Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.6
   1/*
   2 * Implementation of the kernel access vector cache (AVC).
   3 *
   4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   8 *	Replaced the avc_lock spinlock by RCU.
   9 *
  10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  11 *
  12 *	This program is free software; you can redistribute it and/or modify
  13 *	it under the terms of the GNU General Public License version 2,
  14 *	as published by the Free Software Foundation.
  15 */
  16#include <linux/types.h>
  17#include <linux/stddef.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/fs.h>
  21#include <linux/dcache.h>
  22#include <linux/init.h>
  23#include <linux/skbuff.h>
  24#include <linux/percpu.h>
  25#include <linux/list.h>
  26#include <net/sock.h>
  27#include <linux/un.h>
  28#include <net/af_unix.h>
  29#include <linux/ip.h>
  30#include <linux/audit.h>
  31#include <linux/ipv6.h>
  32#include <net/ipv6.h>
  33#include "avc.h"
  34#include "avc_ss.h"
  35#include "classmap.h"
  36
  37#define AVC_CACHE_SLOTS			512
  38#define AVC_DEF_CACHE_THRESHOLD		512
  39#define AVC_CACHE_RECLAIM		16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)	do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48	u32			ssid;
  49	u32			tsid;
  50	u16			tclass;
  51	struct av_decision	avd;
  52	struct avc_xperms_node	*xp_node;
  53};
  54
  55struct avc_node {
  56	struct avc_entry	ae;
  57	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  58	struct rcu_head		rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62	struct extended_perms_decision xpd;
  63	struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67	struct extended_perms xp;
  68	struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  75	atomic_t		active_nodes;
  76	u32			latest_notif;	/* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80	int (*callback) (u32 event);
  81	u32 events;
  82	struct avc_callback_node *next;
  83};
  84
  85/* Exported via selinufs */
  86unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
  87
  88#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  89DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  90#endif
  91
  92static struct avc_cache avc_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93static struct avc_callback_node *avc_callbacks;
  94static struct kmem_cache *avc_node_cachep;
  95static struct kmem_cache *avc_xperms_data_cachep;
  96static struct kmem_cache *avc_xperms_decision_cachep;
  97static struct kmem_cache *avc_xperms_cachep;
  98
  99static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 100{
 101	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 102}
 103
 104/**
 105 * avc_dump_av - Display an access vector in human-readable form.
 106 * @tclass: target security class
 107 * @av: access vector
 108 */
 109static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 110{
 111	const char **perms;
 112	int i, perm;
 113
 114	if (av == 0) {
 115		audit_log_format(ab, " null");
 116		return;
 117	}
 118
 119	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 120	perms = secclass_map[tclass-1].perms;
 121
 122	audit_log_format(ab, " {");
 123	i = 0;
 124	perm = 1;
 125	while (i < (sizeof(av) * 8)) {
 126		if ((perm & av) && perms[i]) {
 127			audit_log_format(ab, " %s", perms[i]);
 128			av &= ~perm;
 129		}
 130		i++;
 131		perm <<= 1;
 132	}
 133
 134	if (av)
 135		audit_log_format(ab, " 0x%x", av);
 136
 137	audit_log_format(ab, " }");
 138}
 139
 140/**
 141 * avc_dump_query - Display a SID pair and a class in human-readable form.
 142 * @ssid: source security identifier
 143 * @tsid: target security identifier
 144 * @tclass: target security class
 145 */
 146static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
 
 147{
 148	int rc;
 149	char *scontext;
 150	u32 scontext_len;
 151
 152	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
 153	if (rc)
 154		audit_log_format(ab, "ssid=%d", ssid);
 155	else {
 156		audit_log_format(ab, "scontext=%s", scontext);
 157		kfree(scontext);
 158	}
 159
 160	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
 161	if (rc)
 162		audit_log_format(ab, " tsid=%d", tsid);
 163	else {
 164		audit_log_format(ab, " tcontext=%s", scontext);
 165		kfree(scontext);
 166	}
 167
 168	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 169	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
 170}
 171
 172/**
 173 * avc_init - Initialize the AVC.
 174 *
 175 * Initialize the access vector cache.
 176 */
 177void __init avc_init(void)
 178{
 179	int i;
 180
 181	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 182		INIT_HLIST_HEAD(&avc_cache.slots[i]);
 183		spin_lock_init(&avc_cache.slots_lock[i]);
 184	}
 185	atomic_set(&avc_cache.active_nodes, 0);
 186	atomic_set(&avc_cache.lru_hint, 0);
 187
 188	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 189					0, SLAB_PANIC, NULL);
 190	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 191					sizeof(struct avc_xperms_node),
 192					0, SLAB_PANIC, NULL);
 193	avc_xperms_decision_cachep = kmem_cache_create(
 194					"avc_xperms_decision_node",
 195					sizeof(struct avc_xperms_decision_node),
 196					0, SLAB_PANIC, NULL);
 197	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 198					sizeof(struct extended_perms_data),
 199					0, SLAB_PANIC, NULL);
 200
 201	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
 202}
 203
 204int avc_get_hash_stats(char *page)
 205{
 206	int i, chain_len, max_chain_len, slots_used;
 207	struct avc_node *node;
 208	struct hlist_head *head;
 209
 210	rcu_read_lock();
 211
 212	slots_used = 0;
 213	max_chain_len = 0;
 214	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 215		head = &avc_cache.slots[i];
 216		if (!hlist_empty(head)) {
 217			slots_used++;
 218			chain_len = 0;
 219			hlist_for_each_entry_rcu(node, head, list)
 220				chain_len++;
 221			if (chain_len > max_chain_len)
 222				max_chain_len = chain_len;
 223		}
 224	}
 225
 226	rcu_read_unlock();
 227
 228	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 229			 "longest chain: %d\n",
 230			 atomic_read(&avc_cache.active_nodes),
 231			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 232}
 233
 234/*
 235 * using a linked list for extended_perms_decision lookup because the list is
 236 * always small. i.e. less than 5, typically 1
 237 */
 238static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 239					struct avc_xperms_node *xp_node)
 240{
 241	struct avc_xperms_decision_node *xpd_node;
 242
 243	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 244		if (xpd_node->xpd.driver == driver)
 245			return &xpd_node->xpd;
 246	}
 247	return NULL;
 248}
 249
 250static inline unsigned int
 251avc_xperms_has_perm(struct extended_perms_decision *xpd,
 252					u8 perm, u8 which)
 253{
 254	unsigned int rc = 0;
 255
 256	if ((which == XPERMS_ALLOWED) &&
 257			(xpd->used & XPERMS_ALLOWED))
 258		rc = security_xperm_test(xpd->allowed->p, perm);
 259	else if ((which == XPERMS_AUDITALLOW) &&
 260			(xpd->used & XPERMS_AUDITALLOW))
 261		rc = security_xperm_test(xpd->auditallow->p, perm);
 262	else if ((which == XPERMS_DONTAUDIT) &&
 263			(xpd->used & XPERMS_DONTAUDIT))
 264		rc = security_xperm_test(xpd->dontaudit->p, perm);
 265	return rc;
 266}
 267
 268static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 269				u8 driver, u8 perm)
 270{
 271	struct extended_perms_decision *xpd;
 272	security_xperm_set(xp_node->xp.drivers.p, driver);
 273	xpd = avc_xperms_decision_lookup(driver, xp_node);
 274	if (xpd && xpd->allowed)
 275		security_xperm_set(xpd->allowed->p, perm);
 276}
 277
 278static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 279{
 280	struct extended_perms_decision *xpd;
 281
 282	xpd = &xpd_node->xpd;
 283	if (xpd->allowed)
 284		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 285	if (xpd->auditallow)
 286		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 287	if (xpd->dontaudit)
 288		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 289	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 290}
 291
 292static void avc_xperms_free(struct avc_xperms_node *xp_node)
 293{
 294	struct avc_xperms_decision_node *xpd_node, *tmp;
 295
 296	if (!xp_node)
 297		return;
 298
 299	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 300		list_del(&xpd_node->xpd_list);
 301		avc_xperms_decision_free(xpd_node);
 302	}
 303	kmem_cache_free(avc_xperms_cachep, xp_node);
 304}
 305
 306static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 307					struct extended_perms_decision *src)
 308{
 309	dest->driver = src->driver;
 310	dest->used = src->used;
 311	if (dest->used & XPERMS_ALLOWED)
 312		memcpy(dest->allowed->p, src->allowed->p,
 313				sizeof(src->allowed->p));
 314	if (dest->used & XPERMS_AUDITALLOW)
 315		memcpy(dest->auditallow->p, src->auditallow->p,
 316				sizeof(src->auditallow->p));
 317	if (dest->used & XPERMS_DONTAUDIT)
 318		memcpy(dest->dontaudit->p, src->dontaudit->p,
 319				sizeof(src->dontaudit->p));
 320}
 321
 322/*
 323 * similar to avc_copy_xperms_decision, but only copy decision
 324 * information relevant to this perm
 325 */
 326static inline void avc_quick_copy_xperms_decision(u8 perm,
 327			struct extended_perms_decision *dest,
 328			struct extended_perms_decision *src)
 329{
 330	/*
 331	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 332	 * command permission
 333	 */
 334	u8 i = perm >> 5;
 335
 336	dest->used = src->used;
 337	if (dest->used & XPERMS_ALLOWED)
 338		dest->allowed->p[i] = src->allowed->p[i];
 339	if (dest->used & XPERMS_AUDITALLOW)
 340		dest->auditallow->p[i] = src->auditallow->p[i];
 341	if (dest->used & XPERMS_DONTAUDIT)
 342		dest->dontaudit->p[i] = src->dontaudit->p[i];
 343}
 344
 345static struct avc_xperms_decision_node
 346		*avc_xperms_decision_alloc(u8 which)
 347{
 348	struct avc_xperms_decision_node *xpd_node;
 349	struct extended_perms_decision *xpd;
 350
 351	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
 352				GFP_ATOMIC | __GFP_NOMEMALLOC);
 353	if (!xpd_node)
 354		return NULL;
 355
 356	xpd = &xpd_node->xpd;
 357	if (which & XPERMS_ALLOWED) {
 358		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 359						GFP_ATOMIC | __GFP_NOMEMALLOC);
 360		if (!xpd->allowed)
 361			goto error;
 362	}
 363	if (which & XPERMS_AUDITALLOW) {
 364		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 365						GFP_ATOMIC | __GFP_NOMEMALLOC);
 366		if (!xpd->auditallow)
 367			goto error;
 368	}
 369	if (which & XPERMS_DONTAUDIT) {
 370		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 371						GFP_ATOMIC | __GFP_NOMEMALLOC);
 372		if (!xpd->dontaudit)
 373			goto error;
 374	}
 375	return xpd_node;
 376error:
 377	avc_xperms_decision_free(xpd_node);
 378	return NULL;
 379}
 380
 381static int avc_add_xperms_decision(struct avc_node *node,
 382			struct extended_perms_decision *src)
 383{
 384	struct avc_xperms_decision_node *dest_xpd;
 385
 386	node->ae.xp_node->xp.len++;
 387	dest_xpd = avc_xperms_decision_alloc(src->used);
 388	if (!dest_xpd)
 389		return -ENOMEM;
 390	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 391	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 392	return 0;
 393}
 394
 395static struct avc_xperms_node *avc_xperms_alloc(void)
 396{
 397	struct avc_xperms_node *xp_node;
 398
 399	xp_node = kmem_cache_zalloc(avc_xperms_cachep,
 400				GFP_ATOMIC|__GFP_NOMEMALLOC);
 401	if (!xp_node)
 402		return xp_node;
 403	INIT_LIST_HEAD(&xp_node->xpd_head);
 404	return xp_node;
 405}
 406
 407static int avc_xperms_populate(struct avc_node *node,
 408				struct avc_xperms_node *src)
 409{
 410	struct avc_xperms_node *dest;
 411	struct avc_xperms_decision_node *dest_xpd;
 412	struct avc_xperms_decision_node *src_xpd;
 413
 414	if (src->xp.len == 0)
 415		return 0;
 416	dest = avc_xperms_alloc();
 417	if (!dest)
 418		return -ENOMEM;
 419
 420	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 421	dest->xp.len = src->xp.len;
 422
 423	/* for each source xpd allocate a destination xpd and copy */
 424	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 425		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 426		if (!dest_xpd)
 427			goto error;
 428		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 429		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 430	}
 431	node->ae.xp_node = dest;
 432	return 0;
 433error:
 434	avc_xperms_free(dest);
 435	return -ENOMEM;
 436
 437}
 438
 439static inline u32 avc_xperms_audit_required(u32 requested,
 440					struct av_decision *avd,
 441					struct extended_perms_decision *xpd,
 442					u8 perm,
 443					int result,
 444					u32 *deniedp)
 445{
 446	u32 denied, audited;
 447
 448	denied = requested & ~avd->allowed;
 449	if (unlikely(denied)) {
 450		audited = denied & avd->auditdeny;
 451		if (audited && xpd) {
 452			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 453				audited &= ~requested;
 454		}
 455	} else if (result) {
 456		audited = denied = requested;
 457	} else {
 458		audited = requested & avd->auditallow;
 459		if (audited && xpd) {
 460			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 461				audited &= ~requested;
 462		}
 463	}
 464
 465	*deniedp = denied;
 466	return audited;
 467}
 468
 469static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
 470				u32 requested, struct av_decision *avd,
 471				struct extended_perms_decision *xpd,
 472				u8 perm, int result,
 473				struct common_audit_data *ad)
 
