Loading...
1/*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10#include <linux/completion.h>
11#include <linux/err.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/bio.h>
16#include <linux/blkdev.h>
17#include <linux/mempool.h>
18#include <linux/slab.h>
19#include <linux/crypto.h>
20#include <linux/workqueue.h>
21#include <linux/kthread.h>
22#include <linux/backing-dev.h>
23#include <linux/atomic.h>
24#include <linux/scatterlist.h>
25#include <linux/rbtree.h>
26#include <asm/page.h>
27#include <asm/unaligned.h>
28#include <crypto/hash.h>
29#include <crypto/md5.h>
30#include <crypto/algapi.h>
31#include <crypto/skcipher.h>
32
33#include <linux/device-mapper.h>
34
35#define DM_MSG_PREFIX "crypt"
36
37/*
38 * context holding the current state of a multi-part conversion
39 */
40struct convert_context {
41 struct completion restart;
42 struct bio *bio_in;
43 struct bio *bio_out;
44 struct bvec_iter iter_in;
45 struct bvec_iter iter_out;
46 sector_t cc_sector;
47 atomic_t cc_pending;
48 struct skcipher_request *req;
49};
50
51/*
52 * per bio private data
53 */
54struct dm_crypt_io {
55 struct crypt_config *cc;
56 struct bio *base_bio;
57 struct work_struct work;
58
59 struct convert_context ctx;
60
61 atomic_t io_pending;
62 int error;
63 sector_t sector;
64
65 struct rb_node rb_node;
66} CRYPTO_MINALIGN_ATTR;
67
68struct dm_crypt_request {
69 struct convert_context *ctx;
70 struct scatterlist sg_in;
71 struct scatterlist sg_out;
72 sector_t iv_sector;
73};
74
75struct crypt_config;
76
77struct crypt_iv_operations {
78 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
79 const char *opts);
80 void (*dtr)(struct crypt_config *cc);
81 int (*init)(struct crypt_config *cc);
82 int (*wipe)(struct crypt_config *cc);
83 int (*generator)(struct crypt_config *cc, u8 *iv,
84 struct dm_crypt_request *dmreq);
85 int (*post)(struct crypt_config *cc, u8 *iv,
86 struct dm_crypt_request *dmreq);
87};
88
89struct iv_essiv_private {
90 struct crypto_ahash *hash_tfm;
91 u8 *salt;
92};
93
94struct iv_benbi_private {
95 int shift;
96};
97
98#define LMK_SEED_SIZE 64 /* hash + 0 */
99struct iv_lmk_private {
100 struct crypto_shash *hash_tfm;
101 u8 *seed;
102};
103
104#define TCW_WHITENING_SIZE 16
105struct iv_tcw_private {
106 struct crypto_shash *crc32_tfm;
107 u8 *iv_seed;
108 u8 *whitening;
109};
110
111/*
112 * Crypt: maps a linear range of a block device
113 * and encrypts / decrypts at the same time.
114 */
115enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
116 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
117 DM_CRYPT_EXIT_THREAD};
118
119/*
120 * The fields in here must be read only after initialization.
121 */
122struct crypt_config {
123 struct dm_dev *dev;
124 sector_t start;
125
126 /*
127 * pool for per bio private data, crypto requests and
128 * encryption requeusts/buffer pages
129 */
130 mempool_t *req_pool;
131 mempool_t *page_pool;
132 struct bio_set *bs;
133 struct mutex bio_alloc_lock;
134
135 struct workqueue_struct *io_queue;
136 struct workqueue_struct *crypt_queue;
137
138 struct task_struct *write_thread;
139 wait_queue_head_t write_thread_wait;
140 struct rb_root write_tree;
141
142 char *cipher;
143 char *cipher_string;
144
145 struct crypt_iv_operations *iv_gen_ops;
146 union {
147 struct iv_essiv_private essiv;
148 struct iv_benbi_private benbi;
149 struct iv_lmk_private lmk;
150 struct iv_tcw_private tcw;
151 } iv_gen_private;
152 sector_t iv_offset;
153 unsigned int iv_size;
154
155 /* ESSIV: struct crypto_cipher *essiv_tfm */
156 void *iv_private;
157 struct crypto_skcipher **tfms;
158 unsigned tfms_count;
159
160 /*
161 * Layout of each crypto request:
162 *
163 * struct skcipher_request
164 * context
165 * padding
166 * struct dm_crypt_request
167 * padding
168 * IV
169 *
170 * The padding is added so that dm_crypt_request and the IV are
171 * correctly aligned.
172 */
173 unsigned int dmreq_start;
174
175 unsigned int per_bio_data_size;
176
177 unsigned long flags;
178 unsigned int key_size;
179 unsigned int key_parts; /* independent parts in key buffer */
180 unsigned int key_extra_size; /* additional keys length */
181 u8 key[0];
182};
183
184#define MIN_IOS 16
185
186static void clone_init(struct dm_crypt_io *, struct bio *);
187static void kcryptd_queue_crypt(struct dm_crypt_io *io);
188static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
189
190/*
191 * Use this to access cipher attributes that are the same for each CPU.
192 */
193static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
194{
195 return cc->tfms[0];
196}
197
198/*
199 * Different IV generation algorithms:
200 *
201 * plain: the initial vector is the 32-bit little-endian version of the sector
202 * number, padded with zeros if necessary.
203 *
204 * plain64: the initial vector is the 64-bit little-endian version of the sector
205 * number, padded with zeros if necessary.
206 *
207 * essiv: "encrypted sector|salt initial vector", the sector number is
208 * encrypted with the bulk cipher using a salt as key. The salt
209 * should be derived from the bulk cipher's key via hashing.
210 *
211 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
212 * (needed for LRW-32-AES and possible other narrow block modes)
213 *
214 * null: the initial vector is always zero. Provides compatibility with
215 * obsolete loop_fish2 devices. Do not use for new devices.
216 *
217 * lmk: Compatible implementation of the block chaining mode used
218 * by the Loop-AES block device encryption system
219 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
220 * It operates on full 512 byte sectors and uses CBC
221 * with an IV derived from the sector number, the data and
222 * optionally extra IV seed.
223 * This means that after decryption the first block
224 * of sector must be tweaked according to decrypted data.
225 * Loop-AES can use three encryption schemes:
226 * version 1: is plain aes-cbc mode
227 * version 2: uses 64 multikey scheme with lmk IV generator
228 * version 3: the same as version 2 with additional IV seed
229 * (it uses 65 keys, last key is used as IV seed)
230 *
231 * tcw: Compatible implementation of the block chaining mode used
232 * by the TrueCrypt device encryption system (prior to version 4.1).
233 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
234 * It operates on full 512 byte sectors and uses CBC
235 * with an IV derived from initial key and the sector number.
236 * In addition, whitening value is applied on every sector, whitening
237 * is calculated from initial key, sector number and mixed using CRC32.
238 * Note that this encryption scheme is vulnerable to watermarking attacks
239 * and should be used for old compatible containers access only.
240 *
241 * plumb: unimplemented, see:
242 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
243 */
244
245static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
246 struct dm_crypt_request *dmreq)
247{
248 memset(iv, 0, cc->iv_size);
249 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
250
251 return 0;
252}
253
254static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
255 struct dm_crypt_request *dmreq)
256{
257 memset(iv, 0, cc->iv_size);
258 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
259
260 return 0;
261}
262
263/* Initialise ESSIV - compute salt but no local memory allocations */
264static int crypt_iv_essiv_init(struct crypt_config *cc)
265{
266 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
267 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
268 struct scatterlist sg;
269 struct crypto_cipher *essiv_tfm;
270 int err;
271
272 sg_init_one(&sg, cc->key, cc->key_size);
273 ahash_request_set_tfm(req, essiv->hash_tfm);
274 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
275 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
276
277 err = crypto_ahash_digest(req);
278 ahash_request_zero(req);
279 if (err)
280 return err;
281
282 essiv_tfm = cc->iv_private;
283
284 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
285 crypto_ahash_digestsize(essiv->hash_tfm));
286 if (err)
287 return err;
288
289 return 0;
290}
291
292/* Wipe salt and reset key derived from volume key */
293static int crypt_iv_essiv_wipe(struct crypt_config *cc)
294{
295 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
296 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
297 struct crypto_cipher *essiv_tfm;
298 int r, err = 0;
299
300 memset(essiv->salt, 0, salt_size);
301
302 essiv_tfm = cc->iv_private;
303 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
304 if (r)
305 err = r;
306
307 return err;
308}
309
310/* Set up per cpu cipher state */
311static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
312 struct dm_target *ti,
313 u8 *salt, unsigned saltsize)
314{
315 struct crypto_cipher *essiv_tfm;
316 int err;
317
318 /* Setup the essiv_tfm with the given salt */
319 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
320 if (IS_ERR(essiv_tfm)) {
321 ti->error = "Error allocating crypto tfm for ESSIV";
322 return essiv_tfm;
323 }
324
325 if (crypto_cipher_blocksize(essiv_tfm) !=
326 crypto_skcipher_ivsize(any_tfm(cc))) {
327 ti->error = "Block size of ESSIV cipher does "
328 "not match IV size of block cipher";
329 crypto_free_cipher(essiv_tfm);
330 return ERR_PTR(-EINVAL);
331 }
332
333 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
334 if (err) {
335 ti->error = "Failed to set key for ESSIV cipher";
336 crypto_free_cipher(essiv_tfm);
337 return ERR_PTR(err);
338 }
339
340 return essiv_tfm;
341}
342
343static void crypt_iv_essiv_dtr(struct crypt_config *cc)
344{
345 struct crypto_cipher *essiv_tfm;
346 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
347
348 crypto_free_ahash(essiv->hash_tfm);
349 essiv->hash_tfm = NULL;
350
351 kzfree(essiv->salt);
352 essiv->salt = NULL;
353
354 essiv_tfm = cc->iv_private;
355
356 if (essiv_tfm)
357 crypto_free_cipher(essiv_tfm);
358
359 cc->iv_private = NULL;
360}
361
362static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
363 const char *opts)
364{
365 struct crypto_cipher *essiv_tfm = NULL;
366 struct crypto_ahash *hash_tfm = NULL;
367 u8 *salt = NULL;
368 int err;
369
370 if (!opts) {
371 ti->error = "Digest algorithm missing for ESSIV mode";
372 return -EINVAL;
373 }
374
375 /* Allocate hash algorithm */
376 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
377 if (IS_ERR(hash_tfm)) {
378 ti->error = "Error initializing ESSIV hash";
379 err = PTR_ERR(hash_tfm);
380 goto bad;
381 }
382
383 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
384 if (!salt) {
385 ti->error = "Error kmallocing salt storage in ESSIV";
386 err = -ENOMEM;
387 goto bad;
388 }
389
390 cc->iv_gen_private.essiv.salt = salt;
391 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
392
393 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
394 crypto_ahash_digestsize(hash_tfm));
395 if (IS_ERR(essiv_tfm)) {
396 crypt_iv_essiv_dtr(cc);
397 return PTR_ERR(essiv_tfm);
398 }
399 cc->iv_private = essiv_tfm;
400
401 return 0;
402
403bad:
404 if (hash_tfm && !IS_ERR(hash_tfm))
405 crypto_free_ahash(hash_tfm);
406 kfree(salt);
407 return err;
408}
409
410static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
411 struct dm_crypt_request *dmreq)
412{
413 struct crypto_cipher *essiv_tfm = cc->iv_private;
414
415 memset(iv, 0, cc->iv_size);
416 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
417 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
418
419 return 0;
420}
421
422static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
423 const char *opts)
424{
425 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
426 int log = ilog2(bs);
427
428 /* we need to calculate how far we must shift the sector count
429 * to get the cipher block count, we use this shift in _gen */
430
431 if (1 << log != bs) {
432 ti->error = "cypher blocksize is not a power of 2";
433 return -EINVAL;
434 }
435
436 if (log > 9) {
437 ti->error = "cypher blocksize is > 512";
438 return -EINVAL;
439 }
440
441 cc->iv_gen_private.benbi.shift = 9 - log;
442
443 return 0;
444}
445
446static void crypt_iv_benbi_dtr(struct crypt_config *cc)
447{
448}
449
450static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
451 struct dm_crypt_request *dmreq)
452{
453 __be64 val;
454
455 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
456
457 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
458 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
459
460 return 0;
461}
462
463static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
464 struct dm_crypt_request *dmreq)
465{
466 memset(iv, 0, cc->iv_size);
467
468 return 0;
469}
470
471static void crypt_iv_lmk_dtr(struct crypt_config *cc)
472{
473 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
474
475 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
476 crypto_free_shash(lmk->hash_tfm);
477 lmk->hash_tfm = NULL;
478
479 kzfree(lmk->seed);
480 lmk->seed = NULL;
481}
482
483static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
484 const char *opts)
485{
486 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
487
488 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
489 if (IS_ERR(lmk->hash_tfm)) {
490 ti->error = "Error initializing LMK hash";
491 return PTR_ERR(lmk->hash_tfm);
492 }
493
494 /* No seed in LMK version 2 */
495 if (cc->key_parts == cc->tfms_count) {
496 lmk->seed = NULL;
497 return 0;
498 }
499
500 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
501 if (!lmk->seed) {
502 crypt_iv_lmk_dtr(cc);
503 ti->error = "Error kmallocing seed storage in LMK";
504 return -ENOMEM;
505 }
506
507 return 0;
508}
509
510static int crypt_iv_lmk_init(struct crypt_config *cc)
511{
512 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
513 int subkey_size = cc->key_size / cc->key_parts;
514
515 /* LMK seed is on the position of LMK_KEYS + 1 key */
516 if (lmk->seed)
517 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
518 crypto_shash_digestsize(lmk->hash_tfm));
519
520 return 0;
521}
522
523static int crypt_iv_lmk_wipe(struct crypt_config *cc)
524{
525 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
526
527 if (lmk->seed)
528 memset(lmk->seed, 0, LMK_SEED_SIZE);
529
530 return 0;
531}
532
533static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
534 struct dm_crypt_request *dmreq,
535 u8 *data)
536{
537 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
538 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
539 struct md5_state md5state;
540 __le32 buf[4];
541 int i, r;
542
543 desc->tfm = lmk->hash_tfm;
