Loading...
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28#include <linux/cpufreq.h>
29#include "i915_drv.h"
30#include "intel_drv.h"
31#include "../../../platform/x86/intel_ips.h"
32#include <linux/module.h>
33
34/**
35 * DOC: RC6
36 *
37 * RC6 is a special power stage which allows the GPU to enter an very
38 * low-voltage mode when idle, using down to 0V while at this stage. This
39 * stage is entered automatically when the GPU is idle when RC6 support is
40 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
41 *
42 * There are different RC6 modes available in Intel GPU, which differentiate
43 * among each other with the latency required to enter and leave RC6 and
44 * voltage consumed by the GPU in different states.
45 *
46 * The combination of the following flags define which states GPU is allowed
47 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
48 * RC6pp is deepest RC6. Their support by hardware varies according to the
49 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
50 * which brings the most power savings; deeper states save more power, but
51 * require higher latency to switch to and wake up.
52 */
53#define INTEL_RC6_ENABLE (1<<0)
54#define INTEL_RC6p_ENABLE (1<<1)
55#define INTEL_RC6pp_ENABLE (1<<2)
56
57static void bxt_init_clock_gating(struct drm_device *dev)
58{
59 struct drm_i915_private *dev_priv = dev->dev_private;
60
61 /* WaDisableSDEUnitClockGating:bxt */
62 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
63 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
64
65 /*
66 * FIXME:
67 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
68 */
69 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
70 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
71
72 /*
73 * Wa: Backlight PWM may stop in the asserted state, causing backlight
74 * to stay fully on.
75 */
76 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
77 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
78 PWM1_GATING_DIS | PWM2_GATING_DIS);
79}
80
81static void i915_pineview_get_mem_freq(struct drm_device *dev)
82{
83 struct drm_i915_private *dev_priv = dev->dev_private;
84 u32 tmp;
85
86 tmp = I915_READ(CLKCFG);
87
88 switch (tmp & CLKCFG_FSB_MASK) {
89 case CLKCFG_FSB_533:
90 dev_priv->fsb_freq = 533; /* 133*4 */
91 break;
92 case CLKCFG_FSB_800:
93 dev_priv->fsb_freq = 800; /* 200*4 */
94 break;
95 case CLKCFG_FSB_667:
96 dev_priv->fsb_freq = 667; /* 167*4 */
97 break;
98 case CLKCFG_FSB_400:
99 dev_priv->fsb_freq = 400; /* 100*4 */
100 break;
101 }
102
103 switch (tmp & CLKCFG_MEM_MASK) {
104 case CLKCFG_MEM_533:
105 dev_priv->mem_freq = 533;
106 break;
107 case CLKCFG_MEM_667:
108 dev_priv->mem_freq = 667;
109 break;
110 case CLKCFG_MEM_800:
111 dev_priv->mem_freq = 800;
112 break;
113 }
114
115 /* detect pineview DDR3 setting */
116 tmp = I915_READ(CSHRDDR3CTL);
117 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
118}
119
120static void i915_ironlake_get_mem_freq(struct drm_device *dev)
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123 u16 ddrpll, csipll;
124
125 ddrpll = I915_READ16(DDRMPLL1);
126 csipll = I915_READ16(CSIPLL0);
127
128 switch (ddrpll & 0xff) {
129 case 0xc:
130 dev_priv->mem_freq = 800;
131 break;
132 case 0x10:
133 dev_priv->mem_freq = 1066;
134 break;
135 case 0x14:
136 dev_priv->mem_freq = 1333;
137 break;
138 case 0x18:
139 dev_priv->mem_freq = 1600;
140 break;
141 default:
142 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
143 ddrpll & 0xff);
144 dev_priv->mem_freq = 0;
145 break;
146 }
147
148 dev_priv->ips.r_t = dev_priv->mem_freq;
149
150 switch (csipll & 0x3ff) {
151 case 0x00c:
152 dev_priv->fsb_freq = 3200;
153 break;
154 case 0x00e:
155 dev_priv->fsb_freq = 3733;
156 break;
157 case 0x010:
158 dev_priv->fsb_freq = 4266;
159 break;
160 case 0x012:
161 dev_priv->fsb_freq = 4800;
162 break;
163 case 0x014:
164 dev_priv->fsb_freq = 5333;
165 break;
166 case 0x016:
167 dev_priv->fsb_freq = 5866;
168 break;
169 case 0x018:
170 dev_priv->fsb_freq = 6400;
171 break;
172 default:
173 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
174 csipll & 0x3ff);
175 dev_priv->fsb_freq = 0;
176 break;
177 }
178
179 if (dev_priv->fsb_freq == 3200) {
180 dev_priv->ips.c_m = 0;
181 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
182 dev_priv->ips.c_m = 1;
183 } else {
184 dev_priv->ips.c_m = 2;
185 }
186}
187
188static const struct cxsr_latency cxsr_latency_table[] = {
189 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
190 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
191 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
192 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
193 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
194
195 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
196 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
197 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
198 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
199 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
200
201 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
202 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
203 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
204 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
205 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
206
207 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
208 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
209 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
210 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
211 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
212
213 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
214 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
215 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
216 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
217 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
218
219 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
220 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
221 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
222 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
223 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
224};
225
226static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
227 int is_ddr3,
228 int fsb,
229 int mem)
230{
231 const struct cxsr_latency *latency;
232 int i;
233
234 if (fsb == 0 || mem == 0)
235 return NULL;
236
237 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
238 latency = &cxsr_latency_table[i];
239 if (is_desktop == latency->is_desktop &&
240 is_ddr3 == latency->is_ddr3 &&
241 fsb == latency->fsb_freq && mem == latency->mem_freq)
242 return latency;
243 }
244
245 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
246
247 return NULL;
248}
249
250static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
251{
252 u32 val;
253
254 mutex_lock(&dev_priv->rps.hw_lock);
255
256 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
257 if (enable)
258 val &= ~FORCE_DDR_HIGH_FREQ;
259 else
260 val |= FORCE_DDR_HIGH_FREQ;
261 val &= ~FORCE_DDR_LOW_FREQ;
262 val |= FORCE_DDR_FREQ_REQ_ACK;
263 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
264
265 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
266 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
267 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
268
269 mutex_unlock(&dev_priv->rps.hw_lock);
270}
271
272static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
273{
274 u32 val;
275
276 mutex_lock(&dev_priv->rps.hw_lock);
277
278 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
279 if (enable)
280 val |= DSP_MAXFIFO_PM5_ENABLE;
281 else
282 val &= ~DSP_MAXFIFO_PM5_ENABLE;
283 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
284
285 mutex_unlock(&dev_priv->rps.hw_lock);
286}
287
288#define FW_WM(value, plane) \
289 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
290
291void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
292{
293 struct drm_device *dev = dev_priv->dev;
294 u32 val;
295
296 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
297 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
298 POSTING_READ(FW_BLC_SELF_VLV);
299 dev_priv->wm.vlv.cxsr = enable;
300 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
301 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
302 POSTING_READ(FW_BLC_SELF);
303 } else if (IS_PINEVIEW(dev)) {
304 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
305 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
306 I915_WRITE(DSPFW3, val);
307 POSTING_READ(DSPFW3);
308 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
309 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
310 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
311 I915_WRITE(FW_BLC_SELF, val);
312 POSTING_READ(FW_BLC_SELF);
313 } else if (IS_I915GM(dev)) {
314 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
315 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
316 I915_WRITE(INSTPM, val);
317 POSTING_READ(INSTPM);
318 } else {
319 return;
320 }
321
322 DRM_DEBUG_KMS("memory self-refresh is %s\n",
323 enable ? "enabled" : "disabled");
324}
325
326
327/*
328 * Latency for FIFO fetches is dependent on several factors:
329 * - memory configuration (speed, channels)
330 * - chipset
331 * - current MCH state
332 * It can be fairly high in some situations, so here we assume a fairly
333 * pessimal value. It's a tradeoff between extra memory fetches (if we
334 * set this value too high, the FIFO will fetch frequently to stay full)
335 * and power consumption (set it too low to save power and we might see
336 * FIFO underruns and display "flicker").
337 *
338 * A value of 5us seems to be a good balance; safe for very low end
339 * platforms but not overly aggressive on lower latency configs.
340 */
341static const int pessimal_latency_ns = 5000;
342
343#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
344 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
345
346static int vlv_get_fifo_size(struct drm_device *dev,
347 enum pipe pipe, int plane)
348{
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 int sprite0_start, sprite1_start, size;
351
352 switch (pipe) {
353 uint32_t dsparb, dsparb2, dsparb3;
354 case PIPE_A:
355 dsparb = I915_READ(DSPARB);
356 dsparb2 = I915_READ(DSPARB2);
357 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
358 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
359 break;
360 case PIPE_B:
361 dsparb = I915_READ(DSPARB);
362 dsparb2 = I915_READ(DSPARB2);
363 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
364 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
365 break;
366 case PIPE_C:
367 dsparb2 = I915_READ(DSPARB2);
368 dsparb3 = I915_READ(DSPARB3);
369 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
370 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
371 break;
372 default:
373 return 0;
374 }
375
376 switch (plane) {
377 case 0:
378 size = sprite0_start;
379 break;
380 case 1:
381 size = sprite1_start - sprite0_start;
382 break;
383 case 2:
384 size = 512 - 1 - sprite1_start;
385 break;
386 default:
387 return 0;
388 }
389
390 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
391 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
392 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
393 size);
394
395 return size;
396}
397
398static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
399{
400 struct drm_i915_private *dev_priv = dev->dev_private;
401 uint32_t dsparb = I915_READ(DSPARB);
402 int size;
403
404 size = dsparb & 0x7f;
405 if (plane)
406 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
407
408 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
409 plane ? "B" : "A", size);
410
411 return size;
412}
413
414static int i830_get_fifo_size(struct drm_device *dev, int plane)
415{
416 struct drm_i915_private *dev_priv = dev->dev_private;
417 uint32_t dsparb = I915_READ(DSPARB);
418 int size;
419
420 size = dsparb & 0x1ff;
421 if (plane)
422 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
423 size >>= 1; /* Convert to cachelines */
424
425 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
426 plane ? "B" : "A", size);
427
428 return size;
429}
430
431static int i845_get_fifo_size(struct drm_device *dev, int plane)
432{
433 struct drm_i915_private *dev_priv = dev->dev_private;
434 uint32_t dsparb = I915_READ(DSPARB);
435 int size;
436
437 size = dsparb & 0x7f;
438 size >>= 2; /* Convert to cachelines */
439
440 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
441 plane ? "B" : "A",
442 size);
443
444 return size;
445}
446
447/* Pineview has different values for various configs */
448static const struct intel_watermark_params pineview_display_wm = {
449 .fifo_size = PINEVIEW_DISPLAY_FIFO,
450 .max_wm = PINEVIEW_MAX_WM,
451 .default_wm = PINEVIEW_DFT_WM,
452 .guard_size = PINEVIEW_GUARD_WM,
453 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
454};
455static const struct intel_watermark_params pineview_display_hplloff_wm = {
456 .fifo_size = PINEVIEW_DISPLAY_FIFO,
457 .max_wm = PINEVIEW_MAX_WM,
458 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
459 .guard_size = PINEVIEW_GUARD_WM,
460 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
461};
462static const struct intel_watermark_params pineview_cursor_wm = {
463 .fifo_size = PINEVIEW_CURSOR_FIFO,
464 .max_wm = PINEVIEW_CURSOR_MAX_WM,
465 .default_wm = PINEVIEW_CURSOR_DFT_WM,
466 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
467 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
468};
469static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
470 .fifo_size = PINEVIEW_CURSOR_FIFO,
471 .max_wm = PINEVIEW_CURSOR_MAX_WM,
472 .default_wm = PINEVIEW_CURSOR_DFT_WM,
473 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
474 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
475};
476static const struct intel_watermark_params g4x_wm_info = {
477 .fifo_size = G4X_FIFO_SIZE,
478 .max_wm = G4X_MAX_WM,
479 .default_wm = G4X_MAX_WM,
480 .guard_size = 2,
481 .cacheline_size = G4X_FIFO_LINE_SIZE,
482};
483static const struct intel_watermark_params g4x_cursor_wm_info = {
484 .fifo_size = I965_CURSOR_FIFO,
485 .max_wm = I965_CURSOR_MAX_WM,
486 .default_wm = I965_CURSOR_DFT_WM,
487 .guard_size = 2,
488 .cacheline_size = G4X_FIFO_LINE_SIZE,
489};
490static const struct intel_watermark_params valleyview_wm_info = {
491 .fifo_size = VALLEYVIEW_FIFO_SIZE,
492 .max_wm = VALLEYVIEW_MAX_WM,
493 .default_wm = VALLEYVIEW_MAX_WM,
494 .guard_size = 2,
495 .cacheline_size = G4X_FIFO_LINE_SIZE,
496};
497static const struct intel_watermark_params valleyview_cursor_wm_info = {
498 .fifo_size = I965_CURSOR_FIFO,
499 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
500 .default_wm = I965_CURSOR_DFT_WM,
501 .guard_size = 2,
502 .cacheline_size = G4X_FIFO_LINE_SIZE,
503};
504static const struct intel_watermark_params i965_cursor_wm_info = {
505 .fifo_size = I965_CURSOR_FIFO,
506 .max_wm = I965_CURSOR_MAX_WM,
507 .default_wm = I965_CURSOR_DFT_WM,
508 .guard_size = 2,
509 .cacheline_size = I915_FIFO_LINE_SIZE,
510};
511static const struct intel_watermark_params i945_wm_info = {
512 .fifo_size = I945_FIFO_SIZE,
513 .max_wm = I915_MAX_WM,
514 .default_wm = 1,
515 .guard_size = 2,
516 .cacheline_size = I915_FIFO_LINE_SIZE,
517};
518static const struct intel_watermark_params i915_wm_info = {
519 .fifo_size = I915_FIFO_SIZE,
520 .max_wm = I915_MAX_WM,
521 .default_wm = 1,
522 .guard_size = 2,
523 .cacheline_size = I915_FIFO_LINE_SIZE,
524};
525static const struct intel_watermark_params i830_a_wm_info = {
526 .fifo_size = I855GM_FIFO_SIZE,
527 .max_wm = I915_MAX_WM,
528 .default_wm = 1,
529 .guard_size = 2,
530 .cacheline_size = I830_FIFO_LINE_SIZE,
531};
532static const struct intel_watermark_params i830_bc_wm_info = {
533 .fifo_size = I855GM_FIFO_SIZE,
534 .max_wm = I915_MAX_WM/2,
535 .default_wm = 1,
536 .guard_size = 2,
537 .cacheline_size = I830_FIFO_LINE_SIZE,
538};
539static const struct intel_watermark_params i845_wm_info = {
540 .fifo_size = I830_FIFO_SIZE,
541 .max_wm = I915_MAX_WM,
542 .default_wm = 1,
543 .guard_size = 2,
544 .cacheline_size = I830_FIFO_LINE_SIZE,
545};
546
547/**
548 * intel_calculate_wm - calculate watermark level
549 * @clock_in_khz: pixel clock
550 * @wm: chip FIFO params
551 * @cpp: bytes per pixel
552 * @latency_ns: memory latency for the platform
553 *
554 * Calculate the watermark level (the level at which the display plane will
555 * start fetching from memory again). Each chip has a different display
556 * FIFO size and allocation, so the caller needs to figure that out and pass
557 * in the correct intel_watermark_params structure.
558 *
559 * As the pixel clock runs, the FIFO will be drained at a rate that depends
560 * on the pixel size. When it reaches the watermark level, it'll start
561 * fetching FIFO line sized based chunks from memory until the FIFO fills
562 * past the watermark point. If the FIFO drains completely, a FIFO underrun
563 * will occur, and a display engine hang could result.
564 */
565static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
566 const struct intel_watermark_params *wm,
567 int fifo_size, int cpp,
568 unsigned long latency_ns)
569{
570 long entries_required, wm_size;
571
572 /*
573 * Note: we need to make sure we don't overflow for various clock &
574 * latency values.
575 * clocks go from a few thousand to several hundred thousand.
576 * latency is usually a few thousand
577 */
578 entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
579 1000;
580 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
581
582 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
583
584 wm_size = fifo_size - (entries_required + wm->guard_size);
585
586 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
587
588 /* Don't promote wm_size to unsigned... */
589 if (wm_size > (long)wm->max_wm)
590 wm_size = wm->max_wm;
591 if (wm_size <= 0)
592 wm_size = wm->default_wm;
593
594 /*
595 * Bspec seems to indicate that the value shouldn't be lower than
596 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
597 * Lets go for 8 which is the burst size since certain platforms
598 * already use a hardcoded 8 (which is what the spec says should be
599 * done).
600 */
601 if (wm_size <= 8)
602 wm_size = 8;
603
604 return wm_size;
605}
606
607static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
608{
609 struct drm_crtc *crtc, *enabled = NULL;
610
611 for_each_crtc(dev, crtc) {
612 if (intel_crtc_active(crtc)) {
613 if (enabled)
614 return NULL;
615 enabled = crtc;
616 }
617 }
618
619 return enabled;
620}
621
622static void pineview_update_wm(struct drm_crtc *unused_crtc)
623{
624 struct drm_device *dev = unused_crtc->dev;
625 struct drm_i915_private *dev_priv = dev->dev_private;
626 struct drm_crtc *crtc;
627 const struct cxsr_latency *latency;
628 u32 reg;
629 unsigned long wm;
630
631 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
632 dev_priv->fsb_freq, dev_priv->mem_freq);
633 if (!latency) {
634 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
635 intel_set_memory_cxsr(dev_priv, false);
636 return;
637 }
638
639 crtc = single_enabled_crtc(dev);
640 if (crtc) {
641 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
642 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
643 int clock = adjusted_mode->crtc_clock;
644
645 /* Display SR */
646 wm = intel_calculate_wm(clock, &pineview_display_wm,
647 pineview_display_wm.fifo_size,
648 cpp, latency->display_sr);
649 reg = I915_READ(DSPFW1);
650 reg &= ~DSPFW_SR_MASK;
651 reg |= FW_WM(wm, SR);
652 I915_WRITE(DSPFW1, reg);
653 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
654
655 /* cursor SR */
656 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
657 pineview_display_wm.fifo_size,
658 cpp, latency->cursor_sr);
659 reg = I915_READ(DSPFW3);
660 reg &= ~DSPFW_CURSOR_SR_MASK;
661 reg |= FW_WM(wm, CURSOR_SR);
662 I915_WRITE(DSPFW3, reg);
663
664 /* Display HPLL off SR */
665 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
666 pineview_display_hplloff_wm.fifo_size,
667 cpp, latency->display_hpll_disable);
668 reg = I915_READ(DSPFW3);
669 reg &= ~DSPFW_HPLL_SR_MASK;
670 reg |= FW_WM(wm, HPLL_SR);
671 I915_WRITE(DSPFW3, reg);
672
673 /* cursor HPLL off SR */
674 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
675 pineview_display_hplloff_wm.fifo_size,
676 cpp, latency->cursor_hpll_disable);
677 reg = I915_READ(DSPFW3);
678 reg &= ~DSPFW_HPLL_CURSOR_MASK;
679 reg |= FW_WM(wm, HPLL_CURSOR);
680 I915_WRITE(DSPFW3, reg);
681 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
682
683 intel_set_memory_cxsr(dev_priv, true);
684 } else {
685 intel_set_memory_cxsr(dev_priv, false);
686 }
687}
688
689static bool g4x_compute_wm0(struct drm_device *dev,
690 int plane,
691 const struct intel_watermark_params *display,
692 int display_latency_ns,
693 const struct intel_watermark_params *cursor,
694 int cursor_latency_ns,
695 int *plane_wm,
696 int *cursor_wm)
697{
698 struct drm_crtc *crtc;
699 const struct drm_display_mode *adjusted_mode;
700 int htotal, hdisplay, clock, cpp;
701 int line_time_us, line_count;
702 int entries, tlb_miss;
703
704 crtc = intel_get_crtc_for_plane(dev, plane);
705 if (!intel_crtc_active(crtc)) {
706 *cursor_wm = cursor->guard_size;
707 *plane_wm = display->guard_size;
708 return false;
709 }
710
711 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
712 clock = adjusted_mode->crtc_clock;
713 htotal = adjusted_mode->crtc_htotal;
714 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
715 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
716
717 /* Use the small buffer method to calculate plane watermark */
718 entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
719 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
720 if (tlb_miss > 0)
721 entries += tlb_miss;
722 entries = DIV_ROUND_UP(entries, display->cacheline_size);
723 *plane_wm = entries + display->guard_size;
724 if (*plane_wm > (int)display->max_wm)
725 *plane_wm = display->max_wm;
726
727 /* Use the large buffer method to calculate cursor watermark */
728 line_time_us = max(htotal * 1000 / clock, 1);
729 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
730 entries = line_count * crtc->cursor->state->crtc_w * cpp;
731 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
732 if (tlb_miss > 0)
733 entries += tlb_miss;
734 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
735 *cursor_wm = entries + cursor->guard_size;
736 if (*cursor_wm > (int)cursor->max_wm)
737 *cursor_wm = (int)cursor->max_wm;
738
739 return true;
740}
741
742/*
743 * Check the wm result.
744 *
745 * If any calculated watermark values is larger than the maximum value that
746 * can be programmed into the associated watermark register, that watermark
747 * must be disabled.
748 */
749static bool g4x_check_srwm(struct drm_device *dev,
750 int display_wm, int cursor_wm,
751 const struct intel_watermark_params *display,
752 const struct intel_watermark_params *cursor)
753{
754 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
755 display_wm, cursor_wm);
756
757 if (display_wm > display->max_wm) {
758 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
759 display_wm, display->max_wm);
760 return false;
761 }
762
763 if (cursor_wm > cursor->max_wm) {
764 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
765 cursor_wm, cursor->max_wm);
766 return false;
767 }
768
769 if (!(display_wm || cursor_wm)) {
770 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
771 return false;
772 }
773
774 return true;
775}
776
777static bool g4x_compute_srwm(struct drm_device *dev,
778 int plane,
779 int latency_ns,
780 const struct intel_watermark_params *display,
781 const struct intel_watermark_params *cursor,
782 int *display_wm, int *cursor_wm)
783{
784 struct drm_crtc *crtc;
785 const struct drm_display_mode *adjusted_mode;
786 int hdisplay, htotal, cpp, clock;
787 unsigned long line_time_us;
788 int line_count, line_size;
789 int small, large;
790 int entries;
791
792 if (!latency_ns) {
793 *display_wm = *cursor_wm = 0;
794 return false;
795 }
796
797 crtc = intel_get_crtc_for_plane(dev, plane);
798 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
799 clock = adjusted_mode->crtc_clock;
800 htotal = adjusted_mode->crtc_htotal;
801 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
802 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
803
804 line_time_us = max(htotal * 1000 / clock, 1);
805 line_count = (latency_ns / line_time_us + 1000) / 1000;
806 line_size = hdisplay * cpp;
807
808 /* Use the minimum of the small and large buffer method for primary */
809 small = ((clock * cpp / 1000) * latency_ns) / 1000;
810 large = line_count * line_size;
811
812 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
813 *display_wm = entries + display->guard_size;
814
815 /* calculate the self-refresh watermark for display cursor */
816 entries = line_count * cpp * crtc->cursor->state->crtc_w;
817 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
818 *cursor_wm = entries + cursor->guard_size;
819
820 return g4x_check_srwm(dev,
821 *display_wm, *cursor_wm,
822 display, cursor);
823}
824
825#define FW_WM_VLV(value, plane) \
826 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
827
828static void vlv_write_wm_values(struct intel_crtc *crtc,
829 const struct vlv_wm_values *wm)
830{
831 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
832 enum pipe pipe = crtc->pipe;
833
834 I915_WRITE(VLV_DDL(pipe),
835 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
836 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
837 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
838 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
839
840 I915_WRITE(DSPFW1,
841 FW_WM(wm->sr.plane, SR) |
842 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
843 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
844 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
845 I915_WRITE(DSPFW2,
846 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
847 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
848 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
849 I915_WRITE(DSPFW3,
850 FW_WM(wm->sr.cursor, CURSOR_SR));
851
852 if (IS_CHERRYVIEW(dev_priv)) {
853 I915_WRITE(DSPFW7_CHV,
854 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
855 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
856 I915_WRITE(DSPFW8_CHV,
857 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
858 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
859 I915_WRITE(DSPFW9_CHV,
860 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
861 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
862 I915_WRITE(DSPHOWM,
863 FW_WM(wm->sr.plane >> 9, SR_HI) |
864 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
865 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
866 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
867 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
868 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
869 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
870 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
871 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
872 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
873 } else {
874 I915_WRITE(DSPFW7,
875 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
876 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
877 I915_WRITE(DSPHOWM,
878 FW_WM(wm->sr.plane >> 9, SR_HI) |
879 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
880 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
881 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
882 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
883 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
884 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
885 }
886
887 /* zero (unused) WM1 watermarks */
888 I915_WRITE(DSPFW4, 0);
889 I915_WRITE(DSPFW5, 0);
890 I915_WRITE(DSPFW6, 0);
891 I915_WRITE(DSPHOWM1, 0);
892
893 POSTING_READ(DSPFW1);
894}
895
896#undef FW_WM_VLV
897
898enum vlv_wm_level {
899 VLV_WM_LEVEL_PM2,
900 VLV_WM_LEVEL_PM5,
901 VLV_WM_LEVEL_DDR_DVFS,
902};
903
904/* latency must be in 0.1us units. */
905static unsigned int vlv_wm_method2(unsigned int pixel_rate,
906 unsigned int pipe_htotal,
907 unsigned int horiz_pixels,
908 unsigned int cpp,
909 unsigned int latency)
910{
911 unsigned int ret;
912
913 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
914 ret = (ret + 1) * horiz_pixels * cpp;
915 ret = DIV_ROUND_UP(ret, 64);
916
917 return ret;
918}
919
920static void vlv_setup_wm_latency(struct drm_device *dev)
921{
922 struct drm_i915_private *dev_priv = dev->dev_private;
923
924 /* all latencies in usec */
925 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
926
927 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
928
929 if (IS_CHERRYVIEW(dev_priv)) {
930 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
931 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
932
933 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
934 }
935}
936
937static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
938 struct intel_crtc *crtc,
939 const struct intel_plane_state *state,
940 int level)
941{
942 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
943 int clock, htotal, cpp, width, wm;
944
945 if (dev_priv->wm.pri_latency[level] == 0)
946 return USHRT_MAX;
947
948 if (!state->visible)
949 return 0;
950
951 cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
952 clock = crtc->config->base.adjusted_mode.crtc_clock;
953 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
954 width = crtc->config->pipe_src_w;
955 if (WARN_ON(htotal == 0))
956 htotal = 1;
957
958 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
959 /*
960 * FIXME the formula gives values that are
961 * too big for the cursor FIFO, and hence we
962 * would never be able to use cursors. For
963 * now just hardcode the watermark.
964 */
965 wm = 63;
966 } else {
967 wm = vlv_wm_method2(clock, htotal, width, cpp,
968 dev_priv->wm.pri_latency[level] * 10);
969 }
970
971 return min_t(int, wm, USHRT_MAX);
972}
973
974static void vlv_compute_fifo(struct intel_crtc *crtc)
975{
976 struct drm_device *dev = crtc->base.dev;
977 struct vlv_wm_state *wm_state = &crtc->wm_state;
978 struct intel_plane *plane;
979 unsigned int total_rate = 0;
980 const int fifo_size = 512 - 1;
981 int fifo_extra, fifo_left = fifo_size;
982
983 for_each_intel_plane_on_crtc(dev, crtc, plane) {
984 struct intel_plane_state *state =
985 to_intel_plane_state(plane->base.state);
986
987 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
988 continue;
989
990 if (state->visible) {
991 wm_state->num_active_planes++;
992 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
993 }
994 }
995
996 for_each_intel_plane_on_crtc(dev, crtc, plane) {
997 struct intel_plane_state *state =
998 to_intel_plane_state(plane->base.state);
999 unsigned int rate;
1000
1001 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1002 plane->wm.fifo_size = 63;
1003 continue;
1004 }
1005
1006 if (!state->visible) {
1007 plane->wm.fifo_size = 0;
1008 continue;
1009 }
1010
1011 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1012 plane->wm.fifo_size = fifo_size * rate / total_rate;
1013 fifo_left -= plane->wm.fifo_size;
1014 }
1015
1016 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1017
1018 /* spread the remainder evenly */
1019 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1020 int plane_extra;
1021
1022 if (fifo_left == 0)
1023 break;
1024
1025 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1026 continue;
1027
1028 /* give it all to the first plane if none are active */
1029 if (plane->wm.fifo_size == 0 &&
1030 wm_state->num_active_planes)
1031 continue;
1032
1033 plane_extra = min(fifo_extra, fifo_left);
1034 plane->wm.fifo_size += plane_extra;
1035 fifo_left -= plane_extra;
1036 }
1037
1038 WARN_ON(fifo_left != 0);
1039}
1040
1041static void vlv_invert_wms(struct intel_crtc *crtc)
1042{
1043 struct vlv_wm_state *wm_state = &crtc->wm_state;
1044 int level;
1045
1046 for (level = 0; level < wm_state->num_levels; level++) {
1047 struct drm_device *dev = crtc->base.dev;
1048 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1049 struct intel_plane *plane;
1050
1051 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1052 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1053
1054 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1055 switch (plane->base.type) {
1056 int sprite;
1057 case DRM_PLANE_TYPE_CURSOR:
1058 wm_state->wm[level].cursor = plane->wm.fifo_size -
1059 wm_state->wm[level].cursor;
1060 break;
1061 case DRM_PLANE_TYPE_PRIMARY:
1062 wm_state->wm[level].primary = plane->wm.fifo_size -
1063 wm_state->wm[level].primary;
1064 break;
1065 case DRM_PLANE_TYPE_OVERLAY:
1066 sprite = plane->plane;
1067 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1068 wm_state->wm[level].sprite[sprite];
1069 break;
1070 }
1071 }
1072 }
1073}
1074
1075static void vlv_compute_wm(struct intel_crtc *crtc)
1076{
1077 struct drm_device *dev = crtc->base.dev;
1078 struct vlv_wm_state *wm_state = &crtc->wm_state;
1079 struct intel_plane *plane;
1080 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1081 int level;
1082
1083 memset(wm_state, 0, sizeof(*wm_state));
1084
1085 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1086 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1087
1088 wm_state->num_active_planes = 0;
1089
1090 vlv_compute_fifo(crtc);
1091
1092 if (wm_state->num_active_planes != 1)
1093 wm_state->cxsr = false;
1094
1095 if (wm_state->cxsr) {
1096 for (level = 0; level < wm_state->num_levels; level++) {
1097 wm_state->sr[level].plane = sr_fifo_size;
1098 wm_state->sr[level].cursor = 63;
1099 }
1100 }
1101
1102 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1103 struct intel_plane_state *state =
1104 to_intel_plane_state(plane->base.state);
1105
1106 if (!state->visible)
1107 continue;
1108
1109 /* normal watermarks */
1110 for (level = 0; level < wm_state->num_levels; level++) {
1111 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1112 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1113
1114 /* hack */
1115 if (WARN_ON(level == 0 && wm > max_wm))
1116 wm = max_wm;
1117
1118 if (wm > plane->wm.fifo_size)
1119 break;
1120
1121 switch (plane->base.type) {
1122 int sprite;
1123 case DRM_PLANE_TYPE_CURSOR:
1124 wm_state->wm[level].cursor = wm;
1125 break;
1126 case DRM_PLANE_TYPE_PRIMARY:
1127 wm_state->wm[level].primary = wm;
1128 break;
1129 case DRM_PLANE_TYPE_OVERLAY:
1130 sprite = plane->plane;
1131 wm_state->wm[level].sprite[sprite] = wm;
1132 break;
1133 }
1134 }
1135
1136 wm_state->num_levels = level;
1137
1138 if (!wm_state->cxsr)
1139 continue;
1140
1141 /* maxfifo watermarks */
1142 switch (plane->base.type) {
1143 int sprite, level;
1144 case DRM_PLANE_TYPE_CURSOR:
1145 for (level = 0; level < wm_state->num_levels; level++)
1146 wm_state->sr[level].cursor =
1147 wm_state->wm[level].cursor;
1148 break;
1149 case DRM_PLANE_TYPE_PRIMARY:
1150 for (level = 0; level < wm_state->num_levels; level++)
1151 wm_state->sr[level].plane =
1152 min(wm_state->sr[level].plane,
1153 wm_state->wm[level].primary);
1154 break;
1155 case DRM_PLANE_TYPE_OVERLAY:
1156 sprite = plane->plane;
1157 for (level = 0; level < wm_state->num_levels; level++)
1158 wm_state->sr[level].plane =
1159 min(wm_state->sr[level].plane,
1160 wm_state->wm[level].sprite[sprite]);
1161 break;
1162 }
1163 }
1164
1165 /* clear any (partially) filled invalid levels */
1166 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1167 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1168 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1169 }
1170
1171 vlv_invert_wms(crtc);
1172}
1173
1174#define VLV_FIFO(plane, value) \
1175 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1176
1177static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1178{
1179 struct drm_device *dev = crtc->base.dev;
1180 struct drm_i915_private *dev_priv = to_i915(dev);
1181 struct intel_plane *plane;
1182 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1183
1184 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1185 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1186 WARN_ON(plane->wm.fifo_size != 63);
1187 continue;
1188 }
1189
1190 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1191 sprite0_start = plane->wm.fifo_size;
1192 else if (plane->plane == 0)
1193 sprite1_start = sprite0_start + plane->wm.fifo_size;
1194 else
1195 fifo_size = sprite1_start + plane->wm.fifo_size;
1196 }
1197
1198 WARN_ON(fifo_size != 512 - 1);
1199
1200 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1201 pipe_name(crtc->pipe), sprite0_start,
1202 sprite1_start, fifo_size);
1203
1204 switch (crtc->pipe) {
1205 uint32_t dsparb, dsparb2, dsparb3;
1206 case PIPE_A:
1207 dsparb = I915_READ(DSPARB);
1208 dsparb2 = I915_READ(DSPARB2);
1209
1210 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1211 VLV_FIFO(SPRITEB, 0xff));
1212 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1213 VLV_FIFO(SPRITEB, sprite1_start));
1214
1215 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1216 VLV_FIFO(SPRITEB_HI, 0x1));
1217 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1218 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1219
1220 I915_WRITE(DSPARB, dsparb);
1221 I915_WRITE(DSPARB2, dsparb2);
1222 break;
1223 case PIPE_B:
1224 dsparb = I915_READ(DSPARB);
1225 dsparb2 = I915_READ(DSPARB2);
1226
1227 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1228 VLV_FIFO(SPRITED, 0xff));
1229 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1230 VLV_FIFO(SPRITED, sprite1_start));
1231
1232 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1233 VLV_FIFO(SPRITED_HI, 0xff));
1234 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1235 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1236
1237 I915_WRITE(DSPARB, dsparb);
1238 I915_WRITE(DSPARB2, dsparb2);
1239 break;
1240 case PIPE_C:
1241 dsparb3 = I915_READ(DSPARB3);
1242 dsparb2 = I915_READ(DSPARB2);
1243
1244 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1245 VLV_FIFO(SPRITEF, 0xff));
1246 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1247 VLV_FIFO(SPRITEF, sprite1_start));
1248
1249 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1250 VLV_FIFO(SPRITEF_HI, 0xff));
1251 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1252 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1253
1254 I915_WRITE(DSPARB3, dsparb3);
1255 I915_WRITE(DSPARB2, dsparb2);
1256 break;
1257 default:
1258 break;
1259 }
1260}
1261
1262#undef VLV_FIFO
1263
1264static void vlv_merge_wm(struct drm_device *dev,
1265 struct vlv_wm_values *wm)
1266{
1267 struct intel_crtc *crtc;
1268 int num_active_crtcs = 0;
1269
1270 wm->level = to_i915(dev)->wm.max_level;
1271 wm->cxsr = true;
1272
1273 for_each_intel_crtc(dev, crtc) {
1274 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1275
1276 if (!crtc->active)
1277 continue;
1278
1279 if (!wm_state->cxsr)
1280 wm->cxsr = false;
1281
1282 num_active_crtcs++;
1283 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1284 }
1285
1286 if (num_active_crtcs != 1)
1287 wm->cxsr = false;
1288
1289 if (num_active_crtcs > 1)
1290 wm->level = VLV_WM_LEVEL_PM2;
1291
1292 for_each_intel_crtc(dev, crtc) {
1293 struct vlv_wm_state *wm_state = &crtc->wm_state;
1294 enum pipe pipe = crtc->pipe;
1295
1296 if (!crtc->active)
1297 continue;
1298
1299 wm->pipe[pipe] = wm_state->wm[wm->level];
1300 if (wm->cxsr)
1301 wm->sr = wm_state->sr[wm->level];
1302
1303 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1304 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1305 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1306 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1307 }
1308}
1309
1310static void vlv_update_wm(struct drm_crtc *crtc)
1311{
1312 struct drm_device *dev = crtc->dev;
1313 struct drm_i915_private *dev_priv = dev->dev_private;
1314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1315 enum pipe pipe = intel_crtc->pipe;
1316 struct vlv_wm_values wm = {};
1317
1318 vlv_compute_wm(intel_crtc);
1319 vlv_merge_wm(dev, &wm);
1320
1321 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1322 /* FIXME should be part of crtc atomic commit */
1323 vlv_pipe_set_fifo_size(intel_crtc);
1324 return;
1325 }
1326
1327 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1328 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1329 chv_set_memory_dvfs(dev_priv, false);
1330
1331 if (wm.level < VLV_WM_LEVEL_PM5 &&
1332 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1333 chv_set_memory_pm5(dev_priv, false);
1334
1335 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1336 intel_set_memory_cxsr(dev_priv, false);
1337
1338 /* FIXME should be part of crtc atomic commit */
1339 vlv_pipe_set_fifo_size(intel_crtc);
1340
1341 vlv_write_wm_values(intel_crtc, &wm);
1342
1343 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1344 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1345 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1346 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1347 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1348
1349 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1350 intel_set_memory_cxsr(dev_priv, true);
1351
1352 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1353 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1354 chv_set_memory_pm5(dev_priv, true);
1355
1356 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1357 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1358 chv_set_memory_dvfs(dev_priv, true);
1359
1360 dev_priv->wm.vlv = wm;
1361}
1362
1363#define single_plane_enabled(mask) is_power_of_2(mask)
1364
1365static void g4x_update_wm(struct drm_crtc *crtc)
1366{
1367 struct drm_device *dev = crtc->dev;
1368 static const int sr_latency_ns = 12000;
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1371 int plane_sr, cursor_sr;
1372 unsigned int enabled = 0;
1373 bool cxsr_enabled;
1374
1375 if (g4x_compute_wm0(dev, PIPE_A,
1376 &g4x_wm_info, pessimal_latency_ns,
1377 &g4x_cursor_wm_info, pessimal_latency_ns,
1378 &planea_wm, &cursora_wm))
1379 enabled |= 1 << PIPE_A;
1380
1381 if (g4x_compute_wm0(dev, PIPE_B,
1382 &g4x_wm_info, pessimal_latency_ns,
1383 &g4x_cursor_wm_info, pessimal_latency_ns,
1384 &planeb_wm, &cursorb_wm))
1385 enabled |= 1 << PIPE_B;
1386
1387 if (single_plane_enabled(enabled) &&
1388 g4x_compute_srwm(dev, ffs(enabled) - 1,
1389 sr_latency_ns,
1390 &g4x_wm_info,
1391 &g4x_cursor_wm_info,
1392 &plane_sr, &cursor_sr)) {
1393 cxsr_enabled = true;
1394 } else {
1395 cxsr_enabled = false;
1396 intel_set_memory_cxsr(dev_priv, false);
1397 plane_sr = cursor_sr = 0;
1398 }
1399
1400 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1401 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1402 planea_wm, cursora_wm,
1403 planeb_wm, cursorb_wm,
1404 plane_sr, cursor_sr);
1405
1406 I915_WRITE(DSPFW1,
1407 FW_WM(plane_sr, SR) |
1408 FW_WM(cursorb_wm, CURSORB) |
1409 FW_WM(planeb_wm, PLANEB) |
1410 FW_WM(planea_wm, PLANEA));
1411 I915_WRITE(DSPFW2,
1412 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1413 FW_WM(cursora_wm, CURSORA));
1414 /* HPLL off in SR has some issues on G4x... disable it */
1415 I915_WRITE(DSPFW3,
1416 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1417 FW_WM(cursor_sr, CURSOR_SR));
1418
1419 if (cxsr_enabled)
1420 intel_set_memory_cxsr(dev_priv, true);
1421}
1422
1423static void i965_update_wm(struct drm_crtc *unused_crtc)
1424{
1425 struct drm_device *dev = unused_crtc->dev;
1426 struct drm_i915_private *dev_priv = dev->dev_private;
1427 struct drm_crtc *crtc;
1428 int srwm = 1;
1429 int cursor_sr = 16;
1430 bool cxsr_enabled;
1431
1432 /* Calc sr entries for one plane configs */
1433 crtc = single_enabled_crtc(dev);
1434 if (crtc) {
1435 /* self-refresh has much higher latency */
1436 static const int sr_latency_ns = 12000;
1437 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1438 int clock = adjusted_mode->crtc_clock;
1439 int htotal = adjusted_mode->crtc_htotal;
1440 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1441 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1442 unsigned long line_time_us;
1443 int entries;
1444
1445 line_time_us = max(htotal * 1000 / clock, 1);
1446
1447 /* Use ns/us then divide to preserve precision */
1448 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449 cpp * hdisplay;
1450 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1451 srwm = I965_FIFO_SIZE - entries;
1452 if (srwm < 0)
1453 srwm = 1;
1454 srwm &= 0x1ff;
1455 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1456 entries, srwm);
1457
1458 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459 cpp * crtc->cursor->state->crtc_w;
1460 entries = DIV_ROUND_UP(entries,
1461 i965_cursor_wm_info.cacheline_size);
1462 cursor_sr = i965_cursor_wm_info.fifo_size -
1463 (entries + i965_cursor_wm_info.guard_size);
1464
1465 if (cursor_sr > i965_cursor_wm_info.max_wm)
1466 cursor_sr = i965_cursor_wm_info.max_wm;
1467
1468 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1469 "cursor %d\n", srwm, cursor_sr);
1470
1471 cxsr_enabled = true;
1472 } else {
1473 cxsr_enabled = false;
1474 /* Turn off self refresh if both pipes are enabled */
1475 intel_set_memory_cxsr(dev_priv, false);
1476 }
1477
1478 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1479 srwm);
1480
1481 /* 965 has limitations... */
1482 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1483 FW_WM(8, CURSORB) |
1484 FW_WM(8, PLANEB) |
1485 FW_WM(8, PLANEA));
1486 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1487 FW_WM(8, PLANEC_OLD));
1488 /* update cursor SR watermark */
1489 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1490
1491 if (cxsr_enabled)
1492 intel_set_memory_cxsr(dev_priv, true);
1493}
1494
1495#undef FW_WM
1496
1497static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1498{
1499 struct drm_device *dev = unused_crtc->dev;
1500 struct drm_i915_private *dev_priv = dev->dev_private;
1501 const struct intel_watermark_params *wm_info;
1502 uint32_t fwater_lo;
1503 uint32_t fwater_hi;
1504 int cwm, srwm = 1;
1505 int fifo_size;
1506 int planea_wm, planeb_wm;
1507 struct drm_crtc *crtc, *enabled = NULL;
1508
1509 if (IS_I945GM(dev))
1510 wm_info = &i945_wm_info;
1511 else if (!IS_GEN2(dev))
1512 wm_info = &i915_wm_info;
1513 else
1514 wm_info = &i830_a_wm_info;
1515
1516 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1517 crtc = intel_get_crtc_for_plane(dev, 0);
1518 if (intel_crtc_active(crtc)) {
1519 const struct drm_display_mode *adjusted_mode;
1520 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1521 if (IS_GEN2(dev))
1522 cpp = 4;
1523
1524 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1525 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1526 wm_info, fifo_size, cpp,
1527 pessimal_latency_ns);
1528 enabled = crtc;
1529 } else {
1530 planea_wm = fifo_size - wm_info->guard_size;
1531 if (planea_wm > (long)wm_info->max_wm)
1532 planea_wm = wm_info->max_wm;
1533 }
1534
1535 if (IS_GEN2(dev))
1536 wm_info = &i830_bc_wm_info;
1537
1538 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1539 crtc = intel_get_crtc_for_plane(dev, 1);
1540 if (intel_crtc_active(crtc)) {
1541 const struct drm_display_mode *adjusted_mode;
1542 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1543 if (IS_GEN2(dev))
1544 cpp = 4;
1545
1546 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1547 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548 wm_info, fifo_size, cpp,
1549 pessimal_latency_ns);
1550 if (enabled == NULL)
1551 enabled = crtc;
1552 else
1553 enabled = NULL;
1554 } else {
1555 planeb_wm = fifo_size - wm_info->guard_size;
1556 if (planeb_wm > (long)wm_info->max_wm)
1557 planeb_wm = wm_info->max_wm;
1558 }
1559
1560 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1561
1562 if (IS_I915GM(dev) && enabled) {
1563 struct drm_i915_gem_object *obj;
1564
1565 obj = intel_fb_obj(enabled->primary->state->fb);
1566
1567 /* self-refresh seems busted with untiled */
1568 if (obj->tiling_mode == I915_TILING_NONE)
1569 enabled = NULL;
1570 }
1571
1572 /*
1573 * Overlay gets an aggressive default since video jitter is bad.
