Loading...
1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <linux/random.h>
10#include <asm/dmi.h>
11#include <asm/unaligned.h>
12
13struct kobject *dmi_kobj;
14EXPORT_SYMBOL_GPL(dmi_kobj);
15
16/*
17 * DMI stands for "Desktop Management Interface". It is part
18 * of and an antecedent to, SMBIOS, which stands for System
19 * Management BIOS. See further: http://www.dmtf.org/standards
20 */
21static const char dmi_empty_string[] = " ";
22
23static u32 dmi_ver __initdata;
24static u32 dmi_len;
25static u16 dmi_num;
26static u8 smbios_entry_point[32];
27static int smbios_entry_point_size;
28
29/*
30 * Catch too early calls to dmi_check_system():
31 */
32static int dmi_initialized;
33
34/* DMI system identification string used during boot */
35static char dmi_ids_string[128] __initdata;
36
37static struct dmi_memdev_info {
38 const char *device;
39 const char *bank;
40 u16 handle;
41} *dmi_memdev;
42static int dmi_memdev_nr;
43
44static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
45{
46 const u8 *bp = ((u8 *) dm) + dm->length;
47
48 if (s) {
49 s--;
50 while (s > 0 && *bp) {
51 bp += strlen(bp) + 1;
52 s--;
53 }
54
55 if (*bp != 0) {
56 size_t len = strlen(bp)+1;
57 size_t cmp_len = len > 8 ? 8 : len;
58
59 if (!memcmp(bp, dmi_empty_string, cmp_len))
60 return dmi_empty_string;
61 return bp;
62 }
63 }
64
65 return "";
66}
67
68static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
69{
70 const char *bp = dmi_string_nosave(dm, s);
71 char *str;
72 size_t len;
73
74 if (bp == dmi_empty_string)
75 return dmi_empty_string;
76
77 len = strlen(bp) + 1;
78 str = dmi_alloc(len);
79 if (str != NULL)
80 strcpy(str, bp);
81
82 return str;
83}
84
85/*
86 * We have to be cautious here. We have seen BIOSes with DMI pointers
87 * pointing to completely the wrong place for example
88 */
89static void dmi_decode_table(u8 *buf,
90 void (*decode)(const struct dmi_header *, void *),
91 void *private_data)
92{
93 u8 *data = buf;
94 int i = 0;
95
96 /*
97 * Stop when we have seen all the items the table claimed to have
98 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
99 * >= 3.0 only) OR we run off the end of the table (should never
100 * happen but sometimes does on bogus implementations.)
101 */
102 while ((!dmi_num || i < dmi_num) &&
103 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
104 const struct dmi_header *dm = (const struct dmi_header *)data;
105
106 /*
107 * We want to know the total length (formatted area and
108 * strings) before decoding to make sure we won't run off the
109 * table in dmi_decode or dmi_string
110 */
111 data += dm->length;
112 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
113 data++;
114 if (data - buf < dmi_len - 1)
115 decode(dm, private_data);
116
117 data += 2;
118 i++;
119
120 /*
121 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
122 * For tables behind a 64-bit entry point, we have no item
123 * count and no exact table length, so stop on end-of-table
124 * marker. For tables behind a 32-bit entry point, we have
125 * seen OEM structures behind the end-of-table marker on
126 * some systems, so don't trust it.
127 */
128 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
129 break;
130 }
131
132 /* Trim DMI table length if needed */
133 if (dmi_len > data - buf)
134 dmi_len = data - buf;
135}
136
137static phys_addr_t dmi_base;
138
139static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
140 void *))
141{
142 u8 *buf;
143 u32 orig_dmi_len = dmi_len;
144
145 buf = dmi_early_remap(dmi_base, orig_dmi_len);
146 if (buf == NULL)
147 return -1;
148
149 dmi_decode_table(buf, decode, NULL);
150
151 add_device_randomness(buf, dmi_len);
152
153 dmi_early_unmap(buf, orig_dmi_len);
154 return 0;
155}
156
157static int __init dmi_checksum(const u8 *buf, u8 len)
158{
159 u8 sum = 0;
160 int a;
161
162 for (a = 0; a < len; a++)
163 sum += buf[a];
164
165 return sum == 0;
166}
167
168static const char *dmi_ident[DMI_STRING_MAX];
169static LIST_HEAD(dmi_devices);
170int dmi_available;
171
172/*
173 * Save a DMI string
174 */
175static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
176 int string)
177{
178 const char *d = (const char *) dm;
179 const char *p;
180
181 if (dmi_ident[slot])
182 return;
183
184 p = dmi_string(dm, d[string]);
185 if (p == NULL)
186 return;
187
188 dmi_ident[slot] = p;
189}
190
191static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
192 int index)
193{
194 const u8 *d = (u8 *) dm + index;
195 char *s;
196 int is_ff = 1, is_00 = 1, i;
197
198 if (dmi_ident[slot])
199 return;
200
201 for (i = 0; i < 16 && (is_ff || is_00); i++) {
202 if (d[i] != 0x00)
203 is_00 = 0;
204 if (d[i] != 0xFF)
205 is_ff = 0;
206 }
207
208 if (is_ff || is_00)
209 return;
210
211 s = dmi_alloc(16*2+4+1);
212 if (!s)
213 return;
214
215 /*
216 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
217 * the UUID are supposed to be little-endian encoded. The specification
218 * says that this is the defacto standard.
