Loading...
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
12#include <linux/prefetch.h>
13#include <linux/cleancache.h>
14#include "extent_io.h"
15#include "extent_map.h"
16#include "ctree.h"
17#include "btrfs_inode.h"
18#include "volumes.h"
19#include "check-integrity.h"
20#include "locking.h"
21#include "rcu-string.h"
22#include "backref.h"
23
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
26static struct bio_set *btrfs_bioset;
27
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
33#ifdef CONFIG_BTRFS_DEBUG
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
36
37static DEFINE_SPINLOCK(leak_lock);
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
84
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89{
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103}
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109#endif
110
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132};
133
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
153static noinline void flush_write_bio(void *data);
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
161
162int __init extent_io_init(void)
163{
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217{
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223}
224
225static struct extent_state *alloc_extent_state(gfp_t mask)
226{
227 struct extent_state *state;
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
230 if (!state)
231 return state;
232 state->state = 0;
233 state->failrec = NULL;
234 RB_CLEAR_NODE(&state->rb_node);
235 btrfs_leak_debug_add(&state->leak_list, &states);
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
238 trace_alloc_extent_state(state, mask, _RET_IP_);
239 return state;
240}
241
242void free_extent_state(struct extent_state *state)
243{
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
247 WARN_ON(extent_state_in_tree(state));
248 btrfs_leak_debug_del(&state->leak_list);
249 trace_free_extent_state(state, _RET_IP_);
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
253
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
260{
261 struct rb_node **p;
262 struct rb_node *parent = NULL;
263 struct tree_entry *entry;
264
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
271 p = search_start ? &search_start : &root->rb_node;
272 while (*p) {
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
284do_insert:
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
295{
296 struct rb_root *root = &tree->state;
297 struct rb_node **n = &root->rb_node;
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
306 prev_entry = entry;
307
308 if (offset < entry->start)
309 n = &(*n)->rb_left;
310 else if (offset > entry->end)
311 n = &(*n)->rb_right;
312 else
313 return *n;
314 }
315
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
321 if (prev_ret) {
322 orig_prev = prev;
323 while (prev && offset > prev_entry->end) {
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 while (prev && offset < prev_entry->start) {
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
347{
348 struct rb_node *prev = NULL;
349 struct rb_node *ret;
350
351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 if (!ret)
353 return prev;
354 return ret;
355}
356
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 return;
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
394 merge_cb(tree, state, other);
395 state->start = other->start;
396 rb_erase(&other->rb_node, &tree->state);
397 RB_CLEAR_NODE(&other->rb_node);
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
406 merge_cb(tree, state, other);
407 state->end = other->end;
408 rb_erase(&other->rb_node, &tree->state);
409 RB_CLEAR_NODE(&other->rb_node);
410 free_extent_state(other);
411 }
412 }
413}
414
415static void set_state_cb(struct extent_io_tree *tree,
416 struct extent_state *state, unsigned *bits)
417{
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
423 struct extent_state *state, unsigned *bits)
424{
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427}
428
429static void set_state_bits(struct extent_io_tree *tree,
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
432
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
445 struct rb_node ***p,
446 struct rb_node **parent,
447 unsigned *bits, struct extent_changeset *changeset)
448{
449 struct rb_node *node;
450
451 if (end < start)
452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 end, start);
454 state->start = start;
455 state->end = end;
456
457 set_state_bits(tree, state, bits, changeset);
458
459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464 "%llu %llu\n",
465 found->start, found->end, start, end);
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470}
471
472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473 u64 split)
474{
475 if (tree->ops && tree->ops->split_extent_hook)
476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477}
478
479/*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495{
496 struct rb_node *node;
497
498 split_cb(tree, orig, split);
499
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
507 if (node) {
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512}
513
514static struct extent_state *next_state(struct extent_state *state)
515{
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521}
522
523/*
524 * utility function to clear some bits in an extent state struct.
525 * it will optionally wake up any one waiting on this state (wake == 1).
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
534{
535 struct extent_state *next;
536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537
538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
543 clear_state_cb(tree, state, bits);
544 add_extent_changeset(state, bits_to_clear, changeset, 0);
545 state->state &= ~bits_to_clear;
546 if (wake)
547 wake_up(&state->wq);
548 if (state->state == 0) {
549 next = next_state(state);
550 if (extent_state_in_tree(state)) {
551 rb_erase(&state->rb_node, &tree->state);
552 RB_CLEAR_NODE(&state->rb_node);
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
559 next = next_state(state);
560 }
561 return next;
562}
563
564static struct extent_state *
565alloc_extent_state_atomic(struct extent_state *prealloc)
566{
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571}
572
573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574{
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578}
579
580/*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
590 * This takes the tree lock, and returns 0 on success and < 0 on error.
591 */
592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
596{
597 struct extent_state *state;
598 struct extent_state *cached;
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
601 u64 last_end;
602 int err;
603 int clear = 0;
604
605 btrfs_debug_check_extent_io_range(tree, start, end);
606
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
616again:
617 if (!prealloc && gfpflags_allow_blocking(mask)) {
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
625 prealloc = alloc_extent_state(mask);
626 }
627
628 spin_lock(&tree->lock);
629 if (cached_state) {
630 cached = *cached_state;
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
639 if (clear)
640 atomic_dec(&cached->refs);
641 state = cached;
642 goto hit_next;
643 }
644 if (clear)
645 free_extent_state(cached);
646 }
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
651 node = tree_search(tree, start);
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
655hit_next:
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
659 last_end = state->end;
660
661 /* the state doesn't have the wanted bits, go ahead */
662 if (!(state->state & bits)) {
663 state = next_state(state);
664 goto next;
665 }
666
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
686 err = split_state(tree, state, prealloc, start);
687 if (err)
688 extent_io_tree_panic(tree, err);
689
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
696 goto next;
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
709 err = split_state(tree, state, prealloc, end + 1);
710 if (err)
711 extent_io_tree_panic(tree, err);
712
713 if (wake)
714 wake_up(&state->wq);
715
716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
717
718 prealloc = NULL;
719 goto out;
720 }
721
722 state = clear_state_bit(tree, state, &bits, wake, changeset);
723next:
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
727 if (start <= end && state && !need_resched())
728 goto hit_next;
729 goto search_again;
730
731out:
732 spin_unlock(&tree->lock);
733 if (prealloc)
734 free_extent_state(prealloc);
735
736 return 0;
737
738search_again:
739 if (start > end)
740 goto out;
741 spin_unlock(&tree->lock);
742 if (gfpflags_allow_blocking(mask))
743 cond_resched();
744 goto again;
745}
746
747static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
749 __releases(tree->lock)
750 __acquires(tree->lock)
751{
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754 spin_unlock(&tree->lock);
755 schedule();
756 spin_lock(&tree->lock);
757 finish_wait(&state->wq, &wait);
758}
759
760/*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
767{
768 struct extent_state *state;
769 struct rb_node *node;
770
771 btrfs_debug_check_extent_io_range(tree, start, end);
772
773 spin_lock(&tree->lock);
774again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
780 node = tree_search(tree, start);
781process_node:
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
806 }
807out:
808 spin_unlock(&tree->lock);
809}
810
811static void set_state_bits(struct extent_io_tree *tree,
812 struct extent_state *state,
813 unsigned *bits, struct extent_changeset *changeset)
814{
815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816
817 set_state_cb(tree, state, bits);
818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
822 add_extent_changeset(state, bits_to_set, changeset, 1);
823 state->state |= bits_to_set;
824}
825
826static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
828 unsigned flags)
829{
830 if (cached_ptr && !(*cached_ptr)) {
831 if (!flags || (state->state & flags)) {
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836}
837
838static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840{
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843}
844
845/*
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
848 *
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
852 *
853 * [start, end] is inclusive This takes the tree lock.
854 */
855
856static int __must_check
857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858 unsigned bits, unsigned exclusive_bits,
859 u64 *failed_start, struct extent_state **cached_state,
860 gfp_t mask, struct extent_changeset *changeset)
861{
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
865 struct rb_node **p;
866 struct rb_node *parent;
867 int err = 0;
868 u64 last_start;
869 u64 last_end;
870
871 btrfs_debug_check_extent_io_range(tree, start, end);
872
873 bits |= EXTENT_FIRST_DELALLOC;
874again:
875 if (!prealloc && gfpflags_allow_blocking(mask)) {
876 prealloc = alloc_extent_state(mask);
877 BUG_ON(!prealloc);
878 }
879
880 spin_lock(&tree->lock);
881 if (cached_state && *cached_state) {
882 state = *cached_state;
883 if (state->start <= start && state->end > start &&
884 extent_state_in_tree(state)) {
885 node = &state->rb_node;
886 goto hit_next;
887 }
888 }
889 /*
890 * this search will find all the extents that end after
891 * our range starts.
892 */
893 node = tree_search_for_insert(tree, start, &p, &parent);
894 if (!node) {
895 prealloc = alloc_extent_state_atomic(prealloc);
896 BUG_ON(!prealloc);
897 err = insert_state(tree, prealloc, start, end,
898 &p, &parent, &bits, changeset);
899 if (err)
900 extent_io_tree_panic(tree, err);
901
902 cache_state(prealloc, cached_state);
903 prealloc = NULL;
904 goto out;
905 }
906 state = rb_entry(node, struct extent_state, rb_node);
907hit_next:
908 last_start = state->start;
909 last_end = state->end;
910
911 /*
912 * | ---- desired range ---- |
913 * | state |
914 *
915 * Just lock what we found and keep going
916 */
917 if (state->start == start && state->end <= end) {
918 if (state->state & exclusive_bits) {
919 *failed_start = state->start;
920 err = -EEXIST;
921 goto out;
922 }
923
924 set_state_bits(tree, state, &bits, changeset);
925 cache_state(state, cached_state);
926 merge_state(tree, state);
927 if (last_end == (u64)-1)
928 goto out;
929 start = last_end + 1;
930 state = next_state(state);
931 if (start < end && state && state->start == start &&
932 !need_resched())
933 goto hit_next;
934 goto search_again;
935 }
936
937 /*
938 * | ---- desired range ---- |
939 * | state |
940 * or
941 * | ------------- state -------------- |
942 *
943 * We need to split the extent we found, and may flip bits on
944 * second half.
945 *
946 * If the extent we found extends past our
947 * range, we just split and search again. It'll get split
948 * again the next time though.
949 *
950 * If the extent we found is inside our range, we set the
951 * desired bit on it.
952 */
953 if (state->start < start) {
954 if (state->state & exclusive_bits) {
955 *failed_start = start;
956 err = -EEXIST;
957 goto out;
958 }
959
960 prealloc = alloc_extent_state_atomic(prealloc);
961 BUG_ON(!prealloc);
962 err = split_state(tree, state, prealloc, start);
963 if (err)
964 extent_io_tree_panic(tree, err);
965
966 prealloc = NULL;
967 if (err)
968 goto out;
969 if (state->end <= end) {
970 set_state_bits(tree, state, &bits, changeset);
971 cache_state(state, cached_state);
972 merge_state(tree, state);
973 if (last_end == (u64)-1)
974 goto out;
975 start = last_end + 1;
976 state = next_state(state);
977 if (start < end && state && state->start == start &&
978 !need_resched())
979 goto hit_next;
980 }
981 goto search_again;
982 }
983 /*
984 * | ---- desired range ---- |
985 * | state | or | state |
986 *
987 * There's a hole, we need to insert something in it and
988 * ignore the extent we found.
989 */
990 if (state->start > start) {
991 u64 this_end;
992 if (end < last_start)
993 this_end = end;
994 else
995 this_end = last_start - 1;
996
997 prealloc = alloc_extent_state_atomic(prealloc);
998 BUG_ON(!prealloc);
999
1000 /*
1001 * Avoid to free 'prealloc' if it can be merged with
1002 * the later extent.
1003 */
1004 err = insert_state(tree, prealloc, start, this_end,
1005 NULL, NULL, &bits, changeset);
1006 if (err)
1007 extent_io_tree_panic(tree, err);
1008
1009 cache_state(prealloc, cached_state);
1010 prealloc = NULL;
1011 start = this_end + 1;
1012 goto search_again;
1013 }
1014 /*
1015 * | ---- desired range ---- |
1016 * | state |
1017 * We need to split the extent, and set the bit
1018 * on the first half
1019 */
1020 if (state->start <= end && state->end > end) {
1021 if (state->state & exclusive_bits) {
1022 *failed_start = start;
1023 err = -EEXIST;
1024 goto out;
1025 }
1026
1027 prealloc = alloc_extent_state_atomic(prealloc);
1028 BUG_ON(!prealloc);
1029 err = split_state(tree, state, prealloc, end + 1);
1030 if (err)
1031 extent_io_tree_panic(tree, err);
1032
1033 set_state_bits(tree, prealloc, &bits, changeset);
1034 cache_state(prealloc, cached_state);
1035 merge_state(tree, prealloc);
1036 prealloc = NULL;
1037 goto out;
1038 }
1039
1040 goto search_again;
1041
1042out:
1043 spin_unlock(&tree->lock);
1044 if (prealloc)
1045 free_extent_state(prealloc);
1046
1047 return err;
1048
1049search_again:
1050 if (start > end)
1051 goto out;
1052 spin_unlock(&tree->lock);
1053 if (gfpflags_allow_blocking(mask))
1054 cond_resched();
1055 goto again;
1056}
1057
1058int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1059 unsigned bits, u64 * failed_start,
1060 struct extent_state **cached_state, gfp_t mask)
1061{
1062 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1063 cached_state, mask, NULL);
1064}
1065
1066
1067/**
1068 * convert_extent_bit - convert all bits in a given range from one bit to
1069 * another
1070 * @tree: the io tree to search
1071 * @start: the start offset in bytes
1072 * @end: the end offset in bytes (inclusive)
1073 * @bits: the bits to set in this range
1074 * @clear_bits: the bits to clear in this range
1075 * @cached_state: state that we're going to cache
1076 * @mask: the allocation mask
1077 *
1078 * This will go through and set bits for the given range. If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits. This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1082 * boundary bits like LOCK.
1083 */
1084int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1085 unsigned bits, unsigned clear_bits,
1086 struct extent_state **cached_state, gfp_t mask)
1087{
1088 struct extent_state *state;
1089 struct extent_state *prealloc = NULL;
1090 struct rb_node *node;
1091 struct rb_node **p;
1092 struct rb_node *parent;
1093 int err = 0;
1094 u64 last_start;
1095 u64 last_end;
1096 bool first_iteration = true;
1097
1098 btrfs_debug_check_extent_io_range(tree, start, end);
1099
1100again:
1101 if (!prealloc && gfpflags_allow_blocking(mask)) {
1102 /*
1103 * Best effort, don't worry if extent state allocation fails
1104 * here for the first iteration. We might have a cached state
1105 * that matches exactly the target range, in which case no
1106 * extent state allocations are needed. We'll only know this
1107 * after locking the tree.
1108 */
1109 prealloc = alloc_extent_state(mask);
1110 if (!prealloc && !first_iteration)
1111 return -ENOMEM;
1112 }
1113
1114 spin_lock(&tree->lock);
1115 if (cached_state && *cached_state) {
1116 state = *cached_state;
1117 if (state->start <= start && state->end > start &&
1118 extent_state_in_tree(state)) {
1119 node = &state->rb_node;
1120 goto hit_next;
1121 }
1122 }
1123
1124 /*
1125 * this search will find all the extents that end after
1126 * our range starts.
1127 */
1128 node = tree_search_for_insert(tree, start, &p, &parent);
1129 if (!node) {
1130 prealloc = alloc_extent_state_atomic(prealloc);
1131 if (!prealloc) {
1132 err = -ENOMEM;
1133 goto out;
1134 }
1135 err = insert_state(tree, prealloc, start, end,
1136 &p, &parent, &bits, NULL);
1137 if (err)
1138 extent_io_tree_panic(tree, err);
1139 cache_state(prealloc, cached_state);
1140 prealloc = NULL;
1141 goto out;
1142 }
1143 state = rb_entry(node, struct extent_state, rb_node);
1144hit_next:
1145 last_start = state->start;
1146 last_end = state->end;
1147
1148 /*
1149 * | ---- desired range ---- |
1150 * | state |
1151 *
1152 * Just lock what we found and keep going
1153 */
1154 if (state->start == start && state->end <= end) {
1155 set_state_bits(tree, state, &bits, NULL);
1156 cache_state(state, cached_state);
1157 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1158 if (last_end == (u64)-1)
1159 goto out;
1160 start = last_end + 1;
1161 if (start < end && state && state->start == start &&
1162 !need_resched())
1163 goto hit_next;
1164 goto search_again;
1165 }
1166
1167 /*
1168 * | ---- desired range ---- |
1169 * | state |
1170 * or
1171 * | ------------- state -------------- |
1172 *
1173 * We need to split the extent we found, and may flip bits on
1174 * second half.
1175 *
1176 * If the extent we found extends past our
1177 * range, we just split and search again. It'll get split
1178 * again the next time though.
1179 *
1180 * If the extent we found is inside our range, we set the
1181 * desired bit on it.
1182 */
1183 if (state->start < start) {
1184 prealloc = alloc_extent_state_atomic(prealloc);
1185 if (!prealloc) {
1186 err = -ENOMEM;
1187 goto out;
1188 }
1189 err = split_state(tree, state, prealloc, start);
1190 if (err)
1191 extent_io_tree_panic(tree, err);
1192 prealloc = NULL;
1193 if (err)
1194 goto out;
1195 if (state->end <= end) {
1196 set_state_bits(tree, state, &bits, NULL);
1197 cache_state(state, cached_state);
1198 state = clear_state_bit(tree, state, &clear_bits, 0,
1199 NULL);
1200 if (last_end == (u64)-1)
1201 goto out;
1202 start = last_end + 1;
1203 if (start < end && state && state->start == start &&
1204 !need_resched())
1205 goto hit_next;
1206 }
1207 goto search_again;
1208 }
1209 /*
1210 * | ---- desired range ---- |
1211 * | state | or | state |
1212 *
1213 * There's a hole, we need to insert something in it and
1214 * ignore the extent we found.
1215 */
1216 if (state->start > start) {
1217 u64 this_end;
1218 if (end < last_start)
1219 this_end = end;
1220 else
1221 this_end = last_start - 1;
1222
1223 prealloc = alloc_extent_state_atomic(prealloc);
1224 if (!prealloc) {
1225 err = -ENOMEM;
1226 goto out;
1227 }
1228
1229 /*
1230 * Avoid to free 'prealloc' if it can be merged with
1231 * the later extent.
1232 */
1233 err = insert_state(tree, prealloc, start, this_end,
1234 NULL, NULL, &bits, NULL);
1235 if (err)
1236 extent_io_tree_panic(tree, err);
1237 cache_state(prealloc, cached_state);
1238 prealloc = NULL;
1239 start = this_end + 1;
1240 goto search_again;
1241 }
1242 /*
1243 * | ---- desired range ---- |
1244 * | state |
1245 * We need to split the extent, and set the bit
1246 * on the first half
1247 */
1248 if (state->start <= end && state->end > end) {
1249 prealloc = alloc_extent_state_atomic(prealloc);
1250 if (!prealloc) {
1251 err = -ENOMEM;
1252 goto out;
1253 }
1254
1255 err = split_state(tree, state, prealloc, end + 1);
1256 if (err)
1257 extent_io_tree_panic(tree, err);
1258
1259 set_state_bits(tree, prealloc, &bits, NULL);
1260 cache_state(prealloc, cached_state);
1261 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1262 prealloc = NULL;
1263 goto out;
1264 }
1265
1266 goto search_again;
1267
1268out:
1269 spin_unlock(&tree->lock);
1270 if (prealloc)
1271 free_extent_state(prealloc);
1272
1273 return err;
1274
1275search_again:
1276 if (start > end)
1277 goto out;
1278 spin_unlock(&tree->lock);
1279 if (gfpflags_allow_blocking(mask))
1280 cond_resched();
1281 first_iteration = false;
1282 goto again;
1283}
1284
1285/* wrappers around set/clear extent bit */
1286int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1287 unsigned bits, gfp_t mask,
1288 struct extent_changeset *changeset)
1289{
1290 /*
1291 * We don't support EXTENT_LOCKED yet, as current changeset will
1292 * record any bits changed, so for EXTENT_LOCKED case, it will
1293 * either fail with -EEXIST or changeset will record the whole
1294 * range.
1295 */
1296 BUG_ON(bits & EXTENT_LOCKED);
1297
1298 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1299 changeset);
1300}
1301
1302int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, int wake, int delete,
1304 struct extent_state **cached, gfp_t mask)
1305{
1306 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307 cached, mask, NULL);
1308}
1309
1310int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 unsigned bits, gfp_t mask,
1312 struct extent_changeset *changeset)
1313{
1314 /*
1315 * Don't support EXTENT_LOCKED case, same reason as
1316 * set_record_extent_bits().
1317 */
1318 BUG_ON(bits & EXTENT_LOCKED);
1319
1320 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1321 changeset);
1322}
1323
1324/*
1325 * either insert or lock state struct between start and end use mask to tell
1326 * us if waiting is desired.
1327 */
1328int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1329 struct extent_state **cached_state)
1330{
1331 int err;
1332 u64 failed_start;
1333
1334 while (1) {
1335 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1336 EXTENT_LOCKED, &failed_start,
1337 cached_state, GFP_NOFS, NULL);
1338 if (err == -EEXIST) {
1339 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1340 start = failed_start;
1341 } else
1342 break;
1343 WARN_ON(start > end);
1344 }
1345 return err;
1346}
1347
1348int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1349{
1350 int err;
1351 u64 failed_start;
1352
1353 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1354 &failed_start, NULL, GFP_NOFS, NULL);
1355 if (err == -EEXIST) {
1356 if (failed_start > start)
1357 clear_extent_bit(tree, start, failed_start - 1,
1358 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1359 return 0;
1360 }
1361 return 1;
1362}
1363
1364void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1365{
1366 unsigned long index = start >> PAGE_SHIFT;
1367 unsigned long end_index = end >> PAGE_SHIFT;
1368 struct page *page;
1369
1370 while (index <= end_index) {
1371 page = find_get_page(inode->i_mapping, index);
1372 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1373 clear_page_dirty_for_io(page);
1374 put_page(page);
1375 index++;
1376 }
1377}
1378
1379void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380{
1381 unsigned long index = start >> PAGE_SHIFT;
1382 unsigned long end_index = end >> PAGE_SHIFT;
1383 struct page *page;
1384
1385 while (index <= end_index) {
1386 page = find_get_page(inode->i_mapping, index);
1387 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388 __set_page_dirty_nobuffers(page);
1389 account_page_redirty(page);
1390 put_page(page);
1391 index++;
1392 }
1393}
1394
1395/*
1396 * helper function to set both pages and extents in the tree writeback
1397 */
1398static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1399{
1400 unsigned long index = start >> PAGE_SHIFT;
1401 unsigned long end_index = end >> PAGE_SHIFT;
1402 struct page *page;
1403
1404 while (index <= end_index) {
1405 page = find_get_page(tree->mapping, index);
1406 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1407 set_page_writeback(page);
1408 put_page(page);
1409 index++;
1410 }
1411}
1412
1413/* find the first state struct with 'bits' set after 'start', and
1414 * return it. tree->lock must be held. NULL will returned if
1415 * nothing was found after 'start'
1416 */
1417static struct extent_state *
1418find_first_extent_bit_state(struct extent_io_tree *tree,
1419 u64 start, unsigned bits)
1420{
1421 struct rb_node *node;
1422 struct extent_state *state;
1423
1424 /*
1425 * this search will find all the extents that end after
1426 * our range starts.
1427 */
1428 node = tree_search(tree, start);
1429 if (!node)
1430 goto out;
1431
1432 while (1) {
1433 state = rb_entry(node, struct extent_state, rb_node);
1434 if (state->end >= start && (state->state & bits))
1435 return state;
1436
1437 node = rb_next(node);
1438 if (!node)
1439 break;
1440 }
1441out:
1442 return NULL;
1443}
1444
1445/*
1446 * find the first offset in the io tree with 'bits' set. zero is
1447 * returned if we find something, and *start_ret and *end_ret are
1448 * set to reflect the state struct that was found.
1449 *
1450 * If nothing was found, 1 is returned. If found something, return 0.
1451 */
1452int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1453 u64 *start_ret, u64 *end_ret, unsigned bits,
1454 struct extent_state **cached_state)
1455{
1456 struct extent_state *state;
1457 struct rb_node *n;
1458 int ret = 1;
1459
1460 spin_lock(&tree->lock);
1461 if (cached_state && *cached_state) {
1462 state = *cached_state;
1463 if (state->end == start - 1 && extent_state_in_tree(state)) {
1464 n = rb_next(&state->rb_node);
1465 while (n) {
1466 state = rb_entry(n, struct extent_state,
1467 rb_node);
1468 if (state->state & bits)
1469 goto got_it;
1470 n = rb_next(n);
1471 }
1472 free_extent_state(*cached_state);
1473 *cached_state = NULL;
1474 goto out;
1475 }
1476 free_extent_state(*cached_state);
1477 *cached_state = NULL;
1478 }
1479
1480 state = find_first_extent_bit_state(tree, start, bits);
1481got_it:
1482 if (state) {
1483 cache_state_if_flags(state, cached_state, 0);
1484 *start_ret = state->start;
1485 *end_ret = state->end;
1486 ret = 0;
1487 }
1488out:
1489 spin_unlock(&tree->lock);
1490 return ret;
1491}
1492
1493/*
1494 * find a contiguous range of bytes in the file marked as delalloc, not
1495 * more than 'max_bytes'. start and end are used to return the range,
1496 *
1497 * 1 is returned if we find something, 0 if nothing was in the tree
1498 */
1499static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1500 u64 *start, u64 *end, u64 max_bytes,
1501 struct extent_state **cached_state)
1502{
1503 struct rb_node *node;
1504 struct extent_state *state;
1505 u64 cur_start = *start;
1506 u64 found = 0;
1507 u64 total_bytes = 0;
1508
1509 spin_lock(&tree->lock);
1510
1511 /*
1512 * this search will find all the extents that end after
1513 * our range starts.
1514 */
1515 node = tree_search(tree, cur_start);
1516 if (!node) {
1517 if (!found)
1518 *end = (u64)-1;
1519 goto out;
1520 }
1521
1522 while (1) {
1523 state = rb_entry(node, struct extent_state, rb_node);
1524 if (found && (state->start != cur_start ||
1525 (state->state & EXTENT_BOUNDARY))) {
1526 goto out;
1527 }
1528 if (!(state->state & EXTENT_DELALLOC)) {
1529 if (!found)
1530 *end = state->end;
1531 goto out;
1532 }
1533 if (!found) {
1534 *start = state->start;
1535 *cached_state = state;
1536 atomic_inc(&state->refs);
1537 }
1538 found++;
1539 *end = state->end;
1540 cur_start = state->end + 1;
1541 node = rb_next(node);
1542 total_bytes += state->end - state->start + 1;
1543 if (total_bytes >= max_bytes)
1544 break;
1545 if (!node)
1546 break;
1547 }
1548out:
1549 spin_unlock(&tree->lock);
1550 return found;
1551}
1552
1553static noinline void __unlock_for_delalloc(struct inode *inode,
1554 struct page *locked_page,
1555 u64 start, u64 end)
1556{
1557 int ret;
1558 struct page *pages[16];
1559 unsigned long index = start >> PAGE_SHIFT;
1560 unsigned long end_index = end >> PAGE_SHIFT;
1561 unsigned long nr_pages = end_index - index + 1;
1562 int i;
1563
1564 if (index == locked_page->index && end_index == index)
1565 return;
1566
1567 while (nr_pages > 0) {
1568 ret = find_get_pages_contig(inode->i_mapping, index,
1569 min_t(unsigned long, nr_pages,
1570 ARRAY_SIZE(pages)), pages);
1571 for (i = 0; i < ret; i++) {
1572 if (pages[i] != locked_page)
1573 unlock_page(pages[i]);
1574 put_page(pages[i]);
1575 }
1576 nr_pages -= ret;
1577 index += ret;
1578 cond_resched();
1579 }
1580}
1581
1582static noinline int lock_delalloc_pages(struct inode *inode,
1583 struct page *locked_page,
1584 u64 delalloc_start,
1585 u64 delalloc_end)
1586{
1587 unsigned long index = delalloc_start >> PAGE_SHIFT;
1588 unsigned long start_index = index;
1589 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1590 unsigned long pages_locked = 0;
1591 struct page *pages[16];
1592 unsigned long nrpages;
1593 int ret;
1594 int i;
1595
1596 /* the caller is responsible for locking the start index */
1597 if (index == locked_page->index && index == end_index)
1598 return 0;
1599
1600 /* skip the page at the start index */
1601 nrpages = end_index - index + 1;
1602 while (nrpages > 0) {
1603 ret = find_get_pages_contig(inode->i_mapping, index,
1604 min_t(unsigned long,
1605 nrpages, ARRAY_SIZE(pages)), pages);
1606 if (ret == 0) {
1607 ret = -EAGAIN;
1608 goto done;
1609 }
1610 /* now we have an array of pages, lock them all */
1611 for (i = 0; i < ret; i++) {
1612 /*
1613 * the caller is taking responsibility for
1614 * locked_page
1615 */
1616 if (pages[i] != locked_page) {
1617 lock_page(pages[i]);
1618 if (!PageDirty(pages[i]) ||
1619 pages[i]->mapping != inode->i_mapping) {
1620 ret = -EAGAIN;
1621 unlock_page(pages[i]);
1622 put_page(pages[i]);
1623 goto done;
1624 }
1625 }
1626 put_page(pages[i]);
1627 pages_locked++;
1628 }
1629 nrpages -= ret;
1630 index += ret;
1631 cond_resched();
1632 }
1633 ret = 0;
1634done:
1635 if (ret && pages_locked) {
1636 __unlock_for_delalloc(inode, locked_page,
1637 delalloc_start,
1638 ((u64)(start_index + pages_locked - 1)) <<
1639 PAGE_SHIFT);
1640 }
1641 return ret;
1642}
1643
1644/*
1645 * find a contiguous range of bytes in the file marked as delalloc, not
1646 * more than 'max_bytes'. start and end are used to return the range,
1647 *
1648 * 1 is returned if we find something, 0 if nothing was in the tree
1649 */
1650STATIC u64 find_lock_delalloc_range(struct inode *inode,
1651 struct extent_io_tree *tree,
1652 struct page *locked_page, u64 *start,
1653 u64 *end, u64 max_bytes)
1654{
1655 u64 delalloc_start;
1656 u64 delalloc_end;
1657 u64 found;
1658 struct extent_state *cached_state = NULL;
1659 int ret;
1660 int loops = 0;
1661
1662again:
1663 /* step one, find a bunch of delalloc bytes starting at start */
1664 delalloc_start = *start;
1665 delalloc_end = 0;
1666 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1667 max_bytes, &cached_state);
1668 if (!found || delalloc_end <= *start) {
1669 *start = delalloc_start;
1670 *end = delalloc_end;
1671 free_extent_state(cached_state);
1672 return 0;
1673 }
1674
1675 /*
1676 * start comes from the offset of locked_page. We have to lock
1677 * pages in order, so we can't process delalloc bytes before
1678 * locked_page
1679 */
1680 if (delalloc_start < *start)
1681 delalloc_start = *start;
1682
1683 /*
1684 * make sure to limit the number of pages we try to lock down
1685 */
1686 if (delalloc_end + 1 - delalloc_start > max_bytes)
1687 delalloc_end = delalloc_start + max_bytes - 1;
1688
1689 /* step two, lock all the pages after the page that has start */
1690 ret = lock_delalloc_pages(inode, locked_page,
1691 delalloc_start, delalloc_end);
1692 if (ret == -EAGAIN) {
1693 /* some of the pages are gone, lets avoid looping by
1694 * shortening the size of the delalloc range we're searching
1695 */
1696 free_extent_state(cached_state);
1697 cached_state = NULL;
1698 if (!loops) {
1699 max_bytes = PAGE_SIZE;
1700 loops = 1;
1701 goto again;
1702 } else {
1703 found = 0;
1704 goto out_failed;
1705 }
1706 }
1707 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1708
1709 /* step three, lock the state bits for the whole range */
1710 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1711
1712 /* then test to make sure it is all still delalloc */
1713 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1714 EXTENT_DELALLOC, 1, cached_state);
1715 if (!ret) {
1716 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1717 &cached_state, GFP_NOFS);
1718 __unlock_for_delalloc(inode, locked_page,
1719 delalloc_start, delalloc_end);
1720 cond_resched();
1721 goto again;
1722 }
1723 free_extent_state(cached_state);
1724 *start = delalloc_start;
1725 *end = delalloc_end;
1726out_failed:
1727 return found;
1728}
1729
1730void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1731 struct page *locked_page,
1732 unsigned clear_bits,
1733 unsigned long page_ops)
1734{
1735 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1736 int ret;
1737 struct page *pages[16];
1738 unsigned long index = start >> PAGE_SHIFT;
1739 unsigned long end_index = end >> PAGE_SHIFT;
1740 unsigned long nr_pages = end_index - index + 1;
1741 int i;
1742
1743 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1744 if (page_ops == 0)
1745 return;
1746
1747 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1748 mapping_set_error(inode->i_mapping, -EIO);
1749
1750 while (nr_pages > 0) {
1751 ret = find_get_pages_contig(inode->i_mapping, index,
1752 min_t(unsigned long,
1753 nr_pages, ARRAY_SIZE(pages)), pages);
1754 for (i = 0; i < ret; i++) {
1755
1756 if (page_ops & PAGE_SET_PRIVATE2)
1757 SetPagePrivate2(pages[i]);
1758
1759 if (pages[i] == locked_page) {
1760 put_page(pages[i]);
1761 continue;
1762 }
1763 if (page_ops & PAGE_CLEAR_DIRTY)
1764 clear_page_dirty_for_io(pages[i]);
1765 if (page_ops & PAGE_SET_WRITEBACK)
1766 set_page_writeback(pages[i]);
1767 if (page_ops & PAGE_SET_ERROR)
1768 SetPageError(pages[i]);
1769 if (page_ops & PAGE_END_WRITEBACK)
1770 end_page_writeback(pages[i]);
1771 if (page_ops & PAGE_UNLOCK)
1772 unlock_page(pages[i]);
1773 put_page(pages[i]);
1774 }
1775 nr_pages -= ret;
1776 index += ret;
1777 cond_resched();
1778 }
1779}
1780
1781/*
1782 * count the number of bytes in the tree that have a given bit(s)
1783 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1784 * cached. The total number found is returned.
1785 */
1786u64 count_range_bits(struct extent_io_tree *tree,
1787 u64 *start, u64 search_end, u64 max_bytes,
1788 unsigned bits, int contig)
1789{
1790 struct rb_node *node;
1791 struct extent_state *state;
1792 u64 cur_start = *start;
1793 u64 total_bytes = 0;
1794 u64 last = 0;
1795 int found = 0;
1796
1797 if (WARN_ON(search_end <= cur_start))
1798 return 0;
1799
1800 spin_lock(&tree->lock);
1801 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1802 total_bytes = tree->dirty_bytes;
1803 goto out;
1804 }
1805 /*
1806 * this search will find all the extents that end after
1807 * our range starts.
1808 */
1809 node = tree_search(tree, cur_start);
1810 if (!node)
1811 goto out;
1812
1813 while (1) {
1814 state = rb_entry(node, struct extent_state, rb_node);
1815 if (state->start > search_end)
1816 break;
1817 if (contig && found && state->start > last + 1)
1818 break;
1819 if (state->end >= cur_start && (state->state & bits) == bits) {
1820 total_bytes += min(search_end, state->end) + 1 -
1821 max(cur_start, state->start);
1822 if (total_bytes >= max_bytes)
1823 break;
1824 if (!found) {
1825 *start = max(cur_start, state->start);
1826 found = 1;
1827 }
1828 last = state->end;
1829 } else if (contig && found) {
1830 break;
1831 }
1832 node = rb_next(node);
1833 if (!node)
1834 break;
1835 }
1836out:
1837 spin_unlock(&tree->lock);
1838 return total_bytes;
1839}
1840
1841/*
1842 * set the private field for a given byte offset in the tree. If there isn't
1843 * an extent_state there already, this does nothing.
1844 */
1845static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1846 struct io_failure_record *failrec)
1847{
1848 struct rb_node *node;
1849 struct extent_state *state;
1850 int ret = 0;
1851
1852 spin_lock(&tree->lock);
1853 /*
1854 * this search will find all the extents that end after
1855 * our range starts.
1856 */
1857 node = tree_search(tree, start);
1858 if (!node) {
1859 ret = -ENOENT;
1860 goto out;
1861 }
1862 state = rb_entry(node, struct extent_state, rb_node);
1863 if (state->start != start) {
1864 ret = -ENOENT;
1865 goto out;
1866 }
1867 state->failrec = failrec;
1868out:
1869 spin_unlock(&tree->lock);
1870 return ret;
1871}
1872
1873static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1874 struct io_failure_record **failrec)
1875{
1876 struct rb_node *node;
1877 struct extent_state *state;
1878 int ret = 0;
1879
1880 spin_lock(&tree->lock);
1881 /*
1882 * this search will find all the extents that end after
1883 * our range starts.
1884 */
1885 node = tree_search(tree, start);
1886 if (!node) {
1887 ret = -ENOENT;
1888 goto out;
1889 }
1890 state = rb_entry(node, struct extent_state, rb_node);
1891 if (state->start != start) {
1892 ret = -ENOENT;
1893 goto out;
1894 }
1895 *failrec = state->failrec;
1896out:
1897 spin_unlock(&tree->lock);
1898 return ret;
1899}
1900
1901/*
1902 * searches a range in the state tree for a given mask.
1903 * If 'filled' == 1, this returns 1 only if every extent in the tree
1904 * has the bits set. Otherwise, 1 is returned if any bit in the
1905 * range is found set.
