Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v4.6
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29#include "i915_drv.h"
  30#include "intel_drv.h"
 
 
 
 
  31#include "../../../platform/x86/intel_ips.h"
  32#include <linux/module.h>
  33
  34/**
  35 * DOC: RC6
  36 *
  37 * RC6 is a special power stage which allows the GPU to enter an very
  38 * low-voltage mode when idle, using down to 0V while at this stage.  This
  39 * stage is entered automatically when the GPU is idle when RC6 support is
  40 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  41 *
  42 * There are different RC6 modes available in Intel GPU, which differentiate
  43 * among each other with the latency required to enter and leave RC6 and
  44 * voltage consumed by the GPU in different states.
  45 *
  46 * The combination of the following flags define which states GPU is allowed
  47 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  48 * RC6pp is deepest RC6. Their support by hardware varies according to the
  49 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  50 * which brings the most power savings; deeper states save more power, but
  51 * require higher latency to switch to and wake up.
  52 */
  53#define INTEL_RC6_ENABLE			(1<<0)
  54#define INTEL_RC6p_ENABLE			(1<<1)
  55#define INTEL_RC6pp_ENABLE			(1<<2)
  56
  57static void bxt_init_clock_gating(struct drm_device *dev)
 
 
 
 
 
 
 
  58{
  59	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61	/* WaDisableSDEUnitClockGating:bxt */
  62	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  63		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  64
  65	/*
  66	 * FIXME:
  67	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  68	 */
  69	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  70		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  71
  72	/*
  73	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
  74	 * to stay fully on.
  75	 */
  76	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  77		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  78			   PWM1_GATING_DIS | PWM2_GATING_DIS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79}
  80
  81static void i915_pineview_get_mem_freq(struct drm_device *dev)
  82{
  83	struct drm_i915_private *dev_priv = dev->dev_private;
  84	u32 tmp;
  85
  86	tmp = I915_READ(CLKCFG);
  87
  88	switch (tmp & CLKCFG_FSB_MASK) {
  89	case CLKCFG_FSB_533:
  90		dev_priv->fsb_freq = 533; /* 133*4 */
  91		break;
  92	case CLKCFG_FSB_800:
  93		dev_priv->fsb_freq = 800; /* 200*4 */
  94		break;
  95	case CLKCFG_FSB_667:
  96		dev_priv->fsb_freq =  667; /* 167*4 */
  97		break;
  98	case CLKCFG_FSB_400:
  99		dev_priv->fsb_freq = 400; /* 100*4 */
 100		break;
 101	}
 102
 103	switch (tmp & CLKCFG_MEM_MASK) {
 104	case CLKCFG_MEM_533:
 105		dev_priv->mem_freq = 533;
 106		break;
 107	case CLKCFG_MEM_667:
 108		dev_priv->mem_freq = 667;
 109		break;
 110	case CLKCFG_MEM_800:
 111		dev_priv->mem_freq = 800;
 112		break;
 113	}
 114
 115	/* detect pineview DDR3 setting */
 116	tmp = I915_READ(CSHRDDR3CTL);
 117	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 118}
 119
 120static void i915_ironlake_get_mem_freq(struct drm_device *dev)
 121{
 122	struct drm_i915_private *dev_priv = dev->dev_private;
 123	u16 ddrpll, csipll;
 124
 125	ddrpll = I915_READ16(DDRMPLL1);
 126	csipll = I915_READ16(CSIPLL0);
 127
 128	switch (ddrpll & 0xff) {
 129	case 0xc:
 130		dev_priv->mem_freq = 800;
 131		break;
 132	case 0x10:
 133		dev_priv->mem_freq = 1066;
 134		break;
 135	case 0x14:
 136		dev_priv->mem_freq = 1333;
 137		break;
 138	case 0x18:
 139		dev_priv->mem_freq = 1600;
 140		break;
 141	default:
 142		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 143				 ddrpll & 0xff);
 144		dev_priv->mem_freq = 0;
 145		break;
 146	}
 147
 148	dev_priv->ips.r_t = dev_priv->mem_freq;
 149
 150	switch (csipll & 0x3ff) {
 151	case 0x00c:
 152		dev_priv->fsb_freq = 3200;
 153		break;
 154	case 0x00e:
 155		dev_priv->fsb_freq = 3733;
 156		break;
 157	case 0x010:
 158		dev_priv->fsb_freq = 4266;
 159		break;
 160	case 0x012:
 161		dev_priv->fsb_freq = 4800;
 162		break;
 163	case 0x014:
 164		dev_priv->fsb_freq = 5333;
 165		break;
 166	case 0x016:
 167		dev_priv->fsb_freq = 5866;
 168		break;
 169	case 0x018:
 170		dev_priv->fsb_freq = 6400;
 171		break;
 172	default:
 173		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 174				 csipll & 0x3ff);
 175		dev_priv->fsb_freq = 0;
 176		break;
 177	}
 178
 179	if (dev_priv->fsb_freq == 3200) {
 180		dev_priv->ips.c_m = 0;
 181	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 182		dev_priv->ips.c_m = 1;
 183	} else {
 184		dev_priv->ips.c_m = 2;
 185	}
 186}
 187
 188static const struct cxsr_latency cxsr_latency_table[] = {
 189	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 190	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 191	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 192	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 193	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 194
 195	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 196	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 197	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 198	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 199	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 200
 201	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 202	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 203	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 204	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 205	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 206
 207	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 208	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 209	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 210	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 211	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 212
 213	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 214	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 215	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 216	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 217	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 218
 219	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 220	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 221	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 222	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 223	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 224};
 225
 226static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
 227							 int is_ddr3,
 228							 int fsb,
 229							 int mem)
 230{
 231	const struct cxsr_latency *latency;
 232	int i;
 233
 234	if (fsb == 0 || mem == 0)
 235		return NULL;
 236
 237	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 238		latency = &cxsr_latency_table[i];
 239		if (is_desktop == latency->is_desktop &&
 240		    is_ddr3 == latency->is_ddr3 &&
 241		    fsb == latency->fsb_freq && mem == latency->mem_freq)
 242			return latency;
 243	}
 244
 245	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 246
 247	return NULL;
 248}
 249
 250static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 251{
 252	u32 val;
 253
 254	mutex_lock(&dev_priv->rps.hw_lock);
 255
 256	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 257	if (enable)
 258		val &= ~FORCE_DDR_HIGH_FREQ;
 259	else
 260		val |= FORCE_DDR_HIGH_FREQ;
 261	val &= ~FORCE_DDR_LOW_FREQ;
 262	val |= FORCE_DDR_FREQ_REQ_ACK;
 263	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 264
 265	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 266		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 267		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
 
 268
 269	mutex_unlock(&dev_priv->rps.hw_lock);
 270}
 271
 272static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 273{
 274	u32 val;
 275
 276	mutex_lock(&dev_priv->rps.hw_lock);
 277
 278	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
 279	if (enable)
 280		val |= DSP_MAXFIFO_PM5_ENABLE;
 281	else
 282		val &= ~DSP_MAXFIFO_PM5_ENABLE;
 283	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
 284
 285	mutex_unlock(&dev_priv->rps.hw_lock);
 286}
 287
 288#define FW_WM(value, plane) \
 289	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 290
 291void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 292{
 293	struct drm_device *dev = dev_priv->dev;
 294	u32 val;
 295
 296	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
 297		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 298		POSTING_READ(FW_BLC_SELF_VLV);
 299		dev_priv->wm.vlv.cxsr = enable;
 300	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
 301		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 302		POSTING_READ(FW_BLC_SELF);
 303	} else if (IS_PINEVIEW(dev)) {
 304		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
 305		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
 306		I915_WRITE(DSPFW3, val);
 307		POSTING_READ(DSPFW3);
 308	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
 
 
 
 
 
 
 309		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 310			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 311		I915_WRITE(FW_BLC_SELF, val);
 312		POSTING_READ(FW_BLC_SELF);
 313	} else if (IS_I915GM(dev)) {
 
 
 
 
 
 
 314		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 315			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 316		I915_WRITE(INSTPM, val);
 317		POSTING_READ(INSTPM);
 318	} else {
 319		return;
 320	}
 321
 322	DRM_DEBUG_KMS("memory self-refresh is %s\n",
 323		      enable ? "enabled" : "disabled");
 
 
 
 
 
 324}
 325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326
 327/*
 328 * Latency for FIFO fetches is dependent on several factors:
 329 *   - memory configuration (speed, channels)
 330 *   - chipset
 331 *   - current MCH state
 332 * It can be fairly high in some situations, so here we assume a fairly
 333 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 334 * set this value too high, the FIFO will fetch frequently to stay full)
 335 * and power consumption (set it too low to save power and we might see
 336 * FIFO underruns and display "flicker").
 337 *
 338 * A value of 5us seems to be a good balance; safe for very low end
 339 * platforms but not overly aggressive on lower latency configs.
 340 */
 341static const int pessimal_latency_ns = 5000;
 342
 343#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 344	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 345
 346static int vlv_get_fifo_size(struct drm_device *dev,
 347			      enum pipe pipe, int plane)
 348{
 349	struct drm_i915_private *dev_priv = dev->dev_private;
 350	int sprite0_start, sprite1_start, size;
 
 
 
 
 351
 352	switch (pipe) {
 353		uint32_t dsparb, dsparb2, dsparb3;
 354	case PIPE_A:
 355		dsparb = I915_READ(DSPARB);
 356		dsparb2 = I915_READ(DSPARB2);
 357		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 358		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 359		break;
 360	case PIPE_B:
 361		dsparb = I915_READ(DSPARB);
 362		dsparb2 = I915_READ(DSPARB2);
 363		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 364		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 365		break;
 366	case PIPE_C:
 367		dsparb2 = I915_READ(DSPARB2);
 368		dsparb3 = I915_READ(DSPARB3);
 369		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 370		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 371		break;
 372	default:
 373		return 0;
 374	}
 375
 376	switch (plane) {
 377	case 0:
 378		size = sprite0_start;
 379		break;
 380	case 1:
 381		size = sprite1_start - sprite0_start;
 382		break;
 383	case 2:
 384		size = 512 - 1 - sprite1_start;
 385		break;
 386	default:
 387		return 0;
 388	}
 389
 390	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
 391		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
 392		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
 393		      size);
 394
 395	return size;
 396}
 397
 398static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
 
 399{
 400	struct drm_i915_private *dev_priv = dev->dev_private;
 401	uint32_t dsparb = I915_READ(DSPARB);
 402	int size;
 403
 404	size = dsparb & 0x7f;
 405	if (plane)
 406		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 407
 408	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 409		      plane ? "B" : "A", size);
 410
 411	return size;
 412}
 413
 414static int i830_get_fifo_size(struct drm_device *dev, int plane)
 
 415{
 416	struct drm_i915_private *dev_priv = dev->dev_private;
 417	uint32_t dsparb = I915_READ(DSPARB);
 418	int size;
 419
 420	size = dsparb & 0x1ff;
 421	if (plane)
 422		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 423	size >>= 1; /* Convert to cachelines */
 424
 425	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 426		      plane ? "B" : "A", size);
 427
 428	return size;
 429}
 430
 431static int i845_get_fifo_size(struct drm_device *dev, int plane)
 
 432{
 433	struct drm_i915_private *dev_priv = dev->dev_private;
 434	uint32_t dsparb = I915_READ(DSPARB);
 435	int size;
 436
 437	size = dsparb & 0x7f;
 438	size >>= 2; /* Convert to cachelines */
 439
 440	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 441		      plane ? "B" : "A",
 442		      size);
 443
 444	return size;
 445}
 446
 447/* Pineview has different values for various configs */
 448static const struct intel_watermark_params pineview_display_wm = {
 449	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 450	.max_wm = PINEVIEW_MAX_WM,
 451	.default_wm = PINEVIEW_DFT_WM,
 452	.guard_size = PINEVIEW_GUARD_WM,
 453	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 454};
 455static const struct intel_watermark_params pineview_display_hplloff_wm = {
 
 456	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 457	.max_wm = PINEVIEW_MAX_WM,
 458	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 459	.guard_size = PINEVIEW_GUARD_WM,
 460	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 461};
 462static const struct intel_watermark_params pineview_cursor_wm = {
 
 463	.fifo_size = PINEVIEW_CURSOR_FIFO,
 464	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 465	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 466	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 467	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 468};
 469static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 
 470	.fifo_size = PINEVIEW_CURSOR_FIFO,
 471	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 472	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 473	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 474	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 475};
 476static const struct intel_watermark_params g4x_wm_info = {
 477	.fifo_size = G4X_FIFO_SIZE,
 478	.max_wm = G4X_MAX_WM,
 479	.default_wm = G4X_MAX_WM,
 480	.guard_size = 2,
 481	.cacheline_size = G4X_FIFO_LINE_SIZE,
 482};
 483static const struct intel_watermark_params g4x_cursor_wm_info = {
 484	.fifo_size = I965_CURSOR_FIFO,
 485	.max_wm = I965_CURSOR_MAX_WM,
 486	.default_wm = I965_CURSOR_DFT_WM,
 487	.guard_size = 2,
 488	.cacheline_size = G4X_FIFO_LINE_SIZE,
 489};
 490static const struct intel_watermark_params valleyview_wm_info = {
 491	.fifo_size = VALLEYVIEW_FIFO_SIZE,
 492	.max_wm = VALLEYVIEW_MAX_WM,
 493	.default_wm = VALLEYVIEW_MAX_WM,
 494	.guard_size = 2,
 495	.cacheline_size = G4X_FIFO_LINE_SIZE,
 496};
 497static const struct intel_watermark_params valleyview_cursor_wm_info = {
 498	.fifo_size = I965_CURSOR_FIFO,
 499	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
 500	.default_wm = I965_CURSOR_DFT_WM,
 501	.guard_size = 2,
 502	.cacheline_size = G4X_FIFO_LINE_SIZE,
 503};
 504static const struct intel_watermark_params i965_cursor_wm_info = {
 505	.fifo_size = I965_CURSOR_FIFO,
 506	.max_wm = I965_CURSOR_MAX_WM,
 507	.default_wm = I965_CURSOR_DFT_WM,
 508	.guard_size = 2,
 509	.cacheline_size = I915_FIFO_LINE_SIZE,
 510};
 
 511static const struct intel_watermark_params i945_wm_info = {
 512	.fifo_size = I945_FIFO_SIZE,
 513	.max_wm = I915_MAX_WM,
 514	.default_wm = 1,
 515	.guard_size = 2,
 516	.cacheline_size = I915_FIFO_LINE_SIZE,
 517};
 
 518static const struct intel_watermark_params i915_wm_info = {
 519	.fifo_size = I915_FIFO_SIZE,
 520	.max_wm = I915_MAX_WM,
 521	.default_wm = 1,
 522	.guard_size = 2,
 523	.cacheline_size = I915_FIFO_LINE_SIZE,
 524};
 
 525static const struct intel_watermark_params i830_a_wm_info = {
 526	.fifo_size = I855GM_FIFO_SIZE,
 527	.max_wm = I915_MAX_WM,
 528	.default_wm = 1,
 529	.guard_size = 2,
 530	.cacheline_size = I830_FIFO_LINE_SIZE,
 531};
 
 532static const struct intel_watermark_params i830_bc_wm_info = {
 533	.fifo_size = I855GM_FIFO_SIZE,
 534	.max_wm = I915_MAX_WM/2,
 535	.default_wm = 1,
 536	.guard_size = 2,
 537	.cacheline_size = I830_FIFO_LINE_SIZE,
 538};
 
 539static const struct intel_watermark_params i845_wm_info = {
 540	.fifo_size = I830_FIFO_SIZE,
 541	.max_wm = I915_MAX_WM,
 542	.default_wm = 1,
 543	.guard_size = 2,
 544	.cacheline_size = I830_FIFO_LINE_SIZE,
 545};
 546
 547/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548 * intel_calculate_wm - calculate watermark level
 549 * @clock_in_khz: pixel clock
 550 * @wm: chip FIFO params
 
 551 * @cpp: bytes per pixel
 552 * @latency_ns: memory latency for the platform
 553 *
 554 * Calculate the watermark level (the level at which the display plane will
 555 * start fetching from memory again).  Each chip has a different display
 556 * FIFO size and allocation, so the caller needs to figure that out and pass
 557 * in the correct intel_watermark_params structure.
 558 *
 559 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 560 * on the pixel size.  When it reaches the watermark level, it'll start
 561 * fetching FIFO line sized based chunks from memory until the FIFO fills
 562 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 563 * will occur, and a display engine hang could result.
 564 */
 565static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 566					const struct intel_watermark_params *wm,
 567					int fifo_size, int cpp,
 568					unsigned long latency_ns)
 569{
 570	long entries_required, wm_size;
 571
 572	/*
 573	 * Note: we need to make sure we don't overflow for various clock &
 574	 * latency values.
 575	 * clocks go from a few thousand to several hundred thousand.
 576	 * latency is usually a few thousand
 577	 */
 578	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
 579		1000;
 580	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 581
 582	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 583
 584	wm_size = fifo_size - (entries_required + wm->guard_size);
 585
 586	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 
 587
 588	/* Don't promote wm_size to unsigned... */
 589	if (wm_size > (long)wm->max_wm)
 590		wm_size = wm->max_wm;
 591	if (wm_size <= 0)
 592		wm_size = wm->default_wm;
 593
 594	/*
 595	 * Bspec seems to indicate that the value shouldn't be lower than
 596	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 597	 * Lets go for 8 which is the burst size since certain platforms
 598	 * already use a hardcoded 8 (which is what the spec says should be
 599	 * done).
 600	 */
 601	if (wm_size <= 8)
 602		wm_size = 8;
 603
 604	return wm_size;
 605}
 606
 607static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608{
 609	struct drm_crtc *crtc, *enabled = NULL;
 610
 611	for_each_crtc(dev, crtc) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612		if (intel_crtc_active(crtc)) {
 613			if (enabled)
 614				return NULL;
 615			enabled = crtc;
 616		}
 617	}
 618
 619	return enabled;
 620}
 621
 622static void pineview_update_wm(struct drm_crtc *unused_crtc)
 623{
 624	struct drm_device *dev = unused_crtc->dev;
 625	struct drm_i915_private *dev_priv = dev->dev_private;
 626	struct drm_crtc *crtc;
 627	const struct cxsr_latency *latency;
 628	u32 reg;
 629	unsigned long wm;
 630
 631	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
 632					 dev_priv->fsb_freq, dev_priv->mem_freq);
 
 
 633	if (!latency) {
 634		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 
 635		intel_set_memory_cxsr(dev_priv, false);
 636		return;
 637	}
 638
 639	crtc = single_enabled_crtc(dev);
 640	if (crtc) {
 641		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 642		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 643		int clock = adjusted_mode->crtc_clock;
 
 
 
 644
 645		/* Display SR */
 646		wm = intel_calculate_wm(clock, &pineview_display_wm,
 647					pineview_display_wm.fifo_size,
 648					cpp, latency->display_sr);
 649		reg = I915_READ(DSPFW1);
 650		reg &= ~DSPFW_SR_MASK;
 651		reg |= FW_WM(wm, SR);
 652		I915_WRITE(DSPFW1, reg);
 653		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
 654
 655		/* cursor SR */
 656		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
 657					pineview_display_wm.fifo_size,
 658					cpp, latency->cursor_sr);
 659		reg = I915_READ(DSPFW3);
 660		reg &= ~DSPFW_CURSOR_SR_MASK;
 661		reg |= FW_WM(wm, CURSOR_SR);
 662		I915_WRITE(DSPFW3, reg);
 663
 664		/* Display HPLL off SR */
 665		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
 666					pineview_display_hplloff_wm.fifo_size,
 667					cpp, latency->display_hpll_disable);
 668		reg = I915_READ(DSPFW3);
 669		reg &= ~DSPFW_HPLL_SR_MASK;
 670		reg |= FW_WM(wm, HPLL_SR);
 671		I915_WRITE(DSPFW3, reg);
 672
 673		/* cursor HPLL off SR */
 674		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
 675					pineview_display_hplloff_wm.fifo_size,
 676					cpp, latency->cursor_hpll_disable);
 677		reg = I915_READ(DSPFW3);
 678		reg &= ~DSPFW_HPLL_CURSOR_MASK;
 679		reg |= FW_WM(wm, HPLL_CURSOR);
 680		I915_WRITE(DSPFW3, reg);
 681		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
 682
 683		intel_set_memory_cxsr(dev_priv, true);
 684	} else {
 685		intel_set_memory_cxsr(dev_priv, false);
 686	}
 687}
 688
 689static bool g4x_compute_wm0(struct drm_device *dev,
 690			    int plane,
 691			    const struct intel_watermark_params *display,
 692			    int display_latency_ns,
 693			    const struct intel_watermark_params *cursor,
 694			    int cursor_latency_ns,
 695			    int *plane_wm,
 696			    int *cursor_wm)
 697{
 698	struct drm_crtc *crtc;
 699	const struct drm_display_mode *adjusted_mode;
 700	int htotal, hdisplay, clock, cpp;
 701	int line_time_us, line_count;
 702	int entries, tlb_miss;
 703
 704	crtc = intel_get_crtc_for_plane(dev, plane);
 705	if (!intel_crtc_active(crtc)) {
 706		*cursor_wm = cursor->guard_size;
 707		*plane_wm = display->guard_size;
 708		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709	}
 710
 711	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 712	clock = adjusted_mode->crtc_clock;
 713	htotal = adjusted_mode->crtc_htotal;
 714	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 715	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 716
 717	/* Use the small buffer method to calculate plane watermark */
 718	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
 719	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
 720	if (tlb_miss > 0)
 721		entries += tlb_miss;
 722	entries = DIV_ROUND_UP(entries, display->cacheline_size);
 723	*plane_wm = entries + display->guard_size;
 724	if (*plane_wm > (int)display->max_wm)
 725		*plane_wm = display->max_wm;
 726
 727	/* Use the large buffer method to calculate cursor watermark */
 728	line_time_us = max(htotal * 1000 / clock, 1);
 729	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
 730	entries = line_count * crtc->cursor->state->crtc_w * cpp;
 731	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
 732	if (tlb_miss > 0)
 733		entries += tlb_miss;
 734	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 735	*cursor_wm = entries + cursor->guard_size;
 736	if (*cursor_wm > (int)cursor->max_wm)
 737		*cursor_wm = (int)cursor->max_wm;
 738
 739	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740}
 741
 742/*
 743 * Check the wm result.
 744 *
 745 * If any calculated watermark values is larger than the maximum value that
 746 * can be programmed into the associated watermark register, that watermark
 747 * must be disabled.
 748 */
 749static bool g4x_check_srwm(struct drm_device *dev,
 750			   int display_wm, int cursor_wm,
 751			   const struct intel_watermark_params *display,
 752			   const struct intel_watermark_params *cursor)
 753{
 754	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
 755		      display_wm, cursor_wm);
 756
 757	if (display_wm > display->max_wm) {
 758		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
 759			      display_wm, display->max_wm);
 760		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761	}
 
 762
 763	if (cursor_wm > cursor->max_wm) {
 764		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
 765			      cursor_wm, cursor->max_wm);
 766		return false;
 
 
 
 
 
 
 767	}
 
 768
 769	if (!(display_wm || cursor_wm)) {
 770		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
 771		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772	}
 773
 774	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775}
 776
 777static bool g4x_compute_srwm(struct drm_device *dev,
 778			     int plane,
 779			     int latency_ns,
 780			     const struct intel_watermark_params *display,
 781			     const struct intel_watermark_params *cursor,
 782			     int *display_wm, int *cursor_wm)
 783{
 784	struct drm_crtc *crtc;
 785	const struct drm_display_mode *adjusted_mode;
 786	int hdisplay, htotal, cpp, clock;
 787	unsigned long line_time_us;
 788	int line_count, line_size;
 789	int small, large;
 790	int entries;
 791
 792	if (!latency_ns) {
 793		*display_wm = *cursor_wm = 0;
 794		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795	}
 796
 797	crtc = intel_get_crtc_for_plane(dev, plane);
 798	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 799	clock = adjusted_mode->crtc_clock;
 800	htotal = adjusted_mode->crtc_htotal;
 801	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 802	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 803
 804	line_time_us = max(htotal * 1000 / clock, 1);
 805	line_count = (latency_ns / line_time_us + 1000) / 1000;
 806	line_size = hdisplay * cpp;
 807
 808	/* Use the minimum of the small and large buffer method for primary */
 809	small = ((clock * cpp / 1000) * latency_ns) / 1000;
 810	large = line_count * line_size;
 811
 812	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
 813	*display_wm = entries + display->guard_size;
 814
 815	/* calculate the self-refresh watermark for display cursor */
 816	entries = line_count * cpp * crtc->cursor->state->crtc_w;
 817	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 818	*cursor_wm = entries + cursor->guard_size;
 819
 820	return g4x_check_srwm(dev,
 821			      *display_wm, *cursor_wm,
 822			      display, cursor);
 823}
 824
 825#define FW_WM_VLV(value, plane) \
 826	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
 
 
 
 827
 828static void vlv_write_wm_values(struct intel_crtc *crtc,
 829				const struct vlv_wm_values *wm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830{
 
 831	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 832	enum pipe pipe = crtc->pipe;
 
 
 
 
 
 
 
 833
 834	I915_WRITE(VLV_DDL(pipe),
 835		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
 836		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
 837		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
 838		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
 839
 840	I915_WRITE(DSPFW1,
 841		   FW_WM(wm->sr.plane, SR) |
 842		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
 843		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
 844		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
 845	I915_WRITE(DSPFW2,
 846		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
 847		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
 848		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
 849	I915_WRITE(DSPFW3,
 850		   FW_WM(wm->sr.cursor, CURSOR_SR));
 851
 852	if (IS_CHERRYVIEW(dev_priv)) {
 853		I915_WRITE(DSPFW7_CHV,
 854			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 855			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 856		I915_WRITE(DSPFW8_CHV,
 857			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
 858			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
 859		I915_WRITE(DSPFW9_CHV,
 860			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
 861			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
 862		I915_WRITE(DSPHOWM,
 863			   FW_WM(wm->sr.plane >> 9, SR_HI) |
 864			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
 865			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
 866			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
 867			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 868			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 869			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 870			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 871			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 872			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 873	} else {
 874		I915_WRITE(DSPFW7,
 875			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 876			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 877		I915_WRITE(DSPHOWM,
 878			   FW_WM(wm->sr.plane >> 9, SR_HI) |
 879			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 880			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 881			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 882			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 883			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 884			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885	}
 886
 887	/* zero (unused) WM1 watermarks */
 888	I915_WRITE(DSPFW4, 0);
 889	I915_WRITE(DSPFW5, 0);
 890	I915_WRITE(DSPFW6, 0);
 891	I915_WRITE(DSPHOWM1, 0);
 892
 893	POSTING_READ(DSPFW1);
 
 
 
 
 
 
 
 
 
 894}
 895
 896#undef FW_WM_VLV
 
 
 
 897
 898enum vlv_wm_level {
 899	VLV_WM_LEVEL_PM2,
 900	VLV_WM_LEVEL_PM5,
 901	VLV_WM_LEVEL_DDR_DVFS,
 902};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904/* latency must be in 0.1us units. */
 905static unsigned int vlv_wm_method2(unsigned int pixel_rate,
 906				   unsigned int pipe_htotal,
 907				   unsigned int horiz_pixels,
 908				   unsigned int cpp,
 909				   unsigned int latency)
 910{
 911	unsigned int ret;
 912
 913	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
 914	ret = (ret + 1) * horiz_pixels * cpp;
 915	ret = DIV_ROUND_UP(ret, 64);
 916
 917	return ret;
 918}
 919
 920static void vlv_setup_wm_latency(struct drm_device *dev)
 921{
 922	struct drm_i915_private *dev_priv = dev->dev_private;
 923
 924	/* all latencies in usec */
 925	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
 926
 927	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
 928
 929	if (IS_CHERRYVIEW(dev_priv)) {
 930		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
 931		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
 932
 933		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
 934	}
 935}
 936
 937static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
 938				     struct intel_crtc *crtc,
 939				     const struct intel_plane_state *state,
 940				     int level)
 941{
 
 942	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
 943	int clock, htotal, cpp, width, wm;
 
 
 944
 945	if (dev_priv->wm.pri_latency[level] == 0)
 946		return USHRT_MAX;
 947
 948	if (!state->visible)
 949		return 0;
 950
 951	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
 952	clock = crtc->config->base.adjusted_mode.crtc_clock;
 953	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
 954	width = crtc->config->pipe_src_w;
 955	if (WARN_ON(htotal == 0))
 956		htotal = 1;
 957
 958	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
 959		/*
 960		 * FIXME the formula gives values that are
 961		 * too big for the cursor FIFO, and hence we
 962		 * would never be able to use cursors. For
 963		 * now just hardcode the watermark.
 964		 */
 965		wm = 63;
 966	} else {
 967		wm = vlv_wm_method2(clock, htotal, width, cpp,
 968				    dev_priv->wm.pri_latency[level] * 10);
 969	}
 970
 971	return min_t(int, wm, USHRT_MAX);
 972}
 973
 974static void vlv_compute_fifo(struct intel_crtc *crtc)
 975{
 976	struct drm_device *dev = crtc->base.dev;
 977	struct vlv_wm_state *wm_state = &crtc->wm_state;
 978	struct intel_plane *plane;
 979	unsigned int total_rate = 0;
 980	const int fifo_size = 512 - 1;
 
 
 
 
 
 
 
 
 
 981	int fifo_extra, fifo_left = fifo_size;
 
 
 
 982
 983	for_each_intel_plane_on_crtc(dev, crtc, plane) {
 984		struct intel_plane_state *state =
 985			to_intel_plane_state(plane->base.state);
 
 
 
 
 
 
 
 986
 987		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
 988			continue;
 
 
 989
 990		if (state->visible) {
 991			wm_state->num_active_planes++;
 992			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
 993		}
 994	}
 995
 996	for_each_intel_plane_on_crtc(dev, crtc, plane) {
 997		struct intel_plane_state *state =
 998			to_intel_plane_state(plane->base.state);
 999		unsigned int rate;
1000
1001		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1002			plane->wm.fifo_size = 63;
1003			continue;
1004		}
1005
1006		if (!state->visible) {
1007			plane->wm.fifo_size = 0;
1008			continue;
1009		}
1010
1011		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1012		plane->wm.fifo_size = fifo_size * rate / total_rate;
1013		fifo_left -= plane->wm.fifo_size;
1014	}
1015
1016	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
 
 
 
 
 
1017
1018	/* spread the remainder evenly */
1019	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1020		int plane_extra;
1021
1022		if (fifo_left == 0)
1023			break;
1024
1025		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1026			continue;
1027
1028		/* give it all to the first plane if none are active */
1029		if (plane->wm.fifo_size == 0 &&
1030		    wm_state->num_active_planes)
1031			continue;
1032
1033		plane_extra = min(fifo_extra, fifo_left);
1034		plane->wm.fifo_size += plane_extra;
1035		fifo_left -= plane_extra;
1036	}
1037
1038	WARN_ON(fifo_left != 0);
 
 
 
 
 
 
 
 
1039}
1040
1041static void vlv_invert_wms(struct intel_crtc *crtc)
 
 
1042{
1043	struct vlv_wm_state *wm_state = &crtc->wm_state;
1044	int level;
1045
1046	for (level = 0; level < wm_state->num_levels; level++) {
1047		struct drm_device *dev = crtc->base.dev;
1048		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1049		struct intel_plane *plane;
1050
1051		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1052		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1053
1054		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1055			switch (plane->base.type) {
1056				int sprite;
1057			case DRM_PLANE_TYPE_CURSOR:
1058				wm_state->wm[level].cursor = plane->wm.fifo_size -
1059					wm_state->wm[level].cursor;
1060				break;
1061			case DRM_PLANE_TYPE_PRIMARY:
1062				wm_state->wm[level].primary = plane->wm.fifo_size -
1063					wm_state->wm[level].primary;
1064				break;
1065			case DRM_PLANE_TYPE_OVERLAY:
1066				sprite = plane->plane;
1067				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1068					wm_state->wm[level].sprite[sprite];
1069				break;
1070			}
1071		}
1072	}
1073}
1074
1075static void vlv_compute_wm(struct intel_crtc *crtc)
1076{
1077	struct drm_device *dev = crtc->base.dev;
1078	struct vlv_wm_state *wm_state = &crtc->wm_state;
1079	struct intel_plane *plane;
1080	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1081	int level;
1082
1083	memset(wm_state, 0, sizeof(*wm_state));
 
 
 
 
 
 
 
 
 
1084
1085	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1086	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1087
1088	wm_state->num_active_planes = 0;
 
 
1089
1090	vlv_compute_fifo(crtc);
 
1091
1092	if (wm_state->num_active_planes != 1)
1093		wm_state->cxsr = false;
 
 
 
 
 
 
 
1094
1095	if (wm_state->cxsr) {
1096		for (level = 0; level < wm_state->num_levels; level++) {
1097			wm_state->sr[level].plane = sr_fifo_size;
1098			wm_state->sr[level].cursor = 63;
1099		}
1100	}
1101
1102	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1103		struct intel_plane_state *state =
1104			to_intel_plane_state(plane->base.state);
 
1105
1106		if (!state->visible)
1107			continue;
1108
1109		/* normal watermarks */
1110		for (level = 0; level < wm_state->num_levels; level++) {
1111			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1112			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1113
1114			/* hack */
1115			if (WARN_ON(level == 0 && wm > max_wm))
1116				wm = max_wm;
1117
1118			if (wm > plane->wm.fifo_size)
1119				break;
 
 
 
 
 
 
1120
1121			switch (plane->base.type) {
1122				int sprite;
1123			case DRM_PLANE_TYPE_CURSOR:
1124				wm_state->wm[level].cursor = wm;
1125				break;
1126			case DRM_PLANE_TYPE_PRIMARY:
1127				wm_state->wm[level].primary = wm;
1128				break;
1129			case DRM_PLANE_TYPE_OVERLAY:
1130				sprite = plane->plane;
1131				wm_state->wm[level].sprite[sprite] = wm;
1132				break;
1133			}
1134		}
1135
1136		wm_state->num_levels = level;
 
 
 
 
 
 
1137
1138		if (!wm_state->cxsr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139			continue;
1140
1141		/* maxfifo watermarks */
1142		switch (plane->base.type) {
1143			int sprite, level;
1144		case DRM_PLANE_TYPE_CURSOR:
1145			for (level = 0; level < wm_state->num_levels; level++)
1146				wm_state->sr[level].cursor =
1147					wm_state->wm[level].cursor;
1148			break;
1149		case DRM_PLANE_TYPE_PRIMARY:
1150			for (level = 0; level < wm_state->num_levels; level++)
1151				wm_state->sr[level].plane =
1152					min(wm_state->sr[level].plane,
1153					    wm_state->wm[level].primary);
1154			break;
1155		case DRM_PLANE_TYPE_OVERLAY:
1156			sprite = plane->plane;
1157			for (level = 0; level < wm_state->num_levels; level++)
1158				wm_state->sr[level].plane =
1159					min(wm_state->sr[level].plane,
1160					    wm_state->wm[level].sprite[sprite]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161			break;
 
 
 
 
 
1162		}
1163	}
1164
1165	/* clear any (partially) filled invalid levels */
1166	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1167		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1168		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
 
 
 
 
 
1169	}
1170
1171	vlv_invert_wms(crtc);
 
 
 
 
 
 
 
 
 
1172}
1173
1174#define VLV_FIFO(plane, value) \
1175	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1176
1177static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
 
1178{
1179	struct drm_device *dev = crtc->base.dev;
1180	struct drm_i915_private *dev_priv = to_i915(dev);
1181	struct intel_plane *plane;
1182	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
 
 
 
 
1183
1184	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1185		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1186			WARN_ON(plane->wm.fifo_size != 63);
1187			continue;
1188		}
1189
1190		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1191			sprite0_start = plane->wm.fifo_size;
1192		else if (plane->plane == 0)
1193			sprite1_start = sprite0_start + plane->wm.fifo_size;
1194		else
1195			fifo_size = sprite1_start + plane->wm.fifo_size;
1196	}
1197
1198	WARN_ON(fifo_size != 512 - 1);
 
1199
1200	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1201		      pipe_name(crtc->pipe), sprite0_start,
1202		      sprite1_start, fifo_size);
 
 
 
 
 
 
 
 
 
1203
1204	switch (crtc->pipe) {
1205		uint32_t dsparb, dsparb2, dsparb3;
1206	case PIPE_A:
1207		dsparb = I915_READ(DSPARB);
1208		dsparb2 = I915_READ(DSPARB2);
1209
1210		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1211			    VLV_FIFO(SPRITEB, 0xff));
1212		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1213			   VLV_FIFO(SPRITEB, sprite1_start));
1214
1215		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1216			     VLV_FIFO(SPRITEB_HI, 0x1));
1217		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1218			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1219
1220		I915_WRITE(DSPARB, dsparb);
1221		I915_WRITE(DSPARB2, dsparb2);
1222		break;
1223	case PIPE_B:
1224		dsparb = I915_READ(DSPARB);
1225		dsparb2 = I915_READ(DSPARB2);
1226
1227		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1228			    VLV_FIFO(SPRITED, 0xff));
1229		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1230			   VLV_FIFO(SPRITED, sprite1_start));
1231
1232		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1233			     VLV_FIFO(SPRITED_HI, 0xff));
1234		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1235			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1236
1237		I915_WRITE(DSPARB, dsparb);
1238		I915_WRITE(DSPARB2, dsparb2);
1239		break;
1240	case PIPE_C:
1241		dsparb3 = I915_READ(DSPARB3);
1242		dsparb2 = I915_READ(DSPARB2);
1243
1244		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1245			     VLV_FIFO(SPRITEF, 0xff));
1246		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1247			    VLV_FIFO(SPRITEF, sprite1_start));
1248
1249		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1250			     VLV_FIFO(SPRITEF_HI, 0xff));
1251		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1252			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1253
1254		I915_WRITE(DSPARB3, dsparb3);
1255		I915_WRITE(DSPARB2, dsparb2);
1256		break;
1257	default:
1258		break;
1259	}
 
 
 
 
1260}
1261
1262#undef VLV_FIFO
1263
1264static void vlv_merge_wm(struct drm_device *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265			 struct vlv_wm_values *wm)
1266{
1267	struct intel_crtc *crtc;
1268	int num_active_crtcs = 0;
1269
1270	wm->level = to_i915(dev)->wm.max_level;
1271	wm->cxsr = true;
1272
1273	for_each_intel_crtc(dev, crtc) {
1274		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1275
1276		if (!crtc->active)
1277			continue;
1278
1279		if (!wm_state->cxsr)
1280			wm->cxsr = false;
1281
1282		num_active_crtcs++;
1283		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1284	}
1285
1286	if (num_active_crtcs != 1)
1287		wm->cxsr = false;
1288
1289	if (num_active_crtcs > 1)
1290		wm->level = VLV_WM_LEVEL_PM2;
1291
1292	for_each_intel_crtc(dev, crtc) {
1293		struct vlv_wm_state *wm_state = &crtc->wm_state;
1294		enum pipe pipe = crtc->pipe;
1295
1296		if (!crtc->active)
1297			continue;
1298
1299		wm->pipe[pipe] = wm_state->wm[wm->level];
1300		if (wm->cxsr)
1301			wm->sr = wm_state->sr[wm->level];
1302
1303		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1304		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1305		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1306		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1307	}
1308}
1309
1310static void vlv_update_wm(struct drm_crtc *crtc)
1311{
1312	struct drm_device *dev = crtc->dev;
1313	struct drm_i915_private *dev_priv = dev->dev_private;
1314	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1315	enum pipe pipe = intel_crtc->pipe;
1316	struct vlv_wm_values wm = {};
1317
1318	vlv_compute_wm(intel_crtc);
1319	vlv_merge_wm(dev, &wm);
1320
1321	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1322		/* FIXME should be part of crtc atomic commit */
1323		vlv_pipe_set_fifo_size(intel_crtc);
1324		return;
1325	}
1326
1327	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1328	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1329		chv_set_memory_dvfs(dev_priv, false);
1330
1331	if (wm.level < VLV_WM_LEVEL_PM5 &&
1332	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1333		chv_set_memory_pm5(dev_priv, false);
1334
1335	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1336		intel_set_memory_cxsr(dev_priv, false);
1337
1338	/* FIXME should be part of crtc atomic commit */
1339	vlv_pipe_set_fifo_size(intel_crtc);
1340
1341	vlv_write_wm_values(intel_crtc, &wm);
1342
1343	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1344		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1345		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1346		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1347		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1348
1349	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1350		intel_set_memory_cxsr(dev_priv, true);
1351
1352	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1353	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1354		chv_set_memory_pm5(dev_priv, true);
1355
1356	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1357	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1358		chv_set_memory_dvfs(dev_priv, true);
1359
1360	dev_priv->wm.vlv = wm;
1361}
1362
1363#define single_plane_enabled(mask) is_power_of_2(mask)
1364
1365static void g4x_update_wm(struct drm_crtc *crtc)
1366{
1367	struct drm_device *dev = crtc->dev;
1368	static const int sr_latency_ns = 12000;
1369	struct drm_i915_private *dev_priv = dev->dev_private;
1370	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1371	int plane_sr, cursor_sr;
1372	unsigned int enabled = 0;
1373	bool cxsr_enabled;
1374
1375	if (g4x_compute_wm0(dev, PIPE_A,
1376			    &g4x_wm_info, pessimal_latency_ns,
1377			    &g4x_cursor_wm_info, pessimal_latency_ns,
1378			    &planea_wm, &cursora_wm))
1379		enabled |= 1 << PIPE_A;
1380
1381	if (g4x_compute_wm0(dev, PIPE_B,
1382			    &g4x_wm_info, pessimal_latency_ns,
1383			    &g4x_cursor_wm_info, pessimal_latency_ns,
1384			    &planeb_wm, &cursorb_wm))
1385		enabled |= 1 << PIPE_B;
1386
1387	if (single_plane_enabled(enabled) &&
1388	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1389			     sr_latency_ns,
1390			     &g4x_wm_info,
1391			     &g4x_cursor_wm_info,
1392			     &plane_sr, &cursor_sr)) {
1393		cxsr_enabled = true;
1394	} else {
1395		cxsr_enabled = false;
1396		intel_set_memory_cxsr(dev_priv, false);
1397		plane_sr = cursor_sr = 0;
1398	}
1399
1400	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1401		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1402		      planea_wm, cursora_wm,
1403		      planeb_wm, cursorb_wm,
1404		      plane_sr, cursor_sr);
1405
1406	I915_WRITE(DSPFW1,
1407		   FW_WM(plane_sr, SR) |
1408		   FW_WM(cursorb_wm, CURSORB) |
1409		   FW_WM(planeb_wm, PLANEB) |
1410		   FW_WM(planea_wm, PLANEA));
1411	I915_WRITE(DSPFW2,
1412		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1413		   FW_WM(cursora_wm, CURSORA));
1414	/* HPLL off in SR has some issues on G4x... disable it */
1415	I915_WRITE(DSPFW3,
1416		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1417		   FW_WM(cursor_sr, CURSOR_SR));
1418
1419	if (cxsr_enabled)
1420		intel_set_memory_cxsr(dev_priv, true);
 
 
1421}
1422
1423static void i965_update_wm(struct drm_crtc *unused_crtc)
1424{
1425	struct drm_device *dev = unused_crtc->dev;
1426	struct drm_i915_private *dev_priv = dev->dev_private;
1427	struct drm_crtc *crtc;
1428	int srwm = 1;
1429	int cursor_sr = 16;
1430	bool cxsr_enabled;
1431
1432	/* Calc sr entries for one plane configs */
1433	crtc = single_enabled_crtc(dev);
1434	if (crtc) {
1435		/* self-refresh has much higher latency */
1436		static const int sr_latency_ns = 12000;
1437		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1438		int clock = adjusted_mode->crtc_clock;
1439		int htotal = adjusted_mode->crtc_htotal;
1440		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1441		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1442		unsigned long line_time_us;
 
 
1443		int entries;
1444
1445		line_time_us = max(htotal * 1000 / clock, 1);
1446
1447		/* Use ns/us then divide to preserve precision */
1448		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449			cpp * hdisplay;
1450		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1451		srwm = I965_FIFO_SIZE - entries;
1452		if (srwm < 0)
1453			srwm = 1;
1454		srwm &= 0x1ff;
1455		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1456			      entries, srwm);
1457
1458		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459			cpp * crtc->cursor->state->crtc_w;
 
 
1460		entries = DIV_ROUND_UP(entries,
1461					  i965_cursor_wm_info.cacheline_size);
1462		cursor_sr = i965_cursor_wm_info.fifo_size -
1463			(entries + i965_cursor_wm_info.guard_size);
1464
 
1465		if (cursor_sr > i965_cursor_wm_info.max_wm)
1466			cursor_sr = i965_cursor_wm_info.max_wm;
1467
1468		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1469			      "cursor %d\n", srwm, cursor_sr);
 
1470
1471		cxsr_enabled = true;
1472	} else {
1473		cxsr_enabled = false;
1474		/* Turn off self refresh if both pipes are enabled */
1475		intel_set_memory_cxsr(dev_priv, false);
1476	}
1477
1478	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1479		      srwm);
 
1480
1481	/* 965 has limitations... */
1482	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1483		   FW_WM(8, CURSORB) |
1484		   FW_WM(8, PLANEB) |
1485		   FW_WM(8, PLANEA));
1486	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1487		   FW_WM(8, PLANEC_OLD));
1488	/* update cursor SR watermark */
1489	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1490
1491	if (cxsr_enabled)
1492		intel_set_memory_cxsr(dev_priv, true);
1493}
1494
1495#undef FW_WM
1496
1497static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1498{
1499	struct drm_device *dev = unused_crtc->dev;
1500	struct drm_i915_private *dev_priv = dev->dev_private;
1501	const struct intel_watermark_params *wm_info;
1502	uint32_t fwater_lo;
1503	uint32_t fwater_hi;
1504	int cwm, srwm = 1;
1505	int fifo_size;
1506	int planea_wm, planeb_wm;
1507	struct drm_crtc *crtc, *enabled = NULL;
1508
1509	if (IS_I945GM(dev))
1510		wm_info = &i945_wm_info;
1511	else if (!IS_GEN2(dev))
1512		wm_info = &i915_wm_info;
1513	else
1514		wm_info = &i830_a_wm_info;
1515
1516	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1517	crtc = intel_get_crtc_for_plane(dev, 0);
1518	if (intel_crtc_active(crtc)) {
1519		const struct drm_display_mode *adjusted_mode;
1520		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1521		if (IS_GEN2(dev))
 
