Loading...
1/*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19#include <linux/module.h>
20#include <linux/string.h>
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/parser.h>
29#include <linux/buffer_head.h>
30#include <linux/exportfs.h>
31#include <linux/vfs.h>
32#include <linux/random.h>
33#include <linux/mount.h>
34#include <linux/namei.h>
35#include <linux/quotaops.h>
36#include <linux/seq_file.h>
37#include <linux/ctype.h>
38#include <linux/log2.h>
39#include <linux/crc16.h>
40#include <linux/cleancache.h>
41#include <asm/uaccess.h>
42
43#include <linux/kthread.h>
44#include <linux/freezer.h>
45
46#include "ext4.h"
47#include "ext4_extents.h" /* Needed for trace points definition */
48#include "ext4_jbd2.h"
49#include "xattr.h"
50#include "acl.h"
51#include "mballoc.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/ext4.h>
55
56static struct ext4_lazy_init *ext4_li_info;
57static struct mutex ext4_li_mtx;
58static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63static int ext4_commit_super(struct super_block *sb, int sync);
64static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68static int ext4_sync_fs(struct super_block *sb, int wait);
69static int ext4_remount(struct super_block *sb, int *flags, char *data);
70static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71static int ext4_unfreeze(struct super_block *sb);
72static int ext4_freeze(struct super_block *sb);
73static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75static inline int ext2_feature_set_ok(struct super_block *sb);
76static inline int ext3_feature_set_ok(struct super_block *sb);
77static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78static void ext4_destroy_lazyinit_thread(void);
79static void ext4_unregister_li_request(struct super_block *sb);
80static void ext4_clear_request_list(void);
81
82/*
83 * Lock ordering
84 *
85 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
86 * i_mmap_rwsem (inode->i_mmap_rwsem)!
87 *
88 * page fault path:
89 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
90 * page lock -> i_data_sem (rw)
91 *
92 * buffered write path:
93 * sb_start_write -> i_mutex -> mmap_sem
94 * sb_start_write -> i_mutex -> transaction start -> page lock ->
95 * i_data_sem (rw)
96 *
97 * truncate:
98 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
99 * i_mmap_rwsem (w) -> page lock
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * transaction start -> i_data_sem (rw)
102 *
103 * direct IO:
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
106 * transaction start -> i_data_sem (rw)
107 *
108 * writepages:
109 * transaction start -> page lock(s) -> i_data_sem (rw)
110 */
111
112#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
113static struct file_system_type ext2_fs_type = {
114 .owner = THIS_MODULE,
115 .name = "ext2",
116 .mount = ext4_mount,
117 .kill_sb = kill_block_super,
118 .fs_flags = FS_REQUIRES_DEV,
119};
120MODULE_ALIAS_FS("ext2");
121MODULE_ALIAS("ext2");
122#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
123#else
124#define IS_EXT2_SB(sb) (0)
125#endif
126
127
128static struct file_system_type ext3_fs_type = {
129 .owner = THIS_MODULE,
130 .name = "ext3",
131 .mount = ext4_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134};
135MODULE_ALIAS_FS("ext3");
136MODULE_ALIAS("ext3");
137#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
138
139static int ext4_verify_csum_type(struct super_block *sb,
140 struct ext4_super_block *es)
141{
142 if (!ext4_has_feature_metadata_csum(sb))
143 return 1;
144
145 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
146}
147
148static __le32 ext4_superblock_csum(struct super_block *sb,
149 struct ext4_super_block *es)
150{
151 struct ext4_sb_info *sbi = EXT4_SB(sb);
152 int offset = offsetof(struct ext4_super_block, s_checksum);
153 __u32 csum;
154
155 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
156
157 return cpu_to_le32(csum);
158}
159
160static int ext4_superblock_csum_verify(struct super_block *sb,
161 struct ext4_super_block *es)
162{
163 if (!ext4_has_metadata_csum(sb))
164 return 1;
165
166 return es->s_checksum == ext4_superblock_csum(sb, es);
167}
168
169void ext4_superblock_csum_set(struct super_block *sb)
170{
171 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
172
173 if (!ext4_has_metadata_csum(sb))
174 return;
175
176 es->s_checksum = ext4_superblock_csum(sb, es);
177}
178
179void *ext4_kvmalloc(size_t size, gfp_t flags)
180{
181 void *ret;
182
183 ret = kmalloc(size, flags | __GFP_NOWARN);
184 if (!ret)
185 ret = __vmalloc(size, flags, PAGE_KERNEL);
186 return ret;
187}
188
189void *ext4_kvzalloc(size_t size, gfp_t flags)
190{
191 void *ret;
192
193 ret = kzalloc(size, flags | __GFP_NOWARN);
194 if (!ret)
195 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
196 return ret;
197}
198
199ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
200 struct ext4_group_desc *bg)
201{
202 return le32_to_cpu(bg->bg_block_bitmap_lo) |
203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
205}
206
207ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
209{
210 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
213}
214
215ext4_fsblk_t ext4_inode_table(struct super_block *sb,
216 struct ext4_group_desc *bg)
217{
218 return le32_to_cpu(bg->bg_inode_table_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
221}
222
223__u32 ext4_free_group_clusters(struct super_block *sb,
224 struct ext4_group_desc *bg)
225{
226 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
229}
230
231__u32 ext4_free_inodes_count(struct super_block *sb,
232 struct ext4_group_desc *bg)
233{
234 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
237}
238
239__u32 ext4_used_dirs_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241{
242 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
245}
246
247__u32 ext4_itable_unused_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
249{
250 return le16_to_cpu(bg->bg_itable_unused_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
253}
254
255void ext4_block_bitmap_set(struct super_block *sb,
256 struct ext4_group_desc *bg, ext4_fsblk_t blk)
257{
258 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
261}
262
263void ext4_inode_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265{
266 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
269}
270
271void ext4_inode_table_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
273{
274 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
277}
278
279void ext4_free_group_clusters_set(struct super_block *sb,
280 struct ext4_group_desc *bg, __u32 count)
281{
282 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
285}
286
287void ext4_free_inodes_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289{
290 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
293}
294
295void ext4_used_dirs_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297{
298 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
301}
302
303void ext4_itable_unused_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
305{
306 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
309}
310
311
312static void __save_error_info(struct super_block *sb, const char *func,
313 unsigned int line)
314{
315 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
316
317 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
318 if (bdev_read_only(sb->s_bdev))
319 return;
320 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
321 es->s_last_error_time = cpu_to_le32(get_seconds());
322 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
323 es->s_last_error_line = cpu_to_le32(line);
324 if (!es->s_first_error_time) {
325 es->s_first_error_time = es->s_last_error_time;
326 strncpy(es->s_first_error_func, func,
327 sizeof(es->s_first_error_func));
328 es->s_first_error_line = cpu_to_le32(line);
329 es->s_first_error_ino = es->s_last_error_ino;
330 es->s_first_error_block = es->s_last_error_block;
331 }
332 /*
333 * Start the daily error reporting function if it hasn't been
334 * started already
335 */
336 if (!es->s_error_count)
337 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
338 le32_add_cpu(&es->s_error_count, 1);
339}
340
341static void save_error_info(struct super_block *sb, const char *func,
342 unsigned int line)
343{
344 __save_error_info(sb, func, line);
345 ext4_commit_super(sb, 1);
346}
347
348/*
349 * The del_gendisk() function uninitializes the disk-specific data
350 * structures, including the bdi structure, without telling anyone
351 * else. Once this happens, any attempt to call mark_buffer_dirty()
352 * (for example, by ext4_commit_super), will cause a kernel OOPS.
353 * This is a kludge to prevent these oops until we can put in a proper
354 * hook in del_gendisk() to inform the VFS and file system layers.
355 */
356static int block_device_ejected(struct super_block *sb)
357{
358 struct inode *bd_inode = sb->s_bdev->bd_inode;
359 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
360
361 return bdi->dev == NULL;
362}
363
364static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
365{
366 struct super_block *sb = journal->j_private;
367 struct ext4_sb_info *sbi = EXT4_SB(sb);
368 int error = is_journal_aborted(journal);
369 struct ext4_journal_cb_entry *jce;
370
371 BUG_ON(txn->t_state == T_FINISHED);
372 spin_lock(&sbi->s_md_lock);
373 while (!list_empty(&txn->t_private_list)) {
374 jce = list_entry(txn->t_private_list.next,
375 struct ext4_journal_cb_entry, jce_list);
376 list_del_init(&jce->jce_list);
377 spin_unlock(&sbi->s_md_lock);
378 jce->jce_func(sb, jce, error);
379 spin_lock(&sbi->s_md_lock);
380 }
381 spin_unlock(&sbi->s_md_lock);
382}
383
384/* Deal with the reporting of failure conditions on a filesystem such as
385 * inconsistencies detected or read IO failures.
386 *
387 * On ext2, we can store the error state of the filesystem in the
388 * superblock. That is not possible on ext4, because we may have other
389 * write ordering constraints on the superblock which prevent us from
390 * writing it out straight away; and given that the journal is about to
391 * be aborted, we can't rely on the current, or future, transactions to
392 * write out the superblock safely.
393 *
394 * We'll just use the jbd2_journal_abort() error code to record an error in
395 * the journal instead. On recovery, the journal will complain about
396 * that error until we've noted it down and cleared it.
397 */
398
399static void ext4_handle_error(struct super_block *sb)
400{
401 if (sb->s_flags & MS_RDONLY)
402 return;
403
404 if (!test_opt(sb, ERRORS_CONT)) {
405 journal_t *journal = EXT4_SB(sb)->s_journal;
406
407 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
408 if (journal)
409 jbd2_journal_abort(journal, -EIO);
410 }
411 if (test_opt(sb, ERRORS_RO)) {
412 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
413 /*
414 * Make sure updated value of ->s_mount_flags will be visible
415 * before ->s_flags update
416 */
417 smp_wmb();
418 sb->s_flags |= MS_RDONLY;
419 }
420 if (test_opt(sb, ERRORS_PANIC)) {
421 if (EXT4_SB(sb)->s_journal &&
422 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
423 return;
424 panic("EXT4-fs (device %s): panic forced after error\n",
425 sb->s_id);
426 }
427}
428
429#define ext4_error_ratelimit(sb) \
430 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
431 "EXT4-fs error")
432
433void __ext4_error(struct super_block *sb, const char *function,
434 unsigned int line, const char *fmt, ...)
435{
436 struct va_format vaf;
437 va_list args;
438
439 if (ext4_error_ratelimit(sb)) {
440 va_start(args, fmt);
441 vaf.fmt = fmt;
442 vaf.va = &args;
443 printk(KERN_CRIT
444 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
445 sb->s_id, function, line, current->comm, &vaf);
446 va_end(args);
447 }
448 save_error_info(sb, function, line);
449 ext4_handle_error(sb);
450}
451
452void __ext4_error_inode(struct inode *inode, const char *function,
453 unsigned int line, ext4_fsblk_t block,
454 const char *fmt, ...)
455{
456 va_list args;
457 struct va_format vaf;
458 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
459
460 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
461 es->s_last_error_block = cpu_to_le64(block);
462 if (ext4_error_ratelimit(inode->i_sb)) {
463 va_start(args, fmt);
464 vaf.fmt = fmt;
465 vaf.va = &args;
466 if (block)
467 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
468 "inode #%lu: block %llu: comm %s: %pV\n",
469 inode->i_sb->s_id, function, line, inode->i_ino,
470 block, current->comm, &vaf);
471 else
472 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
473 "inode #%lu: comm %s: %pV\n",
474 inode->i_sb->s_id, function, line, inode->i_ino,
475 current->comm, &vaf);
476 va_end(args);
477 }
478 save_error_info(inode->i_sb, function, line);
479 ext4_handle_error(inode->i_sb);
480}
481
482void __ext4_error_file(struct file *file, const char *function,
483 unsigned int line, ext4_fsblk_t block,
484 const char *fmt, ...)
485{
486 va_list args;
487 struct va_format vaf;
488 struct ext4_super_block *es;
489 struct inode *inode = file_inode(file);
490 char pathname[80], *path;
491
492 es = EXT4_SB(inode->i_sb)->s_es;
493 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
494 if (ext4_error_ratelimit(inode->i_sb)) {
495 path = file_path(file, pathname, sizeof(pathname));
496 if (IS_ERR(path))
497 path = "(unknown)";
498 va_start(args, fmt);
499 vaf.fmt = fmt;
500 vaf.va = &args;
501 if (block)
502 printk(KERN_CRIT
503 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
504 "block %llu: comm %s: path %s: %pV\n",
505 inode->i_sb->s_id, function, line, inode->i_ino,
506 block, current->comm, path, &vaf);
507 else
508 printk(KERN_CRIT
509 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
510 "comm %s: path %s: %pV\n",
511 inode->i_sb->s_id, function, line, inode->i_ino,
512 current->comm, path, &vaf);
513 va_end(args);
514 }
515 save_error_info(inode->i_sb, function, line);
516 ext4_handle_error(inode->i_sb);
517}
518
519const char *ext4_decode_error(struct super_block *sb, int errno,
520 char nbuf[16])
521{
522 char *errstr = NULL;
523
524 switch (errno) {
525 case -EFSCORRUPTED:
526 errstr = "Corrupt filesystem";
527 break;
528 case -EFSBADCRC:
529 errstr = "Filesystem failed CRC";
530 break;
531 case -EIO:
532 errstr = "IO failure";
533 break;
534 case -ENOMEM:
535 errstr = "Out of memory";
536 break;
537 case -EROFS:
538 if (!sb || (EXT4_SB(sb)->s_journal &&
539 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
540 errstr = "Journal has aborted";
541 else
542 errstr = "Readonly filesystem";
543 break;
544 default:
545 /* If the caller passed in an extra buffer for unknown
546 * errors, textualise them now. Else we just return
547 * NULL. */
548 if (nbuf) {
549 /* Check for truncated error codes... */
550 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
551 errstr = nbuf;
552 }
553 break;
554 }
555
556 return errstr;
557}
558
559/* __ext4_std_error decodes expected errors from journaling functions
560 * automatically and invokes the appropriate error response. */
561
562void __ext4_std_error(struct super_block *sb, const char *function,
563 unsigned int line, int errno)
564{
565 char nbuf[16];
566 const char *errstr;
567
568 /* Special case: if the error is EROFS, and we're not already
569 * inside a transaction, then there's really no point in logging
570 * an error. */
571 if (errno == -EROFS && journal_current_handle() == NULL &&
572 (sb->s_flags & MS_RDONLY))
573 return;
574
575 if (ext4_error_ratelimit(sb)) {
576 errstr = ext4_decode_error(sb, errno, nbuf);
577 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
578 sb->s_id, function, line, errstr);
579 }
580
581 save_error_info(sb, function, line);
582 ext4_handle_error(sb);
583}
584
585/*
586 * ext4_abort is a much stronger failure handler than ext4_error. The
587 * abort function may be used to deal with unrecoverable failures such
588 * as journal IO errors or ENOMEM at a critical moment in log management.
589 *
590 * We unconditionally force the filesystem into an ABORT|READONLY state,
591 * unless the error response on the fs has been set to panic in which
592 * case we take the easy way out and panic immediately.
593 */
594
595void __ext4_abort(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597{
598 va_list args;
599
600 save_error_info(sb, function, line);
601 va_start(args, fmt);
602 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
603 function, line);
604 vprintk(fmt, args);
605 printk("\n");
606 va_end(args);
607
608 if ((sb->s_flags & MS_RDONLY) == 0) {
609 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
610 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
611 /*
612 * Make sure updated value of ->s_mount_flags will be visible
613 * before ->s_flags update
614 */
615 smp_wmb();
616 sb->s_flags |= MS_RDONLY;
617 if (EXT4_SB(sb)->s_journal)
618 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
619 save_error_info(sb, function, line);
620 }
621 if (test_opt(sb, ERRORS_PANIC)) {
622 if (EXT4_SB(sb)->s_journal &&
623 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
624 return;
625 panic("EXT4-fs panic from previous error\n");
626 }
627}
628
629void __ext4_msg(struct super_block *sb,
630 const char *prefix, const char *fmt, ...)
631{
632 struct va_format vaf;
633 va_list args;
634
635 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
636 return;
637
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
642 va_end(args);
643}
644
645#define ext4_warning_ratelimit(sb) \
646 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
647 "EXT4-fs warning")
648
649void __ext4_warning(struct super_block *sb, const char *function,
650 unsigned int line, const char *fmt, ...)
651{
652 struct va_format vaf;
653 va_list args;
654
655 if (!ext4_warning_ratelimit(sb))
656 return;
657
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
662 sb->s_id, function, line, &vaf);
663 va_end(args);
664}
665
666void __ext4_warning_inode(const struct inode *inode, const char *function,
667 unsigned int line, const char *fmt, ...)
668{
669 struct va_format vaf;
670 va_list args;
671
672 if (!ext4_warning_ratelimit(inode->i_sb))
673 return;
674
675 va_start(args, fmt);
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
679 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
680 function, line, inode->i_ino, current->comm, &vaf);
681 va_end(args);
682}
683
684void __ext4_grp_locked_error(const char *function, unsigned int line,
685 struct super_block *sb, ext4_group_t grp,
686 unsigned long ino, ext4_fsblk_t block,
687 const char *fmt, ...)
688__releases(bitlock)
689__acquires(bitlock)
690{
691 struct va_format vaf;
692 va_list args;
693 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
694
695 es->s_last_error_ino = cpu_to_le32(ino);
696 es->s_last_error_block = cpu_to_le64(block);
697 __save_error_info(sb, function, line);
698
699 if (ext4_error_ratelimit(sb)) {
700 va_start(args, fmt);
701 vaf.fmt = fmt;
702 vaf.va = &args;
703 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
704 sb->s_id, function, line, grp);
705 if (ino)
706 printk(KERN_CONT "inode %lu: ", ino);
707 if (block)
708 printk(KERN_CONT "block %llu:",
709 (unsigned long long) block);
710 printk(KERN_CONT "%pV\n", &vaf);
711 va_end(args);
712 }
713
714 if (test_opt(sb, ERRORS_CONT)) {
715 ext4_commit_super(sb, 0);
716 return;
717 }
718
719 ext4_unlock_group(sb, grp);
720 ext4_handle_error(sb);
721 /*
722 * We only get here in the ERRORS_RO case; relocking the group
723 * may be dangerous, but nothing bad will happen since the
724 * filesystem will have already been marked read/only and the
725 * journal has been aborted. We return 1 as a hint to callers
726 * who might what to use the return value from
727 * ext4_grp_locked_error() to distinguish between the
728 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
729 * aggressively from the ext4 function in question, with a
730 * more appropriate error code.
731 */
732 ext4_lock_group(sb, grp);
733 return;
734}
735
736void ext4_update_dynamic_rev(struct super_block *sb)
737{
738 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
739
740 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
741 return;
742
743 ext4_warning(sb,
744 "updating to rev %d because of new feature flag, "
745 "running e2fsck is recommended",
746 EXT4_DYNAMIC_REV);
747
748 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
749 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
750 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
751 /* leave es->s_feature_*compat flags alone */
752 /* es->s_uuid will be set by e2fsck if empty */
753
754 /*
755 * The rest of the superblock fields should be zero, and if not it
756 * means they are likely already in use, so leave them alone. We
757 * can leave it up to e2fsck to clean up any inconsistencies there.
758 */
759}
760
761/*
762 * Open the external journal device
763 */
764static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
765{
766 struct block_device *bdev;
767 char b[BDEVNAME_SIZE];
768
769 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
770 if (IS_ERR(bdev))
771 goto fail;
772 return bdev;
773
774fail:
775 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
776 __bdevname(dev, b), PTR_ERR(bdev));
777 return NULL;
778}
779
780/*
781 * Release the journal device
782 */
783static void ext4_blkdev_put(struct block_device *bdev)
784{
785 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
786}
787
788static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
789{
790 struct block_device *bdev;
791 bdev = sbi->journal_bdev;
792 if (bdev) {
793 ext4_blkdev_put(bdev);
794 sbi->journal_bdev = NULL;
795 }
796}
797
798static inline struct inode *orphan_list_entry(struct list_head *l)
799{
800 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
801}
802
803static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
804{
805 struct list_head *l;
806
807 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
808 le32_to_cpu(sbi->s_es->s_last_orphan));
809
810 printk(KERN_ERR "sb_info orphan list:\n");
811 list_for_each(l, &sbi->s_orphan) {
812 struct inode *inode = orphan_list_entry(l);
813 printk(KERN_ERR " "
814 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
815 inode->i_sb->s_id, inode->i_ino, inode,
816 inode->i_mode, inode->i_nlink,
817 NEXT_ORPHAN(inode));
818 }
819}
820
821static void ext4_put_super(struct super_block *sb)
822{
823 struct ext4_sb_info *sbi = EXT4_SB(sb);
824 struct ext4_super_block *es = sbi->s_es;
825 int i, err;
826
827 ext4_unregister_li_request(sb);
828 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
829
830 flush_workqueue(sbi->rsv_conversion_wq);
831 destroy_workqueue(sbi->rsv_conversion_wq);
832
833 if (sbi->s_journal) {
834 err = jbd2_journal_destroy(sbi->s_journal);
835 sbi->s_journal = NULL;
836 if (err < 0)
837 ext4_abort(sb, "Couldn't clean up the journal");
838 }
839
840 ext4_unregister_sysfs(sb);
841 ext4_es_unregister_shrinker(sbi);
842 del_timer_sync(&sbi->s_err_report);
843 ext4_release_system_zone(sb);
844 ext4_mb_release(sb);
845 ext4_ext_release(sb);
846
847 if (!(sb->s_flags & MS_RDONLY)) {
848 ext4_clear_feature_journal_needs_recovery(sb);
849 es->s_state = cpu_to_le16(sbi->s_mount_state);
850 }
851 if (!(sb->s_flags & MS_RDONLY))
852 ext4_commit_super(sb, 1);
853
854 for (i = 0; i < sbi->s_gdb_count; i++)
855 brelse(sbi->s_group_desc[i]);
856 kvfree(sbi->s_group_desc);
857 kvfree(sbi->s_flex_groups);
858 percpu_counter_destroy(&sbi->s_freeclusters_counter);
859 percpu_counter_destroy(&sbi->s_freeinodes_counter);
860 percpu_counter_destroy(&sbi->s_dirs_counter);
861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
862 brelse(sbi->s_sbh);
863#ifdef CONFIG_QUOTA
864 for (i = 0; i < EXT4_MAXQUOTAS; i++)
865 kfree(sbi->s_qf_names[i]);
866#endif
867
868 /* Debugging code just in case the in-memory inode orphan list
869 * isn't empty. The on-disk one can be non-empty if we've
870 * detected an error and taken the fs readonly, but the
871 * in-memory list had better be clean by this point. */
872 if (!list_empty(&sbi->s_orphan))
873 dump_orphan_list(sb, sbi);
874 J_ASSERT(list_empty(&sbi->s_orphan));
875
876 sync_blockdev(sb->s_bdev);
877 invalidate_bdev(sb->s_bdev);
878 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
879 /*
880 * Invalidate the journal device's buffers. We don't want them
881 * floating about in memory - the physical journal device may
882 * hotswapped, and it breaks the `ro-after' testing code.
883 */
884 sync_blockdev(sbi->journal_bdev);
885 invalidate_bdev(sbi->journal_bdev);
886 ext4_blkdev_remove(sbi);
887 }
888 if (sbi->s_mb_cache) {
889 ext4_xattr_destroy_cache(sbi->s_mb_cache);
890 sbi->s_mb_cache = NULL;
891 }
892 if (sbi->s_mmp_tsk)
893 kthread_stop(sbi->s_mmp_tsk);
894 sb->s_fs_info = NULL;
895 /*
896 * Now that we are completely done shutting down the
897 * superblock, we need to actually destroy the kobject.
898 */
899 kobject_put(&sbi->s_kobj);
900 wait_for_completion(&sbi->s_kobj_unregister);
901 if (sbi->s_chksum_driver)
902 crypto_free_shash(sbi->s_chksum_driver);
903 kfree(sbi->s_blockgroup_lock);
904 kfree(sbi);
905}
906
907static struct kmem_cache *ext4_inode_cachep;
908
909/*
910 * Called inside transaction, so use GFP_NOFS
911 */
912static struct inode *ext4_alloc_inode(struct super_block *sb)
913{
914 struct ext4_inode_info *ei;
915
916 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
917 if (!ei)
918 return NULL;
919
920 ei->vfs_inode.i_version = 1;
921 spin_lock_init(&ei->i_raw_lock);
922 INIT_LIST_HEAD(&ei->i_prealloc_list);
923 spin_lock_init(&ei->i_prealloc_lock);
924 ext4_es_init_tree(&ei->i_es_tree);
925 rwlock_init(&ei->i_es_lock);
926 INIT_LIST_HEAD(&ei->i_es_list);
927 ei->i_es_all_nr = 0;
928 ei->i_es_shk_nr = 0;
929 ei->i_es_shrink_lblk = 0;
930 ei->i_reserved_data_blocks = 0;
931 ei->i_reserved_meta_blocks = 0;
932 ei->i_allocated_meta_blocks = 0;
933 ei->i_da_metadata_calc_len = 0;
934 ei->i_da_metadata_calc_last_lblock = 0;
935 spin_lock_init(&(ei->i_block_reservation_lock));
936#ifdef CONFIG_QUOTA
937 ei->i_reserved_quota = 0;
938 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
939#endif
940 ei->jinode = NULL;
941 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
942 spin_lock_init(&ei->i_completed_io_lock);
943 ei->i_sync_tid = 0;
944 ei->i_datasync_tid = 0;
945 atomic_set(&ei->i_unwritten, 0);
946 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
947#ifdef CONFIG_EXT4_FS_ENCRYPTION
948 ei->i_crypt_info = NULL;
949#endif
950 return &ei->vfs_inode;
951}
952
953static int ext4_drop_inode(struct inode *inode)
954{
955 int drop = generic_drop_inode(inode);
956
957 trace_ext4_drop_inode(inode, drop);
958 return drop;
959}
960
961static void ext4_i_callback(struct rcu_head *head)
962{
963 struct inode *inode = container_of(head, struct inode, i_rcu);
964 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
965}
966
967static void ext4_destroy_inode(struct inode *inode)
968{
969 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
970 ext4_msg(inode->i_sb, KERN_ERR,
971 "Inode %lu (%p): orphan list check failed!",
972 inode->i_ino, EXT4_I(inode));
973 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
974 EXT4_I(inode), sizeof(struct ext4_inode_info),
975 true);
976 dump_stack();
977 }
978 call_rcu(&inode->i_rcu, ext4_i_callback);
979}
980
981static void init_once(void *foo)
982{
983 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
984
985 INIT_LIST_HEAD(&ei->i_orphan);
986 init_rwsem(&ei->xattr_sem);
987 init_rwsem(&ei->i_data_sem);
988 init_rwsem(&ei->i_mmap_sem);
989 inode_init_once(&ei->vfs_inode);
990}
991
992static int __init init_inodecache(void)
993{
994 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
995 sizeof(struct ext4_inode_info),
996 0, (SLAB_RECLAIM_ACCOUNT|
997 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
998 init_once);
999 if (ext4_inode_cachep == NULL)
1000 return -ENOMEM;
1001 return 0;
1002}
1003
1004static void destroy_inodecache(void)
1005{
1006 /*
1007 * Make sure all delayed rcu free inodes are flushed before we
1008 * destroy cache.
1009 */
1010 rcu_barrier();
1011 kmem_cache_destroy(ext4_inode_cachep);
1012}
1013
1014void ext4_clear_inode(struct inode *inode)
1015{
1016 invalidate_inode_buffers(inode);
1017 clear_inode(inode);
1018 dquot_drop(inode);
1019 ext4_discard_preallocations(inode);
1020 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1021 if (EXT4_I(inode)->jinode) {
1022 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1023 EXT4_I(inode)->jinode);
1024 jbd2_free_inode(EXT4_I(inode)->jinode);
1025 EXT4_I(inode)->jinode = NULL;
1026 }
1027#ifdef CONFIG_EXT4_FS_ENCRYPTION
1028 if (EXT4_I(inode)->i_crypt_info)
1029 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1030#endif
1031}
1032
1033static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1034 u64 ino, u32 generation)
1035{
1036 struct inode *inode;
1037
1038 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1039 return ERR_PTR(-ESTALE);
1040 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1041 return ERR_PTR(-ESTALE);
1042
1043 /* iget isn't really right if the inode is currently unallocated!!
1044 *
1045 * ext4_read_inode will return a bad_inode if the inode had been
1046 * deleted, so we should be safe.
1047 *
1048 * Currently we don't know the generation for parent directory, so
1049 * a generation of 0 means "accept any"
1050 */
1051 inode = ext4_iget_normal(sb, ino);
1052 if (IS_ERR(inode))
1053 return ERR_CAST(inode);
1054 if (generation && inode->i_generation != generation) {
1055 iput(inode);
1056 return ERR_PTR(-ESTALE);
1057 }
1058
1059 return inode;
1060}
1061
1062static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1063 int fh_len, int fh_type)
1064{
1065 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1066 ext4_nfs_get_inode);
1067}
1068
1069static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1070 int fh_len, int fh_type)
1071{
1072 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1073 ext4_nfs_get_inode);
1074}
1075
1076/*
1077 * Try to release metadata pages (indirect blocks, directories) which are
1078 * mapped via the block device. Since these pages could have journal heads
1079 * which would prevent try_to_free_buffers() from freeing them, we must use
1080 * jbd2 layer's try_to_free_buffers() function to release them.
1081 */
1082static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1083 gfp_t wait)
1084{
1085 journal_t *journal = EXT4_SB(sb)->s_journal;
1086
1087 WARN_ON(PageChecked(page));
1088 if (!page_has_buffers(page))
1089 return 0;
1090 if (journal)
1091 return jbd2_journal_try_to_free_buffers(journal, page,
1092 wait & ~__GFP_DIRECT_RECLAIM);
1093 return try_to_free_buffers(page);
1094}
1095
1096#ifdef CONFIG_QUOTA
1097static char *quotatypes[] = INITQFNAMES;
1098#define QTYPE2NAME(t) (quotatypes[t])
1099
1100static int ext4_write_dquot(struct dquot *dquot);
1101static int ext4_acquire_dquot(struct dquot *dquot);
1102static int ext4_release_dquot(struct dquot *dquot);
1103static int ext4_mark_dquot_dirty(struct dquot *dquot);
1104static int ext4_write_info(struct super_block *sb, int type);
1105static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1106 struct path *path);
1107static int ext4_quota_off(struct super_block *sb, int type);
1108static int ext4_quota_on_mount(struct super_block *sb, int type);
1109static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1110 size_t len, loff_t off);
1111static ssize_t ext4_quota_write(struct super_block *sb, int type,
1112 const char *data, size_t len, loff_t off);
1113static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1114 unsigned int flags);
1115static int ext4_enable_quotas(struct super_block *sb);
1116static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1117
1118static struct dquot **ext4_get_dquots(struct inode *inode)
1119{
1120 return EXT4_I(inode)->i_dquot;
1121}
1122
1123static const struct dquot_operations ext4_quota_operations = {
1124 .get_reserved_space = ext4_get_reserved_space,
1125 .write_dquot = ext4_write_dquot,
1126 .acquire_dquot = ext4_acquire_dquot,
1127 .release_dquot = ext4_release_dquot,
1128 .mark_dirty = ext4_mark_dquot_dirty,
1129 .write_info = ext4_write_info,
1130 .alloc_dquot = dquot_alloc,
1131 .destroy_dquot = dquot_destroy,
1132 .get_projid = ext4_get_projid,
1133 .get_next_id = ext4_get_next_id,
1134};
1135
1136static const struct quotactl_ops ext4_qctl_operations = {
1137 .quota_on = ext4_quota_on,
1138 .quota_off = ext4_quota_off,
1139 .quota_sync = dquot_quota_sync,
1140 .get_state = dquot_get_state,
1141 .set_info = dquot_set_dqinfo,
1142 .get_dqblk = dquot_get_dqblk,
1143 .set_dqblk = dquot_set_dqblk,
1144 .get_nextdqblk = dquot_get_next_dqblk,
1145};
1146#endif
1147
1148static const struct super_operations ext4_sops = {
1149 .alloc_inode = ext4_alloc_inode,
1150 .destroy_inode = ext4_destroy_inode,
1151 .write_inode = ext4_write_inode,
1152 .dirty_inode = ext4_dirty_inode,
1153 .drop_inode = ext4_drop_inode,
1154 .evict_inode = ext4_evict_inode,
1155 .put_super = ext4_put_super,
1156 .sync_fs = ext4_sync_fs,
1157 .freeze_fs = ext4_freeze,
1158 .unfreeze_fs = ext4_unfreeze,
1159 .statfs = ext4_statfs,
1160 .remount_fs = ext4_remount,
1161 .show_options = ext4_show_options,
1162#ifdef CONFIG_QUOTA
1163 .quota_read = ext4_quota_read,
1164 .quota_write = ext4_quota_write,
1165 .get_dquots = ext4_get_dquots,
1166#endif
1167 .bdev_try_to_free_page = bdev_try_to_free_page,
1168};
1169
1170static const struct export_operations ext4_export_ops = {
1171 .fh_to_dentry = ext4_fh_to_dentry,
1172 .fh_to_parent = ext4_fh_to_parent,
1173 .get_parent = ext4_get_parent,
1174};
1175
1176enum {
1177 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1178 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1179 Opt_nouid32, Opt_debug, Opt_removed,
1180 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1181 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1182 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1183 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1184 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1185 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1186 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1187 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1188 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1189 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1190 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1191 Opt_lazytime, Opt_nolazytime,
1192 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1193 Opt_inode_readahead_blks, Opt_journal_ioprio,
1194 Opt_dioread_nolock, Opt_dioread_lock,
1195 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1196 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1197};
1198
1199static const match_table_t tokens = {
1200 {Opt_bsd_df, "bsddf"},
1201 {Opt_minix_df, "minixdf"},
1202 {Opt_grpid, "grpid"},
1203 {Opt_grpid, "bsdgroups"},
1204 {Opt_nogrpid, "nogrpid"},
1205 {Opt_nogrpid, "sysvgroups"},
1206 {Opt_resgid, "resgid=%u"},
1207 {Opt_resuid, "resuid=%u"},
1208 {Opt_sb, "sb=%u"},
1209 {Opt_err_cont, "errors=continue"},
1210 {Opt_err_panic, "errors=panic"},
1211 {Opt_err_ro, "errors=remount-ro"},
1212 {Opt_nouid32, "nouid32"},
1213 {Opt_debug, "debug"},
1214 {Opt_removed, "oldalloc"},
1215 {Opt_removed, "orlov"},
1216 {Opt_user_xattr, "user_xattr"},
1217 {Opt_nouser_xattr, "nouser_xattr"},
1218 {Opt_acl, "acl"},
1219 {Opt_noacl, "noacl"},
1220 {Opt_noload, "norecovery"},
1221 {Opt_noload, "noload"},
1222 {Opt_removed, "nobh"},
1223 {Opt_removed, "bh"},
1224 {Opt_commit, "commit=%u"},
1225 {Opt_min_batch_time, "min_batch_time=%u"},
1226 {Opt_max_batch_time, "max_batch_time=%u"},
1227 {Opt_journal_dev, "journal_dev=%u"},
1228 {Opt_journal_path, "journal_path=%s"},
1229 {Opt_journal_checksum, "journal_checksum"},
1230 {Opt_nojournal_checksum, "nojournal_checksum"},
1231 {Opt_journal_async_commit, "journal_async_commit"},
1232 {Opt_abort, "abort"},
1233 {Opt_data_journal, "data=journal"},
1234 {Opt_data_ordered, "data=ordered"},
1235 {Opt_data_writeback, "data=writeback"},
1236 {Opt_data_err_abort, "data_err=abort"},
1237 {Opt_data_err_ignore, "data_err=ignore"},
1238 {Opt_offusrjquota, "usrjquota="},
1239 {Opt_usrjquota, "usrjquota=%s"},
1240 {Opt_offgrpjquota, "grpjquota="},
1241 {Opt_grpjquota, "grpjquota=%s"},
1242 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1243 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1244 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1245 {Opt_grpquota, "grpquota"},
1246 {Opt_noquota, "noquota"},
1247 {Opt_quota, "quota"},
1248 {Opt_usrquota, "usrquota"},
1249 {Opt_barrier, "barrier=%u"},
1250 {Opt_barrier, "barrier"},
1251 {Opt_nobarrier, "nobarrier"},
1252 {Opt_i_version, "i_version"},
1253 {Opt_dax, "dax"},
1254 {Opt_stripe, "stripe=%u"},
1255 {Opt_delalloc, "delalloc"},
1256 {Opt_lazytime, "lazytime"},
1257 {Opt_nolazytime, "nolazytime"},
1258 {Opt_nodelalloc, "nodelalloc"},
1259 {Opt_removed, "mblk_io_submit"},
1260 {Opt_removed, "nomblk_io_submit"},
1261 {Opt_block_validity, "block_validity"},
1262 {Opt_noblock_validity, "noblock_validity"},
1263 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1264 {Opt_journal_ioprio, "journal_ioprio=%u"},
1265 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1266 {Opt_auto_da_alloc, "auto_da_alloc"},
1267 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1268 {Opt_dioread_nolock, "dioread_nolock"},
1269 {Opt_dioread_lock, "dioread_lock"},
1270 {Opt_discard, "discard"},
1271 {Opt_nodiscard, "nodiscard"},
1272 {Opt_init_itable, "init_itable=%u"},
1273 {Opt_init_itable, "init_itable"},
1274 {Opt_noinit_itable, "noinit_itable"},
1275 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1276 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1277 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1278 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1279 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1280 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1281 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1282 {Opt_err, NULL},
1283};
1284
1285static ext4_fsblk_t get_sb_block(void **data)
1286{
1287 ext4_fsblk_t sb_block;
1288 char *options = (char *) *data;
1289
1290 if (!options || strncmp(options, "sb=", 3) != 0)
1291 return 1; /* Default location */
1292
1293 options += 3;
1294 /* TODO: use simple_strtoll with >32bit ext4 */
1295 sb_block = simple_strtoul(options, &options, 0);
1296 if (*options && *options != ',') {
1297 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1298 (char *) *data);
1299 return 1;
1300 }
1301 if (*options == ',')
1302 options++;
1303 *data = (void *) options;
1304
1305 return sb_block;
1306}
1307
1308#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1309static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1310 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1311
1312#ifdef CONFIG_QUOTA
1313static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1314{
1315 struct ext4_sb_info *sbi = EXT4_SB(sb);
1316 char *qname;
1317 int ret = -1;
1318
1319 if (sb_any_quota_loaded(sb) &&
1320 !sbi->s_qf_names[qtype]) {
1321 ext4_msg(sb, KERN_ERR,
1322 "Cannot change journaled "
1323 "quota options when quota turned on");
1324 return -1;
1325 }
1326 if (ext4_has_feature_quota(sb)) {
1327 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1328 "ignored when QUOTA feature is enabled");
1329 return 1;
1330 }
1331 qname = match_strdup(args);
1332 if (!qname) {
1333 ext4_msg(sb, KERN_ERR,
1334 "Not enough memory for storing quotafile name");
1335 return -1;
1336 }
1337 if (sbi->s_qf_names[qtype]) {
1338 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1339 ret = 1;
1340 else
1341 ext4_msg(sb, KERN_ERR,
1342 "%s quota file already specified",
1343 QTYPE2NAME(qtype));
1344 goto errout;
1345 }
1346 if (strchr(qname, '/')) {
1347 ext4_msg(sb, KERN_ERR,
1348 "quotafile must be on filesystem root");
1349 goto errout;
1350 }
1351 sbi->s_qf_names[qtype] = qname;
1352 set_opt(sb, QUOTA);
1353 return 1;
1354errout:
1355 kfree(qname);
1356 return ret;
1357}
1358
1359static int clear_qf_name(struct super_block *sb, int qtype)
1360{
1361
1362 struct ext4_sb_info *sbi = EXT4_SB(sb);
1363
1364 if (sb_any_quota_loaded(sb) &&
1365 sbi->s_qf_names[qtype]) {
1366 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1367 " when quota turned on");
1368 return -1;
1369 }
1370 kfree(sbi->s_qf_names[qtype]);
1371 sbi->s_qf_names[qtype] = NULL;
1372 return 1;
1373}
1374#endif
1375
1376#define MOPT_SET 0x0001
1377#define MOPT_CLEAR 0x0002
1378#define MOPT_NOSUPPORT 0x0004
1379#define MOPT_EXPLICIT 0x0008
1380#define MOPT_CLEAR_ERR 0x0010
1381#define MOPT_GTE0 0x0020
1382#ifdef CONFIG_QUOTA
1383#define MOPT_Q 0
1384#define MOPT_QFMT 0x0040
1385#else
1386#define MOPT_Q MOPT_NOSUPPORT
1387#define MOPT_QFMT MOPT_NOSUPPORT
1388#endif
1389#define MOPT_DATAJ 0x0080
1390#define MOPT_NO_EXT2 0x0100
1391#define MOPT_NO_EXT3 0x0200
1392#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1393#define MOPT_STRING 0x0400
1394
1395static const struct mount_opts {
1396 int token;
1397 int mount_opt;
1398 int flags;
1399} ext4_mount_opts[] = {
1400 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1401 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1402 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1403 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1404 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1405 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1406 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1407 MOPT_EXT4_ONLY | MOPT_SET},
1408 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1409 MOPT_EXT4_ONLY | MOPT_CLEAR},
1410 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1411 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1412 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1413 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1414 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1415 MOPT_EXT4_ONLY | MOPT_CLEAR},
1416 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1417 MOPT_EXT4_ONLY | MOPT_CLEAR},
1418 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1419 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1420 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1421 EXT4_MOUNT_JOURNAL_CHECKSUM),
1422 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1423 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1424 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1425 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1426 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1427 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1428 MOPT_NO_EXT2},
1429 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1430 MOPT_NO_EXT2},
1431 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1432 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1433 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1434 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1435 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1436 {Opt_commit, 0, MOPT_GTE0},
1437 {Opt_max_batch_time, 0, MOPT_GTE0},
1438 {Opt_min_batch_time, 0, MOPT_GTE0},
1439 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1440 {Opt_init_itable, 0, MOPT_GTE0},
1441 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1442 {Opt_stripe, 0, MOPT_GTE0},
1443 {Opt_resuid, 0, MOPT_GTE0},
1444 {Opt_resgid, 0, MOPT_GTE0},
1445 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1446 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1447 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1448 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1449 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1450 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1451 MOPT_NO_EXT2 | MOPT_DATAJ},
1452 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1453 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1454#ifdef CONFIG_EXT4_FS_POSIX_ACL
1455 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1456 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1457#else
1458 {Opt_acl, 0, MOPT_NOSUPPORT},
1459 {Opt_noacl, 0, MOPT_NOSUPPORT},
1460#endif
1461 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1462 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1463 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1464 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1465 MOPT_SET | MOPT_Q},
1466 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1467 MOPT_SET | MOPT_Q},
1468 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1469 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1470 {Opt_usrjquota, 0, MOPT_Q},
1471 {Opt_grpjquota, 0, MOPT_Q},
1472 {Opt_offusrjquota, 0, MOPT_Q},
1473 {Opt_offgrpjquota, 0, MOPT_Q},
1474 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1475 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1476 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1477 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1478 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1479 {Opt_err, 0, 0}
1480};
1481
1482static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1483 substring_t *args, unsigned long *journal_devnum,
1484 unsigned int *journal_ioprio, int is_remount)
1485{
1486 struct ext4_sb_info *sbi = EXT4_SB(sb);
1487 const struct mount_opts *m;
1488 kuid_t uid;
1489 kgid_t gid;
1490 int arg = 0;
1491
1492#ifdef CONFIG_QUOTA
1493 if (token == Opt_usrjquota)
1494 return set_qf_name(sb, USRQUOTA, &args[0]);
1495 else if (token == Opt_grpjquota)
1496 return set_qf_name(sb, GRPQUOTA, &args[0]);
1497 else if (token == Opt_offusrjquota)
1498 return clear_qf_name(sb, USRQUOTA);
1499 else if (token == Opt_offgrpjquota)
1500 return clear_qf_name(sb, GRPQUOTA);
1501#endif
1502 switch (token) {
1503 case Opt_noacl:
1504 case Opt_nouser_xattr:
1505 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1506 break;
1507 case Opt_sb:
1508 return 1; /* handled by get_sb_block() */
1509 case Opt_removed:
1510 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1511 return 1;
1512 case Opt_abort:
1513 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1514 return 1;
1515 case Opt_i_version:
1516 sb->s_flags |= MS_I_VERSION;
1517 return 1;
1518 case Opt_lazytime:
1519 sb->s_flags |= MS_LAZYTIME;
1520 return 1;
1521 case Opt_nolazytime:
1522 sb->s_flags &= ~MS_LAZYTIME;
1523 return 1;
1524 }
1525
1526 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1527 if (token == m->token)
1528 break;
1529
1530 if (m->token == Opt_err) {
1531 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1532 "or missing value", opt);
1533 return -1;
1534 }
1535
1536 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1537 ext4_msg(sb, KERN_ERR,
1538 "Mount option \"%s\" incompatible with ext2", opt);
1539 return -1;
1540 }
1541 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1542 ext4_msg(sb, KERN_ERR,
1543 "Mount option \"%s\" incompatible with ext3", opt);
1544 return -1;
1545 }
1546
1547 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1548 return -1;
1549 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1550 return -1;
1551 if (m->flags & MOPT_EXPLICIT) {
1552 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1553 set_opt2(sb, EXPLICIT_DELALLOC);
1554 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1555 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1556 } else
1557 return -1;
1558 }
1559 if (m->flags & MOPT_CLEAR_ERR)
1560 clear_opt(sb, ERRORS_MASK);
1561 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1562 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1563 "options when quota turned on");
1564 return -1;
1565 }
1566
1567 if (m->flags & MOPT_NOSUPPORT) {
1568 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1569 } else if (token == Opt_commit) {
1570 if (arg == 0)
1571 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1572 sbi->s_commit_interval = HZ * arg;
1573 } else if (token == Opt_max_batch_time) {
1574 sbi->s_max_batch_time = arg;
1575 } else if (token == Opt_min_batch_time) {
1576 sbi->s_min_batch_time = arg;
1577 } else if (token == Opt_inode_readahead_blks) {
1578 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1579 ext4_msg(sb, KERN_ERR,
1580 "EXT4-fs: inode_readahead_blks must be "
1581 "0 or a power of 2 smaller than 2^31");
1582 return -1;
1583 }
1584 sbi->s_inode_readahead_blks = arg;
1585 } else if (token == Opt_init_itable) {
1586 set_opt(sb, INIT_INODE_TABLE);
1587 if (!args->from)
1588 arg = EXT4_DEF_LI_WAIT_MULT;
1589 sbi->s_li_wait_mult = arg;
1590 } else if (token == Opt_max_dir_size_kb) {
1591 sbi->s_max_dir_size_kb = arg;
1592 } else if (token == Opt_stripe) {
1593 sbi->s_stripe = arg;
1594 } else if (token == Opt_resuid) {
1595 uid = make_kuid(current_user_ns(), arg);
1596 if (!uid_valid(uid)) {
1597 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1598 return -1;
1599 }
1600 sbi->s_resuid = uid;
1601 } else if (token == Opt_resgid) {
1602 gid = make_kgid(current_user_ns(), arg);
1603 if (!gid_valid(gid)) {
1604 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1605 return -1;
1606 }
1607 sbi->s_resgid = gid;
1608 } else if (token == Opt_journal_dev) {
1609 if (is_remount) {
1610 ext4_msg(sb, KERN_ERR,
1611 "Cannot specify journal on remount");
1612 return -1;
1613 }
1614 *journal_devnum = arg;
1615 } else if (token == Opt_journal_path) {
1616 char *journal_path;
1617 struct inode *journal_inode;
1618 struct path path;
1619 int error;
1620
1621 if (is_remount) {
1622 ext4_msg(sb, KERN_ERR,
1623 "Cannot specify journal on remount");
1624 return -1;
1625 }
1626 journal_path = match_strdup(&args[0]);
1627 if (!journal_path) {
1628 ext4_msg(sb, KERN_ERR, "error: could not dup "
1629 "journal device string");
1630 return -1;
1631 }
1632
1633 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1634 if (error) {
1635 ext4_msg(sb, KERN_ERR, "error: could not find "
1636 "journal device path: error %d", error);
1637 kfree(journal_path);
1638 return -1;
1639 }
1640
1641 journal_inode = d_inode(path.dentry);
1642 if (!S_ISBLK(journal_inode->i_mode)) {
1643 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1644 "is not a block device", journal_path);
1645 path_put(&path);
1646 kfree(journal_path);
1647 return -1;
1648 }
1649
1650 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1651 path_put(&path);
1652 kfree(journal_path);
1653 } else if (token == Opt_journal_ioprio) {
1654 if (arg > 7) {
1655 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1656 " (must be 0-7)");
1657 return -1;
1658 }
1659 *journal_ioprio =
1660 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1661 } else if (token == Opt_test_dummy_encryption) {
1662#ifdef CONFIG_EXT4_FS_ENCRYPTION
1663 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1664 ext4_msg(sb, KERN_WARNING,
1665 "Test dummy encryption mode enabled");
1666#else
1667 ext4_msg(sb, KERN_WARNING,
1668 "Test dummy encryption mount option ignored");
1669#endif
1670 } else if (m->flags & MOPT_DATAJ) {
1671 if (is_remount) {
1672 if (!sbi->s_journal)
1673 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1674 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1675 ext4_msg(sb, KERN_ERR,
1676 "Cannot change data mode on remount");
1677 return -1;
1678 }
1679 } else {
1680 clear_opt(sb, DATA_FLAGS);
1681 sbi->s_mount_opt |= m->mount_opt;
1682 }
1683#ifdef CONFIG_QUOTA
1684 } else if (m->flags & MOPT_QFMT) {
1685 if (sb_any_quota_loaded(sb) &&
1686 sbi->s_jquota_fmt != m->mount_opt) {
1687 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1688 "quota options when quota turned on");
1689 return -1;
1690 }
1691 if (ext4_has_feature_quota(sb)) {
1692 ext4_msg(sb, KERN_INFO,
1693 "Quota format mount options ignored "
1694 "when QUOTA feature is enabled");
1695 return 1;
1696 }
1697 sbi->s_jquota_fmt = m->mount_opt;
1698#endif
1699 } else if (token == Opt_dax) {
1700#ifdef CONFIG_FS_DAX
1701 ext4_msg(sb, KERN_WARNING,
1702 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1703 sbi->s_mount_opt |= m->mount_opt;
1704#else
1705 ext4_msg(sb, KERN_INFO, "dax option not supported");
1706 return -1;
1707#endif
1708 } else if (token == Opt_data_err_abort) {
1709 sbi->s_mount_opt |= m->mount_opt;
1710 } else if (token == Opt_data_err_ignore) {
1711 sbi->s_mount_opt &= ~m->mount_opt;
1712 } else {
1713 if (!args->from)
1714 arg = 1;
1715 if (m->flags & MOPT_CLEAR)
1716 arg = !arg;
1717 else if (unlikely(!(m->flags & MOPT_SET))) {
1718 ext4_msg(sb, KERN_WARNING,
1719 "buggy handling of option %s", opt);
1720 WARN_ON(1);
1721 return -1;
1722 }
1723 if (arg != 0)
1724 sbi->s_mount_opt |= m->mount_opt;
1725 else
1726 sbi->s_mount_opt &= ~m->mount_opt;
1727 }
1728 return 1;
1729}
1730
1731static int parse_options(char *options, struct super_block *sb,
1732 unsigned long *journal_devnum,
1733 unsigned int *journal_ioprio,
1734 int is_remount)
1735{
1736 struct ext4_sb_info *sbi = EXT4_SB(sb);
1737 char *p;
1738 substring_t args[MAX_OPT_ARGS];
1739 int token;
1740
1741 if (!options)
1742 return 1;
1743
1744 while ((p = strsep(&options, ",")) != NULL) {
1745 if (!*p)
1746 continue;
1747 /*
1748 * Initialize args struct so we know whether arg was
1749 * found; some options take optional arguments.