1906 */
1907int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1908 unsigned bits, int filled, struct extent_state *cached)
1909{
1910 struct extent_state *state = NULL;
1911 struct rb_node *node;
1912 int bitset = 0;
1913
1914 spin_lock(&tree->lock);
1915 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1916 cached->end > start)
1917 node = &cached->rb_node;
1918 else
1919 node = tree_search(tree, start);
1920 while (node && start <= end) {
1921 state = rb_entry(node, struct extent_state, rb_node);
1922
1923 if (filled && state->start > start) {
1924 bitset = 0;
1925 break;
1926 }
1927
1928 if (state->start > end)
1929 break;
1930
1931 if (state->state & bits) {
1932 bitset = 1;
1933 if (!filled)
1934 break;
1935 } else if (filled) {
1936 bitset = 0;
1937 break;
1938 }
1939
1940 if (state->end == (u64)-1)
1941 break;
1942
1943 start = state->end + 1;
1944 if (start > end)
1945 break;
1946 node = rb_next(node);
1947 if (!node) {
1948 if (filled)
1949 bitset = 0;
1950 break;
1951 }
1952 }
1953 spin_unlock(&tree->lock);
1954 return bitset;
1955}
1956
1957/*
1958 * helper function to set a given page up to date if all the
1959 * extents in the tree for that page are up to date
1960 */
1961static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1962{
1963 u64 start = page_offset(page);
1964 u64 end = start + PAGE_SIZE - 1;
1965 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1966 SetPageUptodate(page);
1967}
1968
1969int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1970{
1971 int ret;
1972 int err = 0;
1973 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1974
1975 set_state_failrec(failure_tree, rec->start, NULL);
1976 ret = clear_extent_bits(failure_tree, rec->start,
1977 rec->start + rec->len - 1,
1978 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1979 if (ret)
1980 err = ret;
1981
1982 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1983 rec->start + rec->len - 1,
1984 EXTENT_DAMAGED, GFP_NOFS);
1985 if (ret && !err)
1986 err = ret;
1987
1988 kfree(rec);
1989 return err;
1990}
1991
1992/*
1993 * this bypasses the standard btrfs submit functions deliberately, as
1994 * the standard behavior is to write all copies in a raid setup. here we only
1995 * want to write the one bad copy. so we do the mapping for ourselves and issue
1996 * submit_bio directly.
1997 * to avoid any synchronization issues, wait for the data after writing, which
1998 * actually prevents the read that triggered the error from finishing.
1999 * currently, there can be no more than two copies of every data bit. thus,
2000 * exactly one rewrite is required.
2001 */
2002int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2003 struct page *page, unsigned int pg_offset, int mirror_num)
2004{
2005 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2006 struct bio *bio;
2007 struct btrfs_device *dev;
2008 u64 map_length = 0;
2009 u64 sector;
2010 struct btrfs_bio *bbio = NULL;
2011 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2012 int ret;
2013
2014 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2015 BUG_ON(!mirror_num);
2016
2017 /* we can't repair anything in raid56 yet */
2018 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2019 return 0;
2020
2021 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2022 if (!bio)
2023 return -EIO;
2024 bio->bi_iter.bi_size = 0;
2025 map_length = length;
2026
2027 ret = btrfs_map_block(fs_info, WRITE, logical,
2028 &map_length, &bbio, mirror_num);
2029 if (ret) {
2030 bio_put(bio);
2031 return -EIO;
2032 }
2033 BUG_ON(mirror_num != bbio->mirror_num);
2034 sector = bbio->stripes[mirror_num-1].physical >> 9;
2035 bio->bi_iter.bi_sector = sector;
2036 dev = bbio->stripes[mirror_num-1].dev;
2037 btrfs_put_bbio(bbio);
2038 if (!dev || !dev->bdev || !dev->writeable) {
2039 bio_put(bio);
2040 return -EIO;
2041 }
2042 bio->bi_bdev = dev->bdev;
2043 bio_add_page(bio, page, length, pg_offset);
2044
2045 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2046 /* try to remap that extent elsewhere? */
2047 bio_put(bio);
2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049 return -EIO;
2050 }
2051
2052 btrfs_info_rl_in_rcu(fs_info,
2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054 btrfs_ino(inode), start,
2055 rcu_str_deref(dev->name), sector);
2056 bio_put(bio);
2057 return 0;
2058}
2059
2060int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2061 int mirror_num)
2062{
2063 u64 start = eb->start;
2064 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2065 int ret = 0;
2066
2067 if (root->fs_info->sb->s_flags & MS_RDONLY)
2068 return -EROFS;
2069
2070 for (i = 0; i < num_pages; i++) {
2071 struct page *p = eb->pages[i];
2072
2073 ret = repair_io_failure(root->fs_info->btree_inode, start,
2074 PAGE_SIZE, start, p,
2075 start - page_offset(p), mirror_num);
2076 if (ret)
2077 break;
2078 start += PAGE_SIZE;
2079 }
2080
2081 return ret;
2082}
2083
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
2088int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2089 unsigned int pg_offset)
2090{
2091 u64 private;
2092 struct io_failure_record *failrec;
2093 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2094 struct extent_state *state;
2095 int num_copies;
2096 int ret;
2097
2098 private = 0;
2099 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2100 (u64)-1, 1, EXTENT_DIRTY, 0);
2101 if (!ret)
2102 return 0;
2103
2104 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2105 &failrec);
2106 if (ret)
2107 return 0;
2108
2109 BUG_ON(!failrec->this_mirror);
2110
2111 if (failrec->in_validation) {
2112 /* there was no real error, just free the record */
2113 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2114 failrec->start);
2115 goto out;
2116 }
2117 if (fs_info->sb->s_flags & MS_RDONLY)
2118 goto out;
2119
2120 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2121 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2122 failrec->start,
2123 EXTENT_LOCKED);
2124 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2125
2126 if (state && state->start <= failrec->start &&
2127 state->end >= failrec->start + failrec->len - 1) {
2128 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2129 failrec->len);
2130 if (num_copies > 1) {
2131 repair_io_failure(inode, start, failrec->len,
2132 failrec->logical, page,
2133 pg_offset, failrec->failed_mirror);
2134 }
2135 }
2136
2137out:
2138 free_io_failure(inode, failrec);
2139
2140 return 0;
2141}
2142
2143/*
2144 * Can be called when
2145 * - hold extent lock
2146 * - under ordered extent
2147 * - the inode is freeing
2148 */
2149void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2150{
2151 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2152 struct io_failure_record *failrec;
2153 struct extent_state *state, *next;
2154
2155 if (RB_EMPTY_ROOT(&failure_tree->state))
2156 return;
2157
2158 spin_lock(&failure_tree->lock);
2159 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2160 while (state) {
2161 if (state->start > end)
2162 break;
2163
2164 ASSERT(state->end <= end);
2165
2166 next = next_state(state);
2167
2168 failrec = state->failrec;
2169 free_extent_state(state);
2170 kfree(failrec);
2171
2172 state = next;
2173 }
2174 spin_unlock(&failure_tree->lock);
2175}
2176
2177int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2178 struct io_failure_record **failrec_ret)
2179{
2180 struct io_failure_record *failrec;
2181 struct extent_map *em;
2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185 int ret;
2186 u64 logical;
2187
2188 ret = get_state_failrec(failure_tree, start, &failrec);
2189 if (ret) {
2190 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2191 if (!failrec)
2192 return -ENOMEM;
2193
2194 failrec->start = start;
2195 failrec->len = end - start + 1;
2196 failrec->this_mirror = 0;
2197 failrec->bio_flags = 0;
2198 failrec->in_validation = 0;
2199
2200 read_lock(&em_tree->lock);
2201 em = lookup_extent_mapping(em_tree, start, failrec->len);
2202 if (!em) {
2203 read_unlock(&em_tree->lock);
2204 kfree(failrec);
2205 return -EIO;
2206 }
2207
2208 if (em->start > start || em->start + em->len <= start) {
2209 free_extent_map(em);
2210 em = NULL;
2211 }
2212 read_unlock(&em_tree->lock);
2213 if (!em) {
2214 kfree(failrec);
2215 return -EIO;
2216 }
2217
2218 logical = start - em->start;
2219 logical = em->block_start + logical;
2220 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2221 logical = em->block_start;
2222 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2223 extent_set_compress_type(&failrec->bio_flags,
2224 em->compress_type);
2225 }
2226
2227 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2228 logical, start, failrec->len);
2229
2230 failrec->logical = logical;
2231 free_extent_map(em);
2232
2233 /* set the bits in the private failure tree */
2234 ret = set_extent_bits(failure_tree, start, end,
2235 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2236 if (ret >= 0)
2237 ret = set_state_failrec(failure_tree, start, failrec);
2238 /* set the bits in the inode's tree */
2239 if (ret >= 0)
2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241 GFP_NOFS);
2242 if (ret < 0) {
2243 kfree(failrec);
2244 return ret;
2245 }
2246 } else {
2247 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2248 failrec->logical, failrec->start, failrec->len,
2249 failrec->in_validation);
2250 /*
2251 * when data can be on disk more than twice, add to failrec here
2252 * (e.g. with a list for failed_mirror) to make
2253 * clean_io_failure() clean all those errors at once.
2254 */
2255 }
2256
2257 *failrec_ret = failrec;
2258
2259 return 0;
2260}
2261
2262int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263 struct io_failure_record *failrec, int failed_mirror)
2264{
2265 int num_copies;
2266
2267 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2268 failrec->logical, failrec->len);
2269 if (num_copies == 1) {
2270 /*
2271 * we only have a single copy of the data, so don't bother with
2272 * all the retry and error correction code that follows. no
2273 * matter what the error is, it is very likely to persist.
2274 */
2275 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2276 num_copies, failrec->this_mirror, failed_mirror);
2277 return 0;
2278 }
2279
2280 /*
2281 * there are two premises:
2282 * a) deliver good data to the caller
2283 * b) correct the bad sectors on disk
2284 */
2285 if (failed_bio->bi_vcnt > 1) {
2286 /*
2287 * to fulfill b), we need to know the exact failing sectors, as
2288 * we don't want to rewrite any more than the failed ones. thus,
2289 * we need separate read requests for the failed bio
2290 *
2291 * if the following BUG_ON triggers, our validation request got
2292 * merged. we need separate requests for our algorithm to work.
2293 */
2294 BUG_ON(failrec->in_validation);
2295 failrec->in_validation = 1;
2296 failrec->this_mirror = failed_mirror;
2297 } else {
2298 /*
2299 * we're ready to fulfill a) and b) alongside. get a good copy
2300 * of the failed sector and if we succeed, we have setup
2301 * everything for repair_io_failure to do the rest for us.
2302 */
2303 if (failrec->in_validation) {
2304 BUG_ON(failrec->this_mirror != failed_mirror);
2305 failrec->in_validation = 0;
2306 failrec->this_mirror = 0;
2307 }
2308 failrec->failed_mirror = failed_mirror;
2309 failrec->this_mirror++;
2310 if (failrec->this_mirror == failed_mirror)
2311 failrec->this_mirror++;
2312 }
2313
2314 if (failrec->this_mirror > num_copies) {
2315 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2316 num_copies, failrec->this_mirror, failed_mirror);
2317 return 0;
2318 }
2319
2320 return 1;
2321}
2322
2323
2324struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
2327 bio_end_io_t *endio_func, void *data)
2328{
2329 struct bio *bio;
2330 struct btrfs_io_bio *btrfs_failed_bio;
2331 struct btrfs_io_bio *btrfs_bio;
2332
2333 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2334 if (!bio)
2335 return NULL;
2336
2337 bio->bi_end_io = endio_func;
2338 bio->bi_iter.bi_sector = failrec->logical >> 9;
2339 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2340 bio->bi_iter.bi_size = 0;
2341 bio->bi_private = data;
2342
2343 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344 if (btrfs_failed_bio->csum) {
2345 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2346 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2347
2348 btrfs_bio = btrfs_io_bio(bio);
2349 btrfs_bio->csum = btrfs_bio->csum_inline;
2350 icsum *= csum_size;
2351 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2352 csum_size);
2353 }
2354
2355 bio_add_page(bio, page, failrec->len, pg_offset);
2356
2357 return bio;
2358}
2359
2360/*
2361 * this is a generic handler for readpage errors (default
2362 * readpage_io_failed_hook). if other copies exist, read those and write back
2363 * good data to the failed position. does not investigate in remapping the
2364 * failed extent elsewhere, hoping the device will be smart enough to do this as
2365 * needed
2366 */
2367
2368static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2369 struct page *page, u64 start, u64 end,
2370 int failed_mirror)
2371{
2372 struct io_failure_record *failrec;
2373 struct inode *inode = page->mapping->host;
2374 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2375 struct bio *bio;
2376 int read_mode;
2377 int ret;
2378
2379 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2380
2381 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382 if (ret)
2383 return ret;
2384
2385 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2386 if (!ret) {
2387 free_io_failure(inode, failrec);
2388 return -EIO;
2389 }
2390
2391 if (failed_bio->bi_vcnt > 1)
2392 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2393 else
2394 read_mode = READ_SYNC;
2395
2396 phy_offset >>= inode->i_sb->s_blocksize_bits;
2397 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398 start - page_offset(page),
2399 (int)phy_offset, failed_bio->bi_end_io,
2400 NULL);
2401 if (!bio) {
2402 free_io_failure(inode, failrec);
2403 return -EIO;
2404 }
2405
2406 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2407 read_mode, failrec->this_mirror, failrec->in_validation);
2408
2409 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2410 failrec->this_mirror,
2411 failrec->bio_flags, 0);
2412 if (ret) {
2413 free_io_failure(inode, failrec);
2414 bio_put(bio);
2415 }
2416
2417 return ret;
2418}
2419
2420/* lots and lots of room for performance fixes in the end_bio funcs */
2421
2422void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2423{
2424 int uptodate = (err == 0);
2425 struct extent_io_tree *tree;
2426 int ret = 0;
2427
2428 tree = &BTRFS_I(page->mapping->host)->io_tree;
2429
2430 if (tree->ops && tree->ops->writepage_end_io_hook) {
2431 ret = tree->ops->writepage_end_io_hook(page, start,
2432 end, NULL, uptodate);
2433 if (ret)
2434 uptodate = 0;
2435 }
2436
2437 if (!uptodate) {
2438 ClearPageUptodate(page);
2439 SetPageError(page);
2440 ret = ret < 0 ? ret : -EIO;
2441 mapping_set_error(page->mapping, ret);
2442 }
2443}
2444
2445/*
2446 * after a writepage IO is done, we need to:
2447 * clear the uptodate bits on error
2448 * clear the writeback bits in the extent tree for this IO
2449 * end_page_writeback if the page has no more pending IO
2450 *
2451 * Scheduling is not allowed, so the extent state tree is expected
2452 * to have one and only one object corresponding to this IO.
2453 */
2454static void end_bio_extent_writepage(struct bio *bio)
2455{
2456 struct bio_vec *bvec;
2457 u64 start;
2458 u64 end;
2459 int i;
2460
2461 bio_for_each_segment_all(bvec, bio, i) {
2462 struct page *page = bvec->bv_page;
2463
2464 /* We always issue full-page reads, but if some block
2465 * in a page fails to read, blk_update_request() will
2466 * advance bv_offset and adjust bv_len to compensate.
2467 * Print a warning for nonzero offsets, and an error
2468 * if they don't add up to a full page. */
2469 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2470 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2471 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2472 "partial page write in btrfs with offset %u and length %u",
2473 bvec->bv_offset, bvec->bv_len);
2474 else
2475 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2476 "incomplete page write in btrfs with offset %u and "
2477 "length %u",
2478 bvec->bv_offset, bvec->bv_len);
2479 }
2480
2481 start = page_offset(page);
2482 end = start + bvec->bv_offset + bvec->bv_len - 1;
2483
2484 end_extent_writepage(page, bio->bi_error, start, end);
2485 end_page_writeback(page);
2486 }
2487
2488 bio_put(bio);
2489}
2490
2491static void
2492endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493 int uptodate)
2494{
2495 struct extent_state *cached = NULL;
2496 u64 end = start + len - 1;
2497
2498 if (uptodate && tree->track_uptodate)
2499 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501}
2502
2503/*
2504 * after a readpage IO is done, we need to:
2505 * clear the uptodate bits on error
2506 * set the uptodate bits if things worked
2507 * set the page up to date if all extents in the tree are uptodate
2508 * clear the lock bit in the extent tree
2509 * unlock the page if there are no other extents locked for it
2510 *
2511 * Scheduling is not allowed, so the extent state tree is expected
2512 * to have one and only one object corresponding to this IO.
2513 */
2514static void end_bio_extent_readpage(struct bio *bio)
2515{
2516 struct bio_vec *bvec;
2517 int uptodate = !bio->bi_error;
2518 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2519 struct extent_io_tree *tree;
2520 u64 offset = 0;
2521 u64 start;
2522 u64 end;
2523 u64 len;
2524 u64 extent_start = 0;
2525 u64 extent_len = 0;
2526 int mirror;
2527 int ret;
2528 int i;
2529
2530 bio_for_each_segment_all(bvec, bio, i) {
2531 struct page *page = bvec->bv_page;
2532 struct inode *inode = page->mapping->host;
2533
2534 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2535 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2536 bio->bi_error, io_bio->mirror_num);
2537 tree = &BTRFS_I(inode)->io_tree;
2538
2539 /* We always issue full-page reads, but if some block
2540 * in a page fails to read, blk_update_request() will
2541 * advance bv_offset and adjust bv_len to compensate.
2542 * Print a warning for nonzero offsets, and an error
2543 * if they don't add up to a full page. */
2544 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2547 "partial page read in btrfs with offset %u and length %u",
2548 bvec->bv_offset, bvec->bv_len);
2549 else
2550 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2551 "incomplete page read in btrfs with offset %u and "
2552 "length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 }
2555
2556 start = page_offset(page);
2557 end = start + bvec->bv_offset + bvec->bv_len - 1;
2558 len = bvec->bv_len;
2559
2560 mirror = io_bio->mirror_num;
2561 if (likely(uptodate && tree->ops &&
2562 tree->ops->readpage_end_io_hook)) {
2563 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564 page, start, end,
2565 mirror);
2566 if (ret)
2567 uptodate = 0;
2568 else
2569 clean_io_failure(inode, start, page, 0);
2570 }
2571
2572 if (likely(uptodate))
2573 goto readpage_ok;
2574
2575 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2576 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577 if (!ret && !bio->bi_error)
2578 uptodate = 1;
2579 } else {
2580 /*
2581 * The generic bio_readpage_error handles errors the
2582 * following way: If possible, new read requests are
2583 * created and submitted and will end up in
2584 * end_bio_extent_readpage as well (if we're lucky, not
2585 * in the !uptodate case). In that case it returns 0 and
2586 * we just go on with the next page in our bio. If it
2587 * can't handle the error it will return -EIO and we
2588 * remain responsible for that page.
2589 */
2590 ret = bio_readpage_error(bio, offset, page, start, end,
2591 mirror);
2592 if (ret == 0) {
2593 uptodate = !bio->bi_error;
2594 offset += len;
2595 continue;
2596 }
2597 }
2598readpage_ok:
2599 if (likely(uptodate)) {
2600 loff_t i_size = i_size_read(inode);
2601 pgoff_t end_index = i_size >> PAGE_SHIFT;
2602 unsigned off;
2603
2604 /* Zero out the end if this page straddles i_size */
2605 off = i_size & (PAGE_SIZE-1);
2606 if (page->index == end_index && off)
2607 zero_user_segment(page, off, PAGE_SIZE);
2608 SetPageUptodate(page);
2609 } else {
2610 ClearPageUptodate(page);
2611 SetPageError(page);
2612 }
2613 unlock_page(page);
2614 offset += len;
2615
2616 if (unlikely(!uptodate)) {
2617 if (extent_len) {
2618 endio_readpage_release_extent(tree,
2619 extent_start,
2620 extent_len, 1);
2621 extent_start = 0;
2622 extent_len = 0;
2623 }
2624 endio_readpage_release_extent(tree, start,
2625 end - start + 1, 0);
2626 } else if (!extent_len) {
2627 extent_start = start;
2628 extent_len = end + 1 - start;
2629 } else if (extent_start + extent_len == start) {
2630 extent_len += end + 1 - start;
2631 } else {
2632 endio_readpage_release_extent(tree, extent_start,
2633 extent_len, uptodate);
2634 extent_start = start;
2635 extent_len = end + 1 - start;
2636 }
2637 }
2638
2639 if (extent_len)
2640 endio_readpage_release_extent(tree, extent_start, extent_len,
2641 uptodate);
2642 if (io_bio->end_io)
2643 io_bio->end_io(io_bio, bio->bi_error);
2644 bio_put(bio);
2645}
2646
2647/*
2648 * this allocates from the btrfs_bioset. We're returning a bio right now
2649 * but you can call btrfs_io_bio for the appropriate container_of magic
2650 */
2651struct bio *
2652btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2653 gfp_t gfp_flags)
2654{
2655 struct btrfs_io_bio *btrfs_bio;
2656 struct bio *bio;
2657
2658 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2659
2660 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2661 while (!bio && (nr_vecs /= 2)) {
2662 bio = bio_alloc_bioset(gfp_flags,
2663 nr_vecs, btrfs_bioset);
2664 }
2665 }
2666
2667 if (bio) {
2668 bio->bi_bdev = bdev;
2669 bio->bi_iter.bi_sector = first_sector;
2670 btrfs_bio = btrfs_io_bio(bio);
2671 btrfs_bio->csum = NULL;
2672 btrfs_bio->csum_allocated = NULL;
2673 btrfs_bio->end_io = NULL;
2674 }
2675 return bio;
2676}
2677
2678struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679{
2680 struct btrfs_io_bio *btrfs_bio;
2681 struct bio *new;
2682
2683 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2684 if (new) {
2685 btrfs_bio = btrfs_io_bio(new);
2686 btrfs_bio->csum = NULL;
2687 btrfs_bio->csum_allocated = NULL;
2688 btrfs_bio->end_io = NULL;
2689
2690#ifdef CONFIG_BLK_CGROUP
2691 /* FIXME, put this into bio_clone_bioset */
2692 if (bio->bi_css)
2693 bio_associate_blkcg(new, bio->bi_css);
2694#endif
2695 }
2696 return new;
2697}
2698
2699/* this also allocates from the btrfs_bioset */
2700struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2701{
2702 struct btrfs_io_bio *btrfs_bio;
2703 struct bio *bio;
2704
2705 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2706 if (bio) {
2707 btrfs_bio = btrfs_io_bio(bio);
2708 btrfs_bio->csum = NULL;
2709 btrfs_bio->csum_allocated = NULL;
2710 btrfs_bio->end_io = NULL;
2711 }
2712 return bio;
2713}
2714
2715
2716static int __must_check submit_one_bio(int rw, struct bio *bio,
2717 int mirror_num, unsigned long bio_flags)
2718{
2719 int ret = 0;
2720 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2721 struct page *page = bvec->bv_page;
2722 struct extent_io_tree *tree = bio->bi_private;
2723 u64 start;
2724
2725 start = page_offset(page) + bvec->bv_offset;
2726
2727 bio->bi_private = NULL;
2728
2729 bio_get(bio);
2730
2731 if (tree->ops && tree->ops->submit_bio_hook)
2732 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2733 mirror_num, bio_flags, start);
2734 else
2735 btrfsic_submit_bio(rw, bio);
2736
2737 bio_put(bio);
2738 return ret;
2739}
2740
2741static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2742 unsigned long offset, size_t size, struct bio *bio,
2743 unsigned long bio_flags)
2744{
2745 int ret = 0;
2746 if (tree->ops && tree->ops->merge_bio_hook)
2747 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2748 bio_flags);
2749 BUG_ON(ret < 0);
2750 return ret;
2751
2752}
2753
2754static int submit_extent_page(int rw, struct extent_io_tree *tree,
2755 struct writeback_control *wbc,
2756 struct page *page, sector_t sector,
2757 size_t size, unsigned long offset,
2758 struct block_device *bdev,
2759 struct bio **bio_ret,
2760 unsigned long max_pages,
2761 bio_end_io_t end_io_func,
2762 int mirror_num,
2763 unsigned long prev_bio_flags,
2764 unsigned long bio_flags,
2765 bool force_bio_submit)
2766{
2767 int ret = 0;
2768 struct bio *bio;
2769 int contig = 0;
2770 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2772
2773 if (bio_ret && *bio_ret) {
2774 bio = *bio_ret;
2775 if (old_compressed)
2776 contig = bio->bi_iter.bi_sector == sector;
2777 else
2778 contig = bio_end_sector(bio) == sector;
2779
2780 if (prev_bio_flags != bio_flags || !contig ||
2781 force_bio_submit ||
2782 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2783 bio_add_page(bio, page, page_size, offset) < page_size) {
2784 ret = submit_one_bio(rw, bio, mirror_num,
2785 prev_bio_flags);
2786 if (ret < 0) {
2787 *bio_ret = NULL;
2788 return ret;
2789 }
2790 bio = NULL;
2791 } else {
2792 if (wbc)
2793 wbc_account_io(wbc, page, page_size);
2794 return 0;
2795 }
2796 }
2797
2798 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799 GFP_NOFS | __GFP_HIGH);
2800 if (!bio)
2801 return -ENOMEM;
2802
2803 bio_add_page(bio, page, page_size, offset);
2804 bio->bi_end_io = end_io_func;
2805 bio->bi_private = tree;
2806 if (wbc) {
2807 wbc_init_bio(wbc, bio);
2808 wbc_account_io(wbc, page, page_size);
2809 }
2810
2811 if (bio_ret)
2812 *bio_ret = bio;
2813 else
2814 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2815
2816 return ret;
2817}
2818
2819static void attach_extent_buffer_page(struct extent_buffer *eb,
2820 struct page *page)
2821{
2822 if (!PagePrivate(page)) {
2823 SetPagePrivate(page);
2824 get_page(page);
2825 set_page_private(page, (unsigned long)eb);
2826 } else {
2827 WARN_ON(page->private != (unsigned long)eb);
2828 }
2829}
2830
2831void set_page_extent_mapped(struct page *page)
2832{
2833 if (!PagePrivate(page)) {
2834 SetPagePrivate(page);
2835 get_page(page);
2836 set_page_private(page, EXTENT_PAGE_PRIVATE);
2837 }
2838}
2839
2840static struct extent_map *
2841__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 u64 start, u64 len, get_extent_t *get_extent,
2843 struct extent_map **em_cached)
2844{
2845 struct extent_map *em;
2846
2847 if (em_cached && *em_cached) {
2848 em = *em_cached;
2849 if (extent_map_in_tree(em) && start >= em->start &&
2850 start < extent_map_end(em)) {
2851 atomic_inc(&em->refs);
2852 return em;
2853 }
2854
2855 free_extent_map(em);
2856 *em_cached = NULL;
2857 }
2858
2859 em = get_extent(inode, page, pg_offset, start, len, 0);
2860 if (em_cached && !IS_ERR_OR_NULL(em)) {
2861 BUG_ON(*em_cached);
2862 atomic_inc(&em->refs);
2863 *em_cached = em;
2864 }
2865 return em;
2866}
2867/*
2868 * basic readpage implementation. Locked extent state structs are inserted
2869 * into the tree that are removed when the IO is done (by the end_io
2870 * handlers)
2871 * XXX JDM: This needs looking at to ensure proper page locking
2872 */
2873static int __do_readpage(struct extent_io_tree *tree,
2874 struct page *page,
2875 get_extent_t *get_extent,
2876 struct extent_map **em_cached,
2877 struct bio **bio, int mirror_num,
2878 unsigned long *bio_flags, int rw,
2879 u64 *prev_em_start)
2880{
2881 struct inode *inode = page->mapping->host;
2882 u64 start = page_offset(page);
2883 u64 page_end = start + PAGE_SIZE - 1;
2884 u64 end;
2885 u64 cur = start;
2886 u64 extent_offset;
2887 u64 last_byte = i_size_read(inode);
2888 u64 block_start;
2889 u64 cur_end;
2890 sector_t sector;
2891 struct extent_map *em;
2892 struct block_device *bdev;
2893 int ret;
2894 int nr = 0;
2895 size_t pg_offset = 0;
2896 size_t iosize;
2897 size_t disk_io_size;
2898 size_t blocksize = inode->i_sb->s_blocksize;
2899 unsigned long this_bio_flag = 0;
2900
2901 set_page_extent_mapped(page);
2902
2903 end = page_end;
2904 if (!PageUptodate(page)) {
2905 if (cleancache_get_page(page) == 0) {
2906 BUG_ON(blocksize != PAGE_SIZE);
2907 unlock_extent(tree, start, end);
2908 goto out;
2909 }
2910 }
2911
2912 if (page->index == last_byte >> PAGE_SHIFT) {
2913 char *userpage;
2914 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2915
2916 if (zero_offset) {
2917 iosize = PAGE_SIZE - zero_offset;
2918 userpage = kmap_atomic(page);
2919 memset(userpage + zero_offset, 0, iosize);
2920 flush_dcache_page(page);
2921 kunmap_atomic(userpage);
2922 }
2923 }
2924 while (cur <= end) {
2925 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2926 bool force_bio_submit = false;
2927
2928 if (cur >= last_byte) {
2929 char *userpage;
2930 struct extent_state *cached = NULL;
2931
2932 iosize = PAGE_SIZE - pg_offset;
2933 userpage = kmap_atomic(page);
2934 memset(userpage + pg_offset, 0, iosize);
2935 flush_dcache_page(page);
2936 kunmap_atomic(userpage);
2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
2938 &cached, GFP_NOFS);
2939 unlock_extent_cached(tree, cur,
2940 cur + iosize - 1,
2941 &cached, GFP_NOFS);
2942 break;
2943 }
2944 em = __get_extent_map(inode, page, pg_offset, cur,
2945 end - cur + 1, get_extent, em_cached);
2946 if (IS_ERR_OR_NULL(em)) {
2947 SetPageError(page);
2948 unlock_extent(tree, cur, end);
2949 break;
2950 }
2951 extent_offset = cur - em->start;
2952 BUG_ON(extent_map_end(em) <= cur);
2953 BUG_ON(end < cur);
2954
2955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957 extent_set_compress_type(&this_bio_flag,
2958 em->compress_type);
2959 }
2960
2961 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 cur_end = min(extent_map_end(em) - 1, end);
2963 iosize = ALIGN(iosize, blocksize);
2964 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 disk_io_size = em->block_len;
2966 sector = em->block_start >> 9;
2967 } else {
2968 sector = (em->block_start + extent_offset) >> 9;
2969 disk_io_size = iosize;
2970 }
2971 bdev = em->bdev;
2972 block_start = em->block_start;
2973 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 block_start = EXTENT_MAP_HOLE;
2975
2976 /*
2977 * If we have a file range that points to a compressed extent
2978 * and it's followed by a consecutive file range that points to
2979 * to the same compressed extent (possibly with a different
2980 * offset and/or length, so it either points to the whole extent
2981 * or only part of it), we must make sure we do not submit a
2982 * single bio to populate the pages for the 2 ranges because
2983 * this makes the compressed extent read zero out the pages
2984 * belonging to the 2nd range. Imagine the following scenario:
2985 *
2986 * File layout
2987 * [0 - 8K] [8K - 24K]
2988 * | |
2989 * | |
2990 * points to extent X, points to extent X,
2991 * offset 4K, length of 8K offset 0, length 16K
2992 *
2993 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 *
2995 * If the bio to read the compressed extent covers both ranges,
2996 * it will decompress extent X into the pages belonging to the
2997 * first range and then it will stop, zeroing out the remaining
2998 * pages that belong to the other range that points to extent X.
2999 * So here we make sure we submit 2 bios, one for the first
3000 * range and another one for the third range. Both will target
3001 * the same physical extent from disk, but we can't currently
3002 * make the compressed bio endio callback populate the pages
3003 * for both ranges because each compressed bio is tightly
3004 * coupled with a single extent map, and each range can have
3005 * an extent map with a different offset value relative to the
3006 * uncompressed data of our extent and different lengths. This
3007 * is a corner case so we prioritize correctness over
3008 * non-optimal behavior (submitting 2 bios for the same extent).
3009 */
3010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 prev_em_start && *prev_em_start != (u64)-1 &&
3012 *prev_em_start != em->orig_start)
3013 force_bio_submit = true;
3014
3015 if (prev_em_start)
3016 *prev_em_start = em->orig_start;
3017
3018 free_extent_map(em);
3019 em = NULL;
3020
3021 /* we've found a hole, just zero and go on */
3022 if (block_start == EXTENT_MAP_HOLE) {
3023 char *userpage;
3024 struct extent_state *cached = NULL;
3025
3026 userpage = kmap_atomic(page);
3027 memset(userpage + pg_offset, 0, iosize);
3028 flush_dcache_page(page);
3029 kunmap_atomic(userpage);
3030
3031 set_extent_uptodate(tree, cur, cur + iosize - 1,
3032 &cached, GFP_NOFS);
3033 unlock_extent_cached(tree, cur,
3034 cur + iosize - 1,
3035 &cached, GFP_NOFS);
3036 cur = cur + iosize;
3037 pg_offset += iosize;
3038 continue;
3039 }
3040 /* the get_extent function already copied into the page */
3041 if (test_range_bit(tree, cur, cur_end,
3042 EXTENT_UPTODATE, 1, NULL)) {
3043 check_page_uptodate(tree, page);
3044 unlock_extent(tree, cur, cur + iosize - 1);
3045 cur = cur + iosize;
3046 pg_offset += iosize;
3047 continue;
3048 }
3049 /* we have an inline extent but it didn't get marked up
3050 * to date. Error out
3051 */
3052 if (block_start == EXTENT_MAP_INLINE) {
3053 SetPageError(page);
3054 unlock_extent(tree, cur, cur + iosize - 1);
3055 cur = cur + iosize;
3056 pg_offset += iosize;
3057 continue;
3058 }
3059
3060 pnr -= page->index;
3061 ret = submit_extent_page(rw, tree, NULL, page,
3062 sector, disk_io_size, pg_offset,
3063 bdev, bio, pnr,
3064 end_bio_extent_readpage, mirror_num,
3065 *bio_flags,
3066 this_bio_flag,
3067 force_bio_submit);
3068 if (!ret) {
3069 nr++;
3070 *bio_flags = this_bio_flag;
3071 } else {
3072 SetPageError(page);
3073 unlock_extent(tree, cur, cur + iosize - 1);
3074 }
3075 cur = cur + iosize;
3076 pg_offset += iosize;
3077 }
3078out:
3079 if (!nr) {
3080 if (!PageError(page))
3081 SetPageUptodate(page);
3082 unlock_page(page);
3083 }
3084 return 0;
3085}
3086
3087static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 struct page *pages[], int nr_pages,
3089 u64 start, u64 end,
3090 get_extent_t *get_extent,
3091 struct extent_map **em_cached,
3092 struct bio **bio, int mirror_num,
3093 unsigned long *bio_flags, int rw,
3094 u64 *prev_em_start)
3095{
3096 struct inode *inode;
3097 struct btrfs_ordered_extent *ordered;
3098 int index;
3099
3100 inode = pages[0]->mapping->host;
3101 while (1) {
3102 lock_extent(tree, start, end);
3103 ordered = btrfs_lookup_ordered_range(inode, start,
3104 end - start + 1);
3105 if (!ordered)
3106 break;
3107 unlock_extent(tree, start, end);
3108 btrfs_start_ordered_extent(inode, ordered, 1);
3109 btrfs_put_ordered_extent(ordered);
3110 }
3111
3112 for (index = 0; index < nr_pages; index++) {
3113 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114 mirror_num, bio_flags, rw, prev_em_start);
3115 put_page(pages[index]);
3116 }
3117}
3118
3119static void __extent_readpages(struct extent_io_tree *tree,
3120 struct page *pages[],
3121 int nr_pages, get_extent_t *get_extent,
3122 struct extent_map **em_cached,
3123 struct bio **bio, int mirror_num,
3124 unsigned long *bio_flags, int rw,
3125 u64 *prev_em_start)
3126{
3127 u64 start = 0;
3128 u64 end = 0;
3129 u64 page_start;
3130 int index;
3131 int first_index = 0;
3132
3133 for (index = 0; index < nr_pages; index++) {
3134 page_start = page_offset(pages[index]);
3135 if (!end) {
3136 start = page_start;
3137 end = start + PAGE_SIZE - 1;
3138 first_index = index;
3139 } else if (end + 1 == page_start) {
3140 end += PAGE_SIZE;
3141 } else {
3142 __do_contiguous_readpages(tree, &pages[first_index],
3143 index - first_index, start,
3144 end, get_extent, em_cached,
3145 bio, mirror_num, bio_flags,
3146 rw, prev_em_start);
3147 start = page_start;
3148 end = start + PAGE_SIZE - 1;
3149 first_index = index;
3150 }
3151 }
3152
3153 if (end)
3154 __do_contiguous_readpages(tree, &pages[first_index],
3155 index - first_index, start,
3156 end, get_extent, em_cached, bio,
3157 mirror_num, bio_flags, rw,
3158 prev_em_start);
3159}
3160
3161static int __extent_read_full_page(struct extent_io_tree *tree,
3162 struct page *page,
3163 get_extent_t *get_extent,
3164 struct bio **bio, int mirror_num,
3165 unsigned long *bio_flags, int rw)
3166{
3167 struct inode *inode = page->mapping->host;
3168 struct btrfs_ordered_extent *ordered;
3169 u64 start = page_offset(page);
3170 u64 end = start + PAGE_SIZE - 1;
3171 int ret;
3172
3173 while (1) {
3174 lock_extent(tree, start, end);
3175 ordered = btrfs_lookup_ordered_range(inode, start,
3176 PAGE_SIZE);
3177 if (!ordered)
3178 break;
3179 unlock_extent(tree, start, end);
3180 btrfs_start_ordered_extent(inode, ordered, 1);
3181 btrfs_put_ordered_extent(ordered);
3182 }
3183
3184 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185 bio_flags, rw, NULL);
3186 return ret;
3187}
3188
3189int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190 get_extent_t *get_extent, int mirror_num)
3191{
3192 struct bio *bio = NULL;
3193 unsigned long bio_flags = 0;
3194 int ret;
3195
3196 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3197 &bio_flags, READ);
3198 if (bio)
3199 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3200 return ret;
3201}
3202
3203static noinline void update_nr_written(struct page *page,
3204 struct writeback_control *wbc,
3205 unsigned long nr_written)
3206{
3207 wbc->nr_to_write -= nr_written;
3208 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3209 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3210 page->mapping->writeback_index = page->index + nr_written;
3211}
3212
3213/*
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent). In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
3222 */
3223static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224 struct page *page, struct writeback_control *wbc,
3225 struct extent_page_data *epd,
3226 u64 delalloc_start,
3227 unsigned long *nr_written)
3228{
3229 struct extent_io_tree *tree = epd->tree;
3230 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3231 u64 nr_delalloc;
3232 u64 delalloc_to_write = 0;
3233 u64 delalloc_end = 0;
3234 int ret;
3235 int page_started = 0;
3236
3237 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238 return 0;
3239
3240 while (delalloc_end < page_end) {
3241 nr_delalloc = find_lock_delalloc_range(inode, tree,
3242 page,
3243 &delalloc_start,
3244 &delalloc_end,
3245 BTRFS_MAX_EXTENT_SIZE);
3246 if (nr_delalloc == 0) {
3247 delalloc_start = delalloc_end + 1;
3248 continue;
3249 }
3250 ret = tree->ops->fill_delalloc(inode, page,
3251 delalloc_start,
3252 delalloc_end,
3253 &page_started,
3254 nr_written);
3255 /* File system has been set read-only */
3256 if (ret) {
3257 SetPageError(page);
3258 /* fill_delalloc should be return < 0 for error
3259 * but just in case, we use > 0 here meaning the
3260 * IO is started, so we don't want to return > 0
3261 * unless things are going well.