 
 
 
1522			cpp = 4;
 
 
1523
1524		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1525		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1526					       wm_info, fifo_size, cpp,
1527					       pessimal_latency_ns);
1528		enabled = crtc;
1529	} else {
1530		planea_wm = fifo_size - wm_info->guard_size;
1531		if (planea_wm > (long)wm_info->max_wm)
1532			planea_wm = wm_info->max_wm;
1533	}
1534
1535	if (IS_GEN2(dev))
1536		wm_info = &i830_bc_wm_info;
1537
1538	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1539	crtc = intel_get_crtc_for_plane(dev, 1);
1540	if (intel_crtc_active(crtc)) {
1541		const struct drm_display_mode *adjusted_mode;
1542		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1543		if (IS_GEN2(dev))
 
 
 
 
1544			cpp = 4;
 
 
1545
1546		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1547		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548					       wm_info, fifo_size, cpp,
1549					       pessimal_latency_ns);
1550		if (enabled == NULL)
1551			enabled = crtc;
1552		else
1553			enabled = NULL;
1554	} else {
1555		planeb_wm = fifo_size - wm_info->guard_size;
1556		if (planeb_wm > (long)wm_info->max_wm)
1557			planeb_wm = wm_info->max_wm;
1558	}
1559
1560	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
 
1561
1562	if (IS_I915GM(dev) && enabled) {
1563		struct drm_i915_gem_object *obj;
1564
1565		obj = intel_fb_obj(enabled->primary->state->fb);
1566
1567		/* self-refresh seems busted with untiled */
1568		if (obj->tiling_mode == I915_TILING_NONE)
1569			enabled = NULL;
1570	}
1571
1572	/*
1573	 * Overlay gets an aggressive default since video jitter is bad.
1574	 */
1575	cwm = 2;
1576
1577	/* Play safe and disable self-refresh before adjusting watermarks. */
1578	intel_set_memory_cxsr(dev_priv, false);
1579
1580	/* Calc sr entries for one plane configs */
1581	if (HAS_FW_BLC(dev) && enabled) {
1582		/* self-refresh has much higher latency */
1583		static const int sr_latency_ns = 6000;
1584		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1585		int clock = adjusted_mode->crtc_clock;
1586		int htotal = adjusted_mode->crtc_htotal;
1587		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1588		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1589		unsigned long line_time_us;
 
 
1590		int entries;
1591
1592		line_time_us = max(htotal * 1000 / clock, 1);
 
 
 
1593
1594		/* Use ns/us then divide to preserve precision */
1595		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1596			cpp * hdisplay;
1597		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1598		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
 
1599		srwm = wm_info->fifo_size - entries;
1600		if (srwm < 0)
1601			srwm = 1;
1602
1603		if (IS_I945G(dev) || IS_I945GM(dev))
1604			I915_WRITE(FW_BLC_SELF,
1605				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1606		else if (IS_I915GM(dev))
1607			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1608	}
1609
1610	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1611		      planea_wm, planeb_wm, cwm, srwm);
 
1612
1613	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1614	fwater_hi = (cwm & 0x1f);
1615
1616	/* Set request length to 8 cachelines per fetch */
1617	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1618	fwater_hi = fwater_hi | (1 << 8);
1619
1620	I915_WRITE(FW_BLC, fwater_lo);
1621	I915_WRITE(FW_BLC2, fwater_hi);
1622
1623	if (enabled)
1624		intel_set_memory_cxsr(dev_priv, true);
1625}
1626
1627static void i845_update_wm(struct drm_crtc *unused_crtc)
1628{
1629	struct drm_device *dev = unused_crtc->dev;
1630	struct drm_i915_private *dev_priv = dev->dev_private;
1631	struct drm_crtc *crtc;
1632	const struct drm_display_mode *adjusted_mode;
1633	uint32_t fwater_lo;
1634	int planea_wm;
1635
1636	crtc = single_enabled_crtc(dev);
1637	if (crtc == NULL)
1638		return;
1639
1640	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1641	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1642				       &i845_wm_info,
1643				       dev_priv->display.get_fifo_size(dev, 0),
1644				       4, pessimal_latency_ns);
1645	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1646	fwater_lo |= (3<<8) | planea_wm;
1647
1648	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1649
1650	I915_WRITE(FW_BLC, fwater_lo);
1651}
1652
1653uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1654{
1655	uint32_t pixel_rate;
1656
1657	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1658
1659	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1660	 * adjust the pixel_rate here. */
1661
1662	if (pipe_config->pch_pfit.enabled) {
1663		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1664		uint32_t pfit_size = pipe_config->pch_pfit.size;
1665
1666		pipe_w = pipe_config->pipe_src_w;
1667		pipe_h = pipe_config->pipe_src_h;
1668
1669		pfit_w = (pfit_size >> 16) & 0xFFFF;
1670		pfit_h = pfit_size & 0xFFFF;
1671		if (pipe_w < pfit_w)
1672			pipe_w = pfit_w;
1673		if (pipe_h < pfit_h)
1674			pipe_h = pfit_h;
1675
1676		if (WARN_ON(!pfit_w || !pfit_h))
1677			return pixel_rate;
1678
1679		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1680				     pfit_w * pfit_h);
1681	}
1682
1683	return pixel_rate;
1684}
1685
1686/* latency must be in 0.1us units. */
1687static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
 
 
1688{
1689	uint64_t ret;
1690
1691	if (WARN(latency == 0, "Latency value missing\n"))
1692		return UINT_MAX;
1693
1694	ret = (uint64_t) pixel_rate * cpp * latency;
1695	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1696
1697	return ret;
1698}
1699
1700/* latency must be in 0.1us units. */
1701static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1702			       uint32_t horiz_pixels, uint8_t cpp,
1703			       uint32_t latency)
1704{
1705	uint32_t ret;
1706
1707	if (WARN(latency == 0, "Latency value missing\n"))
1708		return UINT_MAX;
1709	if (WARN_ON(!pipe_htotal))
1710		return UINT_MAX;
1711
1712	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1713	ret = (ret + 1) * horiz_pixels * cpp;
1714	ret = DIV_ROUND_UP(ret, 64) + 2;
 
1715	return ret;
1716}
1717
1718static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1719			   uint8_t cpp)
1720{
1721	/*
1722	 * Neither of these should be possible since this function shouldn't be
1723	 * called if the CRTC is off or the plane is invisible.  But let's be
1724	 * extra paranoid to avoid a potential divide-by-zero if we screw up
1725	 * elsewhere in the driver.
1726	 */
1727	if (WARN_ON(!cpp))
1728		return 0;
1729	if (WARN_ON(!horiz_pixels))
1730		return 0;
1731
1732	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1733}
1734
1735struct ilk_wm_maximums {
1736	uint16_t pri;
1737	uint16_t spr;
1738	uint16_t cur;
1739	uint16_t fbc;
1740};
1741
1742/*
1743 * For both WM_PIPE and WM_LP.
1744 * mem_value must be in 0.1us units.
1745 */
1746static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1747				   const struct intel_plane_state *pstate,
1748				   uint32_t mem_value,
1749				   bool is_lp)
1750{
1751	int cpp = pstate->base.fb ?
1752		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1753	uint32_t method1, method2;
1754
1755	if (!cstate->base.active || !pstate->visible)
 
 
 
1756		return 0;
1757
1758	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
 
 
1759
1760	if (!is_lp)
1761		return method1;
1762
1763	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1764				 cstate->base.adjusted_mode.crtc_htotal,
1765				 drm_rect_width(&pstate->dst),
1766				 cpp, mem_value);
1767
1768	return min(method1, method2);
1769}
1770
1771/*
1772 * For both WM_PIPE and WM_LP.
1773 * mem_value must be in 0.1us units.
1774 */
1775static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1776				   const struct intel_plane_state *pstate,
1777				   uint32_t mem_value)
1778{
1779	int cpp = pstate->base.fb ?
1780		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1781	uint32_t method1, method2;
 
 
1782
1783	if (!cstate->base.active || !pstate->visible)
1784		return 0;
1785
1786	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1787	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1788				 cstate->base.adjusted_mode.crtc_htotal,
1789				 drm_rect_width(&pstate->dst),
 
 
1790				 cpp, mem_value);
1791	return min(method1, method2);
1792}
1793
1794/*
1795 * For both WM_PIPE and WM_LP.
1796 * mem_value must be in 0.1us units.
1797 */
1798static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1799				   const struct intel_plane_state *pstate,
1800				   uint32_t mem_value)
1801{
1802	/*
1803	 * We treat the cursor plane as always-on for the purposes of watermark
1804	 * calculation.  Until we have two-stage watermark programming merged,
1805	 * this is necessary to avoid flickering.
1806	 */
1807	int cpp = 4;
1808	int width = pstate->visible ? pstate->base.crtc_w : 64;
1809
1810	if (!cstate->base.active)
1811		return 0;
1812
1813	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1814			      cstate->base.adjusted_mode.crtc_htotal,
1815			      width, cpp, mem_value);
 
 
 
1816}
1817
1818/* Only for WM_LP. */
1819static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1820				   const struct intel_plane_state *pstate,
1821				   uint32_t pri_val)
1822{
1823	int cpp = pstate->base.fb ?
1824		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1825
1826	if (!cstate->base.active || !pstate->visible)
1827		return 0;
1828
1829	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
 
 
 
1830}
1831
1832static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
 
1833{
1834	if (INTEL_INFO(dev)->gen >= 8)
1835		return 3072;
1836	else if (INTEL_INFO(dev)->gen >= 7)
1837		return 768;
1838	else
1839		return 512;
1840}
1841
1842static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1843					 int level, bool is_sprite)
 
1844{
1845	if (INTEL_INFO(dev)->gen >= 8)
1846		/* BDW primary/sprite plane watermarks */
1847		return level == 0 ? 255 : 2047;
1848	else if (INTEL_INFO(dev)->gen >= 7)
1849		/* IVB/HSW primary/sprite plane watermarks */
1850		return level == 0 ? 127 : 1023;
1851	else if (!is_sprite)
1852		/* ILK/SNB primary plane watermarks */
1853		return level == 0 ? 127 : 511;
1854	else
1855		/* ILK/SNB sprite plane watermarks */
1856		return level == 0 ? 63 : 255;
1857}
1858
1859static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1860					  int level)
1861{
1862	if (INTEL_INFO(dev)->gen >= 7)
1863		return level == 0 ? 63 : 255;
1864	else
1865		return level == 0 ? 31 : 63;
1866}
1867
1868static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1869{
1870	if (INTEL_INFO(dev)->gen >= 8)
1871		return 31;
1872	else
1873		return 15;
1874}
1875
1876/* Calculate the maximum primary/sprite plane watermark */
1877static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1878				     int level,
1879				     const struct intel_wm_config *config,
1880				     enum intel_ddb_partitioning ddb_partitioning,
1881				     bool is_sprite)
1882{
1883	unsigned int fifo_size = ilk_display_fifo_size(dev);
1884
1885	/* if sprites aren't enabled, sprites get nothing */
1886	if (is_sprite && !config->sprites_enabled)
1887		return 0;
1888
1889	/* HSW allows LP1+ watermarks even with multiple pipes */
1890	if (level == 0 || config->num_pipes_active > 1) {
1891		fifo_size /= INTEL_INFO(dev)->num_pipes;
1892
1893		/*
1894		 * For some reason the non self refresh
1895		 * FIFO size is only half of the self
1896		 * refresh FIFO size on ILK/SNB.
1897		 */
1898		if (INTEL_INFO(dev)->gen <= 6)
1899			fifo_size /= 2;
1900	}
1901
1902	if (config->sprites_enabled) {
1903		/* level 0 is always calculated with 1:1 split */
1904		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1905			if (is_sprite)
1906				fifo_size *= 5;
1907			fifo_size /= 6;
1908		} else {
1909			fifo_size /= 2;
1910		}
1911	}
1912
1913	/* clamp to max that the registers can hold */
1914	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1915}
1916
1917/* Calculate the maximum cursor plane watermark */
1918static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1919				      int level,
1920				      const struct intel_wm_config *config)
1921{
1922	/* HSW LP1+ watermarks w/ multiple pipes */
1923	if (level > 0 && config->num_pipes_active > 1)
1924		return 64;
1925
1926	/* otherwise just report max that registers can hold */
1927	return ilk_cursor_wm_reg_max(dev, level);
1928}
1929
1930static void ilk_compute_wm_maximums(const struct drm_device *dev,
1931				    int level,
1932				    const struct intel_wm_config *config,
1933				    enum intel_ddb_partitioning ddb_partitioning,
1934				    struct ilk_wm_maximums *max)
1935{
1936	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1937	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1938	max->cur = ilk_cursor_wm_max(dev, level, config);
1939	max->fbc = ilk_fbc_wm_reg_max(dev);
1940}
1941
1942static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1943					int level,
1944					struct ilk_wm_maximums *max)
1945{
1946	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1947	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1948	max->cur = ilk_cursor_wm_reg_max(dev, level);
1949	max->fbc = ilk_fbc_wm_reg_max(dev);
1950}
1951
1952static bool ilk_validate_wm_level(int level,
1953				  const struct ilk_wm_maximums *max,
1954				  struct intel_wm_level *result)
1955{
1956	bool ret;
1957
1958	/* already determined to be invalid? */
1959	if (!result->enable)
1960		return false;
1961
1962	result->enable = result->pri_val <= max->pri &&
1963			 result->spr_val <= max->spr &&
1964			 result->cur_val <= max->cur;
1965
1966	ret = result->enable;
1967
1968	/*
1969	 * HACK until we can pre-compute everything,
1970	 * and thus fail gracefully if LP0 watermarks
1971	 * are exceeded...
1972	 */
1973	if (level == 0 && !result->enable) {
1974		if (result->pri_val > max->pri)
1975			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1976				      level, result->pri_val, max->pri);
1977		if (result->spr_val > max->spr)
1978			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1979				      level, result->spr_val, max->spr);
1980		if (result->cur_val > max->cur)
1981			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1982				      level, result->cur_val, max->cur);
1983
1984		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1985		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1986		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1987		result->enable = true;
1988	}
1989
1990	return ret;
1991}
1992
1993static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1994				 const struct intel_crtc *intel_crtc,
1995				 int level,
1996				 struct intel_crtc_state *cstate,
1997				 struct intel_plane_state *pristate,
1998				 struct intel_plane_state *sprstate,
1999				 struct intel_plane_state *curstate,
2000				 struct intel_wm_level *result)
2001{
2002	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2003	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2004	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2005
2006	/* WM1+ latency values stored in 0.5us units */
2007	if (level > 0) {
2008		pri_latency *= 5;
2009		spr_latency *= 5;
2010		cur_latency *= 5;
2011	}
2012
2013	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2014					     pri_latency, level);
2015	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2016	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2017	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2018	result->enable = true;
2019}
2020
2021static uint32_t
2022hsw_compute_linetime_wm(struct drm_device *dev,
2023			struct intel_crtc_state *cstate)
2024{
2025	struct drm_i915_private *dev_priv = dev->dev_private;
2026	const struct drm_display_mode *adjusted_mode =
2027		&cstate->base.adjusted_mode;
2028	u32 linetime, ips_linetime;
2029
2030	if (!cstate->base.active)
2031		return 0;
2032	if (WARN_ON(adjusted_mode->crtc_clock == 0))
2033		return 0;
2034	if (WARN_ON(dev_priv->cdclk_freq == 0))
2035		return 0;
2036
2037	/* The WM are computed with base on how long it takes to fill a single
2038	 * row at the given clock rate, multiplied by 8.
2039	 * */
2040	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2041				     adjusted_mode->crtc_clock);
2042	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2043					 dev_priv->cdclk_freq);
2044
2045	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2046	       PIPE_WM_LINETIME_TIME(linetime);
2047}
2048
2049static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
 
2050{
2051	struct drm_i915_private *dev_priv = dev->dev_private;
2052
2053	if (IS_GEN9(dev)) {
2054		uint32_t val;
2055		int ret, i;
2056		int level, max_level = ilk_wm_max_level(dev);
2057
2058		/* read the first set of memory latencies[0:3] */
2059		val = 0; /* data0 to be programmed to 0 for first set */
2060		mutex_lock(&dev_priv->rps.hw_lock);
2061		ret = sandybridge_pcode_read(dev_priv,
2062					     GEN9_PCODE_READ_MEM_LATENCY,
2063					     &val);
2064		mutex_unlock(&dev_priv->rps.hw_lock);
2065
2066		if (ret) {
2067			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
 
2068			return;
2069		}
2070
2071		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2072		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2073				GEN9_MEM_LATENCY_LEVEL_MASK;
2074		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2075				GEN9_MEM_LATENCY_LEVEL_MASK;
2076		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2077				GEN9_MEM_LATENCY_LEVEL_MASK;
2078
2079		/* read the second set of memory latencies[4:7] */
2080		val = 1; /* data0 to be programmed to 1 for second set */
2081		mutex_lock(&dev_priv->rps.hw_lock);
2082		ret = sandybridge_pcode_read(dev_priv,
2083					     GEN9_PCODE_READ_MEM_LATENCY,
2084					     &val);
2085		mutex_unlock(&dev_priv->rps.hw_lock);
2086		if (ret) {
2087			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
 
2088			return;
2089		}
2090
2091		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2092		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2093				GEN9_MEM_LATENCY_LEVEL_MASK;
2094		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2095				GEN9_MEM_LATENCY_LEVEL_MASK;
2096		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2097				GEN9_MEM_LATENCY_LEVEL_MASK;
2098
2099		/*
2100		 * WaWmMemoryReadLatency:skl
2101		 *
2102		 * punit doesn't take into account the read latency so we need
2103		 * to add 2us to the various latency levels we retrieve from
2104		 * the punit.
2105		 *   - W0 is a bit special in that it's the only level that
2106		 *   can't be disabled if we want to have display working, so
2107		 *   we always add 2us there.
2108		 *   - For levels >=1, punit returns 0us latency when they are
2109		 *   disabled, so we respect that and don't add 2us then
2110		 *
2111		 * Additionally, if a level n (n > 1) has a 0us latency, all
2112		 * levels m (m >= n) need to be disabled. We make sure to
2113		 * sanitize the values out of the punit to satisfy this
2114		 * requirement.
2115		 */
2116		wm[0] += 2;
2117		for (level = 1; level <= max_level; level++)
2118			if (wm[level] != 0)
2119				wm[level] += 2;
2120			else {
2121				for (i = level + 1; i <= max_level; i++)
2122					wm[i] = 0;
2123
2124				break;
2125			}
2126	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2127		uint64_t sskpd = I915_READ64(MCH_SSKPD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128
2129		wm[0] = (sskpd >> 56) & 0xFF;
2130		if (wm[0] == 0)
2131			wm[0] = sskpd & 0xF;
2132		wm[1] = (sskpd >> 4) & 0xFF;
2133		wm[2] = (sskpd >> 12) & 0xFF;
2134		wm[3] = (sskpd >> 20) & 0x1FF;
2135		wm[4] = (sskpd >> 32) & 0x1FF;
2136	} else if (INTEL_INFO(dev)->gen >= 6) {
2137		uint32_t sskpd = I915_READ(MCH_SSKPD);
2138
2139		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2140		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2141		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2142		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2143	} else if (INTEL_INFO(dev)->gen >= 5) {
2144		uint32_t mltr = I915_READ(MLTR_ILK);
2145
2146		/* ILK primary LP0 latency is 700 ns */
2147		wm[0] = 7;
2148		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2149		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
 
 
2150	}
2151}
2152
2153static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
 
2154{
2155	/* ILK sprite LP0 latency is 1300 ns */
2156	if (INTEL_INFO(dev)->gen == 5)
2157		wm[0] = 13;
2158}
2159
2160static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
 
2161{
2162	/* ILK cursor LP0 latency is 1300 ns */
2163	if (INTEL_INFO(dev)->gen == 5)
2164		wm[0] = 13;
2165
2166	/* WaDoubleCursorLP3Latency:ivb */
2167	if (IS_IVYBRIDGE(dev))
2168		wm[3] *= 2;
2169}
2170
2171int ilk_wm_max_level(const struct drm_device *dev)
2172{
2173	/* how many WM levels are we expecting */
2174	if (INTEL_INFO(dev)->gen >= 9)
 
 
2175		return 7;
2176	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2177		return 4;
2178	else if (INTEL_INFO(dev)->gen >= 6)
2179		return 3;
2180	else
2181		return 2;
2182}
2183
2184static void intel_print_wm_latency(struct drm_device *dev,
2185				   const char *name,
2186				   const uint16_t wm[8])
2187{
2188	int level, max_level = ilk_wm_max_level(dev);
2189
2190	for (level = 0; level <= max_level; level++) {
2191		unsigned int latency = wm[level];
2192
2193		if (latency == 0) {
2194			DRM_ERROR("%s WM%d latency not provided\n",
2195				  name, level);
 
2196			continue;
2197		}
2198
2199		/*
2200		 * - latencies are in us on gen9.
2201		 * - before then, WM1+ latency values are in 0.5us units
2202		 */
2203		if (IS_GEN9(dev))
2204			latency *= 10;
2205		else if (level > 0)
2206			latency *= 5;
2207
2208		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2209			      name, level, wm[level],
2210			      latency / 10, latency % 10);
2211	}
2212}
2213
2214static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2215				    uint16_t wm[5], uint16_t min)
2216{
2217	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2218
2219	if (wm[0] >= min)
2220		return false;
2221
2222	wm[0] = max(wm[0], min);
2223	for (level = 1; level <= max_level; level++)
2224		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2225
2226	return true;
2227}
2228
2229static void snb_wm_latency_quirk(struct drm_device *dev)
2230{
2231	struct drm_i915_private *dev_priv = dev->dev_private;
2232	bool changed;
2233
2234	/*
2235	 * The BIOS provided WM memory latency values are often
2236	 * inadequate for high resolution displays. Adjust them.
2237	 */
2238	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2239		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2240		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2241
2242	if (!changed)
2243		return;
2244
2245	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2246	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2247	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2248	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
 
2249}
2250
2251static void ilk_setup_wm_latency(struct drm_device *dev)
2252{
2253	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254
2255	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
 
 
 
 
 
 
 
 
 
 
 
 
 
2256
2257	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2258	       sizeof(dev_priv->wm.pri_latency));
2259	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2260	       sizeof(dev_priv->wm.pri_latency));
2261
2262	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2263	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2264
2265	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2266	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2267	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2268
2269	if (IS_GEN6(dev))
2270		snb_wm_latency_quirk(dev);
 
 
2271}
2272
2273static void skl_setup_wm_latency(struct drm_device *dev)
2274{
2275	struct drm_i915_private *dev_priv = dev->dev_private;
2276
2277	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2278	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2279}
2280
2281/* Compute new watermarks for the pipe */
2282static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2283			       struct drm_atomic_state *state)
2284{
2285	struct intel_pipe_wm *pipe_wm;
2286	struct drm_device *dev = intel_crtc->base.dev;
2287	const struct drm_i915_private *dev_priv = dev->dev_private;
2288	struct intel_crtc_state *cstate = NULL;
2289	struct intel_plane *intel_plane;
2290	struct drm_plane_state *ps;
2291	struct intel_plane_state *pristate = NULL;
2292	struct intel_plane_state *sprstate = NULL;
2293	struct intel_plane_state *curstate = NULL;
2294	int level, max_level = ilk_wm_max_level(dev);
2295	/* LP0 watermark maximums depend on this pipe alone */
2296	struct intel_wm_config config = {
2297		.num_pipes_active = 1,
 
 
2298	};
2299	struct ilk_wm_maximums max;
2300
2301	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2302	if (IS_ERR(cstate))
2303		return PTR_ERR(cstate);
2304
2305	pipe_wm = &cstate->wm.optimal.ilk;
2306	memset(pipe_wm, 0, sizeof(*pipe_wm));
2307
2308	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2309		ps = drm_atomic_get_plane_state(state,
2310						&intel_plane->base);
2311		if (IS_ERR(ps))
2312			return PTR_ERR(ps);
2313
2314		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2315			pristate = to_intel_plane_state(ps);
2316		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2317			sprstate = to_intel_plane_state(ps);
2318		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2319			curstate = to_intel_plane_state(ps);
2320	}
2321
2322	config.sprites_enabled = sprstate->visible;
2323	config.sprites_scaled = sprstate->visible &&
2324		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2325		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2326
2327	pipe_wm->pipe_enabled = cstate->base.active;
2328	pipe_wm->sprites_enabled = config.sprites_enabled;
2329	pipe_wm->sprites_scaled = config.sprites_scaled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330
2331	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2332	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2333		max_level = 1;
2334
2335	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2336	if (config.sprites_scaled)
2337		max_level = 0;
2338
2339	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
 
2340			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2341
2342	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2343		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2344
2345	/* LP0 watermarks always use 1/2 DDB partitioning */
2346	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2347
2348	/* At least LP0 must be valid */
2349	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2350		return -EINVAL;
2351
2352	ilk_compute_wm_reg_maximums(dev, 1, &max);
2353
2354	for (level = 1; level <= max_level; level++) {
2355		struct intel_wm_level wm = {};
2356
2357		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2358				     pristate, sprstate, curstate, &wm);
2359
2360		/*
2361		 * Disable any watermark level that exceeds the
2362		 * register maximums since such watermarks are
2363		 * always invalid.
2364		 */
2365		if (!ilk_validate_wm_level(level, &max, &wm))
 
2366			break;
 
 
2367
2368		pipe_wm->wm[level] = wm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369	}
2370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371	return 0;
2372}
2373
2374/*
2375 * Merge the watermarks from all active pipes for a specific level.
2376 */
2377static void ilk_merge_wm_level(struct drm_device *dev,
2378			       int level,
2379			       struct intel_wm_level *ret_wm)
2380{
2381	const struct intel_crtc *intel_crtc;
2382
2383	ret_wm->enable = true;
2384
2385	for_each_intel_crtc(dev, intel_crtc) {
2386		const struct intel_crtc_state *cstate =
2387			to_intel_crtc_state(intel_crtc->base.state);
2388		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2389		const struct intel_wm_level *wm = &active->wm[level];
2390
2391		if (!active->pipe_enabled)
2392			continue;
2393
2394		/*
2395		 * The watermark values may have been used in the past,
2396		 * so we must maintain them in the registers for some
2397		 * time even if the level is now disabled.
2398		 */
2399		if (!wm->enable)
2400			ret_wm->enable = false;
2401
2402		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2403		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2404		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2405		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2406	}
2407}
2408
2409/*
2410 * Merge all low power watermarks for all active pipes.
2411 */
2412static void ilk_wm_merge(struct drm_device *dev,
2413			 const struct intel_wm_config *config,
2414			 const struct ilk_wm_maximums *max,
2415			 struct intel_pipe_wm *merged)
2416{
2417	struct drm_i915_private *dev_priv = dev->dev_private;
2418	int level, max_level = ilk_wm_max_level(dev);
2419	int last_enabled_level = max_level;
2420
2421	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2422	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2423	    config->num_pipes_active > 1)
2424		return;
2425
2426	/* ILK: FBC WM must be disabled always */
2427	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2428
2429	/* merge each WM1+ level */
2430	for (level = 1; level <= max_level; level++) {
2431		struct intel_wm_level *wm = &merged->wm[level];
2432
2433		ilk_merge_wm_level(dev, level, wm);
2434
2435		if (level > last_enabled_level)
2436			wm->enable = false;
2437		else if (!ilk_validate_wm_level(level, max, wm))
2438			/* make sure all following levels get disabled */
2439			last_enabled_level = level - 1;
2440
2441		/*
2442		 * The spec says it is preferred to disable
2443		 * FBC WMs instead of disabling a WM level.
2444		 */
2445		if (wm->fbc_val > max->fbc) {
2446			if (wm->enable)
2447				merged->fbc_wm_enabled = false;
2448			wm->fbc_val = 0;
2449		}
2450	}
2451
2452	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2453	/*
2454	 * FIXME this is racy. FBC might get enabled later.
2455	 * What we should check here is whether FBC can be
2456	 * enabled sometime later.
2457	 */
2458	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2459	    intel_fbc_is_active(dev_priv)) {
2460		for (level = 2; level <= max_level; level++) {
2461			struct intel_wm_level *wm = &merged->wm[level];
2462
2463			wm->enable = false;
2464		}
2465	}
2466}
2467
2468static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2469{
2470	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2471	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2472}
2473
2474/* The value we need to program into the WM_LPx latency field */
2475static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
 
2476{
2477	struct drm_i915_private *dev_priv = dev->dev_private;
2478
2479	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2480		return 2 * level;
2481	else
2482		return dev_priv->wm.pri_latency[level];
2483}
2484
2485static void ilk_compute_wm_results(struct drm_device *dev,
2486				   const struct intel_pipe_wm *merged,
2487				   enum intel_ddb_partitioning partitioning,
2488				   struct ilk_wm_values *results)
2489{
2490	struct intel_crtc *intel_crtc;
2491	int level, wm_lp;
2492
2493	results->enable_fbc_wm = merged->fbc_wm_enabled;
2494	results->partitioning = partitioning;
2495
2496	/* LP1+ register values */
2497	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2498		const struct intel_wm_level *r;
2499
2500		level = ilk_wm_lp_to_level(wm_lp, merged);
2501
2502		r = &merged->wm[level];
2503
2504		/*
2505		 * Maintain the watermark values even if the level is
2506		 * disabled. Doing otherwise could cause underruns.
2507		 */
2508		results->wm_lp[wm_lp - 1] =
2509			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2510			(r->pri_val << WM1_LP_SR_SHIFT) |
2511			r->cur_val;
2512
2513		if (r->enable)
2514			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2515
2516		if (INTEL_INFO(dev)->gen >= 8)
2517			results->wm_lp[wm_lp - 1] |=
2518				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2519		else
2520			results->wm_lp[wm_lp - 1] |=
2521				r->fbc_val << WM1_LP_FBC_SHIFT;
2522
2523		/*
2524		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2525		 * level is disabled. Doing otherwise could cause underruns.
2526		 */
2527		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2528			WARN_ON(wm_lp != 1);
2529			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2530		} else
2531			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2532	}
2533
2534	/* LP0 register values */
2535	for_each_intel_crtc(dev, intel_crtc) {
2536		const struct intel_crtc_state *cstate =
2537			to_intel_crtc_state(intel_crtc->base.state);
2538		enum pipe pipe = intel_crtc->pipe;
2539		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
 
2540
2541		if (WARN_ON(!r->enable))
2542			continue;
2543
2544		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2545
2546		results->wm_pipe[pipe] =
2547			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2548			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2549			r->cur_val;
2550	}
2551}
2552
2553/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2554 * case both are at the same level. Prefer r1 in case they're the same. */
2555static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2556						  struct intel_pipe_wm *r1,
2557						  struct intel_pipe_wm *r2)
 
2558{
2559	int level, max_level = ilk_wm_max_level(dev);
2560	int level1 = 0, level2 = 0;
2561
2562	for (level = 1; level <= max_level; level++) {
2563		if (r1->wm[level].enable)
2564			level1 = level;
2565		if (r2->wm[level].enable)
2566			level2 = level;
2567	}
2568
2569	if (level1 == level2) {
2570		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2571			return r2;
2572		else
2573			return r1;
2574	} else if (level1 > level2) {
2575		return r1;
2576	} else {
2577		return r2;
2578	}
2579}
2580
2581/* dirty bits used to track which watermarks need changes */
2582#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2583#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2584#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2585#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2586#define WM_DIRTY_FBC (1 << 24)
2587#define WM_DIRTY_DDB (1 << 25)
2588
2589static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2590					 const struct ilk_wm_values *old,
2591					 const struct ilk_wm_values *new)
2592{
2593	unsigned int dirty = 0;
2594	enum pipe pipe;
2595	int wm_lp;
2596
2597	for_each_pipe(dev_priv, pipe) {
2598		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2599			dirty |= WM_DIRTY_LINETIME(pipe);
2600			/* Must disable LP1+ watermarks too */
2601			dirty |= WM_DIRTY_LP_ALL;
2602		}
2603
2604		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2605			dirty |= WM_DIRTY_PIPE(pipe);
2606			/* Must disable LP1+ watermarks too */
2607			dirty |= WM_DIRTY_LP_ALL;
2608		}
2609	}
2610
2611	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2612		dirty |= WM_DIRTY_FBC;
2613		/* Must disable LP1+ watermarks too */
2614		dirty |= WM_DIRTY_LP_ALL;
2615	}
2616
2617	if (old->partitioning != new->partitioning) {
2618		dirty |= WM_DIRTY_DDB;
2619		/* Must disable LP1+ watermarks too */
2620		dirty |= WM_DIRTY_LP_ALL;
2621	}
2622
2623	/* LP1+ watermarks already deemed dirty, no need to continue */
2624	if (dirty & WM_DIRTY_LP_ALL)
2625		return dirty;
2626
2627	/* Find the lowest numbered LP1+ watermark in need of an update... */
2628	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2629		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2630		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2631			break;
2632	}
2633
2634	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2635	for (; wm_lp <= 3; wm_lp++)
2636		dirty |= WM_DIRTY_LP(wm_lp);
2637
2638	return dirty;
2639}
2640
2641static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2642			       unsigned int dirty)
2643{
2644	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2645	bool changed = false;
2646
2647	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2648		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2649		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2650		changed = true;
2651	}
2652	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2653		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2654		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2655		changed = true;
2656	}
2657	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2658		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2659		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2660		changed = true;
2661	}
2662
2663	/*
2664	 * Don't touch WM1S_LP_EN here.
2665	 * Doing so could cause underruns.
2666	 */
2667
2668	return changed;
2669}
2670
2671/*
2672 * The spec says we shouldn't write when we don't need, because every write
2673 * causes WMs to be re-evaluated, expending some power.
2674 */
2675static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2676				struct ilk_wm_values *results)
2677{
2678	struct drm_device *dev = dev_priv->dev;
2679	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2680	unsigned int dirty;
2681	uint32_t val;
2682
2683	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2684	if (!dirty)
2685		return;
2686
2687	_ilk_disable_lp_wm(dev_priv, dirty);
2688
2689	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2690		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2691	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2692		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2693	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2694		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2695
2696	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2697		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2698	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2699		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2700	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2701		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2702
2703	if (dirty & WM_DIRTY_DDB) {
2704		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2705			val = I915_READ(WM_MISC);
2706			if (results->partitioning == INTEL_DDB_PART_1_2)
2707				val &= ~WM_MISC_DATA_PARTITION_5_6;
2708			else
2709				val |= WM_MISC_DATA_PARTITION_5_6;
2710			I915_WRITE(WM_MISC, val);
2711		} else {
2712			val = I915_READ(DISP_ARB_CTL2);
2713			if (results->partitioning == INTEL_DDB_PART_1_2)
2714				val &= ~DISP_DATA_PARTITION_5_6;
2715			else
2716				val |= DISP_DATA_PARTITION_5_6;
2717			I915_WRITE(DISP_ARB_CTL2, val);
2718		}
2719	}
2720
2721	if (dirty & WM_DIRTY_FBC) {
2722		val = I915_READ(DISP_ARB_CTL);
2723		if (results->enable_fbc_wm)
2724			val &= ~DISP_FBC_WM_DIS;
2725		else
2726			val |= DISP_FBC_WM_DIS;
2727		I915_WRITE(DISP_ARB_CTL, val);
2728	}
2729
2730	if (dirty & WM_DIRTY_LP(1) &&
2731	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2732		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2733
2734	if (INTEL_INFO(dev)->gen >= 7) {
2735		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2736			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2737		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2738			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2739	}
2740
2741	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2742		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2743	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2744		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2745	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2746		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2747
2748	dev_priv->wm.hw = *results;
2749}
2750
2751static bool ilk_disable_lp_wm(struct drm_device *dev)
2752{
2753	struct drm_i915_private *dev_priv = dev->dev_private;
2754
2755	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2756}
2757
2758/*
2759 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2760 * different active planes.
2761 */
2762
2763#define SKL_DDB_SIZE		896	/* in blocks */
2764#define BXT_DDB_SIZE		512
2765
2766/*
2767 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2768 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2769 * other universal planes are in indices 1..n.  Note that this may leave unused
2770 * indices between the top "sprite" plane and the cursor.
2771 */
2772static int
2773skl_wm_plane_id(const struct intel_plane *plane)
2774{
2775	switch (plane->base.type) {
2776	case DRM_PLANE_TYPE_PRIMARY:
2777		return 0;
2778	case DRM_PLANE_TYPE_CURSOR:
2779		return PLANE_CURSOR;
2780	case DRM_PLANE_TYPE_OVERLAY:
2781		return plane->plane + 1;
2782	default:
2783		MISSING_CASE(plane->base.type);
2784		return plane->plane;
2785	}
2786}
2787
2788static void
2789skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2790				   const struct intel_crtc_state *cstate,
2791				   const struct intel_wm_config *config,
2792				   struct skl_ddb_entry *alloc /* out */)
2793{
2794	struct drm_crtc *for_crtc = cstate->base.crtc;
2795	struct drm_crtc *crtc;
2796	unsigned int pipe_size, ddb_size;
2797	int nth_active_pipe;
2798
2799	if (!cstate->base.active) {
2800		alloc->start = 0;
2801		alloc->end = 0;
2802		return;
2803	}
2804
2805	if (IS_BROXTON(dev))
2806		ddb_size = BXT_DDB_SIZE;
2807	else
2808		ddb_size = SKL_DDB_SIZE;
2809
2810	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2811
2812	nth_active_pipe = 0;
2813	for_each_crtc(dev, crtc) {
2814		if (!to_intel_crtc(crtc)->active)
2815			continue;
2816
2817		if (crtc == for_crtc)
2818			break;
2819
2820		nth_active_pipe++;
2821	}
2822
2823	pipe_size = ddb_size / config->num_pipes_active;
2824	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2825	alloc->end = alloc->start + pipe_size;
2826}
2827
2828static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
 
 
 
 
2829{
2830	if (config->num_pipes_active == 1)
2831		return 32;
2832
2833	return 8;
2834}
2835
2836static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
 
2837{
2838	entry->start = reg & 0x3ff;
2839	entry->end = (reg >> 16) & 0x3ff;
2840	if (entry->end)
2841		entry->end += 1;
2842}
2843
2844void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2845			  struct skl_ddb_allocation *ddb /* out */)
2846{
2847	enum pipe pipe;
2848	int plane;
2849	u32 val;
2850
2851	memset(ddb, 0, sizeof(*ddb));
2852
2853	for_each_pipe(dev_priv, pipe) {
2854		enum intel_display_power_domain power_domain;
2855
2856		power_domain = POWER_DOMAIN_PIPE(pipe);
2857		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2858			continue;
2859
2860		for_each_plane(dev_priv, pipe, plane) {
2861			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2862			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2863						   val);
2864		}
2865
2866		val = I915_READ(CUR_BUF_CFG(pipe));
2867		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2868					   val);
2869
2870		intel_display_power_put(dev_priv, power_domain);
2871	}
2872}
2873
2874static unsigned int
2875skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2876			     const struct drm_plane_state *pstate,
2877			     int y)
2878{
2879	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2880	struct drm_framebuffer *fb = pstate->fb;
2881	uint32_t width = 0, height = 0;
2882
2883	width = drm_rect_width(&intel_pstate->src) >> 16;
2884	height = drm_rect_height(&intel_pstate->src) >> 16;
2885
2886	if (intel_rotation_90_or_270(pstate->rotation))
2887		swap(width, height);
2888
2889	/* for planar format */
2890	if (fb->pixel_format == DRM_FORMAT_NV12) {
2891		if (y)  /* y-plane data rate */
2892			return width * height *
2893				drm_format_plane_cpp(fb->pixel_format, 0);
2894		else    /* uv-plane data rate */
2895			return (width / 2) * (height / 2) *
2896				drm_format_plane_cpp(fb->pixel_format, 1);
2897	}
2898
2899	/* for packed formats */
2900	return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2901}
2902
2903/*
2904 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2905 * a 8192x4096@32bpp framebuffer:
2906 *   3 * 4096 * 8192  * 4 < 2^32
 
 
 
 
 
 
2907 */
2908static unsigned int
2909skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2910{
2911	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2912	struct drm_device *dev = intel_crtc->base.dev;
2913	const struct intel_plane *intel_plane;
2914	unsigned int total_data_rate = 0;
2915
2916	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2917		const struct drm_plane_state *pstate = intel_plane->base.state;
2918
2919		if (pstate->fb == NULL)
2920			continue;
2921
2922		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2923			continue;
 
2924
2925		/* packed/uv */
2926		total_data_rate += skl_plane_relative_data_rate(cstate,
2927								pstate,
2928								0);
2929
2930		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2931			/* y-plane */
2932			total_data_rate += skl_plane_relative_data_rate(cstate,
2933									pstate,
2934									1);
 
 
 
2935	}
2936
2937	return total_data_rate;
 
2938}
2939
2940static void
2941skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2942		      struct skl_ddb_allocation *ddb /* out */)
2943{
2944	struct drm_crtc *crtc = cstate->base.crtc;
2945	struct drm_device *dev = crtc->dev;
2946	struct drm_i915_private *dev_priv = to_i915(dev);
2947	struct intel_wm_config *config = &dev_priv->wm.config;
2948	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2949	struct intel_plane *intel_plane;
2950	enum pipe pipe = intel_crtc->pipe;
2951	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2952	uint16_t alloc_size, start, cursor_blocks;
2953	uint16_t minimum[I915_MAX_PLANES];
2954	uint16_t y_minimum[I915_MAX_PLANES];
2955	unsigned int total_data_rate;
2956
2957	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2958	alloc_size = skl_ddb_entry_size(alloc);
2959	if (alloc_size == 0) {
2960		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2961		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2962		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2963		return;
2964	}
2965
2966	cursor_blocks = skl_cursor_allocation(config);
2967	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2968	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2969
2970	alloc_size -= cursor_blocks;
2971	alloc->end -= cursor_blocks;
2972
2973	/* 1. Allocate the mininum required blocks for each active plane */
2974	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2975		struct drm_plane *plane = &intel_plane->base;
2976		struct drm_framebuffer *fb = plane->state->fb;
2977		int id = skl_wm_plane_id(intel_plane);
2978
2979		if (!to_intel_plane_state(plane->state)->visible)
2980			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2981
2982		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2983			continue;
 
2984
2985		minimum[id] = 8;
2986		alloc_size -= minimum[id];
2987		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2988		alloc_size -= y_minimum[id];
2989	}
 
2990
2991	/*
2992	 * 2. Distribute the remaining space in proportion to the amount of
2993	 * data each plane needs to fetch from memory.
2994	 *
2995	 * FIXME: we may not allocate every single block here.
 
