Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
 
  15#include <linux/bio.h>
  16#include <linux/blkdev.h>
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/crypto.h>
  20#include <linux/workqueue.h>
  21#include <linux/kthread.h>
  22#include <linux/backing-dev.h>
  23#include <linux/atomic.h>
  24#include <linux/scatterlist.h>
  25#include <linux/rbtree.h>
 
  26#include <asm/page.h>
  27#include <asm/unaligned.h>
  28#include <crypto/hash.h>
  29#include <crypto/md5.h>
  30#include <crypto/algapi.h>
  31#include <crypto/skcipher.h>
 
 
 
 
  32
  33#include <linux/device-mapper.h>
  34
  35#define DM_MSG_PREFIX "crypt"
  36
  37/*
  38 * context holding the current state of a multi-part conversion
  39 */
  40struct convert_context {
  41	struct completion restart;
  42	struct bio *bio_in;
  43	struct bio *bio_out;
  44	struct bvec_iter iter_in;
  45	struct bvec_iter iter_out;
  46	sector_t cc_sector;
  47	atomic_t cc_pending;
  48	struct skcipher_request *req;
 
 
 
 
  49};
  50
  51/*
  52 * per bio private data
  53 */
  54struct dm_crypt_io {
  55	struct crypt_config *cc;
  56	struct bio *base_bio;
 
 
  57	struct work_struct work;
  58
  59	struct convert_context ctx;
  60
  61	atomic_t io_pending;
  62	int error;
  63	sector_t sector;
  64
  65	struct rb_node rb_node;
  66} CRYPTO_MINALIGN_ATTR;
  67
  68struct dm_crypt_request {
  69	struct convert_context *ctx;
  70	struct scatterlist sg_in;
  71	struct scatterlist sg_out;
  72	sector_t iv_sector;
  73};
  74
  75struct crypt_config;
  76
  77struct crypt_iv_operations {
  78	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  79		   const char *opts);
  80	void (*dtr)(struct crypt_config *cc);
  81	int (*init)(struct crypt_config *cc);
  82	int (*wipe)(struct crypt_config *cc);
  83	int (*generator)(struct crypt_config *cc, u8 *iv,
  84			 struct dm_crypt_request *dmreq);
  85	int (*post)(struct crypt_config *cc, u8 *iv,
  86		    struct dm_crypt_request *dmreq);
  87};
  88
  89struct iv_essiv_private {
  90	struct crypto_ahash *hash_tfm;
  91	u8 *salt;
  92};
  93
  94struct iv_benbi_private {
  95	int shift;
  96};
  97
  98#define LMK_SEED_SIZE 64 /* hash + 0 */
  99struct iv_lmk_private {
 100	struct crypto_shash *hash_tfm;
 101	u8 *seed;
 102};
 103
 104#define TCW_WHITENING_SIZE 16
 105struct iv_tcw_private {
 106	struct crypto_shash *crc32_tfm;
 107	u8 *iv_seed;
 108	u8 *whitening;
 109};
 110
 111/*
 112 * Crypt: maps a linear range of a block device
 113 * and encrypts / decrypts at the same time.
 114 */
 115enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 116	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
 117	     DM_CRYPT_EXIT_THREAD};
 
 
 
 
 118
 119/*
 120 * The fields in here must be read only after initialization.
 121 */
 122struct crypt_config {
 123	struct dm_dev *dev;
 124	sector_t start;
 125
 126	/*
 127	 * pool for per bio private data, crypto requests and
 128	 * encryption requeusts/buffer pages
 129	 */
 130	mempool_t *req_pool;
 131	mempool_t *page_pool;
 
 
 
 
 
 132	struct bio_set *bs;
 133	struct mutex bio_alloc_lock;
 134
 135	struct workqueue_struct *io_queue;
 136	struct workqueue_struct *crypt_queue;
 137
 138	struct task_struct *write_thread;
 139	wait_queue_head_t write_thread_wait;
 140	struct rb_root write_tree;
 141
 142	char *cipher;
 143	char *cipher_string;
 
 
 144
 145	struct crypt_iv_operations *iv_gen_ops;
 146	union {
 147		struct iv_essiv_private essiv;
 148		struct iv_benbi_private benbi;
 149		struct iv_lmk_private lmk;
 150		struct iv_tcw_private tcw;
 151	} iv_gen_private;
 152	sector_t iv_offset;
 153	unsigned int iv_size;
 
 
 154
 155	/* ESSIV: struct crypto_cipher *essiv_tfm */
 156	void *iv_private;
 157	struct crypto_skcipher **tfms;
 
 
 
 158	unsigned tfms_count;
 
 159
 160	/*
 161	 * Layout of each crypto request:
 162	 *
 163	 *   struct skcipher_request
 164	 *      context
 165	 *      padding
 166	 *   struct dm_crypt_request
 167	 *      padding
 168	 *   IV
 169	 *
 170	 * The padding is added so that dm_crypt_request and the IV are
 171	 * correctly aligned.
 172	 */
 173	unsigned int dmreq_start;
 174
 175	unsigned int per_bio_data_size;
 176
 177	unsigned long flags;
 178	unsigned int key_size;
 179	unsigned int key_parts;      /* independent parts in key buffer */
 180	unsigned int key_extra_size; /* additional keys length */
 
 
 
 
 
 
 
 181	u8 key[0];
 182};
 183
 184#define MIN_IOS        16
 
 
 
 
 
 
 
 
 185
 186static void clone_init(struct dm_crypt_io *, struct bio *);
 187static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 188static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 
 189
 190/*
 191 * Use this to access cipher attributes that are the same for each CPU.
 192 */
 193static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 194{
 195	return cc->tfms[0];
 
 
 
 
 
 196}
 197
 198/*
 199 * Different IV generation algorithms:
 200 *
 201 * plain: the initial vector is the 32-bit little-endian version of the sector
 202 *        number, padded with zeros if necessary.
 203 *
 204 * plain64: the initial vector is the 64-bit little-endian version of the sector
 205 *        number, padded with zeros if necessary.
 206 *
 
 
 
 207 * essiv: "encrypted sector|salt initial vector", the sector number is
 208 *        encrypted with the bulk cipher using a salt as key. The salt
 209 *        should be derived from the bulk cipher's key via hashing.
 210 *
 211 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 212 *        (needed for LRW-32-AES and possible other narrow block modes)
 213 *
 214 * null: the initial vector is always zero.  Provides compatibility with
 215 *       obsolete loop_fish2 devices.  Do not use for new devices.
 216 *
 217 * lmk:  Compatible implementation of the block chaining mode used
 218 *       by the Loop-AES block device encryption system
 219 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 220 *       It operates on full 512 byte sectors and uses CBC
 221 *       with an IV derived from the sector number, the data and
 222 *       optionally extra IV seed.
 223 *       This means that after decryption the first block
 224 *       of sector must be tweaked according to decrypted data.
 225 *       Loop-AES can use three encryption schemes:
 226 *         version 1: is plain aes-cbc mode
 227 *         version 2: uses 64 multikey scheme with lmk IV generator
 228 *         version 3: the same as version 2 with additional IV seed
 229 *                   (it uses 65 keys, last key is used as IV seed)
 230 *
 231 * tcw:  Compatible implementation of the block chaining mode used
 232 *       by the TrueCrypt device encryption system (prior to version 4.1).
 233 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 234 *       It operates on full 512 byte sectors and uses CBC
 235 *       with an IV derived from initial key and the sector number.
 236 *       In addition, whitening value is applied on every sector, whitening
 237 *       is calculated from initial key, sector number and mixed using CRC32.
 238 *       Note that this encryption scheme is vulnerable to watermarking attacks
 239 *       and should be used for old compatible containers access only.
 240 *
 241 * plumb: unimplemented, see:
 242 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 243 */
 244
 245static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 246			      struct dm_crypt_request *dmreq)
 247{
 248	memset(iv, 0, cc->iv_size);
 249	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 250
 251	return 0;
 252}
 253
 254static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 255				struct dm_crypt_request *dmreq)
 256{
 257	memset(iv, 0, cc->iv_size);
 258	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 259
 260	return 0;
 261}
 262
 
 
 
 
 
 
 
 
 
 
 263/* Initialise ESSIV - compute salt but no local memory allocations */
 264static int crypt_iv_essiv_init(struct crypt_config *cc)
 265{
 266	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 267	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 268	struct scatterlist sg;
 269	struct crypto_cipher *essiv_tfm;
 270	int err;
 271
 272	sg_init_one(&sg, cc->key, cc->key_size);
 273	ahash_request_set_tfm(req, essiv->hash_tfm);
 274	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 275	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 276
 277	err = crypto_ahash_digest(req);
 278	ahash_request_zero(req);
 279	if (err)
 280		return err;
 281
 282	essiv_tfm = cc->iv_private;
 283
 284	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 285			    crypto_ahash_digestsize(essiv->hash_tfm));
 286	if (err)
 287		return err;
 288
 289	return 0;
 290}
 291
 292/* Wipe salt and reset key derived from volume key */
 293static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 294{
 295	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 296	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 297	struct crypto_cipher *essiv_tfm;
 298	int r, err = 0;
 299
 300	memset(essiv->salt, 0, salt_size);
 301
 302	essiv_tfm = cc->iv_private;
 303	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 304	if (r)
 305		err = r;
 306
 307	return err;
 308}
 309
 310/* Set up per cpu cipher state */
 311static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 312					     struct dm_target *ti,
 313					     u8 *salt, unsigned saltsize)
 
 314{
 315	struct crypto_cipher *essiv_tfm;
 316	int err;
 317
 318	/* Setup the essiv_tfm with the given salt */
 319	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 320	if (IS_ERR(essiv_tfm)) {
 321		ti->error = "Error allocating crypto tfm for ESSIV";
 322		return essiv_tfm;
 323	}
 324
 325	if (crypto_cipher_blocksize(essiv_tfm) !=
 326	    crypto_skcipher_ivsize(any_tfm(cc))) {
 327		ti->error = "Block size of ESSIV cipher does "
 328			    "not match IV size of block cipher";
 329		crypto_free_cipher(essiv_tfm);
 330		return ERR_PTR(-EINVAL);
 331	}
 332
 333	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 334	if (err) {
 335		ti->error = "Failed to set key for ESSIV cipher";
 336		crypto_free_cipher(essiv_tfm);
 337		return ERR_PTR(err);
 338	}
 339
 340	return essiv_tfm;
 341}
 342
 343static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 344{
 345	struct crypto_cipher *essiv_tfm;
 346	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 347
 348	crypto_free_ahash(essiv->hash_tfm);
 349	essiv->hash_tfm = NULL;
 350
 351	kzfree(essiv->salt);
 352	essiv->salt = NULL;
 353
 354	essiv_tfm = cc->iv_private;
 355
 356	if (essiv_tfm)
 357		crypto_free_cipher(essiv_tfm);
 358
 359	cc->iv_private = NULL;
 360}
 361
 362static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 363			      const char *opts)
 364{
 365	struct crypto_cipher *essiv_tfm = NULL;
 366	struct crypto_ahash *hash_tfm = NULL;
 367	u8 *salt = NULL;
 368	int err;
 369
 370	if (!opts) {
 371		ti->error = "Digest algorithm missing for ESSIV mode";
 372		return -EINVAL;
 373	}
 374
 375	/* Allocate hash algorithm */
 376	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 377	if (IS_ERR(hash_tfm)) {
 378		ti->error = "Error initializing ESSIV hash";
 379		err = PTR_ERR(hash_tfm);
 380		goto bad;
 381	}
 382
 383	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 384	if (!salt) {
 385		ti->error = "Error kmallocing salt storage in ESSIV";
 386		err = -ENOMEM;
 387		goto bad;
 388	}
 389
 390	cc->iv_gen_private.essiv.salt = salt;
 391	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 392
 393	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 394				crypto_ahash_digestsize(hash_tfm));
 395	if (IS_ERR(essiv_tfm)) {
 396		crypt_iv_essiv_dtr(cc);
 397		return PTR_ERR(essiv_tfm);
 398	}
 399	cc->iv_private = essiv_tfm;
 400
 401	return 0;
 402
 403bad:
 404	if (hash_tfm && !IS_ERR(hash_tfm))
 405		crypto_free_ahash(hash_tfm);
 406	kfree(salt);
 407	return err;
 408}
 409
 410static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 411			      struct dm_crypt_request *dmreq)
 412{
 413	struct crypto_cipher *essiv_tfm = cc->iv_private;
 414
 415	memset(iv, 0, cc->iv_size);
 416	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 417	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 418
 419	return 0;
 420}
 421
 422static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 423			      const char *opts)
 424{
 425	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 426	int log = ilog2(bs);
 427
 428	/* we need to calculate how far we must shift the sector count
 429	 * to get the cipher block count, we use this shift in _gen */
 430
 431	if (1 << log != bs) {
 432		ti->error = "cypher blocksize is not a power of 2";
 433		return -EINVAL;
 434	}
 435
 436	if (log > 9) {
 437		ti->error = "cypher blocksize is > 512";
 438		return -EINVAL;
 439	}
 440
 441	cc->iv_gen_private.benbi.shift = 9 - log;
 442
 443	return 0;
 444}
 445
 446static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 447{
 448}
 449
 450static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 451			      struct dm_crypt_request *dmreq)
 452{
 453	__be64 val;
 454
 455	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 456
 457	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 458	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 459
 460	return 0;
 461}
 462
 463static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 464			     struct dm_crypt_request *dmreq)
 465{
 466	memset(iv, 0, cc->iv_size);
 467
 468	return 0;
 469}
 470
 471static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 472{
 473	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 474
 475	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 476		crypto_free_shash(lmk->hash_tfm);
 477	lmk->hash_tfm = NULL;
 478
 479	kzfree(lmk->seed);
 480	lmk->seed = NULL;
 481}
 482
 483static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 484			    const char *opts)
 485{
 486	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 487
 
 
 
 
 
 488	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 489	if (IS_ERR(lmk->hash_tfm)) {
 490		ti->error = "Error initializing LMK hash";
 491		return PTR_ERR(lmk->hash_tfm);
 492	}
 493
 494	/* No seed in LMK version 2 */
 495	if (cc->key_parts == cc->tfms_count) {
 496		lmk->seed = NULL;
 497		return 0;
 498	}
 499
 500	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 501	if (!lmk->seed) {
 502		crypt_iv_lmk_dtr(cc);
 503		ti->error = "Error kmallocing seed storage in LMK";
 504		return -ENOMEM;
 505	}
 506
 507	return 0;
 508}
 509
 510static int crypt_iv_lmk_init(struct crypt_config *cc)
 511{
 512	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 513	int subkey_size = cc->key_size / cc->key_parts;
 514
 515	/* LMK seed is on the position of LMK_KEYS + 1 key */
 516	if (lmk->seed)
 517		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 518		       crypto_shash_digestsize(lmk->hash_tfm));
 519
 520	return 0;
 521}
 522
 523static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 524{
 525	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 526
 527	if (lmk->seed)
 528		memset(lmk->seed, 0, LMK_SEED_SIZE);
 529
 530	return 0;
 531}
 532
 533static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 534			    struct dm_crypt_request *dmreq,
 535			    u8 *data)
 536{
 537	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 538	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 539	struct md5_state md5state;
 540	__le32 buf[4];
 541	int i, r;
 542
 543	desc->tfm = lmk->hash_tfm;
 544	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 545
 546	r = crypto_shash_init(desc);
 547	if (r)
 548		return r;
 549
 550	if (lmk->seed) {
 551		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 552		if (r)
 553			return r;
 554	}
 555
 556	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 557	r = crypto_shash_update(desc, data + 16, 16 * 31);
 558	if (r)
 559		return r;
 560
 561	/* Sector is cropped to 56 bits here */
 562	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 563	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 564	buf[2] = cpu_to_le32(4024);
 565	buf[3] = 0;
 566	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 567	if (r)
 568		return r;
 569
 570	/* No MD5 padding here */
 571	r = crypto_shash_export(desc, &md5state);
 572	if (r)
 573		return r;
 574
 575	for (i = 0; i < MD5_HASH_WORDS; i++)
 576		__cpu_to_le32s(&md5state.hash[i]);
 577	memcpy(iv, &md5state.hash, cc->iv_size);
 578
 579	return 0;
 580}
 581
 582static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 583			    struct dm_crypt_request *dmreq)
 584{
 
 585	u8 *src;
 586	int r = 0;
 587
 588	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 589		src = kmap_atomic(sg_page(&dmreq->sg_in));
 590		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 
 591		kunmap_atomic(src);
 592	} else
 593		memset(iv, 0, cc->iv_size);
 594
 595	return r;
 596}
 597
 598static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 599			     struct dm_crypt_request *dmreq)
 600{
 
 601	u8 *dst;
 602	int r;
 603
 604	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 605		return 0;
 606
 607	dst = kmap_atomic(sg_page(&dmreq->sg_out));
 608	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 
 609
 610	/* Tweak the first block of plaintext sector */
 611	if (!r)
 612		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 613
 614	kunmap_atomic(dst);
 615	return r;
 616}
 617
 618static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 619{
 620	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 621
 622	kzfree(tcw->iv_seed);
 623	tcw->iv_seed = NULL;
 624	kzfree(tcw->whitening);
 625	tcw->whitening = NULL;
 626
 627	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 628		crypto_free_shash(tcw->crc32_tfm);
 629	tcw->crc32_tfm = NULL;
 630}
 631
 632static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 633			    const char *opts)
 634{
 635	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 636
 
 
 
 
 
