Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
 
  29#include "i915_drv.h"
  30#include "intel_drv.h"
  31#include "../../../platform/x86/intel_ips.h"
  32#include <linux/module.h>
 
  33
  34/**
  35 * DOC: RC6
  36 *
  37 * RC6 is a special power stage which allows the GPU to enter an very
  38 * low-voltage mode when idle, using down to 0V while at this stage.  This
  39 * stage is entered automatically when the GPU is idle when RC6 support is
  40 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  41 *
  42 * There are different RC6 modes available in Intel GPU, which differentiate
  43 * among each other with the latency required to enter and leave RC6 and
  44 * voltage consumed by the GPU in different states.
  45 *
  46 * The combination of the following flags define which states GPU is allowed
  47 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  48 * RC6pp is deepest RC6. Their support by hardware varies according to the
  49 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  50 * which brings the most power savings; deeper states save more power, but
  51 * require higher latency to switch to and wake up.
  52 */
  53#define INTEL_RC6_ENABLE			(1<<0)
  54#define INTEL_RC6p_ENABLE			(1<<1)
  55#define INTEL_RC6pp_ENABLE			(1<<2)
  56
  57static void bxt_init_clock_gating(struct drm_device *dev)
  58{
  59	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61	/* WaDisableSDEUnitClockGating:bxt */
  62	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  63		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  64
  65	/*
  66	 * FIXME:
  67	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  68	 */
  69	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  70		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  71
  72	/*
  73	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
  74	 * to stay fully on.
  75	 */
  76	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  77		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  78			   PWM1_GATING_DIS | PWM2_GATING_DIS);
  79}
  80
  81static void i915_pineview_get_mem_freq(struct drm_device *dev)
  82{
  83	struct drm_i915_private *dev_priv = dev->dev_private;
  84	u32 tmp;
  85
  86	tmp = I915_READ(CLKCFG);
  87
  88	switch (tmp & CLKCFG_FSB_MASK) {
  89	case CLKCFG_FSB_533:
  90		dev_priv->fsb_freq = 533; /* 133*4 */
  91		break;
  92	case CLKCFG_FSB_800:
  93		dev_priv->fsb_freq = 800; /* 200*4 */
  94		break;
  95	case CLKCFG_FSB_667:
  96		dev_priv->fsb_freq =  667; /* 167*4 */
  97		break;
  98	case CLKCFG_FSB_400:
  99		dev_priv->fsb_freq = 400; /* 100*4 */
 100		break;
 101	}
 102
 103	switch (tmp & CLKCFG_MEM_MASK) {
 104	case CLKCFG_MEM_533:
 105		dev_priv->mem_freq = 533;
 106		break;
 107	case CLKCFG_MEM_667:
 108		dev_priv->mem_freq = 667;
 109		break;
 110	case CLKCFG_MEM_800:
 111		dev_priv->mem_freq = 800;
 112		break;
 113	}
 114
 115	/* detect pineview DDR3 setting */
 116	tmp = I915_READ(CSHRDDR3CTL);
 117	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 118}
 119
 120static void i915_ironlake_get_mem_freq(struct drm_device *dev)
 121{
 122	struct drm_i915_private *dev_priv = dev->dev_private;
 123	u16 ddrpll, csipll;
 124
 125	ddrpll = I915_READ16(DDRMPLL1);
 126	csipll = I915_READ16(CSIPLL0);
 127
 128	switch (ddrpll & 0xff) {
 129	case 0xc:
 130		dev_priv->mem_freq = 800;
 131		break;
 132	case 0x10:
 133		dev_priv->mem_freq = 1066;
 134		break;
 135	case 0x14:
 136		dev_priv->mem_freq = 1333;
 137		break;
 138	case 0x18:
 139		dev_priv->mem_freq = 1600;
 140		break;
 141	default:
 142		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 143				 ddrpll & 0xff);
 144		dev_priv->mem_freq = 0;
 145		break;
 146	}
 147
 148	dev_priv->ips.r_t = dev_priv->mem_freq;
 149
 150	switch (csipll & 0x3ff) {
 151	case 0x00c:
 152		dev_priv->fsb_freq = 3200;
 153		break;
 154	case 0x00e:
 155		dev_priv->fsb_freq = 3733;
 156		break;
 157	case 0x010:
 158		dev_priv->fsb_freq = 4266;
 159		break;
 160	case 0x012:
 161		dev_priv->fsb_freq = 4800;
 162		break;
 163	case 0x014:
 164		dev_priv->fsb_freq = 5333;
 165		break;
 166	case 0x016:
 167		dev_priv->fsb_freq = 5866;
 168		break;
 169	case 0x018:
 170		dev_priv->fsb_freq = 6400;
 171		break;
 172	default:
 173		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 174				 csipll & 0x3ff);
 175		dev_priv->fsb_freq = 0;
 176		break;
 177	}
 178
 179	if (dev_priv->fsb_freq == 3200) {
 180		dev_priv->ips.c_m = 0;
 181	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 182		dev_priv->ips.c_m = 1;
 183	} else {
 184		dev_priv->ips.c_m = 2;
 185	}
 186}
 187
 188static const struct cxsr_latency cxsr_latency_table[] = {
 189	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 190	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 191	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 192	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 193	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 194
 195	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 196	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 197	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 198	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 199	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 200
 201	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 202	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 203	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 204	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 205	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 206
 207	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 208	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 209	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 210	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 211	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 212
 213	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 214	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 215	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 216	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 217	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 218
 219	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 220	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 221	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 222	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 223	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 224};
 225
 226static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
 227							 int is_ddr3,
 228							 int fsb,
 229							 int mem)
 230{
 231	const struct cxsr_latency *latency;
 232	int i;
 233
 234	if (fsb == 0 || mem == 0)
 235		return NULL;
 236
 237	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 238		latency = &cxsr_latency_table[i];
 239		if (is_desktop == latency->is_desktop &&
 240		    is_ddr3 == latency->is_ddr3 &&
 241		    fsb == latency->fsb_freq && mem == latency->mem_freq)
 242			return latency;
 243	}
 244
 245	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 246
 247	return NULL;
 248}
 249
 250static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 251{
 252	u32 val;
 253
 254	mutex_lock(&dev_priv->rps.hw_lock);
 255
 256	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 257	if (enable)
 258		val &= ~FORCE_DDR_HIGH_FREQ;
 259	else
 260		val |= FORCE_DDR_HIGH_FREQ;
 261	val &= ~FORCE_DDR_LOW_FREQ;
 262	val |= FORCE_DDR_FREQ_REQ_ACK;
 263	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 264
 265	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 266		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 267		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
 268
 269	mutex_unlock(&dev_priv->rps.hw_lock);
 270}
 271
 272static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 273{
 274	u32 val;
 275
 276	mutex_lock(&dev_priv->rps.hw_lock);
 277
 278	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
 279	if (enable)
 280		val |= DSP_MAXFIFO_PM5_ENABLE;
 281	else
 282		val &= ~DSP_MAXFIFO_PM5_ENABLE;
 283	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
 284
 285	mutex_unlock(&dev_priv->rps.hw_lock);
 286}
 287
 288#define FW_WM(value, plane) \
 289	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 290
 291void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 292{
 293	struct drm_device *dev = dev_priv->dev;
 294	u32 val;
 295
 296	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
 297		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 298		POSTING_READ(FW_BLC_SELF_VLV);
 299		dev_priv->wm.vlv.cxsr = enable;
 300	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
 301		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 302		POSTING_READ(FW_BLC_SELF);
 303	} else if (IS_PINEVIEW(dev)) {
 304		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
 305		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
 306		I915_WRITE(DSPFW3, val);
 307		POSTING_READ(DSPFW3);
 308	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
 309		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 310			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 311		I915_WRITE(FW_BLC_SELF, val);
 312		POSTING_READ(FW_BLC_SELF);
 313	} else if (IS_I915GM(dev)) {
 
 
 
 
 
 314		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 315			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 316		I915_WRITE(INSTPM, val);
 317		POSTING_READ(INSTPM);
 318	} else {
 319		return;
 320	}
 321
 322	DRM_DEBUG_KMS("memory self-refresh is %s\n",
 323		      enable ? "enabled" : "disabled");
 324}
 325
 326
 327/*
 328 * Latency for FIFO fetches is dependent on several factors:
 329 *   - memory configuration (speed, channels)
 330 *   - chipset
 331 *   - current MCH state
 332 * It can be fairly high in some situations, so here we assume a fairly
 333 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 334 * set this value too high, the FIFO will fetch frequently to stay full)
 335 * and power consumption (set it too low to save power and we might see
 336 * FIFO underruns and display "flicker").
 337 *
 338 * A value of 5us seems to be a good balance; safe for very low end
 339 * platforms but not overly aggressive on lower latency configs.
 340 */
 341static const int pessimal_latency_ns = 5000;
 342
 343#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 344	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 345
 346static int vlv_get_fifo_size(struct drm_device *dev,
 347			      enum pipe pipe, int plane)
 348{
 349	struct drm_i915_private *dev_priv = dev->dev_private;
 350	int sprite0_start, sprite1_start, size;
 351
 352	switch (pipe) {
 353		uint32_t dsparb, dsparb2, dsparb3;
 354	case PIPE_A:
 355		dsparb = I915_READ(DSPARB);
 356		dsparb2 = I915_READ(DSPARB2);
 357		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 358		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 359		break;
 360	case PIPE_B:
 361		dsparb = I915_READ(DSPARB);
 362		dsparb2 = I915_READ(DSPARB2);
 363		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 364		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 365		break;
 366	case PIPE_C:
 367		dsparb2 = I915_READ(DSPARB2);
 368		dsparb3 = I915_READ(DSPARB3);
 369		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 370		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 371		break;
 372	default:
 373		return 0;
 374	}
 375
 376	switch (plane) {
 377	case 0:
 378		size = sprite0_start;
 379		break;
 380	case 1:
 381		size = sprite1_start - sprite0_start;
 382		break;
 383	case 2:
 384		size = 512 - 1 - sprite1_start;
 385		break;
 386	default:
 387		return 0;
 388	}
 389
 390	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
 391		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
 392		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
 393		      size);
 394
 395	return size;
 396}
 397
 398static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
 399{
 400	struct drm_i915_private *dev_priv = dev->dev_private;
 401	uint32_t dsparb = I915_READ(DSPARB);
 402	int size;
 403
 404	size = dsparb & 0x7f;
 405	if (plane)
 406		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 407
 408	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 409		      plane ? "B" : "A", size);
 410
 411	return size;
 412}
 413
 414static int i830_get_fifo_size(struct drm_device *dev, int plane)
 415{
 416	struct drm_i915_private *dev_priv = dev->dev_private;
 417	uint32_t dsparb = I915_READ(DSPARB);
 418	int size;
 419
 420	size = dsparb & 0x1ff;
 421	if (plane)
 422		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 423	size >>= 1; /* Convert to cachelines */
 424
 425	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 426		      plane ? "B" : "A", size);
 427
 428	return size;
 429}
 430
 431static int i845_get_fifo_size(struct drm_device *dev, int plane)
 432{
 433	struct drm_i915_private *dev_priv = dev->dev_private;
 434	uint32_t dsparb = I915_READ(DSPARB);
 435	int size;
 436
 437	size = dsparb & 0x7f;
 438	size >>= 2; /* Convert to cachelines */
 439
 440	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 441		      plane ? "B" : "A",
 442		      size);
 443
 444	return size;
 445}
 446
 447/* Pineview has different values for various configs */
 448static const struct intel_watermark_params pineview_display_wm = {
 449	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 450	.max_wm = PINEVIEW_MAX_WM,
 451	.default_wm = PINEVIEW_DFT_WM,
 452	.guard_size = PINEVIEW_GUARD_WM,
 453	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 454};
 455static const struct intel_watermark_params pineview_display_hplloff_wm = {
 456	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 457	.max_wm = PINEVIEW_MAX_WM,
 458	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 459	.guard_size = PINEVIEW_GUARD_WM,
 460	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 461};
 462static const struct intel_watermark_params pineview_cursor_wm = {
 463	.fifo_size = PINEVIEW_CURSOR_FIFO,
 464	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 465	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 466	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 467	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 468};
 469static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 470	.fifo_size = PINEVIEW_CURSOR_FIFO,
 471	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 472	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 473	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 474	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 475};
 476static const struct intel_watermark_params g4x_wm_info = {
 477	.fifo_size = G4X_FIFO_SIZE,
 478	.max_wm = G4X_MAX_WM,
 479	.default_wm = G4X_MAX_WM,
 480	.guard_size = 2,
 481	.cacheline_size = G4X_FIFO_LINE_SIZE,
 482};
 483static const struct intel_watermark_params g4x_cursor_wm_info = {
 484	.fifo_size = I965_CURSOR_FIFO,
 485	.max_wm = I965_CURSOR_MAX_WM,
 486	.default_wm = I965_CURSOR_DFT_WM,
 487	.guard_size = 2,
 488	.cacheline_size = G4X_FIFO_LINE_SIZE,
 489};
 490static const struct intel_watermark_params valleyview_wm_info = {
 491	.fifo_size = VALLEYVIEW_FIFO_SIZE,
 492	.max_wm = VALLEYVIEW_MAX_WM,
 493	.default_wm = VALLEYVIEW_MAX_WM,
 494	.guard_size = 2,
 495	.cacheline_size = G4X_FIFO_LINE_SIZE,
 496};
 497static const struct intel_watermark_params valleyview_cursor_wm_info = {
 498	.fifo_size = I965_CURSOR_FIFO,
 499	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
 500	.default_wm = I965_CURSOR_DFT_WM,
 501	.guard_size = 2,
 502	.cacheline_size = G4X_FIFO_LINE_SIZE,
 503};
 504static const struct intel_watermark_params i965_cursor_wm_info = {
 505	.fifo_size = I965_CURSOR_FIFO,
 506	.max_wm = I965_CURSOR_MAX_WM,
 507	.default_wm = I965_CURSOR_DFT_WM,
 508	.guard_size = 2,
 509	.cacheline_size = I915_FIFO_LINE_SIZE,
 510};
 511static const struct intel_watermark_params i945_wm_info = {
 512	.fifo_size = I945_FIFO_SIZE,
 513	.max_wm = I915_MAX_WM,
 514	.default_wm = 1,
 515	.guard_size = 2,
 516	.cacheline_size = I915_FIFO_LINE_SIZE,
 517};
 518static const struct intel_watermark_params i915_wm_info = {
 519	.fifo_size = I915_FIFO_SIZE,
 520	.max_wm = I915_MAX_WM,
 521	.default_wm = 1,
 522	.guard_size = 2,
 523	.cacheline_size = I915_FIFO_LINE_SIZE,
 524};
 525static const struct intel_watermark_params i830_a_wm_info = {
 526	.fifo_size = I855GM_FIFO_SIZE,
 527	.max_wm = I915_MAX_WM,
 528	.default_wm = 1,
 529	.guard_size = 2,
 530	.cacheline_size = I830_FIFO_LINE_SIZE,
 531};
 532static const struct intel_watermark_params i830_bc_wm_info = {
 533	.fifo_size = I855GM_FIFO_SIZE,
 534	.max_wm = I915_MAX_WM/2,
 535	.default_wm = 1,
 536	.guard_size = 2,
 537	.cacheline_size = I830_FIFO_LINE_SIZE,
 538};
 539static const struct intel_watermark_params i845_wm_info = {
 540	.fifo_size = I830_FIFO_SIZE,
 541	.max_wm = I915_MAX_WM,
 542	.default_wm = 1,
 543	.guard_size = 2,
 544	.cacheline_size = I830_FIFO_LINE_SIZE,
 545};
 546
 547/**
 548 * intel_calculate_wm - calculate watermark level
 549 * @clock_in_khz: pixel clock
 550 * @wm: chip FIFO params
 551 * @cpp: bytes per pixel
 552 * @latency_ns: memory latency for the platform
 553 *
 554 * Calculate the watermark level (the level at which the display plane will
 555 * start fetching from memory again).  Each chip has a different display
 556 * FIFO size and allocation, so the caller needs to figure that out and pass
 557 * in the correct intel_watermark_params structure.
 558 *
 559 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 560 * on the pixel size.  When it reaches the watermark level, it'll start
 561 * fetching FIFO line sized based chunks from memory until the FIFO fills
 562 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 563 * will occur, and a display engine hang could result.
 564 */
 565static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 566					const struct intel_watermark_params *wm,
 567					int fifo_size, int cpp,
 568					unsigned long latency_ns)
 569{
 570	long entries_required, wm_size;
 571
 572	/*
 573	 * Note: we need to make sure we don't overflow for various clock &
 574	 * latency values.
 575	 * clocks go from a few thousand to several hundred thousand.
 576	 * latency is usually a few thousand
 577	 */
 578	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
 579		1000;
 580	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 581
 582	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 583
 584	wm_size = fifo_size - (entries_required + wm->guard_size);
 585
 586	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 587
 588	/* Don't promote wm_size to unsigned... */
 589	if (wm_size > (long)wm->max_wm)
 590		wm_size = wm->max_wm;
 591	if (wm_size <= 0)
 592		wm_size = wm->default_wm;
 593
 594	/*
 595	 * Bspec seems to indicate that the value shouldn't be lower than
 596	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 597	 * Lets go for 8 which is the burst size since certain platforms
 598	 * already use a hardcoded 8 (which is what the spec says should be
 599	 * done).
 600	 */
 601	if (wm_size <= 8)
 602		wm_size = 8;
 603
 604	return wm_size;
 605}
 606
 607static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
 608{
 609	struct drm_crtc *crtc, *enabled = NULL;
 610
 611	for_each_crtc(dev, crtc) {
 612		if (intel_crtc_active(crtc)) {
 613			if (enabled)
 614				return NULL;
 615			enabled = crtc;
 616		}
 617	}
 618
 619	return enabled;
 620}
 621
 622static void pineview_update_wm(struct drm_crtc *unused_crtc)
 623{
 624	struct drm_device *dev = unused_crtc->dev;
 625	struct drm_i915_private *dev_priv = dev->dev_private;
 626	struct drm_crtc *crtc;
 627	const struct cxsr_latency *latency;
 628	u32 reg;
 629	unsigned long wm;
 630
 631	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
 632					 dev_priv->fsb_freq, dev_priv->mem_freq);
 
 
 633	if (!latency) {
 634		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 635		intel_set_memory_cxsr(dev_priv, false);
 636		return;
 637	}
 638
 639	crtc = single_enabled_crtc(dev);
 640	if (crtc) {
 641		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 642		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 
 
 
 643		int clock = adjusted_mode->crtc_clock;
 644
 645		/* Display SR */
 646		wm = intel_calculate_wm(clock, &pineview_display_wm,
 647					pineview_display_wm.fifo_size,
 648					cpp, latency->display_sr);
 649		reg = I915_READ(DSPFW1);
 650		reg &= ~DSPFW_SR_MASK;
 651		reg |= FW_WM(wm, SR);
 652		I915_WRITE(DSPFW1, reg);
 653		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
 654
 655		/* cursor SR */
 656		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
 657					pineview_display_wm.fifo_size,
 658					cpp, latency->cursor_sr);
 659		reg = I915_READ(DSPFW3);
 660		reg &= ~DSPFW_CURSOR_SR_MASK;
 661		reg |= FW_WM(wm, CURSOR_SR);
 662		I915_WRITE(DSPFW3, reg);
 663
 664		/* Display HPLL off SR */
 665		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
 666					pineview_display_hplloff_wm.fifo_size,
 667					cpp, latency->display_hpll_disable);
 668		reg = I915_READ(DSPFW3);
 669		reg &= ~DSPFW_HPLL_SR_MASK;
 670		reg |= FW_WM(wm, HPLL_SR);
 671		I915_WRITE(DSPFW3, reg);
 672
 673		/* cursor HPLL off SR */
 674		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
 675					pineview_display_hplloff_wm.fifo_size,
 676					cpp, latency->cursor_hpll_disable);
 677		reg = I915_READ(DSPFW3);
 678		reg &= ~DSPFW_HPLL_CURSOR_MASK;
 679		reg |= FW_WM(wm, HPLL_CURSOR);
 680		I915_WRITE(DSPFW3, reg);
 681		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
 682
 683		intel_set_memory_cxsr(dev_priv, true);
 684	} else {
 685		intel_set_memory_cxsr(dev_priv, false);
 686	}
 687}
 688
 689static bool g4x_compute_wm0(struct drm_device *dev,
 690			    int plane,
 691			    const struct intel_watermark_params *display,
 692			    int display_latency_ns,
 693			    const struct intel_watermark_params *cursor,
 694			    int cursor_latency_ns,
 695			    int *plane_wm,
 696			    int *cursor_wm)
 697{
 698	struct drm_crtc *crtc;
 699	const struct drm_display_mode *adjusted_mode;
 
 700	int htotal, hdisplay, clock, cpp;
 701	int line_time_us, line_count;
 702	int entries, tlb_miss;
 703
 704	crtc = intel_get_crtc_for_plane(dev, plane);
 705	if (!intel_crtc_active(crtc)) {
 706		*cursor_wm = cursor->guard_size;
 707		*plane_wm = display->guard_size;
 708		return false;
 709	}
 710
 711	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 
 712	clock = adjusted_mode->crtc_clock;
 713	htotal = adjusted_mode->crtc_htotal;
 714	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 715	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 716
 717	/* Use the small buffer method to calculate plane watermark */
 718	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
 719	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
 720	if (tlb_miss > 0)
 721		entries += tlb_miss;
 722	entries = DIV_ROUND_UP(entries, display->cacheline_size);
 723	*plane_wm = entries + display->guard_size;
 724	if (*plane_wm > (int)display->max_wm)
 725		*plane_wm = display->max_wm;
 726
 727	/* Use the large buffer method to calculate cursor watermark */
 728	line_time_us = max(htotal * 1000 / clock, 1);
 729	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
 730	entries = line_count * crtc->cursor->state->crtc_w * cpp;
 731	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
 732	if (tlb_miss > 0)
 733		entries += tlb_miss;
 734	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 735	*cursor_wm = entries + cursor->guard_size;
 736	if (*cursor_wm > (int)cursor->max_wm)
 737		*cursor_wm = (int)cursor->max_wm;
 738
 739	return true;
 740}
 741
 742/*
 743 * Check the wm result.
 744 *
 745 * If any calculated watermark values is larger than the maximum value that
 746 * can be programmed into the associated watermark register, that watermark
 747 * must be disabled.
 748 */
 749static bool g4x_check_srwm(struct drm_device *dev,
 750			   int display_wm, int cursor_wm,
 751			   const struct intel_watermark_params *display,
 752			   const struct intel_watermark_params *cursor)
 753{
 754	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
 755		      display_wm, cursor_wm);
 756
 757	if (display_wm > display->max_wm) {
 758		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
 759			      display_wm, display->max_wm);
 760		return false;
 761	}
 762
 763	if (cursor_wm > cursor->max_wm) {
 764		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
 765			      cursor_wm, cursor->max_wm);
 766		return false;
 767	}
 768
 769	if (!(display_wm || cursor_wm)) {
 770		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
 771		return false;
 772	}
 773
 774	return true;
 775}
 776
 777static bool g4x_compute_srwm(struct drm_device *dev,
 778			     int plane,
 779			     int latency_ns,
 780			     const struct intel_watermark_params *display,
 781			     const struct intel_watermark_params *cursor,
 782			     int *display_wm, int *cursor_wm)
 783{
 784	struct drm_crtc *crtc;
 785	const struct drm_display_mode *adjusted_mode;
 
 786	int hdisplay, htotal, cpp, clock;
 787	unsigned long line_time_us;
 788	int line_count, line_size;
 789	int small, large;
 790	int entries;
 791
 792	if (!latency_ns) {
 793		*display_wm = *cursor_wm = 0;
 794		return false;
 795	}
 796
 797	crtc = intel_get_crtc_for_plane(dev, plane);
 798	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 
 799	clock = adjusted_mode->crtc_clock;
 800	htotal = adjusted_mode->crtc_htotal;
 801	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 802	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 803
 804	line_time_us = max(htotal * 1000 / clock, 1);
 805	line_count = (latency_ns / line_time_us + 1000) / 1000;
 806	line_size = hdisplay * cpp;
 807
 808	/* Use the minimum of the small and large buffer method for primary */
 809	small = ((clock * cpp / 1000) * latency_ns) / 1000;
 810	large = line_count * line_size;
 811
 812	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
 813	*display_wm = entries + display->guard_size;
 814
 815	/* calculate the self-refresh watermark for display cursor */
 816	entries = line_count * cpp * crtc->cursor->state->crtc_w;
 817	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 818	*cursor_wm = entries + cursor->guard_size;
 819
 820	return g4x_check_srwm(dev,
 821			      *display_wm, *cursor_wm,
 822			      display, cursor);
 823}
 824
 825#define FW_WM_VLV(value, plane) \
 826	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
 827
 828static void vlv_write_wm_values(struct intel_crtc *crtc,
 829				const struct vlv_wm_values *wm)
 830{
 831	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 832	enum pipe pipe = crtc->pipe;
 833
 834	I915_WRITE(VLV_DDL(pipe),
 835		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
 836		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
 837		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
 838		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
 839
 840	I915_WRITE(DSPFW1,
 841		   FW_WM(wm->sr.plane, SR) |
 842		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
 843		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
 844		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
 845	I915_WRITE(DSPFW2,
 846		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
 847		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
 848		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
 849	I915_WRITE(DSPFW3,
 850		   FW_WM(wm->sr.cursor, CURSOR_SR));
 851
 852	if (IS_CHERRYVIEW(dev_priv)) {
 853		I915_WRITE(DSPFW7_CHV,
 854			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 855			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 856		I915_WRITE(DSPFW8_CHV,
 857			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
 858			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
 859		I915_WRITE(DSPFW9_CHV,
 860			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
 861			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
 862		I915_WRITE(DSPHOWM,
 863			   FW_WM(wm->sr.plane >> 9, SR_HI) |
 864			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
 865			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
 866			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
 867			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 868			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 869			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 870			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 871			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 872			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 873	} else {
 874		I915_WRITE(DSPFW7,
 875			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 876			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 877		I915_WRITE(DSPHOWM,
 878			   FW_WM(wm->sr.plane >> 9, SR_HI) |
 879			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 880			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 881			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 882			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 883			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 884			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 885	}
 886
 887	/* zero (unused) WM1 watermarks */
 888	I915_WRITE(DSPFW4, 0);
 889	I915_WRITE(DSPFW5, 0);
 890	I915_WRITE(DSPFW6, 0);
 891	I915_WRITE(DSPHOWM1, 0);
 892
 893	POSTING_READ(DSPFW1);
 894}
 895
 896#undef FW_WM_VLV
 897
 898enum vlv_wm_level {
 899	VLV_WM_LEVEL_PM2,
 900	VLV_WM_LEVEL_PM5,
 901	VLV_WM_LEVEL_DDR_DVFS,
 902};
 903
 904/* latency must be in 0.1us units. */
 905static unsigned int vlv_wm_method2(unsigned int pixel_rate,
 906				   unsigned int pipe_htotal,
 907				   unsigned int horiz_pixels,
 908				   unsigned int cpp,
 909				   unsigned int latency)
 910{
 911	unsigned int ret;
 912
 913	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
 914	ret = (ret + 1) * horiz_pixels * cpp;
 915	ret = DIV_ROUND_UP(ret, 64);
 916
 917	return ret;
 918}
 919
 920static void vlv_setup_wm_latency(struct drm_device *dev)
 921{
 922	struct drm_i915_private *dev_priv = dev->dev_private;
 923
 924	/* all latencies in usec */
 925	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
 926
 927	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
 928
 929	if (IS_CHERRYVIEW(dev_priv)) {
 930		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
 931		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
 932
 933		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
 934	}
 935}
 936
 937static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
 938				     struct intel_crtc *crtc,
 939				     const struct intel_plane_state *state,
 940				     int level)
 941{
 942	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
 943	int clock, htotal, cpp, width, wm;
 944
 945	if (dev_priv->wm.pri_latency[level] == 0)
 946		return USHRT_MAX;
 947
 948	if (!state->visible)
 949		return 0;
 950
 951	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
 952	clock = crtc->config->base.adjusted_mode.crtc_clock;
 953	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
 954	width = crtc->config->pipe_src_w;
 955	if (WARN_ON(htotal == 0))
 956		htotal = 1;
 957
 958	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
 959		/*
 960		 * FIXME the formula gives values that are
 961		 * too big for the cursor FIFO, and hence we
 962		 * would never be able to use cursors. For
 963		 * now just hardcode the watermark.
 964		 */
 965		wm = 63;
 966	} else {
 967		wm = vlv_wm_method2(clock, htotal, width, cpp,
 968				    dev_priv->wm.pri_latency[level] * 10);
 969	}
 970
 971	return min_t(int, wm, USHRT_MAX);
 972}
 973
 974static void vlv_compute_fifo(struct intel_crtc *crtc)
 975{
 976	struct drm_device *dev = crtc->base.dev;
 977	struct vlv_wm_state *wm_state = &crtc->wm_state;
 978	struct intel_plane *plane;
 979	unsigned int total_rate = 0;
 980	const int fifo_size = 512 - 1;
 981	int fifo_extra, fifo_left = fifo_size;
 982
 983	for_each_intel_plane_on_crtc(dev, crtc, plane) {
 984		struct intel_plane_state *state =
 985			to_intel_plane_state(plane->base.state);
 986
 987		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
 988			continue;
 989
 990		if (state->visible) {
 991			wm_state->num_active_planes++;
 992			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
 993		}
 994	}
 995
 996	for_each_intel_plane_on_crtc(dev, crtc, plane) {
 997		struct intel_plane_state *state =
 998			to_intel_plane_state(plane->base.state);
 999		unsigned int rate;
1000
1001		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1002			plane->wm.fifo_size = 63;
1003			continue;
1004		}
1005
1006		if (!state->visible) {
1007			plane->wm.fifo_size = 0;
1008			continue;
1009		}
1010
1011		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1012		plane->wm.fifo_size = fifo_size * rate / total_rate;
1013		fifo_left -= plane->wm.fifo_size;
1014	}
1015
1016	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1017
1018	/* spread the remainder evenly */
1019	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1020		int plane_extra;
1021
1022		if (fifo_left == 0)
1023			break;
1024
1025		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1026			continue;
1027
1028		/* give it all to the first plane if none are active */
1029		if (plane->wm.fifo_size == 0 &&
1030		    wm_state->num_active_planes)
1031			continue;
1032
1033		plane_extra = min(fifo_extra, fifo_left);
1034		plane->wm.fifo_size += plane_extra;
1035		fifo_left -= plane_extra;
1036	}
1037
1038	WARN_ON(fifo_left != 0);
1039}
1040
1041static void vlv_invert_wms(struct intel_crtc *crtc)
1042{
1043	struct vlv_wm_state *wm_state = &crtc->wm_state;
1044	int level;
1045
1046	for (level = 0; level < wm_state->num_levels; level++) {
1047		struct drm_device *dev = crtc->base.dev;
1048		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
 
1049		struct intel_plane *plane;
1050
1051		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1052		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1053
1054		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1055			switch (plane->base.type) {
1056				int sprite;
1057			case DRM_PLANE_TYPE_CURSOR:
1058				wm_state->wm[level].cursor = plane->wm.fifo_size -
1059					wm_state->wm[level].cursor;
1060				break;
1061			case DRM_PLANE_TYPE_PRIMARY:
1062				wm_state->wm[level].primary = plane->wm.fifo_size -
1063					wm_state->wm[level].primary;
1064				break;
1065			case DRM_PLANE_TYPE_OVERLAY:
1066				sprite = plane->plane;
1067				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1068					wm_state->wm[level].sprite[sprite];
1069				break;
1070			}
1071		}
1072	}
1073}
1074
1075static void vlv_compute_wm(struct intel_crtc *crtc)
1076{
1077	struct drm_device *dev = crtc->base.dev;
 
1078	struct vlv_wm_state *wm_state = &crtc->wm_state;
1079	struct intel_plane *plane;
1080	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1081	int level;
1082
1083	memset(wm_state, 0, sizeof(*wm_state));
1084
1085	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1086	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1087
1088	wm_state->num_active_planes = 0;
1089
1090	vlv_compute_fifo(crtc);
1091
1092	if (wm_state->num_active_planes != 1)
1093		wm_state->cxsr = false;
1094
1095	if (wm_state->cxsr) {
1096		for (level = 0; level < wm_state->num_levels; level++) {
1097			wm_state->sr[level].plane = sr_fifo_size;
1098			wm_state->sr[level].cursor = 63;
1099		}
1100	}
1101
1102	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1103		struct intel_plane_state *state =
1104			to_intel_plane_state(plane->base.state);
1105
1106		if (!state->visible)
1107			continue;
1108
1109		/* normal watermarks */
1110		for (level = 0; level < wm_state->num_levels; level++) {
1111			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1112			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1113
1114			/* hack */
1115			if (WARN_ON(level == 0 && wm > max_wm))
1116				wm = max_wm;
1117
1118			if (wm > plane->wm.fifo_size)
1119				break;
1120
1121			switch (plane->base.type) {
1122				int sprite;
1123			case DRM_PLANE_TYPE_CURSOR:
1124				wm_state->wm[level].cursor = wm;
1125				break;
1126			case DRM_PLANE_TYPE_PRIMARY:
1127				wm_state->wm[level].primary = wm;
1128				break;
1129			case DRM_PLANE_TYPE_OVERLAY:
1130				sprite = plane->plane;
1131				wm_state->wm[level].sprite[sprite] = wm;
1132				break;
1133			}
1134		}
1135
1136		wm_state->num_levels = level;
1137
1138		if (!wm_state->cxsr)
1139			continue;
1140
1141		/* maxfifo watermarks */
1142		switch (plane->base.type) {
1143			int sprite, level;
1144		case DRM_PLANE_TYPE_CURSOR:
1145			for (level = 0; level < wm_state->num_levels; level++)
1146				wm_state->sr[level].cursor =
1147					wm_state->wm[level].cursor;
1148			break;
1149		case DRM_PLANE_TYPE_PRIMARY:
1150			for (level = 0; level < wm_state->num_levels; level++)
1151				wm_state->sr[level].plane =
1152					min(wm_state->sr[level].plane,
1153					    wm_state->wm[level].primary);
1154			break;
1155		case DRM_PLANE_TYPE_OVERLAY:
1156			sprite = plane->plane;
1157			for (level = 0; level < wm_state->num_levels; level++)
1158				wm_state->sr[level].plane =
1159					min(wm_state->sr[level].plane,
1160					    wm_state->wm[level].sprite[sprite]);
1161			break;
1162		}
1163	}
1164
1165	/* clear any (partially) filled invalid levels */
1166	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1167		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1168		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1169	}
1170
1171	vlv_invert_wms(crtc);
1172}
1173
1174#define VLV_FIFO(plane, value) \
1175	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1176
1177static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1178{
1179	struct drm_device *dev = crtc->base.dev;
1180	struct drm_i915_private *dev_priv = to_i915(dev);
1181	struct intel_plane *plane;
1182	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1183
1184	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1185		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1186			WARN_ON(plane->wm.fifo_size != 63);
1187			continue;
1188		}
1189
1190		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1191			sprite0_start = plane->wm.fifo_size;
1192		else if (plane->plane == 0)
1193			sprite1_start = sprite0_start + plane->wm.fifo_size;
1194		else
1195			fifo_size = sprite1_start + plane->wm.fifo_size;
1196	}
1197
1198	WARN_ON(fifo_size != 512 - 1);
1199
1200	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1201		      pipe_name(crtc->pipe), sprite0_start,
1202		      sprite1_start, fifo_size);
1203
1204	switch (crtc->pipe) {
1205		uint32_t dsparb, dsparb2, dsparb3;
1206	case PIPE_A:
1207		dsparb = I915_READ(DSPARB);
1208		dsparb2 = I915_READ(DSPARB2);
1209
1210		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1211			    VLV_FIFO(SPRITEB, 0xff));
1212		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1213			   VLV_FIFO(SPRITEB, sprite1_start));
1214
1215		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1216			     VLV_FIFO(SPRITEB_HI, 0x1));
1217		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1218			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1219
1220		I915_WRITE(DSPARB, dsparb);
1221		I915_WRITE(DSPARB2, dsparb2);
1222		break;
1223	case PIPE_B:
1224		dsparb = I915_READ(DSPARB);
1225		dsparb2 = I915_READ(DSPARB2);
1226
1227		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1228			    VLV_FIFO(SPRITED, 0xff));
1229		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1230			   VLV_FIFO(SPRITED, sprite1_start));
1231
1232		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1233			     VLV_FIFO(SPRITED_HI, 0xff));
1234		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1235			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1236
1237		I915_WRITE(DSPARB, dsparb);
1238		I915_WRITE(DSPARB2, dsparb2);
1239		break;
1240	case PIPE_C:
1241		dsparb3 = I915_READ(DSPARB3);
1242		dsparb2 = I915_READ(DSPARB2);
1243
1244		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1245			     VLV_FIFO(SPRITEF, 0xff));
1246		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1247			    VLV_FIFO(SPRITEF, sprite1_start));
1248
1249		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1250			     VLV_FIFO(SPRITEF_HI, 0xff));
1251		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1252			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1253
1254		I915_WRITE(DSPARB3, dsparb3);
1255		I915_WRITE(DSPARB2, dsparb2);
1256		break;
1257	default:
1258		break;
1259	}
1260}
1261
1262#undef VLV_FIFO
1263
1264static void vlv_merge_wm(struct drm_device *dev,
1265			 struct vlv_wm_values *wm)
1266{
1267	struct intel_crtc *crtc;
1268	int num_active_crtcs = 0;
1269
1270	wm->level = to_i915(dev)->wm.max_level;
1271	wm->cxsr = true;
1272
1273	for_each_intel_crtc(dev, crtc) {
1274		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1275
1276		if (!crtc->active)
1277			continue;
1278
1279		if (!wm_state->cxsr)
1280			wm->cxsr = false;
1281
1282		num_active_crtcs++;
1283		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1284	}
1285
1286	if (num_active_crtcs != 1)
1287		wm->cxsr = false;
1288
1289	if (num_active_crtcs > 1)
1290		wm->level = VLV_WM_LEVEL_PM2;
1291
1292	for_each_intel_crtc(dev, crtc) {
1293		struct vlv_wm_state *wm_state = &crtc->wm_state;
1294		enum pipe pipe = crtc->pipe;
1295
1296		if (!crtc->active)
1297			continue;
1298
1299		wm->pipe[pipe] = wm_state->wm[wm->level];
1300		if (wm->cxsr)
1301			wm->sr = wm_state->sr[wm->level];
1302
1303		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1304		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1305		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1306		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1307	}
1308}
1309
1310static void vlv_update_wm(struct drm_crtc *crtc)
1311{
1312	struct drm_device *dev = crtc->dev;
1313	struct drm_i915_private *dev_priv = dev->dev_private;
1314	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1315	enum pipe pipe = intel_crtc->pipe;
1316	struct vlv_wm_values wm = {};
1317
1318	vlv_compute_wm(intel_crtc);
1319	vlv_merge_wm(dev, &wm);
1320
1321	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1322		/* FIXME should be part of crtc atomic commit */
1323		vlv_pipe_set_fifo_size(intel_crtc);
1324		return;
1325	}
1326
1327	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1328	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1329		chv_set_memory_dvfs(dev_priv, false);
1330
1331	if (wm.level < VLV_WM_LEVEL_PM5 &&
1332	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1333		chv_set_memory_pm5(dev_priv, false);
1334
1335	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1336		intel_set_memory_cxsr(dev_priv, false);
1337
1338	/* FIXME should be part of crtc atomic commit */
1339	vlv_pipe_set_fifo_size(intel_crtc);
1340
1341	vlv_write_wm_values(intel_crtc, &wm);
1342
1343	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1344		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1345		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1346		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1347		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1348
1349	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1350		intel_set_memory_cxsr(dev_priv, true);
1351
1352	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1353	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1354		chv_set_memory_pm5(dev_priv, true);
1355
1356	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1357	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1358		chv_set_memory_dvfs(dev_priv, true);
1359
1360	dev_priv->wm.vlv = wm;
1361}
1362
1363#define single_plane_enabled(mask) is_power_of_2(mask)
1364
1365static void g4x_update_wm(struct drm_crtc *crtc)
1366{
1367	struct drm_device *dev = crtc->dev;
1368	static const int sr_latency_ns = 12000;
1369	struct drm_i915_private *dev_priv = dev->dev_private;
1370	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1371	int plane_sr, cursor_sr;
1372	unsigned int enabled = 0;
1373	bool cxsr_enabled;
1374
1375	if (g4x_compute_wm0(dev, PIPE_A,
1376			    &g4x_wm_info, pessimal_latency_ns,
1377			    &g4x_cursor_wm_info, pessimal_latency_ns,
1378			    &planea_wm, &cursora_wm))
1379		enabled |= 1 << PIPE_A;
1380
1381	if (g4x_compute_wm0(dev, PIPE_B,
1382			    &g4x_wm_info, pessimal_latency_ns,
1383			    &g4x_cursor_wm_info, pessimal_latency_ns,
1384			    &planeb_wm, &cursorb_wm))
1385		enabled |= 1 << PIPE_B;
1386
1387	if (single_plane_enabled(enabled) &&
1388	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1389			     sr_latency_ns,
1390			     &g4x_wm_info,
1391			     &g4x_cursor_wm_info,
1392			     &plane_sr, &cursor_sr)) {
1393		cxsr_enabled = true;
1394	} else {
1395		cxsr_enabled = false;
1396		intel_set_memory_cxsr(dev_priv, false);
1397		plane_sr = cursor_sr = 0;
1398	}
1399
1400	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1401		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1402		      planea_wm, cursora_wm,
1403		      planeb_wm, cursorb_wm,
1404		      plane_sr, cursor_sr);
1405
1406	I915_WRITE(DSPFW1,
1407		   FW_WM(plane_sr, SR) |
1408		   FW_WM(cursorb_wm, CURSORB) |
1409		   FW_WM(planeb_wm, PLANEB) |
1410		   FW_WM(planea_wm, PLANEA));
1411	I915_WRITE(DSPFW2,
1412		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1413		   FW_WM(cursora_wm, CURSORA));
1414	/* HPLL off in SR has some issues on G4x... disable it */
1415	I915_WRITE(DSPFW3,
1416		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1417		   FW_WM(cursor_sr, CURSOR_SR));
1418
1419	if (cxsr_enabled)
1420		intel_set_memory_cxsr(dev_priv, true);
1421}
1422
1423static void i965_update_wm(struct drm_crtc *unused_crtc)
1424{
1425	struct drm_device *dev = unused_crtc->dev;
1426	struct drm_i915_private *dev_priv = dev->dev_private;
1427	struct drm_crtc *crtc;
1428	int srwm = 1;
1429	int cursor_sr = 16;
1430	bool cxsr_enabled;
1431
1432	/* Calc sr entries for one plane configs */
1433	crtc = single_enabled_crtc(dev);
1434	if (crtc) {
1435		/* self-refresh has much higher latency */
1436		static const int sr_latency_ns = 12000;
1437		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 
 
 
1438		int clock = adjusted_mode->crtc_clock;
1439		int htotal = adjusted_mode->crtc_htotal;
1440		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1441		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1442		unsigned long line_time_us;
1443		int entries;
1444
1445		line_time_us = max(htotal * 1000 / clock, 1);
1446
1447		/* Use ns/us then divide to preserve precision */
1448		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449			cpp * hdisplay;
1450		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1451		srwm = I965_FIFO_SIZE - entries;
1452		if (srwm < 0)
1453			srwm = 1;
1454		srwm &= 0x1ff;
1455		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1456			      entries, srwm);
1457
1458		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459			cpp * crtc->cursor->state->crtc_w;
1460		entries = DIV_ROUND_UP(entries,
1461					  i965_cursor_wm_info.cacheline_size);
1462		cursor_sr = i965_cursor_wm_info.fifo_size -
1463			(entries + i965_cursor_wm_info.guard_size);
1464
1465		if (cursor_sr > i965_cursor_wm_info.max_wm)
1466			cursor_sr = i965_cursor_wm_info.max_wm;
1467
1468		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1469			      "cursor %d\n", srwm, cursor_sr);
1470
1471		cxsr_enabled = true;
1472	} else {
1473		cxsr_enabled = false;
1474		/* Turn off self refresh if both pipes are enabled */
1475		intel_set_memory_cxsr(dev_priv, false);
1476	}
1477
1478	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1479		      srwm);
1480
1481	/* 965 has limitations... */
1482	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1483		   FW_WM(8, CURSORB) |
1484		   FW_WM(8, PLANEB) |
1485		   FW_WM(8, PLANEA));
1486	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1487		   FW_WM(8, PLANEC_OLD));
1488	/* update cursor SR watermark */
1489	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1490
1491	if (cxsr_enabled)
1492		intel_set_memory_cxsr(dev_priv, true);
1493}
1494
1495#undef FW_WM
1496
1497static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1498{
1499	struct drm_device *dev = unused_crtc->dev;
1500	struct drm_i915_private *dev_priv = dev->dev_private;
1501	const struct intel_watermark_params *wm_info;
1502	uint32_t fwater_lo;
1503	uint32_t fwater_hi;
1504	int cwm, srwm = 1;
1505	int fifo_size;
1506	int planea_wm, planeb_wm;
1507	struct drm_crtc *crtc, *enabled = NULL;
1508
1509	if (IS_I945GM(dev))
1510		wm_info = &i945_wm_info;
1511	else if (!IS_GEN2(dev))
1512		wm_info = &i915_wm_info;
1513	else
1514		wm_info = &i830_a_wm_info;
1515
1516	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1517	crtc = intel_get_crtc_for_plane(dev, 0);
1518	if (intel_crtc_active(crtc)) {
1519		const struct drm_display_mode *adjusted_mode;
1520		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1521		if (IS_GEN2(dev))
 
 
 
 
1522			cpp = 4;
 
 
1523
1524		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1525		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1526					       wm_info, fifo_size, cpp,
1527					       pessimal_latency_ns);
1528		enabled = crtc;
1529	} else {
1530		planea_wm = fifo_size - wm_info->guard_size;
1531		if (planea_wm > (long)wm_info->max_wm)
1532			planea_wm = wm_info->max_wm;
1533	}
1534
1535	if (IS_GEN2(dev))
1536		wm_info = &i830_bc_wm_info;
1537
1538	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1539	crtc = intel_get_crtc_for_plane(dev, 1);
1540	if (intel_crtc_active(crtc)) {
1541		const struct drm_display_mode *adjusted_mode;
1542		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1543		if (IS_GEN2(dev))
 
 
 
 
1544			cpp = 4;
 
 
1545
1546		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1547		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548					       wm_info, fifo_size, cpp,
1549					       pessimal_latency_ns);
1550		if (enabled == NULL)
1551			enabled = crtc;
1552		else
1553			enabled = NULL;
1554	} else {
1555		planeb_wm = fifo_size - wm_info->guard_size;
1556		if (planeb_wm > (long)wm_info->max_wm)
1557			planeb_wm = wm_info->max_wm;
1558	}
1559
1560	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1561
1562	if (IS_I915GM(dev) && enabled) {
1563		struct drm_i915_gem_object *obj;
1564
1565		obj = intel_fb_obj(enabled->primary->state->fb);
1566
1567		/* self-refresh seems busted with untiled */
1568		if (obj->tiling_mode == I915_TILING_NONE)
1569			enabled = NULL;
1570	}
1571
1572	/*
1573	 * Overlay gets an aggressive default since video jitter is bad.
1574	 */
1575	cwm = 2;
1576
1577	/* Play safe and disable self-refresh before adjusting watermarks. */
1578	intel_set_memory_cxsr(dev_priv, false);
1579
1580	/* Calc sr entries for one plane configs */
1581	if (HAS_FW_BLC(dev) && enabled) {
1582		/* self-refresh has much higher latency */
1583		static const int sr_latency_ns = 6000;
1584		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
 
 
 
1585		int clock = adjusted_mode->crtc_clock;
1586		int htotal = adjusted_mode->crtc_htotal;
1587		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1588		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1589		unsigned long line_time_us;
1590		int entries;
1591
 
 
 
 
 
1592		line_time_us = max(htotal * 1000 / clock, 1);
1593
1594		/* Use ns/us then divide to preserve precision */
1595		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1596			cpp * hdisplay;
1597		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1598		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1599		srwm = wm_info->fifo_size - entries;
1600		if (srwm < 0)
1601			srwm = 1;
1602
1603		if (IS_I945G(dev) || IS_I945GM(dev))
1604			I915_WRITE(FW_BLC_SELF,
1605				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1606		else if (IS_I915GM(dev))
1607			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1608	}
1609
1610	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1611		      planea_wm, planeb_wm, cwm, srwm);
1612
1613	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1614	fwater_hi = (cwm & 0x1f);
1615
1616	/* Set request length to 8 cachelines per fetch */
1617	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1618	fwater_hi = fwater_hi | (1 << 8);
1619
1620	I915_WRITE(FW_BLC, fwater_lo);
1621	I915_WRITE(FW_BLC2, fwater_hi);
1622
1623	if (enabled)
1624		intel_set_memory_cxsr(dev_priv, true);
1625}
1626
1627static void i845_update_wm(struct drm_crtc *unused_crtc)
1628{
1629	struct drm_device *dev = unused_crtc->dev;
1630	struct drm_i915_private *dev_priv = dev->dev_private;
1631	struct drm_crtc *crtc;
1632	const struct drm_display_mode *adjusted_mode;
1633	uint32_t fwater_lo;
1634	int planea_wm;
1635
1636	crtc = single_enabled_crtc(dev);
1637	if (crtc == NULL)
1638		return;
1639
1640	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1641	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1642				       &i845_wm_info,
1643				       dev_priv->display.get_fifo_size(dev, 0),
1644				       4, pessimal_latency_ns);
1645	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1646	fwater_lo |= (3<<8) | planea_wm;
1647
1648	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1649
1650	I915_WRITE(FW_BLC, fwater_lo);
1651}
1652
1653uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1654{
1655	uint32_t pixel_rate;
1656
1657	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1658
1659	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1660	 * adjust the pixel_rate here. */
1661
1662	if (pipe_config->pch_pfit.enabled) {
1663		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1664		uint32_t pfit_size = pipe_config->pch_pfit.size;
1665
1666		pipe_w = pipe_config->pipe_src_w;
1667		pipe_h = pipe_config->pipe_src_h;
1668
1669		pfit_w = (pfit_size >> 16) & 0xFFFF;
1670		pfit_h = pfit_size & 0xFFFF;
1671		if (pipe_w < pfit_w)
1672			pipe_w = pfit_w;
1673		if (pipe_h < pfit_h)
1674			pipe_h = pfit_h;
1675
1676		if (WARN_ON(!pfit_w || !pfit_h))
1677			return pixel_rate;
1678
1679		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1680				     pfit_w * pfit_h);
1681	}
1682
1683	return pixel_rate;
1684}
1685
1686/* latency must be in 0.1us units. */
1687static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1688{
1689	uint64_t ret;
1690
1691	if (WARN(latency == 0, "Latency value missing\n"))
1692		return UINT_MAX;
1693
1694	ret = (uint64_t) pixel_rate * cpp * latency;
1695	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1696
1697	return ret;
1698}
1699
1700/* latency must be in 0.1us units. */
1701static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1702			       uint32_t horiz_pixels, uint8_t cpp,
1703			       uint32_t latency)
1704{
1705	uint32_t ret;
1706
1707	if (WARN(latency == 0, "Latency value missing\n"))
1708		return UINT_MAX;
1709	if (WARN_ON(!pipe_htotal))
1710		return UINT_MAX;
1711
1712	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1713	ret = (ret + 1) * horiz_pixels * cpp;
1714	ret = DIV_ROUND_UP(ret, 64) + 2;
1715	return ret;
1716}
1717
1718static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1719			   uint8_t cpp)
1720{
1721	/*
1722	 * Neither of these should be possible since this function shouldn't be
1723	 * called if the CRTC is off or the plane is invisible.  But let's be
1724	 * extra paranoid to avoid a potential divide-by-zero if we screw up
1725	 * elsewhere in the driver.
1726	 */
1727	if (WARN_ON(!cpp))
1728		return 0;
1729	if (WARN_ON(!horiz_pixels))
1730		return 0;
1731
1732	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1733}
1734
1735struct ilk_wm_maximums {
1736	uint16_t pri;
1737	uint16_t spr;
1738	uint16_t cur;
1739	uint16_t fbc;
1740};
1741
1742/*
1743 * For both WM_PIPE and WM_LP.
1744 * mem_value must be in 0.1us units.
1745 */
1746static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1747				   const struct intel_plane_state *pstate,
1748				   uint32_t mem_value,
1749				   bool is_lp)
1750{
1751	int cpp = pstate->base.fb ?
1752		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1753	uint32_t method1, method2;
1754
1755	if (!cstate->base.active || !pstate->visible)
1756		return 0;
1757
1758	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1759
1760	if (!is_lp)
1761		return method1;
1762
1763	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1764				 cstate->base.adjusted_mode.crtc_htotal,
1765				 drm_rect_width(&pstate->dst),
1766				 cpp, mem_value);
1767
1768	return min(method1, method2);
1769}
1770
1771/*
1772 * For both WM_PIPE and WM_LP.
1773 * mem_value must be in 0.1us units.
1774 */
1775static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1776				   const struct intel_plane_state *pstate,
1777				   uint32_t mem_value)
1778{
1779	int cpp = pstate->base.fb ?
1780		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1781	uint32_t method1, method2;
1782
1783	if (!cstate->base.active || !pstate->visible)
1784		return 0;
1785
1786	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1787	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1788				 cstate->base.adjusted_mode.crtc_htotal,
1789				 drm_rect_width(&pstate->dst),
1790				 cpp, mem_value);
1791	return min(method1, method2);
1792}
1793
1794/*
1795 * For both WM_PIPE and WM_LP.
1796 * mem_value must be in 0.1us units.
1797 */
1798static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1799				   const struct intel_plane_state *pstate,
1800				   uint32_t mem_value)
1801{
1802	/*
1803	 * We treat the cursor plane as always-on for the purposes of watermark
1804	 * calculation.  Until we have two-stage watermark programming merged,
1805	 * this is necessary to avoid flickering.
1806	 */
1807	int cpp = 4;
1808	int width = pstate->visible ? pstate->base.crtc_w : 64;
1809
1810	if (!cstate->base.active)
1811		return 0;
1812
1813	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1814			      cstate->base.adjusted_mode.crtc_htotal,
1815			      width, cpp, mem_value);
1816}
1817
1818/* Only for WM_LP. */
1819static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1820				   const struct intel_plane_state *pstate,
1821				   uint32_t pri_val)
1822{
1823	int cpp = pstate->base.fb ?
1824		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1825
1826	if (!cstate->base.active || !pstate->visible)
1827		return 0;
1828
1829	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1830}
1831
1832static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
 
1833{
1834	if (INTEL_INFO(dev)->gen >= 8)
1835		return 3072;
1836	else if (INTEL_INFO(dev)->gen >= 7)
1837		return 768;
1838	else
1839		return 512;
1840}
1841
1842static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1843					 int level, bool is_sprite)
 
1844{
1845	if (INTEL_INFO(dev)->gen >= 8)
1846		/* BDW primary/sprite plane watermarks */
1847		return level == 0 ? 255 : 2047;
1848	else if (INTEL_INFO(dev)->gen >= 7)
1849		/* IVB/HSW primary/sprite plane watermarks */
1850		return level == 0 ? 127 : 1023;
1851	else if (!is_sprite)
1852		/* ILK/SNB primary plane watermarks */
1853		return level == 0 ? 127 : 511;
1854	else
1855		/* ILK/SNB sprite plane watermarks */
1856		return level == 0 ? 63 : 255;
1857}
1858
1859static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1860					  int level)
1861{
1862	if (INTEL_INFO(dev)->gen >= 7)
1863		return level == 0 ? 63 : 255;
1864	else
1865		return level == 0 ? 31 : 63;
1866}
1867
1868static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1869{
1870	if (INTEL_INFO(dev)->gen >= 8)
1871		return 31;
1872	else
1873		return 15;
1874}
1875
1876/* Calculate the maximum primary/sprite plane watermark */
1877static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1878				     int level,
1879				     const struct intel_wm_config *config,
1880				     enum intel_ddb_partitioning ddb_partitioning,
1881				     bool is_sprite)
1882{
1883	unsigned int fifo_size = ilk_display_fifo_size(dev);
 