1574 */
1575 cwm = 2;
1576
1577 /* Play safe and disable self-refresh before adjusting watermarks. */
1578 intel_set_memory_cxsr(dev_priv, false);
1579
1580 /* Calc sr entries for one plane configs */
1581 if (HAS_FW_BLC(dev) && enabled) {
1582 /* self-refresh has much higher latency */
1583 static const int sr_latency_ns = 6000;
1584 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1585 int clock = adjusted_mode->crtc_clock;
1586 int htotal = adjusted_mode->crtc_htotal;
1587 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1588 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1589 unsigned long line_time_us;
1590 int entries;
1591
1592 line_time_us = max(htotal * 1000 / clock, 1);
1593
1594 /* Use ns/us then divide to preserve precision */
1595 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1596 cpp * hdisplay;
1597 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1598 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1599 srwm = wm_info->fifo_size - entries;
1600 if (srwm < 0)
1601 srwm = 1;
1602
1603 if (IS_I945G(dev) || IS_I945GM(dev))
1604 I915_WRITE(FW_BLC_SELF,
1605 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1606 else if (IS_I915GM(dev))
1607 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1608 }
1609
1610 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1611 planea_wm, planeb_wm, cwm, srwm);
1612
1613 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1614 fwater_hi = (cwm & 0x1f);
1615
1616 /* Set request length to 8 cachelines per fetch */
1617 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1618 fwater_hi = fwater_hi | (1 << 8);
1619
1620 I915_WRITE(FW_BLC, fwater_lo);
1621 I915_WRITE(FW_BLC2, fwater_hi);
1622
1623 if (enabled)
1624 intel_set_memory_cxsr(dev_priv, true);
1625}
1626
1627static void i845_update_wm(struct drm_crtc *unused_crtc)
1628{
1629 struct drm_device *dev = unused_crtc->dev;
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 struct drm_crtc *crtc;
1632 const struct drm_display_mode *adjusted_mode;
1633 uint32_t fwater_lo;
1634 int planea_wm;
1635
1636 crtc = single_enabled_crtc(dev);
1637 if (crtc == NULL)
1638 return;
1639
1640 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1641 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1642 &i845_wm_info,
1643 dev_priv->display.get_fifo_size(dev, 0),
1644 4, pessimal_latency_ns);
1645 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1646 fwater_lo |= (3<<8) | planea_wm;
1647
1648 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1649
1650 I915_WRITE(FW_BLC, fwater_lo);
1651}
1652
1653uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1654{
1655 uint32_t pixel_rate;
1656
1657 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1658
1659 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1660 * adjust the pixel_rate here. */
1661
1662 if (pipe_config->pch_pfit.enabled) {
1663 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1664 uint32_t pfit_size = pipe_config->pch_pfit.size;
1665
1666 pipe_w = pipe_config->pipe_src_w;
1667 pipe_h = pipe_config->pipe_src_h;
1668
1669 pfit_w = (pfit_size >> 16) & 0xFFFF;
1670 pfit_h = pfit_size & 0xFFFF;
1671 if (pipe_w < pfit_w)
1672 pipe_w = pfit_w;
1673 if (pipe_h < pfit_h)
1674 pipe_h = pfit_h;
1675
1676 if (WARN_ON(!pfit_w || !pfit_h))
1677 return pixel_rate;
1678
1679 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1680 pfit_w * pfit_h);
1681 }
1682
1683 return pixel_rate;
1684}
1685
1686/* latency must be in 0.1us units. */
1687static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1688{
1689 uint64_t ret;
1690
1691 if (WARN(latency == 0, "Latency value missing\n"))
1692 return UINT_MAX;
1693
1694 ret = (uint64_t) pixel_rate * cpp * latency;
1695 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1696
1697 return ret;
1698}
1699
1700/* latency must be in 0.1us units. */
1701static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1702 uint32_t horiz_pixels, uint8_t cpp,
1703 uint32_t latency)
1704{
1705 uint32_t ret;
1706
1707 if (WARN(latency == 0, "Latency value missing\n"))
1708 return UINT_MAX;
1709 if (WARN_ON(!pipe_htotal))
1710 return UINT_MAX;
1711
1712 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1713 ret = (ret + 1) * horiz_pixels * cpp;
1714 ret = DIV_ROUND_UP(ret, 64) + 2;
1715 return ret;
1716}
1717
1718static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1719 uint8_t cpp)
1720{
1721 /*
1722 * Neither of these should be possible since this function shouldn't be
1723 * called if the CRTC is off or the plane is invisible. But let's be
1724 * extra paranoid to avoid a potential divide-by-zero if we screw up
1725 * elsewhere in the driver.
1726 */
1727 if (WARN_ON(!cpp))
1728 return 0;
1729 if (WARN_ON(!horiz_pixels))
1730 return 0;
1731
1732 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1733}
1734
1735struct ilk_wm_maximums {
1736 uint16_t pri;
1737 uint16_t spr;
1738 uint16_t cur;
1739 uint16_t fbc;
1740};
1741
1742/*
1743 * For both WM_PIPE and WM_LP.
1744 * mem_value must be in 0.1us units.
1745 */
1746static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1747 const struct intel_plane_state *pstate,
1748 uint32_t mem_value,
1749 bool is_lp)
1750{
1751 int cpp = pstate->base.fb ?
1752 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1753 uint32_t method1, method2;
1754
1755 if (!cstate->base.active || !pstate->visible)
1756 return 0;
1757
1758 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1759
1760 if (!is_lp)
1761 return method1;
1762
1763 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1764 cstate->base.adjusted_mode.crtc_htotal,
1765 drm_rect_width(&pstate->dst),
1766 cpp, mem_value);
1767
1768 return min(method1, method2);
1769}
1770
1771/*
1772 * For both WM_PIPE and WM_LP.
1773 * mem_value must be in 0.1us units.
1774 */
1775static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1776 const struct intel_plane_state *pstate,
1777 uint32_t mem_value)
1778{
1779 int cpp = pstate->base.fb ?
1780 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1781 uint32_t method1, method2;
1782
1783 if (!cstate->base.active || !pstate->visible)
1784 return 0;
1785
1786 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1787 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1788 cstate->base.adjusted_mode.crtc_htotal,
1789 drm_rect_width(&pstate->dst),
1790 cpp, mem_value);
1791 return min(method1, method2);
1792}
1793
1794/*
1795 * For both WM_PIPE and WM_LP.
1796 * mem_value must be in 0.1us units.
1797 */
1798static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1799 const struct intel_plane_state *pstate,
1800 uint32_t mem_value)
1801{
1802 /*
1803 * We treat the cursor plane as always-on for the purposes of watermark
1804 * calculation. Until we have two-stage watermark programming merged,
1805 * this is necessary to avoid flickering.
1806 */
1807 int cpp = 4;
1808 int width = pstate->visible ? pstate->base.crtc_w : 64;
1809
1810 if (!cstate->base.active)
1811 return 0;
1812
1813 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1814 cstate->base.adjusted_mode.crtc_htotal,
1815 width, cpp, mem_value);
1816}
1817
1818/* Only for WM_LP. */
1819static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1820 const struct intel_plane_state *pstate,
1821 uint32_t pri_val)
1822{
1823 int cpp = pstate->base.fb ?
1824 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1825
1826 if (!cstate->base.active || !pstate->visible)
1827 return 0;
1828
1829 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1830}
1831
1832static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1833{
1834 if (INTEL_INFO(dev)->gen >= 8)
1835 return 3072;
1836 else if (INTEL_INFO(dev)->gen >= 7)
1837 return 768;
1838 else
1839 return 512;
1840}
1841
1842static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1843 int level, bool is_sprite)
1844{
1845 if (INTEL_INFO(dev)->gen >= 8)
1846 /* BDW primary/sprite plane watermarks */
1847 return level == 0 ? 255 : 2047;
1848 else if (INTEL_INFO(dev)->gen >= 7)
1849 /* IVB/HSW primary/sprite plane watermarks */
1850 return level == 0 ? 127 : 1023;
1851 else if (!is_sprite)
1852 /* ILK/SNB primary plane watermarks */
1853 return level == 0 ? 127 : 511;
1854 else
1855 /* ILK/SNB sprite plane watermarks */
1856 return level == 0 ? 63 : 255;
1857}
1858
1859static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1860 int level)
1861{
1862 if (INTEL_INFO(dev)->gen >= 7)
1863 return level == 0 ? 63 : 255;
1864 else
1865 return level == 0 ? 31 : 63;
1866}
1867
1868static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1869{
1870 if (INTEL_INFO(dev)->gen >= 8)
1871 return 31;
1872 else
1873 return 15;
1874}
1875
1876/* Calculate the maximum primary/sprite plane watermark */
1877static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1878 int level,
1879 const struct intel_wm_config *config,
1880 enum intel_ddb_partitioning ddb_partitioning,
1881 bool is_sprite)
1882{
1883 unsigned int fifo_size = ilk_display_fifo_size(dev);
1884
1885 /* if sprites aren't enabled, sprites get nothing */
1886 if (is_sprite && !config->sprites_enabled)
1887 return 0;
1888
1889 /* HSW allows LP1+ watermarks even with multiple pipes */
1890 if (level == 0 || config->num_pipes_active > 1) {
1891 fifo_size /= INTEL_INFO(dev)->num_pipes;
1892
1893 /*
1894 * For some reason the non self refresh
1895 * FIFO size is only half of the self
1896 * refresh FIFO size on ILK/SNB.
1897 */
1898 if (INTEL_INFO(dev)->gen <= 6)
1899 fifo_size /= 2;
1900 }
1901
1902 if (config->sprites_enabled) {
1903 /* level 0 is always calculated with 1:1 split */
1904 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1905 if (is_sprite)
1906 fifo_size *= 5;
1907 fifo_size /= 6;
1908 } else {
1909 fifo_size /= 2;
1910 }
1911 }
1912
1913 /* clamp to max that the registers can hold */
1914 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1915}
1916
1917/* Calculate the maximum cursor plane watermark */
1918static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1919 int level,
1920 const struct intel_wm_config *config)
1921{
1922 /* HSW LP1+ watermarks w/ multiple pipes */
1923 if (level > 0 && config->num_pipes_active > 1)
1924 return 64;
1925
1926 /* otherwise just report max that registers can hold */
1927 return ilk_cursor_wm_reg_max(dev, level);
1928}
1929
1930static void ilk_compute_wm_maximums(const struct drm_device *dev,
1931 int level,
1932 const struct intel_wm_config *config,
1933 enum intel_ddb_partitioning ddb_partitioning,
1934 struct ilk_wm_maximums *max)
1935{
1936 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1937 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1938 max->cur = ilk_cursor_wm_max(dev, level, config);
1939 max->fbc = ilk_fbc_wm_reg_max(dev);
1940}
1941
1942static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1943 int level,
1944 struct ilk_wm_maximums *max)
1945{
1946 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1947 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1948 max->cur = ilk_cursor_wm_reg_max(dev, level);
1949 max->fbc = ilk_fbc_wm_reg_max(dev);
1950}
1951
1952static bool ilk_validate_wm_level(int level,
1953 const struct ilk_wm_maximums *max,
1954 struct intel_wm_level *result)
1955{
1956 bool ret;
1957
1958 /* already determined to be invalid? */
1959 if (!result->enable)
1960 return false;
1961
1962 result->enable = result->pri_val <= max->pri &&
1963 result->spr_val <= max->spr &&
1964 result->cur_val <= max->cur;
1965
1966 ret = result->enable;
1967
1968 /*
1969 * HACK until we can pre-compute everything,
1970 * and thus fail gracefully if LP0 watermarks
1971 * are exceeded...
1972 */
1973 if (level == 0 && !result->enable) {
1974 if (result->pri_val > max->pri)
1975 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1976 level, result->pri_val, max->pri);
1977 if (result->spr_val > max->spr)
1978 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1979 level, result->spr_val, max->spr);
1980 if (result->cur_val > max->cur)
1981 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1982 level, result->cur_val, max->cur);
1983
1984 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1985 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1986 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1987 result->enable = true;
1988 }
1989
1990 return ret;
1991}
1992
1993static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1994 const struct intel_crtc *intel_crtc,
1995 int level,
1996 struct intel_crtc_state *cstate,
1997 struct intel_plane_state *pristate,
1998 struct intel_plane_state *sprstate,
1999 struct intel_plane_state *curstate,
2000 struct intel_wm_level *result)
2001{
2002 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2003 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2004 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2005
2006 /* WM1+ latency values stored in 0.5us units */
2007 if (level > 0) {
2008 pri_latency *= 5;
2009 spr_latency *= 5;
2010 cur_latency *= 5;
2011 }
2012
2013 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2014 pri_latency, level);
2015 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2016 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2017 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2018 result->enable = true;
2019}
2020
2021static uint32_t
2022hsw_compute_linetime_wm(struct drm_device *dev,
2023 struct intel_crtc_state *cstate)
2024{
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 const struct drm_display_mode *adjusted_mode =
2027 &cstate->base.adjusted_mode;
2028 u32 linetime, ips_linetime;
2029
2030 if (!cstate->base.active)
2031 return 0;
2032 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2033 return 0;
2034 if (WARN_ON(dev_priv->cdclk_freq == 0))
2035 return 0;
2036
2037 /* The WM are computed with base on how long it takes to fill a single
2038 * row at the given clock rate, multiplied by 8.
2039 * */
2040 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2041 adjusted_mode->crtc_clock);
2042 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2043 dev_priv->cdclk_freq);
2044
2045 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2046 PIPE_WM_LINETIME_TIME(linetime);
2047}
2048
2049static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2050{
2051 struct drm_i915_private *dev_priv = dev->dev_private;
2052
2053 if (IS_GEN9(dev)) {
2054 uint32_t val;
2055 int ret, i;
2056 int level, max_level = ilk_wm_max_level(dev);
2057
2058 /* read the first set of memory latencies[0:3] */
2059 val = 0; /* data0 to be programmed to 0 for first set */
2060 mutex_lock(&dev_priv->rps.hw_lock);
2061 ret = sandybridge_pcode_read(dev_priv,
2062 GEN9_PCODE_READ_MEM_LATENCY,
2063 &val);
2064 mutex_unlock(&dev_priv->rps.hw_lock);
2065
2066 if (ret) {
2067 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2068 return;
2069 }
2070
2071 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2072 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2073 GEN9_MEM_LATENCY_LEVEL_MASK;
2074 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2075 GEN9_MEM_LATENCY_LEVEL_MASK;
2076 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2077 GEN9_MEM_LATENCY_LEVEL_MASK;
2078
2079 /* read the second set of memory latencies[4:7] */
2080 val = 1; /* data0 to be programmed to 1 for second set */
2081 mutex_lock(&dev_priv->rps.hw_lock);
2082 ret = sandybridge_pcode_read(dev_priv,
2083 GEN9_PCODE_READ_MEM_LATENCY,
2084 &val);
2085 mutex_unlock(&dev_priv->rps.hw_lock);
2086 if (ret) {
2087 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2088 return;
2089 }
2090
2091 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2092 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2093 GEN9_MEM_LATENCY_LEVEL_MASK;
2094 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2095 GEN9_MEM_LATENCY_LEVEL_MASK;
2096 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2097 GEN9_MEM_LATENCY_LEVEL_MASK;
2098
2099 /*
2100 * WaWmMemoryReadLatency:skl
2101 *
2102 * punit doesn't take into account the read latency so we need
2103 * to add 2us to the various latency levels we retrieve from
2104 * the punit.
2105 * - W0 is a bit special in that it's the only level that
2106 * can't be disabled if we want to have display working, so
2107 * we always add 2us there.
2108 * - For levels >=1, punit returns 0us latency when they are
2109 * disabled, so we respect that and don't add 2us then
2110 *
2111 * Additionally, if a level n (n > 1) has a 0us latency, all
2112 * levels m (m >= n) need to be disabled. We make sure to
2113 * sanitize the values out of the punit to satisfy this
2114 * requirement.
2115 */
2116 wm[0] += 2;
2117 for (level = 1; level <= max_level; level++)
2118 if (wm[level] != 0)
2119 wm[level] += 2;
2120 else {
2121 for (i = level + 1; i <= max_level; i++)
2122 wm[i] = 0;
2123
2124 break;
2125 }
2126 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2127 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2128
2129 wm[0] = (sskpd >> 56) & 0xFF;
2130 if (wm[0] == 0)
2131 wm[0] = sskpd & 0xF;
2132 wm[1] = (sskpd >> 4) & 0xFF;
2133 wm[2] = (sskpd >> 12) & 0xFF;
2134 wm[3] = (sskpd >> 20) & 0x1FF;
2135 wm[4] = (sskpd >> 32) & 0x1FF;
2136 } else if (INTEL_INFO(dev)->gen >= 6) {
2137 uint32_t sskpd = I915_READ(MCH_SSKPD);
2138
2139 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2140 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2141 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2142 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2143 } else if (INTEL_INFO(dev)->gen >= 5) {
2144 uint32_t mltr = I915_READ(MLTR_ILK);
2145
2146 /* ILK primary LP0 latency is 700 ns */
2147 wm[0] = 7;
2148 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2149 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2150 }
2151}
2152
2153static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2154{
2155 /* ILK sprite LP0 latency is 1300 ns */
2156 if (INTEL_INFO(dev)->gen == 5)
2157 wm[0] = 13;
2158}
2159
2160static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2161{
2162 /* ILK cursor LP0 latency is 1300 ns */
2163 if (INTEL_INFO(dev)->gen == 5)
2164 wm[0] = 13;
2165
2166 /* WaDoubleCursorLP3Latency:ivb */
2167 if (IS_IVYBRIDGE(dev))
2168 wm[3] *= 2;
2169}
2170
2171int ilk_wm_max_level(const struct drm_device *dev)
2172{
2173 /* how many WM levels are we expecting */
2174 if (INTEL_INFO(dev)->gen >= 9)
2175 return 7;
2176 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2177 return 4;
2178 else if (INTEL_INFO(dev)->gen >= 6)
2179 return 3;
2180 else
2181 return 2;
2182}
2183
2184static void intel_print_wm_latency(struct drm_device *dev,
2185 const char *name,
2186 const uint16_t wm[8])
2187{
2188 int level, max_level = ilk_wm_max_level(dev);
2189
2190 for (level = 0; level <= max_level; level++) {
2191 unsigned int latency = wm[level];
2192
2193 if (latency == 0) {
2194 DRM_ERROR("%s WM%d latency not provided\n",
2195 name, level);
2196 continue;
2197 }
2198
2199 /*
2200 * - latencies are in us on gen9.
2201 * - before then, WM1+ latency values are in 0.5us units
2202 */
2203 if (IS_GEN9(dev))
2204 latency *= 10;
2205 else if (level > 0)
2206 latency *= 5;
2207
2208 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2209 name, level, wm[level],
2210 latency / 10, latency % 10);
2211 }
2212}
2213
2214static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2215 uint16_t wm[5], uint16_t min)
2216{
2217 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2218
2219 if (wm[0] >= min)
2220 return false;
2221
2222 wm[0] = max(wm[0], min);
2223 for (level = 1; level <= max_level; level++)
2224 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2225
2226 return true;
2227}
2228
2229static void snb_wm_latency_quirk(struct drm_device *dev)
2230{
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232 bool changed;
2233
2234 /*
2235 * The BIOS provided WM memory latency values are often
2236 * inadequate for high resolution displays. Adjust them.
2237 */
2238 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2239 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2240 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2241
2242 if (!changed)
2243 return;
2244
2245 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2246 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2247 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2248 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2249}
2250
2251static void ilk_setup_wm_latency(struct drm_device *dev)
2252{
2253 struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2256
2257 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2258 sizeof(dev_priv->wm.pri_latency));
2259 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2260 sizeof(dev_priv->wm.pri_latency));
2261
2262 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2263 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2264
2265 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2266 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2267 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2268
2269 if (IS_GEN6(dev))
2270 snb_wm_latency_quirk(dev);
2271}
2272
2273static void skl_setup_wm_latency(struct drm_device *dev)
2274{
2275 struct drm_i915_private *dev_priv = dev->dev_private;
2276
2277 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2278 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2279}
2280
2281/* Compute new watermarks for the pipe */
2282static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2283 struct drm_atomic_state *state)
2284{
2285 struct intel_pipe_wm *pipe_wm;
2286 struct drm_device *dev = intel_crtc->base.dev;
2287 const struct drm_i915_private *dev_priv = dev->dev_private;
2288 struct intel_crtc_state *cstate = NULL;
2289 struct intel_plane *intel_plane;
2290 struct drm_plane_state *ps;
2291 struct intel_plane_state *pristate = NULL;
2292 struct intel_plane_state *sprstate = NULL;
2293 struct intel_plane_state *curstate = NULL;
2294 int level, max_level = ilk_wm_max_level(dev);
2295 /* LP0 watermark maximums depend on this pipe alone */
2296 struct intel_wm_config config = {
2297 .num_pipes_active = 1,
2298 };
2299 struct ilk_wm_maximums max;
2300
2301 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2302 if (IS_ERR(cstate))
2303 return PTR_ERR(cstate);
2304
2305 pipe_wm = &cstate->wm.optimal.ilk;
2306 memset(pipe_wm, 0, sizeof(*pipe_wm));
2307
2308 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2309 ps = drm_atomic_get_plane_state(state,
2310 &intel_plane->base);
2311 if (IS_ERR(ps))
2312 return PTR_ERR(ps);
2313
2314 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2315 pristate = to_intel_plane_state(ps);
2316 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2317 sprstate = to_intel_plane_state(ps);
2318 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2319 curstate = to_intel_plane_state(ps);
2320 }
2321
2322 config.sprites_enabled = sprstate->visible;
2323 config.sprites_scaled = sprstate->visible &&
2324 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2325 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2326
2327 pipe_wm->pipe_enabled = cstate->base.active;
2328 pipe_wm->sprites_enabled = config.sprites_enabled;
2329 pipe_wm->sprites_scaled = config.sprites_scaled;
2330
2331 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2332 if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2333 max_level = 1;
2334
2335 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2336 if (config.sprites_scaled)
2337 max_level = 0;
2338
2339 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2340 pristate, sprstate, curstate, &pipe_wm->wm[0]);
2341
2342 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2343 pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2344
2345 /* LP0 watermarks always use 1/2 DDB partitioning */
2346 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2347
2348 /* At least LP0 must be valid */
2349 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2350 return -EINVAL;
2351
2352 ilk_compute_wm_reg_maximums(dev, 1, &max);
2353
2354 for (level = 1; level <= max_level; level++) {
2355 struct intel_wm_level wm = {};
2356
2357 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2358 pristate, sprstate, curstate, &wm);
2359
2360 /*
2361 * Disable any watermark level that exceeds the
2362 * register maximums since such watermarks are
2363 * always invalid.
2364 */
2365 if (!ilk_validate_wm_level(level, &max, &wm))
2366 break;
2367
2368 pipe_wm->wm[level] = wm;
2369 }
2370
2371 return 0;
2372}
2373
2374/*
2375 * Merge the watermarks from all active pipes for a specific level.
2376 */
2377static void ilk_merge_wm_level(struct drm_device *dev,
2378 int level,
2379 struct intel_wm_level *ret_wm)
2380{
2381 const struct intel_crtc *intel_crtc;
2382
2383 ret_wm->enable = true;
2384
2385 for_each_intel_crtc(dev, intel_crtc) {
2386 const struct intel_crtc_state *cstate =
2387 to_intel_crtc_state(intel_crtc->base.state);
2388 const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2389 const struct intel_wm_level *wm = &active->wm[level];
2390
2391 if (!active->pipe_enabled)
2392 continue;
2393
2394 /*
2395 * The watermark values may have been used in the past,
2396 * so we must maintain them in the registers for some
2397 * time even if the level is now disabled.
2398 */
2399 if (!wm->enable)
2400 ret_wm->enable = false;
2401
2402 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2403 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2404 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2405 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2406 }
2407}
2408
2409/*
2410 * Merge all low power watermarks for all active pipes.
2411 */
2412static void ilk_wm_merge(struct drm_device *dev,
2413 const struct intel_wm_config *config,
2414 const struct ilk_wm_maximums *max,
2415 struct intel_pipe_wm *merged)
2416{
2417 struct drm_i915_private *dev_priv = dev->dev_private;
2418 int level, max_level = ilk_wm_max_level(dev);
2419 int last_enabled_level = max_level;
2420
2421 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2422 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2423 config->num_pipes_active > 1)
2424 return;
2425
2426 /* ILK: FBC WM must be disabled always */
2427 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2428
2429 /* merge each WM1+ level */
2430 for (level = 1; level <= max_level; level++) {
2431 struct intel_wm_level *wm = &merged->wm[level];
2432
2433 ilk_merge_wm_level(dev, level, wm);
2434
2435 if (level > last_enabled_level)
2436 wm->enable = false;
2437 else if (!ilk_validate_wm_level(level, max, wm))
2438 /* make sure all following levels get disabled */
2439 last_enabled_level = level - 1;
2440
2441 /*
2442 * The spec says it is preferred to disable
2443 * FBC WMs instead of disabling a WM level.
2444 */
2445 if (wm->fbc_val > max->fbc) {
2446 if (wm->enable)
2447 merged->fbc_wm_enabled = false;
2448 wm->fbc_val = 0;
2449 }
2450 }
2451
2452 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2453 /*
2454 * FIXME this is racy. FBC might get enabled later.
2455 * What we should check here is whether FBC can be
2456 * enabled sometime later.
2457 */
2458 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2459 intel_fbc_is_active(dev_priv)) {
2460 for (level = 2; level <= max_level; level++) {
2461 struct intel_wm_level *wm = &merged->wm[level];
2462
2463 wm->enable = false;
2464 }
2465 }
2466}
2467
2468static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2469{
2470 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2471 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2472}
2473
2474/* The value we need to program into the WM_LPx latency field */
2475static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2476{
2477 struct drm_i915_private *dev_priv = dev->dev_private;
2478
2479 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2480 return 2 * level;
2481 else
2482 return dev_priv->wm.pri_latency[level];
2483}
2484
2485static void ilk_compute_wm_results(struct drm_device *dev,
2486 const struct intel_pipe_wm *merged,
2487 enum intel_ddb_partitioning partitioning,
2488 struct ilk_wm_values *results)
2489{
2490 struct intel_crtc *intel_crtc;
2491 int level, wm_lp;
2492
2493 results->enable_fbc_wm = merged->fbc_wm_enabled;
2494 results->partitioning = partitioning;
2495
2496 /* LP1+ register values */
2497 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2498 const struct intel_wm_level *r;
2499
2500 level = ilk_wm_lp_to_level(wm_lp, merged);
2501
2502 r = &merged->wm[level];
2503
2504 /*
2505 * Maintain the watermark values even if the level is
2506 * disabled. Doing otherwise could cause underruns.
2507 */
2508 results->wm_lp[wm_lp - 1] =
2509 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2510 (r->pri_val << WM1_LP_SR_SHIFT) |
2511 r->cur_val;
2512
2513 if (r->enable)
2514 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2515
2516 if (INTEL_INFO(dev)->gen >= 8)
2517 results->wm_lp[wm_lp - 1] |=
2518 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2519 else
2520 results->wm_lp[wm_lp - 1] |=
2521 r->fbc_val << WM1_LP_FBC_SHIFT;
2522
2523 /*
2524 * Always set WM1S_LP_EN when spr_val != 0, even if the
2525 * level is disabled. Doing otherwise could cause underruns.
2526 */
2527 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2528 WARN_ON(wm_lp != 1);
2529 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2530 } else
2531 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2532 }
2533
2534 /* LP0 register values */
2535 for_each_intel_crtc(dev, intel_crtc) {
2536 const struct intel_crtc_state *cstate =
2537 to_intel_crtc_state(intel_crtc->base.state);
2538 enum pipe pipe = intel_crtc->pipe;
2539 const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2540
2541 if (WARN_ON(!r->enable))
2542 continue;
2543
2544 results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2545
2546 results->wm_pipe[pipe] =
2547 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2548 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2549 r->cur_val;
2550 }
2551}
2552
2553/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2554 * case both are at the same level. Prefer r1 in case they're the same. */
2555static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2556 struct intel_pipe_wm *r1,
2557 struct intel_pipe_wm *r2)
2558{
2559 int level, max_level = ilk_wm_max_level(dev);
2560 int level1 = 0, level2 = 0;
2561
2562 for (level = 1; level <= max_level; level++) {
2563 if (r1->wm[level].enable)
2564 level1 = level;
2565 if (r2->wm[level].enable)
2566 level2 = level;
2567 }
2568
2569 if (level1 == level2) {
2570 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2571 return r2;
2572 else
2573 return r1;
2574 } else if (level1 > level2) {
2575 return r1;
2576 } else {
2577 return r2;
2578 }
2579}
2580
2581/* dirty bits used to track which watermarks need changes */
2582#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2583#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2584#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2585#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2586#define WM_DIRTY_FBC (1 << 24)
2587#define WM_DIRTY_DDB (1 << 25)
2588
2589static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2590 const struct ilk_wm_values *old,
2591 const struct ilk_wm_values *new)
2592{
2593 unsigned int dirty = 0;
2594 enum pipe pipe;
2595 int wm_lp;
2596
2597 for_each_pipe(dev_priv, pipe) {
2598 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2599 dirty |= WM_DIRTY_LINETIME(pipe);
2600 /* Must disable LP1+ watermarks too */
2601 dirty |= WM_DIRTY_LP_ALL;
2602 }
2603
2604 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2605 dirty |= WM_DIRTY_PIPE(pipe);
2606 /* Must disable LP1+ watermarks too */
2607 dirty |= WM_DIRTY_LP_ALL;
2608 }
2609 }
2610
2611 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2612 dirty |= WM_DIRTY_FBC;
2613 /* Must disable LP1+ watermarks too */
2614 dirty |= WM_DIRTY_LP_ALL;
2615 }
2616
2617 if (old->partitioning != new->partitioning) {
2618 dirty |= WM_DIRTY_DDB;
2619 /* Must disable LP1+ watermarks too */
2620 dirty |= WM_DIRTY_LP_ALL;
2621 }
2622
2623 /* LP1+ watermarks already deemed dirty, no need to continue */
2624 if (dirty & WM_DIRTY_LP_ALL)
2625 return dirty;
2626
2627 /* Find the lowest numbered LP1+ watermark in need of an update... */
2628 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2629 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2630 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2631 break;
2632 }
2633
2634 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2635 for (; wm_lp <= 3; wm_lp++)
2636 dirty |= WM_DIRTY_LP(wm_lp);
2637
2638 return dirty;
2639}
2640
2641static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2642 unsigned int dirty)
2643{
2644 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2645 bool changed = false;
2646
2647 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2648 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2649 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2650 changed = true;
2651 }
2652 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2653 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2654 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2655 changed = true;
2656 }
2657 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2658 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2659 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2660 changed = true;
2661 }
2662
2663 /*
2664 * Don't touch WM1S_LP_EN here.
2665 * Doing so could cause underruns.
2666 */
2667
2668 return changed;
2669}
2670
2671/*
2672 * The spec says we shouldn't write when we don't need, because every write
2673 * causes WMs to be re-evaluated, expending some power.
2674 */
2675static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2676 struct ilk_wm_values *results)
2677{
2678 struct drm_device *dev = dev_priv->dev;
2679 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2680 unsigned int dirty;
2681 uint32_t val;
2682
2683 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2684 if (!dirty)
2685 return;
2686
2687 _ilk_disable_lp_wm(dev_priv, dirty);
2688
2689 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2690 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2691 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2692 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2693 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2694 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2695
2696 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2697 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2698 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2699 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2700 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2701 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2702
2703 if (dirty & WM_DIRTY_DDB) {
2704 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2705 val = I915_READ(WM_MISC);
2706 if (results->partitioning == INTEL_DDB_PART_1_2)
2707 val &= ~WM_MISC_DATA_PARTITION_5_6;
2708 else
2709 val |= WM_MISC_DATA_PARTITION_5_6;
2710 I915_WRITE(WM_MISC, val);
2711 } else {
2712 val = I915_READ(DISP_ARB_CTL2);
2713 if (results->partitioning == INTEL_DDB_PART_1_2)
2714 val &= ~DISP_DATA_PARTITION_5_6;
2715 else
2716 val |= DISP_DATA_PARTITION_5_6;
2717 I915_WRITE(DISP_ARB_CTL2, val);
2718 }
2719 }
2720
2721 if (dirty & WM_DIRTY_FBC) {
2722 val = I915_READ(DISP_ARB_CTL);
2723 if (results->enable_fbc_wm)
2724 val &= ~DISP_FBC_WM_DIS;
2725 else
2726 val |= DISP_FBC_WM_DIS;
2727 I915_WRITE(DISP_ARB_CTL, val);
2728 }
2729
2730 if (dirty & WM_DIRTY_LP(1) &&
2731 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2732 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2733
2734 if (INTEL_INFO(dev)->gen >= 7) {
2735 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2736 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2737 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2738 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2739 }
2740
2741 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2742 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2743 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2744 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2745 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2746 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2747
2748 dev_priv->wm.hw = *results;
2749}
2750
2751static bool ilk_disable_lp_wm(struct drm_device *dev)
2752{
2753 struct drm_i915_private *dev_priv = dev->dev_private;
2754
2755 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2756}
2757
2758/*
2759 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2760 * different active planes.
2761 */
2762
2763#define SKL_DDB_SIZE 896 /* in blocks */
2764#define BXT_DDB_SIZE 512
2765
2766/*
2767 * Return the index of a plane in the SKL DDB and wm result arrays. Primary
2768 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2769 * other universal planes are in indices 1..n. Note that this may leave unused
2770 * indices between the top "sprite" plane and the cursor.
2771 */
2772static int
2773skl_wm_plane_id(const struct intel_plane *plane)
2774{
2775 switch (plane->base.type) {
2776 case DRM_PLANE_TYPE_PRIMARY:
2777 return 0;
2778 case DRM_PLANE_TYPE_CURSOR:
2779 return PLANE_CURSOR;
2780 case DRM_PLANE_TYPE_OVERLAY:
2781 return plane->plane + 1;
2782 default:
2783 MISSING_CASE(plane->base.type);
2784 return plane->plane;
2785 }
2786}
2787
2788static void
2789skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2790 const struct intel_crtc_state *cstate,
2791 const struct intel_wm_config *config,
2792 struct skl_ddb_entry *alloc /* out */)
2793{
2794 struct drm_crtc *for_crtc = cstate->base.crtc;
2795 struct drm_crtc *crtc;
2796 unsigned int pipe_size, ddb_size;
2797 int nth_active_pipe;
2798
2799 if (!cstate->base.active) {
2800 alloc->start = 0;
2801 alloc->end = 0;
2802 return;
2803 }
2804
2805 if (IS_BROXTON(dev))
2806 ddb_size = BXT_DDB_SIZE;
2807 else
2808 ddb_size = SKL_DDB_SIZE;
2809
2810 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2811
2812 nth_active_pipe = 0;
2813 for_each_crtc(dev, crtc) {
2814 if (!to_intel_crtc(crtc)->active)
2815 continue;
2816
2817 if (crtc == for_crtc)
2818 break;
2819
2820 nth_active_pipe++;
2821 }
2822
2823 pipe_size = ddb_size / config->num_pipes_active;
2824 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2825 alloc->end = alloc->start + pipe_size;
2826}
2827
2828static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2829{
2830 if (config->num_pipes_active == 1)
2831 return 32;
2832
2833 return 8;
2834}
2835
2836static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2837{
2838 entry->start = reg & 0x3ff;
2839 entry->end = (reg >> 16) & 0x3ff;
2840 if (entry->end)
2841 entry->end += 1;
2842}
2843
2844void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2845 struct skl_ddb_allocation *ddb /* out */)
2846{
2847 enum pipe pipe;
2848 int plane;
2849 u32 val;
2850
2851 memset(ddb, 0, sizeof(*ddb));
2852
2853 for_each_pipe(dev_priv, pipe) {
2854 enum intel_display_power_domain power_domain;
2855
2856 power_domain = POWER_DOMAIN_PIPE(pipe);
2857 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2858 continue;
2859
2860 for_each_plane(dev_priv, pipe, plane) {
2861 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2862 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2863 val);
2864 }
2865
2866 val = I915_READ(CUR_BUF_CFG(pipe));
2867 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2868 val);
2869
2870 intel_display_power_put(dev_priv, power_domain);
2871 }
2872}
2873
2874static unsigned int
2875skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2876 const struct drm_plane_state *pstate,
2877 int y)
2878{
2879 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2880 struct drm_framebuffer *fb = pstate->fb;
2881 uint32_t width = 0, height = 0;
2882
2883 width = drm_rect_width(&intel_pstate->src) >> 16;
2884 height = drm_rect_height(&intel_pstate->src) >> 16;
2885
2886 if (intel_rotation_90_or_270(pstate->rotation))
2887 swap(width, height);
2888
2889 /* for planar format */
2890 if (fb->pixel_format == DRM_FORMAT_NV12) {
2891 if (y) /* y-plane data rate */
2892 return width * height *
2893 drm_format_plane_cpp(fb->pixel_format, 0);
2894 else /* uv-plane data rate */
2895 return (width / 2) * (height / 2) *
2896 drm_format_plane_cpp(fb->pixel_format, 1);
2897 }
2898
2899 /* for packed formats */
2900 return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2901}
2902
2903/*
2904 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2905 * a 8192x4096@32bpp framebuffer:
2906 * 3 * 4096 * 8192 * 4 < 2^32
2907 */
2908static unsigned int
2909skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2910{
2911 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2912 struct drm_device *dev = intel_crtc->base.dev;
2913 const struct intel_plane *intel_plane;
2914 unsigned int total_data_rate = 0;
2915
2916 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2917 const struct drm_plane_state *pstate = intel_plane->base.state;
2918
2919 if (pstate->fb == NULL)
2920 continue;
2921
2922 if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2923 continue;
2924
2925 /* packed/uv */
2926 total_data_rate += skl_plane_relative_data_rate(cstate,
2927 pstate,
2928 0);
2929
2930 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2931 /* y-plane */
2932 total_data_rate += skl_plane_relative_data_rate(cstate,
2933 pstate,
2934 1);
2935 }
2936
2937 return total_data_rate;
2938}
2939
2940static void
2941skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2942 struct skl_ddb_allocation *ddb /* out */)
2943{
2944 struct drm_crtc *crtc = cstate->base.crtc;
2945 struct drm_device *dev = crtc->dev;
2946 struct drm_i915_private *dev_priv = to_i915(dev);
2947 struct intel_wm_config *config = &dev_priv->wm.config;
2948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2949 struct intel_plane *intel_plane;
2950 enum pipe pipe = intel_crtc->pipe;
2951 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2952 uint16_t alloc_size, start, cursor_blocks;
2953 uint16_t minimum[I915_MAX_PLANES];
2954 uint16_t y_minimum[I915_MAX_PLANES];
2955 unsigned int total_data_rate;
2956
2957 skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2958 alloc_size = skl_ddb_entry_size(alloc);
2959 if (alloc_size == 0) {
2960 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2961 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2962 sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2963 return;
2964 }
2965
2966 cursor_blocks = skl_cursor_allocation(config);
2967 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2968 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2969
2970 alloc_size -= cursor_blocks;
2971 alloc->end -= cursor_blocks;
2972
2973 /* 1. Allocate the mininum required blocks for each active plane */
2974 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2975 struct drm_plane *plane = &intel_plane->base;
2976 struct drm_framebuffer *fb = plane->state->fb;
2977 int id = skl_wm_plane_id(intel_plane);
2978
2979 if (!to_intel_plane_state(plane->state)->visible)
2980 continue;
2981
2982 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2983 continue;
2984
2985 minimum[id] = 8;
2986 alloc_size -= minimum[id];
2987 y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2988 alloc_size -= y_minimum[id];
2989 }
2990
2991 /*
2992 * 2. Distribute the remaining space in proportion to the amount of
2993 * data each plane needs to fetch from memory.
2994 *
2995 * FIXME: we may not allocate every single block here.