 637	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 638		ti->error = "Wrong key size for TCW";
 639		return -EINVAL;
 640	}
 641
 642	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 643	if (IS_ERR(tcw->crc32_tfm)) {
 644		ti->error = "Error initializing CRC32 in TCW";
 645		return PTR_ERR(tcw->crc32_tfm);
 646	}
 647
 648	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 649	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 650	if (!tcw->iv_seed || !tcw->whitening) {
 651		crypt_iv_tcw_dtr(cc);
 652		ti->error = "Error allocating seed storage in TCW";
 653		return -ENOMEM;
 654	}
 655
 656	return 0;
 657}
 658
 659static int crypt_iv_tcw_init(struct crypt_config *cc)
 660{
 661	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 662	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 663
 664	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 665	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 666	       TCW_WHITENING_SIZE);
 667
 668	return 0;
 669}
 670
 671static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 672{
 673	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 674
 675	memset(tcw->iv_seed, 0, cc->iv_size);
 676	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 677
 678	return 0;
 679}
 680
 681static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 682				  struct dm_crypt_request *dmreq,
 683				  u8 *data)
 684{
 685	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 686	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 687	u8 buf[TCW_WHITENING_SIZE];
 688	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 689	int i, r;
 690
 691	/* xor whitening with sector number */
 692	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
 693	crypto_xor(buf, (u8 *)&sector, 8);
 694	crypto_xor(&buf[8], (u8 *)&sector, 8);
 695
 696	/* calculate crc32 for every 32bit part and xor it */
 697	desc->tfm = tcw->crc32_tfm;
 698	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 699	for (i = 0; i < 4; i++) {
 700		r = crypto_shash_init(desc);
 701		if (r)
 702			goto out;
 703		r = crypto_shash_update(desc, &buf[i * 4], 4);
 704		if (r)
 705			goto out;
 706		r = crypto_shash_final(desc, &buf[i * 4]);
 707		if (r)
 708			goto out;
 709	}
 710	crypto_xor(&buf[0], &buf[12], 4);
 711	crypto_xor(&buf[4], &buf[8], 4);
 712
 713	/* apply whitening (8 bytes) to whole sector */
 714	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 715		crypto_xor(data + i * 8, buf, 8);
 716out:
 717	memzero_explicit(buf, sizeof(buf));
 718	return r;
 719}
 720
 721static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 722			    struct dm_crypt_request *dmreq)
 723{
 
 724	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 725	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 726	u8 *src;
 727	int r = 0;
 728
 729	/* Remove whitening from ciphertext */
 730	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 731		src = kmap_atomic(sg_page(&dmreq->sg_in));
 732		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
 
 733		kunmap_atomic(src);
 734	}
 735
 736	/* Calculate IV */
 737	memcpy(iv, tcw->iv_seed, cc->iv_size);
 738	crypto_xor(iv, (u8 *)&sector, 8);
 739	if (cc->iv_size > 8)
 740		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
 
 741
 742	return r;
 743}
 744
 745static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 746			     struct dm_crypt_request *dmreq)
 747{
 
 748	u8 *dst;
 749	int r;
 750
 751	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 752		return 0;
 753
 754	/* Apply whitening on ciphertext */
 755	dst = kmap_atomic(sg_page(&dmreq->sg_out));
 756	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
 
 757	kunmap_atomic(dst);
 758
 759	return r;
 760}
 761
 762static struct crypt_iv_operations crypt_iv_plain_ops = {
 
 
 
 
 
 
 
 
 763	.generator = crypt_iv_plain_gen
 764};
 765
 766static struct crypt_iv_operations crypt_iv_plain64_ops = {
 767	.generator = crypt_iv_plain64_gen
 768};
 769
 770static struct crypt_iv_operations crypt_iv_essiv_ops = {
 
 
 
 
 771	.ctr       = crypt_iv_essiv_ctr,
 772	.dtr       = crypt_iv_essiv_dtr,
 773	.init      = crypt_iv_essiv_init,
 774	.wipe      = crypt_iv_essiv_wipe,
 775	.generator = crypt_iv_essiv_gen
 776};
 777
 778static struct crypt_iv_operations crypt_iv_benbi_ops = {
 779	.ctr	   = crypt_iv_benbi_ctr,
 780	.dtr	   = crypt_iv_benbi_dtr,
 781	.generator = crypt_iv_benbi_gen
 782};
 783
 784static struct crypt_iv_operations crypt_iv_null_ops = {
 785	.generator = crypt_iv_null_gen
 786};
 787
 788static struct crypt_iv_operations crypt_iv_lmk_ops = {
 789	.ctr	   = crypt_iv_lmk_ctr,
 790	.dtr	   = crypt_iv_lmk_dtr,
 791	.init	   = crypt_iv_lmk_init,
 792	.wipe	   = crypt_iv_lmk_wipe,
 793	.generator = crypt_iv_lmk_gen,
 794	.post	   = crypt_iv_lmk_post
 795};
 796
 797static struct crypt_iv_operations crypt_iv_tcw_ops = {
 798	.ctr	   = crypt_iv_tcw_ctr,
 799	.dtr	   = crypt_iv_tcw_dtr,
 800	.init	   = crypt_iv_tcw_init,
 801	.wipe	   = crypt_iv_tcw_wipe,
 802	.generator = crypt_iv_tcw_gen,
 803	.post	   = crypt_iv_tcw_post
 804};
 805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806static void crypt_convert_init(struct crypt_config *cc,
 807			       struct convert_context *ctx,
 808			       struct bio *bio_out, struct bio *bio_in,
 809			       sector_t sector)
 810{
 811	ctx->bio_in = bio_in;
 812	ctx->bio_out = bio_out;
 813	if (bio_in)
 814		ctx->iter_in = bio_in->bi_iter;
 815	if (bio_out)
 816		ctx->iter_out = bio_out->bi_iter;
 817	ctx->cc_sector = sector + cc->iv_offset;
 818	init_completion(&ctx->restart);
 819}
 820
 821static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 822					     struct skcipher_request *req)
 823{
 824	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 825}
 826
 827static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
 828					       struct dm_crypt_request *dmreq)
 829{
 830	return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
 831}
 832
 833static u8 *iv_of_dmreq(struct crypt_config *cc,
 834		       struct dm_crypt_request *dmreq)
 835{
 836	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 837		crypto_skcipher_alignmask(any_tfm(cc)) + 1);
 
 
 
 
 838}
 839
 840static int crypt_convert_block(struct crypt_config *cc,
 841			       struct convert_context *ctx,
 842			       struct skcipher_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843{
 844	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
 845	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
 846	struct dm_crypt_request *dmreq;
 847	u8 *iv;
 848	int r;
 
 
 
 
 
 
 
 849
 850	dmreq = dmreq_of_req(cc, req);
 
 
 
 
 
 
 
 
 
 
 851	iv = iv_of_dmreq(cc, dmreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852
 
 853	dmreq->iv_sector = ctx->cc_sector;
 
 
 854	dmreq->ctx = ctx;
 855	sg_init_table(&dmreq->sg_in, 1);
 856	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
 857		    bv_in.bv_offset);
 858
 859	sg_init_table(&dmreq->sg_out, 1);
 860	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
 861		    bv_out.bv_offset);
 862
 863	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
 864	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865
 866	if (cc->iv_gen_ops) {
 867		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 868		if (r < 0)
 869			return r;
 
 
 
 
 
 
 
 
 
 
 870	}
 871
 872	skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 873				   1 << SECTOR_SHIFT, iv);
 874
 875	if (bio_data_dir(ctx->bio_in) == WRITE)
 876		r = crypto_skcipher_encrypt(req);
 877	else
 878		r = crypto_skcipher_decrypt(req);
 879
 880	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 881		r = cc->iv_gen_ops->post(cc, iv, dmreq);
 
 
 
 882
 883	return r;
 884}
 885
 886static void kcryptd_async_done(struct crypto_async_request *async_req,
 887			       int error);
 888
 889static void crypt_alloc_req(struct crypt_config *cc,
 890			    struct convert_context *ctx)
 891{
 892	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
 893
 894	if (!ctx->req)
 895		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896
 897	skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
 898
 899	/*
 900	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
 901	 * requests if driver request queue is full.
 902	 */
 903	skcipher_request_set_callback(ctx->req,
 904	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 905	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
 
 
 
 
 
 
 
 
 
 906}
 907
 908static void crypt_free_req(struct crypt_config *cc,
 909			   struct skcipher_request *req, struct bio *base_bio)
 910{
 911	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
 912
 913	if ((struct skcipher_request *)(io + 1) != req)
 914		mempool_free(req, cc->req_pool);
 915}
 916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917/*
 918 * Encrypt / decrypt data from one bio to another one (can be the same one)
 919 */
 920static int crypt_convert(struct crypt_config *cc,
 921			 struct convert_context *ctx)
 922{
 
 
 923	int r;
 924
 925	atomic_set(&ctx->cc_pending, 1);
 926
 927	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
 928
 929		crypt_alloc_req(cc, ctx);
 930
 931		atomic_inc(&ctx->cc_pending);
 932
 933		r = crypt_convert_block(cc, ctx, ctx->req);
 
 
 
 934
 935		switch (r) {
 936		/*
 937		 * The request was queued by a crypto driver
 938		 * but the driver request queue is full, let's wait.
 939		 */
 940		case -EBUSY:
 941			wait_for_completion(&ctx->restart);
 942			reinit_completion(&ctx->restart);
 943			/* fall through */
 944		/*
 945		 * The request is queued and processed asynchronously,
 946		 * completion function kcryptd_async_done() will be called.
 947		 */
 948		case -EINPROGRESS:
 949			ctx->req = NULL;
 950			ctx->cc_sector++;
 
 951			continue;
 952		/*
 953		 * The request was already processed (synchronously).
 954		 */
 955		case 0:
 956			atomic_dec(&ctx->cc_pending);
 957			ctx->cc_sector++;
 
 958			cond_resched();
 959			continue;
 960
 961		/* There was an error while processing the request. */
 
 
 
 
 
 
 
 962		default:
 963			atomic_dec(&ctx->cc_pending);
 964			return r;
 965		}
 966	}
 967
 968	return 0;
 969}
 970
 971static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
 972
 973/*
 974 * Generate a new unfragmented bio with the given size
 975 * This should never violate the device limitations (but only because
 976 * max_segment_size is being constrained to PAGE_SIZE).
 977 *
 978 * This function may be called concurrently. If we allocate from the mempool
 979 * concurrently, there is a possibility of deadlock. For example, if we have
 980 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
 981 * the mempool concurrently, it may deadlock in a situation where both processes
 982 * have allocated 128 pages and the mempool is exhausted.
 983 *
 984 * In order to avoid this scenario we allocate the pages under a mutex.
 985 *
 986 * In order to not degrade performance with excessive locking, we try
 987 * non-blocking allocations without a mutex first but on failure we fallback
 988 * to blocking allocations with a mutex.
 989 */
 990static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
 991{
 992	struct crypt_config *cc = io->cc;
 993	struct bio *clone;
 994	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 995	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
 996	unsigned i, len, remaining_size;
 997	struct page *page;
 998	struct bio_vec *bvec;
 999
1000retry:
1001	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1002		mutex_lock(&cc->bio_alloc_lock);
1003
1004	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1005	if (!clone)
1006		goto return_clone;
1007
1008	clone_init(io, clone);
1009
1010	remaining_size = size;
1011
1012	for (i = 0; i < nr_iovecs; i++) {
1013		page = mempool_alloc(cc->page_pool, gfp_mask);
1014		if (!page) {
1015			crypt_free_buffer_pages(cc, clone);
1016			bio_put(clone);
1017			gfp_mask |= __GFP_DIRECT_RECLAIM;
1018			goto retry;
1019		}
1020
1021		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1022
1023		bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1024		bvec->bv_page = page;
1025		bvec->bv_len = len;
1026		bvec->bv_offset = 0;
1027
1028		clone->bi_iter.bi_size += len;
1029
1030		remaining_size -= len;
1031	}
1032
1033return_clone:
 
 
 
 
 
 
1034	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1035		mutex_unlock(&cc->bio_alloc_lock);
1036
1037	return clone;
1038}
1039
1040static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1041{
1042	unsigned int i;
1043	struct bio_vec *bv;
1044
1045	bio_for_each_segment_all(bv, clone, i) {
1046		BUG_ON(!bv->bv_page);
1047		mempool_free(bv->bv_page, cc->page_pool);
1048		bv->bv_page = NULL;
1049	}
1050}
1051
1052static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1053			  struct bio *bio, sector_t sector)
1054{
1055	io->cc = cc;
1056	io->base_bio = bio;
1057	io->sector = sector;
1058	io->error = 0;
1059	io->ctx.req = NULL;
 
 
1060	atomic_set(&io->io_pending, 0);
1061}
1062
1063static void crypt_inc_pending(struct dm_crypt_io *io)
1064{
1065	atomic_inc(&io->io_pending);
1066}
1067
1068/*
1069 * One of the bios was finished. Check for completion of
1070 * the whole request and correctly clean up the buffer.
1071 */
1072static void crypt_dec_pending(struct dm_crypt_io *io)
1073{
1074	struct crypt_config *cc = io->cc;
1075	struct bio *base_bio = io->base_bio;
1076	int error = io->error;
1077
1078	if (!atomic_dec_and_test(&io->io_pending))
1079		return;
1080
1081	if (io->ctx.req)
1082		crypt_free_req(cc, io->ctx.req, base_bio);
1083
1084	base_bio->bi_error = error;
 
 
 
 
 
1085	bio_endio(base_bio);
1086}
1087
1088/*
1089 * kcryptd/kcryptd_io:
1090 *
1091 * Needed because it would be very unwise to do decryption in an
1092 * interrupt context.
1093 *
1094 * kcryptd performs the actual encryption or decryption.
1095 *
1096 * kcryptd_io performs the IO submission.
1097 *
1098 * They must be separated as otherwise the final stages could be
1099 * starved by new requests which can block in the first stages due
1100 * to memory allocation.
1101 *
1102 * The work is done per CPU global for all dm-crypt instances.
1103 * They should not depend on each other and do not block.
1104 */
1105static void crypt_endio(struct bio *clone)
1106{
1107	struct dm_crypt_io *io = clone->bi_private;
1108	struct crypt_config *cc = io->cc;
1109	unsigned rw = bio_data_dir(clone);
1110	int error;
1111
1112	/*
1113	 * free the processed pages
1114	 */
1115	if (rw == WRITE)
1116		crypt_free_buffer_pages(cc, clone);
1117
1118	error = clone->bi_error;
1119	bio_put(clone);
1120
1121	if (rw == READ && !error) {
1122		kcryptd_queue_crypt(io);
1123		return;
1124	}
1125
1126	if (unlikely(error))
1127		io->error = error;
1128
1129	crypt_dec_pending(io);
1130}
1131
1132static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1133{
1134	struct crypt_config *cc = io->cc;
1135
1136	clone->bi_private = io;
1137	clone->bi_end_io  = crypt_endio;
1138	clone->bi_bdev    = cc->dev->bdev;
1139	clone->bi_rw      = io->base_bio->bi_rw;
1140}
1141
1142static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1143{
1144	struct crypt_config *cc = io->cc;
1145	struct bio *clone;
1146
1147	/*
1148	 * We need the original biovec array in order to decrypt
1149	 * the whole bio data *afterwards* -- thanks to immutable
1150	 * biovecs we don't need to worry about the block layer
1151	 * modifying the biovec array; so leverage bio_clone_fast().
1152	 */
1153	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1154	if (!clone)
1155		return 1;
1156
1157	crypt_inc_pending(io);
1158
1159	clone_init(io, clone);
1160	clone->bi_iter.bi_sector = cc->start + io->sector;
1161
 
 
 
 
 
 
1162	generic_make_request(clone);
1163	return 0;
1164}
1165
1166static void kcryptd_io_read_work(struct work_struct *work)
1167{
1168	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1169
1170	crypt_inc_pending(io);
1171	if (kcryptd_io_read(io, GFP_NOIO))
1172		io->error = -ENOMEM;
1173	crypt_dec_pending(io);
1174}
1175
1176static void kcryptd_queue_read(struct dm_crypt_io *io)
1177{
1178	struct crypt_config *cc = io->cc;
1179
1180	INIT_WORK(&io->work, kcryptd_io_read_work);
1181	queue_work(cc->io_queue, &io->work);
1182}
1183
1184static void kcryptd_io_write(struct dm_crypt_io *io)
1185{
1186	struct bio *clone = io->ctx.bio_out;
1187
1188	generic_make_request(clone);
1189}
1190
1191#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1192
1193static int dmcrypt_write(void *data)
1194{
1195	struct crypt_config *cc = data;
1196	struct dm_crypt_io *io;
1197
1198	while (1) {
1199		struct rb_root write_tree;
1200		struct blk_plug plug;
1201
1202		DECLARE_WAITQUEUE(wait, current);
1203
1204		spin_lock_irq(&cc->write_thread_wait.lock);
1205continue_locked:
1206
1207		if (!RB_EMPTY_ROOT(&cc->write_tree))
1208			goto pop_from_list;
1209
1210		if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD, &cc->flags))) {
1211			spin_unlock_irq(&cc->write_thread_wait.lock);
1212			break;
1213		}
1214
1215		__set_current_state(TASK_INTERRUPTIBLE);
1216		__add_wait_queue(&cc->write_thread_wait, &wait);
1217
1218		spin_unlock_irq(&cc->write_thread_wait.lock);
1219
 
 
 
 
 