3262 */
3263 ret = ret < 0 ? ret : -EIO;
3264 goto done;
3265 }
3266 /*
3267 * delalloc_end is already one less than the total length, so
3268 * we don't subtract one from PAGE_SIZE
3269 */
3270 delalloc_to_write += (delalloc_end - delalloc_start +
3271 PAGE_SIZE) >> PAGE_SHIFT;
3272 delalloc_start = delalloc_end + 1;
3273 }
3274 if (wbc->nr_to_write < delalloc_to_write) {
3275 int thresh = 8192;
3276
3277 if (delalloc_to_write < thresh * 2)
3278 thresh = delalloc_to_write;
3279 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280 thresh);
3281 }
3282
3283 /* did the fill delalloc function already unlock and start
3284 * the IO?
3285 */
3286 if (page_started) {
3287 /*
3288 * we've unlocked the page, so we can't update
3289 * the mapping's writeback index, just update
3290 * nr_to_write.
3291 */
3292 wbc->nr_to_write -= *nr_written;
3293 return 1;
3294 }
3295
3296 ret = 0;
3297
3298done:
3299 return ret;
3300}
3301
3302/*
3303 * helper for __extent_writepage. This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311 struct page *page,
3312 struct writeback_control *wbc,
3313 struct extent_page_data *epd,
3314 loff_t i_size,
3315 unsigned long nr_written,
3316 int write_flags, int *nr_ret)
3317{
3318 struct extent_io_tree *tree = epd->tree;
3319 u64 start = page_offset(page);
3320 u64 page_end = start + PAGE_SIZE - 1;
3321 u64 end;
3322 u64 cur = start;
3323 u64 extent_offset;
3324 u64 block_start;
3325 u64 iosize;
3326 sector_t sector;
3327 struct extent_state *cached_state = NULL;
3328 struct extent_map *em;
3329 struct block_device *bdev;
3330 size_t pg_offset = 0;
3331 size_t blocksize;
3332 int ret = 0;
3333 int nr = 0;
3334 bool compressed;
3335
3336 if (tree->ops && tree->ops->writepage_start_hook) {
3337 ret = tree->ops->writepage_start_hook(page, start,
3338 page_end);
3339 if (ret) {
3340 /* Fixup worker will requeue */
3341 if (ret == -EBUSY)
3342 wbc->pages_skipped++;
3343 else
3344 redirty_page_for_writepage(wbc, page);
3345
3346 update_nr_written(page, wbc, nr_written);
3347 unlock_page(page);
3348 ret = 1;
3349 goto done_unlocked;
3350 }
3351 }
3352
3353 /*
3354 * we don't want to touch the inode after unlocking the page,
3355 * so we update the mapping writeback index now
3356 */
3357 update_nr_written(page, wbc, nr_written + 1);
3358
3359 end = page_end;
3360 if (i_size <= start) {
3361 if (tree->ops && tree->ops->writepage_end_io_hook)
3362 tree->ops->writepage_end_io_hook(page, start,
3363 page_end, NULL, 1);
3364 goto done;
3365 }
3366
3367 blocksize = inode->i_sb->s_blocksize;
3368
3369 while (cur <= end) {
3370 u64 em_end;
3371 if (cur >= i_size) {
3372 if (tree->ops && tree->ops->writepage_end_io_hook)
3373 tree->ops->writepage_end_io_hook(page, cur,
3374 page_end, NULL, 1);
3375 break;
3376 }
3377 em = epd->get_extent(inode, page, pg_offset, cur,
3378 end - cur + 1, 1);
3379 if (IS_ERR_OR_NULL(em)) {
3380 SetPageError(page);
3381 ret = PTR_ERR_OR_ZERO(em);
3382 break;
3383 }
3384
3385 extent_offset = cur - em->start;
3386 em_end = extent_map_end(em);
3387 BUG_ON(em_end <= cur);
3388 BUG_ON(end < cur);
3389 iosize = min(em_end - cur, end - cur + 1);
3390 iosize = ALIGN(iosize, blocksize);
3391 sector = (em->block_start + extent_offset) >> 9;
3392 bdev = em->bdev;
3393 block_start = em->block_start;
3394 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3395 free_extent_map(em);
3396 em = NULL;
3397
3398 /*
3399 * compressed and inline extents are written through other
3400 * paths in the FS
3401 */
3402 if (compressed || block_start == EXTENT_MAP_HOLE ||
3403 block_start == EXTENT_MAP_INLINE) {
3404 /*
3405 * end_io notification does not happen here for
3406 * compressed extents
3407 */
3408 if (!compressed && tree->ops &&
3409 tree->ops->writepage_end_io_hook)
3410 tree->ops->writepage_end_io_hook(page, cur,
3411 cur + iosize - 1,
3412 NULL, 1);
3413 else if (compressed) {
3414 /* we don't want to end_page_writeback on
3415 * a compressed extent. this happens
3416 * elsewhere
3417 */
3418 nr++;
3419 }
3420
3421 cur += iosize;
3422 pg_offset += iosize;
3423 continue;
3424 }
3425
3426 if (tree->ops && tree->ops->writepage_io_hook) {
3427 ret = tree->ops->writepage_io_hook(page, cur,
3428 cur + iosize - 1);
3429 } else {
3430 ret = 0;
3431 }
3432 if (ret) {
3433 SetPageError(page);
3434 } else {
3435 unsigned long max_nr = (i_size >> PAGE_SHIFT) + 1;
3436
3437 set_range_writeback(tree, cur, cur + iosize - 1);
3438 if (!PageWriteback(page)) {
3439 btrfs_err(BTRFS_I(inode)->root->fs_info,
3440 "page %lu not writeback, cur %llu end %llu",
3441 page->index, cur, end);
3442 }
3443
3444 ret = submit_extent_page(write_flags, tree, wbc, page,
3445 sector, iosize, pg_offset,
3446 bdev, &epd->bio, max_nr,
3447 end_bio_extent_writepage,
3448 0, 0, 0, false);
3449 if (ret)
3450 SetPageError(page);
3451 }
3452 cur = cur + iosize;
3453 pg_offset += iosize;
3454 nr++;
3455 }
3456done:
3457 *nr_ret = nr;
3458
3459done_unlocked:
3460
3461 /* drop our reference on any cached states */
3462 free_extent_state(cached_state);
3463 return ret;
3464}
3465
3466/*
3467 * the writepage semantics are similar to regular writepage. extent
3468 * records are inserted to lock ranges in the tree, and as dirty areas
3469 * are found, they are marked writeback. Then the lock bits are removed
3470 * and the end_io handler clears the writeback ranges
3471 */
3472static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3473 void *data)
3474{
3475 struct inode *inode = page->mapping->host;
3476 struct extent_page_data *epd = data;
3477 u64 start = page_offset(page);
3478 u64 page_end = start + PAGE_SIZE - 1;
3479 int ret;
3480 int nr = 0;
3481 size_t pg_offset = 0;
3482 loff_t i_size = i_size_read(inode);
3483 unsigned long end_index = i_size >> PAGE_SHIFT;
3484 int write_flags;
3485 unsigned long nr_written = 0;
3486
3487 if (wbc->sync_mode == WB_SYNC_ALL)
3488 write_flags = WRITE_SYNC;
3489 else
3490 write_flags = WRITE;
3491
3492 trace___extent_writepage(page, inode, wbc);
3493
3494 WARN_ON(!PageLocked(page));
3495
3496 ClearPageError(page);
3497
3498 pg_offset = i_size & (PAGE_SIZE - 1);
3499 if (page->index > end_index ||
3500 (page->index == end_index && !pg_offset)) {
3501 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3502 unlock_page(page);
3503 return 0;
3504 }
3505
3506 if (page->index == end_index) {
3507 char *userpage;
3508
3509 userpage = kmap_atomic(page);
3510 memset(userpage + pg_offset, 0,
3511 PAGE_SIZE - pg_offset);
3512 kunmap_atomic(userpage);
3513 flush_dcache_page(page);
3514 }
3515
3516 pg_offset = 0;
3517
3518 set_page_extent_mapped(page);
3519
3520 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3521 if (ret == 1)
3522 goto done_unlocked;
3523 if (ret)
3524 goto done;
3525
3526 ret = __extent_writepage_io(inode, page, wbc, epd,
3527 i_size, nr_written, write_flags, &nr);
3528 if (ret == 1)
3529 goto done_unlocked;
3530
3531done:
3532 if (nr == 0) {
3533 /* make sure the mapping tag for page dirty gets cleared */
3534 set_page_writeback(page);
3535 end_page_writeback(page);
3536 }
3537 if (PageError(page)) {
3538 ret = ret < 0 ? ret : -EIO;
3539 end_extent_writepage(page, ret, start, page_end);
3540 }
3541 unlock_page(page);
3542 return ret;
3543
3544done_unlocked:
3545 return 0;
3546}
3547
3548void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3549{
3550 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3551 TASK_UNINTERRUPTIBLE);
3552}
3553
3554static noinline_for_stack int
3555lock_extent_buffer_for_io(struct extent_buffer *eb,
3556 struct btrfs_fs_info *fs_info,
3557 struct extent_page_data *epd)
3558{
3559 unsigned long i, num_pages;
3560 int flush = 0;
3561 int ret = 0;
3562
3563 if (!btrfs_try_tree_write_lock(eb)) {
3564 flush = 1;
3565 flush_write_bio(epd);
3566 btrfs_tree_lock(eb);
3567 }
3568
3569 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3570 btrfs_tree_unlock(eb);
3571 if (!epd->sync_io)
3572 return 0;
3573 if (!flush) {
3574 flush_write_bio(epd);
3575 flush = 1;
3576 }
3577 while (1) {
3578 wait_on_extent_buffer_writeback(eb);
3579 btrfs_tree_lock(eb);
3580 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3581 break;
3582 btrfs_tree_unlock(eb);
3583 }
3584 }
3585
3586 /*
3587 * We need to do this to prevent races in people who check if the eb is
3588 * under IO since we can end up having no IO bits set for a short period
3589 * of time.
3590 */
3591 spin_lock(&eb->refs_lock);
3592 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3593 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3594 spin_unlock(&eb->refs_lock);
3595 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3596 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3597 -eb->len,
3598 fs_info->dirty_metadata_batch);
3599 ret = 1;
3600 } else {
3601 spin_unlock(&eb->refs_lock);
3602 }
3603
3604 btrfs_tree_unlock(eb);
3605
3606 if (!ret)
3607 return ret;
3608
3609 num_pages = num_extent_pages(eb->start, eb->len);
3610 for (i = 0; i < num_pages; i++) {
3611 struct page *p = eb->pages[i];
3612
3613 if (!trylock_page(p)) {
3614 if (!flush) {
3615 flush_write_bio(epd);
3616 flush = 1;
3617 }
3618 lock_page(p);
3619 }
3620 }
3621
3622 return ret;
3623}
3624
3625static void end_extent_buffer_writeback(struct extent_buffer *eb)
3626{
3627 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3628 smp_mb__after_atomic();
3629 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3630}
3631
3632static void set_btree_ioerr(struct page *page)
3633{
3634 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3635 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3636
3637 SetPageError(page);
3638 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3639 return;
3640
3641 /*
3642 * If writeback for a btree extent that doesn't belong to a log tree
3643 * failed, increment the counter transaction->eb_write_errors.
3644 * We do this because while the transaction is running and before it's
3645 * committing (when we call filemap_fdata[write|wait]_range against
3646 * the btree inode), we might have
3647 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3648 * returns an error or an error happens during writeback, when we're
3649 * committing the transaction we wouldn't know about it, since the pages
3650 * can be no longer dirty nor marked anymore for writeback (if a
3651 * subsequent modification to the extent buffer didn't happen before the
3652 * transaction commit), which makes filemap_fdata[write|wait]_range not
3653 * able to find the pages tagged with SetPageError at transaction
3654 * commit time. So if this happens we must abort the transaction,
3655 * otherwise we commit a super block with btree roots that point to
3656 * btree nodes/leafs whose content on disk is invalid - either garbage
3657 * or the content of some node/leaf from a past generation that got
3658 * cowed or deleted and is no longer valid.
3659 *
3660 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3661 * not be enough - we need to distinguish between log tree extents vs
3662 * non-log tree extents, and the next filemap_fdatawait_range() call
3663 * will catch and clear such errors in the mapping - and that call might
3664 * be from a log sync and not from a transaction commit. Also, checking
3665 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3666 * not done and would not be reliable - the eb might have been released
3667 * from memory and reading it back again means that flag would not be
3668 * set (since it's a runtime flag, not persisted on disk).
3669 *
3670 * Using the flags below in the btree inode also makes us achieve the
3671 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3672 * writeback for all dirty pages and before filemap_fdatawait_range()
3673 * is called, the writeback for all dirty pages had already finished
3674 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3675 * filemap_fdatawait_range() would return success, as it could not know
3676 * that writeback errors happened (the pages were no longer tagged for
3677 * writeback).
3678 */
3679 switch (eb->log_index) {
3680 case -1:
3681 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3682 break;
3683 case 0:
3684 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3685 break;
3686 case 1:
3687 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3688 break;
3689 default:
3690 BUG(); /* unexpected, logic error */
3691 }
3692}
3693
3694static void end_bio_extent_buffer_writepage(struct bio *bio)
3695{
3696 struct bio_vec *bvec;
3697 struct extent_buffer *eb;
3698 int i, done;
3699
3700 bio_for_each_segment_all(bvec, bio, i) {
3701 struct page *page = bvec->bv_page;
3702
3703 eb = (struct extent_buffer *)page->private;
3704 BUG_ON(!eb);
3705 done = atomic_dec_and_test(&eb->io_pages);
3706
3707 if (bio->bi_error ||
3708 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3709 ClearPageUptodate(page);
3710 set_btree_ioerr(page);
3711 }
3712
3713 end_page_writeback(page);
3714
3715 if (!done)
3716 continue;
3717
3718 end_extent_buffer_writeback(eb);
3719 }
3720
3721 bio_put(bio);
3722}
3723
3724static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3725 struct btrfs_fs_info *fs_info,
3726 struct writeback_control *wbc,
3727 struct extent_page_data *epd)
3728{
3729 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3730 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3731 u64 offset = eb->start;
3732 unsigned long i, num_pages;
3733 unsigned long bio_flags = 0;
3734 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3735 int ret = 0;
3736
3737 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3738 num_pages = num_extent_pages(eb->start, eb->len);
3739 atomic_set(&eb->io_pages, num_pages);
3740 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3741 bio_flags = EXTENT_BIO_TREE_LOG;
3742
3743 for (i = 0; i < num_pages; i++) {
3744 struct page *p = eb->pages[i];
3745
3746 clear_page_dirty_for_io(p);
3747 set_page_writeback(p);
3748 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3749 PAGE_SIZE, 0, bdev, &epd->bio,
3750 -1, end_bio_extent_buffer_writepage,
3751 0, epd->bio_flags, bio_flags, false);
3752 epd->bio_flags = bio_flags;
3753 if (ret) {
3754 set_btree_ioerr(p);
3755 end_page_writeback(p);
3756 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3757 end_extent_buffer_writeback(eb);
3758 ret = -EIO;
3759 break;
3760 }
3761 offset += PAGE_SIZE;
3762 update_nr_written(p, wbc, 1);
3763 unlock_page(p);
3764 }
3765
3766 if (unlikely(ret)) {
3767 for (; i < num_pages; i++) {
3768 struct page *p = eb->pages[i];
3769 clear_page_dirty_for_io(p);
3770 unlock_page(p);
3771 }
3772 }
3773
3774 return ret;
3775}
3776
3777int btree_write_cache_pages(struct address_space *mapping,
3778 struct writeback_control *wbc)
3779{
3780 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3781 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3782 struct extent_buffer *eb, *prev_eb = NULL;
3783 struct extent_page_data epd = {
3784 .bio = NULL,
3785 .tree = tree,
3786 .extent_locked = 0,
3787 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3788 .bio_flags = 0,
3789 };
3790 int ret = 0;
3791 int done = 0;
3792 int nr_to_write_done = 0;
3793 struct pagevec pvec;
3794 int nr_pages;
3795 pgoff_t index;
3796 pgoff_t end; /* Inclusive */
3797 int scanned = 0;
3798 int tag;
3799
3800 pagevec_init(&pvec, 0);
3801 if (wbc->range_cyclic) {
3802 index = mapping->writeback_index; /* Start from prev offset */
3803 end = -1;
3804 } else {
3805 index = wbc->range_start >> PAGE_SHIFT;
3806 end = wbc->range_end >> PAGE_SHIFT;
3807 scanned = 1;
3808 }
3809 if (wbc->sync_mode == WB_SYNC_ALL)
3810 tag = PAGECACHE_TAG_TOWRITE;
3811 else
3812 tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814 if (wbc->sync_mode == WB_SYNC_ALL)
3815 tag_pages_for_writeback(mapping, index, end);
3816 while (!done && !nr_to_write_done && (index <= end) &&
3817 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3818 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3819 unsigned i;
3820
3821 scanned = 1;
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pvec.pages[i];
3824
3825 if (!PagePrivate(page))
3826 continue;
3827
3828 if (!wbc->range_cyclic && page->index > end) {
3829 done = 1;
3830 break;
3831 }
3832
3833 spin_lock(&mapping->private_lock);
3834 if (!PagePrivate(page)) {
3835 spin_unlock(&mapping->private_lock);
3836 continue;
3837 }
3838
3839 eb = (struct extent_buffer *)page->private;
3840
3841 /*
3842 * Shouldn't happen and normally this would be a BUG_ON
3843 * but no sense in crashing the users box for something
3844 * we can survive anyway.
3845 */
3846 if (WARN_ON(!eb)) {
3847 spin_unlock(&mapping->private_lock);
3848 continue;
3849 }
3850
3851 if (eb == prev_eb) {
3852 spin_unlock(&mapping->private_lock);
3853 continue;
3854 }
3855
3856 ret = atomic_inc_not_zero(&eb->refs);
3857 spin_unlock(&mapping->private_lock);
3858 if (!ret)
3859 continue;
3860
3861 prev_eb = eb;
3862 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3863 if (!ret) {
3864 free_extent_buffer(eb);
3865 continue;
3866 }
3867
3868 ret = write_one_eb(eb, fs_info, wbc, &epd);
3869 if (ret) {
3870 done = 1;
3871 free_extent_buffer(eb);
3872 break;
3873 }
3874 free_extent_buffer(eb);
3875
3876 /*
3877 * the filesystem may choose to bump up nr_to_write.
3878 * We have to make sure to honor the new nr_to_write
3879 * at any time
3880 */
3881 nr_to_write_done = wbc->nr_to_write <= 0;
3882 }
3883 pagevec_release(&pvec);
3884 cond_resched();
3885 }
3886 if (!scanned && !done) {
3887 /*
3888 * We hit the last page and there is more work to be done: wrap
3889 * back to the start of the file
3890 */
3891 scanned = 1;
3892 index = 0;
3893 goto retry;
3894 }
3895 flush_write_bio(&epd);
3896 return ret;
3897}
3898
3899/**
3900 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3901 * @mapping: address space structure to write
3902 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3903 * @writepage: function called for each page
3904 * @data: data passed to writepage function
3905 *
3906 * If a page is already under I/O, write_cache_pages() skips it, even
3907 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3908 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3909 * and msync() need to guarantee that all the data which was dirty at the time
3910 * the call was made get new I/O started against them. If wbc->sync_mode is
3911 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3912 * existing IO to complete.
3913 */
3914static int extent_write_cache_pages(struct extent_io_tree *tree,
3915 struct address_space *mapping,
3916 struct writeback_control *wbc,
3917 writepage_t writepage, void *data,
3918 void (*flush_fn)(void *))
3919{
3920 struct inode *inode = mapping->host;
3921 int ret = 0;
3922 int done = 0;
3923 int err = 0;
3924 int nr_to_write_done = 0;
3925 struct pagevec pvec;
3926 int nr_pages;
3927 pgoff_t index;
3928 pgoff_t end; /* Inclusive */
3929 int scanned = 0;
3930 int tag;
3931
3932 /*
3933 * We have to hold onto the inode so that ordered extents can do their
3934 * work when the IO finishes. The alternative to this is failing to add
3935 * an ordered extent if the igrab() fails there and that is a huge pain
3936 * to deal with, so instead just hold onto the inode throughout the
3937 * writepages operation. If it fails here we are freeing up the inode
3938 * anyway and we'd rather not waste our time writing out stuff that is
3939 * going to be truncated anyway.
3940 */
3941 if (!igrab(inode))
3942 return 0;
3943
3944 pagevec_init(&pvec, 0);
3945 if (wbc->range_cyclic) {
3946 index = mapping->writeback_index; /* Start from prev offset */
3947 end = -1;
3948 } else {
3949 index = wbc->range_start >> PAGE_SHIFT;
3950 end = wbc->range_end >> PAGE_SHIFT;
3951 scanned = 1;
3952 }
3953 if (wbc->sync_mode == WB_SYNC_ALL)
3954 tag = PAGECACHE_TAG_TOWRITE;
3955 else
3956 tag = PAGECACHE_TAG_DIRTY;
3957retry:
3958 if (wbc->sync_mode == WB_SYNC_ALL)
3959 tag_pages_for_writeback(mapping, index, end);
3960 while (!done && !nr_to_write_done && (index <= end) &&
3961 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3962 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3963 unsigned i;
3964
3965 scanned = 1;
3966 for (i = 0; i < nr_pages; i++) {
3967 struct page *page = pvec.pages[i];
3968
3969 /*
3970 * At this point we hold neither mapping->tree_lock nor
3971 * lock on the page itself: the page may be truncated or
3972 * invalidated (changing page->mapping to NULL), or even
3973 * swizzled back from swapper_space to tmpfs file
3974 * mapping
3975 */
3976 if (!trylock_page(page)) {
3977 flush_fn(data);
3978 lock_page(page);
3979 }
3980
3981 if (unlikely(page->mapping != mapping)) {
3982 unlock_page(page);
3983 continue;
3984 }
3985
3986 if (!wbc->range_cyclic && page->index > end) {
3987 done = 1;
3988 unlock_page(page);
3989 continue;
3990 }
3991
3992 if (wbc->sync_mode != WB_SYNC_NONE) {
3993 if (PageWriteback(page))
3994 flush_fn(data);
3995 wait_on_page_writeback(page);
3996 }
3997
3998 if (PageWriteback(page) ||
3999 !clear_page_dirty_for_io(page)) {
4000 unlock_page(page);
4001 continue;
4002 }
4003
4004 ret = (*writepage)(page, wbc, data);
4005
4006 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4007 unlock_page(page);
4008 ret = 0;
4009 }
4010 if (!err && ret < 0)
4011 err = ret;
4012
4013 /*
4014 * the filesystem may choose to bump up nr_to_write.
4015 * We have to make sure to honor the new nr_to_write
4016 * at any time
4017 */
4018 nr_to_write_done = wbc->nr_to_write <= 0;
4019 }
4020 pagevec_release(&pvec);
4021 cond_resched();
4022 }
4023 if (!scanned && !done && !err) {
4024 /*
4025 * We hit the last page and there is more work to be done: wrap
4026 * back to the start of the file
4027 */
4028 scanned = 1;
4029 index = 0;
4030 goto retry;
4031 }
4032 btrfs_add_delayed_iput(inode);
4033 return err;
4034}
4035
4036static void flush_epd_write_bio(struct extent_page_data *epd)
4037{
4038 if (epd->bio) {
4039 int rw = WRITE;
4040 int ret;
4041
4042 if (epd->sync_io)
4043 rw = WRITE_SYNC;
4044
4045 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4046 BUG_ON(ret < 0); /* -ENOMEM */
4047 epd->bio = NULL;
4048 }
4049}
4050
4051static noinline void flush_write_bio(void *data)
4052{
4053 struct extent_page_data *epd = data;
4054 flush_epd_write_bio(epd);
4055}
4056
4057int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4058 get_extent_t *get_extent,
4059 struct writeback_control *wbc)
4060{
4061 int ret;
4062 struct extent_page_data epd = {
4063 .bio = NULL,
4064 .tree = tree,
4065 .get_extent = get_extent,
4066 .extent_locked = 0,
4067 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4068 .bio_flags = 0,
4069 };
4070
4071 ret = __extent_writepage(page, wbc, &epd);
4072
4073 flush_epd_write_bio(&epd);
4074 return ret;
4075}
4076
4077int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4078 u64 start, u64 end, get_extent_t *get_extent,
4079 int mode)
4080{
4081 int ret = 0;
4082 struct address_space *mapping = inode->i_mapping;
4083 struct page *page;
4084 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4085 PAGE_SHIFT;
4086
4087 struct extent_page_data epd = {
4088 .bio = NULL,
4089 .tree = tree,
4090 .get_extent = get_extent,
4091 .extent_locked = 1,
4092 .sync_io = mode == WB_SYNC_ALL,
4093 .bio_flags = 0,
4094 };
4095 struct writeback_control wbc_writepages = {
4096 .sync_mode = mode,
4097 .nr_to_write = nr_pages * 2,
4098 .range_start = start,
4099 .range_end = end + 1,
4100 };
4101
4102 while (start <= end) {
4103 page = find_get_page(mapping, start >> PAGE_SHIFT);
4104 if (clear_page_dirty_for_io(page))
4105 ret = __extent_writepage(page, &wbc_writepages, &epd);
4106 else {
4107 if (tree->ops && tree->ops->writepage_end_io_hook)
4108 tree->ops->writepage_end_io_hook(page, start,
4109 start + PAGE_SIZE - 1,
4110 NULL, 1);
4111 unlock_page(page);
4112 }
4113 put_page(page);
4114 start += PAGE_SIZE;
4115 }
4116
4117 flush_epd_write_bio(&epd);
4118 return ret;
4119}
4120
4121int extent_writepages(struct extent_io_tree *tree,
4122 struct address_space *mapping,
4123 get_extent_t *get_extent,
4124 struct writeback_control *wbc)
4125{
4126 int ret = 0;
4127 struct extent_page_data epd = {
4128 .bio = NULL,
4129 .tree = tree,
4130 .get_extent = get_extent,
4131 .extent_locked = 0,
4132 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4133 .bio_flags = 0,
4134 };
4135
4136 ret = extent_write_cache_pages(tree, mapping, wbc,
4137 __extent_writepage, &epd,
4138 flush_write_bio);
4139 flush_epd_write_bio(&epd);
4140 return ret;
4141}
4142
4143int extent_readpages(struct extent_io_tree *tree,
4144 struct address_space *mapping,
4145 struct list_head *pages, unsigned nr_pages,
4146 get_extent_t get_extent)
4147{
4148 struct bio *bio = NULL;
4149 unsigned page_idx;
4150 unsigned long bio_flags = 0;
4151 struct page *pagepool[16];
4152 struct page *page;
4153 struct extent_map *em_cached = NULL;
4154 int nr = 0;
4155 u64 prev_em_start = (u64)-1;
4156
4157 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4158 page = list_entry(pages->prev, struct page, lru);
4159
4160 prefetchw(&page->flags);
4161 list_del(&page->lru);
4162 if (add_to_page_cache_lru(page, mapping,
4163 page->index, GFP_NOFS)) {
4164 put_page(page);
4165 continue;
4166 }
4167
4168 pagepool[nr++] = page;
4169 if (nr < ARRAY_SIZE(pagepool))
4170 continue;
4171 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4172 &bio, 0, &bio_flags, READ, &prev_em_start);
4173 nr = 0;
4174 }
4175 if (nr)
4176 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4177 &bio, 0, &bio_flags, READ, &prev_em_start);
4178
4179 if (em_cached)
4180 free_extent_map(em_cached);
4181
4182 BUG_ON(!list_empty(pages));
4183 if (bio)
4184 return submit_one_bio(READ, bio, 0, bio_flags);
4185 return 0;
4186}
4187
4188/*
4189 * basic invalidatepage code, this waits on any locked or writeback
4190 * ranges corresponding to the page, and then deletes any extent state
4191 * records from the tree
4192 */
4193int extent_invalidatepage(struct extent_io_tree *tree,
4194 struct page *page, unsigned long offset)
4195{
4196 struct extent_state *cached_state = NULL;
4197 u64 start = page_offset(page);
4198 u64 end = start + PAGE_SIZE - 1;
4199 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4200
4201 start += ALIGN(offset, blocksize);
4202 if (start > end)
4203 return 0;
4204
4205 lock_extent_bits(tree, start, end, &cached_state);
4206 wait_on_page_writeback(page);
4207 clear_extent_bit(tree, start, end,
4208 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4209 EXTENT_DO_ACCOUNTING,
4210 1, 1, &cached_state, GFP_NOFS);
4211 return 0;
4212}
4213
4214/*
4215 * a helper for releasepage, this tests for areas of the page that
4216 * are locked or under IO and drops the related state bits if it is safe
4217 * to drop the page.
4218 */
4219static int try_release_extent_state(struct extent_map_tree *map,
4220 struct extent_io_tree *tree,
4221 struct page *page, gfp_t mask)
4222{
4223 u64 start = page_offset(page);
4224 u64 end = start + PAGE_SIZE - 1;
4225 int ret = 1;
4226
4227 if (test_range_bit(tree, start, end,
4228 EXTENT_IOBITS, 0, NULL))
4229 ret = 0;
4230 else {
4231 if ((mask & GFP_NOFS) == GFP_NOFS)
4232 mask = GFP_NOFS;
4233 /*
4234 * at this point we can safely clear everything except the
4235 * locked bit and the nodatasum bit
4236 */
4237 ret = clear_extent_bit(tree, start, end,
4238 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4239 0, 0, NULL, mask);
4240
4241 /* if clear_extent_bit failed for enomem reasons,
4242 * we can't allow the release to continue.
4243 */
4244 if (ret < 0)
4245 ret = 0;
4246 else
4247 ret = 1;
4248 }
4249 return ret;
4250}
4251
4252/*
4253 * a helper for releasepage. As long as there are no locked extents
4254 * in the range corresponding to the page, both state records and extent
4255 * map records are removed
4256 */
4257int try_release_extent_mapping(struct extent_map_tree *map,
4258 struct extent_io_tree *tree, struct page *page,
4259 gfp_t mask)
4260{
4261 struct extent_map *em;
4262 u64 start = page_offset(page);
4263 u64 end = start + PAGE_SIZE - 1;
4264
4265 if (gfpflags_allow_blocking(mask) &&
4266 page->mapping->host->i_size > SZ_16M) {
4267 u64 len;
4268 while (start <= end) {
4269 len = end - start + 1;
4270 write_lock(&map->lock);
4271 em = lookup_extent_mapping(map, start, len);
4272 if (!em) {
4273 write_unlock(&map->lock);
4274 break;
4275 }
4276 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4277 em->start != start) {
4278 write_unlock(&map->lock);
4279 free_extent_map(em);
4280 break;
4281 }
4282 if (!test_range_bit(tree, em->start,
4283 extent_map_end(em) - 1,
4284 EXTENT_LOCKED | EXTENT_WRITEBACK,
4285 0, NULL)) {
4286 remove_extent_mapping(map, em);
4287 /* once for the rb tree */
4288 free_extent_map(em);
4289 }
4290 start = extent_map_end(em);
4291 write_unlock(&map->lock);
4292
4293 /* once for us */
4294 free_extent_map(em);
4295 }
4296 }
4297 return try_release_extent_state(map, tree, page, mask);
4298}
4299
4300/*
4301 * helper function for fiemap, which doesn't want to see any holes.
4302 * This maps until we find something past 'last'
4303 */
4304static struct extent_map *get_extent_skip_holes(struct inode *inode,
4305 u64 offset,
4306 u64 last,
4307 get_extent_t *get_extent)
4308{
4309 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4310 struct extent_map *em;
4311 u64 len;
4312
4313 if (offset >= last)
4314 return NULL;
4315
4316 while (1) {
4317 len = last - offset;
4318 if (len == 0)
4319 break;
4320 len = ALIGN(len, sectorsize);
4321 em = get_extent(inode, NULL, 0, offset, len, 0);
4322 if (IS_ERR_OR_NULL(em))
4323 return em;
4324
4325 /* if this isn't a hole return it */
4326 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4327 em->block_start != EXTENT_MAP_HOLE) {
4328 return em;
4329 }
4330
4331 /* this is a hole, advance to the next extent */
4332 offset = extent_map_end(em);
4333 free_extent_map(em);
4334 if (offset >= last)
4335 break;
4336 }
4337 return NULL;
4338}
4339
4340int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4341 __u64 start, __u64 len, get_extent_t *get_extent)
4342{
4343 int ret = 0;
4344 u64 off = start;
4345 u64 max = start + len;
4346 u32 flags = 0;
4347 u32 found_type;
4348 u64 last;
4349 u64 last_for_get_extent = 0;
4350 u64 disko = 0;
4351 u64 isize = i_size_read(inode);
4352 struct btrfs_key found_key;
4353 struct extent_map *em = NULL;
4354 struct extent_state *cached_state = NULL;
4355 struct btrfs_path *path;
4356 struct btrfs_root *root = BTRFS_I(inode)->root;
4357 int end = 0;
4358 u64 em_start = 0;
4359 u64 em_len = 0;
4360 u64 em_end = 0;
4361
4362 if (len == 0)
4363 return -EINVAL;
4364
4365 path = btrfs_alloc_path();
4366 if (!path)
4367 return -ENOMEM;
4368 path->leave_spinning = 1;
4369
4370 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4371 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4372
4373 /*
4374 * lookup the last file extent. We're not using i_size here
4375 * because there might be preallocation past i_size
4376 */
4377 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4378 0);
4379 if (ret < 0) {
4380 btrfs_free_path(path);
4381 return ret;
4382 }
4383 WARN_ON(!ret);
4384 path->slots[0]--;
4385 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4386 found_type = found_key.type;
4387
4388 /* No extents, but there might be delalloc bits */
4389 if (found_key.objectid != btrfs_ino(inode) ||
4390 found_type != BTRFS_EXTENT_DATA_KEY) {
4391 /* have to trust i_size as the end */
4392 last = (u64)-1;
4393 last_for_get_extent = isize;
4394 } else {
4395 /*
4396 * remember the start of the last extent. There are a
4397 * bunch of different factors that go into the length of the
4398 * extent, so its much less complex to remember where it started
4399 */
4400 last = found_key.offset;
4401 last_for_get_extent = last + 1;
4402 }
4403 btrfs_release_path(path);
4404
4405 /*
4406 * we might have some extents allocated but more delalloc past those
4407 * extents. so, we trust isize unless the start of the last extent is
4408 * beyond isize
4409 */
4410 if (last < isize) {
4411 last = (u64)-1;
4412 last_for_get_extent = isize;
4413 }
4414
4415 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4416 &cached_state);
4417
4418 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4419 get_extent);
4420 if (!em)
4421 goto out;
4422 if (IS_ERR(em)) {
4423 ret = PTR_ERR(em);
4424 goto out;
4425 }
4426
4427 while (!end) {
4428 u64 offset_in_extent = 0;
4429
4430 /* break if the extent we found is outside the range */
4431 if (em->start >= max || extent_map_end(em) < off)
4432 break;
4433
4434 /*
4435 * get_extent may return an extent that starts before our
4436 * requested range. We have to make sure the ranges
4437 * we return to fiemap always move forward and don't
4438 * overlap, so adjust the offsets here
4439 */
4440 em_start = max(em->start, off);
4441
4442 /*
4443 * record the offset from the start of the extent
4444 * for adjusting the disk offset below. Only do this if the
4445 * extent isn't compressed since our in ram offset may be past
4446 * what we have actually allocated on disk.
4447 */
4448 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4449 offset_in_extent = em_start - em->start;
4450 em_end = extent_map_end(em);
4451 em_len = em_end - em_start;
4452 disko = 0;
4453 flags = 0;
4454
4455 /*
4456 * bump off for our next call to get_extent
4457 */
4458 off = extent_map_end(em);
4459 if (off >= max)
4460 end = 1;
4461
4462 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4463 end = 1;
4464 flags |= FIEMAP_EXTENT_LAST;
4465 } else if (em->block_start == EXTENT_MAP_INLINE) {
4466 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4467 FIEMAP_EXTENT_NOT_ALIGNED);
4468 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4469 flags |= (FIEMAP_EXTENT_DELALLOC |
4470 FIEMAP_EXTENT_UNKNOWN);
4471 } else if (fieinfo->fi_extents_max) {
4472 u64 bytenr = em->block_start -
4473 (em->start - em->orig_start);
4474
4475 disko = em->block_start + offset_in_extent;
4476
4477 /*
4478 * As btrfs supports shared space, this information
4479 * can be exported to userspace tools via
4480 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4481 * then we're just getting a count and we can skip the
4482 * lookup stuff.
4483 */
4484 ret = btrfs_check_shared(NULL, root->fs_info,
4485 root->objectid,
4486 btrfs_ino(inode), bytenr);
4487 if (ret < 0)
4488 goto out_free;
4489 if (ret)
4490 flags |= FIEMAP_EXTENT_SHARED;
4491 ret = 0;
4492 }
4493 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4494 flags |= FIEMAP_EXTENT_ENCODED;
4495 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4496 flags |= FIEMAP_EXTENT_UNWRITTEN;
4497
4498 free_extent_map(em);
4499 em = NULL;
4500 if ((em_start >= last) || em_len == (u64)-1 ||
4501 (last == (u64)-1 && isize <= em_end)) {
4502 flags |= FIEMAP_EXTENT_LAST;
4503 end = 1;
4504 }
4505
4506 /* now scan forward to see if this is really the last extent. */
4507 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4508 get_extent);
4509 if (IS_ERR(em)) {
4510 ret = PTR_ERR(em);
4511 goto out;
4512 }
4513 if (!em) {
4514 flags |= FIEMAP_EXTENT_LAST;
4515 end = 1;
4516 }
4517 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4518 em_len, flags);
4519 if (ret) {
4520 if (ret == 1)
4521 ret = 0;
4522 goto out_free;
4523 }
4524 }
4525out_free:
4526 free_extent_map(em);
4527out:
4528 btrfs_free_path(path);
4529 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4530 &cached_state, GFP_NOFS);
4531 return ret;
4532}
4533
4534static void __free_extent_buffer(struct extent_buffer *eb)
4535{
4536 btrfs_leak_debug_del(&eb->leak_list);
4537 kmem_cache_free(extent_buffer_cache, eb);
4538}
4539
4540int extent_buffer_under_io(struct extent_buffer *eb)
4541{
4542 return (atomic_read(&eb->io_pages) ||
4543 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4544 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4545}
4546
4547/*
4548 * Helper for releasing extent buffer page.