219 */
220 if (dmi_ver >= 0x020600)
221 sprintf(s, "%pUL", d);
222 else
223 sprintf(s, "%pUB", d);
224
225 dmi_ident[slot] = s;
226}
227
228static void __init dmi_save_type(const struct dmi_header *dm, int slot,
229 int index)
230{
231 const u8 *d = (u8 *) dm + index;
232 char *s;
233
234 if (dmi_ident[slot])
235 return;
236
237 s = dmi_alloc(4);
238 if (!s)
239 return;
240
241 sprintf(s, "%u", *d & 0x7F);
242 dmi_ident[slot] = s;
243}
244
245static void __init dmi_save_one_device(int type, const char *name)
246{
247 struct dmi_device *dev;
248
249 /* No duplicate device */
250 if (dmi_find_device(type, name, NULL))
251 return;
252
253 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
254 if (!dev)
255 return;
256
257 dev->type = type;
258 strcpy((char *)(dev + 1), name);
259 dev->name = (char *)(dev + 1);
260 dev->device_data = NULL;
261 list_add(&dev->list, &dmi_devices);
262}
263
264static void __init dmi_save_devices(const struct dmi_header *dm)
265{
266 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
267
268 for (i = 0; i < count; i++) {
269 const char *d = (char *)(dm + 1) + (i * 2);
270
271 /* Skip disabled device */
272 if ((*d & 0x80) == 0)
273 continue;
274
275 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
276 }
277}
278
279static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
280{
281 int i, count = *(u8 *)(dm + 1);
282 struct dmi_device *dev;
283
284 for (i = 1; i <= count; i++) {
285 const char *devname = dmi_string(dm, i);
286
287 if (devname == dmi_empty_string)
288 continue;
289
290 dev = dmi_alloc(sizeof(*dev));
291 if (!dev)
292 break;
293
294 dev->type = DMI_DEV_TYPE_OEM_STRING;
295 dev->name = devname;
296 dev->device_data = NULL;
297
298 list_add(&dev->list, &dmi_devices);
299 }
300}
301
302static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
303{
304 struct dmi_device *dev;
305 void *data;
306
307 data = dmi_alloc(dm->length);
308 if (data == NULL)
309 return;
310
311 memcpy(data, dm, dm->length);
312
313 dev = dmi_alloc(sizeof(*dev));
314 if (!dev)
315 return;
316
317 dev->type = DMI_DEV_TYPE_IPMI;
318 dev->name = "IPMI controller";
319 dev->device_data = data;
320
321 list_add_tail(&dev->list, &dmi_devices);
322}
323
324static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
325 int devfn, const char *name, int type)
326{
327 struct dmi_dev_onboard *dev;
328
329 /* Ignore invalid values */
330 if (type == DMI_DEV_TYPE_DEV_SLOT &&
331 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
332 return;
333
334 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
335 if (!dev)
336 return;
337
338 dev->instance = instance;
339 dev->segment = segment;
340 dev->bus = bus;
341 dev->devfn = devfn;
342
343 strcpy((char *)&dev[1], name);
344 dev->dev.type = type;
345 dev->dev.name = (char *)&dev[1];
346 dev->dev.device_data = dev;
347
348 list_add(&dev->dev.list, &dmi_devices);
349}
350
351static void __init dmi_save_extended_devices(const struct dmi_header *dm)
352{
353 const char *name;
354 const u8 *d = (u8 *)dm;
355
356 /* Skip disabled device */
357 if ((d[0x5] & 0x80) == 0)
358 return;
359
360 name = dmi_string_nosave(dm, d[0x4]);
361 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
362 DMI_DEV_TYPE_DEV_ONBOARD);
363 dmi_save_one_device(d[0x5] & 0x7f, name);
364}
365
366static void __init dmi_save_system_slot(const struct dmi_header *dm)
367{
368 const u8 *d = (u8 *)dm;
369
370 /* Need SMBIOS 2.6+ structure */
371 if (dm->length < 0x11)
372 return;
373 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
374 d[0x10], dmi_string_nosave(dm, d[0x4]),
375 DMI_DEV_TYPE_DEV_SLOT);
376}
377
378static void __init count_mem_devices(const struct dmi_header *dm, void *v)
379{
380 if (dm->type != DMI_ENTRY_MEM_DEVICE)
381 return;
382 dmi_memdev_nr++;
383}
384
385static void __init save_mem_devices(const struct dmi_header *dm, void *v)
386{
387 const char *d = (const char *)dm;
388 static int nr;
389
390 if (dm->type != DMI_ENTRY_MEM_DEVICE)
391 return;
392 if (nr >= dmi_memdev_nr) {
393 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
394 return;
395 }
396 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
397 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
398 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
399 nr++;
400}
401
402void __init dmi_memdev_walk(void)
403{
404 if (!dmi_available)
405 return;
406
407 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
408 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
409 if (dmi_memdev)
410 dmi_walk_early(save_mem_devices);
411 }
412}
413
414/*
415 * Process a DMI table entry. Right now all we care about are the BIOS
416 * and machine entries. For 2.5 we should pull the smbus controller info
417 * out of here.
418 */
419static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
420{
421 switch (dm->type) {
422 case 0: /* BIOS Information */
423 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
424 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
425 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
426 break;
427 case 1: /* System Information */
428 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
429 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
430 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
431 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
432 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
433 break;
434 case 2: /* Base Board Information */
435 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
436 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
437 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
438 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
439 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
440 break;
441 case 3: /* Chassis Information */
442 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
443 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
444 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
445 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
446 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
447 break;
448 case 9: /* System Slots */
449 dmi_save_system_slot(dm);
450 break;
451 case 10: /* Onboard Devices Information */
452 dmi_save_devices(dm);
453 break;
454 case 11: /* OEM Strings */
455 dmi_save_oem_strings_devices(dm);
456 break;
457 case 38: /* IPMI Device Information */
458 dmi_save_ipmi_device(dm);
459 break;
460 case 41: /* Onboard Devices Extended Information */
461 dmi_save_extended_devices(dm);
462 }
463}
464
465static int __init print_filtered(char *buf, size_t len, const char *info)
466{
467 int c = 0;
468 const char *p;
469
470 if (!info)
471 return c;
472
473 for (p = info; *p; p++)
474 if (isprint(*p))
475 c += scnprintf(buf + c, len - c, "%c", *p);
476 else
477 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
478 return c;
479}
480
481static void __init dmi_format_ids(char *buf, size_t len)
482{
483 int c = 0;
484 const char *board; /* Board Name is optional */
485
486 c += print_filtered(buf + c, len - c,
487 dmi_get_system_info(DMI_SYS_VENDOR));
488 c += scnprintf(buf + c, len - c, " ");
489 c += print_filtered(buf + c, len - c,
490 dmi_get_system_info(DMI_PRODUCT_NAME));
491
492 board = dmi_get_system_info(DMI_BOARD_NAME);
493 if (board) {
494 c += scnprintf(buf + c, len - c, "/");
495 c += print_filtered(buf + c, len - c, board);
496 }
497 c += scnprintf(buf + c, len - c, ", BIOS ");
498 c += print_filtered(buf + c, len - c,
499 dmi_get_system_info(DMI_BIOS_VERSION));
500 c += scnprintf(buf + c, len - c, " ");
501 c += print_filtered(buf + c, len - c,
502 dmi_get_system_info(DMI_BIOS_DATE));
503}
504
505/*
506 * Check for DMI/SMBIOS headers in the system firmware image. Any
507 * SMBIOS header must start 16 bytes before the DMI header, so take a
508 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
509 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
510 * takes precedence) and return 0. Otherwise return 1.
511 */
512static int __init dmi_present(const u8 *buf)
513{
514 u32 smbios_ver;
515
516 if (memcmp(buf, "_SM_", 4) == 0 &&
517 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
518 smbios_ver = get_unaligned_be16(buf + 6);
519 smbios_entry_point_size = buf[5];
520 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
521
522 /* Some BIOS report weird SMBIOS version, fix that up */
523 switch (smbios_ver) {
524 case 0x021F:
525 case 0x0221:
526 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
527 smbios_ver & 0xFF, 3);
528 smbios_ver = 0x0203;
529 break;
530 case 0x0233:
531 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
532 smbios_ver = 0x0206;
533 break;
534 }
535 } else {
536 smbios_ver = 0;
537 }
538
539 buf += 16;
540
541 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
542 if (smbios_ver)
543 dmi_ver = smbios_ver;
544 else
545 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
546 dmi_ver <<= 8;
547 dmi_num = get_unaligned_le16(buf + 12);
548 dmi_len = get_unaligned_le16(buf + 6);
549 dmi_base = get_unaligned_le32(buf + 8);
550
551 if (dmi_walk_early(dmi_decode) == 0) {
552 if (smbios_ver) {
553 pr_info("SMBIOS %d.%d present.\n",
554 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
555 } else {
556 smbios_entry_point_size = 15;
557 memcpy(smbios_entry_point, buf,
558 smbios_entry_point_size);
559 pr_info("Legacy DMI %d.%d present.\n",
560 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
561 }
562 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
563 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
564 return 0;
565 }
566 }
567
568 return 1;
569}
570
571/*
572 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
573 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
574 */
575static int __init dmi_smbios3_present(const u8 *buf)
576{
577 if (memcmp(buf, "_SM3_", 5) == 0 &&
578 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
579 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
580 dmi_num = 0; /* No longer specified */
581 dmi_len = get_unaligned_le32(buf + 12);
582 dmi_base = get_unaligned_le64(buf + 16);
583 smbios_entry_point_size = buf[6];
584 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
585
586 if (dmi_walk_early(dmi_decode) == 0) {
587 pr_info("SMBIOS %d.%d.%d present.\n",
588 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
589 dmi_ver & 0xFF);
590 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
591 pr_debug("DMI: %s\n", dmi_ids_string);
592 return 0;
593 }
594 }
595 return 1;
596}
597
598void __init dmi_scan_machine(void)
599{
600 char __iomem *p, *q;
601 char buf[32];
602
603 if (efi_enabled(EFI_CONFIG_TABLES)) {
604 /*
605 * According to the DMTF SMBIOS reference spec v3.0.0, it is
606 * allowed to define both the 64-bit entry point (smbios3) and
607 * the 32-bit entry point (smbios), in which case they should
608 * either both point to the same SMBIOS structure table, or the
609 * table pointed to by the 64-bit entry point should contain a
610 * superset of the table contents pointed to by the 32-bit entry
611 * point (section 5.2)
612 * This implies that the 64-bit entry point should have
613 * precedence if it is defined and supported by the OS. If we
614 * have the 64-bit entry point, but fail to decode it, fall
615 * back to the legacy one (if available)
616 */
617 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
618 p = dmi_early_remap(efi.smbios3, 32);
619 if (p == NULL)
620 goto error;
621 memcpy_fromio(buf, p, 32);
622 dmi_early_unmap(p, 32);
623
624 if (!dmi_smbios3_present(buf)) {
625 dmi_available = 1;
626 goto out;
627 }
628 }
629 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
630 goto error;
631
632 /* This is called as a core_initcall() because it isn't
633 * needed during early boot. This also means we can
634 * iounmap the space when we're done with it.