 474{
 475	u32 audited, denied;
 476
 477	audited = avc_xperms_audit_required(
 478			requested, avd, xpd, perm, result, &denied);
 479	if (likely(!audited))
 480		return 0;
 481	return slow_avc_audit(ssid, tsid, tclass, requested,
 482			audited, denied, result, ad, 0);
 483}
 484
 485static void avc_node_free(struct rcu_head *rhead)
 486{
 487	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 488	avc_xperms_free(node->ae.xp_node);
 489	kmem_cache_free(avc_node_cachep, node);
 490	avc_cache_stats_incr(frees);
 491}
 492
 493static void avc_node_delete(struct avc_node *node)
 494{
 495	hlist_del_rcu(&node->list);
 496	call_rcu(&node->rhead, avc_node_free);
 497	atomic_dec(&avc_cache.active_nodes);
 498}
 499
 500static void avc_node_kill(struct avc_node *node)
 501{
 502	avc_xperms_free(node->ae.xp_node);
 503	kmem_cache_free(avc_node_cachep, node);
 504	avc_cache_stats_incr(frees);
 505	atomic_dec(&avc_cache.active_nodes);
 506}
 507
 508static void avc_node_replace(struct avc_node *new, struct avc_node *old)
 
 509{
 510	hlist_replace_rcu(&old->list, &new->list);
 511	call_rcu(&old->rhead, avc_node_free);
 512	atomic_dec(&avc_cache.active_nodes);
 513}
 514
 515static inline int avc_reclaim_node(void)
 516{
 517	struct avc_node *node;
 518	int hvalue, try, ecx;
 519	unsigned long flags;
 520	struct hlist_head *head;
 521	spinlock_t *lock;
 522
 523	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 524		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
 525		head = &avc_cache.slots[hvalue];
 526		lock = &avc_cache.slots_lock[hvalue];
 
 527
 528		if (!spin_trylock_irqsave(lock, flags))
 529			continue;
 530
 531		rcu_read_lock();
 532		hlist_for_each_entry(node, head, list) {
 533			avc_node_delete(node);
 534			avc_cache_stats_incr(reclaims);
 535			ecx++;
 536			if (ecx >= AVC_CACHE_RECLAIM) {
 537				rcu_read_unlock();
 538				spin_unlock_irqrestore(lock, flags);
 539				goto out;
 540			}
 541		}
 542		rcu_read_unlock();
 543		spin_unlock_irqrestore(lock, flags);
 544	}
 545out:
 546	return ecx;
 547}
 548
 549static struct avc_node *avc_alloc_node(void)
 550{
 551	struct avc_node *node;
 552
 553	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC);
 554	if (!node)
 555		goto out;
 556
 557	INIT_HLIST_NODE(&node->list);
 558	avc_cache_stats_incr(allocations);
 559
 560	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
 561		avc_reclaim_node();
 
 562
 563out:
 564	return node;
 565}
 566
 567static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 568{
 569	node->ae.ssid = ssid;
 570	node->ae.tsid = tsid;
 571	node->ae.tclass = tclass;
 572	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 573}
 574
 575static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
 
 576{
 577	struct avc_node *node, *ret = NULL;
 578	int hvalue;
 579	struct hlist_head *head;
 580
 581	hvalue = avc_hash(ssid, tsid, tclass);
 582	head = &avc_cache.slots[hvalue];
 583	hlist_for_each_entry_rcu(node, head, list) {
 584		if (ssid == node->ae.ssid &&
 585		    tclass == node->ae.tclass &&
 586		    tsid == node->ae.tsid) {
 587			ret = node;
 588			break;
 589		}
 590	}
 591
 592	return ret;
 593}
 594
 595/**
 596 * avc_lookup - Look up an AVC entry.
 597 * @ssid: source security identifier
 598 * @tsid: target security identifier
 599 * @tclass: target security class
 600 *
 601 * Look up an AVC entry that is valid for the
 602 * (@ssid, @tsid), interpreting the permissions
 603 * based on @tclass.  If a valid AVC entry exists,
 604 * then this function returns the avc_node.
 605 * Otherwise, this function returns NULL.
 606 */
 607static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
 
 608{
 609	struct avc_node *node;
 610
 611	avc_cache_stats_incr(lookups);
 612	node = avc_search_node(ssid, tsid, tclass);
 613
 614	if (node)
 615		return node;
 616
 617	avc_cache_stats_incr(misses);
 618	return NULL;
 619}
 620
 621static int avc_latest_notif_update(int seqno, int is_insert)
 
