Loading...
1/*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19#include <linux/module.h>
20#include <linux/string.h>
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/parser.h>
29#include <linux/buffer_head.h>
30#include <linux/exportfs.h>
31#include <linux/vfs.h>
32#include <linux/random.h>
33#include <linux/mount.h>
34#include <linux/namei.h>
35#include <linux/quotaops.h>
36#include <linux/seq_file.h>
37#include <linux/ctype.h>
38#include <linux/log2.h>
39#include <linux/crc16.h>
40#include <linux/cleancache.h>
41#include <asm/uaccess.h>
42
43#include <linux/kthread.h>
44#include <linux/freezer.h>
45
46#include "ext4.h"
47#include "ext4_extents.h" /* Needed for trace points definition */
48#include "ext4_jbd2.h"
49#include "xattr.h"
50#include "acl.h"
51#include "mballoc.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/ext4.h>
55
56static struct ext4_lazy_init *ext4_li_info;
57static struct mutex ext4_li_mtx;
58static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63static int ext4_commit_super(struct super_block *sb, int sync);
64static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68static int ext4_sync_fs(struct super_block *sb, int wait);
69static int ext4_remount(struct super_block *sb, int *flags, char *data);
70static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71static int ext4_unfreeze(struct super_block *sb);
72static int ext4_freeze(struct super_block *sb);
73static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75static inline int ext2_feature_set_ok(struct super_block *sb);
76static inline int ext3_feature_set_ok(struct super_block *sb);
77static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78static void ext4_destroy_lazyinit_thread(void);
79static void ext4_unregister_li_request(struct super_block *sb);
80static void ext4_clear_request_list(void);
81
82/*
83 * Lock ordering
84 *
85 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
86 * i_mmap_rwsem (inode->i_mmap_rwsem)!
87 *
88 * page fault path:
89 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
90 * page lock -> i_data_sem (rw)
91 *
92 * buffered write path:
93 * sb_start_write -> i_mutex -> mmap_sem
94 * sb_start_write -> i_mutex -> transaction start -> page lock ->
95 * i_data_sem (rw)
96 *
97 * truncate:
98 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
99 * i_mmap_rwsem (w) -> page lock
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * transaction start -> i_data_sem (rw)
102 *
103 * direct IO:
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
106 * transaction start -> i_data_sem (rw)
107 *
108 * writepages:
109 * transaction start -> page lock(s) -> i_data_sem (rw)
110 */
111
112#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
113static struct file_system_type ext2_fs_type = {
114 .owner = THIS_MODULE,
115 .name = "ext2",
116 .mount = ext4_mount,
117 .kill_sb = kill_block_super,
118 .fs_flags = FS_REQUIRES_DEV,
119};
120MODULE_ALIAS_FS("ext2");
121MODULE_ALIAS("ext2");
122#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
123#else
124#define IS_EXT2_SB(sb) (0)
125#endif
126
127
128static struct file_system_type ext3_fs_type = {
129 .owner = THIS_MODULE,
130 .name = "ext3",
131 .mount = ext4_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134};
135MODULE_ALIAS_FS("ext3");
136MODULE_ALIAS("ext3");
137#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
138
139static int ext4_verify_csum_type(struct super_block *sb,
140 struct ext4_super_block *es)
141{
142 if (!ext4_has_feature_metadata_csum(sb))
143 return 1;
144
145 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
146}
147
148static __le32 ext4_superblock_csum(struct super_block *sb,
149 struct ext4_super_block *es)
150{
151 struct ext4_sb_info *sbi = EXT4_SB(sb);
152 int offset = offsetof(struct ext4_super_block, s_checksum);
153 __u32 csum;
154
155 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
156
157 return cpu_to_le32(csum);
158}
159
160static int ext4_superblock_csum_verify(struct super_block *sb,
161 struct ext4_super_block *es)
162{
163 if (!ext4_has_metadata_csum(sb))
164 return 1;
165
166 return es->s_checksum == ext4_superblock_csum(sb, es);
167}
168
169void ext4_superblock_csum_set(struct super_block *sb)
170{
171 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
172
173 if (!ext4_has_metadata_csum(sb))
174 return;
175
176 es->s_checksum = ext4_superblock_csum(sb, es);
177}
178
179void *ext4_kvmalloc(size_t size, gfp_t flags)
180{
181 void *ret;
182
183 ret = kmalloc(size, flags | __GFP_NOWARN);
184 if (!ret)
185 ret = __vmalloc(size, flags, PAGE_KERNEL);
186 return ret;
187}
188
189void *ext4_kvzalloc(size_t size, gfp_t flags)
190{
191 void *ret;
192
193 ret = kzalloc(size, flags | __GFP_NOWARN);
194 if (!ret)
195 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
196 return ret;
197}
198
199ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
200 struct ext4_group_desc *bg)
201{
202 return le32_to_cpu(bg->bg_block_bitmap_lo) |
203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
205}
206
207ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
209{
210 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
213}
214
215ext4_fsblk_t ext4_inode_table(struct super_block *sb,
216 struct ext4_group_desc *bg)
217{
218 return le32_to_cpu(bg->bg_inode_table_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
221}
222
223__u32 ext4_free_group_clusters(struct super_block *sb,
224 struct ext4_group_desc *bg)
225{
226 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
229}
230
231__u32 ext4_free_inodes_count(struct super_block *sb,
232 struct ext4_group_desc *bg)
233{
234 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
237}
238
239__u32 ext4_used_dirs_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241{
242 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
245}
246
247__u32 ext4_itable_unused_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
249{
250 return le16_to_cpu(bg->bg_itable_unused_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
253}
254
255void ext4_block_bitmap_set(struct super_block *sb,
256 struct ext4_group_desc *bg, ext4_fsblk_t blk)
257{
258 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
261}
262
263void ext4_inode_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265{
266 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
269}
270
271void ext4_inode_table_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
273{
274 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
277}
278
279void ext4_free_group_clusters_set(struct super_block *sb,
280 struct ext4_group_desc *bg, __u32 count)
281{
282 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
285}
286
287void ext4_free_inodes_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289{
290 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
293}
294
295void ext4_used_dirs_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297{
298 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
301}
302
303void ext4_itable_unused_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
305{
306 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
309}
310
311
312static void __save_error_info(struct super_block *sb, const char *func,
313 unsigned int line)
314{
315 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
316
317 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
318 if (bdev_read_only(sb->s_bdev))
319 return;
320 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
321 es->s_last_error_time = cpu_to_le32(get_seconds());
322 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
323 es->s_last_error_line = cpu_to_le32(line);
324 if (!es->s_first_error_time) {
325 es->s_first_error_time = es->s_last_error_time;
326 strncpy(es->s_first_error_func, func,
327 sizeof(es->s_first_error_func));
328 es->s_first_error_line = cpu_to_le32(line);
329 es->s_first_error_ino = es->s_last_error_ino;
330 es->s_first_error_block = es->s_last_error_block;
331 }
332 /*
333 * Start the daily error reporting function if it hasn't been
334 * started already
335 */
336 if (!es->s_error_count)
337 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
338 le32_add_cpu(&es->s_error_count, 1);
339}
340
341static void save_error_info(struct super_block *sb, const char *func,
342 unsigned int line)
343{
344 __save_error_info(sb, func, line);
345 ext4_commit_super(sb, 1);
346}
347
348/*
349 * The del_gendisk() function uninitializes the disk-specific data
350 * structures, including the bdi structure, without telling anyone
351 * else. Once this happens, any attempt to call mark_buffer_dirty()
352 * (for example, by ext4_commit_super), will cause a kernel OOPS.
353 * This is a kludge to prevent these oops until we can put in a proper
354 * hook in del_gendisk() to inform the VFS and file system layers.
355 */
356static int block_device_ejected(struct super_block *sb)
357{
358 struct inode *bd_inode = sb->s_bdev->bd_inode;
359 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
360
361 return bdi->dev == NULL;
362}
363
364static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
365{
366 struct super_block *sb = journal->j_private;
367 struct ext4_sb_info *sbi = EXT4_SB(sb);
368 int error = is_journal_aborted(journal);
369 struct ext4_journal_cb_entry *jce;
370
371 BUG_ON(txn->t_state == T_FINISHED);
372 spin_lock(&sbi->s_md_lock);
373 while (!list_empty(&txn->t_private_list)) {
374 jce = list_entry(txn->t_private_list.next,
375 struct ext4_journal_cb_entry, jce_list);
376 list_del_init(&jce->jce_list);
377 spin_unlock(&sbi->s_md_lock);
378 jce->jce_func(sb, jce, error);
379 spin_lock(&sbi->s_md_lock);
380 }
381 spin_unlock(&sbi->s_md_lock);
382}
383
384/* Deal with the reporting of failure conditions on a filesystem such as
385 * inconsistencies detected or read IO failures.
386 *
387 * On ext2, we can store the error state of the filesystem in the
388 * superblock. That is not possible on ext4, because we may have other
389 * write ordering constraints on the superblock which prevent us from
390 * writing it out straight away; and given that the journal is about to
391 * be aborted, we can't rely on the current, or future, transactions to
392 * write out the superblock safely.
393 *
394 * We'll just use the jbd2_journal_abort() error code to record an error in
395 * the journal instead. On recovery, the journal will complain about
396 * that error until we've noted it down and cleared it.
397 */
398
399static void ext4_handle_error(struct super_block *sb)
400{
401 if (sb->s_flags & MS_RDONLY)
402 return;
403
404 if (!test_opt(sb, ERRORS_CONT)) {
405 journal_t *journal = EXT4_SB(sb)->s_journal;
406
407 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
408 if (journal)
409 jbd2_journal_abort(journal, -EIO);
410 }
411 if (test_opt(sb, ERRORS_RO)) {
412 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
413 /*
414 * Make sure updated value of ->s_mount_flags will be visible
415 * before ->s_flags update
416 */
417 smp_wmb();
418 sb->s_flags |= MS_RDONLY;
419 }
420 if (test_opt(sb, ERRORS_PANIC)) {
421 if (EXT4_SB(sb)->s_journal &&
422 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
423 return;
424 panic("EXT4-fs (device %s): panic forced after error\n",
425 sb->s_id);
426 }
427}
428
429#define ext4_error_ratelimit(sb) \
430 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
431 "EXT4-fs error")
432
433void __ext4_error(struct super_block *sb, const char *function,
434 unsigned int line, const char *fmt, ...)
435{
436 struct va_format vaf;
437 va_list args;
438
439 if (ext4_error_ratelimit(sb)) {
440 va_start(args, fmt);
441 vaf.fmt = fmt;
442 vaf.va = &args;
443 printk(KERN_CRIT
444 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
445 sb->s_id, function, line, current->comm, &vaf);
446 va_end(args);
447 }
448 save_error_info(sb, function, line);
449 ext4_handle_error(sb);
450}
451
452void __ext4_error_inode(struct inode *inode, const char *function,
453 unsigned int line, ext4_fsblk_t block,
454 const char *fmt, ...)
455{
456 va_list args;
457 struct va_format vaf;
458 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
459
460 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
461 es->s_last_error_block = cpu_to_le64(block);
462 if (ext4_error_ratelimit(inode->i_sb)) {
463 va_start(args, fmt);
464 vaf.fmt = fmt;
465 vaf.va = &args;
466 if (block)
467 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
468 "inode #%lu: block %llu: comm %s: %pV\n",
469 inode->i_sb->s_id, function, line, inode->i_ino,
470 block, current->comm, &vaf);
471 else
472 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
473 "inode #%lu: comm %s: %pV\n",
474 inode->i_sb->s_id, function, line, inode->i_ino,
475 current->comm, &vaf);
476 va_end(args);
477 }
478 save_error_info(inode->i_sb, function, line);
479 ext4_handle_error(inode->i_sb);
480}
481
482void __ext4_error_file(struct file *file, const char *function,
483 unsigned int line, ext4_fsblk_t block,
484 const char *fmt, ...)
485{
486 va_list args;
487 struct va_format vaf;
488 struct ext4_super_block *es;
489 struct inode *inode = file_inode(file);
490 char pathname[80], *path;
491
492 es = EXT4_SB(inode->i_sb)->s_es;
493 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
494 if (ext4_error_ratelimit(inode->i_sb)) {
495 path = file_path(file, pathname, sizeof(pathname));
496 if (IS_ERR(path))
497 path = "(unknown)";
498 va_start(args, fmt);
499 vaf.fmt = fmt;
500 vaf.va = &args;
501 if (block)
502 printk(KERN_CRIT
503 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
504 "block %llu: comm %s: path %s: %pV\n",
505 inode->i_sb->s_id, function, line, inode->i_ino,
506 block, current->comm, path, &vaf);
507 else
508 printk(KERN_CRIT
509 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
510 "comm %s: path %s: %pV\n",
511 inode->i_sb->s_id, function, line, inode->i_ino,
512 current->comm, path, &vaf);
513 va_end(args);
514 }
515 save_error_info(inode->i_sb, function, line);
516 ext4_handle_error(inode->i_sb);
517}
518
519const char *ext4_decode_error(struct super_block *sb, int errno,
520 char nbuf[16])
521{
522 char *errstr = NULL;
523
524 switch (errno) {
525 case -EFSCORRUPTED:
526 errstr = "Corrupt filesystem";
527 break;
528 case -EFSBADCRC:
529 errstr = "Filesystem failed CRC";
530 break;
531 case -EIO:
532 errstr = "IO failure";
533 break;
534 case -ENOMEM:
535 errstr = "Out of memory";
536 break;
537 case -EROFS:
538 if (!sb || (EXT4_SB(sb)->s_journal &&
539 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
540 errstr = "Journal has aborted";
541 else
542 errstr = "Readonly filesystem";
543 break;
544 default:
545 /* If the caller passed in an extra buffer for unknown
546 * errors, textualise them now. Else we just return
547 * NULL. */
548 if (nbuf) {
549 /* Check for truncated error codes... */
550 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
551 errstr = nbuf;
552 }
553 break;
554 }
555
556 return errstr;
557}
558
559/* __ext4_std_error decodes expected errors from journaling functions
560 * automatically and invokes the appropriate error response. */
561
562void __ext4_std_error(struct super_block *sb, const char *function,
563 unsigned int line, int errno)
564{
565 char nbuf[16];
566 const char *errstr;
567
568 /* Special case: if the error is EROFS, and we're not already
569 * inside a transaction, then there's really no point in logging
570 * an error. */
571 if (errno == -EROFS && journal_current_handle() == NULL &&
572 (sb->s_flags & MS_RDONLY))
573 return;
574
575 if (ext4_error_ratelimit(sb)) {
576 errstr = ext4_decode_error(sb, errno, nbuf);
577 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
578 sb->s_id, function, line, errstr);
579 }
580
581 save_error_info(sb, function, line);
582 ext4_handle_error(sb);
583}
584
585/*
586 * ext4_abort is a much stronger failure handler than ext4_error. The
587 * abort function may be used to deal with unrecoverable failures such
588 * as journal IO errors or ENOMEM at a critical moment in log management.
589 *
590 * We unconditionally force the filesystem into an ABORT|READONLY state,
591 * unless the error response on the fs has been set to panic in which
592 * case we take the easy way out and panic immediately.
593 */
594
595void __ext4_abort(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597{
598 va_list args;
599
600 save_error_info(sb, function, line);
601 va_start(args, fmt);
602 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
603 function, line);
604 vprintk(fmt, args);
605 printk("\n");
606 va_end(args);
607
608 if ((sb->s_flags & MS_RDONLY) == 0) {
609 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
610 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
611 /*
612 * Make sure updated value of ->s_mount_flags will be visible
613 * before ->s_flags update
614 */
615 smp_wmb();
616 sb->s_flags |= MS_RDONLY;
617 if (EXT4_SB(sb)->s_journal)
618 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
619 save_error_info(sb, function, line);
620 }
621 if (test_opt(sb, ERRORS_PANIC)) {
622 if (EXT4_SB(sb)->s_journal &&
623 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
624 return;
625 panic("EXT4-fs panic from previous error\n");
626 }
627}
628
629void __ext4_msg(struct super_block *sb,
630 const char *prefix, const char *fmt, ...)
631{
632 struct va_format vaf;
633 va_list args;
634
635 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
636 return;
637
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
642 va_end(args);
643}
644
645#define ext4_warning_ratelimit(sb) \
646 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
647 "EXT4-fs warning")
648
649void __ext4_warning(struct super_block *sb, const char *function,
650 unsigned int line, const char *fmt, ...)
651{
652 struct va_format vaf;
653 va_list args;
654
655 if (!ext4_warning_ratelimit(sb))
656 return;
657
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
662 sb->s_id, function, line, &vaf);
663 va_end(args);
664}
665
666void __ext4_warning_inode(const struct inode *inode, const char *function,
667 unsigned int line, const char *fmt, ...)
668{
669 struct va_format vaf;
670 va_list args;
671
672 if (!ext4_warning_ratelimit(inode->i_sb))
673 return;
674
675 va_start(args, fmt);
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
679 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
680 function, line, inode->i_ino, current->comm, &vaf);
681 va_end(args);
682}
683
684void __ext4_grp_locked_error(const char *function, unsigned int line,
685 struct super_block *sb, ext4_group_t grp,
686 unsigned long ino, ext4_fsblk_t block,
687 const char *fmt, ...)
688__releases(bitlock)
689__acquires(bitlock)
690{
691 struct va_format vaf;
692 va_list args;
693 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
694
695 es->s_last_error_ino = cpu_to_le32(ino);
696 es->s_last_error_block = cpu_to_le64(block);
697 __save_error_info(sb, function, line);
698
699 if (ext4_error_ratelimit(sb)) {
700 va_start(args, fmt);
701 vaf.fmt = fmt;
702 vaf.va = &args;
703 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
704 sb->s_id, function, line, grp);
705 if (ino)
706 printk(KERN_CONT "inode %lu: ", ino);
707 if (block)
708 printk(KERN_CONT "block %llu:",
709 (unsigned long long) block);
710 printk(KERN_CONT "%pV\n", &vaf);
711 va_end(args);
712 }
713
714 if (test_opt(sb, ERRORS_CONT)) {
715 ext4_commit_super(sb, 0);
716 return;
717 }
718
719 ext4_unlock_group(sb, grp);
720 ext4_handle_error(sb);
721 /*
722 * We only get here in the ERRORS_RO case; relocking the group
723 * may be dangerous, but nothing bad will happen since the
724 * filesystem will have already been marked read/only and the
725 * journal has been aborted. We return 1 as a hint to callers
726 * who might what to use the return value from
727 * ext4_grp_locked_error() to distinguish between the
728 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
729 * aggressively from the ext4 function in question, with a
730 * more appropriate error code.
731 */
732 ext4_lock_group(sb, grp);
733 return;
734}
735
736void ext4_update_dynamic_rev(struct super_block *sb)
737{
738 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
739
740 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
741 return;
742
743 ext4_warning(sb,
744 "updating to rev %d because of new feature flag, "
745 "running e2fsck is recommended",
746 EXT4_DYNAMIC_REV);
747
748 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
749 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
750 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
751 /* leave es->s_feature_*compat flags alone */
752 /* es->s_uuid will be set by e2fsck if empty */
753
754 /*
755 * The rest of the superblock fields should be zero, and if not it
756 * means they are likely already in use, so leave them alone. We
757 * can leave it up to e2fsck to clean up any inconsistencies there.
758 */
759}
760
761/*
762 * Open the external journal device
763 */
764static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
765{
766 struct block_device *bdev;
767 char b[BDEVNAME_SIZE];
768
769 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
770 if (IS_ERR(bdev))
771 goto fail;
772 return bdev;
773
774fail:
775 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
776 __bdevname(dev, b), PTR_ERR(bdev));
777 return NULL;
778}
779
780/*
781 * Release the journal device
782 */
783static void ext4_blkdev_put(struct block_device *bdev)
784{
785 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
786}
787
788static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
789{
790 struct block_device *bdev;
791 bdev = sbi->journal_bdev;
792 if (bdev) {
793 ext4_blkdev_put(bdev);
794 sbi->journal_bdev = NULL;
795 }
796}
797
798static inline struct inode *orphan_list_entry(struct list_head *l)
799{
800 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
801}
802
803static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
804{
805 struct list_head *l;
806
807 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
808 le32_to_cpu(sbi->s_es->s_last_orphan));
809
810 printk(KERN_ERR "sb_info orphan list:\n");
811 list_for_each(l, &sbi->s_orphan) {
812 struct inode *inode = orphan_list_entry(l);
813 printk(KERN_ERR " "
814 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
815 inode->i_sb->s_id, inode->i_ino, inode,
816 inode->i_mode, inode->i_nlink,
817 NEXT_ORPHAN(inode));
818 }
819}
820
821static void ext4_put_super(struct super_block *sb)
822{
823 struct ext4_sb_info *sbi = EXT4_SB(sb);
824 struct ext4_super_block *es = sbi->s_es;
825 int i, err;
826
827 ext4_unregister_li_request(sb);
828 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
829
830 flush_workqueue(sbi->rsv_conversion_wq);
831 destroy_workqueue(sbi->rsv_conversion_wq);
832
833 if (sbi->s_journal) {
834 err = jbd2_journal_destroy(sbi->s_journal);
835 sbi->s_journal = NULL;
836 if (err < 0)
837 ext4_abort(sb, "Couldn't clean up the journal");
838 }
839
840 ext4_unregister_sysfs(sb);
841 ext4_es_unregister_shrinker(sbi);
842 del_timer_sync(&sbi->s_err_report);
843 ext4_release_system_zone(sb);
844 ext4_mb_release(sb);
845 ext4_ext_release(sb);
846
847 if (!(sb->s_flags & MS_RDONLY)) {
848 ext4_clear_feature_journal_needs_recovery(sb);
849 es->s_state = cpu_to_le16(sbi->s_mount_state);
850 }
851 if (!(sb->s_flags & MS_RDONLY))
852 ext4_commit_super(sb, 1);
853
854 for (i = 0; i < sbi->s_gdb_count; i++)
855 brelse(sbi->s_group_desc[i]);
856 kvfree(sbi->s_group_desc);
857 kvfree(sbi->s_flex_groups);
858 percpu_counter_destroy(&sbi->s_freeclusters_counter);
859 percpu_counter_destroy(&sbi->s_freeinodes_counter);
860 percpu_counter_destroy(&sbi->s_dirs_counter);
861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
862 brelse(sbi->s_sbh);
863#ifdef CONFIG_QUOTA
864 for (i = 0; i < EXT4_MAXQUOTAS; i++)
865 kfree(sbi->s_qf_names[i]);
866#endif
867
868 /* Debugging code just in case the in-memory inode orphan list
869 * isn't empty. The on-disk one can be non-empty if we've
870 * detected an error and taken the fs readonly, but the
871 * in-memory list had better be clean by this point. */
872 if (!list_empty(&sbi->s_orphan))
873 dump_orphan_list(sb, sbi);
874 J_ASSERT(list_empty(&sbi->s_orphan));
875
876 sync_blockdev(sb->s_bdev);
877 invalidate_bdev(sb->s_bdev);
878 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
879 /*
880 * Invalidate the journal device's buffers. We don't want them
881 * floating about in memory - the physical journal device may
882 * hotswapped, and it breaks the `ro-after' testing code.
883 */
884 sync_blockdev(sbi->journal_bdev);
885 invalidate_bdev(sbi->journal_bdev);
886 ext4_blkdev_remove(sbi);
887 }
888 if (sbi->s_mb_cache) {
889 ext4_xattr_destroy_cache(sbi->s_mb_cache);
890 sbi->s_mb_cache = NULL;
891 }
892 if (sbi->s_mmp_tsk)
893 kthread_stop(sbi->s_mmp_tsk);
894 sb->s_fs_info = NULL;
895 /*
896 * Now that we are completely done shutting down the
897 * superblock, we need to actually destroy the kobject.
898 */
899 kobject_put(&sbi->s_kobj);
900 wait_for_completion(&sbi->s_kobj_unregister);
901 if (sbi->s_chksum_driver)
902 crypto_free_shash(sbi->s_chksum_driver);
903 kfree(sbi->s_blockgroup_lock);
904 kfree(sbi);
905}
906
907static struct kmem_cache *ext4_inode_cachep;
908
909/*
910 * Called inside transaction, so use GFP_NOFS
911 */
912static struct inode *ext4_alloc_inode(struct super_block *sb)
913{
914 struct ext4_inode_info *ei;
915
916 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
917 if (!ei)
918 return NULL;
919
920 ei->vfs_inode.i_version = 1;
921 spin_lock_init(&ei->i_raw_lock);
922 INIT_LIST_HEAD(&ei->i_prealloc_list);
923 spin_lock_init(&ei->i_prealloc_lock);
924 ext4_es_init_tree(&ei->i_es_tree);
925 rwlock_init(&ei->i_es_lock);
926 INIT_LIST_HEAD(&ei->i_es_list);
927 ei->i_es_all_nr = 0;
928 ei->i_es_shk_nr = 0;
929 ei->i_es_shrink_lblk = 0;
930 ei->i_reserved_data_blocks = 0;
931 ei->i_reserved_meta_blocks = 0;
932 ei->i_allocated_meta_blocks = 0;
933 ei->i_da_metadata_calc_len = 0;
934 ei->i_da_metadata_calc_last_lblock = 0;
935 spin_lock_init(&(ei->i_block_reservation_lock));
936#ifdef CONFIG_QUOTA
937 ei->i_reserved_quota = 0;
938 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
939#endif
940 ei->jinode = NULL;
941 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
942 spin_lock_init(&ei->i_completed_io_lock);
943 ei->i_sync_tid = 0;
944 ei->i_datasync_tid = 0;
945 atomic_set(&ei->i_unwritten, 0);
946 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
947#ifdef CONFIG_EXT4_FS_ENCRYPTION
948 ei->i_crypt_info = NULL;
949#endif
950 return &ei->vfs_inode;
951}
952
953static int ext4_drop_inode(struct inode *inode)
954{
955 int drop = generic_drop_inode(inode);
956
957 trace_ext4_drop_inode(inode, drop);
958 return drop;
959}
960
961static void ext4_i_callback(struct rcu_head *head)
962{
963 struct inode *inode = container_of(head, struct inode, i_rcu);
964 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
965}
966
967static void ext4_destroy_inode(struct inode *inode)
968{
969 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
970 ext4_msg(inode->i_sb, KERN_ERR,
971 "Inode %lu (%p): orphan list check failed!",
972 inode->i_ino, EXT4_I(inode));
973 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
974 EXT4_I(inode), sizeof(struct ext4_inode_info),
975 true);
976 dump_stack();
977 }
978 call_rcu(&inode->i_rcu, ext4_i_callback);
979}
980
981static void init_once(void *foo)
982{
983 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
984
985 INIT_LIST_HEAD(&ei->i_orphan);
986 init_rwsem(&ei->xattr_sem);
987 init_rwsem(&ei->i_data_sem);
988 init_rwsem(&ei->i_mmap_sem);
989 inode_init_once(&ei->vfs_inode);
990}
991
992static int __init init_inodecache(void)
993{
994 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
995 sizeof(struct ext4_inode_info),
996 0, (SLAB_RECLAIM_ACCOUNT|
997 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
998 init_once);
999 if (ext4_inode_cachep == NULL)
1000 return -ENOMEM;
1001 return 0;
1002}
1003
1004static void destroy_inodecache(void)
1005{
1006 /*
1007 * Make sure all delayed rcu free inodes are flushed before we
1008 * destroy cache.
1009 */
1010 rcu_barrier();
1011 kmem_cache_destroy(ext4_inode_cachep);
1012}
1013
1014void ext4_clear_inode(struct inode *inode)
1015{
1016 invalidate_inode_buffers(inode);
1017 clear_inode(inode);
1018 dquot_drop(inode);
1019 ext4_discard_preallocations(inode);
1020 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1021 if (EXT4_I(inode)->jinode) {
1022 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1023 EXT4_I(inode)->jinode);
1024 jbd2_free_inode(EXT4_I(inode)->jinode);
1025 EXT4_I(inode)->jinode = NULL;
1026 }
1027#ifdef CONFIG_EXT4_FS_ENCRYPTION
1028 if (EXT4_I(inode)->i_crypt_info)
1029 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1030#endif
1031}
1032
1033static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1034 u64 ino, u32 generation)
1035{
1036 struct inode *inode;
1037
1038 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1039 return ERR_PTR(-ESTALE);
1040 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1041 return ERR_PTR(-ESTALE);
1042
1043 /* iget isn't really right if the inode is currently unallocated!!
1044 *
1045 * ext4_read_inode will return a bad_inode if the inode had been
1046 * deleted, so we should be safe.
1047 *
1048 * Currently we don't know the generation for parent directory, so
1049 * a generation of 0 means "accept any"
1050 */
1051 inode = ext4_iget_normal(sb, ino);
1052 if (IS_ERR(inode))
1053 return ERR_CAST(inode);
1054 if (generation && inode->i_generation != generation) {
1055 iput(inode);
1056 return ERR_PTR(-ESTALE);
1057 }
1058
1059 return inode;
1060}
1061
1062static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1063 int fh_len, int fh_type)
1064{
1065 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1066 ext4_nfs_get_inode);
1067}
1068
1069static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1070 int fh_len, int fh_type)
1071{
1072 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1073 ext4_nfs_get_inode);
1074}
1075
1076/*
1077 * Try to release metadata pages (indirect blocks, directories) which are
1078 * mapped via the block device. Since these pages could have journal heads
1079 * which would prevent try_to_free_buffers() from freeing them, we must use
1080 * jbd2 layer's try_to_free_buffers() function to release them.