 
1220		schedule();
1221
 
1222		spin_lock_irq(&cc->write_thread_wait.lock);
1223		__remove_wait_queue(&cc->write_thread_wait, &wait);
1224		goto continue_locked;
1225
1226pop_from_list:
1227		write_tree = cc->write_tree;
1228		cc->write_tree = RB_ROOT;
1229		spin_unlock_irq(&cc->write_thread_wait.lock);
1230
1231		BUG_ON(rb_parent(write_tree.rb_node));
1232
1233		/*
1234		 * Note: we cannot walk the tree here with rb_next because
1235		 * the structures may be freed when kcryptd_io_write is called.
1236		 */
1237		blk_start_plug(&plug);
1238		do {
1239			io = crypt_io_from_node(rb_first(&write_tree));
1240			rb_erase(&io->rb_node, &write_tree);
1241			kcryptd_io_write(io);
1242		} while (!RB_EMPTY_ROOT(&write_tree));
1243		blk_finish_plug(&plug);
1244	}
1245	return 0;
1246}
1247
1248static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1249{
1250	struct bio *clone = io->ctx.bio_out;
1251	struct crypt_config *cc = io->cc;
1252	unsigned long flags;
1253	sector_t sector;
1254	struct rb_node **rbp, *parent;
1255
1256	if (unlikely(io->error < 0)) {
1257		crypt_free_buffer_pages(cc, clone);
1258		bio_put(clone);
1259		crypt_dec_pending(io);
1260		return;
1261	}
1262
1263	/* crypt_convert should have filled the clone bio */
1264	BUG_ON(io->ctx.iter_out.bi_size);
1265
1266	clone->bi_iter.bi_sector = cc->start + io->sector;
1267
1268	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1269		generic_make_request(clone);
1270		return;
1271	}
1272
1273	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1274	rbp = &cc->write_tree.rb_node;
1275	parent = NULL;
1276	sector = io->sector;
1277	while (*rbp) {
1278		parent = *rbp;
1279		if (sector < crypt_io_from_node(parent)->sector)
1280			rbp = &(*rbp)->rb_left;
1281		else
1282			rbp = &(*rbp)->rb_right;
1283	}
1284	rb_link_node(&io->rb_node, parent, rbp);
1285	rb_insert_color(&io->rb_node, &cc->write_tree);
1286
1287	wake_up_locked(&cc->write_thread_wait);
1288	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1289}
1290
1291static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1292{
1293	struct crypt_config *cc = io->cc;
1294	struct bio *clone;
1295	int crypt_finished;
1296	sector_t sector = io->sector;
1297	int r;
1298
1299	/*
1300	 * Prevent io from disappearing until this function completes.
1301	 */
1302	crypt_inc_pending(io);
1303	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1304
1305	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1306	if (unlikely(!clone)) {
1307		io->error = -EIO;
1308		goto dec;
1309	}
1310
1311	io->ctx.bio_out = clone;
1312	io->ctx.iter_out = clone->bi_iter;
1313
1314	sector += bio_sectors(clone);
1315
1316	crypt_inc_pending(io);
1317	r = crypt_convert(cc, &io->ctx);
1318	if (r)
1319		io->error = -EIO;
1320	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1321
1322	/* Encryption was already finished, submit io now */
1323	if (crypt_finished) {
1324		kcryptd_crypt_write_io_submit(io, 0);
1325		io->sector = sector;
1326	}
1327
1328dec:
1329	crypt_dec_pending(io);
1330}
1331
1332static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1333{
1334	crypt_dec_pending(io);
1335}
1336
1337static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1338{
1339	struct crypt_config *cc = io->cc;
1340	int r = 0;
1341
1342	crypt_inc_pending(io);
1343
1344	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1345			   io->sector);
1346
1347	r = crypt_convert(cc, &io->ctx);
1348	if (r < 0)
1349		io->error = -EIO;
1350
1351	if (atomic_dec_and_test(&io->ctx.cc_pending))
1352		kcryptd_crypt_read_done(io);
1353
1354	crypt_dec_pending(io);
1355}
1356
1357static void kcryptd_async_done(struct crypto_async_request *async_req,
1358			       int error)
1359{
1360	struct dm_crypt_request *dmreq = async_req->data;
1361	struct convert_context *ctx = dmreq->ctx;
1362	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1363	struct crypt_config *cc = io->cc;
1364
1365	/*
1366	 * A request from crypto driver backlog is going to be processed now,
1367	 * finish the completion and continue in crypt_convert().
1368	 * (Callback will be called for the second time for this request.)
1369	 */
1370	if (error == -EINPROGRESS) {
1371		complete(&ctx->restart);
1372		return;
1373	}
1374
1375	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1376		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1377
1378	if (error < 0)
1379		io->error = -EIO;
 
 
 
 
1380
1381	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1382
1383	if (!atomic_dec_and_test(&ctx->cc_pending))
1384		return;
1385
1386	if (bio_data_dir(io->base_bio) == READ)
1387		kcryptd_crypt_read_done(io);
1388	else
1389		kcryptd_crypt_write_io_submit(io, 1);
1390}
1391
1392static void kcryptd_crypt(struct work_struct *work)
1393{
1394	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1395
1396	if (bio_data_dir(io->base_bio) == READ)
1397		kcryptd_crypt_read_convert(io);
1398	else
1399		kcryptd_crypt_write_convert(io);
1400}
1401
1402static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1403{
1404	struct crypt_config *cc = io->cc;
1405
1406	INIT_WORK(&io->work, kcryptd_crypt);
1407	queue_work(cc->crypt_queue, &io->work);
1408}
1409
1410/*
1411 * Decode key from its hex representation
1412 */
1413static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1414{
1415	char buffer[3];
1416	unsigned int i;
1417
1418	buffer[2] = '\0';
1419
1420	for (i = 0; i < size; i++) {
1421		buffer[0] = *hex++;
1422		buffer[1] = *hex++;
1423
1424		if (kstrtou8(buffer, 16, &key[i]))
1425			return -EINVAL;
 
1426	}
1427
1428	if (*hex != '\0')
1429		return -EINVAL;
1430
1431	return 0;
1432}
1433
1434static void crypt_free_tfms(struct crypt_config *cc)
1435{
1436	unsigned i;
1437
1438	if (!cc->tfms)
1439		return;
1440
1441	for (i = 0; i < cc->tfms_count; i++)
1442		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1443			crypto_free_skcipher(cc->tfms[i]);
1444			cc->tfms[i] = NULL;
1445		}
1446
1447	kfree(cc->tfms);
1448	cc->tfms = NULL;
1449}
1450
1451static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
 
 
 
 
 
 
 
 
1452{
1453	unsigned i;
1454	int err;
1455
1456	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1457			   GFP_KERNEL);
1458	if (!cc->tfms)
1459		return -ENOMEM;
1460
1461	for (i = 0; i < cc->tfms_count; i++) {
1462		cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1463		if (IS_ERR(cc->tfms[i])) {
1464			err = PTR_ERR(cc->tfms[i]);
1465			crypt_free_tfms(cc);
1466			return err;
1467		}
1468	}
1469
1470	return 0;
1471}
1472
1473static int crypt_setkey_allcpus(struct crypt_config *cc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474{
1475	unsigned subkey_size;
1476	int err = 0, i, r;
1477
1478	/* Ignore extra keys (which are used for IV etc) */
1479	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
 
 
 
 
 
 
 
 
 
1480
1481	for (i = 0; i < cc->tfms_count; i++) {
1482		r = crypto_skcipher_setkey(cc->tfms[i],
1483					   cc->key + (i * subkey_size),
1484					   subkey_size);
 
 
 
 
 
 
 
 
1485		if (r)
1486			err = r;
1487	}
1488
 
 
 
1489	return err;
1490}
1491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492static int crypt_set_key(struct crypt_config *cc, char *key)
1493{
1494	int r = -EINVAL;
1495	int key_string_len = strlen(key);
1496
1497	/* The key size may not be changed. */
1498	if (cc->key_size != (key_string_len >> 1))
1499		goto out;
1500
1501	/* Hyphen (which gives a key_size of zero) means there is no key. */
1502	if (!cc->key_size && strcmp(key, "-"))
1503		goto out;
1504
1505	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
 
 
1506		goto out;
 
1507
1508	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 
 
 
 
 
1509
1510	r = crypt_setkey_allcpus(cc);
 
 
 
 
 
 
1511
1512out:
1513	/* Hex key string not needed after here, so wipe it. */
1514	memset(key, '0', key_string_len);
1515
1516	return r;
1517}
1518
1519static int crypt_wipe_key(struct crypt_config *cc)
1520{
 
 
1521	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 
 
 
 
1522	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1523
1524	return crypt_setkey_allcpus(cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525}
1526
1527static void crypt_dtr(struct dm_target *ti)
1528{
1529	struct crypt_config *cc = ti->private;
1530
1531	ti->private = NULL;
1532
1533	if (!cc)
1534		return;
1535
1536	if (cc->write_thread) {
1537		spin_lock_irq(&cc->write_thread_wait.lock);
1538		set_bit(DM_CRYPT_EXIT_THREAD, &cc->flags);
1539		wake_up_locked(&cc->write_thread_wait);
1540		spin_unlock_irq(&cc->write_thread_wait.lock);
1541		kthread_stop(cc->write_thread);
1542	}
1543
1544	if (cc->io_queue)
1545		destroy_workqueue(cc->io_queue);
1546	if (cc->crypt_queue)
1547		destroy_workqueue(cc->crypt_queue);
1548
1549	crypt_free_tfms(cc);
1550
1551	if (cc->bs)
1552		bioset_free(cc->bs);
1553
1554	mempool_destroy(cc->page_pool);
1555	mempool_destroy(cc->req_pool);
 
 
 
 
 
1556
1557	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1558		cc->iv_gen_ops->dtr(cc);
1559
1560	if (cc->dev)
1561		dm_put_device(ti, cc->dev);
1562
1563	kzfree(cc->cipher);
1564	kzfree(cc->cipher_string);
 
 
 
 
 
1565
1566	/* Must zero key material before freeing */
1567	kzfree(cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568}
1569
1570static int crypt_ctr_cipher(struct dm_target *ti,
1571			    char *cipher_in, char *key)
1572{
1573	struct crypt_config *cc = ti->private;
1574	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1575	char *cipher_api = NULL;
1576	int ret = -EINVAL;
1577	char dummy;
1578
1579	/* Convert to crypto api definition? */
1580	if (strchr(cipher_in, '(')) {
1581		ti->error = "Bad cipher specification";
1582		return -EINVAL;
1583	}
1584
1585	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1586	if (!cc->cipher_string)
1587		goto bad_mem;
1588
1589	/*
1590	 * Legacy dm-crypt cipher specification
1591	 * cipher[:keycount]-mode-iv:ivopts
1592	 */
1593	tmp = cipher_in;
1594	keycount = strsep(&tmp, "-");
1595	cipher = strsep(&keycount, ":");
1596
1597	if (!keycount)
1598		cc->tfms_count = 1;
1599	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1600		 !is_power_of_2(cc->tfms_count)) {
1601		ti->error = "Bad cipher key count specification";
1602		return -EINVAL;
1603	}
1604	cc->key_parts = cc->tfms_count;
1605	cc->key_extra_size = 0;
1606
1607	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1608	if (!cc->cipher)
1609		goto bad_mem;
1610
1611	chainmode = strsep(&tmp, "-");
1612	ivopts = strsep(&tmp, "-");
1613	ivmode = strsep(&ivopts, ":");
1614
1615	if (tmp)
1616		DMWARN("Ignoring unexpected additional cipher options");
1617
1618	/*
1619	 * For compatibility with the original dm-crypt mapping format, if
1620	 * only the cipher name is supplied, use cbc-plain.
1621	 */
1622	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1623		chainmode = "cbc";
1624		ivmode = "plain";
1625	}
1626
1627	if (strcmp(chainmode, "ecb") && !ivmode) {
1628		ti->error = "IV mechanism required";
1629		return -EINVAL;
1630	}
1631
1632	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1633	if (!cipher_api)
1634		goto bad_mem;
1635
1636	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1637		       "%s(%s)", chainmode, cipher);
1638	if (ret < 0) {
1639		kfree(cipher_api);
1640		goto bad_mem;
1641	}
1642
1643	/* Allocate cipher */
1644	ret = crypt_alloc_tfms(cc, cipher_api);
1645	if (ret < 0) {
1646		ti->error = "Error allocating crypto tfm";
1647		goto bad;
 
1648	}
 
1649
1650	/* Initialize IV */
1651	cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1652	if (cc->iv_size)
1653		/* at least a 64 bit sector number should fit in our buffer */
1654		cc->iv_size = max(cc->iv_size,
1655				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1656	else if (ivmode) {
1657		DMWARN("Selected cipher does not support IVs");
1658		ivmode = NULL;
1659	}
1660
1661	/* Choose ivmode, see comments at iv code. */
1662	if (ivmode == NULL)
1663		cc->iv_gen_ops = NULL;
1664	else if (strcmp(ivmode, "plain") == 0)
1665		cc->iv_gen_ops = &crypt_iv_plain_ops;
1666	else if (strcmp(ivmode, "plain64") == 0)
1667		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1668	else if (strcmp(ivmode, "essiv") == 0)
1669		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1670	else if (strcmp(ivmode, "benbi") == 0)
1671		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1672	else if (strcmp(ivmode, "null") == 0)
1673		cc->iv_gen_ops = &crypt_iv_null_ops;
1674	else if (strcmp(ivmode, "lmk") == 0) {
1675		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1676		/*
1677		 * Version 2 and 3 is recognised according
1678		 * to length of provided multi-key string.
1679		 * If present (version 3), last key is used as IV seed.
1680		 * All keys (including IV seed) are always the same size.
1681		 */
1682		if (cc->key_size % cc->key_parts) {
1683			cc->key_parts++;
1684			cc->key_extra_size = cc->key_size / cc->key_parts;
1685		}
1686	} else if (strcmp(ivmode, "tcw") == 0) {
1687		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1688		cc->key_parts += 2; /* IV + whitening */
1689		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1690	} else {
1691		ret = -EINVAL;
1692		ti->error = "Invalid IV mode";
1693		goto bad;
1694	}
1695
 
 
 
 
 
 
 
 
 
 
 
 
1696	/* Initialize and set key */
1697	ret = crypt_set_key(cc, key);
1698	if (ret < 0) {
1699		ti->error = "Error decoding and setting key";
1700		goto bad;
1701	}
1702
1703	/* Allocate IV */
1704	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1705		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1706		if (ret < 0) {
1707			ti->error = "Error creating IV";
1708			goto bad;
1709		}
1710	}
1711
1712	/* Initialize IV (set keys for ESSIV etc) */
1713	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1714		ret = cc->iv_gen_ops->init(cc);
1715		if (ret < 0) {
1716			ti->error = "Error initialising IV";
1717			goto bad;
1718		}
1719	}
1720
1721	ret = 0;
1722bad:
1723	kfree(cipher_api);
 
1724	return ret;
 
1725
1726bad_mem:
1727	ti->error = "Cannot allocate cipher strings";
1728	return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729}
1730
1731/*
1732 * Construct an encryption mapping:
1733 * <cipher> <key> <iv_offset> <dev_path> <start>
1734 */
1735static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1736{
1737	struct crypt_config *cc;
1738	unsigned int key_size, opt_params;
 
1739	unsigned long long tmpll;
1740	int ret;
1741	size_t iv_size_padding;
1742	struct dm_arg_set as;
1743	const char *opt_string;
1744	char dummy;
1745
1746	static struct dm_arg _args[] = {
1747		{0, 3, "Invalid number of feature args"},
1748	};
1749
1750	if (argc < 5) {
1751		ti->error = "Not enough arguments";
1752		return -EINVAL;
1753	}
1754
1755	key_size = strlen(argv[1]) >> 1;
 
 
 
 
1756
1757	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1758	if (!cc) {
1759		ti->error = "Cannot allocate encryption context";
1760		return -ENOMEM;
1761	}
1762	cc->key_size = key_size;
 
 
1763
1764	ti->private = cc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1766	if (ret < 0)
1767		goto bad;
1768
1769	cc->dmreq_start = sizeof(struct skcipher_request);
1770	cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
 
 
 
 
 
 
 
1771	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1772
1773	if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1774		/* Allocate the padding exactly */
1775		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1776				& crypto_skcipher_alignmask(any_tfm(cc));
1777	} else {
1778		/*
1779		 * If the cipher requires greater alignment than kmalloc
1780		 * alignment, we don't know the exact position of the
1781		 * initialization vector. We must assume worst case.
1782		 */
1783		iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1784	}
1785
1786	ret = -ENOMEM;
1787	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1788			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
 
 
 
 
 
 
 
1789	if (!cc->req_pool) {
1790		ti->error = "Cannot allocate crypt request mempool";
1791		goto bad;
1792	}
1793
1794	cc->per_bio_data_size = ti->per_io_data_size =
1795		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1796		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1797		      ARCH_KMALLOC_MINALIGN);
1798
1799	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1800	if (!cc->page_pool) {
1801		ti->error = "Cannot allocate page mempool";
1802		goto bad;
1803	}
1804
1805	cc->bs = bioset_create(MIN_IOS, 0);
1806	if (!cc->bs) {
1807		ti->error = "Cannot allocate crypt bioset";
1808		goto bad;
1809	}
1810
1811	mutex_init(&cc->bio_alloc_lock);
1812
1813	ret = -EINVAL;
1814	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
 
1815		ti->error = "Invalid iv_offset sector";
1816		goto bad;
1817	}
1818	cc->iv_offset = tmpll;
1819
1820	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1821	if (ret) {
1822		ti->error = "Device lookup failed";
1823		goto bad;
1824	}
1825
1826	ret = -EINVAL;
1827	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1828		ti->error = "Invalid device sector";
1829		goto bad;
1830	}
1831	cc->start = tmpll;
1832
1833	argv += 5;
1834	argc -= 5;
1835
1836	/* Optional parameters */
1837	if (argc) {
1838		as.argc = argc;
1839		as.argv = argv;
1840
1841		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1842		if (ret)
1843			goto bad;
1844
1845		ret = -EINVAL;
1846		while (opt_params--) {
1847			opt_string = dm_shift_arg(&as);
1848			if (!opt_string) {
1849				ti->error = "Not enough feature arguments";
1850				goto bad;
1851			}
1852
1853			if (!strcasecmp(opt_string, "allow_discards"))
1854				ti->num_discard_bios = 1;
1855
1856			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1857				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1858
1859			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1860				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1861
1862			else {
1863				ti->error = "Invalid feature arguments";
1864				goto bad;
1865			}
1866		}
 
 
1867	}
1868
1869	ret = -ENOMEM;
1870	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1871	if (!cc->io_queue) {
1872		ti->error = "Couldn't create kcryptd io queue";
1873		goto bad;
1874	}
1875
1876	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1877		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1878	else
1879		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
 
1880						  num_online_cpus());
1881	if (!cc->crypt_queue) {
1882		ti->error = "Couldn't create kcryptd queue";
1883		goto bad;
1884	}
1885
1886	init_waitqueue_head(&cc->write_thread_wait);
1887	cc->write_tree = RB_ROOT;
1888
1889	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1890	if (IS_ERR(cc->write_thread)) {
1891		ret = PTR_ERR(cc->write_thread);
1892		cc->write_thread = NULL;
1893		ti->error = "Couldn't spawn write thread";
1894		goto bad;
1895	}
1896	wake_up_process(cc->write_thread);
1897
1898	ti->num_flush_bios = 1;
1899	ti->discard_zeroes_data_unsupported = true;
1900
1901	return 0;
1902
1903bad:
1904	crypt_dtr(ti);
1905	return ret;
1906}
1907
1908static int crypt_map(struct dm_target *ti, struct bio *bio)
1909{
1910	struct dm_crypt_io *io;
1911	struct crypt_config *cc = ti->private;
1912
1913	/*
1914	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1915	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1916	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1917	 */
1918	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1919		bio->bi_bdev = cc->dev->bdev;
 
