	 *
 874	 * The math works out because the divisor is in 10^(-6) which
 875	 * turns the bytes/us input value into MB/s values, but
 876	 * make sure to use usecs, as the register values written
 877	 * are in 2 usec increments in the ITR registers, and make sure
 878	 * to use the smoothed values that the countdown timer gives us.
 879	 */
 880	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
 881	bytes_per_int = rc->total_bytes / usecs;
 882
 883	switch (new_latency_range) {
 884	case I40E_LOWEST_LATENCY:
 885		if (bytes_per_int > 10)
 886			new_latency_range = I40E_LOW_LATENCY;
 887		break;
 888	case I40E_LOW_LATENCY:
 889		if (bytes_per_int > 20)
 890			new_latency_range = I40E_BULK_LATENCY;
 891		else if (bytes_per_int <= 10)
 892			new_latency_range = I40E_LOWEST_LATENCY;
 893		break;
 894	case I40E_BULK_LATENCY:
 895	case I40E_ULTRA_LATENCY:
 896	default:
 897		if (bytes_per_int <= 20)
 898			new_latency_range = I40E_LOW_LATENCY;
 899		break;
 900	}
 901
 902	/* this is to adjust RX more aggressively when streaming small
 903	 * packets.  The value of 40000 was picked as it is just beyond
 904	 * what the hardware can receive per second if in low latency
 905	 * mode.
 906	 */
 907#define RX_ULTRA_PACKET_RATE 40000
 908
 909	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
 910	    (&qv->rx == rc))
 911		new_latency_range = I40E_ULTRA_LATENCY;
 912
 913	rc->latency_range = new_latency_range;
 914
 915	switch (new_latency_range) {
 916	case I40E_LOWEST_LATENCY:
 917		new_itr = I40E_ITR_50K;
 918		break;
 919	case I40E_LOW_LATENCY:
 920		new_itr = I40E_ITR_20K;
 921		break;
 922	case I40E_BULK_LATENCY:
 923		new_itr = I40E_ITR_18K;
 924		break;
 925	case I40E_ULTRA_LATENCY:
 926		new_itr = I40E_ITR_8K;
 927		break;
 928	default:
 929		break;
 930	}
 931
 932	rc->total_bytes = 0;
 933	rc->total_packets = 0;
 934
 935	if (new_itr != rc->itr) {
 936		rc->itr = new_itr;
 937		return true;
 938	}
 939
 940	return false;
 941}
 942
 943/**
 944 * i40e_clean_programming_status - clean the programming status descriptor
 945 * @rx_ring: the rx ring that has this descriptor
 946 * @rx_desc: the rx descriptor written back by HW
 947 *
 948 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 949 * status being successful or not and take actions accordingly. FCoE should
 950 * handle its context/filter programming/invalidation status and take actions.
 951 *
 952 **/
 953static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
 954					  union i40e_rx_desc *rx_desc)
 955{
 956	u64 qw;
 957	u8 id;
 958
 959	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 960	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
 961		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
 962
 963	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
 964		i40e_fd_handle_status(rx_ring, rx_desc, id);
 965#ifdef I40E_FCOE
 966	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
 967		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
 968		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
 969#endif
 970}
 971
 972/**
 973 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 974 * @tx_ring: the tx ring to set up
 975 *
 976 * Return 0 on success, negative on error
 977 **/
 978int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
 979{
 980	struct device *dev = tx_ring->dev;
 981	int bi_size;
 982
 983	if (!dev)
 984		return -ENOMEM;
 985
 986	/* warn if we are about to overwrite the pointer */
 987	WARN_ON(tx_ring->tx_bi);
 988	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 989	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 990	if (!tx_ring->tx_bi)
 991		goto err;
 992
 993	/* round up to nearest 4K */
 994	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 995	/* add u32 for head writeback, align after this takes care of
 996	 * guaranteeing this is at least one cache line in size
 997	 */
 998	tx_ring->size += sizeof(u32);
 999	tx_ring->size = ALIGN(tx_ring->size, 4096);
1000	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1001					   &tx_ring->dma, GFP_KERNEL);
1002	if (!tx_ring->desc) {
1003		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1004			 tx_ring->size);
1005		goto err;
1006	}
1007
1008	tx_ring->next_to_use = 0;
1009	tx_ring->next_to_clean = 0;
1010	return 0;
1011
1012err:
1013	kfree(tx_ring->tx_bi);
1014	tx_ring->tx_bi = NULL;
1015	return -ENOMEM;
1016}
1017
1018/**
1019 * i40e_clean_rx_ring - Free Rx buffers
1020 * @rx_ring: ring to be cleaned
1021 **/
1022void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1023{
1024	struct device *dev = rx_ring->dev;
1025	struct i40e_rx_buffer *rx_bi;
1026	unsigned long bi_size;
1027	u16 i;
1028
1029	/* ring already cleared, nothing to do */
1030	if (!rx_ring->rx_bi)
1031		return;
1032
1033	if (ring_is_ps_enabled(rx_ring)) {
1034		int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1035
1036		rx_bi = &rx_ring->rx_bi[0];
1037		if (rx_bi->hdr_buf) {
1038			dma_free_coherent(dev,
1039					  bufsz,
1040					  rx_bi->hdr_buf,
1041					  rx_bi->dma);
1042			for (i = 0; i < rx_ring->count; i++) {
1043				rx_bi = &rx_ring->rx_bi[i];
1044				rx_bi->dma = 0;
1045				rx_bi->hdr_buf = NULL;
1046			}
1047		}
1048	}
1049	/* Free all the Rx ring sk_buffs */
1050	for (i = 0; i < rx_ring->count; i++) {
1051		rx_bi = &rx_ring->rx_bi[i];
1052		if (rx_bi->dma) {
1053			dma_unmap_single(dev,
1054					 rx_bi->dma,
1055					 rx_ring->rx_buf_len,
1056					 DMA_FROM_DEVICE);
1057			rx_bi->dma = 0;
1058		}
1059		if (rx_bi->skb) {
1060			dev_kfree_skb(rx_bi->skb);
1061			rx_bi->skb = NULL;
1062		}
1063		if (rx_bi->page) {
1064			if (rx_bi->page_dma) {
1065				dma_unmap_page(dev,
1066					       rx_bi->page_dma,
1067					       PAGE_SIZE,
1068					       DMA_FROM_DEVICE);
1069				rx_bi->page_dma = 0;
1070			}
1071			__free_page(rx_bi->page);
1072			rx_bi->page = NULL;
1073			rx_bi->page_offset = 0;
1074		}
1075	}
1076
1077	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1078	memset(rx_ring->rx_bi, 0, bi_size);
1079
1080	/* Zero out the descriptor ring */
1081	memset(rx_ring->desc, 0, rx_ring->size);
1082
 
1083	rx_ring->next_to_clean = 0;
1084	rx_ring->next_to_use = 0;
1085}
1086
1087/**
1088 * i40e_free_rx_resources - Free Rx resources
1089 * @rx_ring: ring to clean the resources from
1090 *
1091 * Free all receive software resources
1092 **/
1093void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1094{
1095	i40e_clean_rx_ring(rx_ring);
1096	kfree(rx_ring->rx_bi);
1097	rx_ring->rx_bi = NULL;
1098
1099	if (rx_ring->desc) {
1100		dma_free_coherent(rx_ring->dev, rx_ring->size,
1101				  rx_ring->desc, rx_ring->dma);
1102		rx_ring->desc = NULL;
1103	}
1104}
1105
1106/**
1107 * i40e_alloc_rx_headers - allocate rx header buffers
1108 * @rx_ring: ring to alloc buffers
1109 *
1110 * Allocate rx header buffers for the entire ring. As these are static,
1111 * this is only called when setting up a new ring.
1112 **/
1113void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1114{
1115	struct device *dev = rx_ring->dev;
1116	struct i40e_rx_buffer *rx_bi;
1117	dma_addr_t dma;
1118	void *buffer;
1119	int buf_size;
1120	int i;
1121
1122	if (rx_ring->rx_bi[0].hdr_buf)
1123		return;
1124	/* Make sure the buffers don't cross cache line boundaries. */
1125	buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1126	buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1127				    &dma, GFP_KERNEL);
1128	if (!buffer)
1129		return;
1130	for (i = 0; i < rx_ring->count; i++) {
1131		rx_bi = &rx_ring->rx_bi[i];
1132		rx_bi->dma = dma + (i * buf_size);
1133		rx_bi->hdr_buf = buffer + (i * buf_size);
1134	}
1135}
1136
1137/**
1138 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1139 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1140 *
1141 * Returns 0 on success, negative on failure
1142 **/
1143int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1144{
1145	struct device *dev = rx_ring->dev;
1146	int bi_size;
1147
1148	/* warn if we are about to overwrite the pointer */
1149	WARN_ON(rx_ring->rx_bi);
1150	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1151	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1152	if (!rx_ring->rx_bi)
1153		goto err;
1154
1155	u64_stats_init(&rx_ring->syncp);
1156
1157	/* Round up to nearest 4K */
1158	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1159		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1160		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1161	rx_ring->size = ALIGN(rx_ring->size, 4096);
1162	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1163					   &rx_ring->dma, GFP_KERNEL);
1164
1165	if (!rx_ring->desc) {
1166		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1167			 rx_ring->size);
1168		goto err;
1169	}
1170
 
1171	rx_ring->next_to_clean = 0;
1172	rx_ring->next_to_use = 0;
1173
1174	return 0;
1175err:
1176	kfree(rx_ring->rx_bi);
1177	rx_ring->rx_bi = NULL;
1178	return -ENOMEM;
1179}
1180
1181/**
1182 * i40e_release_rx_desc - Store the new tail and head values
1183 * @rx_ring: ring to bump
1184 * @val: new head index
1185 **/
1186static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1187{
1188	rx_ring->next_to_use = val;
 
 
 
 
1189	/* Force memory writes to complete before letting h/w
1190	 * know there are new descriptors to fetch.  (Only
1191	 * applicable for weak-ordered memory model archs,
1192	 * such as IA-64).
1193	 */
1194	wmb();
1195	writel(val, rx_ring->tail);
1196}
1197
1198/**
1199 * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1200 * @rx_ring: ring to place buffers on
1201 * @cleaned_count: number of buffers to replace
1202 *
1203 * Returns true if any errors on allocation
 
1204 **/
1205bool i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
 
1206{
1207	u16 i = rx_ring->next_to_use;
1208	union i40e_rx_desc *rx_desc;
1209	struct i40e_rx_buffer *bi;
1210	const int current_node = numa_node_id();
1211
1212	/* do nothing if no valid netdev defined */
1213	if (!rx_ring->netdev || !cleaned_count)
1214		return false;
 
 
1215
1216	while (cleaned_count--) {
1217		rx_desc = I40E_RX_DESC(rx_ring, i);
1218		bi = &rx_ring->rx_bi[i];
 
 
 
1219
1220		if (bi->skb) /* desc is in use */
1221			goto no_buffers;
1222
1223	/* If we've been moved to a different NUMA node, release the
1224	 * page so we can get a new one on the current node.
1225	 */
1226		if (bi->page &&  page_to_nid(bi->page) != current_node) {
1227			dma_unmap_page(rx_ring->dev,
1228				       bi->page_dma,
1229				       PAGE_SIZE,
1230				       DMA_FROM_DEVICE);
1231			__free_page(bi->page);
1232			bi->page = NULL;
1233			bi->page_dma = 0;
1234			rx_ring->rx_stats.realloc_count++;
1235		} else if (bi->page) {
1236			rx_ring->rx_stats.page_reuse_count++;
1237		}
1238
1239		if (!bi->page) {
1240			bi->page = alloc_page(GFP_ATOMIC);
1241			if (!bi->page) {
1242				rx_ring->rx_stats.alloc_page_failed++;
1243				goto no_buffers;
1244			}
1245			bi->page_dma = dma_map_page(rx_ring->dev,
1246						    bi->page,
1247						    0,
1248						    PAGE_SIZE,
1249						    DMA_FROM_DEVICE);
1250			if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
1251				rx_ring->rx_stats.alloc_page_failed++;
1252				__free_page(bi->page);
1253				bi->page = NULL;
1254				bi->page_dma = 0;
1255				bi->page_offset = 0;
1256				goto no_buffers;
1257			}
1258			bi->page_offset = 0;
1259		}
1260
1261		/* Refresh the desc even if buffer_addrs didn't change
1262		 * because each write-back erases this info.
1263		 */
1264		rx_desc->read.pkt_addr =
1265				cpu_to_le64(bi->page_dma + bi->page_offset);
1266		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1267		i++;
1268		if (i == rx_ring->count)
1269			i = 0;
1270	}
1271
1272	if (rx_ring->next_to_use != i)
1273		i40e_release_rx_desc(rx_ring, i);
 
1274
1275	return false;
 
1276
1277no_buffers:
1278	if (rx_ring->next_to_use != i)
1279		i40e_release_rx_desc(rx_ring, i);
 
 
 
 
 
 
 
1280
1281	/* make sure to come back via polling to try again after
1282	 * allocation failure
1283	 */
1284	return true;
 
1285}
1286
1287/**
1288 * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1289 * @rx_ring: ring to place buffers on
1290 * @cleaned_count: number of buffers to replace
1291 *
1292 * Returns true if any errors on allocation
1293 **/
1294bool i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1295{
1296	u16 i = rx_ring->next_to_use;
1297	union i40e_rx_desc *rx_desc;
1298	struct i40e_rx_buffer *bi;
1299	struct sk_buff *skb;
1300
1301	/* do nothing if no valid netdev defined */
1302	if (!rx_ring->netdev || !cleaned_count)
1303		return false;
1304
1305	while (cleaned_count--) {
1306		rx_desc = I40E_RX_DESC(rx_ring, i);
1307		bi = &rx_ring->rx_bi[i];
1308		skb = bi->skb;
1309
1310		if (!skb) {
1311			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1312							  rx_ring->rx_buf_len,
1313							  GFP_ATOMIC |
1314							  __GFP_NOWARN);
1315			if (!skb) {
1316				rx_ring->rx_stats.alloc_buff_failed++;
1317				goto no_buffers;
1318			}
1319			/* initialize queue mapping */
1320			skb_record_rx_queue(skb, rx_ring->queue_index);
1321			bi->skb = skb;
1322		}
1323
1324		if (!bi->dma) {
1325			bi->dma = dma_map_single(rx_ring->dev,
1326						 skb->data,
1327						 rx_ring->rx_buf_len,
1328						 DMA_FROM_DEVICE);
1329			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1330				rx_ring->rx_stats.alloc_buff_failed++;
1331				bi->dma = 0;
1332				dev_kfree_skb(bi->skb);
1333				bi->skb = NULL;
1334				goto no_buffers;
1335			}
1336		}
1337
1338		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1339		rx_desc->read.hdr_addr = 0;
1340		i++;
1341		if (i == rx_ring->count)
1342			i = 0;
1343	}
1344
1345	if (rx_ring->next_to_use != i)
1346		i40e_release_rx_desc(rx_ring, i);
 
 
 
1347
1348	return false;
1349
1350no_buffers:
1351	if (rx_ring->next_to_use != i)
1352		i40e_release_rx_desc(rx_ring, i);
1353
1354	/* make sure to come back via polling to try again after
1355	 * allocation failure
1356	 */
1357	return true;
1358}
1359
1360/**
1361 * i40e_receive_skb - Send a completed packet up the stack
1362 * @rx_ring:  rx ring in play
1363 * @skb: packet to send up
1364 * @vlan_tag: vlan tag for packet
1365 **/
1366static void i40e_receive_skb(struct i40e_ring *rx_ring,
1367			     struct sk_buff *skb, u16 vlan_tag)
1368{
1369	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1370
1371	if (vlan_tag & VLAN_VID_MASK)
1372		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1373
1374	napi_gro_receive(&q_vector->napi, skb);
1375}
1376
1377/**
1378 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1379 * @vsi: the VSI we care about
1380 * @skb: skb currently being received and modified
1381 * @rx_status: status value of last descriptor in packet
1382 * @rx_error: error value of last descriptor in packet
1383 * @rx_ptype: ptype value of last descriptor in packet
1384 **/
1385static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1386				    struct sk_buff *skb,
1387				    u32 rx_status,
1388				    u32 rx_error,
1389				    u16 rx_ptype)
1390{
1391	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1392	bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
 
 
 
 
 
 
 
 
 
 
 
1393
1394	skb->ip_summed = CHECKSUM_NONE;
1395
 
 
1396	/* Rx csum enabled and ip headers found? */
1397	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1398		return;
1399
1400	/* did the hardware decode the packet and checksum? */
1401	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1402		return;
1403
1404	/* both known and outer_ip must be set for the below code to work */
1405	if (!(decoded.known && decoded.outer_ip))
1406		return;
1407
1408	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1409	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1410	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1411	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1412
1413	if (ipv4 &&
1414	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1415			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1416		goto checksum_fail;
1417
1418	/* likely incorrect csum if alternate IP extension headers found */
1419	if (ipv6 &&
1420	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1421		/* don't increment checksum err here, non-fatal err */
1422		return;
1423
1424	/* there was some L4 error, count error and punt packet to the stack */
1425	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1426		goto checksum_fail;
1427
1428	/* handle packets that were not able to be checksummed due
1429	 * to arrival speed, in this case the stack can compute
1430	 * the csum.
1431	 */
1432	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1433		return;
1434
1435	/* The hardware supported by this driver does not validate outer
1436	 * checksums for tunneled VXLAN or GENEVE frames.  I don't agree
1437	 * with it but the specification states that you "MAY validate", it
1438	 * doesn't make it a hard requirement so if we have validated the
1439	 * inner checksum report CHECKSUM_UNNECESSARY.
1440	 */
1441
1442	ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1443		     (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1444	ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1445		     (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1446
1447	skb->ip_summed = CHECKSUM_UNNECESSARY;
1448	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
 
 
 
1449
1450	return;
1451
1452checksum_fail:
1453	vsi->back->hw_csum_rx_error++;
1454}
1455
1456/**
1457 * i40e_ptype_to_htype - get a hash type
1458 * @ptype: the ptype value from the descriptor
1459 *
1460 * Returns a hash type to be used by skb_set_hash
1461 **/
1462static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
1463{
1464	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1465
1466	if (!decoded.known)
1467		return PKT_HASH_TYPE_NONE;
1468
1469	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1470	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1471		return PKT_HASH_TYPE_L4;
1472	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1473		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1474		return PKT_HASH_TYPE_L3;
1475	else
1476		return PKT_HASH_TYPE_L2;
1477}
1478
1479/**
1480 * i40e_rx_hash - set the hash value in the skb
1481 * @ring: descriptor ring
1482 * @rx_desc: specific descriptor
1483 **/
1484static inline void i40e_rx_hash(struct i40e_ring *ring,
1485				union i40e_rx_desc *rx_desc,
1486				struct sk_buff *skb,
1487				u8 rx_ptype)
1488{
1489	u32 hash;
1490	const __le64 rss_mask  =
1491		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1492			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1493
1494	if (ring->netdev->features & NETIF_F_RXHASH)
1495		return;
1496
1497	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1498		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1499		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1500	}
1501}
1502
1503/**
1504 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1505 * @rx_ring:  rx ring to clean
1506 * @budget:   how many cleans we're allowed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507 *
1508 * Returns true if there's any budget left (e.g. the clean is finished)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509 **/
1510static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
1511{
1512	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1513	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1514	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1515	struct i40e_vsi *vsi = rx_ring->vsi;
1516	u16 i = rx_ring->next_to_clean;
1517	union i40e_rx_desc *rx_desc;
1518	u32 rx_error, rx_status;
1519	bool failure = false;
1520	u8 rx_ptype;
1521	u64 qword;
1522	u32 copysize;
1523
1524	if (budget <= 0)
1525		return 0;
 