1884
1885	/* if sprites aren't enabled, sprites get nothing */
1886	if (is_sprite && !config->sprites_enabled)
1887		return 0;
1888
1889	/* HSW allows LP1+ watermarks even with multiple pipes */
1890	if (level == 0 || config->num_pipes_active > 1) {
1891		fifo_size /= INTEL_INFO(dev)->num_pipes;
1892
1893		/*
1894		 * For some reason the non self refresh
1895		 * FIFO size is only half of the self
1896		 * refresh FIFO size on ILK/SNB.
1897		 */
1898		if (INTEL_INFO(dev)->gen <= 6)
1899			fifo_size /= 2;
1900	}
1901
1902	if (config->sprites_enabled) {
1903		/* level 0 is always calculated with 1:1 split */
1904		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1905			if (is_sprite)
1906				fifo_size *= 5;
1907			fifo_size /= 6;
1908		} else {
1909			fifo_size /= 2;
1910		}
1911	}
1912
1913	/* clamp to max that the registers can hold */
1914	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1915}
1916
1917/* Calculate the maximum cursor plane watermark */
1918static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1919				      int level,
1920				      const struct intel_wm_config *config)
1921{
1922	/* HSW LP1+ watermarks w/ multiple pipes */
1923	if (level > 0 && config->num_pipes_active > 1)
1924		return 64;
1925
1926	/* otherwise just report max that registers can hold */
1927	return ilk_cursor_wm_reg_max(dev, level);
1928}
1929
1930static void ilk_compute_wm_maximums(const struct drm_device *dev,
1931				    int level,
1932				    const struct intel_wm_config *config,
1933				    enum intel_ddb_partitioning ddb_partitioning,
1934				    struct ilk_wm_maximums *max)
1935{
1936	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1937	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1938	max->cur = ilk_cursor_wm_max(dev, level, config);
1939	max->fbc = ilk_fbc_wm_reg_max(dev);
1940}
1941
1942static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1943					int level,
1944					struct ilk_wm_maximums *max)
1945{
1946	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1947	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1948	max->cur = ilk_cursor_wm_reg_max(dev, level);
1949	max->fbc = ilk_fbc_wm_reg_max(dev);
1950}
1951
1952static bool ilk_validate_wm_level(int level,
1953				  const struct ilk_wm_maximums *max,
1954				  struct intel_wm_level *result)
1955{
1956	bool ret;
1957
1958	/* already determined to be invalid? */
1959	if (!result->enable)
1960		return false;
1961
1962	result->enable = result->pri_val <= max->pri &&
1963			 result->spr_val <= max->spr &&
1964			 result->cur_val <= max->cur;
1965
1966	ret = result->enable;
1967
1968	/*
1969	 * HACK until we can pre-compute everything,
1970	 * and thus fail gracefully if LP0 watermarks
1971	 * are exceeded...
1972	 */
1973	if (level == 0 && !result->enable) {
1974		if (result->pri_val > max->pri)
1975			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1976				      level, result->pri_val, max->pri);
1977		if (result->spr_val > max->spr)
1978			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1979				      level, result->spr_val, max->spr);
1980		if (result->cur_val > max->cur)
1981			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1982				      level, result->cur_val, max->cur);
1983
1984		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1985		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1986		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1987		result->enable = true;
1988	}
1989
1990	return ret;
1991}
1992
1993static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1994				 const struct intel_crtc *intel_crtc,
1995				 int level,
1996				 struct intel_crtc_state *cstate,
1997				 struct intel_plane_state *pristate,
1998				 struct intel_plane_state *sprstate,
1999				 struct intel_plane_state *curstate,
2000				 struct intel_wm_level *result)
2001{
2002	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2003	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2004	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2005
2006	/* WM1+ latency values stored in 0.5us units */
2007	if (level > 0) {
2008		pri_latency *= 5;
2009		spr_latency *= 5;
2010		cur_latency *= 5;
2011	}
2012
2013	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2014					     pri_latency, level);
2015	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2016	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2017	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
 
 
 
 
 
 
 
2018	result->enable = true;
2019}
2020
2021static uint32_t
2022hsw_compute_linetime_wm(struct drm_device *dev,
2023			struct intel_crtc_state *cstate)
2024{
2025	struct drm_i915_private *dev_priv = dev->dev_private;
 
2026	const struct drm_display_mode *adjusted_mode =
2027		&cstate->base.adjusted_mode;
2028	u32 linetime, ips_linetime;
2029
2030	if (!cstate->base.active)
2031		return 0;
2032	if (WARN_ON(adjusted_mode->crtc_clock == 0))
2033		return 0;
2034	if (WARN_ON(dev_priv->cdclk_freq == 0))
2035		return 0;
2036
2037	/* The WM are computed with base on how long it takes to fill a single
2038	 * row at the given clock rate, multiplied by 8.
2039	 * */
2040	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2041				     adjusted_mode->crtc_clock);
2042	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2043					 dev_priv->cdclk_freq);
2044
2045	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2046	       PIPE_WM_LINETIME_TIME(linetime);
2047}
2048
2049static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
 
2050{
2051	struct drm_i915_private *dev_priv = dev->dev_private;
2052
2053	if (IS_GEN9(dev)) {
2054		uint32_t val;
2055		int ret, i;
2056		int level, max_level = ilk_wm_max_level(dev);
2057
2058		/* read the first set of memory latencies[0:3] */
2059		val = 0; /* data0 to be programmed to 0 for first set */
2060		mutex_lock(&dev_priv->rps.hw_lock);
2061		ret = sandybridge_pcode_read(dev_priv,
2062					     GEN9_PCODE_READ_MEM_LATENCY,
2063					     &val);
2064		mutex_unlock(&dev_priv->rps.hw_lock);
2065
2066		if (ret) {
2067			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2068			return;
2069		}
2070
2071		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2072		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2073				GEN9_MEM_LATENCY_LEVEL_MASK;
2074		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2075				GEN9_MEM_LATENCY_LEVEL_MASK;
2076		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2077				GEN9_MEM_LATENCY_LEVEL_MASK;
2078
2079		/* read the second set of memory latencies[4:7] */
2080		val = 1; /* data0 to be programmed to 1 for second set */
2081		mutex_lock(&dev_priv->rps.hw_lock);
2082		ret = sandybridge_pcode_read(dev_priv,
2083					     GEN9_PCODE_READ_MEM_LATENCY,
2084					     &val);
2085		mutex_unlock(&dev_priv->rps.hw_lock);
2086		if (ret) {
2087			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2088			return;
2089		}
2090
2091		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2092		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2093				GEN9_MEM_LATENCY_LEVEL_MASK;
2094		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2095				GEN9_MEM_LATENCY_LEVEL_MASK;
2096		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2097				GEN9_MEM_LATENCY_LEVEL_MASK;
2098
2099		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
2100		 * WaWmMemoryReadLatency:skl
2101		 *
2102		 * punit doesn't take into account the read latency so we need
2103		 * to add 2us to the various latency levels we retrieve from
2104		 * the punit.
2105		 *   - W0 is a bit special in that it's the only level that
2106		 *   can't be disabled if we want to have display working, so
2107		 *   we always add 2us there.
2108		 *   - For levels >=1, punit returns 0us latency when they are
2109		 *   disabled, so we respect that and don't add 2us then
2110		 *
2111		 * Additionally, if a level n (n > 1) has a 0us latency, all
2112		 * levels m (m >= n) need to be disabled. We make sure to
2113		 * sanitize the values out of the punit to satisfy this
2114		 * requirement.
2115		 */
2116		wm[0] += 2;
2117		for (level = 1; level <= max_level; level++)
2118			if (wm[level] != 0)
 
 
2119				wm[level] += 2;
2120			else {
2121				for (i = level + 1; i <= max_level; i++)
2122					wm[i] = 0;
2123
2124				break;
2125			}
2126	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
 
 
2127		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2128
2129		wm[0] = (sskpd >> 56) & 0xFF;
2130		if (wm[0] == 0)
2131			wm[0] = sskpd & 0xF;
2132		wm[1] = (sskpd >> 4) & 0xFF;
2133		wm[2] = (sskpd >> 12) & 0xFF;
2134		wm[3] = (sskpd >> 20) & 0x1FF;
2135		wm[4] = (sskpd >> 32) & 0x1FF;
2136	} else if (INTEL_INFO(dev)->gen >= 6) {
2137		uint32_t sskpd = I915_READ(MCH_SSKPD);
2138
2139		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2140		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2141		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2142		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2143	} else if (INTEL_INFO(dev)->gen >= 5) {
2144		uint32_t mltr = I915_READ(MLTR_ILK);
2145
2146		/* ILK primary LP0 latency is 700 ns */
2147		wm[0] = 7;
2148		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2149		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2150	}
2151}
2152
2153static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
 
2154{
2155	/* ILK sprite LP0 latency is 1300 ns */
2156	if (INTEL_INFO(dev)->gen == 5)
2157		wm[0] = 13;
2158}
2159
2160static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
 
2161{
2162	/* ILK cursor LP0 latency is 1300 ns */
2163	if (INTEL_INFO(dev)->gen == 5)
2164		wm[0] = 13;
2165
2166	/* WaDoubleCursorLP3Latency:ivb */
2167	if (IS_IVYBRIDGE(dev))
2168		wm[3] *= 2;
2169}
2170
2171int ilk_wm_max_level(const struct drm_device *dev)
2172{
2173	/* how many WM levels are we expecting */
2174	if (INTEL_INFO(dev)->gen >= 9)
2175		return 7;
2176	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2177		return 4;
2178	else if (INTEL_INFO(dev)->gen >= 6)
2179		return 3;
2180	else
2181		return 2;
2182}
2183
2184static void intel_print_wm_latency(struct drm_device *dev,
2185				   const char *name,
2186				   const uint16_t wm[8])
2187{
2188	int level, max_level = ilk_wm_max_level(dev);
2189
2190	for (level = 0; level <= max_level; level++) {
2191		unsigned int latency = wm[level];
2192
2193		if (latency == 0) {
2194			DRM_ERROR("%s WM%d latency not provided\n",
2195				  name, level);
2196			continue;
2197		}
2198
2199		/*
2200		 * - latencies are in us on gen9.
2201		 * - before then, WM1+ latency values are in 0.5us units
2202		 */
2203		if (IS_GEN9(dev))
2204			latency *= 10;
2205		else if (level > 0)
2206			latency *= 5;
2207
2208		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2209			      name, level, wm[level],
2210			      latency / 10, latency % 10);
2211	}
2212}
2213
2214static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2215				    uint16_t wm[5], uint16_t min)
2216{
2217	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2218
2219	if (wm[0] >= min)
2220		return false;
2221
2222	wm[0] = max(wm[0], min);
2223	for (level = 1; level <= max_level; level++)
2224		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2225
2226	return true;
2227}
2228
2229static void snb_wm_latency_quirk(struct drm_device *dev)
2230{
2231	struct drm_i915_private *dev_priv = dev->dev_private;
2232	bool changed;
2233
2234	/*
2235	 * The BIOS provided WM memory latency values are often
2236	 * inadequate for high resolution displays. Adjust them.
2237	 */
2238	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2239		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2240		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2241
2242	if (!changed)
2243		return;
2244
2245	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2246	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2247	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2248	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2249}
2250
2251static void ilk_setup_wm_latency(struct drm_device *dev)
2252{
2253	struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2256
2257	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2258	       sizeof(dev_priv->wm.pri_latency));
2259	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2260	       sizeof(dev_priv->wm.pri_latency));
2261
2262	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2263	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2264
2265	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2266	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2267	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2268
2269	if (IS_GEN6(dev))
2270		snb_wm_latency_quirk(dev);
 
 
 
 
 
 
2271}
2272
2273static void skl_setup_wm_latency(struct drm_device *dev)
 
2274{
2275	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
2276
2277	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2278	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
 
 
 
 
 
 
 
 
2279}
2280
2281/* Compute new watermarks for the pipe */
2282static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2283			       struct drm_atomic_state *state)
2284{
 
 
2285	struct intel_pipe_wm *pipe_wm;
2286	struct drm_device *dev = intel_crtc->base.dev;
2287	const struct drm_i915_private *dev_priv = dev->dev_private;
2288	struct intel_crtc_state *cstate = NULL;
2289	struct intel_plane *intel_plane;
2290	struct drm_plane_state *ps;
2291	struct intel_plane_state *pristate = NULL;
2292	struct intel_plane_state *sprstate = NULL;
2293	struct intel_plane_state *curstate = NULL;
2294	int level, max_level = ilk_wm_max_level(dev);
2295	/* LP0 watermark maximums depend on this pipe alone */
2296	struct intel_wm_config config = {
2297		.num_pipes_active = 1,
2298	};
2299	struct ilk_wm_maximums max;
2300
2301	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2302	if (IS_ERR(cstate))
2303		return PTR_ERR(cstate);
2304
2305	pipe_wm = &cstate->wm.optimal.ilk;
2306	memset(pipe_wm, 0, sizeof(*pipe_wm));
2307
2308	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2309		ps = drm_atomic_get_plane_state(state,
2310						&intel_plane->base);
2311		if (IS_ERR(ps))
2312			return PTR_ERR(ps);
 
 
2313
2314		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2315			pristate = to_intel_plane_state(ps);
2316		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2317			sprstate = to_intel_plane_state(ps);
2318		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2319			curstate = to_intel_plane_state(ps);
2320	}
2321
2322	config.sprites_enabled = sprstate->visible;
2323	config.sprites_scaled = sprstate->visible &&
2324		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2325		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2326
2327	pipe_wm->pipe_enabled = cstate->base.active;
2328	pipe_wm->sprites_enabled = config.sprites_enabled;
2329	pipe_wm->sprites_scaled = config.sprites_scaled;
 
 
 
 
 
 
2330
2331	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2332	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2333		max_level = 1;
2334
2335	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2336	if (config.sprites_scaled)
2337		max_level = 0;
2338
2339	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2340			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2341
2342	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2343		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2344
2345	/* LP0 watermarks always use 1/2 DDB partitioning */
2346	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2347
2348	/* At least LP0 must be valid */
2349	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2350		return -EINVAL;
2351
2352	ilk_compute_wm_reg_maximums(dev, 1, &max);
2353
2354	for (level = 1; level <= max_level; level++) {
2355		struct intel_wm_level wm = {};
2356
2357		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2358				     pristate, sprstate, curstate, &wm);
2359
2360		/*
2361		 * Disable any watermark level that exceeds the
2362		 * register maximums since such watermarks are
2363		 * always invalid.
2364		 */
2365		if (!ilk_validate_wm_level(level, &max, &wm))
2366			break;
 
 
 
 
 
 
 
 
 
2367
2368		pipe_wm->wm[level] = wm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369	}
2370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371	return 0;
2372}
2373
2374/*
2375 * Merge the watermarks from all active pipes for a specific level.
2376 */
2377static void ilk_merge_wm_level(struct drm_device *dev,
2378			       int level,
2379			       struct intel_wm_level *ret_wm)
2380{
2381	const struct intel_crtc *intel_crtc;
2382
2383	ret_wm->enable = true;
2384
2385	for_each_intel_crtc(dev, intel_crtc) {
2386		const struct intel_crtc_state *cstate =
2387			to_intel_crtc_state(intel_crtc->base.state);
2388		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2389		const struct intel_wm_level *wm = &active->wm[level];
2390
2391		if (!active->pipe_enabled)
2392			continue;
2393
2394		/*
2395		 * The watermark values may have been used in the past,
2396		 * so we must maintain them in the registers for some
2397		 * time even if the level is now disabled.
2398		 */
2399		if (!wm->enable)
2400			ret_wm->enable = false;
2401
2402		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2403		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2404		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2405		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2406	}
2407}
2408
2409/*
2410 * Merge all low power watermarks for all active pipes.
2411 */
2412static void ilk_wm_merge(struct drm_device *dev,
2413			 const struct intel_wm_config *config,
2414			 const struct ilk_wm_maximums *max,
2415			 struct intel_pipe_wm *merged)
2416{
2417	struct drm_i915_private *dev_priv = dev->dev_private;
2418	int level, max_level = ilk_wm_max_level(dev);
2419	int last_enabled_level = max_level;
2420
2421	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2422	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2423	    config->num_pipes_active > 1)
2424		return;
2425
2426	/* ILK: FBC WM must be disabled always */
2427	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2428
2429	/* merge each WM1+ level */
2430	for (level = 1; level <= max_level; level++) {
2431		struct intel_wm_level *wm = &merged->wm[level];
2432
2433		ilk_merge_wm_level(dev, level, wm);
2434
2435		if (level > last_enabled_level)
2436			wm->enable = false;
2437		else if (!ilk_validate_wm_level(level, max, wm))
2438			/* make sure all following levels get disabled */
2439			last_enabled_level = level - 1;
2440
2441		/*
2442		 * The spec says it is preferred to disable
2443		 * FBC WMs instead of disabling a WM level.
2444		 */
2445		if (wm->fbc_val > max->fbc) {
2446			if (wm->enable)
2447				merged->fbc_wm_enabled = false;
2448			wm->fbc_val = 0;
2449		}
2450	}
2451
2452	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2453	/*
2454	 * FIXME this is racy. FBC might get enabled later.
2455	 * What we should check here is whether FBC can be
2456	 * enabled sometime later.
2457	 */
2458	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2459	    intel_fbc_is_active(dev_priv)) {
2460		for (level = 2; level <= max_level; level++) {
2461			struct intel_wm_level *wm = &merged->wm[level];
2462
2463			wm->enable = false;
2464		}
2465	}
2466}
2467
2468static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2469{
2470	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2471	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2472}
2473
2474/* The value we need to program into the WM_LPx latency field */
2475static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2476{
2477	struct drm_i915_private *dev_priv = dev->dev_private;
2478
2479	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2480		return 2 * level;
2481	else
2482		return dev_priv->wm.pri_latency[level];
2483}
2484
2485static void ilk_compute_wm_results(struct drm_device *dev,
2486				   const struct intel_pipe_wm *merged,
2487				   enum intel_ddb_partitioning partitioning,
2488				   struct ilk_wm_values *results)
2489{
 
2490	struct intel_crtc *intel_crtc;
2491	int level, wm_lp;
2492
2493	results->enable_fbc_wm = merged->fbc_wm_enabled;
2494	results->partitioning = partitioning;
2495
2496	/* LP1+ register values */
2497	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2498		const struct intel_wm_level *r;
2499
2500		level = ilk_wm_lp_to_level(wm_lp, merged);
2501
2502		r = &merged->wm[level];
2503
2504		/*
2505		 * Maintain the watermark values even if the level is
2506		 * disabled. Doing otherwise could cause underruns.
2507		 */
2508		results->wm_lp[wm_lp - 1] =
2509			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2510			(r->pri_val << WM1_LP_SR_SHIFT) |
2511			r->cur_val;
2512
2513		if (r->enable)
2514			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2515
2516		if (INTEL_INFO(dev)->gen >= 8)
2517			results->wm_lp[wm_lp - 1] |=
2518				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2519		else
2520			results->wm_lp[wm_lp - 1] |=
2521				r->fbc_val << WM1_LP_FBC_SHIFT;
2522
2523		/*
2524		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2525		 * level is disabled. Doing otherwise could cause underruns.
2526		 */
2527		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2528			WARN_ON(wm_lp != 1);
2529			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2530		} else
2531			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2532	}
2533
2534	/* LP0 register values */
2535	for_each_intel_crtc(dev, intel_crtc) {
2536		const struct intel_crtc_state *cstate =
2537			to_intel_crtc_state(intel_crtc->base.state);
2538		enum pipe pipe = intel_crtc->pipe;
2539		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
 
2540
2541		if (WARN_ON(!r->enable))
2542			continue;
2543
2544		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2545
2546		results->wm_pipe[pipe] =
2547			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2548			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2549			r->cur_val;
2550	}
2551}
2552
2553/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2554 * case both are at the same level. Prefer r1 in case they're the same. */
2555static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2556						  struct intel_pipe_wm *r1,
2557						  struct intel_pipe_wm *r2)
2558{
2559	int level, max_level = ilk_wm_max_level(dev);
2560	int level1 = 0, level2 = 0;
2561
2562	for (level = 1; level <= max_level; level++) {
2563		if (r1->wm[level].enable)
2564			level1 = level;
2565		if (r2->wm[level].enable)
2566			level2 = level;
2567	}
2568
2569	if (level1 == level2) {
2570		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2571			return r2;
2572		else
2573			return r1;
2574	} else if (level1 > level2) {
2575		return r1;
2576	} else {
2577		return r2;
2578	}
2579}
2580
2581/* dirty bits used to track which watermarks need changes */
2582#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2583#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2584#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2585#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2586#define WM_DIRTY_FBC (1 << 24)
2587#define WM_DIRTY_DDB (1 << 25)
2588
2589static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2590					 const struct ilk_wm_values *old,
2591					 const struct ilk_wm_values *new)
2592{
2593	unsigned int dirty = 0;
2594	enum pipe pipe;
2595	int wm_lp;
2596
2597	for_each_pipe(dev_priv, pipe) {
2598		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2599			dirty |= WM_DIRTY_LINETIME(pipe);
2600			/* Must disable LP1+ watermarks too */
2601			dirty |= WM_DIRTY_LP_ALL;
2602		}
2603
2604		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2605			dirty |= WM_DIRTY_PIPE(pipe);
2606			/* Must disable LP1+ watermarks too */
2607			dirty |= WM_DIRTY_LP_ALL;
2608		}
2609	}
2610
2611	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2612		dirty |= WM_DIRTY_FBC;
2613		/* Must disable LP1+ watermarks too */
2614		dirty |= WM_DIRTY_LP_ALL;
2615	}
2616
2617	if (old->partitioning != new->partitioning) {
2618		dirty |= WM_DIRTY_DDB;
2619		/* Must disable LP1+ watermarks too */
2620		dirty |= WM_DIRTY_LP_ALL;
2621	}
2622
2623	/* LP1+ watermarks already deemed dirty, no need to continue */
2624	if (dirty & WM_DIRTY_LP_ALL)
2625		return dirty;
2626
2627	/* Find the lowest numbered LP1+ watermark in need of an update... */
2628	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2629		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2630		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2631			break;
2632	}
2633
2634	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2635	for (; wm_lp <= 3; wm_lp++)
2636		dirty |= WM_DIRTY_LP(wm_lp);
2637
2638	return dirty;
2639}
2640
2641static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2642			       unsigned int dirty)
2643{
2644	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2645	bool changed = false;
2646
2647	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2648		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2649		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2650		changed = true;
2651	}
2652	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2653		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2654		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2655		changed = true;
2656	}
2657	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2658		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2659		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2660		changed = true;
2661	}
2662
2663	/*
2664	 * Don't touch WM1S_LP_EN here.
2665	 * Doing so could cause underruns.
2666	 */
2667
2668	return changed;
2669}
2670
2671/*
2672 * The spec says we shouldn't write when we don't need, because every write
2673 * causes WMs to be re-evaluated, expending some power.
2674 */
2675static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2676				struct ilk_wm_values *results)
2677{
2678	struct drm_device *dev = dev_priv->dev;
2679	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2680	unsigned int dirty;
2681	uint32_t val;
2682
2683	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2684	if (!dirty)
2685		return;
2686
2687	_ilk_disable_lp_wm(dev_priv, dirty);
2688
2689	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2690		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2691	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2692		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2693	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2694		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2695
2696	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2697		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2698	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2699		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2700	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2701		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2702
2703	if (dirty & WM_DIRTY_DDB) {
2704		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2705			val = I915_READ(WM_MISC);
2706			if (results->partitioning == INTEL_DDB_PART_1_2)
2707				val &= ~WM_MISC_DATA_PARTITION_5_6;
2708			else
2709				val |= WM_MISC_DATA_PARTITION_5_6;
2710			I915_WRITE(WM_MISC, val);
2711		} else {
2712			val = I915_READ(DISP_ARB_CTL2);
2713			if (results->partitioning == INTEL_DDB_PART_1_2)
2714				val &= ~DISP_DATA_PARTITION_5_6;
2715			else
2716				val |= DISP_DATA_PARTITION_5_6;
2717			I915_WRITE(DISP_ARB_CTL2, val);
2718		}
2719	}
2720
2721	if (dirty & WM_DIRTY_FBC) {
2722		val = I915_READ(DISP_ARB_CTL);
2723		if (results->enable_fbc_wm)
2724			val &= ~DISP_FBC_WM_DIS;
2725		else
2726			val |= DISP_FBC_WM_DIS;
2727		I915_WRITE(DISP_ARB_CTL, val);
2728	}
2729
2730	if (dirty & WM_DIRTY_LP(1) &&
2731	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2732		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2733
2734	if (INTEL_INFO(dev)->gen >= 7) {
2735		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2736			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2737		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2738			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2739	}
2740
2741	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2742		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2743	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2744		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2745	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2746		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2747
2748	dev_priv->wm.hw = *results;
2749}
2750
2751static bool ilk_disable_lp_wm(struct drm_device *dev)
2752{
2753	struct drm_i915_private *dev_priv = dev->dev_private;
2754
2755	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2756}
2757
2758/*
2759 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2760 * different active planes.
2761 */
2762
2763#define SKL_DDB_SIZE		896	/* in blocks */
2764#define BXT_DDB_SIZE		512
2765
2766/*
2767 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2768 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2769 * other universal planes are in indices 1..n.  Note that this may leave unused
2770 * indices between the top "sprite" plane and the cursor.
2771 */
2772static int
2773skl_wm_plane_id(const struct intel_plane *plane)
2774{
2775	switch (plane->base.type) {
2776	case DRM_PLANE_TYPE_PRIMARY:
2777		return 0;
2778	case DRM_PLANE_TYPE_CURSOR:
2779		return PLANE_CURSOR;
2780	case DRM_PLANE_TYPE_OVERLAY:
2781		return plane->plane + 1;
2782	default:
2783		MISSING_CASE(plane->base.type);
2784		return plane->plane;
2785	}
2786}
2787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788static void
2789skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2790				   const struct intel_crtc_state *cstate,
2791				   const struct intel_wm_config *config,
2792				   struct skl_ddb_entry *alloc /* out */)
2793{
 
 
 
2794	struct drm_crtc *for_crtc = cstate->base.crtc;
2795	struct drm_crtc *crtc;
2796	unsigned int pipe_size, ddb_size;
2797	int nth_active_pipe;
2798
2799	if (!cstate->base.active) {
2800		alloc->start = 0;
2801		alloc->end = 0;
 
2802		return;
2803	}
2804
2805	if (IS_BROXTON(dev))
2806		ddb_size = BXT_DDB_SIZE;
2807	else
2808		ddb_size = SKL_DDB_SIZE;
2809
2810	ddb_size -= 4; /* 4 blocks for bypass path allocation */
 
2811
2812	nth_active_pipe = 0;
2813	for_each_crtc(dev, crtc) {
2814		if (!to_intel_crtc(crtc)->active)
2815			continue;
2816
2817		if (crtc == for_crtc)
2818			break;
2819
2820		nth_active_pipe++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2821	}
2822
2823	pipe_size = ddb_size / config->num_pipes_active;
2824	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
 
 
2825	alloc->end = alloc->start + pipe_size;
2826}
2827
2828static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2829{
2830	if (config->num_pipes_active == 1)
2831		return 32;
2832
2833	return 8;
2834}
2835
2836static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2837{
2838	entry->start = reg & 0x3ff;
2839	entry->end = (reg >> 16) & 0x3ff;
2840	if (entry->end)
2841		entry->end += 1;
2842}
2843
2844void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2845			  struct skl_ddb_allocation *ddb /* out */)
2846{
2847	enum pipe pipe;
2848	int plane;
2849	u32 val;
2850
2851	memset(ddb, 0, sizeof(*ddb));
2852
2853	for_each_pipe(dev_priv, pipe) {
2854		enum intel_display_power_domain power_domain;
2855
2856		power_domain = POWER_DOMAIN_PIPE(pipe);
2857		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2858			continue;
2859
2860		for_each_plane(dev_priv, pipe, plane) {
2861			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2862			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2863						   val);
2864		}
2865
2866		val = I915_READ(CUR_BUF_CFG(pipe));
2867		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2868					   val);
2869
2870		intel_display_power_put(dev_priv, power_domain);
2871	}
2872}
2873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2874static unsigned int
2875skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2876			     const struct drm_plane_state *pstate,
2877			     int y)
2878{
2879	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2880	struct drm_framebuffer *fb = pstate->fb;
 
2881	uint32_t width = 0, height = 0;
 
 
 
 
 
 
 
 
2882
2883	width = drm_rect_width(&intel_pstate->src) >> 16;
2884	height = drm_rect_height(&intel_pstate->src) >> 16;
2885
2886	if (intel_rotation_90_or_270(pstate->rotation))
2887		swap(width, height);
2888
2889	/* for planar format */
2890	if (fb->pixel_format == DRM_FORMAT_NV12) {
2891		if (y)  /* y-plane data rate */
2892			return width * height *
2893				drm_format_plane_cpp(fb->pixel_format, 0);
2894		else    /* uv-plane data rate */
2895			return (width / 2) * (height / 2) *
2896				drm_format_plane_cpp(fb->pixel_format, 1);
 
 
 
2897	}
2898
2899	/* for packed formats */
2900	return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
 
2901}
2902
2903/*
2904 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2905 * a 8192x4096@32bpp framebuffer:
2906 *   3 * 4096 * 8192  * 4 < 2^32
2907 */
2908static unsigned int
2909skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2910{
2911	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2912	struct drm_device *dev = intel_crtc->base.dev;
 
 
 
2913	const struct intel_plane *intel_plane;
2914	unsigned int total_data_rate = 0;
2915
2916	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2917		const struct drm_plane_state *pstate = intel_plane->base.state;
2918
2919		if (pstate->fb == NULL)
2920			continue;
2921
2922		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2923			continue;
 
 
2924
2925		/* packed/uv */
2926		total_data_rate += skl_plane_relative_data_rate(cstate,
2927								pstate,
2928								0);
2929
2930		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2931			/* y-plane */
2932			total_data_rate += skl_plane_relative_data_rate(cstate,
2933									pstate,
2934									1);
 
 
 
2935	}
2936
2937	return total_data_rate;
2938}
2939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2940static void
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2941skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2942		      struct skl_ddb_allocation *ddb /* out */)
2943{
 
2944	struct drm_crtc *crtc = cstate->base.crtc;
2945	struct drm_device *dev = crtc->dev;
2946	struct drm_i915_private *dev_priv = to_i915(dev);
2947	struct intel_wm_config *config = &dev_priv->wm.config;
2948	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2949	struct intel_plane *intel_plane;
2950	enum pipe pipe = intel_crtc->pipe;
2951	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2952	uint16_t alloc_size, start, cursor_blocks;
2953	uint16_t minimum[I915_MAX_PLANES];
2954	uint16_t y_minimum[I915_MAX_PLANES];
2955	unsigned int total_data_rate;
 
 
 
 
 
 
 
 
 
 
 
2956
2957	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
 
 
 
 
 
2958	alloc_size = skl_ddb_entry_size(alloc);
2959	if (alloc_size == 0) {
2960		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2961		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2962		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2963		return;
2964	}
2965
2966	cursor_blocks = skl_cursor_allocation(config);
2967	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2968	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2969
2970	alloc_size -= cursor_blocks;
2971	alloc->end -= cursor_blocks;
2972
2973	/* 1. Allocate the mininum required blocks for each active plane */
2974	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2975		struct drm_plane *plane = &intel_plane->base;
2976		struct drm_framebuffer *fb = plane->state->fb;
2977		int id = skl_wm_plane_id(intel_plane);
2978
2979		if (!to_intel_plane_state(plane->state)->visible)
2980			continue;
2981
2982		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2983			continue;
2984
2985		minimum[id] = 8;
2986		alloc_size -= minimum[id];
2987		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2988		alloc_size -= y_minimum[id];
2989	}
2990
 
 
 
2991	/*
2992	 * 2. Distribute the remaining space in proportion to the amount of
2993	 * data each plane needs to fetch from memory.
2994	 *
2995	 * FIXME: we may not allocate every single block here.
2996	 */
2997	total_data_rate = skl_get_total_relative_data_rate(cstate);
 
 
 
 
2998
2999	start = alloc->start;
3000	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3001		struct drm_plane *plane = &intel_plane->base;
3002		struct drm_plane_state *pstate = intel_plane->base.state;
3003		unsigned int data_rate, y_data_rate;
3004		uint16_t plane_blocks, y_plane_blocks = 0;
3005		int id = skl_wm_plane_id(intel_plane);
3006
3007		if (!to_intel_plane_state(pstate)->visible)
3008			continue;
3009		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3010			continue;
3011
3012		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3013
3014		/*
3015		 * allocation for (packed formats) or (uv-plane part of planar format):
3016		 * promote the expression to 64 bits to avoid overflowing, the
3017		 * result is < available as data_rate / total_data_rate < 1
3018		 */
3019		plane_blocks = minimum[id];
3020		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3021					total_data_rate);
3022
3023		ddb->plane[pipe][id].start = start;
3024		ddb->plane[pipe][id].end = start + plane_blocks;
 
 
 
3025
3026		start += plane_blocks;
3027
3028		/*
3029		 * allocation for y_plane part of planar format:
3030		 */
3031		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3032			y_data_rate = skl_plane_relative_data_rate(cstate,
3033								   pstate,
3034								   1);
3035			y_plane_blocks = y_minimum[id];
3036			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3037						total_data_rate);
3038
 
3039			ddb->y_plane[pipe][id].start = start;
3040			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3041
3042			start += y_plane_blocks;
3043		}
3044
 
3045	}
3046
3047}
3048
3049static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3050{
3051	/* TODO: Take into account the scalers once we support them */
3052	return config->base.adjusted_mode.crtc_clock;
3053}
3054
3055/*
3056 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3057 * for the read latency) and cpp should always be <= 8, so that
3058 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3059 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3060*/
3061static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3062{
3063	uint32_t wm_intermediate_val, ret;
3064
3065	if (latency == 0)
3066		return UINT_MAX;
3067
3068	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3069	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3070
3071	return ret;
3072}
3073
3074static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3075			       uint32_t horiz_pixels, uint8_t cpp,
3076			       uint64_t tiling, uint32_t latency)
3077{
3078	uint32_t ret;
3079	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3080	uint32_t wm_intermediate_val;
3081
3082	if (latency == 0)
3083		return UINT_MAX;
3084
3085	plane_bytes_per_line = horiz_pixels * cpp;
3086
3087	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3088	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3089		plane_bytes_per_line *= 4;
3090		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3091		plane_blocks_per_line /= 4;
3092	} else {
3093		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3094	}
3095
3096	wm_intermediate_val = latency * pixel_rate;
3097	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3098				plane_blocks_per_line;
3099
3100	return ret;
3101}
3102
3103static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3104				       const struct intel_crtc *intel_crtc)
3105{
3106	struct drm_device *dev = intel_crtc->base.dev;
3107	struct drm_i915_private *dev_priv = dev->dev_private;
3108	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
 
 
 
 
3109
3110	/*
3111	 * If ddb allocation of pipes changed, it may require recalculation of
3112	 * watermarks
3113	 */
3114	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3115		return true;
3116
3117	return false;
 
 
 
3118}
3119
3120static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3121				 struct intel_crtc_state *cstate,
3122				 struct intel_plane *intel_plane,
3123				 uint16_t ddb_allocation,
3124				 int level,
3125				 uint16_t *out_blocks, /* out */
3126				 uint8_t *out_lines /* out */)
 
3127{
3128	struct drm_plane *plane = &intel_plane->base;
3129	struct drm_framebuffer *fb = plane->state->fb;
3130	struct intel_plane_state *intel_pstate =
3131					to_intel_plane_state(plane->state);
3132	uint32_t latency = dev_priv->wm.skl_latency[level];
3133	uint32_t method1, method2;
3134	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3135	uint32_t res_blocks, res_lines;
3136	uint32_t selected_result;
3137	uint8_t cpp;
3138	uint32_t width = 0, height = 0;
 
 
 
 
 
3139
3140	if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3141		return false;
 
 
3142
3143	width = drm_rect_width(&intel_pstate->src) >> 16;
3144	height = drm_rect_height(&intel_pstate->src) >> 16;
3145
3146	if (intel_rotation_90_or_270(plane->state->rotation))
 
 
 
3147		swap(width, height);
3148
3149	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3150	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3151				 cpp, latency);
3152	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3153				 cstate->base.adjusted_mode.crtc_htotal,
3154				 width,
3155				 cpp,
3156				 fb->modifier[0],
3157				 latency);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3158
3159	plane_bytes_per_line = width * cpp;
3160	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
 
 
 
 
 
 
 
 
 
 
3161
3162	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3163	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3164		uint32_t min_scanlines = 4;
3165		uint32_t y_tile_minimum;
3166		if (intel_rotation_90_or_270(plane->state->rotation)) {
3167			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3168				drm_format_plane_cpp(fb->pixel_format, 1) :
3169				drm_format_plane_cpp(fb->pixel_format, 0);
3170
3171			switch (cpp) {
3172			case 1:
3173				min_scanlines = 16;
3174				break;
3175			case 2:
3176				min_scanlines = 8;
3177				break;
3178			case 8:
3179				WARN(1, "Unsupported pixel depth for rotation");
3180			}
3181		}
3182		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3183		selected_result = max(method2, y_tile_minimum);
3184	} else {
3185		if ((ddb_allocation / plane_blocks_per_line) >= 1)
 
 
 
3186			selected_result = min(method1, method2);
3187		else
3188			selected_result = method1;
3189	}
3190
3191	res_blocks = selected_result + 1;
3192	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3193
3194	if (level >= 1 && level <= 7) {
3195		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3196		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3197			res_lines += 4;
3198		else
 
3199			res_blocks++;
 
3200	}
3201
3202	if (res_blocks >= ddb_allocation || res_lines > 31)
3203		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3204
3205	*out_blocks = res_blocks;
3206	*out_lines = res_lines;
 
3207
3208	return true;
3209}
3210
3211static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3212				 struct skl_ddb_allocation *ddb,
3213				 struct intel_crtc_state *cstate,
3214				 int level,
3215				 struct skl_wm_level *result)
 
 
3216{
3217	struct drm_device *dev = dev_priv->dev;
3218	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3219	struct intel_plane *intel_plane;
 
3220	uint16_t ddb_blocks;
3221	enum pipe pipe = intel_crtc->pipe;
 
 
3222
3223	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3224		int i = skl_wm_plane_id(intel_plane);
 
 
3225
3226		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3227
3228		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3229						cstate,
3230						intel_plane,
3231						ddb_blocks,
3232						level,
3233						&result->plane_res_b[i],
3234						&result->plane_res_l[i]);
3235	}
3236}
3237
3238static uint32_t
3239skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3240{
 
 
3241	if (!cstate->base.active)
3242		return 0;
3243
3244	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
 
 
3245		return 0;
3246
3247	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3248			    skl_pipe_pixel_rate(cstate));
3249}
3250
3251static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3252				      struct skl_wm_level *trans_wm /* out */)
3253{
3254	struct drm_crtc *crtc = cstate->base.crtc;
3255	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256	struct intel_plane *intel_plane;
3257
3258	if (!cstate->base.active)
3259		return;
3260
3261	/* Until we know more, just disable transition WMs */
3262	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3263		int i = skl_wm_plane_id(intel_plane);
3264
3265		trans_wm->plane_en[i] = false;
3266	}
3267}
3268
3269static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3270				struct skl_ddb_allocation *ddb,
3271				struct skl_pipe_wm *pipe_wm)
3272{
3273	struct drm_device *dev = cstate->base.crtc->dev;
3274	const struct drm_i915_private *dev_priv = dev->dev_private;
3275	int level, max_level = ilk_wm_max_level(dev);
 
 
 
3276
3277	for (level = 0; level <= max_level; level++) {
3278		skl_compute_wm_level(dev_priv, ddb, cstate,
3279				     level, &pipe_wm->wm[level]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3280	}
3281	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3282
3283	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3284}
3285
3286static void skl_compute_wm_results(struct drm_device *dev,
3287				   struct skl_pipe_wm *p_wm,
3288				   struct skl_wm_values *r,
3289				   struct intel_crtc *intel_crtc)
3290{
3291	int level, max_level = ilk_wm_max_level(dev);
3292	enum pipe pipe = intel_crtc->pipe;
3293	uint32_t temp;
3294	int i;
 
3295
3296	for (level = 0; level <= max_level; level++) {
3297		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3298			temp = 0;
 
 
3299
3300			temp |= p_wm->wm[level].plane_res_l[i] <<
3301					PLANE_WM_LINES_SHIFT;
3302			temp |= p_wm->wm[level].plane_res_b[i];
3303			if (p_wm->wm[level].plane_en[i])
3304				temp |= PLANE_WM_EN;
3305
3306			r->plane[pipe][i][level] = temp;
3307		}
3308
3309		temp = 0;
 
 
 
 
 
 
 
 
 
3310
3311		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3312		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
 
 
 
 
3313
3314		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3315			temp |= PLANE_WM_EN;
 
 
 
3316
3317		r->plane[pipe][PLANE_CURSOR][level] = temp;
 
 
 
 
 
 
 
 
3318
 
 
 
3319	}
 
3320
3321	/* transition WMs */
3322	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3323		temp = 0;
3324		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3325		temp |= p_wm->trans_wm.plane_res_b[i];
3326		if (p_wm->trans_wm.plane_en[i])
3327			temp |= PLANE_WM_EN;
3328
3329		r->plane_trans[pipe][i] = temp;
3330	}
3331
3332	temp = 0;
3333	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3334	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3335	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3336		temp |= PLANE_WM_EN;
3337
3338	r->plane_trans[pipe][PLANE_CURSOR] = temp;
 
 
3339
3340	r->wm_linetime[pipe] = p_wm->linetime;
 
3341}
3342
3343static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3344				i915_reg_t reg,
3345				const struct skl_ddb_entry *entry)
3346{
3347	if (entry->end)
3348		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3349	else
3350		I915_WRITE(reg, 0);
3351}
3352
3353static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3354				const struct skl_wm_values *new)
 
3355{
3356	struct drm_device *dev = dev_priv->dev;
3357	struct intel_crtc *crtc;
3358
3359	for_each_intel_crtc(dev, crtc) {
3360		int i, level, max_level = ilk_wm_max_level(dev);
3361		enum pipe pipe = crtc->pipe;
3362
3363		if (!new->dirty[pipe])
3364			continue;
3365
3366		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
 
 
 
3367
3368		for (level = 0; level <= max_level; level++) {
3369			for (i = 0; i < intel_num_planes(crtc); i++)
3370				I915_WRITE(PLANE_WM(pipe, i, level),
3371					   new->plane[pipe][i][level]);
3372			I915_WRITE(CUR_WM(pipe, level),
3373				   new->plane[pipe][PLANE_CURSOR][level]);
3374		}
3375		for (i = 0; i < intel_num_planes(crtc); i++)
3376			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3377				   new->plane_trans[pipe][i]);
3378		I915_WRITE(CUR_WM_TRANS(pipe),
3379			   new->plane_trans[pipe][PLANE_CURSOR]);
3380
3381		for (i = 0; i < intel_num_planes(crtc); i++) {
3382			skl_ddb_entry_write(dev_priv,
3383					    PLANE_BUF_CFG(pipe, i),
3384					    &new->ddb.plane[pipe][i]);
3385			skl_ddb_entry_write(dev_priv,
3386					    PLANE_NV12_BUF_CFG(pipe, i),
3387					    &new->ddb.y_plane[pipe][i]);
3388		}
3389
3390		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3391				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3392	}
3393}
3394
3395/*
3396 * When setting up a new DDB allocation arrangement, we need to correctly
3397 * sequence the times at which the new allocations for the pipes are taken into
3398 * account or we'll have pipes fetching from space previously allocated to
3399 * another pipe.
3400 *
3401 * Roughly the sequence looks like:
3402 *  1. re-allocate the pipe(s) with the allocation being reduced and not
3403 *     overlapping with a previous light-up pipe (another way to put it is:
3404 *     pipes with their new allocation strickly included into their old ones).
3405 *  2. re-allocate the other pipes that get their allocation reduced
3406 *  3. allocate the pipes having their allocation increased
3407 *
3408 * Steps 1. and 2. are here to take care of the following case:
3409 * - Initially DDB looks like this:
3410 *     |   B    |   C    |
3411 * - enable pipe A.
3412 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3413 *   allocation
3414 *     |  A  |  B  |  C  |
3415 *
3416 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3417 */
3418
3419static void
3420skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3421{
3422	int plane;
 
3423
3424	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
 
 
3425
3426	for_each_plane(dev_priv, pipe, plane) {
3427		I915_WRITE(PLANE_SURF(pipe, plane),
3428			   I915_READ(PLANE_SURF(pipe, plane)));
3429	}
3430	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
 
3431}
3432
3433static bool
3434skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3435			    const struct skl_ddb_allocation *new,
3436			    enum pipe pipe)
3437{
3438	uint16_t old_size, new_size;
 
 
3439
3440	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3441	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3442
3443	return old_size != new_size &&
3444	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3445	       new->pipe[pipe].end <= old->pipe[pipe].end;
3446}
3447
3448static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3449				struct skl_wm_values *new_values)
3450{
3451	struct drm_device *dev = dev_priv->dev;
3452	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3453	bool reallocated[I915_MAX_PIPES] = {};
3454	struct intel_crtc *crtc;
3455	enum pipe pipe;
 
 
 
 
 
 
 
3456
3457	new_ddb = &new_values->ddb;
3458	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3459
3460	/*
3461	 * First pass: flush the pipes with the new allocation contained into
3462	 * the old space.
3463	 *
3464	 * We'll wait for the vblank on those pipes to ensure we can safely
3465	 * re-allocate the freed space without this pipe fetching from it.
3466	 */
3467	for_each_intel_crtc(dev, crtc) {
3468		if (!crtc->active)
3469			continue;
3470
3471		pipe = crtc->pipe;
3472
3473		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
 
 
 
3474			continue;
3475
3476		skl_wm_flush_pipe(dev_priv, pipe, 1);
3477		intel_wait_for_vblank(dev, pipe);
3478
3479		reallocated[pipe] = true;
3480	}
3481
 
 
3482
3483	/*
3484	 * Second pass: flush the pipes that are having their allocation
3485	 * reduced, but overlapping with a previous allocation.
3486	 *
3487	 * Here as well we need to wait for the vblank to make sure the freed
3488	 * space is not used anymore.
3489	 */
3490	for_each_intel_crtc(dev, crtc) {
3491		if (!crtc->active)
3492			continue;
3493
3494		pipe = crtc->pipe;
 
 
 
 
 
 
 
 
 
 
3495
3496		if (reallocated[pipe])
3497			continue;
3498
3499		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3500		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3501			skl_wm_flush_pipe(dev_priv, pipe, 2);
3502			intel_wait_for_vblank(dev, pipe);
3503			reallocated[pipe] = true;
3504		}
 
 
3505	}
3506
3507	/*
3508	 * Third pass: flush the pipes that got more space allocated.
 
 
 
 
 
 
3509	 *
3510	 * We don't need to actively wait for the update here, next vblank
3511	 * will just get more DDB space with the correct WM values.
 
3512	 */
3513	for_each_intel_crtc(dev, crtc) {
3514		if (!crtc->active)
3515			continue;
 
3516
3517		pipe = crtc->pipe;
 
 
 
 
3518
3519		/*
3520		 * At this point, only the pipes more space than before are
3521		 * left to re-allocate.
3522		 */
3523		if (reallocated[pipe])
3524			continue;
 
 
 
 
3525
3526		skl_wm_flush_pipe(dev_priv, pipe, 3);
 
 
3527	}
 
 
3528}
3529
3530static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3531			       struct skl_ddb_allocation *ddb, /* out */
3532			       struct skl_pipe_wm *pipe_wm /* out */)
3533{
3534	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3535	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
 
 
 
 
3536
3537	skl_allocate_pipe_ddb(cstate, ddb);
3538	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
 
 
 
 
 
 
 
 
 
 
 
 
3539
3540	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3541		return false;
 
3542
3543	intel_crtc->wm.active.skl = *pipe_wm;
 
3544
3545	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
3546}
3547
3548static void skl_update_other_pipe_wm(struct drm_device *dev,
3549				     struct drm_crtc *crtc,
3550				     struct skl_wm_values *r)
3551{
3552	struct intel_crtc *intel_crtc;
3553	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
 
 
 
 
 
3554
3555	/*
3556	 * If the WM update hasn't changed the allocation for this_crtc (the
3557	 * crtc we are currently computing the new WM values for), other
3558	 * enabled crtcs will keep the same allocation and we don't need to
3559	 * recompute anything for them.
 