1081 */
1082static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1083 gfp_t wait)
1084{
1085 journal_t *journal = EXT4_SB(sb)->s_journal;
1086
1087 WARN_ON(PageChecked(page));
1088 if (!page_has_buffers(page))
1089 return 0;
1090 if (journal)
1091 return jbd2_journal_try_to_free_buffers(journal, page,
1092 wait & ~__GFP_DIRECT_RECLAIM);
1093 return try_to_free_buffers(page);
1094}
1095
1096#ifdef CONFIG_QUOTA
1097static char *quotatypes[] = INITQFNAMES;
1098#define QTYPE2NAME(t) (quotatypes[t])
1099
1100static int ext4_write_dquot(struct dquot *dquot);
1101static int ext4_acquire_dquot(struct dquot *dquot);
1102static int ext4_release_dquot(struct dquot *dquot);
1103static int ext4_mark_dquot_dirty(struct dquot *dquot);
1104static int ext4_write_info(struct super_block *sb, int type);
1105static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1106 struct path *path);
1107static int ext4_quota_off(struct super_block *sb, int type);
1108static int ext4_quota_on_mount(struct super_block *sb, int type);
1109static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1110 size_t len, loff_t off);
1111static ssize_t ext4_quota_write(struct super_block *sb, int type,
1112 const char *data, size_t len, loff_t off);
1113static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1114 unsigned int flags);
1115static int ext4_enable_quotas(struct super_block *sb);
1116static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1117
1118static struct dquot **ext4_get_dquots(struct inode *inode)
1119{
1120 return EXT4_I(inode)->i_dquot;
1121}
1122
1123static const struct dquot_operations ext4_quota_operations = {
1124 .get_reserved_space = ext4_get_reserved_space,
1125 .write_dquot = ext4_write_dquot,
1126 .acquire_dquot = ext4_acquire_dquot,
1127 .release_dquot = ext4_release_dquot,
1128 .mark_dirty = ext4_mark_dquot_dirty,
1129 .write_info = ext4_write_info,
1130 .alloc_dquot = dquot_alloc,
1131 .destroy_dquot = dquot_destroy,
1132 .get_projid = ext4_get_projid,
1133 .get_next_id = ext4_get_next_id,
1134};
1135
1136static const struct quotactl_ops ext4_qctl_operations = {
1137 .quota_on = ext4_quota_on,
1138 .quota_off = ext4_quota_off,
1139 .quota_sync = dquot_quota_sync,
1140 .get_state = dquot_get_state,
1141 .set_info = dquot_set_dqinfo,
1142 .get_dqblk = dquot_get_dqblk,
1143 .set_dqblk = dquot_set_dqblk,
1144 .get_nextdqblk = dquot_get_next_dqblk,
1145};
1146#endif
1147
1148static const struct super_operations ext4_sops = {
1149 .alloc_inode = ext4_alloc_inode,
1150 .destroy_inode = ext4_destroy_inode,
1151 .write_inode = ext4_write_inode,
1152 .dirty_inode = ext4_dirty_inode,
1153 .drop_inode = ext4_drop_inode,
1154 .evict_inode = ext4_evict_inode,
1155 .put_super = ext4_put_super,
1156 .sync_fs = ext4_sync_fs,
1157 .freeze_fs = ext4_freeze,
1158 .unfreeze_fs = ext4_unfreeze,
1159 .statfs = ext4_statfs,
1160 .remount_fs = ext4_remount,
1161 .show_options = ext4_show_options,
1162#ifdef CONFIG_QUOTA
1163 .quota_read = ext4_quota_read,
1164 .quota_write = ext4_quota_write,
1165 .get_dquots = ext4_get_dquots,
1166#endif
1167 .bdev_try_to_free_page = bdev_try_to_free_page,
1168};
1169
1170static const struct export_operations ext4_export_ops = {
1171 .fh_to_dentry = ext4_fh_to_dentry,
1172 .fh_to_parent = ext4_fh_to_parent,
1173 .get_parent = ext4_get_parent,
1174};
1175
1176enum {
1177 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1178 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1179 Opt_nouid32, Opt_debug, Opt_removed,
1180 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1181 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1182 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1183 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1184 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1185 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1186 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1187 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1188 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1189 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1190 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1191 Opt_lazytime, Opt_nolazytime,
1192 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1193 Opt_inode_readahead_blks, Opt_journal_ioprio,
1194 Opt_dioread_nolock, Opt_dioread_lock,
1195 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1196 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1197};
1198
1199static const match_table_t tokens = {
1200 {Opt_bsd_df, "bsddf"},
1201 {Opt_minix_df, "minixdf"},
1202 {Opt_grpid, "grpid"},
1203 {Opt_grpid, "bsdgroups"},
1204 {Opt_nogrpid, "nogrpid"},
1205 {Opt_nogrpid, "sysvgroups"},
1206 {Opt_resgid, "resgid=%u"},
1207 {Opt_resuid, "resuid=%u"},
1208 {Opt_sb, "sb=%u"},
1209 {Opt_err_cont, "errors=continue"},
1210 {Opt_err_panic, "errors=panic"},
1211 {Opt_err_ro, "errors=remount-ro"},
1212 {Opt_nouid32, "nouid32"},
1213 {Opt_debug, "debug"},
1214 {Opt_removed, "oldalloc"},
1215 {Opt_removed, "orlov"},
1216 {Opt_user_xattr, "user_xattr"},
1217 {Opt_nouser_xattr, "nouser_xattr"},
1218 {Opt_acl, "acl"},
1219 {Opt_noacl, "noacl"},
1220 {Opt_noload, "norecovery"},
1221 {Opt_noload, "noload"},
1222 {Opt_removed, "nobh"},
1223 {Opt_removed, "bh"},
1224 {Opt_commit, "commit=%u"},
1225 {Opt_min_batch_time, "min_batch_time=%u"},
1226 {Opt_max_batch_time, "max_batch_time=%u"},
1227 {Opt_journal_dev, "journal_dev=%u"},
1228 {Opt_journal_path, "journal_path=%s"},
1229 {Opt_journal_checksum, "journal_checksum"},
1230 {Opt_nojournal_checksum, "nojournal_checksum"},
1231 {Opt_journal_async_commit, "journal_async_commit"},
1232 {Opt_abort, "abort"},
1233 {Opt_data_journal, "data=journal"},
1234 {Opt_data_ordered, "data=ordered"},
1235 {Opt_data_writeback, "data=writeback"},
1236 {Opt_data_err_abort, "data_err=abort"},
1237 {Opt_data_err_ignore, "data_err=ignore"},
1238 {Opt_offusrjquota, "usrjquota="},
1239 {Opt_usrjquota, "usrjquota=%s"},
1240 {Opt_offgrpjquota, "grpjquota="},
1241 {Opt_grpjquota, "grpjquota=%s"},
1242 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1243 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1244 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1245 {Opt_grpquota, "grpquota"},
1246 {Opt_noquota, "noquota"},
1247 {Opt_quota, "quota"},
1248 {Opt_usrquota, "usrquota"},
1249 {Opt_barrier, "barrier=%u"},
1250 {Opt_barrier, "barrier"},
1251 {Opt_nobarrier, "nobarrier"},
1252 {Opt_i_version, "i_version"},
1253 {Opt_dax, "dax"},
1254 {Opt_stripe, "stripe=%u"},
1255 {Opt_delalloc, "delalloc"},
1256 {Opt_lazytime, "lazytime"},
1257 {Opt_nolazytime, "nolazytime"},
1258 {Opt_nodelalloc, "nodelalloc"},
1259 {Opt_removed, "mblk_io_submit"},
1260 {Opt_removed, "nomblk_io_submit"},
1261 {Opt_block_validity, "block_validity"},
1262 {Opt_noblock_validity, "noblock_validity"},
1263 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1264 {Opt_journal_ioprio, "journal_ioprio=%u"},
1265 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1266 {Opt_auto_da_alloc, "auto_da_alloc"},
1267 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1268 {Opt_dioread_nolock, "dioread_nolock"},
1269 {Opt_dioread_lock, "dioread_lock"},
1270 {Opt_discard, "discard"},
1271 {Opt_nodiscard, "nodiscard"},
1272 {Opt_init_itable, "init_itable=%u"},
1273 {Opt_init_itable, "init_itable"},
1274 {Opt_noinit_itable, "noinit_itable"},
1275 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1276 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1277 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1278 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1279 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1280 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1281 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1282 {Opt_err, NULL},
1283};
1284
1285static ext4_fsblk_t get_sb_block(void **data)
1286{
1287 ext4_fsblk_t sb_block;
1288 char *options = (char *) *data;
1289
1290 if (!options || strncmp(options, "sb=", 3) != 0)
1291 return 1; /* Default location */
1292
1293 options += 3;
1294 /* TODO: use simple_strtoll with >32bit ext4 */
1295 sb_block = simple_strtoul(options, &options, 0);
1296 if (*options && *options != ',') {
1297 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1298 (char *) *data);
1299 return 1;
1300 }
1301 if (*options == ',')
1302 options++;
1303 *data = (void *) options;
1304
1305 return sb_block;
1306}
1307
1308#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1309static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1310 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1311
1312#ifdef CONFIG_QUOTA
1313static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1314{
1315 struct ext4_sb_info *sbi = EXT4_SB(sb);
1316 char *qname;
1317 int ret = -1;
1318
1319 if (sb_any_quota_loaded(sb) &&
1320 !sbi->s_qf_names[qtype]) {
1321 ext4_msg(sb, KERN_ERR,
1322 "Cannot change journaled "
1323 "quota options when quota turned on");
1324 return -1;
1325 }
1326 if (ext4_has_feature_quota(sb)) {
1327 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1328 "ignored when QUOTA feature is enabled");
1329 return 1;
1330 }
1331 qname = match_strdup(args);
1332 if (!qname) {
1333 ext4_msg(sb, KERN_ERR,
1334 "Not enough memory for storing quotafile name");
1335 return -1;
1336 }
1337 if (sbi->s_qf_names[qtype]) {
1338 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1339 ret = 1;
1340 else
1341 ext4_msg(sb, KERN_ERR,
1342 "%s quota file already specified",
1343 QTYPE2NAME(qtype));
1344 goto errout;
1345 }
1346 if (strchr(qname, '/')) {
1347 ext4_msg(sb, KERN_ERR,
1348 "quotafile must be on filesystem root");
1349 goto errout;
1350 }
1351 sbi->s_qf_names[qtype] = qname;
1352 set_opt(sb, QUOTA);
1353 return 1;
1354errout:
1355 kfree(qname);
1356 return ret;
1357}
1358
1359static int clear_qf_name(struct super_block *sb, int qtype)
1360{
1361
1362 struct ext4_sb_info *sbi = EXT4_SB(sb);
1363
1364 if (sb_any_quota_loaded(sb) &&
1365 sbi->s_qf_names[qtype]) {
1366 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1367 " when quota turned on");
1368 return -1;
1369 }
1370 kfree(sbi->s_qf_names[qtype]);
1371 sbi->s_qf_names[qtype] = NULL;
1372 return 1;
1373}
1374#endif
1375
1376#define MOPT_SET 0x0001
1377#define MOPT_CLEAR 0x0002
1378#define MOPT_NOSUPPORT 0x0004
1379#define MOPT_EXPLICIT 0x0008
1380#define MOPT_CLEAR_ERR 0x0010
1381#define MOPT_GTE0 0x0020
1382#ifdef CONFIG_QUOTA
1383#define MOPT_Q 0
1384#define MOPT_QFMT 0x0040
1385#else
1386#define MOPT_Q MOPT_NOSUPPORT
1387#define MOPT_QFMT MOPT_NOSUPPORT
1388#endif
1389#define MOPT_DATAJ 0x0080
1390#define MOPT_NO_EXT2 0x0100
1391#define MOPT_NO_EXT3 0x0200
1392#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1393#define MOPT_STRING 0x0400
1394
1395static const struct mount_opts {
1396 int token;
1397 int mount_opt;
1398 int flags;
1399} ext4_mount_opts[] = {
1400 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1401 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1402 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1403 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1404 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1405 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1406 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1407 MOPT_EXT4_ONLY | MOPT_SET},
1408 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1409 MOPT_EXT4_ONLY | MOPT_CLEAR},
1410 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1411 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1412 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1413 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1414 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1415 MOPT_EXT4_ONLY | MOPT_CLEAR},
1416 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1417 MOPT_EXT4_ONLY | MOPT_CLEAR},
1418 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1419 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1420 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1421 EXT4_MOUNT_JOURNAL_CHECKSUM),
1422 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1423 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1424 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1425 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1426 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1427 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1428 MOPT_NO_EXT2},
1429 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1430 MOPT_NO_EXT2},
1431 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1432 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1433 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1434 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1435 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1436 {Opt_commit, 0, MOPT_GTE0},
1437 {Opt_max_batch_time, 0, MOPT_GTE0},
1438 {Opt_min_batch_time, 0, MOPT_GTE0},
1439 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1440 {Opt_init_itable, 0, MOPT_GTE0},
1441 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1442 {Opt_stripe, 0, MOPT_GTE0},
1443 {Opt_resuid, 0, MOPT_GTE0},
1444 {Opt_resgid, 0, MOPT_GTE0},
1445 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1446 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1447 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1448 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1449 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1450 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1451 MOPT_NO_EXT2 | MOPT_DATAJ},
1452 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1453 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1454#ifdef CONFIG_EXT4_FS_POSIX_ACL
1455 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1456 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1457#else
1458 {Opt_acl, 0, MOPT_NOSUPPORT},
1459 {Opt_noacl, 0, MOPT_NOSUPPORT},
1460#endif
1461 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1462 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1463 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1464 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1465 MOPT_SET | MOPT_Q},
1466 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1467 MOPT_SET | MOPT_Q},
1468 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1469 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1470 {Opt_usrjquota, 0, MOPT_Q},
1471 {Opt_grpjquota, 0, MOPT_Q},
1472 {Opt_offusrjquota, 0, MOPT_Q},
1473 {Opt_offgrpjquota, 0, MOPT_Q},
1474 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1475 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1476 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1477 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1478 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1479 {Opt_err, 0, 0}
1480};
1481
1482static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1483 substring_t *args, unsigned long *journal_devnum,
1484 unsigned int *journal_ioprio, int is_remount)
1485{
1486 struct ext4_sb_info *sbi = EXT4_SB(sb);
1487 const struct mount_opts *m;
1488 kuid_t uid;
1489 kgid_t gid;
1490 int arg = 0;
1491
1492#ifdef CONFIG_QUOTA
1493 if (token == Opt_usrjquota)
1494 return set_qf_name(sb, USRQUOTA, &args[0]);
1495 else if (token == Opt_grpjquota)
1496 return set_qf_name(sb, GRPQUOTA, &args[0]);
1497 else if (token == Opt_offusrjquota)
1498 return clear_qf_name(sb, USRQUOTA);
1499 else if (token == Opt_offgrpjquota)
1500 return clear_qf_name(sb, GRPQUOTA);
1501#endif
1502 switch (token) {
1503 case Opt_noacl:
1504 case Opt_nouser_xattr:
1505 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1506 break;
1507 case Opt_sb:
1508 return 1; /* handled by get_sb_block() */
1509 case Opt_removed:
1510 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1511 return 1;
1512 case Opt_abort:
1513 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1514 return 1;
1515 case Opt_i_version:
1516 sb->s_flags |= MS_I_VERSION;
1517 return 1;
1518 case Opt_lazytime:
1519 sb->s_flags |= MS_LAZYTIME;
1520 return 1;
1521 case Opt_nolazytime:
1522 sb->s_flags &= ~MS_LAZYTIME;
1523 return 1;
1524 }
1525
1526 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1527 if (token == m->token)
1528 break;
1529
1530 if (m->token == Opt_err) {
1531 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1532 "or missing value", opt);
1533 return -1;
1534 }
1535
1536 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1537 ext4_msg(sb, KERN_ERR,
1538 "Mount option \"%s\" incompatible with ext2", opt);
1539 return -1;
1540 }
1541 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1542 ext4_msg(sb, KERN_ERR,
1543 "Mount option \"%s\" incompatible with ext3", opt);
1544 return -1;
1545 }
1546
1547 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1548 return -1;
1549 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1550 return -1;
1551 if (m->flags & MOPT_EXPLICIT) {
1552 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1553 set_opt2(sb, EXPLICIT_DELALLOC);
1554 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1555 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1556 } else
1557 return -1;
1558 }
1559 if (m->flags & MOPT_CLEAR_ERR)
1560 clear_opt(sb, ERRORS_MASK);
1561 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1562 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1563 "options when quota turned on");
1564 return -1;
1565 }
1566
1567 if (m->flags & MOPT_NOSUPPORT) {
1568 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1569 } else if (token == Opt_commit) {
1570 if (arg == 0)
1571 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1572 sbi->s_commit_interval = HZ * arg;
1573 } else if (token == Opt_max_batch_time) {
1574 sbi->s_max_batch_time = arg;
1575 } else if (token == Opt_min_batch_time) {
1576 sbi->s_min_batch_time = arg;
1577 } else if (token == Opt_inode_readahead_blks) {
1578 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1579 ext4_msg(sb, KERN_ERR,
1580 "EXT4-fs: inode_readahead_blks must be "
1581 "0 or a power of 2 smaller than 2^31");
1582 return -1;
1583 }
1584 sbi->s_inode_readahead_blks = arg;
1585 } else if (token == Opt_init_itable) {
1586 set_opt(sb, INIT_INODE_TABLE);
1587 if (!args->from)
1588 arg = EXT4_DEF_LI_WAIT_MULT;
1589 sbi->s_li_wait_mult = arg;
1590 } else if (token == Opt_max_dir_size_kb) {
1591 sbi->s_max_dir_size_kb = arg;
1592 } else if (token == Opt_stripe) {
1593 sbi->s_stripe = arg;
1594 } else if (token == Opt_resuid) {
1595 uid = make_kuid(current_user_ns(), arg);
1596 if (!uid_valid(uid)) {
1597 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1598 return -1;
1599 }
1600 sbi->s_resuid = uid;
1601 } else if (token == Opt_resgid) {
1602 gid = make_kgid(current_user_ns(), arg);
1603 if (!gid_valid(gid)) {
1604 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1605 return -1;
1606 }
1607 sbi->s_resgid = gid;
1608 } else if (token == Opt_journal_dev) {
1609 if (is_remount) {
1610 ext4_msg(sb, KERN_ERR,
1611 "Cannot specify journal on remount");
1612 return -1;
1613 }
1614 *journal_devnum = arg;
1615 } else if (token == Opt_journal_path) {
1616 char *journal_path;
1617 struct inode *journal_inode;
1618 struct path path;
1619 int error;
1620
1621 if (is_remount) {
1622 ext4_msg(sb, KERN_ERR,
1623 "Cannot specify journal on remount");
1624 return -1;
1625 }
1626 journal_path = match_strdup(&args[0]);
1627 if (!journal_path) {
1628 ext4_msg(sb, KERN_ERR, "error: could not dup "
1629 "journal device string");
1630 return -1;
1631 }
1632
1633 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1634 if (error) {
1635 ext4_msg(sb, KERN_ERR, "error: could not find "
1636 "journal device path: error %d", error);
1637 kfree(journal_path);
1638 return -1;
1639 }
1640
1641 journal_inode = d_inode(path.dentry);
1642 if (!S_ISBLK(journal_inode->i_mode)) {
1643 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1644 "is not a block device", journal_path);
1645 path_put(&path);
1646 kfree(journal_path);
1647 return -1;
1648 }
1649
1650 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1651 path_put(&path);
1652 kfree(journal_path);
1653 } else if (token == Opt_journal_ioprio) {
1654 if (arg > 7) {
1655 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1656 " (must be 0-7)");
1657 return -1;
1658 }
1659 *journal_ioprio =
1660 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1661 } else if (token == Opt_test_dummy_encryption) {
1662#ifdef CONFIG_EXT4_FS_ENCRYPTION
1663 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1664 ext4_msg(sb, KERN_WARNING,
1665 "Test dummy encryption mode enabled");
1666#else
1667 ext4_msg(sb, KERN_WARNING,
1668 "Test dummy encryption mount option ignored");
1669#endif
1670 } else if (m->flags & MOPT_DATAJ) {
1671 if (is_remount) {
1672 if (!sbi->s_journal)
1673 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1674 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1675 ext4_msg(sb, KERN_ERR,
1676 "Cannot change data mode on remount");
1677 return -1;
1678 }
1679 } else {
1680 clear_opt(sb, DATA_FLAGS);
1681 sbi->s_mount_opt |= m->mount_opt;
1682 }
1683#ifdef CONFIG_QUOTA
1684 } else if (m->flags & MOPT_QFMT) {
1685 if (sb_any_quota_loaded(sb) &&
1686 sbi->s_jquota_fmt != m->mount_opt) {
1687 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1688 "quota options when quota turned on");
1689 return -1;
1690 }
1691 if (ext4_has_feature_quota(sb)) {
1692 ext4_msg(sb, KERN_INFO,
1693 "Quota format mount options ignored "
1694 "when QUOTA feature is enabled");
1695 return 1;
1696 }
1697 sbi->s_jquota_fmt = m->mount_opt;
1698#endif
1699 } else if (token == Opt_dax) {
1700#ifdef CONFIG_FS_DAX
1701 ext4_msg(sb, KERN_WARNING,
1702 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1703 sbi->s_mount_opt |= m->mount_opt;
1704#else
1705 ext4_msg(sb, KERN_INFO, "dax option not supported");
1706 return -1;
1707#endif
1708 } else if (token == Opt_data_err_abort) {
1709 sbi->s_mount_opt |= m->mount_opt;
1710 } else if (token == Opt_data_err_ignore) {
1711 sbi->s_mount_opt &= ~m->mount_opt;
1712 } else {
1713 if (!args->from)
1714 arg = 1;
1715 if (m->flags & MOPT_CLEAR)
1716 arg = !arg;
1717 else if (unlikely(!(m->flags & MOPT_SET))) {
1718 ext4_msg(sb, KERN_WARNING,
1719 "buggy handling of option %s", opt);
1720 WARN_ON(1);
1721 return -1;
1722 }
1723 if (arg != 0)
1724 sbi->s_mount_opt |= m->mount_opt;
1725 else
1726 sbi->s_mount_opt &= ~m->mount_opt;
1727 }
1728 return 1;
1729}
1730
1731static int parse_options(char *options, struct super_block *sb,
1732 unsigned long *journal_devnum,
1733 unsigned int *journal_ioprio,
1734 int is_remount)
1735{
1736 struct ext4_sb_info *sbi = EXT4_SB(sb);
1737 char *p;
1738 substring_t args[MAX_OPT_ARGS];
1739 int token;
1740
1741 if (!options)
1742 return 1;
1743
1744 while ((p = strsep(&options, ",")) != NULL) {
1745 if (!*p)
1746 continue;
1747 /*
1748 * Initialize args struct so we know whether arg was
1749 * found; some options take optional arguments.
1750 */
1751 args[0].to = args[0].from = NULL;
1752 token = match_token(p, tokens, args);
1753 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1754 journal_ioprio, is_remount) < 0)
1755 return 0;
1756 }
1757#ifdef CONFIG_QUOTA
1758 if (ext4_has_feature_quota(sb) &&
1759 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1760 ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota "
1761 "mount options ignored.");
1762 clear_opt(sb, USRQUOTA);
1763 clear_opt(sb, GRPQUOTA);
1764 } else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1765 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1766 clear_opt(sb, USRQUOTA);
1767
1768 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1769 clear_opt(sb, GRPQUOTA);
1770
1771 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1772 ext4_msg(sb, KERN_ERR, "old and new quota "
1773 "format mixing");
1774 return 0;
1775 }
1776
1777 if (!sbi->s_jquota_fmt) {
1778 ext4_msg(sb, KERN_ERR, "journaled quota format "
1779 "not specified");
1780 return 0;
1781 }
1782 }
1783#endif
1784 if (test_opt(sb, DIOREAD_NOLOCK)) {
1785 int blocksize =
1786 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1787
1788 if (blocksize < PAGE_SIZE) {
1789 ext4_msg(sb, KERN_ERR, "can't mount with "
1790 "dioread_nolock if block size != PAGE_SIZE");
1791 return 0;
1792 }
1793 }
1794 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1795 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1796 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1797 "in data=ordered mode");
1798 return 0;
1799 }
1800 return 1;
1801}
1802
1803static inline void ext4_show_quota_options(struct seq_file *seq,
1804 struct super_block *sb)
1805{
1806#if defined(CONFIG_QUOTA)
1807 struct ext4_sb_info *sbi = EXT4_SB(sb);
1808
1809 if (sbi->s_jquota_fmt) {
1810 char *fmtname = "";
1811
1812 switch (sbi->s_jquota_fmt) {
1813 case QFMT_VFS_OLD:
1814 fmtname = "vfsold";
1815 break;
1816 case QFMT_VFS_V0:
1817 fmtname = "vfsv0";
1818 break;
1819 case QFMT_VFS_V1:
1820 fmtname = "vfsv1";
1821 break;
1822 }
1823 seq_printf(seq, ",jqfmt=%s", fmtname);
1824 }
1825
1826 if (sbi->s_qf_names[USRQUOTA])
1827 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1828
1829 if (sbi->s_qf_names[GRPQUOTA])
1830 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1831#endif
1832}
1833
1834static const char *token2str(int token)
1835{
1836 const struct match_token *t;
1837
1838 for (t = tokens; t->token != Opt_err; t++)
1839 if (t->token == token && !strchr(t->pattern, '='))
1840 break;
1841 return t->pattern;
1842}
1843
1844/*
1845 * Show an option if
1846 * - it's set to a non-default value OR
1847 * - if the per-sb default is different from the global default
1848 */
1849static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1850 int nodefs)
1851{
1852 struct ext4_sb_info *sbi = EXT4_SB(sb);
1853 struct ext4_super_block *es = sbi->s_es;
1854 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1855 const struct mount_opts *m;
1856 char sep = nodefs ? '\n' : ',';
1857
1858#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1859#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1860
1861 if (sbi->s_sb_block != 1)
1862 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1863
1864 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1865 int want_set = m->flags & MOPT_SET;
1866 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1867 (m->flags & MOPT_CLEAR_ERR))
1868 continue;
1869 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1870 continue; /* skip if same as the default */
1871 if ((want_set &&
1872 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1873 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1874 continue; /* select Opt_noFoo vs Opt_Foo */
1875 SEQ_OPTS_PRINT("%s", token2str(m->token));
1876 }
1877
1878 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1879 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1880 SEQ_OPTS_PRINT("resuid=%u",
1881 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1882 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1883 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1884 SEQ_OPTS_PRINT("resgid=%u",
1885 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1886 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1887 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1888 SEQ_OPTS_PUTS("errors=remount-ro");
1889 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1890 SEQ_OPTS_PUTS("errors=continue");
1891 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1892 SEQ_OPTS_PUTS("errors=panic");
1893 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1894 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1895 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1896 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1897 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1898 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1899 if (sb->s_flags & MS_I_VERSION)
1900 SEQ_OPTS_PUTS("i_version");
1901 if (nodefs || sbi->s_stripe)
1902 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1903 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1904 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1905 SEQ_OPTS_PUTS("data=journal");
1906 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1907 SEQ_OPTS_PUTS("data=ordered");
1908 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1909 SEQ_OPTS_PUTS("data=writeback");
1910 }
1911 if (nodefs ||
1912 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1913 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1914 sbi->s_inode_readahead_blks);
1915
1916 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1917 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1918 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1919 if (nodefs || sbi->s_max_dir_size_kb)
1920 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1921 if (test_opt(sb, DATA_ERR_ABORT))
1922 SEQ_OPTS_PUTS("data_err=abort");
1923
1924 ext4_show_quota_options(seq, sb);
1925 return 0;
1926}
1927
1928static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1929{
1930 return _ext4_show_options(seq, root->d_sb, 0);
1931}
1932
1933int ext4_seq_options_show(struct seq_file *seq, void *offset)
1934{
1935 struct super_block *sb = seq->private;
1936 int rc;
1937
1938 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1939 rc = _ext4_show_options(seq, sb, 1);
1940 seq_puts(seq, "\n");
1941 return rc;
1942}
1943
1944static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1945 int read_only)
1946{
1947 struct ext4_sb_info *sbi = EXT4_SB(sb);
1948 int res = 0;
1949
1950 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1951 ext4_msg(sb, KERN_ERR, "revision level too high, "
1952 "forcing read-only mode");
1953 res = MS_RDONLY;
1954 }
1955 if (read_only)
1956 goto done;
1957 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1958 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1959 "running e2fsck is recommended");
1960 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1961 ext4_msg(sb, KERN_WARNING,
1962 "warning: mounting fs with errors, "
1963 "running e2fsck is recommended");
1964 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1965 le16_to_cpu(es->s_mnt_count) >=
1966 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1967 ext4_msg(sb, KERN_WARNING,
1968 "warning: maximal mount count reached, "
1969 "running e2fsck is recommended");
1970 else if (le32_to_cpu(es->s_checkinterval) &&
1971 (le32_to_cpu(es->s_lastcheck) +
1972 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1973 ext4_msg(sb, KERN_WARNING,
1974 "warning: checktime reached, "
1975 "running e2fsck is recommended");
1976 if (!sbi->s_journal)
1977 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1978 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1979 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1980 le16_add_cpu(&es->s_mnt_count, 1);
1981 es->s_mtime = cpu_to_le32(get_seconds());
1982 ext4_update_dynamic_rev(sb);
1983 if (sbi->s_journal)
1984 ext4_set_feature_journal_needs_recovery(sb);
1985
1986 ext4_commit_super(sb, 1);
1987done:
1988 if (test_opt(sb, DEBUG))
1989 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1990 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1991 sb->s_blocksize,
1992 sbi->s_groups_count,
1993 EXT4_BLOCKS_PER_GROUP(sb),
1994 EXT4_INODES_PER_GROUP(sb),
1995 sbi->s_mount_opt, sbi->s_mount_opt2);
1996
1997 cleancache_init_fs(sb);
1998 return res;
1999}
2000
2001int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2002{
2003 struct ext4_sb_info *sbi = EXT4_SB(sb);
2004 struct flex_groups *new_groups;
2005 int size;
2006
2007 if (!sbi->s_log_groups_per_flex)
2008 return 0;
2009
2010 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2011 if (size <= sbi->s_flex_groups_allocated)
2012 return 0;
2013
2014 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2015 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2016 if (!new_groups) {
2017 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2018 size / (int) sizeof(struct flex_groups));
2019 return -ENOMEM;
2020 }
2021
2022 if (sbi->s_flex_groups) {
2023 memcpy(new_groups, sbi->s_flex_groups,
2024 (sbi->s_flex_groups_allocated *
2025 sizeof(struct flex_groups)));
2026 kvfree(sbi->s_flex_groups);
2027 }
2028 sbi->s_flex_groups = new_groups;
2029 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2030 return 0;
2031}
2032
2033static int ext4_fill_flex_info(struct super_block *sb)
2034{
2035 struct ext4_sb_info *sbi = EXT4_SB(sb);
2036 struct ext4_group_desc *gdp = NULL;
2037 ext4_group_t flex_group;
2038 int i, err;
2039
2040 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2041 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2042 sbi->s_log_groups_per_flex = 0;
2043 return 1;
2044 }
2045
2046 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2047 if (err)
2048 goto failed;
2049
2050 for (i = 0; i < sbi->s_groups_count; i++) {
2051 gdp = ext4_get_group_desc(sb, i, NULL);
2052
2053 flex_group = ext4_flex_group(sbi, i);
2054 atomic_add(ext4_free_inodes_count(sb, gdp),
2055 &sbi->s_flex_groups[flex_group].free_inodes);
2056 atomic64_add(ext4_free_group_clusters(sb, gdp),
2057 &sbi->s_flex_groups[flex_group].free_clusters);
2058 atomic_add(ext4_used_dirs_count(sb, gdp),
2059 &sbi->s_flex_groups[flex_group].used_dirs);
2060 }
2061
2062 return 1;
2063failed:
2064 return 0;
2065}
2066
2067static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2068 struct ext4_group_desc *gdp)
2069{
2070 int offset;
2071 __u16 crc = 0;
2072 __le32 le_group = cpu_to_le32(block_group);
2073 struct ext4_sb_info *sbi = EXT4_SB(sb);
2074
2075 if (ext4_has_metadata_csum(sbi->s_sb)) {
2076 /* Use new metadata_csum algorithm */
2077 __le16 save_csum;
2078 __u32 csum32;
2079
2080 save_csum = gdp->bg_checksum;
2081 gdp->bg_checksum = 0;
2082 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2083 sizeof(le_group));
2084 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2085 sbi->s_desc_size);
2086 gdp->bg_checksum = save_csum;
2087
2088 crc = csum32 & 0xFFFF;
2089 goto out;
2090 }
2091
2092 /* old crc16 code */
2093 if (!ext4_has_feature_gdt_csum(sb))
2094 return 0;
2095
2096 offset = offsetof(struct ext4_group_desc, bg_checksum);
2097
2098 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2099 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2100 crc = crc16(crc, (__u8 *)gdp, offset);
2101 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2102 /* for checksum of struct ext4_group_desc do the rest...*/
2103 if (ext4_has_feature_64bit(sb) &&
2104 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2105 crc = crc16(crc, (__u8 *)gdp + offset,
2106 le16_to_cpu(sbi->s_es->s_desc_size) -
2107 offset);
2108
2109out:
2110 return cpu_to_le16(crc);
2111}
2112
2113int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2114 struct ext4_group_desc *gdp)
2115{
2116 if (ext4_has_group_desc_csum(sb) &&
2117 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2118 return 0;
2119
2120 return 1;
2121}
2122
2123void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2124 struct ext4_group_desc *gdp)
2125{
2126 if (!ext4_has_group_desc_csum(sb))
2127 return;
2128 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2129}
2130
2131/* Called at mount-time, super-block is locked */
2132static int ext4_check_descriptors(struct super_block *sb,
2133 ext4_group_t *first_not_zeroed)
2134{
2135 struct ext4_sb_info *sbi = EXT4_SB(sb);
2136 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2137 ext4_fsblk_t last_block;
2138 ext4_fsblk_t block_bitmap;
2139 ext4_fsblk_t inode_bitmap;
2140 ext4_fsblk_t inode_table;
2141 int flexbg_flag = 0;
2142 ext4_group_t i, grp = sbi->s_groups_count;
2143
2144 if (ext4_has_feature_flex_bg(sb))
2145 flexbg_flag = 1;
2146
2147 ext4_debug("Checking group descriptors");
2148
2149 for (i = 0; i < sbi->s_groups_count; i++) {
2150 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2151
2152 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2153 last_block = ext4_blocks_count(sbi->s_es) - 1;
2154 else
2155 last_block = first_block +
2156 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2157
2158 if ((grp == sbi->s_groups_count) &&
2159 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2160 grp = i;
2161
2162 block_bitmap = ext4_block_bitmap(sb, gdp);
2163 if (block_bitmap < first_block || block_bitmap > last_block) {
2164 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2165 "Block bitmap for group %u not in group "
2166 "(block %llu)!", i, block_bitmap);
2167 return 0;
2168 }
2169 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2170 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2171 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2172 "Inode bitmap for group %u not in group "
2173 "(block %llu)!", i, inode_bitmap);
2174 return 0;
2175 }
2176 inode_table = ext4_inode_table(sb, gdp);
2177 if (inode_table < first_block ||
2178 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2179 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2180 "Inode table for group %u not in group "
2181 "(block %llu)!", i, inode_table);
2182 return 0;
2183 }
2184 ext4_lock_group(sb, i);
2185 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2186 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2187 "Checksum for group %u failed (%u!=%u)",
2188 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2189 gdp)), le16_to_cpu(gdp->bg_checksum));
2190 if (!(sb->s_flags & MS_RDONLY)) {
2191 ext4_unlock_group(sb, i);
2192 return 0;
2193 }
2194 }
2195 ext4_unlock_group(sb, i);
2196 if (!flexbg_flag)
2197 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2198 }
2199 if (NULL != first_not_zeroed)
2200 *first_not_zeroed = grp;
2201 return 1;
2202}
2203
2204/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2205 * the superblock) which were deleted from all directories, but held open by
2206 * a process at the time of a crash. We walk the list and try to delete these
2207 * inodes at recovery time (only with a read-write filesystem).
2208 *
2209 * In order to keep the orphan inode chain consistent during traversal (in
2210 * case of crash during recovery), we link each inode into the superblock
2211 * orphan list_head and handle it the same way as an inode deletion during
2212 * normal operation (which journals the operations for us).
2213 *
2214 * We only do an iget() and an iput() on each inode, which is very safe if we
2215 * accidentally point at an in-use or already deleted inode. The worst that
2216 * can happen in this case is that we get a "bit already cleared" message from
2217 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2218 * e2fsck was run on this filesystem, and it must have already done the orphan
2219 * inode cleanup for us, so we can safely abort without any further action.
2220 */
2221static void ext4_orphan_cleanup(struct super_block *sb,
2222 struct ext4_super_block *es)
2223{
2224 unsigned int s_flags = sb->s_flags;
2225 int nr_orphans = 0, nr_truncates = 0;
2226#ifdef CONFIG_QUOTA
2227 int i;
2228#endif
2229 if (!es->s_last_orphan) {
2230 jbd_debug(4, "no orphan inodes to clean up\n");
2231 return;
2232 }
2233
2234 if (bdev_read_only(sb->s_bdev)) {
2235 ext4_msg(sb, KERN_ERR, "write access "
2236 "unavailable, skipping orphan cleanup");
2237 return;
2238 }
2239
2240 /* Check if feature set would not allow a r/w mount */
2241 if (!ext4_feature_set_ok(sb, 0)) {
2242 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2243 "unknown ROCOMPAT features");
2244 return;
2245 }
2246
2247 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2248 /* don't clear list on RO mount w/ errors */
2249 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2250 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2251 "clearing orphan list.\n");
2252 es->s_last_orphan = 0;
2253 }
2254 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2255 return;
2256 }
2257
2258 if (s_flags & MS_RDONLY) {
2259 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2260 sb->s_flags &= ~MS_RDONLY;
2261 }
2262#ifdef CONFIG_QUOTA
2263 /* Needed for iput() to work correctly and not trash data */
2264 sb->s_flags |= MS_ACTIVE;
2265 /* Turn on quotas so that they are updated correctly */
2266 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2267 if (EXT4_SB(sb)->s_qf_names[i]) {
2268 int ret = ext4_quota_on_mount(sb, i);
2269 if (ret < 0)
2270 ext4_msg(sb, KERN_ERR,
2271 "Cannot turn on journaled "
2272 "quota: error %d", ret);
2273 }
2274 }
2275#endif
2276
2277 while (es->s_last_orphan) {
2278 struct inode *inode;
2279
2280 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2281 if (IS_ERR(inode)) {
2282 es->s_last_orphan = 0;
2283 break;
2284 }
2285
2286 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2287 dquot_initialize(inode);
2288 if (inode->i_nlink) {
2289 if (test_opt(sb, DEBUG))
2290 ext4_msg(sb, KERN_DEBUG,
2291 "%s: truncating inode %lu to %lld bytes",
2292 __func__, inode->i_ino, inode->i_size);
2293 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2294 inode->i_ino, inode->i_size);
2295 inode_lock(inode);
2296 truncate_inode_pages(inode->i_mapping, inode->i_size);
2297 ext4_truncate(inode);
2298 inode_unlock(inode);
2299 nr_truncates++;
2300 } else {
2301 if (test_opt(sb, DEBUG))
2302 ext4_msg(sb, KERN_DEBUG,
2303 "%s: deleting unreferenced inode %lu",
2304 __func__, inode->i_ino);
2305 jbd_debug(2, "deleting unreferenced inode %lu\n",
2306 inode->i_ino);
2307 nr_orphans++;
2308 }
2309 iput(inode); /* The delete magic happens here! */
2310 }
2311
2312#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2313
2314 if (nr_orphans)
2315 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2316 PLURAL(nr_orphans));
2317 if (nr_truncates)
2318 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2319 PLURAL(nr_truncates));
2320#ifdef CONFIG_QUOTA
2321 /* Turn quotas off */
2322 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2323 if (sb_dqopt(sb)->files[i])
2324 dquot_quota_off(sb, i);
2325 }
2326#endif
2327 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2328}
2329
2330/*
2331 * Maximal extent format file size.
2332 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2333 * extent format containers, within a sector_t, and within i_blocks
2334 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2335 * so that won't be a limiting factor.
2336 *
2337 * However there is other limiting factor. We do store extents in the form
2338 * of starting block and length, hence the resulting length of the extent
2339 * covering maximum file size must fit into on-disk format containers as
2340 * well. Given that length is always by 1 unit bigger than max unit (because
2341 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2342 *
2343 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2344 */
2345static loff_t ext4_max_size(int blkbits, int has_huge_files)
2346{
2347 loff_t res;
2348 loff_t upper_limit = MAX_LFS_FILESIZE;
2349
2350 /* small i_blocks in vfs inode? */
2351 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2352 /*
2353 * CONFIG_LBDAF is not enabled implies the inode
2354 * i_block represent total blocks in 512 bytes
2355 * 32 == size of vfs inode i_blocks * 8
2356 */
2357 upper_limit = (1LL << 32) - 1;
2358
2359 /* total blocks in file system block size */
2360 upper_limit >>= (blkbits - 9);
2361 upper_limit <<= blkbits;
2362 }
2363
2364 /*
2365 * 32-bit extent-start container, ee_block. We lower the maxbytes
2366 * by one fs block, so ee_len can cover the extent of maximum file
2367 * size
2368 */
2369 res = (1LL << 32) - 1;
2370 res <<= blkbits;
2371
2372 /* Sanity check against vm- & vfs- imposed limits */
2373 if (res > upper_limit)
2374 res = upper_limit;
2375
2376 return res;
2377}
2378
2379/*
2380 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2381 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2382 * We need to be 1 filesystem block less than the 2^48 sector limit.
2383 */
2384static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2385{
2386 loff_t res = EXT4_NDIR_BLOCKS;
2387 int meta_blocks;
2388 loff_t upper_limit;
2389 /* This is calculated to be the largest file size for a dense, block
2390 * mapped file such that the file's total number of 512-byte sectors,
2391 * including data and all indirect blocks, does not exceed (2^48 - 1).
2392 *
2393 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2394 * number of 512-byte sectors of the file.
2395 */
2396
2397 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2398 /*
2399 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2400 * the inode i_block field represents total file blocks in
2401 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2402 */
2403 upper_limit = (1LL << 32) - 1;
2404
2405 /* total blocks in file system block size */
2406 upper_limit >>= (bits - 9);
2407
2408 } else {
2409 /*
2410 * We use 48 bit ext4_inode i_blocks
2411 * With EXT4_HUGE_FILE_FL set the i_blocks
2412 * represent total number of blocks in
2413 * file system block size
2414 */
2415 upper_limit = (1LL << 48) - 1;
2416
2417 }
2418
2419 /* indirect blocks */
2420 meta_blocks = 1;
2421 /* double indirect blocks */
2422 meta_blocks += 1 + (1LL << (bits-2));
2423 /* tripple indirect blocks */
2424 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2425
2426 upper_limit -= meta_blocks;
2427 upper_limit <<= bits;
2428
2429 res += 1LL << (bits-2);
2430 res += 1LL << (2*(bits-2));
2431 res += 1LL << (3*(bits-2));
2432 res <<= bits;
2433 if (res > upper_limit)
2434 res = upper_limit;
2435
2436 if (res > MAX_LFS_FILESIZE)
2437 res = MAX_LFS_FILESIZE;
2438
2439 return res;
2440}
2441
2442static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2443 ext4_fsblk_t logical_sb_block, int nr)
2444{
2445 struct ext4_sb_info *sbi = EXT4_SB(sb);
2446 ext4_group_t bg, first_meta_bg;
2447 int has_super = 0;
2448
2449 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2450
2451 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2452 return logical_sb_block + nr + 1;
2453 bg = sbi->s_desc_per_block * nr;
2454 if (ext4_bg_has_super(sb, bg))
2455 has_super = 1;
2456
2457 /*
2458 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2459 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2460 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2461 * compensate.
2462 */
2463 if (sb->s_blocksize == 1024 && nr == 0 &&
2464 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2465 has_super++;
2466
2467 return (has_super + ext4_group_first_block_no(sb, bg));
2468}
2469
2470/**
2471 * ext4_get_stripe_size: Get the stripe size.
2472 * @sbi: In memory super block info
2473 *
2474 * If we have specified it via mount option, then
2475 * use the mount option value. If the value specified at mount time is
2476 * greater than the blocks per group use the super block value.
2477 * If the super block value is greater than blocks per group return 0.
2478 * Allocator needs it be less than blocks per group.
2479 *
2480 */
2481static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2482{
2483 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2484 unsigned long stripe_width =
2485 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2486 int ret;
2487
2488 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2489 ret = sbi->s_stripe;
2490 else if (stripe_width <= sbi->s_blocks_per_group)
2491 ret = stripe_width;
2492 else if (stride <= sbi->s_blocks_per_group)
2493 ret = stride;
2494 else
2495 ret = 0;
2496
2497 /*
2498 * If the stripe width is 1, this makes no sense and
2499 * we set it to 0 to turn off stripe handling code.
2500 */
2501 if (ret <= 1)
2502 ret = 0;
2503
2504 return ret;
2505}
2506
2507/*
2508 * Check whether this filesystem can be mounted based on
2509 * the features present and the RDONLY/RDWR mount requested.
2510 * Returns 1 if this filesystem can be mounted as requested,
2511 * 0 if it cannot be.
2512 */
2513static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2514{
2515 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2516 ext4_msg(sb, KERN_ERR,
2517 "Couldn't mount because of "
2518 "unsupported optional features (%x)",
2519 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2520 ~EXT4_FEATURE_INCOMPAT_SUPP));
2521 return 0;
2522 }
2523
2524 if (readonly)
2525 return 1;
2526
2527 if (ext4_has_feature_readonly(sb)) {
2528 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2529 sb->s_flags |= MS_RDONLY;
2530 return 1;
2531 }
2532
2533 /* Check that feature set is OK for a read-write mount */
2534 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2535 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2536 "unsupported optional features (%x)",
2537 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2538 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2539 return 0;
2540 }
2541 /*
2542 * Large file size enabled file system can only be mounted
2543 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2544 */
2545 if (ext4_has_feature_huge_file(sb)) {
2546 if (sizeof(blkcnt_t) < sizeof(u64)) {
2547 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2548 "cannot be mounted RDWR without "
2549 "CONFIG_LBDAF");
2550 return 0;
2551 }
2552 }
2553 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2554 ext4_msg(sb, KERN_ERR,
2555 "Can't support bigalloc feature without "
2556 "extents feature\n");
2557 return 0;
2558 }
2559
2560#ifndef CONFIG_QUOTA
2561 if (ext4_has_feature_quota(sb) && !readonly) {
2562 ext4_msg(sb, KERN_ERR,
2563 "Filesystem with quota feature cannot be mounted RDWR "
2564 "without CONFIG_QUOTA");
2565 return 0;
2566 }
2567 if (ext4_has_feature_project(sb) && !readonly) {
2568 ext4_msg(sb, KERN_ERR,
2569 "Filesystem with project quota feature cannot be mounted RDWR "
2570 "without CONFIG_QUOTA");
2571 return 0;
2572 }
2573#endif /* CONFIG_QUOTA */
2574 return 1;
2575}
2576
2577/*
2578 * This function is called once a day if we have errors logged
2579 * on the file system
2580 */
2581static void print_daily_error_info(unsigned long arg)
2582{
2583 struct super_block *sb = (struct super_block *) arg;
2584 struct ext4_sb_info *sbi;
2585 struct ext4_super_block *es;
2586
2587 sbi = EXT4_SB(sb);
2588 es = sbi->s_es;
2589
2590 if (es->s_error_count)
2591 /* fsck newer than v1.41.13 is needed to clean this condition. */
2592 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2593 le32_to_cpu(es->s_error_count));
2594 if (es->s_first_error_time) {
2595 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2596 sb->s_id, le32_to_cpu(es->s_first_error_time),
2597 (int) sizeof(es->s_first_error_func),
2598 es->s_first_error_func,
2599 le32_to_cpu(es->s_first_error_line));
2600 if (es->s_first_error_ino)
2601 printk(": inode %u",
2602 le32_to_cpu(es->s_first_error_ino));
2603 if (es->s_first_error_block)
2604 printk(": block %llu", (unsigned long long)
2605 le64_to_cpu(es->s_first_error_block));
2606 printk("\n");
2607 }
2608 if (es->s_last_error_time) {
2609 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2610 sb->s_id, le32_to_cpu(es->s_last_error_time),
2611 (int) sizeof(es->s_last_error_func),
2612 es->s_last_error_func,
2613 le32_to_cpu(es->s_last_error_line));
2614 if (es->s_last_error_ino)
2615 printk(": inode %u",
2616 le32_to_cpu(es->s_last_error_ino));
2617 if (es->s_last_error_block)
2618 printk(": block %llu", (unsigned long long)
2619 le64_to_cpu(es->s_last_error_block));
2620 printk("\n");
2621 }
2622 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2623}
2624
2625/* Find next suitable group and run ext4_init_inode_table */
2626static int ext4_run_li_request(struct ext4_li_request *elr)
2627{
2628 struct ext4_group_desc *gdp = NULL;
2629 ext4_group_t group, ngroups;
2630 struct super_block *sb;
2631 unsigned long timeout = 0;
2632 int ret = 0;
2633
2634 sb = elr->lr_super;
2635 ngroups = EXT4_SB(sb)->s_groups_count;
2636
2637 sb_start_write(sb);
2638 for (group = elr->lr_next_group; group < ngroups; group++) {
2639 gdp = ext4_get_group_desc(sb, group, NULL);
2640 if (!gdp) {
2641 ret = 1;
2642 break;
2643 }
2644
2645 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2646 break;
2647 }
2648
2649 if (group >= ngroups)
2650 ret = 1;
2651
2652 if (!ret) {
2653 timeout = jiffies;
2654 ret = ext4_init_inode_table(sb, group,
2655 elr->lr_timeout ? 0 : 1);
2656 if (elr->lr_timeout == 0) {
2657 timeout = (jiffies - timeout) *
2658 elr->lr_sbi->s_li_wait_mult;
2659 elr->lr_timeout = timeout;
2660 }
2661 elr->lr_next_sched = jiffies + elr->lr_timeout;
2662 elr->lr_next_group = group + 1;
2663 }
2664 sb_end_write(sb);
2665
2666 return ret;
2667}
2668
2669/*
2670 * Remove lr_request from the list_request and free the
2671 * request structure. Should be called with li_list_mtx held
2672 */
2673static void ext4_remove_li_request(struct ext4_li_request *elr)
2674{
2675 struct ext4_sb_info *sbi;
2676
2677 if (!elr)
2678 return;
2679
2680 sbi = elr->lr_sbi;
2681
2682 list_del(&elr->lr_request);
2683 sbi->s_li_request = NULL;
2684 kfree(elr);
2685}
2686
2687static void ext4_unregister_li_request(struct super_block *sb)
2688{
2689 mutex_lock(&ext4_li_mtx);
2690 if (!ext4_li_info) {
2691 mutex_unlock(&ext4_li_mtx);
2692 return;
2693 }
2694
2695 mutex_lock(&ext4_li_info->li_list_mtx);
2696 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2697 mutex_unlock(&ext4_li_info->li_list_mtx);
2698 mutex_unlock(&ext4_li_mtx);
2699}
2700
2701static struct task_struct *ext4_lazyinit_task;
2702
2703/*
2704 * This is the function where ext4lazyinit thread lives. It walks
2705 * through the request list searching for next scheduled filesystem.