1920		if (bio_sectors(bio))
1921			bio->bi_iter.bi_sector = cc->start +
1922				dm_target_offset(ti, bio->bi_iter.bi_sector);
1923		return DM_MAPIO_REMAPPED;
1924	}
1925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1927	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1928	io->ctx.req = (struct skcipher_request *)(io + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929
1930	if (bio_data_dir(io->base_bio) == READ) {
1931		if (kcryptd_io_read(io, GFP_NOWAIT))
1932			kcryptd_queue_read(io);
1933	} else
1934		kcryptd_queue_crypt(io);
1935
1936	return DM_MAPIO_SUBMITTED;
1937}
1938
1939static void crypt_status(struct dm_target *ti, status_type_t type,
1940			 unsigned status_flags, char *result, unsigned maxlen)
1941{
1942	struct crypt_config *cc = ti->private;
1943	unsigned i, sz = 0;
1944	int num_feature_args = 0;
1945
1946	switch (type) {
1947	case STATUSTYPE_INFO:
1948		result[0] = '\0';
1949		break;
1950
1951	case STATUSTYPE_TABLE:
1952		DMEMIT("%s ", cc->cipher_string);
1953
1954		if (cc->key_size > 0)
1955			for (i = 0; i < cc->key_size; i++)
1956				DMEMIT("%02x", cc->key[i]);
1957		else
 
 
 
1958			DMEMIT("-");
1959
1960		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1961				cc->dev->name, (unsigned long long)cc->start);
1962
1963		num_feature_args += !!ti->num_discard_bios;
1964		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1965		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
 
 
 
 
1966		if (num_feature_args) {
1967			DMEMIT(" %d", num_feature_args);
1968			if (ti->num_discard_bios)
1969				DMEMIT(" allow_discards");
1970			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1971				DMEMIT(" same_cpu_crypt");
1972			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1973				DMEMIT(" submit_from_crypt_cpus");
 
 
 
 
 
 
1974		}
1975
1976		break;
1977	}
1978}
1979
1980static void crypt_postsuspend(struct dm_target *ti)
1981{
1982	struct crypt_config *cc = ti->private;
1983
1984	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1985}
1986
1987static int crypt_preresume(struct dm_target *ti)
1988{
1989	struct crypt_config *cc = ti->private;
1990
1991	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1992		DMERR("aborting resume - crypt key is not set.");
1993		return -EAGAIN;
1994	}
1995
1996	return 0;
1997}
1998
1999static void crypt_resume(struct dm_target *ti)
2000{
2001	struct crypt_config *cc = ti->private;
2002
2003	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2004}
2005
2006/* Message interface
2007 *	key set <key>
2008 *	key wipe
2009 */
2010static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
 
2011{
2012	struct crypt_config *cc = ti->private;
2013	int ret = -EINVAL;
2014
2015	if (argc < 2)
2016		goto error;
2017
2018	if (!strcasecmp(argv[0], "key")) {
2019		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2020			DMWARN("not suspended during key manipulation.");
2021			return -EINVAL;
2022		}
2023		if (argc == 3 && !strcasecmp(argv[1], "set")) {
 
 
 
 
 
 
 
2024			ret = crypt_set_key(cc, argv[2]);
2025			if (ret)
2026				return ret;
2027			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2028				ret = cc->iv_gen_ops->init(cc);
 
 
 
2029			return ret;
2030		}
2031		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2032			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2033				ret = cc->iv_gen_ops->wipe(cc);
2034				if (ret)
2035					return ret;
2036			}
2037			return crypt_wipe_key(cc);
2038		}
2039	}
2040
2041error:
2042	DMWARN("unrecognised message received.");
2043	return -EINVAL;
2044}
2045
2046static int crypt_iterate_devices(struct dm_target *ti,
2047				 iterate_devices_callout_fn fn, void *data)
2048{
2049	struct crypt_config *cc = ti->private;
2050
2051	return fn(ti, cc->dev, cc->start, ti->len, data);
2052}
2053
2054static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2055{
 
 
2056	/*
2057	 * Unfortunate constraint that is required to avoid the potential
2058	 * for exceeding underlying device's max_segments limits -- due to
2059	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2060	 * bio that are not as physically contiguous as the original bio.
2061	 */
2062	limits->max_segment_size = PAGE_SIZE;
 
 
 
 
 
 
2063}
2064
2065static struct target_type crypt_target = {
2066	.name   = "crypt",
2067	.version = {1, 14, 1},
2068	.module = THIS_MODULE,
2069	.ctr    = crypt_ctr,
2070	.dtr    = crypt_dtr,
2071	.map    = crypt_map,
2072	.status = crypt_status,
2073	.postsuspend = crypt_postsuspend,
2074	.preresume = crypt_preresume,
2075	.resume = crypt_resume,
2076	.message = crypt_message,
2077	.iterate_devices = crypt_iterate_devices,
2078	.io_hints = crypt_io_hints,
2079};
2080
2081static int __init dm_crypt_init(void)
2082{
2083	int r;
2084
2085	r = dm_register_target(&crypt_target);
2086	if (r < 0)
2087		DMERR("register failed %d", r);
2088
2089	return r;
2090}
2091
2092static void __exit dm_crypt_exit(void)
2093{
2094	dm_unregister_target(&crypt_target);
2095}
2096
2097module_init(dm_crypt_init);
2098module_exit(dm_crypt_exit);
2099
2100MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2101MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2102MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
  34#include <crypto/aead.h>
  35#include <crypto/authenc.h>
  36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  37#include <keys/user-type.h>
  38
  39#include <linux/device-mapper.h>
  40
  41#define DM_MSG_PREFIX "crypt"
  42
  43/*
  44 * context holding the current state of a multi-part conversion
  45 */
  46struct convert_context {
  47	struct completion restart;
  48	struct bio *bio_in;
  49	struct bio *bio_out;
  50	struct bvec_iter iter_in;
  51	struct bvec_iter iter_out;
  52	sector_t cc_sector;
  53	atomic_t cc_pending;
  54	union {
  55		struct skcipher_request *req;
  56		struct aead_request *req_aead;
  57	} r;
  58
  59};
  60
  61/*
  62 * per bio private data
  63 */
  64struct dm_crypt_io {
  65	struct crypt_config *cc;
  66	struct bio *base_bio;
  67	u8 *integrity_metadata;
  68	bool integrity_metadata_from_pool;
  69	struct work_struct work;
  70
  71	struct convert_context ctx;
  72
  73	atomic_t io_pending;
  74	blk_status_t error;
  75	sector_t sector;
  76
  77	struct rb_node rb_node;
  78} CRYPTO_MINALIGN_ATTR;
  79
  80struct dm_crypt_request {
  81	struct convert_context *ctx;
  82	struct scatterlist sg_in[4];
  83	struct scatterlist sg_out[4];
  84	sector_t iv_sector;
  85};
  86
  87struct crypt_config;
  88
  89struct crypt_iv_operations {
  90	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  91		   const char *opts);
  92	void (*dtr)(struct crypt_config *cc);
  93	int (*init)(struct crypt_config *cc);
  94	int (*wipe)(struct crypt_config *cc);
  95	int (*generator)(struct crypt_config *cc, u8 *iv,
  96			 struct dm_crypt_request *dmreq);
  97	int (*post)(struct crypt_config *cc, u8 *iv,
  98		    struct dm_crypt_request *dmreq);
  99};
 100
 101struct iv_essiv_private {
 102	struct crypto_ahash *hash_tfm;
 103	u8 *salt;
 104};
 105
 106struct iv_benbi_private {
 107	int shift;
 108};
 109
 110#define LMK_SEED_SIZE 64 /* hash + 0 */
 111struct iv_lmk_private {
 112	struct crypto_shash *hash_tfm;
 113	u8 *seed;
 114};
 115
 116#define TCW_WHITENING_SIZE 16
 117struct iv_tcw_private {
 118	struct crypto_shash *crc32_tfm;
 119	u8 *iv_seed;
 120	u8 *whitening;
 121};
 122
 123/*
 124 * Crypt: maps a linear range of a block device
 125 * and encrypts / decrypts at the same time.
 126 */
 127enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 128	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 129
 130enum cipher_flags {
 131	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cihper */
 132	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 133};
 134
 135/*
 136 * The fields in here must be read only after initialization.
 137 */
 138struct crypt_config {
 139	struct dm_dev *dev;
 140	sector_t start;
 141
 142	/*
 143	 * pool for per bio private data, crypto requests,
 144	 * encryption requeusts/buffer pages and integrity tags
 145	 */
 146	mempool_t *req_pool;
 147	mempool_t *page_pool;
 148	mempool_t *tag_pool;
 149	unsigned tag_pool_max_sectors;
 150
 151	struct percpu_counter n_allocated_pages;
 152
 153	struct bio_set *bs;
 154	struct mutex bio_alloc_lock;
 155
 156	struct workqueue_struct *io_queue;
 157	struct workqueue_struct *crypt_queue;
 158
 159	struct task_struct *write_thread;
 160	wait_queue_head_t write_thread_wait;
 161	struct rb_root write_tree;
 162
 163	char *cipher;
 164	char *cipher_string;
 165	char *cipher_auth;
 166	char *key_string;
 167
 168	const struct crypt_iv_operations *iv_gen_ops;
 169	union {
 170		struct iv_essiv_private essiv;
 171		struct iv_benbi_private benbi;
 172		struct iv_lmk_private lmk;
 173		struct iv_tcw_private tcw;
 174	} iv_gen_private;
 175	sector_t iv_offset;
 176	unsigned int iv_size;
 177	unsigned short int sector_size;
 178	unsigned char sector_shift;
 179
 180	/* ESSIV: struct crypto_cipher *essiv_tfm */
 181	void *iv_private;
 182	union {
 183		struct crypto_skcipher **tfms;
 184		struct crypto_aead **tfms_aead;
 185	} cipher_tfm;
 186	unsigned tfms_count;
 187	unsigned long cipher_flags;
 188
 189	/*
 190	 * Layout of each crypto request:
 191	 *
 192	 *   struct skcipher_request
 193	 *      context
 194	 *      padding
 195	 *   struct dm_crypt_request
 196	 *      padding
 197	 *   IV
 198	 *
 199	 * The padding is added so that dm_crypt_request and the IV are
 200	 * correctly aligned.
 201	 */
 202	unsigned int dmreq_start;
 203
 204	unsigned int per_bio_data_size;
 205
 206	unsigned long flags;
 207	unsigned int key_size;
 208	unsigned int key_parts;      /* independent parts in key buffer */
 209	unsigned int key_extra_size; /* additional keys length */
 210	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 211
 212	unsigned int integrity_tag_size;
 213	unsigned int integrity_iv_size;
 214	unsigned int on_disk_tag_size;
 215
 216	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 217	u8 key[0];
 218};
 219
 220#define MIN_IOS		64
 221#define MAX_TAG_SIZE	480
 222#define POOL_ENTRY_SIZE	512
 223
 224static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 225static unsigned dm_crypt_clients_n = 0;
 226static volatile unsigned long dm_crypt_pages_per_client;
 227#define DM_CRYPT_MEMORY_PERCENT			2
 228#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_PAGES * 16)
 229
 230static void clone_init(struct dm_crypt_io *, struct bio *);
 231static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 232static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 233					     struct scatterlist *sg);
 234
 235/*
 236 * Use this to access cipher attributes that are independent of the key.
 237 */
 238static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 239{
 240	return cc->cipher_tfm.tfms[0];
 241}
 242
 243static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 244{
 245	return cc->cipher_tfm.tfms_aead[0];
 246}
 247
 248/*
 249 * Different IV generation algorithms:
 250 *
 251 * plain: the initial vector is the 32-bit little-endian version of the sector
 252 *        number, padded with zeros if necessary.
 253 *
 254 * plain64: the initial vector is the 64-bit little-endian version of the sector
 255 *        number, padded with zeros if necessary.
 256 *
 257 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 258 *        number, padded with zeros if necessary.
 259 *
 260 * essiv: "encrypted sector|salt initial vector", the sector number is
 261 *        encrypted with the bulk cipher using a salt as key. The salt
 262 *        should be derived from the bulk cipher's key via hashing.
 263 *
 264 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 265 *        (needed for LRW-32-AES and possible other narrow block modes)
 266 *
 267 * null: the initial vector is always zero.  Provides compatibility with
 268 *       obsolete loop_fish2 devices.  Do not use for new devices.
 269 *
 270 * lmk:  Compatible implementation of the block chaining mode used
 271 *       by the Loop-AES block device encryption system
 272 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 273 *       It operates on full 512 byte sectors and uses CBC
 274 *       with an IV derived from the sector number, the data and
 275 *       optionally extra IV seed.
 276 *       This means that after decryption the first block
 277 *       of sector must be tweaked according to decrypted data.
 278 *       Loop-AES can use three encryption schemes:
 279 *         version 1: is plain aes-cbc mode
 280 *         version 2: uses 64 multikey scheme with lmk IV generator
 281 *         version 3: the same as version 2 with additional IV seed
 282 *                   (it uses 65 keys, last key is used as IV seed)
 283 *
 284 * tcw:  Compatible implementation of the block chaining mode used
 285 *       by the TrueCrypt device encryption system (prior to version 4.1).
 286 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 287 *       It operates on full 512 byte sectors and uses CBC
 288 *       with an IV derived from initial key and the sector number.
 289 *       In addition, whitening value is applied on every sector, whitening
 290 *       is calculated from initial key, sector number and mixed using CRC32.
 291 *       Note that this encryption scheme is vulnerable to watermarking attacks
 292 *       and should be used for old compatible containers access only.
 293 *
 294 * plumb: unimplemented, see:
 295 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 296 */
 297
 298static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 299			      struct dm_crypt_request *dmreq)
 300{
 301	memset(iv, 0, cc->iv_size);
 302	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 303
 304	return 0;
 305}
 306
 307static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 308				struct dm_crypt_request *dmreq)
 309{
 310	memset(iv, 0, cc->iv_size);
 311	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 312
 313	return 0;
 314}
 315
 316static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 317				  struct dm_crypt_request *dmreq)
 318{
 319	memset(iv, 0, cc->iv_size);
 320	/* iv_size is at least of size u64; usually it is 16 bytes */
 321	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 322
 323	return 0;
 324}
 325
 326/* Initialise ESSIV - compute salt but no local memory allocations */
 327static int crypt_iv_essiv_init(struct crypt_config *cc)
 328{
 329	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 330	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 331	struct scatterlist sg;
 332	struct crypto_cipher *essiv_tfm;
 333	int err;
 334
 335	sg_init_one(&sg, cc->key, cc->key_size);
 336	ahash_request_set_tfm(req, essiv->hash_tfm);
 337	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 338	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 339
 340	err = crypto_ahash_digest(req);
 341	ahash_request_zero(req);
 342	if (err)
 343		return err;
 344
 345	essiv_tfm = cc->iv_private;
 346
 347	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 348			    crypto_ahash_digestsize(essiv->hash_tfm));
 349	if (err)
 350		return err;
 351
 352	return 0;
 353}
 354
 355/* Wipe salt and reset key derived from volume key */
 356static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 357{
 358	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 359	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 360	struct crypto_cipher *essiv_tfm;
 361	int r, err = 0;
 362
 363	memset(essiv->salt, 0, salt_size);
 364
 365	essiv_tfm = cc->iv_private;
 366	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 367	if (r)
 368		err = r;
 369
 370	return err;
 371}
 372
 373/* Allocate the cipher for ESSIV */
 374static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
 375						struct dm_target *ti,
 376						const u8 *salt,
 377						unsigned int saltsize)
 378{
 379	struct crypto_cipher *essiv_tfm;
 380	int err;
 381
 382	/* Setup the essiv_tfm with the given salt */
 383	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 384	if (IS_ERR(essiv_tfm)) {
 385		ti->error = "Error allocating crypto tfm for ESSIV";
 386		return essiv_tfm;
 387	}
 388
 389	if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
 