1526
1527	do {
1528		struct i40e_rx_buffer *rx_bi;
1529		struct sk_buff *skb;
1530		u16 vlan_tag;
1531		/* return some buffers to hardware, one at a time is too slow */
1532		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1533			failure = failure ||
1534				  i40e_alloc_rx_buffers_ps(rx_ring,
1535							   cleaned_count);
1536			cleaned_count = 0;
1537		}
1538
1539		i = rx_ring->next_to_clean;
1540		rx_desc = I40E_RX_DESC(rx_ring, i);
1541		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1542		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1543			I40E_RXD_QW1_STATUS_SHIFT;
 
 
 
 
 
 
 
1544
1545		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1546			break;
1547
1548		/* This memory barrier is needed to keep us from reading
1549		 * any other fields out of the rx_desc until we know the
1550		 * DD bit is set.
1551		 */
1552		dma_rmb();
1553		/* sync header buffer for reading */
1554		dma_sync_single_range_for_cpu(rx_ring->dev,
1555					      rx_ring->rx_bi[0].dma,
1556					      i * rx_ring->rx_hdr_len,
1557					      rx_ring->rx_hdr_len,
1558					      DMA_FROM_DEVICE);
1559		if (i40e_rx_is_programming_status(qword)) {
1560			i40e_clean_programming_status(rx_ring, rx_desc);
1561			I40E_RX_INCREMENT(rx_ring, i);
1562			continue;
1563		}
1564		rx_bi = &rx_ring->rx_bi[i];
1565		skb = rx_bi->skb;
1566		if (likely(!skb)) {
1567			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1568							  rx_ring->rx_hdr_len,
1569							  GFP_ATOMIC |
1570							  __GFP_NOWARN);
1571			if (!skb) {
1572				rx_ring->rx_stats.alloc_buff_failed++;
1573				failure = true;
1574				break;
1575			}
1576
1577			/* initialize queue mapping */
1578			skb_record_rx_queue(skb, rx_ring->queue_index);
1579			/* we are reusing so sync this buffer for CPU use */
1580			dma_sync_single_range_for_cpu(rx_ring->dev,
1581						      rx_ring->rx_bi[0].dma,
1582						      i * rx_ring->rx_hdr_len,
1583						      rx_ring->rx_hdr_len,
1584						      DMA_FROM_DEVICE);
1585		}
1586		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1587				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1588		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1589				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1590		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1591			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1592
1593		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1594			   I40E_RXD_QW1_ERROR_SHIFT;
1595		rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1596		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1597
1598		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1599			   I40E_RXD_QW1_PTYPE_SHIFT;
1600		/* sync half-page for reading */
1601		dma_sync_single_range_for_cpu(rx_ring->dev,
1602					      rx_bi->page_dma,
1603					      rx_bi->page_offset,
1604					      PAGE_SIZE / 2,
1605					      DMA_FROM_DEVICE);
1606		prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
1607		rx_bi->skb = NULL;
1608		cleaned_count++;
1609		copysize = 0;
1610		if (rx_hbo || rx_sph) {
1611			int len;
1612
1613			if (rx_hbo)
1614				len = I40E_RX_HDR_SIZE;
1615			else
1616				len = rx_header_len;
1617			memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1618		} else if (skb->len == 0) {
1619			int len;
1620			unsigned char *va = page_address(rx_bi->page) +
1621					    rx_bi->page_offset;
1622
1623			len = min(rx_packet_len, rx_ring->rx_hdr_len);
1624			memcpy(__skb_put(skb, len), va, len);
1625			copysize = len;
1626			rx_packet_len -= len;
1627		}
1628		/* Get the rest of the data if this was a header split */
1629		if (rx_packet_len) {
1630			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1631					rx_bi->page,
1632					rx_bi->page_offset + copysize,
1633					rx_packet_len, I40E_RXBUFFER_2048);
1634
1635			/* If the page count is more than 2, then both halves
1636			 * of the page are used and we need to free it. Do it
1637			 * here instead of in the alloc code. Otherwise one
1638			 * of the half-pages might be released between now and
1639			 * then, and we wouldn't know which one to use.
1640			 * Don't call get_page and free_page since those are
1641			 * both expensive atomic operations that just change
1642			 * the refcount in opposite directions. Just give the
1643			 * page to the stack; he can have our refcount.
1644			 */
1645			if (page_count(rx_bi->page) > 2) {
1646				dma_unmap_page(rx_ring->dev,
1647					       rx_bi->page_dma,
1648					       PAGE_SIZE,
1649					       DMA_FROM_DEVICE);
1650				rx_bi->page = NULL;
1651				rx_bi->page_dma = 0;
1652				rx_ring->rx_stats.realloc_count++;
1653			} else {
1654				get_page(rx_bi->page);
1655				/* switch to the other half-page here; the
1656				 * allocation code programs the right addr
1657				 * into HW. If we haven't used this half-page,
1658				 * the address won't be changed, and HW can
1659				 * just use it next time through.
1660				 */
1661				rx_bi->page_offset ^= PAGE_SIZE / 2;
1662			}
1663
1664		}
1665		I40E_RX_INCREMENT(rx_ring, i);
 
 
 
1666
1667		if (unlikely(
1668		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1669			struct i40e_rx_buffer *next_buffer;
1670
1671			next_buffer = &rx_ring->rx_bi[i];
1672			next_buffer->skb = skb;
1673			rx_ring->rx_stats.non_eop_descs++;
1674			continue;
1675		}
1676
1677		/* ERR_MASK will only have valid bits if EOP set */
1678		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1679			dev_kfree_skb_any(skb);
1680			continue;
1681		}
1682
1683		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
 
1684
1685		if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1686			i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1687					   I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1688					   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1689			rx_ring->last_rx_timestamp = jiffies;
1690		}
1691
1692		/* probably a little skewed due to removing CRC */
1693		total_rx_bytes += skb->len;
1694		total_rx_packets++;
 
1695
1696		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 
 
 
 
1697
1698		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
 
 
1699
1700		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1701			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1702			 : 0;
1703#ifdef I40E_FCOE
1704		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1705			dev_kfree_skb_any(skb);
1706			continue;
1707		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708#endif
1709		i40e_receive_skb(rx_ring, skb, vlan_tag);
1710
1711		rx_desc->wb.qword1.status_error_len = 0;
 
 
 
 
 
 
 
1712
1713	} while (likely(total_rx_packets < budget));
 
 
 
 
 
 
 
1714
1715	u64_stats_update_begin(&rx_ring->syncp);
1716	rx_ring->stats.packets += total_rx_packets;
1717	rx_ring->stats.bytes += total_rx_bytes;
1718	u64_stats_update_end(&rx_ring->syncp);
1719	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1720	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
 
 
 
 
 
 
 
 
 
 
 
1721
1722	return failure ? budget : total_rx_packets;
 
 
 
1723}
1724
1725/**
1726 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1727 * @rx_ring:  rx ring to clean
1728 * @budget:   how many cleans we're allowed
 
1729 *
1730 * Returns number of packets cleaned
 
 
 
1731 **/
1732static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1733{
1734	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1735	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1736	struct i40e_vsi *vsi = rx_ring->vsi;
1737	union i40e_rx_desc *rx_desc;
1738	u32 rx_error, rx_status;
1739	u16 rx_packet_len;
1740	bool failure = false;
1741	u8 rx_ptype;
1742	u64 qword;
1743	u16 i;
1744
1745	do {
1746		struct i40e_rx_buffer *rx_bi;
1747		struct sk_buff *skb;
1748		u16 vlan_tag;
 
 
 
1749		/* return some buffers to hardware, one at a time is too slow */
1750		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1751			failure = failure ||
1752				  i40e_alloc_rx_buffers_1buf(rx_ring,
1753							     cleaned_count);
1754			cleaned_count = 0;
1755		}
1756
1757		i = rx_ring->next_to_clean;
1758		rx_desc = I40E_RX_DESC(rx_ring, i);
1759		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1760		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1761			I40E_RXD_QW1_STATUS_SHIFT;
1762
1763		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
 
 
 
 
 
 
1764			break;
1765
1766		/* This memory barrier is needed to keep us from reading
1767		 * any other fields out of the rx_desc until we know the
1768		 * DD bit is set.
1769		 */
1770		dma_rmb();
1771
1772		if (i40e_rx_is_programming_status(qword)) {
1773			i40e_clean_programming_status(rx_ring, rx_desc);
1774			I40E_RX_INCREMENT(rx_ring, i);
1775			continue;
1776		}
1777		rx_bi = &rx_ring->rx_bi[i];
1778		skb = rx_bi->skb;
1779		prefetch(skb->data);
1780
1781		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1782				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1783
1784		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1785			   I40E_RXD_QW1_ERROR_SHIFT;
1786		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1787
1788		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1789			   I40E_RXD_QW1_PTYPE_SHIFT;
1790		rx_bi->skb = NULL;
1791		cleaned_count++;
1792
1793		/* Get the header and possibly the whole packet
1794		 * If this is an skb from previous receive dma will be 0
1795		 */
1796		skb_put(skb, rx_packet_len);
1797		dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1798				 DMA_FROM_DEVICE);
1799		rx_bi->dma = 0;
1800
1801		I40E_RX_INCREMENT(rx_ring, i);
1802
1803		if (unlikely(
1804		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1805			rx_ring->rx_stats.non_eop_descs++;
1806			continue;
1807		}
1808
1809		/* ERR_MASK will only have valid bits if EOP set */
1810		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
 
 
 
 
1811			dev_kfree_skb_any(skb);
1812			continue;
1813		}
1814
1815		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1816		if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1817			i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1818					   I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1819					   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1820			rx_ring->last_rx_timestamp = jiffies;
1821		}
1822
1823		/* probably a little skewed due to removing CRC */
1824		total_rx_bytes += skb->len;
1825		total_rx_packets++;
1826
1827		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 
 
1828
1829		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
 
1830
1831		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1832			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1833			 : 0;
1834#ifdef I40E_FCOE
1835		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
 
 
1836			dev_kfree_skb_any(skb);
1837			continue;
1838		}
1839#endif
 
 
 
 
1840		i40e_receive_skb(rx_ring, skb, vlan_tag);
1841
1842		rx_desc->wb.qword1.status_error_len = 0;
1843	} while (likely(total_rx_packets < budget));
 
1844
1845	u64_stats_update_begin(&rx_ring->syncp);
1846	rx_ring->stats.packets += total_rx_packets;
1847	rx_ring->stats.bytes += total_rx_bytes;
1848	u64_stats_update_end(&rx_ring->syncp);
1849	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1850	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1851
 
1852	return failure ? budget : total_rx_packets;
1853}
1854
1855static u32 i40e_buildreg_itr(const int type, const u16 itr)
1856{
1857	u32 val;
1858
1859	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1860	      /* Don't clear PBA because that can cause lost interrupts that
1861	       * came in while we were cleaning/polling
1862	       */
1863	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1864	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1865
1866	return val;
1867}
1868
1869/* a small macro to shorten up some long lines */
1870#define INTREG I40E_PFINT_DYN_CTLN
 
 
 
 
 
 
 
 
 
1871
1872/**
1873 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1874 * @vsi: the VSI we care about
1875 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1876 *
1877 **/
1878static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1879					  struct i40e_q_vector *q_vector)
1880{
1881	struct i40e_hw *hw = &vsi->back->hw;
1882	bool rx = false, tx = false;
1883	u32 rxval, txval;
1884	int vector;
1885	int idx = q_vector->v_idx;
 
1886
1887	vector = (q_vector->v_idx + vsi->base_vector);
1888
1889	/* avoid dynamic calculation if in countdown mode OR if
1890	 * all dynamic is disabled
1891	 */
1892	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1893
 
 
 
1894	if (q_vector->itr_countdown > 0 ||
1895	    (!ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting) &&
1896	     !ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting))) {
1897		goto enable_int;
1898	}
1899
1900	if (ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting)) {
1901		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1902		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1903	}
1904
1905	if (ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting)) {
1906		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1907		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1908	}
1909
1910	if (rx || tx) {
1911		/* get the higher of the two ITR adjustments and
1912		 * use the same value for both ITR registers
1913		 * when in adaptive mode (Rx and/or Tx)
1914		 */
1915		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1916
1917		q_vector->tx.itr = q_vector->rx.itr = itr;
1918		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1919		tx = true;
1920		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1921		rx = true;
1922	}
1923
1924	/* only need to enable the interrupt once, but need
1925	 * to possibly update both ITR values
1926	 */
1927	if (rx) {
1928		/* set the INTENA_MSK_MASK so that this first write
1929		 * won't actually enable the interrupt, instead just
1930		 * updating the ITR (it's bit 31 PF and VF)
1931		 */
1932		rxval |= BIT(31);
1933		/* don't check _DOWN because interrupt isn't being enabled */
1934		wr32(hw, INTREG(vector - 1), rxval);
1935	}
1936
1937enable_int:
1938	if (!test_bit(__I40E_DOWN, &vsi->state))
1939		wr32(hw, INTREG(vector - 1), txval);
1940
1941	if (q_vector->itr_countdown)
1942		q_vector->itr_countdown--;
1943	else
1944		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1945}
1946
1947/**
1948 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1949 * @napi: napi struct with our devices info in it
1950 * @budget: amount of work driver is allowed to do this pass, in packets
1951 *
1952 * This function will clean all queues associated with a q_vector.
1953 *
1954 * Returns the amount of work done
1955 **/
1956int i40e_napi_poll(struct napi_struct *napi, int budget)
1957{
1958	struct i40e_q_vector *q_vector =
1959			       container_of(napi, struct i40e_q_vector, napi);
1960	struct i40e_vsi *vsi = q_vector->vsi;
1961	struct i40e_ring *ring;
1962	bool clean_complete = true;
1963	bool arm_wb = false;
1964	int budget_per_ring;
1965	int work_done = 0;
1966
1967	if (test_bit(__I40E_DOWN, &vsi->state)) {
1968		napi_complete(napi);
1969		return 0;
1970	}
1971
1972	/* Clear hung_detected bit */
1973	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1974	/* Since the actual Tx work is minimal, we can give the Tx a larger
1975	 * budget and be more aggressive about cleaning up the Tx descriptors.
1976	 */
1977	i40e_for_each_ring(ring, q_vector->tx) {
1978		clean_complete = clean_complete &&
1979				 i40e_clean_tx_irq(ring, vsi->work_limit);
1980		arm_wb = arm_wb || ring->arm_wb;
 
 
1981		ring->arm_wb = false;
1982	}
1983
1984	/* Handle case where we are called by netpoll with a budget of 0 */
1985	if (budget <= 0)
1986		goto tx_only;
1987
1988	/* We attempt to distribute budget to each Rx queue fairly, but don't
1989	 * allow the budget to go below 1 because that would exit polling early.
1990	 */
1991	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1992
1993	i40e_for_each_ring(ring, q_vector->rx) {
1994		int cleaned;
1995
1996		if (ring_is_ps_enabled(ring))
1997			cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1998		else
1999			cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
2000
2001		work_done += cleaned;
2002		/* if we didn't clean as many as budgeted, we must be done */
2003		clean_complete = clean_complete && (budget_per_ring > cleaned);
 
2004	}
2005
2006	/* If work not completed, return budget and polling will return */
2007	if (!clean_complete) {
 
 
 
 
 
 
 
 
 
 
 
 
2008tx_only:
2009		if (arm_wb) {
2010			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2011			i40e_enable_wb_on_itr(vsi, q_vector);
 
 
2012		}
2013		return budget;
2014	}
2015
2016	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2017		q_vector->arm_wb_state = false;
2018
2019	/* Work is done so exit the polling mode and re-enable the interrupt */
2020	napi_complete_done(napi, work_done);
2021	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
2022		i40e_update_enable_itr(vsi, q_vector);
2023	} else { /* Legacy mode */
 
 
 
 
 
2024		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2025	}
2026	return 0;
 
