Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 16#include <linux/module.h>
 17#include <linux/log2.h>
 18#include <linux/workqueue.h>
 19
 
 
 
 20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 24{
 25	int err;
 26	if (!rtc->ops)
 27		err = -ENODEV;
 28	else if (!rtc->ops->read_time)
 29		err = -EINVAL;
 30	else {
 31		memset(tm, 0, sizeof(struct rtc_time));
 32		err = rtc->ops->read_time(rtc->dev.parent, tm);
 33		if (err < 0) {
 34			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
 35				err);
 36			return err;
 37		}
 38
 
 
 39		err = rtc_valid_tm(tm);
 40		if (err < 0)
 41			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 42	}
 43	return err;
 44}
 45
 46int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 47{
 48	int err;
 49
 50	err = mutex_lock_interruptible(&rtc->ops_lock);
 51	if (err)
 52		return err;
 53
 54	err = __rtc_read_time(rtc, tm);
 55	mutex_unlock(&rtc->ops_lock);
 
 
 56	return err;
 57}
 58EXPORT_SYMBOL_GPL(rtc_read_time);
 59
 60int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 61{
 62	int err;
 63
 64	err = rtc_valid_tm(tm);
 65	if (err != 0)
 66		return err;
 67
 
 
 
 
 
 
 68	err = mutex_lock_interruptible(&rtc->ops_lock);
 69	if (err)
 70		return err;
 71
 72	if (!rtc->ops)
 73		err = -ENODEV;
 74	else if (rtc->ops->set_time)
 75		err = rtc->ops->set_time(rtc->dev.parent, tm);
 76	else if (rtc->ops->set_mmss64) {
 77		time64_t secs64 = rtc_tm_to_time64(tm);
 78
 79		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
 80	} else if (rtc->ops->set_mmss) {
 81		time64_t secs64 = rtc_tm_to_time64(tm);
 82		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
 83	} else
 84		err = -EINVAL;
 85
 86	pm_stay_awake(rtc->dev.parent);
 87	mutex_unlock(&rtc->ops_lock);
 88	/* A timer might have just expired */
 89	schedule_work(&rtc->irqwork);
 
 
 90	return err;
 91}
 92EXPORT_SYMBOL_GPL(rtc_set_time);
 93
 94static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 95{
 96	int err;
 97
 98	err = mutex_lock_interruptible(&rtc->ops_lock);
 99	if (err)
100		return err;
101
102	if (rtc->ops == NULL)
103		err = -ENODEV;
104	else if (!rtc->ops->read_alarm)
105		err = -EINVAL;
106	else {
107		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 
 
 
 
 
 
 
 
 
 
108		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
109	}
110
111	mutex_unlock(&rtc->ops_lock);
 
 
112	return err;
113}
114
115int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
116{
117	int err;
118	struct rtc_time before, now;
119	int first_time = 1;
120	time64_t t_now, t_alm;
121	enum { none, day, month, year } missing = none;
122	unsigned days;
123
124	/* The lower level RTC driver may return -1 in some fields,
125	 * creating invalid alarm->time values, for reasons like:
126	 *
127	 *   - The hardware may not be capable of filling them in;
128	 *     many alarms match only on time-of-day fields, not
129	 *     day/month/year calendar data.
130	 *
131	 *   - Some hardware uses illegal values as "wildcard" match
132	 *     values, which non-Linux firmware (like a BIOS) may try
133	 *     to set up as e.g. "alarm 15 minutes after each hour".
134	 *     Linux uses only oneshot alarms.
135	 *
136	 * When we see that here, we deal with it by using values from
137	 * a current RTC timestamp for any missing (-1) values.  The
138	 * RTC driver prevents "periodic alarm" modes.
139	 *
140	 * But this can be racey, because some fields of the RTC timestamp
141	 * may have wrapped in the interval since we read the RTC alarm,
142	 * which would lead to us inserting inconsistent values in place
143	 * of the -1 fields.
144	 *
145	 * Reading the alarm and timestamp in the reverse sequence
146	 * would have the same race condition, and not solve the issue.
147	 *
148	 * So, we must first read the RTC timestamp,
149	 * then read the RTC alarm value,
150	 * and then read a second RTC timestamp.
151	 *
152	 * If any fields of the second timestamp have changed
153	 * when compared with the first timestamp, then we know
154	 * our timestamp may be inconsistent with that used by
155	 * the low-level rtc_read_alarm_internal() function.
156	 *
157	 * So, when the two timestamps disagree, we just loop and do
158	 * the process again to get a fully consistent set of values.
159	 *
160	 * This could all instead be done in the lower level driver,
161	 * but since more than one lower level RTC implementation needs it,
162	 * then it's probably best best to do it here instead of there..
163	 */
164
165	/* Get the "before" timestamp */
166	err = rtc_read_time(rtc, &before);
167	if (err < 0)
168		return err;
169	do {
170		if (!first_time)
171			memcpy(&before, &now, sizeof(struct rtc_time));
172		first_time = 0;
173
174		/* get the RTC alarm values, which may be incomplete */
175		err = rtc_read_alarm_internal(rtc, alarm);
176		if (err)
177			return err;
178
179		/* full-function RTCs won't have such missing fields */
180		if (rtc_valid_tm(&alarm->time) == 0)
181			return 0;
182
183		/* get the "after" timestamp, to detect wrapped fields */
184		err = rtc_read_time(rtc, &now);
185		if (err < 0)
186			return err;
187
188		/* note that tm_sec is a "don't care" value here: */
189	} while (   before.tm_min   != now.tm_min
190		 || before.tm_hour  != now.tm_hour
191		 || before.tm_mon   != now.tm_mon
192		 || before.tm_year  != now.tm_year);
193
194	/* Fill in the missing alarm fields using the timestamp; we
195	 * know there's at least one since alarm->time is invalid.
196	 */
197	if (alarm->time.tm_sec == -1)
198		alarm->time.tm_sec = now.tm_sec;
199	if (alarm->time.tm_min == -1)
200		alarm->time.tm_min = now.tm_min;
201	if (alarm->time.tm_hour == -1)
202		alarm->time.tm_hour = now.tm_hour;
203
204	/* For simplicity, only support date rollover for now */
205	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
206		alarm->time.tm_mday = now.tm_mday;
207		missing = day;
208	}
209	if ((unsigned)alarm->time.tm_mon >= 12) {
210		alarm->time.tm_mon = now.tm_mon;
211		if (missing == none)
212			missing = month;
213	}
214	if (alarm->time.tm_year == -1) {
215		alarm->time.tm_year = now.tm_year;
216		if (missing == none)
217			missing = year;
218	}
219
 
 
 
 
 
 
 
220	/* with luck, no rollover is needed */
221	t_now = rtc_tm_to_time64(&now);
222	t_alm = rtc_tm_to_time64(&alarm->time);
223	if (t_now < t_alm)
224		goto done;
225
226	switch (missing) {
227
228	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
229	 * that will trigger at 5am will do so at 5am Tuesday, which
230	 * could also be in the next month or year.  This is a common
231	 * case, especially for PCs.
232	 */
233	case day:
234		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
235		t_alm += 24 * 60 * 60;
236		rtc_time64_to_tm(t_alm, &alarm->time);
237		break;
238
239	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
240	 * be next month.  An alarm matching on the 30th, 29th, or 28th
241	 * may end up in the month after that!  Many newer PCs support
242	 * this type of alarm.
243	 */
244	case month:
245		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
246		do {
247			if (alarm->time.tm_mon < 11)
248				alarm->time.tm_mon++;
249			else {
250				alarm->time.tm_mon = 0;
251				alarm->time.tm_year++;
252			}
253			days = rtc_month_days(alarm->time.tm_mon,
254					alarm->time.tm_year);
255		} while (days < alarm->time.tm_mday);
256		break;
257
258	/* Year rollover ... easy except for leap years! */
259	case year:
260		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
261		do {
262			alarm->time.tm_year++;
263		} while (!is_leap_year(alarm->time.tm_year + 1900)
264			&& rtc_valid_tm(&alarm->time) != 0);
265		break;
266
267	default:
268		dev_warn(&rtc->dev, "alarm rollover not handled\n");
269	}
270
271done:
272	err = rtc_valid_tm(&alarm->time);
273
 