 390		ti->error = "Block size of ESSIV cipher does "
 391			    "not match IV size of block cipher";
 392		crypto_free_cipher(essiv_tfm);
 393		return ERR_PTR(-EINVAL);
 394	}
 395
 396	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 397	if (err) {
 398		ti->error = "Failed to set key for ESSIV cipher";
 399		crypto_free_cipher(essiv_tfm);
 400		return ERR_PTR(err);
 401	}
 402
 403	return essiv_tfm;
 404}
 405
 406static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 407{
 408	struct crypto_cipher *essiv_tfm;
 409	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 410
 411	crypto_free_ahash(essiv->hash_tfm);
 412	essiv->hash_tfm = NULL;
 413
 414	kzfree(essiv->salt);
 415	essiv->salt = NULL;
 416
 417	essiv_tfm = cc->iv_private;
 418
 419	if (essiv_tfm)
 420		crypto_free_cipher(essiv_tfm);
 421
 422	cc->iv_private = NULL;
 423}
 424
 425static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 426			      const char *opts)
 427{
 428	struct crypto_cipher *essiv_tfm = NULL;
 429	struct crypto_ahash *hash_tfm = NULL;
 430	u8 *salt = NULL;
 431	int err;
 432
 433	if (!opts) {
 434		ti->error = "Digest algorithm missing for ESSIV mode";
 435		return -EINVAL;
 436	}
 437
 438	/* Allocate hash algorithm */
 439	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 440	if (IS_ERR(hash_tfm)) {
 441		ti->error = "Error initializing ESSIV hash";
 442		err = PTR_ERR(hash_tfm);
 443		goto bad;
 444	}
 445
 446	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 447	if (!salt) {
 448		ti->error = "Error kmallocing salt storage in ESSIV";
 449		err = -ENOMEM;
 450		goto bad;
 451	}
 452
 453	cc->iv_gen_private.essiv.salt = salt;
 454	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 455
 456	essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
 457				       crypto_ahash_digestsize(hash_tfm));
 458	if (IS_ERR(essiv_tfm)) {
 459		crypt_iv_essiv_dtr(cc);
 460		return PTR_ERR(essiv_tfm);
 461	}
 462	cc->iv_private = essiv_tfm;
 463
 464	return 0;
 465
 466bad:
 467	if (hash_tfm && !IS_ERR(hash_tfm))
 468		crypto_free_ahash(hash_tfm);
 469	kfree(salt);
 470	return err;
 471}
 472
 473static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 474			      struct dm_crypt_request *dmreq)
 475{
 476	struct crypto_cipher *essiv_tfm = cc->iv_private;
 477
 478	memset(iv, 0, cc->iv_size);
 479	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 480	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 481
 482	return 0;
 483}
 484
 485static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 486			      const char *opts)
 487{
 488	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 489	int log = ilog2(bs);
 490
 491	/* we need to calculate how far we must shift the sector count
 492	 * to get the cipher block count, we use this shift in _gen */
 493
 494	if (1 << log != bs) {
 495		ti->error = "cypher blocksize is not a power of 2";
 496		return -EINVAL;
 497	}
 498
 499	if (log > 9) {
 500		ti->error = "cypher blocksize is > 512";
 501		return -EINVAL;
 502	}
 503
 504	cc->iv_gen_private.benbi.shift = 9 - log;
 505
 506	return 0;
 507}
 508
 509static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 510{
 511}
 512
 513static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 514			      struct dm_crypt_request *dmreq)
 515{
 516	__be64 val;
 517
 518	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 519
 520	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 521	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 522
 523	return 0;
 524}
 525
 526static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 527			     struct dm_crypt_request *dmreq)
 528{
 529	memset(iv, 0, cc->iv_size);
 530
 531	return 0;
 532}
 533
 534static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 535{
 536	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 537
 538	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 539		crypto_free_shash(lmk->hash_tfm);
 540	lmk->hash_tfm = NULL;
 541
 542	kzfree(lmk->seed);
 543	lmk->seed = NULL;
 544}
 545
 546static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 547			    const char *opts)
 548{
 549	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 550
 551	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 552		ti->error = "Unsupported sector size for LMK";
 553		return -EINVAL;
 554	}
 555
 556	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 557	if (IS_ERR(lmk->hash_tfm)) {
 558		ti->error = "Error initializing LMK hash";
 559		return PTR_ERR(lmk->hash_tfm);
 560	}
 561
 562	/* No seed in LMK version 2 */
 563	if (cc->key_parts == cc->tfms_count) {
 564		lmk->seed = NULL;
 565		return 0;
 566	}
 567
 568	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 569	if (!lmk->seed) {
 570		crypt_iv_lmk_dtr(cc);
 571		ti->error = "Error kmallocing seed storage in LMK";
 572		return -ENOMEM;
 573	}
 574
 575	return 0;
 576}
 577
 578static int crypt_iv_lmk_init(struct crypt_config *cc)
 579{
 580	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 581	int subkey_size = cc->key_size / cc->key_parts;
 582
 583	/* LMK seed is on the position of LMK_KEYS + 1 key */
 584	if (lmk->seed)
 585		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 586		       crypto_shash_digestsize(lmk->hash_tfm));
 587
 588	return 0;
 589}
 590
 591static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 592{
 593	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 594
 595	if (lmk->seed)
 596		memset(lmk->seed, 0, LMK_SEED_SIZE);
 597
 598	return 0;
 599}
 600
 601static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 602			    struct dm_crypt_request *dmreq,
 603			    u8 *data)
 604{
 605	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 606	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 607	struct md5_state md5state;
 608	__le32 buf[4];
 609	int i, r;
 610
 611	desc->tfm = lmk->hash_tfm;
 612	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 613
 614	r = crypto_shash_init(desc);
 615	if (r)
 616		return r;
 617
 618	if (lmk->seed) {
 619		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 620		if (r)
 621			return r;
 622	}
 623
 624	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 625	r = crypto_shash_update(desc, data + 16, 16 * 31);
 626	if (r)
 627		return r;
 628
 629	/* Sector is cropped to 56 bits here */
 630	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 631	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 632	buf[2] = cpu_to_le32(4024);
 633	buf[3] = 0;
 634	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 635	if (r)
 636		return r;
 637
 638	/* No MD5 padding here */
 639	r = crypto_shash_export(desc, &md5state);
 640	if (r)
 641		return r;
 642
 643	for (i = 0; i < MD5_HASH_WORDS; i++)
 644		__cpu_to_le32s(&md5state.hash[i]);
 645	memcpy(iv, &md5state.hash, cc->iv_size);
 646
 647	return 0;
 648}
 649
 650static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 651			    struct dm_crypt_request *dmreq)
 652{
 653	struct scatterlist *sg;
 654	u8 *src;
 655	int r = 0;
 656
 657	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 658		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 659		src = kmap_atomic(sg_page(sg));
 660		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 661		kunmap_atomic(src);
 662	} else
 663		memset(iv, 0, cc->iv_size);
 664
 665	return r;
 666}
 667
 668static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 669			     struct dm_crypt_request *dmreq)
 670{
 671	struct scatterlist *sg;
 672	u8 *dst;
 673	int r;
 674
 675	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 676		return 0;
 677
 678	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 679	dst = kmap_atomic(sg_page(sg));
 680	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 681
 682	/* Tweak the first block of plaintext sector */
 683	if (!r)
 684		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 685
 686	kunmap_atomic(dst);
 687	return r;
 688}
 689
 690static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 691{
 692	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 693
 694	kzfree(tcw->iv_seed);
 695	tcw->iv_seed = NULL;
 696	kzfree(tcw->whitening);
 697	tcw->whitening = NULL;
 698
 699	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 700		crypto_free_shash(tcw->crc32_tfm);
 701	tcw->crc32_tfm = NULL;
 702}
 703
 704static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 705			    const char *opts)
 706{
 707	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 708
 709	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 710		ti->error = "Unsupported sector size for TCW";
 711		return -EINVAL;
 712	}
 713
 714	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 715		ti->error = "Wrong key size for TCW";
 716		return -EINVAL;
 717	}
 718
 719	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 720	if (IS_ERR(tcw->crc32_tfm)) {
 721		ti->error = "Error initializing CRC32 in TCW";
 722		return PTR_ERR(tcw->crc32_tfm);
 723	}
 724
 725	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 726	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 727	if (!tcw->iv_seed || !tcw->whitening) {
 728		crypt_iv_tcw_dtr(cc);
 729		ti->error = "Error allocating seed storage in TCW";
 730		return -ENOMEM;
 731	}
 732
 733	return 0;
 734}
 735
 736static int crypt_iv_tcw_init(struct crypt_config *cc)
 737{
 738	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 739	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 740
 741	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 742	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 743	       TCW_WHITENING_SIZE);
 744
 745	return 0;
 746}
 747
 748static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 749{
 750	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 751
 752	memset(tcw->iv_seed, 0, cc->iv_size);
 753	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 754
 755	return 0;
 756}
 757
 758static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 759				  struct dm_crypt_request *dmreq,
 760				  u8 *data)
 761{
 762	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 763	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 764	u8 buf[TCW_WHITENING_SIZE];
 765	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 766	int i, r;
 767
 768	/* xor whitening with sector number */
 769	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 770	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 
 771
 772	/* calculate crc32 for every 32bit part and xor it */
 773	desc->tfm = tcw->crc32_tfm;
 774	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 775	for (i = 0; i < 4; i++) {
 776		r = crypto_shash_init(desc);
 777		if (r)
 778			goto out;
 779		r = crypto_shash_update(desc, &buf[i * 4], 4);
 780		if (r)
 781			goto out;
 782		r = crypto_shash_final(desc, &buf[i * 4]);
 783		if (r)
 784			goto out;
 785	}
 786	crypto_xor(&buf[0], &buf[12], 4);
 787	crypto_xor(&buf[4], &buf[8], 4);
 788
 789	/* apply whitening (8 bytes) to whole sector */
 790	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 791		crypto_xor(data + i * 8, buf, 8);
 792out:
 793	memzero_explicit(buf, sizeof(buf));
 794	return r;
 795}
 796
 797static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 798			    struct dm_crypt_request *dmreq)
 799{
 800	struct scatterlist *sg;
 801	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 802	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 803	u8 *src;
 804	int r = 0;
 805
 806	/* Remove whitening from ciphertext */
 807	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 808		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 809		src = kmap_atomic(sg_page(sg));
 810		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 811		kunmap_atomic(src);
 812	}
 813
 814	/* Calculate IV */
 815	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 
 816	if (cc->iv_size > 8)
 817		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 818			       cc->iv_size - 8);
 819
 820	return r;
 821}
 822
 823static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 824			     struct dm_crypt_request *dmreq)
 825{
 826	struct scatterlist *sg;
 827	u8 *dst;
 828	int r;
 829
 830	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 831		return 0;
 832
 833	/* Apply whitening on ciphertext */
 834	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 835	dst = kmap_atomic(sg_page(sg));
 836	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 837	kunmap_atomic(dst);
 838
 839	return r;
 840}
 841
 842static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 843				struct dm_crypt_request *dmreq)
 844{
 845	/* Used only for writes, there must be an additional space to store IV */
 846	get_random_bytes(iv, cc->iv_size);
 847	return 0;
 848}
 849
 850static const struct crypt_iv_operations crypt_iv_plain_ops = {
 851	.generator = crypt_iv_plain_gen
 852};
 853
 854static const struct crypt_iv_operations crypt_iv_plain64_ops = {
 855	.generator = crypt_iv_plain64_gen
 856};
 857
 858static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
 859	.generator = crypt_iv_plain64be_gen
 860};
 861
 862static const struct crypt_iv_operations crypt_iv_essiv_ops = {
 863	.ctr       = crypt_iv_essiv_ctr,
 864	.dtr       = crypt_iv_essiv_dtr,
 865	.init      = crypt_iv_essiv_init,
 866	.wipe      = crypt_iv_essiv_wipe,
 867	.generator = crypt_iv_essiv_gen
 868};
 869
 870static const struct crypt_iv_operations crypt_iv_benbi_ops = {
 871	.ctr	   = crypt_iv_benbi_ctr,
 872	.dtr	   = crypt_iv_benbi_dtr,
 873	.generator = crypt_iv_benbi_gen
 874};
 875
 876static const struct crypt_iv_operations crypt_iv_null_ops = {
 877	.generator = crypt_iv_null_gen
 878};
 879
 880static const struct crypt_iv_operations crypt_iv_lmk_ops = {
 881	.ctr	   = crypt_iv_lmk_ctr,
 882	.dtr	   = crypt_iv_lmk_dtr,
 883	.init	   = crypt_iv_lmk_init,
 884	.wipe	   = crypt_iv_lmk_wipe,
 885	.generator = crypt_iv_lmk_gen,
 886	.post	   = crypt_iv_lmk_post
 887};
 888
 889static const struct crypt_iv_operations crypt_iv_tcw_ops = {
 890	.ctr	   = crypt_iv_tcw_ctr,
 891	.dtr	   = crypt_iv_tcw_dtr,
 892	.init	   = crypt_iv_tcw_init,
 893	.wipe	   = crypt_iv_tcw_wipe,
 894	.generator = crypt_iv_tcw_gen,
 895	.post	   = crypt_iv_tcw_post
 896};
 897
 898static struct crypt_iv_operations crypt_iv_random_ops = {
 899	.generator = crypt_iv_random_gen
 900};
 901
 902/*
 903 * Integrity extensions
 904 */
 905static bool crypt_integrity_aead(struct crypt_config *cc)
 906{
 907	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
 908}
 909
 910static bool crypt_integrity_hmac(struct crypt_config *cc)
 911{
 912	return crypt_integrity_aead(cc) && cc->key_mac_size;
 913}
 914
 915/* Get sg containing data */
 916static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 917					     struct scatterlist *sg)
 918{
 919	if (unlikely(crypt_integrity_aead(cc)))
 920		return &sg[2];
 921
 922	return sg;
 923}
 924
 925static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
 926{
 927	struct bio_integrity_payload *bip;
 928	unsigned int tag_len;
 929	int ret;
 930
 931	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
 932		return 0;
 933
 934	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
 935	if (IS_ERR(bip))
 936		return PTR_ERR(bip);
 937
 938	tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
 939
 940	bip->bip_iter.bi_size = tag_len;
 941	bip->bip_iter.bi_sector = io->cc->start + io->sector;
 942
 943	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
 944				     tag_len, offset_in_page(io->integrity_metadata));
 945	if (unlikely(ret != tag_len))
 946		return -ENOMEM;
 947
 948	return 0;
 949}
 950
 951static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
 952{
 953#ifdef CONFIG_BLK_DEV_INTEGRITY
 954	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
 955
 956	/* From now we require underlying device with our integrity profile */
 957	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
 958		ti->error = "Integrity profile not supported.";
 959		return -EINVAL;
 960	}
 961
 962	if (bi->tag_size != cc->on_disk_tag_size ||
 963	    bi->tuple_size != cc->on_disk_tag_size) {
 964		ti->error = "Integrity profile tag size mismatch.";
 965		return -EINVAL;
 966	}
 967	if (1 << bi->interval_exp != cc->sector_size) {
 968		ti->error = "Integrity profile sector size mismatch.";
 969		return -EINVAL;
 970	}
 971
 972	if (crypt_integrity_aead(cc)) {
 973		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
 974		DMINFO("Integrity AEAD, tag size %u, IV size %u.",
 975		       cc->integrity_tag_size, cc->integrity_iv_size);
 976
 977		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
 978			ti->error = "Integrity AEAD auth tag size is not supported.";
 979			return -EINVAL;
 980		}
 981	} else if (cc->integrity_iv_size)
 982		DMINFO("Additional per-sector space %u bytes for IV.",
 983		       cc->integrity_iv_size);
 984
 985	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
 986		ti->error = "Not enough space for integrity tag in the profile.";
 987		return -EINVAL;
 988	}
 989
 990	return 0;
 991#else
 992	ti->error = "Integrity profile not supported.";
 993	return -EINVAL;
 994#endif
 995}
 996
 997static void crypt_convert_init(struct crypt_config *cc,
 998			       struct convert_context *ctx,
 999			       struct bio *bio_out, struct bio *bio_in,
1000			       sector_t sector)
1001{
1002	ctx->bio_in = bio_in;
1003	ctx->bio_out = bio_out;
1004	if (bio_in)
1005		ctx->iter_in = bio_in->bi_iter;
1006	if (bio_out)
1007		ctx->iter_out = bio_out->bi_iter;
1008	ctx->cc_sector = sector + cc->iv_offset;
1009	init_completion(&ctx->restart);
1010}
1011
1012static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1013					     void *req)
1014{
1015	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1016}
1017
1018static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 
1019{
1020	return (void *)((char *)dmreq - cc->dmreq_start);
1021}
1022
1023static u8 *iv_of_dmreq(struct crypt_config *cc,
1024		       struct dm_crypt_request *dmreq)
1025{
1026	if (crypt_integrity_aead(cc))
1027		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1028			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1029	else
1030		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1031			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1032}
1033
1034static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1035		       struct dm_crypt_request *dmreq)
1036{
1037	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1038}
1039
1040static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1041		       struct dm_crypt_request *dmreq)
1042{
1043	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1044	return (uint64_t*) ptr;
1045}
1046
1047static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1048		       struct dm_crypt_request *dmreq)
1049{
1050	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1051		  cc->iv_size + sizeof(uint64_t);
1052	return (unsigned int*)ptr;
1053}
1054
1055static void *tag_from_dmreq(struct crypt_config *cc,
1056				struct dm_crypt_request *dmreq)
1057{
1058	struct convert_context *ctx = dmreq->ctx;
1059	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1060
1061	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1062		cc->on_disk_tag_size];
1063}
1064
1065static void *iv_tag_from_dmreq(struct crypt_config *cc,
1066			       struct dm_crypt_request *dmreq)
1067{
1068	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1069}
1070
1071static int crypt_convert_block_aead(struct crypt_config *cc,
1072				     struct convert_context *ctx,
1073				     struct aead_request *req,
1074				     unsigned int tag_offset)
1075{
1076	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1077	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1078	struct dm_crypt_request *dmreq;
1079	u8 *iv, *org_iv, *tag_iv, *tag;
1080	uint64_t *sector;
1081	int r = 0;
1082
1083	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1084
1085	/* Reject unexpected unaligned bio. */
1086	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1087		return -EIO;
1088
1089	dmreq = dmreq_of_req(cc, req);
1090	dmreq->iv_sector = ctx->cc_sector;
1091	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1092		dmreq->iv_sector >>= cc->sector_shift;
1093	dmreq->ctx = ctx;
1094
1095	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1096
1097	sector = org_sector_of_dmreq(cc, dmreq);
1098	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1099
1100	iv = iv_of_dmreq(cc, dmreq);
1101	org_iv = org_iv_of_dmreq(cc, dmreq);
1102	tag = tag_from_dmreq(cc, dmreq);
1103	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1104
1105	/* AEAD request:
1106	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1107	 *  | (authenticated) | (auth+encryption) |              |
1108	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1109	 */
1110	sg_init_table(dmreq->sg_in, 4);
1111	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1112	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1113	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1114	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1115
1116	sg_init_table(dmreq->sg_out, 4);
1117	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1118	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1119	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1120	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1121
1122	if (cc->iv_gen_ops) {
1123		/* For READs use IV stored in integrity metadata */
1124		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1125			memcpy(org_iv, tag_iv, cc->iv_size);
1126		} else {
1127			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1128			if (r < 0)
1129				return r;
1130			/* Store generated IV in integrity metadata */
1131			if (cc->integrity_iv_size)
1132				memcpy(tag_iv, org_iv, cc->iv_size);
1133		}
1134		/* Working copy of IV, to be modified in crypto API */
1135		memcpy(iv, org_iv, cc->iv_size);
1136	}
1137
1138	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1139	if (bio_data_dir(ctx->bio_in) == WRITE) {
1140		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1141				       cc->sector_size, iv);
1142		r = crypto_aead_encrypt(req);
1143		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1144			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1145			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1146	} else {
1147		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1148				       cc->sector_size + cc->integrity_tag_size, iv);
1149		r = crypto_aead_decrypt(req);
1150	}
1151
1152	if (r == -EBADMSG)
1153		DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1154			    (unsigned long long)le64_to_cpu(*sector));
1155
1156	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1157		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1158
1159	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1160	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1161
1162	return r;
1163}
1164
1165static int crypt_convert_block_skcipher(struct crypt_config *cc,
1166					struct convert_context *ctx,
1167					struct skcipher_request *req,
1168					unsigned int tag_offset)
1169{
1170	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1171	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1172	struct scatterlist *sg_in, *sg_out;
1173	struct dm_crypt_request *dmreq;
1174	u8 *iv, *org_iv, *tag_iv;
1175	uint64_t *sector;
1176	int r = 0;
1177
1178	/* Reject unexpected unaligned bio. */
1179	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1180		return -EIO;
1181
1182	dmreq = dmreq_of_req(cc, req);
1183	dmreq->iv_sector = ctx->cc_sector;
1184	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1185		dmreq->iv_sector >>= cc->sector_shift;
1186	dmreq->ctx = ctx;
 