 
2027}
2028
2029/**
2030 * i40e_atr - Add a Flow Director ATR filter
2031 * @tx_ring:  ring to add programming descriptor to
2032 * @skb:      send buffer
2033 * @tx_flags: send tx flags
2034 **/
2035static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2036		     u32 tx_flags)
2037{
2038	struct i40e_filter_program_desc *fdir_desc;
2039	struct i40e_pf *pf = tx_ring->vsi->back;
2040	union {
2041		unsigned char *network;
2042		struct iphdr *ipv4;
2043		struct ipv6hdr *ipv6;
2044	} hdr;
2045	struct tcphdr *th;
2046	unsigned int hlen;
2047	u32 flex_ptype, dtype_cmd;
2048	int l4_proto;
2049	u16 i;
2050
2051	/* make sure ATR is enabled */
2052	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2053		return;
2054
2055	if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2056		return;
2057
2058	/* if sampling is disabled do nothing */
2059	if (!tx_ring->atr_sample_rate)
2060		return;
2061
2062	/* Currently only IPv4/IPv6 with TCP is supported */
2063	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2064		return;
2065
2066	/* snag network header to get L4 type and address */
2067	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2068		      skb_inner_network_header(skb) : skb_network_header(skb);
2069
2070	/* Note: tx_flags gets modified to reflect inner protocols in
2071	 * tx_enable_csum function if encap is enabled.
2072	 */
2073	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2074		/* access ihl as u8 to avoid unaligned access on ia64 */
2075		hlen = (hdr.network[0] & 0x0F) << 2;
2076		l4_proto = hdr.ipv4->protocol;
2077	} else {
2078		hlen = hdr.network - skb->data;
2079		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2080		hlen -= hdr.network - skb->data;
2081	}
2082
2083	if (l4_proto != IPPROTO_TCP)
2084		return;
2085
2086	th = (struct tcphdr *)(hdr.network + hlen);
2087
2088	/* Due to lack of space, no more new filters can be programmed */
2089	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2090		return;
2091	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2092	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2093		/* HW ATR eviction will take care of removing filters on FIN
2094		 * and RST packets.
2095		 */
2096		if (th->fin || th->rst)
2097			return;
2098	}
2099
2100	tx_ring->atr_count++;
2101
2102	/* sample on all syn/fin/rst packets or once every atr sample rate */
2103	if (!th->fin &&
2104	    !th->syn &&
2105	    !th->rst &&
2106	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2107		return;
2108
2109	tx_ring->atr_count = 0;
2110
2111	/* grab the next descriptor */
2112	i = tx_ring->next_to_use;
2113	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2114
2115	i++;
2116	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2117
2118	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2119		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2120	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2121		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2122		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2123		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2124		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2125
2126	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2127
2128	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2129
2130	dtype_cmd |= (th->fin || th->rst) ?
2131		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2132		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2133		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2134		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2135
2136	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2137		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2138
2139	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2140		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2141
2142	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2143	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2144		dtype_cmd |=
2145			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2146			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2147			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2148	else
2149		dtype_cmd |=
2150			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2151			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2152			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2153
2154	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2155	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2156		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2157
2158	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2159	fdir_desc->rsvd = cpu_to_le32(0);
2160	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2161	fdir_desc->fd_id = cpu_to_le32(0);
2162}
2163
2164/**
2165 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2166 * @skb:     send buffer
2167 * @tx_ring: ring to send buffer on
2168 * @flags:   the tx flags to be set
2169 *
2170 * Checks the skb and set up correspondingly several generic transmit flags
2171 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2172 *
2173 * Returns error code indicate the frame should be dropped upon error and the
2174 * otherwise  returns 0 to indicate the flags has been set properly.
2175 **/
2176#ifdef I40E_FCOE
2177inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2178				      struct i40e_ring *tx_ring,
2179				      u32 *flags)
2180#else
2181static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2182					     struct i40e_ring *tx_ring,
2183					     u32 *flags)
2184#endif
2185{
2186	__be16 protocol = skb->protocol;
2187	u32  tx_flags = 0;
2188
2189	if (protocol == htons(ETH_P_8021Q) &&
2190	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2191		/* When HW VLAN acceleration is turned off by the user the
2192		 * stack sets the protocol to 8021q so that the driver
2193		 * can take any steps required to support the SW only
2194		 * VLAN handling.  In our case the driver doesn't need
2195		 * to take any further steps so just set the protocol
2196		 * to the encapsulated ethertype.
2197		 */
2198		skb->protocol = vlan_get_protocol(skb);
2199		goto out;
2200	}
2201
2202	/* if we have a HW VLAN tag being added, default to the HW one */
2203	if (skb_vlan_tag_present(skb)) {
2204		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2205		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2206	/* else if it is a SW VLAN, check the next protocol and store the tag */
2207	} else if (protocol == htons(ETH_P_8021Q)) {
2208		struct vlan_hdr *vhdr, _vhdr;
2209
2210		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2211		if (!vhdr)
2212			return -EINVAL;
2213
2214		protocol = vhdr->h_vlan_encapsulated_proto;
2215		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2216		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2217	}
2218
2219	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2220		goto out;
2221
2222	/* Insert 802.1p priority into VLAN header */
2223	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2224	    (skb->priority != TC_PRIO_CONTROL)) {
2225		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2226		tx_flags |= (skb->priority & 0x7) <<
2227				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2228		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2229			struct vlan_ethhdr *vhdr;
2230			int rc;
2231
2232			rc = skb_cow_head(skb, 0);
2233			if (rc < 0)
2234				return rc;
2235			vhdr = (struct vlan_ethhdr *)skb->data;
2236			vhdr->h_vlan_TCI = htons(tx_flags >>
2237						 I40E_TX_FLAGS_VLAN_SHIFT);
2238		} else {
2239			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2240		}
2241	}
2242
2243out:
2244	*flags = tx_flags;
2245	return 0;
2246}
2247
2248/**
2249 * i40e_tso - set up the tso context descriptor
2250 * @tx_ring:  ptr to the ring to send
2251 * @skb:      ptr to the skb we're sending
2252 * @hdr_len:  ptr to the size of the packet header
2253 * @cd_type_cmd_tso_mss: Quad Word 1
2254 *
2255 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2256 **/
2257static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2258		    u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2259{
2260	u64 cd_cmd, cd_tso_len, cd_mss;
2261	union {
2262		struct iphdr *v4;
2263		struct ipv6hdr *v6;
2264		unsigned char *hdr;
2265	} ip;
2266	union {
2267		struct tcphdr *tcp;
2268		struct udphdr *udp;
2269		unsigned char *hdr;
2270	} l4;
2271	u32 paylen, l4_offset;
2272	int err;
2273
2274	if (skb->ip_summed != CHECKSUM_PARTIAL)
2275		return 0;
2276
2277	if (!skb_is_gso(skb))
2278		return 0;
2279
2280	err = skb_cow_head(skb, 0);
2281	if (err < 0)
2282		return err;
2283
2284	ip.hdr = skb_network_header(skb);
2285	l4.hdr = skb_transport_header(skb);
2286
2287	/* initialize outer IP header fields */
2288	if (ip.v4->version == 4) {
2289		ip.v4->tot_len = 0;
2290		ip.v4->check = 0;
2291	} else {
2292		ip.v6->payload_len = 0;
2293	}
2294
2295	if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE |
 
 
 
 
2296					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2297		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
 
 
 
2298			/* determine offset of outer transport header */
2299			l4_offset = l4.hdr - skb->data;
2300
2301			/* remove payload length from outer checksum */
2302			paylen = (__force u16)l4.udp->check;
2303			paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
2304			l4.udp->check = ~csum_fold((__force __wsum)paylen);
2305		}
2306
2307		/* reset pointers to inner headers */
2308		ip.hdr = skb_inner_network_header(skb);
2309		l4.hdr = skb_inner_transport_header(skb);
2310
2311		/* initialize inner IP header fields */
2312		if (ip.v4->version == 4) {
2313			ip.v4->tot_len = 0;
2314			ip.v4->check = 0;
2315		} else {
2316			ip.v6->payload_len = 0;
2317		}
2318	}
2319
2320	/* determine offset of inner transport header */
2321	l4_offset = l4.hdr - skb->data;
2322
2323	/* remove payload length from inner checksum */
2324	paylen = (__force u16)l4.tcp->check;
2325	paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
2326	l4.tcp->check = ~csum_fold((__force __wsum)paylen);
2327
2328	/* compute length of segmentation header */
2329	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2330
2331	/* find the field values */
2332	cd_cmd = I40E_TX_CTX_DESC_TSO;
2333	cd_tso_len = skb->len - *hdr_len;
2334	cd_mss = skb_shinfo(skb)->gso_size;
2335	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2336				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2337				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2338	return 1;
2339}
2340
2341/**
2342 * i40e_tsyn - set up the tsyn context descriptor
2343 * @tx_ring:  ptr to the ring to send
2344 * @skb:      ptr to the skb we're sending
2345 * @tx_flags: the collected send information
2346 * @cd_type_cmd_tso_mss: Quad Word 1
2347 *
2348 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2349 **/
2350static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2351		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2352{
2353	struct i40e_pf *pf;
2354
2355	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2356		return 0;
2357
2358	/* Tx timestamps cannot be sampled when doing TSO */
2359	if (tx_flags & I40E_TX_FLAGS_TSO)
2360		return 0;
2361
2362	/* only timestamp the outbound packet if the user has requested it and
2363	 * we are not already transmitting a packet to be timestamped
2364	 */
2365	pf = i40e_netdev_to_pf(tx_ring->netdev);
2366	if (!(pf->flags & I40E_FLAG_PTP))
2367		return 0;
2368
2369	if (pf->ptp_tx &&
2370	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2371		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2372		pf->ptp_tx_skb = skb_get(skb);
2373	} else {
2374		return 0;
2375	}
2376
2377	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2378				I40E_TXD_CTX_QW1_CMD_SHIFT;
2379
2380	return 1;
2381}
2382
2383/**
2384 * i40e_tx_enable_csum - Enable Tx checksum offloads
2385 * @skb: send buffer
2386 * @tx_flags: pointer to Tx flags currently set
2387 * @td_cmd: Tx descriptor command bits to set
2388 * @td_offset: Tx descriptor header offsets to set
2389 * @tx_ring: Tx descriptor ring
2390 * @cd_tunneling: ptr to context desc bits
2391 **/
2392static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2393			       u32 *td_cmd, u32 *td_offset,
2394			       struct i40e_ring *tx_ring,
2395			       u32 *cd_tunneling)
2396{
2397	union {
2398		struct iphdr *v4;
2399		struct ipv6hdr *v6;
2400		unsigned char *hdr;
2401	} ip;
2402	union {
2403		struct tcphdr *tcp;
2404		struct udphdr *udp;
2405		unsigned char *hdr;
2406	} l4;
2407	unsigned char *exthdr;
2408	u32 offset, cmd = 0, tunnel = 0;
2409	__be16 frag_off;
2410	u8 l4_proto = 0;
2411
2412	if (skb->ip_summed != CHECKSUM_PARTIAL)
2413		return 0;
2414
2415	ip.hdr = skb_network_header(skb);
2416	l4.hdr = skb_transport_header(skb);
2417
2418	/* compute outer L2 header size */
2419	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2420
2421	if (skb->encapsulation) {
 
2422		/* define outer network header type */
2423		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2424			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2425				  I40E_TX_CTX_EXT_IP_IPV4 :
2426				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2427
2428			l4_proto = ip.v4->protocol;
2429		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2430			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2431
2432			exthdr = ip.hdr + sizeof(*ip.v6);
2433			l4_proto = ip.v6->nexthdr;
2434			if (l4.hdr != exthdr)
2435				ipv6_skip_exthdr(skb, exthdr - skb->data,
2436						 &l4_proto, &frag_off);
2437		}
2438
2439		/* compute outer L3 header size */
2440		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2441			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2442
2443		/* switch IP header pointer from outer to inner header */
2444		ip.hdr = skb_inner_network_header(skb);
2445
2446		/* define outer transport */
2447		switch (l4_proto) {
2448		case IPPROTO_UDP:
2449			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2450			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2451			break;
2452		case IPPROTO_GRE:
2453			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2454			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2455			break;
 
 
 
 
 
2456		default:
2457			if (*tx_flags & I40E_TX_FLAGS_TSO)
2458				return -1;
2459
2460			skb_checksum_help(skb);
2461			return 0;
2462		}
2463
 
 
 
 
 
 
 
2464		/* compute tunnel header size */
2465		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2466			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2467
2468		/* indicate if we need to offload outer UDP header */
2469		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
 
2470		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2471			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2472
2473		/* record tunnel offload values */
2474		*cd_tunneling |= tunnel;
2475
2476		/* switch L4 header pointer from outer to inner */
2477		l4.hdr = skb_inner_transport_header(skb);
2478		l4_proto = 0;
2479
2480		/* reset type as we transition from outer to inner headers */
2481		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2482		if (ip.v4->version == 4)
2483			*tx_flags |= I40E_TX_FLAGS_IPV4;
2484		if (ip.v6->version == 6)
2485			*tx_flags |= I40E_TX_FLAGS_IPV6;
2486	}
2487
2488	/* Enable IP checksum offloads */
2489	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2490		l4_proto = ip.v4->protocol;
2491		/* the stack computes the IP header already, the only time we
2492		 * need the hardware to recompute it is in the case of TSO.
2493		 */
2494		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2495		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2496		       I40E_TX_DESC_CMD_IIPT_IPV4;
2497	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2498		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2499
2500		exthdr = ip.hdr + sizeof(*ip.v6);
2501		l4_proto = ip.v6->nexthdr;
2502		if (l4.hdr != exthdr)
2503			ipv6_skip_exthdr(skb, exthdr - skb->data,
2504					 &l4_proto, &frag_off);
2505	}
2506
2507	/* compute inner L3 header size */
2508	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2509
2510	/* Enable L4 checksum offloads */
2511	switch (l4_proto) {
2512	case IPPROTO_TCP:
2513		/* enable checksum offloads */
2514		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2515		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2516		break;
2517	case IPPROTO_SCTP:
2518		/* enable SCTP checksum offload */
2519		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2520		offset |= (sizeof(struct sctphdr) >> 2) <<
2521			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2522		break;
2523	case IPPROTO_UDP:
2524		/* enable UDP checksum offload */
2525		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2526		offset |= (sizeof(struct udphdr) >> 2) <<
2527			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2528		break;
2529	default:
2530		if (*tx_flags & I40E_TX_FLAGS_TSO)
2531			return -1;
2532		skb_checksum_help(skb);
2533		return 0;
2534	}
2535
2536	*td_cmd |= cmd;
2537	*td_offset |= offset;
2538
2539	return 1;
2540}
2541
2542/**
2543 * i40e_create_tx_ctx Build the Tx context descriptor
2544 * @tx_ring:  ring to create the descriptor on
2545 * @cd_type_cmd_tso_mss: Quad Word 1
2546 * @cd_tunneling: Quad Word 0 - bits 0-31
2547 * @cd_l2tag2: Quad Word 0 - bits 32-63
2548 **/
2549static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2550			       const u64 cd_type_cmd_tso_mss,
2551			       const u32 cd_tunneling, const u32 cd_l2tag2)
2552{
2553	struct i40e_tx_context_desc *context_desc;
2554	int i = tx_ring->next_to_use;
2555
2556	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2557	    !cd_tunneling && !cd_l2tag2)
2558		return;
2559
2560	/* grab the next descriptor */
2561	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2562
2563	i++;
2564	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2565
2566	/* cpu_to_le32 and assign to struct fields */
2567	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2568	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2569	context_desc->rsvd = cpu_to_le16(0);
2570	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2571}
2572
2573/**
2574 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2575 * @tx_ring: the ring to be checked
2576 * @size:    the size buffer we want to assure is available
2577 *
2578 * Returns -EBUSY if a stop is needed, else 0
2579 **/
2580int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2581{
2582	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2583	/* Memory barrier before checking head and tail */
2584	smp_mb();
2585
2586	/* Check again in a case another CPU has just made room available. */
2587	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2588		return -EBUSY;
2589
2590	/* A reprieve! - use start_queue because it doesn't call schedule */
2591	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2592	++tx_ring->tx_stats.restart_queue;
2593	return 0;
2594}
2595
2596/**
2597 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2598 * @skb:      send buffer
2599 *
2600 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2601 * and so we need to figure out the cases where we need to linearize the skb.
2602 *
2603 * For TSO we need to count the TSO header and segment payload separately.
2604 * As such we need to check cases where we have 7 fragments or more as we
2605 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2606 * the segment payload in the first descriptor, and another 7 for the
2607 * fragments.
2608 **/
2609bool __i40e_chk_linearize(struct sk_buff *skb)
2610{
2611	const struct skb_frag_struct *frag, *stale;
2612	int nr_frags, sum;
2613
2614	/* no need to check if number of frags is less than 7 */
2615	nr_frags = skb_shinfo(skb)->nr_frags;
2616	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2617		return false;
2618
2619	/* We need to walk through the list and validate that each group
2620	 * of 6 fragments totals at least gso_size.  However we don't need
2621	 * to perform such validation on the last 6 since the last 6 cannot
2622	 * inherit any data from a descriptor after them.
2623	 */
2624	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2625	frag = &skb_shinfo(skb)->frags[0];
2626
2627	/* Initialize size to the negative value of gso_size minus 1.  We
2628	 * use this as the worst case scenerio in which the frag ahead
2629	 * of us only provides one byte which is why we are limited to 6
2630	 * descriptors for a single transmit as the header and previous
2631	 * fragment are already consuming 2 descriptors.
2632	 */
2633	sum = 1 - skb_shinfo(skb)->gso_size;
2634
2635	/* Add size of frags 0 through 4 to create our initial sum */
2636	sum += skb_frag_size(frag++);
2637	sum += skb_frag_size(frag++);
2638	sum += skb_frag_size(frag++);
2639	sum += skb_frag_size(frag++);
2640	sum += skb_frag_size(frag++);
2641
2642	/* Walk through fragments adding latest fragment, testing it, and
2643	 * then removing stale fragments from the sum.
2644	 */
2645	stale = &skb_shinfo(skb)->frags[0];
2646	for (;;) {
2647		sum += skb_frag_size(frag++);
2648
2649		/* if sum is negative we failed to make sufficient progress */
2650		if (sum < 0)
2651			return true;
2652
2653		/* use pre-decrement to avoid processing last fragment */
2654		if (!--nr_frags)
2655			break;
2656
2657		sum -= skb_frag_size(stale++);
2658	}
2659
2660	return false;
2661}
2662
2663/**
2664 * i40e_tx_map - Build the Tx descriptor
2665 * @tx_ring:  ring to send buffer on
2666 * @skb:      send buffer
2667 * @first:    first buffer info buffer to use
2668 * @tx_flags: collected send information
2669 * @hdr_len:  size of the packet header
2670 * @td_cmd:   the command field in the descriptor
2671 * @td_offset: offset for checksum or crc
2672 **/
2673#ifdef I40E_FCOE
2674inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2675			struct i40e_tx_buffer *first, u32 tx_flags,
2676			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2677#else
2678static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2679			       struct i40e_tx_buffer *first, u32 tx_flags,
2680			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2681#endif
2682{
2683	unsigned int data_len = skb->data_len;
2684	unsigned int size = skb_headlen(skb);
2685	struct skb_frag_struct *frag;
2686	struct i40e_tx_buffer *tx_bi;
2687	struct i40e_tx_desc *tx_desc;
2688	u16 i = tx_ring->next_to_use;
2689	u32 td_tag = 0;
2690	dma_addr_t dma;
2691	u16 gso_segs;
2692	u16 desc_count = 0;
2693	bool tail_bump = true;
2694	bool do_rs = false;
2695
2696	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2697		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2698		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2699			 I40E_TX_FLAGS_VLAN_SHIFT;
2700	}
2701
2702	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2703		gso_segs = skb_shinfo(skb)->gso_segs;
2704	else
2705		gso_segs = 1;
2706
2707	/* multiply data chunks by size of headers */
2708	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2709	first->gso_segs = gso_segs;
2710	first->skb = skb;
2711	first->tx_flags = tx_flags;
2712
2713	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2714
2715	tx_desc = I40E_TX_DESC(tx_ring, i);
2716	tx_bi = first;
2717
2718	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 
 
2719		if (dma_mapping_error(tx_ring->dev, dma))
2720			goto dma_error;
2721
2722		/* record length, and DMA address */
2723		dma_unmap_len_set(tx_bi, len, size);
2724		dma_unmap_addr_set(tx_bi, dma, dma);
2725
 
 
2726		tx_desc->buffer_addr = cpu_to_le64(dma);
2727
2728		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2729			tx_desc->cmd_type_offset_bsz =
2730				build_ctob(td_cmd, td_offset,
2731					   I40E_MAX_DATA_PER_TXD, td_tag);
2732
2733			tx_desc++;
2734			i++;
2735			desc_count++;
2736
2737			if (i == tx_ring->count) {
2738				tx_desc = I40E_TX_DESC(tx_ring, 0);
2739				i = 0;
2740			}
2741
2742			dma += I40E_MAX_DATA_PER_TXD;
2743			size -= I40E_MAX_DATA_PER_TXD;
2744
 
2745			tx_desc->buffer_addr = cpu_to_le64(dma);
2746		}
2747
2748		if (likely(!data_len))
2749			break;
2750
2751		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2752							  size, td_tag);
2753
2754		tx_desc++;
2755		i++;
2756		desc_count++;
2757
2758		if (i == tx_ring->count) {
2759			tx_desc = I40E_TX_DESC(tx_ring, 0);
2760			i = 0;
2761		}
2762
2763		size = skb_frag_size(frag);
2764		data_len -= size;
2765
2766		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2767				       DMA_TO_DEVICE);
2768
2769		tx_bi = &tx_ring->tx_bi[i];
2770	}
2771
2772	/* set next_to_watch value indicating a packet is present */
2773	first->next_to_watch = tx_desc;
2774
2775	i++;
2776	if (i == tx_ring->count)
2777		i = 0;
2778
2779	tx_ring->next_to_use = i;
2780
2781	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2782						 tx_ring->queue_index),
2783						 first->bytecount);
2784	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2785
 
 
 
 
 
 
 
 
 
2786	/* Algorithm to optimize tail and RS bit setting:
2787	 * if xmit_more is supported
2788	 *	if xmit_more is true
2789	 *		do not update tail and do not mark RS bit.
2790	 *	if xmit_more is false and last xmit_more was false
2791	 *		if every packet spanned less than 4 desc
2792	 *			then set RS bit on 4th packet and update tail
2793	 *			on every packet
2794	 *		else
2795	 *			update tail and set RS bit on every packet.
2796	 *	if xmit_more is false and last_xmit_more was true
2797	 *		update tail and set RS bit.
2798	 *
2799	 * Optimization: wmb to be issued only in case of tail update.
2800	 * Also optimize the Descriptor WB path for RS bit with the same
2801	 * algorithm.
 