 
3560	 */
3561	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3562		return;
 
 
 
 
 
 
 
 
 
3563
3564	/*
3565	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3566	 * other active pipes need new DDB allocation and WM values.
3567	 */
3568	for_each_intel_crtc(dev, intel_crtc) {
3569		struct skl_pipe_wm pipe_wm = {};
3570		bool wm_changed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3571
3572		if (this_crtc->pipe == intel_crtc->pipe)
3573			continue;
3574
3575		if (!intel_crtc->active)
 
3576			continue;
3577
3578		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3579						&r->ddb, &pipe_wm);
3580
3581		/*
3582		 * If we end up re-computing the other pipe WM values, it's
3583		 * because it was really needed, so we expect the WM values to
3584		 * be different.
3585		 */
3586		WARN_ON(!wm_changed);
3587
3588		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3589		r->dirty[intel_crtc->pipe] = true;
3590	}
3591}
3592
3593static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
 
3594{
3595	watermarks->wm_linetime[pipe] = 0;
3596	memset(watermarks->plane[pipe], 0,
3597	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3598	memset(watermarks->plane_trans[pipe],
3599	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3600	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3601
3602	/* Clear ddb entries for pipe */
3603	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3604	memset(&watermarks->ddb.plane[pipe], 0,
3605	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3606	memset(&watermarks->ddb.y_plane[pipe], 0,
3607	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3608	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3609	       sizeof(struct skl_ddb_entry));
3610
3611}
 
3612
3613static void skl_update_wm(struct drm_crtc *crtc)
3614{
3615	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3616	struct drm_device *dev = crtc->dev;
3617	struct drm_i915_private *dev_priv = dev->dev_private;
3618	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3619	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3620	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3621
 
 
3622
3623	/* Clear all dirty flags */
3624	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3625
3626	skl_clear_wm(results, intel_crtc->pipe);
 
 
 
 
 
 
 
 
3627
3628	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3629		return;
3630
3631	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3632	results->dirty[intel_crtc->pipe] = true;
 
 
3633
3634	skl_update_other_pipe_wm(dev, crtc, results);
3635	skl_write_wm_values(dev_priv, results);
3636	skl_flush_wm_values(dev_priv, results);
3637
3638	/* store the new configuration */
3639	dev_priv->wm.skl_hw = *results;
3640}
3641
3642static void ilk_compute_wm_config(struct drm_device *dev,
3643				  struct intel_wm_config *config)
3644{
3645	struct intel_crtc *crtc;
3646
3647	/* Compute the currently _active_ config */
3648	for_each_intel_crtc(dev, crtc) {
3649		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3650
3651		if (!wm->pipe_enabled)
3652			continue;
3653
3654		config->sprites_enabled |= wm->sprites_enabled;
3655		config->sprites_scaled |= wm->sprites_scaled;
3656		config->num_pipes_active++;
3657	}
3658}
3659
3660static void ilk_program_watermarks(struct intel_crtc_state *cstate)
3661{
3662	struct drm_crtc *crtc = cstate->base.crtc;
3663	struct drm_device *dev = crtc->dev;
3664	struct drm_i915_private *dev_priv = to_i915(dev);
3665	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3666	struct ilk_wm_maximums max;
3667	struct intel_wm_config config = {};
3668	struct ilk_wm_values results = {};
3669	enum intel_ddb_partitioning partitioning;
3670
3671	ilk_compute_wm_config(dev, &config);
3672
3673	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3674	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3675
3676	/* 5/6 split only in single pipe config on IVB+ */
3677	if (INTEL_INFO(dev)->gen >= 7 &&
3678	    config.num_pipes_active == 1 && config.sprites_enabled) {
3679		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3680		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3681
3682		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3683	} else {
3684		best_lp_wm = &lp_wm_1_2;
3685	}
3686
3687	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3688		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3689
3690	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3691
3692	ilk_write_wm_values(dev_priv, &results);
3693}
3694
3695static void ilk_update_wm(struct drm_crtc *crtc)
 
3696{
3697	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3699
3700	WARN_ON(cstate->base.active != intel_crtc->active);
3701
3702	/*
3703	 * IVB workaround: must disable low power watermarks for at least
3704	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3705	 * when scaling is disabled.
3706	 *
3707	 * WaCxSRDisabledForSpriteScaling:ivb
3708	 */
3709	if (cstate->disable_lp_wm) {
3710		ilk_disable_lp_wm(crtc->dev);
3711		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3712	}
3713
3714	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3715
3716	ilk_program_watermarks(cstate);
 
 
 
3717}
3718
3719static void skl_pipe_wm_active_state(uint32_t val,
3720				     struct skl_pipe_wm *active,
3721				     bool is_transwm,
3722				     bool is_cursor,
3723				     int i,
3724				     int level)
3725{
3726	bool is_enabled = (val & PLANE_WM_EN) != 0;
 
3727
3728	if (!is_transwm) {
3729		if (!is_cursor) {
3730			active->wm[level].plane_en[i] = is_enabled;
3731			active->wm[level].plane_res_b[i] =
3732					val & PLANE_WM_BLOCKS_MASK;
3733			active->wm[level].plane_res_l[i] =
3734					(val >> PLANE_WM_LINES_SHIFT) &
3735						PLANE_WM_LINES_MASK;
3736		} else {
3737			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3738			active->wm[level].plane_res_b[PLANE_CURSOR] =
3739					val & PLANE_WM_BLOCKS_MASK;
3740			active->wm[level].plane_res_l[PLANE_CURSOR] =
3741					(val >> PLANE_WM_LINES_SHIFT) &
3742						PLANE_WM_LINES_MASK;
3743		}
3744	} else {
3745		if (!is_cursor) {
3746			active->trans_wm.plane_en[i] = is_enabled;
3747			active->trans_wm.plane_res_b[i] =
3748					val & PLANE_WM_BLOCKS_MASK;
3749			active->trans_wm.plane_res_l[i] =
3750					(val >> PLANE_WM_LINES_SHIFT) &
3751						PLANE_WM_LINES_MASK;
3752		} else {
3753			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3754			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3755					val & PLANE_WM_BLOCKS_MASK;
3756			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3757					(val >> PLANE_WM_LINES_SHIFT) &
3758						PLANE_WM_LINES_MASK;
3759		}
3760	}
 
 
 
 
 
 
 
 
 
 
3761}
3762
3763static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
 
3764{
3765	struct drm_device *dev = crtc->dev;
3766	struct drm_i915_private *dev_priv = dev->dev_private;
3767	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3768	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3769	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3770	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3771	enum pipe pipe = intel_crtc->pipe;
3772	int level, i, max_level;
3773	uint32_t temp;
3774
3775	max_level = ilk_wm_max_level(dev);
3776
3777	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3778
3779	for (level = 0; level <= max_level; level++) {
3780		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3781			hw->plane[pipe][i][level] =
3782					I915_READ(PLANE_WM(pipe, i, level));
3783		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3784	}
3785
3786	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3787		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3788	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3789
3790	if (!intel_crtc->active)
3791		return;
3792
3793	hw->dirty[pipe] = true;
 
 
3794
3795	active->linetime = hw->wm_linetime[pipe];
 
 
 
 
3796
3797	for (level = 0; level <= max_level; level++) {
3798		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3799			temp = hw->plane[pipe][i][level];
3800			skl_pipe_wm_active_state(temp, active, false,
3801						false, i, level);
3802		}
3803		temp = hw->plane[pipe][PLANE_CURSOR][level];
3804		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3805	}
3806
3807	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3808		temp = hw->plane_trans[pipe][i];
3809		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
 
 
 
3810	}
3811
3812	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3813	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3814
3815	intel_crtc->wm.active.skl = *active;
3816}
3817
3818void skl_wm_get_hw_state(struct drm_device *dev)
3819{
3820	struct drm_i915_private *dev_priv = dev->dev_private;
 
3821	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3822	struct drm_crtc *crtc;
 
 
3823
3824	skl_ddb_get_hw_state(dev_priv, ddb);
3825	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3826		skl_pipe_wm_get_hw_state(crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3827}
3828
3829static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3830{
3831	struct drm_device *dev = crtc->dev;
3832	struct drm_i915_private *dev_priv = dev->dev_private;
3833	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3834	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3835	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3836	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3837	enum pipe pipe = intel_crtc->pipe;
3838	static const i915_reg_t wm0_pipe_reg[] = {
3839		[PIPE_A] = WM0_PIPEA_ILK,
3840		[PIPE_B] = WM0_PIPEB_ILK,
3841		[PIPE_C] = WM0_PIPEC_IVB,
3842	};
3843
3844	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3845	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3846		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3847
 
 
3848	active->pipe_enabled = intel_crtc->active;
3849
3850	if (active->pipe_enabled) {
3851		u32 tmp = hw->wm_pipe[pipe];
3852
3853		/*
3854		 * For active pipes LP0 watermark is marked as
3855		 * enabled, and LP1+ watermaks as disabled since
3856		 * we can't really reverse compute them in case
3857		 * multiple pipes are active.
3858		 */
3859		active->wm[0].enable = true;
3860		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3861		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3862		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3863		active->linetime = hw->wm_linetime[pipe];
3864	} else {
3865		int level, max_level = ilk_wm_max_level(dev);
3866
3867		/*
3868		 * For inactive pipes, all watermark levels
3869		 * should be marked as enabled but zeroed,
3870		 * which is what we'd compute them to.
3871		 */
3872		for (level = 0; level <= max_level; level++)
3873			active->wm[level].enable = true;
3874	}
3875
3876	intel_crtc->wm.active.ilk = *active;
3877}
3878
3879#define _FW_WM(value, plane) \
3880	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3881#define _FW_WM_VLV(value, plane) \
3882	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3883
3884static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3885			       struct vlv_wm_values *wm)
3886{
3887	enum pipe pipe;
3888	uint32_t tmp;
3889
3890	for_each_pipe(dev_priv, pipe) {
3891		tmp = I915_READ(VLV_DDL(pipe));
3892
3893		wm->ddl[pipe].primary =
3894			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3895		wm->ddl[pipe].cursor =
3896			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3897		wm->ddl[pipe].sprite[0] =
3898			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3899		wm->ddl[pipe].sprite[1] =
3900			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3901	}
3902
3903	tmp = I915_READ(DSPFW1);
3904	wm->sr.plane = _FW_WM(tmp, SR);
3905	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3906	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3907	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3908
3909	tmp = I915_READ(DSPFW2);
3910	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3911	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3912	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3913
3914	tmp = I915_READ(DSPFW3);
3915	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3916
3917	if (IS_CHERRYVIEW(dev_priv)) {
3918		tmp = I915_READ(DSPFW7_CHV);
3919		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3920		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3921
3922		tmp = I915_READ(DSPFW8_CHV);
3923		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3924		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3925
3926		tmp = I915_READ(DSPFW9_CHV);
3927		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3928		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3929
3930		tmp = I915_READ(DSPHOWM);
3931		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3932		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3933		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3934		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3935		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3936		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3937		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3938		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3939		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3940		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3941	} else {
3942		tmp = I915_READ(DSPFW7);
3943		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3944		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3945
3946		tmp = I915_READ(DSPHOWM);
3947		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3948		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3949		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3950		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3951		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3952		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3953		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3954	}
3955}
3956
3957#undef _FW_WM
3958#undef _FW_WM_VLV
3959
3960void vlv_wm_get_hw_state(struct drm_device *dev)
3961{
3962	struct drm_i915_private *dev_priv = to_i915(dev);
3963	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3964	struct intel_plane *plane;
3965	enum pipe pipe;
3966	u32 val;
3967
3968	vlv_read_wm_values(dev_priv, wm);
3969
3970	for_each_intel_plane(dev, plane) {
3971		switch (plane->base.type) {
3972			int sprite;
3973		case DRM_PLANE_TYPE_CURSOR:
3974			plane->wm.fifo_size = 63;
3975			break;
3976		case DRM_PLANE_TYPE_PRIMARY:
3977			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3978			break;
3979		case DRM_PLANE_TYPE_OVERLAY:
3980			sprite = plane->plane;
3981			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3982			break;
3983		}
3984	}
3985
3986	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3987	wm->level = VLV_WM_LEVEL_PM2;
3988
3989	if (IS_CHERRYVIEW(dev_priv)) {
3990		mutex_lock(&dev_priv->rps.hw_lock);
3991
3992		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3993		if (val & DSP_MAXFIFO_PM5_ENABLE)
3994			wm->level = VLV_WM_LEVEL_PM5;
3995
3996		/*
3997		 * If DDR DVFS is disabled in the BIOS, Punit
3998		 * will never ack the request. So if that happens
3999		 * assume we don't have to enable/disable DDR DVFS
4000		 * dynamically. To test that just set the REQ_ACK
4001		 * bit to poke the Punit, but don't change the
4002		 * HIGH/LOW bits so that we don't actually change
4003		 * the current state.
4004		 */
4005		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4006		val |= FORCE_DDR_FREQ_REQ_ACK;
4007		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4008
4009		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4010			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4011			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4012				      "assuming DDR DVFS is disabled\n");
4013			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4014		} else {
4015			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4016			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4017				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4018		}
4019
4020		mutex_unlock(&dev_priv->rps.hw_lock);
4021	}
4022
4023	for_each_pipe(dev_priv, pipe)
4024		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4025			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4026			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4027
4028	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4029		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4030}
4031
4032void ilk_wm_get_hw_state(struct drm_device *dev)
4033{
4034	struct drm_i915_private *dev_priv = dev->dev_private;
4035	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4036	struct drm_crtc *crtc;
4037
4038	for_each_crtc(dev, crtc)
4039		ilk_pipe_wm_get_hw_state(crtc);
4040
4041	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4042	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4043	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4044
4045	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4046	if (INTEL_INFO(dev)->gen >= 7) {
4047		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4048		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4049	}
4050
4051	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4052		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4053			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4054	else if (IS_IVYBRIDGE(dev))
4055		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4056			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4057
4058	hw->enable_fbc_wm =
4059		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4060}
4061
4062/**
4063 * intel_update_watermarks - update FIFO watermark values based on current modes
4064 *
4065 * Calculate watermark values for the various WM regs based on current mode
4066 * and plane configuration.
4067 *
4068 * There are several cases to deal with here:
4069 *   - normal (i.e. non-self-refresh)
4070 *   - self-refresh (SR) mode
4071 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4072 *   - lines are small relative to FIFO size (buffer can hold more than 2
4073 *     lines), so need to account for TLB latency
4074 *
4075 *   The normal calculation is:
4076 *     watermark = dotclock * bytes per pixel * latency
4077 *   where latency is platform & configuration dependent (we assume pessimal
4078 *   values here).
4079 *
4080 *   The SR calculation is:
4081 *     watermark = (trunc(latency/line time)+1) * surface width *
4082 *       bytes per pixel
4083 *   where
4084 *     line time = htotal / dotclock
4085 *     surface width = hdisplay for normal plane and 64 for cursor
4086 *   and latency is assumed to be high, as above.
4087 *
4088 * The final value programmed to the register should always be rounded up,
4089 * and include an extra 2 entries to account for clock crossings.
4090 *
4091 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4092 * to set the non-SR watermarks to 8.
4093 */
4094void intel_update_watermarks(struct drm_crtc *crtc)
4095{
4096	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4097
4098	if (dev_priv->display.update_wm)
4099		dev_priv->display.update_wm(crtc);
4100}
4101
4102/*
4103 * Lock protecting IPS related data structures
4104 */
4105DEFINE_SPINLOCK(mchdev_lock);
4106
4107/* Global for IPS driver to get at the current i915 device. Protected by
4108 * mchdev_lock. */
4109static struct drm_i915_private *i915_mch_dev;
4110
4111bool ironlake_set_drps(struct drm_device *dev, u8 val)
4112{
4113	struct drm_i915_private *dev_priv = dev->dev_private;
4114	u16 rgvswctl;
4115
4116	assert_spin_locked(&mchdev_lock);
4117
4118	rgvswctl = I915_READ16(MEMSWCTL);
4119	if (rgvswctl & MEMCTL_CMD_STS) {
4120		DRM_DEBUG("gpu busy, RCS change rejected\n");
4121		return false; /* still busy with another command */
4122	}
4123
4124	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4125		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4126	I915_WRITE16(MEMSWCTL, rgvswctl);
4127	POSTING_READ16(MEMSWCTL);
4128
4129	rgvswctl |= MEMCTL_CMD_STS;
4130	I915_WRITE16(MEMSWCTL, rgvswctl);
4131
4132	return true;
4133}
4134
4135static void ironlake_enable_drps(struct drm_device *dev)
4136{
4137	struct drm_i915_private *dev_priv = dev->dev_private;
4138	u32 rgvmodectl;
4139	u8 fmax, fmin, fstart, vstart;
4140
4141	spin_lock_irq(&mchdev_lock);
4142
4143	rgvmodectl = I915_READ(MEMMODECTL);
4144
4145	/* Enable temp reporting */
4146	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4147	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4148
4149	/* 100ms RC evaluation intervals */
4150	I915_WRITE(RCUPEI, 100000);
4151	I915_WRITE(RCDNEI, 100000);
4152
4153	/* Set max/min thresholds to 90ms and 80ms respectively */
4154	I915_WRITE(RCBMAXAVG, 90000);
4155	I915_WRITE(RCBMINAVG, 80000);
4156
4157	I915_WRITE(MEMIHYST, 1);
4158
4159	/* Set up min, max, and cur for interrupt handling */
4160	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4161	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4162	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4163		MEMMODE_FSTART_SHIFT;
4164
4165	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4166		PXVFREQ_PX_SHIFT;
4167
4168	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4169	dev_priv->ips.fstart = fstart;
4170
4171	dev_priv->ips.max_delay = fstart;
4172	dev_priv->ips.min_delay = fmin;
4173	dev_priv->ips.cur_delay = fstart;
4174
4175	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4176			 fmax, fmin, fstart);
4177
4178	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4179
4180	/*
4181	 * Interrupts will be enabled in ironlake_irq_postinstall
4182	 */
4183
4184	I915_WRITE(VIDSTART, vstart);
4185	POSTING_READ(VIDSTART);
4186
4187	rgvmodectl |= MEMMODE_SWMODE_EN;
4188	I915_WRITE(MEMMODECTL, rgvmodectl);
4189
4190	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4191		DRM_ERROR("stuck trying to change perf mode\n");
4192	mdelay(1);
4193
4194	ironlake_set_drps(dev, fstart);
4195
4196	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4197		I915_READ(DDREC) + I915_READ(CSIEC);
4198	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4199	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4200	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4201
4202	spin_unlock_irq(&mchdev_lock);
4203}
4204
4205static void ironlake_disable_drps(struct drm_device *dev)
4206{
4207	struct drm_i915_private *dev_priv = dev->dev_private;
4208	u16 rgvswctl;
4209
4210	spin_lock_irq(&mchdev_lock);
4211
4212	rgvswctl = I915_READ16(MEMSWCTL);
4213
4214	/* Ack interrupts, disable EFC interrupt */
4215	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4216	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4217	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4218	I915_WRITE(DEIIR, DE_PCU_EVENT);
4219	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4220
4221	/* Go back to the starting frequency */
4222	ironlake_set_drps(dev, dev_priv->ips.fstart);
4223	mdelay(1);
4224	rgvswctl |= MEMCTL_CMD_STS;
4225	I915_WRITE(MEMSWCTL, rgvswctl);
4226	mdelay(1);
4227
4228	spin_unlock_irq(&mchdev_lock);
4229}
4230
4231/* There's a funny hw issue where the hw returns all 0 when reading from
4232 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4233 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4234 * all limits and the gpu stuck at whatever frequency it is at atm).
4235 */
4236static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4237{
4238	u32 limits;
4239
4240	/* Only set the down limit when we've reached the lowest level to avoid
4241	 * getting more interrupts, otherwise leave this clear. This prevents a
4242	 * race in the hw when coming out of rc6: There's a tiny window where
4243	 * the hw runs at the minimal clock before selecting the desired
4244	 * frequency, if the down threshold expires in that window we will not
4245	 * receive a down interrupt. */
4246	if (IS_GEN9(dev_priv->dev)) {
4247		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4248		if (val <= dev_priv->rps.min_freq_softlimit)
4249			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4250	} else {
4251		limits = dev_priv->rps.max_freq_softlimit << 24;
4252		if (val <= dev_priv->rps.min_freq_softlimit)
4253			limits |= dev_priv->rps.min_freq_softlimit << 16;
4254	}
4255
4256	return limits;
4257}
4258
4259static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4260{
4261	int new_power;
4262	u32 threshold_up = 0, threshold_down = 0; /* in % */
4263	u32 ei_up = 0, ei_down = 0;
4264
4265	new_power = dev_priv->rps.power;
4266	switch (dev_priv->rps.power) {
4267	case LOW_POWER:
4268		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
 
4269			new_power = BETWEEN;
4270		break;
4271
4272	case BETWEEN:
4273		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
 
4274			new_power = LOW_POWER;
4275		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
 
4276			new_power = HIGH_POWER;
4277		break;
4278
4279	case HIGH_POWER:
4280		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
 
4281			new_power = BETWEEN;
4282		break;
4283	}
4284	/* Max/min bins are special */
4285	if (val <= dev_priv->rps.min_freq_softlimit)
4286		new_power = LOW_POWER;
4287	if (val >= dev_priv->rps.max_freq_softlimit)
4288		new_power = HIGH_POWER;
4289	if (new_power == dev_priv->rps.power)
4290		return;
4291
4292	/* Note the units here are not exactly 1us, but 1280ns. */
4293	switch (new_power) {
4294	case LOW_POWER:
4295		/* Upclock if more than 95% busy over 16ms */
4296		ei_up = 16000;
4297		threshold_up = 95;
4298
4299		/* Downclock if less than 85% busy over 32ms */
4300		ei_down = 32000;
4301		threshold_down = 85;
4302		break;
4303
4304	case BETWEEN:
4305		/* Upclock if more than 90% busy over 13ms */
4306		ei_up = 13000;
4307		threshold_up = 90;
4308
4309		/* Downclock if less than 75% busy over 32ms */
4310		ei_down = 32000;
4311		threshold_down = 75;
4312		break;
4313
4314	case HIGH_POWER:
4315		/* Upclock if more than 85% busy over 10ms */
4316		ei_up = 10000;
4317		threshold_up = 85;
4318
4319		/* Downclock if less than 60% busy over 32ms */
4320		ei_down = 32000;
4321		threshold_down = 60;
4322		break;
4323	}
4324
 
 
 
 
 
 
4325	I915_WRITE(GEN6_RP_UP_EI,
4326		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4327	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4328		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
 
4329
4330	I915_WRITE(GEN6_RP_DOWN_EI,
4331		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4332	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4333		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
 
4334
4335	 I915_WRITE(GEN6_RP_CONTROL,
4336		    GEN6_RP_MEDIA_TURBO |
4337		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4338		    GEN6_RP_MEDIA_IS_GFX |
4339		    GEN6_RP_ENABLE |
4340		    GEN6_RP_UP_BUSY_AVG |
4341		    GEN6_RP_DOWN_IDLE_AVG);
4342
 
4343	dev_priv->rps.power = new_power;
4344	dev_priv->rps.up_threshold = threshold_up;
4345	dev_priv->rps.down_threshold = threshold_down;
4346	dev_priv->rps.last_adj = 0;
4347}
4348
4349static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4350{
4351	u32 mask = 0;
4352
 
4353	if (val > dev_priv->rps.min_freq_softlimit)
4354		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4355	if (val < dev_priv->rps.max_freq_softlimit)
4356		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4357
4358	mask &= dev_priv->pm_rps_events;
4359
4360	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4361}
4362
4363/* gen6_set_rps is called to update the frequency request, but should also be
4364 * called when the range (min_delay and max_delay) is modified so that we can
4365 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4366static void gen6_set_rps(struct drm_device *dev, u8 val)
4367{
4368	struct drm_i915_private *dev_priv = dev->dev_private;
4369
4370	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4371	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4372		return;
4373
4374	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4375	WARN_ON(val > dev_priv->rps.max_freq);
4376	WARN_ON(val < dev_priv->rps.min_freq);
4377
4378	/* min/max delay may still have been modified so be sure to
4379	 * write the limits value.
4380	 */
4381	if (val != dev_priv->rps.cur_freq) {
4382		gen6_set_rps_thresholds(dev_priv, val);
4383
4384		if (IS_GEN9(dev))
4385			I915_WRITE(GEN6_RPNSWREQ,
4386				   GEN9_FREQUENCY(val));
4387		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4388			I915_WRITE(GEN6_RPNSWREQ,
4389				   HSW_FREQUENCY(val));
4390		else
4391			I915_WRITE(GEN6_RPNSWREQ,
4392				   GEN6_FREQUENCY(val) |
4393				   GEN6_OFFSET(0) |
4394				   GEN6_AGGRESSIVE_TURBO);
4395	}
4396
4397	/* Make sure we continue to get interrupts
4398	 * until we hit the minimum or maximum frequencies.
4399	 */
4400	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4401	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4402
4403	POSTING_READ(GEN6_RPNSWREQ);
4404
4405	dev_priv->rps.cur_freq = val;
4406	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4407}
4408
4409static void valleyview_set_rps(struct drm_device *dev, u8 val)
4410{
4411	struct drm_i915_private *dev_priv = dev->dev_private;
4412
4413	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4414	WARN_ON(val > dev_priv->rps.max_freq);
4415	WARN_ON(val < dev_priv->rps.min_freq);
4416
4417	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4418		      "Odd GPU freq value\n"))
4419		val &= ~1;
4420
4421	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4422
4423	if (val != dev_priv->rps.cur_freq) {
4424		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4425		if (!IS_CHERRYVIEW(dev_priv))
4426			gen6_set_rps_thresholds(dev_priv, val);
4427	}
4428
4429	dev_priv->rps.cur_freq = val;
4430	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4431}
4432
4433/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4434 *
4435 * * If Gfx is Idle, then
4436 * 1. Forcewake Media well.
4437 * 2. Request idle freq.
4438 * 3. Release Forcewake of Media well.
4439*/
4440static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4441{
4442	u32 val = dev_priv->rps.idle_freq;
4443
4444	if (dev_priv->rps.cur_freq <= val)
4445		return;
4446
4447	/* Wake up the media well, as that takes a lot less
4448	 * power than the Render well. */
4449	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4450	valleyview_set_rps(dev_priv->dev, val);
4451	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4452}
4453
4454void gen6_rps_busy(struct drm_i915_private *dev_priv)
4455{
4456	mutex_lock(&dev_priv->rps.hw_lock);
4457	if (dev_priv->rps.enabled) {
4458		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4459			gen6_rps_reset_ei(dev_priv);
4460		I915_WRITE(GEN6_PMINTRMSK,
4461			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
 
 
 
 
 
 
 
 
4462	}
4463	mutex_unlock(&dev_priv->rps.hw_lock);
4464}
4465
4466void gen6_rps_idle(struct drm_i915_private *dev_priv)
4467{
4468	struct drm_device *dev = dev_priv->dev;
 
 
 
 
 
4469
4470	mutex_lock(&dev_priv->rps.hw_lock);
4471	if (dev_priv->rps.enabled) {
4472		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4473			vlv_set_rps_idle(dev_priv);
4474		else
4475			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4476		dev_priv->rps.last_adj = 0;
4477		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
 
4478	}
4479	mutex_unlock(&dev_priv->rps.hw_lock);
4480
4481	spin_lock(&dev_priv->rps.client_lock);
4482	while (!list_empty(&dev_priv->rps.clients))
4483		list_del_init(dev_priv->rps.clients.next);
4484	spin_unlock(&dev_priv->rps.client_lock);
4485}
4486
4487void gen6_rps_boost(struct drm_i915_private *dev_priv,
4488		    struct intel_rps_client *rps,
4489		    unsigned long submitted)
4490{
4491	/* This is intentionally racy! We peek at the state here, then
4492	 * validate inside the RPS worker.
4493	 */
4494	if (!(dev_priv->mm.busy &&
4495	      dev_priv->rps.enabled &&
4496	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4497		return;
4498
4499	/* Force a RPS boost (and don't count it against the client) if
4500	 * the GPU is severely congested.
4501	 */
4502	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4503		rps = NULL;
4504
4505	spin_lock(&dev_priv->rps.client_lock);
4506	if (rps == NULL || list_empty(&rps->link)) {
4507		spin_lock_irq(&dev_priv->irq_lock);
4508		if (dev_priv->rps.interrupts_enabled) {
4509			dev_priv->rps.client_boost = true;
4510			queue_work(dev_priv->wq, &dev_priv->rps.work);
4511		}
4512		spin_unlock_irq(&dev_priv->irq_lock);
4513
4514		if (rps != NULL) {
4515			list_add(&rps->link, &dev_priv->rps.clients);
4516			rps->boosts++;
4517		} else
4518			dev_priv->rps.boosts++;
4519	}
4520	spin_unlock(&dev_priv->rps.client_lock);
4521}
4522
4523void intel_set_rps(struct drm_device *dev, u8 val)
4524{
4525	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4526		valleyview_set_rps(dev, val);
4527	else
4528		gen6_set_rps(dev, val);
4529}
4530
4531static void gen9_disable_rps(struct drm_device *dev)
4532{
4533	struct drm_i915_private *dev_priv = dev->dev_private;
4534
4535	I915_WRITE(GEN6_RC_CONTROL, 0);
4536	I915_WRITE(GEN9_PG_ENABLE, 0);
4537}
4538
4539static void gen6_disable_rps(struct drm_device *dev)
4540{
4541	struct drm_i915_private *dev_priv = dev->dev_private;
 
4542
 
 
4543	I915_WRITE(GEN6_RC_CONTROL, 0);
4544	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
 
4545}
4546
4547static void cherryview_disable_rps(struct drm_device *dev)
4548{
4549	struct drm_i915_private *dev_priv = dev->dev_private;
4550
4551	I915_WRITE(GEN6_RC_CONTROL, 0);
4552}
4553
4554static void valleyview_disable_rps(struct drm_device *dev)
4555{
4556	struct drm_i915_private *dev_priv = dev->dev_private;
4557
4558	/* we're doing forcewake before Disabling RC6,
4559	 * This what the BIOS expects when going into suspend */
4560	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4561
4562	I915_WRITE(GEN6_RC_CONTROL, 0);
4563
4564	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4565}
4566
4567static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4568{
4569	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4570		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4571			mode = GEN6_RC_CTL_RC6_ENABLE;
4572		else
4573			mode = 0;
4574	}
4575	if (HAS_RC6p(dev))
4576		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4577			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4578			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4579			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
 
4580
4581	else
4582		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4583			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4584}
4585
4586static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
4587{
4588	struct drm_i915_private *dev_priv = dev->dev_private;
4589	bool enable_rc6 = true;
4590	unsigned long rc6_ctx_base;
 
 
 
 
 
 
 
 
 
 
 
4591
4592	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4593		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4594		enable_rc6 = false;
4595	}
4596
4597	/*
4598	 * The exact context size is not known for BXT, so assume a page size
4599	 * for this check.
4600	 */
4601	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4602	if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
4603	      (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
4604					dev_priv->gtt.stolen_reserved_size))) {
4605		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4606		enable_rc6 = false;
4607	}
4608
4609	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4610	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4611	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4612	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4613		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
 
 
 
 
 
 
 
4614		enable_rc6 = false;
4615	}
4616
4617	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4618					    GEN6_RC_CTL_HW_ENABLE)) &&
4619	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4620	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4621		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
 
 
4622		enable_rc6 = false;
4623	}
4624
4625	return enable_rc6;
4626}
4627
4628int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4629{
4630	/* No RC6 before Ironlake and code is gone for ilk. */
4631	if (INTEL_INFO(dev)->gen < 6)
4632		return 0;
4633
4634	if (!enable_rc6)
4635		return 0;
4636
4637	if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4638		DRM_INFO("RC6 disabled by BIOS\n");
4639		return 0;
4640	}
4641
4642	/* Respect the kernel parameter if it is set */
4643	if (enable_rc6 >= 0) {
4644		int mask;
4645
4646		if (HAS_RC6p(dev))
4647			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4648			       INTEL_RC6pp_ENABLE;
4649		else
4650			mask = INTEL_RC6_ENABLE;
4651
4652		if ((enable_rc6 & mask) != enable_rc6)
4653			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4654				      enable_rc6 & mask, enable_rc6, mask);
 
4655
4656		return enable_rc6 & mask;
4657	}
4658
4659	if (IS_IVYBRIDGE(dev))
4660		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4661
4662	return INTEL_RC6_ENABLE;
4663}
4664
4665int intel_enable_rc6(const struct drm_device *dev)
4666{
4667	return i915.enable_rc6;
4668}
4669
4670static void gen6_init_rps_frequencies(struct drm_device *dev)
4671{
4672	struct drm_i915_private *dev_priv = dev->dev_private;
4673	uint32_t rp_state_cap;
4674	u32 ddcc_status = 0;
4675	int ret;
4676
4677	/* All of these values are in units of 50MHz */
4678	dev_priv->rps.cur_freq		= 0;
4679	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4680	if (IS_BROXTON(dev)) {
4681		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4682		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4683		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4684		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4685	} else {
4686		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4687		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4688		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4689		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4690	}
4691
4692	/* hw_max = RP0 until we check for overclocking */
4693	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4694
4695	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4696	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4697	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4698		ret = sandybridge_pcode_read(dev_priv,
4699					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4700					&ddcc_status);
4701		if (0 == ret)
 
4702			dev_priv->rps.efficient_freq =
4703				clamp_t(u8,
4704					((ddcc_status >> 8) & 0xff),
4705					dev_priv->rps.min_freq,
4706					dev_priv->rps.max_freq);
4707	}
4708
4709	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4710		/* Store the frequency values in 16.66 MHZ units, which is
4711		   the natural hardware unit for SKL */
 
4712		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4713		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4714		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4715		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4716		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4717	}
 
4718
4719	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
 
 
 
4720
4721	/* Preserve min/max settings in case of re-init */
4722	if (dev_priv->rps.max_freq_softlimit == 0)
4723		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4724
4725	if (dev_priv->rps.min_freq_softlimit == 0) {
4726		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4727			dev_priv->rps.min_freq_softlimit =
4728				max_t(int, dev_priv->rps.efficient_freq,
4729				      intel_freq_opcode(dev_priv, 450));
4730		else
4731			dev_priv->rps.min_freq_softlimit =
4732				dev_priv->rps.min_freq;
4733	}
4734}
4735
4736/* See the Gen9_GT_PM_Programming_Guide doc for the below */
4737static void gen9_enable_rps(struct drm_device *dev)
4738{
4739	struct drm_i915_private *dev_priv = dev->dev_private;
4740
4741	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4742
4743	gen6_init_rps_frequencies(dev);
4744
4745	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4746	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
 
 
 
 
 
 
 
 
 
 
4747		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4748		return;
4749	}
4750
4751	/* Program defaults and thresholds for RPS*/
4752	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4753		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4754
4755	/* 1 second timeout*/
4756	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4757		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4758
4759	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4760
4761	/* Leaning on the below call to gen6_set_rps to program/setup the
4762	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4763	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4764	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4765	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4766
4767	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4768}
4769
4770static void gen9_enable_rc6(struct drm_device *dev)
4771{
4772	struct drm_i915_private *dev_priv = dev->dev_private;
4773	struct intel_engine_cs *ring;
4774	uint32_t rc6_mask = 0;
4775	int unused;
4776
4777	/* 1a: Software RC state - RC0 */
4778	I915_WRITE(GEN6_RC_STATE, 0);
4779
4780	/* 1b: Get forcewake during program sequence. Although the driver
4781	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4782	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4783
4784	/* 2a: Disable RC states. */
4785	I915_WRITE(GEN6_RC_CONTROL, 0);
4786
4787	/* 2b: Program RC6 thresholds.*/
4788
4789	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4790	if (IS_SKYLAKE(dev))
4791		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4792	else
4793		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4794	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4795	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4796	for_each_ring(ring, dev_priv, unused)
4797		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4798
4799	if (HAS_GUC_UCODE(dev))
4800		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4801
4802	I915_WRITE(GEN6_RC_SLEEP, 0);
4803
4804	/* 2c: Program Coarse Power Gating Policies. */
4805	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4806	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4807
4808	/* 3a: Enable RC6 */
4809	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4810		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4811	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4812	/* WaRsUseTimeoutMode */
4813	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4814	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4815		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4816		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4817			   GEN7_RC_CTL_TO_MODE |
4818			   rc6_mask);
4819	} else {
4820		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4821		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4822			   GEN6_RC_CTL_EI_MODE(1) |
4823			   rc6_mask);
4824	}
4825
4826	/*
4827	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4828	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4829	 */
4830	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4831		I915_WRITE(GEN9_PG_ENABLE, 0);
4832	else
4833		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4834				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4835
4836	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837
4838}
4839
4840static void gen8_enable_rps(struct drm_device *dev)
4841{
4842	struct drm_i915_private *dev_priv = dev->dev_private;
4843	struct intel_engine_cs *ring;
4844	uint32_t rc6_mask = 0;
4845	int unused;
4846
4847	/* 1a: Software RC state - RC0 */
4848	I915_WRITE(GEN6_RC_STATE, 0);
4849
4850	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4851	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4852	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4853
4854	/* 2a: Disable RC states. */
4855	I915_WRITE(GEN6_RC_CONTROL, 0);
4856
4857	/* Initialize rps frequencies */
4858	gen6_init_rps_frequencies(dev);
4859
4860	/* 2b: Program RC6 thresholds.*/
4861	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4862	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4863	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4864	for_each_ring(ring, dev_priv, unused)
4865		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4866	I915_WRITE(GEN6_RC_SLEEP, 0);
4867	if (IS_BROADWELL(dev))
4868		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4869	else
4870		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4871
4872	/* 3: Enable RC6 */
4873	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4874		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4875	intel_print_rc6_info(dev, rc6_mask);
4876	if (IS_BROADWELL(dev))
4877		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4878				GEN7_RC_CTL_TO_MODE |
4879				rc6_mask);
4880	else
4881		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4882				GEN6_RC_CTL_EI_MODE(1) |
4883				rc6_mask);
4884
4885	/* 4 Program defaults and thresholds for RPS*/
4886	I915_WRITE(GEN6_RPNSWREQ,
4887		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4888	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4889		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4890	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4891	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4892
4893	/* Docs recommend 900MHz, and 300 MHz respectively */
4894	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4895		   dev_priv->rps.max_freq_softlimit << 24 |
4896		   dev_priv->rps.min_freq_softlimit << 16);
4897
4898	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4899	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4900	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4901	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4902
4903	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4904
4905	/* 5: Enable RPS */
4906	I915_WRITE(GEN6_RP_CONTROL,
4907		   GEN6_RP_MEDIA_TURBO |
4908		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4909		   GEN6_RP_MEDIA_IS_GFX |
4910		   GEN6_RP_ENABLE |
4911		   GEN6_RP_UP_BUSY_AVG |
4912		   GEN6_RP_DOWN_IDLE_AVG);
4913
4914	/* 6: Ring frequency + overclocking (our driver does this later */
4915
4916	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4917	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4918
4919	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4920}
4921
4922static void gen6_enable_rps(struct drm_device *dev)
4923{
4924	struct drm_i915_private *dev_priv = dev->dev_private;
4925	struct intel_engine_cs *ring;
4926	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4927	u32 gtfifodbg;
4928	int rc6_mode;
4929	int i, ret;
4930
4931	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4932
4933	/* Here begins a magic sequence of register writes to enable
4934	 * auto-downclocking.
4935	 *
4936	 * Perhaps there might be some value in exposing these to
4937	 * userspace...
4938	 */
4939	I915_WRITE(GEN6_RC_STATE, 0);
4940
4941	/* Clear the DBG now so we don't confuse earlier errors */
4942	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
 
4943		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4944		I915_WRITE(GTFIFODBG, gtfifodbg);
4945	}
4946
4947	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4948
4949	/* Initialize rps frequencies */
4950	gen6_init_rps_frequencies(dev);
4951
4952	/* disable the counters and set deterministic thresholds */
4953	I915_WRITE(GEN6_RC_CONTROL, 0);
4954
4955	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4956	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4957	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4958	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4959	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4960
4961	for_each_ring(ring, dev_priv, i)
4962		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4963
4964	I915_WRITE(GEN6_RC_SLEEP, 0);
4965	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4966	if (IS_IVYBRIDGE(dev))
4967		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4968	else
4969		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4970	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4971	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4972
4973	/* Check if we are enabling RC6 */
4974	rc6_mode = intel_enable_rc6(dev_priv->dev);
4975	if (rc6_mode & INTEL_RC6_ENABLE)
4976		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4977
4978	/* We don't use those on Haswell */
4979	if (!IS_HASWELL(dev)) {
4980		if (rc6_mode & INTEL_RC6p_ENABLE)
4981			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4982
4983		if (rc6_mode & INTEL_RC6pp_ENABLE)
4984			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4985	}
4986
4987	intel_print_rc6_info(dev, rc6_mask);
4988
4989	I915_WRITE(GEN6_RC_CONTROL,
4990		   rc6_mask |
4991		   GEN6_RC_CTL_EI_MODE(1) |
4992		   GEN6_RC_CTL_HW_ENABLE);
4993
4994	/* Power down if completely idle for over 50ms */
4995	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4996	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4997
4998	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4999	if (ret)
5000		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5001
5002	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5003	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5004		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5005				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5006				 (pcu_mbox & 0xff) * 50);
5007		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5008	}
5009
5010	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5011	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5012
5013	rc6vids = 0;
5014	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5015	if (IS_GEN6(dev) && ret) {
5016		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5017	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5018		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5019			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5020		rc6vids &= 0xffff00;
5021		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5022		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5023		if (ret)
5024			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5025	}
5026
5027	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5028}
5029
5030static void __gen6_update_ring_freq(struct drm_device *dev)
5031{
5032	struct drm_i915_private *dev_priv = dev->dev_private;
5033	int min_freq = 15;
5034	unsigned int gpu_freq;
5035	unsigned int max_ia_freq, min_ring_freq;
5036	unsigned int max_gpu_freq, min_gpu_freq;
5037	int scaling_factor = 180;
5038	struct cpufreq_policy *policy;
5039
5040	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5041
5042	policy = cpufreq_cpu_get(0);
5043	if (policy) {
5044		max_ia_freq = policy->cpuinfo.max_freq;
5045		cpufreq_cpu_put(policy);
5046	} else {
5047		/*
5048		 * Default to measured freq if none found, PCU will ensure we
5049		 * don't go over
5050		 */
5051		max_ia_freq = tsc_khz;
5052	}
5053
5054	/* Convert from kHz to MHz */
5055	max_ia_freq /= 1000;
5056
5057	min_ring_freq = I915_READ(DCLK) & 0xf;
5058	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5059	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5060
5061	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5062		/* Convert GT frequency to 50 HZ units */
5063		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5064		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5065	} else {
5066		min_gpu_freq = dev_priv->rps.min_freq;
5067		max_gpu_freq = dev_priv->rps.max_freq;
5068	}
5069
5070	/*
5071	 * For each potential GPU frequency, load a ring frequency we'd like
5072	 * to use for memory access.  We do this by specifying the IA frequency
5073	 * the PCU should use as a reference to determine the ring frequency.
5074	 */
5075	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5076		int diff = max_gpu_freq - gpu_freq;
5077		unsigned int ia_freq = 0, ring_freq = 0;
5078
5079		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5080			/*
5081			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5082			 * No floor required for ring frequency on SKL.
5083			 */
5084			ring_freq = gpu_freq;
5085		} else if (INTEL_INFO(dev)->gen >= 8) {
5086			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5087			ring_freq = max(min_ring_freq, gpu_freq);
5088		} else if (IS_HASWELL(dev)) {
5089			ring_freq = mult_frac(gpu_freq, 5, 4);
5090			ring_freq = max(min_ring_freq, ring_freq);
5091			/* leave ia_freq as the default, chosen by cpufreq */
5092		} else {
5093			/* On older processors, there is no separate ring
5094			 * clock domain, so in order to boost the bandwidth
5095			 * of the ring, we need to upclock the CPU (ia_freq).
5096			 *
5097			 * For GPU frequencies less than 750MHz,
5098			 * just use the lowest ring freq.
5099			 */
5100			if (gpu_freq < min_freq)
5101				ia_freq = 800;
5102			else
5103				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5104			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5105		}
5106
5107		sandybridge_pcode_write(dev_priv,
5108					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5109					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5110					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5111					gpu_freq);
5112	}
5113}
5114
5115void gen6_update_ring_freq(struct drm_device *dev)
5116{
5117	struct drm_i915_private *dev_priv = dev->dev_private;
5118
5119	if (!HAS_CORE_RING_FREQ(dev))
5120		return;
5121
5122	mutex_lock(&dev_priv->rps.hw_lock);
5123	__gen6_update_ring_freq(dev);
5124	mutex_unlock(&dev_priv->rps.hw_lock);
5125}
5126
5127static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5128{
5129	struct drm_device *dev = dev_priv->dev;
5130	u32 val, rp0;
5131
5132	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5133
5134	switch (INTEL_INFO(dev)->eu_total) {
5135	case 8:
5136		/* (2 * 4) config */
5137		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5138		break;
5139	case 12:
5140		/* (2 * 6) config */
5141		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5142		break;
5143	case 16:
5144		/* (2 * 8) config */
5145	default:
5146		/* Setting (2 * 8) Min RP0 for any other combination */
5147		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5148		break;
5149	}
5150
5151	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5152
5153	return rp0;
5154}
5155
5156static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5157{
5158	u32 val, rpe;
5159
5160	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5161	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5162
5163	return rpe;
5164}
5165
5166static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5167{
5168	u32 val, rp1;
5169
5170	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5171	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5172
5173	return rp1;
5174}
5175
5176static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5177{
5178	u32 val, rp1;
5179
5180	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5181
5182	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5183
5184	return rp1;
5185}
5186
5187static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5188{
5189	u32 val, rp0;
5190
5191	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5192
5193	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5194	/* Clamp to max */
5195	rp0 = min_t(u32, rp0, 0xea);
5196
5197	return rp0;
5198}
5199
5200static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5201{
5202	u32 val, rpe;
5203
5204	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5205	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5206	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5207	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5208
5209	return rpe;
5210}
5211
5212static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5213{
5214	u32 val;
5215
5216	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5217	/*
5218	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5219	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5220	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5221	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5222	 * to make sure it matches what Punit accepts.
5223	 */
5224	return max_t(u32, val, 0xc0);
5225}
5226
5227/* Check that the pctx buffer wasn't move under us. */
5228static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5229{
5230	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5231
5232	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5233			     dev_priv->vlv_pctx->stolen->start);
5234}
5235
5236
5237/* Check that the pcbr address is not empty. */
5238static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5239{
5240	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5241
5242	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5243}
5244
5245static void cherryview_setup_pctx(struct drm_device *dev)
5246{
5247	struct drm_i915_private *dev_priv = dev->dev_private;
5248	unsigned long pctx_paddr, paddr;
5249	struct i915_gtt *gtt = &dev_priv->gtt;
5250	u32 pcbr;
5251	int pctx_size = 32*1024;
5252
5253	pcbr = I915_READ(VLV_PCBR);
5254	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5255		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5256		paddr = (dev_priv->mm.stolen_base +
5257			 (gtt->stolen_size - pctx_size));
5258
5259		pctx_paddr = (paddr & (~4095));
5260		I915_WRITE(VLV_PCBR, pctx_paddr);
5261	}
5262
5263	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5264}
5265
5266static void valleyview_setup_pctx(struct drm_device *dev)
5267{
5268	struct drm_i915_private *dev_priv = dev->dev_private;
5269	struct drm_i915_gem_object *pctx;
5270	unsigned long pctx_paddr;
5271	u32 pcbr;
5272	int pctx_size = 24*1024;
5273
5274	mutex_lock(&dev->struct_mutex);
5275
5276	pcbr = I915_READ(VLV_PCBR);
5277	if (pcbr) {
5278		/* BIOS set it up already, grab the pre-alloc'd space */
5279		int pcbr_offset;
5280
5281		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5282		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5283								      pcbr_offset,
5284								      I915_GTT_OFFSET_NONE,
5285								      pctx_size);
5286		goto out;
5287	}
5288
5289	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5290
5291	/*
5292	 * From the Gunit register HAS:
5293	 * The Gfx driver is expected to program this register and ensure
5294	 * proper allocation within Gfx stolen memory.  For example, this
5295	 * register should be programmed such than the PCBR range does not
5296	 * overlap with other ranges, such as the frame buffer, protected
5297	 * memory, or any other relevant ranges.
5298	 */
5299	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5300	if (!pctx) {
5301		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5302		goto out;
5303	}
5304
5305	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5306	I915_WRITE(VLV_PCBR, pctx_paddr);
5307
5308out:
5309	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5310	dev_priv->vlv_pctx = pctx;
5311	mutex_unlock(&dev->struct_mutex);
5312}
5313
5314static void valleyview_cleanup_pctx(struct drm_device *dev)
5315{
5316	struct drm_i915_private *dev_priv = dev->dev_private;
5317
5318	if (WARN_ON(!dev_priv->vlv_pctx))
5319		return;
5320
5321	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5322	dev_priv->vlv_pctx = NULL;
5323}
5324
5325static void valleyview_init_gt_powersave(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
5326{
5327	struct drm_i915_private *dev_priv = dev->dev_private;
5328	u32 val;
5329
5330	valleyview_setup_pctx(dev);
5331
5332	mutex_lock(&dev_priv->rps.hw_lock);
5333
5334	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5335	switch ((val >> 6) & 3) {
5336	case 0:
5337	case 1:
5338		dev_priv->mem_freq = 800;
5339		break;
5340	case 2:
5341		dev_priv->mem_freq = 1066;
5342		break;
5343	case 3:
5344		dev_priv->mem_freq = 1333;
5345		break;
5346	}
5347	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5348
5349	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5350	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5351	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5352			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5353			 dev_priv->rps.max_freq);
5354
5355	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5356	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5357			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5358			 dev_priv->rps.efficient_freq);
5359
5360	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5361	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5362			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5363			 dev_priv->rps.rp1_freq);
5364
5365	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5366	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5367			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5368			 dev_priv->rps.min_freq);
5369
5370	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5371
5372	/* Preserve min/max settings in case of re-init */
5373	if (dev_priv->rps.max_freq_softlimit == 0)
5374		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5375
5376	if (dev_priv->rps.min_freq_softlimit == 0)
5377		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5378
5379	mutex_unlock(&dev_priv->rps.hw_lock);
5380}
5381
5382static void cherryview_init_gt_powersave(struct drm_device *dev)
5383{
5384	struct drm_i915_private *dev_priv = dev->dev_private;
5385	u32 val;
5386
5387	cherryview_setup_pctx(dev);
5388
5389	mutex_lock(&dev_priv->rps.hw_lock);
5390
5391	mutex_lock(&dev_priv->sb_lock);
5392	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5393	mutex_unlock(&dev_priv->sb_lock);
5394
5395	switch ((val >> 2) & 0x7) {
5396	case 3:
5397		dev_priv->mem_freq = 2000;
5398		break;
5399	default:
5400		dev_priv->mem_freq = 1600;
5401		break;
5402	}
5403	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5404
5405	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5406	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5407	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5408			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5409			 dev_priv->rps.max_freq);
5410
5411	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5412	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5413			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5414			 dev_priv->rps.efficient_freq);
5415
5416	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5417	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5418			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5419			 dev_priv->rps.rp1_freq);
5420
5421	/* PUnit validated range is only [RPe, RP0] */
5422	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5423	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5424			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5425			 dev_priv->rps.min_freq);
5426
5427	WARN_ONCE((dev_priv->rps.max_freq |
5428		   dev_priv->rps.efficient_freq |
5429		   dev_priv->rps.rp1_freq |
5430		   dev_priv->rps.min_freq) & 1,
5431		  "Odd GPU freq values\n");
5432
5433	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5434
5435	/* Preserve min/max settings in case of re-init */
5436	if (dev_priv->rps.max_freq_softlimit == 0)
5437		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5438
5439	if (dev_priv->rps.min_freq_softlimit == 0)
5440		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5441
5442	mutex_unlock(&dev_priv->rps.hw_lock);
5443}
5444
5445static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5446{
5447	valleyview_cleanup_pctx(dev);
5448}
5449
5450static void cherryview_enable_rps(struct drm_device *dev)
5451{
5452	struct drm_i915_private *dev_priv = dev->dev_private;
5453	struct intel_engine_cs *ring;
5454	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5455	int i;
5456
5457	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5458
5459	gtfifodbg = I915_READ(GTFIFODBG);
 
5460	if (gtfifodbg) {
5461		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5462				 gtfifodbg);
5463		I915_WRITE(GTFIFODBG, gtfifodbg);
5464	}
5465
5466	cherryview_check_pctx(dev_priv);
5467
5468	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5469	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5470	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5471
5472	/*  Disable RC states. */
5473	I915_WRITE(GEN6_RC_CONTROL, 0);
5474
5475	/* 2a: Program RC6 thresholds.*/
5476	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5477	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5478	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5479
5480	for_each_ring(ring, dev_priv, i)
5481		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5482	I915_WRITE(GEN6_RC_SLEEP, 0);
5483
5484	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5485	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5486
5487	/* allows RC6 residency counter to work */
5488	I915_WRITE(VLV_COUNTER_CONTROL,
5489		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5490				      VLV_MEDIA_RC6_COUNT_EN |
5491				      VLV_RENDER_RC6_COUNT_EN));
5492
5493	/* For now we assume BIOS is allocating and populating the PCBR  */
5494	pcbr = I915_READ(VLV_PCBR);
5495
5496	/* 3: Enable RC6 */
5497	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5498						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5499		rc6_mode = GEN7_RC_CTL_TO_MODE;
5500
5501	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5502
5503	/* 4 Program defaults and thresholds for RPS*/
5504	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5505	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5506	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5507	I915_WRITE(GEN6_RP_UP_EI, 66000);
5508	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5509
5510	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5511
5512	/* 5: Enable RPS */
5513	I915_WRITE(GEN6_RP_CONTROL,
5514		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5515		   GEN6_RP_MEDIA_IS_GFX |
5516		   GEN6_RP_ENABLE |
5517		   GEN6_RP_UP_BUSY_AVG |
5518		   GEN6_RP_DOWN_IDLE_AVG);
5519
5520	/* Setting Fixed Bias */
5521	val = VLV_OVERRIDE_EN |
5522		  VLV_SOC_TDP_EN |
5523		  CHV_BIAS_CPU_50_SOC_50;
5524	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5525
5526	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5527
5528	/* RPS code assumes GPLL is used */
5529	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5530
5531	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5532	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5533
5534	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5535	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5536			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5537			 dev_priv->rps.cur_freq);
5538
5539	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5540			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5541			 dev_priv->rps.efficient_freq);
5542
5543	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5544
5545	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5546}
5547
5548static void valleyview_enable_rps(struct drm_device *dev)
5549{
5550	struct drm_i915_private *dev_priv = dev->dev_private;
5551	struct intel_engine_cs *ring;
5552	u32 gtfifodbg, val, rc6_mode = 0;
5553	int i;
5554
5555	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5556
5557	valleyview_check_pctx(dev_priv);
5558
5559	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
 