2706 * When such a fs is found, run the lazy initialization request
2707 * (ext4_rn_li_request) and keep track of the time spend in this
2708 * function. Based on that time we compute next schedule time of
2709 * the request. When walking through the list is complete, compute
2710 * next waking time and put itself into sleep.
2711 */
2712static int ext4_lazyinit_thread(void *arg)
2713{
2714 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2715 struct list_head *pos, *n;
2716 struct ext4_li_request *elr;
2717 unsigned long next_wakeup, cur;
2718
2719 BUG_ON(NULL == eli);
2720
2721cont_thread:
2722 while (true) {
2723 next_wakeup = MAX_JIFFY_OFFSET;
2724
2725 mutex_lock(&eli->li_list_mtx);
2726 if (list_empty(&eli->li_request_list)) {
2727 mutex_unlock(&eli->li_list_mtx);
2728 goto exit_thread;
2729 }
2730
2731 list_for_each_safe(pos, n, &eli->li_request_list) {
2732 elr = list_entry(pos, struct ext4_li_request,
2733 lr_request);
2734
2735 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2736 if (ext4_run_li_request(elr) != 0) {
2737 /* error, remove the lazy_init job */
2738 ext4_remove_li_request(elr);
2739 continue;
2740 }
2741 }
2742
2743 if (time_before(elr->lr_next_sched, next_wakeup))
2744 next_wakeup = elr->lr_next_sched;
2745 }
2746 mutex_unlock(&eli->li_list_mtx);
2747
2748 try_to_freeze();
2749
2750 cur = jiffies;
2751 if ((time_after_eq(cur, next_wakeup)) ||
2752 (MAX_JIFFY_OFFSET == next_wakeup)) {
2753 cond_resched();
2754 continue;
2755 }
2756
2757 schedule_timeout_interruptible(next_wakeup - cur);
2758
2759 if (kthread_should_stop()) {
2760 ext4_clear_request_list();
2761 goto exit_thread;
2762 }
2763 }
2764
2765exit_thread:
2766 /*
2767 * It looks like the request list is empty, but we need
2768 * to check it under the li_list_mtx lock, to prevent any
2769 * additions into it, and of course we should lock ext4_li_mtx
2770 * to atomically free the list and ext4_li_info, because at
2771 * this point another ext4 filesystem could be registering
2772 * new one.
2773 */
2774 mutex_lock(&ext4_li_mtx);
2775 mutex_lock(&eli->li_list_mtx);
2776 if (!list_empty(&eli->li_request_list)) {
2777 mutex_unlock(&eli->li_list_mtx);
2778 mutex_unlock(&ext4_li_mtx);
2779 goto cont_thread;
2780 }
2781 mutex_unlock(&eli->li_list_mtx);
2782 kfree(ext4_li_info);
2783 ext4_li_info = NULL;
2784 mutex_unlock(&ext4_li_mtx);
2785
2786 return 0;
2787}
2788
2789static void ext4_clear_request_list(void)
2790{
2791 struct list_head *pos, *n;
2792 struct ext4_li_request *elr;
2793
2794 mutex_lock(&ext4_li_info->li_list_mtx);
2795 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2796 elr = list_entry(pos, struct ext4_li_request,
2797 lr_request);
2798 ext4_remove_li_request(elr);
2799 }
2800 mutex_unlock(&ext4_li_info->li_list_mtx);
2801}
2802
2803static int ext4_run_lazyinit_thread(void)
2804{
2805 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2806 ext4_li_info, "ext4lazyinit");
2807 if (IS_ERR(ext4_lazyinit_task)) {
2808 int err = PTR_ERR(ext4_lazyinit_task);
2809 ext4_clear_request_list();
2810 kfree(ext4_li_info);
2811 ext4_li_info = NULL;
2812 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2813 "initialization thread\n",
2814 err);
2815 return err;
2816 }
2817 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2818 return 0;
2819}
2820
2821/*
2822 * Check whether it make sense to run itable init. thread or not.
2823 * If there is at least one uninitialized inode table, return
2824 * corresponding group number, else the loop goes through all
2825 * groups and return total number of groups.
2826 */
2827static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2828{
2829 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2830 struct ext4_group_desc *gdp = NULL;
2831
2832 for (group = 0; group < ngroups; group++) {
2833 gdp = ext4_get_group_desc(sb, group, NULL);
2834 if (!gdp)
2835 continue;
2836
2837 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2838 break;
2839 }
2840
2841 return group;
2842}
2843
2844static int ext4_li_info_new(void)
2845{
2846 struct ext4_lazy_init *eli = NULL;
2847
2848 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2849 if (!eli)
2850 return -ENOMEM;
2851
2852 INIT_LIST_HEAD(&eli->li_request_list);
2853 mutex_init(&eli->li_list_mtx);
2854
2855 eli->li_state |= EXT4_LAZYINIT_QUIT;
2856
2857 ext4_li_info = eli;
2858
2859 return 0;
2860}
2861
2862static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2863 ext4_group_t start)
2864{
2865 struct ext4_sb_info *sbi = EXT4_SB(sb);
2866 struct ext4_li_request *elr;
2867
2868 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2869 if (!elr)
2870 return NULL;
2871
2872 elr->lr_super = sb;
2873 elr->lr_sbi = sbi;
2874 elr->lr_next_group = start;
2875
2876 /*
2877 * Randomize first schedule time of the request to
2878 * spread the inode table initialization requests
2879 * better.
2880 */
2881 elr->lr_next_sched = jiffies + (prandom_u32() %
2882 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2883 return elr;
2884}
2885
2886int ext4_register_li_request(struct super_block *sb,
2887 ext4_group_t first_not_zeroed)
2888{
2889 struct ext4_sb_info *sbi = EXT4_SB(sb);
2890 struct ext4_li_request *elr = NULL;
2891 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2892 int ret = 0;
2893
2894 mutex_lock(&ext4_li_mtx);
2895 if (sbi->s_li_request != NULL) {
2896 /*
2897 * Reset timeout so it can be computed again, because
2898 * s_li_wait_mult might have changed.
2899 */
2900 sbi->s_li_request->lr_timeout = 0;
2901 goto out;
2902 }
2903
2904 if (first_not_zeroed == ngroups ||
2905 (sb->s_flags & MS_RDONLY) ||
2906 !test_opt(sb, INIT_INODE_TABLE))
2907 goto out;
2908
2909 elr = ext4_li_request_new(sb, first_not_zeroed);
2910 if (!elr) {
2911 ret = -ENOMEM;
2912 goto out;
2913 }
2914
2915 if (NULL == ext4_li_info) {
2916 ret = ext4_li_info_new();
2917 if (ret)
2918 goto out;
2919 }
2920
2921 mutex_lock(&ext4_li_info->li_list_mtx);
2922 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2923 mutex_unlock(&ext4_li_info->li_list_mtx);
2924
2925 sbi->s_li_request = elr;
2926 /*
2927 * set elr to NULL here since it has been inserted to
2928 * the request_list and the removal and free of it is
2929 * handled by ext4_clear_request_list from now on.
2930 */
2931 elr = NULL;
2932
2933 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2934 ret = ext4_run_lazyinit_thread();
2935 if (ret)
2936 goto out;
2937 }
2938out:
2939 mutex_unlock(&ext4_li_mtx);
2940 if (ret)
2941 kfree(elr);
2942 return ret;
2943}
2944
2945/*
2946 * We do not need to lock anything since this is called on
2947 * module unload.
2948 */
2949static void ext4_destroy_lazyinit_thread(void)
2950{
2951 /*
2952 * If thread exited earlier
2953 * there's nothing to be done.
2954 */
2955 if (!ext4_li_info || !ext4_lazyinit_task)
2956 return;
2957
2958 kthread_stop(ext4_lazyinit_task);
2959}
2960
2961static int set_journal_csum_feature_set(struct super_block *sb)
2962{
2963 int ret = 1;
2964 int compat, incompat;
2965 struct ext4_sb_info *sbi = EXT4_SB(sb);
2966
2967 if (ext4_has_metadata_csum(sb)) {
2968 /* journal checksum v3 */
2969 compat = 0;
2970 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
2971 } else {
2972 /* journal checksum v1 */
2973 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
2974 incompat = 0;
2975 }
2976
2977 jbd2_journal_clear_features(sbi->s_journal,
2978 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2979 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
2980 JBD2_FEATURE_INCOMPAT_CSUM_V2);
2981 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2982 ret = jbd2_journal_set_features(sbi->s_journal,
2983 compat, 0,
2984 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
2985 incompat);
2986 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2987 ret = jbd2_journal_set_features(sbi->s_journal,
2988 compat, 0,
2989 incompat);
2990 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2991 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2992 } else {
2993 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2994 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2995 }
2996
2997 return ret;
2998}
2999
3000/*
3001 * Note: calculating the overhead so we can be compatible with
3002 * historical BSD practice is quite difficult in the face of
3003 * clusters/bigalloc. This is because multiple metadata blocks from
3004 * different block group can end up in the same allocation cluster.
3005 * Calculating the exact overhead in the face of clustered allocation
3006 * requires either O(all block bitmaps) in memory or O(number of block
3007 * groups**2) in time. We will still calculate the superblock for
3008 * older file systems --- and if we come across with a bigalloc file
3009 * system with zero in s_overhead_clusters the estimate will be close to
3010 * correct especially for very large cluster sizes --- but for newer
3011 * file systems, it's better to calculate this figure once at mkfs
3012 * time, and store it in the superblock. If the superblock value is
3013 * present (even for non-bigalloc file systems), we will use it.
3014 */
3015static int count_overhead(struct super_block *sb, ext4_group_t grp,
3016 char *buf)
3017{
3018 struct ext4_sb_info *sbi = EXT4_SB(sb);
3019 struct ext4_group_desc *gdp;
3020 ext4_fsblk_t first_block, last_block, b;
3021 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3022 int s, j, count = 0;
3023
3024 if (!ext4_has_feature_bigalloc(sb))
3025 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3026 sbi->s_itb_per_group + 2);
3027
3028 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3029 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3030 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3031 for (i = 0; i < ngroups; i++) {
3032 gdp = ext4_get_group_desc(sb, i, NULL);
3033 b = ext4_block_bitmap(sb, gdp);
3034 if (b >= first_block && b <= last_block) {
3035 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3036 count++;
3037 }
3038 b = ext4_inode_bitmap(sb, gdp);
3039 if (b >= first_block && b <= last_block) {
3040 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3041 count++;
3042 }
3043 b = ext4_inode_table(sb, gdp);
3044 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3045 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3046 int c = EXT4_B2C(sbi, b - first_block);
3047 ext4_set_bit(c, buf);
3048 count++;
3049 }
3050 if (i != grp)
3051 continue;
3052 s = 0;
3053 if (ext4_bg_has_super(sb, grp)) {
3054 ext4_set_bit(s++, buf);
3055 count++;
3056 }
3057 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3058 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3059 count++;
3060 }
3061 }
3062 if (!count)
3063 return 0;
3064 return EXT4_CLUSTERS_PER_GROUP(sb) -
3065 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3066}
3067
3068/*
3069 * Compute the overhead and stash it in sbi->s_overhead
3070 */
3071int ext4_calculate_overhead(struct super_block *sb)
3072{
3073 struct ext4_sb_info *sbi = EXT4_SB(sb);
3074 struct ext4_super_block *es = sbi->s_es;
3075 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3076 ext4_fsblk_t overhead = 0;
3077 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3078
3079 if (!buf)
3080 return -ENOMEM;
3081
3082 /*
3083 * Compute the overhead (FS structures). This is constant
3084 * for a given filesystem unless the number of block groups
3085 * changes so we cache the previous value until it does.
3086 */
3087
3088 /*
3089 * All of the blocks before first_data_block are overhead
3090 */
3091 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3092
3093 /*
3094 * Add the overhead found in each block group
3095 */
3096 for (i = 0; i < ngroups; i++) {
3097 int blks;
3098
3099 blks = count_overhead(sb, i, buf);
3100 overhead += blks;
3101 if (blks)
3102 memset(buf, 0, PAGE_SIZE);
3103 cond_resched();
3104 }
3105 /* Add the internal journal blocks as well */
3106 if (sbi->s_journal && !sbi->journal_bdev)
3107 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3108
3109 sbi->s_overhead = overhead;
3110 smp_wmb();
3111 free_page((unsigned long) buf);
3112 return 0;
3113}
3114
3115static void ext4_set_resv_clusters(struct super_block *sb)
3116{
3117 ext4_fsblk_t resv_clusters;
3118 struct ext4_sb_info *sbi = EXT4_SB(sb);
3119
3120 /*
3121 * There's no need to reserve anything when we aren't using extents.
3122 * The space estimates are exact, there are no unwritten extents,
3123 * hole punching doesn't need new metadata... This is needed especially
3124 * to keep ext2/3 backward compatibility.
3125 */
3126 if (!ext4_has_feature_extents(sb))
3127 return;
3128 /*
3129 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3130 * This should cover the situations where we can not afford to run
3131 * out of space like for example punch hole, or converting
3132 * unwritten extents in delalloc path. In most cases such
3133 * allocation would require 1, or 2 blocks, higher numbers are
3134 * very rare.
3135 */
3136 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3137 sbi->s_cluster_bits);
3138
3139 do_div(resv_clusters, 50);
3140 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3141
3142 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3143}
3144
3145static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3146{
3147 char *orig_data = kstrdup(data, GFP_KERNEL);
3148 struct buffer_head *bh;
3149 struct ext4_super_block *es = NULL;
3150 struct ext4_sb_info *sbi;
3151 ext4_fsblk_t block;
3152 ext4_fsblk_t sb_block = get_sb_block(&data);
3153 ext4_fsblk_t logical_sb_block;
3154 unsigned long offset = 0;
3155 unsigned long journal_devnum = 0;
3156 unsigned long def_mount_opts;
3157 struct inode *root;
3158 const char *descr;
3159 int ret = -ENOMEM;
3160 int blocksize, clustersize;
3161 unsigned int db_count;
3162 unsigned int i;
3163 int needs_recovery, has_huge_files, has_bigalloc;
3164 __u64 blocks_count;
3165 int err = 0;
3166 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3167 ext4_group_t first_not_zeroed;
3168
3169 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3170 if (!sbi)
3171 goto out_free_orig;
3172
3173 sbi->s_blockgroup_lock =
3174 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3175 if (!sbi->s_blockgroup_lock) {
3176 kfree(sbi);
3177 goto out_free_orig;
3178 }
3179 sb->s_fs_info = sbi;
3180 sbi->s_sb = sb;
3181 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3182 sbi->s_sb_block = sb_block;
3183 if (sb->s_bdev->bd_part)
3184 sbi->s_sectors_written_start =
3185 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3186
3187 /* Cleanup superblock name */
3188 strreplace(sb->s_id, '/', '!');
3189
3190 /* -EINVAL is default */
3191 ret = -EINVAL;
3192 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3193 if (!blocksize) {
3194 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3195 goto out_fail;
3196 }
3197
3198 /*
3199 * The ext4 superblock will not be buffer aligned for other than 1kB
3200 * block sizes. We need to calculate the offset from buffer start.
3201 */
3202 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3203 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3204 offset = do_div(logical_sb_block, blocksize);
3205 } else {
3206 logical_sb_block = sb_block;
3207 }
3208
3209 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3210 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3211 goto out_fail;
3212 }
3213 /*
3214 * Note: s_es must be initialized as soon as possible because
3215 * some ext4 macro-instructions depend on its value
3216 */
3217 es = (struct ext4_super_block *) (bh->b_data + offset);
3218 sbi->s_es = es;
3219 sb->s_magic = le16_to_cpu(es->s_magic);
3220 if (sb->s_magic != EXT4_SUPER_MAGIC)
3221 goto cantfind_ext4;
3222 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3223
3224 /* Warn if metadata_csum and gdt_csum are both set. */
3225 if (ext4_has_feature_metadata_csum(sb) &&
3226 ext4_has_feature_gdt_csum(sb))
3227 ext4_warning(sb, "metadata_csum and uninit_bg are "
3228 "redundant flags; please run fsck.");
3229
3230 /* Check for a known checksum algorithm */
3231 if (!ext4_verify_csum_type(sb, es)) {
3232 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3233 "unknown checksum algorithm.");
3234 silent = 1;
3235 goto cantfind_ext4;
3236 }
3237
3238 /* Load the checksum driver */
3239 if (ext4_has_feature_metadata_csum(sb)) {
3240 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3241 if (IS_ERR(sbi->s_chksum_driver)) {
3242 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3243 ret = PTR_ERR(sbi->s_chksum_driver);
3244 sbi->s_chksum_driver = NULL;
3245 goto failed_mount;
3246 }
3247 }
3248
3249 /* Check superblock checksum */
3250 if (!ext4_superblock_csum_verify(sb, es)) {
3251 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3252 "invalid superblock checksum. Run e2fsck?");
3253 silent = 1;
3254 ret = -EFSBADCRC;
3255 goto cantfind_ext4;
3256 }
3257
3258 /* Precompute checksum seed for all metadata */
3259 if (ext4_has_feature_csum_seed(sb))
3260 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3261 else if (ext4_has_metadata_csum(sb))
3262 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3263 sizeof(es->s_uuid));
3264
3265 /* Set defaults before we parse the mount options */
3266 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3267 set_opt(sb, INIT_INODE_TABLE);
3268 if (def_mount_opts & EXT4_DEFM_DEBUG)
3269 set_opt(sb, DEBUG);
3270 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3271 set_opt(sb, GRPID);
3272 if (def_mount_opts & EXT4_DEFM_UID16)
3273 set_opt(sb, NO_UID32);
3274 /* xattr user namespace & acls are now defaulted on */
3275 set_opt(sb, XATTR_USER);
3276#ifdef CONFIG_EXT4_FS_POSIX_ACL
3277 set_opt(sb, POSIX_ACL);
3278#endif
3279 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3280 if (ext4_has_metadata_csum(sb))
3281 set_opt(sb, JOURNAL_CHECKSUM);
3282
3283 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3284 set_opt(sb, JOURNAL_DATA);
3285 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3286 set_opt(sb, ORDERED_DATA);
3287 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3288 set_opt(sb, WRITEBACK_DATA);
3289
3290 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3291 set_opt(sb, ERRORS_PANIC);
3292 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3293 set_opt(sb, ERRORS_CONT);
3294 else
3295 set_opt(sb, ERRORS_RO);
3296 /* block_validity enabled by default; disable with noblock_validity */
3297 set_opt(sb, BLOCK_VALIDITY);
3298 if (def_mount_opts & EXT4_DEFM_DISCARD)
3299 set_opt(sb, DISCARD);
3300
3301 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3302 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3303 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3304 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3305 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3306
3307 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3308 set_opt(sb, BARRIER);
3309
3310 /*
3311 * enable delayed allocation by default
3312 * Use -o nodelalloc to turn it off
3313 */
3314 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3315 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3316 set_opt(sb, DELALLOC);
3317
3318 /*
3319 * set default s_li_wait_mult for lazyinit, for the case there is
3320 * no mount option specified.
3321 */
3322 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3323
3324 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3325 &journal_devnum, &journal_ioprio, 0)) {
3326 ext4_msg(sb, KERN_WARNING,
3327 "failed to parse options in superblock: %s",
3328 sbi->s_es->s_mount_opts);
3329 }
3330 sbi->s_def_mount_opt = sbi->s_mount_opt;
3331 if (!parse_options((char *) data, sb, &journal_devnum,
3332 &journal_ioprio, 0))
3333 goto failed_mount;
3334
3335 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3336 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3337 "with data=journal disables delayed "
3338 "allocation and O_DIRECT support!\n");
3339 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3340 ext4_msg(sb, KERN_ERR, "can't mount with "
3341 "both data=journal and delalloc");
3342 goto failed_mount;
3343 }
3344 if (test_opt(sb, DIOREAD_NOLOCK)) {
3345 ext4_msg(sb, KERN_ERR, "can't mount with "
3346 "both data=journal and dioread_nolock");
3347 goto failed_mount;
3348 }
3349 if (test_opt(sb, DAX)) {
3350 ext4_msg(sb, KERN_ERR, "can't mount with "
3351 "both data=journal and dax");
3352 goto failed_mount;
3353 }
3354 if (test_opt(sb, DELALLOC))
3355 clear_opt(sb, DELALLOC);
3356 } else {
3357 sb->s_iflags |= SB_I_CGROUPWB;
3358 }
3359
3360 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3361 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3362
3363 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3364 (ext4_has_compat_features(sb) ||
3365 ext4_has_ro_compat_features(sb) ||
3366 ext4_has_incompat_features(sb)))
3367 ext4_msg(sb, KERN_WARNING,
3368 "feature flags set on rev 0 fs, "
3369 "running e2fsck is recommended");
3370
3371 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3372 set_opt2(sb, HURD_COMPAT);
3373 if (ext4_has_feature_64bit(sb)) {
3374 ext4_msg(sb, KERN_ERR,
3375 "The Hurd can't support 64-bit file systems");
3376 goto failed_mount;
3377 }
3378 }
3379
3380 if (IS_EXT2_SB(sb)) {
3381 if (ext2_feature_set_ok(sb))
3382 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3383 "using the ext4 subsystem");
3384 else {
3385 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3386 "to feature incompatibilities");
3387 goto failed_mount;
3388 }
3389 }
3390
3391 if (IS_EXT3_SB(sb)) {
3392 if (ext3_feature_set_ok(sb))
3393 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3394 "using the ext4 subsystem");
3395 else {
3396 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3397 "to feature incompatibilities");
3398 goto failed_mount;
3399 }
3400 }
3401
3402 /*
3403 * Check feature flags regardless of the revision level, since we
3404 * previously didn't change the revision level when setting the flags,
3405 * so there is a chance incompat flags are set on a rev 0 filesystem.
3406 */
3407 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3408 goto failed_mount;
3409
3410 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3411 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3412 blocksize > EXT4_MAX_BLOCK_SIZE) {
3413 ext4_msg(sb, KERN_ERR,
3414 "Unsupported filesystem blocksize %d", blocksize);
3415 goto failed_mount;
3416 }
3417
3418 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3419 if (blocksize != PAGE_SIZE) {
3420 ext4_msg(sb, KERN_ERR,
3421 "error: unsupported blocksize for dax");
3422 goto failed_mount;
3423 }
3424 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3425 ext4_msg(sb, KERN_ERR,
3426 "error: device does not support dax");
3427 goto failed_mount;
3428 }
3429 }
3430
3431 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3432 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3433 es->s_encryption_level);
3434 goto failed_mount;
3435 }
3436
3437 if (sb->s_blocksize != blocksize) {
3438 /* Validate the filesystem blocksize */
3439 if (!sb_set_blocksize(sb, blocksize)) {
3440 ext4_msg(sb, KERN_ERR, "bad block size %d",
3441 blocksize);
3442 goto failed_mount;
3443 }
3444
3445 brelse(bh);
3446 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3447 offset = do_div(logical_sb_block, blocksize);
3448 bh = sb_bread_unmovable(sb, logical_sb_block);
3449 if (!bh) {
3450 ext4_msg(sb, KERN_ERR,
3451 "Can't read superblock on 2nd try");
3452 goto failed_mount;
3453 }
3454 es = (struct ext4_super_block *)(bh->b_data + offset);
3455 sbi->s_es = es;
3456 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3457 ext4_msg(sb, KERN_ERR,
3458 "Magic mismatch, very weird!");
3459 goto failed_mount;
3460 }
3461 }
3462
3463 has_huge_files = ext4_has_feature_huge_file(sb);
3464 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3465 has_huge_files);
3466 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3467
3468 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3469 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3470 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3471 } else {
3472 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3473 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3474 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3475 (!is_power_of_2(sbi->s_inode_size)) ||
3476 (sbi->s_inode_size > blocksize)) {
3477 ext4_msg(sb, KERN_ERR,
3478 "unsupported inode size: %d",
3479 sbi->s_inode_size);
3480 goto failed_mount;
3481 }
3482 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3483 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3484 }
3485
3486 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3487 if (ext4_has_feature_64bit(sb)) {
3488 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3489 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3490 !is_power_of_2(sbi->s_desc_size)) {
3491 ext4_msg(sb, KERN_ERR,
3492 "unsupported descriptor size %lu",
3493 sbi->s_desc_size);
3494 goto failed_mount;
3495 }
3496 } else
3497 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3498
3499 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3500 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3501 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3502 goto cantfind_ext4;
3503
3504 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3505 if (sbi->s_inodes_per_block == 0)
3506 goto cantfind_ext4;
3507 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3508 sbi->s_inodes_per_block;
3509 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3510 sbi->s_sbh = bh;
3511 sbi->s_mount_state = le16_to_cpu(es->s_state);
3512 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3513 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3514
3515 for (i = 0; i < 4; i++)
3516 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3517 sbi->s_def_hash_version = es->s_def_hash_version;
3518 if (ext4_has_feature_dir_index(sb)) {
3519 i = le32_to_cpu(es->s_flags);
3520 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3521 sbi->s_hash_unsigned = 3;
3522 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3523#ifdef __CHAR_UNSIGNED__
3524 if (!(sb->s_flags & MS_RDONLY))
3525 es->s_flags |=
3526 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3527 sbi->s_hash_unsigned = 3;
3528#else
3529 if (!(sb->s_flags & MS_RDONLY))
3530 es->s_flags |=
3531 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3532#endif
3533 }
3534 }
3535
3536 /* Handle clustersize */
3537 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3538 has_bigalloc = ext4_has_feature_bigalloc(sb);
3539 if (has_bigalloc) {
3540 if (clustersize < blocksize) {
3541 ext4_msg(sb, KERN_ERR,
3542 "cluster size (%d) smaller than "
3543 "block size (%d)", clustersize, blocksize);
3544 goto failed_mount;
3545 }
3546 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3547 le32_to_cpu(es->s_log_block_size);
3548 sbi->s_clusters_per_group =
3549 le32_to_cpu(es->s_clusters_per_group);
3550 if (sbi->s_clusters_per_group > blocksize * 8) {
3551 ext4_msg(sb, KERN_ERR,
3552 "#clusters per group too big: %lu",
3553 sbi->s_clusters_per_group);
3554 goto failed_mount;
3555 }
3556 if (sbi->s_blocks_per_group !=
3557 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3558 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3559 "clusters per group (%lu) inconsistent",
3560 sbi->s_blocks_per_group,
3561 sbi->s_clusters_per_group);
3562 goto failed_mount;
3563 }
3564 } else {
3565 if (clustersize != blocksize) {
3566 ext4_warning(sb, "fragment/cluster size (%d) != "
3567 "block size (%d)", clustersize,
3568 blocksize);
3569 clustersize = blocksize;
3570 }
3571 if (sbi->s_blocks_per_group > blocksize * 8) {
3572 ext4_msg(sb, KERN_ERR,
3573 "#blocks per group too big: %lu",
3574 sbi->s_blocks_per_group);
3575 goto failed_mount;
3576 }
3577 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3578 sbi->s_cluster_bits = 0;
3579 }
3580 sbi->s_cluster_ratio = clustersize / blocksize;
3581
3582 if (sbi->s_inodes_per_group > blocksize * 8) {
3583 ext4_msg(sb, KERN_ERR,
3584 "#inodes per group too big: %lu",
3585 sbi->s_inodes_per_group);
3586 goto failed_mount;
3587 }
3588
3589 /* Do we have standard group size of clustersize * 8 blocks ? */
3590 if (sbi->s_blocks_per_group == clustersize << 3)
3591 set_opt2(sb, STD_GROUP_SIZE);
3592
3593 /*
3594 * Test whether we have more sectors than will fit in sector_t,
3595 * and whether the max offset is addressable by the page cache.
3596 */
3597 err = generic_check_addressable(sb->s_blocksize_bits,
3598 ext4_blocks_count(es));
3599 if (err) {
3600 ext4_msg(sb, KERN_ERR, "filesystem"
3601 " too large to mount safely on this system");
3602 if (sizeof(sector_t) < 8)
3603 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3604 goto failed_mount;
3605 }
3606
3607 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3608 goto cantfind_ext4;
3609
3610 /* check blocks count against device size */
3611 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3612 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3613 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3614 "exceeds size of device (%llu blocks)",
3615 ext4_blocks_count(es), blocks_count);
3616 goto failed_mount;
3617 }
3618
3619 /*
3620 * It makes no sense for the first data block to be beyond the end
3621 * of the filesystem.
3622 */
3623 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3624 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3625 "block %u is beyond end of filesystem (%llu)",
3626 le32_to_cpu(es->s_first_data_block),
3627 ext4_blocks_count(es));
3628 goto failed_mount;
3629 }
3630 blocks_count = (ext4_blocks_count(es) -
3631 le32_to_cpu(es->s_first_data_block) +
3632 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3633 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3634 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3635 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3636 "(block count %llu, first data block %u, "
3637 "blocks per group %lu)", sbi->s_groups_count,
3638 ext4_blocks_count(es),
3639 le32_to_cpu(es->s_first_data_block),
3640 EXT4_BLOCKS_PER_GROUP(sb));
3641 goto failed_mount;
3642 }
3643 sbi->s_groups_count = blocks_count;
3644 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3645 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3646 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3647 EXT4_DESC_PER_BLOCK(sb);
3648 sbi->s_group_desc = ext4_kvmalloc(db_count *
3649 sizeof(struct buffer_head *),
3650 GFP_KERNEL);
3651 if (sbi->s_group_desc == NULL) {
3652 ext4_msg(sb, KERN_ERR, "not enough memory");
3653 ret = -ENOMEM;
3654 goto failed_mount;
3655 }
3656
3657 bgl_lock_init(sbi->s_blockgroup_lock);
3658
3659 for (i = 0; i < db_count; i++) {
3660 block = descriptor_loc(sb, logical_sb_block, i);
3661 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3662 if (!sbi->s_group_desc[i]) {
3663 ext4_msg(sb, KERN_ERR,
3664 "can't read group descriptor %d", i);
3665 db_count = i;
3666 goto failed_mount2;
3667 }
3668 }
3669 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3670 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3671 ret = -EFSCORRUPTED;
3672 goto failed_mount2;
3673 }
3674
3675 sbi->s_gdb_count = db_count;
3676 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3677 spin_lock_init(&sbi->s_next_gen_lock);
3678
3679 setup_timer(&sbi->s_err_report, print_daily_error_info,
3680 (unsigned long) sb);
3681
3682 /* Register extent status tree shrinker */
3683 if (ext4_es_register_shrinker(sbi))
3684 goto failed_mount3;
3685
3686 sbi->s_stripe = ext4_get_stripe_size(sbi);
3687 sbi->s_extent_max_zeroout_kb = 32;
3688
3689 /*
3690 * set up enough so that it can read an inode
3691 */
3692 sb->s_op = &ext4_sops;
3693 sb->s_export_op = &ext4_export_ops;
3694 sb->s_xattr = ext4_xattr_handlers;
3695#ifdef CONFIG_QUOTA
3696 sb->dq_op = &ext4_quota_operations;
3697 if (ext4_has_feature_quota(sb))
3698 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3699 else
3700 sb->s_qcop = &ext4_qctl_operations;
3701 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3702#endif
3703 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3704
3705 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3706 mutex_init(&sbi->s_orphan_lock);
3707
3708 sb->s_root = NULL;
3709
3710 needs_recovery = (es->s_last_orphan != 0 ||
3711 ext4_has_feature_journal_needs_recovery(sb));
3712
3713 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3714 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3715 goto failed_mount3a;
3716
3717 /*
3718 * The first inode we look at is the journal inode. Don't try
3719 * root first: it may be modified in the journal!
3720 */
3721 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3722 if (ext4_load_journal(sb, es, journal_devnum))
3723 goto failed_mount3a;
3724 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3725 ext4_has_feature_journal_needs_recovery(sb)) {
3726 ext4_msg(sb, KERN_ERR, "required journal recovery "
3727 "suppressed and not mounted read-only");
3728 goto failed_mount_wq;
3729 } else {
3730 /* Nojournal mode, all journal mount options are illegal */
3731 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3732 ext4_msg(sb, KERN_ERR, "can't mount with "
3733 "journal_checksum, fs mounted w/o journal");
3734 goto failed_mount_wq;
3735 }
3736 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3737 ext4_msg(sb, KERN_ERR, "can't mount with "
3738 "journal_async_commit, fs mounted w/o journal");
3739 goto failed_mount_wq;
3740 }
3741 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3742 ext4_msg(sb, KERN_ERR, "can't mount with "
3743 "commit=%lu, fs mounted w/o journal",
3744 sbi->s_commit_interval / HZ);
3745 goto failed_mount_wq;
3746 }
3747 if (EXT4_MOUNT_DATA_FLAGS &
3748 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3749 ext4_msg(sb, KERN_ERR, "can't mount with "
3750 "data=, fs mounted w/o journal");
3751 goto failed_mount_wq;
3752 }
3753 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3754 clear_opt(sb, JOURNAL_CHECKSUM);
3755 clear_opt(sb, DATA_FLAGS);
3756 sbi->s_journal = NULL;
3757 needs_recovery = 0;
3758 goto no_journal;
3759 }
3760
3761 if (ext4_has_feature_64bit(sb) &&
3762 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3763 JBD2_FEATURE_INCOMPAT_64BIT)) {
3764 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3765 goto failed_mount_wq;
3766 }
3767
3768 if (!set_journal_csum_feature_set(sb)) {
3769 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3770 "feature set");
3771 goto failed_mount_wq;
3772 }
3773
3774 /* We have now updated the journal if required, so we can
3775 * validate the data journaling mode. */
3776 switch (test_opt(sb, DATA_FLAGS)) {
3777 case 0:
3778 /* No mode set, assume a default based on the journal
3779 * capabilities: ORDERED_DATA if the journal can
3780 * cope, else JOURNAL_DATA
3781 */
3782 if (jbd2_journal_check_available_features
3783 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3784 set_opt(sb, ORDERED_DATA);
3785 else
3786 set_opt(sb, JOURNAL_DATA);
3787 break;
3788
3789 case EXT4_MOUNT_ORDERED_DATA:
3790 case EXT4_MOUNT_WRITEBACK_DATA:
3791 if (!jbd2_journal_check_available_features
3792 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3793 ext4_msg(sb, KERN_ERR, "Journal does not support "
3794 "requested data journaling mode");
3795 goto failed_mount_wq;
3796 }
3797 default:
3798 break;
3799 }
3800 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3801
3802 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3803
3804no_journal:
3805 sbi->s_mb_cache = ext4_xattr_create_cache();
3806 if (!sbi->s_mb_cache) {
3807 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3808 goto failed_mount_wq;
3809 }
3810
3811 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3812 (blocksize != PAGE_SIZE)) {
3813 ext4_msg(sb, KERN_ERR,
3814 "Unsupported blocksize for fs encryption");
3815 goto failed_mount_wq;
3816 }
3817
3818 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3819 !ext4_has_feature_encrypt(sb)) {
3820 ext4_set_feature_encrypt(sb);
3821 ext4_commit_super(sb, 1);
3822 }
3823
3824 /*
3825 * Get the # of file system overhead blocks from the
3826 * superblock if present.
3827 */
3828 if (es->s_overhead_clusters)
3829 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3830 else {
3831 err = ext4_calculate_overhead(sb);
3832 if (err)
3833 goto failed_mount_wq;
3834 }
3835
3836 /*
3837 * The maximum number of concurrent works can be high and
3838 * concurrency isn't really necessary. Limit it to 1.
3839 */
3840 EXT4_SB(sb)->rsv_conversion_wq =
3841 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3842 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3843 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3844 ret = -ENOMEM;
3845 goto failed_mount4;
3846 }
3847
3848 /*
3849 * The jbd2_journal_load will have done any necessary log recovery,
3850 * so we can safely mount the rest of the filesystem now.