2996 */
2997 total_data_rate = skl_get_total_relative_data_rate(cstate);
2998
2999 start = alloc->start;
3000 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3001 struct drm_plane *plane = &intel_plane->base;
3002 struct drm_plane_state *pstate = intel_plane->base.state;
3003 unsigned int data_rate, y_data_rate;
3004 uint16_t plane_blocks, y_plane_blocks = 0;
3005 int id = skl_wm_plane_id(intel_plane);
3006
3007 if (!to_intel_plane_state(pstate)->visible)
3008 continue;
3009 if (plane->type == DRM_PLANE_TYPE_CURSOR)
3010 continue;
3011
3012 data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3013
3014 /*
3015 * allocation for (packed formats) or (uv-plane part of planar format):
3016 * promote the expression to 64 bits to avoid overflowing, the
3017 * result is < available as data_rate / total_data_rate < 1
3018 */
3019 plane_blocks = minimum[id];
3020 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3021 total_data_rate);
3022
3023 ddb->plane[pipe][id].start = start;
3024 ddb->plane[pipe][id].end = start + plane_blocks;
3025
3026 start += plane_blocks;
3027
3028 /*
3029 * allocation for y_plane part of planar format:
3030 */
3031 if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3032 y_data_rate = skl_plane_relative_data_rate(cstate,
3033 pstate,
3034 1);
3035 y_plane_blocks = y_minimum[id];
3036 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3037 total_data_rate);
3038
3039 ddb->y_plane[pipe][id].start = start;
3040 ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3041
3042 start += y_plane_blocks;
3043 }
3044
3045 }
3046
3047}
3048
3049static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3050{
3051 /* TODO: Take into account the scalers once we support them */
3052 return config->base.adjusted_mode.crtc_clock;
3053}
3054
3055/*
3056 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3057 * for the read latency) and cpp should always be <= 8, so that
3058 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3059 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3060*/
3061static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3062{
3063 uint32_t wm_intermediate_val, ret;
3064
3065 if (latency == 0)
3066 return UINT_MAX;
3067
3068 wm_intermediate_val = latency * pixel_rate * cpp / 512;
3069 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3070
3071 return ret;
3072}
3073
3074static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3075 uint32_t horiz_pixels, uint8_t cpp,
3076 uint64_t tiling, uint32_t latency)
3077{
3078 uint32_t ret;
3079 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3080 uint32_t wm_intermediate_val;
3081
3082 if (latency == 0)
3083 return UINT_MAX;
3084
3085 plane_bytes_per_line = horiz_pixels * cpp;
3086
3087 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3088 tiling == I915_FORMAT_MOD_Yf_TILED) {
3089 plane_bytes_per_line *= 4;
3090 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3091 plane_blocks_per_line /= 4;
3092 } else {
3093 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3094 }
3095
3096 wm_intermediate_val = latency * pixel_rate;
3097 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3098 plane_blocks_per_line;
3099
3100 return ret;
3101}
3102
3103static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3104 const struct intel_crtc *intel_crtc)
3105{
3106 struct drm_device *dev = intel_crtc->base.dev;
3107 struct drm_i915_private *dev_priv = dev->dev_private;
3108 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3109
3110 /*
3111 * If ddb allocation of pipes changed, it may require recalculation of
3112 * watermarks
3113 */
3114 if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3115 return true;
3116
3117 return false;
3118}
3119
3120static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3121 struct intel_crtc_state *cstate,
3122 struct intel_plane *intel_plane,
3123 uint16_t ddb_allocation,
3124 int level,
3125 uint16_t *out_blocks, /* out */
3126 uint8_t *out_lines /* out */)
3127{
3128 struct drm_plane *plane = &intel_plane->base;
3129 struct drm_framebuffer *fb = plane->state->fb;
3130 struct intel_plane_state *intel_pstate =
3131 to_intel_plane_state(plane->state);
3132 uint32_t latency = dev_priv->wm.skl_latency[level];
3133 uint32_t method1, method2;
3134 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3135 uint32_t res_blocks, res_lines;
3136 uint32_t selected_result;
3137 uint8_t cpp;
3138 uint32_t width = 0, height = 0;
3139
3140 if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3141 return false;
3142
3143 width = drm_rect_width(&intel_pstate->src) >> 16;
3144 height = drm_rect_height(&intel_pstate->src) >> 16;
3145
3146 if (intel_rotation_90_or_270(plane->state->rotation))
3147 swap(width, height);
3148
3149 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3150 method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3151 cpp, latency);
3152 method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3153 cstate->base.adjusted_mode.crtc_htotal,
3154 width,
3155 cpp,
3156 fb->modifier[0],
3157 latency);
3158
3159 plane_bytes_per_line = width * cpp;
3160 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3161
3162 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3163 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3164 uint32_t min_scanlines = 4;
3165 uint32_t y_tile_minimum;
3166 if (intel_rotation_90_or_270(plane->state->rotation)) {
3167 int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3168 drm_format_plane_cpp(fb->pixel_format, 1) :
3169 drm_format_plane_cpp(fb->pixel_format, 0);
3170
3171 switch (cpp) {
3172 case 1:
3173 min_scanlines = 16;
3174 break;
3175 case 2:
3176 min_scanlines = 8;
3177 break;
3178 case 8:
3179 WARN(1, "Unsupported pixel depth for rotation");
3180 }
3181 }
3182 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3183 selected_result = max(method2, y_tile_minimum);
3184 } else {
3185 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3186 selected_result = min(method1, method2);
3187 else
3188 selected_result = method1;
3189 }
3190
3191 res_blocks = selected_result + 1;
3192 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3193
3194 if (level >= 1 && level <= 7) {
3195 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3196 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3197 res_lines += 4;
3198 else
3199 res_blocks++;
3200 }
3201
3202 if (res_blocks >= ddb_allocation || res_lines > 31)
3203 return false;
3204
3205 *out_blocks = res_blocks;
3206 *out_lines = res_lines;
3207
3208 return true;
3209}
3210
3211static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3212 struct skl_ddb_allocation *ddb,
3213 struct intel_crtc_state *cstate,
3214 int level,
3215 struct skl_wm_level *result)
3216{
3217 struct drm_device *dev = dev_priv->dev;
3218 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3219 struct intel_plane *intel_plane;
3220 uint16_t ddb_blocks;
3221 enum pipe pipe = intel_crtc->pipe;
3222
3223 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3224 int i = skl_wm_plane_id(intel_plane);
3225
3226 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3227
3228 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3229 cstate,
3230 intel_plane,
3231 ddb_blocks,
3232 level,
3233 &result->plane_res_b[i],
3234 &result->plane_res_l[i]);
3235 }
3236}
3237
3238static uint32_t
3239skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3240{
3241 if (!cstate->base.active)
3242 return 0;
3243
3244 if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3245 return 0;
3246
3247 return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3248 skl_pipe_pixel_rate(cstate));
3249}
3250
3251static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3252 struct skl_wm_level *trans_wm /* out */)
3253{
3254 struct drm_crtc *crtc = cstate->base.crtc;
3255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256 struct intel_plane *intel_plane;
3257
3258 if (!cstate->base.active)
3259 return;
3260
3261 /* Until we know more, just disable transition WMs */
3262 for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3263 int i = skl_wm_plane_id(intel_plane);
3264
3265 trans_wm->plane_en[i] = false;
3266 }
3267}
3268
3269static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3270 struct skl_ddb_allocation *ddb,
3271 struct skl_pipe_wm *pipe_wm)
3272{
3273 struct drm_device *dev = cstate->base.crtc->dev;
3274 const struct drm_i915_private *dev_priv = dev->dev_private;
3275 int level, max_level = ilk_wm_max_level(dev);
3276
3277 for (level = 0; level <= max_level; level++) {
3278 skl_compute_wm_level(dev_priv, ddb, cstate,
3279 level, &pipe_wm->wm[level]);
3280 }
3281 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3282
3283 skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3284}
3285
3286static void skl_compute_wm_results(struct drm_device *dev,
3287 struct skl_pipe_wm *p_wm,
3288 struct skl_wm_values *r,
3289 struct intel_crtc *intel_crtc)
3290{
3291 int level, max_level = ilk_wm_max_level(dev);
3292 enum pipe pipe = intel_crtc->pipe;
3293 uint32_t temp;
3294 int i;
3295
3296 for (level = 0; level <= max_level; level++) {
3297 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3298 temp = 0;
3299
3300 temp |= p_wm->wm[level].plane_res_l[i] <<
3301 PLANE_WM_LINES_SHIFT;
3302 temp |= p_wm->wm[level].plane_res_b[i];
3303 if (p_wm->wm[level].plane_en[i])
3304 temp |= PLANE_WM_EN;
3305
3306 r->plane[pipe][i][level] = temp;
3307 }
3308
3309 temp = 0;
3310
3311 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3312 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3313
3314 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3315 temp |= PLANE_WM_EN;
3316
3317 r->plane[pipe][PLANE_CURSOR][level] = temp;
3318
3319 }
3320
3321 /* transition WMs */
3322 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3323 temp = 0;
3324 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3325 temp |= p_wm->trans_wm.plane_res_b[i];
3326 if (p_wm->trans_wm.plane_en[i])
3327 temp |= PLANE_WM_EN;
3328
3329 r->plane_trans[pipe][i] = temp;
3330 }
3331
3332 temp = 0;
3333 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3334 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3335 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3336 temp |= PLANE_WM_EN;
3337
3338 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3339
3340 r->wm_linetime[pipe] = p_wm->linetime;
3341}
3342
3343static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3344 i915_reg_t reg,
3345 const struct skl_ddb_entry *entry)
3346{
3347 if (entry->end)
3348 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3349 else
3350 I915_WRITE(reg, 0);
3351}
3352
3353static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3354 const struct skl_wm_values *new)
3355{
3356 struct drm_device *dev = dev_priv->dev;
3357 struct intel_crtc *crtc;
3358
3359 for_each_intel_crtc(dev, crtc) {
3360 int i, level, max_level = ilk_wm_max_level(dev);
3361 enum pipe pipe = crtc->pipe;
3362
3363 if (!new->dirty[pipe])
3364 continue;
3365
3366 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3367
3368 for (level = 0; level <= max_level; level++) {
3369 for (i = 0; i < intel_num_planes(crtc); i++)
3370 I915_WRITE(PLANE_WM(pipe, i, level),
3371 new->plane[pipe][i][level]);
3372 I915_WRITE(CUR_WM(pipe, level),
3373 new->plane[pipe][PLANE_CURSOR][level]);
3374 }
3375 for (i = 0; i < intel_num_planes(crtc); i++)
3376 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3377 new->plane_trans[pipe][i]);
3378 I915_WRITE(CUR_WM_TRANS(pipe),
3379 new->plane_trans[pipe][PLANE_CURSOR]);
3380
3381 for (i = 0; i < intel_num_planes(crtc); i++) {
3382 skl_ddb_entry_write(dev_priv,
3383 PLANE_BUF_CFG(pipe, i),
3384 &new->ddb.plane[pipe][i]);
3385 skl_ddb_entry_write(dev_priv,
3386 PLANE_NV12_BUF_CFG(pipe, i),
3387 &new->ddb.y_plane[pipe][i]);
3388 }
3389
3390 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3391 &new->ddb.plane[pipe][PLANE_CURSOR]);
3392 }
3393}
3394
3395/*
3396 * When setting up a new DDB allocation arrangement, we need to correctly
3397 * sequence the times at which the new allocations for the pipes are taken into
3398 * account or we'll have pipes fetching from space previously allocated to
3399 * another pipe.
3400 *
3401 * Roughly the sequence looks like:
3402 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3403 * overlapping with a previous light-up pipe (another way to put it is:
3404 * pipes with their new allocation strickly included into their old ones).
3405 * 2. re-allocate the other pipes that get their allocation reduced
3406 * 3. allocate the pipes having their allocation increased
3407 *
3408 * Steps 1. and 2. are here to take care of the following case:
3409 * - Initially DDB looks like this:
3410 * | B | C |
3411 * - enable pipe A.
3412 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3413 * allocation
3414 * | A | B | C |
3415 *
3416 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3417 */
3418
3419static void
3420skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3421{
3422 int plane;
3423
3424 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3425
3426 for_each_plane(dev_priv, pipe, plane) {
3427 I915_WRITE(PLANE_SURF(pipe, plane),
3428 I915_READ(PLANE_SURF(pipe, plane)));
3429 }
3430 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3431}
3432
3433static bool
3434skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3435 const struct skl_ddb_allocation *new,
3436 enum pipe pipe)
3437{
3438 uint16_t old_size, new_size;
3439
3440 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3441 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3442
3443 return old_size != new_size &&
3444 new->pipe[pipe].start >= old->pipe[pipe].start &&
3445 new->pipe[pipe].end <= old->pipe[pipe].end;
3446}
3447
3448static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3449 struct skl_wm_values *new_values)
3450{
3451 struct drm_device *dev = dev_priv->dev;
3452 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3453 bool reallocated[I915_MAX_PIPES] = {};
3454 struct intel_crtc *crtc;
3455 enum pipe pipe;
3456
3457 new_ddb = &new_values->ddb;
3458 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3459
3460 /*
3461 * First pass: flush the pipes with the new allocation contained into
3462 * the old space.
3463 *
3464 * We'll wait for the vblank on those pipes to ensure we can safely
3465 * re-allocate the freed space without this pipe fetching from it.
3466 */
3467 for_each_intel_crtc(dev, crtc) {
3468 if (!crtc->active)
3469 continue;
3470
3471 pipe = crtc->pipe;
3472
3473 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3474 continue;
3475
3476 skl_wm_flush_pipe(dev_priv, pipe, 1);
3477 intel_wait_for_vblank(dev, pipe);
3478
3479 reallocated[pipe] = true;
3480 }
3481
3482
3483 /*
3484 * Second pass: flush the pipes that are having their allocation
3485 * reduced, but overlapping with a previous allocation.
3486 *
3487 * Here as well we need to wait for the vblank to make sure the freed
3488 * space is not used anymore.
3489 */
3490 for_each_intel_crtc(dev, crtc) {
3491 if (!crtc->active)
3492 continue;
3493
3494 pipe = crtc->pipe;
3495
3496 if (reallocated[pipe])
3497 continue;
3498
3499 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3500 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3501 skl_wm_flush_pipe(dev_priv, pipe, 2);
3502 intel_wait_for_vblank(dev, pipe);
3503 reallocated[pipe] = true;
3504 }
3505 }
3506
3507 /*
3508 * Third pass: flush the pipes that got more space allocated.
3509 *
3510 * We don't need to actively wait for the update here, next vblank
3511 * will just get more DDB space with the correct WM values.
3512 */
3513 for_each_intel_crtc(dev, crtc) {
3514 if (!crtc->active)
3515 continue;
3516
3517 pipe = crtc->pipe;
3518
3519 /*
3520 * At this point, only the pipes more space than before are
3521 * left to re-allocate.
3522 */
3523 if (reallocated[pipe])
3524 continue;
3525
3526 skl_wm_flush_pipe(dev_priv, pipe, 3);
3527 }
3528}
3529
3530static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3531 struct skl_ddb_allocation *ddb, /* out */
3532 struct skl_pipe_wm *pipe_wm /* out */)
3533{
3534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3535 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3536
3537 skl_allocate_pipe_ddb(cstate, ddb);
3538 skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3539
3540 if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3541 return false;
3542
3543 intel_crtc->wm.active.skl = *pipe_wm;
3544
3545 return true;
3546}
3547
3548static void skl_update_other_pipe_wm(struct drm_device *dev,
3549 struct drm_crtc *crtc,
3550 struct skl_wm_values *r)
3551{
3552 struct intel_crtc *intel_crtc;
3553 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3554
3555 /*
3556 * If the WM update hasn't changed the allocation for this_crtc (the
3557 * crtc we are currently computing the new WM values for), other
3558 * enabled crtcs will keep the same allocation and we don't need to
3559 * recompute anything for them.
3560 */
3561 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3562 return;
3563
3564 /*
3565 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3566 * other active pipes need new DDB allocation and WM values.
3567 */
3568 for_each_intel_crtc(dev, intel_crtc) {
3569 struct skl_pipe_wm pipe_wm = {};
3570 bool wm_changed;
3571
3572 if (this_crtc->pipe == intel_crtc->pipe)
3573 continue;
3574
3575 if (!intel_crtc->active)
3576 continue;
3577
3578 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3579 &r->ddb, &pipe_wm);
3580
3581 /*
3582 * If we end up re-computing the other pipe WM values, it's
3583 * because it was really needed, so we expect the WM values to
3584 * be different.
3585 */
3586 WARN_ON(!wm_changed);
3587
3588 skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3589 r->dirty[intel_crtc->pipe] = true;
3590 }
3591}
3592
3593static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3594{
3595 watermarks->wm_linetime[pipe] = 0;
3596 memset(watermarks->plane[pipe], 0,
3597 sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3598 memset(watermarks->plane_trans[pipe],
3599 0, sizeof(uint32_t) * I915_MAX_PLANES);
3600 watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3601
3602 /* Clear ddb entries for pipe */
3603 memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3604 memset(&watermarks->ddb.plane[pipe], 0,
3605 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3606 memset(&watermarks->ddb.y_plane[pipe], 0,
3607 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3608 memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3609 sizeof(struct skl_ddb_entry));
3610
3611}
3612
3613static void skl_update_wm(struct drm_crtc *crtc)
3614{
3615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3616 struct drm_device *dev = crtc->dev;
3617 struct drm_i915_private *dev_priv = dev->dev_private;
3618 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3619 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3620 struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3621
3622
3623 /* Clear all dirty flags */
3624 memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3625
3626 skl_clear_wm(results, intel_crtc->pipe);
3627
3628 if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3629 return;
3630
3631 skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3632 results->dirty[intel_crtc->pipe] = true;
3633
3634 skl_update_other_pipe_wm(dev, crtc, results);
3635 skl_write_wm_values(dev_priv, results);
3636 skl_flush_wm_values(dev_priv, results);
3637
3638 /* store the new configuration */
3639 dev_priv->wm.skl_hw = *results;
3640}
3641
3642static void ilk_compute_wm_config(struct drm_device *dev,
3643 struct intel_wm_config *config)
3644{
3645 struct intel_crtc *crtc;
3646
3647 /* Compute the currently _active_ config */
3648 for_each_intel_crtc(dev, crtc) {
3649 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3650
3651 if (!wm->pipe_enabled)
3652 continue;
3653
3654 config->sprites_enabled |= wm->sprites_enabled;
3655 config->sprites_scaled |= wm->sprites_scaled;
3656 config->num_pipes_active++;
3657 }
3658}
3659
3660static void ilk_program_watermarks(struct intel_crtc_state *cstate)
3661{
3662 struct drm_crtc *crtc = cstate->base.crtc;
3663 struct drm_device *dev = crtc->dev;
3664 struct drm_i915_private *dev_priv = to_i915(dev);
3665 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3666 struct ilk_wm_maximums max;
3667 struct intel_wm_config config = {};
3668 struct ilk_wm_values results = {};
3669 enum intel_ddb_partitioning partitioning;
3670
3671 ilk_compute_wm_config(dev, &config);
3672
3673 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3674 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3675
3676 /* 5/6 split only in single pipe config on IVB+ */
3677 if (INTEL_INFO(dev)->gen >= 7 &&
3678 config.num_pipes_active == 1 && config.sprites_enabled) {
3679 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3680 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3681
3682 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3683 } else {
3684 best_lp_wm = &lp_wm_1_2;
3685 }
3686
3687 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3688 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3689
3690 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3691
3692 ilk_write_wm_values(dev_priv, &results);
3693}
3694
3695static void ilk_update_wm(struct drm_crtc *crtc)
3696{
3697 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3699
3700 WARN_ON(cstate->base.active != intel_crtc->active);
3701
3702 /*
3703 * IVB workaround: must disable low power watermarks for at least
3704 * one frame before enabling scaling. LP watermarks can be re-enabled
3705 * when scaling is disabled.
3706 *
3707 * WaCxSRDisabledForSpriteScaling:ivb
3708 */
3709 if (cstate->disable_lp_wm) {
3710 ilk_disable_lp_wm(crtc->dev);
3711 intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3712 }
3713
3714 intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3715
3716 ilk_program_watermarks(cstate);
3717}
3718
3719static void skl_pipe_wm_active_state(uint32_t val,
3720 struct skl_pipe_wm *active,
3721 bool is_transwm,
3722 bool is_cursor,
3723 int i,
3724 int level)
3725{
3726 bool is_enabled = (val & PLANE_WM_EN) != 0;
3727
3728 if (!is_transwm) {
3729 if (!is_cursor) {
3730 active->wm[level].plane_en[i] = is_enabled;
3731 active->wm[level].plane_res_b[i] =
3732 val & PLANE_WM_BLOCKS_MASK;
3733 active->wm[level].plane_res_l[i] =
3734 (val >> PLANE_WM_LINES_SHIFT) &
3735 PLANE_WM_LINES_MASK;
3736 } else {
3737 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3738 active->wm[level].plane_res_b[PLANE_CURSOR] =
3739 val & PLANE_WM_BLOCKS_MASK;
3740 active->wm[level].plane_res_l[PLANE_CURSOR] =
3741 (val >> PLANE_WM_LINES_SHIFT) &
3742 PLANE_WM_LINES_MASK;
3743 }
3744 } else {
3745 if (!is_cursor) {
3746 active->trans_wm.plane_en[i] = is_enabled;
3747 active->trans_wm.plane_res_b[i] =
3748 val & PLANE_WM_BLOCKS_MASK;
3749 active->trans_wm.plane_res_l[i] =
3750 (val >> PLANE_WM_LINES_SHIFT) &
3751 PLANE_WM_LINES_MASK;
3752 } else {
3753 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3754 active->trans_wm.plane_res_b[PLANE_CURSOR] =
3755 val & PLANE_WM_BLOCKS_MASK;
3756 active->trans_wm.plane_res_l[PLANE_CURSOR] =
3757 (val >> PLANE_WM_LINES_SHIFT) &
3758 PLANE_WM_LINES_MASK;
3759 }
3760 }
3761}
3762
3763static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3764{
3765 struct drm_device *dev = crtc->dev;
3766 struct drm_i915_private *dev_priv = dev->dev_private;
3767 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3769 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3770 struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3771 enum pipe pipe = intel_crtc->pipe;
3772 int level, i, max_level;
3773 uint32_t temp;
3774
3775 max_level = ilk_wm_max_level(dev);
3776
3777 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3778
3779 for (level = 0; level <= max_level; level++) {
3780 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3781 hw->plane[pipe][i][level] =
3782 I915_READ(PLANE_WM(pipe, i, level));
3783 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3784 }
3785
3786 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3787 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3788 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3789
3790 if (!intel_crtc->active)
3791 return;
3792
3793 hw->dirty[pipe] = true;
3794
3795 active->linetime = hw->wm_linetime[pipe];
3796
3797 for (level = 0; level <= max_level; level++) {
3798 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3799 temp = hw->plane[pipe][i][level];
3800 skl_pipe_wm_active_state(temp, active, false,
3801 false, i, level);
3802 }
3803 temp = hw->plane[pipe][PLANE_CURSOR][level];
3804 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3805 }
3806
3807 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3808 temp = hw->plane_trans[pipe][i];
3809 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3810 }
3811
3812 temp = hw->plane_trans[pipe][PLANE_CURSOR];
3813 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3814
3815 intel_crtc->wm.active.skl = *active;
3816}
3817
3818void skl_wm_get_hw_state(struct drm_device *dev)
3819{
3820 struct drm_i915_private *dev_priv = dev->dev_private;
3821 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3822 struct drm_crtc *crtc;
3823
3824 skl_ddb_get_hw_state(dev_priv, ddb);
3825 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3826 skl_pipe_wm_get_hw_state(crtc);
3827}
3828
3829static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3830{
3831 struct drm_device *dev = crtc->dev;
3832 struct drm_i915_private *dev_priv = dev->dev_private;
3833 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3835 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3836 struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3837 enum pipe pipe = intel_crtc->pipe;
3838 static const i915_reg_t wm0_pipe_reg[] = {
3839 [PIPE_A] = WM0_PIPEA_ILK,
3840 [PIPE_B] = WM0_PIPEB_ILK,
3841 [PIPE_C] = WM0_PIPEC_IVB,
3842 };
3843
3844 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3845 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3846 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3847
3848 active->pipe_enabled = intel_crtc->active;
3849
3850 if (active->pipe_enabled) {
3851 u32 tmp = hw->wm_pipe[pipe];
3852
3853 /*
3854 * For active pipes LP0 watermark is marked as
3855 * enabled, and LP1+ watermaks as disabled since
3856 * we can't really reverse compute them in case
3857 * multiple pipes are active.
3858 */
3859 active->wm[0].enable = true;
3860 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3861 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3862 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3863 active->linetime = hw->wm_linetime[pipe];
3864 } else {
3865 int level, max_level = ilk_wm_max_level(dev);
3866
3867 /*
3868 * For inactive pipes, all watermark levels
3869 * should be marked as enabled but zeroed,
3870 * which is what we'd compute them to.
3871 */
3872 for (level = 0; level <= max_level; level++)
3873 active->wm[level].enable = true;
3874 }
3875
3876 intel_crtc->wm.active.ilk = *active;
3877}
3878
3879#define _FW_WM(value, plane) \
3880 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3881#define _FW_WM_VLV(value, plane) \
3882 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3883
3884static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3885 struct vlv_wm_values *wm)
3886{
3887 enum pipe pipe;
3888 uint32_t tmp;
3889
3890 for_each_pipe(dev_priv, pipe) {
3891 tmp = I915_READ(VLV_DDL(pipe));
3892
3893 wm->ddl[pipe].primary =
3894 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3895 wm->ddl[pipe].cursor =
3896 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3897 wm->ddl[pipe].sprite[0] =
3898 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3899 wm->ddl[pipe].sprite[1] =
3900 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3901 }
3902
3903 tmp = I915_READ(DSPFW1);
3904 wm->sr.plane = _FW_WM(tmp, SR);
3905 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3906 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3907 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3908
3909 tmp = I915_READ(DSPFW2);
3910 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3911 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3912 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3913
3914 tmp = I915_READ(DSPFW3);
3915 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3916
3917 if (IS_CHERRYVIEW(dev_priv)) {
3918 tmp = I915_READ(DSPFW7_CHV);
3919 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3920 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3921
3922 tmp = I915_READ(DSPFW8_CHV);
3923 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3924 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3925
3926 tmp = I915_READ(DSPFW9_CHV);
3927 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3928 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3929
3930 tmp = I915_READ(DSPHOWM);
3931 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3932 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3933 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3934 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3935 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3936 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3937 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3938 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3939 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3940 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3941 } else {
3942 tmp = I915_READ(DSPFW7);
3943 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3944 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3945
3946 tmp = I915_READ(DSPHOWM);
3947 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3948 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3949 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3950 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3951 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3952 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3953 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3954 }
3955}
3956
3957#undef _FW_WM
3958#undef _FW_WM_VLV
3959
3960void vlv_wm_get_hw_state(struct drm_device *dev)
3961{
3962 struct drm_i915_private *dev_priv = to_i915(dev);
3963 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3964 struct intel_plane *plane;
3965 enum pipe pipe;
3966 u32 val;
3967
3968 vlv_read_wm_values(dev_priv, wm);
3969
3970 for_each_intel_plane(dev, plane) {
3971 switch (plane->base.type) {
3972 int sprite;
3973 case DRM_PLANE_TYPE_CURSOR:
3974 plane->wm.fifo_size = 63;
3975 break;
3976 case DRM_PLANE_TYPE_PRIMARY:
3977 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3978 break;
3979 case DRM_PLANE_TYPE_OVERLAY:
3980 sprite = plane->plane;
3981 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3982 break;
3983 }
3984 }
3985
3986 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3987 wm->level = VLV_WM_LEVEL_PM2;
3988
3989 if (IS_CHERRYVIEW(dev_priv)) {
3990 mutex_lock(&dev_priv->rps.hw_lock);
3991
3992 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3993 if (val & DSP_MAXFIFO_PM5_ENABLE)
3994 wm->level = VLV_WM_LEVEL_PM5;
3995
3996 /*
3997 * If DDR DVFS is disabled in the BIOS, Punit
3998 * will never ack the request. So if that happens
3999 * assume we don't have to enable/disable DDR DVFS
4000 * dynamically. To test that just set the REQ_ACK
4001 * bit to poke the Punit, but don't change the
4002 * HIGH/LOW bits so that we don't actually change
4003 * the current state.
4004 */
4005 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4006 val |= FORCE_DDR_FREQ_REQ_ACK;
4007 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4008
4009 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4010 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4011 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4012 "assuming DDR DVFS is disabled\n");
4013 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4014 } else {
4015 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4016 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4017 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4018 }
4019
4020 mutex_unlock(&dev_priv->rps.hw_lock);
4021 }
4022
4023 for_each_pipe(dev_priv, pipe)
4024 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4025 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4026 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4027
4028 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4029 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4030}
4031
4032void ilk_wm_get_hw_state(struct drm_device *dev)
4033{
4034 struct drm_i915_private *dev_priv = dev->dev_private;
4035 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4036 struct drm_crtc *crtc;
4037
4038 for_each_crtc(dev, crtc)
4039 ilk_pipe_wm_get_hw_state(crtc);
4040
4041 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4042 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4043 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4044
4045 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4046 if (INTEL_INFO(dev)->gen >= 7) {
4047 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4048 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4049 }
4050
4051 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4052 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4053 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4054 else if (IS_IVYBRIDGE(dev))
4055 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4056 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4057
4058 hw->enable_fbc_wm =
4059 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4060}
4061
4062/**
4063 * intel_update_watermarks - update FIFO watermark values based on current modes
4064 *
4065 * Calculate watermark values for the various WM regs based on current mode
4066 * and plane configuration.
4067 *
4068 * There are several cases to deal with here:
4069 * - normal (i.e. non-self-refresh)
4070 * - self-refresh (SR) mode
4071 * - lines are large relative to FIFO size (buffer can hold up to 2)
4072 * - lines are small relative to FIFO size (buffer can hold more than 2
4073 * lines), so need to account for TLB latency
4074 *
4075 * The normal calculation is:
4076 * watermark = dotclock * bytes per pixel * latency
4077 * where latency is platform & configuration dependent (we assume pessimal
4078 * values here).
4079 *
4080 * The SR calculation is:
4081 * watermark = (trunc(latency/line time)+1) * surface width *
4082 * bytes per pixel
4083 * where
4084 * line time = htotal / dotclock
4085 * surface width = hdisplay for normal plane and 64 for cursor
4086 * and latency is assumed to be high, as above.
4087 *
4088 * The final value programmed to the register should always be rounded up,
4089 * and include an extra 2 entries to account for clock crossings.
4090 *
4091 * We don't use the sprite, so we can ignore that. And on Crestline we have
4092 * to set the non-SR watermarks to 8.
4093 */
4094void intel_update_watermarks(struct drm_crtc *crtc)
4095{
4096 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4097
4098 if (dev_priv->display.update_wm)
4099 dev_priv->display.update_wm(crtc);
4100}
4101
4102/*
4103 * Lock protecting IPS related data structures
4104 */
4105DEFINE_SPINLOCK(mchdev_lock);
4106
4107/* Global for IPS driver to get at the current i915 device. Protected by
4108 * mchdev_lock. */
4109static struct drm_i915_private *i915_mch_dev;
4110
4111bool ironlake_set_drps(struct drm_device *dev, u8 val)
4112{
4113 struct drm_i915_private *dev_priv = dev->dev_private;
4114 u16 rgvswctl;
4115
4116 assert_spin_locked(&mchdev_lock);
4117
4118 rgvswctl = I915_READ16(MEMSWCTL);
4119 if (rgvswctl & MEMCTL_CMD_STS) {
4120 DRM_DEBUG("gpu busy, RCS change rejected\n");
4121 return false; /* still busy with another command */
4122 }
4123
4124 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4125 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4126 I915_WRITE16(MEMSWCTL, rgvswctl);
4127 POSTING_READ16(MEMSWCTL);
4128
4129 rgvswctl |= MEMCTL_CMD_STS;
4130 I915_WRITE16(MEMSWCTL, rgvswctl);
4131
4132 return true;
4133}
4134
4135static void ironlake_enable_drps(struct drm_device *dev)
4136{
4137 struct drm_i915_private *dev_priv = dev->dev_private;
4138 u32 rgvmodectl;
4139 u8 fmax, fmin, fstart, vstart;
4140
4141 spin_lock_irq(&mchdev_lock);
4142
4143 rgvmodectl = I915_READ(MEMMODECTL);
4144
4145 /* Enable temp reporting */
4146 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4147 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4148
4149 /* 100ms RC evaluation intervals */
4150 I915_WRITE(RCUPEI, 100000);
4151 I915_WRITE(RCDNEI, 100000);
4152
4153 /* Set max/min thresholds to 90ms and 80ms respectively */
4154 I915_WRITE(RCBMAXAVG, 90000);
4155 I915_WRITE(RCBMINAVG, 80000);
4156
4157 I915_WRITE(MEMIHYST, 1);
4158
4159 /* Set up min, max, and cur for interrupt handling */
4160 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4161 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4162 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4163 MEMMODE_FSTART_SHIFT;
4164
4165 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4166 PXVFREQ_PX_SHIFT;
4167
4168 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4169 dev_priv->ips.fstart = fstart;
4170
4171 dev_priv->ips.max_delay = fstart;
4172 dev_priv->ips.min_delay = fmin;
4173 dev_priv->ips.cur_delay = fstart;
4174
4175 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4176 fmax, fmin, fstart);
4177
4178 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4179
4180 /*
4181 * Interrupts will be enabled in ironlake_irq_postinstall
4182 */
4183
4184 I915_WRITE(VIDSTART, vstart);
4185 POSTING_READ(VIDSTART);
4186
4187 rgvmodectl |= MEMMODE_SWMODE_EN;
4188 I915_WRITE(MEMMODECTL, rgvmodectl);
4189
4190 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4191 DRM_ERROR("stuck trying to change perf mode\n");
4192 mdelay(1);
4193
4194 ironlake_set_drps(dev, fstart);
4195
4196 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4197 I915_READ(DDREC) + I915_READ(CSIEC);
4198 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4199 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4200 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4201
4202 spin_unlock_irq(&mchdev_lock);
4203}
4204
4205static void ironlake_disable_drps(struct drm_device *dev)
4206{
4207 struct drm_i915_private *dev_priv = dev->dev_private;
4208 u16 rgvswctl;
4209
4210 spin_lock_irq(&mchdev_lock);
4211
4212 rgvswctl = I915_READ16(MEMSWCTL);
4213
4214 /* Ack interrupts, disable EFC interrupt */
4215 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4216 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4217 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4218 I915_WRITE(DEIIR, DE_PCU_EVENT);
4219 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4220
4221 /* Go back to the starting frequency */
4222 ironlake_set_drps(dev, dev_priv->ips.fstart);
4223 mdelay(1);
4224 rgvswctl |= MEMCTL_CMD_STS;
4225 I915_WRITE(MEMSWCTL, rgvswctl);
4226 mdelay(1);
4227
4228 spin_unlock_irq(&mchdev_lock);
4229}
4230
4231/* There's a funny hw issue where the hw returns all 0 when reading from
4232 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4233 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4234 * all limits and the gpu stuck at whatever frequency it is at atm).
4235 */
4236static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4237{
4238 u32 limits;
4239
4240 /* Only set the down limit when we've reached the lowest level to avoid
4241 * getting more interrupts, otherwise leave this clear. This prevents a
4242 * race in the hw when coming out of rc6: There's a tiny window where
4243 * the hw runs at the minimal clock before selecting the desired
4244 * frequency, if the down threshold expires in that window we will not
4245 * receive a down interrupt. */
4246 if (IS_GEN9(dev_priv->dev)) {
4247 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4248 if (val <= dev_priv->rps.min_freq_softlimit)
4249 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4250 } else {
4251 limits = dev_priv->rps.max_freq_softlimit << 24;
4252 if (val <= dev_priv->rps.min_freq_softlimit)
4253 limits |= dev_priv->rps.min_freq_softlimit << 16;
4254 }
4255
4256 return limits;
4257}
4258
4259static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4260{
4261 int new_power;
4262 u32 threshold_up = 0, threshold_down = 0; /* in % */
4263 u32 ei_up = 0, ei_down = 0;
4264
4265 new_power = dev_priv->rps.power;
4266 switch (dev_priv->rps.power) {
4267 case LOW_POWER:
4268 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4269 new_power = BETWEEN;
4270 break;
4271
4272 case BETWEEN:
4273 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4274 new_power = LOW_POWER;
4275 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4276 new_power = HIGH_POWER;
4277 break;
4278
4279 case HIGH_POWER:
4280 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4281 new_power = BETWEEN;
4282 break;
4283 }
4284 /* Max/min bins are special */
4285 if (val <= dev_priv->rps.min_freq_softlimit)
4286 new_power = LOW_POWER;
4287 if (val >= dev_priv->rps.max_freq_softlimit)
4288 new_power = HIGH_POWER;
4289 if (new_power == dev_priv->rps.power)
4290 return;
4291
4292 /* Note the units here are not exactly 1us, but 1280ns. */
4293 switch (new_power) {
4294 case LOW_POWER:
4295 /* Upclock if more than 95% busy over 16ms */
4296 ei_up = 16000;
4297 threshold_up = 95;
4298
4299 /* Downclock if less than 85% busy over 32ms */
4300 ei_down = 32000;
4301 threshold_down = 85;
4302 break;
4303
4304 case BETWEEN:
4305 /* Upclock if more than 90% busy over 13ms */
4306 ei_up = 13000;
4307 threshold_up = 90;
4308
4309 /* Downclock if less than 75% busy over 32ms */
4310 ei_down = 32000;
4311 threshold_down = 75;
4312 break;
4313
4314 case HIGH_POWER:
4315 /* Upclock if more than 85% busy over 10ms */
4316 ei_up = 10000;
4317 threshold_up = 85;
4318
4319 /* Downclock if less than 60% busy over 32ms */
4320 ei_down = 32000;
4321 threshold_down = 60;
4322 break;
4323 }
4324
4325 I915_WRITE(GEN6_RP_UP_EI,
4326 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4327 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4328 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4329
4330 I915_WRITE(GEN6_RP_DOWN_EI,
4331 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4332 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4333 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4334
4335 I915_WRITE(GEN6_RP_CONTROL,
4336 GEN6_RP_MEDIA_TURBO |
4337 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4338 GEN6_RP_MEDIA_IS_GFX |
4339 GEN6_RP_ENABLE |
4340 GEN6_RP_UP_BUSY_AVG |
4341 GEN6_RP_DOWN_IDLE_AVG);
4342
4343 dev_priv->rps.power = new_power;
4344 dev_priv->rps.up_threshold = threshold_up;
4345 dev_priv->rps.down_threshold = threshold_down;
4346 dev_priv->rps.last_adj = 0;
4347}
4348
4349static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4350{
4351 u32 mask = 0;
4352
4353 if (val > dev_priv->rps.min_freq_softlimit)
4354 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4355 if (val < dev_priv->rps.max_freq_softlimit)
4356 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4357
4358 mask &= dev_priv->pm_rps_events;
4359
4360 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4361}
4362
4363/* gen6_set_rps is called to update the frequency request, but should also be
4364 * called when the range (min_delay and max_delay) is modified so that we can
4365 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4366static void gen6_set_rps(struct drm_device *dev, u8 val)
4367{
4368 struct drm_i915_private *dev_priv = dev->dev_private;
4369
4370 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4371 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4372 return;
4373
4374 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4375 WARN_ON(val > dev_priv->rps.max_freq);
4376 WARN_ON(val < dev_priv->rps.min_freq);
4377
4378 /* min/max delay may still have been modified so be sure to
4379 * write the limits value.
4380 */
4381 if (val != dev_priv->rps.cur_freq) {
4382 gen6_set_rps_thresholds(dev_priv, val);
4383
4384 if (IS_GEN9(dev))
4385 I915_WRITE(GEN6_RPNSWREQ,
4386 GEN9_FREQUENCY(val));
4387 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4388 I915_WRITE(GEN6_RPNSWREQ,
4389 HSW_FREQUENCY(val));
4390 else
4391 I915_WRITE(GEN6_RPNSWREQ,
4392 GEN6_FREQUENCY(val) |
4393 GEN6_OFFSET(0) |
4394 GEN6_AGGRESSIVE_TURBO);
4395 }
4396
4397 /* Make sure we continue to get interrupts
4398 * until we hit the minimum or maximum frequencies.
4399 */
4400 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4401 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4402
4403 POSTING_READ(GEN6_RPNSWREQ);
4404
4405 dev_priv->rps.cur_freq = val;
4406 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4407}
4408
4409static void valleyview_set_rps(struct drm_device *dev, u8 val)
4410{
4411 struct drm_i915_private *dev_priv = dev->dev_private;
4412
4413 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4414 WARN_ON(val > dev_priv->rps.max_freq);
4415 WARN_ON(val < dev_priv->rps.min_freq);
4416
4417 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4418 "Odd GPU freq value\n"))
4419 val &= ~1;
4420
4421 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4422
4423 if (val != dev_priv->rps.cur_freq) {
4424 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4425 if (!IS_CHERRYVIEW(dev_priv))
4426 gen6_set_rps_thresholds(dev_priv, val);
4427 }
4428
4429 dev_priv->rps.cur_freq = val;
4430 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4431}
4432
4433/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4434 *
4435 * * If Gfx is Idle, then
4436 * 1. Forcewake Media well.
4437 * 2. Request idle freq.
4438 * 3. Release Forcewake of Media well.
4439*/
4440static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4441{
4442 u32 val = dev_priv->rps.idle_freq;
4443
4444 if (dev_priv->rps.cur_freq <= val)
4445 return;
4446
4447 /* Wake up the media well, as that takes a lot less
4448 * power than the Render well. */
4449 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4450 valleyview_set_rps(dev_priv->dev, val);
4451 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4452}
4453
4454void gen6_rps_busy(struct drm_i915_private *dev_priv)
4455{
4456 mutex_lock(&dev_priv->rps.hw_lock);
4457 if (dev_priv->rps.enabled) {
4458 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4459 gen6_rps_reset_ei(dev_priv);
4460 I915_WRITE(GEN6_PMINTRMSK,
4461 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4462 }
4463 mutex_unlock(&dev_priv->rps.hw_lock);
4464}
4465
4466void gen6_rps_idle(struct drm_i915_private *dev_priv)
4467{
4468 struct drm_device *dev = dev_priv->dev;
4469
4470 mutex_lock(&dev_priv->rps.hw_lock);
4471 if (dev_priv->rps.enabled) {
4472 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4473 vlv_set_rps_idle(dev_priv);
4474 else
4475 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4476 dev_priv->rps.last_adj = 0;
4477 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4478 }
4479 mutex_unlock(&dev_priv->rps.hw_lock);
4480
4481 spin_lock(&dev_priv->rps.client_lock);
4482 while (!list_empty(&dev_priv->rps.clients))
4483 list_del_init(dev_priv->rps.clients.next);
4484 spin_unlock(&dev_priv->rps.client_lock);
4485}
4486
4487void gen6_rps_boost(struct drm_i915_private *dev_priv,
4488 struct intel_rps_client *rps,
4489 unsigned long submitted)
4490{
4491 /* This is intentionally racy! We peek at the state here, then
4492 * validate inside the RPS worker.
4493 */
4494 if (!(dev_priv->mm.busy &&
4495 dev_priv->rps.enabled &&
4496 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4497 return;
4498
4499 /* Force a RPS boost (and don't count it against the client) if
4500 * the GPU is severely congested.
4501 */
4502 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4503 rps = NULL;
4504
4505 spin_lock(&dev_priv->rps.client_lock);
4506 if (rps == NULL || list_empty(&rps->link)) {
4507 spin_lock_irq(&dev_priv->irq_lock);
4508 if (dev_priv->rps.interrupts_enabled) {
4509 dev_priv->rps.client_boost = true;
4510 queue_work(dev_priv->wq, &dev_priv->rps.work);
4511 }
4512 spin_unlock_irq(&dev_priv->irq_lock);
4513
4514 if (rps != NULL) {
4515 list_add(&rps->link, &dev_priv->rps.clients);
4516 rps->boosts++;
4517 } else
4518 dev_priv->rps.boosts++;
4519 }
4520 spin_unlock(&dev_priv->rps.client_lock);
4521}
4522
4523void intel_set_rps(struct drm_device *dev, u8 val)
4524{
4525 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4526 valleyview_set_rps(dev, val);
4527 else
4528 gen6_set_rps(dev, val);
4529}
4530
4531static void gen9_disable_rps(struct drm_device *dev)
4532{
4533 struct drm_i915_private *dev_priv = dev->dev_private;
4534
4535 I915_WRITE(GEN6_RC_CONTROL, 0);
4536 I915_WRITE(GEN9_PG_ENABLE, 0);
4537}
4538
4539static void gen6_disable_rps(struct drm_device *dev)
4540{
4541 struct drm_i915_private *dev_priv = dev->dev_private;
4542
4543 I915_WRITE(GEN6_RC_CONTROL, 0);
4544 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4545}
4546
4547static void cherryview_disable_rps(struct drm_device *dev)
4548{
4549 struct drm_i915_private *dev_priv = dev->dev_private;
4550
4551 I915_WRITE(GEN6_RC_CONTROL, 0);
4552}
4553
4554static void valleyview_disable_rps(struct drm_device *dev)
4555{
4556 struct drm_i915_private *dev_priv = dev->dev_private;
4557
4558 /* we're doing forcewake before Disabling RC6,
4559 * This what the BIOS expects when going into suspend */
4560 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4561
4562 I915_WRITE(GEN6_RC_CONTROL, 0);
4563
4564 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4565}
4566
4567static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4568{
4569 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4570 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4571 mode = GEN6_RC_CTL_RC6_ENABLE;
4572 else
4573 mode = 0;
4574 }
4575 if (HAS_RC6p(dev))
4576 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4577 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4578 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4579 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4580
4581 else
4582 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4583 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4584}
4585
4586static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
4587{
4588 struct drm_i915_private *dev_priv = dev->dev_private;
4589 bool enable_rc6 = true;
4590 unsigned long rc6_ctx_base;
4591
4592 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4593 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4594 enable_rc6 = false;
4595 }
4596
4597 /*
4598 * The exact context size is not known for BXT, so assume a page size
4599 * for this check.
