Loading...
1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <linux/random.h>
10#include <asm/dmi.h>
11#include <asm/unaligned.h>
12
13struct kobject *dmi_kobj;
14EXPORT_SYMBOL_GPL(dmi_kobj);
15
16/*
17 * DMI stands for "Desktop Management Interface". It is part
18 * of and an antecedent to, SMBIOS, which stands for System
19 * Management BIOS. See further: http://www.dmtf.org/standards
20 */
21static const char dmi_empty_string[] = " ";
22
23static u32 dmi_ver __initdata;
24static u32 dmi_len;
25static u16 dmi_num;
26static u8 smbios_entry_point[32];
27static int smbios_entry_point_size;
28
29/*
30 * Catch too early calls to dmi_check_system():
31 */
32static int dmi_initialized;
33
34/* DMI system identification string used during boot */
35static char dmi_ids_string[128] __initdata;
36
37static struct dmi_memdev_info {
38 const char *device;
39 const char *bank;
40 u16 handle;
41} *dmi_memdev;
42static int dmi_memdev_nr;
43
44static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
45{
46 const u8 *bp = ((u8 *) dm) + dm->length;
47
48 if (s) {
49 s--;
50 while (s > 0 && *bp) {
51 bp += strlen(bp) + 1;
52 s--;
53 }
54
55 if (*bp != 0) {
56 size_t len = strlen(bp)+1;
57 size_t cmp_len = len > 8 ? 8 : len;
58
59 if (!memcmp(bp, dmi_empty_string, cmp_len))
60 return dmi_empty_string;
61 return bp;
62 }
63 }
64
65 return "";
66}
67
68static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
69{
70 const char *bp = dmi_string_nosave(dm, s);
71 char *str;
72 size_t len;
73
74 if (bp == dmi_empty_string)
75 return dmi_empty_string;
76
77 len = strlen(bp) + 1;
78 str = dmi_alloc(len);
79 if (str != NULL)
80 strcpy(str, bp);
81
82 return str;
83}
84
85/*
86 * We have to be cautious here. We have seen BIOSes with DMI pointers
87 * pointing to completely the wrong place for example
88 */
89static void dmi_decode_table(u8 *buf,
90 void (*decode)(const struct dmi_header *, void *),
91 void *private_data)
92{
93 u8 *data = buf;
94 int i = 0;
95
96 /*
97 * Stop when we have seen all the items the table claimed to have
98 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
99 * >= 3.0 only) OR we run off the end of the table (should never
100 * happen but sometimes does on bogus implementations.)
101 */
102 while ((!dmi_num || i < dmi_num) &&
103 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
104 const struct dmi_header *dm = (const struct dmi_header *)data;
105
106 /*
107 * We want to know the total length (formatted area and
108 * strings) before decoding to make sure we won't run off the
109 * table in dmi_decode or dmi_string
110 */
111 data += dm->length;
112 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
113 data++;
114 if (data - buf < dmi_len - 1)
115 decode(dm, private_data);
116
117 data += 2;
118 i++;
119
120 /*
121 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
122 * For tables behind a 64-bit entry point, we have no item
123 * count and no exact table length, so stop on end-of-table
124 * marker. For tables behind a 32-bit entry point, we have
125 * seen OEM structures behind the end-of-table marker on
126 * some systems, so don't trust it.
127 */
128 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
129 break;
130 }
131
132 /* Trim DMI table length if needed */
133 if (dmi_len > data - buf)
134 dmi_len = data - buf;
135}
136
137static phys_addr_t dmi_base;
138
139static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
140 void *))
141{
142 u8 *buf;
143 u32 orig_dmi_len = dmi_len;
144
145 buf = dmi_early_remap(dmi_base, orig_dmi_len);
146 if (buf == NULL)
147 return -1;
148
149 dmi_decode_table(buf, decode, NULL);
150
151 add_device_randomness(buf, dmi_len);
152
153 dmi_early_unmap(buf, orig_dmi_len);
154 return 0;
155}
156
157static int __init dmi_checksum(const u8 *buf, u8 len)
158{
159 u8 sum = 0;
160 int a;
161
162 for (a = 0; a < len; a++)
163 sum += buf[a];
164
165 return sum == 0;
166}
167
168static const char *dmi_ident[DMI_STRING_MAX];
169static LIST_HEAD(dmi_devices);
170int dmi_available;
171
172/*
173 * Save a DMI string
174 */
175static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
176 int string)
177{
178 const char *d = (const char *) dm;
179 const char *p;
180
181 if (dmi_ident[slot])
182 return;
183
184 p = dmi_string(dm, d[string]);
185 if (p == NULL)
186 return;
187
188 dmi_ident[slot] = p;
189}
190
191static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
192 int index)
193{
194 const u8 *d = (u8 *) dm + index;
195 char *s;
196 int is_ff = 1, is_00 = 1, i;
197
198 if (dmi_ident[slot])
199 return;
200
201 for (i = 0; i < 16 && (is_ff || is_00); i++) {
202 if (d[i] != 0x00)
203 is_00 = 0;
204 if (d[i] != 0xFF)
205 is_ff = 0;
206 }
207
208 if (is_ff || is_00)
209 return;
210
211 s = dmi_alloc(16*2+4+1);
212 if (!s)
213 return;
214
215 /*
216 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
217 * the UUID are supposed to be little-endian encoded. The specification
218 * says that this is the defacto standard.
