Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Implementation of the kernel access vector cache (AVC).
   3 *
   4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   8 *	Replaced the avc_lock spinlock by RCU.
   9 *
  10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  11 *
  12 *	This program is free software; you can redistribute it and/or modify
  13 *	it under the terms of the GNU General Public License version 2,
  14 *	as published by the Free Software Foundation.
  15 */
  16#include <linux/types.h>
  17#include <linux/stddef.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/fs.h>
  21#include <linux/dcache.h>
  22#include <linux/init.h>
  23#include <linux/skbuff.h>
  24#include <linux/percpu.h>
  25#include <linux/list.h>
  26#include <net/sock.h>
  27#include <linux/un.h>
  28#include <net/af_unix.h>
  29#include <linux/ip.h>
  30#include <linux/audit.h>
  31#include <linux/ipv6.h>
  32#include <net/ipv6.h>
  33#include "avc.h"
  34#include "avc_ss.h"
  35#include "classmap.h"
  36
  37#define AVC_CACHE_SLOTS			512
  38#define AVC_DEF_CACHE_THRESHOLD		512
  39#define AVC_CACHE_RECLAIM		16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)	do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48	u32			ssid;
  49	u32			tsid;
  50	u16			tclass;
  51	struct av_decision	avd;
  52	struct avc_xperms_node	*xp_node;
  53};
  54
  55struct avc_node {
  56	struct avc_entry	ae;
  57	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  58	struct rcu_head		rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62	struct extended_perms_decision xpd;
  63	struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67	struct extended_perms xp;
  68	struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  75	atomic_t		active_nodes;
  76	u32			latest_notif;	/* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80	int (*callback) (u32 event);
  81	u32 events;
  82	struct avc_callback_node *next;
  83};
  84
  85/* Exported via selinufs */
  86unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
  87
  88#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  89DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  90#endif
  91
  92static struct avc_cache avc_cache;
  93static struct avc_callback_node *avc_callbacks;
  94static struct kmem_cache *avc_node_cachep;
  95static struct kmem_cache *avc_xperms_data_cachep;
  96static struct kmem_cache *avc_xperms_decision_cachep;
  97static struct kmem_cache *avc_xperms_cachep;
  98
  99static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 100{
 101	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 102}
 103
 104/**
 105 * avc_dump_av - Display an access vector in human-readable form.
 106 * @tclass: target security class
 107 * @av: access vector
 108 */
 109static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 110{
 111	const char **perms;
 112	int i, perm;
 113
 114	if (av == 0) {
 115		audit_log_format(ab, " null");
 116		return;
 117	}
 118
 119	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 120	perms = secclass_map[tclass-1].perms;
 121
 122	audit_log_format(ab, " {");
 123	i = 0;
 124	perm = 1;
 125	while (i < (sizeof(av) * 8)) {
 126		if ((perm & av) && perms[i]) {
 127			audit_log_format(ab, " %s", perms[i]);
 128			av &= ~perm;
 129		}
 130		i++;
 131		perm <<= 1;
 132	}
 133
 134	if (av)
 135		audit_log_format(ab, " 0x%x", av);
 136
 137	audit_log_format(ab, " }");
 138}
 139
 140/**
 141 * avc_dump_query - Display a SID pair and a class in human-readable form.
 142 * @ssid: source security identifier
 143 * @tsid: target security identifier
 144 * @tclass: target security class
 145 */
 146static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
 147{
 148	int rc;
 149	char *scontext;
 150	u32 scontext_len;
 151
 152	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
 153	if (rc)
 154		audit_log_format(ab, "ssid=%d", ssid);
 155	else {
 156		audit_log_format(ab, "scontext=%s", scontext);
 157		kfree(scontext);
 158	}
 159
 160	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
 161	if (rc)
 162		audit_log_format(ab, " tsid=%d", tsid);
 163	else {
 164		audit_log_format(ab, " tcontext=%s", scontext);
 165		kfree(scontext);
 166	}
 167
 168	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 169	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
 
 170}
 171
 172/**
 173 * avc_init - Initialize the AVC.
 174 *
 175 * Initialize the access vector cache.
 176 */
 177void __init avc_init(void)
 178{
 179	int i;
 180
 181	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 182		INIT_HLIST_HEAD(&avc_cache.slots[i]);
 183		spin_lock_init(&avc_cache.slots_lock[i]);
 184	}
 185	atomic_set(&avc_cache.active_nodes, 0);
 186	atomic_set(&avc_cache.lru_hint, 0);
 187
 188	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 189					0, SLAB_PANIC, NULL);
 190	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 191					sizeof(struct avc_xperms_node),
 192					0, SLAB_PANIC, NULL);
 193	avc_xperms_decision_cachep = kmem_cache_create(
 194					"avc_xperms_decision_node",
 195					sizeof(struct avc_xperms_decision_node),
 196					0, SLAB_PANIC, NULL);
 197	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 198					sizeof(struct extended_perms_data),
 199					0, SLAB_PANIC, NULL);
 200
 201	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
 202}
 203
 204int avc_get_hash_stats(char *page)
 205{
 206	int i, chain_len, max_chain_len, slots_used;
 207	struct avc_node *node;
 208	struct hlist_head *head;
 209
 210	rcu_read_lock();
 211
 212	slots_used = 0;
 213	max_chain_len = 0;
 214	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 215		head = &avc_cache.slots[i];
 216		if (!hlist_empty(head)) {
 217			slots_used++;
 218			chain_len = 0;
 219			hlist_for_each_entry_rcu(node, head, list)
 220				chain_len++;
 221			if (chain_len > max_chain_len)
 222				max_chain_len = chain_len;
 223		}
 224	}
 225
 226	rcu_read_unlock();
 227
 228	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 229			 "longest chain: %d\n",
 230			 atomic_read(&avc_cache.active_nodes),
 231			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 232}
 233
 234/*
 235 * using a linked list for extended_perms_decision lookup because the list is
 236 * always small. i.e. less than 5, typically 1
 237 */
 238static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 239					struct avc_xperms_node *xp_node)
 240{
 241	struct avc_xperms_decision_node *xpd_node;
 242
 243	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 244		if (xpd_node->xpd.driver == driver)
 245			return &xpd_node->xpd;
 246	}
 247	return NULL;
 248}
 249
 250static inline unsigned int
 251avc_xperms_has_perm(struct extended_perms_decision *xpd,
 252					u8 perm, u8 which)
 253{
 254	unsigned int rc = 0;
 255
 256	if ((which == XPERMS_ALLOWED) &&
 257			(xpd->used & XPERMS_ALLOWED))
 258		rc = security_xperm_test(xpd->allowed->p, perm);
 259	else if ((which == XPERMS_AUDITALLOW) &&
 260			(xpd->used & XPERMS_AUDITALLOW))
 261		rc = security_xperm_test(xpd->auditallow->p, perm);
 262	else if ((which == XPERMS_DONTAUDIT) &&
 263			(xpd->used & XPERMS_DONTAUDIT))
 264		rc = security_xperm_test(xpd->dontaudit->p, perm);
 265	return rc;
 266}
 267
 268static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 269				u8 driver, u8 perm)
 270{
 271	struct extended_perms_decision *xpd;
 272	security_xperm_set(xp_node->xp.drivers.p, driver);
 273	xpd = avc_xperms_decision_lookup(driver, xp_node);
 274	if (xpd && xpd->allowed)
 275		security_xperm_set(xpd->allowed->p, perm);
 276}
 277
 278static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 279{
 280	struct extended_perms_decision *xpd;
 281
 282	xpd = &xpd_node->xpd;
 283	if (xpd->allowed)
 284		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 285	if (xpd->auditallow)
 286		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 287	if (xpd->dontaudit)
 288		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 289	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 290}
 291
 292static void avc_xperms_free(struct avc_xperms_node *xp_node)
 293{
 294	struct avc_xperms_decision_node *xpd_node, *tmp;
 295
 296	if (!xp_node)
 297		return;
 298
 299	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 300		list_del(&xpd_node->xpd_list);
 301		avc_xperms_decision_free(xpd_node);
 302	}
 303	kmem_cache_free(avc_xperms_cachep, xp_node);
 304}
 305
 306static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 307					struct extended_perms_decision *src)
 308{
 309	dest->driver = src->driver;
 310	dest->used = src->used;
 311	if (dest->used & XPERMS_ALLOWED)
 312		memcpy(dest->allowed->p, src->allowed->p,
 313				sizeof(src->allowed->p));
 314	if (dest->used & XPERMS_AUDITALLOW)
 315		memcpy(dest->auditallow->p, src->auditallow->p,
 316				sizeof(src->auditallow->p));
 317	if (dest->used & XPERMS_DONTAUDIT)
 318		memcpy(dest->dontaudit->p, src->dontaudit->p,
 319				sizeof(src->dontaudit->p));
 320}
 321
 322/*
 323 * similar to avc_copy_xperms_decision, but only copy decision
 324 * information relevant to this perm
 325 */
 326static inline void avc_quick_copy_xperms_decision(u8 perm,
 327			struct extended_perms_decision *dest,
 328			struct extended_perms_decision *src)
 329{
 330	/*
 331	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 332	 * command permission
 333	 */
 334	u8 i = perm >> 5;
 335
 336	dest->used = src->used;
 337	if (dest->used & XPERMS_ALLOWED)
 338		dest->allowed->p[i] = src->allowed->p[i];
 339	if (dest->used & XPERMS_AUDITALLOW)
 340		dest->auditallow->p[i] = src->auditallow->p[i];
 341	if (dest->used & XPERMS_DONTAUDIT)
 342		dest->dontaudit->p[i] = src->dontaudit->p[i];
 343}
 344
 345static struct avc_xperms_decision_node
 346		*avc_xperms_decision_alloc(u8 which)
 347{
 348	struct avc_xperms_decision_node *xpd_node;
 349	struct extended_perms_decision *xpd;
 350
 351	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
 352				GFP_ATOMIC | __GFP_NOMEMALLOC);
 353	if (!xpd_node)
 354		return NULL;
 355
 356	xpd = &xpd_node->xpd;
 357	if (which & XPERMS_ALLOWED) {
 358		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 359						GFP_ATOMIC | __GFP_NOMEMALLOC);
 360		if (!xpd->allowed)
 361			goto error;
 362	}
 363	if (which & XPERMS_AUDITALLOW) {
 364		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 365						GFP_ATOMIC | __GFP_NOMEMALLOC);
 366		if (!xpd->auditallow)
 367			goto error;
 368	}
 369	if (which & XPERMS_DONTAUDIT) {
 370		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 371						GFP_ATOMIC | __GFP_NOMEMALLOC);
 372		if (!xpd->dontaudit)
 373			goto error;
 374	}
 375	return xpd_node;
 376error:
 377	avc_xperms_decision_free(xpd_node);
 378	return NULL;
 379}
 380
 381static int avc_add_xperms_decision(struct avc_node *node,
 382			struct extended_perms_decision *src)
 383{
 384	struct avc_xperms_decision_node *dest_xpd;
 385
 386	node->ae.xp_node->xp.len++;
 387	dest_xpd = avc_xperms_decision_alloc(src->used);
 388	if (!dest_xpd)
 389		return -ENOMEM;
 390	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 391	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 392	return 0;
 393}
 394
 395static struct avc_xperms_node *avc_xperms_alloc(void)
 396{
 397	struct avc_xperms_node *xp_node;
 398
 399	xp_node = kmem_cache_zalloc(avc_xperms_cachep,
 400				GFP_ATOMIC|__GFP_NOMEMALLOC);
 401	if (!xp_node)
 402		return xp_node;
 403	INIT_LIST_HEAD(&xp_node->xpd_head);
 404	return xp_node;
 405}
 406
 407static int avc_xperms_populate(struct avc_node *node,
 408				struct avc_xperms_node *src)
 409{
 410	struct avc_xperms_node *dest;
 411	struct avc_xperms_decision_node *dest_xpd;
 412	struct avc_xperms_decision_node *src_xpd;
 413
 414	if (src->xp.len == 0)
 415		return 0;
 416	dest = avc_xperms_alloc();
 417	if (!dest)
 418		return -ENOMEM;
 419
 420	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 421	dest->xp.len = src->xp.len;
 422
 423	/* for each source xpd allocate a destination xpd and copy */
 424	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 425		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 426		if (!dest_xpd)
 427			goto error;
 428		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 429		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 430	}
 431	node->ae.xp_node = dest;
 432	return 0;
 433error:
 434	avc_xperms_free(dest);
 435	return -ENOMEM;
 436
 437}
 438
 439static inline u32 avc_xperms_audit_required(u32 requested,
 440					struct av_decision *avd,
 441					struct extended_perms_decision *xpd,
 442					u8 perm,
 443					int result,
 444					u32 *deniedp)
 445{
 446	u32 denied, audited;
 447
 448	denied = requested & ~avd->allowed;
 449	if (unlikely(denied)) {
 450		audited = denied & avd->auditdeny;
 451		if (audited && xpd) {
 452			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 453				audited &= ~requested;
 454		}
 455	} else if (result) {
 456		audited = denied = requested;
 457	} else {
 458		audited = requested & avd->auditallow;
 459		if (audited && xpd) {
 460			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 461				audited &= ~requested;
 462		}
 463	}
 464
 465	*deniedp = denied;
 466	return audited;
 467}
 468
 469static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
 470				u32 requested, struct av_decision *avd,
 471				struct extended_perms_decision *xpd,
 472				u8 perm, int result,
 473				struct common_audit_data *ad)
 