4600 */
4601 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4602 if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
4603 (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
4604 dev_priv->gtt.stolen_reserved_size))) {
4605 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4606 enable_rc6 = false;
4607 }
4608
4609 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4610 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4611 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4612 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4613 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4614 enable_rc6 = false;
4615 }
4616
4617 if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4618 GEN6_RC_CTL_HW_ENABLE)) &&
4619 ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4620 !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4621 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4622 enable_rc6 = false;
4623 }
4624
4625 return enable_rc6;
4626}
4627
4628int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4629{
4630 /* No RC6 before Ironlake and code is gone for ilk. */
4631 if (INTEL_INFO(dev)->gen < 6)
4632 return 0;
4633
4634 if (!enable_rc6)
4635 return 0;
4636
4637 if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4638 DRM_INFO("RC6 disabled by BIOS\n");
4639 return 0;
4640 }
4641
4642 /* Respect the kernel parameter if it is set */
4643 if (enable_rc6 >= 0) {
4644 int mask;
4645
4646 if (HAS_RC6p(dev))
4647 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4648 INTEL_RC6pp_ENABLE;
4649 else
4650 mask = INTEL_RC6_ENABLE;
4651
4652 if ((enable_rc6 & mask) != enable_rc6)
4653 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4654 enable_rc6 & mask, enable_rc6, mask);
4655
4656 return enable_rc6 & mask;
4657 }
4658
4659 if (IS_IVYBRIDGE(dev))
4660 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4661
4662 return INTEL_RC6_ENABLE;
4663}
4664
4665int intel_enable_rc6(const struct drm_device *dev)
4666{
4667 return i915.enable_rc6;
4668}
4669
4670static void gen6_init_rps_frequencies(struct drm_device *dev)
4671{
4672 struct drm_i915_private *dev_priv = dev->dev_private;
4673 uint32_t rp_state_cap;
4674 u32 ddcc_status = 0;
4675 int ret;
4676
4677 /* All of these values are in units of 50MHz */
4678 dev_priv->rps.cur_freq = 0;
4679 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4680 if (IS_BROXTON(dev)) {
4681 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4682 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4683 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4684 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4685 } else {
4686 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4687 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4688 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4689 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4690 }
4691
4692 /* hw_max = RP0 until we check for overclocking */
4693 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4694
4695 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4696 if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4697 IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4698 ret = sandybridge_pcode_read(dev_priv,
4699 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4700 &ddcc_status);
4701 if (0 == ret)
4702 dev_priv->rps.efficient_freq =
4703 clamp_t(u8,
4704 ((ddcc_status >> 8) & 0xff),
4705 dev_priv->rps.min_freq,
4706 dev_priv->rps.max_freq);
4707 }
4708
4709 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4710 /* Store the frequency values in 16.66 MHZ units, which is
4711 the natural hardware unit for SKL */
4712 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4713 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4714 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4715 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4716 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4717 }
4718
4719 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4720
4721 /* Preserve min/max settings in case of re-init */
4722 if (dev_priv->rps.max_freq_softlimit == 0)
4723 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4724
4725 if (dev_priv->rps.min_freq_softlimit == 0) {
4726 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4727 dev_priv->rps.min_freq_softlimit =
4728 max_t(int, dev_priv->rps.efficient_freq,
4729 intel_freq_opcode(dev_priv, 450));
4730 else
4731 dev_priv->rps.min_freq_softlimit =
4732 dev_priv->rps.min_freq;
4733 }
4734}
4735
4736/* See the Gen9_GT_PM_Programming_Guide doc for the below */
4737static void gen9_enable_rps(struct drm_device *dev)
4738{
4739 struct drm_i915_private *dev_priv = dev->dev_private;
4740
4741 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4742
4743 gen6_init_rps_frequencies(dev);
4744
4745 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4746 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4747 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4748 return;
4749 }
4750
4751 /* Program defaults and thresholds for RPS*/
4752 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4753 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4754
4755 /* 1 second timeout*/
4756 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4757 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4758
4759 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4760
4761 /* Leaning on the below call to gen6_set_rps to program/setup the
4762 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4763 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4764 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4765 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4766
4767 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4768}
4769
4770static void gen9_enable_rc6(struct drm_device *dev)
4771{
4772 struct drm_i915_private *dev_priv = dev->dev_private;
4773 struct intel_engine_cs *ring;
4774 uint32_t rc6_mask = 0;
4775 int unused;
4776
4777 /* 1a: Software RC state - RC0 */
4778 I915_WRITE(GEN6_RC_STATE, 0);
4779
4780 /* 1b: Get forcewake during program sequence. Although the driver
4781 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4782 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4783
4784 /* 2a: Disable RC states. */
4785 I915_WRITE(GEN6_RC_CONTROL, 0);
4786
4787 /* 2b: Program RC6 thresholds.*/
4788
4789 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4790 if (IS_SKYLAKE(dev))
4791 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4792 else
4793 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4794 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4795 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4796 for_each_ring(ring, dev_priv, unused)
4797 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4798
4799 if (HAS_GUC_UCODE(dev))
4800 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4801
4802 I915_WRITE(GEN6_RC_SLEEP, 0);
4803
4804 /* 2c: Program Coarse Power Gating Policies. */
4805 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4806 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4807
4808 /* 3a: Enable RC6 */
4809 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4810 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4811 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4812 /* WaRsUseTimeoutMode */
4813 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4814 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4815 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4816 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4817 GEN7_RC_CTL_TO_MODE |
4818 rc6_mask);
4819 } else {
4820 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4821 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4822 GEN6_RC_CTL_EI_MODE(1) |
4823 rc6_mask);
4824 }
4825
4826 /*
4827 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4828 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4829 */
4830 if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4831 I915_WRITE(GEN9_PG_ENABLE, 0);
4832 else
4833 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4834 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4835
4836 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837
4838}
4839
4840static void gen8_enable_rps(struct drm_device *dev)
4841{
4842 struct drm_i915_private *dev_priv = dev->dev_private;
4843 struct intel_engine_cs *ring;
4844 uint32_t rc6_mask = 0;
4845 int unused;
4846
4847 /* 1a: Software RC state - RC0 */
4848 I915_WRITE(GEN6_RC_STATE, 0);
4849
4850 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4851 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4852 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4853
4854 /* 2a: Disable RC states. */
4855 I915_WRITE(GEN6_RC_CONTROL, 0);
4856
4857 /* Initialize rps frequencies */
4858 gen6_init_rps_frequencies(dev);
4859
4860 /* 2b: Program RC6 thresholds.*/
4861 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4862 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4863 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4864 for_each_ring(ring, dev_priv, unused)
4865 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4866 I915_WRITE(GEN6_RC_SLEEP, 0);
4867 if (IS_BROADWELL(dev))
4868 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4869 else
4870 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4871
4872 /* 3: Enable RC6 */
4873 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4874 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4875 intel_print_rc6_info(dev, rc6_mask);
4876 if (IS_BROADWELL(dev))
4877 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4878 GEN7_RC_CTL_TO_MODE |
4879 rc6_mask);
4880 else
4881 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4882 GEN6_RC_CTL_EI_MODE(1) |
4883 rc6_mask);
4884
4885 /* 4 Program defaults and thresholds for RPS*/
4886 I915_WRITE(GEN6_RPNSWREQ,
4887 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4888 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4889 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4890 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4891 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4892
4893 /* Docs recommend 900MHz, and 300 MHz respectively */
4894 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4895 dev_priv->rps.max_freq_softlimit << 24 |
4896 dev_priv->rps.min_freq_softlimit << 16);
4897
4898 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4899 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4900 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4901 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4902
4903 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4904
4905 /* 5: Enable RPS */
4906 I915_WRITE(GEN6_RP_CONTROL,
4907 GEN6_RP_MEDIA_TURBO |
4908 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4909 GEN6_RP_MEDIA_IS_GFX |
4910 GEN6_RP_ENABLE |
4911 GEN6_RP_UP_BUSY_AVG |
4912 GEN6_RP_DOWN_IDLE_AVG);
4913
4914 /* 6: Ring frequency + overclocking (our driver does this later */
4915
4916 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4917 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4918
4919 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4920}
4921
4922static void gen6_enable_rps(struct drm_device *dev)
4923{
4924 struct drm_i915_private *dev_priv = dev->dev_private;
4925 struct intel_engine_cs *ring;
4926 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4927 u32 gtfifodbg;
4928 int rc6_mode;
4929 int i, ret;
4930
4931 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4932
4933 /* Here begins a magic sequence of register writes to enable
4934 * auto-downclocking.
4935 *
4936 * Perhaps there might be some value in exposing these to
4937 * userspace...
4938 */
4939 I915_WRITE(GEN6_RC_STATE, 0);
4940
4941 /* Clear the DBG now so we don't confuse earlier errors */
4942 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4943 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4944 I915_WRITE(GTFIFODBG, gtfifodbg);
4945 }
4946
4947 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4948
4949 /* Initialize rps frequencies */
4950 gen6_init_rps_frequencies(dev);
4951
4952 /* disable the counters and set deterministic thresholds */
4953 I915_WRITE(GEN6_RC_CONTROL, 0);
4954
4955 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4956 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4957 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4958 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4959 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4960
4961 for_each_ring(ring, dev_priv, i)
4962 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4963
4964 I915_WRITE(GEN6_RC_SLEEP, 0);
4965 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4966 if (IS_IVYBRIDGE(dev))
4967 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4968 else
4969 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4970 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4971 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4972
4973 /* Check if we are enabling RC6 */
4974 rc6_mode = intel_enable_rc6(dev_priv->dev);
4975 if (rc6_mode & INTEL_RC6_ENABLE)
4976 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4977
4978 /* We don't use those on Haswell */
4979 if (!IS_HASWELL(dev)) {
4980 if (rc6_mode & INTEL_RC6p_ENABLE)
4981 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4982
4983 if (rc6_mode & INTEL_RC6pp_ENABLE)
4984 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4985 }
4986
4987 intel_print_rc6_info(dev, rc6_mask);
4988
4989 I915_WRITE(GEN6_RC_CONTROL,
4990 rc6_mask |
4991 GEN6_RC_CTL_EI_MODE(1) |
4992 GEN6_RC_CTL_HW_ENABLE);
4993
4994 /* Power down if completely idle for over 50ms */
4995 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4996 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4997
4998 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4999 if (ret)
5000 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5001
5002 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5003 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5004 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5005 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5006 (pcu_mbox & 0xff) * 50);
5007 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5008 }
5009
5010 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5011 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5012
5013 rc6vids = 0;
5014 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5015 if (IS_GEN6(dev) && ret) {
5016 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5017 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5018 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5019 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5020 rc6vids &= 0xffff00;
5021 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5022 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5023 if (ret)
5024 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5025 }
5026
5027 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5028}
5029
5030static void __gen6_update_ring_freq(struct drm_device *dev)
5031{
5032 struct drm_i915_private *dev_priv = dev->dev_private;
5033 int min_freq = 15;
5034 unsigned int gpu_freq;
5035 unsigned int max_ia_freq, min_ring_freq;
5036 unsigned int max_gpu_freq, min_gpu_freq;
5037 int scaling_factor = 180;
5038 struct cpufreq_policy *policy;
5039
5040 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5041
5042 policy = cpufreq_cpu_get(0);
5043 if (policy) {
5044 max_ia_freq = policy->cpuinfo.max_freq;
5045 cpufreq_cpu_put(policy);
5046 } else {
5047 /*
5048 * Default to measured freq if none found, PCU will ensure we
5049 * don't go over
5050 */
5051 max_ia_freq = tsc_khz;
5052 }
5053
5054 /* Convert from kHz to MHz */
5055 max_ia_freq /= 1000;
5056
5057 min_ring_freq = I915_READ(DCLK) & 0xf;
5058 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5059 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5060
5061 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5062 /* Convert GT frequency to 50 HZ units */
5063 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5064 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5065 } else {
5066 min_gpu_freq = dev_priv->rps.min_freq;
5067 max_gpu_freq = dev_priv->rps.max_freq;
5068 }
5069
5070 /*
5071 * For each potential GPU frequency, load a ring frequency we'd like
5072 * to use for memory access. We do this by specifying the IA frequency
5073 * the PCU should use as a reference to determine the ring frequency.
5074 */
5075 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5076 int diff = max_gpu_freq - gpu_freq;
5077 unsigned int ia_freq = 0, ring_freq = 0;
5078
5079 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5080 /*
5081 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5082 * No floor required for ring frequency on SKL.
5083 */
5084 ring_freq = gpu_freq;
5085 } else if (INTEL_INFO(dev)->gen >= 8) {
5086 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5087 ring_freq = max(min_ring_freq, gpu_freq);
5088 } else if (IS_HASWELL(dev)) {
5089 ring_freq = mult_frac(gpu_freq, 5, 4);
5090 ring_freq = max(min_ring_freq, ring_freq);
5091 /* leave ia_freq as the default, chosen by cpufreq */
5092 } else {
5093 /* On older processors, there is no separate ring
5094 * clock domain, so in order to boost the bandwidth
5095 * of the ring, we need to upclock the CPU (ia_freq).
5096 *
5097 * For GPU frequencies less than 750MHz,
5098 * just use the lowest ring freq.
5099 */
5100 if (gpu_freq < min_freq)
5101 ia_freq = 800;
5102 else
5103 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5104 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5105 }
5106
5107 sandybridge_pcode_write(dev_priv,
5108 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5109 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5110 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5111 gpu_freq);
5112 }
5113}
5114
5115void gen6_update_ring_freq(struct drm_device *dev)
5116{
5117 struct drm_i915_private *dev_priv = dev->dev_private;
5118
5119 if (!HAS_CORE_RING_FREQ(dev))
5120 return;
5121
5122 mutex_lock(&dev_priv->rps.hw_lock);
5123 __gen6_update_ring_freq(dev);
5124 mutex_unlock(&dev_priv->rps.hw_lock);
5125}
5126
5127static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5128{
5129 struct drm_device *dev = dev_priv->dev;
5130 u32 val, rp0;
5131
5132 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5133
5134 switch (INTEL_INFO(dev)->eu_total) {
5135 case 8:
5136 /* (2 * 4) config */
5137 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5138 break;
5139 case 12:
5140 /* (2 * 6) config */
5141 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5142 break;
5143 case 16:
5144 /* (2 * 8) config */
5145 default:
5146 /* Setting (2 * 8) Min RP0 for any other combination */
5147 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5148 break;
5149 }
5150
5151 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5152
5153 return rp0;
5154}
5155
5156static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5157{
5158 u32 val, rpe;
5159
5160 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5161 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5162
5163 return rpe;
5164}
5165
5166static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5167{
5168 u32 val, rp1;
5169
5170 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5171 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5172
5173 return rp1;
5174}
5175
5176static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5177{
5178 u32 val, rp1;
5179
5180 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5181
5182 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5183
5184 return rp1;
5185}
5186
5187static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5188{
5189 u32 val, rp0;
5190
5191 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5192
5193 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5194 /* Clamp to max */
5195 rp0 = min_t(u32, rp0, 0xea);
5196
5197 return rp0;
5198}
5199
5200static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5201{
5202 u32 val, rpe;
5203
5204 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5205 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5206 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5207 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5208
5209 return rpe;
5210}
5211
5212static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5213{
5214 u32 val;
5215
5216 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5217 /*
5218 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5219 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5220 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5221 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5222 * to make sure it matches what Punit accepts.
5223 */
5224 return max_t(u32, val, 0xc0);
5225}
5226
5227/* Check that the pctx buffer wasn't move under us. */
5228static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5229{
5230 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5231
5232 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5233 dev_priv->vlv_pctx->stolen->start);
5234}
5235
5236
5237/* Check that the pcbr address is not empty. */
5238static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5239{
5240 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5241
5242 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5243}
5244
5245static void cherryview_setup_pctx(struct drm_device *dev)
5246{
5247 struct drm_i915_private *dev_priv = dev->dev_private;
5248 unsigned long pctx_paddr, paddr;
5249 struct i915_gtt *gtt = &dev_priv->gtt;
5250 u32 pcbr;
5251 int pctx_size = 32*1024;
5252
5253 pcbr = I915_READ(VLV_PCBR);
5254 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5255 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5256 paddr = (dev_priv->mm.stolen_base +
5257 (gtt->stolen_size - pctx_size));
5258
5259 pctx_paddr = (paddr & (~4095));
5260 I915_WRITE(VLV_PCBR, pctx_paddr);
5261 }
5262
5263 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5264}
5265
5266static void valleyview_setup_pctx(struct drm_device *dev)
5267{
5268 struct drm_i915_private *dev_priv = dev->dev_private;
5269 struct drm_i915_gem_object *pctx;
5270 unsigned long pctx_paddr;
5271 u32 pcbr;
5272 int pctx_size = 24*1024;
5273
5274 mutex_lock(&dev->struct_mutex);
5275
5276 pcbr = I915_READ(VLV_PCBR);
5277 if (pcbr) {
5278 /* BIOS set it up already, grab the pre-alloc'd space */
5279 int pcbr_offset;
5280
5281 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5282 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5283 pcbr_offset,
5284 I915_GTT_OFFSET_NONE,
5285 pctx_size);
5286 goto out;
5287 }
5288
5289 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5290
5291 /*
5292 * From the Gunit register HAS:
5293 * The Gfx driver is expected to program this register and ensure
5294 * proper allocation within Gfx stolen memory. For example, this
5295 * register should be programmed such than the PCBR range does not
5296 * overlap with other ranges, such as the frame buffer, protected
5297 * memory, or any other relevant ranges.
5298 */
5299 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5300 if (!pctx) {
5301 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5302 goto out;
5303 }
5304
5305 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5306 I915_WRITE(VLV_PCBR, pctx_paddr);
5307
5308out:
5309 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5310 dev_priv->vlv_pctx = pctx;
5311 mutex_unlock(&dev->struct_mutex);
5312}
5313
5314static void valleyview_cleanup_pctx(struct drm_device *dev)
5315{
5316 struct drm_i915_private *dev_priv = dev->dev_private;
5317
5318 if (WARN_ON(!dev_priv->vlv_pctx))
5319 return;
5320
5321 drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5322 dev_priv->vlv_pctx = NULL;
5323}
5324
5325static void valleyview_init_gt_powersave(struct drm_device *dev)
5326{
5327 struct drm_i915_private *dev_priv = dev->dev_private;
5328 u32 val;
5329
5330 valleyview_setup_pctx(dev);
5331
5332 mutex_lock(&dev_priv->rps.hw_lock);
5333
5334 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5335 switch ((val >> 6) & 3) {
5336 case 0:
5337 case 1:
5338 dev_priv->mem_freq = 800;
5339 break;
5340 case 2:
5341 dev_priv->mem_freq = 1066;
5342 break;
5343 case 3:
5344 dev_priv->mem_freq = 1333;
5345 break;
5346 }
5347 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5348
5349 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5350 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5351 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5352 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5353 dev_priv->rps.max_freq);
5354
5355 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5356 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5357 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5358 dev_priv->rps.efficient_freq);
5359
5360 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5361 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5362 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5363 dev_priv->rps.rp1_freq);
5364
5365 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5366 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5367 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5368 dev_priv->rps.min_freq);
5369
5370 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5371
5372 /* Preserve min/max settings in case of re-init */
5373 if (dev_priv->rps.max_freq_softlimit == 0)
5374 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5375
5376 if (dev_priv->rps.min_freq_softlimit == 0)
5377 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5378
5379 mutex_unlock(&dev_priv->rps.hw_lock);
5380}
5381
5382static void cherryview_init_gt_powersave(struct drm_device *dev)
5383{
5384 struct drm_i915_private *dev_priv = dev->dev_private;
5385 u32 val;
5386
5387 cherryview_setup_pctx(dev);
5388
5389 mutex_lock(&dev_priv->rps.hw_lock);
5390
5391 mutex_lock(&dev_priv->sb_lock);
5392 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5393 mutex_unlock(&dev_priv->sb_lock);
5394
5395 switch ((val >> 2) & 0x7) {
5396 case 3:
5397 dev_priv->mem_freq = 2000;
5398 break;
5399 default:
5400 dev_priv->mem_freq = 1600;
5401 break;
5402 }
5403 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5404
5405 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5406 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5407 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5408 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5409 dev_priv->rps.max_freq);
5410
5411 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5412 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5413 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5414 dev_priv->rps.efficient_freq);
5415
5416 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5417 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5418 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5419 dev_priv->rps.rp1_freq);
5420
5421 /* PUnit validated range is only [RPe, RP0] */
5422 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5423 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5424 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5425 dev_priv->rps.min_freq);
5426
5427 WARN_ONCE((dev_priv->rps.max_freq |
5428 dev_priv->rps.efficient_freq |
5429 dev_priv->rps.rp1_freq |
5430 dev_priv->rps.min_freq) & 1,
5431 "Odd GPU freq values\n");
5432
5433 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5434
5435 /* Preserve min/max settings in case of re-init */
5436 if (dev_priv->rps.max_freq_softlimit == 0)
5437 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5438
5439 if (dev_priv->rps.min_freq_softlimit == 0)
5440 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5441
5442 mutex_unlock(&dev_priv->rps.hw_lock);
5443}
5444
5445static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5446{
5447 valleyview_cleanup_pctx(dev);
5448}
5449
5450static void cherryview_enable_rps(struct drm_device *dev)
5451{
5452 struct drm_i915_private *dev_priv = dev->dev_private;
5453 struct intel_engine_cs *ring;
5454 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5455 int i;
5456
5457 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5458
5459 gtfifodbg = I915_READ(GTFIFODBG);
5460 if (gtfifodbg) {
5461 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5462 gtfifodbg);
5463 I915_WRITE(GTFIFODBG, gtfifodbg);
5464 }
5465
5466 cherryview_check_pctx(dev_priv);
5467
5468 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5469 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5470 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5471
5472 /* Disable RC states. */
5473 I915_WRITE(GEN6_RC_CONTROL, 0);
5474
5475 /* 2a: Program RC6 thresholds.*/
5476 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5477 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5478 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5479
5480 for_each_ring(ring, dev_priv, i)
5481 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5482 I915_WRITE(GEN6_RC_SLEEP, 0);
5483
5484 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5485 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5486
5487 /* allows RC6 residency counter to work */
5488 I915_WRITE(VLV_COUNTER_CONTROL,
5489 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5490 VLV_MEDIA_RC6_COUNT_EN |
5491 VLV_RENDER_RC6_COUNT_EN));
5492
5493 /* For now we assume BIOS is allocating and populating the PCBR */
5494 pcbr = I915_READ(VLV_PCBR);
5495
5496 /* 3: Enable RC6 */
5497 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5498 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5499 rc6_mode = GEN7_RC_CTL_TO_MODE;
5500
5501 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5502
5503 /* 4 Program defaults and thresholds for RPS*/
5504 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5505 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5506 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5507 I915_WRITE(GEN6_RP_UP_EI, 66000);
5508 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5509
5510 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5511
5512 /* 5: Enable RPS */
5513 I915_WRITE(GEN6_RP_CONTROL,
5514 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5515 GEN6_RP_MEDIA_IS_GFX |
5516 GEN6_RP_ENABLE |
5517 GEN6_RP_UP_BUSY_AVG |
5518 GEN6_RP_DOWN_IDLE_AVG);
5519
5520 /* Setting Fixed Bias */
5521 val = VLV_OVERRIDE_EN |
5522 VLV_SOC_TDP_EN |
5523 CHV_BIAS_CPU_50_SOC_50;
5524 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5525
5526 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5527
5528 /* RPS code assumes GPLL is used */
5529 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5530
5531 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5532 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5533
5534 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5535 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5536 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5537 dev_priv->rps.cur_freq);
5538
5539 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5540 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5541 dev_priv->rps.efficient_freq);
5542
5543 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5544
5545 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5546}
5547
5548static void valleyview_enable_rps(struct drm_device *dev)
5549{
5550 struct drm_i915_private *dev_priv = dev->dev_private;
5551 struct intel_engine_cs *ring;
5552 u32 gtfifodbg, val, rc6_mode = 0;
5553 int i;
5554
5555 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5556
5557 valleyview_check_pctx(dev_priv);
5558
5559 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5560 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5561 gtfifodbg);
5562 I915_WRITE(GTFIFODBG, gtfifodbg);
5563 }
5564
5565 /* If VLV, Forcewake all wells, else re-direct to regular path */
5566 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5567
5568 /* Disable RC states. */
5569 I915_WRITE(GEN6_RC_CONTROL, 0);
5570
5571 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5572 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5573 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5574 I915_WRITE(GEN6_RP_UP_EI, 66000);
5575 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5576
5577 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5578
5579 I915_WRITE(GEN6_RP_CONTROL,
5580 GEN6_RP_MEDIA_TURBO |
5581 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5582 GEN6_RP_MEDIA_IS_GFX |
5583 GEN6_RP_ENABLE |
5584 GEN6_RP_UP_BUSY_AVG |
5585 GEN6_RP_DOWN_IDLE_CONT);
5586
5587 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5588 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5589 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5590
5591 for_each_ring(ring, dev_priv, i)
5592 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5593
5594 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5595
5596 /* allows RC6 residency counter to work */
5597 I915_WRITE(VLV_COUNTER_CONTROL,
5598 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5599 VLV_RENDER_RC0_COUNT_EN |
5600 VLV_MEDIA_RC6_COUNT_EN |
5601 VLV_RENDER_RC6_COUNT_EN));
5602
5603 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5604 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5605
5606 intel_print_rc6_info(dev, rc6_mode);
5607
5608 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5609
5610 /* Setting Fixed Bias */
5611 val = VLV_OVERRIDE_EN |
5612 VLV_SOC_TDP_EN |
5613 VLV_BIAS_CPU_125_SOC_875;
5614 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5615
5616 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5617
5618 /* RPS code assumes GPLL is used */
5619 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5620
5621 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5622 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5623
5624 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5625 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5626 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5627 dev_priv->rps.cur_freq);
5628
5629 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5630 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5631 dev_priv->rps.efficient_freq);
5632
5633 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5634
5635 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5636}
5637
5638static unsigned long intel_pxfreq(u32 vidfreq)
5639{
5640 unsigned long freq;
5641 int div = (vidfreq & 0x3f0000) >> 16;
5642 int post = (vidfreq & 0x3000) >> 12;
5643 int pre = (vidfreq & 0x7);
5644
5645 if (!pre)
5646 return 0;
5647
5648 freq = ((div * 133333) / ((1<<post) * pre));
5649
5650 return freq;
5651}
5652
5653static const struct cparams {
5654 u16 i;
5655 u16 t;
5656 u16 m;
5657 u16 c;
5658} cparams[] = {
5659 { 1, 1333, 301, 28664 },
5660 { 1, 1066, 294, 24460 },
5661 { 1, 800, 294, 25192 },
5662 { 0, 1333, 276, 27605 },
5663 { 0, 1066, 276, 27605 },
5664 { 0, 800, 231, 23784 },
5665};
5666
5667static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5668{
5669 u64 total_count, diff, ret;
5670 u32 count1, count2, count3, m = 0, c = 0;
5671 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5672 int i;
5673
5674 assert_spin_locked(&mchdev_lock);
5675
5676 diff1 = now - dev_priv->ips.last_time1;
5677
5678 /* Prevent division-by-zero if we are asking too fast.
5679 * Also, we don't get interesting results if we are polling
5680 * faster than once in 10ms, so just return the saved value
5681 * in such cases.
5682 */
5683 if (diff1 <= 10)
5684 return dev_priv->ips.chipset_power;
5685
5686 count1 = I915_READ(DMIEC);
5687 count2 = I915_READ(DDREC);
5688 count3 = I915_READ(CSIEC);
5689
5690 total_count = count1 + count2 + count3;
5691
5692 /* FIXME: handle per-counter overflow */
5693 if (total_count < dev_priv->ips.last_count1) {
5694 diff = ~0UL - dev_priv->ips.last_count1;
5695 diff += total_count;
5696 } else {
5697 diff = total_count - dev_priv->ips.last_count1;
5698 }
5699
5700 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5701 if (cparams[i].i == dev_priv->ips.c_m &&
5702 cparams[i].t == dev_priv->ips.r_t) {
5703 m = cparams[i].m;
5704 c = cparams[i].c;
5705 break;
5706 }
5707 }
5708
5709 diff = div_u64(diff, diff1);
5710 ret = ((m * diff) + c);
5711 ret = div_u64(ret, 10);
5712
5713 dev_priv->ips.last_count1 = total_count;
5714 dev_priv->ips.last_time1 = now;
5715
5716 dev_priv->ips.chipset_power = ret;
5717
5718 return ret;
5719}
5720
5721unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5722{
5723 struct drm_device *dev = dev_priv->dev;
5724 unsigned long val;
5725
5726 if (INTEL_INFO(dev)->gen != 5)
5727 return 0;
5728
5729 spin_lock_irq(&mchdev_lock);
5730
5731 val = __i915_chipset_val(dev_priv);
5732
5733 spin_unlock_irq(&mchdev_lock);
5734
5735 return val;
5736}
5737
5738unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5739{
5740 unsigned long m, x, b;
5741 u32 tsfs;
5742
5743 tsfs = I915_READ(TSFS);
5744
5745 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5746 x = I915_READ8(TR1);
5747
5748 b = tsfs & TSFS_INTR_MASK;
5749
5750 return ((m * x) / 127) - b;
5751}
5752
5753static int _pxvid_to_vd(u8 pxvid)
5754{
5755 if (pxvid == 0)
5756 return 0;
5757
5758 if (pxvid >= 8 && pxvid < 31)
5759 pxvid = 31;
5760
5761 return (pxvid + 2) * 125;
5762}
5763
5764static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5765{
5766 struct drm_device *dev = dev_priv->dev;
5767 const int vd = _pxvid_to_vd(pxvid);
5768 const int vm = vd - 1125;
5769
5770 if (INTEL_INFO(dev)->is_mobile)
5771 return vm > 0 ? vm : 0;
5772
5773 return vd;
5774}
5775
5776static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5777{
5778 u64 now, diff, diffms;
5779 u32 count;
5780
5781 assert_spin_locked(&mchdev_lock);
5782
5783 now = ktime_get_raw_ns();
5784 diffms = now - dev_priv->ips.last_time2;
5785 do_div(diffms, NSEC_PER_MSEC);
5786
5787 /* Don't divide by 0 */
5788 if (!diffms)
5789 return;
5790
5791 count = I915_READ(GFXEC);
5792
5793 if (count < dev_priv->ips.last_count2) {
5794 diff = ~0UL - dev_priv->ips.last_count2;
5795 diff += count;
5796 } else {
5797 diff = count - dev_priv->ips.last_count2;
5798 }
5799
5800 dev_priv->ips.last_count2 = count;
5801 dev_priv->ips.last_time2 = now;
5802
5803 /* More magic constants... */
5804 diff = diff * 1181;
5805 diff = div_u64(diff, diffms * 10);
5806 dev_priv->ips.gfx_power = diff;
5807}
5808
5809void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5810{
5811 struct drm_device *dev = dev_priv->dev;
5812
5813 if (INTEL_INFO(dev)->gen != 5)
5814 return;
5815
5816 spin_lock_irq(&mchdev_lock);
5817
5818 __i915_update_gfx_val(dev_priv);
5819
5820 spin_unlock_irq(&mchdev_lock);
5821}
5822
5823static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5824{
5825 unsigned long t, corr, state1, corr2, state2;
5826 u32 pxvid, ext_v;
5827
5828 assert_spin_locked(&mchdev_lock);
5829
5830 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5831 pxvid = (pxvid >> 24) & 0x7f;
5832 ext_v = pvid_to_extvid(dev_priv, pxvid);
5833
5834 state1 = ext_v;
5835
5836 t = i915_mch_val(dev_priv);
5837
5838 /* Revel in the empirically derived constants */
5839
5840 /* Correction factor in 1/100000 units */
5841 if (t > 80)
5842 corr = ((t * 2349) + 135940);
5843 else if (t >= 50)
5844 corr = ((t * 964) + 29317);
5845 else /* < 50 */
5846 corr = ((t * 301) + 1004);
5847
5848 corr = corr * ((150142 * state1) / 10000 - 78642);
5849 corr /= 100000;
5850 corr2 = (corr * dev_priv->ips.corr);
5851
5852 state2 = (corr2 * state1) / 10000;
5853 state2 /= 100; /* convert to mW */
5854
5855 __i915_update_gfx_val(dev_priv);
5856
5857 return dev_priv->ips.gfx_power + state2;
5858}
5859
5860unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5861{
5862 struct drm_device *dev = dev_priv->dev;
5863 unsigned long val;
5864
5865 if (INTEL_INFO(dev)->gen != 5)
5866 return 0;
5867
5868 spin_lock_irq(&mchdev_lock);
5869
5870 val = __i915_gfx_val(dev_priv);
5871
5872 spin_unlock_irq(&mchdev_lock);
5873
5874 return val;
5875}
5876
5877/**
5878 * i915_read_mch_val - return value for IPS use
5879 *
5880 * Calculate and return a value for the IPS driver to use when deciding whether
5881 * we have thermal and power headroom to increase CPU or GPU power budget.
5882 */
5883unsigned long i915_read_mch_val(void)
5884{
5885 struct drm_i915_private *dev_priv;
5886 unsigned long chipset_val, graphics_val, ret = 0;
5887
5888 spin_lock_irq(&mchdev_lock);
5889 if (!i915_mch_dev)
5890 goto out_unlock;
5891 dev_priv = i915_mch_dev;
5892
5893 chipset_val = __i915_chipset_val(dev_priv);
5894 graphics_val = __i915_gfx_val(dev_priv);
5895
5896 ret = chipset_val + graphics_val;
5897
5898out_unlock:
5899 spin_unlock_irq(&mchdev_lock);
5900
5901 return ret;
5902}
5903EXPORT_SYMBOL_GPL(i915_read_mch_val);
5904
5905/**
5906 * i915_gpu_raise - raise GPU frequency limit
5907 *
5908 * Raise the limit; IPS indicates we have thermal headroom.
5909 */
5910bool i915_gpu_raise(void)
5911{
5912 struct drm_i915_private *dev_priv;
5913 bool ret = true;
5914
5915 spin_lock_irq(&mchdev_lock);
5916 if (!i915_mch_dev) {
5917 ret = false;
5918 goto out_unlock;
5919 }
5920 dev_priv = i915_mch_dev;
5921
5922 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5923 dev_priv->ips.max_delay--;
5924
5925out_unlock:
5926 spin_unlock_irq(&mchdev_lock);
5927
5928 return ret;
5929}
5930EXPORT_SYMBOL_GPL(i915_gpu_raise);
5931
5932/**
5933 * i915_gpu_lower - lower GPU frequency limit
5934 *
5935 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5936 * frequency maximum.
5937 */
5938bool i915_gpu_lower(void)
5939{
5940 struct drm_i915_private *dev_priv;
5941 bool ret = true;
5942
5943 spin_lock_irq(&mchdev_lock);
5944 if (!i915_mch_dev) {
5945 ret = false;
5946 goto out_unlock;
5947 }
5948 dev_priv = i915_mch_dev;
5949
5950 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5951 dev_priv->ips.max_delay++;
5952
5953out_unlock:
5954 spin_unlock_irq(&mchdev_lock);
5955
5956 return ret;
5957}
5958EXPORT_SYMBOL_GPL(i915_gpu_lower);
5959
5960/**
5961 * i915_gpu_busy - indicate GPU business to IPS
5962 *
5963 * Tell the IPS driver whether or not the GPU is busy.
5964 */
5965bool i915_gpu_busy(void)
5966{
5967 struct drm_i915_private *dev_priv;
5968 struct intel_engine_cs *ring;
5969 bool ret = false;
5970 int i;
5971
5972 spin_lock_irq(&mchdev_lock);
5973 if (!i915_mch_dev)
5974 goto out_unlock;
5975 dev_priv = i915_mch_dev;
5976
5977 for_each_ring(ring, dev_priv, i)
5978 ret |= !list_empty(&ring->request_list);
5979
5980out_unlock:
5981 spin_unlock_irq(&mchdev_lock);
5982
5983 return ret;
5984}
5985EXPORT_SYMBOL_GPL(i915_gpu_busy);
5986
5987/**
5988 * i915_gpu_turbo_disable - disable graphics turbo
5989 *
5990 * Disable graphics turbo by resetting the max frequency and setting the
5991 * current frequency to the default.
5992 */
5993bool i915_gpu_turbo_disable(void)
5994{
5995 struct drm_i915_private *dev_priv;
5996 bool ret = true;
5997
5998 spin_lock_irq(&mchdev_lock);
5999 if (!i915_mch_dev) {
6000 ret = false;
6001 goto out_unlock;
6002 }
6003 dev_priv = i915_mch_dev;
6004
6005 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6006
6007 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6008 ret = false;
6009
6010out_unlock:
6011 spin_unlock_irq(&mchdev_lock);
6012
6013 return ret;
6014}
6015EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6016
6017/**
6018 * Tells the intel_ips driver that the i915 driver is now loaded, if
6019 * IPS got loaded first.
6020 *
6021 * This awkward dance is so that neither module has to depend on the
6022 * other in order for IPS to do the appropriate communication of
6023 * GPU turbo limits to i915.
6024 */
6025static void
6026ips_ping_for_i915_load(void)
6027{
6028 void (*link)(void);
6029
6030 link = symbol_get(ips_link_to_i915_driver);
6031 if (link) {
6032 link();
6033 symbol_put(ips_link_to_i915_driver);
6034 }
6035}
6036
6037void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6038{
6039 /* We only register the i915 ips part with intel-ips once everything is
6040 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6041 spin_lock_irq(&mchdev_lock);
6042 i915_mch_dev = dev_priv;
6043 spin_unlock_irq(&mchdev_lock);
6044
6045 ips_ping_for_i915_load();
6046}
6047
6048void intel_gpu_ips_teardown(void)
6049{
6050 spin_lock_irq(&mchdev_lock);
6051 i915_mch_dev = NULL;
6052 spin_unlock_irq(&mchdev_lock);
6053}
6054
6055static void intel_init_emon(struct drm_device *dev)
6056{
6057 struct drm_i915_private *dev_priv = dev->dev_private;
6058 u32 lcfuse;
6059 u8 pxw[16];
6060 int i;
6061
6062 /* Disable to program */
6063 I915_WRITE(ECR, 0);
6064 POSTING_READ(ECR);
6065
6066 /* Program energy weights for various events */
6067 I915_WRITE(SDEW, 0x15040d00);
6068 I915_WRITE(CSIEW0, 0x007f0000);
6069 I915_WRITE(CSIEW1, 0x1e220004);
6070 I915_WRITE(CSIEW2, 0x04000004);
6071
6072 for (i = 0; i < 5; i++)
6073 I915_WRITE(PEW(i), 0);
6074 for (i = 0; i < 3; i++)
6075 I915_WRITE(DEW(i), 0);
6076
6077 /* Program P-state weights to account for frequency power adjustment */
6078 for (i = 0; i < 16; i++) {
6079 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6080 unsigned long freq = intel_pxfreq(pxvidfreq);
6081 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6082 PXVFREQ_PX_SHIFT;
6083 unsigned long val;
6084
6085 val = vid * vid;
6086 val *= (freq / 1000);
6087 val *= 255;
6088 val /= (127*127*900);
6089 if (val > 0xff)
6090 DRM_ERROR("bad pxval: %ld\n", val);
6091 pxw[i] = val;
6092 }
6093 /* Render standby states get 0 weight */
6094 pxw[14] = 0;
6095 pxw[15] = 0;
6096
6097 for (i = 0; i < 4; i++) {
6098 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6099 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6100 I915_WRITE(PXW(i), val);
6101 }
6102
6103 /* Adjust magic regs to magic values (more experimental results) */
6104 I915_WRITE(OGW0, 0);
6105 I915_WRITE(OGW1, 0);
6106 I915_WRITE(EG0, 0x00007f00);
6107 I915_WRITE(EG1, 0x0000000e);
6108 I915_WRITE(EG2, 0x000e0000);
6109 I915_WRITE(EG3, 0x68000300);
6110 I915_WRITE(EG4, 0x42000000);
6111 I915_WRITE(EG5, 0x00140031);
6112 I915_WRITE(EG6, 0);
6113 I915_WRITE(EG7, 0);
6114
6115 for (i = 0; i < 8; i++)
6116 I915_WRITE(PXWL(i), 0);
6117
6118 /* Enable PMON + select events */
6119 I915_WRITE(ECR, 0x80000019);
6120
6121 lcfuse = I915_READ(LCFUSE02);
6122
6123 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6124}
6125
6126void intel_init_gt_powersave(struct drm_device *dev)
6127{
6128 struct drm_i915_private *dev_priv = dev->dev_private;
6129
6130 /*
6131 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6132 * requirement.
6133 */
6134 if (!i915.enable_rc6) {
6135 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6136 intel_runtime_pm_get(dev_priv);
6137 }
6138
6139 if (IS_CHERRYVIEW(dev))
6140 cherryview_init_gt_powersave(dev);
6141 else if (IS_VALLEYVIEW(dev))
6142 valleyview_init_gt_powersave(dev);
6143}
6144
6145void intel_cleanup_gt_powersave(struct drm_device *dev)
6146{
6147 struct drm_i915_private *dev_priv = dev->dev_private;
6148
6149 if (IS_CHERRYVIEW(dev))
6150 return;
6151 else if (IS_VALLEYVIEW(dev))
6152 valleyview_cleanup_gt_powersave(dev);
6153
6154 if (!i915.enable_rc6)
6155 intel_runtime_pm_put(dev_priv);
6156}
6157
6158static void gen6_suspend_rps(struct drm_device *dev)
6159{
6160 struct drm_i915_private *dev_priv = dev->dev_private;
6161
6162 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6163
6164 gen6_disable_rps_interrupts(dev);
6165}
6166
6167/**
6168 * intel_suspend_gt_powersave - suspend PM work and helper threads
6169 * @dev: drm device
6170 *
6171 * We don't want to disable RC6 or other features here, we just want
6172 * to make sure any work we've queued has finished and won't bother
6173 * us while we're suspended.
6174 */
6175void intel_suspend_gt_powersave(struct drm_device *dev)
6176{
6177 struct drm_i915_private *dev_priv = dev->dev_private;
6178
6179 if (INTEL_INFO(dev)->gen < 6)
6180 return;
6181
6182 gen6_suspend_rps(dev);
6183
6184 /* Force GPU to min freq during suspend */
6185 gen6_rps_idle(dev_priv);
6186}
6187
6188void intel_disable_gt_powersave(struct drm_device *dev)
6189{
6190 struct drm_i915_private *dev_priv = dev->dev_private;
6191
6192 if (IS_IRONLAKE_M(dev)) {
6193 ironlake_disable_drps(dev);
6194 } else if (INTEL_INFO(dev)->gen >= 6) {
6195 intel_suspend_gt_powersave(dev);
6196
6197 mutex_lock(&dev_priv->rps.hw_lock);
6198 if (INTEL_INFO(dev)->gen >= 9)
6199 gen9_disable_rps(dev);
6200 else if (IS_CHERRYVIEW(dev))
6201 cherryview_disable_rps(dev);
6202 else if (IS_VALLEYVIEW(dev))
6203 valleyview_disable_rps(dev);
6204 else
6205 gen6_disable_rps(dev);
6206
6207 dev_priv->rps.enabled = false;
6208 mutex_unlock(&dev_priv->rps.hw_lock);
6209 }
6210}
6211
6212static void intel_gen6_powersave_work(struct work_struct *work)
6213{
6214 struct drm_i915_private *dev_priv =
6215 container_of(work, struct drm_i915_private,
6216 rps.delayed_resume_work.work);
6217 struct drm_device *dev = dev_priv->dev;
6218
6219 mutex_lock(&dev_priv->rps.hw_lock);
6220
6221 gen6_reset_rps_interrupts(dev);
6222
6223 if (IS_CHERRYVIEW(dev)) {
6224 cherryview_enable_rps(dev);
6225 } else if (IS_VALLEYVIEW(dev)) {
6226 valleyview_enable_rps(dev);
6227 } else if (INTEL_INFO(dev)->gen >= 9) {
6228 gen9_enable_rc6(dev);
6229 gen9_enable_rps(dev);
6230 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6231 __gen6_update_ring_freq(dev);
6232 } else if (IS_BROADWELL(dev)) {
6233 gen8_enable_rps(dev);
6234 __gen6_update_ring_freq(dev);
6235 } else {
6236 gen6_enable_rps(dev);
6237 __gen6_update_ring_freq(dev);
6238 }
6239
6240 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6241 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6242
6243 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6244 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6245
6246 dev_priv->rps.enabled = true;
6247
6248 gen6_enable_rps_interrupts(dev);
6249
6250 mutex_unlock(&dev_priv->rps.hw_lock);
6251
6252 intel_runtime_pm_put(dev_priv);
6253}
6254
6255void intel_enable_gt_powersave(struct drm_device *dev)
6256{
6257 struct drm_i915_private *dev_priv = dev->dev_private;
6258
6259 /* Powersaving is controlled by the host when inside a VM */
6260 if (intel_vgpu_active(dev))
6261 return;
6262
6263 if (IS_IRONLAKE_M(dev)) {
6264 ironlake_enable_drps(dev);
6265 mutex_lock(&dev->struct_mutex);
6266 intel_init_emon(dev);
6267 mutex_unlock(&dev->struct_mutex);
6268 } else if (INTEL_INFO(dev)->gen >= 6) {
6269 /*
6270 * PCU communication is slow and this doesn't need to be
6271 * done at any specific time, so do this out of our fast path
6272 * to make resume and init faster.
6273 *
6274 * We depend on the HW RC6 power context save/restore
6275 * mechanism when entering D3 through runtime PM suspend. So
6276 * disable RPM until RPS/RC6 is properly setup. We can only
6277 * get here via the driver load/system resume/runtime resume
6278 * paths, so the _noresume version is enough (and in case of
6279 * runtime resume it's necessary).
6280 */
6281 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6282 round_jiffies_up_relative(HZ)))
6283 intel_runtime_pm_get_noresume(dev_priv);
6284 }
6285}
6286
6287void intel_reset_gt_powersave(struct drm_device *dev)
6288{
6289 struct drm_i915_private *dev_priv = dev->dev_private;
6290
6291 if (INTEL_INFO(dev)->gen < 6)
6292 return;
6293
6294 gen6_suspend_rps(dev);
6295 dev_priv->rps.enabled = false;
6296}
6297
6298static void ibx_init_clock_gating(struct drm_device *dev)
6299{
6300 struct drm_i915_private *dev_priv = dev->dev_private;
6301
6302 /*
6303 * On Ibex Peak and Cougar Point, we need to disable clock
6304 * gating for the panel power sequencer or it will fail to
6305 * start up when no ports are active.
6306 */
6307 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6308}
6309
6310static void g4x_disable_trickle_feed(struct drm_device *dev)
6311{
6312 struct drm_i915_private *dev_priv = dev->dev_private;
6313 enum pipe pipe;
6314
6315 for_each_pipe(dev_priv, pipe) {
6316 I915_WRITE(DSPCNTR(pipe),
6317 I915_READ(DSPCNTR(pipe)) |
6318 DISPPLANE_TRICKLE_FEED_DISABLE);
6319
6320 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6321 POSTING_READ(DSPSURF(pipe));
6322 }
6323}
6324
6325static void ilk_init_lp_watermarks(struct drm_device *dev)
6326{
6327 struct drm_i915_private *dev_priv = dev->dev_private;
6328
6329 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6330 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6331 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6332
6333 /*
6334 * Don't touch WM1S_LP_EN here.
6335 * Doing so could cause underruns.