 
 
 
 
 
 
1187
1188	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1189
1190	iv = iv_of_dmreq(cc, dmreq);
1191	org_iv = org_iv_of_dmreq(cc, dmreq);
1192	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1193
1194	sector = org_sector_of_dmreq(cc, dmreq);
1195	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1196
1197	/* For skcipher we use only the first sg item */
1198	sg_in  = &dmreq->sg_in[0];
1199	sg_out = &dmreq->sg_out[0];
1200
1201	sg_init_table(sg_in, 1);
1202	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1203
1204	sg_init_table(sg_out, 1);
1205	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1206
1207	if (cc->iv_gen_ops) {
1208		/* For READs use IV stored in integrity metadata */
1209		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1210			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1211		} else {
1212			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1213			if (r < 0)
1214				return r;
1215			/* Store generated IV in integrity metadata */
1216			if (cc->integrity_iv_size)
1217				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1218		}
1219		/* Working copy of IV, to be modified in crypto API */
1220		memcpy(iv, org_iv, cc->iv_size);
1221	}
1222
1223	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
 
1224
1225	if (bio_data_dir(ctx->bio_in) == WRITE)
1226		r = crypto_skcipher_encrypt(req);
1227	else
1228		r = crypto_skcipher_decrypt(req);
1229
1230	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1231		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1232
1233	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1234	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1235
1236	return r;
1237}
1238
1239static void kcryptd_async_done(struct crypto_async_request *async_req,
1240			       int error);
1241
1242static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1243				     struct convert_context *ctx)
1244{
1245	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1246
1247	if (!ctx->r.req)
1248		ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
1249
1250	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1251
1252	/*
1253	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1254	 * requests if driver request queue is full.
1255	 */
1256	skcipher_request_set_callback(ctx->r.req,
1257	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1258	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1259}
1260
1261static void crypt_alloc_req_aead(struct crypt_config *cc,
1262				 struct convert_context *ctx)
1263{
1264	if (!ctx->r.req_aead)
1265		ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
1266
1267	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1268
1269	/*
1270	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1271	 * requests if driver request queue is full.
1272	 */
1273	aead_request_set_callback(ctx->r.req_aead,
1274	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1275	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1276}
1277
1278static void crypt_alloc_req(struct crypt_config *cc,
1279			    struct convert_context *ctx)
1280{
1281	if (crypt_integrity_aead(cc))
1282		crypt_alloc_req_aead(cc, ctx);
1283	else
1284		crypt_alloc_req_skcipher(cc, ctx);
1285}
1286
1287static void crypt_free_req_skcipher(struct crypt_config *cc,
1288				    struct skcipher_request *req, struct bio *base_bio)
1289{
1290	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1291
1292	if ((struct skcipher_request *)(io + 1) != req)
1293		mempool_free(req, cc->req_pool);
1294}
1295
1296static void crypt_free_req_aead(struct crypt_config *cc,
1297				struct aead_request *req, struct bio *base_bio)
1298{
1299	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1300
1301	if ((struct aead_request *)(io + 1) != req)
1302		mempool_free(req, cc->req_pool);
1303}
1304
1305static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1306{
1307	if (crypt_integrity_aead(cc))
1308		crypt_free_req_aead(cc, req, base_bio);
1309	else
1310		crypt_free_req_skcipher(cc, req, base_bio);
1311}
1312
1313/*
1314 * Encrypt / decrypt data from one bio to another one (can be the same one)
1315 */
1316static blk_status_t crypt_convert(struct crypt_config *cc,
1317			 struct convert_context *ctx)
1318{
1319	unsigned int tag_offset = 0;
1320	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1321	int r;
1322
1323	atomic_set(&ctx->cc_pending, 1);
1324
1325	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1326
1327		crypt_alloc_req(cc, ctx);
 
1328		atomic_inc(&ctx->cc_pending);
1329
1330		if (crypt_integrity_aead(cc))
1331			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1332		else
1333			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1334
1335		switch (r) {
1336		/*
1337		 * The request was queued by a crypto driver
1338		 * but the driver request queue is full, let's wait.
1339		 */
1340		case -EBUSY:
1341			wait_for_completion(&ctx->restart);
1342			reinit_completion(&ctx->restart);
1343			/* fall through */
1344		/*
1345		 * The request is queued and processed asynchronously,
1346		 * completion function kcryptd_async_done() will be called.
1347		 */
1348		case -EINPROGRESS:
1349			ctx->r.req = NULL;
1350			ctx->cc_sector += sector_step;
1351			tag_offset++;
1352			continue;
1353		/*
1354		 * The request was already processed (synchronously).
1355		 */
1356		case 0:
1357			atomic_dec(&ctx->cc_pending);
1358			ctx->cc_sector += sector_step;
1359			tag_offset++;
1360			cond_resched();
1361			continue;
1362		/*
1363		 * There was a data integrity error.
1364		 */
1365		case -EBADMSG:
1366			atomic_dec(&ctx->cc_pending);
1367			return BLK_STS_PROTECTION;
1368		/*
1369		 * There was an error while processing the request.
1370		 */
1371		default:
1372			atomic_dec(&ctx->cc_pending);
1373			return BLK_STS_IOERR;
1374		}
1375	}
1376
1377	return 0;
1378}
1379
1380static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1381
1382/*
1383 * Generate a new unfragmented bio with the given size
1384 * This should never violate the device limitations (but only because
1385 * max_segment_size is being constrained to PAGE_SIZE).
1386 *
1387 * This function may be called concurrently. If we allocate from the mempool
1388 * concurrently, there is a possibility of deadlock. For example, if we have
1389 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1390 * the mempool concurrently, it may deadlock in a situation where both processes
1391 * have allocated 128 pages and the mempool is exhausted.
1392 *
1393 * In order to avoid this scenario we allocate the pages under a mutex.
1394 *
1395 * In order to not degrade performance with excessive locking, we try
1396 * non-blocking allocations without a mutex first but on failure we fallback
1397 * to blocking allocations with a mutex.
1398 */
1399static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1400{
1401	struct crypt_config *cc = io->cc;
1402	struct bio *clone;
1403	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1404	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1405	unsigned i, len, remaining_size;
1406	struct page *page;
 
1407
1408retry:
1409	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1410		mutex_lock(&cc->bio_alloc_lock);
1411
1412	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1413	if (!clone)
1414		goto out;
1415
1416	clone_init(io, clone);
1417
1418	remaining_size = size;
1419
1420	for (i = 0; i < nr_iovecs; i++) {
1421		page = mempool_alloc(cc->page_pool, gfp_mask);
1422		if (!page) {
1423			crypt_free_buffer_pages(cc, clone);
1424			bio_put(clone);
1425			gfp_mask |= __GFP_DIRECT_RECLAIM;
1426			goto retry;
1427		}
1428
1429		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1430
1431		bio_add_page(clone, page, len, 0);
 
 
 
 
 
1432
1433		remaining_size -= len;
1434	}
1435
1436	/* Allocate space for integrity tags */
1437	if (dm_crypt_integrity_io_alloc(io, clone)) {
1438		crypt_free_buffer_pages(cc, clone);
1439		bio_put(clone);
1440		clone = NULL;
1441	}
1442out:
1443	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1444		mutex_unlock(&cc->bio_alloc_lock);
1445
1446	return clone;
1447}
1448
1449static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1450{
1451	unsigned int i;
1452	struct bio_vec *bv;
1453
1454	bio_for_each_segment_all(bv, clone, i) {
1455		BUG_ON(!bv->bv_page);
1456		mempool_free(bv->bv_page, cc->page_pool);
 
1457	}
1458}
1459
1460static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1461			  struct bio *bio, sector_t sector)
1462{
1463	io->cc = cc;
1464	io->base_bio = bio;
1465	io->sector = sector;
1466	io->error = 0;
1467	io->ctx.r.req = NULL;
1468	io->integrity_metadata = NULL;
1469	io->integrity_metadata_from_pool = false;
1470	atomic_set(&io->io_pending, 0);
1471}
1472
1473static void crypt_inc_pending(struct dm_crypt_io *io)
1474{
1475	atomic_inc(&io->io_pending);
1476}
1477
1478/*
1479 * One of the bios was finished. Check for completion of
1480 * the whole request and correctly clean up the buffer.
1481 */
1482static void crypt_dec_pending(struct dm_crypt_io *io)
1483{
1484	struct crypt_config *cc = io->cc;
1485	struct bio *base_bio = io->base_bio;
1486	blk_status_t error = io->error;
1487
1488	if (!atomic_dec_and_test(&io->io_pending))
1489		return;
1490
1491	if (io->ctx.r.req)
1492		crypt_free_req(cc, io->ctx.r.req, base_bio);
1493
1494	if (unlikely(io->integrity_metadata_from_pool))
1495		mempool_free(io->integrity_metadata, io->cc->tag_pool);
1496	else
1497		kfree(io->integrity_metadata);
1498
1499	base_bio->bi_status = error;
1500	bio_endio(base_bio);
1501}
1502
1503/*
1504 * kcryptd/kcryptd_io:
1505 *
1506 * Needed because it would be very unwise to do decryption in an
1507 * interrupt context.
1508 *
1509 * kcryptd performs the actual encryption or decryption.
1510 *
1511 * kcryptd_io performs the IO submission.
1512 *
1513 * They must be separated as otherwise the final stages could be
1514 * starved by new requests which can block in the first stages due
1515 * to memory allocation.
1516 *
1517 * The work is done per CPU global for all dm-crypt instances.
1518 * They should not depend on each other and do not block.
1519 */
1520static void crypt_endio(struct bio *clone)
1521{
1522	struct dm_crypt_io *io = clone->bi_private;
1523	struct crypt_config *cc = io->cc;
1524	unsigned rw = bio_data_dir(clone);
1525	blk_status_t error;
1526
1527	/*
1528	 * free the processed pages
1529	 */
1530	if (rw == WRITE)
1531		crypt_free_buffer_pages(cc, clone);
1532
1533	error = clone->bi_status;
1534	bio_put(clone);
1535
1536	if (rw == READ && !error) {
1537		kcryptd_queue_crypt(io);
1538		return;
1539	}
1540
1541	if (unlikely(error))
1542		io->error = error;
1543
1544	crypt_dec_pending(io);
1545}
1546
1547static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1548{
1549	struct crypt_config *cc = io->cc;
1550
1551	clone->bi_private = io;
1552	clone->bi_end_io  = crypt_endio;
1553	bio_set_dev(clone, cc->dev->bdev);
1554	clone->bi_opf	  = io->base_bio->bi_opf;
1555}
1556
1557static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1558{
1559	struct crypt_config *cc = io->cc;
1560	struct bio *clone;
1561
1562	/*
1563	 * We need the original biovec array in order to decrypt
1564	 * the whole bio data *afterwards* -- thanks to immutable
1565	 * biovecs we don't need to worry about the block layer
1566	 * modifying the biovec array; so leverage bio_clone_fast().
1567	 */
1568	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1569	if (!clone)
1570		return 1;
1571
1572	crypt_inc_pending(io);
1573
1574	clone_init(io, clone);
1575	clone->bi_iter.bi_sector = cc->start + io->sector;
1576
1577	if (dm_crypt_integrity_io_alloc(io, clone)) {
1578		crypt_dec_pending(io);
1579		bio_put(clone);
1580		return 1;
1581	}
1582
1583	generic_make_request(clone);
1584	return 0;
1585}
1586
1587static void kcryptd_io_read_work(struct work_struct *work)
1588{
1589	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1590
1591	crypt_inc_pending(io);
1592	if (kcryptd_io_read(io, GFP_NOIO))
1593		io->error = BLK_STS_RESOURCE;
1594	crypt_dec_pending(io);
1595}
1596
1597static void kcryptd_queue_read(struct dm_crypt_io *io)
1598{
1599	struct crypt_config *cc = io->cc;
1600
1601	INIT_WORK(&io->work, kcryptd_io_read_work);
1602	queue_work(cc->io_queue, &io->work);
1603}
1604
1605static void kcryptd_io_write(struct dm_crypt_io *io)
1606{
1607	struct bio *clone = io->ctx.bio_out;
1608
1609	generic_make_request(clone);
1610}
1611
1612#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1613
1614static int dmcrypt_write(void *data)
1615{
1616	struct crypt_config *cc = data;
1617	struct dm_crypt_io *io;
1618
1619	while (1) {
1620		struct rb_root write_tree;
1621		struct blk_plug plug;
1622
1623		DECLARE_WAITQUEUE(wait, current);
1624
1625		spin_lock_irq(&cc->write_thread_wait.lock);
1626continue_locked:
1627
1628		if (!RB_EMPTY_ROOT(&cc->write_tree))
1629			goto pop_from_list;
1630
1631		set_current_state(TASK_INTERRUPTIBLE);
 
 
 
 
 
1632		__add_wait_queue(&cc->write_thread_wait, &wait);
1633
1634		spin_unlock_irq(&cc->write_thread_wait.lock);
1635
1636		if (unlikely(kthread_should_stop())) {
1637			set_current_state(TASK_RUNNING);
1638			remove_wait_queue(&cc->write_thread_wait, &wait);
1639			break;
1640		}
1641
1642		schedule();
1643
1644		set_current_state(TASK_RUNNING);
1645		spin_lock_irq(&cc->write_thread_wait.lock);
1646		__remove_wait_queue(&cc->write_thread_wait, &wait);
1647		goto continue_locked;
1648
1649pop_from_list:
1650		write_tree = cc->write_tree;
1651		cc->write_tree = RB_ROOT;
1652		spin_unlock_irq(&cc->write_thread_wait.lock);
1653
1654		BUG_ON(rb_parent(write_tree.rb_node));
1655
1656		/*
1657		 * Note: we cannot walk the tree here with rb_next because
1658		 * the structures may be freed when kcryptd_io_write is called.
1659		 */
1660		blk_start_plug(&plug);
1661		do {
1662			io = crypt_io_from_node(rb_first(&write_tree));
1663			rb_erase(&io->rb_node, &write_tree);
1664			kcryptd_io_write(io);
1665		} while (!RB_EMPTY_ROOT(&write_tree));
1666		blk_finish_plug(&plug);
1667	}
1668	return 0;
1669}
1670
1671static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1672{
1673	struct bio *clone = io->ctx.bio_out;
1674	struct crypt_config *cc = io->cc;
1675	unsigned long flags;
1676	sector_t sector;
1677	struct rb_node **rbp, *parent;
1678
1679	if (unlikely(io->error)) {
1680		crypt_free_buffer_pages(cc, clone);
1681		bio_put(clone);
1682		crypt_dec_pending(io);
1683		return;
1684	}
1685
1686	/* crypt_convert should have filled the clone bio */
1687	BUG_ON(io->ctx.iter_out.bi_size);
1688
1689	clone->bi_iter.bi_sector = cc->start + io->sector;
1690
1691	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1692		generic_make_request(clone);
1693		return;
1694	}
1695
1696	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1697	rbp = &cc->write_tree.rb_node;
1698	parent = NULL;
1699	sector = io->sector;
1700	while (*rbp) {
1701		parent = *rbp;
1702		if (sector < crypt_io_from_node(parent)->sector)
1703			rbp = &(*rbp)->rb_left;
1704		else
1705			rbp = &(*rbp)->rb_right;
1706	}
1707	rb_link_node(&io->rb_node, parent, rbp);
1708	rb_insert_color(&io->rb_node, &cc->write_tree);
1709
1710	wake_up_locked(&cc->write_thread_wait);
1711	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1712}
1713
1714static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1715{
1716	struct crypt_config *cc = io->cc;
1717	struct bio *clone;
1718	int crypt_finished;
1719	sector_t sector = io->sector;
1720	blk_status_t r;
1721
1722	/*
1723	 * Prevent io from disappearing until this function completes.
1724	 */
1725	crypt_inc_pending(io);
1726	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1727
1728	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1729	if (unlikely(!clone)) {
1730		io->error = BLK_STS_IOERR;
1731		goto dec;
1732	}
1733
1734	io->ctx.bio_out = clone;
1735	io->ctx.iter_out = clone->bi_iter;
1736
1737	sector += bio_sectors(clone);
1738
1739	crypt_inc_pending(io);
1740	r = crypt_convert(cc, &io->ctx);
1741	if (r)
1742		io->error = r;
1743	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1744
1745	/* Encryption was already finished, submit io now */
1746	if (crypt_finished) {
1747		kcryptd_crypt_write_io_submit(io, 0);
1748		io->sector = sector;
1749	}
1750
1751dec:
1752	crypt_dec_pending(io);
1753}
1754
1755static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1756{
1757	crypt_dec_pending(io);
1758}
1759
1760static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1761{
1762	struct crypt_config *cc = io->cc;
1763	blk_status_t r;
1764
1765	crypt_inc_pending(io);
1766
1767	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1768			   io->sector);
1769
1770	r = crypt_convert(cc, &io->ctx);
1771	if (r)
1772		io->error = r;
1773
1774	if (atomic_dec_and_test(&io->ctx.cc_pending))
1775		kcryptd_crypt_read_done(io);
1776
1777	crypt_dec_pending(io);
1778}
1779
1780static void kcryptd_async_done(struct crypto_async_request *async_req,
1781			       int error)
1782{
1783	struct dm_crypt_request *dmreq = async_req->data;
1784	struct convert_context *ctx = dmreq->ctx;
1785	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1786	struct crypt_config *cc = io->cc;
1787
1788	/*
1789	 * A request from crypto driver backlog is going to be processed now,
1790	 * finish the completion and continue in crypt_convert().
1791	 * (Callback will be called for the second time for this request.)
1792	 */
1793	if (error == -EINPROGRESS) {
1794		complete(&ctx->restart);
1795		return;
1796	}
1797
1798	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1799		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1800
1801	if (error == -EBADMSG) {
1802		DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1803			    (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1804		io->error = BLK_STS_PROTECTION;
1805	} else if (error < 0)
1806		io->error = BLK_STS_IOERR;
1807
1808	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1809
1810	if (!atomic_dec_and_test(&ctx->cc_pending))
1811		return;
1812
1813	if (bio_data_dir(io->base_bio) == READ)
1814		kcryptd_crypt_read_done(io);
1815	else
1816		kcryptd_crypt_write_io_submit(io, 1);
1817}
1818
1819static void kcryptd_crypt(struct work_struct *work)
1820{
1821	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1822
1823	if (bio_data_dir(io->base_bio) == READ)
1824		kcryptd_crypt_read_convert(io);
1825	else
1826		kcryptd_crypt_write_convert(io);
1827}
1828
1829static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1830{
1831	struct crypt_config *cc = io->cc;
1832
1833	INIT_WORK(&io->work, kcryptd_crypt);
1834	queue_work(cc->crypt_queue, &io->work);
1835}
1836
1837static void crypt_free_tfms_aead(struct crypt_config *cc)
 