274	if (err) {
275		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
276			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
277			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
278			alarm->time.tm_sec);
279	}
280
281	return err;
282}
283
284int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
285{
286	int err;
287
288	err = mutex_lock_interruptible(&rtc->ops_lock);
289	if (err)
290		return err;
291	if (rtc->ops == NULL)
292		err = -ENODEV;
293	else if (!rtc->ops->read_alarm)
294		err = -EINVAL;
295	else {
296		memset(alarm, 0, sizeof(struct rtc_wkalrm));
297		alarm->enabled = rtc->aie_timer.enabled;
298		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
299	}
300	mutex_unlock(&rtc->ops_lock);
301
 
302	return err;
303}
304EXPORT_SYMBOL_GPL(rtc_read_alarm);
305
306static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
307{
308	struct rtc_time tm;
309	time64_t now, scheduled;
310	int err;
311
312	err = rtc_valid_tm(&alarm->time);
313	if (err)
314		return err;
 
 
315	scheduled = rtc_tm_to_time64(&alarm->time);
316
317	/* Make sure we're not setting alarms in the past */
318	err = __rtc_read_time(rtc, &tm);
319	if (err)
320		return err;
321	now = rtc_tm_to_time64(&tm);
322	if (scheduled <= now)
323		return -ETIME;
324	/*
325	 * XXX - We just checked to make sure the alarm time is not
326	 * in the past, but there is still a race window where if
327	 * the is alarm set for the next second and the second ticks
328	 * over right here, before we set the alarm.
329	 */
330
331	if (!rtc->ops)
332		err = -ENODEV;
333	else if (!rtc->ops->set_alarm)
334		err = -EINVAL;
335	else
336		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
337
 
338	return err;
339}
340
341int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
342{
343	int err;
344
345	err = rtc_valid_tm(&alarm->time);
346	if (err != 0)
347		return err;
348
 
 
 
 
349	err = mutex_lock_interruptible(&rtc->ops_lock);
350	if (err)
351		return err;
352	if (rtc->aie_timer.enabled)
353		rtc_timer_remove(rtc, &rtc->aie_timer);
354
355	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
356	rtc->aie_timer.period = ktime_set(0, 0);
357	if (alarm->enabled)
358		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
359
360	mutex_unlock(&rtc->ops_lock);
 
 
361	return err;
362}
363EXPORT_SYMBOL_GPL(rtc_set_alarm);
364
365/* Called once per device from rtc_device_register */
366int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
367{
368	int err;
369	struct rtc_time now;
370
371	err = rtc_valid_tm(&alarm->time);
372	if (err != 0)
373		return err;
374
375	err = rtc_read_time(rtc, &now);
376	if (err)
377		return err;
378
379	err = mutex_lock_interruptible(&rtc->ops_lock);
380	if (err)
381		return err;
382
383	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
384	rtc->aie_timer.period = ktime_set(0, 0);
385
386	/* Alarm has to be enabled & in the futrure for us to enqueue it */
387	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
388			 rtc->aie_timer.node.expires.tv64)) {
389
390		rtc->aie_timer.enabled = 1;
391		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 
392	}
393	mutex_unlock(&rtc->ops_lock);
394	return err;
395}
396EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
397
398
399
400int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
401{
402	int err = mutex_lock_interruptible(&rtc->ops_lock);
403	if (err)
404		return err;
405
406	if (rtc->aie_timer.enabled != enabled) {
407		if (enabled)
408			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
409		else
410			rtc_timer_remove(rtc, &rtc->aie_timer);
411	}
412
413	if (err)
414		/* nothing */;
415	else if (!rtc->ops)
416		err = -ENODEV;
417	else if (!rtc->ops->alarm_irq_enable)
418		err = -EINVAL;
419	else
420		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
421
422	mutex_unlock(&rtc->ops_lock);
 