4549 */
4550static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4551{
4552 unsigned long index;
4553 struct page *page;
4554 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4555
4556 BUG_ON(extent_buffer_under_io(eb));
4557
4558 index = num_extent_pages(eb->start, eb->len);
4559 if (index == 0)
4560 return;
4561
4562 do {
4563 index--;
4564 page = eb->pages[index];
4565 if (!page)
4566 continue;
4567 if (mapped)
4568 spin_lock(&page->mapping->private_lock);
4569 /*
4570 * We do this since we'll remove the pages after we've
4571 * removed the eb from the radix tree, so we could race
4572 * and have this page now attached to the new eb. So
4573 * only clear page_private if it's still connected to
4574 * this eb.
4575 */
4576 if (PagePrivate(page) &&
4577 page->private == (unsigned long)eb) {
4578 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4579 BUG_ON(PageDirty(page));
4580 BUG_ON(PageWriteback(page));
4581 /*
4582 * We need to make sure we haven't be attached
4583 * to a new eb.
4584 */
4585 ClearPagePrivate(page);
4586 set_page_private(page, 0);
4587 /* One for the page private */
4588 put_page(page);
4589 }
4590
4591 if (mapped)
4592 spin_unlock(&page->mapping->private_lock);
4593
4594 /* One for when we alloced the page */
4595 put_page(page);
4596 } while (index != 0);
4597}
4598
4599/*
4600 * Helper for releasing the extent buffer.
4601 */
4602static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4603{
4604 btrfs_release_extent_buffer_page(eb);
4605 __free_extent_buffer(eb);
4606}
4607
4608static struct extent_buffer *
4609__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4610 unsigned long len)
4611{
4612 struct extent_buffer *eb = NULL;
4613
4614 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4615 eb->start = start;
4616 eb->len = len;
4617 eb->fs_info = fs_info;
4618 eb->bflags = 0;
4619 rwlock_init(&eb->lock);
4620 atomic_set(&eb->write_locks, 0);
4621 atomic_set(&eb->read_locks, 0);
4622 atomic_set(&eb->blocking_readers, 0);
4623 atomic_set(&eb->blocking_writers, 0);
4624 atomic_set(&eb->spinning_readers, 0);
4625 atomic_set(&eb->spinning_writers, 0);
4626 eb->lock_nested = 0;
4627 init_waitqueue_head(&eb->write_lock_wq);
4628 init_waitqueue_head(&eb->read_lock_wq);
4629
4630 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4631
4632 spin_lock_init(&eb->refs_lock);
4633 atomic_set(&eb->refs, 1);
4634 atomic_set(&eb->io_pages, 0);
4635
4636 /*
4637 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4638 */
4639 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4640 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4641 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4642
4643 return eb;
4644}
4645
4646struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4647{
4648 unsigned long i;
4649 struct page *p;
4650 struct extent_buffer *new;
4651 unsigned long num_pages = num_extent_pages(src->start, src->len);
4652
4653 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4654 if (new == NULL)
4655 return NULL;
4656
4657 for (i = 0; i < num_pages; i++) {
4658 p = alloc_page(GFP_NOFS);
4659 if (!p) {
4660 btrfs_release_extent_buffer(new);
4661 return NULL;
4662 }
4663 attach_extent_buffer_page(new, p);
4664 WARN_ON(PageDirty(p));
4665 SetPageUptodate(p);
4666 new->pages[i] = p;
4667 }
4668
4669 copy_extent_buffer(new, src, 0, 0, src->len);
4670 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4671 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4672
4673 return new;
4674}
4675
4676struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4677 u64 start, unsigned long len)
4678{
4679 struct extent_buffer *eb;
4680 unsigned long num_pages;
4681 unsigned long i;
4682
4683 num_pages = num_extent_pages(start, len);
4684
4685 eb = __alloc_extent_buffer(fs_info, start, len);
4686 if (!eb)
4687 return NULL;
4688
4689 for (i = 0; i < num_pages; i++) {
4690 eb->pages[i] = alloc_page(GFP_NOFS);
4691 if (!eb->pages[i])
4692 goto err;
4693 }
4694 set_extent_buffer_uptodate(eb);
4695 btrfs_set_header_nritems(eb, 0);
4696 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4697
4698 return eb;
4699err:
4700 for (; i > 0; i--)
4701 __free_page(eb->pages[i - 1]);
4702 __free_extent_buffer(eb);
4703 return NULL;
4704}
4705
4706struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4707 u64 start)
4708{
4709 unsigned long len;
4710
4711 if (!fs_info) {
4712 /*
4713 * Called only from tests that don't always have a fs_info
4714 * available, but we know that nodesize is 4096
4715 */
4716 len = 4096;
4717 } else {
4718 len = fs_info->tree_root->nodesize;
4719 }
4720
4721 return __alloc_dummy_extent_buffer(fs_info, start, len);
4722}
4723
4724static void check_buffer_tree_ref(struct extent_buffer *eb)
4725{
4726 int refs;
4727 /* the ref bit is tricky. We have to make sure it is set
4728 * if we have the buffer dirty. Otherwise the
4729 * code to free a buffer can end up dropping a dirty
4730 * page
4731 *
4732 * Once the ref bit is set, it won't go away while the
4733 * buffer is dirty or in writeback, and it also won't
4734 * go away while we have the reference count on the
4735 * eb bumped.
4736 *
4737 * We can't just set the ref bit without bumping the
4738 * ref on the eb because free_extent_buffer might
4739 * see the ref bit and try to clear it. If this happens
4740 * free_extent_buffer might end up dropping our original
4741 * ref by mistake and freeing the page before we are able
4742 * to add one more ref.
4743 *
4744 * So bump the ref count first, then set the bit. If someone
4745 * beat us to it, drop the ref we added.
4746 */
4747 refs = atomic_read(&eb->refs);
4748 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4749 return;
4750
4751 spin_lock(&eb->refs_lock);
4752 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4753 atomic_inc(&eb->refs);
4754 spin_unlock(&eb->refs_lock);
4755}
4756
4757static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4758 struct page *accessed)
4759{
4760 unsigned long num_pages, i;
4761
4762 check_buffer_tree_ref(eb);
4763
4764 num_pages = num_extent_pages(eb->start, eb->len);
4765 for (i = 0; i < num_pages; i++) {
4766 struct page *p = eb->pages[i];
4767
4768 if (p != accessed)
4769 mark_page_accessed(p);
4770 }
4771}
4772
4773struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4774 u64 start)
4775{
4776 struct extent_buffer *eb;
4777
4778 rcu_read_lock();
4779 eb = radix_tree_lookup(&fs_info->buffer_radix,
4780 start >> PAGE_SHIFT);
4781 if (eb && atomic_inc_not_zero(&eb->refs)) {
4782 rcu_read_unlock();
4783 /*
4784 * Lock our eb's refs_lock to avoid races with
4785 * free_extent_buffer. When we get our eb it might be flagged
4786 * with EXTENT_BUFFER_STALE and another task running
4787 * free_extent_buffer might have seen that flag set,
4788 * eb->refs == 2, that the buffer isn't under IO (dirty and
4789 * writeback flags not set) and it's still in the tree (flag
4790 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4791 * of decrementing the extent buffer's reference count twice.
4792 * So here we could race and increment the eb's reference count,
4793 * clear its stale flag, mark it as dirty and drop our reference
4794 * before the other task finishes executing free_extent_buffer,
4795 * which would later result in an attempt to free an extent
4796 * buffer that is dirty.
4797 */
4798 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4799 spin_lock(&eb->refs_lock);
4800 spin_unlock(&eb->refs_lock);
4801 }
4802 mark_extent_buffer_accessed(eb, NULL);
4803 return eb;
4804 }
4805 rcu_read_unlock();
4806
4807 return NULL;
4808}
4809
4810#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4811struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4812 u64 start)
4813{
4814 struct extent_buffer *eb, *exists = NULL;
4815 int ret;
4816
4817 eb = find_extent_buffer(fs_info, start);
4818 if (eb)
4819 return eb;
4820 eb = alloc_dummy_extent_buffer(fs_info, start);
4821 if (!eb)
4822 return NULL;
4823 eb->fs_info = fs_info;
4824again:
4825 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4826 if (ret)
4827 goto free_eb;
4828 spin_lock(&fs_info->buffer_lock);
4829 ret = radix_tree_insert(&fs_info->buffer_radix,
4830 start >> PAGE_SHIFT, eb);
4831 spin_unlock(&fs_info->buffer_lock);
4832 radix_tree_preload_end();
4833 if (ret == -EEXIST) {
4834 exists = find_extent_buffer(fs_info, start);
4835 if (exists)
4836 goto free_eb;
4837 else
4838 goto again;
4839 }
4840 check_buffer_tree_ref(eb);
4841 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4842
4843 /*
4844 * We will free dummy extent buffer's if they come into
4845 * free_extent_buffer with a ref count of 2, but if we are using this we
4846 * want the buffers to stay in memory until we're done with them, so
4847 * bump the ref count again.
4848 */
4849 atomic_inc(&eb->refs);
4850 return eb;
4851free_eb:
4852 btrfs_release_extent_buffer(eb);
4853 return exists;
4854}
4855#endif
4856
4857struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4858 u64 start)
4859{
4860 unsigned long len = fs_info->tree_root->nodesize;
4861 unsigned long num_pages = num_extent_pages(start, len);
4862 unsigned long i;
4863 unsigned long index = start >> PAGE_SHIFT;
4864 struct extent_buffer *eb;
4865 struct extent_buffer *exists = NULL;
4866 struct page *p;
4867 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4868 int uptodate = 1;
4869 int ret;
4870
4871 eb = find_extent_buffer(fs_info, start);
4872 if (eb)
4873 return eb;
4874
4875 eb = __alloc_extent_buffer(fs_info, start, len);
4876 if (!eb)
4877 return NULL;
4878
4879 for (i = 0; i < num_pages; i++, index++) {
4880 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4881 if (!p)
4882 goto free_eb;
4883
4884 spin_lock(&mapping->private_lock);
4885 if (PagePrivate(p)) {
4886 /*
4887 * We could have already allocated an eb for this page
4888 * and attached one so lets see if we can get a ref on
4889 * the existing eb, and if we can we know it's good and
4890 * we can just return that one, else we know we can just
4891 * overwrite page->private.
4892 */
4893 exists = (struct extent_buffer *)p->private;
4894 if (atomic_inc_not_zero(&exists->refs)) {
4895 spin_unlock(&mapping->private_lock);
4896 unlock_page(p);
4897 put_page(p);
4898 mark_extent_buffer_accessed(exists, p);
4899 goto free_eb;
4900 }
4901 exists = NULL;
4902
4903 /*
4904 * Do this so attach doesn't complain and we need to
4905 * drop the ref the old guy had.
4906 */
4907 ClearPagePrivate(p);
4908 WARN_ON(PageDirty(p));
4909 put_page(p);
4910 }
4911 attach_extent_buffer_page(eb, p);
4912 spin_unlock(&mapping->private_lock);
4913 WARN_ON(PageDirty(p));
4914 eb->pages[i] = p;
4915 if (!PageUptodate(p))
4916 uptodate = 0;
4917
4918 /*
4919 * see below about how we avoid a nasty race with release page
4920 * and why we unlock later
4921 */
4922 }
4923 if (uptodate)
4924 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4925again:
4926 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4927 if (ret)
4928 goto free_eb;
4929
4930 spin_lock(&fs_info->buffer_lock);
4931 ret = radix_tree_insert(&fs_info->buffer_radix,
4932 start >> PAGE_SHIFT, eb);
4933 spin_unlock(&fs_info->buffer_lock);
4934 radix_tree_preload_end();
4935 if (ret == -EEXIST) {
4936 exists = find_extent_buffer(fs_info, start);
4937 if (exists)
4938 goto free_eb;
4939 else
4940 goto again;
4941 }
4942 /* add one reference for the tree */
4943 check_buffer_tree_ref(eb);
4944 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4945
4946 /*
4947 * there is a race where release page may have
4948 * tried to find this extent buffer in the radix
4949 * but failed. It will tell the VM it is safe to
4950 * reclaim the, and it will clear the page private bit.
4951 * We must make sure to set the page private bit properly
4952 * after the extent buffer is in the radix tree so
4953 * it doesn't get lost
4954 */
4955 SetPageChecked(eb->pages[0]);
4956 for (i = 1; i < num_pages; i++) {
4957 p = eb->pages[i];
4958 ClearPageChecked(p);
4959 unlock_page(p);
4960 }
4961 unlock_page(eb->pages[0]);
4962 return eb;
4963
4964free_eb:
4965 WARN_ON(!atomic_dec_and_test(&eb->refs));
4966 for (i = 0; i < num_pages; i++) {
4967 if (eb->pages[i])
4968 unlock_page(eb->pages[i]);
4969 }
4970
4971 btrfs_release_extent_buffer(eb);
4972 return exists;
4973}
4974
4975static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4976{
4977 struct extent_buffer *eb =
4978 container_of(head, struct extent_buffer, rcu_head);
4979
4980 __free_extent_buffer(eb);
4981}
4982
4983/* Expects to have eb->eb_lock already held */
4984static int release_extent_buffer(struct extent_buffer *eb)
4985{
4986 WARN_ON(atomic_read(&eb->refs) == 0);
4987 if (atomic_dec_and_test(&eb->refs)) {
4988 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4989 struct btrfs_fs_info *fs_info = eb->fs_info;
4990
4991 spin_unlock(&eb->refs_lock);
4992
4993 spin_lock(&fs_info->buffer_lock);
4994 radix_tree_delete(&fs_info->buffer_radix,
4995 eb->start >> PAGE_SHIFT);
4996 spin_unlock(&fs_info->buffer_lock);
4997 } else {
4998 spin_unlock(&eb->refs_lock);
4999 }
5000
5001 /* Should be safe to release our pages at this point */
5002 btrfs_release_extent_buffer_page(eb);
5003#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5004 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5005 __free_extent_buffer(eb);
5006 return 1;
5007 }
5008#endif
5009 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5010 return 1;
5011 }
5012 spin_unlock(&eb->refs_lock);
5013
5014 return 0;
5015}
5016
5017void free_extent_buffer(struct extent_buffer *eb)
5018{
5019 int refs;
5020 int old;
5021 if (!eb)
5022 return;
5023
5024 while (1) {
5025 refs = atomic_read(&eb->refs);
5026 if (refs <= 3)
5027 break;
5028 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5029 if (old == refs)
5030 return;
5031 }
5032
5033 spin_lock(&eb->refs_lock);
5034 if (atomic_read(&eb->refs) == 2 &&
5035 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5036 atomic_dec(&eb->refs);
5037
5038 if (atomic_read(&eb->refs) == 2 &&
5039 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5040 !extent_buffer_under_io(eb) &&
5041 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5042 atomic_dec(&eb->refs);
5043
5044 /*
5045 * I know this is terrible, but it's temporary until we stop tracking
5046 * the uptodate bits and such for the extent buffers.
5047 */
5048 release_extent_buffer(eb);
5049}
5050
5051void free_extent_buffer_stale(struct extent_buffer *eb)
5052{
5053 if (!eb)
5054 return;
5055
5056 spin_lock(&eb->refs_lock);
5057 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5058
5059 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5060 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5061 atomic_dec(&eb->refs);
5062 release_extent_buffer(eb);
5063}
5064
5065void clear_extent_buffer_dirty(struct extent_buffer *eb)
5066{
5067 unsigned long i;
5068 unsigned long num_pages;
5069 struct page *page;
5070
5071 num_pages = num_extent_pages(eb->start, eb->len);
5072
5073 for (i = 0; i < num_pages; i++) {
5074 page = eb->pages[i];
5075 if (!PageDirty(page))
5076 continue;
5077
5078 lock_page(page);
5079 WARN_ON(!PagePrivate(page));
5080
5081 clear_page_dirty_for_io(page);
5082 spin_lock_irq(&page->mapping->tree_lock);
5083 if (!PageDirty(page)) {
5084 radix_tree_tag_clear(&page->mapping->page_tree,
5085 page_index(page),
5086 PAGECACHE_TAG_DIRTY);
5087 }
5088 spin_unlock_irq(&page->mapping->tree_lock);
5089 ClearPageError(page);
5090 unlock_page(page);
5091 }
5092 WARN_ON(atomic_read(&eb->refs) == 0);
5093}
5094
5095int set_extent_buffer_dirty(struct extent_buffer *eb)
5096{
5097 unsigned long i;
5098 unsigned long num_pages;
5099 int was_dirty = 0;
5100
5101 check_buffer_tree_ref(eb);
5102
5103 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5104
5105 num_pages = num_extent_pages(eb->start, eb->len);
5106 WARN_ON(atomic_read(&eb->refs) == 0);
5107 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5108
5109 for (i = 0; i < num_pages; i++)
5110 set_page_dirty(eb->pages[i]);
5111 return was_dirty;
5112}
5113
5114void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5115{
5116 unsigned long i;
5117 struct page *page;
5118 unsigned long num_pages;
5119
5120 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5121 num_pages = num_extent_pages(eb->start, eb->len);
5122 for (i = 0; i < num_pages; i++) {
5123 page = eb->pages[i];
5124 if (page)
5125 ClearPageUptodate(page);
5126 }
5127}
5128
5129void set_extent_buffer_uptodate(struct extent_buffer *eb)
5130{
5131 unsigned long i;
5132 struct page *page;
5133 unsigned long num_pages;
5134
5135 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5136 num_pages = num_extent_pages(eb->start, eb->len);
5137 for (i = 0; i < num_pages; i++) {
5138 page = eb->pages[i];
5139 SetPageUptodate(page);
5140 }
5141}
5142
5143int extent_buffer_uptodate(struct extent_buffer *eb)
5144{
5145 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5146}
5147
5148int read_extent_buffer_pages(struct extent_io_tree *tree,
5149 struct extent_buffer *eb, u64 start, int wait,
5150 get_extent_t *get_extent, int mirror_num)
5151{
5152 unsigned long i;
5153 unsigned long start_i;
5154 struct page *page;
5155 int err;
5156 int ret = 0;
5157 int locked_pages = 0;
5158 int all_uptodate = 1;
5159 unsigned long num_pages;
5160 unsigned long num_reads = 0;
5161 struct bio *bio = NULL;
5162 unsigned long bio_flags = 0;
5163
5164 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5165 return 0;
5166
5167 if (start) {
5168 WARN_ON(start < eb->start);
5169 start_i = (start >> PAGE_SHIFT) -
5170 (eb->start >> PAGE_SHIFT);
5171 } else {
5172 start_i = 0;
5173 }
5174
5175 num_pages = num_extent_pages(eb->start, eb->len);
5176 for (i = start_i; i < num_pages; i++) {
5177 page = eb->pages[i];
5178 if (wait == WAIT_NONE) {
5179 if (!trylock_page(page))
5180 goto unlock_exit;
5181 } else {
5182 lock_page(page);
5183 }
5184 locked_pages++;
5185 if (!PageUptodate(page)) {
5186 num_reads++;
5187 all_uptodate = 0;
5188 }
5189 }
5190 if (all_uptodate) {
5191 if (start_i == 0)
5192 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5193 goto unlock_exit;
5194 }
5195
5196 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5197 eb->read_mirror = 0;
5198 atomic_set(&eb->io_pages, num_reads);
5199 for (i = start_i; i < num_pages; i++) {
5200 page = eb->pages[i];
5201 if (!PageUptodate(page)) {
5202 ClearPageError(page);
5203 err = __extent_read_full_page(tree, page,
5204 get_extent, &bio,
5205 mirror_num, &bio_flags,
5206 READ | REQ_META);
5207 if (err)
5208 ret = err;
5209 } else {
5210 unlock_page(page);
5211 }
5212 }
5213
5214 if (bio) {
5215 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5216 bio_flags);
5217 if (err)
5218 return err;
5219 }
5220
5221 if (ret || wait != WAIT_COMPLETE)
5222 return ret;
5223
5224 for (i = start_i; i < num_pages; i++) {
5225 page = eb->pages[i];
5226 wait_on_page_locked(page);
5227 if (!PageUptodate(page))
5228 ret = -EIO;
5229 }
5230
5231 return ret;
5232
5233unlock_exit:
5234 i = start_i;
5235 while (locked_pages > 0) {
5236 page = eb->pages[i];
5237 i++;
5238 unlock_page(page);
5239 locked_pages--;
5240 }
5241 return ret;
5242}
5243
5244void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5245 unsigned long start,
5246 unsigned long len)
5247{
5248 size_t cur;
5249 size_t offset;
5250 struct page *page;
5251 char *kaddr;
5252 char *dst = (char *)dstv;
5253 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5254 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5255
5256 WARN_ON(start > eb->len);
5257 WARN_ON(start + len > eb->start + eb->len);
5258
5259 offset = (start_offset + start) & (PAGE_SIZE - 1);
5260
5261 while (len > 0) {
5262 page = eb->pages[i];
5263
5264 cur = min(len, (PAGE_SIZE - offset));
5265 kaddr = page_address(page);
5266 memcpy(dst, kaddr + offset, cur);
5267
5268 dst += cur;
5269 len -= cur;
5270 offset = 0;
5271 i++;
5272 }
5273}
5274
5275int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5276 unsigned long start,
5277 unsigned long len)
5278{
5279 size_t cur;
5280 size_t offset;
5281 struct page *page;
5282 char *kaddr;
5283 char __user *dst = (char __user *)dstv;
5284 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5285 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5286 int ret = 0;
5287
5288 WARN_ON(start > eb->len);
5289 WARN_ON(start + len > eb->start + eb->len);
5290
5291 offset = (start_offset + start) & (PAGE_SIZE - 1);
5292
5293 while (len > 0) {
5294 page = eb->pages[i];
5295
5296 cur = min(len, (PAGE_SIZE - offset));
5297 kaddr = page_address(page);
5298 if (copy_to_user(dst, kaddr + offset, cur)) {
5299 ret = -EFAULT;
5300 break;
5301 }
5302
5303 dst += cur;
5304 len -= cur;
5305 offset = 0;
5306 i++;
5307 }
5308
5309 return ret;
5310}
5311
5312int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5313 unsigned long min_len, char **map,
5314 unsigned long *map_start,
5315 unsigned long *map_len)
5316{
5317 size_t offset = start & (PAGE_SIZE - 1);
5318 char *kaddr;
5319 struct page *p;
5320 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5321 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5322 unsigned long end_i = (start_offset + start + min_len - 1) >>
5323 PAGE_SHIFT;
5324
5325 if (i != end_i)
5326 return -EINVAL;
5327
5328 if (i == 0) {
5329 offset = start_offset;
5330 *map_start = 0;
5331 } else {
5332 offset = 0;
5333 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5334 }
5335
5336 if (start + min_len > eb->len) {
5337 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5338 "wanted %lu %lu\n",
5339 eb->start, eb->len, start, min_len);
5340 return -EINVAL;
5341 }
5342
5343 p = eb->pages[i];
5344 kaddr = page_address(p);
5345 *map = kaddr + offset;
5346 *map_len = PAGE_SIZE - offset;
5347 return 0;
5348}
5349
5350int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5351 unsigned long start,
5352 unsigned long len)
5353{
5354 size_t cur;
5355 size_t offset;
5356 struct page *page;
5357 char *kaddr;
5358 char *ptr = (char *)ptrv;
5359 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5360 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5361 int ret = 0;
5362
5363 WARN_ON(start > eb->len);
5364 WARN_ON(start + len > eb->start + eb->len);
5365
5366 offset = (start_offset + start) & (PAGE_SIZE - 1);
5367
5368 while (len > 0) {
5369 page = eb->pages[i];
5370
5371 cur = min(len, (PAGE_SIZE - offset));
5372
5373 kaddr = page_address(page);
5374 ret = memcmp(ptr, kaddr + offset, cur);
5375 if (ret)
5376 break;
5377
5378 ptr += cur;
5379 len -= cur;
5380 offset = 0;
5381 i++;
5382 }
5383 return ret;
5384}
5385
5386void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5387 unsigned long start, unsigned long len)
5388{
5389 size_t cur;
5390 size_t offset;
5391 struct page *page;
5392 char *kaddr;
5393 char *src = (char *)srcv;
5394 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5395 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5396
5397 WARN_ON(start > eb->len);
5398 WARN_ON(start + len > eb->start + eb->len);
5399
5400 offset = (start_offset + start) & (PAGE_SIZE - 1);
5401
5402 while (len > 0) {
5403 page = eb->pages[i];
5404 WARN_ON(!PageUptodate(page));
5405
5406 cur = min(len, PAGE_SIZE - offset);
5407 kaddr = page_address(page);
5408 memcpy(kaddr + offset, src, cur);
5409
5410 src += cur;
5411 len -= cur;
5412 offset = 0;
5413 i++;
5414 }
5415}
5416
5417void memset_extent_buffer(struct extent_buffer *eb, char c,
5418 unsigned long start, unsigned long len)
5419{
5420 size_t cur;
5421 size_t offset;
5422 struct page *page;
5423 char *kaddr;
5424 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5425 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5426
5427 WARN_ON(start > eb->len);
5428 WARN_ON(start + len > eb->start + eb->len);
5429
5430 offset = (start_offset + start) & (PAGE_SIZE - 1);
5431
5432 while (len > 0) {
5433 page = eb->pages[i];
5434 WARN_ON(!PageUptodate(page));
5435
5436 cur = min(len, PAGE_SIZE - offset);
5437 kaddr = page_address(page);
5438 memset(kaddr + offset, c, cur);
5439
5440 len -= cur;
5441 offset = 0;
5442 i++;
5443 }
5444}
5445
5446void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5447 unsigned long dst_offset, unsigned long src_offset,
5448 unsigned long len)
5449{
5450 u64 dst_len = dst->len;
5451 size_t cur;
5452 size_t offset;
5453 struct page *page;
5454 char *kaddr;
5455 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5456 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5457
5458 WARN_ON(src->len != dst_len);
5459
5460 offset = (start_offset + dst_offset) &
5461 (PAGE_SIZE - 1);
5462
5463 while (len > 0) {
5464 page = dst->pages[i];
5465 WARN_ON(!PageUptodate(page));
5466
5467 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5468
5469 kaddr = page_address(page);
5470 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5471
5472 src_offset += cur;
5473 len -= cur;
5474 offset = 0;
5475 i++;
5476 }
5477}
5478
5479/*
5480 * The extent buffer bitmap operations are done with byte granularity because
5481 * bitmap items are not guaranteed to be aligned to a word and therefore a
5482 * single word in a bitmap may straddle two pages in the extent buffer.
5483 */
5484#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5485#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5486#define BITMAP_FIRST_BYTE_MASK(start) \
5487 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5488#define BITMAP_LAST_BYTE_MASK(nbits) \
5489 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5490
5491/*
5492 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5493 * given bit number
5494 * @eb: the extent buffer
5495 * @start: offset of the bitmap item in the extent buffer
5496 * @nr: bit number
5497 * @page_index: return index of the page in the extent buffer that contains the
5498 * given bit number
5499 * @page_offset: return offset into the page given by page_index
5500 *
5501 * This helper hides the ugliness of finding the byte in an extent buffer which
5502 * contains a given bit.
5503 */
5504static inline void eb_bitmap_offset(struct extent_buffer *eb,
5505 unsigned long start, unsigned long nr,
5506 unsigned long *page_index,
5507 size_t *page_offset)
5508{
5509 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5510 size_t byte_offset = BIT_BYTE(nr);
5511 size_t offset;
5512
5513 /*
5514 * The byte we want is the offset of the extent buffer + the offset of
5515 * the bitmap item in the extent buffer + the offset of the byte in the
5516 * bitmap item.
5517 */
5518 offset = start_offset + start + byte_offset;
5519
5520 *page_index = offset >> PAGE_SHIFT;
5521 *page_offset = offset & (PAGE_SIZE - 1);
5522}
5523
5524/**
5525 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5526 * @eb: the extent buffer
5527 * @start: offset of the bitmap item in the extent buffer
5528 * @nr: bit number to test
5529 */
5530int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5531 unsigned long nr)
5532{
5533 char *kaddr;
5534 struct page *page;
5535 unsigned long i;
5536 size_t offset;
5537
5538 eb_bitmap_offset(eb, start, nr, &i, &offset);
5539 page = eb->pages[i];
5540 WARN_ON(!PageUptodate(page));
5541 kaddr = page_address(page);
5542 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5543}
5544
5545/**
5546 * extent_buffer_bitmap_set - set an area of a bitmap
5547 * @eb: the extent buffer
5548 * @start: offset of the bitmap item in the extent buffer
5549 * @pos: bit number of the first bit
5550 * @len: number of bits to set
5551 */
5552void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5553 unsigned long pos, unsigned long len)
5554{
5555 char *kaddr;
5556 struct page *page;
5557 unsigned long i;
5558 size_t offset;
5559 const unsigned int size = pos + len;
5560 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5561 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5562
5563 eb_bitmap_offset(eb, start, pos, &i, &offset);
5564 page = eb->pages[i];
5565 WARN_ON(!PageUptodate(page));
5566 kaddr = page_address(page);
5567
5568 while (len >= bits_to_set) {
5569 kaddr[offset] |= mask_to_set;
5570 len -= bits_to_set;
5571 bits_to_set = BITS_PER_BYTE;
5572 mask_to_set = ~0U;
5573 if (++offset >= PAGE_SIZE && len > 0) {
5574 offset = 0;
5575 page = eb->pages[++i];
5576 WARN_ON(!PageUptodate(page));
5577 kaddr = page_address(page);
5578 }
5579 }
5580 if (len) {
5581 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5582 kaddr[offset] |= mask_to_set;
5583 }
5584}
5585
5586
5587/**
5588 * extent_buffer_bitmap_clear - clear an area of a bitmap
5589 * @eb: the extent buffer
5590 * @start: offset of the bitmap item in the extent buffer
5591 * @pos: bit number of the first bit
5592 * @len: number of bits to clear
5593 */
5594void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5595 unsigned long pos, unsigned long len)
5596{
5597 char *kaddr;
5598 struct page *page;
5599 unsigned long i;
5600 size_t offset;
5601 const unsigned int size = pos + len;
5602 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5603 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5604
5605 eb_bitmap_offset(eb, start, pos, &i, &offset);
5606 page = eb->pages[i];
5607 WARN_ON(!PageUptodate(page));
5608 kaddr = page_address(page);
5609
5610 while (len >= bits_to_clear) {
5611 kaddr[offset] &= ~mask_to_clear;
5612 len -= bits_to_clear;
5613 bits_to_clear = BITS_PER_BYTE;
5614 mask_to_clear = ~0U;
5615 if (++offset >= PAGE_SIZE && len > 0) {
5616 offset = 0;
5617 page = eb->pages[++i];
5618 WARN_ON(!PageUptodate(page));
5619 kaddr = page_address(page);
5620 }
5621 }
5622 if (len) {
5623 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5624 kaddr[offset] &= ~mask_to_clear;
5625 }
5626}
5627
5628static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5629{
5630 unsigned long distance = (src > dst) ? src - dst : dst - src;
5631 return distance < len;
5632}
5633
5634static void copy_pages(struct page *dst_page, struct page *src_page,
5635 unsigned long dst_off, unsigned long src_off,
5636 unsigned long len)
5637{
5638 char *dst_kaddr = page_address(dst_page);
5639 char *src_kaddr;
5640 int must_memmove = 0;
5641
5642 if (dst_page != src_page) {
5643 src_kaddr = page_address(src_page);
5644 } else {
5645 src_kaddr = dst_kaddr;
5646 if (areas_overlap(src_off, dst_off, len))
5647 must_memmove = 1;
5648 }
5649
5650 if (must_memmove)
5651 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5652 else
5653 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5654}
5655
5656void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5657 unsigned long src_offset, unsigned long len)
5658{
5659 size_t cur;
5660 size_t dst_off_in_page;
5661 size_t src_off_in_page;
5662 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5663 unsigned long dst_i;
5664 unsigned long src_i;
5665
5666 if (src_offset + len > dst->len) {
5667 btrfs_err(dst->fs_info,
5668 "memmove bogus src_offset %lu move "
5669 "len %lu dst len %lu", src_offset, len, dst->len);
5670 BUG_ON(1);
5671 }
5672 if (dst_offset + len > dst->len) {
5673 btrfs_err(dst->fs_info,
5674 "memmove bogus dst_offset %lu move "
5675 "len %lu dst len %lu", dst_offset, len, dst->len);
5676 BUG_ON(1);
5677 }
5678
5679 while (len > 0) {
5680 dst_off_in_page = (start_offset + dst_offset) &
5681 (PAGE_SIZE - 1);
5682 src_off_in_page = (start_offset + src_offset) &
5683 (PAGE_SIZE - 1);
5684
5685 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5686 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5687
5688 cur = min(len, (unsigned long)(PAGE_SIZE -
5689 src_off_in_page));
5690 cur = min_t(unsigned long, cur,
5691 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5692
5693 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5694 dst_off_in_page, src_off_in_page, cur);
5695
5696 src_offset += cur;
5697 dst_offset += cur;
5698 len -= cur;
5699 }
5700}
5701
5702void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5703 unsigned long src_offset, unsigned long len)
5704{
5705 size_t cur;
5706 size_t dst_off_in_page;
5707 size_t src_off_in_page;
5708 unsigned long dst_end = dst_offset + len - 1;
5709 unsigned long src_end = src_offset + len - 1;
5710 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5711 unsigned long dst_i;
5712 unsigned long src_i;
5713
5714 if (src_offset + len > dst->len) {
5715 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5716 "len %lu len %lu", src_offset, len, dst->len);
5717 BUG_ON(1);
5718 }
5719 if (dst_offset + len > dst->len) {
5720 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5721 "len %lu len %lu", dst_offset, len, dst->len);
5722 BUG_ON(1);
5723 }
5724 if (dst_offset < src_offset) {
5725 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5726 return;
5727 }
5728 while (len > 0) {
5729 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5730 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5731
5732 dst_off_in_page = (start_offset + dst_end) &
5733 (PAGE_SIZE - 1);
5734 src_off_in_page = (start_offset + src_end) &
5735 (PAGE_SIZE - 1);
5736
5737 cur = min_t(unsigned long, len, src_off_in_page + 1);
5738 cur = min(cur, dst_off_in_page + 1);
5739 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5740 dst_off_in_page - cur + 1,
5741 src_off_in_page - cur + 1, cur);
5742
5743 dst_end -= cur;
5744 src_end -= cur;
5745 len -= cur;
5746 }
5747}
5748
5749int try_release_extent_buffer(struct page *page)
5750{
5751 struct extent_buffer *eb;
5752
5753 /*
5754 * We need to make sure noboody is attaching this page to an eb right
5755 * now.
5756 */
5757 spin_lock(&page->mapping->private_lock);
5758 if (!PagePrivate(page)) {
5759 spin_unlock(&page->mapping->private_lock);
5760 return 1;
5761 }
5762
5763 eb = (struct extent_buffer *)page->private;
5764 BUG_ON(!eb);
5765
5766 /*
5767 * This is a little awful but should be ok, we need to make sure that
5768 * the eb doesn't disappear out from under us while we're looking at
5769 * this page.
5770 */
5771 spin_lock(&eb->refs_lock);
5772 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5773 spin_unlock(&eb->refs_lock);
5774 spin_unlock(&page->mapping->private_lock);
5775 return 0;
5776 }
5777 spin_unlock(&page->mapping->private_lock);
5778
5779 /*
5780 * If tree ref isn't set then we know the ref on this eb is a real ref,
5781 * so just return, this page will likely be freed soon anyway.
5782 */
5783 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5784 spin_unlock(&eb->refs_lock);
5785 return 0;
5786 }
5787
5788 return release_extent_buffer(eb);
5789}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/prefetch.h>
15#include <linux/cleancache.h>
16#include "extent_io.h"
17#include "extent_map.h"
18#include "ctree.h"
19#include "btrfs_inode.h"
20#include "volumes.h"
21#include "check-integrity.h"
22#include "locking.h"
23#include "rcu-string.h"
24#include "backref.h"
25#include "disk-io.h"
26
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
29static struct bio_set *btrfs_bioset;
30
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
36#ifdef CONFIG_BTRFS_DEBUG
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
39
40static DEFINE_SPINLOCK(leak_lock);
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
86
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91{
92 if (tree->ops && tree->ops->check_extent_io_range)
93 tree->ops->check_extent_io_range(tree->private_data, caller,
94 start, end);
95}
96#else
97#define btrfs_leak_debug_add(new, head) do {} while (0)
98#define btrfs_leak_debug_del(entry) do {} while (0)
99#define btrfs_leak_debug_check() do {} while (0)
100#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
101#endif
102
103#define BUFFER_LRU_MAX 64
104
105struct tree_entry {
106 u64 start;
107 u64 end;
108 struct rb_node rb_node;
109};
110
111struct extent_page_data {
112 struct bio *bio;
113 struct extent_io_tree *tree;
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
117 unsigned int extent_locked:1;
118
119 /* tells the submit_bio code to use REQ_SYNC */
120 unsigned int sync_io:1;
121};
122
123static int add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
125 int set)
126{
127 int ret;
128
129 if (!changeset)
130 return 0;
131 if (set && (state->state & bits) == bits)
132 return 0;
133 if (!set && (state->state & bits) == 0)
134 return 0;
135 changeset->bytes_changed += state->end - state->start + 1;
136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 GFP_ATOMIC);
138 return ret;
139}
140
141static void flush_write_bio(struct extent_page_data *epd);
142
143static inline struct btrfs_fs_info *
144tree_fs_info(struct extent_io_tree *tree)
145{
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
149}
150
151int __init extent_io_init(void)
152{
153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
154 sizeof(struct extent_state), 0,
155 SLAB_MEM_SPREAD, NULL);
156 if (!extent_state_cache)
157 return -ENOMEM;
158
159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
160 sizeof(struct extent_buffer), 0,
161 SLAB_MEM_SPREAD, NULL);
162 if (!extent_buffer_cache)
163 goto free_state_cache;
164
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS);
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
174 return 0;
175
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
186 extent_state_cache = NULL;
187 return -ENOMEM;
188}
189
190void __cold extent_io_exit(void)
191{
192 btrfs_leak_debug_check();
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
206 void *private_data)
207{
208 tree->state = RB_ROOT;
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
211 spin_lock_init(&tree->lock);
212 tree->private_data = private_data;
213}
214
215static struct extent_state *alloc_extent_state(gfp_t mask)
216{
217 struct extent_state *state;
218
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224 state = kmem_cache_alloc(extent_state_cache, mask);
225 if (!state)
226 return state;
227 state->state = 0;
228 state->failrec = NULL;
229 RB_CLEAR_NODE(&state->rb_node);
230 btrfs_leak_debug_add(&state->leak_list, &states);
231 refcount_set(&state->refs, 1);
232 init_waitqueue_head(&state->wq);
233 trace_alloc_extent_state(state, mask, _RET_IP_);
234 return state;
235}
236
237void free_extent_state(struct extent_state *state)
238{
239 if (!state)
240 return;
241 if (refcount_dec_and_test(&state->refs)) {
242 WARN_ON(extent_state_in_tree(state));
243 btrfs_leak_debug_del(&state->leak_list);
244 trace_free_extent_state(state, _RET_IP_);
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
248
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
255{
256 struct rb_node **p;
257 struct rb_node *parent = NULL;
258 struct tree_entry *entry;
259
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
266 p = search_start ? &search_start : &root->rb_node;
267 while (*p) {
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
279do_insert:
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
290{
291 struct rb_root *root = &tree->state;
292 struct rb_node **n = &root->rb_node;
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
301 prev_entry = entry;
302
303 if (offset < entry->start)
304 n = &(*n)->rb_left;
305 else if (offset > entry->end)
306 n = &(*n)->rb_right;
307 else
308 return *n;
309 }
310
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
316 if (prev_ret) {
317 orig_prev = prev;
318 while (prev && offset > prev_entry->end) {
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 while (prev && offset < prev_entry->start) {
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
342{
343 struct rb_node *prev = NULL;
344 struct rb_node *ret;
345
346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
347 if (!ret)
348 return prev;
349 return ret;
350}
351
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
362 tree->ops->merge_extent_hook(tree->private_data, new, other);
363}
364
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
381 return;
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
388 merge_cb(tree, state, other);
389 state->start = other->start;
390 rb_erase(&other->rb_node, &tree->state);
391 RB_CLEAR_NODE(&other->rb_node);
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
400 merge_cb(tree, state, other);
401 state->end = other->end;
402 rb_erase(&other->rb_node, &tree->state);
403 RB_CLEAR_NODE(&other->rb_node);
404 free_extent_state(other);
405 }
406 }
407}
408
409static void set_state_cb(struct extent_io_tree *tree,
410 struct extent_state *state, unsigned *bits)
411{
412 if (tree->ops && tree->ops->set_bit_hook)
413 tree->ops->set_bit_hook(tree->private_data, state, bits);
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
417 struct extent_state *state, unsigned *bits)
418{
419 if (tree->ops && tree->ops->clear_bit_hook)
420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
421}
422
423static void set_state_bits(struct extent_io_tree *tree,
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
426
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
439 struct rb_node ***p,
440 struct rb_node **parent,
441 unsigned *bits, struct extent_changeset *changeset)
442{
443 struct rb_node *node;
444
445 if (end < start)
446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
447 end, start);
448 state->start = start;
449 state->end = end;
450
451 set_state_bits(tree, state, bits, changeset);
452
453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458 found->start, found->end, start, end);
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
469 tree->ops->split_extent_hook(tree->private_data, orig, split);
470}
471
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
490
491 split_cb(tree, orig, split);
492
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
500 if (node) {
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
516/*
517 * utility function to clear some bits in an extent state struct.