6336 */
6337}
6338
6339static void ironlake_init_clock_gating(struct drm_device *dev)
6340{
6341 struct drm_i915_private *dev_priv = dev->dev_private;
6342 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6343
6344 /*
6345 * Required for FBC
6346 * WaFbcDisableDpfcClockGating:ilk
6347 */
6348 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6349 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6350 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6351
6352 I915_WRITE(PCH_3DCGDIS0,
6353 MARIUNIT_CLOCK_GATE_DISABLE |
6354 SVSMUNIT_CLOCK_GATE_DISABLE);
6355 I915_WRITE(PCH_3DCGDIS1,
6356 VFMUNIT_CLOCK_GATE_DISABLE);
6357
6358 /*
6359 * According to the spec the following bits should be set in
6360 * order to enable memory self-refresh
6361 * The bit 22/21 of 0x42004
6362 * The bit 5 of 0x42020
6363 * The bit 15 of 0x45000
6364 */
6365 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6366 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6367 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6368 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6369 I915_WRITE(DISP_ARB_CTL,
6370 (I915_READ(DISP_ARB_CTL) |
6371 DISP_FBC_WM_DIS));
6372
6373 ilk_init_lp_watermarks(dev);
6374
6375 /*
6376 * Based on the document from hardware guys the following bits
6377 * should be set unconditionally in order to enable FBC.
6378 * The bit 22 of 0x42000
6379 * The bit 22 of 0x42004
6380 * The bit 7,8,9 of 0x42020.
6381 */
6382 if (IS_IRONLAKE_M(dev)) {
6383 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6384 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6385 I915_READ(ILK_DISPLAY_CHICKEN1) |
6386 ILK_FBCQ_DIS);
6387 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6388 I915_READ(ILK_DISPLAY_CHICKEN2) |
6389 ILK_DPARB_GATE);
6390 }
6391
6392 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6393
6394 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6395 I915_READ(ILK_DISPLAY_CHICKEN2) |
6396 ILK_ELPIN_409_SELECT);
6397 I915_WRITE(_3D_CHICKEN2,
6398 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6399 _3D_CHICKEN2_WM_READ_PIPELINED);
6400
6401 /* WaDisableRenderCachePipelinedFlush:ilk */
6402 I915_WRITE(CACHE_MODE_0,
6403 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6404
6405 /* WaDisable_RenderCache_OperationalFlush:ilk */
6406 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6407
6408 g4x_disable_trickle_feed(dev);
6409
6410 ibx_init_clock_gating(dev);
6411}
6412
6413static void cpt_init_clock_gating(struct drm_device *dev)
6414{
6415 struct drm_i915_private *dev_priv = dev->dev_private;
6416 int pipe;
6417 uint32_t val;
6418
6419 /*
6420 * On Ibex Peak and Cougar Point, we need to disable clock
6421 * gating for the panel power sequencer or it will fail to
6422 * start up when no ports are active.
6423 */
6424 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6425 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6426 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6427 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6428 DPLS_EDP_PPS_FIX_DIS);
6429 /* The below fixes the weird display corruption, a few pixels shifted
6430 * downward, on (only) LVDS of some HP laptops with IVY.
6431 */
6432 for_each_pipe(dev_priv, pipe) {
6433 val = I915_READ(TRANS_CHICKEN2(pipe));
6434 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6435 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6436 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6437 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6438 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6439 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6440 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6441 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6442 }
6443 /* WADP0ClockGatingDisable */
6444 for_each_pipe(dev_priv, pipe) {
6445 I915_WRITE(TRANS_CHICKEN1(pipe),
6446 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6447 }
6448}
6449
6450static void gen6_check_mch_setup(struct drm_device *dev)
6451{
6452 struct drm_i915_private *dev_priv = dev->dev_private;
6453 uint32_t tmp;
6454
6455 tmp = I915_READ(MCH_SSKPD);
6456 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6457 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6458 tmp);
6459}
6460
6461static void gen6_init_clock_gating(struct drm_device *dev)
6462{
6463 struct drm_i915_private *dev_priv = dev->dev_private;
6464 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6465
6466 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6467
6468 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6469 I915_READ(ILK_DISPLAY_CHICKEN2) |
6470 ILK_ELPIN_409_SELECT);
6471
6472 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6473 I915_WRITE(_3D_CHICKEN,
6474 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6475
6476 /* WaDisable_RenderCache_OperationalFlush:snb */
6477 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6478
6479 /*
6480 * BSpec recoomends 8x4 when MSAA is used,
6481 * however in practice 16x4 seems fastest.
6482 *
6483 * Note that PS/WM thread counts depend on the WIZ hashing
6484 * disable bit, which we don't touch here, but it's good
6485 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6486 */
6487 I915_WRITE(GEN6_GT_MODE,
6488 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6489
6490 ilk_init_lp_watermarks(dev);
6491
6492 I915_WRITE(CACHE_MODE_0,
6493 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6494
6495 I915_WRITE(GEN6_UCGCTL1,
6496 I915_READ(GEN6_UCGCTL1) |
6497 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6498 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6499
6500 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6501 * gating disable must be set. Failure to set it results in
6502 * flickering pixels due to Z write ordering failures after
6503 * some amount of runtime in the Mesa "fire" demo, and Unigine
6504 * Sanctuary and Tropics, and apparently anything else with
6505 * alpha test or pixel discard.
6506 *
6507 * According to the spec, bit 11 (RCCUNIT) must also be set,
6508 * but we didn't debug actual testcases to find it out.
6509 *
6510 * WaDisableRCCUnitClockGating:snb
6511 * WaDisableRCPBUnitClockGating:snb
6512 */
6513 I915_WRITE(GEN6_UCGCTL2,
6514 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6515 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6516
6517 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6518 I915_WRITE(_3D_CHICKEN3,
6519 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6520
6521 /*
6522 * Bspec says:
6523 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6524 * 3DSTATE_SF number of SF output attributes is more than 16."
6525 */
6526 I915_WRITE(_3D_CHICKEN3,
6527 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6528
6529 /*
6530 * According to the spec the following bits should be
6531 * set in order to enable memory self-refresh and fbc:
6532 * The bit21 and bit22 of 0x42000
6533 * The bit21 and bit22 of 0x42004
6534 * The bit5 and bit7 of 0x42020
6535 * The bit14 of 0x70180
6536 * The bit14 of 0x71180
6537 *
6538 * WaFbcAsynchFlipDisableFbcQueue:snb
6539 */
6540 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6541 I915_READ(ILK_DISPLAY_CHICKEN1) |
6542 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6543 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6544 I915_READ(ILK_DISPLAY_CHICKEN2) |
6545 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6546 I915_WRITE(ILK_DSPCLK_GATE_D,
6547 I915_READ(ILK_DSPCLK_GATE_D) |
6548 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6549 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6550
6551 g4x_disable_trickle_feed(dev);
6552
6553 cpt_init_clock_gating(dev);
6554
6555 gen6_check_mch_setup(dev);
6556}
6557
6558static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6559{
6560 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6561
6562 /*
6563 * WaVSThreadDispatchOverride:ivb,vlv
6564 *
6565 * This actually overrides the dispatch
6566 * mode for all thread types.
6567 */
6568 reg &= ~GEN7_FF_SCHED_MASK;
6569 reg |= GEN7_FF_TS_SCHED_HW;
6570 reg |= GEN7_FF_VS_SCHED_HW;
6571 reg |= GEN7_FF_DS_SCHED_HW;
6572
6573 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6574}
6575
6576static void lpt_init_clock_gating(struct drm_device *dev)
6577{
6578 struct drm_i915_private *dev_priv = dev->dev_private;
6579
6580 /*
6581 * TODO: this bit should only be enabled when really needed, then
6582 * disabled when not needed anymore in order to save power.
6583 */
6584 if (HAS_PCH_LPT_LP(dev))
6585 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6586 I915_READ(SOUTH_DSPCLK_GATE_D) |
6587 PCH_LP_PARTITION_LEVEL_DISABLE);
6588
6589 /* WADPOClockGatingDisable:hsw */
6590 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6591 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6592 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6593}
6594
6595static void lpt_suspend_hw(struct drm_device *dev)
6596{
6597 struct drm_i915_private *dev_priv = dev->dev_private;
6598
6599 if (HAS_PCH_LPT_LP(dev)) {
6600 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6601
6602 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6603 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6604 }
6605}
6606
6607static void broadwell_init_clock_gating(struct drm_device *dev)
6608{
6609 struct drm_i915_private *dev_priv = dev->dev_private;
6610 enum pipe pipe;
6611 uint32_t misccpctl;
6612
6613 ilk_init_lp_watermarks(dev);
6614
6615 /* WaSwitchSolVfFArbitrationPriority:bdw */
6616 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6617
6618 /* WaPsrDPAMaskVBlankInSRD:bdw */
6619 I915_WRITE(CHICKEN_PAR1_1,
6620 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6621
6622 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6623 for_each_pipe(dev_priv, pipe) {
6624 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6625 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6626 BDW_DPRS_MASK_VBLANK_SRD);
6627 }
6628
6629 /* WaVSRefCountFullforceMissDisable:bdw */
6630 /* WaDSRefCountFullforceMissDisable:bdw */
6631 I915_WRITE(GEN7_FF_THREAD_MODE,
6632 I915_READ(GEN7_FF_THREAD_MODE) &
6633 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6634
6635 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6636 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6637
6638 /* WaDisableSDEUnitClockGating:bdw */
6639 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6640 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6641
6642 /*
6643 * WaProgramL3SqcReg1Default:bdw
6644 * WaTempDisableDOPClkGating:bdw
6645 */
6646 misccpctl = I915_READ(GEN7_MISCCPCTL);
6647 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6648 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6649 /*
6650 * Wait at least 100 clocks before re-enabling clock gating. See
6651 * the definition of L3SQCREG1 in BSpec.
6652 */
6653 POSTING_READ(GEN8_L3SQCREG1);
6654 udelay(1);
6655 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6656
6657 /*
6658 * WaGttCachingOffByDefault:bdw
6659 * GTT cache may not work with big pages, so if those
6660 * are ever enabled GTT cache may need to be disabled.
6661 */
6662 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6663
6664 lpt_init_clock_gating(dev);
6665}
6666
6667static void haswell_init_clock_gating(struct drm_device *dev)
6668{
6669 struct drm_i915_private *dev_priv = dev->dev_private;
6670
6671 ilk_init_lp_watermarks(dev);
6672
6673 /* L3 caching of data atomics doesn't work -- disable it. */
6674 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6675 I915_WRITE(HSW_ROW_CHICKEN3,
6676 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6677
6678 /* This is required by WaCatErrorRejectionIssue:hsw */
6679 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6680 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6681 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6682
6683 /* WaVSRefCountFullforceMissDisable:hsw */
6684 I915_WRITE(GEN7_FF_THREAD_MODE,
6685 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6686
6687 /* WaDisable_RenderCache_OperationalFlush:hsw */
6688 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6689
6690 /* enable HiZ Raw Stall Optimization */
6691 I915_WRITE(CACHE_MODE_0_GEN7,
6692 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6693
6694 /* WaDisable4x2SubspanOptimization:hsw */
6695 I915_WRITE(CACHE_MODE_1,
6696 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6697
6698 /*
6699 * BSpec recommends 8x4 when MSAA is used,
6700 * however in practice 16x4 seems fastest.
6701 *
6702 * Note that PS/WM thread counts depend on the WIZ hashing
6703 * disable bit, which we don't touch here, but it's good
6704 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6705 */
6706 I915_WRITE(GEN7_GT_MODE,
6707 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6708
6709 /* WaSampleCChickenBitEnable:hsw */
6710 I915_WRITE(HALF_SLICE_CHICKEN3,
6711 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6712
6713 /* WaSwitchSolVfFArbitrationPriority:hsw */
6714 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6715
6716 /* WaRsPkgCStateDisplayPMReq:hsw */
6717 I915_WRITE(CHICKEN_PAR1_1,
6718 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6719
6720 lpt_init_clock_gating(dev);
6721}
6722
6723static void ivybridge_init_clock_gating(struct drm_device *dev)
6724{
6725 struct drm_i915_private *dev_priv = dev->dev_private;
6726 uint32_t snpcr;
6727
6728 ilk_init_lp_watermarks(dev);
6729
6730 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6731
6732 /* WaDisableEarlyCull:ivb */
6733 I915_WRITE(_3D_CHICKEN3,
6734 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6735
6736 /* WaDisableBackToBackFlipFix:ivb */
6737 I915_WRITE(IVB_CHICKEN3,
6738 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6739 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6740
6741 /* WaDisablePSDDualDispatchEnable:ivb */
6742 if (IS_IVB_GT1(dev))
6743 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6744 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6745
6746 /* WaDisable_RenderCache_OperationalFlush:ivb */
6747 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6748
6749 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6750 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6751 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6752
6753 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6754 I915_WRITE(GEN7_L3CNTLREG1,
6755 GEN7_WA_FOR_GEN7_L3_CONTROL);
6756 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6757 GEN7_WA_L3_CHICKEN_MODE);
6758 if (IS_IVB_GT1(dev))
6759 I915_WRITE(GEN7_ROW_CHICKEN2,
6760 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6761 else {
6762 /* must write both registers */
6763 I915_WRITE(GEN7_ROW_CHICKEN2,
6764 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6765 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6766 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6767 }
6768
6769 /* WaForceL3Serialization:ivb */
6770 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6771 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6772
6773 /*
6774 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6775 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6776 */
6777 I915_WRITE(GEN6_UCGCTL2,
6778 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6779
6780 /* This is required by WaCatErrorRejectionIssue:ivb */
6781 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6782 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6783 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6784
6785 g4x_disable_trickle_feed(dev);
6786
6787 gen7_setup_fixed_func_scheduler(dev_priv);
6788
6789 if (0) { /* causes HiZ corruption on ivb:gt1 */
6790 /* enable HiZ Raw Stall Optimization */
6791 I915_WRITE(CACHE_MODE_0_GEN7,
6792 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6793 }
6794
6795 /* WaDisable4x2SubspanOptimization:ivb */
6796 I915_WRITE(CACHE_MODE_1,
6797 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6798
6799 /*
6800 * BSpec recommends 8x4 when MSAA is used,
6801 * however in practice 16x4 seems fastest.
6802 *
6803 * Note that PS/WM thread counts depend on the WIZ hashing
6804 * disable bit, which we don't touch here, but it's good
6805 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6806 */
6807 I915_WRITE(GEN7_GT_MODE,
6808 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6809
6810 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6811 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6812 snpcr |= GEN6_MBC_SNPCR_MED;
6813 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6814
6815 if (!HAS_PCH_NOP(dev))
6816 cpt_init_clock_gating(dev);
6817
6818 gen6_check_mch_setup(dev);
6819}
6820
6821static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6822{
6823 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6824
6825 /*
6826 * Disable trickle feed and enable pnd deadline calculation
6827 */
6828 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6829 I915_WRITE(CBR1_VLV, 0);
6830}
6831
6832static void valleyview_init_clock_gating(struct drm_device *dev)
6833{
6834 struct drm_i915_private *dev_priv = dev->dev_private;
6835
6836 vlv_init_display_clock_gating(dev_priv);
6837
6838 /* WaDisableEarlyCull:vlv */
6839 I915_WRITE(_3D_CHICKEN3,
6840 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6841
6842 /* WaDisableBackToBackFlipFix:vlv */
6843 I915_WRITE(IVB_CHICKEN3,
6844 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6845 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6846
6847 /* WaPsdDispatchEnable:vlv */
6848 /* WaDisablePSDDualDispatchEnable:vlv */
6849 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6850 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6851 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6852
6853 /* WaDisable_RenderCache_OperationalFlush:vlv */
6854 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6855
6856 /* WaForceL3Serialization:vlv */
6857 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6858 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6859
6860 /* WaDisableDopClockGating:vlv */
6861 I915_WRITE(GEN7_ROW_CHICKEN2,
6862 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6863
6864 /* This is required by WaCatErrorRejectionIssue:vlv */
6865 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6866 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6867 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6868
6869 gen7_setup_fixed_func_scheduler(dev_priv);
6870
6871 /*
6872 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6873 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6874 */
6875 I915_WRITE(GEN6_UCGCTL2,
6876 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6877
6878 /* WaDisableL3Bank2xClockGate:vlv
6879 * Disabling L3 clock gating- MMIO 940c[25] = 1
6880 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6881 I915_WRITE(GEN7_UCGCTL4,
6882 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6883
6884 /*
6885 * BSpec says this must be set, even though
6886 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6887 */
6888 I915_WRITE(CACHE_MODE_1,
6889 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6890
6891 /*
6892 * BSpec recommends 8x4 when MSAA is used,
6893 * however in practice 16x4 seems fastest.
6894 *
6895 * Note that PS/WM thread counts depend on the WIZ hashing
6896 * disable bit, which we don't touch here, but it's good
6897 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6898 */
6899 I915_WRITE(GEN7_GT_MODE,
6900 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6901
6902 /*
6903 * WaIncreaseL3CreditsForVLVB0:vlv
6904 * This is the hardware default actually.
6905 */
6906 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6907
6908 /*
6909 * WaDisableVLVClockGating_VBIIssue:vlv
6910 * Disable clock gating on th GCFG unit to prevent a delay
6911 * in the reporting of vblank events.
6912 */
6913 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6914}
6915
6916static void cherryview_init_clock_gating(struct drm_device *dev)
6917{
6918 struct drm_i915_private *dev_priv = dev->dev_private;
6919
6920 vlv_init_display_clock_gating(dev_priv);
6921
6922 /* WaVSRefCountFullforceMissDisable:chv */
6923 /* WaDSRefCountFullforceMissDisable:chv */
6924 I915_WRITE(GEN7_FF_THREAD_MODE,
6925 I915_READ(GEN7_FF_THREAD_MODE) &
6926 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6927
6928 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6929 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6930 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6931
6932 /* WaDisableCSUnitClockGating:chv */
6933 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6934 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6935
6936 /* WaDisableSDEUnitClockGating:chv */
6937 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6938 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6939
6940 /*
6941 * GTT cache may not work with big pages, so if those
6942 * are ever enabled GTT cache may need to be disabled.
6943 */
6944 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6945}
6946
6947static void g4x_init_clock_gating(struct drm_device *dev)
6948{
6949 struct drm_i915_private *dev_priv = dev->dev_private;
6950 uint32_t dspclk_gate;
6951
6952 I915_WRITE(RENCLK_GATE_D1, 0);
6953 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6954 GS_UNIT_CLOCK_GATE_DISABLE |
6955 CL_UNIT_CLOCK_GATE_DISABLE);
6956 I915_WRITE(RAMCLK_GATE_D, 0);
6957 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6958 OVRUNIT_CLOCK_GATE_DISABLE |
6959 OVCUNIT_CLOCK_GATE_DISABLE;
6960 if (IS_GM45(dev))
6961 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6962 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6963
6964 /* WaDisableRenderCachePipelinedFlush */
6965 I915_WRITE(CACHE_MODE_0,
6966 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6967
6968 /* WaDisable_RenderCache_OperationalFlush:g4x */
6969 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6970
6971 g4x_disable_trickle_feed(dev);
6972}
6973
6974static void crestline_init_clock_gating(struct drm_device *dev)
6975{
6976 struct drm_i915_private *dev_priv = dev->dev_private;
6977
6978 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6979 I915_WRITE(RENCLK_GATE_D2, 0);
6980 I915_WRITE(DSPCLK_GATE_D, 0);
6981 I915_WRITE(RAMCLK_GATE_D, 0);
6982 I915_WRITE16(DEUC, 0);
6983 I915_WRITE(MI_ARB_STATE,
6984 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6985
6986 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6987 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6988}
6989
6990static void broadwater_init_clock_gating(struct drm_device *dev)
6991{
6992 struct drm_i915_private *dev_priv = dev->dev_private;
6993
6994 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6995 I965_RCC_CLOCK_GATE_DISABLE |
6996 I965_RCPB_CLOCK_GATE_DISABLE |
6997 I965_ISC_CLOCK_GATE_DISABLE |
6998 I965_FBC_CLOCK_GATE_DISABLE);
6999 I915_WRITE(RENCLK_GATE_D2, 0);
7000 I915_WRITE(MI_ARB_STATE,
7001 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7002
7003 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7004 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7005}
7006
7007static void gen3_init_clock_gating(struct drm_device *dev)
7008{
7009 struct drm_i915_private *dev_priv = dev->dev_private;
7010 u32 dstate = I915_READ(D_STATE);
7011
7012 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7013 DSTATE_DOT_CLOCK_GATING;
7014 I915_WRITE(D_STATE, dstate);
7015
7016 if (IS_PINEVIEW(dev))
7017 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7018
7019 /* IIR "flip pending" means done if this bit is set */
7020 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7021
7022 /* interrupts should cause a wake up from C3 */
7023 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7024
7025 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7026 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7027
7028 I915_WRITE(MI_ARB_STATE,
7029 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7030}
7031
7032static void i85x_init_clock_gating(struct drm_device *dev)
7033{
7034 struct drm_i915_private *dev_priv = dev->dev_private;
7035
7036 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7037
7038 /* interrupts should cause a wake up from C3 */
7039 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7040 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7041
7042 I915_WRITE(MEM_MODE,
7043 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7044}
7045
7046static void i830_init_clock_gating(struct drm_device *dev)
7047{
7048 struct drm_i915_private *dev_priv = dev->dev_private;
7049
7050 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7051
7052 I915_WRITE(MEM_MODE,
7053 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7054 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7055}
7056
7057void intel_init_clock_gating(struct drm_device *dev)
7058{
7059 struct drm_i915_private *dev_priv = dev->dev_private;
7060
7061 if (dev_priv->display.init_clock_gating)
7062 dev_priv->display.init_clock_gating(dev);
7063}
7064
7065void intel_suspend_hw(struct drm_device *dev)
7066{
7067 if (HAS_PCH_LPT(dev))
7068 lpt_suspend_hw(dev);
7069}
7070
7071/* Set up chip specific power management-related functions */
7072void intel_init_pm(struct drm_device *dev)
7073{
7074 struct drm_i915_private *dev_priv = dev->dev_private;
7075
7076 intel_fbc_init(dev_priv);
7077
7078 /* For cxsr */
7079 if (IS_PINEVIEW(dev))
7080 i915_pineview_get_mem_freq(dev);
7081 else if (IS_GEN5(dev))
7082 i915_ironlake_get_mem_freq(dev);
7083
7084 /* For FIFO watermark updates */
7085 if (INTEL_INFO(dev)->gen >= 9) {
7086 skl_setup_wm_latency(dev);
7087
7088 if (IS_BROXTON(dev))
7089 dev_priv->display.init_clock_gating =
7090 bxt_init_clock_gating;
7091 dev_priv->display.update_wm = skl_update_wm;
7092 } else if (HAS_PCH_SPLIT(dev)) {
7093 ilk_setup_wm_latency(dev);
7094
7095 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7096 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7097 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7098 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7099 dev_priv->display.update_wm = ilk_update_wm;
7100 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7101 dev_priv->display.program_watermarks = ilk_program_watermarks;
7102 } else {
7103 DRM_DEBUG_KMS("Failed to read display plane latency. "
7104 "Disable CxSR\n");
7105 }
7106
7107 if (IS_GEN5(dev))
7108 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7109 else if (IS_GEN6(dev))
7110 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7111 else if (IS_IVYBRIDGE(dev))
7112 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7113 else if (IS_HASWELL(dev))
7114 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7115 else if (INTEL_INFO(dev)->gen == 8)
7116 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7117 } else if (IS_CHERRYVIEW(dev)) {
7118 vlv_setup_wm_latency(dev);
7119
7120 dev_priv->display.update_wm = vlv_update_wm;
7121 dev_priv->display.init_clock_gating =
7122 cherryview_init_clock_gating;
7123 } else if (IS_VALLEYVIEW(dev)) {
7124 vlv_setup_wm_latency(dev);
7125
7126 dev_priv->display.update_wm = vlv_update_wm;
7127 dev_priv->display.init_clock_gating =
7128 valleyview_init_clock_gating;
7129 } else if (IS_PINEVIEW(dev)) {
7130 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7131 dev_priv->is_ddr3,
7132 dev_priv->fsb_freq,
7133 dev_priv->mem_freq)) {
7134 DRM_INFO("failed to find known CxSR latency "
7135 "(found ddr%s fsb freq %d, mem freq %d), "
7136 "disabling CxSR\n",
7137 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7138 dev_priv->fsb_freq, dev_priv->mem_freq);
7139 /* Disable CxSR and never update its watermark again */
7140 intel_set_memory_cxsr(dev_priv, false);
7141 dev_priv->display.update_wm = NULL;
7142 } else
7143 dev_priv->display.update_wm = pineview_update_wm;
7144 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7145 } else if (IS_G4X(dev)) {
7146 dev_priv->display.update_wm = g4x_update_wm;
7147 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7148 } else if (IS_GEN4(dev)) {
7149 dev_priv->display.update_wm = i965_update_wm;
7150 if (IS_CRESTLINE(dev))
7151 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7152 else if (IS_BROADWATER(dev))
7153 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7154 } else if (IS_GEN3(dev)) {
7155 dev_priv->display.update_wm = i9xx_update_wm;
7156 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7157 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7158 } else if (IS_GEN2(dev)) {
7159 if (INTEL_INFO(dev)->num_pipes == 1) {
7160 dev_priv->display.update_wm = i845_update_wm;
7161 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7162 } else {
7163 dev_priv->display.update_wm = i9xx_update_wm;
7164 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7165 }
7166
7167 if (IS_I85X(dev) || IS_I865G(dev))
7168 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7169 else
7170 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7171 } else {
7172 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7173 }
7174}
7175
7176int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7177{
7178 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7179
7180 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7181 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7182 return -EAGAIN;
7183 }
7184
7185 I915_WRITE(GEN6_PCODE_DATA, *val);
7186 I915_WRITE(GEN6_PCODE_DATA1, 0);
7187 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7188
7189 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7190 500)) {
7191 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7192 return -ETIMEDOUT;
7193 }
7194
7195 *val = I915_READ(GEN6_PCODE_DATA);
7196 I915_WRITE(GEN6_PCODE_DATA, 0);
7197
7198 return 0;
7199}
7200
7201int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7202{
7203 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7204
7205 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7206 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7207 return -EAGAIN;
7208 }
7209
7210 I915_WRITE(GEN6_PCODE_DATA, val);
7211 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7212
7213 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7214 500)) {
7215 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7216 return -ETIMEDOUT;
7217 }
7218
7219 I915_WRITE(GEN6_PCODE_DATA, 0);
7220
7221 return 0;
7222}
7223
7224static int vlv_gpu_freq_div(unsigned int czclk_freq)
7225{
7226 switch (czclk_freq) {
7227 case 200:
7228 return 10;
7229 case 267:
7230 return 12;
7231 case 320:
7232 case 333:
7233 return 16;
7234 case 400:
7235 return 20;
7236 default:
7237 return -1;
7238 }
7239}
7240
7241static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7242{
7243 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7244
7245 div = vlv_gpu_freq_div(czclk_freq);
7246 if (div < 0)
7247 return div;
7248
7249 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7250}
7251
7252static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7253{
7254 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7255
7256 mul = vlv_gpu_freq_div(czclk_freq);
7257 if (mul < 0)
7258 return mul;
7259
7260 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7261}
7262
7263static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7264{
7265 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7266
7267 div = vlv_gpu_freq_div(czclk_freq);
7268 if (div < 0)
7269 return div;
7270 div /= 2;
7271
7272 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7273}
7274
7275static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7276{
7277 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7278
7279 mul = vlv_gpu_freq_div(czclk_freq);
7280 if (mul < 0)
7281 return mul;
7282 mul /= 2;
7283
7284 /* CHV needs even values */
7285 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7286}
7287
7288int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7289{
7290 if (IS_GEN9(dev_priv->dev))
7291 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7292 GEN9_FREQ_SCALER);
7293 else if (IS_CHERRYVIEW(dev_priv->dev))
7294 return chv_gpu_freq(dev_priv, val);
7295 else if (IS_VALLEYVIEW(dev_priv->dev))
7296 return byt_gpu_freq(dev_priv, val);
7297 else
7298 return val * GT_FREQUENCY_MULTIPLIER;
7299}
7300
7301int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7302{
7303 if (IS_GEN9(dev_priv->dev))
7304 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7305 GT_FREQUENCY_MULTIPLIER);
7306 else if (IS_CHERRYVIEW(dev_priv->dev))
7307 return chv_freq_opcode(dev_priv, val);
7308 else if (IS_VALLEYVIEW(dev_priv->dev))
7309 return byt_freq_opcode(dev_priv, val);
7310 else
7311 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7312}
7313
7314struct request_boost {
7315 struct work_struct work;
7316 struct drm_i915_gem_request *req;
7317};
7318
7319static void __intel_rps_boost_work(struct work_struct *work)
7320{
7321 struct request_boost *boost = container_of(work, struct request_boost, work);
7322 struct drm_i915_gem_request *req = boost->req;
7323
7324 if (!i915_gem_request_completed(req, true))
7325 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7326 req->emitted_jiffies);
7327
7328 i915_gem_request_unreference__unlocked(req);
7329 kfree(boost);
7330}
7331
7332void intel_queue_rps_boost_for_request(struct drm_device *dev,
7333 struct drm_i915_gem_request *req)
7334{
7335 struct request_boost *boost;
7336
7337 if (req == NULL || INTEL_INFO(dev)->gen < 6)
7338 return;
7339
7340 if (i915_gem_request_completed(req, true))
7341 return;
7342
7343 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7344 if (boost == NULL)
7345 return;
7346
7347 i915_gem_request_reference(req);
7348 boost->req = req;
7349
7350 INIT_WORK(&boost->work, __intel_rps_boost_work);
7351 queue_work(to_i915(dev)->wq, &boost->work);
7352}
7353
7354void intel_pm_setup(struct drm_device *dev)
7355{
7356 struct drm_i915_private *dev_priv = dev->dev_private;
7357
7358 mutex_init(&dev_priv->rps.hw_lock);
7359 spin_lock_init(&dev_priv->rps.client_lock);
7360
7361 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7362 intel_gen6_powersave_work);
7363 INIT_LIST_HEAD(&dev_priv->rps.clients);
7364 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7365 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7366
7367 dev_priv->pm.suspended = false;
7368 atomic_set(&dev_priv->pm.wakeref_count, 0);
7369 atomic_set(&dev_priv->pm.atomic_seq, 0);
7370}
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28#include "display/intel_de.h"
29#include "display/intel_display_trace.h"
30#include "display/skl_watermark.h"
31
32#include "gt/intel_engine_regs.h"
33#include "gt/intel_gt.h"
34#include "gt/intel_gt_mcr.h"
35#include "gt/intel_gt_regs.h"
36
37#include "i915_drv.h"
38#include "intel_mchbar_regs.h"
39#include "intel_pm.h"
40#include "vlv_sideband.h"
41
42struct drm_i915_clock_gating_funcs {
43 void (*init_clock_gating)(struct drm_i915_private *i915);
44};
45
46/* used in computing the new watermarks state */
47struct intel_wm_config {
48 unsigned int num_pipes_active;
49 bool sprites_enabled;
50 bool sprites_scaled;
51};
52
53static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
54{
55 if (HAS_LLC(dev_priv)) {
56 /*
57 * WaCompressedResourceDisplayNewHashMode:skl,kbl
58 * Display WA #0390: skl,kbl
59 *
60 * Must match Sampler, Pixel Back End, and Media. See
61 * WaCompressedResourceSamplerPbeMediaNewHashMode.
62 */
63 intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PAR1_1, 0, SKL_DE_COMPRESSED_HASH_MODE);
64 }
65
66 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
67 intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PAR1_1, 0, SKL_EDP_PSR_FIX_RDWRAP);
68
69 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
70 intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1, 0, MASK_WAKEMEM);
71
72 /*
73 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
74 * Display WA #0859: skl,bxt,kbl,glk,cfl
75 */
76 intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, 0, DISP_FBC_MEMORY_WAKE);
77}
78
79static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
80{
81 gen9_init_clock_gating(dev_priv);
82
83 /* WaDisableSDEUnitClockGating:bxt */
84 intel_uncore_rmw(&dev_priv->uncore, GEN8_UCGCTL6, 0, GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
85
86 /*
87 * FIXME:
88 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
89 */
90 intel_uncore_rmw(&dev_priv->uncore, GEN8_UCGCTL6, 0, GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
91
92 /*
93 * Wa: Backlight PWM may stop in the asserted state, causing backlight
94 * to stay fully on.
95 */
96 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
97 PWM1_GATING_DIS | PWM2_GATING_DIS);
98
99 /*
100 * Lower the display internal timeout.
101 * This is needed to avoid any hard hangs when DSI port PLL
102 * is off and a MMIO access is attempted by any privilege
103 * application, using batch buffers or any other means.
104 */
105 intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
106
107 /*
108 * WaFbcTurnOffFbcWatermark:bxt
109 * Display WA #0562: bxt
110 */
111 intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, 0, DISP_FBC_WM_DIS);
112
113 /*
114 * WaFbcHighMemBwCorruptionAvoidance:bxt
115 * Display WA #0883: bxt
116 */
117 intel_uncore_rmw(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A), 0, DPFC_DISABLE_DUMMY0);
118}
119
120static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
121{
122 gen9_init_clock_gating(dev_priv);
123
124 /*
125 * WaDisablePWMClockGating:glk
126 * Backlight PWM may stop in the asserted state, causing backlight
127 * to stay fully on.
128 */
129 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
130 PWM1_GATING_DIS | PWM2_GATING_DIS);
131}
132
133static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
134{
135 u32 tmp;
136
137 tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
138
139 switch (tmp & CLKCFG_FSB_MASK) {
140 case CLKCFG_FSB_533:
141 dev_priv->fsb_freq = 533; /* 133*4 */
142 break;
143 case CLKCFG_FSB_800:
144 dev_priv->fsb_freq = 800; /* 200*4 */
145 break;
146 case CLKCFG_FSB_667:
147 dev_priv->fsb_freq = 667; /* 167*4 */
148 break;
149 case CLKCFG_FSB_400:
150 dev_priv->fsb_freq = 400; /* 100*4 */
151 break;
152 }
153
154 switch (tmp & CLKCFG_MEM_MASK) {
155 case CLKCFG_MEM_533:
156 dev_priv->mem_freq = 533;
157 break;
158 case CLKCFG_MEM_667:
159 dev_priv->mem_freq = 667;
160 break;
161 case CLKCFG_MEM_800:
162 dev_priv->mem_freq = 800;
163 break;
164 }
165
166 /* detect pineview DDR3 setting */
167 tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
168 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
169}
170
171static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
172{
173 u16 ddrpll, csipll;
174
175 ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
176 csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
177
178 switch (ddrpll & 0xff) {
179 case 0xc:
180 dev_priv->mem_freq = 800;
181 break;
182 case 0x10:
183 dev_priv->mem_freq = 1066;
184 break;
185 case 0x14:
186 dev_priv->mem_freq = 1333;
187 break;
188 case 0x18:
189 dev_priv->mem_freq = 1600;
190 break;
191 default:
192 drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
193 ddrpll & 0xff);
194 dev_priv->mem_freq = 0;
195 break;
196 }
197
198 switch (csipll & 0x3ff) {
199 case 0x00c:
200 dev_priv->fsb_freq = 3200;
201 break;
202 case 0x00e:
203 dev_priv->fsb_freq = 3733;
204 break;
205 case 0x010:
206 dev_priv->fsb_freq = 4266;
207 break;
208 case 0x012:
209 dev_priv->fsb_freq = 4800;
210 break;
211 case 0x014:
212 dev_priv->fsb_freq = 5333;
213 break;
214 case 0x016:
215 dev_priv->fsb_freq = 5866;
216 break;
217 case 0x018:
218 dev_priv->fsb_freq = 6400;
219 break;
220 default:
221 drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
222 csipll & 0x3ff);
223 dev_priv->fsb_freq = 0;
224 break;
225 }
226}
227
228static const struct cxsr_latency cxsr_latency_table[] = {
229 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
230 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
231 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
232 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
233 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
234
235 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
236 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
237 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
238 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
239 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
240
241 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
242 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
243 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
244 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
245 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
246
247 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
248 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
249 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
250 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
251 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
252
253 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
254 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
255 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
256 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
257 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
258
259 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
260 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
261 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
262 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
263 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
264};
265
266static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
267 bool is_ddr3,
268 int fsb,
269 int mem)
270{
271 const struct cxsr_latency *latency;
272 int i;
273
274 if (fsb == 0 || mem == 0)
275 return NULL;
276
277 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
278 latency = &cxsr_latency_table[i];
279 if (is_desktop == latency->is_desktop &&
280 is_ddr3 == latency->is_ddr3 &&
281 fsb == latency->fsb_freq && mem == latency->mem_freq)
282 return latency;
283 }
284
285 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
286
287 return NULL;
288}
289
290static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
291{
292 u32 val;
293
294 vlv_punit_get(dev_priv);
295
296 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
297 if (enable)
298 val &= ~FORCE_DDR_HIGH_FREQ;
299 else
300 val |= FORCE_DDR_HIGH_FREQ;
301 val &= ~FORCE_DDR_LOW_FREQ;
302 val |= FORCE_DDR_FREQ_REQ_ACK;
303 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
304
305 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
306 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
307 drm_err(&dev_priv->drm,
308 "timed out waiting for Punit DDR DVFS request\n");
309
310 vlv_punit_put(dev_priv);
311}
312
313static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
314{
315 u32 val;
316
317 vlv_punit_get(dev_priv);
318
319 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
320 if (enable)
321 val |= DSP_MAXFIFO_PM5_ENABLE;
322 else
323 val &= ~DSP_MAXFIFO_PM5_ENABLE;
324 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
325
326 vlv_punit_put(dev_priv);
327}
328
329#define FW_WM(value, plane) \
330 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
331
332static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
333{
334 bool was_enabled;
335 u32 val;
336
337 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
338 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
339 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
340 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
341 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
342 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
343 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
344 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
345 } else if (IS_PINEVIEW(dev_priv)) {
346 val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
347 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
348 if (enable)
349 val |= PINEVIEW_SELF_REFRESH_EN;
350 else
351 val &= ~PINEVIEW_SELF_REFRESH_EN;
352 intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
353 intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
354 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
355 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
356 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
357 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
358 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
359 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
360 } else if (IS_I915GM(dev_priv)) {
361 /*
362 * FIXME can't find a bit like this for 915G, and
363 * and yet it does have the related watermark in
364 * FW_BLC_SELF. What's going on?
365 */
366 was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
367 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
368 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
369 intel_uncore_write(&dev_priv->uncore, INSTPM, val);
370 intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
371 } else {
372 return false;
373 }
374
375 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
376
377 drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
378 str_enabled_disabled(enable),
379 str_enabled_disabled(was_enabled));
380
381 return was_enabled;
382}
383
384/**
385 * intel_set_memory_cxsr - Configure CxSR state
386 * @dev_priv: i915 device
387 * @enable: Allow vs. disallow CxSR
388 *
389 * Allow or disallow the system to enter a special CxSR
390 * (C-state self refresh) state. What typically happens in CxSR mode
391 * is that several display FIFOs may get combined into a single larger
392 * FIFO for a particular plane (so called max FIFO mode) to allow the
393 * system to defer memory fetches longer, and the memory will enter
394 * self refresh.
395 *
396 * Note that enabling CxSR does not guarantee that the system enter
397 * this special mode, nor does it guarantee that the system stays
398 * in that mode once entered. So this just allows/disallows the system
399 * to autonomously utilize the CxSR mode. Other factors such as core
400 * C-states will affect when/if the system actually enters/exits the
401 * CxSR mode.
402 *
403 * Note that on VLV/CHV this actually only controls the max FIFO mode,
404 * and the system is free to enter/exit memory self refresh at any time
405 * even when the use of CxSR has been disallowed.
406 *
407 * While the system is actually in the CxSR/max FIFO mode, some plane
408 * control registers will not get latched on vblank. Thus in order to
409 * guarantee the system will respond to changes in the plane registers
410 * we must always disallow CxSR prior to making changes to those registers.
411 * Unfortunately the system will re-evaluate the CxSR conditions at
412 * frame start which happens after vblank start (which is when the plane
413 * registers would get latched), so we can't proceed with the plane update
414 * during the same frame where we disallowed CxSR.
415 *
416 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
417 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
418 * the hardware w.r.t. HPLL SR when writing to plane registers.
419 * Disallowing just CxSR is sufficient.
420 */
421bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
422{
423 bool ret;
424
425 mutex_lock(&dev_priv->display.wm.wm_mutex);
426 ret = _intel_set_memory_cxsr(dev_priv, enable);
427 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
428 dev_priv->display.wm.vlv.cxsr = enable;
429 else if (IS_G4X(dev_priv))
430 dev_priv->display.wm.g4x.cxsr = enable;
431 mutex_unlock(&dev_priv->display.wm.wm_mutex);
432
433 return ret;
434}
435
436/*
437 * Latency for FIFO fetches is dependent on several factors:
438 * - memory configuration (speed, channels)
439 * - chipset
440 * - current MCH state
441 * It can be fairly high in some situations, so here we assume a fairly
442 * pessimal value. It's a tradeoff between extra memory fetches (if we
443 * set this value too high, the FIFO will fetch frequently to stay full)
444 * and power consumption (set it too low to save power and we might see
445 * FIFO underruns and display "flicker").
446 *
447 * A value of 5us seems to be a good balance; safe for very low end
448 * platforms but not overly aggressive on lower latency configs.
449 */
450static const int pessimal_latency_ns = 5000;
451
452#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
453 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
454
455static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
456{
457 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
458 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
459 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
460 enum pipe pipe = crtc->pipe;
461 int sprite0_start, sprite1_start;
462 u32 dsparb, dsparb2, dsparb3;
463
464 switch (pipe) {
465 case PIPE_A:
466 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
467 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
468 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
469 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
470 break;
471 case PIPE_B:
472 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
473 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
474 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
475 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
476 break;
477 case PIPE_C:
478 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
479 dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
480 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
481 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
482 break;
483 default:
484 MISSING_CASE(pipe);
485 return;
486 }
487
488 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
489 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
490 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
491 fifo_state->plane[PLANE_CURSOR] = 63;
492}
493
494static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
495 enum i9xx_plane_id i9xx_plane)
496{
497 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
498 int size;
499
500 size = dsparb & 0x7f;
501 if (i9xx_plane == PLANE_B)
502 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
503
504 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
505 dsparb, plane_name(i9xx_plane), size);
506
507 return size;
508}
509
510static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
511 enum i9xx_plane_id i9xx_plane)
512{
513 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
514 int size;
515
516 size = dsparb & 0x1ff;
517 if (i9xx_plane == PLANE_B)
518 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
519 size >>= 1; /* Convert to cachelines */
520
521 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
522 dsparb, plane_name(i9xx_plane), size);
523
524 return size;
525}
526
527static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
528 enum i9xx_plane_id i9xx_plane)
529{
530 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
531 int size;
532
533 size = dsparb & 0x7f;
534 size >>= 2; /* Convert to cachelines */
535
536 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
537 dsparb, plane_name(i9xx_plane), size);
538
539 return size;
540}
541
542/* Pineview has different values for various configs */
543static const struct intel_watermark_params pnv_display_wm = {
544 .fifo_size = PINEVIEW_DISPLAY_FIFO,
545 .max_wm = PINEVIEW_MAX_WM,
546 .default_wm = PINEVIEW_DFT_WM,
547 .guard_size = PINEVIEW_GUARD_WM,
548 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
549};
550
551static const struct intel_watermark_params pnv_display_hplloff_wm = {
552 .fifo_size = PINEVIEW_DISPLAY_FIFO,
553 .max_wm = PINEVIEW_MAX_WM,
554 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
555 .guard_size = PINEVIEW_GUARD_WM,
556 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
557};
558
559static const struct intel_watermark_params pnv_cursor_wm = {
560 .fifo_size = PINEVIEW_CURSOR_FIFO,
561 .max_wm = PINEVIEW_CURSOR_MAX_WM,
562 .default_wm = PINEVIEW_CURSOR_DFT_WM,
563 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
564 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
565};
566
567static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
568 .fifo_size = PINEVIEW_CURSOR_FIFO,
569 .max_wm = PINEVIEW_CURSOR_MAX_WM,
570 .default_wm = PINEVIEW_CURSOR_DFT_WM,
571 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
572 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573};
574
575static const struct intel_watermark_params i965_cursor_wm_info = {
576 .fifo_size = I965_CURSOR_FIFO,
577 .max_wm = I965_CURSOR_MAX_WM,
578 .default_wm = I965_CURSOR_DFT_WM,
579 .guard_size = 2,
580 .cacheline_size = I915_FIFO_LINE_SIZE,
581};
582
583static const struct intel_watermark_params i945_wm_info = {
584 .fifo_size = I945_FIFO_SIZE,
585 .max_wm = I915_MAX_WM,
586 .default_wm = 1,
587 .guard_size = 2,
588 .cacheline_size = I915_FIFO_LINE_SIZE,
589};
590
591static const struct intel_watermark_params i915_wm_info = {
592 .fifo_size = I915_FIFO_SIZE,
593 .max_wm = I915_MAX_WM,
594 .default_wm = 1,
595 .guard_size = 2,
596 .cacheline_size = I915_FIFO_LINE_SIZE,
597};
598
599static const struct intel_watermark_params i830_a_wm_info = {
600 .fifo_size = I855GM_FIFO_SIZE,
601 .max_wm = I915_MAX_WM,
602 .default_wm = 1,
603 .guard_size = 2,
604 .cacheline_size = I830_FIFO_LINE_SIZE,
605};
606
607static const struct intel_watermark_params i830_bc_wm_info = {
608 .fifo_size = I855GM_FIFO_SIZE,
609 .max_wm = I915_MAX_WM/2,
610 .default_wm = 1,
611 .guard_size = 2,
612 .cacheline_size = I830_FIFO_LINE_SIZE,
613};
614
615static const struct intel_watermark_params i845_wm_info = {
616 .fifo_size = I830_FIFO_SIZE,
617 .max_wm = I915_MAX_WM,
618 .default_wm = 1,
619 .guard_size = 2,
620 .cacheline_size = I830_FIFO_LINE_SIZE,
621};
622
623/**
624 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
625 * @pixel_rate: Pipe pixel rate in kHz
626 * @cpp: Plane bytes per pixel
627 * @latency: Memory wakeup latency in 0.1us units
628 *
629 * Compute the watermark using the method 1 or "small buffer"
630 * formula. The caller may additonally add extra cachelines
631 * to account for TLB misses and clock crossings.