2996	 */
2997	total_data_rate = skl_get_total_relative_data_rate(cstate);
2998
2999	start = alloc->start;
3000	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3001		struct drm_plane *plane = &intel_plane->base;
3002		struct drm_plane_state *pstate = intel_plane->base.state;
3003		unsigned int data_rate, y_data_rate;
3004		uint16_t plane_blocks, y_plane_blocks = 0;
3005		int id = skl_wm_plane_id(intel_plane);
3006
3007		if (!to_intel_plane_state(pstate)->visible)
3008			continue;
3009		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3010			continue;
3011
3012		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3013
3014		/*
3015		 * allocation for (packed formats) or (uv-plane part of planar format):
3016		 * promote the expression to 64 bits to avoid overflowing, the
3017		 * result is < available as data_rate / total_data_rate < 1
3018		 */
3019		plane_blocks = minimum[id];
3020		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3021					total_data_rate);
3022
3023		ddb->plane[pipe][id].start = start;
3024		ddb->plane[pipe][id].end = start + plane_blocks;
3025
3026		start += plane_blocks;
3027
3028		/*
3029		 * allocation for y_plane part of planar format:
3030		 */
3031		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3032			y_data_rate = skl_plane_relative_data_rate(cstate,
3033								   pstate,
3034								   1);
3035			y_plane_blocks = y_minimum[id];
3036			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3037						total_data_rate);
3038
3039			ddb->y_plane[pipe][id].start = start;
3040			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3041
3042			start += y_plane_blocks;
3043		}
 
3044
 
 
 
3045	}
3046
3047}
3048
3049static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3050{
3051	/* TODO: Take into account the scalers once we support them */
3052	return config->base.adjusted_mode.crtc_clock;
3053}
3054
3055/*
3056 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3057 * for the read latency) and cpp should always be <= 8, so that
3058 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3059 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3060*/
3061static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3062{
3063	uint32_t wm_intermediate_val, ret;
3064
3065	if (latency == 0)
3066		return UINT_MAX;
3067
3068	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3069	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
 
 
 
 
3070
3071	return ret;
 
 
 
 
 
 
3072}
3073
3074static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3075			       uint32_t horiz_pixels, uint8_t cpp,
3076			       uint64_t tiling, uint32_t latency)
3077{
3078	uint32_t ret;
3079	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3080	uint32_t wm_intermediate_val;
3081
3082	if (latency == 0)
3083		return UINT_MAX;
 
 
 
 
 
 
 
3084
3085	plane_bytes_per_line = horiz_pixels * cpp;
 
 
3086
3087	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3088	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3089		plane_bytes_per_line *= 4;
3090		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3091		plane_blocks_per_line /= 4;
3092	} else {
3093		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3094	}
3095
3096	wm_intermediate_val = latency * pixel_rate;
3097	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3098				plane_blocks_per_line;
3099
3100	return ret;
3101}
3102
3103static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3104				       const struct intel_crtc *intel_crtc)
3105{
3106	struct drm_device *dev = intel_crtc->base.dev;
3107	struct drm_i915_private *dev_priv = dev->dev_private;
3108	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3109
3110	/*
3111	 * If ddb allocation of pipes changed, it may require recalculation of
3112	 * watermarks
 
 
3113	 */
3114	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3115		return true;
3116
3117	return false;
3118}
3119
3120static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3121				 struct intel_crtc_state *cstate,
3122				 struct intel_plane *intel_plane,
3123				 uint16_t ddb_allocation,
3124				 int level,
3125				 uint16_t *out_blocks, /* out */
3126				 uint8_t *out_lines /* out */)
3127{
3128	struct drm_plane *plane = &intel_plane->base;
3129	struct drm_framebuffer *fb = plane->state->fb;
3130	struct intel_plane_state *intel_pstate =
3131					to_intel_plane_state(plane->state);
3132	uint32_t latency = dev_priv->wm.skl_latency[level];
3133	uint32_t method1, method2;
3134	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3135	uint32_t res_blocks, res_lines;
3136	uint32_t selected_result;
3137	uint8_t cpp;
3138	uint32_t width = 0, height = 0;
3139
3140	if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3141		return false;
3142
3143	width = drm_rect_width(&intel_pstate->src) >> 16;
3144	height = drm_rect_height(&intel_pstate->src) >> 16;
3145
3146	if (intel_rotation_90_or_270(plane->state->rotation))
3147		swap(width, height);
3148
3149	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3150	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3151				 cpp, latency);
3152	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3153				 cstate->base.adjusted_mode.crtc_htotal,
3154				 width,
3155				 cpp,
3156				 fb->modifier[0],
3157				 latency);
3158
3159	plane_bytes_per_line = width * cpp;
3160	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3161
3162	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3163	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3164		uint32_t min_scanlines = 4;
3165		uint32_t y_tile_minimum;
3166		if (intel_rotation_90_or_270(plane->state->rotation)) {
3167			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3168				drm_format_plane_cpp(fb->pixel_format, 1) :
3169				drm_format_plane_cpp(fb->pixel_format, 0);
3170
3171			switch (cpp) {
3172			case 1:
3173				min_scanlines = 16;
3174				break;
3175			case 2:
3176				min_scanlines = 8;
3177				break;
3178			case 8:
3179				WARN(1, "Unsupported pixel depth for rotation");
3180			}
3181		}
3182		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3183		selected_result = max(method2, y_tile_minimum);
3184	} else {
3185		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3186			selected_result = min(method1, method2);
3187		else
3188			selected_result = method1;
3189	}
3190
3191	res_blocks = selected_result + 1;
3192	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
 
3193
3194	if (level >= 1 && level <= 7) {
3195		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3196		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3197			res_lines += 4;
3198		else
3199			res_blocks++;
 
3200	}
3201
3202	if (res_blocks >= ddb_allocation || res_lines > 31)
3203		return false;
 
3204
3205	*out_blocks = res_blocks;
3206	*out_lines = res_lines;
 
 
 
 
 
 
 
 
 
3207
3208	return true;
3209}
3210
3211static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3212				 struct skl_ddb_allocation *ddb,
3213				 struct intel_crtc_state *cstate,
3214				 int level,
3215				 struct skl_wm_level *result)
3216{
3217	struct drm_device *dev = dev_priv->dev;
3218	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3219	struct intel_plane *intel_plane;
3220	uint16_t ddb_blocks;
3221	enum pipe pipe = intel_crtc->pipe;
3222
3223	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3224		int i = skl_wm_plane_id(intel_plane);
3225
3226		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
 
 
3227
3228		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3229						cstate,
3230						intel_plane,
3231						ddb_blocks,
3232						level,
3233						&result->plane_res_b[i],
3234						&result->plane_res_l[i]);
3235	}
3236}
3237
3238static uint32_t
3239skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3240{
3241	if (!cstate->base.active)
3242		return 0;
3243
3244	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3245		return 0;
3246
3247	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3248			    skl_pipe_pixel_rate(cstate));
3249}
3250
3251static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3252				      struct skl_wm_level *trans_wm /* out */)
3253{
3254	struct drm_crtc *crtc = cstate->base.crtc;
3255	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256	struct intel_plane *intel_plane;
3257
3258	if (!cstate->base.active)
3259		return;
3260
3261	/* Until we know more, just disable transition WMs */
3262	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3263		int i = skl_wm_plane_id(intel_plane);
3264
3265		trans_wm->plane_en[i] = false;
3266	}
 
 
3267}
3268
3269static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3270				struct skl_ddb_allocation *ddb,
3271				struct skl_pipe_wm *pipe_wm)
3272{
3273	struct drm_device *dev = cstate->base.crtc->dev;
3274	const struct drm_i915_private *dev_priv = dev->dev_private;
3275	int level, max_level = ilk_wm_max_level(dev);
3276
3277	for (level = 0; level <= max_level; level++) {
3278		skl_compute_wm_level(dev_priv, ddb, cstate,
3279				     level, &pipe_wm->wm[level]);
3280	}
3281	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3282
3283	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3284}
3285
3286static void skl_compute_wm_results(struct drm_device *dev,
3287				   struct skl_pipe_wm *p_wm,
3288				   struct skl_wm_values *r,
3289				   struct intel_crtc *intel_crtc)
3290{
3291	int level, max_level = ilk_wm_max_level(dev);
3292	enum pipe pipe = intel_crtc->pipe;
3293	uint32_t temp;
 
 
 
3294	int i;
3295
3296	for (level = 0; level <= max_level; level++) {
3297		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3298			temp = 0;
3299
3300			temp |= p_wm->wm[level].plane_res_l[i] <<
3301					PLANE_WM_LINES_SHIFT;
3302			temp |= p_wm->wm[level].plane_res_b[i];
3303			if (p_wm->wm[level].plane_en[i])
3304				temp |= PLANE_WM_EN;
3305
3306			r->plane[pipe][i][level] = temp;
3307		}
3308
3309		temp = 0;
3310
3311		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3312		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
 
 
 
3313
3314		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3315			temp |= PLANE_WM_EN;
3316
3317		r->plane[pipe][PLANE_CURSOR][level] = temp;
 
3318
 
 
 
 
3319	}
3320
3321	/* transition WMs */
3322	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3323		temp = 0;
3324		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3325		temp |= p_wm->trans_wm.plane_res_b[i];
3326		if (p_wm->trans_wm.plane_en[i])
3327			temp |= PLANE_WM_EN;
3328
3329		r->plane_trans[pipe][i] = temp;
 
 
 
 
 
 
 
 
3330	}
3331
3332	temp = 0;
3333	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3334	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3335	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3336		temp |= PLANE_WM_EN;
3337
3338	r->plane_trans[pipe][PLANE_CURSOR] = temp;
 
 
 
3339
3340	r->wm_linetime[pipe] = p_wm->linetime;
3341}
3342
3343static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3344				i915_reg_t reg,
3345				const struct skl_ddb_entry *entry)
3346{
3347	if (entry->end)
3348		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3349	else
3350		I915_WRITE(reg, 0);
3351}
3352
3353static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3354				const struct skl_wm_values *new)
 
3355{
3356	struct drm_device *dev = dev_priv->dev;
3357	struct intel_crtc *crtc;
3358
3359	for_each_intel_crtc(dev, crtc) {
3360		int i, level, max_level = ilk_wm_max_level(dev);
3361		enum pipe pipe = crtc->pipe;
3362
3363		if (!new->dirty[pipe])
3364			continue;
3365
3366		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3367
3368		for (level = 0; level <= max_level; level++) {
3369			for (i = 0; i < intel_num_planes(crtc); i++)
3370				I915_WRITE(PLANE_WM(pipe, i, level),
3371					   new->plane[pipe][i][level]);
3372			I915_WRITE(CUR_WM(pipe, level),
3373				   new->plane[pipe][PLANE_CURSOR][level]);
3374		}
3375		for (i = 0; i < intel_num_planes(crtc); i++)
3376			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3377				   new->plane_trans[pipe][i]);
3378		I915_WRITE(CUR_WM_TRANS(pipe),
3379			   new->plane_trans[pipe][PLANE_CURSOR]);
3380
3381		for (i = 0; i < intel_num_planes(crtc); i++) {
3382			skl_ddb_entry_write(dev_priv,
3383					    PLANE_BUF_CFG(pipe, i),
3384					    &new->ddb.plane[pipe][i]);
3385			skl_ddb_entry_write(dev_priv,
3386					    PLANE_NV12_BUF_CFG(pipe, i),
3387					    &new->ddb.y_plane[pipe][i]);
3388		}
3389
3390		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3391				    &new->ddb.plane[pipe][PLANE_CURSOR]);
 
 
3392	}
3393}
3394
3395/*
3396 * When setting up a new DDB allocation arrangement, we need to correctly
3397 * sequence the times at which the new allocations for the pipes are taken into
3398 * account or we'll have pipes fetching from space previously allocated to
3399 * another pipe.
3400 *
3401 * Roughly the sequence looks like:
3402 *  1. re-allocate the pipe(s) with the allocation being reduced and not
3403 *     overlapping with a previous light-up pipe (another way to put it is:
3404 *     pipes with their new allocation strickly included into their old ones).
3405 *  2. re-allocate the other pipes that get their allocation reduced
3406 *  3. allocate the pipes having their allocation increased
3407 *
3408 * Steps 1. and 2. are here to take care of the following case:
3409 * - Initially DDB looks like this:
3410 *     |   B    |   C    |
3411 * - enable pipe A.
3412 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3413 *   allocation
3414 *     |  A  |  B  |  C  |
3415 *
3416 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3417 */
3418
3419static void
3420skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3421{
3422	int plane;
3423
3424	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3425
3426	for_each_plane(dev_priv, pipe, plane) {
3427		I915_WRITE(PLANE_SURF(pipe, plane),
3428			   I915_READ(PLANE_SURF(pipe, plane)));
3429	}
3430	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3431}
3432
3433static bool
3434skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3435			    const struct skl_ddb_allocation *new,
3436			    enum pipe pipe)
3437{
3438	uint16_t old_size, new_size;
3439
3440	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3441	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
 
 
3442
3443	return old_size != new_size &&
3444	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3445	       new->pipe[pipe].end <= old->pipe[pipe].end;
3446}
3447
3448static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3449				struct skl_wm_values *new_values)
3450{
3451	struct drm_device *dev = dev_priv->dev;
3452	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3453	bool reallocated[I915_MAX_PIPES] = {};
3454	struct intel_crtc *crtc;
3455	enum pipe pipe;
3456
3457	new_ddb = &new_values->ddb;
3458	cur_ddb = &dev_priv->wm.skl_hw.ddb;
 
 
 
3459
3460	/*
3461	 * First pass: flush the pipes with the new allocation contained into
3462	 * the old space.
3463	 *
3464	 * We'll wait for the vblank on those pipes to ensure we can safely
3465	 * re-allocate the freed space without this pipe fetching from it.
3466	 */
3467	for_each_intel_crtc(dev, crtc) {
3468		if (!crtc->active)
3469			continue;
3470
3471		pipe = crtc->pipe;
3472
3473		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3474			continue;
3475
3476		skl_wm_flush_pipe(dev_priv, pipe, 1);
3477		intel_wait_for_vblank(dev, pipe);
3478
3479		reallocated[pipe] = true;
3480	}
 
 
3481
 
 
3482
3483	/*
3484	 * Second pass: flush the pipes that are having their allocation
3485	 * reduced, but overlapping with a previous allocation.
3486	 *
3487	 * Here as well we need to wait for the vblank to make sure the freed
3488	 * space is not used anymore.
3489	 */
3490	for_each_intel_crtc(dev, crtc) {
3491		if (!crtc->active)
3492			continue;
3493
3494		pipe = crtc->pipe;
3495
3496		if (reallocated[pipe])
3497			continue;
3498
3499		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3500		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3501			skl_wm_flush_pipe(dev_priv, pipe, 2);
3502			intel_wait_for_vblank(dev, pipe);
3503			reallocated[pipe] = true;
3504		}
3505	}
 
 
3506
3507	/*
3508	 * Third pass: flush the pipes that got more space allocated.
3509	 *
3510	 * We don't need to actively wait for the update here, next vblank
3511	 * will just get more DDB space with the correct WM values.
3512	 */
3513	for_each_intel_crtc(dev, crtc) {
3514		if (!crtc->active)
3515			continue;
3516
3517		pipe = crtc->pipe;
 
3518
3519		/*
3520		 * At this point, only the pipes more space than before are
3521		 * left to re-allocate.
 
 
 
3522		 */
3523		if (reallocated[pipe])
3524			continue;
3525
3526		skl_wm_flush_pipe(dev_priv, pipe, 3);
 
 
 
 
 
 
3527	}
3528}
3529
3530static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3531			       struct skl_ddb_allocation *ddb, /* out */
3532			       struct skl_pipe_wm *pipe_wm /* out */)
3533{
3534	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3535	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
 
 
 
 
 
 
 
 
 
 
 
 
3536
3537	skl_allocate_pipe_ddb(cstate, ddb);
3538	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
 
 
 
3539
3540	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3541		return false;
3542
3543	intel_crtc->wm.active.skl = *pipe_wm;
 
 
3544
3545	return true;
3546}
3547
3548static void skl_update_other_pipe_wm(struct drm_device *dev,
3549				     struct drm_crtc *crtc,
3550				     struct skl_wm_values *r)
3551{
3552	struct intel_crtc *intel_crtc;
3553	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3554
3555	/*
3556	 * If the WM update hasn't changed the allocation for this_crtc (the
3557	 * crtc we are currently computing the new WM values for), other
3558	 * enabled crtcs will keep the same allocation and we don't need to
3559	 * recompute anything for them.
3560	 */
3561	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3562		return;
3563
3564	/*
3565	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3566	 * other active pipes need new DDB allocation and WM values.
3567	 */
3568	for_each_intel_crtc(dev, intel_crtc) {
3569		struct skl_pipe_wm pipe_wm = {};
3570		bool wm_changed;
3571
3572		if (this_crtc->pipe == intel_crtc->pipe)
3573			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3574
3575		if (!intel_crtc->active)
3576			continue;
3577
3578		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3579						&r->ddb, &pipe_wm);
 
 
 
 
 
 
 
 
 
3580
3581		/*
3582		 * If we end up re-computing the other pipe WM values, it's
3583		 * because it was really needed, so we expect the WM values to
3584		 * be different.
3585		 */
3586		WARN_ON(!wm_changed);
 
 
 
 
 
 
 
 
 
 
3587
3588		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3589		r->dirty[intel_crtc->pipe] = true;
3590	}
3591}
3592
3593static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3594{
3595	watermarks->wm_linetime[pipe] = 0;
3596	memset(watermarks->plane[pipe], 0,
3597	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3598	memset(watermarks->plane_trans[pipe],
3599	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3600	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3601
3602	/* Clear ddb entries for pipe */
3603	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3604	memset(&watermarks->ddb.plane[pipe], 0,
3605	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3606	memset(&watermarks->ddb.y_plane[pipe], 0,
3607	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3608	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3609	       sizeof(struct skl_ddb_entry));
3610
 
3611}
3612
3613static void skl_update_wm(struct drm_crtc *crtc)
 
3614{
3615	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3616	struct drm_device *dev = crtc->dev;
3617	struct drm_i915_private *dev_priv = dev->dev_private;
3618	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3619	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3620	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3621
3622
3623	/* Clear all dirty flags */
3624	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3625
3626	skl_clear_wm(results, intel_crtc->pipe);
3627
3628	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
 
 
 
 
 
 
 
 
 
 
 
 
 
3629		return;
 
3630
3631	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3632	results->dirty[intel_crtc->pipe] = true;
3633
3634	skl_update_other_pipe_wm(dev, crtc, results);
3635	skl_write_wm_values(dev_priv, results);
3636	skl_flush_wm_values(dev_priv, results);
 
 
 
 
 
 
 
 
 
3637
3638	/* store the new configuration */
3639	dev_priv->wm.skl_hw = *results;
 
 
 
 
 
3640}
3641
3642static void ilk_compute_wm_config(struct drm_device *dev,
3643				  struct intel_wm_config *config)
 
3644{
3645	struct intel_crtc *crtc;
 
 
 
 
3646
3647	/* Compute the currently _active_ config */
3648	for_each_intel_crtc(dev, crtc) {
3649		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
 
3650
3651		if (!wm->pipe_enabled)
3652			continue;
 
 
 
3653
3654		config->sprites_enabled |= wm->sprites_enabled;
3655		config->sprites_scaled |= wm->sprites_scaled;
3656		config->num_pipes_active++;
3657	}
3658}
3659
3660static void ilk_program_watermarks(struct intel_crtc_state *cstate)
3661{
3662	struct drm_crtc *crtc = cstate->base.crtc;
3663	struct drm_device *dev = crtc->dev;
3664	struct drm_i915_private *dev_priv = to_i915(dev);
3665	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3666	struct ilk_wm_maximums max;
3667	struct intel_wm_config config = {};
3668	struct ilk_wm_values results = {};
3669	enum intel_ddb_partitioning partitioning;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3670
3671	ilk_compute_wm_config(dev, &config);
 
 
 
3672
3673	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3674	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3675
3676	/* 5/6 split only in single pipe config on IVB+ */
3677	if (INTEL_INFO(dev)->gen >= 7 &&
3678	    config.num_pipes_active == 1 && config.sprites_enabled) {
3679		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3680		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3681
3682		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3683	} else {
3684		best_lp_wm = &lp_wm_1_2;
3685	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3686
3687	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3688		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3689
3690	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3691
3692	ilk_write_wm_values(dev_priv, &results);
3693}
3694
3695static void ilk_update_wm(struct drm_crtc *crtc)
 
3696{
3697	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3699
3700	WARN_ON(cstate->base.active != intel_crtc->active);
3701
3702	/*
3703	 * IVB workaround: must disable low power watermarks for at least
3704	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3705	 * when scaling is disabled.
3706	 *
3707	 * WaCxSRDisabledForSpriteScaling:ivb
3708	 */
3709	if (cstate->disable_lp_wm) {
3710		ilk_disable_lp_wm(crtc->dev);
3711		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3712	}
 
 
3713
3714	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3715
3716	ilk_program_watermarks(cstate);
3717}
3718
3719static void skl_pipe_wm_active_state(uint32_t val,
3720				     struct skl_pipe_wm *active,
3721				     bool is_transwm,
3722				     bool is_cursor,
3723				     int i,
3724				     int level)
3725{
3726	bool is_enabled = (val & PLANE_WM_EN) != 0;
3727
3728	if (!is_transwm) {
3729		if (!is_cursor) {
3730			active->wm[level].plane_en[i] = is_enabled;
3731			active->wm[level].plane_res_b[i] =
3732					val & PLANE_WM_BLOCKS_MASK;
3733			active->wm[level].plane_res_l[i] =
3734					(val >> PLANE_WM_LINES_SHIFT) &
3735						PLANE_WM_LINES_MASK;
3736		} else {
3737			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3738			active->wm[level].plane_res_b[PLANE_CURSOR] =
3739					val & PLANE_WM_BLOCKS_MASK;
3740			active->wm[level].plane_res_l[PLANE_CURSOR] =
3741					(val >> PLANE_WM_LINES_SHIFT) &
3742						PLANE_WM_LINES_MASK;
3743		}
3744	} else {
3745		if (!is_cursor) {
3746			active->trans_wm.plane_en[i] = is_enabled;
3747			active->trans_wm.plane_res_b[i] =
3748					val & PLANE_WM_BLOCKS_MASK;
3749			active->trans_wm.plane_res_l[i] =
3750					(val >> PLANE_WM_LINES_SHIFT) &
3751						PLANE_WM_LINES_MASK;
3752		} else {
3753			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3754			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3755					val & PLANE_WM_BLOCKS_MASK;
3756			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3757					(val >> PLANE_WM_LINES_SHIFT) &
3758						PLANE_WM_LINES_MASK;
3759		}
3760	}
 
3761}
3762
3763static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
 
 
 
 
 
3764{
3765	struct drm_device *dev = crtc->dev;
3766	struct drm_i915_private *dev_priv = dev->dev_private;
3767	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3768	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3769	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3770	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3771	enum pipe pipe = intel_crtc->pipe;
3772	int level, i, max_level;
3773	uint32_t temp;
 
 
 
 
 
3774
3775	max_level = ilk_wm_max_level(dev);
 
 
 
3776
3777	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
 
 
 
3778
3779	for (level = 0; level <= max_level; level++) {
3780		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3781			hw->plane[pipe][i][level] =
3782					I915_READ(PLANE_WM(pipe, i, level));
3783		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3784	}
3785
3786	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3787		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3788	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3789
3790	if (!intel_crtc->active)
3791		return;
3792
3793	hw->dirty[pipe] = true;
 
3794
3795	active->linetime = hw->wm_linetime[pipe];
 
 
3796
3797	for (level = 0; level <= max_level; level++) {
3798		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3799			temp = hw->plane[pipe][i][level];
3800			skl_pipe_wm_active_state(temp, active, false,
3801						false, i, level);
3802		}
3803		temp = hw->plane[pipe][PLANE_CURSOR][level];
3804		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3805	}
3806
3807	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3808		temp = hw->plane_trans[pipe][i];
3809		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
 
3810	}
3811
3812	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3813	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3814
3815	intel_crtc->wm.active.skl = *active;
3816}
3817
3818void skl_wm_get_hw_state(struct drm_device *dev)
3819{
3820	struct drm_i915_private *dev_priv = dev->dev_private;
3821	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3822	struct drm_crtc *crtc;
3823
3824	skl_ddb_get_hw_state(dev_priv, ddb);
3825	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3826		skl_pipe_wm_get_hw_state(crtc);
3827}
3828
3829static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
 
 
3830{
3831	struct drm_device *dev = crtc->dev;
3832	struct drm_i915_private *dev_priv = dev->dev_private;
3833	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3834	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3835	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3836	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3837	enum pipe pipe = intel_crtc->pipe;
3838	static const i915_reg_t wm0_pipe_reg[] = {
3839		[PIPE_A] = WM0_PIPEA_ILK,
3840		[PIPE_B] = WM0_PIPEB_ILK,
3841		[PIPE_C] = WM0_PIPEC_IVB,
3842	};
3843
3844	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3845	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3846		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
 
3847
3848	active->pipe_enabled = intel_crtc->active;
3849
3850	if (active->pipe_enabled) {
3851		u32 tmp = hw->wm_pipe[pipe];
 
3852
3853		/*
3854		 * For active pipes LP0 watermark is marked as
3855		 * enabled, and LP1+ watermaks as disabled since
3856		 * we can't really reverse compute them in case
3857		 * multiple pipes are active.
3858		 */
3859		active->wm[0].enable = true;
3860		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3861		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3862		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3863		active->linetime = hw->wm_linetime[pipe];
3864	} else {
3865		int level, max_level = ilk_wm_max_level(dev);
3866
3867		/*
3868		 * For inactive pipes, all watermark levels
3869		 * should be marked as enabled but zeroed,
3870		 * which is what we'd compute them to.
3871		 */
3872		for (level = 0; level <= max_level; level++)
3873			active->wm[level].enable = true;
3874	}
3875
3876	intel_crtc->wm.active.ilk = *active;
3877}
3878
3879#define _FW_WM(value, plane) \
3880	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3881#define _FW_WM_VLV(value, plane) \
3882	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3883
3884static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3885			       struct vlv_wm_values *wm)
3886{
3887	enum pipe pipe;
3888	uint32_t tmp;
3889
3890	for_each_pipe(dev_priv, pipe) {
3891		tmp = I915_READ(VLV_DDL(pipe));
3892
3893		wm->ddl[pipe].primary =
3894			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3895		wm->ddl[pipe].cursor =
3896			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3897		wm->ddl[pipe].sprite[0] =
3898			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3899		wm->ddl[pipe].sprite[1] =
3900			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3901	}
3902
3903	tmp = I915_READ(DSPFW1);
3904	wm->sr.plane = _FW_WM(tmp, SR);
3905	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3906	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3907	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3908
3909	tmp = I915_READ(DSPFW2);
3910	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3911	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3912	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3913
3914	tmp = I915_READ(DSPFW3);
3915	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3916
3917	if (IS_CHERRYVIEW(dev_priv)) {
3918		tmp = I915_READ(DSPFW7_CHV);
3919		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3920		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3921
3922		tmp = I915_READ(DSPFW8_CHV);
3923		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3924		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3925
3926		tmp = I915_READ(DSPFW9_CHV);
3927		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3928		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3929
3930		tmp = I915_READ(DSPHOWM);
3931		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3932		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3933		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3934		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3935		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3936		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3937		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3938		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3939		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3940		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3941	} else {
3942		tmp = I915_READ(DSPFW7);
3943		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3944		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3945
3946		tmp = I915_READ(DSPHOWM);
3947		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3948		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3949		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3950		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3951		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3952		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3953		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3954	}
3955}
3956
3957#undef _FW_WM
3958#undef _FW_WM_VLV
3959
3960void vlv_wm_get_hw_state(struct drm_device *dev)
3961{
3962	struct drm_i915_private *dev_priv = to_i915(dev);
3963	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3964	struct intel_plane *plane;
3965	enum pipe pipe;
3966	u32 val;
 
3967
3968	vlv_read_wm_values(dev_priv, wm);
 
 
 
3969
3970	for_each_intel_plane(dev, plane) {
3971		switch (plane->base.type) {
3972			int sprite;
3973		case DRM_PLANE_TYPE_CURSOR:
3974			plane->wm.fifo_size = 63;
3975			break;
3976		case DRM_PLANE_TYPE_PRIMARY:
3977			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3978			break;
3979		case DRM_PLANE_TYPE_OVERLAY:
3980			sprite = plane->plane;
3981			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3982			break;
3983		}
3984	}
3985
3986	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3987	wm->level = VLV_WM_LEVEL_PM2;
 
 
 
3988
3989	if (IS_CHERRYVIEW(dev_priv)) {
3990		mutex_lock(&dev_priv->rps.hw_lock);
 
 
 
 
 
 
 
3991
3992		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3993		if (val & DSP_MAXFIFO_PM5_ENABLE)
3994			wm->level = VLV_WM_LEVEL_PM5;
 
3995
3996		/*
3997		 * If DDR DVFS is disabled in the BIOS, Punit
3998		 * will never ack the request. So if that happens
3999		 * assume we don't have to enable/disable DDR DVFS
4000		 * dynamically. To test that just set the REQ_ACK
4001		 * bit to poke the Punit, but don't change the
4002		 * HIGH/LOW bits so that we don't actually change
4003		 * the current state.
4004		 */
4005		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4006		val |= FORCE_DDR_FREQ_REQ_ACK;
4007		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4008
4009		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4010			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4011			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4012				      "assuming DDR DVFS is disabled\n");
4013			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4014		} else {
4015			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4016			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4017				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4018		}
4019
4020		mutex_unlock(&dev_priv->rps.hw_lock);
4021	}
4022
4023	for_each_pipe(dev_priv, pipe)
4024		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4025			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4026			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4027
4028	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4029		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4030}
4031
4032void ilk_wm_get_hw_state(struct drm_device *dev)
 
 
 
4033{
4034	struct drm_i915_private *dev_priv = dev->dev_private;
4035	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4036	struct drm_crtc *crtc;
4037
4038	for_each_crtc(dev, crtc)
4039		ilk_pipe_wm_get_hw_state(crtc);
4040
4041	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4042	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4043	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4044
4045	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4046	if (INTEL_INFO(dev)->gen >= 7) {
4047		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4048		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4049	}
4050
4051	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4052		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4053			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4054	else if (IS_IVYBRIDGE(dev))
4055		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4056			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4057
4058	hw->enable_fbc_wm =
4059		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4060}
4061
4062/**
4063 * intel_update_watermarks - update FIFO watermark values based on current modes
4064 *
4065 * Calculate watermark values for the various WM regs based on current mode
4066 * and plane configuration.
4067 *
4068 * There are several cases to deal with here:
4069 *   - normal (i.e. non-self-refresh)
4070 *   - self-refresh (SR) mode
4071 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4072 *   - lines are small relative to FIFO size (buffer can hold more than 2
4073 *     lines), so need to account for TLB latency
4074 *
4075 *   The normal calculation is:
4076 *     watermark = dotclock * bytes per pixel * latency
4077 *   where latency is platform & configuration dependent (we assume pessimal
4078 *   values here).
4079 *
4080 *   The SR calculation is:
4081 *     watermark = (trunc(latency/line time)+1) * surface width *
4082 *       bytes per pixel
4083 *   where
4084 *     line time = htotal / dotclock
4085 *     surface width = hdisplay for normal plane and 64 for cursor
4086 *   and latency is assumed to be high, as above.
4087 *
4088 * The final value programmed to the register should always be rounded up,
4089 * and include an extra 2 entries to account for clock crossings.
4090 *
4091 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4092 * to set the non-SR watermarks to 8.
4093 */
4094void intel_update_watermarks(struct drm_crtc *crtc)
4095{
4096	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4097
4098	if (dev_priv->display.update_wm)
4099		dev_priv->display.update_wm(crtc);
 
 
4100}
4101
4102/*
4103 * Lock protecting IPS related data structures
 
 
 
 
 
 
 
 
 
4104 */
4105DEFINE_SPINLOCK(mchdev_lock);
4106
4107/* Global for IPS driver to get at the current i915 device. Protected by
4108 * mchdev_lock. */
4109static struct drm_i915_private *i915_mch_dev;
4110
4111bool ironlake_set_drps(struct drm_device *dev, u8 val)
4112{
4113	struct drm_i915_private *dev_priv = dev->dev_private;
4114	u16 rgvswctl;
4115
4116	assert_spin_locked(&mchdev_lock);
4117
4118	rgvswctl = I915_READ16(MEMSWCTL);
4119	if (rgvswctl & MEMCTL_CMD_STS) {
4120		DRM_DEBUG("gpu busy, RCS change rejected\n");
4121		return false; /* still busy with another command */
 
 
 
 
4122	}
4123
4124	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4125		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4126	I915_WRITE16(MEMSWCTL, rgvswctl);
4127	POSTING_READ16(MEMSWCTL);
4128
4129	rgvswctl |= MEMCTL_CMD_STS;
4130	I915_WRITE16(MEMSWCTL, rgvswctl);
4131
4132	return true;
4133}
4134
4135static void ironlake_enable_drps(struct drm_device *dev)
 
 
4136{
4137	struct drm_i915_private *dev_priv = dev->dev_private;
4138	u32 rgvmodectl;
4139	u8 fmax, fmin, fstart, vstart;
4140
4141	spin_lock_irq(&mchdev_lock);
4142
4143	rgvmodectl = I915_READ(MEMMODECTL);
4144
4145	/* Enable temp reporting */
4146	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4147	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4148
4149	/* 100ms RC evaluation intervals */
4150	I915_WRITE(RCUPEI, 100000);
4151	I915_WRITE(RCDNEI, 100000);
4152
4153	/* Set max/min thresholds to 90ms and 80ms respectively */
4154	I915_WRITE(RCBMAXAVG, 90000);
4155	I915_WRITE(RCBMINAVG, 80000);
4156
4157	I915_WRITE(MEMIHYST, 1);
4158
4159	/* Set up min, max, and cur for interrupt handling */
4160	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4161	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4162	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4163		MEMMODE_FSTART_SHIFT;
4164
4165	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4166		PXVFREQ_PX_SHIFT;
4167
4168	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4169	dev_priv->ips.fstart = fstart;
 
 
 
 
4170
4171	dev_priv->ips.max_delay = fstart;
4172	dev_priv->ips.min_delay = fmin;
4173	dev_priv->ips.cur_delay = fstart;
4174
4175	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4176			 fmax, fmin, fstart);
 
 
 
 
4177
4178	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
 
4179
4180	/*
4181	 * Interrupts will be enabled in ironlake_irq_postinstall
 
4182	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4183
4184	I915_WRITE(VIDSTART, vstart);
4185	POSTING_READ(VIDSTART);
4186
4187	rgvmodectl |= MEMMODE_SWMODE_EN;
4188	I915_WRITE(MEMMODECTL, rgvmodectl);
4189
4190	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4191		DRM_ERROR("stuck trying to change perf mode\n");
4192	mdelay(1);
4193
4194	ironlake_set_drps(dev, fstart);
4195
4196	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4197		I915_READ(DDREC) + I915_READ(CSIEC);
4198	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4199	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4200	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4201
4202	spin_unlock_irq(&mchdev_lock);
4203}
4204
4205static void ironlake_disable_drps(struct drm_device *dev)
4206{
4207	struct drm_i915_private *dev_priv = dev->dev_private;
4208	u16 rgvswctl;
 
4209
4210	spin_lock_irq(&mchdev_lock);
 
 
 
 
 
 
4211
4212	rgvswctl = I915_READ16(MEMSWCTL);
 
 
 
 
 
 
 
 
 
4213
4214	/* Ack interrupts, disable EFC interrupt */
4215	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4216	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4217	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4218	I915_WRITE(DEIIR, DE_PCU_EVENT);
4219	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4220
4221	/* Go back to the starting frequency */
4222	ironlake_set_drps(dev, dev_priv->ips.fstart);
4223	mdelay(1);
4224	rgvswctl |= MEMCTL_CMD_STS;
4225	I915_WRITE(MEMSWCTL, rgvswctl);
4226	mdelay(1);
4227
4228	spin_unlock_irq(&mchdev_lock);
4229}
 
 
 
 
 
4230
4231/* There's a funny hw issue where the hw returns all 0 when reading from
4232 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4233 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4234 * all limits and the gpu stuck at whatever frequency it is at atm).
4235 */
4236static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4237{
4238	u32 limits;
4239
4240	/* Only set the down limit when we've reached the lowest level to avoid
4241	 * getting more interrupts, otherwise leave this clear. This prevents a
4242	 * race in the hw when coming out of rc6: There's a tiny window where
4243	 * the hw runs at the minimal clock before selecting the desired
4244	 * frequency, if the down threshold expires in that window we will not
4245	 * receive a down interrupt. */
4246	if (IS_GEN9(dev_priv->dev)) {
4247		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4248		if (val <= dev_priv->rps.min_freq_softlimit)
4249			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4250	} else {
4251		limits = dev_priv->rps.max_freq_softlimit << 24;
4252		if (val <= dev_priv->rps.min_freq_softlimit)
4253			limits |= dev_priv->rps.min_freq_softlimit << 16;
4254	}
 
4255
4256	return limits;
4257}
4258
4259static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4260{
4261	int new_power;
4262	u32 threshold_up = 0, threshold_down = 0; /* in % */
4263	u32 ei_up = 0, ei_down = 0;
4264
4265	new_power = dev_priv->rps.power;
4266	switch (dev_priv->rps.power) {
4267	case LOW_POWER:
4268		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4269			new_power = BETWEEN;
4270		break;
4271
4272	case BETWEEN:
4273		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4274			new_power = LOW_POWER;
4275		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4276			new_power = HIGH_POWER;
4277		break;
 
 
 
 
4278
4279	case HIGH_POWER:
4280		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4281			new_power = BETWEEN;
4282		break;
 
4283	}
4284	/* Max/min bins are special */
4285	if (val <= dev_priv->rps.min_freq_softlimit)
4286		new_power = LOW_POWER;
4287	if (val >= dev_priv->rps.max_freq_softlimit)
4288		new_power = HIGH_POWER;
4289	if (new_power == dev_priv->rps.power)
4290		return;
4291
4292	/* Note the units here are not exactly 1us, but 1280ns. */
4293	switch (new_power) {
4294	case LOW_POWER:
4295		/* Upclock if more than 95% busy over 16ms */
4296		ei_up = 16000;
4297		threshold_up = 95;
4298
4299		/* Downclock if less than 85% busy over 32ms */
4300		ei_down = 32000;
4301		threshold_down = 85;
4302		break;
4303
4304	case BETWEEN:
4305		/* Upclock if more than 90% busy over 13ms */
4306		ei_up = 13000;
4307		threshold_up = 90;
4308
4309		/* Downclock if less than 75% busy over 32ms */
4310		ei_down = 32000;
4311		threshold_down = 75;
4312		break;
4313
4314	case HIGH_POWER:
4315		/* Upclock if more than 85% busy over 10ms */
4316		ei_up = 10000;
4317		threshold_up = 85;
4318
4319		/* Downclock if less than 60% busy over 32ms */
4320		ei_down = 32000;
4321		threshold_down = 60;
4322		break;
 
 
4323	}
4324
4325	I915_WRITE(GEN6_RP_UP_EI,
4326		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4327	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4328		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4329
4330	I915_WRITE(GEN6_RP_DOWN_EI,
4331		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4332	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4333		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4334
4335	 I915_WRITE(GEN6_RP_CONTROL,
4336		    GEN6_RP_MEDIA_TURBO |
4337		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4338		    GEN6_RP_MEDIA_IS_GFX |
4339		    GEN6_RP_ENABLE |
4340		    GEN6_RP_UP_BUSY_AVG |
4341		    GEN6_RP_DOWN_IDLE_AVG);
4342
4343	dev_priv->rps.power = new_power;
4344	dev_priv->rps.up_threshold = threshold_up;
4345	dev_priv->rps.down_threshold = threshold_down;
4346	dev_priv->rps.last_adj = 0;
4347}
4348
4349static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
 
 
 
 
 
 
 
 
4350{
4351	u32 mask = 0;
 
 
 
 
4352
4353	if (val > dev_priv->rps.min_freq_softlimit)
4354		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4355	if (val < dev_priv->rps.max_freq_softlimit)
4356		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4357
4358	mask &= dev_priv->pm_rps_events;
 
4359
4360	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4361}
4362
4363/* gen6_set_rps is called to update the frequency request, but should also be
4364 * called when the range (min_delay and max_delay) is modified so that we can
4365 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4366static void gen6_set_rps(struct drm_device *dev, u8 val)
4367{
4368	struct drm_i915_private *dev_priv = dev->dev_private;
4369
4370	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4371	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4372		return;
4373
4374	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4375	WARN_ON(val > dev_priv->rps.max_freq);
4376	WARN_ON(val < dev_priv->rps.min_freq);
4377
4378	/* min/max delay may still have been modified so be sure to
4379	 * write the limits value.
4380	 */
4381	if (val != dev_priv->rps.cur_freq) {
4382		gen6_set_rps_thresholds(dev_priv, val);
4383
4384		if (IS_GEN9(dev))
4385			I915_WRITE(GEN6_RPNSWREQ,
4386				   GEN9_FREQUENCY(val));
4387		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4388			I915_WRITE(GEN6_RPNSWREQ,
4389				   HSW_FREQUENCY(val));
4390		else
4391			I915_WRITE(GEN6_RPNSWREQ,
4392				   GEN6_FREQUENCY(val) |
4393				   GEN6_OFFSET(0) |
4394				   GEN6_AGGRESSIVE_TURBO);
4395	}
4396
4397	/* Make sure we continue to get interrupts
4398	 * until we hit the minimum or maximum frequencies.
4399	 */
4400	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4401	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4402
4403	POSTING_READ(GEN6_RPNSWREQ);
 
4404
4405	dev_priv->rps.cur_freq = val;
4406	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
 
 
 
4407}
4408
4409static void valleyview_set_rps(struct drm_device *dev, u8 val)
 
4410{
4411	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
4412
4413	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4414	WARN_ON(val > dev_priv->rps.max_freq);
4415	WARN_ON(val < dev_priv->rps.min_freq);
4416
4417	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4418		      "Odd GPU freq value\n"))
4419		val &= ~1;
4420
4421	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
 
4422
4423	if (val != dev_priv->rps.cur_freq) {
4424		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4425		if (!IS_CHERRYVIEW(dev_priv))
4426			gen6_set_rps_thresholds(dev_priv, val);
4427	}
4428
4429	dev_priv->rps.cur_freq = val;
4430	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4431}
4432
4433/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4434 *
4435 * * If Gfx is Idle, then
4436 * 1. Forcewake Media well.
4437 * 2. Request idle freq.
4438 * 3. Release Forcewake of Media well.
4439*/
4440static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4441{
4442	u32 val = dev_priv->rps.idle_freq;
 
 
4443
4444	if (dev_priv->rps.cur_freq <= val)
4445		return;
 
 
 
 
 
4446
4447	/* Wake up the media well, as that takes a lot less
4448	 * power than the Render well. */
4449	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4450	valleyview_set_rps(dev_priv->dev, val);
4451	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4452}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4453
4454void gen6_rps_busy(struct drm_i915_private *dev_priv)
4455{
4456	mutex_lock(&dev_priv->rps.hw_lock);
4457	if (dev_priv->rps.enabled) {
4458		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4459			gen6_rps_reset_ei(dev_priv);
4460		I915_WRITE(GEN6_PMINTRMSK,
4461			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
 
 
 
 
 
 
 
 
 
4462	}
4463	mutex_unlock(&dev_priv->rps.hw_lock);
4464}
4465
4466void gen6_rps_idle(struct drm_i915_private *dev_priv)
4467{
4468	struct drm_device *dev = dev_priv->dev;
4469
4470	mutex_lock(&dev_priv->rps.hw_lock);
4471	if (dev_priv->rps.enabled) {
4472		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4473			vlv_set_rps_idle(dev_priv);
4474		else
4475			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4476		dev_priv->rps.last_adj = 0;
4477		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4478	}
4479	mutex_unlock(&dev_priv->rps.hw_lock);
4480
4481	spin_lock(&dev_priv->rps.client_lock);
4482	while (!list_empty(&dev_priv->rps.clients))
4483		list_del_init(dev_priv->rps.clients.next);
4484	spin_unlock(&dev_priv->rps.client_lock);
4485}
4486
4487void gen6_rps_boost(struct drm_i915_private *dev_priv,
4488		    struct intel_rps_client *rps,
4489		    unsigned long submitted)
4490{
4491	/* This is intentionally racy! We peek at the state here, then
4492	 * validate inside the RPS worker.
4493	 */
4494	if (!(dev_priv->mm.busy &&
4495	      dev_priv->rps.enabled &&
4496	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4497		return;
4498
4499	/* Force a RPS boost (and don't count it against the client) if
4500	 * the GPU is severely congested.
4501	 */
4502	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4503		rps = NULL;
4504
4505	spin_lock(&dev_priv->rps.client_lock);
4506	if (rps == NULL || list_empty(&rps->link)) {
4507		spin_lock_irq(&dev_priv->irq_lock);
4508		if (dev_priv->rps.interrupts_enabled) {
4509			dev_priv->rps.client_boost = true;
4510			queue_work(dev_priv->wq, &dev_priv->rps.work);
4511		}
4512		spin_unlock_irq(&dev_priv->irq_lock);
4513
4514		if (rps != NULL) {
4515			list_add(&rps->link, &dev_priv->rps.clients);
4516			rps->boosts++;
4517		} else
4518			dev_priv->rps.boosts++;
4519	}
4520	spin_unlock(&dev_priv->rps.client_lock);
4521}
4522
4523void intel_set_rps(struct drm_device *dev, u8 val)
4524{
4525	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4526		valleyview_set_rps(dev, val);
4527	else
4528		gen6_set_rps(dev, val);
4529}
4530
4531static void gen9_disable_rps(struct drm_device *dev)
4532{
4533	struct drm_i915_private *dev_priv = dev->dev_private;
4534
4535	I915_WRITE(GEN6_RC_CONTROL, 0);
4536	I915_WRITE(GEN9_PG_ENABLE, 0);
4537}
4538
4539static void gen6_disable_rps(struct drm_device *dev)
 
 
 
4540{
4541	struct drm_i915_private *dev_priv = dev->dev_private;
4542
4543	I915_WRITE(GEN6_RC_CONTROL, 0);
4544	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4545}
4546
4547static void cherryview_disable_rps(struct drm_device *dev)
4548{
4549	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
4550
4551	I915_WRITE(GEN6_RC_CONTROL, 0);
 
 
 
 
4552}
4553
4554static void valleyview_disable_rps(struct drm_device *dev)
4555{
4556	struct drm_i915_private *dev_priv = dev->dev_private;
4557
4558	/* we're doing forcewake before Disabling RC6,
4559	 * This what the BIOS expects when going into suspend */
4560	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4561
4562	I915_WRITE(GEN6_RC_CONTROL, 0);
4563
4564	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 
4565}
4566
4567static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4568{
4569	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4570		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4571			mode = GEN6_RC_CTL_RC6_ENABLE;
4572		else
4573			mode = 0;
4574	}
4575	if (HAS_RC6p(dev))
4576		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4577			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4578			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4579			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4580
4581	else
4582		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4583			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4584}
4585
4586static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
4587{
4588	struct drm_i915_private *dev_priv = dev->dev_private;
4589	bool enable_rc6 = true;
4590	unsigned long rc6_ctx_base;
4591
4592	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4593		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4594		enable_rc6 = false;
 
 
 
 
 
 
 
4595	}
4596
4597	/*
4598	 * The exact context size is not known for BXT, so assume a page size
4599	 * for this check.
4600	 */
4601	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4602	if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
4603	      (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
4604					dev_priv->gtt.stolen_reserved_size))) {
4605		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4606		enable_rc6 = false;
4607	}
 
 
 
 
 
 
 
 
4608
4609	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4610	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4611	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4612	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4613		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4614		enable_rc6 = false;
 
 
 
 
 
 
 
 
 
4615	}
4616
4617	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4618					    GEN6_RC_CTL_HW_ENABLE)) &&
4619	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4620	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4621		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4622		enable_rc6 = false;
4623	}
 
 
 
 
 
 
 
 
 
 
4624
4625	return enable_rc6;
4626}
 
 
 
 
 
 
 
 
4627
4628int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4629{
4630	/* No RC6 before Ironlake and code is gone for ilk. */
4631	if (INTEL_INFO(dev)->gen < 6)
4632		return 0;
4633
4634	if (!enable_rc6)
4635		return 0;
 
 
 
4636
4637	if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4638		DRM_INFO("RC6 disabled by BIOS\n");
4639		return 0;
 
 
4640	}
4641
4642	/* Respect the kernel parameter if it is set */
4643	if (enable_rc6 >= 0) {
4644		int mask;
4645
4646		if (HAS_RC6p(dev))
4647			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4648			       INTEL_RC6pp_ENABLE;
4649		else
4650			mask = INTEL_RC6_ENABLE;
4651
4652		if ((enable_rc6 & mask) != enable_rc6)
4653			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4654				      enable_rc6 & mask, enable_rc6, mask);
4655
4656		return enable_rc6 & mask;
4657	}
4658
4659	if (IS_IVYBRIDGE(dev))
4660		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
 