5560		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5561				 gtfifodbg);
5562		I915_WRITE(GTFIFODBG, gtfifodbg);
5563	}
5564
5565	/* If VLV, Forcewake all wells, else re-direct to regular path */
5566	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5567
5568	/*  Disable RC states. */
5569	I915_WRITE(GEN6_RC_CONTROL, 0);
5570
5571	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5572	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5573	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5574	I915_WRITE(GEN6_RP_UP_EI, 66000);
5575	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5576
5577	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5578
5579	I915_WRITE(GEN6_RP_CONTROL,
5580		   GEN6_RP_MEDIA_TURBO |
5581		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5582		   GEN6_RP_MEDIA_IS_GFX |
5583		   GEN6_RP_ENABLE |
5584		   GEN6_RP_UP_BUSY_AVG |
5585		   GEN6_RP_DOWN_IDLE_CONT);
5586
5587	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5588	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5589	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5590
5591	for_each_ring(ring, dev_priv, i)
5592		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5593
5594	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5595
5596	/* allows RC6 residency counter to work */
5597	I915_WRITE(VLV_COUNTER_CONTROL,
5598		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5599				      VLV_RENDER_RC0_COUNT_EN |
5600				      VLV_MEDIA_RC6_COUNT_EN |
5601				      VLV_RENDER_RC6_COUNT_EN));
5602
5603	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5604		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5605
5606	intel_print_rc6_info(dev, rc6_mode);
5607
5608	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5609
5610	/* Setting Fixed Bias */
5611	val = VLV_OVERRIDE_EN |
5612		  VLV_SOC_TDP_EN |
5613		  VLV_BIAS_CPU_125_SOC_875;
5614	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5615
5616	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5617
5618	/* RPS code assumes GPLL is used */
5619	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5620
5621	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5622	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5623
5624	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5625	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5626			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5627			 dev_priv->rps.cur_freq);
5628
5629	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5630			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5631			 dev_priv->rps.efficient_freq);
5632
5633	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5634
5635	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5636}
5637
5638static unsigned long intel_pxfreq(u32 vidfreq)
5639{
5640	unsigned long freq;
5641	int div = (vidfreq & 0x3f0000) >> 16;
5642	int post = (vidfreq & 0x3000) >> 12;
5643	int pre = (vidfreq & 0x7);
5644
5645	if (!pre)
5646		return 0;
5647
5648	freq = ((div * 133333) / ((1<<post) * pre));
5649
5650	return freq;
5651}
5652
5653static const struct cparams {
5654	u16 i;
5655	u16 t;
5656	u16 m;
5657	u16 c;
5658} cparams[] = {
5659	{ 1, 1333, 301, 28664 },
5660	{ 1, 1066, 294, 24460 },
5661	{ 1, 800, 294, 25192 },
5662	{ 0, 1333, 276, 27605 },
5663	{ 0, 1066, 276, 27605 },
5664	{ 0, 800, 231, 23784 },
5665};
5666
5667static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5668{
5669	u64 total_count, diff, ret;
5670	u32 count1, count2, count3, m = 0, c = 0;
5671	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5672	int i;
5673
5674	assert_spin_locked(&mchdev_lock);
5675
5676	diff1 = now - dev_priv->ips.last_time1;
5677
5678	/* Prevent division-by-zero if we are asking too fast.
5679	 * Also, we don't get interesting results if we are polling
5680	 * faster than once in 10ms, so just return the saved value
5681	 * in such cases.
5682	 */
5683	if (diff1 <= 10)
5684		return dev_priv->ips.chipset_power;
5685
5686	count1 = I915_READ(DMIEC);
5687	count2 = I915_READ(DDREC);
5688	count3 = I915_READ(CSIEC);
5689
5690	total_count = count1 + count2 + count3;
5691
5692	/* FIXME: handle per-counter overflow */
5693	if (total_count < dev_priv->ips.last_count1) {
5694		diff = ~0UL - dev_priv->ips.last_count1;
5695		diff += total_count;
5696	} else {
5697		diff = total_count - dev_priv->ips.last_count1;
5698	}
5699
5700	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5701		if (cparams[i].i == dev_priv->ips.c_m &&
5702		    cparams[i].t == dev_priv->ips.r_t) {
5703			m = cparams[i].m;
5704			c = cparams[i].c;
5705			break;
5706		}
5707	}
5708
5709	diff = div_u64(diff, diff1);
5710	ret = ((m * diff) + c);
5711	ret = div_u64(ret, 10);
5712
5713	dev_priv->ips.last_count1 = total_count;
5714	dev_priv->ips.last_time1 = now;
5715
5716	dev_priv->ips.chipset_power = ret;
5717
5718	return ret;
5719}
5720
5721unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5722{
5723	struct drm_device *dev = dev_priv->dev;
5724	unsigned long val;
5725
5726	if (INTEL_INFO(dev)->gen != 5)
5727		return 0;
5728
5729	spin_lock_irq(&mchdev_lock);
5730
5731	val = __i915_chipset_val(dev_priv);
5732
5733	spin_unlock_irq(&mchdev_lock);
5734
5735	return val;
5736}
5737
5738unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5739{
5740	unsigned long m, x, b;
5741	u32 tsfs;
5742
5743	tsfs = I915_READ(TSFS);
5744
5745	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5746	x = I915_READ8(TR1);
5747
5748	b = tsfs & TSFS_INTR_MASK;
5749
5750	return ((m * x) / 127) - b;
5751}
5752
5753static int _pxvid_to_vd(u8 pxvid)
5754{
5755	if (pxvid == 0)
5756		return 0;
5757
5758	if (pxvid >= 8 && pxvid < 31)
5759		pxvid = 31;
5760
5761	return (pxvid + 2) * 125;
5762}
5763
5764static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5765{
5766	struct drm_device *dev = dev_priv->dev;
5767	const int vd = _pxvid_to_vd(pxvid);
5768	const int vm = vd - 1125;
5769
5770	if (INTEL_INFO(dev)->is_mobile)
5771		return vm > 0 ? vm : 0;
5772
5773	return vd;
5774}
5775
5776static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5777{
5778	u64 now, diff, diffms;
5779	u32 count;
5780
5781	assert_spin_locked(&mchdev_lock);
5782
5783	now = ktime_get_raw_ns();
5784	diffms = now - dev_priv->ips.last_time2;
5785	do_div(diffms, NSEC_PER_MSEC);
5786
5787	/* Don't divide by 0 */
5788	if (!diffms)
5789		return;
5790
5791	count = I915_READ(GFXEC);
5792
5793	if (count < dev_priv->ips.last_count2) {
5794		diff = ~0UL - dev_priv->ips.last_count2;
5795		diff += count;
5796	} else {
5797		diff = count - dev_priv->ips.last_count2;
5798	}
5799
5800	dev_priv->ips.last_count2 = count;
5801	dev_priv->ips.last_time2 = now;
5802
5803	/* More magic constants... */
5804	diff = diff * 1181;
5805	diff = div_u64(diff, diffms * 10);
5806	dev_priv->ips.gfx_power = diff;
5807}
5808
5809void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5810{
5811	struct drm_device *dev = dev_priv->dev;
5812
5813	if (INTEL_INFO(dev)->gen != 5)
5814		return;
5815
5816	spin_lock_irq(&mchdev_lock);
5817
5818	__i915_update_gfx_val(dev_priv);
5819
5820	spin_unlock_irq(&mchdev_lock);
5821}
5822
5823static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5824{
5825	unsigned long t, corr, state1, corr2, state2;
5826	u32 pxvid, ext_v;
5827
5828	assert_spin_locked(&mchdev_lock);
5829
5830	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5831	pxvid = (pxvid >> 24) & 0x7f;
5832	ext_v = pvid_to_extvid(dev_priv, pxvid);
5833
5834	state1 = ext_v;
5835
5836	t = i915_mch_val(dev_priv);
5837
5838	/* Revel in the empirically derived constants */
5839
5840	/* Correction factor in 1/100000 units */
5841	if (t > 80)
5842		corr = ((t * 2349) + 135940);
5843	else if (t >= 50)
5844		corr = ((t * 964) + 29317);
5845	else /* < 50 */
5846		corr = ((t * 301) + 1004);
5847
5848	corr = corr * ((150142 * state1) / 10000 - 78642);
5849	corr /= 100000;
5850	corr2 = (corr * dev_priv->ips.corr);
5851
5852	state2 = (corr2 * state1) / 10000;
5853	state2 /= 100; /* convert to mW */
5854
5855	__i915_update_gfx_val(dev_priv);
5856
5857	return dev_priv->ips.gfx_power + state2;
5858}
5859
5860unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5861{
5862	struct drm_device *dev = dev_priv->dev;
5863	unsigned long val;
5864
5865	if (INTEL_INFO(dev)->gen != 5)
5866		return 0;
5867
5868	spin_lock_irq(&mchdev_lock);
5869
5870	val = __i915_gfx_val(dev_priv);
5871
5872	spin_unlock_irq(&mchdev_lock);
5873
5874	return val;
5875}
5876
5877/**
5878 * i915_read_mch_val - return value for IPS use
5879 *
5880 * Calculate and return a value for the IPS driver to use when deciding whether
5881 * we have thermal and power headroom to increase CPU or GPU power budget.
5882 */
5883unsigned long i915_read_mch_val(void)
5884{
5885	struct drm_i915_private *dev_priv;
5886	unsigned long chipset_val, graphics_val, ret = 0;
5887
5888	spin_lock_irq(&mchdev_lock);
5889	if (!i915_mch_dev)
5890		goto out_unlock;
5891	dev_priv = i915_mch_dev;
5892
5893	chipset_val = __i915_chipset_val(dev_priv);
5894	graphics_val = __i915_gfx_val(dev_priv);
5895
5896	ret = chipset_val + graphics_val;
5897
5898out_unlock:
5899	spin_unlock_irq(&mchdev_lock);
5900
5901	return ret;
5902}
5903EXPORT_SYMBOL_GPL(i915_read_mch_val);
5904
5905/**
5906 * i915_gpu_raise - raise GPU frequency limit
5907 *
5908 * Raise the limit; IPS indicates we have thermal headroom.
5909 */
5910bool i915_gpu_raise(void)
5911{
5912	struct drm_i915_private *dev_priv;
5913	bool ret = true;
5914
5915	spin_lock_irq(&mchdev_lock);
5916	if (!i915_mch_dev) {
5917		ret = false;
5918		goto out_unlock;
5919	}
5920	dev_priv = i915_mch_dev;
5921
5922	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5923		dev_priv->ips.max_delay--;
5924
5925out_unlock:
5926	spin_unlock_irq(&mchdev_lock);
5927
5928	return ret;
5929}
5930EXPORT_SYMBOL_GPL(i915_gpu_raise);
5931
5932/**
5933 * i915_gpu_lower - lower GPU frequency limit
5934 *
5935 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5936 * frequency maximum.
5937 */
5938bool i915_gpu_lower(void)
5939{
5940	struct drm_i915_private *dev_priv;
5941	bool ret = true;
5942
5943	spin_lock_irq(&mchdev_lock);
5944	if (!i915_mch_dev) {
5945		ret = false;
5946		goto out_unlock;
5947	}
5948	dev_priv = i915_mch_dev;
5949
5950	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5951		dev_priv->ips.max_delay++;
5952
5953out_unlock:
5954	spin_unlock_irq(&mchdev_lock);
5955
5956	return ret;
5957}
5958EXPORT_SYMBOL_GPL(i915_gpu_lower);
5959
5960/**
5961 * i915_gpu_busy - indicate GPU business to IPS
5962 *
5963 * Tell the IPS driver whether or not the GPU is busy.
5964 */
5965bool i915_gpu_busy(void)
5966{
5967	struct drm_i915_private *dev_priv;
5968	struct intel_engine_cs *ring;
5969	bool ret = false;
5970	int i;
5971
5972	spin_lock_irq(&mchdev_lock);
5973	if (!i915_mch_dev)
5974		goto out_unlock;
5975	dev_priv = i915_mch_dev;
5976
5977	for_each_ring(ring, dev_priv, i)
5978		ret |= !list_empty(&ring->request_list);
5979
5980out_unlock:
5981	spin_unlock_irq(&mchdev_lock);
5982
5983	return ret;
5984}
5985EXPORT_SYMBOL_GPL(i915_gpu_busy);
5986
5987/**
5988 * i915_gpu_turbo_disable - disable graphics turbo
5989 *
5990 * Disable graphics turbo by resetting the max frequency and setting the
5991 * current frequency to the default.
5992 */
5993bool i915_gpu_turbo_disable(void)
5994{
5995	struct drm_i915_private *dev_priv;
5996	bool ret = true;
5997
5998	spin_lock_irq(&mchdev_lock);
5999	if (!i915_mch_dev) {
6000		ret = false;
6001		goto out_unlock;
6002	}
6003	dev_priv = i915_mch_dev;
6004
6005	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6006
6007	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6008		ret = false;
6009
6010out_unlock:
6011	spin_unlock_irq(&mchdev_lock);
6012
6013	return ret;
6014}
6015EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6016
6017/**
6018 * Tells the intel_ips driver that the i915 driver is now loaded, if
6019 * IPS got loaded first.
6020 *
6021 * This awkward dance is so that neither module has to depend on the
6022 * other in order for IPS to do the appropriate communication of
6023 * GPU turbo limits to i915.
6024 */
6025static void
6026ips_ping_for_i915_load(void)
6027{
6028	void (*link)(void);
6029
6030	link = symbol_get(ips_link_to_i915_driver);
6031	if (link) {
6032		link();
6033		symbol_put(ips_link_to_i915_driver);
6034	}
6035}
6036
6037void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6038{
6039	/* We only register the i915 ips part with intel-ips once everything is
6040	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6041	spin_lock_irq(&mchdev_lock);
6042	i915_mch_dev = dev_priv;
6043	spin_unlock_irq(&mchdev_lock);
6044
6045	ips_ping_for_i915_load();
6046}
6047
6048void intel_gpu_ips_teardown(void)
6049{
6050	spin_lock_irq(&mchdev_lock);
6051	i915_mch_dev = NULL;
6052	spin_unlock_irq(&mchdev_lock);
6053}
6054
6055static void intel_init_emon(struct drm_device *dev)
6056{
6057	struct drm_i915_private *dev_priv = dev->dev_private;
6058	u32 lcfuse;
6059	u8 pxw[16];
6060	int i;
6061
6062	/* Disable to program */
6063	I915_WRITE(ECR, 0);
6064	POSTING_READ(ECR);
6065
6066	/* Program energy weights for various events */
6067	I915_WRITE(SDEW, 0x15040d00);
6068	I915_WRITE(CSIEW0, 0x007f0000);
6069	I915_WRITE(CSIEW1, 0x1e220004);
6070	I915_WRITE(CSIEW2, 0x04000004);
6071
6072	for (i = 0; i < 5; i++)
6073		I915_WRITE(PEW(i), 0);
6074	for (i = 0; i < 3; i++)
6075		I915_WRITE(DEW(i), 0);
6076
6077	/* Program P-state weights to account for frequency power adjustment */
6078	for (i = 0; i < 16; i++) {
6079		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6080		unsigned long freq = intel_pxfreq(pxvidfreq);
6081		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6082			PXVFREQ_PX_SHIFT;
6083		unsigned long val;
6084
6085		val = vid * vid;
6086		val *= (freq / 1000);
6087		val *= 255;
6088		val /= (127*127*900);
6089		if (val > 0xff)
6090			DRM_ERROR("bad pxval: %ld\n", val);
6091		pxw[i] = val;
6092	}
6093	/* Render standby states get 0 weight */
6094	pxw[14] = 0;
6095	pxw[15] = 0;
6096
6097	for (i = 0; i < 4; i++) {
6098		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6099			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6100		I915_WRITE(PXW(i), val);
6101	}
6102
6103	/* Adjust magic regs to magic values (more experimental results) */
6104	I915_WRITE(OGW0, 0);
6105	I915_WRITE(OGW1, 0);
6106	I915_WRITE(EG0, 0x00007f00);
6107	I915_WRITE(EG1, 0x0000000e);
6108	I915_WRITE(EG2, 0x000e0000);
6109	I915_WRITE(EG3, 0x68000300);
6110	I915_WRITE(EG4, 0x42000000);
6111	I915_WRITE(EG5, 0x00140031);
6112	I915_WRITE(EG6, 0);
6113	I915_WRITE(EG7, 0);
6114
6115	for (i = 0; i < 8; i++)
6116		I915_WRITE(PXWL(i), 0);
6117
6118	/* Enable PMON + select events */
6119	I915_WRITE(ECR, 0x80000019);
6120
6121	lcfuse = I915_READ(LCFUSE02);
6122
6123	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6124}
6125
6126void intel_init_gt_powersave(struct drm_device *dev)
6127{
6128	struct drm_i915_private *dev_priv = dev->dev_private;
6129
6130	/*
6131	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6132	 * requirement.
6133	 */
6134	if (!i915.enable_rc6) {
6135		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6136		intel_runtime_pm_get(dev_priv);
6137	}
6138
6139	if (IS_CHERRYVIEW(dev))
6140		cherryview_init_gt_powersave(dev);
6141	else if (IS_VALLEYVIEW(dev))
6142		valleyview_init_gt_powersave(dev);
6143}
6144
6145void intel_cleanup_gt_powersave(struct drm_device *dev)
6146{
6147	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
6148
6149	if (IS_CHERRYVIEW(dev))
6150		return;
6151	else if (IS_VALLEYVIEW(dev))
6152		valleyview_cleanup_gt_powersave(dev);
6153
6154	if (!i915.enable_rc6)
6155		intel_runtime_pm_put(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6156}
6157
6158static void gen6_suspend_rps(struct drm_device *dev)
6159{
6160	struct drm_i915_private *dev_priv = dev->dev_private;
 
6161
6162	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6163
6164	gen6_disable_rps_interrupts(dev);
6165}
6166
6167/**
6168 * intel_suspend_gt_powersave - suspend PM work and helper threads
6169 * @dev: drm device
6170 *
6171 * We don't want to disable RC6 or other features here, we just want
6172 * to make sure any work we've queued has finished and won't bother
6173 * us while we're suspended.
6174 */
6175void intel_suspend_gt_powersave(struct drm_device *dev)
6176{
6177	struct drm_i915_private *dev_priv = dev->dev_private;
6178
6179	if (INTEL_INFO(dev)->gen < 6)
6180		return;
6181
6182	gen6_suspend_rps(dev);
 
6183
6184	/* Force GPU to min freq during suspend */
6185	gen6_rps_idle(dev_priv);
6186}
6187
6188void intel_disable_gt_powersave(struct drm_device *dev)
6189{
6190	struct drm_i915_private *dev_priv = dev->dev_private;
 
6191
6192	if (IS_IRONLAKE_M(dev)) {
6193		ironlake_disable_drps(dev);
6194	} else if (INTEL_INFO(dev)->gen >= 6) {
6195		intel_suspend_gt_powersave(dev);
6196
6197		mutex_lock(&dev_priv->rps.hw_lock);
6198		if (INTEL_INFO(dev)->gen >= 9)
6199			gen9_disable_rps(dev);
6200		else if (IS_CHERRYVIEW(dev))
6201			cherryview_disable_rps(dev);
6202		else if (IS_VALLEYVIEW(dev))
6203			valleyview_disable_rps(dev);
6204		else
6205			gen6_disable_rps(dev);
6206
6207		dev_priv->rps.enabled = false;
6208		mutex_unlock(&dev_priv->rps.hw_lock);
 
 
 
 
 
 
 
 
 
 
 
6209	}
 
 
 
6210}
6211
6212static void intel_gen6_powersave_work(struct work_struct *work)
6213{
6214	struct drm_i915_private *dev_priv =
6215		container_of(work, struct drm_i915_private,
6216			     rps.delayed_resume_work.work);
6217	struct drm_device *dev = dev_priv->dev;
 
6218
6219	mutex_lock(&dev_priv->rps.hw_lock);
 
 
6220
6221	gen6_reset_rps_interrupts(dev);
6222
6223	if (IS_CHERRYVIEW(dev)) {
6224		cherryview_enable_rps(dev);
6225	} else if (IS_VALLEYVIEW(dev)) {
6226		valleyview_enable_rps(dev);
6227	} else if (INTEL_INFO(dev)->gen >= 9) {
6228		gen9_enable_rc6(dev);
6229		gen9_enable_rps(dev);
6230		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6231			__gen6_update_ring_freq(dev);
6232	} else if (IS_BROADWELL(dev)) {
6233		gen8_enable_rps(dev);
6234		__gen6_update_ring_freq(dev);
6235	} else {
6236		gen6_enable_rps(dev);
6237		__gen6_update_ring_freq(dev);
 
 
 
6238	}
6239
6240	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6241	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6242
6243	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6244	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6245
6246	dev_priv->rps.enabled = true;
 
 
6247
6248	gen6_enable_rps_interrupts(dev);
 
 
 
 
 
6249
6250	mutex_unlock(&dev_priv->rps.hw_lock);
 
 
 
 
 
 
 
 
 
 
6251
 
 
 
 
 
 
 
 
 
 
 
 
 
6252	intel_runtime_pm_put(dev_priv);
6253}
6254
6255void intel_enable_gt_powersave(struct drm_device *dev)
6256{
6257	struct drm_i915_private *dev_priv = dev->dev_private;
6258
6259	/* Powersaving is controlled by the host when inside a VM */
6260	if (intel_vgpu_active(dev))
6261		return;
6262
6263	if (IS_IRONLAKE_M(dev)) {
6264		ironlake_enable_drps(dev);
6265		mutex_lock(&dev->struct_mutex);
6266		intel_init_emon(dev);
6267		mutex_unlock(&dev->struct_mutex);
6268	} else if (INTEL_INFO(dev)->gen >= 6) {
6269		/*
6270		 * PCU communication is slow and this doesn't need to be
6271		 * done at any specific time, so do this out of our fast path
6272		 * to make resume and init faster.
6273		 *
6274		 * We depend on the HW RC6 power context save/restore
6275		 * mechanism when entering D3 through runtime PM suspend. So
6276		 * disable RPM until RPS/RC6 is properly setup. We can only
6277		 * get here via the driver load/system resume/runtime resume
6278		 * paths, so the _noresume version is enough (and in case of
6279		 * runtime resume it's necessary).
6280		 */
6281		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6282					   round_jiffies_up_relative(HZ)))
 
6283			intel_runtime_pm_get_noresume(dev_priv);
6284	}
6285}
6286
6287void intel_reset_gt_powersave(struct drm_device *dev)
6288{
6289	struct drm_i915_private *dev_priv = dev->dev_private;
6290
6291	if (INTEL_INFO(dev)->gen < 6)
6292		return;
6293
6294	gen6_suspend_rps(dev);
6295	dev_priv->rps.enabled = false;
6296}
6297
6298static void ibx_init_clock_gating(struct drm_device *dev)
6299{
6300	struct drm_i915_private *dev_priv = dev->dev_private;
6301
6302	/*
6303	 * On Ibex Peak and Cougar Point, we need to disable clock
6304	 * gating for the panel power sequencer or it will fail to
6305	 * start up when no ports are active.
6306	 */
6307	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6308}
6309
6310static void g4x_disable_trickle_feed(struct drm_device *dev)
6311{
6312	struct drm_i915_private *dev_priv = dev->dev_private;
6313	enum pipe pipe;
6314
6315	for_each_pipe(dev_priv, pipe) {
6316		I915_WRITE(DSPCNTR(pipe),
6317			   I915_READ(DSPCNTR(pipe)) |
6318			   DISPPLANE_TRICKLE_FEED_DISABLE);
6319
6320		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6321		POSTING_READ(DSPSURF(pipe));
6322	}
6323}
6324
6325static void ilk_init_lp_watermarks(struct drm_device *dev)
6326{
6327	struct drm_i915_private *dev_priv = dev->dev_private;
6328
6329	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6330	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6331	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6332
6333	/*
6334	 * Don't touch WM1S_LP_EN here.
6335	 * Doing so could cause underruns.
6336	 */
6337}
6338
6339static void ironlake_init_clock_gating(struct drm_device *dev)
6340{
6341	struct drm_i915_private *dev_priv = dev->dev_private;
6342	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6343
6344	/*
6345	 * Required for FBC
6346	 * WaFbcDisableDpfcClockGating:ilk
6347	 */
6348	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6349		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6350		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6351
6352	I915_WRITE(PCH_3DCGDIS0,
6353		   MARIUNIT_CLOCK_GATE_DISABLE |
6354		   SVSMUNIT_CLOCK_GATE_DISABLE);
6355	I915_WRITE(PCH_3DCGDIS1,
6356		   VFMUNIT_CLOCK_GATE_DISABLE);
6357
6358	/*
6359	 * According to the spec the following bits should be set in
6360	 * order to enable memory self-refresh
6361	 * The bit 22/21 of 0x42004
6362	 * The bit 5 of 0x42020
6363	 * The bit 15 of 0x45000
6364	 */
6365	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6366		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6367		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6368	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6369	I915_WRITE(DISP_ARB_CTL,
6370		   (I915_READ(DISP_ARB_CTL) |
6371		    DISP_FBC_WM_DIS));
6372
6373	ilk_init_lp_watermarks(dev);
6374
6375	/*
6376	 * Based on the document from hardware guys the following bits
6377	 * should be set unconditionally in order to enable FBC.
6378	 * The bit 22 of 0x42000
6379	 * The bit 22 of 0x42004
6380	 * The bit 7,8,9 of 0x42020.
6381	 */
6382	if (IS_IRONLAKE_M(dev)) {
6383		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6384		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6385			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6386			   ILK_FBCQ_DIS);
6387		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6388			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6389			   ILK_DPARB_GATE);
6390	}
6391
6392	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6393
6394	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6395		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6396		   ILK_ELPIN_409_SELECT);
6397	I915_WRITE(_3D_CHICKEN2,
6398		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6399		   _3D_CHICKEN2_WM_READ_PIPELINED);
6400
6401	/* WaDisableRenderCachePipelinedFlush:ilk */
6402	I915_WRITE(CACHE_MODE_0,
6403		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6404
6405	/* WaDisable_RenderCache_OperationalFlush:ilk */
6406	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6407
6408	g4x_disable_trickle_feed(dev);
6409
6410	ibx_init_clock_gating(dev);
6411}
6412
6413static void cpt_init_clock_gating(struct drm_device *dev)
6414{
6415	struct drm_i915_private *dev_priv = dev->dev_private;
6416	int pipe;
6417	uint32_t val;
6418
6419	/*
6420	 * On Ibex Peak and Cougar Point, we need to disable clock
6421	 * gating for the panel power sequencer or it will fail to
6422	 * start up when no ports are active.
6423	 */
6424	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6425		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6426		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6427	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6428		   DPLS_EDP_PPS_FIX_DIS);
6429	/* The below fixes the weird display corruption, a few pixels shifted
6430	 * downward, on (only) LVDS of some HP laptops with IVY.
6431	 */
6432	for_each_pipe(dev_priv, pipe) {
6433		val = I915_READ(TRANS_CHICKEN2(pipe));
6434		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6435		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6436		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6437			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6438		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6439		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6440		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6441		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6442	}
6443	/* WADP0ClockGatingDisable */
6444	for_each_pipe(dev_priv, pipe) {
6445		I915_WRITE(TRANS_CHICKEN1(pipe),
6446			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6447	}
6448}
6449
6450static void gen6_check_mch_setup(struct drm_device *dev)
6451{
6452	struct drm_i915_private *dev_priv = dev->dev_private;
6453	uint32_t tmp;
6454
6455	tmp = I915_READ(MCH_SSKPD);
6456	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6457		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6458			      tmp);
6459}
6460
6461static void gen6_init_clock_gating(struct drm_device *dev)
6462{
6463	struct drm_i915_private *dev_priv = dev->dev_private;
6464	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6465
6466	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6467
6468	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6469		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6470		   ILK_ELPIN_409_SELECT);
6471
6472	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6473	I915_WRITE(_3D_CHICKEN,
6474		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6475
6476	/* WaDisable_RenderCache_OperationalFlush:snb */
6477	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6478
6479	/*
6480	 * BSpec recoomends 8x4 when MSAA is used,
6481	 * however in practice 16x4 seems fastest.
6482	 *
6483	 * Note that PS/WM thread counts depend on the WIZ hashing
6484	 * disable bit, which we don't touch here, but it's good
6485	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6486	 */
6487	I915_WRITE(GEN6_GT_MODE,
6488		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6489
6490	ilk_init_lp_watermarks(dev);
6491
6492	I915_WRITE(CACHE_MODE_0,
6493		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6494
6495	I915_WRITE(GEN6_UCGCTL1,
6496		   I915_READ(GEN6_UCGCTL1) |
6497		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6498		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6499
6500	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6501	 * gating disable must be set.  Failure to set it results in
6502	 * flickering pixels due to Z write ordering failures after
6503	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6504	 * Sanctuary and Tropics, and apparently anything else with
6505	 * alpha test or pixel discard.
6506	 *
6507	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6508	 * but we didn't debug actual testcases to find it out.
6509	 *
6510	 * WaDisableRCCUnitClockGating:snb
6511	 * WaDisableRCPBUnitClockGating:snb
6512	 */
6513	I915_WRITE(GEN6_UCGCTL2,
6514		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6515		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6516
6517	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6518	I915_WRITE(_3D_CHICKEN3,
6519		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6520
6521	/*
6522	 * Bspec says:
6523	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6524	 * 3DSTATE_SF number of SF output attributes is more than 16."
6525	 */
6526	I915_WRITE(_3D_CHICKEN3,
6527		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6528
6529	/*
6530	 * According to the spec the following bits should be
6531	 * set in order to enable memory self-refresh and fbc:
6532	 * The bit21 and bit22 of 0x42000
6533	 * The bit21 and bit22 of 0x42004
6534	 * The bit5 and bit7 of 0x42020
6535	 * The bit14 of 0x70180
6536	 * The bit14 of 0x71180
6537	 *
6538	 * WaFbcAsynchFlipDisableFbcQueue:snb
6539	 */
6540	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6541		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6542		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6543	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6544		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6545		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6546	I915_WRITE(ILK_DSPCLK_GATE_D,
6547		   I915_READ(ILK_DSPCLK_GATE_D) |
6548		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6549		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6550
6551	g4x_disable_trickle_feed(dev);
6552
6553	cpt_init_clock_gating(dev);
6554
6555	gen6_check_mch_setup(dev);
6556}
6557
6558static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6559{
6560	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6561
6562	/*
6563	 * WaVSThreadDispatchOverride:ivb,vlv
6564	 *
6565	 * This actually overrides the dispatch
6566	 * mode for all thread types.
6567	 */
6568	reg &= ~GEN7_FF_SCHED_MASK;
6569	reg |= GEN7_FF_TS_SCHED_HW;
6570	reg |= GEN7_FF_VS_SCHED_HW;
6571	reg |= GEN7_FF_DS_SCHED_HW;
6572
6573	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6574}
6575
6576static void lpt_init_clock_gating(struct drm_device *dev)
6577{
6578	struct drm_i915_private *dev_priv = dev->dev_private;
6579
6580	/*
6581	 * TODO: this bit should only be enabled when really needed, then
6582	 * disabled when not needed anymore in order to save power.
6583	 */
6584	if (HAS_PCH_LPT_LP(dev))
6585		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6586			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6587			   PCH_LP_PARTITION_LEVEL_DISABLE);
6588
6589	/* WADPOClockGatingDisable:hsw */
6590	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6591		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6592		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6593}
6594
6595static void lpt_suspend_hw(struct drm_device *dev)
6596{
6597	struct drm_i915_private *dev_priv = dev->dev_private;
6598
6599	if (HAS_PCH_LPT_LP(dev)) {
6600		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6601
6602		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6603		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6604	}
6605}
6606
6607static void broadwell_init_clock_gating(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6608{
6609	struct drm_i915_private *dev_priv = dev->dev_private;
6610	enum pipe pipe;
6611	uint32_t misccpctl;
6612
6613	ilk_init_lp_watermarks(dev);
6614
6615	/* WaSwitchSolVfFArbitrationPriority:bdw */
6616	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6617
6618	/* WaPsrDPAMaskVBlankInSRD:bdw */
6619	I915_WRITE(CHICKEN_PAR1_1,
6620		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6621
6622	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6623	for_each_pipe(dev_priv, pipe) {
6624		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6625			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6626			   BDW_DPRS_MASK_VBLANK_SRD);
6627	}
6628
6629	/* WaVSRefCountFullforceMissDisable:bdw */
6630	/* WaDSRefCountFullforceMissDisable:bdw */
6631	I915_WRITE(GEN7_FF_THREAD_MODE,
6632		   I915_READ(GEN7_FF_THREAD_MODE) &
6633		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6634
6635	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6636		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6637
6638	/* WaDisableSDEUnitClockGating:bdw */
6639	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6640		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6641
6642	/*
6643	 * WaProgramL3SqcReg1Default:bdw
6644	 * WaTempDisableDOPClkGating:bdw
6645	 */
6646	misccpctl = I915_READ(GEN7_MISCCPCTL);
6647	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6648	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6649	/*
6650	 * Wait at least 100 clocks before re-enabling clock gating. See
6651	 * the definition of L3SQCREG1 in BSpec.
6652	 */
6653	POSTING_READ(GEN8_L3SQCREG1);
6654	udelay(1);
6655	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6656
6657	/*
6658	 * WaGttCachingOffByDefault:bdw
6659	 * GTT cache may not work with big pages, so if those
6660	 * are ever enabled GTT cache may need to be disabled.
6661	 */
6662	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6663
6664	lpt_init_clock_gating(dev);
 
 
 
 
6665}
6666
6667static void haswell_init_clock_gating(struct drm_device *dev)
6668{
6669	struct drm_i915_private *dev_priv = dev->dev_private;
6670
6671	ilk_init_lp_watermarks(dev);
6672
6673	/* L3 caching of data atomics doesn't work -- disable it. */
6674	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6675	I915_WRITE(HSW_ROW_CHICKEN3,
6676		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6677
6678	/* This is required by WaCatErrorRejectionIssue:hsw */
6679	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6680			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6681			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6682
6683	/* WaVSRefCountFullforceMissDisable:hsw */
6684	I915_WRITE(GEN7_FF_THREAD_MODE,
6685		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6686
6687	/* WaDisable_RenderCache_OperationalFlush:hsw */
6688	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6689
6690	/* enable HiZ Raw Stall Optimization */
6691	I915_WRITE(CACHE_MODE_0_GEN7,
6692		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6693
6694	/* WaDisable4x2SubspanOptimization:hsw */
6695	I915_WRITE(CACHE_MODE_1,
6696		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6697
6698	/*
6699	 * BSpec recommends 8x4 when MSAA is used,
6700	 * however in practice 16x4 seems fastest.
6701	 *
6702	 * Note that PS/WM thread counts depend on the WIZ hashing
6703	 * disable bit, which we don't touch here, but it's good
6704	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6705	 */
6706	I915_WRITE(GEN7_GT_MODE,
6707		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6708
6709	/* WaSampleCChickenBitEnable:hsw */
6710	I915_WRITE(HALF_SLICE_CHICKEN3,
6711		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6712
6713	/* WaSwitchSolVfFArbitrationPriority:hsw */
6714	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6715
6716	/* WaRsPkgCStateDisplayPMReq:hsw */
6717	I915_WRITE(CHICKEN_PAR1_1,
6718		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6719
6720	lpt_init_clock_gating(dev);
6721}
6722
6723static void ivybridge_init_clock_gating(struct drm_device *dev)
6724{
6725	struct drm_i915_private *dev_priv = dev->dev_private;
6726	uint32_t snpcr;
6727
6728	ilk_init_lp_watermarks(dev);
6729
6730	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6731
6732	/* WaDisableEarlyCull:ivb */
6733	I915_WRITE(_3D_CHICKEN3,
6734		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6735
6736	/* WaDisableBackToBackFlipFix:ivb */
6737	I915_WRITE(IVB_CHICKEN3,
6738		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6739		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6740
6741	/* WaDisablePSDDualDispatchEnable:ivb */
6742	if (IS_IVB_GT1(dev))
6743		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6744			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6745
6746	/* WaDisable_RenderCache_OperationalFlush:ivb */
6747	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6748
6749	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6750	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6751		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6752
6753	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6754	I915_WRITE(GEN7_L3CNTLREG1,
6755			GEN7_WA_FOR_GEN7_L3_CONTROL);
6756	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6757		   GEN7_WA_L3_CHICKEN_MODE);
6758	if (IS_IVB_GT1(dev))
6759		I915_WRITE(GEN7_ROW_CHICKEN2,
6760			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6761	else {
6762		/* must write both registers */
6763		I915_WRITE(GEN7_ROW_CHICKEN2,
6764			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6765		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6766			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6767	}
6768
6769	/* WaForceL3Serialization:ivb */
6770	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6771		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6772
6773	/*
6774	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6775	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6776	 */
6777	I915_WRITE(GEN6_UCGCTL2,
6778		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6779
6780	/* This is required by WaCatErrorRejectionIssue:ivb */
6781	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6782			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6783			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6784
6785	g4x_disable_trickle_feed(dev);
6786
6787	gen7_setup_fixed_func_scheduler(dev_priv);
6788
6789	if (0) { /* causes HiZ corruption on ivb:gt1 */
6790		/* enable HiZ Raw Stall Optimization */
6791		I915_WRITE(CACHE_MODE_0_GEN7,
6792			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6793	}
6794
6795	/* WaDisable4x2SubspanOptimization:ivb */
6796	I915_WRITE(CACHE_MODE_1,
6797		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6798
6799	/*
6800	 * BSpec recommends 8x4 when MSAA is used,
6801	 * however in practice 16x4 seems fastest.
6802	 *
6803	 * Note that PS/WM thread counts depend on the WIZ hashing
6804	 * disable bit, which we don't touch here, but it's good
6805	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6806	 */
6807	I915_WRITE(GEN7_GT_MODE,
6808		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6809
6810	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6811	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6812	snpcr |= GEN6_MBC_SNPCR_MED;
6813	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6814
6815	if (!HAS_PCH_NOP(dev))
6816		cpt_init_clock_gating(dev);
6817
6818	gen6_check_mch_setup(dev);
6819}
6820
6821static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6822{
6823	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6824
6825	/*
6826	 * Disable trickle feed and enable pnd deadline calculation
6827	 */
6828	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6829	I915_WRITE(CBR1_VLV, 0);
6830}
6831
6832static void valleyview_init_clock_gating(struct drm_device *dev)
6833{
6834	struct drm_i915_private *dev_priv = dev->dev_private;
6835
6836	vlv_init_display_clock_gating(dev_priv);
6837
6838	/* WaDisableEarlyCull:vlv */
6839	I915_WRITE(_3D_CHICKEN3,
6840		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6841
6842	/* WaDisableBackToBackFlipFix:vlv */
6843	I915_WRITE(IVB_CHICKEN3,
6844		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6845		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6846
6847	/* WaPsdDispatchEnable:vlv */
6848	/* WaDisablePSDDualDispatchEnable:vlv */
6849	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6850		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6851				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6852
6853	/* WaDisable_RenderCache_OperationalFlush:vlv */
6854	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6855
6856	/* WaForceL3Serialization:vlv */
6857	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6858		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6859
6860	/* WaDisableDopClockGating:vlv */
6861	I915_WRITE(GEN7_ROW_CHICKEN2,
6862		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6863
6864	/* This is required by WaCatErrorRejectionIssue:vlv */
6865	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6866		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6867		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6868
6869	gen7_setup_fixed_func_scheduler(dev_priv);
6870
6871	/*
6872	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6873	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6874	 */
6875	I915_WRITE(GEN6_UCGCTL2,
6876		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6877
6878	/* WaDisableL3Bank2xClockGate:vlv
6879	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6880	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6881	I915_WRITE(GEN7_UCGCTL4,
6882		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6883
6884	/*
6885	 * BSpec says this must be set, even though
6886	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6887	 */
6888	I915_WRITE(CACHE_MODE_1,
6889		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6890
6891	/*
6892	 * BSpec recommends 8x4 when MSAA is used,
6893	 * however in practice 16x4 seems fastest.
6894	 *
6895	 * Note that PS/WM thread counts depend on the WIZ hashing
6896	 * disable bit, which we don't touch here, but it's good
6897	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6898	 */
6899	I915_WRITE(GEN7_GT_MODE,
6900		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6901
6902	/*
6903	 * WaIncreaseL3CreditsForVLVB0:vlv
6904	 * This is the hardware default actually.
6905	 */
6906	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6907
6908	/*
6909	 * WaDisableVLVClockGating_VBIIssue:vlv
6910	 * Disable clock gating on th GCFG unit to prevent a delay
6911	 * in the reporting of vblank events.
6912	 */
6913	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6914}
6915
6916static void cherryview_init_clock_gating(struct drm_device *dev)
6917{
6918	struct drm_i915_private *dev_priv = dev->dev_private;
6919
6920	vlv_init_display_clock_gating(dev_priv);
6921
6922	/* WaVSRefCountFullforceMissDisable:chv */
6923	/* WaDSRefCountFullforceMissDisable:chv */
6924	I915_WRITE(GEN7_FF_THREAD_MODE,
6925		   I915_READ(GEN7_FF_THREAD_MODE) &
6926		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6927
6928	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6929	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6930		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6931
6932	/* WaDisableCSUnitClockGating:chv */
6933	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6934		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6935
6936	/* WaDisableSDEUnitClockGating:chv */
6937	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6938		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6939
6940	/*
 
 
 
 
 
 
 
6941	 * GTT cache may not work with big pages, so if those
6942	 * are ever enabled GTT cache may need to be disabled.
6943	 */
6944	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6945}
6946
6947static void g4x_init_clock_gating(struct drm_device *dev)
6948{
6949	struct drm_i915_private *dev_priv = dev->dev_private;
6950	uint32_t dspclk_gate;
6951
6952	I915_WRITE(RENCLK_GATE_D1, 0);
6953	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6954		   GS_UNIT_CLOCK_GATE_DISABLE |
6955		   CL_UNIT_CLOCK_GATE_DISABLE);
6956	I915_WRITE(RAMCLK_GATE_D, 0);
6957	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6958		OVRUNIT_CLOCK_GATE_DISABLE |
6959		OVCUNIT_CLOCK_GATE_DISABLE;
6960	if (IS_GM45(dev))
6961		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6962	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6963
6964	/* WaDisableRenderCachePipelinedFlush */
6965	I915_WRITE(CACHE_MODE_0,
6966		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6967
6968	/* WaDisable_RenderCache_OperationalFlush:g4x */
6969	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6970
6971	g4x_disable_trickle_feed(dev);
6972}
6973
6974static void crestline_init_clock_gating(struct drm_device *dev)
6975{
6976	struct drm_i915_private *dev_priv = dev->dev_private;
6977
6978	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6979	I915_WRITE(RENCLK_GATE_D2, 0);
6980	I915_WRITE(DSPCLK_GATE_D, 0);
6981	I915_WRITE(RAMCLK_GATE_D, 0);
6982	I915_WRITE16(DEUC, 0);
6983	I915_WRITE(MI_ARB_STATE,
6984		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6985
6986	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6987	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6988}
6989
6990static void broadwater_init_clock_gating(struct drm_device *dev)
6991{
6992	struct drm_i915_private *dev_priv = dev->dev_private;
6993
6994	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6995		   I965_RCC_CLOCK_GATE_DISABLE |
6996		   I965_RCPB_CLOCK_GATE_DISABLE |
6997		   I965_ISC_CLOCK_GATE_DISABLE |
6998		   I965_FBC_CLOCK_GATE_DISABLE);
6999	I915_WRITE(RENCLK_GATE_D2, 0);
7000	I915_WRITE(MI_ARB_STATE,
7001		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7002
7003	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7004	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7005}
7006
7007static void gen3_init_clock_gating(struct drm_device *dev)
7008{
7009	struct drm_i915_private *dev_priv = dev->dev_private;
7010	u32 dstate = I915_READ(D_STATE);
7011
7012	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7013		DSTATE_DOT_CLOCK_GATING;
7014	I915_WRITE(D_STATE, dstate);
7015
7016	if (IS_PINEVIEW(dev))
7017		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7018
7019	/* IIR "flip pending" means done if this bit is set */
7020	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7021
7022	/* interrupts should cause a wake up from C3 */
7023	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7024
7025	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7026	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7027
7028	I915_WRITE(MI_ARB_STATE,
7029		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7030}
7031
7032static void i85x_init_clock_gating(struct drm_device *dev)
7033{
7034	struct drm_i915_private *dev_priv = dev->dev_private;
7035
7036	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7037
7038	/* interrupts should cause a wake up from C3 */
7039	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7040		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7041
7042	I915_WRITE(MEM_MODE,
7043		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7044}
7045
7046static void i830_init_clock_gating(struct drm_device *dev)
7047{
7048	struct drm_i915_private *dev_priv = dev->dev_private;
7049
7050	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7051
7052	I915_WRITE(MEM_MODE,
7053		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7054		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7055}
7056
7057void intel_init_clock_gating(struct drm_device *dev)
 
 
 
 
 
7058{
7059	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
7060
7061	if (dev_priv->display.init_clock_gating)
7062		dev_priv->display.init_clock_gating(dev);
 
7063}
7064
7065void intel_suspend_hw(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
7066{
7067	if (HAS_PCH_LPT(dev))
7068		lpt_suspend_hw(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7069}
7070
7071/* Set up chip specific power management-related functions */
7072void intel_init_pm(struct drm_device *dev)
7073{
7074	struct drm_i915_private *dev_priv = dev->dev_private;
7075
7076	intel_fbc_init(dev_priv);
7077
7078	/* For cxsr */
7079	if (IS_PINEVIEW(dev))
7080		i915_pineview_get_mem_freq(dev);
7081	else if (IS_GEN5(dev))
7082		i915_ironlake_get_mem_freq(dev);
7083
7084	/* For FIFO watermark updates */
7085	if (INTEL_INFO(dev)->gen >= 9) {
7086		skl_setup_wm_latency(dev);
7087
7088		if (IS_BROXTON(dev))
7089			dev_priv->display.init_clock_gating =
7090				bxt_init_clock_gating;
7091		dev_priv->display.update_wm = skl_update_wm;
7092	} else if (HAS_PCH_SPLIT(dev)) {
7093		ilk_setup_wm_latency(dev);
7094
7095		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7096		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7097		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7098		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7099			dev_priv->display.update_wm = ilk_update_wm;
7100			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7101			dev_priv->display.program_watermarks = ilk_program_watermarks;
 
 
 
 
 
7102		} else {
7103			DRM_DEBUG_KMS("Failed to read display plane latency. "
7104				      "Disable CxSR\n");
7105		}
7106
7107		if (IS_GEN5(dev))
7108			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7109		else if (IS_GEN6(dev))
7110			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7111		else if (IS_IVYBRIDGE(dev))
7112			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7113		else if (IS_HASWELL(dev))
7114			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7115		else if (INTEL_INFO(dev)->gen == 8)
7116			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7117	} else if (IS_CHERRYVIEW(dev)) {
7118		vlv_setup_wm_latency(dev);
7119
7120		dev_priv->display.update_wm = vlv_update_wm;
7121		dev_priv->display.init_clock_gating =
7122			cherryview_init_clock_gating;
7123	} else if (IS_VALLEYVIEW(dev)) {
7124		vlv_setup_wm_latency(dev);
7125
7126		dev_priv->display.update_wm = vlv_update_wm;
7127		dev_priv->display.init_clock_gating =
7128			valleyview_init_clock_gating;
7129	} else if (IS_PINEVIEW(dev)) {
7130		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7131					    dev_priv->is_ddr3,
7132					    dev_priv->fsb_freq,
7133					    dev_priv->mem_freq)) {
7134			DRM_INFO("failed to find known CxSR latency "
7135				 "(found ddr%s fsb freq %d, mem freq %d), "
7136				 "disabling CxSR\n",
7137				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7138				 dev_priv->fsb_freq, dev_priv->mem_freq);
7139			/* Disable CxSR and never update its watermark again */
7140			intel_set_memory_cxsr(dev_priv, false);
7141			dev_priv->display.update_wm = NULL;
7142		} else
7143			dev_priv->display.update_wm = pineview_update_wm;
7144		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7145	} else if (IS_G4X(dev)) {
7146		dev_priv->display.update_wm = g4x_update_wm;
7147		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7148	} else if (IS_GEN4(dev)) {
7149		dev_priv->display.update_wm = i965_update_wm;
7150		if (IS_CRESTLINE(dev))
7151			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7152		else if (IS_BROADWATER(dev))
7153			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7154	} else if (IS_GEN3(dev)) {
7155		dev_priv->display.update_wm = i9xx_update_wm;
7156		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7157		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7158	} else if (IS_GEN2(dev)) {
7159		if (INTEL_INFO(dev)->num_pipes == 1) {
7160			dev_priv->display.update_wm = i845_update_wm;
7161			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7162		} else {
7163			dev_priv->display.update_wm = i9xx_update_wm;
7164			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7165		}
7166
7167		if (IS_I85X(dev) || IS_I865G(dev))
7168			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7169		else
7170			dev_priv->display.init_clock_gating = i830_init_clock_gating;
7171	} else {
7172		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7173	}
7174}
7175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7176int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7177{
 
 
7178	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7179
7180	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
 
 
 
 
 
7181		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7182		return -EAGAIN;
7183	}
7184
7185	I915_WRITE(GEN6_PCODE_DATA, *val);
7186	I915_WRITE(GEN6_PCODE_DATA1, 0);
7187	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7188
7189	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7190		     500)) {
 
7191		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7192		return -ETIMEDOUT;
7193	}
7194
7195	*val = I915_READ(GEN6_PCODE_DATA);
7196	I915_WRITE(GEN6_PCODE_DATA, 0);
 
 
 
 
 
 
 
 
 
 
 
7197
7198	return 0;
7199}
7200
7201int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
 
7202{
 
 
7203	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7204
7205	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
 
 
 
 
 
7206		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7207		return -EAGAIN;
7208	}
7209
7210	I915_WRITE(GEN6_PCODE_DATA, val);
7211	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7212
7213	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7214		     500)) {
 
7215		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7216		return -ETIMEDOUT;
7217	}
7218
7219	I915_WRITE(GEN6_PCODE_DATA, 0);
7220
7221	return 0;
7222}
 
 
7223
7224static int vlv_gpu_freq_div(unsigned int czclk_freq)
7225{
7226	switch (czclk_freq) {
7227	case 200:
7228		return 10;
7229	case 267:
7230		return 12;
7231	case 320:
7232	case 333:
7233		return 16;
7234	case 400:
7235		return 20;
7236	default:
7237		return -1;
7238	}
 
 
7239}
7240
7241static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
 
 
7242{
7243	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7244
7245	div = vlv_gpu_freq_div(czclk_freq);
7246	if (div < 0)
7247		return div;
7248
7249	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7250}
7251
7252static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7253{
7254	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
 
7255
7256	mul = vlv_gpu_freq_div(czclk_freq);
7257	if (mul < 0)
7258		return mul;
 
7259
7260	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7261}
7262
7263static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7264{
7265	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
 
 
 
 
 
7266
7267	div = vlv_gpu_freq_div(czclk_freq);
7268	if (div < 0)
7269		return div;
7270	div /= 2;
7271
7272	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
 
 
 
 
 
 
7273}
7274
7275static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7276{
7277	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7278
7279	mul = vlv_gpu_freq_div(czclk_freq);
7280	if (mul < 0)
7281		return mul;
7282	mul /= 2;
7283
7284	/* CHV needs even values */
7285	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7286}
7287
7288int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7289{
7290	if (IS_GEN9(dev_priv->dev))
7291		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7292					 GEN9_FREQ_SCALER);
7293	else if (IS_CHERRYVIEW(dev_priv->dev))
7294		return chv_gpu_freq(dev_priv, val);
7295	else if (IS_VALLEYVIEW(dev_priv->dev))
7296		return byt_gpu_freq(dev_priv, val);
7297	else
7298		return val * GT_FREQUENCY_MULTIPLIER;
7299}
7300
7301int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7302{
7303	if (IS_GEN9(dev_priv->dev))
7304		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7305					 GT_FREQUENCY_MULTIPLIER);
7306	else if (IS_CHERRYVIEW(dev_priv->dev))
7307		return chv_freq_opcode(dev_priv, val);
7308	else if (IS_VALLEYVIEW(dev_priv->dev))
7309		return byt_freq_opcode(dev_priv, val);
7310	else
7311		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7312}
7313
7314struct request_boost {
7315	struct work_struct work;
7316	struct drm_i915_gem_request *req;
7317};
7318
7319static void __intel_rps_boost_work(struct work_struct *work)
7320{
7321	struct request_boost *boost = container_of(work, struct request_boost, work);
7322	struct drm_i915_gem_request *req = boost->req;
7323
7324	if (!i915_gem_request_completed(req, true))
7325		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7326			       req->emitted_jiffies);
7327
7328	i915_gem_request_unreference__unlocked(req);
7329	kfree(boost);
7330}
7331
7332void intel_queue_rps_boost_for_request(struct drm_device *dev,
7333				       struct drm_i915_gem_request *req)
7334{
7335	struct request_boost *boost;
7336
7337	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7338		return;
7339
7340	if (i915_gem_request_completed(req, true))
7341		return;
7342
7343	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7344	if (boost == NULL)
7345		return;
7346
7347	i915_gem_request_reference(req);
7348	boost->req = req;
7349
7350	INIT_WORK(&boost->work, __intel_rps_boost_work);
7351	queue_work(to_i915(dev)->wq, &boost->work);
7352}
7353
7354void intel_pm_setup(struct drm_device *dev)
7355{
7356	struct drm_i915_private *dev_priv = dev->dev_private;
7357
7358	mutex_init(&dev_priv->rps.hw_lock);
7359	spin_lock_init(&dev_priv->rps.client_lock);
7360
7361	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7362			  intel_gen6_powersave_work);
7363	INIT_LIST_HEAD(&dev_priv->rps.clients);
7364	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7365	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7366
7367	dev_priv->pm.suspended = false;
7368	atomic_set(&dev_priv->pm.wakeref_count, 0);
7369	atomic_set(&dev_priv->pm.atomic_seq, 0);
7370}
v4.10.11
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include <drm/drm_plane_helper.h>
  30#include "i915_drv.h"
  31#include "intel_drv.h"
  32#include "../../../platform/x86/intel_ips.h"
  33#include <linux/module.h>
  34#include <drm/drm_atomic_helper.h>
  35
  36/**
  37 * DOC: RC6
  38 *
  39 * RC6 is a special power stage which allows the GPU to enter an very
  40 * low-voltage mode when idle, using down to 0V while at this stage.  This
  41 * stage is entered automatically when the GPU is idle when RC6 support is
  42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  43 *
  44 * There are different RC6 modes available in Intel GPU, which differentiate
  45 * among each other with the latency required to enter and leave RC6 and
  46 * voltage consumed by the GPU in different states.
  47 *
  48 * The combination of the following flags define which states GPU is allowed
  49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  50 * RC6pp is deepest RC6. Their support by hardware varies according to the
  51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  52 * which brings the most power savings; deeper states save more power, but
  53 * require higher latency to switch to and wake up.
  54 */
  55#define INTEL_RC6_ENABLE			(1<<0)
  56#define INTEL_RC6p_ENABLE			(1<<1)
  57#define INTEL_RC6pp_ENABLE			(1<<2)
  58
  59static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  60{
  61	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
  62	I915_WRITE(CHICKEN_PAR1_1,
  63		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
  64
  65	I915_WRITE(GEN8_CONFIG0,
  66		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
  67
  68	/* WaEnableChickenDCPR:skl,bxt,kbl */
  69	I915_WRITE(GEN8_CHICKEN_DCPR_1,
  70		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
  71
  72	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
  73	/* WaFbcWakeMemOn:skl,bxt,kbl */
  74	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  75		   DISP_FBC_WM_DIS |
  76		   DISP_FBC_MEMORY_WAKE);
  77
  78	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
  79	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  80		   ILK_DPFC_DISABLE_DUMMY0);
  81}
  82
  83static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
  84{
  85	gen9_init_clock_gating(dev_priv);
  86
  87	/* WaDisableSDEUnitClockGating:bxt */
  88	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  89		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  90
  91	/*
  92	 * FIXME:
  93	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  94	 */
  95	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  96		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  97
  98	/*
  99	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
 100	 * to stay fully on.
 101	 */
 102	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
 103		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
 104			   PWM1_GATING_DIS | PWM2_GATING_DIS);
 105}
 106
 107static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
 108{
 
 109	u32 tmp;
 110
 111	tmp = I915_READ(CLKCFG);
 112
 113	switch (tmp & CLKCFG_FSB_MASK) {
 114	case CLKCFG_FSB_533:
 115		dev_priv->fsb_freq = 533; /* 133*4 */
 116		break;
 117	case CLKCFG_FSB_800:
 118		dev_priv->fsb_freq = 800; /* 200*4 */
 119		break;
 120	case CLKCFG_FSB_667:
 121		dev_priv->fsb_freq =  667; /* 167*4 */
 122		break;
 123	case CLKCFG_FSB_400:
 124		dev_priv->fsb_freq = 400; /* 100*4 */
 125		break;
 126	}
 127
 128	switch (tmp & CLKCFG_MEM_MASK) {
 129	case CLKCFG_MEM_533:
 130		dev_priv->mem_freq = 533;
 131		break;
 132	case CLKCFG_MEM_667:
 133		dev_priv->mem_freq = 667;
 134		break;
 135	case CLKCFG_MEM_800:
 136		dev_priv->mem_freq = 800;
 137		break;
 138	}
 139
 140	/* detect pineview DDR3 setting */
 141	tmp = I915_READ(CSHRDDR3CTL);
 142	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 143}
 144
 145static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
 146{
 
 147	u16 ddrpll, csipll;
 148
 149	ddrpll = I915_READ16(DDRMPLL1);
 150	csipll = I915_READ16(CSIPLL0);
 151
 152	switch (ddrpll & 0xff) {
 153	case 0xc:
 154		dev_priv->mem_freq = 800;
 155		break;
 156	case 0x10:
 157		dev_priv->mem_freq = 1066;
 158		break;
 159	case 0x14:
 160		dev_priv->mem_freq = 1333;
 161		break;
 162	case 0x18:
 163		dev_priv->mem_freq = 1600;
 164		break;
 165	default:
 166		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 167				 ddrpll & 0xff);
 168		dev_priv->mem_freq = 0;
 169		break;
 170	}
 171
 172	dev_priv->ips.r_t = dev_priv->mem_freq;
 173
 174	switch (csipll & 0x3ff) {
 175	case 0x00c:
 176		dev_priv->fsb_freq = 3200;
 177		break;
 178	case 0x00e:
 179		dev_priv->fsb_freq = 3733;
 180		break;
 181	case 0x010:
 182		dev_priv->fsb_freq = 4266;
 183		break;
 184	case 0x012:
 185		dev_priv->fsb_freq = 4800;
 186		break;
 187	case 0x014:
 188		dev_priv->fsb_freq = 5333;
 189		break;
 190	case 0x016:
 191		dev_priv->fsb_freq = 5866;
 192		break;
 193	case 0x018:
 194		dev_priv->fsb_freq = 6400;
 195		break;
 196	default:
 197		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 198				 csipll & 0x3ff);
 199		dev_priv->fsb_freq = 0;
 200		break;
 201	}
 202
 203	if (dev_priv->fsb_freq == 3200) {
 204		dev_priv->ips.c_m = 0;
 205	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 206		dev_priv->ips.c_m = 1;
 207	} else {
 208		dev_priv->ips.c_m = 2;
 209	}
 210}
 211
 212static const struct cxsr_latency cxsr_latency_table[] = {
 213	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 214	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 215	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 216	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 217	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 218
 219	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 220	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 221	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 222	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 223	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 224
 225	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 226	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 227	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 228	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 229	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 230
 231	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 232	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 233	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 234	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 235	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 236
 237	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 238	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 239	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 240	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 241	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 242
 243	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 244	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 245	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 246	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 247	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 248};
 249
 250static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
 251							 bool is_ddr3,
 252							 int fsb,
 253							 int mem)
 254{
 255	const struct cxsr_latency *latency;
 256	int i;
 257
 258	if (fsb == 0 || mem == 0)
 259		return NULL;
 260
 261	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 262		latency = &cxsr_latency_table[i];
 263		if (is_desktop == latency->is_desktop &&
 264		    is_ddr3 == latency->is_ddr3 &&
 265		    fsb == latency->fsb_freq && mem == latency->mem_freq)
 266			return latency;
 267	}
 268
 269	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 270
 271	return NULL;
 272}
 273
 274static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 275{
 276	u32 val;
 277
 278	mutex_lock(&dev_priv->rps.hw_lock);
 279
 280	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 281	if (enable)
 282		val &= ~FORCE_DDR_HIGH_FREQ;
 283	else
 284		val |= FORCE_DDR_HIGH_FREQ;
 285	val &= ~FORCE_DDR_LOW_FREQ;
 286	val |= FORCE_DDR_FREQ_REQ_ACK;
 287	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 288
 289	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 290		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 291		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
 292
 293	mutex_unlock(&dev_priv->rps.hw_lock);
 294}
 295
 296static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 297{
 298	u32 val;
 299
 300	mutex_lock(&dev_priv->rps.hw_lock);
 301
 302	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
 303	if (enable)
 304		val |= DSP_MAXFIFO_PM5_ENABLE;
 305	else
 306		val &= ~DSP_MAXFIFO_PM5_ENABLE;
 307	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
 308
 309	mutex_unlock(&dev_priv->rps.hw_lock);
 310}
 311
 312#define FW_WM(value, plane) \
 313	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 314
 315void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 316{
 
 317	u32 val;
 318
 319	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 320		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 321		POSTING_READ(FW_BLC_SELF_VLV);
 322		dev_priv->wm.vlv.cxsr = enable;
 323	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
 324		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 325		POSTING_READ(FW_BLC_SELF);
 326	} else if (IS_PINEVIEW(dev_priv)) {
 327		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
 328		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
 329		I915_WRITE(DSPFW3, val);
 330		POSTING_READ(DSPFW3);
 331	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
 332		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 333			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 334		I915_WRITE(FW_BLC_SELF, val);
 335		POSTING_READ(FW_BLC_SELF);
 336	} else if (IS_I915GM(dev_priv)) {
 337		/*
 338		 * FIXME can't find a bit like this for 915G, and
 339		 * and yet it does have the related watermark in
 340		 * FW_BLC_SELF. What's going on?
 341		 */
 342		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 343			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 344		I915_WRITE(INSTPM, val);
 345		POSTING_READ(INSTPM);
 346	} else {
 347		return;
 348	}
 349
 350	DRM_DEBUG_KMS("memory self-refresh is %s\n", enableddisabled(enable));
 
 351}
 352
 353
 354/*
 355 * Latency for FIFO fetches is dependent on several factors:
 356 *   - memory configuration (speed, channels)
 357 *   - chipset
 358 *   - current MCH state
 359 * It can be fairly high in some situations, so here we assume a fairly
 360 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 361 * set this value too high, the FIFO will fetch frequently to stay full)
 362 * and power consumption (set it too low to save power and we might see
 363 * FIFO underruns and display "flicker").
 364 *
 365 * A value of 5us seems to be a good balance; safe for very low end
 366 * platforms but not overly aggressive on lower latency configs.
 367 */
 368static const int pessimal_latency_ns = 5000;
 369
 370#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 371	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 372
 373static int vlv_get_fifo_size(struct drm_i915_private *dev_priv,
 374			      enum pipe pipe, int plane)
 375{
 
