Loading...
1/*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19#include <linux/module.h>
20#include <linux/string.h>
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/parser.h>
29#include <linux/buffer_head.h>
30#include <linux/exportfs.h>
31#include <linux/vfs.h>
32#include <linux/random.h>
33#include <linux/mount.h>
34#include <linux/namei.h>
35#include <linux/quotaops.h>
36#include <linux/seq_file.h>
37#include <linux/ctype.h>
38#include <linux/log2.h>
39#include <linux/crc16.h>
40#include <linux/cleancache.h>
41#include <asm/uaccess.h>
42
43#include <linux/kthread.h>
44#include <linux/freezer.h>
45
46#include "ext4.h"
47#include "ext4_extents.h" /* Needed for trace points definition */
48#include "ext4_jbd2.h"
49#include "xattr.h"
50#include "acl.h"
51#include "mballoc.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/ext4.h>
55
56static struct ext4_lazy_init *ext4_li_info;
57static struct mutex ext4_li_mtx;
58static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63static int ext4_commit_super(struct super_block *sb, int sync);
64static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68static int ext4_sync_fs(struct super_block *sb, int wait);
69static int ext4_remount(struct super_block *sb, int *flags, char *data);
70static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71static int ext4_unfreeze(struct super_block *sb);
72static int ext4_freeze(struct super_block *sb);
73static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75static inline int ext2_feature_set_ok(struct super_block *sb);
76static inline int ext3_feature_set_ok(struct super_block *sb);
77static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78static void ext4_destroy_lazyinit_thread(void);
79static void ext4_unregister_li_request(struct super_block *sb);
80static void ext4_clear_request_list(void);
81
82/*
83 * Lock ordering
84 *
85 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
86 * i_mmap_rwsem (inode->i_mmap_rwsem)!
87 *
88 * page fault path:
89 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
90 * page lock -> i_data_sem (rw)
91 *
92 * buffered write path:
93 * sb_start_write -> i_mutex -> mmap_sem
94 * sb_start_write -> i_mutex -> transaction start -> page lock ->
95 * i_data_sem (rw)
96 *
97 * truncate:
98 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
99 * i_mmap_rwsem (w) -> page lock
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * transaction start -> i_data_sem (rw)
102 *
103 * direct IO:
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
106 * transaction start -> i_data_sem (rw)
107 *
108 * writepages:
109 * transaction start -> page lock(s) -> i_data_sem (rw)
110 */
111
112#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
113static struct file_system_type ext2_fs_type = {
114 .owner = THIS_MODULE,
115 .name = "ext2",
116 .mount = ext4_mount,
117 .kill_sb = kill_block_super,
118 .fs_flags = FS_REQUIRES_DEV,
119};
120MODULE_ALIAS_FS("ext2");
121MODULE_ALIAS("ext2");
122#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
123#else
124#define IS_EXT2_SB(sb) (0)
125#endif
126
127
128static struct file_system_type ext3_fs_type = {
129 .owner = THIS_MODULE,
130 .name = "ext3",
131 .mount = ext4_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134};
135MODULE_ALIAS_FS("ext3");
136MODULE_ALIAS("ext3");
137#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
138
139static int ext4_verify_csum_type(struct super_block *sb,
140 struct ext4_super_block *es)
141{
142 if (!ext4_has_feature_metadata_csum(sb))
143 return 1;
144
145 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
146}
147
148static __le32 ext4_superblock_csum(struct super_block *sb,
149 struct ext4_super_block *es)
150{
151 struct ext4_sb_info *sbi = EXT4_SB(sb);
152 int offset = offsetof(struct ext4_super_block, s_checksum);
153 __u32 csum;
154
155 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
156
157 return cpu_to_le32(csum);
158}
159
160static int ext4_superblock_csum_verify(struct super_block *sb,
161 struct ext4_super_block *es)
162{
163 if (!ext4_has_metadata_csum(sb))
164 return 1;
165
166 return es->s_checksum == ext4_superblock_csum(sb, es);
167}
168
169void ext4_superblock_csum_set(struct super_block *sb)
170{
171 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
172
173 if (!ext4_has_metadata_csum(sb))
174 return;
175
176 es->s_checksum = ext4_superblock_csum(sb, es);
177}
178
179void *ext4_kvmalloc(size_t size, gfp_t flags)
180{
181 void *ret;
182
183 ret = kmalloc(size, flags | __GFP_NOWARN);
184 if (!ret)
185 ret = __vmalloc(size, flags, PAGE_KERNEL);
186 return ret;
187}
188
189void *ext4_kvzalloc(size_t size, gfp_t flags)
190{
191 void *ret;
192
193 ret = kzalloc(size, flags | __GFP_NOWARN);
194 if (!ret)
195 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
196 return ret;
197}
198
199ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
200 struct ext4_group_desc *bg)
201{
202 return le32_to_cpu(bg->bg_block_bitmap_lo) |
203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
205}
206
207ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
209{
210 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
213}
214
215ext4_fsblk_t ext4_inode_table(struct super_block *sb,
216 struct ext4_group_desc *bg)
217{
218 return le32_to_cpu(bg->bg_inode_table_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
221}
222
223__u32 ext4_free_group_clusters(struct super_block *sb,
224 struct ext4_group_desc *bg)
225{
226 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
229}
230
231__u32 ext4_free_inodes_count(struct super_block *sb,
232 struct ext4_group_desc *bg)
233{
234 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
237}
238
239__u32 ext4_used_dirs_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241{
242 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
245}
246
247__u32 ext4_itable_unused_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
249{
250 return le16_to_cpu(bg->bg_itable_unused_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
253}
254
255void ext4_block_bitmap_set(struct super_block *sb,
256 struct ext4_group_desc *bg, ext4_fsblk_t blk)
257{
258 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
261}
262
263void ext4_inode_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265{
266 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
269}
270
271void ext4_inode_table_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
273{
274 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
277}
278
279void ext4_free_group_clusters_set(struct super_block *sb,
280 struct ext4_group_desc *bg, __u32 count)
281{
282 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
285}
286
287void ext4_free_inodes_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289{
290 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
293}
294
295void ext4_used_dirs_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297{
298 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
301}
302
303void ext4_itable_unused_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
305{
306 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
309}
310
311
312static void __save_error_info(struct super_block *sb, const char *func,
313 unsigned int line)
314{
315 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
316
317 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
318 if (bdev_read_only(sb->s_bdev))
319 return;
320 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
321 es->s_last_error_time = cpu_to_le32(get_seconds());
322 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
323 es->s_last_error_line = cpu_to_le32(line);
324 if (!es->s_first_error_time) {
325 es->s_first_error_time = es->s_last_error_time;
326 strncpy(es->s_first_error_func, func,
327 sizeof(es->s_first_error_func));
328 es->s_first_error_line = cpu_to_le32(line);
329 es->s_first_error_ino = es->s_last_error_ino;
330 es->s_first_error_block = es->s_last_error_block;
331 }
332 /*
333 * Start the daily error reporting function if it hasn't been
334 * started already
335 */
336 if (!es->s_error_count)
337 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
338 le32_add_cpu(&es->s_error_count, 1);
339}
340
341static void save_error_info(struct super_block *sb, const char *func,
342 unsigned int line)
343{
344 __save_error_info(sb, func, line);
345 ext4_commit_super(sb, 1);
346}
347
348/*
349 * The del_gendisk() function uninitializes the disk-specific data
350 * structures, including the bdi structure, without telling anyone
351 * else. Once this happens, any attempt to call mark_buffer_dirty()
352 * (for example, by ext4_commit_super), will cause a kernel OOPS.
353 * This is a kludge to prevent these oops until we can put in a proper
354 * hook in del_gendisk() to inform the VFS and file system layers.
355 */
356static int block_device_ejected(struct super_block *sb)
357{
358 struct inode *bd_inode = sb->s_bdev->bd_inode;
359 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
360
361 return bdi->dev == NULL;
362}
363
364static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
365{
366 struct super_block *sb = journal->j_private;
367 struct ext4_sb_info *sbi = EXT4_SB(sb);
368 int error = is_journal_aborted(journal);
369 struct ext4_journal_cb_entry *jce;
370
371 BUG_ON(txn->t_state == T_FINISHED);
372 spin_lock(&sbi->s_md_lock);
373 while (!list_empty(&txn->t_private_list)) {
374 jce = list_entry(txn->t_private_list.next,
375 struct ext4_journal_cb_entry, jce_list);
376 list_del_init(&jce->jce_list);
377 spin_unlock(&sbi->s_md_lock);
378 jce->jce_func(sb, jce, error);
379 spin_lock(&sbi->s_md_lock);
380 }
381 spin_unlock(&sbi->s_md_lock);
382}
383
384/* Deal with the reporting of failure conditions on a filesystem such as
385 * inconsistencies detected or read IO failures.
386 *
387 * On ext2, we can store the error state of the filesystem in the
388 * superblock. That is not possible on ext4, because we may have other
389 * write ordering constraints on the superblock which prevent us from
390 * writing it out straight away; and given that the journal is about to
391 * be aborted, we can't rely on the current, or future, transactions to
392 * write out the superblock safely.
393 *
394 * We'll just use the jbd2_journal_abort() error code to record an error in
395 * the journal instead. On recovery, the journal will complain about
396 * that error until we've noted it down and cleared it.
397 */
398
399static void ext4_handle_error(struct super_block *sb)
400{
401 if (sb->s_flags & MS_RDONLY)
402 return;
403
404 if (!test_opt(sb, ERRORS_CONT)) {
405 journal_t *journal = EXT4_SB(sb)->s_journal;
406
407 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
408 if (journal)
409 jbd2_journal_abort(journal, -EIO);
410 }
411 if (test_opt(sb, ERRORS_RO)) {
412 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
413 /*
414 * Make sure updated value of ->s_mount_flags will be visible
415 * before ->s_flags update
416 */
417 smp_wmb();
418 sb->s_flags |= MS_RDONLY;
419 }
420 if (test_opt(sb, ERRORS_PANIC)) {
421 if (EXT4_SB(sb)->s_journal &&
422 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
423 return;
424 panic("EXT4-fs (device %s): panic forced after error\n",
425 sb->s_id);
426 }
427}
428
429#define ext4_error_ratelimit(sb) \
430 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
431 "EXT4-fs error")
432
433void __ext4_error(struct super_block *sb, const char *function,
434 unsigned int line, const char *fmt, ...)
435{
436 struct va_format vaf;
437 va_list args;
438
439 if (ext4_error_ratelimit(sb)) {
440 va_start(args, fmt);
441 vaf.fmt = fmt;
442 vaf.va = &args;
443 printk(KERN_CRIT
444 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
445 sb->s_id, function, line, current->comm, &vaf);
446 va_end(args);
447 }
448 save_error_info(sb, function, line);
449 ext4_handle_error(sb);
450}
451
452void __ext4_error_inode(struct inode *inode, const char *function,
453 unsigned int line, ext4_fsblk_t block,
454 const char *fmt, ...)
455{
456 va_list args;
457 struct va_format vaf;
458 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
459
460 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
461 es->s_last_error_block = cpu_to_le64(block);
462 if (ext4_error_ratelimit(inode->i_sb)) {
463 va_start(args, fmt);
464 vaf.fmt = fmt;
465 vaf.va = &args;
466 if (block)
467 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
468 "inode #%lu: block %llu: comm %s: %pV\n",
469 inode->i_sb->s_id, function, line, inode->i_ino,
470 block, current->comm, &vaf);
471 else
472 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
473 "inode #%lu: comm %s: %pV\n",
474 inode->i_sb->s_id, function, line, inode->i_ino,
475 current->comm, &vaf);
476 va_end(args);
477 }
478 save_error_info(inode->i_sb, function, line);
479 ext4_handle_error(inode->i_sb);
480}
481
482void __ext4_error_file(struct file *file, const char *function,
483 unsigned int line, ext4_fsblk_t block,
484 const char *fmt, ...)
485{
486 va_list args;
487 struct va_format vaf;
488 struct ext4_super_block *es;
489 struct inode *inode = file_inode(file);
490 char pathname[80], *path;
491
492 es = EXT4_SB(inode->i_sb)->s_es;
493 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
494 if (ext4_error_ratelimit(inode->i_sb)) {
495 path = file_path(file, pathname, sizeof(pathname));
496 if (IS_ERR(path))
497 path = "(unknown)";
498 va_start(args, fmt);
499 vaf.fmt = fmt;
500 vaf.va = &args;
501 if (block)
502 printk(KERN_CRIT
503 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
504 "block %llu: comm %s: path %s: %pV\n",
505 inode->i_sb->s_id, function, line, inode->i_ino,
506 block, current->comm, path, &vaf);
507 else
508 printk(KERN_CRIT
509 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
510 "comm %s: path %s: %pV\n",
511 inode->i_sb->s_id, function, line, inode->i_ino,
512 current->comm, path, &vaf);
513 va_end(args);
514 }
515 save_error_info(inode->i_sb, function, line);
516 ext4_handle_error(inode->i_sb);
517}
518
519const char *ext4_decode_error(struct super_block *sb, int errno,
520 char nbuf[16])
521{
522 char *errstr = NULL;
523
524 switch (errno) {
525 case -EFSCORRUPTED:
526 errstr = "Corrupt filesystem";
527 break;
528 case -EFSBADCRC:
529 errstr = "Filesystem failed CRC";
530 break;
531 case -EIO:
532 errstr = "IO failure";
533 break;
534 case -ENOMEM:
535 errstr = "Out of memory";
536 break;
537 case -EROFS:
538 if (!sb || (EXT4_SB(sb)->s_journal &&
539 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
540 errstr = "Journal has aborted";
541 else
542 errstr = "Readonly filesystem";
543 break;
544 default:
545 /* If the caller passed in an extra buffer for unknown
546 * errors, textualise them now. Else we just return
547 * NULL. */
548 if (nbuf) {
549 /* Check for truncated error codes... */
550 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
551 errstr = nbuf;
552 }
553 break;
554 }
555
556 return errstr;
557}
558
559/* __ext4_std_error decodes expected errors from journaling functions
560 * automatically and invokes the appropriate error response. */
561
562void __ext4_std_error(struct super_block *sb, const char *function,
563 unsigned int line, int errno)
564{
565 char nbuf[16];
566 const char *errstr;
567
568 /* Special case: if the error is EROFS, and we're not already
569 * inside a transaction, then there's really no point in logging
570 * an error. */
571 if (errno == -EROFS && journal_current_handle() == NULL &&
572 (sb->s_flags & MS_RDONLY))
573 return;
574
575 if (ext4_error_ratelimit(sb)) {
576 errstr = ext4_decode_error(sb, errno, nbuf);
577 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
578 sb->s_id, function, line, errstr);
579 }
580
581 save_error_info(sb, function, line);
582 ext4_handle_error(sb);
583}
584
585/*
586 * ext4_abort is a much stronger failure handler than ext4_error. The
587 * abort function may be used to deal with unrecoverable failures such
588 * as journal IO errors or ENOMEM at a critical moment in log management.
589 *
590 * We unconditionally force the filesystem into an ABORT|READONLY state,
591 * unless the error response on the fs has been set to panic in which
592 * case we take the easy way out and panic immediately.
593 */
594
595void __ext4_abort(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597{
598 va_list args;
599
600 save_error_info(sb, function, line);
601 va_start(args, fmt);
602 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
603 function, line);
604 vprintk(fmt, args);
605 printk("\n");
606 va_end(args);
607
608 if ((sb->s_flags & MS_RDONLY) == 0) {
609 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
610 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
611 /*
612 * Make sure updated value of ->s_mount_flags will be visible
613 * before ->s_flags update
614 */
615 smp_wmb();
616 sb->s_flags |= MS_RDONLY;
617 if (EXT4_SB(sb)->s_journal)
618 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
619 save_error_info(sb, function, line);
620 }
621 if (test_opt(sb, ERRORS_PANIC)) {
622 if (EXT4_SB(sb)->s_journal &&
623 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
624 return;
625 panic("EXT4-fs panic from previous error\n");
626 }
627}
628
629void __ext4_msg(struct super_block *sb,
630 const char *prefix, const char *fmt, ...)
631{
632 struct va_format vaf;
633 va_list args;
634
635 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
636 return;
637
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
642 va_end(args);
643}
644
645#define ext4_warning_ratelimit(sb) \
646 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
647 "EXT4-fs warning")
648
649void __ext4_warning(struct super_block *sb, const char *function,
650 unsigned int line, const char *fmt, ...)
651{
652 struct va_format vaf;
653 va_list args;
654
655 if (!ext4_warning_ratelimit(sb))
656 return;
657
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
662 sb->s_id, function, line, &vaf);
663 va_end(args);
664}
665
666void __ext4_warning_inode(const struct inode *inode, const char *function,
667 unsigned int line, const char *fmt, ...)
668{
669 struct va_format vaf;
670 va_list args;
671
672 if (!ext4_warning_ratelimit(inode->i_sb))
673 return;
674
675 va_start(args, fmt);
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
679 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
680 function, line, inode->i_ino, current->comm, &vaf);
681 va_end(args);
682}
683
684void __ext4_grp_locked_error(const char *function, unsigned int line,
685 struct super_block *sb, ext4_group_t grp,
686 unsigned long ino, ext4_fsblk_t block,
687 const char *fmt, ...)
688__releases(bitlock)
689__acquires(bitlock)
690{
691 struct va_format vaf;
692 va_list args;
693 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
694
695 es->s_last_error_ino = cpu_to_le32(ino);
696 es->s_last_error_block = cpu_to_le64(block);
697 __save_error_info(sb, function, line);
698
699 if (ext4_error_ratelimit(sb)) {
700 va_start(args, fmt);
701 vaf.fmt = fmt;
702 vaf.va = &args;
703 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
704 sb->s_id, function, line, grp);
705 if (ino)
706 printk(KERN_CONT "inode %lu: ", ino);
707 if (block)
708 printk(KERN_CONT "block %llu:",
709 (unsigned long long) block);
710 printk(KERN_CONT "%pV\n", &vaf);
711 va_end(args);
712 }
713
714 if (test_opt(sb, ERRORS_CONT)) {
715 ext4_commit_super(sb, 0);
716 return;
717 }
718
719 ext4_unlock_group(sb, grp);
720 ext4_handle_error(sb);
721 /*
722 * We only get here in the ERRORS_RO case; relocking the group
723 * may be dangerous, but nothing bad will happen since the
724 * filesystem will have already been marked read/only and the
725 * journal has been aborted. We return 1 as a hint to callers
726 * who might what to use the return value from
727 * ext4_grp_locked_error() to distinguish between the
728 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
729 * aggressively from the ext4 function in question, with a
730 * more appropriate error code.
731 */
732 ext4_lock_group(sb, grp);
733 return;
734}
735
736void ext4_update_dynamic_rev(struct super_block *sb)
737{
738 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
739
740 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
741 return;
742
743 ext4_warning(sb,
744 "updating to rev %d because of new feature flag, "
745 "running e2fsck is recommended",
746 EXT4_DYNAMIC_REV);
747
748 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
749 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
750 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
751 /* leave es->s_feature_*compat flags alone */
752 /* es->s_uuid will be set by e2fsck if empty */
753
754 /*
755 * The rest of the superblock fields should be zero, and if not it
756 * means they are likely already in use, so leave them alone. We
757 * can leave it up to e2fsck to clean up any inconsistencies there.
758 */
759}
760
761/*
762 * Open the external journal device
763 */
764static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
765{
766 struct block_device *bdev;
767 char b[BDEVNAME_SIZE];
768
769 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
770 if (IS_ERR(bdev))
771 goto fail;
772 return bdev;
773
774fail:
775 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
776 __bdevname(dev, b), PTR_ERR(bdev));
777 return NULL;
778}
779
780/*
781 * Release the journal device
782 */
783static void ext4_blkdev_put(struct block_device *bdev)
784{
785 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
786}
787
788static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
789{
790 struct block_device *bdev;
791 bdev = sbi->journal_bdev;
792 if (bdev) {
793 ext4_blkdev_put(bdev);
794 sbi->journal_bdev = NULL;
795 }
796}
797
798static inline struct inode *orphan_list_entry(struct list_head *l)
799{
800 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
801}
802
803static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
804{
805 struct list_head *l;
806
807 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
808 le32_to_cpu(sbi->s_es->s_last_orphan));
809
810 printk(KERN_ERR "sb_info orphan list:\n");
811 list_for_each(l, &sbi->s_orphan) {
812 struct inode *inode = orphan_list_entry(l);
813 printk(KERN_ERR " "
814 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
815 inode->i_sb->s_id, inode->i_ino, inode,
816 inode->i_mode, inode->i_nlink,
817 NEXT_ORPHAN(inode));
818 }
819}
820
821static void ext4_put_super(struct super_block *sb)
822{
823 struct ext4_sb_info *sbi = EXT4_SB(sb);
824 struct ext4_super_block *es = sbi->s_es;
825 int i, err;
826
827 ext4_unregister_li_request(sb);
828 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
829
830 flush_workqueue(sbi->rsv_conversion_wq);
831 destroy_workqueue(sbi->rsv_conversion_wq);
832
833 if (sbi->s_journal) {
834 err = jbd2_journal_destroy(sbi->s_journal);
835 sbi->s_journal = NULL;
836 if (err < 0)
837 ext4_abort(sb, "Couldn't clean up the journal");
838 }
839
840 ext4_unregister_sysfs(sb);
841 ext4_es_unregister_shrinker(sbi);
842 del_timer_sync(&sbi->s_err_report);
843 ext4_release_system_zone(sb);
844 ext4_mb_release(sb);
845 ext4_ext_release(sb);
846
847 if (!(sb->s_flags & MS_RDONLY)) {
848 ext4_clear_feature_journal_needs_recovery(sb);
849 es->s_state = cpu_to_le16(sbi->s_mount_state);
850 }
851 if (!(sb->s_flags & MS_RDONLY))
852 ext4_commit_super(sb, 1);
853
854 for (i = 0; i < sbi->s_gdb_count; i++)
855 brelse(sbi->s_group_desc[i]);
856 kvfree(sbi->s_group_desc);
857 kvfree(sbi->s_flex_groups);
858 percpu_counter_destroy(&sbi->s_freeclusters_counter);
859 percpu_counter_destroy(&sbi->s_freeinodes_counter);
860 percpu_counter_destroy(&sbi->s_dirs_counter);
861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
862 brelse(sbi->s_sbh);
863#ifdef CONFIG_QUOTA
864 for (i = 0; i < EXT4_MAXQUOTAS; i++)
865 kfree(sbi->s_qf_names[i]);
866#endif
867
868 /* Debugging code just in case the in-memory inode orphan list
869 * isn't empty. The on-disk one can be non-empty if we've
870 * detected an error and taken the fs readonly, but the
871 * in-memory list had better be clean by this point. */
872 if (!list_empty(&sbi->s_orphan))
873 dump_orphan_list(sb, sbi);
874 J_ASSERT(list_empty(&sbi->s_orphan));
875
876 sync_blockdev(sb->s_bdev);
877 invalidate_bdev(sb->s_bdev);
878 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
879 /*
880 * Invalidate the journal device's buffers. We don't want them
881 * floating about in memory - the physical journal device may
882 * hotswapped, and it breaks the `ro-after' testing code.
883 */
884 sync_blockdev(sbi->journal_bdev);
885 invalidate_bdev(sbi->journal_bdev);
886 ext4_blkdev_remove(sbi);
887 }
888 if (sbi->s_mb_cache) {
889 ext4_xattr_destroy_cache(sbi->s_mb_cache);
890 sbi->s_mb_cache = NULL;
891 }
892 if (sbi->s_mmp_tsk)
893 kthread_stop(sbi->s_mmp_tsk);
894 sb->s_fs_info = NULL;
895 /*
896 * Now that we are completely done shutting down the
897 * superblock, we need to actually destroy the kobject.
898 */
899 kobject_put(&sbi->s_kobj);
900 wait_for_completion(&sbi->s_kobj_unregister);
901 if (sbi->s_chksum_driver)
902 crypto_free_shash(sbi->s_chksum_driver);
903 kfree(sbi->s_blockgroup_lock);
904 kfree(sbi);
905}
906
907static struct kmem_cache *ext4_inode_cachep;
908
909/*
910 * Called inside transaction, so use GFP_NOFS
911 */
912static struct inode *ext4_alloc_inode(struct super_block *sb)
913{
914 struct ext4_inode_info *ei;
915
916 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
917 if (!ei)
918 return NULL;
919
920 ei->vfs_inode.i_version = 1;
921 spin_lock_init(&ei->i_raw_lock);
922 INIT_LIST_HEAD(&ei->i_prealloc_list);
923 spin_lock_init(&ei->i_prealloc_lock);
924 ext4_es_init_tree(&ei->i_es_tree);
925 rwlock_init(&ei->i_es_lock);
926 INIT_LIST_HEAD(&ei->i_es_list);
927 ei->i_es_all_nr = 0;
928 ei->i_es_shk_nr = 0;
929 ei->i_es_shrink_lblk = 0;
930 ei->i_reserved_data_blocks = 0;
931 ei->i_reserved_meta_blocks = 0;
932 ei->i_allocated_meta_blocks = 0;
933 ei->i_da_metadata_calc_len = 0;
934 ei->i_da_metadata_calc_last_lblock = 0;
935 spin_lock_init(&(ei->i_block_reservation_lock));
936#ifdef CONFIG_QUOTA
937 ei->i_reserved_quota = 0;
938 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
939#endif
940 ei->jinode = NULL;
941 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
942 spin_lock_init(&ei->i_completed_io_lock);
943 ei->i_sync_tid = 0;
944 ei->i_datasync_tid = 0;
945 atomic_set(&ei->i_unwritten, 0);
946 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
947#ifdef CONFIG_EXT4_FS_ENCRYPTION
948 ei->i_crypt_info = NULL;
949#endif
950 return &ei->vfs_inode;
951}
952
953static int ext4_drop_inode(struct inode *inode)
954{
955 int drop = generic_drop_inode(inode);
956
957 trace_ext4_drop_inode(inode, drop);
958 return drop;
959}
960
961static void ext4_i_callback(struct rcu_head *head)
962{
963 struct inode *inode = container_of(head, struct inode, i_rcu);
964 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
965}
966
967static void ext4_destroy_inode(struct inode *inode)
968{
969 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
970 ext4_msg(inode->i_sb, KERN_ERR,
971 "Inode %lu (%p): orphan list check failed!",
972 inode->i_ino, EXT4_I(inode));
973 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
974 EXT4_I(inode), sizeof(struct ext4_inode_info),
975 true);
976 dump_stack();
977 }
978 call_rcu(&inode->i_rcu, ext4_i_callback);
979}
980
981static void init_once(void *foo)
982{
983 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
984
985 INIT_LIST_HEAD(&ei->i_orphan);
986 init_rwsem(&ei->xattr_sem);
987 init_rwsem(&ei->i_data_sem);
988 init_rwsem(&ei->i_mmap_sem);
989 inode_init_once(&ei->vfs_inode);
990}
991
992static int __init init_inodecache(void)
993{
994 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
995 sizeof(struct ext4_inode_info),
996 0, (SLAB_RECLAIM_ACCOUNT|
997 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
998 init_once);
999 if (ext4_inode_cachep == NULL)
1000 return -ENOMEM;
1001 return 0;
1002}
1003
1004static void destroy_inodecache(void)
1005{
1006 /*
1007 * Make sure all delayed rcu free inodes are flushed before we
1008 * destroy cache.
1009 */
1010 rcu_barrier();
1011 kmem_cache_destroy(ext4_inode_cachep);
1012}
1013
1014void ext4_clear_inode(struct inode *inode)
1015{
1016 invalidate_inode_buffers(inode);
1017 clear_inode(inode);
1018 dquot_drop(inode);
1019 ext4_discard_preallocations(inode);
1020 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1021 if (EXT4_I(inode)->jinode) {
1022 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1023 EXT4_I(inode)->jinode);
1024 jbd2_free_inode(EXT4_I(inode)->jinode);
1025 EXT4_I(inode)->jinode = NULL;
1026 }
1027#ifdef CONFIG_EXT4_FS_ENCRYPTION
1028 if (EXT4_I(inode)->i_crypt_info)
1029 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1030#endif
1031}
1032
1033static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1034 u64 ino, u32 generation)
1035{
1036 struct inode *inode;
1037
1038 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1039 return ERR_PTR(-ESTALE);
1040 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1041 return ERR_PTR(-ESTALE);
1042
1043 /* iget isn't really right if the inode is currently unallocated!!
1044 *
1045 * ext4_read_inode will return a bad_inode if the inode had been
1046 * deleted, so we should be safe.
1047 *
1048 * Currently we don't know the generation for parent directory, so
1049 * a generation of 0 means "accept any"
1050 */
1051 inode = ext4_iget_normal(sb, ino);
1052 if (IS_ERR(inode))
1053 return ERR_CAST(inode);
1054 if (generation && inode->i_generation != generation) {
1055 iput(inode);
1056 return ERR_PTR(-ESTALE);
1057 }
1058
1059 return inode;
1060}
1061
1062static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1063 int fh_len, int fh_type)
1064{
1065 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1066 ext4_nfs_get_inode);
1067}
1068
1069static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1070 int fh_len, int fh_type)
1071{
1072 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1073 ext4_nfs_get_inode);
1074}
1075
1076/*
1077 * Try to release metadata pages (indirect blocks, directories) which are
1078 * mapped via the block device. Since these pages could have journal heads
1079 * which would prevent try_to_free_buffers() from freeing them, we must use
1080 * jbd2 layer's try_to_free_buffers() function to release them.
1081 */
1082static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1083 gfp_t wait)
1084{
1085 journal_t *journal = EXT4_SB(sb)->s_journal;
1086
1087 WARN_ON(PageChecked(page));
1088 if (!page_has_buffers(page))
1089 return 0;
1090 if (journal)
1091 return jbd2_journal_try_to_free_buffers(journal, page,
1092 wait & ~__GFP_DIRECT_RECLAIM);
1093 return try_to_free_buffers(page);
1094}
1095
1096#ifdef CONFIG_QUOTA
1097static char *quotatypes[] = INITQFNAMES;
1098#define QTYPE2NAME(t) (quotatypes[t])
1099
1100static int ext4_write_dquot(struct dquot *dquot);
1101static int ext4_acquire_dquot(struct dquot *dquot);
1102static int ext4_release_dquot(struct dquot *dquot);
1103static int ext4_mark_dquot_dirty(struct dquot *dquot);
1104static int ext4_write_info(struct super_block *sb, int type);
1105static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1106 struct path *path);
1107static int ext4_quota_off(struct super_block *sb, int type);
1108static int ext4_quota_on_mount(struct super_block *sb, int type);
1109static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1110 size_t len, loff_t off);
1111static ssize_t ext4_quota_write(struct super_block *sb, int type,
1112 const char *data, size_t len, loff_t off);
1113static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1114 unsigned int flags);
1115static int ext4_enable_quotas(struct super_block *sb);
1116static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1117
1118static struct dquot **ext4_get_dquots(struct inode *inode)
1119{
1120 return EXT4_I(inode)->i_dquot;
1121}
1122
1123static const struct dquot_operations ext4_quota_operations = {
1124 .get_reserved_space = ext4_get_reserved_space,
1125 .write_dquot = ext4_write_dquot,
1126 .acquire_dquot = ext4_acquire_dquot,
1127 .release_dquot = ext4_release_dquot,
1128 .mark_dirty = ext4_mark_dquot_dirty,
1129 .write_info = ext4_write_info,
1130 .alloc_dquot = dquot_alloc,
1131 .destroy_dquot = dquot_destroy,
1132 .get_projid = ext4_get_projid,
1133 .get_next_id = ext4_get_next_id,
1134};
1135
1136static const struct quotactl_ops ext4_qctl_operations = {
1137 .quota_on = ext4_quota_on,
1138 .quota_off = ext4_quota_off,
1139 .quota_sync = dquot_quota_sync,
1140 .get_state = dquot_get_state,
1141 .set_info = dquot_set_dqinfo,
1142 .get_dqblk = dquot_get_dqblk,
1143 .set_dqblk = dquot_set_dqblk,
1144 .get_nextdqblk = dquot_get_next_dqblk,
1145};
1146#endif
1147
1148static const struct super_operations ext4_sops = {
1149 .alloc_inode = ext4_alloc_inode,
1150 .destroy_inode = ext4_destroy_inode,
1151 .write_inode = ext4_write_inode,
1152 .dirty_inode = ext4_dirty_inode,
1153 .drop_inode = ext4_drop_inode,
1154 .evict_inode = ext4_evict_inode,
1155 .put_super = ext4_put_super,
1156 .sync_fs = ext4_sync_fs,
1157 .freeze_fs = ext4_freeze,
1158 .unfreeze_fs = ext4_unfreeze,
1159 .statfs = ext4_statfs,
1160 .remount_fs = ext4_remount,
1161 .show_options = ext4_show_options,
1162#ifdef CONFIG_QUOTA
1163 .quota_read = ext4_quota_read,
1164 .quota_write = ext4_quota_write,
1165 .get_dquots = ext4_get_dquots,
1166#endif
1167 .bdev_try_to_free_page = bdev_try_to_free_page,
1168};
1169
1170static const struct export_operations ext4_export_ops = {
1171 .fh_to_dentry = ext4_fh_to_dentry,
1172 .fh_to_parent = ext4_fh_to_parent,
1173 .get_parent = ext4_get_parent,
1174};
1175
1176enum {
1177 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1178 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1179 Opt_nouid32, Opt_debug, Opt_removed,
1180 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1181 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1182 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1183 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1184 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1185 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1186 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1187 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1188 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1189 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1190 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1191 Opt_lazytime, Opt_nolazytime,
1192 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1193 Opt_inode_readahead_blks, Opt_journal_ioprio,
1194 Opt_dioread_nolock, Opt_dioread_lock,
1195 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1196 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1197};
1198
1199static const match_table_t tokens = {
1200 {Opt_bsd_df, "bsddf"},
1201 {Opt_minix_df, "minixdf"},
1202 {Opt_grpid, "grpid"},
1203 {Opt_grpid, "bsdgroups"},
1204 {Opt_nogrpid, "nogrpid"},
1205 {Opt_nogrpid, "sysvgroups"},
1206 {Opt_resgid, "resgid=%u"},
1207 {Opt_resuid, "resuid=%u"},
1208 {Opt_sb, "sb=%u"},
1209 {Opt_err_cont, "errors=continue"},
1210 {Opt_err_panic, "errors=panic"},
1211 {Opt_err_ro, "errors=remount-ro"},
1212 {Opt_nouid32, "nouid32"},
1213 {Opt_debug, "debug"},
1214 {Opt_removed, "oldalloc"},
1215 {Opt_removed, "orlov"},
1216 {Opt_user_xattr, "user_xattr"},
1217 {Opt_nouser_xattr, "nouser_xattr"},
1218 {Opt_acl, "acl"},
1219 {Opt_noacl, "noacl"},
1220 {Opt_noload, "norecovery"},
1221 {Opt_noload, "noload"},
1222 {Opt_removed, "nobh"},
1223 {Opt_removed, "bh"},
1224 {Opt_commit, "commit=%u"},
1225 {Opt_min_batch_time, "min_batch_time=%u"},
1226 {Opt_max_batch_time, "max_batch_time=%u"},
1227 {Opt_journal_dev, "journal_dev=%u"},
1228 {Opt_journal_path, "journal_path=%s"},
1229 {Opt_journal_checksum, "journal_checksum"},
1230 {Opt_nojournal_checksum, "nojournal_checksum"},
1231 {Opt_journal_async_commit, "journal_async_commit"},
1232 {Opt_abort, "abort"},
1233 {Opt_data_journal, "data=journal"},
1234 {Opt_data_ordered, "data=ordered"},
1235 {Opt_data_writeback, "data=writeback"},
1236 {Opt_data_err_abort, "data_err=abort"},
1237 {Opt_data_err_ignore, "data_err=ignore"},
1238 {Opt_offusrjquota, "usrjquota="},
1239 {Opt_usrjquota, "usrjquota=%s"},
1240 {Opt_offgrpjquota, "grpjquota="},
1241 {Opt_grpjquota, "grpjquota=%s"},
1242 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1243 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1244 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1245 {Opt_grpquota, "grpquota"},
1246 {Opt_noquota, "noquota"},
1247 {Opt_quota, "quota"},
1248 {Opt_usrquota, "usrquota"},
1249 {Opt_barrier, "barrier=%u"},
1250 {Opt_barrier, "barrier"},
1251 {Opt_nobarrier, "nobarrier"},
1252 {Opt_i_version, "i_version"},
1253 {Opt_dax, "dax"},
1254 {Opt_stripe, "stripe=%u"},
1255 {Opt_delalloc, "delalloc"},
1256 {Opt_lazytime, "lazytime"},
1257 {Opt_nolazytime, "nolazytime"},
1258 {Opt_nodelalloc, "nodelalloc"},
1259 {Opt_removed, "mblk_io_submit"},
1260 {Opt_removed, "nomblk_io_submit"},
1261 {Opt_block_validity, "block_validity"},
1262 {Opt_noblock_validity, "noblock_validity"},
1263 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1264 {Opt_journal_ioprio, "journal_ioprio=%u"},
1265 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1266 {Opt_auto_da_alloc, "auto_da_alloc"},
1267 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1268 {Opt_dioread_nolock, "dioread_nolock"},
1269 {Opt_dioread_lock, "dioread_lock"},
1270 {Opt_discard, "discard"},
1271 {Opt_nodiscard, "nodiscard"},
1272 {Opt_init_itable, "init_itable=%u"},
1273 {Opt_init_itable, "init_itable"},
1274 {Opt_noinit_itable, "noinit_itable"},
1275 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1276 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1277 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1278 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1279 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1280 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1281 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1282 {Opt_err, NULL},
1283};
1284
1285static ext4_fsblk_t get_sb_block(void **data)
1286{
1287 ext4_fsblk_t sb_block;
1288 char *options = (char *) *data;
1289
1290 if (!options || strncmp(options, "sb=", 3) != 0)
1291 return 1; /* Default location */
1292
1293 options += 3;
1294 /* TODO: use simple_strtoll with >32bit ext4 */
1295 sb_block = simple_strtoul(options, &options, 0);
1296 if (*options && *options != ',') {
1297 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1298 (char *) *data);
1299 return 1;
1300 }
1301 if (*options == ',')
1302 options++;
1303 *data = (void *) options;
1304
1305 return sb_block;
1306}
1307
1308#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1309static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1310 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1311
1312#ifdef CONFIG_QUOTA
1313static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1314{
1315 struct ext4_sb_info *sbi = EXT4_SB(sb);
1316 char *qname;
1317 int ret = -1;
1318
1319 if (sb_any_quota_loaded(sb) &&
1320 !sbi->s_qf_names[qtype]) {
1321 ext4_msg(sb, KERN_ERR,
1322 "Cannot change journaled "
1323 "quota options when quota turned on");
1324 return -1;
1325 }
1326 if (ext4_has_feature_quota(sb)) {
1327 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1328 "ignored when QUOTA feature is enabled");
1329 return 1;
1330 }
1331 qname = match_strdup(args);
1332 if (!qname) {
1333 ext4_msg(sb, KERN_ERR,
1334 "Not enough memory for storing quotafile name");
1335 return -1;
1336 }
1337 if (sbi->s_qf_names[qtype]) {
1338 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1339 ret = 1;
1340 else
1341 ext4_msg(sb, KERN_ERR,
1342 "%s quota file already specified",
1343 QTYPE2NAME(qtype));
1344 goto errout;
1345 }
1346 if (strchr(qname, '/')) {
1347 ext4_msg(sb, KERN_ERR,
1348 "quotafile must be on filesystem root");
1349 goto errout;
1350 }
1351 sbi->s_qf_names[qtype] = qname;
1352 set_opt(sb, QUOTA);
1353 return 1;
1354errout:
1355 kfree(qname);
1356 return ret;
1357}
1358
1359static int clear_qf_name(struct super_block *sb, int qtype)
1360{
1361
1362 struct ext4_sb_info *sbi = EXT4_SB(sb);
1363
1364 if (sb_any_quota_loaded(sb) &&
1365 sbi->s_qf_names[qtype]) {
1366 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1367 " when quota turned on");
1368 return -1;
1369 }
1370 kfree(sbi->s_qf_names[qtype]);
1371 sbi->s_qf_names[qtype] = NULL;
1372 return 1;
1373}
1374#endif
1375
1376#define MOPT_SET 0x0001
1377#define MOPT_CLEAR 0x0002
1378#define MOPT_NOSUPPORT 0x0004
1379#define MOPT_EXPLICIT 0x0008
1380#define MOPT_CLEAR_ERR 0x0010
1381#define MOPT_GTE0 0x0020
1382#ifdef CONFIG_QUOTA
1383#define MOPT_Q 0
1384#define MOPT_QFMT 0x0040
1385#else
1386#define MOPT_Q MOPT_NOSUPPORT
1387#define MOPT_QFMT MOPT_NOSUPPORT
1388#endif
1389#define MOPT_DATAJ 0x0080
1390#define MOPT_NO_EXT2 0x0100
1391#define MOPT_NO_EXT3 0x0200
1392#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1393#define MOPT_STRING 0x0400
1394
1395static const struct mount_opts {
1396 int token;
1397 int mount_opt;
1398 int flags;
1399} ext4_mount_opts[] = {
1400 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1401 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1402 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1403 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1404 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1405 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1406 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1407 MOPT_EXT4_ONLY | MOPT_SET},
1408 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1409 MOPT_EXT4_ONLY | MOPT_CLEAR},
1410 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1411 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1412 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1413 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1414 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1415 MOPT_EXT4_ONLY | MOPT_CLEAR},
1416 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1417 MOPT_EXT4_ONLY | MOPT_CLEAR},
1418 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1419 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1420 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1421 EXT4_MOUNT_JOURNAL_CHECKSUM),
1422 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1423 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1424 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1425 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1426 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1427 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1428 MOPT_NO_EXT2},
1429 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1430 MOPT_NO_EXT2},
1431 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1432 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1433 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1434 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1435 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1436 {Opt_commit, 0, MOPT_GTE0},
1437 {Opt_max_batch_time, 0, MOPT_GTE0},
1438 {Opt_min_batch_time, 0, MOPT_GTE0},
1439 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1440 {Opt_init_itable, 0, MOPT_GTE0},
1441 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1442 {Opt_stripe, 0, MOPT_GTE0},
1443 {Opt_resuid, 0, MOPT_GTE0},
1444 {Opt_resgid, 0, MOPT_GTE0},
1445 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1446 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1447 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1448 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1449 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1450 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1451 MOPT_NO_EXT2 | MOPT_DATAJ},
1452 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1453 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1454#ifdef CONFIG_EXT4_FS_POSIX_ACL
1455 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1456 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1457#else
1458 {Opt_acl, 0, MOPT_NOSUPPORT},
1459 {Opt_noacl, 0, MOPT_NOSUPPORT},
1460#endif
1461 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1462 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1463 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1464 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1465 MOPT_SET | MOPT_Q},
1466 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1467 MOPT_SET | MOPT_Q},
1468 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1469 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1470 {Opt_usrjquota, 0, MOPT_Q},
1471 {Opt_grpjquota, 0, MOPT_Q},
1472 {Opt_offusrjquota, 0, MOPT_Q},
1473 {Opt_offgrpjquota, 0, MOPT_Q},
1474 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1475 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1476 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1477 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1478 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1479 {Opt_err, 0, 0}
1480};
1481
1482static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1483 substring_t *args, unsigned long *journal_devnum,
1484 unsigned int *journal_ioprio, int is_remount)
1485{
1486 struct ext4_sb_info *sbi = EXT4_SB(sb);
1487 const struct mount_opts *m;
1488 kuid_t uid;
1489 kgid_t gid;
1490 int arg = 0;
1491
1492#ifdef CONFIG_QUOTA
1493 if (token == Opt_usrjquota)
1494 return set_qf_name(sb, USRQUOTA, &args[0]);
1495 else if (token == Opt_grpjquota)
1496 return set_qf_name(sb, GRPQUOTA, &args[0]);
1497 else if (token == Opt_offusrjquota)
1498 return clear_qf_name(sb, USRQUOTA);
1499 else if (token == Opt_offgrpjquota)
1500 return clear_qf_name(sb, GRPQUOTA);
1501#endif
1502 switch (token) {
1503 case Opt_noacl:
1504 case Opt_nouser_xattr:
1505 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1506 break;
1507 case Opt_sb:
1508 return 1; /* handled by get_sb_block() */
1509 case Opt_removed:
1510 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1511 return 1;
1512 case Opt_abort:
1513 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1514 return 1;
1515 case Opt_i_version:
1516 sb->s_flags |= MS_I_VERSION;
1517 return 1;
1518 case Opt_lazytime:
1519 sb->s_flags |= MS_LAZYTIME;
1520 return 1;
1521 case Opt_nolazytime:
1522 sb->s_flags &= ~MS_LAZYTIME;
1523 return 1;
1524 }
1525
1526 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1527 if (token == m->token)
1528 break;
1529
1530 if (m->token == Opt_err) {
1531 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1532 "or missing value", opt);
1533 return -1;
1534 }
1535
1536 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1537 ext4_msg(sb, KERN_ERR,
1538 "Mount option \"%s\" incompatible with ext2", opt);
1539 return -1;
1540 }
1541 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1542 ext4_msg(sb, KERN_ERR,
1543 "Mount option \"%s\" incompatible with ext3", opt);
1544 return -1;
1545 }
1546
1547 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1548 return -1;
1549 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1550 return -1;
1551 if (m->flags & MOPT_EXPLICIT) {
1552 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1553 set_opt2(sb, EXPLICIT_DELALLOC);
1554 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1555 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1556 } else
1557 return -1;
1558 }
1559 if (m->flags & MOPT_CLEAR_ERR)
1560 clear_opt(sb, ERRORS_MASK);
1561 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1562 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1563 "options when quota turned on");
1564 return -1;
1565 }
1566
1567 if (m->flags & MOPT_NOSUPPORT) {
1568 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1569 } else if (token == Opt_commit) {
1570 if (arg == 0)
1571 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1572 sbi->s_commit_interval = HZ * arg;
1573 } else if (token == Opt_max_batch_time) {
1574 sbi->s_max_batch_time = arg;
1575 } else if (token == Opt_min_batch_time) {
1576 sbi->s_min_batch_time = arg;
1577 } else if (token == Opt_inode_readahead_blks) {
1578 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1579 ext4_msg(sb, KERN_ERR,
1580 "EXT4-fs: inode_readahead_blks must be "
1581 "0 or a power of 2 smaller than 2^31");
1582 return -1;
1583 }
1584 sbi->s_inode_readahead_blks = arg;
1585 } else if (token == Opt_init_itable) {
1586 set_opt(sb, INIT_INODE_TABLE);
1587 if (!args->from)
1588 arg = EXT4_DEF_LI_WAIT_MULT;
1589 sbi->s_li_wait_mult = arg;
1590 } else if (token == Opt_max_dir_size_kb) {
1591 sbi->s_max_dir_size_kb = arg;
1592 } else if (token == Opt_stripe) {
1593 sbi->s_stripe = arg;
1594 } else if (token == Opt_resuid) {
1595 uid = make_kuid(current_user_ns(), arg);
1596 if (!uid_valid(uid)) {
1597 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1598 return -1;
1599 }
1600 sbi->s_resuid = uid;
1601 } else if (token == Opt_resgid) {
1602 gid = make_kgid(current_user_ns(), arg);
1603 if (!gid_valid(gid)) {
1604 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1605 return -1;
1606 }
1607 sbi->s_resgid = gid;
1608 } else if (token == Opt_journal_dev) {
1609 if (is_remount) {
1610 ext4_msg(sb, KERN_ERR,
1611 "Cannot specify journal on remount");
1612 return -1;
1613 }
1614 *journal_devnum = arg;
1615 } else if (token == Opt_journal_path) {
1616 char *journal_path;
1617 struct inode *journal_inode;
1618 struct path path;
1619 int error;
1620
1621 if (is_remount) {
1622 ext4_msg(sb, KERN_ERR,
1623 "Cannot specify journal on remount");
1624 return -1;
1625 }
1626 journal_path = match_strdup(&args[0]);
1627 if (!journal_path) {
1628 ext4_msg(sb, KERN_ERR, "error: could not dup "
1629 "journal device string");
1630 return -1;
1631 }
1632
1633 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1634 if (error) {
1635 ext4_msg(sb, KERN_ERR, "error: could not find "
1636 "journal device path: error %d", error);
1637 kfree(journal_path);
1638 return -1;
1639 }
1640
1641 journal_inode = d_inode(path.dentry);
1642 if (!S_ISBLK(journal_inode->i_mode)) {
1643 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1644 "is not a block device", journal_path);
1645 path_put(&path);
1646 kfree(journal_path);
1647 return -1;
1648 }
1649
1650 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1651 path_put(&path);
1652 kfree(journal_path);
1653 } else if (token == Opt_journal_ioprio) {
1654 if (arg > 7) {
1655 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1656 " (must be 0-7)");
1657 return -1;
1658 }
1659 *journal_ioprio =
1660 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1661 } else if (token == Opt_test_dummy_encryption) {
1662#ifdef CONFIG_EXT4_FS_ENCRYPTION
1663 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1664 ext4_msg(sb, KERN_WARNING,
1665 "Test dummy encryption mode enabled");
1666#else
1667 ext4_msg(sb, KERN_WARNING,
1668 "Test dummy encryption mount option ignored");
1669#endif
1670 } else if (m->flags & MOPT_DATAJ) {
1671 if (is_remount) {
1672 if (!sbi->s_journal)
1673 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1674 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1675 ext4_msg(sb, KERN_ERR,
1676 "Cannot change data mode on remount");
1677 return -1;
1678 }
1679 } else {
1680 clear_opt(sb, DATA_FLAGS);
1681 sbi->s_mount_opt |= m->mount_opt;
1682 }
1683#ifdef CONFIG_QUOTA
1684 } else if (m->flags & MOPT_QFMT) {
1685 if (sb_any_quota_loaded(sb) &&
1686 sbi->s_jquota_fmt != m->mount_opt) {
1687 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1688 "quota options when quota turned on");
1689 return -1;
1690 }
1691 if (ext4_has_feature_quota(sb)) {
1692 ext4_msg(sb, KERN_INFO,
1693 "Quota format mount options ignored "
1694 "when QUOTA feature is enabled");
1695 return 1;
1696 }
1697 sbi->s_jquota_fmt = m->mount_opt;
1698#endif
1699 } else if (token == Opt_dax) {
1700#ifdef CONFIG_FS_DAX
1701 ext4_msg(sb, KERN_WARNING,
1702 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1703 sbi->s_mount_opt |= m->mount_opt;
1704#else
1705 ext4_msg(sb, KERN_INFO, "dax option not supported");
1706 return -1;
1707#endif
1708 } else if (token == Opt_data_err_abort) {
1709 sbi->s_mount_opt |= m->mount_opt;
1710 } else if (token == Opt_data_err_ignore) {
1711 sbi->s_mount_opt &= ~m->mount_opt;
1712 } else {
1713 if (!args->from)
1714 arg = 1;
1715 if (m->flags & MOPT_CLEAR)
1716 arg = !arg;
1717 else if (unlikely(!(m->flags & MOPT_SET))) {
1718 ext4_msg(sb, KERN_WARNING,
1719 "buggy handling of option %s", opt);
1720 WARN_ON(1);
1721 return -1;
1722 }
1723 if (arg != 0)
1724 sbi->s_mount_opt |= m->mount_opt;
1725 else
1726 sbi->s_mount_opt &= ~m->mount_opt;
1727 }
1728 return 1;
1729}
1730
1731static int parse_options(char *options, struct super_block *sb,
1732 unsigned long *journal_devnum,
1733 unsigned int *journal_ioprio,
1734 int is_remount)
1735{
1736 struct ext4_sb_info *sbi = EXT4_SB(sb);
1737 char *p;
1738 substring_t args[MAX_OPT_ARGS];
1739 int token;
1740
1741 if (!options)
1742 return 1;
1743
1744 while ((p = strsep(&options, ",")) != NULL) {
1745 if (!*p)
1746 continue;
1747 /*
1748 * Initialize args struct so we know whether arg was
1749 * found; some options take optional arguments.