632 *
633 * This method is concerned with the short term drain rate
634 * of the FIFO, ie. it does not account for blanking periods
635 * which would effectively reduce the average drain rate across
636 * a longer period. The name "small" refers to the fact the
637 * FIFO is relatively small compared to the amount of data
638 * fetched.
639 *
640 * The FIFO level vs. time graph might look something like:
641 *
642 * |\ |\
643 * | \ | \
644 * __---__---__ (- plane active, _ blanking)
645 * -> time
646 *
647 * or perhaps like this:
648 *
649 * |\|\ |\|\
650 * __----__----__ (- plane active, _ blanking)
651 * -> time
652 *
653 * Returns:
654 * The watermark in bytes
655 */
656static unsigned int intel_wm_method1(unsigned int pixel_rate,
657 unsigned int cpp,
658 unsigned int latency)
659{
660 u64 ret;
661
662 ret = mul_u32_u32(pixel_rate, cpp * latency);
663 ret = DIV_ROUND_UP_ULL(ret, 10000);
664
665 return ret;
666}
667
668/**
669 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
670 * @pixel_rate: Pipe pixel rate in kHz
671 * @htotal: Pipe horizontal total
672 * @width: Plane width in pixels
673 * @cpp: Plane bytes per pixel
674 * @latency: Memory wakeup latency in 0.1us units
675 *
676 * Compute the watermark using the method 2 or "large buffer"
677 * formula. The caller may additonally add extra cachelines
678 * to account for TLB misses and clock crossings.
679 *
680 * This method is concerned with the long term drain rate
681 * of the FIFO, ie. it does account for blanking periods
682 * which effectively reduce the average drain rate across
683 * a longer period. The name "large" refers to the fact the
684 * FIFO is relatively large compared to the amount of data
685 * fetched.
686 *
687 * The FIFO level vs. time graph might look something like:
688 *
689 * |\___ |\___
690 * | \___ | \___
691 * | \ | \
692 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
693 * -> time
694 *
695 * Returns:
696 * The watermark in bytes
697 */
698static unsigned int intel_wm_method2(unsigned int pixel_rate,
699 unsigned int htotal,
700 unsigned int width,
701 unsigned int cpp,
702 unsigned int latency)
703{
704 unsigned int ret;
705
706 /*
707 * FIXME remove once all users are computing
708 * watermarks in the correct place.
709 */
710 if (WARN_ON_ONCE(htotal == 0))
711 htotal = 1;
712
713 ret = (latency * pixel_rate) / (htotal * 10000);
714 ret = (ret + 1) * width * cpp;
715
716 return ret;
717}
718
719/**
720 * intel_calculate_wm - calculate watermark level
721 * @pixel_rate: pixel clock
722 * @wm: chip FIFO params
723 * @fifo_size: size of the FIFO buffer
724 * @cpp: bytes per pixel
725 * @latency_ns: memory latency for the platform
726 *
727 * Calculate the watermark level (the level at which the display plane will
728 * start fetching from memory again). Each chip has a different display
729 * FIFO size and allocation, so the caller needs to figure that out and pass
730 * in the correct intel_watermark_params structure.
731 *
732 * As the pixel clock runs, the FIFO will be drained at a rate that depends
733 * on the pixel size. When it reaches the watermark level, it'll start
734 * fetching FIFO line sized based chunks from memory until the FIFO fills
735 * past the watermark point. If the FIFO drains completely, a FIFO underrun
736 * will occur, and a display engine hang could result.
737 */
738static unsigned int intel_calculate_wm(int pixel_rate,
739 const struct intel_watermark_params *wm,
740 int fifo_size, int cpp,
741 unsigned int latency_ns)
742{
743 int entries, wm_size;
744
745 /*
746 * Note: we need to make sure we don't overflow for various clock &
747 * latency values.
748 * clocks go from a few thousand to several hundred thousand.
749 * latency is usually a few thousand
750 */
751 entries = intel_wm_method1(pixel_rate, cpp,
752 latency_ns / 100);
753 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
754 wm->guard_size;
755 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
756
757 wm_size = fifo_size - entries;
758 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
759
760 /* Don't promote wm_size to unsigned... */
761 if (wm_size > wm->max_wm)
762 wm_size = wm->max_wm;
763 if (wm_size <= 0)
764 wm_size = wm->default_wm;
765
766 /*
767 * Bspec seems to indicate that the value shouldn't be lower than
768 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
769 * Lets go for 8 which is the burst size since certain platforms
770 * already use a hardcoded 8 (which is what the spec says should be
771 * done).
772 */
773 if (wm_size <= 8)
774 wm_size = 8;
775
776 return wm_size;
777}
778
779static bool is_disabling(int old, int new, int threshold)
780{
781 return old >= threshold && new < threshold;
782}
783
784static bool is_enabling(int old, int new, int threshold)
785{
786 return old < threshold && new >= threshold;
787}
788
789static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
790{
791 return dev_priv->display.wm.max_level + 1;
792}
793
794bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
795 const struct intel_plane_state *plane_state)
796{
797 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
798
799 /* FIXME check the 'enable' instead */
800 if (!crtc_state->hw.active)
801 return false;
802
803 /*
804 * Treat cursor with fb as always visible since cursor updates
805 * can happen faster than the vrefresh rate, and the current
806 * watermark code doesn't handle that correctly. Cursor updates
807 * which set/clear the fb or change the cursor size are going
808 * to get throttled by intel_legacy_cursor_update() to work
809 * around this problem with the watermark code.
810 */
811 if (plane->id == PLANE_CURSOR)
812 return plane_state->hw.fb != NULL;
813 else
814 return plane_state->uapi.visible;
815}
816
817static bool intel_crtc_active(struct intel_crtc *crtc)
818{
819 /* Be paranoid as we can arrive here with only partial
820 * state retrieved from the hardware during setup.
821 *
822 * We can ditch the adjusted_mode.crtc_clock check as soon
823 * as Haswell has gained clock readout/fastboot support.
824 *
825 * We can ditch the crtc->primary->state->fb check as soon as we can
826 * properly reconstruct framebuffers.
827 *
828 * FIXME: The intel_crtc->active here should be switched to
829 * crtc->state->active once we have proper CRTC states wired up
830 * for atomic.
831 */
832 return crtc && crtc->active && crtc->base.primary->state->fb &&
833 crtc->config->hw.adjusted_mode.crtc_clock;
834}
835
836static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
837{
838 struct intel_crtc *crtc, *enabled = NULL;
839
840 for_each_intel_crtc(&dev_priv->drm, crtc) {
841 if (intel_crtc_active(crtc)) {
842 if (enabled)
843 return NULL;
844 enabled = crtc;
845 }
846 }
847
848 return enabled;
849}
850
851static void pnv_update_wm(struct drm_i915_private *dev_priv)
852{
853 struct intel_crtc *crtc;
854 const struct cxsr_latency *latency;
855 u32 reg;
856 unsigned int wm;
857
858 latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
859 dev_priv->is_ddr3,
860 dev_priv->fsb_freq,
861 dev_priv->mem_freq);
862 if (!latency) {
863 drm_dbg_kms(&dev_priv->drm,
864 "Unknown FSB/MEM found, disable CxSR\n");
865 intel_set_memory_cxsr(dev_priv, false);
866 return;
867 }
868
869 crtc = single_enabled_crtc(dev_priv);
870 if (crtc) {
871 const struct drm_framebuffer *fb =
872 crtc->base.primary->state->fb;
873 int pixel_rate = crtc->config->pixel_rate;
874 int cpp = fb->format->cpp[0];
875
876 /* Display SR */
877 wm = intel_calculate_wm(pixel_rate, &pnv_display_wm,
878 pnv_display_wm.fifo_size,
879 cpp, latency->display_sr);
880 reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
881 reg &= ~DSPFW_SR_MASK;
882 reg |= FW_WM(wm, SR);
883 intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
884 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
885
886 /* cursor SR */
887 wm = intel_calculate_wm(pixel_rate, &pnv_cursor_wm,
888 pnv_display_wm.fifo_size,
889 4, latency->cursor_sr);
890 intel_uncore_rmw(&dev_priv->uncore, DSPFW3, DSPFW_CURSOR_SR_MASK,
891 FW_WM(wm, CURSOR_SR));
892
893 /* Display HPLL off SR */
894 wm = intel_calculate_wm(pixel_rate, &pnv_display_hplloff_wm,
895 pnv_display_hplloff_wm.fifo_size,
896 cpp, latency->display_hpll_disable);
897 intel_uncore_rmw(&dev_priv->uncore, DSPFW3, DSPFW_HPLL_SR_MASK, FW_WM(wm, HPLL_SR));
898
899 /* cursor HPLL off SR */
900 wm = intel_calculate_wm(pixel_rate, &pnv_cursor_hplloff_wm,
901 pnv_display_hplloff_wm.fifo_size,
902 4, latency->cursor_hpll_disable);
903 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
904 reg &= ~DSPFW_HPLL_CURSOR_MASK;
905 reg |= FW_WM(wm, HPLL_CURSOR);
906 intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
907 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
908
909 intel_set_memory_cxsr(dev_priv, true);
910 } else {
911 intel_set_memory_cxsr(dev_priv, false);
912 }
913}
914
915/*
916 * Documentation says:
917 * "If the line size is small, the TLB fetches can get in the way of the
918 * data fetches, causing some lag in the pixel data return which is not
919 * accounted for in the above formulas. The following adjustment only
920 * needs to be applied if eight whole lines fit in the buffer at once.
921 * The WM is adjusted upwards by the difference between the FIFO size
922 * and the size of 8 whole lines. This adjustment is always performed
923 * in the actual pixel depth regardless of whether FBC is enabled or not."
924 */
925static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
926{
927 int tlb_miss = fifo_size * 64 - width * cpp * 8;
928
929 return max(0, tlb_miss);
930}
931
932static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
933 const struct g4x_wm_values *wm)
934{
935 enum pipe pipe;
936
937 for_each_pipe(dev_priv, pipe)
938 trace_g4x_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
939
940 intel_uncore_write(&dev_priv->uncore, DSPFW1,
941 FW_WM(wm->sr.plane, SR) |
942 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
943 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
944 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
945 intel_uncore_write(&dev_priv->uncore, DSPFW2,
946 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
947 FW_WM(wm->sr.fbc, FBC_SR) |
948 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
949 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
950 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
951 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
952 intel_uncore_write(&dev_priv->uncore, DSPFW3,
953 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
954 FW_WM(wm->sr.cursor, CURSOR_SR) |
955 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
956 FW_WM(wm->hpll.plane, HPLL_SR));
957
958 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
959}
960
961#define FW_WM_VLV(value, plane) \
962 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
963
964static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
965 const struct vlv_wm_values *wm)
966{
967 enum pipe pipe;
968
969 for_each_pipe(dev_priv, pipe) {
970 trace_vlv_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
971
972 intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
973 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
974 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
975 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
976 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
977 }
978
979 /*
980 * Zero the (unused) WM1 watermarks, and also clear all the
981 * high order bits so that there are no out of bounds values
982 * present in the registers during the reprogramming.
983 */
984 intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
985 intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
986 intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
987 intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
988 intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
989
990 intel_uncore_write(&dev_priv->uncore, DSPFW1,
991 FW_WM(wm->sr.plane, SR) |
992 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
993 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
994 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
995 intel_uncore_write(&dev_priv->uncore, DSPFW2,
996 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
997 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
998 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
999 intel_uncore_write(&dev_priv->uncore, DSPFW3,
1000 FW_WM(wm->sr.cursor, CURSOR_SR));
1001
1002 if (IS_CHERRYVIEW(dev_priv)) {
1003 intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
1004 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1005 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1006 intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
1007 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1008 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1009 intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
1010 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1011 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1012 intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1013 FW_WM(wm->sr.plane >> 9, SR_HI) |
1014 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1015 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1016 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1017 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1018 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1019 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1020 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1021 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1022 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1023 } else {
1024 intel_uncore_write(&dev_priv->uncore, DSPFW7,
1025 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1026 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1027 intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1028 FW_WM(wm->sr.plane >> 9, SR_HI) |
1029 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1030 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1031 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1032 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1033 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1034 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1035 }
1036
1037 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1038}
1039
1040#undef FW_WM_VLV
1041
1042static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1043{
1044 /* all latencies in usec */
1045 dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1046 dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1047 dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1048
1049 dev_priv->display.wm.max_level = G4X_WM_LEVEL_HPLL;
1050}
1051
1052static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1053{
1054 /*
1055 * DSPCNTR[13] supposedly controls whether the
1056 * primary plane can use the FIFO space otherwise
1057 * reserved for the sprite plane. It's not 100% clear
1058 * what the actual FIFO size is, but it looks like we
1059 * can happily set both primary and sprite watermarks
1060 * up to 127 cachelines. So that would seem to mean
1061 * that either DSPCNTR[13] doesn't do anything, or that
1062 * the total FIFO is >= 256 cachelines in size. Either
1063 * way, we don't seem to have to worry about this
1064 * repartitioning as the maximum watermark value the
1065 * register can hold for each plane is lower than the
1066 * minimum FIFO size.
1067 */
1068 switch (plane_id) {
1069 case PLANE_CURSOR:
1070 return 63;
1071 case PLANE_PRIMARY:
1072 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1073 case PLANE_SPRITE0:
1074 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1075 default:
1076 MISSING_CASE(plane_id);
1077 return 0;
1078 }
1079}
1080
1081static int g4x_fbc_fifo_size(int level)
1082{
1083 switch (level) {
1084 case G4X_WM_LEVEL_SR:
1085 return 7;
1086 case G4X_WM_LEVEL_HPLL:
1087 return 15;
1088 default:
1089 MISSING_CASE(level);
1090 return 0;
1091 }
1092}
1093
1094static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1095 const struct intel_plane_state *plane_state,
1096 int level)
1097{
1098 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1099 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1100 const struct drm_display_mode *pipe_mode =
1101 &crtc_state->hw.pipe_mode;
1102 unsigned int latency = dev_priv->display.wm.pri_latency[level] * 10;
1103 unsigned int pixel_rate, htotal, cpp, width, wm;
1104
1105 if (latency == 0)
1106 return USHRT_MAX;
1107
1108 if (!intel_wm_plane_visible(crtc_state, plane_state))
1109 return 0;
1110
1111 cpp = plane_state->hw.fb->format->cpp[0];
1112
1113 /*
1114 * WaUse32BppForSRWM:ctg,elk
1115 *
1116 * The spec fails to list this restriction for the
1117 * HPLL watermark, which seems a little strange.
1118 * Let's use 32bpp for the HPLL watermark as well.
1119 */
1120 if (plane->id == PLANE_PRIMARY &&
1121 level != G4X_WM_LEVEL_NORMAL)
1122 cpp = max(cpp, 4u);
1123
1124 pixel_rate = crtc_state->pixel_rate;
1125 htotal = pipe_mode->crtc_htotal;
1126 width = drm_rect_width(&plane_state->uapi.src) >> 16;
1127
1128 if (plane->id == PLANE_CURSOR) {
1129 wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
1130 } else if (plane->id == PLANE_PRIMARY &&
1131 level == G4X_WM_LEVEL_NORMAL) {
1132 wm = intel_wm_method1(pixel_rate, cpp, latency);
1133 } else {
1134 unsigned int small, large;
1135
1136 small = intel_wm_method1(pixel_rate, cpp, latency);
1137 large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
1138
1139 wm = min(small, large);
1140 }
1141
1142 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1143 width, cpp);
1144
1145 wm = DIV_ROUND_UP(wm, 64) + 2;
1146
1147 return min_t(unsigned int, wm, USHRT_MAX);
1148}
1149
1150static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1151 int level, enum plane_id plane_id, u16 value)
1152{
1153 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1154 bool dirty = false;
1155
1156 for (; level < intel_wm_num_levels(dev_priv); level++) {
1157 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1158
1159 dirty |= raw->plane[plane_id] != value;
1160 raw->plane[plane_id] = value;
1161 }
1162
1163 return dirty;
1164}
1165
1166static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1167 int level, u16 value)
1168{
1169 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1170 bool dirty = false;
1171
1172 /* NORMAL level doesn't have an FBC watermark */
1173 level = max(level, G4X_WM_LEVEL_SR);
1174
1175 for (; level < intel_wm_num_levels(dev_priv); level++) {
1176 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1177
1178 dirty |= raw->fbc != value;
1179 raw->fbc = value;
1180 }
1181
1182 return dirty;
1183}
1184
1185static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1186 const struct intel_plane_state *plane_state,
1187 u32 pri_val);
1188
1189static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1190 const struct intel_plane_state *plane_state)
1191{
1192 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1193 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1194 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1195 enum plane_id plane_id = plane->id;
1196 bool dirty = false;
1197 int level;
1198
1199 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1200 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1201 if (plane_id == PLANE_PRIMARY)
1202 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1203 goto out;
1204 }
1205
1206 for (level = 0; level < num_levels; level++) {
1207 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1208 int wm, max_wm;
1209
1210 wm = g4x_compute_wm(crtc_state, plane_state, level);
1211 max_wm = g4x_plane_fifo_size(plane_id, level);
1212
1213 if (wm > max_wm)
1214 break;
1215
1216 dirty |= raw->plane[plane_id] != wm;
1217 raw->plane[plane_id] = wm;
1218
1219 if (plane_id != PLANE_PRIMARY ||
1220 level == G4X_WM_LEVEL_NORMAL)
1221 continue;
1222
1223 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1224 raw->plane[plane_id]);
1225 max_wm = g4x_fbc_fifo_size(level);
1226
1227 /*
1228 * FBC wm is not mandatory as we
1229 * can always just disable its use.
1230 */
1231 if (wm > max_wm)
1232 wm = USHRT_MAX;
1233
1234 dirty |= raw->fbc != wm;
1235 raw->fbc = wm;
1236 }
1237
1238 /* mark watermarks as invalid */
1239 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1240
1241 if (plane_id == PLANE_PRIMARY)
1242 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1243
1244 out:
1245 if (dirty) {
1246 drm_dbg_kms(&dev_priv->drm,
1247 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1248 plane->base.name,
1249 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1250 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1251 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1252
1253 if (plane_id == PLANE_PRIMARY)
1254 drm_dbg_kms(&dev_priv->drm,
1255 "FBC watermarks: SR=%d, HPLL=%d\n",
1256 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1257 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1258 }
1259
1260 return dirty;
1261}
1262
1263static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1264 enum plane_id plane_id, int level)
1265{
1266 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1267
1268 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1269}
1270
1271static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1272 int level)
1273{
1274 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1275
1276 if (level > dev_priv->display.wm.max_level)
1277 return false;
1278
1279 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1280 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1281 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1282}
1283
1284/* mark all levels starting from 'level' as invalid */
1285static void g4x_invalidate_wms(struct intel_crtc *crtc,
1286 struct g4x_wm_state *wm_state, int level)
1287{
1288 if (level <= G4X_WM_LEVEL_NORMAL) {
1289 enum plane_id plane_id;
1290
1291 for_each_plane_id_on_crtc(crtc, plane_id)
1292 wm_state->wm.plane[plane_id] = USHRT_MAX;
1293 }
1294
1295 if (level <= G4X_WM_LEVEL_SR) {
1296 wm_state->cxsr = false;
1297 wm_state->sr.cursor = USHRT_MAX;
1298 wm_state->sr.plane = USHRT_MAX;
1299 wm_state->sr.fbc = USHRT_MAX;
1300 }
1301
1302 if (level <= G4X_WM_LEVEL_HPLL) {
1303 wm_state->hpll_en = false;
1304 wm_state->hpll.cursor = USHRT_MAX;
1305 wm_state->hpll.plane = USHRT_MAX;
1306 wm_state->hpll.fbc = USHRT_MAX;
1307 }
1308}
1309
1310static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1311 int level)
1312{
1313 if (level < G4X_WM_LEVEL_SR)
1314 return false;
1315
1316 if (level >= G4X_WM_LEVEL_SR &&
1317 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1318 return false;
1319
1320 if (level >= G4X_WM_LEVEL_HPLL &&
1321 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1322 return false;
1323
1324 return true;
1325}
1326
1327static int _g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1328{
1329 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1330 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1331 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1332 const struct g4x_pipe_wm *raw;
1333 enum plane_id plane_id;
1334 int level;
1335
1336 level = G4X_WM_LEVEL_NORMAL;
1337 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1338 goto out;
1339
1340 raw = &crtc_state->wm.g4x.raw[level];
1341 for_each_plane_id_on_crtc(crtc, plane_id)
1342 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1343
1344 level = G4X_WM_LEVEL_SR;
1345 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1346 goto out;
1347
1348 raw = &crtc_state->wm.g4x.raw[level];
1349 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1350 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1351 wm_state->sr.fbc = raw->fbc;
1352
1353 wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY);
1354
1355 level = G4X_WM_LEVEL_HPLL;
1356 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1357 goto out;
1358
1359 raw = &crtc_state->wm.g4x.raw[level];
1360 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1361 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1362 wm_state->hpll.fbc = raw->fbc;
1363
1364 wm_state->hpll_en = wm_state->cxsr;
1365
1366 level++;
1367
1368 out:
1369 if (level == G4X_WM_LEVEL_NORMAL)
1370 return -EINVAL;
1371
1372 /* invalidate the higher levels */
1373 g4x_invalidate_wms(crtc, wm_state, level);
1374
1375 /*
1376 * Determine if the FBC watermark(s) can be used. IF
1377 * this isn't the case we prefer to disable the FBC
1378 * watermark(s) rather than disable the SR/HPLL
1379 * level(s) entirely. 'level-1' is the highest valid
1380 * level here.
1381 */
1382 wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1383
1384 return 0;
1385}
1386
1387static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
1388 struct intel_crtc *crtc)
1389{
1390 struct intel_crtc_state *crtc_state =
1391 intel_atomic_get_new_crtc_state(state, crtc);
1392 const struct intel_plane_state *old_plane_state;
1393 const struct intel_plane_state *new_plane_state;
1394 struct intel_plane *plane;
1395 unsigned int dirty = 0;
1396 int i;
1397
1398 for_each_oldnew_intel_plane_in_state(state, plane,
1399 old_plane_state,
1400 new_plane_state, i) {
1401 if (new_plane_state->hw.crtc != &crtc->base &&
1402 old_plane_state->hw.crtc != &crtc->base)
1403 continue;
1404
1405 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1406 dirty |= BIT(plane->id);
1407 }
1408
1409 if (!dirty)
1410 return 0;
1411
1412 return _g4x_compute_pipe_wm(crtc_state);
1413}
1414
1415static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
1416 struct intel_crtc *crtc)
1417{
1418 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1419 struct intel_crtc_state *new_crtc_state =
1420 intel_atomic_get_new_crtc_state(state, crtc);
1421 const struct intel_crtc_state *old_crtc_state =
1422 intel_atomic_get_old_crtc_state(state, crtc);
1423 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1424 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1425 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1426 enum plane_id plane_id;
1427
1428 if (!new_crtc_state->hw.active ||
1429 intel_crtc_needs_modeset(new_crtc_state)) {
1430 *intermediate = *optimal;
1431
1432 intermediate->cxsr = false;
1433 intermediate->hpll_en = false;
1434 goto out;
1435 }
1436
1437 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1438 !new_crtc_state->disable_cxsr;
1439 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1440 !new_crtc_state->disable_cxsr;
1441 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1442
1443 for_each_plane_id_on_crtc(crtc, plane_id) {
1444 intermediate->wm.plane[plane_id] =
1445 max(optimal->wm.plane[plane_id],
1446 active->wm.plane[plane_id]);
1447
1448 drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1449 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1450 }
1451
1452 intermediate->sr.plane = max(optimal->sr.plane,
1453 active->sr.plane);
1454 intermediate->sr.cursor = max(optimal->sr.cursor,
1455 active->sr.cursor);
1456 intermediate->sr.fbc = max(optimal->sr.fbc,
1457 active->sr.fbc);
1458
1459 intermediate->hpll.plane = max(optimal->hpll.plane,
1460 active->hpll.plane);
1461 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1462 active->hpll.cursor);
1463 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1464 active->hpll.fbc);
1465
1466 drm_WARN_ON(&dev_priv->drm,
1467 (intermediate->sr.plane >
1468 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1469 intermediate->sr.cursor >
1470 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1471 intermediate->cxsr);
1472 drm_WARN_ON(&dev_priv->drm,
1473 (intermediate->sr.plane >
1474 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1475 intermediate->sr.cursor >
1476 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1477 intermediate->hpll_en);
1478
1479 drm_WARN_ON(&dev_priv->drm,
1480 intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1481 intermediate->fbc_en && intermediate->cxsr);
1482 drm_WARN_ON(&dev_priv->drm,
1483 intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1484 intermediate->fbc_en && intermediate->hpll_en);
1485
1486out:
1487 /*
1488 * If our intermediate WM are identical to the final WM, then we can
1489 * omit the post-vblank programming; only update if it's different.
1490 */
1491 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1492 new_crtc_state->wm.need_postvbl_update = true;
1493
1494 return 0;
1495}
1496
1497static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1498 struct g4x_wm_values *wm)
1499{
1500 struct intel_crtc *crtc;
1501 int num_active_pipes = 0;
1502
1503 wm->cxsr = true;
1504 wm->hpll_en = true;
1505 wm->fbc_en = true;
1506
1507 for_each_intel_crtc(&dev_priv->drm, crtc) {
1508 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1509
1510 if (!crtc->active)
1511 continue;
1512
1513 if (!wm_state->cxsr)
1514 wm->cxsr = false;
1515 if (!wm_state->hpll_en)
1516 wm->hpll_en = false;
1517 if (!wm_state->fbc_en)
1518 wm->fbc_en = false;
1519
1520 num_active_pipes++;
1521 }
1522
1523 if (num_active_pipes != 1) {
1524 wm->cxsr = false;
1525 wm->hpll_en = false;
1526 wm->fbc_en = false;
1527 }
1528
1529 for_each_intel_crtc(&dev_priv->drm, crtc) {
1530 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1531 enum pipe pipe = crtc->pipe;
1532
1533 wm->pipe[pipe] = wm_state->wm;
1534 if (crtc->active && wm->cxsr)
1535 wm->sr = wm_state->sr;
1536 if (crtc->active && wm->hpll_en)
1537 wm->hpll = wm_state->hpll;
1538 }
1539}
1540
1541static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1542{
1543 struct g4x_wm_values *old_wm = &dev_priv->display.wm.g4x;
1544 struct g4x_wm_values new_wm = {};
1545
1546 g4x_merge_wm(dev_priv, &new_wm);
1547
1548 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1549 return;
1550
1551 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1552 _intel_set_memory_cxsr(dev_priv, false);
1553
1554 g4x_write_wm_values(dev_priv, &new_wm);
1555
1556 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1557 _intel_set_memory_cxsr(dev_priv, true);
1558
1559 *old_wm = new_wm;
1560}
1561
1562static void g4x_initial_watermarks(struct intel_atomic_state *state,
1563 struct intel_crtc *crtc)
1564{
1565 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1566 const struct intel_crtc_state *crtc_state =
1567 intel_atomic_get_new_crtc_state(state, crtc);
1568
1569 mutex_lock(&dev_priv->display.wm.wm_mutex);
1570 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1571 g4x_program_watermarks(dev_priv);
1572 mutex_unlock(&dev_priv->display.wm.wm_mutex);
1573}
1574
1575static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1576 struct intel_crtc *crtc)
1577{
1578 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1579 const struct intel_crtc_state *crtc_state =
1580 intel_atomic_get_new_crtc_state(state, crtc);
1581
1582 if (!crtc_state->wm.need_postvbl_update)
1583 return;
1584
1585 mutex_lock(&dev_priv->display.wm.wm_mutex);
1586 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1587 g4x_program_watermarks(dev_priv);
1588 mutex_unlock(&dev_priv->display.wm.wm_mutex);
1589}
1590
1591/* latency must be in 0.1us units. */
1592static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1593 unsigned int htotal,
1594 unsigned int width,
1595 unsigned int cpp,
1596 unsigned int latency)
1597{
1598 unsigned int ret;
1599
1600 ret = intel_wm_method2(pixel_rate, htotal,
1601 width, cpp, latency);
1602 ret = DIV_ROUND_UP(ret, 64);
1603
1604 return ret;
1605}
1606
1607static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1608{
1609 /* all latencies in usec */
1610 dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1611
1612 dev_priv->display.wm.max_level = VLV_WM_LEVEL_PM2;
1613
1614 if (IS_CHERRYVIEW(dev_priv)) {
1615 dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1616 dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1617
1618 dev_priv->display.wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1619 }
1620}
1621
1622static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1623 const struct intel_plane_state *plane_state,
1624 int level)
1625{
1626 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1627 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1628 const struct drm_display_mode *pipe_mode =
1629 &crtc_state->hw.pipe_mode;
1630 unsigned int pixel_rate, htotal, cpp, width, wm;
1631
1632 if (dev_priv->display.wm.pri_latency[level] == 0)
1633 return USHRT_MAX;
1634
1635 if (!intel_wm_plane_visible(crtc_state, plane_state))
1636 return 0;
1637
1638 cpp = plane_state->hw.fb->format->cpp[0];
1639 pixel_rate = crtc_state->pixel_rate;
1640 htotal = pipe_mode->crtc_htotal;
1641 width = drm_rect_width(&plane_state->uapi.src) >> 16;
1642
1643 if (plane->id == PLANE_CURSOR) {
1644 /*
1645 * FIXME the formula gives values that are
1646 * too big for the cursor FIFO, and hence we
1647 * would never be able to use cursors. For
1648 * now just hardcode the watermark.
1649 */
1650 wm = 63;
1651 } else {
1652 wm = vlv_wm_method2(pixel_rate, htotal, width, cpp,
1653 dev_priv->display.wm.pri_latency[level] * 10);
1654 }
1655
1656 return min_t(unsigned int, wm, USHRT_MAX);
1657}
1658
1659static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1660{
1661 return (active_planes & (BIT(PLANE_SPRITE0) |
1662 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1663}
1664
1665static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1666{
1667 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1668 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1669 const struct g4x_pipe_wm *raw =
1670 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1671 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1672 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1673 int num_active_planes = hweight8(active_planes);
1674 const int fifo_size = 511;
1675 int fifo_extra, fifo_left = fifo_size;
1676 int sprite0_fifo_extra = 0;
1677 unsigned int total_rate;
1678 enum plane_id plane_id;
1679
1680 /*
1681 * When enabling sprite0 after sprite1 has already been enabled
1682 * we tend to get an underrun unless sprite0 already has some
1683 * FIFO space allcoated. Hence we always allocate at least one
1684 * cacheline for sprite0 whenever sprite1 is enabled.
1685 *
1686 * All other plane enable sequences appear immune to this problem.
1687 */
1688 if (vlv_need_sprite0_fifo_workaround(active_planes))
1689 sprite0_fifo_extra = 1;
1690
1691 total_rate = raw->plane[PLANE_PRIMARY] +
1692 raw->plane[PLANE_SPRITE0] +
1693 raw->plane[PLANE_SPRITE1] +
1694 sprite0_fifo_extra;
1695
1696 if (total_rate > fifo_size)
1697 return -EINVAL;
1698
1699 if (total_rate == 0)
1700 total_rate = 1;
1701
1702 for_each_plane_id_on_crtc(crtc, plane_id) {
1703 unsigned int rate;
1704
1705 if ((active_planes & BIT(plane_id)) == 0) {
1706 fifo_state->plane[plane_id] = 0;
1707 continue;
1708 }
1709
1710 rate = raw->plane[plane_id];
1711 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1712 fifo_left -= fifo_state->plane[plane_id];
1713 }
1714
1715 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1716 fifo_left -= sprite0_fifo_extra;
1717
1718 fifo_state->plane[PLANE_CURSOR] = 63;
1719
1720 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1721
1722 /* spread the remainder evenly */
1723 for_each_plane_id_on_crtc(crtc, plane_id) {
1724 int plane_extra;
1725
1726 if (fifo_left == 0)
1727 break;
1728
1729 if ((active_planes & BIT(plane_id)) == 0)
1730 continue;
1731
1732 plane_extra = min(fifo_extra, fifo_left);
1733 fifo_state->plane[plane_id] += plane_extra;
1734 fifo_left -= plane_extra;
1735 }
1736
1737 drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1738
1739 /* give it all to the first plane if none are active */
1740 if (active_planes == 0) {
1741 drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1742 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1743 }
1744
1745 return 0;
1746}
1747
1748/* mark all levels starting from 'level' as invalid */
1749static void vlv_invalidate_wms(struct intel_crtc *crtc,
1750 struct vlv_wm_state *wm_state, int level)
1751{
1752 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1753
1754 for (; level < intel_wm_num_levels(dev_priv); level++) {
1755 enum plane_id plane_id;
1756
1757 for_each_plane_id_on_crtc(crtc, plane_id)
1758 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1759
1760 wm_state->sr[level].cursor = USHRT_MAX;
1761 wm_state->sr[level].plane = USHRT_MAX;
1762 }
1763}
1764
1765static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1766{
1767 if (wm > fifo_size)
1768 return USHRT_MAX;
1769 else
1770 return fifo_size - wm;
1771}
1772
1773/*
1774 * Starting from 'level' set all higher
1775 * levels to 'value' in the "raw" watermarks.
1776 */
1777static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1778 int level, enum plane_id plane_id, u16 value)
1779{
1780 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1781 int num_levels = intel_wm_num_levels(dev_priv);
1782 bool dirty = false;
1783
1784 for (; level < num_levels; level++) {
1785 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1786
1787 dirty |= raw->plane[plane_id] != value;
1788 raw->plane[plane_id] = value;
1789 }
1790
1791 return dirty;
1792}
1793
1794static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1795 const struct intel_plane_state *plane_state)
1796{
1797 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1798 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1799 enum plane_id plane_id = plane->id;
1800 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1801 int level;
1802 bool dirty = false;
1803
1804 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1805 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1806 goto out;
1807 }
1808
1809 for (level = 0; level < num_levels; level++) {
1810 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1811 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1812 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1813
1814 if (wm > max_wm)
1815 break;
1816
1817 dirty |= raw->plane[plane_id] != wm;
1818 raw->plane[plane_id] = wm;
1819 }
1820
1821 /* mark all higher levels as invalid */
1822 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1823
1824out:
1825 if (dirty)
1826 drm_dbg_kms(&dev_priv->drm,
1827 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1828 plane->base.name,
1829 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1830 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1831 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1832
1833 return dirty;
1834}
1835
1836static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1837 enum plane_id plane_id, int level)
1838{
1839 const struct g4x_pipe_wm *raw =
1840 &crtc_state->wm.vlv.raw[level];
1841 const struct vlv_fifo_state *fifo_state =
1842 &crtc_state->wm.vlv.fifo_state;
1843
1844 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1845}
1846
1847static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1848{
1849 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1850 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1851 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1852 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1853}
1854
1855static int _vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1856{
1857 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1858 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1859 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1860 const struct vlv_fifo_state *fifo_state =
1861 &crtc_state->wm.vlv.fifo_state;
1862 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1863 int num_active_planes = hweight8(active_planes);
1864 enum plane_id plane_id;
1865 int level;
1866
1867 /* initially allow all levels */
1868 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1869 /*
1870 * Note that enabling cxsr with no primary/sprite planes
1871 * enabled can wedge the pipe. Hence we only allow cxsr
1872 * with exactly one enabled primary/sprite plane.
1873 */
1874 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1875
1876 for (level = 0; level < wm_state->num_levels; level++) {
1877 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1878 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1879
1880 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1881 break;
1882
1883 for_each_plane_id_on_crtc(crtc, plane_id) {
1884 wm_state->wm[level].plane[plane_id] =
1885 vlv_invert_wm_value(raw->plane[plane_id],
1886 fifo_state->plane[plane_id]);
1887 }
1888
1889 wm_state->sr[level].plane =
1890 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1891 raw->plane[PLANE_SPRITE0],
1892 raw->plane[PLANE_SPRITE1]),
1893 sr_fifo_size);
1894
1895 wm_state->sr[level].cursor =
1896 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1897 63);
1898 }
1899
1900 if (level == 0)
1901 return -EINVAL;
1902
1903 /* limit to only levels we can actually handle */
1904 wm_state->num_levels = level;
1905
1906 /* invalidate the higher levels */
1907 vlv_invalidate_wms(crtc, wm_state, level);
1908
1909 return 0;
1910}
1911
1912static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
1913 struct intel_crtc *crtc)
1914{
1915 struct intel_crtc_state *crtc_state =
1916 intel_atomic_get_new_crtc_state(state, crtc);
1917 const struct intel_plane_state *old_plane_state;
1918 const struct intel_plane_state *new_plane_state;
1919 struct intel_plane *plane;
1920 unsigned int dirty = 0;
1921 int i;
1922
1923 for_each_oldnew_intel_plane_in_state(state, plane,
1924 old_plane_state,
1925 new_plane_state, i) {
1926 if (new_plane_state->hw.crtc != &crtc->base &&
1927 old_plane_state->hw.crtc != &crtc->base)
1928 continue;
1929
1930 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1931 dirty |= BIT(plane->id);
1932 }
1933
1934 /*
1935 * DSPARB registers may have been reset due to the
1936 * power well being turned off. Make sure we restore
1937 * them to a consistent state even if no primary/sprite
1938 * planes are initially active. We also force a FIFO
1939 * recomputation so that we are sure to sanitize the
1940 * FIFO setting we took over from the BIOS even if there
1941 * are no active planes on the crtc.
1942 */
1943 if (intel_crtc_needs_modeset(crtc_state))
1944 dirty = ~0;
1945
1946 if (!dirty)
1947 return 0;
1948
1949 /* cursor changes don't warrant a FIFO recompute */
1950 if (dirty & ~BIT(PLANE_CURSOR)) {
1951 const struct intel_crtc_state *old_crtc_state =
1952 intel_atomic_get_old_crtc_state(state, crtc);
1953 const struct vlv_fifo_state *old_fifo_state =
1954 &old_crtc_state->wm.vlv.fifo_state;
1955 const struct vlv_fifo_state *new_fifo_state =
1956 &crtc_state->wm.vlv.fifo_state;
1957 int ret;
1958
1959 ret = vlv_compute_fifo(crtc_state);
1960 if (ret)
1961 return ret;
1962
1963 if (intel_crtc_needs_modeset(crtc_state) ||
1964 memcmp(old_fifo_state, new_fifo_state,
1965 sizeof(*new_fifo_state)) != 0)
1966 crtc_state->fifo_changed = true;
1967 }
1968
1969 return _vlv_compute_pipe_wm(crtc_state);
1970}
1971
1972#define VLV_FIFO(plane, value) \
1973 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1974
1975static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1976 struct intel_crtc *crtc)
1977{
1978 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1979 struct intel_uncore *uncore = &dev_priv->uncore;
1980 const struct intel_crtc_state *crtc_state =
1981 intel_atomic_get_new_crtc_state(state, crtc);
1982 const struct vlv_fifo_state *fifo_state =
1983 &crtc_state->wm.vlv.fifo_state;
1984 int sprite0_start, sprite1_start, fifo_size;
1985 u32 dsparb, dsparb2, dsparb3;
1986
1987 if (!crtc_state->fifo_changed)
1988 return;
1989
1990 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1991 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1992 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1993
1994 drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
1995 drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1996
1997 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1998
1999 /*
2000 * uncore.lock serves a double purpose here. It allows us to
2001 * use the less expensive I915_{READ,WRITE}_FW() functions, and
2002 * it protects the DSPARB registers from getting clobbered by
2003 * parallel updates from multiple pipes.
2004 *
2005 * intel_pipe_update_start() has already disabled interrupts
2006 * for us, so a plain spin_lock() is sufficient here.
2007 */
2008 spin_lock(&uncore->lock);
2009
2010 switch (crtc->pipe) {
2011 case PIPE_A:
2012 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2013 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2014
2015 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2016 VLV_FIFO(SPRITEB, 0xff));
2017 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2018 VLV_FIFO(SPRITEB, sprite1_start));
2019
2020 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2021 VLV_FIFO(SPRITEB_HI, 0x1));
2022 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2023 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2024
2025 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2026 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2027 break;
2028 case PIPE_B:
2029 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2030 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2031
2032 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2033 VLV_FIFO(SPRITED, 0xff));
2034 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2035 VLV_FIFO(SPRITED, sprite1_start));
2036
2037 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2038 VLV_FIFO(SPRITED_HI, 0xff));
2039 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2040 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2041
2042 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2043 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2044 break;
2045 case PIPE_C:
2046 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2047 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2048
2049 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2050 VLV_FIFO(SPRITEF, 0xff));
2051 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2052 VLV_FIFO(SPRITEF, sprite1_start));
2053
2054 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2055 VLV_FIFO(SPRITEF_HI, 0xff));
2056 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2057 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2058
2059 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2060 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2061 break;
2062 default:
2063 break;
2064 }
2065
2066 intel_uncore_posting_read_fw(uncore, DSPARB);
2067
2068 spin_unlock(&uncore->lock);
2069}
2070
2071#undef VLV_FIFO
2072
2073static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
2074 struct intel_crtc *crtc)
2075{
2076 struct intel_crtc_state *new_crtc_state =
2077 intel_atomic_get_new_crtc_state(state, crtc);
2078 const struct intel_crtc_state *old_crtc_state =
2079 intel_atomic_get_old_crtc_state(state, crtc);
2080 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2081 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2082 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2083 int level;
2084
2085 if (!new_crtc_state->hw.active ||
2086 intel_crtc_needs_modeset(new_crtc_state)) {
2087 *intermediate = *optimal;
2088
2089 intermediate->cxsr = false;
2090 goto out;
2091 }
2092
2093 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2094 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2095 !new_crtc_state->disable_cxsr;
2096
2097 for (level = 0; level < intermediate->num_levels; level++) {
2098 enum plane_id plane_id;
2099
2100 for_each_plane_id_on_crtc(crtc, plane_id) {
2101 intermediate->wm[level].plane[plane_id] =
2102 min(optimal->wm[level].plane[plane_id],
2103 active->wm[level].plane[plane_id]);
2104 }
2105
2106 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2107 active->sr[level].plane);
2108 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2109 active->sr[level].cursor);
2110 }
2111
2112 vlv_invalidate_wms(crtc, intermediate, level);
2113
2114out:
2115 /*
2116 * If our intermediate WM are identical to the final WM, then we can
2117 * omit the post-vblank programming; only update if it's different.