 
2802	 *
2803	 * Note: If there are less than 4 packets
2804	 * pending and interrupts were disabled the service task will
2805	 * trigger a force WB.
2806	 */
2807	if (skb->xmit_more  &&
2808	    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2809						    tx_ring->queue_index))) {
2810		tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2811		tail_bump = false;
2812	} else if (!skb->xmit_more &&
2813		   !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2814						       tx_ring->queue_index)) &&
2815		   (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2816		   (tx_ring->packet_stride < WB_STRIDE) &&
2817		   (desc_count < WB_STRIDE)) {
2818		tx_ring->packet_stride++;
2819	} else {
2820		tx_ring->packet_stride = 0;
2821		tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2822		do_rs = true;
2823	}
2824	if (do_rs)
2825		tx_ring->packet_stride = 0;
2826
2827	tx_desc->cmd_type_offset_bsz =
2828			build_ctob(td_cmd, td_offset, size, td_tag) |
2829			cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2830						  I40E_TX_DESC_CMD_EOP) <<
2831						  I40E_TXD_QW1_CMD_SHIFT);
 
 
 
 
 
 
 
 
2832
2833	/* notify HW of packet */
2834	if (!tail_bump)
2835		prefetchw(tx_desc + 1);
2836
2837	if (tail_bump) {
2838		/* Force memory writes to complete before letting h/w
2839		 * know there are new descriptors to fetch.  (Only
2840		 * applicable for weak-ordered memory model archs,
2841		 * such as IA-64).
2842		 */
2843		wmb();
2844		writel(i, tx_ring->tail);
2845	}
2846
2847	return;
2848
2849dma_error:
2850	dev_info(tx_ring->dev, "TX DMA map failed\n");
2851
2852	/* clear dma mappings for failed tx_bi map */
2853	for (;;) {
2854		tx_bi = &tx_ring->tx_bi[i];
2855		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2856		if (tx_bi == first)
2857			break;
2858		if (i == 0)
2859			i = tx_ring->count;
2860		i--;
2861	}
2862
2863	tx_ring->next_to_use = i;
2864}
2865
2866/**
2867 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2868 * @skb:     send buffer
2869 * @tx_ring: ring to send buffer on
2870 *
2871 * Returns NETDEV_TX_OK if sent, else an error code
2872 **/
2873static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2874					struct i40e_ring *tx_ring)
2875{
2876	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2877	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2878	struct i40e_tx_buffer *first;
2879	u32 td_offset = 0;
2880	u32 tx_flags = 0;
2881	__be16 protocol;
2882	u32 td_cmd = 0;
2883	u8 hdr_len = 0;
2884	int tso, count;
2885	int tsyn;
2886
2887	/* prefetch the data, we'll need it later */
2888	prefetch(skb->data);
2889
2890	count = i40e_xmit_descriptor_count(skb);
2891	if (i40e_chk_linearize(skb, count)) {
2892		if (__skb_linearize(skb))
2893			goto out_drop;
2894		count = TXD_USE_COUNT(skb->len);
2895		tx_ring->tx_stats.tx_linearize++;
2896	}
2897
2898	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2899	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2900	 *       + 4 desc gap to avoid the cache line where head is,
2901	 *       + 1 desc for context descriptor,
2902	 * otherwise try next time
2903	 */
2904	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2905		tx_ring->tx_stats.tx_busy++;
2906		return NETDEV_TX_BUSY;
2907	}
2908
2909	/* prepare the xmit flags */
2910	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2911		goto out_drop;
2912
2913	/* obtain protocol of skb */
2914	protocol = vlan_get_protocol(skb);
2915
2916	/* record the location of the first descriptor for this packet */
2917	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2918
2919	/* setup IPv4/IPv6 offloads */
2920	if (protocol == htons(ETH_P_IP))
2921		tx_flags |= I40E_TX_FLAGS_IPV4;
2922	else if (protocol == htons(ETH_P_IPV6))
2923		tx_flags |= I40E_TX_FLAGS_IPV6;
2924
2925	tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2926
2927	if (tso < 0)
2928		goto out_drop;
2929	else if (tso)
2930		tx_flags |= I40E_TX_FLAGS_TSO;
2931
2932	/* Always offload the checksum, since it's in the data descriptor */
2933	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2934				  tx_ring, &cd_tunneling);
2935	if (tso < 0)
2936		goto out_drop;
2937
2938	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2939
2940	if (tsyn)
2941		tx_flags |= I40E_TX_FLAGS_TSYN;
2942
2943	skb_tx_timestamp(skb);
2944
2945	/* always enable CRC insertion offload */
2946	td_cmd |= I40E_TX_DESC_CMD_ICRC;
2947
2948	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2949			   cd_tunneling, cd_l2tag2);
2950
2951	/* Add Flow Director ATR if it's enabled.
2952	 *
2953	 * NOTE: this must always be directly before the data descriptor.
2954	 */
2955	i40e_atr(tx_ring, skb, tx_flags);
2956
2957	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2958		    td_cmd, td_offset);
2959
2960	return NETDEV_TX_OK;
2961
2962out_drop:
2963	dev_kfree_skb_any(skb);
2964	return NETDEV_TX_OK;
2965}
2966
2967/**
2968 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2969 * @skb:    send buffer
2970 * @netdev: network interface device structure
2971 *
2972 * Returns NETDEV_TX_OK if sent, else an error code
2973 **/
2974netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2975{
2976	struct i40e_netdev_priv *np = netdev_priv(netdev);
2977	struct i40e_vsi *vsi = np->vsi;
2978	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2979
2980	/* hardware can't handle really short frames, hardware padding works
2981	 * beyond this point
2982	 */
2983	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2984		return NETDEV_TX_OK;
2985
2986	return i40e_xmit_frame_ring(skb, tx_ring);
2987}
v4.10.11
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
  27#include <linux/prefetch.h>
  28#include <net/busy_poll.h>
  29#include "i40e.h"
  30#include "i40e_prototype.h"
  31
  32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  33				u32 td_tag)
  34{
  35	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  36			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  37			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  38			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  39			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  40}
  41
  42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  43/**
  44 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  45 * @tx_ring: Tx ring to send buffer on
  46 * @fdata: Flow director filter data
  47 * @add: Indicate if we are adding a rule or deleting one
  48 *
  49 **/
  50static void i40e_fdir(struct i40e_ring *tx_ring,
  51		      struct i40e_fdir_filter *fdata, bool add)
  52{
  53	struct i40e_filter_program_desc *fdir_desc;
  54	struct i40e_pf *pf = tx_ring->vsi->back;
  55	u32 flex_ptype, dtype_cmd;
  56	u16 i;
  57
  58	/* grab the next descriptor */
  59	i = tx_ring->next_to_use;
  60	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  61
  62	i++;
  63	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  64
  65	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  66		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  67
  68	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  69		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  70
  71	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  72		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  73
  74	/* Use LAN VSI Id if not programmed by user */
  75	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  76		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  77		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  78
  79	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  80
  81	dtype_cmd |= add ?
  82		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  83		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  84		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  85		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  86
  87	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  88		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  89
  90	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  91		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  92
  93	if (fdata->cnt_index) {
  94		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  95		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  96			     ((u32)fdata->cnt_index <<
  97			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  98	}
  99
 100	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
 101	fdir_desc->rsvd = cpu_to_le32(0);
 102	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
 103	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
 104}
 105
 106#define I40E_FD_CLEAN_DELAY 10
 107/**
 108 * i40e_program_fdir_filter - Program a Flow Director filter
 109 * @fdir_data: Packet data that will be filter parameters
 110 * @raw_packet: the pre-allocated packet buffer for FDir
 111 * @pf: The PF pointer
 112 * @add: True for add/update, False for remove
 113 **/
 114static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
 115				    u8 *raw_packet, struct i40e_pf *pf,
 116				    bool add)
 117{
 
 118	struct i40e_tx_buffer *tx_buf, *first;
 119	struct i40e_tx_desc *tx_desc;
 120	struct i40e_ring *tx_ring;
 
 121	struct i40e_vsi *vsi;
 122	struct device *dev;
 123	dma_addr_t dma;
 124	u32 td_cmd = 0;
 
 125	u16 i;
 126
 127	/* find existing FDIR VSI */
 128	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 
 
 
 129	if (!vsi)
 130		return -ENOENT;
 131
 132	tx_ring = vsi->tx_rings[0];
 133	dev = tx_ring->dev;
 134
 135	/* we need two descriptors to add/del a filter and we can wait */
 136	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 137		if (!i)
 138			return -EAGAIN;
 139		msleep_interruptible(1);
 140	}
 
 
 
 
 141
 142	dma = dma_map_single(dev, raw_packet,
 143			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 144	if (dma_mapping_error(dev, dma))
 145		goto dma_fail;
 146
 147	/* grab the next descriptor */
 148	i = tx_ring->next_to_use;
 
 149	first = &tx_ring->tx_bi[i];
 150	i40e_fdir(tx_ring, fdir_data, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151
 152	/* Now program a dummy descriptor */
 153	i = tx_ring->next_to_use;
 154	tx_desc = I40E_TX_DESC(tx_ring, i);
 155	tx_buf = &tx_ring->tx_bi[i];
 156
 157	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 158
 159	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 160
 161	/* record length, and DMA address */
 162	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 163	dma_unmap_addr_set(tx_buf, dma, dma);
 164
 165	tx_desc->buffer_addr = cpu_to_le64(dma);
 166	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 167
 168	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 169	tx_buf->raw_buf = (void *)raw_packet;
 170
 171	tx_desc->cmd_type_offset_bsz =
 172		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 173
 174	/* Force memory writes to complete before letting h/w
 175	 * know there are new descriptors to fetch.
 176	 */
 177	wmb();
 178
 179	/* Mark the data descriptor to be watched */
 180	first->next_to_watch = tx_desc;
 181
 182	writel(tx_ring->next_to_use, tx_ring->tail);
 183	return 0;
 184
 185dma_fail:
 186	return -1;
 187}
 188
 189#define IP_HEADER_OFFSET 14
 190#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 191/**
 192 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 193 * @vsi: pointer to the targeted VSI
 194 * @fd_data: the flow director data required for the FDir descriptor
 195 * @add: true adds a filter, false removes it
 196 *
 197 * Returns 0 if the filters were successfully added or removed
 198 **/
 199static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 200				   struct i40e_fdir_filter *fd_data,
 201				   bool add)
 202{
 203	struct i40e_pf *pf = vsi->back;
 204	struct udphdr *udp;
 205	struct iphdr *ip;
 206	bool err = false;
 207	u8 *raw_packet;
 208	int ret;
 209	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 210		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 211		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 212
 213	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 214	if (!raw_packet)
 215		return -ENOMEM;
 216	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 217
 218	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 219	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 220	      + sizeof(struct iphdr));
 221
 222	ip->daddr = fd_data->dst_ip[0];
 223	udp->dest = fd_data->dst_port;
 224	ip->saddr = fd_data->src_ip[0];
 225	udp->source = fd_data->src_port;
 226
 227	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 228	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 229	if (ret) {
 230		dev_info(&pf->pdev->dev,
 231			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 232			 fd_data->pctype, fd_data->fd_id, ret);
 233		err = true;
 234	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 235		if (add)
 236			dev_info(&pf->pdev->dev,
 237				 "Filter OK for PCTYPE %d loc = %d\n",
 238				 fd_data->pctype, fd_data->fd_id);
 239		else
 240			dev_info(&pf->pdev->dev,
 241				 "Filter deleted for PCTYPE %d loc = %d\n",
 242				 fd_data->pctype, fd_data->fd_id);
 243	}
 244	if (err)
 245		kfree(raw_packet);
 246
 247	return err ? -EOPNOTSUPP : 0;
 248}
 249
 250#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 251/**
 252 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 253 * @vsi: pointer to the targeted VSI
 254 * @fd_data: the flow director data required for the FDir descriptor
 255 * @add: true adds a filter, false removes it
 256 *
 257 * Returns 0 if the filters were successfully added or removed
 258 **/
 259static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 260				   struct i40e_fdir_filter *fd_data,
 261				   bool add)
 262{
 263	struct i40e_pf *pf = vsi->back;
 264	struct tcphdr *tcp;
 265	struct iphdr *ip;
 266	bool err = false;
 267	u8 *raw_packet;
 268	int ret;
 269	/* Dummy packet */
 270	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 271		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 272		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 273		0x0, 0x72, 0, 0, 0, 0};
 274
 275	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 276	if (!raw_packet)
 277		return -ENOMEM;
 278	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 279
 280	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 281	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 282	      + sizeof(struct iphdr));
 283
 284	ip->daddr = fd_data->dst_ip[0];
 285	tcp->dest = fd_data->dst_port;
 286	ip->saddr = fd_data->src_ip[0];
 287	tcp->source = fd_data->src_port;
 288
 289	if (add) {
 290		pf->fd_tcp_rule++;
 291		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 292		    I40E_DEBUG_FD & pf->hw.debug_mask)
 293			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 294		pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
 
 295	} else {
 296		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
 297				  (pf->fd_tcp_rule - 1) : 0;
 298		if (pf->fd_tcp_rule == 0) {
 299			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 300			    I40E_DEBUG_FD & pf->hw.debug_mask)
 301				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
 302			pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 303		}
 304	}
 305
 306	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 307	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 308
 309	if (ret) {
 310		dev_info(&pf->pdev->dev,
 311			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 312			 fd_data->pctype, fd_data->fd_id, ret);
 313		err = true;
 314	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 315		if (add)
 316			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 317				 fd_data->pctype, fd_data->fd_id);
 318		else
 319			dev_info(&pf->pdev->dev,
 320				 "Filter deleted for PCTYPE %d loc = %d\n",
 321				 fd_data->pctype, fd_data->fd_id);
 322	}
 323
 324	if (err)
 325		kfree(raw_packet);
 326
 327	return err ? -EOPNOTSUPP : 0;
 328}
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330#define I40E_IP_DUMMY_PACKET_LEN 34
 331/**
 332 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 333 * a specific flow spec
 334 * @vsi: pointer to the targeted VSI
 335 * @fd_data: the flow director data required for the FDir descriptor
 336 * @add: true adds a filter, false removes it
 337 *
 338 * Returns 0 if the filters were successfully added or removed
 339 **/
 340static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 341				  struct i40e_fdir_filter *fd_data,
 342				  bool add)
 343{
 344	struct i40e_pf *pf = vsi->back;
 345	struct iphdr *ip;
 346	bool err = false;
 347	u8 *raw_packet;
 348	int ret;
 349	int i;
 350	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 351		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 352		0, 0, 0, 0};
 353
 354	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 355	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 356		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 357		if (!raw_packet)
 358			return -ENOMEM;
 359		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 360		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 361
 362		ip->saddr = fd_data->src_ip[0];
 363		ip->daddr = fd_data->dst_ip[0];
 364		ip->protocol = 0;
 365
 366		fd_data->pctype = i;
 367		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 368
 369		if (ret) {
 370			dev_info(&pf->pdev->dev,
 371				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 372				 fd_data->pctype, fd_data->fd_id, ret);
 373			err = true;
 374		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 375			if (add)
 376				dev_info(&pf->pdev->dev,
 377					 "Filter OK for PCTYPE %d loc = %d\n",
 378					 fd_data->pctype, fd_data->fd_id);
 379			else
 380				dev_info(&pf->pdev->dev,
 381					 "Filter deleted for PCTYPE %d loc = %d\n",
 382					 fd_data->pctype, fd_data->fd_id);
 383		}
 384	}
 385
 386	if (err)
 387		kfree(raw_packet);
 388
 389	return err ? -EOPNOTSUPP : 0;
 390}
 391
 392/**
 393 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 394 * @vsi: pointer to the targeted VSI
 395 * @cmd: command to get or set RX flow classification rules
 396 * @add: true adds a filter, false removes it
 397 *
 398 **/
 399int i40e_add_del_fdir(struct i40e_vsi *vsi,
 400		      struct i40e_fdir_filter *input, bool add)
 401{
 402	struct i40e_pf *pf = vsi->back;
 403	int ret;
 404
 405	switch (input->flow_type & ~FLOW_EXT) {
 406	case TCP_V4_FLOW:
 407		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 408		break;
 409	case UDP_V4_FLOW:
 410		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 411		break;
 
 
 
 
 
 
 412	case IP_USER_FLOW:
 413		switch (input->ip4_proto) {
 414		case IPPROTO_TCP:
 415			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 416			break;
 417		case IPPROTO_UDP:
 418			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 419			break;
 420		case IPPROTO_IP:
 
 
 