544 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
545
546 r = crypto_shash_init(desc);
547 if (r)
548 return r;
549
550 if (lmk->seed) {
551 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
552 if (r)
553 return r;
554 }
555
556 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
557 r = crypto_shash_update(desc, data + 16, 16 * 31);
558 if (r)
559 return r;
560
561 /* Sector is cropped to 56 bits here */
562 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
563 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
564 buf[2] = cpu_to_le32(4024);
565 buf[3] = 0;
566 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
567 if (r)
568 return r;
569
570 /* No MD5 padding here */
571 r = crypto_shash_export(desc, &md5state);
572 if (r)
573 return r;
574
575 for (i = 0; i < MD5_HASH_WORDS; i++)
576 __cpu_to_le32s(&md5state.hash[i]);
577 memcpy(iv, &md5state.hash, cc->iv_size);
578
579 return 0;
580}
581
582static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
583 struct dm_crypt_request *dmreq)
584{
585 u8 *src;
586 int r = 0;
587
588 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
589 src = kmap_atomic(sg_page(&dmreq->sg_in));
590 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
591 kunmap_atomic(src);
592 } else
593 memset(iv, 0, cc->iv_size);
594
595 return r;
596}
597
598static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
599 struct dm_crypt_request *dmreq)
600{
601 u8 *dst;
602 int r;
603
604 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
605 return 0;
606
607 dst = kmap_atomic(sg_page(&dmreq->sg_out));
608 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
609
610 /* Tweak the first block of plaintext sector */
611 if (!r)
612 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
613
614 kunmap_atomic(dst);
615 return r;
616}
617
618static void crypt_iv_tcw_dtr(struct crypt_config *cc)
619{
620 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
621
622 kzfree(tcw->iv_seed);
623 tcw->iv_seed = NULL;
624 kzfree(tcw->whitening);
625 tcw->whitening = NULL;
626
627 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
628 crypto_free_shash(tcw->crc32_tfm);
629 tcw->crc32_tfm = NULL;
630}
631
632static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
633 const char *opts)
634{
635 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
636
637 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
638 ti->error = "Wrong key size for TCW";
639 return -EINVAL;
640 }
641
642 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
643 if (IS_ERR(tcw->crc32_tfm)) {
644 ti->error = "Error initializing CRC32 in TCW";
645 return PTR_ERR(tcw->crc32_tfm);
646 }
647
648 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
649 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
650 if (!tcw->iv_seed || !tcw->whitening) {
651 crypt_iv_tcw_dtr(cc);
652 ti->error = "Error allocating seed storage in TCW";
653 return -ENOMEM;
654 }
655
656 return 0;
657}
658
659static int crypt_iv_tcw_init(struct crypt_config *cc)
660{
661 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
662 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
663
664 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
665 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
666 TCW_WHITENING_SIZE);
667
668 return 0;
669}
670
671static int crypt_iv_tcw_wipe(struct crypt_config *cc)
672{
673 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
674
675 memset(tcw->iv_seed, 0, cc->iv_size);
676 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
677
678 return 0;
679}
680
681static int crypt_iv_tcw_whitening(struct crypt_config *cc,
682 struct dm_crypt_request *dmreq,
683 u8 *data)
684{
685 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
686 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
687 u8 buf[TCW_WHITENING_SIZE];
688 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
689 int i, r;
690
691 /* xor whitening with sector number */
692 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
693 crypto_xor(buf, (u8 *)§or, 8);
694 crypto_xor(&buf[8], (u8 *)§or, 8);
695
696 /* calculate crc32 for every 32bit part and xor it */
697 desc->tfm = tcw->crc32_tfm;
698 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
699 for (i = 0; i < 4; i++) {
700 r = crypto_shash_init(desc);
701 if (r)
702 goto out;
703 r = crypto_shash_update(desc, &buf[i * 4], 4);
704 if (r)
705 goto out;
706 r = crypto_shash_final(desc, &buf[i * 4]);
707 if (r)
708 goto out;
709 }
710 crypto_xor(&buf[0], &buf[12], 4);
711 crypto_xor(&buf[4], &buf[8], 4);
712
713 /* apply whitening (8 bytes) to whole sector */
714 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
715 crypto_xor(data + i * 8, buf, 8);
716out:
717 memzero_explicit(buf, sizeof(buf));
718 return r;
719}
720
721static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
722 struct dm_crypt_request *dmreq)
723{
724 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
725 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
726 u8 *src;
727 int r = 0;
728
729 /* Remove whitening from ciphertext */
730 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
731 src = kmap_atomic(sg_page(&dmreq->sg_in));
732 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
733 kunmap_atomic(src);
734 }
735
736 /* Calculate IV */
737 memcpy(iv, tcw->iv_seed, cc->iv_size);
738 crypto_xor(iv, (u8 *)§or, 8);
739 if (cc->iv_size > 8)
740 crypto_xor(&iv[8], (u8 *)§or, cc->iv_size - 8);
741
742 return r;
743}
744
745static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
746 struct dm_crypt_request *dmreq)
747{
748 u8 *dst;
749 int r;
750
751 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
752 return 0;
753
754 /* Apply whitening on ciphertext */
755 dst = kmap_atomic(sg_page(&dmreq->sg_out));
756 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
757 kunmap_atomic(dst);
758
759 return r;
760}
761
762static struct crypt_iv_operations crypt_iv_plain_ops = {
763 .generator = crypt_iv_plain_gen
764};
765
766static struct crypt_iv_operations crypt_iv_plain64_ops = {
767 .generator = crypt_iv_plain64_gen
768};
769
770static struct crypt_iv_operations crypt_iv_essiv_ops = {
771 .ctr = crypt_iv_essiv_ctr,
772 .dtr = crypt_iv_essiv_dtr,
773 .init = crypt_iv_essiv_init,
774 .wipe = crypt_iv_essiv_wipe,
775 .generator = crypt_iv_essiv_gen
776};
777
778static struct crypt_iv_operations crypt_iv_benbi_ops = {
779 .ctr = crypt_iv_benbi_ctr,
780 .dtr = crypt_iv_benbi_dtr,
781 .generator = crypt_iv_benbi_gen
782};
783
784static struct crypt_iv_operations crypt_iv_null_ops = {
785 .generator = crypt_iv_null_gen
786};
787
788static struct crypt_iv_operations crypt_iv_lmk_ops = {
789 .ctr = crypt_iv_lmk_ctr,
790 .dtr = crypt_iv_lmk_dtr,
791 .init = crypt_iv_lmk_init,
792 .wipe = crypt_iv_lmk_wipe,
793 .generator = crypt_iv_lmk_gen,
794 .post = crypt_iv_lmk_post
795};
796
797static struct crypt_iv_operations crypt_iv_tcw_ops = {
798 .ctr = crypt_iv_tcw_ctr,
799 .dtr = crypt_iv_tcw_dtr,
800 .init = crypt_iv_tcw_init,
801 .wipe = crypt_iv_tcw_wipe,
802 .generator = crypt_iv_tcw_gen,
803 .post = crypt_iv_tcw_post
804};
805
806static void crypt_convert_init(struct crypt_config *cc,
807 struct convert_context *ctx,
808 struct bio *bio_out, struct bio *bio_in,
809 sector_t sector)
810{
811 ctx->bio_in = bio_in;
812 ctx->bio_out = bio_out;
813 if (bio_in)
814 ctx->iter_in = bio_in->bi_iter;
815 if (bio_out)
816 ctx->iter_out = bio_out->bi_iter;
817 ctx->cc_sector = sector + cc->iv_offset;
818 init_completion(&ctx->restart);
819}
820
821static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
822 struct skcipher_request *req)
823{
824 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
825}
826
827static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
828 struct dm_crypt_request *dmreq)
829{
830 return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
831}
832
833static u8 *iv_of_dmreq(struct crypt_config *cc,
834 struct dm_crypt_request *dmreq)
835{
836 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
837 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
838}
839
840static int crypt_convert_block(struct crypt_config *cc,
841 struct convert_context *ctx,
842 struct skcipher_request *req)
843{
844 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
845 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
846 struct dm_crypt_request *dmreq;
847 u8 *iv;
848 int r;
849
850 dmreq = dmreq_of_req(cc, req);
851 iv = iv_of_dmreq(cc, dmreq);
852
853 dmreq->iv_sector = ctx->cc_sector;
854 dmreq->ctx = ctx;
855 sg_init_table(&dmreq->sg_in, 1);
856 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
857 bv_in.bv_offset);
858
859 sg_init_table(&dmreq->sg_out, 1);
860 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
861 bv_out.bv_offset);
862
863 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
864 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
865
866 if (cc->iv_gen_ops) {
867 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
868 if (r < 0)
869 return r;
870 }
871
872 skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
873 1 << SECTOR_SHIFT, iv);
874
875 if (bio_data_dir(ctx->bio_in) == WRITE)
876 r = crypto_skcipher_encrypt(req);
877 else
878 r = crypto_skcipher_decrypt(req);
879
880 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
881 r = cc->iv_gen_ops->post(cc, iv, dmreq);
882
883 return r;
884}
885
886static void kcryptd_async_done(struct crypto_async_request *async_req,
887 int error);
888
889static void crypt_alloc_req(struct crypt_config *cc,
890 struct convert_context *ctx)
891{
892 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
893
894 if (!ctx->req)
895 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
896
897 skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
898
899 /*
900 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
901 * requests if driver request queue is full.
902 */
903 skcipher_request_set_callback(ctx->req,
904 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
905 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
906}
907
908static void crypt_free_req(struct crypt_config *cc,
909 struct skcipher_request *req, struct bio *base_bio)
910{
911 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
912
913 if ((struct skcipher_request *)(io + 1) != req)
914 mempool_free(req, cc->req_pool);
915}
916
917/*
918 * Encrypt / decrypt data from one bio to another one (can be the same one)
919 */
920static int crypt_convert(struct crypt_config *cc,
921 struct convert_context *ctx)
922{
923 int r;
924
925 atomic_set(&ctx->cc_pending, 1);
926
927 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
928
929 crypt_alloc_req(cc, ctx);
930
931 atomic_inc(&ctx->cc_pending);
932
933 r = crypt_convert_block(cc, ctx, ctx->req);
934
935 switch (r) {
936 /*
937 * The request was queued by a crypto driver
938 * but the driver request queue is full, let's wait.
939 */
940 case -EBUSY:
941 wait_for_completion(&ctx->restart);
942 reinit_completion(&ctx->restart);
943 /* fall through */
944 /*
945 * The request is queued and processed asynchronously,
946 * completion function kcryptd_async_done() will be called.
947 */
948 case -EINPROGRESS:
949 ctx->req = NULL;
950 ctx->cc_sector++;
951 continue;
952 /*
953 * The request was already processed (synchronously).
954 */
955 case 0:
956 atomic_dec(&ctx->cc_pending);
957 ctx->cc_sector++;
958 cond_resched();
959 continue;
960
961 /* There was an error while processing the request. */
962 default:
963 atomic_dec(&ctx->cc_pending);
964 return r;
965 }
966 }
967
968 return 0;
969}
970
971static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
972
973/*
974 * Generate a new unfragmented bio with the given size
975 * This should never violate the device limitations (but only because
976 * max_segment_size is being constrained to PAGE_SIZE).
977 *
978 * This function may be called concurrently. If we allocate from the mempool
979 * concurrently, there is a possibility of deadlock. For example, if we have
980 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
981 * the mempool concurrently, it may deadlock in a situation where both processes
982 * have allocated 128 pages and the mempool is exhausted.
983 *
984 * In order to avoid this scenario we allocate the pages under a mutex.
985 *
986 * In order to not degrade performance with excessive locking, we try
987 * non-blocking allocations without a mutex first but on failure we fallback
988 * to blocking allocations with a mutex.
989 */
990static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
991{
992 struct crypt_config *cc = io->cc;
993 struct bio *clone;
994 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
995 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
996 unsigned i, len, remaining_size;
997 struct page *page;
998 struct bio_vec *bvec;
999
1000retry:
1001 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1002 mutex_lock(&cc->bio_alloc_lock);
1003
1004 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1005 if (!clone)
1006 goto return_clone;
1007
1008 clone_init(io, clone);
1009
1010 remaining_size = size;
1011
1012 for (i = 0; i < nr_iovecs; i++) {
1013 page = mempool_alloc(cc->page_pool, gfp_mask);
1014 if (!page) {
1015 crypt_free_buffer_pages(cc, clone);
1016 bio_put(clone);
1017 gfp_mask |= __GFP_DIRECT_RECLAIM;
1018 goto retry;
1019 }
1020
1021 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1022
1023 bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1024 bvec->bv_page = page;
1025 bvec->bv_len = len;
1026 bvec->bv_offset = 0;
1027
1028 clone->bi_iter.bi_size += len;
1029
1030 remaining_size -= len;
1031 }
1032
1033return_clone:
1034 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1035 mutex_unlock(&cc->bio_alloc_lock);
1036
1037 return clone;
1038}
1039
1040static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1041{
1042 unsigned int i;
1043 struct bio_vec *bv;
1044
1045 bio_for_each_segment_all(bv, clone, i) {
1046 BUG_ON(!bv->bv_page);
1047 mempool_free(bv->bv_page, cc->page_pool);
1048 bv->bv_page = NULL;
1049 }
1050}
1051
1052static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1053 struct bio *bio, sector_t sector)
1054{
1055 io->cc = cc;
1056 io->base_bio = bio;
1057 io->sector = sector;
1058 io->error = 0;
1059 io->ctx.req = NULL;
1060 atomic_set(&io->io_pending, 0);
1061}
1062
1063static void crypt_inc_pending(struct dm_crypt_io *io)
1064{
1065 atomic_inc(&io->io_pending);
1066}
1067
1068/*
1069 * One of the bios was finished. Check for completion of
1070 * the whole request and correctly clean up the buffer.