635 */
636 p = dmi_early_remap(efi.smbios, 32);
637 if (p == NULL)
638 goto error;
639 memcpy_fromio(buf, p, 32);
640 dmi_early_unmap(p, 32);
641
642 if (!dmi_present(buf)) {
643 dmi_available = 1;
644 goto out;
645 }
646 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
647 p = dmi_early_remap(0xF0000, 0x10000);
648 if (p == NULL)
649 goto error;
650
651 /*
652 * Iterate over all possible DMI header addresses q.
653 * Maintain the 32 bytes around q in buf. On the
654 * first iteration, substitute zero for the
655 * out-of-range bytes so there is no chance of falsely
656 * detecting an SMBIOS header.
657 */
658 memset(buf, 0, 16);
659 for (q = p; q < p + 0x10000; q += 16) {
660 memcpy_fromio(buf + 16, q, 16);
661 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
662 dmi_available = 1;
663 dmi_early_unmap(p, 0x10000);
664 goto out;
665 }
666 memcpy(buf, buf + 16, 16);
667 }
668 dmi_early_unmap(p, 0x10000);
669 }
670 error:
671 pr_info("DMI not present or invalid.\n");
672 out:
673 dmi_initialized = 1;
674}
675
676static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
677 struct bin_attribute *attr, char *buf,
678 loff_t pos, size_t count)
679{
680 memcpy(buf, attr->private + pos, count);
681 return count;
682}
683
684static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
685static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
686
687static int __init dmi_init(void)
688{
689 struct kobject *tables_kobj;
690 u8 *dmi_table;
691 int ret = -ENOMEM;
692
693 if (!dmi_available) {
694 ret = -ENODATA;
695 goto err;
696 }
697
698 /*
699 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
700 * even after farther error, as it can be used by other modules like
701 * dmi-sysfs.
702 */
703 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
704 if (!dmi_kobj)
705 goto err;
706
707 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
708 if (!tables_kobj)
709 goto err;
710
711 dmi_table = dmi_remap(dmi_base, dmi_len);
712 if (!dmi_table)
713 goto err_tables;
714
715 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
716 bin_attr_smbios_entry_point.private = smbios_entry_point;
717 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
718 if (ret)
719 goto err_unmap;
720
721 bin_attr_DMI.size = dmi_len;
722 bin_attr_DMI.private = dmi_table;
723 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
724 if (!ret)
725 return 0;
726
727 sysfs_remove_bin_file(tables_kobj,
728 &bin_attr_smbios_entry_point);
729 err_unmap:
730 dmi_unmap(dmi_table);
731 err_tables:
732 kobject_del(tables_kobj);
733 kobject_put(tables_kobj);
734 err:
735 pr_err("dmi: Firmware registration failed.\n");
736
737 return ret;
738}
739subsys_initcall(dmi_init);
740
741/**
742 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
743 *
744 * Invoke dump_stack_set_arch_desc() with DMI system information so that
745 * DMI identifiers are printed out on task dumps. Arch boot code should
746 * call this function after dmi_scan_machine() if it wants to print out DMI
747 * identifiers on task dumps.
748 */
749void __init dmi_set_dump_stack_arch_desc(void)
750{
751 dump_stack_set_arch_desc("%s", dmi_ids_string);
752}
753
754/**
755 * dmi_matches - check if dmi_system_id structure matches system DMI data
756 * @dmi: pointer to the dmi_system_id structure to check
757 */
758static bool dmi_matches(const struct dmi_system_id *dmi)
759{
760 int i;
761
762 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
763
764 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
765 int s = dmi->matches[i].slot;
766 if (s == DMI_NONE)
767 break;
768 if (dmi_ident[s]) {
769 if (!dmi->matches[i].exact_match &&
770 strstr(dmi_ident[s], dmi->matches[i].substr))
771 continue;
772 else if (dmi->matches[i].exact_match &&
773 !strcmp(dmi_ident[s], dmi->matches[i].substr))
774 continue;
775 }
776
777 /* No match */
778 return false;
779 }
780 return true;
781}
782
783/**
784 * dmi_is_end_of_table - check for end-of-table marker
785 * @dmi: pointer to the dmi_system_id structure to check
786 */
787static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
788{
789 return dmi->matches[0].slot == DMI_NONE;
790}
791
792/**
793 * dmi_check_system - check system DMI data
794 * @list: array of dmi_system_id structures to match against
795 * All non-null elements of the list must match
796 * their slot's (field index's) data (i.e., each
797 * list string must be a substring of the specified
798 * DMI slot's string data) to be considered a
799 * successful match.
800 *
801 * Walk the blacklist table running matching functions until someone
802 * returns non zero or we hit the end. Callback function is called for
803 * each successful match. Returns the number of matches.
804 */
805int dmi_check_system(const struct dmi_system_id *list)
806{
807 int count = 0;
808 const struct dmi_system_id *d;
809
810 for (d = list; !dmi_is_end_of_table(d); d++)
811 if (dmi_matches(d)) {
812 count++;
813 if (d->callback && d->callback(d))
814 break;
815 }
816
817 return count;
818}
819EXPORT_SYMBOL(dmi_check_system);
820
821/**
822 * dmi_first_match - find dmi_system_id structure matching system DMI data
823 * @list: array of dmi_system_id structures to match against
824 * All non-null elements of the list must match
825 * their slot's (field index's) data (i.e., each
826 * list string must be a substring of the specified
827 * DMI slot's string data) to be considered a
828 * successful match.
829 *
830 * Walk the blacklist table until the first match is found. Return the
831 * pointer to the matching entry or NULL if there's no match.