 
 
 
 
 
 
 
 
4661
4662	return INTEL_RC6_ENABLE;
 
4663}
4664
4665int intel_enable_rc6(const struct drm_device *dev)
4666{
4667	return i915.enable_rc6;
4668}
 
 
 
 
4669
4670static void gen6_init_rps_frequencies(struct drm_device *dev)
4671{
4672	struct drm_i915_private *dev_priv = dev->dev_private;
4673	uint32_t rp_state_cap;
4674	u32 ddcc_status = 0;
4675	int ret;
4676
4677	/* All of these values are in units of 50MHz */
4678	dev_priv->rps.cur_freq		= 0;
4679	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4680	if (IS_BROXTON(dev)) {
4681		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4682		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4683		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4684		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4685	} else {
4686		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4687		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4688		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4689		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4690	}
4691
4692	/* hw_max = RP0 until we check for overclocking */
4693	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4694
4695	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4696	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4697	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4698		ret = sandybridge_pcode_read(dev_priv,
4699					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4700					&ddcc_status);
4701		if (0 == ret)
4702			dev_priv->rps.efficient_freq =
4703				clamp_t(u8,
4704					((ddcc_status >> 8) & 0xff),
4705					dev_priv->rps.min_freq,
4706					dev_priv->rps.max_freq);
4707	}
4708
4709	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4710		/* Store the frequency values in 16.66 MHZ units, which is
4711		   the natural hardware unit for SKL */
4712		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4713		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4714		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4715		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4716		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4717	}
4718
4719	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4720
4721	/* Preserve min/max settings in case of re-init */
4722	if (dev_priv->rps.max_freq_softlimit == 0)
4723		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4724
4725	if (dev_priv->rps.min_freq_softlimit == 0) {
4726		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4727			dev_priv->rps.min_freq_softlimit =
4728				max_t(int, dev_priv->rps.efficient_freq,
4729				      intel_freq_opcode(dev_priv, 450));
4730		else
4731			dev_priv->rps.min_freq_softlimit =
4732				dev_priv->rps.min_freq;
4733	}
4734}
4735
4736/* See the Gen9_GT_PM_Programming_Guide doc for the below */
4737static void gen9_enable_rps(struct drm_device *dev)
 
4738{
4739	struct drm_i915_private *dev_priv = dev->dev_private;
4740
4741	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4742
4743	gen6_init_rps_frequencies(dev);
4744
4745	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4746	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4747		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4748		return;
4749	}
4750
4751	/* Program defaults and thresholds for RPS*/
4752	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4753		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4754
4755	/* 1 second timeout*/
4756	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4757		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4758
4759	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4760
4761	/* Leaning on the below call to gen6_set_rps to program/setup the
4762	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4763	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4764	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4765	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4766
4767	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4768}
4769
4770static void gen9_enable_rc6(struct drm_device *dev)
 
 
 
4771{
4772	struct drm_i915_private *dev_priv = dev->dev_private;
4773	struct intel_engine_cs *ring;
4774	uint32_t rc6_mask = 0;
4775	int unused;
4776
4777	/* 1a: Software RC state - RC0 */
4778	I915_WRITE(GEN6_RC_STATE, 0);
4779
4780	/* 1b: Get forcewake during program sequence. Although the driver
4781	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4782	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4783
4784	/* 2a: Disable RC states. */
4785	I915_WRITE(GEN6_RC_CONTROL, 0);
 
 
 
 
4786
4787	/* 2b: Program RC6 thresholds.*/
 
 
 
4788
4789	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4790	if (IS_SKYLAKE(dev))
4791		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4792	else
4793		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4794	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4795	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4796	for_each_ring(ring, dev_priv, unused)
4797		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4798
4799	if (HAS_GUC_UCODE(dev))
4800		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4801
4802	I915_WRITE(GEN6_RC_SLEEP, 0);
4803
4804	/* 2c: Program Coarse Power Gating Policies. */
4805	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4806	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4807
4808	/* 3a: Enable RC6 */
4809	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4810		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4811	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4812	/* WaRsUseTimeoutMode */
4813	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4814	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4815		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4816		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4817			   GEN7_RC_CTL_TO_MODE |
4818			   rc6_mask);
4819	} else {
4820		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4821		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4822			   GEN6_RC_CTL_EI_MODE(1) |
4823			   rc6_mask);
4824	}
 
4825
4826	/*
4827	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4828	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
 
4829	 */
4830	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4831		I915_WRITE(GEN9_PG_ENABLE, 0);
4832	else
4833		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4834				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4835
4836	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837
4838}
4839
4840static void gen8_enable_rps(struct drm_device *dev)
 
 
4841{
4842	struct drm_i915_private *dev_priv = dev->dev_private;
4843	struct intel_engine_cs *ring;
4844	uint32_t rc6_mask = 0;
4845	int unused;
4846
4847	/* 1a: Software RC state - RC0 */
4848	I915_WRITE(GEN6_RC_STATE, 0);
4849
4850	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4851	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4852	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4853
4854	/* 2a: Disable RC states. */
4855	I915_WRITE(GEN6_RC_CONTROL, 0);
4856
4857	/* Initialize rps frequencies */
4858	gen6_init_rps_frequencies(dev);
4859
4860	/* 2b: Program RC6 thresholds.*/
4861	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4862	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4863	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4864	for_each_ring(ring, dev_priv, unused)
4865		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4866	I915_WRITE(GEN6_RC_SLEEP, 0);
4867	if (IS_BROADWELL(dev))
4868		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4869	else
4870		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4871
4872	/* 3: Enable RC6 */
4873	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4874		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4875	intel_print_rc6_info(dev, rc6_mask);
4876	if (IS_BROADWELL(dev))
4877		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4878				GEN7_RC_CTL_TO_MODE |
4879				rc6_mask);
4880	else
4881		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4882				GEN6_RC_CTL_EI_MODE(1) |
4883				rc6_mask);
4884
4885	/* 4 Program defaults and thresholds for RPS*/
4886	I915_WRITE(GEN6_RPNSWREQ,
4887		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4888	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4889		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4890	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4891	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4892
4893	/* Docs recommend 900MHz, and 300 MHz respectively */
4894	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4895		   dev_priv->rps.max_freq_softlimit << 24 |
4896		   dev_priv->rps.min_freq_softlimit << 16);
4897
4898	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4899	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4900	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4901	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4902
4903	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4904
4905	/* 5: Enable RPS */
4906	I915_WRITE(GEN6_RP_CONTROL,
4907		   GEN6_RP_MEDIA_TURBO |
4908		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4909		   GEN6_RP_MEDIA_IS_GFX |
4910		   GEN6_RP_ENABLE |
4911		   GEN6_RP_UP_BUSY_AVG |
4912		   GEN6_RP_DOWN_IDLE_AVG);
4913
4914	/* 6: Ring frequency + overclocking (our driver does this later */
4915
4916	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4917	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4918
4919	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4920}
4921
4922static void gen6_enable_rps(struct drm_device *dev)
4923{
4924	struct drm_i915_private *dev_priv = dev->dev_private;
4925	struct intel_engine_cs *ring;
4926	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4927	u32 gtfifodbg;
4928	int rc6_mode;
4929	int i, ret;
4930
4931	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
 
4932
4933	/* Here begins a magic sequence of register writes to enable
4934	 * auto-downclocking.
4935	 *
4936	 * Perhaps there might be some value in exposing these to
4937	 * userspace...
4938	 */
4939	I915_WRITE(GEN6_RC_STATE, 0);
4940
4941	/* Clear the DBG now so we don't confuse earlier errors */
4942	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4943		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4944		I915_WRITE(GTFIFODBG, gtfifodbg);
4945	}
4946
4947	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4948
4949	/* Initialize rps frequencies */
4950	gen6_init_rps_frequencies(dev);
4951
4952	/* disable the counters and set deterministic thresholds */
4953	I915_WRITE(GEN6_RC_CONTROL, 0);
4954
4955	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4956	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4957	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4958	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4959	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4960
4961	for_each_ring(ring, dev_priv, i)
4962		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
 
 
 
 
 
4963
4964	I915_WRITE(GEN6_RC_SLEEP, 0);
4965	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4966	if (IS_IVYBRIDGE(dev))
4967		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4968	else
4969		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4970	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4971	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4972
4973	/* Check if we are enabling RC6 */
4974	rc6_mode = intel_enable_rc6(dev_priv->dev);
4975	if (rc6_mode & INTEL_RC6_ENABLE)
4976		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
 
4977
4978	/* We don't use those on Haswell */
4979	if (!IS_HASWELL(dev)) {
4980		if (rc6_mode & INTEL_RC6p_ENABLE)
4981			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4982
4983		if (rc6_mode & INTEL_RC6pp_ENABLE)
4984			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4985	}
4986
4987	intel_print_rc6_info(dev, rc6_mask);
 
 
 
 
 
 
 
4988
4989	I915_WRITE(GEN6_RC_CONTROL,
4990		   rc6_mask |
4991		   GEN6_RC_CTL_EI_MODE(1) |
4992		   GEN6_RC_CTL_HW_ENABLE);
4993
4994	/* Power down if completely idle for over 50ms */
4995	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4996	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4997
4998	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
 
4999	if (ret)
5000		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5001
5002	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5003	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5004		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5005				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5006				 (pcu_mbox & 0xff) * 50);
5007		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5008	}
5009
5010	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5011	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5012
5013	rc6vids = 0;
5014	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5015	if (IS_GEN6(dev) && ret) {
5016		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5017	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5018		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5019			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5020		rc6vids &= 0xffff00;
5021		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5022		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5023		if (ret)
5024			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5025	}
5026
5027	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5028}
5029
5030static void __gen6_update_ring_freq(struct drm_device *dev)
 
5031{
5032	struct drm_i915_private *dev_priv = dev->dev_private;
5033	int min_freq = 15;
5034	unsigned int gpu_freq;
5035	unsigned int max_ia_freq, min_ring_freq;
5036	unsigned int max_gpu_freq, min_gpu_freq;
5037	int scaling_factor = 180;
5038	struct cpufreq_policy *policy;
5039
5040	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5041
5042	policy = cpufreq_cpu_get(0);
5043	if (policy) {
5044		max_ia_freq = policy->cpuinfo.max_freq;
5045		cpufreq_cpu_put(policy);
5046	} else {
5047		/*
5048		 * Default to measured freq if none found, PCU will ensure we
5049		 * don't go over
5050		 */
5051		max_ia_freq = tsc_khz;
5052	}
5053
5054	/* Convert from kHz to MHz */
5055	max_ia_freq /= 1000;
 
5056
5057	min_ring_freq = I915_READ(DCLK) & 0xf;
5058	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5059	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5060
5061	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5062		/* Convert GT frequency to 50 HZ units */
5063		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5064		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5065	} else {
5066		min_gpu_freq = dev_priv->rps.min_freq;
5067		max_gpu_freq = dev_priv->rps.max_freq;
5068	}
5069
5070	/*
5071	 * For each potential GPU frequency, load a ring frequency we'd like
5072	 * to use for memory access.  We do this by specifying the IA frequency
5073	 * the PCU should use as a reference to determine the ring frequency.
5074	 */
5075	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5076		int diff = max_gpu_freq - gpu_freq;
5077		unsigned int ia_freq = 0, ring_freq = 0;
5078
5079		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5080			/*
5081			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5082			 * No floor required for ring frequency on SKL.
5083			 */
5084			ring_freq = gpu_freq;
5085		} else if (INTEL_INFO(dev)->gen >= 8) {
5086			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5087			ring_freq = max(min_ring_freq, gpu_freq);
5088		} else if (IS_HASWELL(dev)) {
5089			ring_freq = mult_frac(gpu_freq, 5, 4);
5090			ring_freq = max(min_ring_freq, ring_freq);
5091			/* leave ia_freq as the default, chosen by cpufreq */
5092		} else {
5093			/* On older processors, there is no separate ring
5094			 * clock domain, so in order to boost the bandwidth
5095			 * of the ring, we need to upclock the CPU (ia_freq).
5096			 *
5097			 * For GPU frequencies less than 750MHz,
5098			 * just use the lowest ring freq.
5099			 */
5100			if (gpu_freq < min_freq)
5101				ia_freq = 800;
5102			else
5103				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5104			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5105		}
5106
5107		sandybridge_pcode_write(dev_priv,
5108					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5109					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5110					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5111					gpu_freq);
 
 
 
 
5112	}
5113}
5114
5115void gen6_update_ring_freq(struct drm_device *dev)
5116{
5117	struct drm_i915_private *dev_priv = dev->dev_private;
5118
5119	if (!HAS_CORE_RING_FREQ(dev))
5120		return;
5121
5122	mutex_lock(&dev_priv->rps.hw_lock);
5123	__gen6_update_ring_freq(dev);
5124	mutex_unlock(&dev_priv->rps.hw_lock);
5125}
5126
5127static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
 
5128{
5129	struct drm_device *dev = dev_priv->dev;
5130	u32 val, rp0;
 
 
 
 
5131
5132	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
 
 
 
 
 
 
 
5133
5134	switch (INTEL_INFO(dev)->eu_total) {
5135	case 8:
5136		/* (2 * 4) config */
5137		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5138		break;
5139	case 12:
5140		/* (2 * 6) config */
5141		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5142		break;
5143	case 16:
5144		/* (2 * 8) config */
5145	default:
5146		/* Setting (2 * 8) Min RP0 for any other combination */
5147		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5148		break;
5149	}
5150
5151	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5152
5153	return rp0;
5154}
5155
5156static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
 
 
5157{
5158	u32 val, rpe;
5159
5160	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5161	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5162
5163	return rpe;
5164}
5165
5166static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
 
 
5167{
5168	u32 val, rp1;
5169
5170	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5171	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
 
 
 
 
5172
5173	return rp1;
5174}
5175
5176static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
 
5177{
5178	u32 val, rp1;
5179
5180	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5181
5182	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
 
5183
5184	return rp1;
 
 
 
5185}
5186
5187static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
 
5188{
5189	u32 val, rp0;
5190
5191	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
 
 
 
 
5192
5193	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5194	/* Clamp to max */
5195	rp0 = min_t(u32, rp0, 0xea);
5196
5197	return rp0;
5198}
5199
5200static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5201{
5202	u32 val, rpe;
5203
5204	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5205	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5206	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5207	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
 
5208
5209	return rpe;
5210}
5211
5212static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
 
5213{
5214	u32 val;
5215
5216	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5217	/*
5218	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5219	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5220	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5221	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5222	 * to make sure it matches what Punit accepts.
5223	 */
5224	return max_t(u32, val, 0xc0);
5225}
5226
5227/* Check that the pctx buffer wasn't move under us. */
5228static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
 
5229{
5230	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5231
5232	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5233			     dev_priv->vlv_pctx->stolen->start);
5234}
 
 
 
 
 
 
5235
 
 
 
 
5236
5237/* Check that the pcbr address is not empty. */
5238static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5239{
5240	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5241
5242	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5243}
5244
5245static void cherryview_setup_pctx(struct drm_device *dev)
 
5246{
5247	struct drm_i915_private *dev_priv = dev->dev_private;
5248	unsigned long pctx_paddr, paddr;
5249	struct i915_gtt *gtt = &dev_priv->gtt;
5250	u32 pcbr;
5251	int pctx_size = 32*1024;
 
 
 
5252
5253	pcbr = I915_READ(VLV_PCBR);
5254	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5255		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5256		paddr = (dev_priv->mm.stolen_base +
5257			 (gtt->stolen_size - pctx_size));
5258
5259		pctx_paddr = (paddr & (~4095));
5260		I915_WRITE(VLV_PCBR, pctx_paddr);
 
 
5261	}
5262
5263	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5264}
5265
5266static void valleyview_setup_pctx(struct drm_device *dev)
 
 
5267{
5268	struct drm_i915_private *dev_priv = dev->dev_private;
5269	struct drm_i915_gem_object *pctx;
5270	unsigned long pctx_paddr;
5271	u32 pcbr;
5272	int pctx_size = 24*1024;
5273
5274	mutex_lock(&dev->struct_mutex);
5275
5276	pcbr = I915_READ(VLV_PCBR);
5277	if (pcbr) {
5278		/* BIOS set it up already, grab the pre-alloc'd space */
5279		int pcbr_offset;
5280
5281		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5282		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5283								      pcbr_offset,
5284								      I915_GTT_OFFSET_NONE,
5285								      pctx_size);
5286		goto out;
5287	}
 
 
5288
5289	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
 
 
5290
5291	/*
5292	 * From the Gunit register HAS:
5293	 * The Gfx driver is expected to program this register and ensure
5294	 * proper allocation within Gfx stolen memory.  For example, this
5295	 * register should be programmed such than the PCBR range does not
5296	 * overlap with other ranges, such as the frame buffer, protected
5297	 * memory, or any other relevant ranges.
5298	 */
5299	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5300	if (!pctx) {
5301		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5302		goto out;
5303	}
5304
5305	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5306	I915_WRITE(VLV_PCBR, pctx_paddr);
5307
5308out:
5309	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5310	dev_priv->vlv_pctx = pctx;
5311	mutex_unlock(&dev->struct_mutex);
5312}
5313
5314static void valleyview_cleanup_pctx(struct drm_device *dev)
5315{
5316	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
5317
5318	if (WARN_ON(!dev_priv->vlv_pctx))
5319		return;
 
 
 
5320
5321	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5322	dev_priv->vlv_pctx = NULL;
 
 
5323}
5324
5325static void valleyview_init_gt_powersave(struct drm_device *dev)
 
5326{
5327	struct drm_i915_private *dev_priv = dev->dev_private;
5328	u32 val;
5329
5330	valleyview_setup_pctx(dev);
 
 
 
5331
5332	mutex_lock(&dev_priv->rps.hw_lock);
 
 
 
5333
5334	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5335	switch ((val >> 6) & 3) {
5336	case 0:
5337	case 1:
5338		dev_priv->mem_freq = 800;
5339		break;
5340	case 2:
5341		dev_priv->mem_freq = 1066;
5342		break;
5343	case 3:
5344		dev_priv->mem_freq = 1333;
5345		break;
5346	}
5347	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5348
5349	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5350	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5351	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5352			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5353			 dev_priv->rps.max_freq);
5354
5355	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5356	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5357			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5358			 dev_priv->rps.efficient_freq);
5359
5360	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5361	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5362			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5363			 dev_priv->rps.rp1_freq);
5364
5365	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5366	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5367			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5368			 dev_priv->rps.min_freq);
 
5369
5370	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
 
5371
5372	/* Preserve min/max settings in case of re-init */
5373	if (dev_priv->rps.max_freq_softlimit == 0)
5374		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5375
5376	if (dev_priv->rps.min_freq_softlimit == 0)
5377		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5378
5379	mutex_unlock(&dev_priv->rps.hw_lock);
5380}
 
 
5381
5382static void cherryview_init_gt_powersave(struct drm_device *dev)
5383{
5384	struct drm_i915_private *dev_priv = dev->dev_private;
5385	u32 val;
5386
5387	cherryview_setup_pctx(dev);
 
5388
5389	mutex_lock(&dev_priv->rps.hw_lock);
 
 
 
 
5390
5391	mutex_lock(&dev_priv->sb_lock);
5392	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5393	mutex_unlock(&dev_priv->sb_lock);
 
 
 
5394
5395	switch ((val >> 2) & 0x7) {
5396	case 3:
5397		dev_priv->mem_freq = 2000;
5398		break;
5399	default:
5400		dev_priv->mem_freq = 1600;
5401		break;
5402	}
5403	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5404
5405	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5406	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5407	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5408			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5409			 dev_priv->rps.max_freq);
5410
5411	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5412	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5413			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5414			 dev_priv->rps.efficient_freq);
5415
5416	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5417	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5418			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5419			 dev_priv->rps.rp1_freq);
5420
5421	/* PUnit validated range is only [RPe, RP0] */
5422	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5423	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5424			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5425			 dev_priv->rps.min_freq);
5426
5427	WARN_ONCE((dev_priv->rps.max_freq |
5428		   dev_priv->rps.efficient_freq |
5429		   dev_priv->rps.rp1_freq |
5430		   dev_priv->rps.min_freq) & 1,
5431		  "Odd GPU freq values\n");
5432
5433	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
 
 
 
 
5434
5435	/* Preserve min/max settings in case of re-init */
5436	if (dev_priv->rps.max_freq_softlimit == 0)
5437		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
 
 
5438
5439	if (dev_priv->rps.min_freq_softlimit == 0)
5440		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
 
 
 
5441
5442	mutex_unlock(&dev_priv->rps.hw_lock);
5443}
5444
5445static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5446{
5447	valleyview_cleanup_pctx(dev);
5448}
5449
5450static void cherryview_enable_rps(struct drm_device *dev)
 
5451{
5452	struct drm_i915_private *dev_priv = dev->dev_private;
5453	struct intel_engine_cs *ring;
5454	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
 
 
5455	int i;
5456
5457	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5458
5459	gtfifodbg = I915_READ(GTFIFODBG);
5460	if (gtfifodbg) {
5461		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5462				 gtfifodbg);
5463		I915_WRITE(GTFIFODBG, gtfifodbg);
5464	}
5465
5466	cherryview_check_pctx(dev_priv);
5467
5468	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5469	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5470	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5471
5472	/*  Disable RC states. */
5473	I915_WRITE(GEN6_RC_CONTROL, 0);
5474
5475	/* 2a: Program RC6 thresholds.*/
5476	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5477	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5478	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5479
5480	for_each_ring(ring, dev_priv, i)
5481		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5482	I915_WRITE(GEN6_RC_SLEEP, 0);
5483
5484	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5485	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5486
5487	/* allows RC6 residency counter to work */
5488	I915_WRITE(VLV_COUNTER_CONTROL,
5489		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5490				      VLV_MEDIA_RC6_COUNT_EN |
5491				      VLV_RENDER_RC6_COUNT_EN));
5492
5493	/* For now we assume BIOS is allocating and populating the PCBR  */
5494	pcbr = I915_READ(VLV_PCBR);
5495
5496	/* 3: Enable RC6 */
5497	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5498						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5499		rc6_mode = GEN7_RC_CTL_TO_MODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5500
5501	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5502
5503	/* 4 Program defaults and thresholds for RPS*/
5504	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5505	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5506	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5507	I915_WRITE(GEN6_RP_UP_EI, 66000);
5508	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5509
5510	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
 
 
 
 
 
 
 
 
 
5511
5512	/* 5: Enable RPS */
5513	I915_WRITE(GEN6_RP_CONTROL,
5514		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5515		   GEN6_RP_MEDIA_IS_GFX |
5516		   GEN6_RP_ENABLE |
5517		   GEN6_RP_UP_BUSY_AVG |
5518		   GEN6_RP_DOWN_IDLE_AVG);
5519
5520	/* Setting Fixed Bias */
5521	val = VLV_OVERRIDE_EN |
5522		  VLV_SOC_TDP_EN |
5523		  CHV_BIAS_CPU_50_SOC_50;
5524	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5525
5526	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
 
 
5527
5528	/* RPS code assumes GPLL is used */
5529	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5530
5531	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5532	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
 
5533
5534	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5535	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5536			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5537			 dev_priv->rps.cur_freq);
 
 
 
 
 
 
 
 
 
5538
5539	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5540			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5541			 dev_priv->rps.efficient_freq);
5542
5543	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
 
5544
5545	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5546}
5547
5548static void valleyview_enable_rps(struct drm_device *dev)
 
5549{
5550	struct drm_i915_private *dev_priv = dev->dev_private;
5551	struct intel_engine_cs *ring;
5552	u32 gtfifodbg, val, rc6_mode = 0;
5553	int i;
5554
5555	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5556
5557	valleyview_check_pctx(dev_priv);
5558
5559	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5560		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5561				 gtfifodbg);
5562		I915_WRITE(GTFIFODBG, gtfifodbg);
5563	}
5564
5565	/* If VLV, Forcewake all wells, else re-direct to regular path */
5566	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5567
5568	/*  Disable RC states. */
5569	I915_WRITE(GEN6_RC_CONTROL, 0);
5570
5571	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5572	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5573	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5574	I915_WRITE(GEN6_RP_UP_EI, 66000);
5575	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5576
5577	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
 
 
 
 
 
 
 
 
 
5578
5579	I915_WRITE(GEN6_RP_CONTROL,
5580		   GEN6_RP_MEDIA_TURBO |
5581		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5582		   GEN6_RP_MEDIA_IS_GFX |
5583		   GEN6_RP_ENABLE |
5584		   GEN6_RP_UP_BUSY_AVG |
5585		   GEN6_RP_DOWN_IDLE_CONT);
5586
5587	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5588	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5589	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5590
5591	for_each_ring(ring, dev_priv, i)
5592		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
 
 
5593
5594	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
 
 
5595
5596	/* allows RC6 residency counter to work */
5597	I915_WRITE(VLV_COUNTER_CONTROL,
5598		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5599				      VLV_RENDER_RC0_COUNT_EN |
5600				      VLV_MEDIA_RC6_COUNT_EN |
5601				      VLV_RENDER_RC6_COUNT_EN));
5602
5603	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5604		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
 
 
 
5605
5606	intel_print_rc6_info(dev, rc6_mode);
 
 
 
 
 
 
5607
5608	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5609
5610	/* Setting Fixed Bias */
5611	val = VLV_OVERRIDE_EN |
5612		  VLV_SOC_TDP_EN |
5613		  VLV_BIAS_CPU_125_SOC_875;
5614	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5615
5616	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
 
 
 
 
5617
5618	/* RPS code assumes GPLL is used */
5619	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
 
 
5620
5621	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5622	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5623
5624	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5625	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5626			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5627			 dev_priv->rps.cur_freq);
5628
5629	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5630			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5631			 dev_priv->rps.efficient_freq);
5632
5633	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
 
 
 
 
 
5634
5635	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 
 
 
5636}
5637
5638static unsigned long intel_pxfreq(u32 vidfreq)
 
5639{
5640	unsigned long freq;
5641	int div = (vidfreq & 0x3f0000) >> 16;
5642	int post = (vidfreq & 0x3000) >> 12;
5643	int pre = (vidfreq & 0x7);
5644
5645	if (!pre)
5646		return 0;
5647
5648	freq = ((div * 133333) / ((1<<post) * pre));
 
5649
5650	return freq;
 
 
 
5651}
5652
5653static const struct cparams {
5654	u16 i;
5655	u16 t;
5656	u16 m;
5657	u16 c;
5658} cparams[] = {
5659	{ 1, 1333, 301, 28664 },
5660	{ 1, 1066, 294, 24460 },
5661	{ 1, 800, 294, 25192 },
5662	{ 0, 1333, 276, 27605 },
5663	{ 0, 1066, 276, 27605 },
5664	{ 0, 800, 231, 23784 },
5665};
5666
5667static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5668{
5669	u64 total_count, diff, ret;
5670	u32 count1, count2, count3, m = 0, c = 0;
5671	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5672	int i;
 
5673
5674	assert_spin_locked(&mchdev_lock);
 
 
 
 
 
 
 
5675
5676	diff1 = now - dev_priv->ips.last_time1;
5677
5678	/* Prevent division-by-zero if we are asking too fast.
5679	 * Also, we don't get interesting results if we are polling
5680	 * faster than once in 10ms, so just return the saved value
5681	 * in such cases.
5682	 */
5683	if (diff1 <= 10)
5684		return dev_priv->ips.chipset_power;
5685
5686	count1 = I915_READ(DMIEC);
5687	count2 = I915_READ(DDREC);
5688	count3 = I915_READ(CSIEC);
 
 
5689
5690	total_count = count1 + count2 + count3;
 
5691
5692	/* FIXME: handle per-counter overflow */
5693	if (total_count < dev_priv->ips.last_count1) {
5694		diff = ~0UL - dev_priv->ips.last_count1;
5695		diff += total_count;
5696	} else {
5697		diff = total_count - dev_priv->ips.last_count1;
5698	}
5699
5700	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5701		if (cparams[i].i == dev_priv->ips.c_m &&
5702		    cparams[i].t == dev_priv->ips.r_t) {
5703			m = cparams[i].m;
5704			c = cparams[i].c;
5705			break;
5706		}
5707	}
5708
5709	diff = div_u64(diff, diff1);
5710	ret = ((m * diff) + c);
5711	ret = div_u64(ret, 10);
 
 
 
 
5712
5713	dev_priv->ips.last_count1 = total_count;
5714	dev_priv->ips.last_time1 = now;
5715
5716	dev_priv->ips.chipset_power = ret;
 
 
 
 
 
5717
5718	return ret;
 
 
 
 
 
5719}
5720
5721unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5722{
5723	struct drm_device *dev = dev_priv->dev;
5724	unsigned long val;
5725
5726	if (INTEL_INFO(dev)->gen != 5)
5727		return 0;
5728
5729	spin_lock_irq(&mchdev_lock);
5730
5731	val = __i915_chipset_val(dev_priv);
5732
5733	spin_unlock_irq(&mchdev_lock);
 
5734
5735	return val;
5736}
 
 
 
 
5737
5738unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5739{
5740	unsigned long m, x, b;
5741	u32 tsfs;
5742
5743	tsfs = I915_READ(TSFS);
5744
5745	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5746	x = I915_READ8(TR1);
 
 
 
5747
5748	b = tsfs & TSFS_INTR_MASK;
 
5749
5750	return ((m * x) / 127) - b;
5751}
5752
5753static int _pxvid_to_vd(u8 pxvid)
5754{
5755	if (pxvid == 0)
5756		return 0;
5757
5758	if (pxvid >= 8 && pxvid < 31)
5759		pxvid = 31;
5760
5761	return (pxvid + 2) * 125;
5762}
5763
5764static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5765{
5766	struct drm_device *dev = dev_priv->dev;
5767	const int vd = _pxvid_to_vd(pxvid);
5768	const int vm = vd - 1125;
 
 
5769
5770	if (INTEL_INFO(dev)->is_mobile)
5771		return vm > 0 ? vm : 0;
 
 
 
 
 
5772
5773	return vd;
5774}
5775
5776static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5777{
5778	u64 now, diff, diffms;
5779	u32 count;
 
 
 
 
5780
5781	assert_spin_locked(&mchdev_lock);
5782
5783	now = ktime_get_raw_ns();
5784	diffms = now - dev_priv->ips.last_time2;
5785	do_div(diffms, NSEC_PER_MSEC);
5786
5787	/* Don't divide by 0 */
5788	if (!diffms)
5789		return;
5790
5791	count = I915_READ(GFXEC);
 
5792
5793	if (count < dev_priv->ips.last_count2) {
5794		diff = ~0UL - dev_priv->ips.last_count2;
5795		diff += count;
 
 
 
 
 
 
 
5796	} else {
5797		diff = count - dev_priv->ips.last_count2;
5798	}
5799
5800	dev_priv->ips.last_count2 = count;
5801	dev_priv->ips.last_time2 = now;
 
 
 
 
 
 
5802
5803	/* More magic constants... */
5804	diff = diff * 1181;
5805	diff = div_u64(diff, diffms * 10);
5806	dev_priv->ips.gfx_power = diff;
5807}
5808
5809void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5810{
5811	struct drm_device *dev = dev_priv->dev;
5812
5813	if (INTEL_INFO(dev)->gen != 5)
5814		return;
5815
5816	spin_lock_irq(&mchdev_lock);
 
 
 
5817
5818	__i915_update_gfx_val(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
5819
5820	spin_unlock_irq(&mchdev_lock);
 
 
 
 
5821}
5822
5823static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
 
5824{
5825	unsigned long t, corr, state1, corr2, state2;
5826	u32 pxvid, ext_v;
5827
5828	assert_spin_locked(&mchdev_lock);
5829
5830	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5831	pxvid = (pxvid >> 24) & 0x7f;
5832	ext_v = pvid_to_extvid(dev_priv, pxvid);
5833
5834	state1 = ext_v;
5835
5836	t = i915_mch_val(dev_priv);
 
5837
5838	/* Revel in the empirically derived constants */
 
 
 
 
 
 
 
 
5839
5840	/* Correction factor in 1/100000 units */
5841	if (t > 80)
5842		corr = ((t * 2349) + 135940);
5843	else if (t >= 50)
5844		corr = ((t * 964) + 29317);
5845	else /* < 50 */
5846		corr = ((t * 301) + 1004);
 
 
 
5847
5848	corr = corr * ((150142 * state1) / 10000 - 78642);
5849	corr /= 100000;
5850	corr2 = (corr * dev_priv->ips.corr);
5851
5852	state2 = (corr2 * state1) / 10000;
5853	state2 /= 100; /* convert to mW */
 
 
 
 
 
 
 
 
 
 
5854
5855	__i915_update_gfx_val(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5856
5857	return dev_priv->ips.gfx_power + state2;
 
 
 
 
 
 
 
 
5858}
5859
5860unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
 
 
 
5861{
5862	struct drm_device *dev = dev_priv->dev;
5863	unsigned long val;
5864
5865	if (INTEL_INFO(dev)->gen != 5)
5866		return 0;
5867
5868	spin_lock_irq(&mchdev_lock);
5869
5870	val = __i915_gfx_val(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5871
5872	spin_unlock_irq(&mchdev_lock);
 
 
 
 
 
5873
5874	return val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5875}
5876
5877/**
5878 * i915_read_mch_val - return value for IPS use
5879 *
5880 * Calculate and return a value for the IPS driver to use when deciding whether
5881 * we have thermal and power headroom to increase CPU or GPU power budget.
5882 */
5883unsigned long i915_read_mch_val(void)
5884{
5885	struct drm_i915_private *dev_priv;
5886	unsigned long chipset_val, graphics_val, ret = 0;
5887
5888	spin_lock_irq(&mchdev_lock);
5889	if (!i915_mch_dev)
5890		goto out_unlock;
5891	dev_priv = i915_mch_dev;
5892
5893	chipset_val = __i915_chipset_val(dev_priv);
5894	graphics_val = __i915_gfx_val(dev_priv);
 
 
 
 
 
 
 
 
5895
5896	ret = chipset_val + graphics_val;
 
5897
5898out_unlock:
5899	spin_unlock_irq(&mchdev_lock);
 
5900
5901	return ret;
5902}
5903EXPORT_SYMBOL_GPL(i915_read_mch_val);
5904
5905/**
5906 * i915_gpu_raise - raise GPU frequency limit
5907 *
5908 * Raise the limit; IPS indicates we have thermal headroom.
5909 */
5910bool i915_gpu_raise(void)
5911{
5912	struct drm_i915_private *dev_priv;
5913	bool ret = true;
5914
5915	spin_lock_irq(&mchdev_lock);
5916	if (!i915_mch_dev) {
5917		ret = false;
5918		goto out_unlock;
5919	}
5920	dev_priv = i915_mch_dev;
5921
5922	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5923		dev_priv->ips.max_delay--;
 
 
 
 
 
 
5924
5925out_unlock:
5926	spin_unlock_irq(&mchdev_lock);
5927
5928	return ret;
5929}
5930EXPORT_SYMBOL_GPL(i915_gpu_raise);
5931
5932/**
5933 * i915_gpu_lower - lower GPU frequency limit
5934 *
5935 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5936 * frequency maximum.
5937 */
5938bool i915_gpu_lower(void)
5939{
5940	struct drm_i915_private *dev_priv;
5941	bool ret = true;
 
5942
5943	spin_lock_irq(&mchdev_lock);
5944	if (!i915_mch_dev) {
5945		ret = false;
5946		goto out_unlock;
5947	}
5948	dev_priv = i915_mch_dev;
5949
5950	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5951		dev_priv->ips.max_delay++;
5952
5953out_unlock:
5954	spin_unlock_irq(&mchdev_lock);
5955
5956	return ret;
5957}
5958EXPORT_SYMBOL_GPL(i915_gpu_lower);
5959
5960/**
5961 * i915_gpu_busy - indicate GPU business to IPS
5962 *
5963 * Tell the IPS driver whether or not the GPU is busy.
5964 */
5965bool i915_gpu_busy(void)
5966{
5967	struct drm_i915_private *dev_priv;
5968	struct intel_engine_cs *ring;
5969	bool ret = false;
5970	int i;
 
5971
5972	spin_lock_irq(&mchdev_lock);
5973	if (!i915_mch_dev)
5974		goto out_unlock;
5975	dev_priv = i915_mch_dev;
 
 
 
 
 
 
 
5976
5977	for_each_ring(ring, dev_priv, i)
5978		ret |= !list_empty(&ring->request_list);
5979
5980out_unlock:
5981	spin_unlock_irq(&mchdev_lock);
 
 
 
 
 
 
 
5982
5983	return ret;
5984}
5985EXPORT_SYMBOL_GPL(i915_gpu_busy);
5986
5987/**
5988 * i915_gpu_turbo_disable - disable graphics turbo
5989 *
5990 * Disable graphics turbo by resetting the max frequency and setting the
5991 * current frequency to the default.
5992 */
5993bool i915_gpu_turbo_disable(void)
5994{
5995	struct drm_i915_private *dev_priv;
5996	bool ret = true;
5997
5998	spin_lock_irq(&mchdev_lock);
5999	if (!i915_mch_dev) {
6000		ret = false;
6001		goto out_unlock;
6002	}
6003	dev_priv = i915_mch_dev;
6004
6005	dev_priv->ips.max_delay = dev_priv->ips.fstart;
 
6006
6007	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6008		ret = false;
 
6009
6010out_unlock:
6011	spin_unlock_irq(&mchdev_lock);
 
 
 
6012
6013	return ret;
6014}
6015EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
 
6016
6017/**
6018 * Tells the intel_ips driver that the i915 driver is now loaded, if
6019 * IPS got loaded first.
6020 *
6021 * This awkward dance is so that neither module has to depend on the
6022 * other in order for IPS to do the appropriate communication of
6023 * GPU turbo limits to i915.
6024 */
6025static void
6026ips_ping_for_i915_load(void)
6027{
6028	void (*link)(void);
6029
6030	link = symbol_get(ips_link_to_i915_driver);
6031	if (link) {
6032		link();
6033		symbol_put(ips_link_to_i915_driver);
 
 
 
6034	}
6035}
6036
6037void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6038{
6039	/* We only register the i915 ips part with intel-ips once everything is
6040	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6041	spin_lock_irq(&mchdev_lock);
6042	i915_mch_dev = dev_priv;
6043	spin_unlock_irq(&mchdev_lock);
6044
6045	ips_ping_for_i915_load();
6046}
6047
6048void intel_gpu_ips_teardown(void)
6049{
6050	spin_lock_irq(&mchdev_lock);
6051	i915_mch_dev = NULL;
6052	spin_unlock_irq(&mchdev_lock);
6053}
6054
6055static void intel_init_emon(struct drm_device *dev)
6056{
6057	struct drm_i915_private *dev_priv = dev->dev_private;
6058	u32 lcfuse;
6059	u8 pxw[16];
6060	int i;
6061
6062	/* Disable to program */
6063	I915_WRITE(ECR, 0);
6064	POSTING_READ(ECR);
6065
6066	/* Program energy weights for various events */
6067	I915_WRITE(SDEW, 0x15040d00);
6068	I915_WRITE(CSIEW0, 0x007f0000);
6069	I915_WRITE(CSIEW1, 0x1e220004);
6070	I915_WRITE(CSIEW2, 0x04000004);
 
 
 
 
 
 
 
6071
6072	for (i = 0; i < 5; i++)
6073		I915_WRITE(PEW(i), 0);
6074	for (i = 0; i < 3; i++)
6075		I915_WRITE(DEW(i), 0);
6076
6077	/* Program P-state weights to account for frequency power adjustment */
6078	for (i = 0; i < 16; i++) {
6079		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6080		unsigned long freq = intel_pxfreq(pxvidfreq);
6081		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6082			PXVFREQ_PX_SHIFT;
6083		unsigned long val;
6084
6085		val = vid * vid;
6086		val *= (freq / 1000);
6087		val *= 255;
6088		val /= (127*127*900);
6089		if (val > 0xff)
6090			DRM_ERROR("bad pxval: %ld\n", val);
6091		pxw[i] = val;
6092	}
6093	/* Render standby states get 0 weight */
6094	pxw[14] = 0;
6095	pxw[15] = 0;
6096
6097	for (i = 0; i < 4; i++) {
6098		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6099			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6100		I915_WRITE(PXW(i), val);
6101	}
6102
6103	/* Adjust magic regs to magic values (more experimental results) */
6104	I915_WRITE(OGW0, 0);
6105	I915_WRITE(OGW1, 0);
6106	I915_WRITE(EG0, 0x00007f00);
6107	I915_WRITE(EG1, 0x0000000e);
6108	I915_WRITE(EG2, 0x000e0000);
6109	I915_WRITE(EG3, 0x68000300);
6110	I915_WRITE(EG4, 0x42000000);
6111	I915_WRITE(EG5, 0x00140031);
6112	I915_WRITE(EG6, 0);
6113	I915_WRITE(EG7, 0);
6114
6115	for (i = 0; i < 8; i++)
6116		I915_WRITE(PXWL(i), 0);
6117
6118	/* Enable PMON + select events */
6119	I915_WRITE(ECR, 0x80000019);
 
 
6120
6121	lcfuse = I915_READ(LCFUSE02);
6122
6123	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6124}
6125
6126void intel_init_gt_powersave(struct drm_device *dev)
 
 
 
 
6127{
6128	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
6129
6130	/*
6131	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6132	 * requirement.
6133	 */
6134	if (!i915.enable_rc6) {
6135		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6136		intel_runtime_pm_get(dev_priv);
6137	}
6138
6139	if (IS_CHERRYVIEW(dev))
6140		cherryview_init_gt_powersave(dev);
6141	else if (IS_VALLEYVIEW(dev))
6142		valleyview_init_gt_powersave(dev);
6143}
6144
6145void intel_cleanup_gt_powersave(struct drm_device *dev)
6146{
6147	struct drm_i915_private *dev_priv = dev->dev_private;
 
6148
6149	if (IS_CHERRYVIEW(dev))
6150		return;
6151	else if (IS_VALLEYVIEW(dev))
6152		valleyview_cleanup_gt_powersave(dev);
6153
6154	if (!i915.enable_rc6)
6155		intel_runtime_pm_put(dev_priv);
6156}
6157
6158static void gen6_suspend_rps(struct drm_device *dev)
6159{
6160	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
6161
6162	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
 
 
 
 
 
6163
6164	gen6_disable_rps_interrupts(dev);
 
6165}
6166
6167/**
6168 * intel_suspend_gt_powersave - suspend PM work and helper threads
6169 * @dev: drm device
 
 
 
6170 *
6171 * We don't want to disable RC6 or other features here, we just want
6172 * to make sure any work we've queued has finished and won't bother
6173 * us while we're suspended.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6174 */
6175void intel_suspend_gt_powersave(struct drm_device *dev)
6176{
6177	struct drm_i915_private *dev_priv = dev->dev_private;
6178
6179	if (INTEL_INFO(dev)->gen < 6)
6180		return;
6181
6182	gen6_suspend_rps(dev);
6183
6184	/* Force GPU to min freq during suspend */
6185	gen6_rps_idle(dev_priv);
6186}
6187
6188void intel_disable_gt_powersave(struct drm_device *dev)
6189{
6190	struct drm_i915_private *dev_priv = dev->dev_private;
6191
6192	if (IS_IRONLAKE_M(dev)) {
6193		ironlake_disable_drps(dev);
6194	} else if (INTEL_INFO(dev)->gen >= 6) {
6195		intel_suspend_gt_powersave(dev);
6196
6197		mutex_lock(&dev_priv->rps.hw_lock);
6198		if (INTEL_INFO(dev)->gen >= 9)
6199			gen9_disable_rps(dev);
6200		else if (IS_CHERRYVIEW(dev))
6201			cherryview_disable_rps(dev);
6202		else if (IS_VALLEYVIEW(dev))
6203			valleyview_disable_rps(dev);
6204		else
6205			gen6_disable_rps(dev);
6206
6207		dev_priv->rps.enabled = false;
6208		mutex_unlock(&dev_priv->rps.hw_lock);
6209	}
6210}
6211
6212static void intel_gen6_powersave_work(struct work_struct *work)
6213{
6214	struct drm_i915_private *dev_priv =
6215		container_of(work, struct drm_i915_private,
6216			     rps.delayed_resume_work.work);
6217	struct drm_device *dev = dev_priv->dev;
6218
6219	mutex_lock(&dev_priv->rps.hw_lock);
6220
6221	gen6_reset_rps_interrupts(dev);
6222
6223	if (IS_CHERRYVIEW(dev)) {
6224		cherryview_enable_rps(dev);
6225	} else if (IS_VALLEYVIEW(dev)) {
6226		valleyview_enable_rps(dev);
6227	} else if (INTEL_INFO(dev)->gen >= 9) {
6228		gen9_enable_rc6(dev);
6229		gen9_enable_rps(dev);
6230		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6231			__gen6_update_ring_freq(dev);
6232	} else if (IS_BROADWELL(dev)) {
6233		gen8_enable_rps(dev);
6234		__gen6_update_ring_freq(dev);
6235	} else {
6236		gen6_enable_rps(dev);
6237		__gen6_update_ring_freq(dev);
6238	}
6239
6240	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6241	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6242
6243	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6244	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6245
6246	dev_priv->rps.enabled = true;
 
6247
6248	gen6_enable_rps_interrupts(dev);
6249
6250	mutex_unlock(&dev_priv->rps.hw_lock);
 
 
 
6251
6252	intel_runtime_pm_put(dev_priv);
6253}
6254
6255void intel_enable_gt_powersave(struct drm_device *dev)
6256{
6257	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
6258
6259	/* Powersaving is controlled by the host when inside a VM */
6260	if (intel_vgpu_active(dev))
6261		return;
 