1071 */
1072static void crypt_dec_pending(struct dm_crypt_io *io)
1073{
1074 struct crypt_config *cc = io->cc;
1075 struct bio *base_bio = io->base_bio;
1076 int error = io->error;
1077
1078 if (!atomic_dec_and_test(&io->io_pending))
1079 return;
1080
1081 if (io->ctx.req)
1082 crypt_free_req(cc, io->ctx.req, base_bio);
1083
1084 base_bio->bi_error = error;
1085 bio_endio(base_bio);
1086}
1087
1088/*
1089 * kcryptd/kcryptd_io:
1090 *
1091 * Needed because it would be very unwise to do decryption in an
1092 * interrupt context.
1093 *
1094 * kcryptd performs the actual encryption or decryption.
1095 *
1096 * kcryptd_io performs the IO submission.
1097 *
1098 * They must be separated as otherwise the final stages could be
1099 * starved by new requests which can block in the first stages due
1100 * to memory allocation.
1101 *
1102 * The work is done per CPU global for all dm-crypt instances.
1103 * They should not depend on each other and do not block.
1104 */
1105static void crypt_endio(struct bio *clone)
1106{
1107 struct dm_crypt_io *io = clone->bi_private;
1108 struct crypt_config *cc = io->cc;
1109 unsigned rw = bio_data_dir(clone);
1110 int error;
1111
1112 /*
1113 * free the processed pages
1114 */
1115 if (rw == WRITE)
1116 crypt_free_buffer_pages(cc, clone);
1117
1118 error = clone->bi_error;
1119 bio_put(clone);
1120
1121 if (rw == READ && !error) {
1122 kcryptd_queue_crypt(io);
1123 return;
1124 }
1125
1126 if (unlikely(error))
1127 io->error = error;
1128
1129 crypt_dec_pending(io);
1130}
1131
1132static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1133{
1134 struct crypt_config *cc = io->cc;
1135
1136 clone->bi_private = io;
1137 clone->bi_end_io = crypt_endio;
1138 clone->bi_bdev = cc->dev->bdev;
1139 clone->bi_rw = io->base_bio->bi_rw;
1140}
1141
1142static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1143{
1144 struct crypt_config *cc = io->cc;
1145 struct bio *clone;
1146
1147 /*
1148 * We need the original biovec array in order to decrypt
1149 * the whole bio data *afterwards* -- thanks to immutable
1150 * biovecs we don't need to worry about the block layer
1151 * modifying the biovec array; so leverage bio_clone_fast().
1152 */
1153 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1154 if (!clone)
1155 return 1;
1156
1157 crypt_inc_pending(io);
1158
1159 clone_init(io, clone);
1160 clone->bi_iter.bi_sector = cc->start + io->sector;
1161
1162 generic_make_request(clone);
1163 return 0;
1164}
1165
1166static void kcryptd_io_read_work(struct work_struct *work)
1167{
1168 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1169
1170 crypt_inc_pending(io);
1171 if (kcryptd_io_read(io, GFP_NOIO))
1172 io->error = -ENOMEM;
1173 crypt_dec_pending(io);
1174}
1175
1176static void kcryptd_queue_read(struct dm_crypt_io *io)
1177{
1178 struct crypt_config *cc = io->cc;
1179
1180 INIT_WORK(&io->work, kcryptd_io_read_work);
1181 queue_work(cc->io_queue, &io->work);
1182}
1183
1184static void kcryptd_io_write(struct dm_crypt_io *io)
1185{
1186 struct bio *clone = io->ctx.bio_out;
1187
1188 generic_make_request(clone);
1189}
1190
1191#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1192
1193static int dmcrypt_write(void *data)
1194{
1195 struct crypt_config *cc = data;
1196 struct dm_crypt_io *io;
1197
1198 while (1) {
1199 struct rb_root write_tree;
1200 struct blk_plug plug;
1201
1202 DECLARE_WAITQUEUE(wait, current);
1203
1204 spin_lock_irq(&cc->write_thread_wait.lock);
1205continue_locked:
1206
1207 if (!RB_EMPTY_ROOT(&cc->write_tree))
1208 goto pop_from_list;
1209
1210 if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD, &cc->flags))) {
1211 spin_unlock_irq(&cc->write_thread_wait.lock);
1212 break;
1213 }
1214
1215 __set_current_state(TASK_INTERRUPTIBLE);
1216 __add_wait_queue(&cc->write_thread_wait, &wait);
1217
1218 spin_unlock_irq(&cc->write_thread_wait.lock);
1219
1220 schedule();
1221
1222 spin_lock_irq(&cc->write_thread_wait.lock);
1223 __remove_wait_queue(&cc->write_thread_wait, &wait);
1224 goto continue_locked;
1225
1226pop_from_list:
1227 write_tree = cc->write_tree;
1228 cc->write_tree = RB_ROOT;
1229 spin_unlock_irq(&cc->write_thread_wait.lock);
1230
1231 BUG_ON(rb_parent(write_tree.rb_node));
1232
1233 /*
1234 * Note: we cannot walk the tree here with rb_next because
1235 * the structures may be freed when kcryptd_io_write is called.
1236 */
1237 blk_start_plug(&plug);
1238 do {
1239 io = crypt_io_from_node(rb_first(&write_tree));
1240 rb_erase(&io->rb_node, &write_tree);
1241 kcryptd_io_write(io);
1242 } while (!RB_EMPTY_ROOT(&write_tree));
1243 blk_finish_plug(&plug);
1244 }
1245 return 0;
1246}
1247
1248static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1249{
1250 struct bio *clone = io->ctx.bio_out;
1251 struct crypt_config *cc = io->cc;
1252 unsigned long flags;
1253 sector_t sector;
1254 struct rb_node **rbp, *parent;
1255
1256 if (unlikely(io->error < 0)) {
1257 crypt_free_buffer_pages(cc, clone);
1258 bio_put(clone);
1259 crypt_dec_pending(io);
1260 return;
1261 }
1262
1263 /* crypt_convert should have filled the clone bio */
1264 BUG_ON(io->ctx.iter_out.bi_size);
1265
1266 clone->bi_iter.bi_sector = cc->start + io->sector;
1267
1268 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1269 generic_make_request(clone);
1270 return;
1271 }
1272
1273 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1274 rbp = &cc->write_tree.rb_node;
1275 parent = NULL;
1276 sector = io->sector;
1277 while (*rbp) {
1278 parent = *rbp;
1279 if (sector < crypt_io_from_node(parent)->sector)
1280 rbp = &(*rbp)->rb_left;
1281 else
1282 rbp = &(*rbp)->rb_right;
1283 }
1284 rb_link_node(&io->rb_node, parent, rbp);
1285 rb_insert_color(&io->rb_node, &cc->write_tree);
1286
1287 wake_up_locked(&cc->write_thread_wait);
1288 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1289}
1290
1291static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1292{
1293 struct crypt_config *cc = io->cc;
1294 struct bio *clone;
1295 int crypt_finished;
1296 sector_t sector = io->sector;
1297 int r;
1298
1299 /*
1300 * Prevent io from disappearing until this function completes.
1301 */
1302 crypt_inc_pending(io);
1303 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1304
1305 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1306 if (unlikely(!clone)) {
1307 io->error = -EIO;
1308 goto dec;
1309 }
1310
1311 io->ctx.bio_out = clone;
1312 io->ctx.iter_out = clone->bi_iter;
1313
1314 sector += bio_sectors(clone);
1315
1316 crypt_inc_pending(io);
1317 r = crypt_convert(cc, &io->ctx);
1318 if (r)
1319 io->error = -EIO;
1320 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1321
1322 /* Encryption was already finished, submit io now */
1323 if (crypt_finished) {
1324 kcryptd_crypt_write_io_submit(io, 0);
1325 io->sector = sector;
1326 }
1327
1328dec:
1329 crypt_dec_pending(io);
1330}
1331
1332static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1333{
1334 crypt_dec_pending(io);
1335}
1336
1337static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1338{
1339 struct crypt_config *cc = io->cc;
1340 int r = 0;
1341
1342 crypt_inc_pending(io);
1343
1344 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1345 io->sector);
1346
1347 r = crypt_convert(cc, &io->ctx);
1348 if (r < 0)
1349 io->error = -EIO;
1350
1351 if (atomic_dec_and_test(&io->ctx.cc_pending))
1352 kcryptd_crypt_read_done(io);
1353
1354 crypt_dec_pending(io);
1355}
1356
1357static void kcryptd_async_done(struct crypto_async_request *async_req,
1358 int error)
1359{
1360 struct dm_crypt_request *dmreq = async_req->data;
1361 struct convert_context *ctx = dmreq->ctx;
1362 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1363 struct crypt_config *cc = io->cc;
1364
1365 /*
1366 * A request from crypto driver backlog is going to be processed now,
1367 * finish the completion and continue in crypt_convert().
1368 * (Callback will be called for the second time for this request.)
1369 */
1370 if (error == -EINPROGRESS) {
1371 complete(&ctx->restart);
1372 return;
1373 }
1374
1375 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1376 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1377
1378 if (error < 0)
1379 io->error = -EIO;
1380
1381 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1382
1383 if (!atomic_dec_and_test(&ctx->cc_pending))
1384 return;
1385
1386 if (bio_data_dir(io->base_bio) == READ)
1387 kcryptd_crypt_read_done(io);
1388 else
1389 kcryptd_crypt_write_io_submit(io, 1);
1390}
1391
1392static void kcryptd_crypt(struct work_struct *work)
1393{
1394 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1395
1396 if (bio_data_dir(io->base_bio) == READ)
1397 kcryptd_crypt_read_convert(io);
1398 else
1399 kcryptd_crypt_write_convert(io);
1400}
1401
1402static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1403{
1404 struct crypt_config *cc = io->cc;
1405
1406 INIT_WORK(&io->work, kcryptd_crypt);
1407 queue_work(cc->crypt_queue, &io->work);
1408}
1409
1410/*
1411 * Decode key from its hex representation
1412 */
1413static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1414{
1415 char buffer[3];
1416 unsigned int i;
1417
1418 buffer[2] = '\0';
1419
1420 for (i = 0; i < size; i++) {
1421 buffer[0] = *hex++;
1422 buffer[1] = *hex++;
1423
1424 if (kstrtou8(buffer, 16, &key[i]))
1425 return -EINVAL;
1426 }
1427
1428 if (*hex != '\0')
1429 return -EINVAL;
1430
1431 return 0;
1432}
1433
1434static void crypt_free_tfms(struct crypt_config *cc)
1435{
1436 unsigned i;
1437
1438 if (!cc->tfms)
1439 return;
1440
1441 for (i = 0; i < cc->tfms_count; i++)
1442 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1443 crypto_free_skcipher(cc->tfms[i]);
1444 cc->tfms[i] = NULL;
1445 }
1446
1447 kfree(cc->tfms);
1448 cc->tfms = NULL;
1449}
1450
1451static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1452{
1453 unsigned i;
1454 int err;
1455
1456 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1457 GFP_KERNEL);
1458 if (!cc->tfms)
1459 return -ENOMEM;
1460
1461 for (i = 0; i < cc->tfms_count; i++) {
1462 cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1463 if (IS_ERR(cc->tfms[i])) {
1464 err = PTR_ERR(cc->tfms[i]);
1465 crypt_free_tfms(cc);
1466 return err;
1467 }
1468 }
1469
1470 return 0;
1471}
1472
1473static int crypt_setkey_allcpus(struct crypt_config *cc)
1474{
1475 unsigned subkey_size;
1476 int err = 0, i, r;
1477
1478 /* Ignore extra keys (which are used for IV etc) */
1479 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1480
1481 for (i = 0; i < cc->tfms_count; i++) {
1482 r = crypto_skcipher_setkey(cc->tfms[i],
1483 cc->key + (i * subkey_size),
1484 subkey_size);
1485 if (r)
1486 err = r;
1487 }
1488
1489 return err;
1490}
1491
1492static int crypt_set_key(struct crypt_config *cc, char *key)
1493{
1494 int r = -EINVAL;
1495 int key_string_len = strlen(key);
1496
1497 /* The key size may not be changed. */
1498 if (cc->key_size != (key_string_len >> 1))
1499 goto out;
1500
1501 /* Hyphen (which gives a key_size of zero) means there is no key. */
1502 if (!cc->key_size && strcmp(key, "-"))
1503 goto out;
1504
1505 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1506 goto out;
1507
1508 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1509
1510 r = crypt_setkey_allcpus(cc);
1511
1512out:
1513 /* Hex key string not needed after here, so wipe it. */
1514 memset(key, '0', key_string_len);
1515
1516 return r;
1517}
1518
1519static int crypt_wipe_key(struct crypt_config *cc)
1520{
1521 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1522 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1523
1524 return crypt_setkey_allcpus(cc);
1525}
1526
1527static void crypt_dtr(struct dm_target *ti)
1528{
1529 struct crypt_config *cc = ti->private;
1530
1531 ti->private = NULL;
1532
1533 if (!cc)
1534 return;
1535
1536 if (cc->write_thread) {
1537 spin_lock_irq(&cc->write_thread_wait.lock);
1538 set_bit(DM_CRYPT_EXIT_THREAD, &cc->flags);
1539 wake_up_locked(&cc->write_thread_wait);
1540 spin_unlock_irq(&cc->write_thread_wait.lock);
1541 kthread_stop(cc->write_thread);
1542 }
1543
1544 if (cc->io_queue)
1545 destroy_workqueue(cc->io_queue);
1546 if (cc->crypt_queue)
1547 destroy_workqueue(cc->crypt_queue);
1548
1549 crypt_free_tfms(cc);
1550
1551 if (cc->bs)
1552 bioset_free(cc->bs);
1553
1554 mempool_destroy(cc->page_pool);
1555 mempool_destroy(cc->req_pool);
1556
1557 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1558 cc->iv_gen_ops->dtr(cc);
1559
1560 if (cc->dev)
1561 dm_put_device(ti, cc->dev);
1562
1563 kzfree(cc->cipher);
1564 kzfree(cc->cipher_string);
1565
1566 /* Must zero key material before freeing */
1567 kzfree(cc);
1568}
1569
1570static int crypt_ctr_cipher(struct dm_target *ti,
1571 char *cipher_in, char *key)
1572{
1573 struct crypt_config *cc = ti->private;
1574 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1575 char *cipher_api = NULL;
1576 int ret = -EINVAL;
1577 char dummy;
1578
1579 /* Convert to crypto api definition? */
1580 if (strchr(cipher_in, '(')) {
1581 ti->error = "Bad cipher specification";
1582 return -EINVAL;
1583 }
1584
1585 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1586 if (!cc->cipher_string)
1587 goto bad_mem;
1588
1589 /*
1590 * Legacy dm-crypt cipher specification
1591 * cipher[:keycount]-mode-iv:ivopts
1592 */
1593 tmp = cipher_in;
1594 keycount = strsep(&tmp, "-");
1595 cipher = strsep(&keycount, ":");
1596
1597 if (!keycount)
1598 cc->tfms_count = 1;
1599 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1600 !is_power_of_2(cc->tfms_count)) {
1601 ti->error = "Bad cipher key count specification";
1602 return -EINVAL;
1603 }
1604 cc->key_parts = cc->tfms_count;
1605 cc->key_extra_size = 0;
1606
1607 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1608 if (!cc->cipher)
1609 goto bad_mem;
1610
1611 chainmode = strsep(&tmp, "-");
1612 ivopts = strsep(&tmp, "-");
1613 ivmode = strsep(&ivopts, ":");
1614
1615 if (tmp)
1616 DMWARN("Ignoring unexpected additional cipher options");
1617
1618 /*
1619 * For compatibility with the original dm-crypt mapping format, if
1620 * only the cipher name is supplied, use cbc-plain.