1750 */
1751 args[0].to = args[0].from = NULL;
1752 token = match_token(p, tokens, args);
1753 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1754 journal_ioprio, is_remount) < 0)
1755 return 0;
1756 }
1757#ifdef CONFIG_QUOTA
1758 if (ext4_has_feature_quota(sb) &&
1759 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1760 ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota "
1761 "mount options ignored.");
1762 clear_opt(sb, USRQUOTA);
1763 clear_opt(sb, GRPQUOTA);
1764 } else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1765 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1766 clear_opt(sb, USRQUOTA);
1767
1768 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1769 clear_opt(sb, GRPQUOTA);
1770
1771 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1772 ext4_msg(sb, KERN_ERR, "old and new quota "
1773 "format mixing");
1774 return 0;
1775 }
1776
1777 if (!sbi->s_jquota_fmt) {
1778 ext4_msg(sb, KERN_ERR, "journaled quota format "
1779 "not specified");
1780 return 0;
1781 }
1782 }
1783#endif
1784 if (test_opt(sb, DIOREAD_NOLOCK)) {
1785 int blocksize =
1786 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1787
1788 if (blocksize < PAGE_SIZE) {
1789 ext4_msg(sb, KERN_ERR, "can't mount with "
1790 "dioread_nolock if block size != PAGE_SIZE");
1791 return 0;
1792 }
1793 }
1794 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1795 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1796 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1797 "in data=ordered mode");
1798 return 0;
1799 }
1800 return 1;
1801}
1802
1803static inline void ext4_show_quota_options(struct seq_file *seq,
1804 struct super_block *sb)
1805{
1806#if defined(CONFIG_QUOTA)
1807 struct ext4_sb_info *sbi = EXT4_SB(sb);
1808
1809 if (sbi->s_jquota_fmt) {
1810 char *fmtname = "";
1811
1812 switch (sbi->s_jquota_fmt) {
1813 case QFMT_VFS_OLD:
1814 fmtname = "vfsold";
1815 break;
1816 case QFMT_VFS_V0:
1817 fmtname = "vfsv0";
1818 break;
1819 case QFMT_VFS_V1:
1820 fmtname = "vfsv1";
1821 break;
1822 }
1823 seq_printf(seq, ",jqfmt=%s", fmtname);
1824 }
1825
1826 if (sbi->s_qf_names[USRQUOTA])
1827 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1828
1829 if (sbi->s_qf_names[GRPQUOTA])
1830 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1831#endif
1832}
1833
1834static const char *token2str(int token)
1835{
1836 const struct match_token *t;
1837
1838 for (t = tokens; t->token != Opt_err; t++)
1839 if (t->token == token && !strchr(t->pattern, '='))
1840 break;
1841 return t->pattern;
1842}
1843
1844/*
1845 * Show an option if
1846 * - it's set to a non-default value OR
1847 * - if the per-sb default is different from the global default
1848 */
1849static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1850 int nodefs)
1851{
1852 struct ext4_sb_info *sbi = EXT4_SB(sb);
1853 struct ext4_super_block *es = sbi->s_es;
1854 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1855 const struct mount_opts *m;
1856 char sep = nodefs ? '\n' : ',';
1857
1858#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1859#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1860
1861 if (sbi->s_sb_block != 1)
1862 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1863
1864 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1865 int want_set = m->flags & MOPT_SET;
1866 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1867 (m->flags & MOPT_CLEAR_ERR))
1868 continue;
1869 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1870 continue; /* skip if same as the default */
1871 if ((want_set &&
1872 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1873 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1874 continue; /* select Opt_noFoo vs Opt_Foo */
1875 SEQ_OPTS_PRINT("%s", token2str(m->token));
1876 }
1877
1878 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1879 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1880 SEQ_OPTS_PRINT("resuid=%u",
1881 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1882 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1883 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1884 SEQ_OPTS_PRINT("resgid=%u",
1885 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1886 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1887 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1888 SEQ_OPTS_PUTS("errors=remount-ro");
1889 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1890 SEQ_OPTS_PUTS("errors=continue");
1891 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1892 SEQ_OPTS_PUTS("errors=panic");
1893 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1894 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1895 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1896 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1897 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1898 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1899 if (sb->s_flags & MS_I_VERSION)
1900 SEQ_OPTS_PUTS("i_version");
1901 if (nodefs || sbi->s_stripe)
1902 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1903 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1904 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1905 SEQ_OPTS_PUTS("data=journal");
1906 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1907 SEQ_OPTS_PUTS("data=ordered");
1908 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1909 SEQ_OPTS_PUTS("data=writeback");
1910 }
1911 if (nodefs ||
1912 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1913 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1914 sbi->s_inode_readahead_blks);
1915
1916 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1917 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1918 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1919 if (nodefs || sbi->s_max_dir_size_kb)
1920 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1921 if (test_opt(sb, DATA_ERR_ABORT))
1922 SEQ_OPTS_PUTS("data_err=abort");
1923
1924 ext4_show_quota_options(seq, sb);
1925 return 0;
1926}
1927
1928static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1929{
1930 return _ext4_show_options(seq, root->d_sb, 0);
1931}
1932
1933int ext4_seq_options_show(struct seq_file *seq, void *offset)
1934{
1935 struct super_block *sb = seq->private;
1936 int rc;
1937
1938 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1939 rc = _ext4_show_options(seq, sb, 1);
1940 seq_puts(seq, "\n");
1941 return rc;
1942}
1943
1944static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1945 int read_only)
1946{
1947 struct ext4_sb_info *sbi = EXT4_SB(sb);
1948 int res = 0;
1949
1950 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1951 ext4_msg(sb, KERN_ERR, "revision level too high, "
1952 "forcing read-only mode");
1953 res = MS_RDONLY;
1954 }
1955 if (read_only)
1956 goto done;
1957 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1958 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1959 "running e2fsck is recommended");
1960 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1961 ext4_msg(sb, KERN_WARNING,
1962 "warning: mounting fs with errors, "
1963 "running e2fsck is recommended");
1964 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1965 le16_to_cpu(es->s_mnt_count) >=
1966 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1967 ext4_msg(sb, KERN_WARNING,
1968 "warning: maximal mount count reached, "
1969 "running e2fsck is recommended");
1970 else if (le32_to_cpu(es->s_checkinterval) &&
1971 (le32_to_cpu(es->s_lastcheck) +
1972 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1973 ext4_msg(sb, KERN_WARNING,
1974 "warning: checktime reached, "
1975 "running e2fsck is recommended");
1976 if (!sbi->s_journal)
1977 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1978 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1979 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1980 le16_add_cpu(&es->s_mnt_count, 1);
1981 es->s_mtime = cpu_to_le32(get_seconds());
1982 ext4_update_dynamic_rev(sb);
1983 if (sbi->s_journal)
1984 ext4_set_feature_journal_needs_recovery(sb);
1985
1986 ext4_commit_super(sb, 1);
1987done:
1988 if (test_opt(sb, DEBUG))
1989 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1990 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1991 sb->s_blocksize,
1992 sbi->s_groups_count,
1993 EXT4_BLOCKS_PER_GROUP(sb),
1994 EXT4_INODES_PER_GROUP(sb),
1995 sbi->s_mount_opt, sbi->s_mount_opt2);
1996
1997 cleancache_init_fs(sb);
1998 return res;
1999}
2000
2001int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2002{
2003 struct ext4_sb_info *sbi = EXT4_SB(sb);
2004 struct flex_groups *new_groups;
2005 int size;
2006
2007 if (!sbi->s_log_groups_per_flex)
2008 return 0;
2009
2010 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2011 if (size <= sbi->s_flex_groups_allocated)
2012 return 0;
2013
2014 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2015 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2016 if (!new_groups) {
2017 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2018 size / (int) sizeof(struct flex_groups));
2019 return -ENOMEM;
2020 }
2021
2022 if (sbi->s_flex_groups) {
2023 memcpy(new_groups, sbi->s_flex_groups,
2024 (sbi->s_flex_groups_allocated *
2025 sizeof(struct flex_groups)));
2026 kvfree(sbi->s_flex_groups);
2027 }
2028 sbi->s_flex_groups = new_groups;
2029 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2030 return 0;
2031}
2032
2033static int ext4_fill_flex_info(struct super_block *sb)
2034{
2035 struct ext4_sb_info *sbi = EXT4_SB(sb);
2036 struct ext4_group_desc *gdp = NULL;
2037 ext4_group_t flex_group;
2038 int i, err;
2039
2040 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2041 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2042 sbi->s_log_groups_per_flex = 0;
2043 return 1;
2044 }
2045
2046 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2047 if (err)
2048 goto failed;
2049
2050 for (i = 0; i < sbi->s_groups_count; i++) {
2051 gdp = ext4_get_group_desc(sb, i, NULL);
2052
2053 flex_group = ext4_flex_group(sbi, i);
2054 atomic_add(ext4_free_inodes_count(sb, gdp),
2055 &sbi->s_flex_groups[flex_group].free_inodes);
2056 atomic64_add(ext4_free_group_clusters(sb, gdp),
2057 &sbi->s_flex_groups[flex_group].free_clusters);
2058 atomic_add(ext4_used_dirs_count(sb, gdp),
2059 &sbi->s_flex_groups[flex_group].used_dirs);
2060 }
2061
2062 return 1;
2063failed:
2064 return 0;
2065}
2066
2067static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2068 struct ext4_group_desc *gdp)
2069{
2070 int offset;
2071 __u16 crc = 0;
2072 __le32 le_group = cpu_to_le32(block_group);
2073 struct ext4_sb_info *sbi = EXT4_SB(sb);
2074
2075 if (ext4_has_metadata_csum(sbi->s_sb)) {
2076 /* Use new metadata_csum algorithm */
2077 __le16 save_csum;
2078 __u32 csum32;
2079
2080 save_csum = gdp->bg_checksum;
2081 gdp->bg_checksum = 0;
2082 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2083 sizeof(le_group));
2084 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2085 sbi->s_desc_size);
2086 gdp->bg_checksum = save_csum;
2087
2088 crc = csum32 & 0xFFFF;
2089 goto out;
2090 }
2091
2092 /* old crc16 code */
2093 if (!ext4_has_feature_gdt_csum(sb))
2094 return 0;
2095
2096 offset = offsetof(struct ext4_group_desc, bg_checksum);
2097
2098 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2099 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2100 crc = crc16(crc, (__u8 *)gdp, offset);
2101 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2102 /* for checksum of struct ext4_group_desc do the rest...*/
2103 if (ext4_has_feature_64bit(sb) &&
2104 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2105 crc = crc16(crc, (__u8 *)gdp + offset,
2106 le16_to_cpu(sbi->s_es->s_desc_size) -
2107 offset);
2108
2109out:
2110 return cpu_to_le16(crc);
2111}
2112
2113int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2114 struct ext4_group_desc *gdp)
2115{
2116 if (ext4_has_group_desc_csum(sb) &&
2117 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2118 return 0;
2119
2120 return 1;
2121}
2122
2123void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2124 struct ext4_group_desc *gdp)
2125{
2126 if (!ext4_has_group_desc_csum(sb))
2127 return;
2128 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2129}
2130
2131/* Called at mount-time, super-block is locked */
2132static int ext4_check_descriptors(struct super_block *sb,
2133 ext4_group_t *first_not_zeroed)
2134{
2135 struct ext4_sb_info *sbi = EXT4_SB(sb);
2136 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2137 ext4_fsblk_t last_block;
2138 ext4_fsblk_t block_bitmap;
2139 ext4_fsblk_t inode_bitmap;
2140 ext4_fsblk_t inode_table;
2141 int flexbg_flag = 0;
2142 ext4_group_t i, grp = sbi->s_groups_count;
2143
2144 if (ext4_has_feature_flex_bg(sb))
2145 flexbg_flag = 1;
2146
2147 ext4_debug("Checking group descriptors");
2148
2149 for (i = 0; i < sbi->s_groups_count; i++) {
2150 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2151
2152 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2153 last_block = ext4_blocks_count(sbi->s_es) - 1;
2154 else
2155 last_block = first_block +
2156 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2157
2158 if ((grp == sbi->s_groups_count) &&
2159 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2160 grp = i;
2161
2162 block_bitmap = ext4_block_bitmap(sb, gdp);
2163 if (block_bitmap < first_block || block_bitmap > last_block) {
2164 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2165 "Block bitmap for group %u not in group "
2166 "(block %llu)!", i, block_bitmap);
2167 return 0;
2168 }
2169 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2170 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2171 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2172 "Inode bitmap for group %u not in group "
2173 "(block %llu)!", i, inode_bitmap);
2174 return 0;
2175 }
2176 inode_table = ext4_inode_table(sb, gdp);
2177 if (inode_table < first_block ||
2178 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2179 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2180 "Inode table for group %u not in group "
2181 "(block %llu)!", i, inode_table);
2182 return 0;
2183 }
2184 ext4_lock_group(sb, i);
2185 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2186 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2187 "Checksum for group %u failed (%u!=%u)",
2188 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2189 gdp)), le16_to_cpu(gdp->bg_checksum));
2190 if (!(sb->s_flags & MS_RDONLY)) {
2191 ext4_unlock_group(sb, i);
2192 return 0;
2193 }
2194 }
2195 ext4_unlock_group(sb, i);
2196 if (!flexbg_flag)
2197 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2198 }
2199 if (NULL != first_not_zeroed)
2200 *first_not_zeroed = grp;
2201 return 1;
2202}
2203
2204/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2205 * the superblock) which were deleted from all directories, but held open by
2206 * a process at the time of a crash. We walk the list and try to delete these
2207 * inodes at recovery time (only with a read-write filesystem).
2208 *
2209 * In order to keep the orphan inode chain consistent during traversal (in
2210 * case of crash during recovery), we link each inode into the superblock
2211 * orphan list_head and handle it the same way as an inode deletion during
2212 * normal operation (which journals the operations for us).
2213 *
2214 * We only do an iget() and an iput() on each inode, which is very safe if we
2215 * accidentally point at an in-use or already deleted inode. The worst that
2216 * can happen in this case is that we get a "bit already cleared" message from
2217 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2218 * e2fsck was run on this filesystem, and it must have already done the orphan
2219 * inode cleanup for us, so we can safely abort without any further action.
2220 */
2221static void ext4_orphan_cleanup(struct super_block *sb,
2222 struct ext4_super_block *es)
2223{
2224 unsigned int s_flags = sb->s_flags;
2225 int nr_orphans = 0, nr_truncates = 0;
2226#ifdef CONFIG_QUOTA
2227 int i;
2228#endif
2229 if (!es->s_last_orphan) {
2230 jbd_debug(4, "no orphan inodes to clean up\n");
2231 return;
2232 }
2233
2234 if (bdev_read_only(sb->s_bdev)) {
2235 ext4_msg(sb, KERN_ERR, "write access "
2236 "unavailable, skipping orphan cleanup");
2237 return;
2238 }
2239
2240 /* Check if feature set would not allow a r/w mount */
2241 if (!ext4_feature_set_ok(sb, 0)) {
2242 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2243 "unknown ROCOMPAT features");
2244 return;
2245 }
2246
2247 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2248 /* don't clear list on RO mount w/ errors */
2249 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2250 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2251 "clearing orphan list.\n");
2252 es->s_last_orphan = 0;
2253 }
2254 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2255 return;
2256 }
2257
2258 if (s_flags & MS_RDONLY) {
2259 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2260 sb->s_flags &= ~MS_RDONLY;
2261 }
2262#ifdef CONFIG_QUOTA
2263 /* Needed for iput() to work correctly and not trash data */
2264 sb->s_flags |= MS_ACTIVE;
2265 /* Turn on quotas so that they are updated correctly */
2266 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2267 if (EXT4_SB(sb)->s_qf_names[i]) {
2268 int ret = ext4_quota_on_mount(sb, i);
2269 if (ret < 0)
2270 ext4_msg(sb, KERN_ERR,
2271 "Cannot turn on journaled "
2272 "quota: error %d", ret);
2273 }
2274 }
2275#endif
2276
2277 while (es->s_last_orphan) {
2278 struct inode *inode;
2279
2280 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2281 if (IS_ERR(inode)) {
2282 es->s_last_orphan = 0;
2283 break;
2284 }
2285
2286 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2287 dquot_initialize(inode);
2288 if (inode->i_nlink) {
2289 if (test_opt(sb, DEBUG))
2290 ext4_msg(sb, KERN_DEBUG,
2291 "%s: truncating inode %lu to %lld bytes",
2292 __func__, inode->i_ino, inode->i_size);
2293 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2294 inode->i_ino, inode->i_size);
2295 inode_lock(inode);
2296 truncate_inode_pages(inode->i_mapping, inode->i_size);
2297 ext4_truncate(inode);
2298 inode_unlock(inode);
2299 nr_truncates++;
2300 } else {
2301 if (test_opt(sb, DEBUG))
2302 ext4_msg(sb, KERN_DEBUG,
2303 "%s: deleting unreferenced inode %lu",
2304 __func__, inode->i_ino);
2305 jbd_debug(2, "deleting unreferenced inode %lu\n",
2306 inode->i_ino);
2307 nr_orphans++;
2308 }
2309 iput(inode); /* The delete magic happens here! */
2310 }
2311
2312#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2313
2314 if (nr_orphans)
2315 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2316 PLURAL(nr_orphans));
2317 if (nr_truncates)
2318 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2319 PLURAL(nr_truncates));
2320#ifdef CONFIG_QUOTA
2321 /* Turn quotas off */
2322 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2323 if (sb_dqopt(sb)->files[i])
2324 dquot_quota_off(sb, i);
2325 }
2326#endif
2327 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2328}
2329
2330/*
2331 * Maximal extent format file size.
2332 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2333 * extent format containers, within a sector_t, and within i_blocks
2334 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2335 * so that won't be a limiting factor.
2336 *
2337 * However there is other limiting factor. We do store extents in the form
2338 * of starting block and length, hence the resulting length of the extent
2339 * covering maximum file size must fit into on-disk format containers as
2340 * well. Given that length is always by 1 unit bigger than max unit (because
2341 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2342 *
2343 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2344 */
2345static loff_t ext4_max_size(int blkbits, int has_huge_files)
2346{
2347 loff_t res;
2348 loff_t upper_limit = MAX_LFS_FILESIZE;
2349
2350 /* small i_blocks in vfs inode? */
2351 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2352 /*
2353 * CONFIG_LBDAF is not enabled implies the inode
2354 * i_block represent total blocks in 512 bytes
2355 * 32 == size of vfs inode i_blocks * 8
2356 */
2357 upper_limit = (1LL << 32) - 1;
2358
2359 /* total blocks in file system block size */
2360 upper_limit >>= (blkbits - 9);
2361 upper_limit <<= blkbits;
2362 }
2363
2364 /*
2365 * 32-bit extent-start container, ee_block. We lower the maxbytes
2366 * by one fs block, so ee_len can cover the extent of maximum file
2367 * size
2368 */
2369 res = (1LL << 32) - 1;
2370 res <<= blkbits;
2371
2372 /* Sanity check against vm- & vfs- imposed limits */
2373 if (res > upper_limit)
2374 res = upper_limit;
2375
2376 return res;
2377}
2378
2379/*
2380 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2381 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2382 * We need to be 1 filesystem block less than the 2^48 sector limit.
2383 */
2384static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2385{
2386 loff_t res = EXT4_NDIR_BLOCKS;
2387 int meta_blocks;
2388 loff_t upper_limit;
2389 /* This is calculated to be the largest file size for a dense, block
2390 * mapped file such that the file's total number of 512-byte sectors,
2391 * including data and all indirect blocks, does not exceed (2^48 - 1).
2392 *
2393 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2394 * number of 512-byte sectors of the file.
2395 */
2396
2397 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2398 /*
2399 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2400 * the inode i_block field represents total file blocks in
2401 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2402 */
2403 upper_limit = (1LL << 32) - 1;
2404
2405 /* total blocks in file system block size */
2406 upper_limit >>= (bits - 9);
2407
2408 } else {
2409 /*
2410 * We use 48 bit ext4_inode i_blocks
2411 * With EXT4_HUGE_FILE_FL set the i_blocks
2412 * represent total number of blocks in
2413 * file system block size
2414 */
2415 upper_limit = (1LL << 48) - 1;
2416
2417 }
2418
2419 /* indirect blocks */
2420 meta_blocks = 1;
2421 /* double indirect blocks */
2422 meta_blocks += 1 + (1LL << (bits-2));
2423 /* tripple indirect blocks */
2424 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2425
2426 upper_limit -= meta_blocks;
2427 upper_limit <<= bits;
2428
2429 res += 1LL << (bits-2);
2430 res += 1LL << (2*(bits-2));
2431 res += 1LL << (3*(bits-2));
2432 res <<= bits;
2433 if (res > upper_limit)
2434 res = upper_limit;
2435
2436 if (res > MAX_LFS_FILESIZE)
2437 res = MAX_LFS_FILESIZE;
2438
2439 return res;
2440}
2441
2442static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2443 ext4_fsblk_t logical_sb_block, int nr)
2444{
2445 struct ext4_sb_info *sbi = EXT4_SB(sb);
2446 ext4_group_t bg, first_meta_bg;
2447 int has_super = 0;
2448
2449 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2450
2451 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2452 return logical_sb_block + nr + 1;
2453 bg = sbi->s_desc_per_block * nr;
2454 if (ext4_bg_has_super(sb, bg))
2455 has_super = 1;
2456
2457 /*
2458 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2459 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2460 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2461 * compensate.
2462 */
2463 if (sb->s_blocksize == 1024 && nr == 0 &&
2464 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2465 has_super++;
2466
2467 return (has_super + ext4_group_first_block_no(sb, bg));
2468}
2469
2470/**
2471 * ext4_get_stripe_size: Get the stripe size.
2472 * @sbi: In memory super block info
2473 *
2474 * If we have specified it via mount option, then
2475 * use the mount option value. If the value specified at mount time is
2476 * greater than the blocks per group use the super block value.
2477 * If the super block value is greater than blocks per group return 0.
2478 * Allocator needs it be less than blocks per group.
2479 *
2480 */
2481static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2482{
2483 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2484 unsigned long stripe_width =
2485 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2486 int ret;
2487
2488 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2489 ret = sbi->s_stripe;
2490 else if (stripe_width <= sbi->s_blocks_per_group)
2491 ret = stripe_width;
2492 else if (stride <= sbi->s_blocks_per_group)
2493 ret = stride;
2494 else
2495 ret = 0;
2496
2497 /*
2498 * If the stripe width is 1, this makes no sense and
2499 * we set it to 0 to turn off stripe handling code.
2500 */
2501 if (ret <= 1)
2502 ret = 0;
2503
2504 return ret;
2505}
2506
2507/*
2508 * Check whether this filesystem can be mounted based on
2509 * the features present and the RDONLY/RDWR mount requested.
2510 * Returns 1 if this filesystem can be mounted as requested,
2511 * 0 if it cannot be.
2512 */
2513static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2514{
2515 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2516 ext4_msg(sb, KERN_ERR,
2517 "Couldn't mount because of "
2518 "unsupported optional features (%x)",
2519 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2520 ~EXT4_FEATURE_INCOMPAT_SUPP));
2521 return 0;
2522 }
2523
2524 if (readonly)
2525 return 1;
2526
2527 if (ext4_has_feature_readonly(sb)) {
2528 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2529 sb->s_flags |= MS_RDONLY;
2530 return 1;
2531 }
2532
2533 /* Check that feature set is OK for a read-write mount */
2534 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2535 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2536 "unsupported optional features (%x)",
2537 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2538 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2539 return 0;
2540 }
2541 /*
2542 * Large file size enabled file system can only be mounted
2543 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2544 */
2545 if (ext4_has_feature_huge_file(sb)) {
2546 if (sizeof(blkcnt_t) < sizeof(u64)) {
2547 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2548 "cannot be mounted RDWR without "
2549 "CONFIG_LBDAF");
2550 return 0;
2551 }
2552 }
2553 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2554 ext4_msg(sb, KERN_ERR,
2555 "Can't support bigalloc feature without "
2556 "extents feature\n");
2557 return 0;
2558 }
2559
2560#ifndef CONFIG_QUOTA
2561 if (ext4_has_feature_quota(sb) && !readonly) {
2562 ext4_msg(sb, KERN_ERR,
2563 "Filesystem with quota feature cannot be mounted RDWR "
2564 "without CONFIG_QUOTA");
2565 return 0;
2566 }
2567 if (ext4_has_feature_project(sb) && !readonly) {
2568 ext4_msg(sb, KERN_ERR,
2569 "Filesystem with project quota feature cannot be mounted RDWR "
2570 "without CONFIG_QUOTA");
2571 return 0;
2572 }
2573#endif /* CONFIG_QUOTA */
2574 return 1;
2575}
2576
2577/*
2578 * This function is called once a day if we have errors logged
2579 * on the file system
2580 */
2581static void print_daily_error_info(unsigned long arg)
2582{
2583 struct super_block *sb = (struct super_block *) arg;
2584 struct ext4_sb_info *sbi;
2585 struct ext4_super_block *es;
2586
2587 sbi = EXT4_SB(sb);
2588 es = sbi->s_es;
2589
2590 if (es->s_error_count)
2591 /* fsck newer than v1.41.13 is needed to clean this condition. */
2592 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2593 le32_to_cpu(es->s_error_count));
2594 if (es->s_first_error_time) {
2595 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2596 sb->s_id, le32_to_cpu(es->s_first_error_time),
2597 (int) sizeof(es->s_first_error_func),
2598 es->s_first_error_func,
2599 le32_to_cpu(es->s_first_error_line));
2600 if (es->s_first_error_ino)
2601 printk(": inode %u",
2602 le32_to_cpu(es->s_first_error_ino));
2603 if (es->s_first_error_block)
2604 printk(": block %llu", (unsigned long long)
2605 le64_to_cpu(es->s_first_error_block));
2606 printk("\n");
2607 }
2608 if (es->s_last_error_time) {
2609 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2610 sb->s_id, le32_to_cpu(es->s_last_error_time),
2611 (int) sizeof(es->s_last_error_func),
2612 es->s_last_error_func,
2613 le32_to_cpu(es->s_last_error_line));
2614 if (es->s_last_error_ino)
2615 printk(": inode %u",
2616 le32_to_cpu(es->s_last_error_ino));
2617 if (es->s_last_error_block)
2618 printk(": block %llu", (unsigned long long)
2619 le64_to_cpu(es->s_last_error_block));
2620 printk("\n");
2621 }
2622 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2623}
2624
2625/* Find next suitable group and run ext4_init_inode_table */
2626static int ext4_run_li_request(struct ext4_li_request *elr)
2627{
2628 struct ext4_group_desc *gdp = NULL;
2629 ext4_group_t group, ngroups;
2630 struct super_block *sb;
2631 unsigned long timeout = 0;
2632 int ret = 0;
2633
2634 sb = elr->lr_super;
2635 ngroups = EXT4_SB(sb)->s_groups_count;
2636
2637 sb_start_write(sb);
2638 for (group = elr->lr_next_group; group < ngroups; group++) {
2639 gdp = ext4_get_group_desc(sb, group, NULL);
2640 if (!gdp) {
2641 ret = 1;
2642 break;
2643 }
2644
2645 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2646 break;
2647 }
2648
2649 if (group >= ngroups)
2650 ret = 1;
2651
2652 if (!ret) {
2653 timeout = jiffies;
2654 ret = ext4_init_inode_table(sb, group,
2655 elr->lr_timeout ? 0 : 1);
2656 if (elr->lr_timeout == 0) {
2657 timeout = (jiffies - timeout) *
2658 elr->lr_sbi->s_li_wait_mult;
2659 elr->lr_timeout = timeout;
2660 }
2661 elr->lr_next_sched = jiffies + elr->lr_timeout;
2662 elr->lr_next_group = group + 1;
2663 }
2664 sb_end_write(sb);
2665
2666 return ret;
2667}
2668
2669/*
2670 * Remove lr_request from the list_request and free the
2671 * request structure. Should be called with li_list_mtx held
2672 */
2673static void ext4_remove_li_request(struct ext4_li_request *elr)
2674{
2675 struct ext4_sb_info *sbi;
2676
2677 if (!elr)
2678 return;
2679
2680 sbi = elr->lr_sbi;
2681
2682 list_del(&elr->lr_request);
2683 sbi->s_li_request = NULL;
2684 kfree(elr);
2685}
2686
2687static void ext4_unregister_li_request(struct super_block *sb)
2688{
2689 mutex_lock(&ext4_li_mtx);
2690 if (!ext4_li_info) {
2691 mutex_unlock(&ext4_li_mtx);
2692 return;
2693 }
2694
2695 mutex_lock(&ext4_li_info->li_list_mtx);
2696 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2697 mutex_unlock(&ext4_li_info->li_list_mtx);
2698 mutex_unlock(&ext4_li_mtx);
2699}
2700
2701static struct task_struct *ext4_lazyinit_task;
2702
2703/*
2704 * This is the function where ext4lazyinit thread lives. It walks
2705 * through the request list searching for next scheduled filesystem.
2706 * When such a fs is found, run the lazy initialization request
2707 * (ext4_rn_li_request) and keep track of the time spend in this
2708 * function. Based on that time we compute next schedule time of
2709 * the request. When walking through the list is complete, compute
2710 * next waking time and put itself into sleep.
2711 */
2712static int ext4_lazyinit_thread(void *arg)
2713{
2714 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2715 struct list_head *pos, *n;
2716 struct ext4_li_request *elr;
2717 unsigned long next_wakeup, cur;
2718
2719 BUG_ON(NULL == eli);
2720
2721cont_thread:
2722 while (true) {
2723 next_wakeup = MAX_JIFFY_OFFSET;
2724
2725 mutex_lock(&eli->li_list_mtx);
2726 if (list_empty(&eli->li_request_list)) {
2727 mutex_unlock(&eli->li_list_mtx);
2728 goto exit_thread;
2729 }
2730
2731 list_for_each_safe(pos, n, &eli->li_request_list) {
2732 elr = list_entry(pos, struct ext4_li_request,
2733 lr_request);
2734
2735 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2736 if (ext4_run_li_request(elr) != 0) {
2737 /* error, remove the lazy_init job */
2738 ext4_remove_li_request(elr);
2739 continue;
2740 }
2741 }
2742
2743 if (time_before(elr->lr_next_sched, next_wakeup))
2744 next_wakeup = elr->lr_next_sched;
2745 }
2746 mutex_unlock(&eli->li_list_mtx);
2747
2748 try_to_freeze();
2749
2750 cur = jiffies;
2751 if ((time_after_eq(cur, next_wakeup)) ||
2752 (MAX_JIFFY_OFFSET == next_wakeup)) {
2753 cond_resched();
2754 continue;
2755 }
2756
2757 schedule_timeout_interruptible(next_wakeup - cur);
2758
2759 if (kthread_should_stop()) {
2760 ext4_clear_request_list();
2761 goto exit_thread;
2762 }
2763 }
2764
2765exit_thread:
2766 /*
2767 * It looks like the request list is empty, but we need
2768 * to check it under the li_list_mtx lock, to prevent any
2769 * additions into it, and of course we should lock ext4_li_mtx
2770 * to atomically free the list and ext4_li_info, because at
2771 * this point another ext4 filesystem could be registering
2772 * new one.
2773 */
2774 mutex_lock(&ext4_li_mtx);
2775 mutex_lock(&eli->li_list_mtx);
2776 if (!list_empty(&eli->li_request_list)) {
2777 mutex_unlock(&eli->li_list_mtx);
2778 mutex_unlock(&ext4_li_mtx);
2779 goto cont_thread;
2780 }
2781 mutex_unlock(&eli->li_list_mtx);
2782 kfree(ext4_li_info);
2783 ext4_li_info = NULL;
2784 mutex_unlock(&ext4_li_mtx);
2785
2786 return 0;
2787}
2788
2789static void ext4_clear_request_list(void)
2790{
2791 struct list_head *pos, *n;
2792 struct ext4_li_request *elr;
2793
2794 mutex_lock(&ext4_li_info->li_list_mtx);
2795 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2796 elr = list_entry(pos, struct ext4_li_request,
2797 lr_request);
2798 ext4_remove_li_request(elr);
2799 }
2800 mutex_unlock(&ext4_li_info->li_list_mtx);
2801}
2802
2803static int ext4_run_lazyinit_thread(void)
2804{
2805 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2806 ext4_li_info, "ext4lazyinit");
2807 if (IS_ERR(ext4_lazyinit_task)) {
2808 int err = PTR_ERR(ext4_lazyinit_task);
2809 ext4_clear_request_list();
2810 kfree(ext4_li_info);
2811 ext4_li_info = NULL;
2812 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2813 "initialization thread\n",
2814 err);
2815 return err;
2816 }
2817 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2818 return 0;
2819}
2820
2821/*
2822 * Check whether it make sense to run itable init. thread or not.
2823 * If there is at least one uninitialized inode table, return
2824 * corresponding group number, else the loop goes through all
2825 * groups and return total number of groups.
2826 */
2827static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2828{
2829 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2830 struct ext4_group_desc *gdp = NULL;
2831
2832 for (group = 0; group < ngroups; group++) {
2833 gdp = ext4_get_group_desc(sb, group, NULL);
2834 if (!gdp)
2835 continue;
2836
2837 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2838 break;
2839 }
2840
2841 return group;
2842}
2843
2844static int ext4_li_info_new(void)
2845{
2846 struct ext4_lazy_init *eli = NULL;
2847
2848 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2849 if (!eli)
2850 return -ENOMEM;
2851
2852 INIT_LIST_HEAD(&eli->li_request_list);
2853 mutex_init(&eli->li_list_mtx);
2854
2855 eli->li_state |= EXT4_LAZYINIT_QUIT;
2856
2857 ext4_li_info = eli;
2858
2859 return 0;
2860}
2861
2862static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2863 ext4_group_t start)
2864{
2865 struct ext4_sb_info *sbi = EXT4_SB(sb);
2866 struct ext4_li_request *elr;
2867
2868 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2869 if (!elr)
2870 return NULL;
2871
2872 elr->lr_super = sb;
2873 elr->lr_sbi = sbi;
2874 elr->lr_next_group = start;
2875
2876 /*
2877 * Randomize first schedule time of the request to
2878 * spread the inode table initialization requests
2879 * better.
2880 */
2881 elr->lr_next_sched = jiffies + (prandom_u32() %
2882 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2883 return elr;
2884}
2885
2886int ext4_register_li_request(struct super_block *sb,
2887 ext4_group_t first_not_zeroed)
2888{
2889 struct ext4_sb_info *sbi = EXT4_SB(sb);
2890 struct ext4_li_request *elr = NULL;
2891 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2892 int ret = 0;
2893
2894 mutex_lock(&ext4_li_mtx);
2895 if (sbi->s_li_request != NULL) {
2896 /*
2897 * Reset timeout so it can be computed again, because
2898 * s_li_wait_mult might have changed.
2899 */
2900 sbi->s_li_request->lr_timeout = 0;
2901 goto out;
2902 }
2903
2904 if (first_not_zeroed == ngroups ||
2905 (sb->s_flags & MS_RDONLY) ||
2906 !test_opt(sb, INIT_INODE_TABLE))
2907 goto out;
2908
2909 elr = ext4_li_request_new(sb, first_not_zeroed);
2910 if (!elr) {
2911 ret = -ENOMEM;
2912 goto out;
2913 }
2914
2915 if (NULL == ext4_li_info) {
2916 ret = ext4_li_info_new();
2917 if (ret)
2918 goto out;
2919 }
2920
2921 mutex_lock(&ext4_li_info->li_list_mtx);
2922 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2923 mutex_unlock(&ext4_li_info->li_list_mtx);
2924
2925 sbi->s_li_request = elr;
2926 /*
2927 * set elr to NULL here since it has been inserted to
2928 * the request_list and the removal and free of it is
2929 * handled by ext4_clear_request_list from now on.
