Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.6
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 16#include <linux/module.h>
 17#include <linux/log2.h>
 18#include <linux/workqueue.h>
 19
 20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 22
 23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 24{
 25	int err;
 26	if (!rtc->ops)
 27		err = -ENODEV;
 28	else if (!rtc->ops->read_time)
 29		err = -EINVAL;
 30	else {
 31		memset(tm, 0, sizeof(struct rtc_time));
 32		err = rtc->ops->read_time(rtc->dev.parent, tm);
 33		if (err < 0) {
 34			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
 35				err);
 36			return err;
 37		}
 38
 39		err = rtc_valid_tm(tm);
 40		if (err < 0)
 41			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 42	}
 43	return err;
 44}
 45
 46int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 47{
 48	int err;
 49
 50	err = mutex_lock_interruptible(&rtc->ops_lock);
 51	if (err)
 52		return err;
 53
 54	err = __rtc_read_time(rtc, tm);
 55	mutex_unlock(&rtc->ops_lock);
 56	return err;
 57}
 58EXPORT_SYMBOL_GPL(rtc_read_time);
 59
 60int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 61{
 62	int err;
 63
 64	err = rtc_valid_tm(tm);
 65	if (err != 0)
 66		return err;
 67
 68	err = mutex_lock_interruptible(&rtc->ops_lock);
 69	if (err)
 70		return err;
 71
 72	if (!rtc->ops)
 73		err = -ENODEV;
 74	else if (rtc->ops->set_time)
 75		err = rtc->ops->set_time(rtc->dev.parent, tm);
 76	else if (rtc->ops->set_mmss64) {
 77		time64_t secs64 = rtc_tm_to_time64(tm);
 78
 79		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
 80	} else if (rtc->ops->set_mmss) {
 81		time64_t secs64 = rtc_tm_to_time64(tm);
 82		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
 83	} else
 84		err = -EINVAL;
 85
 86	pm_stay_awake(rtc->dev.parent);
 87	mutex_unlock(&rtc->ops_lock);
 88	/* A timer might have just expired */
 89	schedule_work(&rtc->irqwork);
 90	return err;
 91}
 92EXPORT_SYMBOL_GPL(rtc_set_time);
 93
 94static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 95{
 96	int err;
 97
 98	err = mutex_lock_interruptible(&rtc->ops_lock);
 99	if (err)
100		return err;
101
102	if (rtc->ops == NULL)
103		err = -ENODEV;
104	else if (!rtc->ops->read_alarm)
105		err = -EINVAL;
106	else {
107		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 
 
 
 
 
 
 
 
 
 
108		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
109	}
110
111	mutex_unlock(&rtc->ops_lock);
112	return err;
113}
114
115int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
116{
117	int err;
118	struct rtc_time before, now;
119	int first_time = 1;
120	time64_t t_now, t_alm;
121	enum { none, day, month, year } missing = none;
122	unsigned days;
123
124	/* The lower level RTC driver may return -1 in some fields,
125	 * creating invalid alarm->time values, for reasons like:
126	 *
127	 *   - The hardware may not be capable of filling them in;
128	 *     many alarms match only on time-of-day fields, not
129	 *     day/month/year calendar data.
130	 *
131	 *   - Some hardware uses illegal values as "wildcard" match
132	 *     values, which non-Linux firmware (like a BIOS) may try
133	 *     to set up as e.g. "alarm 15 minutes after each hour".
134	 *     Linux uses only oneshot alarms.
135	 *
136	 * When we see that here, we deal with it by using values from
137	 * a current RTC timestamp for any missing (-1) values.  The
138	 * RTC driver prevents "periodic alarm" modes.
139	 *
140	 * But this can be racey, because some fields of the RTC timestamp
141	 * may have wrapped in the interval since we read the RTC alarm,
142	 * which would lead to us inserting inconsistent values in place
143	 * of the -1 fields.
144	 *
145	 * Reading the alarm and timestamp in the reverse sequence
146	 * would have the same race condition, and not solve the issue.
147	 *
148	 * So, we must first read the RTC timestamp,
149	 * then read the RTC alarm value,
150	 * and then read a second RTC timestamp.
151	 *
152	 * If any fields of the second timestamp have changed
153	 * when compared with the first timestamp, then we know
154	 * our timestamp may be inconsistent with that used by
155	 * the low-level rtc_read_alarm_internal() function.
156	 *
157	 * So, when the two timestamps disagree, we just loop and do
158	 * the process again to get a fully consistent set of values.
159	 *
160	 * This could all instead be done in the lower level driver,
161	 * but since more than one lower level RTC implementation needs it,
162	 * then it's probably best best to do it here instead of there..
163	 */
164
165	/* Get the "before" timestamp */
166	err = rtc_read_time(rtc, &before);
167	if (err < 0)
168		return err;
169	do {
170		if (!first_time)
171			memcpy(&before, &now, sizeof(struct rtc_time));
172		first_time = 0;
173
174		/* get the RTC alarm values, which may be incomplete */
175		err = rtc_read_alarm_internal(rtc, alarm);
176		if (err)
177			return err;
178
179		/* full-function RTCs won't have such missing fields */
180		if (rtc_valid_tm(&alarm->time) == 0)
181			return 0;
182
183		/* get the "after" timestamp, to detect wrapped fields */
184		err = rtc_read_time(rtc, &now);
185		if (err < 0)
186			return err;
187
188		/* note that tm_sec is a "don't care" value here: */
189	} while (   before.tm_min   != now.tm_min
190		 || before.tm_hour  != now.tm_hour
191		 || before.tm_mon   != now.tm_mon
192		 || before.tm_year  != now.tm_year);
193
194	/* Fill in the missing alarm fields using the timestamp; we
195	 * know there's at least one since alarm->time is invalid.
196	 */
197	if (alarm->time.tm_sec == -1)
198		alarm->time.tm_sec = now.tm_sec;
199	if (alarm->time.tm_min == -1)
200		alarm->time.tm_min = now.tm_min;
201	if (alarm->time.tm_hour == -1)
202		alarm->time.tm_hour = now.tm_hour;
203
204	/* For simplicity, only support date rollover for now */
205	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
206		alarm->time.tm_mday = now.tm_mday;
207		missing = day;
208	}
209	if ((unsigned)alarm->time.tm_mon >= 12) {
210		alarm->time.tm_mon = now.tm_mon;
211		if (missing == none)
212			missing = month;
213	}
214	if (alarm->time.tm_year == -1) {
215		alarm->time.tm_year = now.tm_year;
216		if (missing == none)
217			missing = year;
218	}
219
220	/* with luck, no rollover is needed */
221	t_now = rtc_tm_to_time64(&now);
222	t_alm = rtc_tm_to_time64(&alarm->time);
223	if (t_now < t_alm)
224		goto done;
225
226	switch (missing) {
227
228	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
229	 * that will trigger at 5am will do so at 5am Tuesday, which
230	 * could also be in the next month or year.  This is a common
231	 * case, especially for PCs.
232	 */
233	case day:
234		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
235		t_alm += 24 * 60 * 60;
236		rtc_time64_to_tm(t_alm, &alarm->time);
237		break;
238
239	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
240	 * be next month.  An alarm matching on the 30th, 29th, or 28th
241	 * may end up in the month after that!  Many newer PCs support
242	 * this type of alarm.