832 */
833const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
834{
835 const struct dmi_system_id *d;
836
837 for (d = list; !dmi_is_end_of_table(d); d++)
838 if (dmi_matches(d))
839 return d;
840
841 return NULL;
842}
843EXPORT_SYMBOL(dmi_first_match);
844
845/**
846 * dmi_get_system_info - return DMI data value
847 * @field: data index (see enum dmi_field)
848 *
849 * Returns one DMI data value, can be used to perform
850 * complex DMI data checks.
851 */
852const char *dmi_get_system_info(int field)
853{
854 return dmi_ident[field];
855}
856EXPORT_SYMBOL(dmi_get_system_info);
857
858/**
859 * dmi_name_in_serial - Check if string is in the DMI product serial information
860 * @str: string to check for
861 */
862int dmi_name_in_serial(const char *str)
863{
864 int f = DMI_PRODUCT_SERIAL;
865 if (dmi_ident[f] && strstr(dmi_ident[f], str))
866 return 1;
867 return 0;
868}
869
870/**
871 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
872 * @str: Case sensitive Name
873 */
874int dmi_name_in_vendors(const char *str)
875{
876 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
877 int i;
878 for (i = 0; fields[i] != DMI_NONE; i++) {
879 int f = fields[i];
880 if (dmi_ident[f] && strstr(dmi_ident[f], str))
881 return 1;
882 }
883 return 0;
884}
885EXPORT_SYMBOL(dmi_name_in_vendors);
886
887/**
888 * dmi_find_device - find onboard device by type/name
889 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
890 * @name: device name string or %NULL to match all
891 * @from: previous device found in search, or %NULL for new search.
892 *
893 * Iterates through the list of known onboard devices. If a device is
894 * found with a matching @type and @name, a pointer to its device
895 * structure is returned. Otherwise, %NULL is returned.
896 * A new search is initiated by passing %NULL as the @from argument.
897 * If @from is not %NULL, searches continue from next device.
898 */
899const struct dmi_device *dmi_find_device(int type, const char *name,
900 const struct dmi_device *from)
901{
902 const struct list_head *head = from ? &from->list : &dmi_devices;
903 struct list_head *d;
904
905 for (d = head->next; d != &dmi_devices; d = d->next) {
906 const struct dmi_device *dev =
907 list_entry(d, struct dmi_device, list);
908
909 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
910 ((name == NULL) || (strcmp(dev->name, name) == 0)))
911 return dev;
912 }
913
914 return NULL;
915}
916EXPORT_SYMBOL(dmi_find_device);
917
918/**
919 * dmi_get_date - parse a DMI date
920 * @field: data index (see enum dmi_field)
921 * @yearp: optional out parameter for the year
922 * @monthp: optional out parameter for the month
923 * @dayp: optional out parameter for the day
924 *
925 * The date field is assumed to be in the form resembling
926 * [mm[/dd]]/yy[yy] and the result is stored in the out
927 * parameters any or all of which can be omitted.
928 *
929 * If the field doesn't exist, all out parameters are set to zero
930 * and false is returned. Otherwise, true is returned with any
931 * invalid part of date set to zero.
932 *
933 * On return, year, month and day are guaranteed to be in the
934 * range of [0,9999], [0,12] and [0,31] respectively.
935 */
936bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
937{
938 int year = 0, month = 0, day = 0;
939 bool exists;
940 const char *s, *y;
941 char *e;
942
943 s = dmi_get_system_info(field);
944 exists = s;
945 if (!exists)
946 goto out;
947
948 /*
949 * Determine year first. We assume the date string resembles
950 * mm/dd/yy[yy] but the original code extracted only the year
951 * from the end. Keep the behavior in the spirit of no
952 * surprises.
953 */
954 y = strrchr(s, '/');
955 if (!y)
956 goto out;
957
958 y++;
959 year = simple_strtoul(y, &e, 10);
960 if (y != e && year < 100) { /* 2-digit year */
961 year += 1900;
962 if (year < 1996) /* no dates < spec 1.0 */
963 year += 100;
964 }
965 if (year > 9999) /* year should fit in %04d */
966 year = 0;
967
968 /* parse the mm and dd */
969 month = simple_strtoul(s, &e, 10);
970 if (s == e || *e != '/' || !month || month > 12) {
971 month = 0;
972 goto out;
973 }
974
975 s = e + 1;
976 day = simple_strtoul(s, &e, 10);
977 if (s == y || s == e || *e != '/' || day > 31)
978 day = 0;
979out:
980 if (yearp)
981 *yearp = year;
982 if (monthp)
983 *monthp = month;
984 if (dayp)
985 *dayp = day;
986 return exists;
987}
988EXPORT_SYMBOL(dmi_get_date);
989
990/**
991 * dmi_walk - Walk the DMI table and get called back for every record
992 * @decode: Callback function
993 * @private_data: Private data to be passed to the callback function
994 *
995 * Returns -1 when the DMI table can't be reached, 0 on success.
996 */
997int dmi_walk(void (*decode)(const struct dmi_header *, void *),
998 void *private_data)
999{
1000 u8 *buf;
1001
1002 if (!dmi_available)
1003 return -1;
1004
1005 buf = dmi_remap(dmi_base, dmi_len);
1006 if (buf == NULL)
1007 return -1;
1008
1009 dmi_decode_table(buf, decode, private_data);
1010
1011 dmi_unmap(buf);
1012 return 0;
1013}
1014EXPORT_SYMBOL_GPL(dmi_walk);
1015
1016/**
1017 * dmi_match - compare a string to the dmi field (if exists)
1018 * @f: DMI field identifier
1019 * @str: string to compare the DMI field to
1020 *
1021 * Returns true if the requested field equals to the str (including NULL).
1022 */
1023bool dmi_match(enum dmi_field f, const char *str)
1024{
1025 const char *info = dmi_get_system_info(f);
1026
1027 if (info == NULL || str == NULL)
1028 return info == str;
1029
1030 return !strcmp(info, str);
1031}
1032EXPORT_SYMBOL_GPL(dmi_match);
1033
1034void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1035{
1036 int n;
1037
1038 if (dmi_memdev == NULL)
1039 return;
1040
1041 for (n = 0; n < dmi_memdev_nr; n++) {
1042 if (handle == dmi_memdev[n].handle) {
1043 *bank = dmi_memdev[n].bank;
1044 *device = dmi_memdev[n].device;
1045 break;
1046 }
1047 }
1048}
1049EXPORT_SYMBOL_GPL(dmi_memdev_name);
1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <linux/random.h>
10#include <asm/dmi.h>
11#include <asm/unaligned.h>
12
13struct kobject *dmi_kobj;
14EXPORT_SYMBOL_GPL(dmi_kobj);
15
16/*
17 * DMI stands for "Desktop Management Interface". It is part
18 * of and an antecedent to, SMBIOS, which stands for System
19 * Management BIOS. See further: http://www.dmtf.org/standards
20 */
21static const char dmi_empty_string[] = "";
22
23static u32 dmi_ver __initdata;
24static u32 dmi_len;
25static u16 dmi_num;
26static u8 smbios_entry_point[32];
27static int smbios_entry_point_size;
28
29/* DMI system identification string used during boot */
30static char dmi_ids_string[128] __initdata;
31
32static struct dmi_memdev_info {
33 const char *device;
34 const char *bank;
35 u64 size; /* bytes */
36 u16 handle;
37} *dmi_memdev;
38static int dmi_memdev_nr;
39
40static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
41{
42 const u8 *bp = ((u8 *) dm) + dm->length;
43 const u8 *nsp;
44
45 if (s) {
46 while (--s > 0 && *bp)
47 bp += strlen(bp) + 1;
48
49 /* Strings containing only spaces are considered empty */
50 nsp = bp;
51 while (*nsp == ' ')
52 nsp++;
53 if (*nsp != '\0')
54 return bp;
55 }
56
57 return dmi_empty_string;
58}
59
60static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
61{
62 const char *bp = dmi_string_nosave(dm, s);
63 char *str;
64 size_t len;
65
66 if (bp == dmi_empty_string)
67 return dmi_empty_string;
68
69 len = strlen(bp) + 1;
70 str = dmi_alloc(len);
71 if (str != NULL)
72 strcpy(str, bp);
73
74 return str;
75}
76
77/*
78 * We have to be cautious here. We have seen BIOSes with DMI pointers
79 * pointing to completely the wrong place for example
80 */
81static void dmi_decode_table(u8 *buf,
82 void (*decode)(const struct dmi_header *, void *),
83 void *private_data)
84{
85 u8 *data = buf;
86 int i = 0;
87
88 /*
89 * Stop when we have seen all the items the table claimed to have
90 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
91 * >= 3.0 only) OR we run off the end of the table (should never
92 * happen but sometimes does on bogus implementations.)