1750 */
1751 args[0].to = args[0].from = NULL;
1752 token = match_token(p, tokens, args);
1753 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1754 journal_ioprio, is_remount) < 0)
1755 return 0;
1756 }
1757#ifdef CONFIG_QUOTA
1758 if (ext4_has_feature_quota(sb) &&
1759 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1760 ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota "
1761 "mount options ignored.");
1762 clear_opt(sb, USRQUOTA);
1763 clear_opt(sb, GRPQUOTA);
1764 } else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1765 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1766 clear_opt(sb, USRQUOTA);
1767
1768 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1769 clear_opt(sb, GRPQUOTA);
1770
1771 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1772 ext4_msg(sb, KERN_ERR, "old and new quota "
1773 "format mixing");
1774 return 0;
1775 }
1776
1777 if (!sbi->s_jquota_fmt) {
1778 ext4_msg(sb, KERN_ERR, "journaled quota format "
1779 "not specified");
1780 return 0;
1781 }
1782 }
1783#endif
1784 if (test_opt(sb, DIOREAD_NOLOCK)) {
1785 int blocksize =
1786 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1787
1788 if (blocksize < PAGE_SIZE) {
1789 ext4_msg(sb, KERN_ERR, "can't mount with "
1790 "dioread_nolock if block size != PAGE_SIZE");
1791 return 0;
1792 }
1793 }
1794 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1795 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1796 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1797 "in data=ordered mode");
1798 return 0;
1799 }
1800 return 1;
1801}
1802
1803static inline void ext4_show_quota_options(struct seq_file *seq,
1804 struct super_block *sb)
1805{
1806#if defined(CONFIG_QUOTA)
1807 struct ext4_sb_info *sbi = EXT4_SB(sb);
1808
1809 if (sbi->s_jquota_fmt) {
1810 char *fmtname = "";
1811
1812 switch (sbi->s_jquota_fmt) {
1813 case QFMT_VFS_OLD:
1814 fmtname = "vfsold";
1815 break;
1816 case QFMT_VFS_V0:
1817 fmtname = "vfsv0";
1818 break;
1819 case QFMT_VFS_V1:
1820 fmtname = "vfsv1";
1821 break;
1822 }
1823 seq_printf(seq, ",jqfmt=%s", fmtname);
1824 }
1825
1826 if (sbi->s_qf_names[USRQUOTA])
1827 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1828
1829 if (sbi->s_qf_names[GRPQUOTA])
1830 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1831#endif
1832}
1833
1834static const char *token2str(int token)
1835{
1836 const struct match_token *t;
1837
1838 for (t = tokens; t->token != Opt_err; t++)
1839 if (t->token == token && !strchr(t->pattern, '='))
1840 break;
1841 return t->pattern;
1842}
1843
1844/*
1845 * Show an option if
1846 * - it's set to a non-default value OR
1847 * - if the per-sb default is different from the global default
1848 */
1849static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1850 int nodefs)
1851{
1852 struct ext4_sb_info *sbi = EXT4_SB(sb);
1853 struct ext4_super_block *es = sbi->s_es;
1854 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1855 const struct mount_opts *m;
1856 char sep = nodefs ? '\n' : ',';
1857
1858#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1859#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1860
1861 if (sbi->s_sb_block != 1)
1862 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1863
1864 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1865 int want_set = m->flags & MOPT_SET;
1866 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1867 (m->flags & MOPT_CLEAR_ERR))
1868 continue;
1869 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1870 continue; /* skip if same as the default */
1871 if ((want_set &&
1872 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1873 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1874 continue; /* select Opt_noFoo vs Opt_Foo */
1875 SEQ_OPTS_PRINT("%s", token2str(m->token));
1876 }
1877
1878 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1879 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1880 SEQ_OPTS_PRINT("resuid=%u",
1881 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1882 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1883 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1884 SEQ_OPTS_PRINT("resgid=%u",
1885 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1886 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1887 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1888 SEQ_OPTS_PUTS("errors=remount-ro");
1889 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1890 SEQ_OPTS_PUTS("errors=continue");
1891 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1892 SEQ_OPTS_PUTS("errors=panic");
1893 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1894 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1895 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1896 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1897 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1898 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1899 if (sb->s_flags & MS_I_VERSION)
1900 SEQ_OPTS_PUTS("i_version");
1901 if (nodefs || sbi->s_stripe)
1902 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1903 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1904 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1905 SEQ_OPTS_PUTS("data=journal");
1906 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1907 SEQ_OPTS_PUTS("data=ordered");
1908 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1909 SEQ_OPTS_PUTS("data=writeback");
1910 }
1911 if (nodefs ||
1912 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1913 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1914 sbi->s_inode_readahead_blks);
1915
1916 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1917 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1918 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1919 if (nodefs || sbi->s_max_dir_size_kb)
1920 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1921 if (test_opt(sb, DATA_ERR_ABORT))
1922 SEQ_OPTS_PUTS("data_err=abort");
1923
1924 ext4_show_quota_options(seq, sb);
1925 return 0;
1926}
1927
1928static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1929{
1930 return _ext4_show_options(seq, root->d_sb, 0);
1931}
1932
1933int ext4_seq_options_show(struct seq_file *seq, void *offset)
1934{
1935 struct super_block *sb = seq->private;
1936 int rc;
1937
1938 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1939 rc = _ext4_show_options(seq, sb, 1);
1940 seq_puts(seq, "\n");
1941 return rc;
1942}
1943
1944static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1945 int read_only)
1946{
1947 struct ext4_sb_info *sbi = EXT4_SB(sb);
1948 int res = 0;
1949
1950 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1951 ext4_msg(sb, KERN_ERR, "revision level too high, "
1952 "forcing read-only mode");
1953 res = MS_RDONLY;
1954 }
1955 if (read_only)
1956 goto done;
1957 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1958 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1959 "running e2fsck is recommended");
1960 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1961 ext4_msg(sb, KERN_WARNING,
1962 "warning: mounting fs with errors, "
1963 "running e2fsck is recommended");
1964 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1965 le16_to_cpu(es->s_mnt_count) >=
1966 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1967 ext4_msg(sb, KERN_WARNING,
1968 "warning: maximal mount count reached, "
1969 "running e2fsck is recommended");
1970 else if (le32_to_cpu(es->s_checkinterval) &&
1971 (le32_to_cpu(es->s_lastcheck) +
1972 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1973 ext4_msg(sb, KERN_WARNING,
1974 "warning: checktime reached, "
1975 "running e2fsck is recommended");
1976 if (!sbi->s_journal)
1977 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1978 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1979 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1980 le16_add_cpu(&es->s_mnt_count, 1);
1981 es->s_mtime = cpu_to_le32(get_seconds());
1982 ext4_update_dynamic_rev(sb);
1983 if (sbi->s_journal)
1984 ext4_set_feature_journal_needs_recovery(sb);
1985
1986 ext4_commit_super(sb, 1);
1987done:
1988 if (test_opt(sb, DEBUG))
1989 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1990 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1991 sb->s_blocksize,
1992 sbi->s_groups_count,
1993 EXT4_BLOCKS_PER_GROUP(sb),
1994 EXT4_INODES_PER_GROUP(sb),
1995 sbi->s_mount_opt, sbi->s_mount_opt2);
1996
1997 cleancache_init_fs(sb);
1998 return res;
1999}
2000
2001int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2002{
2003 struct ext4_sb_info *sbi = EXT4_SB(sb);
2004 struct flex_groups *new_groups;
2005 int size;
2006
2007 if (!sbi->s_log_groups_per_flex)
2008 return 0;
2009
2010 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2011 if (size <= sbi->s_flex_groups_allocated)
2012 return 0;
2013
2014 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2015 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2016 if (!new_groups) {
2017 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2018 size / (int) sizeof(struct flex_groups));
2019 return -ENOMEM;
2020 }
2021
2022 if (sbi->s_flex_groups) {
2023 memcpy(new_groups, sbi->s_flex_groups,
2024 (sbi->s_flex_groups_allocated *
2025 sizeof(struct flex_groups)));
2026 kvfree(sbi->s_flex_groups);
2027 }
2028 sbi->s_flex_groups = new_groups;
2029 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2030 return 0;
2031}
2032
2033static int ext4_fill_flex_info(struct super_block *sb)
2034{
2035 struct ext4_sb_info *sbi = EXT4_SB(sb);
2036 struct ext4_group_desc *gdp = NULL;
2037 ext4_group_t flex_group;
2038 int i, err;
2039
2040 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2041 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2042 sbi->s_log_groups_per_flex = 0;
2043 return 1;
2044 }
2045
2046 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2047 if (err)
2048 goto failed;
2049
2050 for (i = 0; i < sbi->s_groups_count; i++) {
2051 gdp = ext4_get_group_desc(sb, i, NULL);
2052
2053 flex_group = ext4_flex_group(sbi, i);
2054 atomic_add(ext4_free_inodes_count(sb, gdp),
2055 &sbi->s_flex_groups[flex_group].free_inodes);
2056 atomic64_add(ext4_free_group_clusters(sb, gdp),
2057 &sbi->s_flex_groups[flex_group].free_clusters);
2058 atomic_add(ext4_used_dirs_count(sb, gdp),
2059 &sbi->s_flex_groups[flex_group].used_dirs);
2060 }
2061
2062 return 1;
2063failed:
2064 return 0;
2065}
2066
2067static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2068 struct ext4_group_desc *gdp)
2069{
2070 int offset;
2071 __u16 crc = 0;
2072 __le32 le_group = cpu_to_le32(block_group);
2073 struct ext4_sb_info *sbi = EXT4_SB(sb);
2074
2075 if (ext4_has_metadata_csum(sbi->s_sb)) {
2076 /* Use new metadata_csum algorithm */
2077 __le16 save_csum;
2078 __u32 csum32;
2079
2080 save_csum = gdp->bg_checksum;
2081 gdp->bg_checksum = 0;
2082 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2083 sizeof(le_group));
2084 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2085 sbi->s_desc_size);
2086 gdp->bg_checksum = save_csum;
2087
2088 crc = csum32 & 0xFFFF;
2089 goto out;
2090 }
2091
2092 /* old crc16 code */
2093 if (!ext4_has_feature_gdt_csum(sb))
2094 return 0;
2095
2096 offset = offsetof(struct ext4_group_desc, bg_checksum);
2097
2098 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2099 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2100 crc = crc16(crc, (__u8 *)gdp, offset);
2101 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2102 /* for checksum of struct ext4_group_desc do the rest...*/
2103 if (ext4_has_feature_64bit(sb) &&
2104 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2105 crc = crc16(crc, (__u8 *)gdp + offset,
2106 le16_to_cpu(sbi->s_es->s_desc_size) -
2107 offset);
2108
2109out:
2110 return cpu_to_le16(crc);
2111}
2112
2113int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2114 struct ext4_group_desc *gdp)
2115{
2116 if (ext4_has_group_desc_csum(sb) &&
2117 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2118 return 0;
2119
2120 return 1;
2121}
2122
2123void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2124 struct ext4_group_desc *gdp)
2125{
2126 if (!ext4_has_group_desc_csum(sb))
2127 return;
2128 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2129}
2130
2131/* Called at mount-time, super-block is locked */
2132static int ext4_check_descriptors(struct super_block *sb,
2133 ext4_group_t *first_not_zeroed)
2134{
2135 struct ext4_sb_info *sbi = EXT4_SB(sb);
2136 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2137 ext4_fsblk_t last_block;
2138 ext4_fsblk_t block_bitmap;
2139 ext4_fsblk_t inode_bitmap;
2140 ext4_fsblk_t inode_table;
2141 int flexbg_flag = 0;
2142 ext4_group_t i, grp = sbi->s_groups_count;
2143
2144 if (ext4_has_feature_flex_bg(sb))
2145 flexbg_flag = 1;
2146
2147 ext4_debug("Checking group descriptors");
2148
2149 for (i = 0; i < sbi->s_groups_count; i++) {
2150 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2151
2152 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2153 last_block = ext4_blocks_count(sbi->s_es) - 1;
2154 else
2155 last_block = first_block +
2156 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2157
2158 if ((grp == sbi->s_groups_count) &&
2159 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2160 grp = i;
2161
2162 block_bitmap = ext4_block_bitmap(sb, gdp);
2163 if (block_bitmap < first_block || block_bitmap > last_block) {
2164 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2165 "Block bitmap for group %u not in group "
2166 "(block %llu)!", i, block_bitmap);
2167 return 0;
2168 }
2169 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2170 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2171 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2172 "Inode bitmap for group %u not in group "
2173 "(block %llu)!", i, inode_bitmap);
2174 return 0;
2175 }
2176 inode_table = ext4_inode_table(sb, gdp);
2177 if (inode_table < first_block ||
2178 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2179 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2180 "Inode table for group %u not in group "
2181 "(block %llu)!", i, inode_table);
2182 return 0;
2183 }
2184 ext4_lock_group(sb, i);
2185 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2186 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2187 "Checksum for group %u failed (%u!=%u)",
2188 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2189 gdp)), le16_to_cpu(gdp->bg_checksum));
2190 if (!(sb->s_flags & MS_RDONLY)) {
2191 ext4_unlock_group(sb, i);
2192 return 0;
2193 }
2194 }
2195 ext4_unlock_group(sb, i);
2196 if (!flexbg_flag)
2197 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2198 }
2199 if (NULL != first_not_zeroed)
2200 *first_not_zeroed = grp;
2201 return 1;
2202}
2203
2204/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2205 * the superblock) which were deleted from all directories, but held open by
2206 * a process at the time of a crash. We walk the list and try to delete these
2207 * inodes at recovery time (only with a read-write filesystem).
2208 *
2209 * In order to keep the orphan inode chain consistent during traversal (in
2210 * case of crash during recovery), we link each inode into the superblock
2211 * orphan list_head and handle it the same way as an inode deletion during
2212 * normal operation (which journals the operations for us).
2213 *
2214 * We only do an iget() and an iput() on each inode, which is very safe if we
2215 * accidentally point at an in-use or already deleted inode. The worst that
2216 * can happen in this case is that we get a "bit already cleared" message from
2217 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2218 * e2fsck was run on this filesystem, and it must have already done the orphan
2219 * inode cleanup for us, so we can safely abort without any further action.
2220 */
2221static void ext4_orphan_cleanup(struct super_block *sb,
2222 struct ext4_super_block *es)
2223{
2224 unsigned int s_flags = sb->s_flags;
2225 int nr_orphans = 0, nr_truncates = 0;
2226#ifdef CONFIG_QUOTA
2227 int i;
2228#endif
2229 if (!es->s_last_orphan) {
2230 jbd_debug(4, "no orphan inodes to clean up\n");
2231 return;
2232 }
2233
2234 if (bdev_read_only(sb->s_bdev)) {
2235 ext4_msg(sb, KERN_ERR, "write access "
2236 "unavailable, skipping orphan cleanup");
2237 return;
2238 }
2239
2240 /* Check if feature set would not allow a r/w mount */
2241 if (!ext4_feature_set_ok(sb, 0)) {
2242 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2243 "unknown ROCOMPAT features");
2244 return;
2245 }
2246
2247 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2248 /* don't clear list on RO mount w/ errors */
2249 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2250 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2251 "clearing orphan list.\n");
2252 es->s_last_orphan = 0;
2253 }
2254 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2255 return;
2256 }
2257
2258 if (s_flags & MS_RDONLY) {
2259 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2260 sb->s_flags &= ~MS_RDONLY;
2261 }
2262#ifdef CONFIG_QUOTA
2263 /* Needed for iput() to work correctly and not trash data */
2264 sb->s_flags |= MS_ACTIVE;
2265 /* Turn on quotas so that they are updated correctly */
2266 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2267 if (EXT4_SB(sb)->s_qf_names[i]) {
2268 int ret = ext4_quota_on_mount(sb, i);
2269 if (ret < 0)
2270 ext4_msg(sb, KERN_ERR,
2271 "Cannot turn on journaled "
2272 "quota: error %d", ret);
2273 }
2274 }
2275#endif
2276
2277 while (es->s_last_orphan) {
2278 struct inode *inode;
2279
2280 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2281 if (IS_ERR(inode)) {
2282 es->s_last_orphan = 0;
2283 break;
2284 }
2285
2286 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2287 dquot_initialize(inode);
2288 if (inode->i_nlink) {
2289 if (test_opt(sb, DEBUG))
2290 ext4_msg(sb, KERN_DEBUG,
2291 "%s: truncating inode %lu to %lld bytes",
2292 __func__, inode->i_ino, inode->i_size);
2293 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2294 inode->i_ino, inode->i_size);
2295 inode_lock(inode);
2296 truncate_inode_pages(inode->i_mapping, inode->i_size);
2297 ext4_truncate(inode);
2298 inode_unlock(inode);
2299 nr_truncates++;
2300 } else {
2301 if (test_opt(sb, DEBUG))
2302 ext4_msg(sb, KERN_DEBUG,
2303 "%s: deleting unreferenced inode %lu",
2304 __func__, inode->i_ino);
2305 jbd_debug(2, "deleting unreferenced inode %lu\n",
2306 inode->i_ino);
2307 nr_orphans++;
2308 }
2309 iput(inode); /* The delete magic happens here! */
2310 }
2311
2312#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2313
2314 if (nr_orphans)
2315 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2316 PLURAL(nr_orphans));
2317 if (nr_truncates)
2318 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2319 PLURAL(nr_truncates));
2320#ifdef CONFIG_QUOTA
2321 /* Turn quotas off */
2322 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2323 if (sb_dqopt(sb)->files[i])
2324 dquot_quota_off(sb, i);
2325 }
2326#endif
2327 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2328}
2329
2330/*
2331 * Maximal extent format file size.
2332 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2333 * extent format containers, within a sector_t, and within i_blocks
2334 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2335 * so that won't be a limiting factor.
2336 *
2337 * However there is other limiting factor. We do store extents in the form
2338 * of starting block and length, hence the resulting length of the extent
2339 * covering maximum file size must fit into on-disk format containers as
2340 * well. Given that length is always by 1 unit bigger than max unit (because
2341 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2342 *
2343 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2344 */
2345static loff_t ext4_max_size(int blkbits, int has_huge_files)
2346{
2347 loff_t res;
2348 loff_t upper_limit = MAX_LFS_FILESIZE;
2349
2350 /* small i_blocks in vfs inode? */
2351 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2352 /*
2353 * CONFIG_LBDAF is not enabled implies the inode
2354 * i_block represent total blocks in 512 bytes
2355 * 32 == size of vfs inode i_blocks * 8
2356 */
2357 upper_limit = (1LL << 32) - 1;
2358
2359 /* total blocks in file system block size */
2360 upper_limit >>= (blkbits - 9);
2361 upper_limit <<= blkbits;
2362 }
2363
2364 /*
2365 * 32-bit extent-start container, ee_block. We lower the maxbytes
2366 * by one fs block, so ee_len can cover the extent of maximum file
2367 * size
2368 */
2369 res = (1LL << 32) - 1;
2370 res <<= blkbits;
2371
2372 /* Sanity check against vm- & vfs- imposed limits */
2373 if (res > upper_limit)
2374 res = upper_limit;
2375
2376 return res;
2377}
2378
2379/*
2380 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2381 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2382 * We need to be 1 filesystem block less than the 2^48 sector limit.
2383 */
2384static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2385{
2386 loff_t res = EXT4_NDIR_BLOCKS;
2387 int meta_blocks;
2388 loff_t upper_limit;
2389 /* This is calculated to be the largest file size for a dense, block
2390 * mapped file such that the file's total number of 512-byte sectors,
2391 * including data and all indirect blocks, does not exceed (2^48 - 1).
2392 *
2393 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2394 * number of 512-byte sectors of the file.
2395 */
2396
2397 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2398 /*
2399 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2400 * the inode i_block field represents total file blocks in
2401 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2402 */
2403 upper_limit = (1LL << 32) - 1;
2404
2405 /* total blocks in file system block size */
2406 upper_limit >>= (bits - 9);
2407
2408 } else {
2409 /*
2410 * We use 48 bit ext4_inode i_blocks
2411 * With EXT4_HUGE_FILE_FL set the i_blocks
2412 * represent total number of blocks in
2413 * file system block size
2414 */
2415 upper_limit = (1LL << 48) - 1;
2416
2417 }
2418
2419 /* indirect blocks */
2420 meta_blocks = 1;
2421 /* double indirect blocks */
2422 meta_blocks += 1 + (1LL << (bits-2));
2423 /* tripple indirect blocks */
2424 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2425
2426 upper_limit -= meta_blocks;
2427 upper_limit <<= bits;
2428
2429 res += 1LL << (bits-2);
2430 res += 1LL << (2*(bits-2));
2431 res += 1LL << (3*(bits-2));
2432 res <<= bits;
2433 if (res > upper_limit)
2434 res = upper_limit;
2435
2436 if (res > MAX_LFS_FILESIZE)
2437 res = MAX_LFS_FILESIZE;
2438
2439 return res;
2440}
2441
2442static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2443 ext4_fsblk_t logical_sb_block, int nr)
2444{
2445 struct ext4_sb_info *sbi = EXT4_SB(sb);
2446 ext4_group_t bg, first_meta_bg;
2447 int has_super = 0;
2448
2449 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2450
2451 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2452 return logical_sb_block + nr + 1;
2453 bg = sbi->s_desc_per_block * nr;
2454 if (ext4_bg_has_super(sb, bg))
2455 has_super = 1;
2456
2457 /*
2458 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2459 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2460 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2461 * compensate.
2462 */
2463 if (sb->s_blocksize == 1024 && nr == 0 &&
2464 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2465 has_super++;
2466
2467 return (has_super + ext4_group_first_block_no(sb, bg));
2468}
2469
2470/**
2471 * ext4_get_stripe_size: Get the stripe size.
2472 * @sbi: In memory super block info
2473 *
2474 * If we have specified it via mount option, then
2475 * use the mount option value. If the value specified at mount time is
2476 * greater than the blocks per group use the super block value.
2477 * If the super block value is greater than blocks per group return 0.
2478 * Allocator needs it be less than blocks per group.
2479 *
2480 */
2481static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2482{
2483 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2484 unsigned long stripe_width =
2485 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2486 int ret;
2487
2488 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2489 ret = sbi->s_stripe;
2490 else if (stripe_width <= sbi->s_blocks_per_group)
2491 ret = stripe_width;
2492 else if (stride <= sbi->s_blocks_per_group)
2493 ret = stride;
2494 else
2495 ret = 0;
2496
2497 /*
2498 * If the stripe width is 1, this makes no sense and
2499 * we set it to 0 to turn off stripe handling code.
2500 */
2501 if (ret <= 1)
2502 ret = 0;
2503
2504 return ret;
2505}
2506
2507/*
2508 * Check whether this filesystem can be mounted based on
2509 * the features present and the RDONLY/RDWR mount requested.
2510 * Returns 1 if this filesystem can be mounted as requested,
2511 * 0 if it cannot be.
2512 */
2513static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2514{
2515 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2516 ext4_msg(sb, KERN_ERR,
2517 "Couldn't mount because of "
2518 "unsupported optional features (%x)",
2519 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2520 ~EXT4_FEATURE_INCOMPAT_SUPP));
2521 return 0;
2522 }
2523
2524 if (readonly)
2525 return 1;
2526
2527 if (ext4_has_feature_readonly(sb)) {
2528 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2529 sb->s_flags |= MS_RDONLY;
2530 return 1;
2531 }
2532
2533 /* Check that feature set is OK for a read-write mount */
2534 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2535 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2536 "unsupported optional features (%x)",
2537 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2538 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2539 return 0;
2540 }
2541 /*
2542 * Large file size enabled file system can only be mounted
2543 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2544 */
2545 if (ext4_has_feature_huge_file(sb)) {
2546 if (sizeof(blkcnt_t) < sizeof(u64)) {
2547 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2548 "cannot be mounted RDWR without "
2549 "CONFIG_LBDAF");
2550 return 0;
2551 }
2552 }
2553 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2554 ext4_msg(sb, KERN_ERR,
2555 "Can't support bigalloc feature without "
2556 "extents feature\n");
2557 return 0;
2558 }
2559
2560#ifndef CONFIG_QUOTA
2561 if (ext4_has_feature_quota(sb) && !readonly) {
2562 ext4_msg(sb, KERN_ERR,
2563 "Filesystem with quota feature cannot be mounted RDWR "
2564 "without CONFIG_QUOTA");
2565 return 0;
2566 }
2567 if (ext4_has_feature_project(sb) && !readonly) {
2568 ext4_msg(sb, KERN_ERR,
2569 "Filesystem with project quota feature cannot be mounted RDWR "
2570 "without CONFIG_QUOTA");
2571 return 0;
2572 }
2573#endif /* CONFIG_QUOTA */
2574 return 1;
2575}
2576
2577/*
2578 * This function is called once a day if we have errors logged
2579 * on the file system
2580 */
2581static void print_daily_error_info(unsigned long arg)
2582{
2583 struct super_block *sb = (struct super_block *) arg;
2584 struct ext4_sb_info *sbi;
2585 struct ext4_super_block *es;
2586
2587 sbi = EXT4_SB(sb);
2588 es = sbi->s_es;
2589
2590 if (es->s_error_count)
2591 /* fsck newer than v1.41.13 is needed to clean this condition. */
2592 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2593 le32_to_cpu(es->s_error_count));
2594 if (es->s_first_error_time) {
2595 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2596 sb->s_id, le32_to_cpu(es->s_first_error_time),
2597 (int) sizeof(es->s_first_error_func),
2598 es->s_first_error_func,
2599 le32_to_cpu(es->s_first_error_line));
2600 if (es->s_first_error_ino)
2601 printk(": inode %u",
2602 le32_to_cpu(es->s_first_error_ino));
2603 if (es->s_first_error_block)
2604 printk(": block %llu", (unsigned long long)
2605 le64_to_cpu(es->s_first_error_block));
2606 printk("\n");
2607 }
2608 if (es->s_last_error_time) {
2609 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2610 sb->s_id, le32_to_cpu(es->s_last_error_time),
2611 (int) sizeof(es->s_last_error_func),
2612 es->s_last_error_func,
2613 le32_to_cpu(es->s_last_error_line));
2614 if (es->s_last_error_ino)
2615 printk(": inode %u",
2616 le32_to_cpu(es->s_last_error_ino));
2617 if (es->s_last_error_block)
2618 printk(": block %llu", (unsigned long long)
2619 le64_to_cpu(es->s_last_error_block));
2620 printk("\n");
2621 }
2622 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2623}
2624
2625/* Find next suitable group and run ext4_init_inode_table */
2626static int ext4_run_li_request(struct ext4_li_request *elr)
2627{
2628 struct ext4_group_desc *gdp = NULL;
2629 ext4_group_t group, ngroups;
2630 struct super_block *sb;
2631 unsigned long timeout = 0;
2632 int ret = 0;
2633
2634 sb = elr->lr_super;
2635 ngroups = EXT4_SB(sb)->s_groups_count;
2636
2637 sb_start_write(sb);
2638 for (group = elr->lr_next_group; group < ngroups; group++) {
2639 gdp = ext4_get_group_desc(sb, group, NULL);
2640 if (!gdp) {
2641 ret = 1;
2642 break;
2643 }
2644
2645 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2646 break;
2647 }
2648
2649 if (group >= ngroups)
2650 ret = 1;
2651
2652 if (!ret) {
2653 timeout = jiffies;
2654 ret = ext4_init_inode_table(sb, group,
2655 elr->lr_timeout ? 0 : 1);
2656 if (elr->lr_timeout == 0) {
2657 timeout = (jiffies - timeout) *
2658 elr->lr_sbi->s_li_wait_mult;
2659 elr->lr_timeout = timeout;
2660 }
2661 elr->lr_next_sched = jiffies + elr->lr_timeout;
2662 elr->lr_next_group = group + 1;
2663 }
2664 sb_end_write(sb);
2665
2666 return ret;
2667}
2668
2669/*
2670 * Remove lr_request from the list_request and free the
2671 * request structure. Should be called with li_list_mtx held
2672 */
2673static void ext4_remove_li_request(struct ext4_li_request *elr)
2674{
2675 struct ext4_sb_info *sbi;
2676
2677 if (!elr)
2678 return;
2679
2680 sbi = elr->lr_sbi;
2681
2682 list_del(&elr->lr_request);
2683 sbi->s_li_request = NULL;
2684 kfree(elr);
2685}
2686
2687static void ext4_unregister_li_request(struct super_block *sb)
2688{
2689 mutex_lock(&ext4_li_mtx);
2690 if (!ext4_li_info) {
2691 mutex_unlock(&ext4_li_mtx);
2692 return;
2693 }
2694
2695 mutex_lock(&ext4_li_info->li_list_mtx);
2696 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2697 mutex_unlock(&ext4_li_info->li_list_mtx);
2698 mutex_unlock(&ext4_li_mtx);
2699}
2700
2701static struct task_struct *ext4_lazyinit_task;
2702
2703/*
2704 * This is the function where ext4lazyinit thread lives. It walks
2705 * through the request list searching for next scheduled filesystem.
2706 * When such a fs is found, run the lazy initialization request
2707 * (ext4_rn_li_request) and keep track of the time spend in this
2708 * function. Based on that time we compute next schedule time of
2709 * the request. When walking through the list is complete, compute
2710 * next waking time and put itself into sleep.
2711 */
2712static int ext4_lazyinit_thread(void *arg)
2713{
2714 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2715 struct list_head *pos, *n;
2716 struct ext4_li_request *elr;
2717 unsigned long next_wakeup, cur;
2718
2719 BUG_ON(NULL == eli);
2720
2721cont_thread:
2722 while (true) {
2723 next_wakeup = MAX_JIFFY_OFFSET;
2724
2725 mutex_lock(&eli->li_list_mtx);
2726 if (list_empty(&eli->li_request_list)) {
2727 mutex_unlock(&eli->li_list_mtx);
2728 goto exit_thread;
2729 }
2730
2731 list_for_each_safe(pos, n, &eli->li_request_list) {
2732 elr = list_entry(pos, struct ext4_li_request,
2733 lr_request);
2734
2735 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2736 if (ext4_run_li_request(elr) != 0) {
2737 /* error, remove the lazy_init job */
2738 ext4_remove_li_request(elr);
2739 continue;
2740 }
2741 }
2742
2743 if (time_before(elr->lr_next_sched, next_wakeup))
2744 next_wakeup = elr->lr_next_sched;
2745 }
2746 mutex_unlock(&eli->li_list_mtx);
2747
2748 try_to_freeze();
2749
2750 cur = jiffies;
2751 if ((time_after_eq(cur, next_wakeup)) ||
2752 (MAX_JIFFY_OFFSET == next_wakeup)) {
2753 cond_resched();
2754 continue;
2755 }
2756
2757 schedule_timeout_interruptible(next_wakeup - cur);
2758
2759 if (kthread_should_stop()) {
2760 ext4_clear_request_list();
2761 goto exit_thread;
2762 }
2763 }
2764
2765exit_thread:
2766 /*
2767 * It looks like the request list is empty, but we need
2768 * to check it under the li_list_mtx lock, to prevent any
2769 * additions into it, and of course we should lock ext4_li_mtx
2770 * to atomically free the list and ext4_li_info, because at
2771 * this point another ext4 filesystem could be registering
2772 * new one.
2773 */
2774 mutex_lock(&ext4_li_mtx);
2775 mutex_lock(&eli->li_list_mtx);
2776 if (!list_empty(&eli->li_request_list)) {
2777 mutex_unlock(&eli->li_list_mtx);
2778 mutex_unlock(&ext4_li_mtx);
2779 goto cont_thread;
2780 }
2781 mutex_unlock(&eli->li_list_mtx);
2782 kfree(ext4_li_info);
2783 ext4_li_info = NULL;
2784 mutex_unlock(&ext4_li_mtx);
2785
2786 return 0;
2787}
2788
2789static void ext4_clear_request_list(void)
2790{
2791 struct list_head *pos, *n;
2792 struct ext4_li_request *elr;
2793
2794 mutex_lock(&ext4_li_info->li_list_mtx);
2795 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2796 elr = list_entry(pos, struct ext4_li_request,
2797 lr_request);
2798 ext4_remove_li_request(elr);
2799 }
2800 mutex_unlock(&ext4_li_info->li_list_mtx);
2801}
2802
2803static int ext4_run_lazyinit_thread(void)
2804{
2805 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2806 ext4_li_info, "ext4lazyinit");
2807 if (IS_ERR(ext4_lazyinit_task)) {
2808 int err = PTR_ERR(ext4_lazyinit_task);
2809 ext4_clear_request_list();
2810 kfree(ext4_li_info);
2811 ext4_li_info = NULL;
2812 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2813 "initialization thread\n",
2814 err);
2815 return err;
2816 }
2817 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2818 return 0;
2819}
2820
2821/*
2822 * Check whether it make sense to run itable init. thread or not.