243	 */
244	case month:
245		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
246		do {
247			if (alarm->time.tm_mon < 11)
248				alarm->time.tm_mon++;
249			else {
250				alarm->time.tm_mon = 0;
251				alarm->time.tm_year++;
252			}
253			days = rtc_month_days(alarm->time.tm_mon,
254					alarm->time.tm_year);
255		} while (days < alarm->time.tm_mday);
256		break;
257
258	/* Year rollover ... easy except for leap years! */
259	case year:
260		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
261		do {
262			alarm->time.tm_year++;
263		} while (!is_leap_year(alarm->time.tm_year + 1900)
264			&& rtc_valid_tm(&alarm->time) != 0);
265		break;
266
267	default:
268		dev_warn(&rtc->dev, "alarm rollover not handled\n");
269	}
270
271done:
272	err = rtc_valid_tm(&alarm->time);
273
274	if (err) {
275		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
276			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
277			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
278			alarm->time.tm_sec);
279	}
280
281	return err;
282}
283
284int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
285{
286	int err;
287
288	err = mutex_lock_interruptible(&rtc->ops_lock);
289	if (err)
290		return err;
291	if (rtc->ops == NULL)
292		err = -ENODEV;
293	else if (!rtc->ops->read_alarm)
294		err = -EINVAL;
295	else {
296		memset(alarm, 0, sizeof(struct rtc_wkalrm));
297		alarm->enabled = rtc->aie_timer.enabled;
298		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
299	}
300	mutex_unlock(&rtc->ops_lock);
301
302	return err;
303}
304EXPORT_SYMBOL_GPL(rtc_read_alarm);
305
306static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
307{
308	struct rtc_time tm;
309	time64_t now, scheduled;
310	int err;
311
312	err = rtc_valid_tm(&alarm->time);
313	if (err)
314		return err;
315	scheduled = rtc_tm_to_time64(&alarm->time);
316
317	/* Make sure we're not setting alarms in the past */
318	err = __rtc_read_time(rtc, &tm);
319	if (err)
320		return err;
321	now = rtc_tm_to_time64(&tm);
322	if (scheduled <= now)
323		return -ETIME;
324	/*
325	 * XXX - We just checked to make sure the alarm time is not
326	 * in the past, but there is still a race window where if
327	 * the is alarm set for the next second and the second ticks
328	 * over right here, before we set the alarm.
329	 */
330
331	if (!rtc->ops)
332		err = -ENODEV;
333	else if (!rtc->ops->set_alarm)
334		err = -EINVAL;
335	else
336		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
337
338	return err;
339}
340
341int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
342{
343	int err;
344
345	err = rtc_valid_tm(&alarm->time);
346	if (err != 0)
347		return err;
348
349	err = mutex_lock_interruptible(&rtc->ops_lock);
350	if (err)
351		return err;
352	if (rtc->aie_timer.enabled)
353		rtc_timer_remove(rtc, &rtc->aie_timer);
354
355	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
356	rtc->aie_timer.period = ktime_set(0, 0);
357	if (alarm->enabled)
358		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
359
360	mutex_unlock(&rtc->ops_lock);
361	return err;
362}
363EXPORT_SYMBOL_GPL(rtc_set_alarm);
364
365/* Called once per device from rtc_device_register */
366int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
367{
368	int err;
369	struct rtc_time now;
370
371	err = rtc_valid_tm(&alarm->time);
372	if (err != 0)
373		return err;
374
375	err = rtc_read_time(rtc, &now);
376	if (err)
377		return err;
378
379	err = mutex_lock_interruptible(&rtc->ops_lock);
380	if (err)
381		return err;
382
383	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
384	rtc->aie_timer.period = ktime_set(0, 0);
385
386	/* Alarm has to be enabled & in the futrure for us to enqueue it */
387	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
388			 rtc->aie_timer.node.expires.tv64)) {
389
390		rtc->aie_timer.enabled = 1;
391		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
392	}
393	mutex_unlock(&rtc->ops_lock);
394	return err;
395}
396EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
397
398
399
400int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
401{
402	int err = mutex_lock_interruptible(&rtc->ops_lock);
403	if (err)
404		return err;
405
406	if (rtc->aie_timer.enabled != enabled) {
407		if (enabled)
408			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
409		else
410			rtc_timer_remove(rtc, &rtc->aie_timer);
411	}
412
413	if (err)
414		/* nothing */;
415	else if (!rtc->ops)
416		err = -ENODEV;
417	else if (!rtc->ops->alarm_irq_enable)
418		err = -EINVAL;
419	else
420		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
421
422	mutex_unlock(&rtc->ops_lock);
423	return err;
424}
425EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
426
427int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
428{
429	int err = mutex_lock_interruptible(&rtc->ops_lock);
430	if (err)
431		return err;
432
433#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
434	if (enabled == 0 && rtc->uie_irq_active) {
435		mutex_unlock(&rtc->ops_lock);
436		return rtc_dev_update_irq_enable_emul(rtc, 0);
437	}
438#endif
439	/* make sure we're changing state */
440	if (rtc->uie_rtctimer.enabled == enabled)
441		goto out;
442
443	if (rtc->uie_unsupported) {
444		err = -EINVAL;
445		goto out;
446	}
447
448	if (enabled) {
449		struct rtc_time tm;
450		ktime_t now, onesec;
451
452		__rtc_read_time(rtc, &tm);
453		onesec = ktime_set(1, 0);
454		now = rtc_tm_to_ktime(tm);
455		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
456		rtc->uie_rtctimer.period = ktime_set(1, 0);
457		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
458	} else
459		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
460
461out:
462	mutex_unlock(&rtc->ops_lock);
463#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
464	/*
465	 * Enable emulation if the driver did not provide
466	 * the update_irq_enable function pointer or if returned
467	 * -EINVAL to signal that it has been configured without
468	 * interrupts or that are not available at the moment.
469	 */
470	if (err == -EINVAL)
471		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
472#endif
473	return err;
474
475}
476EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
477
478
479/**
480 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
481 * @rtc: pointer to the rtc device
482 *
483 * This function is called when an AIE, UIE or PIE mode interrupt
484 * has occurred (or been emulated).
485 *
486 * Triggers the registered irq_task function callback.
487 */
488void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
489{
490	unsigned long flags;
491
492	/* mark one irq of the appropriate mode */
493	spin_lock_irqsave(&rtc->irq_lock, flags);
494	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
495	spin_unlock_irqrestore(&rtc->irq_lock, flags);
496
497	/* call the task func */
498	spin_lock_irqsave(&rtc->irq_task_lock, flags);
499	if (rtc->irq_task)
500		rtc->irq_task->func(rtc->irq_task->private_data);
501	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
502
503	wake_up_interruptible(&rtc->irq_queue);
504	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
505}
506
507
508/**
509 * rtc_aie_update_irq - AIE mode rtctimer hook
510 * @private: pointer to the rtc_device
511 *
512 * This functions is called when the aie_timer expires.
513 */
514void rtc_aie_update_irq(void *private)
515{
516	struct rtc_device *rtc = (struct rtc_device *)private;
517	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
518}
519
520
521/**
522 * rtc_uie_update_irq - UIE mode rtctimer hook
523 * @private: pointer to the rtc_device
524 *
525 * This functions is called when the uie_timer expires.