219 */
220 if (dmi_ver >= 0x020600)
221 sprintf(s, "%pUL", d);
222 else
223 sprintf(s, "%pUB", d);
224
225 dmi_ident[slot] = s;
226}
227
228static void __init dmi_save_type(const struct dmi_header *dm, int slot,
229 int index)
230{
231 const u8 *d = (u8 *) dm + index;
232 char *s;
233
234 if (dmi_ident[slot])
235 return;
236
237 s = dmi_alloc(4);
238 if (!s)
239 return;
240
241 sprintf(s, "%u", *d & 0x7F);
242 dmi_ident[slot] = s;
243}
244
245static void __init dmi_save_one_device(int type, const char *name)
246{
247 struct dmi_device *dev;
248
249 /* No duplicate device */
250 if (dmi_find_device(type, name, NULL))
251 return;
252
253 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
254 if (!dev)
255 return;
256
257 dev->type = type;
258 strcpy((char *)(dev + 1), name);
259 dev->name = (char *)(dev + 1);
260 dev->device_data = NULL;
261 list_add(&dev->list, &dmi_devices);
262}
263
264static void __init dmi_save_devices(const struct dmi_header *dm)
265{
266 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
267
268 for (i = 0; i < count; i++) {
269 const char *d = (char *)(dm + 1) + (i * 2);
270
271 /* Skip disabled device */
272 if ((*d & 0x80) == 0)
273 continue;
274
275 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
276 }
277}
278
279static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
280{
281 int i, count = *(u8 *)(dm + 1);
282 struct dmi_device *dev;
283
284 for (i = 1; i <= count; i++) {
285 const char *devname = dmi_string(dm, i);
286
287 if (devname == dmi_empty_string)
288 continue;
289
290 dev = dmi_alloc(sizeof(*dev));
291 if (!dev)
292 break;
293
294 dev->type = DMI_DEV_TYPE_OEM_STRING;
295 dev->name = devname;
296 dev->device_data = NULL;
297
298 list_add(&dev->list, &dmi_devices);
299 }
300}
301
302static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
303{
304 struct dmi_device *dev;
305 void *data;
306
307 data = dmi_alloc(dm->length);
308 if (data == NULL)
309 return;
310
311 memcpy(data, dm, dm->length);
312
313 dev = dmi_alloc(sizeof(*dev));
314 if (!dev)
315 return;
316
317 dev->type = DMI_DEV_TYPE_IPMI;
318 dev->name = "IPMI controller";
319 dev->device_data = data;
320
321 list_add_tail(&dev->list, &dmi_devices);
322}
323
324static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
325 int devfn, const char *name, int type)
326{
327 struct dmi_dev_onboard *dev;
328
329 /* Ignore invalid values */
330 if (type == DMI_DEV_TYPE_DEV_SLOT &&
331 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
332 return;
333
334 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
335 if (!dev)
336 return;
337
338 dev->instance = instance;
339 dev->segment = segment;
340 dev->bus = bus;
341 dev->devfn = devfn;
342
343 strcpy((char *)&dev[1], name);
344 dev->dev.type = type;
345 dev->dev.name = (char *)&dev[1];
346 dev->dev.device_data = dev;
347
348 list_add(&dev->dev.list, &dmi_devices);
349}
350
351static void __init dmi_save_extended_devices(const struct dmi_header *dm)
352{
353 const char *name;
354 const u8 *d = (u8 *)dm;
355
356 /* Skip disabled device */
357 if ((d[0x5] & 0x80) == 0)
358 return;
359
360 name = dmi_string_nosave(dm, d[0x4]);
361 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
362 DMI_DEV_TYPE_DEV_ONBOARD);
363 dmi_save_one_device(d[0x5] & 0x7f, name);
364}
365
366static void __init dmi_save_system_slot(const struct dmi_header *dm)
367{
368 const u8 *d = (u8 *)dm;
369
370 /* Need SMBIOS 2.6+ structure */
371 if (dm->length < 0x11)
372 return;
373 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
374 d[0x10], dmi_string_nosave(dm, d[0x4]),
375 DMI_DEV_TYPE_DEV_SLOT);
376}
377
378static void __init count_mem_devices(const struct dmi_header *dm, void *v)
379{
380 if (dm->type != DMI_ENTRY_MEM_DEVICE)
381 return;
382 dmi_memdev_nr++;
383}
384
385static void __init save_mem_devices(const struct dmi_header *dm, void *v)
386{
387 const char *d = (const char *)dm;
388 static int nr;
389
390 if (dm->type != DMI_ENTRY_MEM_DEVICE)
391 return;
392 if (nr >= dmi_memdev_nr) {
393 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
394 return;
395 }
396 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
397 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
398 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
399 nr++;
400}
401
402void __init dmi_memdev_walk(void)
403{
404 if (!dmi_available)
405 return;
406
407 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
408 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
409 if (dmi_memdev)
410 dmi_walk_early(save_mem_devices);
411 }
412}
413
414/*
415 * Process a DMI table entry. Right now all we care about are the BIOS
416 * and machine entries. For 2.5 we should pull the smbus controller info
417 * out of here.
418 */
419static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
420{
421 switch (dm->type) {
422 case 0: /* BIOS Information */
423 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
424 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
425 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
426 break;
427 case 1: /* System Information */
428 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
429 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
430 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
431 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
432 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
433 break;
434 case 2: /* Base Board Information */
435 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
436 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
437 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
438 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
439 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
440 break;
441 case 3: /* Chassis Information */
442 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
443 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
444 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
445 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
446 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
447 break;
448 case 9: /* System Slots */
449 dmi_save_system_slot(dm);
450 break;
451 case 10: /* Onboard Devices Information */
452 dmi_save_devices(dm);
453 break;
454 case 11: /* OEM Strings */
455 dmi_save_oem_strings_devices(dm);
456 break;
457 case 38: /* IPMI Device Information */
458 dmi_save_ipmi_device(dm);
459 break;
460 case 41: /* Onboard Devices Extended Information */
461 dmi_save_extended_devices(dm);
462 }
463}
464
465static int __init print_filtered(char *buf, size_t len, const char *info)
466{
467 int c = 0;
468 const char *p;
469
470 if (!info)
471 return c;
472
473 for (p = info; *p; p++)
474 if (isprint(*p))
475 c += scnprintf(buf + c, len - c, "%c", *p);
476 else
477 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
478 return c;
479}
480
481static void __init dmi_format_ids(char *buf, size_t len)
482{
483 int c = 0;
484 const char *board; /* Board Name is optional */
485
486 c += print_filtered(buf + c, len - c,
487 dmi_get_system_info(DMI_SYS_VENDOR));
488 c += scnprintf(buf + c, len - c, " ");
489 c += print_filtered(buf + c, len - c,
490 dmi_get_system_info(DMI_PRODUCT_NAME));
491
492 board = dmi_get_system_info(DMI_BOARD_NAME);
493 if (board) {
494 c += scnprintf(buf + c, len - c, "/");
495 c += print_filtered(buf + c, len - c, board);
496 }
497 c += scnprintf(buf + c, len - c, ", BIOS ");
498 c += print_filtered(buf + c, len - c,
499 dmi_get_system_info(DMI_BIOS_VERSION));
500 c += scnprintf(buf + c, len - c, " ");
501 c += print_filtered(buf + c, len - c,
502 dmi_get_system_info(DMI_BIOS_DATE));
503}
504
505/*
506 * Check for DMI/SMBIOS headers in the system firmware image. Any
507 * SMBIOS header must start 16 bytes before the DMI header, so take a
508 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
509 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
510 * takes precedence) and return 0. Otherwise return 1.