 474{
 475	u32 audited, denied;
 476
 477	audited = avc_xperms_audit_required(
 478			requested, avd, xpd, perm, result, &denied);
 479	if (likely(!audited))
 480		return 0;
 481	return slow_avc_audit(ssid, tsid, tclass, requested,
 482			audited, denied, result, ad, 0);
 483}
 484
 485static void avc_node_free(struct rcu_head *rhead)
 486{
 487	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 488	avc_xperms_free(node->ae.xp_node);
 489	kmem_cache_free(avc_node_cachep, node);
 490	avc_cache_stats_incr(frees);
 491}
 492
 493static void avc_node_delete(struct avc_node *node)
 494{
 495	hlist_del_rcu(&node->list);
 496	call_rcu(&node->rhead, avc_node_free);
 497	atomic_dec(&avc_cache.active_nodes);
 498}
 499
 500static void avc_node_kill(struct avc_node *node)
 501{
 502	avc_xperms_free(node->ae.xp_node);
 503	kmem_cache_free(avc_node_cachep, node);
 504	avc_cache_stats_incr(frees);
 505	atomic_dec(&avc_cache.active_nodes);
 506}
 507
 508static void avc_node_replace(struct avc_node *new, struct avc_node *old)
 
 509{
 510	hlist_replace_rcu(&old->list, &new->list);
 511	call_rcu(&old->rhead, avc_node_free);
 512	atomic_dec(&avc_cache.active_nodes);
 513}
 514
 515static inline int avc_reclaim_node(void)
 516{
 517	struct avc_node *node;
 518	int hvalue, try, ecx;
 519	unsigned long flags;
 520	struct hlist_head *head;
 521	spinlock_t *lock;
 522
 523	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 524		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
 525		head = &avc_cache.slots[hvalue];
 526		lock = &avc_cache.slots_lock[hvalue];
 
 527
 528		if (!spin_trylock_irqsave(lock, flags))
 529			continue;
 530
 531		rcu_read_lock();
 532		hlist_for_each_entry(node, head, list) {
 533			avc_node_delete(node);
 534			avc_cache_stats_incr(reclaims);
 535			ecx++;
 536			if (ecx >= AVC_CACHE_RECLAIM) {
 537				rcu_read_unlock();
 538				spin_unlock_irqrestore(lock, flags);
 539				goto out;
 540			}
 541		}
 542		rcu_read_unlock();
 543		spin_unlock_irqrestore(lock, flags);
 544	}
 545out:
 546	return ecx;
 547}
 548
 549static struct avc_node *avc_alloc_node(void)
 550{
 551	struct avc_node *node;
 552
 553	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC);
 554	if (!node)
 555		goto out;
 556
 557	INIT_HLIST_NODE(&node->list);
 558	avc_cache_stats_incr(allocations);
 559
 560	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
 561		avc_reclaim_node();
 
 562
 563out:
 564	return node;
 565}
 566
 567static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 568{
 569	node->ae.ssid = ssid;
 570	node->ae.tsid = tsid;
 571	node->ae.tclass = tclass;
 572	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 573}
 574
 575static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
 
 576{
 577	struct avc_node *node, *ret = NULL;
 578	int hvalue;
 579	struct hlist_head *head;
 580
 581	hvalue = avc_hash(ssid, tsid, tclass);
 582	head = &avc_cache.slots[hvalue];
 583	hlist_for_each_entry_rcu(node, head, list) {
 584		if (ssid == node->ae.ssid &&
 585		    tclass == node->ae.tclass &&
 586		    tsid == node->ae.tsid) {
 587			ret = node;
 588			break;
 589		}
 590	}
 591
 592	return ret;
 593}
 594
 595/**
 596 * avc_lookup - Look up an AVC entry.
 597 * @ssid: source security identifier
 598 * @tsid: target security identifier
 599 * @tclass: target security class
 600 *
 601 * Look up an AVC entry that is valid for the
 602 * (@ssid, @tsid), interpreting the permissions
 603 * based on @tclass.  If a valid AVC entry exists,
 604 * then this function returns the avc_node.
 605 * Otherwise, this function returns NULL.
 606 */
 607static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
 
 608{
 609	struct avc_node *node;
 610
 611	avc_cache_stats_incr(lookups);
 612	node = avc_search_node(ssid, tsid, tclass);
 613
 614	if (node)
 615		return node;
 616
 617	avc_cache_stats_incr(misses);
 618	return NULL;
 619}
 620
 621static int avc_latest_notif_update(int seqno, int is_insert)
 
 622{
 623	int ret = 0;
 624	static DEFINE_SPINLOCK(notif_lock);
 625	unsigned long flag;
 626
 627	spin_lock_irqsave(&notif_lock, flag);
 628	if (is_insert) {
 629		if (seqno < avc_cache.latest_notif) {
 630			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
 631			       seqno, avc_cache.latest_notif);
 632			ret = -EAGAIN;
 633		}
 634	} else {
 635		if (seqno > avc_cache.latest_notif)
 636			avc_cache.latest_notif = seqno;
 637	}
 638	spin_unlock_irqrestore(&notif_lock, flag);
 639
 640	return ret;
 641}
 642
 643/**
 644 * avc_insert - Insert an AVC entry.
 645 * @ssid: source security identifier
 646 * @tsid: target security identifier
 647 * @tclass: target security class
 648 * @avd: resulting av decision
 649 * @xp_node: resulting extended permissions
 650 *
 651 * Insert an AVC entry for the SID pair
 652 * (@ssid, @tsid) and class @tclass.
 653 * The access vectors and the sequence number are
 654 * normally provided by the security server in
 655 * response to a security_compute_av() call.  If the
 656 * sequence number @avd->seqno is not less than the latest
 657 * revocation notification, then the function copies
 658 * the access vectors into a cache entry, returns
 659 * avc_node inserted. Otherwise, this function returns NULL.
 660 */
 661static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass,
 662				struct av_decision *avd,
 663				struct avc_xperms_node *xp_node)
 