526 */
527void rtc_uie_update_irq(void *private)
528{
529	struct rtc_device *rtc = (struct rtc_device *)private;
530	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
531}
532
533
534/**
535 * rtc_pie_update_irq - PIE mode hrtimer hook
536 * @timer: pointer to the pie mode hrtimer
537 *
538 * This function is used to emulate PIE mode interrupts
539 * using an hrtimer. This function is called when the periodic
540 * hrtimer expires.
541 */
542enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
543{
544	struct rtc_device *rtc;
545	ktime_t period;
546	int count;
547	rtc = container_of(timer, struct rtc_device, pie_timer);
548
549	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
550	count = hrtimer_forward_now(timer, period);
551
552	rtc_handle_legacy_irq(rtc, count, RTC_PF);
553
554	return HRTIMER_RESTART;
555}
556
557/**
558 * rtc_update_irq - Triggered when a RTC interrupt occurs.
559 * @rtc: the rtc device
560 * @num: how many irqs are being reported (usually one)
561 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
562 * Context: any
563 */
564void rtc_update_irq(struct rtc_device *rtc,
565		unsigned long num, unsigned long events)
566{
567	if (IS_ERR_OR_NULL(rtc))
568		return;
569
570	pm_stay_awake(rtc->dev.parent);
571	schedule_work(&rtc->irqwork);
572}
573EXPORT_SYMBOL_GPL(rtc_update_irq);
574
575static int __rtc_match(struct device *dev, const void *data)
576{
577	const char *name = data;
578
579	if (strcmp(dev_name(dev), name) == 0)
580		return 1;
581	return 0;
582}
583
584struct rtc_device *rtc_class_open(const char *name)
585{
586	struct device *dev;
587	struct rtc_device *rtc = NULL;
588
589	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
590	if (dev)
591		rtc = to_rtc_device(dev);
592
593	if (rtc) {
594		if (!try_module_get(rtc->owner)) {
595			put_device(dev);
596			rtc = NULL;
597		}
598	}
599
600	return rtc;
601}
602EXPORT_SYMBOL_GPL(rtc_class_open);
603
604void rtc_class_close(struct rtc_device *rtc)
605{
606	module_put(rtc->owner);
607	put_device(&rtc->dev);
608}
609EXPORT_SYMBOL_GPL(rtc_class_close);
610
611int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
612{
613	int retval = -EBUSY;
614
615	if (task == NULL || task->func == NULL)
616		return -EINVAL;
617
618	/* Cannot register while the char dev is in use */
619	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
620		return -EBUSY;
621
622	spin_lock_irq(&rtc->irq_task_lock);
623	if (rtc->irq_task == NULL) {
624		rtc->irq_task = task;
625		retval = 0;
626	}
627	spin_unlock_irq(&rtc->irq_task_lock);
628
629	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
630
631	return retval;
632}
633EXPORT_SYMBOL_GPL(rtc_irq_register);
634
635void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
636{
637	spin_lock_irq(&rtc->irq_task_lock);
638	if (rtc->irq_task == task)
639		rtc->irq_task = NULL;
640	spin_unlock_irq(&rtc->irq_task_lock);
641}
642EXPORT_SYMBOL_GPL(rtc_irq_unregister);
643
644static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
645{
646	/*
647	 * We always cancel the timer here first, because otherwise
648	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
649	 * when we manage to start the timer before the callback
650	 * returns HRTIMER_RESTART.
651	 *
652	 * We cannot use hrtimer_cancel() here as a running callback
653	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
654	 * would spin forever.
655	 */
656	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
657		return -1;
658
659	if (enabled) {
660		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
661
662		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
663	}
664	return 0;
665}
666
667/**
668 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
669 * @rtc: the rtc device
670 * @task: currently registered with rtc_irq_register()
671 * @enabled: true to enable periodic IRQs
672 * Context: any
673 *
674 * Note that rtc_irq_set_freq() should previously have been used to
675 * specify the desired frequency of periodic IRQ task->func() callbacks.
676 */
677int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
678{
679	int err = 0;
680	unsigned long flags;
681
682retry:
683	spin_lock_irqsave(&rtc->irq_task_lock, flags);
684	if (rtc->irq_task != NULL && task == NULL)
685		err = -EBUSY;
686	else if (rtc->irq_task != task)
687		err = -EACCES;
688	else {
689		if (rtc_update_hrtimer(rtc, enabled) < 0) {
690			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
691			cpu_relax();
692			goto retry;
693		}
694		rtc->pie_enabled = enabled;
695	}
696	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
697	return err;
698}
699EXPORT_SYMBOL_GPL(rtc_irq_set_state);
700
701/**
702 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
703 * @rtc: the rtc device
704 * @task: currently registered with rtc_irq_register()
705 * @freq: positive frequency with which task->func() will be called
706 * Context: any
707 *
708 * Note that rtc_irq_set_state() is used to enable or disable the
709 * periodic IRQs.
710 */
711int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
712{
713	int err = 0;
714	unsigned long flags;
715
716	if (freq <= 0 || freq > RTC_MAX_FREQ)
717		return -EINVAL;
718retry:
719	spin_lock_irqsave(&rtc->irq_task_lock, flags);
720	if (rtc->irq_task != NULL && task == NULL)
721		err = -EBUSY;
722	else if (rtc->irq_task != task)
723		err = -EACCES;
724	else {
725		rtc->irq_freq = freq;
726		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
727			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
728			cpu_relax();
729			goto retry;
730		}
731	}
732	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
733	return err;
734}
735EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
736
737/**
738 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
739 * @rtc rtc device
740 * @timer timer being added.
741 *
742 * Enqueues a timer onto the rtc devices timerqueue and sets
743 * the next alarm event appropriately.
744 *
745 * Sets the enabled bit on the added timer.
746 *
747 * Must hold ops_lock for proper serialization of timerqueue
748 */
749static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
750{
 
 
 
 
751	timer->enabled = 1;
 
 
 
 
 
 
 
 
 
 
752	timerqueue_add(&rtc->timerqueue, &timer->node);
753	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
754		struct rtc_wkalrm alarm;
755		int err;
756		alarm.time = rtc_ktime_to_tm(timer->node.expires);
757		alarm.enabled = 1;
758		err = __rtc_set_alarm(rtc, &alarm);
759		if (err == -ETIME) {
760			pm_stay_awake(rtc->dev.parent);
761			schedule_work(&rtc->irqwork);
762		} else if (err) {
763			timerqueue_del(&rtc->timerqueue, &timer->node);
764			timer->enabled = 0;
765			return err;
766		}
767	}
768	return 0;
769}
770
771static void rtc_alarm_disable(struct rtc_device *rtc)
772{
773	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
774		return;
775
776	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
777}
778
779/**
780 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
781 * @rtc rtc device
782 * @timer timer being removed.
783 *
784 * Removes a timer onto the rtc devices timerqueue and sets
785 * the next alarm event appropriately.
786 *
787 * Clears the enabled bit on the removed timer.
