Linux Audio

Check our new training course

Loading...
v4.6
 
 
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/spinlock.h>
   8#include <linux/blkdev.h>
   9#include <linux/swap.h>
  10#include <linux/writeback.h>
  11#include <linux/pagevec.h>
  12#include <linux/prefetch.h>
  13#include <linux/cleancache.h>
  14#include "extent_io.h"
  15#include "extent_map.h"
  16#include "ctree.h"
  17#include "btrfs_inode.h"
  18#include "volumes.h"
  19#include "check-integrity.h"
  20#include "locking.h"
  21#include "rcu-string.h"
  22#include "backref.h"
 
  23
  24static struct kmem_cache *extent_state_cache;
  25static struct kmem_cache *extent_buffer_cache;
  26static struct bio_set *btrfs_bioset;
  27
  28static inline bool extent_state_in_tree(const struct extent_state *state)
  29{
  30	return !RB_EMPTY_NODE(&state->rb_node);
  31}
  32
  33#ifdef CONFIG_BTRFS_DEBUG
  34static LIST_HEAD(buffers);
  35static LIST_HEAD(states);
  36
  37static DEFINE_SPINLOCK(leak_lock);
  38
  39static inline
  40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  41{
  42	unsigned long flags;
  43
  44	spin_lock_irqsave(&leak_lock, flags);
  45	list_add(new, head);
  46	spin_unlock_irqrestore(&leak_lock, flags);
  47}
  48
  49static inline
  50void btrfs_leak_debug_del(struct list_head *entry)
  51{
  52	unsigned long flags;
  53
  54	spin_lock_irqsave(&leak_lock, flags);
  55	list_del(entry);
  56	spin_unlock_irqrestore(&leak_lock, flags);
  57}
  58
  59static inline
  60void btrfs_leak_debug_check(void)
  61{
  62	struct extent_state *state;
  63	struct extent_buffer *eb;
  64
  65	while (!list_empty(&states)) {
  66		state = list_entry(states.next, struct extent_state, leak_list);
  67		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  68		       state->start, state->end, state->state,
  69		       extent_state_in_tree(state),
  70		       atomic_read(&state->refs));
  71		list_del(&state->leak_list);
  72		kmem_cache_free(extent_state_cache, state);
  73	}
  74
  75	while (!list_empty(&buffers)) {
  76		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  77		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
  78		       "refs %d\n",
  79		       eb->start, eb->len, atomic_read(&eb->refs));
  80		list_del(&eb->leak_list);
  81		kmem_cache_free(extent_buffer_cache, eb);
  82	}
  83}
  84
  85#define btrfs_debug_check_extent_io_range(tree, start, end)		\
  86	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  88		struct extent_io_tree *tree, u64 start, u64 end)
  89{
  90	struct inode *inode;
  91	u64 isize;
  92
  93	if (!tree->mapping)
  94		return;
  95
  96	inode = tree->mapping->host;
  97	isize = i_size_read(inode);
  98	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
  99		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 100		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 101				caller, btrfs_ino(inode), isize, start, end);
 102	}
 103}
 104#else
 105#define btrfs_leak_debug_add(new, head)	do {} while (0)
 106#define btrfs_leak_debug_del(entry)	do {} while (0)
 107#define btrfs_leak_debug_check()	do {} while (0)
 108#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 109#endif
 110
 111#define BUFFER_LRU_MAX 64
 112
 113struct tree_entry {
 114	u64 start;
 115	u64 end;
 116	struct rb_node rb_node;
 117};
 118
 119struct extent_page_data {
 120	struct bio *bio;
 121	struct extent_io_tree *tree;
 122	get_extent_t *get_extent;
 123	unsigned long bio_flags;
 124
 125	/* tells writepage not to lock the state bits for this range
 126	 * it still does the unlocking
 127	 */
 128	unsigned int extent_locked:1;
 129
 130	/* tells the submit_bio code to use a WRITE_SYNC */
 131	unsigned int sync_io:1;
 132};
 133
 134static void add_extent_changeset(struct extent_state *state, unsigned bits,
 135				 struct extent_changeset *changeset,
 136				 int set)
 137{
 138	int ret;
 139
 140	if (!changeset)
 141		return;
 142	if (set && (state->state & bits) == bits)
 143		return;
 144	if (!set && (state->state & bits) == 0)
 145		return;
 146	changeset->bytes_changed += state->end - state->start + 1;
 147	ret = ulist_add(changeset->range_changed, state->start, state->end,
 148			GFP_ATOMIC);
 149	/* ENOMEM */
 150	BUG_ON(ret < 0);
 151}
 152
 153static noinline void flush_write_bio(void *data);
 
 154static inline struct btrfs_fs_info *
 155tree_fs_info(struct extent_io_tree *tree)
 156{
 157	if (!tree->mapping)
 158		return NULL;
 159	return btrfs_sb(tree->mapping->host->i_sb);
 160}
 161
 162int __init extent_io_init(void)
 163{
 164	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 165			sizeof(struct extent_state), 0,
 166			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 167	if (!extent_state_cache)
 168		return -ENOMEM;
 169
 170	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 171			sizeof(struct extent_buffer), 0,
 172			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 173	if (!extent_buffer_cache)
 174		goto free_state_cache;
 175
 176	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 177				     offsetof(struct btrfs_io_bio, bio));
 
 178	if (!btrfs_bioset)
 179		goto free_buffer_cache;
 180
 181	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 182		goto free_bioset;
 183
 184	return 0;
 185
 186free_bioset:
 187	bioset_free(btrfs_bioset);
 188	btrfs_bioset = NULL;
 189
 190free_buffer_cache:
 191	kmem_cache_destroy(extent_buffer_cache);
 192	extent_buffer_cache = NULL;
 193
 194free_state_cache:
 195	kmem_cache_destroy(extent_state_cache);
 196	extent_state_cache = NULL;
 197	return -ENOMEM;
 198}
 199
 200void extent_io_exit(void)
 201{
 202	btrfs_leak_debug_check();
 203
 204	/*
 205	 * Make sure all delayed rcu free are flushed before we
 206	 * destroy caches.
 207	 */
 208	rcu_barrier();
 209	kmem_cache_destroy(extent_state_cache);
 210	kmem_cache_destroy(extent_buffer_cache);
 211	if (btrfs_bioset)
 212		bioset_free(btrfs_bioset);
 213}
 214
 215void extent_io_tree_init(struct extent_io_tree *tree,
 216			 struct address_space *mapping)
 217{
 218	tree->state = RB_ROOT;
 219	tree->ops = NULL;
 220	tree->dirty_bytes = 0;
 221	spin_lock_init(&tree->lock);
 222	tree->mapping = mapping;
 223}
 224
 225static struct extent_state *alloc_extent_state(gfp_t mask)
 226{
 227	struct extent_state *state;
 228
 
 
 
 
 
 229	state = kmem_cache_alloc(extent_state_cache, mask);
 230	if (!state)
 231		return state;
 232	state->state = 0;
 233	state->failrec = NULL;
 234	RB_CLEAR_NODE(&state->rb_node);
 235	btrfs_leak_debug_add(&state->leak_list, &states);
 236	atomic_set(&state->refs, 1);
 237	init_waitqueue_head(&state->wq);
 238	trace_alloc_extent_state(state, mask, _RET_IP_);
 239	return state;
 240}
 241
 242void free_extent_state(struct extent_state *state)
 243{
 244	if (!state)
 245		return;
 246	if (atomic_dec_and_test(&state->refs)) {
 247		WARN_ON(extent_state_in_tree(state));
 248		btrfs_leak_debug_del(&state->leak_list);
 249		trace_free_extent_state(state, _RET_IP_);
 250		kmem_cache_free(extent_state_cache, state);
 251	}
 252}
 253
 254static struct rb_node *tree_insert(struct rb_root *root,
 255				   struct rb_node *search_start,
 256				   u64 offset,
 257				   struct rb_node *node,
 258				   struct rb_node ***p_in,
 259				   struct rb_node **parent_in)
 260{
 261	struct rb_node **p;
 262	struct rb_node *parent = NULL;
 263	struct tree_entry *entry;
 264
 265	if (p_in && parent_in) {
 266		p = *p_in;
 267		parent = *parent_in;
 268		goto do_insert;
 269	}
 270
 271	p = search_start ? &search_start : &root->rb_node;
 272	while (*p) {
 273		parent = *p;
 274		entry = rb_entry(parent, struct tree_entry, rb_node);
 275
 276		if (offset < entry->start)
 277			p = &(*p)->rb_left;
 278		else if (offset > entry->end)
 279			p = &(*p)->rb_right;
 280		else
 281			return parent;
 282	}
 283
 284do_insert:
 285	rb_link_node(node, parent, p);
 286	rb_insert_color(node, root);
 287	return NULL;
 288}
 289
 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 291				      struct rb_node **prev_ret,
 292				      struct rb_node **next_ret,
 293				      struct rb_node ***p_ret,
 294				      struct rb_node **parent_ret)
 295{
 296	struct rb_root *root = &tree->state;
 297	struct rb_node **n = &root->rb_node;
 298	struct rb_node *prev = NULL;
 299	struct rb_node *orig_prev = NULL;
 300	struct tree_entry *entry;
 301	struct tree_entry *prev_entry = NULL;
 302
 303	while (*n) {
 304		prev = *n;
 305		entry = rb_entry(prev, struct tree_entry, rb_node);
 306		prev_entry = entry;
 307
 308		if (offset < entry->start)
 309			n = &(*n)->rb_left;
 310		else if (offset > entry->end)
 311			n = &(*n)->rb_right;
 312		else
 313			return *n;
 314	}
 315
 316	if (p_ret)
 317		*p_ret = n;
 318	if (parent_ret)
 319		*parent_ret = prev;
 320
 321	if (prev_ret) {
 322		orig_prev = prev;
 323		while (prev && offset > prev_entry->end) {
 324			prev = rb_next(prev);
 325			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 326		}
 327		*prev_ret = prev;
 328		prev = orig_prev;
 329	}
 330
 331	if (next_ret) {
 332		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 333		while (prev && offset < prev_entry->start) {
 334			prev = rb_prev(prev);
 335			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 336		}
 337		*next_ret = prev;
 338	}
 339	return NULL;
 340}
 341
 342static inline struct rb_node *
 343tree_search_for_insert(struct extent_io_tree *tree,
 344		       u64 offset,
 345		       struct rb_node ***p_ret,
 346		       struct rb_node **parent_ret)
 347{
 348	struct rb_node *prev = NULL;
 349	struct rb_node *ret;
 350
 351	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 352	if (!ret)
 353		return prev;
 354	return ret;
 355}
 356
 357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 358					  u64 offset)
 359{
 360	return tree_search_for_insert(tree, offset, NULL, NULL);
 361}
 362
 363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 364		     struct extent_state *other)
 365{
 366	if (tree->ops && tree->ops->merge_extent_hook)
 367		tree->ops->merge_extent_hook(tree->mapping->host, new,
 368					     other);
 369}
 370
 371/*
 372 * utility function to look for merge candidates inside a given range.
 373 * Any extents with matching state are merged together into a single
 374 * extent in the tree.  Extents with EXTENT_IO in their state field
 375 * are not merged because the end_io handlers need to be able to do
 376 * operations on them without sleeping (or doing allocations/splits).
 377 *
 378 * This should be called with the tree lock held.
 379 */
 380static void merge_state(struct extent_io_tree *tree,
 381		        struct extent_state *state)
 382{
 383	struct extent_state *other;
 384	struct rb_node *other_node;
 385
 386	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 387		return;
 388
 389	other_node = rb_prev(&state->rb_node);
 390	if (other_node) {
 391		other = rb_entry(other_node, struct extent_state, rb_node);
 392		if (other->end == state->start - 1 &&
 393		    other->state == state->state) {
 394			merge_cb(tree, state, other);
 395			state->start = other->start;
 396			rb_erase(&other->rb_node, &tree->state);
 397			RB_CLEAR_NODE(&other->rb_node);
 398			free_extent_state(other);
 399		}
 400	}
 401	other_node = rb_next(&state->rb_node);
 402	if (other_node) {
 403		other = rb_entry(other_node, struct extent_state, rb_node);
 404		if (other->start == state->end + 1 &&
 405		    other->state == state->state) {
 406			merge_cb(tree, state, other);
 407			state->end = other->end;
 408			rb_erase(&other->rb_node, &tree->state);
 409			RB_CLEAR_NODE(&other->rb_node);
 410			free_extent_state(other);
 411		}
 412	}
 413}
 414
 415static void set_state_cb(struct extent_io_tree *tree,
 416			 struct extent_state *state, unsigned *bits)
 417{
 418	if (tree->ops && tree->ops->set_bit_hook)
 419		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 420}
 421
 422static void clear_state_cb(struct extent_io_tree *tree,
 423			   struct extent_state *state, unsigned *bits)
 424{
 425	if (tree->ops && tree->ops->clear_bit_hook)
 426		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 427}
 428
 429static void set_state_bits(struct extent_io_tree *tree,
 430			   struct extent_state *state, unsigned *bits,
 431			   struct extent_changeset *changeset);
 432
 433/*
 434 * insert an extent_state struct into the tree.  'bits' are set on the
 435 * struct before it is inserted.
 436 *
 437 * This may return -EEXIST if the extent is already there, in which case the
 438 * state struct is freed.
 439 *
 440 * The tree lock is not taken internally.  This is a utility function and
 441 * probably isn't what you want to call (see set/clear_extent_bit).
 442 */
 443static int insert_state(struct extent_io_tree *tree,
 444			struct extent_state *state, u64 start, u64 end,
 445			struct rb_node ***p,
 446			struct rb_node **parent,
 447			unsigned *bits, struct extent_changeset *changeset)
 448{
 449	struct rb_node *node;
 450
 451	if (end < start)
 452		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 453		       end, start);
 454	state->start = start;
 455	state->end = end;
 456
 457	set_state_bits(tree, state, bits, changeset);
 458
 459	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 460	if (node) {
 461		struct extent_state *found;
 462		found = rb_entry(node, struct extent_state, rb_node);
 463		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
 464		       "%llu %llu\n",
 465		       found->start, found->end, start, end);
 466		return -EEXIST;
 467	}
 468	merge_state(tree, state);
 469	return 0;
 470}
 471
 472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 473		     u64 split)
 474{
 475	if (tree->ops && tree->ops->split_extent_hook)
 476		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 477}
 478
 479/*
 480 * split a given extent state struct in two, inserting the preallocated
 481 * struct 'prealloc' as the newly created second half.  'split' indicates an
 482 * offset inside 'orig' where it should be split.
 483 *
 484 * Before calling,
 485 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 486 * are two extent state structs in the tree:
 487 * prealloc: [orig->start, split - 1]
 488 * orig: [ split, orig->end ]
 489 *
 490 * The tree locks are not taken by this function. They need to be held
 491 * by the caller.
 492 */
 493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 494		       struct extent_state *prealloc, u64 split)
 495{
 496	struct rb_node *node;
 497
 498	split_cb(tree, orig, split);
 499
 500	prealloc->start = orig->start;
 501	prealloc->end = split - 1;
 502	prealloc->state = orig->state;
 503	orig->start = split;
 504
 505	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 506			   &prealloc->rb_node, NULL, NULL);
 507	if (node) {
 508		free_extent_state(prealloc);
 509		return -EEXIST;
 510	}
 511	return 0;
 512}
 513
 514static struct extent_state *next_state(struct extent_state *state)
 515{
 516	struct rb_node *next = rb_next(&state->rb_node);
 517	if (next)
 518		return rb_entry(next, struct extent_state, rb_node);
 519	else
 520		return NULL;
 521}
 522
 523/*
 524 * utility function to clear some bits in an extent state struct.
 525 * it will optionally wake up any one waiting on this state (wake == 1).
 526 *
 527 * If no bits are set on the state struct after clearing things, the
 528 * struct is freed and removed from the tree
 529 */
 530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 531					    struct extent_state *state,
 532					    unsigned *bits, int wake,
 533					    struct extent_changeset *changeset)
 534{
 535	struct extent_state *next;
 536	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 
 537
 538	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 539		u64 range = state->end - state->start + 1;
 540		WARN_ON(range > tree->dirty_bytes);
 541		tree->dirty_bytes -= range;
 542	}
 543	clear_state_cb(tree, state, bits);
 544	add_extent_changeset(state, bits_to_clear, changeset, 0);
 
 545	state->state &= ~bits_to_clear;
 546	if (wake)
 547		wake_up(&state->wq);
 548	if (state->state == 0) {
 549		next = next_state(state);
 550		if (extent_state_in_tree(state)) {
 551			rb_erase(&state->rb_node, &tree->state);
 552			RB_CLEAR_NODE(&state->rb_node);
 553			free_extent_state(state);
 554		} else {
 555			WARN_ON(1);
 556		}
 557	} else {
 558		merge_state(tree, state);
 559		next = next_state(state);
 560	}
 561	return next;
 562}
 563
 564static struct extent_state *
 565alloc_extent_state_atomic(struct extent_state *prealloc)
 566{
 567	if (!prealloc)
 568		prealloc = alloc_extent_state(GFP_ATOMIC);
 569
 570	return prealloc;
 571}
 572
 573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 574{
 575	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 576		    "Extent tree was modified by another "
 577		    "thread while locked.");
 578}
 579
 580/*
 581 * clear some bits on a range in the tree.  This may require splitting
 582 * or inserting elements in the tree, so the gfp mask is used to
 583 * indicate which allocations or sleeping are allowed.
 584 *
 585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 586 * the given range from the tree regardless of state (ie for truncate).
 587 *
 588 * the range [start, end] is inclusive.
 589 *
 590 * This takes the tree lock, and returns 0 on success and < 0 on error.
 591 */
 592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 593			      unsigned bits, int wake, int delete,
 594			      struct extent_state **cached_state,
 595			      gfp_t mask, struct extent_changeset *changeset)
 596{
 597	struct extent_state *state;
 598	struct extent_state *cached;
 599	struct extent_state *prealloc = NULL;
 600	struct rb_node *node;
 601	u64 last_end;
 602	int err;
 603	int clear = 0;
 604
 605	btrfs_debug_check_extent_io_range(tree, start, end);
 606
 607	if (bits & EXTENT_DELALLOC)
 608		bits |= EXTENT_NORESERVE;
 609
 610	if (delete)
 611		bits |= ~EXTENT_CTLBITS;
 612	bits |= EXTENT_FIRST_DELALLOC;
 613
 614	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 615		clear = 1;
 616again:
 617	if (!prealloc && gfpflags_allow_blocking(mask)) {
 618		/*
 619		 * Don't care for allocation failure here because we might end
 620		 * up not needing the pre-allocated extent state at all, which
 621		 * is the case if we only have in the tree extent states that
 622		 * cover our input range and don't cover too any other range.
 623		 * If we end up needing a new extent state we allocate it later.
 624		 */
 625		prealloc = alloc_extent_state(mask);
 626	}
 627
 628	spin_lock(&tree->lock);
 629	if (cached_state) {
 630		cached = *cached_state;
 631
 632		if (clear) {
 633			*cached_state = NULL;
 634			cached_state = NULL;
 635		}
 636
 637		if (cached && extent_state_in_tree(cached) &&
 638		    cached->start <= start && cached->end > start) {
 639			if (clear)
 640				atomic_dec(&cached->refs);
 641			state = cached;
 642			goto hit_next;
 643		}
 644		if (clear)
 645			free_extent_state(cached);
 646	}
 647	/*
 648	 * this search will find the extents that end after
 649	 * our range starts
 650	 */
 651	node = tree_search(tree, start);
 652	if (!node)
 653		goto out;
 654	state = rb_entry(node, struct extent_state, rb_node);
 655hit_next:
 656	if (state->start > end)
 657		goto out;
 658	WARN_ON(state->end < start);
 659	last_end = state->end;
 660
 661	/* the state doesn't have the wanted bits, go ahead */
 662	if (!(state->state & bits)) {
 663		state = next_state(state);
 664		goto next;
 665	}
 666
 667	/*
 668	 *     | ---- desired range ---- |
 669	 *  | state | or
 670	 *  | ------------- state -------------- |
 671	 *
 672	 * We need to split the extent we found, and may flip
 673	 * bits on second half.
 674	 *
 675	 * If the extent we found extends past our range, we
 676	 * just split and search again.  It'll get split again
 677	 * the next time though.
 678	 *
 679	 * If the extent we found is inside our range, we clear
 680	 * the desired bit on it.
 681	 */
 682
 683	if (state->start < start) {
 684		prealloc = alloc_extent_state_atomic(prealloc);
 685		BUG_ON(!prealloc);
 686		err = split_state(tree, state, prealloc, start);
 687		if (err)
 688			extent_io_tree_panic(tree, err);
 689
 690		prealloc = NULL;
 691		if (err)
 692			goto out;
 693		if (state->end <= end) {
 694			state = clear_state_bit(tree, state, &bits, wake,
 695						changeset);
 696			goto next;
 697		}
 698		goto search_again;
 699	}
 700	/*
 701	 * | ---- desired range ---- |
 702	 *                        | state |
 703	 * We need to split the extent, and clear the bit
 704	 * on the first half
 705	 */
 706	if (state->start <= end && state->end > end) {
 707		prealloc = alloc_extent_state_atomic(prealloc);
 708		BUG_ON(!prealloc);
 709		err = split_state(tree, state, prealloc, end + 1);
 710		if (err)
 711			extent_io_tree_panic(tree, err);
 712
 713		if (wake)
 714			wake_up(&state->wq);
 715
 716		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 717
 718		prealloc = NULL;
 719		goto out;
 720	}
 721
 722	state = clear_state_bit(tree, state, &bits, wake, changeset);
 723next:
 724	if (last_end == (u64)-1)
 725		goto out;
 726	start = last_end + 1;
 727	if (start <= end && state && !need_resched())
 728		goto hit_next;
 729	goto search_again;
 730
 731out:
 732	spin_unlock(&tree->lock);
 733	if (prealloc)
 734		free_extent_state(prealloc);
 735
 736	return 0;
 737
 738search_again:
 739	if (start > end)
 740		goto out;
 741	spin_unlock(&tree->lock);
 742	if (gfpflags_allow_blocking(mask))
 743		cond_resched();
 744	goto again;
 
 
 
 
 
 
 
 
 745}
 746
 747static void wait_on_state(struct extent_io_tree *tree,
 748			  struct extent_state *state)
 749		__releases(tree->lock)
 750		__acquires(tree->lock)
 751{
 752	DEFINE_WAIT(wait);
 753	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 754	spin_unlock(&tree->lock);
 755	schedule();
 756	spin_lock(&tree->lock);
 757	finish_wait(&state->wq, &wait);
 758}
 759
 760/*
 761 * waits for one or more bits to clear on a range in the state tree.
 762 * The range [start, end] is inclusive.
 763 * The tree lock is taken by this function
 764 */
 765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 766			    unsigned long bits)
 767{
 768	struct extent_state *state;
 769	struct rb_node *node;
 770
 771	btrfs_debug_check_extent_io_range(tree, start, end);
 772
 773	spin_lock(&tree->lock);
 774again:
 775	while (1) {
 776		/*
 777		 * this search will find all the extents that end after
 778		 * our range starts
 779		 */
 780		node = tree_search(tree, start);
 781process_node:
 782		if (!node)
 783			break;
 784
 785		state = rb_entry(node, struct extent_state, rb_node);
 786
 787		if (state->start > end)
 788			goto out;
 789
 790		if (state->state & bits) {
 791			start = state->start;
 792			atomic_inc(&state->refs);
 793			wait_on_state(tree, state);
 794			free_extent_state(state);
 795			goto again;
 796		}
 797		start = state->end + 1;
 798
 799		if (start > end)
 800			break;
 801
 802		if (!cond_resched_lock(&tree->lock)) {
 803			node = rb_next(node);
 804			goto process_node;
 805		}
 806	}
 807out:
 808	spin_unlock(&tree->lock);
 809}
 810
 811static void set_state_bits(struct extent_io_tree *tree,
 812			   struct extent_state *state,
 813			   unsigned *bits, struct extent_changeset *changeset)
 814{
 815	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 
 816
 817	set_state_cb(tree, state, bits);
 818	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 819		u64 range = state->end - state->start + 1;
 820		tree->dirty_bytes += range;
 821	}
 822	add_extent_changeset(state, bits_to_set, changeset, 1);
 
 823	state->state |= bits_to_set;
 824}
 825
 826static void cache_state_if_flags(struct extent_state *state,
 827				 struct extent_state **cached_ptr,
 828				 unsigned flags)
 829{
 830	if (cached_ptr && !(*cached_ptr)) {
 831		if (!flags || (state->state & flags)) {
 832			*cached_ptr = state;
 833			atomic_inc(&state->refs);
 834		}
 835	}
 836}
 837
 838static void cache_state(struct extent_state *state,
 839			struct extent_state **cached_ptr)
 840{
 841	return cache_state_if_flags(state, cached_ptr,
 842				    EXTENT_IOBITS | EXTENT_BOUNDARY);
 843}
 844
 845/*
 846 * set some bits on a range in the tree.  This may require allocations or
 847 * sleeping, so the gfp mask is used to indicate what is allowed.
 848 *
 849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 850 * part of the range already has the desired bits set.  The start of the
 851 * existing range is returned in failed_start in this case.
 852 *
 853 * [start, end] is inclusive This takes the tree lock.
 854 */
 855
 856static int __must_check
 857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 858		 unsigned bits, unsigned exclusive_bits,
 859		 u64 *failed_start, struct extent_state **cached_state,
 860		 gfp_t mask, struct extent_changeset *changeset)
 861{
 862	struct extent_state *state;
 863	struct extent_state *prealloc = NULL;
 864	struct rb_node *node;
 865	struct rb_node **p;
 866	struct rb_node *parent;
 867	int err = 0;
 868	u64 last_start;
 869	u64 last_end;
 870
 871	btrfs_debug_check_extent_io_range(tree, start, end);
 872
 873	bits |= EXTENT_FIRST_DELALLOC;
 874again:
 875	if (!prealloc && gfpflags_allow_blocking(mask)) {
 
 
 
 
 
 
 
 876		prealloc = alloc_extent_state(mask);
 877		BUG_ON(!prealloc);
 878	}
 879
 880	spin_lock(&tree->lock);
 881	if (cached_state && *cached_state) {
 882		state = *cached_state;
 883		if (state->start <= start && state->end > start &&
 884		    extent_state_in_tree(state)) {
 885			node = &state->rb_node;
 886			goto hit_next;
 887		}
 888	}
 889	/*
 890	 * this search will find all the extents that end after
 891	 * our range starts.
 892	 */
 893	node = tree_search_for_insert(tree, start, &p, &parent);
 894	if (!node) {
 895		prealloc = alloc_extent_state_atomic(prealloc);
 896		BUG_ON(!prealloc);
 897		err = insert_state(tree, prealloc, start, end,
 898				   &p, &parent, &bits, changeset);
 899		if (err)
 900			extent_io_tree_panic(tree, err);
 901
 902		cache_state(prealloc, cached_state);
 903		prealloc = NULL;
 904		goto out;
 905	}
 906	state = rb_entry(node, struct extent_state, rb_node);
 907hit_next:
 908	last_start = state->start;
 909	last_end = state->end;
 910
 911	/*
 912	 * | ---- desired range ---- |
 913	 * | state |
 914	 *
 915	 * Just lock what we found and keep going
 916	 */
 917	if (state->start == start && state->end <= end) {
 918		if (state->state & exclusive_bits) {
 919			*failed_start = state->start;
 920			err = -EEXIST;
 921			goto out;
 922		}
 923
 924		set_state_bits(tree, state, &bits, changeset);
 925		cache_state(state, cached_state);
 926		merge_state(tree, state);
 927		if (last_end == (u64)-1)
 928			goto out;
 929		start = last_end + 1;
 930		state = next_state(state);
 931		if (start < end && state && state->start == start &&
 932		    !need_resched())
 933			goto hit_next;
 934		goto search_again;
 935	}
 936
 937	/*
 938	 *     | ---- desired range ---- |
 939	 * | state |
 940	 *   or
 941	 * | ------------- state -------------- |
 942	 *
 943	 * We need to split the extent we found, and may flip bits on
 944	 * second half.
 945	 *
 946	 * If the extent we found extends past our
 947	 * range, we just split and search again.  It'll get split
 948	 * again the next time though.
 949	 *
 950	 * If the extent we found is inside our range, we set the
 951	 * desired bit on it.
 952	 */
 953	if (state->start < start) {
 954		if (state->state & exclusive_bits) {
 955			*failed_start = start;
 956			err = -EEXIST;
 957			goto out;
 958		}
 959
 960		prealloc = alloc_extent_state_atomic(prealloc);
 961		BUG_ON(!prealloc);
 962		err = split_state(tree, state, prealloc, start);
 963		if (err)
 964			extent_io_tree_panic(tree, err);
 965
 966		prealloc = NULL;
 967		if (err)
 968			goto out;
 969		if (state->end <= end) {
 970			set_state_bits(tree, state, &bits, changeset);
 971			cache_state(state, cached_state);
 972			merge_state(tree, state);
 973			if (last_end == (u64)-1)
 974				goto out;
 975			start = last_end + 1;
 976			state = next_state(state);
 977			if (start < end && state && state->start == start &&
 978			    !need_resched())
 979				goto hit_next;
 980		}
 981		goto search_again;
 982	}
 983	/*
 984	 * | ---- desired range ---- |
 985	 *     | state | or               | state |
 986	 *
 987	 * There's a hole, we need to insert something in it and
 988	 * ignore the extent we found.
 989	 */
 990	if (state->start > start) {
 991		u64 this_end;
 992		if (end < last_start)
 993			this_end = end;
 994		else
 995			this_end = last_start - 1;
 996
 997		prealloc = alloc_extent_state_atomic(prealloc);
 998		BUG_ON(!prealloc);
 999
1000		/*
1001		 * Avoid to free 'prealloc' if it can be merged with
1002		 * the later extent.
1003		 */
1004		err = insert_state(tree, prealloc, start, this_end,
1005				   NULL, NULL, &bits, changeset);
1006		if (err)
1007			extent_io_tree_panic(tree, err);
1008
1009		cache_state(prealloc, cached_state);
1010		prealloc = NULL;
1011		start = this_end + 1;
1012		goto search_again;
1013	}
1014	/*
1015	 * | ---- desired range ---- |
1016	 *                        | state |
1017	 * We need to split the extent, and set the bit
1018	 * on the first half
1019	 */
1020	if (state->start <= end && state->end > end) {
1021		if (state->state & exclusive_bits) {
1022			*failed_start = start;
1023			err = -EEXIST;
1024			goto out;
1025		}
1026
1027		prealloc = alloc_extent_state_atomic(prealloc);
1028		BUG_ON(!prealloc);
1029		err = split_state(tree, state, prealloc, end + 1);
1030		if (err)
1031			extent_io_tree_panic(tree, err);
1032
1033		set_state_bits(tree, prealloc, &bits, changeset);
1034		cache_state(prealloc, cached_state);
1035		merge_state(tree, prealloc);
1036		prealloc = NULL;
1037		goto out;
1038	}
1039
1040	goto search_again;
 
 
 
 
 
 
1041
1042out:
1043	spin_unlock(&tree->lock);
1044	if (prealloc)
1045		free_extent_state(prealloc);
1046
1047	return err;
1048
1049search_again:
1050	if (start > end)
1051		goto out;
1052	spin_unlock(&tree->lock);
1053	if (gfpflags_allow_blocking(mask))
1054		cond_resched();
1055	goto again;
1056}
1057
1058int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1059		   unsigned bits, u64 * failed_start,
1060		   struct extent_state **cached_state, gfp_t mask)
1061{
1062	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1063				cached_state, mask, NULL);
1064}
1065
1066
1067/**
1068 * convert_extent_bit - convert all bits in a given range from one bit to
1069 * 			another
1070 * @tree:	the io tree to search
1071 * @start:	the start offset in bytes
1072 * @end:	the end offset in bytes (inclusive)
1073 * @bits:	the bits to set in this range
1074 * @clear_bits:	the bits to clear in this range
1075 * @cached_state:	state that we're going to cache
1076 * @mask:	the allocation mask
1077 *
1078 * This will go through and set bits for the given range.  If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1082 * boundary bits like LOCK.
 
 
1083 */
1084int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1085		       unsigned bits, unsigned clear_bits,
1086		       struct extent_state **cached_state, gfp_t mask)
1087{
1088	struct extent_state *state;
1089	struct extent_state *prealloc = NULL;
1090	struct rb_node *node;
1091	struct rb_node **p;
1092	struct rb_node *parent;
1093	int err = 0;
1094	u64 last_start;
1095	u64 last_end;
1096	bool first_iteration = true;
1097
1098	btrfs_debug_check_extent_io_range(tree, start, end);
1099
1100again:
1101	if (!prealloc && gfpflags_allow_blocking(mask)) {
1102		/*
1103		 * Best effort, don't worry if extent state allocation fails
1104		 * here for the first iteration. We might have a cached state
1105		 * that matches exactly the target range, in which case no
1106		 * extent state allocations are needed. We'll only know this
1107		 * after locking the tree.
1108		 */
1109		prealloc = alloc_extent_state(mask);
1110		if (!prealloc && !first_iteration)
1111			return -ENOMEM;
1112	}
1113
1114	spin_lock(&tree->lock);
1115	if (cached_state && *cached_state) {
1116		state = *cached_state;
1117		if (state->start <= start && state->end > start &&
1118		    extent_state_in_tree(state)) {
1119			node = &state->rb_node;
1120			goto hit_next;
1121		}
1122	}
1123
1124	/*
1125	 * this search will find all the extents that end after
1126	 * our range starts.
1127	 */
1128	node = tree_search_for_insert(tree, start, &p, &parent);
1129	if (!node) {
1130		prealloc = alloc_extent_state_atomic(prealloc);
1131		if (!prealloc) {
1132			err = -ENOMEM;
1133			goto out;
1134		}
1135		err = insert_state(tree, prealloc, start, end,
1136				   &p, &parent, &bits, NULL);
1137		if (err)
1138			extent_io_tree_panic(tree, err);
1139		cache_state(prealloc, cached_state);
1140		prealloc = NULL;
1141		goto out;
1142	}
1143	state = rb_entry(node, struct extent_state, rb_node);
1144hit_next:
1145	last_start = state->start;
1146	last_end = state->end;
1147
1148	/*
1149	 * | ---- desired range ---- |
1150	 * | state |
1151	 *
1152	 * Just lock what we found and keep going
1153	 */
1154	if (state->start == start && state->end <= end) {
1155		set_state_bits(tree, state, &bits, NULL);
1156		cache_state(state, cached_state);
1157		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1158		if (last_end == (u64)-1)
1159			goto out;
1160		start = last_end + 1;
1161		if (start < end && state && state->start == start &&
1162		    !need_resched())
1163			goto hit_next;
1164		goto search_again;
1165	}
1166
1167	/*
1168	 *     | ---- desired range ---- |
1169	 * | state |
1170	 *   or
1171	 * | ------------- state -------------- |
1172	 *
1173	 * We need to split the extent we found, and may flip bits on
1174	 * second half.
1175	 *
1176	 * If the extent we found extends past our
1177	 * range, we just split and search again.  It'll get split
1178	 * again the next time though.
1179	 *
1180	 * If the extent we found is inside our range, we set the
1181	 * desired bit on it.
1182	 */
1183	if (state->start < start) {
1184		prealloc = alloc_extent_state_atomic(prealloc);
1185		if (!prealloc) {
1186			err = -ENOMEM;
1187			goto out;
1188		}
1189		err = split_state(tree, state, prealloc, start);
1190		if (err)
1191			extent_io_tree_panic(tree, err);
1192		prealloc = NULL;
1193		if (err)
1194			goto out;
1195		if (state->end <= end) {
1196			set_state_bits(tree, state, &bits, NULL);
1197			cache_state(state, cached_state);
1198			state = clear_state_bit(tree, state, &clear_bits, 0,
1199						NULL);
1200			if (last_end == (u64)-1)
1201				goto out;
1202			start = last_end + 1;
1203			if (start < end && state && state->start == start &&
1204			    !need_resched())
1205				goto hit_next;
1206		}
1207		goto search_again;
1208	}
1209	/*
1210	 * | ---- desired range ---- |
1211	 *     | state | or               | state |
1212	 *
1213	 * There's a hole, we need to insert something in it and
1214	 * ignore the extent we found.
1215	 */
1216	if (state->start > start) {
1217		u64 this_end;
1218		if (end < last_start)
1219			this_end = end;
1220		else
1221			this_end = last_start - 1;
1222
1223		prealloc = alloc_extent_state_atomic(prealloc);
1224		if (!prealloc) {
1225			err = -ENOMEM;
1226			goto out;
1227		}
1228
1229		/*
1230		 * Avoid to free 'prealloc' if it can be merged with
1231		 * the later extent.
1232		 */
1233		err = insert_state(tree, prealloc, start, this_end,
1234				   NULL, NULL, &bits, NULL);
1235		if (err)
1236			extent_io_tree_panic(tree, err);
1237		cache_state(prealloc, cached_state);
1238		prealloc = NULL;
1239		start = this_end + 1;
1240		goto search_again;
1241	}
1242	/*
1243	 * | ---- desired range ---- |
1244	 *                        | state |
1245	 * We need to split the extent, and set the bit
1246	 * on the first half
1247	 */
1248	if (state->start <= end && state->end > end) {
1249		prealloc = alloc_extent_state_atomic(prealloc);
1250		if (!prealloc) {
1251			err = -ENOMEM;
1252			goto out;
1253		}
1254
1255		err = split_state(tree, state, prealloc, end + 1);
1256		if (err)
1257			extent_io_tree_panic(tree, err);
1258
1259		set_state_bits(tree, prealloc, &bits, NULL);
1260		cache_state(prealloc, cached_state);
1261		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1262		prealloc = NULL;
1263		goto out;
1264	}
1265
1266	goto search_again;
 
 
 
 
 
 
1267
1268out:
1269	spin_unlock(&tree->lock);
1270	if (prealloc)
1271		free_extent_state(prealloc);
1272
1273	return err;
1274
1275search_again:
1276	if (start > end)
1277		goto out;
1278	spin_unlock(&tree->lock);
1279	if (gfpflags_allow_blocking(mask))
1280		cond_resched();
1281	first_iteration = false;
1282	goto again;
1283}
1284
1285/* wrappers around set/clear extent bit */
1286int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1287			   unsigned bits, gfp_t mask,
1288			   struct extent_changeset *changeset)
1289{
1290	/*
1291	 * We don't support EXTENT_LOCKED yet, as current changeset will
1292	 * record any bits changed, so for EXTENT_LOCKED case, it will
1293	 * either fail with -EEXIST or changeset will record the whole
1294	 * range.
1295	 */
1296	BUG_ON(bits & EXTENT_LOCKED);
1297
1298	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1299				changeset);
1300}
1301
1302int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303		     unsigned bits, int wake, int delete,
1304		     struct extent_state **cached, gfp_t mask)
1305{
1306	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307				  cached, mask, NULL);
1308}
1309
1310int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311			     unsigned bits, gfp_t mask,
1312			     struct extent_changeset *changeset)
1313{
1314	/*
1315	 * Don't support EXTENT_LOCKED case, same reason as
1316	 * set_record_extent_bits().
1317	 */
1318	BUG_ON(bits & EXTENT_LOCKED);
1319
1320	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1321				  changeset);
1322}
1323
1324/*
1325 * either insert or lock state struct between start and end use mask to tell
1326 * us if waiting is desired.
1327 */
1328int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1329		     struct extent_state **cached_state)
1330{
1331	int err;
1332	u64 failed_start;
1333
1334	while (1) {
1335		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1336				       EXTENT_LOCKED, &failed_start,
1337				       cached_state, GFP_NOFS, NULL);
1338		if (err == -EEXIST) {
1339			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1340			start = failed_start;
1341		} else
1342			break;
1343		WARN_ON(start > end);
1344	}
1345	return err;
1346}
1347
1348int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1349{
1350	int err;
1351	u64 failed_start;
1352
1353	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1354			       &failed_start, NULL, GFP_NOFS, NULL);
1355	if (err == -EEXIST) {
1356		if (failed_start > start)
1357			clear_extent_bit(tree, start, failed_start - 1,
1358					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1359		return 0;
1360	}
1361	return 1;
1362}
1363
1364void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1365{
1366	unsigned long index = start >> PAGE_SHIFT;
1367	unsigned long end_index = end >> PAGE_SHIFT;
1368	struct page *page;
1369
1370	while (index <= end_index) {
1371		page = find_get_page(inode->i_mapping, index);
1372		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1373		clear_page_dirty_for_io(page);
1374		put_page(page);
1375		index++;
1376	}
1377}
1378
1379void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380{
1381	unsigned long index = start >> PAGE_SHIFT;
1382	unsigned long end_index = end >> PAGE_SHIFT;
1383	struct page *page;
1384
1385	while (index <= end_index) {
1386		page = find_get_page(inode->i_mapping, index);
1387		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388		__set_page_dirty_nobuffers(page);
1389		account_page_redirty(page);
1390		put_page(page);
1391		index++;
1392	}
1393}
1394
1395/*
1396 * helper function to set both pages and extents in the tree writeback
1397 */
1398static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1399{
1400	unsigned long index = start >> PAGE_SHIFT;
1401	unsigned long end_index = end >> PAGE_SHIFT;
1402	struct page *page;
1403
1404	while (index <= end_index) {
1405		page = find_get_page(tree->mapping, index);
1406		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1407		set_page_writeback(page);
1408		put_page(page);
1409		index++;
1410	}
1411}
1412
1413/* find the first state struct with 'bits' set after 'start', and
1414 * return it.  tree->lock must be held.  NULL will returned if
1415 * nothing was found after 'start'
1416 */
1417static struct extent_state *
1418find_first_extent_bit_state(struct extent_io_tree *tree,
1419			    u64 start, unsigned bits)
1420{
1421	struct rb_node *node;
1422	struct extent_state *state;
1423
1424	/*
1425	 * this search will find all the extents that end after
1426	 * our range starts.
1427	 */
1428	node = tree_search(tree, start);
1429	if (!node)
1430		goto out;
1431
1432	while (1) {
1433		state = rb_entry(node, struct extent_state, rb_node);
1434		if (state->end >= start && (state->state & bits))
1435			return state;
1436
1437		node = rb_next(node);
1438		if (!node)
1439			break;
1440	}
1441out:
1442	return NULL;
1443}
1444
1445/*
1446 * find the first offset in the io tree with 'bits' set. zero is
1447 * returned if we find something, and *start_ret and *end_ret are
1448 * set to reflect the state struct that was found.
1449 *
1450 * If nothing was found, 1 is returned. If found something, return 0.
1451 */
1452int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1453			  u64 *start_ret, u64 *end_ret, unsigned bits,
1454			  struct extent_state **cached_state)
1455{
1456	struct extent_state *state;
1457	struct rb_node *n;
1458	int ret = 1;
1459
1460	spin_lock(&tree->lock);
1461	if (cached_state && *cached_state) {
1462		state = *cached_state;
1463		if (state->end == start - 1 && extent_state_in_tree(state)) {
1464			n = rb_next(&state->rb_node);
1465			while (n) {
1466				state = rb_entry(n, struct extent_state,
1467						 rb_node);
1468				if (state->state & bits)
1469					goto got_it;
1470				n = rb_next(n);
1471			}
1472			free_extent_state(*cached_state);
1473			*cached_state = NULL;
1474			goto out;
1475		}
1476		free_extent_state(*cached_state);
1477		*cached_state = NULL;
1478	}
1479
1480	state = find_first_extent_bit_state(tree, start, bits);
1481got_it:
1482	if (state) {
1483		cache_state_if_flags(state, cached_state, 0);
1484		*start_ret = state->start;
1485		*end_ret = state->end;
1486		ret = 0;
1487	}
1488out:
1489	spin_unlock(&tree->lock);
1490	return ret;
1491}
1492
1493/*
1494 * find a contiguous range of bytes in the file marked as delalloc, not
1495 * more than 'max_bytes'.  start and end are used to return the range,
1496 *
1497 * 1 is returned if we find something, 0 if nothing was in the tree
1498 */
1499static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1500					u64 *start, u64 *end, u64 max_bytes,
1501					struct extent_state **cached_state)
1502{
1503	struct rb_node *node;
1504	struct extent_state *state;
1505	u64 cur_start = *start;
1506	u64 found = 0;
1507	u64 total_bytes = 0;
1508
1509	spin_lock(&tree->lock);
1510
1511	/*
1512	 * this search will find all the extents that end after
1513	 * our range starts.
1514	 */
1515	node = tree_search(tree, cur_start);
1516	if (!node) {
1517		if (!found)
1518			*end = (u64)-1;
1519		goto out;
1520	}
1521
1522	while (1) {
1523		state = rb_entry(node, struct extent_state, rb_node);
1524		if (found && (state->start != cur_start ||
1525			      (state->state & EXTENT_BOUNDARY))) {
1526			goto out;
1527		}
1528		if (!(state->state & EXTENT_DELALLOC)) {
1529			if (!found)
1530				*end = state->end;
1531			goto out;
1532		}
1533		if (!found) {
1534			*start = state->start;
1535			*cached_state = state;
1536			atomic_inc(&state->refs);
1537		}
1538		found++;
1539		*end = state->end;
1540		cur_start = state->end + 1;
1541		node = rb_next(node);
1542		total_bytes += state->end - state->start + 1;
1543		if (total_bytes >= max_bytes)
1544			break;
1545		if (!node)
1546			break;
1547	}
1548out:
1549	spin_unlock(&tree->lock);
1550	return found;
1551}
1552
 