 421			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 422			break;
 423		default:
 424			/* We cannot support masking based on protocol */
 425			goto unsupported_flow;
 426		}
 427		break;
 428	default:
 429unsupported_flow:
 430		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
 431			 input->flow_type);
 432		ret = -EINVAL;
 433	}
 434
 435	/* The buffer allocated here is freed by the i40e_clean_tx_ring() */
 436	return ret;
 437}
 438
 439/**
 440 * i40e_fd_handle_status - check the Programming Status for FD
 441 * @rx_ring: the Rx ring for this descriptor
 442 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 443 * @prog_id: the id originally used for programming
 444 *
 445 * This is used to verify if the FD programming or invalidation
 446 * requested by SW to the HW is successful or not and take actions accordingly.
 447 **/
 448static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 449				  union i40e_rx_desc *rx_desc, u8 prog_id)
 450{
 451	struct i40e_pf *pf = rx_ring->vsi->back;
 452	struct pci_dev *pdev = pf->pdev;
 453	u32 fcnt_prog, fcnt_avail;
 454	u32 error;
 455	u64 qw;
 456
 457	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 458	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 459		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 460
 461	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 462		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 463		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 464		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 465			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 466				 pf->fd_inv);
 467
 468		/* Check if the programming error is for ATR.
 469		 * If so, auto disable ATR and set a state for
 470		 * flush in progress. Next time we come here if flush is in
 471		 * progress do nothing, once flush is complete the state will
 472		 * be cleared.
 473		 */
 474		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
 475			return;
 476
 477		pf->fd_add_err++;
 478		/* store the current atr filter count */
 479		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 480
 481		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 482		    (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
 483			pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
 484			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
 485		}
 486
 487		/* filter programming failed most likely due to table full */
 488		fcnt_prog = i40e_get_global_fd_count(pf);
 489		fcnt_avail = pf->fdir_pf_filter_count;
 490		/* If ATR is running fcnt_prog can quickly change,
 491		 * if we are very close to full, it makes sense to disable
 492		 * FD ATR/SB and then re-enable it when there is room.
 493		 */
 494		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 495			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 496			    !(pf->auto_disable_flags &
 497				     I40E_FLAG_FD_SB_ENABLED)) {
 498				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 499					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 500				pf->auto_disable_flags |=
 501							I40E_FLAG_FD_SB_ENABLED;
 502			}
 503		}
 504	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 505		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 506			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 507				 rx_desc->wb.qword0.hi_dword.fd_id);
 508	}
 509}
 510
 511/**
 512 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 513 * @ring:      the ring that owns the buffer
 514 * @tx_buffer: the buffer to free
 515 **/
 516static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 517					    struct i40e_tx_buffer *tx_buffer)
 518{
 519	if (tx_buffer->skb) {
 520		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 521			kfree(tx_buffer->raw_buf);
 522		else
 523			dev_kfree_skb_any(tx_buffer->skb);
 524		if (dma_unmap_len(tx_buffer, len))
 525			dma_unmap_single(ring->dev,
 526					 dma_unmap_addr(tx_buffer, dma),
 527					 dma_unmap_len(tx_buffer, len),
 528					 DMA_TO_DEVICE);
 529	} else if (dma_unmap_len(tx_buffer, len)) {
 530		dma_unmap_page(ring->dev,
 531			       dma_unmap_addr(tx_buffer, dma),
 532			       dma_unmap_len(tx_buffer, len),
 533			       DMA_TO_DEVICE);
 534	}
 535
 
 
 
 536	tx_buffer->next_to_watch = NULL;
 537	tx_buffer->skb = NULL;
 538	dma_unmap_len_set(tx_buffer, len, 0);
 539	/* tx_buffer must be completely set up in the transmit path */
 540}
 541
 542/**
 543 * i40e_clean_tx_ring - Free any empty Tx buffers
 544 * @tx_ring: ring to be cleaned
 545 **/
 546void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 547{
 548	unsigned long bi_size;
 549	u16 i;
 550
 551	/* ring already cleared, nothing to do */
 552	if (!tx_ring->tx_bi)
 553		return;
 554
 555	/* Free all the Tx ring sk_buffs */
 556	for (i = 0; i < tx_ring->count; i++)
 557		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 558
 559	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 560	memset(tx_ring->tx_bi, 0, bi_size);
 561
 562	/* Zero out the descriptor ring */
 563	memset(tx_ring->desc, 0, tx_ring->size);
 564
 565	tx_ring->next_to_use = 0;
 566	tx_ring->next_to_clean = 0;
 567
 568	if (!tx_ring->netdev)
 569		return;
 570
 571	/* cleanup Tx queue statistics */
 572	netdev_tx_reset_queue(txring_txq(tx_ring));
 
 573}
 574
 575/**
 576 * i40e_free_tx_resources - Free Tx resources per queue
 577 * @tx_ring: Tx descriptor ring for a specific queue
 578 *
 579 * Free all transmit software resources
 580 **/
 581void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 582{
 583	i40e_clean_tx_ring(tx_ring);
 584	kfree(tx_ring->tx_bi);
 585	tx_ring->tx_bi = NULL;
 586
 587	if (tx_ring->desc) {
 588		dma_free_coherent(tx_ring->dev, tx_ring->size,
 589				  tx_ring->desc, tx_ring->dma);
 590		tx_ring->desc = NULL;
 591	}
 592}
 593
 594/**
 595 * i40e_get_tx_pending - how many tx descriptors not processed
 596 * @tx_ring: the ring of descriptors
 597 * @in_sw: is tx_pending being checked in SW or HW
 598 *
 599 * Since there is no access to the ring head register
 600 * in XL710, we need to use our local copies
 601 **/
 602u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 603{
 604	u32 head, tail;
 605
 606	if (!in_sw)
 607		head = i40e_get_head(ring);
 608	else
 609		head = ring->next_to_clean;
 610	tail = readl(ring->tail);
 611
 612	if (head != tail)
 613		return (head < tail) ?
 614			tail - head : (tail + ring->count - head);
 615
 616	return 0;
 617}
 618
 619#define WB_STRIDE 4
 620
 621/**
 622 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 623 * @vsi: the VSI we care about
 624 * @tx_ring: Tx ring to clean
 625 * @napi_budget: Used to determine if we are in netpoll
 626 *
 627 * Returns true if there's any budget left (e.g. the clean is finished)
 628 **/
 629static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 630			      struct i40e_ring *tx_ring, int napi_budget)
 631{
 632	u16 i = tx_ring->next_to_clean;
 633	struct i40e_tx_buffer *tx_buf;
 634	struct i40e_tx_desc *tx_head;
 635	struct i40e_tx_desc *tx_desc;
 636	unsigned int total_bytes = 0, total_packets = 0;
 637	unsigned int budget = vsi->work_limit;
 638
 639	tx_buf = &tx_ring->tx_bi[i];
 640	tx_desc = I40E_TX_DESC(tx_ring, i);
 641	i -= tx_ring->count;
 642
 643	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 644
 645	do {
 646		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 647
 648		/* if next_to_watch is not set then there is no work pending */
 649		if (!eop_desc)
 650			break;
 651
 652		/* prevent any other reads prior to eop_desc */
 653		read_barrier_depends();
 654
 655		/* we have caught up to head, no work left to do */
 656		if (tx_head == tx_desc)
 657			break;
 658
 659		/* clear next_to_watch to prevent false hangs */
 660		tx_buf->next_to_watch = NULL;
 661
 662		/* update the statistics for this packet */
 663		total_bytes += tx_buf->bytecount;
 664		total_packets += tx_buf->gso_segs;
 665
 666		/* free the skb */
 667		napi_consume_skb(tx_buf->skb, napi_budget);
 668
 669		/* unmap skb header data */
 670		dma_unmap_single(tx_ring->dev,
 671				 dma_unmap_addr(tx_buf, dma),
 672				 dma_unmap_len(tx_buf, len),
 673				 DMA_TO_DEVICE);
 674
 675		/* clear tx_buffer data */
 676		tx_buf->skb = NULL;
 677		dma_unmap_len_set(tx_buf, len, 0);
 678
 679		/* unmap remaining buffers */
 680		while (tx_desc != eop_desc) {
 681
 682			tx_buf++;
 683			tx_desc++;
 684			i++;
 685			if (unlikely(!i)) {
 686				i -= tx_ring->count;
 687				tx_buf = tx_ring->tx_bi;
 688				tx_desc = I40E_TX_DESC(tx_ring, 0);
 689			}
 690
 691			/* unmap any remaining paged data */
 692			if (dma_unmap_len(tx_buf, len)) {
 693				dma_unmap_page(tx_ring->dev,
 694					       dma_unmap_addr(tx_buf, dma),
 695					       dma_unmap_len(tx_buf, len),
 696					       DMA_TO_DEVICE);
 697				dma_unmap_len_set(tx_buf, len, 0);
 698			}
 699		}
 700
 701		/* move us one more past the eop_desc for start of next pkt */
 702		tx_buf++;
 703		tx_desc++;
 704		i++;
 705		if (unlikely(!i)) {
 706			i -= tx_ring->count;
 707			tx_buf = tx_ring->tx_bi;
 708			tx_desc = I40E_TX_DESC(tx_ring, 0);
 709		}
 710
 711		prefetch(tx_desc);
 712
 713		/* update budget accounting */
 714		budget--;
 715	} while (likely(budget));
 716
 717	i += tx_ring->count;
 718	tx_ring->next_to_clean = i;
 719	u64_stats_update_begin(&tx_ring->syncp);
 720	tx_ring->stats.bytes += total_bytes;
 721	tx_ring->stats.packets += total_packets;
 722	u64_stats_update_end(&tx_ring->syncp);
 723	tx_ring->q_vector->tx.total_bytes += total_bytes;
 724	tx_ring->q_vector->tx.total_packets += total_packets;
 725
 726	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 
 
 727		/* check to see if there are < 4 descriptors
 728		 * waiting to be written back, then kick the hardware to force
 729		 * them to be written back in case we stay in NAPI.
 730		 * In this mode on X722 we do not enable Interrupt.
 731		 */
 732		unsigned int j = i40e_get_tx_pending(tx_ring, false);
 733
 734		if (budget &&
 735		    ((j / WB_STRIDE) == 0) && (j > 0) &&
 736		    !test_bit(__I40E_DOWN, &vsi->state) &&
 737		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 738			tx_ring->arm_wb = true;
 739	}
 740
 741	/* notify netdev of completed buffers */
 742	netdev_tx_completed_queue(txring_txq(tx_ring),
 743				  total_packets, total_bytes);
 744
 745#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 746	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 747		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 748		/* Make sure that anybody stopping the queue after this
 749		 * sees the new next_to_clean.
 750		 */
 751		smp_mb();
 752		if (__netif_subqueue_stopped(tx_ring->netdev,
 753					     tx_ring->queue_index) &&
 754		   !test_bit(__I40E_DOWN, &vsi->state)) {
 755			netif_wake_subqueue(tx_ring->netdev,
 756					    tx_ring->queue_index);
 757			++tx_ring->tx_stats.restart_queue;
 758		}
 759	}
 760
 761	return !!budget;
 762}
 763
 764/**
 765 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 766 * @vsi: the VSI we care about
 767 * @q_vector: the vector on which to enable writeback
 768 *
 769 **/
 770static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 771				  struct i40e_q_vector *q_vector)
 772{
 773	u16 flags = q_vector->tx.ring[0].flags;
 774	u32 val;
 775
 776	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 777		return;
 778
 779	if (q_vector->arm_wb_state)
 780		return;
 781
 782	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 783		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 784		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 785
 786		wr32(&vsi->back->hw,
 787		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
 788		     val);
 789	} else {
 790		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 791		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 792
 793		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 794	}
 795	q_vector->arm_wb_state = true;
 796}
 797
 798/**
 799 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 800 * @vsi: the VSI we care about
 801 * @q_vector: the vector  on which to force writeback
 802 *
 803 **/
 804void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 805{
 806	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 807		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 808			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 809			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 810			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 811			  /* allow 00 to be written to the index */
 812
 813		wr32(&vsi->back->hw,
 814		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
 815					 vsi->base_vector - 1), val);
 816	} else {
 817		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 818			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 819			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 820			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 821			/* allow 00 to be written to the index */
 822
 823		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 824	}
 825}
 826
 827/**
 828 * i40e_set_new_dynamic_itr - Find new ITR level
 829 * @rc: structure containing ring performance data
 830 *
 831 * Returns true if ITR changed, false if not
 832 *
 833 * Stores a new ITR value based on packets and byte counts during
 834 * the last interrupt.  The advantage of per interrupt computation
 835 * is faster updates and more accurate ITR for the current traffic
 836 * pattern.  Constants in this function were computed based on
 837 * theoretical maximum wire speed and thresholds were set based on
 838 * testing data as well as attempting to minimize response time
 839 * while increasing bulk throughput.
 840 **/
 841static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 842{
 843	enum i40e_latency_range new_latency_range = rc->latency_range;
 844	struct i40e_q_vector *qv = rc->ring->q_vector;
 845	u32 new_itr = rc->itr;
 846	int bytes_per_int;
 847	int usecs;
 848
 849	if (rc->total_packets == 0 || !rc->itr)
 850		return false;
 851
 852	/* simple throttlerate management
 853	 *   0-10MB/s   lowest (50000 ints/s)
 854	 *  10-20MB/s   low    (20000 ints/s)
 855	 *  20-1249MB/s bulk   (18000 ints/s)
 856	 *  > 40000 Rx packets per second (8000 ints/s)
 857	 *
 858	 * The math works out because the divisor is in 10^(-6) which
 859	 * turns the bytes/us input value into MB/s values, but
 860	 * make sure to use usecs, as the register values written
 861	 * are in 2 usec increments in the ITR registers, and make sure
 862	 * to use the smoothed values that the countdown timer gives us.
 863	 */
 864	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
 865	bytes_per_int = rc->total_bytes / usecs;
 866
 867	switch (new_latency_range) {
 868	case I40E_LOWEST_LATENCY:
 869		if (bytes_per_int > 10)
 870			new_latency_range = I40E_LOW_LATENCY;
 871		break;
 872	case I40E_LOW_LATENCY:
 873		if (bytes_per_int > 20)
 874			new_latency_range = I40E_BULK_LATENCY;
 875		else if (bytes_per_int <= 10)
 876			new_latency_range = I40E_LOWEST_LATENCY;
 877		break;
 878	case I40E_BULK_LATENCY:
 879	case I40E_ULTRA_LATENCY:
 880	default:
 881		if (bytes_per_int <= 20)
 882			new_latency_range = I40E_LOW_LATENCY;
 883		break;
 884	}
 885
 886	/* this is to adjust RX more aggressively when streaming small
 887	 * packets.  The value of 40000 was picked as it is just beyond
 888	 * what the hardware can receive per second if in low latency
 889	 * mode.
 890	 */
 891#define RX_ULTRA_PACKET_RATE 40000
 892
 893	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
 894	    (&qv->rx == rc))
 895		new_latency_range = I40E_ULTRA_LATENCY;
 896
 897	rc->latency_range = new_latency_range;
 898
 899	switch (new_latency_range) {
 900	case I40E_LOWEST_LATENCY:
 901		new_itr = I40E_ITR_50K;
 902		break;
 903	case I40E_LOW_LATENCY:
 904		new_itr = I40E_ITR_20K;
 905		break;
 906	case I40E_BULK_LATENCY:
 907		new_itr = I40E_ITR_18K;
 908		break;
 909	case I40E_ULTRA_LATENCY:
 910		new_itr = I40E_ITR_8K;
 911		break;
 912	default:
 913		break;
 914	}
 915
 916	rc->total_bytes = 0;
 917	rc->total_packets = 0;
 918
 919	if (new_itr != rc->itr) {
 920		rc->itr = new_itr;
 921		return true;
 922	}
 923
 924	return false;
 925}
 926
 927/**
 928 * i40e_clean_programming_status - clean the programming status descriptor
 929 * @rx_ring: the rx ring that has this descriptor
 930 * @rx_desc: the rx descriptor written back by HW
 931 *
 932 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 933 * status being successful or not and take actions accordingly. FCoE should
 934 * handle its context/filter programming/invalidation status and take actions.
 935 *
 936 **/
 937static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
 938					  union i40e_rx_desc *rx_desc)
 939{
 940	u64 qw;
 941	u8 id;
 942
 943	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 944	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
 945		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
 946
 947	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
 948		i40e_fd_handle_status(rx_ring, rx_desc, id);
 949#ifdef I40E_FCOE
 950	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
 951		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
 952		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
 953#endif
 954}
 955
 956/**
 957 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 958 * @tx_ring: the tx ring to set up
 959 *
 960 * Return 0 on success, negative on error
 961 **/
 962int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
 963{
 964	struct device *dev = tx_ring->dev;
 965	int bi_size;
 966
 967	if (!dev)
 968		return -ENOMEM;
 969
 970	/* warn if we are about to overwrite the pointer */
 971	WARN_ON(tx_ring->tx_bi);
 972	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 973	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 974	if (!tx_ring->tx_bi)
 975		goto err;
 976
 977	/* round up to nearest 4K */
 978	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 979	/* add u32 for head writeback, align after this takes care of
 980	 * guaranteeing this is at least one cache line in size
 981	 */
 982	tx_ring->size += sizeof(u32);
 983	tx_ring->size = ALIGN(tx_ring->size, 4096);
 984	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 985					   &tx_ring->dma, GFP_KERNEL);
 986	if (!tx_ring->desc) {
 987		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 988			 tx_ring->size);
 989		goto err;
 990	}
 991
 992	tx_ring->next_to_use = 0;
 993	tx_ring->next_to_clean = 0;
 994	return 0;
 995
 996err:
 997	kfree(tx_ring->tx_bi);
 998	tx_ring->tx_bi = NULL;
 999	return -ENOMEM;
1000}
1001
1002/**
1003 * i40e_clean_rx_ring - Free Rx buffers
1004 * @rx_ring: ring to be cleaned
1005 **/
1006void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1007{
1008	struct device *dev = rx_ring->dev;
 
1009	unsigned long bi_size;
1010	u16 i;
1011
1012	/* ring already cleared, nothing to do */
1013	if (!rx_ring->rx_bi)
1014		return;
1015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016	/* Free all the Rx ring sk_buffs */
1017	for (i = 0; i < rx_ring->count; i++) {
1018		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1019
 
 
 
 
 
 
1020		if (rx_bi->skb) {
1021			dev_kfree_skb(rx_bi->skb);
1022			rx_bi->skb = NULL;
1023		}
1024		if (!rx_bi->page)
1025			continue;
1026
1027		dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
1028		__free_pages(rx_bi->page, 0);
1029
1030		rx_bi->page = NULL;
1031		rx_bi->page_offset = 0;
 
 
 
 
1032	}
1033
1034	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1035	memset(rx_ring->rx_bi, 0, bi_size);
1036
1037	/* Zero out the descriptor ring */
1038	memset(rx_ring->desc, 0, rx_ring->size);
1039
1040	rx_ring->next_to_alloc = 0;
1041	rx_ring->next_to_clean = 0;
1042	rx_ring->next_to_use = 0;
1043}
1044
1045/**
1046 * i40e_free_rx_resources - Free Rx resources
1047 * @rx_ring: ring to clean the resources from
1048 *
1049 * Free all receive software resources
1050 **/
1051void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1052{
1053	i40e_clean_rx_ring(rx_ring);
1054	kfree(rx_ring->rx_bi);
1055	rx_ring->rx_bi = NULL;
1056
1057	if (rx_ring->desc) {
1058		dma_free_coherent(rx_ring->dev, rx_ring->size,
1059				  rx_ring->desc, rx_ring->dma);
1060		rx_ring->desc = NULL;
1061	}
1062}
1063
1064/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1066 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1067 *
1068 * Returns 0 on success, negative on failure
1069 **/
1070int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1071{
1072	struct device *dev = rx_ring->dev;
1073	int bi_size;
1074
1075	/* warn if we are about to overwrite the pointer */
1076	WARN_ON(rx_ring->rx_bi);
1077	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1078	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1079	if (!rx_ring->rx_bi)
1080		goto err;
1081
1082	u64_stats_init(&rx_ring->syncp);
1083
1084	/* Round up to nearest 4K */
1085	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
 