 622{
 623	int ret = 0;
 624	static DEFINE_SPINLOCK(notif_lock);
 625	unsigned long flag;
 626
 627	spin_lock_irqsave(&notif_lock, flag);
 628	if (is_insert) {
 629		if (seqno < avc_cache.latest_notif) {
 630			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
 631			       seqno, avc_cache.latest_notif);
 632			ret = -EAGAIN;
 633		}
 634	} else {
 635		if (seqno > avc_cache.latest_notif)
 636			avc_cache.latest_notif = seqno;
 637	}
 638	spin_unlock_irqrestore(&notif_lock, flag);
 639
 640	return ret;
 641}
 642
 643/**
 644 * avc_insert - Insert an AVC entry.
 645 * @ssid: source security identifier
 646 * @tsid: target security identifier
 647 * @tclass: target security class
 648 * @avd: resulting av decision
 649 * @xp_node: resulting extended permissions
 650 *
 651 * Insert an AVC entry for the SID pair
 652 * (@ssid, @tsid) and class @tclass.
 653 * The access vectors and the sequence number are
 654 * normally provided by the security server in
 655 * response to a security_compute_av() call.  If the
 656 * sequence number @avd->seqno is not less than the latest
 657 * revocation notification, then the function copies
 658 * the access vectors into a cache entry, returns
 659 * avc_node inserted. Otherwise, this function returns NULL.
 660 */
 661static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass,
 662				struct av_decision *avd,
 663				struct avc_xperms_node *xp_node)
 
 664{
 665	struct avc_node *pos, *node = NULL;
 666	int hvalue;
 667	unsigned long flag;
 668
 669	if (avc_latest_notif_update(avd->seqno, 1))
 670		goto out;
 671
 672	node = avc_alloc_node();
 673	if (node) {
 674		struct hlist_head *head;
 675		spinlock_t *lock;
 676		int rc = 0;
 677
 678		hvalue = avc_hash(ssid, tsid, tclass);
 679		avc_node_populate(node, ssid, tsid, tclass, avd);
 680		rc = avc_xperms_populate(node, xp_node);
 681		if (rc) {
 682			kmem_cache_free(avc_node_cachep, node);
 683			return NULL;
 684		}
 685		head = &avc_cache.slots[hvalue];
 686		lock = &avc_cache.slots_lock[hvalue];
 687
 688		spin_lock_irqsave(lock, flag);
 689		hlist_for_each_entry(pos, head, list) {
 690			if (pos->ae.ssid == ssid &&
 691			    pos->ae.tsid == tsid &&
 692			    pos->ae.tclass == tclass) {
 693				avc_node_replace(node, pos);
 694				goto found;
 695			}
 696		}
 697		hlist_add_head_rcu(&node->list, head);
 698found:
 699		spin_unlock_irqrestore(lock, flag);
 700	}
 701out:
 702	return node;
 703}
 704
 705/**
 706 * avc_audit_pre_callback - SELinux specific information
 707 * will be called by generic audit code
 708 * @ab: the audit buffer
 709 * @a: audit_data
 710 */
 711static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 712{
 713	struct common_audit_data *ad = a;
 714	audit_log_format(ab, "avc:  %s ",
 715			 ad->selinux_audit_data->denied ? "denied" : "granted");
 716	avc_dump_av(ab, ad->selinux_audit_data->tclass,
 717			ad->selinux_audit_data->audited);
 718	audit_log_format(ab, " for ");
 719}
 720
 721/**
 722 * avc_audit_post_callback - SELinux specific information
 723 * will be called by generic audit code
 724 * @ab: the audit buffer
 725 * @a: audit_data
 726 */
 727static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 728{
 729	struct common_audit_data *ad = a;
 730	audit_log_format(ab, " ");
 731	avc_dump_query(ab, ad->selinux_audit_data->ssid,
 732			   ad->selinux_audit_data->tsid,
 733			   ad->selinux_audit_data->tclass);
 
 734	if (ad->selinux_audit_data->denied) {
 735		audit_log_format(ab, " permissive=%u",
 736				 ad->selinux_audit_data->result ? 0 : 1);
 737	}
 738}
 739
 740/* This is the slow part of avc audit with big stack footprint */
 741noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
 742		u32 requested, u32 audited, u32 denied, int result,
 743		struct common_audit_data *a,
 744		unsigned flags)
 
 745{
 746	struct common_audit_data stack_data;
 747	struct selinux_audit_data sad;
 748
 749	if (!a) {
 750		a = &stack_data;
 751		a->type = LSM_AUDIT_DATA_NONE;
 752	}
 753
 754	/*
 755	 * When in a RCU walk do the audit on the RCU retry.  This is because
 756	 * the collection of the dname in an inode audit message is not RCU
 757	 * safe.  Note this may drop some audits when the situation changes
 758	 * during retry. However this is logically just as if the operation
 759	 * happened a little later.
 760	 */
 761	if ((a->type == LSM_AUDIT_DATA_INODE) &&
 762	    (flags & MAY_NOT_BLOCK))
 763		return -ECHILD;
 764
 765	sad.tclass = tclass;
 766	sad.requested = requested;
 767	sad.ssid = ssid;
 768	sad.tsid = tsid;
 769	sad.audited = audited;
 770	sad.denied = denied;
 771	sad.result = result;
 
 772
 773	a->selinux_audit_data = &sad;
 774
 775	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 776	return 0;
 777}
 778
 779/**
 780 * avc_add_callback - Register a callback for security events.
 781 * @callback: callback function
 782 * @events: security events
 783 *
 784 * Register a callback function for events in the set @events.
 785 * Returns %0 on success or -%ENOMEM if insufficient memory
 786 * exists to add the callback.
 787 */
 788int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 789{
 790	struct avc_callback_node *c;
 791	int rc = 0;
 792
 793	c = kmalloc(sizeof(*c), GFP_KERNEL);
 794	if (!c) {
 795		rc = -ENOMEM;
 796		goto out;
 797	}
 798
 799	c->callback = callback;
 800	c->events = events;
 801	c->next = avc_callbacks;
 802	avc_callbacks = c;
 803out:
 804	return rc;
 805}
 806
 807/**
 808 * avc_update_node Update an AVC entry
 809 * @event : Updating event
 810 * @perms : Permission mask bits
 811 * @ssid,@tsid,@tclass : identifier of an AVC entry
 812 * @seqno : sequence number when decision was made
 813 * @xpd: extended_perms_decision to be added to the node
 814 *
 815 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 816 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 817 * otherwise, this function updates the AVC entry. The original AVC-entry object
 818 * will release later by RCU.
 819 */
 820static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 821			u32 tsid, u16 tclass, u32 seqno,
 822			struct extended_perms_decision *xpd,
 823			u32 flags)
 
 824{
 825	int hvalue, rc = 0;
 826	unsigned long flag;
 827	struct avc_node *pos, *node, *orig = NULL;
 828	struct hlist_head *head;
 829	spinlock_t *lock;
 830
 831	node = avc_alloc_node();
 832	if (!node) {
 833		rc = -ENOMEM;
 834		goto out;
 835	}
 836
 837	/* Lock the target slot */
 838	hvalue = avc_hash(ssid, tsid, tclass);
 839
 840	head = &avc_cache.slots[hvalue];
 841	lock = &avc_cache.slots_lock[hvalue];
 842
 843	spin_lock_irqsave(lock, flag);
 844
 845	hlist_for_each_entry(pos, head, list) {
 846		if (ssid == pos->ae.ssid &&
 847		    tsid == pos->ae.tsid &&
 848		    tclass == pos->ae.tclass &&
 849		    seqno == pos->ae.avd.seqno){
 850			orig = pos;
 851			break;
 852		}
 853	}
 854
 855	if (!orig) {
 856		rc = -ENOENT;
 857		avc_node_kill(node);
 858		goto out_unlock;
 859	}
 860
 861	/*
 862	 * Copy and replace original node.
 863	 */
 864
 865	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 866
 867	if (orig->ae.xp_node) {
 868		rc = avc_xperms_populate(node, orig->ae.xp_node);
 869		if (rc) {
 870			kmem_cache_free(avc_node_cachep, node);
 871			goto out_unlock;
 872		}
 873	}
 874
 875	switch (event) {
 876	case AVC_CALLBACK_GRANT:
 877		node->ae.avd.allowed |= perms;
 878		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 879			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 880		break;
 881	case AVC_CALLBACK_TRY_REVOKE:
 882	case AVC_CALLBACK_REVOKE:
 883		node->ae.avd.allowed &= ~perms;
 884		break;
 885	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 886		node->ae.avd.auditallow |= perms;
 887		break;
 888	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 889		node->ae.avd.auditallow &= ~perms;
 890		break;
 891	case AVC_CALLBACK_AUDITDENY_ENABLE:
 892		node->ae.avd.auditdeny |= perms;
 893		break;
 894	case AVC_CALLBACK_AUDITDENY_DISABLE:
 895		node->ae.avd.auditdeny &= ~perms;
 896		break;
 897	case AVC_CALLBACK_ADD_XPERMS:
 898		avc_add_xperms_decision(node, xpd);
 899		break;
 900	}
 901	avc_node_replace(node, orig);
 902out_unlock:
 903	spin_unlock_irqrestore(lock, flag);
 904out:
 905	return rc;
 906}
 907
 908/**
 909 * avc_flush - Flush the cache
 910 */
 911static void avc_flush(void)
 912{
 913	struct hlist_head *head;
 914	struct avc_node *node;
 915	spinlock_t *lock;
 916	unsigned long flag;
 917	int i;
 918
 919	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 920		head = &avc_cache.slots[i];
 921		lock = &avc_cache.slots_lock[i];
 922
 923		spin_lock_irqsave(lock, flag);
 924		/*
 925		 * With preemptable RCU, the outer spinlock does not
 926		 * prevent RCU grace periods from ending.
 927		 */
 928		rcu_read_lock();
 929		hlist_for_each_entry(node, head, list)
 930			avc_node_delete(node);
 931		rcu_read_unlock();
 932		spin_unlock_irqrestore(lock, flag);
 933	}
 934}
 935
 936/**
 937 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 938 * @seqno: policy sequence number
 939 */
 940int avc_ss_reset(u32 seqno)
 941{
 942	struct avc_callback_node *c;
 943	int rc = 0, tmprc;
 944
 945	avc_flush();
 946
 947	for (c = avc_callbacks; c; c = c->next) {
 948		if (c->events & AVC_CALLBACK_RESET) {
 949			tmprc = c->callback(AVC_CALLBACK_RESET);
 950			/* save the first error encountered for the return
 951			   value and continue processing the callbacks */
 952			if (!rc)
 953				rc = tmprc;
 954		}
 955	}
 956
 957	avc_latest_notif_update(seqno, 0);
 958	return rc;
 959}
 960
 961/*
 962 * Slow-path helper function for avc_has_perm_noaudit,
 963 * when the avc_node lookup fails. We get called with
 964 * the RCU read lock held, and need to return with it
 965 * still held, but drop if for the security compute.
 966 *
 967 * Don't inline this, since it's the slow-path and just
 968 * results in a bigger stack frame.
 969 */
 970static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
 971			 u16 tclass, struct av_decision *avd,
 972			 struct avc_xperms_node *xp_node)
 