 
423	return err;
424}
425EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
426
427int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
428{
429	int err = mutex_lock_interruptible(&rtc->ops_lock);
430	if (err)
431		return err;
432
433#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
434	if (enabled == 0 && rtc->uie_irq_active) {
435		mutex_unlock(&rtc->ops_lock);
436		return rtc_dev_update_irq_enable_emul(rtc, 0);
437	}
438#endif
439	/* make sure we're changing state */
440	if (rtc->uie_rtctimer.enabled == enabled)
441		goto out;
442
443	if (rtc->uie_unsupported) {
444		err = -EINVAL;
445		goto out;
446	}
447
448	if (enabled) {
449		struct rtc_time tm;
450		ktime_t now, onesec;
451
452		__rtc_read_time(rtc, &tm);
453		onesec = ktime_set(1, 0);
454		now = rtc_tm_to_ktime(tm);
455		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
456		rtc->uie_rtctimer.period = ktime_set(1, 0);
457		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
458	} else
459		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
460
461out:
462	mutex_unlock(&rtc->ops_lock);
463#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
464	/*
465	 * Enable emulation if the driver did not provide
466	 * the update_irq_enable function pointer or if returned
467	 * -EINVAL to signal that it has been configured without
468	 * interrupts or that are not available at the moment.
469	 */
470	if (err == -EINVAL)
471		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
472#endif
473	return err;
474
475}
476EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
477
478
479/**
480 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
481 * @rtc: pointer to the rtc device
482 *
483 * This function is called when an AIE, UIE or PIE mode interrupt
484 * has occurred (or been emulated).
485 *
486 * Triggers the registered irq_task function callback.
487 */
488void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
489{
490	unsigned long flags;
491
492	/* mark one irq of the appropriate mode */
493	spin_lock_irqsave(&rtc->irq_lock, flags);
494	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
495	spin_unlock_irqrestore(&rtc->irq_lock, flags);
496
497	/* call the task func */
498	spin_lock_irqsave(&rtc->irq_task_lock, flags);
499	if (rtc->irq_task)
500		rtc->irq_task->func(rtc->irq_task->private_data);
501	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
502
503	wake_up_interruptible(&rtc->irq_queue);
504	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
505}
506
507
508/**
509 * rtc_aie_update_irq - AIE mode rtctimer hook
510 * @private: pointer to the rtc_device
511 *
512 * This functions is called when the aie_timer expires.
513 */
514void rtc_aie_update_irq(void *private)
515{
516	struct rtc_device *rtc = (struct rtc_device *)private;
517	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
518}
519
520
521/**
522 * rtc_uie_update_irq - UIE mode rtctimer hook
523 * @private: pointer to the rtc_device
524 *
525 * This functions is called when the uie_timer expires.
526 */
527void rtc_uie_update_irq(void *private)
528{
529	struct rtc_device *rtc = (struct rtc_device *)private;
530	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
531}
532
533
534/**
535 * rtc_pie_update_irq - PIE mode hrtimer hook
536 * @timer: pointer to the pie mode hrtimer
537 *
538 * This function is used to emulate PIE mode interrupts
539 * using an hrtimer. This function is called when the periodic
540 * hrtimer expires.
541 */
542enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
543{
544	struct rtc_device *rtc;
545	ktime_t period;
546	int count;
547	rtc = container_of(timer, struct rtc_device, pie_timer);
548
549	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
550	count = hrtimer_forward_now(timer, period);
551
552	rtc_handle_legacy_irq(rtc, count, RTC_PF);
553
554	return HRTIMER_RESTART;
555}
556
557/**
558 * rtc_update_irq - Triggered when a RTC interrupt occurs.
559 * @rtc: the rtc device
560 * @num: how many irqs are being reported (usually one)
561 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
562 * Context: any
563 */
564void rtc_update_irq(struct rtc_device *rtc,
565		unsigned long num, unsigned long events)
566{
567	if (IS_ERR_OR_NULL(rtc))
568		return;
569
570	pm_stay_awake(rtc->dev.parent);
571	schedule_work(&rtc->irqwork);
572}
573EXPORT_SYMBOL_GPL(rtc_update_irq);
574
575static int __rtc_match(struct device *dev, const void *data)
576{
577	const char *name = data;
578
579	if (strcmp(dev_name(dev), name) == 0)
580		return 1;
581	return 0;
582}
583
584struct rtc_device *rtc_class_open(const char *name)
585{
586	struct device *dev;
587	struct rtc_device *rtc = NULL;
588
589	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
590	if (dev)
591		rtc = to_rtc_device(dev);
592
593	if (rtc) {
594		if (!try_module_get(rtc->owner)) {
595			put_device(dev);
596			rtc = NULL;
597		}
598	}
599
600	return rtc;
601}
602EXPORT_SYMBOL_GPL(rtc_class_open);
603
604void rtc_class_close(struct rtc_device *rtc)
605{
606	module_put(rtc->owner);
607	put_device(&rtc->dev);
608}
609EXPORT_SYMBOL_GPL(rtc_class_close);
610
611int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
612{
613	int retval = -EBUSY;
614
615	if (task == NULL || task->func == NULL)
616		return -EINVAL;
617
618	/* Cannot register while the char dev is in use */
619	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
620		return -EBUSY;
621
622	spin_lock_irq(&rtc->irq_task_lock);
623	if (rtc->irq_task == NULL) {
624		rtc->irq_task = task;
625		retval = 0;
626	}
627	spin_unlock_irq(&rtc->irq_task_lock);
628
629	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
630
631	return retval;
632}
633EXPORT_SYMBOL_GPL(rtc_irq_register);
634
635void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
636{
637	spin_lock_irq(&rtc->irq_task_lock);
638	if (rtc->irq_task == task)
639		rtc->irq_task = NULL;
640	spin_unlock_irq(&rtc->irq_task_lock);
641}
642EXPORT_SYMBOL_GPL(rtc_irq_unregister);
643
644static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
645{
646	/*
647	 * We always cancel the timer here first, because otherwise
648	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
649	 * when we manage to start the timer before the callback
650	 * returns HRTIMER_RESTART.
651	 *
652	 * We cannot use hrtimer_cancel() here as a running callback
653	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
654	 * would spin forever.
655	 */
656	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
657		return -1;
658
659	if (enabled) {
660		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
661
662		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
663	}
664	return 0;
665}
666
667/**
668 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
669 * @rtc: the rtc device
670 * @task: currently registered with rtc_irq_register()
671 * @enabled: true to enable periodic IRQs
672 * Context: any
673 *
674 * Note that rtc_irq_set_freq() should previously have been used to
675 * specify the desired frequency of periodic IRQ task->func() callbacks.
676 */
677int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
678{
679	int err = 0;
680	unsigned long flags;
681
682retry:
683	spin_lock_irqsave(&rtc->irq_task_lock, flags);
684	if (rtc->irq_task != NULL && task == NULL)
685		err = -EBUSY;
686	else if (rtc->irq_task != task)
687		err = -EACCES;
688	else {
689		if (rtc_update_hrtimer(rtc, enabled) < 0) {
690			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
691			cpu_relax();
692			goto retry;
693		}
694		rtc->pie_enabled = enabled;
695	}
696	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 
 
697	return err;
698}
699EXPORT_SYMBOL_GPL(rtc_irq_set_state);
700
701/**
702 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
703 * @rtc: the rtc device
704 * @task: currently registered with rtc_irq_register()
705 * @freq: positive frequency with which task->func() will be called
706 * Context: any
707 *
708 * Note that rtc_irq_set_state() is used to enable or disable the
709 * periodic IRQs.
710 */
711int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
712{
713	int err = 0;
714	unsigned long flags;
715
716	if (freq <= 0 || freq > RTC_MAX_FREQ)
717		return -EINVAL;
718retry:
719	spin_lock_irqsave(&rtc->irq_task_lock, flags);
720	if (rtc->irq_task != NULL && task == NULL)
721		err = -EBUSY;
722	else if (rtc->irq_task != task)
723		err = -EACCES;
724	else {
725		rtc->irq_freq = freq;
726		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
727			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
728			cpu_relax();
729			goto retry;
730		}
731	}
732	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 
 
733	return err;
734}
735EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
736
737/**
738 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
739 * @rtc rtc device
740 * @timer timer being added.
741 *
742 * Enqueues a timer onto the rtc devices timerqueue and sets
743 * the next alarm event appropriately.
744 *
745 * Sets the enabled bit on the added timer.
746 *
747 * Must hold ops_lock for proper serialization of timerqueue
748 */
749static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
750{
 
 
 
 
751	timer->enabled = 1;
 
 
 
 
 
 
 
 
 
 
752	timerqueue_add(&rtc->timerqueue, &timer->node);
753	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
 
754		struct rtc_wkalrm alarm;
755		int err;
756		alarm.time = rtc_ktime_to_tm(timer->node.expires);
757		alarm.enabled = 1;
758		err = __rtc_set_alarm(rtc, &alarm);
759		if (err == -ETIME) {
760			pm_stay_awake(rtc->dev.parent);
761			schedule_work(&rtc->irqwork);
762		} else if (err) {
763			timerqueue_del(&rtc->timerqueue, &timer->node);
 
764			timer->enabled = 0;
765			return err;
766		}
767	}
768	return 0;
769}
770
771static void rtc_alarm_disable(struct rtc_device *rtc)
772{
773	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
774		return;
775
776	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 
777}
778
779/**
780 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
781 * @rtc rtc device
782 * @timer timer being removed.
783 *
784 * Removes a timer onto the rtc devices timerqueue and sets
785 * the next alarm event appropriately.
786 *
787 * Clears the enabled bit on the removed timer.
788 *
789 * Must hold ops_lock for proper serialization of timerqueue
790 */
791static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
792{
793	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
794	timerqueue_del(&rtc->timerqueue, &timer->node);
 
795	timer->enabled = 0;
796	if (next == &timer->node) {
797		struct rtc_wkalrm alarm;
798		int err;
799		next = timerqueue_getnext(&rtc->timerqueue);
800		if (!next) {
801			rtc_alarm_disable(rtc);
802			return;
803		}
804		alarm.time = rtc_ktime_to_tm(next->expires);
805		alarm.enabled = 1;
806		err = __rtc_set_alarm(rtc, &alarm);
807		if (err == -ETIME) {
808			pm_stay_awake(rtc->dev.parent);
809			schedule_work(&rtc->irqwork);
810		}
811	}
812}
813
814/**
815 * rtc_timer_do_work - Expires rtc timers
816 * @rtc rtc device
817 * @timer timer being removed.
818 *
819 * Expires rtc timers. Reprograms next alarm event if needed.
820 * Called via worktask.
821 *
822 * Serializes access to timerqueue via ops_lock mutex
823 */
824void rtc_timer_do_work(struct work_struct *work)
825{
826	struct rtc_timer *timer;
827	struct timerqueue_node *next;
828	ktime_t now;
829	struct rtc_time tm;
830
831	struct rtc_device *rtc =
832		container_of(work, struct rtc_device, irqwork);
833
834	mutex_lock(&rtc->ops_lock);
835again:
836	__rtc_read_time(rtc, &tm);
837	now = rtc_tm_to_ktime(tm);
838	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
839		if (next->expires.tv64 > now.tv64)
840			break;
841
842		/* expire timer */
843		timer = container_of(next, struct rtc_timer, node);
844		timerqueue_del(&rtc->timerqueue, &timer->node);
 