 
6262
6263	if (IS_IRONLAKE_M(dev)) {
6264		ironlake_enable_drps(dev);
6265		mutex_lock(&dev->struct_mutex);
6266		intel_init_emon(dev);
6267		mutex_unlock(&dev->struct_mutex);
6268	} else if (INTEL_INFO(dev)->gen >= 6) {
6269		/*
6270		 * PCU communication is slow and this doesn't need to be
6271		 * done at any specific time, so do this out of our fast path
6272		 * to make resume and init faster.
6273		 *
6274		 * We depend on the HW RC6 power context save/restore
6275		 * mechanism when entering D3 through runtime PM suspend. So
6276		 * disable RPM until RPS/RC6 is properly setup. We can only
6277		 * get here via the driver load/system resume/runtime resume
6278		 * paths, so the _noresume version is enough (and in case of
6279		 * runtime resume it's necessary).
6280		 */
6281		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6282					   round_jiffies_up_relative(HZ)))
6283			intel_runtime_pm_get_noresume(dev_priv);
6284	}
6285}
6286
6287void intel_reset_gt_powersave(struct drm_device *dev)
6288{
6289	struct drm_i915_private *dev_priv = dev->dev_private;
6290
6291	if (INTEL_INFO(dev)->gen < 6)
6292		return;
6293
6294	gen6_suspend_rps(dev);
6295	dev_priv->rps.enabled = false;
 
6296}
6297
6298static void ibx_init_clock_gating(struct drm_device *dev)
6299{
6300	struct drm_i915_private *dev_priv = dev->dev_private;
6301
6302	/*
6303	 * On Ibex Peak and Cougar Point, we need to disable clock
6304	 * gating for the panel power sequencer or it will fail to
6305	 * start up when no ports are active.
6306	 */
6307	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6308}
6309
6310static void g4x_disable_trickle_feed(struct drm_device *dev)
6311{
6312	struct drm_i915_private *dev_priv = dev->dev_private;
6313	enum pipe pipe;
6314
6315	for_each_pipe(dev_priv, pipe) {
6316		I915_WRITE(DSPCNTR(pipe),
6317			   I915_READ(DSPCNTR(pipe)) |
6318			   DISPPLANE_TRICKLE_FEED_DISABLE);
6319
6320		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6321		POSTING_READ(DSPSURF(pipe));
6322	}
6323}
6324
6325static void ilk_init_lp_watermarks(struct drm_device *dev)
6326{
6327	struct drm_i915_private *dev_priv = dev->dev_private;
6328
6329	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6330	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6331	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6332
6333	/*
6334	 * Don't touch WM1S_LP_EN here.
6335	 * Doing so could cause underruns.
6336	 */
6337}
6338
6339static void ironlake_init_clock_gating(struct drm_device *dev)
6340{
6341	struct drm_i915_private *dev_priv = dev->dev_private;
6342	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6343
6344	/*
6345	 * Required for FBC
6346	 * WaFbcDisableDpfcClockGating:ilk
6347	 */
6348	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6349		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6350		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6351
6352	I915_WRITE(PCH_3DCGDIS0,
6353		   MARIUNIT_CLOCK_GATE_DISABLE |
6354		   SVSMUNIT_CLOCK_GATE_DISABLE);
6355	I915_WRITE(PCH_3DCGDIS1,
6356		   VFMUNIT_CLOCK_GATE_DISABLE);
6357
6358	/*
6359	 * According to the spec the following bits should be set in
6360	 * order to enable memory self-refresh
6361	 * The bit 22/21 of 0x42004
6362	 * The bit 5 of 0x42020
6363	 * The bit 15 of 0x45000
6364	 */
6365	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6366		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6367		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6368	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6369	I915_WRITE(DISP_ARB_CTL,
6370		   (I915_READ(DISP_ARB_CTL) |
6371		    DISP_FBC_WM_DIS));
6372
6373	ilk_init_lp_watermarks(dev);
6374
6375	/*
6376	 * Based on the document from hardware guys the following bits
6377	 * should be set unconditionally in order to enable FBC.
6378	 * The bit 22 of 0x42000
6379	 * The bit 22 of 0x42004
6380	 * The bit 7,8,9 of 0x42020.
6381	 */
6382	if (IS_IRONLAKE_M(dev)) {
6383		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6384		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6385			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6386			   ILK_FBCQ_DIS);
6387		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6388			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6389			   ILK_DPARB_GATE);
6390	}
6391
6392	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6393
6394	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6395		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6396		   ILK_ELPIN_409_SELECT);
6397	I915_WRITE(_3D_CHICKEN2,
6398		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6399		   _3D_CHICKEN2_WM_READ_PIPELINED);
6400
6401	/* WaDisableRenderCachePipelinedFlush:ilk */
6402	I915_WRITE(CACHE_MODE_0,
6403		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6404
6405	/* WaDisable_RenderCache_OperationalFlush:ilk */
6406	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6407
6408	g4x_disable_trickle_feed(dev);
6409
6410	ibx_init_clock_gating(dev);
6411}
6412
6413static void cpt_init_clock_gating(struct drm_device *dev)
6414{
6415	struct drm_i915_private *dev_priv = dev->dev_private;
6416	int pipe;
6417	uint32_t val;
6418
6419	/*
6420	 * On Ibex Peak and Cougar Point, we need to disable clock
6421	 * gating for the panel power sequencer or it will fail to
6422	 * start up when no ports are active.
6423	 */
6424	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6425		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6426		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6427	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6428		   DPLS_EDP_PPS_FIX_DIS);
6429	/* The below fixes the weird display corruption, a few pixels shifted
6430	 * downward, on (only) LVDS of some HP laptops with IVY.
6431	 */
6432	for_each_pipe(dev_priv, pipe) {
6433		val = I915_READ(TRANS_CHICKEN2(pipe));
6434		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6435		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6436		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6437			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6438		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6439		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6440		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6441		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6442	}
6443	/* WADP0ClockGatingDisable */
6444	for_each_pipe(dev_priv, pipe) {
6445		I915_WRITE(TRANS_CHICKEN1(pipe),
6446			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6447	}
6448}
6449
6450static void gen6_check_mch_setup(struct drm_device *dev)
6451{
6452	struct drm_i915_private *dev_priv = dev->dev_private;
6453	uint32_t tmp;
6454
6455	tmp = I915_READ(MCH_SSKPD);
6456	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6457		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6458			      tmp);
 
6459}
6460
6461static void gen6_init_clock_gating(struct drm_device *dev)
6462{
6463	struct drm_i915_private *dev_priv = dev->dev_private;
6464	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6465
6466	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6467
6468	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6469		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6470		   ILK_ELPIN_409_SELECT);
6471
6472	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6473	I915_WRITE(_3D_CHICKEN,
6474		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6475
6476	/* WaDisable_RenderCache_OperationalFlush:snb */
6477	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6478
6479	/*
6480	 * BSpec recoomends 8x4 when MSAA is used,
6481	 * however in practice 16x4 seems fastest.
6482	 *
6483	 * Note that PS/WM thread counts depend on the WIZ hashing
6484	 * disable bit, which we don't touch here, but it's good
6485	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6486	 */
6487	I915_WRITE(GEN6_GT_MODE,
6488		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6489
6490	ilk_init_lp_watermarks(dev);
6491
6492	I915_WRITE(CACHE_MODE_0,
6493		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6494
6495	I915_WRITE(GEN6_UCGCTL1,
6496		   I915_READ(GEN6_UCGCTL1) |
6497		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6498		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6499
6500	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6501	 * gating disable must be set.  Failure to set it results in
6502	 * flickering pixels due to Z write ordering failures after
6503	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6504	 * Sanctuary and Tropics, and apparently anything else with
6505	 * alpha test or pixel discard.
6506	 *
6507	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6508	 * but we didn't debug actual testcases to find it out.
6509	 *
6510	 * WaDisableRCCUnitClockGating:snb
6511	 * WaDisableRCPBUnitClockGating:snb
6512	 */
6513	I915_WRITE(GEN6_UCGCTL2,
6514		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6515		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6516
6517	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6518	I915_WRITE(_3D_CHICKEN3,
6519		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6520
6521	/*
6522	 * Bspec says:
6523	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6524	 * 3DSTATE_SF number of SF output attributes is more than 16."
6525	 */
6526	I915_WRITE(_3D_CHICKEN3,
6527		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6528
6529	/*
6530	 * According to the spec the following bits should be
6531	 * set in order to enable memory self-refresh and fbc:
6532	 * The bit21 and bit22 of 0x42000
6533	 * The bit21 and bit22 of 0x42004
6534	 * The bit5 and bit7 of 0x42020
6535	 * The bit14 of 0x70180
6536	 * The bit14 of 0x71180
6537	 *
6538	 * WaFbcAsynchFlipDisableFbcQueue:snb
6539	 */
6540	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6541		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6542		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6543	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6544		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6545		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6546	I915_WRITE(ILK_DSPCLK_GATE_D,
6547		   I915_READ(ILK_DSPCLK_GATE_D) |
6548		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6549		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6550
6551	g4x_disable_trickle_feed(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6552
6553	cpt_init_clock_gating(dev);
 
 
6554
6555	gen6_check_mch_setup(dev);
 
 
6556}
6557
6558static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6559{
6560	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6561
6562	/*
6563	 * WaVSThreadDispatchOverride:ivb,vlv
6564	 *
6565	 * This actually overrides the dispatch
6566	 * mode for all thread types.
6567	 */
6568	reg &= ~GEN7_FF_SCHED_MASK;
6569	reg |= GEN7_FF_TS_SCHED_HW;
6570	reg |= GEN7_FF_VS_SCHED_HW;
6571	reg |= GEN7_FF_DS_SCHED_HW;
 
 
 
 
 
 
 
 
6572
6573	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
 
 
 
 
6574}
6575
6576static void lpt_init_clock_gating(struct drm_device *dev)
6577{
6578	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
6579
6580	/*
6581	 * TODO: this bit should only be enabled when really needed, then
6582	 * disabled when not needed anymore in order to save power.
6583	 */
6584	if (HAS_PCH_LPT_LP(dev))
6585		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6586			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6587			   PCH_LP_PARTITION_LEVEL_DISABLE);
6588
6589	/* WADPOClockGatingDisable:hsw */
6590	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6591		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6592		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
 
 
6593}
6594
6595static void lpt_suspend_hw(struct drm_device *dev)
6596{
6597	struct drm_i915_private *dev_priv = dev->dev_private;
6598
6599	if (HAS_PCH_LPT_LP(dev)) {
6600		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
 
6601
6602		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6603		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6604	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6605}
6606
6607static void broadwell_init_clock_gating(struct drm_device *dev)
6608{
6609	struct drm_i915_private *dev_priv = dev->dev_private;
6610	enum pipe pipe;
6611	uint32_t misccpctl;
6612
6613	ilk_init_lp_watermarks(dev);
 
 
 
6614
6615	/* WaSwitchSolVfFArbitrationPriority:bdw */
6616	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6617
6618	/* WaPsrDPAMaskVBlankInSRD:bdw */
6619	I915_WRITE(CHICKEN_PAR1_1,
6620		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6621
6622	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6623	for_each_pipe(dev_priv, pipe) {
6624		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6625			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
 
6626			   BDW_DPRS_MASK_VBLANK_SRD);
 
 
 
 
 
6627	}
6628
6629	/* WaVSRefCountFullforceMissDisable:bdw */
6630	/* WaDSRefCountFullforceMissDisable:bdw */
6631	I915_WRITE(GEN7_FF_THREAD_MODE,
6632		   I915_READ(GEN7_FF_THREAD_MODE) &
6633		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6634
6635	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6636		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6637
6638	/* WaDisableSDEUnitClockGating:bdw */
6639	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6640		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6641
6642	/*
6643	 * WaProgramL3SqcReg1Default:bdw
6644	 * WaTempDisableDOPClkGating:bdw
6645	 */
6646	misccpctl = I915_READ(GEN7_MISCCPCTL);
6647	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6648	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6649	/*
6650	 * Wait at least 100 clocks before re-enabling clock gating. See
6651	 * the definition of L3SQCREG1 in BSpec.
6652	 */
6653	POSTING_READ(GEN8_L3SQCREG1);
6654	udelay(1);
6655	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6656
6657	/*
6658	 * WaGttCachingOffByDefault:bdw
6659	 * GTT cache may not work with big pages, so if those
6660	 * are ever enabled GTT cache may need to be disabled.
6661	 */
6662	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6663
6664	lpt_init_clock_gating(dev);
 
 
 
 
 
 
6665}
6666
6667static void haswell_init_clock_gating(struct drm_device *dev)
6668{
6669	struct drm_i915_private *dev_priv = dev->dev_private;
6670
6671	ilk_init_lp_watermarks(dev);
 
 
 
6672
6673	/* L3 caching of data atomics doesn't work -- disable it. */
6674	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6675	I915_WRITE(HSW_ROW_CHICKEN3,
6676		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
 
 
6677
6678	/* This is required by WaCatErrorRejectionIssue:hsw */
6679	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6680			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6681			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6682
6683	/* WaVSRefCountFullforceMissDisable:hsw */
6684	I915_WRITE(GEN7_FF_THREAD_MODE,
6685		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6686
6687	/* WaDisable_RenderCache_OperationalFlush:hsw */
6688	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6689
6690	/* enable HiZ Raw Stall Optimization */
6691	I915_WRITE(CACHE_MODE_0_GEN7,
6692		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6693
6694	/* WaDisable4x2SubspanOptimization:hsw */
6695	I915_WRITE(CACHE_MODE_1,
6696		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6697
6698	/*
6699	 * BSpec recommends 8x4 when MSAA is used,
6700	 * however in practice 16x4 seems fastest.
6701	 *
6702	 * Note that PS/WM thread counts depend on the WIZ hashing
6703	 * disable bit, which we don't touch here, but it's good
6704	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6705	 */
6706	I915_WRITE(GEN7_GT_MODE,
6707		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6708
6709	/* WaSampleCChickenBitEnable:hsw */
6710	I915_WRITE(HALF_SLICE_CHICKEN3,
6711		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6712
6713	/* WaSwitchSolVfFArbitrationPriority:hsw */
6714	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6715
6716	/* WaRsPkgCStateDisplayPMReq:hsw */
6717	I915_WRITE(CHICKEN_PAR1_1,
6718		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6719
6720	lpt_init_clock_gating(dev);
6721}
6722
6723static void ivybridge_init_clock_gating(struct drm_device *dev)
6724{
6725	struct drm_i915_private *dev_priv = dev->dev_private;
6726	uint32_t snpcr;
6727
6728	ilk_init_lp_watermarks(dev);
6729
6730	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6731
6732	/* WaDisableEarlyCull:ivb */
6733	I915_WRITE(_3D_CHICKEN3,
6734		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
 
6735
6736	/* WaDisableBackToBackFlipFix:ivb */
6737	I915_WRITE(IVB_CHICKEN3,
6738		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6739		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6740
6741	/* WaDisablePSDDualDispatchEnable:ivb */
6742	if (IS_IVB_GT1(dev))
6743		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6744			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6745
6746	/* WaDisable_RenderCache_OperationalFlush:ivb */
6747	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6748
6749	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6750	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6751		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6752
6753	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6754	I915_WRITE(GEN7_L3CNTLREG1,
6755			GEN7_WA_FOR_GEN7_L3_CONTROL);
6756	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6757		   GEN7_WA_L3_CHICKEN_MODE);
6758	if (IS_IVB_GT1(dev))
6759		I915_WRITE(GEN7_ROW_CHICKEN2,
6760			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6761	else {
6762		/* must write both registers */
6763		I915_WRITE(GEN7_ROW_CHICKEN2,
6764			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6765		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6766			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6767	}
6768
6769	/* WaForceL3Serialization:ivb */
6770	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6771		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6772
6773	/*
6774	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6775	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6776	 */
6777	I915_WRITE(GEN6_UCGCTL2,
6778		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6779
6780	/* This is required by WaCatErrorRejectionIssue:ivb */
6781	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6782			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6783			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6784
6785	g4x_disable_trickle_feed(dev);
6786
6787	gen7_setup_fixed_func_scheduler(dev_priv);
6788
6789	if (0) { /* causes HiZ corruption on ivb:gt1 */
6790		/* enable HiZ Raw Stall Optimization */
6791		I915_WRITE(CACHE_MODE_0_GEN7,
6792			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6793	}
6794
6795	/* WaDisable4x2SubspanOptimization:ivb */
6796	I915_WRITE(CACHE_MODE_1,
6797		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6798
6799	/*
6800	 * BSpec recommends 8x4 when MSAA is used,
6801	 * however in practice 16x4 seems fastest.
6802	 *
6803	 * Note that PS/WM thread counts depend on the WIZ hashing
6804	 * disable bit, which we don't touch here, but it's good
6805	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6806	 */
6807	I915_WRITE(GEN7_GT_MODE,
6808		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6809
6810	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6811	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6812	snpcr |= GEN6_MBC_SNPCR_MED;
6813	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6814
6815	if (!HAS_PCH_NOP(dev))
6816		cpt_init_clock_gating(dev);
6817
6818	gen6_check_mch_setup(dev);
6819}
6820
6821static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6822{
6823	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6824
6825	/*
6826	 * Disable trickle feed and enable pnd deadline calculation
6827	 */
6828	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6829	I915_WRITE(CBR1_VLV, 0);
6830}
6831
6832static void valleyview_init_clock_gating(struct drm_device *dev)
6833{
6834	struct drm_i915_private *dev_priv = dev->dev_private;
6835
6836	vlv_init_display_clock_gating(dev_priv);
6837
6838	/* WaDisableEarlyCull:vlv */
6839	I915_WRITE(_3D_CHICKEN3,
6840		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6841
6842	/* WaDisableBackToBackFlipFix:vlv */
6843	I915_WRITE(IVB_CHICKEN3,
6844		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6845		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6846
6847	/* WaPsdDispatchEnable:vlv */
6848	/* WaDisablePSDDualDispatchEnable:vlv */
6849	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6850		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6851				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6852
6853	/* WaDisable_RenderCache_OperationalFlush:vlv */
6854	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6855
6856	/* WaForceL3Serialization:vlv */
6857	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6858		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6859
6860	/* WaDisableDopClockGating:vlv */
6861	I915_WRITE(GEN7_ROW_CHICKEN2,
6862		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6863
6864	/* This is required by WaCatErrorRejectionIssue:vlv */
6865	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6866		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6867		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6868
6869	gen7_setup_fixed_func_scheduler(dev_priv);
6870
6871	/*
6872	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6873	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6874	 */
6875	I915_WRITE(GEN6_UCGCTL2,
6876		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6877
6878	/* WaDisableL3Bank2xClockGate:vlv
6879	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6880	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6881	I915_WRITE(GEN7_UCGCTL4,
6882		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6883
6884	/*
6885	 * BSpec says this must be set, even though
6886	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6887	 */
6888	I915_WRITE(CACHE_MODE_1,
6889		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6890
6891	/*
6892	 * BSpec recommends 8x4 when MSAA is used,
6893	 * however in practice 16x4 seems fastest.
6894	 *
6895	 * Note that PS/WM thread counts depend on the WIZ hashing
6896	 * disable bit, which we don't touch here, but it's good
6897	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6898	 */
6899	I915_WRITE(GEN7_GT_MODE,
6900		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6901
6902	/*
6903	 * WaIncreaseL3CreditsForVLVB0:vlv
6904	 * This is the hardware default actually.
6905	 */
6906	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6907
6908	/*
6909	 * WaDisableVLVClockGating_VBIIssue:vlv
6910	 * Disable clock gating on th GCFG unit to prevent a delay
6911	 * in the reporting of vblank events.
6912	 */
6913	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6914}
6915
6916static void cherryview_init_clock_gating(struct drm_device *dev)
6917{
6918	struct drm_i915_private *dev_priv = dev->dev_private;
6919
6920	vlv_init_display_clock_gating(dev_priv);
6921
6922	/* WaVSRefCountFullforceMissDisable:chv */
6923	/* WaDSRefCountFullforceMissDisable:chv */
6924	I915_WRITE(GEN7_FF_THREAD_MODE,
6925		   I915_READ(GEN7_FF_THREAD_MODE) &
6926		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6927
6928	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6929	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6930		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6931
6932	/* WaDisableCSUnitClockGating:chv */
6933	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6934		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6935
6936	/* WaDisableSDEUnitClockGating:chv */
6937	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6938		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6939
6940	/*
6941	 * GTT cache may not work with big pages, so if those
6942	 * are ever enabled GTT cache may need to be disabled.
 
6943	 */
6944	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6945}
6946
6947static void g4x_init_clock_gating(struct drm_device *dev)
6948{
6949	struct drm_i915_private *dev_priv = dev->dev_private;
6950	uint32_t dspclk_gate;
6951
6952	I915_WRITE(RENCLK_GATE_D1, 0);
6953	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6954		   GS_UNIT_CLOCK_GATE_DISABLE |
6955		   CL_UNIT_CLOCK_GATE_DISABLE);
6956	I915_WRITE(RAMCLK_GATE_D, 0);
6957	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6958		OVRUNIT_CLOCK_GATE_DISABLE |
6959		OVCUNIT_CLOCK_GATE_DISABLE;
6960	if (IS_GM45(dev))
6961		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6962	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6963
6964	/* WaDisableRenderCachePipelinedFlush */
6965	I915_WRITE(CACHE_MODE_0,
6966		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6967
6968	/* WaDisable_RenderCache_OperationalFlush:g4x */
6969	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6970
6971	g4x_disable_trickle_feed(dev);
6972}
6973
6974static void crestline_init_clock_gating(struct drm_device *dev)
6975{
6976	struct drm_i915_private *dev_priv = dev->dev_private;
6977
6978	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6979	I915_WRITE(RENCLK_GATE_D2, 0);
6980	I915_WRITE(DSPCLK_GATE_D, 0);
6981	I915_WRITE(RAMCLK_GATE_D, 0);
6982	I915_WRITE16(DEUC, 0);
6983	I915_WRITE(MI_ARB_STATE,
6984		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6985
6986	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6987	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
 
 
 
 
 
 
6988}
6989
6990static void broadwater_init_clock_gating(struct drm_device *dev)
6991{
6992	struct drm_i915_private *dev_priv = dev->dev_private;
6993
6994	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6995		   I965_RCC_CLOCK_GATE_DISABLE |
6996		   I965_RCPB_CLOCK_GATE_DISABLE |
6997		   I965_ISC_CLOCK_GATE_DISABLE |
6998		   I965_FBC_CLOCK_GATE_DISABLE);
6999	I915_WRITE(RENCLK_GATE_D2, 0);
7000	I915_WRITE(MI_ARB_STATE,
7001		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7002
7003	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7004	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7005}
7006
7007static void gen3_init_clock_gating(struct drm_device *dev)
7008{
7009	struct drm_i915_private *dev_priv = dev->dev_private;
7010	u32 dstate = I915_READ(D_STATE);
7011
7012	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7013		DSTATE_DOT_CLOCK_GATING;
7014	I915_WRITE(D_STATE, dstate);
7015
7016	if (IS_PINEVIEW(dev))
7017		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7018
7019	/* IIR "flip pending" means done if this bit is set */
7020	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7021
7022	/* interrupts should cause a wake up from C3 */
7023	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7024
7025	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7026	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7027
7028	I915_WRITE(MI_ARB_STATE,
7029		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7030}
7031
7032static void i85x_init_clock_gating(struct drm_device *dev)
7033{
7034	struct drm_i915_private *dev_priv = dev->dev_private;
7035
7036	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7037
7038	/* interrupts should cause a wake up from C3 */
7039	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7040		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7041
7042	I915_WRITE(MEM_MODE,
7043		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
 
 
 
 
 
 
 
 
 
 
7044}
7045
7046static void i830_init_clock_gating(struct drm_device *dev)
7047{
7048	struct drm_i915_private *dev_priv = dev->dev_private;
7049
7050	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7051
7052	I915_WRITE(MEM_MODE,
7053		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7054		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7055}
7056
7057void intel_init_clock_gating(struct drm_device *dev)
7058{
7059	struct drm_i915_private *dev_priv = dev->dev_private;
7060
7061	if (dev_priv->display.init_clock_gating)
7062		dev_priv->display.init_clock_gating(dev);
7063}
7064
7065void intel_suspend_hw(struct drm_device *dev)
7066{
7067	if (HAS_PCH_LPT(dev))
7068		lpt_suspend_hw(dev);
7069}
7070
7071/* Set up chip specific power management-related functions */
7072void intel_init_pm(struct drm_device *dev)
7073{
7074	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
7075
7076	intel_fbc_init(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7077
 
 
 
7078	/* For cxsr */
7079	if (IS_PINEVIEW(dev))
7080		i915_pineview_get_mem_freq(dev);
7081	else if (IS_GEN5(dev))
7082		i915_ironlake_get_mem_freq(dev);
7083
7084	/* For FIFO watermark updates */
7085	if (INTEL_INFO(dev)->gen >= 9) {
7086		skl_setup_wm_latency(dev);
7087
7088		if (IS_BROXTON(dev))
7089			dev_priv->display.init_clock_gating =
7090				bxt_init_clock_gating;
7091		dev_priv->display.update_wm = skl_update_wm;
7092	} else if (HAS_PCH_SPLIT(dev)) {
7093		ilk_setup_wm_latency(dev);
7094
7095		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7096		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7097		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7098		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7099			dev_priv->display.update_wm = ilk_update_wm;
7100			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7101			dev_priv->display.program_watermarks = ilk_program_watermarks;
 
 
 
 
 
7102		} else {
7103			DRM_DEBUG_KMS("Failed to read display plane latency. "
7104				      "Disable CxSR\n");
 
7105		}
7106
7107		if (IS_GEN5(dev))
7108			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7109		else if (IS_GEN6(dev))
7110			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7111		else if (IS_IVYBRIDGE(dev))
7112			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7113		else if (IS_HASWELL(dev))
7114			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7115		else if (INTEL_INFO(dev)->gen == 8)
7116			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7117	} else if (IS_CHERRYVIEW(dev)) {
7118		vlv_setup_wm_latency(dev);
7119
7120		dev_priv->display.update_wm = vlv_update_wm;
7121		dev_priv->display.init_clock_gating =
7122			cherryview_init_clock_gating;
7123	} else if (IS_VALLEYVIEW(dev)) {
7124		vlv_setup_wm_latency(dev);
7125
7126		dev_priv->display.update_wm = vlv_update_wm;
7127		dev_priv->display.init_clock_gating =
7128			valleyview_init_clock_gating;
7129	} else if (IS_PINEVIEW(dev)) {
7130		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7131					    dev_priv->is_ddr3,
7132					    dev_priv->fsb_freq,
7133					    dev_priv->mem_freq)) {
7134			DRM_INFO("failed to find known CxSR latency "
 
7135				 "(found ddr%s fsb freq %d, mem freq %d), "
7136				 "disabling CxSR\n",
7137				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7138				 dev_priv->fsb_freq, dev_priv->mem_freq);
7139			/* Disable CxSR and never update its watermark again */
7140			intel_set_memory_cxsr(dev_priv, false);
7141			dev_priv->display.update_wm = NULL;
7142		} else
7143			dev_priv->display.update_wm = pineview_update_wm;
7144		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7145	} else if (IS_G4X(dev)) {
7146		dev_priv->display.update_wm = g4x_update_wm;
7147		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7148	} else if (IS_GEN4(dev)) {
7149		dev_priv->display.update_wm = i965_update_wm;
7150		if (IS_CRESTLINE(dev))
7151			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7152		else if (IS_BROADWATER(dev))
7153			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7154	} else if (IS_GEN3(dev)) {
7155		dev_priv->display.update_wm = i9xx_update_wm;
7156		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7157		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7158	} else if (IS_GEN2(dev)) {
7159		if (INTEL_INFO(dev)->num_pipes == 1) {
7160			dev_priv->display.update_wm = i845_update_wm;
7161			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7162		} else {
7163			dev_priv->display.update_wm = i9xx_update_wm;
7164			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7165		}
7166
7167		if (IS_I85X(dev) || IS_I865G(dev))
7168			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7169		else
7170			dev_priv->display.init_clock_gating = i830_init_clock_gating;
7171	} else {
7172		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
 
7173	}
7174}
7175
7176int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7177{
7178	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7179
7180	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7181		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7182		return -EAGAIN;
7183	}
7184
7185	I915_WRITE(GEN6_PCODE_DATA, *val);
7186	I915_WRITE(GEN6_PCODE_DATA1, 0);
7187	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7188
7189	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7190		     500)) {
7191		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7192		return -ETIMEDOUT;
7193	}
7194
7195	*val = I915_READ(GEN6_PCODE_DATA);
7196	I915_WRITE(GEN6_PCODE_DATA, 0);
7197
7198	return 0;
7199}
7200
7201int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7202{
7203	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7204
7205	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7206		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7207		return -EAGAIN;
7208	}
7209
7210	I915_WRITE(GEN6_PCODE_DATA, val);
7211	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7212
7213	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7214		     500)) {
7215		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7216		return -ETIMEDOUT;
7217	}
7218
7219	I915_WRITE(GEN6_PCODE_DATA, 0);
 
 
7220
7221	return 0;
7222}
7223
7224static int vlv_gpu_freq_div(unsigned int czclk_freq)
 
7225{
7226	switch (czclk_freq) {
7227	case 200:
7228		return 10;
7229	case 267:
7230		return 12;
7231	case 320:
7232	case 333:
7233		return 16;
7234	case 400:
7235		return 20;
7236	default:
7237		return -1;
7238	}
7239}
7240
7241static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7242{
7243	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7244
7245	div = vlv_gpu_freq_div(czclk_freq);
7246	if (div < 0)
7247		return div;
7248
7249	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7250}
7251
7252static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7253{
7254	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7255
7256	mul = vlv_gpu_freq_div(czclk_freq);
7257	if (mul < 0)
7258		return mul;
7259
7260	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7261}
7262
7263static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
 
7264{
7265	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
 
7266
7267	div = vlv_gpu_freq_div(czclk_freq);
7268	if (div < 0)
7269		return div;
7270	div /= 2;
7271
7272	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7273}
7274
7275static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7276{
7277	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7278
7279	mul = vlv_gpu_freq_div(czclk_freq);
7280	if (mul < 0)
7281		return mul;
7282	mul /= 2;
7283
7284	/* CHV needs even values */
7285	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7286}
7287
7288int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7289{
7290	if (IS_GEN9(dev_priv->dev))
7291		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7292					 GEN9_FREQ_SCALER);
7293	else if (IS_CHERRYVIEW(dev_priv->dev))
7294		return chv_gpu_freq(dev_priv, val);
7295	else if (IS_VALLEYVIEW(dev_priv->dev))
7296		return byt_gpu_freq(dev_priv, val);
7297	else
7298		return val * GT_FREQUENCY_MULTIPLIER;
7299}
7300
7301int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
 
 
 
 
7302{
7303	if (IS_GEN9(dev_priv->dev))
7304		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7305					 GT_FREQUENCY_MULTIPLIER);
7306	else if (IS_CHERRYVIEW(dev_priv->dev))
7307		return chv_freq_opcode(dev_priv, val);
7308	else if (IS_VALLEYVIEW(dev_priv->dev))
7309		return byt_freq_opcode(dev_priv, val);
7310	else
7311		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7312}
7313
7314struct request_boost {
7315	struct work_struct work;
7316	struct drm_i915_gem_request *req;
7317};
7318
7319static void __intel_rps_boost_work(struct work_struct *work)
7320{
7321	struct request_boost *boost = container_of(work, struct request_boost, work);
7322	struct drm_i915_gem_request *req = boost->req;
 
 
 
 
 
 
 
 
 
7323
7324	if (!i915_gem_request_completed(req, true))
7325		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7326			       req->emitted_jiffies);
7327
7328	i915_gem_request_unreference__unlocked(req);
7329	kfree(boost);
 
 
7330}
7331
7332void intel_queue_rps_boost_for_request(struct drm_device *dev,
7333				       struct drm_i915_gem_request *req)
7334{
7335	struct request_boost *boost;
7336
7337	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7338		return;
7339
7340	if (i915_gem_request_completed(req, true))
7341		return;
7342
7343	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7344	if (boost == NULL)
 
7345		return;
7346
7347	i915_gem_request_reference(req);
7348	boost->req = req;
7349
7350	INIT_WORK(&boost->work, __intel_rps_boost_work);
7351	queue_work(to_i915(dev)->wq, &boost->work);
 
 
7352}
7353
7354void intel_pm_setup(struct drm_device *dev)
7355{
7356	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
7357
7358	mutex_init(&dev_priv->rps.hw_lock);
7359	spin_lock_init(&dev_priv->rps.client_lock);
 
 
7360
7361	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7362			  intel_gen6_powersave_work);
7363	INIT_LIST_HEAD(&dev_priv->rps.clients);
7364	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7365	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7366
7367	dev_priv->pm.suspended = false;
7368	atomic_set(&dev_priv->pm.wakeref_count, 0);
7369	atomic_set(&dev_priv->pm.atomic_seq, 0);
7370}
v5.14.15
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/module.h>
  29#include <linux/pm_runtime.h>
  30
  31#include <drm/drm_atomic_helper.h>
  32#include <drm/drm_fourcc.h>
  33#include <drm/drm_plane_helper.h>
  34
  35#include "display/intel_atomic.h"
  36#include "display/intel_atomic_plane.h"
  37#include "display/intel_bw.h"
  38#include "display/intel_de.h"
  39#include "display/intel_display_types.h"
  40#include "display/intel_fbc.h"
  41#include "display/intel_sprite.h"
  42#include "display/skl_universal_plane.h"
  43
  44#include "gt/intel_llc.h"
  45
  46#include "i915_drv.h"
  47#include "i915_fixed.h"
  48#include "i915_irq.h"
  49#include "i915_trace.h"
  50#include "intel_pm.h"
  51#include "intel_sideband.h"
  52#include "../../../platform/x86/intel_ips.h"
 
  53
  54/* Stores plane specific WM parameters */
  55struct skl_wm_params {
  56	bool x_tiled, y_tiled;
  57	bool rc_surface;
  58	bool is_planar;
  59	u32 width;
  60	u8 cpp;
  61	u32 plane_pixel_rate;
  62	u32 y_min_scanlines;
  63	u32 plane_bytes_per_line;
  64	uint_fixed_16_16_t plane_blocks_per_line;
  65	uint_fixed_16_16_t y_tile_minimum;
  66	u32 linetime_us;
  67	u32 dbuf_block_size;
  68};
 
 
 
 
 
 
 
  69
  70/* used in computing the new watermarks state */
  71struct intel_wm_config {
  72	unsigned int num_pipes_active;
  73	bool sprites_enabled;
  74	bool sprites_scaled;
  75};
  76
  77static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  78{
  79	enum pipe pipe;
  80
  81	if (HAS_LLC(dev_priv)) {
  82		/*
  83		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
  84		 * Display WA #0390: skl,kbl
  85		 *
  86		 * Must match Sampler, Pixel Back End, and Media. See
  87		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
  88		 */
  89		intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
  90			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) |
  91			   SKL_DE_COMPRESSED_HASH_MODE);
  92	}
  93
  94	for_each_pipe(dev_priv, pipe) {
  95		/*
  96		 * "Plane N strech max must be programmed to 11b (x1)
  97		 *  when Async flips are enabled on that plane."
  98		 */
  99		if (!IS_GEMINILAKE(dev_priv) && intel_vtd_active())
 100			intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
 101					 SKL_PLANE1_STRETCH_MAX_MASK, SKL_PLANE1_STRETCH_MAX_X1);
 102	}
 103
 104	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
 105	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
 106		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
 107
 108	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
 109	intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
 110		   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
 111
 112	/*
 113	 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
 114	 * Display WA #0859: skl,bxt,kbl,glk,cfl
 115	 */
 116	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
 117		   DISP_FBC_MEMORY_WAKE);
 118}
 119
 120static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
 121{
 122	gen9_init_clock_gating(dev_priv);
 123
 124	/* WaDisableSDEUnitClockGating:bxt */
 125	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
 126		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
 127
 128	/*
 129	 * FIXME:
 130	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
 131	 */
 132	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
 133		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
 134
 135	/*
 136	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
 137	 * to stay fully on.
 138	 */
 139	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
 140		   PWM1_GATING_DIS | PWM2_GATING_DIS);
 141
 142	/*
 143	 * Lower the display internal timeout.
 144	 * This is needed to avoid any hard hangs when DSI port PLL
 145	 * is off and a MMIO access is attempted by any privilege
 146	 * application, using batch buffers or any other means.
 147	 */
 148	intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
 149
 150	/*
 151	 * WaFbcTurnOffFbcWatermark:bxt
 152	 * Display WA #0562: bxt
 153	 */
 154	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
 155		   DISP_FBC_WM_DIS);
 156
 157	/*
 158	 * WaFbcHighMemBwCorruptionAvoidance:bxt
 159	 * Display WA #0883: bxt
 160	 */
 161	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
 162		   ILK_DPFC_DISABLE_DUMMY0);
 163}
 164
 165static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
 166{
 167	gen9_init_clock_gating(dev_priv);
 168
 169	/*
 170	 * WaDisablePWMClockGating:glk
 171	 * Backlight PWM may stop in the asserted state, causing backlight
 172	 * to stay fully on.
 173	 */
 174	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
 175		   PWM1_GATING_DIS | PWM2_GATING_DIS);
 176}
 177
 178static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
 179{
 
 180	u32 tmp;
 181
 182	tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
 183
 184	switch (tmp & CLKCFG_FSB_MASK) {
 185	case CLKCFG_FSB_533:
 186		dev_priv->fsb_freq = 533; /* 133*4 */
 187		break;
 188	case CLKCFG_FSB_800:
 189		dev_priv->fsb_freq = 800; /* 200*4 */
 190		break;
 191	case CLKCFG_FSB_667:
 192		dev_priv->fsb_freq =  667; /* 167*4 */
 193		break;
 194	case CLKCFG_FSB_400:
 195		dev_priv->fsb_freq = 400; /* 100*4 */
 196		break;
 197	}
 198
 199	switch (tmp & CLKCFG_MEM_MASK) {
 200	case CLKCFG_MEM_533:
 201		dev_priv->mem_freq = 533;
 202		break;
 203	case CLKCFG_MEM_667:
 204		dev_priv->mem_freq = 667;
 205		break;
 206	case CLKCFG_MEM_800:
 207		dev_priv->mem_freq = 800;
 208		break;
 209	}
 210
 211	/* detect pineview DDR3 setting */
 212	tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
 213	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 214}
 215
 216static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
 217{
 
 218	u16 ddrpll, csipll;
 219
 220	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
 221	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
 222
 223	switch (ddrpll & 0xff) {
 224	case 0xc:
 225		dev_priv->mem_freq = 800;
 226		break;
 227	case 0x10:
 228		dev_priv->mem_freq = 1066;
 229		break;
 230	case 0x14:
 231		dev_priv->mem_freq = 1333;
 232		break;
 233	case 0x18:
 234		dev_priv->mem_freq = 1600;
 235		break;
 236	default:
 237		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
 238			ddrpll & 0xff);
 239		dev_priv->mem_freq = 0;
 240		break;
 241	}
 242
 
 
 243	switch (csipll & 0x3ff) {
 244	case 0x00c:
 245		dev_priv->fsb_freq = 3200;
 246		break;
 247	case 0x00e:
 248		dev_priv->fsb_freq = 3733;
 249		break;
 250	case 0x010:
 251		dev_priv->fsb_freq = 4266;
 252		break;
 253	case 0x012:
 254		dev_priv->fsb_freq = 4800;
 255		break;
 256	case 0x014:
 257		dev_priv->fsb_freq = 5333;
 258		break;
 259	case 0x016:
 260		dev_priv->fsb_freq = 5866;
 261		break;
 262	case 0x018:
 263		dev_priv->fsb_freq = 6400;
 264		break;
 265	default:
 266		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
 267			csipll & 0x3ff);
 268		dev_priv->fsb_freq = 0;
 269		break;
 270	}
 
 
 
 
 
 
 
 
 271}
 272
 273static const struct cxsr_latency cxsr_latency_table[] = {
 274	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 275	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 276	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 277	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 278	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 279
 280	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 281	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 282	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 283	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 284	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 285
 286	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 287	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 288	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 289	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 290	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 291
 292	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 293	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 294	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 295	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 296	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 297
 298	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 299	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 300	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 301	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 302	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 303
 304	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 305	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 306	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 307	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 308	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 309};
 310
 311static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
 312							 bool is_ddr3,
 313							 int fsb,
 314							 int mem)
 315{
 316	const struct cxsr_latency *latency;
 317	int i;
 318
 319	if (fsb == 0 || mem == 0)
 320		return NULL;
 321
 322	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 323		latency = &cxsr_latency_table[i];
 324		if (is_desktop == latency->is_desktop &&
 325		    is_ddr3 == latency->is_ddr3 &&
 326		    fsb == latency->fsb_freq && mem == latency->mem_freq)
 327			return latency;
 328	}
 329
 330	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 331
 332	return NULL;
 333}
 334
 335static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 336{
 337	u32 val;
 338
 339	vlv_punit_get(dev_priv);
 340
 341	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 342	if (enable)
 343		val &= ~FORCE_DDR_HIGH_FREQ;
 344	else
 345		val |= FORCE_DDR_HIGH_FREQ;
 346	val &= ~FORCE_DDR_LOW_FREQ;
 347	val |= FORCE_DDR_FREQ_REQ_ACK;
 348	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 349
 350	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 351		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 352		drm_err(&dev_priv->drm,
 353			"timed out waiting for Punit DDR DVFS request\n");
 354
 355	vlv_punit_put(dev_priv);
 356}
 357
 358static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 359{
 360	u32 val;
 361
 362	vlv_punit_get(dev_priv);
 363
 364	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
 365	if (enable)
 366		val |= DSP_MAXFIFO_PM5_ENABLE;
 367	else
 368		val &= ~DSP_MAXFIFO_PM5_ENABLE;
 369	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
 370
 371	vlv_punit_put(dev_priv);
 372}
 373
 374#define FW_WM(value, plane) \
 375	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 376
 377static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 378{
 379	bool was_enabled;
 380	u32 val;
 381
 382	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 383		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
 384		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 385		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
 386	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
 387		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
 388		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 389		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
 390	} else if (IS_PINEVIEW(dev_priv)) {
 391		val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
 392		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
 393		if (enable)
 394			val |= PINEVIEW_SELF_REFRESH_EN;
 395		else
 396			val &= ~PINEVIEW_SELF_REFRESH_EN;
 397		intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
 398		intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
 399	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
 400		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
 401		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 402			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 403		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
 404		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
 405	} else if (IS_I915GM(dev_priv)) {
 406		/*
 407		 * FIXME can't find a bit like this for 915G, and
 408		 * and yet it does have the related watermark in
 409		 * FW_BLC_SELF. What's going on?
 410		 */
 411		was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
 412		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 413			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 414		intel_uncore_write(&dev_priv->uncore, INSTPM, val);
 415		intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
 416	} else {
 417		return false;
 418	}
 419
 420	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
 421
 422	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
 423		    enableddisabled(enable),
 424		    enableddisabled(was_enabled));
 425
 426	return was_enabled;
 427}
 428
 429/**
 430 * intel_set_memory_cxsr - Configure CxSR state
 431 * @dev_priv: i915 device
 432 * @enable: Allow vs. disallow CxSR
 433 *
 434 * Allow or disallow the system to enter a special CxSR
 435 * (C-state self refresh) state. What typically happens in CxSR mode
 436 * is that several display FIFOs may get combined into a single larger
 437 * FIFO for a particular plane (so called max FIFO mode) to allow the
 438 * system to defer memory fetches longer, and the memory will enter
 439 * self refresh.
 440 *
 441 * Note that enabling CxSR does not guarantee that the system enter
 442 * this special mode, nor does it guarantee that the system stays
 443 * in that mode once entered. So this just allows/disallows the system
 444 * to autonomously utilize the CxSR mode. Other factors such as core
 445 * C-states will affect when/if the system actually enters/exits the
 446 * CxSR mode.
 447 *
 448 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 449 * and the system is free to enter/exit memory self refresh at any time
 450 * even when the use of CxSR has been disallowed.
 451 *
 452 * While the system is actually in the CxSR/max FIFO mode, some plane
 453 * control registers will not get latched on vblank. Thus in order to
 454 * guarantee the system will respond to changes in the plane registers
 455 * we must always disallow CxSR prior to making changes to those registers.
 456 * Unfortunately the system will re-evaluate the CxSR conditions at
 457 * frame start which happens after vblank start (which is when the plane
 458 * registers would get latched), so we can't proceed with the plane update
 459 * during the same frame where we disallowed CxSR.
 460 *
 461 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 462 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 463 * the hardware w.r.t. HPLL SR when writing to plane registers.
 464 * Disallowing just CxSR is sufficient.
 465 */
 466bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 467{
 468	bool ret;
 469
 470	mutex_lock(&dev_priv->wm.wm_mutex);
 471	ret = _intel_set_memory_cxsr(dev_priv, enable);
 472	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 473		dev_priv->wm.vlv.cxsr = enable;
 474	else if (IS_G4X(dev_priv))
 475		dev_priv->wm.g4x.cxsr = enable;
 476	mutex_unlock(&dev_priv->wm.wm_mutex);
 477
 478	return ret;
 479}
 480
 481/*
 482 * Latency for FIFO fetches is dependent on several factors:
 483 *   - memory configuration (speed, channels)
 484 *   - chipset
 485 *   - current MCH state
 486 * It can be fairly high in some situations, so here we assume a fairly
 487 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 488 * set this value too high, the FIFO will fetch frequently to stay full)
 489 * and power consumption (set it too low to save power and we might see
 490 * FIFO underruns and display "flicker").
 491 *
 492 * A value of 5us seems to be a good balance; safe for very low end
 493 * platforms but not overly aggressive on lower latency configs.
 494 */
 495static const int pessimal_latency_ns = 5000;
 496
 497#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 498	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 499
 500static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
 
 501{
 502	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 503	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 504	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
 505	enum pipe pipe = crtc->pipe;
 506	int sprite0_start, sprite1_start;
 507	u32 dsparb, dsparb2, dsparb3;
 508
 509	switch (pipe) {
 
 510	case PIPE_A:
 511		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
 512		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
 513		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 514		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 515		break;
 516	case PIPE_B:
 517		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
 518		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
 519		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 520		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 521		break;
 522	case PIPE_C:
 523		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
 524		dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
 525		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 526		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 527		break;
 528	default:
 529		MISSING_CASE(pipe);
 530		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 531	}
 532
 533	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
 534	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
 535	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
 536	fifo_state->plane[PLANE_CURSOR] = 63;
 