1621 */
1622 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1623 chainmode = "cbc";
1624 ivmode = "plain";
1625 }
1626
1627 if (strcmp(chainmode, "ecb") && !ivmode) {
1628 ti->error = "IV mechanism required";
1629 return -EINVAL;
1630 }
1631
1632 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1633 if (!cipher_api)
1634 goto bad_mem;
1635
1636 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1637 "%s(%s)", chainmode, cipher);
1638 if (ret < 0) {
1639 kfree(cipher_api);
1640 goto bad_mem;
1641 }
1642
1643 /* Allocate cipher */
1644 ret = crypt_alloc_tfms(cc, cipher_api);
1645 if (ret < 0) {
1646 ti->error = "Error allocating crypto tfm";
1647 goto bad;
1648 }
1649
1650 /* Initialize IV */
1651 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1652 if (cc->iv_size)
1653 /* at least a 64 bit sector number should fit in our buffer */
1654 cc->iv_size = max(cc->iv_size,
1655 (unsigned int)(sizeof(u64) / sizeof(u8)));
1656 else if (ivmode) {
1657 DMWARN("Selected cipher does not support IVs");
1658 ivmode = NULL;
1659 }
1660
1661 /* Choose ivmode, see comments at iv code. */
1662 if (ivmode == NULL)
1663 cc->iv_gen_ops = NULL;
1664 else if (strcmp(ivmode, "plain") == 0)
1665 cc->iv_gen_ops = &crypt_iv_plain_ops;
1666 else if (strcmp(ivmode, "plain64") == 0)
1667 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1668 else if (strcmp(ivmode, "essiv") == 0)
1669 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1670 else if (strcmp(ivmode, "benbi") == 0)
1671 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1672 else if (strcmp(ivmode, "null") == 0)
1673 cc->iv_gen_ops = &crypt_iv_null_ops;
1674 else if (strcmp(ivmode, "lmk") == 0) {
1675 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1676 /*
1677 * Version 2 and 3 is recognised according
1678 * to length of provided multi-key string.
1679 * If present (version 3), last key is used as IV seed.
1680 * All keys (including IV seed) are always the same size.
1681 */
1682 if (cc->key_size % cc->key_parts) {
1683 cc->key_parts++;
1684 cc->key_extra_size = cc->key_size / cc->key_parts;
1685 }
1686 } else if (strcmp(ivmode, "tcw") == 0) {
1687 cc->iv_gen_ops = &crypt_iv_tcw_ops;
1688 cc->key_parts += 2; /* IV + whitening */
1689 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1690 } else {
1691 ret = -EINVAL;
1692 ti->error = "Invalid IV mode";
1693 goto bad;
1694 }
1695
1696 /* Initialize and set key */
1697 ret = crypt_set_key(cc, key);
1698 if (ret < 0) {
1699 ti->error = "Error decoding and setting key";
1700 goto bad;
1701 }
1702
1703 /* Allocate IV */
1704 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1705 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1706 if (ret < 0) {
1707 ti->error = "Error creating IV";
1708 goto bad;
1709 }
1710 }
1711
1712 /* Initialize IV (set keys for ESSIV etc) */
1713 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1714 ret = cc->iv_gen_ops->init(cc);
1715 if (ret < 0) {
1716 ti->error = "Error initialising IV";
1717 goto bad;
1718 }
1719 }
1720
1721 ret = 0;
1722bad:
1723 kfree(cipher_api);
1724 return ret;
1725
1726bad_mem:
1727 ti->error = "Cannot allocate cipher strings";
1728 return -ENOMEM;
1729}
1730
1731/*
1732 * Construct an encryption mapping:
1733 * <cipher> <key> <iv_offset> <dev_path> <start>
1734 */
1735static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1736{
1737 struct crypt_config *cc;
1738 unsigned int key_size, opt_params;
1739 unsigned long long tmpll;
1740 int ret;
1741 size_t iv_size_padding;
1742 struct dm_arg_set as;
1743 const char *opt_string;
1744 char dummy;
1745
1746 static struct dm_arg _args[] = {
1747 {0, 3, "Invalid number of feature args"},
1748 };
1749
1750 if (argc < 5) {
1751 ti->error = "Not enough arguments";
1752 return -EINVAL;
1753 }
1754
1755 key_size = strlen(argv[1]) >> 1;
1756
1757 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1758 if (!cc) {
1759 ti->error = "Cannot allocate encryption context";
1760 return -ENOMEM;
1761 }
1762 cc->key_size = key_size;
1763
1764 ti->private = cc;
1765 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1766 if (ret < 0)
1767 goto bad;
1768
1769 cc->dmreq_start = sizeof(struct skcipher_request);
1770 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
1771 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1772
1773 if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1774 /* Allocate the padding exactly */
1775 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1776 & crypto_skcipher_alignmask(any_tfm(cc));
1777 } else {
1778 /*
1779 * If the cipher requires greater alignment than kmalloc
1780 * alignment, we don't know the exact position of the
1781 * initialization vector. We must assume worst case.
1782 */
1783 iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1784 }
1785
1786 ret = -ENOMEM;
1787 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1788 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1789 if (!cc->req_pool) {
1790 ti->error = "Cannot allocate crypt request mempool";
1791 goto bad;
1792 }
1793
1794 cc->per_bio_data_size = ti->per_io_data_size =
1795 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1796 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1797 ARCH_KMALLOC_MINALIGN);
1798
1799 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1800 if (!cc->page_pool) {
1801 ti->error = "Cannot allocate page mempool";
1802 goto bad;
1803 }
1804
1805 cc->bs = bioset_create(MIN_IOS, 0);
1806 if (!cc->bs) {
1807 ti->error = "Cannot allocate crypt bioset";
1808 goto bad;
1809 }
1810
1811 mutex_init(&cc->bio_alloc_lock);
1812
1813 ret = -EINVAL;
1814 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1815 ti->error = "Invalid iv_offset sector";
1816 goto bad;
1817 }
1818 cc->iv_offset = tmpll;
1819
1820 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1821 if (ret) {
1822 ti->error = "Device lookup failed";
1823 goto bad;
1824 }
1825
1826 ret = -EINVAL;
1827 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1828 ti->error = "Invalid device sector";
1829 goto bad;
1830 }
1831 cc->start = tmpll;
1832
1833 argv += 5;
1834 argc -= 5;
1835
1836 /* Optional parameters */
1837 if (argc) {
1838 as.argc = argc;
1839 as.argv = argv;
1840
1841 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1842 if (ret)
1843 goto bad;
1844
1845 ret = -EINVAL;
1846 while (opt_params--) {
1847 opt_string = dm_shift_arg(&as);
1848 if (!opt_string) {
1849 ti->error = "Not enough feature arguments";
1850 goto bad;
1851 }
1852
1853 if (!strcasecmp(opt_string, "allow_discards"))
1854 ti->num_discard_bios = 1;
1855
1856 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1857 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1858
1859 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1860 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1861
1862 else {
1863 ti->error = "Invalid feature arguments";
1864 goto bad;
1865 }
1866 }
1867 }
1868
1869 ret = -ENOMEM;
1870 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1871 if (!cc->io_queue) {
1872 ti->error = "Couldn't create kcryptd io queue";
1873 goto bad;
1874 }
1875
1876 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1877 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1878 else
1879 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1880 num_online_cpus());
1881 if (!cc->crypt_queue) {
1882 ti->error = "Couldn't create kcryptd queue";
1883 goto bad;
1884 }
1885
1886 init_waitqueue_head(&cc->write_thread_wait);
1887 cc->write_tree = RB_ROOT;
1888
1889 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1890 if (IS_ERR(cc->write_thread)) {
1891 ret = PTR_ERR(cc->write_thread);
1892 cc->write_thread = NULL;
1893 ti->error = "Couldn't spawn write thread";
1894 goto bad;
1895 }
1896 wake_up_process(cc->write_thread);
1897
1898 ti->num_flush_bios = 1;
1899 ti->discard_zeroes_data_unsupported = true;
1900
1901 return 0;
1902
1903bad:
1904 crypt_dtr(ti);
1905 return ret;
1906}
1907
1908static int crypt_map(struct dm_target *ti, struct bio *bio)
1909{
1910 struct dm_crypt_io *io;
1911 struct crypt_config *cc = ti->private;
1912
1913 /*
1914 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1915 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1916 * - for REQ_DISCARD caller must use flush if IO ordering matters
1917 */
1918 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1919 bio->bi_bdev = cc->dev->bdev;
1920 if (bio_sectors(bio))
1921 bio->bi_iter.bi_sector = cc->start +
1922 dm_target_offset(ti, bio->bi_iter.bi_sector);
1923 return DM_MAPIO_REMAPPED;
1924 }
1925
1926 io = dm_per_bio_data(bio, cc->per_bio_data_size);
1927 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1928 io->ctx.req = (struct skcipher_request *)(io + 1);
1929
1930 if (bio_data_dir(io->base_bio) == READ) {
1931 if (kcryptd_io_read(io, GFP_NOWAIT))
1932 kcryptd_queue_read(io);
1933 } else
1934 kcryptd_queue_crypt(io);
1935
1936 return DM_MAPIO_SUBMITTED;
1937}
1938
1939static void crypt_status(struct dm_target *ti, status_type_t type,
1940 unsigned status_flags, char *result, unsigned maxlen)
1941{
1942 struct crypt_config *cc = ti->private;
1943 unsigned i, sz = 0;
1944 int num_feature_args = 0;
1945
1946 switch (type) {
1947 case STATUSTYPE_INFO:
1948 result[0] = '\0';
1949 break;
1950
1951 case STATUSTYPE_TABLE:
1952 DMEMIT("%s ", cc->cipher_string);
1953
1954 if (cc->key_size > 0)
1955 for (i = 0; i < cc->key_size; i++)
1956 DMEMIT("%02x", cc->key[i]);
1957 else
1958 DMEMIT("-");
1959
1960 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1961 cc->dev->name, (unsigned long long)cc->start);
1962
1963 num_feature_args += !!ti->num_discard_bios;
1964 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1965 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1966 if (num_feature_args) {
1967 DMEMIT(" %d", num_feature_args);
1968 if (ti->num_discard_bios)
1969 DMEMIT(" allow_discards");
1970 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1971 DMEMIT(" same_cpu_crypt");
1972 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1973 DMEMIT(" submit_from_crypt_cpus");
1974 }
1975
1976 break;
1977 }
1978}
1979
1980static void crypt_postsuspend(struct dm_target *ti)
1981{
1982 struct crypt_config *cc = ti->private;
1983
1984 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1985}
1986
1987static int crypt_preresume(struct dm_target *ti)
1988{
1989 struct crypt_config *cc = ti->private;
1990
1991 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1992 DMERR("aborting resume - crypt key is not set.");
1993 return -EAGAIN;
1994 }
1995
1996 return 0;
1997}
1998
1999static void crypt_resume(struct dm_target *ti)
2000{
2001 struct crypt_config *cc = ti->private;
2002
2003 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2004}
2005
2006/* Message interface
2007 * key set <key>
2008 * key wipe
2009 */
2010static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2011{
2012 struct crypt_config *cc = ti->private;
2013 int ret = -EINVAL;
2014
2015 if (argc < 2)
2016 goto error;
2017
2018 if (!strcasecmp(argv[0], "key")) {
2019 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2020 DMWARN("not suspended during key manipulation.");
2021 return -EINVAL;
2022 }
2023 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2024 ret = crypt_set_key(cc, argv[2]);
2025 if (ret)
2026 return ret;
2027 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2028 ret = cc->iv_gen_ops->init(cc);
2029 return ret;
2030 }
2031 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2032 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2033 ret = cc->iv_gen_ops->wipe(cc);
2034 if (ret)
2035 return ret;
2036 }
2037 return crypt_wipe_key(cc);
2038 }
2039 }
2040
2041error:
2042 DMWARN("unrecognised message received.");
2043 return -EINVAL;
2044}
2045
2046static int crypt_iterate_devices(struct dm_target *ti,
2047 iterate_devices_callout_fn fn, void *data)
2048{
2049 struct crypt_config *cc = ti->private;
2050
2051 return fn(ti, cc->dev, cc->start, ti->len, data);
2052}
2053
2054static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2055{
2056 /*
2057 * Unfortunate constraint that is required to avoid the potential
2058 * for exceeding underlying device's max_segments limits -- due to
2059 * crypt_alloc_buffer() possibly allocating pages for the encryption
2060 * bio that are not as physically contiguous as the original bio.