2118 */
2119 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2120 new_crtc_state->wm.need_postvbl_update = true;
2121
2122 return 0;
2123}
2124
2125static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2126 struct vlv_wm_values *wm)
2127{
2128 struct intel_crtc *crtc;
2129 int num_active_pipes = 0;
2130
2131 wm->level = dev_priv->display.wm.max_level;
2132 wm->cxsr = true;
2133
2134 for_each_intel_crtc(&dev_priv->drm, crtc) {
2135 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2136
2137 if (!crtc->active)
2138 continue;
2139
2140 if (!wm_state->cxsr)
2141 wm->cxsr = false;
2142
2143 num_active_pipes++;
2144 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2145 }
2146
2147 if (num_active_pipes != 1)
2148 wm->cxsr = false;
2149
2150 if (num_active_pipes > 1)
2151 wm->level = VLV_WM_LEVEL_PM2;
2152
2153 for_each_intel_crtc(&dev_priv->drm, crtc) {
2154 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2155 enum pipe pipe = crtc->pipe;
2156
2157 wm->pipe[pipe] = wm_state->wm[wm->level];
2158 if (crtc->active && wm->cxsr)
2159 wm->sr = wm_state->sr[wm->level];
2160
2161 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2162 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2163 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2164 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2165 }
2166}
2167
2168static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2169{
2170 struct vlv_wm_values *old_wm = &dev_priv->display.wm.vlv;
2171 struct vlv_wm_values new_wm = {};
2172
2173 vlv_merge_wm(dev_priv, &new_wm);
2174
2175 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2176 return;
2177
2178 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2179 chv_set_memory_dvfs(dev_priv, false);
2180
2181 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2182 chv_set_memory_pm5(dev_priv, false);
2183
2184 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2185 _intel_set_memory_cxsr(dev_priv, false);
2186
2187 vlv_write_wm_values(dev_priv, &new_wm);
2188
2189 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2190 _intel_set_memory_cxsr(dev_priv, true);
2191
2192 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2193 chv_set_memory_pm5(dev_priv, true);
2194
2195 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2196 chv_set_memory_dvfs(dev_priv, true);
2197
2198 *old_wm = new_wm;
2199}
2200
2201static void vlv_initial_watermarks(struct intel_atomic_state *state,
2202 struct intel_crtc *crtc)
2203{
2204 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2205 const struct intel_crtc_state *crtc_state =
2206 intel_atomic_get_new_crtc_state(state, crtc);
2207
2208 mutex_lock(&dev_priv->display.wm.wm_mutex);
2209 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2210 vlv_program_watermarks(dev_priv);
2211 mutex_unlock(&dev_priv->display.wm.wm_mutex);
2212}
2213
2214static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2215 struct intel_crtc *crtc)
2216{
2217 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2218 const struct intel_crtc_state *crtc_state =
2219 intel_atomic_get_new_crtc_state(state, crtc);
2220
2221 if (!crtc_state->wm.need_postvbl_update)
2222 return;
2223
2224 mutex_lock(&dev_priv->display.wm.wm_mutex);
2225 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2226 vlv_program_watermarks(dev_priv);
2227 mutex_unlock(&dev_priv->display.wm.wm_mutex);
2228}
2229
2230static void i965_update_wm(struct drm_i915_private *dev_priv)
2231{
2232 struct intel_crtc *crtc;
2233 int srwm = 1;
2234 int cursor_sr = 16;
2235 bool cxsr_enabled;
2236
2237 /* Calc sr entries for one plane configs */
2238 crtc = single_enabled_crtc(dev_priv);
2239 if (crtc) {
2240 /* self-refresh has much higher latency */
2241 static const int sr_latency_ns = 12000;
2242 const struct drm_display_mode *pipe_mode =
2243 &crtc->config->hw.pipe_mode;
2244 const struct drm_framebuffer *fb =
2245 crtc->base.primary->state->fb;
2246 int pixel_rate = crtc->config->pixel_rate;
2247 int htotal = pipe_mode->crtc_htotal;
2248 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2249 int cpp = fb->format->cpp[0];
2250 int entries;
2251
2252 entries = intel_wm_method2(pixel_rate, htotal,
2253 width, cpp, sr_latency_ns / 100);
2254 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2255 srwm = I965_FIFO_SIZE - entries;
2256 if (srwm < 0)
2257 srwm = 1;
2258 srwm &= 0x1ff;
2259 drm_dbg_kms(&dev_priv->drm,
2260 "self-refresh entries: %d, wm: %d\n",
2261 entries, srwm);
2262
2263 entries = intel_wm_method2(pixel_rate, htotal,
2264 crtc->base.cursor->state->crtc_w, 4,
2265 sr_latency_ns / 100);
2266 entries = DIV_ROUND_UP(entries,
2267 i965_cursor_wm_info.cacheline_size) +
2268 i965_cursor_wm_info.guard_size;
2269
2270 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2271 if (cursor_sr > i965_cursor_wm_info.max_wm)
2272 cursor_sr = i965_cursor_wm_info.max_wm;
2273
2274 drm_dbg_kms(&dev_priv->drm,
2275 "self-refresh watermark: display plane %d "
2276 "cursor %d\n", srwm, cursor_sr);
2277
2278 cxsr_enabled = true;
2279 } else {
2280 cxsr_enabled = false;
2281 /* Turn off self refresh if both pipes are enabled */
2282 intel_set_memory_cxsr(dev_priv, false);
2283 }
2284
2285 drm_dbg_kms(&dev_priv->drm,
2286 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2287 srwm);
2288
2289 /* 965 has limitations... */
2290 intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2291 FW_WM(8, CURSORB) |
2292 FW_WM(8, PLANEB) |
2293 FW_WM(8, PLANEA));
2294 intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2295 FW_WM(8, PLANEC_OLD));
2296 /* update cursor SR watermark */
2297 intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2298
2299 if (cxsr_enabled)
2300 intel_set_memory_cxsr(dev_priv, true);
2301}
2302
2303#undef FW_WM
2304
2305static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915,
2306 enum i9xx_plane_id i9xx_plane)
2307{
2308 struct intel_plane *plane;
2309
2310 for_each_intel_plane(&i915->drm, plane) {
2311 if (plane->id == PLANE_PRIMARY &&
2312 plane->i9xx_plane == i9xx_plane)
2313 return intel_crtc_for_pipe(i915, plane->pipe);
2314 }
2315
2316 return NULL;
2317}
2318
2319static void i9xx_update_wm(struct drm_i915_private *dev_priv)
2320{
2321 const struct intel_watermark_params *wm_info;
2322 u32 fwater_lo;
2323 u32 fwater_hi;
2324 int cwm, srwm = 1;
2325 int fifo_size;
2326 int planea_wm, planeb_wm;
2327 struct intel_crtc *crtc;
2328
2329 if (IS_I945GM(dev_priv))
2330 wm_info = &i945_wm_info;
2331 else if (DISPLAY_VER(dev_priv) != 2)
2332 wm_info = &i915_wm_info;
2333 else
2334 wm_info = &i830_a_wm_info;
2335
2336 if (DISPLAY_VER(dev_priv) == 2)
2337 fifo_size = i830_get_fifo_size(dev_priv, PLANE_A);
2338 else
2339 fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A);
2340 crtc = intel_crtc_for_plane(dev_priv, PLANE_A);
2341 if (intel_crtc_active(crtc)) {
2342 const struct drm_framebuffer *fb =
2343 crtc->base.primary->state->fb;
2344 int cpp;
2345
2346 if (DISPLAY_VER(dev_priv) == 2)
2347 cpp = 4;
2348 else
2349 cpp = fb->format->cpp[0];
2350
2351 planea_wm = intel_calculate_wm(crtc->config->pixel_rate,
2352 wm_info, fifo_size, cpp,
2353 pessimal_latency_ns);
2354 } else {
2355 planea_wm = fifo_size - wm_info->guard_size;
2356 if (planea_wm > (long)wm_info->max_wm)
2357 planea_wm = wm_info->max_wm;
2358 }
2359
2360 if (DISPLAY_VER(dev_priv) == 2)
2361 wm_info = &i830_bc_wm_info;
2362
2363 if (DISPLAY_VER(dev_priv) == 2)
2364 fifo_size = i830_get_fifo_size(dev_priv, PLANE_B);
2365 else
2366 fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B);
2367 crtc = intel_crtc_for_plane(dev_priv, PLANE_B);
2368 if (intel_crtc_active(crtc)) {
2369 const struct drm_framebuffer *fb =
2370 crtc->base.primary->state->fb;
2371 int cpp;
2372
2373 if (DISPLAY_VER(dev_priv) == 2)
2374 cpp = 4;
2375 else
2376 cpp = fb->format->cpp[0];
2377
2378 planeb_wm = intel_calculate_wm(crtc->config->pixel_rate,
2379 wm_info, fifo_size, cpp,
2380 pessimal_latency_ns);
2381 } else {
2382 planeb_wm = fifo_size - wm_info->guard_size;
2383 if (planeb_wm > (long)wm_info->max_wm)
2384 planeb_wm = wm_info->max_wm;
2385 }
2386
2387 drm_dbg_kms(&dev_priv->drm,
2388 "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2389
2390 crtc = single_enabled_crtc(dev_priv);
2391 if (IS_I915GM(dev_priv) && crtc) {
2392 struct drm_i915_gem_object *obj;
2393
2394 obj = intel_fb_obj(crtc->base.primary->state->fb);
2395
2396 /* self-refresh seems busted with untiled */
2397 if (!i915_gem_object_is_tiled(obj))
2398 crtc = NULL;
2399 }
2400
2401 /*
2402 * Overlay gets an aggressive default since video jitter is bad.
2403 */
2404 cwm = 2;
2405
2406 /* Play safe and disable self-refresh before adjusting watermarks. */
2407 intel_set_memory_cxsr(dev_priv, false);
2408
2409 /* Calc sr entries for one plane configs */
2410 if (HAS_FW_BLC(dev_priv) && crtc) {
2411 /* self-refresh has much higher latency */
2412 static const int sr_latency_ns = 6000;
2413 const struct drm_display_mode *pipe_mode =
2414 &crtc->config->hw.pipe_mode;
2415 const struct drm_framebuffer *fb =
2416 crtc->base.primary->state->fb;
2417 int pixel_rate = crtc->config->pixel_rate;
2418 int htotal = pipe_mode->crtc_htotal;
2419 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2420 int cpp;
2421 int entries;
2422
2423 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2424 cpp = 4;
2425 else
2426 cpp = fb->format->cpp[0];
2427
2428 entries = intel_wm_method2(pixel_rate, htotal, width, cpp,
2429 sr_latency_ns / 100);
2430 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2431 drm_dbg_kms(&dev_priv->drm,
2432 "self-refresh entries: %d\n", entries);
2433 srwm = wm_info->fifo_size - entries;
2434 if (srwm < 0)
2435 srwm = 1;
2436
2437 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2438 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2439 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2440 else
2441 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2442 }
2443
2444 drm_dbg_kms(&dev_priv->drm,
2445 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2446 planea_wm, planeb_wm, cwm, srwm);
2447
2448 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2449 fwater_hi = (cwm & 0x1f);
2450
2451 /* Set request length to 8 cachelines per fetch */
2452 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2453 fwater_hi = fwater_hi | (1 << 8);
2454
2455 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2456 intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2457
2458 if (crtc)
2459 intel_set_memory_cxsr(dev_priv, true);
2460}
2461
2462static void i845_update_wm(struct drm_i915_private *dev_priv)
2463{
2464 struct intel_crtc *crtc;
2465 u32 fwater_lo;
2466 int planea_wm;
2467
2468 crtc = single_enabled_crtc(dev_priv);
2469 if (crtc == NULL)
2470 return;
2471
2472 planea_wm = intel_calculate_wm(crtc->config->pixel_rate,
2473 &i845_wm_info,
2474 i845_get_fifo_size(dev_priv, PLANE_A),
2475 4, pessimal_latency_ns);
2476 fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2477 fwater_lo |= (3<<8) | planea_wm;
2478
2479 drm_dbg_kms(&dev_priv->drm,
2480 "Setting FIFO watermarks - A: %d\n", planea_wm);
2481
2482 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2483}
2484
2485/* latency must be in 0.1us units. */
2486static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2487 unsigned int cpp,
2488 unsigned int latency)
2489{
2490 unsigned int ret;
2491
2492 ret = intel_wm_method1(pixel_rate, cpp, latency);
2493 ret = DIV_ROUND_UP(ret, 64) + 2;
2494
2495 return ret;
2496}
2497
2498/* latency must be in 0.1us units. */
2499static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2500 unsigned int htotal,
2501 unsigned int width,
2502 unsigned int cpp,
2503 unsigned int latency)
2504{
2505 unsigned int ret;
2506
2507 ret = intel_wm_method2(pixel_rate, htotal,
2508 width, cpp, latency);
2509 ret = DIV_ROUND_UP(ret, 64) + 2;
2510
2511 return ret;
2512}
2513
2514static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2515{
2516 /*
2517 * Neither of these should be possible since this function shouldn't be
2518 * called if the CRTC is off or the plane is invisible. But let's be
2519 * extra paranoid to avoid a potential divide-by-zero if we screw up
2520 * elsewhere in the driver.
2521 */
2522 if (WARN_ON(!cpp))
2523 return 0;
2524 if (WARN_ON(!horiz_pixels))
2525 return 0;
2526
2527 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2528}
2529
2530struct ilk_wm_maximums {
2531 u16 pri;
2532 u16 spr;
2533 u16 cur;
2534 u16 fbc;
2535};
2536
2537/*
2538 * For both WM_PIPE and WM_LP.
2539 * mem_value must be in 0.1us units.
2540 */
2541static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2542 const struct intel_plane_state *plane_state,
2543 u32 mem_value, bool is_lp)
2544{
2545 u32 method1, method2;
2546 int cpp;
2547
2548 if (mem_value == 0)
2549 return U32_MAX;
2550
2551 if (!intel_wm_plane_visible(crtc_state, plane_state))
2552 return 0;
2553
2554 cpp = plane_state->hw.fb->format->cpp[0];
2555
2556 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2557
2558 if (!is_lp)
2559 return method1;
2560
2561 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2562 crtc_state->hw.pipe_mode.crtc_htotal,
2563 drm_rect_width(&plane_state->uapi.src) >> 16,
2564 cpp, mem_value);
2565
2566 return min(method1, method2);
2567}
2568
2569/*
2570 * For both WM_PIPE and WM_LP.
2571 * mem_value must be in 0.1us units.
2572 */
2573static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2574 const struct intel_plane_state *plane_state,
2575 u32 mem_value)
2576{
2577 u32 method1, method2;
2578 int cpp;
2579
2580 if (mem_value == 0)
2581 return U32_MAX;
2582
2583 if (!intel_wm_plane_visible(crtc_state, plane_state))
2584 return 0;
2585
2586 cpp = plane_state->hw.fb->format->cpp[0];
2587
2588 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2589 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2590 crtc_state->hw.pipe_mode.crtc_htotal,
2591 drm_rect_width(&plane_state->uapi.src) >> 16,
2592 cpp, mem_value);
2593 return min(method1, method2);
2594}
2595
2596/*
2597 * For both WM_PIPE and WM_LP.
2598 * mem_value must be in 0.1us units.
2599 */
2600static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2601 const struct intel_plane_state *plane_state,
2602 u32 mem_value)
2603{
2604 int cpp;
2605
2606 if (mem_value == 0)
2607 return U32_MAX;
2608
2609 if (!intel_wm_plane_visible(crtc_state, plane_state))
2610 return 0;
2611
2612 cpp = plane_state->hw.fb->format->cpp[0];
2613
2614 return ilk_wm_method2(crtc_state->pixel_rate,
2615 crtc_state->hw.pipe_mode.crtc_htotal,
2616 drm_rect_width(&plane_state->uapi.src) >> 16,
2617 cpp, mem_value);
2618}
2619
2620/* Only for WM_LP. */
2621static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2622 const struct intel_plane_state *plane_state,
2623 u32 pri_val)
2624{
2625 int cpp;
2626
2627 if (!intel_wm_plane_visible(crtc_state, plane_state))
2628 return 0;
2629
2630 cpp = plane_state->hw.fb->format->cpp[0];
2631
2632 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16,
2633 cpp);
2634}
2635
2636static unsigned int
2637ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2638{
2639 if (DISPLAY_VER(dev_priv) >= 8)
2640 return 3072;
2641 else if (DISPLAY_VER(dev_priv) >= 7)
2642 return 768;
2643 else
2644 return 512;
2645}
2646
2647static unsigned int
2648ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2649 int level, bool is_sprite)
2650{
2651 if (DISPLAY_VER(dev_priv) >= 8)
2652 /* BDW primary/sprite plane watermarks */
2653 return level == 0 ? 255 : 2047;
2654 else if (DISPLAY_VER(dev_priv) >= 7)
2655 /* IVB/HSW primary/sprite plane watermarks */
2656 return level == 0 ? 127 : 1023;
2657 else if (!is_sprite)
2658 /* ILK/SNB primary plane watermarks */
2659 return level == 0 ? 127 : 511;
2660 else
2661 /* ILK/SNB sprite plane watermarks */
2662 return level == 0 ? 63 : 255;
2663}
2664
2665static unsigned int
2666ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2667{
2668 if (DISPLAY_VER(dev_priv) >= 7)
2669 return level == 0 ? 63 : 255;
2670 else
2671 return level == 0 ? 31 : 63;
2672}
2673
2674static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2675{
2676 if (DISPLAY_VER(dev_priv) >= 8)
2677 return 31;
2678 else
2679 return 15;
2680}
2681
2682/* Calculate the maximum primary/sprite plane watermark */
2683static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2684 int level,
2685 const struct intel_wm_config *config,
2686 enum intel_ddb_partitioning ddb_partitioning,
2687 bool is_sprite)
2688{
2689 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2690
2691 /* if sprites aren't enabled, sprites get nothing */
2692 if (is_sprite && !config->sprites_enabled)
2693 return 0;
2694
2695 /* HSW allows LP1+ watermarks even with multiple pipes */
2696 if (level == 0 || config->num_pipes_active > 1) {
2697 fifo_size /= INTEL_NUM_PIPES(dev_priv);
2698
2699 /*
2700 * For some reason the non self refresh
2701 * FIFO size is only half of the self
2702 * refresh FIFO size on ILK/SNB.
2703 */
2704 if (DISPLAY_VER(dev_priv) <= 6)
2705 fifo_size /= 2;
2706 }
2707
2708 if (config->sprites_enabled) {
2709 /* level 0 is always calculated with 1:1 split */
2710 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2711 if (is_sprite)
2712 fifo_size *= 5;
2713 fifo_size /= 6;
2714 } else {
2715 fifo_size /= 2;
2716 }
2717 }
2718
2719 /* clamp to max that the registers can hold */
2720 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2721}
2722
2723/* Calculate the maximum cursor plane watermark */
2724static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2725 int level,
2726 const struct intel_wm_config *config)
2727{
2728 /* HSW LP1+ watermarks w/ multiple pipes */
2729 if (level > 0 && config->num_pipes_active > 1)
2730 return 64;
2731
2732 /* otherwise just report max that registers can hold */
2733 return ilk_cursor_wm_reg_max(dev_priv, level);
2734}
2735
2736static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2737 int level,
2738 const struct intel_wm_config *config,
2739 enum intel_ddb_partitioning ddb_partitioning,
2740 struct ilk_wm_maximums *max)
2741{
2742 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2743 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2744 max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2745 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2746}
2747
2748static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2749 int level,
2750 struct ilk_wm_maximums *max)
2751{
2752 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2753 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2754 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2755 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2756}
2757
2758static bool ilk_validate_wm_level(int level,
2759 const struct ilk_wm_maximums *max,
2760 struct intel_wm_level *result)
2761{
2762 bool ret;
2763
2764 /* already determined to be invalid? */
2765 if (!result->enable)
2766 return false;
2767
2768 result->enable = result->pri_val <= max->pri &&
2769 result->spr_val <= max->spr &&
2770 result->cur_val <= max->cur;
2771
2772 ret = result->enable;
2773
2774 /*
2775 * HACK until we can pre-compute everything,
2776 * and thus fail gracefully if LP0 watermarks
2777 * are exceeded...
2778 */
2779 if (level == 0 && !result->enable) {
2780 if (result->pri_val > max->pri)
2781 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2782 level, result->pri_val, max->pri);
2783 if (result->spr_val > max->spr)
2784 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2785 level, result->spr_val, max->spr);
2786 if (result->cur_val > max->cur)
2787 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2788 level, result->cur_val, max->cur);
2789
2790 result->pri_val = min_t(u32, result->pri_val, max->pri);
2791 result->spr_val = min_t(u32, result->spr_val, max->spr);
2792 result->cur_val = min_t(u32, result->cur_val, max->cur);
2793 result->enable = true;
2794 }
2795
2796 return ret;
2797}
2798
2799static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2800 const struct intel_crtc *crtc,
2801 int level,
2802 struct intel_crtc_state *crtc_state,
2803 const struct intel_plane_state *pristate,
2804 const struct intel_plane_state *sprstate,
2805 const struct intel_plane_state *curstate,
2806 struct intel_wm_level *result)
2807{
2808 u16 pri_latency = dev_priv->display.wm.pri_latency[level];
2809 u16 spr_latency = dev_priv->display.wm.spr_latency[level];
2810 u16 cur_latency = dev_priv->display.wm.cur_latency[level];
2811
2812 /* WM1+ latency values stored in 0.5us units */
2813 if (level > 0) {
2814 pri_latency *= 5;
2815 spr_latency *= 5;
2816 cur_latency *= 5;
2817 }
2818
2819 if (pristate) {
2820 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2821 pri_latency, level);
2822 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2823 }
2824
2825 if (sprstate)
2826 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2827
2828 if (curstate)
2829 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2830
2831 result->enable = true;
2832}
2833
2834static void hsw_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2835{
2836 u64 sskpd;
2837
2838 sskpd = intel_uncore_read64(&i915->uncore, MCH_SSKPD);
2839
2840 wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd);
2841 if (wm[0] == 0)
2842 wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd);
2843 wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd);
2844 wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd);
2845 wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd);
2846 wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd);
2847}
2848
2849static void snb_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2850{
2851 u32 sskpd;
2852
2853 sskpd = intel_uncore_read(&i915->uncore, MCH_SSKPD);
2854
2855 wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd);
2856 wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd);
2857 wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd);
2858 wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd);
2859}
2860
2861static void ilk_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2862{
2863 u32 mltr;
2864
2865 mltr = intel_uncore_read(&i915->uncore, MLTR_ILK);
2866
2867 /* ILK primary LP0 latency is 700 ns */
2868 wm[0] = 7;
2869 wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr);
2870 wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr);
2871}
2872
2873static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2874 u16 wm[5])
2875{
2876 /* ILK sprite LP0 latency is 1300 ns */
2877 if (DISPLAY_VER(dev_priv) == 5)
2878 wm[0] = 13;
2879}
2880
2881static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2882 u16 wm[5])
2883{
2884 /* ILK cursor LP0 latency is 1300 ns */
2885 if (DISPLAY_VER(dev_priv) == 5)
2886 wm[0] = 13;
2887}
2888
2889int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2890{
2891 /* how many WM levels are we expecting */
2892 if (HAS_HW_SAGV_WM(dev_priv))
2893 return 5;
2894 else if (DISPLAY_VER(dev_priv) >= 9)
2895 return 7;
2896 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2897 return 4;
2898 else if (DISPLAY_VER(dev_priv) >= 6)
2899 return 3;
2900 else
2901 return 2;
2902}
2903
2904void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2905 const char *name, const u16 wm[])
2906{
2907 int level, max_level = ilk_wm_max_level(dev_priv);
2908
2909 for (level = 0; level <= max_level; level++) {
2910 unsigned int latency = wm[level];
2911
2912 if (latency == 0) {
2913 drm_dbg_kms(&dev_priv->drm,
2914 "%s WM%d latency not provided\n",
2915 name, level);
2916 continue;
2917 }
2918
2919 /*
2920 * - latencies are in us on gen9.
2921 * - before then, WM1+ latency values are in 0.5us units
2922 */
2923 if (DISPLAY_VER(dev_priv) >= 9)
2924 latency *= 10;
2925 else if (level > 0)
2926 latency *= 5;
2927
2928 drm_dbg_kms(&dev_priv->drm,
2929 "%s WM%d latency %u (%u.%u usec)\n", name, level,
2930 wm[level], latency / 10, latency % 10);
2931 }
2932}
2933
2934static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2935 u16 wm[5], u16 min)
2936{
2937 int level, max_level = ilk_wm_max_level(dev_priv);
2938
2939 if (wm[0] >= min)
2940 return false;
2941
2942 wm[0] = max(wm[0], min);
2943 for (level = 1; level <= max_level; level++)
2944 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2945
2946 return true;
2947}
2948
2949static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2950{
2951 bool changed;
2952
2953 /*
2954 * The BIOS provided WM memory latency values are often
2955 * inadequate for high resolution displays. Adjust them.
2956 */
2957 changed = ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.pri_latency, 12);
2958 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.spr_latency, 12);
2959 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.cur_latency, 12);
2960
2961 if (!changed)
2962 return;
2963
2964 drm_dbg_kms(&dev_priv->drm,
2965 "WM latency values increased to avoid potential underruns\n");
2966 intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2967 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2968 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2969}
2970
2971static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
2972{
2973 /*
2974 * On some SNB machines (Thinkpad X220 Tablet at least)
2975 * LP3 usage can cause vblank interrupts to be lost.
2976 * The DEIIR bit will go high but it looks like the CPU
2977 * never gets interrupted.
2978 *
2979 * It's not clear whether other interrupt source could
2980 * be affected or if this is somehow limited to vblank
2981 * interrupts only. To play it safe we disable LP3
2982 * watermarks entirely.
2983 */
2984 if (dev_priv->display.wm.pri_latency[3] == 0 &&
2985 dev_priv->display.wm.spr_latency[3] == 0 &&
2986 dev_priv->display.wm.cur_latency[3] == 0)
2987 return;
2988
2989 dev_priv->display.wm.pri_latency[3] = 0;
2990 dev_priv->display.wm.spr_latency[3] = 0;
2991 dev_priv->display.wm.cur_latency[3] = 0;
2992
2993 drm_dbg_kms(&dev_priv->drm,
2994 "LP3 watermarks disabled due to potential for lost interrupts\n");
2995 intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2996 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2997 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2998}
2999
3000static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3001{
3002 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
3003 hsw_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
3004 else if (DISPLAY_VER(dev_priv) >= 6)
3005 snb_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
3006 else
3007 ilk_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
3008
3009 memcpy(dev_priv->display.wm.spr_latency, dev_priv->display.wm.pri_latency,
3010 sizeof(dev_priv->display.wm.pri_latency));
3011 memcpy(dev_priv->display.wm.cur_latency, dev_priv->display.wm.pri_latency,
3012 sizeof(dev_priv->display.wm.pri_latency));
3013
3014 intel_fixup_spr_wm_latency(dev_priv, dev_priv->display.wm.spr_latency);
3015 intel_fixup_cur_wm_latency(dev_priv, dev_priv->display.wm.cur_latency);
3016
3017 intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
3018 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
3019 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
3020
3021 if (DISPLAY_VER(dev_priv) == 6) {
3022 snb_wm_latency_quirk(dev_priv);
3023 snb_wm_lp3_irq_quirk(dev_priv);
3024 }
3025}
3026
3027static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3028 struct intel_pipe_wm *pipe_wm)
3029{
3030 /* LP0 watermark maximums depend on this pipe alone */
3031 const struct intel_wm_config config = {
3032 .num_pipes_active = 1,
3033 .sprites_enabled = pipe_wm->sprites_enabled,
3034 .sprites_scaled = pipe_wm->sprites_scaled,
3035 };
3036 struct ilk_wm_maximums max;
3037
3038 /* LP0 watermarks always use 1/2 DDB partitioning */
3039 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3040
3041 /* At least LP0 must be valid */
3042 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3043 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3044 return false;
3045 }
3046
3047 return true;
3048}
3049
3050/* Compute new watermarks for the pipe */
3051static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
3052 struct intel_crtc *crtc)
3053{
3054 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3055 struct intel_crtc_state *crtc_state =
3056 intel_atomic_get_new_crtc_state(state, crtc);
3057 struct intel_pipe_wm *pipe_wm;
3058 struct intel_plane *plane;
3059 const struct intel_plane_state *plane_state;
3060 const struct intel_plane_state *pristate = NULL;
3061 const struct intel_plane_state *sprstate = NULL;
3062 const struct intel_plane_state *curstate = NULL;
3063 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3064 struct ilk_wm_maximums max;
3065
3066 pipe_wm = &crtc_state->wm.ilk.optimal;
3067
3068 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3069 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3070 pristate = plane_state;
3071 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3072 sprstate = plane_state;
3073 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3074 curstate = plane_state;
3075 }
3076
3077 pipe_wm->pipe_enabled = crtc_state->hw.active;
3078 pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0);
3079 pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0);
3080
3081 usable_level = max_level;
3082
3083 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3084 if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3085 usable_level = 1;
3086
3087 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3088 if (pipe_wm->sprites_scaled)
3089 usable_level = 0;
3090
3091 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3092 ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3093 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3094
3095 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3096 return -EINVAL;
3097
3098 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3099
3100 for (level = 1; level <= usable_level; level++) {
3101 struct intel_wm_level *wm = &pipe_wm->wm[level];
3102
3103 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3104 pristate, sprstate, curstate, wm);
3105
3106 /*
3107 * Disable any watermark level that exceeds the
3108 * register maximums since such watermarks are
3109 * always invalid.
3110 */
3111 if (!ilk_validate_wm_level(level, &max, wm)) {
3112 memset(wm, 0, sizeof(*wm));
3113 break;
3114 }
3115 }
3116
3117 return 0;
3118}
3119
3120/*
3121 * Build a set of 'intermediate' watermark values that satisfy both the old
3122 * state and the new state. These can be programmed to the hardware
3123 * immediately.
3124 */
3125static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
3126 struct intel_crtc *crtc)
3127{
3128 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3129 struct intel_crtc_state *new_crtc_state =
3130 intel_atomic_get_new_crtc_state(state, crtc);
3131 const struct intel_crtc_state *old_crtc_state =
3132 intel_atomic_get_old_crtc_state(state, crtc);
3133 struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate;
3134 const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal;
3135 int level, max_level = ilk_wm_max_level(dev_priv);
3136
3137 /*
3138 * Start with the final, target watermarks, then combine with the
3139 * currently active watermarks to get values that are safe both before
3140 * and after the vblank.
3141 */
3142 *a = new_crtc_state->wm.ilk.optimal;
3143 if (!new_crtc_state->hw.active ||
3144 intel_crtc_needs_modeset(new_crtc_state) ||
3145 state->skip_intermediate_wm)
3146 return 0;
3147
3148 a->pipe_enabled |= b->pipe_enabled;
3149 a->sprites_enabled |= b->sprites_enabled;
3150 a->sprites_scaled |= b->sprites_scaled;
3151
3152 for (level = 0; level <= max_level; level++) {
3153 struct intel_wm_level *a_wm = &a->wm[level];
3154 const struct intel_wm_level *b_wm = &b->wm[level];
3155
3156 a_wm->enable &= b_wm->enable;
3157 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3158 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3159 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3160 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3161 }
3162
3163 /*
3164 * We need to make sure that these merged watermark values are
3165 * actually a valid configuration themselves. If they're not,
3166 * there's no safe way to transition from the old state to
3167 * the new state, so we need to fail the atomic transaction.
3168 */
3169 if (!ilk_validate_pipe_wm(dev_priv, a))
3170 return -EINVAL;
3171
3172 /*
3173 * If our intermediate WM are identical to the final WM, then we can
3174 * omit the post-vblank programming; only update if it's different.
3175 */
3176 if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0)
3177 new_crtc_state->wm.need_postvbl_update = true;
3178
3179 return 0;
3180}
3181
3182/*
3183 * Merge the watermarks from all active pipes for a specific level.
3184 */
3185static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3186 int level,
3187 struct intel_wm_level *ret_wm)
3188{
3189 const struct intel_crtc *crtc;
3190
3191 ret_wm->enable = true;
3192
3193 for_each_intel_crtc(&dev_priv->drm, crtc) {
3194 const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
3195 const struct intel_wm_level *wm = &active->wm[level];
3196
3197 if (!active->pipe_enabled)
3198 continue;
3199
3200 /*
3201 * The watermark values may have been used in the past,
3202 * so we must maintain them in the registers for some
3203 * time even if the level is now disabled.
3204 */
3205 if (!wm->enable)
3206 ret_wm->enable = false;
3207
3208 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3209 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3210 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3211 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3212 }
3213}
3214
3215/*
3216 * Merge all low power watermarks for all active pipes.
3217 */
3218static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3219 const struct intel_wm_config *config,
3220 const struct ilk_wm_maximums *max,
3221 struct intel_pipe_wm *merged)
3222{
3223 int level, max_level = ilk_wm_max_level(dev_priv);
3224 int last_enabled_level = max_level;
3225
3226 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3227 if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3228 config->num_pipes_active > 1)
3229 last_enabled_level = 0;
3230
3231 /* ILK: FBC WM must be disabled always */
3232 merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
3233
3234 /* merge each WM1+ level */
3235 for (level = 1; level <= max_level; level++) {
3236 struct intel_wm_level *wm = &merged->wm[level];
3237
3238 ilk_merge_wm_level(dev_priv, level, wm);
3239
3240 if (level > last_enabled_level)
3241 wm->enable = false;
3242 else if (!ilk_validate_wm_level(level, max, wm))
3243 /* make sure all following levels get disabled */
3244 last_enabled_level = level - 1;
3245
3246 /*
3247 * The spec says it is preferred to disable
3248 * FBC WMs instead of disabling a WM level.
3249 */
3250 if (wm->fbc_val > max->fbc) {
3251 if (wm->enable)
3252 merged->fbc_wm_enabled = false;
3253 wm->fbc_val = 0;
3254 }
3255 }
3256
3257 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3258 if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) &&
3259 dev_priv->params.enable_fbc && !merged->fbc_wm_enabled) {
3260 for (level = 2; level <= max_level; level++) {
3261 struct intel_wm_level *wm = &merged->wm[level];
3262
3263 wm->enable = false;
3264 }
3265 }
3266}
3267
3268static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3269{
3270 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3271 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3272}
3273
3274/* The value we need to program into the WM_LPx latency field */
3275static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3276 int level)
3277{
3278 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3279 return 2 * level;
3280 else
3281 return dev_priv->display.wm.pri_latency[level];
3282}
3283
3284static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3285 const struct intel_pipe_wm *merged,
3286 enum intel_ddb_partitioning partitioning,
3287 struct ilk_wm_values *results)
3288{
3289 struct intel_crtc *crtc;
3290 int level, wm_lp;
3291
3292 results->enable_fbc_wm = merged->fbc_wm_enabled;
3293 results->partitioning = partitioning;
3294
3295 /* LP1+ register values */
3296 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3297 const struct intel_wm_level *r;
3298
3299 level = ilk_wm_lp_to_level(wm_lp, merged);
3300
3301 r = &merged->wm[level];
3302
3303 /*
3304 * Maintain the watermark values even if the level is
3305 * disabled. Doing otherwise could cause underruns.
3306 */
3307 results->wm_lp[wm_lp - 1] =
3308 WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) |
3309 WM_LP_PRIMARY(r->pri_val) |
3310 WM_LP_CURSOR(r->cur_val);
3311
3312 if (r->enable)
3313 results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE;
3314
3315 if (DISPLAY_VER(dev_priv) >= 8)
3316 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val);
3317 else
3318 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val);
3319
3320 results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val);
3321
3322 /*
3323 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the
3324 * level is disabled. Doing otherwise could cause underruns.
3325 */
3326 if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) {
3327 drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3328 results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE;
3329 }
3330 }
3331
3332 /* LP0 register values */
3333 for_each_intel_crtc(&dev_priv->drm, crtc) {
3334 enum pipe pipe = crtc->pipe;
3335 const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
3336 const struct intel_wm_level *r = &pipe_wm->wm[0];
3337
3338 if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3339 continue;
3340
3341 results->wm_pipe[pipe] =
3342 WM0_PIPE_PRIMARY(r->pri_val) |
3343 WM0_PIPE_SPRITE(r->spr_val) |
3344 WM0_PIPE_CURSOR(r->cur_val);
3345 }
3346}
3347
3348/* Find the result with the highest level enabled. Check for enable_fbc_wm in
3349 * case both are at the same level. Prefer r1 in case they're the same. */
3350static struct intel_pipe_wm *
3351ilk_find_best_result(struct drm_i915_private *dev_priv,
3352 struct intel_pipe_wm *r1,
3353 struct intel_pipe_wm *r2)
3354{
3355 int level, max_level = ilk_wm_max_level(dev_priv);
3356 int level1 = 0, level2 = 0;
3357
3358 for (level = 1; level <= max_level; level++) {
3359 if (r1->wm[level].enable)
3360 level1 = level;
3361 if (r2->wm[level].enable)
3362 level2 = level;
3363 }
3364
3365 if (level1 == level2) {
3366 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3367 return r2;
3368 else
3369 return r1;
3370 } else if (level1 > level2) {
3371 return r1;
3372 } else {
3373 return r2;
3374 }
3375}
3376
3377/* dirty bits used to track which watermarks need changes */
3378#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3379#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3380#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3381#define WM_DIRTY_FBC (1 << 24)
3382#define WM_DIRTY_DDB (1 << 25)
3383
3384static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3385 const struct ilk_wm_values *old,
3386 const struct ilk_wm_values *new)
3387{
3388 unsigned int dirty = 0;
3389 enum pipe pipe;
3390 int wm_lp;
3391
3392 for_each_pipe(dev_priv, pipe) {
3393 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3394 dirty |= WM_DIRTY_PIPE(pipe);
3395 /* Must disable LP1+ watermarks too */
3396 dirty |= WM_DIRTY_LP_ALL;
3397 }
3398 }
3399
3400 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3401 dirty |= WM_DIRTY_FBC;
3402 /* Must disable LP1+ watermarks too */
3403 dirty |= WM_DIRTY_LP_ALL;
3404 }
3405
3406 if (old->partitioning != new->partitioning) {
3407 dirty |= WM_DIRTY_DDB;
3408 /* Must disable LP1+ watermarks too */
3409 dirty |= WM_DIRTY_LP_ALL;
3410 }
3411
3412 /* LP1+ watermarks already deemed dirty, no need to continue */
3413 if (dirty & WM_DIRTY_LP_ALL)
3414 return dirty;
3415
3416 /* Find the lowest numbered LP1+ watermark in need of an update... */
3417 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3418 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3419 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3420 break;
3421 }
3422
3423 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3424 for (; wm_lp <= 3; wm_lp++)
3425 dirty |= WM_DIRTY_LP(wm_lp);
3426
3427 return dirty;
3428}
3429
3430static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3431 unsigned int dirty)
3432{
3433 struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3434 bool changed = false;
3435
3436 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) {
3437 previous->wm_lp[2] &= ~WM_LP_ENABLE;
3438 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3439 changed = true;
3440 }
3441 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) {
3442 previous->wm_lp[1] &= ~WM_LP_ENABLE;
3443 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3444 changed = true;
3445 }
3446 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) {
3447 previous->wm_lp[0] &= ~WM_LP_ENABLE;
3448 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3449 changed = true;
3450 }
3451
3452 /*
3453 * Don't touch WM_LP_SPRITE_ENABLE here.
3454 * Doing so could cause underruns.
3455 */
3456
3457 return changed;
3458}
3459
3460/*
3461 * The spec says we shouldn't write when we don't need, because every write
3462 * causes WMs to be re-evaluated, expending some power.
3463 */
3464static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3465 struct ilk_wm_values *results)
3466{
3467 struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3468 unsigned int dirty;
3469
3470 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3471 if (!dirty)
3472 return;
3473
3474 _ilk_disable_lp_wm(dev_priv, dirty);
3475
3476 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3477 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3478 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3479 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3480 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3481 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3482
3483 if (dirty & WM_DIRTY_DDB) {
3484 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3485 intel_uncore_rmw(&dev_priv->uncore, WM_MISC, WM_MISC_DATA_PARTITION_5_6,
3486 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3487 WM_MISC_DATA_PARTITION_5_6);
3488 else
3489 intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL2, DISP_DATA_PARTITION_5_6,
3490 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3491 DISP_DATA_PARTITION_5_6);
3492 }
3493
3494 if (dirty & WM_DIRTY_FBC)
3495 intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, DISP_FBC_WM_DIS,
3496 results->enable_fbc_wm ? 0 : DISP_FBC_WM_DIS);
3497
3498 if (dirty & WM_DIRTY_LP(1) &&
3499 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3500 intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3501
3502 if (DISPLAY_VER(dev_priv) >= 7) {
3503 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3504 intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3505 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3506 intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3507 }
3508
3509 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3510 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3511 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3512 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3513 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3514 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3515
3516 dev_priv->display.wm.hw = *results;
3517}
3518
3519bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3520{
3521 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3522}
3523
3524static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
3525 struct intel_wm_config *config)
3526{
3527 struct intel_crtc *crtc;
3528
3529 /* Compute the currently _active_ config */
3530 for_each_intel_crtc(&dev_priv->drm, crtc) {
3531 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3532
3533 if (!wm->pipe_enabled)
3534 continue;
3535
3536 config->sprites_enabled |= wm->sprites_enabled;
3537 config->sprites_scaled |= wm->sprites_scaled;
3538 config->num_pipes_active++;
3539 }
3540}
3541
3542static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3543{
3544 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3545 struct ilk_wm_maximums max;
3546 struct intel_wm_config config = {};
3547 struct ilk_wm_values results = {};
3548 enum intel_ddb_partitioning partitioning;
3549
3550 ilk_compute_wm_config(dev_priv, &config);
3551
3552 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
3553 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
3554
3555 /* 5/6 split only in single pipe config on IVB+ */
3556 if (DISPLAY_VER(dev_priv) >= 7 &&
3557 config.num_pipes_active == 1 && config.sprites_enabled) {
3558 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
3559 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
3560
3561 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
3562 } else {
3563 best_lp_wm = &lp_wm_1_2;
3564 }
3565
3566 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3567 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3568
3569 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
3570
3571 ilk_write_wm_values(dev_priv, &results);
3572}
3573
3574static void ilk_initial_watermarks(struct intel_atomic_state *state,
3575 struct intel_crtc *crtc)
3576{
3577 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3578 const struct intel_crtc_state *crtc_state =
3579 intel_atomic_get_new_crtc_state(state, crtc);
3580
3581 mutex_lock(&dev_priv->display.wm.wm_mutex);
3582 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
3583 ilk_program_watermarks(dev_priv);
3584 mutex_unlock(&dev_priv->display.wm.wm_mutex);
3585}
3586
3587static void ilk_optimize_watermarks(struct intel_atomic_state *state,
3588 struct intel_crtc *crtc)
3589{
3590 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3591 const struct intel_crtc_state *crtc_state =
3592 intel_atomic_get_new_crtc_state(state, crtc);
3593
3594 if (!crtc_state->wm.need_postvbl_update)
3595 return;
3596
3597 mutex_lock(&dev_priv->display.wm.wm_mutex);
3598 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
3599 ilk_program_watermarks(dev_priv);
3600 mutex_unlock(&dev_priv->display.wm.wm_mutex);
3601}
3602
3603static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
3604{
3605 struct drm_device *dev = crtc->base.dev;
3606 struct drm_i915_private *dev_priv = to_i915(dev);
3607 struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
3608 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
3609 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
3610 enum pipe pipe = crtc->pipe;
3611
3612 hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
3613
3614 memset(active, 0, sizeof(*active));
3615
3616 active->pipe_enabled = crtc->active;
3617
3618 if (active->pipe_enabled) {
3619 u32 tmp = hw->wm_pipe[pipe];
3620
3621 /*
3622 * For active pipes LP0 watermark is marked as
3623 * enabled, and LP1+ watermaks as disabled since
3624 * we can't really reverse compute them in case
3625 * multiple pipes are active.
3626 */
3627 active->wm[0].enable = true;
3628 active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp);
3629 active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp);
3630 active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp);
3631 } else {
3632 int level, max_level = ilk_wm_max_level(dev_priv);
3633
3634 /*
3635 * For inactive pipes, all watermark levels
3636 * should be marked as enabled but zeroed,
3637 * which is what we'd compute them to.