 
 537}
 538
 539static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
 540			      enum i9xx_plane_id i9xx_plane)
 541{
 542	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
 
 543	int size;
 544
 545	size = dsparb & 0x7f;
 546	if (i9xx_plane == PLANE_B)
 547		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 548
 549	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
 550		    dsparb, plane_name(i9xx_plane), size);
 551
 552	return size;
 553}
 554
 555static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
 556			      enum i9xx_plane_id i9xx_plane)
 557{
 558	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
 
 559	int size;
 560
 561	size = dsparb & 0x1ff;
 562	if (i9xx_plane == PLANE_B)
 563		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 564	size >>= 1; /* Convert to cachelines */
 565
 566	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
 567		    dsparb, plane_name(i9xx_plane), size);
 568
 569	return size;
 570}
 571
 572static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
 573			      enum i9xx_plane_id i9xx_plane)
 574{
 575	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
 
 576	int size;
 577
 578	size = dsparb & 0x7f;
 579	size >>= 2; /* Convert to cachelines */
 580
 581	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
 582		    dsparb, plane_name(i9xx_plane), size);
 
 583
 584	return size;
 585}
 586
 587/* Pineview has different values for various configs */
 588static const struct intel_watermark_params pnv_display_wm = {
 589	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 590	.max_wm = PINEVIEW_MAX_WM,
 591	.default_wm = PINEVIEW_DFT_WM,
 592	.guard_size = PINEVIEW_GUARD_WM,
 593	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 594};
 595
 596static const struct intel_watermark_params pnv_display_hplloff_wm = {
 597	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 598	.max_wm = PINEVIEW_MAX_WM,
 599	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 600	.guard_size = PINEVIEW_GUARD_WM,
 601	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 602};
 603
 604static const struct intel_watermark_params pnv_cursor_wm = {
 605	.fifo_size = PINEVIEW_CURSOR_FIFO,
 606	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 607	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 608	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 609	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 610};
 611
 612static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
 613	.fifo_size = PINEVIEW_CURSOR_FIFO,
 614	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 615	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 616	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 617	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 618};
 619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620static const struct intel_watermark_params i965_cursor_wm_info = {
 621	.fifo_size = I965_CURSOR_FIFO,
 622	.max_wm = I965_CURSOR_MAX_WM,
 623	.default_wm = I965_CURSOR_DFT_WM,
 624	.guard_size = 2,
 625	.cacheline_size = I915_FIFO_LINE_SIZE,
 626};
 627
 628static const struct intel_watermark_params i945_wm_info = {
 629	.fifo_size = I945_FIFO_SIZE,
 630	.max_wm = I915_MAX_WM,
 631	.default_wm = 1,
 632	.guard_size = 2,
 633	.cacheline_size = I915_FIFO_LINE_SIZE,
 634};
 635
 636static const struct intel_watermark_params i915_wm_info = {
 637	.fifo_size = I915_FIFO_SIZE,
 638	.max_wm = I915_MAX_WM,
 639	.default_wm = 1,
 640	.guard_size = 2,
 641	.cacheline_size = I915_FIFO_LINE_SIZE,
 642};
 643
 644static const struct intel_watermark_params i830_a_wm_info = {
 645	.fifo_size = I855GM_FIFO_SIZE,
 646	.max_wm = I915_MAX_WM,
 647	.default_wm = 1,
 648	.guard_size = 2,
 649	.cacheline_size = I830_FIFO_LINE_SIZE,
 650};
 651
 652static const struct intel_watermark_params i830_bc_wm_info = {
 653	.fifo_size = I855GM_FIFO_SIZE,
 654	.max_wm = I915_MAX_WM/2,
 655	.default_wm = 1,
 656	.guard_size = 2,
 657	.cacheline_size = I830_FIFO_LINE_SIZE,
 658};
 659
 660static const struct intel_watermark_params i845_wm_info = {
 661	.fifo_size = I830_FIFO_SIZE,
 662	.max_wm = I915_MAX_WM,
 663	.default_wm = 1,
 664	.guard_size = 2,
 665	.cacheline_size = I830_FIFO_LINE_SIZE,
 666};
 667
 668/**
 669 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 670 * @pixel_rate: Pipe pixel rate in kHz
 671 * @cpp: Plane bytes per pixel
 672 * @latency: Memory wakeup latency in 0.1us units
 673 *
 674 * Compute the watermark using the method 1 or "small buffer"
 675 * formula. The caller may additonally add extra cachelines
 676 * to account for TLB misses and clock crossings.
 677 *
 678 * This method is concerned with the short term drain rate
 679 * of the FIFO, ie. it does not account for blanking periods
 680 * which would effectively reduce the average drain rate across
 681 * a longer period. The name "small" refers to the fact the
 682 * FIFO is relatively small compared to the amount of data
 683 * fetched.
 684 *
 685 * The FIFO level vs. time graph might look something like:
 686 *
 687 *   |\   |\
 688 *   | \  | \
 689 * __---__---__ (- plane active, _ blanking)
 690 * -> time
 691 *
 692 * or perhaps like this:
 693 *
 694 *   |\|\  |\|\
 695 * __----__----__ (- plane active, _ blanking)
 696 * -> time
 697 *
 698 * Returns:
 699 * The watermark in bytes
 700 */
 701static unsigned int intel_wm_method1(unsigned int pixel_rate,
 702				     unsigned int cpp,
 703				     unsigned int latency)
 704{
 705	u64 ret;
 706
 707	ret = mul_u32_u32(pixel_rate, cpp * latency);
 708	ret = DIV_ROUND_UP_ULL(ret, 10000);
 709
 710	return ret;
 711}
 712
 713/**
 714 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 715 * @pixel_rate: Pipe pixel rate in kHz
 716 * @htotal: Pipe horizontal total
 717 * @width: Plane width in pixels
 718 * @cpp: Plane bytes per pixel
 719 * @latency: Memory wakeup latency in 0.1us units
 720 *
 721 * Compute the watermark using the method 2 or "large buffer"
 722 * formula. The caller may additonally add extra cachelines
 723 * to account for TLB misses and clock crossings.
 724 *
 725 * This method is concerned with the long term drain rate
 726 * of the FIFO, ie. it does account for blanking periods
 727 * which effectively reduce the average drain rate across
 728 * a longer period. The name "large" refers to the fact the
 729 * FIFO is relatively large compared to the amount of data
 730 * fetched.
 731 *
 732 * The FIFO level vs. time graph might look something like:
 733 *
 734 *    |\___       |\___
 735 *    |    \___   |    \___
 736 *    |        \  |        \
 737 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 738 * -> time
 739 *
 740 * Returns:
 741 * The watermark in bytes
 742 */
 743static unsigned int intel_wm_method2(unsigned int pixel_rate,
 744				     unsigned int htotal,
 745				     unsigned int width,
 746				     unsigned int cpp,
 747				     unsigned int latency)
 748{
 749	unsigned int ret;
 750
 751	/*
 752	 * FIXME remove once all users are computing
 753	 * watermarks in the correct place.
 754	 */
 755	if (WARN_ON_ONCE(htotal == 0))
 756		htotal = 1;
 757
 758	ret = (latency * pixel_rate) / (htotal * 10000);
 759	ret = (ret + 1) * width * cpp;
 760
 761	return ret;
 762}
 763
 764/**
 765 * intel_calculate_wm - calculate watermark level
 766 * @pixel_rate: pixel clock
 767 * @wm: chip FIFO params
 768 * @fifo_size: size of the FIFO buffer
 769 * @cpp: bytes per pixel
 770 * @latency_ns: memory latency for the platform
 771 *
 772 * Calculate the watermark level (the level at which the display plane will
 773 * start fetching from memory again).  Each chip has a different display
 774 * FIFO size and allocation, so the caller needs to figure that out and pass
 775 * in the correct intel_watermark_params structure.
 776 *
 777 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 778 * on the pixel size.  When it reaches the watermark level, it'll start
 779 * fetching FIFO line sized based chunks from memory until the FIFO fills
 780 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 781 * will occur, and a display engine hang could result.
 782 */
 783static unsigned int intel_calculate_wm(int pixel_rate,
 784				       const struct intel_watermark_params *wm,
 785				       int fifo_size, int cpp,
 786				       unsigned int latency_ns)
 787{
 788	int entries, wm_size;
 789
 790	/*
 791	 * Note: we need to make sure we don't overflow for various clock &
 792	 * latency values.
 793	 * clocks go from a few thousand to several hundred thousand.
 794	 * latency is usually a few thousand
 795	 */
 796	entries = intel_wm_method1(pixel_rate, cpp,
 797				   latency_ns / 100);
 798	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
 799		wm->guard_size;
 800	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
 
 
 801
 802	wm_size = fifo_size - entries;
 803	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
 804
 805	/* Don't promote wm_size to unsigned... */
 806	if (wm_size > wm->max_wm)
 807		wm_size = wm->max_wm;
 808	if (wm_size <= 0)
 809		wm_size = wm->default_wm;
 810
 811	/*
 812	 * Bspec seems to indicate that the value shouldn't be lower than
 813	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 814	 * Lets go for 8 which is the burst size since certain platforms
 815	 * already use a hardcoded 8 (which is what the spec says should be
 816	 * done).
 817	 */
 818	if (wm_size <= 8)
 819		wm_size = 8;
 820
 821	return wm_size;
 822}
 823
 824static bool is_disabling(int old, int new, int threshold)
 825{
 826	return old >= threshold && new < threshold;
 827}
 828
 829static bool is_enabling(int old, int new, int threshold)
 830{
 831	return old < threshold && new >= threshold;
 832}
 833
 834static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
 835{
 836	return dev_priv->wm.max_level + 1;
 837}
 838
 839static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
 840				   const struct intel_plane_state *plane_state)
 841{
 842	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
 843
 844	/* FIXME check the 'enable' instead */
 845	if (!crtc_state->hw.active)
 846		return false;
 847
 848	/*
 849	 * Treat cursor with fb as always visible since cursor updates
 850	 * can happen faster than the vrefresh rate, and the current
 851	 * watermark code doesn't handle that correctly. Cursor updates
 852	 * which set/clear the fb or change the cursor size are going
 853	 * to get throttled by intel_legacy_cursor_update() to work
 854	 * around this problem with the watermark code.
 855	 */
 856	if (plane->id == PLANE_CURSOR)
 857		return plane_state->hw.fb != NULL;
 858	else
 859		return plane_state->uapi.visible;
 860}
 861
 862static bool intel_crtc_active(struct intel_crtc *crtc)
 863{
 864	/* Be paranoid as we can arrive here with only partial
 865	 * state retrieved from the hardware during setup.
 866	 *
 867	 * We can ditch the adjusted_mode.crtc_clock check as soon
 868	 * as Haswell has gained clock readout/fastboot support.
 869	 *
 870	 * We can ditch the crtc->primary->state->fb check as soon as we can
 871	 * properly reconstruct framebuffers.
 872	 *
 873	 * FIXME: The intel_crtc->active here should be switched to
 874	 * crtc->state->active once we have proper CRTC states wired up
 875	 * for atomic.
 876	 */
 877	return crtc->active && crtc->base.primary->state->fb &&
 878		crtc->config->hw.adjusted_mode.crtc_clock;
 879}
 880
 881static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
 882{
 883	struct intel_crtc *crtc, *enabled = NULL;
 884
 885	for_each_intel_crtc(&dev_priv->drm, crtc) {
 886		if (intel_crtc_active(crtc)) {
 887			if (enabled)
 888				return NULL;
 889			enabled = crtc;
 890		}
 891	}
 892
 893	return enabled;
 894}
 895
 896static void pnv_update_wm(struct intel_crtc *unused_crtc)
 897{
 898	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
 899	struct intel_crtc *crtc;
 
 900	const struct cxsr_latency *latency;
 901	u32 reg;
 902	unsigned int wm;
 903
 904	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
 905					 dev_priv->is_ddr3,
 906					 dev_priv->fsb_freq,
 907					 dev_priv->mem_freq);
 908	if (!latency) {
 909		drm_dbg_kms(&dev_priv->drm,
 910			    "Unknown FSB/MEM found, disable CxSR\n");
 911		intel_set_memory_cxsr(dev_priv, false);
 912		return;
 913	}
 914
 915	crtc = single_enabled_crtc(dev_priv);
 916	if (crtc) {
 917		const struct drm_display_mode *pipe_mode =
 918			&crtc->config->hw.pipe_mode;
 919		const struct drm_framebuffer *fb =
 920			crtc->base.primary->state->fb;
 921		int cpp = fb->format->cpp[0];
 922		int clock = pipe_mode->crtc_clock;
 923
 924		/* Display SR */
 925		wm = intel_calculate_wm(clock, &pnv_display_wm,
 926					pnv_display_wm.fifo_size,
 927					cpp, latency->display_sr);
 928		reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
 929		reg &= ~DSPFW_SR_MASK;
 930		reg |= FW_WM(wm, SR);
 931		intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
 932		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
 933
 934		/* cursor SR */
 935		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
 936					pnv_display_wm.fifo_size,
 937					4, latency->cursor_sr);
 938		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
 939		reg &= ~DSPFW_CURSOR_SR_MASK;
 940		reg |= FW_WM(wm, CURSOR_SR);
 941		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
 942
 943		/* Display HPLL off SR */
 944		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
 945					pnv_display_hplloff_wm.fifo_size,
 946					cpp, latency->display_hpll_disable);
 947		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
 948		reg &= ~DSPFW_HPLL_SR_MASK;
 949		reg |= FW_WM(wm, HPLL_SR);
 950		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
 951
 952		/* cursor HPLL off SR */
 953		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
 954					pnv_display_hplloff_wm.fifo_size,
 955					4, latency->cursor_hpll_disable);
 956		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
 957		reg &= ~DSPFW_HPLL_CURSOR_MASK;
 958		reg |= FW_WM(wm, HPLL_CURSOR);
 959		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
 960		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
 961
 962		intel_set_memory_cxsr(dev_priv, true);
 963	} else {
 964		intel_set_memory_cxsr(dev_priv, false);
 965	}
 966}
 967
 968/*
 969 * Documentation says:
 970 * "If the line size is small, the TLB fetches can get in the way of the
 971 *  data fetches, causing some lag in the pixel data return which is not
 972 *  accounted for in the above formulas. The following adjustment only
 973 *  needs to be applied if eight whole lines fit in the buffer at once.
 974 *  The WM is adjusted upwards by the difference between the FIFO size
 975 *  and the size of 8 whole lines. This adjustment is always performed
 976 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 977 */
 978static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
 979{
 980	int tlb_miss = fifo_size * 64 - width * cpp * 8;
 981
 982	return max(0, tlb_miss);
 983}
 984
 985static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
 986				const struct g4x_wm_values *wm)
 987{
 988	enum pipe pipe;
 989
 990	for_each_pipe(dev_priv, pipe)
 991		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
 992
 993	intel_uncore_write(&dev_priv->uncore, DSPFW1,
 994		   FW_WM(wm->sr.plane, SR) |
 995		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
 996		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
 997		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
 998	intel_uncore_write(&dev_priv->uncore, DSPFW2,
 999		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
1000		   FW_WM(wm->sr.fbc, FBC_SR) |
1001		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
1002		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
1003		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1004		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1005	intel_uncore_write(&dev_priv->uncore, DSPFW3,
1006		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
1007		   FW_WM(wm->sr.cursor, CURSOR_SR) |
1008		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
1009		   FW_WM(wm->hpll.plane, HPLL_SR));
1010
1011	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1012}
1013
1014#define FW_WM_VLV(value, plane) \
1015	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
1016
1017static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1018				const struct vlv_wm_values *wm)
1019{
1020	enum pipe pipe;
1021
1022	for_each_pipe(dev_priv, pipe) {
1023		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
1024
1025		intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
1026			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1027			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1028			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1029			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1030	}
1031
1032	/*
1033	 * Zero the (unused) WM1 watermarks, and also clear all the
1034	 * high order bits so that there are no out of bounds values
1035	 * present in the registers during the reprogramming.
1036	 */
1037	intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
1038	intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
1039	intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
1040	intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
1041	intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042
1043	intel_uncore_write(&dev_priv->uncore, DSPFW1,
1044		   FW_WM(wm->sr.plane, SR) |
1045		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1046		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1047		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1048	intel_uncore_write(&dev_priv->uncore, DSPFW2,
1049		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1050		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1051		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1052	intel_uncore_write(&dev_priv->uncore, DSPFW3,
1053		   FW_WM(wm->sr.cursor, CURSOR_SR));
1054
1055	if (IS_CHERRYVIEW(dev_priv)) {
1056		intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
1057			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1058			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1059		intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
1060			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1061			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1062		intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
1063			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1064			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1065		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1066			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1067			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1068			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1069			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1070			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1071			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1072			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1073			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1074			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1075			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1076	} else {
1077		intel_uncore_write(&dev_priv->uncore, DSPFW7,
1078			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1079			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1080		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1081			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1082			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1083			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1084			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1085			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1086			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1087			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1088	}
1089
1090	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1091}
1092
1093#undef FW_WM_VLV
1094
1095static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1096{
1097	/* all latencies in usec */
1098	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1099	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1100	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1101
1102	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1103}
1104
1105static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1106{
1107	/*
1108	 * DSPCNTR[13] supposedly controls whether the
1109	 * primary plane can use the FIFO space otherwise
1110	 * reserved for the sprite plane. It's not 100% clear
1111	 * what the actual FIFO size is, but it looks like we
1112	 * can happily set both primary and sprite watermarks
1113	 * up to 127 cachelines. So that would seem to mean
1114	 * that either DSPCNTR[13] doesn't do anything, or that
1115	 * the total FIFO is >= 256 cachelines in size. Either
1116	 * way, we don't seem to have to worry about this
1117	 * repartitioning as the maximum watermark value the
1118	 * register can hold for each plane is lower than the
1119	 * minimum FIFO size.
1120	 */
1121	switch (plane_id) {
1122	case PLANE_CURSOR:
1123		return 63;
1124	case PLANE_PRIMARY:
1125		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1126	case PLANE_SPRITE0:
1127		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1128	default:
1129		MISSING_CASE(plane_id);
1130		return 0;
1131	}
1132}
1133
1134static int g4x_fbc_fifo_size(int level)
1135{
1136	switch (level) {
1137	case G4X_WM_LEVEL_SR:
1138		return 7;
1139	case G4X_WM_LEVEL_HPLL:
1140		return 15;
1141	default:
1142		MISSING_CASE(level);
1143		return 0;
1144	}
1145}
1146
1147static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1148			  const struct intel_plane_state *plane_state,
1149			  int level)
1150{
1151	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1152	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1153	const struct drm_display_mode *pipe_mode =
1154		&crtc_state->hw.pipe_mode;
1155	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1156	unsigned int clock, htotal, cpp, width, wm;
1157
1158	if (latency == 0)
1159		return USHRT_MAX;
1160
1161	if (!intel_wm_plane_visible(crtc_state, plane_state))
1162		return 0;
1163
1164	cpp = plane_state->hw.fb->format->cpp[0];
1165
1166	/*
1167	 * Not 100% sure which way ELK should go here as the
1168	 * spec only says CL/CTG should assume 32bpp and BW
1169	 * doesn't need to. But as these things followed the
1170	 * mobile vs. desktop lines on gen3 as well, let's
1171	 * assume ELK doesn't need this.
1172	 *
1173	 * The spec also fails to list such a restriction for
1174	 * the HPLL watermark, which seems a little strange.
1175	 * Let's use 32bpp for the HPLL watermark as well.
1176	 */
1177	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1178	    level != G4X_WM_LEVEL_NORMAL)
1179		cpp = max(cpp, 4u);
1180
1181	clock = pipe_mode->crtc_clock;
1182	htotal = pipe_mode->crtc_htotal;
1183
1184	width = drm_rect_width(&plane_state->uapi.dst);
1185
1186	if (plane->id == PLANE_CURSOR) {
1187		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1188	} else if (plane->id == PLANE_PRIMARY &&
1189		   level == G4X_WM_LEVEL_NORMAL) {
1190		wm = intel_wm_method1(clock, cpp, latency);
1191	} else {
1192		unsigned int small, large;
1193
1194		small = intel_wm_method1(clock, cpp, latency);
1195		large = intel_wm_method2(clock, htotal, width, cpp, latency);
1196
1197		wm = min(small, large);
1198	}
1199
1200	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1201			      width, cpp);
1202
1203	wm = DIV_ROUND_UP(wm, 64) + 2;
1204
1205	return min_t(unsigned int, wm, USHRT_MAX);
1206}
1207
1208static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1209				 int level, enum plane_id plane_id, u16 value)
1210{
1211	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1212	bool dirty = false;
1213
1214	for (; level < intel_wm_num_levels(dev_priv); level++) {
1215		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1216
1217		dirty |= raw->plane[plane_id] != value;
1218		raw->plane[plane_id] = value;
1219	}
1220
1221	return dirty;
1222}
1223
1224static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1225			       int level, u16 value)
1226{
1227	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1228	bool dirty = false;
1229
1230	/* NORMAL level doesn't have an FBC watermark */
1231	level = max(level, G4X_WM_LEVEL_SR);
1232
1233	for (; level < intel_wm_num_levels(dev_priv); level++) {
1234		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1235
1236		dirty |= raw->fbc != value;
1237		raw->fbc = value;
1238	}
1239
1240	return dirty;
1241}
1242
1243static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1244			      const struct intel_plane_state *plane_state,
1245			      u32 pri_val);
1246
1247static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1248				     const struct intel_plane_state *plane_state)
1249{
1250	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1251	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1252	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1253	enum plane_id plane_id = plane->id;
1254	bool dirty = false;
1255	int level;
1256
1257	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1258		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1259		if (plane_id == PLANE_PRIMARY)
1260			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1261		goto out;
1262	}
1263
1264	for (level = 0; level < num_levels; level++) {
1265		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1266		int wm, max_wm;
1267
1268		wm = g4x_compute_wm(crtc_state, plane_state, level);
1269		max_wm = g4x_plane_fifo_size(plane_id, level);
1270
1271		if (wm > max_wm)
1272			break;
1273
1274		dirty |= raw->plane[plane_id] != wm;
1275		raw->plane[plane_id] = wm;
1276
1277		if (plane_id != PLANE_PRIMARY ||
1278		    level == G4X_WM_LEVEL_NORMAL)
1279			continue;
1280
1281		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1282					raw->plane[plane_id]);
1283		max_wm = g4x_fbc_fifo_size(level);
1284
1285		/*
1286		 * FBC wm is not mandatory as we
1287		 * can always just disable its use.
1288		 */
1289		if (wm > max_wm)
1290			wm = USHRT_MAX;
1291
1292		dirty |= raw->fbc != wm;
1293		raw->fbc = wm;
1294	}
1295
1296	/* mark watermarks as invalid */
1297	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1298
1299	if (plane_id == PLANE_PRIMARY)
1300		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1301
1302 out:
1303	if (dirty) {
1304		drm_dbg_kms(&dev_priv->drm,
1305			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1306			    plane->base.name,
1307			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1308			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1309			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1310
1311		if (plane_id == PLANE_PRIMARY)
1312			drm_dbg_kms(&dev_priv->drm,
1313				    "FBC watermarks: SR=%d, HPLL=%d\n",
1314				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1315				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1316	}
1317
1318	return dirty;
1319}
1320
1321static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1322				      enum plane_id plane_id, int level)
1323{
1324	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1325
1326	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1327}
1328
1329static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1330				     int level)
1331{
1332	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
 
 
 
 
 
 
 
 
 
 
1333
1334	if (level > dev_priv->wm.max_level)
 
1335		return false;
1336
1337	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1338		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1339		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1340}
1341
1342/* mark all levels starting from 'level' as invalid */
1343static void g4x_invalidate_wms(struct intel_crtc *crtc,
1344			       struct g4x_wm_state *wm_state, int level)
1345{
1346	if (level <= G4X_WM_LEVEL_NORMAL) {
1347		enum plane_id plane_id;
1348
1349		for_each_plane_id_on_crtc(crtc, plane_id)
1350			wm_state->wm.plane[plane_id] = USHRT_MAX;
1351	}
1352
1353	if (level <= G4X_WM_LEVEL_SR) {
1354		wm_state->cxsr = false;
1355		wm_state->sr.cursor = USHRT_MAX;
1356		wm_state->sr.plane = USHRT_MAX;
1357		wm_state->sr.fbc = USHRT_MAX;
1358	}
1359
1360	if (level <= G4X_WM_LEVEL_HPLL) {
1361		wm_state->hpll_en = false;
1362		wm_state->hpll.cursor = USHRT_MAX;
1363		wm_state->hpll.plane = USHRT_MAX;
1364		wm_state->hpll.fbc = USHRT_MAX;
1365	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1366}
1367
1368static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1369			       int level)
1370{
1371	if (level < G4X_WM_LEVEL_SR)
1372		return false;
1373
1374	if (level >= G4X_WM_LEVEL_SR &&
1375	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1376		return false;
1377
1378	if (level >= G4X_WM_LEVEL_HPLL &&
1379	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1380		return false;
1381
1382	return true;
1383}
1384
1385static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1386{
1387	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1388	struct intel_atomic_state *state =
1389		to_intel_atomic_state(crtc_state->uapi.state);
1390	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1391	int num_active_planes = hweight8(crtc_state->active_planes &
1392					 ~BIT(PLANE_CURSOR));
1393	const struct g4x_pipe_wm *raw;
1394	const struct intel_plane_state *old_plane_state;
1395	const struct intel_plane_state *new_plane_state;
1396	struct intel_plane *plane;
1397	enum plane_id plane_id;
1398	int i, level;
1399	unsigned int dirty = 0;
1400
1401	for_each_oldnew_intel_plane_in_state(state, plane,
1402					     old_plane_state,
1403					     new_plane_state, i) {
1404		if (new_plane_state->hw.crtc != &crtc->base &&
1405		    old_plane_state->hw.crtc != &crtc->base)
1406			continue;
1407
1408		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1409			dirty |= BIT(plane->id);
1410	}
1411
1412	if (!dirty)
1413		return 0;
1414
1415	level = G4X_WM_LEVEL_NORMAL;
1416	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1417		goto out;
1418
1419	raw = &crtc_state->wm.g4x.raw[level];
1420	for_each_plane_id_on_crtc(crtc, plane_id)
1421		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1422
1423	level = G4X_WM_LEVEL_SR;
1424	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1425		goto out;
1426
1427	raw = &crtc_state->wm.g4x.raw[level];
1428	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1429	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1430	wm_state->sr.fbc = raw->fbc;
1431
1432	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1433
1434	level = G4X_WM_LEVEL_HPLL;
1435	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1436		goto out;
1437
1438	raw = &crtc_state->wm.g4x.raw[level];
1439	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1440	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1441	wm_state->hpll.fbc = raw->fbc;
1442
1443	wm_state->hpll_en = wm_state->cxsr;
1444
1445	level++;
1446
1447 out:
1448	if (level == G4X_WM_LEVEL_NORMAL)
1449		return -EINVAL;
1450
1451	/* invalidate the higher levels */
1452	g4x_invalidate_wms(crtc, wm_state, level);
1453
1454	/*
1455	 * Determine if the FBC watermark(s) can be used. IF
1456	 * this isn't the case we prefer to disable the FBC
1457	 * watermark(s) rather than disable the SR/HPLL
1458	 * level(s) entirely. 'level-1' is the highest valid
1459	 * level here.
1460	 */
1461	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1462
1463	return 0;
1464}
1465
1466static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1467{
1468	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1469	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1470	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1471	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1472	struct intel_atomic_state *intel_state =
1473		to_intel_atomic_state(new_crtc_state->uapi.state);
1474	const struct intel_crtc_state *old_crtc_state =
1475		intel_atomic_get_old_crtc_state(intel_state, crtc);
1476	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1477	enum plane_id plane_id;
1478
1479	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1480		*intermediate = *optimal;
 
 
 
1481
1482		intermediate->cxsr = false;
1483		intermediate->hpll_en = false;
1484		goto out;
1485	}
 
 
 
 
 
 
 
1486
1487	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1488		!new_crtc_state->disable_cxsr;
1489	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1490		!new_crtc_state->disable_cxsr;
1491	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1492
1493	for_each_plane_id_on_crtc(crtc, plane_id) {
1494		intermediate->wm.plane[plane_id] =
1495			max(optimal->wm.plane[plane_id],
1496			    active->wm.plane[plane_id]);
1497
1498		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1499			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1500	}
1501
1502	intermediate->sr.plane = max(optimal->sr.plane,
1503				     active->sr.plane);
1504	intermediate->sr.cursor = max(optimal->sr.cursor,
1505				      active->sr.cursor);
1506	intermediate->sr.fbc = max(optimal->sr.fbc,
1507				   active->sr.fbc);
1508
1509	intermediate->hpll.plane = max(optimal->hpll.plane,
1510				       active->hpll.plane);
1511	intermediate->hpll.cursor = max(optimal->hpll.cursor,
1512					active->hpll.cursor);
1513	intermediate->hpll.fbc = max(optimal->hpll.fbc,
1514				     active->hpll.fbc);
1515
1516	drm_WARN_ON(&dev_priv->drm,
1517		    (intermediate->sr.plane >
1518		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1519		     intermediate->sr.cursor >
1520		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1521		    intermediate->cxsr);
1522	drm_WARN_ON(&dev_priv->drm,
1523		    (intermediate->sr.plane >
1524		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1525		     intermediate->sr.cursor >
1526		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1527		    intermediate->hpll_en);
1528
1529	drm_WARN_ON(&dev_priv->drm,
1530		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1531		    intermediate->fbc_en && intermediate->cxsr);
1532	drm_WARN_ON(&dev_priv->drm,
1533		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1534		    intermediate->fbc_en && intermediate->hpll_en);
1535
1536out:
1537	/*
1538	 * If our intermediate WM are identical to the final WM, then we can
1539	 * omit the post-vblank programming; only update if it's different.
1540	 */
1541	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1542		new_crtc_state->wm.need_postvbl_update = true;
1543
1544	return 0;
1545}
1546
1547static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1548			 struct g4x_wm_values *wm)
1549{
1550	struct intel_crtc *crtc;
1551	int num_active_pipes = 0;
1552
1553	wm->cxsr = true;
1554	wm->hpll_en = true;
1555	wm->fbc_en = true;
1556
1557	for_each_intel_crtc(&dev_priv->drm, crtc) {
1558		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1559
1560		if (!crtc->active)
1561			continue;
1562
1563		if (!wm_state->cxsr)
1564			wm->cxsr = false;
1565		if (!wm_state->hpll_en)
1566			wm->hpll_en = false;
1567		if (!wm_state->fbc_en)
1568			wm->fbc_en = false;
1569
1570		num_active_pipes++;
1571	}
1572
1573	if (num_active_pipes != 1) {
1574		wm->cxsr = false;
1575		wm->hpll_en = false;
1576		wm->fbc_en = false;
1577	}
1578
1579	for_each_intel_crtc(&dev_priv->drm, crtc) {
1580		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1581		enum pipe pipe = crtc->pipe;
1582
1583		wm->pipe[pipe] = wm_state->wm;
1584		if (crtc->active && wm->cxsr)
1585			wm->sr = wm_state->sr;
1586		if (crtc->active && wm->hpll_en)
1587			wm->hpll = wm_state->hpll;
1588	}
1589}
1590
1591static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1592{
1593	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1594	struct g4x_wm_values new_wm = {};
1595
1596	g4x_merge_wm(dev_priv, &new_wm);
1597
1598	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1599		return;
1600
1601	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1602		_intel_set_memory_cxsr(dev_priv, false);
1603
1604	g4x_write_wm_values(dev_priv, &new_wm);
1605
1606	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1607		_intel_set_memory_cxsr(dev_priv, true);
1608
1609	*old_wm = new_wm;
1610}
1611
1612static void g4x_initial_watermarks(struct intel_atomic_state *state,
1613				   struct intel_crtc *crtc)
1614{
1615	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1616	const struct intel_crtc_state *crtc_state =
1617		intel_atomic_get_new_crtc_state(state, crtc);
1618
1619	mutex_lock(&dev_priv->wm.wm_mutex);
1620	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1621	g4x_program_watermarks(dev_priv);
1622	mutex_unlock(&dev_priv->wm.wm_mutex);
1623}
1624
1625static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1626				    struct intel_crtc *crtc)
1627{
1628	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1629	const struct intel_crtc_state *crtc_state =
1630		intel_atomic_get_new_crtc_state(state, crtc);
1631
1632	if (!crtc_state->wm.need_postvbl_update)
1633		return;
1634
1635	mutex_lock(&dev_priv->wm.wm_mutex);
1636	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1637	g4x_program_watermarks(dev_priv);
1638	mutex_unlock(&dev_priv->wm.wm_mutex);
1639}
1640
1641/* latency must be in 0.1us units. */
1642static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1643				   unsigned int htotal,
1644				   unsigned int width,
1645				   unsigned int cpp,
1646				   unsigned int latency)
1647{
1648	unsigned int ret;
1649
1650	ret = intel_wm_method2(pixel_rate, htotal,
1651			       width, cpp, latency);
1652	ret = DIV_ROUND_UP(ret, 64);
1653
1654	return ret;
1655}
1656
1657static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1658{
 
 
1659	/* all latencies in usec */
1660	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1661
1662	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1663
1664	if (IS_CHERRYVIEW(dev_priv)) {
1665		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1666		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1667
1668		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1669	}
1670}
1671
1672static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1673				const struct intel_plane_state *plane_state,
1674				int level)
 
1675{
1676	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1677	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1678	const struct drm_display_mode *pipe_mode =
1679		&crtc_state->hw.pipe_mode;
1680	unsigned int clock, htotal, cpp, width, wm;
1681
1682	if (dev_priv->wm.pri_latency[level] == 0)
1683		return USHRT_MAX;
1684
1685	if (!intel_wm_plane_visible(crtc_state, plane_state))
1686		return 0;
1687
1688	cpp = plane_state->hw.fb->format->cpp[0];
1689	clock = pipe_mode->crtc_clock;
1690	htotal = pipe_mode->crtc_htotal;
1691	width = crtc_state->pipe_src_w;
 
 
1692
1693	if (plane->id == PLANE_CURSOR) {
1694		/*
1695		 * FIXME the formula gives values that are
1696		 * too big for the cursor FIFO, and hence we
1697		 * would never be able to use cursors. For
1698		 * now just hardcode the watermark.
1699		 */
1700		wm = 63;
1701	} else {
1702		wm = vlv_wm_method2(clock, htotal, width, cpp,
1703				    dev_priv->wm.pri_latency[level] * 10);
1704	}
1705
1706	return min_t(unsigned int, wm, USHRT_MAX);
1707}
1708
1709static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1710{
1711	return (active_planes & (BIT(PLANE_SPRITE0) |
1712				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1713}
1714
1715static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1716{
1717	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1718	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1719	const struct g4x_pipe_wm *raw =
1720		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1721	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1722	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1723	int num_active_planes = hweight8(active_planes);
1724	const int fifo_size = 511;
1725	int fifo_extra, fifo_left = fifo_size;
1726	int sprite0_fifo_extra = 0;
1727	unsigned int total_rate;
1728	enum plane_id plane_id;
1729
1730	/*
1731	 * When enabling sprite0 after sprite1 has already been enabled
1732	 * we tend to get an underrun unless sprite0 already has some
1733	 * FIFO space allcoated. Hence we always allocate at least one
1734	 * cacheline for sprite0 whenever sprite1 is enabled.
1735	 *
1736	 * All other plane enable sequences appear immune to this problem.
1737	 */
1738	if (vlv_need_sprite0_fifo_workaround(active_planes))
1739		sprite0_fifo_extra = 1;
1740
1741	total_rate = raw->plane[PLANE_PRIMARY] +
1742		raw->plane[PLANE_SPRITE0] +
1743		raw->plane[PLANE_SPRITE1] +
1744		sprite0_fifo_extra;
1745
1746	if (total_rate > fifo_size)
1747		return -EINVAL;
 
 
 
1748
1749	if (total_rate == 0)
1750		total_rate = 1;
 
 
1751
1752	for_each_plane_id_on_crtc(crtc, plane_id) {
1753		unsigned int rate;
 
 
1754
1755		if ((active_planes & BIT(plane_id)) == 0) {
1756			fifo_state->plane[plane_id] = 0;
1757			continue;
1758		}
1759
1760		rate = raw->plane[plane_id];
1761		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1762		fifo_left -= fifo_state->plane[plane_id];
1763	}
1764
1765	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1766	fifo_left -= sprite0_fifo_extra;
1767
1768	fifo_state->plane[PLANE_CURSOR] = 63;
1769
1770	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1771
1772	/* spread the remainder evenly */
1773	for_each_plane_id_on_crtc(crtc, plane_id) {
1774		int plane_extra;
1775
1776		if (fifo_left == 0)
1777			break;
1778
1779		if ((active_planes & BIT(plane_id)) == 0)
 
 
 
 
 
1780			continue;
1781
1782		plane_extra = min(fifo_extra, fifo_left);
1783		fifo_state->plane[plane_id] += plane_extra;
1784		fifo_left -= plane_extra;
1785	}
1786
1787	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1788
1789	/* give it all to the first plane if none are active */
1790	if (active_planes == 0) {
1791		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1792		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1793	}
1794
1795	return 0;
1796}
1797
1798/* mark all levels starting from 'level' as invalid */
1799static void vlv_invalidate_wms(struct intel_crtc *crtc,
1800			       struct vlv_wm_state *wm_state, int level)
1801{
1802	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 
1803
1804	for (; level < intel_wm_num_levels(dev_priv); level++) {
1805		enum plane_id plane_id;
1806
1807		for_each_plane_id_on_crtc(crtc, plane_id)
1808			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1809
1810		wm_state->sr[level].cursor = USHRT_MAX;
1811		wm_state->sr[level].plane = USHRT_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812	}
1813}
1814
1815static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1816{
1817	if (wm > fifo_size)
1818		return USHRT_MAX;
1819	else
1820		return fifo_size - wm;
1821}
1822
1823/*
1824 * Starting from 'level' set all higher
1825 * levels to 'value' in the "raw" watermarks.
1826 */
1827static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1828				 int level, enum plane_id plane_id, u16 value)
1829{
1830	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1831	int num_levels = intel_wm_num_levels(dev_priv);
1832	bool dirty = false;
1833
1834	for (; level < num_levels; level++) {
1835		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1836
1837		dirty |= raw->plane[plane_id] != value;
1838		raw->plane[plane_id] = value;
1839	}
1840
1841	return dirty;
1842}
1843
1844static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1845				     const struct intel_plane_state *plane_state)
1846{
1847	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1848	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1849	enum plane_id plane_id = plane->id;
1850	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1851	int level;
1852	bool dirty = false;
1853
1854	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1855		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1856		goto out;
 
 
1857	}
1858
1859	for (level = 0; level < num_levels; level++) {
1860		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1861		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1862		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1863
1864		if (wm > max_wm)
1865			break;
1866
1867		dirty |= raw->plane[plane_id] != wm;
1868		raw->plane[plane_id] = wm;
1869	}
 
1870
1871	/* mark all higher levels as invalid */
1872	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
 
1873
1874out:
1875	if (dirty)
1876		drm_dbg_kms(&dev_priv->drm,
1877			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1878			    plane->base.name,
1879			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1880			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1881			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1882
1883	return dirty;
1884}
 
 
 
 
 
 
 
 
 
 
 
 
1885
1886static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1887				      enum plane_id plane_id, int level)
1888{
1889	const struct g4x_pipe_wm *raw =
1890		&crtc_state->wm.vlv.raw[level];
1891	const struct vlv_fifo_state *fifo_state =
1892		&crtc_state->wm.vlv.fifo_state;
1893
1894	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1895}
1896
1897static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1898{
1899	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1900		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1901		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1902		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1903}
1904
1905static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1906{
1907	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1908	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1909	struct intel_atomic_state *state =
1910		to_intel_atomic_state(crtc_state->uapi.state);
1911	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1912	const struct vlv_fifo_state *fifo_state =
1913		&crtc_state->wm.vlv.fifo_state;
1914	int num_active_planes = hweight8(crtc_state->active_planes &
1915					 ~BIT(PLANE_CURSOR));
1916	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1917	const struct intel_plane_state *old_plane_state;
1918	const struct intel_plane_state *new_plane_state;
1919	struct intel_plane *plane;
1920	enum plane_id plane_id;
1921	int level, ret, i;
1922	unsigned int dirty = 0;
1923
1924	for_each_oldnew_intel_plane_in_state(state, plane,
1925					     old_plane_state,
1926					     new_plane_state, i) {
1927		if (new_plane_state->hw.crtc != &crtc->base &&
1928		    old_plane_state->hw.crtc != &crtc->base)
1929			continue;
1930
1931		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1932			dirty |= BIT(plane->id);
1933	}
1934
1935	/*
1936	 * DSPARB registers may have been reset due to the
1937	 * power well being turned off. Make sure we restore
1938	 * them to a consistent state even if no primary/sprite
1939	 * planes are initially active.
1940	 */
1941	if (needs_modeset)
1942		crtc_state->fifo_changed = true;
1943
1944	if (!dirty)
1945		return 0;
1946
1947	/* cursor changes don't warrant a FIFO recompute */
1948	if (dirty & ~BIT(PLANE_CURSOR)) {
1949		const struct intel_crtc_state *old_crtc_state =
1950			intel_atomic_get_old_crtc_state(state, crtc);
1951		const struct vlv_fifo_state *old_fifo_state =
1952			&old_crtc_state->wm.vlv.fifo_state;
1953
1954		ret = vlv_compute_fifo(crtc_state);
1955		if (ret)
1956			return ret;
1957
1958		if (needs_modeset ||
1959		    memcmp(old_fifo_state, fifo_state,
1960			   sizeof(*fifo_state)) != 0)
1961			crtc_state->fifo_changed = true;
1962	}
1963
1964	/* initially allow all levels */
1965	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1966	/*
1967	 * Note that enabling cxsr with no primary/sprite planes
1968	 * enabled can wedge the pipe. Hence we only allow cxsr
1969	 * with exactly one enabled primary/sprite plane.
1970	 */
1971	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1972
1973	for (level = 0; level < wm_state->num_levels; level++) {
1974		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1975		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1976
1977		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1978			break;
1979
1980		for_each_plane_id_on_crtc(crtc, plane_id) {
1981			wm_state->wm[level].plane[plane_id] =
1982				vlv_invert_wm_value(raw->plane[plane_id],
1983						    fifo_state->plane[plane_id]);
1984		}
 
1985
1986		wm_state->sr[level].plane =
1987			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1988						 raw->plane[PLANE_SPRITE0],
1989						 raw->plane[PLANE_SPRITE1]),
1990					    sr_fifo_size);
1991
1992		wm_state->sr[level].cursor =
1993			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1994					    63);
1995	}
1996
1997	if (level == 0)
1998		return -EINVAL;
1999
2000	/* limit to only levels we can actually handle */
2001	wm_state->num_levels = level;
2002
2003	/* invalidate the higher levels */
2004	vlv_invalidate_wms(crtc, wm_state, level);
2005
2006	return 0;
2007}
2008
2009#define VLV_FIFO(plane, value) \
2010	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
2011
2012static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
2013				   struct intel_crtc *crtc)
2014{
2015	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2016	struct intel_uncore *uncore = &dev_priv->uncore;
2017	const struct intel_crtc_state *crtc_state =
2018		intel_atomic_get_new_crtc_state(state, crtc);
2019	const struct vlv_fifo_state *fifo_state =
2020		&crtc_state->wm.vlv.fifo_state;
2021	int sprite0_start, sprite1_start, fifo_size;
2022	u32 dsparb, dsparb2, dsparb3;
2023
2024	if (!crtc_state->fifo_changed)
2025		return;
 
 
 
2026
2027	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
2028	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
2029	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
 
 
 
 
2030
2031	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
2032	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2033
2034	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
2035
2036	/*
2037	 * uncore.lock serves a double purpose here. It allows us to
2038	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
2039	 * it protects the DSPARB registers from getting clobbered by
2040	 * parallel updates from multiple pipes.
2041	 *
2042	 * intel_pipe_update_start() has already disabled interrupts
2043	 * for us, so a plain spin_lock() is sufficient here.
2044	 */
2045	spin_lock(&uncore->lock);
2046
2047	switch (crtc->pipe) {
 
2048	case PIPE_A:
2049		dsparb = intel_uncore_read_fw(uncore, DSPARB);
2050		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2051
2052		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2053			    VLV_FIFO(SPRITEB, 0xff));
2054		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2055			   VLV_FIFO(SPRITEB, sprite1_start));
2056
2057		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2058			     VLV_FIFO(SPRITEB_HI, 0x1));
2059		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2060			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2061
2062		intel_uncore_write_fw(uncore, DSPARB, dsparb);
2063		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2064		break;
2065	case PIPE_B:
2066		dsparb = intel_uncore_read_fw(uncore, DSPARB);
2067		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2068
2069		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2070			    VLV_FIFO(SPRITED, 0xff));
2071		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2072			   VLV_FIFO(SPRITED, sprite1_start));
2073
2074		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2075			     VLV_FIFO(SPRITED_HI, 0xff));
2076		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2077			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2078
2079		intel_uncore_write_fw(uncore, DSPARB, dsparb);
2080		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2081		break;
2082	case PIPE_C:
2083		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2084		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2085
2086		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2087			     VLV_FIFO(SPRITEF, 0xff));
2088		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2089			    VLV_FIFO(SPRITEF, sprite1_start));
2090
2091		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2092			     VLV_FIFO(SPRITEF_HI, 0xff));
2093		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2094			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2095
2096		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2097		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2098		break;
2099	default:
2100		break;
2101	}
2102
2103	intel_uncore_posting_read_fw(uncore, DSPARB);
2104
2105	spin_unlock(&uncore->lock);
2106}
2107
2108#undef VLV_FIFO
2109
2110static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2111{
2112	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2113	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2114	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2115	struct intel_atomic_state *intel_state =
2116		to_intel_atomic_state(new_crtc_state->uapi.state);
2117	const struct intel_crtc_state *old_crtc_state =
2118		intel_atomic_get_old_crtc_state(intel_state, crtc);
2119	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2120	int level;
2121
2122	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2123		*intermediate = *optimal;
2124
2125		intermediate->cxsr = false;
2126		goto out;
2127	}
2128
2129	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2130	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2131		!new_crtc_state->disable_cxsr;
2132
2133	for (level = 0; level < intermediate->num_levels; level++) {
2134		enum plane_id plane_id;
2135
2136		for_each_plane_id_on_crtc(crtc, plane_id) {
2137			intermediate->wm[level].plane[plane_id] =
2138				min(optimal->wm[level].plane[plane_id],
2139				    active->wm[level].plane[plane_id]);
2140		}
2141
2142		intermediate->sr[level].plane = min(optimal->sr[level].plane,
2143						    active->sr[level].plane);
2144		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2145						     active->sr[level].cursor);
2146	}
2147
2148	vlv_invalidate_wms(crtc, intermediate, level);
2149
2150out:
2151	/*
2152	 * If our intermediate WM are identical to the final WM, then we can
2153	 * omit the post-vblank programming; only update if it's different.
2154	 */
2155	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2156		new_crtc_state->wm.need_postvbl_update = true;
2157
2158	return 0;
2159}
2160
2161static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2162			 struct vlv_wm_values *wm)
2163{
2164	struct intel_crtc *crtc;
2165	int num_active_pipes = 0;
2166
2167	wm->level = dev_priv->wm.max_level;
2168	wm->cxsr = true;
2169
2170	for_each_intel_crtc(&dev_priv->drm, crtc) {
2171		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2172
2173		if (!crtc->active)
2174			continue;
2175
2176		if (!wm_state->cxsr)
2177			wm->cxsr = false;
2178
2179		num_active_pipes++;
2180		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2181	}
2182
2183	if (num_active_pipes != 1)
2184		wm->cxsr = false;
2185
2186	if (num_active_pipes > 1)
2187		wm->level = VLV_WM_LEVEL_PM2;
2188
2189	for_each_intel_crtc(&dev_priv->drm, crtc) {
2190		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2191		enum pipe pipe = crtc->pipe;
2192
 