2823 * If there is at least one uninitialized inode table, return
2824 * corresponding group number, else the loop goes through all
2825 * groups and return total number of groups.
2826 */
2827static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2828{
2829 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2830 struct ext4_group_desc *gdp = NULL;
2831
2832 for (group = 0; group < ngroups; group++) {
2833 gdp = ext4_get_group_desc(sb, group, NULL);
2834 if (!gdp)
2835 continue;
2836
2837 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2838 break;
2839 }
2840
2841 return group;
2842}
2843
2844static int ext4_li_info_new(void)
2845{
2846 struct ext4_lazy_init *eli = NULL;
2847
2848 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2849 if (!eli)
2850 return -ENOMEM;
2851
2852 INIT_LIST_HEAD(&eli->li_request_list);
2853 mutex_init(&eli->li_list_mtx);
2854
2855 eli->li_state |= EXT4_LAZYINIT_QUIT;
2856
2857 ext4_li_info = eli;
2858
2859 return 0;
2860}
2861
2862static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2863 ext4_group_t start)
2864{
2865 struct ext4_sb_info *sbi = EXT4_SB(sb);
2866 struct ext4_li_request *elr;
2867
2868 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2869 if (!elr)
2870 return NULL;
2871
2872 elr->lr_super = sb;
2873 elr->lr_sbi = sbi;
2874 elr->lr_next_group = start;
2875
2876 /*
2877 * Randomize first schedule time of the request to
2878 * spread the inode table initialization requests
2879 * better.
2880 */
2881 elr->lr_next_sched = jiffies + (prandom_u32() %
2882 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2883 return elr;
2884}
2885
2886int ext4_register_li_request(struct super_block *sb,
2887 ext4_group_t first_not_zeroed)
2888{
2889 struct ext4_sb_info *sbi = EXT4_SB(sb);
2890 struct ext4_li_request *elr = NULL;
2891 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2892 int ret = 0;
2893
2894 mutex_lock(&ext4_li_mtx);
2895 if (sbi->s_li_request != NULL) {
2896 /*
2897 * Reset timeout so it can be computed again, because
2898 * s_li_wait_mult might have changed.
2899 */
2900 sbi->s_li_request->lr_timeout = 0;
2901 goto out;
2902 }
2903
2904 if (first_not_zeroed == ngroups ||
2905 (sb->s_flags & MS_RDONLY) ||
2906 !test_opt(sb, INIT_INODE_TABLE))
2907 goto out;
2908
2909 elr = ext4_li_request_new(sb, first_not_zeroed);
2910 if (!elr) {
2911 ret = -ENOMEM;
2912 goto out;
2913 }
2914
2915 if (NULL == ext4_li_info) {
2916 ret = ext4_li_info_new();
2917 if (ret)
2918 goto out;
2919 }
2920
2921 mutex_lock(&ext4_li_info->li_list_mtx);
2922 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2923 mutex_unlock(&ext4_li_info->li_list_mtx);
2924
2925 sbi->s_li_request = elr;
2926 /*
2927 * set elr to NULL here since it has been inserted to
2928 * the request_list and the removal and free of it is
2929 * handled by ext4_clear_request_list from now on.
2930 */
2931 elr = NULL;
2932
2933 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2934 ret = ext4_run_lazyinit_thread();
2935 if (ret)
2936 goto out;
2937 }
2938out:
2939 mutex_unlock(&ext4_li_mtx);
2940 if (ret)
2941 kfree(elr);
2942 return ret;
2943}
2944
2945/*
2946 * We do not need to lock anything since this is called on
2947 * module unload.
2948 */
2949static void ext4_destroy_lazyinit_thread(void)
2950{
2951 /*
2952 * If thread exited earlier
2953 * there's nothing to be done.
2954 */
2955 if (!ext4_li_info || !ext4_lazyinit_task)
2956 return;
2957
2958 kthread_stop(ext4_lazyinit_task);
2959}
2960
2961static int set_journal_csum_feature_set(struct super_block *sb)
2962{
2963 int ret = 1;
2964 int compat, incompat;
2965 struct ext4_sb_info *sbi = EXT4_SB(sb);
2966
2967 if (ext4_has_metadata_csum(sb)) {
2968 /* journal checksum v3 */
2969 compat = 0;
2970 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
2971 } else {
2972 /* journal checksum v1 */
2973 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
2974 incompat = 0;
2975 }
2976
2977 jbd2_journal_clear_features(sbi->s_journal,
2978 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2979 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
2980 JBD2_FEATURE_INCOMPAT_CSUM_V2);
2981 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2982 ret = jbd2_journal_set_features(sbi->s_journal,
2983 compat, 0,
2984 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
2985 incompat);
2986 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2987 ret = jbd2_journal_set_features(sbi->s_journal,
2988 compat, 0,
2989 incompat);
2990 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2991 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2992 } else {
2993 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2994 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2995 }
2996
2997 return ret;
2998}
2999
3000/*
3001 * Note: calculating the overhead so we can be compatible with
3002 * historical BSD practice is quite difficult in the face of
3003 * clusters/bigalloc. This is because multiple metadata blocks from
3004 * different block group can end up in the same allocation cluster.
3005 * Calculating the exact overhead in the face of clustered allocation
3006 * requires either O(all block bitmaps) in memory or O(number of block
3007 * groups**2) in time. We will still calculate the superblock for
3008 * older file systems --- and if we come across with a bigalloc file
3009 * system with zero in s_overhead_clusters the estimate will be close to
3010 * correct especially for very large cluster sizes --- but for newer
3011 * file systems, it's better to calculate this figure once at mkfs
3012 * time, and store it in the superblock. If the superblock value is
3013 * present (even for non-bigalloc file systems), we will use it.
3014 */
3015static int count_overhead(struct super_block *sb, ext4_group_t grp,
3016 char *buf)
3017{
3018 struct ext4_sb_info *sbi = EXT4_SB(sb);
3019 struct ext4_group_desc *gdp;
3020 ext4_fsblk_t first_block, last_block, b;
3021 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3022 int s, j, count = 0;
3023
3024 if (!ext4_has_feature_bigalloc(sb))
3025 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3026 sbi->s_itb_per_group + 2);
3027
3028 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3029 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3030 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3031 for (i = 0; i < ngroups; i++) {
3032 gdp = ext4_get_group_desc(sb, i, NULL);
3033 b = ext4_block_bitmap(sb, gdp);
3034 if (b >= first_block && b <= last_block) {
3035 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3036 count++;
3037 }
3038 b = ext4_inode_bitmap(sb, gdp);
3039 if (b >= first_block && b <= last_block) {
3040 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3041 count++;
3042 }
3043 b = ext4_inode_table(sb, gdp);
3044 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3045 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3046 int c = EXT4_B2C(sbi, b - first_block);
3047 ext4_set_bit(c, buf);
3048 count++;
3049 }
3050 if (i != grp)
3051 continue;
3052 s = 0;
3053 if (ext4_bg_has_super(sb, grp)) {
3054 ext4_set_bit(s++, buf);
3055 count++;
3056 }
3057 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3058 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3059 count++;
3060 }
3061 }
3062 if (!count)
3063 return 0;
3064 return EXT4_CLUSTERS_PER_GROUP(sb) -
3065 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3066}
3067
3068/*
3069 * Compute the overhead and stash it in sbi->s_overhead
3070 */
3071int ext4_calculate_overhead(struct super_block *sb)
3072{
3073 struct ext4_sb_info *sbi = EXT4_SB(sb);
3074 struct ext4_super_block *es = sbi->s_es;
3075 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3076 ext4_fsblk_t overhead = 0;
3077 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3078
3079 if (!buf)
3080 return -ENOMEM;
3081
3082 /*
3083 * Compute the overhead (FS structures). This is constant
3084 * for a given filesystem unless the number of block groups
3085 * changes so we cache the previous value until it does.
3086 */
3087
3088 /*
3089 * All of the blocks before first_data_block are overhead
3090 */
3091 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3092
3093 /*
3094 * Add the overhead found in each block group
3095 */
3096 for (i = 0; i < ngroups; i++) {
3097 int blks;
3098
3099 blks = count_overhead(sb, i, buf);
3100 overhead += blks;
3101 if (blks)
3102 memset(buf, 0, PAGE_SIZE);
3103 cond_resched();
3104 }
3105 /* Add the internal journal blocks as well */
3106 if (sbi->s_journal && !sbi->journal_bdev)
3107 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3108
3109 sbi->s_overhead = overhead;
3110 smp_wmb();
3111 free_page((unsigned long) buf);
3112 return 0;
3113}
3114
3115static void ext4_set_resv_clusters(struct super_block *sb)
3116{
3117 ext4_fsblk_t resv_clusters;
3118 struct ext4_sb_info *sbi = EXT4_SB(sb);
3119
3120 /*
3121 * There's no need to reserve anything when we aren't using extents.
3122 * The space estimates are exact, there are no unwritten extents,
3123 * hole punching doesn't need new metadata... This is needed especially
3124 * to keep ext2/3 backward compatibility.
3125 */
3126 if (!ext4_has_feature_extents(sb))
3127 return;
3128 /*
3129 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3130 * This should cover the situations where we can not afford to run
3131 * out of space like for example punch hole, or converting
3132 * unwritten extents in delalloc path. In most cases such
3133 * allocation would require 1, or 2 blocks, higher numbers are
3134 * very rare.
3135 */
3136 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3137 sbi->s_cluster_bits);
3138
3139 do_div(resv_clusters, 50);
3140 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3141
3142 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3143}
3144
3145static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3146{
3147 char *orig_data = kstrdup(data, GFP_KERNEL);
3148 struct buffer_head *bh;
3149 struct ext4_super_block *es = NULL;
3150 struct ext4_sb_info *sbi;
3151 ext4_fsblk_t block;
3152 ext4_fsblk_t sb_block = get_sb_block(&data);
3153 ext4_fsblk_t logical_sb_block;
3154 unsigned long offset = 0;
3155 unsigned long journal_devnum = 0;
3156 unsigned long def_mount_opts;
3157 struct inode *root;
3158 const char *descr;
3159 int ret = -ENOMEM;
3160 int blocksize, clustersize;
3161 unsigned int db_count;
3162 unsigned int i;
3163 int needs_recovery, has_huge_files, has_bigalloc;
3164 __u64 blocks_count;
3165 int err = 0;
3166 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3167 ext4_group_t first_not_zeroed;
3168
3169 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3170 if (!sbi)
3171 goto out_free_orig;
3172
3173 sbi->s_blockgroup_lock =
3174 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3175 if (!sbi->s_blockgroup_lock) {
3176 kfree(sbi);
3177 goto out_free_orig;
3178 }
3179 sb->s_fs_info = sbi;
3180 sbi->s_sb = sb;
3181 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3182 sbi->s_sb_block = sb_block;
3183 if (sb->s_bdev->bd_part)
3184 sbi->s_sectors_written_start =
3185 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3186
3187 /* Cleanup superblock name */
3188 strreplace(sb->s_id, '/', '!');
3189
3190 /* -EINVAL is default */
3191 ret = -EINVAL;
3192 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3193 if (!blocksize) {
3194 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3195 goto out_fail;
3196 }
3197
3198 /*
3199 * The ext4 superblock will not be buffer aligned for other than 1kB
3200 * block sizes. We need to calculate the offset from buffer start.
3201 */
3202 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3203 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3204 offset = do_div(logical_sb_block, blocksize);
3205 } else {
3206 logical_sb_block = sb_block;
3207 }
3208
3209 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3210 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3211 goto out_fail;
3212 }
3213 /*
3214 * Note: s_es must be initialized as soon as possible because
3215 * some ext4 macro-instructions depend on its value
3216 */
3217 es = (struct ext4_super_block *) (bh->b_data + offset);
3218 sbi->s_es = es;
3219 sb->s_magic = le16_to_cpu(es->s_magic);
3220 if (sb->s_magic != EXT4_SUPER_MAGIC)
3221 goto cantfind_ext4;
3222 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3223
3224 /* Warn if metadata_csum and gdt_csum are both set. */
3225 if (ext4_has_feature_metadata_csum(sb) &&
3226 ext4_has_feature_gdt_csum(sb))
3227 ext4_warning(sb, "metadata_csum and uninit_bg are "
3228 "redundant flags; please run fsck.");
3229
3230 /* Check for a known checksum algorithm */
3231 if (!ext4_verify_csum_type(sb, es)) {
3232 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3233 "unknown checksum algorithm.");
3234 silent = 1;
3235 goto cantfind_ext4;
3236 }
3237
3238 /* Load the checksum driver */
3239 if (ext4_has_feature_metadata_csum(sb)) {
3240 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3241 if (IS_ERR(sbi->s_chksum_driver)) {
3242 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3243 ret = PTR_ERR(sbi->s_chksum_driver);
3244 sbi->s_chksum_driver = NULL;
3245 goto failed_mount;
3246 }
3247 }
3248
3249 /* Check superblock checksum */
3250 if (!ext4_superblock_csum_verify(sb, es)) {
3251 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3252 "invalid superblock checksum. Run e2fsck?");
3253 silent = 1;
3254 ret = -EFSBADCRC;
3255 goto cantfind_ext4;
3256 }
3257
3258 /* Precompute checksum seed for all metadata */
3259 if (ext4_has_feature_csum_seed(sb))
3260 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3261 else if (ext4_has_metadata_csum(sb))
3262 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3263 sizeof(es->s_uuid));
3264
3265 /* Set defaults before we parse the mount options */
3266 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3267 set_opt(sb, INIT_INODE_TABLE);
3268 if (def_mount_opts & EXT4_DEFM_DEBUG)
3269 set_opt(sb, DEBUG);
3270 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3271 set_opt(sb, GRPID);
3272 if (def_mount_opts & EXT4_DEFM_UID16)
3273 set_opt(sb, NO_UID32);
3274 /* xattr user namespace & acls are now defaulted on */
3275 set_opt(sb, XATTR_USER);
3276#ifdef CONFIG_EXT4_FS_POSIX_ACL
3277 set_opt(sb, POSIX_ACL);
3278#endif
3279 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3280 if (ext4_has_metadata_csum(sb))
3281 set_opt(sb, JOURNAL_CHECKSUM);
3282
3283 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3284 set_opt(sb, JOURNAL_DATA);
3285 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3286 set_opt(sb, ORDERED_DATA);
3287 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3288 set_opt(sb, WRITEBACK_DATA);
3289
3290 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3291 set_opt(sb, ERRORS_PANIC);
3292 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3293 set_opt(sb, ERRORS_CONT);
3294 else
3295 set_opt(sb, ERRORS_RO);
3296 /* block_validity enabled by default; disable with noblock_validity */
3297 set_opt(sb, BLOCK_VALIDITY);
3298 if (def_mount_opts & EXT4_DEFM_DISCARD)
3299 set_opt(sb, DISCARD);
3300
3301 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3302 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3303 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3304 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3305 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3306
3307 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3308 set_opt(sb, BARRIER);
3309
3310 /*
3311 * enable delayed allocation by default
3312 * Use -o nodelalloc to turn it off
3313 */
3314 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3315 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3316 set_opt(sb, DELALLOC);
3317
3318 /*
3319 * set default s_li_wait_mult for lazyinit, for the case there is
3320 * no mount option specified.
3321 */
3322 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3323
3324 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3325 &journal_devnum, &journal_ioprio, 0)) {
3326 ext4_msg(sb, KERN_WARNING,
3327 "failed to parse options in superblock: %s",
3328 sbi->s_es->s_mount_opts);
3329 }
3330 sbi->s_def_mount_opt = sbi->s_mount_opt;
3331 if (!parse_options((char *) data, sb, &journal_devnum,
3332 &journal_ioprio, 0))
3333 goto failed_mount;
3334
3335 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3336 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3337 "with data=journal disables delayed "
3338 "allocation and O_DIRECT support!\n");
3339 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3340 ext4_msg(sb, KERN_ERR, "can't mount with "
3341 "both data=journal and delalloc");
3342 goto failed_mount;
3343 }
3344 if (test_opt(sb, DIOREAD_NOLOCK)) {
3345 ext4_msg(sb, KERN_ERR, "can't mount with "
3346 "both data=journal and dioread_nolock");
3347 goto failed_mount;
3348 }
3349 if (test_opt(sb, DAX)) {
3350 ext4_msg(sb, KERN_ERR, "can't mount with "
3351 "both data=journal and dax");
3352 goto failed_mount;
3353 }
3354 if (test_opt(sb, DELALLOC))
3355 clear_opt(sb, DELALLOC);
3356 } else {
3357 sb->s_iflags |= SB_I_CGROUPWB;
3358 }
3359
3360 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3361 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3362
3363 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3364 (ext4_has_compat_features(sb) ||
3365 ext4_has_ro_compat_features(sb) ||
3366 ext4_has_incompat_features(sb)))
3367 ext4_msg(sb, KERN_WARNING,
3368 "feature flags set on rev 0 fs, "
3369 "running e2fsck is recommended");
3370
3371 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3372 set_opt2(sb, HURD_COMPAT);
3373 if (ext4_has_feature_64bit(sb)) {
3374 ext4_msg(sb, KERN_ERR,
3375 "The Hurd can't support 64-bit file systems");
3376 goto failed_mount;
3377 }
3378 }
3379
3380 if (IS_EXT2_SB(sb)) {
3381 if (ext2_feature_set_ok(sb))
3382 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3383 "using the ext4 subsystem");
3384 else {
3385 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3386 "to feature incompatibilities");
3387 goto failed_mount;
3388 }
3389 }
3390
3391 if (IS_EXT3_SB(sb)) {
3392 if (ext3_feature_set_ok(sb))
3393 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3394 "using the ext4 subsystem");
3395 else {
3396 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3397 "to feature incompatibilities");
3398 goto failed_mount;
3399 }
3400 }
3401
3402 /*
3403 * Check feature flags regardless of the revision level, since we
3404 * previously didn't change the revision level when setting the flags,
3405 * so there is a chance incompat flags are set on a rev 0 filesystem.
3406 */
3407 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3408 goto failed_mount;
3409
3410 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3411 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3412 blocksize > EXT4_MAX_BLOCK_SIZE) {
3413 ext4_msg(sb, KERN_ERR,
3414 "Unsupported filesystem blocksize %d", blocksize);
3415 goto failed_mount;
3416 }
3417
3418 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3419 if (blocksize != PAGE_SIZE) {
3420 ext4_msg(sb, KERN_ERR,
3421 "error: unsupported blocksize for dax");
3422 goto failed_mount;
3423 }
3424 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3425 ext4_msg(sb, KERN_ERR,
3426 "error: device does not support dax");
3427 goto failed_mount;
3428 }
3429 }
3430
3431 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3432 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3433 es->s_encryption_level);
3434 goto failed_mount;
3435 }
3436
3437 if (sb->s_blocksize != blocksize) {
3438 /* Validate the filesystem blocksize */
3439 if (!sb_set_blocksize(sb, blocksize)) {
3440 ext4_msg(sb, KERN_ERR, "bad block size %d",
3441 blocksize);
3442 goto failed_mount;
3443 }
3444
3445 brelse(bh);
3446 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3447 offset = do_div(logical_sb_block, blocksize);
3448 bh = sb_bread_unmovable(sb, logical_sb_block);
3449 if (!bh) {
3450 ext4_msg(sb, KERN_ERR,
3451 "Can't read superblock on 2nd try");
3452 goto failed_mount;
3453 }
3454 es = (struct ext4_super_block *)(bh->b_data + offset);
3455 sbi->s_es = es;
3456 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3457 ext4_msg(sb, KERN_ERR,
3458 "Magic mismatch, very weird!");
3459 goto failed_mount;
3460 }
3461 }
3462
3463 has_huge_files = ext4_has_feature_huge_file(sb);
3464 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3465 has_huge_files);
3466 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3467
3468 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3469 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3470 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3471 } else {
3472 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3473 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3474 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3475 (!is_power_of_2(sbi->s_inode_size)) ||
3476 (sbi->s_inode_size > blocksize)) {
3477 ext4_msg(sb, KERN_ERR,
3478 "unsupported inode size: %d",
3479 sbi->s_inode_size);
3480 goto failed_mount;
3481 }
3482 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3483 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3484 }
3485
3486 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3487 if (ext4_has_feature_64bit(sb)) {
3488 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3489 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3490 !is_power_of_2(sbi->s_desc_size)) {
3491 ext4_msg(sb, KERN_ERR,
3492 "unsupported descriptor size %lu",
3493 sbi->s_desc_size);
3494 goto failed_mount;
3495 }
3496 } else
3497 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3498
3499 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3500 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3501 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3502 goto cantfind_ext4;
3503
3504 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3505 if (sbi->s_inodes_per_block == 0)
3506 goto cantfind_ext4;
3507 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3508 sbi->s_inodes_per_block;
3509 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3510 sbi->s_sbh = bh;
3511 sbi->s_mount_state = le16_to_cpu(es->s_state);
3512 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3513 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3514
3515 for (i = 0; i < 4; i++)
3516 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3517 sbi->s_def_hash_version = es->s_def_hash_version;
3518 if (ext4_has_feature_dir_index(sb)) {
3519 i = le32_to_cpu(es->s_flags);
3520 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3521 sbi->s_hash_unsigned = 3;
3522 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3523#ifdef __CHAR_UNSIGNED__
3524 if (!(sb->s_flags & MS_RDONLY))
3525 es->s_flags |=
3526 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3527 sbi->s_hash_unsigned = 3;
3528#else
3529 if (!(sb->s_flags & MS_RDONLY))
3530 es->s_flags |=
3531 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3532#endif
3533 }
3534 }
3535
3536 /* Handle clustersize */
3537 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3538 has_bigalloc = ext4_has_feature_bigalloc(sb);
3539 if (has_bigalloc) {
3540 if (clustersize < blocksize) {
3541 ext4_msg(sb, KERN_ERR,
3542 "cluster size (%d) smaller than "
3543 "block size (%d)", clustersize, blocksize);
3544 goto failed_mount;
3545 }
3546 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3547 le32_to_cpu(es->s_log_block_size);
3548 sbi->s_clusters_per_group =
3549 le32_to_cpu(es->s_clusters_per_group);
3550 if (sbi->s_clusters_per_group > blocksize * 8) {
3551 ext4_msg(sb, KERN_ERR,
3552 "#clusters per group too big: %lu",
3553 sbi->s_clusters_per_group);
3554 goto failed_mount;
3555 }
3556 if (sbi->s_blocks_per_group !=
3557 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3558 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3559 "clusters per group (%lu) inconsistent",
3560 sbi->s_blocks_per_group,
3561 sbi->s_clusters_per_group);
3562 goto failed_mount;
3563 }
3564 } else {
3565 if (clustersize != blocksize) {
3566 ext4_warning(sb, "fragment/cluster size (%d) != "
3567 "block size (%d)", clustersize,
3568 blocksize);
3569 clustersize = blocksize;
3570 }
3571 if (sbi->s_blocks_per_group > blocksize * 8) {
3572 ext4_msg(sb, KERN_ERR,
3573 "#blocks per group too big: %lu",
3574 sbi->s_blocks_per_group);
3575 goto failed_mount;
3576 }
3577 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3578 sbi->s_cluster_bits = 0;
3579 }
3580 sbi->s_cluster_ratio = clustersize / blocksize;
3581
3582 if (sbi->s_inodes_per_group > blocksize * 8) {
3583 ext4_msg(sb, KERN_ERR,
3584 "#inodes per group too big: %lu",
3585 sbi->s_inodes_per_group);
3586 goto failed_mount;
3587 }
3588
3589 /* Do we have standard group size of clustersize * 8 blocks ? */
3590 if (sbi->s_blocks_per_group == clustersize << 3)
3591 set_opt2(sb, STD_GROUP_SIZE);
3592
3593 /*
3594 * Test whether we have more sectors than will fit in sector_t,
3595 * and whether the max offset is addressable by the page cache.
3596 */
3597 err = generic_check_addressable(sb->s_blocksize_bits,
3598 ext4_blocks_count(es));
3599 if (err) {
3600 ext4_msg(sb, KERN_ERR, "filesystem"
3601 " too large to mount safely on this system");
3602 if (sizeof(sector_t) < 8)
3603 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3604 goto failed_mount;
3605 }
3606
3607 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3608 goto cantfind_ext4;
3609
3610 /* check blocks count against device size */
3611 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3612 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3613 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3614 "exceeds size of device (%llu blocks)",
3615 ext4_blocks_count(es), blocks_count);
3616 goto failed_mount;
3617 }
3618
3619 /*
3620 * It makes no sense for the first data block to be beyond the end
3621 * of the filesystem.
3622 */
3623 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3624 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3625 "block %u is beyond end of filesystem (%llu)",
3626 le32_to_cpu(es->s_first_data_block),
3627 ext4_blocks_count(es));
3628 goto failed_mount;
3629 }
3630 blocks_count = (ext4_blocks_count(es) -
3631 le32_to_cpu(es->s_first_data_block) +
3632 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3633 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3634 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3635 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3636 "(block count %llu, first data block %u, "
3637 "blocks per group %lu)", sbi->s_groups_count,
3638 ext4_blocks_count(es),
3639 le32_to_cpu(es->s_first_data_block),
3640 EXT4_BLOCKS_PER_GROUP(sb));
3641 goto failed_mount;
3642 }
3643 sbi->s_groups_count = blocks_count;
3644 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3645 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3646 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3647 EXT4_DESC_PER_BLOCK(sb);
3648 sbi->s_group_desc = ext4_kvmalloc(db_count *
3649 sizeof(struct buffer_head *),
3650 GFP_KERNEL);
3651 if (sbi->s_group_desc == NULL) {
3652 ext4_msg(sb, KERN_ERR, "not enough memory");
3653 ret = -ENOMEM;
3654 goto failed_mount;
3655 }
3656
3657 bgl_lock_init(sbi->s_blockgroup_lock);
3658
3659 for (i = 0; i < db_count; i++) {
3660 block = descriptor_loc(sb, logical_sb_block, i);
3661 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3662 if (!sbi->s_group_desc[i]) {
3663 ext4_msg(sb, KERN_ERR,
3664 "can't read group descriptor %d", i);
3665 db_count = i;
3666 goto failed_mount2;
3667 }
3668 }
3669 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3670 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3671 ret = -EFSCORRUPTED;
3672 goto failed_mount2;
3673 }
3674
3675 sbi->s_gdb_count = db_count;
3676 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3677 spin_lock_init(&sbi->s_next_gen_lock);
3678
3679 setup_timer(&sbi->s_err_report, print_daily_error_info,
3680 (unsigned long) sb);
3681
3682 /* Register extent status tree shrinker */
3683 if (ext4_es_register_shrinker(sbi))
3684 goto failed_mount3;
3685
3686 sbi->s_stripe = ext4_get_stripe_size(sbi);
3687 sbi->s_extent_max_zeroout_kb = 32;
3688
3689 /*
3690 * set up enough so that it can read an inode
3691 */
3692 sb->s_op = &ext4_sops;
3693 sb->s_export_op = &ext4_export_ops;
3694 sb->s_xattr = ext4_xattr_handlers;
3695#ifdef CONFIG_QUOTA
3696 sb->dq_op = &ext4_quota_operations;
3697 if (ext4_has_feature_quota(sb))
3698 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3699 else
3700 sb->s_qcop = &ext4_qctl_operations;
3701 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3702#endif
3703 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3704
3705 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3706 mutex_init(&sbi->s_orphan_lock);
3707
3708 sb->s_root = NULL;
3709
3710 needs_recovery = (es->s_last_orphan != 0 ||
3711 ext4_has_feature_journal_needs_recovery(sb));
3712
3713 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3714 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3715 goto failed_mount3a;
3716
3717 /*
3718 * The first inode we look at is the journal inode. Don't try
3719 * root first: it may be modified in the journal!
3720 */
3721 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3722 if (ext4_load_journal(sb, es, journal_devnum))
3723 goto failed_mount3a;
3724 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3725 ext4_has_feature_journal_needs_recovery(sb)) {
3726 ext4_msg(sb, KERN_ERR, "required journal recovery "
3727 "suppressed and not mounted read-only");
3728 goto failed_mount_wq;
3729 } else {
3730 /* Nojournal mode, all journal mount options are illegal */
3731 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3732 ext4_msg(sb, KERN_ERR, "can't mount with "
3733 "journal_checksum, fs mounted w/o journal");
3734 goto failed_mount_wq;
3735 }
3736 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3737 ext4_msg(sb, KERN_ERR, "can't mount with "
3738 "journal_async_commit, fs mounted w/o journal");
3739 goto failed_mount_wq;
3740 }
3741 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3742 ext4_msg(sb, KERN_ERR, "can't mount with "
3743 "commit=%lu, fs mounted w/o journal",
3744 sbi->s_commit_interval / HZ);
3745 goto failed_mount_wq;
3746 }
3747 if (EXT4_MOUNT_DATA_FLAGS &
3748 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3749 ext4_msg(sb, KERN_ERR, "can't mount with "
3750 "data=, fs mounted w/o journal");
3751 goto failed_mount_wq;
3752 }
3753 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3754 clear_opt(sb, JOURNAL_CHECKSUM);
3755 clear_opt(sb, DATA_FLAGS);
3756 sbi->s_journal = NULL;
3757 needs_recovery = 0;
3758 goto no_journal;
3759 }
3760
3761 if (ext4_has_feature_64bit(sb) &&
3762 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3763 JBD2_FEATURE_INCOMPAT_64BIT)) {
3764 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3765 goto failed_mount_wq;
3766 }
3767
3768 if (!set_journal_csum_feature_set(sb)) {
3769 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3770 "feature set");
3771 goto failed_mount_wq;
3772 }
3773
3774 /* We have now updated the journal if required, so we can
3775 * validate the data journaling mode. */
3776 switch (test_opt(sb, DATA_FLAGS)) {
3777 case 0:
3778 /* No mode set, assume a default based on the journal
3779 * capabilities: ORDERED_DATA if the journal can
3780 * cope, else JOURNAL_DATA
3781 */
3782 if (jbd2_journal_check_available_features
3783 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3784 set_opt(sb, ORDERED_DATA);
3785 else
3786 set_opt(sb, JOURNAL_DATA);
3787 break;
3788
3789 case EXT4_MOUNT_ORDERED_DATA:
3790 case EXT4_MOUNT_WRITEBACK_DATA:
3791 if (!jbd2_journal_check_available_features
3792 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3793 ext4_msg(sb, KERN_ERR, "Journal does not support "
3794 "requested data journaling mode");
3795 goto failed_mount_wq;
3796 }
3797 default:
3798 break;
3799 }
3800 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3801
3802 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3803
3804no_journal:
3805 sbi->s_mb_cache = ext4_xattr_create_cache();
3806 if (!sbi->s_mb_cache) {
3807 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3808 goto failed_mount_wq;
3809 }
3810
3811 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3812 (blocksize != PAGE_SIZE)) {
3813 ext4_msg(sb, KERN_ERR,
3814 "Unsupported blocksize for fs encryption");
3815 goto failed_mount_wq;
3816 }
3817
3818 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3819 !ext4_has_feature_encrypt(sb)) {
3820 ext4_set_feature_encrypt(sb);
3821 ext4_commit_super(sb, 1);
3822 }
3823
3824 /*
3825 * Get the # of file system overhead blocks from the
3826 * superblock if present.
3827 */
3828 if (es->s_overhead_clusters)
3829 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3830 else {
3831 err = ext4_calculate_overhead(sb);
3832 if (err)
3833 goto failed_mount_wq;
3834 }
3835
3836 /*
3837 * The maximum number of concurrent works can be high and
3838 * concurrency isn't really necessary. Limit it to 1.
3839 */
3840 EXT4_SB(sb)->rsv_conversion_wq =
3841 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3842 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3843 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3844 ret = -ENOMEM;
3845 goto failed_mount4;
3846 }
3847
3848 /*
3849 * The jbd2_journal_load will have done any necessary log recovery,
3850 * so we can safely mount the rest of the filesystem now.
3851 */
3852
3853 root = ext4_iget(sb, EXT4_ROOT_INO);
3854 if (IS_ERR(root)) {
3855 ext4_msg(sb, KERN_ERR, "get root inode failed");
3856 ret = PTR_ERR(root);
3857 root = NULL;
3858 goto failed_mount4;
3859 }
3860 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3861 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3862 iput(root);
3863 goto failed_mount4;
3864 }
3865 sb->s_root = d_make_root(root);
3866 if (!sb->s_root) {
3867 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3868 ret = -ENOMEM;
3869 goto failed_mount4;
3870 }
3871
3872 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3873 sb->s_flags |= MS_RDONLY;
3874
3875 /* determine the minimum size of new large inodes, if present */
3876 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3877 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3878 EXT4_GOOD_OLD_INODE_SIZE;
3879 if (ext4_has_feature_extra_isize(sb)) {
3880 if (sbi->s_want_extra_isize <
3881 le16_to_cpu(es->s_want_extra_isize))
3882 sbi->s_want_extra_isize =
3883 le16_to_cpu(es->s_want_extra_isize);
3884 if (sbi->s_want_extra_isize <
3885 le16_to_cpu(es->s_min_extra_isize))
3886 sbi->s_want_extra_isize =
3887 le16_to_cpu(es->s_min_extra_isize);
3888 }
3889 }
3890 /* Check if enough inode space is available */
3891 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3892 sbi->s_inode_size) {
3893 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3894 EXT4_GOOD_OLD_INODE_SIZE;
3895 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3896 "available");
3897 }
3898
3899 ext4_set_resv_clusters(sb);
3900
3901 err = ext4_setup_system_zone(sb);
3902 if (err) {
3903 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3904 "zone (%d)", err);
3905 goto failed_mount4a;
3906 }
3907
3908 ext4_ext_init(sb);
3909 err = ext4_mb_init(sb);
3910 if (err) {
3911 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3912 err);
3913 goto failed_mount5;
3914 }
3915
3916 block = ext4_count_free_clusters(sb);
3917 ext4_free_blocks_count_set(sbi->s_es,
3918 EXT4_C2B(sbi, block));
3919 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
3920 GFP_KERNEL);
3921 if (!err) {
3922 unsigned long freei = ext4_count_free_inodes(sb);
3923 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
3924 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
3925 GFP_KERNEL);
3926 }
3927 if (!err)
3928 err = percpu_counter_init(&sbi->s_dirs_counter,
3929 ext4_count_dirs(sb), GFP_KERNEL);
3930 if (!err)
3931 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
3932 GFP_KERNEL);
3933 if (err) {
3934 ext4_msg(sb, KERN_ERR, "insufficient memory");
3935 goto failed_mount6;
3936 }
3937
3938 if (ext4_has_feature_flex_bg(sb))
3939 if (!ext4_fill_flex_info(sb)) {
3940 ext4_msg(sb, KERN_ERR,
3941 "unable to initialize "
3942 "flex_bg meta info!");
3943 goto failed_mount6;
3944 }
3945
3946 err = ext4_register_li_request(sb, first_not_zeroed);
3947 if (err)
3948 goto failed_mount6;
3949
3950 err = ext4_register_sysfs(sb);
3951 if (err)
3952 goto failed_mount7;
3953
3954#ifdef CONFIG_QUOTA
3955 /* Enable quota usage during mount. */
3956 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
3957 err = ext4_enable_quotas(sb);
3958 if (err)
3959 goto failed_mount8;
3960 }
3961#endif /* CONFIG_QUOTA */
3962
3963 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3964 ext4_orphan_cleanup(sb, es);
3965 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3966 if (needs_recovery) {
3967 ext4_msg(sb, KERN_INFO, "recovery complete");
3968 ext4_mark_recovery_complete(sb, es);
3969 }
3970 if (EXT4_SB(sb)->s_journal) {
3971 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3972 descr = " journalled data mode";
3973 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3974 descr = " ordered data mode";
3975 else
3976 descr = " writeback data mode";
3977 } else
3978 descr = "out journal";
3979
3980 if (test_opt(sb, DISCARD)) {
3981 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3982 if (!blk_queue_discard(q))
3983 ext4_msg(sb, KERN_WARNING,
3984 "mounting with \"discard\" option, but "
3985 "the device does not support discard");
3986 }
3987
3988 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
3989 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3990 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3991 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3992
3993 if (es->s_error_count)
3994 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3995
3996 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
3997 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
3998 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
3999 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4000
4001 kfree(orig_data);
4002 return 0;
4003
4004cantfind_ext4:
4005 if (!silent)
4006 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4007 goto failed_mount;
4008
4009#ifdef CONFIG_QUOTA
4010failed_mount8:
4011 ext4_unregister_sysfs(sb);
4012#endif
4013failed_mount7:
4014 ext4_unregister_li_request(sb);
4015failed_mount6:
4016 ext4_mb_release(sb);
4017 if (sbi->s_flex_groups)
4018 kvfree(sbi->s_flex_groups);
4019 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4020 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4021 percpu_counter_destroy(&sbi->s_dirs_counter);
4022 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4023failed_mount5:
4024 ext4_ext_release(sb);
4025 ext4_release_system_zone(sb);
4026failed_mount4a:
4027 dput(sb->s_root);
4028 sb->s_root = NULL;
4029failed_mount4:
4030 ext4_msg(sb, KERN_ERR, "mount failed");
4031 if (EXT4_SB(sb)->rsv_conversion_wq)
4032 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4033failed_mount_wq:
4034 if (sbi->s_mb_cache) {
4035 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4036 sbi->s_mb_cache = NULL;
4037 }
4038 if (sbi->s_journal) {
4039 jbd2_journal_destroy(sbi->s_journal);
4040 sbi->s_journal = NULL;
4041 }
4042failed_mount3a:
4043 ext4_es_unregister_shrinker(sbi);
4044failed_mount3:
4045 del_timer_sync(&sbi->s_err_report);
4046 if (sbi->s_mmp_tsk)
4047 kthread_stop(sbi->s_mmp_tsk);
4048failed_mount2:
4049 for (i = 0; i < db_count; i++)
4050 brelse(sbi->s_group_desc[i]);
4051 kvfree(sbi->s_group_desc);
4052failed_mount:
4053 if (sbi->s_chksum_driver)
4054 crypto_free_shash(sbi->s_chksum_driver);
4055#ifdef CONFIG_QUOTA
4056 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4057 kfree(sbi->s_qf_names[i]);
4058#endif
4059 ext4_blkdev_remove(sbi);
4060 brelse(bh);
4061out_fail:
4062 sb->s_fs_info = NULL;
4063 kfree(sbi->s_blockgroup_lock);
4064 kfree(sbi);
4065out_free_orig:
4066 kfree(orig_data);
4067 return err ? err : ret;
4068}
4069
4070/*
4071 * Setup any per-fs journal parameters now. We'll do this both on
4072 * initial mount, once the journal has been initialised but before we've
4073 * done any recovery; and again on any subsequent remount.
4074 */
4075static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4076{
4077 struct ext4_sb_info *sbi = EXT4_SB(sb);
4078
4079 journal->j_commit_interval = sbi->s_commit_interval;
4080 journal->j_min_batch_time = sbi->s_min_batch_time;
4081 journal->j_max_batch_time = sbi->s_max_batch_time;
4082
4083 write_lock(&journal->j_state_lock);
4084 if (test_opt(sb, BARRIER))
4085 journal->j_flags |= JBD2_BARRIER;
4086 else
4087 journal->j_flags &= ~JBD2_BARRIER;
4088 if (test_opt(sb, DATA_ERR_ABORT))
4089 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4090 else
4091 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4092 write_unlock(&journal->j_state_lock);
4093}
4094
4095static journal_t *ext4_get_journal(struct super_block *sb,
4096 unsigned int journal_inum)
4097{
4098 struct inode *journal_inode;
4099 journal_t *journal;
4100
4101 BUG_ON(!ext4_has_feature_journal(sb));
4102
4103 /* First, test for the existence of a valid inode on disk. Bad
4104 * things happen if we iget() an unused inode, as the subsequent
4105 * iput() will try to delete it. */
4106
4107 journal_inode = ext4_iget(sb, journal_inum);
4108 if (IS_ERR(journal_inode)) {
4109 ext4_msg(sb, KERN_ERR, "no journal found");
4110 return NULL;
4111 }
4112 if (!journal_inode->i_nlink) {
4113 make_bad_inode(journal_inode);
4114 iput(journal_inode);
4115 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4116 return NULL;
4117 }
4118
4119 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4120 journal_inode, journal_inode->i_size);
4121 if (!S_ISREG(journal_inode->i_mode)) {
4122 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4123 iput(journal_inode);
4124 return NULL;
4125 }
4126
4127 journal = jbd2_journal_init_inode(journal_inode);
4128 if (!journal) {
4129 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4130 iput(journal_inode);
4131 return NULL;
4132 }
4133 journal->j_private = sb;
4134 ext4_init_journal_params(sb, journal);
4135 return journal;
4136}
4137
4138static journal_t *ext4_get_dev_journal(struct super_block *sb,
4139 dev_t j_dev)
4140{
4141 struct buffer_head *bh;
4142 journal_t *journal;
4143 ext4_fsblk_t start;
4144 ext4_fsblk_t len;
4145 int hblock, blocksize;
4146 ext4_fsblk_t sb_block;
4147 unsigned long offset;
4148 struct ext4_super_block *es;
4149 struct block_device *bdev;
4150
4151 BUG_ON(!ext4_has_feature_journal(sb));
4152
4153 bdev = ext4_blkdev_get(j_dev, sb);
4154 if (bdev == NULL)
4155 return NULL;
4156
4157 blocksize = sb->s_blocksize;
4158 hblock = bdev_logical_block_size(bdev);
4159 if (blocksize < hblock) {
4160 ext4_msg(sb, KERN_ERR,
4161 "blocksize too small for journal device");
4162 goto out_bdev;
4163 }
4164
4165 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4166 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4167 set_blocksize(bdev, blocksize);
4168 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4169 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4170 "external journal");
4171 goto out_bdev;
4172 }
4173
4174 es = (struct ext4_super_block *) (bh->b_data + offset);
4175 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4176 !(le32_to_cpu(es->s_feature_incompat) &
4177 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4178 ext4_msg(sb, KERN_ERR, "external journal has "
4179 "bad superblock");
4180 brelse(bh);
4181 goto out_bdev;
4182 }
4183
4184 if ((le32_to_cpu(es->s_feature_ro_compat) &
4185 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4186 es->s_checksum != ext4_superblock_csum(sb, es)) {
4187 ext4_msg(sb, KERN_ERR, "external journal has "
4188 "corrupt superblock");
4189 brelse(bh);
4190 goto out_bdev;
4191 }
4192
4193 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4194 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4195 brelse(bh);
4196 goto out_bdev;
4197 }
4198
4199 len = ext4_blocks_count(es);
4200 start = sb_block + 1;
4201 brelse(bh); /* we're done with the superblock */
4202
4203 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4204 start, len, blocksize);
4205 if (!journal) {
4206 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4207 goto out_bdev;
4208 }
4209 journal->j_private = sb;
4210 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4211 wait_on_buffer(journal->j_sb_buffer);
4212 if (!buffer_uptodate(journal->j_sb_buffer)) {
4213 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4214 goto out_journal;
4215 }
4216 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4217 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4218 "user (unsupported) - %d",
4219 be32_to_cpu(journal->j_superblock->s_nr_users));
4220 goto out_journal;
4221 }
4222 EXT4_SB(sb)->journal_bdev = bdev;
4223 ext4_init_journal_params(sb, journal);
4224 return journal;
4225
4226out_journal:
4227 jbd2_journal_destroy(journal);
4228out_bdev:
4229 ext4_blkdev_put(bdev);
4230 return NULL;
4231}
4232
4233static int ext4_load_journal(struct super_block *sb,
4234 struct ext4_super_block *es,
4235 unsigned long journal_devnum)
4236{
4237 journal_t *journal;
4238 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4239 dev_t journal_dev;
4240 int err = 0;
4241 int really_read_only;
4242
4243 BUG_ON(!ext4_has_feature_journal(sb));
4244
4245 if (journal_devnum &&
4246 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4247 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4248 "numbers have changed");
4249 journal_dev = new_decode_dev(journal_devnum);
4250 } else
4251 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4252
4253 really_read_only = bdev_read_only(sb->s_bdev);
4254
4255 /*
4256 * Are we loading a blank journal or performing recovery after a
4257 * crash? For recovery, we need to check in advance whether we
4258 * can get read-write access to the device.