 
 973{
 974	rcu_read_unlock();
 975	INIT_LIST_HEAD(&xp_node->xpd_head);
 976	security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
 977	rcu_read_lock();
 978	return avc_insert(ssid, tsid, tclass, avd, xp_node);
 979}
 980
 981static noinline int avc_denied(u32 ssid, u32 tsid,
 982				u16 tclass, u32 requested,
 983				u8 driver, u8 xperm, unsigned flags,
 984				struct av_decision *avd)
 
 985{
 986	if (flags & AVC_STRICT)
 987		return -EACCES;
 988
 989	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
 
 990		return -EACCES;
 991
 992	avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid,
 993				tsid, tclass, avd->seqno, NULL, flags);
 994	return 0;
 995}
 996
 997/*
 998 * The avc extended permissions logic adds an additional 256 bits of
 999 * permissions to an avc node when extended permissions for that node are
1000 * specified in the avtab. If the additional 256 permissions is not adequate,
1001 * as-is the case with ioctls, then multiple may be chained together and the
1002 * driver field is used to specify which set contains the permission.
1003 */
1004int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1005			u8 driver, u8 xperm, struct common_audit_data *ad)
 
1006{
1007	struct avc_node *node;
1008	struct av_decision avd;
1009	u32 denied;
1010	struct extended_perms_decision local_xpd;
1011	struct extended_perms_decision *xpd = NULL;
1012	struct extended_perms_data allowed;
1013	struct extended_perms_data auditallow;
1014	struct extended_perms_data dontaudit;
1015	struct avc_xperms_node local_xp_node;
1016	struct avc_xperms_node *xp_node;
1017	int rc = 0, rc2;
1018
1019	xp_node = &local_xp_node;
1020	BUG_ON(!requested);
1021
1022	rcu_read_lock();
1023
1024	node = avc_lookup(ssid, tsid, tclass);
1025	if (unlikely(!node)) {
1026		node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1027	} else {
1028		memcpy(&avd, &node->ae.avd, sizeof(avd));
1029		xp_node = node->ae.xp_node;
1030	}
1031	/* if extended permissions are not defined, only consider av_decision */
1032	if (!xp_node || !xp_node->xp.len)
1033		goto decision;
1034
1035	local_xpd.allowed = &allowed;
1036	local_xpd.auditallow = &auditallow;
1037	local_xpd.dontaudit = &dontaudit;
1038
1039	xpd = avc_xperms_decision_lookup(driver, xp_node);
1040	if (unlikely(!xpd)) {
1041		/*
1042		 * Compute the extended_perms_decision only if the driver
1043		 * is flagged
1044		 */
1045		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1046			avd.allowed &= ~requested;
1047			goto decision;
1048		}
1049		rcu_read_unlock();
1050		security_compute_xperms_decision(ssid, tsid, tclass, driver,
1051						&local_xpd);
1052		rcu_read_lock();
1053		avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm,
1054				ssid, tsid, tclass, avd.seqno, &local_xpd, 0);
 
1055	} else {
1056		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1057	}
1058	xpd = &local_xpd;
1059
1060	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1061		avd.allowed &= ~requested;
1062
1063decision:
1064	denied = requested & ~(avd.allowed);
1065	if (unlikely(denied))
1066		rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm,
1067				AVC_EXTENDED_PERMS, &avd);
1068
1069	rcu_read_unlock();
1070
1071	rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1072			&avd, xpd, xperm, rc, ad);
1073	if (rc2)
1074		return rc2;
1075	return rc;
1076}
1077
1078/**
1079 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1080 * @ssid: source security identifier
1081 * @tsid: target security identifier
1082 * @tclass: target security class
1083 * @requested: requested permissions, interpreted based on @tclass
1084 * @flags:  AVC_STRICT or 0
1085 * @avd: access vector decisions
1086 *
1087 * Check the AVC to determine whether the @requested permissions are granted
1088 * for the SID pair (@ssid, @tsid), interpreting the permissions
1089 * based on @tclass, and call the security server on a cache miss to obtain
1090 * a new decision and add it to the cache.  Return a copy of the decisions
1091 * in @avd.  Return %0 if all @requested permissions are granted,
1092 * -%EACCES if any permissions are denied, or another -errno upon
1093 * other errors.  This function is typically called by avc_has_perm(),
1094 * but may also be called directly to separate permission checking from
1095 * auditing, e.g. in cases where a lock must be held for the check but
1096 * should be released for the auditing.
1097 */
1098inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1099			 u16 tclass, u32 requested,
1100			 unsigned flags,
1101			 struct av_decision *avd)
 
1102{
1103	struct avc_node *node;
1104	struct avc_xperms_node xp_node;
1105	int rc = 0;
1106	u32 denied;
1107
1108	BUG_ON(!requested);
1109
1110	rcu_read_lock();
1111
1112	node = avc_lookup(ssid, tsid, tclass);
1113	if (unlikely(!node))
1114		node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1115	else
1116		memcpy(avd, &node->ae.avd, sizeof(*avd));
1117
1118	denied = requested & ~(avd->allowed);
1119	if (unlikely(denied))
1120		rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd);
 
1121
1122	rcu_read_unlock();
1123	return rc;
1124}
1125
1126/**
1127 * avc_has_perm - Check permissions and perform any appropriate auditing.
1128 * @ssid: source security identifier
1129 * @tsid: target security identifier
1130 * @tclass: target security class
1131 * @requested: requested permissions, interpreted based on @tclass
1132 * @auditdata: auxiliary audit data
1133 *
1134 * Check the AVC to determine whether the @requested permissions are granted
1135 * for the SID pair (@ssid, @tsid), interpreting the permissions
1136 * based on @tclass, and call the security server on a cache miss to obtain
1137 * a new decision and add it to the cache.  Audit the granting or denial of
1138 * permissions in accordance with the policy.  Return %0 if all @requested
1139 * permissions are granted, -%EACCES if any permissions are denied, or
1140 * another -errno upon other errors.
1141 */
1142int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1143		 u32 requested, struct common_audit_data *auditdata)
1144{
1145	struct av_decision avd;
1146	int rc, rc2;
1147
1148	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
 
1149
1150	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 0);
 
1151	if (rc2)
1152		return rc2;
1153	return rc;
1154}
1155
1156int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
1157		       u32 requested, struct common_audit_data *auditdata,
 
1158		       int flags)
1159{
1160	struct av_decision avd;
1161	int rc, rc2;
1162
1163	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
 
1164
1165	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1166			auditdata, flags);
1167	if (rc2)
1168		return rc2;
1169	return rc;
1170}
1171
1172u32 avc_policy_seqno(void)
1173{
1174	return avc_cache.latest_notif;
1175}
1176
1177void avc_disable(void)
1178{
1179	/*
1180	 * If you are looking at this because you have realized that we are
1181	 * not destroying the avc_node_cachep it might be easy to fix, but
1182	 * I don't know the memory barrier semantics well enough to know.  It's
1183	 * possible that some other task dereferenced security_ops when
1184	 * it still pointed to selinux operations.  If that is the case it's
1185	 * possible that it is about to use the avc and is about to need the
1186	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1187	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1188	 * the cache and get that memory back.
1189	 */
1190	if (avc_node_cachep) {
1191		avc_flush();
1192		/* kmem_cache_destroy(avc_node_cachep); */
1193	}
1194}
v4.17
   1/*
   2 * Implementation of the kernel access vector cache (AVC).
   3 *
   4 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   8 *	Replaced the avc_lock spinlock by RCU.
   9 *
  10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  11 *
  12 *	This program is free software; you can redistribute it and/or modify
  13 *	it under the terms of the GNU General Public License version 2,
  14 *	as published by the Free Software Foundation.
  15 */
  16#include <linux/types.h>
  17#include <linux/stddef.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/fs.h>
  21#include <linux/dcache.h>
  22#include <linux/init.h>
  23#include <linux/skbuff.h>
  24#include <linux/percpu.h>
  25#include <linux/list.h>
  26#include <net/sock.h>
  27#include <linux/un.h>
  28#include <net/af_unix.h>
  29#include <linux/ip.h>
  30#include <linux/audit.h>
  31#include <linux/ipv6.h>
  32#include <net/ipv6.h>
  33#include "avc.h"
  34#include "avc_ss.h"
  35#include "classmap.h"
  36
  37#define AVC_CACHE_SLOTS			512
  38#define AVC_DEF_CACHE_THRESHOLD		512
  39#define AVC_CACHE_RECLAIM		16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)	do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48	u32			ssid;
  49	u32			tsid;
  50	u16			tclass;
  51	struct av_decision	avd;
  52	struct avc_xperms_node	*xp_node;
  53};
  54
  55struct avc_node {
  56	struct avc_entry	ae;
  57	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  58	struct rcu_head		rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62	struct extended_perms_decision xpd;
  63	struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67	struct extended_perms xp;
  68	struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  75	atomic_t		active_nodes;
  76	u32			latest_notif;	/* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80	int (*callback) (u32 event);
  81	u32 events;
  82	struct avc_callback_node *next;
  83};
  84
 