2930 */
2931 elr = NULL;
2932
2933 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2934 ret = ext4_run_lazyinit_thread();
2935 if (ret)
2936 goto out;
2937 }
2938out:
2939 mutex_unlock(&ext4_li_mtx);
2940 if (ret)
2941 kfree(elr);
2942 return ret;
2943}
2944
2945/*
2946 * We do not need to lock anything since this is called on
2947 * module unload.
2948 */
2949static void ext4_destroy_lazyinit_thread(void)
2950{
2951 /*
2952 * If thread exited earlier
2953 * there's nothing to be done.
2954 */
2955 if (!ext4_li_info || !ext4_lazyinit_task)
2956 return;
2957
2958 kthread_stop(ext4_lazyinit_task);
2959}
2960
2961static int set_journal_csum_feature_set(struct super_block *sb)
2962{
2963 int ret = 1;
2964 int compat, incompat;
2965 struct ext4_sb_info *sbi = EXT4_SB(sb);
2966
2967 if (ext4_has_metadata_csum(sb)) {
2968 /* journal checksum v3 */
2969 compat = 0;
2970 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
2971 } else {
2972 /* journal checksum v1 */
2973 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
2974 incompat = 0;
2975 }
2976
2977 jbd2_journal_clear_features(sbi->s_journal,
2978 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2979 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
2980 JBD2_FEATURE_INCOMPAT_CSUM_V2);
2981 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2982 ret = jbd2_journal_set_features(sbi->s_journal,
2983 compat, 0,
2984 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
2985 incompat);
2986 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2987 ret = jbd2_journal_set_features(sbi->s_journal,
2988 compat, 0,
2989 incompat);
2990 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2991 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2992 } else {
2993 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2994 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2995 }
2996
2997 return ret;
2998}
2999
3000/*
3001 * Note: calculating the overhead so we can be compatible with
3002 * historical BSD practice is quite difficult in the face of
3003 * clusters/bigalloc. This is because multiple metadata blocks from
3004 * different block group can end up in the same allocation cluster.
3005 * Calculating the exact overhead in the face of clustered allocation
3006 * requires either O(all block bitmaps) in memory or O(number of block
3007 * groups**2) in time. We will still calculate the superblock for
3008 * older file systems --- and if we come across with a bigalloc file
3009 * system with zero in s_overhead_clusters the estimate will be close to
3010 * correct especially for very large cluster sizes --- but for newer
3011 * file systems, it's better to calculate this figure once at mkfs
3012 * time, and store it in the superblock. If the superblock value is
3013 * present (even for non-bigalloc file systems), we will use it.
3014 */
3015static int count_overhead(struct super_block *sb, ext4_group_t grp,
3016 char *buf)
3017{
3018 struct ext4_sb_info *sbi = EXT4_SB(sb);
3019 struct ext4_group_desc *gdp;
3020 ext4_fsblk_t first_block, last_block, b;
3021 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3022 int s, j, count = 0;
3023
3024 if (!ext4_has_feature_bigalloc(sb))
3025 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3026 sbi->s_itb_per_group + 2);
3027
3028 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3029 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3030 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3031 for (i = 0; i < ngroups; i++) {
3032 gdp = ext4_get_group_desc(sb, i, NULL);
3033 b = ext4_block_bitmap(sb, gdp);
3034 if (b >= first_block && b <= last_block) {
3035 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3036 count++;
3037 }
3038 b = ext4_inode_bitmap(sb, gdp);
3039 if (b >= first_block && b <= last_block) {
3040 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3041 count++;
3042 }
3043 b = ext4_inode_table(sb, gdp);
3044 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3045 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3046 int c = EXT4_B2C(sbi, b - first_block);
3047 ext4_set_bit(c, buf);
3048 count++;
3049 }
3050 if (i != grp)
3051 continue;
3052 s = 0;
3053 if (ext4_bg_has_super(sb, grp)) {
3054 ext4_set_bit(s++, buf);
3055 count++;
3056 }
3057 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3058 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3059 count++;
3060 }
3061 }
3062 if (!count)
3063 return 0;
3064 return EXT4_CLUSTERS_PER_GROUP(sb) -
3065 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3066}
3067
3068/*
3069 * Compute the overhead and stash it in sbi->s_overhead
3070 */
3071int ext4_calculate_overhead(struct super_block *sb)
3072{
3073 struct ext4_sb_info *sbi = EXT4_SB(sb);
3074 struct ext4_super_block *es = sbi->s_es;
3075 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3076 ext4_fsblk_t overhead = 0;
3077 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3078
3079 if (!buf)
3080 return -ENOMEM;
3081
3082 /*
3083 * Compute the overhead (FS structures). This is constant
3084 * for a given filesystem unless the number of block groups
3085 * changes so we cache the previous value until it does.
3086 */
3087
3088 /*
3089 * All of the blocks before first_data_block are overhead
3090 */
3091 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3092
3093 /*
3094 * Add the overhead found in each block group
3095 */
3096 for (i = 0; i < ngroups; i++) {
3097 int blks;
3098
3099 blks = count_overhead(sb, i, buf);
3100 overhead += blks;
3101 if (blks)
3102 memset(buf, 0, PAGE_SIZE);
3103 cond_resched();
3104 }
3105 /* Add the internal journal blocks as well */
3106 if (sbi->s_journal && !sbi->journal_bdev)
3107 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3108
3109 sbi->s_overhead = overhead;
3110 smp_wmb();
3111 free_page((unsigned long) buf);
3112 return 0;
3113}
3114
3115static void ext4_set_resv_clusters(struct super_block *sb)
3116{
3117 ext4_fsblk_t resv_clusters;
3118 struct ext4_sb_info *sbi = EXT4_SB(sb);
3119
3120 /*
3121 * There's no need to reserve anything when we aren't using extents.
3122 * The space estimates are exact, there are no unwritten extents,
3123 * hole punching doesn't need new metadata... This is needed especially
3124 * to keep ext2/3 backward compatibility.
3125 */
3126 if (!ext4_has_feature_extents(sb))
3127 return;
3128 /*
3129 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3130 * This should cover the situations where we can not afford to run
3131 * out of space like for example punch hole, or converting
3132 * unwritten extents in delalloc path. In most cases such
3133 * allocation would require 1, or 2 blocks, higher numbers are
3134 * very rare.
3135 */
3136 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3137 sbi->s_cluster_bits);
3138
3139 do_div(resv_clusters, 50);
3140 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3141
3142 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3143}
3144
3145static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3146{
3147 char *orig_data = kstrdup(data, GFP_KERNEL);
3148 struct buffer_head *bh;
3149 struct ext4_super_block *es = NULL;
3150 struct ext4_sb_info *sbi;
3151 ext4_fsblk_t block;
3152 ext4_fsblk_t sb_block = get_sb_block(&data);
3153 ext4_fsblk_t logical_sb_block;
3154 unsigned long offset = 0;
3155 unsigned long journal_devnum = 0;
3156 unsigned long def_mount_opts;
3157 struct inode *root;
3158 const char *descr;
3159 int ret = -ENOMEM;
3160 int blocksize, clustersize;
3161 unsigned int db_count;
3162 unsigned int i;
3163 int needs_recovery, has_huge_files, has_bigalloc;
3164 __u64 blocks_count;
3165 int err = 0;
3166 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3167 ext4_group_t first_not_zeroed;
3168
3169 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3170 if (!sbi)
3171 goto out_free_orig;
3172
3173 sbi->s_blockgroup_lock =
3174 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3175 if (!sbi->s_blockgroup_lock) {
3176 kfree(sbi);
3177 goto out_free_orig;
3178 }
3179 sb->s_fs_info = sbi;
3180 sbi->s_sb = sb;
3181 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3182 sbi->s_sb_block = sb_block;
3183 if (sb->s_bdev->bd_part)
3184 sbi->s_sectors_written_start =
3185 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3186
3187 /* Cleanup superblock name */
3188 strreplace(sb->s_id, '/', '!');
3189
3190 /* -EINVAL is default */
3191 ret = -EINVAL;
3192 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3193 if (!blocksize) {
3194 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3195 goto out_fail;
3196 }
3197
3198 /*
3199 * The ext4 superblock will not be buffer aligned for other than 1kB
3200 * block sizes. We need to calculate the offset from buffer start.
3201 */
3202 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3203 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3204 offset = do_div(logical_sb_block, blocksize);
3205 } else {
3206 logical_sb_block = sb_block;
3207 }
3208
3209 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3210 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3211 goto out_fail;
3212 }
3213 /*
3214 * Note: s_es must be initialized as soon as possible because
3215 * some ext4 macro-instructions depend on its value
3216 */
3217 es = (struct ext4_super_block *) (bh->b_data + offset);
3218 sbi->s_es = es;
3219 sb->s_magic = le16_to_cpu(es->s_magic);
3220 if (sb->s_magic != EXT4_SUPER_MAGIC)
3221 goto cantfind_ext4;
3222 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3223
3224 /* Warn if metadata_csum and gdt_csum are both set. */
3225 if (ext4_has_feature_metadata_csum(sb) &&
3226 ext4_has_feature_gdt_csum(sb))
3227 ext4_warning(sb, "metadata_csum and uninit_bg are "
3228 "redundant flags; please run fsck.");
3229
3230 /* Check for a known checksum algorithm */
3231 if (!ext4_verify_csum_type(sb, es)) {
3232 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3233 "unknown checksum algorithm.");
3234 silent = 1;
3235 goto cantfind_ext4;
3236 }
3237
3238 /* Load the checksum driver */
3239 if (ext4_has_feature_metadata_csum(sb)) {
3240 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3241 if (IS_ERR(sbi->s_chksum_driver)) {
3242 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3243 ret = PTR_ERR(sbi->s_chksum_driver);
3244 sbi->s_chksum_driver = NULL;
3245 goto failed_mount;
3246 }
3247 }
3248
3249 /* Check superblock checksum */
3250 if (!ext4_superblock_csum_verify(sb, es)) {
3251 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3252 "invalid superblock checksum. Run e2fsck?");
3253 silent = 1;
3254 ret = -EFSBADCRC;
3255 goto cantfind_ext4;
3256 }
3257
3258 /* Precompute checksum seed for all metadata */
3259 if (ext4_has_feature_csum_seed(sb))
3260 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3261 else if (ext4_has_metadata_csum(sb))
3262 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3263 sizeof(es->s_uuid));
3264
3265 /* Set defaults before we parse the mount options */
3266 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3267 set_opt(sb, INIT_INODE_TABLE);
3268 if (def_mount_opts & EXT4_DEFM_DEBUG)
3269 set_opt(sb, DEBUG);
3270 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3271 set_opt(sb, GRPID);
3272 if (def_mount_opts & EXT4_DEFM_UID16)
3273 set_opt(sb, NO_UID32);
3274 /* xattr user namespace & acls are now defaulted on */
3275 set_opt(sb, XATTR_USER);
3276#ifdef CONFIG_EXT4_FS_POSIX_ACL
3277 set_opt(sb, POSIX_ACL);
3278#endif
3279 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3280 if (ext4_has_metadata_csum(sb))
3281 set_opt(sb, JOURNAL_CHECKSUM);
3282
3283 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3284 set_opt(sb, JOURNAL_DATA);
3285 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3286 set_opt(sb, ORDERED_DATA);
3287 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3288 set_opt(sb, WRITEBACK_DATA);
3289
3290 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3291 set_opt(sb, ERRORS_PANIC);
3292 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3293 set_opt(sb, ERRORS_CONT);
3294 else
3295 set_opt(sb, ERRORS_RO);
3296 /* block_validity enabled by default; disable with noblock_validity */
3297 set_opt(sb, BLOCK_VALIDITY);
3298 if (def_mount_opts & EXT4_DEFM_DISCARD)
3299 set_opt(sb, DISCARD);
3300
3301 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3302 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3303 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3304 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3305 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3306
3307 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3308 set_opt(sb, BARRIER);
3309
3310 /*
3311 * enable delayed allocation by default
3312 * Use -o nodelalloc to turn it off
3313 */
3314 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3315 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3316 set_opt(sb, DELALLOC);
3317
3318 /*
3319 * set default s_li_wait_mult for lazyinit, for the case there is
3320 * no mount option specified.
3321 */
3322 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3323
3324 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3325 &journal_devnum, &journal_ioprio, 0)) {
3326 ext4_msg(sb, KERN_WARNING,
3327 "failed to parse options in superblock: %s",
3328 sbi->s_es->s_mount_opts);
3329 }
3330 sbi->s_def_mount_opt = sbi->s_mount_opt;
3331 if (!parse_options((char *) data, sb, &journal_devnum,
3332 &journal_ioprio, 0))
3333 goto failed_mount;
3334
3335 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3336 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3337 "with data=journal disables delayed "
3338 "allocation and O_DIRECT support!\n");
3339 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3340 ext4_msg(sb, KERN_ERR, "can't mount with "
3341 "both data=journal and delalloc");
3342 goto failed_mount;
3343 }
3344 if (test_opt(sb, DIOREAD_NOLOCK)) {
3345 ext4_msg(sb, KERN_ERR, "can't mount with "
3346 "both data=journal and dioread_nolock");
3347 goto failed_mount;
3348 }
3349 if (test_opt(sb, DAX)) {
3350 ext4_msg(sb, KERN_ERR, "can't mount with "
3351 "both data=journal and dax");
3352 goto failed_mount;
3353 }
3354 if (test_opt(sb, DELALLOC))
3355 clear_opt(sb, DELALLOC);
3356 } else {
3357 sb->s_iflags |= SB_I_CGROUPWB;
3358 }
3359
3360 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3361 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3362
3363 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3364 (ext4_has_compat_features(sb) ||
3365 ext4_has_ro_compat_features(sb) ||
3366 ext4_has_incompat_features(sb)))
3367 ext4_msg(sb, KERN_WARNING,
3368 "feature flags set on rev 0 fs, "
3369 "running e2fsck is recommended");
3370
3371 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3372 set_opt2(sb, HURD_COMPAT);
3373 if (ext4_has_feature_64bit(sb)) {
3374 ext4_msg(sb, KERN_ERR,
3375 "The Hurd can't support 64-bit file systems");
3376 goto failed_mount;
3377 }
3378 }
3379
3380 if (IS_EXT2_SB(sb)) {
3381 if (ext2_feature_set_ok(sb))
3382 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3383 "using the ext4 subsystem");
3384 else {
3385 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3386 "to feature incompatibilities");
3387 goto failed_mount;
3388 }
3389 }
3390
3391 if (IS_EXT3_SB(sb)) {
3392 if (ext3_feature_set_ok(sb))
3393 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3394 "using the ext4 subsystem");
3395 else {
3396 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3397 "to feature incompatibilities");
3398 goto failed_mount;
3399 }
3400 }
3401
3402 /*
3403 * Check feature flags regardless of the revision level, since we
3404 * previously didn't change the revision level when setting the flags,
3405 * so there is a chance incompat flags are set on a rev 0 filesystem.
3406 */
3407 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3408 goto failed_mount;
3409
3410 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3411 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3412 blocksize > EXT4_MAX_BLOCK_SIZE) {
3413 ext4_msg(sb, KERN_ERR,
3414 "Unsupported filesystem blocksize %d", blocksize);
3415 goto failed_mount;
3416 }
3417
3418 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3419 if (blocksize != PAGE_SIZE) {
3420 ext4_msg(sb, KERN_ERR,
3421 "error: unsupported blocksize for dax");
3422 goto failed_mount;
3423 }
3424 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3425 ext4_msg(sb, KERN_ERR,
3426 "error: device does not support dax");
3427 goto failed_mount;
3428 }
3429 }
3430
3431 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3432 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3433 es->s_encryption_level);
3434 goto failed_mount;
3435 }
3436
3437 if (sb->s_blocksize != blocksize) {
3438 /* Validate the filesystem blocksize */
3439 if (!sb_set_blocksize(sb, blocksize)) {
3440 ext4_msg(sb, KERN_ERR, "bad block size %d",
3441 blocksize);
3442 goto failed_mount;
3443 }
3444
3445 brelse(bh);
3446 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3447 offset = do_div(logical_sb_block, blocksize);
3448 bh = sb_bread_unmovable(sb, logical_sb_block);
3449 if (!bh) {
3450 ext4_msg(sb, KERN_ERR,
3451 "Can't read superblock on 2nd try");
3452 goto failed_mount;
3453 }
3454 es = (struct ext4_super_block *)(bh->b_data + offset);
3455 sbi->s_es = es;
3456 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3457 ext4_msg(sb, KERN_ERR,
3458 "Magic mismatch, very weird!");
3459 goto failed_mount;
3460 }
3461 }
3462
3463 has_huge_files = ext4_has_feature_huge_file(sb);
3464 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3465 has_huge_files);
3466 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3467
3468 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3469 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3470 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3471 } else {
3472 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3473 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3474 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3475 (!is_power_of_2(sbi->s_inode_size)) ||
3476 (sbi->s_inode_size > blocksize)) {
3477 ext4_msg(sb, KERN_ERR,
3478 "unsupported inode size: %d",
3479 sbi->s_inode_size);
3480 goto failed_mount;
3481 }
3482 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3483 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3484 }
3485
3486 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3487 if (ext4_has_feature_64bit(sb)) {
3488 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3489 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3490 !is_power_of_2(sbi->s_desc_size)) {
3491 ext4_msg(sb, KERN_ERR,
3492 "unsupported descriptor size %lu",
3493 sbi->s_desc_size);
3494 goto failed_mount;
3495 }
3496 } else
3497 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3498
3499 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3500 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3501 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3502 goto cantfind_ext4;
3503
3504 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3505 if (sbi->s_inodes_per_block == 0)
3506 goto cantfind_ext4;
3507 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3508 sbi->s_inodes_per_block;
3509 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3510 sbi->s_sbh = bh;
3511 sbi->s_mount_state = le16_to_cpu(es->s_state);
3512 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3513 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3514
3515 for (i = 0; i < 4; i++)
3516 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3517 sbi->s_def_hash_version = es->s_def_hash_version;
3518 if (ext4_has_feature_dir_index(sb)) {
3519 i = le32_to_cpu(es->s_flags);
3520 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3521 sbi->s_hash_unsigned = 3;
3522 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3523#ifdef __CHAR_UNSIGNED__
3524 if (!(sb->s_flags & MS_RDONLY))
3525 es->s_flags |=
3526 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3527 sbi->s_hash_unsigned = 3;
3528#else
3529 if (!(sb->s_flags & MS_RDONLY))
3530 es->s_flags |=
3531 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3532#endif
3533 }
3534 }
3535
3536 /* Handle clustersize */
3537 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3538 has_bigalloc = ext4_has_feature_bigalloc(sb);
3539 if (has_bigalloc) {
3540 if (clustersize < blocksize) {
3541 ext4_msg(sb, KERN_ERR,
3542 "cluster size (%d) smaller than "
3543 "block size (%d)", clustersize, blocksize);
3544 goto failed_mount;
3545 }
3546 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3547 le32_to_cpu(es->s_log_block_size);
3548 sbi->s_clusters_per_group =
3549 le32_to_cpu(es->s_clusters_per_group);
3550 if (sbi->s_clusters_per_group > blocksize * 8) {
3551 ext4_msg(sb, KERN_ERR,
3552 "#clusters per group too big: %lu",
3553 sbi->s_clusters_per_group);
3554 goto failed_mount;
3555 }
3556 if (sbi->s_blocks_per_group !=
3557 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3558 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3559 "clusters per group (%lu) inconsistent",
3560 sbi->s_blocks_per_group,
3561 sbi->s_clusters_per_group);
3562 goto failed_mount;
3563 }
3564 } else {
3565 if (clustersize != blocksize) {
3566 ext4_warning(sb, "fragment/cluster size (%d) != "
3567 "block size (%d)", clustersize,
3568 blocksize);
3569 clustersize = blocksize;
3570 }
3571 if (sbi->s_blocks_per_group > blocksize * 8) {
3572 ext4_msg(sb, KERN_ERR,
3573 "#blocks per group too big: %lu",
3574 sbi->s_blocks_per_group);
3575 goto failed_mount;
3576 }
3577 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3578 sbi->s_cluster_bits = 0;
3579 }
3580 sbi->s_cluster_ratio = clustersize / blocksize;
3581
3582 if (sbi->s_inodes_per_group > blocksize * 8) {
3583 ext4_msg(sb, KERN_ERR,
3584 "#inodes per group too big: %lu",
3585 sbi->s_inodes_per_group);
3586 goto failed_mount;
3587 }
3588
3589 /* Do we have standard group size of clustersize * 8 blocks ? */
3590 if (sbi->s_blocks_per_group == clustersize << 3)
3591 set_opt2(sb, STD_GROUP_SIZE);
3592
3593 /*
3594 * Test whether we have more sectors than will fit in sector_t,
3595 * and whether the max offset is addressable by the page cache.
3596 */
3597 err = generic_check_addressable(sb->s_blocksize_bits,
3598 ext4_blocks_count(es));
3599 if (err) {
3600 ext4_msg(sb, KERN_ERR, "filesystem"
3601 " too large to mount safely on this system");
3602 if (sizeof(sector_t) < 8)
3603 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3604 goto failed_mount;
3605 }
3606
3607 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3608 goto cantfind_ext4;
3609
3610 /* check blocks count against device size */
3611 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3612 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3613 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3614 "exceeds size of device (%llu blocks)",
3615 ext4_blocks_count(es), blocks_count);
3616 goto failed_mount;
3617 }
3618
3619 /*
3620 * It makes no sense for the first data block to be beyond the end
3621 * of the filesystem.
3622 */
3623 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3624 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3625 "block %u is beyond end of filesystem (%llu)",
3626 le32_to_cpu(es->s_first_data_block),
3627 ext4_blocks_count(es));
3628 goto failed_mount;
3629 }
3630 blocks_count = (ext4_blocks_count(es) -
3631 le32_to_cpu(es->s_first_data_block) +
3632 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3633 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3634 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3635 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3636 "(block count %llu, first data block %u, "
3637 "blocks per group %lu)", sbi->s_groups_count,
3638 ext4_blocks_count(es),
3639 le32_to_cpu(es->s_first_data_block),
3640 EXT4_BLOCKS_PER_GROUP(sb));
3641 goto failed_mount;
3642 }
3643 sbi->s_groups_count = blocks_count;
3644 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3645 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3646 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3647 EXT4_DESC_PER_BLOCK(sb);
3648 sbi->s_group_desc = ext4_kvmalloc(db_count *
3649 sizeof(struct buffer_head *),
3650 GFP_KERNEL);
3651 if (sbi->s_group_desc == NULL) {
3652 ext4_msg(sb, KERN_ERR, "not enough memory");
3653 ret = -ENOMEM;
3654 goto failed_mount;
3655 }
3656
3657 bgl_lock_init(sbi->s_blockgroup_lock);
3658
3659 for (i = 0; i < db_count; i++) {
3660 block = descriptor_loc(sb, logical_sb_block, i);
3661 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3662 if (!sbi->s_group_desc[i]) {
3663 ext4_msg(sb, KERN_ERR,
3664 "can't read group descriptor %d", i);
3665 db_count = i;
3666 goto failed_mount2;
3667 }
3668 }
3669 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3670 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3671 ret = -EFSCORRUPTED;
3672 goto failed_mount2;
3673 }
3674
3675 sbi->s_gdb_count = db_count;
3676 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3677 spin_lock_init(&sbi->s_next_gen_lock);
3678
3679 setup_timer(&sbi->s_err_report, print_daily_error_info,
3680 (unsigned long) sb);
3681
3682 /* Register extent status tree shrinker */
3683 if (ext4_es_register_shrinker(sbi))
3684 goto failed_mount3;
3685
3686 sbi->s_stripe = ext4_get_stripe_size(sbi);
3687 sbi->s_extent_max_zeroout_kb = 32;
3688
3689 /*
3690 * set up enough so that it can read an inode
3691 */
3692 sb->s_op = &ext4_sops;
3693 sb->s_export_op = &ext4_export_ops;
3694 sb->s_xattr = ext4_xattr_handlers;
3695#ifdef CONFIG_QUOTA
3696 sb->dq_op = &ext4_quota_operations;
3697 if (ext4_has_feature_quota(sb))
3698 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3699 else
3700 sb->s_qcop = &ext4_qctl_operations;
3701 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3702#endif
3703 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3704
3705 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3706 mutex_init(&sbi->s_orphan_lock);
3707
3708 sb->s_root = NULL;
3709
3710 needs_recovery = (es->s_last_orphan != 0 ||
3711 ext4_has_feature_journal_needs_recovery(sb));
3712
3713 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3714 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3715 goto failed_mount3a;
3716
3717 /*
3718 * The first inode we look at is the journal inode. Don't try
3719 * root first: it may be modified in the journal!
3720 */
3721 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3722 if (ext4_load_journal(sb, es, journal_devnum))
3723 goto failed_mount3a;
3724 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3725 ext4_has_feature_journal_needs_recovery(sb)) {
3726 ext4_msg(sb, KERN_ERR, "required journal recovery "
3727 "suppressed and not mounted read-only");
3728 goto failed_mount_wq;
3729 } else {
3730 /* Nojournal mode, all journal mount options are illegal */
3731 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3732 ext4_msg(sb, KERN_ERR, "can't mount with "
3733 "journal_checksum, fs mounted w/o journal");
3734 goto failed_mount_wq;
3735 }
3736 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3737 ext4_msg(sb, KERN_ERR, "can't mount with "
3738 "journal_async_commit, fs mounted w/o journal");
3739 goto failed_mount_wq;
3740 }
3741 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3742 ext4_msg(sb, KERN_ERR, "can't mount with "
3743 "commit=%lu, fs mounted w/o journal",
3744 sbi->s_commit_interval / HZ);
3745 goto failed_mount_wq;
3746 }
3747 if (EXT4_MOUNT_DATA_FLAGS &
3748 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3749 ext4_msg(sb, KERN_ERR, "can't mount with "
3750 "data=, fs mounted w/o journal");
3751 goto failed_mount_wq;
3752 }
3753 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3754 clear_opt(sb, JOURNAL_CHECKSUM);
3755 clear_opt(sb, DATA_FLAGS);
3756 sbi->s_journal = NULL;
3757 needs_recovery = 0;
3758 goto no_journal;
3759 }
3760
3761 if (ext4_has_feature_64bit(sb) &&
3762 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3763 JBD2_FEATURE_INCOMPAT_64BIT)) {
3764 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3765 goto failed_mount_wq;
3766 }
3767
3768 if (!set_journal_csum_feature_set(sb)) {
3769 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3770 "feature set");
3771 goto failed_mount_wq;
3772 }
3773
3774 /* We have now updated the journal if required, so we can
3775 * validate the data journaling mode. */
3776 switch (test_opt(sb, DATA_FLAGS)) {
3777 case 0:
3778 /* No mode set, assume a default based on the journal
3779 * capabilities: ORDERED_DATA if the journal can
3780 * cope, else JOURNAL_DATA
3781 */
3782 if (jbd2_journal_check_available_features
3783 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3784 set_opt(sb, ORDERED_DATA);
3785 else
3786 set_opt(sb, JOURNAL_DATA);
3787 break;
3788
3789 case EXT4_MOUNT_ORDERED_DATA:
3790 case EXT4_MOUNT_WRITEBACK_DATA:
3791 if (!jbd2_journal_check_available_features
3792 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3793 ext4_msg(sb, KERN_ERR, "Journal does not support "
3794 "requested data journaling mode");
3795 goto failed_mount_wq;
3796 }
3797 default:
3798 break;
3799 }
3800 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3801
3802 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3803
3804no_journal:
3805 sbi->s_mb_cache = ext4_xattr_create_cache();
3806 if (!sbi->s_mb_cache) {
3807 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3808 goto failed_mount_wq;
3809 }
3810
3811 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3812 (blocksize != PAGE_SIZE)) {
3813 ext4_msg(sb, KERN_ERR,
3814 "Unsupported blocksize for fs encryption");
3815 goto failed_mount_wq;
3816 }
3817
3818 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3819 !ext4_has_feature_encrypt(sb)) {
3820 ext4_set_feature_encrypt(sb);
3821 ext4_commit_super(sb, 1);
3822 }
3823
3824 /*
3825 * Get the # of file system overhead blocks from the
3826 * superblock if present.
3827 */
3828 if (es->s_overhead_clusters)
3829 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3830 else {
3831 err = ext4_calculate_overhead(sb);
3832 if (err)
3833 goto failed_mount_wq;
3834 }
3835
3836 /*
3837 * The maximum number of concurrent works can be high and
3838 * concurrency isn't really necessary. Limit it to 1.
3839 */
3840 EXT4_SB(sb)->rsv_conversion_wq =
3841 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3842 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3843 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3844 ret = -ENOMEM;
3845 goto failed_mount4;
3846 }
3847
3848 /*
3849 * The jbd2_journal_load will have done any necessary log recovery,
3850 * so we can safely mount the rest of the filesystem now.
3851 */
3852
3853 root = ext4_iget(sb, EXT4_ROOT_INO);
3854 if (IS_ERR(root)) {
3855 ext4_msg(sb, KERN_ERR, "get root inode failed");
3856 ret = PTR_ERR(root);
3857 root = NULL;
3858 goto failed_mount4;
3859 }
3860 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3861 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3862 iput(root);
3863 goto failed_mount4;
3864 }
3865 sb->s_root = d_make_root(root);
3866 if (!sb->s_root) {
3867 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3868 ret = -ENOMEM;
3869 goto failed_mount4;
3870 }
3871
3872 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3873 sb->s_flags |= MS_RDONLY;
3874
3875 /* determine the minimum size of new large inodes, if present */
3876 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3877 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3878 EXT4_GOOD_OLD_INODE_SIZE;
3879 if (ext4_has_feature_extra_isize(sb)) {
3880 if (sbi->s_want_extra_isize <
3881 le16_to_cpu(es->s_want_extra_isize))
3882 sbi->s_want_extra_isize =
3883 le16_to_cpu(es->s_want_extra_isize);
3884 if (sbi->s_want_extra_isize <
3885 le16_to_cpu(es->s_min_extra_isize))
3886 sbi->s_want_extra_isize =
3887 le16_to_cpu(es->s_min_extra_isize);
3888 }
3889 }
3890 /* Check if enough inode space is available */
3891 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3892 sbi->s_inode_size) {
3893 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3894 EXT4_GOOD_OLD_INODE_SIZE;
3895 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3896 "available");
3897 }
3898
3899 ext4_set_resv_clusters(sb);
3900
3901 err = ext4_setup_system_zone(sb);
3902 if (err) {
3903 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3904 "zone (%d)", err);
3905 goto failed_mount4a;
3906 }
3907
3908 ext4_ext_init(sb);
3909 err = ext4_mb_init(sb);
3910 if (err) {
3911 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3912 err);
3913 goto failed_mount5;
3914 }
3915
3916 block = ext4_count_free_clusters(sb);
3917 ext4_free_blocks_count_set(sbi->s_es,
3918 EXT4_C2B(sbi, block));
3919 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
3920 GFP_KERNEL);
3921 if (!err) {
3922 unsigned long freei = ext4_count_free_inodes(sb);
3923 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
3924 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
3925 GFP_KERNEL);
3926 }
3927 if (!err)
3928 err = percpu_counter_init(&sbi->s_dirs_counter,
3929 ext4_count_dirs(sb), GFP_KERNEL);
3930 if (!err)
3931 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
3932 GFP_KERNEL);
3933 if (err) {
3934 ext4_msg(sb, KERN_ERR, "insufficient memory");
3935 goto failed_mount6;
3936 }
3937
3938 if (ext4_has_feature_flex_bg(sb))
3939 if (!ext4_fill_flex_info(sb)) {
3940 ext4_msg(sb, KERN_ERR,
3941 "unable to initialize "
3942 "flex_bg meta info!");
3943 goto failed_mount6;
3944 }
3945
3946 err = ext4_register_li_request(sb, first_not_zeroed);
3947 if (err)
3948 goto failed_mount6;
3949
3950 err = ext4_register_sysfs(sb);
3951 if (err)
3952 goto failed_mount7;
3953
3954#ifdef CONFIG_QUOTA
3955 /* Enable quota usage during mount. */
3956 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
3957 err = ext4_enable_quotas(sb);
3958 if (err)
3959 goto failed_mount8;
3960 }
3961#endif /* CONFIG_QUOTA */
3962
3963 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3964 ext4_orphan_cleanup(sb, es);
3965 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3966 if (needs_recovery) {
3967 ext4_msg(sb, KERN_INFO, "recovery complete");
3968 ext4_mark_recovery_complete(sb, es);
3969 }
3970 if (EXT4_SB(sb)->s_journal) {
3971 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3972 descr = " journalled data mode";
3973 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3974 descr = " ordered data mode";
3975 else
3976 descr = " writeback data mode";
3977 } else
3978 descr = "out journal";
3979
3980 if (test_opt(sb, DISCARD)) {
3981 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3982 if (!blk_queue_discard(q))
3983 ext4_msg(sb, KERN_WARNING,
3984 "mounting with \"discard\" option, but "
3985 "the device does not support discard");
3986 }
3987
3988 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
3989 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3990 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3991 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3992
3993 if (es->s_error_count)
3994 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3995
3996 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
3997 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
3998 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
3999 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4000
4001 kfree(orig_data);
4002 return 0;
4003
4004cantfind_ext4:
4005 if (!silent)
4006 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4007 goto failed_mount;
4008
4009#ifdef CONFIG_QUOTA
4010failed_mount8:
4011 ext4_unregister_sysfs(sb);
4012#endif
4013failed_mount7:
4014 ext4_unregister_li_request(sb);
4015failed_mount6:
4016 ext4_mb_release(sb);
4017 if (sbi->s_flex_groups)
4018 kvfree(sbi->s_flex_groups);
4019 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4020 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4021 percpu_counter_destroy(&sbi->s_dirs_counter);
4022 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4023failed_mount5:
4024 ext4_ext_release(sb);
4025 ext4_release_system_zone(sb);
4026failed_mount4a:
4027 dput(sb->s_root);
4028 sb->s_root = NULL;
4029failed_mount4:
4030 ext4_msg(sb, KERN_ERR, "mount failed");
4031 if (EXT4_SB(sb)->rsv_conversion_wq)
4032 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4033failed_mount_wq:
4034 if (sbi->s_mb_cache) {
4035 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4036 sbi->s_mb_cache = NULL;
4037 }
4038 if (sbi->s_journal) {
4039 jbd2_journal_destroy(sbi->s_journal);
4040 sbi->s_journal = NULL;
4041 }
4042failed_mount3a:
4043 ext4_es_unregister_shrinker(sbi);
4044failed_mount3:
4045 del_timer_sync(&sbi->s_err_report);
4046 if (sbi->s_mmp_tsk)
4047 kthread_stop(sbi->s_mmp_tsk);
4048failed_mount2:
4049 for (i = 0; i < db_count; i++)
4050 brelse(sbi->s_group_desc[i]);
4051 kvfree(sbi->s_group_desc);
4052failed_mount:
4053 if (sbi->s_chksum_driver)
4054 crypto_free_shash(sbi->s_chksum_driver);
4055#ifdef CONFIG_QUOTA
4056 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4057 kfree(sbi->s_qf_names[i]);
4058#endif
4059 ext4_blkdev_remove(sbi);
4060 brelse(bh);
4061out_fail:
4062 sb->s_fs_info = NULL;
4063 kfree(sbi->s_blockgroup_lock);
4064 kfree(sbi);
4065out_free_orig:
4066 kfree(orig_data);
4067 return err ? err : ret;
4068}
4069
4070/*
4071 * Setup any per-fs journal parameters now. We'll do this both on
4072 * initial mount, once the journal has been initialised but before we've
4073 * done any recovery; and again on any subsequent remount.
4074 */
4075static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4076{
4077 struct ext4_sb_info *sbi = EXT4_SB(sb);
4078
4079 journal->j_commit_interval = sbi->s_commit_interval;
4080 journal->j_min_batch_time = sbi->s_min_batch_time;
4081 journal->j_max_batch_time = sbi->s_max_batch_time;
4082
4083 write_lock(&journal->j_state_lock);
4084 if (test_opt(sb, BARRIER))
4085 journal->j_flags |= JBD2_BARRIER;
4086 else
4087 journal->j_flags &= ~JBD2_BARRIER;
4088 if (test_opt(sb, DATA_ERR_ABORT))
4089 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4090 else
4091 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4092 write_unlock(&journal->j_state_lock);
4093}
4094
4095static journal_t *ext4_get_journal(struct super_block *sb,
4096 unsigned int journal_inum)
4097{
4098 struct inode *journal_inode;
4099 journal_t *journal;
4100
4101 BUG_ON(!ext4_has_feature_journal(sb));
4102
4103 /* First, test for the existence of a valid inode on disk. Bad
4104 * things happen if we iget() an unused inode, as the subsequent
4105 * iput() will try to delete it. */
4106
4107 journal_inode = ext4_iget(sb, journal_inum);
4108 if (IS_ERR(journal_inode)) {
4109 ext4_msg(sb, KERN_ERR, "no journal found");
4110 return NULL;
4111 }
4112 if (!journal_inode->i_nlink) {
4113 make_bad_inode(journal_inode);
4114 iput(journal_inode);
4115 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4116 return NULL;
4117 }
4118
4119 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4120 journal_inode, journal_inode->i_size);
4121 if (!S_ISREG(journal_inode->i_mode)) {
4122 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4123 iput(journal_inode);
4124 return NULL;
4125 }
4126
4127 journal = jbd2_journal_init_inode(journal_inode);
4128 if (!journal) {
4129 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4130 iput(journal_inode);
4131 return NULL;
4132 }
4133 journal->j_private = sb;
4134 ext4_init_journal_params(sb, journal);
4135 return journal;
4136}
4137
4138static journal_t *ext4_get_dev_journal(struct super_block *sb,
4139 dev_t j_dev)
4140{
4141 struct buffer_head *bh;
4142 journal_t *journal;
4143 ext4_fsblk_t start;
4144 ext4_fsblk_t len;
4145 int hblock, blocksize;
4146 ext4_fsblk_t sb_block;
4147 unsigned long offset;
4148 struct ext4_super_block *es;
4149 struct block_device *bdev;
4150
4151 BUG_ON(!ext4_has_feature_journal(sb));
4152
4153 bdev = ext4_blkdev_get(j_dev, sb);
4154 if (bdev == NULL)
4155 return NULL;
4156
4157 blocksize = sb->s_blocksize;
4158 hblock = bdev_logical_block_size(bdev);
4159 if (blocksize < hblock) {
4160 ext4_msg(sb, KERN_ERR,
4161 "blocksize too small for journal device");
4162 goto out_bdev;
4163 }
4164
4165 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4166 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4167 set_blocksize(bdev, blocksize);
4168 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4169 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4170 "external journal");
4171 goto out_bdev;
4172 }
4173
4174 es = (struct ext4_super_block *) (bh->b_data + offset);
4175 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4176 !(le32_to_cpu(es->s_feature_incompat) &
4177 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4178 ext4_msg(sb, KERN_ERR, "external journal has "
4179 "bad superblock");
4180 brelse(bh);
4181 goto out_bdev;
4182 }
4183
4184 if ((le32_to_cpu(es->s_feature_ro_compat) &
4185 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4186 es->s_checksum != ext4_superblock_csum(sb, es)) {
4187 ext4_msg(sb, KERN_ERR, "external journal has "
4188 "corrupt superblock");
4189 brelse(bh);
4190 goto out_bdev;
4191 }
4192
4193 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4194 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4195 brelse(bh);
4196 goto out_bdev;
4197 }
4198
4199 len = ext4_blocks_count(es);
4200 start = sb_block + 1;
4201 brelse(bh); /* we're done with the superblock */
4202
4203 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4204 start, len, blocksize);
4205 if (!journal) {
4206 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4207 goto out_bdev;
4208 }
4209 journal->j_private = sb;
4210 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4211 wait_on_buffer(journal->j_sb_buffer);
4212 if (!buffer_uptodate(journal->j_sb_buffer)) {
4213 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4214 goto out_journal;
4215 }
4216 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4217 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4218 "user (unsupported) - %d",
4219 be32_to_cpu(journal->j_superblock->s_nr_users));
4220 goto out_journal;
4221 }
4222 EXT4_SB(sb)->journal_bdev = bdev;
4223 ext4_init_journal_params(sb, journal);
4224 return journal;
4225
4226out_journal:
4227 jbd2_journal_destroy(journal);
4228out_bdev:
4229 ext4_blkdev_put(bdev);
4230 return NULL;
4231}
4232
4233static int ext4_load_journal(struct super_block *sb,
4234 struct ext4_super_block *es,
4235 unsigned long journal_devnum)
4236{
4237 journal_t *journal;
4238 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4239 dev_t journal_dev;
4240 int err = 0;
4241 int really_read_only;
4242
4243 BUG_ON(!ext4_has_feature_journal(sb));
4244
4245 if (journal_devnum &&
4246 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4247 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4248 "numbers have changed");
4249 journal_dev = new_decode_dev(journal_devnum);
4250 } else
4251 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4252
4253 really_read_only = bdev_read_only(sb->s_bdev);
4254
4255 /*
4256 * Are we loading a blank journal or performing recovery after a
4257 * crash? For recovery, we need to check in advance whether we
4258 * can get read-write access to the device.
4259 */
4260 if (ext4_has_feature_journal_needs_recovery(sb)) {
4261 if (sb->s_flags & MS_RDONLY) {
4262 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4263 "required on readonly filesystem");
4264 if (really_read_only) {
4265 ext4_msg(sb, KERN_ERR, "write access "
4266 "unavailable, cannot proceed");
4267 return -EROFS;
4268 }
4269 ext4_msg(sb, KERN_INFO, "write access will "
4270 "be enabled during recovery");
4271 }
4272 }
4273
4274 if (journal_inum && journal_dev) {
4275 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4276 "and inode journals!");
4277 return -EINVAL;
4278 }
4279
4280 if (journal_inum) {
4281 if (!(journal = ext4_get_journal(sb, journal_inum)))
4282 return -EINVAL;
4283 } else {
4284 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4285 return -EINVAL;
4286 }
4287
4288 if (!(journal->j_flags & JBD2_BARRIER))
4289 ext4_msg(sb, KERN_INFO, "barriers disabled");
4290
4291 if (!ext4_has_feature_journal_needs_recovery(sb))
4292 err = jbd2_journal_wipe(journal, !really_read_only);
4293 if (!err) {
4294 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4295 if (save)
4296 memcpy(save, ((char *) es) +
4297 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4298 err = jbd2_journal_load(journal);
4299 if (save)
4300 memcpy(((char *) es) + EXT4_S_ERR_START,
4301 save, EXT4_S_ERR_LEN);
4302 kfree(save);
4303 }
4304
4305 if (err) {
4306 ext4_msg(sb, KERN_ERR, "error loading journal");
4307 jbd2_journal_destroy(journal);
4308 return err;
4309 }
4310
4311 EXT4_SB(sb)->s_journal = journal;
4312 ext4_clear_journal_err(sb, es);
4313
4314 if (!really_read_only && journal_devnum &&
4315 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4316 es->s_journal_dev = cpu_to_le32(journal_devnum);
4317
4318 /* Make sure we flush the recovery flag to disk. */
4319 ext4_commit_super(sb, 1);
4320 }
4321
4322 return 0;
4323}
4324
4325static int ext4_commit_super(struct super_block *sb, int sync)
4326{
4327 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4328 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4329 int error = 0;
4330
4331 if (!sbh || block_device_ejected(sb))
4332 return error;
4333 if (buffer_write_io_error(sbh)) {
4334 /*
4335 * Oh, dear. A previous attempt to write the
4336 * superblock failed. This could happen because the
4337 * USB device was yanked out. Or it could happen to
4338 * be a transient write error and maybe the block will
4339 * be remapped. Nothing we can do but to retry the
4340 * write and hope for the best.