93 */
94 while ((!dmi_num || i < dmi_num) &&
95 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
96 const struct dmi_header *dm = (const struct dmi_header *)data;
97
98 /*
99 * We want to know the total length (formatted area and
100 * strings) before decoding to make sure we won't run off the
101 * table in dmi_decode or dmi_string
102 */
103 data += dm->length;
104 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
105 data++;
106 if (data - buf < dmi_len - 1)
107 decode(dm, private_data);
108
109 data += 2;
110 i++;
111
112 /*
113 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
114 * For tables behind a 64-bit entry point, we have no item
115 * count and no exact table length, so stop on end-of-table
116 * marker. For tables behind a 32-bit entry point, we have
117 * seen OEM structures behind the end-of-table marker on
118 * some systems, so don't trust it.
119 */
120 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
121 break;
122 }
123
124 /* Trim DMI table length if needed */
125 if (dmi_len > data - buf)
126 dmi_len = data - buf;
127}
128
129static phys_addr_t dmi_base;
130
131static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
132 void *))
133{
134 u8 *buf;
135 u32 orig_dmi_len = dmi_len;
136
137 buf = dmi_early_remap(dmi_base, orig_dmi_len);
138 if (buf == NULL)
139 return -ENOMEM;
140
141 dmi_decode_table(buf, decode, NULL);
142
143 add_device_randomness(buf, dmi_len);
144
145 dmi_early_unmap(buf, orig_dmi_len);
146 return 0;
147}
148
149static int __init dmi_checksum(const u8 *buf, u8 len)
150{
151 u8 sum = 0;
152 int a;
153
154 for (a = 0; a < len; a++)
155 sum += buf[a];
156
157 return sum == 0;
158}
159
160static const char *dmi_ident[DMI_STRING_MAX];
161static LIST_HEAD(dmi_devices);
162int dmi_available;
163
164/*
165 * Save a DMI string
166 */
167static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
168 int string)
169{
170 const char *d = (const char *) dm;
171 const char *p;
172
173 if (dmi_ident[slot] || dm->length <= string)
174 return;
175
176 p = dmi_string(dm, d[string]);
177 if (p == NULL)
178 return;
179
180 dmi_ident[slot] = p;
181}
182
183static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
184 int index)
185{
186 const u8 *d;
187 char *s;
188 int is_ff = 1, is_00 = 1, i;
189
190 if (dmi_ident[slot] || dm->length < index + 16)
191 return;
192
193 d = (u8 *) dm + index;
194 for (i = 0; i < 16 && (is_ff || is_00); i++) {
195 if (d[i] != 0x00)
196 is_00 = 0;
197 if (d[i] != 0xFF)
198 is_ff = 0;
199 }
200
201 if (is_ff || is_00)
202 return;
203
204 s = dmi_alloc(16*2+4+1);
205 if (!s)
206 return;
207
208 /*
209 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
210 * the UUID are supposed to be little-endian encoded. The specification
211 * says that this is the defacto standard.
212 */
213 if (dmi_ver >= 0x020600)
214 sprintf(s, "%pUl", d);
215 else
216 sprintf(s, "%pUb", d);
217
218 dmi_ident[slot] = s;
219}
220
221static void __init dmi_save_type(const struct dmi_header *dm, int slot,
222 int index)
223{
224 const u8 *d;
225 char *s;
226
227 if (dmi_ident[slot] || dm->length <= index)
228 return;
229
230 s = dmi_alloc(4);
231 if (!s)
232 return;
233
234 d = (u8 *) dm + index;
235 sprintf(s, "%u", *d & 0x7F);
236 dmi_ident[slot] = s;
237}
238
239static void __init dmi_save_one_device(int type, const char *name)
240{
241 struct dmi_device *dev;
242
243 /* No duplicate device */
244 if (dmi_find_device(type, name, NULL))
245 return;
246
247 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
248 if (!dev)
249 return;
250
251 dev->type = type;
252 strcpy((char *)(dev + 1), name);
253 dev->name = (char *)(dev + 1);
254 dev->device_data = NULL;
255 list_add(&dev->list, &dmi_devices);
256}
257
258static void __init dmi_save_devices(const struct dmi_header *dm)
259{
260 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
261
262 for (i = 0; i < count; i++) {
263 const char *d = (char *)(dm + 1) + (i * 2);
264
265 /* Skip disabled device */
266 if ((*d & 0x80) == 0)
267 continue;
268
269 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
270 }
271}
272
273static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
274{
275 int i, count;
276 struct dmi_device *dev;
277
278 if (dm->length < 0x05)
279 return;
280
281 count = *(u8 *)(dm + 1);
282 for (i = 1; i <= count; i++) {
283 const char *devname = dmi_string(dm, i);
284
285 if (devname == dmi_empty_string)
286 continue;
287
288 dev = dmi_alloc(sizeof(*dev));
289 if (!dev)
290 break;
291
292 dev->type = DMI_DEV_TYPE_OEM_STRING;
293 dev->name = devname;
294 dev->device_data = NULL;
295
296 list_add(&dev->list, &dmi_devices);
297 }
298}
299
300static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
301{
302 struct dmi_device *dev;
303 void *data;
304
305 data = dmi_alloc(dm->length);
306 if (data == NULL)
307 return;
308
309 memcpy(data, dm, dm->length);
310
311 dev = dmi_alloc(sizeof(*dev));
312 if (!dev)
313 return;
314
315 dev->type = DMI_DEV_TYPE_IPMI;
316 dev->name = "IPMI controller";
317 dev->device_data = data;
318
319 list_add_tail(&dev->list, &dmi_devices);
320}
321
322static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
323 int devfn, const char *name, int type)
324{
325 struct dmi_dev_onboard *dev;
326
327 /* Ignore invalid values */
328 if (type == DMI_DEV_TYPE_DEV_SLOT &&
329 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
330 return;
331
332 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
333 if (!dev)
334 return;
335
336 dev->instance = instance;
337 dev->segment = segment;
338 dev->bus = bus;
339 dev->devfn = devfn;
340
341 strcpy((char *)&dev[1], name);
342 dev->dev.type = type;
343 dev->dev.name = (char *)&dev[1];
344 dev->dev.device_data = dev;
345
346 list_add(&dev->dev.list, &dmi_devices);
347}
348
349static void __init dmi_save_extended_devices(const struct dmi_header *dm)
350{
351 const char *name;
352 const u8 *d = (u8 *)dm;
353
354 if (dm->length < 0x0B)
355 return;
356
357 /* Skip disabled device */
358 if ((d[0x5] & 0x80) == 0)
359 return;
360
361 name = dmi_string_nosave(dm, d[0x4]);
362 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
363 DMI_DEV_TYPE_DEV_ONBOARD);
364 dmi_save_one_device(d[0x5] & 0x7f, name);
365}
366
367static void __init dmi_save_system_slot(const struct dmi_header *dm)
368{
369 const u8 *d = (u8 *)dm;
370
371 /* Need SMBIOS 2.6+ structure */
372 if (dm->length < 0x11)
373 return;
374 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
375 d[0x10], dmi_string_nosave(dm, d[0x4]),
376 DMI_DEV_TYPE_DEV_SLOT);
377}
378
379static void __init count_mem_devices(const struct dmi_header *dm, void *v)
380{
381 if (dm->type != DMI_ENTRY_MEM_DEVICE)
382 return;
383 dmi_memdev_nr++;
384}
385
386static void __init save_mem_devices(const struct dmi_header *dm, void *v)
387{
388 const char *d = (const char *)dm;
389 static int nr;
390 u64 bytes;
391 u16 size;
392
393 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
394 return;
395 if (nr >= dmi_memdev_nr) {
396 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
397 return;
398 }
399 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
400 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
401 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
402
403 size = get_unaligned((u16 *)&d[0xC]);
404 if (size == 0)
405 bytes = 0;
406 else if (size == 0xffff)
407 bytes = ~0ull;
408 else if (size & 0x8000)
409 bytes = (u64)(size & 0x7fff) << 10;
410 else if (size != 0x7fff)
411 bytes = (u64)size << 20;
412 else
413 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
414
415 dmi_memdev[nr].size = bytes;