518 * it will optionally wake up any one waiting on this state (wake == 1).
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
527{
528 struct extent_state *next;
529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
530 int ret;
531
532 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
533 u64 range = state->end - state->start + 1;
534 WARN_ON(range > tree->dirty_bytes);
535 tree->dirty_bytes -= range;
536 }
537 clear_state_cb(tree, state, bits);
538 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
539 BUG_ON(ret < 0);
540 state->state &= ~bits_to_clear;
541 if (wake)
542 wake_up(&state->wq);
543 if (state->state == 0) {
544 next = next_state(state);
545 if (extent_state_in_tree(state)) {
546 rb_erase(&state->rb_node, &tree->state);
547 RB_CLEAR_NODE(&state->rb_node);
548 free_extent_state(state);
549 } else {
550 WARN_ON(1);
551 }
552 } else {
553 merge_state(tree, state);
554 next = next_state(state);
555 }
556 return next;
557}
558
559static struct extent_state *
560alloc_extent_state_atomic(struct extent_state *prealloc)
561{
562 if (!prealloc)
563 prealloc = alloc_extent_state(GFP_ATOMIC);
564
565 return prealloc;
566}
567
568static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
569{
570 btrfs_panic(tree_fs_info(tree), err,
571 "Locking error: Extent tree was modified by another thread while locked.");
572}
573
574/*
575 * clear some bits on a range in the tree. This may require splitting
576 * or inserting elements in the tree, so the gfp mask is used to
577 * indicate which allocations or sleeping are allowed.
578 *
579 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
580 * the given range from the tree regardless of state (ie for truncate).
581 *
582 * the range [start, end] is inclusive.
583 *
584 * This takes the tree lock, and returns 0 on success and < 0 on error.
585 */
586int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
587 unsigned bits, int wake, int delete,
588 struct extent_state **cached_state,
589 gfp_t mask, struct extent_changeset *changeset)
590{
591 struct extent_state *state;
592 struct extent_state *cached;
593 struct extent_state *prealloc = NULL;
594 struct rb_node *node;
595 u64 last_end;
596 int err;
597 int clear = 0;
598
599 btrfs_debug_check_extent_io_range(tree, start, end);
600
601 if (bits & EXTENT_DELALLOC)
602 bits |= EXTENT_NORESERVE;
603
604 if (delete)
605 bits |= ~EXTENT_CTLBITS;
606 bits |= EXTENT_FIRST_DELALLOC;
607
608 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
609 clear = 1;
610again:
611 if (!prealloc && gfpflags_allow_blocking(mask)) {
612 /*
613 * Don't care for allocation failure here because we might end
614 * up not needing the pre-allocated extent state at all, which
615 * is the case if we only have in the tree extent states that
616 * cover our input range and don't cover too any other range.
617 * If we end up needing a new extent state we allocate it later.
618 */
619 prealloc = alloc_extent_state(mask);
620 }
621
622 spin_lock(&tree->lock);
623 if (cached_state) {
624 cached = *cached_state;
625
626 if (clear) {
627 *cached_state = NULL;
628 cached_state = NULL;
629 }
630
631 if (cached && extent_state_in_tree(cached) &&
632 cached->start <= start && cached->end > start) {
633 if (clear)
634 refcount_dec(&cached->refs);
635 state = cached;
636 goto hit_next;
637 }
638 if (clear)
639 free_extent_state(cached);
640 }
641 /*
642 * this search will find the extents that end after
643 * our range starts
644 */
645 node = tree_search(tree, start);
646 if (!node)
647 goto out;
648 state = rb_entry(node, struct extent_state, rb_node);
649hit_next:
650 if (state->start > end)
651 goto out;
652 WARN_ON(state->end < start);
653 last_end = state->end;
654
655 /* the state doesn't have the wanted bits, go ahead */
656 if (!(state->state & bits)) {
657 state = next_state(state);
658 goto next;
659 }
660
661 /*
662 * | ---- desired range ---- |
663 * | state | or
664 * | ------------- state -------------- |
665 *
666 * We need to split the extent we found, and may flip
667 * bits on second half.
668 *
669 * If the extent we found extends past our range, we
670 * just split and search again. It'll get split again
671 * the next time though.
672 *
673 * If the extent we found is inside our range, we clear
674 * the desired bit on it.
675 */
676
677 if (state->start < start) {
678 prealloc = alloc_extent_state_atomic(prealloc);
679 BUG_ON(!prealloc);
680 err = split_state(tree, state, prealloc, start);
681 if (err)
682 extent_io_tree_panic(tree, err);
683
684 prealloc = NULL;
685 if (err)
686 goto out;
687 if (state->end <= end) {
688 state = clear_state_bit(tree, state, &bits, wake,
689 changeset);
690 goto next;
691 }
692 goto search_again;
693 }
694 /*
695 * | ---- desired range ---- |
696 * | state |
697 * We need to split the extent, and clear the bit
698 * on the first half
699 */
700 if (state->start <= end && state->end > end) {
701 prealloc = alloc_extent_state_atomic(prealloc);
702 BUG_ON(!prealloc);
703 err = split_state(tree, state, prealloc, end + 1);
704 if (err)
705 extent_io_tree_panic(tree, err);
706
707 if (wake)
708 wake_up(&state->wq);
709
710 clear_state_bit(tree, prealloc, &bits, wake, changeset);
711
712 prealloc = NULL;
713 goto out;
714 }
715
716 state = clear_state_bit(tree, state, &bits, wake, changeset);
717next:
718 if (last_end == (u64)-1)
719 goto out;
720 start = last_end + 1;
721 if (start <= end && state && !need_resched())
722 goto hit_next;
723
724search_again:
725 if (start > end)
726 goto out;
727 spin_unlock(&tree->lock);
728 if (gfpflags_allow_blocking(mask))
729 cond_resched();
730 goto again;
731
732out:
733 spin_unlock(&tree->lock);
734 if (prealloc)
735 free_extent_state(prealloc);
736
737 return 0;
738
739}
740
741static void wait_on_state(struct extent_io_tree *tree,
742 struct extent_state *state)
743 __releases(tree->lock)
744 __acquires(tree->lock)
745{
746 DEFINE_WAIT(wait);
747 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
748 spin_unlock(&tree->lock);
749 schedule();
750 spin_lock(&tree->lock);
751 finish_wait(&state->wq, &wait);
752}
753
754/*
755 * waits for one or more bits to clear on a range in the state tree.
756 * The range [start, end] is inclusive.
757 * The tree lock is taken by this function
758 */
759static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
760 unsigned long bits)
761{
762 struct extent_state *state;
763 struct rb_node *node;
764
765 btrfs_debug_check_extent_io_range(tree, start, end);
766
767 spin_lock(&tree->lock);
768again:
769 while (1) {
770 /*
771 * this search will find all the extents that end after
772 * our range starts
773 */
774 node = tree_search(tree, start);
775process_node:
776 if (!node)
777 break;
778
779 state = rb_entry(node, struct extent_state, rb_node);
780
781 if (state->start > end)
782 goto out;
783
784 if (state->state & bits) {
785 start = state->start;
786 refcount_inc(&state->refs);
787 wait_on_state(tree, state);
788 free_extent_state(state);
789 goto again;
790 }
791 start = state->end + 1;
792
793 if (start > end)
794 break;
795
796 if (!cond_resched_lock(&tree->lock)) {
797 node = rb_next(node);
798 goto process_node;
799 }
800 }
801out:
802 spin_unlock(&tree->lock);
803}
804
805static void set_state_bits(struct extent_io_tree *tree,
806 struct extent_state *state,
807 unsigned *bits, struct extent_changeset *changeset)
808{
809 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
810 int ret;
811
812 set_state_cb(tree, state, bits);
813 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
814 u64 range = state->end - state->start + 1;
815 tree->dirty_bytes += range;
816 }
817 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
818 BUG_ON(ret < 0);
819 state->state |= bits_to_set;
820}
821
822static void cache_state_if_flags(struct extent_state *state,
823 struct extent_state **cached_ptr,
824 unsigned flags)
825{
826 if (cached_ptr && !(*cached_ptr)) {
827 if (!flags || (state->state & flags)) {
828 *cached_ptr = state;
829 refcount_inc(&state->refs);
830 }
831 }
832}
833
834static void cache_state(struct extent_state *state,
835 struct extent_state **cached_ptr)
836{
837 return cache_state_if_flags(state, cached_ptr,
838 EXTENT_IOBITS | EXTENT_BOUNDARY);
839}
840
841/*
842 * set some bits on a range in the tree. This may require allocations or
843 * sleeping, so the gfp mask is used to indicate what is allowed.
844 *
845 * If any of the exclusive bits are set, this will fail with -EEXIST if some
846 * part of the range already has the desired bits set. The start of the
847 * existing range is returned in failed_start in this case.
848 *
849 * [start, end] is inclusive This takes the tree lock.
850 */
851
852static int __must_check
853__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
854 unsigned bits, unsigned exclusive_bits,
855 u64 *failed_start, struct extent_state **cached_state,
856 gfp_t mask, struct extent_changeset *changeset)
857{
858 struct extent_state *state;
859 struct extent_state *prealloc = NULL;
860 struct rb_node *node;
861 struct rb_node **p;
862 struct rb_node *parent;
863 int err = 0;
864 u64 last_start;
865 u64 last_end;
866
867 btrfs_debug_check_extent_io_range(tree, start, end);
868
869 bits |= EXTENT_FIRST_DELALLOC;
870again:
871 if (!prealloc && gfpflags_allow_blocking(mask)) {
872 /*
873 * Don't care for allocation failure here because we might end
874 * up not needing the pre-allocated extent state at all, which
875 * is the case if we only have in the tree extent states that
876 * cover our input range and don't cover too any other range.
877 * If we end up needing a new extent state we allocate it later.
878 */
879 prealloc = alloc_extent_state(mask);
880 }
881
882 spin_lock(&tree->lock);
883 if (cached_state && *cached_state) {
884 state = *cached_state;
885 if (state->start <= start && state->end > start &&
886 extent_state_in_tree(state)) {
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
895 node = tree_search_for_insert(tree, start, &p, &parent);
896 if (!node) {
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
899 err = insert_state(tree, prealloc, start, end,
900 &p, &parent, &bits, changeset);
901 if (err)
902 extent_io_tree_panic(tree, err);
903
904 cache_state(prealloc, cached_state);
905 prealloc = NULL;
906 goto out;
907 }
908 state = rb_entry(node, struct extent_state, rb_node);
909hit_next:
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
920 if (state->state & exclusive_bits) {
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
925
926 set_state_bits(tree, state, &bits, changeset);
927 cache_state(state, cached_state);
928 merge_state(tree, state);
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
956 if (state->state & exclusive_bits) {
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
964 err = split_state(tree, state, prealloc, start);
965 if (err)
966 extent_io_tree_panic(tree, err);
967
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
972 set_state_bits(tree, state, &bits, changeset);
973 cache_state(state, cached_state);
974 merge_state(tree, state);
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
997 this_end = last_start - 1;
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
1006 err = insert_state(tree, prealloc, start, this_end,
1007 NULL, NULL, &bits, changeset);
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1023 if (state->state & exclusive_bits) {
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
1031 err = split_state(tree, state, prealloc, end + 1);
1032 if (err)
1033 extent_io_tree_panic(tree, err);
1034
1035 set_state_bits(tree, prealloc, &bits, changeset);
1036 cache_state(prealloc, cached_state);
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042search_again:
1043 if (start > end)
1044 goto out;
1045 spin_unlock(&tree->lock);
1046 if (gfpflags_allow_blocking(mask))
1047 cond_resched();
1048 goto again;
1049
1050out:
1051 spin_unlock(&tree->lock);
1052 if (prealloc)
1053 free_extent_state(prealloc);
1054
1055 return err;
1056
1057}
1058
1059int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1060 unsigned bits, u64 * failed_start,
1061 struct extent_state **cached_state, gfp_t mask)
1062{
1063 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1064 cached_state, mask, NULL);
1065}
1066
1067
1068/**
1069 * convert_extent_bit - convert all bits in a given range from one bit to
1070 * another
1071 * @tree: the io tree to search
1072 * @start: the start offset in bytes
1073 * @end: the end offset in bytes (inclusive)
1074 * @bits: the bits to set in this range
1075 * @clear_bits: the bits to clear in this range
1076 * @cached_state: state that we're going to cache
1077 *
1078 * This will go through and set bits for the given range. If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits. This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1082 * boundary bits like LOCK.
1083 *
1084 * All allocations are done with GFP_NOFS.
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 unsigned bits, unsigned clear_bits,
1088 struct extent_state **cached_state)
1089{
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
1093 struct rb_node **p;
1094 struct rb_node *parent;
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
1098 bool first_iteration = true;
1099
1100 btrfs_debug_check_extent_io_range(tree, start, end);
1101
1102again:
1103 if (!prealloc) {
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
1111 prealloc = alloc_extent_state(GFP_NOFS);
1112 if (!prealloc && !first_iteration)
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
1120 extent_state_in_tree(state)) {
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
1130 node = tree_search_for_insert(tree, start, &p, &parent);
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
1137 err = insert_state(tree, prealloc, start, end,
1138 &p, &parent, &bits, NULL);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
1157 set_state_bits(tree, state, &bits, NULL);
1158 cache_state(state, cached_state);
1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 if (last_end == (u64)-1)
1161 goto out;
1162 start = last_end + 1;
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
1191 err = split_state(tree, state, prealloc, start);
1192 if (err)
1193 extent_io_tree_panic(tree, err);
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
1198 set_state_bits(tree, state, &bits, NULL);
1199 cache_state(state, cached_state);
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
1236 NULL, NULL, &bits, NULL);
1237 if (err)
1238 extent_io_tree_panic(tree, err);
1239 cache_state(prealloc, cached_state);
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
1256
1257 err = split_state(tree, state, prealloc, end + 1);
1258 if (err)
1259 extent_io_tree_panic(tree, err);
1260
1261 set_state_bits(tree, prealloc, &bits, NULL);
1262 cache_state(prealloc, cached_state);
1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268search_again:
1269 if (start > end)
1270 goto out;
1271 spin_unlock(&tree->lock);
1272 cond_resched();
1273 first_iteration = false;
1274 goto again;
1275
1276out:
1277 spin_unlock(&tree->lock);
1278 if (prealloc)
1279 free_extent_state(prealloc);
1280
1281 return err;
1282}
1283
1284/* wrappers around set/clear extent bit */
1285int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1286 unsigned bits, struct extent_changeset *changeset)
1287{
1288 /*
1289 * We don't support EXTENT_LOCKED yet, as current changeset will
1290 * record any bits changed, so for EXTENT_LOCKED case, it will
1291 * either fail with -EEXIST or changeset will record the whole
1292 * range.
1293 */
1294 BUG_ON(bits & EXTENT_LOCKED);
1295
1296 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1297 changeset);
1298}
1299
1300int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1301 unsigned bits, int wake, int delete,
1302 struct extent_state **cached)
1303{
1304 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1305 cached, GFP_NOFS, NULL);
1306}
1307
1308int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1309 unsigned bits, struct extent_changeset *changeset)
1310{
1311 /*
1312 * Don't support EXTENT_LOCKED case, same reason as
1313 * set_record_extent_bits().
1314 */
1315 BUG_ON(bits & EXTENT_LOCKED);
1316
1317 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1318 changeset);
1319}
1320
1321/*
1322 * either insert or lock state struct between start and end use mask to tell
1323 * us if waiting is desired.
1324 */
1325int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1326 struct extent_state **cached_state)
1327{
1328 int err;
1329 u64 failed_start;
1330
1331 while (1) {
1332 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1333 EXTENT_LOCKED, &failed_start,
1334 cached_state, GFP_NOFS, NULL);
1335 if (err == -EEXIST) {
1336 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1337 start = failed_start;
1338 } else
1339 break;
1340 WARN_ON(start > end);
1341 }
1342 return err;
1343}
1344
1345int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1346{
1347 int err;
1348 u64 failed_start;
1349
1350 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1351 &failed_start, NULL, GFP_NOFS, NULL);
1352 if (err == -EEXIST) {
1353 if (failed_start > start)
1354 clear_extent_bit(tree, start, failed_start - 1,
1355 EXTENT_LOCKED, 1, 0, NULL);
1356 return 0;
1357 }
1358 return 1;
1359}
1360
1361void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1362{
1363 unsigned long index = start >> PAGE_SHIFT;
1364 unsigned long end_index = end >> PAGE_SHIFT;
1365 struct page *page;
1366
1367 while (index <= end_index) {
1368 page = find_get_page(inode->i_mapping, index);
1369 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1370 clear_page_dirty_for_io(page);
1371 put_page(page);
1372 index++;
1373 }
1374}
1375
1376void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377{
1378 unsigned long index = start >> PAGE_SHIFT;
1379 unsigned long end_index = end >> PAGE_SHIFT;
1380 struct page *page;
1381
1382 while (index <= end_index) {
1383 page = find_get_page(inode->i_mapping, index);
1384 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385 __set_page_dirty_nobuffers(page);
1386 account_page_redirty(page);
1387 put_page(page);
1388 index++;
1389 }
1390}
1391
1392/*
1393 * helper function to set both pages and extents in the tree writeback
1394 */
1395static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1396{
1397 tree->ops->set_range_writeback(tree->private_data, start, end);
1398}
1399
1400/* find the first state struct with 'bits' set after 'start', and
1401 * return it. tree->lock must be held. NULL will returned if
1402 * nothing was found after 'start'
1403 */
1404static struct extent_state *
1405find_first_extent_bit_state(struct extent_io_tree *tree,
1406 u64 start, unsigned bits)
1407{
1408 struct rb_node *node;
1409 struct extent_state *state;
1410
1411 /*
1412 * this search will find all the extents that end after
1413 * our range starts.
1414 */
1415 node = tree_search(tree, start);
1416 if (!node)
1417 goto out;
1418
1419 while (1) {
1420 state = rb_entry(node, struct extent_state, rb_node);
1421 if (state->end >= start && (state->state & bits))
1422 return state;
1423
1424 node = rb_next(node);
1425 if (!node)
1426 break;
1427 }
1428out:
1429 return NULL;
1430}
1431
1432/*
1433 * find the first offset in the io tree with 'bits' set. zero is
1434 * returned if we find something, and *start_ret and *end_ret are
1435 * set to reflect the state struct that was found.
1436 *
1437 * If nothing was found, 1 is returned. If found something, return 0.
1438 */
1439int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1440 u64 *start_ret, u64 *end_ret, unsigned bits,
1441 struct extent_state **cached_state)
1442{
1443 struct extent_state *state;
1444 struct rb_node *n;
1445 int ret = 1;
1446
1447 spin_lock(&tree->lock);
1448 if (cached_state && *cached_state) {
1449 state = *cached_state;
1450 if (state->end == start - 1 && extent_state_in_tree(state)) {
1451 n = rb_next(&state->rb_node);
1452 while (n) {
1453 state = rb_entry(n, struct extent_state,
1454 rb_node);
1455 if (state->state & bits)
1456 goto got_it;
1457 n = rb_next(n);
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 goto out;
1462 }
1463 free_extent_state(*cached_state);
1464 *cached_state = NULL;
1465 }
1466
1467 state = find_first_extent_bit_state(tree, start, bits);
1468got_it:
1469 if (state) {
1470 cache_state_if_flags(state, cached_state, 0);
1471 *start_ret = state->start;
1472 *end_ret = state->end;
1473 ret = 0;
1474 }
1475out:
1476 spin_unlock(&tree->lock);
1477 return ret;
1478}
1479
1480/*
1481 * find a contiguous range of bytes in the file marked as delalloc, not
1482 * more than 'max_bytes'. start and end are used to return the range,
1483 *
1484 * 1 is returned if we find something, 0 if nothing was in the tree
1485 */
1486static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1487 u64 *start, u64 *end, u64 max_bytes,
1488 struct extent_state **cached_state)
1489{
1490 struct rb_node *node;
1491 struct extent_state *state;
1492 u64 cur_start = *start;
1493 u64 found = 0;
1494 u64 total_bytes = 0;
1495
1496 spin_lock(&tree->lock);
1497
1498 /*
1499 * this search will find all the extents that end after
1500 * our range starts.
1501 */
1502 node = tree_search(tree, cur_start);
1503 if (!node) {
1504 if (!found)
1505 *end = (u64)-1;
1506 goto out;
1507 }
1508
1509 while (1) {
1510 state = rb_entry(node, struct extent_state, rb_node);
1511 if (found && (state->start != cur_start ||
1512 (state->state & EXTENT_BOUNDARY))) {
1513 goto out;
1514 }
1515 if (!(state->state & EXTENT_DELALLOC)) {
1516 if (!found)
1517 *end = state->end;
1518 goto out;
1519 }
1520 if (!found) {
1521 *start = state->start;
1522 *cached_state = state;
1523 refcount_inc(&state->refs);
1524 }
1525 found++;
1526 *end = state->end;
1527 cur_start = state->end + 1;
1528 node = rb_next(node);
1529 total_bytes += state->end - state->start + 1;
1530 if (total_bytes >= max_bytes)
1531 break;
1532 if (!node)
1533 break;
1534 }
1535out:
1536 spin_unlock(&tree->lock);
1537 return found;
1538}
1539
1540static int __process_pages_contig(struct address_space *mapping,
1541 struct page *locked_page,
1542 pgoff_t start_index, pgoff_t end_index,
1543 unsigned long page_ops, pgoff_t *index_ret);
1544
1545static noinline void __unlock_for_delalloc(struct inode *inode,
1546 struct page *locked_page,
1547 u64 start, u64 end)
1548{
1549 unsigned long index = start >> PAGE_SHIFT;
1550 unsigned long end_index = end >> PAGE_SHIFT;
1551
1552 ASSERT(locked_page);
1553 if (index == locked_page->index && end_index == index)
1554 return;
1555
1556 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1557 PAGE_UNLOCK, NULL);
1558}
1559
1560static noinline int lock_delalloc_pages(struct inode *inode,
1561 struct page *locked_page,
1562 u64 delalloc_start,
1563 u64 delalloc_end)
1564{
1565 unsigned long index = delalloc_start >> PAGE_SHIFT;
1566 unsigned long index_ret = index;
1567 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1568 int ret;
1569
1570 ASSERT(locked_page);
1571 if (index == locked_page->index && index == end_index)
1572 return 0;
1573
1574 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1575 end_index, PAGE_LOCK, &index_ret);
1576 if (ret == -EAGAIN)
1577 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1578 (u64)index_ret << PAGE_SHIFT);
1579 return ret;
1580}
1581
1582/*
1583 * find a contiguous range of bytes in the file marked as delalloc, not
1584 * more than 'max_bytes'. start and end are used to return the range,
1585 *
1586 * 1 is returned if we find something, 0 if nothing was in the tree
1587 */
1588STATIC u64 find_lock_delalloc_range(struct inode *inode,
1589 struct extent_io_tree *tree,
1590 struct page *locked_page, u64 *start,
1591 u64 *end, u64 max_bytes)
1592{
1593 u64 delalloc_start;
1594 u64 delalloc_end;
1595 u64 found;
1596 struct extent_state *cached_state = NULL;
1597 int ret;
1598 int loops = 0;
1599
1600again:
1601 /* step one, find a bunch of delalloc bytes starting at start */
1602 delalloc_start = *start;
1603 delalloc_end = 0;
1604 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1605 max_bytes, &cached_state);
1606 if (!found || delalloc_end <= *start) {
1607 *start = delalloc_start;
1608 *end = delalloc_end;
1609 free_extent_state(cached_state);
1610 return 0;
1611 }
1612
1613 /*
1614 * start comes from the offset of locked_page. We have to lock
1615 * pages in order, so we can't process delalloc bytes before
1616 * locked_page
1617 */
1618 if (delalloc_start < *start)
1619 delalloc_start = *start;
1620
1621 /*
1622 * make sure to limit the number of pages we try to lock down
1623 */
1624 if (delalloc_end + 1 - delalloc_start > max_bytes)
1625 delalloc_end = delalloc_start + max_bytes - 1;
1626
1627 /* step two, lock all the pages after the page that has start */
1628 ret = lock_delalloc_pages(inode, locked_page,
1629 delalloc_start, delalloc_end);
1630 if (ret == -EAGAIN) {
1631 /* some of the pages are gone, lets avoid looping by
1632 * shortening the size of the delalloc range we're searching
1633 */
1634 free_extent_state(cached_state);
1635 cached_state = NULL;
1636 if (!loops) {
1637 max_bytes = PAGE_SIZE;
1638 loops = 1;
1639 goto again;
1640 } else {
1641 found = 0;
1642 goto out_failed;
1643 }
1644 }
1645 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1646
1647 /* step three, lock the state bits for the whole range */
1648 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1649
1650 /* then test to make sure it is all still delalloc */
1651 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1652 EXTENT_DELALLOC, 1, cached_state);
1653 if (!ret) {
1654 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1655 &cached_state);
1656 __unlock_for_delalloc(inode, locked_page,
1657 delalloc_start, delalloc_end);
1658 cond_resched();
1659 goto again;
1660 }
1661 free_extent_state(cached_state);
1662 *start = delalloc_start;
1663 *end = delalloc_end;
1664out_failed:
1665 return found;
1666}
1667
1668static int __process_pages_contig(struct address_space *mapping,
1669 struct page *locked_page,
1670 pgoff_t start_index, pgoff_t end_index,
1671 unsigned long page_ops, pgoff_t *index_ret)
1672{
1673 unsigned long nr_pages = end_index - start_index + 1;
1674 unsigned long pages_locked = 0;
1675 pgoff_t index = start_index;
1676 struct page *pages[16];
1677 unsigned ret;
1678 int err = 0;
1679 int i;
1680
1681 if (page_ops & PAGE_LOCK) {
1682 ASSERT(page_ops == PAGE_LOCK);
1683 ASSERT(index_ret && *index_ret == start_index);
1684 }
1685
1686 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1687 mapping_set_error(mapping, -EIO);
1688
1689 while (nr_pages > 0) {
1690 ret = find_get_pages_contig(mapping, index,
1691 min_t(unsigned long,
1692 nr_pages, ARRAY_SIZE(pages)), pages);
1693 if (ret == 0) {
1694 /*
1695 * Only if we're going to lock these pages,
1696 * can we find nothing at @index.
1697 */
1698 ASSERT(page_ops & PAGE_LOCK);
1699 err = -EAGAIN;
1700 goto out;
1701 }
1702
1703 for (i = 0; i < ret; i++) {
1704 if (page_ops & PAGE_SET_PRIVATE2)
1705 SetPagePrivate2(pages[i]);
1706
1707 if (pages[i] == locked_page) {
1708 put_page(pages[i]);
1709 pages_locked++;
1710 continue;
1711 }
1712 if (page_ops & PAGE_CLEAR_DIRTY)
1713 clear_page_dirty_for_io(pages[i]);
1714 if (page_ops & PAGE_SET_WRITEBACK)
1715 set_page_writeback(pages[i]);
1716 if (page_ops & PAGE_SET_ERROR)
1717 SetPageError(pages[i]);
1718 if (page_ops & PAGE_END_WRITEBACK)
1719 end_page_writeback(pages[i]);
1720 if (page_ops & PAGE_UNLOCK)
1721 unlock_page(pages[i]);
1722 if (page_ops & PAGE_LOCK) {
1723 lock_page(pages[i]);
1724 if (!PageDirty(pages[i]) ||
1725 pages[i]->mapping != mapping) {
1726 unlock_page(pages[i]);
1727 put_page(pages[i]);
1728 err = -EAGAIN;
1729 goto out;
1730 }
1731 }
1732 put_page(pages[i]);
1733 pages_locked++;
1734 }
1735 nr_pages -= ret;
1736 index += ret;
1737 cond_resched();
1738 }
1739out:
1740 if (err && index_ret)
1741 *index_ret = start_index + pages_locked - 1;
1742 return err;
1743}
1744
1745void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1746 u64 delalloc_end, struct page *locked_page,
1747 unsigned clear_bits,
1748 unsigned long page_ops)
1749{
1750 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1751 NULL);
1752
1753 __process_pages_contig(inode->i_mapping, locked_page,
1754 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1755 page_ops, NULL);
1756}
1757
1758/*
1759 * count the number of bytes in the tree that have a given bit(s)
1760 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1761 * cached. The total number found is returned.
1762 */
1763u64 count_range_bits(struct extent_io_tree *tree,
1764 u64 *start, u64 search_end, u64 max_bytes,
1765 unsigned bits, int contig)
1766{
1767 struct rb_node *node;
1768 struct extent_state *state;
1769 u64 cur_start = *start;
1770 u64 total_bytes = 0;
1771 u64 last = 0;
1772 int found = 0;
1773
1774 if (WARN_ON(search_end <= cur_start))
1775 return 0;
1776
1777 spin_lock(&tree->lock);
1778 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1779 total_bytes = tree->dirty_bytes;
1780 goto out;
1781 }
1782 /*
1783 * this search will find all the extents that end after
1784 * our range starts.
1785 */
1786 node = tree_search(tree, cur_start);
1787 if (!node)
1788 goto out;
1789
1790 while (1) {
1791 state = rb_entry(node, struct extent_state, rb_node);
1792 if (state->start > search_end)
1793 break;
1794 if (contig && found && state->start > last + 1)
1795 break;
1796 if (state->end >= cur_start && (state->state & bits) == bits) {
1797 total_bytes += min(search_end, state->end) + 1 -
1798 max(cur_start, state->start);
1799 if (total_bytes >= max_bytes)
1800 break;
1801 if (!found) {
1802 *start = max(cur_start, state->start);
1803 found = 1;
1804 }
1805 last = state->end;
1806 } else if (contig && found) {
1807 break;
1808 }
1809 node = rb_next(node);
1810 if (!node)
1811 break;
1812 }
1813out:
1814 spin_unlock(&tree->lock);
1815 return total_bytes;
1816}
1817
1818/*
1819 * set the private field for a given byte offset in the tree. If there isn't
1820 * an extent_state there already, this does nothing.
1821 */
1822static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1823 struct io_failure_record *failrec)
1824{
1825 struct rb_node *node;
1826 struct extent_state *state;
1827 int ret = 0;
1828
1829 spin_lock(&tree->lock);
1830 /*
1831 * this search will find all the extents that end after
1832 * our range starts.
1833 */
1834 node = tree_search(tree, start);
1835 if (!node) {
1836 ret = -ENOENT;
1837 goto out;
1838 }
1839 state = rb_entry(node, struct extent_state, rb_node);
1840 if (state->start != start) {
1841 ret = -ENOENT;
1842 goto out;
1843 }
1844 state->failrec = failrec;
1845out:
1846 spin_unlock(&tree->lock);
1847 return ret;
1848}
1849
1850static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1851 struct io_failure_record **failrec)
1852{
1853 struct rb_node *node;
1854 struct extent_state *state;
1855 int ret = 0;
1856
1857 spin_lock(&tree->lock);
1858 /*
1859 * this search will find all the extents that end after
1860 * our range starts.
1861 */
1862 node = tree_search(tree, start);
1863 if (!node) {
1864 ret = -ENOENT;
1865 goto out;
1866 }
1867 state = rb_entry(node, struct extent_state, rb_node);
1868 if (state->start != start) {
1869 ret = -ENOENT;
1870 goto out;
1871 }
1872 *failrec = state->failrec;
1873out:
1874 spin_unlock(&tree->lock);
1875 return ret;
1876}
1877
1878/*
1879 * searches a range in the state tree for a given mask.
1880 * If 'filled' == 1, this returns 1 only if every extent in the tree
1881 * has the bits set. Otherwise, 1 is returned if any bit in the
1882 * range is found set.
1883 */
1884int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1885 unsigned bits, int filled, struct extent_state *cached)
1886{
1887 struct extent_state *state = NULL;
1888 struct rb_node *node;
1889 int bitset = 0;
1890
1891 spin_lock(&tree->lock);
1892 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1893 cached->end > start)
1894 node = &cached->rb_node;
1895 else
1896 node = tree_search(tree, start);
1897 while (node && start <= end) {
1898 state = rb_entry(node, struct extent_state, rb_node);
1899
1900 if (filled && state->start > start) {
1901 bitset = 0;
1902 break;
1903 }
1904
1905 if (state->start > end)
1906 break;
1907
1908 if (state->state & bits) {
1909 bitset = 1;
1910 if (!filled)
1911 break;
1912 } else if (filled) {
1913 bitset = 0;
1914 break;
1915 }
1916
1917 if (state->end == (u64)-1)
1918 break;
1919
1920 start = state->end + 1;
1921 if (start > end)
1922 break;
1923 node = rb_next(node);
1924 if (!node) {
1925 if (filled)
1926 bitset = 0;
1927 break;
1928 }
1929 }
1930 spin_unlock(&tree->lock);
1931 return bitset;
1932}
1933
1934/*
1935 * helper function to set a given page up to date if all the
1936 * extents in the tree for that page are up to date
1937 */
1938static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1939{
1940 u64 start = page_offset(page);
1941 u64 end = start + PAGE_SIZE - 1;
1942 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1943 SetPageUptodate(page);
1944}
1945
1946int free_io_failure(struct extent_io_tree *failure_tree,
1947 struct extent_io_tree *io_tree,
1948 struct io_failure_record *rec)
1949{
1950 int ret;
1951 int err = 0;
1952
1953 set_state_failrec(failure_tree, rec->start, NULL);
1954 ret = clear_extent_bits(failure_tree, rec->start,
1955 rec->start + rec->len - 1,
1956 EXTENT_LOCKED | EXTENT_DIRTY);
1957 if (ret)
1958 err = ret;
1959
1960 ret = clear_extent_bits(io_tree, rec->start,
1961 rec->start + rec->len - 1,
1962 EXTENT_DAMAGED);
1963 if (ret && !err)
1964 err = ret;
1965
1966 kfree(rec);
1967 return err;
1968}
1969
1970/*
1971 * this bypasses the standard btrfs submit functions deliberately, as
1972 * the standard behavior is to write all copies in a raid setup. here we only
1973 * want to write the one bad copy. so we do the mapping for ourselves and issue
1974 * submit_bio directly.
1975 * to avoid any synchronization issues, wait for the data after writing, which
1976 * actually prevents the read that triggered the error from finishing.
1977 * currently, there can be no more than two copies of every data bit. thus,
1978 * exactly one rewrite is required.
1979 */
1980int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1981 u64 length, u64 logical, struct page *page,
1982 unsigned int pg_offset, int mirror_num)
1983{
1984 struct bio *bio;
1985 struct btrfs_device *dev;
1986 u64 map_length = 0;
1987 u64 sector;
1988 struct btrfs_bio *bbio = NULL;
1989 int ret;
1990
1991 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1992 BUG_ON(!mirror_num);
1993
1994 bio = btrfs_io_bio_alloc(1);
1995 bio->bi_iter.bi_size = 0;
1996 map_length = length;
1997
1998 /*
1999 * Avoid races with device replace and make sure our bbio has devices
2000 * associated to its stripes that don't go away while we are doing the
2001 * read repair operation.
2002 */
2003 btrfs_bio_counter_inc_blocked(fs_info);
2004 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2005 /*
2006 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2007 * to update all raid stripes, but here we just want to correct
2008 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2009 * stripe's dev and sector.