 
 
  85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  87#endif
  88
  89struct selinux_avc {
  90	unsigned int avc_cache_threshold;
  91	struct avc_cache avc_cache;
  92};
  93
  94static struct selinux_avc selinux_avc;
  95
  96void selinux_avc_init(struct selinux_avc **avc)
  97{
  98	int i;
  99
 100	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 101	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 102		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 103		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 104	}
 105	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 106	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 107	*avc = &selinux_avc;
 108}
 109
 110unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
 111{
 112	return avc->avc_cache_threshold;
 113}
 114
 115void avc_set_cache_threshold(struct selinux_avc *avc,
 116			     unsigned int cache_threshold)
 117{
 118	avc->avc_cache_threshold = cache_threshold;
 119}
 120
 121static struct avc_callback_node *avc_callbacks;
 122static struct kmem_cache *avc_node_cachep;
 123static struct kmem_cache *avc_xperms_data_cachep;
 124static struct kmem_cache *avc_xperms_decision_cachep;
 125static struct kmem_cache *avc_xperms_cachep;
 126
 127static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 128{
 129	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 130}
 131
 132/**
 133 * avc_dump_av - Display an access vector in human-readable form.
 134 * @tclass: target security class
 135 * @av: access vector
 136 */
 137static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 138{
 139	const char **perms;
 140	int i, perm;
 141
 142	if (av == 0) {
 143		audit_log_format(ab, " null");
 144		return;
 145	}
 146
 147	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 148	perms = secclass_map[tclass-1].perms;
 149
 150	audit_log_format(ab, " {");
 151	i = 0;
 152	perm = 1;
 153	while (i < (sizeof(av) * 8)) {
 154		if ((perm & av) && perms[i]) {
 155			audit_log_format(ab, " %s", perms[i]);
 156			av &= ~perm;
 157		}
 158		i++;
 159		perm <<= 1;
 160	}
 161
 162	if (av)
 163		audit_log_format(ab, " 0x%x", av);
 164
 165	audit_log_format(ab, " }");
 166}
 167
 168/**
 169 * avc_dump_query - Display a SID pair and a class in human-readable form.
 170 * @ssid: source security identifier
 171 * @tsid: target security identifier
 172 * @tclass: target security class
 173 */
 174static void avc_dump_query(struct audit_buffer *ab, struct selinux_state *state,
 175			   u32 ssid, u32 tsid, u16 tclass)
 176{
 177	int rc;
 178	char *scontext;
 179	u32 scontext_len;
 180
 181	rc = security_sid_to_context(state, ssid, &scontext, &scontext_len);
 182	if (rc)
 183		audit_log_format(ab, "ssid=%d", ssid);
 184	else {
 185		audit_log_format(ab, "scontext=%s", scontext);
 186		kfree(scontext);
 187	}
 188
 189	rc = security_sid_to_context(state, tsid, &scontext, &scontext_len);
 190	if (rc)
 191		audit_log_format(ab, " tsid=%d", tsid);
 192	else {
 193		audit_log_format(ab, " tcontext=%s", scontext);
 194		kfree(scontext);
 195	}
 196
 197	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 198	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
 199}
 200
 201/**
 202 * avc_init - Initialize the AVC.
 203 *
 204 * Initialize the access vector cache.
 205 */
 206void __init avc_init(void)
 207{
 
 
 
 
 
 
 
 
 
 208	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 209					0, SLAB_PANIC, NULL);
 210	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 211					sizeof(struct avc_xperms_node),
 212					0, SLAB_PANIC, NULL);
 213	avc_xperms_decision_cachep = kmem_cache_create(
 214					"avc_xperms_decision_node",
 215					sizeof(struct avc_xperms_decision_node),
 216					0, SLAB_PANIC, NULL);
 217	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 218					sizeof(struct extended_perms_data),
 219					0, SLAB_PANIC, NULL);
 
 
 220}
 221
 222int avc_get_hash_stats(struct selinux_avc *avc, char *page)
 223{
 224	int i, chain_len, max_chain_len, slots_used;
 225	struct avc_node *node;
 226	struct hlist_head *head;
 227
 228	rcu_read_lock();
 229
 230	slots_used = 0;
 231	max_chain_len = 0;
 232	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 233		head = &avc->avc_cache.slots[i];
 234		if (!hlist_empty(head)) {
 235			slots_used++;
 236			chain_len = 0;
 237			hlist_for_each_entry_rcu(node, head, list)
 238				chain_len++;
 239			if (chain_len > max_chain_len)
 240				max_chain_len = chain_len;
 241		}
 242	}
 243
 244	rcu_read_unlock();
 245
 246	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 247			 "longest chain: %d\n",
 248			 atomic_read(&avc->avc_cache.active_nodes),
 249			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 250}
 251
 252/*
 253 * using a linked list for extended_perms_decision lookup because the list is
 254 * always small. i.e. less than 5, typically 1
 255 */
 256static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 257					struct avc_xperms_node *xp_node)
 258{
 259	struct avc_xperms_decision_node *xpd_node;
 260
 261	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 262		if (xpd_node->xpd.driver == driver)
 263			return &xpd_node->xpd;
 264	}
 265	return NULL;
 266}
 267
 268static inline unsigned int
 269avc_xperms_has_perm(struct extended_perms_decision *xpd,
 270					u8 perm, u8 which)
 271{
 272	unsigned int rc = 0;
 273
 274	if ((which == XPERMS_ALLOWED) &&
 275			(xpd->used & XPERMS_ALLOWED))
 276		rc = security_xperm_test(xpd->allowed->p, perm);
 277	else if ((which == XPERMS_AUDITALLOW) &&
 278			(xpd->used & XPERMS_AUDITALLOW))
 279		rc = security_xperm_test(xpd->auditallow->p, perm);
 280	else if ((which == XPERMS_DONTAUDIT) &&
 281			(xpd->used & XPERMS_DONTAUDIT))
 282		rc = security_xperm_test(xpd->dontaudit->p, perm);
 283	return rc;
 284}
 285
 286static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 287				u8 driver, u8 perm)
 288{
 289	struct extended_perms_decision *xpd;
 290	security_xperm_set(xp_node->xp.drivers.p, driver);
 291	xpd = avc_xperms_decision_lookup(driver, xp_node);
 292	if (xpd && xpd->allowed)
 293		security_xperm_set(xpd->allowed->p, perm);
 294}
 295
 296static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 297{
 298	struct extended_perms_decision *xpd;
 299
 300	xpd = &xpd_node->xpd;
 301	if (xpd->allowed)
 302		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 303	if (xpd->auditallow)
 304		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 305	if (xpd->dontaudit)
 306		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 307	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 308}
 309
 310static void avc_xperms_free(struct avc_xperms_node *xp_node)
 311{
 312	struct avc_xperms_decision_node *xpd_node, *tmp;
 313
 314	if (!xp_node)
 315		return;
 316
 317	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 318		list_del(&xpd_node->xpd_list);
 319		avc_xperms_decision_free(xpd_node);
 320	}
 321	kmem_cache_free(avc_xperms_cachep, xp_node);
 322}
 323
 324static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 325					struct extended_perms_decision *src)
 326{
 327	dest->driver = src->driver;
 328	dest->used = src->used;
 329	if (dest->used & XPERMS_ALLOWED)
 330		memcpy(dest->allowed->p, src->allowed->p,
 331				sizeof(src->allowed->p));
 332	if (dest->used & XPERMS_AUDITALLOW)
 333		memcpy(dest->auditallow->p, src->auditallow->p,
 334				sizeof(src->auditallow->p));
 335	if (dest->used & XPERMS_DONTAUDIT)
 336		memcpy(dest->dontaudit->p, src->dontaudit->p,
 337				sizeof(src->dontaudit->p));
 338}
 339
 340/*
 341 * similar to avc_copy_xperms_decision, but only copy decision
 342 * information relevant to this perm
 343 */
 344static inline void avc_quick_copy_xperms_decision(u8 perm,
 345			struct extended_perms_decision *dest,
 346			struct extended_perms_decision *src)
 347{
 348	/*
 349	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 350	 * command permission
 351	 */
 352	u8 i = perm >> 5;
 353
 354	dest->used = src->used;
 355	if (dest->used & XPERMS_ALLOWED)
 356		dest->allowed->p[i] = src->allowed->p[i];
 357	if (dest->used & XPERMS_AUDITALLOW)
 358		dest->auditallow->p[i] = src->auditallow->p[i];
 359	if (dest->used & XPERMS_DONTAUDIT)
 360		dest->dontaudit->p[i] = src->dontaudit->p[i];
 361}
 362
 363static struct avc_xperms_decision_node
 364		*avc_xperms_decision_alloc(u8 which)
 365{
 366	struct avc_xperms_decision_node *xpd_node;
 367	struct extended_perms_decision *xpd;
 368
 369	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
 