 
 
 
 
1553static noinline void __unlock_for_delalloc(struct inode *inode,
1554					   struct page *locked_page,
1555					   u64 start, u64 end)
1556{
1557	int ret;
1558	struct page *pages[16];
1559	unsigned long index = start >> PAGE_SHIFT;
1560	unsigned long end_index = end >> PAGE_SHIFT;
1561	unsigned long nr_pages = end_index - index + 1;
1562	int i;
1563
 
1564	if (index == locked_page->index && end_index == index)
1565		return;
1566
1567	while (nr_pages > 0) {
1568		ret = find_get_pages_contig(inode->i_mapping, index,
1569				     min_t(unsigned long, nr_pages,
1570				     ARRAY_SIZE(pages)), pages);
1571		for (i = 0; i < ret; i++) {
1572			if (pages[i] != locked_page)
1573				unlock_page(pages[i]);
1574			put_page(pages[i]);
1575		}
1576		nr_pages -= ret;
1577		index += ret;
1578		cond_resched();
1579	}
1580}
1581
1582static noinline int lock_delalloc_pages(struct inode *inode,
1583					struct page *locked_page,
1584					u64 delalloc_start,
1585					u64 delalloc_end)
1586{
1587	unsigned long index = delalloc_start >> PAGE_SHIFT;
1588	unsigned long start_index = index;
1589	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1590	unsigned long pages_locked = 0;
1591	struct page *pages[16];
1592	unsigned long nrpages;
1593	int ret;
1594	int i;
1595
1596	/* the caller is responsible for locking the start index */
1597	if (index == locked_page->index && index == end_index)
1598		return 0;
1599
1600	/* skip the page at the start index */
1601	nrpages = end_index - index + 1;
1602	while (nrpages > 0) {
1603		ret = find_get_pages_contig(inode->i_mapping, index,
1604				     min_t(unsigned long,
1605				     nrpages, ARRAY_SIZE(pages)), pages);
1606		if (ret == 0) {
1607			ret = -EAGAIN;
1608			goto done;
1609		}
1610		/* now we have an array of pages, lock them all */
1611		for (i = 0; i < ret; i++) {
1612			/*
1613			 * the caller is taking responsibility for
1614			 * locked_page
1615			 */
1616			if (pages[i] != locked_page) {
1617				lock_page(pages[i]);
1618				if (!PageDirty(pages[i]) ||
1619				    pages[i]->mapping != inode->i_mapping) {
1620					ret = -EAGAIN;
1621					unlock_page(pages[i]);
1622					put_page(pages[i]);
1623					goto done;
1624				}
1625			}
1626			put_page(pages[i]);
1627			pages_locked++;
1628		}
1629		nrpages -= ret;
1630		index += ret;
1631		cond_resched();
1632	}
1633	ret = 0;
1634done:
1635	if (ret && pages_locked) {
1636		__unlock_for_delalloc(inode, locked_page,
1637			      delalloc_start,
1638			      ((u64)(start_index + pages_locked - 1)) <<
1639			      PAGE_SHIFT);
1640	}
1641	return ret;
1642}
1643
1644/*
1645 * find a contiguous range of bytes in the file marked as delalloc, not
1646 * more than 'max_bytes'.  start and end are used to return the range,
1647 *
1648 * 1 is returned if we find something, 0 if nothing was in the tree
1649 */
1650STATIC u64 find_lock_delalloc_range(struct inode *inode,
1651				    struct extent_io_tree *tree,
1652				    struct page *locked_page, u64 *start,
1653				    u64 *end, u64 max_bytes)
1654{
1655	u64 delalloc_start;
1656	u64 delalloc_end;
1657	u64 found;
1658	struct extent_state *cached_state = NULL;
1659	int ret;
1660	int loops = 0;
1661
1662again:
1663	/* step one, find a bunch of delalloc bytes starting at start */
1664	delalloc_start = *start;
1665	delalloc_end = 0;
1666	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1667				    max_bytes, &cached_state);
1668	if (!found || delalloc_end <= *start) {
1669		*start = delalloc_start;
1670		*end = delalloc_end;
1671		free_extent_state(cached_state);
1672		return 0;
1673	}
1674
1675	/*
1676	 * start comes from the offset of locked_page.  We have to lock
1677	 * pages in order, so we can't process delalloc bytes before
1678	 * locked_page
1679	 */
1680	if (delalloc_start < *start)
1681		delalloc_start = *start;
1682
1683	/*
1684	 * make sure to limit the number of pages we try to lock down
1685	 */
1686	if (delalloc_end + 1 - delalloc_start > max_bytes)
1687		delalloc_end = delalloc_start + max_bytes - 1;
1688
1689	/* step two, lock all the pages after the page that has start */
1690	ret = lock_delalloc_pages(inode, locked_page,
1691				  delalloc_start, delalloc_end);
1692	if (ret == -EAGAIN) {
1693		/* some of the pages are gone, lets avoid looping by
1694		 * shortening the size of the delalloc range we're searching
1695		 */
1696		free_extent_state(cached_state);
1697		cached_state = NULL;
1698		if (!loops) {
1699			max_bytes = PAGE_SIZE;
1700			loops = 1;
1701			goto again;
1702		} else {
1703			found = 0;
1704			goto out_failed;
1705		}
1706	}
1707	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1708
1709	/* step three, lock the state bits for the whole range */
1710	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1711
1712	/* then test to make sure it is all still delalloc */
1713	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1714			     EXTENT_DELALLOC, 1, cached_state);
1715	if (!ret) {
1716		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1717				     &cached_state, GFP_NOFS);
1718		__unlock_for_delalloc(inode, locked_page,
1719			      delalloc_start, delalloc_end);
1720		cond_resched();
1721		goto again;
1722	}
1723	free_extent_state(cached_state);
1724	*start = delalloc_start;
1725	*end = delalloc_end;
1726out_failed:
1727	return found;
1728}
1729
1730void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1731				 struct page *locked_page,
1732				 unsigned clear_bits,
1733				 unsigned long page_ops)
1734{
1735	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1736	int ret;
 
1737	struct page *pages[16];
1738	unsigned long index = start >> PAGE_SHIFT;
1739	unsigned long end_index = end >> PAGE_SHIFT;
1740	unsigned long nr_pages = end_index - index + 1;
1741	int i;
1742
1743	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1744	if (page_ops == 0)
1745		return;
 
1746
1747	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1748		mapping_set_error(inode->i_mapping, -EIO);
1749
1750	while (nr_pages > 0) {
1751		ret = find_get_pages_contig(inode->i_mapping, index,
1752				     min_t(unsigned long,
1753				     nr_pages, ARRAY_SIZE(pages)), pages);
1754		for (i = 0; i < ret; i++) {
 
 
 
 
 
 
 
 
1755
 
1756			if (page_ops & PAGE_SET_PRIVATE2)
1757				SetPagePrivate2(pages[i]);
1758
1759			if (pages[i] == locked_page) {
1760				put_page(pages[i]);
 
1761				continue;
1762			}
1763			if (page_ops & PAGE_CLEAR_DIRTY)
1764				clear_page_dirty_for_io(pages[i]);
1765			if (page_ops & PAGE_SET_WRITEBACK)
1766				set_page_writeback(pages[i]);
1767			if (page_ops & PAGE_SET_ERROR)
1768				SetPageError(pages[i]);
1769			if (page_ops & PAGE_END_WRITEBACK)
1770				end_page_writeback(pages[i]);
1771			if (page_ops & PAGE_UNLOCK)
1772				unlock_page(pages[i]);
 
 
 
 
 
 
 
 
 
 
1773			put_page(pages[i]);
 
1774		}
1775		nr_pages -= ret;
1776		index += ret;
1777		cond_resched();
1778	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779}
1780
1781/*
1782 * count the number of bytes in the tree that have a given bit(s)
1783 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1784 * cached.  The total number found is returned.
1785 */
1786u64 count_range_bits(struct extent_io_tree *tree,
1787		     u64 *start, u64 search_end, u64 max_bytes,
1788		     unsigned bits, int contig)
1789{
1790	struct rb_node *node;
1791	struct extent_state *state;
1792	u64 cur_start = *start;
1793	u64 total_bytes = 0;
1794	u64 last = 0;
1795	int found = 0;
1796
1797	if (WARN_ON(search_end <= cur_start))
1798		return 0;
1799
1800	spin_lock(&tree->lock);
1801	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1802		total_bytes = tree->dirty_bytes;
1803		goto out;
1804	}
1805	/*
1806	 * this search will find all the extents that end after
1807	 * our range starts.
1808	 */
1809	node = tree_search(tree, cur_start);
1810	if (!node)
1811		goto out;
1812
1813	while (1) {
1814		state = rb_entry(node, struct extent_state, rb_node);
1815		if (state->start > search_end)
1816			break;
1817		if (contig && found && state->start > last + 1)
1818			break;
1819		if (state->end >= cur_start && (state->state & bits) == bits) {
1820			total_bytes += min(search_end, state->end) + 1 -
1821				       max(cur_start, state->start);
1822			if (total_bytes >= max_bytes)
1823				break;
1824			if (!found) {
1825				*start = max(cur_start, state->start);
1826				found = 1;
1827			}
1828			last = state->end;
1829		} else if (contig && found) {
1830			break;
1831		}
1832		node = rb_next(node);
1833		if (!node)
1834			break;
1835	}
1836out:
1837	spin_unlock(&tree->lock);
1838	return total_bytes;
1839}
1840
1841/*
1842 * set the private field for a given byte offset in the tree.  If there isn't
1843 * an extent_state there already, this does nothing.
1844 */
1845static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1846		struct io_failure_record *failrec)
1847{
1848	struct rb_node *node;
1849	struct extent_state *state;
1850	int ret = 0;
1851
1852	spin_lock(&tree->lock);
1853	/*
1854	 * this search will find all the extents that end after
1855	 * our range starts.
1856	 */
1857	node = tree_search(tree, start);
1858	if (!node) {
1859		ret = -ENOENT;
1860		goto out;
1861	}
1862	state = rb_entry(node, struct extent_state, rb_node);
1863	if (state->start != start) {
1864		ret = -ENOENT;
1865		goto out;
1866	}
1867	state->failrec = failrec;
1868out:
1869	spin_unlock(&tree->lock);
1870	return ret;
1871}
1872
1873static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1874		struct io_failure_record **failrec)
1875{
1876	struct rb_node *node;
1877	struct extent_state *state;
1878	int ret = 0;
1879
1880	spin_lock(&tree->lock);
1881	/*
1882	 * this search will find all the extents that end after
1883	 * our range starts.
1884	 */
1885	node = tree_search(tree, start);
1886	if (!node) {
1887		ret = -ENOENT;
1888		goto out;
1889	}
1890	state = rb_entry(node, struct extent_state, rb_node);
1891	if (state->start != start) {
1892		ret = -ENOENT;
1893		goto out;
1894	}
1895	*failrec = state->failrec;
1896out:
1897	spin_unlock(&tree->lock);
1898	return ret;
1899}
1900
1901/*
1902 * searches a range in the state tree for a given mask.
1903 * If 'filled' == 1, this returns 1 only if every extent in the tree
1904 * has the bits set.  Otherwise, 1 is returned if any bit in the
1905 * range is found set.
1906 */
1907int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1908		   unsigned bits, int filled, struct extent_state *cached)
1909{
1910	struct extent_state *state = NULL;
1911	struct rb_node *node;
1912	int bitset = 0;
1913
1914	spin_lock(&tree->lock);
1915	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1916	    cached->end > start)
1917		node = &cached->rb_node;
1918	else
1919		node = tree_search(tree, start);
1920	while (node && start <= end) {
1921		state = rb_entry(node, struct extent_state, rb_node);
1922
1923		if (filled && state->start > start) {
1924			bitset = 0;
1925			break;
1926		}
1927
1928		if (state->start > end)
1929			break;
1930
1931		if (state->state & bits) {
1932			bitset = 1;
1933			if (!filled)
1934				break;
1935		} else if (filled) {
1936			bitset = 0;
1937			break;
1938		}
1939
1940		if (state->end == (u64)-1)
1941			break;
1942
1943		start = state->end + 1;
1944		if (start > end)
1945			break;
1946		node = rb_next(node);
1947		if (!node) {
1948			if (filled)
1949				bitset = 0;
1950			break;
1951		}
1952	}
1953	spin_unlock(&tree->lock);
1954	return bitset;
1955}
1956
1957/*
1958 * helper function to set a given page up to date if all the
1959 * extents in the tree for that page are up to date
1960 */
1961static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1962{
1963	u64 start = page_offset(page);
1964	u64 end = start + PAGE_SIZE - 1;
1965	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1966		SetPageUptodate(page);
1967}
1968
1969int free_io_failure(struct inode *inode, struct io_failure_record *rec)
 
 
1970{
1971	int ret;
1972	int err = 0;
1973	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1974
1975	set_state_failrec(failure_tree, rec->start, NULL);
1976	ret = clear_extent_bits(failure_tree, rec->start,
1977				rec->start + rec->len - 1,
1978				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1979	if (ret)
1980		err = ret;
1981
1982	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1983				rec->start + rec->len - 1,
1984				EXTENT_DAMAGED, GFP_NOFS);
1985	if (ret && !err)
1986		err = ret;
1987
1988	kfree(rec);
1989	return err;
1990}
1991
1992/*
1993 * this bypasses the standard btrfs submit functions deliberately, as
1994 * the standard behavior is to write all copies in a raid setup. here we only
1995 * want to write the one bad copy. so we do the mapping for ourselves and issue
1996 * submit_bio directly.
1997 * to avoid any synchronization issues, wait for the data after writing, which
1998 * actually prevents the read that triggered the error from finishing.
1999 * currently, there can be no more than two copies of every data bit. thus,
2000 * exactly one rewrite is required.
2001 */
2002int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2003		      struct page *page, unsigned int pg_offset, int mirror_num)
 
2004{
2005	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2006	struct bio *bio;
2007	struct btrfs_device *dev;
2008	u64 map_length = 0;
2009	u64 sector;
2010	struct btrfs_bio *bbio = NULL;
2011	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2012	int ret;
2013
2014	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2015	BUG_ON(!mirror_num);
2016
2017	/* we can't repair anything in raid56 yet */
2018	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2019		return 0;
2020
2021	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2022	if (!bio)
2023		return -EIO;
2024	bio->bi_iter.bi_size = 0;
2025	map_length = length;
2026
2027	ret = btrfs_map_block(fs_info, WRITE, logical,
2028			      &map_length, &bbio, mirror_num);
2029	if (ret) {
2030		bio_put(bio);
2031		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2032	}
2033	BUG_ON(mirror_num != bbio->mirror_num);
2034	sector = bbio->stripes[mirror_num-1].physical >> 9;
2035	bio->bi_iter.bi_sector = sector;
2036	dev = bbio->stripes[mirror_num-1].dev;
2037	btrfs_put_bbio(bbio);
2038	if (!dev || !dev->bdev || !dev->writeable) {
 
 
2039		bio_put(bio);
2040		return -EIO;
2041	}
2042	bio->bi_bdev = dev->bdev;
 
2043	bio_add_page(bio, page, length, pg_offset);
2044
2045	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2046		/* try to remap that extent elsewhere? */
 
2047		bio_put(bio);
2048		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049		return -EIO;
2050	}
2051
2052	btrfs_info_rl_in_rcu(fs_info,
2053		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054				  btrfs_ino(inode), start,
2055				  rcu_str_deref(dev->name), sector);
 
2056	bio_put(bio);
2057	return 0;
2058}
2059
2060int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2061			 int mirror_num)
2062{
2063	u64 start = eb->start;
2064	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2065	int ret = 0;
2066
2067	if (root->fs_info->sb->s_flags & MS_RDONLY)
2068		return -EROFS;
2069
2070	for (i = 0; i < num_pages; i++) {
2071		struct page *p = eb->pages[i];
2072
2073		ret = repair_io_failure(root->fs_info->btree_inode, start,
2074					PAGE_SIZE, start, p,
2075					start - page_offset(p), mirror_num);
2076		if (ret)
2077			break;
2078		start += PAGE_SIZE;
2079	}
2080
2081	return ret;
2082}
2083
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
2088int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2089		     unsigned int pg_offset)
 
 
2090{
2091	u64 private;
2092	struct io_failure_record *failrec;
2093	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2094	struct extent_state *state;
2095	int num_copies;
2096	int ret;
2097
2098	private = 0;
2099	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2100				(u64)-1, 1, EXTENT_DIRTY, 0);
2101	if (!ret)
2102		return 0;
2103
2104	ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2105			&failrec);
2106	if (ret)
2107		return 0;
2108
2109	BUG_ON(!failrec->this_mirror);
2110
2111	if (failrec->in_validation) {
2112		/* there was no real error, just free the record */
2113		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2114			 failrec->start);
 
2115		goto out;
2116	}
2117	if (fs_info->sb->s_flags & MS_RDONLY)
2118		goto out;
2119
2120	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2121	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2122					    failrec->start,
2123					    EXTENT_LOCKED);
2124	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2125
2126	if (state && state->start <= failrec->start &&
2127	    state->end >= failrec->start + failrec->len - 1) {
2128		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2129					      failrec->len);
2130		if (num_copies > 1)  {
2131			repair_io_failure(inode, start, failrec->len,
2132					  failrec->logical, page,
2133					  pg_offset, failrec->failed_mirror);
2134		}
2135	}
2136
2137out:
2138	free_io_failure(inode, failrec);
2139
2140	return 0;
2141}
2142
2143/*
2144 * Can be called when
2145 * - hold extent lock
2146 * - under ordered extent
2147 * - the inode is freeing
2148 */
2149void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2150{
2151	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2152	struct io_failure_record *failrec;
2153	struct extent_state *state, *next;
2154
2155	if (RB_EMPTY_ROOT(&failure_tree->state))
2156		return;
2157
2158	spin_lock(&failure_tree->lock);
2159	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2160	while (state) {
2161		if (state->start > end)
2162			break;
2163
2164		ASSERT(state->end <= end);
2165
2166		next = next_state(state);
2167
2168		failrec = state->failrec;
2169		free_extent_state(state);
2170		kfree(failrec);
2171
2172		state = next;
2173	}
2174	spin_unlock(&failure_tree->lock);
2175}
2176
2177int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2178		struct io_failure_record **failrec_ret)
2179{
 
2180	struct io_failure_record *failrec;
2181	struct extent_map *em;
2182	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185	int ret;
2186	u64 logical;
2187
2188	ret = get_state_failrec(failure_tree, start, &failrec);
2189	if (ret) {
2190		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2191		if (!failrec)
2192			return -ENOMEM;
2193
2194		failrec->start = start;
2195		failrec->len = end - start + 1;
2196		failrec->this_mirror = 0;
2197		failrec->bio_flags = 0;
2198		failrec->in_validation = 0;
2199
2200		read_lock(&em_tree->lock);
2201		em = lookup_extent_mapping(em_tree, start, failrec->len);
2202		if (!em) {
2203			read_unlock(&em_tree->lock);
2204			kfree(failrec);
2205			return -EIO;
2206		}
2207
2208		if (em->start > start || em->start + em->len <= start) {
2209			free_extent_map(em);
2210			em = NULL;
2211		}
2212		read_unlock(&em_tree->lock);
2213		if (!em) {
2214			kfree(failrec);
2215			return -EIO;
2216		}
2217
2218		logical = start - em->start;
2219		logical = em->block_start + logical;
2220		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2221			logical = em->block_start;
2222			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2223			extent_set_compress_type(&failrec->bio_flags,
2224						 em->compress_type);
2225		}
2226
2227		pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2228			 logical, start, failrec->len);
 
2229
2230		failrec->logical = logical;
2231		free_extent_map(em);
2232
2233		/* set the bits in the private failure tree */
2234		ret = set_extent_bits(failure_tree, start, end,
2235					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2236		if (ret >= 0)
2237			ret = set_state_failrec(failure_tree, start, failrec);
2238		/* set the bits in the inode's tree */
2239		if (ret >= 0)
2240			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241						GFP_NOFS);
2242		if (ret < 0) {
2243			kfree(failrec);
2244			return ret;
2245		}
2246	} else {
2247		pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2248			 failrec->logical, failrec->start, failrec->len,
2249			 failrec->in_validation);
 
2250		/*
2251		 * when data can be on disk more than twice, add to failrec here
2252		 * (e.g. with a list for failed_mirror) to make
2253		 * clean_io_failure() clean all those errors at once.
2254		 */
2255	}
2256
2257	*failrec_ret = failrec;
2258
2259	return 0;
2260}
2261
2262int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263			   struct io_failure_record *failrec, int failed_mirror)
2264{
 
2265	int num_copies;
2266
2267	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2268				      failrec->logical, failrec->len);
2269	if (num_copies == 1) {
2270		/*
2271		 * we only have a single copy of the data, so don't bother with
2272		 * all the retry and error correction code that follows. no
2273		 * matter what the error is, it is very likely to persist.
2274		 */
2275		pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2276			 num_copies, failrec->this_mirror, failed_mirror);
2277		return 0;
 
2278	}
2279
2280	/*
2281	 * there are two premises:
2282	 *	a) deliver good data to the caller
2283	 *	b) correct the bad sectors on disk
2284	 */
2285	if (failed_bio->bi_vcnt > 1) {
2286		/*
2287		 * to fulfill b), we need to know the exact failing sectors, as
2288		 * we don't want to rewrite any more than the failed ones. thus,
2289		 * we need separate read requests for the failed bio
2290		 *
2291		 * if the following BUG_ON triggers, our validation request got
2292		 * merged. we need separate requests for our algorithm to work.
2293		 */
2294		BUG_ON(failrec->in_validation);
2295		failrec->in_validation = 1;
2296		failrec->this_mirror = failed_mirror;
2297	} else {
2298		/*
2299		 * we're ready to fulfill a) and b) alongside. get a good copy
2300		 * of the failed sector and if we succeed, we have setup
2301		 * everything for repair_io_failure to do the rest for us.
2302		 */
2303		if (failrec->in_validation) {
2304			BUG_ON(failrec->this_mirror != failed_mirror);
2305			failrec->in_validation = 0;
2306			failrec->this_mirror = 0;
2307		}
2308		failrec->failed_mirror = failed_mirror;
2309		failrec->this_mirror++;
2310		if (failrec->this_mirror == failed_mirror)
2311			failrec->this_mirror++;
2312	}
2313
2314	if (failrec->this_mirror > num_copies) {
2315		pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2316			 num_copies, failrec->this_mirror, failed_mirror);
2317		return 0;
 
2318	}
2319
2320	return 1;
2321}
2322
2323
2324struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325				    struct io_failure_record *failrec,
2326				    struct page *page, int pg_offset, int icsum,
2327				    bio_end_io_t *endio_func, void *data)
2328{
 
2329	struct bio *bio;
2330	struct btrfs_io_bio *btrfs_failed_bio;
2331	struct btrfs_io_bio *btrfs_bio;
2332
2333	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2334	if (!bio)
2335		return NULL;
2336
2337	bio->bi_end_io = endio_func;
2338	bio->bi_iter.bi_sector = failrec->logical >> 9;
2339	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2340	bio->bi_iter.bi_size = 0;
2341	bio->bi_private = data;
2342
2343	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344	if (btrfs_failed_bio->csum) {
2345		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2346		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2347
2348		btrfs_bio = btrfs_io_bio(bio);
2349		btrfs_bio->csum = btrfs_bio->csum_inline;
2350		icsum *= csum_size;
2351		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2352		       csum_size);
2353	}
2354
2355	bio_add_page(bio, page, failrec->len, pg_offset);
2356
2357	return bio;
2358}
2359
2360/*
2361 * this is a generic handler for readpage errors (default
2362 * readpage_io_failed_hook). if other copies exist, read those and write back
2363 * good data to the failed position. does not investigate in remapping the
2364 * failed extent elsewhere, hoping the device will be smart enough to do this as
2365 * needed
2366 */
2367
2368static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2369			      struct page *page, u64 start, u64 end,
2370			      int failed_mirror)
2371{
2372	struct io_failure_record *failrec;
2373	struct inode *inode = page->mapping->host;
2374	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 
2375	struct bio *bio;
2376	int read_mode;
 
2377	int ret;
 
2378
2379	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2380
2381	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382	if (ret)
2383		return ret;
2384
2385	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2386	if (!ret) {
2387		free_io_failure(inode, failrec);
2388		return -EIO;
2389	}
2390
2391	if (failed_bio->bi_vcnt > 1)
2392		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2393	else
2394		read_mode = READ_SYNC;
2395
2396	phy_offset >>= inode->i_sb->s_blocksize_bits;
2397	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398				      start - page_offset(page),
2399				      (int)phy_offset, failed_bio->bi_end_io,
2400				      NULL);
2401	if (!bio) {
2402		free_io_failure(inode, failrec);
2403		return -EIO;
2404	}
2405
2406	pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2407		 read_mode, failrec->this_mirror, failrec->in_validation);
 
2408
2409	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2410					 failrec->this_mirror,
2411					 failrec->bio_flags, 0);
2412	if (ret) {
2413		free_io_failure(inode, failrec);
2414		bio_put(bio);
 
2415	}
2416
2417	return ret;
2418}
2419
2420/* lots and lots of room for performance fixes in the end_bio funcs */
2421
2422void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2423{
2424	int uptodate = (err == 0);
2425	struct extent_io_tree *tree;
2426	int ret = 0;
2427
2428	tree = &BTRFS_I(page->mapping->host)->io_tree;
2429
2430	if (tree->ops && tree->ops->writepage_end_io_hook) {
2431		ret = tree->ops->writepage_end_io_hook(page, start,
2432					       end, NULL, uptodate);
2433		if (ret)
2434			uptodate = 0;
2435	}
2436
2437	if (!uptodate) {
2438		ClearPageUptodate(page);
2439		SetPageError(page);
2440		ret = ret < 0 ? ret : -EIO;
2441		mapping_set_error(page->mapping, ret);
2442	}
2443}
2444
2445/*
2446 * after a writepage IO is done, we need to:
2447 * clear the uptodate bits on error
2448 * clear the writeback bits in the extent tree for this IO
2449 * end_page_writeback if the page has no more pending IO
2450 *
2451 * Scheduling is not allowed, so the extent state tree is expected
2452 * to have one and only one object corresponding to this IO.
2453 */
2454static void end_bio_extent_writepage(struct bio *bio)
2455{
 
2456	struct bio_vec *bvec;
2457	u64 start;
2458	u64 end;
2459	int i;
2460
 
2461	bio_for_each_segment_all(bvec, bio, i) {
2462		struct page *page = bvec->bv_page;
 
 
2463
2464		/* We always issue full-page reads, but if some block
2465		 * in a page fails to read, blk_update_request() will
2466		 * advance bv_offset and adjust bv_len to compensate.
2467		 * Print a warning for nonzero offsets, and an error
2468		 * if they don't add up to a full page.  */
2469		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2470			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2471				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2472				   "partial page write in btrfs with offset %u and length %u",
2473					bvec->bv_offset, bvec->bv_len);
2474			else
2475				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2476				   "incomplete page write in btrfs with offset %u and "
2477				   "length %u",
2478					bvec->bv_offset, bvec->bv_len);
2479		}
2480
2481		start = page_offset(page);
2482		end = start + bvec->bv_offset + bvec->bv_len - 1;
2483
2484		end_extent_writepage(page, bio->bi_error, start, end);
2485		end_page_writeback(page);
2486	}
2487
2488	bio_put(bio);
2489}
2490
2491static void
2492endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493			      int uptodate)
2494{
2495	struct extent_state *cached = NULL;
2496	u64 end = start + len - 1;
2497
2498	if (uptodate && tree->track_uptodate)
2499		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501}
2502
2503/*
2504 * after a readpage IO is done, we need to:
2505 * clear the uptodate bits on error
2506 * set the uptodate bits if things worked
2507 * set the page up to date if all extents in the tree are uptodate
2508 * clear the lock bit in the extent tree
2509 * unlock the page if there are no other extents locked for it
2510 *
2511 * Scheduling is not allowed, so the extent state tree is expected
2512 * to have one and only one object corresponding to this IO.
2513 */
2514static void end_bio_extent_readpage(struct bio *bio)
2515{
2516	struct bio_vec *bvec;
2517	int uptodate = !bio->bi_error;
2518	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2519	struct extent_io_tree *tree;
2520	u64 offset = 0;
2521	u64 start;
2522	u64 end;
2523	u64 len;
2524	u64 extent_start = 0;
2525	u64 extent_len = 0;
2526	int mirror;
2527	int ret;
2528	int i;
2529
 
2530	bio_for_each_segment_all(bvec, bio, i) {
2531		struct page *page = bvec->bv_page;
2532		struct inode *inode = page->mapping->host;
 
2533
2534		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2535			 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2536			 bio->bi_error, io_bio->mirror_num);
 
2537		tree = &BTRFS_I(inode)->io_tree;
 
2538
2539		/* We always issue full-page reads, but if some block
2540		 * in a page fails to read, blk_update_request() will
2541		 * advance bv_offset and adjust bv_len to compensate.
2542		 * Print a warning for nonzero offsets, and an error
2543		 * if they don't add up to a full page.  */
2544		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2547				   "partial page read in btrfs with offset %u and length %u",
2548					bvec->bv_offset, bvec->bv_len);
2549			else
2550				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2551				   "incomplete page read in btrfs with offset %u and "
2552				   "length %u",
2553					bvec->bv_offset, bvec->bv_len);
2554		}
2555
2556		start = page_offset(page);
2557		end = start + bvec->bv_offset + bvec->bv_len - 1;
2558		len = bvec->bv_len;
2559
2560		mirror = io_bio->mirror_num;
2561		if (likely(uptodate && tree->ops &&
2562			   tree->ops->readpage_end_io_hook)) {
2563			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564							      page, start, end,
2565							      mirror);
2566			if (ret)
2567				uptodate = 0;
2568			else
2569				clean_io_failure(inode, start, page, 0);
 
 
 
2570		}
2571
2572		if (likely(uptodate))
2573			goto readpage_ok;
2574
2575		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2576			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577			if (!ret && !bio->bi_error)
2578				uptodate = 1;
2579		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2580			/*
2581			 * The generic bio_readpage_error handles errors the
2582			 * following way: If possible, new read requests are
2583			 * created and submitted and will end up in
2584			 * end_bio_extent_readpage as well (if we're lucky, not
2585			 * in the !uptodate case). In that case it returns 0 and
2586			 * we just go on with the next page in our bio. If it
2587			 * can't handle the error it will return -EIO and we
2588			 * remain responsible for that page.
2589			 */
2590			ret = bio_readpage_error(bio, offset, page, start, end,
2591						 mirror);
2592			if (ret == 0) {
2593				uptodate = !bio->bi_error;
2594				offset += len;
2595				continue;
2596			}
2597		}
2598readpage_ok:
2599		if (likely(uptodate)) {
2600			loff_t i_size = i_size_read(inode);
2601			pgoff_t end_index = i_size >> PAGE_SHIFT;
2602			unsigned off;
2603
2604			/* Zero out the end if this page straddles i_size */
2605			off = i_size & (PAGE_SIZE-1);
2606			if (page->index == end_index && off)
2607				zero_user_segment(page, off, PAGE_SIZE);
2608			SetPageUptodate(page);
2609		} else {
2610			ClearPageUptodate(page);
2611			SetPageError(page);
2612		}
2613		unlock_page(page);
2614		offset += len;
2615
2616		if (unlikely(!uptodate)) {
2617			if (extent_len) {
2618				endio_readpage_release_extent(tree,
2619							      extent_start,
2620							      extent_len, 1);
2621				extent_start = 0;
2622				extent_len = 0;
2623			}
2624			endio_readpage_release_extent(tree, start,
2625						      end - start + 1, 0);
2626		} else if (!extent_len) {
2627			extent_start = start;
2628			extent_len = end + 1 - start;
2629		} else if (extent_start + extent_len == start) {
2630			extent_len += end + 1 - start;
2631		} else {
2632			endio_readpage_release_extent(tree, extent_start,
2633						      extent_len, uptodate);
2634			extent_start = start;
2635			extent_len = end + 1 - start;
2636		}
2637	}
2638
2639	if (extent_len)
2640		endio_readpage_release_extent(tree, extent_start, extent_len,
2641					      uptodate);
2642	if (io_bio->end_io)
2643		io_bio->end_io(io_bio, bio->bi_error);
2644	bio_put(bio);
2645}
2646
2647/*
2648 * this allocates from the btrfs_bioset.  We're returning a bio right now
2649 * but you can call btrfs_io_bio for the appropriate container_of magic
 
2650 */
2651struct bio *
2652btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2653		gfp_t gfp_flags)
2654{
2655	struct btrfs_io_bio *btrfs_bio;
2656	struct bio *bio;
2657
2658	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2659
2660	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2661		while (!bio && (nr_vecs /= 2)) {
2662			bio = bio_alloc_bioset(gfp_flags,
2663					       nr_vecs, btrfs_bioset);
2664		}
2665	}
 
 
2666
2667	if (bio) {
2668		bio->bi_bdev = bdev;
2669		bio->bi_iter.bi_sector = first_sector;
2670		btrfs_bio = btrfs_io_bio(bio);
2671		btrfs_bio->csum = NULL;
2672		btrfs_bio->csum_allocated = NULL;
2673		btrfs_bio->end_io = NULL;
2674	}
2675	return bio;
2676}
2677
2678struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679{
2680	struct btrfs_io_bio *btrfs_bio;
2681	struct bio *new;
2682
2683	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2684	if (new) {
2685		btrfs_bio = btrfs_io_bio(new);
2686		btrfs_bio->csum = NULL;
2687		btrfs_bio->csum_allocated = NULL;
2688		btrfs_bio->end_io = NULL;
2689
2690#ifdef CONFIG_BLK_CGROUP
2691		/* FIXME, put this into bio_clone_bioset */
2692		if (bio->bi_css)
2693			bio_associate_blkcg(new, bio->bi_css);
2694#endif
2695	}
2696	return new;
2697}
2698
2699/* this also allocates from the btrfs_bioset */
2700struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2701{
2702	struct btrfs_io_bio *btrfs_bio;
2703	struct bio *bio;
2704
2705	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2706	if (bio) {
2707		btrfs_bio = btrfs_io_bio(bio);
2708		btrfs_bio->csum = NULL;
2709		btrfs_bio->csum_allocated = NULL;
2710		btrfs_bio->end_io = NULL;
2711	}
2712	return bio;
2713}
2714
 
 
 
 
 
 
 
 
2715
2716static int __must_check submit_one_bio(int rw, struct bio *bio,
2717				       int mirror_num, unsigned long bio_flags)
 
 
 
 
 
 
 
 
2718{
2719	int ret = 0;
2720	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2721	struct page *page = bvec->bv_page;
2722	struct extent_io_tree *tree = bio->bi_private;
2723	u64 start;
2724
2725	start = page_offset(page) + bvec->bv_offset;
2726
2727	bio->bi_private = NULL;
2728
2729	bio_get(bio);
2730
2731	if (tree->ops && tree->ops->submit_bio_hook)
2732		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2733					   mirror_num, bio_flags, start);
2734	else
2735		btrfsic_submit_bio(rw, bio);
2736
2737	bio_put(bio);
2738	return ret;
2739}
2740
2741static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2742		     unsigned long offset, size_t size, struct bio *bio,
2743		     unsigned long bio_flags)
2744{
2745	int ret = 0;
2746	if (tree->ops && tree->ops->merge_bio_hook)
2747		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2748						bio_flags);
2749	BUG_ON(ret < 0);
2750	return ret;
2751
2752}
2753
2754static int submit_extent_page(int rw, struct extent_io_tree *tree,
 
 
 
2755			      struct writeback_control *wbc,
2756			      struct page *page, sector_t sector,
2757			      size_t size, unsigned long offset,
2758			      struct block_device *bdev,
2759			      struct bio **bio_ret,
2760			      unsigned long max_pages,
2761			      bio_end_io_t end_io_func,
2762			      int mirror_num,
2763			      unsigned long prev_bio_flags,
2764			      unsigned long bio_flags,
2765			      bool force_bio_submit)
2766{
2767	int ret = 0;
2768	struct bio *bio;
2769	int contig = 0;
2770	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771	size_t page_size = min_t(size_t, size, PAGE_SIZE);
 
 
 
 
 
 
 
2772
2773	if (bio_ret && *bio_ret) {
2774		bio = *bio_ret;
2775		if (old_compressed)
2776			contig = bio->bi_iter.bi_sector == sector;
2777		else
2778			contig = bio_end_sector(bio) == sector;
2779
2780		if (prev_bio_flags != bio_flags || !contig ||
 
 
 
 
2781		    force_bio_submit ||
2782		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2783		    bio_add_page(bio, page, page_size, offset) < page_size) {
2784			ret = submit_one_bio(rw, bio, mirror_num,
2785					     prev_bio_flags);
2786			if (ret < 0) {
2787				*bio_ret = NULL;
2788				return ret;
2789			}
2790			bio = NULL;
2791		} else {
2792			if (wbc)
2793				wbc_account_io(wbc, page, page_size);
2794			return 0;
2795		}
2796	}
2797
2798	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799			GFP_NOFS | __GFP_HIGH);
2800	if (!bio)
2801		return -ENOMEM;
2802
2803	bio_add_page(bio, page, page_size, offset);
2804	bio->bi_end_io = end_io_func;
2805	bio->bi_private = tree;
 
 
2806	if (wbc) {
2807		wbc_init_bio(wbc, bio);
2808		wbc_account_io(wbc, page, page_size);
2809	}
2810
2811	if (bio_ret)
2812		*bio_ret = bio;
2813	else
2814		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2815
2816	return ret;
2817}
2818
2819static void attach_extent_buffer_page(struct extent_buffer *eb,
2820				      struct page *page)
2821{
2822	if (!PagePrivate(page)) {
2823		SetPagePrivate(page);
2824		get_page(page);
2825		set_page_private(page, (unsigned long)eb);
2826	} else {
2827		WARN_ON(page->private != (unsigned long)eb);
2828	}
2829}
2830
2831void set_page_extent_mapped(struct page *page)
2832{
2833	if (!PagePrivate(page)) {
2834		SetPagePrivate(page);
2835		get_page(page);
2836		set_page_private(page, EXTENT_PAGE_PRIVATE);
2837	}
2838}
2839
2840static struct extent_map *
2841__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842		 u64 start, u64 len, get_extent_t *get_extent,
2843		 struct extent_map **em_cached)
2844{
2845	struct extent_map *em;
2846
2847	if (em_cached && *em_cached) {
2848		em = *em_cached;
2849		if (extent_map_in_tree(em) && start >= em->start &&
2850		    start < extent_map_end(em)) {
2851			atomic_inc(&em->refs);
2852			return em;
2853		}
2854
2855		free_extent_map(em);
2856		*em_cached = NULL;
2857	}
2858
2859	em = get_extent(inode, page, pg_offset, start, len, 0);
2860	if (em_cached && !IS_ERR_OR_NULL(em)) {
2861		BUG_ON(*em_cached);
2862		atomic_inc(&em->refs);
2863		*em_cached = em;
2864	}
2865	return em;
2866}
2867/*
2868 * basic readpage implementation.  Locked extent state structs are inserted
2869 * into the tree that are removed when the IO is done (by the end_io
2870 * handlers)
2871 * XXX JDM: This needs looking at to ensure proper page locking
 
2872 */
2873static int __do_readpage(struct extent_io_tree *tree,
2874			 struct page *page,
2875			 get_extent_t *get_extent,
2876			 struct extent_map **em_cached,
2877			 struct bio **bio, int mirror_num,
2878			 unsigned long *bio_flags, int rw,
2879			 u64 *prev_em_start)
2880{
2881	struct inode *inode = page->mapping->host;
2882	u64 start = page_offset(page);
2883	u64 page_end = start + PAGE_SIZE - 1;
2884	u64 end;
2885	u64 cur = start;
2886	u64 extent_offset;
2887	u64 last_byte = i_size_read(inode);
2888	u64 block_start;
2889	u64 cur_end;
2890	sector_t sector;
2891	struct extent_map *em;
2892	struct block_device *bdev;
2893	int ret;
2894	int nr = 0;
2895	size_t pg_offset = 0;
2896	size_t iosize;
2897	size_t disk_io_size;
2898	size_t blocksize = inode->i_sb->s_blocksize;
2899	unsigned long this_bio_flag = 0;
2900
2901	set_page_extent_mapped(page);
2902
2903	end = page_end;
2904	if (!PageUptodate(page)) {
2905		if (cleancache_get_page(page) == 0) {
2906			BUG_ON(blocksize != PAGE_SIZE);
2907			unlock_extent(tree, start, end);
2908			goto out;
2909		}
2910	}
2911
2912	if (page->index == last_byte >> PAGE_SHIFT) {
2913		char *userpage;
2914		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2915
2916		if (zero_offset) {
2917			iosize = PAGE_SIZE - zero_offset;
2918			userpage = kmap_atomic(page);
2919			memset(userpage + zero_offset, 0, iosize);
2920			flush_dcache_page(page);
2921			kunmap_atomic(userpage);
2922		}
2923	}
2924	while (cur <= end) {
2925		unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2926		bool force_bio_submit = false;
 