511 */
512static int __init dmi_present(const u8 *buf)
513{
514 u32 smbios_ver;
515
516 if (memcmp(buf, "_SM_", 4) == 0 &&
517 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
518 smbios_ver = get_unaligned_be16(buf + 6);
519 smbios_entry_point_size = buf[5];
520 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
521
522 /* Some BIOS report weird SMBIOS version, fix that up */
523 switch (smbios_ver) {
524 case 0x021F:
525 case 0x0221:
526 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
527 smbios_ver & 0xFF, 3);
528 smbios_ver = 0x0203;
529 break;
530 case 0x0233:
531 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
532 smbios_ver = 0x0206;
533 break;
534 }
535 } else {
536 smbios_ver = 0;
537 }
538
539 buf += 16;
540
541 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
542 if (smbios_ver)
543 dmi_ver = smbios_ver;
544 else
545 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
546 dmi_ver <<= 8;
547 dmi_num = get_unaligned_le16(buf + 12);
548 dmi_len = get_unaligned_le16(buf + 6);
549 dmi_base = get_unaligned_le32(buf + 8);
550
551 if (dmi_walk_early(dmi_decode) == 0) {
552 if (smbios_ver) {
553 pr_info("SMBIOS %d.%d present.\n",
554 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
555 } else {
556 smbios_entry_point_size = 15;
557 memcpy(smbios_entry_point, buf,
558 smbios_entry_point_size);
559 pr_info("Legacy DMI %d.%d present.\n",
560 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
561 }
562 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
563 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
564 return 0;
565 }
566 }
567
568 return 1;
569}
570
571/*
572 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
573 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
574 */
575static int __init dmi_smbios3_present(const u8 *buf)
576{
577 if (memcmp(buf, "_SM3_", 5) == 0 &&
578 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
579 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
580 dmi_num = 0; /* No longer specified */
581 dmi_len = get_unaligned_le32(buf + 12);
582 dmi_base = get_unaligned_le64(buf + 16);
583 smbios_entry_point_size = buf[6];
584 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
585
586 if (dmi_walk_early(dmi_decode) == 0) {
587 pr_info("SMBIOS %d.%d.%d present.\n",
588 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
589 dmi_ver & 0xFF);
590 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
591 pr_debug("DMI: %s\n", dmi_ids_string);
592 return 0;
593 }
594 }
595 return 1;
596}
597
598void __init dmi_scan_machine(void)
599{
600 char __iomem *p, *q;
601 char buf[32];
602
603 if (efi_enabled(EFI_CONFIG_TABLES)) {
604 /*
605 * According to the DMTF SMBIOS reference spec v3.0.0, it is
606 * allowed to define both the 64-bit entry point (smbios3) and
607 * the 32-bit entry point (smbios), in which case they should
608 * either both point to the same SMBIOS structure table, or the
609 * table pointed to by the 64-bit entry point should contain a
610 * superset of the table contents pointed to by the 32-bit entry
611 * point (section 5.2)
612 * This implies that the 64-bit entry point should have
613 * precedence if it is defined and supported by the OS. If we
614 * have the 64-bit entry point, but fail to decode it, fall
615 * back to the legacy one (if available)
616 */
617 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
618 p = dmi_early_remap(efi.smbios3, 32);
619 if (p == NULL)
620 goto error;
621 memcpy_fromio(buf, p, 32);
622 dmi_early_unmap(p, 32);
623
624 if (!dmi_smbios3_present(buf)) {
625 dmi_available = 1;
626 goto out;
627 }
628 }
629 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
630 goto error;
631
632 /* This is called as a core_initcall() because it isn't
633 * needed during early boot. This also means we can
634 * iounmap the space when we're done with it.
635 */
636 p = dmi_early_remap(efi.smbios, 32);
637 if (p == NULL)
638 goto error;
639 memcpy_fromio(buf, p, 32);
640 dmi_early_unmap(p, 32);
641
642 if (!dmi_present(buf)) {
643 dmi_available = 1;
644 goto out;
645 }
646 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
647 p = dmi_early_remap(0xF0000, 0x10000);
648 if (p == NULL)
649 goto error;
650
651 /*
652 * Iterate over all possible DMI header addresses q.
653 * Maintain the 32 bytes around q in buf. On the
654 * first iteration, substitute zero for the
655 * out-of-range bytes so there is no chance of falsely
656 * detecting an SMBIOS header.
657 */
658 memset(buf, 0, 16);
659 for (q = p; q < p + 0x10000; q += 16) {
660 memcpy_fromio(buf + 16, q, 16);
661 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
662 dmi_available = 1;
663 dmi_early_unmap(p, 0x10000);
664 goto out;
665 }
666 memcpy(buf, buf + 16, 16);
667 }
668 dmi_early_unmap(p, 0x10000);
669 }
670 error:
671 pr_info("DMI not present or invalid.\n");
672 out:
673 dmi_initialized = 1;
674}
675
676static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
677 struct bin_attribute *attr, char *buf,
678 loff_t pos, size_t count)
679{
680 memcpy(buf, attr->private + pos, count);
681 return count;
682}
683
684static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
685static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
686
687static int __init dmi_init(void)
688{
689 struct kobject *tables_kobj;
690 u8 *dmi_table;
691 int ret = -ENOMEM;
692
693 if (!dmi_available) {
694 ret = -ENODATA;
695 goto err;
696 }
697
698 /*
699 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
700 * even after farther error, as it can be used by other modules like
701 * dmi-sysfs.
702 */
703 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
704 if (!dmi_kobj)
705 goto err;
706
707 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
708 if (!tables_kobj)
709 goto err;
710
711 dmi_table = dmi_remap(dmi_base, dmi_len);
712 if (!dmi_table)
713 goto err_tables;
714
715 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
716 bin_attr_smbios_entry_point.private = smbios_entry_point;
717 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
718 if (ret)
719 goto err_unmap;
720
721 bin_attr_DMI.size = dmi_len;
722 bin_attr_DMI.private = dmi_table;
723 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
724 if (!ret)
725 return 0;
726
727 sysfs_remove_bin_file(tables_kobj,
728 &bin_attr_smbios_entry_point);
729 err_unmap:
730 dmi_unmap(dmi_table);
731 err_tables:
732 kobject_del(tables_kobj);
733 kobject_put(tables_kobj);
734 err:
735 pr_err("dmi: Firmware registration failed.\n");
736
737 return ret;
738}
739subsys_initcall(dmi_init);
740
741/**
742 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
743 *
744 * Invoke dump_stack_set_arch_desc() with DMI system information so that
745 * DMI identifiers are printed out on task dumps. Arch boot code should
746 * call this function after dmi_scan_machine() if it wants to print out DMI
747 * identifiers on task dumps.