 
 
1838{
1839	if (!cc->cipher_tfm.tfms_aead)
1840		return;
 
 
 
 
 
 
1841
1842	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1843		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1844		cc->cipher_tfm.tfms_aead[0] = NULL;
1845	}
1846
1847	kfree(cc->cipher_tfm.tfms_aead);
1848	cc->cipher_tfm.tfms_aead = NULL;
 
 
1849}
1850
1851static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1852{
1853	unsigned i;
1854
1855	if (!cc->cipher_tfm.tfms)
1856		return;
1857
1858	for (i = 0; i < cc->tfms_count; i++)
1859		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1860			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1861			cc->cipher_tfm.tfms[i] = NULL;
1862		}
1863
1864	kfree(cc->cipher_tfm.tfms);
1865	cc->cipher_tfm.tfms = NULL;
1866}
1867
1868static void crypt_free_tfms(struct crypt_config *cc)
1869{
1870	if (crypt_integrity_aead(cc))
1871		crypt_free_tfms_aead(cc);
1872	else
1873		crypt_free_tfms_skcipher(cc);
1874}
1875
1876static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1877{
1878	unsigned i;
1879	int err;
1880
1881	cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1882				      sizeof(struct crypto_skcipher *), GFP_KERNEL);
1883	if (!cc->cipher_tfm.tfms)
1884		return -ENOMEM;
1885
1886	for (i = 0; i < cc->tfms_count; i++) {
1887		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1888		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1889			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1890			crypt_free_tfms(cc);
1891			return err;
1892		}
1893	}
1894
1895	return 0;
1896}
1897
1898static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1899{
1900	int err;
1901
1902	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1903	if (!cc->cipher_tfm.tfms)
1904		return -ENOMEM;
1905
1906	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1907	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1908		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1909		crypt_free_tfms(cc);
1910		return err;
1911	}
1912
1913	return 0;
1914}
1915
1916static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1917{
1918	if (crypt_integrity_aead(cc))
1919		return crypt_alloc_tfms_aead(cc, ciphermode);
1920	else
1921		return crypt_alloc_tfms_skcipher(cc, ciphermode);
1922}
1923
1924static unsigned crypt_subkey_size(struct crypt_config *cc)
1925{
1926	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1927}
1928
1929static unsigned crypt_authenckey_size(struct crypt_config *cc)
1930{
1931	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1932}
1933
1934/*
1935 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1936 * the key must be for some reason in special format.
1937 * This funcion converts cc->key to this special format.
1938 */
1939static void crypt_copy_authenckey(char *p, const void *key,
1940				  unsigned enckeylen, unsigned authkeylen)
1941{
1942	struct crypto_authenc_key_param *param;
1943	struct rtattr *rta;
1944
1945	rta = (struct rtattr *)p;
1946	param = RTA_DATA(rta);
1947	param->enckeylen = cpu_to_be32(enckeylen);
1948	rta->rta_len = RTA_LENGTH(sizeof(*param));
1949	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1950	p += RTA_SPACE(sizeof(*param));
1951	memcpy(p, key + enckeylen, authkeylen);
1952	p += authkeylen;
1953	memcpy(p, key, enckeylen);
1954}
1955
1956static int crypt_setkey(struct crypt_config *cc)
1957{
1958	unsigned subkey_size;
1959	int err = 0, i, r;
1960
1961	/* Ignore extra keys (which are used for IV etc) */
1962	subkey_size = crypt_subkey_size(cc);
1963
1964	if (crypt_integrity_hmac(cc)) {
1965		if (subkey_size < cc->key_mac_size)
1966			return -EINVAL;
1967
1968		crypt_copy_authenckey(cc->authenc_key, cc->key,
1969				      subkey_size - cc->key_mac_size,
1970				      cc->key_mac_size);
1971	}
1972
1973	for (i = 0; i < cc->tfms_count; i++) {
1974		if (crypt_integrity_hmac(cc))
1975			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1976				cc->authenc_key, crypt_authenckey_size(cc));
1977		else if (crypt_integrity_aead(cc))
1978			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1979					       cc->key + (i * subkey_size),
1980					       subkey_size);
1981		else
1982			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1983						   cc->key + (i * subkey_size),
1984						   subkey_size);
1985		if (r)
1986			err = r;
1987	}
1988
1989	if (crypt_integrity_hmac(cc))
1990		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1991
1992	return err;
1993}
1994
1995#ifdef CONFIG_KEYS
1996
1997static bool contains_whitespace(const char *str)
1998{
1999	while (*str)
2000		if (isspace(*str++))
2001			return true;
2002	return false;
2003}
2004
2005static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2006{
2007	char *new_key_string, *key_desc;
2008	int ret;
2009	struct key *key;
2010	const struct user_key_payload *ukp;
2011
2012	/*
2013	 * Reject key_string with whitespace. dm core currently lacks code for
2014	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2015	 */
2016	if (contains_whitespace(key_string)) {
2017		DMERR("whitespace chars not allowed in key string");
2018		return -EINVAL;
2019	}
2020
2021	/* look for next ':' separating key_type from key_description */
2022	key_desc = strpbrk(key_string, ":");
2023	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2024		return -EINVAL;
2025
2026	if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2027	    strncmp(key_string, "user:", key_desc - key_string + 1))
2028		return -EINVAL;
2029
2030	new_key_string = kstrdup(key_string, GFP_KERNEL);
2031	if (!new_key_string)
2032		return -ENOMEM;
2033
2034	key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2035			  key_desc + 1, NULL);
2036	if (IS_ERR(key)) {
2037		kzfree(new_key_string);
2038		return PTR_ERR(key);
2039	}
2040
2041	down_read(&key->sem);
2042
2043	ukp = user_key_payload_locked(key);
2044	if (!ukp) {
2045		up_read(&key->sem);
2046		key_put(key);
2047		kzfree(new_key_string);
2048		return -EKEYREVOKED;
2049	}
2050
2051	if (cc->key_size != ukp->datalen) {
2052		up_read(&key->sem);
2053		key_put(key);
2054		kzfree(new_key_string);
2055		return -EINVAL;
2056	}
2057
2058	memcpy(cc->key, ukp->data, cc->key_size);
2059
2060	up_read(&key->sem);
2061	key_put(key);
2062
2063	/* clear the flag since following operations may invalidate previously valid key */
2064	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2065
2066	ret = crypt_setkey(cc);
2067
2068	if (!ret) {
2069		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2070		kzfree(cc->key_string);
2071		cc->key_string = new_key_string;
2072	} else
2073		kzfree(new_key_string);
2074
2075	return ret;
2076}
2077
2078static int get_key_size(char **key_string)
2079{
2080	char *colon, dummy;
2081	int ret;
2082
2083	if (*key_string[0] != ':')
2084		return strlen(*key_string) >> 1;
2085
2086	/* look for next ':' in key string */
2087	colon = strpbrk(*key_string + 1, ":");
2088	if (!colon)
2089		return -EINVAL;
2090
2091	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2092		return -EINVAL;
2093
2094	*key_string = colon;
2095
2096	/* remaining key string should be :<logon|user>:<key_desc> */
2097
2098	return ret;
2099}
2100
2101#else
2102
2103static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2104{
2105	return -EINVAL;
2106}
2107
2108static int get_key_size(char **key_string)
2109{
2110	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2111}
2112
2113#endif
2114
2115static int crypt_set_key(struct crypt_config *cc, char *key)
2116{
2117	int r = -EINVAL;
2118	int key_string_len = strlen(key);
2119
 
 
 
 
2120	/* Hyphen (which gives a key_size of zero) means there is no key. */
2121	if (!cc->key_size && strcmp(key, "-"))
2122		goto out;
2123
2124	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2125	if (key[0] == ':') {
2126		r = crypt_set_keyring_key(cc, key + 1);
2127		goto out;
2128	}
2129
2130	/* clear the flag since following operations may invalidate previously valid key */
2131	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2132
2133	/* wipe references to any kernel keyring key */
2134	kzfree(cc->key_string);
2135	cc->key_string = NULL;
2136
2137	/* Decode key from its hex representation. */
2138	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2139		goto out;
2140
2141	r = crypt_setkey(cc);
2142	if (!r)
2143		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2144
2145out:
2146	/* Hex key string not needed after here, so wipe it. */
2147	memset(key, '0', key_string_len);
2148
2149	return r;
2150}
2151
2152static int crypt_wipe_key(struct crypt_config *cc)
2153{
2154	int r;
2155
2156	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2157	get_random_bytes(&cc->key, cc->key_size);
2158	kzfree(cc->key_string);
2159	cc->key_string = NULL;
2160	r = crypt_setkey(cc);
2161	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2162
2163	return r;
2164}
2165
2166static void crypt_calculate_pages_per_client(void)
2167{
2168	unsigned long pages = (totalram_pages - totalhigh_pages) * DM_CRYPT_MEMORY_PERCENT / 100;
2169
2170	if (!dm_crypt_clients_n)
2171		return;
2172
2173	pages /= dm_crypt_clients_n;
2174	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2175		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2176	dm_crypt_pages_per_client = pages;
2177}
2178
2179static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2180{
2181	struct crypt_config *cc = pool_data;
2182	struct page *page;
2183
2184	if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2185	    likely(gfp_mask & __GFP_NORETRY))
2186		return NULL;
2187
2188	page = alloc_page(gfp_mask);
2189	if (likely(page != NULL))
2190		percpu_counter_add(&cc->n_allocated_pages, 1);
2191
2192	return page;
2193}
2194
2195static void crypt_page_free(void *page, void *pool_data)
2196{
2197	struct crypt_config *cc = pool_data;
2198
2199	__free_page(page);
2200	percpu_counter_sub(&cc->n_allocated_pages, 1);
2201}
2202
2203static void crypt_dtr(struct dm_target *ti)
2204{
2205	struct crypt_config *cc = ti->private;
2206
2207	ti->private = NULL;
2208
2209	if (!cc)
2210		return;
2211
2212	if (cc->write_thread)
 
 
 
 
2213		kthread_stop(cc->write_thread);
 
2214
2215	if (cc->io_queue)
2216		destroy_workqueue(cc->io_queue);
2217	if (cc->crypt_queue)
2218		destroy_workqueue(cc->crypt_queue);
2219
2220	crypt_free_tfms(cc);
2221
2222	if (cc->bs)
2223		bioset_free(cc->bs);
2224
2225	mempool_destroy(cc->page_pool);
2226	mempool_destroy(cc->req_pool);
2227	mempool_destroy(cc->tag_pool);
2228
2229	if (cc->page_pool)
2230		WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2231	percpu_counter_destroy(&cc->n_allocated_pages);
2232
2233	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2234		cc->iv_gen_ops->dtr(cc);
2235
2236	if (cc->dev)
2237		dm_put_device(ti, cc->dev);
2238
2239	kzfree(cc->cipher);
2240	kzfree(cc->cipher_string);
2241	kzfree(cc->key_string);
2242	kzfree(cc->cipher_auth);
2243	kzfree(cc->authenc_key);
2244
2245	mutex_destroy(&cc->bio_alloc_lock);
2246
2247	/* Must zero key material before freeing */
2248	kzfree(cc);
2249
2250	spin_lock(&dm_crypt_clients_lock);
2251	WARN_ON(!dm_crypt_clients_n);
2252	dm_crypt_clients_n--;
2253	crypt_calculate_pages_per_client();
2254	spin_unlock(&dm_crypt_clients_lock);
2255}
2256
2257static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2258{
2259	struct crypt_config *cc = ti->private;
2260
2261	if (crypt_integrity_aead(cc))
2262		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2263	else
2264		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2265
2266	if (cc->iv_size)
2267		/* at least a 64 bit sector number should fit in our buffer */
2268		cc->iv_size = max(cc->iv_size,
2269				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2270	else if (ivmode) {
2271		DMWARN("Selected cipher does not support IVs");
2272		ivmode = NULL;
2273	}
2274
2275	/* Choose ivmode, see comments at iv code. */
2276	if (ivmode == NULL)
2277		cc->iv_gen_ops = NULL;
2278	else if (strcmp(ivmode, "plain") == 0)
2279		cc->iv_gen_ops = &crypt_iv_plain_ops;
2280	else if (strcmp(ivmode, "plain64") == 0)
2281		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2282	else if (strcmp(ivmode, "plain64be") == 0)
2283		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2284	else if (strcmp(ivmode, "essiv") == 0)
2285		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2286	else if (strcmp(ivmode, "benbi") == 0)
2287		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2288	else if (strcmp(ivmode, "null") == 0)
2289		cc->iv_gen_ops = &crypt_iv_null_ops;
2290	else if (strcmp(ivmode, "lmk") == 0) {
2291		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2292		/*
2293		 * Version 2 and 3 is recognised according
2294		 * to length of provided multi-key string.
2295		 * If present (version 3), last key is used as IV seed.
2296		 * All keys (including IV seed) are always the same size.
2297		 */
2298		if (cc->key_size % cc->key_parts) {
2299			cc->key_parts++;
2300			cc->key_extra_size = cc->key_size / cc->key_parts;
2301		}
2302	} else if (strcmp(ivmode, "tcw") == 0) {
2303		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2304		cc->key_parts += 2; /* IV + whitening */
2305		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2306	} else if (strcmp(ivmode, "random") == 0) {
2307		cc->iv_gen_ops = &crypt_iv_random_ops;
2308		/* Need storage space in integrity fields. */
2309		cc->integrity_iv_size = cc->iv_size;
2310	} else {
2311		ti->error = "Invalid IV mode";
2312		return -EINVAL;
2313	}
2314
2315	return 0;
2316}
2317
2318/*
2319 * Workaround to parse cipher algorithm from crypto API spec.
2320 * The cc->cipher is currently used only in ESSIV.
2321 * This should be probably done by crypto-api calls (once available...)
2322 */
2323static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2324{
2325	const char *alg_name = NULL;
2326	char *start, *end;
2327
2328	if (crypt_integrity_aead(cc)) {
2329		alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2330		if (!alg_name)
2331			return -EINVAL;
2332		if (crypt_integrity_hmac(cc)) {
2333			alg_name = strchr(alg_name, ',');
2334			if (!alg_name)
2335				return -EINVAL;
2336		}
2337		alg_name++;
2338	} else {
2339		alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2340		if (!alg_name)
2341			return -EINVAL;
2342	}
2343
2344	start = strchr(alg_name, '(');
2345	end = strchr(alg_name, ')');
2346
2347	if (!start && !end) {
2348		cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2349		return cc->cipher ? 0 : -ENOMEM;
2350	}
2351
2352	if (!start || !end || ++start >= end)
2353		return -EINVAL;
2354
2355	cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2356	if (!cc->cipher)
2357		return -ENOMEM;
2358
2359	strncpy(cc->cipher, start, end - start);
2360
2361	return 0;
2362}
2363
2364/*
2365 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2366 * The HMAC is needed to calculate tag size (HMAC digest size).
2367 * This should be probably done by crypto-api calls (once available...)
2368 */
2369static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2370{
2371	char *start, *end, *mac_alg = NULL;
2372	struct crypto_ahash *mac;
2373
2374	if (!strstarts(cipher_api, "authenc("))
2375		return 0;
2376
2377	start = strchr(cipher_api, '(');
2378	end = strchr(cipher_api, ',');
2379	if (!start || !end || ++start > end)
2380		return -EINVAL;
2381
2382	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2383	if (!mac_alg)
2384		return -ENOMEM;
2385	strncpy(mac_alg, start, end - start);
2386
2387	mac = crypto_alloc_ahash(mac_alg, 0, 0);
2388	kfree(mac_alg);
2389
2390	if (IS_ERR(mac))
2391		return PTR_ERR(mac);
2392
2393	cc->key_mac_size = crypto_ahash_digestsize(mac);
2394	crypto_free_ahash(mac);
2395
2396	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2397	if (!cc->authenc_key)
2398		return -ENOMEM;
2399
2400	return 0;
2401}
2402
2403static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2404				char **ivmode, char **ivopts)
2405{
2406	struct crypt_config *cc = ti->private;
2407	char *tmp, *cipher_api;
2408	int ret = -EINVAL;
2409
2410	cc->tfms_count = 1;
2411
2412	/*
2413	 * New format (capi: prefix)
2414	 * capi:cipher_api_spec-iv:ivopts
2415	 */
2416	tmp = &cipher_in[strlen("capi:")];
2417	cipher_api = strsep(&tmp, "-");
2418	*ivmode = strsep(&tmp, ":");
2419	*ivopts = tmp;
2420
2421	if (*ivmode && !strcmp(*ivmode, "lmk"))
2422		cc->tfms_count = 64;
2423
2424	cc->key_parts = cc->tfms_count;
2425
2426	/* Allocate cipher */
2427	ret = crypt_alloc_tfms(cc, cipher_api);
2428	if (ret < 0) {
2429		ti->error = "Error allocating crypto tfm";
2430		return ret;
2431	}
2432
2433	/* Alloc AEAD, can be used only in new format. */
2434	if (crypt_integrity_aead(cc)) {
2435		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2436		if (ret < 0) {
2437			ti->error = "Invalid AEAD cipher spec";
2438			return -ENOMEM;
2439		}
2440		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2441	} else
2442		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2443
2444	ret = crypt_ctr_blkdev_cipher(cc);
2445	if (ret < 0) {
2446		ti->error = "Cannot allocate cipher string";
2447		return -ENOMEM;
2448	}
2449
2450	return 0;
2451}
2452
2453static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2454				char **ivmode, char **ivopts)
2455{
2456	struct crypt_config *cc = ti->private;
2457	char *tmp, *cipher, *chainmode, *keycount;
2458	char *cipher_api = NULL;
2459	int ret = -EINVAL;
2460	char dummy;
2461
2462	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
 