3851 */
3852
3853 root = ext4_iget(sb, EXT4_ROOT_INO);
3854 if (IS_ERR(root)) {
3855 ext4_msg(sb, KERN_ERR, "get root inode failed");
3856 ret = PTR_ERR(root);
3857 root = NULL;
3858 goto failed_mount4;
3859 }
3860 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3861 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3862 iput(root);
3863 goto failed_mount4;
3864 }
3865 sb->s_root = d_make_root(root);
3866 if (!sb->s_root) {
3867 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3868 ret = -ENOMEM;
3869 goto failed_mount4;
3870 }
3871
3872 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3873 sb->s_flags |= MS_RDONLY;
3874
3875 /* determine the minimum size of new large inodes, if present */
3876 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3877 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3878 EXT4_GOOD_OLD_INODE_SIZE;
3879 if (ext4_has_feature_extra_isize(sb)) {
3880 if (sbi->s_want_extra_isize <
3881 le16_to_cpu(es->s_want_extra_isize))
3882 sbi->s_want_extra_isize =
3883 le16_to_cpu(es->s_want_extra_isize);
3884 if (sbi->s_want_extra_isize <
3885 le16_to_cpu(es->s_min_extra_isize))
3886 sbi->s_want_extra_isize =
3887 le16_to_cpu(es->s_min_extra_isize);
3888 }
3889 }
3890 /* Check if enough inode space is available */
3891 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3892 sbi->s_inode_size) {
3893 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3894 EXT4_GOOD_OLD_INODE_SIZE;
3895 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3896 "available");
3897 }
3898
3899 ext4_set_resv_clusters(sb);
3900
3901 err = ext4_setup_system_zone(sb);
3902 if (err) {
3903 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3904 "zone (%d)", err);
3905 goto failed_mount4a;
3906 }
3907
3908 ext4_ext_init(sb);
3909 err = ext4_mb_init(sb);
3910 if (err) {
3911 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3912 err);
3913 goto failed_mount5;
3914 }
3915
3916 block = ext4_count_free_clusters(sb);
3917 ext4_free_blocks_count_set(sbi->s_es,
3918 EXT4_C2B(sbi, block));
3919 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
3920 GFP_KERNEL);
3921 if (!err) {
3922 unsigned long freei = ext4_count_free_inodes(sb);
3923 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
3924 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
3925 GFP_KERNEL);
3926 }
3927 if (!err)
3928 err = percpu_counter_init(&sbi->s_dirs_counter,
3929 ext4_count_dirs(sb), GFP_KERNEL);
3930 if (!err)
3931 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
3932 GFP_KERNEL);
3933 if (err) {
3934 ext4_msg(sb, KERN_ERR, "insufficient memory");
3935 goto failed_mount6;
3936 }
3937
3938 if (ext4_has_feature_flex_bg(sb))
3939 if (!ext4_fill_flex_info(sb)) {
3940 ext4_msg(sb, KERN_ERR,
3941 "unable to initialize "
3942 "flex_bg meta info!");
3943 goto failed_mount6;
3944 }
3945
3946 err = ext4_register_li_request(sb, first_not_zeroed);
3947 if (err)
3948 goto failed_mount6;
3949
3950 err = ext4_register_sysfs(sb);
3951 if (err)
3952 goto failed_mount7;
3953
3954#ifdef CONFIG_QUOTA
3955 /* Enable quota usage during mount. */
3956 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
3957 err = ext4_enable_quotas(sb);
3958 if (err)
3959 goto failed_mount8;
3960 }
3961#endif /* CONFIG_QUOTA */
3962
3963 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3964 ext4_orphan_cleanup(sb, es);
3965 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3966 if (needs_recovery) {
3967 ext4_msg(sb, KERN_INFO, "recovery complete");
3968 ext4_mark_recovery_complete(sb, es);
3969 }
3970 if (EXT4_SB(sb)->s_journal) {
3971 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3972 descr = " journalled data mode";
3973 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3974 descr = " ordered data mode";
3975 else
3976 descr = " writeback data mode";
3977 } else
3978 descr = "out journal";
3979
3980 if (test_opt(sb, DISCARD)) {
3981 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3982 if (!blk_queue_discard(q))
3983 ext4_msg(sb, KERN_WARNING,
3984 "mounting with \"discard\" option, but "
3985 "the device does not support discard");
3986 }
3987
3988 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
3989 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3990 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3991 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3992
3993 if (es->s_error_count)
3994 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3995
3996 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
3997 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
3998 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
3999 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4000
4001 kfree(orig_data);
4002 return 0;
4003
4004cantfind_ext4:
4005 if (!silent)
4006 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4007 goto failed_mount;
4008
4009#ifdef CONFIG_QUOTA
4010failed_mount8:
4011 ext4_unregister_sysfs(sb);
4012#endif
4013failed_mount7:
4014 ext4_unregister_li_request(sb);
4015failed_mount6:
4016 ext4_mb_release(sb);
4017 if (sbi->s_flex_groups)
4018 kvfree(sbi->s_flex_groups);
4019 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4020 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4021 percpu_counter_destroy(&sbi->s_dirs_counter);
4022 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4023failed_mount5:
4024 ext4_ext_release(sb);
4025 ext4_release_system_zone(sb);
4026failed_mount4a:
4027 dput(sb->s_root);
4028 sb->s_root = NULL;
4029failed_mount4:
4030 ext4_msg(sb, KERN_ERR, "mount failed");
4031 if (EXT4_SB(sb)->rsv_conversion_wq)
4032 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4033failed_mount_wq:
4034 if (sbi->s_mb_cache) {
4035 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4036 sbi->s_mb_cache = NULL;
4037 }
4038 if (sbi->s_journal) {
4039 jbd2_journal_destroy(sbi->s_journal);
4040 sbi->s_journal = NULL;
4041 }
4042failed_mount3a:
4043 ext4_es_unregister_shrinker(sbi);
4044failed_mount3:
4045 del_timer_sync(&sbi->s_err_report);
4046 if (sbi->s_mmp_tsk)
4047 kthread_stop(sbi->s_mmp_tsk);
4048failed_mount2:
4049 for (i = 0; i < db_count; i++)
4050 brelse(sbi->s_group_desc[i]);
4051 kvfree(sbi->s_group_desc);
4052failed_mount:
4053 if (sbi->s_chksum_driver)
4054 crypto_free_shash(sbi->s_chksum_driver);
4055#ifdef CONFIG_QUOTA
4056 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4057 kfree(sbi->s_qf_names[i]);
4058#endif
4059 ext4_blkdev_remove(sbi);
4060 brelse(bh);
4061out_fail:
4062 sb->s_fs_info = NULL;
4063 kfree(sbi->s_blockgroup_lock);
4064 kfree(sbi);
4065out_free_orig:
4066 kfree(orig_data);
4067 return err ? err : ret;
4068}
4069
4070/*
4071 * Setup any per-fs journal parameters now. We'll do this both on
4072 * initial mount, once the journal has been initialised but before we've
4073 * done any recovery; and again on any subsequent remount.
4074 */
4075static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4076{
4077 struct ext4_sb_info *sbi = EXT4_SB(sb);
4078
4079 journal->j_commit_interval = sbi->s_commit_interval;
4080 journal->j_min_batch_time = sbi->s_min_batch_time;
4081 journal->j_max_batch_time = sbi->s_max_batch_time;
4082
4083 write_lock(&journal->j_state_lock);
4084 if (test_opt(sb, BARRIER))
4085 journal->j_flags |= JBD2_BARRIER;
4086 else
4087 journal->j_flags &= ~JBD2_BARRIER;
4088 if (test_opt(sb, DATA_ERR_ABORT))
4089 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4090 else
4091 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4092 write_unlock(&journal->j_state_lock);
4093}
4094
4095static journal_t *ext4_get_journal(struct super_block *sb,
4096 unsigned int journal_inum)
4097{
4098 struct inode *journal_inode;
4099 journal_t *journal;
4100
4101 BUG_ON(!ext4_has_feature_journal(sb));
4102
4103 /* First, test for the existence of a valid inode on disk. Bad
4104 * things happen if we iget() an unused inode, as the subsequent
4105 * iput() will try to delete it. */
4106
4107 journal_inode = ext4_iget(sb, journal_inum);
4108 if (IS_ERR(journal_inode)) {
4109 ext4_msg(sb, KERN_ERR, "no journal found");
4110 return NULL;
4111 }
4112 if (!journal_inode->i_nlink) {
4113 make_bad_inode(journal_inode);
4114 iput(journal_inode);
4115 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4116 return NULL;
4117 }
4118
4119 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4120 journal_inode, journal_inode->i_size);
4121 if (!S_ISREG(journal_inode->i_mode)) {
4122 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4123 iput(journal_inode);
4124 return NULL;
4125 }
4126
4127 journal = jbd2_journal_init_inode(journal_inode);
4128 if (!journal) {
4129 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4130 iput(journal_inode);
4131 return NULL;
4132 }
4133 journal->j_private = sb;
4134 ext4_init_journal_params(sb, journal);
4135 return journal;
4136}
4137
4138static journal_t *ext4_get_dev_journal(struct super_block *sb,
4139 dev_t j_dev)
4140{
4141 struct buffer_head *bh;
4142 journal_t *journal;
4143 ext4_fsblk_t start;
4144 ext4_fsblk_t len;
4145 int hblock, blocksize;
4146 ext4_fsblk_t sb_block;
4147 unsigned long offset;
4148 struct ext4_super_block *es;
4149 struct block_device *bdev;
4150
4151 BUG_ON(!ext4_has_feature_journal(sb));
4152
4153 bdev = ext4_blkdev_get(j_dev, sb);
4154 if (bdev == NULL)
4155 return NULL;
4156
4157 blocksize = sb->s_blocksize;
4158 hblock = bdev_logical_block_size(bdev);
4159 if (blocksize < hblock) {
4160 ext4_msg(sb, KERN_ERR,
4161 "blocksize too small for journal device");
4162 goto out_bdev;
4163 }
4164
4165 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4166 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4167 set_blocksize(bdev, blocksize);
4168 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4169 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4170 "external journal");
4171 goto out_bdev;
4172 }
4173
4174 es = (struct ext4_super_block *) (bh->b_data + offset);
4175 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4176 !(le32_to_cpu(es->s_feature_incompat) &
4177 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4178 ext4_msg(sb, KERN_ERR, "external journal has "
4179 "bad superblock");
4180 brelse(bh);
4181 goto out_bdev;
4182 }
4183
4184 if ((le32_to_cpu(es->s_feature_ro_compat) &
4185 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4186 es->s_checksum != ext4_superblock_csum(sb, es)) {
4187 ext4_msg(sb, KERN_ERR, "external journal has "
4188 "corrupt superblock");
4189 brelse(bh);
4190 goto out_bdev;
4191 }
4192
4193 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4194 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4195 brelse(bh);
4196 goto out_bdev;
4197 }
4198
4199 len = ext4_blocks_count(es);
4200 start = sb_block + 1;
4201 brelse(bh); /* we're done with the superblock */
4202
4203 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4204 start, len, blocksize);
4205 if (!journal) {
4206 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4207 goto out_bdev;
4208 }
4209 journal->j_private = sb;
4210 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4211 wait_on_buffer(journal->j_sb_buffer);
4212 if (!buffer_uptodate(journal->j_sb_buffer)) {
4213 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4214 goto out_journal;
4215 }
4216 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4217 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4218 "user (unsupported) - %d",
4219 be32_to_cpu(journal->j_superblock->s_nr_users));
4220 goto out_journal;
4221 }
4222 EXT4_SB(sb)->journal_bdev = bdev;
4223 ext4_init_journal_params(sb, journal);
4224 return journal;
4225
4226out_journal:
4227 jbd2_journal_destroy(journal);
4228out_bdev:
4229 ext4_blkdev_put(bdev);
4230 return NULL;
4231}
4232
4233static int ext4_load_journal(struct super_block *sb,
4234 struct ext4_super_block *es,
4235 unsigned long journal_devnum)
4236{
4237 journal_t *journal;
4238 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4239 dev_t journal_dev;
4240 int err = 0;
4241 int really_read_only;
4242
4243 BUG_ON(!ext4_has_feature_journal(sb));
4244
4245 if (journal_devnum &&
4246 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4247 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4248 "numbers have changed");
4249 journal_dev = new_decode_dev(journal_devnum);
4250 } else
4251 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4252
4253 really_read_only = bdev_read_only(sb->s_bdev);
4254
4255 /*
4256 * Are we loading a blank journal or performing recovery after a
4257 * crash? For recovery, we need to check in advance whether we
4258 * can get read-write access to the device.
4259 */
4260 if (ext4_has_feature_journal_needs_recovery(sb)) {
4261 if (sb->s_flags & MS_RDONLY) {
4262 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4263 "required on readonly filesystem");
4264 if (really_read_only) {
4265 ext4_msg(sb, KERN_ERR, "write access "
4266 "unavailable, cannot proceed");
4267 return -EROFS;
4268 }
4269 ext4_msg(sb, KERN_INFO, "write access will "
4270 "be enabled during recovery");
4271 }
4272 }
4273
4274 if (journal_inum && journal_dev) {
4275 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4276 "and inode journals!");
4277 return -EINVAL;
4278 }
4279
4280 if (journal_inum) {
4281 if (!(journal = ext4_get_journal(sb, journal_inum)))
4282 return -EINVAL;
4283 } else {
4284 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4285 return -EINVAL;
4286 }
4287
4288 if (!(journal->j_flags & JBD2_BARRIER))
4289 ext4_msg(sb, KERN_INFO, "barriers disabled");
4290
4291 if (!ext4_has_feature_journal_needs_recovery(sb))
4292 err = jbd2_journal_wipe(journal, !really_read_only);
4293 if (!err) {
4294 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4295 if (save)
4296 memcpy(save, ((char *) es) +
4297 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4298 err = jbd2_journal_load(journal);
4299 if (save)
4300 memcpy(((char *) es) + EXT4_S_ERR_START,
4301 save, EXT4_S_ERR_LEN);
4302 kfree(save);
4303 }
4304
4305 if (err) {
4306 ext4_msg(sb, KERN_ERR, "error loading journal");
4307 jbd2_journal_destroy(journal);
4308 return err;
4309 }
4310
4311 EXT4_SB(sb)->s_journal = journal;
4312 ext4_clear_journal_err(sb, es);
4313
4314 if (!really_read_only && journal_devnum &&
4315 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4316 es->s_journal_dev = cpu_to_le32(journal_devnum);
4317
4318 /* Make sure we flush the recovery flag to disk. */
4319 ext4_commit_super(sb, 1);
4320 }
4321
4322 return 0;
4323}
4324
4325static int ext4_commit_super(struct super_block *sb, int sync)
4326{
4327 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4328 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4329 int error = 0;
4330
4331 if (!sbh || block_device_ejected(sb))
4332 return error;
4333 if (buffer_write_io_error(sbh)) {
4334 /*
4335 * Oh, dear. A previous attempt to write the
4336 * superblock failed. This could happen because the
4337 * USB device was yanked out. Or it could happen to
4338 * be a transient write error and maybe the block will
4339 * be remapped. Nothing we can do but to retry the
4340 * write and hope for the best.
4341 */
4342 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4343 "superblock detected");
4344 clear_buffer_write_io_error(sbh);
4345 set_buffer_uptodate(sbh);
4346 }
4347 /*
4348 * If the file system is mounted read-only, don't update the
4349 * superblock write time. This avoids updating the superblock
4350 * write time when we are mounting the root file system
4351 * read/only but we need to replay the journal; at that point,
4352 * for people who are east of GMT and who make their clock
4353 * tick in localtime for Windows bug-for-bug compatibility,
4354 * the clock is set in the future, and this will cause e2fsck
4355 * to complain and force a full file system check.
4356 */
4357 if (!(sb->s_flags & MS_RDONLY))
4358 es->s_wtime = cpu_to_le32(get_seconds());
4359 if (sb->s_bdev->bd_part)
4360 es->s_kbytes_written =
4361 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4362 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4363 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4364 else
4365 es->s_kbytes_written =
4366 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4367 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4368 ext4_free_blocks_count_set(es,
4369 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4370 &EXT4_SB(sb)->s_freeclusters_counter)));
4371 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4372 es->s_free_inodes_count =
4373 cpu_to_le32(percpu_counter_sum_positive(
4374 &EXT4_SB(sb)->s_freeinodes_counter));
4375 BUFFER_TRACE(sbh, "marking dirty");
4376 ext4_superblock_csum_set(sb);
4377 mark_buffer_dirty(sbh);
4378 if (sync) {
4379 error = __sync_dirty_buffer(sbh,
4380 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4381 if (error)
4382 return error;
4383
4384 error = buffer_write_io_error(sbh);
4385 if (error) {
4386 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4387 "superblock");
4388 clear_buffer_write_io_error(sbh);
4389 set_buffer_uptodate(sbh);
4390 }
4391 }
4392 return error;
4393}
4394
4395/*
4396 * Have we just finished recovery? If so, and if we are mounting (or
4397 * remounting) the filesystem readonly, then we will end up with a
4398 * consistent fs on disk. Record that fact.
4399 */
4400static void ext4_mark_recovery_complete(struct super_block *sb,
4401 struct ext4_super_block *es)
4402{
4403 journal_t *journal = EXT4_SB(sb)->s_journal;
4404
4405 if (!ext4_has_feature_journal(sb)) {
4406 BUG_ON(journal != NULL);
4407 return;
4408 }
4409 jbd2_journal_lock_updates(journal);
4410 if (jbd2_journal_flush(journal) < 0)
4411 goto out;
4412
4413 if (ext4_has_feature_journal_needs_recovery(sb) &&
4414 sb->s_flags & MS_RDONLY) {
4415 ext4_clear_feature_journal_needs_recovery(sb);
4416 ext4_commit_super(sb, 1);
4417 }
4418
4419out:
4420 jbd2_journal_unlock_updates(journal);
4421}
4422
4423/*
4424 * If we are mounting (or read-write remounting) a filesystem whose journal
4425 * has recorded an error from a previous lifetime, move that error to the
4426 * main filesystem now.
4427 */
4428static void ext4_clear_journal_err(struct super_block *sb,
4429 struct ext4_super_block *es)
4430{
4431 journal_t *journal;
4432 int j_errno;
4433 const char *errstr;
4434
4435 BUG_ON(!ext4_has_feature_journal(sb));
4436
4437 journal = EXT4_SB(sb)->s_journal;
4438
4439 /*
4440 * Now check for any error status which may have been recorded in the
4441 * journal by a prior ext4_error() or ext4_abort()
4442 */
4443
4444 j_errno = jbd2_journal_errno(journal);
4445 if (j_errno) {
4446 char nbuf[16];
4447
4448 errstr = ext4_decode_error(sb, j_errno, nbuf);
4449 ext4_warning(sb, "Filesystem error recorded "
4450 "from previous mount: %s", errstr);
4451 ext4_warning(sb, "Marking fs in need of filesystem check.");
4452
4453 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4454 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4455 ext4_commit_super(sb, 1);
4456
4457 jbd2_journal_clear_err(journal);
4458 jbd2_journal_update_sb_errno(journal);
4459 }
4460}
4461
4462/*
4463 * Force the running and committing transactions to commit,
4464 * and wait on the commit.
4465 */
4466int ext4_force_commit(struct super_block *sb)
4467{
4468 journal_t *journal;
4469
4470 if (sb->s_flags & MS_RDONLY)
4471 return 0;
4472
4473 journal = EXT4_SB(sb)->s_journal;
4474 return ext4_journal_force_commit(journal);
4475}
4476
4477static int ext4_sync_fs(struct super_block *sb, int wait)
4478{
4479 int ret = 0;
4480 tid_t target;
4481 bool needs_barrier = false;
4482 struct ext4_sb_info *sbi = EXT4_SB(sb);
4483
4484 trace_ext4_sync_fs(sb, wait);
4485 flush_workqueue(sbi->rsv_conversion_wq);
4486 /*
4487 * Writeback quota in non-journalled quota case - journalled quota has
4488 * no dirty dquots
4489 */
4490 dquot_writeback_dquots(sb, -1);
4491 /*
4492 * Data writeback is possible w/o journal transaction, so barrier must
4493 * being sent at the end of the function. But we can skip it if
4494 * transaction_commit will do it for us.
4495 */
4496 if (sbi->s_journal) {
4497 target = jbd2_get_latest_transaction(sbi->s_journal);
4498 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4499 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4500 needs_barrier = true;
4501
4502 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4503 if (wait)
4504 ret = jbd2_log_wait_commit(sbi->s_journal,
4505 target);
4506 }
4507 } else if (wait && test_opt(sb, BARRIER))
4508 needs_barrier = true;
4509 if (needs_barrier) {
4510 int err;
4511 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4512 if (!ret)
4513 ret = err;
4514 }
4515
4516 return ret;
4517}
4518
4519/*
4520 * LVM calls this function before a (read-only) snapshot is created. This
4521 * gives us a chance to flush the journal completely and mark the fs clean.
4522 *
4523 * Note that only this function cannot bring a filesystem to be in a clean
4524 * state independently. It relies on upper layer to stop all data & metadata
4525 * modifications.
4526 */
4527static int ext4_freeze(struct super_block *sb)
4528{
4529 int error = 0;
4530 journal_t *journal;
4531
4532 if (sb->s_flags & MS_RDONLY)
4533 return 0;
4534
4535 journal = EXT4_SB(sb)->s_journal;
4536
4537 if (journal) {
4538 /* Now we set up the journal barrier. */
4539 jbd2_journal_lock_updates(journal);
4540
4541 /*
4542 * Don't clear the needs_recovery flag if we failed to
4543 * flush the journal.
4544 */
4545 error = jbd2_journal_flush(journal);
4546 if (error < 0)
4547 goto out;
4548
4549 /* Journal blocked and flushed, clear needs_recovery flag. */
4550 ext4_clear_feature_journal_needs_recovery(sb);
4551 }
4552
4553 error = ext4_commit_super(sb, 1);
4554out:
4555 if (journal)
4556 /* we rely on upper layer to stop further updates */
4557 jbd2_journal_unlock_updates(journal);
4558 return error;
4559}
4560
4561/*
4562 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4563 * flag here, even though the filesystem is not technically dirty yet.
4564 */
4565static int ext4_unfreeze(struct super_block *sb)
4566{
4567 if (sb->s_flags & MS_RDONLY)
4568 return 0;
4569
4570 if (EXT4_SB(sb)->s_journal) {
4571 /* Reset the needs_recovery flag before the fs is unlocked. */
4572 ext4_set_feature_journal_needs_recovery(sb);
4573 }
4574
4575 ext4_commit_super(sb, 1);
4576 return 0;
4577}
4578
4579/*
4580 * Structure to save mount options for ext4_remount's benefit
4581 */
4582struct ext4_mount_options {
4583 unsigned long s_mount_opt;
4584 unsigned long s_mount_opt2;
4585 kuid_t s_resuid;
4586 kgid_t s_resgid;
4587 unsigned long s_commit_interval;
4588 u32 s_min_batch_time, s_max_batch_time;
4589#ifdef CONFIG_QUOTA
4590 int s_jquota_fmt;
4591 char *s_qf_names[EXT4_MAXQUOTAS];
4592#endif
4593};
4594
4595static int ext4_remount(struct super_block *sb, int *flags, char *data)
4596{
4597 struct ext4_super_block *es;
4598 struct ext4_sb_info *sbi = EXT4_SB(sb);
4599 unsigned long old_sb_flags;
4600 struct ext4_mount_options old_opts;
4601 int enable_quota = 0;
4602 ext4_group_t g;
4603 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4604 int err = 0;
4605#ifdef CONFIG_QUOTA
4606 int i, j;
4607#endif
4608 char *orig_data = kstrdup(data, GFP_KERNEL);
4609
4610 /* Store the original options */
4611 old_sb_flags = sb->s_flags;
4612 old_opts.s_mount_opt = sbi->s_mount_opt;
4613 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4614 old_opts.s_resuid = sbi->s_resuid;
4615 old_opts.s_resgid = sbi->s_resgid;
4616 old_opts.s_commit_interval = sbi->s_commit_interval;
4617 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4618 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4619#ifdef CONFIG_QUOTA
4620 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4621 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4622 if (sbi->s_qf_names[i]) {
4623 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4624 GFP_KERNEL);
4625 if (!old_opts.s_qf_names[i]) {
4626 for (j = 0; j < i; j++)
4627 kfree(old_opts.s_qf_names[j]);
4628 kfree(orig_data);
4629 return -ENOMEM;
4630 }
4631 } else
4632 old_opts.s_qf_names[i] = NULL;
4633#endif
4634 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4635 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4636
4637 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4638 err = -EINVAL;
4639 goto restore_opts;
4640 }
4641
4642 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4643 test_opt(sb, JOURNAL_CHECKSUM)) {
4644 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4645 "during remount not supported; ignoring");
4646 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4647 }
4648
4649 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4650 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4651 ext4_msg(sb, KERN_ERR, "can't mount with "
4652 "both data=journal and delalloc");
4653 err = -EINVAL;
4654 goto restore_opts;
4655 }
4656 if (test_opt(sb, DIOREAD_NOLOCK)) {
4657 ext4_msg(sb, KERN_ERR, "can't mount with "
4658 "both data=journal and dioread_nolock");
4659 err = -EINVAL;
4660 goto restore_opts;
4661 }
4662 if (test_opt(sb, DAX)) {
4663 ext4_msg(sb, KERN_ERR, "can't mount with "
4664 "both data=journal and dax");
4665 err = -EINVAL;
4666 goto restore_opts;
4667 }
4668 }
4669
4670 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4671 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4672 "dax flag with busy inodes while remounting");
4673 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4674 }
4675
4676 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4677 ext4_abort(sb, "Abort forced by user");
4678
4679 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4680 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4681
4682 es = sbi->s_es;
4683
4684 if (sbi->s_journal) {
4685 ext4_init_journal_params(sb, sbi->s_journal);
4686 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4687 }
4688
4689 if (*flags & MS_LAZYTIME)
4690 sb->s_flags |= MS_LAZYTIME;
4691
4692 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4693 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4694 err = -EROFS;
4695 goto restore_opts;
4696 }
4697
4698 if (*flags & MS_RDONLY) {
4699 err = sync_filesystem(sb);
4700 if (err < 0)
4701 goto restore_opts;
4702 err = dquot_suspend(sb, -1);
4703 if (err < 0)
4704 goto restore_opts;
4705
4706 /*
4707 * First of all, the unconditional stuff we have to do
4708 * to disable replay of the journal when we next remount
4709 */
4710 sb->s_flags |= MS_RDONLY;
4711
4712 /*
4713 * OK, test if we are remounting a valid rw partition
4714 * readonly, and if so set the rdonly flag and then
4715 * mark the partition as valid again.
4716 */
4717 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4718 (sbi->s_mount_state & EXT4_VALID_FS))
4719 es->s_state = cpu_to_le16(sbi->s_mount_state);
4720
4721 if (sbi->s_journal)
4722 ext4_mark_recovery_complete(sb, es);
4723 } else {
4724 /* Make sure we can mount this feature set readwrite */
4725 if (ext4_has_feature_readonly(sb) ||
4726 !ext4_feature_set_ok(sb, 0)) {
4727 err = -EROFS;
4728 goto restore_opts;
4729 }
4730 /*
4731 * Make sure the group descriptor checksums
4732 * are sane. If they aren't, refuse to remount r/w.
4733 */
4734 for (g = 0; g < sbi->s_groups_count; g++) {
4735 struct ext4_group_desc *gdp =
4736 ext4_get_group_desc(sb, g, NULL);
4737
4738 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4739 ext4_msg(sb, KERN_ERR,
4740 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4741 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4742 le16_to_cpu(gdp->bg_checksum));
4743 err = -EFSBADCRC;
4744 goto restore_opts;
4745 }
4746 }
4747
4748 /*
4749 * If we have an unprocessed orphan list hanging
4750 * around from a previously readonly bdev mount,
4751 * require a full umount/remount for now.
4752 */
4753 if (es->s_last_orphan) {
4754 ext4_msg(sb, KERN_WARNING, "Couldn't "
4755 "remount RDWR because of unprocessed "
4756 "orphan inode list. Please "
4757 "umount/remount instead");
4758 err = -EINVAL;
4759 goto restore_opts;
4760 }
4761
4762 /*
4763 * Mounting a RDONLY partition read-write, so reread
4764 * and store the current valid flag. (It may have
4765 * been changed by e2fsck since we originally mounted
4766 * the partition.)
4767 */
4768 if (sbi->s_journal)
4769 ext4_clear_journal_err(sb, es);
4770 sbi->s_mount_state = le16_to_cpu(es->s_state);
4771 if (!ext4_setup_super(sb, es, 0))
4772 sb->s_flags &= ~MS_RDONLY;
4773 if (ext4_has_feature_mmp(sb))
4774 if (ext4_multi_mount_protect(sb,
4775 le64_to_cpu(es->s_mmp_block))) {
4776 err = -EROFS;
4777 goto restore_opts;
4778 }
4779 enable_quota = 1;
4780 }
4781 }
4782
4783 /*
4784 * Reinitialize lazy itable initialization thread based on
4785 * current settings
4786 */
4787 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4788 ext4_unregister_li_request(sb);
4789 else {
4790 ext4_group_t first_not_zeroed;
4791 first_not_zeroed = ext4_has_uninit_itable(sb);
4792 ext4_register_li_request(sb, first_not_zeroed);
4793 }
4794
4795 ext4_setup_system_zone(sb);
4796 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4797 ext4_commit_super(sb, 1);
4798
4799#ifdef CONFIG_QUOTA
4800 /* Release old quota file names */
4801 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4802 kfree(old_opts.s_qf_names[i]);
4803 if (enable_quota) {
4804 if (sb_any_quota_suspended(sb))
4805 dquot_resume(sb, -1);
4806 else if (ext4_has_feature_quota(sb)) {
4807 err = ext4_enable_quotas(sb);
4808 if (err)
4809 goto restore_opts;
4810 }
4811 }
4812#endif
4813
4814 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4815 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4816 kfree(orig_data);
4817 return 0;
4818
4819restore_opts:
4820 sb->s_flags = old_sb_flags;
4821 sbi->s_mount_opt = old_opts.s_mount_opt;
4822 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4823 sbi->s_resuid = old_opts.s_resuid;
4824 sbi->s_resgid = old_opts.s_resgid;
4825 sbi->s_commit_interval = old_opts.s_commit_interval;
4826 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4827 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4828#ifdef CONFIG_QUOTA
4829 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4830 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4831 kfree(sbi->s_qf_names[i]);
4832 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4833 }
4834#endif
4835 kfree(orig_data);
4836 return err;
4837}
4838
4839#ifdef CONFIG_QUOTA
4840static int ext4_statfs_project(struct super_block *sb,
4841 kprojid_t projid, struct kstatfs *buf)
4842{
4843 struct kqid qid;
4844 struct dquot *dquot;
4845 u64 limit;
4846 u64 curblock;
4847
4848 qid = make_kqid_projid(projid);
4849 dquot = dqget(sb, qid);
4850 if (IS_ERR(dquot))
4851 return PTR_ERR(dquot);
4852 spin_lock(&dq_data_lock);
4853
4854 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
4855 dquot->dq_dqb.dqb_bsoftlimit :
4856 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
4857 if (limit && buf->f_blocks > limit) {
4858 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
4859 buf->f_blocks = limit;
4860 buf->f_bfree = buf->f_bavail =
4861 (buf->f_blocks > curblock) ?
4862 (buf->f_blocks - curblock) : 0;
4863 }
4864
4865 limit = dquot->dq_dqb.dqb_isoftlimit ?
4866 dquot->dq_dqb.dqb_isoftlimit :
4867 dquot->dq_dqb.dqb_ihardlimit;
4868 if (limit && buf->f_files > limit) {
4869 buf->f_files = limit;
4870 buf->f_ffree =
4871 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
4872 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
4873 }
4874
4875 spin_unlock(&dq_data_lock);
4876 dqput(dquot);
4877 return 0;
4878}
4879#endif
4880
4881static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4882{
4883 struct super_block *sb = dentry->d_sb;
4884 struct ext4_sb_info *sbi = EXT4_SB(sb);
4885 struct ext4_super_block *es = sbi->s_es;
4886 ext4_fsblk_t overhead = 0, resv_blocks;
4887 u64 fsid;
4888 s64 bfree;
4889 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4890
4891 if (!test_opt(sb, MINIX_DF))
4892 overhead = sbi->s_overhead;
4893
4894 buf->f_type = EXT4_SUPER_MAGIC;
4895 buf->f_bsize = sb->s_blocksize;
4896 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4897 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4898 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4899 /* prevent underflow in case that few free space is available */
4900 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4901 buf->f_bavail = buf->f_bfree -
4902 (ext4_r_blocks_count(es) + resv_blocks);
4903 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4904 buf->f_bavail = 0;
4905 buf->f_files = le32_to_cpu(es->s_inodes_count);
4906 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4907 buf->f_namelen = EXT4_NAME_LEN;
4908 fsid = le64_to_cpup((void *)es->s_uuid) ^
4909 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4910 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4911 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4912
4913#ifdef CONFIG_QUOTA
4914 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
4915 sb_has_quota_limits_enabled(sb, PRJQUOTA))
4916 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
4917#endif
4918 return 0;
4919}
4920
4921/* Helper function for writing quotas on sync - we need to start transaction
4922 * before quota file is locked for write. Otherwise the are possible deadlocks:
4923 * Process 1 Process 2
4924 * ext4_create() quota_sync()
4925 * jbd2_journal_start() write_dquot()
4926 * dquot_initialize() down(dqio_mutex)
4927 * down(dqio_mutex) jbd2_journal_start()
4928 *
4929 */
4930
4931#ifdef CONFIG_QUOTA
4932
4933static inline struct inode *dquot_to_inode(struct dquot *dquot)
4934{
4935 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4936}
4937
4938static int ext4_write_dquot(struct dquot *dquot)
4939{
4940 int ret, err;
4941 handle_t *handle;
4942 struct inode *inode;
4943
4944 inode = dquot_to_inode(dquot);
4945 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4946 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4947 if (IS_ERR(handle))
4948 return PTR_ERR(handle);
4949 ret = dquot_commit(dquot);
4950 err = ext4_journal_stop(handle);
4951 if (!ret)
4952 ret = err;
4953 return ret;
4954}
4955
4956static int ext4_acquire_dquot(struct dquot *dquot)
4957{
4958 int ret, err;
4959 handle_t *handle;
4960
4961 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4962 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4963 if (IS_ERR(handle))
4964 return PTR_ERR(handle);
4965 ret = dquot_acquire(dquot);
4966 err = ext4_journal_stop(handle);
4967 if (!ret)
4968 ret = err;
4969 return ret;
4970}
4971
4972static int ext4_release_dquot(struct dquot *dquot)
4973{
4974 int ret, err;
4975 handle_t *handle;
4976
4977 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4978 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4979 if (IS_ERR(handle)) {
4980 /* Release dquot anyway to avoid endless cycle in dqput() */
4981 dquot_release(dquot);
4982 return PTR_ERR(handle);
4983 }
4984 ret = dquot_release(dquot);
4985 err = ext4_journal_stop(handle);
4986 if (!ret)
4987 ret = err;
4988 return ret;
4989}
4990
4991static int ext4_mark_dquot_dirty(struct dquot *dquot)
4992{
4993 struct super_block *sb = dquot->dq_sb;
4994 struct ext4_sb_info *sbi = EXT4_SB(sb);
4995
4996 /* Are we journaling quotas? */
4997 if (ext4_has_feature_quota(sb) ||
4998 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4999 dquot_mark_dquot_dirty(dquot);
5000 return ext4_write_dquot(dquot);
5001 } else {
5002 return dquot_mark_dquot_dirty(dquot);
5003 }
5004}
5005
5006static int ext4_write_info(struct super_block *sb, int type)
5007{
5008 int ret, err;
5009 handle_t *handle;
5010
5011 /* Data block + inode block */
5012 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5013 if (IS_ERR(handle))
5014 return PTR_ERR(handle);
5015 ret = dquot_commit_info(sb, type);
5016 err = ext4_journal_stop(handle);
5017 if (!ret)
5018 ret = err;
5019 return ret;
5020}
5021
5022/*
5023 * Turn on quotas during mount time - we need to find
5024 * the quota file and such...
5025 */
5026static int ext4_quota_on_mount(struct super_block *sb, int type)
5027{
5028 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5029 EXT4_SB(sb)->s_jquota_fmt, type);
5030}
5031
5032static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5033{
5034 struct ext4_inode_info *ei = EXT4_I(inode);
5035
5036 /* The first argument of lockdep_set_subclass has to be
5037 * *exactly* the same as the argument to init_rwsem() --- in
5038 * this case, in init_once() --- or lockdep gets unhappy
5039 * because the name of the lock is set using the
5040 * stringification of the argument to init_rwsem().
5041 */
5042 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5043 lockdep_set_subclass(&ei->i_data_sem, subclass);
5044}
5045
5046/*
5047 * Standard function to be called on quota_on
5048 */
5049static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5050 struct path *path)
5051{
5052 int err;
5053
5054 if (!test_opt(sb, QUOTA))
5055 return -EINVAL;
5056
5057 /* Quotafile not on the same filesystem? */
5058 if (path->dentry->d_sb != sb)
5059 return -EXDEV;
5060 /* Journaling quota? */
5061 if (EXT4_SB(sb)->s_qf_names[type]) {
5062 /* Quotafile not in fs root? */
5063 if (path->dentry->d_parent != sb->s_root)
5064 ext4_msg(sb, KERN_WARNING,
5065 "Quota file not on filesystem root. "
5066 "Journaled quota will not work");
5067 }
5068
5069 /*
5070 * When we journal data on quota file, we have to flush journal to see
5071 * all updates to the file when we bypass pagecache...
5072 */
5073 if (EXT4_SB(sb)->s_journal &&
5074 ext4_should_journal_data(d_inode(path->dentry))) {
5075 /*
5076 * We don't need to lock updates but journal_flush() could
5077 * otherwise be livelocked...
5078 */
5079 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5080 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5081 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5082 if (err)
5083 return err;
5084 }
5085 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5086 err = dquot_quota_on(sb, type, format_id, path);
5087 if (err)
5088 lockdep_set_quota_inode(path->dentry->d_inode,
5089 I_DATA_SEM_NORMAL);
5090 return err;
5091}
5092
5093static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5094 unsigned int flags)
5095{
5096 int err;
5097 struct inode *qf_inode;
5098 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5099 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5100 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5101 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5102 };
5103
5104 BUG_ON(!ext4_has_feature_quota(sb));
5105
5106 if (!qf_inums[type])
5107 return -EPERM;
5108
5109 qf_inode = ext4_iget(sb, qf_inums[type]);
5110 if (IS_ERR(qf_inode)) {
5111 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5112 return PTR_ERR(qf_inode);
5113 }
5114
5115 /* Don't account quota for quota files to avoid recursion */
5116 qf_inode->i_flags |= S_NOQUOTA;
5117 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5118 err = dquot_enable(qf_inode, type, format_id, flags);
5119 iput(qf_inode);
5120 if (err)
5121 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5122
5123 return err;
5124}
5125
5126/* Enable usage tracking for all quota types. */
5127static int ext4_enable_quotas(struct super_block *sb)
5128{
5129 int type, err = 0;
5130 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5131 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5132 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5133 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5134 };
5135
5136 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5137 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5138 if (qf_inums[type]) {
5139 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5140 DQUOT_USAGE_ENABLED);
5141 if (err) {
5142 ext4_warning(sb,
5143 "Failed to enable quota tracking "
5144 "(type=%d, err=%d). Please run "
5145 "e2fsck to fix.", type, err);
5146 return err;
5147 }
5148 }
5149 }
5150 return 0;
5151}
5152
5153static int ext4_quota_off(struct super_block *sb, int type)
5154{
5155 struct inode *inode = sb_dqopt(sb)->files[type];
5156 handle_t *handle;
5157
5158 /* Force all delayed allocation blocks to be allocated.
5159 * Caller already holds s_umount sem */
5160 if (test_opt(sb, DELALLOC))
5161 sync_filesystem(sb);
5162
5163 if (!inode)
5164 goto out;
5165
5166 /* Update modification times of quota files when userspace can
5167 * start looking at them */
5168 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5169 if (IS_ERR(handle))
5170 goto out;
5171 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5172 ext4_mark_inode_dirty(handle, inode);
5173 ext4_journal_stop(handle);
5174
5175out:
5176 return dquot_quota_off(sb, type);
5177}
5178
5179/* Read data from quotafile - avoid pagecache and such because we cannot afford
5180 * acquiring the locks... As quota files are never truncated and quota code
5181 * itself serializes the operations (and no one else should touch the files)
5182 * we don't have to be afraid of races */
5183static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5184 size_t len, loff_t off)
5185{
5186 struct inode *inode = sb_dqopt(sb)->files[type];
5187 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5188 int offset = off & (sb->s_blocksize - 1);
5189 int tocopy;
5190 size_t toread;
5191 struct buffer_head *bh;
5192 loff_t i_size = i_size_read(inode);
5193
5194 if (off > i_size)
5195 return 0;
5196 if (off+len > i_size)
5197 len = i_size-off;
5198 toread = len;
5199 while (toread > 0) {
5200 tocopy = sb->s_blocksize - offset < toread ?
5201 sb->s_blocksize - offset : toread;
5202 bh = ext4_bread(NULL, inode, blk, 0);
5203 if (IS_ERR(bh))
5204 return PTR_ERR(bh);
5205 if (!bh) /* A hole? */
5206 memset(data, 0, tocopy);
5207 else
5208 memcpy(data, bh->b_data+offset, tocopy);
5209 brelse(bh);
5210 offset = 0;
5211 toread -= tocopy;
5212 data += tocopy;
5213 blk++;
5214 }
5215 return len;
5216}
5217
5218/* Write to quotafile (we know the transaction is already started and has
5219 * enough credits) */
5220static ssize_t ext4_quota_write(struct super_block *sb, int type,
5221 const char *data, size_t len, loff_t off)
5222{
5223 struct inode *inode = sb_dqopt(sb)->files[type];
5224 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5225 int err, offset = off & (sb->s_blocksize - 1);
5226 int retries = 0;
5227 struct buffer_head *bh;
5228 handle_t *handle = journal_current_handle();
5229
5230 if (EXT4_SB(sb)->s_journal && !handle) {
5231 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5232 " cancelled because transaction is not started",
5233 (unsigned long long)off, (unsigned long long)len);
5234 return -EIO;
5235 }
5236 /*
5237 * Since we account only one data block in transaction credits,
5238 * then it is impossible to cross a block boundary.