 370	if (!xpd_node)
 371		return NULL;
 372
 373	xpd = &xpd_node->xpd;
 374	if (which & XPERMS_ALLOWED) {
 375		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 376						GFP_NOWAIT);
 377		if (!xpd->allowed)
 378			goto error;
 379	}
 380	if (which & XPERMS_AUDITALLOW) {
 381		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 382						GFP_NOWAIT);
 383		if (!xpd->auditallow)
 384			goto error;
 385	}
 386	if (which & XPERMS_DONTAUDIT) {
 387		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 388						GFP_NOWAIT);
 389		if (!xpd->dontaudit)
 390			goto error;
 391	}
 392	return xpd_node;
 393error:
 394	avc_xperms_decision_free(xpd_node);
 395	return NULL;
 396}
 397
 398static int avc_add_xperms_decision(struct avc_node *node,
 399			struct extended_perms_decision *src)
 400{
 401	struct avc_xperms_decision_node *dest_xpd;
 402
 403	node->ae.xp_node->xp.len++;
 404	dest_xpd = avc_xperms_decision_alloc(src->used);
 405	if (!dest_xpd)
 406		return -ENOMEM;
 407	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 408	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 409	return 0;
 410}
 411
 412static struct avc_xperms_node *avc_xperms_alloc(void)
 413{
 414	struct avc_xperms_node *xp_node;
 415
 416	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
 