788 *
789 * Must hold ops_lock for proper serialization of timerqueue
790 */
791static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
792{
793	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
794	timerqueue_del(&rtc->timerqueue, &timer->node);
795	timer->enabled = 0;
796	if (next == &timer->node) {
797		struct rtc_wkalrm alarm;
798		int err;
799		next = timerqueue_getnext(&rtc->timerqueue);
800		if (!next) {
801			rtc_alarm_disable(rtc);
802			return;
803		}
804		alarm.time = rtc_ktime_to_tm(next->expires);
805		alarm.enabled = 1;
806		err = __rtc_set_alarm(rtc, &alarm);
807		if (err == -ETIME) {
808			pm_stay_awake(rtc->dev.parent);
809			schedule_work(&rtc->irqwork);
810		}
811	}
812}
813
814/**
815 * rtc_timer_do_work - Expires rtc timers
816 * @rtc rtc device
817 * @timer timer being removed.
818 *
819 * Expires rtc timers. Reprograms next alarm event if needed.
820 * Called via worktask.
821 *
822 * Serializes access to timerqueue via ops_lock mutex
823 */
824void rtc_timer_do_work(struct work_struct *work)
825{
826	struct rtc_timer *timer;
827	struct timerqueue_node *next;
828	ktime_t now;
829	struct rtc_time tm;
830
831	struct rtc_device *rtc =
832		container_of(work, struct rtc_device, irqwork);
833
834	mutex_lock(&rtc->ops_lock);
835again:
836	__rtc_read_time(rtc, &tm);
837	now = rtc_tm_to_ktime(tm);
838	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
839		if (next->expires.tv64 > now.tv64)
840			break;
841
842		/* expire timer */
843		timer = container_of(next, struct rtc_timer, node);
844		timerqueue_del(&rtc->timerqueue, &timer->node);
845		timer->enabled = 0;
846		if (timer->task.func)
847			timer->task.func(timer->task.private_data);
848
849		/* Re-add/fwd periodic timers */
850		if (ktime_to_ns(timer->period)) {
851			timer->node.expires = ktime_add(timer->node.expires,
852							timer->period);
853			timer->enabled = 1;
854			timerqueue_add(&rtc->timerqueue, &timer->node);
855		}
856	}
857
858	/* Set next alarm */
859	if (next) {
860		struct rtc_wkalrm alarm;
861		int err;
862		int retry = 3;
863
864		alarm.time = rtc_ktime_to_tm(next->expires);
865		alarm.enabled = 1;
866reprogram:
867		err = __rtc_set_alarm(rtc, &alarm);
868		if (err == -ETIME)
869			goto again;
870		else if (err) {
871			if (retry-- > 0)
872				goto reprogram;
873
874			timer = container_of(next, struct rtc_timer, node);
875			timerqueue_del(&rtc->timerqueue, &timer->node);
876			timer->enabled = 0;
877			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
878			goto again;
879		}
880	} else
881		rtc_alarm_disable(rtc);
882
883	pm_relax(rtc->dev.parent);
884	mutex_unlock(&rtc->ops_lock);
885}
886
887
888/* rtc_timer_init - Initializes an rtc_timer
889 * @timer: timer to be intiialized
890 * @f: function pointer to be called when timer fires
891 * @data: private data passed to function pointer
892 *
893 * Kernel interface to initializing an rtc_timer.
894 */
895void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
896{
897	timerqueue_init(&timer->node);
898	timer->enabled = 0;
899	timer->task.func = f;
900	timer->task.private_data = data;
901}
902
903/* rtc_timer_start - Sets an rtc_timer to fire in the future
904 * @ rtc: rtc device to be used
905 * @ timer: timer being set
906 * @ expires: time at which to expire the timer
907 * @ period: period that the timer will recur
908 *
909 * Kernel interface to set an rtc_timer
910 */
911int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
912			ktime_t expires, ktime_t period)
913{
914	int ret = 0;
915	mutex_lock(&rtc->ops_lock);
916	if (timer->enabled)
917		rtc_timer_remove(rtc, timer);
918
919	timer->node.expires = expires;
920	timer->period = period;
921
922	ret = rtc_timer_enqueue(rtc, timer);
923
924	mutex_unlock(&rtc->ops_lock);
925	return ret;
926}
927
928/* rtc_timer_cancel - Stops an rtc_timer
929 * @ rtc: rtc device to be used
930 * @ timer: timer being set
931 *
932 * Kernel interface to cancel an rtc_timer
933 */
934void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
935{
936	mutex_lock(&rtc->ops_lock);
937	if (timer->enabled)
938		rtc_timer_remove(rtc, timer);
939	mutex_unlock(&rtc->ops_lock);
940}
941
942/**
943 * rtc_read_offset - Read the amount of rtc offset in parts per billion
944 * @ rtc: rtc device to be used
945 * @ offset: the offset in parts per billion
946 *
947 * see below for details.
948 *
949 * Kernel interface to read rtc clock offset
950 * Returns 0 on success, or a negative number on error.
951 * If read_offset() is not implemented for the rtc, return -EINVAL
952 */
953int rtc_read_offset(struct rtc_device *rtc, long *offset)
954{
955	int ret;
956
957	if (!rtc->ops)
958		return -ENODEV;
959
960	if (!rtc->ops->read_offset)
961		return -EINVAL;
962
963	mutex_lock(&rtc->ops_lock);
964	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
965	mutex_unlock(&rtc->ops_lock);
966	return ret;
967}
968
969/**
970 * rtc_set_offset - Adjusts the duration of the average second
971 * @ rtc: rtc device to be used
972 * @ offset: the offset in parts per billion
973 *
974 * Some rtc's allow an adjustment to the average duration of a second
975 * to compensate for differences in the actual clock rate due to temperature,
976 * the crystal, capacitor, etc.
977 *
978 * Kernel interface to adjust an rtc clock offset.
979 * Return 0 on success, or a negative number on error.