5239 */
5240 if (sb->s_blocksize - offset < len) {
5241 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5242 " cancelled because not block aligned",
5243 (unsigned long long)off, (unsigned long long)len);
5244 return -EIO;
5245 }
5246
5247 do {
5248 bh = ext4_bread(handle, inode, blk,
5249 EXT4_GET_BLOCKS_CREATE |
5250 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5251 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5252 ext4_should_retry_alloc(inode->i_sb, &retries));
5253 if (IS_ERR(bh))
5254 return PTR_ERR(bh);
5255 if (!bh)
5256 goto out;
5257 BUFFER_TRACE(bh, "get write access");
5258 err = ext4_journal_get_write_access(handle, bh);
5259 if (err) {
5260 brelse(bh);
5261 return err;
5262 }
5263 lock_buffer(bh);
5264 memcpy(bh->b_data+offset, data, len);
5265 flush_dcache_page(bh->b_page);
5266 unlock_buffer(bh);
5267 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5268 brelse(bh);
5269out:
5270 if (inode->i_size < off + len) {
5271 i_size_write(inode, off + len);
5272 EXT4_I(inode)->i_disksize = inode->i_size;
5273 ext4_mark_inode_dirty(handle, inode);
5274 }
5275 return len;
5276}
5277
5278static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5279{
5280 const struct quota_format_ops *ops;
5281
5282 if (!sb_has_quota_loaded(sb, qid->type))
5283 return -ESRCH;
5284 ops = sb_dqopt(sb)->ops[qid->type];
5285 if (!ops || !ops->get_next_id)
5286 return -ENOSYS;
5287 return dquot_get_next_id(sb, qid);
5288}
5289#endif
5290
5291static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5292 const char *dev_name, void *data)
5293{
5294 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5295}
5296
5297#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5298static inline void register_as_ext2(void)
5299{
5300 int err = register_filesystem(&ext2_fs_type);
5301 if (err)
5302 printk(KERN_WARNING
5303 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5304}
5305
5306static inline void unregister_as_ext2(void)
5307{
5308 unregister_filesystem(&ext2_fs_type);
5309}
5310
5311static inline int ext2_feature_set_ok(struct super_block *sb)
5312{
5313 if (ext4_has_unknown_ext2_incompat_features(sb))
5314 return 0;
5315 if (sb->s_flags & MS_RDONLY)
5316 return 1;
5317 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5318 return 0;
5319 return 1;
5320}
5321#else
5322static inline void register_as_ext2(void) { }
5323static inline void unregister_as_ext2(void) { }
5324static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5325#endif
5326
5327static inline void register_as_ext3(void)
5328{
5329 int err = register_filesystem(&ext3_fs_type);
5330 if (err)
5331 printk(KERN_WARNING
5332 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5333}
5334
5335static inline void unregister_as_ext3(void)
5336{
5337 unregister_filesystem(&ext3_fs_type);
5338}
5339
5340static inline int ext3_feature_set_ok(struct super_block *sb)
5341{
5342 if (ext4_has_unknown_ext3_incompat_features(sb))
5343 return 0;
5344 if (!ext4_has_feature_journal(sb))
5345 return 0;
5346 if (sb->s_flags & MS_RDONLY)
5347 return 1;
5348 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5349 return 0;
5350 return 1;
5351}
5352
5353static struct file_system_type ext4_fs_type = {
5354 .owner = THIS_MODULE,
5355 .name = "ext4",
5356 .mount = ext4_mount,
5357 .kill_sb = kill_block_super,
5358 .fs_flags = FS_REQUIRES_DEV,
5359};
5360MODULE_ALIAS_FS("ext4");
5361
5362/* Shared across all ext4 file systems */
5363wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5364
5365static int __init ext4_init_fs(void)
5366{
5367 int i, err;
5368
5369 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5370 ext4_li_info = NULL;
5371 mutex_init(&ext4_li_mtx);
5372
5373 /* Build-time check for flags consistency */
5374 ext4_check_flag_values();
5375
5376 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5377 init_waitqueue_head(&ext4__ioend_wq[i]);
5378
5379 err = ext4_init_es();
5380 if (err)
5381 return err;
5382
5383 err = ext4_init_pageio();
5384 if (err)
5385 goto out5;
5386
5387 err = ext4_init_system_zone();
5388 if (err)
5389 goto out4;
5390
5391 err = ext4_init_sysfs();
5392 if (err)
5393 goto out3;
5394
5395 err = ext4_init_mballoc();
5396 if (err)
5397 goto out2;
5398 err = init_inodecache();
5399 if (err)
5400 goto out1;
5401 register_as_ext3();
5402 register_as_ext2();
5403 err = register_filesystem(&ext4_fs_type);
5404 if (err)
5405 goto out;
5406
5407 return 0;
5408out:
5409 unregister_as_ext2();
5410 unregister_as_ext3();
5411 destroy_inodecache();
5412out1:
5413 ext4_exit_mballoc();
5414out2:
5415 ext4_exit_sysfs();
5416out3:
5417 ext4_exit_system_zone();
5418out4:
5419 ext4_exit_pageio();
5420out5:
5421 ext4_exit_es();
5422
5423 return err;
5424}
5425
5426static void __exit ext4_exit_fs(void)
5427{
5428 ext4_exit_crypto();
5429 ext4_destroy_lazyinit_thread();
5430 unregister_as_ext2();
5431 unregister_as_ext3();
5432 unregister_filesystem(&ext4_fs_type);
5433 destroy_inodecache();
5434 ext4_exit_mballoc();
5435 ext4_exit_sysfs();
5436 ext4_exit_system_zone();
5437 ext4_exit_pageio();
5438 ext4_exit_es();
5439}
5440
5441MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5442MODULE_DESCRIPTION("Fourth Extended Filesystem");
5443MODULE_LICENSE("GPL");
5444module_init(ext4_init_fs)
5445module_exit(ext4_exit_fs)
1/*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19#include <linux/module.h>
20#include <linux/string.h>
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <linux/jbd2.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/parser.h>
29#include <linux/buffer_head.h>
30#include <linux/exportfs.h>
31#include <linux/vfs.h>
32#include <linux/random.h>
33#include <linux/mount.h>
34#include <linux/namei.h>
35#include <linux/quotaops.h>
36#include <linux/seq_file.h>
37#include <linux/proc_fs.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/cleancache.h>
42#include <asm/uaccess.h>
43
44#include <linux/kthread.h>
45#include <linux/freezer.h>
46
47#include "ext4.h"
48#include "ext4_jbd2.h"
49#include "xattr.h"
50#include "acl.h"
51#include "mballoc.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/ext4.h>
55
56static struct proc_dir_entry *ext4_proc_root;
57static struct kset *ext4_kset;
58static struct ext4_lazy_init *ext4_li_info;
59static struct mutex ext4_li_mtx;
60static struct ext4_features *ext4_feat;
61
62static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64static int ext4_commit_super(struct super_block *sb, int sync);
65static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69static int ext4_sync_fs(struct super_block *sb, int wait);
70static const char *ext4_decode_error(struct super_block *sb, int errno,
71 char nbuf[16]);
72static int ext4_remount(struct super_block *sb, int *flags, char *data);
73static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74static int ext4_unfreeze(struct super_block *sb);
75static void ext4_write_super(struct super_block *sb);
76static int ext4_freeze(struct super_block *sb);
77static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79static inline int ext2_feature_set_ok(struct super_block *sb);
80static inline int ext3_feature_set_ok(struct super_block *sb);
81static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82static void ext4_destroy_lazyinit_thread(void);
83static void ext4_unregister_li_request(struct super_block *sb);
84static void ext4_clear_request_list(void);
85
86#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93};
94#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
95#else
96#define IS_EXT2_SB(sb) (0)
97#endif
98
99
100#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
101static struct file_system_type ext3_fs_type = {
102 .owner = THIS_MODULE,
103 .name = "ext3",
104 .mount = ext4_mount,
105 .kill_sb = kill_block_super,
106 .fs_flags = FS_REQUIRES_DEV,
107};
108#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
109#else
110#define IS_EXT3_SB(sb) (0)
111#endif
112
113void *ext4_kvmalloc(size_t size, gfp_t flags)
114{
115 void *ret;
116
117 ret = kmalloc(size, flags);
118 if (!ret)
119 ret = __vmalloc(size, flags, PAGE_KERNEL);
120 return ret;
121}
122
123void *ext4_kvzalloc(size_t size, gfp_t flags)
124{
125 void *ret;
126
127 ret = kzalloc(size, flags);
128 if (!ret)
129 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
130 return ret;
131}
132
133void ext4_kvfree(void *ptr)
134{
135 if (is_vmalloc_addr(ptr))
136 vfree(ptr);
137 else
138 kfree(ptr);
139
140}
141
142ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
143 struct ext4_group_desc *bg)
144{
145 return le32_to_cpu(bg->bg_block_bitmap_lo) |
146 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
147 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
148}
149
150ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
151 struct ext4_group_desc *bg)
152{
153 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
154 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
155 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
156}
157
158ext4_fsblk_t ext4_inode_table(struct super_block *sb,
159 struct ext4_group_desc *bg)
160{
161 return le32_to_cpu(bg->bg_inode_table_lo) |
162 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
163 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
164}
165
166__u32 ext4_free_blks_count(struct super_block *sb,
167 struct ext4_group_desc *bg)
168{
169 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
170 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
171 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
172}
173
174__u32 ext4_free_inodes_count(struct super_block *sb,
175 struct ext4_group_desc *bg)
176{
177 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
178 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
179 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
180}
181
182__u32 ext4_used_dirs_count(struct super_block *sb,
183 struct ext4_group_desc *bg)
184{
185 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
186 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
187 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
188}
189
190__u32 ext4_itable_unused_count(struct super_block *sb,
191 struct ext4_group_desc *bg)
192{
193 return le16_to_cpu(bg->bg_itable_unused_lo) |
194 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
195 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
196}
197
198void ext4_block_bitmap_set(struct super_block *sb,
199 struct ext4_group_desc *bg, ext4_fsblk_t blk)
200{
201 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
202 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
203 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
204}
205
206void ext4_inode_bitmap_set(struct super_block *sb,
207 struct ext4_group_desc *bg, ext4_fsblk_t blk)
208{
209 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
210 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
211 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
212}
213
214void ext4_inode_table_set(struct super_block *sb,
215 struct ext4_group_desc *bg, ext4_fsblk_t blk)
216{
217 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
218 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
219 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
220}
221
222void ext4_free_blks_set(struct super_block *sb,
223 struct ext4_group_desc *bg, __u32 count)
224{
225 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
226 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
227 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
228}
229
230void ext4_free_inodes_set(struct super_block *sb,
231 struct ext4_group_desc *bg, __u32 count)
232{
233 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
234 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
235 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
236}
237
238void ext4_used_dirs_set(struct super_block *sb,
239 struct ext4_group_desc *bg, __u32 count)
240{
241 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
242 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
243 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
244}
245
246void ext4_itable_unused_set(struct super_block *sb,
247 struct ext4_group_desc *bg, __u32 count)
248{
249 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
250 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
251 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
252}
253
254
255/* Just increment the non-pointer handle value */
256static handle_t *ext4_get_nojournal(void)
257{
258 handle_t *handle = current->journal_info;
259 unsigned long ref_cnt = (unsigned long)handle;
260
261 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
262
263 ref_cnt++;
264 handle = (handle_t *)ref_cnt;
265
266 current->journal_info = handle;
267 return handle;
268}
269
270
271/* Decrement the non-pointer handle value */
272static void ext4_put_nojournal(handle_t *handle)
273{
274 unsigned long ref_cnt = (unsigned long)handle;
275
276 BUG_ON(ref_cnt == 0);
277
278 ref_cnt--;
279 handle = (handle_t *)ref_cnt;
280
281 current->journal_info = handle;
282}
283
284/*
285 * Wrappers for jbd2_journal_start/end.
286 *
287 * The only special thing we need to do here is to make sure that all
288 * journal_end calls result in the superblock being marked dirty, so
289 * that sync() will call the filesystem's write_super callback if
290 * appropriate.
291 *
292 * To avoid j_barrier hold in userspace when a user calls freeze(),
293 * ext4 prevents a new handle from being started by s_frozen, which
294 * is in an upper layer.
295 */
296handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
297{
298 journal_t *journal;
299 handle_t *handle;
300
301 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
302 if (sb->s_flags & MS_RDONLY)
303 return ERR_PTR(-EROFS);
304
305 journal = EXT4_SB(sb)->s_journal;
306 handle = ext4_journal_current_handle();
307
308 /*
309 * If a handle has been started, it should be allowed to
310 * finish, otherwise deadlock could happen between freeze
311 * and others(e.g. truncate) due to the restart of the
312 * journal handle if the filesystem is forzen and active
313 * handles are not stopped.
314 */
315 if (!handle)
316 vfs_check_frozen(sb, SB_FREEZE_TRANS);
317
318 if (!journal)
319 return ext4_get_nojournal();
320 /*
321 * Special case here: if the journal has aborted behind our
322 * backs (eg. EIO in the commit thread), then we still need to
323 * take the FS itself readonly cleanly.
324 */
325 if (is_journal_aborted(journal)) {
326 ext4_abort(sb, "Detected aborted journal");
327 return ERR_PTR(-EROFS);
328 }
329 return jbd2_journal_start(journal, nblocks);
330}
331
332/*
333 * The only special thing we need to do here is to make sure that all
334 * jbd2_journal_stop calls result in the superblock being marked dirty, so
335 * that sync() will call the filesystem's write_super callback if
336 * appropriate.
337 */
338int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
339{
340 struct super_block *sb;
341 int err;
342 int rc;
343
344 if (!ext4_handle_valid(handle)) {
345 ext4_put_nojournal(handle);
346 return 0;
347 }
348 sb = handle->h_transaction->t_journal->j_private;
349 err = handle->h_err;
350 rc = jbd2_journal_stop(handle);
351
352 if (!err)
353 err = rc;
354 if (err)
355 __ext4_std_error(sb, where, line, err);
356 return err;
357}
358
359void ext4_journal_abort_handle(const char *caller, unsigned int line,
360 const char *err_fn, struct buffer_head *bh,
361 handle_t *handle, int err)
362{
363 char nbuf[16];
364 const char *errstr = ext4_decode_error(NULL, err, nbuf);
365
366 BUG_ON(!ext4_handle_valid(handle));
367
368 if (bh)
369 BUFFER_TRACE(bh, "abort");
370
371 if (!handle->h_err)
372 handle->h_err = err;
373
374 if (is_handle_aborted(handle))
375 return;
376
377 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
378 caller, line, errstr, err_fn);
379
380 jbd2_journal_abort_handle(handle);
381}
382
383static void __save_error_info(struct super_block *sb, const char *func,
384 unsigned int line)
385{
386 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
387
388 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
389 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
390 es->s_last_error_time = cpu_to_le32(get_seconds());
391 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
392 es->s_last_error_line = cpu_to_le32(line);
393 if (!es->s_first_error_time) {
394 es->s_first_error_time = es->s_last_error_time;
395 strncpy(es->s_first_error_func, func,
396 sizeof(es->s_first_error_func));
397 es->s_first_error_line = cpu_to_le32(line);
398 es->s_first_error_ino = es->s_last_error_ino;
399 es->s_first_error_block = es->s_last_error_block;
400 }
401 /*
402 * Start the daily error reporting function if it hasn't been
403 * started already
404 */
405 if (!es->s_error_count)
406 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
407 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
408}
409
410static void save_error_info(struct super_block *sb, const char *func,
411 unsigned int line)
412{
413 __save_error_info(sb, func, line);
414 ext4_commit_super(sb, 1);
415}
416
417
418/* Deal with the reporting of failure conditions on a filesystem such as
419 * inconsistencies detected or read IO failures.
420 *
421 * On ext2, we can store the error state of the filesystem in the
422 * superblock. That is not possible on ext4, because we may have other
423 * write ordering constraints on the superblock which prevent us from
424 * writing it out straight away; and given that the journal is about to
425 * be aborted, we can't rely on the current, or future, transactions to
426 * write out the superblock safely.
427 *
428 * We'll just use the jbd2_journal_abort() error code to record an error in
429 * the journal instead. On recovery, the journal will complain about
430 * that error until we've noted it down and cleared it.
431 */
432
433static void ext4_handle_error(struct super_block *sb)
434{
435 if (sb->s_flags & MS_RDONLY)
436 return;
437
438 if (!test_opt(sb, ERRORS_CONT)) {
439 journal_t *journal = EXT4_SB(sb)->s_journal;
440
441 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
442 if (journal)
443 jbd2_journal_abort(journal, -EIO);
444 }
445 if (test_opt(sb, ERRORS_RO)) {
446 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
447 sb->s_flags |= MS_RDONLY;
448 }
449 if (test_opt(sb, ERRORS_PANIC))
450 panic("EXT4-fs (device %s): panic forced after error\n",
451 sb->s_id);
452}
453
454void __ext4_error(struct super_block *sb, const char *function,
455 unsigned int line, const char *fmt, ...)
456{
457 struct va_format vaf;
458 va_list args;
459
460 va_start(args, fmt);
461 vaf.fmt = fmt;
462 vaf.va = &args;
463 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
464 sb->s_id, function, line, current->comm, &vaf);
465 va_end(args);
466
467 ext4_handle_error(sb);
468}
469
470void ext4_error_inode(struct inode *inode, const char *function,
471 unsigned int line, ext4_fsblk_t block,
472 const char *fmt, ...)
473{
474 va_list args;
475 struct va_format vaf;
476 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
477
478 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
479 es->s_last_error_block = cpu_to_le64(block);
480 save_error_info(inode->i_sb, function, line);
481 va_start(args, fmt);
482 vaf.fmt = fmt;
483 vaf.va = &args;
484 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
485 inode->i_sb->s_id, function, line, inode->i_ino);
486 if (block)
487 printk(KERN_CONT "block %llu: ", block);
488 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
489 va_end(args);
490
491 ext4_handle_error(inode->i_sb);
492}
493
494void ext4_error_file(struct file *file, const char *function,
495 unsigned int line, ext4_fsblk_t block,
496 const char *fmt, ...)
497{
498 va_list args;
499 struct va_format vaf;
500 struct ext4_super_block *es;
501 struct inode *inode = file->f_dentry->d_inode;
502 char pathname[80], *path;
503
504 es = EXT4_SB(inode->i_sb)->s_es;
505 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
506 save_error_info(inode->i_sb, function, line);
507 path = d_path(&(file->f_path), pathname, sizeof(pathname));
508 if (IS_ERR(path))
509 path = "(unknown)";
510 printk(KERN_CRIT
511 "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
512 inode->i_sb->s_id, function, line, inode->i_ino);
513 if (block)
514 printk(KERN_CONT "block %llu: ", block);
515 va_start(args, fmt);
516 vaf.fmt = fmt;
517 vaf.va = &args;
518 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
519 va_end(args);
520
521 ext4_handle_error(inode->i_sb);
522}
523
524static const char *ext4_decode_error(struct super_block *sb, int errno,
525 char nbuf[16])
526{
527 char *errstr = NULL;
528
529 switch (errno) {
530 case -EIO:
531 errstr = "IO failure";
532 break;
533 case -ENOMEM:
534 errstr = "Out of memory";
535 break;
536 case -EROFS:
537 if (!sb || (EXT4_SB(sb)->s_journal &&
538 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
539 errstr = "Journal has aborted";
540 else
541 errstr = "Readonly filesystem";
542 break;
543 default:
544 /* If the caller passed in an extra buffer for unknown
545 * errors, textualise them now. Else we just return
546 * NULL. */
547 if (nbuf) {
548 /* Check for truncated error codes... */
549 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
550 errstr = nbuf;
551 }
552 break;
553 }
554
555 return errstr;
556}
557
558/* __ext4_std_error decodes expected errors from journaling functions
559 * automatically and invokes the appropriate error response. */
560
561void __ext4_std_error(struct super_block *sb, const char *function,
562 unsigned int line, int errno)
563{
564 char nbuf[16];
565 const char *errstr;
566
567 /* Special case: if the error is EROFS, and we're not already
568 * inside a transaction, then there's really no point in logging
569 * an error. */
570 if (errno == -EROFS && journal_current_handle() == NULL &&
571 (sb->s_flags & MS_RDONLY))
572 return;
573
574 errstr = ext4_decode_error(sb, errno, nbuf);
575 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
576 sb->s_id, function, line, errstr);
577 save_error_info(sb, function, line);
578
579 ext4_handle_error(sb);
580}
581
582/*
583 * ext4_abort is a much stronger failure handler than ext4_error. The
584 * abort function may be used to deal with unrecoverable failures such
585 * as journal IO errors or ENOMEM at a critical moment in log management.
586 *
587 * We unconditionally force the filesystem into an ABORT|READONLY state,
588 * unless the error response on the fs has been set to panic in which
589 * case we take the easy way out and panic immediately.
590 */
591
592void __ext4_abort(struct super_block *sb, const char *function,
593 unsigned int line, const char *fmt, ...)
594{
595 va_list args;
596
597 save_error_info(sb, function, line);
598 va_start(args, fmt);
599 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
600 function, line);
601 vprintk(fmt, args);
602 printk("\n");
603 va_end(args);
604
605 if ((sb->s_flags & MS_RDONLY) == 0) {
606 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
607 sb->s_flags |= MS_RDONLY;
608 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
609 if (EXT4_SB(sb)->s_journal)
610 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
611 save_error_info(sb, function, line);
612 }
613 if (test_opt(sb, ERRORS_PANIC))
614 panic("EXT4-fs panic from previous error\n");
615}
616
617void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
618{
619 struct va_format vaf;
620 va_list args;
621
622 va_start(args, fmt);
623 vaf.fmt = fmt;
624 vaf.va = &args;
625 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
626 va_end(args);
627}
628
629void __ext4_warning(struct super_block *sb, const char *function,
630 unsigned int line, const char *fmt, ...)
631{
632 struct va_format vaf;
633 va_list args;
634
635 va_start(args, fmt);
636 vaf.fmt = fmt;
637 vaf.va = &args;
638 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
639 sb->s_id, function, line, &vaf);
640 va_end(args);
641}
642
643void __ext4_grp_locked_error(const char *function, unsigned int line,
644 struct super_block *sb, ext4_group_t grp,
645 unsigned long ino, ext4_fsblk_t block,
646 const char *fmt, ...)
647__releases(bitlock)
648__acquires(bitlock)
649{
650 struct va_format vaf;
651 va_list args;
652 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
653
654 es->s_last_error_ino = cpu_to_le32(ino);
655 es->s_last_error_block = cpu_to_le64(block);
656 __save_error_info(sb, function, line);
657
658 va_start(args, fmt);
659
660 vaf.fmt = fmt;
661 vaf.va = &args;
662 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
663 sb->s_id, function, line, grp);
664 if (ino)
665 printk(KERN_CONT "inode %lu: ", ino);
666 if (block)
667 printk(KERN_CONT "block %llu:", (unsigned long long) block);
668 printk(KERN_CONT "%pV\n", &vaf);
669 va_end(args);
670
671 if (test_opt(sb, ERRORS_CONT)) {
672 ext4_commit_super(sb, 0);
673 return;
674 }
675
676 ext4_unlock_group(sb, grp);
677 ext4_handle_error(sb);
678 /*
679 * We only get here in the ERRORS_RO case; relocking the group
680 * may be dangerous, but nothing bad will happen since the
681 * filesystem will have already been marked read/only and the
682 * journal has been aborted. We return 1 as a hint to callers
683 * who might what to use the return value from
684 * ext4_grp_locked_error() to distinguish between the
685 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
686 * aggressively from the ext4 function in question, with a
687 * more appropriate error code.
688 */
689 ext4_lock_group(sb, grp);
690 return;
691}
692
693void ext4_update_dynamic_rev(struct super_block *sb)
694{
695 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
696
697 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
698 return;
699
700 ext4_warning(sb,
701 "updating to rev %d because of new feature flag, "
702 "running e2fsck is recommended",
703 EXT4_DYNAMIC_REV);
704
705 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
706 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
707 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
708 /* leave es->s_feature_*compat flags alone */
709 /* es->s_uuid will be set by e2fsck if empty */
710
711 /*
712 * The rest of the superblock fields should be zero, and if not it
713 * means they are likely already in use, so leave them alone. We
714 * can leave it up to e2fsck to clean up any inconsistencies there.
715 */
716}
717
718/*
719 * Open the external journal device
720 */
721static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
722{
723 struct block_device *bdev;
724 char b[BDEVNAME_SIZE];
725
726 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
727 if (IS_ERR(bdev))
728 goto fail;
729 return bdev;
730
731fail:
732 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
733 __bdevname(dev, b), PTR_ERR(bdev));
734 return NULL;
735}
736
737/*
738 * Release the journal device
739 */
740static int ext4_blkdev_put(struct block_device *bdev)
741{
742 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
743}
744
745static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
746{
747 struct block_device *bdev;
748 int ret = -ENODEV;
749
750 bdev = sbi->journal_bdev;
751 if (bdev) {
752 ret = ext4_blkdev_put(bdev);
753 sbi->journal_bdev = NULL;
754 }
755 return ret;
756}
757
758static inline struct inode *orphan_list_entry(struct list_head *l)
759{
760 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
761}
762
763static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
764{
765 struct list_head *l;
766
767 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
768 le32_to_cpu(sbi->s_es->s_last_orphan));
769
770 printk(KERN_ERR "sb_info orphan list:\n");
771 list_for_each(l, &sbi->s_orphan) {
772 struct inode *inode = orphan_list_entry(l);
773 printk(KERN_ERR " "
774 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
775 inode->i_sb->s_id, inode->i_ino, inode,
776 inode->i_mode, inode->i_nlink,
777 NEXT_ORPHAN(inode));
778 }
779}
780
781static void ext4_put_super(struct super_block *sb)
782{
783 struct ext4_sb_info *sbi = EXT4_SB(sb);
784 struct ext4_super_block *es = sbi->s_es;
785 int i, err;
786
787 ext4_unregister_li_request(sb);
788 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
789
790 flush_workqueue(sbi->dio_unwritten_wq);
791 destroy_workqueue(sbi->dio_unwritten_wq);
792
793 lock_super(sb);
794 if (sb->s_dirt)
795 ext4_commit_super(sb, 1);
796
797 if (sbi->s_journal) {
798 err = jbd2_journal_destroy(sbi->s_journal);
799 sbi->s_journal = NULL;
800 if (err < 0)
801 ext4_abort(sb, "Couldn't clean up the journal");
802 }
803
804 del_timer(&sbi->s_err_report);
805 ext4_release_system_zone(sb);
806 ext4_mb_release(sb);
807 ext4_ext_release(sb);
808 ext4_xattr_put_super(sb);
809
810 if (!(sb->s_flags & MS_RDONLY)) {
811 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
812 es->s_state = cpu_to_le16(sbi->s_mount_state);
813 ext4_commit_super(sb, 1);
814 }
815 if (sbi->s_proc) {
816 remove_proc_entry(sb->s_id, ext4_proc_root);
817 }
818 kobject_del(&sbi->s_kobj);
819
820 for (i = 0; i < sbi->s_gdb_count; i++)
821 brelse(sbi->s_group_desc[i]);
822 ext4_kvfree(sbi->s_group_desc);
823 ext4_kvfree(sbi->s_flex_groups);
824 percpu_counter_destroy(&sbi->s_freeblocks_counter);
825 percpu_counter_destroy(&sbi->s_freeinodes_counter);
826 percpu_counter_destroy(&sbi->s_dirs_counter);
827 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
828 brelse(sbi->s_sbh);
829#ifdef CONFIG_QUOTA
830 for (i = 0; i < MAXQUOTAS; i++)
831 kfree(sbi->s_qf_names[i]);
832#endif
833
834 /* Debugging code just in case the in-memory inode orphan list
835 * isn't empty. The on-disk one can be non-empty if we've
836 * detected an error and taken the fs readonly, but the
837 * in-memory list had better be clean by this point. */
838 if (!list_empty(&sbi->s_orphan))
839 dump_orphan_list(sb, sbi);
840 J_ASSERT(list_empty(&sbi->s_orphan));
841
842 invalidate_bdev(sb->s_bdev);
843 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
844 /*
845 * Invalidate the journal device's buffers. We don't want them
846 * floating about in memory - the physical journal device may
847 * hotswapped, and it breaks the `ro-after' testing code.
848 */
849 sync_blockdev(sbi->journal_bdev);
850 invalidate_bdev(sbi->journal_bdev);
851 ext4_blkdev_remove(sbi);
852 }
853 if (sbi->s_mmp_tsk)
854 kthread_stop(sbi->s_mmp_tsk);
855 sb->s_fs_info = NULL;
856 /*
857 * Now that we are completely done shutting down the
858 * superblock, we need to actually destroy the kobject.
859 */
860 unlock_super(sb);
861 kobject_put(&sbi->s_kobj);
862 wait_for_completion(&sbi->s_kobj_unregister);
863 kfree(sbi->s_blockgroup_lock);
864 kfree(sbi);
865}
866
867static struct kmem_cache *ext4_inode_cachep;
868
869/*
870 * Called inside transaction, so use GFP_NOFS
871 */
872static struct inode *ext4_alloc_inode(struct super_block *sb)
873{
874 struct ext4_inode_info *ei;
875
876 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
877 if (!ei)
878 return NULL;
879
880 ei->vfs_inode.i_version = 1;
881 ei->vfs_inode.i_data.writeback_index = 0;
882 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
883 INIT_LIST_HEAD(&ei->i_prealloc_list);
884 spin_lock_init(&ei->i_prealloc_lock);
885 ei->i_reserved_data_blocks = 0;
886 ei->i_reserved_meta_blocks = 0;
887 ei->i_allocated_meta_blocks = 0;
888 ei->i_da_metadata_calc_len = 0;
889 spin_lock_init(&(ei->i_block_reservation_lock));
890#ifdef CONFIG_QUOTA
891 ei->i_reserved_quota = 0;
892#endif
893 ei->jinode = NULL;
894 INIT_LIST_HEAD(&ei->i_completed_io_list);
895 spin_lock_init(&ei->i_completed_io_lock);
896 ei->cur_aio_dio = NULL;
897 ei->i_sync_tid = 0;
898 ei->i_datasync_tid = 0;
899 atomic_set(&ei->i_ioend_count, 0);
900 atomic_set(&ei->i_aiodio_unwritten, 0);
901
902 return &ei->vfs_inode;
903}
904
905static int ext4_drop_inode(struct inode *inode)
906{
907 int drop = generic_drop_inode(inode);
908
909 trace_ext4_drop_inode(inode, drop);
910 return drop;
911}
912
913static void ext4_i_callback(struct rcu_head *head)
914{
915 struct inode *inode = container_of(head, struct inode, i_rcu);
916 INIT_LIST_HEAD(&inode->i_dentry);
917 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
918}
919
920static void ext4_destroy_inode(struct inode *inode)
921{
922 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
923 ext4_msg(inode->i_sb, KERN_ERR,
924 "Inode %lu (%p): orphan list check failed!",
925 inode->i_ino, EXT4_I(inode));
926 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
927 EXT4_I(inode), sizeof(struct ext4_inode_info),
928 true);
929 dump_stack();
930 }
931 call_rcu(&inode->i_rcu, ext4_i_callback);
932}
933
934static void init_once(void *foo)
935{
936 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
937
938 INIT_LIST_HEAD(&ei->i_orphan);
939#ifdef CONFIG_EXT4_FS_XATTR
940 init_rwsem(&ei->xattr_sem);
941#endif
942 init_rwsem(&ei->i_data_sem);
943 inode_init_once(&ei->vfs_inode);
944}
945
946static int init_inodecache(void)
947{
948 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
949 sizeof(struct ext4_inode_info),
950 0, (SLAB_RECLAIM_ACCOUNT|
951 SLAB_MEM_SPREAD),
952 init_once);
953 if (ext4_inode_cachep == NULL)
954 return -ENOMEM;
955 return 0;
956}
957
958static void destroy_inodecache(void)
959{
960 kmem_cache_destroy(ext4_inode_cachep);
961}
962
963void ext4_clear_inode(struct inode *inode)
964{
965 invalidate_inode_buffers(inode);
966 end_writeback(inode);
967 dquot_drop(inode);
968 ext4_discard_preallocations(inode);
969 if (EXT4_I(inode)->jinode) {
970 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
971 EXT4_I(inode)->jinode);
972 jbd2_free_inode(EXT4_I(inode)->jinode);
973 EXT4_I(inode)->jinode = NULL;
974 }
975}
976
977static inline void ext4_show_quota_options(struct seq_file *seq,
978 struct super_block *sb)
979{
980#if defined(CONFIG_QUOTA)
981 struct ext4_sb_info *sbi = EXT4_SB(sb);
982
983 if (sbi->s_jquota_fmt) {
984 char *fmtname = "";
985
986 switch (sbi->s_jquota_fmt) {
987 case QFMT_VFS_OLD:
988 fmtname = "vfsold";
989 break;
990 case QFMT_VFS_V0:
991 fmtname = "vfsv0";
992 break;
993 case QFMT_VFS_V1:
994 fmtname = "vfsv1";
995 break;
996 }
997 seq_printf(seq, ",jqfmt=%s", fmtname);
998 }
999
1000 if (sbi->s_qf_names[USRQUOTA])
1001 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1002
1003 if (sbi->s_qf_names[GRPQUOTA])
1004 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1005
1006 if (test_opt(sb, USRQUOTA))
1007 seq_puts(seq, ",usrquota");
1008
1009 if (test_opt(sb, GRPQUOTA))
1010 seq_puts(seq, ",grpquota");
1011#endif
1012}
1013
1014/*
1015 * Show an option if
1016 * - it's set to a non-default value OR
1017 * - if the per-sb default is different from the global default
1018 */
1019static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
1020{
1021 int def_errors;
1022 unsigned long def_mount_opts;
1023 struct super_block *sb = vfs->mnt_sb;
1024 struct ext4_sb_info *sbi = EXT4_SB(sb);
1025 struct ext4_super_block *es = sbi->s_es;
1026
1027 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
1028 def_errors = le16_to_cpu(es->s_errors);
1029
1030 if (sbi->s_sb_block != 1)
1031 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
1032 if (test_opt(sb, MINIX_DF))
1033 seq_puts(seq, ",minixdf");
1034 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
1035 seq_puts(seq, ",grpid");
1036 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
1037 seq_puts(seq, ",nogrpid");
1038 if (sbi->s_resuid != EXT4_DEF_RESUID ||
1039 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
1040 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
1041 }
1042 if (sbi->s_resgid != EXT4_DEF_RESGID ||
1043 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
1044 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
1045 }
1046 if (test_opt(sb, ERRORS_RO)) {
1047 if (def_errors == EXT4_ERRORS_PANIC ||
1048 def_errors == EXT4_ERRORS_CONTINUE) {
1049 seq_puts(seq, ",errors=remount-ro");
1050 }
1051 }
1052 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1053 seq_puts(seq, ",errors=continue");
1054 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1055 seq_puts(seq, ",errors=panic");
1056 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
1057 seq_puts(seq, ",nouid32");
1058 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
1059 seq_puts(seq, ",debug");
1060 if (test_opt(sb, OLDALLOC))
1061 seq_puts(seq, ",oldalloc");
1062#ifdef CONFIG_EXT4_FS_XATTR
1063 if (test_opt(sb, XATTR_USER))
1064 seq_puts(seq, ",user_xattr");
1065 if (!test_opt(sb, XATTR_USER))
1066 seq_puts(seq, ",nouser_xattr");
1067#endif
1068#ifdef CONFIG_EXT4_FS_POSIX_ACL
1069 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1070 seq_puts(seq, ",acl");
1071 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1072 seq_puts(seq, ",noacl");
1073#endif
1074 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1075 seq_printf(seq, ",commit=%u",
1076 (unsigned) (sbi->s_commit_interval / HZ));
1077 }
1078 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1079 seq_printf(seq, ",min_batch_time=%u",
1080 (unsigned) sbi->s_min_batch_time);
1081 }
1082 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1083 seq_printf(seq, ",max_batch_time=%u",
1084 (unsigned) sbi->s_min_batch_time);
1085 }
1086
1087 /*
1088 * We're changing the default of barrier mount option, so
1089 * let's always display its mount state so it's clear what its
1090 * status is.
1091 */
1092 seq_puts(seq, ",barrier=");
1093 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1094 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1095 seq_puts(seq, ",journal_async_commit");
1096 else if (test_opt(sb, JOURNAL_CHECKSUM))
1097 seq_puts(seq, ",journal_checksum");
1098 if (test_opt(sb, I_VERSION))
1099 seq_puts(seq, ",i_version");
1100 if (!test_opt(sb, DELALLOC) &&
1101 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1102 seq_puts(seq, ",nodelalloc");
1103
1104 if (!test_opt(sb, MBLK_IO_SUBMIT))
1105 seq_puts(seq, ",nomblk_io_submit");
1106 if (sbi->s_stripe)
1107 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1108 /*
1109 * journal mode get enabled in different ways
1110 * So just print the value even if we didn't specify it
1111 */
1112 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1113 seq_puts(seq, ",data=journal");
1114 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1115 seq_puts(seq, ",data=ordered");
1116 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1117 seq_puts(seq, ",data=writeback");
1118
1119 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1120 seq_printf(seq, ",inode_readahead_blks=%u",
1121 sbi->s_inode_readahead_blks);
1122
1123 if (test_opt(sb, DATA_ERR_ABORT))
1124 seq_puts(seq, ",data_err=abort");
1125
1126 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1127 seq_puts(seq, ",noauto_da_alloc");
1128
1129 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1130 seq_puts(seq, ",discard");
1131
1132 if (test_opt(sb, NOLOAD))
1133 seq_puts(seq, ",norecovery");
1134
1135 if (test_opt(sb, DIOREAD_NOLOCK))
1136 seq_puts(seq, ",dioread_nolock");
1137
1138 if (test_opt(sb, BLOCK_VALIDITY) &&
1139 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1140 seq_puts(seq, ",block_validity");
1141
1142 if (!test_opt(sb, INIT_INODE_TABLE))
1143 seq_puts(seq, ",noinit_inode_table");
1144 else if (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)
1145 seq_printf(seq, ",init_inode_table=%u",
1146 (unsigned) sbi->s_li_wait_mult);
1147
1148 ext4_show_quota_options(seq, sb);
1149
1150 return 0;
1151}
1152
1153static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1154 u64 ino, u32 generation)
1155{
1156 struct inode *inode;
1157
1158 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1159 return ERR_PTR(-ESTALE);
1160 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1161 return ERR_PTR(-ESTALE);
1162
1163 /* iget isn't really right if the inode is currently unallocated!!
1164 *
1165 * ext4_read_inode will return a bad_inode if the inode had been
1166 * deleted, so we should be safe.
1167 *
1168 * Currently we don't know the generation for parent directory, so
1169 * a generation of 0 means "accept any"
1170 */
1171 inode = ext4_iget(sb, ino);
1172 if (IS_ERR(inode))
1173 return ERR_CAST(inode);
1174 if (generation && inode->i_generation != generation) {
1175 iput(inode);
1176 return ERR_PTR(-ESTALE);
1177 }
1178
1179 return inode;
1180}
1181
1182static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1183 int fh_len, int fh_type)
1184{
1185 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1186 ext4_nfs_get_inode);
1187}
1188
1189static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1190 int fh_len, int fh_type)
1191{
1192 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1193 ext4_nfs_get_inode);
1194}
1195
1196/*
1197 * Try to release metadata pages (indirect blocks, directories) which are
1198 * mapped via the block device. Since these pages could have journal heads
1199 * which would prevent try_to_free_buffers() from freeing them, we must use
1200 * jbd2 layer's try_to_free_buffers() function to release them.