 664{
 665	struct avc_node *pos, *node = NULL;
 666	int hvalue;
 667	unsigned long flag;
 
 
 668
 669	if (avc_latest_notif_update(avd->seqno, 1))
 670		goto out;
 671
 672	node = avc_alloc_node();
 673	if (node) {
 674		struct hlist_head *head;
 675		spinlock_t *lock;
 676		int rc = 0;
 677
 678		hvalue = avc_hash(ssid, tsid, tclass);
 679		avc_node_populate(node, ssid, tsid, tclass, avd);
 680		rc = avc_xperms_populate(node, xp_node);
 681		if (rc) {
 682			kmem_cache_free(avc_node_cachep, node);
 683			return NULL;
 684		}
 685		head = &avc_cache.slots[hvalue];
 686		lock = &avc_cache.slots_lock[hvalue];
 687
 688		spin_lock_irqsave(lock, flag);
 689		hlist_for_each_entry(pos, head, list) {
 690			if (pos->ae.ssid == ssid &&
 691			    pos->ae.tsid == tsid &&
 692			    pos->ae.tclass == tclass) {
 693				avc_node_replace(node, pos);
 694				goto found;
 695			}
 
 
 
 
 
 
 
 
 696		}
 697		hlist_add_head_rcu(&node->list, head);
 698found:
 699		spin_unlock_irqrestore(lock, flag);
 700	}
 701out:
 
 
 702	return node;
 703}
 704
 705/**
 706 * avc_audit_pre_callback - SELinux specific information
 707 * will be called by generic audit code
 708 * @ab: the audit buffer
 709 * @a: audit_data
 710 */
 711static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 712{
 713	struct common_audit_data *ad = a;
 714	audit_log_format(ab, "avc:  %s ",
 715			 ad->selinux_audit_data->denied ? "denied" : "granted");
 716	avc_dump_av(ab, ad->selinux_audit_data->tclass,
 717			ad->selinux_audit_data->audited);
 718	audit_log_format(ab, " for ");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719}
 720
 721/**
 722 * avc_audit_post_callback - SELinux specific information
 723 * will be called by generic audit code
 724 * @ab: the audit buffer
 725 * @a: audit_data
 726 */
 727static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 728{
 729	struct common_audit_data *ad = a;
 730	audit_log_format(ab, " ");
 731	avc_dump_query(ab, ad->selinux_audit_data->ssid,
 732			   ad->selinux_audit_data->tsid,
 733			   ad->selinux_audit_data->tclass);
 734	if (ad->selinux_audit_data->denied) {
 735		audit_log_format(ab, " permissive=%u",
 736				 ad->selinux_audit_data->result ? 0 : 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737	}
 738}
 739
 740/* This is the slow part of avc audit with big stack footprint */
 741noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
 742		u32 requested, u32 audited, u32 denied, int result,
 743		struct common_audit_data *a,
 744		unsigned flags)
 745{
 746	struct common_audit_data stack_data;
 747	struct selinux_audit_data sad;
 748
 
 
 
 749	if (!a) {
 750		a = &stack_data;
 751		a->type = LSM_AUDIT_DATA_NONE;
 752	}
 753
 754	/*
 755	 * When in a RCU walk do the audit on the RCU retry.  This is because
 756	 * the collection of the dname in an inode audit message is not RCU
 757	 * safe.  Note this may drop some audits when the situation changes
 758	 * during retry. However this is logically just as if the operation
 759	 * happened a little later.
 760	 */
 761	if ((a->type == LSM_AUDIT_DATA_INODE) &&
 762	    (flags & MAY_NOT_BLOCK))
 763		return -ECHILD;
 764
 765	sad.tclass = tclass;
 766	sad.requested = requested;
 767	sad.ssid = ssid;
 768	sad.tsid = tsid;
 769	sad.audited = audited;
 770	sad.denied = denied;
 771	sad.result = result;
 
 772
 773	a->selinux_audit_data = &sad;
 774
 775	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 776	return 0;
 777}
 778
 779/**
 780 * avc_add_callback - Register a callback for security events.
 781 * @callback: callback function
 782 * @events: security events
 783 *
 784 * Register a callback function for events in the set @events.
 785 * Returns %0 on success or -%ENOMEM if insufficient memory
 786 * exists to add the callback.
 787 */
 788int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 789{
 790	struct avc_callback_node *c;
 791	int rc = 0;
 792
 793	c = kmalloc(sizeof(*c), GFP_KERNEL);
 794	if (!c) {
 795		rc = -ENOMEM;
 796		goto out;
 797	}
 798
 799	c->callback = callback;
 800	c->events = events;
 801	c->next = avc_callbacks;
 802	avc_callbacks = c;
 803out:
 804	return rc;
 805}
 806
 807/**
 808 * avc_update_node Update an AVC entry
 809 * @event : Updating event
 810 * @perms : Permission mask bits
 811 * @ssid,@tsid,@tclass : identifier of an AVC entry
 812 * @seqno : sequence number when decision was made
 813 * @xpd: extended_perms_decision to be added to the node
 
 814 *
 815 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 816 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 817 * otherwise, this function updates the AVC entry. The original AVC-entry object
 818 * will release later by RCU.
 819 */
 820static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 821			u32 tsid, u16 tclass, u32 seqno,
 822			struct extended_perms_decision *xpd,
 823			u32 flags)
 
 824{
 825	int hvalue, rc = 0;
 826	unsigned long flag;
 827	struct avc_node *pos, *node, *orig = NULL;
 828	struct hlist_head *head;
 829	spinlock_t *lock;
 830
 831	node = avc_alloc_node();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832	if (!node) {
 833		rc = -ENOMEM;
 834		goto out;
 835	}
 836
 837	/* Lock the target slot */
 838	hvalue = avc_hash(ssid, tsid, tclass);
 839
 840	head = &avc_cache.slots[hvalue];
 841	lock = &avc_cache.slots_lock[hvalue];
 842
 843	spin_lock_irqsave(lock, flag);
 844
 845	hlist_for_each_entry(pos, head, list) {
 846		if (ssid == pos->ae.ssid &&
 847		    tsid == pos->ae.tsid &&
 848		    tclass == pos->ae.tclass &&
 849		    seqno == pos->ae.avd.seqno){
 850			orig = pos;
 851			break;
 852		}
 853	}
 854
 855	if (!orig) {
 856		rc = -ENOENT;
 857		avc_node_kill(node);
 858		goto out_unlock;
 859	}
 860
 861	/*
 862	 * Copy and replace original node.
 863	 */
 864
 865	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 866
 867	if (orig->ae.xp_node) {
 868		rc = avc_xperms_populate(node, orig->ae.xp_node);
 869		if (rc) {
 870			kmem_cache_free(avc_node_cachep, node);
 871			goto out_unlock;
 872		}
 873	}
 874
 875	switch (event) {
 876	case AVC_CALLBACK_GRANT:
 877		node->ae.avd.allowed |= perms;
 878		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 879			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 880		break;
 881	case AVC_CALLBACK_TRY_REVOKE:
 882	case AVC_CALLBACK_REVOKE:
 883		node->ae.avd.allowed &= ~perms;
 884		break;
 885	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 886		node->ae.avd.auditallow |= perms;
 887		break;
 888	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 889		node->ae.avd.auditallow &= ~perms;
 890		break;
 891	case AVC_CALLBACK_AUDITDENY_ENABLE:
 892		node->ae.avd.auditdeny |= perms;
 893		break;
 894	case AVC_CALLBACK_AUDITDENY_DISABLE:
 895		node->ae.avd.auditdeny &= ~perms;
 896		break;
 897	case AVC_CALLBACK_ADD_XPERMS:
 898		avc_add_xperms_decision(node, xpd);
 899		break;
 900	}
 901	avc_node_replace(node, orig);
 902out_unlock:
 903	spin_unlock_irqrestore(lock, flag);
 904out:
 905	return rc;
 906}
 907
 908/**
 909 * avc_flush - Flush the cache
 910 */
 911static void avc_flush(void)
 912{
 913	struct hlist_head *head;
 914	struct avc_node *node;
 915	spinlock_t *lock;
 916	unsigned long flag;
 917	int i;
 918
 919	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 920		head = &avc_cache.slots[i];
 921		lock = &avc_cache.slots_lock[i];
 922
 923		spin_lock_irqsave(lock, flag);
 924		/*
 925		 * With preemptable RCU, the outer spinlock does not
 926		 * prevent RCU grace periods from ending.
 927		 */
 928		rcu_read_lock();
 929		hlist_for_each_entry(node, head, list)
 930			avc_node_delete(node);
 931		rcu_read_unlock();
 932		spin_unlock_irqrestore(lock, flag);
 933	}
 934}
 935
 936/**
 937 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 938 * @seqno: policy sequence number
 939 */
 940int avc_ss_reset(u32 seqno)
 941{
 942	struct avc_callback_node *c;
 943	int rc = 0, tmprc;
 944
 945	avc_flush();
 946
 947	for (c = avc_callbacks; c; c = c->next) {
 948		if (c->events & AVC_CALLBACK_RESET) {
 949			tmprc = c->callback(AVC_CALLBACK_RESET);
 950			/* save the first error encountered for the return
 951			   value and continue processing the callbacks */
 952			if (!rc)
 953				rc = tmprc;
 954		}
 955	}
 956
 957	avc_latest_notif_update(seqno, 0);
 958	return rc;
 959}
 960
 961/*
 962 * Slow-path helper function for avc_has_perm_noaudit,
 963 * when the avc_node lookup fails. We get called with
 964 * the RCU read lock held, and need to return with it
 965 * still held, but drop if for the security compute.
 966 *
 967 * Don't inline this, since it's the slow-path and just
 968 * results in a bigger stack frame.
 969 */
 970static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
 971			 u16 tclass, struct av_decision *avd,
 972			 struct avc_xperms_node *xp_node)
 