 417	if (!xp_node)
 418		return xp_node;
 419	INIT_LIST_HEAD(&xp_node->xpd_head);
 420	return xp_node;
 421}
 422
 423static int avc_xperms_populate(struct avc_node *node,
 424				struct avc_xperms_node *src)
 425{
 426	struct avc_xperms_node *dest;
 427	struct avc_xperms_decision_node *dest_xpd;
 428	struct avc_xperms_decision_node *src_xpd;
 429
 430	if (src->xp.len == 0)
 431		return 0;
 432	dest = avc_xperms_alloc();
 433	if (!dest)
 434		return -ENOMEM;
 435
 436	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 437	dest->xp.len = src->xp.len;
 438
 439	/* for each source xpd allocate a destination xpd and copy */
 440	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 441		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 442		if (!dest_xpd)
 443			goto error;
 444		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 445		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 446	}
 447	node->ae.xp_node = dest;
 448	return 0;
 449error:
 450	avc_xperms_free(dest);
 451	return -ENOMEM;
 452
 453}
 454
 455static inline u32 avc_xperms_audit_required(u32 requested,
 456					struct av_decision *avd,
 457					struct extended_perms_decision *xpd,
 458					u8 perm,
 459					int result,
 460					u32 *deniedp)
 461{
 462	u32 denied, audited;
 463
 464	denied = requested & ~avd->allowed;
 465	if (unlikely(denied)) {
 466		audited = denied & avd->auditdeny;
 467		if (audited && xpd) {
 468			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 469				audited &= ~requested;
 470		}
 471	} else if (result) {
 472		audited = denied = requested;
 473	} else {
 474		audited = requested & avd->auditallow;
 475		if (audited && xpd) {
 476			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 477				audited &= ~requested;
 478		}
 479	}
 480
 481	*deniedp = denied;
 482	return audited;
 483}
 484
 485static inline int avc_xperms_audit(struct selinux_state *state,
 486				   u32 ssid, u32 tsid, u16 tclass,
 487				   u32 requested, struct av_decision *avd,
 488				   struct extended_perms_decision *xpd,
 489				   u8 perm, int result,
 490				   struct common_audit_data *ad)
 491{
 492	u32 audited, denied;
 493
 494	audited = avc_xperms_audit_required(
 495			requested, avd, xpd, perm, result, &denied);
 496	if (likely(!audited))
 497		return 0;
 498	return slow_avc_audit(state, ssid, tsid, tclass, requested,
 499			audited, denied, result, ad, 0);
 500}
 501
 502static void avc_node_free(struct rcu_head *rhead)
 503{
 504	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 505	avc_xperms_free(node->ae.xp_node);
 506	kmem_cache_free(avc_node_cachep, node);
 507	avc_cache_stats_incr(frees);
 508}
 509
 510static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
 511{
 512	hlist_del_rcu(&node->list);
 513	call_rcu(&node->rhead, avc_node_free);
 514	atomic_dec(&avc->avc_cache.active_nodes);
 515}
 516
 517static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
 518{
 519	avc_xperms_free(node->ae.xp_node);
 520	kmem_cache_free(avc_node_cachep, node);
 521	avc_cache_stats_incr(frees);
 522	atomic_dec(&avc->avc_cache.active_nodes);
 523}
 524
 525static void avc_node_replace(struct selinux_avc *avc,
 526			     struct avc_node *new, struct avc_node *old)
 527{
 528	hlist_replace_rcu(&old->list, &new->list);
 529	call_rcu(&old->rhead, avc_node_free);
 530	atomic_dec(&avc->avc_cache.active_nodes);
 531}
 532
 533static inline int avc_reclaim_node(struct selinux_avc *avc)
 534{
 535	struct avc_node *node;
 536	int hvalue, try, ecx;
 537	unsigned long flags;
 538	struct hlist_head *head;
 539	spinlock_t *lock;
 540
 541	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 542		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
 543			(AVC_CACHE_SLOTS - 1);
 544		head = &avc->avc_cache.slots[hvalue];
 545		lock = &avc->avc_cache.slots_lock[hvalue];
 546
 547		if (!spin_trylock_irqsave(lock, flags))
 548			continue;
 549
 550		rcu_read_lock();
 551		hlist_for_each_entry(node, head, list) {
 552			avc_node_delete(avc, node);
 553			avc_cache_stats_incr(reclaims);
 554			ecx++;
 555			if (ecx >= AVC_CACHE_RECLAIM) {
 556				rcu_read_unlock();
 557				spin_unlock_irqrestore(lock, flags);
 558				goto out;
 559			}
 560		}
 561		rcu_read_unlock();
 562		spin_unlock_irqrestore(lock, flags);
 563	}
 564out:
 565	return ecx;
 566}
 567
 568static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
 569{
 570	struct avc_node *node;
 571
 572	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
 573	if (!node)
 574		goto out;
 575
 576	INIT_HLIST_NODE(&node->list);
 577	avc_cache_stats_incr(allocations);
 578
 579	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
 580	    avc->avc_cache_threshold)
 581		avc_reclaim_node(avc);
 582
 583out:
 584	return node;
 585}
 586
 587static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 588{
 589	node->ae.ssid = ssid;
 590	node->ae.tsid = tsid;
 591	node->ae.tclass = tclass;
 592	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 593}
 594
 595static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
 596					       u32 ssid, u32 tsid, u16 tclass)
 597{
 598	struct avc_node *node, *ret = NULL;
 599	int hvalue;
 600	struct hlist_head *head;
 601
 602	hvalue = avc_hash(ssid, tsid, tclass);
 603	head = &avc->avc_cache.slots[hvalue];
 604	hlist_for_each_entry_rcu(node, head, list) {
 605		if (ssid == node->ae.ssid &&
 606		    tclass == node->ae.tclass &&
 607		    tsid == node->ae.tsid) {
 608			ret = node;
 609			break;
 610		}
 611	}
 612
 613	return ret;
 614}
 615
 616/**
 617 * avc_lookup - Look up an AVC entry.
 618 * @ssid: source security identifier
 619 * @tsid: target security identifier
 620 * @tclass: target security class
 621 *
 622 * Look up an AVC entry that is valid for the
 623 * (@ssid, @tsid), interpreting the permissions
 624 * based on @tclass.  If a valid AVC entry exists,
 625 * then this function returns the avc_node.
 626 * Otherwise, this function returns NULL.
 627 */
 628static struct avc_node *avc_lookup(struct selinux_avc *avc,
 629				   u32 ssid, u32 tsid, u16 tclass)
 630{
 631	struct avc_node *node;
 632
 633	avc_cache_stats_incr(lookups);
 634	node = avc_search_node(avc, ssid, tsid, tclass);
 635
 636	if (node)
 637		return node;
 638
 639	avc_cache_stats_incr(misses);
 640	return NULL;
 641}
 642
 643static int avc_latest_notif_update(struct selinux_avc *avc,
 644				   int seqno, int is_insert)
 645{
 646	int ret = 0;
 647	static DEFINE_SPINLOCK(notif_lock);
 648	unsigned long flag;
 649
 650	spin_lock_irqsave(&notif_lock, flag);
 651	if (is_insert) {
 652		if (seqno < avc->avc_cache.latest_notif) {
 653			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
 654			       seqno, avc->avc_cache.latest_notif);
 655			ret = -EAGAIN;
 656		}
 657	} else {
 658		if (seqno > avc->avc_cache.latest_notif)
 659			avc->avc_cache.latest_notif = seqno;
 660	}
 661	spin_unlock_irqrestore(&notif_lock, flag);
 662
 663	return ret;
 664}
 665
 666/**
 667 * avc_insert - Insert an AVC entry.
 668 * @ssid: source security identifier
 669 * @tsid: target security identifier
 670 * @tclass: target security class
 671 * @avd: resulting av decision
 672 * @xp_node: resulting extended permissions
 673 *
 674 * Insert an AVC entry for the SID pair
 675 * (@ssid, @tsid) and class @tclass.
 676 * The access vectors and the sequence number are
 677 * normally provided by the security server in
 678 * response to a security_compute_av() call.  If the
 679 * sequence number @avd->seqno is not less than the latest
 680 * revocation notification, then the function copies
 681 * the access vectors into a cache entry, returns
 682 * avc_node inserted. Otherwise, this function returns NULL.
 683 */
 684static struct avc_node *avc_insert(struct selinux_avc *avc,
 685				   u32 ssid, u32 tsid, u16 tclass,
 686				   struct av_decision *avd,
 687				   struct avc_xperms_node *xp_node)
 688{
 689	struct avc_node *pos, *node = NULL;
 690	int hvalue;
 691	unsigned long flag;
 692
 693	if (avc_latest_notif_update(avc, avd->seqno, 1))
 694		goto out;
 695
 696	node = avc_alloc_node(avc);
 697	if (node) {
 698		struct hlist_head *head;
 699		spinlock_t *lock;
 700		int rc = 0;
 701
 702		hvalue = avc_hash(ssid, tsid, tclass);
 703		avc_node_populate(node, ssid, tsid, tclass, avd);
 704		rc = avc_xperms_populate(node, xp_node);
 705		if (rc) {
 706			kmem_cache_free(avc_node_cachep, node);
 707			return NULL;
 708		}
 709		head = &avc->avc_cache.slots[hvalue];
 710		lock = &avc->avc_cache.slots_lock[hvalue];
 711
 712		spin_lock_irqsave(lock, flag);
 713		hlist_for_each_entry(pos, head, list) {
 714			if (pos->ae.ssid == ssid &&
 715			    pos->ae.tsid == tsid &&
 716			    pos->ae.tclass == tclass) {
 717				avc_node_replace(avc, node, pos);
 718				goto found;
 719			}
 720		}
 721		hlist_add_head_rcu(&node->list, head);
 722found:
 723		spin_unlock_irqrestore(lock, flag);
 724	}
 725out:
 726	return node;
 727}
 728
 729/**
 730 * avc_audit_pre_callback - SELinux specific information
 731 * will be called by generic audit code
 732 * @ab: the audit buffer
 733 * @a: audit_data
 734 */
 735static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 736{
 737	struct common_audit_data *ad = a;
 738	audit_log_format(ab, "avc:  %s ",
 739			 ad->selinux_audit_data->denied ? "denied" : "granted");
 740	avc_dump_av(ab, ad->selinux_audit_data->tclass,
 741			ad->selinux_audit_data->audited);
 742	audit_log_format(ab, " for ");
 743}
 744
 745/**
 746 * avc_audit_post_callback - SELinux specific information
 747 * will be called by generic audit code
 748 * @ab: the audit buffer
 749 * @a: audit_data
 750 */
 751static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 752{
 753	struct common_audit_data *ad = a;
 754	audit_log_format(ab, " ");
 755	avc_dump_query(ab, ad->selinux_audit_data->state,
 756		       ad->selinux_audit_data->ssid,
 757		       ad->selinux_audit_data->tsid,
 758		       ad->selinux_audit_data->tclass);
 759	if (ad->selinux_audit_data->denied) {
 760		audit_log_format(ab, " permissive=%u",
 761				 ad->selinux_audit_data->result ? 0 : 1);
 762	}
 763}
 764
 765/* This is the slow part of avc audit with big stack footprint */
 766noinline int slow_avc_audit(struct selinux_state *state,
 767			    u32 ssid, u32 tsid, u16 tclass,
 768			    u32 requested, u32 audited, u32 denied, int result,
 769			    struct common_audit_data *a,
 770			    unsigned int flags)
 771{
 772	struct common_audit_data stack_data;
 773	struct selinux_audit_data sad;
 774
 775	if (!a) {
 776		a = &stack_data;
 777		a->type = LSM_AUDIT_DATA_NONE;
 778	}
 779
 780	/*
 781	 * When in a RCU walk do the audit on the RCU retry.  This is because
 782	 * the collection of the dname in an inode audit message is not RCU
 783	 * safe.  Note this may drop some audits when the situation changes
 784	 * during retry. However this is logically just as if the operation
 785	 * happened a little later.
 786	 */
 787	if ((a->type == LSM_AUDIT_DATA_INODE) &&
 788	    (flags & MAY_NOT_BLOCK))
 789		return -ECHILD;
 790
 791	sad.tclass = tclass;
 792	sad.requested = requested;
 793	sad.ssid = ssid;
 794	sad.tsid = tsid;
 795	sad.audited = audited;
 796	sad.denied = denied;
 797	sad.result = result;
 798	sad.state = state;
 799
 800	a->selinux_audit_data = &sad;
 801
 802	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 803	return 0;
 804}
 805
 806/**
 807 * avc_add_callback - Register a callback for security events.
 808 * @callback: callback function
 809 * @events: security events
 810 *
 811 * Register a callback function for events in the set @events.
 812 * Returns %0 on success or -%ENOMEM if insufficient memory
 813 * exists to add the callback.
 814 */
 815int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 816{
 817	struct avc_callback_node *c;
 818	int rc = 0;
 819
 820	c = kmalloc(sizeof(*c), GFP_KERNEL);
 821	if (!c) {
 822		rc = -ENOMEM;
 823		goto out;
 824	}
 825
 826	c->callback = callback;
 827	c->events = events;
 828	c->next = avc_callbacks;
 829	avc_callbacks = c;
 830out:
 831	return rc;
 832}
 833
 834/**
 835 * avc_update_node Update an AVC entry
 836 * @event : Updating event
 837 * @perms : Permission mask bits
 838 * @ssid,@tsid,@tclass : identifier of an AVC entry
 839 * @seqno : sequence number when decision was made
 840 * @xpd: extended_perms_decision to be added to the node
 841 *