1201 */
1202static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1203 gfp_t wait)
1204{
1205 journal_t *journal = EXT4_SB(sb)->s_journal;
1206
1207 WARN_ON(PageChecked(page));
1208 if (!page_has_buffers(page))
1209 return 0;
1210 if (journal)
1211 return jbd2_journal_try_to_free_buffers(journal, page,
1212 wait & ~__GFP_WAIT);
1213 return try_to_free_buffers(page);
1214}
1215
1216#ifdef CONFIG_QUOTA
1217#define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1218#define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1219
1220static int ext4_write_dquot(struct dquot *dquot);
1221static int ext4_acquire_dquot(struct dquot *dquot);
1222static int ext4_release_dquot(struct dquot *dquot);
1223static int ext4_mark_dquot_dirty(struct dquot *dquot);
1224static int ext4_write_info(struct super_block *sb, int type);
1225static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1226 struct path *path);
1227static int ext4_quota_off(struct super_block *sb, int type);
1228static int ext4_quota_on_mount(struct super_block *sb, int type);
1229static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1230 size_t len, loff_t off);
1231static ssize_t ext4_quota_write(struct super_block *sb, int type,
1232 const char *data, size_t len, loff_t off);
1233
1234static const struct dquot_operations ext4_quota_operations = {
1235 .get_reserved_space = ext4_get_reserved_space,
1236 .write_dquot = ext4_write_dquot,
1237 .acquire_dquot = ext4_acquire_dquot,
1238 .release_dquot = ext4_release_dquot,
1239 .mark_dirty = ext4_mark_dquot_dirty,
1240 .write_info = ext4_write_info,
1241 .alloc_dquot = dquot_alloc,
1242 .destroy_dquot = dquot_destroy,
1243};
1244
1245static const struct quotactl_ops ext4_qctl_operations = {
1246 .quota_on = ext4_quota_on,
1247 .quota_off = ext4_quota_off,
1248 .quota_sync = dquot_quota_sync,
1249 .get_info = dquot_get_dqinfo,
1250 .set_info = dquot_set_dqinfo,
1251 .get_dqblk = dquot_get_dqblk,
1252 .set_dqblk = dquot_set_dqblk
1253};
1254#endif
1255
1256static const struct super_operations ext4_sops = {
1257 .alloc_inode = ext4_alloc_inode,
1258 .destroy_inode = ext4_destroy_inode,
1259 .write_inode = ext4_write_inode,
1260 .dirty_inode = ext4_dirty_inode,
1261 .drop_inode = ext4_drop_inode,
1262 .evict_inode = ext4_evict_inode,
1263 .put_super = ext4_put_super,
1264 .sync_fs = ext4_sync_fs,
1265 .freeze_fs = ext4_freeze,
1266 .unfreeze_fs = ext4_unfreeze,
1267 .statfs = ext4_statfs,
1268 .remount_fs = ext4_remount,
1269 .show_options = ext4_show_options,
1270#ifdef CONFIG_QUOTA
1271 .quota_read = ext4_quota_read,
1272 .quota_write = ext4_quota_write,
1273#endif
1274 .bdev_try_to_free_page = bdev_try_to_free_page,
1275};
1276
1277static const struct super_operations ext4_nojournal_sops = {
1278 .alloc_inode = ext4_alloc_inode,
1279 .destroy_inode = ext4_destroy_inode,
1280 .write_inode = ext4_write_inode,
1281 .dirty_inode = ext4_dirty_inode,
1282 .drop_inode = ext4_drop_inode,
1283 .evict_inode = ext4_evict_inode,
1284 .write_super = ext4_write_super,
1285 .put_super = ext4_put_super,
1286 .statfs = ext4_statfs,
1287 .remount_fs = ext4_remount,
1288 .show_options = ext4_show_options,
1289#ifdef CONFIG_QUOTA
1290 .quota_read = ext4_quota_read,
1291 .quota_write = ext4_quota_write,
1292#endif
1293 .bdev_try_to_free_page = bdev_try_to_free_page,
1294};
1295
1296static const struct export_operations ext4_export_ops = {
1297 .fh_to_dentry = ext4_fh_to_dentry,
1298 .fh_to_parent = ext4_fh_to_parent,
1299 .get_parent = ext4_get_parent,
1300};
1301
1302enum {
1303 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1304 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1305 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1306 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1307 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1308 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1309 Opt_journal_update, Opt_journal_dev,
1310 Opt_journal_checksum, Opt_journal_async_commit,
1311 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1312 Opt_data_err_abort, Opt_data_err_ignore,
1313 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1314 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1315 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1316 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1317 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1318 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1319 Opt_inode_readahead_blks, Opt_journal_ioprio,
1320 Opt_dioread_nolock, Opt_dioread_lock,
1321 Opt_discard, Opt_nodiscard,
1322 Opt_init_inode_table, Opt_noinit_inode_table,
1323};
1324
1325static const match_table_t tokens = {
1326 {Opt_bsd_df, "bsddf"},
1327 {Opt_minix_df, "minixdf"},
1328 {Opt_grpid, "grpid"},
1329 {Opt_grpid, "bsdgroups"},
1330 {Opt_nogrpid, "nogrpid"},
1331 {Opt_nogrpid, "sysvgroups"},
1332 {Opt_resgid, "resgid=%u"},
1333 {Opt_resuid, "resuid=%u"},
1334 {Opt_sb, "sb=%u"},
1335 {Opt_err_cont, "errors=continue"},
1336 {Opt_err_panic, "errors=panic"},
1337 {Opt_err_ro, "errors=remount-ro"},
1338 {Opt_nouid32, "nouid32"},
1339 {Opt_debug, "debug"},
1340 {Opt_oldalloc, "oldalloc"},
1341 {Opt_orlov, "orlov"},
1342 {Opt_user_xattr, "user_xattr"},
1343 {Opt_nouser_xattr, "nouser_xattr"},
1344 {Opt_acl, "acl"},
1345 {Opt_noacl, "noacl"},
1346 {Opt_noload, "noload"},
1347 {Opt_noload, "norecovery"},
1348 {Opt_nobh, "nobh"},
1349 {Opt_bh, "bh"},
1350 {Opt_commit, "commit=%u"},
1351 {Opt_min_batch_time, "min_batch_time=%u"},
1352 {Opt_max_batch_time, "max_batch_time=%u"},
1353 {Opt_journal_update, "journal=update"},
1354 {Opt_journal_dev, "journal_dev=%u"},
1355 {Opt_journal_checksum, "journal_checksum"},
1356 {Opt_journal_async_commit, "journal_async_commit"},
1357 {Opt_abort, "abort"},
1358 {Opt_data_journal, "data=journal"},
1359 {Opt_data_ordered, "data=ordered"},
1360 {Opt_data_writeback, "data=writeback"},
1361 {Opt_data_err_abort, "data_err=abort"},
1362 {Opt_data_err_ignore, "data_err=ignore"},
1363 {Opt_offusrjquota, "usrjquota="},
1364 {Opt_usrjquota, "usrjquota=%s"},
1365 {Opt_offgrpjquota, "grpjquota="},
1366 {Opt_grpjquota, "grpjquota=%s"},
1367 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1368 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1369 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1370 {Opt_grpquota, "grpquota"},
1371 {Opt_noquota, "noquota"},
1372 {Opt_quota, "quota"},
1373 {Opt_usrquota, "usrquota"},
1374 {Opt_barrier, "barrier=%u"},
1375 {Opt_barrier, "barrier"},
1376 {Opt_nobarrier, "nobarrier"},
1377 {Opt_i_version, "i_version"},
1378 {Opt_stripe, "stripe=%u"},
1379 {Opt_resize, "resize"},
1380 {Opt_delalloc, "delalloc"},
1381 {Opt_nodelalloc, "nodelalloc"},
1382 {Opt_mblk_io_submit, "mblk_io_submit"},
1383 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1384 {Opt_block_validity, "block_validity"},
1385 {Opt_noblock_validity, "noblock_validity"},
1386 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1387 {Opt_journal_ioprio, "journal_ioprio=%u"},
1388 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1389 {Opt_auto_da_alloc, "auto_da_alloc"},
1390 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1391 {Opt_dioread_nolock, "dioread_nolock"},
1392 {Opt_dioread_lock, "dioread_lock"},
1393 {Opt_discard, "discard"},
1394 {Opt_nodiscard, "nodiscard"},
1395 {Opt_init_inode_table, "init_itable=%u"},
1396 {Opt_init_inode_table, "init_itable"},
1397 {Opt_noinit_inode_table, "noinit_itable"},
1398 {Opt_err, NULL},
1399};
1400
1401static ext4_fsblk_t get_sb_block(void **data)
1402{
1403 ext4_fsblk_t sb_block;
1404 char *options = (char *) *data;
1405
1406 if (!options || strncmp(options, "sb=", 3) != 0)
1407 return 1; /* Default location */
1408
1409 options += 3;
1410 /* TODO: use simple_strtoll with >32bit ext4 */
1411 sb_block = simple_strtoul(options, &options, 0);
1412 if (*options && *options != ',') {
1413 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1414 (char *) *data);
1415 return 1;
1416 }
1417 if (*options == ',')
1418 options++;
1419 *data = (void *) options;
1420
1421 return sb_block;
1422}
1423
1424#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1425static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1426 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1427
1428#ifdef CONFIG_QUOTA
1429static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1430{
1431 struct ext4_sb_info *sbi = EXT4_SB(sb);
1432 char *qname;
1433
1434 if (sb_any_quota_loaded(sb) &&
1435 !sbi->s_qf_names[qtype]) {
1436 ext4_msg(sb, KERN_ERR,
1437 "Cannot change journaled "
1438 "quota options when quota turned on");
1439 return 0;
1440 }
1441 qname = match_strdup(args);
1442 if (!qname) {
1443 ext4_msg(sb, KERN_ERR,
1444 "Not enough memory for storing quotafile name");
1445 return 0;
1446 }
1447 if (sbi->s_qf_names[qtype] &&
1448 strcmp(sbi->s_qf_names[qtype], qname)) {
1449 ext4_msg(sb, KERN_ERR,
1450 "%s quota file already specified", QTYPE2NAME(qtype));
1451 kfree(qname);
1452 return 0;
1453 }
1454 sbi->s_qf_names[qtype] = qname;
1455 if (strchr(sbi->s_qf_names[qtype], '/')) {
1456 ext4_msg(sb, KERN_ERR,
1457 "quotafile must be on filesystem root");
1458 kfree(sbi->s_qf_names[qtype]);
1459 sbi->s_qf_names[qtype] = NULL;
1460 return 0;
1461 }
1462 set_opt(sb, QUOTA);
1463 return 1;
1464}
1465
1466static int clear_qf_name(struct super_block *sb, int qtype)
1467{
1468
1469 struct ext4_sb_info *sbi = EXT4_SB(sb);
1470
1471 if (sb_any_quota_loaded(sb) &&
1472 sbi->s_qf_names[qtype]) {
1473 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1474 " when quota turned on");
1475 return 0;
1476 }
1477 /*
1478 * The space will be released later when all options are confirmed
1479 * to be correct
1480 */
1481 sbi->s_qf_names[qtype] = NULL;
1482 return 1;
1483}
1484#endif
1485
1486static int parse_options(char *options, struct super_block *sb,
1487 unsigned long *journal_devnum,
1488 unsigned int *journal_ioprio,
1489 ext4_fsblk_t *n_blocks_count, int is_remount)
1490{
1491 struct ext4_sb_info *sbi = EXT4_SB(sb);
1492 char *p;
1493 substring_t args[MAX_OPT_ARGS];
1494 int data_opt = 0;
1495 int option;
1496#ifdef CONFIG_QUOTA
1497 int qfmt;
1498#endif
1499
1500 if (!options)
1501 return 1;
1502
1503 while ((p = strsep(&options, ",")) != NULL) {
1504 int token;
1505 if (!*p)
1506 continue;
1507
1508 /*
1509 * Initialize args struct so we know whether arg was
1510 * found; some options take optional arguments.
1511 */
1512 args[0].to = args[0].from = NULL;
1513 token = match_token(p, tokens, args);
1514 switch (token) {
1515 case Opt_bsd_df:
1516 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1517 clear_opt(sb, MINIX_DF);
1518 break;
1519 case Opt_minix_df:
1520 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1521 set_opt(sb, MINIX_DF);
1522
1523 break;
1524 case Opt_grpid:
1525 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1526 set_opt(sb, GRPID);
1527
1528 break;
1529 case Opt_nogrpid:
1530 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1531 clear_opt(sb, GRPID);
1532
1533 break;
1534 case Opt_resuid:
1535 if (match_int(&args[0], &option))
1536 return 0;
1537 sbi->s_resuid = option;
1538 break;
1539 case Opt_resgid:
1540 if (match_int(&args[0], &option))
1541 return 0;
1542 sbi->s_resgid = option;
1543 break;
1544 case Opt_sb:
1545 /* handled by get_sb_block() instead of here */
1546 /* *sb_block = match_int(&args[0]); */
1547 break;
1548 case Opt_err_panic:
1549 clear_opt(sb, ERRORS_CONT);
1550 clear_opt(sb, ERRORS_RO);
1551 set_opt(sb, ERRORS_PANIC);
1552 break;
1553 case Opt_err_ro:
1554 clear_opt(sb, ERRORS_CONT);
1555 clear_opt(sb, ERRORS_PANIC);
1556 set_opt(sb, ERRORS_RO);
1557 break;
1558 case Opt_err_cont:
1559 clear_opt(sb, ERRORS_RO);
1560 clear_opt(sb, ERRORS_PANIC);
1561 set_opt(sb, ERRORS_CONT);
1562 break;
1563 case Opt_nouid32:
1564 set_opt(sb, NO_UID32);
1565 break;
1566 case Opt_debug:
1567 set_opt(sb, DEBUG);
1568 break;
1569 case Opt_oldalloc:
1570 set_opt(sb, OLDALLOC);
1571 break;
1572 case Opt_orlov:
1573 clear_opt(sb, OLDALLOC);
1574 break;
1575#ifdef CONFIG_EXT4_FS_XATTR
1576 case Opt_user_xattr:
1577 set_opt(sb, XATTR_USER);
1578 break;
1579 case Opt_nouser_xattr:
1580 clear_opt(sb, XATTR_USER);
1581 break;
1582#else
1583 case Opt_user_xattr:
1584 case Opt_nouser_xattr:
1585 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1586 break;
1587#endif
1588#ifdef CONFIG_EXT4_FS_POSIX_ACL
1589 case Opt_acl:
1590 set_opt(sb, POSIX_ACL);
1591 break;
1592 case Opt_noacl:
1593 clear_opt(sb, POSIX_ACL);
1594 break;
1595#else
1596 case Opt_acl:
1597 case Opt_noacl:
1598 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1599 break;
1600#endif
1601 case Opt_journal_update:
1602 /* @@@ FIXME */
1603 /* Eventually we will want to be able to create
1604 a journal file here. For now, only allow the
1605 user to specify an existing inode to be the
1606 journal file. */
1607 if (is_remount) {
1608 ext4_msg(sb, KERN_ERR,
1609 "Cannot specify journal on remount");
1610 return 0;
1611 }
1612 set_opt(sb, UPDATE_JOURNAL);
1613 break;
1614 case Opt_journal_dev:
1615 if (is_remount) {
1616 ext4_msg(sb, KERN_ERR,
1617 "Cannot specify journal on remount");
1618 return 0;
1619 }
1620 if (match_int(&args[0], &option))
1621 return 0;
1622 *journal_devnum = option;
1623 break;
1624 case Opt_journal_checksum:
1625 set_opt(sb, JOURNAL_CHECKSUM);
1626 break;
1627 case Opt_journal_async_commit:
1628 set_opt(sb, JOURNAL_ASYNC_COMMIT);
1629 set_opt(sb, JOURNAL_CHECKSUM);
1630 break;
1631 case Opt_noload:
1632 set_opt(sb, NOLOAD);
1633 break;
1634 case Opt_commit:
1635 if (match_int(&args[0], &option))
1636 return 0;
1637 if (option < 0)
1638 return 0;
1639 if (option == 0)
1640 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1641 sbi->s_commit_interval = HZ * option;
1642 break;
1643 case Opt_max_batch_time:
1644 if (match_int(&args[0], &option))
1645 return 0;
1646 if (option < 0)
1647 return 0;
1648 if (option == 0)
1649 option = EXT4_DEF_MAX_BATCH_TIME;
1650 sbi->s_max_batch_time = option;
1651 break;
1652 case Opt_min_batch_time:
1653 if (match_int(&args[0], &option))
1654 return 0;
1655 if (option < 0)
1656 return 0;
1657 sbi->s_min_batch_time = option;
1658 break;
1659 case Opt_data_journal:
1660 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1661 goto datacheck;
1662 case Opt_data_ordered:
1663 data_opt = EXT4_MOUNT_ORDERED_DATA;
1664 goto datacheck;
1665 case Opt_data_writeback:
1666 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1667 datacheck:
1668 if (is_remount) {
1669 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1670 ext4_msg(sb, KERN_ERR,
1671 "Cannot change data mode on remount");
1672 return 0;
1673 }
1674 } else {
1675 clear_opt(sb, DATA_FLAGS);
1676 sbi->s_mount_opt |= data_opt;
1677 }
1678 break;
1679 case Opt_data_err_abort:
1680 set_opt(sb, DATA_ERR_ABORT);
1681 break;
1682 case Opt_data_err_ignore:
1683 clear_opt(sb, DATA_ERR_ABORT);
1684 break;
1685#ifdef CONFIG_QUOTA
1686 case Opt_usrjquota:
1687 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1688 return 0;
1689 break;
1690 case Opt_grpjquota:
1691 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1692 return 0;
1693 break;
1694 case Opt_offusrjquota:
1695 if (!clear_qf_name(sb, USRQUOTA))
1696 return 0;
1697 break;
1698 case Opt_offgrpjquota:
1699 if (!clear_qf_name(sb, GRPQUOTA))
1700 return 0;
1701 break;
1702
1703 case Opt_jqfmt_vfsold:
1704 qfmt = QFMT_VFS_OLD;
1705 goto set_qf_format;
1706 case Opt_jqfmt_vfsv0:
1707 qfmt = QFMT_VFS_V0;
1708 goto set_qf_format;
1709 case Opt_jqfmt_vfsv1:
1710 qfmt = QFMT_VFS_V1;
1711set_qf_format:
1712 if (sb_any_quota_loaded(sb) &&
1713 sbi->s_jquota_fmt != qfmt) {
1714 ext4_msg(sb, KERN_ERR, "Cannot change "
1715 "journaled quota options when "
1716 "quota turned on");
1717 return 0;
1718 }
1719 sbi->s_jquota_fmt = qfmt;
1720 break;
1721 case Opt_quota:
1722 case Opt_usrquota:
1723 set_opt(sb, QUOTA);
1724 set_opt(sb, USRQUOTA);
1725 break;
1726 case Opt_grpquota:
1727 set_opt(sb, QUOTA);
1728 set_opt(sb, GRPQUOTA);
1729 break;
1730 case Opt_noquota:
1731 if (sb_any_quota_loaded(sb)) {
1732 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1733 "options when quota turned on");
1734 return 0;
1735 }
1736 clear_opt(sb, QUOTA);
1737 clear_opt(sb, USRQUOTA);
1738 clear_opt(sb, GRPQUOTA);
1739 break;
1740#else
1741 case Opt_quota:
1742 case Opt_usrquota:
1743 case Opt_grpquota:
1744 ext4_msg(sb, KERN_ERR,
1745 "quota options not supported");
1746 break;
1747 case Opt_usrjquota:
1748 case Opt_grpjquota:
1749 case Opt_offusrjquota:
1750 case Opt_offgrpjquota:
1751 case Opt_jqfmt_vfsold:
1752 case Opt_jqfmt_vfsv0:
1753 case Opt_jqfmt_vfsv1:
1754 ext4_msg(sb, KERN_ERR,
1755 "journaled quota options not supported");
1756 break;
1757 case Opt_noquota:
1758 break;
1759#endif
1760 case Opt_abort:
1761 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1762 break;
1763 case Opt_nobarrier:
1764 clear_opt(sb, BARRIER);
1765 break;
1766 case Opt_barrier:
1767 if (args[0].from) {
1768 if (match_int(&args[0], &option))
1769 return 0;
1770 } else
1771 option = 1; /* No argument, default to 1 */
1772 if (option)
1773 set_opt(sb, BARRIER);
1774 else
1775 clear_opt(sb, BARRIER);
1776 break;
1777 case Opt_ignore:
1778 break;
1779 case Opt_resize:
1780 if (!is_remount) {
1781 ext4_msg(sb, KERN_ERR,
1782 "resize option only available "
1783 "for remount");
1784 return 0;
1785 }
1786 if (match_int(&args[0], &option) != 0)
1787 return 0;
1788 *n_blocks_count = option;
1789 break;
1790 case Opt_nobh:
1791 ext4_msg(sb, KERN_WARNING,
1792 "Ignoring deprecated nobh option");
1793 break;
1794 case Opt_bh:
1795 ext4_msg(sb, KERN_WARNING,
1796 "Ignoring deprecated bh option");
1797 break;
1798 case Opt_i_version:
1799 set_opt(sb, I_VERSION);
1800 sb->s_flags |= MS_I_VERSION;
1801 break;
1802 case Opt_nodelalloc:
1803 clear_opt(sb, DELALLOC);
1804 break;
1805 case Opt_mblk_io_submit:
1806 set_opt(sb, MBLK_IO_SUBMIT);
1807 break;
1808 case Opt_nomblk_io_submit:
1809 clear_opt(sb, MBLK_IO_SUBMIT);
1810 break;
1811 case Opt_stripe:
1812 if (match_int(&args[0], &option))
1813 return 0;
1814 if (option < 0)
1815 return 0;
1816 sbi->s_stripe = option;
1817 break;
1818 case Opt_delalloc:
1819 set_opt(sb, DELALLOC);
1820 break;
1821 case Opt_block_validity:
1822 set_opt(sb, BLOCK_VALIDITY);
1823 break;
1824 case Opt_noblock_validity:
1825 clear_opt(sb, BLOCK_VALIDITY);
1826 break;
1827 case Opt_inode_readahead_blks:
1828 if (match_int(&args[0], &option))
1829 return 0;
1830 if (option < 0 || option > (1 << 30))
1831 return 0;
1832 if (option && !is_power_of_2(option)) {
1833 ext4_msg(sb, KERN_ERR,
1834 "EXT4-fs: inode_readahead_blks"
1835 " must be a power of 2");
1836 return 0;
1837 }
1838 sbi->s_inode_readahead_blks = option;
1839 break;
1840 case Opt_journal_ioprio:
1841 if (match_int(&args[0], &option))
1842 return 0;
1843 if (option < 0 || option > 7)
1844 break;
1845 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1846 option);
1847 break;
1848 case Opt_noauto_da_alloc:
1849 set_opt(sb, NO_AUTO_DA_ALLOC);
1850 break;
1851 case Opt_auto_da_alloc:
1852 if (args[0].from) {
1853 if (match_int(&args[0], &option))
1854 return 0;
1855 } else
1856 option = 1; /* No argument, default to 1 */
1857 if (option)
1858 clear_opt(sb, NO_AUTO_DA_ALLOC);
1859 else
1860 set_opt(sb,NO_AUTO_DA_ALLOC);
1861 break;
1862 case Opt_discard:
1863 set_opt(sb, DISCARD);
1864 break;
1865 case Opt_nodiscard:
1866 clear_opt(sb, DISCARD);
1867 break;
1868 case Opt_dioread_nolock:
1869 set_opt(sb, DIOREAD_NOLOCK);
1870 break;
1871 case Opt_dioread_lock:
1872 clear_opt(sb, DIOREAD_NOLOCK);
1873 break;
1874 case Opt_init_inode_table:
1875 set_opt(sb, INIT_INODE_TABLE);
1876 if (args[0].from) {
1877 if (match_int(&args[0], &option))
1878 return 0;
1879 } else
1880 option = EXT4_DEF_LI_WAIT_MULT;
1881 if (option < 0)
1882 return 0;
1883 sbi->s_li_wait_mult = option;
1884 break;
1885 case Opt_noinit_inode_table:
1886 clear_opt(sb, INIT_INODE_TABLE);
1887 break;
1888 default:
1889 ext4_msg(sb, KERN_ERR,
1890 "Unrecognized mount option \"%s\" "
1891 "or missing value", p);
1892 return 0;
1893 }
1894 }
1895#ifdef CONFIG_QUOTA
1896 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1897 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1898 clear_opt(sb, USRQUOTA);
1899
1900 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1901 clear_opt(sb, GRPQUOTA);
1902
1903 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1904 ext4_msg(sb, KERN_ERR, "old and new quota "
1905 "format mixing");
1906 return 0;
1907 }
1908
1909 if (!sbi->s_jquota_fmt) {
1910 ext4_msg(sb, KERN_ERR, "journaled quota format "
1911 "not specified");
1912 return 0;
1913 }
1914 } else {
1915 if (sbi->s_jquota_fmt) {
1916 ext4_msg(sb, KERN_ERR, "journaled quota format "
1917 "specified with no journaling "
1918 "enabled");
1919 return 0;
1920 }
1921 }
1922#endif
1923 return 1;
1924}
1925
1926static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1927 int read_only)
1928{
1929 struct ext4_sb_info *sbi = EXT4_SB(sb);
1930 int res = 0;
1931
1932 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1933 ext4_msg(sb, KERN_ERR, "revision level too high, "
1934 "forcing read-only mode");
1935 res = MS_RDONLY;
1936 }
1937 if (read_only)
1938 return res;
1939 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1940 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1941 "running e2fsck is recommended");
1942 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1943 ext4_msg(sb, KERN_WARNING,
1944 "warning: mounting fs with errors, "
1945 "running e2fsck is recommended");
1946 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1947 le16_to_cpu(es->s_mnt_count) >=
1948 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1949 ext4_msg(sb, KERN_WARNING,
1950 "warning: maximal mount count reached, "
1951 "running e2fsck is recommended");
1952 else if (le32_to_cpu(es->s_checkinterval) &&
1953 (le32_to_cpu(es->s_lastcheck) +
1954 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1955 ext4_msg(sb, KERN_WARNING,
1956 "warning: checktime reached, "
1957 "running e2fsck is recommended");
1958 if (!sbi->s_journal)
1959 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1960 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1961 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1962 le16_add_cpu(&es->s_mnt_count, 1);
1963 es->s_mtime = cpu_to_le32(get_seconds());
1964 ext4_update_dynamic_rev(sb);
1965 if (sbi->s_journal)
1966 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1967
1968 ext4_commit_super(sb, 1);
1969 if (test_opt(sb, DEBUG))
1970 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1971 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1972 sb->s_blocksize,
1973 sbi->s_groups_count,
1974 EXT4_BLOCKS_PER_GROUP(sb),
1975 EXT4_INODES_PER_GROUP(sb),
1976 sbi->s_mount_opt, sbi->s_mount_opt2);
1977
1978 cleancache_init_fs(sb);
1979 return res;
1980}
1981
1982static int ext4_fill_flex_info(struct super_block *sb)
1983{
1984 struct ext4_sb_info *sbi = EXT4_SB(sb);
1985 struct ext4_group_desc *gdp = NULL;
1986 ext4_group_t flex_group_count;
1987 ext4_group_t flex_group;
1988 int groups_per_flex = 0;
1989 size_t size;
1990 int i;
1991
1992 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1993 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1994
1995 if (groups_per_flex < 2) {
1996 sbi->s_log_groups_per_flex = 0;
1997 return 1;
1998 }
1999
2000 /* We allocate both existing and potentially added groups */
2001 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
2002 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
2003 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
2004 size = flex_group_count * sizeof(struct flex_groups);
2005 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
2006 if (sbi->s_flex_groups == NULL) {
2007 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
2008 flex_group_count);
2009 goto failed;
2010 }
2011
2012 for (i = 0; i < sbi->s_groups_count; i++) {
2013 gdp = ext4_get_group_desc(sb, i, NULL);
2014
2015 flex_group = ext4_flex_group(sbi, i);
2016 atomic_add(ext4_free_inodes_count(sb, gdp),
2017 &sbi->s_flex_groups[flex_group].free_inodes);
2018 atomic_add(ext4_free_blks_count(sb, gdp),
2019 &sbi->s_flex_groups[flex_group].free_blocks);
2020 atomic_add(ext4_used_dirs_count(sb, gdp),
2021 &sbi->s_flex_groups[flex_group].used_dirs);
2022 }
2023
2024 return 1;
2025failed:
2026 return 0;
2027}
2028
2029__le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2030 struct ext4_group_desc *gdp)
2031{
2032 __u16 crc = 0;
2033
2034 if (sbi->s_es->s_feature_ro_compat &
2035 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
2036 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2037 __le32 le_group = cpu_to_le32(block_group);
2038
2039 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2040 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2041 crc = crc16(crc, (__u8 *)gdp, offset);
2042 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2043 /* for checksum of struct ext4_group_desc do the rest...*/
2044 if ((sbi->s_es->s_feature_incompat &
2045 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2046 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2047 crc = crc16(crc, (__u8 *)gdp + offset,
2048 le16_to_cpu(sbi->s_es->s_desc_size) -
2049 offset);
2050 }
2051
2052 return cpu_to_le16(crc);
2053}
2054
2055int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
2056 struct ext4_group_desc *gdp)
2057{
2058 if ((sbi->s_es->s_feature_ro_compat &
2059 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2060 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2061 return 0;
2062
2063 return 1;
2064}
2065
2066/* Called at mount-time, super-block is locked */
2067static int ext4_check_descriptors(struct super_block *sb,
2068 ext4_group_t *first_not_zeroed)
2069{
2070 struct ext4_sb_info *sbi = EXT4_SB(sb);
2071 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2072 ext4_fsblk_t last_block;
2073 ext4_fsblk_t block_bitmap;
2074 ext4_fsblk_t inode_bitmap;
2075 ext4_fsblk_t inode_table;
2076 int flexbg_flag = 0;
2077 ext4_group_t i, grp = sbi->s_groups_count;
2078
2079 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2080 flexbg_flag = 1;
2081
2082 ext4_debug("Checking group descriptors");
2083
2084 for (i = 0; i < sbi->s_groups_count; i++) {
2085 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2086
2087 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2088 last_block = ext4_blocks_count(sbi->s_es) - 1;
2089 else
2090 last_block = first_block +
2091 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2092
2093 if ((grp == sbi->s_groups_count) &&
2094 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2095 grp = i;
2096
2097 block_bitmap = ext4_block_bitmap(sb, gdp);
2098 if (block_bitmap < first_block || block_bitmap > last_block) {
2099 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2100 "Block bitmap for group %u not in group "
2101 "(block %llu)!", i, block_bitmap);
2102 return 0;
2103 }
2104 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2105 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2106 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2107 "Inode bitmap for group %u not in group "
2108 "(block %llu)!", i, inode_bitmap);
2109 return 0;
2110 }
2111 inode_table = ext4_inode_table(sb, gdp);
2112 if (inode_table < first_block ||
2113 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2114 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2115 "Inode table for group %u not in group "
2116 "(block %llu)!", i, inode_table);
2117 return 0;
2118 }
2119 ext4_lock_group(sb, i);
2120 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2121 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2122 "Checksum for group %u failed (%u!=%u)",
2123 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2124 gdp)), le16_to_cpu(gdp->bg_checksum));
2125 if (!(sb->s_flags & MS_RDONLY)) {
2126 ext4_unlock_group(sb, i);
2127 return 0;
2128 }
2129 }
2130 ext4_unlock_group(sb, i);
2131 if (!flexbg_flag)
2132 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2133 }
2134 if (NULL != first_not_zeroed)
2135 *first_not_zeroed = grp;
2136
2137 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2138 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2139 return 1;
2140}
2141
2142/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2143 * the superblock) which were deleted from all directories, but held open by
2144 * a process at the time of a crash. We walk the list and try to delete these
2145 * inodes at recovery time (only with a read-write filesystem).
2146 *
2147 * In order to keep the orphan inode chain consistent during traversal (in
2148 * case of crash during recovery), we link each inode into the superblock
2149 * orphan list_head and handle it the same way as an inode deletion during
2150 * normal operation (which journals the operations for us).
2151 *
2152 * We only do an iget() and an iput() on each inode, which is very safe if we
2153 * accidentally point at an in-use or already deleted inode. The worst that
2154 * can happen in this case is that we get a "bit already cleared" message from
2155 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2156 * e2fsck was run on this filesystem, and it must have already done the orphan
2157 * inode cleanup for us, so we can safely abort without any further action.
2158 */
2159static void ext4_orphan_cleanup(struct super_block *sb,
2160 struct ext4_super_block *es)
2161{
2162 unsigned int s_flags = sb->s_flags;
2163 int nr_orphans = 0, nr_truncates = 0;
2164#ifdef CONFIG_QUOTA
2165 int i;
2166#endif
2167 if (!es->s_last_orphan) {
2168 jbd_debug(4, "no orphan inodes to clean up\n");
2169 return;
2170 }
2171
2172 if (bdev_read_only(sb->s_bdev)) {
2173 ext4_msg(sb, KERN_ERR, "write access "
2174 "unavailable, skipping orphan cleanup");
2175 return;
2176 }
2177
2178 /* Check if feature set would not allow a r/w mount */
2179 if (!ext4_feature_set_ok(sb, 0)) {
2180 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2181 "unknown ROCOMPAT features");
2182 return;
2183 }
2184
2185 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2186 if (es->s_last_orphan)
2187 jbd_debug(1, "Errors on filesystem, "
2188 "clearing orphan list.\n");
2189 es->s_last_orphan = 0;
2190 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2191 return;
2192 }
2193
2194 if (s_flags & MS_RDONLY) {
2195 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2196 sb->s_flags &= ~MS_RDONLY;
2197 }
2198#ifdef CONFIG_QUOTA
2199 /* Needed for iput() to work correctly and not trash data */
2200 sb->s_flags |= MS_ACTIVE;
2201 /* Turn on quotas so that they are updated correctly */
2202 for (i = 0; i < MAXQUOTAS; i++) {
2203 if (EXT4_SB(sb)->s_qf_names[i]) {
2204 int ret = ext4_quota_on_mount(sb, i);
2205 if (ret < 0)
2206 ext4_msg(sb, KERN_ERR,
2207 "Cannot turn on journaled "
2208 "quota: error %d", ret);
2209 }
2210 }
2211#endif
2212
2213 while (es->s_last_orphan) {
2214 struct inode *inode;
2215
2216 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2217 if (IS_ERR(inode)) {
2218 es->s_last_orphan = 0;
2219 break;
2220 }
2221
2222 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2223 dquot_initialize(inode);
2224 if (inode->i_nlink) {
2225 ext4_msg(sb, KERN_DEBUG,
2226 "%s: truncating inode %lu to %lld bytes",
2227 __func__, inode->i_ino, inode->i_size);
2228 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2229 inode->i_ino, inode->i_size);
2230 ext4_truncate(inode);
2231 nr_truncates++;
2232 } else {
2233 ext4_msg(sb, KERN_DEBUG,
2234 "%s: deleting unreferenced inode %lu",
2235 __func__, inode->i_ino);
2236 jbd_debug(2, "deleting unreferenced inode %lu\n",
2237 inode->i_ino);
2238 nr_orphans++;
2239 }
2240 iput(inode); /* The delete magic happens here! */
2241 }
2242
2243#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2244
2245 if (nr_orphans)
2246 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2247 PLURAL(nr_orphans));
2248 if (nr_truncates)
2249 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2250 PLURAL(nr_truncates));
2251#ifdef CONFIG_QUOTA
2252 /* Turn quotas off */
2253 for (i = 0; i < MAXQUOTAS; i++) {
2254 if (sb_dqopt(sb)->files[i])
2255 dquot_quota_off(sb, i);
2256 }
2257#endif
2258 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2259}
2260
2261/*
2262 * Maximal extent format file size.
2263 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2264 * extent format containers, within a sector_t, and within i_blocks
2265 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2266 * so that won't be a limiting factor.
2267 *
2268 * However there is other limiting factor. We do store extents in the form
2269 * of starting block and length, hence the resulting length of the extent
2270 * covering maximum file size must fit into on-disk format containers as
2271 * well. Given that length is always by 1 unit bigger than max unit (because
2272 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2273 *
2274 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2275 */
2276static loff_t ext4_max_size(int blkbits, int has_huge_files)
2277{
2278 loff_t res;
2279 loff_t upper_limit = MAX_LFS_FILESIZE;
2280
2281 /* small i_blocks in vfs inode? */
2282 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2283 /*
2284 * CONFIG_LBDAF is not enabled implies the inode
2285 * i_block represent total blocks in 512 bytes
2286 * 32 == size of vfs inode i_blocks * 8
2287 */
2288 upper_limit = (1LL << 32) - 1;
2289
2290 /* total blocks in file system block size */
2291 upper_limit >>= (blkbits - 9);
2292 upper_limit <<= blkbits;
2293 }
2294
2295 /*
2296 * 32-bit extent-start container, ee_block. We lower the maxbytes
2297 * by one fs block, so ee_len can cover the extent of maximum file
2298 * size
2299 */
2300 res = (1LL << 32) - 1;
2301 res <<= blkbits;
2302
2303 /* Sanity check against vm- & vfs- imposed limits */
2304 if (res > upper_limit)
2305 res = upper_limit;
2306
2307 return res;
2308}
2309
2310/*
2311 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2312 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2313 * We need to be 1 filesystem block less than the 2^48 sector limit.
2314 */
2315static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2316{
2317 loff_t res = EXT4_NDIR_BLOCKS;
2318 int meta_blocks;
2319 loff_t upper_limit;
2320 /* This is calculated to be the largest file size for a dense, block
2321 * mapped file such that the file's total number of 512-byte sectors,
2322 * including data and all indirect blocks, does not exceed (2^48 - 1).
2323 *
2324 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2325 * number of 512-byte sectors of the file.
2326 */
2327
2328 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2329 /*
2330 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2331 * the inode i_block field represents total file blocks in
2332 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2333 */
2334 upper_limit = (1LL << 32) - 1;
2335
2336 /* total blocks in file system block size */
2337 upper_limit >>= (bits - 9);
2338
2339 } else {
2340 /*
2341 * We use 48 bit ext4_inode i_blocks
2342 * With EXT4_HUGE_FILE_FL set the i_blocks
2343 * represent total number of blocks in
2344 * file system block size
2345 */
2346 upper_limit = (1LL << 48) - 1;
2347
2348 }
2349
2350 /* indirect blocks */
2351 meta_blocks = 1;
2352 /* double indirect blocks */
2353 meta_blocks += 1 + (1LL << (bits-2));
2354 /* tripple indirect blocks */
2355 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2356
2357 upper_limit -= meta_blocks;
2358 upper_limit <<= bits;
2359
2360 res += 1LL << (bits-2);
2361 res += 1LL << (2*(bits-2));
2362 res += 1LL << (3*(bits-2));
2363 res <<= bits;
2364 if (res > upper_limit)
2365 res = upper_limit;
2366
2367 if (res > MAX_LFS_FILESIZE)
2368 res = MAX_LFS_FILESIZE;
2369
2370 return res;
2371}
2372
2373static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2374 ext4_fsblk_t logical_sb_block, int nr)
2375{
2376 struct ext4_sb_info *sbi = EXT4_SB(sb);
2377 ext4_group_t bg, first_meta_bg;
2378 int has_super = 0;
2379
2380 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2381
2382 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2383 nr < first_meta_bg)
2384 return logical_sb_block + nr + 1;
2385 bg = sbi->s_desc_per_block * nr;
2386 if (ext4_bg_has_super(sb, bg))
2387 has_super = 1;
2388
2389 return (has_super + ext4_group_first_block_no(sb, bg));
2390}
2391
2392/**
2393 * ext4_get_stripe_size: Get the stripe size.
2394 * @sbi: In memory super block info
2395 *
2396 * If we have specified it via mount option, then
2397 * use the mount option value. If the value specified at mount time is
2398 * greater than the blocks per group use the super block value.