416 nr++;
417}
418
419void __init dmi_memdev_walk(void)
420{
421 if (!dmi_available)
422 return;
423
424 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
425 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
426 if (dmi_memdev)
427 dmi_walk_early(save_mem_devices);
428 }
429}
430
431/*
432 * Process a DMI table entry. Right now all we care about are the BIOS
433 * and machine entries. For 2.5 we should pull the smbus controller info
434 * out of here.
435 */
436static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
437{
438 switch (dm->type) {
439 case 0: /* BIOS Information */
440 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
441 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
442 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
443 break;
444 case 1: /* System Information */
445 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
446 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
447 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
448 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
449 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
450 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
451 break;
452 case 2: /* Base Board Information */
453 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
454 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
455 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
456 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
457 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
458 break;
459 case 3: /* Chassis Information */
460 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
461 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
462 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
463 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
464 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
465 break;
466 case 9: /* System Slots */
467 dmi_save_system_slot(dm);
468 break;
469 case 10: /* Onboard Devices Information */
470 dmi_save_devices(dm);
471 break;
472 case 11: /* OEM Strings */
473 dmi_save_oem_strings_devices(dm);
474 break;
475 case 38: /* IPMI Device Information */
476 dmi_save_ipmi_device(dm);
477 break;
478 case 41: /* Onboard Devices Extended Information */
479 dmi_save_extended_devices(dm);
480 }
481}
482
483static int __init print_filtered(char *buf, size_t len, const char *info)
484{
485 int c = 0;
486 const char *p;
487
488 if (!info)
489 return c;
490
491 for (p = info; *p; p++)
492 if (isprint(*p))
493 c += scnprintf(buf + c, len - c, "%c", *p);
494 else
495 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
496 return c;
497}
498
499static void __init dmi_format_ids(char *buf, size_t len)
500{
501 int c = 0;
502 const char *board; /* Board Name is optional */
503
504 c += print_filtered(buf + c, len - c,
505 dmi_get_system_info(DMI_SYS_VENDOR));
506 c += scnprintf(buf + c, len - c, " ");
507 c += print_filtered(buf + c, len - c,
508 dmi_get_system_info(DMI_PRODUCT_NAME));
509
510 board = dmi_get_system_info(DMI_BOARD_NAME);
511 if (board) {
512 c += scnprintf(buf + c, len - c, "/");
513 c += print_filtered(buf + c, len - c, board);
514 }
515 c += scnprintf(buf + c, len - c, ", BIOS ");
516 c += print_filtered(buf + c, len - c,
517 dmi_get_system_info(DMI_BIOS_VERSION));
518 c += scnprintf(buf + c, len - c, " ");
519 c += print_filtered(buf + c, len - c,
520 dmi_get_system_info(DMI_BIOS_DATE));
521}
522
523/*
524 * Check for DMI/SMBIOS headers in the system firmware image. Any
525 * SMBIOS header must start 16 bytes before the DMI header, so take a
526 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
527 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
528 * takes precedence) and return 0. Otherwise return 1.
529 */
530static int __init dmi_present(const u8 *buf)
531{
532 u32 smbios_ver;
533
534 if (memcmp(buf, "_SM_", 4) == 0 &&
535 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
536 smbios_ver = get_unaligned_be16(buf + 6);
537 smbios_entry_point_size = buf[5];
538 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
539
540 /* Some BIOS report weird SMBIOS version, fix that up */
541 switch (smbios_ver) {
542 case 0x021F:
543 case 0x0221:
544 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
545 smbios_ver & 0xFF, 3);
546 smbios_ver = 0x0203;
547 break;
548 case 0x0233:
549 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
550 smbios_ver = 0x0206;
551 break;
552 }
553 } else {
554 smbios_ver = 0;
555 }
556
557 buf += 16;
558
559 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
560 if (smbios_ver)
561 dmi_ver = smbios_ver;
562 else
563 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
564 dmi_ver <<= 8;
565 dmi_num = get_unaligned_le16(buf + 12);
566 dmi_len = get_unaligned_le16(buf + 6);
567 dmi_base = get_unaligned_le32(buf + 8);
568
569 if (dmi_walk_early(dmi_decode) == 0) {
570 if (smbios_ver) {
571 pr_info("SMBIOS %d.%d present.\n",
572 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
573 } else {
574 smbios_entry_point_size = 15;
575 memcpy(smbios_entry_point, buf,
576 smbios_entry_point_size);
577 pr_info("Legacy DMI %d.%d present.\n",
578 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
579 }
580 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
581 pr_info("DMI: %s\n", dmi_ids_string);
582 return 0;
583 }
584 }
585
586 return 1;
587}
588
589/*
590 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
591 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
592 */
593static int __init dmi_smbios3_present(const u8 *buf)
594{
595 if (memcmp(buf, "_SM3_", 5) == 0 &&
596 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
597 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
598 dmi_num = 0; /* No longer specified */
599 dmi_len = get_unaligned_le32(buf + 12);
600 dmi_base = get_unaligned_le64(buf + 16);
601 smbios_entry_point_size = buf[6];
602 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
603
604 if (dmi_walk_early(dmi_decode) == 0) {
605 pr_info("SMBIOS %d.%d.%d present.\n",
606 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
607 dmi_ver & 0xFF);
608 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
609 pr_info("DMI: %s\n", dmi_ids_string);
610 return 0;
611 }
612 }
613 return 1;
614}
615
616void __init dmi_scan_machine(void)
617{
618 char __iomem *p, *q;
619 char buf[32];
620
621 if (efi_enabled(EFI_CONFIG_TABLES)) {
622 /*
623 * According to the DMTF SMBIOS reference spec v3.0.0, it is
624 * allowed to define both the 64-bit entry point (smbios3) and
625 * the 32-bit entry point (smbios), in which case they should
626 * either both point to the same SMBIOS structure table, or the
627 * table pointed to by the 64-bit entry point should contain a
628 * superset of the table contents pointed to by the 32-bit entry
629 * point (section 5.2)
630 * This implies that the 64-bit entry point should have
631 * precedence if it is defined and supported by the OS. If we
632 * have the 64-bit entry point, but fail to decode it, fall
633 * back to the legacy one (if available)
634 */
635 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
636 p = dmi_early_remap(efi.smbios3, 32);
637 if (p == NULL)
638 goto error;
639 memcpy_fromio(buf, p, 32);
640 dmi_early_unmap(p, 32);
641
642 if (!dmi_smbios3_present(buf)) {
643 dmi_available = 1;
644 return;
645 }
646 }
647 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
648 goto error;
649
650 /* This is called as a core_initcall() because it isn't
651 * needed during early boot. This also means we can
652 * iounmap the space when we're done with it.