4341 */
4342 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4343 "superblock detected");
4344 clear_buffer_write_io_error(sbh);
4345 set_buffer_uptodate(sbh);
4346 }
4347 /*
4348 * If the file system is mounted read-only, don't update the
4349 * superblock write time. This avoids updating the superblock
4350 * write time when we are mounting the root file system
4351 * read/only but we need to replay the journal; at that point,
4352 * for people who are east of GMT and who make their clock
4353 * tick in localtime for Windows bug-for-bug compatibility,
4354 * the clock is set in the future, and this will cause e2fsck
4355 * to complain and force a full file system check.
4356 */
4357 if (!(sb->s_flags & MS_RDONLY))
4358 es->s_wtime = cpu_to_le32(get_seconds());
4359 if (sb->s_bdev->bd_part)
4360 es->s_kbytes_written =
4361 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4362 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4363 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4364 else
4365 es->s_kbytes_written =
4366 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4367 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4368 ext4_free_blocks_count_set(es,
4369 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4370 &EXT4_SB(sb)->s_freeclusters_counter)));
4371 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4372 es->s_free_inodes_count =
4373 cpu_to_le32(percpu_counter_sum_positive(
4374 &EXT4_SB(sb)->s_freeinodes_counter));
4375 BUFFER_TRACE(sbh, "marking dirty");
4376 ext4_superblock_csum_set(sb);
4377 mark_buffer_dirty(sbh);
4378 if (sync) {
4379 error = __sync_dirty_buffer(sbh,
4380 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4381 if (error)
4382 return error;
4383
4384 error = buffer_write_io_error(sbh);
4385 if (error) {
4386 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4387 "superblock");
4388 clear_buffer_write_io_error(sbh);
4389 set_buffer_uptodate(sbh);
4390 }
4391 }
4392 return error;
4393}
4394
4395/*
4396 * Have we just finished recovery? If so, and if we are mounting (or
4397 * remounting) the filesystem readonly, then we will end up with a
4398 * consistent fs on disk. Record that fact.
4399 */
4400static void ext4_mark_recovery_complete(struct super_block *sb,
4401 struct ext4_super_block *es)
4402{
4403 journal_t *journal = EXT4_SB(sb)->s_journal;
4404
4405 if (!ext4_has_feature_journal(sb)) {
4406 BUG_ON(journal != NULL);
4407 return;
4408 }
4409 jbd2_journal_lock_updates(journal);
4410 if (jbd2_journal_flush(journal) < 0)
4411 goto out;
4412
4413 if (ext4_has_feature_journal_needs_recovery(sb) &&
4414 sb->s_flags & MS_RDONLY) {
4415 ext4_clear_feature_journal_needs_recovery(sb);
4416 ext4_commit_super(sb, 1);
4417 }
4418
4419out:
4420 jbd2_journal_unlock_updates(journal);
4421}
4422
4423/*
4424 * If we are mounting (or read-write remounting) a filesystem whose journal
4425 * has recorded an error from a previous lifetime, move that error to the
4426 * main filesystem now.
4427 */
4428static void ext4_clear_journal_err(struct super_block *sb,
4429 struct ext4_super_block *es)
4430{
4431 journal_t *journal;
4432 int j_errno;
4433 const char *errstr;
4434
4435 BUG_ON(!ext4_has_feature_journal(sb));
4436
4437 journal = EXT4_SB(sb)->s_journal;
4438
4439 /*
4440 * Now check for any error status which may have been recorded in the
4441 * journal by a prior ext4_error() or ext4_abort()
4442 */
4443
4444 j_errno = jbd2_journal_errno(journal);
4445 if (j_errno) {
4446 char nbuf[16];
4447
4448 errstr = ext4_decode_error(sb, j_errno, nbuf);
4449 ext4_warning(sb, "Filesystem error recorded "
4450 "from previous mount: %s", errstr);
4451 ext4_warning(sb, "Marking fs in need of filesystem check.");
4452
4453 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4454 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4455 ext4_commit_super(sb, 1);
4456
4457 jbd2_journal_clear_err(journal);
4458 jbd2_journal_update_sb_errno(journal);
4459 }
4460}
4461
4462/*
4463 * Force the running and committing transactions to commit,
4464 * and wait on the commit.
4465 */
4466int ext4_force_commit(struct super_block *sb)
4467{
4468 journal_t *journal;
4469
4470 if (sb->s_flags & MS_RDONLY)
4471 return 0;
4472
4473 journal = EXT4_SB(sb)->s_journal;
4474 return ext4_journal_force_commit(journal);
4475}
4476
4477static int ext4_sync_fs(struct super_block *sb, int wait)
4478{
4479 int ret = 0;
4480 tid_t target;
4481 bool needs_barrier = false;
4482 struct ext4_sb_info *sbi = EXT4_SB(sb);
4483
4484 trace_ext4_sync_fs(sb, wait);
4485 flush_workqueue(sbi->rsv_conversion_wq);
4486 /*
4487 * Writeback quota in non-journalled quota case - journalled quota has
4488 * no dirty dquots
4489 */
4490 dquot_writeback_dquots(sb, -1);
4491 /*
4492 * Data writeback is possible w/o journal transaction, so barrier must
4493 * being sent at the end of the function. But we can skip it if
4494 * transaction_commit will do it for us.
4495 */
4496 if (sbi->s_journal) {
4497 target = jbd2_get_latest_transaction(sbi->s_journal);
4498 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4499 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4500 needs_barrier = true;
4501
4502 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4503 if (wait)
4504 ret = jbd2_log_wait_commit(sbi->s_journal,
4505 target);
4506 }
4507 } else if (wait && test_opt(sb, BARRIER))
4508 needs_barrier = true;
4509 if (needs_barrier) {
4510 int err;
4511 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4512 if (!ret)
4513 ret = err;
4514 }
4515
4516 return ret;
4517}
4518
4519/*
4520 * LVM calls this function before a (read-only) snapshot is created. This
4521 * gives us a chance to flush the journal completely and mark the fs clean.
4522 *
4523 * Note that only this function cannot bring a filesystem to be in a clean
4524 * state independently. It relies on upper layer to stop all data & metadata
4525 * modifications.
4526 */
4527static int ext4_freeze(struct super_block *sb)
4528{
4529 int error = 0;
4530 journal_t *journal;
4531
4532 if (sb->s_flags & MS_RDONLY)
4533 return 0;
4534
4535 journal = EXT4_SB(sb)->s_journal;
4536
4537 if (journal) {
4538 /* Now we set up the journal barrier. */
4539 jbd2_journal_lock_updates(journal);
4540
4541 /*
4542 * Don't clear the needs_recovery flag if we failed to
4543 * flush the journal.
4544 */
4545 error = jbd2_journal_flush(journal);
4546 if (error < 0)
4547 goto out;
4548
4549 /* Journal blocked and flushed, clear needs_recovery flag. */
4550 ext4_clear_feature_journal_needs_recovery(sb);
4551 }
4552
4553 error = ext4_commit_super(sb, 1);
4554out:
4555 if (journal)
4556 /* we rely on upper layer to stop further updates */
4557 jbd2_journal_unlock_updates(journal);
4558 return error;
4559}
4560
4561/*
4562 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4563 * flag here, even though the filesystem is not technically dirty yet.
4564 */
4565static int ext4_unfreeze(struct super_block *sb)
4566{
4567 if (sb->s_flags & MS_RDONLY)
4568 return 0;
4569
4570 if (EXT4_SB(sb)->s_journal) {
4571 /* Reset the needs_recovery flag before the fs is unlocked. */
4572 ext4_set_feature_journal_needs_recovery(sb);
4573 }
4574
4575 ext4_commit_super(sb, 1);
4576 return 0;
4577}
4578
4579/*
4580 * Structure to save mount options for ext4_remount's benefit
4581 */
4582struct ext4_mount_options {
4583 unsigned long s_mount_opt;
4584 unsigned long s_mount_opt2;
4585 kuid_t s_resuid;
4586 kgid_t s_resgid;
4587 unsigned long s_commit_interval;
4588 u32 s_min_batch_time, s_max_batch_time;
4589#ifdef CONFIG_QUOTA
4590 int s_jquota_fmt;
4591 char *s_qf_names[EXT4_MAXQUOTAS];
4592#endif
4593};
4594
4595static int ext4_remount(struct super_block *sb, int *flags, char *data)
4596{
4597 struct ext4_super_block *es;
4598 struct ext4_sb_info *sbi = EXT4_SB(sb);
4599 unsigned long old_sb_flags;
4600 struct ext4_mount_options old_opts;
4601 int enable_quota = 0;
4602 ext4_group_t g;
4603 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4604 int err = 0;
4605#ifdef CONFIG_QUOTA
4606 int i, j;
4607#endif
4608 char *orig_data = kstrdup(data, GFP_KERNEL);
4609
4610 /* Store the original options */
4611 old_sb_flags = sb->s_flags;
4612 old_opts.s_mount_opt = sbi->s_mount_opt;
4613 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4614 old_opts.s_resuid = sbi->s_resuid;
4615 old_opts.s_resgid = sbi->s_resgid;
4616 old_opts.s_commit_interval = sbi->s_commit_interval;
4617 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4618 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4619#ifdef CONFIG_QUOTA
4620 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4621 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4622 if (sbi->s_qf_names[i]) {
4623 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4624 GFP_KERNEL);
4625 if (!old_opts.s_qf_names[i]) {
4626 for (j = 0; j < i; j++)
4627 kfree(old_opts.s_qf_names[j]);
4628 kfree(orig_data);
4629 return -ENOMEM;
4630 }
4631 } else
4632 old_opts.s_qf_names[i] = NULL;
4633#endif
4634 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4635 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4636
4637 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4638 err = -EINVAL;
4639 goto restore_opts;
4640 }
4641
4642 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4643 test_opt(sb, JOURNAL_CHECKSUM)) {
4644 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4645 "during remount not supported; ignoring");
4646 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4647 }
4648
4649 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4650 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4651 ext4_msg(sb, KERN_ERR, "can't mount with "
4652 "both data=journal and delalloc");
4653 err = -EINVAL;
4654 goto restore_opts;
4655 }
4656 if (test_opt(sb, DIOREAD_NOLOCK)) {
4657 ext4_msg(sb, KERN_ERR, "can't mount with "
4658 "both data=journal and dioread_nolock");
4659 err = -EINVAL;
4660 goto restore_opts;
4661 }
4662 if (test_opt(sb, DAX)) {
4663 ext4_msg(sb, KERN_ERR, "can't mount with "
4664 "both data=journal and dax");
4665 err = -EINVAL;
4666 goto restore_opts;
4667 }
4668 }
4669
4670 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4671 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4672 "dax flag with busy inodes while remounting");
4673 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4674 }
4675
4676 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4677 ext4_abort(sb, "Abort forced by user");
4678
4679 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4680 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4681
4682 es = sbi->s_es;
4683
4684 if (sbi->s_journal) {
4685 ext4_init_journal_params(sb, sbi->s_journal);
4686 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4687 }
4688
4689 if (*flags & MS_LAZYTIME)
4690 sb->s_flags |= MS_LAZYTIME;
4691
4692 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4693 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4694 err = -EROFS;
4695 goto restore_opts;
4696 }
4697
4698 if (*flags & MS_RDONLY) {
4699 err = sync_filesystem(sb);
4700 if (err < 0)
4701 goto restore_opts;
4702 err = dquot_suspend(sb, -1);
4703 if (err < 0)
4704 goto restore_opts;
4705
4706 /*
4707 * First of all, the unconditional stuff we have to do
4708 * to disable replay of the journal when we next remount
4709 */
4710 sb->s_flags |= MS_RDONLY;
4711
4712 /*
4713 * OK, test if we are remounting a valid rw partition
4714 * readonly, and if so set the rdonly flag and then
4715 * mark the partition as valid again.
4716 */
4717 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4718 (sbi->s_mount_state & EXT4_VALID_FS))
4719 es->s_state = cpu_to_le16(sbi->s_mount_state);
4720
4721 if (sbi->s_journal)
4722 ext4_mark_recovery_complete(sb, es);
4723 } else {
4724 /* Make sure we can mount this feature set readwrite */
4725 if (ext4_has_feature_readonly(sb) ||
4726 !ext4_feature_set_ok(sb, 0)) {
4727 err = -EROFS;
4728 goto restore_opts;
4729 }
4730 /*
4731 * Make sure the group descriptor checksums
4732 * are sane. If they aren't, refuse to remount r/w.
4733 */
4734 for (g = 0; g < sbi->s_groups_count; g++) {
4735 struct ext4_group_desc *gdp =
4736 ext4_get_group_desc(sb, g, NULL);
4737
4738 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4739 ext4_msg(sb, KERN_ERR,
4740 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4741 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4742 le16_to_cpu(gdp->bg_checksum));
4743 err = -EFSBADCRC;
4744 goto restore_opts;
4745 }
4746 }
4747
4748 /*
4749 * If we have an unprocessed orphan list hanging
4750 * around from a previously readonly bdev mount,
4751 * require a full umount/remount for now.
4752 */
4753 if (es->s_last_orphan) {
4754 ext4_msg(sb, KERN_WARNING, "Couldn't "
4755 "remount RDWR because of unprocessed "
4756 "orphan inode list. Please "
4757 "umount/remount instead");
4758 err = -EINVAL;
4759 goto restore_opts;
4760 }
4761
4762 /*
4763 * Mounting a RDONLY partition read-write, so reread
4764 * and store the current valid flag. (It may have
4765 * been changed by e2fsck since we originally mounted
4766 * the partition.)
4767 */
4768 if (sbi->s_journal)
4769 ext4_clear_journal_err(sb, es);
4770 sbi->s_mount_state = le16_to_cpu(es->s_state);
4771 if (!ext4_setup_super(sb, es, 0))
4772 sb->s_flags &= ~MS_RDONLY;
4773 if (ext4_has_feature_mmp(sb))
4774 if (ext4_multi_mount_protect(sb,
4775 le64_to_cpu(es->s_mmp_block))) {
4776 err = -EROFS;
4777 goto restore_opts;
4778 }
4779 enable_quota = 1;
4780 }
4781 }
4782
4783 /*
4784 * Reinitialize lazy itable initialization thread based on
4785 * current settings
4786 */
4787 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4788 ext4_unregister_li_request(sb);
4789 else {
4790 ext4_group_t first_not_zeroed;
4791 first_not_zeroed = ext4_has_uninit_itable(sb);
4792 ext4_register_li_request(sb, first_not_zeroed);
4793 }
4794
4795 ext4_setup_system_zone(sb);
4796 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4797 ext4_commit_super(sb, 1);
4798
4799#ifdef CONFIG_QUOTA
4800 /* Release old quota file names */
4801 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4802 kfree(old_opts.s_qf_names[i]);
4803 if (enable_quota) {
4804 if (sb_any_quota_suspended(sb))
4805 dquot_resume(sb, -1);
4806 else if (ext4_has_feature_quota(sb)) {
4807 err = ext4_enable_quotas(sb);
4808 if (err)
4809 goto restore_opts;
4810 }
4811 }
4812#endif
4813
4814 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4815 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4816 kfree(orig_data);
4817 return 0;
4818
4819restore_opts:
4820 sb->s_flags = old_sb_flags;
4821 sbi->s_mount_opt = old_opts.s_mount_opt;
4822 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4823 sbi->s_resuid = old_opts.s_resuid;
4824 sbi->s_resgid = old_opts.s_resgid;
4825 sbi->s_commit_interval = old_opts.s_commit_interval;
4826 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4827 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4828#ifdef CONFIG_QUOTA
4829 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4830 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4831 kfree(sbi->s_qf_names[i]);
4832 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4833 }
4834#endif
4835 kfree(orig_data);
4836 return err;
4837}
4838
4839#ifdef CONFIG_QUOTA
4840static int ext4_statfs_project(struct super_block *sb,
4841 kprojid_t projid, struct kstatfs *buf)
4842{
4843 struct kqid qid;
4844 struct dquot *dquot;
4845 u64 limit;
4846 u64 curblock;
4847
4848 qid = make_kqid_projid(projid);
4849 dquot = dqget(sb, qid);
4850 if (IS_ERR(dquot))
4851 return PTR_ERR(dquot);
4852 spin_lock(&dq_data_lock);
4853
4854 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
4855 dquot->dq_dqb.dqb_bsoftlimit :
4856 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
4857 if (limit && buf->f_blocks > limit) {
4858 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
4859 buf->f_blocks = limit;
4860 buf->f_bfree = buf->f_bavail =
4861 (buf->f_blocks > curblock) ?
4862 (buf->f_blocks - curblock) : 0;
4863 }
4864
4865 limit = dquot->dq_dqb.dqb_isoftlimit ?
4866 dquot->dq_dqb.dqb_isoftlimit :
4867 dquot->dq_dqb.dqb_ihardlimit;
4868 if (limit && buf->f_files > limit) {
4869 buf->f_files = limit;
4870 buf->f_ffree =
4871 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
4872 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
4873 }
4874
4875 spin_unlock(&dq_data_lock);
4876 dqput(dquot);
4877 return 0;
4878}
4879#endif
4880
4881static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4882{
4883 struct super_block *sb = dentry->d_sb;
4884 struct ext4_sb_info *sbi = EXT4_SB(sb);
4885 struct ext4_super_block *es = sbi->s_es;
4886 ext4_fsblk_t overhead = 0, resv_blocks;
4887 u64 fsid;
4888 s64 bfree;
4889 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4890
4891 if (!test_opt(sb, MINIX_DF))
4892 overhead = sbi->s_overhead;
4893
4894 buf->f_type = EXT4_SUPER_MAGIC;
4895 buf->f_bsize = sb->s_blocksize;
4896 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4897 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4898 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4899 /* prevent underflow in case that few free space is available */
4900 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4901 buf->f_bavail = buf->f_bfree -
4902 (ext4_r_blocks_count(es) + resv_blocks);
4903 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4904 buf->f_bavail = 0;
4905 buf->f_files = le32_to_cpu(es->s_inodes_count);
4906 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4907 buf->f_namelen = EXT4_NAME_LEN;
4908 fsid = le64_to_cpup((void *)es->s_uuid) ^
4909 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4910 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4911 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4912
4913#ifdef CONFIG_QUOTA
4914 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
4915 sb_has_quota_limits_enabled(sb, PRJQUOTA))
4916 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
4917#endif
4918 return 0;
4919}
4920
4921/* Helper function for writing quotas on sync - we need to start transaction
4922 * before quota file is locked for write. Otherwise the are possible deadlocks:
4923 * Process 1 Process 2
4924 * ext4_create() quota_sync()
4925 * jbd2_journal_start() write_dquot()
4926 * dquot_initialize() down(dqio_mutex)
4927 * down(dqio_mutex) jbd2_journal_start()
4928 *
4929 */
4930
4931#ifdef CONFIG_QUOTA
4932
4933static inline struct inode *dquot_to_inode(struct dquot *dquot)
4934{
4935 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4936}
4937
4938static int ext4_write_dquot(struct dquot *dquot)
4939{
4940 int ret, err;
4941 handle_t *handle;
4942 struct inode *inode;
4943
4944 inode = dquot_to_inode(dquot);
4945 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4946 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4947 if (IS_ERR(handle))
4948 return PTR_ERR(handle);
4949 ret = dquot_commit(dquot);
4950 err = ext4_journal_stop(handle);
4951 if (!ret)
4952 ret = err;
4953 return ret;
4954}
4955
4956static int ext4_acquire_dquot(struct dquot *dquot)
4957{
4958 int ret, err;
4959 handle_t *handle;
4960
4961 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4962 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4963 if (IS_ERR(handle))
4964 return PTR_ERR(handle);
4965 ret = dquot_acquire(dquot);
4966 err = ext4_journal_stop(handle);
4967 if (!ret)
4968 ret = err;
4969 return ret;
4970}
4971
4972static int ext4_release_dquot(struct dquot *dquot)
4973{
4974 int ret, err;
4975 handle_t *handle;
4976
4977 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4978 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4979 if (IS_ERR(handle)) {
4980 /* Release dquot anyway to avoid endless cycle in dqput() */
4981 dquot_release(dquot);
4982 return PTR_ERR(handle);
4983 }
4984 ret = dquot_release(dquot);
4985 err = ext4_journal_stop(handle);
4986 if (!ret)
4987 ret = err;
4988 return ret;
4989}
4990
4991static int ext4_mark_dquot_dirty(struct dquot *dquot)
4992{
4993 struct super_block *sb = dquot->dq_sb;
4994 struct ext4_sb_info *sbi = EXT4_SB(sb);
4995
4996 /* Are we journaling quotas? */
4997 if (ext4_has_feature_quota(sb) ||
4998 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4999 dquot_mark_dquot_dirty(dquot);
5000 return ext4_write_dquot(dquot);
5001 } else {
5002 return dquot_mark_dquot_dirty(dquot);
5003 }
5004}
5005
5006static int ext4_write_info(struct super_block *sb, int type)
5007{
5008 int ret, err;
5009 handle_t *handle;
5010
5011 /* Data block + inode block */
5012 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5013 if (IS_ERR(handle))
5014 return PTR_ERR(handle);
5015 ret = dquot_commit_info(sb, type);
5016 err = ext4_journal_stop(handle);
5017 if (!ret)
5018 ret = err;
5019 return ret;
5020}
5021
5022/*
5023 * Turn on quotas during mount time - we need to find
5024 * the quota file and such...
5025 */
5026static int ext4_quota_on_mount(struct super_block *sb, int type)
5027{
5028 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5029 EXT4_SB(sb)->s_jquota_fmt, type);
5030}
5031
5032static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5033{
5034 struct ext4_inode_info *ei = EXT4_I(inode);
5035
5036 /* The first argument of lockdep_set_subclass has to be
5037 * *exactly* the same as the argument to init_rwsem() --- in
5038 * this case, in init_once() --- or lockdep gets unhappy
5039 * because the name of the lock is set using the
5040 * stringification of the argument to init_rwsem().
5041 */
5042 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5043 lockdep_set_subclass(&ei->i_data_sem, subclass);
5044}
5045
5046/*
5047 * Standard function to be called on quota_on
5048 */
5049static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5050 struct path *path)
5051{
5052 int err;
5053
5054 if (!test_opt(sb, QUOTA))
5055 return -EINVAL;
5056
5057 /* Quotafile not on the same filesystem? */
5058 if (path->dentry->d_sb != sb)
5059 return -EXDEV;
5060 /* Journaling quota? */
5061 if (EXT4_SB(sb)->s_qf_names[type]) {
5062 /* Quotafile not in fs root? */
5063 if (path->dentry->d_parent != sb->s_root)
5064 ext4_msg(sb, KERN_WARNING,
5065 "Quota file not on filesystem root. "
5066 "Journaled quota will not work");
5067 }
5068
5069 /*
5070 * When we journal data on quota file, we have to flush journal to see
5071 * all updates to the file when we bypass pagecache...
5072 */
5073 if (EXT4_SB(sb)->s_journal &&
5074 ext4_should_journal_data(d_inode(path->dentry))) {
5075 /*
5076 * We don't need to lock updates but journal_flush() could
5077 * otherwise be livelocked...
5078 */
5079 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5080 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5081 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5082 if (err)
5083 return err;
5084 }
5085 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5086 err = dquot_quota_on(sb, type, format_id, path);
5087 if (err)
5088 lockdep_set_quota_inode(path->dentry->d_inode,
5089 I_DATA_SEM_NORMAL);
5090 return err;
5091}
5092
5093static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5094 unsigned int flags)
5095{
5096 int err;
5097 struct inode *qf_inode;
5098 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5099 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5100 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5101 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5102 };
5103
5104 BUG_ON(!ext4_has_feature_quota(sb));
5105
5106 if (!qf_inums[type])
5107 return -EPERM;
5108
5109 qf_inode = ext4_iget(sb, qf_inums[type]);
5110 if (IS_ERR(qf_inode)) {
5111 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5112 return PTR_ERR(qf_inode);
5113 }
5114
5115 /* Don't account quota for quota files to avoid recursion */
5116 qf_inode->i_flags |= S_NOQUOTA;
5117 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5118 err = dquot_enable(qf_inode, type, format_id, flags);
5119 iput(qf_inode);
5120 if (err)
5121 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5122
5123 return err;
5124}
5125
5126/* Enable usage tracking for all quota types. */
5127static int ext4_enable_quotas(struct super_block *sb)
5128{
5129 int type, err = 0;
5130 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5131 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5132 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5133 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5134 };
5135
5136 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5137 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5138 if (qf_inums[type]) {
5139 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5140 DQUOT_USAGE_ENABLED);
5141 if (err) {
5142 ext4_warning(sb,
5143 "Failed to enable quota tracking "
5144 "(type=%d, err=%d). Please run "
5145 "e2fsck to fix.", type, err);
5146 return err;
5147 }
5148 }
5149 }
5150 return 0;
5151}
5152
5153static int ext4_quota_off(struct super_block *sb, int type)
5154{
5155 struct inode *inode = sb_dqopt(sb)->files[type];
5156 handle_t *handle;
5157
5158 /* Force all delayed allocation blocks to be allocated.
5159 * Caller already holds s_umount sem */
5160 if (test_opt(sb, DELALLOC))
5161 sync_filesystem(sb);
5162
5163 if (!inode)
5164 goto out;
5165
5166 /* Update modification times of quota files when userspace can
5167 * start looking at them */
5168 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5169 if (IS_ERR(handle))
5170 goto out;
5171 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5172 ext4_mark_inode_dirty(handle, inode);
5173 ext4_journal_stop(handle);
5174
5175out:
5176 return dquot_quota_off(sb, type);
5177}
5178
5179/* Read data from quotafile - avoid pagecache and such because we cannot afford
5180 * acquiring the locks... As quota files are never truncated and quota code
5181 * itself serializes the operations (and no one else should touch the files)
5182 * we don't have to be afraid of races */
5183static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5184 size_t len, loff_t off)
5185{
5186 struct inode *inode = sb_dqopt(sb)->files[type];
5187 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5188 int offset = off & (sb->s_blocksize - 1);
5189 int tocopy;
5190 size_t toread;
5191 struct buffer_head *bh;
5192 loff_t i_size = i_size_read(inode);
5193
5194 if (off > i_size)
5195 return 0;
5196 if (off+len > i_size)
5197 len = i_size-off;
5198 toread = len;
5199 while (toread > 0) {
5200 tocopy = sb->s_blocksize - offset < toread ?
5201 sb->s_blocksize - offset : toread;
5202 bh = ext4_bread(NULL, inode, blk, 0);
5203 if (IS_ERR(bh))
5204 return PTR_ERR(bh);
5205 if (!bh) /* A hole? */
5206 memset(data, 0, tocopy);
5207 else
5208 memcpy(data, bh->b_data+offset, tocopy);
5209 brelse(bh);
5210 offset = 0;
5211 toread -= tocopy;
5212 data += tocopy;
5213 blk++;
5214 }
5215 return len;
5216}
5217
5218/* Write to quotafile (we know the transaction is already started and has
5219 * enough credits) */
5220static ssize_t ext4_quota_write(struct super_block *sb, int type,
5221 const char *data, size_t len, loff_t off)
5222{
5223 struct inode *inode = sb_dqopt(sb)->files[type];
5224 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5225 int err, offset = off & (sb->s_blocksize - 1);
5226 int retries = 0;
5227 struct buffer_head *bh;
5228 handle_t *handle = journal_current_handle();
5229
5230 if (EXT4_SB(sb)->s_journal && !handle) {
5231 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5232 " cancelled because transaction is not started",
5233 (unsigned long long)off, (unsigned long long)len);
5234 return -EIO;
5235 }
5236 /*
5237 * Since we account only one data block in transaction credits,
5238 * then it is impossible to cross a block boundary.
5239 */
5240 if (sb->s_blocksize - offset < len) {
5241 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5242 " cancelled because not block aligned",
5243 (unsigned long long)off, (unsigned long long)len);
5244 return -EIO;
5245 }
5246
5247 do {
5248 bh = ext4_bread(handle, inode, blk,
5249 EXT4_GET_BLOCKS_CREATE |
5250 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5251 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5252 ext4_should_retry_alloc(inode->i_sb, &retries));
5253 if (IS_ERR(bh))
5254 return PTR_ERR(bh);
5255 if (!bh)
5256 goto out;
5257 BUFFER_TRACE(bh, "get write access");
5258 err = ext4_journal_get_write_access(handle, bh);
5259 if (err) {
5260 brelse(bh);
5261 return err;
5262 }
5263 lock_buffer(bh);
5264 memcpy(bh->b_data+offset, data, len);
5265 flush_dcache_page(bh->b_page);
5266 unlock_buffer(bh);
5267 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5268 brelse(bh);
5269out:
5270 if (inode->i_size < off + len) {
5271 i_size_write(inode, off + len);
5272 EXT4_I(inode)->i_disksize = inode->i_size;
5273 ext4_mark_inode_dirty(handle, inode);
5274 }
5275 return len;
5276}
5277
5278static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5279{
5280 const struct quota_format_ops *ops;
5281
5282 if (!sb_has_quota_loaded(sb, qid->type))
5283 return -ESRCH;
5284 ops = sb_dqopt(sb)->ops[qid->type];
5285 if (!ops || !ops->get_next_id)
5286 return -ENOSYS;
5287 return dquot_get_next_id(sb, qid);
5288}
5289#endif
5290
5291static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5292 const char *dev_name, void *data)
5293{
5294 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5295}
5296
5297#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5298static inline void register_as_ext2(void)
5299{
5300 int err = register_filesystem(&ext2_fs_type);
5301 if (err)
5302 printk(KERN_WARNING
5303 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5304}
5305
5306static inline void unregister_as_ext2(void)
5307{
5308 unregister_filesystem(&ext2_fs_type);
5309}
5310
5311static inline int ext2_feature_set_ok(struct super_block *sb)
5312{
5313 if (ext4_has_unknown_ext2_incompat_features(sb))
5314 return 0;
5315 if (sb->s_flags & MS_RDONLY)
5316 return 1;
5317 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5318 return 0;
5319 return 1;
5320}
5321#else
5322static inline void register_as_ext2(void) { }
5323static inline void unregister_as_ext2(void) { }
5324static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5325#endif
5326
5327static inline void register_as_ext3(void)
5328{
5329 int err = register_filesystem(&ext3_fs_type);
5330 if (err)
5331 printk(KERN_WARNING
5332 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5333}
5334
5335static inline void unregister_as_ext3(void)
5336{
5337 unregister_filesystem(&ext3_fs_type);
5338}
5339
5340static inline int ext3_feature_set_ok(struct super_block *sb)
5341{
5342 if (ext4_has_unknown_ext3_incompat_features(sb))
5343 return 0;
5344 if (!ext4_has_feature_journal(sb))
5345 return 0;
5346 if (sb->s_flags & MS_RDONLY)
5347 return 1;
5348 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5349 return 0;
5350 return 1;
5351}
5352
5353static struct file_system_type ext4_fs_type = {
5354 .owner = THIS_MODULE,
5355 .name = "ext4",
5356 .mount = ext4_mount,
5357 .kill_sb = kill_block_super,
5358 .fs_flags = FS_REQUIRES_DEV,
5359};
5360MODULE_ALIAS_FS("ext4");
5361
5362/* Shared across all ext4 file systems */
5363wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5364
5365static int __init ext4_init_fs(void)
5366{
5367 int i, err;
5368
5369 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5370 ext4_li_info = NULL;
5371 mutex_init(&ext4_li_mtx);
5372
5373 /* Build-time check for flags consistency */
5374 ext4_check_flag_values();
5375
5376 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5377 init_waitqueue_head(&ext4__ioend_wq[i]);
5378
5379 err = ext4_init_es();
5380 if (err)
5381 return err;
5382
5383 err = ext4_init_pageio();
5384 if (err)
5385 goto out5;
5386
5387 err = ext4_init_system_zone();
5388 if (err)
5389 goto out4;
5390
5391 err = ext4_init_sysfs();
5392 if (err)
5393 goto out3;
5394
5395 err = ext4_init_mballoc();
5396 if (err)
5397 goto out2;
5398 err = init_inodecache();
5399 if (err)
5400 goto out1;
5401 register_as_ext3();
5402 register_as_ext2();
5403 err = register_filesystem(&ext4_fs_type);
5404 if (err)
5405 goto out;
5406
5407 return 0;
5408out:
5409 unregister_as_ext2();
5410 unregister_as_ext3();
5411 destroy_inodecache();
5412out1:
5413 ext4_exit_mballoc();
5414out2:
5415 ext4_exit_sysfs();
5416out3:
5417 ext4_exit_system_zone();
5418out4:
5419 ext4_exit_pageio();
5420out5:
5421 ext4_exit_es();
5422
5423 return err;
5424}
5425
5426static void __exit ext4_exit_fs(void)
5427{
5428 ext4_exit_crypto();
5429 ext4_destroy_lazyinit_thread();
5430 unregister_as_ext2();
5431 unregister_as_ext3();
5432 unregister_filesystem(&ext4_fs_type);
5433 destroy_inodecache();
5434 ext4_exit_mballoc();
5435 ext4_exit_sysfs();
5436 ext4_exit_system_zone();
5437 ext4_exit_pageio();
5438 ext4_exit_es();
5439}
5440
5441MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5442MODULE_DESCRIPTION("Fourth Extended Filesystem");
5443MODULE_LICENSE("GPL");
5444module_init(ext4_init_fs)
5445module_exit(ext4_exit_fs)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/cleancache.h>
43#include <linux/uaccess.h>
44#include <linux/iversion.h>
45#include <linux/unicode.h>
46
47#include <linux/kthread.h>
48#include <linux/freezer.h>
49
50#include "ext4.h"
51#include "ext4_extents.h" /* Needed for trace points definition */
52#include "ext4_jbd2.h"
53#include "xattr.h"
54#include "acl.h"
55#include "mballoc.h"
56#include "fsmap.h"
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/ext4.h>
60
61static struct ext4_lazy_init *ext4_li_info;
62static struct mutex ext4_li_mtx;
63static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68static int ext4_commit_super(struct super_block *sb, int sync);
69static void ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71static void ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73static int ext4_sync_fs(struct super_block *sb, int wait);
74static int ext4_remount(struct super_block *sb, int *flags, char *data);
75static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76static int ext4_unfreeze(struct super_block *sb);
77static int ext4_freeze(struct super_block *sb);
78static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80static inline int ext2_feature_set_ok(struct super_block *sb);
81static inline int ext3_feature_set_ok(struct super_block *sb);
82static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83static void ext4_destroy_lazyinit_thread(void);
84static void ext4_unregister_li_request(struct super_block *sb);
85static void ext4_clear_request_list(void);
86static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
88
89/*
90 * Lock ordering
91 *
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
94 *
95 * page fault path:
96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
98 *
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_sem
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
102 * i_data_sem (rw)
103 *
104 * truncate:
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107 * i_data_sem (rw)
108 *
109 * direct IO:
110 * sb_start_write -> i_mutex -> mmap_sem
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112 *
113 * writepages:
114 * transaction start -> page lock(s) -> i_data_sem (rw)
115 */
116
117#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
120 .name = "ext2",
121 .mount = ext4_mount,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
124};
125MODULE_ALIAS_FS("ext2");
126MODULE_ALIAS("ext2");
127#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128#else
129#define IS_EXT2_SB(sb) (0)
130#endif
131
132
133static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext3",
136 .mount = ext4_mount,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
139};
140MODULE_ALIAS_FS("ext3");
141MODULE_ALIAS("ext3");
142#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144/*
145 * This works like sb_bread() except it uses ERR_PTR for error
146 * returns. Currently with sb_bread it's impossible to distinguish
147 * between ENOMEM and EIO situations (since both result in a NULL
148 * return.
149 */
150struct buffer_head *
151ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152{
153 struct buffer_head *bh = sb_getblk(sb, block);
154
155 if (bh == NULL)
156 return ERR_PTR(-ENOMEM);
157 if (buffer_uptodate(bh))
158 return bh;
159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160 wait_on_buffer(bh);
161 if (buffer_uptodate(bh))
162 return bh;
163 put_bh(bh);
164 return ERR_PTR(-EIO);
165}
166
167static int ext4_verify_csum_type(struct super_block *sb,
168 struct ext4_super_block *es)
169{
170 if (!ext4_has_feature_metadata_csum(sb))
171 return 1;
172
173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174}
175
176static __le32 ext4_superblock_csum(struct super_block *sb,
177 struct ext4_super_block *es)
178{
179 struct ext4_sb_info *sbi = EXT4_SB(sb);
180 int offset = offsetof(struct ext4_super_block, s_checksum);
181 __u32 csum;
182
183 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184
185 return cpu_to_le32(csum);
186}
187
188static int ext4_superblock_csum_verify(struct super_block *sb,
189 struct ext4_super_block *es)
190{
191 if (!ext4_has_metadata_csum(sb))
192 return 1;
193
194 return es->s_checksum == ext4_superblock_csum(sb, es);
195}
196
197void ext4_superblock_csum_set(struct super_block *sb)
198{
199 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200
201 if (!ext4_has_metadata_csum(sb))
202 return;
203
204 es->s_checksum = ext4_superblock_csum(sb, es);
205}
206
207void *ext4_kvmalloc(size_t size, gfp_t flags)
208{
209 void *ret;
210
211 ret = kmalloc(size, flags | __GFP_NOWARN);
212 if (!ret)
213 ret = __vmalloc(size, flags, PAGE_KERNEL);
214 return ret;
215}
216
217void *ext4_kvzalloc(size_t size, gfp_t flags)
218{
219 void *ret;
220
221 ret = kzalloc(size, flags | __GFP_NOWARN);
222 if (!ret)
223 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
224 return ret;
225}
226
227ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
228 struct ext4_group_desc *bg)
229{
230 return le32_to_cpu(bg->bg_block_bitmap_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
233}
234
235ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
236 struct ext4_group_desc *bg)
237{
238 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
241}
242
243ext4_fsblk_t ext4_inode_table(struct super_block *sb,
244 struct ext4_group_desc *bg)
245{
246 return le32_to_cpu(bg->bg_inode_table_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
249}
250
251__u32 ext4_free_group_clusters(struct super_block *sb,
252 struct ext4_group_desc *bg)
253{
254 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
257}
258
259__u32 ext4_free_inodes_count(struct super_block *sb,
260 struct ext4_group_desc *bg)
261{
262 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
263 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
264 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
265}
266
267__u32 ext4_used_dirs_count(struct super_block *sb,
268 struct ext4_group_desc *bg)
269{
270 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
271 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
272 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
273}
274
275__u32 ext4_itable_unused_count(struct super_block *sb,
276 struct ext4_group_desc *bg)
277{
278 return le16_to_cpu(bg->bg_itable_unused_lo) |
279 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
280 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
281}
282
283void ext4_block_bitmap_set(struct super_block *sb,
284 struct ext4_group_desc *bg, ext4_fsblk_t blk)
285{
286 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
289}
290
291void ext4_inode_bitmap_set(struct super_block *sb,
292 struct ext4_group_desc *bg, ext4_fsblk_t blk)
293{
294 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
297}
298
299void ext4_inode_table_set(struct super_block *sb,
300 struct ext4_group_desc *bg, ext4_fsblk_t blk)
301{
302 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
305}
306
307void ext4_free_group_clusters_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
309{
310 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
313}
314
315void ext4_free_inodes_set(struct super_block *sb,
316 struct ext4_group_desc *bg, __u32 count)
317{
318 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
319 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
320 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
321}
322
323void ext4_used_dirs_set(struct super_block *sb,
324 struct ext4_group_desc *bg, __u32 count)
325{
326 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
327 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
328 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
329}
330
331void ext4_itable_unused_set(struct super_block *sb,
332 struct ext4_group_desc *bg, __u32 count)
333{
334 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
335 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
336 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
337}
338
339static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
340{
341 time64_t now = ktime_get_real_seconds();
342
343 now = clamp_val(now, 0, (1ull << 40) - 1);
344
345 *lo = cpu_to_le32(lower_32_bits(now));
346 *hi = upper_32_bits(now);
347}
348
349static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
350{
351 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
352}
353#define ext4_update_tstamp(es, tstamp) \
354 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
355#define ext4_get_tstamp(es, tstamp) \
356 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
357
358static void __save_error_info(struct super_block *sb, const char *func,
359 unsigned int line)
360{
361 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
362
363 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
364 if (bdev_read_only(sb->s_bdev))
365 return;
366 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
367 ext4_update_tstamp(es, s_last_error_time);
368 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
369 es->s_last_error_line = cpu_to_le32(line);
370 if (!es->s_first_error_time) {
371 es->s_first_error_time = es->s_last_error_time;
372 es->s_first_error_time_hi = es->s_last_error_time_hi;
373 strncpy(es->s_first_error_func, func,
374 sizeof(es->s_first_error_func));
375 es->s_first_error_line = cpu_to_le32(line);
376 es->s_first_error_ino = es->s_last_error_ino;
377 es->s_first_error_block = es->s_last_error_block;
378 }
379 /*
380 * Start the daily error reporting function if it hasn't been
381 * started already
382 */
383 if (!es->s_error_count)
384 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
385 le32_add_cpu(&es->s_error_count, 1);
386}
387
388static void save_error_info(struct super_block *sb, const char *func,
389 unsigned int line)
390{
391 __save_error_info(sb, func, line);
392 ext4_commit_super(sb, 1);
393}
394
395/*
396 * The del_gendisk() function uninitializes the disk-specific data
397 * structures, including the bdi structure, without telling anyone
398 * else. Once this happens, any attempt to call mark_buffer_dirty()
399 * (for example, by ext4_commit_super), will cause a kernel OOPS.
400 * This is a kludge to prevent these oops until we can put in a proper
401 * hook in del_gendisk() to inform the VFS and file system layers.
402 */
403static int block_device_ejected(struct super_block *sb)
404{
405 struct inode *bd_inode = sb->s_bdev->bd_inode;
406 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
407
408 return bdi->dev == NULL;
409}
410
411static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
412{
413 struct super_block *sb = journal->j_private;
414 struct ext4_sb_info *sbi = EXT4_SB(sb);
415 int error = is_journal_aborted(journal);
416 struct ext4_journal_cb_entry *jce;
417
418 BUG_ON(txn->t_state == T_FINISHED);
419
420 ext4_process_freed_data(sb, txn->t_tid);
421
422 spin_lock(&sbi->s_md_lock);
423 while (!list_empty(&txn->t_private_list)) {
424 jce = list_entry(txn->t_private_list.next,
425 struct ext4_journal_cb_entry, jce_list);
426 list_del_init(&jce->jce_list);
427 spin_unlock(&sbi->s_md_lock);
428 jce->jce_func(sb, jce, error);
429 spin_lock(&sbi->s_md_lock);
430 }
431 spin_unlock(&sbi->s_md_lock);
432}
433
434static bool system_going_down(void)
435{
436 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437 || system_state == SYSTEM_RESTART;
438}
439
440/* Deal with the reporting of failure conditions on a filesystem such as
441 * inconsistencies detected or read IO failures.
442 *
443 * On ext2, we can store the error state of the filesystem in the
444 * superblock. That is not possible on ext4, because we may have other
445 * write ordering constraints on the superblock which prevent us from
446 * writing it out straight away; and given that the journal is about to
447 * be aborted, we can't rely on the current, or future, transactions to
448 * write out the superblock safely.
449 *
450 * We'll just use the jbd2_journal_abort() error code to record an error in
451 * the journal instead. On recovery, the journal will complain about
452 * that error until we've noted it down and cleared it.
453 */
454
455static void ext4_handle_error(struct super_block *sb)
456{
457 if (test_opt(sb, WARN_ON_ERROR))
458 WARN_ON_ONCE(1);
459
460 if (sb_rdonly(sb))
461 return;
462
463 if (!test_opt(sb, ERRORS_CONT)) {
464 journal_t *journal = EXT4_SB(sb)->s_journal;
465
466 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
467 if (journal)
468 jbd2_journal_abort(journal, -EIO);
469 }
470 /*
471 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
472 * could panic during 'reboot -f' as the underlying device got already
473 * disabled.