 
 973{
 974	rcu_read_unlock();
 975	INIT_LIST_HEAD(&xp_node->xpd_head);
 976	security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
 977	rcu_read_lock();
 978	return avc_insert(ssid, tsid, tclass, avd, xp_node);
 979}
 980
 981static noinline int avc_denied(u32 ssid, u32 tsid,
 982				u16 tclass, u32 requested,
 983				u8 driver, u8 xperm, unsigned flags,
 984				struct av_decision *avd)
 
 985{
 986	if (flags & AVC_STRICT)
 987		return -EACCES;
 988
 989	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
 
 990		return -EACCES;
 991
 992	avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid,
 993				tsid, tclass, avd->seqno, NULL, flags);
 994	return 0;
 995}
 996
 997/*
 998 * The avc extended permissions logic adds an additional 256 bits of
 999 * permissions to an avc node when extended permissions for that node are
1000 * specified in the avtab. If the additional 256 permissions is not adequate,
1001 * as-is the case with ioctls, then multiple may be chained together and the
1002 * driver field is used to specify which set contains the permission.
1003 */
1004int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1005			u8 driver, u8 xperm, struct common_audit_data *ad)
 
1006{
1007	struct avc_node *node;
1008	struct av_decision avd;
1009	u32 denied;
1010	struct extended_perms_decision local_xpd;
1011	struct extended_perms_decision *xpd = NULL;
1012	struct extended_perms_data allowed;
1013	struct extended_perms_data auditallow;
1014	struct extended_perms_data dontaudit;
1015	struct avc_xperms_node local_xp_node;
1016	struct avc_xperms_node *xp_node;
1017	int rc = 0, rc2;
1018
1019	xp_node = &local_xp_node;
1020	BUG_ON(!requested);
 
1021
1022	rcu_read_lock();
1023
1024	node = avc_lookup(ssid, tsid, tclass);
1025	if (unlikely(!node)) {
1026		node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1027	} else {
1028		memcpy(&avd, &node->ae.avd, sizeof(avd));
1029		xp_node = node->ae.xp_node;
1030	}
1031	/* if extended permissions are not defined, only consider av_decision */
1032	if (!xp_node || !xp_node->xp.len)
1033		goto decision;
1034
1035	local_xpd.allowed = &allowed;
1036	local_xpd.auditallow = &auditallow;
1037	local_xpd.dontaudit = &dontaudit;
1038
1039	xpd = avc_xperms_decision_lookup(driver, xp_node);
1040	if (unlikely(!xpd)) {
1041		/*
1042		 * Compute the extended_perms_decision only if the driver
1043		 * is flagged
1044		 */
1045		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1046			avd.allowed &= ~requested;
1047			goto decision;
1048		}
1049		rcu_read_unlock();
1050		security_compute_xperms_decision(ssid, tsid, tclass, driver,
1051						&local_xpd);
1052		rcu_read_lock();
1053		avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm,
1054				ssid, tsid, tclass, avd.seqno, &local_xpd, 0);
 
1055	} else {
1056		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1057	}
1058	xpd = &local_xpd;
1059
1060	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1061		avd.allowed &= ~requested;
1062
1063decision:
1064	denied = requested & ~(avd.allowed);
1065	if (unlikely(denied))
1066		rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm,
1067				AVC_EXTENDED_PERMS, &avd);
1068
1069	rcu_read_unlock();
1070
1071	rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1072			&avd, xpd, xperm, rc, ad);
1073	if (rc2)
1074		return rc2;
1075	return rc;
1076}
1077
1078/**
1079 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1080 * @ssid: source security identifier
1081 * @tsid: target security identifier
1082 * @tclass: target security class
1083 * @requested: requested permissions, interpreted based on @tclass
1084 * @flags:  AVC_STRICT or 0
1085 * @avd: access vector decisions
1086 *
1087 * Check the AVC to determine whether the @requested permissions are granted
1088 * for the SID pair (@ssid, @tsid), interpreting the permissions
1089 * based on @tclass, and call the security server on a cache miss to obtain
1090 * a new decision and add it to the cache.  Return a copy of the decisions
1091 * in @avd.  Return %0 if all @requested permissions are granted,
1092 * -%EACCES if any permissions are denied, or another -errno upon
1093 * other errors.  This function is typically called by avc_has_perm(),
1094 * but may also be called directly to separate permission checking from
1095 * auditing, e.g. in cases where a lock must be held for the check but
1096 * should be released for the auditing.
1097 */
1098inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1099			 u16 tclass, u32 requested,
1100			 unsigned flags,
1101			 struct av_decision *avd)
 
1102{
1103	struct avc_node *node;
1104	struct avc_xperms_node xp_node;
1105	int rc = 0;
1106	u32 denied;
1107
1108	BUG_ON(!requested);
 
1109
1110	rcu_read_lock();
1111
1112	node = avc_lookup(ssid, tsid, tclass);
1113	if (unlikely(!node))
1114		node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1115	else
1116		memcpy(avd, &node->ae.avd, sizeof(*avd));
1117
1118	denied = requested & ~(avd->allowed);
1119	if (unlikely(denied))
1120		rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd);
 
1121
1122	rcu_read_unlock();
1123	return rc;
1124}
1125
1126/**
1127 * avc_has_perm - Check permissions and perform any appropriate auditing.
1128 * @ssid: source security identifier
1129 * @tsid: target security identifier
1130 * @tclass: target security class
1131 * @requested: requested permissions, interpreted based on @tclass
1132 * @auditdata: auxiliary audit data
1133 *
1134 * Check the AVC to determine whether the @requested permissions are granted
1135 * for the SID pair (@ssid, @tsid), interpreting the permissions
1136 * based on @tclass, and call the security server on a cache miss to obtain
1137 * a new decision and add it to the cache.  Audit the granting or denial of
1138 * permissions in accordance with the policy.  Return %0 if all @requested
1139 * permissions are granted, -%EACCES if any permissions are denied, or
1140 * another -errno upon other errors.
1141 */
1142int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1143		 u32 requested, struct common_audit_data *auditdata)
1144{
1145	struct av_decision avd;
1146	int rc, rc2;
1147
1148	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
 
1149
1150	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 0);
 
1151	if (rc2)
1152		return rc2;
1153	return rc;
1154}
1155
1156int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
1157		       u32 requested, struct common_audit_data *auditdata,
 
1158		       int flags)
1159{
1160	struct av_decision avd;
1161	int rc, rc2;
1162
1163	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
 
 
1164
1165	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1166			auditdata, flags);
1167	if (rc2)
1168		return rc2;
1169	return rc;
1170}
1171
1172u32 avc_policy_seqno(void)
1173{
1174	return avc_cache.latest_notif;
1175}
1176
1177void avc_disable(void)
1178{
1179	/*
1180	 * If you are looking at this because you have realized that we are
1181	 * not destroying the avc_node_cachep it might be easy to fix, but
1182	 * I don't know the memory barrier semantics well enough to know.  It's
1183	 * possible that some other task dereferenced security_ops when
1184	 * it still pointed to selinux operations.  If that is the case it's
1185	 * possible that it is about to use the avc and is about to need the
1186	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1187	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1188	 * the cache and get that memory back.
1189	 */
1190	if (avc_node_cachep) {
1191		avc_flush();
1192		/* kmem_cache_destroy(avc_node_cachep); */
1193	}
1194}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the kernel access vector cache (AVC).
   4 *
   5 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   9 *	Replaced the avc_lock spinlock by RCU.
  10 *
  11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
 