2927
2928		if (cur >= last_byte) {
2929			char *userpage;
2930			struct extent_state *cached = NULL;
2931
2932			iosize = PAGE_SIZE - pg_offset;
2933			userpage = kmap_atomic(page);
2934			memset(userpage + pg_offset, 0, iosize);
2935			flush_dcache_page(page);
2936			kunmap_atomic(userpage);
2937			set_extent_uptodate(tree, cur, cur + iosize - 1,
2938					    &cached, GFP_NOFS);
2939			unlock_extent_cached(tree, cur,
2940					     cur + iosize - 1,
2941					     &cached, GFP_NOFS);
2942			break;
2943		}
2944		em = __get_extent_map(inode, page, pg_offset, cur,
2945				      end - cur + 1, get_extent, em_cached);
2946		if (IS_ERR_OR_NULL(em)) {
2947			SetPageError(page);
2948			unlock_extent(tree, cur, end);
2949			break;
2950		}
2951		extent_offset = cur - em->start;
2952		BUG_ON(extent_map_end(em) <= cur);
2953		BUG_ON(end < cur);
2954
2955		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957			extent_set_compress_type(&this_bio_flag,
2958						 em->compress_type);
2959		}
2960
2961		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962		cur_end = min(extent_map_end(em) - 1, end);
2963		iosize = ALIGN(iosize, blocksize);
2964		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965			disk_io_size = em->block_len;
2966			sector = em->block_start >> 9;
2967		} else {
2968			sector = (em->block_start + extent_offset) >> 9;
2969			disk_io_size = iosize;
2970		}
2971		bdev = em->bdev;
2972		block_start = em->block_start;
2973		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974			block_start = EXTENT_MAP_HOLE;
2975
2976		/*
2977		 * If we have a file range that points to a compressed extent
2978		 * and it's followed by a consecutive file range that points to
2979		 * to the same compressed extent (possibly with a different
2980		 * offset and/or length, so it either points to the whole extent
2981		 * or only part of it), we must make sure we do not submit a
2982		 * single bio to populate the pages for the 2 ranges because
2983		 * this makes the compressed extent read zero out the pages
2984		 * belonging to the 2nd range. Imagine the following scenario:
2985		 *
2986		 *  File layout
2987		 *  [0 - 8K]                     [8K - 24K]
2988		 *    |                               |
2989		 *    |                               |
2990		 * points to extent X,         points to extent X,
2991		 * offset 4K, length of 8K     offset 0, length 16K
2992		 *
2993		 * [extent X, compressed length = 4K uncompressed length = 16K]
2994		 *
2995		 * If the bio to read the compressed extent covers both ranges,
2996		 * it will decompress extent X into the pages belonging to the
2997		 * first range and then it will stop, zeroing out the remaining
2998		 * pages that belong to the other range that points to extent X.
2999		 * So here we make sure we submit 2 bios, one for the first
3000		 * range and another one for the third range. Both will target
3001		 * the same physical extent from disk, but we can't currently
3002		 * make the compressed bio endio callback populate the pages
3003		 * for both ranges because each compressed bio is tightly
3004		 * coupled with a single extent map, and each range can have
3005		 * an extent map with a different offset value relative to the
3006		 * uncompressed data of our extent and different lengths. This
3007		 * is a corner case so we prioritize correctness over
3008		 * non-optimal behavior (submitting 2 bios for the same extent).
3009		 */
3010		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011		    prev_em_start && *prev_em_start != (u64)-1 &&
3012		    *prev_em_start != em->orig_start)
3013			force_bio_submit = true;
3014
3015		if (prev_em_start)
3016			*prev_em_start = em->orig_start;
3017
3018		free_extent_map(em);
3019		em = NULL;
3020
3021		/* we've found a hole, just zero and go on */
3022		if (block_start == EXTENT_MAP_HOLE) {
3023			char *userpage;
3024			struct extent_state *cached = NULL;
3025
3026			userpage = kmap_atomic(page);
3027			memset(userpage + pg_offset, 0, iosize);
3028			flush_dcache_page(page);
3029			kunmap_atomic(userpage);
3030
3031			set_extent_uptodate(tree, cur, cur + iosize - 1,
3032					    &cached, GFP_NOFS);
3033			unlock_extent_cached(tree, cur,
3034					     cur + iosize - 1,
3035					     &cached, GFP_NOFS);
3036			cur = cur + iosize;
3037			pg_offset += iosize;
3038			continue;
3039		}
3040		/* the get_extent function already copied into the page */
3041		if (test_range_bit(tree, cur, cur_end,
3042				   EXTENT_UPTODATE, 1, NULL)) {
3043			check_page_uptodate(tree, page);
3044			unlock_extent(tree, cur, cur + iosize - 1);
3045			cur = cur + iosize;
3046			pg_offset += iosize;
3047			continue;
3048		}
3049		/* we have an inline extent but it didn't get marked up
3050		 * to date.  Error out
3051		 */
3052		if (block_start == EXTENT_MAP_INLINE) {
3053			SetPageError(page);
3054			unlock_extent(tree, cur, cur + iosize - 1);
3055			cur = cur + iosize;
3056			pg_offset += iosize;
3057			continue;
3058		}
3059
3060		pnr -= page->index;
3061		ret = submit_extent_page(rw, tree, NULL, page,
3062					 sector, disk_io_size, pg_offset,
3063					 bdev, bio, pnr,
3064					 end_bio_extent_readpage, mirror_num,
3065					 *bio_flags,
3066					 this_bio_flag,
3067					 force_bio_submit);
3068		if (!ret) {
3069			nr++;
3070			*bio_flags = this_bio_flag;
3071		} else {
3072			SetPageError(page);
3073			unlock_extent(tree, cur, cur + iosize - 1);
 
3074		}
3075		cur = cur + iosize;
3076		pg_offset += iosize;
3077	}
3078out:
3079	if (!nr) {
3080		if (!PageError(page))
3081			SetPageUptodate(page);
3082		unlock_page(page);
3083	}
3084	return 0;
3085}
3086
3087static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088					     struct page *pages[], int nr_pages,
3089					     u64 start, u64 end,
3090					     get_extent_t *get_extent,
3091					     struct extent_map **em_cached,
3092					     struct bio **bio, int mirror_num,
3093					     unsigned long *bio_flags, int rw,
3094					     u64 *prev_em_start)
3095{
3096	struct inode *inode;
3097	struct btrfs_ordered_extent *ordered;
3098	int index;
3099
3100	inode = pages[0]->mapping->host;
3101	while (1) {
3102		lock_extent(tree, start, end);
3103		ordered = btrfs_lookup_ordered_range(inode, start,
3104						     end - start + 1);
3105		if (!ordered)
3106			break;
3107		unlock_extent(tree, start, end);
3108		btrfs_start_ordered_extent(inode, ordered, 1);
3109		btrfs_put_ordered_extent(ordered);
3110	}
3111
3112	for (index = 0; index < nr_pages; index++) {
3113		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114			      mirror_num, bio_flags, rw, prev_em_start);
3115		put_page(pages[index]);
3116	}
3117}
3118
3119static void __extent_readpages(struct extent_io_tree *tree,
3120			       struct page *pages[],
3121			       int nr_pages, get_extent_t *get_extent,
3122			       struct extent_map **em_cached,
3123			       struct bio **bio, int mirror_num,
3124			       unsigned long *bio_flags, int rw,
3125			       u64 *prev_em_start)
3126{
3127	u64 start = 0;
3128	u64 end = 0;
3129	u64 page_start;
3130	int index;
3131	int first_index = 0;
3132
3133	for (index = 0; index < nr_pages; index++) {
3134		page_start = page_offset(pages[index]);
3135		if (!end) {
3136			start = page_start;
3137			end = start + PAGE_SIZE - 1;
3138			first_index = index;
3139		} else if (end + 1 == page_start) {
3140			end += PAGE_SIZE;
3141		} else {
3142			__do_contiguous_readpages(tree, &pages[first_index],
3143						  index - first_index, start,
3144						  end, get_extent, em_cached,
3145						  bio, mirror_num, bio_flags,
3146						  rw, prev_em_start);
3147			start = page_start;
3148			end = start + PAGE_SIZE - 1;
3149			first_index = index;
3150		}
3151	}
3152
3153	if (end)
3154		__do_contiguous_readpages(tree, &pages[first_index],
3155					  index - first_index, start,
3156					  end, get_extent, em_cached, bio,
3157					  mirror_num, bio_flags, rw,
3158					  prev_em_start);
3159}
3160
3161static int __extent_read_full_page(struct extent_io_tree *tree,
3162				   struct page *page,
3163				   get_extent_t *get_extent,
3164				   struct bio **bio, int mirror_num,
3165				   unsigned long *bio_flags, int rw)
 
3166{
3167	struct inode *inode = page->mapping->host;
3168	struct btrfs_ordered_extent *ordered;
3169	u64 start = page_offset(page);
3170	u64 end = start + PAGE_SIZE - 1;
3171	int ret;
3172
3173	while (1) {
3174		lock_extent(tree, start, end);
3175		ordered = btrfs_lookup_ordered_range(inode, start,
3176						PAGE_SIZE);
3177		if (!ordered)
3178			break;
3179		unlock_extent(tree, start, end);
3180		btrfs_start_ordered_extent(inode, ordered, 1);
3181		btrfs_put_ordered_extent(ordered);
3182	}
3183
3184	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185			    bio_flags, rw, NULL);
3186	return ret;
3187}
3188
3189int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190			    get_extent_t *get_extent, int mirror_num)
3191{
3192	struct bio *bio = NULL;
3193	unsigned long bio_flags = 0;
3194	int ret;
3195
3196	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3197				      &bio_flags, READ);
3198	if (bio)
3199		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3200	return ret;
3201}
3202
3203static noinline void update_nr_written(struct page *page,
3204				      struct writeback_control *wbc,
3205				      unsigned long nr_written)
3206{
3207	wbc->nr_to_write -= nr_written;
3208	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3209	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3210		page->mapping->writeback_index = page->index + nr_written;
3211}
3212
3213/*
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent).  In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
3222 */
3223static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224			      struct page *page, struct writeback_control *wbc,
3225			      struct extent_page_data *epd,
3226			      u64 delalloc_start,
3227			      unsigned long *nr_written)
3228{
3229	struct extent_io_tree *tree = epd->tree;
3230	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3231	u64 nr_delalloc;
3232	u64 delalloc_to_write = 0;
3233	u64 delalloc_end = 0;
3234	int ret;
3235	int page_started = 0;
3236
3237	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238		return 0;
3239
3240	while (delalloc_end < page_end) {
3241		nr_delalloc = find_lock_delalloc_range(inode, tree,
3242					       page,
3243					       &delalloc_start,
3244					       &delalloc_end,
3245					       BTRFS_MAX_EXTENT_SIZE);
3246		if (nr_delalloc == 0) {
3247			delalloc_start = delalloc_end + 1;
3248			continue;
3249		}
3250		ret = tree->ops->fill_delalloc(inode, page,
3251					       delalloc_start,
3252					       delalloc_end,
3253					       &page_started,
3254					       nr_written);
3255		/* File system has been set read-only */
3256		if (ret) {
3257			SetPageError(page);
3258			/* fill_delalloc should be return < 0 for error
3259			 * but just in case, we use > 0 here meaning the
3260			 * IO is started, so we don't want to return > 0
3261			 * unless things are going well.
3262			 */
3263			ret = ret < 0 ? ret : -EIO;
3264			goto done;
3265		}
3266		/*
3267		 * delalloc_end is already one less than the total length, so
3268		 * we don't subtract one from PAGE_SIZE
3269		 */
3270		delalloc_to_write += (delalloc_end - delalloc_start +
3271				      PAGE_SIZE) >> PAGE_SHIFT;
3272		delalloc_start = delalloc_end + 1;
3273	}
3274	if (wbc->nr_to_write < delalloc_to_write) {
3275		int thresh = 8192;
3276
3277		if (delalloc_to_write < thresh * 2)
3278			thresh = delalloc_to_write;
3279		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280					 thresh);
3281	}
3282
3283	/* did the fill delalloc function already unlock and start
3284	 * the IO?
3285	 */
3286	if (page_started) {
3287		/*
3288		 * we've unlocked the page, so we can't update
3289		 * the mapping's writeback index, just update
3290		 * nr_to_write.
3291		 */
3292		wbc->nr_to_write -= *nr_written;
3293		return 1;
3294	}
3295
3296	ret = 0;
3297
3298done:
3299	return ret;
3300}
3301
3302/*
3303 * helper for __extent_writepage.  This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311				 struct page *page,
3312				 struct writeback_control *wbc,
3313				 struct extent_page_data *epd,
3314				 loff_t i_size,
3315				 unsigned long nr_written,
3316				 int write_flags, int *nr_ret)
3317{
3318	struct extent_io_tree *tree = epd->tree;
3319	u64 start = page_offset(page);
3320	u64 page_end = start + PAGE_SIZE - 1;
3321	u64 end;
3322	u64 cur = start;
3323	u64 extent_offset;
3324	u64 block_start;
3325	u64 iosize;
3326	sector_t sector;
3327	struct extent_state *cached_state = NULL;
3328	struct extent_map *em;
3329	struct block_device *bdev;
3330	size_t pg_offset = 0;
3331	size_t blocksize;
3332	int ret = 0;
3333	int nr = 0;
3334	bool compressed;
3335
3336	if (tree->ops && tree->ops->writepage_start_hook) {
3337		ret = tree->ops->writepage_start_hook(page, start,
3338						      page_end);
3339		if (ret) {
3340			/* Fixup worker will requeue */
3341			if (ret == -EBUSY)
3342				wbc->pages_skipped++;
3343			else
3344				redirty_page_for_writepage(wbc, page);
3345
3346			update_nr_written(page, wbc, nr_written);
3347			unlock_page(page);
3348			ret = 1;
3349			goto done_unlocked;
3350		}
3351	}
3352
3353	/*
3354	 * we don't want to touch the inode after unlocking the page,
3355	 * so we update the mapping writeback index now
3356	 */
3357	update_nr_written(page, wbc, nr_written + 1);
3358
3359	end = page_end;
3360	if (i_size <= start) {
3361		if (tree->ops && tree->ops->writepage_end_io_hook)
3362			tree->ops->writepage_end_io_hook(page, start,
3363							 page_end, NULL, 1);
3364		goto done;
3365	}
3366
3367	blocksize = inode->i_sb->s_blocksize;
3368
3369	while (cur <= end) {
3370		u64 em_end;
 
 
3371		if (cur >= i_size) {
3372			if (tree->ops && tree->ops->writepage_end_io_hook)
3373				tree->ops->writepage_end_io_hook(page, cur,
3374							 page_end, NULL, 1);
3375			break;
3376		}
3377		em = epd->get_extent(inode, page, pg_offset, cur,
3378				     end - cur + 1, 1);
3379		if (IS_ERR_OR_NULL(em)) {
3380			SetPageError(page);
3381			ret = PTR_ERR_OR_ZERO(em);
3382			break;
3383		}
3384
3385		extent_offset = cur - em->start;
3386		em_end = extent_map_end(em);
3387		BUG_ON(em_end <= cur);
3388		BUG_ON(end < cur);
3389		iosize = min(em_end - cur, end - cur + 1);
3390		iosize = ALIGN(iosize, blocksize);
3391		sector = (em->block_start + extent_offset) >> 9;
3392		bdev = em->bdev;
3393		block_start = em->block_start;
3394		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3395		free_extent_map(em);
3396		em = NULL;
3397
3398		/*
3399		 * compressed and inline extents are written through other
3400		 * paths in the FS
3401		 */
3402		if (compressed || block_start == EXTENT_MAP_HOLE ||
3403		    block_start == EXTENT_MAP_INLINE) {
3404			/*
3405			 * end_io notification does not happen here for
3406			 * compressed extents
3407			 */
3408			if (!compressed && tree->ops &&
3409			    tree->ops->writepage_end_io_hook)
3410				tree->ops->writepage_end_io_hook(page, cur,
3411							 cur + iosize - 1,
3412							 NULL, 1);
3413			else if (compressed) {
3414				/* we don't want to end_page_writeback on
3415				 * a compressed extent.  this happens
3416				 * elsewhere
3417				 */
3418				nr++;
3419			}
3420
3421			cur += iosize;
3422			pg_offset += iosize;
3423			continue;
3424		}
3425
3426		if (tree->ops && tree->ops->writepage_io_hook) {
3427			ret = tree->ops->writepage_io_hook(page, cur,
3428						cur + iosize - 1);
3429		} else {
3430			ret = 0;
3431		}
 
 
 
 
 
 
3432		if (ret) {
3433			SetPageError(page);
3434		} else {
3435			unsigned long max_nr = (i_size >> PAGE_SHIFT) + 1;
3436
3437			set_range_writeback(tree, cur, cur + iosize - 1);
3438			if (!PageWriteback(page)) {
3439				btrfs_err(BTRFS_I(inode)->root->fs_info,
3440					   "page %lu not writeback, cur %llu end %llu",
3441				       page->index, cur, end);
3442			}
3443
3444			ret = submit_extent_page(write_flags, tree, wbc, page,
3445						 sector, iosize, pg_offset,
3446						 bdev, &epd->bio, max_nr,
3447						 end_bio_extent_writepage,
3448						 0, 0, 0, false);
3449			if (ret)
3450				SetPageError(page);
3451		}
 
3452		cur = cur + iosize;
3453		pg_offset += iosize;
3454		nr++;
3455	}
3456done:
3457	*nr_ret = nr;
3458
3459done_unlocked:
3460
3461	/* drop our reference on any cached states */
3462	free_extent_state(cached_state);
3463	return ret;
3464}
3465
3466/*
3467 * the writepage semantics are similar to regular writepage.  extent
3468 * records are inserted to lock ranges in the tree, and as dirty areas
3469 * are found, they are marked writeback.  Then the lock bits are removed
3470 * and the end_io handler clears the writeback ranges
3471 */
3472static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3473			      void *data)
3474{
3475	struct inode *inode = page->mapping->host;
3476	struct extent_page_data *epd = data;
3477	u64 start = page_offset(page);
3478	u64 page_end = start + PAGE_SIZE - 1;
3479	int ret;
3480	int nr = 0;
3481	size_t pg_offset = 0;
3482	loff_t i_size = i_size_read(inode);
3483	unsigned long end_index = i_size >> PAGE_SHIFT;
3484	int write_flags;
3485	unsigned long nr_written = 0;
3486
3487	if (wbc->sync_mode == WB_SYNC_ALL)
3488		write_flags = WRITE_SYNC;
3489	else
3490		write_flags = WRITE;
3491
3492	trace___extent_writepage(page, inode, wbc);
3493
3494	WARN_ON(!PageLocked(page));
3495
3496	ClearPageError(page);
3497
3498	pg_offset = i_size & (PAGE_SIZE - 1);
3499	if (page->index > end_index ||
3500	   (page->index == end_index && !pg_offset)) {
3501		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3502		unlock_page(page);
3503		return 0;
3504	}
3505
3506	if (page->index == end_index) {
3507		char *userpage;
3508
3509		userpage = kmap_atomic(page);
3510		memset(userpage + pg_offset, 0,
3511		       PAGE_SIZE - pg_offset);
3512		kunmap_atomic(userpage);
3513		flush_dcache_page(page);
3514	}
3515
3516	pg_offset = 0;
3517
3518	set_page_extent_mapped(page);
3519
3520	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3521	if (ret == 1)
3522		goto done_unlocked;
3523	if (ret)
3524		goto done;
3525
3526	ret = __extent_writepage_io(inode, page, wbc, epd,
3527				    i_size, nr_written, write_flags, &nr);
3528	if (ret == 1)
3529		goto done_unlocked;
3530
3531done:
3532	if (nr == 0) {
3533		/* make sure the mapping tag for page dirty gets cleared */
3534		set_page_writeback(page);
3535		end_page_writeback(page);
3536	}
3537	if (PageError(page)) {
3538		ret = ret < 0 ? ret : -EIO;
3539		end_extent_writepage(page, ret, start, page_end);
3540	}
3541	unlock_page(page);
3542	return ret;
3543
3544done_unlocked:
3545	return 0;
3546}
3547
3548void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3549{
3550	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3551		       TASK_UNINTERRUPTIBLE);
3552}
3553
3554static noinline_for_stack int
3555lock_extent_buffer_for_io(struct extent_buffer *eb,
3556			  struct btrfs_fs_info *fs_info,
3557			  struct extent_page_data *epd)
3558{
3559	unsigned long i, num_pages;
3560	int flush = 0;
3561	int ret = 0;
3562
3563	if (!btrfs_try_tree_write_lock(eb)) {
3564		flush = 1;
3565		flush_write_bio(epd);
3566		btrfs_tree_lock(eb);
3567	}
3568
3569	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3570		btrfs_tree_unlock(eb);
3571		if (!epd->sync_io)
3572			return 0;
3573		if (!flush) {
3574			flush_write_bio(epd);
3575			flush = 1;
3576		}
3577		while (1) {
3578			wait_on_extent_buffer_writeback(eb);
3579			btrfs_tree_lock(eb);
3580			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3581				break;
3582			btrfs_tree_unlock(eb);
3583		}
3584	}
3585
3586	/*
3587	 * We need to do this to prevent races in people who check if the eb is
3588	 * under IO since we can end up having no IO bits set for a short period
3589	 * of time.
3590	 */
3591	spin_lock(&eb->refs_lock);
3592	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3593		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3594		spin_unlock(&eb->refs_lock);
3595		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3596		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3597				     -eb->len,
3598				     fs_info->dirty_metadata_batch);
3599		ret = 1;
3600	} else {
3601		spin_unlock(&eb->refs_lock);
3602	}
3603
3604	btrfs_tree_unlock(eb);
3605
3606	if (!ret)
3607		return ret;
3608
3609	num_pages = num_extent_pages(eb->start, eb->len);
3610	for (i = 0; i < num_pages; i++) {
3611		struct page *p = eb->pages[i];
3612
3613		if (!trylock_page(p)) {
3614			if (!flush) {
3615				flush_write_bio(epd);
3616				flush = 1;
3617			}
3618			lock_page(p);
3619		}
3620	}
3621
3622	return ret;
3623}
3624
3625static void end_extent_buffer_writeback(struct extent_buffer *eb)
3626{
3627	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3628	smp_mb__after_atomic();
3629	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3630}
3631
3632static void set_btree_ioerr(struct page *page)
3633{
3634	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3635	struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3636
3637	SetPageError(page);
3638	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3639		return;
3640
3641	/*
3642	 * If writeback for a btree extent that doesn't belong to a log tree
3643	 * failed, increment the counter transaction->eb_write_errors.
3644	 * We do this because while the transaction is running and before it's
3645	 * committing (when we call filemap_fdata[write|wait]_range against
3646	 * the btree inode), we might have
3647	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3648	 * returns an error or an error happens during writeback, when we're
3649	 * committing the transaction we wouldn't know about it, since the pages
3650	 * can be no longer dirty nor marked anymore for writeback (if a
3651	 * subsequent modification to the extent buffer didn't happen before the
3652	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3653	 * able to find the pages tagged with SetPageError at transaction
3654	 * commit time. So if this happens we must abort the transaction,
3655	 * otherwise we commit a super block with btree roots that point to
3656	 * btree nodes/leafs whose content on disk is invalid - either garbage
3657	 * or the content of some node/leaf from a past generation that got
3658	 * cowed or deleted and is no longer valid.
3659	 *
3660	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3661	 * not be enough - we need to distinguish between log tree extents vs
3662	 * non-log tree extents, and the next filemap_fdatawait_range() call
3663	 * will catch and clear such errors in the mapping - and that call might
3664	 * be from a log sync and not from a transaction commit. Also, checking
3665	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3666	 * not done and would not be reliable - the eb might have been released
3667	 * from memory and reading it back again means that flag would not be
3668	 * set (since it's a runtime flag, not persisted on disk).
3669	 *
3670	 * Using the flags below in the btree inode also makes us achieve the
3671	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3672	 * writeback for all dirty pages and before filemap_fdatawait_range()
3673	 * is called, the writeback for all dirty pages had already finished
3674	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3675	 * filemap_fdatawait_range() would return success, as it could not know
3676	 * that writeback errors happened (the pages were no longer tagged for
3677	 * writeback).
3678	 */
3679	switch (eb->log_index) {
3680	case -1:
3681		set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3682		break;
3683	case 0:
3684		set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3685		break;
3686	case 1:
3687		set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3688		break;
3689	default:
3690		BUG(); /* unexpected, logic error */
3691	}
3692}
3693
3694static void end_bio_extent_buffer_writepage(struct bio *bio)
3695{
3696	struct bio_vec *bvec;
3697	struct extent_buffer *eb;
3698	int i, done;
3699
 
3700	bio_for_each_segment_all(bvec, bio, i) {
3701		struct page *page = bvec->bv_page;
3702
3703		eb = (struct extent_buffer *)page->private;
3704		BUG_ON(!eb);
3705		done = atomic_dec_and_test(&eb->io_pages);
3706
3707		if (bio->bi_error ||
3708		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3709			ClearPageUptodate(page);
3710			set_btree_ioerr(page);
3711		}
3712
3713		end_page_writeback(page);
3714
3715		if (!done)
3716			continue;
3717
3718		end_extent_buffer_writeback(eb);
3719	}
3720
3721	bio_put(bio);
3722}
3723
3724static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3725			struct btrfs_fs_info *fs_info,
3726			struct writeback_control *wbc,
3727			struct extent_page_data *epd)
3728{
3729	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3730	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3731	u64 offset = eb->start;
 
3732	unsigned long i, num_pages;
3733	unsigned long bio_flags = 0;
3734	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3735	int ret = 0;
3736
3737	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3738	num_pages = num_extent_pages(eb->start, eb->len);
3739	atomic_set(&eb->io_pages, num_pages);
3740	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3741		bio_flags = EXTENT_BIO_TREE_LOG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3742
3743	for (i = 0; i < num_pages; i++) {
3744		struct page *p = eb->pages[i];
3745
3746		clear_page_dirty_for_io(p);
3747		set_page_writeback(p);
3748		ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3749					 PAGE_SIZE, 0, bdev, &epd->bio,
3750					 -1, end_bio_extent_buffer_writepage,
3751					 0, epd->bio_flags, bio_flags, false);
3752		epd->bio_flags = bio_flags;
3753		if (ret) {
3754			set_btree_ioerr(p);
3755			end_page_writeback(p);
 
3756			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3757				end_extent_buffer_writeback(eb);
3758			ret = -EIO;
3759			break;
3760		}
3761		offset += PAGE_SIZE;
3762		update_nr_written(p, wbc, 1);
3763		unlock_page(p);
3764	}
3765
3766	if (unlikely(ret)) {
3767		for (; i < num_pages; i++) {
3768			struct page *p = eb->pages[i];
3769			clear_page_dirty_for_io(p);
3770			unlock_page(p);
3771		}
3772	}
3773
3774	return ret;
3775}
3776
3777int btree_write_cache_pages(struct address_space *mapping,
3778				   struct writeback_control *wbc)
3779{
3780	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3781	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3782	struct extent_buffer *eb, *prev_eb = NULL;
3783	struct extent_page_data epd = {
3784		.bio = NULL,
3785		.tree = tree,
3786		.extent_locked = 0,
3787		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3788		.bio_flags = 0,
3789	};
3790	int ret = 0;
3791	int done = 0;
3792	int nr_to_write_done = 0;
3793	struct pagevec pvec;
3794	int nr_pages;
3795	pgoff_t index;
3796	pgoff_t end;		/* Inclusive */
3797	int scanned = 0;
3798	int tag;
3799
3800	pagevec_init(&pvec, 0);
3801	if (wbc->range_cyclic) {
3802		index = mapping->writeback_index; /* Start from prev offset */
3803		end = -1;
3804	} else {
3805		index = wbc->range_start >> PAGE_SHIFT;
3806		end = wbc->range_end >> PAGE_SHIFT;
3807		scanned = 1;
3808	}
3809	if (wbc->sync_mode == WB_SYNC_ALL)
3810		tag = PAGECACHE_TAG_TOWRITE;
3811	else
3812		tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814	if (wbc->sync_mode == WB_SYNC_ALL)
3815		tag_pages_for_writeback(mapping, index, end);
3816	while (!done && !nr_to_write_done && (index <= end) &&
3817	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3818			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3819		unsigned i;
3820
3821		scanned = 1;
3822		for (i = 0; i < nr_pages; i++) {
3823			struct page *page = pvec.pages[i];
3824
3825			if (!PagePrivate(page))
3826				continue;
3827
3828			if (!wbc->range_cyclic && page->index > end) {
3829				done = 1;
3830				break;
3831			}
3832
3833			spin_lock(&mapping->private_lock);
3834			if (!PagePrivate(page)) {
3835				spin_unlock(&mapping->private_lock);
3836				continue;
3837			}
3838
3839			eb = (struct extent_buffer *)page->private;
3840
3841			/*
3842			 * Shouldn't happen and normally this would be a BUG_ON
3843			 * but no sense in crashing the users box for something
3844			 * we can survive anyway.
3845			 */
3846			if (WARN_ON(!eb)) {
3847				spin_unlock(&mapping->private_lock);
3848				continue;
3849			}
3850
3851			if (eb == prev_eb) {
3852				spin_unlock(&mapping->private_lock);
3853				continue;
3854			}
3855
3856			ret = atomic_inc_not_zero(&eb->refs);
3857			spin_unlock(&mapping->private_lock);
3858			if (!ret)
3859				continue;
3860
3861			prev_eb = eb;
3862			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3863			if (!ret) {
3864				free_extent_buffer(eb);
3865				continue;
3866			}
3867
3868			ret = write_one_eb(eb, fs_info, wbc, &epd);
3869			if (ret) {
3870				done = 1;
3871				free_extent_buffer(eb);
3872				break;
3873			}
3874			free_extent_buffer(eb);
3875
3876			/*
3877			 * the filesystem may choose to bump up nr_to_write.
3878			 * We have to make sure to honor the new nr_to_write
3879			 * at any time
3880			 */
3881			nr_to_write_done = wbc->nr_to_write <= 0;
3882		}
3883		pagevec_release(&pvec);
3884		cond_resched();
3885	}
3886	if (!scanned && !done) {
3887		/*
3888		 * We hit the last page and there is more work to be done: wrap
3889		 * back to the start of the file
3890		 */
3891		scanned = 1;
3892		index = 0;
3893		goto retry;
3894	}
3895	flush_write_bio(&epd);
3896	return ret;
3897}
3898
3899/**
3900 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3901 * @mapping: address space structure to write
3902 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3903 * @writepage: function called for each page
3904 * @data: data passed to writepage function
3905 *
3906 * If a page is already under I/O, write_cache_pages() skips it, even
3907 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3908 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3909 * and msync() need to guarantee that all the data which was dirty at the time
3910 * the call was made get new I/O started against them.  If wbc->sync_mode is
3911 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3912 * existing IO to complete.
3913 */
3914static int extent_write_cache_pages(struct extent_io_tree *tree,
3915			     struct address_space *mapping,
3916			     struct writeback_control *wbc,
3917			     writepage_t writepage, void *data,
3918			     void (*flush_fn)(void *))
3919{
3920	struct inode *inode = mapping->host;
3921	int ret = 0;
3922	int done = 0;
3923	int err = 0;
3924	int nr_to_write_done = 0;
3925	struct pagevec pvec;
3926	int nr_pages;
3927	pgoff_t index;
3928	pgoff_t end;		/* Inclusive */
 
 
3929	int scanned = 0;
3930	int tag;
3931
3932	/*
3933	 * We have to hold onto the inode so that ordered extents can do their
3934	 * work when the IO finishes.  The alternative to this is failing to add
3935	 * an ordered extent if the igrab() fails there and that is a huge pain
3936	 * to deal with, so instead just hold onto the inode throughout the
3937	 * writepages operation.  If it fails here we are freeing up the inode
3938	 * anyway and we'd rather not waste our time writing out stuff that is
3939	 * going to be truncated anyway.
3940	 */
3941	if (!igrab(inode))
3942		return 0;
3943
3944	pagevec_init(&pvec, 0);
3945	if (wbc->range_cyclic) {
3946		index = mapping->writeback_index; /* Start from prev offset */
3947		end = -1;
3948	} else {
3949		index = wbc->range_start >> PAGE_SHIFT;
3950		end = wbc->range_end >> PAGE_SHIFT;
 
 
3951		scanned = 1;
3952	}
3953	if (wbc->sync_mode == WB_SYNC_ALL)
3954		tag = PAGECACHE_TAG_TOWRITE;
3955	else
3956		tag = PAGECACHE_TAG_DIRTY;
3957retry:
3958	if (wbc->sync_mode == WB_SYNC_ALL)
3959		tag_pages_for_writeback(mapping, index, end);
 
3960	while (!done && !nr_to_write_done && (index <= end) &&
3961	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3962			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3963		unsigned i;
3964
3965		scanned = 1;
3966		for (i = 0; i < nr_pages; i++) {
3967			struct page *page = pvec.pages[i];
3968
 
3969			/*
3970			 * At this point we hold neither mapping->tree_lock nor
3971			 * lock on the page itself: the page may be truncated or
3972			 * invalidated (changing page->mapping to NULL), or even
3973			 * swizzled back from swapper_space to tmpfs file
3974			 * mapping
3975			 */
3976			if (!trylock_page(page)) {
3977				flush_fn(data);
3978				lock_page(page);
3979			}
3980
3981			if (unlikely(page->mapping != mapping)) {
3982				unlock_page(page);
3983				continue;
3984			}
3985
3986			if (!wbc->range_cyclic && page->index > end) {
3987				done = 1;
3988				unlock_page(page);
3989				continue;
3990			}
3991
3992			if (wbc->sync_mode != WB_SYNC_NONE) {
3993				if (PageWriteback(page))
3994					flush_fn(data);
3995				wait_on_page_writeback(page);
3996			}
3997
3998			if (PageWriteback(page) ||
3999			    !clear_page_dirty_for_io(page)) {
4000				unlock_page(page);
4001				continue;
4002			}
4003
4004			ret = (*writepage)(page, wbc, data);
4005
4006			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4007				unlock_page(page);
4008				ret = 0;
4009			}
4010			if (!err && ret < 0)
4011				err = ret;
 
 
 
 
 
 
 
 
 
 
 
 
4012
4013			/*
4014			 * the filesystem may choose to bump up nr_to_write.
4015			 * We have to make sure to honor the new nr_to_write
4016			 * at any time
4017			 */
4018			nr_to_write_done = wbc->nr_to_write <= 0;
4019		}
4020		pagevec_release(&pvec);
4021		cond_resched();
4022	}
4023	if (!scanned && !done && !err) {
4024		/*
4025		 * We hit the last page and there is more work to be done: wrap
4026		 * back to the start of the file
4027		 */
4028		scanned = 1;
4029		index = 0;
4030		goto retry;
4031	}
 
 
 
 
4032	btrfs_add_delayed_iput(inode);
4033	return err;
4034}
4035
4036static void flush_epd_write_bio(struct extent_page_data *epd)
4037{
4038	if (epd->bio) {
4039		int rw = WRITE;
4040		int ret;
4041
4042		if (epd->sync_io)
4043			rw = WRITE_SYNC;
4044
4045		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4046		BUG_ON(ret < 0); /* -ENOMEM */
4047		epd->bio = NULL;
4048	}
4049}
4050
4051static noinline void flush_write_bio(void *data)
4052{
4053	struct extent_page_data *epd = data;
4054	flush_epd_write_bio(epd);
4055}
4056
4057int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4058			  get_extent_t *get_extent,
4059			  struct writeback_control *wbc)
4060{
4061	int ret;
4062	struct extent_page_data epd = {
4063		.bio = NULL,
4064		.tree = tree,
4065		.get_extent = get_extent,
4066		.extent_locked = 0,
4067		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4068		.bio_flags = 0,
4069	};
4070
4071	ret = __extent_writepage(page, wbc, &epd);
4072
4073	flush_epd_write_bio(&epd);
4074	return ret;
4075}
4076
4077int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4078			      u64 start, u64 end, get_extent_t *get_extent,
4079			      int mode)
4080{
4081	int ret = 0;
4082	struct address_space *mapping = inode->i_mapping;
 
4083	struct page *page;
4084	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4085		PAGE_SHIFT;
4086
4087	struct extent_page_data epd = {
4088		.bio = NULL,
4089		.tree = tree,
4090		.get_extent = get_extent,
4091		.extent_locked = 1,
4092		.sync_io = mode == WB_SYNC_ALL,
4093		.bio_flags = 0,
4094	};
4095	struct writeback_control wbc_writepages = {
4096		.sync_mode	= mode,
4097		.nr_to_write	= nr_pages * 2,
4098		.range_start	= start,
4099		.range_end	= end + 1,
4100	};
4101
4102	while (start <= end) {
4103		page = find_get_page(mapping, start >> PAGE_SHIFT);
4104		if (clear_page_dirty_for_io(page))
4105			ret = __extent_writepage(page, &wbc_writepages, &epd);
4106		else {
4107			if (tree->ops && tree->ops->writepage_end_io_hook)
4108				tree->ops->writepage_end_io_hook(page, start,
4109						 start + PAGE_SIZE - 1,
4110						 NULL, 1);
4111			unlock_page(page);
4112		}
4113		put_page(page);
4114		start += PAGE_SIZE;
4115	}
4116
4117	flush_epd_write_bio(&epd);
4118	return ret;
4119}
4120
4121int extent_writepages(struct extent_io_tree *tree,
4122		      struct address_space *mapping,
4123		      get_extent_t *get_extent,
4124		      struct writeback_control *wbc)
4125{
4126	int ret = 0;
4127	struct extent_page_data epd = {
4128		.bio = NULL,
4129		.tree = tree,
4130		.get_extent = get_extent,
4131		.extent_locked = 0,
4132		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4133		.bio_flags = 0,
4134	};
4135
4136	ret = extent_write_cache_pages(tree, mapping, wbc,
4137				       __extent_writepage, &epd,
4138				       flush_write_bio);
4139	flush_epd_write_bio(&epd);
4140	return ret;
4141}
4142
4143int extent_readpages(struct extent_io_tree *tree,
4144		     struct address_space *mapping,
4145		     struct list_head *pages, unsigned nr_pages,
4146		     get_extent_t get_extent)
4147{
4148	struct bio *bio = NULL;
4149	unsigned page_idx;
4150	unsigned long bio_flags = 0;
4151	struct page *pagepool[16];
4152	struct page *page;
4153	struct extent_map *em_cached = NULL;
4154	int nr = 0;
4155	u64 prev_em_start = (u64)-1;
4156
4157	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4158		page = list_entry(pages->prev, struct page, lru);
4159
4160		prefetchw(&page->flags);
4161		list_del(&page->lru);
4162		if (add_to_page_cache_lru(page, mapping,
4163					page->index, GFP_NOFS)) {
 
4164			put_page(page);
4165			continue;
4166		}
4167
4168		pagepool[nr++] = page;
4169		if (nr < ARRAY_SIZE(pagepool))
4170			continue;
4171		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4172				   &bio, 0, &bio_flags, READ, &prev_em_start);
4173		nr = 0;
4174	}
4175	if (nr)
4176		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4177				   &bio, 0, &bio_flags, READ, &prev_em_start);
4178
4179	if (em_cached)
4180		free_extent_map(em_cached);
4181
4182	BUG_ON(!list_empty(pages));
4183	if (bio)
4184		return submit_one_bio(READ, bio, 0, bio_flags);
4185	return 0;
4186}
4187
4188/*
4189 * basic invalidatepage code, this waits on any locked or writeback
4190 * ranges corresponding to the page, and then deletes any extent state
4191 * records from the tree
4192 */
4193int extent_invalidatepage(struct extent_io_tree *tree,
4194			  struct page *page, unsigned long offset)
4195{
4196	struct extent_state *cached_state = NULL;
4197	u64 start = page_offset(page);
4198	u64 end = start + PAGE_SIZE - 1;
4199	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4200
4201	start += ALIGN(offset, blocksize);
4202	if (start > end)
4203		return 0;
4204
4205	lock_extent_bits(tree, start, end, &cached_state);
4206	wait_on_page_writeback(page);
4207	clear_extent_bit(tree, start, end,
4208			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4209			 EXTENT_DO_ACCOUNTING,
4210			 1, 1, &cached_state, GFP_NOFS);
4211	return 0;
4212}
4213
4214/*
4215 * a helper for releasepage, this tests for areas of the page that
4216 * are locked or under IO and drops the related state bits if it is safe
4217 * to drop the page.
4218 */
4219static int try_release_extent_state(struct extent_map_tree *map,
4220				    struct extent_io_tree *tree,
4221				    struct page *page, gfp_t mask)
4222{
4223	u64 start = page_offset(page);
4224	u64 end = start + PAGE_SIZE - 1;
4225	int ret = 1;
4226
4227	if (test_range_bit(tree, start, end,
4228			   EXTENT_IOBITS, 0, NULL))
4229		ret = 0;
4230	else {
4231		if ((mask & GFP_NOFS) == GFP_NOFS)
4232			mask = GFP_NOFS;
4233		/*
4234		 * at this point we can safely clear everything except the
4235		 * locked bit and the nodatasum bit
4236		 */
4237		ret = clear_extent_bit(tree, start, end,
4238				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4239				 0, 0, NULL, mask);
4240
4241		/* if clear_extent_bit failed for enomem reasons,
4242		 * we can't allow the release to continue.
4243		 */
4244		if (ret < 0)
4245			ret = 0;
4246		else
4247			ret = 1;
4248	}
4249	return ret;
4250}
4251
4252/*
4253 * a helper for releasepage.  As long as there are no locked extents
4254 * in the range corresponding to the page, both state records and extent
4255 * map records are removed
4256 */
4257int try_release_extent_mapping(struct extent_map_tree *map,
4258			       struct extent_io_tree *tree, struct page *page,
4259			       gfp_t mask)
4260{
4261	struct extent_map *em;
4262	u64 start = page_offset(page);
4263	u64 end = start + PAGE_SIZE - 1;
4264
4265	if (gfpflags_allow_blocking(mask) &&
4266	    page->mapping->host->i_size > SZ_16M) {
4267		u64 len;
4268		while (start <= end) {
4269			len = end - start + 1;
4270			write_lock(&map->lock);
4271			em = lookup_extent_mapping(map, start, len);
4272			if (!em) {
4273				write_unlock(&map->lock);
4274				break;
4275			}
4276			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4277			    em->start != start) {
4278				write_unlock(&map->lock);
4279				free_extent_map(em);
4280				break;
4281			}
4282			if (!test_range_bit(tree, em->start,
4283					    extent_map_end(em) - 1,
4284					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4285					    0, NULL)) {
4286				remove_extent_mapping(map, em);
4287				/* once for the rb tree */
4288				free_extent_map(em);
4289			}
4290			start = extent_map_end(em);
4291			write_unlock(&map->lock);
4292
4293			/* once for us */
4294			free_extent_map(em);
4295		}
4296	}
4297	return try_release_extent_state(map, tree, page, mask);
4298}
4299
4300/*
4301 * helper function for fiemap, which doesn't want to see any holes.
4302 * This maps until we find something past 'last'
4303 */
4304static struct extent_map *get_extent_skip_holes(struct inode *inode,
4305						u64 offset,
4306						u64 last,
4307						get_extent_t *get_extent)
4308{
4309	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4310	struct extent_map *em;
4311	u64 len;
4312
4313	if (offset >= last)
4314		return NULL;
4315
4316	while (1) {
4317		len = last - offset;
4318		if (len == 0)
4319			break;
4320		len = ALIGN(len, sectorsize);
4321		em = get_extent(inode, NULL, 0, offset, len, 0);
 
4322		if (IS_ERR_OR_NULL(em))
4323			return em;
4324
4325		/* if this isn't a hole return it */
4326		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4327		    em->block_start != EXTENT_MAP_HOLE) {
4328			return em;
4329		}
4330
4331		/* this is a hole, advance to the next extent */
4332		offset = extent_map_end(em);
4333		free_extent_map(em);
4334		if (offset >= last)
4335			break;
4336	}
4337	return NULL;
4338}
4339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4340int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4341		__u64 start, __u64 len, get_extent_t *get_extent)
4342{
4343	int ret = 0;
4344	u64 off = start;
4345	u64 max = start + len;
4346	u32 flags = 0;
4347	u32 found_type;
4348	u64 last;
4349	u64 last_for_get_extent = 0;
4350	u64 disko = 0;
4351	u64 isize = i_size_read(inode);
4352	struct btrfs_key found_key;
4353	struct extent_map *em = NULL;
4354	struct extent_state *cached_state = NULL;
4355	struct btrfs_path *path;
4356	struct btrfs_root *root = BTRFS_I(inode)->root;
 
4357	int end = 0;
4358	u64 em_start = 0;
4359	u64 em_len = 0;
4360	u64 em_end = 0;
4361
4362	if (len == 0)
4363		return -EINVAL;
4364
4365	path = btrfs_alloc_path();
4366	if (!path)
4367		return -ENOMEM;
4368	path->leave_spinning = 1;
4369
4370	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4371	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4372
4373	/*
4374	 * lookup the last file extent.  We're not using i_size here
4375	 * because there might be preallocation past i_size
4376	 */
4377	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4378				       0);
4379	if (ret < 0) {
4380		btrfs_free_path(path);
4381		return ret;
 
 
 