748 */
749void __init dmi_set_dump_stack_arch_desc(void)
750{
751 dump_stack_set_arch_desc("%s", dmi_ids_string);
752}
753
754/**
755 * dmi_matches - check if dmi_system_id structure matches system DMI data
756 * @dmi: pointer to the dmi_system_id structure to check
757 */
758static bool dmi_matches(const struct dmi_system_id *dmi)
759{
760 int i;
761
762 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
763
764 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
765 int s = dmi->matches[i].slot;
766 if (s == DMI_NONE)
767 break;
768 if (dmi_ident[s]) {
769 if (!dmi->matches[i].exact_match &&
770 strstr(dmi_ident[s], dmi->matches[i].substr))
771 continue;
772 else if (dmi->matches[i].exact_match &&
773 !strcmp(dmi_ident[s], dmi->matches[i].substr))
774 continue;
775 }
776
777 /* No match */
778 return false;
779 }
780 return true;
781}
782
783/**
784 * dmi_is_end_of_table - check for end-of-table marker
785 * @dmi: pointer to the dmi_system_id structure to check
786 */
787static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
788{
789 return dmi->matches[0].slot == DMI_NONE;
790}
791
792/**
793 * dmi_check_system - check system DMI data
794 * @list: array of dmi_system_id structures to match against
795 * All non-null elements of the list must match
796 * their slot's (field index's) data (i.e., each
797 * list string must be a substring of the specified
798 * DMI slot's string data) to be considered a
799 * successful match.
800 *
801 * Walk the blacklist table running matching functions until someone
802 * returns non zero or we hit the end. Callback function is called for
803 * each successful match. Returns the number of matches.
804 */
805int dmi_check_system(const struct dmi_system_id *list)
806{
807 int count = 0;
808 const struct dmi_system_id *d;
809
810 for (d = list; !dmi_is_end_of_table(d); d++)
811 if (dmi_matches(d)) {
812 count++;
813 if (d->callback && d->callback(d))
814 break;
815 }
816
817 return count;
818}
819EXPORT_SYMBOL(dmi_check_system);
820
821/**
822 * dmi_first_match - find dmi_system_id structure matching system DMI data
823 * @list: array of dmi_system_id structures to match against
824 * All non-null elements of the list must match
825 * their slot's (field index's) data (i.e., each
826 * list string must be a substring of the specified
827 * DMI slot's string data) to be considered a
828 * successful match.
829 *
830 * Walk the blacklist table until the first match is found. Return the
831 * pointer to the matching entry or NULL if there's no match.
832 */
833const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
834{
835 const struct dmi_system_id *d;
836
837 for (d = list; !dmi_is_end_of_table(d); d++)
838 if (dmi_matches(d))
839 return d;
840
841 return NULL;
842}
843EXPORT_SYMBOL(dmi_first_match);
844
845/**
846 * dmi_get_system_info - return DMI data value
847 * @field: data index (see enum dmi_field)
848 *
849 * Returns one DMI data value, can be used to perform
850 * complex DMI data checks.
851 */
852const char *dmi_get_system_info(int field)
853{
854 return dmi_ident[field];
855}
856EXPORT_SYMBOL(dmi_get_system_info);
857
858/**
859 * dmi_name_in_serial - Check if string is in the DMI product serial information
860 * @str: string to check for
861 */
862int dmi_name_in_serial(const char *str)
863{
864 int f = DMI_PRODUCT_SERIAL;
865 if (dmi_ident[f] && strstr(dmi_ident[f], str))
866 return 1;
867 return 0;
868}
869
870/**
871 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
872 * @str: Case sensitive Name
873 */
874int dmi_name_in_vendors(const char *str)
875{
876 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
877 int i;
878 for (i = 0; fields[i] != DMI_NONE; i++) {
879 int f = fields[i];
880 if (dmi_ident[f] && strstr(dmi_ident[f], str))
881 return 1;
882 }
883 return 0;
884}
885EXPORT_SYMBOL(dmi_name_in_vendors);
886
887/**
888 * dmi_find_device - find onboard device by type/name
889 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
890 * @name: device name string or %NULL to match all
891 * @from: previous device found in search, or %NULL for new search.
892 *
893 * Iterates through the list of known onboard devices. If a device is
894 * found with a matching @type and @name, a pointer to its device
895 * structure is returned. Otherwise, %NULL is returned.
896 * A new search is initiated by passing %NULL as the @from argument.
897 * If @from is not %NULL, searches continue from next device.
898 */
899const struct dmi_device *dmi_find_device(int type, const char *name,
900 const struct dmi_device *from)
901{
902 const struct list_head *head = from ? &from->list : &dmi_devices;
903 struct list_head *d;
904
905 for (d = head->next; d != &dmi_devices; d = d->next) {
906 const struct dmi_device *dev =
907 list_entry(d, struct dmi_device, list);
908
909 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
910 ((name == NULL) || (strcmp(dev->name, name) == 0)))
911 return dev;
912 }
913
914 return NULL;
915}
916EXPORT_SYMBOL(dmi_find_device);
917
918/**
919 * dmi_get_date - parse a DMI date
920 * @field: data index (see enum dmi_field)
921 * @yearp: optional out parameter for the year
922 * @monthp: optional out parameter for the month
923 * @dayp: optional out parameter for the day
924 *
925 * The date field is assumed to be in the form resembling
926 * [mm[/dd]]/yy[yy] and the result is stored in the out
927 * parameters any or all of which can be omitted.
928 *
929 * If the field doesn't exist, all out parameters are set to zero
930 * and false is returned. Otherwise, true is returned with any
931 * invalid part of date set to zero.
932 *
933 * On return, year, month and day are guaranteed to be in the
934 * range of [0,9999], [0,12] and [0,31] respectively.
935 */
936bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
937{
938 int year = 0, month = 0, day = 0;
939 bool exists;
940 const char *s, *y;
941 char *e;
942
943 s = dmi_get_system_info(field);
944 exists = s;
945 if (!exists)
946 goto out;
947
948 /*
949 * Determine year first. We assume the date string resembles
950 * mm/dd/yy[yy] but the original code extracted only the year
951 * from the end. Keep the behavior in the spirit of no
952 * surprises.