  12 */
  13#include <linux/types.h>
  14#include <linux/stddef.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/fs.h>
  18#include <linux/dcache.h>
  19#include <linux/init.h>
  20#include <linux/skbuff.h>
  21#include <linux/percpu.h>
  22#include <linux/list.h>
  23#include <net/sock.h>
  24#include <linux/un.h>
  25#include <net/af_unix.h>
  26#include <linux/ip.h>
  27#include <linux/audit.h>
  28#include <linux/ipv6.h>
  29#include <net/ipv6.h>
  30#include "avc.h"
  31#include "avc_ss.h"
  32#include "classmap.h"
  33
  34#define AVC_CACHE_SLOTS			512
  35#define AVC_DEF_CACHE_THRESHOLD		512
  36#define AVC_CACHE_RECLAIM		16
  37
  38#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  39#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  40#else
  41#define avc_cache_stats_incr(field)	do {} while (0)
  42#endif
  43
  44struct avc_entry {
  45	u32			ssid;
  46	u32			tsid;
  47	u16			tclass;
  48	struct av_decision	avd;
  49	struct avc_xperms_node	*xp_node;
  50};
  51
  52struct avc_node {
  53	struct avc_entry	ae;
  54	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  55	struct rcu_head		rhead;
  56};
  57
  58struct avc_xperms_decision_node {
  59	struct extended_perms_decision xpd;
  60	struct list_head xpd_list; /* list of extended_perms_decision */
  61};
  62
  63struct avc_xperms_node {
  64	struct extended_perms xp;
  65	struct list_head xpd_head; /* list head of extended_perms_decision */
  66};
  67
  68struct avc_cache {
  69	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  70	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  71	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  72	atomic_t		active_nodes;
  73	u32			latest_notif;	/* latest revocation notification */
  74};
  75
  76struct avc_callback_node {
  77	int (*callback) (u32 event);
  78	u32 events;
  79	struct avc_callback_node *next;
  80};
  81
 
 
 
  82#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  83DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  84#endif
  85
  86struct selinux_avc {
  87	unsigned int avc_cache_threshold;
  88	struct avc_cache avc_cache;
  89};
 
 
  90
  91static struct selinux_avc selinux_avc;
 
 
 
  92
  93void selinux_avc_init(struct selinux_avc **avc)
 
 
 
 
 
  94{
  95	int i;
 
 
 
 
 
 
 
 
 
  96
  97	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
  98	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
  99		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 100		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 
 
 
 
 
 
 101	}
 102	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 103	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 104	*avc = &selinux_avc;
 
 
 105}
 106
 107unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
 
 
 
 
 
 
 108{
 109	return avc->avc_cache_threshold;
 110}
 
 111
 112void avc_set_cache_threshold(struct selinux_avc *avc,
 113			     unsigned int cache_threshold)
 114{
 115	avc->avc_cache_threshold = cache_threshold;
 116}
 
 
 117
 118static struct avc_callback_node *avc_callbacks;
 119static struct kmem_cache *avc_node_cachep;
 120static struct kmem_cache *avc_xperms_data_cachep;
 121static struct kmem_cache *avc_xperms_decision_cachep;
 122static struct kmem_cache *avc_xperms_cachep;
 
 
 123
 124static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 125{
 126	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 127}
 128
 129/**
 130 * avc_init - Initialize the AVC.
 131 *
 132 * Initialize the access vector cache.
 133 */
 134void __init avc_init(void)
 135{
 
 
 
 
 
 
 
 
 
 136	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 137					0, SLAB_PANIC, NULL);
 138	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 139					sizeof(struct avc_xperms_node),
 140					0, SLAB_PANIC, NULL);
 141	avc_xperms_decision_cachep = kmem_cache_create(
 142					"avc_xperms_decision_node",
 143					sizeof(struct avc_xperms_decision_node),
 144					0, SLAB_PANIC, NULL);
 145	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 146					sizeof(struct extended_perms_data),
 147					0, SLAB_PANIC, NULL);
 
 
 148}
 149
 150int avc_get_hash_stats(struct selinux_avc *avc, char *page)
 151{
 152	int i, chain_len, max_chain_len, slots_used;
 153	struct avc_node *node;
 154	struct hlist_head *head;
 155
 156	rcu_read_lock();
 157
 158	slots_used = 0;
 159	max_chain_len = 0;
 160	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 161		head = &avc->avc_cache.slots[i];
 162		if (!hlist_empty(head)) {
 163			slots_used++;
 164			chain_len = 0;
 165			hlist_for_each_entry_rcu(node, head, list)
 166				chain_len++;
 167			if (chain_len > max_chain_len)
 168				max_chain_len = chain_len;
 169		}
 170	}
 171
 172	rcu_read_unlock();
 173
 174	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 175			 "longest chain: %d\n",
 176			 atomic_read(&avc->avc_cache.active_nodes),
 177			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 178}
 179
 180/*
 181 * using a linked list for extended_perms_decision lookup because the list is
 182 * always small. i.e. less than 5, typically 1
 183 */
 184static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 185					struct avc_xperms_node *xp_node)
 186{
 187	struct avc_xperms_decision_node *xpd_node;
 188
 189	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 190		if (xpd_node->xpd.driver == driver)
 191			return &xpd_node->xpd;
 192	}
 193	return NULL;
 194}
 195
 196static inline unsigned int
 197avc_xperms_has_perm(struct extended_perms_decision *xpd,
 198					u8 perm, u8 which)
 199{
 200	unsigned int rc = 0;
 201
 202	if ((which == XPERMS_ALLOWED) &&
 203			(xpd->used & XPERMS_ALLOWED))
 204		rc = security_xperm_test(xpd->allowed->p, perm);
 205	else if ((which == XPERMS_AUDITALLOW) &&
 206			(xpd->used & XPERMS_AUDITALLOW))
 207		rc = security_xperm_test(xpd->auditallow->p, perm);
 208	else if ((which == XPERMS_DONTAUDIT) &&
 209			(xpd->used & XPERMS_DONTAUDIT))
 210		rc = security_xperm_test(xpd->dontaudit->p, perm);
 211	return rc;
 212}
 213
 214static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 215				u8 driver, u8 perm)
 216{
 217	struct extended_perms_decision *xpd;
 218	security_xperm_set(xp_node->xp.drivers.p, driver);
 219	xpd = avc_xperms_decision_lookup(driver, xp_node);
 220	if (xpd && xpd->allowed)
 221		security_xperm_set(xpd->allowed->p, perm);
 222}
 223
 224static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 225{
 226	struct extended_perms_decision *xpd;
 227
 228	xpd = &xpd_node->xpd;
 229	if (xpd->allowed)
 230		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 231	if (xpd->auditallow)
 232		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 233	if (xpd->dontaudit)
 234		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 235	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 236}
 237
 238static void avc_xperms_free(struct avc_xperms_node *xp_node)
 239{
 240	struct avc_xperms_decision_node *xpd_node, *tmp;
 241
 242	if (!xp_node)
 243		return;
 244
 245	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 246		list_del(&xpd_node->xpd_list);
 247		avc_xperms_decision_free(xpd_node);
 248	}
 249	kmem_cache_free(avc_xperms_cachep, xp_node);
 250}
 251
 252static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 253					struct extended_perms_decision *src)
 254{
 255	dest->driver = src->driver;
 256	dest->used = src->used;
 257	if (dest->used & XPERMS_ALLOWED)
 258		memcpy(dest->allowed->p, src->allowed->p,
 259				sizeof(src->allowed->p));
 260	if (dest->used & XPERMS_AUDITALLOW)
 261		memcpy(dest->auditallow->p, src->auditallow->p,
 262				sizeof(src->auditallow->p));
 263	if (dest->used & XPERMS_DONTAUDIT)
 264		memcpy(dest->dontaudit->p, src->dontaudit->p,
 265				sizeof(src->dontaudit->p));
 266}
 267
 268/*
 269 * similar to avc_copy_xperms_decision, but only copy decision
 270 * information relevant to this perm
 271 */
 272static inline void avc_quick_copy_xperms_decision(u8 perm,
 273			struct extended_perms_decision *dest,
 274			struct extended_perms_decision *src)
 275{
 276	/*
 277	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 278	 * command permission
 279	 */
 280	u8 i = perm >> 5;
 281
 282	dest->used = src->used;
 283	if (dest->used & XPERMS_ALLOWED)
 284		dest->allowed->p[i] = src->allowed->p[i];
 285	if (dest->used & XPERMS_AUDITALLOW)
 286		dest->auditallow->p[i] = src->auditallow->p[i];
 287	if (dest->used & XPERMS_DONTAUDIT)
 288		dest->dontaudit->p[i] = src->dontaudit->p[i];
 289}
 290
 291static struct avc_xperms_decision_node
 292		*avc_xperms_decision_alloc(u8 which)
 293{
 294	struct avc_xperms_decision_node *xpd_node;
 295	struct extended_perms_decision *xpd;
 296
 297	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
 
 298	if (!xpd_node)
 299		return NULL;
 300
 301	xpd = &xpd_node->xpd;
 302	if (which & XPERMS_ALLOWED) {
 303		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 304						GFP_NOWAIT);
 305		if (!xpd->allowed)
 306			goto error;
 307	}
 308	if (which & XPERMS_AUDITALLOW) {
 309		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 310						GFP_NOWAIT);
 311		if (!xpd->auditallow)
 312			goto error;
 313	}
 314	if (which & XPERMS_DONTAUDIT) {
 315		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 316						GFP_NOWAIT);
 317		if (!xpd->dontaudit)
 318			goto error;
 319	}
 320	return xpd_node;
 321error:
 322	avc_xperms_decision_free(xpd_node);
 323	return NULL;
 324}
 325
 326static int avc_add_xperms_decision(struct avc_node *node,
 327			struct extended_perms_decision *src)
 328{
 329	struct avc_xperms_decision_node *dest_xpd;
 330
 331	node->ae.xp_node->xp.len++;
 332	dest_xpd = avc_xperms_decision_alloc(src->used);
 333	if (!dest_xpd)
 334		return -ENOMEM;
 335	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 336	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 337	return 0;
 338}
 339
 340static struct avc_xperms_node *avc_xperms_alloc(void)
 341{
 342	struct avc_xperms_node *xp_node;
 343
 344	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
 