2399 * If the super block value is greater than blocks per group return 0.
2400 * Allocator needs it be less than blocks per group.
2401 *
2402 */
2403static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2404{
2405 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2406 unsigned long stripe_width =
2407 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2408 int ret;
2409
2410 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2411 ret = sbi->s_stripe;
2412 else if (stripe_width <= sbi->s_blocks_per_group)
2413 ret = stripe_width;
2414 else if (stride <= sbi->s_blocks_per_group)
2415 ret = stride;
2416 else
2417 ret = 0;
2418
2419 /*
2420 * If the stripe width is 1, this makes no sense and
2421 * we set it to 0 to turn off stripe handling code.
2422 */
2423 if (ret <= 1)
2424 ret = 0;
2425
2426 return ret;
2427}
2428
2429/* sysfs supprt */
2430
2431struct ext4_attr {
2432 struct attribute attr;
2433 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2434 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2435 const char *, size_t);
2436 int offset;
2437};
2438
2439static int parse_strtoul(const char *buf,
2440 unsigned long max, unsigned long *value)
2441{
2442 char *endp;
2443
2444 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2445 endp = skip_spaces(endp);
2446 if (*endp || *value > max)
2447 return -EINVAL;
2448
2449 return 0;
2450}
2451
2452static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2453 struct ext4_sb_info *sbi,
2454 char *buf)
2455{
2456 return snprintf(buf, PAGE_SIZE, "%llu\n",
2457 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2458}
2459
2460static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2461 struct ext4_sb_info *sbi, char *buf)
2462{
2463 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2464
2465 if (!sb->s_bdev->bd_part)
2466 return snprintf(buf, PAGE_SIZE, "0\n");
2467 return snprintf(buf, PAGE_SIZE, "%lu\n",
2468 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2469 sbi->s_sectors_written_start) >> 1);
2470}
2471
2472static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2473 struct ext4_sb_info *sbi, char *buf)
2474{
2475 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2476
2477 if (!sb->s_bdev->bd_part)
2478 return snprintf(buf, PAGE_SIZE, "0\n");
2479 return snprintf(buf, PAGE_SIZE, "%llu\n",
2480 (unsigned long long)(sbi->s_kbytes_written +
2481 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2482 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2483}
2484
2485static ssize_t extent_cache_hits_show(struct ext4_attr *a,
2486 struct ext4_sb_info *sbi, char *buf)
2487{
2488 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits);
2489}
2490
2491static ssize_t extent_cache_misses_show(struct ext4_attr *a,
2492 struct ext4_sb_info *sbi, char *buf)
2493{
2494 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses);
2495}
2496
2497static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2498 struct ext4_sb_info *sbi,
2499 const char *buf, size_t count)
2500{
2501 unsigned long t;
2502
2503 if (parse_strtoul(buf, 0x40000000, &t))
2504 return -EINVAL;
2505
2506 if (t && !is_power_of_2(t))
2507 return -EINVAL;
2508
2509 sbi->s_inode_readahead_blks = t;
2510 return count;
2511}
2512
2513static ssize_t sbi_ui_show(struct ext4_attr *a,
2514 struct ext4_sb_info *sbi, char *buf)
2515{
2516 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2517
2518 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2519}
2520
2521static ssize_t sbi_ui_store(struct ext4_attr *a,
2522 struct ext4_sb_info *sbi,
2523 const char *buf, size_t count)
2524{
2525 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2526 unsigned long t;
2527
2528 if (parse_strtoul(buf, 0xffffffff, &t))
2529 return -EINVAL;
2530 *ui = t;
2531 return count;
2532}
2533
2534#define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2535static struct ext4_attr ext4_attr_##_name = { \
2536 .attr = {.name = __stringify(_name), .mode = _mode }, \
2537 .show = _show, \
2538 .store = _store, \
2539 .offset = offsetof(struct ext4_sb_info, _elname), \
2540}
2541#define EXT4_ATTR(name, mode, show, store) \
2542static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2543
2544#define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2545#define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2546#define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2547#define EXT4_RW_ATTR_SBI_UI(name, elname) \
2548 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2549#define ATTR_LIST(name) &ext4_attr_##name.attr
2550
2551EXT4_RO_ATTR(delayed_allocation_blocks);
2552EXT4_RO_ATTR(session_write_kbytes);
2553EXT4_RO_ATTR(lifetime_write_kbytes);
2554EXT4_RO_ATTR(extent_cache_hits);
2555EXT4_RO_ATTR(extent_cache_misses);
2556EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2557 inode_readahead_blks_store, s_inode_readahead_blks);
2558EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2559EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2560EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2561EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2562EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2563EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2564EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2565EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2566
2567static struct attribute *ext4_attrs[] = {
2568 ATTR_LIST(delayed_allocation_blocks),
2569 ATTR_LIST(session_write_kbytes),
2570 ATTR_LIST(lifetime_write_kbytes),
2571 ATTR_LIST(extent_cache_hits),
2572 ATTR_LIST(extent_cache_misses),
2573 ATTR_LIST(inode_readahead_blks),
2574 ATTR_LIST(inode_goal),
2575 ATTR_LIST(mb_stats),
2576 ATTR_LIST(mb_max_to_scan),
2577 ATTR_LIST(mb_min_to_scan),
2578 ATTR_LIST(mb_order2_req),
2579 ATTR_LIST(mb_stream_req),
2580 ATTR_LIST(mb_group_prealloc),
2581 ATTR_LIST(max_writeback_mb_bump),
2582 NULL,
2583};
2584
2585/* Features this copy of ext4 supports */
2586EXT4_INFO_ATTR(lazy_itable_init);
2587EXT4_INFO_ATTR(batched_discard);
2588
2589static struct attribute *ext4_feat_attrs[] = {
2590 ATTR_LIST(lazy_itable_init),
2591 ATTR_LIST(batched_discard),
2592 NULL,
2593};
2594
2595static ssize_t ext4_attr_show(struct kobject *kobj,
2596 struct attribute *attr, char *buf)
2597{
2598 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2599 s_kobj);
2600 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2601
2602 return a->show ? a->show(a, sbi, buf) : 0;
2603}
2604
2605static ssize_t ext4_attr_store(struct kobject *kobj,
2606 struct attribute *attr,
2607 const char *buf, size_t len)
2608{
2609 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2610 s_kobj);
2611 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2612
2613 return a->store ? a->store(a, sbi, buf, len) : 0;
2614}
2615
2616static void ext4_sb_release(struct kobject *kobj)
2617{
2618 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2619 s_kobj);
2620 complete(&sbi->s_kobj_unregister);
2621}
2622
2623static const struct sysfs_ops ext4_attr_ops = {
2624 .show = ext4_attr_show,
2625 .store = ext4_attr_store,
2626};
2627
2628static struct kobj_type ext4_ktype = {
2629 .default_attrs = ext4_attrs,
2630 .sysfs_ops = &ext4_attr_ops,
2631 .release = ext4_sb_release,
2632};
2633
2634static void ext4_feat_release(struct kobject *kobj)
2635{
2636 complete(&ext4_feat->f_kobj_unregister);
2637}
2638
2639static struct kobj_type ext4_feat_ktype = {
2640 .default_attrs = ext4_feat_attrs,
2641 .sysfs_ops = &ext4_attr_ops,
2642 .release = ext4_feat_release,
2643};
2644
2645/*
2646 * Check whether this filesystem can be mounted based on
2647 * the features present and the RDONLY/RDWR mount requested.
2648 * Returns 1 if this filesystem can be mounted as requested,
2649 * 0 if it cannot be.
2650 */
2651static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2652{
2653 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2654 ext4_msg(sb, KERN_ERR,
2655 "Couldn't mount because of "
2656 "unsupported optional features (%x)",
2657 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2658 ~EXT4_FEATURE_INCOMPAT_SUPP));
2659 return 0;
2660 }
2661
2662 if (readonly)
2663 return 1;
2664
2665 /* Check that feature set is OK for a read-write mount */
2666 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2667 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2668 "unsupported optional features (%x)",
2669 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2670 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2671 return 0;
2672 }
2673 /*
2674 * Large file size enabled file system can only be mounted
2675 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2676 */
2677 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2678 if (sizeof(blkcnt_t) < sizeof(u64)) {
2679 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2680 "cannot be mounted RDWR without "
2681 "CONFIG_LBDAF");
2682 return 0;
2683 }
2684 }
2685 return 1;
2686}
2687
2688/*
2689 * This function is called once a day if we have errors logged
2690 * on the file system
2691 */
2692static void print_daily_error_info(unsigned long arg)
2693{
2694 struct super_block *sb = (struct super_block *) arg;
2695 struct ext4_sb_info *sbi;
2696 struct ext4_super_block *es;
2697
2698 sbi = EXT4_SB(sb);
2699 es = sbi->s_es;
2700
2701 if (es->s_error_count)
2702 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2703 le32_to_cpu(es->s_error_count));
2704 if (es->s_first_error_time) {
2705 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2706 sb->s_id, le32_to_cpu(es->s_first_error_time),
2707 (int) sizeof(es->s_first_error_func),
2708 es->s_first_error_func,
2709 le32_to_cpu(es->s_first_error_line));
2710 if (es->s_first_error_ino)
2711 printk(": inode %u",
2712 le32_to_cpu(es->s_first_error_ino));
2713 if (es->s_first_error_block)
2714 printk(": block %llu", (unsigned long long)
2715 le64_to_cpu(es->s_first_error_block));
2716 printk("\n");
2717 }
2718 if (es->s_last_error_time) {
2719 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2720 sb->s_id, le32_to_cpu(es->s_last_error_time),
2721 (int) sizeof(es->s_last_error_func),
2722 es->s_last_error_func,
2723 le32_to_cpu(es->s_last_error_line));
2724 if (es->s_last_error_ino)
2725 printk(": inode %u",
2726 le32_to_cpu(es->s_last_error_ino));
2727 if (es->s_last_error_block)
2728 printk(": block %llu", (unsigned long long)
2729 le64_to_cpu(es->s_last_error_block));
2730 printk("\n");
2731 }
2732 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2733}
2734
2735/* Find next suitable group and run ext4_init_inode_table */
2736static int ext4_run_li_request(struct ext4_li_request *elr)
2737{
2738 struct ext4_group_desc *gdp = NULL;
2739 ext4_group_t group, ngroups;
2740 struct super_block *sb;
2741 unsigned long timeout = 0;
2742 int ret = 0;
2743
2744 sb = elr->lr_super;
2745 ngroups = EXT4_SB(sb)->s_groups_count;
2746
2747 for (group = elr->lr_next_group; group < ngroups; group++) {
2748 gdp = ext4_get_group_desc(sb, group, NULL);
2749 if (!gdp) {
2750 ret = 1;
2751 break;
2752 }
2753
2754 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2755 break;
2756 }
2757
2758 if (group == ngroups)
2759 ret = 1;
2760
2761 if (!ret) {
2762 timeout = jiffies;
2763 ret = ext4_init_inode_table(sb, group,
2764 elr->lr_timeout ? 0 : 1);
2765 if (elr->lr_timeout == 0) {
2766 timeout = (jiffies - timeout) *
2767 elr->lr_sbi->s_li_wait_mult;
2768 elr->lr_timeout = timeout;
2769 }
2770 elr->lr_next_sched = jiffies + elr->lr_timeout;
2771 elr->lr_next_group = group + 1;
2772 }
2773
2774 return ret;
2775}
2776
2777/*
2778 * Remove lr_request from the list_request and free the
2779 * request structure. Should be called with li_list_mtx held
2780 */
2781static void ext4_remove_li_request(struct ext4_li_request *elr)
2782{
2783 struct ext4_sb_info *sbi;
2784
2785 if (!elr)
2786 return;
2787
2788 sbi = elr->lr_sbi;
2789
2790 list_del(&elr->lr_request);
2791 sbi->s_li_request = NULL;
2792 kfree(elr);
2793}
2794
2795static void ext4_unregister_li_request(struct super_block *sb)
2796{
2797 mutex_lock(&ext4_li_mtx);
2798 if (!ext4_li_info) {
2799 mutex_unlock(&ext4_li_mtx);
2800 return;
2801 }
2802
2803 mutex_lock(&ext4_li_info->li_list_mtx);
2804 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2805 mutex_unlock(&ext4_li_info->li_list_mtx);
2806 mutex_unlock(&ext4_li_mtx);
2807}
2808
2809static struct task_struct *ext4_lazyinit_task;
2810
2811/*
2812 * This is the function where ext4lazyinit thread lives. It walks
2813 * through the request list searching for next scheduled filesystem.
2814 * When such a fs is found, run the lazy initialization request
2815 * (ext4_rn_li_request) and keep track of the time spend in this
2816 * function. Based on that time we compute next schedule time of
2817 * the request. When walking through the list is complete, compute
2818 * next waking time and put itself into sleep.
2819 */
2820static int ext4_lazyinit_thread(void *arg)
2821{
2822 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2823 struct list_head *pos, *n;
2824 struct ext4_li_request *elr;
2825 unsigned long next_wakeup, cur;
2826
2827 BUG_ON(NULL == eli);
2828
2829cont_thread:
2830 while (true) {
2831 next_wakeup = MAX_JIFFY_OFFSET;
2832
2833 mutex_lock(&eli->li_list_mtx);
2834 if (list_empty(&eli->li_request_list)) {
2835 mutex_unlock(&eli->li_list_mtx);
2836 goto exit_thread;
2837 }
2838
2839 list_for_each_safe(pos, n, &eli->li_request_list) {
2840 elr = list_entry(pos, struct ext4_li_request,
2841 lr_request);
2842
2843 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2844 if (ext4_run_li_request(elr) != 0) {
2845 /* error, remove the lazy_init job */
2846 ext4_remove_li_request(elr);
2847 continue;
2848 }
2849 }
2850
2851 if (time_before(elr->lr_next_sched, next_wakeup))
2852 next_wakeup = elr->lr_next_sched;
2853 }
2854 mutex_unlock(&eli->li_list_mtx);
2855
2856 if (freezing(current))
2857 refrigerator();
2858
2859 cur = jiffies;
2860 if ((time_after_eq(cur, next_wakeup)) ||
2861 (MAX_JIFFY_OFFSET == next_wakeup)) {
2862 cond_resched();
2863 continue;
2864 }
2865
2866 schedule_timeout_interruptible(next_wakeup - cur);
2867
2868 if (kthread_should_stop()) {
2869 ext4_clear_request_list();
2870 goto exit_thread;
2871 }
2872 }
2873
2874exit_thread:
2875 /*
2876 * It looks like the request list is empty, but we need
2877 * to check it under the li_list_mtx lock, to prevent any
2878 * additions into it, and of course we should lock ext4_li_mtx
2879 * to atomically free the list and ext4_li_info, because at
2880 * this point another ext4 filesystem could be registering
2881 * new one.
2882 */
2883 mutex_lock(&ext4_li_mtx);
2884 mutex_lock(&eli->li_list_mtx);
2885 if (!list_empty(&eli->li_request_list)) {
2886 mutex_unlock(&eli->li_list_mtx);
2887 mutex_unlock(&ext4_li_mtx);
2888 goto cont_thread;
2889 }
2890 mutex_unlock(&eli->li_list_mtx);
2891 kfree(ext4_li_info);
2892 ext4_li_info = NULL;
2893 mutex_unlock(&ext4_li_mtx);
2894
2895 return 0;
2896}
2897
2898static void ext4_clear_request_list(void)
2899{
2900 struct list_head *pos, *n;
2901 struct ext4_li_request *elr;
2902
2903 mutex_lock(&ext4_li_info->li_list_mtx);
2904 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2905 elr = list_entry(pos, struct ext4_li_request,
2906 lr_request);
2907 ext4_remove_li_request(elr);
2908 }
2909 mutex_unlock(&ext4_li_info->li_list_mtx);
2910}
2911
2912static int ext4_run_lazyinit_thread(void)
2913{
2914 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2915 ext4_li_info, "ext4lazyinit");
2916 if (IS_ERR(ext4_lazyinit_task)) {
2917 int err = PTR_ERR(ext4_lazyinit_task);
2918 ext4_clear_request_list();
2919 kfree(ext4_li_info);
2920 ext4_li_info = NULL;
2921 printk(KERN_CRIT "EXT4: error %d creating inode table "
2922 "initialization thread\n",
2923 err);
2924 return err;
2925 }
2926 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2927 return 0;
2928}
2929
2930/*
2931 * Check whether it make sense to run itable init. thread or not.
2932 * If there is at least one uninitialized inode table, return
2933 * corresponding group number, else the loop goes through all
2934 * groups and return total number of groups.
2935 */
2936static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2937{
2938 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2939 struct ext4_group_desc *gdp = NULL;
2940
2941 for (group = 0; group < ngroups; group++) {
2942 gdp = ext4_get_group_desc(sb, group, NULL);
2943 if (!gdp)
2944 continue;
2945
2946 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2947 break;
2948 }
2949
2950 return group;
2951}
2952
2953static int ext4_li_info_new(void)
2954{
2955 struct ext4_lazy_init *eli = NULL;
2956
2957 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2958 if (!eli)
2959 return -ENOMEM;
2960
2961 INIT_LIST_HEAD(&eli->li_request_list);
2962 mutex_init(&eli->li_list_mtx);
2963
2964 eli->li_state |= EXT4_LAZYINIT_QUIT;
2965
2966 ext4_li_info = eli;
2967
2968 return 0;
2969}
2970
2971static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2972 ext4_group_t start)
2973{
2974 struct ext4_sb_info *sbi = EXT4_SB(sb);
2975 struct ext4_li_request *elr;
2976 unsigned long rnd;
2977
2978 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2979 if (!elr)
2980 return NULL;
2981
2982 elr->lr_super = sb;
2983 elr->lr_sbi = sbi;
2984 elr->lr_next_group = start;
2985
2986 /*
2987 * Randomize first schedule time of the request to
2988 * spread the inode table initialization requests
2989 * better.
2990 */
2991 get_random_bytes(&rnd, sizeof(rnd));
2992 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2993 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2994
2995 return elr;
2996}
2997
2998static int ext4_register_li_request(struct super_block *sb,
2999 ext4_group_t first_not_zeroed)
3000{
3001 struct ext4_sb_info *sbi = EXT4_SB(sb);
3002 struct ext4_li_request *elr;
3003 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3004 int ret = 0;
3005
3006 if (sbi->s_li_request != NULL) {
3007 /*
3008 * Reset timeout so it can be computed again, because
3009 * s_li_wait_mult might have changed.
3010 */
3011 sbi->s_li_request->lr_timeout = 0;
3012 return 0;
3013 }
3014
3015 if (first_not_zeroed == ngroups ||
3016 (sb->s_flags & MS_RDONLY) ||
3017 !test_opt(sb, INIT_INODE_TABLE))
3018 return 0;
3019
3020 elr = ext4_li_request_new(sb, first_not_zeroed);
3021 if (!elr)
3022 return -ENOMEM;
3023
3024 mutex_lock(&ext4_li_mtx);
3025
3026 if (NULL == ext4_li_info) {
3027 ret = ext4_li_info_new();
3028 if (ret)
3029 goto out;
3030 }
3031
3032 mutex_lock(&ext4_li_info->li_list_mtx);
3033 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3034 mutex_unlock(&ext4_li_info->li_list_mtx);
3035
3036 sbi->s_li_request = elr;
3037 /*
3038 * set elr to NULL here since it has been inserted to
3039 * the request_list and the removal and free of it is
3040 * handled by ext4_clear_request_list from now on.
3041 */
3042 elr = NULL;
3043
3044 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3045 ret = ext4_run_lazyinit_thread();
3046 if (ret)
3047 goto out;
3048 }
3049out:
3050 mutex_unlock(&ext4_li_mtx);
3051 if (ret)
3052 kfree(elr);
3053 return ret;
3054}
3055
3056/*
3057 * We do not need to lock anything since this is called on
3058 * module unload.
3059 */
3060static void ext4_destroy_lazyinit_thread(void)
3061{
3062 /*
3063 * If thread exited earlier
3064 * there's nothing to be done.
3065 */
3066 if (!ext4_li_info || !ext4_lazyinit_task)
3067 return;
3068
3069 kthread_stop(ext4_lazyinit_task);
3070}
3071
3072static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3073 __releases(kernel_lock)
3074 __acquires(kernel_lock)
3075{
3076 char *orig_data = kstrdup(data, GFP_KERNEL);
3077 struct buffer_head *bh;
3078 struct ext4_super_block *es = NULL;
3079 struct ext4_sb_info *sbi;
3080 ext4_fsblk_t block;
3081 ext4_fsblk_t sb_block = get_sb_block(&data);
3082 ext4_fsblk_t logical_sb_block;
3083 unsigned long offset = 0;
3084 unsigned long journal_devnum = 0;
3085 unsigned long def_mount_opts;
3086 struct inode *root;
3087 char *cp;
3088 const char *descr;
3089 int ret = -ENOMEM;
3090 int blocksize;
3091 unsigned int db_count;
3092 unsigned int i;
3093 int needs_recovery, has_huge_files;
3094 __u64 blocks_count;
3095 int err;
3096 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3097 ext4_group_t first_not_zeroed;
3098
3099 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3100 if (!sbi)
3101 goto out_free_orig;
3102
3103 sbi->s_blockgroup_lock =
3104 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3105 if (!sbi->s_blockgroup_lock) {
3106 kfree(sbi);
3107 goto out_free_orig;
3108 }
3109 sb->s_fs_info = sbi;
3110 sbi->s_mount_opt = 0;
3111 sbi->s_resuid = EXT4_DEF_RESUID;
3112 sbi->s_resgid = EXT4_DEF_RESGID;
3113 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3114 sbi->s_sb_block = sb_block;
3115 if (sb->s_bdev->bd_part)
3116 sbi->s_sectors_written_start =
3117 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3118
3119 /* Cleanup superblock name */
3120 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3121 *cp = '!';
3122
3123 ret = -EINVAL;
3124 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3125 if (!blocksize) {
3126 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3127 goto out_fail;
3128 }
3129
3130 /*
3131 * The ext4 superblock will not be buffer aligned for other than 1kB
3132 * block sizes. We need to calculate the offset from buffer start.
3133 */
3134 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3135 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3136 offset = do_div(logical_sb_block, blocksize);
3137 } else {
3138 logical_sb_block = sb_block;
3139 }
3140
3141 if (!(bh = sb_bread(sb, logical_sb_block))) {
3142 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3143 goto out_fail;
3144 }
3145 /*
3146 * Note: s_es must be initialized as soon as possible because
3147 * some ext4 macro-instructions depend on its value
3148 */
3149 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3150 sbi->s_es = es;
3151 sb->s_magic = le16_to_cpu(es->s_magic);
3152 if (sb->s_magic != EXT4_SUPER_MAGIC)
3153 goto cantfind_ext4;
3154 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3155
3156 /* Set defaults before we parse the mount options */
3157 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3158 set_opt(sb, INIT_INODE_TABLE);
3159 if (def_mount_opts & EXT4_DEFM_DEBUG)
3160 set_opt(sb, DEBUG);
3161 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3162 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3163 "2.6.38");
3164 set_opt(sb, GRPID);
3165 }
3166 if (def_mount_opts & EXT4_DEFM_UID16)
3167 set_opt(sb, NO_UID32);
3168 /* xattr user namespace & acls are now defaulted on */
3169#ifdef CONFIG_EXT4_FS_XATTR
3170 set_opt(sb, XATTR_USER);
3171#endif
3172#ifdef CONFIG_EXT4_FS_POSIX_ACL
3173 set_opt(sb, POSIX_ACL);
3174#endif
3175 set_opt(sb, MBLK_IO_SUBMIT);
3176 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3177 set_opt(sb, JOURNAL_DATA);
3178 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3179 set_opt(sb, ORDERED_DATA);
3180 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3181 set_opt(sb, WRITEBACK_DATA);
3182
3183 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3184 set_opt(sb, ERRORS_PANIC);
3185 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3186 set_opt(sb, ERRORS_CONT);
3187 else
3188 set_opt(sb, ERRORS_RO);
3189 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3190 set_opt(sb, BLOCK_VALIDITY);
3191 if (def_mount_opts & EXT4_DEFM_DISCARD)
3192 set_opt(sb, DISCARD);
3193
3194 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3195 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3196 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3197 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3198 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3199
3200 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3201 set_opt(sb, BARRIER);
3202
3203 /*
3204 * enable delayed allocation by default
3205 * Use -o nodelalloc to turn it off
3206 */
3207 if (!IS_EXT3_SB(sb) &&
3208 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3209 set_opt(sb, DELALLOC);
3210
3211 /*
3212 * set default s_li_wait_mult for lazyinit, for the case there is
3213 * no mount option specified.
3214 */
3215 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3216
3217 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3218 &journal_devnum, &journal_ioprio, NULL, 0)) {
3219 ext4_msg(sb, KERN_WARNING,
3220 "failed to parse options in superblock: %s",
3221 sbi->s_es->s_mount_opts);
3222 }
3223 if (!parse_options((char *) data, sb, &journal_devnum,
3224 &journal_ioprio, NULL, 0))
3225 goto failed_mount;
3226
3227 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3228 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3229
3230 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3231 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3232 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3233 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3234 ext4_msg(sb, KERN_WARNING,
3235 "feature flags set on rev 0 fs, "
3236 "running e2fsck is recommended");
3237
3238 if (IS_EXT2_SB(sb)) {
3239 if (ext2_feature_set_ok(sb))
3240 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3241 "using the ext4 subsystem");
3242 else {
3243 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3244 "to feature incompatibilities");
3245 goto failed_mount;
3246 }
3247 }
3248
3249 if (IS_EXT3_SB(sb)) {
3250 if (ext3_feature_set_ok(sb))
3251 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3252 "using the ext4 subsystem");
3253 else {
3254 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3255 "to feature incompatibilities");
3256 goto failed_mount;
3257 }
3258 }
3259
3260 /*
3261 * Check feature flags regardless of the revision level, since we
3262 * previously didn't change the revision level when setting the flags,
3263 * so there is a chance incompat flags are set on a rev 0 filesystem.
3264 */
3265 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3266 goto failed_mount;
3267
3268 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3269
3270 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3271 blocksize > EXT4_MAX_BLOCK_SIZE) {
3272 ext4_msg(sb, KERN_ERR,
3273 "Unsupported filesystem blocksize %d", blocksize);
3274 goto failed_mount;
3275 }
3276
3277 if (sb->s_blocksize != blocksize) {
3278 /* Validate the filesystem blocksize */
3279 if (!sb_set_blocksize(sb, blocksize)) {
3280 ext4_msg(sb, KERN_ERR, "bad block size %d",
3281 blocksize);
3282 goto failed_mount;
3283 }
3284
3285 brelse(bh);
3286 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3287 offset = do_div(logical_sb_block, blocksize);
3288 bh = sb_bread(sb, logical_sb_block);
3289 if (!bh) {
3290 ext4_msg(sb, KERN_ERR,
3291 "Can't read superblock on 2nd try");
3292 goto failed_mount;
3293 }
3294 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3295 sbi->s_es = es;
3296 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3297 ext4_msg(sb, KERN_ERR,
3298 "Magic mismatch, very weird!");
3299 goto failed_mount;
3300 }
3301 }
3302
3303 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3304 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3305 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3306 has_huge_files);
3307 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3308
3309 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3310 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3311 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3312 } else {
3313 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3314 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3315 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3316 (!is_power_of_2(sbi->s_inode_size)) ||
3317 (sbi->s_inode_size > blocksize)) {
3318 ext4_msg(sb, KERN_ERR,
3319 "unsupported inode size: %d",
3320 sbi->s_inode_size);
3321 goto failed_mount;
3322 }
3323 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3324 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3325 }
3326
3327 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3328 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3329 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3330 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3331 !is_power_of_2(sbi->s_desc_size)) {
3332 ext4_msg(sb, KERN_ERR,
3333 "unsupported descriptor size %lu",
3334 sbi->s_desc_size);
3335 goto failed_mount;
3336 }
3337 } else
3338 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3339
3340 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3341 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3342 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3343 goto cantfind_ext4;
3344
3345 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3346 if (sbi->s_inodes_per_block == 0)
3347 goto cantfind_ext4;
3348 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3349 sbi->s_inodes_per_block;
3350 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3351 sbi->s_sbh = bh;
3352 sbi->s_mount_state = le16_to_cpu(es->s_state);
3353 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3354 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3355
3356 for (i = 0; i < 4; i++)
3357 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3358 sbi->s_def_hash_version = es->s_def_hash_version;
3359 i = le32_to_cpu(es->s_flags);
3360 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3361 sbi->s_hash_unsigned = 3;
3362 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3363#ifdef __CHAR_UNSIGNED__
3364 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3365 sbi->s_hash_unsigned = 3;
3366#else
3367 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3368#endif
3369 sb->s_dirt = 1;
3370 }
3371
3372 if (sbi->s_blocks_per_group > blocksize * 8) {
3373 ext4_msg(sb, KERN_ERR,
3374 "#blocks per group too big: %lu",
3375 sbi->s_blocks_per_group);
3376 goto failed_mount;
3377 }
3378 if (sbi->s_inodes_per_group > blocksize * 8) {
3379 ext4_msg(sb, KERN_ERR,
3380 "#inodes per group too big: %lu",
3381 sbi->s_inodes_per_group);
3382 goto failed_mount;
3383 }
3384
3385 /*
3386 * Test whether we have more sectors than will fit in sector_t,
3387 * and whether the max offset is addressable by the page cache.
3388 */
3389 err = generic_check_addressable(sb->s_blocksize_bits,
3390 ext4_blocks_count(es));
3391 if (err) {
3392 ext4_msg(sb, KERN_ERR, "filesystem"
3393 " too large to mount safely on this system");
3394 if (sizeof(sector_t) < 8)
3395 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3396 ret = err;
3397 goto failed_mount;
3398 }
3399
3400 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3401 goto cantfind_ext4;
3402
3403 /* check blocks count against device size */
3404 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3405 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3406 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3407 "exceeds size of device (%llu blocks)",
3408 ext4_blocks_count(es), blocks_count);
3409 goto failed_mount;
3410 }
3411
3412 /*
3413 * It makes no sense for the first data block to be beyond the end
3414 * of the filesystem.
3415 */
3416 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3417 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3418 "block %u is beyond end of filesystem (%llu)",
3419 le32_to_cpu(es->s_first_data_block),
3420 ext4_blocks_count(es));
3421 goto failed_mount;
3422 }
3423 blocks_count = (ext4_blocks_count(es) -
3424 le32_to_cpu(es->s_first_data_block) +
3425 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3426 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3427 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3428 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3429 "(block count %llu, first data block %u, "
3430 "blocks per group %lu)", sbi->s_groups_count,
3431 ext4_blocks_count(es),
3432 le32_to_cpu(es->s_first_data_block),
3433 EXT4_BLOCKS_PER_GROUP(sb));
3434 goto failed_mount;
3435 }
3436 sbi->s_groups_count = blocks_count;
3437 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3438 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3439 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3440 EXT4_DESC_PER_BLOCK(sb);
3441 sbi->s_group_desc = ext4_kvmalloc(db_count *
3442 sizeof(struct buffer_head *),
3443 GFP_KERNEL);
3444 if (sbi->s_group_desc == NULL) {
3445 ext4_msg(sb, KERN_ERR, "not enough memory");
3446 goto failed_mount;
3447 }
3448
3449#ifdef CONFIG_PROC_FS
3450 if (ext4_proc_root)
3451 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3452#endif
3453
3454 bgl_lock_init(sbi->s_blockgroup_lock);
3455
3456 for (i = 0; i < db_count; i++) {
3457 block = descriptor_loc(sb, logical_sb_block, i);
3458 sbi->s_group_desc[i] = sb_bread(sb, block);
3459 if (!sbi->s_group_desc[i]) {
3460 ext4_msg(sb, KERN_ERR,
3461 "can't read group descriptor %d", i);
3462 db_count = i;
3463 goto failed_mount2;
3464 }
3465 }
3466 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3467 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3468 goto failed_mount2;
3469 }
3470 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3471 if (!ext4_fill_flex_info(sb)) {
3472 ext4_msg(sb, KERN_ERR,
3473 "unable to initialize "
3474 "flex_bg meta info!");
3475 goto failed_mount2;
3476 }
3477
3478 sbi->s_gdb_count = db_count;
3479 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3480 spin_lock_init(&sbi->s_next_gen_lock);
3481
3482 init_timer(&sbi->s_err_report);
3483 sbi->s_err_report.function = print_daily_error_info;
3484 sbi->s_err_report.data = (unsigned long) sb;
3485
3486 err = percpu_counter_init(&sbi->s_freeblocks_counter,
3487 ext4_count_free_blocks(sb));
3488 if (!err) {
3489 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3490 ext4_count_free_inodes(sb));
3491 }
3492 if (!err) {
3493 err = percpu_counter_init(&sbi->s_dirs_counter,
3494 ext4_count_dirs(sb));
3495 }
3496 if (!err) {
3497 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3498 }
3499 if (err) {
3500 ext4_msg(sb, KERN_ERR, "insufficient memory");
3501 goto failed_mount3;
3502 }
3503
3504 sbi->s_stripe = ext4_get_stripe_size(sbi);
3505 sbi->s_max_writeback_mb_bump = 128;
3506
3507 /*
3508 * set up enough so that it can read an inode
3509 */
3510 if (!test_opt(sb, NOLOAD) &&
3511 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3512 sb->s_op = &ext4_sops;
3513 else
3514 sb->s_op = &ext4_nojournal_sops;
3515 sb->s_export_op = &ext4_export_ops;
3516 sb->s_xattr = ext4_xattr_handlers;
3517#ifdef CONFIG_QUOTA
3518 sb->s_qcop = &ext4_qctl_operations;
3519 sb->dq_op = &ext4_quota_operations;
3520#endif
3521 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3522
3523 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3524 mutex_init(&sbi->s_orphan_lock);
3525 sbi->s_resize_flags = 0;
3526
3527 sb->s_root = NULL;
3528
3529 needs_recovery = (es->s_last_orphan != 0 ||
3530 EXT4_HAS_INCOMPAT_FEATURE(sb,
3531 EXT4_FEATURE_INCOMPAT_RECOVER));
3532
3533 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3534 !(sb->s_flags & MS_RDONLY))
3535 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3536 goto failed_mount3;
3537
3538 /*
3539 * The first inode we look at is the journal inode. Don't try
3540 * root first: it may be modified in the journal!
3541 */
3542 if (!test_opt(sb, NOLOAD) &&
3543 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3544 if (ext4_load_journal(sb, es, journal_devnum))
3545 goto failed_mount3;
3546 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3547 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3548 ext4_msg(sb, KERN_ERR, "required journal recovery "
3549 "suppressed and not mounted read-only");
3550 goto failed_mount_wq;
3551 } else {
3552 clear_opt(sb, DATA_FLAGS);
3553 sbi->s_journal = NULL;
3554 needs_recovery = 0;
3555 goto no_journal;
3556 }
3557
3558 if (ext4_blocks_count(es) > 0xffffffffULL &&
3559 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3560 JBD2_FEATURE_INCOMPAT_64BIT)) {
3561 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3562 goto failed_mount_wq;
3563 }
3564
3565 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3566 jbd2_journal_set_features(sbi->s_journal,
3567 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3568 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3569 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3570 jbd2_journal_set_features(sbi->s_journal,
3571 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3572 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3573 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3574 } else {
3575 jbd2_journal_clear_features(sbi->s_journal,
3576 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3577 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3578 }
3579
3580 /* We have now updated the journal if required, so we can
3581 * validate the data journaling mode. */
3582 switch (test_opt(sb, DATA_FLAGS)) {
3583 case 0:
3584 /* No mode set, assume a default based on the journal
3585 * capabilities: ORDERED_DATA if the journal can
3586 * cope, else JOURNAL_DATA
3587 */
3588 if (jbd2_journal_check_available_features
3589 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3590 set_opt(sb, ORDERED_DATA);
3591 else
3592 set_opt(sb, JOURNAL_DATA);
3593 break;
3594
3595 case EXT4_MOUNT_ORDERED_DATA:
3596 case EXT4_MOUNT_WRITEBACK_DATA:
3597 if (!jbd2_journal_check_available_features
3598 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3599 ext4_msg(sb, KERN_ERR, "Journal does not support "
3600 "requested data journaling mode");
3601 goto failed_mount_wq;
3602 }
3603 default:
3604 break;
3605 }
3606 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3607
3608 /*
3609 * The journal may have updated the bg summary counts, so we
3610 * need to update the global counters.
3611 */
3612 percpu_counter_set(&sbi->s_freeblocks_counter,
3613 ext4_count_free_blocks(sb));
3614 percpu_counter_set(&sbi->s_freeinodes_counter,
3615 ext4_count_free_inodes(sb));
3616 percpu_counter_set(&sbi->s_dirs_counter,
3617 ext4_count_dirs(sb));
3618 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3619
3620no_journal:
3621 /*
3622 * The maximum number of concurrent works can be high and
3623 * concurrency isn't really necessary. Limit it to 1.
3624 */
3625 EXT4_SB(sb)->dio_unwritten_wq =
3626 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3627 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3628 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3629 goto failed_mount_wq;
3630 }
3631
3632 /*
3633 * The jbd2_journal_load will have done any necessary log recovery,
3634 * so we can safely mount the rest of the filesystem now.