953 */
954 y = strrchr(s, '/');
955 if (!y)
956 goto out;
957
958 y++;
959 year = simple_strtoul(y, &e, 10);
960 if (y != e && year < 100) { /* 2-digit year */
961 year += 1900;
962 if (year < 1996) /* no dates < spec 1.0 */
963 year += 100;
964 }
965 if (year > 9999) /* year should fit in %04d */
966 year = 0;
967
968 /* parse the mm and dd */
969 month = simple_strtoul(s, &e, 10);
970 if (s == e || *e != '/' || !month || month > 12) {
971 month = 0;
972 goto out;
973 }
974
975 s = e + 1;
976 day = simple_strtoul(s, &e, 10);
977 if (s == y || s == e || *e != '/' || day > 31)
978 day = 0;
979out:
980 if (yearp)
981 *yearp = year;
982 if (monthp)
983 *monthp = month;
984 if (dayp)
985 *dayp = day;
986 return exists;
987}
988EXPORT_SYMBOL(dmi_get_date);
989
990/**
991 * dmi_walk - Walk the DMI table and get called back for every record
992 * @decode: Callback function
993 * @private_data: Private data to be passed to the callback function
994 *
995 * Returns -1 when the DMI table can't be reached, 0 on success.
996 */
997int dmi_walk(void (*decode)(const struct dmi_header *, void *),
998 void *private_data)
999{
1000 u8 *buf;
1001
1002 if (!dmi_available)
1003 return -1;
1004
1005 buf = dmi_remap(dmi_base, dmi_len);
1006 if (buf == NULL)
1007 return -1;
1008
1009 dmi_decode_table(buf, decode, private_data);
1010
1011 dmi_unmap(buf);
1012 return 0;
1013}
1014EXPORT_SYMBOL_GPL(dmi_walk);
1015
1016/**
1017 * dmi_match - compare a string to the dmi field (if exists)
1018 * @f: DMI field identifier
1019 * @str: string to compare the DMI field to
1020 *
1021 * Returns true if the requested field equals to the str (including NULL).
1022 */
1023bool dmi_match(enum dmi_field f, const char *str)
1024{
1025 const char *info = dmi_get_system_info(f);
1026
1027 if (info == NULL || str == NULL)
1028 return info == str;
1029
1030 return !strcmp(info, str);
1031}
1032EXPORT_SYMBOL_GPL(dmi_match);
1033
1034void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1035{
1036 int n;
1037
1038 if (dmi_memdev == NULL)
1039 return;
1040
1041 for (n = 0; n < dmi_memdev_nr; n++) {
1042 if (handle == dmi_memdev[n].handle) {
1043 *bank = dmi_memdev[n].bank;
1044 *device = dmi_memdev[n].device;
1045 break;
1046 }
1047 }
1048}
1049EXPORT_SYMBOL_GPL(dmi_memdev_name);
1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <linux/random.h>
10#include <asm/dmi.h>
11#include <asm/unaligned.h>
12
13/*
14 * DMI stands for "Desktop Management Interface". It is part
15 * of and an antecedent to, SMBIOS, which stands for System
16 * Management BIOS. See further: http://www.dmtf.org/standards
17 */
18static const char dmi_empty_string[] = " ";
19
20static u16 __initdata dmi_ver;
21/*
22 * Catch too early calls to dmi_check_system():
23 */
24static int dmi_initialized;
25
26/* DMI system identification string used during boot */
27static char dmi_ids_string[128] __initdata;
28
29static struct dmi_memdev_info {
30 const char *device;
31 const char *bank;
32 u16 handle;
33} *dmi_memdev;
34static int dmi_memdev_nr;
35
36static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
37{
38 const u8 *bp = ((u8 *) dm) + dm->length;
39
40 if (s) {
41 s--;
42 while (s > 0 && *bp) {
43 bp += strlen(bp) + 1;
44 s--;
45 }
46
47 if (*bp != 0) {
48 size_t len = strlen(bp)+1;
49 size_t cmp_len = len > 8 ? 8 : len;
50
51 if (!memcmp(bp, dmi_empty_string, cmp_len))
52 return dmi_empty_string;
53 return bp;
54 }
55 }
56
57 return "";
58}
59
60static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
61{
62 const char *bp = dmi_string_nosave(dm, s);
63 char *str;
64 size_t len;
65
66 if (bp == dmi_empty_string)
67 return dmi_empty_string;
68
69 len = strlen(bp) + 1;
70 str = dmi_alloc(len);
71 if (str != NULL)
72 strcpy(str, bp);
73
74 return str;
75}
76
77/*
78 * We have to be cautious here. We have seen BIOSes with DMI pointers
79 * pointing to completely the wrong place for example
80 */
81static void dmi_table(u8 *buf, int len, int num,
82 void (*decode)(const struct dmi_header *, void *),
83 void *private_data)
84{
85 u8 *data = buf;
86 int i = 0;
87
88 /*
89 * Stop when we see all the items the table claimed to have
90 * OR we run off the end of the table (also happens)
91 */
92 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
93 const struct dmi_header *dm = (const struct dmi_header *)data;
94
95 /*
96 * We want to know the total length (formatted area and
97 * strings) before decoding to make sure we won't run off the
98 * table in dmi_decode or dmi_string
99 */
100 data += dm->length;
101 while ((data - buf < len - 1) && (data[0] || data[1]))
102 data++;
103 if (data - buf < len - 1)
104 decode(dm, private_data);
105 data += 2;
106 i++;
107 }
108}
109
110static u32 dmi_base;
111static u16 dmi_len;
112static u16 dmi_num;
113
114static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
115 void *))
116{
117 u8 *buf;
118
119 buf = dmi_early_remap(dmi_base, dmi_len);
120 if (buf == NULL)
121 return -1;
122
123 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
124
125 add_device_randomness(buf, dmi_len);
126
127 dmi_early_unmap(buf, dmi_len);
128 return 0;
129}
130
131static int __init dmi_checksum(const u8 *buf, u8 len)
132{
133 u8 sum = 0;
134 int a;
135
136 for (a = 0; a < len; a++)
137 sum += buf[a];
138
139 return sum == 0;
140}
141
142static const char *dmi_ident[DMI_STRING_MAX];
143static LIST_HEAD(dmi_devices);
144int dmi_available;
145
146/*
147 * Save a DMI string
148 */
149static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
150 int string)
151{
152 const char *d = (const char *) dm;
153 const char *p;
154
155 if (dmi_ident[slot])
156 return;
157
158 p = dmi_string(dm, d[string]);
159 if (p == NULL)
160 return;
161
162 dmi_ident[slot] = p;
163}
164
165static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
166 int index)
167{
168 const u8 *d = (u8 *) dm + index;
169 char *s;
170 int is_ff = 1, is_00 = 1, i;
171
172 if (dmi_ident[slot])
173 return;
174
175 for (i = 0; i < 16 && (is_ff || is_00); i++) {
176 if (d[i] != 0x00)
177 is_00 = 0;
178 if (d[i] != 0xFF)
179 is_ff = 0;
180 }
181
182 if (is_ff || is_00)
183 return;
184
185 s = dmi_alloc(16*2+4+1);
186 if (!s)
187 return;
188
189 /*
190 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
191 * the UUID are supposed to be little-endian encoded. The specification
192 * says that this is the defacto standard.