3638 */
3639 for (level = 0; level <= max_level; level++)
3640 active->wm[level].enable = true;
3641 }
3642
3643 crtc->wm.active.ilk = *active;
3644}
3645
3646#define _FW_WM(value, plane) \
3647 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3648#define _FW_WM_VLV(value, plane) \
3649 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3650
3651static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
3652 struct g4x_wm_values *wm)
3653{
3654 u32 tmp;
3655
3656 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
3657 wm->sr.plane = _FW_WM(tmp, SR);
3658 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3659 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
3660 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
3661
3662 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
3663 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
3664 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
3665 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
3666 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
3667 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3668 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
3669
3670 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
3671 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
3672 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3673 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
3674 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
3675}
3676
3677static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3678 struct vlv_wm_values *wm)
3679{
3680 enum pipe pipe;
3681 u32 tmp;
3682
3683 for_each_pipe(dev_priv, pipe) {
3684 tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
3685
3686 wm->ddl[pipe].plane[PLANE_PRIMARY] =
3687 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3688 wm->ddl[pipe].plane[PLANE_CURSOR] =
3689 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3690 wm->ddl[pipe].plane[PLANE_SPRITE0] =
3691 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3692 wm->ddl[pipe].plane[PLANE_SPRITE1] =
3693 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3694 }
3695
3696 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
3697 wm->sr.plane = _FW_WM(tmp, SR);
3698 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3699 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
3700 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
3701
3702 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
3703 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
3704 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3705 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
3706
3707 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
3708 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3709
3710 if (IS_CHERRYVIEW(dev_priv)) {
3711 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
3712 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3713 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3714
3715 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
3716 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
3717 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
3718
3719 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
3720 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
3721 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
3722
3723 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3724 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3725 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3726 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3727 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
3728 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3729 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3730 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3731 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3732 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3733 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3734 } else {
3735 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
3736 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3737 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3738
3739 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3740 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3741 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3742 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3743 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3744 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3745 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3746 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3747 }
3748}
3749
3750#undef _FW_WM
3751#undef _FW_WM_VLV
3752
3753void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
3754{
3755 struct g4x_wm_values *wm = &dev_priv->display.wm.g4x;
3756 struct intel_crtc *crtc;
3757
3758 g4x_read_wm_values(dev_priv, wm);
3759
3760 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
3761
3762 for_each_intel_crtc(&dev_priv->drm, crtc) {
3763 struct intel_crtc_state *crtc_state =
3764 to_intel_crtc_state(crtc->base.state);
3765 struct g4x_wm_state *active = &crtc->wm.active.g4x;
3766 struct g4x_pipe_wm *raw;
3767 enum pipe pipe = crtc->pipe;
3768 enum plane_id plane_id;
3769 int level, max_level;
3770
3771 active->cxsr = wm->cxsr;
3772 active->hpll_en = wm->hpll_en;
3773 active->fbc_en = wm->fbc_en;
3774
3775 active->sr = wm->sr;
3776 active->hpll = wm->hpll;
3777
3778 for_each_plane_id_on_crtc(crtc, plane_id) {
3779 active->wm.plane[plane_id] =
3780 wm->pipe[pipe].plane[plane_id];
3781 }
3782
3783 if (wm->cxsr && wm->hpll_en)
3784 max_level = G4X_WM_LEVEL_HPLL;
3785 else if (wm->cxsr)
3786 max_level = G4X_WM_LEVEL_SR;
3787 else
3788 max_level = G4X_WM_LEVEL_NORMAL;
3789
3790 level = G4X_WM_LEVEL_NORMAL;
3791 raw = &crtc_state->wm.g4x.raw[level];
3792 for_each_plane_id_on_crtc(crtc, plane_id)
3793 raw->plane[plane_id] = active->wm.plane[plane_id];
3794
3795 level = G4X_WM_LEVEL_SR;
3796 if (level > max_level)
3797 goto out;
3798
3799 raw = &crtc_state->wm.g4x.raw[level];
3800 raw->plane[PLANE_PRIMARY] = active->sr.plane;
3801 raw->plane[PLANE_CURSOR] = active->sr.cursor;
3802 raw->plane[PLANE_SPRITE0] = 0;
3803 raw->fbc = active->sr.fbc;
3804
3805 level = G4X_WM_LEVEL_HPLL;
3806 if (level > max_level)
3807 goto out;
3808
3809 raw = &crtc_state->wm.g4x.raw[level];
3810 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
3811 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
3812 raw->plane[PLANE_SPRITE0] = 0;
3813 raw->fbc = active->hpll.fbc;
3814
3815 level++;
3816 out:
3817 for_each_plane_id_on_crtc(crtc, plane_id)
3818 g4x_raw_plane_wm_set(crtc_state, level,
3819 plane_id, USHRT_MAX);
3820 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
3821
3822 g4x_invalidate_wms(crtc, active, level);
3823
3824 crtc_state->wm.g4x.optimal = *active;
3825 crtc_state->wm.g4x.intermediate = *active;
3826
3827 drm_dbg_kms(&dev_priv->drm,
3828 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
3829 pipe_name(pipe),
3830 wm->pipe[pipe].plane[PLANE_PRIMARY],
3831 wm->pipe[pipe].plane[PLANE_CURSOR],
3832 wm->pipe[pipe].plane[PLANE_SPRITE0]);
3833 }
3834
3835 drm_dbg_kms(&dev_priv->drm,
3836 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
3837 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
3838 drm_dbg_kms(&dev_priv->drm,
3839 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
3840 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
3841 drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
3842 str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en),
3843 str_yes_no(wm->fbc_en));
3844}
3845
3846void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
3847{
3848 struct intel_plane *plane;
3849 struct intel_crtc *crtc;
3850
3851 mutex_lock(&dev_priv->display.wm.wm_mutex);
3852
3853 for_each_intel_plane(&dev_priv->drm, plane) {
3854 struct intel_crtc *crtc =
3855 intel_crtc_for_pipe(dev_priv, plane->pipe);
3856 struct intel_crtc_state *crtc_state =
3857 to_intel_crtc_state(crtc->base.state);
3858 struct intel_plane_state *plane_state =
3859 to_intel_plane_state(plane->base.state);
3860 enum plane_id plane_id = plane->id;
3861 int level, num_levels = intel_wm_num_levels(dev_priv);
3862
3863 if (plane_state->uapi.visible)
3864 continue;
3865
3866 for (level = 0; level < num_levels; level++) {
3867 struct g4x_pipe_wm *raw =
3868 &crtc_state->wm.g4x.raw[level];
3869
3870 raw->plane[plane_id] = 0;
3871
3872 if (plane_id == PLANE_PRIMARY)
3873 raw->fbc = 0;
3874 }
3875 }
3876
3877 for_each_intel_crtc(&dev_priv->drm, crtc) {
3878 struct intel_crtc_state *crtc_state =
3879 to_intel_crtc_state(crtc->base.state);
3880 int ret;
3881
3882 ret = _g4x_compute_pipe_wm(crtc_state);
3883 drm_WARN_ON(&dev_priv->drm, ret);
3884
3885 crtc_state->wm.g4x.intermediate =
3886 crtc_state->wm.g4x.optimal;
3887 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
3888 }
3889
3890 g4x_program_watermarks(dev_priv);
3891
3892 mutex_unlock(&dev_priv->display.wm.wm_mutex);
3893}
3894
3895void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
3896{
3897 struct vlv_wm_values *wm = &dev_priv->display.wm.vlv;
3898 struct intel_crtc *crtc;
3899 u32 val;
3900
3901 vlv_read_wm_values(dev_priv, wm);
3902
3903 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3904 wm->level = VLV_WM_LEVEL_PM2;
3905
3906 if (IS_CHERRYVIEW(dev_priv)) {
3907 vlv_punit_get(dev_priv);
3908
3909 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
3910 if (val & DSP_MAXFIFO_PM5_ENABLE)
3911 wm->level = VLV_WM_LEVEL_PM5;
3912
3913 /*
3914 * If DDR DVFS is disabled in the BIOS, Punit
3915 * will never ack the request. So if that happens
3916 * assume we don't have to enable/disable DDR DVFS
3917 * dynamically. To test that just set the REQ_ACK
3918 * bit to poke the Punit, but don't change the
3919 * HIGH/LOW bits so that we don't actually change
3920 * the current state.
3921 */
3922 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3923 val |= FORCE_DDR_FREQ_REQ_ACK;
3924 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3925
3926 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3927 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3928 drm_dbg_kms(&dev_priv->drm,
3929 "Punit not acking DDR DVFS request, "
3930 "assuming DDR DVFS is disabled\n");
3931 dev_priv->display.wm.max_level = VLV_WM_LEVEL_PM5;
3932 } else {
3933 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3934 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3935 wm->level = VLV_WM_LEVEL_DDR_DVFS;
3936 }
3937
3938 vlv_punit_put(dev_priv);
3939 }
3940
3941 for_each_intel_crtc(&dev_priv->drm, crtc) {
3942 struct intel_crtc_state *crtc_state =
3943 to_intel_crtc_state(crtc->base.state);
3944 struct vlv_wm_state *active = &crtc->wm.active.vlv;
3945 const struct vlv_fifo_state *fifo_state =
3946 &crtc_state->wm.vlv.fifo_state;
3947 enum pipe pipe = crtc->pipe;
3948 enum plane_id plane_id;
3949 int level;
3950
3951 vlv_get_fifo_size(crtc_state);
3952
3953 active->num_levels = wm->level + 1;
3954 active->cxsr = wm->cxsr;
3955
3956 for (level = 0; level < active->num_levels; level++) {
3957 struct g4x_pipe_wm *raw =
3958 &crtc_state->wm.vlv.raw[level];
3959
3960 active->sr[level].plane = wm->sr.plane;
3961 active->sr[level].cursor = wm->sr.cursor;
3962
3963 for_each_plane_id_on_crtc(crtc, plane_id) {
3964 active->wm[level].plane[plane_id] =
3965 wm->pipe[pipe].plane[plane_id];
3966
3967 raw->plane[plane_id] =
3968 vlv_invert_wm_value(active->wm[level].plane[plane_id],
3969 fifo_state->plane[plane_id]);
3970 }
3971 }
3972
3973 for_each_plane_id_on_crtc(crtc, plane_id)
3974 vlv_raw_plane_wm_set(crtc_state, level,
3975 plane_id, USHRT_MAX);
3976 vlv_invalidate_wms(crtc, active, level);
3977
3978 crtc_state->wm.vlv.optimal = *active;
3979 crtc_state->wm.vlv.intermediate = *active;
3980
3981 drm_dbg_kms(&dev_priv->drm,
3982 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3983 pipe_name(pipe),
3984 wm->pipe[pipe].plane[PLANE_PRIMARY],
3985 wm->pipe[pipe].plane[PLANE_CURSOR],
3986 wm->pipe[pipe].plane[PLANE_SPRITE0],
3987 wm->pipe[pipe].plane[PLANE_SPRITE1]);
3988 }
3989
3990 drm_dbg_kms(&dev_priv->drm,
3991 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
3992 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
3993}
3994
3995void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
3996{
3997 struct intel_plane *plane;
3998 struct intel_crtc *crtc;
3999
4000 mutex_lock(&dev_priv->display.wm.wm_mutex);
4001
4002 for_each_intel_plane(&dev_priv->drm, plane) {
4003 struct intel_crtc *crtc =
4004 intel_crtc_for_pipe(dev_priv, plane->pipe);
4005 struct intel_crtc_state *crtc_state =
4006 to_intel_crtc_state(crtc->base.state);
4007 struct intel_plane_state *plane_state =
4008 to_intel_plane_state(plane->base.state);
4009 enum plane_id plane_id = plane->id;
4010 int level, num_levels = intel_wm_num_levels(dev_priv);
4011
4012 if (plane_state->uapi.visible)
4013 continue;
4014
4015 for (level = 0; level < num_levels; level++) {
4016 struct g4x_pipe_wm *raw =
4017 &crtc_state->wm.vlv.raw[level];
4018
4019 raw->plane[plane_id] = 0;
4020 }
4021 }
4022
4023 for_each_intel_crtc(&dev_priv->drm, crtc) {
4024 struct intel_crtc_state *crtc_state =
4025 to_intel_crtc_state(crtc->base.state);
4026 int ret;
4027
4028 ret = _vlv_compute_pipe_wm(crtc_state);
4029 drm_WARN_ON(&dev_priv->drm, ret);
4030
4031 crtc_state->wm.vlv.intermediate =
4032 crtc_state->wm.vlv.optimal;
4033 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
4034 }
4035
4036 vlv_program_watermarks(dev_priv);
4037
4038 mutex_unlock(&dev_priv->display.wm.wm_mutex);
4039}
4040
4041/*
4042 * FIXME should probably kill this and improve
4043 * the real watermark readout/sanitation instead
4044 */
4045static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
4046{
4047 intel_uncore_rmw(&dev_priv->uncore, WM3_LP_ILK, WM_LP_ENABLE, 0);
4048 intel_uncore_rmw(&dev_priv->uncore, WM2_LP_ILK, WM_LP_ENABLE, 0);
4049 intel_uncore_rmw(&dev_priv->uncore, WM1_LP_ILK, WM_LP_ENABLE, 0);
4050
4051 /*
4052 * Don't touch WM_LP_SPRITE_ENABLE here.
4053 * Doing so could cause underruns.
4054 */
4055}
4056
4057void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
4058{
4059 struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
4060 struct intel_crtc *crtc;
4061
4062 ilk_init_lp_watermarks(dev_priv);
4063
4064 for_each_intel_crtc(&dev_priv->drm, crtc)
4065 ilk_pipe_wm_get_hw_state(crtc);
4066
4067 hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
4068 hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
4069 hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
4070
4071 hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
4072 if (DISPLAY_VER(dev_priv) >= 7) {
4073 hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
4074 hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
4075 }
4076
4077 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4078 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4079 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4080 else if (IS_IVYBRIDGE(dev_priv))
4081 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4082 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4083
4084 hw->enable_fbc_wm =
4085 !(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4086}
4087
4088static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
4089{
4090 /*
4091 * On Ibex Peak and Cougar Point, we need to disable clock
4092 * gating for the panel power sequencer or it will fail to
4093 * start up when no ports are active.
4094 */
4095 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4096}
4097
4098static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
4099{
4100 enum pipe pipe;
4101
4102 for_each_pipe(dev_priv, pipe) {
4103 intel_uncore_rmw(&dev_priv->uncore, DSPCNTR(pipe), 0, DISP_TRICKLE_FEED_DISABLE);
4104
4105 intel_uncore_rmw(&dev_priv->uncore, DSPSURF(pipe), 0, 0);
4106 intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
4107 }
4108}
4109
4110static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
4111{
4112 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4113
4114 /*
4115 * Required for FBC
4116 * WaFbcDisableDpfcClockGating:ilk
4117 */
4118 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4119 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4120 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4121
4122 intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
4123 MARIUNIT_CLOCK_GATE_DISABLE |
4124 SVSMUNIT_CLOCK_GATE_DISABLE);
4125 intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
4126 VFMUNIT_CLOCK_GATE_DISABLE);
4127
4128 /*
4129 * According to the spec the following bits should be set in
4130 * order to enable memory self-refresh
4131 * The bit 22/21 of 0x42004
4132 * The bit 5 of 0x42020
4133 * The bit 15 of 0x45000
4134 */
4135 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
4136 (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
4137 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4138 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4139 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
4140 (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
4141 DISP_FBC_WM_DIS));
4142
4143 /*
4144 * Based on the document from hardware guys the following bits
4145 * should be set unconditionally in order to enable FBC.
4146 * The bit 22 of 0x42000
4147 * The bit 22 of 0x42004
4148 * The bit 7,8,9 of 0x42020.
4149 */
4150 if (IS_IRONLAKE_M(dev_priv)) {
4151 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4152 intel_uncore_rmw(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1, 0, ILK_FBCQ_DIS);
4153 intel_uncore_rmw(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, 0, ILK_DPARB_GATE);
4154 }
4155
4156 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
4157
4158 intel_uncore_rmw(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, 0, ILK_ELPIN_409_SELECT);
4159
4160 g4x_disable_trickle_feed(dev_priv);
4161
4162 ibx_init_clock_gating(dev_priv);
4163}
4164
4165static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
4166{
4167 enum pipe pipe;
4168 u32 val;
4169
4170 /*
4171 * On Ibex Peak and Cougar Point, we need to disable clock
4172 * gating for the panel power sequencer or it will fail to
4173 * start up when no ports are active.
4174 */
4175 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4176 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4177 PCH_CPUNIT_CLOCK_GATE_DISABLE);
4178 intel_uncore_rmw(&dev_priv->uncore, SOUTH_CHICKEN2, 0, DPLS_EDP_PPS_FIX_DIS);
4179 /* The below fixes the weird display corruption, a few pixels shifted
4180 * downward, on (only) LVDS of some HP laptops with IVY.
4181 */
4182 for_each_pipe(dev_priv, pipe) {
4183 val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
4184 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4185 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4186 if (dev_priv->display.vbt.fdi_rx_polarity_inverted)
4187 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4188 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4189 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4190 intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
4191 }
4192 /* WADP0ClockGatingDisable */
4193 for_each_pipe(dev_priv, pipe) {
4194 intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
4195 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4196 }
4197}
4198
4199static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
4200{
4201 u32 tmp;
4202
4203 tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
4204 if (REG_FIELD_GET(SSKPD_WM0_MASK_SNB, tmp) != 12)
4205 drm_dbg_kms(&dev_priv->drm,
4206 "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
4207 tmp);
4208}
4209
4210static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
4211{
4212 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4213
4214 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
4215
4216 intel_uncore_rmw(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, 0, ILK_ELPIN_409_SELECT);
4217
4218 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
4219 intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
4220 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4221 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4222
4223 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4224 * gating disable must be set. Failure to set it results in
4225 * flickering pixels due to Z write ordering failures after
4226 * some amount of runtime in the Mesa "fire" demo, and Unigine
4227 * Sanctuary and Tropics, and apparently anything else with
4228 * alpha test or pixel discard.
4229 *
4230 * According to the spec, bit 11 (RCCUNIT) must also be set,
4231 * but we didn't debug actual testcases to find it out.
4232 *
4233 * WaDisableRCCUnitClockGating:snb
4234 * WaDisableRCPBUnitClockGating:snb
4235 */
4236 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
4237 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4238 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4239
4240 /*
4241 * According to the spec the following bits should be
4242 * set in order to enable memory self-refresh and fbc:
4243 * The bit21 and bit22 of 0x42000
4244 * The bit21 and bit22 of 0x42004
4245 * The bit5 and bit7 of 0x42020
4246 * The bit14 of 0x70180
4247 * The bit14 of 0x71180
4248 *
4249 * WaFbcAsynchFlipDisableFbcQueue:snb
4250 */
4251 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
4252 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
4253 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4254 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
4255 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
4256 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4257 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
4258 intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
4259 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4260 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4261
4262 g4x_disable_trickle_feed(dev_priv);
4263
4264 cpt_init_clock_gating(dev_priv);
4265
4266 gen6_check_mch_setup(dev_priv);
4267}
4268
4269static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
4270{
4271 /*
4272 * TODO: this bit should only be enabled when really needed, then
4273 * disabled when not needed anymore in order to save power.
4274 */
4275 if (HAS_PCH_LPT_LP(dev_priv))
4276 intel_uncore_rmw(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
4277 0, PCH_LP_PARTITION_LEVEL_DISABLE);
4278
4279 /* WADPOClockGatingDisable:hsw */
4280 intel_uncore_rmw(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
4281 0, TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4282}
4283
4284static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
4285{
4286 if (HAS_PCH_LPT_LP(dev_priv)) {
4287 u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
4288
4289 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4290 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
4291 }
4292}
4293
4294static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
4295 int general_prio_credits,
4296 int high_prio_credits)
4297{
4298 u32 misccpctl;
4299 u32 val;
4300
4301 /* WaTempDisableDOPClkGating:bdw */
4302 misccpctl = intel_gt_mcr_multicast_rmw(to_gt(dev_priv), GEN8_MISCCPCTL,
4303 GEN8_DOP_CLOCK_GATE_ENABLE, 0);
4304
4305 val = intel_gt_mcr_read_any(to_gt(dev_priv), GEN8_L3SQCREG1);
4306 val &= ~L3_PRIO_CREDITS_MASK;
4307 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
4308 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
4309 intel_gt_mcr_multicast_write(to_gt(dev_priv), GEN8_L3SQCREG1, val);
4310
4311 /*
4312 * Wait at least 100 clocks before re-enabling clock gating.
4313 * See the definition of L3SQCREG1 in BSpec.
4314 */
4315 intel_gt_mcr_read_any(to_gt(dev_priv), GEN8_L3SQCREG1);
4316 udelay(1);
4317 intel_gt_mcr_multicast_write(to_gt(dev_priv), GEN8_MISCCPCTL, misccpctl);
4318}
4319
4320static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
4321{
4322 /* Wa_1409120013:icl,ehl */
4323 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
4324 DPFC_CHICKEN_COMP_DUMMY_PIXEL);
4325
4326 /*Wa_14010594013:icl, ehl */
4327 intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
4328 0, ICL_DELAY_PMRSP);
4329}
4330
4331static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
4332{
4333 /* Wa_1409120013 */
4334 if (DISPLAY_VER(dev_priv) == 12)
4335 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
4336 DPFC_CHICKEN_COMP_DUMMY_PIXEL);
4337
4338 /* Wa_1409825376:tgl (pre-prod)*/
4339 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
4340 intel_uncore_rmw(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, 0, TGL_VRH_GATING_DIS);
4341
4342 /* Wa_14013723622:tgl,rkl,dg1,adl-s */
4343 if (DISPLAY_VER(dev_priv) == 12)
4344 intel_uncore_rmw(&dev_priv->uncore, CLKREQ_POLICY,
4345 CLKREQ_POLICY_MEM_UP_OVRD, 0);
4346}
4347
4348static void adlp_init_clock_gating(struct drm_i915_private *dev_priv)
4349{
4350 gen12lp_init_clock_gating(dev_priv);
4351
4352 /* Wa_22011091694:adlp */
4353 intel_de_rmw(dev_priv, GEN9_CLKGATE_DIS_5, 0, DPCE_GATING_DIS);
4354
4355 /* Bspec/49189 Initialize Sequence */
4356 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, DDI_CLOCK_REG_ACCESS, 0);
4357}
4358
4359static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
4360{
4361 gen12lp_init_clock_gating(dev_priv);
4362
4363 /* Wa_1409836686:dg1[a0] */
4364 if (IS_DG1_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0))
4365 intel_uncore_rmw(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, 0, DPT_GATING_DIS);
4366}
4367
4368static void xehpsdv_init_clock_gating(struct drm_i915_private *dev_priv)
4369{
4370 /* Wa_22010146351:xehpsdv */
4371 if (IS_XEHPSDV_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0))
4372 intel_uncore_rmw(&dev_priv->uncore, XEHP_CLOCK_GATE_DIS, 0, SGR_DIS);
4373}
4374
4375static void dg2_init_clock_gating(struct drm_i915_private *i915)
4376{
4377 /* Wa_22010954014:dg2 */
4378 intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0,
4379 SGSI_SIDECLK_DIS);
4380
4381 /*
4382 * Wa_14010733611:dg2_g10
4383 * Wa_22010146351:dg2_g10
4384 */
4385 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0))
4386 intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0,
4387 SGR_DIS | SGGI_DIS);
4388}
4389
4390static void pvc_init_clock_gating(struct drm_i915_private *dev_priv)
4391{
4392 /* Wa_14012385139:pvc */
4393 if (IS_PVC_BD_STEP(dev_priv, STEP_A0, STEP_B0))
4394 intel_uncore_rmw(&dev_priv->uncore, XEHP_CLOCK_GATE_DIS, 0, SGR_DIS);
4395
4396 /* Wa_22010954014:pvc */
4397 if (IS_PVC_BD_STEP(dev_priv, STEP_A0, STEP_B0))
4398 intel_uncore_rmw(&dev_priv->uncore, XEHP_CLOCK_GATE_DIS, 0, SGSI_SIDECLK_DIS);
4399}
4400
4401static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
4402{
4403 if (!HAS_PCH_CNP(dev_priv))
4404 return;
4405
4406 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
4407 intel_uncore_rmw(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, 0, CNP_PWM_CGE_GATING_DISABLE);
4408}
4409
4410static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
4411{
4412 cnp_init_clock_gating(dev_priv);
4413 gen9_init_clock_gating(dev_priv);
4414
4415 /* WAC6entrylatency:cfl */
4416 intel_uncore_rmw(&dev_priv->uncore, FBC_LLC_READ_CTRL, 0, FBC_LLC_FULLY_OPEN);
4417
4418 /*
4419 * WaFbcTurnOffFbcWatermark:cfl
4420 * Display WA #0562: cfl
4421 */
4422 intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, 0, DISP_FBC_WM_DIS);
4423
4424 /*
4425 * WaFbcNukeOnHostModify:cfl
4426 * Display WA #0873: cfl
4427 */
4428 intel_uncore_rmw(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
4429 0, DPFC_NUKE_ON_ANY_MODIFICATION);
4430}
4431
4432static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
4433{
4434 gen9_init_clock_gating(dev_priv);
4435
4436 /* WAC6entrylatency:kbl */
4437 intel_uncore_rmw(&dev_priv->uncore, FBC_LLC_READ_CTRL, 0, FBC_LLC_FULLY_OPEN);
4438
4439 /* WaDisableSDEUnitClockGating:kbl */
4440 if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0))
4441 intel_uncore_rmw(&dev_priv->uncore, GEN8_UCGCTL6,
4442 0, GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
4443
4444 /* WaDisableGamClockGating:kbl */
4445 if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0))
4446 intel_uncore_rmw(&dev_priv->uncore, GEN6_UCGCTL1,
4447 0, GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
4448
4449 /*
4450 * WaFbcTurnOffFbcWatermark:kbl
4451 * Display WA #0562: kbl
4452 */
4453 intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, 0, DISP_FBC_WM_DIS);
4454
4455 /*
4456 * WaFbcNukeOnHostModify:kbl
4457 * Display WA #0873: kbl
4458 */
4459 intel_uncore_rmw(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
4460 0, DPFC_NUKE_ON_ANY_MODIFICATION);
4461}
4462
4463static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
4464{
4465 gen9_init_clock_gating(dev_priv);
4466
4467 /* WaDisableDopClockGating:skl */
4468 intel_gt_mcr_multicast_rmw(to_gt(dev_priv), GEN8_MISCCPCTL,
4469 GEN8_DOP_CLOCK_GATE_ENABLE, 0);
4470
4471 /* WAC6entrylatency:skl */
4472 intel_uncore_rmw(&dev_priv->uncore, FBC_LLC_READ_CTRL, 0, FBC_LLC_FULLY_OPEN);
4473
4474 /*
4475 * WaFbcTurnOffFbcWatermark:skl
4476 * Display WA #0562: skl
4477 */
4478 intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, 0, DISP_FBC_WM_DIS);
4479
4480 /*
4481 * WaFbcNukeOnHostModify:skl
4482 * Display WA #0873: skl
4483 */
4484 intel_uncore_rmw(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
4485 0, DPFC_NUKE_ON_ANY_MODIFICATION);
4486
4487 /*
4488 * WaFbcHighMemBwCorruptionAvoidance:skl
4489 * Display WA #0883: skl
4490 */
4491 intel_uncore_rmw(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A), 0, DPFC_DISABLE_DUMMY0);
4492}
4493
4494static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
4495{
4496 enum pipe pipe;
4497
4498 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
4499 intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A), 0, HSW_FBCQ_DIS);
4500
4501 /* WaSwitchSolVfFArbitrationPriority:bdw */
4502 intel_uncore_rmw(&dev_priv->uncore, GAM_ECOCHK, 0, HSW_ECOCHK_ARB_PRIO_SOL);
4503
4504 /* WaPsrDPAMaskVBlankInSRD:bdw */
4505 intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PAR1_1, 0, DPA_MASK_VBLANK_SRD);
4506
4507 for_each_pipe(dev_priv, pipe) {
4508 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4509 intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
4510 0, BDW_DPRS_MASK_VBLANK_SRD);
4511 }
4512
4513 /* WaVSRefCountFullforceMissDisable:bdw */
4514 /* WaDSRefCountFullforceMissDisable:bdw */
4515 intel_uncore_rmw(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
4516 GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME, 0);
4517
4518 intel_uncore_write(&dev_priv->uncore, RING_PSMI_CTL(RENDER_RING_BASE),
4519 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
4520
4521 /* WaDisableSDEUnitClockGating:bdw */
4522 intel_uncore_rmw(&dev_priv->uncore, GEN8_UCGCTL6, 0, GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
4523
4524 /* WaProgramL3SqcReg1Default:bdw */
4525 gen8_set_l3sqc_credits(dev_priv, 30, 2);
4526
4527 /* WaKVMNotificationOnConfigChange:bdw */
4528 intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PAR2_1,
4529 0, KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
4530
4531 lpt_init_clock_gating(dev_priv);
4532
4533 /* WaDisableDopClockGating:bdw
4534 *
4535 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
4536 * clock gating.
4537 */
4538 intel_uncore_rmw(&dev_priv->uncore, GEN6_UCGCTL1, 0, GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
4539}
4540
4541static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
4542{
4543 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
4544 intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A), 0, HSW_FBCQ_DIS);
4545
4546 /* This is required by WaCatErrorRejectionIssue:hsw */
4547 intel_uncore_rmw(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4548 0, GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4549
4550 /* WaSwitchSolVfFArbitrationPriority:hsw */
4551 intel_uncore_rmw(&dev_priv->uncore, GAM_ECOCHK, 0, HSW_ECOCHK_ARB_PRIO_SOL);
4552
4553 lpt_init_clock_gating(dev_priv);
4554}
4555
4556static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
4557{
4558 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4559
4560 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
4561 intel_uncore_rmw(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1, 0, ILK_FBCQ_DIS);
4562
4563 /* WaDisableBackToBackFlipFix:ivb */
4564 intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
4565 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4566 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4567
4568 if (IS_IVB_GT1(dev_priv))
4569 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
4570 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4571 else {
4572 /* must write both registers */
4573 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
4574 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4575 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
4576 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4577 }
4578
4579 /*
4580 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4581 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4582 */
4583 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
4584 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4585
4586 /* This is required by WaCatErrorRejectionIssue:ivb */
4587 intel_uncore_rmw(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4588 0, GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4589
4590 g4x_disable_trickle_feed(dev_priv);
4591
4592 intel_uncore_rmw(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, GEN6_MBC_SNPCR_MASK,
4593 GEN6_MBC_SNPCR_MED);
4594
4595 if (!HAS_PCH_NOP(dev_priv))
4596 cpt_init_clock_gating(dev_priv);
4597
4598 gen6_check_mch_setup(dev_priv);
4599}
4600
4601static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
4602{
4603 /* WaDisableBackToBackFlipFix:vlv */
4604 intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
4605 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4606 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4607
4608 /* WaDisableDopClockGating:vlv */
4609 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
4610 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4611
4612 /* This is required by WaCatErrorRejectionIssue:vlv */
4613 intel_uncore_rmw(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4614 0, GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4615
4616 /*
4617 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4618 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4619 */
4620 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
4621 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4622
4623 /* WaDisableL3Bank2xClockGate:vlv
4624 * Disabling L3 clock gating- MMIO 940c[25] = 1
4625 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
4626 intel_uncore_rmw(&dev_priv->uncore, GEN7_UCGCTL4, 0, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4627
4628 /*
4629 * WaDisableVLVClockGating_VBIIssue:vlv
4630 * Disable clock gating on th GCFG unit to prevent a delay
4631 * in the reporting of vblank events.
4632 */
4633 intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
4634}
4635
4636static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
4637{
4638 /* WaVSRefCountFullforceMissDisable:chv */
4639 /* WaDSRefCountFullforceMissDisable:chv */
4640 intel_uncore_rmw(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
4641 GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME, 0);
4642
4643 /* WaDisableSemaphoreAndSyncFlipWait:chv */
4644 intel_uncore_write(&dev_priv->uncore, RING_PSMI_CTL(RENDER_RING_BASE),
4645 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
4646
4647 /* WaDisableCSUnitClockGating:chv */
4648 intel_uncore_rmw(&dev_priv->uncore, GEN6_UCGCTL1, 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4649
4650 /* WaDisableSDEUnitClockGating:chv */
4651 intel_uncore_rmw(&dev_priv->uncore, GEN8_UCGCTL6, 0, GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
4652
4653 /*
4654 * WaProgramL3SqcReg1Default:chv
4655 * See gfxspecs/Related Documents/Performance Guide/
4656 * LSQC Setting Recommendations.
4657 */
4658 gen8_set_l3sqc_credits(dev_priv, 38, 2);
4659}
4660
4661static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
4662{
4663 u32 dspclk_gate;
4664
4665 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
4666 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4667 GS_UNIT_CLOCK_GATE_DISABLE |
4668 CL_UNIT_CLOCK_GATE_DISABLE);
4669 intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
4670 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4671 OVRUNIT_CLOCK_GATE_DISABLE |
4672 OVCUNIT_CLOCK_GATE_DISABLE;
4673 if (IS_GM45(dev_priv))
4674 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4675 intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D(dev_priv), dspclk_gate);
4676
4677 g4x_disable_trickle_feed(dev_priv);
4678}
4679
4680static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
4681{
4682 struct intel_uncore *uncore = &dev_priv->uncore;
4683
4684 intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4685 intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
4686 intel_uncore_write(uncore, DSPCLK_GATE_D(dev_priv), 0);
4687 intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
4688 intel_uncore_write16(uncore, DEUC, 0);
4689 intel_uncore_write(uncore,
4690 MI_ARB_STATE,
4691 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4692}
4693
4694static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
4695{
4696 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4697 I965_RCC_CLOCK_GATE_DISABLE |
4698 I965_RCPB_CLOCK_GATE_DISABLE |
4699 I965_ISC_CLOCK_GATE_DISABLE |
4700 I965_FBC_CLOCK_GATE_DISABLE);
4701 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
4702 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
4703 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4704}
4705
4706static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
4707{
4708 u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
4709
4710 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4711 DSTATE_DOT_CLOCK_GATING;
4712 intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
4713
4714 if (IS_PINEVIEW(dev_priv))
4715 intel_uncore_write(&dev_priv->uncore, ECOSKPD(RENDER_RING_BASE),
4716 _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4717
4718 /* IIR "flip pending" means done if this bit is set */
4719 intel_uncore_write(&dev_priv->uncore, ECOSKPD(RENDER_RING_BASE),
4720 _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4721
4722 /* interrupts should cause a wake up from C3 */
4723 intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
4724
4725 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4726 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4727
4728 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
4729 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4730}
4731
4732static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
4733{
4734 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4735
4736 /* interrupts should cause a wake up from C3 */
4737 intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
4738 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
4739
4740 intel_uncore_write(&dev_priv->uncore, MEM_MODE,
4741 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
4742
4743 /*
4744 * Have FBC ignore 3D activity since we use software
4745 * render tracking, and otherwise a pure 3D workload
4746 * (even if it just renders a single frame and then does
4747 * abosultely nothing) would not allow FBC to recompress
4748 * until a 2D blit occurs.
4749 */
4750 intel_uncore_write(&dev_priv->uncore, SCPD0,
4751 _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
4752}
4753
4754static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
4755{
4756 intel_uncore_write(&dev_priv->uncore, MEM_MODE,
4757 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
4758 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
4759}
4760
4761void intel_init_clock_gating(struct drm_i915_private *dev_priv)
4762{
4763 dev_priv->clock_gating_funcs->init_clock_gating(dev_priv);
4764}
4765
4766void intel_suspend_hw(struct drm_i915_private *dev_priv)
4767{
4768 if (HAS_PCH_LPT(dev_priv))
4769 lpt_suspend_hw(dev_priv);
4770}
4771
4772static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
4773{
4774 drm_dbg_kms(&dev_priv->drm,
4775 "No clock gating settings or workarounds applied.\n");
4776}
4777
4778#define CG_FUNCS(platform) \
4779static const struct drm_i915_clock_gating_funcs platform##_clock_gating_funcs = { \
4780 .init_clock_gating = platform##_init_clock_gating, \
4781}
4782
4783CG_FUNCS(pvc);
4784CG_FUNCS(dg2);
4785CG_FUNCS(xehpsdv);
4786CG_FUNCS(adlp);
4787CG_FUNCS(dg1);
4788CG_FUNCS(gen12lp);
4789CG_FUNCS(icl);
4790CG_FUNCS(cfl);
4791CG_FUNCS(skl);
4792CG_FUNCS(kbl);
4793CG_FUNCS(bxt);
4794CG_FUNCS(glk);
4795CG_FUNCS(bdw);
4796CG_FUNCS(chv);
4797CG_FUNCS(hsw);
4798CG_FUNCS(ivb);
4799CG_FUNCS(vlv);
4800CG_FUNCS(gen6);
4801CG_FUNCS(ilk);
4802CG_FUNCS(g4x);
4803CG_FUNCS(i965gm);
4804CG_FUNCS(i965g);
4805CG_FUNCS(gen3);
4806CG_FUNCS(i85x);
4807CG_FUNCS(i830);
4808CG_FUNCS(nop);
4809#undef CG_FUNCS
4810
4811/**
4812 * intel_init_clock_gating_hooks - setup the clock gating hooks
4813 * @dev_priv: device private
4814 *
4815 * Setup the hooks that configure which clocks of a given platform can be
4816 * gated and also apply various GT and display specific workarounds for these
4817 * platforms. Note that some GT specific workarounds are applied separately
4818 * when GPU contexts or batchbuffers start their execution.
4819 */
4820void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
4821{
4822 if (IS_PONTEVECCHIO(dev_priv))
4823 dev_priv->clock_gating_funcs = &pvc_clock_gating_funcs;
4824 else if (IS_DG2(dev_priv))
4825 dev_priv->clock_gating_funcs = &dg2_clock_gating_funcs;
4826 else if (IS_XEHPSDV(dev_priv))
4827 dev_priv->clock_gating_funcs = &xehpsdv_clock_gating_funcs;
4828 else if (IS_ALDERLAKE_P(dev_priv))
4829 dev_priv->clock_gating_funcs = &adlp_clock_gating_funcs;
4830 else if (IS_DG1(dev_priv))
4831 dev_priv->clock_gating_funcs = &dg1_clock_gating_funcs;
4832 else if (GRAPHICS_VER(dev_priv) == 12)
4833 dev_priv->clock_gating_funcs = &gen12lp_clock_gating_funcs;
4834 else if (GRAPHICS_VER(dev_priv) == 11)
4835 dev_priv->clock_gating_funcs = &icl_clock_gating_funcs;
4836 else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
4837 dev_priv->clock_gating_funcs = &cfl_clock_gating_funcs;
4838 else if (IS_SKYLAKE(dev_priv))
4839 dev_priv->clock_gating_funcs = &skl_clock_gating_funcs;
4840 else if (IS_KABYLAKE(dev_priv))
4841 dev_priv->clock_gating_funcs = &kbl_clock_gating_funcs;
4842 else if (IS_BROXTON(dev_priv))
4843 dev_priv->clock_gating_funcs = &bxt_clock_gating_funcs;
4844 else if (IS_GEMINILAKE(dev_priv))
4845 dev_priv->clock_gating_funcs = &glk_clock_gating_funcs;
4846 else if (IS_BROADWELL(dev_priv))
4847 dev_priv->clock_gating_funcs = &bdw_clock_gating_funcs;
4848 else if (IS_CHERRYVIEW(dev_priv))
4849 dev_priv->clock_gating_funcs = &chv_clock_gating_funcs;
4850 else if (IS_HASWELL(dev_priv))
4851 dev_priv->clock_gating_funcs = &hsw_clock_gating_funcs;
4852 else if (IS_IVYBRIDGE(dev_priv))
4853 dev_priv->clock_gating_funcs = &ivb_clock_gating_funcs;
4854 else if (IS_VALLEYVIEW(dev_priv))
4855 dev_priv->clock_gating_funcs = &vlv_clock_gating_funcs;
4856 else if (GRAPHICS_VER(dev_priv) == 6)
4857 dev_priv->clock_gating_funcs = &gen6_clock_gating_funcs;
4858 else if (GRAPHICS_VER(dev_priv) == 5)
4859 dev_priv->clock_gating_funcs = &ilk_clock_gating_funcs;
4860 else if (IS_G4X(dev_priv))
4861 dev_priv->clock_gating_funcs = &g4x_clock_gating_funcs;
4862 else if (IS_I965GM(dev_priv))
4863 dev_priv->clock_gating_funcs = &i965gm_clock_gating_funcs;
4864 else if (IS_I965G(dev_priv))
4865 dev_priv->clock_gating_funcs = &i965g_clock_gating_funcs;
4866 else if (GRAPHICS_VER(dev_priv) == 3)
4867 dev_priv->clock_gating_funcs = &gen3_clock_gating_funcs;
4868 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
4869 dev_priv->clock_gating_funcs = &i85x_clock_gating_funcs;
4870 else if (GRAPHICS_VER(dev_priv) == 2)
4871 dev_priv->clock_gating_funcs = &i830_clock_gating_funcs;
4872 else {
4873 MISSING_CASE(INTEL_DEVID(dev_priv));
4874 dev_priv->clock_gating_funcs = &nop_clock_gating_funcs;
4875 }
4876}
4877
4878static const struct intel_wm_funcs ilk_wm_funcs = {
4879 .compute_pipe_wm = ilk_compute_pipe_wm,
4880 .compute_intermediate_wm = ilk_compute_intermediate_wm,
4881 .initial_watermarks = ilk_initial_watermarks,
4882 .optimize_watermarks = ilk_optimize_watermarks,
4883};
4884
4885static const struct intel_wm_funcs vlv_wm_funcs = {
4886 .compute_pipe_wm = vlv_compute_pipe_wm,
4887 .compute_intermediate_wm = vlv_compute_intermediate_wm,
4888 .initial_watermarks = vlv_initial_watermarks,
4889 .optimize_watermarks = vlv_optimize_watermarks,
4890 .atomic_update_watermarks = vlv_atomic_update_fifo,
4891};
4892
4893static const struct intel_wm_funcs g4x_wm_funcs = {
4894 .compute_pipe_wm = g4x_compute_pipe_wm,
4895 .compute_intermediate_wm = g4x_compute_intermediate_wm,
4896 .initial_watermarks = g4x_initial_watermarks,
4897 .optimize_watermarks = g4x_optimize_watermarks,
4898};
4899
4900static const struct intel_wm_funcs pnv_wm_funcs = {
4901 .update_wm = pnv_update_wm,
4902};
4903
4904static const struct intel_wm_funcs i965_wm_funcs = {
4905 .update_wm = i965_update_wm,
4906};
4907
4908static const struct intel_wm_funcs i9xx_wm_funcs = {
4909 .update_wm = i9xx_update_wm,
4910};
4911
4912static const struct intel_wm_funcs i845_wm_funcs = {
4913 .update_wm = i845_update_wm,
4914};
4915
4916static const struct intel_wm_funcs nop_funcs = {
4917};
4918
4919/* Set up chip specific power management-related functions */
4920void intel_init_pm(struct drm_i915_private *dev_priv)
4921{
4922 if (DISPLAY_VER(dev_priv) >= 9) {
4923 skl_wm_init(dev_priv);
4924 return;
4925 }
4926
4927 /* For cxsr */
4928 if (IS_PINEVIEW(dev_priv))
4929 pnv_get_mem_freq(dev_priv);
4930 else if (GRAPHICS_VER(dev_priv) == 5)
4931 ilk_get_mem_freq(dev_priv);
4932
4933 /* For FIFO watermark updates */
4934 if (HAS_PCH_SPLIT(dev_priv)) {
4935 ilk_setup_wm_latency(dev_priv);
4936
4937 if ((DISPLAY_VER(dev_priv) == 5 && dev_priv->display.wm.pri_latency[1] &&
4938 dev_priv->display.wm.spr_latency[1] && dev_priv->display.wm.cur_latency[1]) ||
4939 (DISPLAY_VER(dev_priv) != 5 && dev_priv->display.wm.pri_latency[0] &&
4940 dev_priv->display.wm.spr_latency[0] && dev_priv->display.wm.cur_latency[0])) {
4941 dev_priv->display.funcs.wm = &ilk_wm_funcs;
4942 } else {
4943 drm_dbg_kms(&dev_priv->drm,
4944 "Failed to read display plane latency. "
4945 "Disable CxSR\n");
4946 dev_priv->display.funcs.wm = &nop_funcs;
4947 }
4948 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4949 vlv_setup_wm_latency(dev_priv);
4950 dev_priv->display.funcs.wm = &vlv_wm_funcs;
4951 } else if (IS_G4X(dev_priv)) {
4952 g4x_setup_wm_latency(dev_priv);
4953 dev_priv->display.funcs.wm = &g4x_wm_funcs;
4954 } else if (IS_PINEVIEW(dev_priv)) {
4955 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
4956 dev_priv->is_ddr3,
4957 dev_priv->fsb_freq,
4958 dev_priv->mem_freq)) {
4959 drm_info(&dev_priv->drm,
4960 "failed to find known CxSR latency "
4961 "(found ddr%s fsb freq %d, mem freq %d), "
4962 "disabling CxSR\n",
4963 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4964 dev_priv->fsb_freq, dev_priv->mem_freq);
4965 /* Disable CxSR and never update its watermark again */
4966 intel_set_memory_cxsr(dev_priv, false);
4967 dev_priv->display.funcs.wm = &nop_funcs;
4968 } else
4969 dev_priv->display.funcs.wm = &pnv_wm_funcs;
4970 } else if (DISPLAY_VER(dev_priv) == 4) {
4971 dev_priv->display.funcs.wm = &i965_wm_funcs;
4972 } else if (DISPLAY_VER(dev_priv) == 3) {
4973 dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4974 } else if (DISPLAY_VER(dev_priv) == 2) {
4975 if (INTEL_NUM_PIPES(dev_priv) == 1)
4976 dev_priv->display.funcs.wm = &i845_wm_funcs;
4977 else
4978 dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4979 } else {
4980 drm_err(&dev_priv->drm,
4981 "unexpected fall-through in %s\n", __func__);
4982 dev_priv->display.funcs.wm = &nop_funcs;
4983 }
4984}
4985
4986void intel_pm_setup(struct drm_i915_private *dev_priv)
4987{
4988 dev_priv->runtime_pm.suspended = false;
4989 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
4990}