3635 */
3636
3637 root = ext4_iget(sb, EXT4_ROOT_INO);
3638 if (IS_ERR(root)) {
3639 ext4_msg(sb, KERN_ERR, "get root inode failed");
3640 ret = PTR_ERR(root);
3641 root = NULL;
3642 goto failed_mount4;
3643 }
3644 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3645 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3646 goto failed_mount4;
3647 }
3648 sb->s_root = d_alloc_root(root);
3649 if (!sb->s_root) {
3650 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3651 ret = -ENOMEM;
3652 goto failed_mount4;
3653 }
3654
3655 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3656
3657 /* determine the minimum size of new large inodes, if present */
3658 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3659 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3660 EXT4_GOOD_OLD_INODE_SIZE;
3661 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3662 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3663 if (sbi->s_want_extra_isize <
3664 le16_to_cpu(es->s_want_extra_isize))
3665 sbi->s_want_extra_isize =
3666 le16_to_cpu(es->s_want_extra_isize);
3667 if (sbi->s_want_extra_isize <
3668 le16_to_cpu(es->s_min_extra_isize))
3669 sbi->s_want_extra_isize =
3670 le16_to_cpu(es->s_min_extra_isize);
3671 }
3672 }
3673 /* Check if enough inode space is available */
3674 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3675 sbi->s_inode_size) {
3676 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3677 EXT4_GOOD_OLD_INODE_SIZE;
3678 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3679 "available");
3680 }
3681
3682 if (test_opt(sb, DELALLOC) &&
3683 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3684 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3685 "requested data journaling mode");
3686 clear_opt(sb, DELALLOC);
3687 }
3688 if (test_opt(sb, DIOREAD_NOLOCK)) {
3689 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3690 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3691 "option - requested data journaling mode");
3692 clear_opt(sb, DIOREAD_NOLOCK);
3693 }
3694 if (sb->s_blocksize < PAGE_SIZE) {
3695 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3696 "option - block size is too small");
3697 clear_opt(sb, DIOREAD_NOLOCK);
3698 }
3699 }
3700
3701 err = ext4_setup_system_zone(sb);
3702 if (err) {
3703 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3704 "zone (%d)", err);
3705 goto failed_mount4;
3706 }
3707
3708 ext4_ext_init(sb);
3709 err = ext4_mb_init(sb, needs_recovery);
3710 if (err) {
3711 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3712 err);
3713 goto failed_mount4;
3714 }
3715
3716 err = ext4_register_li_request(sb, first_not_zeroed);
3717 if (err)
3718 goto failed_mount4;
3719
3720 sbi->s_kobj.kset = ext4_kset;
3721 init_completion(&sbi->s_kobj_unregister);
3722 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3723 "%s", sb->s_id);
3724 if (err) {
3725 ext4_mb_release(sb);
3726 ext4_ext_release(sb);
3727 goto failed_mount4;
3728 };
3729
3730 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3731 ext4_orphan_cleanup(sb, es);
3732 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3733 if (needs_recovery) {
3734 ext4_msg(sb, KERN_INFO, "recovery complete");
3735 ext4_mark_recovery_complete(sb, es);
3736 }
3737 if (EXT4_SB(sb)->s_journal) {
3738 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3739 descr = " journalled data mode";
3740 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3741 descr = " ordered data mode";
3742 else
3743 descr = " writeback data mode";
3744 } else
3745 descr = "out journal";
3746
3747 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3748 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3749 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3750
3751 if (es->s_error_count)
3752 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3753
3754 kfree(orig_data);
3755 return 0;
3756
3757cantfind_ext4:
3758 if (!silent)
3759 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3760 goto failed_mount;
3761
3762failed_mount4:
3763 iput(root);
3764 sb->s_root = NULL;
3765 ext4_msg(sb, KERN_ERR, "mount failed");
3766 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3767failed_mount_wq:
3768 ext4_release_system_zone(sb);
3769 if (sbi->s_journal) {
3770 jbd2_journal_destroy(sbi->s_journal);
3771 sbi->s_journal = NULL;
3772 }
3773failed_mount3:
3774 del_timer(&sbi->s_err_report);
3775 if (sbi->s_flex_groups)
3776 ext4_kvfree(sbi->s_flex_groups);
3777 percpu_counter_destroy(&sbi->s_freeblocks_counter);
3778 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3779 percpu_counter_destroy(&sbi->s_dirs_counter);
3780 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3781 if (sbi->s_mmp_tsk)
3782 kthread_stop(sbi->s_mmp_tsk);
3783failed_mount2:
3784 for (i = 0; i < db_count; i++)
3785 brelse(sbi->s_group_desc[i]);
3786 ext4_kvfree(sbi->s_group_desc);
3787failed_mount:
3788 if (sbi->s_proc) {
3789 remove_proc_entry(sb->s_id, ext4_proc_root);
3790 }
3791#ifdef CONFIG_QUOTA
3792 for (i = 0; i < MAXQUOTAS; i++)
3793 kfree(sbi->s_qf_names[i]);
3794#endif
3795 ext4_blkdev_remove(sbi);
3796 brelse(bh);
3797out_fail:
3798 sb->s_fs_info = NULL;
3799 kfree(sbi->s_blockgroup_lock);
3800 kfree(sbi);
3801out_free_orig:
3802 kfree(orig_data);
3803 return ret;
3804}
3805
3806/*
3807 * Setup any per-fs journal parameters now. We'll do this both on
3808 * initial mount, once the journal has been initialised but before we've
3809 * done any recovery; and again on any subsequent remount.
3810 */
3811static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3812{
3813 struct ext4_sb_info *sbi = EXT4_SB(sb);
3814
3815 journal->j_commit_interval = sbi->s_commit_interval;
3816 journal->j_min_batch_time = sbi->s_min_batch_time;
3817 journal->j_max_batch_time = sbi->s_max_batch_time;
3818
3819 write_lock(&journal->j_state_lock);
3820 if (test_opt(sb, BARRIER))
3821 journal->j_flags |= JBD2_BARRIER;
3822 else
3823 journal->j_flags &= ~JBD2_BARRIER;
3824 if (test_opt(sb, DATA_ERR_ABORT))
3825 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3826 else
3827 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3828 write_unlock(&journal->j_state_lock);
3829}
3830
3831static journal_t *ext4_get_journal(struct super_block *sb,
3832 unsigned int journal_inum)
3833{
3834 struct inode *journal_inode;
3835 journal_t *journal;
3836
3837 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3838
3839 /* First, test for the existence of a valid inode on disk. Bad
3840 * things happen if we iget() an unused inode, as the subsequent
3841 * iput() will try to delete it. */
3842
3843 journal_inode = ext4_iget(sb, journal_inum);
3844 if (IS_ERR(journal_inode)) {
3845 ext4_msg(sb, KERN_ERR, "no journal found");
3846 return NULL;
3847 }
3848 if (!journal_inode->i_nlink) {
3849 make_bad_inode(journal_inode);
3850 iput(journal_inode);
3851 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3852 return NULL;
3853 }
3854
3855 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3856 journal_inode, journal_inode->i_size);
3857 if (!S_ISREG(journal_inode->i_mode)) {
3858 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3859 iput(journal_inode);
3860 return NULL;
3861 }
3862
3863 journal = jbd2_journal_init_inode(journal_inode);
3864 if (!journal) {
3865 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3866 iput(journal_inode);
3867 return NULL;
3868 }
3869 journal->j_private = sb;
3870 ext4_init_journal_params(sb, journal);
3871 return journal;
3872}
3873
3874static journal_t *ext4_get_dev_journal(struct super_block *sb,
3875 dev_t j_dev)
3876{
3877 struct buffer_head *bh;
3878 journal_t *journal;
3879 ext4_fsblk_t start;
3880 ext4_fsblk_t len;
3881 int hblock, blocksize;
3882 ext4_fsblk_t sb_block;
3883 unsigned long offset;
3884 struct ext4_super_block *es;
3885 struct block_device *bdev;
3886
3887 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3888
3889 bdev = ext4_blkdev_get(j_dev, sb);
3890 if (bdev == NULL)
3891 return NULL;
3892
3893 blocksize = sb->s_blocksize;
3894 hblock = bdev_logical_block_size(bdev);
3895 if (blocksize < hblock) {
3896 ext4_msg(sb, KERN_ERR,
3897 "blocksize too small for journal device");
3898 goto out_bdev;
3899 }
3900
3901 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3902 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3903 set_blocksize(bdev, blocksize);
3904 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3905 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3906 "external journal");
3907 goto out_bdev;
3908 }
3909
3910 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3911 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3912 !(le32_to_cpu(es->s_feature_incompat) &
3913 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3914 ext4_msg(sb, KERN_ERR, "external journal has "
3915 "bad superblock");
3916 brelse(bh);
3917 goto out_bdev;
3918 }
3919
3920 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3921 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3922 brelse(bh);
3923 goto out_bdev;
3924 }
3925
3926 len = ext4_blocks_count(es);
3927 start = sb_block + 1;
3928 brelse(bh); /* we're done with the superblock */
3929
3930 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3931 start, len, blocksize);
3932 if (!journal) {
3933 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3934 goto out_bdev;
3935 }
3936 journal->j_private = sb;
3937 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3938 wait_on_buffer(journal->j_sb_buffer);
3939 if (!buffer_uptodate(journal->j_sb_buffer)) {
3940 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3941 goto out_journal;
3942 }
3943 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3944 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3945 "user (unsupported) - %d",
3946 be32_to_cpu(journal->j_superblock->s_nr_users));
3947 goto out_journal;
3948 }
3949 EXT4_SB(sb)->journal_bdev = bdev;
3950 ext4_init_journal_params(sb, journal);
3951 return journal;
3952
3953out_journal:
3954 jbd2_journal_destroy(journal);
3955out_bdev:
3956 ext4_blkdev_put(bdev);
3957 return NULL;
3958}
3959
3960static int ext4_load_journal(struct super_block *sb,
3961 struct ext4_super_block *es,
3962 unsigned long journal_devnum)
3963{
3964 journal_t *journal;
3965 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3966 dev_t journal_dev;
3967 int err = 0;
3968 int really_read_only;
3969
3970 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3971
3972 if (journal_devnum &&
3973 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3974 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3975 "numbers have changed");
3976 journal_dev = new_decode_dev(journal_devnum);
3977 } else
3978 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3979
3980 really_read_only = bdev_read_only(sb->s_bdev);
3981
3982 /*
3983 * Are we loading a blank journal or performing recovery after a
3984 * crash? For recovery, we need to check in advance whether we
3985 * can get read-write access to the device.
3986 */
3987 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3988 if (sb->s_flags & MS_RDONLY) {
3989 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3990 "required on readonly filesystem");
3991 if (really_read_only) {
3992 ext4_msg(sb, KERN_ERR, "write access "
3993 "unavailable, cannot proceed");
3994 return -EROFS;
3995 }
3996 ext4_msg(sb, KERN_INFO, "write access will "
3997 "be enabled during recovery");
3998 }
3999 }
4000
4001 if (journal_inum && journal_dev) {
4002 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4003 "and inode journals!");
4004 return -EINVAL;
4005 }
4006
4007 if (journal_inum) {
4008 if (!(journal = ext4_get_journal(sb, journal_inum)))
4009 return -EINVAL;
4010 } else {
4011 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4012 return -EINVAL;
4013 }
4014
4015 if (!(journal->j_flags & JBD2_BARRIER))
4016 ext4_msg(sb, KERN_INFO, "barriers disabled");
4017
4018 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
4019 err = jbd2_journal_update_format(journal);
4020 if (err) {
4021 ext4_msg(sb, KERN_ERR, "error updating journal");
4022 jbd2_journal_destroy(journal);
4023 return err;
4024 }
4025 }
4026
4027 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4028 err = jbd2_journal_wipe(journal, !really_read_only);
4029 if (!err) {
4030 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4031 if (save)
4032 memcpy(save, ((char *) es) +
4033 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4034 err = jbd2_journal_load(journal);
4035 if (save)
4036 memcpy(((char *) es) + EXT4_S_ERR_START,
4037 save, EXT4_S_ERR_LEN);
4038 kfree(save);
4039 }
4040
4041 if (err) {
4042 ext4_msg(sb, KERN_ERR, "error loading journal");
4043 jbd2_journal_destroy(journal);
4044 return err;
4045 }
4046
4047 EXT4_SB(sb)->s_journal = journal;
4048 ext4_clear_journal_err(sb, es);
4049
4050 if (!really_read_only && journal_devnum &&
4051 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4052 es->s_journal_dev = cpu_to_le32(journal_devnum);
4053
4054 /* Make sure we flush the recovery flag to disk. */
4055 ext4_commit_super(sb, 1);
4056 }
4057
4058 return 0;
4059}
4060
4061static int ext4_commit_super(struct super_block *sb, int sync)
4062{
4063 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4064 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4065 int error = 0;
4066
4067 if (!sbh)
4068 return error;
4069 if (buffer_write_io_error(sbh)) {
4070 /*
4071 * Oh, dear. A previous attempt to write the
4072 * superblock failed. This could happen because the
4073 * USB device was yanked out. Or it could happen to
4074 * be a transient write error and maybe the block will
4075 * be remapped. Nothing we can do but to retry the
4076 * write and hope for the best.
4077 */
4078 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4079 "superblock detected");
4080 clear_buffer_write_io_error(sbh);
4081 set_buffer_uptodate(sbh);
4082 }
4083 /*
4084 * If the file system is mounted read-only, don't update the
4085 * superblock write time. This avoids updating the superblock
4086 * write time when we are mounting the root file system
4087 * read/only but we need to replay the journal; at that point,
4088 * for people who are east of GMT and who make their clock
4089 * tick in localtime for Windows bug-for-bug compatibility,
4090 * the clock is set in the future, and this will cause e2fsck
4091 * to complain and force a full file system check.
4092 */
4093 if (!(sb->s_flags & MS_RDONLY))
4094 es->s_wtime = cpu_to_le32(get_seconds());
4095 if (sb->s_bdev->bd_part)
4096 es->s_kbytes_written =
4097 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4098 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4099 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4100 else
4101 es->s_kbytes_written =
4102 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4103 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
4104 &EXT4_SB(sb)->s_freeblocks_counter));
4105 es->s_free_inodes_count =
4106 cpu_to_le32(percpu_counter_sum_positive(
4107 &EXT4_SB(sb)->s_freeinodes_counter));
4108 sb->s_dirt = 0;
4109 BUFFER_TRACE(sbh, "marking dirty");
4110 mark_buffer_dirty(sbh);
4111 if (sync) {
4112 error = sync_dirty_buffer(sbh);
4113 if (error)
4114 return error;
4115
4116 error = buffer_write_io_error(sbh);
4117 if (error) {
4118 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4119 "superblock");
4120 clear_buffer_write_io_error(sbh);
4121 set_buffer_uptodate(sbh);
4122 }
4123 }
4124 return error;
4125}
4126
4127/*
4128 * Have we just finished recovery? If so, and if we are mounting (or
4129 * remounting) the filesystem readonly, then we will end up with a
4130 * consistent fs on disk. Record that fact.
4131 */
4132static void ext4_mark_recovery_complete(struct super_block *sb,
4133 struct ext4_super_block *es)
4134{
4135 journal_t *journal = EXT4_SB(sb)->s_journal;
4136
4137 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4138 BUG_ON(journal != NULL);
4139 return;
4140 }
4141 jbd2_journal_lock_updates(journal);
4142 if (jbd2_journal_flush(journal) < 0)
4143 goto out;
4144
4145 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4146 sb->s_flags & MS_RDONLY) {
4147 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4148 ext4_commit_super(sb, 1);
4149 }
4150
4151out:
4152 jbd2_journal_unlock_updates(journal);
4153}
4154
4155/*
4156 * If we are mounting (or read-write remounting) a filesystem whose journal
4157 * has recorded an error from a previous lifetime, move that error to the
4158 * main filesystem now.
4159 */
4160static void ext4_clear_journal_err(struct super_block *sb,
4161 struct ext4_super_block *es)
4162{
4163 journal_t *journal;
4164 int j_errno;
4165 const char *errstr;
4166
4167 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4168
4169 journal = EXT4_SB(sb)->s_journal;
4170
4171 /*
4172 * Now check for any error status which may have been recorded in the
4173 * journal by a prior ext4_error() or ext4_abort()
4174 */
4175
4176 j_errno = jbd2_journal_errno(journal);
4177 if (j_errno) {
4178 char nbuf[16];
4179
4180 errstr = ext4_decode_error(sb, j_errno, nbuf);
4181 ext4_warning(sb, "Filesystem error recorded "
4182 "from previous mount: %s", errstr);
4183 ext4_warning(sb, "Marking fs in need of filesystem check.");
4184
4185 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4186 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4187 ext4_commit_super(sb, 1);
4188
4189 jbd2_journal_clear_err(journal);
4190 }
4191}
4192
4193/*
4194 * Force the running and committing transactions to commit,
4195 * and wait on the commit.
4196 */
4197int ext4_force_commit(struct super_block *sb)
4198{
4199 journal_t *journal;
4200 int ret = 0;
4201
4202 if (sb->s_flags & MS_RDONLY)
4203 return 0;
4204
4205 journal = EXT4_SB(sb)->s_journal;
4206 if (journal) {
4207 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4208 ret = ext4_journal_force_commit(journal);
4209 }
4210
4211 return ret;
4212}
4213
4214static void ext4_write_super(struct super_block *sb)
4215{
4216 lock_super(sb);
4217 ext4_commit_super(sb, 1);
4218 unlock_super(sb);
4219}
4220
4221static int ext4_sync_fs(struct super_block *sb, int wait)
4222{
4223 int ret = 0;
4224 tid_t target;
4225 struct ext4_sb_info *sbi = EXT4_SB(sb);
4226
4227 trace_ext4_sync_fs(sb, wait);
4228 flush_workqueue(sbi->dio_unwritten_wq);
4229 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4230 if (wait)
4231 jbd2_log_wait_commit(sbi->s_journal, target);
4232 }
4233 return ret;
4234}
4235
4236/*
4237 * LVM calls this function before a (read-only) snapshot is created. This
4238 * gives us a chance to flush the journal completely and mark the fs clean.
4239 *
4240 * Note that only this function cannot bring a filesystem to be in a clean
4241 * state independently, because ext4 prevents a new handle from being started
4242 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4243 * the upper layer.
4244 */
4245static int ext4_freeze(struct super_block *sb)
4246{
4247 int error = 0;
4248 journal_t *journal;
4249
4250 if (sb->s_flags & MS_RDONLY)
4251 return 0;
4252
4253 journal = EXT4_SB(sb)->s_journal;
4254
4255 /* Now we set up the journal barrier. */
4256 jbd2_journal_lock_updates(journal);
4257
4258 /*
4259 * Don't clear the needs_recovery flag if we failed to flush
4260 * the journal.
4261 */
4262 error = jbd2_journal_flush(journal);
4263 if (error < 0)
4264 goto out;
4265
4266 /* Journal blocked and flushed, clear needs_recovery flag. */
4267 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4268 error = ext4_commit_super(sb, 1);
4269out:
4270 /* we rely on s_frozen to stop further updates */
4271 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4272 return error;
4273}
4274
4275/*
4276 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4277 * flag here, even though the filesystem is not technically dirty yet.
4278 */
4279static int ext4_unfreeze(struct super_block *sb)
4280{
4281 if (sb->s_flags & MS_RDONLY)
4282 return 0;
4283
4284 lock_super(sb);
4285 /* Reset the needs_recovery flag before the fs is unlocked. */
4286 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4287 ext4_commit_super(sb, 1);
4288 unlock_super(sb);
4289 return 0;
4290}
4291
4292/*
4293 * Structure to save mount options for ext4_remount's benefit
4294 */
4295struct ext4_mount_options {
4296 unsigned long s_mount_opt;
4297 unsigned long s_mount_opt2;
4298 uid_t s_resuid;
4299 gid_t s_resgid;
4300 unsigned long s_commit_interval;
4301 u32 s_min_batch_time, s_max_batch_time;
4302#ifdef CONFIG_QUOTA
4303 int s_jquota_fmt;
4304 char *s_qf_names[MAXQUOTAS];
4305#endif
4306};
4307
4308static int ext4_remount(struct super_block *sb, int *flags, char *data)
4309{
4310 struct ext4_super_block *es;
4311 struct ext4_sb_info *sbi = EXT4_SB(sb);
4312 ext4_fsblk_t n_blocks_count = 0;
4313 unsigned long old_sb_flags;
4314 struct ext4_mount_options old_opts;
4315 int enable_quota = 0;
4316 ext4_group_t g;
4317 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4318 int err = 0;
4319#ifdef CONFIG_QUOTA
4320 int i;
4321#endif
4322 char *orig_data = kstrdup(data, GFP_KERNEL);
4323
4324 /* Store the original options */
4325 lock_super(sb);
4326 old_sb_flags = sb->s_flags;
4327 old_opts.s_mount_opt = sbi->s_mount_opt;
4328 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4329 old_opts.s_resuid = sbi->s_resuid;
4330 old_opts.s_resgid = sbi->s_resgid;
4331 old_opts.s_commit_interval = sbi->s_commit_interval;
4332 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4333 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4334#ifdef CONFIG_QUOTA
4335 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4336 for (i = 0; i < MAXQUOTAS; i++)
4337 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4338#endif
4339 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4340 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4341
4342 /*
4343 * Allow the "check" option to be passed as a remount option.
4344 */
4345 if (!parse_options(data, sb, NULL, &journal_ioprio,
4346 &n_blocks_count, 1)) {
4347 err = -EINVAL;
4348 goto restore_opts;
4349 }
4350
4351 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4352 ext4_abort(sb, "Abort forced by user");
4353
4354 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4355 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4356
4357 es = sbi->s_es;
4358
4359 if (sbi->s_journal) {
4360 ext4_init_journal_params(sb, sbi->s_journal);
4361 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4362 }
4363
4364 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4365 n_blocks_count > ext4_blocks_count(es)) {
4366 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4367 err = -EROFS;
4368 goto restore_opts;
4369 }
4370
4371 if (*flags & MS_RDONLY) {
4372 err = dquot_suspend(sb, -1);
4373 if (err < 0)
4374 goto restore_opts;
4375
4376 /*
4377 * First of all, the unconditional stuff we have to do
4378 * to disable replay of the journal when we next remount
4379 */
4380 sb->s_flags |= MS_RDONLY;
4381
4382 /*
4383 * OK, test if we are remounting a valid rw partition
4384 * readonly, and if so set the rdonly flag and then
4385 * mark the partition as valid again.
4386 */
4387 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4388 (sbi->s_mount_state & EXT4_VALID_FS))
4389 es->s_state = cpu_to_le16(sbi->s_mount_state);
4390
4391 if (sbi->s_journal)
4392 ext4_mark_recovery_complete(sb, es);
4393 } else {
4394 /* Make sure we can mount this feature set readwrite */
4395 if (!ext4_feature_set_ok(sb, 0)) {
4396 err = -EROFS;
4397 goto restore_opts;
4398 }
4399 /*
4400 * Make sure the group descriptor checksums
4401 * are sane. If they aren't, refuse to remount r/w.
4402 */
4403 for (g = 0; g < sbi->s_groups_count; g++) {
4404 struct ext4_group_desc *gdp =
4405 ext4_get_group_desc(sb, g, NULL);
4406
4407 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4408 ext4_msg(sb, KERN_ERR,
4409 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4410 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4411 le16_to_cpu(gdp->bg_checksum));
4412 err = -EINVAL;
4413 goto restore_opts;
4414 }
4415 }
4416
4417 /*
4418 * If we have an unprocessed orphan list hanging
4419 * around from a previously readonly bdev mount,
4420 * require a full umount/remount for now.
4421 */
4422 if (es->s_last_orphan) {
4423 ext4_msg(sb, KERN_WARNING, "Couldn't "
4424 "remount RDWR because of unprocessed "
4425 "orphan inode list. Please "
4426 "umount/remount instead");
4427 err = -EINVAL;
4428 goto restore_opts;
4429 }
4430
4431 /*
4432 * Mounting a RDONLY partition read-write, so reread
4433 * and store the current valid flag. (It may have
4434 * been changed by e2fsck since we originally mounted
4435 * the partition.)
4436 */
4437 if (sbi->s_journal)
4438 ext4_clear_journal_err(sb, es);
4439 sbi->s_mount_state = le16_to_cpu(es->s_state);
4440 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4441 goto restore_opts;
4442 if (!ext4_setup_super(sb, es, 0))
4443 sb->s_flags &= ~MS_RDONLY;
4444 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4445 EXT4_FEATURE_INCOMPAT_MMP))
4446 if (ext4_multi_mount_protect(sb,
4447 le64_to_cpu(es->s_mmp_block))) {
4448 err = -EROFS;
4449 goto restore_opts;
4450 }
4451 enable_quota = 1;
4452 }
4453 }
4454
4455 /*
4456 * Reinitialize lazy itable initialization thread based on
4457 * current settings
4458 */
4459 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4460 ext4_unregister_li_request(sb);
4461 else {
4462 ext4_group_t first_not_zeroed;
4463 first_not_zeroed = ext4_has_uninit_itable(sb);
4464 ext4_register_li_request(sb, first_not_zeroed);
4465 }
4466
4467 ext4_setup_system_zone(sb);
4468 if (sbi->s_journal == NULL)
4469 ext4_commit_super(sb, 1);
4470
4471#ifdef CONFIG_QUOTA
4472 /* Release old quota file names */
4473 for (i = 0; i < MAXQUOTAS; i++)
4474 if (old_opts.s_qf_names[i] &&
4475 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4476 kfree(old_opts.s_qf_names[i]);
4477#endif
4478 unlock_super(sb);
4479 if (enable_quota)
4480 dquot_resume(sb, -1);
4481
4482 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4483 kfree(orig_data);
4484 return 0;
4485
4486restore_opts:
4487 sb->s_flags = old_sb_flags;
4488 sbi->s_mount_opt = old_opts.s_mount_opt;
4489 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4490 sbi->s_resuid = old_opts.s_resuid;
4491 sbi->s_resgid = old_opts.s_resgid;
4492 sbi->s_commit_interval = old_opts.s_commit_interval;
4493 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4494 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4495#ifdef CONFIG_QUOTA
4496 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4497 for (i = 0; i < MAXQUOTAS; i++) {
4498 if (sbi->s_qf_names[i] &&
4499 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4500 kfree(sbi->s_qf_names[i]);
4501 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4502 }
4503#endif
4504 unlock_super(sb);
4505 kfree(orig_data);
4506 return err;
4507}
4508
4509static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4510{
4511 struct super_block *sb = dentry->d_sb;
4512 struct ext4_sb_info *sbi = EXT4_SB(sb);
4513 struct ext4_super_block *es = sbi->s_es;
4514 u64 fsid;
4515 s64 bfree;
4516
4517 if (test_opt(sb, MINIX_DF)) {
4518 sbi->s_overhead_last = 0;
4519 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4520 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4521 ext4_fsblk_t overhead = 0;
4522
4523 /*
4524 * Compute the overhead (FS structures). This is constant
4525 * for a given filesystem unless the number of block groups
4526 * changes so we cache the previous value until it does.
4527 */
4528
4529 /*
4530 * All of the blocks before first_data_block are
4531 * overhead
4532 */
4533 overhead = le32_to_cpu(es->s_first_data_block);
4534
4535 /*
4536 * Add the overhead attributed to the superblock and
4537 * block group descriptors. If the sparse superblocks
4538 * feature is turned on, then not all groups have this.
4539 */
4540 for (i = 0; i < ngroups; i++) {
4541 overhead += ext4_bg_has_super(sb, i) +
4542 ext4_bg_num_gdb(sb, i);
4543 cond_resched();
4544 }
4545
4546 /*
4547 * Every block group has an inode bitmap, a block
4548 * bitmap, and an inode table.
4549 */
4550 overhead += ngroups * (2 + sbi->s_itb_per_group);
4551 sbi->s_overhead_last = overhead;
4552 smp_wmb();
4553 sbi->s_blocks_last = ext4_blocks_count(es);
4554 }
4555
4556 buf->f_type = EXT4_SUPER_MAGIC;
4557 buf->f_bsize = sb->s_blocksize;
4558 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4559 bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4560 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4561 /* prevent underflow in case that few free space is available */
4562 buf->f_bfree = max_t(s64, bfree, 0);
4563 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4564 if (buf->f_bfree < ext4_r_blocks_count(es))
4565 buf->f_bavail = 0;
4566 buf->f_files = le32_to_cpu(es->s_inodes_count);
4567 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4568 buf->f_namelen = EXT4_NAME_LEN;
4569 fsid = le64_to_cpup((void *)es->s_uuid) ^
4570 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4571 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4572 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4573
4574 return 0;
4575}
4576
4577/* Helper function for writing quotas on sync - we need to start transaction
4578 * before quota file is locked for write. Otherwise the are possible deadlocks:
4579 * Process 1 Process 2
4580 * ext4_create() quota_sync()
4581 * jbd2_journal_start() write_dquot()
4582 * dquot_initialize() down(dqio_mutex)
4583 * down(dqio_mutex) jbd2_journal_start()
4584 *
4585 */
4586
4587#ifdef CONFIG_QUOTA
4588
4589static inline struct inode *dquot_to_inode(struct dquot *dquot)
4590{
4591 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4592}
4593
4594static int ext4_write_dquot(struct dquot *dquot)
4595{
4596 int ret, err;
4597 handle_t *handle;
4598 struct inode *inode;
4599
4600 inode = dquot_to_inode(dquot);
4601 handle = ext4_journal_start(inode,
4602 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4603 if (IS_ERR(handle))
4604 return PTR_ERR(handle);
4605 ret = dquot_commit(dquot);
4606 err = ext4_journal_stop(handle);
4607 if (!ret)
4608 ret = err;
4609 return ret;
4610}
4611
4612static int ext4_acquire_dquot(struct dquot *dquot)
4613{
4614 int ret, err;
4615 handle_t *handle;
4616
4617 handle = ext4_journal_start(dquot_to_inode(dquot),
4618 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4619 if (IS_ERR(handle))
4620 return PTR_ERR(handle);
4621 ret = dquot_acquire(dquot);
4622 err = ext4_journal_stop(handle);
4623 if (!ret)
4624 ret = err;
4625 return ret;
4626}
4627
4628static int ext4_release_dquot(struct dquot *dquot)
4629{
4630 int ret, err;
4631 handle_t *handle;
4632
4633 handle = ext4_journal_start(dquot_to_inode(dquot),
4634 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4635 if (IS_ERR(handle)) {
4636 /* Release dquot anyway to avoid endless cycle in dqput() */
4637 dquot_release(dquot);
4638 return PTR_ERR(handle);
4639 }
4640 ret = dquot_release(dquot);
4641 err = ext4_journal_stop(handle);
4642 if (!ret)
4643 ret = err;
4644 return ret;
4645}
4646
4647static int ext4_mark_dquot_dirty(struct dquot *dquot)
4648{
4649 /* Are we journaling quotas? */
4650 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4651 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4652 dquot_mark_dquot_dirty(dquot);
4653 return ext4_write_dquot(dquot);
4654 } else {
4655 return dquot_mark_dquot_dirty(dquot);
4656 }
4657}
4658
4659static int ext4_write_info(struct super_block *sb, int type)
4660{
4661 int ret, err;
4662 handle_t *handle;
4663
4664 /* Data block + inode block */
4665 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4666 if (IS_ERR(handle))
4667 return PTR_ERR(handle);
4668 ret = dquot_commit_info(sb, type);
4669 err = ext4_journal_stop(handle);
4670 if (!ret)
4671 ret = err;
4672 return ret;
4673}
4674
4675/*
4676 * Turn on quotas during mount time - we need to find
4677 * the quota file and such...
4678 */
4679static int ext4_quota_on_mount(struct super_block *sb, int type)
4680{
4681 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4682 EXT4_SB(sb)->s_jquota_fmt, type);
4683}
4684
4685/*
4686 * Standard function to be called on quota_on
4687 */
4688static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4689 struct path *path)
4690{
4691 int err;
4692
4693 if (!test_opt(sb, QUOTA))
4694 return -EINVAL;
4695
4696 /* Quotafile not on the same filesystem? */
4697 if (path->mnt->mnt_sb != sb)
4698 return -EXDEV;
4699 /* Journaling quota? */
4700 if (EXT4_SB(sb)->s_qf_names[type]) {
4701 /* Quotafile not in fs root? */
4702 if (path->dentry->d_parent != sb->s_root)
4703 ext4_msg(sb, KERN_WARNING,
4704 "Quota file not on filesystem root. "
4705 "Journaled quota will not work");
4706 }
4707
4708 /*
4709 * When we journal data on quota file, we have to flush journal to see
4710 * all updates to the file when we bypass pagecache...
4711 */
4712 if (EXT4_SB(sb)->s_journal &&
4713 ext4_should_journal_data(path->dentry->d_inode)) {
4714 /*
4715 * We don't need to lock updates but journal_flush() could
4716 * otherwise be livelocked...
4717 */
4718 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4719 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4720 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4721 if (err)
4722 return err;
4723 }
4724
4725 return dquot_quota_on(sb, type, format_id, path);
4726}
4727
4728static int ext4_quota_off(struct super_block *sb, int type)
4729{
4730 struct inode *inode = sb_dqopt(sb)->files[type];
4731 handle_t *handle;
4732
4733 /* Force all delayed allocation blocks to be allocated.
4734 * Caller already holds s_umount sem */
4735 if (test_opt(sb, DELALLOC))
4736 sync_filesystem(sb);
4737
4738 if (!inode)
4739 goto out;
4740
4741 /* Update modification times of quota files when userspace can
4742 * start looking at them */
4743 handle = ext4_journal_start(inode, 1);
4744 if (IS_ERR(handle))
4745 goto out;
4746 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4747 ext4_mark_inode_dirty(handle, inode);
4748 ext4_journal_stop(handle);
4749
4750out:
4751 return dquot_quota_off(sb, type);
4752}
4753
4754/* Read data from quotafile - avoid pagecache and such because we cannot afford
4755 * acquiring the locks... As quota files are never truncated and quota code
4756 * itself serializes the operations (and no one else should touch the files)
4757 * we don't have to be afraid of races */
4758static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4759 size_t len, loff_t off)
4760{
4761 struct inode *inode = sb_dqopt(sb)->files[type];
4762 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4763 int err = 0;
4764 int offset = off & (sb->s_blocksize - 1);
4765 int tocopy;
4766 size_t toread;
4767 struct buffer_head *bh;
4768 loff_t i_size = i_size_read(inode);
4769
4770 if (off > i_size)
4771 return 0;
4772 if (off+len > i_size)
4773 len = i_size-off;
4774 toread = len;
4775 while (toread > 0) {
4776 tocopy = sb->s_blocksize - offset < toread ?
4777 sb->s_blocksize - offset : toread;
4778 bh = ext4_bread(NULL, inode, blk, 0, &err);
4779 if (err)
4780 return err;
4781 if (!bh) /* A hole? */
4782 memset(data, 0, tocopy);
4783 else
4784 memcpy(data, bh->b_data+offset, tocopy);
4785 brelse(bh);
4786 offset = 0;
4787 toread -= tocopy;
4788 data += tocopy;
4789 blk++;
4790 }
4791 return len;
4792}
4793
4794/* Write to quotafile (we know the transaction is already started and has
4795 * enough credits) */
4796static ssize_t ext4_quota_write(struct super_block *sb, int type,
4797 const char *data, size_t len, loff_t off)
4798{
4799 struct inode *inode = sb_dqopt(sb)->files[type];
4800 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4801 int err = 0;
4802 int offset = off & (sb->s_blocksize - 1);
4803 struct buffer_head *bh;
4804 handle_t *handle = journal_current_handle();
4805
4806 if (EXT4_SB(sb)->s_journal && !handle) {
4807 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4808 " cancelled because transaction is not started",
4809 (unsigned long long)off, (unsigned long long)len);
4810 return -EIO;
4811 }
4812 /*
4813 * Since we account only one data block in transaction credits,
4814 * then it is impossible to cross a block boundary.
4815 */
4816 if (sb->s_blocksize - offset < len) {
4817 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4818 " cancelled because not block aligned",
4819 (unsigned long long)off, (unsigned long long)len);
4820 return -EIO;
4821 }
4822
4823 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4824 bh = ext4_bread(handle, inode, blk, 1, &err);
4825 if (!bh)
4826 goto out;
4827 err = ext4_journal_get_write_access(handle, bh);
4828 if (err) {
4829 brelse(bh);
4830 goto out;
4831 }
4832 lock_buffer(bh);
4833 memcpy(bh->b_data+offset, data, len);
4834 flush_dcache_page(bh->b_page);
4835 unlock_buffer(bh);
4836 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4837 brelse(bh);
4838out:
4839 if (err) {
4840 mutex_unlock(&inode->i_mutex);
4841 return err;
4842 }
4843 if (inode->i_size < off + len) {
4844 i_size_write(inode, off + len);
4845 EXT4_I(inode)->i_disksize = inode->i_size;
4846 ext4_mark_inode_dirty(handle, inode);
4847 }
4848 mutex_unlock(&inode->i_mutex);
4849 return len;
4850}
4851
4852#endif
4853
4854static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4855 const char *dev_name, void *data)
4856{
4857 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4858}
4859
4860#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4861static inline void register_as_ext2(void)
4862{
4863 int err = register_filesystem(&ext2_fs_type);
4864 if (err)
4865 printk(KERN_WARNING
4866 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4867}
4868
4869static inline void unregister_as_ext2(void)
4870{
4871 unregister_filesystem(&ext2_fs_type);
4872}
4873
4874static inline int ext2_feature_set_ok(struct super_block *sb)
4875{
4876 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4877 return 0;
4878 if (sb->s_flags & MS_RDONLY)
4879 return 1;
4880 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4881 return 0;
4882 return 1;
4883}
4884MODULE_ALIAS("ext2");
4885#else
4886static inline void register_as_ext2(void) { }
4887static inline void unregister_as_ext2(void) { }
4888static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4889#endif
4890
4891#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4892static inline void register_as_ext3(void)
4893{
4894 int err = register_filesystem(&ext3_fs_type);
4895 if (err)
4896 printk(KERN_WARNING
4897 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4898}
4899
4900static inline void unregister_as_ext3(void)
4901{
4902 unregister_filesystem(&ext3_fs_type);
4903}
4904
4905static inline int ext3_feature_set_ok(struct super_block *sb)
4906{
4907 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4908 return 0;
4909 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4910 return 0;
4911 if (sb->s_flags & MS_RDONLY)
4912 return 1;
4913 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4914 return 0;
4915 return 1;
4916}
4917MODULE_ALIAS("ext3");
4918#else
4919static inline void register_as_ext3(void) { }
4920static inline void unregister_as_ext3(void) { }
4921static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4922#endif
4923
4924static struct file_system_type ext4_fs_type = {
4925 .owner = THIS_MODULE,
4926 .name = "ext4",
4927 .mount = ext4_mount,
4928 .kill_sb = kill_block_super,
4929 .fs_flags = FS_REQUIRES_DEV,
4930};
4931
4932static int __init ext4_init_feat_adverts(void)
4933{
4934 struct ext4_features *ef;
4935 int ret = -ENOMEM;
4936
4937 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4938 if (!ef)
4939 goto out;
4940
4941 ef->f_kobj.kset = ext4_kset;
4942 init_completion(&ef->f_kobj_unregister);
4943 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4944 "features");
4945 if (ret) {
4946 kfree(ef);
4947 goto out;
4948 }
4949
4950 ext4_feat = ef;
4951 ret = 0;
4952out:
4953 return ret;
4954}
4955
4956static void ext4_exit_feat_adverts(void)
4957{
4958 kobject_put(&ext4_feat->f_kobj);
4959 wait_for_completion(&ext4_feat->f_kobj_unregister);
4960 kfree(ext4_feat);
4961}
4962
4963/* Shared across all ext4 file systems */
4964wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4965struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4966
4967static int __init ext4_init_fs(void)
4968{
4969 int i, err;
4970
4971 ext4_check_flag_values();
4972
4973 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4974 mutex_init(&ext4__aio_mutex[i]);
4975 init_waitqueue_head(&ext4__ioend_wq[i]);
4976 }
4977
4978 err = ext4_init_pageio();
4979 if (err)
4980 return err;
4981 err = ext4_init_system_zone();
4982 if (err)
4983 goto out7;
4984 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4985 if (!ext4_kset)
4986 goto out6;
4987 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4988 if (!ext4_proc_root)
4989 goto out5;
4990
4991 err = ext4_init_feat_adverts();
4992 if (err)
4993 goto out4;
4994
4995 err = ext4_init_mballoc();
4996 if (err)
4997 goto out3;
4998
4999 err = ext4_init_xattr();
5000 if (err)
5001 goto out2;
5002 err = init_inodecache();
5003 if (err)
5004 goto out1;
5005 register_as_ext3();
5006 register_as_ext2();
5007 err = register_filesystem(&ext4_fs_type);
5008 if (err)
5009 goto out;
5010
5011 ext4_li_info = NULL;
5012 mutex_init(&ext4_li_mtx);
5013 return 0;
5014out:
5015 unregister_as_ext2();
5016 unregister_as_ext3();
5017 destroy_inodecache();
5018out1:
5019 ext4_exit_xattr();
5020out2:
5021 ext4_exit_mballoc();
5022out3:
5023 ext4_exit_feat_adverts();
5024out4:
5025 remove_proc_entry("fs/ext4", NULL);
5026out5:
5027 kset_unregister(ext4_kset);
5028out6:
5029 ext4_exit_system_zone();
5030out7:
5031 ext4_exit_pageio();
5032 return err;
5033}
5034
5035static void __exit ext4_exit_fs(void)
5036{
5037 ext4_destroy_lazyinit_thread();
5038 unregister_as_ext2();
5039 unregister_as_ext3();
5040 unregister_filesystem(&ext4_fs_type);
5041 destroy_inodecache();
5042 ext4_exit_xattr();
5043 ext4_exit_mballoc();
5044 ext4_exit_feat_adverts();
5045 remove_proc_entry("fs/ext4", NULL);
5046 kset_unregister(ext4_kset);
5047 ext4_exit_system_zone();
5048 ext4_exit_pageio();
5049}
5050
5051MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5052MODULE_DESCRIPTION("Fourth Extended Filesystem");
5053MODULE_LICENSE("GPL");
5054module_init(ext4_init_fs)
5055module_exit(ext4_exit_fs)