 
 
2193		wm->pipe[pipe] = wm_state->wm[wm->level];
2194		if (crtc->active && wm->cxsr)
2195			wm->sr = wm_state->sr[wm->level];
2196
2197		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2198		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2199		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2200		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2201	}
2202}
2203
2204static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2205{
2206	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2207	struct vlv_wm_values new_wm = {};
 
 
 
2208
2209	vlv_merge_wm(dev_priv, &new_wm);
 
2210
2211	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
 
 
2212		return;
 
2213
2214	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
 
2215		chv_set_memory_dvfs(dev_priv, false);
2216
2217	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
 
2218		chv_set_memory_pm5(dev_priv, false);
2219
2220	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2221		_intel_set_memory_cxsr(dev_priv, false);
 
 
 
2222
2223	vlv_write_wm_values(dev_priv, &new_wm);
2224
2225	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2226		_intel_set_memory_cxsr(dev_priv, true);
 
 
 
2227
2228	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
 
 
 
 
2229		chv_set_memory_pm5(dev_priv, true);
2230
2231	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
 
2232		chv_set_memory_dvfs(dev_priv, true);
2233
2234	*old_wm = new_wm;
2235}
2236
2237static void vlv_initial_watermarks(struct intel_atomic_state *state,
2238				   struct intel_crtc *crtc)
 
2239{
2240	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2241	const struct intel_crtc_state *crtc_state =
2242		intel_atomic_get_new_crtc_state(state, crtc);
 
 
 
 
2243
2244	mutex_lock(&dev_priv->wm.wm_mutex);
2245	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2246	vlv_program_watermarks(dev_priv);
2247	mutex_unlock(&dev_priv->wm.wm_mutex);
2248}
2249
2250static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2251				    struct intel_crtc *crtc)
2252{
2253	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2254	const struct intel_crtc_state *crtc_state =
2255		intel_atomic_get_new_crtc_state(state, crtc);
 
 
 
 
 
 
 
 
 
 
 
 
2256
2257	if (!crtc_state->wm.need_postvbl_update)
2258		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2259
2260	mutex_lock(&dev_priv->wm.wm_mutex);
2261	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2262	vlv_program_watermarks(dev_priv);
2263	mutex_unlock(&dev_priv->wm.wm_mutex);
2264}
2265
2266static void i965_update_wm(struct intel_crtc *unused_crtc)
2267{
2268	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2269	struct intel_crtc *crtc;
 
2270	int srwm = 1;
2271	int cursor_sr = 16;
2272	bool cxsr_enabled;
2273
2274	/* Calc sr entries for one plane configs */
2275	crtc = single_enabled_crtc(dev_priv);
2276	if (crtc) {
2277		/* self-refresh has much higher latency */
2278		static const int sr_latency_ns = 12000;
2279		const struct drm_display_mode *pipe_mode =
2280			&crtc->config->hw.pipe_mode;
2281		const struct drm_framebuffer *fb =
2282			crtc->base.primary->state->fb;
2283		int clock = pipe_mode->crtc_clock;
2284		int htotal = pipe_mode->crtc_htotal;
2285		int hdisplay = crtc->config->pipe_src_w;
2286		int cpp = fb->format->cpp[0];
2287		int entries;
2288
2289		entries = intel_wm_method2(clock, htotal,
2290					   hdisplay, cpp, sr_latency_ns / 100);
 
 
 
2291		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2292		srwm = I965_FIFO_SIZE - entries;
2293		if (srwm < 0)
2294			srwm = 1;
2295		srwm &= 0x1ff;
2296		drm_dbg_kms(&dev_priv->drm,
2297			    "self-refresh entries: %d, wm: %d\n",
2298			    entries, srwm);
2299
2300		entries = intel_wm_method2(clock, htotal,
2301					   crtc->base.cursor->state->crtc_w, 4,
2302					   sr_latency_ns / 100);
2303		entries = DIV_ROUND_UP(entries,
2304				       i965_cursor_wm_info.cacheline_size) +
2305			i965_cursor_wm_info.guard_size;
 
2306
2307		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2308		if (cursor_sr > i965_cursor_wm_info.max_wm)
2309			cursor_sr = i965_cursor_wm_info.max_wm;
2310
2311		drm_dbg_kms(&dev_priv->drm,
2312			    "self-refresh watermark: display plane %d "
2313			    "cursor %d\n", srwm, cursor_sr);
2314
2315		cxsr_enabled = true;
2316	} else {
2317		cxsr_enabled = false;
2318		/* Turn off self refresh if both pipes are enabled */
2319		intel_set_memory_cxsr(dev_priv, false);
2320	}
2321
2322	drm_dbg_kms(&dev_priv->drm,
2323		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2324		    srwm);
2325
2326	/* 965 has limitations... */
2327	intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2328		   FW_WM(8, CURSORB) |
2329		   FW_WM(8, PLANEB) |
2330		   FW_WM(8, PLANEA));
2331	intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2332		   FW_WM(8, PLANEC_OLD));
2333	/* update cursor SR watermark */
2334	intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2335
2336	if (cxsr_enabled)
2337		intel_set_memory_cxsr(dev_priv, true);
2338}
2339
2340#undef FW_WM
2341
2342static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2343{
2344	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
 
2345	const struct intel_watermark_params *wm_info;
2346	u32 fwater_lo;
2347	u32 fwater_hi;
2348	int cwm, srwm = 1;
2349	int fifo_size;
2350	int planea_wm, planeb_wm;
2351	struct intel_crtc *crtc, *enabled = NULL;
2352
2353	if (IS_I945GM(dev_priv))
2354		wm_info = &i945_wm_info;
2355	else if (DISPLAY_VER(dev_priv) != 2)
2356		wm_info = &i915_wm_info;
2357	else
2358		wm_info = &i830_a_wm_info;
2359
2360	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2361	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2362	if (intel_crtc_active(crtc)) {
2363		const struct drm_display_mode *pipe_mode =
2364			&crtc->config->hw.pipe_mode;
2365		const struct drm_framebuffer *fb =
2366			crtc->base.primary->state->fb;
2367		int cpp;
2368
2369		if (DISPLAY_VER(dev_priv) == 2)
2370			cpp = 4;
2371		else
2372			cpp = fb->format->cpp[0];
2373
2374		planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
 
2375					       wm_info, fifo_size, cpp,
2376					       pessimal_latency_ns);
2377		enabled = crtc;
2378	} else {
2379		planea_wm = fifo_size - wm_info->guard_size;
2380		if (planea_wm > (long)wm_info->max_wm)
2381			planea_wm = wm_info->max_wm;
2382	}
2383
2384	if (DISPLAY_VER(dev_priv) == 2)
2385		wm_info = &i830_bc_wm_info;
2386
2387	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2388	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2389	if (intel_crtc_active(crtc)) {
2390		const struct drm_display_mode *pipe_mode =
2391			&crtc->config->hw.pipe_mode;
2392		const struct drm_framebuffer *fb =
2393			crtc->base.primary->state->fb;
2394		int cpp;
2395
2396		if (DISPLAY_VER(dev_priv) == 2)
2397			cpp = 4;
2398		else
2399			cpp = fb->format->cpp[0];
2400
2401		planeb_wm = intel_calculate_wm(pipe_mode->crtc_clock,
 
2402					       wm_info, fifo_size, cpp,
2403					       pessimal_latency_ns);
2404		if (enabled == NULL)
2405			enabled = crtc;
2406		else
2407			enabled = NULL;
2408	} else {
2409		planeb_wm = fifo_size - wm_info->guard_size;
2410		if (planeb_wm > (long)wm_info->max_wm)
2411			planeb_wm = wm_info->max_wm;
2412	}
2413
2414	drm_dbg_kms(&dev_priv->drm,
2415		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2416
2417	if (IS_I915GM(dev_priv) && enabled) {
2418		struct drm_i915_gem_object *obj;
2419
2420		obj = intel_fb_obj(enabled->base.primary->state->fb);
2421
2422		/* self-refresh seems busted with untiled */
2423		if (!i915_gem_object_is_tiled(obj))
2424			enabled = NULL;
2425	}
2426
2427	/*
2428	 * Overlay gets an aggressive default since video jitter is bad.
2429	 */
2430	cwm = 2;
2431
2432	/* Play safe and disable self-refresh before adjusting watermarks. */
2433	intel_set_memory_cxsr(dev_priv, false);
2434
2435	/* Calc sr entries for one plane configs */
2436	if (HAS_FW_BLC(dev_priv) && enabled) {
2437		/* self-refresh has much higher latency */
2438		static const int sr_latency_ns = 6000;
2439		const struct drm_display_mode *pipe_mode =
2440			&enabled->config->hw.pipe_mode;
2441		const struct drm_framebuffer *fb =
2442			enabled->base.primary->state->fb;
2443		int clock = pipe_mode->crtc_clock;
2444		int htotal = pipe_mode->crtc_htotal;
2445		int hdisplay = enabled->config->pipe_src_w;
2446		int cpp;
2447		int entries;
2448
2449		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2450			cpp = 4;
2451		else
2452			cpp = fb->format->cpp[0];
2453
2454		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2455					   sr_latency_ns / 100);
 
2456		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2457		drm_dbg_kms(&dev_priv->drm,
2458			    "self-refresh entries: %d\n", entries);
2459		srwm = wm_info->fifo_size - entries;
2460		if (srwm < 0)
2461			srwm = 1;
2462
2463		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2464			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2465				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2466		else
2467			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2468	}
2469
2470	drm_dbg_kms(&dev_priv->drm,
2471		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2472		     planea_wm, planeb_wm, cwm, srwm);
2473
2474	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2475	fwater_hi = (cwm & 0x1f);
2476
2477	/* Set request length to 8 cachelines per fetch */
2478	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2479	fwater_hi = fwater_hi | (1 << 8);
2480
2481	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2482	intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2483
2484	if (enabled)
2485		intel_set_memory_cxsr(dev_priv, true);
2486}
2487
2488static void i845_update_wm(struct intel_crtc *unused_crtc)
2489{
2490	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2491	struct intel_crtc *crtc;
2492	const struct drm_display_mode *pipe_mode;
2493	u32 fwater_lo;
 
2494	int planea_wm;
2495
2496	crtc = single_enabled_crtc(dev_priv);
2497	if (crtc == NULL)
2498		return;
2499
2500	pipe_mode = &crtc->config->hw.pipe_mode;
2501	planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2502				       &i845_wm_info,
2503				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2504				       4, pessimal_latency_ns);
2505	fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2506	fwater_lo |= (3<<8) | planea_wm;
2507
2508	drm_dbg_kms(&dev_priv->drm,
2509		    "Setting FIFO watermarks - A: %d\n", planea_wm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2510
2511	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2512}
2513
2514/* latency must be in 0.1us units. */
2515static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2516				   unsigned int cpp,
2517				   unsigned int latency)
2518{
2519	unsigned int ret;
 
 
 
2520
2521	ret = intel_wm_method1(pixel_rate, cpp, latency);
2522	ret = DIV_ROUND_UP(ret, 64) + 2;
2523
2524	return ret;
2525}
2526
2527/* latency must be in 0.1us units. */
2528static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2529				   unsigned int htotal,
2530				   unsigned int width,
2531				   unsigned int cpp,
2532				   unsigned int latency)
2533{
2534	unsigned int ret;
 
 
 
2535
2536	ret = intel_wm_method2(pixel_rate, htotal,
2537			       width, cpp, latency);
2538	ret = DIV_ROUND_UP(ret, 64) + 2;
2539
2540	return ret;
2541}
2542
2543static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
 
2544{
2545	/*
2546	 * Neither of these should be possible since this function shouldn't be
2547	 * called if the CRTC is off or the plane is invisible.  But let's be
2548	 * extra paranoid to avoid a potential divide-by-zero if we screw up
2549	 * elsewhere in the driver.
2550	 */
2551	if (WARN_ON(!cpp))
2552		return 0;
2553	if (WARN_ON(!horiz_pixels))
2554		return 0;
2555
2556	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2557}
2558
2559struct ilk_wm_maximums {
2560	u16 pri;
2561	u16 spr;
2562	u16 cur;
2563	u16 fbc;
2564};
2565
2566/*
2567 * For both WM_PIPE and WM_LP.
2568 * mem_value must be in 0.1us units.
2569 */
2570static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2571			      const struct intel_plane_state *plane_state,
2572			      u32 mem_value, bool is_lp)
2573{
2574	u32 method1, method2;
2575	int cpp;
 
 
2576
2577	if (mem_value == 0)
2578		return U32_MAX;
2579
2580	if (!intel_wm_plane_visible(crtc_state, plane_state))
2581		return 0;
2582
2583	cpp = plane_state->hw.fb->format->cpp[0];
2584
2585	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2586
2587	if (!is_lp)
2588		return method1;
2589
2590	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2591				 crtc_state->hw.pipe_mode.crtc_htotal,
2592				 drm_rect_width(&plane_state->uapi.dst),
2593				 cpp, mem_value);
2594
2595	return min(method1, method2);
2596}
2597
2598/*
2599 * For both WM_PIPE and WM_LP.
2600 * mem_value must be in 0.1us units.
2601 */
2602static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2603			      const struct intel_plane_state *plane_state,
2604			      u32 mem_value)
2605{
2606	u32 method1, method2;
2607	int cpp;
2608
2609	if (mem_value == 0)
2610		return U32_MAX;
2611
2612	if (!intel_wm_plane_visible(crtc_state, plane_state))
2613		return 0;
2614
2615	cpp = plane_state->hw.fb->format->cpp[0];
2616
2617	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2618	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2619				 crtc_state->hw.pipe_mode.crtc_htotal,
2620				 drm_rect_width(&plane_state->uapi.dst),
2621				 cpp, mem_value);
2622	return min(method1, method2);
2623}
2624
2625/*
2626 * For both WM_PIPE and WM_LP.
2627 * mem_value must be in 0.1us units.
2628 */
2629static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2630			      const struct intel_plane_state *plane_state,
2631			      u32 mem_value)
2632{
2633	int cpp;
2634
2635	if (mem_value == 0)
2636		return U32_MAX;
 
 
 
2637
2638	if (!intel_wm_plane_visible(crtc_state, plane_state))
2639		return 0;
2640
2641	cpp = plane_state->hw.fb->format->cpp[0];
2642
2643	return ilk_wm_method2(crtc_state->pixel_rate,
2644			      crtc_state->hw.pipe_mode.crtc_htotal,
2645			      drm_rect_width(&plane_state->uapi.dst),
2646			      cpp, mem_value);
2647}
2648
2649/* Only for WM_LP. */
2650static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2651			      const struct intel_plane_state *plane_state,
2652			      u32 pri_val)
2653{
2654	int cpp;
 
2655
2656	if (!intel_wm_plane_visible(crtc_state, plane_state))
2657		return 0;
2658
2659	cpp = plane_state->hw.fb->format->cpp[0];
2660
2661	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2662			  cpp);
2663}
2664
2665static unsigned int
2666ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2667{
2668	if (DISPLAY_VER(dev_priv) >= 8)
2669		return 3072;
2670	else if (DISPLAY_VER(dev_priv) >= 7)
2671		return 768;
2672	else
2673		return 512;
2674}
2675
2676static unsigned int
2677ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2678		     int level, bool is_sprite)
2679{
2680	if (DISPLAY_VER(dev_priv) >= 8)
2681		/* BDW primary/sprite plane watermarks */
2682		return level == 0 ? 255 : 2047;
2683	else if (DISPLAY_VER(dev_priv) >= 7)
2684		/* IVB/HSW primary/sprite plane watermarks */
2685		return level == 0 ? 127 : 1023;
2686	else if (!is_sprite)
2687		/* ILK/SNB primary plane watermarks */
2688		return level == 0 ? 127 : 511;
2689	else
2690		/* ILK/SNB sprite plane watermarks */
2691		return level == 0 ? 63 : 255;
2692}
2693
2694static unsigned int
2695ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2696{
2697	if (DISPLAY_VER(dev_priv) >= 7)
2698		return level == 0 ? 63 : 255;
2699	else
2700		return level == 0 ? 31 : 63;
2701}
2702
2703static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2704{
2705	if (DISPLAY_VER(dev_priv) >= 8)
2706		return 31;
2707	else
2708		return 15;
2709}
2710
2711/* Calculate the maximum primary/sprite plane watermark */
2712static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2713				     int level,
2714				     const struct intel_wm_config *config,
2715				     enum intel_ddb_partitioning ddb_partitioning,
2716				     bool is_sprite)
2717{
2718	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2719
2720	/* if sprites aren't enabled, sprites get nothing */
2721	if (is_sprite && !config->sprites_enabled)
2722		return 0;
2723
2724	/* HSW allows LP1+ watermarks even with multiple pipes */
2725	if (level == 0 || config->num_pipes_active > 1) {
2726		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2727
2728		/*
2729		 * For some reason the non self refresh
2730		 * FIFO size is only half of the self
2731		 * refresh FIFO size on ILK/SNB.
2732		 */
2733		if (DISPLAY_VER(dev_priv) <= 6)
2734			fifo_size /= 2;
2735	}
2736
2737	if (config->sprites_enabled) {
2738		/* level 0 is always calculated with 1:1 split */
2739		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2740			if (is_sprite)
2741				fifo_size *= 5;
2742			fifo_size /= 6;
2743		} else {
2744			fifo_size /= 2;
2745		}
2746	}
2747
2748	/* clamp to max that the registers can hold */
2749	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2750}
2751
2752/* Calculate the maximum cursor plane watermark */
2753static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2754				      int level,
2755				      const struct intel_wm_config *config)
2756{
2757	/* HSW LP1+ watermarks w/ multiple pipes */
2758	if (level > 0 && config->num_pipes_active > 1)
2759		return 64;
2760
2761	/* otherwise just report max that registers can hold */
2762	return ilk_cursor_wm_reg_max(dev_priv, level);
2763}
2764
2765static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2766				    int level,
2767				    const struct intel_wm_config *config,
2768				    enum intel_ddb_partitioning ddb_partitioning,
2769				    struct ilk_wm_maximums *max)
2770{
2771	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2772	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2773	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2774	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2775}
2776
2777static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2778					int level,
2779					struct ilk_wm_maximums *max)
2780{
2781	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2782	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2783	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2784	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2785}
2786
2787static bool ilk_validate_wm_level(int level,
2788				  const struct ilk_wm_maximums *max,
2789				  struct intel_wm_level *result)
2790{
2791	bool ret;
2792
2793	/* already determined to be invalid? */
2794	if (!result->enable)
2795		return false;
2796
2797	result->enable = result->pri_val <= max->pri &&
2798			 result->spr_val <= max->spr &&
2799			 result->cur_val <= max->cur;
2800
2801	ret = result->enable;
2802
2803	/*
2804	 * HACK until we can pre-compute everything,
2805	 * and thus fail gracefully if LP0 watermarks
2806	 * are exceeded...
2807	 */
2808	if (level == 0 && !result->enable) {
2809		if (result->pri_val > max->pri)
2810			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2811				      level, result->pri_val, max->pri);
2812		if (result->spr_val > max->spr)
2813			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2814				      level, result->spr_val, max->spr);
2815		if (result->cur_val > max->cur)
2816			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2817				      level, result->cur_val, max->cur);
2818
2819		result->pri_val = min_t(u32, result->pri_val, max->pri);
2820		result->spr_val = min_t(u32, result->spr_val, max->spr);
2821		result->cur_val = min_t(u32, result->cur_val, max->cur);
2822		result->enable = true;
2823	}
2824
2825	return ret;
2826}
2827
2828static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2829				 const struct intel_crtc *crtc,
2830				 int level,
2831				 struct intel_crtc_state *crtc_state,
2832				 const struct intel_plane_state *pristate,
2833				 const struct intel_plane_state *sprstate,
2834				 const struct intel_plane_state *curstate,
2835				 struct intel_wm_level *result)
2836{
2837	u16 pri_latency = dev_priv->wm.pri_latency[level];
2838	u16 spr_latency = dev_priv->wm.spr_latency[level];
2839	u16 cur_latency = dev_priv->wm.cur_latency[level];
2840
2841	/* WM1+ latency values stored in 0.5us units */
2842	if (level > 0) {
2843		pri_latency *= 5;
2844		spr_latency *= 5;
2845		cur_latency *= 5;
2846	}
2847
2848	if (pristate) {
2849		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2850						     pri_latency, level);
2851		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2852	}
 
 
 
 
 
 
 
 
 
 
 
2853
2854	if (sprstate)
2855		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
 
 
 
 
2856
2857	if (curstate)
2858		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
 
 
 
 
 
2859
2860	result->enable = true;
 
2861}
2862
2863static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2864				  u16 wm[8])
2865{
2866	struct intel_uncore *uncore = &dev_priv->uncore;
2867
2868	if (DISPLAY_VER(dev_priv) >= 9) {
2869		u32 val;
2870		int ret, i;
2871		int level, max_level = ilk_wm_max_level(dev_priv);
2872
2873		/* read the first set of memory latencies[0:3] */
2874		val = 0; /* data0 to be programmed to 0 for first set */
 
2875		ret = sandybridge_pcode_read(dev_priv,
2876					     GEN9_PCODE_READ_MEM_LATENCY,
2877					     &val, NULL);
 
2878
2879		if (ret) {
2880			drm_err(&dev_priv->drm,
2881				"SKL Mailbox read error = %d\n", ret);
2882			return;
2883		}
2884
2885		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2886		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2887				GEN9_MEM_LATENCY_LEVEL_MASK;
2888		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2889				GEN9_MEM_LATENCY_LEVEL_MASK;
2890		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2891				GEN9_MEM_LATENCY_LEVEL_MASK;
2892
2893		/* read the second set of memory latencies[4:7] */
2894		val = 1; /* data0 to be programmed to 1 for second set */
 
2895		ret = sandybridge_pcode_read(dev_priv,
2896					     GEN9_PCODE_READ_MEM_LATENCY,
2897					     &val, NULL);
 
2898		if (ret) {
2899			drm_err(&dev_priv->drm,
2900				"SKL Mailbox read error = %d\n", ret);
2901			return;
2902		}
2903
2904		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2905		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2906				GEN9_MEM_LATENCY_LEVEL_MASK;
2907		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2908				GEN9_MEM_LATENCY_LEVEL_MASK;
2909		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2910				GEN9_MEM_LATENCY_LEVEL_MASK;
2911
2912		/*
2913		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2914		 * need to be disabled. We make sure to sanitize the values out
2915		 * of the punit to satisfy this requirement.
 
 
 
 
 
 
 
 
 
 
 
 
2916		 */
2917		for (level = 1; level <= max_level; level++) {
2918			if (wm[level] == 0) {
 
 
 
2919				for (i = level + 1; i <= max_level; i++)
2920					wm[i] = 0;
 
2921				break;
2922			}
2923		}
2924
2925		/*
2926		 * WaWmMemoryReadLatency:skl+,glk
2927		 *
2928		 * punit doesn't take into account the read latency so we need
2929		 * to add 2us to the various latency levels we retrieve from the
2930		 * punit when level 0 response data us 0us.
2931		 */
2932		if (wm[0] == 0) {
2933			wm[0] += 2;
2934			for (level = 1; level <= max_level; level++) {
2935				if (wm[level] == 0)
2936					break;
2937				wm[level] += 2;
2938			}
2939		}
2940
2941		/*
2942		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2943		 * If we could not get dimm info enable this WA to prevent from
2944		 * any underrun. If not able to get Dimm info assume 16GB dimm
2945		 * to avoid any underrun.
2946		 */
2947		if (dev_priv->dram_info.wm_lv_0_adjust_needed)
2948			wm[0] += 1;
2949
2950	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2951		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2952
2953		wm[0] = (sskpd >> 56) & 0xFF;
2954		if (wm[0] == 0)
2955			wm[0] = sskpd & 0xF;
2956		wm[1] = (sskpd >> 4) & 0xFF;
2957		wm[2] = (sskpd >> 12) & 0xFF;
2958		wm[3] = (sskpd >> 20) & 0x1FF;
2959		wm[4] = (sskpd >> 32) & 0x1FF;
2960	} else if (DISPLAY_VER(dev_priv) >= 6) {
2961		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2962
2963		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2964		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2965		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2966		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2967	} else if (DISPLAY_VER(dev_priv) >= 5) {
2968		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2969
2970		/* ILK primary LP0 latency is 700 ns */
2971		wm[0] = 7;
2972		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2973		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2974	} else {
2975		MISSING_CASE(INTEL_DEVID(dev_priv));
2976	}
2977}
2978
2979static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2980				       u16 wm[5])
2981{
2982	/* ILK sprite LP0 latency is 1300 ns */
2983	if (DISPLAY_VER(dev_priv) == 5)
2984		wm[0] = 13;
2985}
2986
2987static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2988				       u16 wm[5])
2989{
2990	/* ILK cursor LP0 latency is 1300 ns */
2991	if (DISPLAY_VER(dev_priv) == 5)
2992		wm[0] = 13;
 
 
 
 
2993}
2994
2995int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2996{
2997	/* how many WM levels are we expecting */
2998	if (HAS_HW_SAGV_WM(dev_priv))
2999		return 5;
3000	else if (DISPLAY_VER(dev_priv) >= 9)
3001		return 7;
3002	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3003		return 4;
3004	else if (DISPLAY_VER(dev_priv) >= 6)
3005		return 3;
3006	else
3007		return 2;
3008}
3009
3010static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
3011				   const char *name,
3012				   const u16 wm[])
3013{
3014	int level, max_level = ilk_wm_max_level(dev_priv);
3015
3016	for (level = 0; level <= max_level; level++) {
3017		unsigned int latency = wm[level];
3018
3019		if (latency == 0) {
3020			drm_dbg_kms(&dev_priv->drm,
3021				    "%s WM%d latency not provided\n",
3022				    name, level);
3023			continue;
3024		}
3025
3026		/*
3027		 * - latencies are in us on gen9.
3028		 * - before then, WM1+ latency values are in 0.5us units
3029		 */
3030		if (DISPLAY_VER(dev_priv) >= 9)
3031			latency *= 10;
3032		else if (level > 0)
3033			latency *= 5;
3034
3035		drm_dbg_kms(&dev_priv->drm,
3036			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
3037			    wm[level], latency / 10, latency % 10);
3038	}
3039}
3040
3041static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3042				    u16 wm[5], u16 min)
3043{
3044	int level, max_level = ilk_wm_max_level(dev_priv);
3045
3046	if (wm[0] >= min)
3047		return false;
3048
3049	wm[0] = max(wm[0], min);
3050	for (level = 1; level <= max_level; level++)
3051		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3052
3053	return true;
3054}
3055
3056static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3057{
 
3058	bool changed;
3059
3060	/*
3061	 * The BIOS provided WM memory latency values are often
3062	 * inadequate for high resolution displays. Adjust them.
3063	 */
3064	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3065		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3066		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3067
3068	if (!changed)
3069		return;
3070
3071	drm_dbg_kms(&dev_priv->drm,
3072		    "WM latency values increased to avoid potential underruns\n");
3073	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3074	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3075	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3076}
3077
3078static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3079{
3080	/*
3081	 * On some SNB machines (Thinkpad X220 Tablet at least)
3082	 * LP3 usage can cause vblank interrupts to be lost.
3083	 * The DEIIR bit will go high but it looks like the CPU
3084	 * never gets interrupted.
3085	 *
3086	 * It's not clear whether other interrupt source could
3087	 * be affected or if this is somehow limited to vblank
3088	 * interrupts only. To play it safe we disable LP3
3089	 * watermarks entirely.
3090	 */
3091	if (dev_priv->wm.pri_latency[3] == 0 &&
3092	    dev_priv->wm.spr_latency[3] == 0 &&
3093	    dev_priv->wm.cur_latency[3] == 0)
3094		return;
3095
3096	dev_priv->wm.pri_latency[3] = 0;
3097	dev_priv->wm.spr_latency[3] = 0;
3098	dev_priv->wm.cur_latency[3] = 0;
3099
3100	drm_dbg_kms(&dev_priv->drm,
3101		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3102	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3103	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3104	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3105}
3106
3107static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3108{
3109	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3110
3111	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3112	       sizeof(dev_priv->wm.pri_latency));
3113	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3114	       sizeof(dev_priv->wm.pri_latency));
3115
3116	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3117	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3118
3119	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3120	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3121	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3122
3123	if (DISPLAY_VER(dev_priv) == 6) {
3124		snb_wm_latency_quirk(dev_priv);
3125		snb_wm_lp3_irq_quirk(dev_priv);
3126	}
3127}
3128
3129static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3130{
3131	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3132	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
 
 
3133}
3134
3135static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3136				 struct intel_pipe_wm *pipe_wm)
 
3137{
 
 
 
 
 
 
 
 
 
 
3138	/* LP0 watermark maximums depend on this pipe alone */
3139	const struct intel_wm_config config = {
3140		.num_pipes_active = 1,
3141		.sprites_enabled = pipe_wm->sprites_enabled,
3142		.sprites_scaled = pipe_wm->sprites_scaled,
3143	};
3144	struct ilk_wm_maximums max;
3145
3146	/* LP0 watermarks always use 1/2 DDB partitioning */
3147	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3148
3149	/* At least LP0 must be valid */
3150	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3151		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3152		return false;
3153	}
3154
3155	return true;
3156}
3157
3158/* Compute new watermarks for the pipe */
3159static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3160{
3161	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3162	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3163	struct intel_pipe_wm *pipe_wm;
3164	struct intel_plane *plane;
3165	const struct intel_plane_state *plane_state;
3166	const struct intel_plane_state *pristate = NULL;
3167	const struct intel_plane_state *sprstate = NULL;
3168	const struct intel_plane_state *curstate = NULL;
3169	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3170	struct ilk_wm_maximums max;
3171
3172	pipe_wm = &crtc_state->wm.ilk.optimal;
3173
3174	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3175		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3176			pristate = plane_state;
3177		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3178			sprstate = plane_state;
3179		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3180			curstate = plane_state;
3181	}
3182
3183	pipe_wm->pipe_enabled = crtc_state->hw.active;
3184	if (sprstate) {
3185		pipe_wm->sprites_enabled = sprstate->uapi.visible;
3186		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3187			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3188			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3189	}
3190
3191	usable_level = max_level;
3192
3193	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3194	if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3195		usable_level = 1;
3196
3197	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3198	if (pipe_wm->sprites_scaled)
3199		usable_level = 0;
3200
3201	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3202	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3203			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3204
3205	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
 
 
 
 
 
 
 
3206		return -EINVAL;
3207
3208	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3209
3210	for (level = 1; level <= usable_level; level++) {
3211		struct intel_wm_level *wm = &pipe_wm->wm[level];
3212
3213		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3214				     pristate, sprstate, curstate, wm);
3215
3216		/*
3217		 * Disable any watermark level that exceeds the
3218		 * register maximums since such watermarks are
3219		 * always invalid.
3220		 */
3221		if (!ilk_validate_wm_level(level, &max, wm)) {
3222			memset(wm, 0, sizeof(*wm));
3223			break;
3224		}
3225	}
3226
3227	return 0;
3228}
3229
3230/*
3231 * Build a set of 'intermediate' watermark values that satisfy both the old
3232 * state and the new state.  These can be programmed to the hardware
3233 * immediately.
3234 */
3235static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3236{
3237	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3238	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3239	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3240	struct intel_atomic_state *intel_state =
3241		to_intel_atomic_state(newstate->uapi.state);
3242	const struct intel_crtc_state *oldstate =
3243		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3244	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3245	int level, max_level = ilk_wm_max_level(dev_priv);
3246
3247	/*
3248	 * Start with the final, target watermarks, then combine with the
3249	 * currently active watermarks to get values that are safe both before
3250	 * and after the vblank.
3251	 */
3252	*a = newstate->wm.ilk.optimal;
3253	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3254	    intel_state->skip_intermediate_wm)
3255		return 0;
3256
3257	a->pipe_enabled |= b->pipe_enabled;
3258	a->sprites_enabled |= b->sprites_enabled;
3259	a->sprites_scaled |= b->sprites_scaled;
3260
3261	for (level = 0; level <= max_level; level++) {
3262		struct intel_wm_level *a_wm = &a->wm[level];
3263		const struct intel_wm_level *b_wm = &b->wm[level];
3264
3265		a_wm->enable &= b_wm->enable;
3266		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3267		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3268		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3269		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3270	}
3271
3272	/*
3273	 * We need to make sure that these merged watermark values are
3274	 * actually a valid configuration themselves.  If they're not,
3275	 * there's no safe way to transition from the old state to
3276	 * the new state, so we need to fail the atomic transaction.
3277	 */
3278	if (!ilk_validate_pipe_wm(dev_priv, a))
3279		return -EINVAL;
3280
3281	/*
3282	 * If our intermediate WM are identical to the final WM, then we can
3283	 * omit the post-vblank programming; only update if it's different.
3284	 */
3285	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3286		newstate->wm.need_postvbl_update = true;
3287
3288	return 0;
3289}
3290
3291/*
3292 * Merge the watermarks from all active pipes for a specific level.
3293 */
3294static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3295			       int level,
3296			       struct intel_wm_level *ret_wm)
3297{
3298	const struct intel_crtc *intel_crtc;
3299
3300	ret_wm->enable = true;
3301
3302	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3303		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
 
 
3304		const struct intel_wm_level *wm = &active->wm[level];
3305
3306		if (!active->pipe_enabled)
3307			continue;
3308
3309		/*
3310		 * The watermark values may have been used in the past,
3311		 * so we must maintain them in the registers for some
3312		 * time even if the level is now disabled.
3313		 */
3314		if (!wm->enable)
3315			ret_wm->enable = false;
3316
3317		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3318		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3319		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3320		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3321	}
3322}
3323
3324/*
3325 * Merge all low power watermarks for all active pipes.
3326 */
3327static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3328			 const struct intel_wm_config *config,
3329			 const struct ilk_wm_maximums *max,
3330			 struct intel_pipe_wm *merged)
3331{
3332	int level, max_level = ilk_wm_max_level(dev_priv);
 
3333	int last_enabled_level = max_level;
3334
3335	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3336	if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3337	    config->num_pipes_active > 1)
3338		last_enabled_level = 0;
3339
3340	/* ILK: FBC WM must be disabled always */
3341	merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
3342
3343	/* merge each WM1+ level */
3344	for (level = 1; level <= max_level; level++) {
3345		struct intel_wm_level *wm = &merged->wm[level];
3346
3347		ilk_merge_wm_level(dev_priv, level, wm);
3348
3349		if (level > last_enabled_level)
3350			wm->enable = false;
3351		else if (!ilk_validate_wm_level(level, max, wm))
3352			/* make sure all following levels get disabled */
3353			last_enabled_level = level - 1;
3354
3355		/*
3356		 * The spec says it is preferred to disable
3357		 * FBC WMs instead of disabling a WM level.
3358		 */
3359		if (wm->fbc_val > max->fbc) {
3360			if (wm->enable)
3361				merged->fbc_wm_enabled = false;
3362			wm->fbc_val = 0;
3363		}
3364	}
3365
3366	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3367	/*
3368	 * FIXME this is racy. FBC might get enabled later.
3369	 * What we should check here is whether FBC can be
3370	 * enabled sometime later.
3371	 */
3372	if (DISPLAY_VER(dev_priv) == 5 && !merged->fbc_wm_enabled &&
3373	    intel_fbc_is_active(dev_priv)) {
3374		for (level = 2; level <= max_level; level++) {
3375			struct intel_wm_level *wm = &merged->wm[level];
3376
3377			wm->enable = false;
3378		}
3379	}
3380}
3381
3382static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3383{
3384	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3385	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3386}
3387
3388/* The value we need to program into the WM_LPx latency field */
3389static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3390				      int level)
3391{
3392	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 
 
3393		return 2 * level;
3394	else
3395		return dev_priv->wm.pri_latency[level];
3396}
3397
3398static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3399				   const struct intel_pipe_wm *merged,
3400				   enum intel_ddb_partitioning partitioning,
3401				   struct ilk_wm_values *results)
3402{
3403	struct intel_crtc *intel_crtc;
3404	int level, wm_lp;
3405
3406	results->enable_fbc_wm = merged->fbc_wm_enabled;
3407	results->partitioning = partitioning;
3408
3409	/* LP1+ register values */
3410	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3411		const struct intel_wm_level *r;
3412
3413		level = ilk_wm_lp_to_level(wm_lp, merged);
3414
3415		r = &merged->wm[level];
3416
3417		/*
3418		 * Maintain the watermark values even if the level is
3419		 * disabled. Doing otherwise could cause underruns.
3420		 */
3421		results->wm_lp[wm_lp - 1] =
3422			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3423			(r->pri_val << WM1_LP_SR_SHIFT) |
3424			r->cur_val;
3425
3426		if (r->enable)
3427			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3428
3429		if (DISPLAY_VER(dev_priv) >= 8)
3430			results->wm_lp[wm_lp - 1] |=
3431				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3432		else
3433			results->wm_lp[wm_lp - 1] |=
3434				r->fbc_val << WM1_LP_FBC_SHIFT;
3435
3436		/*
3437		 * Always set WM1S_LP_EN when spr_val != 0, even if the
3438		 * level is disabled. Doing otherwise could cause underruns.
3439		 */
3440		if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) {
3441			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3442			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3443		} else
3444			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3445	}
3446
3447	/* LP0 register values */
3448	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
 
 
3449		enum pipe pipe = intel_crtc->pipe;
3450		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
3451		const struct intel_wm_level *r = &pipe_wm->wm[0];
3452
3453		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3454			continue;
3455
 
 
3456		results->wm_pipe[pipe] =
3457			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3458			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3459			r->cur_val;
3460	}
3461}
3462
3463/* Find the result with the highest level enabled. Check for enable_fbc_wm in
3464 * case both are at the same level. Prefer r1 in case they're the same. */
3465static struct intel_pipe_wm *
3466ilk_find_best_result(struct drm_i915_private *dev_priv,
3467		     struct intel_pipe_wm *r1,
3468		     struct intel_pipe_wm *r2)
3469{
3470	int level, max_level = ilk_wm_max_level(dev_priv);
3471	int level1 = 0, level2 = 0;
3472
3473	for (level = 1; level <= max_level; level++) {
3474		if (r1->wm[level].enable)
3475			level1 = level;
3476		if (r2->wm[level].enable)
3477			level2 = level;
3478	}
3479
3480	if (level1 == level2) {
3481		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3482			return r2;
3483		else
3484			return r1;
3485	} else if (level1 > level2) {
3486		return r1;
3487	} else {
3488		return r2;
3489	}
3490}
3491
3492/* dirty bits used to track which watermarks need changes */
3493#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
 
3494#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3495#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3496#define WM_DIRTY_FBC (1 << 24)
3497#define WM_DIRTY_DDB (1 << 25)
3498
3499static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3500					 const struct ilk_wm_values *old,
3501					 const struct ilk_wm_values *new)
3502{
3503	unsigned int dirty = 0;
3504	enum pipe pipe;
3505	int wm_lp;
3506
3507	for_each_pipe(dev_priv, pipe) {
 
 
 
 
 
 
3508		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3509			dirty |= WM_DIRTY_PIPE(pipe);
3510			/* Must disable LP1+ watermarks too */
3511			dirty |= WM_DIRTY_LP_ALL;
3512		}
3513	}
3514
3515	if (old->enable_fbc_wm != new->enable_fbc_wm) {
3516		dirty |= WM_DIRTY_FBC;
3517		/* Must disable LP1+ watermarks too */
3518		dirty |= WM_DIRTY_LP_ALL;
3519	}
3520
3521	if (old->partitioning != new->partitioning) {
3522		dirty |= WM_DIRTY_DDB;
3523		/* Must disable LP1+ watermarks too */
3524		dirty |= WM_DIRTY_LP_ALL;
3525	}
3526
3527	/* LP1+ watermarks already deemed dirty, no need to continue */
3528	if (dirty & WM_DIRTY_LP_ALL)
3529		return dirty;
3530
3531	/* Find the lowest numbered LP1+ watermark in need of an update... */
3532	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3533		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3534		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3535			break;
3536	}
3537
3538	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3539	for (; wm_lp <= 3; wm_lp++)
3540		dirty |= WM_DIRTY_LP(wm_lp);
3541
3542	return dirty;
3543}
3544
3545static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3546			       unsigned int dirty)
3547{
3548	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3549	bool changed = false;
3550
3551	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3552		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3553		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3554		changed = true;
3555	}
3556	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3557		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3558		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3559		changed = true;
3560	}
3561	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3562		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3563		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3564		changed = true;
3565	}
3566
3567	/*
3568	 * Don't touch WM1S_LP_EN here.
3569	 * Doing so could cause underruns.
3570	 */
3571
3572	return changed;
3573}
3574
3575/*
3576 * The spec says we shouldn't write when we don't need, because every write
3577 * causes WMs to be re-evaluated, expending some power.
3578 */
3579static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3580				struct ilk_wm_values *results)
3581{
 
3582	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3583	unsigned int dirty;
3584	u32 val;
3585
3586	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3587	if (!dirty)
3588		return;
3589
3590	_ilk_disable_lp_wm(dev_priv, dirty);
3591
3592	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3593		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3594	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3595		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3596	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3597		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
 
 
 
 
 
 
 
3598
3599	if (dirty & WM_DIRTY_DDB) {
3600		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3601			val = intel_uncore_read(&dev_priv->uncore, WM_MISC);
3602			if (results->partitioning == INTEL_DDB_PART_1_2)
3603				val &= ~WM_MISC_DATA_PARTITION_5_6;
3604			else
3605				val |= WM_MISC_DATA_PARTITION_5_6;
3606			intel_uncore_write(&dev_priv->uncore, WM_MISC, val);
3607		} else {
3608			val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
3609			if (results->partitioning == INTEL_DDB_PART_1_2)
3610				val &= ~DISP_DATA_PARTITION_5_6;
3611			else
3612				val |= DISP_DATA_PARTITION_5_6;
3613			intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
3614		}
3615	}
3616
3617	if (dirty & WM_DIRTY_FBC) {
3618		val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL);
3619		if (results->enable_fbc_wm)
3620			val &= ~DISP_FBC_WM_DIS;
3621		else
3622			val |= DISP_FBC_WM_DIS;
3623		intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val);
3624	}
3625
3626	if (dirty & WM_DIRTY_LP(1) &&
3627	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3628		intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3629
3630	if (DISPLAY_VER(dev_priv) >= 7) {
3631		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3632			intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3633		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3634			intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3635	}
3636
3637	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3638		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3639	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3640		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3641	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3642		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3643
3644	dev_priv->wm.hw = *results;
3645}
3646
3647bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3648{
 
 
3649	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3650}
3651
3652u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3653{
3654	u8 enabled_slices = 0;
3655	enum dbuf_slice slice;
 
 
 
 
 
 
 
 
 
 
3656
3657	for_each_dbuf_slice(dev_priv, slice) {
3658		if (intel_uncore_read(&dev_priv->uncore,
3659				      DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
3660			enabled_slices |= BIT(slice);
 
 
 
 
 
 
 
 
 
 
 
3661	}
3662
3663	return enabled_slices;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3664}
3665
3666/*
3667 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3668 * so assume we'll always need it in order to avoid underruns.
3669 */
3670static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3671{
3672	return DISPLAY_VER(dev_priv) == 9;
 
 
 
3673}
3674
3675static bool
3676intel_has_sagv(struct drm_i915_private *dev_priv)
3677{
3678	return DISPLAY_VER(dev_priv) >= 9 && !IS_LP(dev_priv) &&
3679		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
 
 
3680}
3681
3682static void
3683skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3684{
3685	if (DISPLAY_VER(dev_priv) >= 12) {
3686		u32 val = 0;
3687		int ret;
 
 
 
 
 
3688
3689		ret = sandybridge_pcode_read(dev_priv,
3690					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3691					     &val, NULL);
3692		if (!ret) {
3693			dev_priv->sagv_block_time_us = val;
3694			return;
 