474 */
475 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
476 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
477 /*
478 * Make sure updated value of ->s_mount_flags will be visible
479 * before ->s_flags update
480 */
481 smp_wmb();
482 sb->s_flags |= SB_RDONLY;
483 } else if (test_opt(sb, ERRORS_PANIC)) {
484 if (EXT4_SB(sb)->s_journal &&
485 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
486 return;
487 panic("EXT4-fs (device %s): panic forced after error\n",
488 sb->s_id);
489 }
490}
491
492#define ext4_error_ratelimit(sb) \
493 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
494 "EXT4-fs error")
495
496void __ext4_error(struct super_block *sb, const char *function,
497 unsigned int line, const char *fmt, ...)
498{
499 struct va_format vaf;
500 va_list args;
501
502 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
503 return;
504
505 trace_ext4_error(sb, function, line);
506 if (ext4_error_ratelimit(sb)) {
507 va_start(args, fmt);
508 vaf.fmt = fmt;
509 vaf.va = &args;
510 printk(KERN_CRIT
511 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
512 sb->s_id, function, line, current->comm, &vaf);
513 va_end(args);
514 }
515 save_error_info(sb, function, line);
516 ext4_handle_error(sb);
517}
518
519void __ext4_error_inode(struct inode *inode, const char *function,
520 unsigned int line, ext4_fsblk_t block,
521 const char *fmt, ...)
522{
523 va_list args;
524 struct va_format vaf;
525 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
526
527 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
528 return;
529
530 trace_ext4_error(inode->i_sb, function, line);
531 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
532 es->s_last_error_block = cpu_to_le64(block);
533 if (ext4_error_ratelimit(inode->i_sb)) {
534 va_start(args, fmt);
535 vaf.fmt = fmt;
536 vaf.va = &args;
537 if (block)
538 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
539 "inode #%lu: block %llu: comm %s: %pV\n",
540 inode->i_sb->s_id, function, line, inode->i_ino,
541 block, current->comm, &vaf);
542 else
543 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
544 "inode #%lu: comm %s: %pV\n",
545 inode->i_sb->s_id, function, line, inode->i_ino,
546 current->comm, &vaf);
547 va_end(args);
548 }
549 save_error_info(inode->i_sb, function, line);
550 ext4_handle_error(inode->i_sb);
551}
552
553void __ext4_error_file(struct file *file, const char *function,
554 unsigned int line, ext4_fsblk_t block,
555 const char *fmt, ...)
556{
557 va_list args;
558 struct va_format vaf;
559 struct ext4_super_block *es;
560 struct inode *inode = file_inode(file);
561 char pathname[80], *path;
562
563 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
564 return;
565
566 trace_ext4_error(inode->i_sb, function, line);
567 es = EXT4_SB(inode->i_sb)->s_es;
568 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
569 if (ext4_error_ratelimit(inode->i_sb)) {
570 path = file_path(file, pathname, sizeof(pathname));
571 if (IS_ERR(path))
572 path = "(unknown)";
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 if (block)
577 printk(KERN_CRIT
578 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
579 "block %llu: comm %s: path %s: %pV\n",
580 inode->i_sb->s_id, function, line, inode->i_ino,
581 block, current->comm, path, &vaf);
582 else
583 printk(KERN_CRIT
584 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
585 "comm %s: path %s: %pV\n",
586 inode->i_sb->s_id, function, line, inode->i_ino,
587 current->comm, path, &vaf);
588 va_end(args);
589 }
590 save_error_info(inode->i_sb, function, line);
591 ext4_handle_error(inode->i_sb);
592}
593
594const char *ext4_decode_error(struct super_block *sb, int errno,
595 char nbuf[16])
596{
597 char *errstr = NULL;
598
599 switch (errno) {
600 case -EFSCORRUPTED:
601 errstr = "Corrupt filesystem";
602 break;
603 case -EFSBADCRC:
604 errstr = "Filesystem failed CRC";
605 break;
606 case -EIO:
607 errstr = "IO failure";
608 break;
609 case -ENOMEM:
610 errstr = "Out of memory";
611 break;
612 case -EROFS:
613 if (!sb || (EXT4_SB(sb)->s_journal &&
614 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
615 errstr = "Journal has aborted";
616 else
617 errstr = "Readonly filesystem";
618 break;
619 default:
620 /* If the caller passed in an extra buffer for unknown
621 * errors, textualise them now. Else we just return
622 * NULL. */
623 if (nbuf) {
624 /* Check for truncated error codes... */
625 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
626 errstr = nbuf;
627 }
628 break;
629 }
630
631 return errstr;
632}
633
634/* __ext4_std_error decodes expected errors from journaling functions
635 * automatically and invokes the appropriate error response. */
636
637void __ext4_std_error(struct super_block *sb, const char *function,
638 unsigned int line, int errno)
639{
640 char nbuf[16];
641 const char *errstr;
642
643 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
644 return;
645
646 /* Special case: if the error is EROFS, and we're not already
647 * inside a transaction, then there's really no point in logging
648 * an error. */
649 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
650 return;
651
652 if (ext4_error_ratelimit(sb)) {
653 errstr = ext4_decode_error(sb, errno, nbuf);
654 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
655 sb->s_id, function, line, errstr);
656 }
657
658 save_error_info(sb, function, line);
659 ext4_handle_error(sb);
660}
661
662/*
663 * ext4_abort is a much stronger failure handler than ext4_error. The
664 * abort function may be used to deal with unrecoverable failures such
665 * as journal IO errors or ENOMEM at a critical moment in log management.
666 *
667 * We unconditionally force the filesystem into an ABORT|READONLY state,
668 * unless the error response on the fs has been set to panic in which
669 * case we take the easy way out and panic immediately.
670 */
671
672void __ext4_abort(struct super_block *sb, const char *function,
673 unsigned int line, const char *fmt, ...)
674{
675 struct va_format vaf;
676 va_list args;
677
678 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
679 return;
680
681 save_error_info(sb, function, line);
682 va_start(args, fmt);
683 vaf.fmt = fmt;
684 vaf.va = &args;
685 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
686 sb->s_id, function, line, &vaf);
687 va_end(args);
688
689 if (sb_rdonly(sb) == 0) {
690 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
691 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
692 /*
693 * Make sure updated value of ->s_mount_flags will be visible
694 * before ->s_flags update
695 */
696 smp_wmb();
697 sb->s_flags |= SB_RDONLY;
698 if (EXT4_SB(sb)->s_journal)
699 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
700 save_error_info(sb, function, line);
701 }
702 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
703 if (EXT4_SB(sb)->s_journal &&
704 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
705 return;
706 panic("EXT4-fs panic from previous error\n");
707 }
708}
709
710void __ext4_msg(struct super_block *sb,
711 const char *prefix, const char *fmt, ...)
712{
713 struct va_format vaf;
714 va_list args;
715
716 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
717 return;
718
719 va_start(args, fmt);
720 vaf.fmt = fmt;
721 vaf.va = &args;
722 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
723 va_end(args);
724}
725
726#define ext4_warning_ratelimit(sb) \
727 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
728 "EXT4-fs warning")
729
730void __ext4_warning(struct super_block *sb, const char *function,
731 unsigned int line, const char *fmt, ...)
732{
733 struct va_format vaf;
734 va_list args;
735
736 if (!ext4_warning_ratelimit(sb))
737 return;
738
739 va_start(args, fmt);
740 vaf.fmt = fmt;
741 vaf.va = &args;
742 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
743 sb->s_id, function, line, &vaf);
744 va_end(args);
745}
746
747void __ext4_warning_inode(const struct inode *inode, const char *function,
748 unsigned int line, const char *fmt, ...)
749{
750 struct va_format vaf;
751 va_list args;
752
753 if (!ext4_warning_ratelimit(inode->i_sb))
754 return;
755
756 va_start(args, fmt);
757 vaf.fmt = fmt;
758 vaf.va = &args;
759 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
760 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
761 function, line, inode->i_ino, current->comm, &vaf);
762 va_end(args);
763}
764
765void __ext4_grp_locked_error(const char *function, unsigned int line,
766 struct super_block *sb, ext4_group_t grp,
767 unsigned long ino, ext4_fsblk_t block,
768 const char *fmt, ...)
769__releases(bitlock)
770__acquires(bitlock)
771{
772 struct va_format vaf;
773 va_list args;
774 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
775
776 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
777 return;
778
779 trace_ext4_error(sb, function, line);
780 es->s_last_error_ino = cpu_to_le32(ino);
781 es->s_last_error_block = cpu_to_le64(block);
782 __save_error_info(sb, function, line);
783
784 if (ext4_error_ratelimit(sb)) {
785 va_start(args, fmt);
786 vaf.fmt = fmt;
787 vaf.va = &args;
788 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
789 sb->s_id, function, line, grp);
790 if (ino)
791 printk(KERN_CONT "inode %lu: ", ino);
792 if (block)
793 printk(KERN_CONT "block %llu:",
794 (unsigned long long) block);
795 printk(KERN_CONT "%pV\n", &vaf);
796 va_end(args);
797 }
798
799 if (test_opt(sb, WARN_ON_ERROR))
800 WARN_ON_ONCE(1);
801
802 if (test_opt(sb, ERRORS_CONT)) {
803 ext4_commit_super(sb, 0);
804 return;
805 }
806
807 ext4_unlock_group(sb, grp);
808 ext4_commit_super(sb, 1);
809 ext4_handle_error(sb);
810 /*
811 * We only get here in the ERRORS_RO case; relocking the group
812 * may be dangerous, but nothing bad will happen since the
813 * filesystem will have already been marked read/only and the
814 * journal has been aborted. We return 1 as a hint to callers
815 * who might what to use the return value from
816 * ext4_grp_locked_error() to distinguish between the
817 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
818 * aggressively from the ext4 function in question, with a
819 * more appropriate error code.
820 */
821 ext4_lock_group(sb, grp);
822 return;
823}
824
825void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
826 ext4_group_t group,
827 unsigned int flags)
828{
829 struct ext4_sb_info *sbi = EXT4_SB(sb);
830 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
832 int ret;
833
834 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
835 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
836 &grp->bb_state);
837 if (!ret)
838 percpu_counter_sub(&sbi->s_freeclusters_counter,
839 grp->bb_free);
840 }
841
842 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
843 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
844 &grp->bb_state);
845 if (!ret && gdp) {
846 int count;
847
848 count = ext4_free_inodes_count(sb, gdp);
849 percpu_counter_sub(&sbi->s_freeinodes_counter,
850 count);
851 }
852 }
853}
854
855void ext4_update_dynamic_rev(struct super_block *sb)
856{
857 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
858
859 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
860 return;
861
862 ext4_warning(sb,
863 "updating to rev %d because of new feature flag, "
864 "running e2fsck is recommended",
865 EXT4_DYNAMIC_REV);
866
867 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
868 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
869 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
870 /* leave es->s_feature_*compat flags alone */
871 /* es->s_uuid will be set by e2fsck if empty */
872
873 /*
874 * The rest of the superblock fields should be zero, and if not it
875 * means they are likely already in use, so leave them alone. We
876 * can leave it up to e2fsck to clean up any inconsistencies there.
877 */
878}
879
880/*
881 * Open the external journal device
882 */
883static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
884{
885 struct block_device *bdev;
886 char b[BDEVNAME_SIZE];
887
888 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
889 if (IS_ERR(bdev))
890 goto fail;
891 return bdev;
892
893fail:
894 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
895 __bdevname(dev, b), PTR_ERR(bdev));
896 return NULL;
897}
898
899/*
900 * Release the journal device
901 */
902static void ext4_blkdev_put(struct block_device *bdev)
903{
904 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
905}
906
907static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
908{
909 struct block_device *bdev;
910 bdev = sbi->journal_bdev;
911 if (bdev) {
912 ext4_blkdev_put(bdev);
913 sbi->journal_bdev = NULL;
914 }
915}
916
917static inline struct inode *orphan_list_entry(struct list_head *l)
918{
919 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
920}
921
922static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
923{
924 struct list_head *l;
925
926 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
927 le32_to_cpu(sbi->s_es->s_last_orphan));
928
929 printk(KERN_ERR "sb_info orphan list:\n");
930 list_for_each(l, &sbi->s_orphan) {
931 struct inode *inode = orphan_list_entry(l);
932 printk(KERN_ERR " "
933 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
934 inode->i_sb->s_id, inode->i_ino, inode,
935 inode->i_mode, inode->i_nlink,
936 NEXT_ORPHAN(inode));
937 }
938}
939
940#ifdef CONFIG_QUOTA
941static int ext4_quota_off(struct super_block *sb, int type);
942
943static inline void ext4_quota_off_umount(struct super_block *sb)
944{
945 int type;
946
947 /* Use our quota_off function to clear inode flags etc. */
948 for (type = 0; type < EXT4_MAXQUOTAS; type++)
949 ext4_quota_off(sb, type);
950}
951
952/*
953 * This is a helper function which is used in the mount/remount
954 * codepaths (which holds s_umount) to fetch the quota file name.
955 */
956static inline char *get_qf_name(struct super_block *sb,
957 struct ext4_sb_info *sbi,
958 int type)
959{
960 return rcu_dereference_protected(sbi->s_qf_names[type],
961 lockdep_is_held(&sb->s_umount));
962}
963#else
964static inline void ext4_quota_off_umount(struct super_block *sb)
965{
966}
967#endif
968
969static void ext4_put_super(struct super_block *sb)
970{
971 struct ext4_sb_info *sbi = EXT4_SB(sb);
972 struct ext4_super_block *es = sbi->s_es;
973 int aborted = 0;
974 int i, err;
975
976 ext4_unregister_li_request(sb);
977 ext4_quota_off_umount(sb);
978
979 destroy_workqueue(sbi->rsv_conversion_wq);
980
981 if (sbi->s_journal) {
982 aborted = is_journal_aborted(sbi->s_journal);
983 err = jbd2_journal_destroy(sbi->s_journal);
984 sbi->s_journal = NULL;
985 if ((err < 0) && !aborted)
986 ext4_abort(sb, "Couldn't clean up the journal");
987 }
988
989 ext4_unregister_sysfs(sb);
990 ext4_es_unregister_shrinker(sbi);
991 del_timer_sync(&sbi->s_err_report);
992 ext4_release_system_zone(sb);
993 ext4_mb_release(sb);
994 ext4_ext_release(sb);
995
996 if (!sb_rdonly(sb) && !aborted) {
997 ext4_clear_feature_journal_needs_recovery(sb);
998 es->s_state = cpu_to_le16(sbi->s_mount_state);
999 }
1000 if (!sb_rdonly(sb))
1001 ext4_commit_super(sb, 1);
1002
1003 for (i = 0; i < sbi->s_gdb_count; i++)
1004 brelse(sbi->s_group_desc[i]);
1005 kvfree(sbi->s_group_desc);
1006 kvfree(sbi->s_flex_groups);
1007 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1008 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1009 percpu_counter_destroy(&sbi->s_dirs_counter);
1010 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1011 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1012#ifdef CONFIG_QUOTA
1013 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1014 kfree(get_qf_name(sb, sbi, i));
1015#endif
1016
1017 /* Debugging code just in case the in-memory inode orphan list
1018 * isn't empty. The on-disk one can be non-empty if we've
1019 * detected an error and taken the fs readonly, but the
1020 * in-memory list had better be clean by this point. */
1021 if (!list_empty(&sbi->s_orphan))
1022 dump_orphan_list(sb, sbi);
1023 J_ASSERT(list_empty(&sbi->s_orphan));
1024
1025 sync_blockdev(sb->s_bdev);
1026 invalidate_bdev(sb->s_bdev);
1027 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1028 /*
1029 * Invalidate the journal device's buffers. We don't want them
1030 * floating about in memory - the physical journal device may
1031 * hotswapped, and it breaks the `ro-after' testing code.
1032 */
1033 sync_blockdev(sbi->journal_bdev);
1034 invalidate_bdev(sbi->journal_bdev);
1035 ext4_blkdev_remove(sbi);
1036 }
1037
1038 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1039 sbi->s_ea_inode_cache = NULL;
1040
1041 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1042 sbi->s_ea_block_cache = NULL;
1043
1044 if (sbi->s_mmp_tsk)
1045 kthread_stop(sbi->s_mmp_tsk);
1046 brelse(sbi->s_sbh);
1047 sb->s_fs_info = NULL;
1048 /*
1049 * Now that we are completely done shutting down the
1050 * superblock, we need to actually destroy the kobject.
1051 */
1052 kobject_put(&sbi->s_kobj);
1053 wait_for_completion(&sbi->s_kobj_unregister);
1054 if (sbi->s_chksum_driver)
1055 crypto_free_shash(sbi->s_chksum_driver);
1056 kfree(sbi->s_blockgroup_lock);
1057 fs_put_dax(sbi->s_daxdev);
1058#ifdef CONFIG_UNICODE
1059 utf8_unload(sbi->s_encoding);
1060#endif
1061 kfree(sbi);
1062}
1063
1064static struct kmem_cache *ext4_inode_cachep;
1065
1066/*
1067 * Called inside transaction, so use GFP_NOFS
1068 */
1069static struct inode *ext4_alloc_inode(struct super_block *sb)
1070{
1071 struct ext4_inode_info *ei;
1072
1073 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1074 if (!ei)
1075 return NULL;
1076
1077 inode_set_iversion(&ei->vfs_inode, 1);
1078 spin_lock_init(&ei->i_raw_lock);
1079 INIT_LIST_HEAD(&ei->i_prealloc_list);
1080 spin_lock_init(&ei->i_prealloc_lock);
1081 ext4_es_init_tree(&ei->i_es_tree);
1082 rwlock_init(&ei->i_es_lock);
1083 INIT_LIST_HEAD(&ei->i_es_list);
1084 ei->i_es_all_nr = 0;
1085 ei->i_es_shk_nr = 0;
1086 ei->i_es_shrink_lblk = 0;
1087 ei->i_reserved_data_blocks = 0;
1088 ei->i_da_metadata_calc_len = 0;
1089 ei->i_da_metadata_calc_last_lblock = 0;
1090 spin_lock_init(&(ei->i_block_reservation_lock));
1091 ext4_init_pending_tree(&ei->i_pending_tree);
1092#ifdef CONFIG_QUOTA
1093 ei->i_reserved_quota = 0;
1094 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1095#endif
1096 ei->jinode = NULL;
1097 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1098 spin_lock_init(&ei->i_completed_io_lock);
1099 ei->i_sync_tid = 0;
1100 ei->i_datasync_tid = 0;
1101 atomic_set(&ei->i_unwritten, 0);
1102 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1103 return &ei->vfs_inode;
1104}
1105
1106static int ext4_drop_inode(struct inode *inode)
1107{
1108 int drop = generic_drop_inode(inode);
1109
1110 if (!drop)
1111 drop = fscrypt_drop_inode(inode);
1112
1113 trace_ext4_drop_inode(inode, drop);
1114 return drop;
1115}
1116
1117static void ext4_free_in_core_inode(struct inode *inode)
1118{
1119 fscrypt_free_inode(inode);
1120 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1121}
1122
1123static void ext4_destroy_inode(struct inode *inode)
1124{
1125 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1126 ext4_msg(inode->i_sb, KERN_ERR,
1127 "Inode %lu (%p): orphan list check failed!",
1128 inode->i_ino, EXT4_I(inode));
1129 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1130 EXT4_I(inode), sizeof(struct ext4_inode_info),
1131 true);
1132 dump_stack();
1133 }
1134}
1135
1136static void init_once(void *foo)
1137{
1138 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1139
1140 INIT_LIST_HEAD(&ei->i_orphan);
1141 init_rwsem(&ei->xattr_sem);
1142 init_rwsem(&ei->i_data_sem);
1143 init_rwsem(&ei->i_mmap_sem);
1144 inode_init_once(&ei->vfs_inode);
1145}
1146
1147static int __init init_inodecache(void)
1148{
1149 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1150 sizeof(struct ext4_inode_info), 0,
1151 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1152 SLAB_ACCOUNT),
1153 offsetof(struct ext4_inode_info, i_data),
1154 sizeof_field(struct ext4_inode_info, i_data),
1155 init_once);
1156 if (ext4_inode_cachep == NULL)
1157 return -ENOMEM;
1158 return 0;
1159}
1160
1161static void destroy_inodecache(void)
1162{
1163 /*
1164 * Make sure all delayed rcu free inodes are flushed before we
1165 * destroy cache.
1166 */
1167 rcu_barrier();
1168 kmem_cache_destroy(ext4_inode_cachep);
1169}
1170
1171void ext4_clear_inode(struct inode *inode)
1172{
1173 invalidate_inode_buffers(inode);
1174 clear_inode(inode);
1175 dquot_drop(inode);
1176 ext4_discard_preallocations(inode);
1177 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1178 if (EXT4_I(inode)->jinode) {
1179 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1180 EXT4_I(inode)->jinode);
1181 jbd2_free_inode(EXT4_I(inode)->jinode);
1182 EXT4_I(inode)->jinode = NULL;
1183 }
1184 fscrypt_put_encryption_info(inode);
1185 fsverity_cleanup_inode(inode);
1186}
1187
1188static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1189 u64 ino, u32 generation)
1190{
1191 struct inode *inode;
1192
1193 /*
1194 * Currently we don't know the generation for parent directory, so
1195 * a generation of 0 means "accept any"
1196 */
1197 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1198 if (IS_ERR(inode))
1199 return ERR_CAST(inode);
1200 if (generation && inode->i_generation != generation) {
1201 iput(inode);
1202 return ERR_PTR(-ESTALE);
1203 }
1204
1205 return inode;
1206}
1207
1208static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1209 int fh_len, int fh_type)
1210{
1211 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1212 ext4_nfs_get_inode);
1213}
1214
1215static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1216 int fh_len, int fh_type)
1217{
1218 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1219 ext4_nfs_get_inode);
1220}
1221
1222static int ext4_nfs_commit_metadata(struct inode *inode)
1223{
1224 struct writeback_control wbc = {
1225 .sync_mode = WB_SYNC_ALL
1226 };
1227
1228 trace_ext4_nfs_commit_metadata(inode);
1229 return ext4_write_inode(inode, &wbc);
1230}
1231
1232/*
1233 * Try to release metadata pages (indirect blocks, directories) which are
1234 * mapped via the block device. Since these pages could have journal heads
1235 * which would prevent try_to_free_buffers() from freeing them, we must use
1236 * jbd2 layer's try_to_free_buffers() function to release them.
1237 */
1238static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1239 gfp_t wait)
1240{
1241 journal_t *journal = EXT4_SB(sb)->s_journal;
1242
1243 WARN_ON(PageChecked(page));
1244 if (!page_has_buffers(page))
1245 return 0;
1246 if (journal)
1247 return jbd2_journal_try_to_free_buffers(journal, page,
1248 wait & ~__GFP_DIRECT_RECLAIM);
1249 return try_to_free_buffers(page);
1250}
1251
1252#ifdef CONFIG_FS_ENCRYPTION
1253static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1254{
1255 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1256 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1257}
1258
1259static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1260 void *fs_data)
1261{
1262 handle_t *handle = fs_data;
1263 int res, res2, credits, retries = 0;
1264
1265 /*
1266 * Encrypting the root directory is not allowed because e2fsck expects
1267 * lost+found to exist and be unencrypted, and encrypting the root
1268 * directory would imply encrypting the lost+found directory as well as
1269 * the filename "lost+found" itself.
1270 */
1271 if (inode->i_ino == EXT4_ROOT_INO)
1272 return -EPERM;
1273
1274 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1275 return -EINVAL;
1276
1277 res = ext4_convert_inline_data(inode);
1278 if (res)
1279 return res;
1280
1281 /*
1282 * If a journal handle was specified, then the encryption context is
1283 * being set on a new inode via inheritance and is part of a larger
1284 * transaction to create the inode. Otherwise the encryption context is
1285 * being set on an existing inode in its own transaction. Only in the
1286 * latter case should the "retry on ENOSPC" logic be used.
1287 */
1288
1289 if (handle) {
1290 res = ext4_xattr_set_handle(handle, inode,
1291 EXT4_XATTR_INDEX_ENCRYPTION,
1292 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1293 ctx, len, 0);
1294 if (!res) {
1295 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1296 ext4_clear_inode_state(inode,
1297 EXT4_STATE_MAY_INLINE_DATA);
1298 /*
1299 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1300 * S_DAX may be disabled
1301 */
1302 ext4_set_inode_flags(inode);
1303 }
1304 return res;
1305 }
1306
1307 res = dquot_initialize(inode);
1308 if (res)
1309 return res;
1310retry:
1311 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1312 &credits);
1313 if (res)
1314 return res;
1315
1316 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1317 if (IS_ERR(handle))
1318 return PTR_ERR(handle);
1319
1320 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1321 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1322 ctx, len, 0);
1323 if (!res) {
1324 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1325 /*
1326 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1327 * S_DAX may be disabled
1328 */
1329 ext4_set_inode_flags(inode);
1330 res = ext4_mark_inode_dirty(handle, inode);
1331 if (res)
1332 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1333 }
1334 res2 = ext4_journal_stop(handle);
1335
1336 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1337 goto retry;
1338 if (!res)
1339 res = res2;
1340 return res;
1341}
1342
1343static bool ext4_dummy_context(struct inode *inode)
1344{
1345 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1346}
1347
1348static const struct fscrypt_operations ext4_cryptops = {
1349 .key_prefix = "ext4:",
1350 .get_context = ext4_get_context,
1351 .set_context = ext4_set_context,
1352 .dummy_context = ext4_dummy_context,
1353 .empty_dir = ext4_empty_dir,
1354 .max_namelen = EXT4_NAME_LEN,
1355};
1356#endif
1357
1358#ifdef CONFIG_QUOTA
1359static const char * const quotatypes[] = INITQFNAMES;
1360#define QTYPE2NAME(t) (quotatypes[t])
1361
1362static int ext4_write_dquot(struct dquot *dquot);
1363static int ext4_acquire_dquot(struct dquot *dquot);
1364static int ext4_release_dquot(struct dquot *dquot);
1365static int ext4_mark_dquot_dirty(struct dquot *dquot);
1366static int ext4_write_info(struct super_block *sb, int type);
1367static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1368 const struct path *path);
1369static int ext4_quota_on_mount(struct super_block *sb, int type);
1370static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1371 size_t len, loff_t off);
1372static ssize_t ext4_quota_write(struct super_block *sb, int type,
1373 const char *data, size_t len, loff_t off);
1374static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1375 unsigned int flags);
1376static int ext4_enable_quotas(struct super_block *sb);
1377static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1378
1379static struct dquot **ext4_get_dquots(struct inode *inode)
1380{
1381 return EXT4_I(inode)->i_dquot;
1382}
1383
1384static const struct dquot_operations ext4_quota_operations = {
1385 .get_reserved_space = ext4_get_reserved_space,
1386 .write_dquot = ext4_write_dquot,
1387 .acquire_dquot = ext4_acquire_dquot,
1388 .release_dquot = ext4_release_dquot,
1389 .mark_dirty = ext4_mark_dquot_dirty,
1390 .write_info = ext4_write_info,
1391 .alloc_dquot = dquot_alloc,
1392 .destroy_dquot = dquot_destroy,
1393 .get_projid = ext4_get_projid,
1394 .get_inode_usage = ext4_get_inode_usage,
1395 .get_next_id = ext4_get_next_id,
1396};
1397
1398static const struct quotactl_ops ext4_qctl_operations = {
1399 .quota_on = ext4_quota_on,
1400 .quota_off = ext4_quota_off,
1401 .quota_sync = dquot_quota_sync,
1402 .get_state = dquot_get_state,
1403 .set_info = dquot_set_dqinfo,
1404 .get_dqblk = dquot_get_dqblk,
1405 .set_dqblk = dquot_set_dqblk,
1406 .get_nextdqblk = dquot_get_next_dqblk,
1407};
1408#endif
1409
1410static const struct super_operations ext4_sops = {
1411 .alloc_inode = ext4_alloc_inode,
1412 .free_inode = ext4_free_in_core_inode,
1413 .destroy_inode = ext4_destroy_inode,
1414 .write_inode = ext4_write_inode,
1415 .dirty_inode = ext4_dirty_inode,
1416 .drop_inode = ext4_drop_inode,
1417 .evict_inode = ext4_evict_inode,
1418 .put_super = ext4_put_super,
1419 .sync_fs = ext4_sync_fs,
1420 .freeze_fs = ext4_freeze,
1421 .unfreeze_fs = ext4_unfreeze,
1422 .statfs = ext4_statfs,
1423 .remount_fs = ext4_remount,
1424 .show_options = ext4_show_options,
1425#ifdef CONFIG_QUOTA
1426 .quota_read = ext4_quota_read,
1427 .quota_write = ext4_quota_write,
1428 .get_dquots = ext4_get_dquots,
1429#endif
1430 .bdev_try_to_free_page = bdev_try_to_free_page,
1431};
1432
1433static const struct export_operations ext4_export_ops = {
1434 .fh_to_dentry = ext4_fh_to_dentry,
1435 .fh_to_parent = ext4_fh_to_parent,
1436 .get_parent = ext4_get_parent,
1437 .commit_metadata = ext4_nfs_commit_metadata,
1438};
1439
1440enum {
1441 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1442 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1443 Opt_nouid32, Opt_debug, Opt_removed,
1444 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1445 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1446 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1447 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1448 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1449 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1450 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1451 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1452 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1453 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1454 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1455 Opt_nowarn_on_error, Opt_mblk_io_submit,
1456 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1457 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1458 Opt_inode_readahead_blks, Opt_journal_ioprio,
1459 Opt_dioread_nolock, Opt_dioread_lock,
1460 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1461 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1462};
1463
1464static const match_table_t tokens = {
1465 {Opt_bsd_df, "bsddf"},
1466 {Opt_minix_df, "minixdf"},
1467 {Opt_grpid, "grpid"},
1468 {Opt_grpid, "bsdgroups"},
1469 {Opt_nogrpid, "nogrpid"},
1470 {Opt_nogrpid, "sysvgroups"},
1471 {Opt_resgid, "resgid=%u"},
1472 {Opt_resuid, "resuid=%u"},
1473 {Opt_sb, "sb=%u"},
1474 {Opt_err_cont, "errors=continue"},
1475 {Opt_err_panic, "errors=panic"},
1476 {Opt_err_ro, "errors=remount-ro"},
1477 {Opt_nouid32, "nouid32"},
1478 {Opt_debug, "debug"},
1479 {Opt_removed, "oldalloc"},
1480 {Opt_removed, "orlov"},
1481 {Opt_user_xattr, "user_xattr"},
1482 {Opt_nouser_xattr, "nouser_xattr"},
1483 {Opt_acl, "acl"},
1484 {Opt_noacl, "noacl"},
1485 {Opt_noload, "norecovery"},
1486 {Opt_noload, "noload"},
1487 {Opt_removed, "nobh"},
1488 {Opt_removed, "bh"},
1489 {Opt_commit, "commit=%u"},
1490 {Opt_min_batch_time, "min_batch_time=%u"},
1491 {Opt_max_batch_time, "max_batch_time=%u"},
1492 {Opt_journal_dev, "journal_dev=%u"},
1493 {Opt_journal_path, "journal_path=%s"},
1494 {Opt_journal_checksum, "journal_checksum"},
1495 {Opt_nojournal_checksum, "nojournal_checksum"},
1496 {Opt_journal_async_commit, "journal_async_commit"},
1497 {Opt_abort, "abort"},
1498 {Opt_data_journal, "data=journal"},
1499 {Opt_data_ordered, "data=ordered"},
1500 {Opt_data_writeback, "data=writeback"},
1501 {Opt_data_err_abort, "data_err=abort"},
1502 {Opt_data_err_ignore, "data_err=ignore"},
1503 {Opt_offusrjquota, "usrjquota="},
1504 {Opt_usrjquota, "usrjquota=%s"},
1505 {Opt_offgrpjquota, "grpjquota="},
1506 {Opt_grpjquota, "grpjquota=%s"},
1507 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1508 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1509 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1510 {Opt_grpquota, "grpquota"},
1511 {Opt_noquota, "noquota"},
1512 {Opt_quota, "quota"},
1513 {Opt_usrquota, "usrquota"},
1514 {Opt_prjquota, "prjquota"},
1515 {Opt_barrier, "barrier=%u"},
1516 {Opt_barrier, "barrier"},
1517 {Opt_nobarrier, "nobarrier"},
1518 {Opt_i_version, "i_version"},
1519 {Opt_dax, "dax"},
1520 {Opt_stripe, "stripe=%u"},
1521 {Opt_delalloc, "delalloc"},
1522 {Opt_warn_on_error, "warn_on_error"},
1523 {Opt_nowarn_on_error, "nowarn_on_error"},
1524 {Opt_lazytime, "lazytime"},
1525 {Opt_nolazytime, "nolazytime"},
1526 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1527 {Opt_nodelalloc, "nodelalloc"},
1528 {Opt_removed, "mblk_io_submit"},
1529 {Opt_removed, "nomblk_io_submit"},
1530 {Opt_block_validity, "block_validity"},
1531 {Opt_noblock_validity, "noblock_validity"},
1532 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1533 {Opt_journal_ioprio, "journal_ioprio=%u"},
1534 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1535 {Opt_auto_da_alloc, "auto_da_alloc"},
1536 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1537 {Opt_dioread_nolock, "dioread_nolock"},
1538 {Opt_dioread_lock, "dioread_lock"},
1539 {Opt_discard, "discard"},
1540 {Opt_nodiscard, "nodiscard"},
1541 {Opt_init_itable, "init_itable=%u"},
1542 {Opt_init_itable, "init_itable"},
1543 {Opt_noinit_itable, "noinit_itable"},
1544 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1545 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1546 {Opt_nombcache, "nombcache"},
1547 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1548 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1549 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1550 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1551 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1552 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1553 {Opt_err, NULL},
1554};
1555
1556static ext4_fsblk_t get_sb_block(void **data)
1557{
1558 ext4_fsblk_t sb_block;
1559 char *options = (char *) *data;
1560
1561 if (!options || strncmp(options, "sb=", 3) != 0)
1562 return 1; /* Default location */
1563
1564 options += 3;
1565 /* TODO: use simple_strtoll with >32bit ext4 */
1566 sb_block = simple_strtoul(options, &options, 0);
1567 if (*options && *options != ',') {
1568 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1569 (char *) *data);
1570 return 1;
1571 }
1572 if (*options == ',')
1573 options++;
1574 *data = (void *) options;
1575
1576 return sb_block;
1577}
1578
1579#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1580static const char deprecated_msg[] =
1581 "Mount option \"%s\" will be removed by %s\n"
1582 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1583
1584#ifdef CONFIG_QUOTA
1585static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1586{
1587 struct ext4_sb_info *sbi = EXT4_SB(sb);
1588 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1589 int ret = -1;
1590
1591 if (sb_any_quota_loaded(sb) && !old_qname) {
1592 ext4_msg(sb, KERN_ERR,
1593 "Cannot change journaled "
1594 "quota options when quota turned on");
1595 return -1;
1596 }
1597 if (ext4_has_feature_quota(sb)) {
1598 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1599 "ignored when QUOTA feature is enabled");
1600 return 1;
1601 }
1602 qname = match_strdup(args);
1603 if (!qname) {
1604 ext4_msg(sb, KERN_ERR,
1605 "Not enough memory for storing quotafile name");
1606 return -1;
1607 }
1608 if (old_qname) {
1609 if (strcmp(old_qname, qname) == 0)
1610 ret = 1;
1611 else
1612 ext4_msg(sb, KERN_ERR,
1613 "%s quota file already specified",
1614 QTYPE2NAME(qtype));
1615 goto errout;
1616 }
1617 if (strchr(qname, '/')) {
1618 ext4_msg(sb, KERN_ERR,
1619 "quotafile must be on filesystem root");
1620 goto errout;
1621 }
1622 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1623 set_opt(sb, QUOTA);
1624 return 1;
1625errout:
1626 kfree(qname);
1627 return ret;
1628}
1629
1630static int clear_qf_name(struct super_block *sb, int qtype)
1631{
1632
1633 struct ext4_sb_info *sbi = EXT4_SB(sb);
1634 char *old_qname = get_qf_name(sb, sbi, qtype);
1635
1636 if (sb_any_quota_loaded(sb) && old_qname) {
1637 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1638 " when quota turned on");
1639 return -1;
1640 }
1641 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1642 synchronize_rcu();
1643 kfree(old_qname);
1644 return 1;
1645}
1646#endif
1647
1648#define MOPT_SET 0x0001
1649#define MOPT_CLEAR 0x0002
1650#define MOPT_NOSUPPORT 0x0004
1651#define MOPT_EXPLICIT 0x0008
1652#define MOPT_CLEAR_ERR 0x0010
1653#define MOPT_GTE0 0x0020
1654#ifdef CONFIG_QUOTA
1655#define MOPT_Q 0
1656#define MOPT_QFMT 0x0040
1657#else
1658#define MOPT_Q MOPT_NOSUPPORT
1659#define MOPT_QFMT MOPT_NOSUPPORT
1660#endif
1661#define MOPT_DATAJ 0x0080
1662#define MOPT_NO_EXT2 0x0100
1663#define MOPT_NO_EXT3 0x0200
1664#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1665#define MOPT_STRING 0x0400
1666
1667static const struct mount_opts {
1668 int token;
1669 int mount_opt;
1670 int flags;
1671} ext4_mount_opts[] = {
1672 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1673 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1674 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1675 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1676 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1677 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1678 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1679 MOPT_EXT4_ONLY | MOPT_SET},
1680 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1681 MOPT_EXT4_ONLY | MOPT_CLEAR},
1682 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1683 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1684 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1685 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1686 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1687 MOPT_EXT4_ONLY | MOPT_CLEAR},
1688 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1689 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1690 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1691 MOPT_EXT4_ONLY | MOPT_CLEAR},
1692 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1693 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1694 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1695 EXT4_MOUNT_JOURNAL_CHECKSUM),
1696 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1697 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1698 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1699 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1700 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1701 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1702 MOPT_NO_EXT2},
1703 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1704 MOPT_NO_EXT2},
1705 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1706 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1707 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1708 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1709 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1710 {Opt_commit, 0, MOPT_GTE0},
1711 {Opt_max_batch_time, 0, MOPT_GTE0},
1712 {Opt_min_batch_time, 0, MOPT_GTE0},
1713 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1714 {Opt_init_itable, 0, MOPT_GTE0},
1715 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1716 {Opt_stripe, 0, MOPT_GTE0},
1717 {Opt_resuid, 0, MOPT_GTE0},
1718 {Opt_resgid, 0, MOPT_GTE0},
1719 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1720 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1721 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1722 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1723 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1724 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1725 MOPT_NO_EXT2 | MOPT_DATAJ},
1726 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1727 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1728#ifdef CONFIG_EXT4_FS_POSIX_ACL
1729 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1730 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1731#else
1732 {Opt_acl, 0, MOPT_NOSUPPORT},
1733 {Opt_noacl, 0, MOPT_NOSUPPORT},
1734#endif
1735 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1736 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1737 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1738 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1739 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1740 MOPT_SET | MOPT_Q},
1741 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1742 MOPT_SET | MOPT_Q},
1743 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1744 MOPT_SET | MOPT_Q},
1745 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1746 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1747 MOPT_CLEAR | MOPT_Q},
1748 {Opt_usrjquota, 0, MOPT_Q},
1749 {Opt_grpjquota, 0, MOPT_Q},
1750 {Opt_offusrjquota, 0, MOPT_Q},
1751 {Opt_offgrpjquota, 0, MOPT_Q},
1752 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1753 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1754 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1755 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1756 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1757 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1758 {Opt_err, 0, 0}
1759};
1760
1761#ifdef CONFIG_UNICODE
1762static const struct ext4_sb_encodings {
1763 __u16 magic;
1764 char *name;
1765 char *version;
1766} ext4_sb_encoding_map[] = {
1767 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1768};
1769
1770static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1771 const struct ext4_sb_encodings **encoding,
1772 __u16 *flags)
1773{
1774 __u16 magic = le16_to_cpu(es->s_encoding);
1775 int i;
1776
1777 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1778 if (magic == ext4_sb_encoding_map[i].magic)
1779 break;
1780
1781 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1782 return -EINVAL;
1783
1784 *encoding = &ext4_sb_encoding_map[i];
1785 *flags = le16_to_cpu(es->s_encoding_flags);
1786
1787 return 0;
1788}
1789#endif
1790
1791static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1792 substring_t *args, unsigned long *journal_devnum,
1793 unsigned int *journal_ioprio, int is_remount)
1794{
1795 struct ext4_sb_info *sbi = EXT4_SB(sb);
1796 const struct mount_opts *m;
1797 kuid_t uid;
1798 kgid_t gid;
1799 int arg = 0;
1800
1801#ifdef CONFIG_QUOTA
1802 if (token == Opt_usrjquota)
1803 return set_qf_name(sb, USRQUOTA, &args[0]);
1804 else if (token == Opt_grpjquota)
1805 return set_qf_name(sb, GRPQUOTA, &args[0]);
1806 else if (token == Opt_offusrjquota)
1807 return clear_qf_name(sb, USRQUOTA);
1808 else if (token == Opt_offgrpjquota)
1809 return clear_qf_name(sb, GRPQUOTA);
1810#endif
1811 switch (token) {
1812 case Opt_noacl:
1813 case Opt_nouser_xattr:
1814 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1815 break;
1816 case Opt_sb:
1817 return 1; /* handled by get_sb_block() */
1818 case Opt_removed:
1819 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1820 return 1;
1821 case Opt_abort:
1822 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1823 return 1;
1824 case Opt_i_version:
1825 sb->s_flags |= SB_I_VERSION;
1826 return 1;
1827 case Opt_lazytime:
1828 sb->s_flags |= SB_LAZYTIME;
1829 return 1;
1830 case Opt_nolazytime:
1831 sb->s_flags &= ~SB_LAZYTIME;
1832 return 1;
1833 }
1834
1835 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1836 if (token == m->token)
1837 break;
1838
1839 if (m->token == Opt_err) {
1840 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1841 "or missing value", opt);
1842 return -1;
1843 }
1844
1845 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1846 ext4_msg(sb, KERN_ERR,
1847 "Mount option \"%s\" incompatible with ext2", opt);
1848 return -1;
1849 }
1850 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1851 ext4_msg(sb, KERN_ERR,
1852 "Mount option \"%s\" incompatible with ext3", opt);
1853 return -1;
1854 }
1855
1856 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1857 return -1;
1858 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1859 return -1;
1860 if (m->flags & MOPT_EXPLICIT) {
1861 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1862 set_opt2(sb, EXPLICIT_DELALLOC);
1863 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1864 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1865 } else
1866 return -1;
1867 }
1868 if (m->flags & MOPT_CLEAR_ERR)
1869 clear_opt(sb, ERRORS_MASK);
1870 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1871 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1872 "options when quota turned on");
1873 return -1;
1874 }
1875
1876 if (m->flags & MOPT_NOSUPPORT) {
1877 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1878 } else if (token == Opt_commit) {
1879 if (arg == 0)
1880 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1881 else if (arg > INT_MAX / HZ) {
1882 ext4_msg(sb, KERN_ERR,
1883 "Invalid commit interval %d, "
1884 "must be smaller than %d",
1885 arg, INT_MAX / HZ);
1886 return -1;
1887 }
1888 sbi->s_commit_interval = HZ * arg;
1889 } else if (token == Opt_debug_want_extra_isize) {
1890 sbi->s_want_extra_isize = arg;
1891 } else if (token == Opt_max_batch_time) {
1892 sbi->s_max_batch_time = arg;
1893 } else if (token == Opt_min_batch_time) {
1894 sbi->s_min_batch_time = arg;
1895 } else if (token == Opt_inode_readahead_blks) {
1896 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1897 ext4_msg(sb, KERN_ERR,
1898 "EXT4-fs: inode_readahead_blks must be "
1899 "0 or a power of 2 smaller than 2^31");
1900 return -1;
1901 }
1902 sbi->s_inode_readahead_blks = arg;
1903 } else if (token == Opt_init_itable) {
1904 set_opt(sb, INIT_INODE_TABLE);
1905 if (!args->from)
1906 arg = EXT4_DEF_LI_WAIT_MULT;
1907 sbi->s_li_wait_mult = arg;
1908 } else if (token == Opt_max_dir_size_kb) {
1909 sbi->s_max_dir_size_kb = arg;
1910 } else if (token == Opt_stripe) {
1911 sbi->s_stripe = arg;
1912 } else if (token == Opt_resuid) {
1913 uid = make_kuid(current_user_ns(), arg);
1914 if (!uid_valid(uid)) {
1915 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1916 return -1;
1917 }
1918 sbi->s_resuid = uid;
1919 } else if (token == Opt_resgid) {
1920 gid = make_kgid(current_user_ns(), arg);
1921 if (!gid_valid(gid)) {
1922 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1923 return -1;
1924 }
1925 sbi->s_resgid = gid;
1926 } else if (token == Opt_journal_dev) {
1927 if (is_remount) {
1928 ext4_msg(sb, KERN_ERR,
1929 "Cannot specify journal on remount");
1930 return -1;
1931 }
1932 *journal_devnum = arg;
1933 } else if (token == Opt_journal_path) {
1934 char *journal_path;
1935 struct inode *journal_inode;
1936 struct path path;
1937 int error;
1938
1939 if (is_remount) {
1940 ext4_msg(sb, KERN_ERR,
1941 "Cannot specify journal on remount");
1942 return -1;
1943 }
1944 journal_path = match_strdup(&args[0]);
1945 if (!journal_path) {
1946 ext4_msg(sb, KERN_ERR, "error: could not dup "
1947 "journal device string");
1948 return -1;
1949 }
1950
1951 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1952 if (error) {
1953 ext4_msg(sb, KERN_ERR, "error: could not find "
1954 "journal device path: error %d", error);
1955 kfree(journal_path);
1956 return -1;
1957 }
1958
1959 journal_inode = d_inode(path.dentry);
1960 if (!S_ISBLK(journal_inode->i_mode)) {
1961 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1962 "is not a block device", journal_path);
1963 path_put(&path);
1964 kfree(journal_path);
1965 return -1;
1966 }
1967
1968 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1969 path_put(&path);
1970 kfree(journal_path);
1971 } else if (token == Opt_journal_ioprio) {
1972 if (arg > 7) {
1973 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1974 " (must be 0-7)");
1975 return -1;
1976 }
1977 *journal_ioprio =
1978 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1979 } else if (token == Opt_test_dummy_encryption) {
1980#ifdef CONFIG_FS_ENCRYPTION
1981 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1982 ext4_msg(sb, KERN_WARNING,
1983 "Test dummy encryption mode enabled");
1984#else
1985 ext4_msg(sb, KERN_WARNING,
1986 "Test dummy encryption mount option ignored");
1987#endif
1988 } else if (m->flags & MOPT_DATAJ) {
1989 if (is_remount) {
1990 if (!sbi->s_journal)
1991 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1992 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1993 ext4_msg(sb, KERN_ERR,
1994 "Cannot change data mode on remount");
1995 return -1;
1996 }
1997 } else {
1998 clear_opt(sb, DATA_FLAGS);
1999 sbi->s_mount_opt |= m->mount_opt;
2000 }
2001#ifdef CONFIG_QUOTA
2002 } else if (m->flags & MOPT_QFMT) {
2003 if (sb_any_quota_loaded(sb) &&
2004 sbi->s_jquota_fmt != m->mount_opt) {
2005 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2006 "quota options when quota turned on");
2007 return -1;
2008 }
2009 if (ext4_has_feature_quota(sb)) {
2010 ext4_msg(sb, KERN_INFO,
2011 "Quota format mount options ignored "
2012 "when QUOTA feature is enabled");
2013 return 1;
2014 }
2015 sbi->s_jquota_fmt = m->mount_opt;
2016#endif
2017 } else if (token == Opt_dax) {
2018#ifdef CONFIG_FS_DAX
2019 ext4_msg(sb, KERN_WARNING,
2020 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2021 sbi->s_mount_opt |= m->mount_opt;
2022#else
2023 ext4_msg(sb, KERN_INFO, "dax option not supported");
2024 return -1;
2025#endif
2026 } else if (token == Opt_data_err_abort) {
2027 sbi->s_mount_opt |= m->mount_opt;
2028 } else if (token == Opt_data_err_ignore) {
2029 sbi->s_mount_opt &= ~m->mount_opt;
2030 } else {
2031 if (!args->from)
2032 arg = 1;
2033 if (m->flags & MOPT_CLEAR)
2034 arg = !arg;
2035 else if (unlikely(!(m->flags & MOPT_SET))) {
2036 ext4_msg(sb, KERN_WARNING,
2037 "buggy handling of option %s", opt);
2038 WARN_ON(1);
2039 return -1;
2040 }
2041 if (arg != 0)
2042 sbi->s_mount_opt |= m->mount_opt;
2043 else
2044 sbi->s_mount_opt &= ~m->mount_opt;
2045 }
2046 return 1;
2047}
2048
2049static int parse_options(char *options, struct super_block *sb,
2050 unsigned long *journal_devnum,
2051 unsigned int *journal_ioprio,
2052 int is_remount)
2053{
2054 struct ext4_sb_info *sbi = EXT4_SB(sb);
2055 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2056 substring_t args[MAX_OPT_ARGS];
2057 int token;
2058
2059 if (!options)
2060 return 1;
2061
2062 while ((p = strsep(&options, ",")) != NULL) {
2063 if (!*p)
2064 continue;
2065 /*
2066 * Initialize args struct so we know whether arg was
2067 * found; some options take optional arguments.