653 */
654 p = dmi_early_remap(efi.smbios, 32);
655 if (p == NULL)
656 goto error;
657 memcpy_fromio(buf, p, 32);
658 dmi_early_unmap(p, 32);
659
660 if (!dmi_present(buf)) {
661 dmi_available = 1;
662 return;
663 }
664 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
665 p = dmi_early_remap(0xF0000, 0x10000);
666 if (p == NULL)
667 goto error;
668
669 /*
670 * Same logic as above, look for a 64-bit entry point
671 * first, and if not found, fall back to 32-bit entry point.
672 */
673 memcpy_fromio(buf, p, 16);
674 for (q = p + 16; q < p + 0x10000; q += 16) {
675 memcpy_fromio(buf + 16, q, 16);
676 if (!dmi_smbios3_present(buf)) {
677 dmi_available = 1;
678 dmi_early_unmap(p, 0x10000);
679 return;
680 }
681 memcpy(buf, buf + 16, 16);
682 }
683
684 /*
685 * Iterate over all possible DMI header addresses q.
686 * Maintain the 32 bytes around q in buf. On the
687 * first iteration, substitute zero for the
688 * out-of-range bytes so there is no chance of falsely
689 * detecting an SMBIOS header.
690 */
691 memset(buf, 0, 16);
692 for (q = p; q < p + 0x10000; q += 16) {
693 memcpy_fromio(buf + 16, q, 16);
694 if (!dmi_present(buf)) {
695 dmi_available = 1;
696 dmi_early_unmap(p, 0x10000);
697 return;
698 }
699 memcpy(buf, buf + 16, 16);
700 }
701 dmi_early_unmap(p, 0x10000);
702 }
703 error:
704 pr_info("DMI not present or invalid.\n");
705}
706
707static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
708 struct bin_attribute *attr, char *buf,
709 loff_t pos, size_t count)
710{
711 memcpy(buf, attr->private + pos, count);
712 return count;
713}
714
715static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
716static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
717
718static int __init dmi_init(void)
719{
720 struct kobject *tables_kobj;
721 u8 *dmi_table;
722 int ret = -ENOMEM;
723
724 if (!dmi_available)
725 return 0;
726
727 /*
728 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
729 * even after farther error, as it can be used by other modules like
730 * dmi-sysfs.
731 */
732 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
733 if (!dmi_kobj)
734 goto err;
735
736 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
737 if (!tables_kobj)
738 goto err;
739
740 dmi_table = dmi_remap(dmi_base, dmi_len);
741 if (!dmi_table)
742 goto err_tables;
743
744 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
745 bin_attr_smbios_entry_point.private = smbios_entry_point;
746 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
747 if (ret)
748 goto err_unmap;
749
750 bin_attr_DMI.size = dmi_len;
751 bin_attr_DMI.private = dmi_table;
752 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
753 if (!ret)
754 return 0;
755
756 sysfs_remove_bin_file(tables_kobj,
757 &bin_attr_smbios_entry_point);
758 err_unmap:
759 dmi_unmap(dmi_table);
760 err_tables:
761 kobject_del(tables_kobj);
762 kobject_put(tables_kobj);
763 err:
764 pr_err("dmi: Firmware registration failed.\n");
765
766 return ret;
767}
768subsys_initcall(dmi_init);
769
770/**
771 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
772 *
773 * Invoke dump_stack_set_arch_desc() with DMI system information so that
774 * DMI identifiers are printed out on task dumps. Arch boot code should
775 * call this function after dmi_scan_machine() if it wants to print out DMI
776 * identifiers on task dumps.
777 */
778void __init dmi_set_dump_stack_arch_desc(void)
779{
780 dump_stack_set_arch_desc("%s", dmi_ids_string);
781}
782
783/**
784 * dmi_matches - check if dmi_system_id structure matches system DMI data
785 * @dmi: pointer to the dmi_system_id structure to check
786 */
787static bool dmi_matches(const struct dmi_system_id *dmi)
788{
789 int i;
790
791 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
792 int s = dmi->matches[i].slot;
793 if (s == DMI_NONE)
794 break;
795 if (s == DMI_OEM_STRING) {
796 /* DMI_OEM_STRING must be exact match */
797 const struct dmi_device *valid;
798
799 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
800 dmi->matches[i].substr, NULL);
801 if (valid)
802 continue;
803 } else if (dmi_ident[s]) {
804 if (dmi->matches[i].exact_match) {
805 if (!strcmp(dmi_ident[s],
806 dmi->matches[i].substr))
807 continue;
808 } else {
809 if (strstr(dmi_ident[s],
810 dmi->matches[i].substr))
811 continue;
812 }
813 }
814
815 /* No match */
816 return false;
817 }
818 return true;
819}
820
821/**
822 * dmi_is_end_of_table - check for end-of-table marker
823 * @dmi: pointer to the dmi_system_id structure to check
824 */
825static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
826{
827 return dmi->matches[0].slot == DMI_NONE;
828}
829
830/**
831 * dmi_check_system - check system DMI data
832 * @list: array of dmi_system_id structures to match against
833 * All non-null elements of the list must match
834 * their slot's (field index's) data (i.e., each
835 * list string must be a substring of the specified
836 * DMI slot's string data) to be considered a
837 * successful match.
838 *
839 * Walk the blacklist table running matching functions until someone
840 * returns non zero or we hit the end. Callback function is called for
841 * each successful match. Returns the number of matches.
842 *
843 * dmi_scan_machine must be called before this function is called.
844 */
845int dmi_check_system(const struct dmi_system_id *list)
846{
847 int count = 0;
848 const struct dmi_system_id *d;
849
850 for (d = list; !dmi_is_end_of_table(d); d++)
851 if (dmi_matches(d)) {
852 count++;
853 if (d->callback && d->callback(d))
854 break;
855 }
856
857 return count;
858}
859EXPORT_SYMBOL(dmi_check_system);
860
861/**
862 * dmi_first_match - find dmi_system_id structure matching system DMI data
863 * @list: array of dmi_system_id structures to match against
864 * All non-null elements of the list must match
865 * their slot's (field index's) data (i.e., each
866 * list string must be a substring of the specified
867 * DMI slot's string data) to be considered a
868 * successful match.
869 *
870 * Walk the blacklist table until the first match is found. Return the
871 * pointer to the matching entry or NULL if there's no match.
872 *
873 * dmi_scan_machine must be called before this function is called.