 345	if (!xp_node)
 346		return xp_node;
 347	INIT_LIST_HEAD(&xp_node->xpd_head);
 348	return xp_node;
 349}
 350
 351static int avc_xperms_populate(struct avc_node *node,
 352				struct avc_xperms_node *src)
 353{
 354	struct avc_xperms_node *dest;
 355	struct avc_xperms_decision_node *dest_xpd;
 356	struct avc_xperms_decision_node *src_xpd;
 357
 358	if (src->xp.len == 0)
 359		return 0;
 360	dest = avc_xperms_alloc();
 361	if (!dest)
 362		return -ENOMEM;
 363
 364	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 365	dest->xp.len = src->xp.len;
 366
 367	/* for each source xpd allocate a destination xpd and copy */
 368	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 369		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 370		if (!dest_xpd)
 371			goto error;
 372		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 373		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 374	}
 375	node->ae.xp_node = dest;
 376	return 0;
 377error:
 378	avc_xperms_free(dest);
 379	return -ENOMEM;
 380
 381}
 382
 383static inline u32 avc_xperms_audit_required(u32 requested,
 384					struct av_decision *avd,
 385					struct extended_perms_decision *xpd,
 386					u8 perm,
 387					int result,
 388					u32 *deniedp)
 389{
 390	u32 denied, audited;
 391
 392	denied = requested & ~avd->allowed;
 393	if (unlikely(denied)) {
 394		audited = denied & avd->auditdeny;
 395		if (audited && xpd) {
 396			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 397				audited &= ~requested;
 398		}
 399	} else if (result) {
 400		audited = denied = requested;
 401	} else {
 402		audited = requested & avd->auditallow;
 403		if (audited && xpd) {
 404			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 405				audited &= ~requested;
 406		}
 407	}
 408
 409	*deniedp = denied;
 410	return audited;
 411}
 412
 413static inline int avc_xperms_audit(struct selinux_state *state,
 414				   u32 ssid, u32 tsid, u16 tclass,
 415				   u32 requested, struct av_decision *avd,
 416				   struct extended_perms_decision *xpd,
 417				   u8 perm, int result,
 418				   struct common_audit_data *ad)
 419{
 420	u32 audited, denied;
 421
 422	audited = avc_xperms_audit_required(
 423			requested, avd, xpd, perm, result, &denied);
 424	if (likely(!audited))
 425		return 0;
 426	return slow_avc_audit(state, ssid, tsid, tclass, requested,
 427			audited, denied, result, ad);
 428}
 429
 430static void avc_node_free(struct rcu_head *rhead)
 431{
 432	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 433	avc_xperms_free(node->ae.xp_node);
 434	kmem_cache_free(avc_node_cachep, node);
 435	avc_cache_stats_incr(frees);
 436}
 437
 438static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
 439{
 440	hlist_del_rcu(&node->list);
 441	call_rcu(&node->rhead, avc_node_free);
 442	atomic_dec(&avc->avc_cache.active_nodes);
 443}
 444
 445static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
 446{
 447	avc_xperms_free(node->ae.xp_node);
 448	kmem_cache_free(avc_node_cachep, node);
 449	avc_cache_stats_incr(frees);
 450	atomic_dec(&avc->avc_cache.active_nodes);
 451}
 452
 453static void avc_node_replace(struct selinux_avc *avc,
 454			     struct avc_node *new, struct avc_node *old)
 455{
 456	hlist_replace_rcu(&old->list, &new->list);
 457	call_rcu(&old->rhead, avc_node_free);
 458	atomic_dec(&avc->avc_cache.active_nodes);
 459}
 460
 461static inline int avc_reclaim_node(struct selinux_avc *avc)
 462{
 463	struct avc_node *node;
 464	int hvalue, try, ecx;
 465	unsigned long flags;
 466	struct hlist_head *head;
 467	spinlock_t *lock;
 468
 469	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 470		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
 471			(AVC_CACHE_SLOTS - 1);
 472		head = &avc->avc_cache.slots[hvalue];
 473		lock = &avc->avc_cache.slots_lock[hvalue];
 474
 475		if (!spin_trylock_irqsave(lock, flags))
 476			continue;
 477
 478		rcu_read_lock();
 479		hlist_for_each_entry(node, head, list) {
 480			avc_node_delete(avc, node);
 481			avc_cache_stats_incr(reclaims);
 482			ecx++;
 483			if (ecx >= AVC_CACHE_RECLAIM) {
 484				rcu_read_unlock();
 485				spin_unlock_irqrestore(lock, flags);
 486				goto out;
 487			}
 488		}
 489		rcu_read_unlock();
 490		spin_unlock_irqrestore(lock, flags);
 491	}
 492out:
 493	return ecx;
 494}
 495
 496static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
 497{
 498	struct avc_node *node;
 499
 500	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
 501	if (!node)
 502		goto out;
 503
 504	INIT_HLIST_NODE(&node->list);
 505	avc_cache_stats_incr(allocations);
 506
 507	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
 508	    avc->avc_cache_threshold)
 509		avc_reclaim_node(avc);
 510
 511out:
 512	return node;
 513}
 514
 515static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 516{
 517	node->ae.ssid = ssid;
 518	node->ae.tsid = tsid;
 519	node->ae.tclass = tclass;
 520	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 521}
 522
 523static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
 524					       u32 ssid, u32 tsid, u16 tclass)
 525{
 526	struct avc_node *node, *ret = NULL;
 527	int hvalue;
 528	struct hlist_head *head;
 529
 530	hvalue = avc_hash(ssid, tsid, tclass);
 531	head = &avc->avc_cache.slots[hvalue];
 532	hlist_for_each_entry_rcu(node, head, list) {
 533		if (ssid == node->ae.ssid &&
 534		    tclass == node->ae.tclass &&
 535		    tsid == node->ae.tsid) {
 536			ret = node;
 537			break;
 538		}
 539	}
 540
 541	return ret;
 542}
 543
 544/**
 545 * avc_lookup - Look up an AVC entry.
 546 * @ssid: source security identifier
 547 * @tsid: target security identifier
 548 * @tclass: target security class
 549 *
 550 * Look up an AVC entry that is valid for the
 551 * (@ssid, @tsid), interpreting the permissions
 552 * based on @tclass.  If a valid AVC entry exists,
 553 * then this function returns the avc_node.
 554 * Otherwise, this function returns NULL.
 555 */
 556static struct avc_node *avc_lookup(struct selinux_avc *avc,
 557				   u32 ssid, u32 tsid, u16 tclass)
 558{
 559	struct avc_node *node;
 560
 561	avc_cache_stats_incr(lookups);
 562	node = avc_search_node(avc, ssid, tsid, tclass);
 563
 564	if (node)
 565		return node;
 566
 567	avc_cache_stats_incr(misses);
 568	return NULL;
 569}
 570
 571static int avc_latest_notif_update(struct selinux_avc *avc,
 572				   int seqno, int is_insert)
 573{
 574	int ret = 0;
 575	static DEFINE_SPINLOCK(notif_lock);
 576	unsigned long flag;
 577
 578	spin_lock_irqsave(&notif_lock, flag);
 579	if (is_insert) {
 580		if (seqno < avc->avc_cache.latest_notif) {
 581			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
 582			       seqno, avc->avc_cache.latest_notif);
 583			ret = -EAGAIN;
 584		}
 585	} else {
 586		if (seqno > avc->avc_cache.latest_notif)
 587			avc->avc_cache.latest_notif = seqno;
 588	}
 589	spin_unlock_irqrestore(&notif_lock, flag);
 590
 591	return ret;
 592}
 593
 594/**
 595 * avc_insert - Insert an AVC entry.
 596 * @ssid: source security identifier
 597 * @tsid: target security identifier
 598 * @tclass: target security class
 599 * @avd: resulting av decision
 600 * @xp_node: resulting extended permissions
 601 *
 602 * Insert an AVC entry for the SID pair
 603 * (@ssid, @tsid) and class @tclass.
 604 * The access vectors and the sequence number are
 605 * normally provided by the security server in
 606 * response to a security_compute_av() call.  If the
 607 * sequence number @avd->seqno is not less than the latest
 608 * revocation notification, then the function copies
 609 * the access vectors into a cache entry, returns
 610 * avc_node inserted. Otherwise, this function returns NULL.
 611 */
 612static struct avc_node *avc_insert(struct selinux_avc *avc,
 613				   u32 ssid, u32 tsid, u16 tclass,
 614				   struct av_decision *avd,
 615				   struct avc_xperms_node *xp_node)
 616{
 617	struct avc_node *pos, *node = NULL;
 618	int hvalue;
 619	unsigned long flag;
 620	spinlock_t *lock;
 621	struct hlist_head *head;
 622
 623	if (avc_latest_notif_update(avc, avd->seqno, 1))
 624		return NULL;
 625
 626	node = avc_alloc_node(avc);
 627	if (!node)
 628		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 629
 630	avc_node_populate(node, ssid, tsid, tclass, avd);
 631	if (avc_xperms_populate(node, xp_node)) {
 632		avc_node_kill(avc, node);
 633		return NULL;
 634	}
 635
 636	hvalue = avc_hash(ssid, tsid, tclass);
 637	head = &avc->avc_cache.slots[hvalue];
 638	lock = &avc->avc_cache.slots_lock[hvalue];
 639	spin_lock_irqsave(lock, flag);
 640	hlist_for_each_entry(pos, head, list) {
 641		if (pos->ae.ssid == ssid &&
 642			pos->ae.tsid == tsid &&
 643			pos->ae.tclass == tclass) {
 644			avc_node_replace(avc, node, pos);
 645			goto found;
 646		}
 