2068 */
2069 args[0].to = args[0].from = NULL;
2070 token = match_token(p, tokens, args);
2071 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2072 journal_ioprio, is_remount) < 0)
2073 return 0;
2074 }
2075#ifdef CONFIG_QUOTA
2076 /*
2077 * We do the test below only for project quotas. 'usrquota' and
2078 * 'grpquota' mount options are allowed even without quota feature
2079 * to support legacy quotas in quota files.
2080 */
2081 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2082 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2083 "Cannot enable project quota enforcement.");
2084 return 0;
2085 }
2086 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2087 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2088 if (usr_qf_name || grp_qf_name) {
2089 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2090 clear_opt(sb, USRQUOTA);
2091
2092 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2093 clear_opt(sb, GRPQUOTA);
2094
2095 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2096 ext4_msg(sb, KERN_ERR, "old and new quota "
2097 "format mixing");
2098 return 0;
2099 }
2100
2101 if (!sbi->s_jquota_fmt) {
2102 ext4_msg(sb, KERN_ERR, "journaled quota format "
2103 "not specified");
2104 return 0;
2105 }
2106 }
2107#endif
2108 if (test_opt(sb, DIOREAD_NOLOCK)) {
2109 int blocksize =
2110 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2111
2112 if (blocksize < PAGE_SIZE) {
2113 ext4_msg(sb, KERN_ERR, "can't mount with "
2114 "dioread_nolock if block size != PAGE_SIZE");
2115 return 0;
2116 }
2117 }
2118 return 1;
2119}
2120
2121static inline void ext4_show_quota_options(struct seq_file *seq,
2122 struct super_block *sb)
2123{
2124#if defined(CONFIG_QUOTA)
2125 struct ext4_sb_info *sbi = EXT4_SB(sb);
2126 char *usr_qf_name, *grp_qf_name;
2127
2128 if (sbi->s_jquota_fmt) {
2129 char *fmtname = "";
2130
2131 switch (sbi->s_jquota_fmt) {
2132 case QFMT_VFS_OLD:
2133 fmtname = "vfsold";
2134 break;
2135 case QFMT_VFS_V0:
2136 fmtname = "vfsv0";
2137 break;
2138 case QFMT_VFS_V1:
2139 fmtname = "vfsv1";
2140 break;
2141 }
2142 seq_printf(seq, ",jqfmt=%s", fmtname);
2143 }
2144
2145 rcu_read_lock();
2146 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2147 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2148 if (usr_qf_name)
2149 seq_show_option(seq, "usrjquota", usr_qf_name);
2150 if (grp_qf_name)
2151 seq_show_option(seq, "grpjquota", grp_qf_name);
2152 rcu_read_unlock();
2153#endif
2154}
2155
2156static const char *token2str(int token)
2157{
2158 const struct match_token *t;
2159
2160 for (t = tokens; t->token != Opt_err; t++)
2161 if (t->token == token && !strchr(t->pattern, '='))
2162 break;
2163 return t->pattern;
2164}
2165
2166/*
2167 * Show an option if
2168 * - it's set to a non-default value OR
2169 * - if the per-sb default is different from the global default
2170 */
2171static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2172 int nodefs)
2173{
2174 struct ext4_sb_info *sbi = EXT4_SB(sb);
2175 struct ext4_super_block *es = sbi->s_es;
2176 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2177 const struct mount_opts *m;
2178 char sep = nodefs ? '\n' : ',';
2179
2180#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2181#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2182
2183 if (sbi->s_sb_block != 1)
2184 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2185
2186 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2187 int want_set = m->flags & MOPT_SET;
2188 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2189 (m->flags & MOPT_CLEAR_ERR))
2190 continue;
2191 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2192 continue; /* skip if same as the default */
2193 if ((want_set &&
2194 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2195 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2196 continue; /* select Opt_noFoo vs Opt_Foo */
2197 SEQ_OPTS_PRINT("%s", token2str(m->token));
2198 }
2199
2200 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2201 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2202 SEQ_OPTS_PRINT("resuid=%u",
2203 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2204 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2205 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2206 SEQ_OPTS_PRINT("resgid=%u",
2207 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2208 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2209 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2210 SEQ_OPTS_PUTS("errors=remount-ro");
2211 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2212 SEQ_OPTS_PUTS("errors=continue");
2213 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2214 SEQ_OPTS_PUTS("errors=panic");
2215 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2216 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2217 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2218 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2219 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2220 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2221 if (sb->s_flags & SB_I_VERSION)
2222 SEQ_OPTS_PUTS("i_version");
2223 if (nodefs || sbi->s_stripe)
2224 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2225 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2226 (sbi->s_mount_opt ^ def_mount_opt)) {
2227 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2228 SEQ_OPTS_PUTS("data=journal");
2229 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2230 SEQ_OPTS_PUTS("data=ordered");
2231 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2232 SEQ_OPTS_PUTS("data=writeback");
2233 }
2234 if (nodefs ||
2235 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2236 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2237 sbi->s_inode_readahead_blks);
2238
2239 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2240 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2241 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2242 if (nodefs || sbi->s_max_dir_size_kb)
2243 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2244 if (test_opt(sb, DATA_ERR_ABORT))
2245 SEQ_OPTS_PUTS("data_err=abort");
2246 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2247 SEQ_OPTS_PUTS("test_dummy_encryption");
2248
2249 ext4_show_quota_options(seq, sb);
2250 return 0;
2251}
2252
2253static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2254{
2255 return _ext4_show_options(seq, root->d_sb, 0);
2256}
2257
2258int ext4_seq_options_show(struct seq_file *seq, void *offset)
2259{
2260 struct super_block *sb = seq->private;
2261 int rc;
2262
2263 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2264 rc = _ext4_show_options(seq, sb, 1);
2265 seq_puts(seq, "\n");
2266 return rc;
2267}
2268
2269static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2270 int read_only)
2271{
2272 struct ext4_sb_info *sbi = EXT4_SB(sb);
2273 int err = 0;
2274
2275 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2276 ext4_msg(sb, KERN_ERR, "revision level too high, "
2277 "forcing read-only mode");
2278 err = -EROFS;
2279 }
2280 if (read_only)
2281 goto done;
2282 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2283 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2284 "running e2fsck is recommended");
2285 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2286 ext4_msg(sb, KERN_WARNING,
2287 "warning: mounting fs with errors, "
2288 "running e2fsck is recommended");
2289 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2290 le16_to_cpu(es->s_mnt_count) >=
2291 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2292 ext4_msg(sb, KERN_WARNING,
2293 "warning: maximal mount count reached, "
2294 "running e2fsck is recommended");
2295 else if (le32_to_cpu(es->s_checkinterval) &&
2296 (ext4_get_tstamp(es, s_lastcheck) +
2297 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2298 ext4_msg(sb, KERN_WARNING,
2299 "warning: checktime reached, "
2300 "running e2fsck is recommended");
2301 if (!sbi->s_journal)
2302 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2303 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2304 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2305 le16_add_cpu(&es->s_mnt_count, 1);
2306 ext4_update_tstamp(es, s_mtime);
2307 if (sbi->s_journal)
2308 ext4_set_feature_journal_needs_recovery(sb);
2309
2310 err = ext4_commit_super(sb, 1);
2311done:
2312 if (test_opt(sb, DEBUG))
2313 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2314 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2315 sb->s_blocksize,
2316 sbi->s_groups_count,
2317 EXT4_BLOCKS_PER_GROUP(sb),
2318 EXT4_INODES_PER_GROUP(sb),
2319 sbi->s_mount_opt, sbi->s_mount_opt2);
2320
2321 cleancache_init_fs(sb);
2322 return err;
2323}
2324
2325int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2326{
2327 struct ext4_sb_info *sbi = EXT4_SB(sb);
2328 struct flex_groups *new_groups;
2329 int size;
2330
2331 if (!sbi->s_log_groups_per_flex)
2332 return 0;
2333
2334 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2335 if (size <= sbi->s_flex_groups_allocated)
2336 return 0;
2337
2338 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2339 new_groups = kvzalloc(size, GFP_KERNEL);
2340 if (!new_groups) {
2341 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2342 size / (int) sizeof(struct flex_groups));
2343 return -ENOMEM;
2344 }
2345
2346 if (sbi->s_flex_groups) {
2347 memcpy(new_groups, sbi->s_flex_groups,
2348 (sbi->s_flex_groups_allocated *
2349 sizeof(struct flex_groups)));
2350 kvfree(sbi->s_flex_groups);
2351 }
2352 sbi->s_flex_groups = new_groups;
2353 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2354 return 0;
2355}
2356
2357static int ext4_fill_flex_info(struct super_block *sb)
2358{
2359 struct ext4_sb_info *sbi = EXT4_SB(sb);
2360 struct ext4_group_desc *gdp = NULL;
2361 ext4_group_t flex_group;
2362 int i, err;
2363
2364 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2365 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2366 sbi->s_log_groups_per_flex = 0;
2367 return 1;
2368 }
2369
2370 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2371 if (err)
2372 goto failed;
2373
2374 for (i = 0; i < sbi->s_groups_count; i++) {
2375 gdp = ext4_get_group_desc(sb, i, NULL);
2376
2377 flex_group = ext4_flex_group(sbi, i);
2378 atomic_add(ext4_free_inodes_count(sb, gdp),
2379 &sbi->s_flex_groups[flex_group].free_inodes);
2380 atomic64_add(ext4_free_group_clusters(sb, gdp),
2381 &sbi->s_flex_groups[flex_group].free_clusters);
2382 atomic_add(ext4_used_dirs_count(sb, gdp),
2383 &sbi->s_flex_groups[flex_group].used_dirs);
2384 }
2385
2386 return 1;
2387failed:
2388 return 0;
2389}
2390
2391static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2392 struct ext4_group_desc *gdp)
2393{
2394 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2395 __u16 crc = 0;
2396 __le32 le_group = cpu_to_le32(block_group);
2397 struct ext4_sb_info *sbi = EXT4_SB(sb);
2398
2399 if (ext4_has_metadata_csum(sbi->s_sb)) {
2400 /* Use new metadata_csum algorithm */
2401 __u32 csum32;
2402 __u16 dummy_csum = 0;
2403
2404 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2405 sizeof(le_group));
2406 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2407 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2408 sizeof(dummy_csum));
2409 offset += sizeof(dummy_csum);
2410 if (offset < sbi->s_desc_size)
2411 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2412 sbi->s_desc_size - offset);
2413
2414 crc = csum32 & 0xFFFF;
2415 goto out;
2416 }
2417
2418 /* old crc16 code */
2419 if (!ext4_has_feature_gdt_csum(sb))
2420 return 0;
2421
2422 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2423 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2424 crc = crc16(crc, (__u8 *)gdp, offset);
2425 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2426 /* for checksum of struct ext4_group_desc do the rest...*/
2427 if (ext4_has_feature_64bit(sb) &&
2428 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2429 crc = crc16(crc, (__u8 *)gdp + offset,
2430 le16_to_cpu(sbi->s_es->s_desc_size) -
2431 offset);
2432
2433out:
2434 return cpu_to_le16(crc);
2435}
2436
2437int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2438 struct ext4_group_desc *gdp)
2439{
2440 if (ext4_has_group_desc_csum(sb) &&
2441 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2442 return 0;
2443
2444 return 1;
2445}
2446
2447void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2448 struct ext4_group_desc *gdp)
2449{
2450 if (!ext4_has_group_desc_csum(sb))
2451 return;
2452 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2453}
2454
2455/* Called at mount-time, super-block is locked */
2456static int ext4_check_descriptors(struct super_block *sb,
2457 ext4_fsblk_t sb_block,
2458 ext4_group_t *first_not_zeroed)
2459{
2460 struct ext4_sb_info *sbi = EXT4_SB(sb);
2461 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2462 ext4_fsblk_t last_block;
2463 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2464 ext4_fsblk_t block_bitmap;
2465 ext4_fsblk_t inode_bitmap;
2466 ext4_fsblk_t inode_table;
2467 int flexbg_flag = 0;
2468 ext4_group_t i, grp = sbi->s_groups_count;
2469
2470 if (ext4_has_feature_flex_bg(sb))
2471 flexbg_flag = 1;
2472
2473 ext4_debug("Checking group descriptors");
2474
2475 for (i = 0; i < sbi->s_groups_count; i++) {
2476 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2477
2478 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2479 last_block = ext4_blocks_count(sbi->s_es) - 1;
2480 else
2481 last_block = first_block +
2482 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2483
2484 if ((grp == sbi->s_groups_count) &&
2485 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2486 grp = i;
2487
2488 block_bitmap = ext4_block_bitmap(sb, gdp);
2489 if (block_bitmap == sb_block) {
2490 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2491 "Block bitmap for group %u overlaps "
2492 "superblock", i);
2493 if (!sb_rdonly(sb))
2494 return 0;
2495 }
2496 if (block_bitmap >= sb_block + 1 &&
2497 block_bitmap <= last_bg_block) {
2498 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2499 "Block bitmap for group %u overlaps "
2500 "block group descriptors", i);
2501 if (!sb_rdonly(sb))
2502 return 0;
2503 }
2504 if (block_bitmap < first_block || block_bitmap > last_block) {
2505 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2506 "Block bitmap for group %u not in group "
2507 "(block %llu)!", i, block_bitmap);
2508 return 0;
2509 }
2510 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2511 if (inode_bitmap == sb_block) {
2512 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2513 "Inode bitmap for group %u overlaps "
2514 "superblock", i);
2515 if (!sb_rdonly(sb))
2516 return 0;
2517 }
2518 if (inode_bitmap >= sb_block + 1 &&
2519 inode_bitmap <= last_bg_block) {
2520 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2521 "Inode bitmap for group %u overlaps "
2522 "block group descriptors", i);
2523 if (!sb_rdonly(sb))
2524 return 0;
2525 }
2526 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2527 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2528 "Inode bitmap for group %u not in group "
2529 "(block %llu)!", i, inode_bitmap);
2530 return 0;
2531 }
2532 inode_table = ext4_inode_table(sb, gdp);
2533 if (inode_table == sb_block) {
2534 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2535 "Inode table for group %u overlaps "
2536 "superblock", i);
2537 if (!sb_rdonly(sb))
2538 return 0;
2539 }
2540 if (inode_table >= sb_block + 1 &&
2541 inode_table <= last_bg_block) {
2542 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2543 "Inode table for group %u overlaps "
2544 "block group descriptors", i);
2545 if (!sb_rdonly(sb))
2546 return 0;
2547 }
2548 if (inode_table < first_block ||
2549 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2550 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2551 "Inode table for group %u not in group "
2552 "(block %llu)!", i, inode_table);
2553 return 0;
2554 }
2555 ext4_lock_group(sb, i);
2556 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2557 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2558 "Checksum for group %u failed (%u!=%u)",
2559 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2560 gdp)), le16_to_cpu(gdp->bg_checksum));
2561 if (!sb_rdonly(sb)) {
2562 ext4_unlock_group(sb, i);
2563 return 0;
2564 }
2565 }
2566 ext4_unlock_group(sb, i);
2567 if (!flexbg_flag)
2568 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2569 }
2570 if (NULL != first_not_zeroed)
2571 *first_not_zeroed = grp;
2572 return 1;
2573}
2574
2575/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2576 * the superblock) which were deleted from all directories, but held open by
2577 * a process at the time of a crash. We walk the list and try to delete these
2578 * inodes at recovery time (only with a read-write filesystem).
2579 *
2580 * In order to keep the orphan inode chain consistent during traversal (in
2581 * case of crash during recovery), we link each inode into the superblock
2582 * orphan list_head and handle it the same way as an inode deletion during
2583 * normal operation (which journals the operations for us).
2584 *
2585 * We only do an iget() and an iput() on each inode, which is very safe if we
2586 * accidentally point at an in-use or already deleted inode. The worst that
2587 * can happen in this case is that we get a "bit already cleared" message from
2588 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2589 * e2fsck was run on this filesystem, and it must have already done the orphan
2590 * inode cleanup for us, so we can safely abort without any further action.
2591 */
2592static void ext4_orphan_cleanup(struct super_block *sb,
2593 struct ext4_super_block *es)
2594{
2595 unsigned int s_flags = sb->s_flags;
2596 int ret, nr_orphans = 0, nr_truncates = 0;
2597#ifdef CONFIG_QUOTA
2598 int quota_update = 0;
2599 int i;
2600#endif
2601 if (!es->s_last_orphan) {
2602 jbd_debug(4, "no orphan inodes to clean up\n");
2603 return;
2604 }
2605
2606 if (bdev_read_only(sb->s_bdev)) {
2607 ext4_msg(sb, KERN_ERR, "write access "
2608 "unavailable, skipping orphan cleanup");
2609 return;
2610 }
2611
2612 /* Check if feature set would not allow a r/w mount */
2613 if (!ext4_feature_set_ok(sb, 0)) {
2614 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2615 "unknown ROCOMPAT features");
2616 return;
2617 }
2618
2619 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2620 /* don't clear list on RO mount w/ errors */
2621 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2622 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2623 "clearing orphan list.\n");
2624 es->s_last_orphan = 0;
2625 }
2626 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2627 return;
2628 }
2629
2630 if (s_flags & SB_RDONLY) {
2631 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2632 sb->s_flags &= ~SB_RDONLY;
2633 }
2634#ifdef CONFIG_QUOTA
2635 /* Needed for iput() to work correctly and not trash data */
2636 sb->s_flags |= SB_ACTIVE;
2637
2638 /*
2639 * Turn on quotas which were not enabled for read-only mounts if
2640 * filesystem has quota feature, so that they are updated correctly.
2641 */
2642 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2643 int ret = ext4_enable_quotas(sb);
2644
2645 if (!ret)
2646 quota_update = 1;
2647 else
2648 ext4_msg(sb, KERN_ERR,
2649 "Cannot turn on quotas: error %d", ret);
2650 }
2651
2652 /* Turn on journaled quotas used for old sytle */
2653 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2654 if (EXT4_SB(sb)->s_qf_names[i]) {
2655 int ret = ext4_quota_on_mount(sb, i);
2656
2657 if (!ret)
2658 quota_update = 1;
2659 else
2660 ext4_msg(sb, KERN_ERR,
2661 "Cannot turn on journaled "
2662 "quota: type %d: error %d", i, ret);
2663 }
2664 }
2665#endif
2666
2667 while (es->s_last_orphan) {
2668 struct inode *inode;
2669
2670 /*
2671 * We may have encountered an error during cleanup; if
2672 * so, skip the rest.
2673 */
2674 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2675 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2676 es->s_last_orphan = 0;
2677 break;
2678 }
2679
2680 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2681 if (IS_ERR(inode)) {
2682 es->s_last_orphan = 0;
2683 break;
2684 }
2685
2686 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2687 dquot_initialize(inode);
2688 if (inode->i_nlink) {
2689 if (test_opt(sb, DEBUG))
2690 ext4_msg(sb, KERN_DEBUG,
2691 "%s: truncating inode %lu to %lld bytes",
2692 __func__, inode->i_ino, inode->i_size);
2693 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2694 inode->i_ino, inode->i_size);
2695 inode_lock(inode);
2696 truncate_inode_pages(inode->i_mapping, inode->i_size);
2697 ret = ext4_truncate(inode);
2698 if (ret)
2699 ext4_std_error(inode->i_sb, ret);
2700 inode_unlock(inode);
2701 nr_truncates++;
2702 } else {
2703 if (test_opt(sb, DEBUG))
2704 ext4_msg(sb, KERN_DEBUG,
2705 "%s: deleting unreferenced inode %lu",
2706 __func__, inode->i_ino);
2707 jbd_debug(2, "deleting unreferenced inode %lu\n",
2708 inode->i_ino);
2709 nr_orphans++;
2710 }
2711 iput(inode); /* The delete magic happens here! */
2712 }
2713
2714#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2715
2716 if (nr_orphans)
2717 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2718 PLURAL(nr_orphans));
2719 if (nr_truncates)
2720 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2721 PLURAL(nr_truncates));
2722#ifdef CONFIG_QUOTA
2723 /* Turn off quotas if they were enabled for orphan cleanup */
2724 if (quota_update) {
2725 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2726 if (sb_dqopt(sb)->files[i])
2727 dquot_quota_off(sb, i);
2728 }
2729 }
2730#endif
2731 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2732}
2733
2734/*
2735 * Maximal extent format file size.
2736 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2737 * extent format containers, within a sector_t, and within i_blocks
2738 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2739 * so that won't be a limiting factor.
2740 *
2741 * However there is other limiting factor. We do store extents in the form
2742 * of starting block and length, hence the resulting length of the extent
2743 * covering maximum file size must fit into on-disk format containers as
2744 * well. Given that length is always by 1 unit bigger than max unit (because
2745 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2746 *
2747 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2748 */
2749static loff_t ext4_max_size(int blkbits, int has_huge_files)
2750{
2751 loff_t res;
2752 loff_t upper_limit = MAX_LFS_FILESIZE;
2753
2754 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2755
2756 if (!has_huge_files) {
2757 upper_limit = (1LL << 32) - 1;
2758
2759 /* total blocks in file system block size */
2760 upper_limit >>= (blkbits - 9);
2761 upper_limit <<= blkbits;
2762 }
2763
2764 /*
2765 * 32-bit extent-start container, ee_block. We lower the maxbytes
2766 * by one fs block, so ee_len can cover the extent of maximum file
2767 * size
2768 */
2769 res = (1LL << 32) - 1;
2770 res <<= blkbits;
2771
2772 /* Sanity check against vm- & vfs- imposed limits */
2773 if (res > upper_limit)
2774 res = upper_limit;
2775
2776 return res;
2777}
2778
2779/*
2780 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2781 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2782 * We need to be 1 filesystem block less than the 2^48 sector limit.
2783 */
2784static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2785{
2786 loff_t res = EXT4_NDIR_BLOCKS;
2787 int meta_blocks;
2788 loff_t upper_limit;
2789 /* This is calculated to be the largest file size for a dense, block
2790 * mapped file such that the file's total number of 512-byte sectors,
2791 * including data and all indirect blocks, does not exceed (2^48 - 1).
2792 *
2793 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2794 * number of 512-byte sectors of the file.
2795 */
2796
2797 if (!has_huge_files) {
2798 /*
2799 * !has_huge_files or implies that the inode i_block field
2800 * represents total file blocks in 2^32 512-byte sectors ==
2801 * size of vfs inode i_blocks * 8
2802 */
2803 upper_limit = (1LL << 32) - 1;
2804
2805 /* total blocks in file system block size */
2806 upper_limit >>= (bits - 9);
2807
2808 } else {
2809 /*
2810 * We use 48 bit ext4_inode i_blocks
2811 * With EXT4_HUGE_FILE_FL set the i_blocks
2812 * represent total number of blocks in
2813 * file system block size
2814 */
2815 upper_limit = (1LL << 48) - 1;
2816
2817 }
2818
2819 /* indirect blocks */
2820 meta_blocks = 1;
2821 /* double indirect blocks */
2822 meta_blocks += 1 + (1LL << (bits-2));
2823 /* tripple indirect blocks */
2824 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2825
2826 upper_limit -= meta_blocks;
2827 upper_limit <<= bits;
2828
2829 res += 1LL << (bits-2);
2830 res += 1LL << (2*(bits-2));
2831 res += 1LL << (3*(bits-2));
2832 res <<= bits;
2833 if (res > upper_limit)
2834 res = upper_limit;
2835
2836 if (res > MAX_LFS_FILESIZE)
2837 res = MAX_LFS_FILESIZE;
2838
2839 return res;
2840}
2841
2842static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2843 ext4_fsblk_t logical_sb_block, int nr)
2844{
2845 struct ext4_sb_info *sbi = EXT4_SB(sb);
2846 ext4_group_t bg, first_meta_bg;
2847 int has_super = 0;
2848
2849 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2850
2851 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2852 return logical_sb_block + nr + 1;
2853 bg = sbi->s_desc_per_block * nr;
2854 if (ext4_bg_has_super(sb, bg))
2855 has_super = 1;
2856
2857 /*
2858 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2859 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2860 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2861 * compensate.
2862 */
2863 if (sb->s_blocksize == 1024 && nr == 0 &&
2864 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2865 has_super++;
2866
2867 return (has_super + ext4_group_first_block_no(sb, bg));
2868}
2869
2870/**
2871 * ext4_get_stripe_size: Get the stripe size.
2872 * @sbi: In memory super block info
2873 *
2874 * If we have specified it via mount option, then
2875 * use the mount option value. If the value specified at mount time is
2876 * greater than the blocks per group use the super block value.
2877 * If the super block value is greater than blocks per group return 0.
2878 * Allocator needs it be less than blocks per group.
2879 *
2880 */
2881static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2882{
2883 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2884 unsigned long stripe_width =
2885 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2886 int ret;
2887
2888 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2889 ret = sbi->s_stripe;
2890 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2891 ret = stripe_width;
2892 else if (stride && stride <= sbi->s_blocks_per_group)
2893 ret = stride;
2894 else
2895 ret = 0;
2896
2897 /*
2898 * If the stripe width is 1, this makes no sense and
2899 * we set it to 0 to turn off stripe handling code.
2900 */
2901 if (ret <= 1)
2902 ret = 0;
2903
2904 return ret;
2905}
2906
2907/*
2908 * Check whether this filesystem can be mounted based on
2909 * the features present and the RDONLY/RDWR mount requested.
2910 * Returns 1 if this filesystem can be mounted as requested,
2911 * 0 if it cannot be.
2912 */
2913static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2914{
2915 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2916 ext4_msg(sb, KERN_ERR,
2917 "Couldn't mount because of "
2918 "unsupported optional features (%x)",
2919 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2920 ~EXT4_FEATURE_INCOMPAT_SUPP));
2921 return 0;
2922 }
2923
2924#ifndef CONFIG_UNICODE
2925 if (ext4_has_feature_casefold(sb)) {
2926 ext4_msg(sb, KERN_ERR,
2927 "Filesystem with casefold feature cannot be "
2928 "mounted without CONFIG_UNICODE");
2929 return 0;
2930 }
2931#endif
2932
2933 if (readonly)
2934 return 1;
2935
2936 if (ext4_has_feature_readonly(sb)) {
2937 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2938 sb->s_flags |= SB_RDONLY;
2939 return 1;
2940 }
2941
2942 /* Check that feature set is OK for a read-write mount */
2943 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2944 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2945 "unsupported optional features (%x)",
2946 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2947 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2948 return 0;
2949 }
2950 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2951 ext4_msg(sb, KERN_ERR,
2952 "Can't support bigalloc feature without "
2953 "extents feature\n");
2954 return 0;
2955 }
2956
2957#ifndef CONFIG_QUOTA
2958 if (ext4_has_feature_quota(sb) && !readonly) {
2959 ext4_msg(sb, KERN_ERR,
2960 "Filesystem with quota feature cannot be mounted RDWR "
2961 "without CONFIG_QUOTA");
2962 return 0;
2963 }
2964 if (ext4_has_feature_project(sb) && !readonly) {
2965 ext4_msg(sb, KERN_ERR,
2966 "Filesystem with project quota feature cannot be mounted RDWR "
2967 "without CONFIG_QUOTA");
2968 return 0;
2969 }
2970#endif /* CONFIG_QUOTA */
2971 return 1;
2972}
2973
2974/*
2975 * This function is called once a day if we have errors logged
2976 * on the file system
2977 */
2978static void print_daily_error_info(struct timer_list *t)
2979{
2980 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2981 struct super_block *sb = sbi->s_sb;
2982 struct ext4_super_block *es = sbi->s_es;
2983
2984 if (es->s_error_count)
2985 /* fsck newer than v1.41.13 is needed to clean this condition. */
2986 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2987 le32_to_cpu(es->s_error_count));
2988 if (es->s_first_error_time) {
2989 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2990 sb->s_id,
2991 ext4_get_tstamp(es, s_first_error_time),
2992 (int) sizeof(es->s_first_error_func),
2993 es->s_first_error_func,
2994 le32_to_cpu(es->s_first_error_line));
2995 if (es->s_first_error_ino)
2996 printk(KERN_CONT ": inode %u",
2997 le32_to_cpu(es->s_first_error_ino));
2998 if (es->s_first_error_block)
2999 printk(KERN_CONT ": block %llu", (unsigned long long)
3000 le64_to_cpu(es->s_first_error_block));
3001 printk(KERN_CONT "\n");
3002 }
3003 if (es->s_last_error_time) {
3004 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3005 sb->s_id,
3006 ext4_get_tstamp(es, s_last_error_time),
3007 (int) sizeof(es->s_last_error_func),
3008 es->s_last_error_func,
3009 le32_to_cpu(es->s_last_error_line));
3010 if (es->s_last_error_ino)
3011 printk(KERN_CONT ": inode %u",
3012 le32_to_cpu(es->s_last_error_ino));
3013 if (es->s_last_error_block)
3014 printk(KERN_CONT ": block %llu", (unsigned long long)
3015 le64_to_cpu(es->s_last_error_block));
3016 printk(KERN_CONT "\n");
3017 }
3018 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3019}
3020
3021/* Find next suitable group and run ext4_init_inode_table */
3022static int ext4_run_li_request(struct ext4_li_request *elr)
3023{
3024 struct ext4_group_desc *gdp = NULL;
3025 ext4_group_t group, ngroups;
3026 struct super_block *sb;
3027 unsigned long timeout = 0;
3028 int ret = 0;
3029
3030 sb = elr->lr_super;
3031 ngroups = EXT4_SB(sb)->s_groups_count;
3032
3033 for (group = elr->lr_next_group; group < ngroups; group++) {
3034 gdp = ext4_get_group_desc(sb, group, NULL);
3035 if (!gdp) {
3036 ret = 1;
3037 break;
3038 }
3039
3040 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3041 break;
3042 }
3043
3044 if (group >= ngroups)
3045 ret = 1;
3046
3047 if (!ret) {
3048 timeout = jiffies;
3049 ret = ext4_init_inode_table(sb, group,
3050 elr->lr_timeout ? 0 : 1);
3051 if (elr->lr_timeout == 0) {
3052 timeout = (jiffies - timeout) *
3053 elr->lr_sbi->s_li_wait_mult;
3054 elr->lr_timeout = timeout;
3055 }
3056 elr->lr_next_sched = jiffies + elr->lr_timeout;
3057 elr->lr_next_group = group + 1;
3058 }
3059 return ret;
3060}
3061
3062/*
3063 * Remove lr_request from the list_request and free the
3064 * request structure. Should be called with li_list_mtx held
3065 */
3066static void ext4_remove_li_request(struct ext4_li_request *elr)
3067{
3068 struct ext4_sb_info *sbi;
3069
3070 if (!elr)
3071 return;
3072
3073 sbi = elr->lr_sbi;
3074
3075 list_del(&elr->lr_request);
3076 sbi->s_li_request = NULL;
3077 kfree(elr);
3078}
3079
3080static void ext4_unregister_li_request(struct super_block *sb)
3081{
3082 mutex_lock(&ext4_li_mtx);
3083 if (!ext4_li_info) {
3084 mutex_unlock(&ext4_li_mtx);
3085 return;
3086 }
3087
3088 mutex_lock(&ext4_li_info->li_list_mtx);
3089 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3090 mutex_unlock(&ext4_li_info->li_list_mtx);
3091 mutex_unlock(&ext4_li_mtx);
3092}
3093
3094static struct task_struct *ext4_lazyinit_task;
3095
3096/*
3097 * This is the function where ext4lazyinit thread lives. It walks
3098 * through the request list searching for next scheduled filesystem.
3099 * When such a fs is found, run the lazy initialization request
3100 * (ext4_rn_li_request) and keep track of the time spend in this
3101 * function. Based on that time we compute next schedule time of
3102 * the request. When walking through the list is complete, compute
3103 * next waking time and put itself into sleep.
3104 */
3105static int ext4_lazyinit_thread(void *arg)
3106{
3107 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3108 struct list_head *pos, *n;
3109 struct ext4_li_request *elr;
3110 unsigned long next_wakeup, cur;
3111
3112 BUG_ON(NULL == eli);
3113
3114cont_thread:
3115 while (true) {
3116 next_wakeup = MAX_JIFFY_OFFSET;
3117
3118 mutex_lock(&eli->li_list_mtx);
3119 if (list_empty(&eli->li_request_list)) {
3120 mutex_unlock(&eli->li_list_mtx);
3121 goto exit_thread;
3122 }
3123 list_for_each_safe(pos, n, &eli->li_request_list) {
3124 int err = 0;
3125 int progress = 0;
3126 elr = list_entry(pos, struct ext4_li_request,
3127 lr_request);
3128
3129 if (time_before(jiffies, elr->lr_next_sched)) {
3130 if (time_before(elr->lr_next_sched, next_wakeup))
3131 next_wakeup = elr->lr_next_sched;
3132 continue;
3133 }
3134 if (down_read_trylock(&elr->lr_super->s_umount)) {
3135 if (sb_start_write_trylock(elr->lr_super)) {
3136 progress = 1;
3137 /*
3138 * We hold sb->s_umount, sb can not
3139 * be removed from the list, it is
3140 * now safe to drop li_list_mtx
3141 */
3142 mutex_unlock(&eli->li_list_mtx);
3143 err = ext4_run_li_request(elr);
3144 sb_end_write(elr->lr_super);
3145 mutex_lock(&eli->li_list_mtx);
3146 n = pos->next;
3147 }
3148 up_read((&elr->lr_super->s_umount));
3149 }
3150 /* error, remove the lazy_init job */
3151 if (err) {
3152 ext4_remove_li_request(elr);
3153 continue;
3154 }
3155 if (!progress) {
3156 elr->lr_next_sched = jiffies +
3157 (prandom_u32()
3158 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3159 }
3160 if (time_before(elr->lr_next_sched, next_wakeup))
3161 next_wakeup = elr->lr_next_sched;
3162 }
3163 mutex_unlock(&eli->li_list_mtx);
3164
3165 try_to_freeze();
3166
3167 cur = jiffies;
3168 if ((time_after_eq(cur, next_wakeup)) ||
3169 (MAX_JIFFY_OFFSET == next_wakeup)) {
3170 cond_resched();
3171 continue;
3172 }
3173
3174 schedule_timeout_interruptible(next_wakeup - cur);
3175
3176 if (kthread_should_stop()) {
3177 ext4_clear_request_list();
3178 goto exit_thread;
3179 }
3180 }
3181
3182exit_thread:
3183 /*
3184 * It looks like the request list is empty, but we need
3185 * to check it under the li_list_mtx lock, to prevent any
3186 * additions into it, and of course we should lock ext4_li_mtx
3187 * to atomically free the list and ext4_li_info, because at
3188 * this point another ext4 filesystem could be registering
3189 * new one.
3190 */
3191 mutex_lock(&ext4_li_mtx);
3192 mutex_lock(&eli->li_list_mtx);
3193 if (!list_empty(&eli->li_request_list)) {
3194 mutex_unlock(&eli->li_list_mtx);
3195 mutex_unlock(&ext4_li_mtx);
3196 goto cont_thread;
3197 }
3198 mutex_unlock(&eli->li_list_mtx);
3199 kfree(ext4_li_info);
3200 ext4_li_info = NULL;
3201 mutex_unlock(&ext4_li_mtx);
3202
3203 return 0;
3204}
3205
3206static void ext4_clear_request_list(void)
3207{
3208 struct list_head *pos, *n;
3209 struct ext4_li_request *elr;
3210
3211 mutex_lock(&ext4_li_info->li_list_mtx);
3212 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3213 elr = list_entry(pos, struct ext4_li_request,
3214 lr_request);
3215 ext4_remove_li_request(elr);
3216 }
3217 mutex_unlock(&ext4_li_info->li_list_mtx);
3218}
3219
3220static int ext4_run_lazyinit_thread(void)
3221{
3222 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3223 ext4_li_info, "ext4lazyinit");
3224 if (IS_ERR(ext4_lazyinit_task)) {
3225 int err = PTR_ERR(ext4_lazyinit_task);
3226 ext4_clear_request_list();
3227 kfree(ext4_li_info);
3228 ext4_li_info = NULL;
3229 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3230 "initialization thread\n",
3231 err);
3232 return err;
3233 }
3234 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3235 return 0;
3236}
3237
3238/*
3239 * Check whether it make sense to run itable init. thread or not.
3240 * If there is at least one uninitialized inode table, return
3241 * corresponding group number, else the loop goes through all
3242 * groups and return total number of groups.
3243 */
3244static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3245{
3246 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3247 struct ext4_group_desc *gdp = NULL;
3248
3249 if (!ext4_has_group_desc_csum(sb))
3250 return ngroups;
3251
3252 for (group = 0; group < ngroups; group++) {
3253 gdp = ext4_get_group_desc(sb, group, NULL);
3254 if (!gdp)
3255 continue;
3256
3257 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3258 break;
3259 }
3260
3261 return group;
3262}
3263
3264static int ext4_li_info_new(void)
3265{
3266 struct ext4_lazy_init *eli = NULL;
3267
3268 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3269 if (!eli)
3270 return -ENOMEM;
3271
3272 INIT_LIST_HEAD(&eli->li_request_list);
3273 mutex_init(&eli->li_list_mtx);
3274
3275 eli->li_state |= EXT4_LAZYINIT_QUIT;
3276
3277 ext4_li_info = eli;
3278
3279 return 0;
3280}
3281
3282static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3283 ext4_group_t start)
3284{
3285 struct ext4_sb_info *sbi = EXT4_SB(sb);
3286 struct ext4_li_request *elr;
3287
3288 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3289 if (!elr)
3290 return NULL;
3291
3292 elr->lr_super = sb;
3293 elr->lr_sbi = sbi;
3294 elr->lr_next_group = start;
3295
3296 /*
3297 * Randomize first schedule time of the request to
3298 * spread the inode table initialization requests
3299 * better.
3300 */
3301 elr->lr_next_sched = jiffies + (prandom_u32() %
3302 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3303 return elr;
3304}
3305
3306int ext4_register_li_request(struct super_block *sb,
3307 ext4_group_t first_not_zeroed)
3308{
3309 struct ext4_sb_info *sbi = EXT4_SB(sb);
3310 struct ext4_li_request *elr = NULL;
3311 ext4_group_t ngroups = sbi->s_groups_count;
3312 int ret = 0;
3313
3314 mutex_lock(&ext4_li_mtx);
3315 if (sbi->s_li_request != NULL) {
3316 /*
3317 * Reset timeout so it can be computed again, because
3318 * s_li_wait_mult might have changed.