 
1086	rx_ring->size = ALIGN(rx_ring->size, 4096);
1087	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1088					   &rx_ring->dma, GFP_KERNEL);
1089
1090	if (!rx_ring->desc) {
1091		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1092			 rx_ring->size);
1093		goto err;
1094	}
1095
1096	rx_ring->next_to_alloc = 0;
1097	rx_ring->next_to_clean = 0;
1098	rx_ring->next_to_use = 0;
1099
1100	return 0;
1101err:
1102	kfree(rx_ring->rx_bi);
1103	rx_ring->rx_bi = NULL;
1104	return -ENOMEM;
1105}
1106
1107/**
1108 * i40e_release_rx_desc - Store the new tail and head values
1109 * @rx_ring: ring to bump
1110 * @val: new head index
1111 **/
1112static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1113{
1114	rx_ring->next_to_use = val;
1115
1116	/* update next to alloc since we have filled the ring */
1117	rx_ring->next_to_alloc = val;
1118
1119	/* Force memory writes to complete before letting h/w
1120	 * know there are new descriptors to fetch.  (Only
1121	 * applicable for weak-ordered memory model archs,
1122	 * such as IA-64).
1123	 */
1124	wmb();
1125	writel(val, rx_ring->tail);
1126}
1127
1128/**
1129 * i40e_alloc_mapped_page - recycle or make a new page
1130 * @rx_ring: ring to use
1131 * @bi: rx_buffer struct to modify
1132 *
1133 * Returns true if the page was successfully allocated or
1134 * reused.
1135 **/
1136static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1137				   struct i40e_rx_buffer *bi)
1138{
1139	struct page *page = bi->page;
1140	dma_addr_t dma;
 
 
1141
1142	/* since we are recycling buffers we should seldom need to alloc */
1143	if (likely(page)) {
1144		rx_ring->rx_stats.page_reuse_count++;
1145		return true;
1146	}
1147
1148	/* alloc new page for storage */
1149	page = dev_alloc_page();
1150	if (unlikely(!page)) {
1151		rx_ring->rx_stats.alloc_page_failed++;
1152		return false;
1153	}
1154
1155	/* map page for use */
1156	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1157
1158	/* if mapping failed free memory back to system since
1159	 * there isn't much point in holding memory we can't use
1160	 */
1161	if (dma_mapping_error(rx_ring->dev, dma)) {
1162		__free_pages(page, 0);
1163		rx_ring->rx_stats.alloc_page_failed++;
1164		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165	}
1166
1167	bi->dma = dma;
1168	bi->page = page;
1169	bi->page_offset = 0;
1170
1171	return true;
1172}
1173
1174/**
1175 * i40e_receive_skb - Send a completed packet up the stack
1176 * @rx_ring:  rx ring in play
1177 * @skb: packet to send up
1178 * @vlan_tag: vlan tag for packet
1179 **/
1180static void i40e_receive_skb(struct i40e_ring *rx_ring,
1181			     struct sk_buff *skb, u16 vlan_tag)
1182{
1183	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1184
1185	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1186	    (vlan_tag & VLAN_VID_MASK))
1187		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1188
1189	napi_gro_receive(&q_vector->napi, skb);
1190}
1191
1192/**
1193 * i40e_alloc_rx_buffers - Replace used receive buffers
1194 * @rx_ring: ring to place buffers on
1195 * @cleaned_count: number of buffers to replace
1196 *
1197 * Returns false if all allocations were successful, true if any fail
1198 **/
1199bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1200{
1201	u16 ntu = rx_ring->next_to_use;
1202	union i40e_rx_desc *rx_desc;
1203	struct i40e_rx_buffer *bi;
 
1204
1205	/* do nothing if no valid netdev defined */
1206	if (!rx_ring->netdev || !cleaned_count)
1207		return false;
1208
1209	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1210	bi = &rx_ring->rx_bi[ntu];
1211
1212	do {
1213		if (!i40e_alloc_mapped_page(rx_ring, bi))
1214			goto no_buffers;
1215
1216		/* Refresh the desc even if buffer_addrs didn't change
1217		 * because each write-back erases this info.
1218		 */
1219		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1220
1221		rx_desc++;
1222		bi++;
1223		ntu++;
1224		if (unlikely(ntu == rx_ring->count)) {
1225			rx_desc = I40E_RX_DESC(rx_ring, 0);
1226			bi = rx_ring->rx_bi;
1227			ntu = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1228		}
1229
1230		/* clear the status bits for the next_to_use descriptor */
1231		rx_desc->wb.qword1.status_error_len = 0;
 
 
 
 
1232
1233		cleaned_count--;
1234	} while (cleaned_count);
1235
1236	if (rx_ring->next_to_use != ntu)
1237		i40e_release_rx_desc(rx_ring, ntu);
1238
1239	return false;
1240
1241no_buffers:
1242	if (rx_ring->next_to_use != ntu)
1243		i40e_release_rx_desc(rx_ring, ntu);
1244
1245	/* make sure to come back via polling to try again after
1246	 * allocation failure
1247	 */
1248	return true;
1249}
1250
1251/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1253 * @vsi: the VSI we care about
1254 * @skb: skb currently being received and modified
1255 * @rx_desc: the receive descriptor
1256 *
1257 * skb->protocol must be set before this function is called
1258 **/
1259static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1260				    struct sk_buff *skb,
1261				    union i40e_rx_desc *rx_desc)
 
 
1262{
1263	struct i40e_rx_ptype_decoded decoded;
1264	u32 rx_error, rx_status;
1265	bool ipv4, ipv6;
1266	u8 ptype;
1267	u64 qword;
1268
1269	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1270	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1271	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1272		   I40E_RXD_QW1_ERROR_SHIFT;
1273	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1274		    I40E_RXD_QW1_STATUS_SHIFT;
1275	decoded = decode_rx_desc_ptype(ptype);
1276
1277	skb->ip_summed = CHECKSUM_NONE;
1278
1279	skb_checksum_none_assert(skb);
1280
1281	/* Rx csum enabled and ip headers found? */
1282	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1283		return;
1284
1285	/* did the hardware decode the packet and checksum? */
1286	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1287		return;
1288
1289	/* both known and outer_ip must be set for the below code to work */
1290	if (!(decoded.known && decoded.outer_ip))
1291		return;
1292
1293	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1294	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1295	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1296	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1297
1298	if (ipv4 &&
1299	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1300			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1301		goto checksum_fail;
1302
1303	/* likely incorrect csum if alternate IP extension headers found */
1304	if (ipv6 &&
1305	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1306		/* don't increment checksum err here, non-fatal err */
1307		return;
1308
1309	/* there was some L4 error, count error and punt packet to the stack */
1310	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1311		goto checksum_fail;
1312
1313	/* handle packets that were not able to be checksummed due
1314	 * to arrival speed, in this case the stack can compute
1315	 * the csum.
1316	 */
1317	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1318		return;
1319
1320	/* If there is an outer header present that might contain a checksum
1321	 * we need to bump the checksum level by 1 to reflect the fact that
1322	 * we are indicating we validated the inner checksum.
1323	 */
1324	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1325		skb->csum_level = 1;
1326
1327	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1328	switch (decoded.inner_prot) {
1329	case I40E_RX_PTYPE_INNER_PROT_TCP:
1330	case I40E_RX_PTYPE_INNER_PROT_UDP:
1331	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1332		skb->ip_summed = CHECKSUM_UNNECESSARY;
1333		/* fall though */
1334	default:
1335		break;
1336	}
1337
1338	return;
1339
1340checksum_fail:
1341	vsi->back->hw_csum_rx_error++;
1342}
1343
1344/**
1345 * i40e_ptype_to_htype - get a hash type
1346 * @ptype: the ptype value from the descriptor
1347 *
1348 * Returns a hash type to be used by skb_set_hash
1349 **/
1350static inline int i40e_ptype_to_htype(u8 ptype)
1351{
1352	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1353
1354	if (!decoded.known)
1355		return PKT_HASH_TYPE_NONE;
1356
1357	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1358	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1359		return PKT_HASH_TYPE_L4;
1360	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1361		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1362		return PKT_HASH_TYPE_L3;
1363	else
1364		return PKT_HASH_TYPE_L2;
1365}
1366
1367/**
1368 * i40e_rx_hash - set the hash value in the skb
1369 * @ring: descriptor ring
1370 * @rx_desc: specific descriptor
1371 **/
1372static inline void i40e_rx_hash(struct i40e_ring *ring,
1373				union i40e_rx_desc *rx_desc,
1374				struct sk_buff *skb,
1375				u8 rx_ptype)
1376{
1377	u32 hash;
1378	const __le64 rss_mask =
1379		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1380			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1381
1382	if (!(ring->netdev->features & NETIF_F_RXHASH))
1383		return;
1384
1385	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1386		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1387		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1388	}
1389}
1390
1391/**
1392 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1393 * @rx_ring: rx descriptor ring packet is being transacted on
1394 * @rx_desc: pointer to the EOP Rx descriptor
1395 * @skb: pointer to current skb being populated
1396 * @rx_ptype: the packet type decoded by hardware
1397 *
1398 * This function checks the ring, descriptor, and packet information in
1399 * order to populate the hash, checksum, VLAN, protocol, and
1400 * other fields within the skb.
1401 **/
1402static inline
1403void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1404			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1405			     u8 rx_ptype)
1406{
1407	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1408	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1409			I40E_RXD_QW1_STATUS_SHIFT;
1410	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1411	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1412		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1413
1414	if (unlikely(tsynvalid))
1415		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1416
1417	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1418
1419	/* modifies the skb - consumes the enet header */
1420	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1421
1422	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1423
1424	skb_record_rx_queue(skb, rx_ring->queue_index);
1425}
1426
1427/**
1428 * i40e_pull_tail - i40e specific version of skb_pull_tail
1429 * @rx_ring: rx descriptor ring packet is being transacted on
1430 * @skb: pointer to current skb being adjusted
1431 *
1432 * This function is an i40e specific version of __pskb_pull_tail.  The
1433 * main difference between this version and the original function is that
1434 * this function can make several assumptions about the state of things
1435 * that allow for significant optimizations versus the standard function.
1436 * As a result we can do things like drop a frag and maintain an accurate
1437 * truesize for the skb.
1438 */
1439static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
1440{
1441	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1442	unsigned char *va;
1443	unsigned int pull_len;
1444
1445	/* it is valid to use page_address instead of kmap since we are
1446	 * working with pages allocated out of the lomem pool per
1447	 * alloc_page(GFP_ATOMIC)
1448	 */
1449	va = skb_frag_address(frag);
1450
1451	/* we need the header to contain the greater of either ETH_HLEN or
1452	 * 60 bytes if the skb->len is less than 60 for skb_pad.
1453	 */
1454	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1455
1456	/* align pull length to size of long to optimize memcpy performance */
1457	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
1458
1459	/* update all of the pointers */
1460	skb_frag_size_sub(frag, pull_len);
1461	frag->page_offset += pull_len;
1462	skb->data_len -= pull_len;
1463	skb->tail += pull_len;
1464}
1465
1466/**
1467 * i40e_cleanup_headers - Correct empty headers
1468 * @rx_ring: rx descriptor ring packet is being transacted on
1469 * @skb: pointer to current skb being fixed
1470 *
1471 * Also address the case where we are pulling data in on pages only
1472 * and as such no data is present in the skb header.
1473 *
1474 * In addition if skb is not at least 60 bytes we need to pad it so that
1475 * it is large enough to qualify as a valid Ethernet frame.
1476 *
1477 * Returns true if an error was encountered and skb was freed.
1478 **/
1479static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
1480{
1481	/* place header in linear portion of buffer */
1482	if (skb_is_nonlinear(skb))
1483		i40e_pull_tail(rx_ring, skb);
 
 
 
 
 
 
 
 
1484
1485	/* if eth_skb_pad returns an error the skb was freed */
1486	if (eth_skb_pad(skb))
1487		return true;
1488
1489	return false;
1490}
 
 
 
 
 
 
 
 
 
1491
1492/**
1493 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1494 * @rx_ring: rx descriptor ring to store buffers on
1495 * @old_buff: donor buffer to have page reused
1496 *
1497 * Synchronizes page for reuse by the adapter
1498 **/
1499static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1500			       struct i40e_rx_buffer *old_buff)
1501{
1502	struct i40e_rx_buffer *new_buff;
1503	u16 nta = rx_ring->next_to_alloc;
1504
1505	new_buff = &rx_ring->rx_bi[nta];
 
1506
1507	/* update, and store next to alloc */
1508	nta++;
1509	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510
1511	/* transfer page from old buffer to new buffer */
1512	*new_buff = *old_buff;
1513}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1514
1515/**
1516 * i40e_page_is_reserved - check if reuse is possible
1517 * @page: page struct to check
1518 */
1519static inline bool i40e_page_is_reserved(struct page *page)
1520{
1521	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1522}
 
 
 
 
 
 
1523
1524/**
1525 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1526 * @rx_ring: rx descriptor ring to transact packets on
1527 * @rx_buffer: buffer containing page to add
1528 * @rx_desc: descriptor containing length of buffer written by hardware
1529 * @skb: sk_buff to place the data into
1530 *
1531 * This function will add the data contained in rx_buffer->page to the skb.
1532 * This is done either through a direct copy if the data in the buffer is
1533 * less than the skb header size, otherwise it will just attach the page as
1534 * a frag to the skb.
1535 *
1536 * The function will then update the page offset if necessary and return
1537 * true if the buffer can be reused by the adapter.
1538 **/
1539static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1540			     struct i40e_rx_buffer *rx_buffer,
1541			     union i40e_rx_desc *rx_desc,
1542			     struct sk_buff *skb)
1543{
1544	struct page *page = rx_buffer->page;
1545	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1546	unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1547			    I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1548#if (PAGE_SIZE < 8192)
1549	unsigned int truesize = I40E_RXBUFFER_2048;
1550#else
1551	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1552	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1553#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554
1555	/* will the data fit in the skb we allocated? if so, just
1556	 * copy it as it is pretty small anyway
1557	 */
1558	if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
1559		unsigned char *va = page_address(page) + rx_buffer->page_offset;
1560
1561		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 
 
1562
1563		/* page is not reserved, we can reuse buffer as-is */
1564		if (likely(!i40e_page_is_reserved(page)))
1565			return true;
 
 
1566
1567		/* this page cannot be reused so discard it */
1568		__free_pages(page, 0);
1569		return false;
1570	}
 
1571
1572	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1573			rx_buffer->page_offset, size, truesize);
1574
1575	/* avoid re-using remote pages */
1576	if (unlikely(i40e_page_is_reserved(page)))
1577		return false;
 
 
 
1578
1579#if (PAGE_SIZE < 8192)
1580	/* if we are only owner of page we can reuse it */
1581	if (unlikely(page_count(page) != 1))
1582		return false;
1583
1584	/* flip page offset to other buffer */
1585	rx_buffer->page_offset ^= truesize;
1586#else
1587	/* move offset up to the next cache line */
1588	rx_buffer->page_offset += truesize;
1589
1590	if (rx_buffer->page_offset > last_offset)
1591		return false;
1592#endif
1593
1594	/* Even if we own the page, we are not allowed to use atomic_set()
1595	 * This would break get_page_unless_zero() users.
1596	 */
1597	get_page(rx_buffer->page);
1598
1599	return true;
1600}
1601
1602/**
1603 * i40e_fetch_rx_buffer - Allocate skb and populate it
1604 * @rx_ring: rx descriptor ring to transact packets on
1605 * @rx_desc: descriptor containing info written by hardware
1606 *
1607 * This function allocates an skb on the fly, and populates it with the page
1608 * data from the current receive descriptor, taking care to set up the skb
1609 * correctly, as well as handling calling the page recycle function if
1610 * necessary.
1611 */
1612static inline
1613struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1614				     union i40e_rx_desc *rx_desc)
1615{
1616	struct i40e_rx_buffer *rx_buffer;
1617	struct sk_buff *skb;
1618	struct page *page;
1619
1620	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1621	page = rx_buffer->page;
1622	prefetchw(page);
1623
1624	skb = rx_buffer->skb;
1625
1626	if (likely(!skb)) {
1627		void *page_addr = page_address(page) + rx_buffer->page_offset;
1628
1629		/* prefetch first cache line of first page */
1630		prefetch(page_addr);
1631#if L1_CACHE_BYTES < 128
1632		prefetch(page_addr + L1_CACHE_BYTES);
1633#endif
 
1634
1635		/* allocate a skb to store the frags */
1636		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1637				       I40E_RX_HDR_SIZE,
1638				       GFP_ATOMIC | __GFP_NOWARN);
1639		if (unlikely(!skb)) {
1640			rx_ring->rx_stats.alloc_buff_failed++;
1641			return NULL;
1642		}
1643
1644		/* we will be copying header into skb->data in
1645		 * pskb_may_pull so it is in our interest to prefetch
1646		 * it now to avoid a possible cache miss
1647		 */
1648		prefetchw(skb->data);
1649	} else {
1650		rx_buffer->skb = NULL;
1651	}
1652
1653	/* we are reusing so sync this buffer for CPU use */
1654	dma_sync_single_range_for_cpu(rx_ring->dev,
1655				      rx_buffer->dma,
1656				      rx_buffer->page_offset,
1657				      I40E_RXBUFFER_2048,
1658				      DMA_FROM_DEVICE);
1659
1660	/* pull page into skb */
1661	if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
1662		/* hand second half of page back to the ring */
1663		i40e_reuse_rx_page(rx_ring, rx_buffer);
1664		rx_ring->rx_stats.page_reuse_count++;
1665	} else {
1666		/* we are not reusing the buffer so unmap it */
1667		dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1668			       DMA_FROM_DEVICE);
1669	}
1670
1671	/* clear contents of buffer_info */
1672	rx_buffer->page = NULL;
1673
1674	return skb;
1675}
1676
1677/**
1678 * i40e_is_non_eop - process handling of non-EOP buffers
1679 * @rx_ring: Rx ring being processed
1680 * @rx_desc: Rx descriptor for current buffer
1681 * @skb: Current socket buffer containing buffer in progress
1682 *
1683 * This function updates next to clean.  If the buffer is an EOP buffer
1684 * this function exits returning false, otherwise it will place the
1685 * sk_buff in the next buffer to be chained and return true indicating
1686 * that this is in fact a non-EOP buffer.
1687 **/
1688static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1689			    union i40e_rx_desc *rx_desc,
1690			    struct sk_buff *skb)
1691{
1692	u32 ntc = rx_ring->next_to_clean + 1;
1693
1694	/* fetch, update, and store next to clean */
1695	ntc = (ntc < rx_ring->count) ? ntc : 0;
1696	rx_ring->next_to_clean = ntc;
1697
1698	prefetch(I40E_RX_DESC(rx_ring, ntc));
1699
1700#define staterrlen rx_desc->wb.qword1.status_error_len
1701	if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
1702		i40e_clean_programming_status(rx_ring, rx_desc);
1703		rx_ring->rx_bi[ntc].skb = skb;
1704		return true;
1705	}
1706	/* if we are the last buffer then there is nothing else to do */
1707#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1708	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1709		return false;
1710
1711	/* place skb in next buffer to be received */
1712	rx_ring->rx_bi[ntc].skb = skb;
1713	rx_ring->rx_stats.non_eop_descs++;
1714
1715	return true;
1716}
1717
1718/**
1719 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1720 * @rx_ring: rx descriptor ring to transact packets on
1721 * @budget: Total limit on number of packets to process
1722 *
1723 * This function provides a "bounce buffer" approach to Rx interrupt
1724 * processing.  The advantage to this is that on systems that have
1725 * expensive overhead for IOMMU access this provides a means of avoiding
1726 * it by maintaining the mapping of the page to the system.
1727 *
1728 * Returns amount of work completed
1729 **/
1730static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1731{
1732	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1733	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
 