 
4382	}
4383	WARN_ON(!ret);
4384	path->slots[0]--;
4385	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4386	found_type = found_key.type;
4387
4388	/* No extents, but there might be delalloc bits */
4389	if (found_key.objectid != btrfs_ino(inode) ||
4390	    found_type != BTRFS_EXTENT_DATA_KEY) {
4391		/* have to trust i_size as the end */
4392		last = (u64)-1;
4393		last_for_get_extent = isize;
4394	} else {
4395		/*
4396		 * remember the start of the last extent.  There are a
4397		 * bunch of different factors that go into the length of the
4398		 * extent, so its much less complex to remember where it started
4399		 */
4400		last = found_key.offset;
4401		last_for_get_extent = last + 1;
4402	}
4403	btrfs_release_path(path);
4404
4405	/*
4406	 * we might have some extents allocated but more delalloc past those
4407	 * extents.  so, we trust isize unless the start of the last extent is
4408	 * beyond isize
4409	 */
4410	if (last < isize) {
4411		last = (u64)-1;
4412		last_for_get_extent = isize;
4413	}
4414
4415	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4416			 &cached_state);
4417
4418	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4419				   get_extent);
4420	if (!em)
4421		goto out;
4422	if (IS_ERR(em)) {
4423		ret = PTR_ERR(em);
4424		goto out;
4425	}
4426
4427	while (!end) {
4428		u64 offset_in_extent = 0;
4429
4430		/* break if the extent we found is outside the range */
4431		if (em->start >= max || extent_map_end(em) < off)
4432			break;
4433
4434		/*
4435		 * get_extent may return an extent that starts before our
4436		 * requested range.  We have to make sure the ranges
4437		 * we return to fiemap always move forward and don't
4438		 * overlap, so adjust the offsets here
4439		 */
4440		em_start = max(em->start, off);
4441
4442		/*
4443		 * record the offset from the start of the extent
4444		 * for adjusting the disk offset below.  Only do this if the
4445		 * extent isn't compressed since our in ram offset may be past
4446		 * what we have actually allocated on disk.
4447		 */
4448		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4449			offset_in_extent = em_start - em->start;
4450		em_end = extent_map_end(em);
4451		em_len = em_end - em_start;
4452		disko = 0;
4453		flags = 0;
4454
4455		/*
4456		 * bump off for our next call to get_extent
4457		 */
4458		off = extent_map_end(em);
4459		if (off >= max)
4460			end = 1;
4461
4462		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4463			end = 1;
4464			flags |= FIEMAP_EXTENT_LAST;
4465		} else if (em->block_start == EXTENT_MAP_INLINE) {
4466			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4467				  FIEMAP_EXTENT_NOT_ALIGNED);
4468		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4469			flags |= (FIEMAP_EXTENT_DELALLOC |
4470				  FIEMAP_EXTENT_UNKNOWN);
4471		} else if (fieinfo->fi_extents_max) {
4472			u64 bytenr = em->block_start -
4473				(em->start - em->orig_start);
4474
4475			disko = em->block_start + offset_in_extent;
4476
4477			/*
4478			 * As btrfs supports shared space, this information
4479			 * can be exported to userspace tools via
4480			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4481			 * then we're just getting a count and we can skip the
4482			 * lookup stuff.
4483			 */
4484			ret = btrfs_check_shared(NULL, root->fs_info,
4485						 root->objectid,
4486						 btrfs_ino(inode), bytenr);
4487			if (ret < 0)
4488				goto out_free;
4489			if (ret)
4490				flags |= FIEMAP_EXTENT_SHARED;
4491			ret = 0;
4492		}
4493		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4494			flags |= FIEMAP_EXTENT_ENCODED;
4495		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4496			flags |= FIEMAP_EXTENT_UNWRITTEN;
4497
4498		free_extent_map(em);
4499		em = NULL;
4500		if ((em_start >= last) || em_len == (u64)-1 ||
4501		   (last == (u64)-1 && isize <= em_end)) {
4502			flags |= FIEMAP_EXTENT_LAST;
4503			end = 1;
4504		}
4505
4506		/* now scan forward to see if this is really the last extent. */
4507		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4508					   get_extent);
4509		if (IS_ERR(em)) {
4510			ret = PTR_ERR(em);
4511			goto out;
4512		}
4513		if (!em) {
4514			flags |= FIEMAP_EXTENT_LAST;
4515			end = 1;
4516		}
4517		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4518					      em_len, flags);
4519		if (ret) {
4520			if (ret == 1)
4521				ret = 0;
4522			goto out_free;
4523		}
4524	}
4525out_free:
 
 
4526	free_extent_map(em);
4527out:
4528	btrfs_free_path(path);
4529	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4530			     &cached_state, GFP_NOFS);
4531	return ret;
4532}
4533
4534static void __free_extent_buffer(struct extent_buffer *eb)
4535{
4536	btrfs_leak_debug_del(&eb->leak_list);
4537	kmem_cache_free(extent_buffer_cache, eb);
4538}
4539
4540int extent_buffer_under_io(struct extent_buffer *eb)
4541{
4542	return (atomic_read(&eb->io_pages) ||
4543		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4544		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4545}
4546
4547/*
4548 * Helper for releasing extent buffer page.
4549 */
4550static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4551{
4552	unsigned long index;
4553	struct page *page;
4554	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4555
4556	BUG_ON(extent_buffer_under_io(eb));
4557
4558	index = num_extent_pages(eb->start, eb->len);
4559	if (index == 0)
4560		return;
4561
4562	do {
4563		index--;
4564		page = eb->pages[index];
4565		if (!page)
4566			continue;
4567		if (mapped)
4568			spin_lock(&page->mapping->private_lock);
4569		/*
4570		 * We do this since we'll remove the pages after we've
4571		 * removed the eb from the radix tree, so we could race
4572		 * and have this page now attached to the new eb.  So
4573		 * only clear page_private if it's still connected to
4574		 * this eb.
4575		 */
4576		if (PagePrivate(page) &&
4577		    page->private == (unsigned long)eb) {
4578			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4579			BUG_ON(PageDirty(page));
4580			BUG_ON(PageWriteback(page));
4581			/*
4582			 * We need to make sure we haven't be attached
4583			 * to a new eb.
4584			 */
4585			ClearPagePrivate(page);
4586			set_page_private(page, 0);
4587			/* One for the page private */
4588			put_page(page);
4589		}
4590
4591		if (mapped)
4592			spin_unlock(&page->mapping->private_lock);
4593
4594		/* One for when we alloced the page */
4595		put_page(page);
4596	} while (index != 0);
4597}
4598
4599/*
4600 * Helper for releasing the extent buffer.
4601 */
4602static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4603{
4604	btrfs_release_extent_buffer_page(eb);
4605	__free_extent_buffer(eb);
4606}
4607
4608static struct extent_buffer *
4609__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4610		      unsigned long len)
4611{
4612	struct extent_buffer *eb = NULL;
4613
4614	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4615	eb->start = start;
4616	eb->len = len;
4617	eb->fs_info = fs_info;
4618	eb->bflags = 0;
4619	rwlock_init(&eb->lock);
4620	atomic_set(&eb->write_locks, 0);
4621	atomic_set(&eb->read_locks, 0);
4622	atomic_set(&eb->blocking_readers, 0);
4623	atomic_set(&eb->blocking_writers, 0);
4624	atomic_set(&eb->spinning_readers, 0);
4625	atomic_set(&eb->spinning_writers, 0);
4626	eb->lock_nested = 0;
4627	init_waitqueue_head(&eb->write_lock_wq);
4628	init_waitqueue_head(&eb->read_lock_wq);
4629
4630	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4631
4632	spin_lock_init(&eb->refs_lock);
4633	atomic_set(&eb->refs, 1);
4634	atomic_set(&eb->io_pages, 0);
4635
4636	/*
4637	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4638	 */
4639	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4640		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4641	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4642
4643	return eb;
4644}
4645
4646struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4647{
4648	unsigned long i;
4649	struct page *p;
4650	struct extent_buffer *new;
4651	unsigned long num_pages = num_extent_pages(src->start, src->len);
4652
4653	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4654	if (new == NULL)
4655		return NULL;
4656
4657	for (i = 0; i < num_pages; i++) {
4658		p = alloc_page(GFP_NOFS);
4659		if (!p) {
4660			btrfs_release_extent_buffer(new);
4661			return NULL;
4662		}
4663		attach_extent_buffer_page(new, p);
4664		WARN_ON(PageDirty(p));
4665		SetPageUptodate(p);
4666		new->pages[i] = p;
 
4667	}
4668
4669	copy_extent_buffer(new, src, 0, 0, src->len);
4670	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4671	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4672
4673	return new;
4674}
4675
4676struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4677						  u64 start, unsigned long len)
4678{
4679	struct extent_buffer *eb;
4680	unsigned long num_pages;
4681	unsigned long i;
4682
4683	num_pages = num_extent_pages(start, len);
4684
4685	eb = __alloc_extent_buffer(fs_info, start, len);
4686	if (!eb)
4687		return NULL;
4688
4689	for (i = 0; i < num_pages; i++) {
4690		eb->pages[i] = alloc_page(GFP_NOFS);
4691		if (!eb->pages[i])
4692			goto err;
4693	}
4694	set_extent_buffer_uptodate(eb);
4695	btrfs_set_header_nritems(eb, 0);
4696	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4697
4698	return eb;
4699err:
4700	for (; i > 0; i--)
4701		__free_page(eb->pages[i - 1]);
4702	__free_extent_buffer(eb);
4703	return NULL;
4704}
4705
4706struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4707						u64 start)
4708{
4709	unsigned long len;
4710
4711	if (!fs_info) {
4712		/*
4713		 * Called only from tests that don't always have a fs_info
4714		 * available, but we know that nodesize is 4096
4715		 */
4716		len = 4096;
4717	} else {
4718		len = fs_info->tree_root->nodesize;
4719	}
4720
4721	return __alloc_dummy_extent_buffer(fs_info, start, len);
4722}
4723
4724static void check_buffer_tree_ref(struct extent_buffer *eb)
4725{
4726	int refs;
4727	/* the ref bit is tricky.  We have to make sure it is set
4728	 * if we have the buffer dirty.   Otherwise the
4729	 * code to free a buffer can end up dropping a dirty
4730	 * page
4731	 *
4732	 * Once the ref bit is set, it won't go away while the
4733	 * buffer is dirty or in writeback, and it also won't
4734	 * go away while we have the reference count on the
4735	 * eb bumped.
4736	 *
4737	 * We can't just set the ref bit without bumping the
4738	 * ref on the eb because free_extent_buffer might
4739	 * see the ref bit and try to clear it.  If this happens
4740	 * free_extent_buffer might end up dropping our original
4741	 * ref by mistake and freeing the page before we are able
4742	 * to add one more ref.
4743	 *
4744	 * So bump the ref count first, then set the bit.  If someone
4745	 * beat us to it, drop the ref we added.
4746	 */
4747	refs = atomic_read(&eb->refs);
4748	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4749		return;
4750
4751	spin_lock(&eb->refs_lock);
4752	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4753		atomic_inc(&eb->refs);
4754	spin_unlock(&eb->refs_lock);
4755}
4756
4757static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4758		struct page *accessed)
4759{
4760	unsigned long num_pages, i;
4761
4762	check_buffer_tree_ref(eb);
4763
4764	num_pages = num_extent_pages(eb->start, eb->len);
4765	for (i = 0; i < num_pages; i++) {
4766		struct page *p = eb->pages[i];
4767
4768		if (p != accessed)
4769			mark_page_accessed(p);
4770	}
4771}
4772
4773struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4774					 u64 start)
4775{
4776	struct extent_buffer *eb;
4777
4778	rcu_read_lock();
4779	eb = radix_tree_lookup(&fs_info->buffer_radix,
4780			       start >> PAGE_SHIFT);
4781	if (eb && atomic_inc_not_zero(&eb->refs)) {
4782		rcu_read_unlock();
4783		/*
4784		 * Lock our eb's refs_lock to avoid races with
4785		 * free_extent_buffer. When we get our eb it might be flagged
4786		 * with EXTENT_BUFFER_STALE and another task running
4787		 * free_extent_buffer might have seen that flag set,
4788		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4789		 * writeback flags not set) and it's still in the tree (flag
4790		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4791		 * of decrementing the extent buffer's reference count twice.
4792		 * So here we could race and increment the eb's reference count,
4793		 * clear its stale flag, mark it as dirty and drop our reference
4794		 * before the other task finishes executing free_extent_buffer,
4795		 * which would later result in an attempt to free an extent
4796		 * buffer that is dirty.
4797		 */
4798		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4799			spin_lock(&eb->refs_lock);
4800			spin_unlock(&eb->refs_lock);
4801		}
4802		mark_extent_buffer_accessed(eb, NULL);
4803		return eb;
4804	}
4805	rcu_read_unlock();
4806
4807	return NULL;
4808}
4809
4810#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4811struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4812					       u64 start)
4813{
4814	struct extent_buffer *eb, *exists = NULL;
4815	int ret;
4816
4817	eb = find_extent_buffer(fs_info, start);
4818	if (eb)
4819		return eb;
4820	eb = alloc_dummy_extent_buffer(fs_info, start);
4821	if (!eb)
4822		return NULL;
4823	eb->fs_info = fs_info;
4824again:
4825	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4826	if (ret)
4827		goto free_eb;
4828	spin_lock(&fs_info->buffer_lock);
4829	ret = radix_tree_insert(&fs_info->buffer_radix,
4830				start >> PAGE_SHIFT, eb);
4831	spin_unlock(&fs_info->buffer_lock);
4832	radix_tree_preload_end();
4833	if (ret == -EEXIST) {
4834		exists = find_extent_buffer(fs_info, start);
4835		if (exists)
4836			goto free_eb;
4837		else
4838			goto again;
4839	}
4840	check_buffer_tree_ref(eb);
4841	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4842
4843	/*
4844	 * We will free dummy extent buffer's if they come into
4845	 * free_extent_buffer with a ref count of 2, but if we are using this we
4846	 * want the buffers to stay in memory until we're done with them, so
4847	 * bump the ref count again.
4848	 */
4849	atomic_inc(&eb->refs);
4850	return eb;
4851free_eb:
4852	btrfs_release_extent_buffer(eb);
4853	return exists;
4854}
4855#endif
4856
4857struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4858					  u64 start)
4859{
4860	unsigned long len = fs_info->tree_root->nodesize;
4861	unsigned long num_pages = num_extent_pages(start, len);
4862	unsigned long i;
4863	unsigned long index = start >> PAGE_SHIFT;
4864	struct extent_buffer *eb;
4865	struct extent_buffer *exists = NULL;
4866	struct page *p;
4867	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4868	int uptodate = 1;
4869	int ret;
4870
 
 
 
 
 
4871	eb = find_extent_buffer(fs_info, start);
4872	if (eb)
4873		return eb;
4874
4875	eb = __alloc_extent_buffer(fs_info, start, len);
4876	if (!eb)
4877		return NULL;
4878
4879	for (i = 0; i < num_pages; i++, index++) {
4880		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4881		if (!p)
 
4882			goto free_eb;
 
4883
4884		spin_lock(&mapping->private_lock);
4885		if (PagePrivate(p)) {
4886			/*
4887			 * We could have already allocated an eb for this page
4888			 * and attached one so lets see if we can get a ref on
4889			 * the existing eb, and if we can we know it's good and
4890			 * we can just return that one, else we know we can just
4891			 * overwrite page->private.
4892			 */
4893			exists = (struct extent_buffer *)p->private;
4894			if (atomic_inc_not_zero(&exists->refs)) {
4895				spin_unlock(&mapping->private_lock);
4896				unlock_page(p);
4897				put_page(p);
4898				mark_extent_buffer_accessed(exists, p);
4899				goto free_eb;
4900			}
4901			exists = NULL;
4902
4903			/*
4904			 * Do this so attach doesn't complain and we need to
4905			 * drop the ref the old guy had.
4906			 */
4907			ClearPagePrivate(p);
4908			WARN_ON(PageDirty(p));
4909			put_page(p);
4910		}
4911		attach_extent_buffer_page(eb, p);
4912		spin_unlock(&mapping->private_lock);
4913		WARN_ON(PageDirty(p));
4914		eb->pages[i] = p;
4915		if (!PageUptodate(p))
4916			uptodate = 0;
4917
4918		/*
4919		 * see below about how we avoid a nasty race with release page
4920		 * and why we unlock later
4921		 */
4922	}
4923	if (uptodate)
4924		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4925again:
4926	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4927	if (ret)
 
4928		goto free_eb;
 
4929
4930	spin_lock(&fs_info->buffer_lock);
4931	ret = radix_tree_insert(&fs_info->buffer_radix,
4932				start >> PAGE_SHIFT, eb);
4933	spin_unlock(&fs_info->buffer_lock);
4934	radix_tree_preload_end();
4935	if (ret == -EEXIST) {
4936		exists = find_extent_buffer(fs_info, start);
4937		if (exists)
4938			goto free_eb;
4939		else
4940			goto again;
4941	}
4942	/* add one reference for the tree */
4943	check_buffer_tree_ref(eb);
4944	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4945
4946	/*
4947	 * there is a race where release page may have
4948	 * tried to find this extent buffer in the radix
4949	 * but failed.  It will tell the VM it is safe to
4950	 * reclaim the, and it will clear the page private bit.
4951	 * We must make sure to set the page private bit properly
4952	 * after the extent buffer is in the radix tree so
4953	 * it doesn't get lost
4954	 */
4955	SetPageChecked(eb->pages[0]);
4956	for (i = 1; i < num_pages; i++) {
4957		p = eb->pages[i];
4958		ClearPageChecked(p);
4959		unlock_page(p);
4960	}
4961	unlock_page(eb->pages[0]);
4962	return eb;
4963
4964free_eb:
4965	WARN_ON(!atomic_dec_and_test(&eb->refs));
4966	for (i = 0; i < num_pages; i++) {
4967		if (eb->pages[i])
4968			unlock_page(eb->pages[i]);
4969	}
4970
4971	btrfs_release_extent_buffer(eb);
4972	return exists;
4973}
4974
4975static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4976{
4977	struct extent_buffer *eb =
4978			container_of(head, struct extent_buffer, rcu_head);
4979
4980	__free_extent_buffer(eb);
4981}
4982
4983/* Expects to have eb->eb_lock already held */
4984static int release_extent_buffer(struct extent_buffer *eb)
4985{
4986	WARN_ON(atomic_read(&eb->refs) == 0);
4987	if (atomic_dec_and_test(&eb->refs)) {
4988		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4989			struct btrfs_fs_info *fs_info = eb->fs_info;
4990
4991			spin_unlock(&eb->refs_lock);
4992
4993			spin_lock(&fs_info->buffer_lock);
4994			radix_tree_delete(&fs_info->buffer_radix,
4995					  eb->start >> PAGE_SHIFT);
4996			spin_unlock(&fs_info->buffer_lock);
4997		} else {
4998			spin_unlock(&eb->refs_lock);
4999		}
5000
5001		/* Should be safe to release our pages at this point */
5002		btrfs_release_extent_buffer_page(eb);
5003#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5004		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5005			__free_extent_buffer(eb);
5006			return 1;
5007		}
5008#endif
5009		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5010		return 1;
5011	}
5012	spin_unlock(&eb->refs_lock);
5013
5014	return 0;
5015}
5016
5017void free_extent_buffer(struct extent_buffer *eb)
5018{
5019	int refs;
5020	int old;
5021	if (!eb)
5022		return;
5023
5024	while (1) {
5025		refs = atomic_read(&eb->refs);
5026		if (refs <= 3)
5027			break;
5028		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5029		if (old == refs)
5030			return;
5031	}
5032
5033	spin_lock(&eb->refs_lock);
5034	if (atomic_read(&eb->refs) == 2 &&
5035	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5036		atomic_dec(&eb->refs);
5037
5038	if (atomic_read(&eb->refs) == 2 &&
5039	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5040	    !extent_buffer_under_io(eb) &&
5041	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5042		atomic_dec(&eb->refs);
5043
5044	/*
5045	 * I know this is terrible, but it's temporary until we stop tracking
5046	 * the uptodate bits and such for the extent buffers.
5047	 */
5048	release_extent_buffer(eb);
5049}
5050
5051void free_extent_buffer_stale(struct extent_buffer *eb)
5052{
5053	if (!eb)
5054		return;
5055
5056	spin_lock(&eb->refs_lock);
5057	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5058
5059	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5060	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5061		atomic_dec(&eb->refs);
5062	release_extent_buffer(eb);
5063}
5064
5065void clear_extent_buffer_dirty(struct extent_buffer *eb)
5066{
5067	unsigned long i;
5068	unsigned long num_pages;
5069	struct page *page;
5070
5071	num_pages = num_extent_pages(eb->start, eb->len);
5072
5073	for (i = 0; i < num_pages; i++) {
5074		page = eb->pages[i];
5075		if (!PageDirty(page))
5076			continue;
5077
5078		lock_page(page);
5079		WARN_ON(!PagePrivate(page));
5080
5081		clear_page_dirty_for_io(page);
5082		spin_lock_irq(&page->mapping->tree_lock);
5083		if (!PageDirty(page)) {
5084			radix_tree_tag_clear(&page->mapping->page_tree,
5085						page_index(page),
5086						PAGECACHE_TAG_DIRTY);
5087		}
5088		spin_unlock_irq(&page->mapping->tree_lock);
5089		ClearPageError(page);
5090		unlock_page(page);
5091	}
5092	WARN_ON(atomic_read(&eb->refs) == 0);
5093}
5094
5095int set_extent_buffer_dirty(struct extent_buffer *eb)
5096{
5097	unsigned long i;
5098	unsigned long num_pages;
5099	int was_dirty = 0;
5100
5101	check_buffer_tree_ref(eb);
5102
5103	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5104
5105	num_pages = num_extent_pages(eb->start, eb->len);
5106	WARN_ON(atomic_read(&eb->refs) == 0);
5107	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5108
5109	for (i = 0; i < num_pages; i++)
5110		set_page_dirty(eb->pages[i]);
5111	return was_dirty;
5112}
5113
5114void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5115{
5116	unsigned long i;
5117	struct page *page;
5118	unsigned long num_pages;
5119
5120	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5121	num_pages = num_extent_pages(eb->start, eb->len);
5122	for (i = 0; i < num_pages; i++) {
5123		page = eb->pages[i];
5124		if (page)
5125			ClearPageUptodate(page);
5126	}
5127}
5128
5129void set_extent_buffer_uptodate(struct extent_buffer *eb)
5130{
5131	unsigned long i;
5132	struct page *page;
5133	unsigned long num_pages;
5134
5135	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5136	num_pages = num_extent_pages(eb->start, eb->len);
5137	for (i = 0; i < num_pages; i++) {
5138		page = eb->pages[i];
5139		SetPageUptodate(page);
5140	}
5141}
5142
5143int extent_buffer_uptodate(struct extent_buffer *eb)
5144{
5145	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5146}
5147
5148int read_extent_buffer_pages(struct extent_io_tree *tree,
5149			     struct extent_buffer *eb, u64 start, int wait,
5150			     get_extent_t *get_extent, int mirror_num)
5151{
5152	unsigned long i;
5153	unsigned long start_i;
5154	struct page *page;
5155	int err;
5156	int ret = 0;
5157	int locked_pages = 0;
5158	int all_uptodate = 1;
5159	unsigned long num_pages;
5160	unsigned long num_reads = 0;
5161	struct bio *bio = NULL;
5162	unsigned long bio_flags = 0;
5163
5164	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5165		return 0;
5166
5167	if (start) {
5168		WARN_ON(start < eb->start);
5169		start_i = (start >> PAGE_SHIFT) -
5170			(eb->start >> PAGE_SHIFT);
5171	} else {
5172		start_i = 0;
5173	}
5174
5175	num_pages = num_extent_pages(eb->start, eb->len);
5176	for (i = start_i; i < num_pages; i++) {
5177		page = eb->pages[i];
5178		if (wait == WAIT_NONE) {
5179			if (!trylock_page(page))
5180				goto unlock_exit;
5181		} else {
5182			lock_page(page);
5183		}
5184		locked_pages++;
 
 
 
 
 
 
 
 
5185		if (!PageUptodate(page)) {
5186			num_reads++;
5187			all_uptodate = 0;
5188		}
5189	}
 
5190	if (all_uptodate) {
5191		if (start_i == 0)
5192			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5193		goto unlock_exit;
5194	}
5195
5196	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5197	eb->read_mirror = 0;
5198	atomic_set(&eb->io_pages, num_reads);
5199	for (i = start_i; i < num_pages; i++) {
5200		page = eb->pages[i];
 
5201		if (!PageUptodate(page)) {
 
 
 
 
 
 
5202			ClearPageError(page);
5203			err = __extent_read_full_page(tree, page,
5204						      get_extent, &bio,
5205						      mirror_num, &bio_flags,
5206						      READ | REQ_META);
5207			if (err)
5208				ret = err;
 
 
 
 
 
 
 
 
 
 
5209		} else {
5210			unlock_page(page);
5211		}
5212	}
5213
5214	if (bio) {
5215		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5216				     bio_flags);
5217		if (err)
5218			return err;
5219	}
5220
5221	if (ret || wait != WAIT_COMPLETE)
5222		return ret;
5223
5224	for (i = start_i; i < num_pages; i++) {
5225		page = eb->pages[i];
5226		wait_on_page_locked(page);
5227		if (!PageUptodate(page))
5228			ret = -EIO;
5229	}
5230
5231	return ret;
5232
5233unlock_exit:
5234	i = start_i;
5235	while (locked_pages > 0) {
5236		page = eb->pages[i];
5237		i++;
5238		unlock_page(page);
5239		locked_pages--;
 
 
5240	}
5241	return ret;
5242}
5243
5244void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5245			unsigned long start,
5246			unsigned long len)
5247{
5248	size_t cur;
5249	size_t offset;
5250	struct page *page;
5251	char *kaddr;
5252	char *dst = (char *)dstv;
5253	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5254	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5255
5256	WARN_ON(start > eb->len);
5257	WARN_ON(start + len > eb->start + eb->len);
 
 
 
 
5258
5259	offset = (start_offset + start) & (PAGE_SIZE - 1);
5260
5261	while (len > 0) {
5262		page = eb->pages[i];
5263
5264		cur = min(len, (PAGE_SIZE - offset));
5265		kaddr = page_address(page);
5266		memcpy(dst, kaddr + offset, cur);
5267
5268		dst += cur;
5269		len -= cur;
5270		offset = 0;
5271		i++;
5272	}
5273}
5274
5275int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5276			unsigned long start,
5277			unsigned long len)
5278{
5279	size_t cur;
5280	size_t offset;
5281	struct page *page;
5282	char *kaddr;
5283	char __user *dst = (char __user *)dstv;
5284	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5285	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5286	int ret = 0;
5287
5288	WARN_ON(start > eb->len);
5289	WARN_ON(start + len > eb->start + eb->len);
5290
5291	offset = (start_offset + start) & (PAGE_SIZE - 1);
5292
5293	while (len > 0) {
5294		page = eb->pages[i];
5295
5296		cur = min(len, (PAGE_SIZE - offset));
5297		kaddr = page_address(page);
5298		if (copy_to_user(dst, kaddr + offset, cur)) {
5299			ret = -EFAULT;
5300			break;
5301		}
5302
5303		dst += cur;
5304		len -= cur;
5305		offset = 0;
5306		i++;
5307	}
5308
5309	return ret;
5310}
5311
5312int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5313			       unsigned long min_len, char **map,
5314			       unsigned long *map_start,
5315			       unsigned long *map_len)
 
 
 
 
 
5316{
5317	size_t offset = start & (PAGE_SIZE - 1);
5318	char *kaddr;
5319	struct page *p;
5320	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5321	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5322	unsigned long end_i = (start_offset + start + min_len - 1) >>
5323		PAGE_SHIFT;
5324
5325	if (i != end_i)
 
 
5326		return -EINVAL;
 
 
 
 
5327
5328	if (i == 0) {
5329		offset = start_offset;
5330		*map_start = 0;
5331	} else {
5332		offset = 0;
5333		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5334	}
5335
5336	if (start + min_len > eb->len) {
5337		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5338		       "wanted %lu %lu\n",
5339		       eb->start, eb->len, start, min_len);
5340		return -EINVAL;
5341	}
5342
5343	p = eb->pages[i];
5344	kaddr = page_address(p);
5345	*map = kaddr + offset;
5346	*map_len = PAGE_SIZE - offset;
5347	return 0;
5348}
5349
5350int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5351			  unsigned long start,
5352			  unsigned long len)
5353{
5354	size_t cur;
5355	size_t offset;
5356	struct page *page;
5357	char *kaddr;
5358	char *ptr = (char *)ptrv;
5359	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5360	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5361	int ret = 0;
5362
5363	WARN_ON(start > eb->len);
5364	WARN_ON(start + len > eb->start + eb->len);
5365
5366	offset = (start_offset + start) & (PAGE_SIZE - 1);
5367
5368	while (len > 0) {
5369		page = eb->pages[i];
5370
5371		cur = min(len, (PAGE_SIZE - offset));
5372
5373		kaddr = page_address(page);
5374		ret = memcmp(ptr, kaddr + offset, cur);
5375		if (ret)
5376			break;
5377
5378		ptr += cur;
5379		len -= cur;
5380		offset = 0;
5381		i++;
5382	}
5383	return ret;
5384}
5385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5386void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5387			 unsigned long start, unsigned long len)
5388{
5389	size_t cur;
5390	size_t offset;
5391	struct page *page;
5392	char *kaddr;
5393	char *src = (char *)srcv;
5394	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5395	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5396
5397	WARN_ON(start > eb->len);
5398	WARN_ON(start + len > eb->start + eb->len);
5399
5400	offset = (start_offset + start) & (PAGE_SIZE - 1);
5401
5402	while (len > 0) {
5403		page = eb->pages[i];
5404		WARN_ON(!PageUptodate(page));
5405
5406		cur = min(len, PAGE_SIZE - offset);
5407		kaddr = page_address(page);
5408		memcpy(kaddr + offset, src, cur);
5409
5410		src += cur;
5411		len -= cur;
5412		offset = 0;
5413		i++;
5414	}
5415}
5416
5417void memset_extent_buffer(struct extent_buffer *eb, char c,
5418			  unsigned long start, unsigned long len)
5419{
5420	size_t cur;
5421	size_t offset;
5422	struct page *page;
5423	char *kaddr;
5424	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5425	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5426
5427	WARN_ON(start > eb->len);
5428	WARN_ON(start + len > eb->start + eb->len);
5429
5430	offset = (start_offset + start) & (PAGE_SIZE - 1);
5431
5432	while (len > 0) {
5433		page = eb->pages[i];
5434		WARN_ON(!PageUptodate(page));
5435
5436		cur = min(len, PAGE_SIZE - offset);
5437		kaddr = page_address(page);
5438		memset(kaddr + offset, c, cur);
5439
5440		len -= cur;
5441		offset = 0;
5442		i++;
5443	}
5444}
5445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5446void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5447			unsigned long dst_offset, unsigned long src_offset,
5448			unsigned long len)
5449{
5450	u64 dst_len = dst->len;
5451	size_t cur;
5452	size_t offset;
5453	struct page *page;
5454	char *kaddr;
5455	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5456	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5457
5458	WARN_ON(src->len != dst_len);
5459
5460	offset = (start_offset + dst_offset) &
5461		(PAGE_SIZE - 1);
5462
5463	while (len > 0) {
5464		page = dst->pages[i];
5465		WARN_ON(!PageUptodate(page));
5466
5467		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5468
5469		kaddr = page_address(page);
5470		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5471
5472		src_offset += cur;
5473		len -= cur;
5474		offset = 0;
5475		i++;
5476	}
5477}
5478
5479/*
5480 * The extent buffer bitmap operations are done with byte granularity because
5481 * bitmap items are not guaranteed to be aligned to a word and therefore a
5482 * single word in a bitmap may straddle two pages in the extent buffer.
5483 */
5484#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5485#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5486#define BITMAP_FIRST_BYTE_MASK(start) \
5487	((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5488#define BITMAP_LAST_BYTE_MASK(nbits) \
5489	(BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5490
5491/*
5492 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5493 * given bit number
5494 * @eb: the extent buffer
5495 * @start: offset of the bitmap item in the extent buffer
5496 * @nr: bit number
5497 * @page_index: return index of the page in the extent buffer that contains the
5498 * given bit number
5499 * @page_offset: return offset into the page given by page_index
5500 *
5501 * This helper hides the ugliness of finding the byte in an extent buffer which
5502 * contains a given bit.
5503 */
5504static inline void eb_bitmap_offset(struct extent_buffer *eb,
5505				    unsigned long start, unsigned long nr,
5506				    unsigned long *page_index,
5507				    size_t *page_offset)
5508{
5509	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5510	size_t byte_offset = BIT_BYTE(nr);
5511	size_t offset;
5512
5513	/*
5514	 * The byte we want is the offset of the extent buffer + the offset of
5515	 * the bitmap item in the extent buffer + the offset of the byte in the
5516	 * bitmap item.
5517	 */
5518	offset = start_offset + start + byte_offset;
5519
5520	*page_index = offset >> PAGE_SHIFT;
5521	*page_offset = offset & (PAGE_SIZE - 1);
5522}
5523
5524/**
5525 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5526 * @eb: the extent buffer
5527 * @start: offset of the bitmap item in the extent buffer
5528 * @nr: bit number to test
5529 */
5530int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5531			   unsigned long nr)
5532{
5533	char *kaddr;
5534	struct page *page;
5535	unsigned long i;
5536	size_t offset;
5537
5538	eb_bitmap_offset(eb, start, nr, &i, &offset);
5539	page = eb->pages[i];
5540	WARN_ON(!PageUptodate(page));
5541	kaddr = page_address(page);
5542	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5543}
5544
5545/**
5546 * extent_buffer_bitmap_set - set an area of a bitmap
5547 * @eb: the extent buffer
5548 * @start: offset of the bitmap item in the extent buffer
5549 * @pos: bit number of the first bit
5550 * @len: number of bits to set
5551 */
5552void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5553			      unsigned long pos, unsigned long len)
5554{
5555	char *kaddr;
5556	struct page *page;
5557	unsigned long i;
5558	size_t offset;
5559	const unsigned int size = pos + len;
5560	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5561	unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5562
5563	eb_bitmap_offset(eb, start, pos, &i, &offset);
5564	page = eb->pages[i];
5565	WARN_ON(!PageUptodate(page));
5566	kaddr = page_address(page);
5567
5568	while (len >= bits_to_set) {
5569		kaddr[offset] |= mask_to_set;
5570		len -= bits_to_set;
5571		bits_to_set = BITS_PER_BYTE;
5572		mask_to_set = ~0U;
5573		if (++offset >= PAGE_SIZE && len > 0) {
5574			offset = 0;
5575			page = eb->pages[++i];
5576			WARN_ON(!PageUptodate(page));
5577			kaddr = page_address(page);
5578		}
5579	}
5580	if (len) {
5581		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5582		kaddr[offset] |= mask_to_set;
5583	}
5584}
5585
5586
5587/**
5588 * extent_buffer_bitmap_clear - clear an area of a bitmap
5589 * @eb: the extent buffer
5590 * @start: offset of the bitmap item in the extent buffer
5591 * @pos: bit number of the first bit
5592 * @len: number of bits to clear
5593 */
5594void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5595				unsigned long pos, unsigned long len)
5596{
5597	char *kaddr;
5598	struct page *page;
5599	unsigned long i;
5600	size_t offset;
5601	const unsigned int size = pos + len;
5602	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5603	unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5604
5605	eb_bitmap_offset(eb, start, pos, &i, &offset);
5606	page = eb->pages[i];
5607	WARN_ON(!PageUptodate(page));
5608	kaddr = page_address(page);
5609
5610	while (len >= bits_to_clear) {
5611		kaddr[offset] &= ~mask_to_clear;
5612		len -= bits_to_clear;
5613		bits_to_clear = BITS_PER_BYTE;
5614		mask_to_clear = ~0U;
5615		if (++offset >= PAGE_SIZE && len > 0) {
5616			offset = 0;
5617			page = eb->pages[++i];
5618			WARN_ON(!PageUptodate(page));
5619			kaddr = page_address(page);
5620		}
5621	}
5622	if (len) {
5623		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5624		kaddr[offset] &= ~mask_to_clear;
5625	}
5626}
5627
5628static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5629{
5630	unsigned long distance = (src > dst) ? src - dst : dst - src;
5631	return distance < len;
5632}
5633
5634static void copy_pages(struct page *dst_page, struct page *src_page,
5635		       unsigned long dst_off, unsigned long src_off,
5636		       unsigned long len)
5637{
5638	char *dst_kaddr = page_address(dst_page);
5639	char *src_kaddr;
5640	int must_memmove = 0;
5641
5642	if (dst_page != src_page) {
5643		src_kaddr = page_address(src_page);
5644	} else {
5645		src_kaddr = dst_kaddr;
5646		if (areas_overlap(src_off, dst_off, len))
5647			must_memmove = 1;
5648	}
5649
5650	if (must_memmove)
5651		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5652	else
5653		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5654}
5655
5656void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5657			   unsigned long src_offset, unsigned long len)
5658{
 
5659	size_t cur;
5660	size_t dst_off_in_page;
5661	size_t src_off_in_page;
5662	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5663	unsigned long dst_i;
5664	unsigned long src_i;
5665
5666	if (src_offset + len > dst->len) {
5667		btrfs_err(dst->fs_info,
5668			"memmove bogus src_offset %lu move "
5669		       "len %lu dst len %lu", src_offset, len, dst->len);
5670		BUG_ON(1);
5671	}
5672	if (dst_offset + len > dst->len) {
5673		btrfs_err(dst->fs_info,
5674			"memmove bogus dst_offset %lu move "
5675		       "len %lu dst len %lu", dst_offset, len, dst->len);
5676		BUG_ON(1);
5677	}
5678
5679	while (len > 0) {
5680		dst_off_in_page = (start_offset + dst_offset) &
5681			(PAGE_SIZE - 1);
5682		src_off_in_page = (start_offset + src_offset) &
5683			(PAGE_SIZE - 1);
5684
5685		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5686		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5687
5688		cur = min(len, (unsigned long)(PAGE_SIZE -
5689					       src_off_in_page));
5690		cur = min_t(unsigned long, cur,
5691			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5692
5693		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5694			   dst_off_in_page, src_off_in_page, cur);
5695
5696		src_offset += cur;
5697		dst_offset += cur;
5698		len -= cur;
5699	}
5700}
5701
5702void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5703			   unsigned long src_offset, unsigned long len)
5704{
 
5705	size_t cur;
5706	size_t dst_off_in_page;
5707	size_t src_off_in_page;
5708	unsigned long dst_end = dst_offset + len - 1;
5709	unsigned long src_end = src_offset + len - 1;
5710	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5711	unsigned long dst_i;
5712	unsigned long src_i;
5713
5714	if (src_offset + len > dst->len) {
5715		btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5716		       "len %lu len %lu", src_offset, len, dst->len);
 
5717		BUG_ON(1);
5718	}
5719	if (dst_offset + len > dst->len) {
5720		btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5721		       "len %lu len %lu", dst_offset, len, dst->len);
 
5722		BUG_ON(1);
5723	}
5724	if (dst_offset < src_offset) {
5725		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5726		return;
5727	}
5728	while (len > 0) {
5729		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5730		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5731
5732		dst_off_in_page = (start_offset + dst_end) &
5733			(PAGE_SIZE - 1);
5734		src_off_in_page = (start_offset + src_end) &
5735			(PAGE_SIZE - 1);
5736
5737		cur = min_t(unsigned long, len, src_off_in_page + 1);
5738		cur = min(cur, dst_off_in_page + 1);
5739		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5740			   dst_off_in_page - cur + 1,
5741			   src_off_in_page - cur + 1, cur);
5742
5743		dst_end -= cur;
5744		src_end -= cur;
5745		len -= cur;
5746	}
5747}
5748
5749int try_release_extent_buffer(struct page *page)
5750{
5751	struct extent_buffer *eb;
5752
5753	/*
5754	 * We need to make sure noboody is attaching this page to an eb right
5755	 * now.
5756	 */
5757	spin_lock(&page->mapping->private_lock);
5758	if (!PagePrivate(page)) {
5759		spin_unlock(&page->mapping->private_lock);
5760		return 1;
5761	}
5762
5763	eb = (struct extent_buffer *)page->private;
5764	BUG_ON(!eb);
5765
5766	/*
5767	 * This is a little awful but should be ok, we need to make sure that
5768	 * the eb doesn't disappear out from under us while we're looking at
5769	 * this page.
5770	 */
5771	spin_lock(&eb->refs_lock);
5772	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5773		spin_unlock(&eb->refs_lock);
5774		spin_unlock(&page->mapping->private_lock);
5775		return 0;
5776	}
5777	spin_unlock(&page->mapping->private_lock);
5778
5779	/*
5780	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5781	 * so just return, this page will likely be freed soon anyway.
5782	 */
5783	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5784		spin_unlock(&eb->refs_lock);
5785		return 0;
5786	}
5787
5788	return release_extent_buffer(eb);
5789}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
  16#include "extent_io.h"
  17#include "extent_map.h"
  18#include "ctree.h"
  19#include "btrfs_inode.h"
  20#include "volumes.h"
  21#include "check-integrity.h"
  22#include "locking.h"
  23#include "rcu-string.h"
  24#include "backref.h"
  25#include "disk-io.h"
  26
  27static struct kmem_cache *extent_state_cache;
  28static struct kmem_cache *extent_buffer_cache;
  29static struct bio_set *btrfs_bioset;
  30
  31static inline bool extent_state_in_tree(const struct extent_state *state)
  32{
  33	return !RB_EMPTY_NODE(&state->rb_node);
  34}
  35
  36#ifdef CONFIG_BTRFS_DEBUG
  37static LIST_HEAD(buffers);
  38static LIST_HEAD(states);
  39
  40static DEFINE_SPINLOCK(leak_lock);
  41
  42static inline
  43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  44{
  45	unsigned long flags;
  46
  47	spin_lock_irqsave(&leak_lock, flags);
  48	list_add(new, head);
  49	spin_unlock_irqrestore(&leak_lock, flags);
  50}
  51
  52static inline
  53void btrfs_leak_debug_del(struct list_head *entry)
  54{
  55	unsigned long flags;
  56
  57	spin_lock_irqsave(&leak_lock, flags);
  58	list_del(entry);
  59	spin_unlock_irqrestore(&leak_lock, flags);
  60}
  61
  62static inline
  63void btrfs_leak_debug_check(void)
  64{
  65	struct extent_state *state;
  66	struct extent_buffer *eb;
  67
  68	while (!list_empty(&states)) {
  69		state = list_entry(states.next, struct extent_state, leak_list);
  70		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  71		       state->start, state->end, state->state,
  72		       extent_state_in_tree(state),
  73		       refcount_read(&state->refs));
  74		list_del(&state->leak_list);
  75		kmem_cache_free(extent_state_cache, state);
  76	}
  77
  78	while (!list_empty(&buffers)) {
  79		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  80		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
  81		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
 
  82		list_del(&eb->leak_list);
  83		kmem_cache_free(extent_buffer_cache, eb);
  84	}
  85}
  86
  87#define btrfs_debug_check_extent_io_range(tree, start, end)		\
  88	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  90		struct extent_io_tree *tree, u64 start, u64 end)
  91{
  92	if (tree->ops && tree->ops->check_extent_io_range)
  93		tree->ops->check_extent_io_range(tree->private_data, caller,
  94						 start, end);
 
 
 
 
 
 
 
 
 
 
  95}
  96#else
  97#define btrfs_leak_debug_add(new, head)	do {} while (0)
  98#define btrfs_leak_debug_del(entry)	do {} while (0)
  99#define btrfs_leak_debug_check()	do {} while (0)
 100#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 101#endif
 102
 103#define BUFFER_LRU_MAX 64
 104
 105struct tree_entry {
 106	u64 start;
 107	u64 end;
 108	struct rb_node rb_node;
 109};
 110
 111struct extent_page_data {
 112	struct bio *bio;
 113	struct extent_io_tree *tree;
 
 
 