193 */
194 if (dmi_ver >= 0x0206)
195 sprintf(s, "%pUL", d);
196 else
197 sprintf(s, "%pUB", d);
198
199 dmi_ident[slot] = s;
200}
201
202static void __init dmi_save_type(const struct dmi_header *dm, int slot,
203 int index)
204{
205 const u8 *d = (u8 *) dm + index;
206 char *s;
207
208 if (dmi_ident[slot])
209 return;
210
211 s = dmi_alloc(4);
212 if (!s)
213 return;
214
215 sprintf(s, "%u", *d & 0x7F);
216 dmi_ident[slot] = s;
217}
218
219static void __init dmi_save_one_device(int type, const char *name)
220{
221 struct dmi_device *dev;
222
223 /* No duplicate device */
224 if (dmi_find_device(type, name, NULL))
225 return;
226
227 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
228 if (!dev)
229 return;
230
231 dev->type = type;
232 strcpy((char *)(dev + 1), name);
233 dev->name = (char *)(dev + 1);
234 dev->device_data = NULL;
235 list_add(&dev->list, &dmi_devices);
236}
237
238static void __init dmi_save_devices(const struct dmi_header *dm)
239{
240 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
241
242 for (i = 0; i < count; i++) {
243 const char *d = (char *)(dm + 1) + (i * 2);
244
245 /* Skip disabled device */
246 if ((*d & 0x80) == 0)
247 continue;
248
249 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
250 }
251}
252
253static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
254{
255 int i, count = *(u8 *)(dm + 1);
256 struct dmi_device *dev;
257
258 for (i = 1; i <= count; i++) {
259 const char *devname = dmi_string(dm, i);
260
261 if (devname == dmi_empty_string)
262 continue;
263
264 dev = dmi_alloc(sizeof(*dev));
265 if (!dev)
266 break;
267
268 dev->type = DMI_DEV_TYPE_OEM_STRING;
269 dev->name = devname;
270 dev->device_data = NULL;
271
272 list_add(&dev->list, &dmi_devices);
273 }
274}
275
276static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
277{
278 struct dmi_device *dev;
279 void *data;
280
281 data = dmi_alloc(dm->length);
282 if (data == NULL)
283 return;
284
285 memcpy(data, dm, dm->length);
286
287 dev = dmi_alloc(sizeof(*dev));
288 if (!dev)
289 return;
290
291 dev->type = DMI_DEV_TYPE_IPMI;
292 dev->name = "IPMI controller";
293 dev->device_data = data;
294
295 list_add_tail(&dev->list, &dmi_devices);
296}
297
298static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
299 int devfn, const char *name)
300{
301 struct dmi_dev_onboard *onboard_dev;
302
303 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
304 if (!onboard_dev)
305 return;
306
307 onboard_dev->instance = instance;
308 onboard_dev->segment = segment;
309 onboard_dev->bus = bus;
310 onboard_dev->devfn = devfn;
311
312 strcpy((char *)&onboard_dev[1], name);
313 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
314 onboard_dev->dev.name = (char *)&onboard_dev[1];
315 onboard_dev->dev.device_data = onboard_dev;
316
317 list_add(&onboard_dev->dev.list, &dmi_devices);
318}
319
320static void __init dmi_save_extended_devices(const struct dmi_header *dm)
321{
322 const u8 *d = (u8 *) dm + 5;
323
324 /* Skip disabled device */
325 if ((*d & 0x80) == 0)
326 return;
327
328 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
329 dmi_string_nosave(dm, *(d-1)));
330 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
331}
332
333static void __init count_mem_devices(const struct dmi_header *dm, void *v)
334{
335 if (dm->type != DMI_ENTRY_MEM_DEVICE)
336 return;
337 dmi_memdev_nr++;
338}
339
340static void __init save_mem_devices(const struct dmi_header *dm, void *v)
341{
342 const char *d = (const char *)dm;
343 static int nr;
344
345 if (dm->type != DMI_ENTRY_MEM_DEVICE)
346 return;
347 if (nr >= dmi_memdev_nr) {
348 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
349 return;
350 }
351 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
352 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
353 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
354 nr++;
355}
356
357void __init dmi_memdev_walk(void)
358{
359 if (!dmi_available)
360 return;
361
362 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
363 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
364 if (dmi_memdev)
365 dmi_walk_early(save_mem_devices);
366 }
367}
368
369/*
370 * Process a DMI table entry. Right now all we care about are the BIOS
371 * and machine entries. For 2.5 we should pull the smbus controller info
372 * out of here.
373 */
374static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
375{
376 switch (dm->type) {
377 case 0: /* BIOS Information */
378 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
379 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
380 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
381 break;
382 case 1: /* System Information */
383 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
384 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
385 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
386 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
387 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
388 break;
389 case 2: /* Base Board Information */
390 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
391 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
392 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
393 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
394 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
395 break;
396 case 3: /* Chassis Information */
397 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
398 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
399 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
400 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
401 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
402 break;
403 case 10: /* Onboard Devices Information */
404 dmi_save_devices(dm);
405 break;
406 case 11: /* OEM Strings */
407 dmi_save_oem_strings_devices(dm);
408 break;
409 case 38: /* IPMI Device Information */
410 dmi_save_ipmi_device(dm);
411 break;
412 case 41: /* Onboard Devices Extended Information */
413 dmi_save_extended_devices(dm);
414 }
415}
416
417static int __init print_filtered(char *buf, size_t len, const char *info)
418{
419 int c = 0;
420 const char *p;
421
422 if (!info)
423 return c;
424
425 for (p = info; *p; p++)
426 if (isprint(*p))
427 c += scnprintf(buf + c, len - c, "%c", *p);
428 else
429 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
430 return c;
431}
432
433static void __init dmi_format_ids(char *buf, size_t len)
434{
435 int c = 0;
436 const char *board; /* Board Name is optional */
437
438 c += print_filtered(buf + c, len - c,
439 dmi_get_system_info(DMI_SYS_VENDOR));
440 c += scnprintf(buf + c, len - c, " ");
441 c += print_filtered(buf + c, len - c,
442 dmi_get_system_info(DMI_PRODUCT_NAME));
443
444 board = dmi_get_system_info(DMI_BOARD_NAME);
445 if (board) {
446 c += scnprintf(buf + c, len - c, "/");
447 c += print_filtered(buf + c, len - c, board);
448 }
449 c += scnprintf(buf + c, len - c, ", BIOS ");
450 c += print_filtered(buf + c, len - c,
451 dmi_get_system_info(DMI_BIOS_VERSION));
452 c += scnprintf(buf + c, len - c, " ");
453 c += print_filtered(buf + c, len - c,
454 dmi_get_system_info(DMI_BIOS_DATE));
455}
456
457/*
458 * Check for DMI/SMBIOS headers in the system firmware image. Any
459 * SMBIOS header must start 16 bytes before the DMI header, so take a
460 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
461 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
462 * takes precedence) and return 0. Otherwise return 1.