 
 
 
1734	bool failure = false;
 
 
 
1735
1736	while (likely(total_rx_packets < budget)) {
1737		union i40e_rx_desc *rx_desc;
1738		struct sk_buff *skb;
1739		u16 vlan_tag;
1740		u8 rx_ptype;
1741		u64 qword;
1742
1743		/* return some buffers to hardware, one at a time is too slow */
1744		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1745			failure = failure ||
1746				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
 
1747			cleaned_count = 0;
1748		}
1749
1750		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
 
 
 
 
1751
1752		/* status_error_len will always be zero for unused descriptors
1753		 * because it's cleared in cleanup, and overlaps with hdr_addr
1754		 * which is always zero because packet split isn't used, if the
1755		 * hardware wrote DD then it will be non-zero
1756		 */
1757		if (!i40e_test_staterr(rx_desc,
1758				       BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1759			break;
1760
1761		/* This memory barrier is needed to keep us from reading
1762		 * any other fields out of the rx_desc until we know the
1763		 * DD bit is set.
1764		 */
1765		dma_rmb();
1766
1767		skb = i40e_fetch_rx_buffer(rx_ring, rx_desc);
1768		if (!skb)
1769			break;
 
 
 
 
 
 
 
 
 
 
 
 
1770
 
 
 
1771		cleaned_count++;
1772
1773		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
 
 
 
 
 
 
 
 
 
 
 
 
1774			continue;
 
1775
1776		/* ERR_MASK will only have valid bits if EOP set, and
1777		 * what we are doing here is actually checking
1778		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1779		 * the error field
1780		 */
1781		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1782			dev_kfree_skb_any(skb);
1783			continue;
1784		}
1785
1786		if (i40e_cleanup_headers(rx_ring, skb))
1787			continue;
 
 
 
 
 
1788
1789		/* probably a little skewed due to removing CRC */
1790		total_rx_bytes += skb->len;
 
1791
1792		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1793		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1794			   I40E_RXD_QW1_PTYPE_SHIFT;
1795
1796		/* populate checksum, VLAN, and protocol */
1797		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1798
 
 
 
1799#ifdef I40E_FCOE
1800		if (unlikely(
1801		    i40e_rx_is_fcoe(rx_ptype) &&
1802		    !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1803			dev_kfree_skb_any(skb);
1804			continue;
1805		}
1806#endif
1807
1808		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1809			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1810
1811		i40e_receive_skb(rx_ring, skb, vlan_tag);
1812
1813		/* update budget accounting */
1814		total_rx_packets++;
1815	}
1816
1817	u64_stats_update_begin(&rx_ring->syncp);
1818	rx_ring->stats.packets += total_rx_packets;
1819	rx_ring->stats.bytes += total_rx_bytes;
1820	u64_stats_update_end(&rx_ring->syncp);
1821	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1822	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1823
1824	/* guarantee a trip back through this routine if there was a failure */
1825	return failure ? budget : total_rx_packets;
1826}
1827
1828static u32 i40e_buildreg_itr(const int type, const u16 itr)
1829{
1830	u32 val;
1831
1832	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1833	      /* Don't clear PBA because that can cause lost interrupts that
1834	       * came in while we were cleaning/polling
1835	       */
1836	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1837	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1838
1839	return val;
1840}
1841
1842/* a small macro to shorten up some long lines */
1843#define INTREG I40E_PFINT_DYN_CTLN
1844static inline int get_rx_itr_enabled(struct i40e_vsi *vsi, int idx)
1845{
1846	return !!(vsi->rx_rings[idx]->rx_itr_setting);
1847}
1848
1849static inline int get_tx_itr_enabled(struct i40e_vsi *vsi, int idx)
1850{
1851	return !!(vsi->tx_rings[idx]->tx_itr_setting);
1852}
1853
1854/**
1855 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1856 * @vsi: the VSI we care about
1857 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1858 *
1859 **/
1860static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1861					  struct i40e_q_vector *q_vector)
1862{
1863	struct i40e_hw *hw = &vsi->back->hw;
1864	bool rx = false, tx = false;
1865	u32 rxval, txval;
1866	int vector;
1867	int idx = q_vector->v_idx;
1868	int rx_itr_setting, tx_itr_setting;
1869
1870	vector = (q_vector->v_idx + vsi->base_vector);
1871
1872	/* avoid dynamic calculation if in countdown mode OR if
1873	 * all dynamic is disabled
1874	 */
1875	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1876
1877	rx_itr_setting = get_rx_itr_enabled(vsi, idx);
1878	tx_itr_setting = get_tx_itr_enabled(vsi, idx);
1879
1880	if (q_vector->itr_countdown > 0 ||
1881	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1882	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1883		goto enable_int;
1884	}
1885
1886	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1887		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1888		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1889	}
1890
1891	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1892		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1893		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1894	}
1895
1896	if (rx || tx) {
1897		/* get the higher of the two ITR adjustments and
1898		 * use the same value for both ITR registers
1899		 * when in adaptive mode (Rx and/or Tx)
1900		 */
1901		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1902
1903		q_vector->tx.itr = q_vector->rx.itr = itr;
1904		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1905		tx = true;
1906		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1907		rx = true;
1908	}
1909
1910	/* only need to enable the interrupt once, but need
1911	 * to possibly update both ITR values
1912	 */
1913	if (rx) {
1914		/* set the INTENA_MSK_MASK so that this first write
1915		 * won't actually enable the interrupt, instead just
1916		 * updating the ITR (it's bit 31 PF and VF)
1917		 */
1918		rxval |= BIT(31);
1919		/* don't check _DOWN because interrupt isn't being enabled */
1920		wr32(hw, INTREG(vector - 1), rxval);
1921	}
1922
1923enable_int:
1924	if (!test_bit(__I40E_DOWN, &vsi->state))
1925		wr32(hw, INTREG(vector - 1), txval);
1926
1927	if (q_vector->itr_countdown)
1928		q_vector->itr_countdown--;
1929	else
1930		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1931}
1932
1933/**
1934 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1935 * @napi: napi struct with our devices info in it
1936 * @budget: amount of work driver is allowed to do this pass, in packets
1937 *
1938 * This function will clean all queues associated with a q_vector.
1939 *
1940 * Returns the amount of work done
1941 **/
1942int i40e_napi_poll(struct napi_struct *napi, int budget)
1943{
1944	struct i40e_q_vector *q_vector =
1945			       container_of(napi, struct i40e_q_vector, napi);
1946	struct i40e_vsi *vsi = q_vector->vsi;
1947	struct i40e_ring *ring;
1948	bool clean_complete = true;
1949	bool arm_wb = false;
1950	int budget_per_ring;
1951	int work_done = 0;
1952
1953	if (test_bit(__I40E_DOWN, &vsi->state)) {
1954		napi_complete(napi);
1955		return 0;
1956	}
1957
1958	/* Clear hung_detected bit */
1959	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1960	/* Since the actual Tx work is minimal, we can give the Tx a larger
1961	 * budget and be more aggressive about cleaning up the Tx descriptors.
1962	 */
1963	i40e_for_each_ring(ring, q_vector->tx) {
1964		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1965			clean_complete = false;
1966			continue;
1967		}
1968		arm_wb |= ring->arm_wb;
1969		ring->arm_wb = false;
1970	}
1971
1972	/* Handle case where we are called by netpoll with a budget of 0 */
1973	if (budget <= 0)
1974		goto tx_only;
1975
1976	/* We attempt to distribute budget to each Rx queue fairly, but don't
1977	 * allow the budget to go below 1 because that would exit polling early.
1978	 */
1979	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1980
1981	i40e_for_each_ring(ring, q_vector->rx) {
1982		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
 
 
 
 
 
1983
1984		work_done += cleaned;
1985		/* if we clean as many as budgeted, we must not be done */
1986		if (cleaned >= budget_per_ring)
1987			clean_complete = false;
1988	}
1989
1990	/* If work not completed, return budget and polling will return */
1991	if (!clean_complete) {
1992		const cpumask_t *aff_mask = &q_vector->affinity_mask;
1993		int cpu_id = smp_processor_id();
1994
1995		/* It is possible that the interrupt affinity has changed but,
1996		 * if the cpu is pegged at 100%, polling will never exit while
1997		 * traffic continues and the interrupt will be stuck on this
1998		 * cpu.  We check to make sure affinity is correct before we
1999		 * continue to poll, otherwise we must stop polling so the
2000		 * interrupt can move to the correct cpu.
2001		 */
2002		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
2003			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2004tx_only:
2005			if (arm_wb) {
2006				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2007				i40e_enable_wb_on_itr(vsi, q_vector);
2008			}
2009			return budget;
2010		}
 
2011	}
2012
2013	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2014		q_vector->arm_wb_state = false;
2015
2016	/* Work is done so exit the polling mode and re-enable the interrupt */
2017	napi_complete_done(napi, work_done);
2018
2019	/* If we're prematurely stopping polling to fix the interrupt
2020	 * affinity we want to make sure polling starts back up so we
2021	 * issue a call to i40e_force_wb which triggers a SW interrupt.
2022	 */
2023	if (!clean_complete)
2024		i40e_force_wb(vsi, q_vector);
2025	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2026		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2027	else
2028		i40e_update_enable_itr(vsi, q_vector);
2029
2030	return min(work_done, budget - 1);
2031}
2032
2033/**
2034 * i40e_atr - Add a Flow Director ATR filter
2035 * @tx_ring:  ring to add programming descriptor to
2036 * @skb:      send buffer
2037 * @tx_flags: send tx flags
2038 **/
2039static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2040		     u32 tx_flags)
2041{
2042	struct i40e_filter_program_desc *fdir_desc;
2043	struct i40e_pf *pf = tx_ring->vsi->back;
2044	union {
2045		unsigned char *network;
2046		struct iphdr *ipv4;
2047		struct ipv6hdr *ipv6;
2048	} hdr;
2049	struct tcphdr *th;
2050	unsigned int hlen;
2051	u32 flex_ptype, dtype_cmd;
2052	int l4_proto;
2053	u16 i;
2054
2055	/* make sure ATR is enabled */
2056	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2057		return;
2058
2059	if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2060		return;
2061
2062	/* if sampling is disabled do nothing */
2063	if (!tx_ring->atr_sample_rate)
2064		return;
2065
2066	/* Currently only IPv4/IPv6 with TCP is supported */
2067	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2068		return;
2069
2070	/* snag network header to get L4 type and address */
2071	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2072		      skb_inner_network_header(skb) : skb_network_header(skb);
2073
2074	/* Note: tx_flags gets modified to reflect inner protocols in
2075	 * tx_enable_csum function if encap is enabled.
2076	 */
2077	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2078		/* access ihl as u8 to avoid unaligned access on ia64 */
2079		hlen = (hdr.network[0] & 0x0F) << 2;
2080		l4_proto = hdr.ipv4->protocol;
2081	} else {
2082		hlen = hdr.network - skb->data;
2083		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2084		hlen -= hdr.network - skb->data;
2085	}
2086
2087	if (l4_proto != IPPROTO_TCP)
2088		return;
2089
2090	th = (struct tcphdr *)(hdr.network + hlen);
2091
2092	/* Due to lack of space, no more new filters can be programmed */
2093	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2094		return;
2095	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2096	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2097		/* HW ATR eviction will take care of removing filters on FIN
2098		 * and RST packets.
2099		 */
2100		if (th->fin || th->rst)
2101			return;
2102	}
2103
2104	tx_ring->atr_count++;
2105
2106	/* sample on all syn/fin/rst packets or once every atr sample rate */
2107	if (!th->fin &&
2108	    !th->syn &&
2109	    !th->rst &&
2110	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2111		return;
2112
2113	tx_ring->atr_count = 0;
2114
2115	/* grab the next descriptor */
2116	i = tx_ring->next_to_use;
2117	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2118
2119	i++;
2120	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2121
2122	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2123		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2124	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2125		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2126		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2127		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2128		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2129
2130	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2131
2132	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2133
2134	dtype_cmd |= (th->fin || th->rst) ?
2135		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2136		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2137		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2138		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2139
2140	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2141		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2142
2143	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2144		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2145
2146	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2147	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2148		dtype_cmd |=
2149			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2150			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2151			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2152	else
2153		dtype_cmd |=
2154			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2155			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2156			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2157
2158	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2159	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2160		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2161
2162	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2163	fdir_desc->rsvd = cpu_to_le32(0);
2164	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2165	fdir_desc->fd_id = cpu_to_le32(0);
2166}
2167
2168/**
2169 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2170 * @skb:     send buffer
2171 * @tx_ring: ring to send buffer on
2172 * @flags:   the tx flags to be set
2173 *
2174 * Checks the skb and set up correspondingly several generic transmit flags
2175 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2176 *
2177 * Returns error code indicate the frame should be dropped upon error and the
2178 * otherwise  returns 0 to indicate the flags has been set properly.
2179 **/
2180#ifdef I40E_FCOE
2181inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2182				      struct i40e_ring *tx_ring,
2183				      u32 *flags)
2184#else
2185static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2186					     struct i40e_ring *tx_ring,
2187					     u32 *flags)
2188#endif
2189{
2190	__be16 protocol = skb->protocol;
2191	u32  tx_flags = 0;
2192
2193	if (protocol == htons(ETH_P_8021Q) &&
2194	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2195		/* When HW VLAN acceleration is turned off by the user the
2196		 * stack sets the protocol to 8021q so that the driver
2197		 * can take any steps required to support the SW only
2198		 * VLAN handling.  In our case the driver doesn't need
2199		 * to take any further steps so just set the protocol
2200		 * to the encapsulated ethertype.
2201		 */
2202		skb->protocol = vlan_get_protocol(skb);
2203		goto out;
2204	}
2205
2206	/* if we have a HW VLAN tag being added, default to the HW one */
2207	if (skb_vlan_tag_present(skb)) {
2208		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2209		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2210	/* else if it is a SW VLAN, check the next protocol and store the tag */
2211	} else if (protocol == htons(ETH_P_8021Q)) {
2212		struct vlan_hdr *vhdr, _vhdr;
2213
2214		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2215		if (!vhdr)
2216			return -EINVAL;
2217
2218		protocol = vhdr->h_vlan_encapsulated_proto;
2219		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2220		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2221	}
2222
2223	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2224		goto out;
2225
2226	/* Insert 802.1p priority into VLAN header */
2227	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2228	    (skb->priority != TC_PRIO_CONTROL)) {
2229		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2230		tx_flags |= (skb->priority & 0x7) <<
2231				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2232		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2233			struct vlan_ethhdr *vhdr;
2234			int rc;
2235
2236			rc = skb_cow_head(skb, 0);
2237			if (rc < 0)
2238				return rc;
2239			vhdr = (struct vlan_ethhdr *)skb->data;
2240			vhdr->h_vlan_TCI = htons(tx_flags >>
2241						 I40E_TX_FLAGS_VLAN_SHIFT);
2242		} else {
2243			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2244		}
2245	}
2246
2247out:
2248	*flags = tx_flags;
2249	return 0;
2250}
2251
2252/**
2253 * i40e_tso - set up the tso context descriptor
 
2254 * @skb:      ptr to the skb we're sending
2255 * @hdr_len:  ptr to the size of the packet header
2256 * @cd_type_cmd_tso_mss: Quad Word 1
2257 *
2258 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2259 **/
2260static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
 
2261{
2262	u64 cd_cmd, cd_tso_len, cd_mss;
2263	union {
2264		struct iphdr *v4;
2265		struct ipv6hdr *v6;
2266		unsigned char *hdr;
2267	} ip;
2268	union {
2269		struct tcphdr *tcp;
2270		struct udphdr *udp;
2271		unsigned char *hdr;
2272	} l4;
2273	u32 paylen, l4_offset;
2274	int err;
2275
2276	if (skb->ip_summed != CHECKSUM_PARTIAL)
2277		return 0;
2278
2279	if (!skb_is_gso(skb))
2280		return 0;
2281
2282	err = skb_cow_head(skb, 0);
2283	if (err < 0)
2284		return err;
2285
2286	ip.hdr = skb_network_header(skb);
2287	l4.hdr = skb_transport_header(skb);
2288
2289	/* initialize outer IP header fields */
2290	if (ip.v4->version == 4) {
2291		ip.v4->tot_len = 0;
2292		ip.v4->check = 0;
2293	} else {
2294		ip.v6->payload_len = 0;
2295	}
2296
2297	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2298					 SKB_GSO_GRE_CSUM |
2299					 SKB_GSO_IPXIP4 |
2300					 SKB_GSO_IPXIP6 |
2301					 SKB_GSO_UDP_TUNNEL |
2302					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2303		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2304		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2305			l4.udp->len = 0;
2306
2307			/* determine offset of outer transport header */
2308			l4_offset = l4.hdr - skb->data;
2309
2310			/* remove payload length from outer checksum */
2311			paylen = skb->len - l4_offset;
2312			csum_replace_by_diff(&l4.udp->check, htonl(paylen));
 
2313		}
2314
2315		/* reset pointers to inner headers */
2316		ip.hdr = skb_inner_network_header(skb);
2317		l4.hdr = skb_inner_transport_header(skb);
2318
2319		/* initialize inner IP header fields */
2320		if (ip.v4->version == 4) {
2321			ip.v4->tot_len = 0;
2322			ip.v4->check = 0;
2323		} else {
2324			ip.v6->payload_len = 0;
2325		}
2326	}
2327
2328	/* determine offset of inner transport header */
2329	l4_offset = l4.hdr - skb->data;
2330
2331	/* remove payload length from inner checksum */
2332	paylen = skb->len - l4_offset;
2333	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
 