845		timer->enabled = 0;
846		if (timer->task.func)
847			timer->task.func(timer->task.private_data);
848
 
849		/* Re-add/fwd periodic timers */
850		if (ktime_to_ns(timer->period)) {
851			timer->node.expires = ktime_add(timer->node.expires,
852							timer->period);
853			timer->enabled = 1;
854			timerqueue_add(&rtc->timerqueue, &timer->node);
 
855		}
856	}
857
858	/* Set next alarm */
859	if (next) {
860		struct rtc_wkalrm alarm;
861		int err;
862		int retry = 3;
863
864		alarm.time = rtc_ktime_to_tm(next->expires);
865		alarm.enabled = 1;
866reprogram:
867		err = __rtc_set_alarm(rtc, &alarm);
868		if (err == -ETIME)
869			goto again;
870		else if (err) {
871			if (retry-- > 0)
872				goto reprogram;
873
874			timer = container_of(next, struct rtc_timer, node);
875			timerqueue_del(&rtc->timerqueue, &timer->node);
 
876			timer->enabled = 0;
877			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
878			goto again;
879		}
880	} else
881		rtc_alarm_disable(rtc);
882
883	pm_relax(rtc->dev.parent);
884	mutex_unlock(&rtc->ops_lock);
885}
886
887
888/* rtc_timer_init - Initializes an rtc_timer
889 * @timer: timer to be intiialized
890 * @f: function pointer to be called when timer fires
891 * @data: private data passed to function pointer
892 *
893 * Kernel interface to initializing an rtc_timer.
894 */
895void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
896{
897	timerqueue_init(&timer->node);
898	timer->enabled = 0;
899	timer->task.func = f;
900	timer->task.private_data = data;
901}
902
903/* rtc_timer_start - Sets an rtc_timer to fire in the future
904 * @ rtc: rtc device to be used
905 * @ timer: timer being set
906 * @ expires: time at which to expire the timer
907 * @ period: period that the timer will recur
908 *
909 * Kernel interface to set an rtc_timer
910 */
911int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
912			ktime_t expires, ktime_t period)
913{
914	int ret = 0;
915	mutex_lock(&rtc->ops_lock);
916	if (timer->enabled)
917		rtc_timer_remove(rtc, timer);
918
919	timer->node.expires = expires;
920	timer->period = period;
921
922	ret = rtc_timer_enqueue(rtc, timer);
923
924	mutex_unlock(&rtc->ops_lock);
925	return ret;
926}
927
928/* rtc_timer_cancel - Stops an rtc_timer
929 * @ rtc: rtc device to be used
930 * @ timer: timer being set
931 *
932 * Kernel interface to cancel an rtc_timer
933 */
934void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
935{
936	mutex_lock(&rtc->ops_lock);
937	if (timer->enabled)
938		rtc_timer_remove(rtc, timer);
939	mutex_unlock(&rtc->ops_lock);
940}
941
942/**
943 * rtc_read_offset - Read the amount of rtc offset in parts per billion
944 * @ rtc: rtc device to be used
945 * @ offset: the offset in parts per billion
946 *
947 * see below for details.
948 *
949 * Kernel interface to read rtc clock offset
950 * Returns 0 on success, or a negative number on error.
951 * If read_offset() is not implemented for the rtc, return -EINVAL
952 */
953int rtc_read_offset(struct rtc_device *rtc, long *offset)
954{
955	int ret;
956
957	if (!rtc->ops)
958		return -ENODEV;
959
960	if (!rtc->ops->read_offset)
961		return -EINVAL;
962
963	mutex_lock(&rtc->ops_lock);
964	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
965	mutex_unlock(&rtc->ops_lock);
 
 
966	return ret;
967}
968
969/**
970 * rtc_set_offset - Adjusts the duration of the average second
971 * @ rtc: rtc device to be used
972 * @ offset: the offset in parts per billion
973 *
974 * Some rtc's allow an adjustment to the average duration of a second
975 * to compensate for differences in the actual clock rate due to temperature,
976 * the crystal, capacitor, etc.
977 *
 
 
 
 
978 * Kernel interface to adjust an rtc clock offset.
979 * Return 0 on success, or a negative number on error.
980 * If the rtc offset is not setable (or not implemented), return -EINVAL
981 */
982int rtc_set_offset(struct rtc_device *rtc, long offset)
983{
984	int ret;
985
986	if (!rtc->ops)
987		return -ENODEV;
988
989	if (!rtc->ops->set_offset)
990		return -EINVAL;
991
992	mutex_lock(&rtc->ops_lock);
993	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
994	mutex_unlock(&rtc->ops_lock);
 