 114	/* tells writepage not to lock the state bits for this range
 115	 * it still does the unlocking
 116	 */
 117	unsigned int extent_locked:1;
 118
 119	/* tells the submit_bio code to use REQ_SYNC */
 120	unsigned int sync_io:1;
 121};
 122
 123static int add_extent_changeset(struct extent_state *state, unsigned bits,
 124				 struct extent_changeset *changeset,
 125				 int set)
 126{
 127	int ret;
 128
 129	if (!changeset)
 130		return 0;
 131	if (set && (state->state & bits) == bits)
 132		return 0;
 133	if (!set && (state->state & bits) == 0)
 134		return 0;
 135	changeset->bytes_changed += state->end - state->start + 1;
 136	ret = ulist_add(&changeset->range_changed, state->start, state->end,
 137			GFP_ATOMIC);
 138	return ret;
 
 139}
 140
 141static void flush_write_bio(struct extent_page_data *epd);
 142
 143static inline struct btrfs_fs_info *
 144tree_fs_info(struct extent_io_tree *tree)
 145{
 146	if (tree->ops)
 147		return tree->ops->tree_fs_info(tree->private_data);
 148	return NULL;
 149}
 150
 151int __init extent_io_init(void)
 152{
 153	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 154			sizeof(struct extent_state), 0,
 155			SLAB_MEM_SPREAD, NULL);
 156	if (!extent_state_cache)
 157		return -ENOMEM;
 158
 159	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 160			sizeof(struct extent_buffer), 0,
 161			SLAB_MEM_SPREAD, NULL);
 162	if (!extent_buffer_cache)
 163		goto free_state_cache;
 164
 165	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 166				     offsetof(struct btrfs_io_bio, bio),
 167				     BIOSET_NEED_BVECS);
 168	if (!btrfs_bioset)
 169		goto free_buffer_cache;
 170
 171	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 172		goto free_bioset;
 173
 174	return 0;
 175
 176free_bioset:
 177	bioset_free(btrfs_bioset);
 178	btrfs_bioset = NULL;
 179
 180free_buffer_cache:
 181	kmem_cache_destroy(extent_buffer_cache);
 182	extent_buffer_cache = NULL;
 183
 184free_state_cache:
 185	kmem_cache_destroy(extent_state_cache);
 186	extent_state_cache = NULL;
 187	return -ENOMEM;
 188}
 189
 190void __cold extent_io_exit(void)
 191{
 192	btrfs_leak_debug_check();
 193
 194	/*
 195	 * Make sure all delayed rcu free are flushed before we
 196	 * destroy caches.
 197	 */
 198	rcu_barrier();
 199	kmem_cache_destroy(extent_state_cache);
 200	kmem_cache_destroy(extent_buffer_cache);
 201	if (btrfs_bioset)
 202		bioset_free(btrfs_bioset);
 203}
 204
 205void extent_io_tree_init(struct extent_io_tree *tree,
 206			 void *private_data)
 207{
 208	tree->state = RB_ROOT;
 209	tree->ops = NULL;
 210	tree->dirty_bytes = 0;
 211	spin_lock_init(&tree->lock);
 212	tree->private_data = private_data;
 213}
 214
 215static struct extent_state *alloc_extent_state(gfp_t mask)
 216{
 217	struct extent_state *state;
 218
 219	/*
 220	 * The given mask might be not appropriate for the slab allocator,
 221	 * drop the unsupported bits
 222	 */
 223	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 224	state = kmem_cache_alloc(extent_state_cache, mask);
 225	if (!state)
 226		return state;
 227	state->state = 0;
 228	state->failrec = NULL;
 229	RB_CLEAR_NODE(&state->rb_node);
 230	btrfs_leak_debug_add(&state->leak_list, &states);
 231	refcount_set(&state->refs, 1);
 232	init_waitqueue_head(&state->wq);
 233	trace_alloc_extent_state(state, mask, _RET_IP_);
 234	return state;
 235}
 236
 237void free_extent_state(struct extent_state *state)
 238{
 239	if (!state)
 240		return;
 241	if (refcount_dec_and_test(&state->refs)) {
 242		WARN_ON(extent_state_in_tree(state));
 243		btrfs_leak_debug_del(&state->leak_list);
 244		trace_free_extent_state(state, _RET_IP_);
 245		kmem_cache_free(extent_state_cache, state);
 246	}
 247}
 248
 249static struct rb_node *tree_insert(struct rb_root *root,
 250				   struct rb_node *search_start,
 251				   u64 offset,
 252				   struct rb_node *node,
 253				   struct rb_node ***p_in,
 254				   struct rb_node **parent_in)
 255{
 256	struct rb_node **p;
 257	struct rb_node *parent = NULL;
 258	struct tree_entry *entry;
 259
 260	if (p_in && parent_in) {
 261		p = *p_in;
 262		parent = *parent_in;
 263		goto do_insert;
 264	}
 265
 266	p = search_start ? &search_start : &root->rb_node;
 267	while (*p) {
 268		parent = *p;
 269		entry = rb_entry(parent, struct tree_entry, rb_node);
 270
 271		if (offset < entry->start)
 272			p = &(*p)->rb_left;
 273		else if (offset > entry->end)
 274			p = &(*p)->rb_right;
 275		else
 276			return parent;
 277	}
 278
 279do_insert:
 280	rb_link_node(node, parent, p);
 281	rb_insert_color(node, root);
 282	return NULL;
 283}
 284
 285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 286				      struct rb_node **prev_ret,
 287				      struct rb_node **next_ret,
 288				      struct rb_node ***p_ret,
 289				      struct rb_node **parent_ret)
 290{
 291	struct rb_root *root = &tree->state;
 292	struct rb_node **n = &root->rb_node;
 293	struct rb_node *prev = NULL;
 294	struct rb_node *orig_prev = NULL;
 295	struct tree_entry *entry;
 296	struct tree_entry *prev_entry = NULL;
 297
 298	while (*n) {
 299		prev = *n;
 300		entry = rb_entry(prev, struct tree_entry, rb_node);
 301		prev_entry = entry;
 302
 303		if (offset < entry->start)
 304			n = &(*n)->rb_left;
 305		else if (offset > entry->end)
 306			n = &(*n)->rb_right;
 307		else
 308			return *n;
 309	}
 310
 311	if (p_ret)
 312		*p_ret = n;
 313	if (parent_ret)
 314		*parent_ret = prev;
 315
 316	if (prev_ret) {
 317		orig_prev = prev;
 318		while (prev && offset > prev_entry->end) {
 319			prev = rb_next(prev);
 320			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 321		}
 322		*prev_ret = prev;
 323		prev = orig_prev;
 324	}
 325
 326	if (next_ret) {
 327		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 328		while (prev && offset < prev_entry->start) {
 329			prev = rb_prev(prev);
 330			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 331		}
 332		*next_ret = prev;
 333	}
 334	return NULL;
 335}
 336
 337static inline struct rb_node *
 338tree_search_for_insert(struct extent_io_tree *tree,
 339		       u64 offset,
 340		       struct rb_node ***p_ret,
 341		       struct rb_node **parent_ret)
 342{
 343	struct rb_node *prev = NULL;
 344	struct rb_node *ret;
 345
 346	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 347	if (!ret)
 348		return prev;
 349	return ret;
 350}
 351
 352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 353					  u64 offset)
 354{
 355	return tree_search_for_insert(tree, offset, NULL, NULL);
 356}
 357
 358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 359		     struct extent_state *other)
 360{
 361	if (tree->ops && tree->ops->merge_extent_hook)
 362		tree->ops->merge_extent_hook(tree->private_data, new, other);
 
 363}
 364
 365/*
 366 * utility function to look for merge candidates inside a given range.
 367 * Any extents with matching state are merged together into a single
 368 * extent in the tree.  Extents with EXTENT_IO in their state field
 369 * are not merged because the end_io handlers need to be able to do
 370 * operations on them without sleeping (or doing allocations/splits).
 371 *
 372 * This should be called with the tree lock held.
 373 */
 374static void merge_state(struct extent_io_tree *tree,
 375		        struct extent_state *state)
 376{
 377	struct extent_state *other;
 378	struct rb_node *other_node;
 379
 380	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 381		return;
 382
 383	other_node = rb_prev(&state->rb_node);
 384	if (other_node) {
 385		other = rb_entry(other_node, struct extent_state, rb_node);
 386		if (other->end == state->start - 1 &&
 387		    other->state == state->state) {
 388			merge_cb(tree, state, other);
 389			state->start = other->start;
 390			rb_erase(&other->rb_node, &tree->state);
 391			RB_CLEAR_NODE(&other->rb_node);
 392			free_extent_state(other);
 393		}
 394	}
 395	other_node = rb_next(&state->rb_node);
 396	if (other_node) {
 397		other = rb_entry(other_node, struct extent_state, rb_node);
 398		if (other->start == state->end + 1 &&
 399		    other->state == state->state) {
 400			merge_cb(tree, state, other);
 401			state->end = other->end;
 402			rb_erase(&other->rb_node, &tree->state);
 403			RB_CLEAR_NODE(&other->rb_node);
 404			free_extent_state(other);
 405		}
 406	}
 407}
 408
 409static void set_state_cb(struct extent_io_tree *tree,
 410			 struct extent_state *state, unsigned *bits)
 411{
 412	if (tree->ops && tree->ops->set_bit_hook)
 413		tree->ops->set_bit_hook(tree->private_data, state, bits);
 414}
 415
 416static void clear_state_cb(struct extent_io_tree *tree,
 417			   struct extent_state *state, unsigned *bits)
 418{
 419	if (tree->ops && tree->ops->clear_bit_hook)
 420		tree->ops->clear_bit_hook(tree->private_data, state, bits);
 421}
 422
 423static void set_state_bits(struct extent_io_tree *tree,
 424			   struct extent_state *state, unsigned *bits,
 425			   struct extent_changeset *changeset);
 426
 427/*
 428 * insert an extent_state struct into the tree.  'bits' are set on the
 429 * struct before it is inserted.
 430 *
 431 * This may return -EEXIST if the extent is already there, in which case the
 432 * state struct is freed.
 433 *
 434 * The tree lock is not taken internally.  This is a utility function and
 435 * probably isn't what you want to call (see set/clear_extent_bit).
 436 */
 437static int insert_state(struct extent_io_tree *tree,
 438			struct extent_state *state, u64 start, u64 end,
 439			struct rb_node ***p,
 440			struct rb_node **parent,
 441			unsigned *bits, struct extent_changeset *changeset)
 442{
 443	struct rb_node *node;
 444
 445	if (end < start)
 446		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 447		       end, start);
 448	state->start = start;
 449	state->end = end;
 450
 451	set_state_bits(tree, state, bits, changeset);
 452
 453	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 454	if (node) {
 455		struct extent_state *found;
 456		found = rb_entry(node, struct extent_state, rb_node);
 457		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
 
 458		       found->start, found->end, start, end);
 459		return -EEXIST;
 460	}
 461	merge_state(tree, state);
 462	return 0;
 463}
 464
 465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 466		     u64 split)
 467{
 468	if (tree->ops && tree->ops->split_extent_hook)
 469		tree->ops->split_extent_hook(tree->private_data, orig, split);
 470}
 471
 472/*
 473 * split a given extent state struct in two, inserting the preallocated
 474 * struct 'prealloc' as the newly created second half.  'split' indicates an
 475 * offset inside 'orig' where it should be split.
 476 *
 477 * Before calling,
 478 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 479 * are two extent state structs in the tree:
 480 * prealloc: [orig->start, split - 1]
 481 * orig: [ split, orig->end ]
 482 *
 483 * The tree locks are not taken by this function. They need to be held
 484 * by the caller.
 485 */
 486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 487		       struct extent_state *prealloc, u64 split)
 488{
 489	struct rb_node *node;
 490
 491	split_cb(tree, orig, split);
 492
 493	prealloc->start = orig->start;
 494	prealloc->end = split - 1;
 495	prealloc->state = orig->state;
 496	orig->start = split;
 497
 498	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 499			   &prealloc->rb_node, NULL, NULL);
 500	if (node) {
 501		free_extent_state(prealloc);
 502		return -EEXIST;
 503	}
 504	return 0;
 505}
 506
 507static struct extent_state *next_state(struct extent_state *state)
 508{
 509	struct rb_node *next = rb_next(&state->rb_node);
 510	if (next)
 511		return rb_entry(next, struct extent_state, rb_node);
 512	else
 513		return NULL;
 514}
 515
 516/*
 517 * utility function to clear some bits in an extent state struct.
 518 * it will optionally wake up any one waiting on this state (wake == 1).
 519 *
 520 * If no bits are set on the state struct after clearing things, the
 521 * struct is freed and removed from the tree
 522 */
 523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 524					    struct extent_state *state,
 525					    unsigned *bits, int wake,
 526					    struct extent_changeset *changeset)
 527{
 528	struct extent_state *next;
 529	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 530	int ret;
 531
 532	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 533		u64 range = state->end - state->start + 1;
 534		WARN_ON(range > tree->dirty_bytes);
 535		tree->dirty_bytes -= range;
 536	}
 537	clear_state_cb(tree, state, bits);
 538	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 539	BUG_ON(ret < 0);
 540	state->state &= ~bits_to_clear;
 541	if (wake)
 542		wake_up(&state->wq);
 543	if (state->state == 0) {
 544		next = next_state(state);
 545		if (extent_state_in_tree(state)) {
 546			rb_erase(&state->rb_node, &tree->state);
 547			RB_CLEAR_NODE(&state->rb_node);
 548			free_extent_state(state);
 549		} else {
 550			WARN_ON(1);
 551		}
 552	} else {
 553		merge_state(tree, state);
 554		next = next_state(state);
 555	}
 556	return next;
 557}
 558
 559static struct extent_state *
 560alloc_extent_state_atomic(struct extent_state *prealloc)
 561{
 562	if (!prealloc)
 563		prealloc = alloc_extent_state(GFP_ATOMIC);
 564
 565	return prealloc;
 566}
 567
 568static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 569{
 570	btrfs_panic(tree_fs_info(tree), err,
 571		    "Locking error: Extent tree was modified by another thread while locked.");
 
 572}
 573
 574/*
 575 * clear some bits on a range in the tree.  This may require splitting
 576 * or inserting elements in the tree, so the gfp mask is used to
 577 * indicate which allocations or sleeping are allowed.
 578 *
 579 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 580 * the given range from the tree regardless of state (ie for truncate).
 581 *
 582 * the range [start, end] is inclusive.
 583 *
 584 * This takes the tree lock, and returns 0 on success and < 0 on error.
 585 */
 586int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 587			      unsigned bits, int wake, int delete,
 588			      struct extent_state **cached_state,
 589			      gfp_t mask, struct extent_changeset *changeset)
 590{
 591	struct extent_state *state;
 592	struct extent_state *cached;
 593	struct extent_state *prealloc = NULL;
 594	struct rb_node *node;
 595	u64 last_end;
 596	int err;
 597	int clear = 0;
 598
 599	btrfs_debug_check_extent_io_range(tree, start, end);
 600
 601	if (bits & EXTENT_DELALLOC)
 602		bits |= EXTENT_NORESERVE;
 603
 604	if (delete)
 605		bits |= ~EXTENT_CTLBITS;
 606	bits |= EXTENT_FIRST_DELALLOC;
 607
 608	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 609		clear = 1;
 610again:
 611	if (!prealloc && gfpflags_allow_blocking(mask)) {
 612		/*
 613		 * Don't care for allocation failure here because we might end
 614		 * up not needing the pre-allocated extent state at all, which
 615		 * is the case if we only have in the tree extent states that
 616		 * cover our input range and don't cover too any other range.
 617		 * If we end up needing a new extent state we allocate it later.
 618		 */
 619		prealloc = alloc_extent_state(mask);
 620	}
 621
 622	spin_lock(&tree->lock);
 623	if (cached_state) {
 624		cached = *cached_state;
 625
 626		if (clear) {
 627			*cached_state = NULL;
 628			cached_state = NULL;
 629		}
 630
 631		if (cached && extent_state_in_tree(cached) &&
 632		    cached->start <= start && cached->end > start) {
 633			if (clear)
 634				refcount_dec(&cached->refs);
 635			state = cached;
 636			goto hit_next;
 637		}
 638		if (clear)
 639			free_extent_state(cached);
 640	}
 641	/*
 642	 * this search will find the extents that end after
 643	 * our range starts
 644	 */
 645	node = tree_search(tree, start);
 646	if (!node)
 647		goto out;
 648	state = rb_entry(node, struct extent_state, rb_node);
 649hit_next:
 650	if (state->start > end)
 651		goto out;
 652	WARN_ON(state->end < start);
 653	last_end = state->end;
 654
 655	/* the state doesn't have the wanted bits, go ahead */
 656	if (!(state->state & bits)) {
 657		state = next_state(state);
 658		goto next;
 659	}
 660
 661	/*
 662	 *     | ---- desired range ---- |
 663	 *  | state | or
 664	 *  | ------------- state -------------- |
 665	 *
 666	 * We need to split the extent we found, and may flip
 667	 * bits on second half.
 668	 *
 669	 * If the extent we found extends past our range, we
 670	 * just split and search again.  It'll get split again
 671	 * the next time though.
 672	 *
 673	 * If the extent we found is inside our range, we clear
 674	 * the desired bit on it.
 675	 */
 676
 677	if (state->start < start) {
 678		prealloc = alloc_extent_state_atomic(prealloc);
 679		BUG_ON(!prealloc);
 680		err = split_state(tree, state, prealloc, start);
 681		if (err)
 682			extent_io_tree_panic(tree, err);
 683
 684		prealloc = NULL;
 685		if (err)
 686			goto out;
 687		if (state->end <= end) {
 688			state = clear_state_bit(tree, state, &bits, wake,
 689						changeset);
 690			goto next;
 691		}
 692		goto search_again;
 693	}
 694	/*
 695	 * | ---- desired range ---- |
 696	 *                        | state |
 697	 * We need to split the extent, and clear the bit
 698	 * on the first half
 699	 */
 700	if (state->start <= end && state->end > end) {
 701		prealloc = alloc_extent_state_atomic(prealloc);
 702		BUG_ON(!prealloc);
 703		err = split_state(tree, state, prealloc, end + 1);
 704		if (err)
 705			extent_io_tree_panic(tree, err);
 706
 707		if (wake)
 708			wake_up(&state->wq);
 709
 710		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 711
 712		prealloc = NULL;
 713		goto out;
 714	}
 715
 716	state = clear_state_bit(tree, state, &bits, wake, changeset);
 717next:
 718	if (last_end == (u64)-1)
 719		goto out;
 720	start = last_end + 1;
 721	if (start <= end && state && !need_resched())
 722		goto hit_next;
 
 
 
 
 
 
 
 
 723
 724search_again:
 725	if (start > end)
 726		goto out;
 727	spin_unlock(&tree->lock);
 728	if (gfpflags_allow_blocking(mask))
 729		cond_resched();
 730	goto again;
 731
 732out:
 733	spin_unlock(&tree->lock);
 734	if (prealloc)
 735		free_extent_state(prealloc);
 736
 737	return 0;
 738
 739}
 740
 741static void wait_on_state(struct extent_io_tree *tree,
 742			  struct extent_state *state)
 743		__releases(tree->lock)
 744		__acquires(tree->lock)
 745{
 746	DEFINE_WAIT(wait);
 747	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 748	spin_unlock(&tree->lock);
 749	schedule();
 750	spin_lock(&tree->lock);
 751	finish_wait(&state->wq, &wait);
 752}
 753
 754/*
 755 * waits for one or more bits to clear on a range in the state tree.
 756 * The range [start, end] is inclusive.
 757 * The tree lock is taken by this function
 758 */
 759static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 760			    unsigned long bits)
 761{
 762	struct extent_state *state;
 763	struct rb_node *node;
 764
 765	btrfs_debug_check_extent_io_range(tree, start, end);
 766
 767	spin_lock(&tree->lock);
 768again:
 769	while (1) {
 770		/*
 771		 * this search will find all the extents that end after
 772		 * our range starts
 773		 */
 774		node = tree_search(tree, start);
 775process_node:
 776		if (!node)
 777			break;
 778
 779		state = rb_entry(node, struct extent_state, rb_node);
 780
 781		if (state->start > end)
 782			goto out;
 783
 784		if (state->state & bits) {
 785			start = state->start;
 786			refcount_inc(&state->refs);
 787			wait_on_state(tree, state);
 788			free_extent_state(state);
 789			goto again;
 790		}
 791		start = state->end + 1;
 792
 793		if (start > end)
 794			break;
 795
 796		if (!cond_resched_lock(&tree->lock)) {
 797			node = rb_next(node);
 798			goto process_node;
 799		}
 800	}
 801out:
 802	spin_unlock(&tree->lock);
 803}
 804
 805static void set_state_bits(struct extent_io_tree *tree,
 806			   struct extent_state *state,
 807			   unsigned *bits, struct extent_changeset *changeset)
 808{
 809	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 810	int ret;
 811
 812	set_state_cb(tree, state, bits);
 813	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 814		u64 range = state->end - state->start + 1;
 815		tree->dirty_bytes += range;
 816	}
 817	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 818	BUG_ON(ret < 0);
 819	state->state |= bits_to_set;
 820}
 821
 822static void cache_state_if_flags(struct extent_state *state,
 823				 struct extent_state **cached_ptr,
 824				 unsigned flags)
 825{
 826	if (cached_ptr && !(*cached_ptr)) {
 827		if (!flags || (state->state & flags)) {
 828			*cached_ptr = state;
 829			refcount_inc(&state->refs);
 830		}
 831	}
 832}
 833
 834static void cache_state(struct extent_state *state,
 835			struct extent_state **cached_ptr)
 836{
 837	return cache_state_if_flags(state, cached_ptr,
 838				    EXTENT_IOBITS | EXTENT_BOUNDARY);
 839}
 840
 841/*
 842 * set some bits on a range in the tree.  This may require allocations or
 843 * sleeping, so the gfp mask is used to indicate what is allowed.
 844 *
 845 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 846 * part of the range already has the desired bits set.  The start of the
 847 * existing range is returned in failed_start in this case.
 848 *
 849 * [start, end] is inclusive This takes the tree lock.
 850 */
 851
 852static int __must_check
 853__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 854		 unsigned bits, unsigned exclusive_bits,
 855		 u64 *failed_start, struct extent_state **cached_state,
 856		 gfp_t mask, struct extent_changeset *changeset)
 857{
 858	struct extent_state *state;
 859	struct extent_state *prealloc = NULL;
 860	struct rb_node *node;
 861	struct rb_node **p;
 862	struct rb_node *parent;
 863	int err = 0;
 864	u64 last_start;
 865	u64 last_end;
 866
 867	btrfs_debug_check_extent_io_range(tree, start, end);
 868
 869	bits |= EXTENT_FIRST_DELALLOC;
 870again:
 871	if (!prealloc && gfpflags_allow_blocking(mask)) {
 872		/*
 873		 * Don't care for allocation failure here because we might end
 874		 * up not needing the pre-allocated extent state at all, which
 875		 * is the case if we only have in the tree extent states that
 876		 * cover our input range and don't cover too any other range.
 877		 * If we end up needing a new extent state we allocate it later.
 878		 */
 879		prealloc = alloc_extent_state(mask);
 
 880	}
 881
 882	spin_lock(&tree->lock);
 883	if (cached_state && *cached_state) {
 884		state = *cached_state;
 885		if (state->start <= start && state->end > start &&
 886		    extent_state_in_tree(state)) {
 887			node = &state->rb_node;
 888			goto hit_next;
 889		}
 890	}
 891	/*
 892	 * this search will find all the extents that end after
 893	 * our range starts.
 894	 */
 895	node = tree_search_for_insert(tree, start, &p, &parent);
 896	if (!node) {
 897		prealloc = alloc_extent_state_atomic(prealloc);
 898		BUG_ON(!prealloc);
 899		err = insert_state(tree, prealloc, start, end,
 900				   &p, &parent, &bits, changeset);
 901		if (err)
 902			extent_io_tree_panic(tree, err);
 903
 904		cache_state(prealloc, cached_state);
 905		prealloc = NULL;
 906		goto out;
 907	}
 908	state = rb_entry(node, struct extent_state, rb_node);
 909hit_next:
 910	last_start = state->start;
 911	last_end = state->end;
 912
 913	/*
 914	 * | ---- desired range ---- |
 915	 * | state |
 916	 *
 917	 * Just lock what we found and keep going
 918	 */
 919	if (state->start == start && state->end <= end) {
 920		if (state->state & exclusive_bits) {
 921			*failed_start = state->start;
 922			err = -EEXIST;
 923			goto out;
 924		}
 925
 926		set_state_bits(tree, state, &bits, changeset);
 927		cache_state(state, cached_state);
 928		merge_state(tree, state);
 929		if (last_end == (u64)-1)
 930			goto out;
 931		start = last_end + 1;
 932		state = next_state(state);
 933		if (start < end && state && state->start == start &&
 934		    !need_resched())
 935			goto hit_next;
 936		goto search_again;
 937	}
 938
 939	/*
 940	 *     | ---- desired range ---- |
 941	 * | state |
 942	 *   or
 943	 * | ------------- state -------------- |
 944	 *
 945	 * We need to split the extent we found, and may flip bits on
 946	 * second half.
 947	 *
 948	 * If the extent we found extends past our
 949	 * range, we just split and search again.  It'll get split
 950	 * again the next time though.
 951	 *
 952	 * If the extent we found is inside our range, we set the
 953	 * desired bit on it.
 954	 */
 955	if (state->start < start) {
 956		if (state->state & exclusive_bits) {
 957			*failed_start = start;
 958			err = -EEXIST;
 959			goto out;
 960		}
 961
 962		prealloc = alloc_extent_state_atomic(prealloc);
 963		BUG_ON(!prealloc);
 964		err = split_state(tree, state, prealloc, start);
 965		if (err)
 966			extent_io_tree_panic(tree, err);
 967
 968		prealloc = NULL;
 969		if (err)
 970			goto out;
 971		if (state->end <= end) {
 972			set_state_bits(tree, state, &bits, changeset);
 973			cache_state(state, cached_state);
 974			merge_state(tree, state);
 975			if (last_end == (u64)-1)
 976				goto out;
 977			start = last_end + 1;
 978			state = next_state(state);
 979			if (start < end && state && state->start == start &&
 980			    !need_resched())
 981				goto hit_next;
 982		}
 983		goto search_again;
 984	}
 985	/*
 986	 * | ---- desired range ---- |
 987	 *     | state | or               | state |
 988	 *
 989	 * There's a hole, we need to insert something in it and
 990	 * ignore the extent we found.
 991	 */
 992	if (state->start > start) {
 993		u64 this_end;
 994		if (end < last_start)
 995			this_end = end;
 996		else
 997			this_end = last_start - 1;
 998
 999		prealloc = alloc_extent_state_atomic(prealloc);
1000		BUG_ON(!prealloc);
1001
1002		/*
1003		 * Avoid to free 'prealloc' if it can be merged with
1004		 * the later extent.
1005		 */
1006		err = insert_state(tree, prealloc, start, this_end,
1007				   NULL, NULL, &bits, changeset);
1008		if (err)
1009			extent_io_tree_panic(tree, err);
1010
1011		cache_state(prealloc, cached_state);
1012		prealloc = NULL;
1013		start = this_end + 1;
1014		goto search_again;
1015	}
1016	/*
1017	 * | ---- desired range ---- |
1018	 *                        | state |
1019	 * We need to split the extent, and set the bit
1020	 * on the first half
1021	 */
1022	if (state->start <= end && state->end > end) {
1023		if (state->state & exclusive_bits) {
1024			*failed_start = start;
1025			err = -EEXIST;
1026			goto out;
1027		}
1028
1029		prealloc = alloc_extent_state_atomic(prealloc);
1030		BUG_ON(!prealloc);
1031		err = split_state(tree, state, prealloc, end + 1);
1032		if (err)
1033			extent_io_tree_panic(tree, err);
1034
1035		set_state_bits(tree, prealloc, &bits, changeset);
1036		cache_state(prealloc, cached_state);
1037		merge_state(tree, prealloc);
1038		prealloc = NULL;
1039		goto out;
1040	}
1041
1042search_again:
1043	if (start > end)
1044		goto out;
1045	spin_unlock(&tree->lock);
1046	if (gfpflags_allow_blocking(mask))
1047		cond_resched();
1048	goto again;
1049
1050out:
1051	spin_unlock(&tree->lock);
1052	if (prealloc)
1053		free_extent_state(prealloc);
1054
1055	return err;
1056
 
 
 
 
 
 
 
1057}
1058
1059int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1060		   unsigned bits, u64 * failed_start,
1061		   struct extent_state **cached_state, gfp_t mask)
1062{
1063	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1064				cached_state, mask, NULL);
1065}
1066
1067
1068/**
1069 * convert_extent_bit - convert all bits in a given range from one bit to
1070 * 			another
1071 * @tree:	the io tree to search
1072 * @start:	the start offset in bytes
1073 * @end:	the end offset in bytes (inclusive)
1074 * @bits:	the bits to set in this range
1075 * @clear_bits:	the bits to clear in this range
1076 * @cached_state:	state that we're going to cache
 
1077 *
1078 * This will go through and set bits for the given range.  If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1082 * boundary bits like LOCK.
1083 *
1084 * All allocations are done with GFP_NOFS.
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087		       unsigned bits, unsigned clear_bits,
1088		       struct extent_state **cached_state)
1089{
1090	struct extent_state *state;
1091	struct extent_state *prealloc = NULL;
1092	struct rb_node *node;
1093	struct rb_node **p;
1094	struct rb_node *parent;
1095	int err = 0;
1096	u64 last_start;
1097	u64 last_end;
1098	bool first_iteration = true;
1099
1100	btrfs_debug_check_extent_io_range(tree, start, end);
1101
1102again:
1103	if (!prealloc) {
1104		/*
1105		 * Best effort, don't worry if extent state allocation fails
1106		 * here for the first iteration. We might have a cached state
1107		 * that matches exactly the target range, in which case no
1108		 * extent state allocations are needed. We'll only know this
1109		 * after locking the tree.
1110		 */
1111		prealloc = alloc_extent_state(GFP_NOFS);
1112		if (!prealloc && !first_iteration)
1113			return -ENOMEM;
1114	}
1115
1116	spin_lock(&tree->lock);
1117	if (cached_state && *cached_state) {
1118		state = *cached_state;
1119		if (state->start <= start && state->end > start &&
1120		    extent_state_in_tree(state)) {
1121			node = &state->rb_node;
1122			goto hit_next;
1123		}
1124	}
1125
1126	/*
1127	 * this search will find all the extents that end after
1128	 * our range starts.
1129	 */
1130	node = tree_search_for_insert(tree, start, &p, &parent);
1131	if (!node) {
1132		prealloc = alloc_extent_state_atomic(prealloc);
1133		if (!prealloc) {
1134			err = -ENOMEM;
1135			goto out;
1136		}
1137		err = insert_state(tree, prealloc, start, end,
1138				   &p, &parent, &bits, NULL);
1139		if (err)
1140			extent_io_tree_panic(tree, err);
1141		cache_state(prealloc, cached_state);
1142		prealloc = NULL;
1143		goto out;
1144	}
1145	state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147	last_start = state->start;
1148	last_end = state->end;
1149
1150	/*
1151	 * | ---- desired range ---- |
1152	 * | state |
1153	 *
1154	 * Just lock what we found and keep going
1155	 */
1156	if (state->start == start && state->end <= end) {
1157		set_state_bits(tree, state, &bits, NULL);
1158		cache_state(state, cached_state);
1159		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160		if (last_end == (u64)-1)
1161			goto out;
1162		start = last_end + 1;
1163		if (start < end && state && state->start == start &&
1164		    !need_resched())
1165			goto hit_next;
1166		goto search_again;
1167	}
1168
1169	/*
1170	 *     | ---- desired range ---- |
1171	 * | state |
1172	 *   or
1173	 * | ------------- state -------------- |
1174	 *
1175	 * We need to split the extent we found, and may flip bits on
1176	 * second half.
1177	 *
1178	 * If the extent we found extends past our
1179	 * range, we just split and search again.  It'll get split
1180	 * again the next time though.
1181	 *
1182	 * If the extent we found is inside our range, we set the
1183	 * desired bit on it.
1184	 */
1185	if (state->start < start) {
1186		prealloc = alloc_extent_state_atomic(prealloc);
1187		if (!prealloc) {
1188			err = -ENOMEM;
1189			goto out;
1190		}
1191		err = split_state(tree, state, prealloc, start);
1192		if (err)
1193			extent_io_tree_panic(tree, err);
1194		prealloc = NULL;
1195		if (err)
1196			goto out;
1197		if (state->end <= end) {
1198			set_state_bits(tree, state, &bits, NULL);
1199			cache_state(state, cached_state);
1200			state = clear_state_bit(tree, state, &clear_bits, 0,
1201						NULL);
1202			if (last_end == (u64)-1)
1203				goto out;
1204			start = last_end + 1;
1205			if (start < end && state && state->start == start &&
1206			    !need_resched())
1207				goto hit_next;
1208		}
1209		goto search_again;
1210	}
1211	/*
1212	 * | ---- desired range ---- |
1213	 *     | state | or               | state |
1214	 *
1215	 * There's a hole, we need to insert something in it and
1216	 * ignore the extent we found.
1217	 */
1218	if (state->start > start) {
1219		u64 this_end;
1220		if (end < last_start)
1221			this_end = end;
1222		else
1223			this_end = last_start - 1;
1224
1225		prealloc = alloc_extent_state_atomic(prealloc);
1226		if (!prealloc) {
1227			err = -ENOMEM;
1228			goto out;
1229		}
1230
1231		/*
1232		 * Avoid to free 'prealloc' if it can be merged with
1233		 * the later extent.
1234		 */
1235		err = insert_state(tree, prealloc, start, this_end,
1236				   NULL, NULL, &bits, NULL);
1237		if (err)
1238			extent_io_tree_panic(tree, err);
1239		cache_state(prealloc, cached_state);
1240		prealloc = NULL;
1241		start = this_end + 1;
1242		goto search_again;
1243	}
1244	/*
1245	 * | ---- desired range ---- |
1246	 *                        | state |
1247	 * We need to split the extent, and set the bit
1248	 * on the first half
1249	 */
1250	if (state->start <= end && state->end > end) {
1251		prealloc = alloc_extent_state_atomic(prealloc);
1252		if (!prealloc) {
1253			err = -ENOMEM;
1254			goto out;
1255		}
1256
1257		err = split_state(tree, state, prealloc, end + 1);
1258		if (err)
1259			extent_io_tree_panic(tree, err);
1260
1261		set_state_bits(tree, prealloc, &bits, NULL);
1262		cache_state(prealloc, cached_state);
1263		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264		prealloc = NULL;
1265		goto out;
1266	}
1267
1268search_again:
1269	if (start > end)
1270		goto out;
1271	spin_unlock(&tree->lock);
1272	cond_resched();
1273	first_iteration = false;
1274	goto again;
1275
1276out:
1277	spin_unlock(&tree->lock);
1278	if (prealloc)
1279		free_extent_state(prealloc);
1280
1281	return err;
 
 
 
 
 
 
 
 
 
1282}
1283
1284/* wrappers around set/clear extent bit */
1285int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1286			   unsigned bits, struct extent_changeset *changeset)
 
1287{
1288	/*
1289	 * We don't support EXTENT_LOCKED yet, as current changeset will
1290	 * record any bits changed, so for EXTENT_LOCKED case, it will
1291	 * either fail with -EEXIST or changeset will record the whole
1292	 * range.
1293	 */
1294	BUG_ON(bits & EXTENT_LOCKED);
1295
1296	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1297				changeset);
1298}
1299
1300int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1301		     unsigned bits, int wake, int delete,
1302		     struct extent_state **cached)
1303{
1304	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1305				  cached, GFP_NOFS, NULL);
1306}
1307
1308int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1309		unsigned bits, struct extent_changeset *changeset)
 
1310{
1311	/*
1312	 * Don't support EXTENT_LOCKED case, same reason as
1313	 * set_record_extent_bits().
1314	 */
1315	BUG_ON(bits & EXTENT_LOCKED);
1316
1317	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1318				  changeset);
1319}
1320
1321/*
1322 * either insert or lock state struct between start and end use mask to tell
1323 * us if waiting is desired.
1324 */
1325int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1326		     struct extent_state **cached_state)
1327{
1328	int err;
1329	u64 failed_start;
1330
1331	while (1) {
1332		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1333				       EXTENT_LOCKED, &failed_start,
1334				       cached_state, GFP_NOFS, NULL);
1335		if (err == -EEXIST) {
1336			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1337			start = failed_start;
1338		} else
1339			break;
1340		WARN_ON(start > end);
1341	}
1342	return err;
1343}
1344
1345int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1346{
1347	int err;
1348	u64 failed_start;
1349
1350	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1351			       &failed_start, NULL, GFP_NOFS, NULL);
1352	if (err == -EEXIST) {
1353		if (failed_start > start)
1354			clear_extent_bit(tree, start, failed_start - 1,
1355					 EXTENT_LOCKED, 1, 0, NULL);
1356		return 0;
1357	}
1358	return 1;
1359}
1360
1361void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1362{
1363	unsigned long index = start >> PAGE_SHIFT;
1364	unsigned long end_index = end >> PAGE_SHIFT;
1365	struct page *page;
1366
1367	while (index <= end_index) {
1368		page = find_get_page(inode->i_mapping, index);
1369		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1370		clear_page_dirty_for_io(page);
1371		put_page(page);
1372		index++;
1373	}
1374}
1375
1376void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377{
1378	unsigned long index = start >> PAGE_SHIFT;
1379	unsigned long end_index = end >> PAGE_SHIFT;
1380	struct page *page;
1381
1382	while (index <= end_index) {
1383		page = find_get_page(inode->i_mapping, index);
1384		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385		__set_page_dirty_nobuffers(page);
1386		account_page_redirty(page);
1387		put_page(page);
1388		index++;
1389	}
1390}
1391
1392/*
1393 * helper function to set both pages and extents in the tree writeback
1394 */
1395static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1396{
1397	tree->ops->set_range_writeback(tree->private_data, start, end);
 
 
 
 
 
 
 
 
 
 
1398}
1399
1400/* find the first state struct with 'bits' set after 'start', and
1401 * return it.  tree->lock must be held.  NULL will returned if
1402 * nothing was found after 'start'
1403 */
1404static struct extent_state *
1405find_first_extent_bit_state(struct extent_io_tree *tree,
1406			    u64 start, unsigned bits)
1407{
1408	struct rb_node *node;
1409	struct extent_state *state;
1410
1411	/*
1412	 * this search will find all the extents that end after
1413	 * our range starts.
1414	 */
1415	node = tree_search(tree, start);
1416	if (!node)
1417		goto out;
1418
1419	while (1) {
1420		state = rb_entry(node, struct extent_state, rb_node);
1421		if (state->end >= start && (state->state & bits))
1422			return state;
1423
1424		node = rb_next(node);
1425		if (!node)
1426			break;
1427	}
1428out:
1429	return NULL;
1430}
1431
1432/*
1433 * find the first offset in the io tree with 'bits' set. zero is
1434 * returned if we find something, and *start_ret and *end_ret are
1435 * set to reflect the state struct that was found.
1436 *
1437 * If nothing was found, 1 is returned. If found something, return 0.
1438 */
1439int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1440			  u64 *start_ret, u64 *end_ret, unsigned bits,
1441			  struct extent_state **cached_state)
1442{
1443	struct extent_state *state;
1444	struct rb_node *n;
1445	int ret = 1;
1446
1447	spin_lock(&tree->lock);
1448	if (cached_state && *cached_state) {
1449		state = *cached_state;
1450		if (state->end == start - 1 && extent_state_in_tree(state)) {
1451			n = rb_next(&state->rb_node);
1452			while (n) {
1453				state = rb_entry(n, struct extent_state,
1454						 rb_node);
1455				if (state->state & bits)
1456					goto got_it;
1457				n = rb_next(n);
1458			}
1459			free_extent_state(*cached_state);
1460			*cached_state = NULL;
1461			goto out;
1462		}
1463		free_extent_state(*cached_state);
1464		*cached_state = NULL;
1465	}
1466
1467	state = find_first_extent_bit_state(tree, start, bits);
1468got_it:
1469	if (state) {
1470		cache_state_if_flags(state, cached_state, 0);
1471		*start_ret = state->start;
1472		*end_ret = state->end;
1473		ret = 0;
1474	}
1475out:
1476	spin_unlock(&tree->lock);
1477	return ret;
1478}
1479
1480/*
1481 * find a contiguous range of bytes in the file marked as delalloc, not
1482 * more than 'max_bytes'.  start and end are used to return the range,
1483 *
1484 * 1 is returned if we find something, 0 if nothing was in the tree
1485 */
1486static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1487					u64 *start, u64 *end, u64 max_bytes,
1488					struct extent_state **cached_state)
1489{
1490	struct rb_node *node;
1491	struct extent_state *state;
1492	u64 cur_start = *start;
1493	u64 found = 0;
1494	u64 total_bytes = 0;
1495
1496	spin_lock(&tree->lock);
1497
1498	/*
1499	 * this search will find all the extents that end after
1500	 * our range starts.
1501	 */
1502	node = tree_search(tree, cur_start);
1503	if (!node) {
1504		if (!found)
1505			*end = (u64)-1;
1506		goto out;
1507	}
1508
1509	while (1) {
1510		state = rb_entry(node, struct extent_state, rb_node);
1511		if (found && (state->start != cur_start ||
1512			      (state->state & EXTENT_BOUNDARY))) {
1513			goto out;
1514		}
1515		if (!(state->state & EXTENT_DELALLOC)) {
1516			if (!found)
1517				*end = state->end;
1518			goto out;
1519		}
1520		if (!found) {
1521			*start = state->start;
1522			*cached_state = state;
1523			refcount_inc(&state->refs);
1524		}
1525		found++;
1526		*end = state->end;
1527		cur_start = state->end + 1;
1528		node = rb_next(node);
1529		total_bytes += state->end - state->start + 1;
1530		if (total_bytes >= max_bytes)
1531			break;
1532		if (!node)
1533			break;
1534	}
1535out:
1536	spin_unlock(&tree->lock);
1537	return found;
1538}
1539
1540static int __process_pages_contig(struct address_space *mapping,
1541				  struct page *locked_page,
1542				  pgoff_t start_index, pgoff_t end_index,
1543				  unsigned long page_ops, pgoff_t *index_ret);
1544
1545static noinline void __unlock_for_delalloc(struct inode *inode,
1546					   struct page *locked_page,
1547					   u64 start, u64 end)
1548{
 
 
1549	unsigned long index = start >> PAGE_SHIFT;
1550	unsigned long end_index = end >> PAGE_SHIFT;
 
 
1551
1552	ASSERT(locked_page);
1553	if (index == locked_page->index && end_index == index)
1554		return;
1555
1556	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1557			       PAGE_UNLOCK, NULL);
 
 
 
 
 
 
 
 
 
 
 
1558}
1559
1560static noinline int lock_delalloc_pages(struct inode *inode,
1561					struct page *locked_page,
1562					u64 delalloc_start,
1563					u64 delalloc_end)
1564{
1565	unsigned long index = delalloc_start >> PAGE_SHIFT;
1566	unsigned long index_ret = index;
1567	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
 
 
 
1568	int ret;
 