 376	int sprite0_start, sprite1_start, size;
 377
 378	switch (pipe) {
 379		uint32_t dsparb, dsparb2, dsparb3;
 380	case PIPE_A:
 381		dsparb = I915_READ(DSPARB);
 382		dsparb2 = I915_READ(DSPARB2);
 383		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 384		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 385		break;
 386	case PIPE_B:
 387		dsparb = I915_READ(DSPARB);
 388		dsparb2 = I915_READ(DSPARB2);
 389		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 390		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 391		break;
 392	case PIPE_C:
 393		dsparb2 = I915_READ(DSPARB2);
 394		dsparb3 = I915_READ(DSPARB3);
 395		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 396		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 397		break;
 398	default:
 399		return 0;
 400	}
 401
 402	switch (plane) {
 403	case 0:
 404		size = sprite0_start;
 405		break;
 406	case 1:
 407		size = sprite1_start - sprite0_start;
 408		break;
 409	case 2:
 410		size = 512 - 1 - sprite1_start;
 411		break;
 412	default:
 413		return 0;
 414	}
 415
 416	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
 417		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
 418		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
 419		      size);
 420
 421	return size;
 422}
 423
 424static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
 425{
 
 426	uint32_t dsparb = I915_READ(DSPARB);
 427	int size;
 428
 429	size = dsparb & 0x7f;
 430	if (plane)
 431		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 432
 433	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 434		      plane ? "B" : "A", size);
 435
 436	return size;
 437}
 438
 439static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
 440{
 
 441	uint32_t dsparb = I915_READ(DSPARB);
 442	int size;
 443
 444	size = dsparb & 0x1ff;
 445	if (plane)
 446		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 447	size >>= 1; /* Convert to cachelines */
 448
 449	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 450		      plane ? "B" : "A", size);
 451
 452	return size;
 453}
 454
 455static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
 456{
 
 457	uint32_t dsparb = I915_READ(DSPARB);
 458	int size;
 459
 460	size = dsparb & 0x7f;
 461	size >>= 2; /* Convert to cachelines */
 462
 463	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 464		      plane ? "B" : "A",
 465		      size);
 466
 467	return size;
 468}
 469
 470/* Pineview has different values for various configs */
 471static const struct intel_watermark_params pineview_display_wm = {
 472	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 473	.max_wm = PINEVIEW_MAX_WM,
 474	.default_wm = PINEVIEW_DFT_WM,
 475	.guard_size = PINEVIEW_GUARD_WM,
 476	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 477};
 478static const struct intel_watermark_params pineview_display_hplloff_wm = {
 479	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 480	.max_wm = PINEVIEW_MAX_WM,
 481	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 482	.guard_size = PINEVIEW_GUARD_WM,
 483	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 484};
 485static const struct intel_watermark_params pineview_cursor_wm = {
 486	.fifo_size = PINEVIEW_CURSOR_FIFO,
 487	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 488	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 489	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 490	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 491};
 492static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 493	.fifo_size = PINEVIEW_CURSOR_FIFO,
 494	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 495	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 496	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 497	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 498};
 499static const struct intel_watermark_params g4x_wm_info = {
 500	.fifo_size = G4X_FIFO_SIZE,
 501	.max_wm = G4X_MAX_WM,
 502	.default_wm = G4X_MAX_WM,
 503	.guard_size = 2,
 504	.cacheline_size = G4X_FIFO_LINE_SIZE,
 505};
 506static const struct intel_watermark_params g4x_cursor_wm_info = {
 507	.fifo_size = I965_CURSOR_FIFO,
 508	.max_wm = I965_CURSOR_MAX_WM,
 509	.default_wm = I965_CURSOR_DFT_WM,
 510	.guard_size = 2,
 511	.cacheline_size = G4X_FIFO_LINE_SIZE,
 512};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513static const struct intel_watermark_params i965_cursor_wm_info = {
 514	.fifo_size = I965_CURSOR_FIFO,
 515	.max_wm = I965_CURSOR_MAX_WM,
 516	.default_wm = I965_CURSOR_DFT_WM,
 517	.guard_size = 2,
 518	.cacheline_size = I915_FIFO_LINE_SIZE,
 519};
 520static const struct intel_watermark_params i945_wm_info = {
 521	.fifo_size = I945_FIFO_SIZE,
 522	.max_wm = I915_MAX_WM,
 523	.default_wm = 1,
 524	.guard_size = 2,
 525	.cacheline_size = I915_FIFO_LINE_SIZE,
 526};
 527static const struct intel_watermark_params i915_wm_info = {
 528	.fifo_size = I915_FIFO_SIZE,
 529	.max_wm = I915_MAX_WM,
 530	.default_wm = 1,
 531	.guard_size = 2,
 532	.cacheline_size = I915_FIFO_LINE_SIZE,
 533};
 534static const struct intel_watermark_params i830_a_wm_info = {
 535	.fifo_size = I855GM_FIFO_SIZE,
 536	.max_wm = I915_MAX_WM,
 537	.default_wm = 1,
 538	.guard_size = 2,
 539	.cacheline_size = I830_FIFO_LINE_SIZE,
 540};
 541static const struct intel_watermark_params i830_bc_wm_info = {
 542	.fifo_size = I855GM_FIFO_SIZE,
 543	.max_wm = I915_MAX_WM/2,
 544	.default_wm = 1,
 545	.guard_size = 2,
 546	.cacheline_size = I830_FIFO_LINE_SIZE,
 547};
 548static const struct intel_watermark_params i845_wm_info = {
 549	.fifo_size = I830_FIFO_SIZE,
 550	.max_wm = I915_MAX_WM,
 551	.default_wm = 1,
 552	.guard_size = 2,
 553	.cacheline_size = I830_FIFO_LINE_SIZE,
 554};
 555
 556/**
 557 * intel_calculate_wm - calculate watermark level
 558 * @clock_in_khz: pixel clock
 559 * @wm: chip FIFO params
 560 * @cpp: bytes per pixel
 561 * @latency_ns: memory latency for the platform
 562 *
 563 * Calculate the watermark level (the level at which the display plane will
 564 * start fetching from memory again).  Each chip has a different display
 565 * FIFO size and allocation, so the caller needs to figure that out and pass
 566 * in the correct intel_watermark_params structure.
 567 *
 568 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 569 * on the pixel size.  When it reaches the watermark level, it'll start
 570 * fetching FIFO line sized based chunks from memory until the FIFO fills
 571 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 572 * will occur, and a display engine hang could result.
 573 */
 574static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 575					const struct intel_watermark_params *wm,
 576					int fifo_size, int cpp,
 577					unsigned long latency_ns)
 578{
 579	long entries_required, wm_size;
 580
 581	/*
 582	 * Note: we need to make sure we don't overflow for various clock &
 583	 * latency values.
 584	 * clocks go from a few thousand to several hundred thousand.
 585	 * latency is usually a few thousand
 586	 */
 587	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
 588		1000;
 589	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 590
 591	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 592
 593	wm_size = fifo_size - (entries_required + wm->guard_size);
 594
 595	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 596
 597	/* Don't promote wm_size to unsigned... */
 598	if (wm_size > (long)wm->max_wm)
 599		wm_size = wm->max_wm;
 600	if (wm_size <= 0)
 601		wm_size = wm->default_wm;
 602
 603	/*
 604	 * Bspec seems to indicate that the value shouldn't be lower than
 605	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 606	 * Lets go for 8 which is the burst size since certain platforms
 607	 * already use a hardcoded 8 (which is what the spec says should be
 608	 * done).
 609	 */
 610	if (wm_size <= 8)
 611		wm_size = 8;
 612
 613	return wm_size;
 614}
 615
 616static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
 617{
 618	struct intel_crtc *crtc, *enabled = NULL;
 619
 620	for_each_intel_crtc(&dev_priv->drm, crtc) {
 621		if (intel_crtc_active(crtc)) {
 622			if (enabled)
 623				return NULL;
 624			enabled = crtc;
 625		}
 626	}
 627
 628	return enabled;
 629}
 630
 631static void pineview_update_wm(struct intel_crtc *unused_crtc)
 632{
 633	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
 634	struct intel_crtc *crtc;
 
 635	const struct cxsr_latency *latency;
 636	u32 reg;
 637	unsigned long wm;
 638
 639	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
 640					 dev_priv->is_ddr3,
 641					 dev_priv->fsb_freq,
 642					 dev_priv->mem_freq);
 643	if (!latency) {
 644		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 645		intel_set_memory_cxsr(dev_priv, false);
 646		return;
 647	}
 648
 649	crtc = single_enabled_crtc(dev_priv);
 650	if (crtc) {
 651		const struct drm_display_mode *adjusted_mode =
 652			&crtc->config->base.adjusted_mode;
 653		const struct drm_framebuffer *fb =
 654			crtc->base.primary->state->fb;
 655		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
 656		int clock = adjusted_mode->crtc_clock;
 657
 658		/* Display SR */
 659		wm = intel_calculate_wm(clock, &pineview_display_wm,
 660					pineview_display_wm.fifo_size,
 661					cpp, latency->display_sr);
 662		reg = I915_READ(DSPFW1);
 663		reg &= ~DSPFW_SR_MASK;
 664		reg |= FW_WM(wm, SR);
 665		I915_WRITE(DSPFW1, reg);
 666		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
 667
 668		/* cursor SR */
 669		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
 670					pineview_display_wm.fifo_size,
 671					cpp, latency->cursor_sr);
 672		reg = I915_READ(DSPFW3);
 673		reg &= ~DSPFW_CURSOR_SR_MASK;
 674		reg |= FW_WM(wm, CURSOR_SR);
 675		I915_WRITE(DSPFW3, reg);
 676
 677		/* Display HPLL off SR */
 678		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
 679					pineview_display_hplloff_wm.fifo_size,
 680					cpp, latency->display_hpll_disable);
 681		reg = I915_READ(DSPFW3);
 682		reg &= ~DSPFW_HPLL_SR_MASK;
 683		reg |= FW_WM(wm, HPLL_SR);
 684		I915_WRITE(DSPFW3, reg);
 685
 686		/* cursor HPLL off SR */
 687		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
 688					pineview_display_hplloff_wm.fifo_size,
 689					cpp, latency->cursor_hpll_disable);
 690		reg = I915_READ(DSPFW3);
 691		reg &= ~DSPFW_HPLL_CURSOR_MASK;
 692		reg |= FW_WM(wm, HPLL_CURSOR);
 693		I915_WRITE(DSPFW3, reg);
 694		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
 695
 696		intel_set_memory_cxsr(dev_priv, true);
 697	} else {
 698		intel_set_memory_cxsr(dev_priv, false);
 699	}
 700}
 701
 702static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
 703			    int plane,
 704			    const struct intel_watermark_params *display,
 705			    int display_latency_ns,
 706			    const struct intel_watermark_params *cursor,
 707			    int cursor_latency_ns,
 708			    int *plane_wm,
 709			    int *cursor_wm)
 710{
 711	struct intel_crtc *crtc;
 712	const struct drm_display_mode *adjusted_mode;
 713	const struct drm_framebuffer *fb;
 714	int htotal, hdisplay, clock, cpp;
 715	int line_time_us, line_count;
 716	int entries, tlb_miss;
 717
 718	crtc = intel_get_crtc_for_plane(dev_priv, plane);
 719	if (!intel_crtc_active(crtc)) {
 720		*cursor_wm = cursor->guard_size;
 721		*plane_wm = display->guard_size;
 722		return false;
 723	}
 724
 725	adjusted_mode = &crtc->config->base.adjusted_mode;
 726	fb = crtc->base.primary->state->fb;
 727	clock = adjusted_mode->crtc_clock;
 728	htotal = adjusted_mode->crtc_htotal;
 729	hdisplay = crtc->config->pipe_src_w;
 730	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
 731
 732	/* Use the small buffer method to calculate plane watermark */
 733	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
 734	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
 735	if (tlb_miss > 0)
 736		entries += tlb_miss;
 737	entries = DIV_ROUND_UP(entries, display->cacheline_size);
 738	*plane_wm = entries + display->guard_size;
 739	if (*plane_wm > (int)display->max_wm)
 740		*plane_wm = display->max_wm;
 741
 742	/* Use the large buffer method to calculate cursor watermark */
 743	line_time_us = max(htotal * 1000 / clock, 1);
 744	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
 745	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
 746	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
 747	if (tlb_miss > 0)
 748		entries += tlb_miss;
 749	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 750	*cursor_wm = entries + cursor->guard_size;
 751	if (*cursor_wm > (int)cursor->max_wm)
 752		*cursor_wm = (int)cursor->max_wm;
 753
 754	return true;
 755}
 756
 757/*
 758 * Check the wm result.
 759 *
 760 * If any calculated watermark values is larger than the maximum value that
 761 * can be programmed into the associated watermark register, that watermark
 762 * must be disabled.
 763 */
 764static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
 765			   int display_wm, int cursor_wm,
 766			   const struct intel_watermark_params *display,
 767			   const struct intel_watermark_params *cursor)
 768{
 769	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
 770		      display_wm, cursor_wm);
 771
 772	if (display_wm > display->max_wm) {
 773		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
 774			      display_wm, display->max_wm);
 775		return false;
 776	}
 777
 778	if (cursor_wm > cursor->max_wm) {
 779		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
 780			      cursor_wm, cursor->max_wm);
 781		return false;
 782	}
 783
 784	if (!(display_wm || cursor_wm)) {
 785		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
 786		return false;
 787	}
 788
 789	return true;
 790}
 791
 792static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
 793			     int plane,
 794			     int latency_ns,
 795			     const struct intel_watermark_params *display,
 796			     const struct intel_watermark_params *cursor,
 797			     int *display_wm, int *cursor_wm)
 798{
 799	struct intel_crtc *crtc;
 800	const struct drm_display_mode *adjusted_mode;
 801	const struct drm_framebuffer *fb;
 802	int hdisplay, htotal, cpp, clock;
 803	unsigned long line_time_us;
 804	int line_count, line_size;
 805	int small, large;
 806	int entries;
 807
 808	if (!latency_ns) {
 809		*display_wm = *cursor_wm = 0;
 810		return false;
 811	}
 812
 813	crtc = intel_get_crtc_for_plane(dev_priv, plane);
 814	adjusted_mode = &crtc->config->base.adjusted_mode;
 815	fb = crtc->base.primary->state->fb;
 816	clock = adjusted_mode->crtc_clock;
 817	htotal = adjusted_mode->crtc_htotal;
 818	hdisplay = crtc->config->pipe_src_w;
 819	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
 820
 821	line_time_us = max(htotal * 1000 / clock, 1);
 822	line_count = (latency_ns / line_time_us + 1000) / 1000;
 823	line_size = hdisplay * cpp;
 824
 825	/* Use the minimum of the small and large buffer method for primary */
 826	small = ((clock * cpp / 1000) * latency_ns) / 1000;
 827	large = line_count * line_size;
 828
 829	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
 830	*display_wm = entries + display->guard_size;
 831
 832	/* calculate the self-refresh watermark for display cursor */
 833	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
 834	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 835	*cursor_wm = entries + cursor->guard_size;
 836
 837	return g4x_check_srwm(dev_priv,
 838			      *display_wm, *cursor_wm,
 839			      display, cursor);
 840}
 841
 842#define FW_WM_VLV(value, plane) \
 843	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
 844
 845static void vlv_write_wm_values(struct intel_crtc *crtc,
 846				const struct vlv_wm_values *wm)
 847{
 848	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 849	enum pipe pipe = crtc->pipe;
 850
 851	I915_WRITE(VLV_DDL(pipe),
 852		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
 853		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
 854		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
 855		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
 856
 857	I915_WRITE(DSPFW1,
 858		   FW_WM(wm->sr.plane, SR) |
 859		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
 860		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
 861		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
 862	I915_WRITE(DSPFW2,
 863		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
 864		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
 865		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
 866	I915_WRITE(DSPFW3,
 867		   FW_WM(wm->sr.cursor, CURSOR_SR));
 868
 869	if (IS_CHERRYVIEW(dev_priv)) {
 870		I915_WRITE(DSPFW7_CHV,
 871			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 872			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 873		I915_WRITE(DSPFW8_CHV,
 874			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
 875			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
 876		I915_WRITE(DSPFW9_CHV,
 877			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
 878			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
 879		I915_WRITE(DSPHOWM,
 880			   FW_WM(wm->sr.plane >> 9, SR_HI) |
 881			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
 882			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
 883			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
 884			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 885			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 886			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 887			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 888			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 889			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 890	} else {
 891		I915_WRITE(DSPFW7,
 892			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 893			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 894		I915_WRITE(DSPHOWM,
 895			   FW_WM(wm->sr.plane >> 9, SR_HI) |
 896			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 897			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 898			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 899			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 900			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 901			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 902	}
 903
 904	/* zero (unused) WM1 watermarks */
 905	I915_WRITE(DSPFW4, 0);
 906	I915_WRITE(DSPFW5, 0);
 907	I915_WRITE(DSPFW6, 0);
 908	I915_WRITE(DSPHOWM1, 0);
 909
 910	POSTING_READ(DSPFW1);
 911}
 912
 913#undef FW_WM_VLV
 914
 915enum vlv_wm_level {
 916	VLV_WM_LEVEL_PM2,
 917	VLV_WM_LEVEL_PM5,
 918	VLV_WM_LEVEL_DDR_DVFS,
 919};
 920
 921/* latency must be in 0.1us units. */
 922static unsigned int vlv_wm_method2(unsigned int pixel_rate,
 923				   unsigned int pipe_htotal,
 924				   unsigned int horiz_pixels,
 925				   unsigned int cpp,
 926				   unsigned int latency)
 927{
 928	unsigned int ret;
 929
 930	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
 931	ret = (ret + 1) * horiz_pixels * cpp;
 932	ret = DIV_ROUND_UP(ret, 64);
 933
 934	return ret;
 935}
 936
 937static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
 938{
 
 
 939	/* all latencies in usec */
 940	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
 941
 942	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
 943
 944	if (IS_CHERRYVIEW(dev_priv)) {
 945		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
 946		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
 947
 948		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
 949	}
 950}
 951
 952static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
 953				     struct intel_crtc *crtc,
 954				     const struct intel_plane_state *state,
 955				     int level)
 956{
 957	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
 958	int clock, htotal, cpp, width, wm;
 959
 960	if (dev_priv->wm.pri_latency[level] == 0)
 961		return USHRT_MAX;
 962
 963	if (!state->base.visible)
 964		return 0;
 965
 966	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
 967	clock = crtc->config->base.adjusted_mode.crtc_clock;
 968	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
 969	width = crtc->config->pipe_src_w;
 970	if (WARN_ON(htotal == 0))
 971		htotal = 1;
 972
 973	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
 974		/*
 975		 * FIXME the formula gives values that are
 976		 * too big for the cursor FIFO, and hence we
 977		 * would never be able to use cursors. For
 978		 * now just hardcode the watermark.
 979		 */
 980		wm = 63;
 981	} else {
 982		wm = vlv_wm_method2(clock, htotal, width, cpp,
 983				    dev_priv->wm.pri_latency[level] * 10);
 984	}
 985
 986	return min_t(int, wm, USHRT_MAX);
 987}
 988
 989static void vlv_compute_fifo(struct intel_crtc *crtc)
 990{
 991	struct drm_device *dev = crtc->base.dev;
 992	struct vlv_wm_state *wm_state = &crtc->wm_state;
 993	struct intel_plane *plane;
 994	unsigned int total_rate = 0;
 995	const int fifo_size = 512 - 1;
 996	int fifo_extra, fifo_left = fifo_size;
 997
 998	for_each_intel_plane_on_crtc(dev, crtc, plane) {
 999		struct intel_plane_state *state =
1000			to_intel_plane_state(plane->base.state);
1001
1002		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1003			continue;
1004
1005		if (state->base.visible) {
1006			wm_state->num_active_planes++;
1007			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008		}
1009	}
1010
1011	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1012		struct intel_plane_state *state =
1013			to_intel_plane_state(plane->base.state);
1014		unsigned int rate;
1015
1016		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1017			plane->wm.fifo_size = 63;
1018			continue;
1019		}
1020
1021		if (!state->base.visible) {
1022			plane->wm.fifo_size = 0;
1023			continue;
1024		}
1025
1026		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1027		plane->wm.fifo_size = fifo_size * rate / total_rate;
1028		fifo_left -= plane->wm.fifo_size;
1029	}
1030
1031	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1032
1033	/* spread the remainder evenly */
1034	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1035		int plane_extra;
1036
1037		if (fifo_left == 0)
1038			break;
1039
1040		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1041			continue;
1042
1043		/* give it all to the first plane if none are active */
1044		if (plane->wm.fifo_size == 0 &&
1045		    wm_state->num_active_planes)
1046			continue;
1047
1048		plane_extra = min(fifo_extra, fifo_left);
1049		plane->wm.fifo_size += plane_extra;
1050		fifo_left -= plane_extra;
1051	}
1052
1053	WARN_ON(fifo_left != 0);
1054}
1055
1056static void vlv_invert_wms(struct intel_crtc *crtc)
1057{
1058	struct vlv_wm_state *wm_state = &crtc->wm_state;
1059	int level;
1060
1061	for (level = 0; level < wm_state->num_levels; level++) {
1062		struct drm_device *dev = crtc->base.dev;
1063		const int sr_fifo_size =
1064			INTEL_INFO(to_i915(dev))->num_pipes * 512 - 1;
1065		struct intel_plane *plane;
1066
1067		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1068		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1069
1070		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1071			switch (plane->base.type) {
1072				int sprite;
1073			case DRM_PLANE_TYPE_CURSOR:
1074				wm_state->wm[level].cursor = plane->wm.fifo_size -
1075					wm_state->wm[level].cursor;
1076				break;
1077			case DRM_PLANE_TYPE_PRIMARY:
1078				wm_state->wm[level].primary = plane->wm.fifo_size -
1079					wm_state->wm[level].primary;
1080				break;
1081			case DRM_PLANE_TYPE_OVERLAY:
1082				sprite = plane->plane;
1083				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1084					wm_state->wm[level].sprite[sprite];
1085				break;
1086			}
1087		}
1088	}
1089}
1090
1091static void vlv_compute_wm(struct intel_crtc *crtc)
1092{
1093	struct drm_device *dev = crtc->base.dev;
1094	struct drm_i915_private *dev_priv = to_i915(dev);
1095	struct vlv_wm_state *wm_state = &crtc->wm_state;
1096	struct intel_plane *plane;
1097	int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1098	int level;
1099
1100	memset(wm_state, 0, sizeof(*wm_state));
1101
1102	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1103	wm_state->num_levels = dev_priv->wm.max_level + 1;
1104
1105	wm_state->num_active_planes = 0;
1106
1107	vlv_compute_fifo(crtc);
1108
1109	if (wm_state->num_active_planes != 1)
1110		wm_state->cxsr = false;
1111
1112	if (wm_state->cxsr) {
1113		for (level = 0; level < wm_state->num_levels; level++) {
1114			wm_state->sr[level].plane = sr_fifo_size;
1115			wm_state->sr[level].cursor = 63;
1116		}
1117	}
1118
1119	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1120		struct intel_plane_state *state =
1121			to_intel_plane_state(plane->base.state);
1122
1123		if (!state->base.visible)
1124			continue;
1125
1126		/* normal watermarks */
1127		for (level = 0; level < wm_state->num_levels; level++) {
1128			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1129			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1130
1131			/* hack */
1132			if (WARN_ON(level == 0 && wm > max_wm))
1133				wm = max_wm;
1134
1135			if (wm > plane->wm.fifo_size)
1136				break;
1137
1138			switch (plane->base.type) {
1139				int sprite;
1140			case DRM_PLANE_TYPE_CURSOR:
1141				wm_state->wm[level].cursor = wm;
1142				break;
1143			case DRM_PLANE_TYPE_PRIMARY:
1144				wm_state->wm[level].primary = wm;
1145				break;
1146			case DRM_PLANE_TYPE_OVERLAY:
1147				sprite = plane->plane;
1148				wm_state->wm[level].sprite[sprite] = wm;
1149				break;
1150			}
1151		}
1152
1153		wm_state->num_levels = level;
1154
1155		if (!wm_state->cxsr)
1156			continue;
1157
1158		/* maxfifo watermarks */
1159		switch (plane->base.type) {
1160			int sprite, level;
1161		case DRM_PLANE_TYPE_CURSOR:
1162			for (level = 0; level < wm_state->num_levels; level++)
1163				wm_state->sr[level].cursor =
1164					wm_state->wm[level].cursor;
1165			break;
1166		case DRM_PLANE_TYPE_PRIMARY:
1167			for (level = 0; level < wm_state->num_levels; level++)
1168				wm_state->sr[level].plane =
1169					min(wm_state->sr[level].plane,
1170					    wm_state->wm[level].primary);
1171			break;
1172		case DRM_PLANE_TYPE_OVERLAY:
1173			sprite = plane->plane;
1174			for (level = 0; level < wm_state->num_levels; level++)
1175				wm_state->sr[level].plane =
1176					min(wm_state->sr[level].plane,
1177					    wm_state->wm[level].sprite[sprite]);
1178			break;
1179		}
1180	}
1181
1182	/* clear any (partially) filled invalid levels */
1183	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1184		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1185		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1186	}
1187
1188	vlv_invert_wms(crtc);
1189}
1190
1191#define VLV_FIFO(plane, value) \
1192	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1193
1194static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1195{
1196	struct drm_device *dev = crtc->base.dev;
1197	struct drm_i915_private *dev_priv = to_i915(dev);
1198	struct intel_plane *plane;
1199	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1200
1201	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1202		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1203			WARN_ON(plane->wm.fifo_size != 63);
1204			continue;
1205		}
1206
1207		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1208			sprite0_start = plane->wm.fifo_size;
1209		else if (plane->plane == 0)
1210			sprite1_start = sprite0_start + plane->wm.fifo_size;
1211		else
1212			fifo_size = sprite1_start + plane->wm.fifo_size;
1213	}
1214
1215	WARN_ON(fifo_size != 512 - 1);
1216
1217	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1218		      pipe_name(crtc->pipe), sprite0_start,
1219		      sprite1_start, fifo_size);
1220
1221	switch (crtc->pipe) {
1222		uint32_t dsparb, dsparb2, dsparb3;
1223	case PIPE_A:
1224		dsparb = I915_READ(DSPARB);
1225		dsparb2 = I915_READ(DSPARB2);
1226
1227		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1228			    VLV_FIFO(SPRITEB, 0xff));
1229		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1230			   VLV_FIFO(SPRITEB, sprite1_start));
1231
1232		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1233			     VLV_FIFO(SPRITEB_HI, 0x1));
1234		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1235			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1236
1237		I915_WRITE(DSPARB, dsparb);
1238		I915_WRITE(DSPARB2, dsparb2);
1239		break;
1240	case PIPE_B:
1241		dsparb = I915_READ(DSPARB);
1242		dsparb2 = I915_READ(DSPARB2);
1243
1244		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1245			    VLV_FIFO(SPRITED, 0xff));
1246		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1247			   VLV_FIFO(SPRITED, sprite1_start));
1248
1249		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1250			     VLV_FIFO(SPRITED_HI, 0xff));
1251		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1252			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1253
1254		I915_WRITE(DSPARB, dsparb);
1255		I915_WRITE(DSPARB2, dsparb2);
1256		break;
1257	case PIPE_C:
1258		dsparb3 = I915_READ(DSPARB3);
1259		dsparb2 = I915_READ(DSPARB2);
1260
1261		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1262			     VLV_FIFO(SPRITEF, 0xff));
1263		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1264			    VLV_FIFO(SPRITEF, sprite1_start));
1265
1266		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1267			     VLV_FIFO(SPRITEF_HI, 0xff));
1268		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1269			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1270
1271		I915_WRITE(DSPARB3, dsparb3);
1272		I915_WRITE(DSPARB2, dsparb2);
1273		break;
1274	default:
1275		break;
1276	}
1277}
1278
1279#undef VLV_FIFO
1280
1281static void vlv_merge_wm(struct drm_device *dev,
1282			 struct vlv_wm_values *wm)
1283{
1284	struct intel_crtc *crtc;
1285	int num_active_crtcs = 0;
1286
1287	wm->level = to_i915(dev)->wm.max_level;
1288	wm->cxsr = true;
1289
1290	for_each_intel_crtc(dev, crtc) {
1291		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1292
1293		if (!crtc->active)
1294			continue;
1295
1296		if (!wm_state->cxsr)
1297			wm->cxsr = false;
1298
1299		num_active_crtcs++;
1300		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1301	}
1302
1303	if (num_active_crtcs != 1)
1304		wm->cxsr = false;
1305
1306	if (num_active_crtcs > 1)
1307		wm->level = VLV_WM_LEVEL_PM2;
1308
1309	for_each_intel_crtc(dev, crtc) {
1310		struct vlv_wm_state *wm_state = &crtc->wm_state;
1311		enum pipe pipe = crtc->pipe;
1312
1313		if (!crtc->active)
1314			continue;
1315
1316		wm->pipe[pipe] = wm_state->wm[wm->level];
1317		if (wm->cxsr)
1318			wm->sr = wm_state->sr[wm->level];
1319
1320		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1321		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1322		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1323		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1324	}
1325}
1326
1327static void vlv_update_wm(struct intel_crtc *crtc)
1328{
1329	struct drm_device *dev = crtc->base.dev;
1330	struct drm_i915_private *dev_priv = to_i915(dev);
1331	enum pipe pipe = crtc->pipe;
 
1332	struct vlv_wm_values wm = {};
1333
1334	vlv_compute_wm(crtc);
1335	vlv_merge_wm(dev, &wm);
1336
1337	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1338		/* FIXME should be part of crtc atomic commit */
1339		vlv_pipe_set_fifo_size(crtc);
1340		return;
1341	}
1342
1343	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1344	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1345		chv_set_memory_dvfs(dev_priv, false);
1346
1347	if (wm.level < VLV_WM_LEVEL_PM5 &&
1348	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1349		chv_set_memory_pm5(dev_priv, false);
1350
1351	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1352		intel_set_memory_cxsr(dev_priv, false);
1353
1354	/* FIXME should be part of crtc atomic commit */
1355	vlv_pipe_set_fifo_size(crtc);
1356
1357	vlv_write_wm_values(crtc, &wm);
1358
1359	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1360		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1361		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1362		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1363		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1364
1365	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1366		intel_set_memory_cxsr(dev_priv, true);
1367
1368	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1369	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1370		chv_set_memory_pm5(dev_priv, true);
1371
1372	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1373	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1374		chv_set_memory_dvfs(dev_priv, true);
1375
1376	dev_priv->wm.vlv = wm;
1377}
1378
1379#define single_plane_enabled(mask) is_power_of_2(mask)
1380
1381static void g4x_update_wm(struct intel_crtc *crtc)
1382{
1383	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1384	static const int sr_latency_ns = 12000;
 
1385	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1386	int plane_sr, cursor_sr;
1387	unsigned int enabled = 0;
1388	bool cxsr_enabled;
1389
1390	if (g4x_compute_wm0(dev_priv, PIPE_A,
1391			    &g4x_wm_info, pessimal_latency_ns,
1392			    &g4x_cursor_wm_info, pessimal_latency_ns,
1393			    &planea_wm, &cursora_wm))
1394		enabled |= 1 << PIPE_A;
1395
1396	if (g4x_compute_wm0(dev_priv, PIPE_B,
1397			    &g4x_wm_info, pessimal_latency_ns,
1398			    &g4x_cursor_wm_info, pessimal_latency_ns,
1399			    &planeb_wm, &cursorb_wm))
1400		enabled |= 1 << PIPE_B;
1401
1402	if (single_plane_enabled(enabled) &&
1403	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1404			     sr_latency_ns,
1405			     &g4x_wm_info,
1406			     &g4x_cursor_wm_info,
1407			     &plane_sr, &cursor_sr)) {
1408		cxsr_enabled = true;
1409	} else {
1410		cxsr_enabled = false;
1411		intel_set_memory_cxsr(dev_priv, false);
1412		plane_sr = cursor_sr = 0;
1413	}
1414
1415	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1416		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417		      planea_wm, cursora_wm,
1418		      planeb_wm, cursorb_wm,
1419		      plane_sr, cursor_sr);
1420
1421	I915_WRITE(DSPFW1,
1422		   FW_WM(plane_sr, SR) |
1423		   FW_WM(cursorb_wm, CURSORB) |
1424		   FW_WM(planeb_wm, PLANEB) |
1425		   FW_WM(planea_wm, PLANEA));
1426	I915_WRITE(DSPFW2,
1427		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428		   FW_WM(cursora_wm, CURSORA));
1429	/* HPLL off in SR has some issues on G4x... disable it */
1430	I915_WRITE(DSPFW3,
1431		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432		   FW_WM(cursor_sr, CURSOR_SR));
1433
1434	if (cxsr_enabled)
1435		intel_set_memory_cxsr(dev_priv, true);
1436}
1437
1438static void i965_update_wm(struct intel_crtc *unused_crtc)
1439{
1440	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1441	struct intel_crtc *crtc;
 
1442	int srwm = 1;
1443	int cursor_sr = 16;
1444	bool cxsr_enabled;
1445
1446	/* Calc sr entries for one plane configs */
1447	crtc = single_enabled_crtc(dev_priv);
1448	if (crtc) {
1449		/* self-refresh has much higher latency */
1450		static const int sr_latency_ns = 12000;
1451		const struct drm_display_mode *adjusted_mode =
1452			&crtc->config->base.adjusted_mode;
1453		const struct drm_framebuffer *fb =
1454			crtc->base.primary->state->fb;
1455		int clock = adjusted_mode->crtc_clock;
1456		int htotal = adjusted_mode->crtc_htotal;
1457		int hdisplay = crtc->config->pipe_src_w;
1458		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1459		unsigned long line_time_us;
1460		int entries;
1461
1462		line_time_us = max(htotal * 1000 / clock, 1);
1463
1464		/* Use ns/us then divide to preserve precision */
1465		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1466			cpp * hdisplay;
1467		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1468		srwm = I965_FIFO_SIZE - entries;
1469		if (srwm < 0)
1470			srwm = 1;
1471		srwm &= 0x1ff;
1472		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1473			      entries, srwm);
1474
1475		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1476			cpp * crtc->base.cursor->state->crtc_w;
1477		entries = DIV_ROUND_UP(entries,
1478					  i965_cursor_wm_info.cacheline_size);
1479		cursor_sr = i965_cursor_wm_info.fifo_size -
1480			(entries + i965_cursor_wm_info.guard_size);
1481
1482		if (cursor_sr > i965_cursor_wm_info.max_wm)
1483			cursor_sr = i965_cursor_wm_info.max_wm;
1484
1485		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1486			      "cursor %d\n", srwm, cursor_sr);
1487
1488		cxsr_enabled = true;
1489	} else {
1490		cxsr_enabled = false;
1491		/* Turn off self refresh if both pipes are enabled */
1492		intel_set_memory_cxsr(dev_priv, false);
1493	}
1494
1495	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1496		      srwm);
1497
1498	/* 965 has limitations... */
1499	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1500		   FW_WM(8, CURSORB) |
1501		   FW_WM(8, PLANEB) |
1502		   FW_WM(8, PLANEA));
1503	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1504		   FW_WM(8, PLANEC_OLD));
1505	/* update cursor SR watermark */
1506	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1507
1508	if (cxsr_enabled)
1509		intel_set_memory_cxsr(dev_priv, true);
1510}
1511
1512#undef FW_WM
1513
1514static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1515{
1516	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
 
1517	const struct intel_watermark_params *wm_info;
1518	uint32_t fwater_lo;
1519	uint32_t fwater_hi;
1520	int cwm, srwm = 1;
1521	int fifo_size;
1522	int planea_wm, planeb_wm;
1523	struct intel_crtc *crtc, *enabled = NULL;
1524
1525	if (IS_I945GM(dev_priv))
1526		wm_info = &i945_wm_info;
1527	else if (!IS_GEN2(dev_priv))
1528		wm_info = &i915_wm_info;
1529	else
1530		wm_info = &i830_a_wm_info;
1531
1532	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1533	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1534	if (intel_crtc_active(crtc)) {
1535		const struct drm_display_mode *adjusted_mode =
1536			&crtc->config->base.adjusted_mode;
1537		const struct drm_framebuffer *fb =
1538			crtc->base.primary->state->fb;
1539		int cpp;
1540
1541		if (IS_GEN2(dev_priv))
1542			cpp = 4;
1543		else
1544			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1545
 
1546		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547					       wm_info, fifo_size, cpp,
1548					       pessimal_latency_ns);
1549		enabled = crtc;
1550	} else {
1551		planea_wm = fifo_size - wm_info->guard_size;
1552		if (planea_wm > (long)wm_info->max_wm)
1553			planea_wm = wm_info->max_wm;
1554	}
1555
1556	if (IS_GEN2(dev_priv))
1557		wm_info = &i830_bc_wm_info;
1558
1559	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1560	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1561	if (intel_crtc_active(crtc)) {
1562		const struct drm_display_mode *adjusted_mode =
1563			&crtc->config->base.adjusted_mode;
1564		const struct drm_framebuffer *fb =
1565			crtc->base.primary->state->fb;
1566		int cpp;
1567
1568		if (IS_GEN2(dev_priv))
1569			cpp = 4;
1570		else
1571			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1572
 
1573		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1574					       wm_info, fifo_size, cpp,
1575					       pessimal_latency_ns);
1576		if (enabled == NULL)
1577			enabled = crtc;
1578		else
1579			enabled = NULL;
1580	} else {
1581		planeb_wm = fifo_size - wm_info->guard_size;
1582		if (planeb_wm > (long)wm_info->max_wm)
1583			planeb_wm = wm_info->max_wm;
1584	}
1585
1586	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1587
1588	if (IS_I915GM(dev_priv) && enabled) {
1589		struct drm_i915_gem_object *obj;
1590
1591		obj = intel_fb_obj(enabled->base.primary->state->fb);
1592
1593		/* self-refresh seems busted with untiled */
1594		if (!i915_gem_object_is_tiled(obj))
1595			enabled = NULL;
1596	}
1597
1598	/*
1599	 * Overlay gets an aggressive default since video jitter is bad.
1600	 */
1601	cwm = 2;
1602
1603	/* Play safe and disable self-refresh before adjusting watermarks. */
1604	intel_set_memory_cxsr(dev_priv, false);
1605
1606	/* Calc sr entries for one plane configs */
1607	if (HAS_FW_BLC(dev_priv) && enabled) {
1608		/* self-refresh has much higher latency */
1609		static const int sr_latency_ns = 6000;
1610		const struct drm_display_mode *adjusted_mode =
1611			&enabled->config->base.adjusted_mode;
1612		const struct drm_framebuffer *fb =
1613			enabled->base.primary->state->fb;
1614		int clock = adjusted_mode->crtc_clock;
1615		int htotal = adjusted_mode->crtc_htotal;
1616		int hdisplay = enabled->config->pipe_src_w;
1617		int cpp;
1618		unsigned long line_time_us;
1619		int entries;
1620
1621		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1622			cpp = 4;
1623		else
1624			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1625
1626		line_time_us = max(htotal * 1000 / clock, 1);
1627
1628		/* Use ns/us then divide to preserve precision */
1629		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1630			cpp * hdisplay;
1631		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1632		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1633		srwm = wm_info->fifo_size - entries;
1634		if (srwm < 0)
1635			srwm = 1;
1636
1637		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1638			I915_WRITE(FW_BLC_SELF,
1639				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1640		else
1641			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1642	}
1643
1644	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1645		      planea_wm, planeb_wm, cwm, srwm);
1646
1647	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1648	fwater_hi = (cwm & 0x1f);
1649
1650	/* Set request length to 8 cachelines per fetch */
1651	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1652	fwater_hi = fwater_hi | (1 << 8);
1653
1654	I915_WRITE(FW_BLC, fwater_lo);
1655	I915_WRITE(FW_BLC2, fwater_hi);
1656
1657	if (enabled)
1658		intel_set_memory_cxsr(dev_priv, true);
1659}
1660
1661static void i845_update_wm(struct intel_crtc *unused_crtc)
1662{
1663	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1664	struct intel_crtc *crtc;
 
1665	const struct drm_display_mode *adjusted_mode;
1666	uint32_t fwater_lo;
1667	int planea_wm;
1668
1669	crtc = single_enabled_crtc(dev_priv);
1670	if (crtc == NULL)
1671		return;
1672
1673	adjusted_mode = &crtc->config->base.adjusted_mode;
1674	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1675				       &i845_wm_info,
1676				       dev_priv->display.get_fifo_size(dev_priv, 0),
1677				       4, pessimal_latency_ns);
1678	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1679	fwater_lo |= (3<<8) | planea_wm;
1680
1681	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1682
1683	I915_WRITE(FW_BLC, fwater_lo);
1684}
1685
1686uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1687{
1688	uint32_t pixel_rate;
1689
1690	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1691
1692	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1693	 * adjust the pixel_rate here. */
1694
1695	if (pipe_config->pch_pfit.enabled) {
1696		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1697		uint32_t pfit_size = pipe_config->pch_pfit.size;
1698
1699		pipe_w = pipe_config->pipe_src_w;
1700		pipe_h = pipe_config->pipe_src_h;
1701
1702		pfit_w = (pfit_size >> 16) & 0xFFFF;
1703		pfit_h = pfit_size & 0xFFFF;
1704		if (pipe_w < pfit_w)
1705			pipe_w = pfit_w;
1706		if (pipe_h < pfit_h)
1707			pipe_h = pfit_h;
1708
1709		if (WARN_ON(!pfit_w || !pfit_h))
1710			return pixel_rate;
1711
1712		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1713				     pfit_w * pfit_h);
1714	}
1715
1716	return pixel_rate;
1717}
1718
1719/* latency must be in 0.1us units. */
1720static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1721{
1722	uint64_t ret;
1723
1724	if (WARN(latency == 0, "Latency value missing\n"))
1725		return UINT_MAX;
1726
1727	ret = (uint64_t) pixel_rate * cpp * latency;
1728	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1729
1730	return ret;
1731}
1732
1733/* latency must be in 0.1us units. */
1734static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1735			       uint32_t horiz_pixels, uint8_t cpp,
1736			       uint32_t latency)
1737{
1738	uint32_t ret;
1739
1740	if (WARN(latency == 0, "Latency value missing\n"))
1741		return UINT_MAX;
1742	if (WARN_ON(!pipe_htotal))
1743		return UINT_MAX;
1744
1745	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1746	ret = (ret + 1) * horiz_pixels * cpp;
1747	ret = DIV_ROUND_UP(ret, 64) + 2;
1748	return ret;
1749}
1750
1751static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1752			   uint8_t cpp)
1753{
1754	/*
1755	 * Neither of these should be possible since this function shouldn't be
1756	 * called if the CRTC is off or the plane is invisible.  But let's be
1757	 * extra paranoid to avoid a potential divide-by-zero if we screw up
1758	 * elsewhere in the driver.
1759	 */
1760	if (WARN_ON(!cpp))
1761		return 0;
1762	if (WARN_ON(!horiz_pixels))
1763		return 0;
1764
1765	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1766}
1767
1768struct ilk_wm_maximums {
1769	uint16_t pri;
1770	uint16_t spr;
1771	uint16_t cur;
1772	uint16_t fbc;
1773};
1774
1775/*
1776 * For both WM_PIPE and WM_LP.
1777 * mem_value must be in 0.1us units.
1778 */
1779static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1780				   const struct intel_plane_state *pstate,
1781				   uint32_t mem_value,
1782				   bool is_lp)
1783{
1784	int cpp = pstate->base.fb ?
1785		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1786	uint32_t method1, method2;
1787
1788	if (!cstate->base.active || !pstate->base.visible)
1789		return 0;
1790
1791	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1792
1793	if (!is_lp)
1794		return method1;
1795
1796	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1797				 cstate->base.adjusted_mode.crtc_htotal,
1798				 drm_rect_width(&pstate->base.dst),
1799				 cpp, mem_value);
1800
1801	return min(method1, method2);
1802}
1803
1804/*
1805 * For both WM_PIPE and WM_LP.
1806 * mem_value must be in 0.1us units.
1807 */
1808static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1809				   const struct intel_plane_state *pstate,
1810				   uint32_t mem_value)
1811{
1812	int cpp = pstate->base.fb ?
1813		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1814	uint32_t method1, method2;
1815
1816	if (!cstate->base.active || !pstate->base.visible)
1817		return 0;
1818
1819	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1820	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1821				 cstate->base.adjusted_mode.crtc_htotal,
1822				 drm_rect_width(&pstate->base.dst),
1823				 cpp, mem_value);
1824	return min(method1, method2);
1825}
1826
1827/*
1828 * For both WM_PIPE and WM_LP.
1829 * mem_value must be in 0.1us units.
1830 */
1831static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1832				   const struct intel_plane_state *pstate,
1833				   uint32_t mem_value)
1834{
1835	/*
1836	 * We treat the cursor plane as always-on for the purposes of watermark
1837	 * calculation.  Until we have two-stage watermark programming merged,
1838	 * this is necessary to avoid flickering.
1839	 */
1840	int cpp = 4;
1841	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1842
1843	if (!cstate->base.active)
1844		return 0;
1845
1846	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1847			      cstate->base.adjusted_mode.crtc_htotal,
1848			      width, cpp, mem_value);
1849}
1850
1851/* Only for WM_LP. */
1852static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1853				   const struct intel_plane_state *pstate,
1854				   uint32_t pri_val)
1855{
1856	int cpp = pstate->base.fb ?
1857		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1858
1859	if (!cstate->base.active || !pstate->base.visible)
1860		return 0;
1861
1862	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1863}
1864
1865static unsigned int
1866ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1867{
1868	if (INTEL_GEN(dev_priv) >= 8)
1869		return 3072;
1870	else if (INTEL_GEN(dev_priv) >= 7)
1871		return 768;
1872	else
1873		return 512;
1874}
1875
1876static unsigned int
1877ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
1878		     int level, bool is_sprite)
1879{
1880	if (INTEL_GEN(dev_priv) >= 8)
1881		/* BDW primary/sprite plane watermarks */
1882		return level == 0 ? 255 : 2047;
1883	else if (INTEL_GEN(dev_priv) >= 7)
1884		/* IVB/HSW primary/sprite plane watermarks */
1885		return level == 0 ? 127 : 1023;
1886	else if (!is_sprite)
1887		/* ILK/SNB primary plane watermarks */
1888		return level == 0 ? 127 : 511;
1889	else
1890		/* ILK/SNB sprite plane watermarks */
1891		return level == 0 ? 63 : 255;
1892}
1893
1894static unsigned int
1895ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1896{
1897	if (INTEL_GEN(dev_priv) >= 7)
1898		return level == 0 ? 63 : 255;
1899	else
1900		return level == 0 ? 31 : 63;
1901}
1902
1903static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1904{
1905	if (INTEL_GEN(dev_priv) >= 8)
1906		return 31;
1907	else
1908		return 15;
1909}
1910
1911/* Calculate the maximum primary/sprite plane watermark */
1912static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1913				     int level,
1914				     const struct intel_wm_config *config,
1915				     enum intel_ddb_partitioning ddb_partitioning,
1916				     bool is_sprite)
1917{
1918	struct drm_i915_private *dev_priv = to_i915(dev);
1919	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1920
1921	/* if sprites aren't enabled, sprites get nothing */
1922	if (is_sprite && !config->sprites_enabled)
1923		return 0;
1924
1925	/* HSW allows LP1+ watermarks even with multiple pipes */
1926	if (level == 0 || config->num_pipes_active > 1) {
1927		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1928
1929		/*
1930		 * For some reason the non self refresh
1931		 * FIFO size is only half of the self
1932		 * refresh FIFO size on ILK/SNB.
1933		 */
1934		if (INTEL_GEN(dev_priv) <= 6)
1935			fifo_size /= 2;
1936	}
1937
1938	if (config->sprites_enabled) {
1939		/* level 0 is always calculated with 1:1 split */
1940		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1941			if (is_sprite)
1942				fifo_size *= 5;
1943			fifo_size /= 6;
1944		} else {
1945			fifo_size /= 2;
1946		}
1947	}
1948
1949	/* clamp to max that the registers can hold */
1950	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1951}
1952
1953/* Calculate the maximum cursor plane watermark */
1954static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1955				      int level,
1956				      const struct intel_wm_config *config)
1957{
1958	/* HSW LP1+ watermarks w/ multiple pipes */
1959	if (level > 0 && config->num_pipes_active > 1)
1960		return 64;
1961
1962	/* otherwise just report max that registers can hold */
1963	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1964}
1965
1966static void ilk_compute_wm_maximums(const struct drm_device *dev,
1967				    int level,
1968				    const struct intel_wm_config *config,
1969				    enum intel_ddb_partitioning ddb_partitioning,
1970				    struct ilk_wm_maximums *max)
1971{
1972	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1973	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1974	max->cur = ilk_cursor_wm_max(dev, level, config);
1975	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1976}
1977
1978static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1979					int level,
1980					struct ilk_wm_maximums *max)
1981{
1982	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
1983	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
1984	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
1985	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
1986}
1987
1988static bool ilk_validate_wm_level(int level,
1989				  const struct ilk_wm_maximums *max,
1990				  struct intel_wm_level *result)
1991{
1992	bool ret;
1993
1994	/* already determined to be invalid? */
1995	if (!result->enable)
1996		return false;
1997
1998	result->enable = result->pri_val <= max->pri &&
1999			 result->spr_val <= max->spr &&
2000			 result->cur_val <= max->cur;
2001
2002	ret = result->enable;
2003
2004	/*
2005	 * HACK until we can pre-compute everything,
2006	 * and thus fail gracefully if LP0 watermarks
2007	 * are exceeded...
2008	 */
2009	if (level == 0 && !result->enable) {
2010		if (result->pri_val > max->pri)
2011			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2012				      level, result->pri_val, max->pri);
2013		if (result->spr_val > max->spr)
2014			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2015				      level, result->spr_val, max->spr);
2016		if (result->cur_val > max->cur)
2017			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2018				      level, result->cur_val, max->cur);
2019
2020		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2021		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2022		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2023		result->enable = true;
2024	}
2025
2026	return ret;
2027}
2028
2029static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2030				 const struct intel_crtc *intel_crtc,
2031				 int level,
2032				 struct intel_crtc_state *cstate,
2033				 struct intel_plane_state *pristate,
2034				 struct intel_plane_state *sprstate,
2035				 struct intel_plane_state *curstate,
2036				 struct intel_wm_level *result)
2037{
2038	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2039	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2040	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2041
2042	/* WM1+ latency values stored in 0.5us units */
2043	if (level > 0) {
2044		pri_latency *= 5;
2045		spr_latency *= 5;
2046		cur_latency *= 5;
2047	}
2048
2049	if (pristate) {
2050		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2051						     pri_latency, level);
2052		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2053	}
2054
2055	if (sprstate)
2056		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2057
2058	if (curstate)
2059		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2060
2061	result->enable = true;
2062}
2063
2064static uint32_t
2065hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
 
2066{
2067	const struct intel_atomic_state *intel_state =
2068		to_intel_atomic_state(cstate->base.state);
2069	const struct drm_display_mode *adjusted_mode =
2070		&cstate->base.adjusted_mode;
2071	u32 linetime, ips_linetime;
2072
2073	if (!cstate->base.active)
2074		return 0;
2075	if (WARN_ON(adjusted_mode->crtc_clock == 0))
2076		return 0;
2077	if (WARN_ON(intel_state->cdclk == 0))
2078		return 0;
2079
2080	/* The WM are computed with base on how long it takes to fill a single
2081	 * row at the given clock rate, multiplied by 8.
2082	 * */
2083	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2084				     adjusted_mode->crtc_clock);
2085	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2086					 intel_state->cdclk);
2087
2088	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2089	       PIPE_WM_LINETIME_TIME(linetime);
2090}
2091
2092static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2093				  uint16_t wm[8])
2094{
2095	if (IS_GEN9(dev_priv)) {
 
 
2096		uint32_t val;
2097		int ret, i;
2098		int level, max_level = ilk_wm_max_level(dev_priv);
2099
2100		/* read the first set of memory latencies[0:3] */
2101		val = 0; /* data0 to be programmed to 0 for first set */
2102		mutex_lock(&dev_priv->rps.hw_lock);
2103		ret = sandybridge_pcode_read(dev_priv,
2104					     GEN9_PCODE_READ_MEM_LATENCY,
2105					     &val);
2106		mutex_unlock(&dev_priv->rps.hw_lock);
2107
2108		if (ret) {
2109			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2110			return;
2111		}
2112
2113		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2114		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2115				GEN9_MEM_LATENCY_LEVEL_MASK;
2116		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2117				GEN9_MEM_LATENCY_LEVEL_MASK;
2118		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2119				GEN9_MEM_LATENCY_LEVEL_MASK;
2120
2121		/* read the second set of memory latencies[4:7] */
2122		val = 1; /* data0 to be programmed to 1 for second set */
2123		mutex_lock(&dev_priv->rps.hw_lock);
2124		ret = sandybridge_pcode_read(dev_priv,
2125					     GEN9_PCODE_READ_MEM_LATENCY,
2126					     &val);
2127		mutex_unlock(&dev_priv->rps.hw_lock);
2128		if (ret) {
2129			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2130			return;
2131		}
2132
2133		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2134		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2135				GEN9_MEM_LATENCY_LEVEL_MASK;
2136		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2137				GEN9_MEM_LATENCY_LEVEL_MASK;
2138		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2139				GEN9_MEM_LATENCY_LEVEL_MASK;
2140
2141		/*
2142		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2143		 * need to be disabled. We make sure to sanitize the values out
2144		 * of the punit to satisfy this requirement.
2145		 */
2146		for (level = 1; level <= max_level; level++) {
2147			if (wm[level] == 0) {
2148				for (i = level + 1; i <= max_level; i++)
2149					wm[i] = 0;
2150				break;
2151			}
2152		}
2153
2154		/*
2155		 * WaWmMemoryReadLatency:skl
2156		 *
2157		 * punit doesn't take into account the read latency so we need
2158		 * to add 2us to the various latency levels we retrieve from the
2159		 * punit when level 0 response data us 0us.
 