 
995	return ret;
996}
v4.17
   1/*
   2 * RTC subsystem, interface functions
   3 *
   4 * Copyright (C) 2005 Tower Technologies
   5 * Author: Alessandro Zummo <a.zummo@towertech.it>
   6 *
   7 * based on arch/arm/common/rtctime.c
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12*/
  13
  14#include <linux/rtc.h>
  15#include <linux/sched.h>
  16#include <linux/module.h>
  17#include <linux/log2.h>
  18#include <linux/workqueue.h>
  19
  20#define CREATE_TRACE_POINTS
  21#include <trace/events/rtc.h>
  22
  23static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  24static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  25
  26static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  27{
  28	time64_t secs;
  29
  30	if (!rtc->offset_secs)
  31		return;
  32
  33	secs = rtc_tm_to_time64(tm);
  34
  35	/*
  36	 * Since the reading time values from RTC device are always in the RTC
  37	 * original valid range, but we need to skip the overlapped region
  38	 * between expanded range and original range, which is no need to add
  39	 * the offset.
  40	 */
  41	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  42	    (rtc->start_secs < rtc->range_min &&
  43	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  44		return;
  45
  46	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  47}
  48
  49static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  50{
  51	time64_t secs;
  52
  53	if (!rtc->offset_secs)
  54		return;
  55
  56	secs = rtc_tm_to_time64(tm);
  57
  58	/*
  59	 * If the setting time values are in the valid range of RTC hardware
  60	 * device, then no need to subtract the offset when setting time to RTC
  61	 * device. Otherwise we need to subtract the offset to make the time
  62	 * values are valid for RTC hardware device.
  63	 */
  64	if (secs >= rtc->range_min && secs <= rtc->range_max)
  65		return;
  66
  67	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  68}
  69
  70static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  71{
  72	if (rtc->range_min != rtc->range_max) {
  73		time64_t time = rtc_tm_to_time64(tm);
  74		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  75			rtc->range_min;
  76		time64_t range_max = rtc->set_start_time ?
  77			(rtc->start_secs + rtc->range_max - rtc->range_min) :
  78			rtc->range_max;
  79
  80		if (time < range_min || time > range_max)
  81			return -ERANGE;
  82	}
  83
  84	return 0;
  85}
  86
  87static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  88{
  89	int err;
  90	if (!rtc->ops)
  91		err = -ENODEV;
  92	else if (!rtc->ops->read_time)
  93		err = -EINVAL;
  94	else {
  95		memset(tm, 0, sizeof(struct rtc_time));
  96		err = rtc->ops->read_time(rtc->dev.parent, tm);
  97		if (err < 0) {
  98			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  99				err);
 100			return err;
 101		}
 102
 103		rtc_add_offset(rtc, tm);
 104
 105		err = rtc_valid_tm(tm);
 106		if (err < 0)
 107			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 108	}
 109	return err;
 110}
 111
 112int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 113{
 114	int err;
 115
 116	err = mutex_lock_interruptible(&rtc->ops_lock);
 117	if (err)
 118		return err;
 119
 120	err = __rtc_read_time(rtc, tm);
 121	mutex_unlock(&rtc->ops_lock);
 122
 123	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 124	return err;
 125}
 126EXPORT_SYMBOL_GPL(rtc_read_time);
 127
 128int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 129{
 130	int err;
 131
 132	err = rtc_valid_tm(tm);
 133	if (err != 0)
 134		return err;
 135
 136	err = rtc_valid_range(rtc, tm);
 137	if (err)
 138		return err;
 139
 140	rtc_subtract_offset(rtc, tm);
 141
 142	err = mutex_lock_interruptible(&rtc->ops_lock);
 143	if (err)
 144		return err;
 145
 146	if (!rtc->ops)
 147		err = -ENODEV;
 148	else if (rtc->ops->set_time)
 149		err = rtc->ops->set_time(rtc->dev.parent, tm);
 150	else if (rtc->ops->set_mmss64) {
 151		time64_t secs64 = rtc_tm_to_time64(tm);
 152
 153		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
 154	} else if (rtc->ops->set_mmss) {
 155		time64_t secs64 = rtc_tm_to_time64(tm);
 156		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
 157	} else
 158		err = -EINVAL;
 159
 160	pm_stay_awake(rtc->dev.parent);
 161	mutex_unlock(&rtc->ops_lock);
 162	/* A timer might have just expired */
 163	schedule_work(&rtc->irqwork);
 164
 165	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 166	return err;
 167}
 168EXPORT_SYMBOL_GPL(rtc_set_time);
 169
 170static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 171{
 172	int err;
 173
 174	err = mutex_lock_interruptible(&rtc->ops_lock);
 175	if (err)
 176		return err;
 177
 178	if (rtc->ops == NULL)
 179		err = -ENODEV;
 180	else if (!rtc->ops->read_alarm)
 181		err = -EINVAL;
 182	else {
 183		alarm->enabled = 0;
 184		alarm->pending = 0;
 185		alarm->time.tm_sec = -1;
 186		alarm->time.tm_min = -1;
 187		alarm->time.tm_hour = -1;
 188		alarm->time.tm_mday = -1;
 189		alarm->time.tm_mon = -1;
 190		alarm->time.tm_year = -1;
 191		alarm->time.tm_wday = -1;
 192		alarm->time.tm_yday = -1;
 193		alarm->time.tm_isdst = -1;
 194		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 195	}
 196
 197	mutex_unlock(&rtc->ops_lock);
 198
 199	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 200	return err;
 201}
 202
 203int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 204{
 205	int err;
 206	struct rtc_time before, now;
 207	int first_time = 1;
 208	time64_t t_now, t_alm;
 209	enum { none, day, month, year } missing = none;
 210	unsigned days;
 211
 212	/* The lower level RTC driver may return -1 in some fields,
 213	 * creating invalid alarm->time values, for reasons like:
 214	 *
 215	 *   - The hardware may not be capable of filling them in;
 216	 *     many alarms match only on time-of-day fields, not
 217	 *     day/month/year calendar data.
 218	 *
 219	 *   - Some hardware uses illegal values as "wildcard" match
 220	 *     values, which non-Linux firmware (like a BIOS) may try
 221	 *     to set up as e.g. "alarm 15 minutes after each hour".
 222	 *     Linux uses only oneshot alarms.
 223	 *
 224	 * When we see that here, we deal with it by using values from
 225	 * a current RTC timestamp for any missing (-1) values.  The
 226	 * RTC driver prevents "periodic alarm" modes.
 227	 *
 228	 * But this can be racey, because some fields of the RTC timestamp
 229	 * may have wrapped in the interval since we read the RTC alarm,
 230	 * which would lead to us inserting inconsistent values in place
 231	 * of the -1 fields.
 232	 *
 233	 * Reading the alarm and timestamp in the reverse sequence
 234	 * would have the same race condition, and not solve the issue.
 235	 *
 236	 * So, we must first read the RTC timestamp,
 237	 * then read the RTC alarm value,
 238	 * and then read a second RTC timestamp.
 239	 *
 240	 * If any fields of the second timestamp have changed
 241	 * when compared with the first timestamp, then we know
 242	 * our timestamp may be inconsistent with that used by
 243	 * the low-level rtc_read_alarm_internal() function.
 244	 *
 245	 * So, when the two timestamps disagree, we just loop and do
 246	 * the process again to get a fully consistent set of values.
 247	 *
 248	 * This could all instead be done in the lower level driver,
 249	 * but since more than one lower level RTC implementation needs it,
 250	 * then it's probably best best to do it here instead of there..
 251	 */
 252
 253	/* Get the "before" timestamp */
 254	err = rtc_read_time(rtc, &before);
 255	if (err < 0)
 256		return err;
 257	do {
 258		if (!first_time)
 259			memcpy(&before, &now, sizeof(struct rtc_time));
 260		first_time = 0;
 261
 262		/* get the RTC alarm values, which may be incomplete */
 263		err = rtc_read_alarm_internal(rtc, alarm);
 264		if (err)
 265			return err;
 266
 267		/* full-function RTCs won't have such missing fields */
 268		if (rtc_valid_tm(&alarm->time) == 0)
 269			return 0;
 270
 271		/* get the "after" timestamp, to detect wrapped fields */
 272		err = rtc_read_time(rtc, &now);
 273		if (err < 0)
 274			return err;
 275
 276		/* note that tm_sec is a "don't care" value here: */
 277	} while (   before.tm_min   != now.tm_min
 278		 || before.tm_hour  != now.tm_hour
 279		 || before.tm_mon   != now.tm_mon
 280		 || before.tm_year  != now.tm_year);
 281
 282	/* Fill in the missing alarm fields using the timestamp; we
 283	 * know there's at least one since alarm->time is invalid.
 284	 */
 285	if (alarm->time.tm_sec == -1)
 286		alarm->time.tm_sec = now.tm_sec;
 287	if (alarm->time.tm_min == -1)
 288		alarm->time.tm_min = now.tm_min;
 289	if (alarm->time.tm_hour == -1)
 290		alarm->time.tm_hour = now.tm_hour;
 291
 292	/* For simplicity, only support date rollover for now */
 293	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 294		alarm->time.tm_mday = now.tm_mday;
 295		missing = day;
 296	}
 297	if ((unsigned)alarm->time.tm_mon >= 12) {
 298		alarm->time.tm_mon = now.tm_mon;
 299		if (missing == none)
 300			missing = month;
 301	}
 302	if (alarm->time.tm_year == -1) {
 303		alarm->time.tm_year = now.tm_year;
 304		if (missing == none)
 305			missing = year;
 306	}
 307
 308	/* Can't proceed if alarm is still invalid after replacing
 309	 * missing fields.
 310	 */
 311	err = rtc_valid_tm(&alarm->time);
 312	if (err)
 313		goto done;
 314
 315	/* with luck, no rollover is needed */
 316	t_now = rtc_tm_to_time64(&now);
 317	t_alm = rtc_tm_to_time64(&alarm->time);
 318	if (t_now < t_alm)
 319		goto done;
 320
 321	switch (missing) {
 322
 323	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 324	 * that will trigger at 5am will do so at 5am Tuesday, which
 325	 * could also be in the next month or year.  This is a common
 326	 * case, especially for PCs.
 327	 */
 328	case day:
 329		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 330		t_alm += 24 * 60 * 60;
 331		rtc_time64_to_tm(t_alm, &alarm->time);
 332		break;
 333
 334	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 335	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 336	 * may end up in the month after that!  Many newer PCs support
 337	 * this type of alarm.
 338	 */
 339	case month:
 340		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 341		do {
 342			if (alarm->time.tm_mon < 11)
 343				alarm->time.tm_mon++;
 344			else {
 345				alarm->time.tm_mon = 0;
 346				alarm->time.tm_year++;
 347			}
 348			days = rtc_month_days(alarm->time.tm_mon,
 349					alarm->time.tm_year);
 350		} while (days < alarm->time.tm_mday);
 351		break;
 352
 353	/* Year rollover ... easy except for leap years! */
 354	case year:
 355		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 356		do {
 357			alarm->time.tm_year++;
 358		} while (!is_leap_year(alarm->time.tm_year + 1900)
 359			&& rtc_valid_tm(&alarm->time) != 0);
 360		break;
 361
 362	default:
 363		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 364	}
 365
 