980 * If the rtc offset is not setable (or not implemented), return -EINVAL
981 */
982int rtc_set_offset(struct rtc_device *rtc, long offset)
983{
984	int ret;
985
986	if (!rtc->ops)
987		return -ENODEV;
988
989	if (!rtc->ops->set_offset)
990		return -EINVAL;
991
992	mutex_lock(&rtc->ops_lock);
993	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
994	mutex_unlock(&rtc->ops_lock);
995	return ret;
996}
v4.10.11
   1/*
   2 * RTC subsystem, interface functions
   3 *
   4 * Copyright (C) 2005 Tower Technologies
   5 * Author: Alessandro Zummo <a.zummo@towertech.it>
   6 *
   7 * based on arch/arm/common/rtctime.c
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12*/
  13
  14#include <linux/rtc.h>
  15#include <linux/sched.h>
  16#include <linux/module.h>
  17#include <linux/log2.h>
  18#include <linux/workqueue.h>
  19
  20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  22
  23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  24{
  25	int err;
  26	if (!rtc->ops)
  27		err = -ENODEV;
  28	else if (!rtc->ops->read_time)
  29		err = -EINVAL;
  30	else {
  31		memset(tm, 0, sizeof(struct rtc_time));
  32		err = rtc->ops->read_time(rtc->dev.parent, tm);
  33		if (err < 0) {
  34			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  35				err);
  36			return err;
  37		}
  38
  39		err = rtc_valid_tm(tm);
  40		if (err < 0)
  41			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
  42	}
  43	return err;
  44}
  45
  46int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  47{
  48	int err;
  49
  50	err = mutex_lock_interruptible(&rtc->ops_lock);
  51	if (err)
  52		return err;
  53
  54	err = __rtc_read_time(rtc, tm);
  55	mutex_unlock(&rtc->ops_lock);
  56	return err;
  57}
  58EXPORT_SYMBOL_GPL(rtc_read_time);
  59
  60int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
  61{
  62	int err;
  63
  64	err = rtc_valid_tm(tm);
  65	if (err != 0)
  66		return err;
  67
  68	err = mutex_lock_interruptible(&rtc->ops_lock);
  69	if (err)
  70		return err;
  71
  72	if (!rtc->ops)
  73		err = -ENODEV;
  74	else if (rtc->ops->set_time)
  75		err = rtc->ops->set_time(rtc->dev.parent, tm);
  76	else if (rtc->ops->set_mmss64) {
  77		time64_t secs64 = rtc_tm_to_time64(tm);
  78
  79		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
  80	} else if (rtc->ops->set_mmss) {
  81		time64_t secs64 = rtc_tm_to_time64(tm);
  82		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
  83	} else
  84		err = -EINVAL;
  85
  86	pm_stay_awake(rtc->dev.parent);
  87	mutex_unlock(&rtc->ops_lock);
  88	/* A timer might have just expired */
  89	schedule_work(&rtc->irqwork);
  90	return err;
  91}
  92EXPORT_SYMBOL_GPL(rtc_set_time);
  93
  94static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
  95{
  96	int err;
  97
  98	err = mutex_lock_interruptible(&rtc->ops_lock);
  99	if (err)
 100		return err;
 101
 102	if (rtc->ops == NULL)
 103		err = -ENODEV;
 104	else if (!rtc->ops->read_alarm)
 105		err = -EINVAL;
 106	else {
 107		alarm->enabled = 0;
 108		alarm->pending = 0;
 109		alarm->time.tm_sec = -1;
 110		alarm->time.tm_min = -1;
 111		alarm->time.tm_hour = -1;
 112		alarm->time.tm_mday = -1;
 113		alarm->time.tm_mon = -1;
 114		alarm->time.tm_year = -1;
 115		alarm->time.tm_wday = -1;
 116		alarm->time.tm_yday = -1;
 117		alarm->time.tm_isdst = -1;
 118		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 119	}
 120
 121	mutex_unlock(&rtc->ops_lock);
 122	return err;
 123}
 124
 125int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 126{
 127	int err;
 128	struct rtc_time before, now;
 129	int first_time = 1;
 130	time64_t t_now, t_alm;
 131	enum { none, day, month, year } missing = none;
 132	unsigned days;
 133
 134	/* The lower level RTC driver may return -1 in some fields,
 135	 * creating invalid alarm->time values, for reasons like:
 136	 *
 137	 *   - The hardware may not be capable of filling them in;
 138	 *     many alarms match only on time-of-day fields, not
 139	 *     day/month/year calendar data.
 140	 *
 141	 *   - Some hardware uses illegal values as "wildcard" match
 142	 *     values, which non-Linux firmware (like a BIOS) may try
 143	 *     to set up as e.g. "alarm 15 minutes after each hour".
 144	 *     Linux uses only oneshot alarms.
 145	 *
 146	 * When we see that here, we deal with it by using values from
 147	 * a current RTC timestamp for any missing (-1) values.  The
 148	 * RTC driver prevents "periodic alarm" modes.
 149	 *
 150	 * But this can be racey, because some fields of the RTC timestamp
 151	 * may have wrapped in the interval since we read the RTC alarm,
 152	 * which would lead to us inserting inconsistent values in place
 153	 * of the -1 fields.
 154	 *
 155	 * Reading the alarm and timestamp in the reverse sequence
 156	 * would have the same race condition, and not solve the issue.
 157	 *
 158	 * So, we must first read the RTC timestamp,
 159	 * then read the RTC alarm value,
 160	 * and then read a second RTC timestamp.
 161	 *
 162	 * If any fields of the second timestamp have changed
 163	 * when compared with the first timestamp, then we know
 164	 * our timestamp may be inconsistent with that used by
 165	 * the low-level rtc_read_alarm_internal() function.
 166	 *
 167	 * So, when the two timestamps disagree, we just loop and do
 168	 * the process again to get a fully consistent set of values.
 169	 *
 170	 * This could all instead be done in the lower level driver,
 171	 * but since more than one lower level RTC implementation needs it,
 172	 * then it's probably best best to do it here instead of there..
 173	 */
 174
 175	/* Get the "before" timestamp */
 176	err = rtc_read_time(rtc, &before);
 177	if (err < 0)
 178		return err;
 179	do {
 180		if (!first_time)
 181			memcpy(&before, &now, sizeof(struct rtc_time));
 182		first_time = 0;
 183
 184		/* get the RTC alarm values, which may be incomplete */
 185		err = rtc_read_alarm_internal(rtc, alarm);
 186		if (err)
 187			return err;
 188
 189		/* full-function RTCs won't have such missing fields */
 190		if (rtc_valid_tm(&alarm->time) == 0)
 191			return 0;
 192
 193		/* get the "after" timestamp, to detect wrapped fields */
 194		err = rtc_read_time(rtc, &now);
 195		if (err < 0)
 196			return err;
 197
 198		/* note that tm_sec is a "don't care" value here: */
 199	} while (   before.tm_min   != now.tm_min
 200		 || before.tm_hour  != now.tm_hour
 201		 || before.tm_mon   != now.tm_mon
 202		 || before.tm_year  != now.tm_year);
 203
 204	/* Fill in the missing alarm fields using the timestamp; we
 205	 * know there's at least one since alarm->time is invalid.
 206	 */
 207	if (alarm->time.tm_sec == -1)
 208		alarm->time.tm_sec = now.tm_sec;
 209	if (alarm->time.tm_min == -1)
 210		alarm->time.tm_min = now.tm_min;
 211	if (alarm->time.tm_hour == -1)
 212		alarm->time.tm_hour = now.tm_hour;
 213
 214	/* For simplicity, only support date rollover for now */
 215	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 216		alarm->time.tm_mday = now.tm_mday;
 217		missing = day;
 218	}
 219	if ((unsigned)alarm->time.tm_mon >= 12) {
 220		alarm->time.tm_mon = now.tm_mon;
 221		if (missing == none)
 222			missing = month;
 223	}
 224	if (alarm->time.tm_year == -1) {
 225		alarm->time.tm_year = now.tm_year;
 226		if (missing == none)
 227			missing = year;
 228	}
 229
 230	/* with luck, no rollover is needed */
 231	t_now = rtc_tm_to_time64(&now);
 232	t_alm = rtc_tm_to_time64(&alarm->time);
 233	if (t_now < t_alm)
 234		goto done;
 235
 236	switch (missing) {
 237
 238	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 239	 * that will trigger at 5am will do so at 5am Tuesday, which
 240	 * could also be in the next month or year.  This is a common
 241	 * case, especially for PCs.
 242	 */
 243	case day:
 244		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 245		t_alm += 24 * 60 * 60;
 246		rtc_time64_to_tm(t_alm, &alarm->time);
 247		break;
 248
 249	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 250	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 251	 * may end up in the month after that!  Many newer PCs support
 252	 * this type of alarm.