4259 */
4260 if (ext4_has_feature_journal_needs_recovery(sb)) {
4261 if (sb->s_flags & MS_RDONLY) {
4262 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4263 "required on readonly filesystem");
4264 if (really_read_only) {
4265 ext4_msg(sb, KERN_ERR, "write access "
4266 "unavailable, cannot proceed");
4267 return -EROFS;
4268 }
4269 ext4_msg(sb, KERN_INFO, "write access will "
4270 "be enabled during recovery");
4271 }
4272 }
4273
4274 if (journal_inum && journal_dev) {
4275 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4276 "and inode journals!");
4277 return -EINVAL;
4278 }
4279
4280 if (journal_inum) {
4281 if (!(journal = ext4_get_journal(sb, journal_inum)))
4282 return -EINVAL;
4283 } else {
4284 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4285 return -EINVAL;
4286 }
4287
4288 if (!(journal->j_flags & JBD2_BARRIER))
4289 ext4_msg(sb, KERN_INFO, "barriers disabled");
4290
4291 if (!ext4_has_feature_journal_needs_recovery(sb))
4292 err = jbd2_journal_wipe(journal, !really_read_only);
4293 if (!err) {
4294 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4295 if (save)
4296 memcpy(save, ((char *) es) +
4297 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4298 err = jbd2_journal_load(journal);
4299 if (save)
4300 memcpy(((char *) es) + EXT4_S_ERR_START,
4301 save, EXT4_S_ERR_LEN);
4302 kfree(save);
4303 }
4304
4305 if (err) {
4306 ext4_msg(sb, KERN_ERR, "error loading journal");
4307 jbd2_journal_destroy(journal);
4308 return err;
4309 }
4310
4311 EXT4_SB(sb)->s_journal = journal;
4312 ext4_clear_journal_err(sb, es);
4313
4314 if (!really_read_only && journal_devnum &&
4315 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4316 es->s_journal_dev = cpu_to_le32(journal_devnum);
4317
4318 /* Make sure we flush the recovery flag to disk. */
4319 ext4_commit_super(sb, 1);
4320 }
4321
4322 return 0;
4323}
4324
4325static int ext4_commit_super(struct super_block *sb, int sync)
4326{
4327 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4328 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4329 int error = 0;
4330
4331 if (!sbh || block_device_ejected(sb))
4332 return error;
4333 if (buffer_write_io_error(sbh)) {
4334 /*
4335 * Oh, dear. A previous attempt to write the
4336 * superblock failed. This could happen because the
4337 * USB device was yanked out. Or it could happen to
4338 * be a transient write error and maybe the block will
4339 * be remapped. Nothing we can do but to retry the
4340 * write and hope for the best.
4341 */
4342 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4343 "superblock detected");
4344 clear_buffer_write_io_error(sbh);
4345 set_buffer_uptodate(sbh);
4346 }
4347 /*
4348 * If the file system is mounted read-only, don't update the
4349 * superblock write time. This avoids updating the superblock
4350 * write time when we are mounting the root file system
4351 * read/only but we need to replay the journal; at that point,
4352 * for people who are east of GMT and who make their clock
4353 * tick in localtime for Windows bug-for-bug compatibility,
4354 * the clock is set in the future, and this will cause e2fsck
4355 * to complain and force a full file system check.
4356 */
4357 if (!(sb->s_flags & MS_RDONLY))
4358 es->s_wtime = cpu_to_le32(get_seconds());
4359 if (sb->s_bdev->bd_part)
4360 es->s_kbytes_written =
4361 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4362 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4363 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4364 else
4365 es->s_kbytes_written =
4366 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4367 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4368 ext4_free_blocks_count_set(es,
4369 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4370 &EXT4_SB(sb)->s_freeclusters_counter)));
4371 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4372 es->s_free_inodes_count =
4373 cpu_to_le32(percpu_counter_sum_positive(
4374 &EXT4_SB(sb)->s_freeinodes_counter));
4375 BUFFER_TRACE(sbh, "marking dirty");
4376 ext4_superblock_csum_set(sb);
4377 mark_buffer_dirty(sbh);
4378 if (sync) {
4379 error = __sync_dirty_buffer(sbh,
4380 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4381 if (error)
4382 return error;
4383
4384 error = buffer_write_io_error(sbh);
4385 if (error) {
4386 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4387 "superblock");
4388 clear_buffer_write_io_error(sbh);
4389 set_buffer_uptodate(sbh);
4390 }
4391 }
4392 return error;
4393}
4394
4395/*
4396 * Have we just finished recovery? If so, and if we are mounting (or
4397 * remounting) the filesystem readonly, then we will end up with a
4398 * consistent fs on disk. Record that fact.
4399 */
4400static void ext4_mark_recovery_complete(struct super_block *sb,
4401 struct ext4_super_block *es)
4402{
4403 journal_t *journal = EXT4_SB(sb)->s_journal;
4404
4405 if (!ext4_has_feature_journal(sb)) {
4406 BUG_ON(journal != NULL);
4407 return;
4408 }
4409 jbd2_journal_lock_updates(journal);
4410 if (jbd2_journal_flush(journal) < 0)
4411 goto out;
4412
4413 if (ext4_has_feature_journal_needs_recovery(sb) &&
4414 sb->s_flags & MS_RDONLY) {
4415 ext4_clear_feature_journal_needs_recovery(sb);
4416 ext4_commit_super(sb, 1);
4417 }
4418
4419out:
4420 jbd2_journal_unlock_updates(journal);
4421}
4422
4423/*
4424 * If we are mounting (or read-write remounting) a filesystem whose journal
4425 * has recorded an error from a previous lifetime, move that error to the
4426 * main filesystem now.
4427 */
4428static void ext4_clear_journal_err(struct super_block *sb,
4429 struct ext4_super_block *es)
4430{
4431 journal_t *journal;
4432 int j_errno;
4433 const char *errstr;
4434
4435 BUG_ON(!ext4_has_feature_journal(sb));
4436
4437 journal = EXT4_SB(sb)->s_journal;
4438
4439 /*
4440 * Now check for any error status which may have been recorded in the
4441 * journal by a prior ext4_error() or ext4_abort()
4442 */
4443
4444 j_errno = jbd2_journal_errno(journal);
4445 if (j_errno) {
4446 char nbuf[16];
4447
4448 errstr = ext4_decode_error(sb, j_errno, nbuf);
4449 ext4_warning(sb, "Filesystem error recorded "
4450 "from previous mount: %s", errstr);
4451 ext4_warning(sb, "Marking fs in need of filesystem check.");
4452
4453 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4454 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4455 ext4_commit_super(sb, 1);
4456
4457 jbd2_journal_clear_err(journal);
4458 jbd2_journal_update_sb_errno(journal);
4459 }
4460}
4461
4462/*
4463 * Force the running and committing transactions to commit,
4464 * and wait on the commit.
4465 */
4466int ext4_force_commit(struct super_block *sb)
4467{
4468 journal_t *journal;
4469
4470 if (sb->s_flags & MS_RDONLY)
4471 return 0;
4472
4473 journal = EXT4_SB(sb)->s_journal;
4474 return ext4_journal_force_commit(journal);
4475}
4476
4477static int ext4_sync_fs(struct super_block *sb, int wait)
4478{
4479 int ret = 0;
4480 tid_t target;
4481 bool needs_barrier = false;
4482 struct ext4_sb_info *sbi = EXT4_SB(sb);
4483
4484 trace_ext4_sync_fs(sb, wait);
4485 flush_workqueue(sbi->rsv_conversion_wq);
4486 /*
4487 * Writeback quota in non-journalled quota case - journalled quota has
4488 * no dirty dquots
4489 */
4490 dquot_writeback_dquots(sb, -1);
4491 /*
4492 * Data writeback is possible w/o journal transaction, so barrier must
4493 * being sent at the end of the function. But we can skip it if
4494 * transaction_commit will do it for us.
4495 */
4496 if (sbi->s_journal) {
4497 target = jbd2_get_latest_transaction(sbi->s_journal);
4498 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4499 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4500 needs_barrier = true;
4501
4502 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4503 if (wait)
4504 ret = jbd2_log_wait_commit(sbi->s_journal,
4505 target);
4506 }
4507 } else if (wait && test_opt(sb, BARRIER))
4508 needs_barrier = true;
4509 if (needs_barrier) {
4510 int err;
4511 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4512 if (!ret)
4513 ret = err;
4514 }
4515
4516 return ret;
4517}
4518
4519/*
4520 * LVM calls this function before a (read-only) snapshot is created. This
4521 * gives us a chance to flush the journal completely and mark the fs clean.
4522 *
4523 * Note that only this function cannot bring a filesystem to be in a clean
4524 * state independently. It relies on upper layer to stop all data & metadata
4525 * modifications.
4526 */
4527static int ext4_freeze(struct super_block *sb)
4528{
4529 int error = 0;
4530 journal_t *journal;
4531
4532 if (sb->s_flags & MS_RDONLY)
4533 return 0;
4534
4535 journal = EXT4_SB(sb)->s_journal;
4536
4537 if (journal) {
4538 /* Now we set up the journal barrier. */
4539 jbd2_journal_lock_updates(journal);
4540
4541 /*
4542 * Don't clear the needs_recovery flag if we failed to
4543 * flush the journal.
4544 */
4545 error = jbd2_journal_flush(journal);
4546 if (error < 0)
4547 goto out;
4548
4549 /* Journal blocked and flushed, clear needs_recovery flag. */
4550 ext4_clear_feature_journal_needs_recovery(sb);
4551 }
4552
4553 error = ext4_commit_super(sb, 1);
4554out:
4555 if (journal)
4556 /* we rely on upper layer to stop further updates */
4557 jbd2_journal_unlock_updates(journal);
4558 return error;
4559}
4560
4561/*
4562 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4563 * flag here, even though the filesystem is not technically dirty yet.
4564 */
4565static int ext4_unfreeze(struct super_block *sb)
4566{
4567 if (sb->s_flags & MS_RDONLY)
4568 return 0;
4569
4570 if (EXT4_SB(sb)->s_journal) {
4571 /* Reset the needs_recovery flag before the fs is unlocked. */
4572 ext4_set_feature_journal_needs_recovery(sb);
4573 }
4574
4575 ext4_commit_super(sb, 1);
4576 return 0;
4577}
4578
4579/*
4580 * Structure to save mount options for ext4_remount's benefit
4581 */
4582struct ext4_mount_options {
4583 unsigned long s_mount_opt;
4584 unsigned long s_mount_opt2;
4585 kuid_t s_resuid;
4586 kgid_t s_resgid;
4587 unsigned long s_commit_interval;
4588 u32 s_min_batch_time, s_max_batch_time;
4589#ifdef CONFIG_QUOTA
4590 int s_jquota_fmt;
4591 char *s_qf_names[EXT4_MAXQUOTAS];
4592#endif
4593};
4594
4595static int ext4_remount(struct super_block *sb, int *flags, char *data)
4596{
4597 struct ext4_super_block *es;
4598 struct ext4_sb_info *sbi = EXT4_SB(sb);
4599 unsigned long old_sb_flags;
4600 struct ext4_mount_options old_opts;
4601 int enable_quota = 0;
4602 ext4_group_t g;
4603 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4604 int err = 0;
4605#ifdef CONFIG_QUOTA
4606 int i, j;
4607#endif
4608 char *orig_data = kstrdup(data, GFP_KERNEL);
4609
4610 /* Store the original options */
4611 old_sb_flags = sb->s_flags;
4612 old_opts.s_mount_opt = sbi->s_mount_opt;
4613 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4614 old_opts.s_resuid = sbi->s_resuid;
4615 old_opts.s_resgid = sbi->s_resgid;
4616 old_opts.s_commit_interval = sbi->s_commit_interval;
4617 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4618 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4619#ifdef CONFIG_QUOTA
4620 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4621 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4622 if (sbi->s_qf_names[i]) {
4623 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4624 GFP_KERNEL);
4625 if (!old_opts.s_qf_names[i]) {
4626 for (j = 0; j < i; j++)
4627 kfree(old_opts.s_qf_names[j]);
4628 kfree(orig_data);
4629 return -ENOMEM;
4630 }
4631 } else
4632 old_opts.s_qf_names[i] = NULL;
4633#endif
4634 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4635 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4636
4637 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4638 err = -EINVAL;
4639 goto restore_opts;
4640 }
4641
4642 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4643 test_opt(sb, JOURNAL_CHECKSUM)) {
4644 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4645 "during remount not supported; ignoring");
4646 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4647 }
4648
4649 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4650 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4651 ext4_msg(sb, KERN_ERR, "can't mount with "
4652 "both data=journal and delalloc");
4653 err = -EINVAL;
4654 goto restore_opts;
4655 }
4656 if (test_opt(sb, DIOREAD_NOLOCK)) {
4657 ext4_msg(sb, KERN_ERR, "can't mount with "
4658 "both data=journal and dioread_nolock");
4659 err = -EINVAL;
4660 goto restore_opts;
4661 }
4662 if (test_opt(sb, DAX)) {
4663 ext4_msg(sb, KERN_ERR, "can't mount with "
4664 "both data=journal and dax");
4665 err = -EINVAL;
4666 goto restore_opts;
4667 }
4668 }
4669
4670 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4671 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4672 "dax flag with busy inodes while remounting");
4673 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4674 }
4675
4676 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4677 ext4_abort(sb, "Abort forced by user");
4678
4679 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4680 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4681
4682 es = sbi->s_es;
4683
4684 if (sbi->s_journal) {
4685 ext4_init_journal_params(sb, sbi->s_journal);
4686 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4687 }
4688
4689 if (*flags & MS_LAZYTIME)
4690 sb->s_flags |= MS_LAZYTIME;
4691
4692 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4693 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4694 err = -EROFS;
4695 goto restore_opts;
4696 }
4697
4698 if (*flags & MS_RDONLY) {
4699 err = sync_filesystem(sb);
4700 if (err < 0)
4701 goto restore_opts;
4702 err = dquot_suspend(sb, -1);
4703 if (err < 0)
4704 goto restore_opts;
4705
4706 /*
4707 * First of all, the unconditional stuff we have to do
4708 * to disable replay of the journal when we next remount
4709 */
4710 sb->s_flags |= MS_RDONLY;
4711
4712 /*
4713 * OK, test if we are remounting a valid rw partition
4714 * readonly, and if so set the rdonly flag and then
4715 * mark the partition as valid again.
4716 */
4717 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4718 (sbi->s_mount_state & EXT4_VALID_FS))
4719 es->s_state = cpu_to_le16(sbi->s_mount_state);
4720
4721 if (sbi->s_journal)
4722 ext4_mark_recovery_complete(sb, es);
4723 } else {
4724 /* Make sure we can mount this feature set readwrite */
4725 if (ext4_has_feature_readonly(sb) ||
4726 !ext4_feature_set_ok(sb, 0)) {
4727 err = -EROFS;
4728 goto restore_opts;
4729 }
4730 /*
4731 * Make sure the group descriptor checksums
4732 * are sane. If they aren't, refuse to remount r/w.
4733 */
4734 for (g = 0; g < sbi->s_groups_count; g++) {
4735 struct ext4_group_desc *gdp =
4736 ext4_get_group_desc(sb, g, NULL);
4737
4738 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4739 ext4_msg(sb, KERN_ERR,
4740 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4741 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4742 le16_to_cpu(gdp->bg_checksum));
4743 err = -EFSBADCRC;
4744 goto restore_opts;
4745 }
4746 }
4747
4748 /*
4749 * If we have an unprocessed orphan list hanging
4750 * around from a previously readonly bdev mount,
4751 * require a full umount/remount for now.
4752 */
4753 if (es->s_last_orphan) {
4754 ext4_msg(sb, KERN_WARNING, "Couldn't "
4755 "remount RDWR because of unprocessed "
4756 "orphan inode list. Please "
4757 "umount/remount instead");
4758 err = -EINVAL;
4759 goto restore_opts;
4760 }
4761
4762 /*
4763 * Mounting a RDONLY partition read-write, so reread
4764 * and store the current valid flag. (It may have
4765 * been changed by e2fsck since we originally mounted
4766 * the partition.)
4767 */
4768 if (sbi->s_journal)
4769 ext4_clear_journal_err(sb, es);
4770 sbi->s_mount_state = le16_to_cpu(es->s_state);
4771 if (!ext4_setup_super(sb, es, 0))
4772 sb->s_flags &= ~MS_RDONLY;
4773 if (ext4_has_feature_mmp(sb))
4774 if (ext4_multi_mount_protect(sb,
4775 le64_to_cpu(es->s_mmp_block))) {
4776 err = -EROFS;
4777 goto restore_opts;
4778 }
4779 enable_quota = 1;
4780 }
4781 }
4782
4783 /*
4784 * Reinitialize lazy itable initialization thread based on
4785 * current settings
4786 */
4787 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4788 ext4_unregister_li_request(sb);
4789 else {
4790 ext4_group_t first_not_zeroed;
4791 first_not_zeroed = ext4_has_uninit_itable(sb);
4792 ext4_register_li_request(sb, first_not_zeroed);
4793 }
4794
4795 ext4_setup_system_zone(sb);
4796 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4797 ext4_commit_super(sb, 1);
4798
4799#ifdef CONFIG_QUOTA
4800 /* Release old quota file names */
4801 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4802 kfree(old_opts.s_qf_names[i]);
4803 if (enable_quota) {
4804 if (sb_any_quota_suspended(sb))
4805 dquot_resume(sb, -1);
4806 else if (ext4_has_feature_quota(sb)) {
4807 err = ext4_enable_quotas(sb);
4808 if (err)
4809 goto restore_opts;
4810 }
4811 }
4812#endif
4813
4814 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4815 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4816 kfree(orig_data);
4817 return 0;
4818
4819restore_opts:
4820 sb->s_flags = old_sb_flags;
4821 sbi->s_mount_opt = old_opts.s_mount_opt;
4822 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4823 sbi->s_resuid = old_opts.s_resuid;
4824 sbi->s_resgid = old_opts.s_resgid;
4825 sbi->s_commit_interval = old_opts.s_commit_interval;
4826 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4827 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4828#ifdef CONFIG_QUOTA
4829 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4830 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4831 kfree(sbi->s_qf_names[i]);
4832 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4833 }
4834#endif
4835 kfree(orig_data);
4836 return err;
4837}
4838
4839#ifdef CONFIG_QUOTA
4840static int ext4_statfs_project(struct super_block *sb,
4841 kprojid_t projid, struct kstatfs *buf)
4842{
4843 struct kqid qid;
4844 struct dquot *dquot;
4845 u64 limit;
4846 u64 curblock;
4847
4848 qid = make_kqid_projid(projid);
4849 dquot = dqget(sb, qid);
4850 if (IS_ERR(dquot))
4851 return PTR_ERR(dquot);
4852 spin_lock(&dq_data_lock);
4853
4854 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
4855 dquot->dq_dqb.dqb_bsoftlimit :
4856 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
4857 if (limit && buf->f_blocks > limit) {
4858 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
4859 buf->f_blocks = limit;
4860 buf->f_bfree = buf->f_bavail =
4861 (buf->f_blocks > curblock) ?
4862 (buf->f_blocks - curblock) : 0;
4863 }
4864
4865 limit = dquot->dq_dqb.dqb_isoftlimit ?
4866 dquot->dq_dqb.dqb_isoftlimit :
4867 dquot->dq_dqb.dqb_ihardlimit;
4868 if (limit && buf->f_files > limit) {
4869 buf->f_files = limit;
4870 buf->f_ffree =
4871 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
4872 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
4873 }
4874
4875 spin_unlock(&dq_data_lock);
4876 dqput(dquot);
4877 return 0;
4878}
4879#endif
4880
4881static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4882{
4883 struct super_block *sb = dentry->d_sb;
4884 struct ext4_sb_info *sbi = EXT4_SB(sb);
4885 struct ext4_super_block *es = sbi->s_es;
4886 ext4_fsblk_t overhead = 0, resv_blocks;
4887 u64 fsid;
4888 s64 bfree;
4889 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4890
4891 if (!test_opt(sb, MINIX_DF))
4892 overhead = sbi->s_overhead;
4893
4894 buf->f_type = EXT4_SUPER_MAGIC;
4895 buf->f_bsize = sb->s_blocksize;
4896 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4897 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4898 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4899 /* prevent underflow in case that few free space is available */
4900 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4901 buf->f_bavail = buf->f_bfree -
4902 (ext4_r_blocks_count(es) + resv_blocks);
4903 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4904 buf->f_bavail = 0;
4905 buf->f_files = le32_to_cpu(es->s_inodes_count);
4906 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4907 buf->f_namelen = EXT4_NAME_LEN;
4908 fsid = le64_to_cpup((void *)es->s_uuid) ^
4909 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4910 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4911 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4912
4913#ifdef CONFIG_QUOTA
4914 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
4915 sb_has_quota_limits_enabled(sb, PRJQUOTA))
4916 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
4917#endif
4918 return 0;
4919}
4920
4921/* Helper function for writing quotas on sync - we need to start transaction
4922 * before quota file is locked for write. Otherwise the are possible deadlocks:
4923 * Process 1 Process 2
4924 * ext4_create() quota_sync()
4925 * jbd2_journal_start() write_dquot()
4926 * dquot_initialize() down(dqio_mutex)
4927 * down(dqio_mutex) jbd2_journal_start()
4928 *
4929 */
4930
4931#ifdef CONFIG_QUOTA
4932
4933static inline struct inode *dquot_to_inode(struct dquot *dquot)
4934{
4935 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4936}
4937
4938static int ext4_write_dquot(struct dquot *dquot)
4939{
4940 int ret, err;
4941 handle_t *handle;
4942 struct inode *inode;
4943
4944 inode = dquot_to_inode(dquot);
4945 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4946 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4947 if (IS_ERR(handle))
4948 return PTR_ERR(handle);
4949 ret = dquot_commit(dquot);
4950 err = ext4_journal_stop(handle);
4951 if (!ret)
4952 ret = err;
4953 return ret;
4954}
4955
4956static int ext4_acquire_dquot(struct dquot *dquot)
4957{
4958 int ret, err;
4959 handle_t *handle;
4960
4961 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4962 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4963 if (IS_ERR(handle))
4964 return PTR_ERR(handle);
4965 ret = dquot_acquire(dquot);
4966 err = ext4_journal_stop(handle);
4967 if (!ret)
4968 ret = err;
4969 return ret;
4970}
4971
4972static int ext4_release_dquot(struct dquot *dquot)
4973{
4974 int ret, err;
4975 handle_t *handle;
4976
4977 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4978 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4979 if (IS_ERR(handle)) {
4980 /* Release dquot anyway to avoid endless cycle in dqput() */
4981 dquot_release(dquot);
4982 return PTR_ERR(handle);
4983 }
4984 ret = dquot_release(dquot);
4985 err = ext4_journal_stop(handle);
4986 if (!ret)
4987 ret = err;
4988 return ret;
4989}
4990
4991static int ext4_mark_dquot_dirty(struct dquot *dquot)
4992{
4993 struct super_block *sb = dquot->dq_sb;
4994 struct ext4_sb_info *sbi = EXT4_SB(sb);
4995
4996 /* Are we journaling quotas? */
4997 if (ext4_has_feature_quota(sb) ||
4998 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4999 dquot_mark_dquot_dirty(dquot);
5000 return ext4_write_dquot(dquot);
5001 } else {
5002 return dquot_mark_dquot_dirty(dquot);
5003 }
5004}
5005
5006static int ext4_write_info(struct super_block *sb, int type)
5007{
5008 int ret, err;
5009 handle_t *handle;
5010
5011 /* Data block + inode block */
5012 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5013 if (IS_ERR(handle))
5014 return PTR_ERR(handle);
5015 ret = dquot_commit_info(sb, type);
5016 err = ext4_journal_stop(handle);
5017 if (!ret)
5018 ret = err;
5019 return ret;
5020}
5021
5022/*
5023 * Turn on quotas during mount time - we need to find
5024 * the quota file and such...
5025 */
5026static int ext4_quota_on_mount(struct super_block *sb, int type)
5027{
5028 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5029 EXT4_SB(sb)->s_jquota_fmt, type);
5030}
5031
5032static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5033{
5034 struct ext4_inode_info *ei = EXT4_I(inode);
5035
5036 /* The first argument of lockdep_set_subclass has to be
5037 * *exactly* the same as the argument to init_rwsem() --- in
5038 * this case, in init_once() --- or lockdep gets unhappy
5039 * because the name of the lock is set using the
5040 * stringification of the argument to init_rwsem().
5041 */
5042 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5043 lockdep_set_subclass(&ei->i_data_sem, subclass);
5044}
5045
5046/*
5047 * Standard function to be called on quota_on
5048 */
5049static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5050 struct path *path)
5051{
5052 int err;
5053
5054 if (!test_opt(sb, QUOTA))
5055 return -EINVAL;
5056
5057 /* Quotafile not on the same filesystem? */
5058 if (path->dentry->d_sb != sb)
5059 return -EXDEV;
5060 /* Journaling quota? */
5061 if (EXT4_SB(sb)->s_qf_names[type]) {
5062 /* Quotafile not in fs root? */
5063 if (path->dentry->d_parent != sb->s_root)
5064 ext4_msg(sb, KERN_WARNING,
5065 "Quota file not on filesystem root. "
5066 "Journaled quota will not work");
5067 }
5068
5069 /*
5070 * When we journal data on quota file, we have to flush journal to see
5071 * all updates to the file when we bypass pagecache...
5072 */
5073 if (EXT4_SB(sb)->s_journal &&
5074 ext4_should_journal_data(d_inode(path->dentry))) {
5075 /*
5076 * We don't need to lock updates but journal_flush() could
5077 * otherwise be livelocked...
5078 */
5079 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5080 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5081 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5082 if (err)
5083 return err;
5084 }
5085 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5086 err = dquot_quota_on(sb, type, format_id, path);
5087 if (err)
5088 lockdep_set_quota_inode(path->dentry->d_inode,
5089 I_DATA_SEM_NORMAL);
5090 return err;
5091}
5092
5093static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5094 unsigned int flags)
5095{
5096 int err;
5097 struct inode *qf_inode;
5098 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5099 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5100 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5101 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5102 };
5103
5104 BUG_ON(!ext4_has_feature_quota(sb));
5105
5106 if (!qf_inums[type])
5107 return -EPERM;
5108
5109 qf_inode = ext4_iget(sb, qf_inums[type]);
5110 if (IS_ERR(qf_inode)) {
5111 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5112 return PTR_ERR(qf_inode);
5113 }
5114
5115 /* Don't account quota for quota files to avoid recursion */
5116 qf_inode->i_flags |= S_NOQUOTA;
5117 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5118 err = dquot_enable(qf_inode, type, format_id, flags);
5119 iput(qf_inode);
5120 if (err)
5121 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5122
5123 return err;
5124}
5125
5126/* Enable usage tracking for all quota types. */
5127static int ext4_enable_quotas(struct super_block *sb)
5128{
5129 int type, err = 0;
5130 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5131 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5132 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5133 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5134 };
5135
5136 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5137 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5138 if (qf_inums[type]) {
5139 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5140 DQUOT_USAGE_ENABLED);
5141 if (err) {
5142 ext4_warning(sb,
5143 "Failed to enable quota tracking "
5144 "(type=%d, err=%d). Please run "
5145 "e2fsck to fix.", type, err);
5146 return err;
5147 }
5148 }
5149 }
5150 return 0;
5151}
5152
5153static int ext4_quota_off(struct super_block *sb, int type)
5154{
5155 struct inode *inode = sb_dqopt(sb)->files[type];
5156 handle_t *handle;
5157
5158 /* Force all delayed allocation blocks to be allocated.
5159 * Caller already holds s_umount sem */
5160 if (test_opt(sb, DELALLOC))
5161 sync_filesystem(sb);
5162
5163 if (!inode)
5164 goto out;
5165
5166 /* Update modification times of quota files when userspace can
5167 * start looking at them */
5168 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5169 if (IS_ERR(handle))
5170 goto out;
5171 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5172 ext4_mark_inode_dirty(handle, inode);
5173 ext4_journal_stop(handle);
5174
5175out:
5176 return dquot_quota_off(sb, type);
5177}
5178
5179/* Read data from quotafile - avoid pagecache and such because we cannot afford
5180 * acquiring the locks... As quota files are never truncated and quota code
5181 * itself serializes the operations (and no one else should touch the files)
5182 * we don't have to be afraid of races */
5183static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5184 size_t len, loff_t off)
5185{
5186 struct inode *inode = sb_dqopt(sb)->files[type];
5187 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5188 int offset = off & (sb->s_blocksize - 1);
5189 int tocopy;
5190 size_t toread;
5191 struct buffer_head *bh;
5192 loff_t i_size = i_size_read(inode);
5193
5194 if (off > i_size)
5195 return 0;
5196 if (off+len > i_size)
5197 len = i_size-off;
5198 toread = len;
5199 while (toread > 0) {
5200 tocopy = sb->s_blocksize - offset < toread ?
5201 sb->s_blocksize - offset : toread;
5202 bh = ext4_bread(NULL, inode, blk, 0);
5203 if (IS_ERR(bh))
5204 return PTR_ERR(bh);
5205 if (!bh) /* A hole? */
5206 memset(data, 0, tocopy);
5207 else
5208 memcpy(data, bh->b_data+offset, tocopy);
5209 brelse(bh);
5210 offset = 0;
5211 toread -= tocopy;
5212 data += tocopy;
5213 blk++;
5214 }
5215 return len;
5216}
5217
5218/* Write to quotafile (we know the transaction is already started and has
5219 * enough credits) */
5220static ssize_t ext4_quota_write(struct super_block *sb, int type,
5221 const char *data, size_t len, loff_t off)
5222{
5223 struct inode *inode = sb_dqopt(sb)->files[type];
5224 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5225 int err, offset = off & (sb->s_blocksize - 1);
5226 int retries = 0;
5227 struct buffer_head *bh;
5228 handle_t *handle = journal_current_handle();
5229
5230 if (EXT4_SB(sb)->s_journal && !handle) {
5231 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5232 " cancelled because transaction is not started",
5233 (unsigned long long)off, (unsigned long long)len);
5234 return -EIO;
5235 }
5236 /*
5237 * Since we account only one data block in transaction credits,
5238 * then it is impossible to cross a block boundary.
5239 */
5240 if (sb->s_blocksize - offset < len) {
5241 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5242 " cancelled because not block aligned",
5243 (unsigned long long)off, (unsigned long long)len);
5244 return -EIO;
5245 }
5246
5247 do {
5248 bh = ext4_bread(handle, inode, blk,
5249 EXT4_GET_BLOCKS_CREATE |
5250 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5251 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5252 ext4_should_retry_alloc(inode->i_sb, &retries));
5253 if (IS_ERR(bh))
5254 return PTR_ERR(bh);
5255 if (!bh)
5256 goto out;
5257 BUFFER_TRACE(bh, "get write access");
5258 err = ext4_journal_get_write_access(handle, bh);
5259 if (err) {
5260 brelse(bh);
5261 return err;
5262 }
5263 lock_buffer(bh);
5264 memcpy(bh->b_data+offset, data, len);
5265 flush_dcache_page(bh->b_page);
5266 unlock_buffer(bh);
5267 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5268 brelse(bh);
5269out:
5270 if (inode->i_size < off + len) {
5271 i_size_write(inode, off + len);
5272 EXT4_I(inode)->i_disksize = inode->i_size;
5273 ext4_mark_inode_dirty(handle, inode);
5274 }
5275 return len;
5276}
5277
5278static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5279{
5280 const struct quota_format_ops *ops;
5281
5282 if (!sb_has_quota_loaded(sb, qid->type))
5283 return -ESRCH;
5284 ops = sb_dqopt(sb)->ops[qid->type];
5285 if (!ops || !ops->get_next_id)
5286 return -ENOSYS;
5287 return dquot_get_next_id(sb, qid);
5288}
5289#endif
5290
5291static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5292 const char *dev_name, void *data)
5293{
5294 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5295}
5296
5297#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5298static inline void register_as_ext2(void)
5299{
5300 int err = register_filesystem(&ext2_fs_type);
5301 if (err)
5302 printk(KERN_WARNING
5303 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5304}
5305
5306static inline void unregister_as_ext2(void)
5307{
5308 unregister_filesystem(&ext2_fs_type);
5309}
5310
5311static inline int ext2_feature_set_ok(struct super_block *sb)
5312{
5313 if (ext4_has_unknown_ext2_incompat_features(sb))
5314 return 0;
5315 if (sb->s_flags & MS_RDONLY)
5316 return 1;
5317 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5318 return 0;
5319 return 1;
5320}
5321#else
5322static inline void register_as_ext2(void) { }
5323static inline void unregister_as_ext2(void) { }
5324static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5325#endif
5326
5327static inline void register_as_ext3(void)
5328{
5329 int err = register_filesystem(&ext3_fs_type);
5330 if (err)
5331 printk(KERN_WARNING
5332 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5333}
5334
5335static inline void unregister_as_ext3(void)
5336{
5337 unregister_filesystem(&ext3_fs_type);
5338}
5339
5340static inline int ext3_feature_set_ok(struct super_block *sb)
5341{
5342 if (ext4_has_unknown_ext3_incompat_features(sb))
5343 return 0;
5344 if (!ext4_has_feature_journal(sb))
5345 return 0;
5346 if (sb->s_flags & MS_RDONLY)
5347 return 1;
5348 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5349 return 0;
5350 return 1;
5351}
5352
5353static struct file_system_type ext4_fs_type = {
5354 .owner = THIS_MODULE,
5355 .name = "ext4",
5356 .mount = ext4_mount,
5357 .kill_sb = kill_block_super,
5358 .fs_flags = FS_REQUIRES_DEV,
5359};
5360MODULE_ALIAS_FS("ext4");
5361
5362/* Shared across all ext4 file systems */
5363wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5364
5365static int __init ext4_init_fs(void)
5366{
5367 int i, err;
5368
5369 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5370 ext4_li_info = NULL;
5371 mutex_init(&ext4_li_mtx);
5372
5373 /* Build-time check for flags consistency */
5374 ext4_check_flag_values();
5375
5376 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5377 init_waitqueue_head(&ext4__ioend_wq[i]);
5378
5379 err = ext4_init_es();
5380 if (err)
5381 return err;
5382
5383 err = ext4_init_pageio();
5384 if (err)
5385 goto out5;
5386
5387 err = ext4_init_system_zone();
5388 if (err)
5389 goto out4;
5390
5391 err = ext4_init_sysfs();
5392 if (err)
5393 goto out3;
5394
5395 err = ext4_init_mballoc();
5396 if (err)
5397 goto out2;
5398 err = init_inodecache();
5399 if (err)
5400 goto out1;
5401 register_as_ext3();
5402 register_as_ext2();
5403 err = register_filesystem(&ext4_fs_type);
5404 if (err)
5405 goto out;
5406
5407 return 0;
5408out:
5409 unregister_as_ext2();
5410 unregister_as_ext3();
5411 destroy_inodecache();
5412out1:
5413 ext4_exit_mballoc();
5414out2:
5415 ext4_exit_sysfs();
5416out3:
5417 ext4_exit_system_zone();
5418out4:
5419 ext4_exit_pageio();
5420out5:
5421 ext4_exit_es();
5422
5423 return err;
5424}
5425
5426static void __exit ext4_exit_fs(void)
5427{
5428 ext4_exit_crypto();
5429 ext4_destroy_lazyinit_thread();
5430 unregister_as_ext2();
5431 unregister_as_ext3();
5432 unregister_filesystem(&ext4_fs_type);
5433 destroy_inodecache();
5434 ext4_exit_mballoc();
5435 ext4_exit_sysfs();
5436 ext4_exit_system_zone();
5437 ext4_exit_pageio();
5438 ext4_exit_es();
5439}
5440
5441MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5442MODULE_DESCRIPTION("Fourth Extended Filesystem");
5443MODULE_LICENSE("GPL");
5444module_init(ext4_init_fs)
5445module_exit(ext4_exit_fs)
1/*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19#include <linux/module.h>
20#include <linux/string.h>
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/parser.h>
29#include <linux/buffer_head.h>
30#include <linux/exportfs.h>
31#include <linux/vfs.h>
32#include <linux/random.h>
33#include <linux/mount.h>
34#include <linux/namei.h>
35#include <linux/quotaops.h>
36#include <linux/seq_file.h>
37#include <linux/ctype.h>
38#include <linux/log2.h>
39#include <linux/crc16.h>
40#include <linux/cleancache.h>
41#include <linux/uaccess.h>
42
43#include <linux/kthread.h>
44#include <linux/freezer.h>
45
46#include "ext4.h"
47#include "ext4_extents.h" /* Needed for trace points definition */
48#include "ext4_jbd2.h"
49#include "xattr.h"
50#include "acl.h"
51#include "mballoc.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/ext4.h>
55
56static struct ext4_lazy_init *ext4_li_info;
57static struct mutex ext4_li_mtx;
58static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63static int ext4_commit_super(struct super_block *sb, int sync);
64static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68static int ext4_sync_fs(struct super_block *sb, int wait);
69static int ext4_remount(struct super_block *sb, int *flags, char *data);
70static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71static int ext4_unfreeze(struct super_block *sb);
72static int ext4_freeze(struct super_block *sb);
73static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75static inline int ext2_feature_set_ok(struct super_block *sb);
76static inline int ext3_feature_set_ok(struct super_block *sb);
77static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78static void ext4_destroy_lazyinit_thread(void);
79static void ext4_unregister_li_request(struct super_block *sb);
80static void ext4_clear_request_list(void);
81static struct inode *ext4_get_journal_inode(struct super_block *sb,
82 unsigned int journal_inum);
83
84/*
85 * Lock ordering
86 *
87 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
88 * i_mmap_rwsem (inode->i_mmap_rwsem)!