874 */
875const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
876{
877 const struct dmi_system_id *d;
878
879 for (d = list; !dmi_is_end_of_table(d); d++)
880 if (dmi_matches(d))
881 return d;
882
883 return NULL;
884}
885EXPORT_SYMBOL(dmi_first_match);
886
887/**
888 * dmi_get_system_info - return DMI data value
889 * @field: data index (see enum dmi_field)
890 *
891 * Returns one DMI data value, can be used to perform
892 * complex DMI data checks.
893 */
894const char *dmi_get_system_info(int field)
895{
896 return dmi_ident[field];
897}
898EXPORT_SYMBOL(dmi_get_system_info);
899
900/**
901 * dmi_name_in_serial - Check if string is in the DMI product serial information
902 * @str: string to check for
903 */
904int dmi_name_in_serial(const char *str)
905{
906 int f = DMI_PRODUCT_SERIAL;
907 if (dmi_ident[f] && strstr(dmi_ident[f], str))
908 return 1;
909 return 0;
910}
911
912/**
913 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
914 * @str: Case sensitive Name
915 */
916int dmi_name_in_vendors(const char *str)
917{
918 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
919 int i;
920 for (i = 0; fields[i] != DMI_NONE; i++) {
921 int f = fields[i];
922 if (dmi_ident[f] && strstr(dmi_ident[f], str))
923 return 1;
924 }
925 return 0;
926}
927EXPORT_SYMBOL(dmi_name_in_vendors);
928
929/**
930 * dmi_find_device - find onboard device by type/name
931 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
932 * @name: device name string or %NULL to match all
933 * @from: previous device found in search, or %NULL for new search.
934 *
935 * Iterates through the list of known onboard devices. If a device is
936 * found with a matching @type and @name, a pointer to its device
937 * structure is returned. Otherwise, %NULL is returned.
938 * A new search is initiated by passing %NULL as the @from argument.
939 * If @from is not %NULL, searches continue from next device.
940 */
941const struct dmi_device *dmi_find_device(int type, const char *name,
942 const struct dmi_device *from)
943{
944 const struct list_head *head = from ? &from->list : &dmi_devices;
945 struct list_head *d;
946
947 for (d = head->next; d != &dmi_devices; d = d->next) {
948 const struct dmi_device *dev =
949 list_entry(d, struct dmi_device, list);
950
951 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
952 ((name == NULL) || (strcmp(dev->name, name) == 0)))
953 return dev;
954 }
955
956 return NULL;
957}
958EXPORT_SYMBOL(dmi_find_device);
959
960/**
961 * dmi_get_date - parse a DMI date
962 * @field: data index (see enum dmi_field)
963 * @yearp: optional out parameter for the year
964 * @monthp: optional out parameter for the month
965 * @dayp: optional out parameter for the day
966 *
967 * The date field is assumed to be in the form resembling
968 * [mm[/dd]]/yy[yy] and the result is stored in the out
969 * parameters any or all of which can be omitted.
970 *
971 * If the field doesn't exist, all out parameters are set to zero
972 * and false is returned. Otherwise, true is returned with any
973 * invalid part of date set to zero.
974 *
975 * On return, year, month and day are guaranteed to be in the
976 * range of [0,9999], [0,12] and [0,31] respectively.
977 */
978bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
979{
980 int year = 0, month = 0, day = 0;
981 bool exists;
982 const char *s, *y;
983 char *e;
984
985 s = dmi_get_system_info(field);
986 exists = s;
987 if (!exists)
988 goto out;
989
990 /*
991 * Determine year first. We assume the date string resembles
992 * mm/dd/yy[yy] but the original code extracted only the year
993 * from the end. Keep the behavior in the spirit of no
994 * surprises.
995 */
996 y = strrchr(s, '/');
997 if (!y)
998 goto out;
999
1000 y++;
1001 year = simple_strtoul(y, &e, 10);
1002 if (y != e && year < 100) { /* 2-digit year */
1003 year += 1900;
1004 if (year < 1996) /* no dates < spec 1.0 */
1005 year += 100;
1006 }
1007 if (year > 9999) /* year should fit in %04d */
1008 year = 0;
1009
1010 /* parse the mm and dd */
1011 month = simple_strtoul(s, &e, 10);
1012 if (s == e || *e != '/' || !month || month > 12) {
1013 month = 0;
1014 goto out;
1015 }
1016
1017 s = e + 1;
1018 day = simple_strtoul(s, &e, 10);
1019 if (s == y || s == e || *e != '/' || day > 31)
1020 day = 0;
1021out:
1022 if (yearp)
1023 *yearp = year;
1024 if (monthp)
1025 *monthp = month;
1026 if (dayp)
1027 *dayp = day;
1028 return exists;
1029}
1030EXPORT_SYMBOL(dmi_get_date);
1031
1032/**
1033 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1034 *
1035 * Returns year on success, -ENXIO if DMI is not selected,
1036 * or a different negative error code if DMI field is not present
1037 * or not parseable.
1038 */
1039int dmi_get_bios_year(void)
1040{
1041 bool exists;
1042 int year;
1043
1044 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1045 if (!exists)
1046 return -ENODATA;
1047
1048 return year ? year : -ERANGE;
1049}
1050EXPORT_SYMBOL(dmi_get_bios_year);
1051
1052/**
1053 * dmi_walk - Walk the DMI table and get called back for every record
1054 * @decode: Callback function
1055 * @private_data: Private data to be passed to the callback function
1056 *
1057 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1058 * or a different negative error code if DMI walking fails.
1059 */
1060int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1061 void *private_data)
1062{
1063 u8 *buf;
1064
1065 if (!dmi_available)
1066 return -ENXIO;
1067
1068 buf = dmi_remap(dmi_base, dmi_len);
1069 if (buf == NULL)
1070 return -ENOMEM;
1071
1072 dmi_decode_table(buf, decode, private_data);
1073
1074 dmi_unmap(buf);
1075 return 0;
1076}
1077EXPORT_SYMBOL_GPL(dmi_walk);
1078
1079/**
1080 * dmi_match - compare a string to the dmi field (if exists)
1081 * @f: DMI field identifier
1082 * @str: string to compare the DMI field to
1083 *
1084 * Returns true if the requested field equals to the str (including NULL).
1085 */
1086bool dmi_match(enum dmi_field f, const char *str)
1087{
1088 const char *info = dmi_get_system_info(f);
1089
1090 if (info == NULL || str == NULL)
1091 return info == str;
1092
1093 return !strcmp(info, str);
1094}
1095EXPORT_SYMBOL_GPL(dmi_match);
1096
1097void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1098{
1099 int n;
1100
1101 if (dmi_memdev == NULL)
1102 return;
1103
1104 for (n = 0; n < dmi_memdev_nr; n++) {
1105 if (handle == dmi_memdev[n].handle) {
1106 *bank = dmi_memdev[n].bank;
1107 *device = dmi_memdev[n].device;
1108 break;
1109 }
1110 }
1111}
1112EXPORT_SYMBOL_GPL(dmi_memdev_name);
1113
1114u64 dmi_memdev_size(u16 handle)
1115{
1116 int n;
1117
1118 if (dmi_memdev) {
1119 for (n = 0; n < dmi_memdev_nr; n++) {
1120 if (handle == dmi_memdev[n].handle)
1121 return dmi_memdev[n].size;
1122 }
1123 }
1124 return ~0ull;
1125}
1126EXPORT_SYMBOL_GPL(dmi_memdev_size);