 253	 */
 254	case month:
 255		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 256		do {
 257			if (alarm->time.tm_mon < 11)
 258				alarm->time.tm_mon++;
 259			else {
 260				alarm->time.tm_mon = 0;
 261				alarm->time.tm_year++;
 262			}
 263			days = rtc_month_days(alarm->time.tm_mon,
 264					alarm->time.tm_year);
 265		} while (days < alarm->time.tm_mday);
 266		break;
 267
 268	/* Year rollover ... easy except for leap years! */
 269	case year:
 270		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 271		do {
 272			alarm->time.tm_year++;
 273		} while (!is_leap_year(alarm->time.tm_year + 1900)
 274			&& rtc_valid_tm(&alarm->time) != 0);
 275		break;
 276
 277	default:
 278		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 279	}
 280
 281done:
 282	err = rtc_valid_tm(&alarm->time);
 283
 284	if (err) {
 285		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
 286			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
 287			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
 288			alarm->time.tm_sec);
 289	}
 290
 291	return err;
 292}
 293
 294int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 295{
 296	int err;
 297
 298	err = mutex_lock_interruptible(&rtc->ops_lock);
 299	if (err)
 300		return err;
 301	if (rtc->ops == NULL)
 302		err = -ENODEV;
 303	else if (!rtc->ops->read_alarm)
 304		err = -EINVAL;
 305	else {
 306		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 307		alarm->enabled = rtc->aie_timer.enabled;
 308		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 309	}
 310	mutex_unlock(&rtc->ops_lock);
 311
 312	return err;
 313}
 314EXPORT_SYMBOL_GPL(rtc_read_alarm);
 315
 316static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 317{
 318	struct rtc_time tm;
 319	time64_t now, scheduled;
 320	int err;
 321
 322	err = rtc_valid_tm(&alarm->time);
 323	if (err)
 324		return err;
 325	scheduled = rtc_tm_to_time64(&alarm->time);
 326
 327	/* Make sure we're not setting alarms in the past */
 328	err = __rtc_read_time(rtc, &tm);
 329	if (err)
 330		return err;
 331	now = rtc_tm_to_time64(&tm);
 332	if (scheduled <= now)
 333		return -ETIME;
 334	/*
 335	 * XXX - We just checked to make sure the alarm time is not
 336	 * in the past, but there is still a race window where if
 337	 * the is alarm set for the next second and the second ticks
 338	 * over right here, before we set the alarm.
 339	 */
 340
 341	if (!rtc->ops)
 342		err = -ENODEV;
 343	else if (!rtc->ops->set_alarm)
 344		err = -EINVAL;
 345	else
 346		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 347
 348	return err;
 349}
 350
 351int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 352{
 353	int err;
 354
 355	err = rtc_valid_tm(&alarm->time);
 356	if (err != 0)
 357		return err;
 358
 359	err = mutex_lock_interruptible(&rtc->ops_lock);
 360	if (err)
 361		return err;
 362	if (rtc->aie_timer.enabled)
 363		rtc_timer_remove(rtc, &rtc->aie_timer);
 364
 365	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 366	rtc->aie_timer.period = 0;
 367	if (alarm->enabled)
 368		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 369
 370	mutex_unlock(&rtc->ops_lock);
 371	return err;
 372}
 373EXPORT_SYMBOL_GPL(rtc_set_alarm);
 374
 375/* Called once per device from rtc_device_register */
 376int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 377{
 378	int err;
 379	struct rtc_time now;
 380
 381	err = rtc_valid_tm(&alarm->time);
 382	if (err != 0)
 383		return err;
 384
 385	err = rtc_read_time(rtc, &now);
 386	if (err)
 387		return err;
 388
 389	err = mutex_lock_interruptible(&rtc->ops_lock);
 390	if (err)
 391		return err;
 392
 393	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 394	rtc->aie_timer.period = 0;
 395
 396	/* Alarm has to be enabled & in the future for us to enqueue it */
 397	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 398			 rtc->aie_timer.node.expires)) {
 399
 400		rtc->aie_timer.enabled = 1;
 401		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 402	}
 403	mutex_unlock(&rtc->ops_lock);
 404	return err;
 405}
 406EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 407
 
 
 408int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 409{
 410	int err = mutex_lock_interruptible(&rtc->ops_lock);
 411	if (err)
 412		return err;
 413
 414	if (rtc->aie_timer.enabled != enabled) {
 415		if (enabled)
 416			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 417		else
 418			rtc_timer_remove(rtc, &rtc->aie_timer);
 419	}
 420
 421	if (err)
 422		/* nothing */;
 423	else if (!rtc->ops)
 424		err = -ENODEV;
 425	else if (!rtc->ops->alarm_irq_enable)
 426		err = -EINVAL;
 427	else
 428		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 429
 430	mutex_unlock(&rtc->ops_lock);
 431	return err;
 432}
 433EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 434
 435int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 436{
 437	int err = mutex_lock_interruptible(&rtc->ops_lock);
 438	if (err)
 439		return err;
 440
 441#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 442	if (enabled == 0 && rtc->uie_irq_active) {
 443		mutex_unlock(&rtc->ops_lock);
 444		return rtc_dev_update_irq_enable_emul(rtc, 0);
 445	}
 446#endif
 447	/* make sure we're changing state */
 448	if (rtc->uie_rtctimer.enabled == enabled)
 449		goto out;
 450
 451	if (rtc->uie_unsupported) {
 452		err = -EINVAL;
 453		goto out;
 454	}
 455
 456	if (enabled) {
 457		struct rtc_time tm;
 458		ktime_t now, onesec;
 459
 460		__rtc_read_time(rtc, &tm);
 461		onesec = ktime_set(1, 0);
 462		now = rtc_tm_to_ktime(tm);
 463		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 464		rtc->uie_rtctimer.period = ktime_set(1, 0);
 465		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 466	} else
 467		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 468
 469out:
 470	mutex_unlock(&rtc->ops_lock);
 471#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 472	/*
 473	 * Enable emulation if the driver did not provide
 474	 * the update_irq_enable function pointer or if returned
 475	 * -EINVAL to signal that it has been configured without
 476	 * interrupts or that are not available at the moment.
 477	 */
 478	if (err == -EINVAL)
 479		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 480#endif
 481	return err;
 482
 483}
 484EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 485
 486
 487/**
 488 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 489 * @rtc: pointer to the rtc device
 490 *
 491 * This function is called when an AIE, UIE or PIE mode interrupt
 492 * has occurred (or been emulated).
 493 *
 494 * Triggers the registered irq_task function callback.
 495 */
 496void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 497{
 498	unsigned long flags;
 499
 500	/* mark one irq of the appropriate mode */
 501	spin_lock_irqsave(&rtc->irq_lock, flags);
 502	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 503	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 504
 505	/* call the task func */
 506	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 507	if (rtc->irq_task)
 508		rtc->irq_task->func(rtc->irq_task->private_data);
 509	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 510
 511	wake_up_interruptible(&rtc->irq_queue);
 512	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 513}
 514
 515
 516/**
 517 * rtc_aie_update_irq - AIE mode rtctimer hook
 518 * @private: pointer to the rtc_device
 519 *
 520 * This functions is called when the aie_timer expires.