 
 
 
 
 
 
 
 
 
2160		 */
2161		if (wm[0] == 0) {
2162			wm[0] += 2;
2163			for (level = 1; level <= max_level; level++) {
2164				if (wm[level] == 0)
2165					break;
2166				wm[level] += 2;
 
 
 
 
 
2167			}
2168		}
2169
2170	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2171		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2172
2173		wm[0] = (sskpd >> 56) & 0xFF;
2174		if (wm[0] == 0)
2175			wm[0] = sskpd & 0xF;
2176		wm[1] = (sskpd >> 4) & 0xFF;
2177		wm[2] = (sskpd >> 12) & 0xFF;
2178		wm[3] = (sskpd >> 20) & 0x1FF;
2179		wm[4] = (sskpd >> 32) & 0x1FF;
2180	} else if (INTEL_GEN(dev_priv) >= 6) {
2181		uint32_t sskpd = I915_READ(MCH_SSKPD);
2182
2183		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2184		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2185		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2186		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2187	} else if (INTEL_GEN(dev_priv) >= 5) {
2188		uint32_t mltr = I915_READ(MLTR_ILK);
2189
2190		/* ILK primary LP0 latency is 700 ns */
2191		wm[0] = 7;
2192		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2193		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2194	}
2195}
2196
2197static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2198				       uint16_t wm[5])
2199{
2200	/* ILK sprite LP0 latency is 1300 ns */
2201	if (IS_GEN5(dev_priv))
2202		wm[0] = 13;
2203}
2204
2205static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2206				       uint16_t wm[5])
2207{
2208	/* ILK cursor LP0 latency is 1300 ns */
2209	if (IS_GEN5(dev_priv))
2210		wm[0] = 13;
2211
2212	/* WaDoubleCursorLP3Latency:ivb */
2213	if (IS_IVYBRIDGE(dev_priv))
2214		wm[3] *= 2;
2215}
2216
2217int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2218{
2219	/* how many WM levels are we expecting */
2220	if (INTEL_GEN(dev_priv) >= 9)
2221		return 7;
2222	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2223		return 4;
2224	else if (INTEL_GEN(dev_priv) >= 6)
2225		return 3;
2226	else
2227		return 2;
2228}
2229
2230static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2231				   const char *name,
2232				   const uint16_t wm[8])
2233{
2234	int level, max_level = ilk_wm_max_level(dev_priv);
2235
2236	for (level = 0; level <= max_level; level++) {
2237		unsigned int latency = wm[level];
2238
2239		if (latency == 0) {
2240			DRM_ERROR("%s WM%d latency not provided\n",
2241				  name, level);
2242			continue;
2243		}
2244
2245		/*
2246		 * - latencies are in us on gen9.
2247		 * - before then, WM1+ latency values are in 0.5us units
2248		 */
2249		if (IS_GEN9(dev_priv))
2250			latency *= 10;
2251		else if (level > 0)
2252			latency *= 5;
2253
2254		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2255			      name, level, wm[level],
2256			      latency / 10, latency % 10);
2257	}
2258}
2259
2260static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2261				    uint16_t wm[5], uint16_t min)
2262{
2263	int level, max_level = ilk_wm_max_level(dev_priv);
2264
2265	if (wm[0] >= min)
2266		return false;
2267
2268	wm[0] = max(wm[0], min);
2269	for (level = 1; level <= max_level; level++)
2270		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2271
2272	return true;
2273}
2274
2275static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2276{
 
2277	bool changed;
2278
2279	/*
2280	 * The BIOS provided WM memory latency values are often
2281	 * inadequate for high resolution displays. Adjust them.
2282	 */
2283	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2284		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2285		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2286
2287	if (!changed)
2288		return;
2289
2290	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2291	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2292	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2293	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2294}
2295
2296static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2297{
2298	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
 
 
2299
2300	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2301	       sizeof(dev_priv->wm.pri_latency));
2302	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2303	       sizeof(dev_priv->wm.pri_latency));
2304
2305	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2306	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2307
2308	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2309	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2310	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2311
2312	if (IS_GEN6(dev_priv))
2313		snb_wm_latency_quirk(dev_priv);
2314}
2315
2316static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2317{
2318	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2319	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2320}
2321
2322static bool ilk_validate_pipe_wm(struct drm_device *dev,
2323				 struct intel_pipe_wm *pipe_wm)
2324{
2325	/* LP0 watermark maximums depend on this pipe alone */
2326	const struct intel_wm_config config = {
2327		.num_pipes_active = 1,
2328		.sprites_enabled = pipe_wm->sprites_enabled,
2329		.sprites_scaled = pipe_wm->sprites_scaled,
2330	};
2331	struct ilk_wm_maximums max;
2332
2333	/* LP0 watermarks always use 1/2 DDB partitioning */
2334	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2335
2336	/* At least LP0 must be valid */
2337	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2338		DRM_DEBUG_KMS("LP0 watermark invalid\n");
2339		return false;
2340	}
2341
2342	return true;
2343}
2344
2345/* Compute new watermarks for the pipe */
2346static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
 
2347{
2348	struct drm_atomic_state *state = cstate->base.state;
2349	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2350	struct intel_pipe_wm *pipe_wm;
2351	struct drm_device *dev = state->dev;
2352	const struct drm_i915_private *dev_priv = to_i915(dev);
 
2353	struct intel_plane *intel_plane;
 
2354	struct intel_plane_state *pristate = NULL;
2355	struct intel_plane_state *sprstate = NULL;
2356	struct intel_plane_state *curstate = NULL;
2357	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
 
 
 
 
2358	struct ilk_wm_maximums max;
2359
2360	pipe_wm = &cstate->wm.ilk.optimal;
 
 
 
 
 
2361
2362	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2363		struct intel_plane_state *ps;
2364
2365		ps = intel_atomic_get_existing_plane_state(state,
2366							   intel_plane);
2367		if (!ps)
2368			continue;
2369
2370		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2371			pristate = ps;
2372		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2373			sprstate = ps;
2374		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2375			curstate = ps;
2376	}
2377
 
 
 
 
 
2378	pipe_wm->pipe_enabled = cstate->base.active;
2379	if (sprstate) {
2380		pipe_wm->sprites_enabled = sprstate->base.visible;
2381		pipe_wm->sprites_scaled = sprstate->base.visible &&
2382			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2383			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2384	}
2385
2386	usable_level = max_level;
2387
2388	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2389	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2390		usable_level = 1;
2391
2392	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2393	if (pipe_wm->sprites_scaled)
2394		usable_level = 0;
2395
2396	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2397			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2398
2399	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2400	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2401
2402	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2403		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2404
2405	if (!ilk_validate_pipe_wm(dev, pipe_wm))
 
2406		return -EINVAL;
2407
2408	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2409
2410	for (level = 1; level <= max_level; level++) {
2411		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2412
2413		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2414				     pristate, sprstate, curstate, wm);
2415
2416		/*
2417		 * Disable any watermark level that exceeds the
2418		 * register maximums since such watermarks are
2419		 * always invalid.
2420		 */
2421		if (level > usable_level)
2422			continue;
2423
2424		if (ilk_validate_wm_level(level, &max, wm))
2425			pipe_wm->wm[level] = *wm;
2426		else
2427			usable_level = level;
2428	}
2429
2430	return 0;
2431}
2432
2433/*
2434 * Build a set of 'intermediate' watermark values that satisfy both the old
2435 * state and the new state.  These can be programmed to the hardware
2436 * immediately.
2437 */
2438static int ilk_compute_intermediate_wm(struct drm_device *dev,
2439				       struct intel_crtc *intel_crtc,
2440				       struct intel_crtc_state *newstate)
2441{
2442	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2443	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2444	int level, max_level = ilk_wm_max_level(to_i915(dev));
2445
2446	/*
2447	 * Start with the final, target watermarks, then combine with the
2448	 * currently active watermarks to get values that are safe both before
2449	 * and after the vblank.
2450	 */
2451	*a = newstate->wm.ilk.optimal;
2452	a->pipe_enabled |= b->pipe_enabled;
2453	a->sprites_enabled |= b->sprites_enabled;
2454	a->sprites_scaled |= b->sprites_scaled;
2455
2456	for (level = 0; level <= max_level; level++) {
2457		struct intel_wm_level *a_wm = &a->wm[level];
2458		const struct intel_wm_level *b_wm = &b->wm[level];
2459
2460		a_wm->enable &= b_wm->enable;
2461		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2462		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2463		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2464		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2465	}
2466
2467	/*
2468	 * We need to make sure that these merged watermark values are
2469	 * actually a valid configuration themselves.  If they're not,
2470	 * there's no safe way to transition from the old state to
2471	 * the new state, so we need to fail the atomic transaction.
2472	 */
2473	if (!ilk_validate_pipe_wm(dev, a))
2474		return -EINVAL;
2475
2476	/*
2477	 * If our intermediate WM are identical to the final WM, then we can
2478	 * omit the post-vblank programming; only update if it's different.
2479	 */
2480	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2481		newstate->wm.need_postvbl_update = false;
2482
2483	return 0;
2484}
2485
2486/*
2487 * Merge the watermarks from all active pipes for a specific level.
2488 */
2489static void ilk_merge_wm_level(struct drm_device *dev,
2490			       int level,
2491			       struct intel_wm_level *ret_wm)
2492{
2493	const struct intel_crtc *intel_crtc;
2494
2495	ret_wm->enable = true;
2496
2497	for_each_intel_crtc(dev, intel_crtc) {
2498		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
 
 
2499		const struct intel_wm_level *wm = &active->wm[level];
2500
2501		if (!active->pipe_enabled)
2502			continue;
2503
2504		/*
2505		 * The watermark values may have been used in the past,
2506		 * so we must maintain them in the registers for some
2507		 * time even if the level is now disabled.
2508		 */
2509		if (!wm->enable)
2510			ret_wm->enable = false;
2511
2512		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2513		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2514		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2515		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2516	}
2517}
2518
2519/*
2520 * Merge all low power watermarks for all active pipes.
2521 */
2522static void ilk_wm_merge(struct drm_device *dev,
2523			 const struct intel_wm_config *config,
2524			 const struct ilk_wm_maximums *max,
2525			 struct intel_pipe_wm *merged)
2526{
2527	struct drm_i915_private *dev_priv = to_i915(dev);
2528	int level, max_level = ilk_wm_max_level(dev_priv);
2529	int last_enabled_level = max_level;
2530
2531	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2532	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2533	    config->num_pipes_active > 1)
2534		last_enabled_level = 0;
2535
2536	/* ILK: FBC WM must be disabled always */
2537	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2538
2539	/* merge each WM1+ level */
2540	for (level = 1; level <= max_level; level++) {
2541		struct intel_wm_level *wm = &merged->wm[level];
2542
2543		ilk_merge_wm_level(dev, level, wm);
2544
2545		if (level > last_enabled_level)
2546			wm->enable = false;
2547		else if (!ilk_validate_wm_level(level, max, wm))
2548			/* make sure all following levels get disabled */
2549			last_enabled_level = level - 1;
2550
2551		/*
2552		 * The spec says it is preferred to disable
2553		 * FBC WMs instead of disabling a WM level.
2554		 */
2555		if (wm->fbc_val > max->fbc) {
2556			if (wm->enable)
2557				merged->fbc_wm_enabled = false;
2558			wm->fbc_val = 0;
2559		}
2560	}
2561
2562	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2563	/*
2564	 * FIXME this is racy. FBC might get enabled later.
2565	 * What we should check here is whether FBC can be
2566	 * enabled sometime later.
2567	 */
2568	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2569	    intel_fbc_is_active(dev_priv)) {
2570		for (level = 2; level <= max_level; level++) {
2571			struct intel_wm_level *wm = &merged->wm[level];
2572
2573			wm->enable = false;
2574		}
2575	}
2576}
2577
2578static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2579{
2580	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2581	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2582}
2583
2584/* The value we need to program into the WM_LPx latency field */
2585static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2586{
2587	struct drm_i915_private *dev_priv = to_i915(dev);
2588
2589	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2590		return 2 * level;
2591	else
2592		return dev_priv->wm.pri_latency[level];
2593}
2594
2595static void ilk_compute_wm_results(struct drm_device *dev,
2596				   const struct intel_pipe_wm *merged,
2597				   enum intel_ddb_partitioning partitioning,
2598				   struct ilk_wm_values *results)
2599{
2600	struct drm_i915_private *dev_priv = to_i915(dev);
2601	struct intel_crtc *intel_crtc;
2602	int level, wm_lp;
2603
2604	results->enable_fbc_wm = merged->fbc_wm_enabled;
2605	results->partitioning = partitioning;
2606
2607	/* LP1+ register values */
2608	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2609		const struct intel_wm_level *r;
2610
2611		level = ilk_wm_lp_to_level(wm_lp, merged);
2612
2613		r = &merged->wm[level];
2614
2615		/*
2616		 * Maintain the watermark values even if the level is
2617		 * disabled. Doing otherwise could cause underruns.
2618		 */
2619		results->wm_lp[wm_lp - 1] =
2620			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2621			(r->pri_val << WM1_LP_SR_SHIFT) |
2622			r->cur_val;
2623
2624		if (r->enable)
2625			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2626
2627		if (INTEL_GEN(dev_priv) >= 8)
2628			results->wm_lp[wm_lp - 1] |=
2629				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2630		else
2631			results->wm_lp[wm_lp - 1] |=
2632				r->fbc_val << WM1_LP_FBC_SHIFT;
2633
2634		/*
2635		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2636		 * level is disabled. Doing otherwise could cause underruns.
2637		 */
2638		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2639			WARN_ON(wm_lp != 1);
2640			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2641		} else
2642			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2643	}
2644
2645	/* LP0 register values */
2646	for_each_intel_crtc(dev, intel_crtc) {
 
 
2647		enum pipe pipe = intel_crtc->pipe;
2648		const struct intel_wm_level *r =
2649			&intel_crtc->wm.active.ilk.wm[0];
2650
2651		if (WARN_ON(!r->enable))
2652			continue;
2653
2654		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2655
2656		results->wm_pipe[pipe] =
2657			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2658			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2659			r->cur_val;
2660	}
2661}
2662
2663/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2664 * case both are at the same level. Prefer r1 in case they're the same. */
2665static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2666						  struct intel_pipe_wm *r1,
2667						  struct intel_pipe_wm *r2)
2668{
2669	int level, max_level = ilk_wm_max_level(to_i915(dev));
2670	int level1 = 0, level2 = 0;
2671
2672	for (level = 1; level <= max_level; level++) {
2673		if (r1->wm[level].enable)
2674			level1 = level;
2675		if (r2->wm[level].enable)
2676			level2 = level;
2677	}
2678
2679	if (level1 == level2) {
2680		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2681			return r2;
2682		else
2683			return r1;
2684	} else if (level1 > level2) {
2685		return r1;
2686	} else {
2687		return r2;
2688	}
2689}
2690
2691/* dirty bits used to track which watermarks need changes */
2692#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2693#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2694#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2695#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2696#define WM_DIRTY_FBC (1 << 24)
2697#define WM_DIRTY_DDB (1 << 25)
2698
2699static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2700					 const struct ilk_wm_values *old,
2701					 const struct ilk_wm_values *new)
2702{
2703	unsigned int dirty = 0;
2704	enum pipe pipe;
2705	int wm_lp;
2706
2707	for_each_pipe(dev_priv, pipe) {
2708		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2709			dirty |= WM_DIRTY_LINETIME(pipe);
2710			/* Must disable LP1+ watermarks too */
2711			dirty |= WM_DIRTY_LP_ALL;
2712		}
2713
2714		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2715			dirty |= WM_DIRTY_PIPE(pipe);
2716			/* Must disable LP1+ watermarks too */
2717			dirty |= WM_DIRTY_LP_ALL;
2718		}
2719	}
2720
2721	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2722		dirty |= WM_DIRTY_FBC;
2723		/* Must disable LP1+ watermarks too */
2724		dirty |= WM_DIRTY_LP_ALL;
2725	}
2726
2727	if (old->partitioning != new->partitioning) {
2728		dirty |= WM_DIRTY_DDB;
2729		/* Must disable LP1+ watermarks too */
2730		dirty |= WM_DIRTY_LP_ALL;
2731	}
2732
2733	/* LP1+ watermarks already deemed dirty, no need to continue */
2734	if (dirty & WM_DIRTY_LP_ALL)
2735		return dirty;
2736
2737	/* Find the lowest numbered LP1+ watermark in need of an update... */
2738	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2739		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2740		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2741			break;
2742	}
2743
2744	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2745	for (; wm_lp <= 3; wm_lp++)
2746		dirty |= WM_DIRTY_LP(wm_lp);
2747
2748	return dirty;
2749}
2750
2751static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2752			       unsigned int dirty)
2753{
2754	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2755	bool changed = false;
2756
2757	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2758		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2759		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2760		changed = true;
2761	}
2762	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2763		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2764		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2765		changed = true;
2766	}
2767	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2768		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2769		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2770		changed = true;
2771	}
2772
2773	/*
2774	 * Don't touch WM1S_LP_EN here.
2775	 * Doing so could cause underruns.
2776	 */
2777
2778	return changed;
2779}
2780
2781/*
2782 * The spec says we shouldn't write when we don't need, because every write
2783 * causes WMs to be re-evaluated, expending some power.
2784 */
2785static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2786				struct ilk_wm_values *results)
2787{
 
2788	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2789	unsigned int dirty;
2790	uint32_t val;
2791
2792	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2793	if (!dirty)
2794		return;
2795
2796	_ilk_disable_lp_wm(dev_priv, dirty);
2797
2798	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2799		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2800	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2801		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2802	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2803		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2804
2805	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2806		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2807	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2808		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2809	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2810		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2811
2812	if (dirty & WM_DIRTY_DDB) {
2813		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2814			val = I915_READ(WM_MISC);
2815			if (results->partitioning == INTEL_DDB_PART_1_2)
2816				val &= ~WM_MISC_DATA_PARTITION_5_6;
2817			else
2818				val |= WM_MISC_DATA_PARTITION_5_6;
2819			I915_WRITE(WM_MISC, val);
2820		} else {
2821			val = I915_READ(DISP_ARB_CTL2);
2822			if (results->partitioning == INTEL_DDB_PART_1_2)
2823				val &= ~DISP_DATA_PARTITION_5_6;
2824			else
2825				val |= DISP_DATA_PARTITION_5_6;
2826			I915_WRITE(DISP_ARB_CTL2, val);
2827		}
2828	}
2829
2830	if (dirty & WM_DIRTY_FBC) {
2831		val = I915_READ(DISP_ARB_CTL);
2832		if (results->enable_fbc_wm)
2833			val &= ~DISP_FBC_WM_DIS;
2834		else
2835			val |= DISP_FBC_WM_DIS;
2836		I915_WRITE(DISP_ARB_CTL, val);
2837	}
2838
2839	if (dirty & WM_DIRTY_LP(1) &&
2840	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2841		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2842
2843	if (INTEL_GEN(dev_priv) >= 7) {
2844		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2845			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2846		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2847			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2848	}
2849
2850	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2851		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2852	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2853		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2854	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2855		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2856
2857	dev_priv->wm.hw = *results;
2858}
2859
2860bool ilk_disable_lp_wm(struct drm_device *dev)
2861{
2862	struct drm_i915_private *dev_priv = to_i915(dev);
2863
2864	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2865}
2866
2867#define SKL_SAGV_BLOCK_TIME	30 /* µs */
 
 
 
 
 
 
2868
2869/*
2870 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2871 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2872 * other universal planes are in indices 1..n.  Note that this may leave unused
2873 * indices between the top "sprite" plane and the cursor.
2874 */
2875static int
2876skl_wm_plane_id(const struct intel_plane *plane)
2877{
2878	switch (plane->base.type) {
2879	case DRM_PLANE_TYPE_PRIMARY:
2880		return 0;
2881	case DRM_PLANE_TYPE_CURSOR:
2882		return PLANE_CURSOR;
2883	case DRM_PLANE_TYPE_OVERLAY:
2884		return plane->plane + 1;
2885	default:
2886		MISSING_CASE(plane->base.type);
2887		return plane->plane;
2888	}
2889}
2890
2891/*
2892 * FIXME: We still don't have the proper code detect if we need to apply the WA,
2893 * so assume we'll always need it in order to avoid underruns.
2894 */
2895static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
2896{
2897	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2898
2899	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
2900	    IS_KABYLAKE(dev_priv))
2901		return true;
2902
2903	return false;
2904}
2905
2906static bool
2907intel_has_sagv(struct drm_i915_private *dev_priv)
2908{
2909	if (IS_KABYLAKE(dev_priv))
2910		return true;
2911
2912	if (IS_SKYLAKE(dev_priv) &&
2913	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
2914		return true;
2915
2916	return false;
2917}
2918
2919/*
2920 * SAGV dynamically adjusts the system agent voltage and clock frequencies
2921 * depending on power and performance requirements. The display engine access
2922 * to system memory is blocked during the adjustment time. Because of the
2923 * blocking time, having this enabled can cause full system hangs and/or pipe
2924 * underruns if we don't meet all of the following requirements:
2925 *
2926 *  - <= 1 pipe enabled
2927 *  - All planes can enable watermarks for latencies >= SAGV engine block time
2928 *  - We're not using an interlaced display configuration
2929 */
2930int
2931intel_enable_sagv(struct drm_i915_private *dev_priv)
2932{
2933	int ret;
2934
2935	if (!intel_has_sagv(dev_priv))
2936		return 0;
2937
2938	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2939		return 0;
2940
2941	DRM_DEBUG_KMS("Enabling the SAGV\n");
2942	mutex_lock(&dev_priv->rps.hw_lock);
2943
2944	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2945				      GEN9_SAGV_ENABLE);
2946
2947	/* We don't need to wait for the SAGV when enabling */
2948	mutex_unlock(&dev_priv->rps.hw_lock);
2949
2950	/*
2951	 * Some skl systems, pre-release machines in particular,
2952	 * don't actually have an SAGV.
2953	 */
2954	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2955		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2956		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2957		return 0;
2958	} else if (ret < 0) {
2959		DRM_ERROR("Failed to enable the SAGV\n");
2960		return ret;
2961	}
2962
2963	dev_priv->sagv_status = I915_SAGV_ENABLED;
2964	return 0;
2965}
2966
2967int
2968intel_disable_sagv(struct drm_i915_private *dev_priv)
2969{
2970	int ret;
2971
2972	if (!intel_has_sagv(dev_priv))
2973		return 0;
2974
2975	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2976		return 0;
2977
2978	DRM_DEBUG_KMS("Disabling the SAGV\n");
2979	mutex_lock(&dev_priv->rps.hw_lock);
2980
2981	/* bspec says to keep retrying for at least 1 ms */
2982	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2983				GEN9_SAGV_DISABLE,
2984				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
2985				1);
2986	mutex_unlock(&dev_priv->rps.hw_lock);
2987
2988	/*
2989	 * Some skl systems, pre-release machines in particular,
2990	 * don't actually have an SAGV.
2991	 */
2992	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2993		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2994		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2995		return 0;
2996	} else if (ret < 0) {
2997		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
2998		return ret;
2999	}
3000
3001	dev_priv->sagv_status = I915_SAGV_DISABLED;
3002	return 0;
3003}
3004
3005bool intel_can_enable_sagv(struct drm_atomic_state *state)
3006{
3007	struct drm_device *dev = state->dev;
3008	struct drm_i915_private *dev_priv = to_i915(dev);
3009	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3010	struct intel_crtc *crtc;
3011	struct intel_plane *plane;
3012	struct intel_crtc_state *cstate;
3013	struct skl_plane_wm *wm;
3014	enum pipe pipe;
3015	int level, latency;
3016
3017	if (!intel_has_sagv(dev_priv))
3018		return false;
3019
3020	/*
3021	 * SKL workaround: bspec recommends we disable the SAGV when we have
3022	 * more then one pipe enabled
3023	 *
3024	 * If there are no active CRTCs, no additional checks need be performed
3025	 */
3026	if (hweight32(intel_state->active_crtcs) == 0)
3027		return true;
3028	else if (hweight32(intel_state->active_crtcs) > 1)
3029		return false;
3030
3031	/* Since we're now guaranteed to only have one active CRTC... */
3032	pipe = ffs(intel_state->active_crtcs) - 1;
3033	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3034	cstate = to_intel_crtc_state(crtc->base.state);
3035
3036	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3037		return false;
3038
3039	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3040		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3041
3042		/* Skip this plane if it's not enabled */
3043		if (!wm->wm[0].plane_en)
3044			continue;
3045
3046		/* Find the highest enabled wm level for this plane */
3047		for (level = ilk_wm_max_level(dev_priv);
3048		     !wm->wm[level].plane_en; --level)
3049		     { }
3050
3051		latency = dev_priv->wm.skl_latency[level];
3052
3053		if (skl_needs_memory_bw_wa(intel_state) &&
3054		    plane->base.state->fb->modifier ==
3055		    I915_FORMAT_MOD_X_TILED)
3056			latency += 15;
3057
3058		/*
3059		 * If any of the planes on this pipe don't enable wm levels
3060		 * that incur memory latencies higher then 30µs we can't enable
3061		 * the SAGV
3062		 */
3063		if (latency < SKL_SAGV_BLOCK_TIME)
3064			return false;
3065	}
3066
3067	return true;
3068}
3069
3070static void
3071skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3072				   const struct intel_crtc_state *cstate,
3073				   struct skl_ddb_entry *alloc, /* out */
3074				   int *num_active /* out */)
3075{
3076	struct drm_atomic_state *state = cstate->base.state;
3077	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3078	struct drm_i915_private *dev_priv = to_i915(dev);
3079	struct drm_crtc *for_crtc = cstate->base.crtc;
 
3080	unsigned int pipe_size, ddb_size;
3081	int nth_active_pipe;
3082
3083	if (WARN_ON(!state) || !cstate->base.active) {
3084		alloc->start = 0;
3085		alloc->end = 0;
3086		*num_active = hweight32(dev_priv->active_crtcs);
3087		return;
3088	}
3089
3090	if (intel_state->active_pipe_changes)
3091		*num_active = hweight32(intel_state->active_crtcs);
3092	else
3093		*num_active = hweight32(dev_priv->active_crtcs);
3094
3095	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3096	WARN_ON(ddb_size == 0);
3097
3098	ddb_size -= 4; /* 4 blocks for bypass path allocation */
 
 
 
 
 
 
3099
3100	/*
3101	 * If the state doesn't change the active CRTC's, then there's
3102	 * no need to recalculate; the existing pipe allocation limits
3103	 * should remain unchanged.  Note that we're safe from racing
3104	 * commits since any racing commit that changes the active CRTC
3105	 * list would need to grab _all_ crtc locks, including the one
3106	 * we currently hold.
3107	 */
3108	if (!intel_state->active_pipe_changes) {
3109		/*
3110		 * alloc may be cleared by clear_intel_crtc_state,
3111		 * copy from old state to be sure
3112		 */
3113		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3114		return;
3115	}
3116
3117	nth_active_pipe = hweight32(intel_state->active_crtcs &
3118				    (drm_crtc_mask(for_crtc) - 1));
3119	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3120	alloc->start = nth_active_pipe * ddb_size / *num_active;
3121	alloc->end = alloc->start + pipe_size;
3122}
3123
3124static unsigned int skl_cursor_allocation(int num_active)
3125{
3126	if (num_active == 1)
3127		return 32;
3128
3129	return 8;
3130}
3131
3132static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3133{
3134	entry->start = reg & 0x3ff;
3135	entry->end = (reg >> 16) & 0x3ff;
3136	if (entry->end)
3137		entry->end += 1;
3138}
3139
3140void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3141			  struct skl_ddb_allocation *ddb /* out */)
3142{
3143	enum pipe pipe;
3144	int plane;
3145	u32 val;
3146
3147	memset(ddb, 0, sizeof(*ddb));
3148
3149	for_each_pipe(dev_priv, pipe) {
3150		enum intel_display_power_domain power_domain;
3151
3152		power_domain = POWER_DOMAIN_PIPE(pipe);
3153		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3154			continue;
3155
3156		for_each_universal_plane(dev_priv, pipe, plane) {
3157			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
3158			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
3159						   val);
3160		}
3161
3162		val = I915_READ(CUR_BUF_CFG(pipe));
3163		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
3164					   val);
3165
3166		intel_display_power_put(dev_priv, power_domain);
3167	}
3168}
3169
3170/*
3171 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3172 * The bspec defines downscale amount as:
3173 *
3174 * """
3175 * Horizontal down scale amount = maximum[1, Horizontal source size /
3176 *                                           Horizontal destination size]
3177 * Vertical down scale amount = maximum[1, Vertical source size /
3178 *                                         Vertical destination size]
3179 * Total down scale amount = Horizontal down scale amount *
3180 *                           Vertical down scale amount
3181 * """
3182 *
3183 * Return value is provided in 16.16 fixed point form to retain fractional part.
3184 * Caller should take care of dividing & rounding off the value.
3185 */
3186static uint32_t
3187skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3188{
3189	uint32_t downscale_h, downscale_w;
3190	uint32_t src_w, src_h, dst_w, dst_h;
3191
3192	if (WARN_ON(!pstate->base.visible))
3193		return DRM_PLANE_HELPER_NO_SCALING;
3194
3195	/* n.b., src is 16.16 fixed point, dst is whole integer */
3196	src_w = drm_rect_width(&pstate->base.src);
3197	src_h = drm_rect_height(&pstate->base.src);
3198	dst_w = drm_rect_width(&pstate->base.dst);
3199	dst_h = drm_rect_height(&pstate->base.dst);
3200	if (drm_rotation_90_or_270(pstate->base.rotation))
3201		swap(dst_w, dst_h);
3202
3203	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3204	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3205
3206	/* Provide result in 16.16 fixed point */
3207	return (uint64_t)downscale_w * downscale_h >> 16;
3208}
3209
3210static unsigned int
3211skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3212			     const struct drm_plane_state *pstate,
3213			     int y)
3214{
3215	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3216	struct drm_framebuffer *fb = pstate->fb;
3217	uint32_t down_scale_amount, data_rate;
3218	uint32_t width = 0, height = 0;
3219	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3220
3221	if (!intel_pstate->base.visible)
3222		return 0;
3223	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3224		return 0;
3225	if (y && format != DRM_FORMAT_NV12)
3226		return 0;
3227
3228	width = drm_rect_width(&intel_pstate->base.src) >> 16;
3229	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3230
3231	if (drm_rotation_90_or_270(pstate->rotation))
3232		swap(width, height);
3233
3234	/* for planar format */
3235	if (format == DRM_FORMAT_NV12) {
3236		if (y)  /* y-plane data rate */
3237			data_rate = width * height *
3238				drm_format_plane_cpp(format, 0);
3239		else    /* uv-plane data rate */
3240			data_rate = (width / 2) * (height / 2) *
3241				drm_format_plane_cpp(format, 1);
3242	} else {
3243		/* for packed formats */
3244		data_rate = width * height * drm_format_plane_cpp(format, 0);
3245	}
3246
3247	down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3248
3249	return (uint64_t)data_rate * down_scale_amount >> 16;
3250}
3251
3252/*
3253 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3254 * a 8192x4096@32bpp framebuffer:
3255 *   3 * 4096 * 8192  * 4 < 2^32
3256 */
3257static unsigned int
3258skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
3259				 unsigned *plane_data_rate,
3260				 unsigned *plane_y_data_rate)
3261{
3262	struct drm_crtc_state *cstate = &intel_cstate->base;
3263	struct drm_atomic_state *state = cstate->state;
3264	struct drm_plane *plane;
3265	const struct intel_plane *intel_plane;
3266	const struct drm_plane_state *pstate;
3267	unsigned int rate, total_data_rate = 0;
3268	int id;
 
3269
3270	if (WARN_ON(!state))
3271		return 0;
3272
3273	/* Calculate and cache data rate for each plane */
3274	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3275		id = skl_wm_plane_id(to_intel_plane(plane));
3276		intel_plane = to_intel_plane(plane);
3277
3278		/* packed/uv */
3279		rate = skl_plane_relative_data_rate(intel_cstate,
3280						    pstate, 0);
3281		plane_data_rate[id] = rate;
3282
3283		total_data_rate += rate;
3284
3285		/* y-plane */
3286		rate = skl_plane_relative_data_rate(intel_cstate,
3287						    pstate, 1);
3288		plane_y_data_rate[id] = rate;
3289
3290		total_data_rate += rate;
3291	}
3292
3293	return total_data_rate;
3294}
3295
3296static uint16_t
3297skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3298		  const int y)
3299{
3300	struct drm_framebuffer *fb = pstate->fb;
3301	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3302	uint32_t src_w, src_h;
3303	uint32_t min_scanlines = 8;
3304	uint8_t plane_bpp;
3305
3306	if (WARN_ON(!fb))
3307		return 0;
3308
3309	/* For packed formats, no y-plane, return 0 */
3310	if (y && fb->pixel_format != DRM_FORMAT_NV12)
3311		return 0;
3312
3313	/* For Non Y-tile return 8-blocks */
3314	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
3315	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3316		return 8;
3317
3318	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3319	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3320
3321	if (drm_rotation_90_or_270(pstate->rotation))
3322		swap(src_w, src_h);
3323
3324	/* Halve UV plane width and height for NV12 */
3325	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3326		src_w /= 2;
3327		src_h /= 2;
3328	}
3329
3330	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3331		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3332	else
3333		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3334
3335	if (drm_rotation_90_or_270(pstate->rotation)) {
3336		switch (plane_bpp) {
3337		case 1:
3338			min_scanlines = 32;
3339			break;
3340		case 2:
3341			min_scanlines = 16;
3342			break;
3343		case 4:
3344			min_scanlines = 8;
3345			break;
3346		case 8:
3347			min_scanlines = 4;
3348			break;
3349		default:
3350			WARN(1, "Unsupported pixel depth %u for rotation",
3351			     plane_bpp);
3352			min_scanlines = 32;
3353		}
3354	}
3355
3356	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3357}
3358
3359static void
3360skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
3361		 uint16_t *minimum, uint16_t *y_minimum)
3362{
3363	const struct drm_plane_state *pstate;
3364	struct drm_plane *plane;
3365
3366	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3367		struct intel_plane *intel_plane = to_intel_plane(plane);
3368		int id = skl_wm_plane_id(intel_plane);
3369
3370		if (id == PLANE_CURSOR)
3371			continue;
3372
3373		if (!pstate->visible)
3374			continue;
3375
3376		minimum[id] = skl_ddb_min_alloc(pstate, 0);
3377		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3378	}
3379
3380	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
3381}
3382
3383static int
3384skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3385		      struct skl_ddb_allocation *ddb /* out */)
3386{
3387	struct drm_atomic_state *state = cstate->base.state;
3388	struct drm_crtc *crtc = cstate->base.crtc;
3389	struct drm_device *dev = crtc->dev;
 
 
3390	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 
3391	enum pipe pipe = intel_crtc->pipe;
3392	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3393	uint16_t alloc_size, start;
3394	uint16_t minimum[I915_MAX_PLANES] = {};
3395	uint16_t y_minimum[I915_MAX_PLANES] = {};
3396	unsigned int total_data_rate;
3397	int num_active;
3398	int id, i;
3399	unsigned plane_data_rate[I915_MAX_PLANES] = {};
3400	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3401
3402	/* Clear the partitioning for disabled planes. */
3403	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3404	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3405
3406	if (WARN_ON(!state))
3407		return 0;
3408
3409	if (!cstate->base.active) {
3410		alloc->start = alloc->end = 0;
3411		return 0;
3412	}
3413
3414	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3415	alloc_size = skl_ddb_entry_size(alloc);
3416	if (alloc_size == 0) {
3417		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3418		return 0;
 
 
3419	}
3420
3421	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
 
 
 
 
 
 
 
 
 
 
 
3422
3423	/*
3424	 * 1. Allocate the mininum required blocks for each active plane
3425	 * and allocate the cursor, it doesn't require extra allocation
3426	 * proportional to the data rate.
3427	 */
3428
3429	for (i = 0; i < I915_MAX_PLANES; i++) {
3430		alloc_size -= minimum[i];
3431		alloc_size -= y_minimum[i];
 
3432	}
3433
3434	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
3435	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3436
3437	/*
3438	 * 2. Distribute the remaining space in proportion to the amount of
3439	 * data each plane needs to fetch from memory.
3440	 *
3441	 * FIXME: we may not allocate every single block here.
3442	 */
3443	total_data_rate = skl_get_total_relative_data_rate(cstate,
3444							   plane_data_rate,
3445							   plane_y_data_rate);
3446	if (total_data_rate == 0)
3447		return 0;
3448
3449	start = alloc->start;
3450	for (id = 0; id < I915_MAX_PLANES; id++) {
 
 
3451		unsigned int data_rate, y_data_rate;
3452		uint16_t plane_blocks, y_plane_blocks = 0;
 
3453
3454		if (id == PLANE_CURSOR)
 
 
3455			continue;
3456
3457		data_rate = plane_data_rate[id];
3458
3459		/*
3460		 * allocation for (packed formats) or (uv-plane part of planar format):
3461		 * promote the expression to 64 bits to avoid overflowing, the
3462		 * result is < available as data_rate / total_data_rate < 1
3463		 */
3464		plane_blocks = minimum[id];
3465		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3466					total_data_rate);
3467
3468		/* Leave disabled planes at (0,0) */
3469		if (data_rate) {
3470			ddb->plane[pipe][id].start = start;
3471			ddb->plane[pipe][id].end = start + plane_blocks;
3472		}
3473
3474		start += plane_blocks;
3475
3476		/*
3477		 * allocation for y_plane part of planar format:
3478		 */
3479		y_data_rate = plane_y_data_rate[id];
3480
3481		y_plane_blocks = y_minimum[id];
3482		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3483					total_data_rate);
 
 
3484
3485		if (y_data_rate) {
3486			ddb->y_plane[pipe][id].start = start;
3487			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
 
 
3488		}
3489
3490		start += y_plane_blocks;
3491	}
3492
3493	return 0;
 
 
 
 
 
3494}
3495
3496/*
3497 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3498 * for the read latency) and cpp should always be <= 8, so that
3499 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3500 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3501*/
3502static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3503{
3504	uint32_t wm_intermediate_val, ret;
3505
3506	if (latency == 0)
3507		return UINT_MAX;
3508
3509	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3510	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3511
3512	return ret;
3513}
3514
3515static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3516			       uint32_t latency, uint32_t plane_blocks_per_line)
 
3517{
3518	uint32_t ret;
 
3519	uint32_t wm_intermediate_val;
3520
3521	if (latency == 0)
3522		return UINT_MAX;
3523
 
 
 
 
 
 
 
 
 
 
 
3524	wm_intermediate_val = latency * pixel_rate;
3525	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3526				plane_blocks_per_line;
3527
3528	return ret;
3529}
3530
3531static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3532					      struct intel_plane_state *pstate)
3533{
3534	uint64_t adjusted_pixel_rate;
3535	uint64_t downscale_amount;
3536	uint64_t pixel_rate;
3537
3538	/* Shouldn't reach here on disabled planes... */
3539	if (WARN_ON(!pstate->base.visible))
3540		return 0;
3541
3542	/*
3543	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3544	 * with additional adjustments for plane-specific scaling.
3545	 */
3546	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3547	downscale_amount = skl_plane_downscale_amount(pstate);
3548
3549	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3550	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3551
3552	return pixel_rate;
3553}
3554
3555static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3556				struct intel_crtc_state *cstate,
3557				struct intel_plane_state *intel_pstate,
3558				uint16_t ddb_allocation,
3559				int level,
3560				uint16_t *out_blocks, /* out */
3561				uint8_t *out_lines, /* out */
3562				bool *enabled /* out */)
3563{
3564	struct drm_plane_state *pstate = &intel_pstate->base;
3565	struct drm_framebuffer *fb = pstate->fb;
 
 
3566	uint32_t latency = dev_priv->wm.skl_latency[level];
3567	uint32_t method1, method2;
3568	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3569	uint32_t res_blocks, res_lines;
3570	uint32_t selected_result;
3571	uint8_t cpp;
3572	uint32_t width = 0, height = 0;
3573	uint32_t plane_pixel_rate;
3574	uint32_t y_tile_minimum, y_min_scanlines;
3575	struct intel_atomic_state *state =
3576		to_intel_atomic_state(cstate->base.state);
3577	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3578
3579	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3580		*enabled = false;
3581		return 0;
3582	}
3583
3584	if (apply_memory_bw_wa && fb->modifier == I915_FORMAT_MOD_X_TILED)
3585		latency += 15;
3586
3587	width = drm_rect_width(&intel_pstate->base.src) >> 16;
3588	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3589
3590	if (drm_rotation_90_or_270(pstate->rotation))
3591		swap(width, height);
3592
3593	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3594	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3595
3596	if (drm_rotation_90_or_270(pstate->rotation)) {
3597		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3598			drm_format_plane_cpp(fb->pixel_format, 1) :
3599			drm_format_plane_cpp(fb->pixel_format, 0);
3600
3601		switch (cpp) {
3602		case 1:
3603			y_min_scanlines = 16;
3604			break;
3605		case 2:
3606			y_min_scanlines = 8;
3607			break;
3608		case 4:
3609			y_min_scanlines = 4;
3610			break;
3611		default:
3612			MISSING_CASE(cpp);
3613			return -EINVAL;
3614		}
3615	} else {
3616		y_min_scanlines = 4;
3617	}
3618
3619	if (apply_memory_bw_wa)
3620		y_min_scanlines *= 2;
3621
3622	plane_bytes_per_line = width * cpp;
3623	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3624	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3625		plane_blocks_per_line =
3626		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
3627		plane_blocks_per_line /= y_min_scanlines;
3628	} else if (fb->modifier == DRM_FORMAT_MOD_NONE) {
3629		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
3630					+ 1;
3631	} else {
3632		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3633	}
3634
3635	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3636	method2 = skl_wm_method2(plane_pixel_rate,
3637				 cstate->base.adjusted_mode.crtc_htotal,
3638				 latency,
3639				 plane_blocks_per_line);
3640
3641	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3642
3643	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3644	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
 
 
 
 
 
 
 
 
 
 
 
3645		selected_result = max(method2, y_tile_minimum);
3646	} else {
3647		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
3648		    (plane_bytes_per_line / 512 < 1))
3649			selected_result = method2;
3650		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3651			selected_result = min(method1, method2);
3652		else
3653			selected_result = method1;
3654	}
3655
3656	res_blocks = selected_result + 1;
3657	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3658
3659	if (level >= 1 && level <= 7) {
3660		if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3661		    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3662			res_blocks += y_tile_minimum;
3663			res_lines += y_min_scanlines;
3664		} else {
3665			res_blocks++;
3666		}
3667	}
3668
3669	if (res_blocks >= ddb_allocation || res_lines > 31) {
3670		*enabled = false;
3671
3672		/*
3673		 * If there are no valid level 0 watermarks, then we can't
3674		 * support this display configuration.
3675		 */
3676		if (level) {
3677			return 0;
3678		} else {
3679			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3680			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3681				      to_intel_crtc(cstate->base.crtc)->pipe,
3682				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
3683				      res_blocks, ddb_allocation, res_lines);
3684
3685			return -EINVAL;
3686		}
3687	}
3688
3689	*out_blocks = res_blocks;
3690	*out_lines = res_lines;
3691	*enabled = true;
3692
3693	return 0;
3694}
3695
3696static int
3697skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3698		     struct skl_ddb_allocation *ddb,
3699		     struct intel_crtc_state *cstate,
3700		     struct intel_plane *intel_plane,
3701		     int level,
3702		     struct skl_wm_level *result)
3703{
3704	struct drm_atomic_state *state = cstate->base.state;
3705	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3706	struct drm_plane *plane = &intel_plane->base;
3707	struct intel_plane_state *intel_pstate = NULL;
3708	uint16_t ddb_blocks;
3709	enum pipe pipe = intel_crtc->pipe;
3710	int ret;
3711	int i = skl_wm_plane_id(intel_plane);
3712
3713	if (state)
3714		intel_pstate =
3715			intel_atomic_get_existing_plane_state(state,
3716							      intel_plane);
3717
3718	/*
3719	 * Note: If we start supporting multiple pending atomic commits against
3720	 * the same planes/CRTC's in the future, plane->state will no longer be
3721	 * the correct pre-state to use for the calculations here and we'll
3722	 * need to change where we get the 'unchanged' plane data from.
3723	 *
3724	 * For now this is fine because we only allow one queued commit against
3725	 * a CRTC.  Even if the plane isn't modified by this transaction and we
3726	 * don't have a plane lock, we still have the CRTC's lock, so we know
3727	 * that no other transactions are racing with us to update it.
3728	 */
3729	if (!intel_pstate)
3730		intel_pstate = to_intel_plane_state(plane->state);
3731
3732	WARN_ON(!intel_pstate->base.fb);
3733
3734	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3735
3736	ret = skl_compute_plane_wm(dev_priv,
3737				   cstate,
3738				   intel_pstate,
3739				   ddb_blocks,
3740				   level,
3741				   &result->plane_res_b,
3742				   &result->plane_res_l,
3743				   &result->plane_en);
3744	if (ret)
3745		return ret;
3746
3747	return 0;
 
 
 
 
 
 
 
3748}
3749
3750static uint32_t
3751skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3752{
3753	uint32_t pixel_rate;
3754
3755	if (!cstate->base.active)
3756		return 0;
3757
3758	pixel_rate = ilk_pipe_pixel_rate(cstate);
3759
3760	if (WARN_ON(pixel_rate == 0))
3761		return 0;
3762
3763	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3764			    pixel_rate);
3765}
3766
3767static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3768				      struct skl_wm_level *trans_wm /* out */)
3769{
 
 
 
 
3770	if (!cstate->base.active)
3771		return;
3772
3773	/* Until we know more, just disable transition WMs */
3774	trans_wm->plane_en = false;
 
 
 
 
3775}
3776
3777static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3778			     struct skl_ddb_allocation *ddb,
3779			     struct skl_pipe_wm *pipe_wm)
3780{
3781	struct drm_device *dev = cstate->base.crtc->dev;
3782	const struct drm_i915_private *dev_priv = to_i915(dev);
3783	struct intel_plane *intel_plane;
3784	struct skl_plane_wm *wm;
3785	int level, max_level = ilk_wm_max_level(dev_priv);
3786	int ret;
3787
3788	/*
3789	 * We'll only calculate watermarks for planes that are actually
3790	 * enabled, so make sure all other planes are set as disabled.
3791	 */
3792	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
3793
3794	for_each_intel_plane_mask(&dev_priv->drm,
3795				  intel_plane,
3796				  cstate->base.plane_mask) {
3797		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];
3798
3799		for (level = 0; level <= max_level; level++) {
3800			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3801						   intel_plane, level,
3802						   &wm->wm[level]);
3803			if (ret)
3804				return ret;
3805		}
3806		skl_compute_transition_wm(cstate, &wm->trans_wm);
3807	}
3808	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3809
3810	return 0;
3811}
3812
3813static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3814				i915_reg_t reg,
3815				const struct skl_ddb_entry *entry)
 
3816{
3817	if (entry->end)
3818		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3819	else
3820		I915_WRITE(reg, 0);
3821}
3822
3823static void skl_write_wm_level(struct drm_i915_private *dev_priv,
3824			       i915_reg_t reg,
3825			       const struct skl_wm_level *level)
3826{
3827	uint32_t val = 0;
3828
3829	if (level->plane_en) {
3830		val |= PLANE_WM_EN;
3831		val |= level->plane_res_b;
3832		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
3833	}
3834
3835	I915_WRITE(reg, val);
3836}
3837
3838static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3839			       const struct skl_plane_wm *wm,
3840			       const struct skl_ddb_allocation *ddb,
3841			       int plane)
3842{
3843	struct drm_crtc *crtc = &intel_crtc->base;
3844	struct drm_device *dev = crtc->dev;
3845	struct drm_i915_private *dev_priv = to_i915(dev);
3846	int level, max_level = ilk_wm_max_level(dev_priv);
3847	enum pipe pipe = intel_crtc->pipe;
3848
3849	for (level = 0; level <= max_level; level++) {
3850		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
3851				   &wm->wm[level]);
3852	}
3853	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
3854			   &wm->trans_wm);
3855
3856	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3857			    &ddb->plane[pipe][plane]);
3858	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3859			    &ddb->y_plane[pipe][plane]);
3860}
3861
3862static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3863				const struct skl_plane_wm *wm,
3864				const struct skl_ddb_allocation *ddb)
3865{
3866	struct drm_crtc *crtc = &intel_crtc->base;
3867	struct drm_device *dev = crtc->dev;
3868	struct drm_i915_private *dev_priv = to_i915(dev);
3869	int level, max_level = ilk_wm_max_level(dev_priv);
3870	enum pipe pipe = intel_crtc->pipe;
3871
3872	for (level = 0; level <= max_level; level++) {
3873		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
3874				   &wm->wm[level]);
3875	}
3876	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3877
3878	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3879			    &ddb->plane[pipe][PLANE_CURSOR]);
3880}
 
 
 
 
 
 
 
3881
3882bool skl_wm_level_equals(const struct skl_wm_level *l1,
3883			 const struct skl_wm_level *l2)
3884{
3885	if (l1->plane_en != l2->plane_en)
3886		return false;
3887
3888	/* If both planes aren't enabled, the rest shouldn't matter */
3889	if (!l1->plane_en)
3890		return true;
3891
3892	return (l1->plane_res_l == l2->plane_res_l &&
3893		l1->plane_res_b == l2->plane_res_b);
3894}
3895
3896static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
3897					   const struct skl_ddb_entry *b)
 
3898{
3899	return a->start < b->end && b->start < a->end;
 
 
 
3900}
3901
3902bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
3903				 const struct skl_ddb_entry *ddb,
3904				 int ignore)
3905{
3906	int i;
 
 
 
 
 
 
 
 
3907
3908	for (i = 0; i < I915_MAX_PIPES; i++)
3909		if (i != ignore && entries[i] &&
3910		    skl_ddb_entries_overlap(ddb, entries[i]))
3911			return true;
3912
3913	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3914}
3915
3916static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3917			      const struct skl_pipe_wm *old_pipe_wm,
3918			      struct skl_pipe_wm *pipe_wm, /* out */
3919			      struct skl_ddb_allocation *ddb, /* out */
3920			      bool *changed /* out */)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3921{
3922	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3923	int ret;
3924
3925	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3926	if (ret)
3927		return ret;
3928
3929	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3930		*changed = false;
3931	else
3932		*changed = true;
3933
3934	return 0;
3935}
3936
3937static uint32_t
3938pipes_modified(struct drm_atomic_state *state)
 
 
3939{
3940	struct drm_crtc *crtc;
3941	struct drm_crtc_state *cstate;
3942	uint32_t i, ret = 0;
3943
3944	for_each_crtc_in_state(state, crtc, cstate, i)
3945		ret |= drm_crtc_mask(crtc);
3946
3947	return ret;
 
 
3948}
3949
3950static int
3951skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
3952{
3953	struct drm_atomic_state *state = cstate->base.state;
3954	struct drm_device *dev = state->dev;
3955	struct drm_crtc *crtc = cstate->base.crtc;
3956	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3957	struct drm_i915_private *dev_priv = to_i915(dev);
3958	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3959	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
3960	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3961	struct drm_plane_state *plane_state;
3962	struct drm_plane *plane;
3963	enum pipe pipe = intel_crtc->pipe;
3964	int id;
3965
3966	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
 
3967
3968	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3969		id = skl_wm_plane_id(to_intel_plane(plane));
 
 
 
 
 
 
 
 
 
 
3970
3971		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
3972					&new_ddb->plane[pipe][id]) &&
3973		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
3974					&new_ddb->y_plane[pipe][id]))
3975			continue;
3976
3977		plane_state = drm_atomic_get_plane_state(state, plane);
3978		if (IS_ERR(plane_state))
3979			return PTR_ERR(plane_state);
 
3980	}
3981
3982	return 0;
3983}
3984
3985static int
3986skl_compute_ddb(struct drm_atomic_state *state)
3987{
3988	struct drm_device *dev = state->dev;
3989	struct drm_i915_private *dev_priv = to_i915(dev);
3990	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3991	struct intel_crtc *intel_crtc;
3992	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3993	uint32_t realloc_pipes = pipes_modified(state);
3994	int ret;
3995
3996	/*
3997	 * If this is our first atomic update following hardware readout,
3998	 * we can't trust the DDB that the BIOS programmed for us.  Let's
3999	 * pretend that all pipes switched active status so that we'll
4000	 * ensure a full DDB recompute.
4001	 */
4002	if (dev_priv->wm.distrust_bios_wm) {
4003		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4004				       state->acquire_ctx);
4005		if (ret)
4006			return ret;
4007
4008		intel_state->active_pipe_changes = ~0;
 
4009
4010		/*
4011		 * We usually only initialize intel_state->active_crtcs if we
4012		 * we're doing a modeset; make sure this field is always
4013		 * initialized during the sanitization process that happens
4014		 * on the first commit too.
4015		 */
4016		if (!intel_state->modeset)
4017			intel_state->active_crtcs = dev_priv->active_crtcs;
4018	}
4019
4020	/*
4021	 * If the modeset changes which CRTC's are active, we need to
4022	 * recompute the DDB allocation for *all* active pipes, even
4023	 * those that weren't otherwise being modified in any way by this
4024	 * atomic commit.  Due to the shrinking of the per-pipe allocations
4025	 * when new active CRTC's are added, it's possible for a pipe that
4026	 * we were already using and aren't changing at all here to suddenly
4027	 * become invalid if its DDB needs exceeds its new allocation.
4028	 *
4029	 * Note that if we wind up doing a full DDB recompute, we can't let
4030	 * any other display updates race with this transaction, so we need
4031	 * to grab the lock on *all* CRTC's.
4032	 */
4033	if (intel_state->active_pipe_changes) {
4034		realloc_pipes = ~0;
4035		intel_state->wm_results.dirty_pipes = ~0;
4036	}
4037
4038	/*
4039	 * We're not recomputing for the pipes not included in the commit, so
4040	 * make sure we start with the current state.
4041	 */
4042	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4043
4044	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4045		struct intel_crtc_state *cstate;
4046
4047		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4048		if (IS_ERR(cstate))
4049			return PTR_ERR(cstate);
4050
4051		ret = skl_allocate_pipe_ddb(cstate, ddb);
4052		if (ret)
4053			return ret;
4054
4055		ret = skl_ddb_add_affected_planes(cstate);
4056		if (ret)
4057			return ret;
4058	}
4059
4060	return 0;
4061}
4062
4063static void
4064skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4065		     struct skl_wm_values *src,
4066		     enum pipe pipe)
4067{
4068	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4069	       sizeof(dst->ddb.y_plane[pipe]));
4070	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4071	       sizeof(dst->ddb.plane[pipe]));
4072}
4073
4074static void
4075skl_print_wm_changes(const struct drm_atomic_state *state)
4076{
4077	const struct drm_device *dev = state->dev;
4078	const struct drm_i915_private *dev_priv = to_i915(dev);
4079	const struct intel_atomic_state *intel_state =
4080		to_intel_atomic_state(state);
4081	const struct drm_crtc *crtc;
4082	const struct drm_crtc_state *cstate;
4083	const struct intel_plane *intel_plane;
4084	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4085	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4086	int id;
4087	int i;
4088
4089	for_each_crtc_in_state(state, crtc, cstate, i) {
4090		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4091		enum pipe pipe = intel_crtc->pipe;
4092
4093		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4094			const struct skl_ddb_entry *old, *new;
4095
4096			id = skl_wm_plane_id(intel_plane);
4097			old = &old_ddb->plane[pipe][id];
4098			new = &new_ddb->plane[pipe][id];
4099
4100			if (skl_ddb_entry_equal(old, new))
4101				continue;
4102
4103			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4104					 intel_plane->base.base.id,
4105					 intel_plane->base.name,
4106					 old->start, old->end,
4107					 new->start, new->end);
4108		}
4109	}
4110}
4111
4112static int
4113skl_compute_wm(struct drm_atomic_state *state)
 
4114{
4115	struct drm_crtc *crtc;
4116	struct drm_crtc_state *cstate;
4117	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4118	struct skl_wm_values *results = &intel_state->wm_results;
4119	struct skl_pipe_wm *pipe_wm;
4120	bool changed = false;
4121	int ret, i;
4122
4123	/*
4124	 * If this transaction isn't actually touching any CRTC's, don't
4125	 * bother with watermark calculation.  Note that if we pass this
4126	 * test, we're guaranteed to hold at least one CRTC state mutex,
4127	 * which means we can safely use values like dev_priv->active_crtcs
4128	 * since any racing commits that want to update them would need to
4129	 * hold _all_ CRTC state mutexes.
4130	 */
4131	for_each_crtc_in_state(state, crtc, cstate, i)
4132		changed = true;
4133	if (!changed)
4134		return 0;
4135
4136	/* Clear all dirty flags */
4137	results->dirty_pipes = 0;
4138
4139	ret = skl_compute_ddb(state);
4140	if (ret)
4141		return ret;
4142
4143	/*
4144	 * Calculate WM's for all pipes that are part of this transaction.
4145	 * Note that the DDB allocation above may have added more CRTC's that
4146	 * weren't otherwise being modified (and set bits in dirty_pipes) if
4147	 * pipe allocations had to change.
4148	 *
4149	 * FIXME:  Now that we're doing this in the atomic check phase, we
4150	 * should allow skl_update_pipe_wm() to return failure in cases where
4151	 * no suitable watermark values can be found.
4152	 */
4153	for_each_crtc_in_state(state, crtc, cstate, i) {
4154		struct intel_crtc_state *intel_cstate =
4155			to_intel_crtc_state(cstate);
4156		const struct skl_pipe_wm *old_pipe_wm =
4157			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4158
4159		pipe_wm = &intel_cstate->wm.skl.optimal;
4160		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4161					 &results->ddb, &changed);
4162		if (ret)
4163			return ret;
4164
4165		if (changed)
4166			results->dirty_pipes |= drm_crtc_mask(crtc);
4167
4168		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4169			/* This pipe's WM's did not change */
4170			continue;
4171
4172		intel_cstate->update_wm_pre = true;
4173	}
4174
4175	skl_print_wm_changes(state);
 