2061 */
2062 limits->max_segment_size = PAGE_SIZE;
2063}
2064
2065static struct target_type crypt_target = {
2066 .name = "crypt",
2067 .version = {1, 14, 1},
2068 .module = THIS_MODULE,
2069 .ctr = crypt_ctr,
2070 .dtr = crypt_dtr,
2071 .map = crypt_map,
2072 .status = crypt_status,
2073 .postsuspend = crypt_postsuspend,
2074 .preresume = crypt_preresume,
2075 .resume = crypt_resume,
2076 .message = crypt_message,
2077 .iterate_devices = crypt_iterate_devices,
2078 .io_hints = crypt_io_hints,
2079};
2080
2081static int __init dm_crypt_init(void)
2082{
2083 int r;
2084
2085 r = dm_register_target(&crypt_target);
2086 if (r < 0)
2087 DMERR("register failed %d", r);
2088
2089 return r;
2090}
2091
2092static void __exit dm_crypt_exit(void)
2093{
2094 dm_unregister_target(&crypt_target);
2095}
2096
2097module_init(dm_crypt_init);
2098module_exit(dm_crypt_exit);
2099
2100MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2101MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2102MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10#include <linux/completion.h>
11#include <linux/err.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/bio.h>
16#include <linux/blkdev.h>
17#include <linux/mempool.h>
18#include <linux/slab.h>
19#include <linux/crypto.h>
20#include <linux/workqueue.h>
21#include <linux/backing-dev.h>
22#include <linux/atomic.h>
23#include <linux/scatterlist.h>
24#include <asm/page.h>
25#include <asm/unaligned.h>
26#include <crypto/hash.h>
27#include <crypto/md5.h>
28#include <crypto/algapi.h>
29
30#include <linux/device-mapper.h>
31
32#define DM_MSG_PREFIX "crypt"
33
34/*
35 * context holding the current state of a multi-part conversion
36 */
37struct convert_context {
38 struct completion restart;
39 struct bio *bio_in;
40 struct bio *bio_out;
41 struct bvec_iter iter_in;
42 struct bvec_iter iter_out;
43 sector_t cc_sector;
44 atomic_t cc_pending;
45 struct ablkcipher_request *req;
46};
47
48/*
49 * per bio private data
50 */
51struct dm_crypt_io {
52 struct crypt_config *cc;
53 struct bio *base_bio;
54 struct work_struct work;
55
56 struct convert_context ctx;
57
58 atomic_t io_pending;
59 int error;
60 sector_t sector;
61 struct dm_crypt_io *base_io;
62};
63
64struct dm_crypt_request {
65 struct convert_context *ctx;
66 struct scatterlist sg_in;
67 struct scatterlist sg_out;
68 sector_t iv_sector;
69};
70
71struct crypt_config;
72
73struct crypt_iv_operations {
74 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
75 const char *opts);
76 void (*dtr)(struct crypt_config *cc);
77 int (*init)(struct crypt_config *cc);
78 int (*wipe)(struct crypt_config *cc);
79 int (*generator)(struct crypt_config *cc, u8 *iv,
80 struct dm_crypt_request *dmreq);
81 int (*post)(struct crypt_config *cc, u8 *iv,
82 struct dm_crypt_request *dmreq);
83};
84
85struct iv_essiv_private {
86 struct crypto_hash *hash_tfm;
87 u8 *salt;
88};
89
90struct iv_benbi_private {
91 int shift;
92};
93
94#define LMK_SEED_SIZE 64 /* hash + 0 */
95struct iv_lmk_private {
96 struct crypto_shash *hash_tfm;
97 u8 *seed;
98};
99
100#define TCW_WHITENING_SIZE 16
101struct iv_tcw_private {
102 struct crypto_shash *crc32_tfm;
103 u8 *iv_seed;
104 u8 *whitening;
105};
106
107/*
108 * Crypt: maps a linear range of a block device
109 * and encrypts / decrypts at the same time.
110 */
111enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
112
113/*
114 * The fields in here must be read only after initialization.
115 */
116struct crypt_config {
117 struct dm_dev *dev;
118 sector_t start;
119
120 /*
121 * pool for per bio private data, crypto requests and
122 * encryption requeusts/buffer pages
123 */
124 mempool_t *io_pool;
125 mempool_t *req_pool;
126 mempool_t *page_pool;
127 struct bio_set *bs;
128
129 struct workqueue_struct *io_queue;
130 struct workqueue_struct *crypt_queue;
131
132 char *cipher;
133 char *cipher_string;
134
135 struct crypt_iv_operations *iv_gen_ops;
136 union {
137 struct iv_essiv_private essiv;
138 struct iv_benbi_private benbi;
139 struct iv_lmk_private lmk;
140 struct iv_tcw_private tcw;
141 } iv_gen_private;
142 sector_t iv_offset;
143 unsigned int iv_size;
144
145 /* ESSIV: struct crypto_cipher *essiv_tfm */
146 void *iv_private;
147 struct crypto_ablkcipher **tfms;
148 unsigned tfms_count;
149
150 /*
151 * Layout of each crypto request:
152 *
153 * struct ablkcipher_request
154 * context
155 * padding
156 * struct dm_crypt_request
157 * padding
158 * IV
159 *
160 * The padding is added so that dm_crypt_request and the IV are
161 * correctly aligned.
162 */
163 unsigned int dmreq_start;
164
165 unsigned long flags;
166 unsigned int key_size;
167 unsigned int key_parts; /* independent parts in key buffer */
168 unsigned int key_extra_size; /* additional keys length */
169 u8 key[0];
170};
171
172#define MIN_IOS 16
173#define MIN_POOL_PAGES 32
174
175static struct kmem_cache *_crypt_io_pool;
176
177static void clone_init(struct dm_crypt_io *, struct bio *);
178static void kcryptd_queue_crypt(struct dm_crypt_io *io);
179static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
180
181/*
182 * Use this to access cipher attributes that are the same for each CPU.
183 */
184static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
185{
186 return cc->tfms[0];
187}
188
189/*
190 * Different IV generation algorithms:
191 *
192 * plain: the initial vector is the 32-bit little-endian version of the sector
193 * number, padded with zeros if necessary.
194 *
195 * plain64: the initial vector is the 64-bit little-endian version of the sector
196 * number, padded with zeros if necessary.
197 *
198 * essiv: "encrypted sector|salt initial vector", the sector number is
199 * encrypted with the bulk cipher using a salt as key. The salt
200 * should be derived from the bulk cipher's key via hashing.
201 *
202 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
203 * (needed for LRW-32-AES and possible other narrow block modes)
204 *
205 * null: the initial vector is always zero. Provides compatibility with
206 * obsolete loop_fish2 devices. Do not use for new devices.
207 *
208 * lmk: Compatible implementation of the block chaining mode used
209 * by the Loop-AES block device encryption system
210 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
211 * It operates on full 512 byte sectors and uses CBC
212 * with an IV derived from the sector number, the data and
213 * optionally extra IV seed.
214 * This means that after decryption the first block
215 * of sector must be tweaked according to decrypted data.
216 * Loop-AES can use three encryption schemes:
217 * version 1: is plain aes-cbc mode
218 * version 2: uses 64 multikey scheme with lmk IV generator
219 * version 3: the same as version 2 with additional IV seed
220 * (it uses 65 keys, last key is used as IV seed)
221 *
222 * tcw: Compatible implementation of the block chaining mode used
223 * by the TrueCrypt device encryption system (prior to version 4.1).
224 * For more info see: http://www.truecrypt.org
225 * It operates on full 512 byte sectors and uses CBC
226 * with an IV derived from initial key and the sector number.
227 * In addition, whitening value is applied on every sector, whitening
228 * is calculated from initial key, sector number and mixed using CRC32.
229 * Note that this encryption scheme is vulnerable to watermarking attacks
230 * and should be used for old compatible containers access only.
231 *
232 * plumb: unimplemented, see:
233 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
234 */
235
236static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
237 struct dm_crypt_request *dmreq)
238{
239 memset(iv, 0, cc->iv_size);
240 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
241
242 return 0;
243}
244
245static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
246 struct dm_crypt_request *dmreq)
247{
248 memset(iv, 0, cc->iv_size);
249 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
250
251 return 0;
252}
253
254/* Initialise ESSIV - compute salt but no local memory allocations */
255static int crypt_iv_essiv_init(struct crypt_config *cc)
256{
257 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
258 struct hash_desc desc;
259 struct scatterlist sg;
260 struct crypto_cipher *essiv_tfm;
261 int err;
262
263 sg_init_one(&sg, cc->key, cc->key_size);
264 desc.tfm = essiv->hash_tfm;
265 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
266
267 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
268 if (err)
269 return err;
270
271 essiv_tfm = cc->iv_private;
272
273 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
274 crypto_hash_digestsize(essiv->hash_tfm));
275 if (err)
276 return err;
277
278 return 0;
279}
280
281/* Wipe salt and reset key derived from volume key */
282static int crypt_iv_essiv_wipe(struct crypt_config *cc)
283{
284 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
285 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
286 struct crypto_cipher *essiv_tfm;
287 int r, err = 0;
288
289 memset(essiv->salt, 0, salt_size);
290
291 essiv_tfm = cc->iv_private;
292 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
293 if (r)
294 err = r;
295
296 return err;
297}
298
299/* Set up per cpu cipher state */
300static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
301 struct dm_target *ti,
302 u8 *salt, unsigned saltsize)
303{
304 struct crypto_cipher *essiv_tfm;
305 int err;
306
307 /* Setup the essiv_tfm with the given salt */
308 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
309 if (IS_ERR(essiv_tfm)) {
310 ti->error = "Error allocating crypto tfm for ESSIV";
311 return essiv_tfm;
312 }
313
314 if (crypto_cipher_blocksize(essiv_tfm) !=
315 crypto_ablkcipher_ivsize(any_tfm(cc))) {
316 ti->error = "Block size of ESSIV cipher does "
317 "not match IV size of block cipher";
318 crypto_free_cipher(essiv_tfm);
319 return ERR_PTR(-EINVAL);
320 }
321
322 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
323 if (err) {
324 ti->error = "Failed to set key for ESSIV cipher";
325 crypto_free_cipher(essiv_tfm);
326 return ERR_PTR(err);
327 }
328
329 return essiv_tfm;
330}
331
332static void crypt_iv_essiv_dtr(struct crypt_config *cc)
333{
334 struct crypto_cipher *essiv_tfm;
335 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
336
337 crypto_free_hash(essiv->hash_tfm);
338 essiv->hash_tfm = NULL;
339
340 kzfree(essiv->salt);
341 essiv->salt = NULL;
342
343 essiv_tfm = cc->iv_private;
344
345 if (essiv_tfm)
346 crypto_free_cipher(essiv_tfm);
347
348 cc->iv_private = NULL;
349}
350
351static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
352 const char *opts)
353{
354 struct crypto_cipher *essiv_tfm = NULL;
355 struct crypto_hash *hash_tfm = NULL;
356 u8 *salt = NULL;
357 int err;
358
359 if (!opts) {
360 ti->error = "Digest algorithm missing for ESSIV mode";
361 return -EINVAL;
362 }
363
364 /* Allocate hash algorithm */
365 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
366 if (IS_ERR(hash_tfm)) {
367 ti->error = "Error initializing ESSIV hash";
368 err = PTR_ERR(hash_tfm);
369 goto bad;
370 }
371
372 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
373 if (!salt) {
374 ti->error = "Error kmallocing salt storage in ESSIV";
375 err = -ENOMEM;
376 goto bad;
377 }
378
379 cc->iv_gen_private.essiv.salt = salt;
380 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
381
382 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
383 crypto_hash_digestsize(hash_tfm));
384 if (IS_ERR(essiv_tfm)) {
385 crypt_iv_essiv_dtr(cc);
386 return PTR_ERR(essiv_tfm);
387 }
388 cc->iv_private = essiv_tfm;
389
390 return 0;
391
392bad:
393 if (hash_tfm && !IS_ERR(hash_tfm))
394 crypto_free_hash(hash_tfm);
395 kfree(salt);
396 return err;
397}
398
399static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
400 struct dm_crypt_request *dmreq)
401{
402 struct crypto_cipher *essiv_tfm = cc->iv_private;
403
404 memset(iv, 0, cc->iv_size);
405 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
406 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
407
408 return 0;
409}
410
411static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
412 const char *opts)
413{
414 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
415 int log = ilog2(bs);
416
417 /* we need to calculate how far we must shift the sector count
418 * to get the cipher block count, we use this shift in _gen */
419
420 if (1 << log != bs) {
421 ti->error = "cypher blocksize is not a power of 2";
422 return -EINVAL;
423 }
424
425 if (log > 9) {
426 ti->error = "cypher blocksize is > 512";
427 return -EINVAL;
428 }
429
430 cc->iv_gen_private.benbi.shift = 9 - log;
431
432 return 0;
433}
434
435static void crypt_iv_benbi_dtr(struct crypt_config *cc)
436{
437}
438
439static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
440 struct dm_crypt_request *dmreq)
441{
442 __be64 val;
443
444 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
445
446 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
447 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
448
449 return 0;
450}
451
452static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
453 struct dm_crypt_request *dmreq)
454{
455 memset(iv, 0, cc->iv_size);
456
457 return 0;
458}
459
460static void crypt_iv_lmk_dtr(struct crypt_config *cc)
461{
462 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
463
464 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
465 crypto_free_shash(lmk->hash_tfm);
466 lmk->hash_tfm = NULL;
467
468 kzfree(lmk->seed);
469 lmk->seed = NULL;
470}
471
472static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
473 const char *opts)
474{
475 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
476
477 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
478 if (IS_ERR(lmk->hash_tfm)) {
479 ti->error = "Error initializing LMK hash";
480 return PTR_ERR(lmk->hash_tfm);
481 }
482
483 /* No seed in LMK version 2 */
484 if (cc->key_parts == cc->tfms_count) {
485 lmk->seed = NULL;
486 return 0;
487 }
488
489 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
490 if (!lmk->seed) {
491 crypt_iv_lmk_dtr(cc);
492 ti->error = "Error kmallocing seed storage in LMK";
493 return -ENOMEM;
494 }
495
496 return 0;
497}
498