 521 */
 522void rtc_aie_update_irq(void *private)
 523{
 524	struct rtc_device *rtc = (struct rtc_device *)private;
 525	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 526}
 527
 528
 529/**
 530 * rtc_uie_update_irq - UIE mode rtctimer hook
 531 * @private: pointer to the rtc_device
 532 *
 533 * This functions is called when the uie_timer expires.
 534 */
 535void rtc_uie_update_irq(void *private)
 536{
 537	struct rtc_device *rtc = (struct rtc_device *)private;
 538	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 539}
 540
 541
 542/**
 543 * rtc_pie_update_irq - PIE mode hrtimer hook
 544 * @timer: pointer to the pie mode hrtimer
 545 *
 546 * This function is used to emulate PIE mode interrupts
 547 * using an hrtimer. This function is called when the periodic
 548 * hrtimer expires.
 549 */
 550enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 551{
 552	struct rtc_device *rtc;
 553	ktime_t period;
 554	int count;
 555	rtc = container_of(timer, struct rtc_device, pie_timer);
 556
 557	period = NSEC_PER_SEC / rtc->irq_freq;
 558	count = hrtimer_forward_now(timer, period);
 559
 560	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 561
 562	return HRTIMER_RESTART;
 563}
 564
 565/**
 566 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 567 * @rtc: the rtc device
 568 * @num: how many irqs are being reported (usually one)
 569 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 570 * Context: any
 571 */
 572void rtc_update_irq(struct rtc_device *rtc,
 573		unsigned long num, unsigned long events)
 574{
 575	if (IS_ERR_OR_NULL(rtc))
 576		return;
 577
 578	pm_stay_awake(rtc->dev.parent);
 579	schedule_work(&rtc->irqwork);
 580}
 581EXPORT_SYMBOL_GPL(rtc_update_irq);
 582
 583static int __rtc_match(struct device *dev, const void *data)
 584{
 585	const char *name = data;
 586
 587	if (strcmp(dev_name(dev), name) == 0)
 588		return 1;
 589	return 0;
 590}
 591
 592struct rtc_device *rtc_class_open(const char *name)
 593{
 594	struct device *dev;
 595	struct rtc_device *rtc = NULL;
 596
 597	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
 598	if (dev)
 599		rtc = to_rtc_device(dev);
 600
 601	if (rtc) {
 602		if (!try_module_get(rtc->owner)) {
 603			put_device(dev);
 604			rtc = NULL;
 605		}
 606	}
 607
 608	return rtc;
 609}
 610EXPORT_SYMBOL_GPL(rtc_class_open);
 611
 612void rtc_class_close(struct rtc_device *rtc)
 613{
 614	module_put(rtc->owner);
 615	put_device(&rtc->dev);
 616}
 617EXPORT_SYMBOL_GPL(rtc_class_close);
 618
 619int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 620{
 621	int retval = -EBUSY;
 622
 623	if (task == NULL || task->func == NULL)
 624		return -EINVAL;
 625
 626	/* Cannot register while the char dev is in use */
 627	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 628		return -EBUSY;
 629
 630	spin_lock_irq(&rtc->irq_task_lock);
 631	if (rtc->irq_task == NULL) {
 632		rtc->irq_task = task;
 633		retval = 0;
 634	}
 635	spin_unlock_irq(&rtc->irq_task_lock);
 636
 637	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 638
 639	return retval;
 640}
 641EXPORT_SYMBOL_GPL(rtc_irq_register);
 642
 643void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 644{
 645	spin_lock_irq(&rtc->irq_task_lock);
 646	if (rtc->irq_task == task)
 647		rtc->irq_task = NULL;
 648	spin_unlock_irq(&rtc->irq_task_lock);
 649}
 650EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 651
 652static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 653{
 654	/*
 655	 * We always cancel the timer here first, because otherwise
 656	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 657	 * when we manage to start the timer before the callback
 658	 * returns HRTIMER_RESTART.
 659	 *
 660	 * We cannot use hrtimer_cancel() here as a running callback
 661	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 662	 * would spin forever.
 663	 */
 664	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 665		return -1;
 666
 667	if (enabled) {
 668		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 669
 670		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 671	}
 672	return 0;
 673}
 674
 675/**
 676 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 677 * @rtc: the rtc device
 678 * @task: currently registered with rtc_irq_register()
 679 * @enabled: true to enable periodic IRQs
 680 * Context: any
 681 *
 682 * Note that rtc_irq_set_freq() should previously have been used to
 683 * specify the desired frequency of periodic IRQ task->func() callbacks.
 684 */
 685int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 686{
 687	int err = 0;
 688	unsigned long flags;
 689
 690retry:
 691	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 692	if (rtc->irq_task != NULL && task == NULL)
 693		err = -EBUSY;
 694	else if (rtc->irq_task != task)
 695		err = -EACCES;
 696	else {
 697		if (rtc_update_hrtimer(rtc, enabled) < 0) {
 698			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 699			cpu_relax();
 700			goto retry;
 701		}
 702		rtc->pie_enabled = enabled;
 703	}
 704	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 705	return err;
 706}
 707EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 708
 709/**
 710 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 711 * @rtc: the rtc device
 712 * @task: currently registered with rtc_irq_register()
 713 * @freq: positive frequency with which task->func() will be called
 714 * Context: any
 715 *
 716 * Note that rtc_irq_set_state() is used to enable or disable the
 717 * periodic IRQs.
 718 */
 719int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 720{
 721	int err = 0;
 722	unsigned long flags;
 723
 724	if (freq <= 0 || freq > RTC_MAX_FREQ)
 725		return -EINVAL;
 726retry:
 727	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 728	if (rtc->irq_task != NULL && task == NULL)
 729		err = -EBUSY;
 730	else if (rtc->irq_task != task)
 731		err = -EACCES;
 732	else {
 733		rtc->irq_freq = freq;
 734		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
 735			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 736			cpu_relax();
 737			goto retry;
 738		}
 739	}
 740	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 741	return err;
 742}
 743EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 744
 745/**
 746 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 747 * @rtc rtc device
 748 * @timer timer being added.
 749 *
 750 * Enqueues a timer onto the rtc devices timerqueue and sets
 751 * the next alarm event appropriately.
 752 *
 753 * Sets the enabled bit on the added timer.
 754 *
 755 * Must hold ops_lock for proper serialization of timerqueue
 756 */
 757static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 758{
 759	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 760	struct rtc_time tm;
 761	ktime_t now;
 762
 763	timer->enabled = 1;
 764	__rtc_read_time(rtc, &tm);
 765	now = rtc_tm_to_ktime(tm);
 766
 767	/* Skip over expired timers */
 768	while (next) {
 769		if (next->expires >= now)
 770			break;
 771		next = timerqueue_iterate_next(next);
 772	}
 773
 774	timerqueue_add(&rtc->timerqueue, &timer->node);
 775	if (!next) {
 776		struct rtc_wkalrm alarm;
 777		int err;
 778		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 779		alarm.enabled = 1;
 780		err = __rtc_set_alarm(rtc, &alarm);
 781		if (err == -ETIME) {
 782			pm_stay_awake(rtc->dev.parent);
 783			schedule_work(&rtc->irqwork);
 784		} else if (err) {
 785			timerqueue_del(&rtc->timerqueue, &timer->node);
 786			timer->enabled = 0;
 787			return err;
 788		}
 789	}
 790	return 0;
 791}
 792
 793static void rtc_alarm_disable(struct rtc_device *rtc)
 794{
 795	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 796		return;
 797
 798	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 799}
 800
 801/**
 802 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 803 * @rtc rtc device
 804 * @timer timer being removed.