2010 */
2011 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2012 &map_length, &bbio, 0);
2013 if (ret) {
2014 btrfs_bio_counter_dec(fs_info);
2015 bio_put(bio);
2016 return -EIO;
2017 }
2018 ASSERT(bbio->mirror_num == 1);
2019 } else {
2020 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2021 &map_length, &bbio, mirror_num);
2022 if (ret) {
2023 btrfs_bio_counter_dec(fs_info);
2024 bio_put(bio);
2025 return -EIO;
2026 }
2027 BUG_ON(mirror_num != bbio->mirror_num);
2028 }
2029
2030 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2031 bio->bi_iter.bi_sector = sector;
2032 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2033 btrfs_put_bbio(bbio);
2034 if (!dev || !dev->bdev ||
2035 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2036 btrfs_bio_counter_dec(fs_info);
2037 bio_put(bio);
2038 return -EIO;
2039 }
2040 bio_set_dev(bio, dev->bdev);
2041 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2042 bio_add_page(bio, page, length, pg_offset);
2043
2044 if (btrfsic_submit_bio_wait(bio)) {
2045 /* try to remap that extent elsewhere? */
2046 btrfs_bio_counter_dec(fs_info);
2047 bio_put(bio);
2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049 return -EIO;
2050 }
2051
2052 btrfs_info_rl_in_rcu(fs_info,
2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054 ino, start,
2055 rcu_str_deref(dev->name), sector);
2056 btrfs_bio_counter_dec(fs_info);
2057 bio_put(bio);
2058 return 0;
2059}
2060
2061int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2062 struct extent_buffer *eb, int mirror_num)
2063{
2064 u64 start = eb->start;
2065 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2066 int ret = 0;
2067
2068 if (sb_rdonly(fs_info->sb))
2069 return -EROFS;
2070
2071 for (i = 0; i < num_pages; i++) {
2072 struct page *p = eb->pages[i];
2073
2074 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2075 start - page_offset(p), mirror_num);
2076 if (ret)
2077 break;
2078 start += PAGE_SIZE;
2079 }
2080
2081 return ret;
2082}
2083
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
2088int clean_io_failure(struct btrfs_fs_info *fs_info,
2089 struct extent_io_tree *failure_tree,
2090 struct extent_io_tree *io_tree, u64 start,
2091 struct page *page, u64 ino, unsigned int pg_offset)
2092{
2093 u64 private;
2094 struct io_failure_record *failrec;
2095 struct extent_state *state;
2096 int num_copies;
2097 int ret;
2098
2099 private = 0;
2100 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2101 EXTENT_DIRTY, 0);
2102 if (!ret)
2103 return 0;
2104
2105 ret = get_state_failrec(failure_tree, start, &failrec);
2106 if (ret)
2107 return 0;
2108
2109 BUG_ON(!failrec->this_mirror);
2110
2111 if (failrec->in_validation) {
2112 /* there was no real error, just free the record */
2113 btrfs_debug(fs_info,
2114 "clean_io_failure: freeing dummy error at %llu",
2115 failrec->start);
2116 goto out;
2117 }
2118 if (sb_rdonly(fs_info->sb))
2119 goto out;
2120
2121 spin_lock(&io_tree->lock);
2122 state = find_first_extent_bit_state(io_tree,
2123 failrec->start,
2124 EXTENT_LOCKED);
2125 spin_unlock(&io_tree->lock);
2126
2127 if (state && state->start <= failrec->start &&
2128 state->end >= failrec->start + failrec->len - 1) {
2129 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2130 failrec->len);
2131 if (num_copies > 1) {
2132 repair_io_failure(fs_info, ino, start, failrec->len,
2133 failrec->logical, page, pg_offset,
2134 failrec->failed_mirror);
2135 }
2136 }
2137
2138out:
2139 free_io_failure(failure_tree, io_tree, failrec);
2140
2141 return 0;
2142}
2143
2144/*
2145 * Can be called when
2146 * - hold extent lock
2147 * - under ordered extent
2148 * - the inode is freeing
2149 */
2150void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2151{
2152 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2153 struct io_failure_record *failrec;
2154 struct extent_state *state, *next;
2155
2156 if (RB_EMPTY_ROOT(&failure_tree->state))
2157 return;
2158
2159 spin_lock(&failure_tree->lock);
2160 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2161 while (state) {
2162 if (state->start > end)
2163 break;
2164
2165 ASSERT(state->end <= end);
2166
2167 next = next_state(state);
2168
2169 failrec = state->failrec;
2170 free_extent_state(state);
2171 kfree(failrec);
2172
2173 state = next;
2174 }
2175 spin_unlock(&failure_tree->lock);
2176}
2177
2178int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2179 struct io_failure_record **failrec_ret)
2180{
2181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2182 struct io_failure_record *failrec;
2183 struct extent_map *em;
2184 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2185 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2186 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2187 int ret;
2188 u64 logical;
2189
2190 ret = get_state_failrec(failure_tree, start, &failrec);
2191 if (ret) {
2192 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2193 if (!failrec)
2194 return -ENOMEM;
2195
2196 failrec->start = start;
2197 failrec->len = end - start + 1;
2198 failrec->this_mirror = 0;
2199 failrec->bio_flags = 0;
2200 failrec->in_validation = 0;
2201
2202 read_lock(&em_tree->lock);
2203 em = lookup_extent_mapping(em_tree, start, failrec->len);
2204 if (!em) {
2205 read_unlock(&em_tree->lock);
2206 kfree(failrec);
2207 return -EIO;
2208 }
2209
2210 if (em->start > start || em->start + em->len <= start) {
2211 free_extent_map(em);
2212 em = NULL;
2213 }
2214 read_unlock(&em_tree->lock);
2215 if (!em) {
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 logical = start - em->start;
2221 logical = em->block_start + logical;
2222 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2223 logical = em->block_start;
2224 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2225 extent_set_compress_type(&failrec->bio_flags,
2226 em->compress_type);
2227 }
2228
2229 btrfs_debug(fs_info,
2230 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2231 logical, start, failrec->len);
2232
2233 failrec->logical = logical;
2234 free_extent_map(em);
2235
2236 /* set the bits in the private failure tree */
2237 ret = set_extent_bits(failure_tree, start, end,
2238 EXTENT_LOCKED | EXTENT_DIRTY);
2239 if (ret >= 0)
2240 ret = set_state_failrec(failure_tree, start, failrec);
2241 /* set the bits in the inode's tree */
2242 if (ret >= 0)
2243 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2244 if (ret < 0) {
2245 kfree(failrec);
2246 return ret;
2247 }
2248 } else {
2249 btrfs_debug(fs_info,
2250 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2251 failrec->logical, failrec->start, failrec->len,
2252 failrec->in_validation);
2253 /*
2254 * when data can be on disk more than twice, add to failrec here
2255 * (e.g. with a list for failed_mirror) to make
2256 * clean_io_failure() clean all those errors at once.
2257 */
2258 }
2259
2260 *failrec_ret = failrec;
2261
2262 return 0;
2263}
2264
2265bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2266 struct io_failure_record *failrec, int failed_mirror)
2267{
2268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2269 int num_copies;
2270
2271 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2272 if (num_copies == 1) {
2273 /*
2274 * we only have a single copy of the data, so don't bother with
2275 * all the retry and error correction code that follows. no
2276 * matter what the error is, it is very likely to persist.
2277 */
2278 btrfs_debug(fs_info,
2279 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2280 num_copies, failrec->this_mirror, failed_mirror);
2281 return false;
2282 }
2283
2284 /*
2285 * there are two premises:
2286 * a) deliver good data to the caller
2287 * b) correct the bad sectors on disk
2288 */
2289 if (failed_bio_pages > 1) {
2290 /*
2291 * to fulfill b), we need to know the exact failing sectors, as
2292 * we don't want to rewrite any more than the failed ones. thus,
2293 * we need separate read requests for the failed bio
2294 *
2295 * if the following BUG_ON triggers, our validation request got
2296 * merged. we need separate requests for our algorithm to work.
2297 */
2298 BUG_ON(failrec->in_validation);
2299 failrec->in_validation = 1;
2300 failrec->this_mirror = failed_mirror;
2301 } else {
2302 /*
2303 * we're ready to fulfill a) and b) alongside. get a good copy
2304 * of the failed sector and if we succeed, we have setup
2305 * everything for repair_io_failure to do the rest for us.
2306 */
2307 if (failrec->in_validation) {
2308 BUG_ON(failrec->this_mirror != failed_mirror);
2309 failrec->in_validation = 0;
2310 failrec->this_mirror = 0;
2311 }
2312 failrec->failed_mirror = failed_mirror;
2313 failrec->this_mirror++;
2314 if (failrec->this_mirror == failed_mirror)
2315 failrec->this_mirror++;
2316 }
2317
2318 if (failrec->this_mirror > num_copies) {
2319 btrfs_debug(fs_info,
2320 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2321 num_copies, failrec->this_mirror, failed_mirror);
2322 return false;
2323 }
2324
2325 return true;
2326}
2327
2328
2329struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2330 struct io_failure_record *failrec,
2331 struct page *page, int pg_offset, int icsum,
2332 bio_end_io_t *endio_func, void *data)
2333{
2334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2335 struct bio *bio;
2336 struct btrfs_io_bio *btrfs_failed_bio;
2337 struct btrfs_io_bio *btrfs_bio;
2338
2339 bio = btrfs_io_bio_alloc(1);
2340 bio->bi_end_io = endio_func;
2341 bio->bi_iter.bi_sector = failrec->logical >> 9;
2342 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2343 bio->bi_iter.bi_size = 0;
2344 bio->bi_private = data;
2345
2346 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2347 if (btrfs_failed_bio->csum) {
2348 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2349
2350 btrfs_bio = btrfs_io_bio(bio);
2351 btrfs_bio->csum = btrfs_bio->csum_inline;
2352 icsum *= csum_size;
2353 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2354 csum_size);
2355 }
2356
2357 bio_add_page(bio, page, failrec->len, pg_offset);
2358
2359 return bio;
2360}
2361
2362/*
2363 * this is a generic handler for readpage errors (default
2364 * readpage_io_failed_hook). if other copies exist, read those and write back
2365 * good data to the failed position. does not investigate in remapping the
2366 * failed extent elsewhere, hoping the device will be smart enough to do this as
2367 * needed
2368 */
2369
2370static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2371 struct page *page, u64 start, u64 end,
2372 int failed_mirror)
2373{
2374 struct io_failure_record *failrec;
2375 struct inode *inode = page->mapping->host;
2376 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2377 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2378 struct bio *bio;
2379 int read_mode = 0;
2380 blk_status_t status;
2381 int ret;
2382 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2383
2384 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2385
2386 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2387 if (ret)
2388 return ret;
2389
2390 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2391 failed_mirror)) {
2392 free_io_failure(failure_tree, tree, failrec);
2393 return -EIO;
2394 }
2395
2396 if (failed_bio_pages > 1)
2397 read_mode |= REQ_FAILFAST_DEV;
2398
2399 phy_offset >>= inode->i_sb->s_blocksize_bits;
2400 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2401 start - page_offset(page),
2402 (int)phy_offset, failed_bio->bi_end_io,
2403 NULL);
2404 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2405
2406 btrfs_debug(btrfs_sb(inode->i_sb),
2407 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2408 read_mode, failrec->this_mirror, failrec->in_validation);
2409
2410 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2411 failrec->bio_flags, 0);
2412 if (status) {
2413 free_io_failure(failure_tree, tree, failrec);
2414 bio_put(bio);
2415 ret = blk_status_to_errno(status);
2416 }
2417
2418 return ret;
2419}
2420
2421/* lots and lots of room for performance fixes in the end_bio funcs */
2422
2423void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2424{
2425 int uptodate = (err == 0);
2426 struct extent_io_tree *tree;
2427 int ret = 0;
2428
2429 tree = &BTRFS_I(page->mapping->host)->io_tree;
2430
2431 if (tree->ops && tree->ops->writepage_end_io_hook)
2432 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2433 uptodate);
2434
2435 if (!uptodate) {
2436 ClearPageUptodate(page);
2437 SetPageError(page);
2438 ret = err < 0 ? err : -EIO;
2439 mapping_set_error(page->mapping, ret);
2440 }
2441}
2442
2443/*
2444 * after a writepage IO is done, we need to:
2445 * clear the uptodate bits on error
2446 * clear the writeback bits in the extent tree for this IO
2447 * end_page_writeback if the page has no more pending IO
2448 *
2449 * Scheduling is not allowed, so the extent state tree is expected
2450 * to have one and only one object corresponding to this IO.
2451 */
2452static void end_bio_extent_writepage(struct bio *bio)
2453{
2454 int error = blk_status_to_errno(bio->bi_status);
2455 struct bio_vec *bvec;
2456 u64 start;
2457 u64 end;
2458 int i;
2459
2460 ASSERT(!bio_flagged(bio, BIO_CLONED));
2461 bio_for_each_segment_all(bvec, bio, i) {
2462 struct page *page = bvec->bv_page;
2463 struct inode *inode = page->mapping->host;
2464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2465
2466 /* We always issue full-page reads, but if some block
2467 * in a page fails to read, blk_update_request() will
2468 * advance bv_offset and adjust bv_len to compensate.
2469 * Print a warning for nonzero offsets, and an error
2470 * if they don't add up to a full page. */
2471 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2472 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2473 btrfs_err(fs_info,
2474 "partial page write in btrfs with offset %u and length %u",
2475 bvec->bv_offset, bvec->bv_len);
2476 else
2477 btrfs_info(fs_info,
2478 "incomplete page write in btrfs with offset %u and length %u",
2479 bvec->bv_offset, bvec->bv_len);
2480 }
2481
2482 start = page_offset(page);
2483 end = start + bvec->bv_offset + bvec->bv_len - 1;
2484
2485 end_extent_writepage(page, error, start, end);
2486 end_page_writeback(page);
2487 }
2488
2489 bio_put(bio);
2490}
2491
2492static void
2493endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2494 int uptodate)
2495{
2496 struct extent_state *cached = NULL;
2497 u64 end = start + len - 1;
2498
2499 if (uptodate && tree->track_uptodate)
2500 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2501 unlock_extent_cached_atomic(tree, start, end, &cached);
2502}
2503
2504/*
2505 * after a readpage IO is done, we need to:
2506 * clear the uptodate bits on error
2507 * set the uptodate bits if things worked
2508 * set the page up to date if all extents in the tree are uptodate
2509 * clear the lock bit in the extent tree
2510 * unlock the page if there are no other extents locked for it
2511 *
2512 * Scheduling is not allowed, so the extent state tree is expected
2513 * to have one and only one object corresponding to this IO.
2514 */
2515static void end_bio_extent_readpage(struct bio *bio)
2516{
2517 struct bio_vec *bvec;
2518 int uptodate = !bio->bi_status;
2519 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2520 struct extent_io_tree *tree, *failure_tree;
2521 u64 offset = 0;
2522 u64 start;
2523 u64 end;
2524 u64 len;
2525 u64 extent_start = 0;
2526 u64 extent_len = 0;
2527 int mirror;
2528 int ret;
2529 int i;
2530
2531 ASSERT(!bio_flagged(bio, BIO_CLONED));
2532 bio_for_each_segment_all(bvec, bio, i) {
2533 struct page *page = bvec->bv_page;
2534 struct inode *inode = page->mapping->host;
2535 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2536
2537 btrfs_debug(fs_info,
2538 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2539 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2540 io_bio->mirror_num);
2541 tree = &BTRFS_I(inode)->io_tree;
2542 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2543
2544 /* We always issue full-page reads, but if some block
2545 * in a page fails to read, blk_update_request() will
2546 * advance bv_offset and adjust bv_len to compensate.
2547 * Print a warning for nonzero offsets, and an error
2548 * if they don't add up to a full page. */
2549 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2550 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2551 btrfs_err(fs_info,
2552 "partial page read in btrfs with offset %u and length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 else
2555 btrfs_info(fs_info,
2556 "incomplete page read in btrfs with offset %u and length %u",
2557 bvec->bv_offset, bvec->bv_len);
2558 }
2559
2560 start = page_offset(page);
2561 end = start + bvec->bv_offset + bvec->bv_len - 1;
2562 len = bvec->bv_len;
2563
2564 mirror = io_bio->mirror_num;
2565 if (likely(uptodate && tree->ops)) {
2566 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2567 page, start, end,
2568 mirror);
2569 if (ret)
2570 uptodate = 0;
2571 else
2572 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2573 failure_tree, tree, start,
2574 page,
2575 btrfs_ino(BTRFS_I(inode)), 0);
2576 }
2577
2578 if (likely(uptodate))
2579 goto readpage_ok;
2580
2581 if (tree->ops) {
2582 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2583 if (ret == -EAGAIN) {
2584 /*
2585 * Data inode's readpage_io_failed_hook() always
2586 * returns -EAGAIN.
2587 *
2588 * The generic bio_readpage_error handles errors
2589 * the following way: If possible, new read
2590 * requests are created and submitted and will
2591 * end up in end_bio_extent_readpage as well (if
2592 * we're lucky, not in the !uptodate case). In
2593 * that case it returns 0 and we just go on with
2594 * the next page in our bio. If it can't handle
2595 * the error it will return -EIO and we remain
2596 * responsible for that page.
2597 */
2598 ret = bio_readpage_error(bio, offset, page,
2599 start, end, mirror);
2600 if (ret == 0) {
2601 uptodate = !bio->bi_status;
2602 offset += len;
2603 continue;
2604 }
2605 }
2606
2607 /*
2608 * metadata's readpage_io_failed_hook() always returns
2609 * -EIO and fixes nothing. -EIO is also returned if
2610 * data inode error could not be fixed.
2611 */
2612 ASSERT(ret == -EIO);
2613 }
2614readpage_ok:
2615 if (likely(uptodate)) {
2616 loff_t i_size = i_size_read(inode);
2617 pgoff_t end_index = i_size >> PAGE_SHIFT;
2618 unsigned off;
2619
2620 /* Zero out the end if this page straddles i_size */
2621 off = i_size & (PAGE_SIZE-1);
2622 if (page->index == end_index && off)
2623 zero_user_segment(page, off, PAGE_SIZE);
2624 SetPageUptodate(page);
2625 } else {
2626 ClearPageUptodate(page);
2627 SetPageError(page);
2628 }
2629 unlock_page(page);
2630 offset += len;
2631
2632 if (unlikely(!uptodate)) {
2633 if (extent_len) {
2634 endio_readpage_release_extent(tree,
2635 extent_start,
2636 extent_len, 1);
2637 extent_start = 0;
2638 extent_len = 0;
2639 }
2640 endio_readpage_release_extent(tree, start,
2641 end - start + 1, 0);
2642 } else if (!extent_len) {
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 } else if (extent_start + extent_len == start) {
2646 extent_len += end + 1 - start;
2647 } else {
2648 endio_readpage_release_extent(tree, extent_start,
2649 extent_len, uptodate);
2650 extent_start = start;
2651 extent_len = end + 1 - start;
2652 }
2653 }
2654
2655 if (extent_len)
2656 endio_readpage_release_extent(tree, extent_start, extent_len,
2657 uptodate);
2658 if (io_bio->end_io)
2659 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2660 bio_put(bio);
2661}
2662
2663/*
2664 * Initialize the members up to but not including 'bio'. Use after allocating a
2665 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2666 * 'bio' because use of __GFP_ZERO is not supported.
2667 */
2668static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2669{
2670 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2671}
2672
2673/*
2674 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2675 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2676 * for the appropriate container_of magic
2677 */
2678struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2679{
2680 struct bio *bio;
2681
2682 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2683 bio_set_dev(bio, bdev);
2684 bio->bi_iter.bi_sector = first_byte >> 9;
2685 btrfs_io_bio_init(btrfs_io_bio(bio));
2686 return bio;
2687}
2688
2689struct bio *btrfs_bio_clone(struct bio *bio)
2690{
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
2693
2694 /* Bio allocation backed by a bioset does not fail */
2695 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_io_bio_init(btrfs_bio);
2698 btrfs_bio->iter = bio->bi_iter;
2699 return new;
2700}
2701
2702struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2703{
2704 struct bio *bio;
2705
2706 /* Bio allocation backed by a bioset does not fail */
2707 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2708 btrfs_io_bio_init(btrfs_io_bio(bio));
2709 return bio;
2710}
2711
2712struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2713{
2714 struct bio *bio;
2715 struct btrfs_io_bio *btrfs_bio;
2716
2717 /* this will never fail when it's backed by a bioset */
2718 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2719 ASSERT(bio);
2720
2721 btrfs_bio = btrfs_io_bio(bio);
2722 btrfs_io_bio_init(btrfs_bio);
2723
2724 bio_trim(bio, offset >> 9, size >> 9);
2725 btrfs_bio->iter = bio->bi_iter;
2726 return bio;
2727}
2728
2729static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2730 unsigned long bio_flags)
2731{
2732 blk_status_t ret = 0;
2733 struct bio_vec *bvec = bio_last_bvec_all(bio);
2734 struct page *page = bvec->bv_page;
2735 struct extent_io_tree *tree = bio->bi_private;
2736 u64 start;
2737
2738 start = page_offset(page) + bvec->bv_offset;
2739
2740 bio->bi_private = NULL;
2741
2742 if (tree->ops)
2743 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2744 mirror_num, bio_flags, start);
2745 else
2746 btrfsic_submit_bio(bio);
2747
2748 return blk_status_to_errno(ret);
2749}
2750
2751/*
2752 * @opf: bio REQ_OP_* and REQ_* flags as one value
2753 * @tree: tree so we can call our merge_bio hook
2754 * @wbc: optional writeback control for io accounting
2755 * @page: page to add to the bio
2756 * @pg_offset: offset of the new bio or to check whether we are adding
2757 * a contiguous page to the previous one
2758 * @size: portion of page that we want to write
2759 * @offset: starting offset in the page
2760 * @bdev: attach newly created bios to this bdev
2761 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2762 * @end_io_func: end_io callback for new bio
2763 * @mirror_num: desired mirror to read/write
2764 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2765 * @bio_flags: flags of the current bio to see if we can merge them
2766 */
2767static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2768 struct writeback_control *wbc,
2769 struct page *page, u64 offset,
2770 size_t size, unsigned long pg_offset,
2771 struct block_device *bdev,
2772 struct bio **bio_ret,
2773 bio_end_io_t end_io_func,
2774 int mirror_num,
2775 unsigned long prev_bio_flags,
2776 unsigned long bio_flags,
2777 bool force_bio_submit)
2778{
2779 int ret = 0;
2780 struct bio *bio;
2781 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2782 sector_t sector = offset >> 9;
2783
2784 ASSERT(bio_ret);
2785
2786 if (*bio_ret) {
2787 bool contig;
2788 bool can_merge = true;
2789
2790 bio = *bio_ret;
2791 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2792 contig = bio->bi_iter.bi_sector == sector;
2793 else
2794 contig = bio_end_sector(bio) == sector;
2795
2796 if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2797 page_size, bio, bio_flags))
2798 can_merge = false;
2799
2800 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2801 force_bio_submit ||
2802 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2803 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2804 if (ret < 0) {
2805 *bio_ret = NULL;
2806 return ret;
2807 }
2808 bio = NULL;
2809 } else {
2810 if (wbc)
2811 wbc_account_io(wbc, page, page_size);
2812 return 0;
2813 }
2814 }
2815
2816 bio = btrfs_bio_alloc(bdev, offset);
2817 bio_add_page(bio, page, page_size, pg_offset);
2818 bio->bi_end_io = end_io_func;
2819 bio->bi_private = tree;
2820 bio->bi_write_hint = page->mapping->host->i_write_hint;
2821 bio->bi_opf = opf;
2822 if (wbc) {
2823 wbc_init_bio(wbc, bio);
2824 wbc_account_io(wbc, page, page_size);
2825 }
2826
2827 *bio_ret = bio;
2828
2829 return ret;
2830}
2831
2832static void attach_extent_buffer_page(struct extent_buffer *eb,
2833 struct page *page)
2834{
2835 if (!PagePrivate(page)) {
2836 SetPagePrivate(page);
2837 get_page(page);
2838 set_page_private(page, (unsigned long)eb);
2839 } else {
2840 WARN_ON(page->private != (unsigned long)eb);
2841 }
2842}
2843
2844void set_page_extent_mapped(struct page *page)
2845{
2846 if (!PagePrivate(page)) {
2847 SetPagePrivate(page);
2848 get_page(page);
2849 set_page_private(page, EXTENT_PAGE_PRIVATE);
2850 }
2851}
2852
2853static struct extent_map *
2854__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2855 u64 start, u64 len, get_extent_t *get_extent,
2856 struct extent_map **em_cached)
2857{
2858 struct extent_map *em;
2859
2860 if (em_cached && *em_cached) {
2861 em = *em_cached;
2862 if (extent_map_in_tree(em) && start >= em->start &&
2863 start < extent_map_end(em)) {
2864 refcount_inc(&em->refs);
2865 return em;
2866 }
2867
2868 free_extent_map(em);
2869 *em_cached = NULL;
2870 }
2871
2872 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2873 if (em_cached && !IS_ERR_OR_NULL(em)) {
2874 BUG_ON(*em_cached);
2875 refcount_inc(&em->refs);
2876 *em_cached = em;
2877 }
2878 return em;
2879}
2880/*
2881 * basic readpage implementation. Locked extent state structs are inserted
2882 * into the tree that are removed when the IO is done (by the end_io
2883 * handlers)
2884 * XXX JDM: This needs looking at to ensure proper page locking
2885 * return 0 on success, otherwise return error
2886 */
2887static int __do_readpage(struct extent_io_tree *tree,
2888 struct page *page,
2889 get_extent_t *get_extent,
2890 struct extent_map **em_cached,
2891 struct bio **bio, int mirror_num,
2892 unsigned long *bio_flags, unsigned int read_flags,
2893 u64 *prev_em_start)
2894{
2895 struct inode *inode = page->mapping->host;
2896 u64 start = page_offset(page);
2897 const u64 end = start + PAGE_SIZE - 1;
2898 u64 cur = start;
2899 u64 extent_offset;
2900 u64 last_byte = i_size_read(inode);
2901 u64 block_start;
2902 u64 cur_end;
2903 struct extent_map *em;
2904 struct block_device *bdev;
2905 int ret = 0;
2906 int nr = 0;
2907 size_t pg_offset = 0;
2908 size_t iosize;
2909 size_t disk_io_size;
2910 size_t blocksize = inode->i_sb->s_blocksize;
2911 unsigned long this_bio_flag = 0;
2912
2913 set_page_extent_mapped(page);
2914
2915 if (!PageUptodate(page)) {
2916 if (cleancache_get_page(page) == 0) {
2917 BUG_ON(blocksize != PAGE_SIZE);
2918 unlock_extent(tree, start, end);
2919 goto out;
2920 }
2921 }
2922
2923 if (page->index == last_byte >> PAGE_SHIFT) {
2924 char *userpage;
2925 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2926
2927 if (zero_offset) {
2928 iosize = PAGE_SIZE - zero_offset;
2929 userpage = kmap_atomic(page);
2930 memset(userpage + zero_offset, 0, iosize);
2931 flush_dcache_page(page);
2932 kunmap_atomic(userpage);
2933 }
2934 }
2935 while (cur <= end) {
2936 bool force_bio_submit = false;
2937 u64 offset;
2938
2939 if (cur >= last_byte) {
2940 char *userpage;
2941 struct extent_state *cached = NULL;
2942
2943 iosize = PAGE_SIZE - pg_offset;
2944 userpage = kmap_atomic(page);
2945 memset(userpage + pg_offset, 0, iosize);
2946 flush_dcache_page(page);
2947 kunmap_atomic(userpage);
2948 set_extent_uptodate(tree, cur, cur + iosize - 1,
2949 &cached, GFP_NOFS);
2950 unlock_extent_cached(tree, cur,
2951 cur + iosize - 1, &cached);
2952 break;
2953 }
2954 em = __get_extent_map(inode, page, pg_offset, cur,
2955 end - cur + 1, get_extent, em_cached);
2956 if (IS_ERR_OR_NULL(em)) {
2957 SetPageError(page);
2958 unlock_extent(tree, cur, end);
2959 break;
2960 }
2961 extent_offset = cur - em->start;
2962 BUG_ON(extent_map_end(em) <= cur);
2963 BUG_ON(end < cur);
2964
2965 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967 extent_set_compress_type(&this_bio_flag,
2968 em->compress_type);
2969 }
2970
2971 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972 cur_end = min(extent_map_end(em) - 1, end);
2973 iosize = ALIGN(iosize, blocksize);
2974 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975 disk_io_size = em->block_len;
2976 offset = em->block_start;
2977 } else {
2978 offset = em->block_start + extent_offset;
2979 disk_io_size = iosize;
2980 }
2981 bdev = em->bdev;
2982 block_start = em->block_start;
2983 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984 block_start = EXTENT_MAP_HOLE;
2985
2986 /*
2987 * If we have a file range that points to a compressed extent
2988 * and it's followed by a consecutive file range that points to
2989 * to the same compressed extent (possibly with a different
2990 * offset and/or length, so it either points to the whole extent
2991 * or only part of it), we must make sure we do not submit a
2992 * single bio to populate the pages for the 2 ranges because
2993 * this makes the compressed extent read zero out the pages
2994 * belonging to the 2nd range. Imagine the following scenario:
2995 *
2996 * File layout
2997 * [0 - 8K] [8K - 24K]
2998 * | |
2999 * | |
3000 * points to extent X, points to extent X,
3001 * offset 4K, length of 8K offset 0, length 16K
3002 *
3003 * [extent X, compressed length = 4K uncompressed length = 16K]
3004 *
3005 * If the bio to read the compressed extent covers both ranges,
3006 * it will decompress extent X into the pages belonging to the
3007 * first range and then it will stop, zeroing out the remaining
3008 * pages that belong to the other range that points to extent X.
3009 * So here we make sure we submit 2 bios, one for the first
3010 * range and another one for the third range. Both will target
3011 * the same physical extent from disk, but we can't currently
3012 * make the compressed bio endio callback populate the pages
3013 * for both ranges because each compressed bio is tightly
3014 * coupled with a single extent map, and each range can have
3015 * an extent map with a different offset value relative to the
3016 * uncompressed data of our extent and different lengths. This
3017 * is a corner case so we prioritize correctness over
3018 * non-optimal behavior (submitting 2 bios for the same extent).
3019 */
3020 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021 prev_em_start && *prev_em_start != (u64)-1 &&
3022 *prev_em_start != em->orig_start)
3023 force_bio_submit = true;
3024
3025 if (prev_em_start)
3026 *prev_em_start = em->orig_start;
3027
3028 free_extent_map(em);
3029 em = NULL;
3030
3031 /* we've found a hole, just zero and go on */
3032 if (block_start == EXTENT_MAP_HOLE) {
3033 char *userpage;
3034 struct extent_state *cached = NULL;
3035
3036 userpage = kmap_atomic(page);
3037 memset(userpage + pg_offset, 0, iosize);
3038 flush_dcache_page(page);
3039 kunmap_atomic(userpage);
3040
3041 set_extent_uptodate(tree, cur, cur + iosize - 1,
3042 &cached, GFP_NOFS);
3043 unlock_extent_cached(tree, cur,
3044 cur + iosize - 1, &cached);
3045 cur = cur + iosize;
3046 pg_offset += iosize;
3047 continue;
3048 }
3049 /* the get_extent function already copied into the page */
3050 if (test_range_bit(tree, cur, cur_end,
3051 EXTENT_UPTODATE, 1, NULL)) {
3052 check_page_uptodate(tree, page);
3053 unlock_extent(tree, cur, cur + iosize - 1);
3054 cur = cur + iosize;
3055 pg_offset += iosize;
3056 continue;
3057 }
3058 /* we have an inline extent but it didn't get marked up
3059 * to date. Error out
3060 */
3061 if (block_start == EXTENT_MAP_INLINE) {
3062 SetPageError(page);
3063 unlock_extent(tree, cur, cur + iosize - 1);
3064 cur = cur + iosize;
3065 pg_offset += iosize;
3066 continue;
3067 }
3068
3069 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3070 page, offset, disk_io_size,
3071 pg_offset, bdev, bio,
3072 end_bio_extent_readpage, mirror_num,
3073 *bio_flags,
3074 this_bio_flag,
3075 force_bio_submit);
3076 if (!ret) {
3077 nr++;
3078 *bio_flags = this_bio_flag;
3079 } else {
3080 SetPageError(page);
3081 unlock_extent(tree, cur, cur + iosize - 1);
3082 goto out;
3083 }
3084 cur = cur + iosize;
3085 pg_offset += iosize;
3086 }
3087out:
3088 if (!nr) {
3089 if (!PageError(page))
3090 SetPageUptodate(page);
3091 unlock_page(page);
3092 }
3093 return ret;
3094}
3095
3096static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3097 struct page *pages[], int nr_pages,
3098 u64 start, u64 end,
3099 struct extent_map **em_cached,
3100 struct bio **bio,
3101 unsigned long *bio_flags,
3102 u64 *prev_em_start)
3103{
3104 struct inode *inode;
3105 struct btrfs_ordered_extent *ordered;
3106 int index;
3107
3108 inode = pages[0]->mapping->host;
3109 while (1) {
3110 lock_extent(tree, start, end);
3111 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3112 end - start + 1);
3113 if (!ordered)
3114 break;
3115 unlock_extent(tree, start, end);
3116 btrfs_start_ordered_extent(inode, ordered, 1);
3117 btrfs_put_ordered_extent(ordered);
3118 }
3119
3120 for (index = 0; index < nr_pages; index++) {
3121 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3122 bio, 0, bio_flags, 0, prev_em_start);
3123 put_page(pages[index]);
3124 }
3125}
3126
3127static void __extent_readpages(struct extent_io_tree *tree,
3128 struct page *pages[],
3129 int nr_pages,
3130 struct extent_map **em_cached,
3131 struct bio **bio, unsigned long *bio_flags,
3132 u64 *prev_em_start)
3133{
3134 u64 start = 0;
3135 u64 end = 0;
3136 u64 page_start;
3137 int index;
3138 int first_index = 0;
3139
3140 for (index = 0; index < nr_pages; index++) {
3141 page_start = page_offset(pages[index]);
3142 if (!end) {
3143 start = page_start;
3144 end = start + PAGE_SIZE - 1;
3145 first_index = index;
3146 } else if (end + 1 == page_start) {
3147 end += PAGE_SIZE;
3148 } else {
3149 __do_contiguous_readpages(tree, &pages[first_index],
3150 index - first_index, start,
3151 end, em_cached,
3152 bio, bio_flags,
3153 prev_em_start);
3154 start = page_start;
3155 end = start + PAGE_SIZE - 1;
3156 first_index = index;
3157 }
3158 }
3159
3160 if (end)
3161 __do_contiguous_readpages(tree, &pages[first_index],
3162 index - first_index, start,
3163 end, em_cached, bio,
3164 bio_flags, prev_em_start);
3165}
3166
3167static int __extent_read_full_page(struct extent_io_tree *tree,
3168 struct page *page,
3169 get_extent_t *get_extent,
3170 struct bio **bio, int mirror_num,
3171 unsigned long *bio_flags,
3172 unsigned int read_flags)
3173{
3174 struct inode *inode = page->mapping->host;
3175 struct btrfs_ordered_extent *ordered;
3176 u64 start = page_offset(page);
3177 u64 end = start + PAGE_SIZE - 1;
3178 int ret;
3179
3180 while (1) {
3181 lock_extent(tree, start, end);
3182 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3183 PAGE_SIZE);
3184 if (!ordered)
3185 break;
3186 unlock_extent(tree, start, end);
3187 btrfs_start_ordered_extent(inode, ordered, 1);
3188 btrfs_put_ordered_extent(ordered);
3189 }
3190
3191 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3192 bio_flags, read_flags, NULL);
3193 return ret;
3194}
3195
3196int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3197 get_extent_t *get_extent, int mirror_num)
3198{
3199 struct bio *bio = NULL;
3200 unsigned long bio_flags = 0;
3201 int ret;
3202
3203 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3204 &bio_flags, 0);
3205 if (bio)
3206 ret = submit_one_bio(bio, mirror_num, bio_flags);
3207 return ret;
3208}
3209
3210static void update_nr_written(struct writeback_control *wbc,
3211 unsigned long nr_written)
3212{
3213 wbc->nr_to_write -= nr_written;
3214}
3215
3216/*
3217 * helper for __extent_writepage, doing all of the delayed allocation setup.
3218 *
3219 * This returns 1 if our fill_delalloc function did all the work required
3220 * to write the page (copy into inline extent). In this case the IO has
3221 * been started and the page is already unlocked.
3222 *
3223 * This returns 0 if all went well (page still locked)
3224 * This returns < 0 if there were errors (page still locked)
3225 */
3226static noinline_for_stack int writepage_delalloc(struct inode *inode,
3227 struct page *page, struct writeback_control *wbc,
3228 struct extent_page_data *epd,
3229 u64 delalloc_start,
3230 unsigned long *nr_written)
3231{
3232 struct extent_io_tree *tree = epd->tree;
3233 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3234 u64 nr_delalloc;
3235 u64 delalloc_to_write = 0;
3236 u64 delalloc_end = 0;
3237 int ret;
3238 int page_started = 0;
3239
3240 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3241 return 0;
3242
3243 while (delalloc_end < page_end) {
3244 nr_delalloc = find_lock_delalloc_range(inode, tree,
3245 page,
3246 &delalloc_start,
3247 &delalloc_end,
3248 BTRFS_MAX_EXTENT_SIZE);
3249 if (nr_delalloc == 0) {
3250 delalloc_start = delalloc_end + 1;
3251 continue;
3252 }
3253 ret = tree->ops->fill_delalloc(inode, page,
3254 delalloc_start,
3255 delalloc_end,
3256 &page_started,
3257 nr_written, wbc);
3258 /* File system has been set read-only */
3259 if (ret) {
3260 SetPageError(page);
3261 /* fill_delalloc should be return < 0 for error
3262 * but just in case, we use > 0 here meaning the
3263 * IO is started, so we don't want to return > 0
3264 * unless things are going well.
3265 */
3266 ret = ret < 0 ? ret : -EIO;
3267 goto done;
3268 }
3269 /*
3270 * delalloc_end is already one less than the total length, so
3271 * we don't subtract one from PAGE_SIZE
3272 */
3273 delalloc_to_write += (delalloc_end - delalloc_start +
3274 PAGE_SIZE) >> PAGE_SHIFT;
3275 delalloc_start = delalloc_end + 1;
3276 }
3277 if (wbc->nr_to_write < delalloc_to_write) {
3278 int thresh = 8192;
3279
3280 if (delalloc_to_write < thresh * 2)
3281 thresh = delalloc_to_write;
3282 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3283 thresh);
3284 }
3285
3286 /* did the fill delalloc function already unlock and start
3287 * the IO?
3288 */
3289 if (page_started) {
3290 /*
3291 * we've unlocked the page, so we can't update
3292 * the mapping's writeback index, just update
3293 * nr_to_write.
3294 */
3295 wbc->nr_to_write -= *nr_written;
3296 return 1;
3297 }
3298
3299 ret = 0;
3300
3301done:
3302 return ret;
3303}
3304
3305/*
3306 * helper for __extent_writepage. This calls the writepage start hooks,
3307 * and does the loop to map the page into extents and bios.