463 */
464static int __init dmi_present(const u8 *buf)
465{
466 int smbios_ver;
467
468 if (memcmp(buf, "_SM_", 4) == 0 &&
469 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
470 smbios_ver = (buf[6] << 8) + buf[7];
471
472 /* Some BIOS report weird SMBIOS version, fix that up */
473 switch (smbios_ver) {
474 case 0x021F:
475 case 0x0221:
476 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
477 smbios_ver & 0xFF, 3);
478 smbios_ver = 0x0203;
479 break;
480 case 0x0233:
481 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
482 smbios_ver = 0x0206;
483 break;
484 }
485 } else {
486 smbios_ver = 0;
487 }
488
489 buf += 16;
490
491 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
492 dmi_num = (buf[13] << 8) | buf[12];
493 dmi_len = (buf[7] << 8) | buf[6];
494 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
495 (buf[9] << 8) | buf[8];
496
497 if (dmi_walk_early(dmi_decode) == 0) {
498 if (smbios_ver) {
499 dmi_ver = smbios_ver;
500 pr_info("SMBIOS %d.%d present.\n",
501 dmi_ver >> 8, dmi_ver & 0xFF);
502 } else {
503 dmi_ver = (buf[14] & 0xF0) << 4 |
504 (buf[14] & 0x0F);
505 pr_info("Legacy DMI %d.%d present.\n",
506 dmi_ver >> 8, dmi_ver & 0xFF);
507 }
508 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
509 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
510 return 0;
511 }
512 }
513
514 return 1;
515}
516
517void __init dmi_scan_machine(void)
518{
519 char __iomem *p, *q;
520 char buf[32];
521
522 if (efi_enabled(EFI_CONFIG_TABLES)) {
523 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
524 goto error;
525
526 /* This is called as a core_initcall() because it isn't
527 * needed during early boot. This also means we can
528 * iounmap the space when we're done with it.
529 */
530 p = dmi_early_remap(efi.smbios, 32);
531 if (p == NULL)
532 goto error;
533 memcpy_fromio(buf, p, 32);
534 dmi_early_unmap(p, 32);
535
536 if (!dmi_present(buf)) {
537 dmi_available = 1;
538 goto out;
539 }
540 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
541 p = dmi_early_remap(0xF0000, 0x10000);
542 if (p == NULL)
543 goto error;
544
545 /*
546 * Iterate over all possible DMI header addresses q.
547 * Maintain the 32 bytes around q in buf. On the
548 * first iteration, substitute zero for the
549 * out-of-range bytes so there is no chance of falsely
550 * detecting an SMBIOS header.
551 */
552 memset(buf, 0, 16);
553 for (q = p; q < p + 0x10000; q += 16) {
554 memcpy_fromio(buf + 16, q, 16);
555 if (!dmi_present(buf)) {
556 dmi_available = 1;
557 dmi_early_unmap(p, 0x10000);
558 goto out;
559 }
560 memcpy(buf, buf + 16, 16);
561 }
562 dmi_early_unmap(p, 0x10000);
563 }
564 error:
565 pr_info("DMI not present or invalid.\n");
566 out:
567 dmi_initialized = 1;
568}
569
570/**
571 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
572 *
573 * Invoke dump_stack_set_arch_desc() with DMI system information so that
574 * DMI identifiers are printed out on task dumps. Arch boot code should
575 * call this function after dmi_scan_machine() if it wants to print out DMI
576 * identifiers on task dumps.
577 */
578void __init dmi_set_dump_stack_arch_desc(void)
579{
580 dump_stack_set_arch_desc("%s", dmi_ids_string);
581}
582
583/**
584 * dmi_matches - check if dmi_system_id structure matches system DMI data
585 * @dmi: pointer to the dmi_system_id structure to check
586 */
587static bool dmi_matches(const struct dmi_system_id *dmi)
588{
589 int i;
590
591 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
592
593 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
594 int s = dmi->matches[i].slot;
595 if (s == DMI_NONE)
596 break;
597 if (dmi_ident[s]) {
598 if (!dmi->matches[i].exact_match &&
599 strstr(dmi_ident[s], dmi->matches[i].substr))
600 continue;
601 else if (dmi->matches[i].exact_match &&
602 !strcmp(dmi_ident[s], dmi->matches[i].substr))
603 continue;
604 }
605
606 /* No match */
607 return false;
608 }
609 return true;
610}
611
612/**
613 * dmi_is_end_of_table - check for end-of-table marker
614 * @dmi: pointer to the dmi_system_id structure to check
615 */
616static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
617{
618 return dmi->matches[0].slot == DMI_NONE;
619}
620
621/**
622 * dmi_check_system - check system DMI data
623 * @list: array of dmi_system_id structures to match against
624 * All non-null elements of the list must match
625 * their slot's (field index's) data (i.e., each
626 * list string must be a substring of the specified
627 * DMI slot's string data) to be considered a
628 * successful match.
629 *
630 * Walk the blacklist table running matching functions until someone
631 * returns non zero or we hit the end. Callback function is called for
632 * each successful match. Returns the number of matches.
633 */
634int dmi_check_system(const struct dmi_system_id *list)
635{
636 int count = 0;
637 const struct dmi_system_id *d;
638
639 for (d = list; !dmi_is_end_of_table(d); d++)
640 if (dmi_matches(d)) {
641 count++;
642 if (d->callback && d->callback(d))
643 break;
644 }
645
646 return count;
647}
648EXPORT_SYMBOL(dmi_check_system);
649
650/**
651 * dmi_first_match - find dmi_system_id structure matching system DMI data
652 * @list: array of dmi_system_id structures to match against
653 * All non-null elements of the list must match
654 * their slot's (field index's) data (i.e., each
655 * list string must be a substring of the specified
656 * DMI slot's string data) to be considered a
657 * successful match.