89 *
90 * page fault path:
91 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
92 * page lock -> i_data_sem (rw)
93 *
94 * buffered write path:
95 * sb_start_write -> i_mutex -> mmap_sem
96 * sb_start_write -> i_mutex -> transaction start -> page lock ->
97 * i_data_sem (rw)
98 *
99 * truncate:
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * i_mmap_rwsem (w) -> page lock
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * transaction start -> i_data_sem (rw)
104 *
105 * direct IO:
106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
108 * transaction start -> i_data_sem (rw)
109 *
110 * writepages:
111 * transaction start -> page lock(s) -> i_data_sem (rw)
112 */
113
114#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
115static struct file_system_type ext2_fs_type = {
116 .owner = THIS_MODULE,
117 .name = "ext2",
118 .mount = ext4_mount,
119 .kill_sb = kill_block_super,
120 .fs_flags = FS_REQUIRES_DEV,
121};
122MODULE_ALIAS_FS("ext2");
123MODULE_ALIAS("ext2");
124#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
125#else
126#define IS_EXT2_SB(sb) (0)
127#endif
128
129
130static struct file_system_type ext3_fs_type = {
131 .owner = THIS_MODULE,
132 .name = "ext3",
133 .mount = ext4_mount,
134 .kill_sb = kill_block_super,
135 .fs_flags = FS_REQUIRES_DEV,
136};
137MODULE_ALIAS_FS("ext3");
138MODULE_ALIAS("ext3");
139#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
140
141static int ext4_verify_csum_type(struct super_block *sb,
142 struct ext4_super_block *es)
143{
144 if (!ext4_has_feature_metadata_csum(sb))
145 return 1;
146
147 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
148}
149
150static __le32 ext4_superblock_csum(struct super_block *sb,
151 struct ext4_super_block *es)
152{
153 struct ext4_sb_info *sbi = EXT4_SB(sb);
154 int offset = offsetof(struct ext4_super_block, s_checksum);
155 __u32 csum;
156
157 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
158
159 return cpu_to_le32(csum);
160}
161
162static int ext4_superblock_csum_verify(struct super_block *sb,
163 struct ext4_super_block *es)
164{
165 if (!ext4_has_metadata_csum(sb))
166 return 1;
167
168 return es->s_checksum == ext4_superblock_csum(sb, es);
169}
170
171void ext4_superblock_csum_set(struct super_block *sb)
172{
173 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
174
175 if (!ext4_has_metadata_csum(sb))
176 return;
177
178 es->s_checksum = ext4_superblock_csum(sb, es);
179}
180
181void *ext4_kvmalloc(size_t size, gfp_t flags)
182{
183 void *ret;
184
185 ret = kmalloc(size, flags | __GFP_NOWARN);
186 if (!ret)
187 ret = __vmalloc(size, flags, PAGE_KERNEL);
188 return ret;
189}
190
191void *ext4_kvzalloc(size_t size, gfp_t flags)
192{
193 void *ret;
194
195 ret = kzalloc(size, flags | __GFP_NOWARN);
196 if (!ret)
197 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
198 return ret;
199}
200
201ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
202 struct ext4_group_desc *bg)
203{
204 return le32_to_cpu(bg->bg_block_bitmap_lo) |
205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
206 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
207}
208
209ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
210 struct ext4_group_desc *bg)
211{
212 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
214 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
215}
216
217ext4_fsblk_t ext4_inode_table(struct super_block *sb,
218 struct ext4_group_desc *bg)
219{
220 return le32_to_cpu(bg->bg_inode_table_lo) |
221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
222 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
223}
224
225__u32 ext4_free_group_clusters(struct super_block *sb,
226 struct ext4_group_desc *bg)
227{
228 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
230 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
231}
232
233__u32 ext4_free_inodes_count(struct super_block *sb,
234 struct ext4_group_desc *bg)
235{
236 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
238 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
239}
240
241__u32 ext4_used_dirs_count(struct super_block *sb,
242 struct ext4_group_desc *bg)
243{
244 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
245 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
246 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
247}
248
249__u32 ext4_itable_unused_count(struct super_block *sb,
250 struct ext4_group_desc *bg)
251{
252 return le16_to_cpu(bg->bg_itable_unused_lo) |
253 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
254 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
255}
256
257void ext4_block_bitmap_set(struct super_block *sb,
258 struct ext4_group_desc *bg, ext4_fsblk_t blk)
259{
260 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
262 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
263}
264
265void ext4_inode_bitmap_set(struct super_block *sb,
266 struct ext4_group_desc *bg, ext4_fsblk_t blk)
267{
268 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
270 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
271}
272
273void ext4_inode_table_set(struct super_block *sb,
274 struct ext4_group_desc *bg, ext4_fsblk_t blk)
275{
276 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
278 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
279}
280
281void ext4_free_group_clusters_set(struct super_block *sb,
282 struct ext4_group_desc *bg, __u32 count)
283{
284 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
286 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
287}
288
289void ext4_free_inodes_set(struct super_block *sb,
290 struct ext4_group_desc *bg, __u32 count)
291{
292 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
294 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
295}
296
297void ext4_used_dirs_set(struct super_block *sb,
298 struct ext4_group_desc *bg, __u32 count)
299{
300 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
301 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
302 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
303}
304
305void ext4_itable_unused_set(struct super_block *sb,
306 struct ext4_group_desc *bg, __u32 count)
307{
308 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
309 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
310 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
311}
312
313
314static void __save_error_info(struct super_block *sb, const char *func,
315 unsigned int line)
316{
317 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
318
319 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
320 if (bdev_read_only(sb->s_bdev))
321 return;
322 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
323 es->s_last_error_time = cpu_to_le32(get_seconds());
324 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
325 es->s_last_error_line = cpu_to_le32(line);
326 if (!es->s_first_error_time) {
327 es->s_first_error_time = es->s_last_error_time;
328 strncpy(es->s_first_error_func, func,
329 sizeof(es->s_first_error_func));
330 es->s_first_error_line = cpu_to_le32(line);
331 es->s_first_error_ino = es->s_last_error_ino;
332 es->s_first_error_block = es->s_last_error_block;
333 }
334 /*
335 * Start the daily error reporting function if it hasn't been
336 * started already
337 */
338 if (!es->s_error_count)
339 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
340 le32_add_cpu(&es->s_error_count, 1);
341}
342
343static void save_error_info(struct super_block *sb, const char *func,
344 unsigned int line)
345{
346 __save_error_info(sb, func, line);
347 ext4_commit_super(sb, 1);
348}
349
350/*
351 * The del_gendisk() function uninitializes the disk-specific data
352 * structures, including the bdi structure, without telling anyone
353 * else. Once this happens, any attempt to call mark_buffer_dirty()
354 * (for example, by ext4_commit_super), will cause a kernel OOPS.
355 * This is a kludge to prevent these oops until we can put in a proper
356 * hook in del_gendisk() to inform the VFS and file system layers.
357 */
358static int block_device_ejected(struct super_block *sb)
359{
360 struct inode *bd_inode = sb->s_bdev->bd_inode;
361 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
362
363 return bdi->dev == NULL;
364}
365
366static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
367{
368 struct super_block *sb = journal->j_private;
369 struct ext4_sb_info *sbi = EXT4_SB(sb);
370 int error = is_journal_aborted(journal);
371 struct ext4_journal_cb_entry *jce;
372
373 BUG_ON(txn->t_state == T_FINISHED);
374 spin_lock(&sbi->s_md_lock);
375 while (!list_empty(&txn->t_private_list)) {
376 jce = list_entry(txn->t_private_list.next,
377 struct ext4_journal_cb_entry, jce_list);
378 list_del_init(&jce->jce_list);
379 spin_unlock(&sbi->s_md_lock);
380 jce->jce_func(sb, jce, error);
381 spin_lock(&sbi->s_md_lock);
382 }
383 spin_unlock(&sbi->s_md_lock);
384}
385
386/* Deal with the reporting of failure conditions on a filesystem such as
387 * inconsistencies detected or read IO failures.
388 *
389 * On ext2, we can store the error state of the filesystem in the
390 * superblock. That is not possible on ext4, because we may have other
391 * write ordering constraints on the superblock which prevent us from
392 * writing it out straight away; and given that the journal is about to
393 * be aborted, we can't rely on the current, or future, transactions to
394 * write out the superblock safely.
395 *
396 * We'll just use the jbd2_journal_abort() error code to record an error in
397 * the journal instead. On recovery, the journal will complain about
398 * that error until we've noted it down and cleared it.
399 */
400
401static void ext4_handle_error(struct super_block *sb)
402{
403 if (sb->s_flags & MS_RDONLY)
404 return;
405
406 if (!test_opt(sb, ERRORS_CONT)) {
407 journal_t *journal = EXT4_SB(sb)->s_journal;
408
409 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
410 if (journal)
411 jbd2_journal_abort(journal, -EIO);
412 }
413 if (test_opt(sb, ERRORS_RO)) {
414 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
415 /*
416 * Make sure updated value of ->s_mount_flags will be visible
417 * before ->s_flags update
418 */
419 smp_wmb();
420 sb->s_flags |= MS_RDONLY;
421 }
422 if (test_opt(sb, ERRORS_PANIC)) {
423 if (EXT4_SB(sb)->s_journal &&
424 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
425 return;
426 panic("EXT4-fs (device %s): panic forced after error\n",
427 sb->s_id);
428 }
429}
430
431#define ext4_error_ratelimit(sb) \
432 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
433 "EXT4-fs error")
434
435void __ext4_error(struct super_block *sb, const char *function,
436 unsigned int line, const char *fmt, ...)
437{
438 struct va_format vaf;
439 va_list args;
440
441 if (ext4_error_ratelimit(sb)) {
442 va_start(args, fmt);
443 vaf.fmt = fmt;
444 vaf.va = &args;
445 printk(KERN_CRIT
446 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
447 sb->s_id, function, line, current->comm, &vaf);
448 va_end(args);
449 }
450 save_error_info(sb, function, line);
451 ext4_handle_error(sb);
452}
453
454void __ext4_error_inode(struct inode *inode, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457{
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
461
462 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
463 es->s_last_error_block = cpu_to_le64(block);
464 if (ext4_error_ratelimit(inode->i_sb)) {
465 va_start(args, fmt);
466 vaf.fmt = fmt;
467 vaf.va = &args;
468 if (block)
469 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
470 "inode #%lu: block %llu: comm %s: %pV\n",
471 inode->i_sb->s_id, function, line, inode->i_ino,
472 block, current->comm, &vaf);
473 else
474 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
475 "inode #%lu: comm %s: %pV\n",
476 inode->i_sb->s_id, function, line, inode->i_ino,
477 current->comm, &vaf);
478 va_end(args);
479 }
480 save_error_info(inode->i_sb, function, line);
481 ext4_handle_error(inode->i_sb);
482}
483
484void __ext4_error_file(struct file *file, const char *function,
485 unsigned int line, ext4_fsblk_t block,
486 const char *fmt, ...)
487{
488 va_list args;
489 struct va_format vaf;
490 struct ext4_super_block *es;
491 struct inode *inode = file_inode(file);
492 char pathname[80], *path;
493
494 es = EXT4_SB(inode->i_sb)->s_es;
495 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
496 if (ext4_error_ratelimit(inode->i_sb)) {
497 path = file_path(file, pathname, sizeof(pathname));
498 if (IS_ERR(path))
499 path = "(unknown)";
500 va_start(args, fmt);
501 vaf.fmt = fmt;
502 vaf.va = &args;
503 if (block)
504 printk(KERN_CRIT
505 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
506 "block %llu: comm %s: path %s: %pV\n",
507 inode->i_sb->s_id, function, line, inode->i_ino,
508 block, current->comm, path, &vaf);
509 else
510 printk(KERN_CRIT
511 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
512 "comm %s: path %s: %pV\n",
513 inode->i_sb->s_id, function, line, inode->i_ino,
514 current->comm, path, &vaf);
515 va_end(args);
516 }
517 save_error_info(inode->i_sb, function, line);
518 ext4_handle_error(inode->i_sb);
519}
520
521const char *ext4_decode_error(struct super_block *sb, int errno,
522 char nbuf[16])
523{
524 char *errstr = NULL;
525
526 switch (errno) {
527 case -EFSCORRUPTED:
528 errstr = "Corrupt filesystem";
529 break;
530 case -EFSBADCRC:
531 errstr = "Filesystem failed CRC";
532 break;
533 case -EIO:
534 errstr = "IO failure";
535 break;
536 case -ENOMEM:
537 errstr = "Out of memory";
538 break;
539 case -EROFS:
540 if (!sb || (EXT4_SB(sb)->s_journal &&
541 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
542 errstr = "Journal has aborted";
543 else
544 errstr = "Readonly filesystem";
545 break;
546 default:
547 /* If the caller passed in an extra buffer for unknown
548 * errors, textualise them now. Else we just return
549 * NULL. */
550 if (nbuf) {
551 /* Check for truncated error codes... */
552 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
553 errstr = nbuf;
554 }
555 break;
556 }
557
558 return errstr;
559}
560
561/* __ext4_std_error decodes expected errors from journaling functions
562 * automatically and invokes the appropriate error response. */
563
564void __ext4_std_error(struct super_block *sb, const char *function,
565 unsigned int line, int errno)
566{
567 char nbuf[16];
568 const char *errstr;
569
570 /* Special case: if the error is EROFS, and we're not already
571 * inside a transaction, then there's really no point in logging
572 * an error. */
573 if (errno == -EROFS && journal_current_handle() == NULL &&
574 (sb->s_flags & MS_RDONLY))
575 return;
576
577 if (ext4_error_ratelimit(sb)) {
578 errstr = ext4_decode_error(sb, errno, nbuf);
579 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
580 sb->s_id, function, line, errstr);
581 }
582
583 save_error_info(sb, function, line);
584 ext4_handle_error(sb);
585}
586
587/*
588 * ext4_abort is a much stronger failure handler than ext4_error. The
589 * abort function may be used to deal with unrecoverable failures such
590 * as journal IO errors or ENOMEM at a critical moment in log management.
591 *
592 * We unconditionally force the filesystem into an ABORT|READONLY state,
593 * unless the error response on the fs has been set to panic in which
594 * case we take the easy way out and panic immediately.
595 */
596
597void __ext4_abort(struct super_block *sb, const char *function,
598 unsigned int line, const char *fmt, ...)
599{
600 struct va_format vaf;
601 va_list args;
602
603 save_error_info(sb, function, line);
604 va_start(args, fmt);
605 vaf.fmt = fmt;
606 vaf.va = &args;
607 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
608 sb->s_id, function, line, &vaf);
609 va_end(args);
610
611 if ((sb->s_flags & MS_RDONLY) == 0) {
612 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
613 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
614 /*
615 * Make sure updated value of ->s_mount_flags will be visible
616 * before ->s_flags update
617 */
618 smp_wmb();
619 sb->s_flags |= MS_RDONLY;
620 if (EXT4_SB(sb)->s_journal)
621 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
622 save_error_info(sb, function, line);
623 }
624 if (test_opt(sb, ERRORS_PANIC)) {
625 if (EXT4_SB(sb)->s_journal &&
626 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
627 return;
628 panic("EXT4-fs panic from previous error\n");
629 }
630}
631
632void __ext4_msg(struct super_block *sb,
633 const char *prefix, const char *fmt, ...)
634{
635 struct va_format vaf;
636 va_list args;
637
638 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
639 return;
640
641 va_start(args, fmt);
642 vaf.fmt = fmt;
643 vaf.va = &args;
644 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
645 va_end(args);
646}
647
648#define ext4_warning_ratelimit(sb) \
649 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
650 "EXT4-fs warning")
651
652void __ext4_warning(struct super_block *sb, const char *function,
653 unsigned int line, const char *fmt, ...)
654{
655 struct va_format vaf;
656 va_list args;
657
658 if (!ext4_warning_ratelimit(sb))
659 return;
660
661 va_start(args, fmt);
662 vaf.fmt = fmt;
663 vaf.va = &args;
664 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
665 sb->s_id, function, line, &vaf);
666 va_end(args);
667}
668
669void __ext4_warning_inode(const struct inode *inode, const char *function,
670 unsigned int line, const char *fmt, ...)
671{
672 struct va_format vaf;
673 va_list args;
674
675 if (!ext4_warning_ratelimit(inode->i_sb))
676 return;
677
678 va_start(args, fmt);
679 vaf.fmt = fmt;
680 vaf.va = &args;
681 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
682 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
683 function, line, inode->i_ino, current->comm, &vaf);
684 va_end(args);
685}
686
687void __ext4_grp_locked_error(const char *function, unsigned int line,
688 struct super_block *sb, ext4_group_t grp,
689 unsigned long ino, ext4_fsblk_t block,
690 const char *fmt, ...)
691__releases(bitlock)
692__acquires(bitlock)
693{
694 struct va_format vaf;
695 va_list args;
696 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
697
698 es->s_last_error_ino = cpu_to_le32(ino);
699 es->s_last_error_block = cpu_to_le64(block);
700 __save_error_info(sb, function, line);
701
702 if (ext4_error_ratelimit(sb)) {
703 va_start(args, fmt);
704 vaf.fmt = fmt;
705 vaf.va = &args;
706 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
707 sb->s_id, function, line, grp);
708 if (ino)
709 printk(KERN_CONT "inode %lu: ", ino);
710 if (block)
711 printk(KERN_CONT "block %llu:",
712 (unsigned long long) block);
713 printk(KERN_CONT "%pV\n", &vaf);
714 va_end(args);
715 }
716
717 if (test_opt(sb, ERRORS_CONT)) {
718 ext4_commit_super(sb, 0);
719 return;
720 }
721
722 ext4_unlock_group(sb, grp);
723 ext4_handle_error(sb);
724 /*
725 * We only get here in the ERRORS_RO case; relocking the group
726 * may be dangerous, but nothing bad will happen since the
727 * filesystem will have already been marked read/only and the
728 * journal has been aborted. We return 1 as a hint to callers
729 * who might what to use the return value from
730 * ext4_grp_locked_error() to distinguish between the
731 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
732 * aggressively from the ext4 function in question, with a
733 * more appropriate error code.
734 */
735 ext4_lock_group(sb, grp);
736 return;
737}
738
739void ext4_update_dynamic_rev(struct super_block *sb)
740{
741 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
742
743 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
744 return;
745
746 ext4_warning(sb,
747 "updating to rev %d because of new feature flag, "
748 "running e2fsck is recommended",
749 EXT4_DYNAMIC_REV);
750
751 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
752 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
753 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
754 /* leave es->s_feature_*compat flags alone */
755 /* es->s_uuid will be set by e2fsck if empty */
756
757 /*
758 * The rest of the superblock fields should be zero, and if not it
759 * means they are likely already in use, so leave them alone. We
760 * can leave it up to e2fsck to clean up any inconsistencies there.
761 */
762}
763
764/*
765 * Open the external journal device
766 */
767static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
768{
769 struct block_device *bdev;
770 char b[BDEVNAME_SIZE];
771
772 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
773 if (IS_ERR(bdev))
774 goto fail;
775 return bdev;
776
777fail:
778 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
779 __bdevname(dev, b), PTR_ERR(bdev));
780 return NULL;
781}
782
783/*
784 * Release the journal device
785 */
786static void ext4_blkdev_put(struct block_device *bdev)
787{
788 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
789}
790
791static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
792{
793 struct block_device *bdev;
794 bdev = sbi->journal_bdev;
795 if (bdev) {
796 ext4_blkdev_put(bdev);
797 sbi->journal_bdev = NULL;
798 }
799}
800
801static inline struct inode *orphan_list_entry(struct list_head *l)
802{
803 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
804}
805
806static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
807{
808 struct list_head *l;
809
810 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
811 le32_to_cpu(sbi->s_es->s_last_orphan));
812
813 printk(KERN_ERR "sb_info orphan list:\n");
814 list_for_each(l, &sbi->s_orphan) {
815 struct inode *inode = orphan_list_entry(l);
816 printk(KERN_ERR " "
817 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
818 inode->i_sb->s_id, inode->i_ino, inode,
819 inode->i_mode, inode->i_nlink,
820 NEXT_ORPHAN(inode));
821 }
822}
823
824static void ext4_put_super(struct super_block *sb)
825{
826 struct ext4_sb_info *sbi = EXT4_SB(sb);
827 struct ext4_super_block *es = sbi->s_es;
828 int aborted = 0;
829 int i, err;
830
831 ext4_unregister_li_request(sb);
832 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
833
834 flush_workqueue(sbi->rsv_conversion_wq);
835 destroy_workqueue(sbi->rsv_conversion_wq);
836
837 if (sbi->s_journal) {
838 aborted = is_journal_aborted(sbi->s_journal);
839 err = jbd2_journal_destroy(sbi->s_journal);
840 sbi->s_journal = NULL;
841 if ((err < 0) && !aborted)
842 ext4_abort(sb, "Couldn't clean up the journal");
843 }
844
845 ext4_unregister_sysfs(sb);
846 ext4_es_unregister_shrinker(sbi);
847 del_timer_sync(&sbi->s_err_report);
848 ext4_release_system_zone(sb);
849 ext4_mb_release(sb);
850 ext4_ext_release(sb);
851
852 if (!(sb->s_flags & MS_RDONLY) && !aborted) {
853 ext4_clear_feature_journal_needs_recovery(sb);
854 es->s_state = cpu_to_le16(sbi->s_mount_state);
855 }
856 if (!(sb->s_flags & MS_RDONLY))
857 ext4_commit_super(sb, 1);
858
859 for (i = 0; i < sbi->s_gdb_count; i++)
860 brelse(sbi->s_group_desc[i]);
861 kvfree(sbi->s_group_desc);
862 kvfree(sbi->s_flex_groups);
863 percpu_counter_destroy(&sbi->s_freeclusters_counter);
864 percpu_counter_destroy(&sbi->s_freeinodes_counter);
865 percpu_counter_destroy(&sbi->s_dirs_counter);
866 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
867 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
868#ifdef CONFIG_QUOTA
869 for (i = 0; i < EXT4_MAXQUOTAS; i++)
870 kfree(sbi->s_qf_names[i]);
871#endif
872
873 /* Debugging code just in case the in-memory inode orphan list
874 * isn't empty. The on-disk one can be non-empty if we've
875 * detected an error and taken the fs readonly, but the
876 * in-memory list had better be clean by this point. */
877 if (!list_empty(&sbi->s_orphan))
878 dump_orphan_list(sb, sbi);
879 J_ASSERT(list_empty(&sbi->s_orphan));
880
881 sync_blockdev(sb->s_bdev);
882 invalidate_bdev(sb->s_bdev);
883 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
884 /*
885 * Invalidate the journal device's buffers. We don't want them
886 * floating about in memory - the physical journal device may
887 * hotswapped, and it breaks the `ro-after' testing code.
888 */
889 sync_blockdev(sbi->journal_bdev);
890 invalidate_bdev(sbi->journal_bdev);
891 ext4_blkdev_remove(sbi);
892 }
893 if (sbi->s_mb_cache) {
894 ext4_xattr_destroy_cache(sbi->s_mb_cache);
895 sbi->s_mb_cache = NULL;
896 }
897 if (sbi->s_mmp_tsk)
898 kthread_stop(sbi->s_mmp_tsk);
899 brelse(sbi->s_sbh);
900 sb->s_fs_info = NULL;
901 /*
902 * Now that we are completely done shutting down the
903 * superblock, we need to actually destroy the kobject.
904 */
905 kobject_put(&sbi->s_kobj);
906 wait_for_completion(&sbi->s_kobj_unregister);
907 if (sbi->s_chksum_driver)
908 crypto_free_shash(sbi->s_chksum_driver);
909 kfree(sbi->s_blockgroup_lock);
910 kfree(sbi);
911}
912
913static struct kmem_cache *ext4_inode_cachep;
914
915/*
916 * Called inside transaction, so use GFP_NOFS
917 */
918static struct inode *ext4_alloc_inode(struct super_block *sb)
919{
920 struct ext4_inode_info *ei;
921
922 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
923 if (!ei)
924 return NULL;
925
926 ei->vfs_inode.i_version = 1;
927 spin_lock_init(&ei->i_raw_lock);
928 INIT_LIST_HEAD(&ei->i_prealloc_list);
929 spin_lock_init(&ei->i_prealloc_lock);
930 ext4_es_init_tree(&ei->i_es_tree);
931 rwlock_init(&ei->i_es_lock);
932 INIT_LIST_HEAD(&ei->i_es_list);
933 ei->i_es_all_nr = 0;
934 ei->i_es_shk_nr = 0;
935 ei->i_es_shrink_lblk = 0;
936 ei->i_reserved_data_blocks = 0;
937 ei->i_reserved_meta_blocks = 0;
938 ei->i_allocated_meta_blocks = 0;
939 ei->i_da_metadata_calc_len = 0;
940 ei->i_da_metadata_calc_last_lblock = 0;
941 spin_lock_init(&(ei->i_block_reservation_lock));
942#ifdef CONFIG_QUOTA
943 ei->i_reserved_quota = 0;
944 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
945#endif
946 ei->jinode = NULL;
947 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
948 spin_lock_init(&ei->i_completed_io_lock);
949 ei->i_sync_tid = 0;
950 ei->i_datasync_tid = 0;
951 atomic_set(&ei->i_unwritten, 0);
952 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
953 return &ei->vfs_inode;
954}
955
956static int ext4_drop_inode(struct inode *inode)
957{
958 int drop = generic_drop_inode(inode);
959
960 trace_ext4_drop_inode(inode, drop);
961 return drop;
962}
963
964static void ext4_i_callback(struct rcu_head *head)
965{
966 struct inode *inode = container_of(head, struct inode, i_rcu);
967 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
968}
969
970static void ext4_destroy_inode(struct inode *inode)
971{
972 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
973 ext4_msg(inode->i_sb, KERN_ERR,
974 "Inode %lu (%p): orphan list check failed!",
975 inode->i_ino, EXT4_I(inode));
976 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
977 EXT4_I(inode), sizeof(struct ext4_inode_info),
978 true);
979 dump_stack();
980 }
981 call_rcu(&inode->i_rcu, ext4_i_callback);
982}
983
984static void init_once(void *foo)
985{
986 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
987
988 INIT_LIST_HEAD(&ei->i_orphan);
989 init_rwsem(&ei->xattr_sem);
990 init_rwsem(&ei->i_data_sem);
991 init_rwsem(&ei->i_mmap_sem);
992 inode_init_once(&ei->vfs_inode);
993}
994
995static int __init init_inodecache(void)
996{
997 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
998 sizeof(struct ext4_inode_info),
999 0, (SLAB_RECLAIM_ACCOUNT|
1000 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1001 init_once);
1002 if (ext4_inode_cachep == NULL)
1003 return -ENOMEM;
1004 return 0;
1005}
1006
1007static void destroy_inodecache(void)
1008{
1009 /*
1010 * Make sure all delayed rcu free inodes are flushed before we
1011 * destroy cache.
1012 */
1013 rcu_barrier();
1014 kmem_cache_destroy(ext4_inode_cachep);
1015}
1016
1017void ext4_clear_inode(struct inode *inode)
1018{
1019 invalidate_inode_buffers(inode);
1020 clear_inode(inode);
1021 dquot_drop(inode);
1022 ext4_discard_preallocations(inode);
1023 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1024 if (EXT4_I(inode)->jinode) {
1025 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1026 EXT4_I(inode)->jinode);
1027 jbd2_free_inode(EXT4_I(inode)->jinode);
1028 EXT4_I(inode)->jinode = NULL;
1029 }
1030#ifdef CONFIG_EXT4_FS_ENCRYPTION
1031 fscrypt_put_encryption_info(inode, NULL);
1032#endif
1033}
1034
1035static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1036 u64 ino, u32 generation)
1037{
1038 struct inode *inode;
1039
1040 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1041 return ERR_PTR(-ESTALE);
1042 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1043 return ERR_PTR(-ESTALE);
1044
1045 /* iget isn't really right if the inode is currently unallocated!!
1046 *
1047 * ext4_read_inode will return a bad_inode if the inode had been
1048 * deleted, so we should be safe.
1049 *
1050 * Currently we don't know the generation for parent directory, so
1051 * a generation of 0 means "accept any"
1052 */
1053 inode = ext4_iget_normal(sb, ino);
1054 if (IS_ERR(inode))
1055 return ERR_CAST(inode);
1056 if (generation && inode->i_generation != generation) {
1057 iput(inode);
1058 return ERR_PTR(-ESTALE);
1059 }
1060
1061 return inode;
1062}
1063
1064static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1065 int fh_len, int fh_type)
1066{
1067 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1068 ext4_nfs_get_inode);
1069}
1070
1071static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1072 int fh_len, int fh_type)
1073{
1074 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1075 ext4_nfs_get_inode);
1076}
1077
1078/*
1079 * Try to release metadata pages (indirect blocks, directories) which are
1080 * mapped via the block device. Since these pages could have journal heads
1081 * which would prevent try_to_free_buffers() from freeing them, we must use
1082 * jbd2 layer's try_to_free_buffers() function to release them.
1083 */
1084static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1085 gfp_t wait)
1086{
1087 journal_t *journal = EXT4_SB(sb)->s_journal;
1088
1089 WARN_ON(PageChecked(page));
1090 if (!page_has_buffers(page))
1091 return 0;
1092 if (journal)
1093 return jbd2_journal_try_to_free_buffers(journal, page,
1094 wait & ~__GFP_DIRECT_RECLAIM);
1095 return try_to_free_buffers(page);
1096}
1097
1098#ifdef CONFIG_EXT4_FS_ENCRYPTION
1099static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1100{
1101 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1102 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1103}
1104
1105static int ext4_key_prefix(struct inode *inode, u8 **key)
1106{
1107 *key = EXT4_SB(inode->i_sb)->key_prefix;
1108 return EXT4_SB(inode->i_sb)->key_prefix_size;
1109}
1110
1111static int ext4_prepare_context(struct inode *inode)
1112{
1113 return ext4_convert_inline_data(inode);
1114}
1115
1116static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1117 void *fs_data)
1118{
1119 handle_t *handle = fs_data;
1120 int res, res2, retries = 0;
1121
1122 /*
1123 * If a journal handle was specified, then the encryption context is
1124 * being set on a new inode via inheritance and is part of a larger
1125 * transaction to create the inode. Otherwise the encryption context is
1126 * being set on an existing inode in its own transaction. Only in the
1127 * latter case should the "retry on ENOSPC" logic be used.
1128 */
1129
1130 if (handle) {
1131 res = ext4_xattr_set_handle(handle, inode,
1132 EXT4_XATTR_INDEX_ENCRYPTION,
1133 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1134 ctx, len, 0);
1135 if (!res) {
1136 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1137 ext4_clear_inode_state(inode,
1138 EXT4_STATE_MAY_INLINE_DATA);
1139 /*
1140 * Update inode->i_flags - e.g. S_DAX may get disabled
1141 */
1142 ext4_set_inode_flags(inode);
1143 }
1144 return res;
1145 }
1146
1147retry:
1148 handle = ext4_journal_start(inode, EXT4_HT_MISC,
1149 ext4_jbd2_credits_xattr(inode));
1150 if (IS_ERR(handle))
1151 return PTR_ERR(handle);
1152
1153 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1154 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1155 ctx, len, 0);
1156 if (!res) {
1157 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1158 /* Update inode->i_flags - e.g. S_DAX may get disabled */
1159 ext4_set_inode_flags(inode);
1160 res = ext4_mark_inode_dirty(handle, inode);
1161 if (res)
1162 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1163 }
1164 res2 = ext4_journal_stop(handle);
1165
1166 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1167 goto retry;
1168 if (!res)
1169 res = res2;
1170 return res;
1171}
1172
1173static int ext4_dummy_context(struct inode *inode)
1174{
1175 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1176}
1177
1178static unsigned ext4_max_namelen(struct inode *inode)
1179{
1180 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1181 EXT4_NAME_LEN;
1182}
1183
1184static struct fscrypt_operations ext4_cryptops = {
1185 .get_context = ext4_get_context,
1186 .key_prefix = ext4_key_prefix,
1187 .prepare_context = ext4_prepare_context,
1188 .set_context = ext4_set_context,
1189 .dummy_context = ext4_dummy_context,
1190 .is_encrypted = ext4_encrypted_inode,
1191 .empty_dir = ext4_empty_dir,
1192 .max_namelen = ext4_max_namelen,
1193};
1194#else
1195static struct fscrypt_operations ext4_cryptops = {
1196 .is_encrypted = ext4_encrypted_inode,
1197};
1198#endif
1199
1200#ifdef CONFIG_QUOTA
1201static char *quotatypes[] = INITQFNAMES;
1202#define QTYPE2NAME(t) (quotatypes[t])
1203
1204static int ext4_write_dquot(struct dquot *dquot);
1205static int ext4_acquire_dquot(struct dquot *dquot);
1206static int ext4_release_dquot(struct dquot *dquot);
1207static int ext4_mark_dquot_dirty(struct dquot *dquot);
1208static int ext4_write_info(struct super_block *sb, int type);
1209static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1210 const struct path *path);
1211static int ext4_quota_off(struct super_block *sb, int type);
1212static int ext4_quota_on_mount(struct super_block *sb, int type);
1213static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1214 size_t len, loff_t off);
1215static ssize_t ext4_quota_write(struct super_block *sb, int type,
1216 const char *data, size_t len, loff_t off);
1217static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1218 unsigned int flags);
1219static int ext4_enable_quotas(struct super_block *sb);
1220static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1221
1222static struct dquot **ext4_get_dquots(struct inode *inode)
1223{
1224 return EXT4_I(inode)->i_dquot;
1225}
1226
1227static const struct dquot_operations ext4_quota_operations = {
1228 .get_reserved_space = ext4_get_reserved_space,
1229 .write_dquot = ext4_write_dquot,
1230 .acquire_dquot = ext4_acquire_dquot,
1231 .release_dquot = ext4_release_dquot,
1232 .mark_dirty = ext4_mark_dquot_dirty,
1233 .write_info = ext4_write_info,
1234 .alloc_dquot = dquot_alloc,
1235 .destroy_dquot = dquot_destroy,
1236 .get_projid = ext4_get_projid,
1237 .get_next_id = ext4_get_next_id,
1238};
1239
1240static const struct quotactl_ops ext4_qctl_operations = {
1241 .quota_on = ext4_quota_on,
1242 .quota_off = ext4_quota_off,
1243 .quota_sync = dquot_quota_sync,
1244 .get_state = dquot_get_state,
1245 .set_info = dquot_set_dqinfo,
1246 .get_dqblk = dquot_get_dqblk,
1247 .set_dqblk = dquot_set_dqblk,
1248 .get_nextdqblk = dquot_get_next_dqblk,
1249};
1250#endif
1251
1252static const struct super_operations ext4_sops = {
1253 .alloc_inode = ext4_alloc_inode,
1254 .destroy_inode = ext4_destroy_inode,
1255 .write_inode = ext4_write_inode,
1256 .dirty_inode = ext4_dirty_inode,
1257 .drop_inode = ext4_drop_inode,
1258 .evict_inode = ext4_evict_inode,
1259 .put_super = ext4_put_super,
1260 .sync_fs = ext4_sync_fs,
1261 .freeze_fs = ext4_freeze,
1262 .unfreeze_fs = ext4_unfreeze,
1263 .statfs = ext4_statfs,
1264 .remount_fs = ext4_remount,
1265 .show_options = ext4_show_options,
1266#ifdef CONFIG_QUOTA
1267 .quota_read = ext4_quota_read,
1268 .quota_write = ext4_quota_write,
1269 .get_dquots = ext4_get_dquots,
1270#endif
1271 .bdev_try_to_free_page = bdev_try_to_free_page,
1272};
1273
1274static const struct export_operations ext4_export_ops = {
1275 .fh_to_dentry = ext4_fh_to_dentry,
1276 .fh_to_parent = ext4_fh_to_parent,
1277 .get_parent = ext4_get_parent,
1278};
1279
1280enum {
1281 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1282 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1283 Opt_nouid32, Opt_debug, Opt_removed,
1284 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1285 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1286 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1287 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1288 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1289 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1290 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1291 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1292 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1293 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1294 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1295 Opt_lazytime, Opt_nolazytime,
1296 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1297 Opt_inode_readahead_blks, Opt_journal_ioprio,
1298 Opt_dioread_nolock, Opt_dioread_lock,
1299 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1300 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1301};
1302
1303static const match_table_t tokens = {
1304 {Opt_bsd_df, "bsddf"},
1305 {Opt_minix_df, "minixdf"},
1306 {Opt_grpid, "grpid"},
1307 {Opt_grpid, "bsdgroups"},
1308 {Opt_nogrpid, "nogrpid"},
1309 {Opt_nogrpid, "sysvgroups"},
1310 {Opt_resgid, "resgid=%u"},
1311 {Opt_resuid, "resuid=%u"},
1312 {Opt_sb, "sb=%u"},
1313 {Opt_err_cont, "errors=continue"},
1314 {Opt_err_panic, "errors=panic"},
1315 {Opt_err_ro, "errors=remount-ro"},
1316 {Opt_nouid32, "nouid32"},
1317 {Opt_debug, "debug"},
1318 {Opt_removed, "oldalloc"},
1319 {Opt_removed, "orlov"},
1320 {Opt_user_xattr, "user_xattr"},
1321 {Opt_nouser_xattr, "nouser_xattr"},
1322 {Opt_acl, "acl"},
1323 {Opt_noacl, "noacl"},
1324 {Opt_noload, "norecovery"},
1325 {Opt_noload, "noload"},
1326 {Opt_removed, "nobh"},
1327 {Opt_removed, "bh"},
1328 {Opt_commit, "commit=%u"},
1329 {Opt_min_batch_time, "min_batch_time=%u"},
1330 {Opt_max_batch_time, "max_batch_time=%u"},
1331 {Opt_journal_dev, "journal_dev=%u"},
1332 {Opt_journal_path, "journal_path=%s"},
1333 {Opt_journal_checksum, "journal_checksum"},
1334 {Opt_nojournal_checksum, "nojournal_checksum"},
1335 {Opt_journal_async_commit, "journal_async_commit"},
1336 {Opt_abort, "abort"},
1337 {Opt_data_journal, "data=journal"},
1338 {Opt_data_ordered, "data=ordered"},
1339 {Opt_data_writeback, "data=writeback"},
1340 {Opt_data_err_abort, "data_err=abort"},
1341 {Opt_data_err_ignore, "data_err=ignore"},
1342 {Opt_offusrjquota, "usrjquota="},
1343 {Opt_usrjquota, "usrjquota=%s"},
1344 {Opt_offgrpjquota, "grpjquota="},
1345 {Opt_grpjquota, "grpjquota=%s"},
1346 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1347 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1348 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1349 {Opt_grpquota, "grpquota"},
1350 {Opt_noquota, "noquota"},
1351 {Opt_quota, "quota"},
1352 {Opt_usrquota, "usrquota"},
1353 {Opt_prjquota, "prjquota"},
1354 {Opt_barrier, "barrier=%u"},
1355 {Opt_barrier, "barrier"},
1356 {Opt_nobarrier, "nobarrier"},
1357 {Opt_i_version, "i_version"},
1358 {Opt_dax, "dax"},
1359 {Opt_stripe, "stripe=%u"},
1360 {Opt_delalloc, "delalloc"},
1361 {Opt_lazytime, "lazytime"},
1362 {Opt_nolazytime, "nolazytime"},
1363 {Opt_nodelalloc, "nodelalloc"},
1364 {Opt_removed, "mblk_io_submit"},
1365 {Opt_removed, "nomblk_io_submit"},
1366 {Opt_block_validity, "block_validity"},
1367 {Opt_noblock_validity, "noblock_validity"},
1368 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1369 {Opt_journal_ioprio, "journal_ioprio=%u"},
1370 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1371 {Opt_auto_da_alloc, "auto_da_alloc"},
1372 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1373 {Opt_dioread_nolock, "dioread_nolock"},
1374 {Opt_dioread_lock, "dioread_lock"},
1375 {Opt_discard, "discard"},
1376 {Opt_nodiscard, "nodiscard"},
1377 {Opt_init_itable, "init_itable=%u"},
1378 {Opt_init_itable, "init_itable"},
1379 {Opt_noinit_itable, "noinit_itable"},
1380 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1381 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1382 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1383 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1384 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1385 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1386 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1387 {Opt_err, NULL},
1388};
1389
1390static ext4_fsblk_t get_sb_block(void **data)
1391{
1392 ext4_fsblk_t sb_block;
1393 char *options = (char *) *data;
1394
1395 if (!options || strncmp(options, "sb=", 3) != 0)
1396 return 1; /* Default location */
1397
1398 options += 3;
1399 /* TODO: use simple_strtoll with >32bit ext4 */
1400 sb_block = simple_strtoul(options, &options, 0);
1401 if (*options && *options != ',') {
1402 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1403 (char *) *data);
1404 return 1;
1405 }
1406 if (*options == ',')
1407 options++;
1408 *data = (void *) options;
1409
1410 return sb_block;
1411}
1412
1413#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1414static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1415 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1416
1417#ifdef CONFIG_QUOTA
1418static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1419{
1420 struct ext4_sb_info *sbi = EXT4_SB(sb);
1421 char *qname;
1422 int ret = -1;
1423
1424 if (sb_any_quota_loaded(sb) &&
1425 !sbi->s_qf_names[qtype]) {
1426 ext4_msg(sb, KERN_ERR,
1427 "Cannot change journaled "
1428 "quota options when quota turned on");
1429 return -1;
1430 }
1431 if (ext4_has_feature_quota(sb)) {
1432 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1433 "ignored when QUOTA feature is enabled");
1434 return 1;
1435 }
1436 qname = match_strdup(args);
1437 if (!qname) {
1438 ext4_msg(sb, KERN_ERR,
1439 "Not enough memory for storing quotafile name");
1440 return -1;
1441 }
1442 if (sbi->s_qf_names[qtype]) {
1443 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1444 ret = 1;
1445 else
1446 ext4_msg(sb, KERN_ERR,
1447 "%s quota file already specified",
1448 QTYPE2NAME(qtype));
1449 goto errout;
1450 }
1451 if (strchr(qname, '/')) {
1452 ext4_msg(sb, KERN_ERR,
1453 "quotafile must be on filesystem root");
1454 goto errout;
1455 }
1456 sbi->s_qf_names[qtype] = qname;
1457 set_opt(sb, QUOTA);
1458 return 1;
1459errout:
1460 kfree(qname);
1461 return ret;
1462}
1463
1464static int clear_qf_name(struct super_block *sb, int qtype)
1465{
1466
1467 struct ext4_sb_info *sbi = EXT4_SB(sb);
1468
1469 if (sb_any_quota_loaded(sb) &&
1470 sbi->s_qf_names[qtype]) {
1471 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1472 " when quota turned on");
1473 return -1;
1474 }
1475 kfree(sbi->s_qf_names[qtype]);
1476 sbi->s_qf_names[qtype] = NULL;
1477 return 1;
1478}
1479#endif
1480
1481#define MOPT_SET 0x0001
1482#define MOPT_CLEAR 0x0002
1483#define MOPT_NOSUPPORT 0x0004
1484#define MOPT_EXPLICIT 0x0008
1485#define MOPT_CLEAR_ERR 0x0010
1486#define MOPT_GTE0 0x0020
1487#ifdef CONFIG_QUOTA
1488#define MOPT_Q 0
1489#define MOPT_QFMT 0x0040
1490#else
1491#define MOPT_Q MOPT_NOSUPPORT
1492#define MOPT_QFMT MOPT_NOSUPPORT
1493#endif
1494#define MOPT_DATAJ 0x0080
1495#define MOPT_NO_EXT2 0x0100
1496#define MOPT_NO_EXT3 0x0200
1497#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1498#define MOPT_STRING 0x0400
1499
1500static const struct mount_opts {
1501 int token;
1502 int mount_opt;
1503 int flags;
1504} ext4_mount_opts[] = {
1505 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1506 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1507 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1508 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1509 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1510 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1511 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1512 MOPT_EXT4_ONLY | MOPT_SET},
1513 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1514 MOPT_EXT4_ONLY | MOPT_CLEAR},
1515 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1516 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1517 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1518 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1519 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1520 MOPT_EXT4_ONLY | MOPT_CLEAR},
1521 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1522 MOPT_EXT4_ONLY | MOPT_CLEAR},
1523 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1524 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1525 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1526 EXT4_MOUNT_JOURNAL_CHECKSUM),
1527 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1528 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1529 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1530 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1531 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1532 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1533 MOPT_NO_EXT2},
1534 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1535 MOPT_NO_EXT2},
1536 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1537 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1538 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1539 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1540 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1541 {Opt_commit, 0, MOPT_GTE0},
1542 {Opt_max_batch_time, 0, MOPT_GTE0},
1543 {Opt_min_batch_time, 0, MOPT_GTE0},
1544 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1545 {Opt_init_itable, 0, MOPT_GTE0},
1546 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1547 {Opt_stripe, 0, MOPT_GTE0},
1548 {Opt_resuid, 0, MOPT_GTE0},
1549 {Opt_resgid, 0, MOPT_GTE0},
1550 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1551 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1552 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1553 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1554 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1555 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1556 MOPT_NO_EXT2 | MOPT_DATAJ},
1557 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1558 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1559#ifdef CONFIG_EXT4_FS_POSIX_ACL
1560 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1561 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1562#else
1563 {Opt_acl, 0, MOPT_NOSUPPORT},
1564 {Opt_noacl, 0, MOPT_NOSUPPORT},
1565#endif
1566 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1567 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1568 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1569 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1570 MOPT_SET | MOPT_Q},
1571 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1572 MOPT_SET | MOPT_Q},
1573 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1574 MOPT_SET | MOPT_Q},
1575 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1576 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1577 MOPT_CLEAR | MOPT_Q},
1578 {Opt_usrjquota, 0, MOPT_Q},
1579 {Opt_grpjquota, 0, MOPT_Q},
1580 {Opt_offusrjquota, 0, MOPT_Q},
1581 {Opt_offgrpjquota, 0, MOPT_Q},
1582 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1583 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1584 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1585 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1586 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1587 {Opt_err, 0, 0}
1588};
1589
1590static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1591 substring_t *args, unsigned long *journal_devnum,
1592 unsigned int *journal_ioprio, int is_remount)
1593{
1594 struct ext4_sb_info *sbi = EXT4_SB(sb);
1595 const struct mount_opts *m;
1596 kuid_t uid;
1597 kgid_t gid;
1598 int arg = 0;
1599
1600#ifdef CONFIG_QUOTA
1601 if (token == Opt_usrjquota)
1602 return set_qf_name(sb, USRQUOTA, &args[0]);
1603 else if (token == Opt_grpjquota)
1604 return set_qf_name(sb, GRPQUOTA, &args[0]);
1605 else if (token == Opt_offusrjquota)
1606 return clear_qf_name(sb, USRQUOTA);
1607 else if (token == Opt_offgrpjquota)
1608 return clear_qf_name(sb, GRPQUOTA);
1609#endif
1610 switch (token) {
1611 case Opt_noacl:
1612 case Opt_nouser_xattr:
1613 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1614 break;
1615 case Opt_sb:
1616 return 1; /* handled by get_sb_block() */
1617 case Opt_removed:
1618 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1619 return 1;
1620 case Opt_abort:
1621 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1622 return 1;
1623 case Opt_i_version:
1624 sb->s_flags |= MS_I_VERSION;
1625 return 1;
1626 case Opt_lazytime:
1627 sb->s_flags |= MS_LAZYTIME;
1628 return 1;
1629 case Opt_nolazytime:
1630 sb->s_flags &= ~MS_LAZYTIME;
1631 return 1;
1632 }
1633
1634 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1635 if (token == m->token)
1636 break;
1637
1638 if (m->token == Opt_err) {
1639 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1640 "or missing value", opt);
1641 return -1;
1642 }
1643
1644 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1645 ext4_msg(sb, KERN_ERR,
1646 "Mount option \"%s\" incompatible with ext2", opt);
1647 return -1;
1648 }
1649 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1650 ext4_msg(sb, KERN_ERR,
1651 "Mount option \"%s\" incompatible with ext3", opt);
1652 return -1;
1653 }
1654
1655 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1656 return -1;
1657 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1658 return -1;
1659 if (m->flags & MOPT_EXPLICIT) {
1660 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1661 set_opt2(sb, EXPLICIT_DELALLOC);
1662 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1663 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1664 } else
1665 return -1;
1666 }
1667 if (m->flags & MOPT_CLEAR_ERR)
1668 clear_opt(sb, ERRORS_MASK);
1669 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1670 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1671 "options when quota turned on");
1672 return -1;
1673 }
1674
1675 if (m->flags & MOPT_NOSUPPORT) {
1676 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1677 } else if (token == Opt_commit) {
1678 if (arg == 0)
1679 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1680 sbi->s_commit_interval = HZ * arg;
1681 } else if (token == Opt_max_batch_time) {
1682 sbi->s_max_batch_time = arg;
1683 } else if (token == Opt_min_batch_time) {
1684 sbi->s_min_batch_time = arg;
1685 } else if (token == Opt_inode_readahead_blks) {
1686 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1687 ext4_msg(sb, KERN_ERR,
1688 "EXT4-fs: inode_readahead_blks must be "
1689 "0 or a power of 2 smaller than 2^31");
1690 return -1;
1691 }
1692 sbi->s_inode_readahead_blks = arg;
1693 } else if (token == Opt_init_itable) {
1694 set_opt(sb, INIT_INODE_TABLE);
1695 if (!args->from)
1696 arg = EXT4_DEF_LI_WAIT_MULT;
1697 sbi->s_li_wait_mult = arg;
1698 } else if (token == Opt_max_dir_size_kb) {
1699 sbi->s_max_dir_size_kb = arg;
1700 } else if (token == Opt_stripe) {
1701 sbi->s_stripe = arg;
1702 } else if (token == Opt_resuid) {
1703 uid = make_kuid(current_user_ns(), arg);
1704 if (!uid_valid(uid)) {
1705 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1706 return -1;
1707 }
1708 sbi->s_resuid = uid;
1709 } else if (token == Opt_resgid) {
1710 gid = make_kgid(current_user_ns(), arg);
1711 if (!gid_valid(gid)) {
1712 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1713 return -1;
1714 }
1715 sbi->s_resgid = gid;
1716 } else if (token == Opt_journal_dev) {
1717 if (is_remount) {
1718 ext4_msg(sb, KERN_ERR,
1719 "Cannot specify journal on remount");
1720 return -1;
1721 }
1722 *journal_devnum = arg;
1723 } else if (token == Opt_journal_path) {
1724 char *journal_path;
1725 struct inode *journal_inode;
1726 struct path path;
1727 int error;
1728
1729 if (is_remount) {
1730 ext4_msg(sb, KERN_ERR,
1731 "Cannot specify journal on remount");
1732 return -1;
1733 }
1734 journal_path = match_strdup(&args[0]);
1735 if (!journal_path) {
1736 ext4_msg(sb, KERN_ERR, "error: could not dup "
1737 "journal device string");
1738 return -1;
1739 }
1740
1741 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1742 if (error) {
1743 ext4_msg(sb, KERN_ERR, "error: could not find "
1744 "journal device path: error %d", error);
1745 kfree(journal_path);
1746 return -1;
1747 }
1748
1749 journal_inode = d_inode(path.dentry);
1750 if (!S_ISBLK(journal_inode->i_mode)) {
1751 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1752 "is not a block device", journal_path);
1753 path_put(&path);
1754 kfree(journal_path);
1755 return -1;
1756 }
1757
1758 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1759 path_put(&path);
1760 kfree(journal_path);
1761 } else if (token == Opt_journal_ioprio) {
1762 if (arg > 7) {
1763 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1764 " (must be 0-7)");
1765 return -1;
1766 }
1767 *journal_ioprio =
1768 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1769 } else if (token == Opt_test_dummy_encryption) {
1770#ifdef CONFIG_EXT4_FS_ENCRYPTION
1771 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1772 ext4_msg(sb, KERN_WARNING,
1773 "Test dummy encryption mode enabled");
1774#else
1775 ext4_msg(sb, KERN_WARNING,
1776 "Test dummy encryption mount option ignored");
1777#endif
1778 } else if (m->flags & MOPT_DATAJ) {
1779 if (is_remount) {
1780 if (!sbi->s_journal)
1781 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1782 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1783 ext4_msg(sb, KERN_ERR,
1784 "Cannot change data mode on remount");
1785 return -1;
1786 }
1787 } else {
1788 clear_opt(sb, DATA_FLAGS);
1789 sbi->s_mount_opt |= m->mount_opt;
1790 }
1791#ifdef CONFIG_QUOTA
1792 } else if (m->flags & MOPT_QFMT) {
1793 if (sb_any_quota_loaded(sb) &&
1794 sbi->s_jquota_fmt != m->mount_opt) {
1795 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1796 "quota options when quota turned on");
1797 return -1;
1798 }
1799 if (ext4_has_feature_quota(sb)) {
1800 ext4_msg(sb, KERN_INFO,
1801 "Quota format mount options ignored "
1802 "when QUOTA feature is enabled");
1803 return 1;
1804 }
1805 sbi->s_jquota_fmt = m->mount_opt;
1806#endif
1807 } else if (token == Opt_dax) {
1808#ifdef CONFIG_FS_DAX
1809 ext4_msg(sb, KERN_WARNING,
1810 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1811 sbi->s_mount_opt |= m->mount_opt;
1812#else
1813 ext4_msg(sb, KERN_INFO, "dax option not supported");
1814 return -1;
1815#endif
1816 } else if (token == Opt_data_err_abort) {
1817 sbi->s_mount_opt |= m->mount_opt;
1818 } else if (token == Opt_data_err_ignore) {
1819 sbi->s_mount_opt &= ~m->mount_opt;
1820 } else {
1821 if (!args->from)
1822 arg = 1;
1823 if (m->flags & MOPT_CLEAR)
1824 arg = !arg;
1825 else if (unlikely(!(m->flags & MOPT_SET))) {
1826 ext4_msg(sb, KERN_WARNING,
1827 "buggy handling of option %s", opt);
1828 WARN_ON(1);
1829 return -1;
1830 }
1831 if (arg != 0)
1832 sbi->s_mount_opt |= m->mount_opt;
1833 else
1834 sbi->s_mount_opt &= ~m->mount_opt;
1835 }
1836 return 1;
1837}
1838
1839static int parse_options(char *options, struct super_block *sb,
1840 unsigned long *journal_devnum,
1841 unsigned int *journal_ioprio,
1842 int is_remount)
1843{
1844 struct ext4_sb_info *sbi = EXT4_SB(sb);
1845 char *p;
1846 substring_t args[MAX_OPT_ARGS];
1847 int token;
1848
1849 if (!options)
1850 return 1;
1851
1852 while ((p = strsep(&options, ",")) != NULL) {
1853 if (!*p)
1854 continue;
1855 /*
1856 * Initialize args struct so we know whether arg was
1857 * found; some options take optional arguments.