1569
1570	ASSERT(locked_page);
1571	if (index == locked_page->index && index == end_index)
1572		return 0;
1573
1574	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1575				     end_index, PAGE_LOCK, &index_ret);
1576	if (ret == -EAGAIN)
1577		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1578				      (u64)index_ret << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1579	return ret;
1580}
1581
1582/*
1583 * find a contiguous range of bytes in the file marked as delalloc, not
1584 * more than 'max_bytes'.  start and end are used to return the range,
1585 *
1586 * 1 is returned if we find something, 0 if nothing was in the tree
1587 */
1588STATIC u64 find_lock_delalloc_range(struct inode *inode,
1589				    struct extent_io_tree *tree,
1590				    struct page *locked_page, u64 *start,
1591				    u64 *end, u64 max_bytes)
1592{
1593	u64 delalloc_start;
1594	u64 delalloc_end;
1595	u64 found;
1596	struct extent_state *cached_state = NULL;
1597	int ret;
1598	int loops = 0;
1599
1600again:
1601	/* step one, find a bunch of delalloc bytes starting at start */
1602	delalloc_start = *start;
1603	delalloc_end = 0;
1604	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1605				    max_bytes, &cached_state);
1606	if (!found || delalloc_end <= *start) {
1607		*start = delalloc_start;
1608		*end = delalloc_end;
1609		free_extent_state(cached_state);
1610		return 0;
1611	}
1612
1613	/*
1614	 * start comes from the offset of locked_page.  We have to lock
1615	 * pages in order, so we can't process delalloc bytes before
1616	 * locked_page
1617	 */
1618	if (delalloc_start < *start)
1619		delalloc_start = *start;
1620
1621	/*
1622	 * make sure to limit the number of pages we try to lock down
1623	 */
1624	if (delalloc_end + 1 - delalloc_start > max_bytes)
1625		delalloc_end = delalloc_start + max_bytes - 1;
1626
1627	/* step two, lock all the pages after the page that has start */
1628	ret = lock_delalloc_pages(inode, locked_page,
1629				  delalloc_start, delalloc_end);
1630	if (ret == -EAGAIN) {
1631		/* some of the pages are gone, lets avoid looping by
1632		 * shortening the size of the delalloc range we're searching
1633		 */
1634		free_extent_state(cached_state);
1635		cached_state = NULL;
1636		if (!loops) {
1637			max_bytes = PAGE_SIZE;
1638			loops = 1;
1639			goto again;
1640		} else {
1641			found = 0;
1642			goto out_failed;
1643		}
1644	}
1645	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1646
1647	/* step three, lock the state bits for the whole range */
1648	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1649
1650	/* then test to make sure it is all still delalloc */
1651	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1652			     EXTENT_DELALLOC, 1, cached_state);
1653	if (!ret) {
1654		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1655				     &cached_state);
1656		__unlock_for_delalloc(inode, locked_page,
1657			      delalloc_start, delalloc_end);
1658		cond_resched();
1659		goto again;
1660	}
1661	free_extent_state(cached_state);
1662	*start = delalloc_start;
1663	*end = delalloc_end;
1664out_failed:
1665	return found;
1666}
1667
1668static int __process_pages_contig(struct address_space *mapping,
1669				  struct page *locked_page,
1670				  pgoff_t start_index, pgoff_t end_index,
1671				  unsigned long page_ops, pgoff_t *index_ret)
1672{
1673	unsigned long nr_pages = end_index - start_index + 1;
1674	unsigned long pages_locked = 0;
1675	pgoff_t index = start_index;
1676	struct page *pages[16];
1677	unsigned ret;
1678	int err = 0;
 
1679	int i;
1680
1681	if (page_ops & PAGE_LOCK) {
1682		ASSERT(page_ops == PAGE_LOCK);
1683		ASSERT(index_ret && *index_ret == start_index);
1684	}
1685
1686	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1687		mapping_set_error(mapping, -EIO);
1688
1689	while (nr_pages > 0) {
1690		ret = find_get_pages_contig(mapping, index,
1691				     min_t(unsigned long,
1692				     nr_pages, ARRAY_SIZE(pages)), pages);
1693		if (ret == 0) {
1694			/*
1695			 * Only if we're going to lock these pages,
1696			 * can we find nothing at @index.
1697			 */
1698			ASSERT(page_ops & PAGE_LOCK);
1699			err = -EAGAIN;
1700			goto out;
1701		}
1702
1703		for (i = 0; i < ret; i++) {
1704			if (page_ops & PAGE_SET_PRIVATE2)
1705				SetPagePrivate2(pages[i]);
1706
1707			if (pages[i] == locked_page) {
1708				put_page(pages[i]);
1709				pages_locked++;
1710				continue;
1711			}
1712			if (page_ops & PAGE_CLEAR_DIRTY)
1713				clear_page_dirty_for_io(pages[i]);
1714			if (page_ops & PAGE_SET_WRITEBACK)
1715				set_page_writeback(pages[i]);
1716			if (page_ops & PAGE_SET_ERROR)
1717				SetPageError(pages[i]);
1718			if (page_ops & PAGE_END_WRITEBACK)
1719				end_page_writeback(pages[i]);
1720			if (page_ops & PAGE_UNLOCK)
1721				unlock_page(pages[i]);
1722			if (page_ops & PAGE_LOCK) {
1723				lock_page(pages[i]);
1724				if (!PageDirty(pages[i]) ||
1725				    pages[i]->mapping != mapping) {
1726					unlock_page(pages[i]);
1727					put_page(pages[i]);
1728					err = -EAGAIN;
1729					goto out;
1730				}
1731			}
1732			put_page(pages[i]);
1733			pages_locked++;
1734		}
1735		nr_pages -= ret;
1736		index += ret;
1737		cond_resched();
1738	}
1739out:
1740	if (err && index_ret)
1741		*index_ret = start_index + pages_locked - 1;
1742	return err;
1743}
1744
1745void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1746				 u64 delalloc_end, struct page *locked_page,
1747				 unsigned clear_bits,
1748				 unsigned long page_ops)
1749{
1750	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1751			 NULL);
1752
1753	__process_pages_contig(inode->i_mapping, locked_page,
1754			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1755			       page_ops, NULL);
1756}
1757
1758/*
1759 * count the number of bytes in the tree that have a given bit(s)
1760 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1761 * cached.  The total number found is returned.
1762 */
1763u64 count_range_bits(struct extent_io_tree *tree,
1764		     u64 *start, u64 search_end, u64 max_bytes,
1765		     unsigned bits, int contig)
1766{
1767	struct rb_node *node;
1768	struct extent_state *state;
1769	u64 cur_start = *start;
1770	u64 total_bytes = 0;
1771	u64 last = 0;
1772	int found = 0;
1773
1774	if (WARN_ON(search_end <= cur_start))
1775		return 0;
1776
1777	spin_lock(&tree->lock);
1778	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1779		total_bytes = tree->dirty_bytes;
1780		goto out;
1781	}
1782	/*
1783	 * this search will find all the extents that end after
1784	 * our range starts.
1785	 */
1786	node = tree_search(tree, cur_start);
1787	if (!node)
1788		goto out;
1789
1790	while (1) {
1791		state = rb_entry(node, struct extent_state, rb_node);
1792		if (state->start > search_end)
1793			break;
1794		if (contig && found && state->start > last + 1)
1795			break;
1796		if (state->end >= cur_start && (state->state & bits) == bits) {
1797			total_bytes += min(search_end, state->end) + 1 -
1798				       max(cur_start, state->start);
1799			if (total_bytes >= max_bytes)
1800				break;
1801			if (!found) {
1802				*start = max(cur_start, state->start);
1803				found = 1;
1804			}
1805			last = state->end;
1806		} else if (contig && found) {
1807			break;
1808		}
1809		node = rb_next(node);
1810		if (!node)
1811			break;
1812	}
1813out:
1814	spin_unlock(&tree->lock);
1815	return total_bytes;
1816}
1817
1818/*
1819 * set the private field for a given byte offset in the tree.  If there isn't
1820 * an extent_state there already, this does nothing.
1821 */
1822static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1823		struct io_failure_record *failrec)
1824{
1825	struct rb_node *node;
1826	struct extent_state *state;
1827	int ret = 0;
1828
1829	spin_lock(&tree->lock);
1830	/*
1831	 * this search will find all the extents that end after
1832	 * our range starts.
1833	 */
1834	node = tree_search(tree, start);
1835	if (!node) {
1836		ret = -ENOENT;
1837		goto out;
1838	}
1839	state = rb_entry(node, struct extent_state, rb_node);
1840	if (state->start != start) {
1841		ret = -ENOENT;
1842		goto out;
1843	}
1844	state->failrec = failrec;
1845out:
1846	spin_unlock(&tree->lock);
1847	return ret;
1848}
1849
1850static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1851		struct io_failure_record **failrec)
1852{
1853	struct rb_node *node;
1854	struct extent_state *state;
1855	int ret = 0;
1856
1857	spin_lock(&tree->lock);
1858	/*
1859	 * this search will find all the extents that end after
1860	 * our range starts.
1861	 */
1862	node = tree_search(tree, start);
1863	if (!node) {
1864		ret = -ENOENT;
1865		goto out;
1866	}
1867	state = rb_entry(node, struct extent_state, rb_node);
1868	if (state->start != start) {
1869		ret = -ENOENT;
1870		goto out;
1871	}
1872	*failrec = state->failrec;
1873out:
1874	spin_unlock(&tree->lock);
1875	return ret;
1876}
1877
1878/*
1879 * searches a range in the state tree for a given mask.
1880 * If 'filled' == 1, this returns 1 only if every extent in the tree
1881 * has the bits set.  Otherwise, 1 is returned if any bit in the
1882 * range is found set.
1883 */
1884int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1885		   unsigned bits, int filled, struct extent_state *cached)
1886{
1887	struct extent_state *state = NULL;
1888	struct rb_node *node;
1889	int bitset = 0;
1890
1891	spin_lock(&tree->lock);
1892	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1893	    cached->end > start)
1894		node = &cached->rb_node;
1895	else
1896		node = tree_search(tree, start);
1897	while (node && start <= end) {
1898		state = rb_entry(node, struct extent_state, rb_node);
1899
1900		if (filled && state->start > start) {
1901			bitset = 0;
1902			break;
1903		}
1904
1905		if (state->start > end)
1906			break;
1907
1908		if (state->state & bits) {
1909			bitset = 1;
1910			if (!filled)
1911				break;
1912		} else if (filled) {
1913			bitset = 0;
1914			break;
1915		}
1916
1917		if (state->end == (u64)-1)
1918			break;
1919
1920		start = state->end + 1;
1921		if (start > end)
1922			break;
1923		node = rb_next(node);
1924		if (!node) {
1925			if (filled)
1926				bitset = 0;
1927			break;
1928		}
1929	}
1930	spin_unlock(&tree->lock);
1931	return bitset;
1932}
1933
1934/*
1935 * helper function to set a given page up to date if all the
1936 * extents in the tree for that page are up to date
1937 */
1938static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1939{
1940	u64 start = page_offset(page);
1941	u64 end = start + PAGE_SIZE - 1;
1942	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1943		SetPageUptodate(page);
1944}
1945
1946int free_io_failure(struct extent_io_tree *failure_tree,
1947		    struct extent_io_tree *io_tree,
1948		    struct io_failure_record *rec)
1949{
1950	int ret;
1951	int err = 0;
 
1952
1953	set_state_failrec(failure_tree, rec->start, NULL);
1954	ret = clear_extent_bits(failure_tree, rec->start,
1955				rec->start + rec->len - 1,
1956				EXTENT_LOCKED | EXTENT_DIRTY);
1957	if (ret)
1958		err = ret;
1959
1960	ret = clear_extent_bits(io_tree, rec->start,
1961				rec->start + rec->len - 1,
1962				EXTENT_DAMAGED);
1963	if (ret && !err)
1964		err = ret;
1965
1966	kfree(rec);
1967	return err;
1968}
1969
1970/*
1971 * this bypasses the standard btrfs submit functions deliberately, as
1972 * the standard behavior is to write all copies in a raid setup. here we only
1973 * want to write the one bad copy. so we do the mapping for ourselves and issue
1974 * submit_bio directly.
1975 * to avoid any synchronization issues, wait for the data after writing, which
1976 * actually prevents the read that triggered the error from finishing.
1977 * currently, there can be no more than two copies of every data bit. thus,
1978 * exactly one rewrite is required.
1979 */
1980int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1981		      u64 length, u64 logical, struct page *page,
1982		      unsigned int pg_offset, int mirror_num)
1983{
 
1984	struct bio *bio;
1985	struct btrfs_device *dev;
1986	u64 map_length = 0;
1987	u64 sector;
1988	struct btrfs_bio *bbio = NULL;
 
1989	int ret;
1990
1991	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1992	BUG_ON(!mirror_num);
1993
1994	bio = btrfs_io_bio_alloc(1);
 
 
 
 
 
 
1995	bio->bi_iter.bi_size = 0;
1996	map_length = length;
1997
1998	/*
1999	 * Avoid races with device replace and make sure our bbio has devices
2000	 * associated to its stripes that don't go away while we are doing the
2001	 * read repair operation.
2002	 */
2003	btrfs_bio_counter_inc_blocked(fs_info);
2004	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2005		/*
2006		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2007		 * to update all raid stripes, but here we just want to correct
2008		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2009		 * stripe's dev and sector.
2010		 */
2011		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2012				      &map_length, &bbio, 0);
2013		if (ret) {
2014			btrfs_bio_counter_dec(fs_info);
2015			bio_put(bio);
2016			return -EIO;
2017		}
2018		ASSERT(bbio->mirror_num == 1);
2019	} else {
2020		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2021				      &map_length, &bbio, mirror_num);
2022		if (ret) {
2023			btrfs_bio_counter_dec(fs_info);
2024			bio_put(bio);
2025			return -EIO;
2026		}
2027		BUG_ON(mirror_num != bbio->mirror_num);
2028	}
2029
2030	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2031	bio->bi_iter.bi_sector = sector;
2032	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2033	btrfs_put_bbio(bbio);
2034	if (!dev || !dev->bdev ||
2035	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2036		btrfs_bio_counter_dec(fs_info);
2037		bio_put(bio);
2038		return -EIO;
2039	}
2040	bio_set_dev(bio, dev->bdev);
2041	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2042	bio_add_page(bio, page, length, pg_offset);
2043
2044	if (btrfsic_submit_bio_wait(bio)) {
2045		/* try to remap that extent elsewhere? */
2046		btrfs_bio_counter_dec(fs_info);
2047		bio_put(bio);
2048		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049		return -EIO;
2050	}
2051
2052	btrfs_info_rl_in_rcu(fs_info,
2053		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054				  ino, start,
2055				  rcu_str_deref(dev->name), sector);
2056	btrfs_bio_counter_dec(fs_info);
2057	bio_put(bio);
2058	return 0;
2059}
2060
2061int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2062			 struct extent_buffer *eb, int mirror_num)
2063{
2064	u64 start = eb->start;
2065	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2066	int ret = 0;
2067
2068	if (sb_rdonly(fs_info->sb))
2069		return -EROFS;
2070
2071	for (i = 0; i < num_pages; i++) {
2072		struct page *p = eb->pages[i];
2073
2074		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
 
2075					start - page_offset(p), mirror_num);
2076		if (ret)
2077			break;
2078		start += PAGE_SIZE;
2079	}
2080
2081	return ret;
2082}
2083
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
2088int clean_io_failure(struct btrfs_fs_info *fs_info,
2089		     struct extent_io_tree *failure_tree,
2090		     struct extent_io_tree *io_tree, u64 start,
2091		     struct page *page, u64 ino, unsigned int pg_offset)
2092{
2093	u64 private;
2094	struct io_failure_record *failrec;
 
2095	struct extent_state *state;
2096	int num_copies;
2097	int ret;
2098
2099	private = 0;
2100	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2101			       EXTENT_DIRTY, 0);
2102	if (!ret)
2103		return 0;
2104
2105	ret = get_state_failrec(failure_tree, start, &failrec);
 
2106	if (ret)
2107		return 0;
2108
2109	BUG_ON(!failrec->this_mirror);
2110
2111	if (failrec->in_validation) {
2112		/* there was no real error, just free the record */
2113		btrfs_debug(fs_info,
2114			"clean_io_failure: freeing dummy error at %llu",
2115			failrec->start);
2116		goto out;
2117	}
2118	if (sb_rdonly(fs_info->sb))
2119		goto out;
2120
2121	spin_lock(&io_tree->lock);
2122	state = find_first_extent_bit_state(io_tree,
2123					    failrec->start,
2124					    EXTENT_LOCKED);
2125	spin_unlock(&io_tree->lock);
2126
2127	if (state && state->start <= failrec->start &&
2128	    state->end >= failrec->start + failrec->len - 1) {
2129		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2130					      failrec->len);
2131		if (num_copies > 1)  {
2132			repair_io_failure(fs_info, ino, start, failrec->len,
2133					  failrec->logical, page, pg_offset,
2134					  failrec->failed_mirror);
2135		}
2136	}
2137
2138out:
2139	free_io_failure(failure_tree, io_tree, failrec);
2140
2141	return 0;
2142}
2143
2144/*
2145 * Can be called when
2146 * - hold extent lock
2147 * - under ordered extent
2148 * - the inode is freeing
2149 */
2150void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2151{
2152	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2153	struct io_failure_record *failrec;
2154	struct extent_state *state, *next;
2155
2156	if (RB_EMPTY_ROOT(&failure_tree->state))
2157		return;
2158
2159	spin_lock(&failure_tree->lock);
2160	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2161	while (state) {
2162		if (state->start > end)
2163			break;
2164
2165		ASSERT(state->end <= end);
2166
2167		next = next_state(state);
2168
2169		failrec = state->failrec;
2170		free_extent_state(state);
2171		kfree(failrec);
2172
2173		state = next;
2174	}
2175	spin_unlock(&failure_tree->lock);
2176}
2177
2178int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2179		struct io_failure_record **failrec_ret)
2180{
2181	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2182	struct io_failure_record *failrec;
2183	struct extent_map *em;
2184	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2185	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2186	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2187	int ret;
2188	u64 logical;
2189
2190	ret = get_state_failrec(failure_tree, start, &failrec);
2191	if (ret) {
2192		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2193		if (!failrec)
2194			return -ENOMEM;
2195
2196		failrec->start = start;
2197		failrec->len = end - start + 1;
2198		failrec->this_mirror = 0;
2199		failrec->bio_flags = 0;
2200		failrec->in_validation = 0;
2201
2202		read_lock(&em_tree->lock);
2203		em = lookup_extent_mapping(em_tree, start, failrec->len);
2204		if (!em) {
2205			read_unlock(&em_tree->lock);
2206			kfree(failrec);
2207			return -EIO;
2208		}
2209
2210		if (em->start > start || em->start + em->len <= start) {
2211			free_extent_map(em);
2212			em = NULL;
2213		}
2214		read_unlock(&em_tree->lock);
2215		if (!em) {
2216			kfree(failrec);
2217			return -EIO;
2218		}
2219
2220		logical = start - em->start;
2221		logical = em->block_start + logical;
2222		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2223			logical = em->block_start;
2224			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2225			extent_set_compress_type(&failrec->bio_flags,
2226						 em->compress_type);
2227		}
2228
2229		btrfs_debug(fs_info,
2230			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2231			logical, start, failrec->len);
2232
2233		failrec->logical = logical;
2234		free_extent_map(em);
2235
2236		/* set the bits in the private failure tree */
2237		ret = set_extent_bits(failure_tree, start, end,
2238					EXTENT_LOCKED | EXTENT_DIRTY);
2239		if (ret >= 0)
2240			ret = set_state_failrec(failure_tree, start, failrec);
2241		/* set the bits in the inode's tree */
2242		if (ret >= 0)
2243			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
 
2244		if (ret < 0) {
2245			kfree(failrec);
2246			return ret;
2247		}
2248	} else {
2249		btrfs_debug(fs_info,
2250			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2251			failrec->logical, failrec->start, failrec->len,
2252			failrec->in_validation);
2253		/*
2254		 * when data can be on disk more than twice, add to failrec here
2255		 * (e.g. with a list for failed_mirror) to make
2256		 * clean_io_failure() clean all those errors at once.
2257		 */
2258	}
2259
2260	*failrec_ret = failrec;
2261
2262	return 0;
2263}
2264
2265bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2266			   struct io_failure_record *failrec, int failed_mirror)
2267{
2268	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2269	int num_copies;
2270
2271	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
 
2272	if (num_copies == 1) {
2273		/*
2274		 * we only have a single copy of the data, so don't bother with
2275		 * all the retry and error correction code that follows. no
2276		 * matter what the error is, it is very likely to persist.
2277		 */
2278		btrfs_debug(fs_info,
2279			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2280			num_copies, failrec->this_mirror, failed_mirror);
2281		return false;
2282	}
2283
2284	/*
2285	 * there are two premises:
2286	 *	a) deliver good data to the caller
2287	 *	b) correct the bad sectors on disk
2288	 */
2289	if (failed_bio_pages > 1) {
2290		/*
2291		 * to fulfill b), we need to know the exact failing sectors, as
2292		 * we don't want to rewrite any more than the failed ones. thus,
2293		 * we need separate read requests for the failed bio
2294		 *
2295		 * if the following BUG_ON triggers, our validation request got
2296		 * merged. we need separate requests for our algorithm to work.
2297		 */
2298		BUG_ON(failrec->in_validation);
2299		failrec->in_validation = 1;
2300		failrec->this_mirror = failed_mirror;
2301	} else {
2302		/*
2303		 * we're ready to fulfill a) and b) alongside. get a good copy
2304		 * of the failed sector and if we succeed, we have setup
2305		 * everything for repair_io_failure to do the rest for us.
2306		 */
2307		if (failrec->in_validation) {
2308			BUG_ON(failrec->this_mirror != failed_mirror);
2309			failrec->in_validation = 0;
2310			failrec->this_mirror = 0;
2311		}
2312		failrec->failed_mirror = failed_mirror;
2313		failrec->this_mirror++;
2314		if (failrec->this_mirror == failed_mirror)
2315			failrec->this_mirror++;
2316	}
2317
2318	if (failrec->this_mirror > num_copies) {
2319		btrfs_debug(fs_info,
2320			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2321			num_copies, failrec->this_mirror, failed_mirror);
2322		return false;
2323	}
2324
2325	return true;
2326}
2327
2328
2329struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2330				    struct io_failure_record *failrec,
2331				    struct page *page, int pg_offset, int icsum,
2332				    bio_end_io_t *endio_func, void *data)
2333{
2334	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2335	struct bio *bio;
2336	struct btrfs_io_bio *btrfs_failed_bio;
2337	struct btrfs_io_bio *btrfs_bio;
2338
2339	bio = btrfs_io_bio_alloc(1);
 
 
 
2340	bio->bi_end_io = endio_func;
2341	bio->bi_iter.bi_sector = failrec->logical >> 9;
2342	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2343	bio->bi_iter.bi_size = 0;
2344	bio->bi_private = data;
2345
2346	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2347	if (btrfs_failed_bio->csum) {
 
2348		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2349
2350		btrfs_bio = btrfs_io_bio(bio);
2351		btrfs_bio->csum = btrfs_bio->csum_inline;
2352		icsum *= csum_size;
2353		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2354		       csum_size);
2355	}
2356
2357	bio_add_page(bio, page, failrec->len, pg_offset);
2358
2359	return bio;
2360}
2361
2362/*
2363 * this is a generic handler for readpage errors (default
2364 * readpage_io_failed_hook). if other copies exist, read those and write back
2365 * good data to the failed position. does not investigate in remapping the
2366 * failed extent elsewhere, hoping the device will be smart enough to do this as
2367 * needed
2368 */
2369
2370static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2371			      struct page *page, u64 start, u64 end,
2372			      int failed_mirror)
2373{
2374	struct io_failure_record *failrec;
2375	struct inode *inode = page->mapping->host;
2376	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2377	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2378	struct bio *bio;
2379	int read_mode = 0;
2380	blk_status_t status;
2381	int ret;
2382	unsigned failed_bio_pages = bio_pages_all(failed_bio);
2383
2384	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2385
2386	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2387	if (ret)
2388		return ret;
2389
2390	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2391				    failed_mirror)) {
2392		free_io_failure(failure_tree, tree, failrec);
2393		return -EIO;
2394	}
2395
2396	if (failed_bio_pages > 1)
2397		read_mode |= REQ_FAILFAST_DEV;
 
 
2398
2399	phy_offset >>= inode->i_sb->s_blocksize_bits;
2400	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2401				      start - page_offset(page),
2402				      (int)phy_offset, failed_bio->bi_end_io,
2403				      NULL);
2404	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
 
 
 
2405
2406	btrfs_debug(btrfs_sb(inode->i_sb),
2407		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2408		read_mode, failrec->this_mirror, failrec->in_validation);
2409
2410	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
 
2411					 failrec->bio_flags, 0);
2412	if (status) {
2413		free_io_failure(failure_tree, tree, failrec);
2414		bio_put(bio);
2415		ret = blk_status_to_errno(status);
2416	}
2417
2418	return ret;
2419}
2420
2421/* lots and lots of room for performance fixes in the end_bio funcs */
2422
2423void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2424{
2425	int uptodate = (err == 0);
2426	struct extent_io_tree *tree;
2427	int ret = 0;
2428
2429	tree = &BTRFS_I(page->mapping->host)->io_tree;
2430
2431	if (tree->ops && tree->ops->writepage_end_io_hook)
2432		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2433				uptodate);
 
 
 
2434
2435	if (!uptodate) {
2436		ClearPageUptodate(page);
2437		SetPageError(page);
2438		ret = err < 0 ? err : -EIO;
2439		mapping_set_error(page->mapping, ret);
2440	}
2441}
2442
2443/*
2444 * after a writepage IO is done, we need to:
2445 * clear the uptodate bits on error
2446 * clear the writeback bits in the extent tree for this IO
2447 * end_page_writeback if the page has no more pending IO
2448 *
2449 * Scheduling is not allowed, so the extent state tree is expected
2450 * to have one and only one object corresponding to this IO.
2451 */
2452static void end_bio_extent_writepage(struct bio *bio)
2453{
2454	int error = blk_status_to_errno(bio->bi_status);
2455	struct bio_vec *bvec;
2456	u64 start;
2457	u64 end;
2458	int i;
2459
2460	ASSERT(!bio_flagged(bio, BIO_CLONED));
2461	bio_for_each_segment_all(bvec, bio, i) {
2462		struct page *page = bvec->bv_page;
2463		struct inode *inode = page->mapping->host;
2464		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2465
2466		/* We always issue full-page reads, but if some block
2467		 * in a page fails to read, blk_update_request() will
2468		 * advance bv_offset and adjust bv_len to compensate.
2469		 * Print a warning for nonzero offsets, and an error
2470		 * if they don't add up to a full page.  */
2471		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2472			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2473				btrfs_err(fs_info,
2474				   "partial page write in btrfs with offset %u and length %u",
2475					bvec->bv_offset, bvec->bv_len);
2476			else
2477				btrfs_info(fs_info,
2478				   "incomplete page write in btrfs with offset %u and length %u",
 
2479					bvec->bv_offset, bvec->bv_len);
2480		}
2481
2482		start = page_offset(page);
2483		end = start + bvec->bv_offset + bvec->bv_len - 1;
2484
2485		end_extent_writepage(page, error, start, end);
2486		end_page_writeback(page);
2487	}
2488
2489	bio_put(bio);
2490}
2491
2492static void
2493endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2494			      int uptodate)
2495{
2496	struct extent_state *cached = NULL;
2497	u64 end = start + len - 1;
2498
2499	if (uptodate && tree->track_uptodate)
2500		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2501	unlock_extent_cached_atomic(tree, start, end, &cached);
2502}
2503
2504/*
2505 * after a readpage IO is done, we need to:
2506 * clear the uptodate bits on error
2507 * set the uptodate bits if things worked
2508 * set the page up to date if all extents in the tree are uptodate
2509 * clear the lock bit in the extent tree
2510 * unlock the page if there are no other extents locked for it
2511 *
2512 * Scheduling is not allowed, so the extent state tree is expected
2513 * to have one and only one object corresponding to this IO.
2514 */
2515static void end_bio_extent_readpage(struct bio *bio)
2516{
2517	struct bio_vec *bvec;
2518	int uptodate = !bio->bi_status;
2519	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2520	struct extent_io_tree *tree, *failure_tree;
2521	u64 offset = 0;
2522	u64 start;
2523	u64 end;
2524	u64 len;
2525	u64 extent_start = 0;
2526	u64 extent_len = 0;
2527	int mirror;
2528	int ret;
2529	int i;
2530
2531	ASSERT(!bio_flagged(bio, BIO_CLONED));
2532	bio_for_each_segment_all(bvec, bio, i) {
2533		struct page *page = bvec->bv_page;
2534		struct inode *inode = page->mapping->host;
2535		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2536
2537		btrfs_debug(fs_info,
2538			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2539			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2540			io_bio->mirror_num);
2541		tree = &BTRFS_I(inode)->io_tree;
2542		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2543
2544		/* We always issue full-page reads, but if some block
2545		 * in a page fails to read, blk_update_request() will
2546		 * advance bv_offset and adjust bv_len to compensate.
2547		 * Print a warning for nonzero offsets, and an error
2548		 * if they don't add up to a full page.  */
2549		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2550			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2551				btrfs_err(fs_info,
2552					"partial page read in btrfs with offset %u and length %u",
2553					bvec->bv_offset, bvec->bv_len);
2554			else
2555				btrfs_info(fs_info,
2556					"incomplete page read in btrfs with offset %u and length %u",
 
2557					bvec->bv_offset, bvec->bv_len);
2558		}
2559
2560		start = page_offset(page);
2561		end = start + bvec->bv_offset + bvec->bv_len - 1;
2562		len = bvec->bv_len;
2563
2564		mirror = io_bio->mirror_num;
2565		if (likely(uptodate && tree->ops)) {
 
2566			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2567							      page, start, end,
2568							      mirror);
2569			if (ret)
2570				uptodate = 0;
2571			else
2572				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2573						 failure_tree, tree, start,
2574						 page,
2575						 btrfs_ino(BTRFS_I(inode)), 0);
2576		}
2577
2578		if (likely(uptodate))
2579			goto readpage_ok;
2580
2581		if (tree->ops) {
2582			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2583			if (ret == -EAGAIN) {
2584				/*
2585				 * Data inode's readpage_io_failed_hook() always
2586				 * returns -EAGAIN.
2587				 *
2588				 * The generic bio_readpage_error handles errors
2589				 * the following way: If possible, new read
2590				 * requests are created and submitted and will
2591				 * end up in end_bio_extent_readpage as well (if
2592				 * we're lucky, not in the !uptodate case). In
2593				 * that case it returns 0 and we just go on with
2594				 * the next page in our bio. If it can't handle
2595				 * the error it will return -EIO and we remain
2596				 * responsible for that page.
2597				 */
2598				ret = bio_readpage_error(bio, offset, page,
2599							 start, end, mirror);
2600				if (ret == 0) {
2601					uptodate = !bio->bi_status;
2602					offset += len;
2603					continue;
2604				}
2605			}
2606
2607			/*
2608			 * metadata's readpage_io_failed_hook() always returns
2609			 * -EIO and fixes nothing.  -EIO is also returned if
2610			 * data inode error could not be fixed.
 
 
 
 
 
2611			 */
2612			ASSERT(ret == -EIO);
 
 
 
 
 
 
2613		}
2614readpage_ok:
2615		if (likely(uptodate)) {
2616			loff_t i_size = i_size_read(inode);
2617			pgoff_t end_index = i_size >> PAGE_SHIFT;
2618			unsigned off;
2619
2620			/* Zero out the end if this page straddles i_size */
2621			off = i_size & (PAGE_SIZE-1);
2622			if (page->index == end_index && off)
2623				zero_user_segment(page, off, PAGE_SIZE);
2624			SetPageUptodate(page);
2625		} else {
2626			ClearPageUptodate(page);
2627			SetPageError(page);
2628		}
2629		unlock_page(page);
2630		offset += len;
2631
2632		if (unlikely(!uptodate)) {
2633			if (extent_len) {
2634				endio_readpage_release_extent(tree,
2635							      extent_start,
2636							      extent_len, 1);
2637				extent_start = 0;
2638				extent_len = 0;
2639			}
2640			endio_readpage_release_extent(tree, start,
2641						      end - start + 1, 0);
2642		} else if (!extent_len) {
2643			extent_start = start;
2644			extent_len = end + 1 - start;
2645		} else if (extent_start + extent_len == start) {
2646			extent_len += end + 1 - start;
2647		} else {
2648			endio_readpage_release_extent(tree, extent_start,
2649						      extent_len, uptodate);
2650			extent_start = start;
2651			extent_len = end + 1 - start;
2652		}
2653	}
2654
2655	if (extent_len)
2656		endio_readpage_release_extent(tree, extent_start, extent_len,
2657					      uptodate);
2658	if (io_bio->end_io)
2659		io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2660	bio_put(bio);
2661}
2662
2663/*
2664 * Initialize the members up to but not including 'bio'. Use after allocating a
2665 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2666 * 'bio' because use of __GFP_ZERO is not supported.
2667 */
2668static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
 
 
2669{
2670	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2671}
 
 
2672
2673/*
2674 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2675 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2676 * for the appropriate container_of magic
2677 */
2678struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2679{
2680	struct bio *bio;
2681
2682	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2683	bio_set_dev(bio, bdev);
2684	bio->bi_iter.bi_sector = first_byte >> 9;
2685	btrfs_io_bio_init(btrfs_io_bio(bio));
 
 
 
 
2686	return bio;
2687}
2688
2689struct bio *btrfs_bio_clone(struct bio *bio)
2690{
2691	struct btrfs_io_bio *btrfs_bio;
2692	struct bio *new;
2693
2694	/* Bio allocation backed by a bioset does not fail */
2695	new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2696	btrfs_bio = btrfs_io_bio(new);
2697	btrfs_io_bio_init(btrfs_bio);
2698	btrfs_bio->iter = bio->bi_iter;
 
 
 
 
 
 
 
 
2699	return new;
2700}
2701
2702struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
 
2703{
 
2704	struct bio *bio;
2705
2706	/* Bio allocation backed by a bioset does not fail */
2707	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2708	btrfs_io_bio_init(btrfs_io_bio(bio));
 
 
 
 
2709	return bio;
2710}
2711
2712struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2713{
2714	struct bio *bio;
2715	struct btrfs_io_bio *btrfs_bio;
2716
2717	/* this will never fail when it's backed by a bioset */
2718	bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2719	ASSERT(bio);
2720
2721	btrfs_bio = btrfs_io_bio(bio);
2722	btrfs_io_bio_init(btrfs_bio);
2723
2724	bio_trim(bio, offset >> 9, size >> 9);
2725	btrfs_bio->iter = bio->bi_iter;
2726	return bio;
2727}
2728
2729static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2730				       unsigned long bio_flags)
2731{
2732	blk_status_t ret = 0;
2733	struct bio_vec *bvec = bio_last_bvec_all(bio);
2734	struct page *page = bvec->bv_page;
2735	struct extent_io_tree *tree = bio->bi_private;
2736	u64 start;
2737
2738	start = page_offset(page) + bvec->bv_offset;
2739
2740	bio->bi_private = NULL;
2741
2742	if (tree->ops)
2743		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
 
 
2744					   mirror_num, bio_flags, start);
2745	else
2746		btrfsic_submit_bio(bio);
2747
2748	return blk_status_to_errno(ret);
 
2749}
2750
2751/*
2752 * @opf:	bio REQ_OP_* and REQ_* flags as one value
2753 * @tree:	tree so we can call our merge_bio hook
2754 * @wbc:	optional writeback control for io accounting
2755 * @page:	page to add to the bio
2756 * @pg_offset:	offset of the new bio or to check whether we are adding
2757 *              a contiguous page to the previous one
2758 * @size:	portion of page that we want to write
2759 * @offset:	starting offset in the page
2760 * @bdev:	attach newly created bios to this bdev
2761 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2762 * @end_io_func:     end_io callback for new bio
2763 * @mirror_num:	     desired mirror to read/write
2764 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2765 * @bio_flags:	flags of the current bio to see if we can merge them
2766 */
2767static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2768			      struct writeback_control *wbc,
2769			      struct page *page, u64 offset,
2770			      size_t size, unsigned long pg_offset,
2771			      struct block_device *bdev,
2772			      struct bio **bio_ret,
 
2773			      bio_end_io_t end_io_func,
2774			      int mirror_num,
2775			      unsigned long prev_bio_flags,
2776			      unsigned long bio_flags,
2777			      bool force_bio_submit)
2778{
2779	int ret = 0;
2780	struct bio *bio;
 
 
2781	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2782	sector_t sector = offset >> 9;
2783
2784	ASSERT(bio_ret);
2785
2786	if (*bio_ret) {
2787		bool contig;
2788		bool can_merge = true;
2789
 
2790		bio = *bio_ret;
2791		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2792			contig = bio->bi_iter.bi_sector == sector;
2793		else
2794			contig = bio_end_sector(bio) == sector;
2795
2796		if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2797					page_size, bio, bio_flags))
2798			can_merge = false;
2799
2800		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2801		    force_bio_submit ||
2802		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2803			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
 
 
2804			if (ret < 0) {
2805				*bio_ret = NULL;
2806				return ret;
2807			}
2808			bio = NULL;
2809		} else {
2810			if (wbc)
2811				wbc_account_io(wbc, page, page_size);
2812			return 0;
2813		}
2814	}
2815
2816	bio = btrfs_bio_alloc(bdev, offset);
2817	bio_add_page(bio, page, page_size, pg_offset);
 
 
 
 
2818	bio->bi_end_io = end_io_func;
2819	bio->bi_private = tree;
2820	bio->bi_write_hint = page->mapping->host->i_write_hint;
2821	bio->bi_opf = opf;
2822	if (wbc) {
2823		wbc_init_bio(wbc, bio);
2824		wbc_account_io(wbc, page, page_size);
2825	}
2826
2827	*bio_ret = bio;
 
 
 
2828
2829	return ret;
2830}
2831
2832static void attach_extent_buffer_page(struct extent_buffer *eb,
2833				      struct page *page)
2834{
2835	if (!PagePrivate(page)) {
2836		SetPagePrivate(page);
2837		get_page(page);
2838		set_page_private(page, (unsigned long)eb);
2839	} else {
2840		WARN_ON(page->private != (unsigned long)eb);
2841	}
2842}
2843
2844void set_page_extent_mapped(struct page *page)
2845{
2846	if (!PagePrivate(page)) {
2847		SetPagePrivate(page);
2848		get_page(page);
2849		set_page_private(page, EXTENT_PAGE_PRIVATE);
2850	}
2851}
2852
2853static struct extent_map *
2854__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2855		 u64 start, u64 len, get_extent_t *get_extent,
2856		 struct extent_map **em_cached)
2857{
2858	struct extent_map *em;
2859
2860	if (em_cached && *em_cached) {
2861		em = *em_cached;
2862		if (extent_map_in_tree(em) && start >= em->start &&
2863		    start < extent_map_end(em)) {
2864			refcount_inc(&em->refs);
2865			return em;
2866		}
2867
2868		free_extent_map(em);
2869		*em_cached = NULL;
2870	}
2871
2872	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2873	if (em_cached && !IS_ERR_OR_NULL(em)) {
2874		BUG_ON(*em_cached);
2875		refcount_inc(&em->refs);
2876		*em_cached = em;
2877	}
2878	return em;
2879}
2880/*
2881 * basic readpage implementation.  Locked extent state structs are inserted
2882 * into the tree that are removed when the IO is done (by the end_io
2883 * handlers)
2884 * XXX JDM: This needs looking at to ensure proper page locking
2885 * return 0 on success, otherwise return error
2886 */
2887static int __do_readpage(struct extent_io_tree *tree,
2888			 struct page *page,
2889			 get_extent_t *get_extent,
2890			 struct extent_map **em_cached,
2891			 struct bio **bio, int mirror_num,
2892			 unsigned long *bio_flags, unsigned int read_flags,
2893			 u64 *prev_em_start)
2894{
2895	struct inode *inode = page->mapping->host;
2896	u64 start = page_offset(page);
2897	const u64 end = start + PAGE_SIZE - 1;
 
2898	u64 cur = start;
2899	u64 extent_offset;
2900	u64 last_byte = i_size_read(inode);
2901	u64 block_start;
2902	u64 cur_end;
 
2903	struct extent_map *em;
2904	struct block_device *bdev;
2905	int ret = 0;
2906	int nr = 0;
2907	size_t pg_offset = 0;
2908	size_t iosize;
2909	size_t disk_io_size;
2910	size_t blocksize = inode->i_sb->s_blocksize;
2911	unsigned long this_bio_flag = 0;
2912
2913	set_page_extent_mapped(page);
2914
 
2915	if (!PageUptodate(page)) {
2916		if (cleancache_get_page(page) == 0) {
2917			BUG_ON(blocksize != PAGE_SIZE);
2918			unlock_extent(tree, start, end);
2919			goto out;
2920		}
2921	}
2922
2923	if (page->index == last_byte >> PAGE_SHIFT) {
2924		char *userpage;
2925		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2926
2927		if (zero_offset) {
2928			iosize = PAGE_SIZE - zero_offset;
2929			userpage = kmap_atomic(page);
2930			memset(userpage + zero_offset, 0, iosize);
2931			flush_dcache_page(page);
2932			kunmap_atomic(userpage);
2933		}
2934	}
2935	while (cur <= end) {
 
2936		bool force_bio_submit = false;
2937		u64 offset;
2938
2939		if (cur >= last_byte) {
2940			char *userpage;
2941			struct extent_state *cached = NULL;
2942
2943			iosize = PAGE_SIZE - pg_offset;
2944			userpage = kmap_atomic(page);
2945			memset(userpage + pg_offset, 0, iosize);
2946			flush_dcache_page(page);
2947			kunmap_atomic(userpage);
2948			set_extent_uptodate(tree, cur, cur + iosize - 1,
2949					    &cached, GFP_NOFS);
2950			unlock_extent_cached(tree, cur,
2951					     cur + iosize - 1, &cached);
 
2952			break;
2953		}
2954		em = __get_extent_map(inode, page, pg_offset, cur,
2955				      end - cur + 1, get_extent, em_cached);
2956		if (IS_ERR_OR_NULL(em)) {
2957			SetPageError(page);
2958			unlock_extent(tree, cur, end);
2959			break;
2960		}
2961		extent_offset = cur - em->start;
2962		BUG_ON(extent_map_end(em) <= cur);
2963		BUG_ON(end < cur);
2964
2965		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967			extent_set_compress_type(&this_bio_flag,
2968						 em->compress_type);
2969		}
2970
2971		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972		cur_end = min(extent_map_end(em) - 1, end);
2973		iosize = ALIGN(iosize, blocksize);
2974		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975			disk_io_size = em->block_len;
2976			offset = em->block_start;
2977		} else {
2978			offset = em->block_start + extent_offset;
2979			disk_io_size = iosize;
2980		}
2981		bdev = em->bdev;
2982		block_start = em->block_start;
2983		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984			block_start = EXTENT_MAP_HOLE;
2985
2986		/*
2987		 * If we have a file range that points to a compressed extent
2988		 * and it's followed by a consecutive file range that points to
2989		 * to the same compressed extent (possibly with a different
2990		 * offset and/or length, so it either points to the whole extent
2991		 * or only part of it), we must make sure we do not submit a
2992		 * single bio to populate the pages for the 2 ranges because
2993		 * this makes the compressed extent read zero out the pages
2994		 * belonging to the 2nd range. Imagine the following scenario:
2995		 *
2996		 *  File layout
2997		 *  [0 - 8K]                     [8K - 24K]
2998		 *    |                               |
2999		 *    |                               |
3000		 * points to extent X,         points to extent X,
3001		 * offset 4K, length of 8K     offset 0, length 16K
3002		 *
3003		 * [extent X, compressed length = 4K uncompressed length = 16K]
3004		 *
3005		 * If the bio to read the compressed extent covers both ranges,
3006		 * it will decompress extent X into the pages belonging to the
3007		 * first range and then it will stop, zeroing out the remaining
3008		 * pages that belong to the other range that points to extent X.
3009		 * So here we make sure we submit 2 bios, one for the first
3010		 * range and another one for the third range. Both will target
3011		 * the same physical extent from disk, but we can't currently
3012		 * make the compressed bio endio callback populate the pages
3013		 * for both ranges because each compressed bio is tightly
3014		 * coupled with a single extent map, and each range can have
3015		 * an extent map with a different offset value relative to the
3016		 * uncompressed data of our extent and different lengths. This
3017		 * is a corner case so we prioritize correctness over
3018		 * non-optimal behavior (submitting 2 bios for the same extent).
3019		 */
3020		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021		    prev_em_start && *prev_em_start != (u64)-1 &&
3022		    *prev_em_start != em->orig_start)
3023			force_bio_submit = true;
3024
3025		if (prev_em_start)
3026			*prev_em_start = em->orig_start;
3027
3028		free_extent_map(em);
3029		em = NULL;
3030
3031		/* we've found a hole, just zero and go on */
3032		if (block_start == EXTENT_MAP_HOLE) {
3033			char *userpage;
3034			struct extent_state *cached = NULL;
3035
3036			userpage = kmap_atomic(page);
3037			memset(userpage + pg_offset, 0, iosize);
3038			flush_dcache_page(page);
3039			kunmap_atomic(userpage);
3040
3041			set_extent_uptodate(tree, cur, cur + iosize - 1,
3042					    &cached, GFP_NOFS);
3043			unlock_extent_cached(tree, cur,
3044					     cur + iosize - 1, &cached);
 