658 *
659 * Walk the blacklist table until the first match is found. Return the
660 * pointer to the matching entry or NULL if there's no match.
661 */
662const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
663{
664 const struct dmi_system_id *d;
665
666 for (d = list; !dmi_is_end_of_table(d); d++)
667 if (dmi_matches(d))
668 return d;
669
670 return NULL;
671}
672EXPORT_SYMBOL(dmi_first_match);
673
674/**
675 * dmi_get_system_info - return DMI data value
676 * @field: data index (see enum dmi_field)
677 *
678 * Returns one DMI data value, can be used to perform
679 * complex DMI data checks.
680 */
681const char *dmi_get_system_info(int field)
682{
683 return dmi_ident[field];
684}
685EXPORT_SYMBOL(dmi_get_system_info);
686
687/**
688 * dmi_name_in_serial - Check if string is in the DMI product serial information
689 * @str: string to check for
690 */
691int dmi_name_in_serial(const char *str)
692{
693 int f = DMI_PRODUCT_SERIAL;
694 if (dmi_ident[f] && strstr(dmi_ident[f], str))
695 return 1;
696 return 0;
697}
698
699/**
700 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
701 * @str: Case sensitive Name
702 */
703int dmi_name_in_vendors(const char *str)
704{
705 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
706 int i;
707 for (i = 0; fields[i] != DMI_NONE; i++) {
708 int f = fields[i];
709 if (dmi_ident[f] && strstr(dmi_ident[f], str))
710 return 1;
711 }
712 return 0;
713}
714EXPORT_SYMBOL(dmi_name_in_vendors);
715
716/**
717 * dmi_find_device - find onboard device by type/name
718 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
719 * @name: device name string or %NULL to match all
720 * @from: previous device found in search, or %NULL for new search.
721 *
722 * Iterates through the list of known onboard devices. If a device is
723 * found with a matching @vendor and @device, a pointer to its device
724 * structure is returned. Otherwise, %NULL is returned.
725 * A new search is initiated by passing %NULL as the @from argument.
726 * If @from is not %NULL, searches continue from next device.
727 */
728const struct dmi_device *dmi_find_device(int type, const char *name,
729 const struct dmi_device *from)
730{
731 const struct list_head *head = from ? &from->list : &dmi_devices;
732 struct list_head *d;
733
734 for (d = head->next; d != &dmi_devices; d = d->next) {
735 const struct dmi_device *dev =
736 list_entry(d, struct dmi_device, list);
737
738 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
739 ((name == NULL) || (strcmp(dev->name, name) == 0)))
740 return dev;
741 }
742
743 return NULL;
744}
745EXPORT_SYMBOL(dmi_find_device);
746
747/**
748 * dmi_get_date - parse a DMI date
749 * @field: data index (see enum dmi_field)
750 * @yearp: optional out parameter for the year
751 * @monthp: optional out parameter for the month
752 * @dayp: optional out parameter for the day
753 *
754 * The date field is assumed to be in the form resembling
755 * [mm[/dd]]/yy[yy] and the result is stored in the out
756 * parameters any or all of which can be omitted.
757 *
758 * If the field doesn't exist, all out parameters are set to zero
759 * and false is returned. Otherwise, true is returned with any
760 * invalid part of date set to zero.
761 *
762 * On return, year, month and day are guaranteed to be in the
763 * range of [0,9999], [0,12] and [0,31] respectively.
764 */
765bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
766{
767 int year = 0, month = 0, day = 0;
768 bool exists;
769 const char *s, *y;
770 char *e;
771
772 s = dmi_get_system_info(field);
773 exists = s;
774 if (!exists)
775 goto out;
776
777 /*
778 * Determine year first. We assume the date string resembles
779 * mm/dd/yy[yy] but the original code extracted only the year
780 * from the end. Keep the behavior in the spirit of no
781 * surprises.
782 */
783 y = strrchr(s, '/');
784 if (!y)
785 goto out;
786
787 y++;
788 year = simple_strtoul(y, &e, 10);
789 if (y != e && year < 100) { /* 2-digit year */
790 year += 1900;
791 if (year < 1996) /* no dates < spec 1.0 */
792 year += 100;
793 }
794 if (year > 9999) /* year should fit in %04d */
795 year = 0;
796
797 /* parse the mm and dd */
798 month = simple_strtoul(s, &e, 10);
799 if (s == e || *e != '/' || !month || month > 12) {
800 month = 0;
801 goto out;
802 }
803
804 s = e + 1;
805 day = simple_strtoul(s, &e, 10);
806 if (s == y || s == e || *e != '/' || day > 31)
807 day = 0;
808out:
809 if (yearp)
810 *yearp = year;
811 if (monthp)
812 *monthp = month;
813 if (dayp)
814 *dayp = day;
815 return exists;
816}
817EXPORT_SYMBOL(dmi_get_date);
818
819/**
820 * dmi_walk - Walk the DMI table and get called back for every record
821 * @decode: Callback function
822 * @private_data: Private data to be passed to the callback function
823 *
824 * Returns -1 when the DMI table can't be reached, 0 on success.
825 */
826int dmi_walk(void (*decode)(const struct dmi_header *, void *),
827 void *private_data)
828{
829 u8 *buf;
830
831 if (!dmi_available)
832 return -1;
833
834 buf = dmi_remap(dmi_base, dmi_len);
835 if (buf == NULL)
836 return -1;
837
838 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
839
840 dmi_unmap(buf);
841 return 0;
842}
843EXPORT_SYMBOL_GPL(dmi_walk);
844
845/**
846 * dmi_match - compare a string to the dmi field (if exists)
847 * @f: DMI field identifier
848 * @str: string to compare the DMI field to
849 *
850 * Returns true if the requested field equals to the str (including NULL).
851 */
852bool dmi_match(enum dmi_field f, const char *str)
853{
854 const char *info = dmi_get_system_info(f);
855
856 if (info == NULL || str == NULL)
857 return info == str;
858
859 return !strcmp(info, str);
860}
861EXPORT_SYMBOL_GPL(dmi_match);
862
863void dmi_memdev_name(u16 handle, const char **bank, const char **device)
864{
865 int n;
866
867 if (dmi_memdev == NULL)
868 return;
869
870 for (n = 0; n < dmi_memdev_nr; n++) {
871 if (handle == dmi_memdev[n].handle) {
872 *bank = dmi_memdev[n].bank;
873 *device = dmi_memdev[n].device;
874 break;
875 }
876 }
877}
878EXPORT_SYMBOL_GPL(dmi_memdev_name);