3308 *
3309 * We return 1 if the IO is started and the page is unlocked,
3310 * 0 if all went well (page still locked)
3311 * < 0 if there were errors (page still locked)
3312 */
3313static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3314 struct page *page,
3315 struct writeback_control *wbc,
3316 struct extent_page_data *epd,
3317 loff_t i_size,
3318 unsigned long nr_written,
3319 unsigned int write_flags, int *nr_ret)
3320{
3321 struct extent_io_tree *tree = epd->tree;
3322 u64 start = page_offset(page);
3323 u64 page_end = start + PAGE_SIZE - 1;
3324 u64 end;
3325 u64 cur = start;
3326 u64 extent_offset;
3327 u64 block_start;
3328 u64 iosize;
3329 struct extent_map *em;
3330 struct block_device *bdev;
3331 size_t pg_offset = 0;
3332 size_t blocksize;
3333 int ret = 0;
3334 int nr = 0;
3335 bool compressed;
3336
3337 if (tree->ops && tree->ops->writepage_start_hook) {
3338 ret = tree->ops->writepage_start_hook(page, start,
3339 page_end);
3340 if (ret) {
3341 /* Fixup worker will requeue */
3342 if (ret == -EBUSY)
3343 wbc->pages_skipped++;
3344 else
3345 redirty_page_for_writepage(wbc, page);
3346
3347 update_nr_written(wbc, nr_written);
3348 unlock_page(page);
3349 return 1;
3350 }
3351 }
3352
3353 /*
3354 * we don't want to touch the inode after unlocking the page,
3355 * so we update the mapping writeback index now
3356 */
3357 update_nr_written(wbc, nr_written + 1);
3358
3359 end = page_end;
3360 if (i_size <= start) {
3361 if (tree->ops && tree->ops->writepage_end_io_hook)
3362 tree->ops->writepage_end_io_hook(page, start,
3363 page_end, NULL, 1);
3364 goto done;
3365 }
3366
3367 blocksize = inode->i_sb->s_blocksize;
3368
3369 while (cur <= end) {
3370 u64 em_end;
3371 u64 offset;
3372
3373 if (cur >= i_size) {
3374 if (tree->ops && tree->ops->writepage_end_io_hook)
3375 tree->ops->writepage_end_io_hook(page, cur,
3376 page_end, NULL, 1);
3377 break;
3378 }
3379 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3380 end - cur + 1, 1);
3381 if (IS_ERR_OR_NULL(em)) {
3382 SetPageError(page);
3383 ret = PTR_ERR_OR_ZERO(em);
3384 break;
3385 }
3386
3387 extent_offset = cur - em->start;
3388 em_end = extent_map_end(em);
3389 BUG_ON(em_end <= cur);
3390 BUG_ON(end < cur);
3391 iosize = min(em_end - cur, end - cur + 1);
3392 iosize = ALIGN(iosize, blocksize);
3393 offset = em->block_start + extent_offset;
3394 bdev = em->bdev;
3395 block_start = em->block_start;
3396 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3397 free_extent_map(em);
3398 em = NULL;
3399
3400 /*
3401 * compressed and inline extents are written through other
3402 * paths in the FS
3403 */
3404 if (compressed || block_start == EXTENT_MAP_HOLE ||
3405 block_start == EXTENT_MAP_INLINE) {
3406 /*
3407 * end_io notification does not happen here for
3408 * compressed extents
3409 */
3410 if (!compressed && tree->ops &&
3411 tree->ops->writepage_end_io_hook)
3412 tree->ops->writepage_end_io_hook(page, cur,
3413 cur + iosize - 1,
3414 NULL, 1);
3415 else if (compressed) {
3416 /* we don't want to end_page_writeback on
3417 * a compressed extent. this happens
3418 * elsewhere
3419 */
3420 nr++;
3421 }
3422
3423 cur += iosize;
3424 pg_offset += iosize;
3425 continue;
3426 }
3427
3428 set_range_writeback(tree, cur, cur + iosize - 1);
3429 if (!PageWriteback(page)) {
3430 btrfs_err(BTRFS_I(inode)->root->fs_info,
3431 "page %lu not writeback, cur %llu end %llu",
3432 page->index, cur, end);
3433 }
3434
3435 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3436 page, offset, iosize, pg_offset,
3437 bdev, &epd->bio,
3438 end_bio_extent_writepage,
3439 0, 0, 0, false);
3440 if (ret) {
3441 SetPageError(page);
3442 if (PageWriteback(page))
3443 end_page_writeback(page);
3444 }
3445
3446 cur = cur + iosize;
3447 pg_offset += iosize;
3448 nr++;
3449 }
3450done:
3451 *nr_ret = nr;
3452 return ret;
3453}
3454
3455/*
3456 * the writepage semantics are similar to regular writepage. extent
3457 * records are inserted to lock ranges in the tree, and as dirty areas
3458 * are found, they are marked writeback. Then the lock bits are removed
3459 * and the end_io handler clears the writeback ranges
3460 */
3461static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462 struct extent_page_data *epd)
3463{
3464 struct inode *inode = page->mapping->host;
3465 u64 start = page_offset(page);
3466 u64 page_end = start + PAGE_SIZE - 1;
3467 int ret;
3468 int nr = 0;
3469 size_t pg_offset = 0;
3470 loff_t i_size = i_size_read(inode);
3471 unsigned long end_index = i_size >> PAGE_SHIFT;
3472 unsigned int write_flags = 0;
3473 unsigned long nr_written = 0;
3474
3475 write_flags = wbc_to_write_flags(wbc);
3476
3477 trace___extent_writepage(page, inode, wbc);
3478
3479 WARN_ON(!PageLocked(page));
3480
3481 ClearPageError(page);
3482
3483 pg_offset = i_size & (PAGE_SIZE - 1);
3484 if (page->index > end_index ||
3485 (page->index == end_index && !pg_offset)) {
3486 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3487 unlock_page(page);
3488 return 0;
3489 }
3490
3491 if (page->index == end_index) {
3492 char *userpage;
3493
3494 userpage = kmap_atomic(page);
3495 memset(userpage + pg_offset, 0,
3496 PAGE_SIZE - pg_offset);
3497 kunmap_atomic(userpage);
3498 flush_dcache_page(page);
3499 }
3500
3501 pg_offset = 0;
3502
3503 set_page_extent_mapped(page);
3504
3505 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506 if (ret == 1)
3507 goto done_unlocked;
3508 if (ret)
3509 goto done;
3510
3511 ret = __extent_writepage_io(inode, page, wbc, epd,
3512 i_size, nr_written, write_flags, &nr);
3513 if (ret == 1)
3514 goto done_unlocked;
3515
3516done:
3517 if (nr == 0) {
3518 /* make sure the mapping tag for page dirty gets cleared */
3519 set_page_writeback(page);
3520 end_page_writeback(page);
3521 }
3522 if (PageError(page)) {
3523 ret = ret < 0 ? ret : -EIO;
3524 end_extent_writepage(page, ret, start, page_end);
3525 }
3526 unlock_page(page);
3527 return ret;
3528
3529done_unlocked:
3530 return 0;
3531}
3532
3533void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3534{
3535 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536 TASK_UNINTERRUPTIBLE);
3537}
3538
3539static noinline_for_stack int
3540lock_extent_buffer_for_io(struct extent_buffer *eb,
3541 struct btrfs_fs_info *fs_info,
3542 struct extent_page_data *epd)
3543{
3544 unsigned long i, num_pages;
3545 int flush = 0;
3546 int ret = 0;
3547
3548 if (!btrfs_try_tree_write_lock(eb)) {
3549 flush = 1;
3550 flush_write_bio(epd);
3551 btrfs_tree_lock(eb);
3552 }
3553
3554 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555 btrfs_tree_unlock(eb);
3556 if (!epd->sync_io)
3557 return 0;
3558 if (!flush) {
3559 flush_write_bio(epd);
3560 flush = 1;
3561 }
3562 while (1) {
3563 wait_on_extent_buffer_writeback(eb);
3564 btrfs_tree_lock(eb);
3565 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566 break;
3567 btrfs_tree_unlock(eb);
3568 }
3569 }
3570
3571 /*
3572 * We need to do this to prevent races in people who check if the eb is
3573 * under IO since we can end up having no IO bits set for a short period
3574 * of time.
3575 */
3576 spin_lock(&eb->refs_lock);
3577 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3579 spin_unlock(&eb->refs_lock);
3580 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3581 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3582 -eb->len,
3583 fs_info->dirty_metadata_batch);
3584 ret = 1;
3585 } else {
3586 spin_unlock(&eb->refs_lock);
3587 }
3588
3589 btrfs_tree_unlock(eb);
3590
3591 if (!ret)
3592 return ret;
3593
3594 num_pages = num_extent_pages(eb->start, eb->len);
3595 for (i = 0; i < num_pages; i++) {
3596 struct page *p = eb->pages[i];
3597
3598 if (!trylock_page(p)) {
3599 if (!flush) {
3600 flush_write_bio(epd);
3601 flush = 1;
3602 }
3603 lock_page(p);
3604 }
3605 }
3606
3607 return ret;
3608}
3609
3610static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611{
3612 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3613 smp_mb__after_atomic();
3614 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615}
3616
3617static void set_btree_ioerr(struct page *page)
3618{
3619 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3620
3621 SetPageError(page);
3622 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3623 return;
3624
3625 /*
3626 * If writeback for a btree extent that doesn't belong to a log tree
3627 * failed, increment the counter transaction->eb_write_errors.
3628 * We do this because while the transaction is running and before it's
3629 * committing (when we call filemap_fdata[write|wait]_range against
3630 * the btree inode), we might have
3631 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3632 * returns an error or an error happens during writeback, when we're
3633 * committing the transaction we wouldn't know about it, since the pages
3634 * can be no longer dirty nor marked anymore for writeback (if a
3635 * subsequent modification to the extent buffer didn't happen before the
3636 * transaction commit), which makes filemap_fdata[write|wait]_range not
3637 * able to find the pages tagged with SetPageError at transaction
3638 * commit time. So if this happens we must abort the transaction,
3639 * otherwise we commit a super block with btree roots that point to
3640 * btree nodes/leafs whose content on disk is invalid - either garbage
3641 * or the content of some node/leaf from a past generation that got
3642 * cowed or deleted and is no longer valid.
3643 *
3644 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3645 * not be enough - we need to distinguish between log tree extents vs
3646 * non-log tree extents, and the next filemap_fdatawait_range() call
3647 * will catch and clear such errors in the mapping - and that call might
3648 * be from a log sync and not from a transaction commit. Also, checking
3649 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3650 * not done and would not be reliable - the eb might have been released
3651 * from memory and reading it back again means that flag would not be
3652 * set (since it's a runtime flag, not persisted on disk).
3653 *
3654 * Using the flags below in the btree inode also makes us achieve the
3655 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3656 * writeback for all dirty pages and before filemap_fdatawait_range()
3657 * is called, the writeback for all dirty pages had already finished
3658 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3659 * filemap_fdatawait_range() would return success, as it could not know
3660 * that writeback errors happened (the pages were no longer tagged for
3661 * writeback).
3662 */
3663 switch (eb->log_index) {
3664 case -1:
3665 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3666 break;
3667 case 0:
3668 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3669 break;
3670 case 1:
3671 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3672 break;
3673 default:
3674 BUG(); /* unexpected, logic error */
3675 }
3676}
3677
3678static void end_bio_extent_buffer_writepage(struct bio *bio)
3679{
3680 struct bio_vec *bvec;
3681 struct extent_buffer *eb;
3682 int i, done;
3683
3684 ASSERT(!bio_flagged(bio, BIO_CLONED));
3685 bio_for_each_segment_all(bvec, bio, i) {
3686 struct page *page = bvec->bv_page;
3687
3688 eb = (struct extent_buffer *)page->private;
3689 BUG_ON(!eb);
3690 done = atomic_dec_and_test(&eb->io_pages);
3691
3692 if (bio->bi_status ||
3693 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3694 ClearPageUptodate(page);
3695 set_btree_ioerr(page);
3696 }
3697
3698 end_page_writeback(page);
3699
3700 if (!done)
3701 continue;
3702
3703 end_extent_buffer_writeback(eb);
3704 }
3705
3706 bio_put(bio);
3707}
3708
3709static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3710 struct btrfs_fs_info *fs_info,
3711 struct writeback_control *wbc,
3712 struct extent_page_data *epd)
3713{
3714 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3715 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3716 u64 offset = eb->start;
3717 u32 nritems;
3718 unsigned long i, num_pages;
3719 unsigned long start, end;
3720 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3721 int ret = 0;
3722
3723 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3724 num_pages = num_extent_pages(eb->start, eb->len);
3725 atomic_set(&eb->io_pages, num_pages);
3726
3727 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3728 nritems = btrfs_header_nritems(eb);
3729 if (btrfs_header_level(eb) > 0) {
3730 end = btrfs_node_key_ptr_offset(nritems);
3731
3732 memzero_extent_buffer(eb, end, eb->len - end);
3733 } else {
3734 /*
3735 * leaf:
3736 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3737 */
3738 start = btrfs_item_nr_offset(nritems);
3739 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3740 memzero_extent_buffer(eb, start, end - start);
3741 }
3742
3743 for (i = 0; i < num_pages; i++) {
3744 struct page *p = eb->pages[i];
3745
3746 clear_page_dirty_for_io(p);
3747 set_page_writeback(p);
3748 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3749 p, offset, PAGE_SIZE, 0, bdev,
3750 &epd->bio,
3751 end_bio_extent_buffer_writepage,
3752 0, 0, 0, false);
3753 if (ret) {
3754 set_btree_ioerr(p);
3755 if (PageWriteback(p))
3756 end_page_writeback(p);
3757 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3758 end_extent_buffer_writeback(eb);
3759 ret = -EIO;
3760 break;
3761 }
3762 offset += PAGE_SIZE;
3763 update_nr_written(wbc, 1);
3764 unlock_page(p);
3765 }
3766
3767 if (unlikely(ret)) {
3768 for (; i < num_pages; i++) {
3769 struct page *p = eb->pages[i];
3770 clear_page_dirty_for_io(p);
3771 unlock_page(p);
3772 }
3773 }
3774
3775 return ret;
3776}
3777
3778int btree_write_cache_pages(struct address_space *mapping,
3779 struct writeback_control *wbc)
3780{
3781 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3782 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3783 struct extent_buffer *eb, *prev_eb = NULL;
3784 struct extent_page_data epd = {
3785 .bio = NULL,
3786 .tree = tree,
3787 .extent_locked = 0,
3788 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3789 };
3790 int ret = 0;
3791 int done = 0;
3792 int nr_to_write_done = 0;
3793 struct pagevec pvec;
3794 int nr_pages;
3795 pgoff_t index;
3796 pgoff_t end; /* Inclusive */
3797 int scanned = 0;
3798 int tag;
3799
3800 pagevec_init(&pvec);
3801 if (wbc->range_cyclic) {
3802 index = mapping->writeback_index; /* Start from prev offset */
3803 end = -1;
3804 } else {
3805 index = wbc->range_start >> PAGE_SHIFT;
3806 end = wbc->range_end >> PAGE_SHIFT;
3807 scanned = 1;
3808 }
3809 if (wbc->sync_mode == WB_SYNC_ALL)
3810 tag = PAGECACHE_TAG_TOWRITE;
3811 else
3812 tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814 if (wbc->sync_mode == WB_SYNC_ALL)
3815 tag_pages_for_writeback(mapping, index, end);
3816 while (!done && !nr_to_write_done && (index <= end) &&
3817 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3818 tag))) {
3819 unsigned i;
3820
3821 scanned = 1;
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pvec.pages[i];
3824
3825 if (!PagePrivate(page))
3826 continue;
3827
3828 spin_lock(&mapping->private_lock);
3829 if (!PagePrivate(page)) {
3830 spin_unlock(&mapping->private_lock);
3831 continue;
3832 }
3833
3834 eb = (struct extent_buffer *)page->private;
3835
3836 /*
3837 * Shouldn't happen and normally this would be a BUG_ON
3838 * but no sense in crashing the users box for something
3839 * we can survive anyway.
3840 */
3841 if (WARN_ON(!eb)) {
3842 spin_unlock(&mapping->private_lock);
3843 continue;
3844 }
3845
3846 if (eb == prev_eb) {
3847 spin_unlock(&mapping->private_lock);
3848 continue;
3849 }
3850
3851 ret = atomic_inc_not_zero(&eb->refs);
3852 spin_unlock(&mapping->private_lock);
3853 if (!ret)
3854 continue;
3855
3856 prev_eb = eb;
3857 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3858 if (!ret) {
3859 free_extent_buffer(eb);
3860 continue;
3861 }
3862
3863 ret = write_one_eb(eb, fs_info, wbc, &epd);
3864 if (ret) {
3865 done = 1;
3866 free_extent_buffer(eb);
3867 break;
3868 }
3869 free_extent_buffer(eb);
3870
3871 /*
3872 * the filesystem may choose to bump up nr_to_write.
3873 * We have to make sure to honor the new nr_to_write
3874 * at any time
3875 */
3876 nr_to_write_done = wbc->nr_to_write <= 0;
3877 }
3878 pagevec_release(&pvec);
3879 cond_resched();
3880 }
3881 if (!scanned && !done) {
3882 /*
3883 * We hit the last page and there is more work to be done: wrap
3884 * back to the start of the file
3885 */
3886 scanned = 1;
3887 index = 0;
3888 goto retry;
3889 }
3890 flush_write_bio(&epd);
3891 return ret;
3892}
3893
3894/**
3895 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3896 * @mapping: address space structure to write
3897 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3898 * @data: data passed to __extent_writepage function
3899 *
3900 * If a page is already under I/O, write_cache_pages() skips it, even
3901 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3902 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3903 * and msync() need to guarantee that all the data which was dirty at the time
3904 * the call was made get new I/O started against them. If wbc->sync_mode is
3905 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3906 * existing IO to complete.
3907 */
3908static int extent_write_cache_pages(struct address_space *mapping,
3909 struct writeback_control *wbc,
3910 struct extent_page_data *epd)
3911{
3912 struct inode *inode = mapping->host;
3913 int ret = 0;
3914 int done = 0;
3915 int nr_to_write_done = 0;
3916 struct pagevec pvec;
3917 int nr_pages;
3918 pgoff_t index;
3919 pgoff_t end; /* Inclusive */
3920 pgoff_t done_index;
3921 int range_whole = 0;
3922 int scanned = 0;
3923 int tag;
3924
3925 /*
3926 * We have to hold onto the inode so that ordered extents can do their
3927 * work when the IO finishes. The alternative to this is failing to add
3928 * an ordered extent if the igrab() fails there and that is a huge pain
3929 * to deal with, so instead just hold onto the inode throughout the
3930 * writepages operation. If it fails here we are freeing up the inode
3931 * anyway and we'd rather not waste our time writing out stuff that is
3932 * going to be truncated anyway.
3933 */
3934 if (!igrab(inode))
3935 return 0;
3936
3937 pagevec_init(&pvec);
3938 if (wbc->range_cyclic) {
3939 index = mapping->writeback_index; /* Start from prev offset */
3940 end = -1;
3941 } else {
3942 index = wbc->range_start >> PAGE_SHIFT;
3943 end = wbc->range_end >> PAGE_SHIFT;
3944 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3945 range_whole = 1;
3946 scanned = 1;
3947 }
3948 if (wbc->sync_mode == WB_SYNC_ALL)
3949 tag = PAGECACHE_TAG_TOWRITE;
3950 else
3951 tag = PAGECACHE_TAG_DIRTY;
3952retry:
3953 if (wbc->sync_mode == WB_SYNC_ALL)
3954 tag_pages_for_writeback(mapping, index, end);
3955 done_index = index;
3956 while (!done && !nr_to_write_done && (index <= end) &&
3957 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3958 &index, end, tag))) {
3959 unsigned i;
3960
3961 scanned = 1;
3962 for (i = 0; i < nr_pages; i++) {
3963 struct page *page = pvec.pages[i];
3964
3965 done_index = page->index;
3966 /*
3967 * At this point we hold neither the i_pages lock nor
3968 * the page lock: the page may be truncated or
3969 * invalidated (changing page->mapping to NULL),
3970 * or even swizzled back from swapper_space to
3971 * tmpfs file mapping
3972 */
3973 if (!trylock_page(page)) {
3974 flush_write_bio(epd);
3975 lock_page(page);
3976 }
3977
3978 if (unlikely(page->mapping != mapping)) {
3979 unlock_page(page);
3980 continue;
3981 }
3982
3983 if (wbc->sync_mode != WB_SYNC_NONE) {
3984 if (PageWriteback(page))
3985 flush_write_bio(epd);
3986 wait_on_page_writeback(page);
3987 }
3988
3989 if (PageWriteback(page) ||
3990 !clear_page_dirty_for_io(page)) {
3991 unlock_page(page);
3992 continue;
3993 }
3994
3995 ret = __extent_writepage(page, wbc, epd);
3996
3997 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3998 unlock_page(page);
3999 ret = 0;
4000 }
4001 if (ret < 0) {
4002 /*
4003 * done_index is set past this page,
4004 * so media errors will not choke
4005 * background writeout for the entire
4006 * file. This has consequences for
4007 * range_cyclic semantics (ie. it may
4008 * not be suitable for data integrity
4009 * writeout).
4010 */
4011 done_index = page->index + 1;
4012 done = 1;
4013 break;
4014 }
4015
4016 /*
4017 * the filesystem may choose to bump up nr_to_write.
4018 * We have to make sure to honor the new nr_to_write
4019 * at any time
4020 */
4021 nr_to_write_done = wbc->nr_to_write <= 0;
4022 }
4023 pagevec_release(&pvec);
4024 cond_resched();
4025 }
4026 if (!scanned && !done) {
4027 /*
4028 * We hit the last page and there is more work to be done: wrap
4029 * back to the start of the file
4030 */
4031 scanned = 1;
4032 index = 0;
4033 goto retry;
4034 }
4035
4036 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4037 mapping->writeback_index = done_index;
4038
4039 btrfs_add_delayed_iput(inode);
4040 return ret;
4041}
4042
4043static void flush_write_bio(struct extent_page_data *epd)
4044{
4045 if (epd->bio) {
4046 int ret;
4047
4048 ret = submit_one_bio(epd->bio, 0, 0);
4049 BUG_ON(ret < 0); /* -ENOMEM */
4050 epd->bio = NULL;
4051 }
4052}
4053
4054int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4055{
4056 int ret;
4057 struct extent_page_data epd = {
4058 .bio = NULL,
4059 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4060 .extent_locked = 0,
4061 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4062 };
4063
4064 ret = __extent_writepage(page, wbc, &epd);
4065
4066 flush_write_bio(&epd);
4067 return ret;
4068}
4069
4070int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4071 int mode)
4072{
4073 int ret = 0;
4074 struct address_space *mapping = inode->i_mapping;
4075 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4076 struct page *page;
4077 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4078 PAGE_SHIFT;
4079
4080 struct extent_page_data epd = {
4081 .bio = NULL,
4082 .tree = tree,
4083 .extent_locked = 1,
4084 .sync_io = mode == WB_SYNC_ALL,
4085 };
4086 struct writeback_control wbc_writepages = {
4087 .sync_mode = mode,
4088 .nr_to_write = nr_pages * 2,
4089 .range_start = start,
4090 .range_end = end + 1,
4091 };
4092
4093 while (start <= end) {
4094 page = find_get_page(mapping, start >> PAGE_SHIFT);
4095 if (clear_page_dirty_for_io(page))
4096 ret = __extent_writepage(page, &wbc_writepages, &epd);
4097 else {
4098 if (tree->ops && tree->ops->writepage_end_io_hook)
4099 tree->ops->writepage_end_io_hook(page, start,
4100 start + PAGE_SIZE - 1,
4101 NULL, 1);
4102 unlock_page(page);
4103 }
4104 put_page(page);
4105 start += PAGE_SIZE;
4106 }
4107
4108 flush_write_bio(&epd);
4109 return ret;
4110}
4111
4112int extent_writepages(struct extent_io_tree *tree,
4113 struct address_space *mapping,
4114 struct writeback_control *wbc)
4115{
4116 int ret = 0;
4117 struct extent_page_data epd = {
4118 .bio = NULL,
4119 .tree = tree,
4120 .extent_locked = 0,
4121 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4122 };
4123
4124 ret = extent_write_cache_pages(mapping, wbc, &epd);
4125 flush_write_bio(&epd);
4126 return ret;
4127}
4128
4129int extent_readpages(struct extent_io_tree *tree,
4130 struct address_space *mapping,
4131 struct list_head *pages, unsigned nr_pages)
4132{
4133 struct bio *bio = NULL;
4134 unsigned page_idx;
4135 unsigned long bio_flags = 0;
4136 struct page *pagepool[16];
4137 struct page *page;
4138 struct extent_map *em_cached = NULL;
4139 int nr = 0;
4140 u64 prev_em_start = (u64)-1;
4141
4142 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4143 page = list_entry(pages->prev, struct page, lru);
4144
4145 prefetchw(&page->flags);
4146 list_del(&page->lru);
4147 if (add_to_page_cache_lru(page, mapping,
4148 page->index,
4149 readahead_gfp_mask(mapping))) {
4150 put_page(page);
4151 continue;
4152 }
4153
4154 pagepool[nr++] = page;
4155 if (nr < ARRAY_SIZE(pagepool))
4156 continue;
4157 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4158 &bio_flags, &prev_em_start);
4159 nr = 0;
4160 }
4161 if (nr)
4162 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4163 &bio_flags, &prev_em_start);
4164
4165 if (em_cached)
4166 free_extent_map(em_cached);
4167
4168 BUG_ON(!list_empty(pages));
4169 if (bio)
4170 return submit_one_bio(bio, 0, bio_flags);
4171 return 0;
4172}
4173
4174/*
4175 * basic invalidatepage code, this waits on any locked or writeback
4176 * ranges corresponding to the page, and then deletes any extent state
4177 * records from the tree
4178 */
4179int extent_invalidatepage(struct extent_io_tree *tree,
4180 struct page *page, unsigned long offset)
4181{
4182 struct extent_state *cached_state = NULL;
4183 u64 start = page_offset(page);
4184 u64 end = start + PAGE_SIZE - 1;
4185 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4186
4187 start += ALIGN(offset, blocksize);
4188 if (start > end)
4189 return 0;
4190
4191 lock_extent_bits(tree, start, end, &cached_state);
4192 wait_on_page_writeback(page);
4193 clear_extent_bit(tree, start, end,
4194 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4195 EXTENT_DO_ACCOUNTING,
4196 1, 1, &cached_state);
4197 return 0;
4198}
4199
4200/*
4201 * a helper for releasepage, this tests for areas of the page that
4202 * are locked or under IO and drops the related state bits if it is safe
4203 * to drop the page.
4204 */
4205static int try_release_extent_state(struct extent_map_tree *map,
4206 struct extent_io_tree *tree,
4207 struct page *page, gfp_t mask)
4208{
4209 u64 start = page_offset(page);
4210 u64 end = start + PAGE_SIZE - 1;
4211 int ret = 1;
4212
4213 if (test_range_bit(tree, start, end,
4214 EXTENT_IOBITS, 0, NULL))
4215 ret = 0;
4216 else {
4217 /*
4218 * at this point we can safely clear everything except the
4219 * locked bit and the nodatasum bit
4220 */
4221 ret = __clear_extent_bit(tree, start, end,
4222 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4223 0, 0, NULL, mask, NULL);
4224
4225 /* if clear_extent_bit failed for enomem reasons,
4226 * we can't allow the release to continue.
4227 */
4228 if (ret < 0)
4229 ret = 0;
4230 else
4231 ret = 1;
4232 }
4233 return ret;
4234}
4235
4236/*
4237 * a helper for releasepage. As long as there are no locked extents
4238 * in the range corresponding to the page, both state records and extent
4239 * map records are removed
4240 */
4241int try_release_extent_mapping(struct extent_map_tree *map,
4242 struct extent_io_tree *tree, struct page *page,
4243 gfp_t mask)
4244{
4245 struct extent_map *em;
4246 u64 start = page_offset(page);
4247 u64 end = start + PAGE_SIZE - 1;
4248
4249 if (gfpflags_allow_blocking(mask) &&
4250 page->mapping->host->i_size > SZ_16M) {
4251 u64 len;
4252 while (start <= end) {
4253 len = end - start + 1;
4254 write_lock(&map->lock);
4255 em = lookup_extent_mapping(map, start, len);
4256 if (!em) {
4257 write_unlock(&map->lock);
4258 break;
4259 }
4260 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4261 em->start != start) {
4262 write_unlock(&map->lock);
4263 free_extent_map(em);
4264 break;
4265 }
4266 if (!test_range_bit(tree, em->start,
4267 extent_map_end(em) - 1,
4268 EXTENT_LOCKED | EXTENT_WRITEBACK,
4269 0, NULL)) {
4270 remove_extent_mapping(map, em);
4271 /* once for the rb tree */
4272 free_extent_map(em);
4273 }
4274 start = extent_map_end(em);
4275 write_unlock(&map->lock);
4276
4277 /* once for us */
4278 free_extent_map(em);
4279 }
4280 }
4281 return try_release_extent_state(map, tree, page, mask);
4282}
4283
4284/*
4285 * helper function for fiemap, which doesn't want to see any holes.
4286 * This maps until we find something past 'last'
4287 */
4288static struct extent_map *get_extent_skip_holes(struct inode *inode,
4289 u64 offset, u64 last)
4290{
4291 u64 sectorsize = btrfs_inode_sectorsize(inode);
4292 struct extent_map *em;
4293 u64 len;
4294
4295 if (offset >= last)
4296 return NULL;
4297
4298 while (1) {
4299 len = last - offset;
4300 if (len == 0)
4301 break;
4302 len = ALIGN(len, sectorsize);
4303 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4304 len, 0);
4305 if (IS_ERR_OR_NULL(em))
4306 return em;
4307
4308 /* if this isn't a hole return it */
4309 if (em->block_start != EXTENT_MAP_HOLE)
4310 return em;
4311
4312 /* this is a hole, advance to the next extent */
4313 offset = extent_map_end(em);
4314 free_extent_map(em);
4315 if (offset >= last)
4316 break;
4317 }
4318 return NULL;
4319}
4320
4321/*
4322 * To cache previous fiemap extent
4323 *
4324 * Will be used for merging fiemap extent
4325 */
4326struct fiemap_cache {
4327 u64 offset;
4328 u64 phys;
4329 u64 len;
4330 u32 flags;
4331 bool cached;
4332};
4333
4334/*
4335 * Helper to submit fiemap extent.
4336 *
4337 * Will try to merge current fiemap extent specified by @offset, @phys,
4338 * @len and @flags with cached one.
4339 * And only when we fails to merge, cached one will be submitted as
4340 * fiemap extent.
4341 *
4342 * Return value is the same as fiemap_fill_next_extent().
4343 */
4344static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4345 struct fiemap_cache *cache,
4346 u64 offset, u64 phys, u64 len, u32 flags)
4347{
4348 int ret = 0;
4349
4350 if (!cache->cached)
4351 goto assign;
4352
4353 /*
4354 * Sanity check, extent_fiemap() should have ensured that new
4355 * fiemap extent won't overlap with cahced one.
4356 * Not recoverable.
4357 *
4358 * NOTE: Physical address can overlap, due to compression
4359 */
4360 if (cache->offset + cache->len > offset) {
4361 WARN_ON(1);
4362 return -EINVAL;
4363 }
4364
4365 /*
4366 * Only merges fiemap extents if
4367 * 1) Their logical addresses are continuous
4368 *
4369 * 2) Their physical addresses are continuous
4370 * So truly compressed (physical size smaller than logical size)
4371 * extents won't get merged with each other
4372 *
4373 * 3) Share same flags except FIEMAP_EXTENT_LAST
4374 * So regular extent won't get merged with prealloc extent
4375 */
4376 if (cache->offset + cache->len == offset &&
4377 cache->phys + cache->len == phys &&
4378 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4379 (flags & ~FIEMAP_EXTENT_LAST)) {
4380 cache->len += len;
4381 cache->flags |= flags;
4382 goto try_submit_last;
4383 }
4384
4385 /* Not mergeable, need to submit cached one */
4386 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4387 cache->len, cache->flags);
4388 cache->cached = false;
4389 if (ret)
4390 return ret;
4391assign:
4392 cache->cached = true;
4393 cache->offset = offset;
4394 cache->phys = phys;
4395 cache->len = len;
4396 cache->flags = flags;
4397try_submit_last:
4398 if (cache->flags & FIEMAP_EXTENT_LAST) {
4399 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4400 cache->phys, cache->len, cache->flags);
4401 cache->cached = false;
4402 }
4403 return ret;
4404}
4405
4406/*
4407 * Emit last fiemap cache
4408 *
4409 * The last fiemap cache may still be cached in the following case:
4410 * 0 4k 8k
4411 * |<- Fiemap range ->|
4412 * |<------------ First extent ----------->|
4413 *
4414 * In this case, the first extent range will be cached but not emitted.
4415 * So we must emit it before ending extent_fiemap().
4416 */
4417static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4418 struct fiemap_extent_info *fieinfo,
4419 struct fiemap_cache *cache)
4420{
4421 int ret;
4422
4423 if (!cache->cached)
4424 return 0;
4425
4426 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4427 cache->len, cache->flags);
4428 cache->cached = false;
4429 if (ret > 0)
4430 ret = 0;
4431 return ret;
4432}
4433
4434int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4435 __u64 start, __u64 len)
4436{
4437 int ret = 0;
4438 u64 off = start;
4439 u64 max = start + len;
4440 u32 flags = 0;
4441 u32 found_type;
4442 u64 last;
4443 u64 last_for_get_extent = 0;
4444 u64 disko = 0;
4445 u64 isize = i_size_read(inode);
4446 struct btrfs_key found_key;
4447 struct extent_map *em = NULL;
4448 struct extent_state *cached_state = NULL;
4449 struct btrfs_path *path;
4450 struct btrfs_root *root = BTRFS_I(inode)->root;
4451 struct fiemap_cache cache = { 0 };
4452 int end = 0;
4453 u64 em_start = 0;
4454 u64 em_len = 0;
4455 u64 em_end = 0;
4456
4457 if (len == 0)
4458 return -EINVAL;
4459
4460 path = btrfs_alloc_path();
4461 if (!path)
4462 return -ENOMEM;
4463 path->leave_spinning = 1;
4464
4465 start = round_down(start, btrfs_inode_sectorsize(inode));
4466 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4467
4468 /*
4469 * lookup the last file extent. We're not using i_size here
4470 * because there might be preallocation past i_size
4471 */
4472 ret = btrfs_lookup_file_extent(NULL, root, path,
4473 btrfs_ino(BTRFS_I(inode)), -1, 0);
4474 if (ret < 0) {
4475 btrfs_free_path(path);
4476 return ret;
4477 } else {
4478 WARN_ON(!ret);
4479 if (ret == 1)
4480 ret = 0;
4481 }
4482
4483 path->slots[0]--;
4484 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4485 found_type = found_key.type;
4486
4487 /* No extents, but there might be delalloc bits */
4488 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4489 found_type != BTRFS_EXTENT_DATA_KEY) {
4490 /* have to trust i_size as the end */
4491 last = (u64)-1;
4492 last_for_get_extent = isize;
4493 } else {
4494 /*
4495 * remember the start of the last extent. There are a
4496 * bunch of different factors that go into the length of the
4497 * extent, so its much less complex to remember where it started
4498 */
4499 last = found_key.offset;
4500 last_for_get_extent = last + 1;
4501 }
4502 btrfs_release_path(path);
4503
4504 /*
4505 * we might have some extents allocated but more delalloc past those
4506 * extents. so, we trust isize unless the start of the last extent is
4507 * beyond isize
4508 */
4509 if (last < isize) {
4510 last = (u64)-1;
4511 last_for_get_extent = isize;
4512 }
4513
4514 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4515 &cached_state);
4516
4517 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4518 if (!em)
4519 goto out;
4520 if (IS_ERR(em)) {
4521 ret = PTR_ERR(em);
4522 goto out;
4523 }
4524
4525 while (!end) {
4526 u64 offset_in_extent = 0;
4527
4528 /* break if the extent we found is outside the range */
4529 if (em->start >= max || extent_map_end(em) < off)
4530 break;
4531
4532 /*
4533 * get_extent may return an extent that starts before our
4534 * requested range. We have to make sure the ranges
4535 * we return to fiemap always move forward and don't
4536 * overlap, so adjust the offsets here
4537 */
4538 em_start = max(em->start, off);
4539
4540 /*
4541 * record the offset from the start of the extent
4542 * for adjusting the disk offset below. Only do this if the
4543 * extent isn't compressed since our in ram offset may be past
4544 * what we have actually allocated on disk.
4545 */
4546 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4547 offset_in_extent = em_start - em->start;
4548 em_end = extent_map_end(em);
4549 em_len = em_end - em_start;
4550 disko = 0;
4551 flags = 0;
4552
4553 /*
4554 * bump off for our next call to get_extent
4555 */
4556 off = extent_map_end(em);
4557 if (off >= max)
4558 end = 1;
4559
4560 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4561 end = 1;
4562 flags |= FIEMAP_EXTENT_LAST;
4563 } else if (em->block_start == EXTENT_MAP_INLINE) {
4564 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4565 FIEMAP_EXTENT_NOT_ALIGNED);
4566 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4567 flags |= (FIEMAP_EXTENT_DELALLOC |
4568 FIEMAP_EXTENT_UNKNOWN);
4569 } else if (fieinfo->fi_extents_max) {
4570 u64 bytenr = em->block_start -
4571 (em->start - em->orig_start);
4572
4573 disko = em->block_start + offset_in_extent;
4574
4575 /*
4576 * As btrfs supports shared space, this information
4577 * can be exported to userspace tools via
4578 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4579 * then we're just getting a count and we can skip the
4580 * lookup stuff.
4581 */
4582 ret = btrfs_check_shared(root,
4583 btrfs_ino(BTRFS_I(inode)),
4584 bytenr);
4585 if (ret < 0)
4586 goto out_free;
4587 if (ret)
4588 flags |= FIEMAP_EXTENT_SHARED;
4589 ret = 0;
4590 }
4591 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4592 flags |= FIEMAP_EXTENT_ENCODED;
4593 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4594 flags |= FIEMAP_EXTENT_UNWRITTEN;
4595
4596 free_extent_map(em);
4597 em = NULL;
4598 if ((em_start >= last) || em_len == (u64)-1 ||
4599 (last == (u64)-1 && isize <= em_end)) {
4600 flags |= FIEMAP_EXTENT_LAST;
4601 end = 1;
4602 }
4603
4604 /* now scan forward to see if this is really the last extent. */
4605 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4606 if (IS_ERR(em)) {
4607 ret = PTR_ERR(em);
4608 goto out;
4609 }
4610 if (!em) {
4611 flags |= FIEMAP_EXTENT_LAST;
4612 end = 1;
4613 }
4614 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4615 em_len, flags);
4616 if (ret) {
4617 if (ret == 1)
4618 ret = 0;
4619 goto out_free;
4620 }
4621 }
4622out_free:
4623 if (!ret)
4624 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4625 free_extent_map(em);
4626out:
4627 btrfs_free_path(path);
4628 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4629 &cached_state);
4630 return ret;
4631}
4632
4633static void __free_extent_buffer(struct extent_buffer *eb)
4634{
4635 btrfs_leak_debug_del(&eb->leak_list);
4636 kmem_cache_free(extent_buffer_cache, eb);
4637}
4638
4639int extent_buffer_under_io(struct extent_buffer *eb)
4640{
4641 return (atomic_read(&eb->io_pages) ||
4642 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4643 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4644}
4645
4646/*
4647 * Helper for releasing extent buffer page.