2334
2335	/* compute length of segmentation header */
2336	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2337
2338	/* find the field values */
2339	cd_cmd = I40E_TX_CTX_DESC_TSO;
2340	cd_tso_len = skb->len - *hdr_len;
2341	cd_mss = skb_shinfo(skb)->gso_size;
2342	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2343				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2344				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2345	return 1;
2346}
2347
2348/**
2349 * i40e_tsyn - set up the tsyn context descriptor
2350 * @tx_ring:  ptr to the ring to send
2351 * @skb:      ptr to the skb we're sending
2352 * @tx_flags: the collected send information
2353 * @cd_type_cmd_tso_mss: Quad Word 1
2354 *
2355 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2356 **/
2357static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2358		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2359{
2360	struct i40e_pf *pf;
2361
2362	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2363		return 0;
2364
2365	/* Tx timestamps cannot be sampled when doing TSO */
2366	if (tx_flags & I40E_TX_FLAGS_TSO)
2367		return 0;
2368
2369	/* only timestamp the outbound packet if the user has requested it and
2370	 * we are not already transmitting a packet to be timestamped
2371	 */
2372	pf = i40e_netdev_to_pf(tx_ring->netdev);
2373	if (!(pf->flags & I40E_FLAG_PTP))
2374		return 0;
2375
2376	if (pf->ptp_tx &&
2377	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2378		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2379		pf->ptp_tx_skb = skb_get(skb);
2380	} else {
2381		return 0;
2382	}
2383
2384	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2385				I40E_TXD_CTX_QW1_CMD_SHIFT;
2386
2387	return 1;
2388}
2389
2390/**
2391 * i40e_tx_enable_csum - Enable Tx checksum offloads
2392 * @skb: send buffer
2393 * @tx_flags: pointer to Tx flags currently set
2394 * @td_cmd: Tx descriptor command bits to set
2395 * @td_offset: Tx descriptor header offsets to set
2396 * @tx_ring: Tx descriptor ring
2397 * @cd_tunneling: ptr to context desc bits
2398 **/
2399static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2400			       u32 *td_cmd, u32 *td_offset,
2401			       struct i40e_ring *tx_ring,
2402			       u32 *cd_tunneling)
2403{
2404	union {
2405		struct iphdr *v4;
2406		struct ipv6hdr *v6;
2407		unsigned char *hdr;
2408	} ip;
2409	union {
2410		struct tcphdr *tcp;
2411		struct udphdr *udp;
2412		unsigned char *hdr;
2413	} l4;
2414	unsigned char *exthdr;
2415	u32 offset, cmd = 0;
2416	__be16 frag_off;
2417	u8 l4_proto = 0;
2418
2419	if (skb->ip_summed != CHECKSUM_PARTIAL)
2420		return 0;
2421
2422	ip.hdr = skb_network_header(skb);
2423	l4.hdr = skb_transport_header(skb);
2424
2425	/* compute outer L2 header size */
2426	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2427
2428	if (skb->encapsulation) {
2429		u32 tunnel = 0;
2430		/* define outer network header type */
2431		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2432			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2433				  I40E_TX_CTX_EXT_IP_IPV4 :
2434				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2435
2436			l4_proto = ip.v4->protocol;
2437		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2438			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2439
2440			exthdr = ip.hdr + sizeof(*ip.v6);
2441			l4_proto = ip.v6->nexthdr;
2442			if (l4.hdr != exthdr)
2443				ipv6_skip_exthdr(skb, exthdr - skb->data,
2444						 &l4_proto, &frag_off);
2445		}
2446
 
 
 
 
 
 
 
2447		/* define outer transport */
2448		switch (l4_proto) {
2449		case IPPROTO_UDP:
2450			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2451			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2452			break;
2453		case IPPROTO_GRE:
2454			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2455			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2456			break;
2457		case IPPROTO_IPIP:
2458		case IPPROTO_IPV6:
2459			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2460			l4.hdr = skb_inner_network_header(skb);
2461			break;
2462		default:
2463			if (*tx_flags & I40E_TX_FLAGS_TSO)
2464				return -1;
2465
2466			skb_checksum_help(skb);
2467			return 0;
2468		}
2469
2470		/* compute outer L3 header size */
2471		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2472			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2473
2474		/* switch IP header pointer from outer to inner header */
2475		ip.hdr = skb_inner_network_header(skb);
2476
2477		/* compute tunnel header size */
2478		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2479			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2480
2481		/* indicate if we need to offload outer UDP header */
2482		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2483		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2484		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2485			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2486
2487		/* record tunnel offload values */
2488		*cd_tunneling |= tunnel;
2489
2490		/* switch L4 header pointer from outer to inner */
2491		l4.hdr = skb_inner_transport_header(skb);
2492		l4_proto = 0;
2493
2494		/* reset type as we transition from outer to inner headers */
2495		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2496		if (ip.v4->version == 4)
2497			*tx_flags |= I40E_TX_FLAGS_IPV4;
2498		if (ip.v6->version == 6)
2499			*tx_flags |= I40E_TX_FLAGS_IPV6;
2500	}
2501
2502	/* Enable IP checksum offloads */
2503	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2504		l4_proto = ip.v4->protocol;
2505		/* the stack computes the IP header already, the only time we
2506		 * need the hardware to recompute it is in the case of TSO.
2507		 */
2508		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2509		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2510		       I40E_TX_DESC_CMD_IIPT_IPV4;
2511	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2512		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2513
2514		exthdr = ip.hdr + sizeof(*ip.v6);
2515		l4_proto = ip.v6->nexthdr;
2516		if (l4.hdr != exthdr)
2517			ipv6_skip_exthdr(skb, exthdr - skb->data,
2518					 &l4_proto, &frag_off);
2519	}
2520
2521	/* compute inner L3 header size */
2522	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2523
2524	/* Enable L4 checksum offloads */
2525	switch (l4_proto) {
2526	case IPPROTO_TCP:
2527		/* enable checksum offloads */
2528		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2529		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2530		break;
2531	case IPPROTO_SCTP:
2532		/* enable SCTP checksum offload */
2533		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2534		offset |= (sizeof(struct sctphdr) >> 2) <<
2535			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2536		break;
2537	case IPPROTO_UDP:
2538		/* enable UDP checksum offload */
2539		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2540		offset |= (sizeof(struct udphdr) >> 2) <<
2541			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2542		break;
2543	default:
2544		if (*tx_flags & I40E_TX_FLAGS_TSO)
2545			return -1;
2546		skb_checksum_help(skb);
2547		return 0;
2548	}
2549
2550	*td_cmd |= cmd;
2551	*td_offset |= offset;
2552
2553	return 1;
2554}
2555
2556/**
2557 * i40e_create_tx_ctx Build the Tx context descriptor
2558 * @tx_ring:  ring to create the descriptor on
2559 * @cd_type_cmd_tso_mss: Quad Word 1
2560 * @cd_tunneling: Quad Word 0 - bits 0-31
2561 * @cd_l2tag2: Quad Word 0 - bits 32-63
2562 **/
2563static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2564			       const u64 cd_type_cmd_tso_mss,
2565			       const u32 cd_tunneling, const u32 cd_l2tag2)
2566{
2567	struct i40e_tx_context_desc *context_desc;
2568	int i = tx_ring->next_to_use;
2569
2570	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2571	    !cd_tunneling && !cd_l2tag2)
2572		return;
2573
2574	/* grab the next descriptor */
2575	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2576
2577	i++;
2578	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2579
2580	/* cpu_to_le32 and assign to struct fields */
2581	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2582	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2583	context_desc->rsvd = cpu_to_le16(0);
2584	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2585}
2586
2587/**
2588 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2589 * @tx_ring: the ring to be checked
2590 * @size:    the size buffer we want to assure is available
2591 *
2592 * Returns -EBUSY if a stop is needed, else 0
2593 **/
2594int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2595{
2596	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2597	/* Memory barrier before checking head and tail */
2598	smp_mb();
2599
2600	/* Check again in a case another CPU has just made room available. */
2601	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2602		return -EBUSY;
2603
2604	/* A reprieve! - use start_queue because it doesn't call schedule */
2605	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2606	++tx_ring->tx_stats.restart_queue;
2607	return 0;
2608}
2609
2610/**
2611 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2612 * @skb:      send buffer
2613 *
2614 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2615 * and so we need to figure out the cases where we need to linearize the skb.
2616 *
2617 * For TSO we need to count the TSO header and segment payload separately.
2618 * As such we need to check cases where we have 7 fragments or more as we
2619 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2620 * the segment payload in the first descriptor, and another 7 for the
2621 * fragments.
2622 **/
2623bool __i40e_chk_linearize(struct sk_buff *skb)
2624{
2625	const struct skb_frag_struct *frag, *stale;
2626	int nr_frags, sum;
2627
2628	/* no need to check if number of frags is less than 7 */
2629	nr_frags = skb_shinfo(skb)->nr_frags;
2630	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2631		return false;
2632
2633	/* We need to walk through the list and validate that each group
2634	 * of 6 fragments totals at least gso_size.
 
 
2635	 */
2636	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2637	frag = &skb_shinfo(skb)->frags[0];
2638
2639	/* Initialize size to the negative value of gso_size minus 1.  We
2640	 * use this as the worst case scenerio in which the frag ahead
2641	 * of us only provides one byte which is why we are limited to 6
2642	 * descriptors for a single transmit as the header and previous
2643	 * fragment are already consuming 2 descriptors.
2644	 */
2645	sum = 1 - skb_shinfo(skb)->gso_size;
2646
2647	/* Add size of frags 0 through 4 to create our initial sum */
2648	sum += skb_frag_size(frag++);
2649	sum += skb_frag_size(frag++);
2650	sum += skb_frag_size(frag++);
2651	sum += skb_frag_size(frag++);
2652	sum += skb_frag_size(frag++);
2653
2654	/* Walk through fragments adding latest fragment, testing it, and
2655	 * then removing stale fragments from the sum.
2656	 */
2657	stale = &skb_shinfo(skb)->frags[0];
2658	for (;;) {
2659		sum += skb_frag_size(frag++);
2660
2661		/* if sum is negative we failed to make sufficient progress */
2662		if (sum < 0)
2663			return true;
2664
2665		if (!nr_frags--)
 
2666			break;
2667
2668		sum -= skb_frag_size(stale++);
2669	}
2670
2671	return false;
2672}
2673
2674/**
2675 * i40e_tx_map - Build the Tx descriptor
2676 * @tx_ring:  ring to send buffer on
2677 * @skb:      send buffer
2678 * @first:    first buffer info buffer to use
2679 * @tx_flags: collected send information
2680 * @hdr_len:  size of the packet header
2681 * @td_cmd:   the command field in the descriptor
2682 * @td_offset: offset for checksum or crc
2683 **/
2684#ifdef I40E_FCOE
2685inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2686			struct i40e_tx_buffer *first, u32 tx_flags,
2687			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2688#else
2689static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2690			       struct i40e_tx_buffer *first, u32 tx_flags,
2691			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2692#endif
2693{
2694	unsigned int data_len = skb->data_len;
2695	unsigned int size = skb_headlen(skb);
2696	struct skb_frag_struct *frag;
2697	struct i40e_tx_buffer *tx_bi;
2698	struct i40e_tx_desc *tx_desc;
2699	u16 i = tx_ring->next_to_use;
2700	u32 td_tag = 0;
2701	dma_addr_t dma;
2702	u16 gso_segs;
2703	u16 desc_count = 1;
 
 
2704
2705	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2706		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2707		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2708			 I40E_TX_FLAGS_VLAN_SHIFT;
2709	}
2710
2711	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2712		gso_segs = skb_shinfo(skb)->gso_segs;
2713	else
2714		gso_segs = 1;
2715
2716	/* multiply data chunks by size of headers */
2717	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2718	first->gso_segs = gso_segs;
2719	first->skb = skb;
2720	first->tx_flags = tx_flags;
2721
2722	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2723
2724	tx_desc = I40E_TX_DESC(tx_ring, i);
2725	tx_bi = first;
2726
2727	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2728		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2729
2730		if (dma_mapping_error(tx_ring->dev, dma))
2731			goto dma_error;
2732
2733		/* record length, and DMA address */
2734		dma_unmap_len_set(tx_bi, len, size);
2735		dma_unmap_addr_set(tx_bi, dma, dma);
2736
2737		/* align size to end of page */
2738		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2739		tx_desc->buffer_addr = cpu_to_le64(dma);
2740
2741		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2742			tx_desc->cmd_type_offset_bsz =
2743				build_ctob(td_cmd, td_offset,
2744					   max_data, td_tag);
2745
2746			tx_desc++;
2747			i++;
2748			desc_count++;
2749
2750			if (i == tx_ring->count) {
2751				tx_desc = I40E_TX_DESC(tx_ring, 0);
2752				i = 0;
2753			}
2754
2755			dma += max_data;
2756			size -= max_data;
2757
2758			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2759			tx_desc->buffer_addr = cpu_to_le64(dma);
2760		}
2761
2762		if (likely(!data_len))
2763			break;
2764
2765		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2766							  size, td_tag);
2767
2768		tx_desc++;
2769		i++;
2770		desc_count++;
2771
2772		if (i == tx_ring->count) {
2773			tx_desc = I40E_TX_DESC(tx_ring, 0);
2774			i = 0;
2775		}
2776
2777		size = skb_frag_size(frag);
2778		data_len -= size;
2779
2780		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2781				       DMA_TO_DEVICE);
2782
2783		tx_bi = &tx_ring->tx_bi[i];
2784	}
2785
2786	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
 
2787
2788	i++;
2789	if (i == tx_ring->count)
2790		i = 0;
2791
2792	tx_ring->next_to_use = i;
2793
 
 
 
2794	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2795
2796	/* write last descriptor with EOP bit */
2797	td_cmd |= I40E_TX_DESC_CMD_EOP;
2798
2799	/* We can OR these values together as they both are checked against
2800	 * 4 below and at this point desc_count will be used as a boolean value
2801	 * after this if/else block.
2802	 */
2803	desc_count |= ++tx_ring->packet_stride;
2804
2805	/* Algorithm to optimize tail and RS bit setting:
2806	 * if queue is stopped
2807	 *	mark RS bit
2808	 *	reset packet counter
2809	 * else if xmit_more is supported and is true
2810	 *	advance packet counter to 4
2811	 *	reset desc_count to 0
 
 
 
 
 
2812	 *
2813	 * if desc_count >= 4
2814	 *	mark RS bit
2815	 *	reset packet counter
2816	 * if desc_count > 0
2817	 *	update tail
2818	 *
2819	 * Note: If there are less than 4 descriptors
2820	 * pending and interrupts were disabled the service task will
2821	 * trigger a force WB.
2822	 */
2823	if (netif_xmit_stopped(txring_txq(tx_ring))) {
2824		goto do_rs;
2825	} else if (skb->xmit_more) {
2826		/* set stride to arm on next packet and reset desc_count */
2827		tx_ring->packet_stride = WB_STRIDE;
2828		desc_count = 0;
2829	} else if (desc_count >= WB_STRIDE) {
2830do_rs:
2831		/* write last descriptor with RS bit set */
2832		td_cmd |= I40E_TX_DESC_CMD_RS;
 
 
 
2833		tx_ring->packet_stride = 0;
 
 
2834	}
 
 
2835
2836	tx_desc->cmd_type_offset_bsz =
2837			build_ctob(td_cmd, td_offset, size, td_tag);
2838
2839	/* Force memory writes to complete before letting h/w know there
2840	 * are new descriptors to fetch.
2841	 *
2842	 * We also use this memory barrier to make certain all of the
2843	 * status bits have been updated before next_to_watch is written.
2844	 */
2845	wmb();
2846
2847	/* set next_to_watch value indicating a packet is present */
2848	first->next_to_watch = tx_desc;
2849
2850	/* notify HW of packet */
2851	if (desc_count) {
2852		writel(i, tx_ring->tail);
2853
2854		/* we need this if more than one processor can write to our tail
2855		 * at a time, it synchronizes IO on IA64/Altix systems
 
 
 
2856		 */
2857		mmiowb();
 
2858	}
2859
2860	return;
2861
2862dma_error:
2863	dev_info(tx_ring->dev, "TX DMA map failed\n");
2864
2865	/* clear dma mappings for failed tx_bi map */
2866	for (;;) {
2867		tx_bi = &tx_ring->tx_bi[i];
2868		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2869		if (tx_bi == first)
2870			break;
2871		if (i == 0)
2872			i = tx_ring->count;
2873		i--;
2874	}
2875
2876	tx_ring->next_to_use = i;
2877}
2878
2879/**
2880 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2881 * @skb:     send buffer
2882 * @tx_ring: ring to send buffer on
2883 *
2884 * Returns NETDEV_TX_OK if sent, else an error code
2885 **/
2886static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2887					struct i40e_ring *tx_ring)
2888{
2889	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2890	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2891	struct i40e_tx_buffer *first;
2892	u32 td_offset = 0;
2893	u32 tx_flags = 0;
2894	__be16 protocol;
2895	u32 td_cmd = 0;
2896	u8 hdr_len = 0;
2897	int tso, count;
2898	int tsyn;
2899
2900	/* prefetch the data, we'll need it later */
2901	prefetch(skb->data);
2902
2903	count = i40e_xmit_descriptor_count(skb);
2904	if (i40e_chk_linearize(skb, count)) {
2905		if (__skb_linearize(skb))
2906			goto out_drop;
2907		count = i40e_txd_use_count(skb->len);
2908		tx_ring->tx_stats.tx_linearize++;
2909	}
2910
2911	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2912	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2913	 *       + 4 desc gap to avoid the cache line where head is,
2914	 *       + 1 desc for context descriptor,
2915	 * otherwise try next time
2916	 */
2917	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2918		tx_ring->tx_stats.tx_busy++;
2919		return NETDEV_TX_BUSY;
2920	}
2921
2922	/* prepare the xmit flags */
2923	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2924		goto out_drop;
2925
2926	/* obtain protocol of skb */
2927	protocol = vlan_get_protocol(skb);
2928
2929	/* record the location of the first descriptor for this packet */
2930	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2931
2932	/* setup IPv4/IPv6 offloads */
2933	if (protocol == htons(ETH_P_IP))
2934		tx_flags |= I40E_TX_FLAGS_IPV4;
2935	else if (protocol == htons(ETH_P_IPV6))
2936		tx_flags |= I40E_TX_FLAGS_IPV6;
2937
2938	tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
2939
2940	if (tso < 0)
2941		goto out_drop;
2942	else if (tso)
2943		tx_flags |= I40E_TX_FLAGS_TSO;
2944
2945	/* Always offload the checksum, since it's in the data descriptor */
2946	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2947				  tx_ring, &cd_tunneling);
2948	if (tso < 0)
2949		goto out_drop;
2950
2951	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2952
2953	if (tsyn)
2954		tx_flags |= I40E_TX_FLAGS_TSYN;
2955
2956	skb_tx_timestamp(skb);
2957
2958	/* always enable CRC insertion offload */
2959	td_cmd |= I40E_TX_DESC_CMD_ICRC;
2960
2961	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2962			   cd_tunneling, cd_l2tag2);
2963
2964	/* Add Flow Director ATR if it's enabled.
2965	 *
2966	 * NOTE: this must always be directly before the data descriptor.
2967	 */
2968	i40e_atr(tx_ring, skb, tx_flags);
2969
2970	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2971		    td_cmd, td_offset);
2972
2973	return NETDEV_TX_OK;
2974
2975out_drop:
2976	dev_kfree_skb_any(skb);
2977	return NETDEV_TX_OK;
2978}
2979
2980/**
2981 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2982 * @skb:    send buffer
2983 * @netdev: network interface device structure
2984 *
2985 * Returns NETDEV_TX_OK if sent, else an error code
2986 **/
2987netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2988{
2989	struct i40e_netdev_priv *np = netdev_priv(netdev);
2990	struct i40e_vsi *vsi = np->vsi;
2991	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2992
2993	/* hardware can't handle really short frames, hardware padding works
2994	 * beyond this point
2995	 */
2996	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2997		return NETDEV_TX_OK;
2998
2999	return i40e_xmit_frame_ring(skb, tx_ring);
3000}