3045			cur = cur + iosize;
3046			pg_offset += iosize;
3047			continue;
3048		}
3049		/* the get_extent function already copied into the page */
3050		if (test_range_bit(tree, cur, cur_end,
3051				   EXTENT_UPTODATE, 1, NULL)) {
3052			check_page_uptodate(tree, page);
3053			unlock_extent(tree, cur, cur + iosize - 1);
3054			cur = cur + iosize;
3055			pg_offset += iosize;
3056			continue;
3057		}
3058		/* we have an inline extent but it didn't get marked up
3059		 * to date.  Error out
3060		 */
3061		if (block_start == EXTENT_MAP_INLINE) {
3062			SetPageError(page);
3063			unlock_extent(tree, cur, cur + iosize - 1);
3064			cur = cur + iosize;
3065			pg_offset += iosize;
3066			continue;
3067		}
3068
3069		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3070					 page, offset, disk_io_size,
3071					 pg_offset, bdev, bio,
 
3072					 end_bio_extent_readpage, mirror_num,
3073					 *bio_flags,
3074					 this_bio_flag,
3075					 force_bio_submit);
3076		if (!ret) {
3077			nr++;
3078			*bio_flags = this_bio_flag;
3079		} else {
3080			SetPageError(page);
3081			unlock_extent(tree, cur, cur + iosize - 1);
3082			goto out;
3083		}
3084		cur = cur + iosize;
3085		pg_offset += iosize;
3086	}
3087out:
3088	if (!nr) {
3089		if (!PageError(page))
3090			SetPageUptodate(page);
3091		unlock_page(page);
3092	}
3093	return ret;
3094}
3095
3096static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3097					     struct page *pages[], int nr_pages,
3098					     u64 start, u64 end,
 
3099					     struct extent_map **em_cached,
3100					     struct bio **bio,
3101					     unsigned long *bio_flags,
3102					     u64 *prev_em_start)
3103{
3104	struct inode *inode;
3105	struct btrfs_ordered_extent *ordered;
3106	int index;
3107
3108	inode = pages[0]->mapping->host;
3109	while (1) {
3110		lock_extent(tree, start, end);
3111		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3112						     end - start + 1);
3113		if (!ordered)
3114			break;
3115		unlock_extent(tree, start, end);
3116		btrfs_start_ordered_extent(inode, ordered, 1);
3117		btrfs_put_ordered_extent(ordered);
3118	}
3119
3120	for (index = 0; index < nr_pages; index++) {
3121		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3122				bio, 0, bio_flags, 0, prev_em_start);
3123		put_page(pages[index]);
3124	}
3125}
3126
3127static void __extent_readpages(struct extent_io_tree *tree,
3128			       struct page *pages[],
3129			       int nr_pages,
3130			       struct extent_map **em_cached,
3131			       struct bio **bio, unsigned long *bio_flags,
 
3132			       u64 *prev_em_start)
3133{
3134	u64 start = 0;
3135	u64 end = 0;
3136	u64 page_start;
3137	int index;
3138	int first_index = 0;
3139
3140	for (index = 0; index < nr_pages; index++) {
3141		page_start = page_offset(pages[index]);
3142		if (!end) {
3143			start = page_start;
3144			end = start + PAGE_SIZE - 1;
3145			first_index = index;
3146		} else if (end + 1 == page_start) {
3147			end += PAGE_SIZE;
3148		} else {
3149			__do_contiguous_readpages(tree, &pages[first_index],
3150						  index - first_index, start,
3151						  end, em_cached,
3152						  bio, bio_flags,
3153						  prev_em_start);
3154			start = page_start;
3155			end = start + PAGE_SIZE - 1;
3156			first_index = index;
3157		}
3158	}
3159
3160	if (end)
3161		__do_contiguous_readpages(tree, &pages[first_index],
3162					  index - first_index, start,
3163					  end, em_cached, bio,
3164					  bio_flags, prev_em_start);
 
3165}
3166
3167static int __extent_read_full_page(struct extent_io_tree *tree,
3168				   struct page *page,
3169				   get_extent_t *get_extent,
3170				   struct bio **bio, int mirror_num,
3171				   unsigned long *bio_flags,
3172				   unsigned int read_flags)
3173{
3174	struct inode *inode = page->mapping->host;
3175	struct btrfs_ordered_extent *ordered;
3176	u64 start = page_offset(page);
3177	u64 end = start + PAGE_SIZE - 1;
3178	int ret;
3179
3180	while (1) {
3181		lock_extent(tree, start, end);
3182		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3183						PAGE_SIZE);
3184		if (!ordered)
3185			break;
3186		unlock_extent(tree, start, end);
3187		btrfs_start_ordered_extent(inode, ordered, 1);
3188		btrfs_put_ordered_extent(ordered);
3189	}
3190
3191	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3192			    bio_flags, read_flags, NULL);
3193	return ret;
3194}
3195
3196int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3197			    get_extent_t *get_extent, int mirror_num)
3198{
3199	struct bio *bio = NULL;
3200	unsigned long bio_flags = 0;
3201	int ret;
3202
3203	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3204				      &bio_flags, 0);
3205	if (bio)
3206		ret = submit_one_bio(bio, mirror_num, bio_flags);
3207	return ret;
3208}
3209
3210static void update_nr_written(struct writeback_control *wbc,
3211			      unsigned long nr_written)
 
3212{
3213	wbc->nr_to_write -= nr_written;
 
 
 
3214}
3215
3216/*
3217 * helper for __extent_writepage, doing all of the delayed allocation setup.
3218 *
3219 * This returns 1 if our fill_delalloc function did all the work required
3220 * to write the page (copy into inline extent).  In this case the IO has
3221 * been started and the page is already unlocked.
3222 *
3223 * This returns 0 if all went well (page still locked)
3224 * This returns < 0 if there were errors (page still locked)
3225 */
3226static noinline_for_stack int writepage_delalloc(struct inode *inode,
3227			      struct page *page, struct writeback_control *wbc,
3228			      struct extent_page_data *epd,
3229			      u64 delalloc_start,
3230			      unsigned long *nr_written)
3231{
3232	struct extent_io_tree *tree = epd->tree;
3233	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3234	u64 nr_delalloc;
3235	u64 delalloc_to_write = 0;
3236	u64 delalloc_end = 0;
3237	int ret;
3238	int page_started = 0;
3239
3240	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3241		return 0;
3242
3243	while (delalloc_end < page_end) {
3244		nr_delalloc = find_lock_delalloc_range(inode, tree,
3245					       page,
3246					       &delalloc_start,
3247					       &delalloc_end,
3248					       BTRFS_MAX_EXTENT_SIZE);
3249		if (nr_delalloc == 0) {
3250			delalloc_start = delalloc_end + 1;
3251			continue;
3252		}
3253		ret = tree->ops->fill_delalloc(inode, page,
3254					       delalloc_start,
3255					       delalloc_end,
3256					       &page_started,
3257					       nr_written, wbc);
3258		/* File system has been set read-only */
3259		if (ret) {
3260			SetPageError(page);
3261			/* fill_delalloc should be return < 0 for error
3262			 * but just in case, we use > 0 here meaning the
3263			 * IO is started, so we don't want to return > 0
3264			 * unless things are going well.
3265			 */
3266			ret = ret < 0 ? ret : -EIO;
3267			goto done;
3268		}
3269		/*
3270		 * delalloc_end is already one less than the total length, so
3271		 * we don't subtract one from PAGE_SIZE
3272		 */
3273		delalloc_to_write += (delalloc_end - delalloc_start +
3274				      PAGE_SIZE) >> PAGE_SHIFT;
3275		delalloc_start = delalloc_end + 1;
3276	}
3277	if (wbc->nr_to_write < delalloc_to_write) {
3278		int thresh = 8192;
3279
3280		if (delalloc_to_write < thresh * 2)
3281			thresh = delalloc_to_write;
3282		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3283					 thresh);
3284	}
3285
3286	/* did the fill delalloc function already unlock and start
3287	 * the IO?
3288	 */
3289	if (page_started) {
3290		/*
3291		 * we've unlocked the page, so we can't update
3292		 * the mapping's writeback index, just update
3293		 * nr_to_write.
3294		 */
3295		wbc->nr_to_write -= *nr_written;
3296		return 1;
3297	}
3298
3299	ret = 0;
3300
3301done:
3302	return ret;
3303}
3304
3305/*
3306 * helper for __extent_writepage.  This calls the writepage start hooks,
3307 * and does the loop to map the page into extents and bios.
3308 *
3309 * We return 1 if the IO is started and the page is unlocked,
3310 * 0 if all went well (page still locked)
3311 * < 0 if there were errors (page still locked)
3312 */
3313static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3314				 struct page *page,
3315				 struct writeback_control *wbc,
3316				 struct extent_page_data *epd,
3317				 loff_t i_size,
3318				 unsigned long nr_written,
3319				 unsigned int write_flags, int *nr_ret)
3320{
3321	struct extent_io_tree *tree = epd->tree;
3322	u64 start = page_offset(page);
3323	u64 page_end = start + PAGE_SIZE - 1;
3324	u64 end;
3325	u64 cur = start;
3326	u64 extent_offset;
3327	u64 block_start;
3328	u64 iosize;
 
 
3329	struct extent_map *em;
3330	struct block_device *bdev;
3331	size_t pg_offset = 0;
3332	size_t blocksize;
3333	int ret = 0;
3334	int nr = 0;
3335	bool compressed;
3336
3337	if (tree->ops && tree->ops->writepage_start_hook) {
3338		ret = tree->ops->writepage_start_hook(page, start,
3339						      page_end);
3340		if (ret) {
3341			/* Fixup worker will requeue */
3342			if (ret == -EBUSY)
3343				wbc->pages_skipped++;
3344			else
3345				redirty_page_for_writepage(wbc, page);
3346
3347			update_nr_written(wbc, nr_written);
3348			unlock_page(page);
3349			return 1;
 
3350		}
3351	}
3352
3353	/*
3354	 * we don't want to touch the inode after unlocking the page,
3355	 * so we update the mapping writeback index now
3356	 */
3357	update_nr_written(wbc, nr_written + 1);
3358
3359	end = page_end;
3360	if (i_size <= start) {
3361		if (tree->ops && tree->ops->writepage_end_io_hook)
3362			tree->ops->writepage_end_io_hook(page, start,
3363							 page_end, NULL, 1);
3364		goto done;
3365	}
3366
3367	blocksize = inode->i_sb->s_blocksize;
3368
3369	while (cur <= end) {
3370		u64 em_end;
3371		u64 offset;
3372
3373		if (cur >= i_size) {
3374			if (tree->ops && tree->ops->writepage_end_io_hook)
3375				tree->ops->writepage_end_io_hook(page, cur,
3376							 page_end, NULL, 1);
3377			break;
3378		}
3379		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3380				     end - cur + 1, 1);
3381		if (IS_ERR_OR_NULL(em)) {
3382			SetPageError(page);
3383			ret = PTR_ERR_OR_ZERO(em);
3384			break;
3385		}
3386
3387		extent_offset = cur - em->start;
3388		em_end = extent_map_end(em);
3389		BUG_ON(em_end <= cur);
3390		BUG_ON(end < cur);
3391		iosize = min(em_end - cur, end - cur + 1);
3392		iosize = ALIGN(iosize, blocksize);
3393		offset = em->block_start + extent_offset;
3394		bdev = em->bdev;
3395		block_start = em->block_start;
3396		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3397		free_extent_map(em);
3398		em = NULL;
3399
3400		/*
3401		 * compressed and inline extents are written through other
3402		 * paths in the FS
3403		 */
3404		if (compressed || block_start == EXTENT_MAP_HOLE ||
3405		    block_start == EXTENT_MAP_INLINE) {
3406			/*
3407			 * end_io notification does not happen here for
3408			 * compressed extents
3409			 */
3410			if (!compressed && tree->ops &&
3411			    tree->ops->writepage_end_io_hook)
3412				tree->ops->writepage_end_io_hook(page, cur,
3413							 cur + iosize - 1,
3414							 NULL, 1);
3415			else if (compressed) {
3416				/* we don't want to end_page_writeback on
3417				 * a compressed extent.  this happens
3418				 * elsewhere
3419				 */
3420				nr++;
3421			}
3422
3423			cur += iosize;
3424			pg_offset += iosize;
3425			continue;
3426		}
3427
3428		set_range_writeback(tree, cur, cur + iosize - 1);
3429		if (!PageWriteback(page)) {
3430			btrfs_err(BTRFS_I(inode)->root->fs_info,
3431				   "page %lu not writeback, cur %llu end %llu",
3432			       page->index, cur, end);
3433		}
3434
3435		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3436					 page, offset, iosize, pg_offset,
3437					 bdev, &epd->bio,
3438					 end_bio_extent_writepage,
3439					 0, 0, 0, false);
3440		if (ret) {
3441			SetPageError(page);
3442			if (PageWriteback(page))
3443				end_page_writeback(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3444		}
3445
3446		cur = cur + iosize;
3447		pg_offset += iosize;
3448		nr++;
3449	}
3450done:
3451	*nr_ret = nr;
 
 
 
 
 
3452	return ret;
3453}
3454
3455/*
3456 * the writepage semantics are similar to regular writepage.  extent
3457 * records are inserted to lock ranges in the tree, and as dirty areas
3458 * are found, they are marked writeback.  Then the lock bits are removed
3459 * and the end_io handler clears the writeback ranges
3460 */
3461static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462			      struct extent_page_data *epd)
3463{
3464	struct inode *inode = page->mapping->host;
 
3465	u64 start = page_offset(page);
3466	u64 page_end = start + PAGE_SIZE - 1;
3467	int ret;
3468	int nr = 0;
3469	size_t pg_offset = 0;
3470	loff_t i_size = i_size_read(inode);
3471	unsigned long end_index = i_size >> PAGE_SHIFT;
3472	unsigned int write_flags = 0;
3473	unsigned long nr_written = 0;
3474
3475	write_flags = wbc_to_write_flags(wbc);
 
 
 
3476
3477	trace___extent_writepage(page, inode, wbc);
3478
3479	WARN_ON(!PageLocked(page));
3480
3481	ClearPageError(page);
3482
3483	pg_offset = i_size & (PAGE_SIZE - 1);
3484	if (page->index > end_index ||
3485	   (page->index == end_index && !pg_offset)) {
3486		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3487		unlock_page(page);
3488		return 0;
3489	}
3490
3491	if (page->index == end_index) {
3492		char *userpage;
3493
3494		userpage = kmap_atomic(page);
3495		memset(userpage + pg_offset, 0,
3496		       PAGE_SIZE - pg_offset);
3497		kunmap_atomic(userpage);
3498		flush_dcache_page(page);
3499	}
3500
3501	pg_offset = 0;
3502
3503	set_page_extent_mapped(page);
3504
3505	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506	if (ret == 1)
3507		goto done_unlocked;
3508	if (ret)
3509		goto done;
3510
3511	ret = __extent_writepage_io(inode, page, wbc, epd,
3512				    i_size, nr_written, write_flags, &nr);
3513	if (ret == 1)
3514		goto done_unlocked;
3515
3516done:
3517	if (nr == 0) {
3518		/* make sure the mapping tag for page dirty gets cleared */
3519		set_page_writeback(page);
3520		end_page_writeback(page);
3521	}
3522	if (PageError(page)) {
3523		ret = ret < 0 ? ret : -EIO;
3524		end_extent_writepage(page, ret, start, page_end);
3525	}
3526	unlock_page(page);
3527	return ret;
3528
3529done_unlocked:
3530	return 0;
3531}
3532
3533void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3534{
3535	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536		       TASK_UNINTERRUPTIBLE);
3537}
3538
3539static noinline_for_stack int
3540lock_extent_buffer_for_io(struct extent_buffer *eb,
3541			  struct btrfs_fs_info *fs_info,
3542			  struct extent_page_data *epd)
3543{
3544	unsigned long i, num_pages;
3545	int flush = 0;
3546	int ret = 0;
3547
3548	if (!btrfs_try_tree_write_lock(eb)) {
3549		flush = 1;
3550		flush_write_bio(epd);
3551		btrfs_tree_lock(eb);
3552	}
3553
3554	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555		btrfs_tree_unlock(eb);
3556		if (!epd->sync_io)
3557			return 0;
3558		if (!flush) {
3559			flush_write_bio(epd);
3560			flush = 1;
3561		}
3562		while (1) {
3563			wait_on_extent_buffer_writeback(eb);
3564			btrfs_tree_lock(eb);
3565			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566				break;
3567			btrfs_tree_unlock(eb);
3568		}
3569	}
3570
3571	/*
3572	 * We need to do this to prevent races in people who check if the eb is
3573	 * under IO since we can end up having no IO bits set for a short period
3574	 * of time.
3575	 */
3576	spin_lock(&eb->refs_lock);
3577	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3579		spin_unlock(&eb->refs_lock);
3580		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3581		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3582					 -eb->len,
3583					 fs_info->dirty_metadata_batch);
3584		ret = 1;
3585	} else {
3586		spin_unlock(&eb->refs_lock);
3587	}
3588
3589	btrfs_tree_unlock(eb);
3590
3591	if (!ret)
3592		return ret;
3593
3594	num_pages = num_extent_pages(eb->start, eb->len);
3595	for (i = 0; i < num_pages; i++) {
3596		struct page *p = eb->pages[i];
3597
3598		if (!trylock_page(p)) {
3599			if (!flush) {
3600				flush_write_bio(epd);
3601				flush = 1;
3602			}
3603			lock_page(p);
3604		}
3605	}
3606
3607	return ret;
3608}
3609
3610static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611{
3612	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3613	smp_mb__after_atomic();
3614	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615}
3616
3617static void set_btree_ioerr(struct page *page)
3618{
3619	struct extent_buffer *eb = (struct extent_buffer *)page->private;
 
3620
3621	SetPageError(page);
3622	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3623		return;
3624
3625	/*
3626	 * If writeback for a btree extent that doesn't belong to a log tree
3627	 * failed, increment the counter transaction->eb_write_errors.
3628	 * We do this because while the transaction is running and before it's
3629	 * committing (when we call filemap_fdata[write|wait]_range against
3630	 * the btree inode), we might have
3631	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3632	 * returns an error or an error happens during writeback, when we're
3633	 * committing the transaction we wouldn't know about it, since the pages
3634	 * can be no longer dirty nor marked anymore for writeback (if a
3635	 * subsequent modification to the extent buffer didn't happen before the
3636	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3637	 * able to find the pages tagged with SetPageError at transaction
3638	 * commit time. So if this happens we must abort the transaction,
3639	 * otherwise we commit a super block with btree roots that point to
3640	 * btree nodes/leafs whose content on disk is invalid - either garbage
3641	 * or the content of some node/leaf from a past generation that got
3642	 * cowed or deleted and is no longer valid.
3643	 *
3644	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3645	 * not be enough - we need to distinguish between log tree extents vs
3646	 * non-log tree extents, and the next filemap_fdatawait_range() call
3647	 * will catch and clear such errors in the mapping - and that call might
3648	 * be from a log sync and not from a transaction commit. Also, checking
3649	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3650	 * not done and would not be reliable - the eb might have been released
3651	 * from memory and reading it back again means that flag would not be
3652	 * set (since it's a runtime flag, not persisted on disk).
3653	 *
3654	 * Using the flags below in the btree inode also makes us achieve the
3655	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3656	 * writeback for all dirty pages and before filemap_fdatawait_range()
3657	 * is called, the writeback for all dirty pages had already finished
3658	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3659	 * filemap_fdatawait_range() would return success, as it could not know
3660	 * that writeback errors happened (the pages were no longer tagged for
3661	 * writeback).
3662	 */
3663	switch (eb->log_index) {
3664	case -1:
3665		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3666		break;
3667	case 0:
3668		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3669		break;
3670	case 1:
3671		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3672		break;
3673	default:
3674		BUG(); /* unexpected, logic error */
3675	}
3676}
3677
3678static void end_bio_extent_buffer_writepage(struct bio *bio)
3679{
3680	struct bio_vec *bvec;
3681	struct extent_buffer *eb;
3682	int i, done;
3683
3684	ASSERT(!bio_flagged(bio, BIO_CLONED));
3685	bio_for_each_segment_all(bvec, bio, i) {
3686		struct page *page = bvec->bv_page;
3687
3688		eb = (struct extent_buffer *)page->private;
3689		BUG_ON(!eb);
3690		done = atomic_dec_and_test(&eb->io_pages);
3691
3692		if (bio->bi_status ||
3693		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3694			ClearPageUptodate(page);
3695			set_btree_ioerr(page);
3696		}
3697
3698		end_page_writeback(page);
3699
3700		if (!done)
3701			continue;
3702
3703		end_extent_buffer_writeback(eb);
3704	}
3705
3706	bio_put(bio);
3707}
3708
3709static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3710			struct btrfs_fs_info *fs_info,
3711			struct writeback_control *wbc,
3712			struct extent_page_data *epd)
3713{
3714	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3715	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3716	u64 offset = eb->start;
3717	u32 nritems;
3718	unsigned long i, num_pages;
3719	unsigned long start, end;
3720	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3721	int ret = 0;
3722
3723	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3724	num_pages = num_extent_pages(eb->start, eb->len);
3725	atomic_set(&eb->io_pages, num_pages);
3726
3727	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3728	nritems = btrfs_header_nritems(eb);
3729	if (btrfs_header_level(eb) > 0) {
3730		end = btrfs_node_key_ptr_offset(nritems);
3731
3732		memzero_extent_buffer(eb, end, eb->len - end);
3733	} else {
3734		/*
3735		 * leaf:
3736		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3737		 */
3738		start = btrfs_item_nr_offset(nritems);
3739		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3740		memzero_extent_buffer(eb, start, end - start);
3741	}
3742
3743	for (i = 0; i < num_pages; i++) {
3744		struct page *p = eb->pages[i];
3745
3746		clear_page_dirty_for_io(p);
3747		set_page_writeback(p);
3748		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3749					 p, offset, PAGE_SIZE, 0, bdev,
3750					 &epd->bio,
3751					 end_bio_extent_buffer_writepage,
3752					 0, 0, 0, false);
3753		if (ret) {
3754			set_btree_ioerr(p);
3755			if (PageWriteback(p))
3756				end_page_writeback(p);
3757			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3758				end_extent_buffer_writeback(eb);
3759			ret = -EIO;
3760			break;
3761		}
3762		offset += PAGE_SIZE;
3763		update_nr_written(wbc, 1);
3764		unlock_page(p);
3765	}
3766
3767	if (unlikely(ret)) {
3768		for (; i < num_pages; i++) {
3769			struct page *p = eb->pages[i];
3770			clear_page_dirty_for_io(p);
3771			unlock_page(p);
3772		}
3773	}
3774
3775	return ret;
3776}
3777
3778int btree_write_cache_pages(struct address_space *mapping,
3779				   struct writeback_control *wbc)
3780{
3781	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3782	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3783	struct extent_buffer *eb, *prev_eb = NULL;
3784	struct extent_page_data epd = {
3785		.bio = NULL,
3786		.tree = tree,
3787		.extent_locked = 0,
3788		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 
3789	};
3790	int ret = 0;
3791	int done = 0;
3792	int nr_to_write_done = 0;
3793	struct pagevec pvec;
3794	int nr_pages;
3795	pgoff_t index;
3796	pgoff_t end;		/* Inclusive */
3797	int scanned = 0;
3798	int tag;
3799
3800	pagevec_init(&pvec);
3801	if (wbc->range_cyclic) {
3802		index = mapping->writeback_index; /* Start from prev offset */
3803		end = -1;
3804	} else {
3805		index = wbc->range_start >> PAGE_SHIFT;
3806		end = wbc->range_end >> PAGE_SHIFT;
3807		scanned = 1;
3808	}
3809	if (wbc->sync_mode == WB_SYNC_ALL)
3810		tag = PAGECACHE_TAG_TOWRITE;
3811	else
3812		tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814	if (wbc->sync_mode == WB_SYNC_ALL)
3815		tag_pages_for_writeback(mapping, index, end);
3816	while (!done && !nr_to_write_done && (index <= end) &&
3817	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3818			tag))) {
3819		unsigned i;
3820
3821		scanned = 1;
3822		for (i = 0; i < nr_pages; i++) {
3823			struct page *page = pvec.pages[i];
3824
3825			if (!PagePrivate(page))
3826				continue;
3827
 
 
 
 
 
3828			spin_lock(&mapping->private_lock);
3829			if (!PagePrivate(page)) {
3830				spin_unlock(&mapping->private_lock);
3831				continue;
3832			}
3833
3834			eb = (struct extent_buffer *)page->private;
3835
3836			/*
3837			 * Shouldn't happen and normally this would be a BUG_ON
3838			 * but no sense in crashing the users box for something
3839			 * we can survive anyway.
3840			 */
3841			if (WARN_ON(!eb)) {
3842				spin_unlock(&mapping->private_lock);
3843				continue;
3844			}
3845
3846			if (eb == prev_eb) {
3847				spin_unlock(&mapping->private_lock);
3848				continue;
3849			}
3850
3851			ret = atomic_inc_not_zero(&eb->refs);
3852			spin_unlock(&mapping->private_lock);
3853			if (!ret)
3854				continue;
3855
3856			prev_eb = eb;
3857			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3858			if (!ret) {
3859				free_extent_buffer(eb);
3860				continue;
3861			}
3862
3863			ret = write_one_eb(eb, fs_info, wbc, &epd);
3864			if (ret) {
3865				done = 1;
3866				free_extent_buffer(eb);
3867				break;
3868			}
3869			free_extent_buffer(eb);
3870
3871			/*
3872			 * the filesystem may choose to bump up nr_to_write.
3873			 * We have to make sure to honor the new nr_to_write
3874			 * at any time
3875			 */
3876			nr_to_write_done = wbc->nr_to_write <= 0;
3877		}
3878		pagevec_release(&pvec);
3879		cond_resched();
3880	}
3881	if (!scanned && !done) {
3882		/*
3883		 * We hit the last page and there is more work to be done: wrap
3884		 * back to the start of the file
3885		 */
3886		scanned = 1;
3887		index = 0;
3888		goto retry;
3889	}
3890	flush_write_bio(&epd);
3891	return ret;
3892}
3893
3894/**
3895 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3896 * @mapping: address space structure to write
3897 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3898 * @data: data passed to __extent_writepage function
 
3899 *
3900 * If a page is already under I/O, write_cache_pages() skips it, even
3901 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3902 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3903 * and msync() need to guarantee that all the data which was dirty at the time
3904 * the call was made get new I/O started against them.  If wbc->sync_mode is
3905 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3906 * existing IO to complete.
3907 */
3908static int extent_write_cache_pages(struct address_space *mapping,
 
3909			     struct writeback_control *wbc,
3910			     struct extent_page_data *epd)
 
3911{
3912	struct inode *inode = mapping->host;
3913	int ret = 0;
3914	int done = 0;
 
3915	int nr_to_write_done = 0;
3916	struct pagevec pvec;
3917	int nr_pages;
3918	pgoff_t index;
3919	pgoff_t end;		/* Inclusive */
3920	pgoff_t done_index;
3921	int range_whole = 0;
3922	int scanned = 0;
3923	int tag;
3924
3925	/*
3926	 * We have to hold onto the inode so that ordered extents can do their
3927	 * work when the IO finishes.  The alternative to this is failing to add
3928	 * an ordered extent if the igrab() fails there and that is a huge pain
3929	 * to deal with, so instead just hold onto the inode throughout the
3930	 * writepages operation.  If it fails here we are freeing up the inode
3931	 * anyway and we'd rather not waste our time writing out stuff that is
3932	 * going to be truncated anyway.
3933	 */
3934	if (!igrab(inode))
3935		return 0;
3936
3937	pagevec_init(&pvec);
3938	if (wbc->range_cyclic) {
3939		index = mapping->writeback_index; /* Start from prev offset */
3940		end = -1;
3941	} else {
3942		index = wbc->range_start >> PAGE_SHIFT;
3943		end = wbc->range_end >> PAGE_SHIFT;
3944		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3945			range_whole = 1;
3946		scanned = 1;
3947	}
3948	if (wbc->sync_mode == WB_SYNC_ALL)
3949		tag = PAGECACHE_TAG_TOWRITE;
3950	else
3951		tag = PAGECACHE_TAG_DIRTY;
3952retry:
3953	if (wbc->sync_mode == WB_SYNC_ALL)
3954		tag_pages_for_writeback(mapping, index, end);
3955	done_index = index;
3956	while (!done && !nr_to_write_done && (index <= end) &&
3957			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3958						&index, end, tag))) {
3959		unsigned i;
3960
3961		scanned = 1;
3962		for (i = 0; i < nr_pages; i++) {
3963			struct page *page = pvec.pages[i];
3964
3965			done_index = page->index;
3966			/*
3967			 * At this point we hold neither the i_pages lock nor
3968			 * the page lock: the page may be truncated or
3969			 * invalidated (changing page->mapping to NULL),
3970			 * or even swizzled back from swapper_space to
3971			 * tmpfs file mapping
3972			 */
3973			if (!trylock_page(page)) {
3974				flush_write_bio(epd);
3975				lock_page(page);
3976			}
3977
3978			if (unlikely(page->mapping != mapping)) {
3979				unlock_page(page);
3980				continue;
3981			}
3982
 
 
 
 
 
 
3983			if (wbc->sync_mode != WB_SYNC_NONE) {
3984				if (PageWriteback(page))
3985					flush_write_bio(epd);
3986				wait_on_page_writeback(page);
3987			}
3988
3989			if (PageWriteback(page) ||
3990			    !clear_page_dirty_for_io(page)) {
3991				unlock_page(page);
3992				continue;
3993			}
3994
3995			ret = __extent_writepage(page, wbc, epd);
3996
3997			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3998				unlock_page(page);
3999				ret = 0;
4000			}
4001			if (ret < 0) {
4002				/*
4003				 * done_index is set past this page,
4004				 * so media errors will not choke
4005				 * background writeout for the entire
4006				 * file. This has consequences for
4007				 * range_cyclic semantics (ie. it may
4008				 * not be suitable for data integrity
4009				 * writeout).
4010				 */
4011				done_index = page->index + 1;
4012				done = 1;
4013				break;
4014			}
4015
4016			/*
4017			 * the filesystem may choose to bump up nr_to_write.
4018			 * We have to make sure to honor the new nr_to_write
4019			 * at any time
4020			 */
4021			nr_to_write_done = wbc->nr_to_write <= 0;
4022		}
4023		pagevec_release(&pvec);
4024		cond_resched();
4025	}
4026	if (!scanned && !done) {
4027		/*
4028		 * We hit the last page and there is more work to be done: wrap
4029		 * back to the start of the file
4030		 */
4031		scanned = 1;
4032		index = 0;
4033		goto retry;
4034	}
4035
4036	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4037		mapping->writeback_index = done_index;
4038
4039	btrfs_add_delayed_iput(inode);
4040	return ret;
4041}
4042
4043static void flush_write_bio(struct extent_page_data *epd)
4044{
4045	if (epd->bio) {
 
4046		int ret;
4047
4048		ret = submit_one_bio(epd->bio, 0, 0);
 
 
 
4049		BUG_ON(ret < 0); /* -ENOMEM */
4050		epd->bio = NULL;
4051	}
4052}
4053
4054int extent_write_full_page(struct page *page, struct writeback_control *wbc)
 
 
 
 
 
 
 
 
4055{
4056	int ret;
4057	struct extent_page_data epd = {
4058		.bio = NULL,
4059		.tree = &BTRFS_I(page->mapping->host)->io_tree,
 
4060		.extent_locked = 0,
4061		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 
4062	};
4063
4064	ret = __extent_writepage(page, wbc, &epd);
4065
4066	flush_write_bio(&epd);
4067	return ret;
4068}
4069
4070int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
 
4071			      int mode)
4072{
4073	int ret = 0;
4074	struct address_space *mapping = inode->i_mapping;
4075	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4076	struct page *page;
4077	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4078		PAGE_SHIFT;
4079
4080	struct extent_page_data epd = {
4081		.bio = NULL,
4082		.tree = tree,
 
4083		.extent_locked = 1,
4084		.sync_io = mode == WB_SYNC_ALL,
 
4085	};
4086	struct writeback_control wbc_writepages = {
4087		.sync_mode	= mode,
4088		.nr_to_write	= nr_pages * 2,
4089		.range_start	= start,
4090		.range_end	= end + 1,
4091	};
4092
4093	while (start <= end) {
4094		page = find_get_page(mapping, start >> PAGE_SHIFT);
4095		if (clear_page_dirty_for_io(page))
4096			ret = __extent_writepage(page, &wbc_writepages, &epd);
4097		else {
4098			if (tree->ops && tree->ops->writepage_end_io_hook)
4099				tree->ops->writepage_end_io_hook(page, start,
4100						 start + PAGE_SIZE - 1,
4101						 NULL, 1);
4102			unlock_page(page);
4103		}
4104		put_page(page);
4105		start += PAGE_SIZE;
4106	}
4107
4108	flush_write_bio(&epd);
4109	return ret;
4110}
4111
4112int extent_writepages(struct extent_io_tree *tree,
4113		      struct address_space *mapping,
 
4114		      struct writeback_control *wbc)
4115{
4116	int ret = 0;
4117	struct extent_page_data epd = {
4118		.bio = NULL,
4119		.tree = tree,
 
4120		.extent_locked = 0,
4121		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 
4122	};
4123
4124	ret = extent_write_cache_pages(mapping, wbc, &epd);
4125	flush_write_bio(&epd);
 
 
4126	return ret;
4127}
4128
4129int extent_readpages(struct extent_io_tree *tree,
4130		     struct address_space *mapping,
4131		     struct list_head *pages, unsigned nr_pages)
 
4132{
4133	struct bio *bio = NULL;
4134	unsigned page_idx;
4135	unsigned long bio_flags = 0;
4136	struct page *pagepool[16];
4137	struct page *page;
4138	struct extent_map *em_cached = NULL;
4139	int nr = 0;
4140	u64 prev_em_start = (u64)-1;
4141
4142	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4143		page = list_entry(pages->prev, struct page, lru);
4144
4145		prefetchw(&page->flags);
4146		list_del(&page->lru);
4147		if (add_to_page_cache_lru(page, mapping,
4148					page->index,
4149					readahead_gfp_mask(mapping))) {
4150			put_page(page);
4151			continue;
4152		}
4153
4154		pagepool[nr++] = page;
4155		if (nr < ARRAY_SIZE(pagepool))
4156			continue;
4157		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4158				&bio_flags, &prev_em_start);
4159		nr = 0;
4160	}
4161	if (nr)
4162		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4163				&bio_flags, &prev_em_start);
4164
4165	if (em_cached)
4166		free_extent_map(em_cached);
4167
4168	BUG_ON(!list_empty(pages));
4169	if (bio)
4170		return submit_one_bio(bio, 0, bio_flags);
4171	return 0;
4172}
4173
4174/*
4175 * basic invalidatepage code, this waits on any locked or writeback
4176 * ranges corresponding to the page, and then deletes any extent state
4177 * records from the tree
4178 */
4179int extent_invalidatepage(struct extent_io_tree *tree,
4180			  struct page *page, unsigned long offset)
4181{
4182	struct extent_state *cached_state = NULL;
4183	u64 start = page_offset(page);
4184	u64 end = start + PAGE_SIZE - 1;
4185	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4186
4187	start += ALIGN(offset, blocksize);
4188	if (start > end)
4189		return 0;
4190
4191	lock_extent_bits(tree, start, end, &cached_state);
4192	wait_on_page_writeback(page);
4193	clear_extent_bit(tree, start, end,
4194			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4195			 EXTENT_DO_ACCOUNTING,
4196			 1, 1, &cached_state);
4197	return 0;
4198}
4199
4200/*
4201 * a helper for releasepage, this tests for areas of the page that
4202 * are locked or under IO and drops the related state bits if it is safe
4203 * to drop the page.
4204 */
4205static int try_release_extent_state(struct extent_map_tree *map,
4206				    struct extent_io_tree *tree,
4207				    struct page *page, gfp_t mask)
4208{
4209	u64 start = page_offset(page);
4210	u64 end = start + PAGE_SIZE - 1;
4211	int ret = 1;
4212
4213	if (test_range_bit(tree, start, end,
4214			   EXTENT_IOBITS, 0, NULL))
4215		ret = 0;
4216	else {
 
 
4217		/*
4218		 * at this point we can safely clear everything except the
4219		 * locked bit and the nodatasum bit
4220		 */
4221		ret = __clear_extent_bit(tree, start, end,
4222				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4223				 0, 0, NULL, mask, NULL);
4224
4225		/* if clear_extent_bit failed for enomem reasons,
4226		 * we can't allow the release to continue.
4227		 */
4228		if (ret < 0)
4229			ret = 0;
4230		else
4231			ret = 1;
4232	}
4233	return ret;
4234}
4235
4236/*
4237 * a helper for releasepage.  As long as there are no locked extents
4238 * in the range corresponding to the page, both state records and extent
4239 * map records are removed
4240 */
4241int try_release_extent_mapping(struct extent_map_tree *map,
4242			       struct extent_io_tree *tree, struct page *page,
4243			       gfp_t mask)
4244{
4245	struct extent_map *em;
4246	u64 start = page_offset(page);
4247	u64 end = start + PAGE_SIZE - 1;
4248
4249	if (gfpflags_allow_blocking(mask) &&
4250	    page->mapping->host->i_size > SZ_16M) {
4251		u64 len;
4252		while (start <= end) {
4253			len = end - start + 1;
4254			write_lock(&map->lock);
4255			em = lookup_extent_mapping(map, start, len);
4256			if (!em) {
4257				write_unlock(&map->lock);
4258				break;
4259			}
4260			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4261			    em->start != start) {
4262				write_unlock(&map->lock);
4263				free_extent_map(em);
4264				break;
4265			}
4266			if (!test_range_bit(tree, em->start,
4267					    extent_map_end(em) - 1,
4268					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4269					    0, NULL)) {
4270				remove_extent_mapping(map, em);
4271				/* once for the rb tree */
4272				free_extent_map(em);
4273			}
4274			start = extent_map_end(em);
4275			write_unlock(&map->lock);
4276
4277			/* once for us */
4278			free_extent_map(em);
4279		}
4280	}
4281	return try_release_extent_state(map, tree, page, mask);
4282}
4283
4284/*
4285 * helper function for fiemap, which doesn't want to see any holes.
4286 * This maps until we find something past 'last'
4287 */
4288static struct extent_map *get_extent_skip_holes(struct inode *inode,
4289						u64 offset, u64 last)
 
 
4290{
4291	u64 sectorsize = btrfs_inode_sectorsize(inode);
4292	struct extent_map *em;
4293	u64 len;
4294
4295	if (offset >= last)
4296		return NULL;
4297
4298	while (1) {
4299		len = last - offset;
4300		if (len == 0)
4301			break;
4302		len = ALIGN(len, sectorsize);
4303		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4304				len, 0);
4305		if (IS_ERR_OR_NULL(em))
4306			return em;
4307
4308		/* if this isn't a hole return it */
4309		if (em->block_start != EXTENT_MAP_HOLE)
 
4310			return em;
 
4311
4312		/* this is a hole, advance to the next extent */
4313		offset = extent_map_end(em);
4314		free_extent_map(em);
4315		if (offset >= last)
4316			break;
4317	}
4318	return NULL;
4319}
4320
4321/*
4322 * To cache previous fiemap extent
4323 *
4324 * Will be used for merging fiemap extent
4325 */
4326struct fiemap_cache {
4327	u64 offset;
4328	u64 phys;
4329	u64 len;
4330	u32 flags;
4331	bool cached;
4332};
4333
4334/*
4335 * Helper to submit fiemap extent.
4336 *
4337 * Will try to merge current fiemap extent specified by @offset, @phys,
4338 * @len and @flags with cached one.
4339 * And only when we fails to merge, cached one will be submitted as
4340 * fiemap extent.
4341 *
4342 * Return value is the same as fiemap_fill_next_extent().
4343 */
4344static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4345				struct fiemap_cache *cache,
4346				u64 offset, u64 phys, u64 len, u32 flags)
4347{
4348	int ret = 0;
4349
4350	if (!cache->cached)
4351		goto assign;
4352
4353	/*
4354	 * Sanity check, extent_fiemap() should have ensured that new
4355	 * fiemap extent won't overlap with cahced one.
4356	 * Not recoverable.
4357	 *
4358	 * NOTE: Physical address can overlap, due to compression
4359	 */
4360	if (cache->offset + cache->len > offset) {
4361		WARN_ON(1);
4362		return -EINVAL;
4363	}
4364
4365	/*
4366	 * Only merges fiemap extents if
4367	 * 1) Their logical addresses are continuous
4368	 *
4369	 * 2) Their physical addresses are continuous
4370	 *    So truly compressed (physical size smaller than logical size)
4371	 *    extents won't get merged with each other
4372	 *
4373	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4374	 *    So regular extent won't get merged with prealloc extent
4375	 */
4376	if (cache->offset + cache->len  == offset &&
4377	    cache->phys + cache->len == phys  &&
4378	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4379			(flags & ~FIEMAP_EXTENT_LAST)) {
4380		cache->len += len;
4381		cache->flags |= flags;
4382		goto try_submit_last;
4383	}
4384
4385	/* Not mergeable, need to submit cached one */
4386	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4387				      cache->len, cache->flags);
4388	cache->cached = false;
4389	if (ret)
4390		return ret;
4391assign:
4392	cache->cached = true;
4393	cache->offset = offset;
4394	cache->phys = phys;
4395	cache->len = len;
4396	cache->flags = flags;
4397try_submit_last:
4398	if (cache->flags & FIEMAP_EXTENT_LAST) {
4399		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4400				cache->phys, cache->len, cache->flags);
4401		cache->cached = false;
4402	}
4403	return ret;
4404}
4405
4406/*
4407 * Emit last fiemap cache
4408 *
4409 * The last fiemap cache may still be cached in the following case:
4410 * 0		      4k		    8k
4411 * |<- Fiemap range ->|
4412 * |<------------  First extent ----------->|
4413 *
4414 * In this case, the first extent range will be cached but not emitted.
4415 * So we must emit it before ending extent_fiemap().
4416 */
4417static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4418				  struct fiemap_extent_info *fieinfo,
4419				  struct fiemap_cache *cache)
4420{
4421	int ret;
4422
4423	if (!cache->cached)
4424		return 0;
4425
4426	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4427				      cache->len, cache->flags);
4428	cache->cached = false;
4429	if (ret > 0)
4430		ret = 0;
4431	return ret;
4432}
4433
4434int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4435		__u64 start, __u64 len)
4436{
4437	int ret = 0;
4438	u64 off = start;
4439	u64 max = start + len;
4440	u32 flags = 0;
4441	u32 found_type;
4442	u64 last;
4443	u64 last_for_get_extent = 0;
4444	u64 disko = 0;
4445	u64 isize = i_size_read(inode);
4446	struct btrfs_key found_key;
4447	struct extent_map *em = NULL;
4448	struct extent_state *cached_state = NULL;
4449	struct btrfs_path *path;
4450	struct btrfs_root *root = BTRFS_I(inode)->root;
4451	struct fiemap_cache cache = { 0 };
4452	int end = 0;
4453	u64 em_start = 0;
4454	u64 em_len = 0;
4455	u64 em_end = 0;
4456
4457	if (len == 0)
4458		return -EINVAL;
4459
4460	path = btrfs_alloc_path();
4461	if (!path)
4462		return -ENOMEM;
4463	path->leave_spinning = 1;
4464
4465	start = round_down(start, btrfs_inode_sectorsize(inode));
4466	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4467
4468	/*
4469	 * lookup the last file extent.  We're not using i_size here
4470	 * because there might be preallocation past i_size
4471	 */
4472	ret = btrfs_lookup_file_extent(NULL, root, path,
4473			btrfs_ino(BTRFS_I(inode)), -1, 0);
4474	if (ret < 0) {
4475		btrfs_free_path(path);
4476		return ret;
4477	} else {
4478		WARN_ON(!ret);
4479		if (ret == 1)
4480			ret = 0;
4481	}
4482
4483	path->slots[0]--;
4484	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4485	found_type = found_key.type;
4486
4487	/* No extents, but there might be delalloc bits */
4488	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4489	    found_type != BTRFS_EXTENT_DATA_KEY) {
4490		/* have to trust i_size as the end */
4491		last = (u64)-1;
4492		last_for_get_extent = isize;
4493	} else {
4494		/*
4495		 * remember the start of the last extent.  There are a
4496		 * bunch of different factors that go into the length of the
4497		 * extent, so its much less complex to remember where it started
4498		 */
4499		last = found_key.offset;
4500		last_for_get_extent = last + 1;
4501	}
4502	btrfs_release_path(path);
4503
4504	/*
4505	 * we might have some extents allocated but more delalloc past those
4506	 * extents.  so, we trust isize unless the start of the last extent is
4507	 * beyond isize
4508	 */
4509	if (last < isize) {
4510		last = (u64)-1;
4511		last_for_get_extent = isize;
4512	}
4513
4514	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4515			 &cached_state);
4516
4517	em = get_extent_skip_holes(inode, start, last_for_get_extent);
 