4648 */
4649static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4650{
4651 unsigned long index;
4652 struct page *page;
4653 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4654
4655 BUG_ON(extent_buffer_under_io(eb));
4656
4657 index = num_extent_pages(eb->start, eb->len);
4658 if (index == 0)
4659 return;
4660
4661 do {
4662 index--;
4663 page = eb->pages[index];
4664 if (!page)
4665 continue;
4666 if (mapped)
4667 spin_lock(&page->mapping->private_lock);
4668 /*
4669 * We do this since we'll remove the pages after we've
4670 * removed the eb from the radix tree, so we could race
4671 * and have this page now attached to the new eb. So
4672 * only clear page_private if it's still connected to
4673 * this eb.
4674 */
4675 if (PagePrivate(page) &&
4676 page->private == (unsigned long)eb) {
4677 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4678 BUG_ON(PageDirty(page));
4679 BUG_ON(PageWriteback(page));
4680 /*
4681 * We need to make sure we haven't be attached
4682 * to a new eb.
4683 */
4684 ClearPagePrivate(page);
4685 set_page_private(page, 0);
4686 /* One for the page private */
4687 put_page(page);
4688 }
4689
4690 if (mapped)
4691 spin_unlock(&page->mapping->private_lock);
4692
4693 /* One for when we allocated the page */
4694 put_page(page);
4695 } while (index != 0);
4696}
4697
4698/*
4699 * Helper for releasing the extent buffer.
4700 */
4701static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4702{
4703 btrfs_release_extent_buffer_page(eb);
4704 __free_extent_buffer(eb);
4705}
4706
4707static struct extent_buffer *
4708__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4709 unsigned long len)
4710{
4711 struct extent_buffer *eb = NULL;
4712
4713 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4714 eb->start = start;
4715 eb->len = len;
4716 eb->fs_info = fs_info;
4717 eb->bflags = 0;
4718 rwlock_init(&eb->lock);
4719 atomic_set(&eb->write_locks, 0);
4720 atomic_set(&eb->read_locks, 0);
4721 atomic_set(&eb->blocking_readers, 0);
4722 atomic_set(&eb->blocking_writers, 0);
4723 atomic_set(&eb->spinning_readers, 0);
4724 atomic_set(&eb->spinning_writers, 0);
4725 eb->lock_nested = 0;
4726 init_waitqueue_head(&eb->write_lock_wq);
4727 init_waitqueue_head(&eb->read_lock_wq);
4728
4729 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4730
4731 spin_lock_init(&eb->refs_lock);
4732 atomic_set(&eb->refs, 1);
4733 atomic_set(&eb->io_pages, 0);
4734
4735 /*
4736 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4737 */
4738 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4739 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4740 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4741
4742 return eb;
4743}
4744
4745struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4746{
4747 unsigned long i;
4748 struct page *p;
4749 struct extent_buffer *new;
4750 unsigned long num_pages = num_extent_pages(src->start, src->len);
4751
4752 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4753 if (new == NULL)
4754 return NULL;
4755
4756 for (i = 0; i < num_pages; i++) {
4757 p = alloc_page(GFP_NOFS);
4758 if (!p) {
4759 btrfs_release_extent_buffer(new);
4760 return NULL;
4761 }
4762 attach_extent_buffer_page(new, p);
4763 WARN_ON(PageDirty(p));
4764 SetPageUptodate(p);
4765 new->pages[i] = p;
4766 copy_page(page_address(p), page_address(src->pages[i]));
4767 }
4768
4769 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4770 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4771
4772 return new;
4773}
4774
4775struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4776 u64 start, unsigned long len)
4777{
4778 struct extent_buffer *eb;
4779 unsigned long num_pages;
4780 unsigned long i;
4781
4782 num_pages = num_extent_pages(start, len);
4783
4784 eb = __alloc_extent_buffer(fs_info, start, len);
4785 if (!eb)
4786 return NULL;
4787
4788 for (i = 0; i < num_pages; i++) {
4789 eb->pages[i] = alloc_page(GFP_NOFS);
4790 if (!eb->pages[i])
4791 goto err;
4792 }
4793 set_extent_buffer_uptodate(eb);
4794 btrfs_set_header_nritems(eb, 0);
4795 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4796
4797 return eb;
4798err:
4799 for (; i > 0; i--)
4800 __free_page(eb->pages[i - 1]);
4801 __free_extent_buffer(eb);
4802 return NULL;
4803}
4804
4805struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4806 u64 start)
4807{
4808 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4809}
4810
4811static void check_buffer_tree_ref(struct extent_buffer *eb)
4812{
4813 int refs;
4814 /* the ref bit is tricky. We have to make sure it is set
4815 * if we have the buffer dirty. Otherwise the
4816 * code to free a buffer can end up dropping a dirty
4817 * page
4818 *
4819 * Once the ref bit is set, it won't go away while the
4820 * buffer is dirty or in writeback, and it also won't
4821 * go away while we have the reference count on the
4822 * eb bumped.
4823 *
4824 * We can't just set the ref bit without bumping the
4825 * ref on the eb because free_extent_buffer might
4826 * see the ref bit and try to clear it. If this happens
4827 * free_extent_buffer might end up dropping our original
4828 * ref by mistake and freeing the page before we are able
4829 * to add one more ref.
4830 *
4831 * So bump the ref count first, then set the bit. If someone
4832 * beat us to it, drop the ref we added.
4833 */
4834 refs = atomic_read(&eb->refs);
4835 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4836 return;
4837
4838 spin_lock(&eb->refs_lock);
4839 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4840 atomic_inc(&eb->refs);
4841 spin_unlock(&eb->refs_lock);
4842}
4843
4844static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4845 struct page *accessed)
4846{
4847 unsigned long num_pages, i;
4848
4849 check_buffer_tree_ref(eb);
4850
4851 num_pages = num_extent_pages(eb->start, eb->len);
4852 for (i = 0; i < num_pages; i++) {
4853 struct page *p = eb->pages[i];
4854
4855 if (p != accessed)
4856 mark_page_accessed(p);
4857 }
4858}
4859
4860struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4861 u64 start)
4862{
4863 struct extent_buffer *eb;
4864
4865 rcu_read_lock();
4866 eb = radix_tree_lookup(&fs_info->buffer_radix,
4867 start >> PAGE_SHIFT);
4868 if (eb && atomic_inc_not_zero(&eb->refs)) {
4869 rcu_read_unlock();
4870 /*
4871 * Lock our eb's refs_lock to avoid races with
4872 * free_extent_buffer. When we get our eb it might be flagged
4873 * with EXTENT_BUFFER_STALE and another task running
4874 * free_extent_buffer might have seen that flag set,
4875 * eb->refs == 2, that the buffer isn't under IO (dirty and
4876 * writeback flags not set) and it's still in the tree (flag
4877 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4878 * of decrementing the extent buffer's reference count twice.
4879 * So here we could race and increment the eb's reference count,
4880 * clear its stale flag, mark it as dirty and drop our reference
4881 * before the other task finishes executing free_extent_buffer,
4882 * which would later result in an attempt to free an extent
4883 * buffer that is dirty.
4884 */
4885 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4886 spin_lock(&eb->refs_lock);
4887 spin_unlock(&eb->refs_lock);
4888 }
4889 mark_extent_buffer_accessed(eb, NULL);
4890 return eb;
4891 }
4892 rcu_read_unlock();
4893
4894 return NULL;
4895}
4896
4897#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4898struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4899 u64 start)
4900{
4901 struct extent_buffer *eb, *exists = NULL;
4902 int ret;
4903
4904 eb = find_extent_buffer(fs_info, start);
4905 if (eb)
4906 return eb;
4907 eb = alloc_dummy_extent_buffer(fs_info, start);
4908 if (!eb)
4909 return NULL;
4910 eb->fs_info = fs_info;
4911again:
4912 ret = radix_tree_preload(GFP_NOFS);
4913 if (ret)
4914 goto free_eb;
4915 spin_lock(&fs_info->buffer_lock);
4916 ret = radix_tree_insert(&fs_info->buffer_radix,
4917 start >> PAGE_SHIFT, eb);
4918 spin_unlock(&fs_info->buffer_lock);
4919 radix_tree_preload_end();
4920 if (ret == -EEXIST) {
4921 exists = find_extent_buffer(fs_info, start);
4922 if (exists)
4923 goto free_eb;
4924 else
4925 goto again;
4926 }
4927 check_buffer_tree_ref(eb);
4928 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4929
4930 /*
4931 * We will free dummy extent buffer's if they come into
4932 * free_extent_buffer with a ref count of 2, but if we are using this we
4933 * want the buffers to stay in memory until we're done with them, so
4934 * bump the ref count again.
4935 */
4936 atomic_inc(&eb->refs);
4937 return eb;
4938free_eb:
4939 btrfs_release_extent_buffer(eb);
4940 return exists;
4941}
4942#endif
4943
4944struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4945 u64 start)
4946{
4947 unsigned long len = fs_info->nodesize;
4948 unsigned long num_pages = num_extent_pages(start, len);
4949 unsigned long i;
4950 unsigned long index = start >> PAGE_SHIFT;
4951 struct extent_buffer *eb;
4952 struct extent_buffer *exists = NULL;
4953 struct page *p;
4954 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4955 int uptodate = 1;
4956 int ret;
4957
4958 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4959 btrfs_err(fs_info, "bad tree block start %llu", start);
4960 return ERR_PTR(-EINVAL);
4961 }
4962
4963 eb = find_extent_buffer(fs_info, start);
4964 if (eb)
4965 return eb;
4966
4967 eb = __alloc_extent_buffer(fs_info, start, len);
4968 if (!eb)
4969 return ERR_PTR(-ENOMEM);
4970
4971 for (i = 0; i < num_pages; i++, index++) {
4972 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4973 if (!p) {
4974 exists = ERR_PTR(-ENOMEM);
4975 goto free_eb;
4976 }
4977
4978 spin_lock(&mapping->private_lock);
4979 if (PagePrivate(p)) {
4980 /*
4981 * We could have already allocated an eb for this page
4982 * and attached one so lets see if we can get a ref on
4983 * the existing eb, and if we can we know it's good and
4984 * we can just return that one, else we know we can just
4985 * overwrite page->private.
4986 */
4987 exists = (struct extent_buffer *)p->private;
4988 if (atomic_inc_not_zero(&exists->refs)) {
4989 spin_unlock(&mapping->private_lock);
4990 unlock_page(p);
4991 put_page(p);
4992 mark_extent_buffer_accessed(exists, p);
4993 goto free_eb;
4994 }
4995 exists = NULL;
4996
4997 /*
4998 * Do this so attach doesn't complain and we need to
4999 * drop the ref the old guy had.
5000 */
5001 ClearPagePrivate(p);
5002 WARN_ON(PageDirty(p));
5003 put_page(p);
5004 }
5005 attach_extent_buffer_page(eb, p);
5006 spin_unlock(&mapping->private_lock);
5007 WARN_ON(PageDirty(p));
5008 eb->pages[i] = p;
5009 if (!PageUptodate(p))
5010 uptodate = 0;
5011
5012 /*
5013 * see below about how we avoid a nasty race with release page
5014 * and why we unlock later
5015 */
5016 }
5017 if (uptodate)
5018 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5019again:
5020 ret = radix_tree_preload(GFP_NOFS);
5021 if (ret) {
5022 exists = ERR_PTR(ret);
5023 goto free_eb;
5024 }
5025
5026 spin_lock(&fs_info->buffer_lock);
5027 ret = radix_tree_insert(&fs_info->buffer_radix,
5028 start >> PAGE_SHIFT, eb);
5029 spin_unlock(&fs_info->buffer_lock);
5030 radix_tree_preload_end();
5031 if (ret == -EEXIST) {
5032 exists = find_extent_buffer(fs_info, start);
5033 if (exists)
5034 goto free_eb;
5035 else
5036 goto again;
5037 }
5038 /* add one reference for the tree */
5039 check_buffer_tree_ref(eb);
5040 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5041
5042 /*
5043 * there is a race where release page may have
5044 * tried to find this extent buffer in the radix
5045 * but failed. It will tell the VM it is safe to
5046 * reclaim the, and it will clear the page private bit.
5047 * We must make sure to set the page private bit properly
5048 * after the extent buffer is in the radix tree so
5049 * it doesn't get lost
5050 */
5051 SetPageChecked(eb->pages[0]);
5052 for (i = 1; i < num_pages; i++) {
5053 p = eb->pages[i];
5054 ClearPageChecked(p);
5055 unlock_page(p);
5056 }
5057 unlock_page(eb->pages[0]);
5058 return eb;
5059
5060free_eb:
5061 WARN_ON(!atomic_dec_and_test(&eb->refs));
5062 for (i = 0; i < num_pages; i++) {
5063 if (eb->pages[i])
5064 unlock_page(eb->pages[i]);
5065 }
5066
5067 btrfs_release_extent_buffer(eb);
5068 return exists;
5069}
5070
5071static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5072{
5073 struct extent_buffer *eb =
5074 container_of(head, struct extent_buffer, rcu_head);
5075
5076 __free_extent_buffer(eb);
5077}
5078
5079/* Expects to have eb->eb_lock already held */
5080static int release_extent_buffer(struct extent_buffer *eb)
5081{
5082 WARN_ON(atomic_read(&eb->refs) == 0);
5083 if (atomic_dec_and_test(&eb->refs)) {
5084 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5085 struct btrfs_fs_info *fs_info = eb->fs_info;
5086
5087 spin_unlock(&eb->refs_lock);
5088
5089 spin_lock(&fs_info->buffer_lock);
5090 radix_tree_delete(&fs_info->buffer_radix,
5091 eb->start >> PAGE_SHIFT);
5092 spin_unlock(&fs_info->buffer_lock);
5093 } else {
5094 spin_unlock(&eb->refs_lock);
5095 }
5096
5097 /* Should be safe to release our pages at this point */
5098 btrfs_release_extent_buffer_page(eb);
5099#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5100 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5101 __free_extent_buffer(eb);
5102 return 1;
5103 }
5104#endif
5105 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5106 return 1;
5107 }
5108 spin_unlock(&eb->refs_lock);
5109
5110 return 0;
5111}
5112
5113void free_extent_buffer(struct extent_buffer *eb)
5114{
5115 int refs;
5116 int old;
5117 if (!eb)
5118 return;
5119
5120 while (1) {
5121 refs = atomic_read(&eb->refs);
5122 if (refs <= 3)
5123 break;
5124 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5125 if (old == refs)
5126 return;
5127 }
5128
5129 spin_lock(&eb->refs_lock);
5130 if (atomic_read(&eb->refs) == 2 &&
5131 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5132 atomic_dec(&eb->refs);
5133
5134 if (atomic_read(&eb->refs) == 2 &&
5135 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5136 !extent_buffer_under_io(eb) &&
5137 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5138 atomic_dec(&eb->refs);
5139
5140 /*
5141 * I know this is terrible, but it's temporary until we stop tracking
5142 * the uptodate bits and such for the extent buffers.
5143 */
5144 release_extent_buffer(eb);
5145}
5146
5147void free_extent_buffer_stale(struct extent_buffer *eb)
5148{
5149 if (!eb)
5150 return;
5151
5152 spin_lock(&eb->refs_lock);
5153 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5154
5155 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5156 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5157 atomic_dec(&eb->refs);
5158 release_extent_buffer(eb);
5159}
5160
5161void clear_extent_buffer_dirty(struct extent_buffer *eb)
5162{
5163 unsigned long i;
5164 unsigned long num_pages;
5165 struct page *page;
5166
5167 num_pages = num_extent_pages(eb->start, eb->len);
5168
5169 for (i = 0; i < num_pages; i++) {
5170 page = eb->pages[i];
5171 if (!PageDirty(page))
5172 continue;
5173
5174 lock_page(page);
5175 WARN_ON(!PagePrivate(page));
5176
5177 clear_page_dirty_for_io(page);
5178 xa_lock_irq(&page->mapping->i_pages);
5179 if (!PageDirty(page)) {
5180 radix_tree_tag_clear(&page->mapping->i_pages,
5181 page_index(page),
5182 PAGECACHE_TAG_DIRTY);
5183 }
5184 xa_unlock_irq(&page->mapping->i_pages);
5185 ClearPageError(page);
5186 unlock_page(page);
5187 }
5188 WARN_ON(atomic_read(&eb->refs) == 0);
5189}
5190
5191int set_extent_buffer_dirty(struct extent_buffer *eb)
5192{
5193 unsigned long i;
5194 unsigned long num_pages;
5195 int was_dirty = 0;
5196
5197 check_buffer_tree_ref(eb);
5198
5199 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5200
5201 num_pages = num_extent_pages(eb->start, eb->len);
5202 WARN_ON(atomic_read(&eb->refs) == 0);
5203 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5204
5205 for (i = 0; i < num_pages; i++)
5206 set_page_dirty(eb->pages[i]);
5207 return was_dirty;
5208}
5209
5210void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5211{
5212 unsigned long i;
5213 struct page *page;
5214 unsigned long num_pages;
5215
5216 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5217 num_pages = num_extent_pages(eb->start, eb->len);
5218 for (i = 0; i < num_pages; i++) {
5219 page = eb->pages[i];
5220 if (page)
5221 ClearPageUptodate(page);
5222 }
5223}
5224
5225void set_extent_buffer_uptodate(struct extent_buffer *eb)
5226{
5227 unsigned long i;
5228 struct page *page;
5229 unsigned long num_pages;
5230
5231 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5232 num_pages = num_extent_pages(eb->start, eb->len);
5233 for (i = 0; i < num_pages; i++) {
5234 page = eb->pages[i];
5235 SetPageUptodate(page);
5236 }
5237}
5238
5239int read_extent_buffer_pages(struct extent_io_tree *tree,
5240 struct extent_buffer *eb, int wait, int mirror_num)
5241{
5242 unsigned long i;
5243 struct page *page;
5244 int err;
5245 int ret = 0;
5246 int locked_pages = 0;
5247 int all_uptodate = 1;
5248 unsigned long num_pages;
5249 unsigned long num_reads = 0;
5250 struct bio *bio = NULL;
5251 unsigned long bio_flags = 0;
5252
5253 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5254 return 0;
5255
5256 num_pages = num_extent_pages(eb->start, eb->len);
5257 for (i = 0; i < num_pages; i++) {
5258 page = eb->pages[i];
5259 if (wait == WAIT_NONE) {
5260 if (!trylock_page(page))
5261 goto unlock_exit;
5262 } else {
5263 lock_page(page);
5264 }
5265 locked_pages++;
5266 }
5267 /*
5268 * We need to firstly lock all pages to make sure that
5269 * the uptodate bit of our pages won't be affected by
5270 * clear_extent_buffer_uptodate().
5271 */
5272 for (i = 0; i < num_pages; i++) {
5273 page = eb->pages[i];
5274 if (!PageUptodate(page)) {
5275 num_reads++;
5276 all_uptodate = 0;
5277 }
5278 }
5279
5280 if (all_uptodate) {
5281 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5282 goto unlock_exit;
5283 }
5284
5285 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5286 eb->read_mirror = 0;
5287 atomic_set(&eb->io_pages, num_reads);
5288 for (i = 0; i < num_pages; i++) {
5289 page = eb->pages[i];
5290
5291 if (!PageUptodate(page)) {
5292 if (ret) {
5293 atomic_dec(&eb->io_pages);
5294 unlock_page(page);
5295 continue;
5296 }
5297
5298 ClearPageError(page);
5299 err = __extent_read_full_page(tree, page,
5300 btree_get_extent, &bio,
5301 mirror_num, &bio_flags,
5302 REQ_META);
5303 if (err) {
5304 ret = err;
5305 /*
5306 * We use &bio in above __extent_read_full_page,
5307 * so we ensure that if it returns error, the
5308 * current page fails to add itself to bio and
5309 * it's been unlocked.
5310 *
5311 * We must dec io_pages by ourselves.
5312 */
5313 atomic_dec(&eb->io_pages);
5314 }
5315 } else {
5316 unlock_page(page);
5317 }
5318 }
5319
5320 if (bio) {
5321 err = submit_one_bio(bio, mirror_num, bio_flags);
5322 if (err)
5323 return err;
5324 }
5325
5326 if (ret || wait != WAIT_COMPLETE)
5327 return ret;
5328
5329 for (i = 0; i < num_pages; i++) {
5330 page = eb->pages[i];
5331 wait_on_page_locked(page);
5332 if (!PageUptodate(page))
5333 ret = -EIO;
5334 }
5335
5336 return ret;
5337
5338unlock_exit:
5339 while (locked_pages > 0) {
5340 locked_pages--;
5341 page = eb->pages[locked_pages];
5342 unlock_page(page);
5343 }
5344 return ret;
5345}
5346
5347void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5348 unsigned long start, unsigned long len)
5349{
5350 size_t cur;
5351 size_t offset;
5352 struct page *page;
5353 char *kaddr;
5354 char *dst = (char *)dstv;
5355 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5356 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5357
5358 if (start + len > eb->len) {
5359 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5360 eb->start, eb->len, start, len);
5361 memset(dst, 0, len);
5362 return;
5363 }
5364
5365 offset = (start_offset + start) & (PAGE_SIZE - 1);
5366
5367 while (len > 0) {
5368 page = eb->pages[i];
5369
5370 cur = min(len, (PAGE_SIZE - offset));
5371 kaddr = page_address(page);
5372 memcpy(dst, kaddr + offset, cur);
5373
5374 dst += cur;
5375 len -= cur;
5376 offset = 0;
5377 i++;
5378 }
5379}
5380
5381int read_extent_buffer_to_user(const struct extent_buffer *eb,
5382 void __user *dstv,
5383 unsigned long start, unsigned long len)
5384{
5385 size_t cur;
5386 size_t offset;
5387 struct page *page;
5388 char *kaddr;
5389 char __user *dst = (char __user *)dstv;
5390 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392 int ret = 0;
5393
5394 WARN_ON(start > eb->len);
5395 WARN_ON(start + len > eb->start + eb->len);
5396
5397 offset = (start_offset + start) & (PAGE_SIZE - 1);
5398
5399 while (len > 0) {
5400 page = eb->pages[i];
5401
5402 cur = min(len, (PAGE_SIZE - offset));
5403 kaddr = page_address(page);
5404 if (copy_to_user(dst, kaddr + offset, cur)) {
5405 ret = -EFAULT;
5406 break;
5407 }
5408
5409 dst += cur;
5410 len -= cur;
5411 offset = 0;
5412 i++;
5413 }
5414
5415 return ret;
5416}
5417
5418/*
5419 * return 0 if the item is found within a page.
5420 * return 1 if the item spans two pages.
5421 * return -EINVAL otherwise.
5422 */
5423int map_private_extent_buffer(const struct extent_buffer *eb,
5424 unsigned long start, unsigned long min_len,
5425 char **map, unsigned long *map_start,
5426 unsigned long *map_len)
5427{
5428 size_t offset = start & (PAGE_SIZE - 1);
5429 char *kaddr;
5430 struct page *p;
5431 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5432 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5433 unsigned long end_i = (start_offset + start + min_len - 1) >>
5434 PAGE_SHIFT;
5435
5436 if (start + min_len > eb->len) {
5437 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5438 eb->start, eb->len, start, min_len);
5439 return -EINVAL;
5440 }
5441
5442 if (i != end_i)
5443 return 1;
5444
5445 if (i == 0) {
5446 offset = start_offset;
5447 *map_start = 0;
5448 } else {
5449 offset = 0;
5450 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5451 }
5452
5453 p = eb->pages[i];
5454 kaddr = page_address(p);
5455 *map = kaddr + offset;
5456 *map_len = PAGE_SIZE - offset;
5457 return 0;
5458}
5459
5460int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5461 unsigned long start, unsigned long len)
5462{
5463 size_t cur;
5464 size_t offset;
5465 struct page *page;
5466 char *kaddr;
5467 char *ptr = (char *)ptrv;
5468 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5469 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5470 int ret = 0;
5471
5472 WARN_ON(start > eb->len);
5473 WARN_ON(start + len > eb->start + eb->len);
5474
5475 offset = (start_offset + start) & (PAGE_SIZE - 1);
5476
5477 while (len > 0) {
5478 page = eb->pages[i];
5479
5480 cur = min(len, (PAGE_SIZE - offset));
5481
5482 kaddr = page_address(page);
5483 ret = memcmp(ptr, kaddr + offset, cur);
5484 if (ret)
5485 break;
5486
5487 ptr += cur;
5488 len -= cur;
5489 offset = 0;
5490 i++;
5491 }
5492 return ret;
5493}
5494
5495void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5496 const void *srcv)
5497{
5498 char *kaddr;
5499
5500 WARN_ON(!PageUptodate(eb->pages[0]));
5501 kaddr = page_address(eb->pages[0]);
5502 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5503 BTRFS_FSID_SIZE);
5504}
5505
5506void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5507{
5508 char *kaddr;
5509
5510 WARN_ON(!PageUptodate(eb->pages[0]));
5511 kaddr = page_address(eb->pages[0]);
5512 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5513 BTRFS_FSID_SIZE);
5514}
5515
5516void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5517 unsigned long start, unsigned long len)
5518{
5519 size_t cur;
5520 size_t offset;
5521 struct page *page;
5522 char *kaddr;
5523 char *src = (char *)srcv;
5524 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5525 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5526
5527 WARN_ON(start > eb->len);
5528 WARN_ON(start + len > eb->start + eb->len);
5529
5530 offset = (start_offset + start) & (PAGE_SIZE - 1);
5531
5532 while (len > 0) {
5533 page = eb->pages[i];
5534 WARN_ON(!PageUptodate(page));
5535
5536 cur = min(len, PAGE_SIZE - offset);
5537 kaddr = page_address(page);
5538 memcpy(kaddr + offset, src, cur);
5539
5540 src += cur;
5541 len -= cur;
5542 offset = 0;
5543 i++;
5544 }
5545}
5546
5547void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5548 unsigned long len)
5549{
5550 size_t cur;
5551 size_t offset;
5552 struct page *page;
5553 char *kaddr;
5554 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5555 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5556
5557 WARN_ON(start > eb->len);
5558 WARN_ON(start + len > eb->start + eb->len);
5559
5560 offset = (start_offset + start) & (PAGE_SIZE - 1);
5561
5562 while (len > 0) {
5563 page = eb->pages[i];
5564 WARN_ON(!PageUptodate(page));
5565
5566 cur = min(len, PAGE_SIZE - offset);
5567 kaddr = page_address(page);
5568 memset(kaddr + offset, 0, cur);
5569
5570 len -= cur;
5571 offset = 0;
5572 i++;
5573 }
5574}
5575
5576void copy_extent_buffer_full(struct extent_buffer *dst,
5577 struct extent_buffer *src)
5578{
5579 int i;
5580 unsigned num_pages;
5581
5582 ASSERT(dst->len == src->len);
5583
5584 num_pages = num_extent_pages(dst->start, dst->len);
5585 for (i = 0; i < num_pages; i++)
5586 copy_page(page_address(dst->pages[i]),
5587 page_address(src->pages[i]));
5588}
5589
5590void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5591 unsigned long dst_offset, unsigned long src_offset,
5592 unsigned long len)
5593{
5594 u64 dst_len = dst->len;
5595 size_t cur;
5596 size_t offset;
5597 struct page *page;
5598 char *kaddr;
5599 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5600 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5601
5602 WARN_ON(src->len != dst_len);
5603
5604 offset = (start_offset + dst_offset) &
5605 (PAGE_SIZE - 1);
5606
5607 while (len > 0) {
5608 page = dst->pages[i];
5609 WARN_ON(!PageUptodate(page));
5610
5611 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5612
5613 kaddr = page_address(page);
5614 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5615
5616 src_offset += cur;
5617 len -= cur;
5618 offset = 0;
5619 i++;
5620 }
5621}
5622
5623void le_bitmap_set(u8 *map, unsigned int start, int len)
5624{
5625 u8 *p = map + BIT_BYTE(start);
5626 const unsigned int size = start + len;
5627 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5628 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5629
5630 while (len - bits_to_set >= 0) {
5631 *p |= mask_to_set;
5632 len -= bits_to_set;
5633 bits_to_set = BITS_PER_BYTE;
5634 mask_to_set = ~0;
5635 p++;
5636 }
5637 if (len) {
5638 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5639 *p |= mask_to_set;
5640 }
5641}
5642
5643void le_bitmap_clear(u8 *map, unsigned int start, int len)
5644{
5645 u8 *p = map + BIT_BYTE(start);
5646 const unsigned int size = start + len;
5647 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5648 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5649
5650 while (len - bits_to_clear >= 0) {
5651 *p &= ~mask_to_clear;
5652 len -= bits_to_clear;
5653 bits_to_clear = BITS_PER_BYTE;
5654 mask_to_clear = ~0;
5655 p++;
5656 }
5657 if (len) {
5658 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5659 *p &= ~mask_to_clear;
5660 }
5661}
5662
5663/*
5664 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5665 * given bit number
5666 * @eb: the extent buffer
5667 * @start: offset of the bitmap item in the extent buffer
5668 * @nr: bit number
5669 * @page_index: return index of the page in the extent buffer that contains the
5670 * given bit number
5671 * @page_offset: return offset into the page given by page_index
5672 *
5673 * This helper hides the ugliness of finding the byte in an extent buffer which
5674 * contains a given bit.
5675 */
5676static inline void eb_bitmap_offset(struct extent_buffer *eb,
5677 unsigned long start, unsigned long nr,
5678 unsigned long *page_index,
5679 size_t *page_offset)
5680{
5681 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5682 size_t byte_offset = BIT_BYTE(nr);
5683 size_t offset;
5684
5685 /*
5686 * The byte we want is the offset of the extent buffer + the offset of
5687 * the bitmap item in the extent buffer + the offset of the byte in the
5688 * bitmap item.
5689 */
5690 offset = start_offset + start + byte_offset;
5691
5692 *page_index = offset >> PAGE_SHIFT;
5693 *page_offset = offset & (PAGE_SIZE - 1);
5694}
5695
5696/**
5697 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5698 * @eb: the extent buffer
5699 * @start: offset of the bitmap item in the extent buffer
5700 * @nr: bit number to test
5701 */
5702int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5703 unsigned long nr)
5704{
5705 u8 *kaddr;
5706 struct page *page;
5707 unsigned long i;
5708 size_t offset;
5709
5710 eb_bitmap_offset(eb, start, nr, &i, &offset);
5711 page = eb->pages[i];
5712 WARN_ON(!PageUptodate(page));
5713 kaddr = page_address(page);
5714 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5715}
5716
5717/**
5718 * extent_buffer_bitmap_set - set an area of a bitmap
5719 * @eb: the extent buffer
5720 * @start: offset of the bitmap item in the extent buffer
5721 * @pos: bit number of the first bit
5722 * @len: number of bits to set
5723 */
5724void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5725 unsigned long pos, unsigned long len)
5726{
5727 u8 *kaddr;
5728 struct page *page;
5729 unsigned long i;
5730 size_t offset;
5731 const unsigned int size = pos + len;
5732 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5733 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5734
5735 eb_bitmap_offset(eb, start, pos, &i, &offset);
5736 page = eb->pages[i];
5737 WARN_ON(!PageUptodate(page));
5738 kaddr = page_address(page);
5739
5740 while (len >= bits_to_set) {
5741 kaddr[offset] |= mask_to_set;
5742 len -= bits_to_set;
5743 bits_to_set = BITS_PER_BYTE;
5744 mask_to_set = ~0;
5745 if (++offset >= PAGE_SIZE && len > 0) {
5746 offset = 0;
5747 page = eb->pages[++i];
5748 WARN_ON(!PageUptodate(page));
5749 kaddr = page_address(page);
5750 }
5751 }
5752 if (len) {
5753 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5754 kaddr[offset] |= mask_to_set;
5755 }
5756}
5757
5758
5759/**
5760 * extent_buffer_bitmap_clear - clear an area of a bitmap
5761 * @eb: the extent buffer
5762 * @start: offset of the bitmap item in the extent buffer
5763 * @pos: bit number of the first bit
5764 * @len: number of bits to clear
5765 */
5766void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5767 unsigned long pos, unsigned long len)
5768{
5769 u8 *kaddr;
5770 struct page *page;
5771 unsigned long i;
5772 size_t offset;
5773 const unsigned int size = pos + len;
5774 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5775 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5776
5777 eb_bitmap_offset(eb, start, pos, &i, &offset);
5778 page = eb->pages[i];
5779 WARN_ON(!PageUptodate(page));
5780 kaddr = page_address(page);
5781
5782 while (len >= bits_to_clear) {
5783 kaddr[offset] &= ~mask_to_clear;
5784 len -= bits_to_clear;
5785 bits_to_clear = BITS_PER_BYTE;
5786 mask_to_clear = ~0;
5787 if (++offset >= PAGE_SIZE && len > 0) {
5788 offset = 0;
5789 page = eb->pages[++i];
5790 WARN_ON(!PageUptodate(page));
5791 kaddr = page_address(page);
5792 }
5793 }
5794 if (len) {
5795 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5796 kaddr[offset] &= ~mask_to_clear;
5797 }
5798}
5799
5800static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5801{
5802 unsigned long distance = (src > dst) ? src - dst : dst - src;
5803 return distance < len;
5804}
5805
5806static void copy_pages(struct page *dst_page, struct page *src_page,
5807 unsigned long dst_off, unsigned long src_off,
5808 unsigned long len)
5809{
5810 char *dst_kaddr = page_address(dst_page);
5811 char *src_kaddr;
5812 int must_memmove = 0;
5813
5814 if (dst_page != src_page) {
5815 src_kaddr = page_address(src_page);
5816 } else {
5817 src_kaddr = dst_kaddr;
5818 if (areas_overlap(src_off, dst_off, len))
5819 must_memmove = 1;
5820 }
5821
5822 if (must_memmove)
5823 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5824 else
5825 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5826}
5827
5828void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5829 unsigned long src_offset, unsigned long len)
5830{
5831 struct btrfs_fs_info *fs_info = dst->fs_info;
5832 size_t cur;
5833 size_t dst_off_in_page;
5834 size_t src_off_in_page;
5835 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5836 unsigned long dst_i;
5837 unsigned long src_i;
5838
5839 if (src_offset + len > dst->len) {
5840 btrfs_err(fs_info,
5841 "memmove bogus src_offset %lu move len %lu dst len %lu",
5842 src_offset, len, dst->len);
5843 BUG_ON(1);
5844 }
5845 if (dst_offset + len > dst->len) {
5846 btrfs_err(fs_info,
5847 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5848 dst_offset, len, dst->len);
5849 BUG_ON(1);
5850 }
5851
5852 while (len > 0) {
5853 dst_off_in_page = (start_offset + dst_offset) &
5854 (PAGE_SIZE - 1);
5855 src_off_in_page = (start_offset + src_offset) &
5856 (PAGE_SIZE - 1);
5857
5858 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5859 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5860
5861 cur = min(len, (unsigned long)(PAGE_SIZE -
5862 src_off_in_page));
5863 cur = min_t(unsigned long, cur,
5864 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5865
5866 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5867 dst_off_in_page, src_off_in_page, cur);
5868
5869 src_offset += cur;
5870 dst_offset += cur;
5871 len -= cur;
5872 }
5873}
5874
5875void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5876 unsigned long src_offset, unsigned long len)
5877{
5878 struct btrfs_fs_info *fs_info = dst->fs_info;
5879 size_t cur;
5880 size_t dst_off_in_page;
5881 size_t src_off_in_page;
5882 unsigned long dst_end = dst_offset + len - 1;
5883 unsigned long src_end = src_offset + len - 1;
5884 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5885 unsigned long dst_i;
5886 unsigned long src_i;
5887
5888 if (src_offset + len > dst->len) {
5889 btrfs_err(fs_info,
5890 "memmove bogus src_offset %lu move len %lu len %lu",
5891 src_offset, len, dst->len);
5892 BUG_ON(1);
5893 }
5894 if (dst_offset + len > dst->len) {
5895 btrfs_err(fs_info,
5896 "memmove bogus dst_offset %lu move len %lu len %lu",
5897 dst_offset, len, dst->len);
5898 BUG_ON(1);
5899 }
5900 if (dst_offset < src_offset) {
5901 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5902 return;
5903 }
5904 while (len > 0) {
5905 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5906 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5907
5908 dst_off_in_page = (start_offset + dst_end) &
5909 (PAGE_SIZE - 1);
5910 src_off_in_page = (start_offset + src_end) &
5911 (PAGE_SIZE - 1);
5912
5913 cur = min_t(unsigned long, len, src_off_in_page + 1);
5914 cur = min(cur, dst_off_in_page + 1);
5915 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5916 dst_off_in_page - cur + 1,
5917 src_off_in_page - cur + 1, cur);
5918
5919 dst_end -= cur;
5920 src_end -= cur;
5921 len -= cur;
5922 }
5923}
5924
5925int try_release_extent_buffer(struct page *page)
5926{
5927 struct extent_buffer *eb;
5928
5929 /*
5930 * We need to make sure nobody is attaching this page to an eb right
5931 * now.
5932 */
5933 spin_lock(&page->mapping->private_lock);
5934 if (!PagePrivate(page)) {
5935 spin_unlock(&page->mapping->private_lock);
5936 return 1;
5937 }
5938
5939 eb = (struct extent_buffer *)page->private;
5940 BUG_ON(!eb);
5941
5942 /*
5943 * This is a little awful but should be ok, we need to make sure that
5944 * the eb doesn't disappear out from under us while we're looking at
5945 * this page.
5946 */
5947 spin_lock(&eb->refs_lock);
5948 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5949 spin_unlock(&eb->refs_lock);
5950 spin_unlock(&page->mapping->private_lock);
5951 return 0;
5952 }
5953 spin_unlock(&page->mapping->private_lock);
5954
5955 /*
5956 * If tree ref isn't set then we know the ref on this eb is a real ref,
5957 * so just return, this page will likely be freed soon anyway.
5958 */
5959 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5960 spin_unlock(&eb->refs_lock);
5961 return 0;
5962 }
5963
5964 return release_extent_buffer(eb);
5965}