1858 */
1859 args[0].to = args[0].from = NULL;
1860 token = match_token(p, tokens, args);
1861 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1862 journal_ioprio, is_remount) < 0)
1863 return 0;
1864 }
1865#ifdef CONFIG_QUOTA
1866 /*
1867 * We do the test below only for project quotas. 'usrquota' and
1868 * 'grpquota' mount options are allowed even without quota feature
1869 * to support legacy quotas in quota files.
1870 */
1871 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1872 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1873 "Cannot enable project quota enforcement.");
1874 return 0;
1875 }
1876 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1877 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1878 clear_opt(sb, USRQUOTA);
1879
1880 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1881 clear_opt(sb, GRPQUOTA);
1882
1883 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1884 ext4_msg(sb, KERN_ERR, "old and new quota "
1885 "format mixing");
1886 return 0;
1887 }
1888
1889 if (!sbi->s_jquota_fmt) {
1890 ext4_msg(sb, KERN_ERR, "journaled quota format "
1891 "not specified");
1892 return 0;
1893 }
1894 }
1895#endif
1896 if (test_opt(sb, DIOREAD_NOLOCK)) {
1897 int blocksize =
1898 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1899
1900 if (blocksize < PAGE_SIZE) {
1901 ext4_msg(sb, KERN_ERR, "can't mount with "
1902 "dioread_nolock if block size != PAGE_SIZE");
1903 return 0;
1904 }
1905 }
1906 return 1;
1907}
1908
1909static inline void ext4_show_quota_options(struct seq_file *seq,
1910 struct super_block *sb)
1911{
1912#if defined(CONFIG_QUOTA)
1913 struct ext4_sb_info *sbi = EXT4_SB(sb);
1914
1915 if (sbi->s_jquota_fmt) {
1916 char *fmtname = "";
1917
1918 switch (sbi->s_jquota_fmt) {
1919 case QFMT_VFS_OLD:
1920 fmtname = "vfsold";
1921 break;
1922 case QFMT_VFS_V0:
1923 fmtname = "vfsv0";
1924 break;
1925 case QFMT_VFS_V1:
1926 fmtname = "vfsv1";
1927 break;
1928 }
1929 seq_printf(seq, ",jqfmt=%s", fmtname);
1930 }
1931
1932 if (sbi->s_qf_names[USRQUOTA])
1933 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1934
1935 if (sbi->s_qf_names[GRPQUOTA])
1936 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1937#endif
1938}
1939
1940static const char *token2str(int token)
1941{
1942 const struct match_token *t;
1943
1944 for (t = tokens; t->token != Opt_err; t++)
1945 if (t->token == token && !strchr(t->pattern, '='))
1946 break;
1947 return t->pattern;
1948}
1949
1950/*
1951 * Show an option if
1952 * - it's set to a non-default value OR
1953 * - if the per-sb default is different from the global default
1954 */
1955static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1956 int nodefs)
1957{
1958 struct ext4_sb_info *sbi = EXT4_SB(sb);
1959 struct ext4_super_block *es = sbi->s_es;
1960 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1961 const struct mount_opts *m;
1962 char sep = nodefs ? '\n' : ',';
1963
1964#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1965#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1966
1967 if (sbi->s_sb_block != 1)
1968 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1969
1970 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1971 int want_set = m->flags & MOPT_SET;
1972 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1973 (m->flags & MOPT_CLEAR_ERR))
1974 continue;
1975 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1976 continue; /* skip if same as the default */
1977 if ((want_set &&
1978 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1979 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1980 continue; /* select Opt_noFoo vs Opt_Foo */
1981 SEQ_OPTS_PRINT("%s", token2str(m->token));
1982 }
1983
1984 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1985 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1986 SEQ_OPTS_PRINT("resuid=%u",
1987 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1988 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1989 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1990 SEQ_OPTS_PRINT("resgid=%u",
1991 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1992 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1993 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1994 SEQ_OPTS_PUTS("errors=remount-ro");
1995 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1996 SEQ_OPTS_PUTS("errors=continue");
1997 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1998 SEQ_OPTS_PUTS("errors=panic");
1999 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2000 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2001 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2002 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2003 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2004 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2005 if (sb->s_flags & MS_I_VERSION)
2006 SEQ_OPTS_PUTS("i_version");
2007 if (nodefs || sbi->s_stripe)
2008 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2009 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2010 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2011 SEQ_OPTS_PUTS("data=journal");
2012 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2013 SEQ_OPTS_PUTS("data=ordered");
2014 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2015 SEQ_OPTS_PUTS("data=writeback");
2016 }
2017 if (nodefs ||
2018 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2019 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2020 sbi->s_inode_readahead_blks);
2021
2022 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2023 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2024 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2025 if (nodefs || sbi->s_max_dir_size_kb)
2026 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2027 if (test_opt(sb, DATA_ERR_ABORT))
2028 SEQ_OPTS_PUTS("data_err=abort");
2029
2030 ext4_show_quota_options(seq, sb);
2031 return 0;
2032}
2033
2034static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2035{
2036 return _ext4_show_options(seq, root->d_sb, 0);
2037}
2038
2039int ext4_seq_options_show(struct seq_file *seq, void *offset)
2040{
2041 struct super_block *sb = seq->private;
2042 int rc;
2043
2044 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2045 rc = _ext4_show_options(seq, sb, 1);
2046 seq_puts(seq, "\n");
2047 return rc;
2048}
2049
2050static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2051 int read_only)
2052{
2053 struct ext4_sb_info *sbi = EXT4_SB(sb);
2054 int res = 0;
2055
2056 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2057 ext4_msg(sb, KERN_ERR, "revision level too high, "
2058 "forcing read-only mode");
2059 res = MS_RDONLY;
2060 }
2061 if (read_only)
2062 goto done;
2063 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2064 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2065 "running e2fsck is recommended");
2066 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2067 ext4_msg(sb, KERN_WARNING,
2068 "warning: mounting fs with errors, "
2069 "running e2fsck is recommended");
2070 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2071 le16_to_cpu(es->s_mnt_count) >=
2072 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2073 ext4_msg(sb, KERN_WARNING,
2074 "warning: maximal mount count reached, "
2075 "running e2fsck is recommended");
2076 else if (le32_to_cpu(es->s_checkinterval) &&
2077 (le32_to_cpu(es->s_lastcheck) +
2078 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2079 ext4_msg(sb, KERN_WARNING,
2080 "warning: checktime reached, "
2081 "running e2fsck is recommended");
2082 if (!sbi->s_journal)
2083 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2084 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2085 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2086 le16_add_cpu(&es->s_mnt_count, 1);
2087 es->s_mtime = cpu_to_le32(get_seconds());
2088 ext4_update_dynamic_rev(sb);
2089 if (sbi->s_journal)
2090 ext4_set_feature_journal_needs_recovery(sb);
2091
2092 ext4_commit_super(sb, 1);
2093done:
2094 if (test_opt(sb, DEBUG))
2095 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2096 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2097 sb->s_blocksize,
2098 sbi->s_groups_count,
2099 EXT4_BLOCKS_PER_GROUP(sb),
2100 EXT4_INODES_PER_GROUP(sb),
2101 sbi->s_mount_opt, sbi->s_mount_opt2);
2102
2103 cleancache_init_fs(sb);
2104 return res;
2105}
2106
2107int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2108{
2109 struct ext4_sb_info *sbi = EXT4_SB(sb);
2110 struct flex_groups *new_groups;
2111 int size;
2112
2113 if (!sbi->s_log_groups_per_flex)
2114 return 0;
2115
2116 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2117 if (size <= sbi->s_flex_groups_allocated)
2118 return 0;
2119
2120 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2121 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2122 if (!new_groups) {
2123 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2124 size / (int) sizeof(struct flex_groups));
2125 return -ENOMEM;
2126 }
2127
2128 if (sbi->s_flex_groups) {
2129 memcpy(new_groups, sbi->s_flex_groups,
2130 (sbi->s_flex_groups_allocated *
2131 sizeof(struct flex_groups)));
2132 kvfree(sbi->s_flex_groups);
2133 }
2134 sbi->s_flex_groups = new_groups;
2135 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2136 return 0;
2137}
2138
2139static int ext4_fill_flex_info(struct super_block *sb)
2140{
2141 struct ext4_sb_info *sbi = EXT4_SB(sb);
2142 struct ext4_group_desc *gdp = NULL;
2143 ext4_group_t flex_group;
2144 int i, err;
2145
2146 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2147 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2148 sbi->s_log_groups_per_flex = 0;
2149 return 1;
2150 }
2151
2152 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2153 if (err)
2154 goto failed;
2155
2156 for (i = 0; i < sbi->s_groups_count; i++) {
2157 gdp = ext4_get_group_desc(sb, i, NULL);
2158
2159 flex_group = ext4_flex_group(sbi, i);
2160 atomic_add(ext4_free_inodes_count(sb, gdp),
2161 &sbi->s_flex_groups[flex_group].free_inodes);
2162 atomic64_add(ext4_free_group_clusters(sb, gdp),
2163 &sbi->s_flex_groups[flex_group].free_clusters);
2164 atomic_add(ext4_used_dirs_count(sb, gdp),
2165 &sbi->s_flex_groups[flex_group].used_dirs);
2166 }
2167
2168 return 1;
2169failed:
2170 return 0;
2171}
2172
2173static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2174 struct ext4_group_desc *gdp)
2175{
2176 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2177 __u16 crc = 0;
2178 __le32 le_group = cpu_to_le32(block_group);
2179 struct ext4_sb_info *sbi = EXT4_SB(sb);
2180
2181 if (ext4_has_metadata_csum(sbi->s_sb)) {
2182 /* Use new metadata_csum algorithm */
2183 __u32 csum32;
2184 __u16 dummy_csum = 0;
2185
2186 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2187 sizeof(le_group));
2188 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2189 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2190 sizeof(dummy_csum));
2191 offset += sizeof(dummy_csum);
2192 if (offset < sbi->s_desc_size)
2193 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2194 sbi->s_desc_size - offset);
2195
2196 crc = csum32 & 0xFFFF;
2197 goto out;
2198 }
2199
2200 /* old crc16 code */
2201 if (!ext4_has_feature_gdt_csum(sb))
2202 return 0;
2203
2204 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2205 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2206 crc = crc16(crc, (__u8 *)gdp, offset);
2207 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2208 /* for checksum of struct ext4_group_desc do the rest...*/
2209 if (ext4_has_feature_64bit(sb) &&
2210 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2211 crc = crc16(crc, (__u8 *)gdp + offset,
2212 le16_to_cpu(sbi->s_es->s_desc_size) -
2213 offset);
2214
2215out:
2216 return cpu_to_le16(crc);
2217}
2218
2219int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2220 struct ext4_group_desc *gdp)
2221{
2222 if (ext4_has_group_desc_csum(sb) &&
2223 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2224 return 0;
2225
2226 return 1;
2227}
2228
2229void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2230 struct ext4_group_desc *gdp)
2231{
2232 if (!ext4_has_group_desc_csum(sb))
2233 return;
2234 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2235}
2236
2237/* Called at mount-time, super-block is locked */
2238static int ext4_check_descriptors(struct super_block *sb,
2239 ext4_fsblk_t sb_block,
2240 ext4_group_t *first_not_zeroed)
2241{
2242 struct ext4_sb_info *sbi = EXT4_SB(sb);
2243 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2244 ext4_fsblk_t last_block;
2245 ext4_fsblk_t block_bitmap;
2246 ext4_fsblk_t inode_bitmap;
2247 ext4_fsblk_t inode_table;
2248 int flexbg_flag = 0;
2249 ext4_group_t i, grp = sbi->s_groups_count;
2250
2251 if (ext4_has_feature_flex_bg(sb))
2252 flexbg_flag = 1;
2253
2254 ext4_debug("Checking group descriptors");
2255
2256 for (i = 0; i < sbi->s_groups_count; i++) {
2257 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2258
2259 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2260 last_block = ext4_blocks_count(sbi->s_es) - 1;
2261 else
2262 last_block = first_block +
2263 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2264
2265 if ((grp == sbi->s_groups_count) &&
2266 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2267 grp = i;
2268
2269 block_bitmap = ext4_block_bitmap(sb, gdp);
2270 if (block_bitmap == sb_block) {
2271 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2272 "Block bitmap for group %u overlaps "
2273 "superblock", i);
2274 }
2275 if (block_bitmap < first_block || block_bitmap > last_block) {
2276 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2277 "Block bitmap for group %u not in group "
2278 "(block %llu)!", i, block_bitmap);
2279 return 0;
2280 }
2281 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2282 if (inode_bitmap == sb_block) {
2283 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2284 "Inode bitmap for group %u overlaps "
2285 "superblock", i);
2286 }
2287 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2288 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2289 "Inode bitmap for group %u not in group "
2290 "(block %llu)!", i, inode_bitmap);
2291 return 0;
2292 }
2293 inode_table = ext4_inode_table(sb, gdp);
2294 if (inode_table == sb_block) {
2295 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2296 "Inode table for group %u overlaps "
2297 "superblock", i);
2298 }
2299 if (inode_table < first_block ||
2300 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2301 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2302 "Inode table for group %u not in group "
2303 "(block %llu)!", i, inode_table);
2304 return 0;
2305 }
2306 ext4_lock_group(sb, i);
2307 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2308 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2309 "Checksum for group %u failed (%u!=%u)",
2310 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2311 gdp)), le16_to_cpu(gdp->bg_checksum));
2312 if (!(sb->s_flags & MS_RDONLY)) {
2313 ext4_unlock_group(sb, i);
2314 return 0;
2315 }
2316 }
2317 ext4_unlock_group(sb, i);
2318 if (!flexbg_flag)
2319 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2320 }
2321 if (NULL != first_not_zeroed)
2322 *first_not_zeroed = grp;
2323 return 1;
2324}
2325
2326/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2327 * the superblock) which were deleted from all directories, but held open by
2328 * a process at the time of a crash. We walk the list and try to delete these
2329 * inodes at recovery time (only with a read-write filesystem).
2330 *
2331 * In order to keep the orphan inode chain consistent during traversal (in
2332 * case of crash during recovery), we link each inode into the superblock
2333 * orphan list_head and handle it the same way as an inode deletion during
2334 * normal operation (which journals the operations for us).
2335 *
2336 * We only do an iget() and an iput() on each inode, which is very safe if we
2337 * accidentally point at an in-use or already deleted inode. The worst that
2338 * can happen in this case is that we get a "bit already cleared" message from
2339 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2340 * e2fsck was run on this filesystem, and it must have already done the orphan
2341 * inode cleanup for us, so we can safely abort without any further action.
2342 */
2343static void ext4_orphan_cleanup(struct super_block *sb,
2344 struct ext4_super_block *es)
2345{
2346 unsigned int s_flags = sb->s_flags;
2347 int ret, nr_orphans = 0, nr_truncates = 0;
2348#ifdef CONFIG_QUOTA
2349 int i;
2350#endif
2351 if (!es->s_last_orphan) {
2352 jbd_debug(4, "no orphan inodes to clean up\n");
2353 return;
2354 }
2355
2356 if (bdev_read_only(sb->s_bdev)) {
2357 ext4_msg(sb, KERN_ERR, "write access "
2358 "unavailable, skipping orphan cleanup");
2359 return;
2360 }
2361
2362 /* Check if feature set would not allow a r/w mount */
2363 if (!ext4_feature_set_ok(sb, 0)) {
2364 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2365 "unknown ROCOMPAT features");
2366 return;
2367 }
2368
2369 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2370 /* don't clear list on RO mount w/ errors */
2371 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2372 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2373 "clearing orphan list.\n");
2374 es->s_last_orphan = 0;
2375 }
2376 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2377 return;
2378 }
2379
2380 if (s_flags & MS_RDONLY) {
2381 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2382 sb->s_flags &= ~MS_RDONLY;
2383 }
2384#ifdef CONFIG_QUOTA
2385 /* Needed for iput() to work correctly and not trash data */
2386 sb->s_flags |= MS_ACTIVE;
2387 /* Turn on quotas so that they are updated correctly */
2388 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2389 if (EXT4_SB(sb)->s_qf_names[i]) {
2390 int ret = ext4_quota_on_mount(sb, i);
2391 if (ret < 0)
2392 ext4_msg(sb, KERN_ERR,
2393 "Cannot turn on journaled "
2394 "quota: error %d", ret);
2395 }
2396 }
2397#endif
2398
2399 while (es->s_last_orphan) {
2400 struct inode *inode;
2401
2402 /*
2403 * We may have encountered an error during cleanup; if
2404 * so, skip the rest.
2405 */
2406 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2407 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2408 es->s_last_orphan = 0;
2409 break;
2410 }
2411
2412 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2413 if (IS_ERR(inode)) {
2414 es->s_last_orphan = 0;
2415 break;
2416 }
2417
2418 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2419 dquot_initialize(inode);
2420 if (inode->i_nlink) {
2421 if (test_opt(sb, DEBUG))
2422 ext4_msg(sb, KERN_DEBUG,
2423 "%s: truncating inode %lu to %lld bytes",
2424 __func__, inode->i_ino, inode->i_size);
2425 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2426 inode->i_ino, inode->i_size);
2427 inode_lock(inode);
2428 truncate_inode_pages(inode->i_mapping, inode->i_size);
2429 ret = ext4_truncate(inode);
2430 if (ret)
2431 ext4_std_error(inode->i_sb, ret);
2432 inode_unlock(inode);
2433 nr_truncates++;
2434 } else {
2435 if (test_opt(sb, DEBUG))
2436 ext4_msg(sb, KERN_DEBUG,
2437 "%s: deleting unreferenced inode %lu",
2438 __func__, inode->i_ino);
2439 jbd_debug(2, "deleting unreferenced inode %lu\n",
2440 inode->i_ino);
2441 nr_orphans++;
2442 }
2443 iput(inode); /* The delete magic happens here! */
2444 }
2445
2446#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2447
2448 if (nr_orphans)
2449 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2450 PLURAL(nr_orphans));
2451 if (nr_truncates)
2452 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2453 PLURAL(nr_truncates));
2454#ifdef CONFIG_QUOTA
2455 /* Turn quotas off */
2456 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2457 if (sb_dqopt(sb)->files[i])
2458 dquot_quota_off(sb, i);
2459 }
2460#endif
2461 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2462}
2463
2464/*
2465 * Maximal extent format file size.
2466 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2467 * extent format containers, within a sector_t, and within i_blocks
2468 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2469 * so that won't be a limiting factor.
2470 *
2471 * However there is other limiting factor. We do store extents in the form
2472 * of starting block and length, hence the resulting length of the extent
2473 * covering maximum file size must fit into on-disk format containers as
2474 * well. Given that length is always by 1 unit bigger than max unit (because
2475 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2476 *
2477 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2478 */
2479static loff_t ext4_max_size(int blkbits, int has_huge_files)
2480{
2481 loff_t res;
2482 loff_t upper_limit = MAX_LFS_FILESIZE;
2483
2484 /* small i_blocks in vfs inode? */
2485 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2486 /*
2487 * CONFIG_LBDAF is not enabled implies the inode
2488 * i_block represent total blocks in 512 bytes
2489 * 32 == size of vfs inode i_blocks * 8
2490 */
2491 upper_limit = (1LL << 32) - 1;
2492
2493 /* total blocks in file system block size */
2494 upper_limit >>= (blkbits - 9);
2495 upper_limit <<= blkbits;
2496 }
2497
2498 /*
2499 * 32-bit extent-start container, ee_block. We lower the maxbytes
2500 * by one fs block, so ee_len can cover the extent of maximum file
2501 * size
2502 */
2503 res = (1LL << 32) - 1;
2504 res <<= blkbits;
2505
2506 /* Sanity check against vm- & vfs- imposed limits */
2507 if (res > upper_limit)
2508 res = upper_limit;
2509
2510 return res;
2511}
2512
2513/*
2514 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2515 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2516 * We need to be 1 filesystem block less than the 2^48 sector limit.
2517 */
2518static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2519{
2520 loff_t res = EXT4_NDIR_BLOCKS;
2521 int meta_blocks;
2522 loff_t upper_limit;
2523 /* This is calculated to be the largest file size for a dense, block
2524 * mapped file such that the file's total number of 512-byte sectors,
2525 * including data and all indirect blocks, does not exceed (2^48 - 1).
2526 *
2527 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2528 * number of 512-byte sectors of the file.
2529 */
2530
2531 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2532 /*
2533 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2534 * the inode i_block field represents total file blocks in
2535 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2536 */
2537 upper_limit = (1LL << 32) - 1;
2538
2539 /* total blocks in file system block size */
2540 upper_limit >>= (bits - 9);
2541
2542 } else {
2543 /*
2544 * We use 48 bit ext4_inode i_blocks
2545 * With EXT4_HUGE_FILE_FL set the i_blocks
2546 * represent total number of blocks in
2547 * file system block size
2548 */
2549 upper_limit = (1LL << 48) - 1;
2550
2551 }
2552
2553 /* indirect blocks */
2554 meta_blocks = 1;
2555 /* double indirect blocks */
2556 meta_blocks += 1 + (1LL << (bits-2));
2557 /* tripple indirect blocks */
2558 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2559
2560 upper_limit -= meta_blocks;
2561 upper_limit <<= bits;
2562
2563 res += 1LL << (bits-2);
2564 res += 1LL << (2*(bits-2));
2565 res += 1LL << (3*(bits-2));
2566 res <<= bits;
2567 if (res > upper_limit)
2568 res = upper_limit;
2569
2570 if (res > MAX_LFS_FILESIZE)
2571 res = MAX_LFS_FILESIZE;
2572
2573 return res;
2574}
2575
2576static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2577 ext4_fsblk_t logical_sb_block, int nr)
2578{
2579 struct ext4_sb_info *sbi = EXT4_SB(sb);
2580 ext4_group_t bg, first_meta_bg;
2581 int has_super = 0;
2582
2583 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2584
2585 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2586 return logical_sb_block + nr + 1;
2587 bg = sbi->s_desc_per_block * nr;
2588 if (ext4_bg_has_super(sb, bg))
2589 has_super = 1;
2590
2591 /*
2592 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2593 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2594 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2595 * compensate.
2596 */
2597 if (sb->s_blocksize == 1024 && nr == 0 &&
2598 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2599 has_super++;
2600
2601 return (has_super + ext4_group_first_block_no(sb, bg));
2602}
2603
2604/**
2605 * ext4_get_stripe_size: Get the stripe size.
2606 * @sbi: In memory super block info
2607 *
2608 * If we have specified it via mount option, then
2609 * use the mount option value. If the value specified at mount time is
2610 * greater than the blocks per group use the super block value.
2611 * If the super block value is greater than blocks per group return 0.
2612 * Allocator needs it be less than blocks per group.
2613 *
2614 */
2615static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2616{
2617 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2618 unsigned long stripe_width =
2619 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2620 int ret;
2621
2622 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2623 ret = sbi->s_stripe;
2624 else if (stripe_width <= sbi->s_blocks_per_group)
2625 ret = stripe_width;
2626 else if (stride <= sbi->s_blocks_per_group)
2627 ret = stride;
2628 else
2629 ret = 0;
2630
2631 /*
2632 * If the stripe width is 1, this makes no sense and
2633 * we set it to 0 to turn off stripe handling code.
2634 */
2635 if (ret <= 1)
2636 ret = 0;
2637
2638 return ret;
2639}
2640
2641/*
2642 * Check whether this filesystem can be mounted based on
2643 * the features present and the RDONLY/RDWR mount requested.
2644 * Returns 1 if this filesystem can be mounted as requested,
2645 * 0 if it cannot be.
2646 */
2647static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2648{
2649 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2650 ext4_msg(sb, KERN_ERR,
2651 "Couldn't mount because of "
2652 "unsupported optional features (%x)",
2653 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2654 ~EXT4_FEATURE_INCOMPAT_SUPP));
2655 return 0;
2656 }
2657
2658 if (readonly)
2659 return 1;
2660
2661 if (ext4_has_feature_readonly(sb)) {
2662 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2663 sb->s_flags |= MS_RDONLY;
2664 return 1;
2665 }
2666
2667 /* Check that feature set is OK for a read-write mount */
2668 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2669 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2670 "unsupported optional features (%x)",
2671 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2672 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2673 return 0;
2674 }
2675 /*
2676 * Large file size enabled file system can only be mounted
2677 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2678 */
2679 if (ext4_has_feature_huge_file(sb)) {
2680 if (sizeof(blkcnt_t) < sizeof(u64)) {
2681 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2682 "cannot be mounted RDWR without "
2683 "CONFIG_LBDAF");
2684 return 0;
2685 }
2686 }
2687 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2688 ext4_msg(sb, KERN_ERR,
2689 "Can't support bigalloc feature without "
2690 "extents feature\n");
2691 return 0;
2692 }
2693
2694#ifndef CONFIG_QUOTA
2695 if (ext4_has_feature_quota(sb) && !readonly) {
2696 ext4_msg(sb, KERN_ERR,
2697 "Filesystem with quota feature cannot be mounted RDWR "
2698 "without CONFIG_QUOTA");
2699 return 0;
2700 }
2701 if (ext4_has_feature_project(sb) && !readonly) {
2702 ext4_msg(sb, KERN_ERR,
2703 "Filesystem with project quota feature cannot be mounted RDWR "
2704 "without CONFIG_QUOTA");
2705 return 0;
2706 }
2707#endif /* CONFIG_QUOTA */
2708 return 1;
2709}
2710
2711/*
2712 * This function is called once a day if we have errors logged
2713 * on the file system
2714 */
2715static void print_daily_error_info(unsigned long arg)
2716{
2717 struct super_block *sb = (struct super_block *) arg;
2718 struct ext4_sb_info *sbi;
2719 struct ext4_super_block *es;
2720
2721 sbi = EXT4_SB(sb);
2722 es = sbi->s_es;
2723
2724 if (es->s_error_count)
2725 /* fsck newer than v1.41.13 is needed to clean this condition. */
2726 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2727 le32_to_cpu(es->s_error_count));
2728 if (es->s_first_error_time) {
2729 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2730 sb->s_id, le32_to_cpu(es->s_first_error_time),
2731 (int) sizeof(es->s_first_error_func),
2732 es->s_first_error_func,
2733 le32_to_cpu(es->s_first_error_line));
2734 if (es->s_first_error_ino)
2735 printk(KERN_CONT ": inode %u",
2736 le32_to_cpu(es->s_first_error_ino));
2737 if (es->s_first_error_block)
2738 printk(KERN_CONT ": block %llu", (unsigned long long)
2739 le64_to_cpu(es->s_first_error_block));
2740 printk(KERN_CONT "\n");
2741 }
2742 if (es->s_last_error_time) {
2743 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2744 sb->s_id, le32_to_cpu(es->s_last_error_time),
2745 (int) sizeof(es->s_last_error_func),
2746 es->s_last_error_func,
2747 le32_to_cpu(es->s_last_error_line));
2748 if (es->s_last_error_ino)
2749 printk(KERN_CONT ": inode %u",
2750 le32_to_cpu(es->s_last_error_ino));
2751 if (es->s_last_error_block)
2752 printk(KERN_CONT ": block %llu", (unsigned long long)
2753 le64_to_cpu(es->s_last_error_block));
2754 printk(KERN_CONT "\n");
2755 }
2756 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2757}
2758
2759/* Find next suitable group and run ext4_init_inode_table */
2760static int ext4_run_li_request(struct ext4_li_request *elr)
2761{
2762 struct ext4_group_desc *gdp = NULL;
2763 ext4_group_t group, ngroups;
2764 struct super_block *sb;
2765 unsigned long timeout = 0;
2766 int ret = 0;
2767
2768 sb = elr->lr_super;
2769 ngroups = EXT4_SB(sb)->s_groups_count;
2770
2771 for (group = elr->lr_next_group; group < ngroups; group++) {
2772 gdp = ext4_get_group_desc(sb, group, NULL);
2773 if (!gdp) {
2774 ret = 1;
2775 break;
2776 }
2777
2778 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2779 break;
2780 }
2781
2782 if (group >= ngroups)
2783 ret = 1;
2784
2785 if (!ret) {
2786 timeout = jiffies;
2787 ret = ext4_init_inode_table(sb, group,
2788 elr->lr_timeout ? 0 : 1);
2789 if (elr->lr_timeout == 0) {
2790 timeout = (jiffies - timeout) *
2791 elr->lr_sbi->s_li_wait_mult;
2792 elr->lr_timeout = timeout;
2793 }
2794 elr->lr_next_sched = jiffies + elr->lr_timeout;
2795 elr->lr_next_group = group + 1;
2796 }
2797 return ret;
2798}
2799
2800/*
2801 * Remove lr_request from the list_request and free the
2802 * request structure. Should be called with li_list_mtx held
2803 */
2804static void ext4_remove_li_request(struct ext4_li_request *elr)
2805{
2806 struct ext4_sb_info *sbi;
2807
2808 if (!elr)
2809 return;
2810
2811 sbi = elr->lr_sbi;
2812
2813 list_del(&elr->lr_request);
2814 sbi->s_li_request = NULL;
2815 kfree(elr);
2816}
2817
2818static void ext4_unregister_li_request(struct super_block *sb)
2819{
2820 mutex_lock(&ext4_li_mtx);
2821 if (!ext4_li_info) {
2822 mutex_unlock(&ext4_li_mtx);
2823 return;
2824 }
2825
2826 mutex_lock(&ext4_li_info->li_list_mtx);
2827 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2828 mutex_unlock(&ext4_li_info->li_list_mtx);
2829 mutex_unlock(&ext4_li_mtx);
2830}
2831
2832static struct task_struct *ext4_lazyinit_task;
2833
2834/*
2835 * This is the function where ext4lazyinit thread lives. It walks
2836 * through the request list searching for next scheduled filesystem.
2837 * When such a fs is found, run the lazy initialization request
2838 * (ext4_rn_li_request) and keep track of the time spend in this
2839 * function. Based on that time we compute next schedule time of
2840 * the request. When walking through the list is complete, compute
2841 * next waking time and put itself into sleep.
2842 */
2843static int ext4_lazyinit_thread(void *arg)
2844{
2845 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2846 struct list_head *pos, *n;
2847 struct ext4_li_request *elr;
2848 unsigned long next_wakeup, cur;
2849
2850 BUG_ON(NULL == eli);
2851
2852cont_thread:
2853 while (true) {
2854 next_wakeup = MAX_JIFFY_OFFSET;
2855
2856 mutex_lock(&eli->li_list_mtx);
2857 if (list_empty(&eli->li_request_list)) {
2858 mutex_unlock(&eli->li_list_mtx);
2859 goto exit_thread;
2860 }
2861 list_for_each_safe(pos, n, &eli->li_request_list) {
2862 int err = 0;
2863 int progress = 0;
2864 elr = list_entry(pos, struct ext4_li_request,
2865 lr_request);
2866
2867 if (time_before(jiffies, elr->lr_next_sched)) {
2868 if (time_before(elr->lr_next_sched, next_wakeup))
2869 next_wakeup = elr->lr_next_sched;
2870 continue;
2871 }
2872 if (down_read_trylock(&elr->lr_super->s_umount)) {
2873 if (sb_start_write_trylock(elr->lr_super)) {
2874 progress = 1;
2875 /*
2876 * We hold sb->s_umount, sb can not
2877 * be removed from the list, it is
2878 * now safe to drop li_list_mtx
2879 */
2880 mutex_unlock(&eli->li_list_mtx);
2881 err = ext4_run_li_request(elr);
2882 sb_end_write(elr->lr_super);
2883 mutex_lock(&eli->li_list_mtx);
2884 n = pos->next;
2885 }
2886 up_read((&elr->lr_super->s_umount));
2887 }
2888 /* error, remove the lazy_init job */
2889 if (err) {
2890 ext4_remove_li_request(elr);
2891 continue;
2892 }
2893 if (!progress) {
2894 elr->lr_next_sched = jiffies +
2895 (prandom_u32()
2896 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2897 }
2898 if (time_before(elr->lr_next_sched, next_wakeup))
2899 next_wakeup = elr->lr_next_sched;
2900 }
2901 mutex_unlock(&eli->li_list_mtx);
2902
2903 try_to_freeze();
2904
2905 cur = jiffies;
2906 if ((time_after_eq(cur, next_wakeup)) ||
2907 (MAX_JIFFY_OFFSET == next_wakeup)) {
2908 cond_resched();
2909 continue;
2910 }
2911
2912 schedule_timeout_interruptible(next_wakeup - cur);
2913
2914 if (kthread_should_stop()) {
2915 ext4_clear_request_list();
2916 goto exit_thread;
2917 }
2918 }
2919
2920exit_thread:
2921 /*
2922 * It looks like the request list is empty, but we need
2923 * to check it under the li_list_mtx lock, to prevent any
2924 * additions into it, and of course we should lock ext4_li_mtx
2925 * to atomically free the list and ext4_li_info, because at
2926 * this point another ext4 filesystem could be registering
2927 * new one.