 
 
 
 
4176
4177	return 0;
 
 
4178}
4179
4180static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4181				      struct intel_crtc_state *cstate)
4182{
4183	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
4184	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4185	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4186	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4187	enum pipe pipe = crtc->pipe;
4188	int plane;
 
 
 
 
 
 
 
 
 
4189
4190	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
4191		return;
4192
4193	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
 
 
 
 
 
 
 
4194
4195	for_each_universal_plane(dev_priv, pipe, plane)
4196		skl_write_plane_wm(crtc, &pipe_wm->planes[plane], ddb, plane);
4197
4198	skl_write_cursor_wm(crtc, &pipe_wm->planes[PLANE_CURSOR], ddb);
4199}
4200
4201static void skl_initial_wm(struct intel_atomic_state *state,
4202			   struct intel_crtc_state *cstate)
4203{
4204	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4205	struct drm_device *dev = intel_crtc->base.dev;
4206	struct drm_i915_private *dev_priv = to_i915(dev);
4207	struct skl_wm_values *results = &state->wm_results;
4208	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4209	enum pipe pipe = intel_crtc->pipe;
4210
4211	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4212		return;
4213
4214	mutex_lock(&dev_priv->wm.wm_mutex);
4215
4216	if (cstate->base.active_changed)
4217		skl_atomic_update_crtc_wm(state, cstate);
4218
4219	skl_copy_wm_for_pipe(hw_vals, results, pipe);
 
 
4220
4221	mutex_unlock(&dev_priv->wm.wm_mutex);
 
4222}
4223
4224static void ilk_compute_wm_config(struct drm_device *dev,
4225				  struct intel_wm_config *config)
4226{
4227	struct intel_crtc *crtc;
4228
4229	/* Compute the currently _active_ config */
4230	for_each_intel_crtc(dev, crtc) {
4231		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4232
4233		if (!wm->pipe_enabled)
4234			continue;
4235
4236		config->sprites_enabled |= wm->sprites_enabled;
4237		config->sprites_scaled |= wm->sprites_scaled;
4238		config->num_pipes_active++;
4239	}
4240}
4241
4242static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4243{
4244	struct drm_device *dev = &dev_priv->drm;
 
 
4245	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4246	struct ilk_wm_maximums max;
4247	struct intel_wm_config config = {};
4248	struct ilk_wm_values results = {};
4249	enum intel_ddb_partitioning partitioning;
4250
4251	ilk_compute_wm_config(dev, &config);
4252
4253	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4254	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4255
4256	/* 5/6 split only in single pipe config on IVB+ */
4257	if (INTEL_GEN(dev_priv) >= 7 &&
4258	    config.num_pipes_active == 1 && config.sprites_enabled) {
4259		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4260		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4261
4262		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4263	} else {
4264		best_lp_wm = &lp_wm_1_2;
4265	}
4266
4267	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4268		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4269
4270	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4271
4272	ilk_write_wm_values(dev_priv, &results);
4273}
4274
4275static void ilk_initial_watermarks(struct intel_atomic_state *state,
4276				   struct intel_crtc_state *cstate)
4277{
4278	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4279	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4280
4281	mutex_lock(&dev_priv->wm.wm_mutex);
4282	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4283	ilk_program_watermarks(dev_priv);
4284	mutex_unlock(&dev_priv->wm.wm_mutex);
4285}
4286
4287static void ilk_optimize_watermarks(struct intel_atomic_state *state,
4288				    struct intel_crtc_state *cstate)
 
 
 
 
4289{
4290	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4291	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4292
4293	mutex_lock(&dev_priv->wm.wm_mutex);
4294	if (cstate->wm.need_postvbl_update) {
4295		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4296		ilk_program_watermarks(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4297	}
4298	mutex_unlock(&dev_priv->wm.wm_mutex);
4299}
4300
4301static inline void skl_wm_level_from_reg_val(uint32_t val,
4302					     struct skl_wm_level *level)
4303{
4304	level->plane_en = val & PLANE_WM_EN;
4305	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
4306	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
4307		PLANE_WM_LINES_MASK;
4308}
4309
4310void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
4311			      struct skl_pipe_wm *out)
4312{
4313	struct drm_device *dev = crtc->dev;
4314	struct drm_i915_private *dev_priv = to_i915(dev);
 
4315	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4316	struct intel_plane *intel_plane;
4317	struct skl_plane_wm *wm;
4318	enum pipe pipe = intel_crtc->pipe;
4319	int level, id, max_level;
4320	uint32_t val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4321
4322	max_level = ilk_wm_max_level(dev_priv);
 
4323
4324	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4325		id = skl_wm_plane_id(intel_plane);
4326		wm = &out->planes[id];
4327
4328		for (level = 0; level <= max_level; level++) {
4329			if (id != PLANE_CURSOR)
4330				val = I915_READ(PLANE_WM(pipe, id, level));
4331			else
4332				val = I915_READ(CUR_WM(pipe, level));
4333
4334			skl_wm_level_from_reg_val(val, &wm->wm[level]);
 
 
 
 
4335		}
 
 
 
4336
4337		if (id != PLANE_CURSOR)
4338			val = I915_READ(PLANE_WM_TRANS(pipe, id));
4339		else
4340			val = I915_READ(CUR_WM_TRANS(pipe));
4341
4342		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4343	}
4344
4345	if (!intel_crtc->active)
4346		return;
4347
4348	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4349}
4350
4351void skl_wm_get_hw_state(struct drm_device *dev)
4352{
4353	struct drm_i915_private *dev_priv = to_i915(dev);
4354	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4355	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4356	struct drm_crtc *crtc;
4357	struct intel_crtc *intel_crtc;
4358	struct intel_crtc_state *cstate;
4359
4360	skl_ddb_get_hw_state(dev_priv, ddb);
4361	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4362		intel_crtc = to_intel_crtc(crtc);
4363		cstate = to_intel_crtc_state(crtc->state);
4364
4365		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
4366
4367		if (intel_crtc->active)
4368			hw->dirty_pipes |= drm_crtc_mask(crtc);
4369	}
4370
4371	if (dev_priv->active_crtcs) {
4372		/* Fully recompute DDB on first atomic commit */
4373		dev_priv->wm.distrust_bios_wm = true;
4374	} else {
4375		/* Easy/common case; just sanitize DDB now if everything off */
4376		memset(ddb, 0, sizeof(*ddb));
4377	}
4378}
4379
4380static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4381{
4382	struct drm_device *dev = crtc->dev;
4383	struct drm_i915_private *dev_priv = to_i915(dev);
4384	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4385	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4386	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4387	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4388	enum pipe pipe = intel_crtc->pipe;
4389	static const i915_reg_t wm0_pipe_reg[] = {
4390		[PIPE_A] = WM0_PIPEA_ILK,
4391		[PIPE_B] = WM0_PIPEB_ILK,
4392		[PIPE_C] = WM0_PIPEC_IVB,
4393	};
4394
4395	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4396	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4397		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4398
4399	memset(active, 0, sizeof(*active));
4400
4401	active->pipe_enabled = intel_crtc->active;
4402
4403	if (active->pipe_enabled) {
4404		u32 tmp = hw->wm_pipe[pipe];
4405
4406		/*
4407		 * For active pipes LP0 watermark is marked as
4408		 * enabled, and LP1+ watermaks as disabled since
4409		 * we can't really reverse compute them in case
4410		 * multiple pipes are active.
4411		 */
4412		active->wm[0].enable = true;
4413		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4414		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4415		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4416		active->linetime = hw->wm_linetime[pipe];
4417	} else {
4418		int level, max_level = ilk_wm_max_level(dev_priv);
4419
4420		/*
4421		 * For inactive pipes, all watermark levels
4422		 * should be marked as enabled but zeroed,
4423		 * which is what we'd compute them to.
4424		 */
4425		for (level = 0; level <= max_level; level++)
4426			active->wm[level].enable = true;
4427	}
4428
4429	intel_crtc->wm.active.ilk = *active;
4430}
4431
4432#define _FW_WM(value, plane) \
4433	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4434#define _FW_WM_VLV(value, plane) \
4435	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4436
4437static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4438			       struct vlv_wm_values *wm)
4439{
4440	enum pipe pipe;
4441	uint32_t tmp;
4442
4443	for_each_pipe(dev_priv, pipe) {
4444		tmp = I915_READ(VLV_DDL(pipe));
4445
4446		wm->ddl[pipe].primary =
4447			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4448		wm->ddl[pipe].cursor =
4449			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4450		wm->ddl[pipe].sprite[0] =
4451			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4452		wm->ddl[pipe].sprite[1] =
4453			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4454	}
4455
4456	tmp = I915_READ(DSPFW1);
4457	wm->sr.plane = _FW_WM(tmp, SR);
4458	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4459	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4460	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4461
4462	tmp = I915_READ(DSPFW2);
4463	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4464	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4465	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4466
4467	tmp = I915_READ(DSPFW3);
4468	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4469
4470	if (IS_CHERRYVIEW(dev_priv)) {
4471		tmp = I915_READ(DSPFW7_CHV);
4472		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4473		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4474
4475		tmp = I915_READ(DSPFW8_CHV);
4476		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4477		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4478
4479		tmp = I915_READ(DSPFW9_CHV);
4480		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4481		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4482
4483		tmp = I915_READ(DSPHOWM);
4484		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4485		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4486		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4487		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4488		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4489		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4490		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4491		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4492		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4493		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4494	} else {
4495		tmp = I915_READ(DSPFW7);
4496		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4497		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4498
4499		tmp = I915_READ(DSPHOWM);
4500		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4501		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4502		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4503		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4504		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4505		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4506		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4507	}
4508}
4509
4510#undef _FW_WM
4511#undef _FW_WM_VLV
4512
4513void vlv_wm_get_hw_state(struct drm_device *dev)
4514{
4515	struct drm_i915_private *dev_priv = to_i915(dev);
4516	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4517	struct intel_plane *plane;
4518	enum pipe pipe;
4519	u32 val;
4520
4521	vlv_read_wm_values(dev_priv, wm);
4522
4523	for_each_intel_plane(dev, plane) {
4524		switch (plane->base.type) {
4525			int sprite;
4526		case DRM_PLANE_TYPE_CURSOR:
4527			plane->wm.fifo_size = 63;
4528			break;
4529		case DRM_PLANE_TYPE_PRIMARY:
4530			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, 0);
4531			break;
4532		case DRM_PLANE_TYPE_OVERLAY:
4533			sprite = plane->plane;
4534			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, sprite + 1);
4535			break;
4536		}
4537	}
4538
4539	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4540	wm->level = VLV_WM_LEVEL_PM2;
4541
4542	if (IS_CHERRYVIEW(dev_priv)) {
4543		mutex_lock(&dev_priv->rps.hw_lock);
4544
4545		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4546		if (val & DSP_MAXFIFO_PM5_ENABLE)
4547			wm->level = VLV_WM_LEVEL_PM5;
4548
4549		/*
4550		 * If DDR DVFS is disabled in the BIOS, Punit
4551		 * will never ack the request. So if that happens
4552		 * assume we don't have to enable/disable DDR DVFS
4553		 * dynamically. To test that just set the REQ_ACK
4554		 * bit to poke the Punit, but don't change the
4555		 * HIGH/LOW bits so that we don't actually change
4556		 * the current state.
4557		 */
4558		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4559		val |= FORCE_DDR_FREQ_REQ_ACK;
4560		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4561
4562		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4563			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4564			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4565				      "assuming DDR DVFS is disabled\n");
4566			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4567		} else {
4568			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4569			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4570				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4571		}
4572
4573		mutex_unlock(&dev_priv->rps.hw_lock);
4574	}
4575
4576	for_each_pipe(dev_priv, pipe)
4577		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4578			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4579			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4580
4581	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4582		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4583}
4584
4585void ilk_wm_get_hw_state(struct drm_device *dev)
4586{
4587	struct drm_i915_private *dev_priv = to_i915(dev);
4588	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4589	struct drm_crtc *crtc;
4590
4591	for_each_crtc(dev, crtc)
4592		ilk_pipe_wm_get_hw_state(crtc);
4593
4594	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4595	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4596	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4597
4598	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4599	if (INTEL_GEN(dev_priv) >= 7) {
4600		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4601		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4602	}
4603
4604	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4605		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4606			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4607	else if (IS_IVYBRIDGE(dev_priv))
4608		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4609			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4610
4611	hw->enable_fbc_wm =
4612		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4613}
4614
4615/**
4616 * intel_update_watermarks - update FIFO watermark values based on current modes
4617 *
4618 * Calculate watermark values for the various WM regs based on current mode
4619 * and plane configuration.
4620 *
4621 * There are several cases to deal with here:
4622 *   - normal (i.e. non-self-refresh)
4623 *   - self-refresh (SR) mode
4624 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4625 *   - lines are small relative to FIFO size (buffer can hold more than 2
4626 *     lines), so need to account for TLB latency
4627 *
4628 *   The normal calculation is:
4629 *     watermark = dotclock * bytes per pixel * latency
4630 *   where latency is platform & configuration dependent (we assume pessimal
4631 *   values here).
4632 *
4633 *   The SR calculation is:
4634 *     watermark = (trunc(latency/line time)+1) * surface width *
4635 *       bytes per pixel
4636 *   where
4637 *     line time = htotal / dotclock
4638 *     surface width = hdisplay for normal plane and 64 for cursor
4639 *   and latency is assumed to be high, as above.
4640 *
4641 * The final value programmed to the register should always be rounded up,
4642 * and include an extra 2 entries to account for clock crossings.
4643 *
4644 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4645 * to set the non-SR watermarks to 8.
4646 */
4647void intel_update_watermarks(struct intel_crtc *crtc)
4648{
4649	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4650
4651	if (dev_priv->display.update_wm)
4652		dev_priv->display.update_wm(crtc);
4653}
4654
4655/*
4656 * Lock protecting IPS related data structures
4657 */
4658DEFINE_SPINLOCK(mchdev_lock);
4659
4660/* Global for IPS driver to get at the current i915 device. Protected by
4661 * mchdev_lock. */
4662static struct drm_i915_private *i915_mch_dev;
4663
4664bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4665{
 
4666	u16 rgvswctl;
4667
4668	assert_spin_locked(&mchdev_lock);
4669
4670	rgvswctl = I915_READ16(MEMSWCTL);
4671	if (rgvswctl & MEMCTL_CMD_STS) {
4672		DRM_DEBUG("gpu busy, RCS change rejected\n");
4673		return false; /* still busy with another command */
4674	}
4675
4676	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4677		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4678	I915_WRITE16(MEMSWCTL, rgvswctl);
4679	POSTING_READ16(MEMSWCTL);
4680
4681	rgvswctl |= MEMCTL_CMD_STS;
4682	I915_WRITE16(MEMSWCTL, rgvswctl);
4683
4684	return true;
4685}
4686
4687static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4688{
 
4689	u32 rgvmodectl;
4690	u8 fmax, fmin, fstart, vstart;
4691
4692	spin_lock_irq(&mchdev_lock);
4693
4694	rgvmodectl = I915_READ(MEMMODECTL);
4695
4696	/* Enable temp reporting */
4697	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4698	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4699
4700	/* 100ms RC evaluation intervals */
4701	I915_WRITE(RCUPEI, 100000);
4702	I915_WRITE(RCDNEI, 100000);
4703
4704	/* Set max/min thresholds to 90ms and 80ms respectively */
4705	I915_WRITE(RCBMAXAVG, 90000);
4706	I915_WRITE(RCBMINAVG, 80000);
4707
4708	I915_WRITE(MEMIHYST, 1);
4709
4710	/* Set up min, max, and cur for interrupt handling */
4711	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4712	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4713	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4714		MEMMODE_FSTART_SHIFT;
4715
4716	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4717		PXVFREQ_PX_SHIFT;
4718
4719	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4720	dev_priv->ips.fstart = fstart;
4721
4722	dev_priv->ips.max_delay = fstart;
4723	dev_priv->ips.min_delay = fmin;
4724	dev_priv->ips.cur_delay = fstart;
4725
4726	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4727			 fmax, fmin, fstart);
4728
4729	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4730
4731	/*
4732	 * Interrupts will be enabled in ironlake_irq_postinstall
4733	 */
4734
4735	I915_WRITE(VIDSTART, vstart);
4736	POSTING_READ(VIDSTART);
4737
4738	rgvmodectl |= MEMMODE_SWMODE_EN;
4739	I915_WRITE(MEMMODECTL, rgvmodectl);
4740
4741	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4742		DRM_ERROR("stuck trying to change perf mode\n");
4743	mdelay(1);
4744
4745	ironlake_set_drps(dev_priv, fstart);
4746
4747	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4748		I915_READ(DDREC) + I915_READ(CSIEC);
4749	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4750	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4751	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4752
4753	spin_unlock_irq(&mchdev_lock);
4754}
4755
4756static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4757{
 
4758	u16 rgvswctl;
4759
4760	spin_lock_irq(&mchdev_lock);
4761
4762	rgvswctl = I915_READ16(MEMSWCTL);
4763
4764	/* Ack interrupts, disable EFC interrupt */
4765	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4766	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4767	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4768	I915_WRITE(DEIIR, DE_PCU_EVENT);
4769	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4770
4771	/* Go back to the starting frequency */
4772	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4773	mdelay(1);
4774	rgvswctl |= MEMCTL_CMD_STS;
4775	I915_WRITE(MEMSWCTL, rgvswctl);
4776	mdelay(1);
4777
4778	spin_unlock_irq(&mchdev_lock);
4779}
4780
4781/* There's a funny hw issue where the hw returns all 0 when reading from
4782 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4783 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4784 * all limits and the gpu stuck at whatever frequency it is at atm).
4785 */
4786static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4787{
4788	u32 limits;
4789
4790	/* Only set the down limit when we've reached the lowest level to avoid
4791	 * getting more interrupts, otherwise leave this clear. This prevents a
4792	 * race in the hw when coming out of rc6: There's a tiny window where
4793	 * the hw runs at the minimal clock before selecting the desired
4794	 * frequency, if the down threshold expires in that window we will not
4795	 * receive a down interrupt. */
4796	if (IS_GEN9(dev_priv)) {
4797		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4798		if (val <= dev_priv->rps.min_freq_softlimit)
4799			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4800	} else {
4801		limits = dev_priv->rps.max_freq_softlimit << 24;
4802		if (val <= dev_priv->rps.min_freq_softlimit)
4803			limits |= dev_priv->rps.min_freq_softlimit << 16;
4804	}
4805
4806	return limits;
4807}
4808
4809static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4810{
4811	int new_power;
4812	u32 threshold_up = 0, threshold_down = 0; /* in % */
4813	u32 ei_up = 0, ei_down = 0;
4814
4815	new_power = dev_priv->rps.power;
4816	switch (dev_priv->rps.power) {
4817	case LOW_POWER:
4818		if (val > dev_priv->rps.efficient_freq + 1 &&
4819		    val > dev_priv->rps.cur_freq)
4820			new_power = BETWEEN;
4821		break;
4822
4823	case BETWEEN:
4824		if (val <= dev_priv->rps.efficient_freq &&
4825		    val < dev_priv->rps.cur_freq)
4826			new_power = LOW_POWER;
4827		else if (val >= dev_priv->rps.rp0_freq &&
4828			 val > dev_priv->rps.cur_freq)
4829			new_power = HIGH_POWER;
4830		break;
4831
4832	case HIGH_POWER:
4833		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4834		    val < dev_priv->rps.cur_freq)
4835			new_power = BETWEEN;
4836		break;
4837	}
4838	/* Max/min bins are special */
4839	if (val <= dev_priv->rps.min_freq_softlimit)
4840		new_power = LOW_POWER;
4841	if (val >= dev_priv->rps.max_freq_softlimit)
4842		new_power = HIGH_POWER;
4843	if (new_power == dev_priv->rps.power)
4844		return;
4845
4846	/* Note the units here are not exactly 1us, but 1280ns. */
4847	switch (new_power) {
4848	case LOW_POWER:
4849		/* Upclock if more than 95% busy over 16ms */
4850		ei_up = 16000;
4851		threshold_up = 95;
4852
4853		/* Downclock if less than 85% busy over 32ms */
4854		ei_down = 32000;
4855		threshold_down = 85;
4856		break;
4857
4858	case BETWEEN:
4859		/* Upclock if more than 90% busy over 13ms */
4860		ei_up = 13000;
4861		threshold_up = 90;
4862
4863		/* Downclock if less than 75% busy over 32ms */
4864		ei_down = 32000;
4865		threshold_down = 75;
4866		break;
4867
4868	case HIGH_POWER:
4869		/* Upclock if more than 85% busy over 10ms */
4870		ei_up = 10000;
4871		threshold_up = 85;
4872
4873		/* Downclock if less than 60% busy over 32ms */
4874		ei_down = 32000;
4875		threshold_down = 60;
4876		break;
4877	}
4878
4879	/* When byt can survive without system hang with dynamic
4880	 * sw freq adjustments, this restriction can be lifted.
4881	 */
4882	if (IS_VALLEYVIEW(dev_priv))
4883		goto skip_hw_write;
4884
4885	I915_WRITE(GEN6_RP_UP_EI,
4886		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4887	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4888		   GT_INTERVAL_FROM_US(dev_priv,
4889				       ei_up * threshold_up / 100));
4890
4891	I915_WRITE(GEN6_RP_DOWN_EI,
4892		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4893	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4894		   GT_INTERVAL_FROM_US(dev_priv,
4895				       ei_down * threshold_down / 100));
4896
4897	I915_WRITE(GEN6_RP_CONTROL,
4898		   GEN6_RP_MEDIA_TURBO |
4899		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4900		   GEN6_RP_MEDIA_IS_GFX |
4901		   GEN6_RP_ENABLE |
4902		   GEN6_RP_UP_BUSY_AVG |
4903		   GEN6_RP_DOWN_IDLE_AVG);
4904
4905skip_hw_write:
4906	dev_priv->rps.power = new_power;
4907	dev_priv->rps.up_threshold = threshold_up;
4908	dev_priv->rps.down_threshold = threshold_down;
4909	dev_priv->rps.last_adj = 0;
4910}
4911
4912static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4913{
4914	u32 mask = 0;
4915
4916	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
4917	if (val > dev_priv->rps.min_freq_softlimit)
4918		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4919	if (val < dev_priv->rps.max_freq_softlimit)
4920		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4921
4922	mask &= dev_priv->pm_rps_events;
4923
4924	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4925}
4926
4927/* gen6_set_rps is called to update the frequency request, but should also be
4928 * called when the range (min_delay and max_delay) is modified so that we can
4929 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4930static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4931{
 
 
4932	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4933	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4934		return;
4935
4936	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4937	WARN_ON(val > dev_priv->rps.max_freq);
4938	WARN_ON(val < dev_priv->rps.min_freq);
4939
4940	/* min/max delay may still have been modified so be sure to
4941	 * write the limits value.
4942	 */
4943	if (val != dev_priv->rps.cur_freq) {
4944		gen6_set_rps_thresholds(dev_priv, val);
4945
4946		if (IS_GEN9(dev_priv))
4947			I915_WRITE(GEN6_RPNSWREQ,
4948				   GEN9_FREQUENCY(val));
4949		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4950			I915_WRITE(GEN6_RPNSWREQ,
4951				   HSW_FREQUENCY(val));
4952		else
4953			I915_WRITE(GEN6_RPNSWREQ,
4954				   GEN6_FREQUENCY(val) |
4955				   GEN6_OFFSET(0) |
4956				   GEN6_AGGRESSIVE_TURBO);
4957	}
4958
4959	/* Make sure we continue to get interrupts
4960	 * until we hit the minimum or maximum frequencies.
4961	 */
4962	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4963	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4964
4965	POSTING_READ(GEN6_RPNSWREQ);
4966
4967	dev_priv->rps.cur_freq = val;
4968	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4969}
4970
4971static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4972{
 
 
4973	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4974	WARN_ON(val > dev_priv->rps.max_freq);
4975	WARN_ON(val < dev_priv->rps.min_freq);
4976
4977	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4978		      "Odd GPU freq value\n"))
4979		val &= ~1;
4980
4981	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4982
4983	if (val != dev_priv->rps.cur_freq) {
4984		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4985		if (!IS_CHERRYVIEW(dev_priv))
4986			gen6_set_rps_thresholds(dev_priv, val);
4987	}
4988
4989	dev_priv->rps.cur_freq = val;
4990	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4991}
4992
4993/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4994 *
4995 * * If Gfx is Idle, then
4996 * 1. Forcewake Media well.
4997 * 2. Request idle freq.
4998 * 3. Release Forcewake of Media well.
4999*/
5000static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5001{
5002	u32 val = dev_priv->rps.idle_freq;
5003
5004	if (dev_priv->rps.cur_freq <= val)
5005		return;
5006
5007	/* Wake up the media well, as that takes a lot less
5008	 * power than the Render well. */
5009	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5010	valleyview_set_rps(dev_priv, val);
5011	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5012}
5013
5014void gen6_rps_busy(struct drm_i915_private *dev_priv)
5015{
5016	mutex_lock(&dev_priv->rps.hw_lock);
5017	if (dev_priv->rps.enabled) {
5018		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5019			gen6_rps_reset_ei(dev_priv);
5020		I915_WRITE(GEN6_PMINTRMSK,
5021			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5022
5023		gen6_enable_rps_interrupts(dev_priv);
5024
5025		/* Ensure we start at the user's desired frequency */
5026		intel_set_rps(dev_priv,
5027			      clamp(dev_priv->rps.cur_freq,
5028				    dev_priv->rps.min_freq_softlimit,
5029				    dev_priv->rps.max_freq_softlimit));
5030	}
5031	mutex_unlock(&dev_priv->rps.hw_lock);
5032}
5033
5034void gen6_rps_idle(struct drm_i915_private *dev_priv)
5035{
5036	/* Flush our bottom-half so that it does not race with us
5037	 * setting the idle frequency and so that it is bounded by
5038	 * our rpm wakeref. And then disable the interrupts to stop any
5039	 * futher RPS reclocking whilst we are asleep.
5040	 */
5041	gen6_disable_rps_interrupts(dev_priv);
5042
5043	mutex_lock(&dev_priv->rps.hw_lock);
5044	if (dev_priv->rps.enabled) {
5045		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5046			vlv_set_rps_idle(dev_priv);
5047		else
5048			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5049		dev_priv->rps.last_adj = 0;
5050		I915_WRITE(GEN6_PMINTRMSK,
5051			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5052	}
5053	mutex_unlock(&dev_priv->rps.hw_lock);
5054
5055	spin_lock(&dev_priv->rps.client_lock);
5056	while (!list_empty(&dev_priv->rps.clients))
5057		list_del_init(dev_priv->rps.clients.next);
5058	spin_unlock(&dev_priv->rps.client_lock);
5059}
5060
5061void gen6_rps_boost(struct drm_i915_private *dev_priv,
5062		    struct intel_rps_client *rps,
5063		    unsigned long submitted)
5064{
5065	/* This is intentionally racy! We peek at the state here, then
5066	 * validate inside the RPS worker.
5067	 */
5068	if (!(dev_priv->gt.awake &&
5069	      dev_priv->rps.enabled &&
5070	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5071		return;
5072
5073	/* Force a RPS boost (and don't count it against the client) if
5074	 * the GPU is severely congested.
5075	 */
5076	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5077		rps = NULL;
5078
5079	spin_lock(&dev_priv->rps.client_lock);
5080	if (rps == NULL || list_empty(&rps->link)) {
5081		spin_lock_irq(&dev_priv->irq_lock);
5082		if (dev_priv->rps.interrupts_enabled) {
5083			dev_priv->rps.client_boost = true;
5084			schedule_work(&dev_priv->rps.work);
5085		}
5086		spin_unlock_irq(&dev_priv->irq_lock);
5087
5088		if (rps != NULL) {
5089			list_add(&rps->link, &dev_priv->rps.clients);
5090			rps->boosts++;
5091		} else
5092			dev_priv->rps.boosts++;
5093	}
5094	spin_unlock(&dev_priv->rps.client_lock);
5095}
5096
5097void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5098{
5099	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5100		valleyview_set_rps(dev_priv, val);
5101	else
5102		gen6_set_rps(dev_priv, val);
5103}
5104
5105static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5106{
 
 
5107	I915_WRITE(GEN6_RC_CONTROL, 0);
5108	I915_WRITE(GEN9_PG_ENABLE, 0);
5109}
5110
5111static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5112{
5113	I915_WRITE(GEN6_RP_CONTROL, 0);
5114}
5115
5116static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5117{
5118	I915_WRITE(GEN6_RC_CONTROL, 0);
5119	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5120	I915_WRITE(GEN6_RP_CONTROL, 0);
5121}
5122
5123static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5124{
 
 
5125	I915_WRITE(GEN6_RC_CONTROL, 0);
5126}
5127
5128static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5129{
 
 
5130	/* we're doing forcewake before Disabling RC6,
5131	 * This what the BIOS expects when going into suspend */
5132	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5133
5134	I915_WRITE(GEN6_RC_CONTROL, 0);
5135
5136	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5137}
5138
5139static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5140{
5141	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5142		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5143			mode = GEN6_RC_CTL_RC6_ENABLE;
5144		else
5145			mode = 0;
5146	}
5147	if (HAS_RC6p(dev_priv))
5148		DRM_DEBUG_DRIVER("Enabling RC6 states: "
5149				 "RC6 %s RC6p %s RC6pp %s\n",
5150				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5151				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5152				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5153
5154	else
5155		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5156				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5157}
5158
5159static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5160{
5161	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5162	bool enable_rc6 = true;
5163	unsigned long rc6_ctx_base;
5164	u32 rc_ctl;
5165	int rc_sw_target;
5166
5167	rc_ctl = I915_READ(GEN6_RC_CONTROL);
5168	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5169		       RC_SW_TARGET_STATE_SHIFT;
5170	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5171			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5172			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5173			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5174			 rc_sw_target);
5175
5176	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5177		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5178		enable_rc6 = false;
5179	}
5180
5181	/*
5182	 * The exact context size is not known for BXT, so assume a page size
5183	 * for this check.
5184	 */
5185	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5186	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5187	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5188					ggtt->stolen_reserved_size))) {
5189		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5190		enable_rc6 = false;
5191	}
5192
5193	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5194	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5195	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5196	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5197		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5198		enable_rc6 = false;
5199	}
5200
5201	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5202	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5203	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5204		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5205		enable_rc6 = false;
5206	}
5207
5208	if (!I915_READ(GEN6_GFXPAUSE)) {
5209		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5210		enable_rc6 = false;
5211	}
5212
5213	if (!I915_READ(GEN8_MISC_CTRL0)) {
5214		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5215		enable_rc6 = false;
5216	}
5217
5218	return enable_rc6;
5219}
5220
5221int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5222{
5223	/* No RC6 before Ironlake and code is gone for ilk. */
5224	if (INTEL_INFO(dev_priv)->gen < 6)
5225		return 0;
5226
5227	if (!enable_rc6)
5228		return 0;
5229
5230	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5231		DRM_INFO("RC6 disabled by BIOS\n");
5232		return 0;
5233	}
5234
5235	/* Respect the kernel parameter if it is set */
5236	if (enable_rc6 >= 0) {
5237		int mask;
5238
5239		if (HAS_RC6p(dev_priv))
5240			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5241			       INTEL_RC6pp_ENABLE;
5242		else
5243			mask = INTEL_RC6_ENABLE;
5244
5245		if ((enable_rc6 & mask) != enable_rc6)
5246			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5247					 "(requested %d, valid %d)\n",
5248					 enable_rc6 & mask, enable_rc6, mask);
5249
5250		return enable_rc6 & mask;
5251	}
5252
5253	if (IS_IVYBRIDGE(dev_priv))
5254		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5255
5256	return INTEL_RC6_ENABLE;
5257}
5258
5259static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
 
 
 
 
 
5260{
 
 
 
 
 
5261	/* All of these values are in units of 50MHz */
5262
5263	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5264	if (IS_BROXTON(dev_priv)) {
5265		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5266		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5267		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5268		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5269	} else {
5270		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5271		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5272		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5273		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5274	}
 
5275	/* hw_max = RP0 until we check for overclocking */
5276	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5277
5278	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5279	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5280	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5281		u32 ddcc_status = 0;
5282
5283		if (sandybridge_pcode_read(dev_priv,
5284					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5285					   &ddcc_status) == 0)
5286			dev_priv->rps.efficient_freq =
5287				clamp_t(u8,
5288					((ddcc_status >> 8) & 0xff),
5289					dev_priv->rps.min_freq,
5290					dev_priv->rps.max_freq);
5291	}
5292
5293	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5294		/* Store the frequency values in 16.66 MHZ units, which is
5295		 * the natural hardware unit for SKL
5296		 */
5297		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5298		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5299		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5300		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5301		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5302	}
5303}
5304
5305static void reset_rps(struct drm_i915_private *dev_priv,
5306		      void (*set)(struct drm_i915_private *, u8))
5307{
5308	u8 freq = dev_priv->rps.cur_freq;
5309
5310	/* force a reset */
5311	dev_priv->rps.power = -1;
5312	dev_priv->rps.cur_freq = -1;
5313
5314	set(dev_priv, freq);
 
 
 
 
 
 
 
 
5315}
5316
5317/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5318static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5319{
 
 
5320	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5321
 
 
5322	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5323	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5324		/*
5325		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
5326		 * clear out the Control register just to avoid inconsitency
5327		 * with debugfs interface, which will show  Turbo as enabled
5328		 * only and that is not expected by the User after adding the
5329		 * WaGsvDisableTurbo. Apart from this there is no problem even
5330		 * if the Turbo is left enabled in the Control register, as the
5331		 * Up/Down interrupts would remain masked.
5332		 */
5333		gen9_disable_rps(dev_priv);
5334		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5335		return;
5336	}
5337
5338	/* Program defaults and thresholds for RPS*/
5339	I915_WRITE(GEN6_RC_VIDEO_FREQ,
5340		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5341
5342	/* 1 second timeout*/
5343	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5344		GT_INTERVAL_FROM_US(dev_priv, 1000000));
5345
5346	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5347
5348	/* Leaning on the below call to gen6_set_rps to program/setup the
5349	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5350	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5351	reset_rps(dev_priv, gen6_set_rps);
 
5352
5353	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5354}
5355
5356static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5357{
5358	struct intel_engine_cs *engine;
5359	enum intel_engine_id id;
5360	uint32_t rc6_mask = 0;
 
5361
5362	/* 1a: Software RC state - RC0 */
5363	I915_WRITE(GEN6_RC_STATE, 0);
5364
5365	/* 1b: Get forcewake during program sequence. Although the driver
5366	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5367	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5368
5369	/* 2a: Disable RC states. */
5370	I915_WRITE(GEN6_RC_CONTROL, 0);
5371
5372	/* 2b: Program RC6 thresholds.*/
5373
5374	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5375	if (IS_SKYLAKE(dev_priv))
5376		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5377	else
5378		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5379	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5380	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5381	for_each_engine(engine, dev_priv, id)
5382		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5383
5384	if (HAS_GUC(dev_priv))
5385		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5386
5387	I915_WRITE(GEN6_RC_SLEEP, 0);
5388
5389	/* 2c: Program Coarse Power Gating Policies. */
5390	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5391	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5392
5393	/* 3a: Enable RC6 */
5394	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5395		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5396	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5397	/* WaRsUseTimeoutMode:bxt */
5398	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
 
5399		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5400		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5401			   GEN7_RC_CTL_TO_MODE |
5402			   rc6_mask);
5403	} else {
5404		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5405		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5406			   GEN6_RC_CTL_EI_MODE(1) |
5407			   rc6_mask);
5408	}
5409
5410	/*
5411	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5412	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5413	 */
5414	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5415		I915_WRITE(GEN9_PG_ENABLE, 0);
5416	else
5417		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5418				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5419
5420	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 
5421}
5422
5423static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5424{
5425	struct intel_engine_cs *engine;
5426	enum intel_engine_id id;
5427	uint32_t rc6_mask = 0;
 
5428
5429	/* 1a: Software RC state - RC0 */
5430	I915_WRITE(GEN6_RC_STATE, 0);
5431
5432	/* 1c & 1d: Get forcewake during program sequence. Although the driver
5433	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5434	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5435
5436	/* 2a: Disable RC states. */
5437	I915_WRITE(GEN6_RC_CONTROL, 0);
5438
 
 
 
5439	/* 2b: Program RC6 thresholds.*/
5440	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5441	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5442	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5443	for_each_engine(engine, dev_priv, id)
5444		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5445	I915_WRITE(GEN6_RC_SLEEP, 0);
5446	if (IS_BROADWELL(dev_priv))
5447		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5448	else
5449		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5450
5451	/* 3: Enable RC6 */
5452	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5453		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5454	intel_print_rc6_info(dev_priv, rc6_mask);
5455	if (IS_BROADWELL(dev_priv))
5456		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5457				GEN7_RC_CTL_TO_MODE |
5458				rc6_mask);
5459	else
5460		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5461				GEN6_RC_CTL_EI_MODE(1) |
5462				rc6_mask);
5463
5464	/* 4 Program defaults and thresholds for RPS*/
5465	I915_WRITE(GEN6_RPNSWREQ,
5466		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5467	I915_WRITE(GEN6_RC_VIDEO_FREQ,
5468		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5469	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5470	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5471
5472	/* Docs recommend 900MHz, and 300 MHz respectively */
5473	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5474		   dev_priv->rps.max_freq_softlimit << 24 |
5475		   dev_priv->rps.min_freq_softlimit << 16);
5476
5477	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5478	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5479	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5480	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5481
5482	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5483
5484	/* 5: Enable RPS */
5485	I915_WRITE(GEN6_RP_CONTROL,
5486		   GEN6_RP_MEDIA_TURBO |
5487		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5488		   GEN6_RP_MEDIA_IS_GFX |
5489		   GEN6_RP_ENABLE |
5490		   GEN6_RP_UP_BUSY_AVG |
5491		   GEN6_RP_DOWN_IDLE_AVG);
5492
5493	/* 6: Ring frequency + overclocking (our driver does this later */
5494
5495	reset_rps(dev_priv, gen6_set_rps);
 
5496
5497	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5498}
5499
5500static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5501{
5502	struct intel_engine_cs *engine;
5503	enum intel_engine_id id;
5504	u32 rc6vids, rc6_mask = 0;
5505	u32 gtfifodbg;
5506	int rc6_mode;
5507	int ret;
5508
5509	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5510
5511	/* Here begins a magic sequence of register writes to enable
5512	 * auto-downclocking.
5513	 *
5514	 * Perhaps there might be some value in exposing these to
5515	 * userspace...
5516	 */
5517	I915_WRITE(GEN6_RC_STATE, 0);
5518
5519	/* Clear the DBG now so we don't confuse earlier errors */
5520	gtfifodbg = I915_READ(GTFIFODBG);
5521	if (gtfifodbg) {
5522		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5523		I915_WRITE(GTFIFODBG, gtfifodbg);
5524	}
5525
5526	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5527
 
 
 
5528	/* disable the counters and set deterministic thresholds */
5529	I915_WRITE(GEN6_RC_CONTROL, 0);
5530
5531	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5532	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5533	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5534	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5535	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5536
5537	for_each_engine(engine, dev_priv, id)
5538		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5539
5540	I915_WRITE(GEN6_RC_SLEEP, 0);
5541	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5542	if (IS_IVYBRIDGE(dev_priv))
5543		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5544	else
5545		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5546	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5547	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5548
5549	/* Check if we are enabling RC6 */
5550	rc6_mode = intel_enable_rc6();
5551	if (rc6_mode & INTEL_RC6_ENABLE)
5552		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5553
5554	/* We don't use those on Haswell */
5555	if (!IS_HASWELL(dev_priv)) {
5556		if (rc6_mode & INTEL_RC6p_ENABLE)
5557			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5558
5559		if (rc6_mode & INTEL_RC6pp_ENABLE)
5560			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5561	}
5562
5563	intel_print_rc6_info(dev_priv, rc6_mask);
5564
5565	I915_WRITE(GEN6_RC_CONTROL,
5566		   rc6_mask |
5567		   GEN6_RC_CTL_EI_MODE(1) |
5568		   GEN6_RC_CTL_HW_ENABLE);
5569
5570	/* Power down if completely idle for over 50ms */
5571	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5572	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5573
5574	reset_rps(dev_priv, gen6_set_rps);
 
 
 
 
 
 
 
 
 
 
 
 
 
5575
5576	rc6vids = 0;
5577	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5578	if (IS_GEN6(dev_priv) && ret) {
5579		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5580	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5581		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5582			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5583		rc6vids &= 0xffff00;
5584		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5585		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5586		if (ret)
5587			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5588	}
5589
5590	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5591}
5592
5593static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5594{
 
5595	int min_freq = 15;
5596	unsigned int gpu_freq;
5597	unsigned int max_ia_freq, min_ring_freq;
5598	unsigned int max_gpu_freq, min_gpu_freq;
5599	int scaling_factor = 180;
5600	struct cpufreq_policy *policy;
5601
5602	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5603
5604	policy = cpufreq_cpu_get(0);
5605	if (policy) {
5606		max_ia_freq = policy->cpuinfo.max_freq;
5607		cpufreq_cpu_put(policy);
5608	} else {
5609		/*
5610		 * Default to measured freq if none found, PCU will ensure we
5611		 * don't go over
5612		 */
5613		max_ia_freq = tsc_khz;
5614	}
5615
5616	/* Convert from kHz to MHz */
5617	max_ia_freq /= 1000;
5618
5619	min_ring_freq = I915_READ(DCLK) & 0xf;
5620	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5621	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5622
5623	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5624		/* Convert GT frequency to 50 HZ units */
5625		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5626		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5627	} else {
5628		min_gpu_freq = dev_priv->rps.min_freq;
5629		max_gpu_freq = dev_priv->rps.max_freq;
5630	}
5631
5632	/*
5633	 * For each potential GPU frequency, load a ring frequency we'd like
5634	 * to use for memory access.  We do this by specifying the IA frequency
5635	 * the PCU should use as a reference to determine the ring frequency.
5636	 */
5637	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5638		int diff = max_gpu_freq - gpu_freq;
5639		unsigned int ia_freq = 0, ring_freq = 0;
5640
5641		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5642			/*
5643			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5644			 * No floor required for ring frequency on SKL.
5645			 */
5646			ring_freq = gpu_freq;
5647		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5648			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5649			ring_freq = max(min_ring_freq, gpu_freq);
5650		} else if (IS_HASWELL(dev_priv)) {
5651			ring_freq = mult_frac(gpu_freq, 5, 4);
5652			ring_freq = max(min_ring_freq, ring_freq);
5653			/* leave ia_freq as the default, chosen by cpufreq */
5654		} else {
5655			/* On older processors, there is no separate ring
5656			 * clock domain, so in order to boost the bandwidth
5657			 * of the ring, we need to upclock the CPU (ia_freq).
5658			 *
5659			 * For GPU frequencies less than 750MHz,
5660			 * just use the lowest ring freq.
5661			 */
5662			if (gpu_freq < min_freq)
5663				ia_freq = 800;
5664			else
5665				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5666			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5667		}
5668
5669		sandybridge_pcode_write(dev_priv,
5670					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5671					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5672					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5673					gpu_freq);
5674	}
5675}
5676
 
 
 
 
 
 
 
 
 
 
 
 
5677static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5678{
 
5679	u32 val, rp0;
5680
5681	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5682
5683	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5684	case 8:
5685		/* (2 * 4) config */
5686		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5687		break;
5688	case 12:
5689		/* (2 * 6) config */
5690		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5691		break;
5692	case 16:
5693		/* (2 * 8) config */
5694	default:
5695		/* Setting (2 * 8) Min RP0 for any other combination */
5696		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5697		break;
5698	}
5699
5700	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5701
5702	return rp0;
5703}
5704
5705static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5706{
5707	u32 val, rpe;
5708
5709	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5710	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5711
5712	return rpe;
5713}
5714
5715static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5716{
5717	u32 val, rp1;
5718
5719	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5720	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5721
5722	return rp1;
5723}
5724
5725static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5726{
5727	u32 val, rp1;
5728
5729	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5730
5731	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5732
5733	return rp1;
5734}
5735
5736static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5737{
5738	u32 val, rp0;
5739
5740	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5741
5742	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5743	/* Clamp to max */
5744	rp0 = min_t(u32, rp0, 0xea);
5745
5746	return rp0;
5747}
5748
5749static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5750{
5751	u32 val, rpe;
5752
5753	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5754	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5755	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5756	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5757
5758	return rpe;
5759}
5760
5761static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5762{
5763	u32 val;
5764
5765	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5766	/*
5767	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5768	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5769	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5770	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5771	 * to make sure it matches what Punit accepts.
5772	 */
5773	return max_t(u32, val, 0xc0);
5774}
5775
5776/* Check that the pctx buffer wasn't move under us. */
5777static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5778{
5779	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5780
5781	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5782			     dev_priv->vlv_pctx->stolen->start);
5783}
5784
5785
5786/* Check that the pcbr address is not empty. */
5787static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5788{
5789	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5790
5791	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5792}
5793
5794static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5795{
5796	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5797	unsigned long pctx_paddr, paddr;
 
5798	u32 pcbr;
5799	int pctx_size = 32*1024;
5800
5801	pcbr = I915_READ(VLV_PCBR);
5802	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5803		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5804		paddr = (dev_priv->mm.stolen_base +
5805			 (ggtt->stolen_size - pctx_size));
5806
5807		pctx_paddr = (paddr & (~4095));
5808		I915_WRITE(VLV_PCBR, pctx_paddr);
5809	}
5810
5811	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5812}
5813
5814static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5815{
 
5816	struct drm_i915_gem_object *pctx;
5817	unsigned long pctx_paddr;
5818	u32 pcbr;
5819	int pctx_size = 24*1024;
5820
 
 
5821	pcbr = I915_READ(VLV_PCBR);
5822	if (pcbr) {
5823		/* BIOS set it up already, grab the pre-alloc'd space */
5824		int pcbr_offset;
5825
5826		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5827		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5828								      pcbr_offset,
5829								      I915_GTT_OFFSET_NONE,
5830								      pctx_size);
5831		goto out;
5832	}
5833
5834	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5835
5836	/*
5837	 * From the Gunit register HAS:
5838	 * The Gfx driver is expected to program this register and ensure
5839	 * proper allocation within Gfx stolen memory.  For example, this
5840	 * register should be programmed such than the PCBR range does not
5841	 * overlap with other ranges, such as the frame buffer, protected
5842	 * memory, or any other relevant ranges.
5843	 */
5844	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5845	if (!pctx) {
5846		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5847		goto out;
5848	}
5849
5850	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5851	I915_WRITE(VLV_PCBR, pctx_paddr);
5852
5853out:
5854	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5855	dev_priv->vlv_pctx = pctx;
 
5856}
5857
5858static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5859{
 
 
5860	if (WARN_ON(!dev_priv->vlv_pctx))
5861		return;
5862
5863	i915_gem_object_put(dev_priv->vlv_pctx);
5864	dev_priv->vlv_pctx = NULL;
5865}
5866
5867static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5868{
5869	dev_priv->rps.gpll_ref_freq =
5870		vlv_get_cck_clock(dev_priv, "GPLL ref",
5871				  CCK_GPLL_CLOCK_CONTROL,
5872				  dev_priv->czclk_freq);
5873
5874	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5875			 dev_priv->rps.gpll_ref_freq);
5876}
5877
5878static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5879{
 
5880	u32 val;
5881
5882	valleyview_setup_pctx(dev_priv);
5883
5884	vlv_init_gpll_ref_freq(dev_priv);
5885
5886	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5887	switch ((val >> 6) & 3) {
5888	case 0:
5889	case 1:
5890		dev_priv->mem_freq = 800;
5891		break;
5892	case 2:
5893		dev_priv->mem_freq = 1066;
5894		break;
5895	case 3:
5896		dev_priv->mem_freq = 1333;
5897		break;
5898	}
5899	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5900
5901	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5902	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5903	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5904			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5905			 dev_priv->rps.max_freq);
5906
5907	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5908	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5909			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5910			 dev_priv->rps.efficient_freq);
5911
5912	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5913	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5914			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5915			 dev_priv->rps.rp1_freq);
5916
5917	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5918	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5919			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5920			 dev_priv->rps.min_freq);
 
 
 
 
 
 
 
 
 
 
 
5921}
5922
5923static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5924{
 
5925	u32 val;
5926
5927	cherryview_setup_pctx(dev_priv);
5928
5929	vlv_init_gpll_ref_freq(dev_priv);
5930
5931	mutex_lock(&dev_priv->sb_lock);
5932	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5933	mutex_unlock(&dev_priv->sb_lock);
5934
5935	switch ((val >> 2) & 0x7) {
5936	case 3:
5937		dev_priv->mem_freq = 2000;
5938		break;
5939	default:
5940		dev_priv->mem_freq = 1600;
5941		break;
5942	}
5943	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5944
5945	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5946	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5947	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5948			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5949			 dev_priv->rps.max_freq);
5950
5951	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5952	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5953			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5954			 dev_priv->rps.efficient_freq);
5955
5956	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5957	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5958			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5959			 dev_priv->rps.rp1_freq);
5960
5961	/* PUnit validated range is only [RPe, RP0] */
5962	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5963	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5964			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5965			 dev_priv->rps.min_freq);
5966
5967	WARN_ONCE((dev_priv->rps.max_freq |
5968		   dev_priv->rps.efficient_freq |
5969		   dev_priv->rps.rp1_freq |
5970		   dev_priv->rps.min_freq) & 1,
5971		  "Odd GPU freq values\n");
 
 
 
 
 
 
 
 
 
 
 
5972}
5973
5974static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5975{
5976	valleyview_cleanup_pctx(dev_priv);
5977}
5978
5979static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5980{
5981	struct intel_engine_cs *engine;
5982	enum intel_engine_id id;
5983	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
 
5984
5985	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5986
5987	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5988					     GT_FIFO_FREE_ENTRIES_CHV);
5989	if (gtfifodbg) {
5990		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5991				 gtfifodbg);
5992		I915_WRITE(GTFIFODBG, gtfifodbg);
5993	}
5994
5995	cherryview_check_pctx(dev_priv);
5996
5997	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5998	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5999	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6000
6001	/*  Disable RC states. */
6002	I915_WRITE(GEN6_RC_CONTROL, 0);
6003
6004	/* 2a: Program RC6 thresholds.*/
6005	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6006	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6007	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6008
6009	for_each_engine(engine, dev_priv, id)
6010		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6011	I915_WRITE(GEN6_RC_SLEEP, 0);
6012
6013	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6014	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6015
6016	/* allows RC6 residency counter to work */
6017	I915_WRITE(VLV_COUNTER_CONTROL,
6018		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6019				      VLV_MEDIA_RC6_COUNT_EN |
6020				      VLV_RENDER_RC6_COUNT_EN));
6021
6022	/* For now we assume BIOS is allocating and populating the PCBR  */
6023	pcbr = I915_READ(VLV_PCBR);
6024
6025	/* 3: Enable RC6 */
6026	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6027	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6028		rc6_mode = GEN7_RC_CTL_TO_MODE;
6029
6030	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6031
6032	/* 4 Program defaults and thresholds for RPS*/
6033	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6034	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6035	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6036	I915_WRITE(GEN6_RP_UP_EI, 66000);
6037	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6038
6039	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6040
6041	/* 5: Enable RPS */
6042	I915_WRITE(GEN6_RP_CONTROL,
6043		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6044		   GEN6_RP_MEDIA_IS_GFX |
6045		   GEN6_RP_ENABLE |
6046		   GEN6_RP_UP_BUSY_AVG |
6047		   GEN6_RP_DOWN_IDLE_AVG);
6048
6049	/* Setting Fixed Bias */
6050	val = VLV_OVERRIDE_EN |
6051		  VLV_SOC_TDP_EN |
6052		  CHV_BIAS_CPU_50_SOC_50;
6053	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6054
6055	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6056
6057	/* RPS code assumes GPLL is used */
6058	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6059
6060	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6061	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6062
6063	reset_rps(dev_priv, valleyview_set_rps);
 
 
 
 
 
 
 
 
 
6064
6065	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6066}
6067
6068static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6069{
6070	struct intel_engine_cs *engine;
6071	enum intel_engine_id id;
6072	u32 gtfifodbg, val, rc6_mode = 0;
 
6073
6074	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6075
6076	valleyview_check_pctx(dev_priv);
6077
6078	gtfifodbg = I915_READ(GTFIFODBG);
6079	if (gtfifodbg) {
6080		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6081				 gtfifodbg);
6082		I915_WRITE(GTFIFODBG, gtfifodbg);
6083	}
6084
6085	/* If VLV, Forcewake all wells, else re-direct to regular path */
6086	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6087
6088	/*  Disable RC states. */
6089	I915_WRITE(GEN6_RC_CONTROL, 0);
6090
6091	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6092	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6093	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6094	I915_WRITE(GEN6_RP_UP_EI, 66000);
6095	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6096
6097	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6098
6099	I915_WRITE(GEN6_RP_CONTROL,
6100		   GEN6_RP_MEDIA_TURBO |
6101		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6102		   GEN6_RP_MEDIA_IS_GFX |
6103		   GEN6_RP_ENABLE |
6104		   GEN6_RP_UP_BUSY_AVG |
6105		   GEN6_RP_DOWN_IDLE_CONT);
6106
6107	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6108	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6109	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6110
6111	for_each_engine(engine, dev_priv, id)
6112		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6113
6114	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6115
6116	/* allows RC6 residency counter to work */
6117	I915_WRITE(VLV_COUNTER_CONTROL,
6118		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6119				      VLV_RENDER_RC0_COUNT_EN |
6120				      VLV_MEDIA_RC6_COUNT_EN |
6121				      VLV_RENDER_RC6_COUNT_EN));
6122
6123	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6124		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6125
6126	intel_print_rc6_info(dev_priv, rc6_mode);
6127
6128	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6129
6130	/* Setting Fixed Bias */
6131	val = VLV_OVERRIDE_EN |
6132		  VLV_SOC_TDP_EN |
6133		  VLV_BIAS_CPU_125_SOC_875;
6134	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6135
6136	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6137
6138	/* RPS code assumes GPLL is used */
6139	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6140
6141	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6142	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6143
6144	reset_rps(dev_priv, valleyview_set_rps);
 
 
 
 
 
 
 
 
 