3319 */
3320 sbi->s_li_request->lr_timeout = 0;
3321 goto out;
3322 }
3323
3324 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3325 !test_opt(sb, INIT_INODE_TABLE))
3326 goto out;
3327
3328 elr = ext4_li_request_new(sb, first_not_zeroed);
3329 if (!elr) {
3330 ret = -ENOMEM;
3331 goto out;
3332 }
3333
3334 if (NULL == ext4_li_info) {
3335 ret = ext4_li_info_new();
3336 if (ret)
3337 goto out;
3338 }
3339
3340 mutex_lock(&ext4_li_info->li_list_mtx);
3341 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3342 mutex_unlock(&ext4_li_info->li_list_mtx);
3343
3344 sbi->s_li_request = elr;
3345 /*
3346 * set elr to NULL here since it has been inserted to
3347 * the request_list and the removal and free of it is
3348 * handled by ext4_clear_request_list from now on.
3349 */
3350 elr = NULL;
3351
3352 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3353 ret = ext4_run_lazyinit_thread();
3354 if (ret)
3355 goto out;
3356 }
3357out:
3358 mutex_unlock(&ext4_li_mtx);
3359 if (ret)
3360 kfree(elr);
3361 return ret;
3362}
3363
3364/*
3365 * We do not need to lock anything since this is called on
3366 * module unload.
3367 */
3368static void ext4_destroy_lazyinit_thread(void)
3369{
3370 /*
3371 * If thread exited earlier
3372 * there's nothing to be done.
3373 */
3374 if (!ext4_li_info || !ext4_lazyinit_task)
3375 return;
3376
3377 kthread_stop(ext4_lazyinit_task);
3378}
3379
3380static int set_journal_csum_feature_set(struct super_block *sb)
3381{
3382 int ret = 1;
3383 int compat, incompat;
3384 struct ext4_sb_info *sbi = EXT4_SB(sb);
3385
3386 if (ext4_has_metadata_csum(sb)) {
3387 /* journal checksum v3 */
3388 compat = 0;
3389 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3390 } else {
3391 /* journal checksum v1 */
3392 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3393 incompat = 0;
3394 }
3395
3396 jbd2_journal_clear_features(sbi->s_journal,
3397 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3398 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3399 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3400 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3401 ret = jbd2_journal_set_features(sbi->s_journal,
3402 compat, 0,
3403 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3404 incompat);
3405 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3406 ret = jbd2_journal_set_features(sbi->s_journal,
3407 compat, 0,
3408 incompat);
3409 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3410 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3411 } else {
3412 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3413 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3414 }
3415
3416 return ret;
3417}
3418
3419/*
3420 * Note: calculating the overhead so we can be compatible with
3421 * historical BSD practice is quite difficult in the face of
3422 * clusters/bigalloc. This is because multiple metadata blocks from
3423 * different block group can end up in the same allocation cluster.
3424 * Calculating the exact overhead in the face of clustered allocation
3425 * requires either O(all block bitmaps) in memory or O(number of block
3426 * groups**2) in time. We will still calculate the superblock for
3427 * older file systems --- and if we come across with a bigalloc file
3428 * system with zero in s_overhead_clusters the estimate will be close to
3429 * correct especially for very large cluster sizes --- but for newer
3430 * file systems, it's better to calculate this figure once at mkfs
3431 * time, and store it in the superblock. If the superblock value is
3432 * present (even for non-bigalloc file systems), we will use it.
3433 */
3434static int count_overhead(struct super_block *sb, ext4_group_t grp,
3435 char *buf)
3436{
3437 struct ext4_sb_info *sbi = EXT4_SB(sb);
3438 struct ext4_group_desc *gdp;
3439 ext4_fsblk_t first_block, last_block, b;
3440 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3441 int s, j, count = 0;
3442
3443 if (!ext4_has_feature_bigalloc(sb))
3444 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3445 sbi->s_itb_per_group + 2);
3446
3447 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3448 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3449 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3450 for (i = 0; i < ngroups; i++) {
3451 gdp = ext4_get_group_desc(sb, i, NULL);
3452 b = ext4_block_bitmap(sb, gdp);
3453 if (b >= first_block && b <= last_block) {
3454 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3455 count++;
3456 }
3457 b = ext4_inode_bitmap(sb, gdp);
3458 if (b >= first_block && b <= last_block) {
3459 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3460 count++;
3461 }
3462 b = ext4_inode_table(sb, gdp);
3463 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3464 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3465 int c = EXT4_B2C(sbi, b - first_block);
3466 ext4_set_bit(c, buf);
3467 count++;
3468 }
3469 if (i != grp)
3470 continue;
3471 s = 0;
3472 if (ext4_bg_has_super(sb, grp)) {
3473 ext4_set_bit(s++, buf);
3474 count++;
3475 }
3476 j = ext4_bg_num_gdb(sb, grp);
3477 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3478 ext4_error(sb, "Invalid number of block group "
3479 "descriptor blocks: %d", j);
3480 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3481 }
3482 count += j;
3483 for (; j > 0; j--)
3484 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3485 }
3486 if (!count)
3487 return 0;
3488 return EXT4_CLUSTERS_PER_GROUP(sb) -
3489 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3490}
3491
3492/*
3493 * Compute the overhead and stash it in sbi->s_overhead
3494 */
3495int ext4_calculate_overhead(struct super_block *sb)
3496{
3497 struct ext4_sb_info *sbi = EXT4_SB(sb);
3498 struct ext4_super_block *es = sbi->s_es;
3499 struct inode *j_inode;
3500 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3501 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3502 ext4_fsblk_t overhead = 0;
3503 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3504
3505 if (!buf)
3506 return -ENOMEM;
3507
3508 /*
3509 * Compute the overhead (FS structures). This is constant
3510 * for a given filesystem unless the number of block groups
3511 * changes so we cache the previous value until it does.
3512 */
3513
3514 /*
3515 * All of the blocks before first_data_block are overhead
3516 */
3517 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3518
3519 /*
3520 * Add the overhead found in each block group
3521 */
3522 for (i = 0; i < ngroups; i++) {
3523 int blks;
3524
3525 blks = count_overhead(sb, i, buf);
3526 overhead += blks;
3527 if (blks)
3528 memset(buf, 0, PAGE_SIZE);
3529 cond_resched();
3530 }
3531
3532 /*
3533 * Add the internal journal blocks whether the journal has been
3534 * loaded or not
3535 */
3536 if (sbi->s_journal && !sbi->journal_bdev)
3537 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3538 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3539 j_inode = ext4_get_journal_inode(sb, j_inum);
3540 if (j_inode) {
3541 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3542 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3543 iput(j_inode);
3544 } else {
3545 ext4_msg(sb, KERN_ERR, "can't get journal size");
3546 }
3547 }
3548 sbi->s_overhead = overhead;
3549 smp_wmb();
3550 free_page((unsigned long) buf);
3551 return 0;
3552}
3553
3554static void ext4_clamp_want_extra_isize(struct super_block *sb)
3555{
3556 struct ext4_sb_info *sbi = EXT4_SB(sb);
3557 struct ext4_super_block *es = sbi->s_es;
3558
3559 /* determine the minimum size of new large inodes, if present */
3560 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
3561 sbi->s_want_extra_isize == 0) {
3562 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3563 EXT4_GOOD_OLD_INODE_SIZE;
3564 if (ext4_has_feature_extra_isize(sb)) {
3565 if (sbi->s_want_extra_isize <
3566 le16_to_cpu(es->s_want_extra_isize))
3567 sbi->s_want_extra_isize =
3568 le16_to_cpu(es->s_want_extra_isize);
3569 if (sbi->s_want_extra_isize <
3570 le16_to_cpu(es->s_min_extra_isize))
3571 sbi->s_want_extra_isize =
3572 le16_to_cpu(es->s_min_extra_isize);
3573 }
3574 }
3575 /* Check if enough inode space is available */
3576 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3577 sbi->s_inode_size) {
3578 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3579 EXT4_GOOD_OLD_INODE_SIZE;
3580 ext4_msg(sb, KERN_INFO,
3581 "required extra inode space not available");
3582 }
3583}
3584
3585static void ext4_set_resv_clusters(struct super_block *sb)
3586{
3587 ext4_fsblk_t resv_clusters;
3588 struct ext4_sb_info *sbi = EXT4_SB(sb);
3589
3590 /*
3591 * There's no need to reserve anything when we aren't using extents.
3592 * The space estimates are exact, there are no unwritten extents,
3593 * hole punching doesn't need new metadata... This is needed especially
3594 * to keep ext2/3 backward compatibility.
3595 */
3596 if (!ext4_has_feature_extents(sb))
3597 return;
3598 /*
3599 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3600 * This should cover the situations where we can not afford to run
3601 * out of space like for example punch hole, or converting
3602 * unwritten extents in delalloc path. In most cases such
3603 * allocation would require 1, or 2 blocks, higher numbers are
3604 * very rare.
3605 */
3606 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3607 sbi->s_cluster_bits);
3608
3609 do_div(resv_clusters, 50);
3610 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3611
3612 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3613}
3614
3615static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3616{
3617 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3618 char *orig_data = kstrdup(data, GFP_KERNEL);
3619 struct buffer_head *bh;
3620 struct ext4_super_block *es = NULL;
3621 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3622 ext4_fsblk_t block;
3623 ext4_fsblk_t sb_block = get_sb_block(&data);
3624 ext4_fsblk_t logical_sb_block;
3625 unsigned long offset = 0;
3626 unsigned long journal_devnum = 0;
3627 unsigned long def_mount_opts;
3628 struct inode *root;
3629 const char *descr;
3630 int ret = -ENOMEM;
3631 int blocksize, clustersize;
3632 unsigned int db_count;
3633 unsigned int i;
3634 int needs_recovery, has_huge_files, has_bigalloc;
3635 __u64 blocks_count;
3636 int err = 0;
3637 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3638 ext4_group_t first_not_zeroed;
3639
3640 if ((data && !orig_data) || !sbi)
3641 goto out_free_base;
3642
3643 sbi->s_daxdev = dax_dev;
3644 sbi->s_blockgroup_lock =
3645 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3646 if (!sbi->s_blockgroup_lock)
3647 goto out_free_base;
3648
3649 sb->s_fs_info = sbi;
3650 sbi->s_sb = sb;
3651 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3652 sbi->s_sb_block = sb_block;
3653 if (sb->s_bdev->bd_part)
3654 sbi->s_sectors_written_start =
3655 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3656
3657 /* Cleanup superblock name */
3658 strreplace(sb->s_id, '/', '!');
3659
3660 /* -EINVAL is default */
3661 ret = -EINVAL;
3662 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3663 if (!blocksize) {
3664 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3665 goto out_fail;
3666 }
3667
3668 /*
3669 * The ext4 superblock will not be buffer aligned for other than 1kB
3670 * block sizes. We need to calculate the offset from buffer start.
3671 */
3672 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3673 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3674 offset = do_div(logical_sb_block, blocksize);
3675 } else {
3676 logical_sb_block = sb_block;
3677 }
3678
3679 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3680 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3681 goto out_fail;
3682 }
3683 /*
3684 * Note: s_es must be initialized as soon as possible because
3685 * some ext4 macro-instructions depend on its value
3686 */
3687 es = (struct ext4_super_block *) (bh->b_data + offset);
3688 sbi->s_es = es;
3689 sb->s_magic = le16_to_cpu(es->s_magic);
3690 if (sb->s_magic != EXT4_SUPER_MAGIC)
3691 goto cantfind_ext4;
3692 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3693
3694 /* Warn if metadata_csum and gdt_csum are both set. */
3695 if (ext4_has_feature_metadata_csum(sb) &&
3696 ext4_has_feature_gdt_csum(sb))
3697 ext4_warning(sb, "metadata_csum and uninit_bg are "
3698 "redundant flags; please run fsck.");
3699
3700 /* Check for a known checksum algorithm */
3701 if (!ext4_verify_csum_type(sb, es)) {
3702 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3703 "unknown checksum algorithm.");
3704 silent = 1;
3705 goto cantfind_ext4;
3706 }
3707
3708 /* Load the checksum driver */
3709 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3710 if (IS_ERR(sbi->s_chksum_driver)) {
3711 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3712 ret = PTR_ERR(sbi->s_chksum_driver);
3713 sbi->s_chksum_driver = NULL;
3714 goto failed_mount;
3715 }
3716
3717 /* Check superblock checksum */
3718 if (!ext4_superblock_csum_verify(sb, es)) {
3719 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3720 "invalid superblock checksum. Run e2fsck?");
3721 silent = 1;
3722 ret = -EFSBADCRC;
3723 goto cantfind_ext4;
3724 }
3725
3726 /* Precompute checksum seed for all metadata */
3727 if (ext4_has_feature_csum_seed(sb))
3728 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3729 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3730 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3731 sizeof(es->s_uuid));
3732
3733 /* Set defaults before we parse the mount options */
3734 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3735 set_opt(sb, INIT_INODE_TABLE);
3736 if (def_mount_opts & EXT4_DEFM_DEBUG)
3737 set_opt(sb, DEBUG);
3738 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3739 set_opt(sb, GRPID);
3740 if (def_mount_opts & EXT4_DEFM_UID16)
3741 set_opt(sb, NO_UID32);
3742 /* xattr user namespace & acls are now defaulted on */
3743 set_opt(sb, XATTR_USER);
3744#ifdef CONFIG_EXT4_FS_POSIX_ACL
3745 set_opt(sb, POSIX_ACL);
3746#endif
3747 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3748 if (ext4_has_metadata_csum(sb))
3749 set_opt(sb, JOURNAL_CHECKSUM);
3750
3751 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3752 set_opt(sb, JOURNAL_DATA);
3753 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3754 set_opt(sb, ORDERED_DATA);
3755 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3756 set_opt(sb, WRITEBACK_DATA);
3757
3758 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3759 set_opt(sb, ERRORS_PANIC);
3760 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3761 set_opt(sb, ERRORS_CONT);
3762 else
3763 set_opt(sb, ERRORS_RO);
3764 /* block_validity enabled by default; disable with noblock_validity */
3765 set_opt(sb, BLOCK_VALIDITY);
3766 if (def_mount_opts & EXT4_DEFM_DISCARD)
3767 set_opt(sb, DISCARD);
3768
3769 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3770 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3771 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3772 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3773 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3774
3775 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3776 set_opt(sb, BARRIER);
3777
3778 /*
3779 * enable delayed allocation by default
3780 * Use -o nodelalloc to turn it off
3781 */
3782 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3783 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3784 set_opt(sb, DELALLOC);
3785
3786 /*
3787 * set default s_li_wait_mult for lazyinit, for the case there is
3788 * no mount option specified.
3789 */
3790 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3791
3792 if (sbi->s_es->s_mount_opts[0]) {
3793 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3794 sizeof(sbi->s_es->s_mount_opts),
3795 GFP_KERNEL);
3796 if (!s_mount_opts)
3797 goto failed_mount;
3798 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3799 &journal_ioprio, 0)) {
3800 ext4_msg(sb, KERN_WARNING,
3801 "failed to parse options in superblock: %s",
3802 s_mount_opts);
3803 }
3804 kfree(s_mount_opts);
3805 }
3806 sbi->s_def_mount_opt = sbi->s_mount_opt;
3807 if (!parse_options((char *) data, sb, &journal_devnum,
3808 &journal_ioprio, 0))
3809 goto failed_mount;
3810
3811#ifdef CONFIG_UNICODE
3812 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3813 const struct ext4_sb_encodings *encoding_info;
3814 struct unicode_map *encoding;
3815 __u16 encoding_flags;
3816
3817 if (ext4_has_feature_encrypt(sb)) {
3818 ext4_msg(sb, KERN_ERR,
3819 "Can't mount with encoding and encryption");
3820 goto failed_mount;
3821 }
3822
3823 if (ext4_sb_read_encoding(es, &encoding_info,
3824 &encoding_flags)) {
3825 ext4_msg(sb, KERN_ERR,
3826 "Encoding requested by superblock is unknown");
3827 goto failed_mount;
3828 }
3829
3830 encoding = utf8_load(encoding_info->version);
3831 if (IS_ERR(encoding)) {
3832 ext4_msg(sb, KERN_ERR,
3833 "can't mount with superblock charset: %s-%s "
3834 "not supported by the kernel. flags: 0x%x.",
3835 encoding_info->name, encoding_info->version,
3836 encoding_flags);
3837 goto failed_mount;
3838 }
3839 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3840 "%s-%s with flags 0x%hx", encoding_info->name,
3841 encoding_info->version?:"\b", encoding_flags);
3842
3843 sbi->s_encoding = encoding;
3844 sbi->s_encoding_flags = encoding_flags;
3845 }
3846#endif
3847
3848 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3849 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3850 "with data=journal disables delayed "
3851 "allocation and O_DIRECT support!\n");
3852 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3853 ext4_msg(sb, KERN_ERR, "can't mount with "
3854 "both data=journal and delalloc");
3855 goto failed_mount;
3856 }
3857 if (test_opt(sb, DIOREAD_NOLOCK)) {
3858 ext4_msg(sb, KERN_ERR, "can't mount with "
3859 "both data=journal and dioread_nolock");
3860 goto failed_mount;
3861 }
3862 if (test_opt(sb, DAX)) {
3863 ext4_msg(sb, KERN_ERR, "can't mount with "
3864 "both data=journal and dax");
3865 goto failed_mount;
3866 }
3867 if (ext4_has_feature_encrypt(sb)) {
3868 ext4_msg(sb, KERN_WARNING,
3869 "encrypted files will use data=ordered "
3870 "instead of data journaling mode");
3871 }
3872 if (test_opt(sb, DELALLOC))
3873 clear_opt(sb, DELALLOC);
3874 } else {
3875 sb->s_iflags |= SB_I_CGROUPWB;
3876 }
3877
3878 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3879 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3880
3881 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3882 (ext4_has_compat_features(sb) ||
3883 ext4_has_ro_compat_features(sb) ||
3884 ext4_has_incompat_features(sb)))
3885 ext4_msg(sb, KERN_WARNING,
3886 "feature flags set on rev 0 fs, "
3887 "running e2fsck is recommended");
3888
3889 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3890 set_opt2(sb, HURD_COMPAT);
3891 if (ext4_has_feature_64bit(sb)) {
3892 ext4_msg(sb, KERN_ERR,
3893 "The Hurd can't support 64-bit file systems");
3894 goto failed_mount;
3895 }
3896
3897 /*
3898 * ea_inode feature uses l_i_version field which is not
3899 * available in HURD_COMPAT mode.
3900 */
3901 if (ext4_has_feature_ea_inode(sb)) {
3902 ext4_msg(sb, KERN_ERR,
3903 "ea_inode feature is not supported for Hurd");
3904 goto failed_mount;
3905 }
3906 }
3907
3908 if (IS_EXT2_SB(sb)) {
3909 if (ext2_feature_set_ok(sb))
3910 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3911 "using the ext4 subsystem");
3912 else {
3913 /*
3914 * If we're probing be silent, if this looks like
3915 * it's actually an ext[34] filesystem.
3916 */
3917 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3918 goto failed_mount;
3919 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3920 "to feature incompatibilities");
3921 goto failed_mount;
3922 }
3923 }
3924
3925 if (IS_EXT3_SB(sb)) {
3926 if (ext3_feature_set_ok(sb))
3927 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3928 "using the ext4 subsystem");
3929 else {
3930 /*
3931 * If we're probing be silent, if this looks like
3932 * it's actually an ext4 filesystem.
3933 */
3934 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3935 goto failed_mount;
3936 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3937 "to feature incompatibilities");
3938 goto failed_mount;
3939 }
3940 }
3941
3942 /*
3943 * Check feature flags regardless of the revision level, since we
3944 * previously didn't change the revision level when setting the flags,
3945 * so there is a chance incompat flags are set on a rev 0 filesystem.
3946 */
3947 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3948 goto failed_mount;
3949
3950 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3951 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3952 blocksize > EXT4_MAX_BLOCK_SIZE) {
3953 ext4_msg(sb, KERN_ERR,
3954 "Unsupported filesystem blocksize %d (%d log_block_size)",
3955 blocksize, le32_to_cpu(es->s_log_block_size));
3956 goto failed_mount;
3957 }
3958 if (le32_to_cpu(es->s_log_block_size) >
3959 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3960 ext4_msg(sb, KERN_ERR,
3961 "Invalid log block size: %u",
3962 le32_to_cpu(es->s_log_block_size));
3963 goto failed_mount;
3964 }
3965 if (le32_to_cpu(es->s_log_cluster_size) >
3966 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3967 ext4_msg(sb, KERN_ERR,
3968 "Invalid log cluster size: %u",
3969 le32_to_cpu(es->s_log_cluster_size));
3970 goto failed_mount;
3971 }
3972
3973 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3974 ext4_msg(sb, KERN_ERR,
3975 "Number of reserved GDT blocks insanely large: %d",
3976 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3977 goto failed_mount;
3978 }
3979
3980 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3981 if (ext4_has_feature_inline_data(sb)) {
3982 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3983 " that may contain inline data");
3984 goto failed_mount;
3985 }
3986 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3987 ext4_msg(sb, KERN_ERR,
3988 "DAX unsupported by block device.");
3989 goto failed_mount;
3990 }
3991 }
3992
3993 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3994 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3995 es->s_encryption_level);
3996 goto failed_mount;
3997 }
3998
3999 if (sb->s_blocksize != blocksize) {
4000 /* Validate the filesystem blocksize */
4001 if (!sb_set_blocksize(sb, blocksize)) {
4002 ext4_msg(sb, KERN_ERR, "bad block size %d",
4003 blocksize);
4004 goto failed_mount;
4005 }
4006
4007 brelse(bh);
4008 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4009 offset = do_div(logical_sb_block, blocksize);
4010 bh = sb_bread_unmovable(sb, logical_sb_block);
4011 if (!bh) {
4012 ext4_msg(sb, KERN_ERR,
4013 "Can't read superblock on 2nd try");
4014 goto failed_mount;
4015 }
4016 es = (struct ext4_super_block *)(bh->b_data + offset);
4017 sbi->s_es = es;
4018 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4019 ext4_msg(sb, KERN_ERR,
4020 "Magic mismatch, very weird!");
4021 goto failed_mount;
4022 }
4023 }
4024
4025 has_huge_files = ext4_has_feature_huge_file(sb);
4026 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4027 has_huge_files);
4028 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4029
4030 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4031 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4032 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4033 } else {
4034 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4035 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4036 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4037 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4038 sbi->s_first_ino);
4039 goto failed_mount;
4040 }
4041 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4042 (!is_power_of_2(sbi->s_inode_size)) ||
4043 (sbi->s_inode_size > blocksize)) {
4044 ext4_msg(sb, KERN_ERR,
4045 "unsupported inode size: %d",
4046 sbi->s_inode_size);
4047 goto failed_mount;
4048 }
4049 /*
4050 * i_atime_extra is the last extra field available for [acm]times in
4051 * struct ext4_inode. Checking for that field should suffice to ensure
4052 * we have extra space for all three.
4053 */
4054 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4055 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4056 sb->s_time_gran = 1;
4057 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4058 } else {
4059 sb->s_time_gran = NSEC_PER_SEC;
4060 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4061 }
4062
4063 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4064 }
4065
4066 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4067 if (ext4_has_feature_64bit(sb)) {
4068 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4069 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4070 !is_power_of_2(sbi->s_desc_size)) {
4071 ext4_msg(sb, KERN_ERR,
4072 "unsupported descriptor size %lu",
4073 sbi->s_desc_size);
4074 goto failed_mount;
4075 }
4076 } else
4077 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4078
4079 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4080 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4081
4082 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4083 if (sbi->s_inodes_per_block == 0)
4084 goto cantfind_ext4;
4085 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4086 sbi->s_inodes_per_group > blocksize * 8) {
4087 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4088 sbi->s_blocks_per_group);
4089 goto failed_mount;
4090 }
4091 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4092 sbi->s_inodes_per_block;
4093 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4094 sbi->s_sbh = bh;
4095 sbi->s_mount_state = le16_to_cpu(es->s_state);
4096 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4097 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4098
4099 for (i = 0; i < 4; i++)
4100 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4101 sbi->s_def_hash_version = es->s_def_hash_version;
4102 if (ext4_has_feature_dir_index(sb)) {
4103 i = le32_to_cpu(es->s_flags);
4104 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4105 sbi->s_hash_unsigned = 3;
4106 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4107#ifdef __CHAR_UNSIGNED__
4108 if (!sb_rdonly(sb))
4109 es->s_flags |=
4110 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4111 sbi->s_hash_unsigned = 3;
4112#else
4113 if (!sb_rdonly(sb))
4114 es->s_flags |=
4115 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4116#endif
4117 }
4118 }
4119
4120 /* Handle clustersize */
4121 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4122 has_bigalloc = ext4_has_feature_bigalloc(sb);
4123 if (has_bigalloc) {
4124 if (clustersize < blocksize) {
4125 ext4_msg(sb, KERN_ERR,
4126 "cluster size (%d) smaller than "
4127 "block size (%d)", clustersize, blocksize);
4128 goto failed_mount;
4129 }
4130 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4131 le32_to_cpu(es->s_log_block_size);
4132 sbi->s_clusters_per_group =
4133 le32_to_cpu(es->s_clusters_per_group);
4134 if (sbi->s_clusters_per_group > blocksize * 8) {
4135 ext4_msg(sb, KERN_ERR,
4136 "#clusters per group too big: %lu",
4137 sbi->s_clusters_per_group);
4138 goto failed_mount;
4139 }
4140 if (sbi->s_blocks_per_group !=
4141 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4142 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4143 "clusters per group (%lu) inconsistent",
4144 sbi->s_blocks_per_group,
4145 sbi->s_clusters_per_group);
4146 goto failed_mount;
4147 }
4148 } else {
4149 if (clustersize != blocksize) {
4150 ext4_msg(sb, KERN_ERR,
4151 "fragment/cluster size (%d) != "
4152 "block size (%d)", clustersize, blocksize);
4153 goto failed_mount;
4154 }
4155 if (sbi->s_blocks_per_group > blocksize * 8) {
4156 ext4_msg(sb, KERN_ERR,
4157 "#blocks per group too big: %lu",
4158 sbi->s_blocks_per_group);
4159 goto failed_mount;
4160 }
4161 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4162 sbi->s_cluster_bits = 0;
4163 }
4164 sbi->s_cluster_ratio = clustersize / blocksize;
4165
4166 /* Do we have standard group size of clustersize * 8 blocks ? */
4167 if (sbi->s_blocks_per_group == clustersize << 3)
4168 set_opt2(sb, STD_GROUP_SIZE);
4169
4170 /*
4171 * Test whether we have more sectors than will fit in sector_t,
4172 * and whether the max offset is addressable by the page cache.
4173 */
4174 err = generic_check_addressable(sb->s_blocksize_bits,
4175 ext4_blocks_count(es));
4176 if (err) {
4177 ext4_msg(sb, KERN_ERR, "filesystem"
4178 " too large to mount safely on this system");
4179 goto failed_mount;
4180 }
4181
4182 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4183 goto cantfind_ext4;
4184
4185 /* check blocks count against device size */
4186 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4187 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4188 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4189 "exceeds size of device (%llu blocks)",
4190 ext4_blocks_count(es), blocks_count);
4191 goto failed_mount;
4192 }
4193
4194 /*
4195 * It makes no sense for the first data block to be beyond the end
4196 * of the filesystem.
4197 */
4198 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4199 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4200 "block %u is beyond end of filesystem (%llu)",
4201 le32_to_cpu(es->s_first_data_block),
4202 ext4_blocks_count(es));
4203 goto failed_mount;
4204 }
4205 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4206 (sbi->s_cluster_ratio == 1)) {
4207 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4208 "block is 0 with a 1k block and cluster size");
4209 goto failed_mount;
4210 }
4211
4212 blocks_count = (ext4_blocks_count(es) -
4213 le32_to_cpu(es->s_first_data_block) +
4214 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4215 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4216 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4217 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4218 "(block count %llu, first data block %u, "
4219 "blocks per group %lu)", sbi->s_groups_count,
4220 ext4_blocks_count(es),
4221 le32_to_cpu(es->s_first_data_block),
4222 EXT4_BLOCKS_PER_GROUP(sb));
4223 goto failed_mount;
4224 }
4225 sbi->s_groups_count = blocks_count;
4226 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4227 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4228 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4229 le32_to_cpu(es->s_inodes_count)) {
4230 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4231 le32_to_cpu(es->s_inodes_count),
4232 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4233 ret = -EINVAL;
4234 goto failed_mount;
4235 }
4236 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4237 EXT4_DESC_PER_BLOCK(sb);
4238 if (ext4_has_feature_meta_bg(sb)) {
4239 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4240 ext4_msg(sb, KERN_WARNING,
4241 "first meta block group too large: %u "
4242 "(group descriptor block count %u)",
4243 le32_to_cpu(es->s_first_meta_bg), db_count);
4244 goto failed_mount;
4245 }
4246 }
4247 sbi->s_group_desc = kvmalloc_array(db_count,
4248 sizeof(struct buffer_head *),
4249 GFP_KERNEL);
4250 if (sbi->s_group_desc == NULL) {
4251 ext4_msg(sb, KERN_ERR, "not enough memory");
4252 ret = -ENOMEM;
4253 goto failed_mount;
4254 }
4255
4256 bgl_lock_init(sbi->s_blockgroup_lock);
4257
4258 /* Pre-read the descriptors into the buffer cache */
4259 for (i = 0; i < db_count; i++) {
4260 block = descriptor_loc(sb, logical_sb_block, i);
4261 sb_breadahead(sb, block);
4262 }
4263
4264 for (i = 0; i < db_count; i++) {
4265 block = descriptor_loc(sb, logical_sb_block, i);
4266 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4267 if (!sbi->s_group_desc[i]) {
4268 ext4_msg(sb, KERN_ERR,
4269 "can't read group descriptor %d", i);
4270 db_count = i;
4271 goto failed_mount2;
4272 }
4273 }
4274 sbi->s_gdb_count = db_count;
4275 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4276 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4277 ret = -EFSCORRUPTED;
4278 goto failed_mount2;
4279 }
4280
4281 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4282
4283 /* Register extent status tree shrinker */
4284 if (ext4_es_register_shrinker(sbi))
4285 goto failed_mount3;
4286
4287 sbi->s_stripe = ext4_get_stripe_size(sbi);
4288 sbi->s_extent_max_zeroout_kb = 32;
4289
4290 /*
4291 * set up enough so that it can read an inode
4292 */
4293 sb->s_op = &ext4_sops;
4294 sb->s_export_op = &ext4_export_ops;
4295 sb->s_xattr = ext4_xattr_handlers;
4296#ifdef CONFIG_FS_ENCRYPTION
4297 sb->s_cop = &ext4_cryptops;
4298#endif
4299#ifdef CONFIG_FS_VERITY
4300 sb->s_vop = &ext4_verityops;
4301#endif
4302#ifdef CONFIG_QUOTA
4303 sb->dq_op = &ext4_quota_operations;
4304 if (ext4_has_feature_quota(sb))
4305 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4306 else
4307 sb->s_qcop = &ext4_qctl_operations;
4308 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4309#endif
4310 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4311
4312 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4313 mutex_init(&sbi->s_orphan_lock);
4314
4315 sb->s_root = NULL;
4316
4317 needs_recovery = (es->s_last_orphan != 0 ||
4318 ext4_has_feature_journal_needs_recovery(sb));
4319
4320 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4321 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4322 goto failed_mount3a;
4323
4324 /*
4325 * The first inode we look at is the journal inode. Don't try
4326 * root first: it may be modified in the journal!
4327 */
4328 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4329 err = ext4_load_journal(sb, es, journal_devnum);
4330 if (err)
4331 goto failed_mount3a;
4332 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4333 ext4_has_feature_journal_needs_recovery(sb)) {
4334 ext4_msg(sb, KERN_ERR, "required journal recovery "
4335 "suppressed and not mounted read-only");
4336 goto failed_mount_wq;
4337 } else {
4338 /* Nojournal mode, all journal mount options are illegal */
4339 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4340 ext4_msg(sb, KERN_ERR, "can't mount with "
4341 "journal_checksum, fs mounted w/o journal");
4342 goto failed_mount_wq;
4343 }
4344 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4345 ext4_msg(sb, KERN_ERR, "can't mount with "
4346 "journal_async_commit, fs mounted w/o journal");
4347 goto failed_mount_wq;
4348 }
4349 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4350 ext4_msg(sb, KERN_ERR, "can't mount with "
4351 "commit=%lu, fs mounted w/o journal",
4352 sbi->s_commit_interval / HZ);
4353 goto failed_mount_wq;
4354 }
4355 if (EXT4_MOUNT_DATA_FLAGS &
4356 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4357 ext4_msg(sb, KERN_ERR, "can't mount with "
4358 "data=, fs mounted w/o journal");
4359 goto failed_mount_wq;
4360 }
4361 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4362 clear_opt(sb, JOURNAL_CHECKSUM);
4363 clear_opt(sb, DATA_FLAGS);
4364 sbi->s_journal = NULL;
4365 needs_recovery = 0;
4366 goto no_journal;
4367 }
4368
4369 if (ext4_has_feature_64bit(sb) &&
4370 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4371 JBD2_FEATURE_INCOMPAT_64BIT)) {
4372 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4373 goto failed_mount_wq;
4374 }
4375
4376 if (!set_journal_csum_feature_set(sb)) {
4377 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4378 "feature set");
4379 goto failed_mount_wq;
4380 }
4381
4382 /* We have now updated the journal if required, so we can
4383 * validate the data journaling mode. */
4384 switch (test_opt(sb, DATA_FLAGS)) {
4385 case 0:
4386 /* No mode set, assume a default based on the journal
4387 * capabilities: ORDERED_DATA if the journal can
4388 * cope, else JOURNAL_DATA
4389 */
4390 if (jbd2_journal_check_available_features
4391 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4392 set_opt(sb, ORDERED_DATA);
4393 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4394 } else {
4395 set_opt(sb, JOURNAL_DATA);
4396 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4397 }
4398 break;
4399
4400 case EXT4_MOUNT_ORDERED_DATA:
4401 case EXT4_MOUNT_WRITEBACK_DATA:
4402 if (!jbd2_journal_check_available_features
4403 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4404 ext4_msg(sb, KERN_ERR, "Journal does not support "
4405 "requested data journaling mode");
4406 goto failed_mount_wq;
4407 }
4408 default:
4409 break;
4410 }
4411
4412 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4413 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4414 ext4_msg(sb, KERN_ERR, "can't mount with "
4415 "journal_async_commit in data=ordered mode");
4416 goto failed_mount_wq;
4417 }
4418
4419 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4420
4421 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4422
4423no_journal:
4424 if (!test_opt(sb, NO_MBCACHE)) {
4425 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4426 if (!sbi->s_ea_block_cache) {
4427 ext4_msg(sb, KERN_ERR,
4428 "Failed to create ea_block_cache");
4429 goto failed_mount_wq;
4430 }
4431
4432 if (ext4_has_feature_ea_inode(sb)) {
4433 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4434 if (!sbi->s_ea_inode_cache) {
4435 ext4_msg(sb, KERN_ERR,
4436 "Failed to create ea_inode_cache");
4437 goto failed_mount_wq;
4438 }
4439 }
4440 }
4441
4442 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4443 (blocksize != PAGE_SIZE)) {
4444 ext4_msg(sb, KERN_ERR,
4445 "Unsupported blocksize for fs encryption");
4446 goto failed_mount_wq;
4447 }
4448
4449 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4450 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4451 goto failed_mount_wq;
4452 }
4453
4454 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4455 !ext4_has_feature_encrypt(sb)) {
4456 ext4_set_feature_encrypt(sb);
4457 ext4_commit_super(sb, 1);
4458 }
4459
4460 /*
4461 * Get the # of file system overhead blocks from the
4462 * superblock if present.
4463 */
4464 if (es->s_overhead_clusters)
4465 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4466 else {
4467 err = ext4_calculate_overhead(sb);
4468 if (err)
4469 goto failed_mount_wq;
4470 }
4471
4472 /*
4473 * The maximum number of concurrent works can be high and
4474 * concurrency isn't really necessary. Limit it to 1.
4475 */
4476 EXT4_SB(sb)->rsv_conversion_wq =
4477 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4478 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4479 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4480 ret = -ENOMEM;
4481 goto failed_mount4;
4482 }
4483
4484 /*
4485 * The jbd2_journal_load will have done any necessary log recovery,
4486 * so we can safely mount the rest of the filesystem now.
4487 */
4488
4489 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4490 if (IS_ERR(root)) {
4491 ext4_msg(sb, KERN_ERR, "get root inode failed");
4492 ret = PTR_ERR(root);
4493 root = NULL;
4494 goto failed_mount4;
4495 }
4496 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4497 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4498 iput(root);
4499 goto failed_mount4;
4500 }
4501
4502#ifdef CONFIG_UNICODE
4503 if (sbi->s_encoding)
4504 sb->s_d_op = &ext4_dentry_ops;
4505#endif
4506
4507 sb->s_root = d_make_root(root);
4508 if (!sb->s_root) {
4509 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4510 ret = -ENOMEM;
4511 goto failed_mount4;
4512 }
4513
4514 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4515 if (ret == -EROFS) {
4516 sb->s_flags |= SB_RDONLY;
4517 ret = 0;
4518 } else if (ret)
4519 goto failed_mount4a;
4520
4521 ext4_clamp_want_extra_isize(sb);
4522
4523 ext4_set_resv_clusters(sb);
4524
4525 err = ext4_setup_system_zone(sb);
4526 if (err) {
4527 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4528 "zone (%d)", err);
4529 goto failed_mount4a;
4530 }
4531
4532 ext4_ext_init(sb);
4533 err = ext4_mb_init(sb);
4534 if (err) {
4535 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4536 err);
4537 goto failed_mount5;
4538 }
4539
4540 block = ext4_count_free_clusters(sb);
4541 ext4_free_blocks_count_set(sbi->s_es,
4542 EXT4_C2B(sbi, block));
4543 ext4_superblock_csum_set(sb);
4544 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4545 GFP_KERNEL);
4546 if (!err) {
4547 unsigned long freei = ext4_count_free_inodes(sb);
4548 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4549 ext4_superblock_csum_set(sb);
4550 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4551 GFP_KERNEL);
4552 }
4553 if (!err)
4554 err = percpu_counter_init(&sbi->s_dirs_counter,
4555 ext4_count_dirs(sb), GFP_KERNEL);
4556 if (!err)
4557 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4558 GFP_KERNEL);
4559 if (!err)
4560 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4561
4562 if (err) {
4563 ext4_msg(sb, KERN_ERR, "insufficient memory");
4564 goto failed_mount6;
4565 }
4566
4567 if (ext4_has_feature_flex_bg(sb))
4568 if (!ext4_fill_flex_info(sb)) {
4569 ext4_msg(sb, KERN_ERR,
4570 "unable to initialize "
4571 "flex_bg meta info!");
4572 goto failed_mount6;
4573 }
4574
4575 err = ext4_register_li_request(sb, first_not_zeroed);
4576 if (err)
4577 goto failed_mount6;
4578
4579 err = ext4_register_sysfs(sb);
4580 if (err)
4581 goto failed_mount7;
4582
4583#ifdef CONFIG_QUOTA
4584 /* Enable quota usage during mount. */
4585 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4586 err = ext4_enable_quotas(sb);
4587 if (err)
4588 goto failed_mount8;
4589 }
4590#endif /* CONFIG_QUOTA */
4591
4592 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4593 ext4_orphan_cleanup(sb, es);
4594 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4595 if (needs_recovery) {
4596 ext4_msg(sb, KERN_INFO, "recovery complete");
4597 ext4_mark_recovery_complete(sb, es);
4598 }
4599 if (EXT4_SB(sb)->s_journal) {
4600 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4601 descr = " journalled data mode";
4602 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4603 descr = " ordered data mode";
4604 else
4605 descr = " writeback data mode";
4606 } else
4607 descr = "out journal";
4608
4609 if (test_opt(sb, DISCARD)) {
4610 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4611 if (!blk_queue_discard(q))
4612 ext4_msg(sb, KERN_WARNING,
4613 "mounting with \"discard\" option, but "
4614 "the device does not support discard");
4615 }
4616
4617 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4618 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4619 "Opts: %.*s%s%s", descr,
4620 (int) sizeof(sbi->s_es->s_mount_opts),
4621 sbi->s_es->s_mount_opts,
4622 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4623
4624 if (es->s_error_count)
4625 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4626
4627 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4628 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4629 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4630 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4631
4632 kfree(orig_data);
4633 return 0;
4634
4635cantfind_ext4:
4636 if (!silent)
4637 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4638 goto failed_mount;
4639
4640#ifdef CONFIG_QUOTA
4641failed_mount8:
4642 ext4_unregister_sysfs(sb);
4643#endif
4644failed_mount7:
4645 ext4_unregister_li_request(sb);
4646failed_mount6:
4647 ext4_mb_release(sb);
4648 if (sbi->s_flex_groups)
4649 kvfree(sbi->s_flex_groups);
4650 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4651 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4652 percpu_counter_destroy(&sbi->s_dirs_counter);
4653 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4654 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4655failed_mount5:
4656 ext4_ext_release(sb);
4657 ext4_release_system_zone(sb);
4658failed_mount4a:
4659 dput(sb->s_root);
4660 sb->s_root = NULL;
4661failed_mount4:
4662 ext4_msg(sb, KERN_ERR, "mount failed");
4663 if (EXT4_SB(sb)->rsv_conversion_wq)
4664 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4665failed_mount_wq:
4666 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4667 sbi->s_ea_inode_cache = NULL;
4668
4669 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4670 sbi->s_ea_block_cache = NULL;
4671
4672 if (sbi->s_journal) {
4673 jbd2_journal_destroy(sbi->s_journal);
4674 sbi->s_journal = NULL;
4675 }
4676failed_mount3a:
4677 ext4_es_unregister_shrinker(sbi);
4678failed_mount3:
4679 del_timer_sync(&sbi->s_err_report);
4680 if (sbi->s_mmp_tsk)
4681 kthread_stop(sbi->s_mmp_tsk);
4682failed_mount2:
4683 for (i = 0; i < db_count; i++)
4684 brelse(sbi->s_group_desc[i]);
4685 kvfree(sbi->s_group_desc);
4686failed_mount:
4687 if (sbi->s_chksum_driver)
4688 crypto_free_shash(sbi->s_chksum_driver);
4689
4690#ifdef CONFIG_UNICODE
4691 utf8_unload(sbi->s_encoding);
4692#endif
4693
4694#ifdef CONFIG_QUOTA
4695 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4696 kfree(get_qf_name(sb, sbi, i));
4697#endif
4698 ext4_blkdev_remove(sbi);
4699 brelse(bh);
4700out_fail:
4701 sb->s_fs_info = NULL;
4702 kfree(sbi->s_blockgroup_lock);
4703out_free_base:
4704 kfree(sbi);
4705 kfree(orig_data);
4706 fs_put_dax(dax_dev);
4707 return err ? err : ret;
4708}
4709
4710/*
4711 * Setup any per-fs journal parameters now. We'll do this both on
4712 * initial mount, once the journal has been initialised but before we've
4713 * done any recovery; and again on any subsequent remount.
4714 */
4715static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4716{
4717 struct ext4_sb_info *sbi = EXT4_SB(sb);
4718
4719 journal->j_commit_interval = sbi->s_commit_interval;
4720 journal->j_min_batch_time = sbi->s_min_batch_time;
4721 journal->j_max_batch_time = sbi->s_max_batch_time;
4722
4723 write_lock(&journal->j_state_lock);
4724 if (test_opt(sb, BARRIER))
4725 journal->j_flags |= JBD2_BARRIER;
4726 else
4727 journal->j_flags &= ~JBD2_BARRIER;
4728 if (test_opt(sb, DATA_ERR_ABORT))
4729 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4730 else
4731 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4732 write_unlock(&journal->j_state_lock);
4733}
4734
4735static struct inode *ext4_get_journal_inode(struct super_block *sb,
4736 unsigned int journal_inum)
4737{
4738 struct inode *journal_inode;
4739
4740 /*
4741 * Test for the existence of a valid inode on disk. Bad things
4742 * happen if we iget() an unused inode, as the subsequent iput()
4743 * will try to delete it.