 
 
 647	}
 648	hlist_add_head_rcu(&node->list, head);
 649found:
 650	spin_unlock_irqrestore(lock, flag);
 651	return node;
 652}
 653
 654/**
 655 * avc_audit_pre_callback - SELinux specific information
 656 * will be called by generic audit code
 657 * @ab: the audit buffer
 658 * @a: audit_data
 659 */
 660static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 661{
 662	struct common_audit_data *ad = a;
 663	struct selinux_audit_data *sad = ad->selinux_audit_data;
 664	u32 av = sad->audited;
 665	const char **perms;
 666	int i, perm;
 667
 668	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
 669
 670	if (av == 0) {
 671		audit_log_format(ab, " null");
 672		return;
 673	}
 674
 675	perms = secclass_map[sad->tclass-1].perms;
 676
 677	audit_log_format(ab, " {");
 678	i = 0;
 679	perm = 1;
 680	while (i < (sizeof(av) * 8)) {
 681		if ((perm & av) && perms[i]) {
 682			audit_log_format(ab, " %s", perms[i]);
 683			av &= ~perm;
 684		}
 685		i++;
 686		perm <<= 1;
 687	}
 688
 689	if (av)
 690		audit_log_format(ab, " 0x%x", av);
 691
 692	audit_log_format(ab, " } for ");
 693}
 694
 695/**
 696 * avc_audit_post_callback - SELinux specific information
 697 * will be called by generic audit code
 698 * @ab: the audit buffer
 699 * @a: audit_data
 700 */
 701static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 702{
 703	struct common_audit_data *ad = a;
 704	struct selinux_audit_data *sad = ad->selinux_audit_data;
 705	char *scontext;
 706	u32 scontext_len;
 707	int rc;
 708
 709	rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
 710				     &scontext_len);
 711	if (rc)
 712		audit_log_format(ab, " ssid=%d", sad->ssid);
 713	else {
 714		audit_log_format(ab, " scontext=%s", scontext);
 715		kfree(scontext);
 716	}
 717
 718	rc = security_sid_to_context(sad->state, sad->tsid, &scontext,
 719				     &scontext_len);
 720	if (rc)
 721		audit_log_format(ab, " tsid=%d", sad->tsid);
 722	else {
 723		audit_log_format(ab, " tcontext=%s", scontext);
 724		kfree(scontext);
 725	}
 726
 727	audit_log_format(ab, " tclass=%s", secclass_map[sad->tclass-1].name);
 728
 729	if (sad->denied)
 730		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
 731
 732	/* in case of invalid context report also the actual context string */
 733	rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
 734					   &scontext_len);
 735	if (!rc && scontext) {
 736		if (scontext_len && scontext[scontext_len - 1] == '\0')
 737			scontext_len--;
 738		audit_log_format(ab, " srawcon=");
 739		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 740		kfree(scontext);
 741	}
 742
 743	rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
 744					   &scontext_len);
 745	if (!rc && scontext) {
 746		if (scontext_len && scontext[scontext_len - 1] == '\0')
 747			scontext_len--;
 748		audit_log_format(ab, " trawcon=");
 749		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 750		kfree(scontext);
 751	}
 752}
 753
 754/* This is the slow part of avc audit with big stack footprint */
 755noinline int slow_avc_audit(struct selinux_state *state,
 756			    u32 ssid, u32 tsid, u16 tclass,
 757			    u32 requested, u32 audited, u32 denied, int result,
 758			    struct common_audit_data *a)
 759{
 760	struct common_audit_data stack_data;
 761	struct selinux_audit_data sad;
 762
 763	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
 764		return -EINVAL;
 765
 766	if (!a) {
 767		a = &stack_data;
 768		a->type = LSM_AUDIT_DATA_NONE;
 769	}
 770
 
 
 
 
 
 
 
 
 
 
 