4518	if (!em)
4519		goto out;
4520	if (IS_ERR(em)) {
4521		ret = PTR_ERR(em);
4522		goto out;
4523	}
4524
4525	while (!end) {
4526		u64 offset_in_extent = 0;
4527
4528		/* break if the extent we found is outside the range */
4529		if (em->start >= max || extent_map_end(em) < off)
4530			break;
4531
4532		/*
4533		 * get_extent may return an extent that starts before our
4534		 * requested range.  We have to make sure the ranges
4535		 * we return to fiemap always move forward and don't
4536		 * overlap, so adjust the offsets here
4537		 */
4538		em_start = max(em->start, off);
4539
4540		/*
4541		 * record the offset from the start of the extent
4542		 * for adjusting the disk offset below.  Only do this if the
4543		 * extent isn't compressed since our in ram offset may be past
4544		 * what we have actually allocated on disk.
4545		 */
4546		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4547			offset_in_extent = em_start - em->start;
4548		em_end = extent_map_end(em);
4549		em_len = em_end - em_start;
4550		disko = 0;
4551		flags = 0;
4552
4553		/*
4554		 * bump off for our next call to get_extent
4555		 */
4556		off = extent_map_end(em);
4557		if (off >= max)
4558			end = 1;
4559
4560		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4561			end = 1;
4562			flags |= FIEMAP_EXTENT_LAST;
4563		} else if (em->block_start == EXTENT_MAP_INLINE) {
4564			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4565				  FIEMAP_EXTENT_NOT_ALIGNED);
4566		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4567			flags |= (FIEMAP_EXTENT_DELALLOC |
4568				  FIEMAP_EXTENT_UNKNOWN);
4569		} else if (fieinfo->fi_extents_max) {
4570			u64 bytenr = em->block_start -
4571				(em->start - em->orig_start);
4572
4573			disko = em->block_start + offset_in_extent;
4574
4575			/*
4576			 * As btrfs supports shared space, this information
4577			 * can be exported to userspace tools via
4578			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4579			 * then we're just getting a count and we can skip the
4580			 * lookup stuff.
4581			 */
4582			ret = btrfs_check_shared(root,
4583						 btrfs_ino(BTRFS_I(inode)),
4584						 bytenr);
4585			if (ret < 0)
4586				goto out_free;
4587			if (ret)
4588				flags |= FIEMAP_EXTENT_SHARED;
4589			ret = 0;
4590		}
4591		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4592			flags |= FIEMAP_EXTENT_ENCODED;
4593		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4594			flags |= FIEMAP_EXTENT_UNWRITTEN;
4595
4596		free_extent_map(em);
4597		em = NULL;
4598		if ((em_start >= last) || em_len == (u64)-1 ||
4599		   (last == (u64)-1 && isize <= em_end)) {
4600			flags |= FIEMAP_EXTENT_LAST;
4601			end = 1;
4602		}
4603
4604		/* now scan forward to see if this is really the last extent. */
4605		em = get_extent_skip_holes(inode, off, last_for_get_extent);
 
4606		if (IS_ERR(em)) {
4607			ret = PTR_ERR(em);
4608			goto out;
4609		}
4610		if (!em) {
4611			flags |= FIEMAP_EXTENT_LAST;
4612			end = 1;
4613		}
4614		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4615					   em_len, flags);
4616		if (ret) {
4617			if (ret == 1)
4618				ret = 0;
4619			goto out_free;
4620		}
4621	}
4622out_free:
4623	if (!ret)
4624		ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4625	free_extent_map(em);
4626out:
4627	btrfs_free_path(path);
4628	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4629			     &cached_state);
4630	return ret;
4631}
4632
4633static void __free_extent_buffer(struct extent_buffer *eb)
4634{
4635	btrfs_leak_debug_del(&eb->leak_list);
4636	kmem_cache_free(extent_buffer_cache, eb);
4637}
4638
4639int extent_buffer_under_io(struct extent_buffer *eb)
4640{
4641	return (atomic_read(&eb->io_pages) ||
4642		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4643		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4644}
4645
4646/*
4647 * Helper for releasing extent buffer page.
4648 */
4649static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4650{
4651	unsigned long index;
4652	struct page *page;
4653	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4654
4655	BUG_ON(extent_buffer_under_io(eb));
4656
4657	index = num_extent_pages(eb->start, eb->len);
4658	if (index == 0)
4659		return;
4660
4661	do {
4662		index--;
4663		page = eb->pages[index];
4664		if (!page)
4665			continue;
4666		if (mapped)
4667			spin_lock(&page->mapping->private_lock);
4668		/*
4669		 * We do this since we'll remove the pages after we've
4670		 * removed the eb from the radix tree, so we could race
4671		 * and have this page now attached to the new eb.  So
4672		 * only clear page_private if it's still connected to
4673		 * this eb.
4674		 */
4675		if (PagePrivate(page) &&
4676		    page->private == (unsigned long)eb) {
4677			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4678			BUG_ON(PageDirty(page));
4679			BUG_ON(PageWriteback(page));
4680			/*
4681			 * We need to make sure we haven't be attached
4682			 * to a new eb.
4683			 */
4684			ClearPagePrivate(page);
4685			set_page_private(page, 0);
4686			/* One for the page private */
4687			put_page(page);
4688		}
4689
4690		if (mapped)
4691			spin_unlock(&page->mapping->private_lock);
4692
4693		/* One for when we allocated the page */
4694		put_page(page);
4695	} while (index != 0);
4696}
4697
4698/*
4699 * Helper for releasing the extent buffer.
4700 */
4701static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4702{
4703	btrfs_release_extent_buffer_page(eb);
4704	__free_extent_buffer(eb);
4705}
4706
4707static struct extent_buffer *
4708__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4709		      unsigned long len)
4710{
4711	struct extent_buffer *eb = NULL;
4712
4713	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4714	eb->start = start;
4715	eb->len = len;
4716	eb->fs_info = fs_info;
4717	eb->bflags = 0;
4718	rwlock_init(&eb->lock);
4719	atomic_set(&eb->write_locks, 0);
4720	atomic_set(&eb->read_locks, 0);
4721	atomic_set(&eb->blocking_readers, 0);
4722	atomic_set(&eb->blocking_writers, 0);
4723	atomic_set(&eb->spinning_readers, 0);
4724	atomic_set(&eb->spinning_writers, 0);
4725	eb->lock_nested = 0;
4726	init_waitqueue_head(&eb->write_lock_wq);
4727	init_waitqueue_head(&eb->read_lock_wq);
4728
4729	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4730
4731	spin_lock_init(&eb->refs_lock);
4732	atomic_set(&eb->refs, 1);
4733	atomic_set(&eb->io_pages, 0);
4734
4735	/*
4736	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4737	 */
4738	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4739		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4740	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4741
4742	return eb;
4743}
4744
4745struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4746{
4747	unsigned long i;
4748	struct page *p;
4749	struct extent_buffer *new;
4750	unsigned long num_pages = num_extent_pages(src->start, src->len);
4751
4752	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4753	if (new == NULL)
4754		return NULL;
4755
4756	for (i = 0; i < num_pages; i++) {
4757		p = alloc_page(GFP_NOFS);
4758		if (!p) {
4759			btrfs_release_extent_buffer(new);
4760			return NULL;
4761		}
4762		attach_extent_buffer_page(new, p);
4763		WARN_ON(PageDirty(p));
4764		SetPageUptodate(p);
4765		new->pages[i] = p;
4766		copy_page(page_address(p), page_address(src->pages[i]));
4767	}
4768
 
4769	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4770	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4771
4772	return new;
4773}
4774
4775struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4776						  u64 start, unsigned long len)
4777{
4778	struct extent_buffer *eb;
4779	unsigned long num_pages;
4780	unsigned long i;
4781
4782	num_pages = num_extent_pages(start, len);
4783
4784	eb = __alloc_extent_buffer(fs_info, start, len);
4785	if (!eb)
4786		return NULL;
4787
4788	for (i = 0; i < num_pages; i++) {
4789		eb->pages[i] = alloc_page(GFP_NOFS);
4790		if (!eb->pages[i])
4791			goto err;
4792	}
4793	set_extent_buffer_uptodate(eb);
4794	btrfs_set_header_nritems(eb, 0);
4795	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4796
4797	return eb;
4798err:
4799	for (; i > 0; i--)
4800		__free_page(eb->pages[i - 1]);
4801	__free_extent_buffer(eb);
4802	return NULL;
4803}
4804
4805struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4806						u64 start)
4807{
4808	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
 
 
 
 
 
 
 
 
 
 
 
 
4809}
4810
4811static void check_buffer_tree_ref(struct extent_buffer *eb)
4812{
4813	int refs;
4814	/* the ref bit is tricky.  We have to make sure it is set
4815	 * if we have the buffer dirty.   Otherwise the
4816	 * code to free a buffer can end up dropping a dirty
4817	 * page
4818	 *
4819	 * Once the ref bit is set, it won't go away while the
4820	 * buffer is dirty or in writeback, and it also won't
4821	 * go away while we have the reference count on the
4822	 * eb bumped.
4823	 *
4824	 * We can't just set the ref bit without bumping the
4825	 * ref on the eb because free_extent_buffer might
4826	 * see the ref bit and try to clear it.  If this happens
4827	 * free_extent_buffer might end up dropping our original
4828	 * ref by mistake and freeing the page before we are able
4829	 * to add one more ref.
4830	 *
4831	 * So bump the ref count first, then set the bit.  If someone
4832	 * beat us to it, drop the ref we added.
4833	 */
4834	refs = atomic_read(&eb->refs);
4835	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4836		return;
4837
4838	spin_lock(&eb->refs_lock);
4839	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4840		atomic_inc(&eb->refs);
4841	spin_unlock(&eb->refs_lock);
4842}
4843
4844static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4845		struct page *accessed)
4846{
4847	unsigned long num_pages, i;
4848
4849	check_buffer_tree_ref(eb);
4850
4851	num_pages = num_extent_pages(eb->start, eb->len);
4852	for (i = 0; i < num_pages; i++) {
4853		struct page *p = eb->pages[i];
4854
4855		if (p != accessed)
4856			mark_page_accessed(p);
4857	}
4858}
4859
4860struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4861					 u64 start)
4862{
4863	struct extent_buffer *eb;
4864
4865	rcu_read_lock();
4866	eb = radix_tree_lookup(&fs_info->buffer_radix,
4867			       start >> PAGE_SHIFT);
4868	if (eb && atomic_inc_not_zero(&eb->refs)) {
4869		rcu_read_unlock();
4870		/*
4871		 * Lock our eb's refs_lock to avoid races with
4872		 * free_extent_buffer. When we get our eb it might be flagged
4873		 * with EXTENT_BUFFER_STALE and another task running
4874		 * free_extent_buffer might have seen that flag set,
4875		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4876		 * writeback flags not set) and it's still in the tree (flag
4877		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4878		 * of decrementing the extent buffer's reference count twice.
4879		 * So here we could race and increment the eb's reference count,
4880		 * clear its stale flag, mark it as dirty and drop our reference
4881		 * before the other task finishes executing free_extent_buffer,
4882		 * which would later result in an attempt to free an extent
4883		 * buffer that is dirty.
4884		 */
4885		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4886			spin_lock(&eb->refs_lock);
4887			spin_unlock(&eb->refs_lock);
4888		}
4889		mark_extent_buffer_accessed(eb, NULL);
4890		return eb;
4891	}
4892	rcu_read_unlock();
4893
4894	return NULL;
4895}
4896
4897#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4898struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4899					u64 start)
4900{
4901	struct extent_buffer *eb, *exists = NULL;
4902	int ret;
4903
4904	eb = find_extent_buffer(fs_info, start);
4905	if (eb)
4906		return eb;
4907	eb = alloc_dummy_extent_buffer(fs_info, start);
4908	if (!eb)
4909		return NULL;
4910	eb->fs_info = fs_info;
4911again:
4912	ret = radix_tree_preload(GFP_NOFS);
4913	if (ret)
4914		goto free_eb;
4915	spin_lock(&fs_info->buffer_lock);
4916	ret = radix_tree_insert(&fs_info->buffer_radix,
4917				start >> PAGE_SHIFT, eb);
4918	spin_unlock(&fs_info->buffer_lock);
4919	radix_tree_preload_end();
4920	if (ret == -EEXIST) {
4921		exists = find_extent_buffer(fs_info, start);
4922		if (exists)
4923			goto free_eb;
4924		else
4925			goto again;
4926	}
4927	check_buffer_tree_ref(eb);
4928	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4929
4930	/*
4931	 * We will free dummy extent buffer's if they come into
4932	 * free_extent_buffer with a ref count of 2, but if we are using this we
4933	 * want the buffers to stay in memory until we're done with them, so
4934	 * bump the ref count again.
4935	 */
4936	atomic_inc(&eb->refs);
4937	return eb;
4938free_eb:
4939	btrfs_release_extent_buffer(eb);
4940	return exists;
4941}
4942#endif
4943
4944struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4945					  u64 start)
4946{
4947	unsigned long len = fs_info->nodesize;
4948	unsigned long num_pages = num_extent_pages(start, len);
4949	unsigned long i;
4950	unsigned long index = start >> PAGE_SHIFT;
4951	struct extent_buffer *eb;
4952	struct extent_buffer *exists = NULL;
4953	struct page *p;
4954	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4955	int uptodate = 1;
4956	int ret;
4957
4958	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4959		btrfs_err(fs_info, "bad tree block start %llu", start);
4960		return ERR_PTR(-EINVAL);
4961	}
4962
4963	eb = find_extent_buffer(fs_info, start);
4964	if (eb)
4965		return eb;
4966
4967	eb = __alloc_extent_buffer(fs_info, start, len);
4968	if (!eb)
4969		return ERR_PTR(-ENOMEM);
4970
4971	for (i = 0; i < num_pages; i++, index++) {
4972		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4973		if (!p) {
4974			exists = ERR_PTR(-ENOMEM);
4975			goto free_eb;
4976		}
4977
4978		spin_lock(&mapping->private_lock);
4979		if (PagePrivate(p)) {
4980			/*
4981			 * We could have already allocated an eb for this page
4982			 * and attached one so lets see if we can get a ref on
4983			 * the existing eb, and if we can we know it's good and
4984			 * we can just return that one, else we know we can just
4985			 * overwrite page->private.
4986			 */
4987			exists = (struct extent_buffer *)p->private;
4988			if (atomic_inc_not_zero(&exists->refs)) {
4989				spin_unlock(&mapping->private_lock);
4990				unlock_page(p);
4991				put_page(p);
4992				mark_extent_buffer_accessed(exists, p);
4993				goto free_eb;
4994			}
4995			exists = NULL;
4996
4997			/*
4998			 * Do this so attach doesn't complain and we need to
4999			 * drop the ref the old guy had.
5000			 */
5001			ClearPagePrivate(p);
5002			WARN_ON(PageDirty(p));
5003			put_page(p);
5004		}
5005		attach_extent_buffer_page(eb, p);
5006		spin_unlock(&mapping->private_lock);
5007		WARN_ON(PageDirty(p));
5008		eb->pages[i] = p;
5009		if (!PageUptodate(p))
5010			uptodate = 0;
5011
5012		/*
5013		 * see below about how we avoid a nasty race with release page
5014		 * and why we unlock later
5015		 */
5016	}
5017	if (uptodate)
5018		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5019again:
5020	ret = radix_tree_preload(GFP_NOFS);
5021	if (ret) {
5022		exists = ERR_PTR(ret);
5023		goto free_eb;
5024	}
5025
5026	spin_lock(&fs_info->buffer_lock);
5027	ret = radix_tree_insert(&fs_info->buffer_radix,
5028				start >> PAGE_SHIFT, eb);
5029	spin_unlock(&fs_info->buffer_lock);
5030	radix_tree_preload_end();
5031	if (ret == -EEXIST) {
5032		exists = find_extent_buffer(fs_info, start);
5033		if (exists)
5034			goto free_eb;
5035		else
5036			goto again;
5037	}
5038	/* add one reference for the tree */
5039	check_buffer_tree_ref(eb);
5040	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5041
5042	/*
5043	 * there is a race where release page may have
5044	 * tried to find this extent buffer in the radix
5045	 * but failed.  It will tell the VM it is safe to
5046	 * reclaim the, and it will clear the page private bit.
5047	 * We must make sure to set the page private bit properly
5048	 * after the extent buffer is in the radix tree so
5049	 * it doesn't get lost
5050	 */
5051	SetPageChecked(eb->pages[0]);
5052	for (i = 1; i < num_pages; i++) {
5053		p = eb->pages[i];
5054		ClearPageChecked(p);
5055		unlock_page(p);
5056	}
5057	unlock_page(eb->pages[0]);
5058	return eb;
5059
5060free_eb:
5061	WARN_ON(!atomic_dec_and_test(&eb->refs));
5062	for (i = 0; i < num_pages; i++) {
5063		if (eb->pages[i])
5064			unlock_page(eb->pages[i]);
5065	}
5066
5067	btrfs_release_extent_buffer(eb);
5068	return exists;
5069}
5070
5071static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5072{
5073	struct extent_buffer *eb =
5074			container_of(head, struct extent_buffer, rcu_head);
5075
5076	__free_extent_buffer(eb);
5077}
5078
5079/* Expects to have eb->eb_lock already held */
5080static int release_extent_buffer(struct extent_buffer *eb)
5081{
5082	WARN_ON(atomic_read(&eb->refs) == 0);
5083	if (atomic_dec_and_test(&eb->refs)) {
5084		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5085			struct btrfs_fs_info *fs_info = eb->fs_info;
5086
5087			spin_unlock(&eb->refs_lock);
5088
5089			spin_lock(&fs_info->buffer_lock);
5090			radix_tree_delete(&fs_info->buffer_radix,
5091					  eb->start >> PAGE_SHIFT);
5092			spin_unlock(&fs_info->buffer_lock);
5093		} else {
5094			spin_unlock(&eb->refs_lock);
5095		}
5096
5097		/* Should be safe to release our pages at this point */
5098		btrfs_release_extent_buffer_page(eb);
5099#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5100		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5101			__free_extent_buffer(eb);
5102			return 1;
5103		}
5104#endif
5105		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5106		return 1;
5107	}
5108	spin_unlock(&eb->refs_lock);
5109
5110	return 0;
5111}
5112
5113void free_extent_buffer(struct extent_buffer *eb)
5114{
5115	int refs;
5116	int old;
5117	if (!eb)
5118		return;
5119
5120	while (1) {
5121		refs = atomic_read(&eb->refs);
5122		if (refs <= 3)
5123			break;
5124		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5125		if (old == refs)
5126			return;
5127	}
5128
5129	spin_lock(&eb->refs_lock);
5130	if (atomic_read(&eb->refs) == 2 &&
5131	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5132		atomic_dec(&eb->refs);
5133
5134	if (atomic_read(&eb->refs) == 2 &&
5135	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5136	    !extent_buffer_under_io(eb) &&
5137	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5138		atomic_dec(&eb->refs);
5139
5140	/*
5141	 * I know this is terrible, but it's temporary until we stop tracking
5142	 * the uptodate bits and such for the extent buffers.
5143	 */
5144	release_extent_buffer(eb);
5145}
5146
5147void free_extent_buffer_stale(struct extent_buffer *eb)
5148{
5149	if (!eb)
5150		return;
5151
5152	spin_lock(&eb->refs_lock);
5153	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5154
5155	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5156	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5157		atomic_dec(&eb->refs);
5158	release_extent_buffer(eb);
5159}
5160
5161void clear_extent_buffer_dirty(struct extent_buffer *eb)
5162{
5163	unsigned long i;
5164	unsigned long num_pages;
5165	struct page *page;
5166
5167	num_pages = num_extent_pages(eb->start, eb->len);
5168
5169	for (i = 0; i < num_pages; i++) {
5170		page = eb->pages[i];
5171		if (!PageDirty(page))
5172			continue;
5173
5174		lock_page(page);
5175		WARN_ON(!PagePrivate(page));
5176
5177		clear_page_dirty_for_io(page);
5178		xa_lock_irq(&page->mapping->i_pages);
5179		if (!PageDirty(page)) {
5180			radix_tree_tag_clear(&page->mapping->i_pages,
5181						page_index(page),
5182						PAGECACHE_TAG_DIRTY);
5183		}
5184		xa_unlock_irq(&page->mapping->i_pages);
5185		ClearPageError(page);
5186		unlock_page(page);
5187	}
5188	WARN_ON(atomic_read(&eb->refs) == 0);
5189}
5190
5191int set_extent_buffer_dirty(struct extent_buffer *eb)
5192{
5193	unsigned long i;
5194	unsigned long num_pages;
5195	int was_dirty = 0;
5196
5197	check_buffer_tree_ref(eb);
5198
5199	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5200
5201	num_pages = num_extent_pages(eb->start, eb->len);
5202	WARN_ON(atomic_read(&eb->refs) == 0);
5203	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5204
5205	for (i = 0; i < num_pages; i++)
5206		set_page_dirty(eb->pages[i]);
5207	return was_dirty;
5208}
5209
5210void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5211{
5212	unsigned long i;
5213	struct page *page;
5214	unsigned long num_pages;
5215
5216	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5217	num_pages = num_extent_pages(eb->start, eb->len);
5218	for (i = 0; i < num_pages; i++) {
5219		page = eb->pages[i];
5220		if (page)
5221			ClearPageUptodate(page);
5222	}
5223}
5224
5225void set_extent_buffer_uptodate(struct extent_buffer *eb)
5226{
5227	unsigned long i;
5228	struct page *page;
5229	unsigned long num_pages;
5230
5231	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5232	num_pages = num_extent_pages(eb->start, eb->len);
5233	for (i = 0; i < num_pages; i++) {
5234		page = eb->pages[i];
5235		SetPageUptodate(page);
5236	}
5237}
5238
 
 
 
 
 
5239int read_extent_buffer_pages(struct extent_io_tree *tree,
5240			     struct extent_buffer *eb, int wait, int mirror_num)
 
5241{
5242	unsigned long i;
 
5243	struct page *page;
5244	int err;
5245	int ret = 0;
5246	int locked_pages = 0;
5247	int all_uptodate = 1;
5248	unsigned long num_pages;
5249	unsigned long num_reads = 0;
5250	struct bio *bio = NULL;
5251	unsigned long bio_flags = 0;
5252
5253	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5254		return 0;
5255
 
 
 
 
 
 
 
 
5256	num_pages = num_extent_pages(eb->start, eb->len);
5257	for (i = 0; i < num_pages; i++) {
5258		page = eb->pages[i];
5259		if (wait == WAIT_NONE) {
5260			if (!trylock_page(page))
5261				goto unlock_exit;
5262		} else {
5263			lock_page(page);
5264		}
5265		locked_pages++;
5266	}
5267	/*
5268	 * We need to firstly lock all pages to make sure that
5269	 * the uptodate bit of our pages won't be affected by
5270	 * clear_extent_buffer_uptodate().
5271	 */
5272	for (i = 0; i < num_pages; i++) {
5273		page = eb->pages[i];
5274		if (!PageUptodate(page)) {
5275			num_reads++;
5276			all_uptodate = 0;
5277		}
5278	}
5279
5280	if (all_uptodate) {
5281		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
5282		goto unlock_exit;
5283	}
5284
5285	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5286	eb->read_mirror = 0;
5287	atomic_set(&eb->io_pages, num_reads);
5288	for (i = 0; i < num_pages; i++) {
5289		page = eb->pages[i];
5290
5291		if (!PageUptodate(page)) {
5292			if (ret) {
5293				atomic_dec(&eb->io_pages);
5294				unlock_page(page);
5295				continue;
5296			}
5297
5298			ClearPageError(page);
5299			err = __extent_read_full_page(tree, page,
5300						      btree_get_extent, &bio,
5301						      mirror_num, &bio_flags,
5302						      REQ_META);
5303			if (err) {
5304				ret = err;
5305				/*
5306				 * We use &bio in above __extent_read_full_page,
5307				 * so we ensure that if it returns error, the
5308				 * current page fails to add itself to bio and
5309				 * it's been unlocked.
5310				 *
5311				 * We must dec io_pages by ourselves.
5312				 */
5313				atomic_dec(&eb->io_pages);
5314			}
5315		} else {
5316			unlock_page(page);
5317		}
5318	}
5319
5320	if (bio) {
5321		err = submit_one_bio(bio, mirror_num, bio_flags);
 
5322		if (err)
5323			return err;
5324	}
5325
5326	if (ret || wait != WAIT_COMPLETE)
5327		return ret;
5328
5329	for (i = 0; i < num_pages; i++) {
5330		page = eb->pages[i];
5331		wait_on_page_locked(page);
5332		if (!PageUptodate(page))
5333			ret = -EIO;
5334	}
5335
5336	return ret;
5337
5338unlock_exit:
 
5339	while (locked_pages > 0) {
 
 
 
5340		locked_pages--;
5341		page = eb->pages[locked_pages];
5342		unlock_page(page);
5343	}
5344	return ret;
5345}
5346
5347void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5348			unsigned long start, unsigned long len)
 
5349{
5350	size_t cur;
5351	size_t offset;
5352	struct page *page;
5353	char *kaddr;
5354	char *dst = (char *)dstv;
5355	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5356	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5357
5358	if (start + len > eb->len) {
5359		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5360		     eb->start, eb->len, start, len);
5361		memset(dst, 0, len);
5362		return;
5363	}
5364
5365	offset = (start_offset + start) & (PAGE_SIZE - 1);
5366
5367	while (len > 0) {
5368		page = eb->pages[i];
5369
5370		cur = min(len, (PAGE_SIZE - offset));
5371		kaddr = page_address(page);
5372		memcpy(dst, kaddr + offset, cur);
5373
5374		dst += cur;
5375		len -= cur;
5376		offset = 0;
5377		i++;
5378	}
5379}
5380
5381int read_extent_buffer_to_user(const struct extent_buffer *eb,
5382			       void __user *dstv,
5383			       unsigned long start, unsigned long len)
5384{
5385	size_t cur;
5386	size_t offset;
5387	struct page *page;
5388	char *kaddr;
5389	char __user *dst = (char __user *)dstv;
5390	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392	int ret = 0;
5393
5394	WARN_ON(start > eb->len);
5395	WARN_ON(start + len > eb->start + eb->len);
5396
5397	offset = (start_offset + start) & (PAGE_SIZE - 1);
5398
5399	while (len > 0) {
5400		page = eb->pages[i];
5401
5402		cur = min(len, (PAGE_SIZE - offset));
5403		kaddr = page_address(page);
5404		if (copy_to_user(dst, kaddr + offset, cur)) {
5405			ret = -EFAULT;
5406			break;
5407		}
5408
5409		dst += cur;
5410		len -= cur;
5411		offset = 0;
5412		i++;
5413	}
5414
5415	return ret;
5416}
5417
5418/*
5419 * return 0 if the item is found within a page.
5420 * return 1 if the item spans two pages.
5421 * return -EINVAL otherwise.
5422 */
5423int map_private_extent_buffer(const struct extent_buffer *eb,
5424			      unsigned long start, unsigned long min_len,
5425			      char **map, unsigned long *map_start,
5426			      unsigned long *map_len)
5427{
5428	size_t offset = start & (PAGE_SIZE - 1);
5429	char *kaddr;
5430	struct page *p;
5431	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5432	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5433	unsigned long end_i = (start_offset + start + min_len - 1) >>
5434		PAGE_SHIFT;
5435
5436	if (start + min_len > eb->len) {
5437		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5438		       eb->start, eb->len, start, min_len);
5439		return -EINVAL;
5440	}
5441
5442	if (i != end_i)
5443		return 1;
5444
5445	if (i == 0) {
5446		offset = start_offset;
5447		*map_start = 0;
5448	} else {
5449		offset = 0;
5450		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5451	}
5452
 
 
 
 
 
 
 
5453	p = eb->pages[i];
5454	kaddr = page_address(p);
5455	*map = kaddr + offset;
5456	*map_len = PAGE_SIZE - offset;
5457	return 0;
5458}
5459
5460int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5461			 unsigned long start, unsigned long len)
 
5462{
5463	size_t cur;
5464	size_t offset;
5465	struct page *page;
5466	char *kaddr;
5467	char *ptr = (char *)ptrv;
5468	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5469	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5470	int ret = 0;
5471
5472	WARN_ON(start > eb->len);
5473	WARN_ON(start + len > eb->start + eb->len);
5474
5475	offset = (start_offset + start) & (PAGE_SIZE - 1);
5476
5477	while (len > 0) {
5478		page = eb->pages[i];
5479
5480		cur = min(len, (PAGE_SIZE - offset));
5481
5482		kaddr = page_address(page);
5483		ret = memcmp(ptr, kaddr + offset, cur);
5484		if (ret)
5485			break;
5486
5487		ptr += cur;
5488		len -= cur;
5489		offset = 0;
5490		i++;
5491	}
5492	return ret;
5493}
5494
5495void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5496		const void *srcv)
5497{
5498	char *kaddr;
5499
5500	WARN_ON(!PageUptodate(eb->pages[0]));
5501	kaddr = page_address(eb->pages[0]);
5502	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5503			BTRFS_FSID_SIZE);
5504}
5505
5506void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5507{
5508	char *kaddr;
5509
5510	WARN_ON(!PageUptodate(eb->pages[0]));
5511	kaddr = page_address(eb->pages[0]);
5512	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5513			BTRFS_FSID_SIZE);
5514}
5515
5516void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5517			 unsigned long start, unsigned long len)
5518{
5519	size_t cur;
5520	size_t offset;
5521	struct page *page;
5522	char *kaddr;
5523	char *src = (char *)srcv;
5524	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5525	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5526
5527	WARN_ON(start > eb->len);
5528	WARN_ON(start + len > eb->start + eb->len);
5529
5530	offset = (start_offset + start) & (PAGE_SIZE - 1);
5531
5532	while (len > 0) {
5533		page = eb->pages[i];
5534		WARN_ON(!PageUptodate(page));
5535
5536		cur = min(len, PAGE_SIZE - offset);
5537		kaddr = page_address(page);
5538		memcpy(kaddr + offset, src, cur);
5539
5540		src += cur;
5541		len -= cur;
5542		offset = 0;
5543		i++;
5544	}
5545}
5546
5547void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5548		unsigned long len)
5549{
5550	size_t cur;
5551	size_t offset;
5552	struct page *page;
5553	char *kaddr;
5554	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5555	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5556
5557	WARN_ON(start > eb->len);
5558	WARN_ON(start + len > eb->start + eb->len);
5559
5560	offset = (start_offset + start) & (PAGE_SIZE - 1);
5561
5562	while (len > 0) {
5563		page = eb->pages[i];
5564		WARN_ON(!PageUptodate(page));
5565
5566		cur = min(len, PAGE_SIZE - offset);
5567		kaddr = page_address(page);
5568		memset(kaddr + offset, 0, cur);
5569
5570		len -= cur;
5571		offset = 0;
5572		i++;
5573	}
5574}
5575
5576void copy_extent_buffer_full(struct extent_buffer *dst,
5577			     struct extent_buffer *src)
5578{
5579	int i;
5580	unsigned num_pages;
5581
5582	ASSERT(dst->len == src->len);
5583
5584	num_pages = num_extent_pages(dst->start, dst->len);
5585	for (i = 0; i < num_pages; i++)
5586		copy_page(page_address(dst->pages[i]),
5587				page_address(src->pages[i]));
5588}
5589
5590void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5591			unsigned long dst_offset, unsigned long src_offset,
5592			unsigned long len)
5593{
5594	u64 dst_len = dst->len;
5595	size_t cur;
5596	size_t offset;
5597	struct page *page;
5598	char *kaddr;
5599	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5600	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5601
5602	WARN_ON(src->len != dst_len);
5603
5604	offset = (start_offset + dst_offset) &
5605		(PAGE_SIZE - 1);
5606
5607	while (len > 0) {
5608		page = dst->pages[i];
5609		WARN_ON(!PageUptodate(page));
5610
5611		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5612
5613		kaddr = page_address(page);
5614		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5615
5616		src_offset += cur;
5617		len -= cur;
5618		offset = 0;
5619		i++;
5620	}
5621}
5622
5623void le_bitmap_set(u8 *map, unsigned int start, int len)
5624{
5625	u8 *p = map + BIT_BYTE(start);
5626	const unsigned int size = start + len;
5627	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5628	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5629
5630	while (len - bits_to_set >= 0) {
5631		*p |= mask_to_set;
5632		len -= bits_to_set;
5633		bits_to_set = BITS_PER_BYTE;
5634		mask_to_set = ~0;
5635		p++;
5636	}
5637	if (len) {
5638		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5639		*p |= mask_to_set;
5640	}
5641}
5642
5643void le_bitmap_clear(u8 *map, unsigned int start, int len)
5644{
5645	u8 *p = map + BIT_BYTE(start);
5646	const unsigned int size = start + len;
5647	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5648	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5649
5650	while (len - bits_to_clear >= 0) {
5651		*p &= ~mask_to_clear;
5652		len -= bits_to_clear;
5653		bits_to_clear = BITS_PER_BYTE;
5654		mask_to_clear = ~0;
5655		p++;
5656	}
5657	if (len) {
5658		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5659		*p &= ~mask_to_clear;
5660	}
5661}
5662
5663/*
5664 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5665 * given bit number
5666 * @eb: the extent buffer
5667 * @start: offset of the bitmap item in the extent buffer
5668 * @nr: bit number
5669 * @page_index: return index of the page in the extent buffer that contains the
5670 * given bit number
5671 * @page_offset: return offset into the page given by page_index
5672 *
5673 * This helper hides the ugliness of finding the byte in an extent buffer which
5674 * contains a given bit.
5675 */
5676static inline void eb_bitmap_offset(struct extent_buffer *eb,
5677				    unsigned long start, unsigned long nr,
5678				    unsigned long *page_index,
5679				    size_t *page_offset)
5680{
5681	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5682	size_t byte_offset = BIT_BYTE(nr);
5683	size_t offset;
5684
5685	/*
5686	 * The byte we want is the offset of the extent buffer + the offset of
5687	 * the bitmap item in the extent buffer + the offset of the byte in the
5688	 * bitmap item.
5689	 */
5690	offset = start_offset + start + byte_offset;
5691
5692	*page_index = offset >> PAGE_SHIFT;
5693	*page_offset = offset & (PAGE_SIZE - 1);
5694}
5695
5696/**
5697 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5698 * @eb: the extent buffer
5699 * @start: offset of the bitmap item in the extent buffer
5700 * @nr: bit number to test
5701 */
5702int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5703			   unsigned long nr)
5704{
5705	u8 *kaddr;
5706	struct page *page;
5707	unsigned long i;
5708	size_t offset;
5709
5710	eb_bitmap_offset(eb, start, nr, &i, &offset);
5711	page = eb->pages[i];
5712	WARN_ON(!PageUptodate(page));
5713	kaddr = page_address(page);
5714	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5715}
5716
5717/**
5718 * extent_buffer_bitmap_set - set an area of a bitmap
5719 * @eb: the extent buffer
5720 * @start: offset of the bitmap item in the extent buffer
5721 * @pos: bit number of the first bit
5722 * @len: number of bits to set
5723 */
5724void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5725			      unsigned long pos, unsigned long len)
5726{
5727	u8 *kaddr;
5728	struct page *page;
5729	unsigned long i;
5730	size_t offset;
5731	const unsigned int size = pos + len;
5732	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5733	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5734
5735	eb_bitmap_offset(eb, start, pos, &i, &offset);
5736	page = eb->pages[i];
5737	WARN_ON(!PageUptodate(page));
5738	kaddr = page_address(page);
5739
5740	while (len >= bits_to_set) {
5741		kaddr[offset] |= mask_to_set;
5742		len -= bits_to_set;
5743		bits_to_set = BITS_PER_BYTE;
5744		mask_to_set = ~0;
5745		if (++offset >= PAGE_SIZE && len > 0) {
5746			offset = 0;
5747			page = eb->pages[++i];
5748			WARN_ON(!PageUptodate(page));
5749			kaddr = page_address(page);
5750		}
5751	}
5752	if (len) {
5753		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5754		kaddr[offset] |= mask_to_set;
5755	}
5756}
5757
5758
5759/**
5760 * extent_buffer_bitmap_clear - clear an area of a bitmap
5761 * @eb: the extent buffer
5762 * @start: offset of the bitmap item in the extent buffer
5763 * @pos: bit number of the first bit
5764 * @len: number of bits to clear
5765 */
5766void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5767				unsigned long pos, unsigned long len)
5768{
5769	u8 *kaddr;
5770	struct page *page;
5771	unsigned long i;
5772	size_t offset;
5773	const unsigned int size = pos + len;
5774	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5775	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5776
5777	eb_bitmap_offset(eb, start, pos, &i, &offset);
5778	page = eb->pages[i];
5779	WARN_ON(!PageUptodate(page));
5780	kaddr = page_address(page);
5781
5782	while (len >= bits_to_clear) {
5783		kaddr[offset] &= ~mask_to_clear;
5784		len -= bits_to_clear;
5785		bits_to_clear = BITS_PER_BYTE;
5786		mask_to_clear = ~0;
5787		if (++offset >= PAGE_SIZE && len > 0) {
5788			offset = 0;
5789			page = eb->pages[++i];
5790			WARN_ON(!PageUptodate(page));
5791			kaddr = page_address(page);
5792		}
5793	}
5794	if (len) {
5795		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5796		kaddr[offset] &= ~mask_to_clear;
5797	}
5798}
5799
5800static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5801{
5802	unsigned long distance = (src > dst) ? src - dst : dst - src;
5803	return distance < len;
5804}
5805
5806static void copy_pages(struct page *dst_page, struct page *src_page,
5807		       unsigned long dst_off, unsigned long src_off,
5808		       unsigned long len)
5809{
5810	char *dst_kaddr = page_address(dst_page);
5811	char *src_kaddr;
5812	int must_memmove = 0;
5813
5814	if (dst_page != src_page) {
5815		src_kaddr = page_address(src_page);
5816	} else {
5817		src_kaddr = dst_kaddr;
5818		if (areas_overlap(src_off, dst_off, len))
5819			must_memmove = 1;
5820	}
5821
5822	if (must_memmove)
5823		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5824	else
5825		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5826}
5827
5828void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5829			   unsigned long src_offset, unsigned long len)
5830{
5831	struct btrfs_fs_info *fs_info = dst->fs_info;
5832	size_t cur;
5833	size_t dst_off_in_page;
5834	size_t src_off_in_page;
5835	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5836	unsigned long dst_i;
5837	unsigned long src_i;
5838
5839	if (src_offset + len > dst->len) {
5840		btrfs_err(fs_info,
5841			"memmove bogus src_offset %lu move len %lu dst len %lu",
5842			 src_offset, len, dst->len);
5843		BUG_ON(1);
5844	}
5845	if (dst_offset + len > dst->len) {
5846		btrfs_err(fs_info,
5847			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5848			 dst_offset, len, dst->len);
5849		BUG_ON(1);
5850	}
5851
5852	while (len > 0) {
5853		dst_off_in_page = (start_offset + dst_offset) &
5854			(PAGE_SIZE - 1);
5855		src_off_in_page = (start_offset + src_offset) &
5856			(PAGE_SIZE - 1);
5857
5858		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5859		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5860
5861		cur = min(len, (unsigned long)(PAGE_SIZE -
5862					       src_off_in_page));
5863		cur = min_t(unsigned long, cur,
5864			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5865
5866		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5867			   dst_off_in_page, src_off_in_page, cur);
5868
5869		src_offset += cur;
5870		dst_offset += cur;
5871		len -= cur;
5872	}
5873}
5874
5875void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5876			   unsigned long src_offset, unsigned long len)
5877{
5878	struct btrfs_fs_info *fs_info = dst->fs_info;
5879	size_t cur;
5880	size_t dst_off_in_page;
5881	size_t src_off_in_page;
5882	unsigned long dst_end = dst_offset + len - 1;
5883	unsigned long src_end = src_offset + len - 1;
5884	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5885	unsigned long dst_i;
5886	unsigned long src_i;
5887
5888	if (src_offset + len > dst->len) {
5889		btrfs_err(fs_info,
5890			  "memmove bogus src_offset %lu move len %lu len %lu",
5891			  src_offset, len, dst->len);
5892		BUG_ON(1);
5893	}
5894	if (dst_offset + len > dst->len) {
5895		btrfs_err(fs_info,
5896			  "memmove bogus dst_offset %lu move len %lu len %lu",
5897			  dst_offset, len, dst->len);
5898		BUG_ON(1);
5899	}
5900	if (dst_offset < src_offset) {
5901		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5902		return;
5903	}
5904	while (len > 0) {
5905		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5906		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5907
5908		dst_off_in_page = (start_offset + dst_end) &
5909			(PAGE_SIZE - 1);
5910		src_off_in_page = (start_offset + src_end) &
5911			(PAGE_SIZE - 1);
5912
5913		cur = min_t(unsigned long, len, src_off_in_page + 1);
5914		cur = min(cur, dst_off_in_page + 1);
5915		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5916			   dst_off_in_page - cur + 1,
5917			   src_off_in_page - cur + 1, cur);
5918
5919		dst_end -= cur;
5920		src_end -= cur;
5921		len -= cur;
5922	}
5923}
5924
5925int try_release_extent_buffer(struct page *page)
5926{
5927	struct extent_buffer *eb;
5928
5929	/*
5930	 * We need to make sure nobody is attaching this page to an eb right
5931	 * now.
5932	 */
5933	spin_lock(&page->mapping->private_lock);
5934	if (!PagePrivate(page)) {
5935		spin_unlock(&page->mapping->private_lock);
5936		return 1;
5937	}
5938
5939	eb = (struct extent_buffer *)page->private;
5940	BUG_ON(!eb);
5941
5942	/*
5943	 * This is a little awful but should be ok, we need to make sure that
5944	 * the eb doesn't disappear out from under us while we're looking at
5945	 * this page.
5946	 */
5947	spin_lock(&eb->refs_lock);
5948	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5949		spin_unlock(&eb->refs_lock);
5950		spin_unlock(&page->mapping->private_lock);
5951		return 0;
5952	}
5953	spin_unlock(&page->mapping->private_lock);
5954
5955	/*
5956	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5957	 * so just return, this page will likely be freed soon anyway.
5958	 */
5959	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5960		spin_unlock(&eb->refs_lock);
5961		return 0;
5962	}
5963
5964	return release_extent_buffer(eb);
5965}