6145
6146	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6147}
6148
6149static unsigned long intel_pxfreq(u32 vidfreq)
6150{
6151	unsigned long freq;
6152	int div = (vidfreq & 0x3f0000) >> 16;
6153	int post = (vidfreq & 0x3000) >> 12;
6154	int pre = (vidfreq & 0x7);
6155
6156	if (!pre)
6157		return 0;
6158
6159	freq = ((div * 133333) / ((1<<post) * pre));
6160
6161	return freq;
6162}
6163
6164static const struct cparams {
6165	u16 i;
6166	u16 t;
6167	u16 m;
6168	u16 c;
6169} cparams[] = {
6170	{ 1, 1333, 301, 28664 },
6171	{ 1, 1066, 294, 24460 },
6172	{ 1, 800, 294, 25192 },
6173	{ 0, 1333, 276, 27605 },
6174	{ 0, 1066, 276, 27605 },
6175	{ 0, 800, 231, 23784 },
6176};
6177
6178static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6179{
6180	u64 total_count, diff, ret;
6181	u32 count1, count2, count3, m = 0, c = 0;
6182	unsigned long now = jiffies_to_msecs(jiffies), diff1;
6183	int i;
6184
6185	assert_spin_locked(&mchdev_lock);
6186
6187	diff1 = now - dev_priv->ips.last_time1;
6188
6189	/* Prevent division-by-zero if we are asking too fast.
6190	 * Also, we don't get interesting results if we are polling
6191	 * faster than once in 10ms, so just return the saved value
6192	 * in such cases.
6193	 */
6194	if (diff1 <= 10)
6195		return dev_priv->ips.chipset_power;
6196
6197	count1 = I915_READ(DMIEC);
6198	count2 = I915_READ(DDREC);
6199	count3 = I915_READ(CSIEC);
6200
6201	total_count = count1 + count2 + count3;
6202
6203	/* FIXME: handle per-counter overflow */
6204	if (total_count < dev_priv->ips.last_count1) {
6205		diff = ~0UL - dev_priv->ips.last_count1;
6206		diff += total_count;
6207	} else {
6208		diff = total_count - dev_priv->ips.last_count1;
6209	}
6210
6211	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6212		if (cparams[i].i == dev_priv->ips.c_m &&
6213		    cparams[i].t == dev_priv->ips.r_t) {
6214			m = cparams[i].m;
6215			c = cparams[i].c;
6216			break;
6217		}
6218	}
6219
6220	diff = div_u64(diff, diff1);
6221	ret = ((m * diff) + c);
6222	ret = div_u64(ret, 10);
6223
6224	dev_priv->ips.last_count1 = total_count;
6225	dev_priv->ips.last_time1 = now;
6226
6227	dev_priv->ips.chipset_power = ret;
6228
6229	return ret;
6230}
6231
6232unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6233{
 
6234	unsigned long val;
6235
6236	if (INTEL_INFO(dev_priv)->gen != 5)
6237		return 0;
6238
6239	spin_lock_irq(&mchdev_lock);
6240
6241	val = __i915_chipset_val(dev_priv);
6242
6243	spin_unlock_irq(&mchdev_lock);
6244
6245	return val;
6246}
6247
6248unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6249{
6250	unsigned long m, x, b;
6251	u32 tsfs;
6252
6253	tsfs = I915_READ(TSFS);
6254
6255	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6256	x = I915_READ8(TR1);
6257
6258	b = tsfs & TSFS_INTR_MASK;
6259
6260	return ((m * x) / 127) - b;
6261}
6262
6263static int _pxvid_to_vd(u8 pxvid)
6264{
6265	if (pxvid == 0)
6266		return 0;
6267
6268	if (pxvid >= 8 && pxvid < 31)
6269		pxvid = 31;
6270
6271	return (pxvid + 2) * 125;
6272}
6273
6274static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6275{
 
6276	const int vd = _pxvid_to_vd(pxvid);
6277	const int vm = vd - 1125;
6278
6279	if (INTEL_INFO(dev_priv)->is_mobile)
6280		return vm > 0 ? vm : 0;
6281
6282	return vd;
6283}
6284
6285static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6286{
6287	u64 now, diff, diffms;
6288	u32 count;
6289
6290	assert_spin_locked(&mchdev_lock);
6291
6292	now = ktime_get_raw_ns();
6293	diffms = now - dev_priv->ips.last_time2;
6294	do_div(diffms, NSEC_PER_MSEC);
6295
6296	/* Don't divide by 0 */
6297	if (!diffms)
6298		return;
6299
6300	count = I915_READ(GFXEC);
6301
6302	if (count < dev_priv->ips.last_count2) {
6303		diff = ~0UL - dev_priv->ips.last_count2;
6304		diff += count;
6305	} else {
6306		diff = count - dev_priv->ips.last_count2;
6307	}
6308
6309	dev_priv->ips.last_count2 = count;
6310	dev_priv->ips.last_time2 = now;
6311
6312	/* More magic constants... */
6313	diff = diff * 1181;
6314	diff = div_u64(diff, diffms * 10);
6315	dev_priv->ips.gfx_power = diff;
6316}
6317
6318void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6319{
6320	if (INTEL_INFO(dev_priv)->gen != 5)
 
 
6321		return;
6322
6323	spin_lock_irq(&mchdev_lock);
6324
6325	__i915_update_gfx_val(dev_priv);
6326
6327	spin_unlock_irq(&mchdev_lock);
6328}
6329
6330static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6331{
6332	unsigned long t, corr, state1, corr2, state2;
6333	u32 pxvid, ext_v;
6334
6335	assert_spin_locked(&mchdev_lock);
6336
6337	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6338	pxvid = (pxvid >> 24) & 0x7f;
6339	ext_v = pvid_to_extvid(dev_priv, pxvid);
6340
6341	state1 = ext_v;
6342
6343	t = i915_mch_val(dev_priv);
6344
6345	/* Revel in the empirically derived constants */
6346
6347	/* Correction factor in 1/100000 units */
6348	if (t > 80)
6349		corr = ((t * 2349) + 135940);
6350	else if (t >= 50)
6351		corr = ((t * 964) + 29317);
6352	else /* < 50 */
6353		corr = ((t * 301) + 1004);
6354
6355	corr = corr * ((150142 * state1) / 10000 - 78642);
6356	corr /= 100000;
6357	corr2 = (corr * dev_priv->ips.corr);
6358
6359	state2 = (corr2 * state1) / 10000;
6360	state2 /= 100; /* convert to mW */
6361
6362	__i915_update_gfx_val(dev_priv);
6363
6364	return dev_priv->ips.gfx_power + state2;
6365}
6366
6367unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6368{
 
6369	unsigned long val;
6370
6371	if (INTEL_INFO(dev_priv)->gen != 5)
6372		return 0;
6373
6374	spin_lock_irq(&mchdev_lock);
6375
6376	val = __i915_gfx_val(dev_priv);
6377
6378	spin_unlock_irq(&mchdev_lock);
6379
6380	return val;
6381}
6382
6383/**
6384 * i915_read_mch_val - return value for IPS use
6385 *
6386 * Calculate and return a value for the IPS driver to use when deciding whether
6387 * we have thermal and power headroom to increase CPU or GPU power budget.
6388 */
6389unsigned long i915_read_mch_val(void)
6390{
6391	struct drm_i915_private *dev_priv;
6392	unsigned long chipset_val, graphics_val, ret = 0;
6393
6394	spin_lock_irq(&mchdev_lock);
6395	if (!i915_mch_dev)
6396		goto out_unlock;
6397	dev_priv = i915_mch_dev;
6398
6399	chipset_val = __i915_chipset_val(dev_priv);
6400	graphics_val = __i915_gfx_val(dev_priv);
6401
6402	ret = chipset_val + graphics_val;
6403
6404out_unlock:
6405	spin_unlock_irq(&mchdev_lock);
6406
6407	return ret;
6408}
6409EXPORT_SYMBOL_GPL(i915_read_mch_val);
6410
6411/**
6412 * i915_gpu_raise - raise GPU frequency limit
6413 *
6414 * Raise the limit; IPS indicates we have thermal headroom.
6415 */
6416bool i915_gpu_raise(void)
6417{
6418	struct drm_i915_private *dev_priv;
6419	bool ret = true;
6420
6421	spin_lock_irq(&mchdev_lock);
6422	if (!i915_mch_dev) {
6423		ret = false;
6424		goto out_unlock;
6425	}
6426	dev_priv = i915_mch_dev;
6427
6428	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6429		dev_priv->ips.max_delay--;
6430
6431out_unlock:
6432	spin_unlock_irq(&mchdev_lock);
6433
6434	return ret;
6435}
6436EXPORT_SYMBOL_GPL(i915_gpu_raise);
6437
6438/**
6439 * i915_gpu_lower - lower GPU frequency limit
6440 *
6441 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6442 * frequency maximum.
6443 */
6444bool i915_gpu_lower(void)
6445{
6446	struct drm_i915_private *dev_priv;
6447	bool ret = true;
6448
6449	spin_lock_irq(&mchdev_lock);
6450	if (!i915_mch_dev) {
6451		ret = false;
6452		goto out_unlock;
6453	}
6454	dev_priv = i915_mch_dev;
6455
6456	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6457		dev_priv->ips.max_delay++;
6458
6459out_unlock:
6460	spin_unlock_irq(&mchdev_lock);
6461
6462	return ret;
6463}
6464EXPORT_SYMBOL_GPL(i915_gpu_lower);
6465
6466/**
6467 * i915_gpu_busy - indicate GPU business to IPS
6468 *
6469 * Tell the IPS driver whether or not the GPU is busy.
6470 */
6471bool i915_gpu_busy(void)
6472{
 
 
6473	bool ret = false;
 
6474
6475	spin_lock_irq(&mchdev_lock);
6476	if (i915_mch_dev)
6477		ret = i915_mch_dev->gt.awake;
 
 
 
 
 
 
6478	spin_unlock_irq(&mchdev_lock);
6479
6480	return ret;
6481}
6482EXPORT_SYMBOL_GPL(i915_gpu_busy);
6483
6484/**
6485 * i915_gpu_turbo_disable - disable graphics turbo
6486 *
6487 * Disable graphics turbo by resetting the max frequency and setting the
6488 * current frequency to the default.
6489 */
6490bool i915_gpu_turbo_disable(void)
6491{
6492	struct drm_i915_private *dev_priv;
6493	bool ret = true;
6494
6495	spin_lock_irq(&mchdev_lock);
6496	if (!i915_mch_dev) {
6497		ret = false;
6498		goto out_unlock;
6499	}
6500	dev_priv = i915_mch_dev;
6501
6502	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6503
6504	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6505		ret = false;
6506
6507out_unlock:
6508	spin_unlock_irq(&mchdev_lock);
6509
6510	return ret;
6511}
6512EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6513
6514/**
6515 * Tells the intel_ips driver that the i915 driver is now loaded, if
6516 * IPS got loaded first.
6517 *
6518 * This awkward dance is so that neither module has to depend on the
6519 * other in order for IPS to do the appropriate communication of
6520 * GPU turbo limits to i915.
6521 */
6522static void
6523ips_ping_for_i915_load(void)
6524{
6525	void (*link)(void);
6526
6527	link = symbol_get(ips_link_to_i915_driver);
6528	if (link) {
6529		link();
6530		symbol_put(ips_link_to_i915_driver);
6531	}
6532}
6533
6534void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6535{
6536	/* We only register the i915 ips part with intel-ips once everything is
6537	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6538	spin_lock_irq(&mchdev_lock);
6539	i915_mch_dev = dev_priv;
6540	spin_unlock_irq(&mchdev_lock);
6541
6542	ips_ping_for_i915_load();
6543}
6544
6545void intel_gpu_ips_teardown(void)
6546{
6547	spin_lock_irq(&mchdev_lock);
6548	i915_mch_dev = NULL;
6549	spin_unlock_irq(&mchdev_lock);
6550}
6551
6552static void intel_init_emon(struct drm_i915_private *dev_priv)
6553{
 
6554	u32 lcfuse;
6555	u8 pxw[16];
6556	int i;
6557
6558	/* Disable to program */
6559	I915_WRITE(ECR, 0);
6560	POSTING_READ(ECR);
6561
6562	/* Program energy weights for various events */
6563	I915_WRITE(SDEW, 0x15040d00);
6564	I915_WRITE(CSIEW0, 0x007f0000);
6565	I915_WRITE(CSIEW1, 0x1e220004);
6566	I915_WRITE(CSIEW2, 0x04000004);
6567
6568	for (i = 0; i < 5; i++)
6569		I915_WRITE(PEW(i), 0);
6570	for (i = 0; i < 3; i++)
6571		I915_WRITE(DEW(i), 0);
6572
6573	/* Program P-state weights to account for frequency power adjustment */
6574	for (i = 0; i < 16; i++) {
6575		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6576		unsigned long freq = intel_pxfreq(pxvidfreq);
6577		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6578			PXVFREQ_PX_SHIFT;
6579		unsigned long val;
6580
6581		val = vid * vid;
6582		val *= (freq / 1000);
6583		val *= 255;
6584		val /= (127*127*900);
6585		if (val > 0xff)
6586			DRM_ERROR("bad pxval: %ld\n", val);
6587		pxw[i] = val;
6588	}
6589	/* Render standby states get 0 weight */
6590	pxw[14] = 0;
6591	pxw[15] = 0;
6592
6593	for (i = 0; i < 4; i++) {
6594		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6595			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6596		I915_WRITE(PXW(i), val);
6597	}
6598
6599	/* Adjust magic regs to magic values (more experimental results) */
6600	I915_WRITE(OGW0, 0);
6601	I915_WRITE(OGW1, 0);
6602	I915_WRITE(EG0, 0x00007f00);
6603	I915_WRITE(EG1, 0x0000000e);
6604	I915_WRITE(EG2, 0x000e0000);
6605	I915_WRITE(EG3, 0x68000300);
6606	I915_WRITE(EG4, 0x42000000);
6607	I915_WRITE(EG5, 0x00140031);
6608	I915_WRITE(EG6, 0);
6609	I915_WRITE(EG7, 0);
6610
6611	for (i = 0; i < 8; i++)
6612		I915_WRITE(PXWL(i), 0);
6613
6614	/* Enable PMON + select events */
6615	I915_WRITE(ECR, 0x80000019);
6616
6617	lcfuse = I915_READ(LCFUSE02);
6618
6619	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6620}
6621
6622void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6623{
 
 
6624	/*
6625	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6626	 * requirement.
6627	 */
6628	if (!i915.enable_rc6) {
6629		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6630		intel_runtime_pm_get(dev_priv);
6631	}
6632
6633	mutex_lock(&dev_priv->drm.struct_mutex);
6634	mutex_lock(&dev_priv->rps.hw_lock);
 
 
 
6635
6636	/* Initialize RPS limits (for userspace) */
6637	if (IS_CHERRYVIEW(dev_priv))
6638		cherryview_init_gt_powersave(dev_priv);
6639	else if (IS_VALLEYVIEW(dev_priv))
6640		valleyview_init_gt_powersave(dev_priv);
6641	else if (INTEL_GEN(dev_priv) >= 6)
6642		gen6_init_rps_frequencies(dev_priv);
6643
6644	/* Derive initial user preferences/limits from the hardware limits */
6645	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6646	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
 
6647
6648	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6649	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6650
6651	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6652		dev_priv->rps.min_freq_softlimit =
6653			max_t(int,
6654			      dev_priv->rps.efficient_freq,
6655			      intel_freq_opcode(dev_priv, 450));
6656
6657	/* After setting max-softlimit, find the overclock max freq */
6658	if (IS_GEN6(dev_priv) ||
6659	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6660		u32 params = 0;
6661
6662		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6663		if (params & BIT(31)) { /* OC supported */
6664			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6665					 (dev_priv->rps.max_freq & 0xff) * 50,
6666					 (params & 0xff) * 50);
6667			dev_priv->rps.max_freq = params & 0xff;
6668		}
6669	}
6670
6671	/* Finally allow us to boost to max by default */
6672	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
6673
6674	mutex_unlock(&dev_priv->rps.hw_lock);
6675	mutex_unlock(&dev_priv->drm.struct_mutex);
6676
6677	intel_autoenable_gt_powersave(dev_priv);
6678}
6679
6680void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6681{
6682	if (IS_VALLEYVIEW(dev_priv))
6683		valleyview_cleanup_gt_powersave(dev_priv);
6684
6685	if (!i915.enable_rc6)
6686		intel_runtime_pm_put(dev_priv);
 
6687}
6688
6689/**
6690 * intel_suspend_gt_powersave - suspend PM work and helper threads
6691 * @dev_priv: i915 device
6692 *
6693 * We don't want to disable RC6 or other features here, we just want
6694 * to make sure any work we've queued has finished and won't bother
6695 * us while we're suspended.
6696 */
6697void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6698{
6699	if (INTEL_GEN(dev_priv) < 6)
 
 
6700		return;
6701
6702	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
6703		intel_runtime_pm_put(dev_priv);
6704
6705	/* gen6_rps_idle() will be called later to disable interrupts */
 
6706}
6707
6708void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
6709{
6710	dev_priv->rps.enabled = true; /* force disabling */
6711	intel_disable_gt_powersave(dev_priv);
6712
6713	gen6_reset_rps_interrupts(dev_priv);
6714}
 
 
6715
6716void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6717{
6718	if (!READ_ONCE(dev_priv->rps.enabled))
6719		return;
 
 
 
 
 
6720
6721	mutex_lock(&dev_priv->rps.hw_lock);
6722
6723	if (INTEL_GEN(dev_priv) >= 9) {
6724		gen9_disable_rc6(dev_priv);
6725		gen9_disable_rps(dev_priv);
6726	} else if (IS_CHERRYVIEW(dev_priv)) {
6727		cherryview_disable_rps(dev_priv);
6728	} else if (IS_VALLEYVIEW(dev_priv)) {
6729		valleyview_disable_rps(dev_priv);
6730	} else if (INTEL_GEN(dev_priv) >= 6) {
6731		gen6_disable_rps(dev_priv);
6732	}  else if (IS_IRONLAKE_M(dev_priv)) {
6733		ironlake_disable_drps(dev_priv);
6734	}
6735
6736	dev_priv->rps.enabled = false;
6737	mutex_unlock(&dev_priv->rps.hw_lock);
6738}
6739
6740void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6741{
6742	/* We shouldn't be disabling as we submit, so this should be less
6743	 * racy than it appears!
6744	 */
6745	if (READ_ONCE(dev_priv->rps.enabled))
6746		return;
6747
6748	/* Powersaving is controlled by the host when inside a VM */
6749	if (intel_vgpu_active(dev_priv))
6750		return;
6751
6752	mutex_lock(&dev_priv->rps.hw_lock);
6753
6754	if (IS_CHERRYVIEW(dev_priv)) {
6755		cherryview_enable_rps(dev_priv);
6756	} else if (IS_VALLEYVIEW(dev_priv)) {
6757		valleyview_enable_rps(dev_priv);
6758	} else if (INTEL_GEN(dev_priv) >= 9) {
6759		gen9_enable_rc6(dev_priv);
6760		gen9_enable_rps(dev_priv);
6761		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6762			gen6_update_ring_freq(dev_priv);
6763	} else if (IS_BROADWELL(dev_priv)) {
6764		gen8_enable_rps(dev_priv);
6765		gen6_update_ring_freq(dev_priv);
6766	} else if (INTEL_GEN(dev_priv) >= 6) {
6767		gen6_enable_rps(dev_priv);
6768		gen6_update_ring_freq(dev_priv);
6769	} else if (IS_IRONLAKE_M(dev_priv)) {
6770		ironlake_enable_drps(dev_priv);
6771		intel_init_emon(dev_priv);
6772	}
6773
6774	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6775	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6776
6777	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6778	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6779
6780	dev_priv->rps.enabled = true;
6781	mutex_unlock(&dev_priv->rps.hw_lock);
6782}
6783
6784static void __intel_autoenable_gt_powersave(struct work_struct *work)
6785{
6786	struct drm_i915_private *dev_priv =
6787		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
6788	struct intel_engine_cs *rcs;
6789	struct drm_i915_gem_request *req;
6790
6791	if (READ_ONCE(dev_priv->rps.enabled))
6792		goto out;
6793
6794	rcs = dev_priv->engine[RCS];
6795	if (rcs->last_context)
6796		goto out;
6797
6798	if (!rcs->init_context)
6799		goto out;
6800
6801	mutex_lock(&dev_priv->drm.struct_mutex);
6802
6803	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
6804	if (IS_ERR(req))
6805		goto unlock;
6806
6807	if (!i915.enable_execlists && i915_switch_context(req) == 0)
6808		rcs->init_context(req);
6809
6810	/* Mark the device busy, calling intel_enable_gt_powersave() */
6811	i915_add_request_no_flush(req);
6812
6813unlock:
6814	mutex_unlock(&dev_priv->drm.struct_mutex);
6815out:
6816	intel_runtime_pm_put(dev_priv);
6817}
6818
6819void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6820{
6821	if (READ_ONCE(dev_priv->rps.enabled))
 
 
 
6822		return;
6823
6824	if (IS_IRONLAKE_M(dev_priv)) {
6825		ironlake_enable_drps(dev_priv);
6826		intel_init_emon(dev_priv);
6827	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
 
 
6828		/*
6829		 * PCU communication is slow and this doesn't need to be
6830		 * done at any specific time, so do this out of our fast path
6831		 * to make resume and init faster.
6832		 *
6833		 * We depend on the HW RC6 power context save/restore
6834		 * mechanism when entering D3 through runtime PM suspend. So
6835		 * disable RPM until RPS/RC6 is properly setup. We can only
6836		 * get here via the driver load/system resume/runtime resume
6837		 * paths, so the _noresume version is enough (and in case of
6838		 * runtime resume it's necessary).
6839		 */
6840		if (queue_delayed_work(dev_priv->wq,
6841				       &dev_priv->rps.autoenable_work,
6842				       round_jiffies_up_relative(HZ)))
6843			intel_runtime_pm_get_noresume(dev_priv);
6844	}
6845}
6846
6847static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
6848{
 
 
6849	/*
6850	 * On Ibex Peak and Cougar Point, we need to disable clock
6851	 * gating for the panel power sequencer or it will fail to
6852	 * start up when no ports are active.
6853	 */
6854	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6855}
6856
6857static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6858{
 
6859	enum pipe pipe;
6860
6861	for_each_pipe(dev_priv, pipe) {
6862		I915_WRITE(DSPCNTR(pipe),
6863			   I915_READ(DSPCNTR(pipe)) |
6864			   DISPPLANE_TRICKLE_FEED_DISABLE);
6865
6866		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6867		POSTING_READ(DSPSURF(pipe));
6868	}
6869}
6870
6871static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6872{
 
 
6873	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6874	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6875	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6876
6877	/*
6878	 * Don't touch WM1S_LP_EN here.
6879	 * Doing so could cause underruns.
6880	 */
6881}
6882
6883static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6884{
 
6885	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6886
6887	/*
6888	 * Required for FBC
6889	 * WaFbcDisableDpfcClockGating:ilk
6890	 */
6891	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6892		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6893		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6894
6895	I915_WRITE(PCH_3DCGDIS0,
6896		   MARIUNIT_CLOCK_GATE_DISABLE |
6897		   SVSMUNIT_CLOCK_GATE_DISABLE);
6898	I915_WRITE(PCH_3DCGDIS1,
6899		   VFMUNIT_CLOCK_GATE_DISABLE);
6900
6901	/*
6902	 * According to the spec the following bits should be set in
6903	 * order to enable memory self-refresh
6904	 * The bit 22/21 of 0x42004
6905	 * The bit 5 of 0x42020
6906	 * The bit 15 of 0x45000
6907	 */
6908	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6909		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6910		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6911	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6912	I915_WRITE(DISP_ARB_CTL,
6913		   (I915_READ(DISP_ARB_CTL) |
6914		    DISP_FBC_WM_DIS));
6915
6916	ilk_init_lp_watermarks(dev_priv);
6917
6918	/*
6919	 * Based on the document from hardware guys the following bits
6920	 * should be set unconditionally in order to enable FBC.
6921	 * The bit 22 of 0x42000
6922	 * The bit 22 of 0x42004
6923	 * The bit 7,8,9 of 0x42020.
6924	 */
6925	if (IS_IRONLAKE_M(dev_priv)) {
6926		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6927		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6928			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6929			   ILK_FBCQ_DIS);
6930		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6931			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6932			   ILK_DPARB_GATE);
6933	}
6934
6935	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6936
6937	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6938		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6939		   ILK_ELPIN_409_SELECT);
6940	I915_WRITE(_3D_CHICKEN2,
6941		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6942		   _3D_CHICKEN2_WM_READ_PIPELINED);
6943
6944	/* WaDisableRenderCachePipelinedFlush:ilk */
6945	I915_WRITE(CACHE_MODE_0,
6946		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6947
6948	/* WaDisable_RenderCache_OperationalFlush:ilk */
6949	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6950
6951	g4x_disable_trickle_feed(dev_priv);
6952
6953	ibx_init_clock_gating(dev_priv);
6954}
6955
6956static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6957{
 
6958	int pipe;
6959	uint32_t val;
6960
6961	/*
6962	 * On Ibex Peak and Cougar Point, we need to disable clock
6963	 * gating for the panel power sequencer or it will fail to
6964	 * start up when no ports are active.
6965	 */
6966	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6967		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6968		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6969	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6970		   DPLS_EDP_PPS_FIX_DIS);
6971	/* The below fixes the weird display corruption, a few pixels shifted
6972	 * downward, on (only) LVDS of some HP laptops with IVY.
6973	 */
6974	for_each_pipe(dev_priv, pipe) {
6975		val = I915_READ(TRANS_CHICKEN2(pipe));
6976		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6977		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6978		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6979			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6980		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6981		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6982		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6983		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6984	}
6985	/* WADP0ClockGatingDisable */
6986	for_each_pipe(dev_priv, pipe) {
6987		I915_WRITE(TRANS_CHICKEN1(pipe),
6988			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6989	}
6990}
6991
6992static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6993{
 
6994	uint32_t tmp;
6995
6996	tmp = I915_READ(MCH_SSKPD);
6997	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6998		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6999			      tmp);
7000}
7001
7002static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7003{
 
7004	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7005
7006	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7007
7008	I915_WRITE(ILK_DISPLAY_CHICKEN2,
7009		   I915_READ(ILK_DISPLAY_CHICKEN2) |
7010		   ILK_ELPIN_409_SELECT);
7011
7012	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7013	I915_WRITE(_3D_CHICKEN,
7014		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7015
7016	/* WaDisable_RenderCache_OperationalFlush:snb */
7017	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7018
7019	/*
7020	 * BSpec recoomends 8x4 when MSAA is used,
7021	 * however in practice 16x4 seems fastest.
7022	 *
7023	 * Note that PS/WM thread counts depend on the WIZ hashing
7024	 * disable bit, which we don't touch here, but it's good
7025	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7026	 */
7027	I915_WRITE(GEN6_GT_MODE,
7028		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7029
7030	ilk_init_lp_watermarks(dev_priv);
7031
7032	I915_WRITE(CACHE_MODE_0,
7033		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7034
7035	I915_WRITE(GEN6_UCGCTL1,
7036		   I915_READ(GEN6_UCGCTL1) |
7037		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7038		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7039
7040	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7041	 * gating disable must be set.  Failure to set it results in
7042	 * flickering pixels due to Z write ordering failures after
7043	 * some amount of runtime in the Mesa "fire" demo, and Unigine
7044	 * Sanctuary and Tropics, and apparently anything else with
7045	 * alpha test or pixel discard.
7046	 *
7047	 * According to the spec, bit 11 (RCCUNIT) must also be set,
7048	 * but we didn't debug actual testcases to find it out.
7049	 *
7050	 * WaDisableRCCUnitClockGating:snb
7051	 * WaDisableRCPBUnitClockGating:snb
7052	 */
7053	I915_WRITE(GEN6_UCGCTL2,
7054		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7055		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7056
7057	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7058	I915_WRITE(_3D_CHICKEN3,
7059		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7060
7061	/*
7062	 * Bspec says:
7063	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7064	 * 3DSTATE_SF number of SF output attributes is more than 16."
7065	 */
7066	I915_WRITE(_3D_CHICKEN3,
7067		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7068
7069	/*
7070	 * According to the spec the following bits should be
7071	 * set in order to enable memory self-refresh and fbc:
7072	 * The bit21 and bit22 of 0x42000
7073	 * The bit21 and bit22 of 0x42004
7074	 * The bit5 and bit7 of 0x42020
7075	 * The bit14 of 0x70180
7076	 * The bit14 of 0x71180
7077	 *
7078	 * WaFbcAsynchFlipDisableFbcQueue:snb
7079	 */
7080	I915_WRITE(ILK_DISPLAY_CHICKEN1,
7081		   I915_READ(ILK_DISPLAY_CHICKEN1) |
7082		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7083	I915_WRITE(ILK_DISPLAY_CHICKEN2,
7084		   I915_READ(ILK_DISPLAY_CHICKEN2) |
7085		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7086	I915_WRITE(ILK_DSPCLK_GATE_D,
7087		   I915_READ(ILK_DSPCLK_GATE_D) |
7088		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7089		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7090
7091	g4x_disable_trickle_feed(dev_priv);
7092
7093	cpt_init_clock_gating(dev_priv);
7094
7095	gen6_check_mch_setup(dev_priv);
7096}
7097
7098static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7099{
7100	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7101
7102	/*
7103	 * WaVSThreadDispatchOverride:ivb,vlv
7104	 *
7105	 * This actually overrides the dispatch
7106	 * mode for all thread types.
7107	 */
7108	reg &= ~GEN7_FF_SCHED_MASK;
7109	reg |= GEN7_FF_TS_SCHED_HW;
7110	reg |= GEN7_FF_VS_SCHED_HW;
7111	reg |= GEN7_FF_DS_SCHED_HW;
7112
7113	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7114}
7115
7116static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7117{
 
 
7118	/*
7119	 * TODO: this bit should only be enabled when really needed, then
7120	 * disabled when not needed anymore in order to save power.
7121	 */
7122	if (HAS_PCH_LPT_LP(dev_priv))
7123		I915_WRITE(SOUTH_DSPCLK_GATE_D,
7124			   I915_READ(SOUTH_DSPCLK_GATE_D) |
7125			   PCH_LP_PARTITION_LEVEL_DISABLE);
7126
7127	/* WADPOClockGatingDisable:hsw */
7128	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7129		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7130		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7131}
7132
7133static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7134{
7135	if (HAS_PCH_LPT_LP(dev_priv)) {
 
 
7136		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7137
7138		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7139		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7140	}
7141}
7142
7143static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7144				   int general_prio_credits,
7145				   int high_prio_credits)
7146{
7147	u32 misccpctl;
7148
7149	/* WaTempDisableDOPClkGating:bdw */
7150	misccpctl = I915_READ(GEN7_MISCCPCTL);
7151	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7152
7153	I915_WRITE(GEN8_L3SQCREG1,
7154		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7155		   L3_HIGH_PRIO_CREDITS(high_prio_credits));
7156
7157	/*
7158	 * Wait at least 100 clocks before re-enabling clock gating.
7159	 * See the definition of L3SQCREG1 in BSpec.
7160	 */
7161	POSTING_READ(GEN8_L3SQCREG1);
7162	udelay(1);
7163	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7164}
7165
7166static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7167{
7168	gen9_init_clock_gating(dev_priv);
7169
7170	/* WaDisableSDEUnitClockGating:kbl */
7171	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7172		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7173			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7174
7175	/* WaDisableGamClockGating:kbl */
7176	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7177		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7178			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7179
7180	/* WaFbcNukeOnHostModify:kbl */
7181	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7182		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7183}
7184
7185static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7186{
7187	gen9_init_clock_gating(dev_priv);
7188
7189	/* WAC6entrylatency:skl */
7190	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7191		   FBC_LLC_FULLY_OPEN);
7192
7193	/* WaFbcNukeOnHostModify:skl */
7194	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7195		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7196}
7197
7198static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
7199{
 
7200	enum pipe pipe;
 
7201
7202	ilk_init_lp_watermarks(dev_priv);
7203
7204	/* WaSwitchSolVfFArbitrationPriority:bdw */
7205	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7206
7207	/* WaPsrDPAMaskVBlankInSRD:bdw */
7208	I915_WRITE(CHICKEN_PAR1_1,
7209		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7210
7211	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7212	for_each_pipe(dev_priv, pipe) {
7213		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7214			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7215			   BDW_DPRS_MASK_VBLANK_SRD);
7216	}
7217
7218	/* WaVSRefCountFullforceMissDisable:bdw */
7219	/* WaDSRefCountFullforceMissDisable:bdw */
7220	I915_WRITE(GEN7_FF_THREAD_MODE,
7221		   I915_READ(GEN7_FF_THREAD_MODE) &
7222		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7223
7224	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7225		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7226
7227	/* WaDisableSDEUnitClockGating:bdw */
7228	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7229		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7230
7231	/* WaProgramL3SqcReg1Default:bdw */
7232	gen8_set_l3sqc_credits(dev_priv, 30, 2);
 
 
 
 
 
 
 
 
 
 
 
 
7233
7234	/*
7235	 * WaGttCachingOffByDefault:bdw
7236	 * GTT cache may not work with big pages, so if those
7237	 * are ever enabled GTT cache may need to be disabled.
7238	 */
7239	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7240
7241	/* WaKVMNotificationOnConfigChange:bdw */
7242	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7243		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7244
7245	lpt_init_clock_gating(dev_priv);
7246}
7247
7248static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7249{
7250	ilk_init_lp_watermarks(dev_priv);
 
 
7251
7252	/* L3 caching of data atomics doesn't work -- disable it. */
7253	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7254	I915_WRITE(HSW_ROW_CHICKEN3,
7255		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7256
7257	/* This is required by WaCatErrorRejectionIssue:hsw */
7258	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7259			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7260			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7261
7262	/* WaVSRefCountFullforceMissDisable:hsw */
7263	I915_WRITE(GEN7_FF_THREAD_MODE,
7264		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7265
7266	/* WaDisable_RenderCache_OperationalFlush:hsw */
7267	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7268
7269	/* enable HiZ Raw Stall Optimization */
7270	I915_WRITE(CACHE_MODE_0_GEN7,
7271		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7272
7273	/* WaDisable4x2SubspanOptimization:hsw */
7274	I915_WRITE(CACHE_MODE_1,
7275		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7276
7277	/*
7278	 * BSpec recommends 8x4 when MSAA is used,
7279	 * however in practice 16x4 seems fastest.
7280	 *
7281	 * Note that PS/WM thread counts depend on the WIZ hashing
7282	 * disable bit, which we don't touch here, but it's good
7283	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7284	 */
7285	I915_WRITE(GEN7_GT_MODE,
7286		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7287
7288	/* WaSampleCChickenBitEnable:hsw */
7289	I915_WRITE(HALF_SLICE_CHICKEN3,
7290		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7291
7292	/* WaSwitchSolVfFArbitrationPriority:hsw */
7293	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7294
7295	/* WaRsPkgCStateDisplayPMReq:hsw */
7296	I915_WRITE(CHICKEN_PAR1_1,
7297		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7298
7299	lpt_init_clock_gating(dev_priv);
7300}
7301
7302static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7303{
 
7304	uint32_t snpcr;
7305
7306	ilk_init_lp_watermarks(dev_priv);
7307
7308	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7309
7310	/* WaDisableEarlyCull:ivb */
7311	I915_WRITE(_3D_CHICKEN3,
7312		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7313
7314	/* WaDisableBackToBackFlipFix:ivb */
7315	I915_WRITE(IVB_CHICKEN3,
7316		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7317		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7318
7319	/* WaDisablePSDDualDispatchEnable:ivb */
7320	if (IS_IVB_GT1(dev_priv))
7321		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7322			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7323
7324	/* WaDisable_RenderCache_OperationalFlush:ivb */
7325	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7326
7327	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7328	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7329		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7330
7331	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7332	I915_WRITE(GEN7_L3CNTLREG1,
7333			GEN7_WA_FOR_GEN7_L3_CONTROL);
7334	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7335		   GEN7_WA_L3_CHICKEN_MODE);
7336	if (IS_IVB_GT1(dev_priv))
7337		I915_WRITE(GEN7_ROW_CHICKEN2,
7338			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7339	else {
7340		/* must write both registers */
7341		I915_WRITE(GEN7_ROW_CHICKEN2,
7342			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7343		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7344			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7345	}
7346
7347	/* WaForceL3Serialization:ivb */
7348	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7349		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7350
7351	/*
7352	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7353	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7354	 */
7355	I915_WRITE(GEN6_UCGCTL2,
7356		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7357
7358	/* This is required by WaCatErrorRejectionIssue:ivb */
7359	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7360			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7361			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7362
7363	g4x_disable_trickle_feed(dev_priv);
7364
7365	gen7_setup_fixed_func_scheduler(dev_priv);
7366
7367	if (0) { /* causes HiZ corruption on ivb:gt1 */
7368		/* enable HiZ Raw Stall Optimization */
7369		I915_WRITE(CACHE_MODE_0_GEN7,
7370			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7371	}
7372
7373	/* WaDisable4x2SubspanOptimization:ivb */
7374	I915_WRITE(CACHE_MODE_1,
7375		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7376
7377	/*
7378	 * BSpec recommends 8x4 when MSAA is used,
7379	 * however in practice 16x4 seems fastest.
7380	 *
7381	 * Note that PS/WM thread counts depend on the WIZ hashing
7382	 * disable bit, which we don't touch here, but it's good
7383	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7384	 */
7385	I915_WRITE(GEN7_GT_MODE,
7386		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7387
7388	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7389	snpcr &= ~GEN6_MBC_SNPCR_MASK;
7390	snpcr |= GEN6_MBC_SNPCR_MED;
7391	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7392
7393	if (!HAS_PCH_NOP(dev_priv))
7394		cpt_init_clock_gating(dev_priv);
 
 
 
 
 
 
 
7395
7396	gen6_check_mch_setup(dev_priv);
 
 
 
 
7397}
7398
7399static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7400{
 
 
 
 
7401	/* WaDisableEarlyCull:vlv */
7402	I915_WRITE(_3D_CHICKEN3,
7403		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7404
7405	/* WaDisableBackToBackFlipFix:vlv */
7406	I915_WRITE(IVB_CHICKEN3,
7407		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7408		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7409
7410	/* WaPsdDispatchEnable:vlv */
7411	/* WaDisablePSDDualDispatchEnable:vlv */
7412	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7413		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7414				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7415
7416	/* WaDisable_RenderCache_OperationalFlush:vlv */
7417	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7418
7419	/* WaForceL3Serialization:vlv */
7420	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7421		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7422
7423	/* WaDisableDopClockGating:vlv */
7424	I915_WRITE(GEN7_ROW_CHICKEN2,
7425		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7426
7427	/* This is required by WaCatErrorRejectionIssue:vlv */
7428	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7429		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7430		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7431
7432	gen7_setup_fixed_func_scheduler(dev_priv);
7433
7434	/*
7435	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7436	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7437	 */
7438	I915_WRITE(GEN6_UCGCTL2,
7439		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7440
7441	/* WaDisableL3Bank2xClockGate:vlv
7442	 * Disabling L3 clock gating- MMIO 940c[25] = 1
7443	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7444	I915_WRITE(GEN7_UCGCTL4,
7445		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7446
7447	/*
7448	 * BSpec says this must be set, even though
7449	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7450	 */
7451	I915_WRITE(CACHE_MODE_1,
7452		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7453
7454	/*
7455	 * BSpec recommends 8x4 when MSAA is used,
7456	 * however in practice 16x4 seems fastest.
7457	 *
7458	 * Note that PS/WM thread counts depend on the WIZ hashing
7459	 * disable bit, which we don't touch here, but it's good
7460	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7461	 */
7462	I915_WRITE(GEN7_GT_MODE,
7463		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7464
7465	/*
7466	 * WaIncreaseL3CreditsForVLVB0:vlv
7467	 * This is the hardware default actually.
7468	 */
7469	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7470
7471	/*
7472	 * WaDisableVLVClockGating_VBIIssue:vlv
7473	 * Disable clock gating on th GCFG unit to prevent a delay
7474	 * in the reporting of vblank events.
7475	 */
7476	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7477}
7478
7479static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7480{
 
 
 
 
7481	/* WaVSRefCountFullforceMissDisable:chv */
7482	/* WaDSRefCountFullforceMissDisable:chv */
7483	I915_WRITE(GEN7_FF_THREAD_MODE,
7484		   I915_READ(GEN7_FF_THREAD_MODE) &
7485		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7486
7487	/* WaDisableSemaphoreAndSyncFlipWait:chv */
7488	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7489		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7490
7491	/* WaDisableCSUnitClockGating:chv */
7492	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7493		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7494
7495	/* WaDisableSDEUnitClockGating:chv */
7496	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7497		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7498
7499	/*
7500	 * WaProgramL3SqcReg1Default:chv
7501	 * See gfxspecs/Related Documents/Performance Guide/
7502	 * LSQC Setting Recommendations.
7503	 */
7504	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7505
7506	/*
7507	 * GTT cache may not work with big pages, so if those
7508	 * are ever enabled GTT cache may need to be disabled.
7509	 */
7510	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7511}
7512
7513static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7514{
 
7515	uint32_t dspclk_gate;
7516
7517	I915_WRITE(RENCLK_GATE_D1, 0);
7518	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7519		   GS_UNIT_CLOCK_GATE_DISABLE |
7520		   CL_UNIT_CLOCK_GATE_DISABLE);
7521	I915_WRITE(RAMCLK_GATE_D, 0);
7522	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7523		OVRUNIT_CLOCK_GATE_DISABLE |
7524		OVCUNIT_CLOCK_GATE_DISABLE;
7525	if (IS_GM45(dev_priv))
7526		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7527	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7528
7529	/* WaDisableRenderCachePipelinedFlush */
7530	I915_WRITE(CACHE_MODE_0,
7531		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7532
7533	/* WaDisable_RenderCache_OperationalFlush:g4x */
7534	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7535
7536	g4x_disable_trickle_feed(dev_priv);
7537}
7538
7539static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7540{
 
 
7541	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7542	I915_WRITE(RENCLK_GATE_D2, 0);
7543	I915_WRITE(DSPCLK_GATE_D, 0);
7544	I915_WRITE(RAMCLK_GATE_D, 0);
7545	I915_WRITE16(DEUC, 0);
7546	I915_WRITE(MI_ARB_STATE,
7547		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7548
7549	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7550	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7551}
7552
7553static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7554{
 
 
7555	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7556		   I965_RCC_CLOCK_GATE_DISABLE |
7557		   I965_RCPB_CLOCK_GATE_DISABLE |
7558		   I965_ISC_CLOCK_GATE_DISABLE |
7559		   I965_FBC_CLOCK_GATE_DISABLE);
7560	I915_WRITE(RENCLK_GATE_D2, 0);
7561	I915_WRITE(MI_ARB_STATE,
7562		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7563
7564	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7565	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7566}
7567
7568static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7569{
 
7570	u32 dstate = I915_READ(D_STATE);
7571
7572	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7573		DSTATE_DOT_CLOCK_GATING;
7574	I915_WRITE(D_STATE, dstate);
7575
7576	if (IS_PINEVIEW(dev_priv))
7577		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7578
7579	/* IIR "flip pending" means done if this bit is set */
7580	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7581
7582	/* interrupts should cause a wake up from C3 */
7583	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7584
7585	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7586	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7587
7588	I915_WRITE(MI_ARB_STATE,
7589		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7590}
7591
7592static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7593{
 
 
7594	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7595
7596	/* interrupts should cause a wake up from C3 */
7597	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7598		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7599
7600	I915_WRITE(MEM_MODE,
7601		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7602}
7603
7604static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7605{
 
 
7606	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7607
7608	I915_WRITE(MEM_MODE,
7609		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7610		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7611}
7612
7613void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7614{
7615	dev_priv->display.init_clock_gating(dev_priv);
7616}
7617
7618void intel_suspend_hw(struct drm_i915_private *dev_priv)
7619{
7620	if (HAS_PCH_LPT(dev_priv))
7621		lpt_suspend_hw(dev_priv);
7622}
7623
7624static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7625{
7626	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7627}
7628
7629/**
7630 * intel_init_clock_gating_hooks - setup the clock gating hooks
7631 * @dev_priv: device private
7632 *
7633 * Setup the hooks that configure which clocks of a given platform can be
7634 * gated and also apply various GT and display specific workarounds for these
7635 * platforms. Note that some GT specific workarounds are applied separately
7636 * when GPU contexts or batchbuffers start their execution.
7637 */
7638void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7639{
7640	if (IS_SKYLAKE(dev_priv))
7641		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7642	else if (IS_KABYLAKE(dev_priv))
7643		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7644	else if (IS_BROXTON(dev_priv))
7645		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7646	else if (IS_BROADWELL(dev_priv))
7647		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7648	else if (IS_CHERRYVIEW(dev_priv))
7649		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7650	else if (IS_HASWELL(dev_priv))
7651		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7652	else if (IS_IVYBRIDGE(dev_priv))
7653		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7654	else if (IS_VALLEYVIEW(dev_priv))
7655		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7656	else if (IS_GEN6(dev_priv))
7657		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7658	else if (IS_GEN5(dev_priv))
7659		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7660	else if (IS_G4X(dev_priv))
7661		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7662	else if (IS_CRESTLINE(dev_priv))
7663		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7664	else if (IS_BROADWATER(dev_priv))
7665		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7666	else if (IS_GEN3(dev_priv))
7667		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7668	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7669		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7670	else if (IS_GEN2(dev_priv))
7671		dev_priv->display.init_clock_gating = i830_init_clock_gating;
7672	else {
7673		MISSING_CASE(INTEL_DEVID(dev_priv));
7674		dev_priv->display.init_clock_gating = nop_init_clock_gating;
7675	}
7676}
7677
7678/* Set up chip specific power management-related functions */
7679void intel_init_pm(struct drm_i915_private *dev_priv)
7680{
 
 
7681	intel_fbc_init(dev_priv);
7682
7683	/* For cxsr */
7684	if (IS_PINEVIEW(dev_priv))
7685		i915_pineview_get_mem_freq(dev_priv);
7686	else if (IS_GEN5(dev_priv))
7687		i915_ironlake_get_mem_freq(dev_priv);
7688
7689	/* For FIFO watermark updates */
7690	if (INTEL_GEN(dev_priv) >= 9) {
7691		skl_setup_wm_latency(dev_priv);
7692		dev_priv->display.initial_watermarks = skl_initial_wm;
7693		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7694		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7695	} else if (HAS_PCH_SPLIT(dev_priv)) {
7696		ilk_setup_wm_latency(dev_priv);
 
 
7697
7698		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7699		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7700		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7701		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
 
7702			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7703			dev_priv->display.compute_intermediate_wm =
7704				ilk_compute_intermediate_wm;
7705			dev_priv->display.initial_watermarks =
7706				ilk_initial_watermarks;
7707			dev_priv->display.optimize_watermarks =
7708				ilk_optimize_watermarks;
7709		} else {
7710			DRM_DEBUG_KMS("Failed to read display plane latency. "
7711				      "Disable CxSR\n");
7712		}
7713	} else if (IS_CHERRYVIEW(dev_priv)) {
7714		vlv_setup_wm_latency(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
7715		dev_priv->display.update_wm = vlv_update_wm;
7716	} else if (IS_VALLEYVIEW(dev_priv)) {
7717		vlv_setup_wm_latency(dev_priv);
 
 
 
7718		dev_priv->display.update_wm = vlv_update_wm;
7719	} else if (IS_PINEVIEW(dev_priv)) {
7720		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
 
 
7721					    dev_priv->is_ddr3,
7722					    dev_priv->fsb_freq,
7723					    dev_priv->mem_freq)) {
7724			DRM_INFO("failed to find known CxSR latency "
7725				 "(found ddr%s fsb freq %d, mem freq %d), "
7726				 "disabling CxSR\n",
7727				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7728				 dev_priv->fsb_freq, dev_priv->mem_freq);
7729			/* Disable CxSR and never update its watermark again */
7730			intel_set_memory_cxsr(dev_priv, false);
7731			dev_priv->display.update_wm = NULL;
7732		} else
7733			dev_priv->display.update_wm = pineview_update_wm;
7734	} else if (IS_G4X(dev_priv)) {
 
7735		dev_priv->display.update_wm = g4x_update_wm;
7736	} else if (IS_GEN4(dev_priv)) {
 
7737		dev_priv->display.update_wm = i965_update_wm;
7738	} else if (IS_GEN3(dev_priv)) {
 
 
 
 
7739		dev_priv->display.update_wm = i9xx_update_wm;
7740		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7741	} else if (IS_GEN2(dev_priv)) {
7742		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
 
7743			dev_priv->display.update_wm = i845_update_wm;
7744			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7745		} else {
7746			dev_priv->display.update_wm = i9xx_update_wm;
7747			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7748		}
 
 
 
 
 
7749	} else {
7750		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7751	}
7752}
7753
7754static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
7755{
7756	uint32_t flags =
7757		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7758
7759	switch (flags) {
7760	case GEN6_PCODE_SUCCESS:
7761		return 0;
7762	case GEN6_PCODE_UNIMPLEMENTED_CMD:
7763	case GEN6_PCODE_ILLEGAL_CMD:
7764		return -ENXIO;
7765	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7766	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7767		return -EOVERFLOW;
7768	case GEN6_PCODE_TIMEOUT:
7769		return -ETIMEDOUT;
7770	default:
7771		MISSING_CASE(flags)
7772		return 0;
7773	}
7774}
7775
7776static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
7777{
7778	uint32_t flags =
7779		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7780
7781	switch (flags) {
7782	case GEN6_PCODE_SUCCESS:
7783		return 0;
7784	case GEN6_PCODE_ILLEGAL_CMD:
7785		return -ENXIO;
7786	case GEN7_PCODE_TIMEOUT:
7787		return -ETIMEDOUT;
7788	case GEN7_PCODE_ILLEGAL_DATA:
7789		return -EINVAL;
7790	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7791		return -EOVERFLOW;
7792	default:
7793		MISSING_CASE(flags);
7794		return 0;
7795	}
7796}
7797
7798int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7799{
7800	int status;
7801
7802	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7803
7804	/* GEN6_PCODE_* are outside of the forcewake domain, we can
7805	 * use te fw I915_READ variants to reduce the amount of work
7806	 * required when reading/writing.
7807	 */
7808
7809	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7810		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7811		return -EAGAIN;
7812	}
7813
7814	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7815	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7816	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7817
7818	if (intel_wait_for_register_fw(dev_priv,
7819				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7820				       500)) {
7821		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7822		return -ETIMEDOUT;
7823	}
7824
7825	*val = I915_READ_FW(GEN6_PCODE_DATA);
7826	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7827
7828	if (INTEL_GEN(dev_priv) > 6)
7829		status = gen7_check_mailbox_status(dev_priv);
7830	else
7831		status = gen6_check_mailbox_status(dev_priv);
7832
7833	if (status) {
7834		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7835				 status);
7836		return status;
7837	}
7838
7839	return 0;
7840}
7841
7842int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7843			    u32 mbox, u32 val)
7844{
7845	int status;
7846
7847	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7848
7849	/* GEN6_PCODE_* are outside of the forcewake domain, we can
7850	 * use te fw I915_READ variants to reduce the amount of work
7851	 * required when reading/writing.
7852	 */
7853
7854	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7855		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7856		return -EAGAIN;
7857	}
7858
7859	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7860	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7861
7862	if (intel_wait_for_register_fw(dev_priv,
7863				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7864				       500)) {
7865		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7866		return -ETIMEDOUT;
7867	}
7868
7869	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7870
7871	if (INTEL_GEN(dev_priv) > 6)
7872		status = gen7_check_mailbox_status(dev_priv);
7873	else
7874		status = gen6_check_mailbox_status(dev_priv);
7875
7876	if (status) {
7877		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7878				 status);
7879		return status;
 
 
 
 
 
 
 
 
 
 
7880	}
7881
7882	return 0;
7883}
7884
7885static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
7886				  u32 request, u32 reply_mask, u32 reply,
7887				  u32 *status)
7888{
7889	u32 val = request;
7890
7891	*status = sandybridge_pcode_read(dev_priv, mbox, &val);
 
 
7892
7893	return *status || ((val & reply_mask) == reply);
7894}
7895
7896/**
7897 * skl_pcode_request - send PCODE request until acknowledgment
7898 * @dev_priv: device private
7899 * @mbox: PCODE mailbox ID the request is targeted for
7900 * @request: request ID
7901 * @reply_mask: mask used to check for request acknowledgment
7902 * @reply: value used to check for request acknowledgment
7903 * @timeout_base_ms: timeout for polling with preemption enabled
7904 *
7905 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
7906 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
7907 * The request is acknowledged once the PCODE reply dword equals @reply after
7908 * applying @reply_mask. Polling is first attempted with preemption enabled
7909 * for @timeout_base_ms and if this times out for another 50 ms with
7910 * preemption disabled.
7911 *
7912 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
7913 * other error as reported by PCODE.
7914 */
7915int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
7916		      u32 reply_mask, u32 reply, int timeout_base_ms)
7917{
7918	u32 status;
7919	int ret;
7920
7921	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7922
7923#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
7924				   &status)
7925
7926	/*
7927	 * Prime the PCODE by doing a request first. Normally it guarantees
7928	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
7929	 * _wait_for() doesn't guarantee when its passed condition is evaluated
7930	 * first, so send the first request explicitly.
7931	 */
7932	if (COND) {
7933		ret = 0;
7934		goto out;
7935	}
7936	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
7937	if (!ret)
7938		goto out;
7939
7940	/*
7941	 * The above can time out if the number of requests was low (2 in the
7942	 * worst case) _and_ PCODE was busy for some reason even after a
7943	 * (queued) request and @timeout_base_ms delay. As a workaround retry
7944	 * the poll with preemption disabled to maximize the number of
7945	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
7946	 * account for interrupts that could reduce the number of these
7947	 * requests, and for any quirks of the PCODE firmware that delays
7948	 * the request completion.
7949	 */
7950	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
7951	WARN_ON_ONCE(timeout_base_ms > 3);
7952	preempt_disable();
7953	ret = wait_for_atomic(COND, 50);
7954	preempt_enable();
7955
7956out:
7957	return ret ? ret : status;
7958#undef COND
7959}
7960
7961static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7962{
7963	/*
7964	 * N = val - 0xb7
7965	 * Slow = Fast = GPLL ref * N
7966	 */
7967	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7968}
7969
7970static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7971{
7972	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7973}
7974
7975static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7976{
7977	/*
7978	 * N = val / 2
7979	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7980	 */
7981	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7982}
7983
7984static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7985{
 
 
 
 
 
 
 
7986	/* CHV needs even values */
7987	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7988}
7989
7990int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7991{
7992	if (IS_GEN9(dev_priv))
7993		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7994					 GEN9_FREQ_SCALER);
7995	else if (IS_CHERRYVIEW(dev_priv))
7996		return chv_gpu_freq(dev_priv, val);
7997	else if (IS_VALLEYVIEW(dev_priv))
7998		return byt_gpu_freq(dev_priv, val);
7999	else
8000		return val * GT_FREQUENCY_MULTIPLIER;
8001}
8002
8003int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
8004{
8005	if (IS_GEN9(dev_priv))
8006		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
8007					 GT_FREQUENCY_MULTIPLIER);
8008	else if (IS_CHERRYVIEW(dev_priv))
8009		return chv_freq_opcode(dev_priv, val);
8010	else if (IS_VALLEYVIEW(dev_priv))
8011		return byt_freq_opcode(dev_priv, val);
8012	else
8013		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8014}
8015
8016struct request_boost {
8017	struct work_struct work;
8018	struct drm_i915_gem_request *req;
8019};
8020
8021static void __intel_rps_boost_work(struct work_struct *work)
8022{
8023	struct request_boost *boost = container_of(work, struct request_boost, work);
8024	struct drm_i915_gem_request *req = boost->req;
8025
8026	if (!i915_gem_request_completed(req))
8027		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
 
8028
8029	i915_gem_request_put(req);
8030	kfree(boost);
8031}
8032
8033void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
 
8034{
8035	struct request_boost *boost;
8036
8037	if (req == NULL || INTEL_GEN(req->i915) < 6)
8038		return;
8039
8040	if (i915_gem_request_completed(req))
8041		return;
8042
8043	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8044	if (boost == NULL)
8045		return;
8046
8047	boost->req = i915_gem_request_get(req);
 
8048
8049	INIT_WORK(&boost->work, __intel_rps_boost_work);
8050	queue_work(req->i915->wq, &boost->work);
8051}
8052
8053void intel_pm_setup(struct drm_device *dev)
8054{
8055	struct drm_i915_private *dev_priv = to_i915(dev);
8056
8057	mutex_init(&dev_priv->rps.hw_lock);
8058	spin_lock_init(&dev_priv->rps.client_lock);
8059
8060	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
8061			  __intel_autoenable_gt_powersave);
8062	INIT_LIST_HEAD(&dev_priv->rps.clients);
 
 
8063
8064	dev_priv->pm.suspended = false;
8065	atomic_set(&dev_priv->pm.wakeref_count, 0);
 
8066}