2928 */
2929 mutex_lock(&ext4_li_mtx);
2930 mutex_lock(&eli->li_list_mtx);
2931 if (!list_empty(&eli->li_request_list)) {
2932 mutex_unlock(&eli->li_list_mtx);
2933 mutex_unlock(&ext4_li_mtx);
2934 goto cont_thread;
2935 }
2936 mutex_unlock(&eli->li_list_mtx);
2937 kfree(ext4_li_info);
2938 ext4_li_info = NULL;
2939 mutex_unlock(&ext4_li_mtx);
2940
2941 return 0;
2942}
2943
2944static void ext4_clear_request_list(void)
2945{
2946 struct list_head *pos, *n;
2947 struct ext4_li_request *elr;
2948
2949 mutex_lock(&ext4_li_info->li_list_mtx);
2950 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2951 elr = list_entry(pos, struct ext4_li_request,
2952 lr_request);
2953 ext4_remove_li_request(elr);
2954 }
2955 mutex_unlock(&ext4_li_info->li_list_mtx);
2956}
2957
2958static int ext4_run_lazyinit_thread(void)
2959{
2960 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2961 ext4_li_info, "ext4lazyinit");
2962 if (IS_ERR(ext4_lazyinit_task)) {
2963 int err = PTR_ERR(ext4_lazyinit_task);
2964 ext4_clear_request_list();
2965 kfree(ext4_li_info);
2966 ext4_li_info = NULL;
2967 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2968 "initialization thread\n",
2969 err);
2970 return err;
2971 }
2972 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2973 return 0;
2974}
2975
2976/*
2977 * Check whether it make sense to run itable init. thread or not.
2978 * If there is at least one uninitialized inode table, return
2979 * corresponding group number, else the loop goes through all
2980 * groups and return total number of groups.
2981 */
2982static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2983{
2984 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2985 struct ext4_group_desc *gdp = NULL;
2986
2987 for (group = 0; group < ngroups; group++) {
2988 gdp = ext4_get_group_desc(sb, group, NULL);
2989 if (!gdp)
2990 continue;
2991
2992 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2993 break;
2994 }
2995
2996 return group;
2997}
2998
2999static int ext4_li_info_new(void)
3000{
3001 struct ext4_lazy_init *eli = NULL;
3002
3003 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3004 if (!eli)
3005 return -ENOMEM;
3006
3007 INIT_LIST_HEAD(&eli->li_request_list);
3008 mutex_init(&eli->li_list_mtx);
3009
3010 eli->li_state |= EXT4_LAZYINIT_QUIT;
3011
3012 ext4_li_info = eli;
3013
3014 return 0;
3015}
3016
3017static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3018 ext4_group_t start)
3019{
3020 struct ext4_sb_info *sbi = EXT4_SB(sb);
3021 struct ext4_li_request *elr;
3022
3023 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3024 if (!elr)
3025 return NULL;
3026
3027 elr->lr_super = sb;
3028 elr->lr_sbi = sbi;
3029 elr->lr_next_group = start;
3030
3031 /*
3032 * Randomize first schedule time of the request to
3033 * spread the inode table initialization requests
3034 * better.
3035 */
3036 elr->lr_next_sched = jiffies + (prandom_u32() %
3037 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3038 return elr;
3039}
3040
3041int ext4_register_li_request(struct super_block *sb,
3042 ext4_group_t first_not_zeroed)
3043{
3044 struct ext4_sb_info *sbi = EXT4_SB(sb);
3045 struct ext4_li_request *elr = NULL;
3046 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3047 int ret = 0;
3048
3049 mutex_lock(&ext4_li_mtx);
3050 if (sbi->s_li_request != NULL) {
3051 /*
3052 * Reset timeout so it can be computed again, because
3053 * s_li_wait_mult might have changed.
3054 */
3055 sbi->s_li_request->lr_timeout = 0;
3056 goto out;
3057 }
3058
3059 if (first_not_zeroed == ngroups ||
3060 (sb->s_flags & MS_RDONLY) ||
3061 !test_opt(sb, INIT_INODE_TABLE))
3062 goto out;
3063
3064 elr = ext4_li_request_new(sb, first_not_zeroed);
3065 if (!elr) {
3066 ret = -ENOMEM;
3067 goto out;
3068 }
3069
3070 if (NULL == ext4_li_info) {
3071 ret = ext4_li_info_new();
3072 if (ret)
3073 goto out;
3074 }
3075
3076 mutex_lock(&ext4_li_info->li_list_mtx);
3077 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3078 mutex_unlock(&ext4_li_info->li_list_mtx);
3079
3080 sbi->s_li_request = elr;
3081 /*
3082 * set elr to NULL here since it has been inserted to
3083 * the request_list and the removal and free of it is
3084 * handled by ext4_clear_request_list from now on.
3085 */
3086 elr = NULL;
3087
3088 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3089 ret = ext4_run_lazyinit_thread();
3090 if (ret)
3091 goto out;
3092 }
3093out:
3094 mutex_unlock(&ext4_li_mtx);
3095 if (ret)
3096 kfree(elr);
3097 return ret;
3098}
3099
3100/*
3101 * We do not need to lock anything since this is called on
3102 * module unload.
3103 */
3104static void ext4_destroy_lazyinit_thread(void)
3105{
3106 /*
3107 * If thread exited earlier
3108 * there's nothing to be done.
3109 */
3110 if (!ext4_li_info || !ext4_lazyinit_task)
3111 return;
3112
3113 kthread_stop(ext4_lazyinit_task);
3114}
3115
3116static int set_journal_csum_feature_set(struct super_block *sb)
3117{
3118 int ret = 1;
3119 int compat, incompat;
3120 struct ext4_sb_info *sbi = EXT4_SB(sb);
3121
3122 if (ext4_has_metadata_csum(sb)) {
3123 /* journal checksum v3 */
3124 compat = 0;
3125 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3126 } else {
3127 /* journal checksum v1 */
3128 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3129 incompat = 0;
3130 }
3131
3132 jbd2_journal_clear_features(sbi->s_journal,
3133 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3134 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3135 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3136 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3137 ret = jbd2_journal_set_features(sbi->s_journal,
3138 compat, 0,
3139 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3140 incompat);
3141 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3142 ret = jbd2_journal_set_features(sbi->s_journal,
3143 compat, 0,
3144 incompat);
3145 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3146 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3147 } else {
3148 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3149 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3150 }
3151
3152 return ret;
3153}
3154
3155/*
3156 * Note: calculating the overhead so we can be compatible with
3157 * historical BSD practice is quite difficult in the face of
3158 * clusters/bigalloc. This is because multiple metadata blocks from
3159 * different block group can end up in the same allocation cluster.
3160 * Calculating the exact overhead in the face of clustered allocation
3161 * requires either O(all block bitmaps) in memory or O(number of block
3162 * groups**2) in time. We will still calculate the superblock for
3163 * older file systems --- and if we come across with a bigalloc file
3164 * system with zero in s_overhead_clusters the estimate will be close to
3165 * correct especially for very large cluster sizes --- but for newer
3166 * file systems, it's better to calculate this figure once at mkfs
3167 * time, and store it in the superblock. If the superblock value is
3168 * present (even for non-bigalloc file systems), we will use it.
3169 */
3170static int count_overhead(struct super_block *sb, ext4_group_t grp,
3171 char *buf)
3172{
3173 struct ext4_sb_info *sbi = EXT4_SB(sb);
3174 struct ext4_group_desc *gdp;
3175 ext4_fsblk_t first_block, last_block, b;
3176 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3177 int s, j, count = 0;
3178
3179 if (!ext4_has_feature_bigalloc(sb))
3180 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3181 sbi->s_itb_per_group + 2);
3182
3183 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3184 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3185 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3186 for (i = 0; i < ngroups; i++) {
3187 gdp = ext4_get_group_desc(sb, i, NULL);
3188 b = ext4_block_bitmap(sb, gdp);
3189 if (b >= first_block && b <= last_block) {
3190 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3191 count++;
3192 }
3193 b = ext4_inode_bitmap(sb, gdp);
3194 if (b >= first_block && b <= last_block) {
3195 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3196 count++;
3197 }
3198 b = ext4_inode_table(sb, gdp);
3199 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3200 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3201 int c = EXT4_B2C(sbi, b - first_block);
3202 ext4_set_bit(c, buf);
3203 count++;
3204 }
3205 if (i != grp)
3206 continue;
3207 s = 0;
3208 if (ext4_bg_has_super(sb, grp)) {
3209 ext4_set_bit(s++, buf);
3210 count++;
3211 }
3212 j = ext4_bg_num_gdb(sb, grp);
3213 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3214 ext4_error(sb, "Invalid number of block group "
3215 "descriptor blocks: %d", j);
3216 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3217 }
3218 count += j;
3219 for (; j > 0; j--)
3220 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3221 }
3222 if (!count)
3223 return 0;
3224 return EXT4_CLUSTERS_PER_GROUP(sb) -
3225 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3226}
3227
3228/*
3229 * Compute the overhead and stash it in sbi->s_overhead
3230 */
3231int ext4_calculate_overhead(struct super_block *sb)
3232{
3233 struct ext4_sb_info *sbi = EXT4_SB(sb);
3234 struct ext4_super_block *es = sbi->s_es;
3235 struct inode *j_inode;
3236 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3237 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3238 ext4_fsblk_t overhead = 0;
3239 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3240
3241 if (!buf)
3242 return -ENOMEM;
3243
3244 /*
3245 * Compute the overhead (FS structures). This is constant
3246 * for a given filesystem unless the number of block groups
3247 * changes so we cache the previous value until it does.
3248 */
3249
3250 /*
3251 * All of the blocks before first_data_block are overhead
3252 */
3253 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3254
3255 /*
3256 * Add the overhead found in each block group
3257 */
3258 for (i = 0; i < ngroups; i++) {
3259 int blks;
3260
3261 blks = count_overhead(sb, i, buf);
3262 overhead += blks;
3263 if (blks)
3264 memset(buf, 0, PAGE_SIZE);
3265 cond_resched();
3266 }
3267
3268 /*
3269 * Add the internal journal blocks whether the journal has been
3270 * loaded or not
3271 */
3272 if (sbi->s_journal && !sbi->journal_bdev)
3273 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3274 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3275 j_inode = ext4_get_journal_inode(sb, j_inum);
3276 if (j_inode) {
3277 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3278 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3279 iput(j_inode);
3280 } else {
3281 ext4_msg(sb, KERN_ERR, "can't get journal size");
3282 }
3283 }
3284 sbi->s_overhead = overhead;
3285 smp_wmb();
3286 free_page((unsigned long) buf);
3287 return 0;
3288}
3289
3290static void ext4_set_resv_clusters(struct super_block *sb)
3291{
3292 ext4_fsblk_t resv_clusters;
3293 struct ext4_sb_info *sbi = EXT4_SB(sb);
3294
3295 /*
3296 * There's no need to reserve anything when we aren't using extents.
3297 * The space estimates are exact, there are no unwritten extents,
3298 * hole punching doesn't need new metadata... This is needed especially
3299 * to keep ext2/3 backward compatibility.
3300 */
3301 if (!ext4_has_feature_extents(sb))
3302 return;
3303 /*
3304 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3305 * This should cover the situations where we can not afford to run
3306 * out of space like for example punch hole, or converting
3307 * unwritten extents in delalloc path. In most cases such
3308 * allocation would require 1, or 2 blocks, higher numbers are
3309 * very rare.
3310 */
3311 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3312 sbi->s_cluster_bits);
3313
3314 do_div(resv_clusters, 50);
3315 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3316
3317 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3318}
3319
3320static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3321{
3322 char *orig_data = kstrdup(data, GFP_KERNEL);
3323 struct buffer_head *bh;
3324 struct ext4_super_block *es = NULL;
3325 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3326 ext4_fsblk_t block;
3327 ext4_fsblk_t sb_block = get_sb_block(&data);
3328 ext4_fsblk_t logical_sb_block;
3329 unsigned long offset = 0;
3330 unsigned long journal_devnum = 0;
3331 unsigned long def_mount_opts;
3332 struct inode *root;
3333 const char *descr;
3334 int ret = -ENOMEM;
3335 int blocksize, clustersize;
3336 unsigned int db_count;
3337 unsigned int i;
3338 int needs_recovery, has_huge_files, has_bigalloc;
3339 __u64 blocks_count;
3340 int err = 0;
3341 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3342 ext4_group_t first_not_zeroed;
3343
3344 if ((data && !orig_data) || !sbi)
3345 goto out_free_base;
3346
3347 sbi->s_blockgroup_lock =
3348 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3349 if (!sbi->s_blockgroup_lock)
3350 goto out_free_base;
3351
3352 sb->s_fs_info = sbi;
3353 sbi->s_sb = sb;
3354 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3355 sbi->s_sb_block = sb_block;
3356 if (sb->s_bdev->bd_part)
3357 sbi->s_sectors_written_start =
3358 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3359
3360 /* Cleanup superblock name */
3361 strreplace(sb->s_id, '/', '!');
3362
3363 /* -EINVAL is default */
3364 ret = -EINVAL;
3365 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3366 if (!blocksize) {
3367 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3368 goto out_fail;
3369 }
3370
3371 /*
3372 * The ext4 superblock will not be buffer aligned for other than 1kB
3373 * block sizes. We need to calculate the offset from buffer start.
3374 */
3375 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3376 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3377 offset = do_div(logical_sb_block, blocksize);
3378 } else {
3379 logical_sb_block = sb_block;
3380 }
3381
3382 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3383 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3384 goto out_fail;
3385 }
3386 /*
3387 * Note: s_es must be initialized as soon as possible because
3388 * some ext4 macro-instructions depend on its value
3389 */
3390 es = (struct ext4_super_block *) (bh->b_data + offset);
3391 sbi->s_es = es;
3392 sb->s_magic = le16_to_cpu(es->s_magic);
3393 if (sb->s_magic != EXT4_SUPER_MAGIC)
3394 goto cantfind_ext4;
3395 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3396
3397 /* Warn if metadata_csum and gdt_csum are both set. */
3398 if (ext4_has_feature_metadata_csum(sb) &&
3399 ext4_has_feature_gdt_csum(sb))
3400 ext4_warning(sb, "metadata_csum and uninit_bg are "
3401 "redundant flags; please run fsck.");
3402
3403 /* Check for a known checksum algorithm */
3404 if (!ext4_verify_csum_type(sb, es)) {
3405 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3406 "unknown checksum algorithm.");
3407 silent = 1;
3408 goto cantfind_ext4;
3409 }
3410
3411 /* Load the checksum driver */
3412 if (ext4_has_feature_metadata_csum(sb)) {
3413 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3414 if (IS_ERR(sbi->s_chksum_driver)) {
3415 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3416 ret = PTR_ERR(sbi->s_chksum_driver);
3417 sbi->s_chksum_driver = NULL;
3418 goto failed_mount;
3419 }
3420 }
3421
3422 /* Check superblock checksum */
3423 if (!ext4_superblock_csum_verify(sb, es)) {
3424 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3425 "invalid superblock checksum. Run e2fsck?");
3426 silent = 1;
3427 ret = -EFSBADCRC;
3428 goto cantfind_ext4;
3429 }
3430
3431 /* Precompute checksum seed for all metadata */
3432 if (ext4_has_feature_csum_seed(sb))
3433 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3434 else if (ext4_has_metadata_csum(sb))
3435 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3436 sizeof(es->s_uuid));
3437
3438 /* Set defaults before we parse the mount options */
3439 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3440 set_opt(sb, INIT_INODE_TABLE);
3441 if (def_mount_opts & EXT4_DEFM_DEBUG)
3442 set_opt(sb, DEBUG);
3443 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3444 set_opt(sb, GRPID);
3445 if (def_mount_opts & EXT4_DEFM_UID16)
3446 set_opt(sb, NO_UID32);
3447 /* xattr user namespace & acls are now defaulted on */
3448 set_opt(sb, XATTR_USER);
3449#ifdef CONFIG_EXT4_FS_POSIX_ACL
3450 set_opt(sb, POSIX_ACL);
3451#endif
3452 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3453 if (ext4_has_metadata_csum(sb))
3454 set_opt(sb, JOURNAL_CHECKSUM);
3455
3456 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3457 set_opt(sb, JOURNAL_DATA);
3458 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3459 set_opt(sb, ORDERED_DATA);
3460 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3461 set_opt(sb, WRITEBACK_DATA);
3462
3463 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3464 set_opt(sb, ERRORS_PANIC);
3465 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3466 set_opt(sb, ERRORS_CONT);
3467 else
3468 set_opt(sb, ERRORS_RO);
3469 /* block_validity enabled by default; disable with noblock_validity */
3470 set_opt(sb, BLOCK_VALIDITY);
3471 if (def_mount_opts & EXT4_DEFM_DISCARD)
3472 set_opt(sb, DISCARD);
3473
3474 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3475 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3476 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3477 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3478 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3479
3480 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3481 set_opt(sb, BARRIER);
3482
3483 /*
3484 * enable delayed allocation by default
3485 * Use -o nodelalloc to turn it off
3486 */
3487 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3488 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3489 set_opt(sb, DELALLOC);
3490
3491 /*
3492 * set default s_li_wait_mult for lazyinit, for the case there is
3493 * no mount option specified.
3494 */
3495 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3496
3497 if (sbi->s_es->s_mount_opts[0]) {
3498 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3499 sizeof(sbi->s_es->s_mount_opts),
3500 GFP_KERNEL);
3501 if (!s_mount_opts)
3502 goto failed_mount;
3503 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3504 &journal_ioprio, 0)) {
3505 ext4_msg(sb, KERN_WARNING,
3506 "failed to parse options in superblock: %s",
3507 s_mount_opts);
3508 }
3509 kfree(s_mount_opts);
3510 }
3511 sbi->s_def_mount_opt = sbi->s_mount_opt;
3512 if (!parse_options((char *) data, sb, &journal_devnum,
3513 &journal_ioprio, 0))
3514 goto failed_mount;
3515
3516 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3517 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3518 "with data=journal disables delayed "
3519 "allocation and O_DIRECT support!\n");
3520 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3521 ext4_msg(sb, KERN_ERR, "can't mount with "
3522 "both data=journal and delalloc");
3523 goto failed_mount;
3524 }
3525 if (test_opt(sb, DIOREAD_NOLOCK)) {
3526 ext4_msg(sb, KERN_ERR, "can't mount with "
3527 "both data=journal and dioread_nolock");
3528 goto failed_mount;
3529 }
3530 if (test_opt(sb, DAX)) {
3531 ext4_msg(sb, KERN_ERR, "can't mount with "
3532 "both data=journal and dax");
3533 goto failed_mount;
3534 }
3535 if (ext4_has_feature_encrypt(sb)) {
3536 ext4_msg(sb, KERN_WARNING,
3537 "encrypted files will use data=ordered "
3538 "instead of data journaling mode");
3539 }
3540 if (test_opt(sb, DELALLOC))
3541 clear_opt(sb, DELALLOC);
3542 } else {
3543 sb->s_iflags |= SB_I_CGROUPWB;
3544 }
3545
3546 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3547 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3548
3549 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3550 (ext4_has_compat_features(sb) ||
3551 ext4_has_ro_compat_features(sb) ||
3552 ext4_has_incompat_features(sb)))
3553 ext4_msg(sb, KERN_WARNING,
3554 "feature flags set on rev 0 fs, "
3555 "running e2fsck is recommended");
3556
3557 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3558 set_opt2(sb, HURD_COMPAT);
3559 if (ext4_has_feature_64bit(sb)) {
3560 ext4_msg(sb, KERN_ERR,
3561 "The Hurd can't support 64-bit file systems");
3562 goto failed_mount;
3563 }
3564 }
3565
3566 if (IS_EXT2_SB(sb)) {
3567 if (ext2_feature_set_ok(sb))
3568 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3569 "using the ext4 subsystem");
3570 else {
3571 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3572 "to feature incompatibilities");
3573 goto failed_mount;
3574 }
3575 }
3576
3577 if (IS_EXT3_SB(sb)) {
3578 if (ext3_feature_set_ok(sb))
3579 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3580 "using the ext4 subsystem");
3581 else {
3582 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3583 "to feature incompatibilities");
3584 goto failed_mount;
3585 }
3586 }
3587
3588 /*
3589 * Check feature flags regardless of the revision level, since we
3590 * previously didn't change the revision level when setting the flags,
3591 * so there is a chance incompat flags are set on a rev 0 filesystem.
3592 */
3593 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3594 goto failed_mount;
3595
3596 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3597 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3598 blocksize > EXT4_MAX_BLOCK_SIZE) {
3599 ext4_msg(sb, KERN_ERR,
3600 "Unsupported filesystem blocksize %d (%d log_block_size)",
3601 blocksize, le32_to_cpu(es->s_log_block_size));
3602 goto failed_mount;
3603 }
3604 if (le32_to_cpu(es->s_log_block_size) >
3605 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3606 ext4_msg(sb, KERN_ERR,
3607 "Invalid log block size: %u",
3608 le32_to_cpu(es->s_log_block_size));
3609 goto failed_mount;
3610 }
3611
3612 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3613 ext4_msg(sb, KERN_ERR,
3614 "Number of reserved GDT blocks insanely large: %d",
3615 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3616 goto failed_mount;
3617 }
3618
3619 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3620 err = bdev_dax_supported(sb, blocksize);
3621 if (err)
3622 goto failed_mount;
3623 }
3624
3625 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3626 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3627 es->s_encryption_level);
3628 goto failed_mount;
3629 }
3630
3631 if (sb->s_blocksize != blocksize) {
3632 /* Validate the filesystem blocksize */
3633 if (!sb_set_blocksize(sb, blocksize)) {
3634 ext4_msg(sb, KERN_ERR, "bad block size %d",
3635 blocksize);
3636 goto failed_mount;
3637 }
3638
3639 brelse(bh);
3640 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3641 offset = do_div(logical_sb_block, blocksize);
3642 bh = sb_bread_unmovable(sb, logical_sb_block);
3643 if (!bh) {
3644 ext4_msg(sb, KERN_ERR,
3645 "Can't read superblock on 2nd try");
3646 goto failed_mount;
3647 }
3648 es = (struct ext4_super_block *)(bh->b_data + offset);
3649 sbi->s_es = es;
3650 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3651 ext4_msg(sb, KERN_ERR,
3652 "Magic mismatch, very weird!");
3653 goto failed_mount;
3654 }
3655 }
3656
3657 has_huge_files = ext4_has_feature_huge_file(sb);
3658 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3659 has_huge_files);
3660 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3661
3662 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3663 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3664 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3665 } else {
3666 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3667 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3668 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3669 (!is_power_of_2(sbi->s_inode_size)) ||
3670 (sbi->s_inode_size > blocksize)) {
3671 ext4_msg(sb, KERN_ERR,
3672 "unsupported inode size: %d",
3673 sbi->s_inode_size);
3674 goto failed_mount;
3675 }
3676 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3677 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3678 }
3679
3680 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3681 if (ext4_has_feature_64bit(sb)) {
3682 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3683 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3684 !is_power_of_2(sbi->s_desc_size)) {
3685 ext4_msg(sb, KERN_ERR,
3686 "unsupported descriptor size %lu",
3687 sbi->s_desc_size);
3688 goto failed_mount;
3689 }
3690 } else
3691 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3692
3693 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3694 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3695
3696 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3697 if (sbi->s_inodes_per_block == 0)
3698 goto cantfind_ext4;
3699 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3700 sbi->s_inodes_per_group > blocksize * 8) {
3701 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3702 sbi->s_blocks_per_group);
3703 goto failed_mount;
3704 }
3705 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3706 sbi->s_inodes_per_block;
3707 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3708 sbi->s_sbh = bh;
3709 sbi->s_mount_state = le16_to_cpu(es->s_state);
3710 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3711 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3712
3713 for (i = 0; i < 4; i++)
3714 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3715 sbi->s_def_hash_version = es->s_def_hash_version;
3716 if (ext4_has_feature_dir_index(sb)) {
3717 i = le32_to_cpu(es->s_flags);
3718 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3719 sbi->s_hash_unsigned = 3;
3720 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3721#ifdef __CHAR_UNSIGNED__
3722 if (!(sb->s_flags & MS_RDONLY))
3723 es->s_flags |=
3724 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3725 sbi->s_hash_unsigned = 3;
3726#else
3727 if (!(sb->s_flags & MS_RDONLY))
3728 es->s_flags |=
3729 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3730#endif
3731 }
3732 }
3733
3734 /* Handle clustersize */
3735 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3736 has_bigalloc = ext4_has_feature_bigalloc(sb);
3737 if (has_bigalloc) {
3738 if (clustersize < blocksize) {
3739 ext4_msg(sb, KERN_ERR,
3740 "cluster size (%d) smaller than "
3741 "block size (%d)", clustersize, blocksize);
3742 goto failed_mount;
3743 }
3744 if (le32_to_cpu(es->s_log_cluster_size) >
3745 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3746 ext4_msg(sb, KERN_ERR,
3747 "Invalid log cluster size: %u",
3748 le32_to_cpu(es->s_log_cluster_size));
3749 goto failed_mount;
3750 }
3751 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3752 le32_to_cpu(es->s_log_block_size);
3753 sbi->s_clusters_per_group =
3754 le32_to_cpu(es->s_clusters_per_group);
3755 if (sbi->s_clusters_per_group > blocksize * 8) {
3756 ext4_msg(sb, KERN_ERR,
3757 "#clusters per group too big: %lu",
3758 sbi->s_clusters_per_group);
3759 goto failed_mount;
3760 }
3761 if (sbi->s_blocks_per_group !=
3762 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3763 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3764 "clusters per group (%lu) inconsistent",
3765 sbi->s_blocks_per_group,
3766 sbi->s_clusters_per_group);
3767 goto failed_mount;
3768 }
3769 } else {
3770 if (clustersize != blocksize) {
3771 ext4_warning(sb, "fragment/cluster size (%d) != "
3772 "block size (%d)", clustersize,
3773 blocksize);
3774 clustersize = blocksize;
3775 }
3776 if (sbi->s_blocks_per_group > blocksize * 8) {
3777 ext4_msg(sb, KERN_ERR,
3778 "#blocks per group too big: %lu",
3779 sbi->s_blocks_per_group);
3780 goto failed_mount;
3781 }
3782 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3783 sbi->s_cluster_bits = 0;
3784 }
3785 sbi->s_cluster_ratio = clustersize / blocksize;
3786
3787 /* Do we have standard group size of clustersize * 8 blocks ? */
3788 if (sbi->s_blocks_per_group == clustersize << 3)
3789 set_opt2(sb, STD_GROUP_SIZE);
3790
3791 /*
3792 * Test whether we have more sectors than will fit in sector_t,
3793 * and whether the max offset is addressable by the page cache.
3794 */
3795 err = generic_check_addressable(sb->s_blocksize_bits,
3796 ext4_blocks_count(es));
3797 if (err) {
3798 ext4_msg(sb, KERN_ERR, "filesystem"
3799 " too large to mount safely on this system");
3800 if (sizeof(sector_t) < 8)
3801 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3802 goto failed_mount;
3803 }
3804
3805 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3806 goto cantfind_ext4;
3807
3808 /* check blocks count against device size */
3809 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3810 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3811 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3812 "exceeds size of device (%llu blocks)",
3813 ext4_blocks_count(es), blocks_count);
3814 goto failed_mount;
3815 }
3816
3817 /*
3818 * It makes no sense for the first data block to be beyond the end
3819 * of the filesystem.
3820 */
3821 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3822 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3823 "block %u is beyond end of filesystem (%llu)",
3824 le32_to_cpu(es->s_first_data_block),
3825 ext4_blocks_count(es));
3826 goto failed_mount;
3827 }
3828 blocks_count = (ext4_blocks_count(es) -
3829 le32_to_cpu(es->s_first_data_block) +
3830 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3831 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3832 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3833 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3834 "(block count %llu, first data block %u, "
3835 "blocks per group %lu)", sbi->s_groups_count,
3836 ext4_blocks_count(es),
3837 le32_to_cpu(es->s_first_data_block),
3838 EXT4_BLOCKS_PER_GROUP(sb));
3839 goto failed_mount;
3840 }
3841 sbi->s_groups_count = blocks_count;
3842 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3843 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3844 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3845 EXT4_DESC_PER_BLOCK(sb);
3846 if (ext4_has_feature_meta_bg(sb)) {
3847 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3848 ext4_msg(sb, KERN_WARNING,
3849 "first meta block group too large: %u "
3850 "(group descriptor block count %u)",
3851 le32_to_cpu(es->s_first_meta_bg), db_count);
3852 goto failed_mount;
3853 }
3854 }
3855 sbi->s_group_desc = ext4_kvmalloc(db_count *
3856 sizeof(struct buffer_head *),
3857 GFP_KERNEL);
3858 if (sbi->s_group_desc == NULL) {
3859 ext4_msg(sb, KERN_ERR, "not enough memory");
3860 ret = -ENOMEM;
3861 goto failed_mount;
3862 }
3863
3864 bgl_lock_init(sbi->s_blockgroup_lock);
3865
3866 for (i = 0; i < db_count; i++) {
3867 block = descriptor_loc(sb, logical_sb_block, i);
3868 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3869 if (!sbi->s_group_desc[i]) {
3870 ext4_msg(sb, KERN_ERR,
3871 "can't read group descriptor %d", i);
3872 db_count = i;
3873 goto failed_mount2;
3874 }
3875 }
3876 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3877 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3878 ret = -EFSCORRUPTED;
3879 goto failed_mount2;
3880 }
3881
3882 sbi->s_gdb_count = db_count;
3883 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3884 spin_lock_init(&sbi->s_next_gen_lock);
3885
3886 setup_timer(&sbi->s_err_report, print_daily_error_info,
3887 (unsigned long) sb);
3888
3889 /* Register extent status tree shrinker */
3890 if (ext4_es_register_shrinker(sbi))
3891 goto failed_mount3;
3892
3893 sbi->s_stripe = ext4_get_stripe_size(sbi);
3894 sbi->s_extent_max_zeroout_kb = 32;
3895
3896 /*
3897 * set up enough so that it can read an inode
3898 */
3899 sb->s_op = &ext4_sops;
3900 sb->s_export_op = &ext4_export_ops;
3901 sb->s_xattr = ext4_xattr_handlers;
3902 sb->s_cop = &ext4_cryptops;
3903#ifdef CONFIG_QUOTA
3904 sb->dq_op = &ext4_quota_operations;
3905 if (ext4_has_feature_quota(sb))
3906 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3907 else
3908 sb->s_qcop = &ext4_qctl_operations;
3909 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3910#endif
3911 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3912
3913 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3914 mutex_init(&sbi->s_orphan_lock);
3915
3916 sb->s_root = NULL;
3917
3918 needs_recovery = (es->s_last_orphan != 0 ||
3919 ext4_has_feature_journal_needs_recovery(sb));
3920
3921 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3922 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3923 goto failed_mount3a;
3924
3925 /*
3926 * The first inode we look at is the journal inode. Don't try
3927 * root first: it may be modified in the journal!
3928 */
3929 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3930 err = ext4_load_journal(sb, es, journal_devnum);
3931 if (err)
3932 goto failed_mount3a;
3933 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3934 ext4_has_feature_journal_needs_recovery(sb)) {
3935 ext4_msg(sb, KERN_ERR, "required journal recovery "
3936 "suppressed and not mounted read-only");
3937 goto failed_mount_wq;
3938 } else {
3939 /* Nojournal mode, all journal mount options are illegal */
3940 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3941 ext4_msg(sb, KERN_ERR, "can't mount with "
3942 "journal_checksum, fs mounted w/o journal");
3943 goto failed_mount_wq;
3944 }
3945 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3946 ext4_msg(sb, KERN_ERR, "can't mount with "
3947 "journal_async_commit, fs mounted w/o journal");
3948 goto failed_mount_wq;
3949 }
3950 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3951 ext4_msg(sb, KERN_ERR, "can't mount with "
3952 "commit=%lu, fs mounted w/o journal",
3953 sbi->s_commit_interval / HZ);
3954 goto failed_mount_wq;
3955 }
3956 if (EXT4_MOUNT_DATA_FLAGS &
3957 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3958 ext4_msg(sb, KERN_ERR, "can't mount with "
3959 "data=, fs mounted w/o journal");
3960 goto failed_mount_wq;
3961 }
3962 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3963 clear_opt(sb, JOURNAL_CHECKSUM);
3964 clear_opt(sb, DATA_FLAGS);
3965 sbi->s_journal = NULL;
3966 needs_recovery = 0;
3967 goto no_journal;
3968 }
3969
3970 if (ext4_has_feature_64bit(sb) &&
3971 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3972 JBD2_FEATURE_INCOMPAT_64BIT)) {
3973 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3974 goto failed_mount_wq;
3975 }
3976
3977 if (!set_journal_csum_feature_set(sb)) {
3978 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3979 "feature set");
3980 goto failed_mount_wq;
3981 }
3982
3983 /* We have now updated the journal if required, so we can
3984 * validate the data journaling mode. */
3985 switch (test_opt(sb, DATA_FLAGS)) {
3986 case 0:
3987 /* No mode set, assume a default based on the journal
3988 * capabilities: ORDERED_DATA if the journal can
3989 * cope, else JOURNAL_DATA
3990 */
3991 if (jbd2_journal_check_available_features
3992 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3993 set_opt(sb, ORDERED_DATA);
3994 else
3995 set_opt(sb, JOURNAL_DATA);
3996 break;
3997
3998 case EXT4_MOUNT_ORDERED_DATA:
3999 case EXT4_MOUNT_WRITEBACK_DATA:
4000 if (!jbd2_journal_check_available_features
4001 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4002 ext4_msg(sb, KERN_ERR, "Journal does not support "
4003 "requested data journaling mode");
4004 goto failed_mount_wq;
4005 }
4006 default:
4007 break;
4008 }
4009
4010 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4011 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4012 ext4_msg(sb, KERN_ERR, "can't mount with "
4013 "journal_async_commit in data=ordered mode");
4014 goto failed_mount_wq;
4015 }
4016
4017 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4018
4019 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4020
4021no_journal:
4022 sbi->s_mb_cache = ext4_xattr_create_cache();
4023 if (!sbi->s_mb_cache) {
4024 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4025 goto failed_mount_wq;
4026 }
4027
4028 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4029 (blocksize != PAGE_SIZE)) {
4030 ext4_msg(sb, KERN_ERR,
4031 "Unsupported blocksize for fs encryption");
4032 goto failed_mount_wq;
4033 }
4034
4035 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4036 !ext4_has_feature_encrypt(sb)) {
4037 ext4_set_feature_encrypt(sb);
4038 ext4_commit_super(sb, 1);
4039 }
4040
4041 /*
4042 * Get the # of file system overhead blocks from the
4043 * superblock if present.
4044 */
4045 if (es->s_overhead_clusters)
4046 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4047 else {
4048 err = ext4_calculate_overhead(sb);
4049 if (err)
4050 goto failed_mount_wq;
4051 }
4052
4053 /*
4054 * The maximum number of concurrent works can be high and
4055 * concurrency isn't really necessary. Limit it to 1.
4056 */
4057 EXT4_SB(sb)->rsv_conversion_wq =
4058 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4059 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4060 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4061 ret = -ENOMEM;
4062 goto failed_mount4;
4063 }
4064
4065 /*
4066 * The jbd2_journal_load will have done any necessary log recovery,
4067 * so we can safely mount the rest of the filesystem now.
4068 */
4069
4070 root = ext4_iget(sb, EXT4_ROOT_INO);
4071 if (IS_ERR(root)) {
4072 ext4_msg(sb, KERN_ERR, "get root inode failed");
4073 ret = PTR_ERR(root);
4074 root = NULL;
4075 goto failed_mount4;
4076 }
4077 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4078 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4079 iput(root);
4080 goto failed_mount4;
4081 }
4082 sb->s_root = d_make_root(root);
4083 if (!sb->s_root) {
4084 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4085 ret = -ENOMEM;
4086 goto failed_mount4;
4087 }
4088
4089 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4090 sb->s_flags |= MS_RDONLY;
4091
4092 /* determine the minimum size of new large inodes, if present */
4093 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4094 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4095 EXT4_GOOD_OLD_INODE_SIZE;
4096 if (ext4_has_feature_extra_isize(sb)) {
4097 if (sbi->s_want_extra_isize <
4098 le16_to_cpu(es->s_want_extra_isize))
4099 sbi->s_want_extra_isize =
4100 le16_to_cpu(es->s_want_extra_isize);
4101 if (sbi->s_want_extra_isize <
4102 le16_to_cpu(es->s_min_extra_isize))
4103 sbi->s_want_extra_isize =
4104 le16_to_cpu(es->s_min_extra_isize);
4105 }
4106 }
4107 /* Check if enough inode space is available */
4108 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4109 sbi->s_inode_size) {
4110 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4111 EXT4_GOOD_OLD_INODE_SIZE;
4112 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4113 "available");
4114 }
4115
4116 ext4_set_resv_clusters(sb);
4117
4118 err = ext4_setup_system_zone(sb);
4119 if (err) {
4120 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4121 "zone (%d)", err);
4122 goto failed_mount4a;
4123 }
4124
4125 ext4_ext_init(sb);
4126 err = ext4_mb_init(sb);
4127 if (err) {
4128 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4129 err);
4130 goto failed_mount5;
4131 }
4132
4133 block = ext4_count_free_clusters(sb);
4134 ext4_free_blocks_count_set(sbi->s_es,
4135 EXT4_C2B(sbi, block));
4136 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4137 GFP_KERNEL);
4138 if (!err) {
4139 unsigned long freei = ext4_count_free_inodes(sb);
4140 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4141 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4142 GFP_KERNEL);
4143 }
4144 if (!err)
4145 err = percpu_counter_init(&sbi->s_dirs_counter,
4146 ext4_count_dirs(sb), GFP_KERNEL);
4147 if (!err)
4148 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4149 GFP_KERNEL);
4150 if (!err)
4151 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4152
4153 if (err) {
4154 ext4_msg(sb, KERN_ERR, "insufficient memory");
4155 goto failed_mount6;
4156 }
4157
4158 if (ext4_has_feature_flex_bg(sb))
4159 if (!ext4_fill_flex_info(sb)) {
4160 ext4_msg(sb, KERN_ERR,
4161 "unable to initialize "
4162 "flex_bg meta info!");
4163 goto failed_mount6;
4164 }
4165
4166 err = ext4_register_li_request(sb, first_not_zeroed);
4167 if (err)
4168 goto failed_mount6;
4169
4170 err = ext4_register_sysfs(sb);
4171 if (err)
4172 goto failed_mount7;
4173
4174#ifdef CONFIG_QUOTA
4175 /* Enable quota usage during mount. */
4176 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4177 err = ext4_enable_quotas(sb);
4178 if (err)
4179 goto failed_mount8;
4180 }
4181#endif /* CONFIG_QUOTA */
4182
4183 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4184 ext4_orphan_cleanup(sb, es);
4185 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4186 if (needs_recovery) {
4187 ext4_msg(sb, KERN_INFO, "recovery complete");
4188 ext4_mark_recovery_complete(sb, es);
4189 }
4190 if (EXT4_SB(sb)->s_journal) {
4191 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4192 descr = " journalled data mode";
4193 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4194 descr = " ordered data mode";
4195 else
4196 descr = " writeback data mode";
4197 } else
4198 descr = "out journal";
4199
4200 if (test_opt(sb, DISCARD)) {
4201 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4202 if (!blk_queue_discard(q))
4203 ext4_msg(sb, KERN_WARNING,
4204 "mounting with \"discard\" option, but "
4205 "the device does not support discard");
4206 }
4207
4208 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4209 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4210 "Opts: %.*s%s%s", descr,
4211 (int) sizeof(sbi->s_es->s_mount_opts),
4212 sbi->s_es->s_mount_opts,
4213 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4214
4215 if (es->s_error_count)
4216 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4217
4218 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4219 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4220 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4221 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4222
4223 kfree(orig_data);
4224#ifdef CONFIG_EXT4_FS_ENCRYPTION
4225 memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX,
4226 EXT4_KEY_DESC_PREFIX_SIZE);
4227 sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE;
4228#endif
4229 return 0;
4230
4231cantfind_ext4:
4232 if (!silent)
4233 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4234 goto failed_mount;
4235
4236#ifdef CONFIG_QUOTA
4237failed_mount8:
4238 ext4_unregister_sysfs(sb);
4239#endif
4240failed_mount7:
4241 ext4_unregister_li_request(sb);
4242failed_mount6:
4243 ext4_mb_release(sb);
4244 if (sbi->s_flex_groups)
4245 kvfree(sbi->s_flex_groups);
4246 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4247 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4248 percpu_counter_destroy(&sbi->s_dirs_counter);
4249 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4250failed_mount5:
4251 ext4_ext_release(sb);
4252 ext4_release_system_zone(sb);
4253failed_mount4a:
4254 dput(sb->s_root);
4255 sb->s_root = NULL;
4256failed_mount4:
4257 ext4_msg(sb, KERN_ERR, "mount failed");
4258 if (EXT4_SB(sb)->rsv_conversion_wq)
4259 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4260failed_mount_wq:
4261 if (sbi->s_mb_cache) {
4262 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4263 sbi->s_mb_cache = NULL;
4264 }
4265 if (sbi->s_journal) {
4266 jbd2_journal_destroy(sbi->s_journal);
4267 sbi->s_journal = NULL;
4268 }
4269failed_mount3a:
4270 ext4_es_unregister_shrinker(sbi);
4271failed_mount3:
4272 del_timer_sync(&sbi->s_err_report);
4273 if (sbi->s_mmp_tsk)
4274 kthread_stop(sbi->s_mmp_tsk);
4275failed_mount2:
4276 for (i = 0; i < db_count; i++)
4277 brelse(sbi->s_group_desc[i]);
4278 kvfree(sbi->s_group_desc);
4279failed_mount:
4280 if (sbi->s_chksum_driver)
4281 crypto_free_shash(sbi->s_chksum_driver);
4282#ifdef CONFIG_QUOTA
4283 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4284 kfree(sbi->s_qf_names[i]);
4285#endif
4286 ext4_blkdev_remove(sbi);
4287 brelse(bh);
4288out_fail:
4289 sb->s_fs_info = NULL;
4290 kfree(sbi->s_blockgroup_lock);
4291out_free_base:
4292 kfree(sbi);
4293 kfree(orig_data);
4294 return err ? err : ret;
4295}
4296
4297/*
4298 * Setup any per-fs journal parameters now. We'll do this both on
4299 * initial mount, once the journal has been initialised but before we've
4300 * done any recovery; and again on any subsequent remount.