499static int crypt_iv_lmk_init(struct crypt_config *cc)
500{
501 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
502 int subkey_size = cc->key_size / cc->key_parts;
503
504 /* LMK seed is on the position of LMK_KEYS + 1 key */
505 if (lmk->seed)
506 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
507 crypto_shash_digestsize(lmk->hash_tfm));
508
509 return 0;
510}
511
512static int crypt_iv_lmk_wipe(struct crypt_config *cc)
513{
514 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
515
516 if (lmk->seed)
517 memset(lmk->seed, 0, LMK_SEED_SIZE);
518
519 return 0;
520}
521
522static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
523 struct dm_crypt_request *dmreq,
524 u8 *data)
525{
526 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
527 struct {
528 struct shash_desc desc;
529 char ctx[crypto_shash_descsize(lmk->hash_tfm)];
530 } sdesc;
531 struct md5_state md5state;
532 __le32 buf[4];
533 int i, r;
534
535 sdesc.desc.tfm = lmk->hash_tfm;
536 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
537
538 r = crypto_shash_init(&sdesc.desc);
539 if (r)
540 return r;
541
542 if (lmk->seed) {
543 r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
544 if (r)
545 return r;
546 }
547
548 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
549 r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
550 if (r)
551 return r;
552
553 /* Sector is cropped to 56 bits here */
554 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
555 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
556 buf[2] = cpu_to_le32(4024);
557 buf[3] = 0;
558 r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
559 if (r)
560 return r;
561
562 /* No MD5 padding here */
563 r = crypto_shash_export(&sdesc.desc, &md5state);
564 if (r)
565 return r;
566
567 for (i = 0; i < MD5_HASH_WORDS; i++)
568 __cpu_to_le32s(&md5state.hash[i]);
569 memcpy(iv, &md5state.hash, cc->iv_size);
570
571 return 0;
572}
573
574static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
575 struct dm_crypt_request *dmreq)
576{
577 u8 *src;
578 int r = 0;
579
580 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
581 src = kmap_atomic(sg_page(&dmreq->sg_in));
582 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
583 kunmap_atomic(src);
584 } else
585 memset(iv, 0, cc->iv_size);
586
587 return r;
588}
589
590static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
591 struct dm_crypt_request *dmreq)
592{
593 u8 *dst;
594 int r;
595
596 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
597 return 0;
598
599 dst = kmap_atomic(sg_page(&dmreq->sg_out));
600 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
601
602 /* Tweak the first block of plaintext sector */
603 if (!r)
604 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
605
606 kunmap_atomic(dst);
607 return r;
608}
609
610static void crypt_iv_tcw_dtr(struct crypt_config *cc)
611{
612 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
613
614 kzfree(tcw->iv_seed);
615 tcw->iv_seed = NULL;
616 kzfree(tcw->whitening);
617 tcw->whitening = NULL;
618
619 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
620 crypto_free_shash(tcw->crc32_tfm);
621 tcw->crc32_tfm = NULL;
622}
623
624static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
625 const char *opts)
626{
627 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
628
629 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
630 ti->error = "Wrong key size for TCW";
631 return -EINVAL;
632 }
633
634 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
635 if (IS_ERR(tcw->crc32_tfm)) {
636 ti->error = "Error initializing CRC32 in TCW";
637 return PTR_ERR(tcw->crc32_tfm);
638 }
639
640 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
641 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
642 if (!tcw->iv_seed || !tcw->whitening) {
643 crypt_iv_tcw_dtr(cc);
644 ti->error = "Error allocating seed storage in TCW";
645 return -ENOMEM;
646 }
647
648 return 0;
649}
650
651static int crypt_iv_tcw_init(struct crypt_config *cc)
652{
653 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
654 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
655
656 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
657 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
658 TCW_WHITENING_SIZE);
659
660 return 0;
661}
662
663static int crypt_iv_tcw_wipe(struct crypt_config *cc)
664{
665 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
666
667 memset(tcw->iv_seed, 0, cc->iv_size);
668 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
669
670 return 0;
671}
672
673static int crypt_iv_tcw_whitening(struct crypt_config *cc,
674 struct dm_crypt_request *dmreq,
675 u8 *data)
676{
677 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
678 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
679 u8 buf[TCW_WHITENING_SIZE];
680 struct {
681 struct shash_desc desc;
682 char ctx[crypto_shash_descsize(tcw->crc32_tfm)];
683 } sdesc;
684 int i, r;
685
686 /* xor whitening with sector number */
687 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
688 crypto_xor(buf, (u8 *)§or, 8);
689 crypto_xor(&buf[8], (u8 *)§or, 8);
690
691 /* calculate crc32 for every 32bit part and xor it */
692 sdesc.desc.tfm = tcw->crc32_tfm;
693 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
694 for (i = 0; i < 4; i++) {
695 r = crypto_shash_init(&sdesc.desc);
696 if (r)
697 goto out;
698 r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4);
699 if (r)
700 goto out;
701 r = crypto_shash_final(&sdesc.desc, &buf[i * 4]);
702 if (r)
703 goto out;
704 }
705 crypto_xor(&buf[0], &buf[12], 4);
706 crypto_xor(&buf[4], &buf[8], 4);
707
708 /* apply whitening (8 bytes) to whole sector */
709 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
710 crypto_xor(data + i * 8, buf, 8);
711out:
712 memset(buf, 0, sizeof(buf));
713 return r;
714}
715
716static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
717 struct dm_crypt_request *dmreq)
718{
719 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
720 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
721 u8 *src;
722 int r = 0;
723
724 /* Remove whitening from ciphertext */
725 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
726 src = kmap_atomic(sg_page(&dmreq->sg_in));
727 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
728 kunmap_atomic(src);
729 }
730
731 /* Calculate IV */
732 memcpy(iv, tcw->iv_seed, cc->iv_size);
733 crypto_xor(iv, (u8 *)§or, 8);
734 if (cc->iv_size > 8)
735 crypto_xor(&iv[8], (u8 *)§or, cc->iv_size - 8);
736
737 return r;
738}
739
740static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
741 struct dm_crypt_request *dmreq)
742{
743 u8 *dst;
744 int r;
745
746 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
747 return 0;
748
749 /* Apply whitening on ciphertext */
750 dst = kmap_atomic(sg_page(&dmreq->sg_out));
751 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
752 kunmap_atomic(dst);
753
754 return r;
755}
756
757static struct crypt_iv_operations crypt_iv_plain_ops = {
758 .generator = crypt_iv_plain_gen
759};
760
761static struct crypt_iv_operations crypt_iv_plain64_ops = {
762 .generator = crypt_iv_plain64_gen
763};
764
765static struct crypt_iv_operations crypt_iv_essiv_ops = {
766 .ctr = crypt_iv_essiv_ctr,
767 .dtr = crypt_iv_essiv_dtr,
768 .init = crypt_iv_essiv_init,
769 .wipe = crypt_iv_essiv_wipe,
770 .generator = crypt_iv_essiv_gen
771};
772
773static struct crypt_iv_operations crypt_iv_benbi_ops = {
774 .ctr = crypt_iv_benbi_ctr,
775 .dtr = crypt_iv_benbi_dtr,
776 .generator = crypt_iv_benbi_gen
777};
778
779static struct crypt_iv_operations crypt_iv_null_ops = {
780 .generator = crypt_iv_null_gen
781};
782
783static struct crypt_iv_operations crypt_iv_lmk_ops = {
784 .ctr = crypt_iv_lmk_ctr,
785 .dtr = crypt_iv_lmk_dtr,
786 .init = crypt_iv_lmk_init,
787 .wipe = crypt_iv_lmk_wipe,
788 .generator = crypt_iv_lmk_gen,
789 .post = crypt_iv_lmk_post
790};
791
792static struct crypt_iv_operations crypt_iv_tcw_ops = {
793 .ctr = crypt_iv_tcw_ctr,
794 .dtr = crypt_iv_tcw_dtr,
795 .init = crypt_iv_tcw_init,
796 .wipe = crypt_iv_tcw_wipe,
797 .generator = crypt_iv_tcw_gen,
798 .post = crypt_iv_tcw_post
799};
800
801static void crypt_convert_init(struct crypt_config *cc,
802 struct convert_context *ctx,
803 struct bio *bio_out, struct bio *bio_in,
804 sector_t sector)
805{
806 ctx->bio_in = bio_in;
807 ctx->bio_out = bio_out;
808 if (bio_in)
809 ctx->iter_in = bio_in->bi_iter;
810 if (bio_out)
811 ctx->iter_out = bio_out->bi_iter;
812 ctx->cc_sector = sector + cc->iv_offset;
813 init_completion(&ctx->restart);
814}
815
816static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
817 struct ablkcipher_request *req)
818{
819 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
820}
821
822static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
823 struct dm_crypt_request *dmreq)
824{
825 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
826}
827
828static u8 *iv_of_dmreq(struct crypt_config *cc,
829 struct dm_crypt_request *dmreq)
830{
831 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
832 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
833}
834
835static int crypt_convert_block(struct crypt_config *cc,
836 struct convert_context *ctx,
837 struct ablkcipher_request *req)
838{
839 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
840 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
841 struct dm_crypt_request *dmreq;
842 u8 *iv;
843 int r;
844
845 dmreq = dmreq_of_req(cc, req);
846 iv = iv_of_dmreq(cc, dmreq);
847
848 dmreq->iv_sector = ctx->cc_sector;
849 dmreq->ctx = ctx;
850 sg_init_table(&dmreq->sg_in, 1);
851 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
852 bv_in.bv_offset);
853
854 sg_init_table(&dmreq->sg_out, 1);
855 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
856 bv_out.bv_offset);
857
858 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
859 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
860
861 if (cc->iv_gen_ops) {
862 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
863 if (r < 0)
864 return r;
865 }
866
867 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
868 1 << SECTOR_SHIFT, iv);
869
870 if (bio_data_dir(ctx->bio_in) == WRITE)
871 r = crypto_ablkcipher_encrypt(req);
872 else
873 r = crypto_ablkcipher_decrypt(req);
874
875 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
876 r = cc->iv_gen_ops->post(cc, iv, dmreq);
877
878 return r;
879}
880
881static void kcryptd_async_done(struct crypto_async_request *async_req,
882 int error);
883
884static void crypt_alloc_req(struct crypt_config *cc,
885 struct convert_context *ctx)
886{
887 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
888
889 if (!ctx->req)
890 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
891
892 ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
893 ablkcipher_request_set_callback(ctx->req,
894 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
895 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
896}
897
898/*
899 * Encrypt / decrypt data from one bio to another one (can be the same one)
900 */
901static int crypt_convert(struct crypt_config *cc,
902 struct convert_context *ctx)
903{
904 int r;
905
906 atomic_set(&ctx->cc_pending, 1);
907
908 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
909
910 crypt_alloc_req(cc, ctx);
911
912 atomic_inc(&ctx->cc_pending);
913
914 r = crypt_convert_block(cc, ctx, ctx->req);
915
916 switch (r) {
917 /* async */
918 case -EBUSY:
919 wait_for_completion(&ctx->restart);
920 reinit_completion(&ctx->restart);
921 /* fall through*/
922 case -EINPROGRESS:
923 ctx->req = NULL;
924 ctx->cc_sector++;
925 continue;
926
927 /* sync */
928 case 0:
929 atomic_dec(&ctx->cc_pending);
930 ctx->cc_sector++;
931 cond_resched();
932 continue;
933
934 /* error */
935 default:
936 atomic_dec(&ctx->cc_pending);
937 return r;
938 }
939 }
940
941 return 0;
942}
943
944/*
945 * Generate a new unfragmented bio with the given size
946 * This should never violate the device limitations
947 * May return a smaller bio when running out of pages, indicated by
948 * *out_of_pages set to 1.
949 */
950static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
951 unsigned *out_of_pages)
952{
953 struct crypt_config *cc = io->cc;
954 struct bio *clone;
955 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
956 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
957 unsigned i, len;
958 struct page *page;
959
960 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
961 if (!clone)
962 return NULL;
963
964 clone_init(io, clone);
965 *out_of_pages = 0;
966
967 for (i = 0; i < nr_iovecs; i++) {
968 page = mempool_alloc(cc->page_pool, gfp_mask);
969 if (!page) {
970 *out_of_pages = 1;
971 break;
972 }
973
974 /*
975 * If additional pages cannot be allocated without waiting,
976 * return a partially-allocated bio. The caller will then try
977 * to allocate more bios while submitting this partial bio.
978 */
979 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
980
981 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
982
983 if (!bio_add_page(clone, page, len, 0)) {
984 mempool_free(page, cc->page_pool);
985 break;
986 }
987
988 size -= len;
989 }
990
991 if (!clone->bi_iter.bi_size) {
992 bio_put(clone);
993 return NULL;
994 }
995
996 return clone;
997}
998
999static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1000{
1001 unsigned int i;
1002 struct bio_vec *bv;
1003
1004 bio_for_each_segment_all(bv, clone, i) {
1005 BUG_ON(!bv->bv_page);
1006 mempool_free(bv->bv_page, cc->page_pool);
1007 bv->bv_page = NULL;
1008 }
1009}
1010
1011static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
1012 struct bio *bio, sector_t sector)
1013{
1014 struct dm_crypt_io *io;
1015
1016 io = mempool_alloc(cc->io_pool, GFP_NOIO);
1017 io->cc = cc;
1018 io->base_bio = bio;
1019 io->sector = sector;
1020 io->error = 0;
1021 io->base_io = NULL;
1022 io->ctx.req = NULL;
1023 atomic_set(&io->io_pending, 0);
1024
1025 return io;
1026}
1027
1028static void crypt_inc_pending(struct dm_crypt_io *io)
1029{
1030 atomic_inc(&io->io_pending);
1031}
1032
1033/*
1034 * One of the bios was finished. Check for completion of
1035 * the whole request and correctly clean up the buffer.