 366	err = rtc_valid_tm(&alarm->time);
 367
 368done:
 369	if (err) {
 370		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
 371			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
 372			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
 373			alarm->time.tm_sec);
 374	}
 375
 376	return err;
 377}
 378
 379int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 380{
 381	int err;
 382
 383	err = mutex_lock_interruptible(&rtc->ops_lock);
 384	if (err)
 385		return err;
 386	if (rtc->ops == NULL)
 387		err = -ENODEV;
 388	else if (!rtc->ops->read_alarm)
 389		err = -EINVAL;
 390	else {
 391		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 392		alarm->enabled = rtc->aie_timer.enabled;
 393		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 394	}
 395	mutex_unlock(&rtc->ops_lock);
 396
 397	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 398	return err;
 399}
 400EXPORT_SYMBOL_GPL(rtc_read_alarm);
 401
 402static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 403{
 404	struct rtc_time tm;
 405	time64_t now, scheduled;
 406	int err;
 407
 408	err = rtc_valid_tm(&alarm->time);
 409	if (err)
 410		return err;
 411
 412	rtc_subtract_offset(rtc, &alarm->time);
 413	scheduled = rtc_tm_to_time64(&alarm->time);
 414
 415	/* Make sure we're not setting alarms in the past */
 416	err = __rtc_read_time(rtc, &tm);
 417	if (err)
 418		return err;
 419	now = rtc_tm_to_time64(&tm);
 420	if (scheduled <= now)
 421		return -ETIME;
 422	/*
 423	 * XXX - We just checked to make sure the alarm time is not
 424	 * in the past, but there is still a race window where if
 425	 * the is alarm set for the next second and the second ticks
 426	 * over right here, before we set the alarm.
 427	 */
 428
 429	if (!rtc->ops)
 430		err = -ENODEV;
 431	else if (!rtc->ops->set_alarm)
 432		err = -EINVAL;
 433	else
 434		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 435
 436	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 437	return err;
 438}
 439
 440int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 441{
 442	int err;
 443
 444	err = rtc_valid_tm(&alarm->time);
 445	if (err != 0)
 446		return err;
 447
 448	err = rtc_valid_range(rtc, &alarm->time);
 449	if (err)
 450		return err;
 451
 452	err = mutex_lock_interruptible(&rtc->ops_lock);
 453	if (err)
 454		return err;
 455	if (rtc->aie_timer.enabled)
 456		rtc_timer_remove(rtc, &rtc->aie_timer);
 457
 458	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 459	rtc->aie_timer.period = 0;
 460	if (alarm->enabled)
 461		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 462
 463	mutex_unlock(&rtc->ops_lock);
 464
 465	rtc_add_offset(rtc, &alarm->time);
 466	return err;
 467}
 468EXPORT_SYMBOL_GPL(rtc_set_alarm);
 469
 470/* Called once per device from rtc_device_register */
 471int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 472{
 473	int err;
 474	struct rtc_time now;
 475
 476	err = rtc_valid_tm(&alarm->time);
 477	if (err != 0)
 478		return err;
 479
 480	err = rtc_read_time(rtc, &now);
 481	if (err)
 482		return err;
 483
 484	err = mutex_lock_interruptible(&rtc->ops_lock);
 485	if (err)
 486		return err;
 487
 488	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 489	rtc->aie_timer.period = 0;
 490
 491	/* Alarm has to be enabled & in the future for us to enqueue it */
 492	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 493			 rtc->aie_timer.node.expires)) {
 494
 495		rtc->aie_timer.enabled = 1;
 496		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 497		trace_rtc_timer_enqueue(&rtc->aie_timer);
 498	}
 499	mutex_unlock(&rtc->ops_lock);
 500	return err;
 501}
 502EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 503
 