 771	sad.tclass = tclass;
 772	sad.requested = requested;
 773	sad.ssid = ssid;
 774	sad.tsid = tsid;
 775	sad.audited = audited;
 776	sad.denied = denied;
 777	sad.result = result;
 778	sad.state = state;
 779
 780	a->selinux_audit_data = &sad;
 781
 782	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 783	return 0;
 784}
 785
 786/**
 787 * avc_add_callback - Register a callback for security events.
 788 * @callback: callback function
 789 * @events: security events
 790 *
 791 * Register a callback function for events in the set @events.
 792 * Returns %0 on success or -%ENOMEM if insufficient memory
 793 * exists to add the callback.
 794 */
 795int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 796{
 797	struct avc_callback_node *c;
 798	int rc = 0;
 799
 800	c = kmalloc(sizeof(*c), GFP_KERNEL);
 801	if (!c) {
 802		rc = -ENOMEM;
 803		goto out;
 804	}
 805
 806	c->callback = callback;
 807	c->events = events;
 808	c->next = avc_callbacks;
 809	avc_callbacks = c;
 810out:
 811	return rc;
 812}
 813
 814/**
 815 * avc_update_node Update an AVC entry
 816 * @event : Updating event
 817 * @perms : Permission mask bits
 818 * @ssid,@tsid,@tclass : identifier of an AVC entry
 819 * @seqno : sequence number when decision was made
 820 * @xpd: extended_perms_decision to be added to the node
 821 * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
 822 *
 823 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 824 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 825 * otherwise, this function updates the AVC entry. The original AVC-entry object
 826 * will release later by RCU.
 827 */
 828static int avc_update_node(struct selinux_avc *avc,
 829			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 830			   u32 tsid, u16 tclass, u32 seqno,
 831			   struct extended_perms_decision *xpd,
 832			   u32 flags)
 833{
 834	int hvalue, rc = 0;
 835	unsigned long flag;
 836	struct avc_node *pos, *node, *orig = NULL;
 837	struct hlist_head *head;
 838	spinlock_t *lock;
 839
 840	/*
 841	 * If we are in a non-blocking code path, e.g. VFS RCU walk,
 842	 * then we must not add permissions to a cache entry
 843	 * because we will not audit the denial.  Otherwise,
 844	 * during the subsequent blocking retry (e.g. VFS ref walk), we
 845	 * will find the permissions already granted in the cache entry
 846	 * and won't audit anything at all, leading to silent denials in
 847	 * permissive mode that only appear when in enforcing mode.
 848	 *
 849	 * See the corresponding handling of MAY_NOT_BLOCK in avc_audit()
 850	 * and selinux_inode_permission().
 851	 */
 852	if (flags & AVC_NONBLOCKING)
 853		return 0;
 854
 855	node = avc_alloc_node(avc);
 856	if (!node) {
 857		rc = -ENOMEM;
 858		goto out;
 859	}
 860
 861	/* Lock the target slot */
 862	hvalue = avc_hash(ssid, tsid, tclass);
 863
 864	head = &avc->avc_cache.slots[hvalue];
 865	lock = &avc->avc_cache.slots_lock[hvalue];
 866
 867	spin_lock_irqsave(lock, flag);
 868
 869	hlist_for_each_entry(pos, head, list) {
 870		if (ssid == pos->ae.ssid &&
 871		    tsid == pos->ae.tsid &&
 872		    tclass == pos->ae.tclass &&
 873		    seqno == pos->ae.avd.seqno){
 874			orig = pos;
 875			break;
 876		}
 877	}
 878
 879	if (!orig) {
 880		rc = -ENOENT;
 881		avc_node_kill(avc, node);
 882		goto out_unlock;
 883	}
 884
 885	/*
 886	 * Copy and replace original node.
 887	 */
 888
 889	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 890
 891	if (orig->ae.xp_node) {
 892		rc = avc_xperms_populate(node, orig->ae.xp_node);
 893		if (rc) {
 894			avc_node_kill(avc, node);
 895			goto out_unlock;
 896		}
 897	}
 898
 899	switch (event) {
 900	case AVC_CALLBACK_GRANT:
 901		node->ae.avd.allowed |= perms;
 902		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 903			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 904		break;
 905	case AVC_CALLBACK_TRY_REVOKE:
 906	case AVC_CALLBACK_REVOKE:
 907		node->ae.avd.allowed &= ~perms;
 908		break;
 909	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 910		node->ae.avd.auditallow |= perms;
 911		break;
 912	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 913		node->ae.avd.auditallow &= ~perms;
 914		break;
 915	case AVC_CALLBACK_AUDITDENY_ENABLE:
 916		node->ae.avd.auditdeny |= perms;
 917		break;
 918	case AVC_CALLBACK_AUDITDENY_DISABLE:
 919		node->ae.avd.auditdeny &= ~perms;
 920		break;
 921	case AVC_CALLBACK_ADD_XPERMS:
 922		avc_add_xperms_decision(node, xpd);
 923		break;
 924	}
 925	avc_node_replace(avc, node, orig);
 926out_unlock:
 927	spin_unlock_irqrestore(lock, flag);
 928out:
 929	return rc;
 930}
 931
 932/**
 933 * avc_flush - Flush the cache
 934 */
 935static void avc_flush(struct selinux_avc *avc)
 936{
 937	struct hlist_head *head;
 938	struct avc_node *node;
 939	spinlock_t *lock;
 940	unsigned long flag;
 941	int i;
 942
 943	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 944		head = &avc->avc_cache.slots[i];
 945		lock = &avc->avc_cache.slots_lock[i];
 946
 947		spin_lock_irqsave(lock, flag);
 948		/*
 949		 * With preemptable RCU, the outer spinlock does not
 950		 * prevent RCU grace periods from ending.
 951		 */
 952		rcu_read_lock();
 953		hlist_for_each_entry(node, head, list)
 954			avc_node_delete(avc, node);
 955		rcu_read_unlock();
 956		spin_unlock_irqrestore(lock, flag);
 957	}
 958}
 959
 960/**
 961 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 962 * @seqno: policy sequence number
 963 */
 964int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
 965{
 966	struct avc_callback_node *c;
 967	int rc = 0, tmprc;
 968
 969	avc_flush(avc);
 970
 971	for (c = avc_callbacks; c; c = c->next) {
 972		if (c->events & AVC_CALLBACK_RESET) {
 973			tmprc = c->callback(AVC_CALLBACK_RESET);
 974			/* save the first error encountered for the return
 975			   value and continue processing the callbacks */
 976			if (!rc)
 977				rc = tmprc;
 978		}
 979	}
 980
 981	avc_latest_notif_update(avc, seqno, 0);
 982	return rc;
 983}
 984
 985/*
 986 * Slow-path helper function for avc_has_perm_noaudit,
 987 * when the avc_node lookup fails. We get called with
 988 * the RCU read lock held, and need to return with it
 989 * still held, but drop if for the security compute.
 990 *
 991 * Don't inline this, since it's the slow-path and just
 992 * results in a bigger stack frame.
 993 */
 994static noinline
 995struct avc_node *avc_compute_av(struct selinux_state *state,
 996				u32 ssid, u32 tsid,
 997				u16 tclass, struct av_decision *avd,
 998				struct avc_xperms_node *xp_node)
 999{
1000	rcu_read_unlock();
1001	INIT_LIST_HEAD(&xp_node->xpd_head);
1002	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1003	rcu_read_lock();
1004	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1005}
1006
1007static noinline int avc_denied(struct selinux_state *state,
1008			       u32 ssid, u32 tsid,
1009			       u16 tclass, u32 requested,
1010			       u8 driver, u8 xperm, unsigned int flags,
1011			       struct av_decision *avd)
1012{
1013	if (flags & AVC_STRICT)
1014		return -EACCES;
1015
1016	if (enforcing_enabled(state) &&
1017	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1018		return -EACCES;
1019
1020	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1021			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1022	return 0;
1023}
1024
1025/*
1026 * The avc extended permissions logic adds an additional 256 bits of
1027 * permissions to an avc node when extended permissions for that node are
1028 * specified in the avtab. If the additional 256 permissions is not adequate,
1029 * as-is the case with ioctls, then multiple may be chained together and the
1030 * driver field is used to specify which set contains the permission.
1031 */
1032int avc_has_extended_perms(struct selinux_state *state,
1033			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1034			   u8 driver, u8 xperm, struct common_audit_data *ad)
1035{
1036	struct avc_node *node;
1037	struct av_decision avd;
1038	u32 denied;
1039	struct extended_perms_decision local_xpd;
1040	struct extended_perms_decision *xpd = NULL;
1041	struct extended_perms_data allowed;
1042	struct extended_perms_data auditallow;
1043	struct extended_perms_data dontaudit;
1044	struct avc_xperms_node local_xp_node;
1045	struct avc_xperms_node *xp_node;
1046	int rc = 0, rc2;
1047
1048	xp_node = &local_xp_node;
1049	if (WARN_ON(!requested))
1050		return -EACCES;
1051
1052	rcu_read_lock();
1053
1054	node = avc_lookup(state->avc, ssid, tsid, tclass);
1055	if (unlikely(!node)) {
1056		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1057	} else {
1058		memcpy(&avd, &node->ae.avd, sizeof(avd));
1059		xp_node = node->ae.xp_node;
1060	}
1061	/* if extended permissions are not defined, only consider av_decision */
1062	if (!xp_node || !xp_node->xp.len)
1063		goto decision;
1064
1065	local_xpd.allowed = &allowed;
1066	local_xpd.auditallow = &auditallow;
1067	local_xpd.dontaudit = &dontaudit;
1068
1069	xpd = avc_xperms_decision_lookup(driver, xp_node);
1070	if (unlikely(!xpd)) {
1071		/*
1072		 * Compute the extended_perms_decision only if the driver
1073		 * is flagged
1074		 */
1075		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1076			avd.allowed &= ~requested;
1077			goto decision;
1078		}
1079		rcu_read_unlock();
1080		security_compute_xperms_decision(state, ssid, tsid, tclass,
1081						 driver, &local_xpd);
1082		rcu_read_lock();
1083		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1084				driver, xperm, ssid, tsid, tclass, avd.seqno,
1085				&local_xpd, 0);
1086	} else {
1087		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1088	}
1089	xpd = &local_xpd;
1090
1091	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1092		avd.allowed &= ~requested;
1093
1094decision:
1095	denied = requested & ~(avd.allowed);
1096	if (unlikely(denied))
1097		rc = avc_denied(state, ssid, tsid, tclass, requested,
1098				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1099
1100	rcu_read_unlock();
1101
1102	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1103			&avd, xpd, xperm, rc, ad);
1104	if (rc2)
1105		return rc2;
1106	return rc;
1107}
1108
1109/**
1110 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1111 * @ssid: source security identifier
1112 * @tsid: target security identifier
1113 * @tclass: target security class
1114 * @requested: requested permissions, interpreted based on @tclass
1115 * @flags:  AVC_STRICT, AVC_NONBLOCKING, or 0
1116 * @avd: access vector decisions
1117 *
1118 * Check the AVC to determine whether the @requested permissions are granted
1119 * for the SID pair (@ssid, @tsid), interpreting the permissions
1120 * based on @tclass, and call the security server on a cache miss to obtain
1121 * a new decision and add it to the cache.  Return a copy of the decisions
1122 * in @avd.  Return %0 if all @requested permissions are granted,
1123 * -%EACCES if any permissions are denied, or another -errno upon
1124 * other errors.  This function is typically called by avc_has_perm(),
1125 * but may also be called directly to separate permission checking from
1126 * auditing, e.g. in cases where a lock must be held for the check but
1127 * should be released for the auditing.
1128 */
1129inline int avc_has_perm_noaudit(struct selinux_state *state,
1130				u32 ssid, u32 tsid,
1131				u16 tclass, u32 requested,
1132				unsigned int flags,
1133				struct av_decision *avd)
1134{
1135	struct avc_node *node;
1136	struct avc_xperms_node xp_node;
1137	int rc = 0;
1138	u32 denied;
1139
1140	if (WARN_ON(!requested))
1141		return -EACCES;
1142
1143	rcu_read_lock();
1144
1145	node = avc_lookup(state->avc, ssid, tsid, tclass);
1146	if (unlikely(!node))
1147		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1148	else
1149		memcpy(avd, &node->ae.avd, sizeof(*avd));
1150
1151	denied = requested & ~(avd->allowed);
1152	if (unlikely(denied))
1153		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1154				flags, avd);
1155
1156	rcu_read_unlock();
1157	return rc;
1158}
1159
1160/**
1161 * avc_has_perm - Check permissions and perform any appropriate auditing.
1162 * @ssid: source security identifier
1163 * @tsid: target security identifier
1164 * @tclass: target security class
1165 * @requested: requested permissions, interpreted based on @tclass
1166 * @auditdata: auxiliary audit data
1167 *
1168 * Check the AVC to determine whether the @requested permissions are granted
1169 * for the SID pair (@ssid, @tsid), interpreting the permissions
1170 * based on @tclass, and call the security server on a cache miss to obtain
1171 * a new decision and add it to the cache.  Audit the granting or denial of
1172 * permissions in accordance with the policy.  Return %0 if all @requested
1173 * permissions are granted, -%EACCES if any permissions are denied, or
1174 * another -errno upon other errors.
1175 */
1176int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1177		 u32 requested, struct common_audit_data *auditdata)
1178{
1179	struct av_decision avd;
1180	int rc, rc2;
1181
1182	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1183				  &avd);
1184
1185	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1186			auditdata, 0);
1187	if (rc2)
1188		return rc2;
1189	return rc;
1190}
1191
1192int avc_has_perm_flags(struct selinux_state *state,
1193		       u32 ssid, u32 tsid, u16 tclass, u32 requested,
1194		       struct common_audit_data *auditdata,
1195		       int flags)
1196{
1197	struct av_decision avd;
1198	int rc, rc2;
1199
1200	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested,
1201				  (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
1202				  &avd);
1203
1204	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1205			auditdata, flags);
1206	if (rc2)
1207		return rc2;
1208	return rc;
1209}
1210
1211u32 avc_policy_seqno(struct selinux_state *state)
1212{
1213	return state->avc->avc_cache.latest_notif;
1214}
1215
1216void avc_disable(void)
1217{
1218	/*
1219	 * If you are looking at this because you have realized that we are
1220	 * not destroying the avc_node_cachep it might be easy to fix, but
1221	 * I don't know the memory barrier semantics well enough to know.  It's
1222	 * possible that some other task dereferenced security_ops when
1223	 * it still pointed to selinux operations.  If that is the case it's
1224	 * possible that it is about to use the avc and is about to need the
1225	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1226	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1227	 * the cache and get that memory back.
1228	 */
1229	if (avc_node_cachep) {
1230		avc_flush(selinux_state.avc);
1231		/* kmem_cache_destroy(avc_node_cachep); */
1232	}
1233}