2463		ti->error = "Bad cipher specification";
2464		return -EINVAL;
2465	}
2466
 
 
 
 
2467	/*
2468	 * Legacy dm-crypt cipher specification
2469	 * cipher[:keycount]-mode-iv:ivopts
2470	 */
2471	tmp = cipher_in;
2472	keycount = strsep(&tmp, "-");
2473	cipher = strsep(&keycount, ":");
2474
2475	if (!keycount)
2476		cc->tfms_count = 1;
2477	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2478		 !is_power_of_2(cc->tfms_count)) {
2479		ti->error = "Bad cipher key count specification";
2480		return -EINVAL;
2481	}
2482	cc->key_parts = cc->tfms_count;
 
2483
2484	cc->cipher = kstrdup(cipher, GFP_KERNEL);
2485	if (!cc->cipher)
2486		goto bad_mem;
2487
2488	chainmode = strsep(&tmp, "-");
2489	*ivopts = strsep(&tmp, "-");
2490	*ivmode = strsep(&*ivopts, ":");
2491
2492	if (tmp)
2493		DMWARN("Ignoring unexpected additional cipher options");
2494
2495	/*
2496	 * For compatibility with the original dm-crypt mapping format, if
2497	 * only the cipher name is supplied, use cbc-plain.
2498	 */
2499	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2500		chainmode = "cbc";
2501		*ivmode = "plain";
2502	}
2503
2504	if (strcmp(chainmode, "ecb") && !*ivmode) {
2505		ti->error = "IV mechanism required";
2506		return -EINVAL;
2507	}
2508
2509	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2510	if (!cipher_api)
2511		goto bad_mem;
2512
2513	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2514		       "%s(%s)", chainmode, cipher);
2515	if (ret < 0) {
2516		kfree(cipher_api);
2517		goto bad_mem;
2518	}
2519
2520	/* Allocate cipher */
2521	ret = crypt_alloc_tfms(cc, cipher_api);
2522	if (ret < 0) {
2523		ti->error = "Error allocating crypto tfm";
2524		kfree(cipher_api);
2525		return ret;
2526	}
2527	kfree(cipher_api);
2528
2529	return 0;
2530bad_mem:
2531	ti->error = "Cannot allocate cipher strings";
2532	return -ENOMEM;
2533}
 
 
 
 
 
2534
2535static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2536{
2537	struct crypt_config *cc = ti->private;
2538	char *ivmode = NULL, *ivopts = NULL;
2539	int ret;
2540
2541	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2542	if (!cc->cipher_string) {
2543		ti->error = "Cannot allocate cipher strings";
2544		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2545	}
2546
2547	if (strstarts(cipher_in, "capi:"))
2548		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2549	else
2550		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2551	if (ret)
2552		return ret;
2553
2554	/* Initialize IV */
2555	ret = crypt_ctr_ivmode(ti, ivmode);
2556	if (ret < 0)
2557		return ret;
2558
2559	/* Initialize and set key */
2560	ret = crypt_set_key(cc, key);
2561	if (ret < 0) {
2562		ti->error = "Error decoding and setting key";
2563		return ret;
2564	}
2565
2566	/* Allocate IV */
2567	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2568		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2569		if (ret < 0) {
2570			ti->error = "Error creating IV";
2571			return ret;
2572		}
2573	}
2574
2575	/* Initialize IV (set keys for ESSIV etc) */
2576	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2577		ret = cc->iv_gen_ops->init(cc);
2578		if (ret < 0) {
2579			ti->error = "Error initialising IV";
2580			return ret;
2581		}
2582	}
2583
2584	/* wipe the kernel key payload copy */
2585	if (cc->key_string)
2586		memset(cc->key, 0, cc->key_size * sizeof(u8));
2587
2588	return ret;
2589}
2590
2591static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2592{
2593	struct crypt_config *cc = ti->private;
2594	struct dm_arg_set as;
2595	static const struct dm_arg _args[] = {
2596		{0, 6, "Invalid number of feature args"},
2597	};
2598	unsigned int opt_params, val;
2599	const char *opt_string, *sval;
2600	char dummy;
2601	int ret;
2602
2603	/* Optional parameters */
2604	as.argc = argc;
2605	as.argv = argv;
2606
2607	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2608	if (ret)
2609		return ret;
2610
2611	while (opt_params--) {
2612		opt_string = dm_shift_arg(&as);
2613		if (!opt_string) {
2614			ti->error = "Not enough feature arguments";
2615			return -EINVAL;
2616		}
2617
2618		if (!strcasecmp(opt_string, "allow_discards"))
2619			ti->num_discard_bios = 1;
2620
2621		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2622			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2623
2624		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2625			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2626		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2627			if (val == 0 || val > MAX_TAG_SIZE) {
2628				ti->error = "Invalid integrity arguments";
2629				return -EINVAL;
2630			}
2631			cc->on_disk_tag_size = val;
2632			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2633			if (!strcasecmp(sval, "aead")) {
2634				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2635			} else  if (strcasecmp(sval, "none")) {
2636				ti->error = "Unknown integrity profile";
2637				return -EINVAL;
2638			}
2639
2640			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2641			if (!cc->cipher_auth)
2642				return -ENOMEM;
2643		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2644			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2645			    cc->sector_size > 4096 ||
2646			    (cc->sector_size & (cc->sector_size - 1))) {
2647				ti->error = "Invalid feature value for sector_size";
2648				return -EINVAL;
2649			}
2650			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2651				ti->error = "Device size is not multiple of sector_size feature";
2652				return -EINVAL;
2653			}
2654			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2655		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
2656			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2657		else {
2658			ti->error = "Invalid feature arguments";
2659			return -EINVAL;
2660		}
2661	}
2662
2663	return 0;
2664}
2665
2666/*
2667 * Construct an encryption mapping:
2668 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2669 */
2670static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2671{
2672	struct crypt_config *cc;
2673	int key_size;
2674	unsigned int align_mask;
2675	unsigned long long tmpll;
2676	int ret;
2677	size_t iv_size_padding, additional_req_size;
 
 
2678	char dummy;
2679
 
 
 
 
2680	if (argc < 5) {
2681		ti->error = "Not enough arguments";
2682		return -EINVAL;
2683	}
2684
2685	key_size = get_key_size(&argv[1]);
2686	if (key_size < 0) {
2687		ti->error = "Cannot parse key size";
2688		return -EINVAL;
2689	}
2690
2691	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2692	if (!cc) {
2693		ti->error = "Cannot allocate encryption context";
2694		return -ENOMEM;
2695	}
2696	cc->key_size = key_size;
2697	cc->sector_size = (1 << SECTOR_SHIFT);
2698	cc->sector_shift = 0;
2699
2700	ti->private = cc;
2701
2702	spin_lock(&dm_crypt_clients_lock);
2703	dm_crypt_clients_n++;
2704	crypt_calculate_pages_per_client();
2705	spin_unlock(&dm_crypt_clients_lock);
2706
2707	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2708	if (ret < 0)
2709		goto bad;
2710
2711	/* Optional parameters need to be read before cipher constructor */
2712	if (argc > 5) {
2713		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2714		if (ret)
2715			goto bad;
2716	}
2717
2718	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2719	if (ret < 0)
2720		goto bad;
2721
2722	if (crypt_integrity_aead(cc)) {
2723		cc->dmreq_start = sizeof(struct aead_request);
2724		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2725		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2726	} else {
2727		cc->dmreq_start = sizeof(struct skcipher_request);
2728		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2729		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2730	}
2731	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2732
2733	if (align_mask < CRYPTO_MINALIGN) {
2734		/* Allocate the padding exactly */
2735		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2736				& align_mask;
2737	} else {
2738		/*
2739		 * If the cipher requires greater alignment than kmalloc
2740		 * alignment, we don't know the exact position of the
2741		 * initialization vector. We must assume worst case.
2742		 */
2743		iv_size_padding = align_mask;
2744	}
2745
2746	ret = -ENOMEM;
2747
2748	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2749	additional_req_size = sizeof(struct dm_crypt_request) +
2750		iv_size_padding + cc->iv_size +
2751		cc->iv_size +
2752		sizeof(uint64_t) +
2753		sizeof(unsigned int);
2754
2755	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2756	if (!cc->req_pool) {
2757		ti->error = "Cannot allocate crypt request mempool";
2758		goto bad;
2759	}
2760
2761	cc->per_bio_data_size = ti->per_io_data_size =
2762		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
 
2763		      ARCH_KMALLOC_MINALIGN);
2764
2765	cc->page_pool = mempool_create(BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2766	if (!cc->page_pool) {
2767		ti->error = "Cannot allocate page mempool";
2768		goto bad;
2769	}
2770
2771	cc->bs = bioset_create(MIN_IOS, 0, BIOSET_NEED_BVECS);
2772	if (!cc->bs) {
2773		ti->error = "Cannot allocate crypt bioset";
2774		goto bad;
2775	}
2776
2777	mutex_init(&cc->bio_alloc_lock);
2778
2779	ret = -EINVAL;
2780	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2781	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2782		ti->error = "Invalid iv_offset sector";
2783		goto bad;
2784	}
2785	cc->iv_offset = tmpll;
2786
2787	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2788	if (ret) {
2789		ti->error = "Device lookup failed";
2790		goto bad;
2791	}
2792
2793	ret = -EINVAL;
2794	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2795		ti->error = "Invalid device sector";
2796		goto bad;
2797	}
2798	cc->start = tmpll;
2799
2800	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2801		ret = crypt_integrity_ctr(cc, ti);
 
 
 
 
 
 
 
2802		if (ret)
2803			goto bad;
2804
2805		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2806		if (!cc->tag_pool_max_sectors)
2807			cc->tag_pool_max_sectors = 1;
2808
2809		cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2810			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2811		if (!cc->tag_pool) {
2812			ti->error = "Cannot allocate integrity tags mempool";
2813			ret = -ENOMEM;
2814			goto bad;
 
 
 
 
 
 
 
 
 
 
 
2815		}
2816
2817		cc->tag_pool_max_sectors <<= cc->sector_shift;
2818	}
2819
2820	ret = -ENOMEM;
2821	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2822	if (!cc->io_queue) {
2823		ti->error = "Couldn't create kcryptd io queue";
2824		goto bad;
2825	}
2826
2827	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2828		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2829	else
2830		cc->crypt_queue = alloc_workqueue("kcryptd",
2831						  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2832						  num_online_cpus());
2833	if (!cc->crypt_queue) {
2834		ti->error = "Couldn't create kcryptd queue";
2835		goto bad;
2836	}
2837
2838	init_waitqueue_head(&cc->write_thread_wait);
2839	cc->write_tree = RB_ROOT;
2840
2841	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2842	if (IS_ERR(cc->write_thread)) {
2843		ret = PTR_ERR(cc->write_thread);
2844		cc->write_thread = NULL;
2845		ti->error = "Couldn't spawn write thread";
2846		goto bad;
2847	}
2848	wake_up_process(cc->write_thread);
2849
2850	ti->num_flush_bios = 1;
 
2851
2852	return 0;
2853
2854bad:
2855	crypt_dtr(ti);
2856	return ret;
2857}
2858
2859static int crypt_map(struct dm_target *ti, struct bio *bio)
2860{
2861	struct dm_crypt_io *io;
2862	struct crypt_config *cc = ti->private;
2863
2864	/*
2865	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2866	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2867	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2868	 */
2869	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2870	    bio_op(bio) == REQ_OP_DISCARD)) {
2871		bio_set_dev(bio, cc->dev->bdev);
2872		if (bio_sectors(bio))
2873			bio->bi_iter.bi_sector = cc->start +
2874				dm_target_offset(ti, bio->bi_iter.bi_sector);
2875		return DM_MAPIO_REMAPPED;
2876	}
2877
2878	/*
2879	 * Check if bio is too large, split as needed.
2880	 */
2881	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2882	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2883		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2884
2885	/*
2886	 * Ensure that bio is a multiple of internal sector encryption size
2887	 * and is aligned to this size as defined in IO hints.
2888	 */
2889	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2890		return DM_MAPIO_KILL;
2891
2892	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2893		return DM_MAPIO_KILL;
2894
2895	io = dm_per_bio_data(bio, cc->per_bio_data_size);
2896	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2897
2898	if (cc->on_disk_tag_size) {
2899		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2900
2901		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2902		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2903				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2904			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2905				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2906			io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2907			io->integrity_metadata_from_pool = true;
2908		}
2909	}
2910
2911	if (crypt_integrity_aead(cc))
2912		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2913	else
2914		io->ctx.r.req = (struct skcipher_request *)(io + 1);
2915
2916	if (bio_data_dir(io->base_bio) == READ) {
2917		if (kcryptd_io_read(io, GFP_NOWAIT))
2918			kcryptd_queue_read(io);
2919	} else
2920		kcryptd_queue_crypt(io);
2921
2922	return DM_MAPIO_SUBMITTED;
2923}
2924
2925static void crypt_status(struct dm_target *ti, status_type_t type,
2926			 unsigned status_flags, char *result, unsigned maxlen)
2927{
2928	struct crypt_config *cc = ti->private;
2929	unsigned i, sz = 0;
2930	int num_feature_args = 0;
2931
2932	switch (type) {
2933	case STATUSTYPE_INFO:
2934		result[0] = '\0';
2935		break;
2936
2937	case STATUSTYPE_TABLE:
2938		DMEMIT("%s ", cc->cipher_string);
2939
2940		if (cc->key_size > 0) {
2941			if (cc->key_string)
2942				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2943			else
2944				for (i = 0; i < cc->key_size; i++)
2945					DMEMIT("%02x", cc->key[i]);
2946		} else
2947			DMEMIT("-");
2948
2949		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2950				cc->dev->name, (unsigned long long)cc->start);
2951
2952		num_feature_args += !!ti->num_discard_bios;
2953		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2954		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2955		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2956		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2957		if (cc->on_disk_tag_size)
2958			num_feature_args++;
2959		if (num_feature_args) {
2960			DMEMIT(" %d", num_feature_args);
2961			if (ti->num_discard_bios)
2962				DMEMIT(" allow_discards");
2963			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2964				DMEMIT(" same_cpu_crypt");
2965			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2966				DMEMIT(" submit_from_crypt_cpus");
2967			if (cc->on_disk_tag_size)
2968				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2969			if (cc->sector_size != (1 << SECTOR_SHIFT))
2970				DMEMIT(" sector_size:%d", cc->sector_size);
2971			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2972				DMEMIT(" iv_large_sectors");
2973		}
2974
2975		break;
2976	}
2977}
2978
2979static void crypt_postsuspend(struct dm_target *ti)
2980{
2981	struct crypt_config *cc = ti->private;
2982
2983	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2984}
2985
2986static int crypt_preresume(struct dm_target *ti)
2987{
2988	struct crypt_config *cc = ti->private;
2989
2990	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2991		DMERR("aborting resume - crypt key is not set.");
2992		return -EAGAIN;
2993	}
2994
2995	return 0;
2996}
2997
2998static void crypt_resume(struct dm_target *ti)
2999{
3000	struct crypt_config *cc = ti->private;
3001
3002	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3003}
3004
3005/* Message interface
3006 *	key set <key>
3007 *	key wipe
3008 */
3009static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3010			 char *result, unsigned maxlen)
3011{
3012	struct crypt_config *cc = ti->private;
3013	int key_size, ret = -EINVAL;
3014
3015	if (argc < 2)
3016		goto error;
3017
3018	if (!strcasecmp(argv[0], "key")) {
3019		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3020			DMWARN("not suspended during key manipulation.");
3021			return -EINVAL;
3022		}
3023		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3024			/* The key size may not be changed. */
3025			key_size = get_key_size(&argv[2]);
3026			if (key_size < 0 || cc->key_size != key_size) {
3027				memset(argv[2], '0', strlen(argv[2]));
3028				return -EINVAL;
3029			}
3030
3031			ret = crypt_set_key(cc, argv[2]);
3032			if (ret)
3033				return ret;
3034			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3035				ret = cc->iv_gen_ops->init(cc);
3036			/* wipe the kernel key payload copy */
3037			if (cc->key_string)
3038				memset(cc->key, 0, cc->key_size * sizeof(u8));
3039			return ret;
3040		}
3041		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
3042			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
3043				ret = cc->iv_gen_ops->wipe(cc);
3044				if (ret)
3045					return ret;
3046			}
3047			return crypt_wipe_key(cc);
3048		}
3049	}
3050
3051error:
3052	DMWARN("unrecognised message received.");
3053	return -EINVAL;
3054}
3055
3056static int crypt_iterate_devices(struct dm_target *ti,
3057				 iterate_devices_callout_fn fn, void *data)
3058{
3059	struct crypt_config *cc = ti->private;
3060
3061	return fn(ti, cc->dev, cc->start, ti->len, data);
3062}
3063
3064static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3065{
3066	struct crypt_config *cc = ti->private;
3067
3068	/*
3069	 * Unfortunate constraint that is required to avoid the potential
3070	 * for exceeding underlying device's max_segments limits -- due to
3071	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3072	 * bio that are not as physically contiguous as the original bio.
3073	 */
3074	limits->max_segment_size = PAGE_SIZE;
3075
3076	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
3077		limits->logical_block_size = cc->sector_size;
3078		limits->physical_block_size = cc->sector_size;
3079		blk_limits_io_min(limits, cc->sector_size);
3080	}
3081}
3082
3083static struct target_type crypt_target = {
3084	.name   = "crypt",
3085	.version = {1, 18, 1},
3086	.module = THIS_MODULE,
3087	.ctr    = crypt_ctr,
3088	.dtr    = crypt_dtr,
3089	.map    = crypt_map,
3090	.status = crypt_status,
3091	.postsuspend = crypt_postsuspend,
3092	.preresume = crypt_preresume,
3093	.resume = crypt_resume,
3094	.message = crypt_message,
3095	.iterate_devices = crypt_iterate_devices,
3096	.io_hints = crypt_io_hints,
3097};
3098
3099static int __init dm_crypt_init(void)
3100{
3101	int r;
3102
3103	r = dm_register_target(&crypt_target);
3104	if (r < 0)
3105		DMERR("register failed %d", r);
3106
3107	return r;
3108}
3109
3110static void __exit dm_crypt_exit(void)
3111{
3112	dm_unregister_target(&crypt_target);
3113}
3114
3115module_init(dm_crypt_init);
3116module_exit(dm_crypt_exit);
3117
3118MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3119MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3120MODULE_LICENSE("GPL");