4301 */
4302static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4303{
4304 struct ext4_sb_info *sbi = EXT4_SB(sb);
4305
4306 journal->j_commit_interval = sbi->s_commit_interval;
4307 journal->j_min_batch_time = sbi->s_min_batch_time;
4308 journal->j_max_batch_time = sbi->s_max_batch_time;
4309
4310 write_lock(&journal->j_state_lock);
4311 if (test_opt(sb, BARRIER))
4312 journal->j_flags |= JBD2_BARRIER;
4313 else
4314 journal->j_flags &= ~JBD2_BARRIER;
4315 if (test_opt(sb, DATA_ERR_ABORT))
4316 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4317 else
4318 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4319 write_unlock(&journal->j_state_lock);
4320}
4321
4322static struct inode *ext4_get_journal_inode(struct super_block *sb,
4323 unsigned int journal_inum)
4324{
4325 struct inode *journal_inode;
4326
4327 /*
4328 * Test for the existence of a valid inode on disk. Bad things
4329 * happen if we iget() an unused inode, as the subsequent iput()
4330 * will try to delete it.
4331 */
4332 journal_inode = ext4_iget(sb, journal_inum);
4333 if (IS_ERR(journal_inode)) {
4334 ext4_msg(sb, KERN_ERR, "no journal found");
4335 return NULL;
4336 }
4337 if (!journal_inode->i_nlink) {
4338 make_bad_inode(journal_inode);
4339 iput(journal_inode);
4340 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4341 return NULL;
4342 }
4343
4344 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4345 journal_inode, journal_inode->i_size);
4346 if (!S_ISREG(journal_inode->i_mode)) {
4347 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4348 iput(journal_inode);
4349 return NULL;
4350 }
4351 return journal_inode;
4352}
4353
4354static journal_t *ext4_get_journal(struct super_block *sb,
4355 unsigned int journal_inum)
4356{
4357 struct inode *journal_inode;
4358 journal_t *journal;
4359
4360 BUG_ON(!ext4_has_feature_journal(sb));
4361
4362 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4363 if (!journal_inode)
4364 return NULL;
4365
4366 journal = jbd2_journal_init_inode(journal_inode);
4367 if (!journal) {
4368 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4369 iput(journal_inode);
4370 return NULL;
4371 }
4372 journal->j_private = sb;
4373 ext4_init_journal_params(sb, journal);
4374 return journal;
4375}
4376
4377static journal_t *ext4_get_dev_journal(struct super_block *sb,
4378 dev_t j_dev)
4379{
4380 struct buffer_head *bh;
4381 journal_t *journal;
4382 ext4_fsblk_t start;
4383 ext4_fsblk_t len;
4384 int hblock, blocksize;
4385 ext4_fsblk_t sb_block;
4386 unsigned long offset;
4387 struct ext4_super_block *es;
4388 struct block_device *bdev;
4389
4390 BUG_ON(!ext4_has_feature_journal(sb));
4391
4392 bdev = ext4_blkdev_get(j_dev, sb);
4393 if (bdev == NULL)
4394 return NULL;
4395
4396 blocksize = sb->s_blocksize;
4397 hblock = bdev_logical_block_size(bdev);
4398 if (blocksize < hblock) {
4399 ext4_msg(sb, KERN_ERR,
4400 "blocksize too small for journal device");
4401 goto out_bdev;
4402 }
4403
4404 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4405 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4406 set_blocksize(bdev, blocksize);
4407 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4408 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4409 "external journal");
4410 goto out_bdev;
4411 }
4412
4413 es = (struct ext4_super_block *) (bh->b_data + offset);
4414 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4415 !(le32_to_cpu(es->s_feature_incompat) &
4416 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4417 ext4_msg(sb, KERN_ERR, "external journal has "
4418 "bad superblock");
4419 brelse(bh);
4420 goto out_bdev;
4421 }
4422
4423 if ((le32_to_cpu(es->s_feature_ro_compat) &
4424 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4425 es->s_checksum != ext4_superblock_csum(sb, es)) {
4426 ext4_msg(sb, KERN_ERR, "external journal has "
4427 "corrupt superblock");
4428 brelse(bh);
4429 goto out_bdev;
4430 }
4431
4432 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4433 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4434 brelse(bh);
4435 goto out_bdev;
4436 }
4437
4438 len = ext4_blocks_count(es);
4439 start = sb_block + 1;
4440 brelse(bh); /* we're done with the superblock */
4441
4442 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4443 start, len, blocksize);
4444 if (!journal) {
4445 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4446 goto out_bdev;
4447 }
4448 journal->j_private = sb;
4449 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4450 wait_on_buffer(journal->j_sb_buffer);
4451 if (!buffer_uptodate(journal->j_sb_buffer)) {
4452 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4453 goto out_journal;
4454 }
4455 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4456 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4457 "user (unsupported) - %d",
4458 be32_to_cpu(journal->j_superblock->s_nr_users));
4459 goto out_journal;
4460 }
4461 EXT4_SB(sb)->journal_bdev = bdev;
4462 ext4_init_journal_params(sb, journal);
4463 return journal;
4464
4465out_journal:
4466 jbd2_journal_destroy(journal);
4467out_bdev:
4468 ext4_blkdev_put(bdev);
4469 return NULL;
4470}
4471
4472static int ext4_load_journal(struct super_block *sb,
4473 struct ext4_super_block *es,
4474 unsigned long journal_devnum)
4475{
4476 journal_t *journal;
4477 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4478 dev_t journal_dev;
4479 int err = 0;
4480 int really_read_only;
4481
4482 BUG_ON(!ext4_has_feature_journal(sb));
4483
4484 if (journal_devnum &&
4485 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4486 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4487 "numbers have changed");
4488 journal_dev = new_decode_dev(journal_devnum);
4489 } else
4490 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4491
4492 really_read_only = bdev_read_only(sb->s_bdev);
4493
4494 /*
4495 * Are we loading a blank journal or performing recovery after a
4496 * crash? For recovery, we need to check in advance whether we
4497 * can get read-write access to the device.
4498 */
4499 if (ext4_has_feature_journal_needs_recovery(sb)) {
4500 if (sb->s_flags & MS_RDONLY) {
4501 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4502 "required on readonly filesystem");
4503 if (really_read_only) {
4504 ext4_msg(sb, KERN_ERR, "write access "
4505 "unavailable, cannot proceed");
4506 return -EROFS;
4507 }
4508 ext4_msg(sb, KERN_INFO, "write access will "
4509 "be enabled during recovery");
4510 }
4511 }
4512
4513 if (journal_inum && journal_dev) {
4514 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4515 "and inode journals!");
4516 return -EINVAL;
4517 }
4518
4519 if (journal_inum) {
4520 if (!(journal = ext4_get_journal(sb, journal_inum)))
4521 return -EINVAL;
4522 } else {
4523 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4524 return -EINVAL;
4525 }
4526
4527 if (!(journal->j_flags & JBD2_BARRIER))
4528 ext4_msg(sb, KERN_INFO, "barriers disabled");
4529
4530 if (!ext4_has_feature_journal_needs_recovery(sb))
4531 err = jbd2_journal_wipe(journal, !really_read_only);
4532 if (!err) {
4533 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4534 if (save)
4535 memcpy(save, ((char *) es) +
4536 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4537 err = jbd2_journal_load(journal);
4538 if (save)
4539 memcpy(((char *) es) + EXT4_S_ERR_START,
4540 save, EXT4_S_ERR_LEN);
4541 kfree(save);
4542 }
4543
4544 if (err) {
4545 ext4_msg(sb, KERN_ERR, "error loading journal");
4546 jbd2_journal_destroy(journal);
4547 return err;
4548 }
4549
4550 EXT4_SB(sb)->s_journal = journal;
4551 ext4_clear_journal_err(sb, es);
4552
4553 if (!really_read_only && journal_devnum &&
4554 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4555 es->s_journal_dev = cpu_to_le32(journal_devnum);
4556
4557 /* Make sure we flush the recovery flag to disk. */
4558 ext4_commit_super(sb, 1);
4559 }
4560
4561 return 0;
4562}
4563
4564static int ext4_commit_super(struct super_block *sb, int sync)
4565{
4566 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4567 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4568 int error = 0;
4569
4570 if (!sbh || block_device_ejected(sb))
4571 return error;
4572 /*
4573 * If the file system is mounted read-only, don't update the
4574 * superblock write time. This avoids updating the superblock
4575 * write time when we are mounting the root file system
4576 * read/only but we need to replay the journal; at that point,
4577 * for people who are east of GMT and who make their clock
4578 * tick in localtime for Windows bug-for-bug compatibility,
4579 * the clock is set in the future, and this will cause e2fsck
4580 * to complain and force a full file system check.
4581 */
4582 if (!(sb->s_flags & MS_RDONLY))
4583 es->s_wtime = cpu_to_le32(get_seconds());
4584 if (sb->s_bdev->bd_part)
4585 es->s_kbytes_written =
4586 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4587 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4588 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4589 else
4590 es->s_kbytes_written =
4591 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4592 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4593 ext4_free_blocks_count_set(es,
4594 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4595 &EXT4_SB(sb)->s_freeclusters_counter)));
4596 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4597 es->s_free_inodes_count =
4598 cpu_to_le32(percpu_counter_sum_positive(
4599 &EXT4_SB(sb)->s_freeinodes_counter));
4600 BUFFER_TRACE(sbh, "marking dirty");
4601 ext4_superblock_csum_set(sb);
4602 if (sync)
4603 lock_buffer(sbh);
4604 if (buffer_write_io_error(sbh)) {
4605 /*
4606 * Oh, dear. A previous attempt to write the
4607 * superblock failed. This could happen because the
4608 * USB device was yanked out. Or it could happen to
4609 * be a transient write error and maybe the block will
4610 * be remapped. Nothing we can do but to retry the
4611 * write and hope for the best.
4612 */
4613 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4614 "superblock detected");
4615 clear_buffer_write_io_error(sbh);
4616 set_buffer_uptodate(sbh);
4617 }
4618 mark_buffer_dirty(sbh);
4619 if (sync) {
4620 unlock_buffer(sbh);
4621 error = __sync_dirty_buffer(sbh,
4622 test_opt(sb, BARRIER) ? REQ_FUA : REQ_SYNC);
4623 if (error)
4624 return error;
4625
4626 error = buffer_write_io_error(sbh);
4627 if (error) {
4628 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4629 "superblock");
4630 clear_buffer_write_io_error(sbh);
4631 set_buffer_uptodate(sbh);
4632 }
4633 }
4634 return error;
4635}
4636
4637/*
4638 * Have we just finished recovery? If so, and if we are mounting (or
4639 * remounting) the filesystem readonly, then we will end up with a
4640 * consistent fs on disk. Record that fact.
4641 */
4642static void ext4_mark_recovery_complete(struct super_block *sb,
4643 struct ext4_super_block *es)
4644{
4645 journal_t *journal = EXT4_SB(sb)->s_journal;
4646
4647 if (!ext4_has_feature_journal(sb)) {
4648 BUG_ON(journal != NULL);
4649 return;
4650 }
4651 jbd2_journal_lock_updates(journal);
4652 if (jbd2_journal_flush(journal) < 0)
4653 goto out;
4654
4655 if (ext4_has_feature_journal_needs_recovery(sb) &&
4656 sb->s_flags & MS_RDONLY) {
4657 ext4_clear_feature_journal_needs_recovery(sb);
4658 ext4_commit_super(sb, 1);
4659 }
4660
4661out:
4662 jbd2_journal_unlock_updates(journal);
4663}
4664
4665/*
4666 * If we are mounting (or read-write remounting) a filesystem whose journal
4667 * has recorded an error from a previous lifetime, move that error to the
4668 * main filesystem now.
4669 */
4670static void ext4_clear_journal_err(struct super_block *sb,
4671 struct ext4_super_block *es)
4672{
4673 journal_t *journal;
4674 int j_errno;
4675 const char *errstr;
4676
4677 BUG_ON(!ext4_has_feature_journal(sb));
4678
4679 journal = EXT4_SB(sb)->s_journal;
4680
4681 /*
4682 * Now check for any error status which may have been recorded in the
4683 * journal by a prior ext4_error() or ext4_abort()
4684 */
4685
4686 j_errno = jbd2_journal_errno(journal);
4687 if (j_errno) {
4688 char nbuf[16];
4689
4690 errstr = ext4_decode_error(sb, j_errno, nbuf);
4691 ext4_warning(sb, "Filesystem error recorded "
4692 "from previous mount: %s", errstr);
4693 ext4_warning(sb, "Marking fs in need of filesystem check.");
4694
4695 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4696 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4697 ext4_commit_super(sb, 1);
4698
4699 jbd2_journal_clear_err(journal);
4700 jbd2_journal_update_sb_errno(journal);
4701 }
4702}
4703
4704/*
4705 * Force the running and committing transactions to commit,
4706 * and wait on the commit.
4707 */
4708int ext4_force_commit(struct super_block *sb)
4709{
4710 journal_t *journal;
4711
4712 if (sb->s_flags & MS_RDONLY)
4713 return 0;
4714
4715 journal = EXT4_SB(sb)->s_journal;
4716 return ext4_journal_force_commit(journal);
4717}
4718
4719static int ext4_sync_fs(struct super_block *sb, int wait)
4720{
4721 int ret = 0;
4722 tid_t target;
4723 bool needs_barrier = false;
4724 struct ext4_sb_info *sbi = EXT4_SB(sb);
4725
4726 trace_ext4_sync_fs(sb, wait);
4727 flush_workqueue(sbi->rsv_conversion_wq);
4728 /*
4729 * Writeback quota in non-journalled quota case - journalled quota has
4730 * no dirty dquots
4731 */
4732 dquot_writeback_dquots(sb, -1);
4733 /*
4734 * Data writeback is possible w/o journal transaction, so barrier must
4735 * being sent at the end of the function. But we can skip it if
4736 * transaction_commit will do it for us.
4737 */
4738 if (sbi->s_journal) {
4739 target = jbd2_get_latest_transaction(sbi->s_journal);
4740 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4741 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4742 needs_barrier = true;
4743
4744 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4745 if (wait)
4746 ret = jbd2_log_wait_commit(sbi->s_journal,
4747 target);
4748 }
4749 } else if (wait && test_opt(sb, BARRIER))
4750 needs_barrier = true;
4751 if (needs_barrier) {
4752 int err;
4753 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4754 if (!ret)
4755 ret = err;
4756 }
4757
4758 return ret;
4759}
4760
4761/*
4762 * LVM calls this function before a (read-only) snapshot is created. This
4763 * gives us a chance to flush the journal completely and mark the fs clean.
4764 *
4765 * Note that only this function cannot bring a filesystem to be in a clean
4766 * state independently. It relies on upper layer to stop all data & metadata
4767 * modifications.
4768 */
4769static int ext4_freeze(struct super_block *sb)
4770{
4771 int error = 0;
4772 journal_t *journal;
4773
4774 if (sb->s_flags & MS_RDONLY)
4775 return 0;
4776
4777 journal = EXT4_SB(sb)->s_journal;
4778
4779 if (journal) {
4780 /* Now we set up the journal barrier. */
4781 jbd2_journal_lock_updates(journal);
4782
4783 /*
4784 * Don't clear the needs_recovery flag if we failed to
4785 * flush the journal.
4786 */
4787 error = jbd2_journal_flush(journal);
4788 if (error < 0)
4789 goto out;
4790
4791 /* Journal blocked and flushed, clear needs_recovery flag. */
4792 ext4_clear_feature_journal_needs_recovery(sb);
4793 }
4794
4795 error = ext4_commit_super(sb, 1);
4796out:
4797 if (journal)
4798 /* we rely on upper layer to stop further updates */
4799 jbd2_journal_unlock_updates(journal);
4800 return error;
4801}
4802
4803/*
4804 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4805 * flag here, even though the filesystem is not technically dirty yet.
4806 */
4807static int ext4_unfreeze(struct super_block *sb)
4808{
4809 if (sb->s_flags & MS_RDONLY)
4810 return 0;
4811
4812 if (EXT4_SB(sb)->s_journal) {
4813 /* Reset the needs_recovery flag before the fs is unlocked. */
4814 ext4_set_feature_journal_needs_recovery(sb);
4815 }
4816
4817 ext4_commit_super(sb, 1);
4818 return 0;
4819}
4820
4821/*
4822 * Structure to save mount options for ext4_remount's benefit
4823 */
4824struct ext4_mount_options {
4825 unsigned long s_mount_opt;
4826 unsigned long s_mount_opt2;
4827 kuid_t s_resuid;
4828 kgid_t s_resgid;
4829 unsigned long s_commit_interval;
4830 u32 s_min_batch_time, s_max_batch_time;
4831#ifdef CONFIG_QUOTA
4832 int s_jquota_fmt;
4833 char *s_qf_names[EXT4_MAXQUOTAS];
4834#endif
4835};
4836
4837static int ext4_remount(struct super_block *sb, int *flags, char *data)
4838{
4839 struct ext4_super_block *es;
4840 struct ext4_sb_info *sbi = EXT4_SB(sb);
4841 unsigned long old_sb_flags;
4842 struct ext4_mount_options old_opts;
4843 int enable_quota = 0;
4844 ext4_group_t g;
4845 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4846 int err = 0;
4847#ifdef CONFIG_QUOTA
4848 int i, j;
4849#endif
4850 char *orig_data = kstrdup(data, GFP_KERNEL);
4851
4852 /* Store the original options */
4853 old_sb_flags = sb->s_flags;
4854 old_opts.s_mount_opt = sbi->s_mount_opt;
4855 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4856 old_opts.s_resuid = sbi->s_resuid;
4857 old_opts.s_resgid = sbi->s_resgid;
4858 old_opts.s_commit_interval = sbi->s_commit_interval;
4859 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4860 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4861#ifdef CONFIG_QUOTA
4862 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4863 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4864 if (sbi->s_qf_names[i]) {
4865 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4866 GFP_KERNEL);
4867 if (!old_opts.s_qf_names[i]) {
4868 for (j = 0; j < i; j++)
4869 kfree(old_opts.s_qf_names[j]);
4870 kfree(orig_data);
4871 return -ENOMEM;
4872 }
4873 } else
4874 old_opts.s_qf_names[i] = NULL;
4875#endif
4876 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4877 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4878
4879 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4880 err = -EINVAL;
4881 goto restore_opts;
4882 }
4883
4884 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4885 test_opt(sb, JOURNAL_CHECKSUM)) {
4886 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4887 "during remount not supported; ignoring");
4888 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4889 }
4890
4891 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4892 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4893 ext4_msg(sb, KERN_ERR, "can't mount with "
4894 "both data=journal and delalloc");
4895 err = -EINVAL;
4896 goto restore_opts;
4897 }
4898 if (test_opt(sb, DIOREAD_NOLOCK)) {
4899 ext4_msg(sb, KERN_ERR, "can't mount with "
4900 "both data=journal and dioread_nolock");
4901 err = -EINVAL;
4902 goto restore_opts;
4903 }
4904 if (test_opt(sb, DAX)) {
4905 ext4_msg(sb, KERN_ERR, "can't mount with "
4906 "both data=journal and dax");
4907 err = -EINVAL;
4908 goto restore_opts;
4909 }
4910 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
4911 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4912 ext4_msg(sb, KERN_ERR, "can't mount with "
4913 "journal_async_commit in data=ordered mode");
4914 err = -EINVAL;
4915 goto restore_opts;
4916 }
4917 }
4918
4919 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4920 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4921 "dax flag with busy inodes while remounting");
4922 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4923 }
4924
4925 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4926 ext4_abort(sb, "Abort forced by user");
4927
4928 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4929 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4930
4931 es = sbi->s_es;
4932
4933 if (sbi->s_journal) {
4934 ext4_init_journal_params(sb, sbi->s_journal);
4935 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4936 }
4937
4938 if (*flags & MS_LAZYTIME)
4939 sb->s_flags |= MS_LAZYTIME;
4940
4941 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4942 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4943 err = -EROFS;
4944 goto restore_opts;
4945 }
4946
4947 if (*flags & MS_RDONLY) {
4948 err = sync_filesystem(sb);
4949 if (err < 0)
4950 goto restore_opts;
4951 err = dquot_suspend(sb, -1);
4952 if (err < 0)
4953 goto restore_opts;
4954
4955 /*
4956 * First of all, the unconditional stuff we have to do
4957 * to disable replay of the journal when we next remount
4958 */
4959 sb->s_flags |= MS_RDONLY;
4960
4961 /*
4962 * OK, test if we are remounting a valid rw partition
4963 * readonly, and if so set the rdonly flag and then
4964 * mark the partition as valid again.
4965 */
4966 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4967 (sbi->s_mount_state & EXT4_VALID_FS))
4968 es->s_state = cpu_to_le16(sbi->s_mount_state);
4969
4970 if (sbi->s_journal)
4971 ext4_mark_recovery_complete(sb, es);
4972 } else {
4973 /* Make sure we can mount this feature set readwrite */
4974 if (ext4_has_feature_readonly(sb) ||
4975 !ext4_feature_set_ok(sb, 0)) {
4976 err = -EROFS;
4977 goto restore_opts;
4978 }
4979 /*
4980 * Make sure the group descriptor checksums
4981 * are sane. If they aren't, refuse to remount r/w.
4982 */
4983 for (g = 0; g < sbi->s_groups_count; g++) {
4984 struct ext4_group_desc *gdp =
4985 ext4_get_group_desc(sb, g, NULL);
4986
4987 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4988 ext4_msg(sb, KERN_ERR,
4989 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4990 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4991 le16_to_cpu(gdp->bg_checksum));
4992 err = -EFSBADCRC;
4993 goto restore_opts;
4994 }
4995 }
4996
4997 /*
4998 * If we have an unprocessed orphan list hanging
4999 * around from a previously readonly bdev mount,
5000 * require a full umount/remount for now.
5001 */
5002 if (es->s_last_orphan) {
5003 ext4_msg(sb, KERN_WARNING, "Couldn't "
5004 "remount RDWR because of unprocessed "
5005 "orphan inode list. Please "
5006 "umount/remount instead");
5007 err = -EINVAL;
5008 goto restore_opts;
5009 }
5010
5011 /*
5012 * Mounting a RDONLY partition read-write, so reread
5013 * and store the current valid flag. (It may have
5014 * been changed by e2fsck since we originally mounted
5015 * the partition.)
5016 */
5017 if (sbi->s_journal)
5018 ext4_clear_journal_err(sb, es);
5019 sbi->s_mount_state = le16_to_cpu(es->s_state);
5020 if (!ext4_setup_super(sb, es, 0))
5021 sb->s_flags &= ~MS_RDONLY;
5022 if (ext4_has_feature_mmp(sb))
5023 if (ext4_multi_mount_protect(sb,
5024 le64_to_cpu(es->s_mmp_block))) {
5025 err = -EROFS;
5026 goto restore_opts;
5027 }
5028 enable_quota = 1;
5029 }
5030 }
5031
5032 /*
5033 * Reinitialize lazy itable initialization thread based on
5034 * current settings
5035 */
5036 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5037 ext4_unregister_li_request(sb);
5038 else {
5039 ext4_group_t first_not_zeroed;
5040 first_not_zeroed = ext4_has_uninit_itable(sb);
5041 ext4_register_li_request(sb, first_not_zeroed);
5042 }
5043
5044 ext4_setup_system_zone(sb);
5045 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5046 ext4_commit_super(sb, 1);
5047
5048#ifdef CONFIG_QUOTA
5049 /* Release old quota file names */
5050 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5051 kfree(old_opts.s_qf_names[i]);
5052 if (enable_quota) {
5053 if (sb_any_quota_suspended(sb))
5054 dquot_resume(sb, -1);
5055 else if (ext4_has_feature_quota(sb)) {
5056 err = ext4_enable_quotas(sb);
5057 if (err)
5058 goto restore_opts;
5059 }
5060 }
5061#endif
5062
5063 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5064 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5065 kfree(orig_data);
5066 return 0;
5067
5068restore_opts:
5069 sb->s_flags = old_sb_flags;
5070 sbi->s_mount_opt = old_opts.s_mount_opt;
5071 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5072 sbi->s_resuid = old_opts.s_resuid;
5073 sbi->s_resgid = old_opts.s_resgid;
5074 sbi->s_commit_interval = old_opts.s_commit_interval;
5075 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5076 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5077#ifdef CONFIG_QUOTA
5078 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5079 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5080 kfree(sbi->s_qf_names[i]);
5081 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5082 }
5083#endif
5084 kfree(orig_data);
5085 return err;
5086}
5087
5088#ifdef CONFIG_QUOTA
5089static int ext4_statfs_project(struct super_block *sb,
5090 kprojid_t projid, struct kstatfs *buf)
5091{
5092 struct kqid qid;
5093 struct dquot *dquot;
5094 u64 limit;
5095 u64 curblock;
5096
5097 qid = make_kqid_projid(projid);
5098 dquot = dqget(sb, qid);
5099 if (IS_ERR(dquot))
5100 return PTR_ERR(dquot);
5101 spin_lock(&dq_data_lock);
5102
5103 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5104 dquot->dq_dqb.dqb_bsoftlimit :
5105 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5106 if (limit && buf->f_blocks > limit) {
5107 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5108 buf->f_blocks = limit;
5109 buf->f_bfree = buf->f_bavail =
5110 (buf->f_blocks > curblock) ?
5111 (buf->f_blocks - curblock) : 0;
5112 }
5113
5114 limit = dquot->dq_dqb.dqb_isoftlimit ?
5115 dquot->dq_dqb.dqb_isoftlimit :
5116 dquot->dq_dqb.dqb_ihardlimit;
5117 if (limit && buf->f_files > limit) {
5118 buf->f_files = limit;
5119 buf->f_ffree =
5120 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5121 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5122 }
5123
5124 spin_unlock(&dq_data_lock);
5125 dqput(dquot);
5126 return 0;
5127}
5128#endif
5129
5130static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5131{
5132 struct super_block *sb = dentry->d_sb;
5133 struct ext4_sb_info *sbi = EXT4_SB(sb);
5134 struct ext4_super_block *es = sbi->s_es;
5135 ext4_fsblk_t overhead = 0, resv_blocks;
5136 u64 fsid;
5137 s64 bfree;
5138 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5139
5140 if (!test_opt(sb, MINIX_DF))
5141 overhead = sbi->s_overhead;
5142
5143 buf->f_type = EXT4_SUPER_MAGIC;
5144 buf->f_bsize = sb->s_blocksize;
5145 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5146 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5147 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5148 /* prevent underflow in case that few free space is available */
5149 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5150 buf->f_bavail = buf->f_bfree -
5151 (ext4_r_blocks_count(es) + resv_blocks);
5152 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5153 buf->f_bavail = 0;
5154 buf->f_files = le32_to_cpu(es->s_inodes_count);
5155 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5156 buf->f_namelen = EXT4_NAME_LEN;
5157 fsid = le64_to_cpup((void *)es->s_uuid) ^
5158 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5159 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5160 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5161
5162#ifdef CONFIG_QUOTA
5163 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5164 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5165 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5166#endif
5167 return 0;
5168}
5169
5170/* Helper function for writing quotas on sync - we need to start transaction
5171 * before quota file is locked for write. Otherwise the are possible deadlocks:
5172 * Process 1 Process 2
5173 * ext4_create() quota_sync()
5174 * jbd2_journal_start() write_dquot()
5175 * dquot_initialize() down(dqio_mutex)
5176 * down(dqio_mutex) jbd2_journal_start()
5177 *
5178 */
5179
5180#ifdef CONFIG_QUOTA
5181
5182static inline struct inode *dquot_to_inode(struct dquot *dquot)
5183{
5184 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5185}
5186
5187static int ext4_write_dquot(struct dquot *dquot)
5188{
5189 int ret, err;
5190 handle_t *handle;
5191 struct inode *inode;
5192
5193 inode = dquot_to_inode(dquot);
5194 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5195 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5196 if (IS_ERR(handle))
5197 return PTR_ERR(handle);
5198 ret = dquot_commit(dquot);
5199 err = ext4_journal_stop(handle);
5200 if (!ret)
5201 ret = err;
5202 return ret;
5203}
5204
5205static int ext4_acquire_dquot(struct dquot *dquot)
5206{
5207 int ret, err;
5208 handle_t *handle;
5209
5210 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5211 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5212 if (IS_ERR(handle))
5213 return PTR_ERR(handle);
5214 ret = dquot_acquire(dquot);
5215 err = ext4_journal_stop(handle);
5216 if (!ret)
5217 ret = err;
5218 return ret;
5219}
5220
5221static int ext4_release_dquot(struct dquot *dquot)
5222{
5223 int ret, err;
5224 handle_t *handle;
5225
5226 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5227 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5228 if (IS_ERR(handle)) {
5229 /* Release dquot anyway to avoid endless cycle in dqput() */
5230 dquot_release(dquot);
5231 return PTR_ERR(handle);
5232 }
5233 ret = dquot_release(dquot);
5234 err = ext4_journal_stop(handle);
5235 if (!ret)
5236 ret = err;
5237 return ret;
5238}
5239
5240static int ext4_mark_dquot_dirty(struct dquot *dquot)
5241{
5242 struct super_block *sb = dquot->dq_sb;
5243 struct ext4_sb_info *sbi = EXT4_SB(sb);
5244
5245 /* Are we journaling quotas? */
5246 if (ext4_has_feature_quota(sb) ||
5247 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5248 dquot_mark_dquot_dirty(dquot);
5249 return ext4_write_dquot(dquot);
5250 } else {
5251 return dquot_mark_dquot_dirty(dquot);
5252 }
5253}
5254
5255static int ext4_write_info(struct super_block *sb, int type)
5256{
5257 int ret, err;
5258 handle_t *handle;
5259
5260 /* Data block + inode block */
5261 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5262 if (IS_ERR(handle))
5263 return PTR_ERR(handle);
5264 ret = dquot_commit_info(sb, type);
5265 err = ext4_journal_stop(handle);
5266 if (!ret)
5267 ret = err;
5268 return ret;
5269}
5270
5271/*
5272 * Turn on quotas during mount time - we need to find
5273 * the quota file and such...
5274 */
5275static int ext4_quota_on_mount(struct super_block *sb, int type)
5276{
5277 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5278 EXT4_SB(sb)->s_jquota_fmt, type);
5279}
5280
5281static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5282{
5283 struct ext4_inode_info *ei = EXT4_I(inode);
5284
5285 /* The first argument of lockdep_set_subclass has to be
5286 * *exactly* the same as the argument to init_rwsem() --- in
5287 * this case, in init_once() --- or lockdep gets unhappy
5288 * because the name of the lock is set using the
5289 * stringification of the argument to init_rwsem().
5290 */
5291 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5292 lockdep_set_subclass(&ei->i_data_sem, subclass);
5293}
5294
5295/*
5296 * Standard function to be called on quota_on
5297 */
5298static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5299 const struct path *path)
5300{
5301 int err;
5302
5303 if (!test_opt(sb, QUOTA))
5304 return -EINVAL;
5305
5306 /* Quotafile not on the same filesystem? */
5307 if (path->dentry->d_sb != sb)
5308 return -EXDEV;
5309 /* Journaling quota? */
5310 if (EXT4_SB(sb)->s_qf_names[type]) {
5311 /* Quotafile not in fs root? */
5312 if (path->dentry->d_parent != sb->s_root)
5313 ext4_msg(sb, KERN_WARNING,
5314 "Quota file not on filesystem root. "
5315 "Journaled quota will not work");
5316 }
5317
5318 /*
5319 * When we journal data on quota file, we have to flush journal to see
5320 * all updates to the file when we bypass pagecache...
5321 */
5322 if (EXT4_SB(sb)->s_journal &&
5323 ext4_should_journal_data(d_inode(path->dentry))) {
5324 /*
5325 * We don't need to lock updates but journal_flush() could
5326 * otherwise be livelocked...
5327 */
5328 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5329 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5330 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5331 if (err)
5332 return err;
5333 }
5334 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5335 err = dquot_quota_on(sb, type, format_id, path);
5336 if (err)
5337 lockdep_set_quota_inode(path->dentry->d_inode,
5338 I_DATA_SEM_NORMAL);
5339 return err;
5340}
5341
5342static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5343 unsigned int flags)
5344{
5345 int err;
5346 struct inode *qf_inode;
5347 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5348 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5349 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5350 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5351 };
5352
5353 BUG_ON(!ext4_has_feature_quota(sb));
5354
5355 if (!qf_inums[type])
5356 return -EPERM;
5357
5358 qf_inode = ext4_iget(sb, qf_inums[type]);
5359 if (IS_ERR(qf_inode)) {
5360 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5361 return PTR_ERR(qf_inode);
5362 }
5363
5364 /* Don't account quota for quota files to avoid recursion */
5365 qf_inode->i_flags |= S_NOQUOTA;
5366 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5367 err = dquot_enable(qf_inode, type, format_id, flags);
5368 iput(qf_inode);
5369 if (err)
5370 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5371
5372 return err;
5373}
5374
5375/* Enable usage tracking for all quota types. */
5376static int ext4_enable_quotas(struct super_block *sb)
5377{
5378 int type, err = 0;
5379 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5380 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5381 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5382 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5383 };
5384 bool quota_mopt[EXT4_MAXQUOTAS] = {
5385 test_opt(sb, USRQUOTA),
5386 test_opt(sb, GRPQUOTA),
5387 test_opt(sb, PRJQUOTA),
5388 };
5389
5390 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5391 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5392 if (qf_inums[type]) {
5393 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5394 DQUOT_USAGE_ENABLED |
5395 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5396 if (err) {
5397 ext4_warning(sb,
5398 "Failed to enable quota tracking "
5399 "(type=%d, err=%d). Please run "
5400 "e2fsck to fix.", type, err);
5401 return err;
5402 }
5403 }
5404 }
5405 return 0;
5406}
5407
5408static int ext4_quota_off(struct super_block *sb, int type)
5409{
5410 struct inode *inode = sb_dqopt(sb)->files[type];
5411 handle_t *handle;
5412
5413 /* Force all delayed allocation blocks to be allocated.
5414 * Caller already holds s_umount sem */
5415 if (test_opt(sb, DELALLOC))
5416 sync_filesystem(sb);
5417
5418 if (!inode)
5419 goto out;
5420
5421 /* Update modification times of quota files when userspace can
5422 * start looking at them */
5423 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5424 if (IS_ERR(handle))
5425 goto out;
5426 inode->i_mtime = inode->i_ctime = current_time(inode);
5427 ext4_mark_inode_dirty(handle, inode);
5428 ext4_journal_stop(handle);
5429
5430out:
5431 return dquot_quota_off(sb, type);
5432}
5433
5434/* Read data from quotafile - avoid pagecache and such because we cannot afford
5435 * acquiring the locks... As quota files are never truncated and quota code
5436 * itself serializes the operations (and no one else should touch the files)
5437 * we don't have to be afraid of races */
5438static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5439 size_t len, loff_t off)
5440{
5441 struct inode *inode = sb_dqopt(sb)->files[type];
5442 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5443 int offset = off & (sb->s_blocksize - 1);
5444 int tocopy;
5445 size_t toread;
5446 struct buffer_head *bh;
5447 loff_t i_size = i_size_read(inode);
5448
5449 if (off > i_size)
5450 return 0;
5451 if (off+len > i_size)
5452 len = i_size-off;
5453 toread = len;
5454 while (toread > 0) {
5455 tocopy = sb->s_blocksize - offset < toread ?
5456 sb->s_blocksize - offset : toread;
5457 bh = ext4_bread(NULL, inode, blk, 0);
5458 if (IS_ERR(bh))
5459 return PTR_ERR(bh);
5460 if (!bh) /* A hole? */
5461 memset(data, 0, tocopy);
5462 else
5463 memcpy(data, bh->b_data+offset, tocopy);
5464 brelse(bh);
5465 offset = 0;
5466 toread -= tocopy;
5467 data += tocopy;
5468 blk++;
5469 }
5470 return len;
5471}
5472
5473/* Write to quotafile (we know the transaction is already started and has
5474 * enough credits) */
5475static ssize_t ext4_quota_write(struct super_block *sb, int type,
5476 const char *data, size_t len, loff_t off)
5477{
5478 struct inode *inode = sb_dqopt(sb)->files[type];
5479 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5480 int err, offset = off & (sb->s_blocksize - 1);
5481 int retries = 0;
5482 struct buffer_head *bh;
5483 handle_t *handle = journal_current_handle();
5484
5485 if (EXT4_SB(sb)->s_journal && !handle) {
5486 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5487 " cancelled because transaction is not started",
5488 (unsigned long long)off, (unsigned long long)len);
5489 return -EIO;
5490 }
5491 /*
5492 * Since we account only one data block in transaction credits,
5493 * then it is impossible to cross a block boundary.
5494 */
5495 if (sb->s_blocksize - offset < len) {
5496 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5497 " cancelled because not block aligned",
5498 (unsigned long long)off, (unsigned long long)len);
5499 return -EIO;
5500 }
5501
5502 do {
5503 bh = ext4_bread(handle, inode, blk,
5504 EXT4_GET_BLOCKS_CREATE |
5505 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5506 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5507 ext4_should_retry_alloc(inode->i_sb, &retries));
5508 if (IS_ERR(bh))
5509 return PTR_ERR(bh);
5510 if (!bh)
5511 goto out;
5512 BUFFER_TRACE(bh, "get write access");
5513 err = ext4_journal_get_write_access(handle, bh);
5514 if (err) {
5515 brelse(bh);
5516 return err;
5517 }
5518 lock_buffer(bh);
5519 memcpy(bh->b_data+offset, data, len);
5520 flush_dcache_page(bh->b_page);
5521 unlock_buffer(bh);
5522 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5523 brelse(bh);
5524out:
5525 if (inode->i_size < off + len) {
5526 i_size_write(inode, off + len);
5527 EXT4_I(inode)->i_disksize = inode->i_size;
5528 ext4_mark_inode_dirty(handle, inode);
5529 }
5530 return len;
5531}
5532
5533static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5534{
5535 const struct quota_format_ops *ops;
5536
5537 if (!sb_has_quota_loaded(sb, qid->type))
5538 return -ESRCH;
5539 ops = sb_dqopt(sb)->ops[qid->type];
5540 if (!ops || !ops->get_next_id)
5541 return -ENOSYS;
5542 return dquot_get_next_id(sb, qid);
5543}
5544#endif
5545
5546static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5547 const char *dev_name, void *data)
5548{
5549 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5550}
5551
5552#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5553static inline void register_as_ext2(void)
5554{
5555 int err = register_filesystem(&ext2_fs_type);
5556 if (err)
5557 printk(KERN_WARNING
5558 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5559}
5560
5561static inline void unregister_as_ext2(void)
5562{
5563 unregister_filesystem(&ext2_fs_type);
5564}
5565
5566static inline int ext2_feature_set_ok(struct super_block *sb)
5567{
5568 if (ext4_has_unknown_ext2_incompat_features(sb))
5569 return 0;
5570 if (sb->s_flags & MS_RDONLY)
5571 return 1;
5572 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5573 return 0;
5574 return 1;
5575}
5576#else
5577static inline void register_as_ext2(void) { }
5578static inline void unregister_as_ext2(void) { }
5579static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5580#endif
5581
5582static inline void register_as_ext3(void)
5583{
5584 int err = register_filesystem(&ext3_fs_type);
5585 if (err)
5586 printk(KERN_WARNING
5587 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5588}
5589
5590static inline void unregister_as_ext3(void)
5591{
5592 unregister_filesystem(&ext3_fs_type);
5593}
5594
5595static inline int ext3_feature_set_ok(struct super_block *sb)
5596{
5597 if (ext4_has_unknown_ext3_incompat_features(sb))
5598 return 0;
5599 if (!ext4_has_feature_journal(sb))
5600 return 0;
5601 if (sb->s_flags & MS_RDONLY)
5602 return 1;
5603 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5604 return 0;
5605 return 1;
5606}
5607
5608static struct file_system_type ext4_fs_type = {
5609 .owner = THIS_MODULE,
5610 .name = "ext4",
5611 .mount = ext4_mount,
5612 .kill_sb = kill_block_super,
5613 .fs_flags = FS_REQUIRES_DEV,
5614};
5615MODULE_ALIAS_FS("ext4");
5616
5617/* Shared across all ext4 file systems */
5618wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5619
5620static int __init ext4_init_fs(void)
5621{
5622 int i, err;
5623
5624 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5625 ext4_li_info = NULL;
5626 mutex_init(&ext4_li_mtx);
5627
5628 /* Build-time check for flags consistency */
5629 ext4_check_flag_values();
5630
5631 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5632 init_waitqueue_head(&ext4__ioend_wq[i]);
5633
5634 err = ext4_init_es();
5635 if (err)
5636 return err;
5637
5638 err = ext4_init_pageio();
5639 if (err)
5640 goto out5;
5641
5642 err = ext4_init_system_zone();
5643 if (err)
5644 goto out4;
5645
5646 err = ext4_init_sysfs();
5647 if (err)
5648 goto out3;
5649
5650 err = ext4_init_mballoc();
5651 if (err)
5652 goto out2;
5653 err = init_inodecache();
5654 if (err)
5655 goto out1;
5656 register_as_ext3();
5657 register_as_ext2();
5658 err = register_filesystem(&ext4_fs_type);
5659 if (err)
5660 goto out;
5661
5662 return 0;
5663out:
5664 unregister_as_ext2();
5665 unregister_as_ext3();
5666 destroy_inodecache();
5667out1:
5668 ext4_exit_mballoc();
5669out2:
5670 ext4_exit_sysfs();
5671out3:
5672 ext4_exit_system_zone();
5673out4:
5674 ext4_exit_pageio();
5675out5:
5676 ext4_exit_es();
5677
5678 return err;
5679}
5680
5681static void __exit ext4_exit_fs(void)
5682{
5683 ext4_destroy_lazyinit_thread();
5684 unregister_as_ext2();
5685 unregister_as_ext3();
5686 unregister_filesystem(&ext4_fs_type);
5687 destroy_inodecache();
5688 ext4_exit_mballoc();
5689 ext4_exit_sysfs();
5690 ext4_exit_system_zone();
5691 ext4_exit_pageio();
5692 ext4_exit_es();
5693}
5694
5695MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5696MODULE_DESCRIPTION("Fourth Extended Filesystem");
5697MODULE_LICENSE("GPL");
5698module_init(ext4_init_fs)
5699module_exit(ext4_exit_fs)