4744 */
4745 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4746 if (IS_ERR(journal_inode)) {
4747 ext4_msg(sb, KERN_ERR, "no journal found");
4748 return NULL;
4749 }
4750 if (!journal_inode->i_nlink) {
4751 make_bad_inode(journal_inode);
4752 iput(journal_inode);
4753 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4754 return NULL;
4755 }
4756
4757 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4758 journal_inode, journal_inode->i_size);
4759 if (!S_ISREG(journal_inode->i_mode)) {
4760 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4761 iput(journal_inode);
4762 return NULL;
4763 }
4764 return journal_inode;
4765}
4766
4767static journal_t *ext4_get_journal(struct super_block *sb,
4768 unsigned int journal_inum)
4769{
4770 struct inode *journal_inode;
4771 journal_t *journal;
4772
4773 BUG_ON(!ext4_has_feature_journal(sb));
4774
4775 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4776 if (!journal_inode)
4777 return NULL;
4778
4779 journal = jbd2_journal_init_inode(journal_inode);
4780 if (!journal) {
4781 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4782 iput(journal_inode);
4783 return NULL;
4784 }
4785 journal->j_private = sb;
4786 ext4_init_journal_params(sb, journal);
4787 return journal;
4788}
4789
4790static journal_t *ext4_get_dev_journal(struct super_block *sb,
4791 dev_t j_dev)
4792{
4793 struct buffer_head *bh;
4794 journal_t *journal;
4795 ext4_fsblk_t start;
4796 ext4_fsblk_t len;
4797 int hblock, blocksize;
4798 ext4_fsblk_t sb_block;
4799 unsigned long offset;
4800 struct ext4_super_block *es;
4801 struct block_device *bdev;
4802
4803 BUG_ON(!ext4_has_feature_journal(sb));
4804
4805 bdev = ext4_blkdev_get(j_dev, sb);
4806 if (bdev == NULL)
4807 return NULL;
4808
4809 blocksize = sb->s_blocksize;
4810 hblock = bdev_logical_block_size(bdev);
4811 if (blocksize < hblock) {
4812 ext4_msg(sb, KERN_ERR,
4813 "blocksize too small for journal device");
4814 goto out_bdev;
4815 }
4816
4817 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4818 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4819 set_blocksize(bdev, blocksize);
4820 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4821 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4822 "external journal");
4823 goto out_bdev;
4824 }
4825
4826 es = (struct ext4_super_block *) (bh->b_data + offset);
4827 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4828 !(le32_to_cpu(es->s_feature_incompat) &
4829 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4830 ext4_msg(sb, KERN_ERR, "external journal has "
4831 "bad superblock");
4832 brelse(bh);
4833 goto out_bdev;
4834 }
4835
4836 if ((le32_to_cpu(es->s_feature_ro_compat) &
4837 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4838 es->s_checksum != ext4_superblock_csum(sb, es)) {
4839 ext4_msg(sb, KERN_ERR, "external journal has "
4840 "corrupt superblock");
4841 brelse(bh);
4842 goto out_bdev;
4843 }
4844
4845 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4846 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4847 brelse(bh);
4848 goto out_bdev;
4849 }
4850
4851 len = ext4_blocks_count(es);
4852 start = sb_block + 1;
4853 brelse(bh); /* we're done with the superblock */
4854
4855 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4856 start, len, blocksize);
4857 if (!journal) {
4858 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4859 goto out_bdev;
4860 }
4861 journal->j_private = sb;
4862 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4863 wait_on_buffer(journal->j_sb_buffer);
4864 if (!buffer_uptodate(journal->j_sb_buffer)) {
4865 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4866 goto out_journal;
4867 }
4868 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4869 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4870 "user (unsupported) - %d",
4871 be32_to_cpu(journal->j_superblock->s_nr_users));
4872 goto out_journal;
4873 }
4874 EXT4_SB(sb)->journal_bdev = bdev;
4875 ext4_init_journal_params(sb, journal);
4876 return journal;
4877
4878out_journal:
4879 jbd2_journal_destroy(journal);
4880out_bdev:
4881 ext4_blkdev_put(bdev);
4882 return NULL;
4883}
4884
4885static int ext4_load_journal(struct super_block *sb,
4886 struct ext4_super_block *es,
4887 unsigned long journal_devnum)
4888{
4889 journal_t *journal;
4890 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4891 dev_t journal_dev;
4892 int err = 0;
4893 int really_read_only;
4894
4895 BUG_ON(!ext4_has_feature_journal(sb));
4896
4897 if (journal_devnum &&
4898 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4899 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4900 "numbers have changed");
4901 journal_dev = new_decode_dev(journal_devnum);
4902 } else
4903 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4904
4905 really_read_only = bdev_read_only(sb->s_bdev);
4906
4907 /*
4908 * Are we loading a blank journal or performing recovery after a
4909 * crash? For recovery, we need to check in advance whether we
4910 * can get read-write access to the device.
4911 */
4912 if (ext4_has_feature_journal_needs_recovery(sb)) {
4913 if (sb_rdonly(sb)) {
4914 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4915 "required on readonly filesystem");
4916 if (really_read_only) {
4917 ext4_msg(sb, KERN_ERR, "write access "
4918 "unavailable, cannot proceed "
4919 "(try mounting with noload)");
4920 return -EROFS;
4921 }
4922 ext4_msg(sb, KERN_INFO, "write access will "
4923 "be enabled during recovery");
4924 }
4925 }
4926
4927 if (journal_inum && journal_dev) {
4928 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4929 "and inode journals!");
4930 return -EINVAL;
4931 }
4932
4933 if (journal_inum) {
4934 if (!(journal = ext4_get_journal(sb, journal_inum)))
4935 return -EINVAL;
4936 } else {
4937 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4938 return -EINVAL;
4939 }
4940
4941 if (!(journal->j_flags & JBD2_BARRIER))
4942 ext4_msg(sb, KERN_INFO, "barriers disabled");
4943
4944 if (!ext4_has_feature_journal_needs_recovery(sb))
4945 err = jbd2_journal_wipe(journal, !really_read_only);
4946 if (!err) {
4947 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4948 if (save)
4949 memcpy(save, ((char *) es) +
4950 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4951 err = jbd2_journal_load(journal);
4952 if (save)
4953 memcpy(((char *) es) + EXT4_S_ERR_START,
4954 save, EXT4_S_ERR_LEN);
4955 kfree(save);
4956 }
4957
4958 if (err) {
4959 ext4_msg(sb, KERN_ERR, "error loading journal");
4960 jbd2_journal_destroy(journal);
4961 return err;
4962 }
4963
4964 EXT4_SB(sb)->s_journal = journal;
4965 ext4_clear_journal_err(sb, es);
4966
4967 if (!really_read_only && journal_devnum &&
4968 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4969 es->s_journal_dev = cpu_to_le32(journal_devnum);
4970
4971 /* Make sure we flush the recovery flag to disk. */
4972 ext4_commit_super(sb, 1);
4973 }
4974
4975 return 0;
4976}
4977
4978static int ext4_commit_super(struct super_block *sb, int sync)
4979{
4980 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4981 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4982 int error = 0;
4983
4984 if (!sbh || block_device_ejected(sb))
4985 return error;
4986
4987 /*
4988 * The superblock bh should be mapped, but it might not be if the
4989 * device was hot-removed. Not much we can do but fail the I/O.
4990 */
4991 if (!buffer_mapped(sbh))
4992 return error;
4993
4994 /*
4995 * If the file system is mounted read-only, don't update the
4996 * superblock write time. This avoids updating the superblock
4997 * write time when we are mounting the root file system
4998 * read/only but we need to replay the journal; at that point,
4999 * for people who are east of GMT and who make their clock
5000 * tick in localtime for Windows bug-for-bug compatibility,
5001 * the clock is set in the future, and this will cause e2fsck
5002 * to complain and force a full file system check.
5003 */
5004 if (!(sb->s_flags & SB_RDONLY))
5005 ext4_update_tstamp(es, s_wtime);
5006 if (sb->s_bdev->bd_part)
5007 es->s_kbytes_written =
5008 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5009 ((part_stat_read(sb->s_bdev->bd_part,
5010 sectors[STAT_WRITE]) -
5011 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5012 else
5013 es->s_kbytes_written =
5014 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5015 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5016 ext4_free_blocks_count_set(es,
5017 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5018 &EXT4_SB(sb)->s_freeclusters_counter)));
5019 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5020 es->s_free_inodes_count =
5021 cpu_to_le32(percpu_counter_sum_positive(
5022 &EXT4_SB(sb)->s_freeinodes_counter));
5023 BUFFER_TRACE(sbh, "marking dirty");
5024 ext4_superblock_csum_set(sb);
5025 if (sync)
5026 lock_buffer(sbh);
5027 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5028 /*
5029 * Oh, dear. A previous attempt to write the
5030 * superblock failed. This could happen because the
5031 * USB device was yanked out. Or it could happen to
5032 * be a transient write error and maybe the block will
5033 * be remapped. Nothing we can do but to retry the
5034 * write and hope for the best.
5035 */
5036 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5037 "superblock detected");
5038 clear_buffer_write_io_error(sbh);
5039 set_buffer_uptodate(sbh);
5040 }
5041 mark_buffer_dirty(sbh);
5042 if (sync) {
5043 unlock_buffer(sbh);
5044 error = __sync_dirty_buffer(sbh,
5045 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5046 if (buffer_write_io_error(sbh)) {
5047 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5048 "superblock");
5049 clear_buffer_write_io_error(sbh);
5050 set_buffer_uptodate(sbh);
5051 }
5052 }
5053 return error;
5054}
5055
5056/*
5057 * Have we just finished recovery? If so, and if we are mounting (or
5058 * remounting) the filesystem readonly, then we will end up with a
5059 * consistent fs on disk. Record that fact.
5060 */
5061static void ext4_mark_recovery_complete(struct super_block *sb,
5062 struct ext4_super_block *es)
5063{
5064 journal_t *journal = EXT4_SB(sb)->s_journal;
5065
5066 if (!ext4_has_feature_journal(sb)) {
5067 BUG_ON(journal != NULL);
5068 return;
5069 }
5070 jbd2_journal_lock_updates(journal);
5071 if (jbd2_journal_flush(journal) < 0)
5072 goto out;
5073
5074 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5075 ext4_clear_feature_journal_needs_recovery(sb);
5076 ext4_commit_super(sb, 1);
5077 }
5078
5079out:
5080 jbd2_journal_unlock_updates(journal);
5081}
5082
5083/*
5084 * If we are mounting (or read-write remounting) a filesystem whose journal
5085 * has recorded an error from a previous lifetime, move that error to the
5086 * main filesystem now.
5087 */
5088static void ext4_clear_journal_err(struct super_block *sb,
5089 struct ext4_super_block *es)
5090{
5091 journal_t *journal;
5092 int j_errno;
5093 const char *errstr;
5094
5095 BUG_ON(!ext4_has_feature_journal(sb));
5096
5097 journal = EXT4_SB(sb)->s_journal;
5098
5099 /*
5100 * Now check for any error status which may have been recorded in the
5101 * journal by a prior ext4_error() or ext4_abort()
5102 */
5103
5104 j_errno = jbd2_journal_errno(journal);
5105 if (j_errno) {
5106 char nbuf[16];
5107
5108 errstr = ext4_decode_error(sb, j_errno, nbuf);
5109 ext4_warning(sb, "Filesystem error recorded "
5110 "from previous mount: %s", errstr);
5111 ext4_warning(sb, "Marking fs in need of filesystem check.");
5112
5113 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5114 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5115 ext4_commit_super(sb, 1);
5116
5117 jbd2_journal_clear_err(journal);
5118 jbd2_journal_update_sb_errno(journal);
5119 }
5120}
5121
5122/*
5123 * Force the running and committing transactions to commit,
5124 * and wait on the commit.
5125 */
5126int ext4_force_commit(struct super_block *sb)
5127{
5128 journal_t *journal;
5129
5130 if (sb_rdonly(sb))
5131 return 0;
5132
5133 journal = EXT4_SB(sb)->s_journal;
5134 return ext4_journal_force_commit(journal);
5135}
5136
5137static int ext4_sync_fs(struct super_block *sb, int wait)
5138{
5139 int ret = 0;
5140 tid_t target;
5141 bool needs_barrier = false;
5142 struct ext4_sb_info *sbi = EXT4_SB(sb);
5143
5144 if (unlikely(ext4_forced_shutdown(sbi)))
5145 return 0;
5146
5147 trace_ext4_sync_fs(sb, wait);
5148 flush_workqueue(sbi->rsv_conversion_wq);
5149 /*
5150 * Writeback quota in non-journalled quota case - journalled quota has
5151 * no dirty dquots
5152 */
5153 dquot_writeback_dquots(sb, -1);
5154 /*
5155 * Data writeback is possible w/o journal transaction, so barrier must
5156 * being sent at the end of the function. But we can skip it if
5157 * transaction_commit will do it for us.
5158 */
5159 if (sbi->s_journal) {
5160 target = jbd2_get_latest_transaction(sbi->s_journal);
5161 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5162 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5163 needs_barrier = true;
5164
5165 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5166 if (wait)
5167 ret = jbd2_log_wait_commit(sbi->s_journal,
5168 target);
5169 }
5170 } else if (wait && test_opt(sb, BARRIER))
5171 needs_barrier = true;
5172 if (needs_barrier) {
5173 int err;
5174 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5175 if (!ret)
5176 ret = err;
5177 }
5178
5179 return ret;
5180}
5181
5182/*
5183 * LVM calls this function before a (read-only) snapshot is created. This
5184 * gives us a chance to flush the journal completely and mark the fs clean.
5185 *
5186 * Note that only this function cannot bring a filesystem to be in a clean
5187 * state independently. It relies on upper layer to stop all data & metadata
5188 * modifications.
5189 */
5190static int ext4_freeze(struct super_block *sb)
5191{
5192 int error = 0;
5193 journal_t *journal;
5194
5195 if (sb_rdonly(sb))
5196 return 0;
5197
5198 journal = EXT4_SB(sb)->s_journal;
5199
5200 if (journal) {
5201 /* Now we set up the journal barrier. */
5202 jbd2_journal_lock_updates(journal);
5203
5204 /*
5205 * Don't clear the needs_recovery flag if we failed to
5206 * flush the journal.
5207 */
5208 error = jbd2_journal_flush(journal);
5209 if (error < 0)
5210 goto out;
5211
5212 /* Journal blocked and flushed, clear needs_recovery flag. */
5213 ext4_clear_feature_journal_needs_recovery(sb);
5214 }
5215
5216 error = ext4_commit_super(sb, 1);
5217out:
5218 if (journal)
5219 /* we rely on upper layer to stop further updates */
5220 jbd2_journal_unlock_updates(journal);
5221 return error;
5222}
5223
5224/*
5225 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5226 * flag here, even though the filesystem is not technically dirty yet.
5227 */
5228static int ext4_unfreeze(struct super_block *sb)
5229{
5230 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5231 return 0;
5232
5233 if (EXT4_SB(sb)->s_journal) {
5234 /* Reset the needs_recovery flag before the fs is unlocked. */
5235 ext4_set_feature_journal_needs_recovery(sb);
5236 }
5237
5238 ext4_commit_super(sb, 1);
5239 return 0;
5240}
5241
5242/*
5243 * Structure to save mount options for ext4_remount's benefit
5244 */
5245struct ext4_mount_options {
5246 unsigned long s_mount_opt;
5247 unsigned long s_mount_opt2;
5248 kuid_t s_resuid;
5249 kgid_t s_resgid;
5250 unsigned long s_commit_interval;
5251 u32 s_min_batch_time, s_max_batch_time;
5252#ifdef CONFIG_QUOTA
5253 int s_jquota_fmt;
5254 char *s_qf_names[EXT4_MAXQUOTAS];
5255#endif
5256};
5257
5258static int ext4_remount(struct super_block *sb, int *flags, char *data)
5259{
5260 struct ext4_super_block *es;
5261 struct ext4_sb_info *sbi = EXT4_SB(sb);
5262 unsigned long old_sb_flags;
5263 struct ext4_mount_options old_opts;
5264 int enable_quota = 0;
5265 ext4_group_t g;
5266 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5267 int err = 0;
5268#ifdef CONFIG_QUOTA
5269 int i, j;
5270 char *to_free[EXT4_MAXQUOTAS];
5271#endif
5272 char *orig_data = kstrdup(data, GFP_KERNEL);
5273
5274 if (data && !orig_data)
5275 return -ENOMEM;
5276
5277 /* Store the original options */
5278 old_sb_flags = sb->s_flags;
5279 old_opts.s_mount_opt = sbi->s_mount_opt;
5280 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5281 old_opts.s_resuid = sbi->s_resuid;
5282 old_opts.s_resgid = sbi->s_resgid;
5283 old_opts.s_commit_interval = sbi->s_commit_interval;
5284 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5285 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5286#ifdef CONFIG_QUOTA
5287 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5288 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5289 if (sbi->s_qf_names[i]) {
5290 char *qf_name = get_qf_name(sb, sbi, i);
5291
5292 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5293 if (!old_opts.s_qf_names[i]) {
5294 for (j = 0; j < i; j++)
5295 kfree(old_opts.s_qf_names[j]);
5296 kfree(orig_data);
5297 return -ENOMEM;
5298 }
5299 } else
5300 old_opts.s_qf_names[i] = NULL;
5301#endif
5302 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5303 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5304
5305 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5306 err = -EINVAL;
5307 goto restore_opts;
5308 }
5309
5310 ext4_clamp_want_extra_isize(sb);
5311
5312 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5313 test_opt(sb, JOURNAL_CHECKSUM)) {
5314 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5315 "during remount not supported; ignoring");
5316 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5317 }
5318
5319 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5320 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5321 ext4_msg(sb, KERN_ERR, "can't mount with "
5322 "both data=journal and delalloc");
5323 err = -EINVAL;
5324 goto restore_opts;
5325 }
5326 if (test_opt(sb, DIOREAD_NOLOCK)) {
5327 ext4_msg(sb, KERN_ERR, "can't mount with "
5328 "both data=journal and dioread_nolock");
5329 err = -EINVAL;
5330 goto restore_opts;
5331 }
5332 if (test_opt(sb, DAX)) {
5333 ext4_msg(sb, KERN_ERR, "can't mount with "
5334 "both data=journal and dax");
5335 err = -EINVAL;
5336 goto restore_opts;
5337 }
5338 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5339 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5340 ext4_msg(sb, KERN_ERR, "can't mount with "
5341 "journal_async_commit in data=ordered mode");
5342 err = -EINVAL;
5343 goto restore_opts;
5344 }
5345 }
5346
5347 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5348 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5349 err = -EINVAL;
5350 goto restore_opts;
5351 }
5352
5353 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5354 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5355 "dax flag with busy inodes while remounting");
5356 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5357 }
5358
5359 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5360 ext4_abort(sb, "Abort forced by user");
5361
5362 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5363 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5364
5365 es = sbi->s_es;
5366
5367 if (sbi->s_journal) {
5368 ext4_init_journal_params(sb, sbi->s_journal);
5369 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5370 }
5371
5372 if (*flags & SB_LAZYTIME)
5373 sb->s_flags |= SB_LAZYTIME;
5374
5375 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5376 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5377 err = -EROFS;
5378 goto restore_opts;
5379 }
5380
5381 if (*flags & SB_RDONLY) {
5382 err = sync_filesystem(sb);
5383 if (err < 0)
5384 goto restore_opts;
5385 err = dquot_suspend(sb, -1);
5386 if (err < 0)
5387 goto restore_opts;
5388
5389 /*
5390 * First of all, the unconditional stuff we have to do
5391 * to disable replay of the journal when we next remount
5392 */
5393 sb->s_flags |= SB_RDONLY;
5394
5395 /*
5396 * OK, test if we are remounting a valid rw partition
5397 * readonly, and if so set the rdonly flag and then
5398 * mark the partition as valid again.
5399 */
5400 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5401 (sbi->s_mount_state & EXT4_VALID_FS))
5402 es->s_state = cpu_to_le16(sbi->s_mount_state);
5403
5404 if (sbi->s_journal)
5405 ext4_mark_recovery_complete(sb, es);
5406 if (sbi->s_mmp_tsk)
5407 kthread_stop(sbi->s_mmp_tsk);
5408 } else {
5409 /* Make sure we can mount this feature set readwrite */
5410 if (ext4_has_feature_readonly(sb) ||
5411 !ext4_feature_set_ok(sb, 0)) {
5412 err = -EROFS;
5413 goto restore_opts;
5414 }
5415 /*
5416 * Make sure the group descriptor checksums
5417 * are sane. If they aren't, refuse to remount r/w.
5418 */
5419 for (g = 0; g < sbi->s_groups_count; g++) {
5420 struct ext4_group_desc *gdp =
5421 ext4_get_group_desc(sb, g, NULL);
5422
5423 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5424 ext4_msg(sb, KERN_ERR,
5425 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5426 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5427 le16_to_cpu(gdp->bg_checksum));
5428 err = -EFSBADCRC;
5429 goto restore_opts;
5430 }
5431 }
5432
5433 /*
5434 * If we have an unprocessed orphan list hanging
5435 * around from a previously readonly bdev mount,
5436 * require a full umount/remount for now.
5437 */
5438 if (es->s_last_orphan) {
5439 ext4_msg(sb, KERN_WARNING, "Couldn't "
5440 "remount RDWR because of unprocessed "
5441 "orphan inode list. Please "
5442 "umount/remount instead");
5443 err = -EINVAL;
5444 goto restore_opts;
5445 }
5446
5447 /*
5448 * Mounting a RDONLY partition read-write, so reread
5449 * and store the current valid flag. (It may have
5450 * been changed by e2fsck since we originally mounted
5451 * the partition.)
5452 */
5453 if (sbi->s_journal)
5454 ext4_clear_journal_err(sb, es);
5455 sbi->s_mount_state = le16_to_cpu(es->s_state);
5456
5457 err = ext4_setup_super(sb, es, 0);
5458 if (err)
5459 goto restore_opts;
5460
5461 sb->s_flags &= ~SB_RDONLY;
5462 if (ext4_has_feature_mmp(sb))
5463 if (ext4_multi_mount_protect(sb,
5464 le64_to_cpu(es->s_mmp_block))) {
5465 err = -EROFS;
5466 goto restore_opts;
5467 }
5468 enable_quota = 1;
5469 }
5470 }
5471
5472 /*
5473 * Reinitialize lazy itable initialization thread based on
5474 * current settings
5475 */
5476 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5477 ext4_unregister_li_request(sb);
5478 else {
5479 ext4_group_t first_not_zeroed;
5480 first_not_zeroed = ext4_has_uninit_itable(sb);
5481 ext4_register_li_request(sb, first_not_zeroed);
5482 }
5483
5484 ext4_setup_system_zone(sb);
5485 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5486 err = ext4_commit_super(sb, 1);
5487 if (err)
5488 goto restore_opts;
5489 }
5490
5491#ifdef CONFIG_QUOTA
5492 /* Release old quota file names */
5493 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5494 kfree(old_opts.s_qf_names[i]);
5495 if (enable_quota) {
5496 if (sb_any_quota_suspended(sb))
5497 dquot_resume(sb, -1);
5498 else if (ext4_has_feature_quota(sb)) {
5499 err = ext4_enable_quotas(sb);
5500 if (err)
5501 goto restore_opts;
5502 }
5503 }
5504#endif
5505
5506 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5507 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5508 kfree(orig_data);
5509 return 0;
5510
5511restore_opts:
5512 sb->s_flags = old_sb_flags;
5513 sbi->s_mount_opt = old_opts.s_mount_opt;
5514 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5515 sbi->s_resuid = old_opts.s_resuid;
5516 sbi->s_resgid = old_opts.s_resgid;
5517 sbi->s_commit_interval = old_opts.s_commit_interval;
5518 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5519 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5520#ifdef CONFIG_QUOTA
5521 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5522 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5523 to_free[i] = get_qf_name(sb, sbi, i);
5524 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5525 }
5526 synchronize_rcu();
5527 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5528 kfree(to_free[i]);
5529#endif
5530 kfree(orig_data);
5531 return err;
5532}
5533
5534#ifdef CONFIG_QUOTA
5535static int ext4_statfs_project(struct super_block *sb,
5536 kprojid_t projid, struct kstatfs *buf)
5537{
5538 struct kqid qid;
5539 struct dquot *dquot;
5540 u64 limit;
5541 u64 curblock;
5542
5543 qid = make_kqid_projid(projid);
5544 dquot = dqget(sb, qid);
5545 if (IS_ERR(dquot))
5546 return PTR_ERR(dquot);
5547 spin_lock(&dquot->dq_dqb_lock);
5548
5549 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5550 dquot->dq_dqb.dqb_bsoftlimit :
5551 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5552 if (limit && buf->f_blocks > limit) {
5553 curblock = (dquot->dq_dqb.dqb_curspace +
5554 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5555 buf->f_blocks = limit;
5556 buf->f_bfree = buf->f_bavail =
5557 (buf->f_blocks > curblock) ?
5558 (buf->f_blocks - curblock) : 0;
5559 }
5560
5561 limit = dquot->dq_dqb.dqb_isoftlimit ?
5562 dquot->dq_dqb.dqb_isoftlimit :
5563 dquot->dq_dqb.dqb_ihardlimit;
5564 if (limit && buf->f_files > limit) {
5565 buf->f_files = limit;
5566 buf->f_ffree =
5567 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5568 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5569 }
5570
5571 spin_unlock(&dquot->dq_dqb_lock);
5572 dqput(dquot);
5573 return 0;
5574}
5575#endif
5576
5577static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5578{
5579 struct super_block *sb = dentry->d_sb;
5580 struct ext4_sb_info *sbi = EXT4_SB(sb);
5581 struct ext4_super_block *es = sbi->s_es;
5582 ext4_fsblk_t overhead = 0, resv_blocks;
5583 u64 fsid;
5584 s64 bfree;
5585 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5586
5587 if (!test_opt(sb, MINIX_DF))
5588 overhead = sbi->s_overhead;
5589
5590 buf->f_type = EXT4_SUPER_MAGIC;
5591 buf->f_bsize = sb->s_blocksize;
5592 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5593 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5594 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5595 /* prevent underflow in case that few free space is available */
5596 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5597 buf->f_bavail = buf->f_bfree -
5598 (ext4_r_blocks_count(es) + resv_blocks);
5599 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5600 buf->f_bavail = 0;
5601 buf->f_files = le32_to_cpu(es->s_inodes_count);
5602 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5603 buf->f_namelen = EXT4_NAME_LEN;
5604 fsid = le64_to_cpup((void *)es->s_uuid) ^
5605 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5606 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5607 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5608
5609#ifdef CONFIG_QUOTA
5610 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5611 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5612 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5613#endif
5614 return 0;
5615}
5616
5617
5618#ifdef CONFIG_QUOTA
5619
5620/*
5621 * Helper functions so that transaction is started before we acquire dqio_sem
5622 * to keep correct lock ordering of transaction > dqio_sem
5623 */
5624static inline struct inode *dquot_to_inode(struct dquot *dquot)
5625{
5626 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5627}
5628
5629static int ext4_write_dquot(struct dquot *dquot)
5630{
5631 int ret, err;
5632 handle_t *handle;
5633 struct inode *inode;
5634
5635 inode = dquot_to_inode(dquot);
5636 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5637 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5638 if (IS_ERR(handle))
5639 return PTR_ERR(handle);
5640 ret = dquot_commit(dquot);
5641 err = ext4_journal_stop(handle);
5642 if (!ret)
5643 ret = err;
5644 return ret;
5645}
5646
5647static int ext4_acquire_dquot(struct dquot *dquot)
5648{
5649 int ret, err;
5650 handle_t *handle;
5651
5652 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5653 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5654 if (IS_ERR(handle))
5655 return PTR_ERR(handle);
5656 ret = dquot_acquire(dquot);
5657 err = ext4_journal_stop(handle);
5658 if (!ret)
5659 ret = err;
5660 return ret;
5661}
5662
5663static int ext4_release_dquot(struct dquot *dquot)
5664{
5665 int ret, err;
5666 handle_t *handle;
5667
5668 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5669 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5670 if (IS_ERR(handle)) {
5671 /* Release dquot anyway to avoid endless cycle in dqput() */
5672 dquot_release(dquot);
5673 return PTR_ERR(handle);
5674 }
5675 ret = dquot_release(dquot);
5676 err = ext4_journal_stop(handle);
5677 if (!ret)
5678 ret = err;
5679 return ret;
5680}
5681
5682static int ext4_mark_dquot_dirty(struct dquot *dquot)
5683{
5684 struct super_block *sb = dquot->dq_sb;
5685 struct ext4_sb_info *sbi = EXT4_SB(sb);
5686
5687 /* Are we journaling quotas? */
5688 if (ext4_has_feature_quota(sb) ||
5689 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5690 dquot_mark_dquot_dirty(dquot);
5691 return ext4_write_dquot(dquot);
5692 } else {
5693 return dquot_mark_dquot_dirty(dquot);
5694 }
5695}
5696
5697static int ext4_write_info(struct super_block *sb, int type)
5698{
5699 int ret, err;
5700 handle_t *handle;
5701
5702 /* Data block + inode block */
5703 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5704 if (IS_ERR(handle))
5705 return PTR_ERR(handle);
5706 ret = dquot_commit_info(sb, type);
5707 err = ext4_journal_stop(handle);
5708 if (!ret)
5709 ret = err;
5710 return ret;
5711}
5712
5713/*
5714 * Turn on quotas during mount time - we need to find
5715 * the quota file and such...
5716 */
5717static int ext4_quota_on_mount(struct super_block *sb, int type)
5718{
5719 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5720 EXT4_SB(sb)->s_jquota_fmt, type);
5721}
5722
5723static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5724{
5725 struct ext4_inode_info *ei = EXT4_I(inode);
5726
5727 /* The first argument of lockdep_set_subclass has to be
5728 * *exactly* the same as the argument to init_rwsem() --- in
5729 * this case, in init_once() --- or lockdep gets unhappy
5730 * because the name of the lock is set using the
5731 * stringification of the argument to init_rwsem().
5732 */
5733 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5734 lockdep_set_subclass(&ei->i_data_sem, subclass);
5735}
5736
5737/*
5738 * Standard function to be called on quota_on
5739 */
5740static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5741 const struct path *path)
5742{
5743 int err;
5744
5745 if (!test_opt(sb, QUOTA))
5746 return -EINVAL;
5747
5748 /* Quotafile not on the same filesystem? */
5749 if (path->dentry->d_sb != sb)
5750 return -EXDEV;
5751 /* Journaling quota? */
5752 if (EXT4_SB(sb)->s_qf_names[type]) {
5753 /* Quotafile not in fs root? */
5754 if (path->dentry->d_parent != sb->s_root)
5755 ext4_msg(sb, KERN_WARNING,
5756 "Quota file not on filesystem root. "
5757 "Journaled quota will not work");
5758 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5759 } else {
5760 /*
5761 * Clear the flag just in case mount options changed since
5762 * last time.
5763 */
5764 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5765 }
5766
5767 /*
5768 * When we journal data on quota file, we have to flush journal to see
5769 * all updates to the file when we bypass pagecache...
5770 */
5771 if (EXT4_SB(sb)->s_journal &&
5772 ext4_should_journal_data(d_inode(path->dentry))) {
5773 /*
5774 * We don't need to lock updates but journal_flush() could
5775 * otherwise be livelocked...
5776 */
5777 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5778 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5779 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5780 if (err)
5781 return err;
5782 }
5783
5784 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5785 err = dquot_quota_on(sb, type, format_id, path);
5786 if (err) {
5787 lockdep_set_quota_inode(path->dentry->d_inode,
5788 I_DATA_SEM_NORMAL);
5789 } else {
5790 struct inode *inode = d_inode(path->dentry);
5791 handle_t *handle;
5792
5793 /*
5794 * Set inode flags to prevent userspace from messing with quota
5795 * files. If this fails, we return success anyway since quotas
5796 * are already enabled and this is not a hard failure.
5797 */
5798 inode_lock(inode);
5799 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5800 if (IS_ERR(handle))
5801 goto unlock_inode;
5802 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5803 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5804 S_NOATIME | S_IMMUTABLE);
5805 ext4_mark_inode_dirty(handle, inode);
5806 ext4_journal_stop(handle);
5807 unlock_inode:
5808 inode_unlock(inode);
5809 }
5810 return err;
5811}
5812
5813static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5814 unsigned int flags)
5815{
5816 int err;
5817 struct inode *qf_inode;
5818 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5819 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5820 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5821 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5822 };
5823
5824 BUG_ON(!ext4_has_feature_quota(sb));
5825
5826 if (!qf_inums[type])
5827 return -EPERM;
5828
5829 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5830 if (IS_ERR(qf_inode)) {
5831 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5832 return PTR_ERR(qf_inode);
5833 }
5834
5835 /* Don't account quota for quota files to avoid recursion */
5836 qf_inode->i_flags |= S_NOQUOTA;
5837 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5838 err = dquot_enable(qf_inode, type, format_id, flags);
5839 if (err)
5840 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5841 iput(qf_inode);
5842
5843 return err;
5844}
5845
5846/* Enable usage tracking for all quota types. */
5847static int ext4_enable_quotas(struct super_block *sb)
5848{
5849 int type, err = 0;
5850 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5851 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5852 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5853 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5854 };
5855 bool quota_mopt[EXT4_MAXQUOTAS] = {
5856 test_opt(sb, USRQUOTA),
5857 test_opt(sb, GRPQUOTA),
5858 test_opt(sb, PRJQUOTA),
5859 };
5860
5861 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5862 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5863 if (qf_inums[type]) {
5864 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5865 DQUOT_USAGE_ENABLED |
5866 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5867 if (err) {
5868 ext4_warning(sb,
5869 "Failed to enable quota tracking "
5870 "(type=%d, err=%d). Please run "
5871 "e2fsck to fix.", type, err);
5872 for (type--; type >= 0; type--)
5873 dquot_quota_off(sb, type);
5874
5875 return err;
5876 }
5877 }
5878 }
5879 return 0;
5880}
5881
5882static int ext4_quota_off(struct super_block *sb, int type)
5883{
5884 struct inode *inode = sb_dqopt(sb)->files[type];
5885 handle_t *handle;
5886 int err;
5887
5888 /* Force all delayed allocation blocks to be allocated.
5889 * Caller already holds s_umount sem */
5890 if (test_opt(sb, DELALLOC))
5891 sync_filesystem(sb);
5892
5893 if (!inode || !igrab(inode))
5894 goto out;
5895
5896 err = dquot_quota_off(sb, type);
5897 if (err || ext4_has_feature_quota(sb))
5898 goto out_put;
5899
5900 inode_lock(inode);
5901 /*
5902 * Update modification times of quota files when userspace can
5903 * start looking at them. If we fail, we return success anyway since
5904 * this is not a hard failure and quotas are already disabled.
5905 */
5906 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5907 if (IS_ERR(handle))
5908 goto out_unlock;
5909 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5910 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5911 inode->i_mtime = inode->i_ctime = current_time(inode);
5912 ext4_mark_inode_dirty(handle, inode);
5913 ext4_journal_stop(handle);
5914out_unlock:
5915 inode_unlock(inode);
5916out_put:
5917 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5918 iput(inode);
5919 return err;
5920out:
5921 return dquot_quota_off(sb, type);
5922}
5923
5924/* Read data from quotafile - avoid pagecache and such because we cannot afford
5925 * acquiring the locks... As quota files are never truncated and quota code
5926 * itself serializes the operations (and no one else should touch the files)
5927 * we don't have to be afraid of races */
5928static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5929 size_t len, loff_t off)
5930{
5931 struct inode *inode = sb_dqopt(sb)->files[type];
5932 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5933 int offset = off & (sb->s_blocksize - 1);
5934 int tocopy;
5935 size_t toread;
5936 struct buffer_head *bh;
5937 loff_t i_size = i_size_read(inode);
5938
5939 if (off > i_size)
5940 return 0;
5941 if (off+len > i_size)
5942 len = i_size-off;
5943 toread = len;
5944 while (toread > 0) {
5945 tocopy = sb->s_blocksize - offset < toread ?
5946 sb->s_blocksize - offset : toread;
5947 bh = ext4_bread(NULL, inode, blk, 0);
5948 if (IS_ERR(bh))
5949 return PTR_ERR(bh);
5950 if (!bh) /* A hole? */
5951 memset(data, 0, tocopy);
5952 else
5953 memcpy(data, bh->b_data+offset, tocopy);
5954 brelse(bh);
5955 offset = 0;
5956 toread -= tocopy;
5957 data += tocopy;
5958 blk++;
5959 }
5960 return len;
5961}
5962
5963/* Write to quotafile (we know the transaction is already started and has
5964 * enough credits) */
5965static ssize_t ext4_quota_write(struct super_block *sb, int type,
5966 const char *data, size_t len, loff_t off)
5967{
5968 struct inode *inode = sb_dqopt(sb)->files[type];
5969 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5970 int err, offset = off & (sb->s_blocksize - 1);
5971 int retries = 0;
5972 struct buffer_head *bh;
5973 handle_t *handle = journal_current_handle();
5974
5975 if (EXT4_SB(sb)->s_journal && !handle) {
5976 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5977 " cancelled because transaction is not started",
5978 (unsigned long long)off, (unsigned long long)len);
5979 return -EIO;
5980 }
5981 /*
5982 * Since we account only one data block in transaction credits,
5983 * then it is impossible to cross a block boundary.
5984 */
5985 if (sb->s_blocksize - offset < len) {
5986 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5987 " cancelled because not block aligned",
5988 (unsigned long long)off, (unsigned long long)len);
5989 return -EIO;
5990 }
5991
5992 do {
5993 bh = ext4_bread(handle, inode, blk,
5994 EXT4_GET_BLOCKS_CREATE |
5995 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5996 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5997 ext4_should_retry_alloc(inode->i_sb, &retries));
5998 if (IS_ERR(bh))
5999 return PTR_ERR(bh);
6000 if (!bh)
6001 goto out;
6002 BUFFER_TRACE(bh, "get write access");
6003 err = ext4_journal_get_write_access(handle, bh);
6004 if (err) {
6005 brelse(bh);
6006 return err;
6007 }
6008 lock_buffer(bh);
6009 memcpy(bh->b_data+offset, data, len);
6010 flush_dcache_page(bh->b_page);
6011 unlock_buffer(bh);
6012 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6013 brelse(bh);
6014out:
6015 if (inode->i_size < off + len) {
6016 i_size_write(inode, off + len);
6017 EXT4_I(inode)->i_disksize = inode->i_size;
6018 ext4_mark_inode_dirty(handle, inode);
6019 }
6020 return len;
6021}
6022
6023static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
6024{
6025 const struct quota_format_ops *ops;
6026
6027 if (!sb_has_quota_loaded(sb, qid->type))
6028 return -ESRCH;
6029 ops = sb_dqopt(sb)->ops[qid->type];
6030 if (!ops || !ops->get_next_id)
6031 return -ENOSYS;
6032 return dquot_get_next_id(sb, qid);
6033}
6034#endif
6035
6036static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6037 const char *dev_name, void *data)
6038{
6039 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6040}
6041
6042#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6043static inline void register_as_ext2(void)
6044{
6045 int err = register_filesystem(&ext2_fs_type);
6046 if (err)
6047 printk(KERN_WARNING
6048 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6049}
6050
6051static inline void unregister_as_ext2(void)
6052{
6053 unregister_filesystem(&ext2_fs_type);
6054}
6055
6056static inline int ext2_feature_set_ok(struct super_block *sb)
6057{
6058 if (ext4_has_unknown_ext2_incompat_features(sb))
6059 return 0;
6060 if (sb_rdonly(sb))
6061 return 1;
6062 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6063 return 0;
6064 return 1;
6065}
6066#else
6067static inline void register_as_ext2(void) { }
6068static inline void unregister_as_ext2(void) { }
6069static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6070#endif
6071
6072static inline void register_as_ext3(void)
6073{
6074 int err = register_filesystem(&ext3_fs_type);
6075 if (err)
6076 printk(KERN_WARNING
6077 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6078}
6079
6080static inline void unregister_as_ext3(void)
6081{
6082 unregister_filesystem(&ext3_fs_type);
6083}
6084
6085static inline int ext3_feature_set_ok(struct super_block *sb)
6086{
6087 if (ext4_has_unknown_ext3_incompat_features(sb))
6088 return 0;
6089 if (!ext4_has_feature_journal(sb))
6090 return 0;
6091 if (sb_rdonly(sb))
6092 return 1;
6093 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6094 return 0;
6095 return 1;
6096}
6097
6098static struct file_system_type ext4_fs_type = {
6099 .owner = THIS_MODULE,
6100 .name = "ext4",
6101 .mount = ext4_mount,
6102 .kill_sb = kill_block_super,
6103 .fs_flags = FS_REQUIRES_DEV,
6104};
6105MODULE_ALIAS_FS("ext4");
6106
6107/* Shared across all ext4 file systems */
6108wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6109
6110static int __init ext4_init_fs(void)
6111{
6112 int i, err;
6113
6114 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6115 ext4_li_info = NULL;
6116 mutex_init(&ext4_li_mtx);
6117
6118 /* Build-time check for flags consistency */
6119 ext4_check_flag_values();
6120
6121 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6122 init_waitqueue_head(&ext4__ioend_wq[i]);
6123
6124 err = ext4_init_es();
6125 if (err)
6126 return err;
6127
6128 err = ext4_init_pending();
6129 if (err)
6130 goto out7;
6131
6132 err = ext4_init_post_read_processing();
6133 if (err)
6134 goto out6;
6135
6136 err = ext4_init_pageio();
6137 if (err)
6138 goto out5;
6139
6140 err = ext4_init_system_zone();
6141 if (err)
6142 goto out4;
6143
6144 err = ext4_init_sysfs();
6145 if (err)
6146 goto out3;
6147
6148 err = ext4_init_mballoc();
6149 if (err)
6150 goto out2;
6151 err = init_inodecache();
6152 if (err)
6153 goto out1;
6154 register_as_ext3();
6155 register_as_ext2();
6156 err = register_filesystem(&ext4_fs_type);
6157 if (err)
6158 goto out;
6159
6160 return 0;
6161out:
6162 unregister_as_ext2();
6163 unregister_as_ext3();
6164 destroy_inodecache();
6165out1:
6166 ext4_exit_mballoc();
6167out2:
6168 ext4_exit_sysfs();
6169out3:
6170 ext4_exit_system_zone();
6171out4:
6172 ext4_exit_pageio();
6173out5:
6174 ext4_exit_post_read_processing();
6175out6:
6176 ext4_exit_pending();
6177out7:
6178 ext4_exit_es();
6179
6180 return err;
6181}
6182
6183static void __exit ext4_exit_fs(void)
6184{
6185 ext4_destroy_lazyinit_thread();
6186 unregister_as_ext2();
6187 unregister_as_ext3();
6188 unregister_filesystem(&ext4_fs_type);
6189 destroy_inodecache();
6190 ext4_exit_mballoc();
6191 ext4_exit_sysfs();
6192 ext4_exit_system_zone();
6193 ext4_exit_pageio();
6194 ext4_exit_post_read_processing();
6195 ext4_exit_es();
6196 ext4_exit_pending();
6197}
6198
6199MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6200MODULE_DESCRIPTION("Fourth Extended Filesystem");
6201MODULE_LICENSE("GPL");
6202MODULE_SOFTDEP("pre: crc32c");
6203module_init(ext4_init_fs)
6204module_exit(ext4_exit_fs)