1036 * If base_io is set, wait for the last fragment to complete.
1037 */
1038static void crypt_dec_pending(struct dm_crypt_io *io)
1039{
1040 struct crypt_config *cc = io->cc;
1041 struct bio *base_bio = io->base_bio;
1042 struct dm_crypt_io *base_io = io->base_io;
1043 int error = io->error;
1044
1045 if (!atomic_dec_and_test(&io->io_pending))
1046 return;
1047
1048 if (io->ctx.req)
1049 mempool_free(io->ctx.req, cc->req_pool);
1050 mempool_free(io, cc->io_pool);
1051
1052 if (likely(!base_io))
1053 bio_endio(base_bio, error);
1054 else {
1055 if (error && !base_io->error)
1056 base_io->error = error;
1057 crypt_dec_pending(base_io);
1058 }
1059}
1060
1061/*
1062 * kcryptd/kcryptd_io:
1063 *
1064 * Needed because it would be very unwise to do decryption in an
1065 * interrupt context.
1066 *
1067 * kcryptd performs the actual encryption or decryption.
1068 *
1069 * kcryptd_io performs the IO submission.
1070 *
1071 * They must be separated as otherwise the final stages could be
1072 * starved by new requests which can block in the first stages due
1073 * to memory allocation.
1074 *
1075 * The work is done per CPU global for all dm-crypt instances.
1076 * They should not depend on each other and do not block.
1077 */
1078static void crypt_endio(struct bio *clone, int error)
1079{
1080 struct dm_crypt_io *io = clone->bi_private;
1081 struct crypt_config *cc = io->cc;
1082 unsigned rw = bio_data_dir(clone);
1083
1084 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1085 error = -EIO;
1086
1087 /*
1088 * free the processed pages
1089 */
1090 if (rw == WRITE)
1091 crypt_free_buffer_pages(cc, clone);
1092
1093 bio_put(clone);
1094
1095 if (rw == READ && !error) {
1096 kcryptd_queue_crypt(io);
1097 return;
1098 }
1099
1100 if (unlikely(error))
1101 io->error = error;
1102
1103 crypt_dec_pending(io);
1104}
1105
1106static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1107{
1108 struct crypt_config *cc = io->cc;
1109
1110 clone->bi_private = io;
1111 clone->bi_end_io = crypt_endio;
1112 clone->bi_bdev = cc->dev->bdev;
1113 clone->bi_rw = io->base_bio->bi_rw;
1114}
1115
1116static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1117{
1118 struct crypt_config *cc = io->cc;
1119 struct bio *base_bio = io->base_bio;
1120 struct bio *clone;
1121
1122 /*
1123 * The block layer might modify the bvec array, so always
1124 * copy the required bvecs because we need the original
1125 * one in order to decrypt the whole bio data *afterwards*.
1126 */
1127 clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1128 if (!clone)
1129 return 1;
1130
1131 crypt_inc_pending(io);
1132
1133 clone_init(io, clone);
1134 clone->bi_iter.bi_sector = cc->start + io->sector;
1135
1136 generic_make_request(clone);
1137 return 0;
1138}
1139
1140static void kcryptd_io_write(struct dm_crypt_io *io)
1141{
1142 struct bio *clone = io->ctx.bio_out;
1143 generic_make_request(clone);
1144}
1145
1146static void kcryptd_io(struct work_struct *work)
1147{
1148 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1149
1150 if (bio_data_dir(io->base_bio) == READ) {
1151 crypt_inc_pending(io);
1152 if (kcryptd_io_read(io, GFP_NOIO))
1153 io->error = -ENOMEM;
1154 crypt_dec_pending(io);
1155 } else
1156 kcryptd_io_write(io);
1157}
1158
1159static void kcryptd_queue_io(struct dm_crypt_io *io)
1160{
1161 struct crypt_config *cc = io->cc;
1162
1163 INIT_WORK(&io->work, kcryptd_io);
1164 queue_work(cc->io_queue, &io->work);
1165}
1166
1167static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1168{
1169 struct bio *clone = io->ctx.bio_out;
1170 struct crypt_config *cc = io->cc;
1171
1172 if (unlikely(io->error < 0)) {
1173 crypt_free_buffer_pages(cc, clone);
1174 bio_put(clone);
1175 crypt_dec_pending(io);
1176 return;
1177 }
1178
1179 /* crypt_convert should have filled the clone bio */
1180 BUG_ON(io->ctx.iter_out.bi_size);
1181
1182 clone->bi_iter.bi_sector = cc->start + io->sector;
1183
1184 if (async)
1185 kcryptd_queue_io(io);
1186 else
1187 generic_make_request(clone);
1188}
1189
1190static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1191{
1192 struct crypt_config *cc = io->cc;
1193 struct bio *clone;
1194 struct dm_crypt_io *new_io;
1195 int crypt_finished;
1196 unsigned out_of_pages = 0;
1197 unsigned remaining = io->base_bio->bi_iter.bi_size;
1198 sector_t sector = io->sector;
1199 int r;
1200
1201 /*
1202 * Prevent io from disappearing until this function completes.
1203 */
1204 crypt_inc_pending(io);
1205 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1206
1207 /*
1208 * The allocated buffers can be smaller than the whole bio,
1209 * so repeat the whole process until all the data can be handled.
1210 */
1211 while (remaining) {
1212 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1213 if (unlikely(!clone)) {
1214 io->error = -ENOMEM;
1215 break;
1216 }
1217
1218 io->ctx.bio_out = clone;
1219 io->ctx.iter_out = clone->bi_iter;
1220
1221 remaining -= clone->bi_iter.bi_size;
1222 sector += bio_sectors(clone);
1223
1224 crypt_inc_pending(io);
1225
1226 r = crypt_convert(cc, &io->ctx);
1227 if (r < 0)
1228 io->error = -EIO;
1229
1230 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1231
1232 /* Encryption was already finished, submit io now */
1233 if (crypt_finished) {
1234 kcryptd_crypt_write_io_submit(io, 0);
1235
1236 /*
1237 * If there was an error, do not try next fragments.
1238 * For async, error is processed in async handler.
1239 */
1240 if (unlikely(r < 0))
1241 break;
1242
1243 io->sector = sector;
1244 }
1245
1246 /*
1247 * Out of memory -> run queues
1248 * But don't wait if split was due to the io size restriction
1249 */
1250 if (unlikely(out_of_pages))
1251 congestion_wait(BLK_RW_ASYNC, HZ/100);
1252
1253 /*
1254 * With async crypto it is unsafe to share the crypto context
1255 * between fragments, so switch to a new dm_crypt_io structure.
1256 */
1257 if (unlikely(!crypt_finished && remaining)) {
1258 new_io = crypt_io_alloc(io->cc, io->base_bio,
1259 sector);
1260 crypt_inc_pending(new_io);
1261 crypt_convert_init(cc, &new_io->ctx, NULL,
1262 io->base_bio, sector);
1263 new_io->ctx.iter_in = io->ctx.iter_in;
1264
1265 /*
1266 * Fragments after the first use the base_io
1267 * pending count.
1268 */
1269 if (!io->base_io)
1270 new_io->base_io = io;
1271 else {
1272 new_io->base_io = io->base_io;
1273 crypt_inc_pending(io->base_io);
1274 crypt_dec_pending(io);
1275 }
1276
1277 io = new_io;
1278 }
1279 }
1280
1281 crypt_dec_pending(io);
1282}
1283
1284static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1285{
1286 crypt_dec_pending(io);
1287}
1288
1289static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1290{
1291 struct crypt_config *cc = io->cc;
1292 int r = 0;
1293
1294 crypt_inc_pending(io);
1295
1296 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1297 io->sector);
1298
1299 r = crypt_convert(cc, &io->ctx);
1300 if (r < 0)
1301 io->error = -EIO;
1302
1303 if (atomic_dec_and_test(&io->ctx.cc_pending))
1304 kcryptd_crypt_read_done(io);
1305
1306 crypt_dec_pending(io);
1307}
1308
1309static void kcryptd_async_done(struct crypto_async_request *async_req,
1310 int error)
1311{
1312 struct dm_crypt_request *dmreq = async_req->data;
1313 struct convert_context *ctx = dmreq->ctx;
1314 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1315 struct crypt_config *cc = io->cc;
1316
1317 if (error == -EINPROGRESS) {
1318 complete(&ctx->restart);
1319 return;
1320 }
1321
1322 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1323 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1324
1325 if (error < 0)
1326 io->error = -EIO;
1327
1328 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1329
1330 if (!atomic_dec_and_test(&ctx->cc_pending))
1331 return;
1332
1333 if (bio_data_dir(io->base_bio) == READ)
1334 kcryptd_crypt_read_done(io);
1335 else
1336 kcryptd_crypt_write_io_submit(io, 1);
1337}
1338
1339static void kcryptd_crypt(struct work_struct *work)
1340{
1341 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1342
1343 if (bio_data_dir(io->base_bio) == READ)
1344 kcryptd_crypt_read_convert(io);
1345 else
1346 kcryptd_crypt_write_convert(io);
1347}
1348
1349static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1350{
1351 struct crypt_config *cc = io->cc;
1352
1353 INIT_WORK(&io->work, kcryptd_crypt);
1354 queue_work(cc->crypt_queue, &io->work);
1355}
1356
1357/*
1358 * Decode key from its hex representation
1359 */
1360static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1361{
1362 char buffer[3];
1363 unsigned int i;
1364
1365 buffer[2] = '\0';
1366
1367 for (i = 0; i < size; i++) {
1368 buffer[0] = *hex++;
1369 buffer[1] = *hex++;
1370
1371 if (kstrtou8(buffer, 16, &key[i]))
1372 return -EINVAL;
1373 }
1374
1375 if (*hex != '\0')
1376 return -EINVAL;
1377
1378 return 0;
1379}
1380
1381static void crypt_free_tfms(struct crypt_config *cc)
1382{
1383 unsigned i;
1384
1385 if (!cc->tfms)
1386 return;
1387
1388 for (i = 0; i < cc->tfms_count; i++)
1389 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1390 crypto_free_ablkcipher(cc->tfms[i]);
1391 cc->tfms[i] = NULL;
1392 }
1393
1394 kfree(cc->tfms);
1395 cc->tfms = NULL;
1396}
1397
1398static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1399{
1400 unsigned i;
1401 int err;
1402
1403 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1404 GFP_KERNEL);
1405 if (!cc->tfms)
1406 return -ENOMEM;
1407
1408 for (i = 0; i < cc->tfms_count; i++) {
1409 cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1410 if (IS_ERR(cc->tfms[i])) {
1411 err = PTR_ERR(cc->tfms[i]);
1412 crypt_free_tfms(cc);
1413 return err;
1414 }
1415 }
1416
1417 return 0;
1418}
1419
1420static int crypt_setkey_allcpus(struct crypt_config *cc)
1421{
1422 unsigned subkey_size;
1423 int err = 0, i, r;
1424
1425 /* Ignore extra keys (which are used for IV etc) */
1426 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1427
1428 for (i = 0; i < cc->tfms_count; i++) {
1429 r = crypto_ablkcipher_setkey(cc->tfms[i],
1430 cc->key + (i * subkey_size),
1431 subkey_size);
1432 if (r)
1433 err = r;
1434 }
1435
1436 return err;
1437}
1438
1439static int crypt_set_key(struct crypt_config *cc, char *key)
1440{
1441 int r = -EINVAL;
1442 int key_string_len = strlen(key);
1443
1444 /* The key size may not be changed. */
1445 if (cc->key_size != (key_string_len >> 1))
1446 goto out;
1447
1448 /* Hyphen (which gives a key_size of zero) means there is no key. */
1449 if (!cc->key_size && strcmp(key, "-"))
1450 goto out;
1451
1452 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1453 goto out;
1454
1455 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1456
1457 r = crypt_setkey_allcpus(cc);
1458
1459out:
1460 /* Hex key string not needed after here, so wipe it. */
1461 memset(key, '0', key_string_len);
1462
1463 return r;
1464}
1465
1466static int crypt_wipe_key(struct crypt_config *cc)
1467{
1468 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1469 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1470
1471 return crypt_setkey_allcpus(cc);
1472}
1473
1474static void crypt_dtr(struct dm_target *ti)
1475{
1476 struct crypt_config *cc = ti->private;
1477
1478 ti->private = NULL;
1479
1480 if (!cc)
1481 return;
1482
1483 if (cc->io_queue)
1484 destroy_workqueue(cc->io_queue);
1485 if (cc->crypt_queue)
1486 destroy_workqueue(cc->crypt_queue);
1487
1488 crypt_free_tfms(cc);
1489
1490 if (cc->bs)
1491 bioset_free(cc->bs);
1492
1493 if (cc->page_pool)
1494 mempool_destroy(cc->page_pool);
1495 if (cc->req_pool)
1496 mempool_destroy(cc->req_pool);
1497 if (cc->io_pool)
1498 mempool_destroy(cc->io_pool);
1499
1500 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1501 cc->iv_gen_ops->dtr(cc);
1502
1503 if (cc->dev)
1504 dm_put_device(ti, cc->dev);
1505
1506 kzfree(cc->cipher);
1507 kzfree(cc->cipher_string);
1508
1509 /* Must zero key material before freeing */
1510 kzfree(cc);
1511}
1512
1513static int crypt_ctr_cipher(struct dm_target *ti,
1514 char *cipher_in, char *key)
1515{
1516 struct crypt_config *cc = ti->private;
1517 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1518 char *cipher_api = NULL;
1519 int ret = -EINVAL;
1520 char dummy;
1521
1522 /* Convert to crypto api definition? */
1523 if (strchr(cipher_in, '(')) {
1524 ti->error = "Bad cipher specification";
1525 return -EINVAL;
1526 }
1527
1528 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1529 if (!cc->cipher_string)
1530 goto bad_mem;
1531
1532 /*
1533 * Legacy dm-crypt cipher specification
1534 * cipher[:keycount]-mode-iv:ivopts
1535 */
1536 tmp = cipher_in;
1537 keycount = strsep(&tmp, "-");
1538 cipher = strsep(&keycount, ":");
1539
1540 if (!keycount)
1541 cc->tfms_count = 1;
1542 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1543 !is_power_of_2(cc->tfms_count)) {
1544 ti->error = "Bad cipher key count specification";
1545 return -EINVAL;
1546 }
1547 cc->key_parts = cc->tfms_count;
1548 cc->key_extra_size = 0;
1549
1550 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1551 if (!cc->cipher)
1552 goto bad_mem;
1553
1554 chainmode = strsep(&tmp, "-");
1555 ivopts = strsep(&tmp, "-");
1556 ivmode = strsep(&ivopts, ":");
1557
1558 if (tmp)
1559 DMWARN("Ignoring unexpected additional cipher options");
1560
1561 /*
1562 * For compatibility with the original dm-crypt mapping format, if
1563 * only the cipher name is supplied, use cbc-plain.