 
 504int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 505{
 506	int err = mutex_lock_interruptible(&rtc->ops_lock);
 507	if (err)
 508		return err;
 509
 510	if (rtc->aie_timer.enabled != enabled) {
 511		if (enabled)
 512			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 513		else
 514			rtc_timer_remove(rtc, &rtc->aie_timer);
 515	}
 516
 517	if (err)
 518		/* nothing */;
 519	else if (!rtc->ops)
 520		err = -ENODEV;
 521	else if (!rtc->ops->alarm_irq_enable)
 522		err = -EINVAL;
 523	else
 524		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 525
 526	mutex_unlock(&rtc->ops_lock);
 527
 528	trace_rtc_alarm_irq_enable(enabled, err);
 529	return err;
 530}
 531EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 532
 533int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 534{
 535	int err = mutex_lock_interruptible(&rtc->ops_lock);
 536	if (err)
 537		return err;
 538
 539#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 540	if (enabled == 0 && rtc->uie_irq_active) {
 541		mutex_unlock(&rtc->ops_lock);
 542		return rtc_dev_update_irq_enable_emul(rtc, 0);
 543	}
 544#endif
 545	/* make sure we're changing state */
 546	if (rtc->uie_rtctimer.enabled == enabled)
 547		goto out;
 548
 549	if (rtc->uie_unsupported) {
 550		err = -EINVAL;
 551		goto out;
 552	}
 553
 554	if (enabled) {
 555		struct rtc_time tm;
 556		ktime_t now, onesec;
 557
 558		__rtc_read_time(rtc, &tm);
 559		onesec = ktime_set(1, 0);
 560		now = rtc_tm_to_ktime(tm);
 561		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 562		rtc->uie_rtctimer.period = ktime_set(1, 0);
 563		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 564	} else
 565		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 566
 567out:
 568	mutex_unlock(&rtc->ops_lock);
 569#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 570	/*
 571	 * Enable emulation if the driver did not provide
 572	 * the update_irq_enable function pointer or if returned
 573	 * -EINVAL to signal that it has been configured without
 574	 * interrupts or that are not available at the moment.
 575	 */
 576	if (err == -EINVAL)
 577		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 578#endif
 579	return err;
 580
 581}
 582EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 583
 584
 585/**
 586 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 587 * @rtc: pointer to the rtc device
 588 *
 589 * This function is called when an AIE, UIE or PIE mode interrupt
 590 * has occurred (or been emulated).
 591 *
 592 * Triggers the registered irq_task function callback.
 593 */
 594void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 595{
 596	unsigned long flags;
 597
 598	/* mark one irq of the appropriate mode */
 599	spin_lock_irqsave(&rtc->irq_lock, flags);
 600	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 601	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 602
 603	/* call the task func */
 604	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 605	if (rtc->irq_task)
 606		rtc->irq_task->func(rtc->irq_task->private_data);
 607	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 608
 609	wake_up_interruptible(&rtc->irq_queue);
 610	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 611}
 612
 613
 614/**
 615 * rtc_aie_update_irq - AIE mode rtctimer hook
 616 * @private: pointer to the rtc_device
 617 *
 618 * This functions is called when the aie_timer expires.
 619 */
 620void rtc_aie_update_irq(void *private)
 621{
 622	struct rtc_device *rtc = (struct rtc_device *)private;
 623	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 624}
 625
 626
 627/**
 628 * rtc_uie_update_irq - UIE mode rtctimer hook
 629 * @private: pointer to the rtc_device
 630 *
 631 * This functions is called when the uie_timer expires.
 632 */
 633void rtc_uie_update_irq(void *private)
 634{
 635	struct rtc_device *rtc = (struct rtc_device *)private;
 636	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 637}
 638
 639
 640/**
 641 * rtc_pie_update_irq - PIE mode hrtimer hook
 642 * @timer: pointer to the pie mode hrtimer
 643 *
 644 * This function is used to emulate PIE mode interrupts
 645 * using an hrtimer. This function is called when the periodic
 646 * hrtimer expires.
 647 */
 648enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 649{
 650	struct rtc_device *rtc;
 651	ktime_t period;
 652	int count;
 653	rtc = container_of(timer, struct rtc_device, pie_timer);
 654
 655	period = NSEC_PER_SEC / rtc->irq_freq;
 656	count = hrtimer_forward_now(timer, period);
 657
 658	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 659
 660	return HRTIMER_RESTART;
 661}
 662
 663/**
 664 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 665 * @rtc: the rtc device
 666 * @num: how many irqs are being reported (usually one)
 667 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 668 * Context: any
 669 */
 670void rtc_update_irq(struct rtc_device *rtc,
 671		unsigned long num, unsigned long events)
 672{
 673	if (IS_ERR_OR_NULL(rtc))
 674		return;
 675
 676	pm_stay_awake(rtc->dev.parent);
 677	schedule_work(&rtc->irqwork);
 678}
 679EXPORT_SYMBOL_GPL(rtc_update_irq);
 680
 681static int __rtc_match(struct device *dev, const void *data)
 682{
 683	const char *name = data;
 684
 685	if (strcmp(dev_name(dev), name) == 0)
 686		return 1;
 687	return 0;
 688}
 689
 690struct rtc_device *rtc_class_open(const char *name)
 691{
 692	struct device *dev;
 693	struct rtc_device *rtc = NULL;
 694
 695	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
 696	if (dev)
 697		rtc = to_rtc_device(dev);
 698
 699	if (rtc) {
 700		if (!try_module_get(rtc->owner)) {
 701			put_device(dev);
 702			rtc = NULL;
 703		}
 704	}
 705
 706	return rtc;
 707}
 708EXPORT_SYMBOL_GPL(rtc_class_open);
 709
 710void rtc_class_close(struct rtc_device *rtc)
 711{
 712	module_put(rtc->owner);
 713	put_device(&rtc->dev);
 714}
 715EXPORT_SYMBOL_GPL(rtc_class_close);
 716
 717int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 718{
 719	int retval = -EBUSY;
 720
 721	if (task == NULL || task->func == NULL)
 722		return -EINVAL;
 723
 724	/* Cannot register while the char dev is in use */
 725	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 726		return -EBUSY;
 727
 728	spin_lock_irq(&rtc->irq_task_lock);
 729	if (rtc->irq_task == NULL) {
 730		rtc->irq_task = task;
 731		retval = 0;
 732	}
 733	spin_unlock_irq(&rtc->irq_task_lock);
 734
 735	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 736
 737	return retval;
 738}
 739EXPORT_SYMBOL_GPL(rtc_irq_register);
 740
 741void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 742{
 743	spin_lock_irq(&rtc->irq_task_lock);
 744	if (rtc->irq_task == task)
 745		rtc->irq_task = NULL;
 746	spin_unlock_irq(&rtc->irq_task_lock);
 747}
 748EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 749
 750static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 751{
 752	/*
 753	 * We always cancel the timer here first, because otherwise
 754	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 755	 * when we manage to start the timer before the callback
 756	 * returns HRTIMER_RESTART.
 757	 *
 758	 * We cannot use hrtimer_cancel() here as a running callback
 759	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 760	 * would spin forever.
 761	 */
 762	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 763		return -1;
 764
 765	if (enabled) {
 766		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 767
 768		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 769	}
 770	return 0;
 771}
 772
 773/**
 774 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 775 * @rtc: the rtc device
 776 * @task: currently registered with rtc_irq_register()
 777 * @enabled: true to enable periodic IRQs
 778 * Context: any
 779 *
 780 * Note that rtc_irq_set_freq() should previously have been used to
 781 * specify the desired frequency of periodic IRQ task->func() callbacks.
 782 */
 783int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 784{
 785	int err = 0;
 786	unsigned long flags;
 787
 788retry:
 789	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 790	if (rtc->irq_task != NULL && task == NULL)
 791		err = -EBUSY;
 792	else if (rtc->irq_task != task)
 793		err = -EACCES;
 794	else {
 795		if (rtc_update_hrtimer(rtc, enabled) < 0) {
 796			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 797			cpu_relax();
 798			goto retry;
 799		}
 800		rtc->pie_enabled = enabled;
 801	}
 802	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 803
 804	trace_rtc_irq_set_state(enabled, err);
 805	return err;
 806}
 807EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 808
 809/**
 810 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 811 * @rtc: the rtc device
 812 * @task: currently registered with rtc_irq_register()
 813 * @freq: positive frequency with which task->func() will be called
 814 * Context: any
 815 *
 816 * Note that rtc_irq_set_state() is used to enable or disable the
 817 * periodic IRQs.
 818 */
 819int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 820{