 842 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 843 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 844 * otherwise, this function updates the AVC entry. The original AVC-entry object
 845 * will release later by RCU.
 846 */
 847static int avc_update_node(struct selinux_avc *avc,
 848			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 849			   u32 tsid, u16 tclass, u32 seqno,
 850			   struct extended_perms_decision *xpd,
 851			   u32 flags)
 852{
 853	int hvalue, rc = 0;
 854	unsigned long flag;
 855	struct avc_node *pos, *node, *orig = NULL;
 856	struct hlist_head *head;
 857	spinlock_t *lock;
 858
 859	node = avc_alloc_node(avc);
 860	if (!node) {
 861		rc = -ENOMEM;
 862		goto out;
 863	}
 864
 865	/* Lock the target slot */
 866	hvalue = avc_hash(ssid, tsid, tclass);
 867
 868	head = &avc->avc_cache.slots[hvalue];
 869	lock = &avc->avc_cache.slots_lock[hvalue];
 870
 871	spin_lock_irqsave(lock, flag);
 872
 873	hlist_for_each_entry(pos, head, list) {
 874		if (ssid == pos->ae.ssid &&
 875		    tsid == pos->ae.tsid &&
 876		    tclass == pos->ae.tclass &&
 877		    seqno == pos->ae.avd.seqno){
 878			orig = pos;
 879			break;
 880		}
 881	}
 882
 883	if (!orig) {
 884		rc = -ENOENT;
 885		avc_node_kill(avc, node);
 886		goto out_unlock;
 887	}
 888
 889	/*
 890	 * Copy and replace original node.
 891	 */
 892
 893	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 894
 895	if (orig->ae.xp_node) {
 896		rc = avc_xperms_populate(node, orig->ae.xp_node);
 897		if (rc) {
 898			kmem_cache_free(avc_node_cachep, node);
 899			goto out_unlock;
 900		}
 901	}
 902
 903	switch (event) {
 904	case AVC_CALLBACK_GRANT:
 905		node->ae.avd.allowed |= perms;
 906		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 907			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 908		break;
 909	case AVC_CALLBACK_TRY_REVOKE:
 910	case AVC_CALLBACK_REVOKE:
 911		node->ae.avd.allowed &= ~perms;
 912		break;
 913	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 914		node->ae.avd.auditallow |= perms;
 915		break;
 916	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 917		node->ae.avd.auditallow &= ~perms;
 918		break;
 919	case AVC_CALLBACK_AUDITDENY_ENABLE:
 920		node->ae.avd.auditdeny |= perms;
 921		break;
 922	case AVC_CALLBACK_AUDITDENY_DISABLE:
 923		node->ae.avd.auditdeny &= ~perms;
 924		break;
 925	case AVC_CALLBACK_ADD_XPERMS:
 926		avc_add_xperms_decision(node, xpd);
 927		break;
 928	}
 929	avc_node_replace(avc, node, orig);
 930out_unlock:
 931	spin_unlock_irqrestore(lock, flag);
 932out:
 933	return rc;
 934}
 935
 936/**
 937 * avc_flush - Flush the cache
 938 */
 939static void avc_flush(struct selinux_avc *avc)
 940{
 941	struct hlist_head *head;
 942	struct avc_node *node;
 943	spinlock_t *lock;
 944	unsigned long flag;
 945	int i;
 946
 947	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 948		head = &avc->avc_cache.slots[i];
 949		lock = &avc->avc_cache.slots_lock[i];
 950
 951		spin_lock_irqsave(lock, flag);
 952		/*
 953		 * With preemptable RCU, the outer spinlock does not
 954		 * prevent RCU grace periods from ending.
 955		 */
 956		rcu_read_lock();
 957		hlist_for_each_entry(node, head, list)
 958			avc_node_delete(avc, node);
 959		rcu_read_unlock();
 960		spin_unlock_irqrestore(lock, flag);
 961	}
 962}
 963
 964/**
 965 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 966 * @seqno: policy sequence number
 967 */
 968int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
 969{
 970	struct avc_callback_node *c;
 971	int rc = 0, tmprc;
 972
 973	avc_flush(avc);
 974
 975	for (c = avc_callbacks; c; c = c->next) {
 976		if (c->events & AVC_CALLBACK_RESET) {
 977			tmprc = c->callback(AVC_CALLBACK_RESET);
 978			/* save the first error encountered for the return
 979			   value and continue processing the callbacks */
 980			if (!rc)
 981				rc = tmprc;
 982		}
 983	}
 984
 985	avc_latest_notif_update(avc, seqno, 0);
 986	return rc;
 987}
 988
 989/*
 990 * Slow-path helper function for avc_has_perm_noaudit,
 991 * when the avc_node lookup fails. We get called with
 992 * the RCU read lock held, and need to return with it
 993 * still held, but drop if for the security compute.
 994 *
 995 * Don't inline this, since it's the slow-path and just
 996 * results in a bigger stack frame.
 997 */
 998static noinline
 999struct avc_node *avc_compute_av(struct selinux_state *state,
1000				u32 ssid, u32 tsid,
1001				u16 tclass, struct av_decision *avd,
1002				struct avc_xperms_node *xp_node)
1003{
1004	rcu_read_unlock();
1005	INIT_LIST_HEAD(&xp_node->xpd_head);
1006	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1007	rcu_read_lock();
1008	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1009}
1010
1011static noinline int avc_denied(struct selinux_state *state,
1012			       u32 ssid, u32 tsid,
1013			       u16 tclass, u32 requested,
1014			       u8 driver, u8 xperm, unsigned int flags,
1015			       struct av_decision *avd)
1016{
1017	if (flags & AVC_STRICT)
1018		return -EACCES;
1019
1020	if (enforcing_enabled(state) &&
1021	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1022		return -EACCES;
1023
1024	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1025			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1026	return 0;
1027}
1028
1029/*
1030 * The avc extended permissions logic adds an additional 256 bits of
1031 * permissions to an avc node when extended permissions for that node are
1032 * specified in the avtab. If the additional 256 permissions is not adequate,
1033 * as-is the case with ioctls, then multiple may be chained together and the
1034 * driver field is used to specify which set contains the permission.
1035 */
1036int avc_has_extended_perms(struct selinux_state *state,
1037			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1038			   u8 driver, u8 xperm, struct common_audit_data *ad)
1039{
1040	struct avc_node *node;
1041	struct av_decision avd;
1042	u32 denied;
1043	struct extended_perms_decision local_xpd;
1044	struct extended_perms_decision *xpd = NULL;
1045	struct extended_perms_data allowed;
1046	struct extended_perms_data auditallow;
1047	struct extended_perms_data dontaudit;
1048	struct avc_xperms_node local_xp_node;
1049	struct avc_xperms_node *xp_node;
1050	int rc = 0, rc2;
1051
1052	xp_node = &local_xp_node;
1053	BUG_ON(!requested);
1054
1055	rcu_read_lock();
1056
1057	node = avc_lookup(state->avc, ssid, tsid, tclass);
1058	if (unlikely(!node)) {
1059		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1060	} else {
1061		memcpy(&avd, &node->ae.avd, sizeof(avd));
1062		xp_node = node->ae.xp_node;
1063	}
1064	/* if extended permissions are not defined, only consider av_decision */
1065	if (!xp_node || !xp_node->xp.len)
1066		goto decision;
1067
1068	local_xpd.allowed = &allowed;
1069	local_xpd.auditallow = &auditallow;
1070	local_xpd.dontaudit = &dontaudit;
1071
1072	xpd = avc_xperms_decision_lookup(driver, xp_node);
1073	if (unlikely(!xpd)) {
1074		/*
1075		 * Compute the extended_perms_decision only if the driver
1076		 * is flagged
1077		 */
1078		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1079			avd.allowed &= ~requested;
1080			goto decision;
1081		}
1082		rcu_read_unlock();
1083		security_compute_xperms_decision(state, ssid, tsid, tclass,
1084						 driver, &local_xpd);
1085		rcu_read_lock();
1086		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1087				driver, xperm, ssid, tsid, tclass, avd.seqno,
1088				&local_xpd, 0);
1089	} else {
1090		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1091	}
1092	xpd = &local_xpd;
1093
1094	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1095		avd.allowed &= ~requested;
1096
1097decision:
1098	denied = requested & ~(avd.allowed);
1099	if (unlikely(denied))
1100		rc = avc_denied(state, ssid, tsid, tclass, requested,
1101				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1102
1103	rcu_read_unlock();
1104
1105	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1106			&avd, xpd, xperm, rc, ad);
1107	if (rc2)
1108		return rc2;
1109	return rc;
1110}
1111
1112/**
1113 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1114 * @ssid: source security identifier
1115 * @tsid: target security identifier
1116 * @tclass: target security class
1117 * @requested: requested permissions, interpreted based on @tclass
1118 * @flags:  AVC_STRICT or 0
1119 * @avd: access vector decisions
1120 *
1121 * Check the AVC to determine whether the @requested permissions are granted
1122 * for the SID pair (@ssid, @tsid), interpreting the permissions
1123 * based on @tclass, and call the security server on a cache miss to obtain
1124 * a new decision and add it to the cache.  Return a copy of the decisions
1125 * in @avd.  Return %0 if all @requested permissions are granted,
1126 * -%EACCES if any permissions are denied, or another -errno upon
1127 * other errors.  This function is typically called by avc_has_perm(),
1128 * but may also be called directly to separate permission checking from
1129 * auditing, e.g. in cases where a lock must be held for the check but
1130 * should be released for the auditing.
1131 */
1132inline int avc_has_perm_noaudit(struct selinux_state *state,
1133				u32 ssid, u32 tsid,
1134				u16 tclass, u32 requested,
1135				unsigned int flags,
1136				struct av_decision *avd)
1137{
1138	struct avc_node *node;
1139	struct avc_xperms_node xp_node;
1140	int rc = 0;
1141	u32 denied;
1142
1143	BUG_ON(!requested);
1144
1145	rcu_read_lock();
1146
1147	node = avc_lookup(state->avc, ssid, tsid, tclass);
1148	if (unlikely(!node))
1149		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1150	else
1151		memcpy(avd, &node->ae.avd, sizeof(*avd));
1152
1153	denied = requested & ~(avd->allowed);
1154	if (unlikely(denied))
1155		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1156				flags, avd);
1157
1158	rcu_read_unlock();
1159	return rc;
1160}
1161
1162/**
1163 * avc_has_perm - Check permissions and perform any appropriate auditing.
1164 * @ssid: source security identifier
1165 * @tsid: target security identifier
1166 * @tclass: target security class
1167 * @requested: requested permissions, interpreted based on @tclass
1168 * @auditdata: auxiliary audit data
1169 *
1170 * Check the AVC to determine whether the @requested permissions are granted
1171 * for the SID pair (@ssid, @tsid), interpreting the permissions
1172 * based on @tclass, and call the security server on a cache miss to obtain
1173 * a new decision and add it to the cache.  Audit the granting or denial of
1174 * permissions in accordance with the policy.  Return %0 if all @requested
1175 * permissions are granted, -%EACCES if any permissions are denied, or
1176 * another -errno upon other errors.
1177 */
1178int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1179		 u32 requested, struct common_audit_data *auditdata)
1180{
1181	struct av_decision avd;
1182	int rc, rc2;
1183
1184	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1185				  &avd);
1186
1187	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1188			auditdata, 0);
1189	if (rc2)
1190		return rc2;
1191	return rc;
1192}
1193
1194int avc_has_perm_flags(struct selinux_state *state,
1195		       u32 ssid, u32 tsid, u16 tclass, u32 requested,
1196		       struct common_audit_data *auditdata,
1197		       int flags)
1198{
1199	struct av_decision avd;
1200	int rc, rc2;
1201
1202	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1203				  &avd);
1204
1205	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1206			auditdata, flags);
1207	if (rc2)
1208		return rc2;
1209	return rc;
1210}
1211
1212u32 avc_policy_seqno(struct selinux_state *state)
1213{
1214	return state->avc->avc_cache.latest_notif;
1215}
1216
1217void avc_disable(void)
1218{
1219	/*
1220	 * If you are looking at this because you have realized that we are
1221	 * not destroying the avc_node_cachep it might be easy to fix, but
1222	 * I don't know the memory barrier semantics well enough to know.  It's
1223	 * possible that some other task dereferenced security_ops when
1224	 * it still pointed to selinux operations.  If that is the case it's
1225	 * possible that it is about to use the avc and is about to need the
1226	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1227	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1228	 * the cache and get that memory back.
1229	 */
1230	if (avc_node_cachep) {
1231		avc_flush(selinux_state.avc);
1232		/* kmem_cache_destroy(avc_node_cachep); */
1233	}
1234}