1564 */
1565 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1566 chainmode = "cbc";
1567 ivmode = "plain";
1568 }
1569
1570 if (strcmp(chainmode, "ecb") && !ivmode) {
1571 ti->error = "IV mechanism required";
1572 return -EINVAL;
1573 }
1574
1575 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1576 if (!cipher_api)
1577 goto bad_mem;
1578
1579 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1580 "%s(%s)", chainmode, cipher);
1581 if (ret < 0) {
1582 kfree(cipher_api);
1583 goto bad_mem;
1584 }
1585
1586 /* Allocate cipher */
1587 ret = crypt_alloc_tfms(cc, cipher_api);
1588 if (ret < 0) {
1589 ti->error = "Error allocating crypto tfm";
1590 goto bad;
1591 }
1592
1593 /* Initialize IV */
1594 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1595 if (cc->iv_size)
1596 /* at least a 64 bit sector number should fit in our buffer */
1597 cc->iv_size = max(cc->iv_size,
1598 (unsigned int)(sizeof(u64) / sizeof(u8)));
1599 else if (ivmode) {
1600 DMWARN("Selected cipher does not support IVs");
1601 ivmode = NULL;
1602 }
1603
1604 /* Choose ivmode, see comments at iv code. */
1605 if (ivmode == NULL)
1606 cc->iv_gen_ops = NULL;
1607 else if (strcmp(ivmode, "plain") == 0)
1608 cc->iv_gen_ops = &crypt_iv_plain_ops;
1609 else if (strcmp(ivmode, "plain64") == 0)
1610 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1611 else if (strcmp(ivmode, "essiv") == 0)
1612 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1613 else if (strcmp(ivmode, "benbi") == 0)
1614 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1615 else if (strcmp(ivmode, "null") == 0)
1616 cc->iv_gen_ops = &crypt_iv_null_ops;
1617 else if (strcmp(ivmode, "lmk") == 0) {
1618 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1619 /*
1620 * Version 2 and 3 is recognised according
1621 * to length of provided multi-key string.
1622 * If present (version 3), last key is used as IV seed.
1623 * All keys (including IV seed) are always the same size.
1624 */
1625 if (cc->key_size % cc->key_parts) {
1626 cc->key_parts++;
1627 cc->key_extra_size = cc->key_size / cc->key_parts;
1628 }
1629 } else if (strcmp(ivmode, "tcw") == 0) {
1630 cc->iv_gen_ops = &crypt_iv_tcw_ops;
1631 cc->key_parts += 2; /* IV + whitening */
1632 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1633 } else {
1634 ret = -EINVAL;
1635 ti->error = "Invalid IV mode";
1636 goto bad;
1637 }
1638
1639 /* Initialize and set key */
1640 ret = crypt_set_key(cc, key);
1641 if (ret < 0) {
1642 ti->error = "Error decoding and setting key";
1643 goto bad;
1644 }
1645
1646 /* Allocate IV */
1647 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1648 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1649 if (ret < 0) {
1650 ti->error = "Error creating IV";
1651 goto bad;
1652 }
1653 }
1654
1655 /* Initialize IV (set keys for ESSIV etc) */
1656 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1657 ret = cc->iv_gen_ops->init(cc);
1658 if (ret < 0) {
1659 ti->error = "Error initialising IV";
1660 goto bad;
1661 }
1662 }
1663
1664 ret = 0;
1665bad:
1666 kfree(cipher_api);
1667 return ret;
1668
1669bad_mem:
1670 ti->error = "Cannot allocate cipher strings";
1671 return -ENOMEM;
1672}
1673
1674/*
1675 * Construct an encryption mapping:
1676 * <cipher> <key> <iv_offset> <dev_path> <start>
1677 */
1678static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1679{
1680 struct crypt_config *cc;
1681 unsigned int key_size, opt_params;
1682 unsigned long long tmpll;
1683 int ret;
1684 struct dm_arg_set as;
1685 const char *opt_string;
1686 char dummy;
1687
1688 static struct dm_arg _args[] = {
1689 {0, 1, "Invalid number of feature args"},
1690 };
1691
1692 if (argc < 5) {
1693 ti->error = "Not enough arguments";
1694 return -EINVAL;
1695 }
1696
1697 key_size = strlen(argv[1]) >> 1;
1698
1699 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1700 if (!cc) {
1701 ti->error = "Cannot allocate encryption context";
1702 return -ENOMEM;
1703 }
1704 cc->key_size = key_size;
1705
1706 ti->private = cc;
1707 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1708 if (ret < 0)
1709 goto bad;
1710
1711 ret = -ENOMEM;
1712 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1713 if (!cc->io_pool) {
1714 ti->error = "Cannot allocate crypt io mempool";
1715 goto bad;
1716 }
1717
1718 cc->dmreq_start = sizeof(struct ablkcipher_request);
1719 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1720 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1721 cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1722 ~(crypto_tfm_ctx_alignment() - 1);
1723
1724 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1725 sizeof(struct dm_crypt_request) + cc->iv_size);
1726 if (!cc->req_pool) {
1727 ti->error = "Cannot allocate crypt request mempool";
1728 goto bad;
1729 }
1730
1731 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1732 if (!cc->page_pool) {
1733 ti->error = "Cannot allocate page mempool";
1734 goto bad;
1735 }
1736
1737 cc->bs = bioset_create(MIN_IOS, 0);
1738 if (!cc->bs) {
1739 ti->error = "Cannot allocate crypt bioset";
1740 goto bad;
1741 }
1742
1743 ret = -EINVAL;
1744 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1745 ti->error = "Invalid iv_offset sector";
1746 goto bad;
1747 }
1748 cc->iv_offset = tmpll;
1749
1750 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1751 ti->error = "Device lookup failed";
1752 goto bad;
1753 }
1754
1755 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1756 ti->error = "Invalid device sector";
1757 goto bad;
1758 }
1759 cc->start = tmpll;
1760
1761 argv += 5;
1762 argc -= 5;
1763
1764 /* Optional parameters */
1765 if (argc) {
1766 as.argc = argc;
1767 as.argv = argv;
1768
1769 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1770 if (ret)
1771 goto bad;
1772
1773 opt_string = dm_shift_arg(&as);
1774
1775 if (opt_params == 1 && opt_string &&
1776 !strcasecmp(opt_string, "allow_discards"))
1777 ti->num_discard_bios = 1;
1778 else if (opt_params) {
1779 ret = -EINVAL;
1780 ti->error = "Invalid feature arguments";
1781 goto bad;
1782 }
1783 }
1784
1785 ret = -ENOMEM;
1786 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1787 if (!cc->io_queue) {
1788 ti->error = "Couldn't create kcryptd io queue";
1789 goto bad;
1790 }
1791
1792 cc->crypt_queue = alloc_workqueue("kcryptd",
1793 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1794 if (!cc->crypt_queue) {
1795 ti->error = "Couldn't create kcryptd queue";
1796 goto bad;
1797 }
1798
1799 ti->num_flush_bios = 1;
1800 ti->discard_zeroes_data_unsupported = true;
1801
1802 return 0;
1803
1804bad:
1805 crypt_dtr(ti);
1806 return ret;
1807}
1808
1809static int crypt_map(struct dm_target *ti, struct bio *bio)
1810{
1811 struct dm_crypt_io *io;
1812 struct crypt_config *cc = ti->private;
1813
1814 /*
1815 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1816 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1817 * - for REQ_DISCARD caller must use flush if IO ordering matters
1818 */
1819 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1820 bio->bi_bdev = cc->dev->bdev;
1821 if (bio_sectors(bio))
1822 bio->bi_iter.bi_sector = cc->start +
1823 dm_target_offset(ti, bio->bi_iter.bi_sector);
1824 return DM_MAPIO_REMAPPED;
1825 }
1826
1827 io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1828
1829 if (bio_data_dir(io->base_bio) == READ) {
1830 if (kcryptd_io_read(io, GFP_NOWAIT))
1831 kcryptd_queue_io(io);
1832 } else
1833 kcryptd_queue_crypt(io);
1834
1835 return DM_MAPIO_SUBMITTED;
1836}
1837
1838static void crypt_status(struct dm_target *ti, status_type_t type,
1839 unsigned status_flags, char *result, unsigned maxlen)
1840{
1841 struct crypt_config *cc = ti->private;
1842 unsigned i, sz = 0;
1843
1844 switch (type) {
1845 case STATUSTYPE_INFO:
1846 result[0] = '\0';
1847 break;
1848
1849 case STATUSTYPE_TABLE:
1850 DMEMIT("%s ", cc->cipher_string);
1851
1852 if (cc->key_size > 0)
1853 for (i = 0; i < cc->key_size; i++)
1854 DMEMIT("%02x", cc->key[i]);
1855 else
1856 DMEMIT("-");
1857
1858 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1859 cc->dev->name, (unsigned long long)cc->start);
1860
1861 if (ti->num_discard_bios)
1862 DMEMIT(" 1 allow_discards");
1863
1864 break;
1865 }
1866}
1867
1868static void crypt_postsuspend(struct dm_target *ti)
1869{
1870 struct crypt_config *cc = ti->private;
1871
1872 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1873}
1874
1875static int crypt_preresume(struct dm_target *ti)
1876{
1877 struct crypt_config *cc = ti->private;
1878
1879 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1880 DMERR("aborting resume - crypt key is not set.");
1881 return -EAGAIN;
1882 }
1883
1884 return 0;
1885}
1886
1887static void crypt_resume(struct dm_target *ti)
1888{
1889 struct crypt_config *cc = ti->private;
1890
1891 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1892}
1893
1894/* Message interface
1895 * key set <key>
1896 * key wipe
1897 */
1898static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1899{
1900 struct crypt_config *cc = ti->private;
1901 int ret = -EINVAL;
1902
1903 if (argc < 2)
1904 goto error;
1905
1906 if (!strcasecmp(argv[0], "key")) {
1907 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1908 DMWARN("not suspended during key manipulation.");
1909 return -EINVAL;
1910 }
1911 if (argc == 3 && !strcasecmp(argv[1], "set")) {
1912 ret = crypt_set_key(cc, argv[2]);
1913 if (ret)
1914 return ret;
1915 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1916 ret = cc->iv_gen_ops->init(cc);
1917 return ret;
1918 }
1919 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1920 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1921 ret = cc->iv_gen_ops->wipe(cc);
1922 if (ret)
1923 return ret;
1924 }
1925 return crypt_wipe_key(cc);
1926 }
1927 }
1928
1929error:
1930 DMWARN("unrecognised message received.");
1931 return -EINVAL;
1932}
1933
1934static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1935 struct bio_vec *biovec, int max_size)
1936{
1937 struct crypt_config *cc = ti->private;
1938 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1939
1940 if (!q->merge_bvec_fn)
1941 return max_size;
1942
1943 bvm->bi_bdev = cc->dev->bdev;
1944 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1945
1946 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1947}
1948
1949static int crypt_iterate_devices(struct dm_target *ti,
1950 iterate_devices_callout_fn fn, void *data)
1951{
1952 struct crypt_config *cc = ti->private;
1953
1954 return fn(ti, cc->dev, cc->start, ti->len, data);
1955}
1956
1957static struct target_type crypt_target = {
1958 .name = "crypt",
1959 .version = {1, 13, 0},
1960 .module = THIS_MODULE,
1961 .ctr = crypt_ctr,
1962 .dtr = crypt_dtr,
1963 .map = crypt_map,
1964 .status = crypt_status,
1965 .postsuspend = crypt_postsuspend,
1966 .preresume = crypt_preresume,
1967 .resume = crypt_resume,
1968 .message = crypt_message,
1969 .merge = crypt_merge,
1970 .iterate_devices = crypt_iterate_devices,
1971};
1972
1973static int __init dm_crypt_init(void)
1974{
1975 int r;
1976
1977 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1978 if (!_crypt_io_pool)
1979 return -ENOMEM;
1980
1981 r = dm_register_target(&crypt_target);
1982 if (r < 0) {
1983 DMERR("register failed %d", r);
1984 kmem_cache_destroy(_crypt_io_pool);
1985 }
1986
1987 return r;
1988}
1989
1990static void __exit dm_crypt_exit(void)
1991{
1992 dm_unregister_target(&crypt_target);
1993 kmem_cache_destroy(_crypt_io_pool);
1994}
1995
1996module_init(dm_crypt_init);
1997module_exit(dm_crypt_exit);
1998
1999MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
2000MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2001MODULE_LICENSE("GPL");