 821	int err = 0;
 822	unsigned long flags;
 823
 824	if (freq <= 0 || freq > RTC_MAX_FREQ)
 825		return -EINVAL;
 826retry:
 827	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 828	if (rtc->irq_task != NULL && task == NULL)
 829		err = -EBUSY;
 830	else if (rtc->irq_task != task)
 831		err = -EACCES;
 832	else {
 833		rtc->irq_freq = freq;
 834		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
 835			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 836			cpu_relax();
 837			goto retry;
 838		}
 839	}
 840	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 841
 842	trace_rtc_irq_set_freq(freq, err);
 843	return err;
 844}
 845EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 846
 847/**
 848 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 849 * @rtc rtc device
 850 * @timer timer being added.
 851 *
 852 * Enqueues a timer onto the rtc devices timerqueue and sets
 853 * the next alarm event appropriately.
 854 *
 855 * Sets the enabled bit on the added timer.
 856 *
 857 * Must hold ops_lock for proper serialization of timerqueue
 858 */
 859static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 860{
 861	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 862	struct rtc_time tm;
 863	ktime_t now;
 864
 865	timer->enabled = 1;
 866	__rtc_read_time(rtc, &tm);
 867	now = rtc_tm_to_ktime(tm);
 868
 869	/* Skip over expired timers */
 870	while (next) {
 871		if (next->expires >= now)
 872			break;
 873		next = timerqueue_iterate_next(next);
 874	}
 875
 876	timerqueue_add(&rtc->timerqueue, &timer->node);
 877	trace_rtc_timer_enqueue(timer);
 878	if (!next || ktime_before(timer->node.expires, next->expires)) {
 879		struct rtc_wkalrm alarm;
 880		int err;
 881		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 882		alarm.enabled = 1;
 883		err = __rtc_set_alarm(rtc, &alarm);
 884		if (err == -ETIME) {
 885			pm_stay_awake(rtc->dev.parent);
 886			schedule_work(&rtc->irqwork);
 887		} else if (err) {
 888			timerqueue_del(&rtc->timerqueue, &timer->node);
 889			trace_rtc_timer_dequeue(timer);
 890			timer->enabled = 0;
 891			return err;
 892		}
 893	}
 894	return 0;
 895}
 896
 897static void rtc_alarm_disable(struct rtc_device *rtc)
 898{
 899	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 900		return;
 901
 902	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 903	trace_rtc_alarm_irq_enable(0, 0);
 904}
 905
 906/**
 907 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 908 * @rtc rtc device
 909 * @timer timer being removed.
 910 *
 911 * Removes a timer onto the rtc devices timerqueue and sets
 912 * the next alarm event appropriately.
 913 *
 914 * Clears the enabled bit on the removed timer.
 915 *
 916 * Must hold ops_lock for proper serialization of timerqueue
 917 */
 918static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 919{
 920	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 921	timerqueue_del(&rtc->timerqueue, &timer->node);
 922	trace_rtc_timer_dequeue(timer);
 923	timer->enabled = 0;
 924	if (next == &timer->node) {
 925		struct rtc_wkalrm alarm;
 926		int err;
 927		next = timerqueue_getnext(&rtc->timerqueue);
 928		if (!next) {
 929			rtc_alarm_disable(rtc);
 930			return;
 931		}
 932		alarm.time = rtc_ktime_to_tm(next->expires);
 933		alarm.enabled = 1;
 934		err = __rtc_set_alarm(rtc, &alarm);
 935		if (err == -ETIME) {
 936			pm_stay_awake(rtc->dev.parent);
 937			schedule_work(&rtc->irqwork);
 938		}
 939	}
 940}
 941
 942/**
 943 * rtc_timer_do_work - Expires rtc timers
 944 * @rtc rtc device
 945 * @timer timer being removed.
 946 *
 947 * Expires rtc timers. Reprograms next alarm event if needed.
 948 * Called via worktask.
 949 *
 950 * Serializes access to timerqueue via ops_lock mutex
 951 */
 952void rtc_timer_do_work(struct work_struct *work)
 953{
 954	struct rtc_timer *timer;
 955	struct timerqueue_node *next;
 956	ktime_t now;
 957	struct rtc_time tm;
 958
 959	struct rtc_device *rtc =
 960		container_of(work, struct rtc_device, irqwork);
 961
 962	mutex_lock(&rtc->ops_lock);
 963again:
 964	__rtc_read_time(rtc, &tm);
 965	now = rtc_tm_to_ktime(tm);
 966	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 967		if (next->expires > now)
 968			break;
 969
 970		/* expire timer */
 971		timer = container_of(next, struct rtc_timer, node);
 972		timerqueue_del(&rtc->timerqueue, &timer->node);
 973		trace_rtc_timer_dequeue(timer);
 974		timer->enabled = 0;
 975		if (timer->task.func)
 976			timer->task.func(timer->task.private_data);
 977
 978		trace_rtc_timer_fired(timer);
 979		/* Re-add/fwd periodic timers */
 980		if (ktime_to_ns(timer->period)) {
 981			timer->node.expires = ktime_add(timer->node.expires,
 982							timer->period);
 983			timer->enabled = 1;
 984			timerqueue_add(&rtc->timerqueue, &timer->node);
 985			trace_rtc_timer_enqueue(timer);
 986		}
 987	}
 988
 989	/* Set next alarm */
 990	if (next) {
 991		struct rtc_wkalrm alarm;
 992		int err;
 993		int retry = 3;
 994
 995		alarm.time = rtc_ktime_to_tm(next->expires);
 996		alarm.enabled = 1;
 997reprogram:
 998		err = __rtc_set_alarm(rtc, &alarm);
 999		if (err == -ETIME)
1000			goto again;
1001		else if (err) {
1002			if (retry-- > 0)
1003				goto reprogram;
1004
1005			timer = container_of(next, struct rtc_timer, node);
1006			timerqueue_del(&rtc->timerqueue, &timer->node);
1007			trace_rtc_timer_dequeue(timer);
1008			timer->enabled = 0;
1009			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
1010			goto again;
1011		}
1012	} else
1013		rtc_alarm_disable(rtc);
1014
1015	pm_relax(rtc->dev.parent);
1016	mutex_unlock(&rtc->ops_lock);
1017}
1018
1019
1020/* rtc_timer_init - Initializes an rtc_timer
1021 * @timer: timer to be intiialized
1022 * @f: function pointer to be called when timer fires
1023 * @data: private data passed to function pointer
1024 *
1025 * Kernel interface to initializing an rtc_timer.
1026 */
1027void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
1028{
1029	timerqueue_init(&timer->node);
1030	timer->enabled = 0;
1031	timer->task.func = f;
1032	timer->task.private_data = data;
1033}
1034
1035/* rtc_timer_start - Sets an rtc_timer to fire in the future
1036 * @ rtc: rtc device to be used
1037 * @ timer: timer being set
1038 * @ expires: time at which to expire the timer
1039 * @ period: period that the timer will recur
1040 *
1041 * Kernel interface to set an rtc_timer
1042 */
1043int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
1044			ktime_t expires, ktime_t period)
1045{
1046	int ret = 0;
1047	mutex_lock(&rtc->ops_lock);
1048	if (timer->enabled)
1049		rtc_timer_remove(rtc, timer);
1050
1051	timer->node.expires = expires;
1052	timer->period = period;
1053
1054	ret = rtc_timer_enqueue(rtc, timer);
1055
1056	mutex_unlock(&rtc->ops_lock);
1057	return ret;
1058}
1059
1060/* rtc_timer_cancel - Stops an rtc_timer
1061 * @ rtc: rtc device to be used
1062 * @ timer: timer being set
1063 *
1064 * Kernel interface to cancel an rtc_timer
1065 */
1066void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1067{
1068	mutex_lock(&rtc->ops_lock);
1069	if (timer->enabled)
1070		rtc_timer_remove(rtc, timer);
1071	mutex_unlock(&rtc->ops_lock);
1072}
1073
1074/**
1075 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1076 * @ rtc: rtc device to be used
1077 * @ offset: the offset in parts per billion
1078 *
1079 * see below for details.
1080 *
1081 * Kernel interface to read rtc clock offset
1082 * Returns 0 on success, or a negative number on error.
1083 * If read_offset() is not implemented for the rtc, return -EINVAL
1084 */
1085int rtc_read_offset(struct rtc_device *rtc, long *offset)
1086{
1087	int ret;
1088
1089	if (!rtc->ops)
1090		return -ENODEV;
1091
1092	if (!rtc->ops->read_offset)
1093		return -EINVAL;
1094
1095	mutex_lock(&rtc->ops_lock);
1096	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1097	mutex_unlock(&rtc->ops_lock);
1098
1099	trace_rtc_read_offset(*offset, ret);
1100	return ret;
1101}
1102
1103/**
1104 * rtc_set_offset - Adjusts the duration of the average second
1105 * @ rtc: rtc device to be used
1106 * @ offset: the offset in parts per billion
1107 *
1108 * Some rtc's allow an adjustment to the average duration of a second
1109 * to compensate for differences in the actual clock rate due to temperature,
1110 * the crystal, capacitor, etc.
1111 *
1112 * The adjustment applied is as follows:
1113 *   t = t0 * (1 + offset * 1e-9)
1114 * where t0 is the measured length of 1 RTC second with offset = 0
1115 *
1116 * Kernel interface to adjust an rtc clock offset.
1117 * Return 0 on success, or a negative number on error.
1118 * If the rtc offset is not setable (or not implemented), return -EINVAL
1119 */
1120int rtc_set_offset(struct rtc_device *rtc, long offset)
1121{
1122	int ret;
1123
1124	if (!rtc->ops)
1125		return -ENODEV;
1126
1127	if (!rtc->ops->set_offset)
1128		return -EINVAL;
1129
1130	mutex_lock(&rtc->ops_lock);
1131	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1132	mutex_unlock(&rtc->ops_lock);
1133
1134	trace_rtc_set_offset(offset, ret);
1135	return ret;
1136}