 805 *
 806 * Removes a timer onto the rtc devices timerqueue and sets
 807 * the next alarm event appropriately.
 808 *
 809 * Clears the enabled bit on the removed timer.
 810 *
 811 * Must hold ops_lock for proper serialization of timerqueue
 812 */
 813static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 814{
 815	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 816	timerqueue_del(&rtc->timerqueue, &timer->node);
 817	timer->enabled = 0;
 818	if (next == &timer->node) {
 819		struct rtc_wkalrm alarm;
 820		int err;
 821		next = timerqueue_getnext(&rtc->timerqueue);
 822		if (!next) {
 823			rtc_alarm_disable(rtc);
 824			return;
 825		}
 826		alarm.time = rtc_ktime_to_tm(next->expires);
 827		alarm.enabled = 1;
 828		err = __rtc_set_alarm(rtc, &alarm);
 829		if (err == -ETIME) {
 830			pm_stay_awake(rtc->dev.parent);
 831			schedule_work(&rtc->irqwork);
 832		}
 833	}
 834}
 835
 836/**
 837 * rtc_timer_do_work - Expires rtc timers
 838 * @rtc rtc device
 839 * @timer timer being removed.
 840 *
 841 * Expires rtc timers. Reprograms next alarm event if needed.
 842 * Called via worktask.
 843 *
 844 * Serializes access to timerqueue via ops_lock mutex
 845 */
 846void rtc_timer_do_work(struct work_struct *work)
 847{
 848	struct rtc_timer *timer;
 849	struct timerqueue_node *next;
 850	ktime_t now;
 851	struct rtc_time tm;
 852
 853	struct rtc_device *rtc =
 854		container_of(work, struct rtc_device, irqwork);
 855
 856	mutex_lock(&rtc->ops_lock);
 857again:
 858	__rtc_read_time(rtc, &tm);
 859	now = rtc_tm_to_ktime(tm);
 860	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 861		if (next->expires > now)
 862			break;
 863
 864		/* expire timer */
 865		timer = container_of(next, struct rtc_timer, node);
 866		timerqueue_del(&rtc->timerqueue, &timer->node);
 867		timer->enabled = 0;
 868		if (timer->task.func)
 869			timer->task.func(timer->task.private_data);
 870
 871		/* Re-add/fwd periodic timers */
 872		if (ktime_to_ns(timer->period)) {
 873			timer->node.expires = ktime_add(timer->node.expires,
 874							timer->period);
 875			timer->enabled = 1;
 876			timerqueue_add(&rtc->timerqueue, &timer->node);
 877		}
 878	}
 879
 880	/* Set next alarm */
 881	if (next) {
 882		struct rtc_wkalrm alarm;
 883		int err;
 884		int retry = 3;
 885
 886		alarm.time = rtc_ktime_to_tm(next->expires);
 887		alarm.enabled = 1;
 888reprogram:
 889		err = __rtc_set_alarm(rtc, &alarm);
 890		if (err == -ETIME)
 891			goto again;
 892		else if (err) {
 893			if (retry-- > 0)
 894				goto reprogram;
 895
 896			timer = container_of(next, struct rtc_timer, node);
 897			timerqueue_del(&rtc->timerqueue, &timer->node);
 898			timer->enabled = 0;
 899			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
 900			goto again;
 901		}
 902	} else
 903		rtc_alarm_disable(rtc);
 904
 905	pm_relax(rtc->dev.parent);
 906	mutex_unlock(&rtc->ops_lock);
 907}
 908
 909
 910/* rtc_timer_init - Initializes an rtc_timer
 911 * @timer: timer to be intiialized
 912 * @f: function pointer to be called when timer fires
 913 * @data: private data passed to function pointer
 914 *
 915 * Kernel interface to initializing an rtc_timer.
 916 */
 917void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
 918{
 919	timerqueue_init(&timer->node);
 920	timer->enabled = 0;
 921	timer->task.func = f;
 922	timer->task.private_data = data;
 923}
 924
 925/* rtc_timer_start - Sets an rtc_timer to fire in the future
 926 * @ rtc: rtc device to be used
 927 * @ timer: timer being set
 928 * @ expires: time at which to expire the timer
 929 * @ period: period that the timer will recur
 930 *
 931 * Kernel interface to set an rtc_timer
 932 */
 933int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
 934			ktime_t expires, ktime_t period)
 935{
 936	int ret = 0;
 937	mutex_lock(&rtc->ops_lock);
 938	if (timer->enabled)
 939		rtc_timer_remove(rtc, timer);
 940
 941	timer->node.expires = expires;
 942	timer->period = period;
 943
 944	ret = rtc_timer_enqueue(rtc, timer);
 945
 946	mutex_unlock(&rtc->ops_lock);
 947	return ret;
 948}
 949
 950/* rtc_timer_cancel - Stops an rtc_timer
 951 * @ rtc: rtc device to be used
 952 * @ timer: timer being set
 953 *
 954 * Kernel interface to cancel an rtc_timer
 955 */
 956void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
 957{
 958	mutex_lock(&rtc->ops_lock);
 959	if (timer->enabled)
 960		rtc_timer_remove(rtc, timer);
 961	mutex_unlock(&rtc->ops_lock);
 962}
 963
 964/**
 965 * rtc_read_offset - Read the amount of rtc offset in parts per billion
 966 * @ rtc: rtc device to be used
 967 * @ offset: the offset in parts per billion
 968 *
 969 * see below for details.
 970 *
 971 * Kernel interface to read rtc clock offset
 972 * Returns 0 on success, or a negative number on error.
 973 * If read_offset() is not implemented for the rtc, return -EINVAL
 974 */
 975int rtc_read_offset(struct rtc_device *rtc, long *offset)
 976{
 977	int ret;
 978
 979	if (!rtc->ops)
 980		return -ENODEV;
 981
 982	if (!rtc->ops->read_offset)
 983		return -EINVAL;
 984
 985	mutex_lock(&rtc->ops_lock);
 986	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
 987	mutex_unlock(&rtc->ops_lock);
 988	return ret;
 989}
 990
 991/**
 992 * rtc_set_offset - Adjusts the duration of the average second
 993 * @ rtc: rtc device to be used
 994 * @ offset: the offset in parts per billion
 995 *
 996 * Some rtc's allow an adjustment to the average duration of a second
 997 * to compensate for differences in the actual clock rate due to temperature,
 998 * the crystal, capacitor, etc.
 999 *
1000 * Kernel interface to adjust an rtc clock offset.
1001 * Return 0 on success, or a negative number on error.
1002 * If the rtc offset is not setable (or not implemented), return -EINVAL
1003 */
1004int rtc_set_offset(struct rtc_device *rtc, long offset)
1005{
1006	int ret;
1007
1008	if (!rtc->ops)
1009		return -ENODEV;
1010
1011	if (!rtc->ops->set_offset)
1012		return -EINVAL;
1013
1014	mutex_lock(&rtc->ops_lock);
1015	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1016	mutex_unlock(&rtc->ops_lock);
1017	return ret;
1018}