 
3695		}
3696
3697		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3698	} else if (DISPLAY_VER(dev_priv) == 11) {
3699		dev_priv->sagv_block_time_us = 10;
3700		return;
3701	} else if (DISPLAY_VER(dev_priv) == 10) {
3702		dev_priv->sagv_block_time_us = 20;
3703		return;
3704	} else if (DISPLAY_VER(dev_priv) == 9) {
3705		dev_priv->sagv_block_time_us = 30;
3706		return;
3707	} else {
3708		MISSING_CASE(DISPLAY_VER(dev_priv));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3709	}
3710
3711	/* Default to an unusable block time */
3712	dev_priv->sagv_block_time_us = -1;
3713}
3714
3715/*
3716 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3717 * depending on power and performance requirements. The display engine access
3718 * to system memory is blocked during the adjustment time. Because of the
3719 * blocking time, having this enabled can cause full system hangs and/or pipe
3720 * underruns if we don't meet all of the following requirements:
3721 *
3722 *  - <= 1 pipe enabled
3723 *  - All planes can enable watermarks for latencies >= SAGV engine block time
3724 *  - We're not using an interlaced display configuration
3725 */
3726static int
3727intel_enable_sagv(struct drm_i915_private *dev_priv)
3728{
3729	int ret;
 
 
 
3730
3731	if (!intel_has_sagv(dev_priv))
3732		return 0;
3733
3734	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3735		return 0;
3736
3737	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3738	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3739				      GEN9_SAGV_ENABLE);
3740
3741	/* We don't need to wait for SAGV when enabling */
3742
3743	/*
3744	 * Some skl systems, pre-release machines in particular,
3745	 * don't actually have SAGV.
3746	 */
3747	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3748		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3749		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3750		return 0;
3751	} else if (ret < 0) {
3752		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3753		return ret;
3754	}
3755
3756	dev_priv->sagv_status = I915_SAGV_ENABLED;
3757	return 0;
3758}
3759
3760static int
3761intel_disable_sagv(struct drm_i915_private *dev_priv)
 
3762{
3763	int ret;
 
 
 
 
 
 
 
 
 
 
 
3764
3765	if (!intel_has_sagv(dev_priv))
3766		return 0;
 
 
 
 
 
 
3767
3768	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3769		return 0;
 
 
 
 
 
 
 
 
 
 
3770
3771	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3772	/* bspec says to keep retrying for at least 1 ms */
3773	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3774				GEN9_SAGV_DISABLE,
3775				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3776				1);
3777	/*
3778	 * Some skl systems, pre-release machines in particular,
3779	 * don't actually have SAGV.
3780	 */
3781	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3782		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3783		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3784		return 0;
3785	} else if (ret < 0) {
3786		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3787		return ret;
3788	}
3789
3790	dev_priv->sagv_status = I915_SAGV_DISABLED;
3791	return 0;
3792}
3793
3794void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
3795{
3796	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3797	const struct intel_bw_state *new_bw_state;
3798	const struct intel_bw_state *old_bw_state;
3799	u32 new_mask = 0;
3800
3801	/*
3802	 * Just return if we can't control SAGV or don't have it.
3803	 * This is different from situation when we have SAGV but just can't
3804	 * afford it due to DBuf limitation - in case if SAGV is completely
3805	 * disabled in a BIOS, we are not even allowed to send a PCode request,
3806	 * as it will throw an error. So have to check it here.
3807	 */
3808	if (!intel_has_sagv(dev_priv))
3809		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3810
3811	new_bw_state = intel_atomic_get_new_bw_state(state);
3812	if (!new_bw_state)
3813		return;
3814
3815	if (DISPLAY_VER(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3816		intel_disable_sagv(dev_priv);
3817		return;
3818	}
3819
3820	old_bw_state = intel_atomic_get_old_bw_state(state);
3821	/*
3822	 * Nothing to mask
3823	 */
3824	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3825		return;
 
 
 
 
 
 
 
 
 
 
 
3826
3827	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
 
3828
3829	/*
3830	 * If new mask is zero - means there is nothing to mask,
3831	 * we can only unmask, which should be done in unmask.
3832	 */
3833	if (!new_mask)
3834		return;
3835
3836	/*
3837	 * Restrict required qgv points before updating the configuration.
3838	 * According to BSpec we can't mask and unmask qgv points at the same
3839	 * time. Also masking should be done before updating the configuration
3840	 * and unmasking afterwards.
3841	 */
3842	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3843}
3844
3845void intel_sagv_post_plane_update(struct intel_atomic_state *state)
3846{
3847	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3848	const struct intel_bw_state *new_bw_state;
3849	const struct intel_bw_state *old_bw_state;
3850	u32 new_mask = 0;
 
3851
3852	/*
3853	 * Just return if we can't control SAGV or don't have it.
3854	 * This is different from situation when we have SAGV but just can't
3855	 * afford it due to DBuf limitation - in case if SAGV is completely
3856	 * disabled in a BIOS, we are not even allowed to send a PCode request,
3857	 * as it will throw an error. So have to check it here.
3858	 */
3859	if (!intel_has_sagv(dev_priv))
3860		return;
3861
3862	new_bw_state = intel_atomic_get_new_bw_state(state);
3863	if (!new_bw_state)
3864		return;
3865
3866	if (DISPLAY_VER(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3867		intel_enable_sagv(dev_priv);
3868		return;
 
 
 
 
3869	}
3870
3871	old_bw_state = intel_atomic_get_old_bw_state(state);
3872	/*
3873	 * Nothing to unmask
3874	 */
3875	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3876		return;
3877
3878	new_mask = new_bw_state->qgv_points_mask;
 
 
 
 
 
3879
3880	/*
3881	 * Allow required qgv points after updating the configuration.
3882	 * According to BSpec we can't mask and unmask qgv points at the same
3883	 * time. Also masking should be done before updating the configuration
3884	 * and unmasking afterwards.
3885	 */
3886	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
 
 
 
3887}
3888
3889static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
 
 
 
 
 
 
3890{
3891	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3892	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3893	enum plane_id plane_id;
3894	int max_level = INT_MAX;
 
 
 
 
 
 
 
3895
3896	if (!intel_has_sagv(dev_priv))
3897		return false;
3898
3899	if (!crtc_state->hw.active)
3900		return true;
3901
3902	if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
3903		return false;
3904
3905	for_each_plane_id_on_crtc(crtc, plane_id) {
3906		const struct skl_plane_wm *wm =
3907			&crtc_state->wm.skl.optimal.planes[plane_id];
3908		int level;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3909
3910		/* Skip this plane if it's not enabled */
3911		if (!wm->wm[0].enable)
3912			continue;
3913
3914		/* Find the highest enabled wm level for this plane */
3915		for (level = ilk_wm_max_level(dev_priv);
3916		     !wm->wm[level].enable; --level)
3917		     { }
3918
3919		/* Highest common enabled wm level for all planes */
3920		max_level = min(level, max_level);
3921	}
3922
3923	/* No enabled planes? */
3924	if (max_level == INT_MAX)
3925		return true;
3926
3927	for_each_plane_id_on_crtc(crtc, plane_id) {
3928		const struct skl_plane_wm *wm =
3929			&crtc_state->wm.skl.optimal.planes[plane_id];
3930
3931		/*
3932		 * All enabled planes must have enabled a common wm level that
3933		 * can tolerate memory latencies higher than sagv_block_time_us
3934		 */
3935		if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
3936			return false;
3937	}
3938
3939	return true;
3940}
3941
3942static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
 
 
 
 
3943{
3944	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3945	enum plane_id plane_id;
 
 
 
3946
3947	if (!crtc_state->hw.active)
3948		return true;
3949
3950	for_each_plane_id_on_crtc(crtc, plane_id) {
3951		const struct skl_plane_wm *wm =
3952			&crtc_state->wm.skl.optimal.planes[plane_id];
3953
3954		if (wm->wm[0].enable && !wm->sagv.wm0.enable)
3955			return false;
 
 
 
 
 
3956	}
 
 
 
 
 
 
 
 
 
 
3957
3958	return true;
 
3959}
3960
3961static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
 
3962{
3963	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3964	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 
 
 
 
 
 
 
 
3965
3966	if (DISPLAY_VER(dev_priv) >= 12)
3967		return tgl_crtc_can_enable_sagv(crtc_state);
3968	else
3969		return skl_crtc_can_enable_sagv(crtc_state);
3970}
3971
3972bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
3973			   const struct intel_bw_state *bw_state)
 
3974{
3975	if (DISPLAY_VER(dev_priv) < 11 &&
3976	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3977		return false;
 
 
 
 
 
 
3978
3979	return bw_state->pipe_sagv_reject == 0;
3980}
3981
3982static int intel_compute_sagv_mask(struct intel_atomic_state *state)
 
 
 
3983{
3984	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3985	int ret;
3986	struct intel_crtc *crtc;
3987	struct intel_crtc_state *new_crtc_state;
3988	struct intel_bw_state *new_bw_state = NULL;
3989	const struct intel_bw_state *old_bw_state = NULL;
3990	int i;
3991
3992	for_each_new_intel_crtc_in_state(state, crtc,
3993					 new_crtc_state, i) {
3994		new_bw_state = intel_atomic_get_bw_state(state);
3995		if (IS_ERR(new_bw_state))
3996			return PTR_ERR(new_bw_state);
 
 
 
 
 
 
 
3997
3998		old_bw_state = intel_atomic_get_old_bw_state(state);
3999
4000		if (intel_crtc_can_enable_sagv(new_crtc_state))
4001			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
4002		else
4003			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
4004	}
4005
4006	if (!new_bw_state)
4007		return 0;
4008
4009	new_bw_state->active_pipes =
4010		intel_calc_active_pipes(state, old_bw_state->active_pipes);
4011
4012	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
4013		ret = intel_atomic_lock_global_state(&new_bw_state->base);
4014		if (ret)
4015			return ret;
4016	}
4017
4018	for_each_new_intel_crtc_in_state(state, crtc,
4019					 new_crtc_state, i) {
4020		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
 
 
 
 
4021
4022		/*
4023		 * We store use_sagv_wm in the crtc state rather than relying on
4024		 * that bw state since we have no convenient way to get at the
4025		 * latter from the plane commit hooks (especially in the legacy
4026		 * cursor case)
4027		 */
4028		pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(dev_priv) &&
4029			DISPLAY_VER(dev_priv) >= 12 &&
4030			intel_can_enable_sagv(dev_priv, new_bw_state);
4031	}
4032
4033	if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
4034	    intel_can_enable_sagv(dev_priv, old_bw_state)) {
4035		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
4036		if (ret)
4037			return ret;
4038	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
4039		ret = intel_atomic_lock_global_state(&new_bw_state->base);
4040		if (ret)
4041			return ret;
4042	}
4043
4044	return 0;
4045}
4046
4047static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv)
 
 
4048{
4049	return INTEL_INFO(dev_priv)->dbuf.size /
4050		hweight8(INTEL_INFO(dev_priv)->dbuf.slice_mask);
 
 
4051}
4052
4053static void
4054skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask,
4055			 struct skl_ddb_entry *ddb)
4056{
4057	int slice_size = intel_dbuf_slice_size(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4058
4059	if (!slice_mask) {
4060		ddb->start = 0;
4061		ddb->end = 0;
4062		return;
4063	}
 
4064
4065	ddb->start = (ffs(slice_mask) - 1) * slice_size;
4066	ddb->end = fls(slice_mask) * slice_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4067
4068	WARN_ON(ddb->start >= ddb->end);
4069	WARN_ON(ddb->end > INTEL_INFO(dev_priv)->dbuf.size);
 
 
 
 
 
 
 
 
 
 
4070}
4071
4072static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
 
 
 
4073{
4074	struct skl_ddb_entry ddb;
4075
4076	if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
4077		slice_mask = BIT(DBUF_S1);
4078	else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
4079		slice_mask = BIT(DBUF_S3);
4080
4081	skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
4082
4083	return ddb.start;
4084}
4085
4086u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
4087			    const struct skl_ddb_entry *entry)
4088{
4089	int slice_size = intel_dbuf_slice_size(dev_priv);
4090	enum dbuf_slice start_slice, end_slice;
4091	u8 slice_mask = 0;
 
 
4092
4093	if (!skl_ddb_entry_size(entry))
4094		return 0;
4095
4096	start_slice = entry->start / slice_size;
4097	end_slice = (entry->end - 1) / slice_size;
4098
4099	/*
4100	 * Per plane DDB entry can in a really worst case be on multiple slices
4101	 * but single entry is anyway contigious.
 
 
 
4102	 */
4103	while (start_slice <= end_slice) {
4104		slice_mask |= BIT(start_slice);
4105		start_slice++;
4106	}
 
 
 
 
4107
4108	return slice_mask;
4109}
4110
4111static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
4112{
4113	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
4114	int hdisplay, vdisplay;
4115
4116	if (!crtc_state->hw.active)
4117		return 0;
4118
4119	/*
4120	 * Watermark/ddb requirement highly depends upon width of the
4121	 * framebuffer, So instead of allocating DDB equally among pipes
4122	 * distribute DDB based on resolution/width of the display.
 
 
4123	 */
4124	drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
 
 
4125
4126	return hdisplay;
4127}
 
 
4128
4129static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
4130				    enum pipe for_pipe,
4131				    unsigned int *weight_start,
4132				    unsigned int *weight_end,
4133				    unsigned int *weight_total)
4134{
4135	struct drm_i915_private *dev_priv =
4136		to_i915(dbuf_state->base.state->base.dev);
4137	enum pipe pipe;
4138
4139	*weight_start = 0;
4140	*weight_end = 0;
4141	*weight_total = 0;
 
 
 
 
 
 
4142
4143	for_each_pipe(dev_priv, pipe) {
4144		int weight = dbuf_state->weight[pipe];
4145
4146		/*
4147		 * Do not account pipes using other slice sets
4148		 * luckily as of current BSpec slice sets do not partially
4149		 * intersect(pipes share either same one slice or same slice set
4150		 * i.e no partial intersection), so it is enough to check for
4151		 * equality for now.
4152		 */
4153		if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
4154			continue;
4155
4156		*weight_total += weight;
4157		if (pipe < for_pipe) {
4158			*weight_start += weight;
4159			*weight_end += weight;
4160		} else if (pipe == for_pipe) {
4161			*weight_end += weight;
4162		}
4163	}
4164}
4165
4166static int
4167skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
 
4168{
4169	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4170	unsigned int weight_total, weight_start, weight_end;
4171	const struct intel_dbuf_state *old_dbuf_state =
4172		intel_atomic_get_old_dbuf_state(state);
4173	struct intel_dbuf_state *new_dbuf_state =
4174		intel_atomic_get_new_dbuf_state(state);
4175	struct intel_crtc_state *crtc_state;
4176	struct skl_ddb_entry ddb_slices;
4177	enum pipe pipe = crtc->pipe;
4178	unsigned int mbus_offset = 0;
4179	u32 ddb_range_size;
4180	u32 dbuf_slice_mask;
4181	u32 start, end;
4182	int ret;
4183
4184	if (new_dbuf_state->weight[pipe] == 0) {
4185		new_dbuf_state->ddb[pipe].start = 0;
4186		new_dbuf_state->ddb[pipe].end = 0;
4187		goto out;
4188	}
4189
4190	dbuf_slice_mask = new_dbuf_state->slices[pipe];
 
4191
4192	skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices);
4193	mbus_offset = mbus_ddb_offset(dev_priv, dbuf_slice_mask);
4194	ddb_range_size = skl_ddb_entry_size(&ddb_slices);
4195
4196	intel_crtc_dbuf_weights(new_dbuf_state, pipe,
4197				&weight_start, &weight_end, &weight_total);
4198
4199	start = ddb_range_size * weight_start / weight_total;
4200	end = ddb_range_size * weight_end / weight_total;
 
 
 
 
4201
4202	new_dbuf_state->ddb[pipe].start = ddb_slices.start - mbus_offset + start;
4203	new_dbuf_state->ddb[pipe].end = ddb_slices.start - mbus_offset + end;
4204out:
4205	if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
4206	    skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
4207				&new_dbuf_state->ddb[pipe]))
4208		return 0;
 
4209
4210	ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
4211	if (ret)
4212		return ret;
 
 
 
 
4213
4214	crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
4215	if (IS_ERR(crtc_state))
4216		return PTR_ERR(crtc_state);
4217
4218	/*
4219	 * Used for checking overlaps, so we need absolute
4220	 * offsets instead of MBUS relative offsets.
4221	 */
4222	crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
4223	crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
4224
4225	drm_dbg_kms(&dev_priv->drm,
4226		    "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
4227		    crtc->base.base.id, crtc->base.name,
4228		    old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
4229		    old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
4230		    new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
4231		    old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
4232
4233	return 0;
4234}
4235
4236static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4237				 int width, const struct drm_format_info *format,
4238				 u64 modifier, unsigned int rotation,
4239				 u32 plane_pixel_rate, struct skl_wm_params *wp,
4240				 int color_plane);
4241static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4242				 int level,
4243				 unsigned int latency,
4244				 const struct skl_wm_params *wp,
4245				 const struct skl_wm_level *result_prev,
4246				 struct skl_wm_level *result /* out */);
4247
4248static unsigned int
4249skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4250		      int num_active)
4251{
4252	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4253	int level, max_level = ilk_wm_max_level(dev_priv);
4254	struct skl_wm_level wm = {};
4255	int ret, min_ddb_alloc = 0;
4256	struct skl_wm_params wp;
4257
4258	ret = skl_compute_wm_params(crtc_state, 256,
4259				    drm_format_info(DRM_FORMAT_ARGB8888),
4260				    DRM_FORMAT_MOD_LINEAR,
4261				    DRM_MODE_ROTATE_0,
4262				    crtc_state->pixel_rate, &wp, 0);
4263	drm_WARN_ON(&dev_priv->drm, ret);
4264
4265	for (level = 0; level <= max_level; level++) {
4266		unsigned int latency = dev_priv->wm.skl_latency[level];
 
 
4267
4268		skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4269		if (wm.min_ddb_alloc == U16_MAX)
4270			break;
 
 
 
 
 
4271
4272		min_ddb_alloc = wm.min_ddb_alloc;
4273	}
 
 
 
 
 
 
4274
4275	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4276}
4277
4278static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4279				       struct skl_ddb_entry *entry, u32 reg)
4280{
4281	entry->start = reg & DDB_ENTRY_MASK;
4282	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
 
 
 
 
 
4283
4284	if (entry->end)
4285		entry->end += 1;
4286}
 
4287
4288static void
4289skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4290			   const enum pipe pipe,
4291			   const enum plane_id plane_id,
4292			   struct skl_ddb_entry *ddb_y,
4293			   struct skl_ddb_entry *ddb_uv)
4294{
4295	u32 val, val2;
4296	u32 fourcc = 0;
4297
4298	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
4299	if (plane_id == PLANE_CURSOR) {
4300		val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe));
4301		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4302		return;
4303	}
4304
4305	val = intel_uncore_read(&dev_priv->uncore, PLANE_CTL(pipe, plane_id));
 
4306
4307	/* No DDB allocated for disabled planes */
4308	if (val & PLANE_CTL_ENABLE)
4309		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4310					      val & PLANE_CTL_ORDER_RGBX,
4311					      val & PLANE_CTL_ALPHA_MASK);
4312
4313	if (DISPLAY_VER(dev_priv) >= 11) {
4314		val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4315		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4316	} else {
4317		val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4318		val2 = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
4319
4320		if (fourcc &&
4321		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4322			swap(val, val2);
4323
4324		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4325		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4326	}
4327}
4328
4329void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4330			       struct skl_ddb_entry *ddb_y,
4331			       struct skl_ddb_entry *ddb_uv)
4332{
4333	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4334	enum intel_display_power_domain power_domain;
4335	enum pipe pipe = crtc->pipe;
4336	intel_wakeref_t wakeref;
4337	enum plane_id plane_id;
4338
4339	power_domain = POWER_DOMAIN_PIPE(pipe);
4340	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4341	if (!wakeref)
4342		return;
4343
4344	for_each_plane_id_on_crtc(crtc, plane_id)
4345		skl_ddb_get_hw_plane_state(dev_priv, pipe,
4346					   plane_id,
4347					   &ddb_y[plane_id],
4348					   &ddb_uv[plane_id]);
4349
4350	intel_display_power_put(dev_priv, power_domain, wakeref);
 
 
 
4351}
4352
4353/*
4354 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4355 * The bspec defines downscale amount as:
4356 *
4357 * """
4358 * Horizontal down scale amount = maximum[1, Horizontal source size /
4359 *                                           Horizontal destination size]
4360 * Vertical down scale amount = maximum[1, Vertical source size /
4361 *                                         Vertical destination size]
4362 * Total down scale amount = Horizontal down scale amount *
4363 *                           Vertical down scale amount
4364 * """
4365 *
4366 * Return value is provided in 16.16 fixed point form to retain fractional part.
4367 * Caller should take care of dividing & rounding off the value.
4368 */
4369static uint_fixed_16_16_t
4370skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4371			   const struct intel_plane_state *plane_state)
4372{
4373	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4374	u32 src_w, src_h, dst_w, dst_h;
4375	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4376	uint_fixed_16_16_t downscale_h, downscale_w;
4377
4378	if (drm_WARN_ON(&dev_priv->drm,
4379			!intel_wm_plane_visible(crtc_state, plane_state)))
4380		return u32_to_fixed16(0);
4381
4382	/*
4383	 * Src coordinates are already rotated by 270 degrees for
4384	 * the 90/270 degree plane rotation cases (to match the
4385	 * GTT mapping), hence no need to account for rotation here.
4386	 *
4387	 * n.b., src is 16.16 fixed point, dst is whole integer.
4388	 */
4389	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4390	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4391	dst_w = drm_rect_width(&plane_state->uapi.dst);
4392	dst_h = drm_rect_height(&plane_state->uapi.dst);
4393
4394	fp_w_ratio = div_fixed16(src_w, dst_w);
4395	fp_h_ratio = div_fixed16(src_h, dst_h);
4396	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4397	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4398
4399	return mul_fixed16(downscale_w, downscale_h);
4400}
4401
4402struct dbuf_slice_conf_entry {
4403	u8 active_pipes;
4404	u8 dbuf_mask[I915_MAX_PIPES];
4405	bool join_mbus;
4406};
4407
4408/*
4409 * Table taken from Bspec 12716
4410 * Pipes do have some preferred DBuf slice affinity,
4411 * plus there are some hardcoded requirements on how
4412 * those should be distributed for multipipe scenarios.
4413 * For more DBuf slices algorithm can get even more messy
4414 * and less readable, so decided to use a table almost
4415 * as is from BSpec itself - that way it is at least easier
4416 * to compare, change and check.
4417 */
4418static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4419/* Autogenerated with igt/tools/intel_dbuf_map tool: */
4420{
4421	{
4422		.active_pipes = BIT(PIPE_A),
4423		.dbuf_mask = {
4424			[PIPE_A] = BIT(DBUF_S1),
4425		},
4426	},
4427	{
4428		.active_pipes = BIT(PIPE_B),
4429		.dbuf_mask = {
4430			[PIPE_B] = BIT(DBUF_S1),
4431		},
4432	},
4433	{
4434		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4435		.dbuf_mask = {
4436			[PIPE_A] = BIT(DBUF_S1),
4437			[PIPE_B] = BIT(DBUF_S2),
4438		},
4439	},
4440	{
4441		.active_pipes = BIT(PIPE_C),
4442		.dbuf_mask = {
4443			[PIPE_C] = BIT(DBUF_S2),
4444		},
4445	},
4446	{
4447		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4448		.dbuf_mask = {
4449			[PIPE_A] = BIT(DBUF_S1),
4450			[PIPE_C] = BIT(DBUF_S2),
4451		},
4452	},
4453	{
4454		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4455		.dbuf_mask = {
4456			[PIPE_B] = BIT(DBUF_S1),
4457			[PIPE_C] = BIT(DBUF_S2),
4458		},
4459	},
4460	{
4461		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4462		.dbuf_mask = {
4463			[PIPE_A] = BIT(DBUF_S1),
4464			[PIPE_B] = BIT(DBUF_S1),
4465			[PIPE_C] = BIT(DBUF_S2),
4466		},
4467	},
4468	{}
4469};
4470
4471/*
4472 * Table taken from Bspec 49255
4473 * Pipes do have some preferred DBuf slice affinity,
4474 * plus there are some hardcoded requirements on how
4475 * those should be distributed for multipipe scenarios.
4476 * For more DBuf slices algorithm can get even more messy
4477 * and less readable, so decided to use a table almost
4478 * as is from BSpec itself - that way it is at least easier
4479 * to compare, change and check.
4480 */
4481static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4482/* Autogenerated with igt/tools/intel_dbuf_map tool: */
4483{
4484	{
4485		.active_pipes = BIT(PIPE_A),
4486		.dbuf_mask = {
4487			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4488		},
4489	},
4490	{
4491		.active_pipes = BIT(PIPE_B),
4492		.dbuf_mask = {
4493			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4494		},
4495	},
4496	{
4497		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4498		.dbuf_mask = {
4499			[PIPE_A] = BIT(DBUF_S2),
4500			[PIPE_B] = BIT(DBUF_S1),
4501		},
4502	},
4503	{
4504		.active_pipes = BIT(PIPE_C),
4505		.dbuf_mask = {
4506			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4507		},
4508	},
4509	{
4510		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4511		.dbuf_mask = {
4512			[PIPE_A] = BIT(DBUF_S1),
4513			[PIPE_C] = BIT(DBUF_S2),
4514		},
4515	},
4516	{
4517		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4518		.dbuf_mask = {
4519			[PIPE_B] = BIT(DBUF_S1),
4520			[PIPE_C] = BIT(DBUF_S2),
4521		},
4522	},
4523	{
4524		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4525		.dbuf_mask = {
4526			[PIPE_A] = BIT(DBUF_S1),
4527			[PIPE_B] = BIT(DBUF_S1),
4528			[PIPE_C] = BIT(DBUF_S2),
4529		},
4530	},
4531	{
4532		.active_pipes = BIT(PIPE_D),
4533		.dbuf_mask = {
4534			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4535		},
4536	},
4537	{
4538		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4539		.dbuf_mask = {
4540			[PIPE_A] = BIT(DBUF_S1),
4541			[PIPE_D] = BIT(DBUF_S2),
4542		},
4543	},
4544	{
4545		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4546		.dbuf_mask = {
4547			[PIPE_B] = BIT(DBUF_S1),
4548			[PIPE_D] = BIT(DBUF_S2),
4549		},
4550	},
4551	{
4552		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4553		.dbuf_mask = {
4554			[PIPE_A] = BIT(DBUF_S1),
4555			[PIPE_B] = BIT(DBUF_S1),
4556			[PIPE_D] = BIT(DBUF_S2),
4557		},
4558	},
4559	{
4560		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4561		.dbuf_mask = {
4562			[PIPE_C] = BIT(DBUF_S1),
4563			[PIPE_D] = BIT(DBUF_S2),
4564		},
4565	},
4566	{
4567		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4568		.dbuf_mask = {
4569			[PIPE_A] = BIT(DBUF_S1),
4570			[PIPE_C] = BIT(DBUF_S2),
4571			[PIPE_D] = BIT(DBUF_S2),
4572		},
4573	},
4574	{
4575		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4576		.dbuf_mask = {
4577			[PIPE_B] = BIT(DBUF_S1),
4578			[PIPE_C] = BIT(DBUF_S2),
4579			[PIPE_D] = BIT(DBUF_S2),
4580		},
4581	},
4582	{
4583		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4584		.dbuf_mask = {
4585			[PIPE_A] = BIT(DBUF_S1),
4586			[PIPE_B] = BIT(DBUF_S1),
4587			[PIPE_C] = BIT(DBUF_S2),
4588			[PIPE_D] = BIT(DBUF_S2),
4589		},
4590	},
4591	{}
4592};
4593
4594static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
4595	{
4596		.active_pipes = BIT(PIPE_A),
4597		.dbuf_mask = {
4598			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4599		},
4600		.join_mbus = true,
4601	},
4602	{
4603		.active_pipes = BIT(PIPE_B),
4604		.dbuf_mask = {
4605			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4606		},
4607		.join_mbus = true,
4608	},
4609	{
4610		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4611		.dbuf_mask = {
4612			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4613			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4614		},
4615	},
4616	{
4617		.active_pipes = BIT(PIPE_C),
4618		.dbuf_mask = {
4619			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4620		},
4621	},
4622	{
4623		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4624		.dbuf_mask = {
4625			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4626			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4627		},
4628	},
4629	{
4630		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4631		.dbuf_mask = {
4632			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4633			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4634		},
4635	},
4636	{
4637		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4638		.dbuf_mask = {
4639			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4640			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4641			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4642		},
4643	},
4644	{
4645		.active_pipes = BIT(PIPE_D),
4646		.dbuf_mask = {
4647			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4648		},
4649	},
4650	{
4651		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4652		.dbuf_mask = {
4653			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4654			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4655		},
4656	},
4657	{
4658		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4659		.dbuf_mask = {
4660			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4661			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4662		},
4663	},
4664	{
4665		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4666		.dbuf_mask = {
4667			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4668			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4669			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4670		},
4671	},
4672	{
4673		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4674		.dbuf_mask = {
4675			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4676			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4677		},
4678	},
4679	{
4680		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4681		.dbuf_mask = {
4682			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4683			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4684			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4685		},
4686	},
4687	{
4688		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4689		.dbuf_mask = {
4690			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4691			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4692			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4693		},
4694	},
4695	{
4696		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4697		.dbuf_mask = {
4698			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4699			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4700			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4701			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4702		},
4703	},
4704	{}
4705
4706};
 
4707
4708static bool check_mbus_joined(u8 active_pipes,
4709			      const struct dbuf_slice_conf_entry *dbuf_slices)
4710{
4711	int i;
 
 
 
4712
4713	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4714		if (dbuf_slices[i].active_pipes == active_pipes)
4715			return dbuf_slices[i].join_mbus;
 
 
 
 
 
 
 
4716	}
4717	return false;
4718}
4719
4720static bool adlp_check_mbus_joined(u8 active_pipes)
4721{
4722	return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
4723}
4724
4725static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
4726			      const struct dbuf_slice_conf_entry *dbuf_slices)
 
 
 
 
4727{
4728	int i;
4729
4730	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4731		if (dbuf_slices[i].active_pipes == active_pipes)
4732			return dbuf_slices[i].dbuf_mask[pipe];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4733	}
4734	return 0;
4735}
4736
4737/*
4738 * This function finds an entry with same enabled pipe configuration and
4739 * returns correspondent DBuf slice mask as stated in BSpec for particular
4740 * platform.
4741 */
4742static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4743{
4744	/*
4745	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4746	 * required calculating "pipe ratio" in order to determine
4747	 * if one or two slices can be used for single pipe configurations
4748	 * as additional constraint to the existing table.
4749	 * However based on recent info, it should be not "pipe ratio"
4750	 * but rather ratio between pixel_rate and cdclk with additional
4751	 * constants, so for now we are using only table until this is
4752	 * clarified. Also this is the reason why crtc_state param is
4753	 * still here - we will need it once those additional constraints
4754	 * pop up.
4755	 */
4756	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4757}
4758
4759static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4760{
4761	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4762}
4763
4764static u32 adlp_compute_dbuf_slices(enum pipe pipe, u32 active_pipes)
4765{
4766	return compute_dbuf_slices(pipe, active_pipes, adlp_allowed_dbufs);
4767}
4768
4769static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes)
4770{
4771	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4772	enum pipe pipe = crtc->pipe;
 
 
4773
4774	if (IS_ALDERLAKE_P(dev_priv))
4775		return adlp_compute_dbuf_slices(pipe, active_pipes);
4776	else if (DISPLAY_VER(dev_priv) == 12)
4777		return tgl_compute_dbuf_slices(pipe, active_pipes);
4778	else if (DISPLAY_VER(dev_priv) == 11)
4779		return icl_compute_dbuf_slices(pipe, active_pipes);
4780	/*
4781	 * For anything else just return one slice yet.
4782	 * Should be extended for other platforms.
4783	 */
4784	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4785}
4786
4787static u64
4788skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4789			     const struct intel_plane_state *plane_state,
4790			     int color_plane)
4791{
4792	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4793	const struct drm_framebuffer *fb = plane_state->hw.fb;
4794	u32 data_rate;
4795	u32 width = 0, height = 0;
4796	uint_fixed_16_16_t down_scale_amount;
4797	u64 rate;
4798
4799	if (!plane_state->uapi.visible)
4800		return 0;
4801
4802	if (plane->id == PLANE_CURSOR)
4803		return 0;
4804
4805	if (color_plane == 1 &&
4806	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4807		return 0;
4808
4809	/*
4810	 * Src coordinates are already rotated by 270 degrees for
4811	 * the 90/270 degree plane rotation cases (to match the
4812	 * GTT mapping), hence no need to account for rotation here.
4813	 */
4814	width = drm_rect_width(&plane_state->uapi.src) >> 16;
4815	height = drm_rect_height(&plane_state->uapi.src) >> 16;
 
 
4816
4817	/* UV plane does 1/2 pixel sub-sampling */
4818	if (color_plane == 1) {
4819		width /= 2;
4820		height /= 2;
4821	}
4822
4823	data_rate = width * height;
 
4824
4825	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
 
4826
4827	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
 
 
 
 
4828
4829	rate *= fb->format->cpp[color_plane];
4830	return rate;
 
4831}
4832
4833static u64
4834skl_get_total_relative_data_rate(struct intel_atomic_state *state,
4835				 struct intel_crtc *crtc)
4836{
4837	struct intel_crtc_state *crtc_state =
4838		intel_atomic_get_new_crtc_state(state, crtc);
4839	const struct intel_plane_state *plane_state;
4840	struct intel_plane *plane;
4841	u64 total_data_rate = 0;
4842	enum plane_id plane_id;
4843	int i;
 
 
 
 
 
4844
4845	/* Calculate and cache data rate for each plane */
4846	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
4847		if (plane->pipe != crtc->pipe)
4848			continue;
4849
4850		plane_id = plane->id;
4851
4852		/* packed/y */
4853		crtc_state->plane_data_rate[plane_id] =
4854			skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4855
4856		/* uv-plane */
4857		crtc_state->uv_plane_data_rate[plane_id] =
4858			skl_plane_relative_data_rate(crtc_state, plane_state, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4859	}
4860
4861	for_each_plane_id_on_crtc(crtc, plane_id) {
4862		total_data_rate += crtc_state->plane_data_rate[plane_id];
4863		total_data_rate += crtc_state->uv_plane_data_rate[plane_id];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4864	}
4865
4866	return total_data_rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4867}
4868
4869static u64
4870icl_get_total_relative_data_rate(struct intel_atomic_state *state,
4871				 struct intel_crtc *crtc)
4872{
4873	struct intel_crtc_state *crtc_state =
4874		intel_atomic_get_new_crtc_state(state, crtc);
4875	const struct intel_plane_state *plane_state;
4876	struct intel_plane *plane;
4877	u64 total_data_rate = 0;
4878	enum plane_id plane_id;
4879	int i;
4880
4881	/* Calculate and cache data rate for each plane */
4882	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
4883		if (plane->pipe != crtc->pipe)
4884			continue;
4885
4886		plane_id = plane->id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4887
4888		if (!plane_state->planar_linked_plane) {
4889			crtc_state->plane_data_rate[plane_id] =
4890				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4891		} else {
4892			enum plane_id y_plane_id;
4893
4894			/*
4895			 * The slave plane might not iterate in
4896			 * intel_atomic_crtc_state_for_each_plane_state(),
4897			 * and needs the master plane state which may be
4898			 * NULL if we try get_new_plane_state(), so we
4899			 * always calculate from the master.
4900			 */
4901			if (plane_state->planar_slave)
4902				continue;
4903
4904			/* Y plane rate is calculated on the slave */
4905			y_plane_id = plane_state->planar_linked_plane->id;
4906			crtc_state->plane_data_rate[y_plane_id] =
4907				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4908
4909			crtc_state->plane_data_rate[plane_id] =
4910				skl_plane_relative_data_rate(crtc_state, plane_state, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4911		}
 
 
4912	}
4913
4914	for_each_plane_id_on_crtc(crtc, plane_id)
4915		total_data_rate += crtc_state->plane_data_rate[plane_id];
 
 
4916
4917	return total_data_rate;
 
4918}
4919
4920const struct skl_wm_level *
4921skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
4922		   enum plane_id plane_id,
4923		   int level)
4924{
4925	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
 
 
4926
4927	if (level == 0 && pipe_wm->use_sagv_wm)
4928		return &wm->sagv.wm0;
 
 
 
 
 
 
 
 
 
 
4929
4930	return &wm->wm[level];
 
 
 
 
 
 
 
 
4931}
4932
4933const struct skl_wm_level *
4934skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
4935		   enum plane_id plane_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4936{
4937	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
4938
4939	if (pipe_wm->use_sagv_wm)
4940		return &wm->sagv.trans_wm;
4941
4942	return &wm->trans_wm;
4943}
4944
4945/*
4946 * We only disable the watermarks for each plane if
4947 * they exceed the ddb allocation of said plane. This
4948 * is done so that we don't end up touching cursor
4949 * watermarks needlessly when some other plane reduces
4950 * our max possible watermark level.
4951 *
4952 * Bspec has this to say about the PLANE_WM enable bit:
4953 * "All the watermarks at this level for all enabled
4954 *  planes must be enabled before the level will be used."
4955 * So this is actually safe to do.
4956 */
4957static void
4958skl_check_wm_level(struct skl_wm_level *wm, u64 total)
 
 
 
 
 
4959{
4960	if (wm->min_ddb_alloc > total)
4961		memset(wm, 0, sizeof(*wm));
4962}
 
4963
4964static void
4965skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
4966			u64 total, u64 uv_total)
4967{
4968	if (wm->min_ddb_alloc > total ||
4969	    uv_wm->min_ddb_alloc > uv_total) {
4970		memset(wm, 0, sizeof(*wm));
4971		memset(uv_wm, 0, sizeof(*uv_wm));
4972	}
 
 
 
 
 
 
 
 
 
 
4973}
4974
4975static int
4976skl_allocate_plane_ddb(struct intel_atomic_state *state,
4977		       struct intel_crtc *crtc)
4978{
4979	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4980	struct intel_crtc_state *crtc_state =
4981		intel_atomic_get_new_crtc_state(state, crtc);
4982	const struct intel_dbuf_state *dbuf_state =
4983		intel_atomic_get_new_dbuf_state(state);
4984	const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
4985	int num_active = hweight8(dbuf_state->active_pipes);
4986	u16 alloc_size, start = 0;
4987	u16 total[I915_MAX_PLANES] = {};
4988	u16 uv_total[I915_MAX_PLANES] = {};
4989	u64 total_data_rate;
4990	enum plane_id plane_id;
4991	u32 blocks;
4992	int level;
 
 
 
 
 
 
 
4993
4994	/* Clear the partitioning for disabled planes. */
4995	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4996	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
 
 
4997
4998	if (!crtc_state->hw.active)
4999		return 0;
5000
5001	if (DISPLAY_VER(dev_priv) >= 11)
5002		total_data_rate =
5003			icl_get_total_relative_data_rate(state, crtc);
5004	else
5005		total_data_rate =
5006			skl_get_total_relative_data_rate(state, crtc);
5007
5008	alloc_size = skl_ddb_entry_size(alloc);
5009	if (alloc_size == 0)
5010		return 0;
5011
5012	/* Allocate fixed number of blocks for cursor. */
5013	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
5014	alloc_size -= total[PLANE_CURSOR];
5015	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
5016		alloc->end - total[PLANE_CURSOR];
5017	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
5018
5019	if (total_data_rate == 0)
5020		return 0;
5021
5022	/*
5023	 * Find the highest watermark level for which we can satisfy the block
5024	 * requirement of active planes.
5025	 */
5026	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
5027		blocks = 0;
5028		for_each_plane_id_on_crtc(crtc, plane_id) {
5029			const struct skl_plane_wm *wm =
5030				&crtc_state->wm.skl.optimal.planes[plane_id];
5031
5032			if (plane_id == PLANE_CURSOR) {
5033				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
5034					drm_WARN_ON(&dev_priv->drm,
5035						    wm->wm[level].min_ddb_alloc != U16_MAX);
5036					blocks = U32_MAX;
5037					break;
5038				}
5039				continue;
5040			}
5041
5042			blocks += wm->wm[level].min_ddb_alloc;
5043			blocks += wm->uv_wm[level].min_ddb_alloc;
5044		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5045
5046		if (blocks <= alloc_size) {
5047			alloc_size -= blocks;
5048			break;
5049		}
5050	}
5051
5052	if (level < 0) {
5053		drm_dbg_kms(&dev_priv->drm,
5054			    "Requested display configuration exceeds system DDB limitations");
5055		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
5056			    blocks, alloc_size);
5057		return -EINVAL;
5058	}
5059
5060	/*
5061	 * Grant each plane the blocks it requires at the highest achievable
5062	 * watermark level, plus an extra share of the leftover blocks
5063	 * proportional to its relative data rate.
5064	 */
5065	for_each_plane_id_on_crtc(crtc, plane_id) {
5066		const struct skl_plane_wm *wm =
5067			&crtc_state->wm.skl.optimal.planes[plane_id];
5068		u64 rate;
5069		u16 extra;
5070
5071		if (plane_id == PLANE_CURSOR)
5072			continue;
 
 
 
 
5073
5074		/*
5075		 * We've accounted for all active planes; remaining planes are
5076		 * all disabled.
5077		 */
5078		if (total_data_rate == 0)
5079			break;
5080
5081		rate = crtc_state->plane_data_rate[plane_id];
5082		extra = min_t(u16, alloc_size,
5083			      DIV64_U64_ROUND_UP(alloc_size * rate,
5084						 total_data_rate));
5085		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
5086		alloc_size -= extra;
5087		total_data_rate -= rate;
5088
5089		if (total_data_rate == 0)
5090			break;
 
 
 
 
 
 
5091
5092		rate = crtc_state->uv_plane_data_rate[plane_id];
5093		extra = min_t(u16, alloc_size,
5094			      DIV64_U64_ROUND_UP(alloc_size * rate,
5095						 total_data_rate));
5096		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
5097		alloc_size -= extra;
5098		total_data_rate -= rate;
 
 
 
 
 
 
 
5099	}
5100	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
5101
5102	/* Set the actual DDB start/end points for each plane */
5103	start = alloc->start;
5104	for_each_plane_id_on_crtc(crtc, plane_id) {
5105		struct skl_ddb_entry *plane_alloc =
5106			&crtc_state->wm.skl.plane_ddb_y[plane_id];
5107		struct skl_ddb_entry *uv_plane_alloc =
5108			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
 
5109
5110		if (plane_id == PLANE_CURSOR)
5111			continue;
 
 
 
 
5112
5113		/* Gen11+ uses a separate plane for UV watermarks */
5114		drm_WARN_ON(&dev_priv->drm,
5115			    DISPLAY_VER(dev_priv) >= 11 && uv_total[plane_id]);
5116
5117		/* Leave disabled planes at (0,0) */
5118		if (total[plane_id]) {
5119			plane_alloc->start = start;
5120			start += total[plane_id];
5121			plane_alloc->end = start;
5122		}
5123
5124		if (uv_total[plane_id]) {
5125			uv_plane_alloc->start = start;
5126			start += uv_total[plane_id];
5127			uv_plane_alloc->end = start;
5128		}
5129	}
 
 
 
 
 
 
 
5130
5131	/*
5132	 * When we calculated watermark values we didn't know how high
5133	 * of a level we'd actually be able to hit, so we just marked
5134	 * all levels as "enabled."  Go back now and disable the ones
5135	 * that aren't actually possible.
5136	 */
5137	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
5138		for_each_plane_id_on_crtc(crtc, plane_id) {
5139			struct skl_plane_wm *wm =
5140				&crtc_state->wm.skl.optimal.planes[plane_id];
 
5141
5142			skl_check_nv12_wm_level(&wm->wm[level], &wm->uv_wm[level],
5143						total[plane_id], uv_total[plane_id]);
 
 
 
 
 
 
 
5144
5145			/*
5146			 * Wa_1408961008:icl, ehl
5147			 * Underruns with WM1+ disabled
5148			 */
5149			if (DISPLAY_VER(dev_priv) == 11 &&
5150			    level == 1 && wm->wm[0].enable) {
5151				wm->wm[level].blocks = wm->wm[0].blocks;
5152				wm->wm[level].lines = wm->wm[0].lines;
5153				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
5154			}
5155		}
5156	}
5157
5158	/*
5159	 * Go back and disable the transition and SAGV watermarks
5160	 * if it turns out we don't have enough DDB blocks for them.
5161	 */
5162	for_each_plane_id_on_crtc(crtc, plane_id) {
5163		struct skl_plane_wm *wm =
5164			&crtc_state->wm.skl.optimal.planes[plane_id];
5165
5166		skl_check_wm_level(&wm->trans_wm, total[plane_id]);
5167		skl_check_wm_level(&wm->sagv.wm0, total[plane_id]);
5168		skl_check_wm_level(&wm->sagv.trans_wm, total[plane_id]);
5169	}
 
 
 
 
 
5170
5171	return 0;
 
 
 
5172}
5173
5174/*
5175 * The max latency should be 257 (max the punit can code is 255 and we add 2us
5176 * for the read latency) and cpp should always be <= 8, so that
5177 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
5178 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
5179*/
5180static uint_fixed_16_16_t
5181skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
5182	       u8 cpp, u32 latency, u32 dbuf_block_size)
5183{
5184	u32 wm_intermediate_val;
5185	uint_fixed_16_16_t ret;
5186
5187	if (latency == 0)
5188		return FP_16_16_MAX;
5189
5190	wm_intermediate_val = latency * pixel_rate * cpp;
5191	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
 
 
5192
5193	if (DISPLAY_VER(dev_priv) >= 10)
5194		ret = add_fixed16_u32(ret, 1);
5195
5196	return ret;
5197}
5198
5199static uint_fixed_16_16_t
5200skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
5201	       uint_fixed_16_16_t plane_blocks_per_line)
 
5202{
5203	u32 wm_intermediate_val;
5204	uint_fixed_16_16_t ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5205
5206	if (latency == 0)
5207		return FP_16_16_MAX;
5208
5209	wm_intermediate_val = latency * pixel_rate;
5210	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
5211					   pipe_htotal * 1000);
5212	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5213	return ret;
5214}
5215
5216static uint_fixed_16_16_t
5217intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5218{
5219	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5220	u32 pixel_rate;
5221	u32 crtc_htotal;
5222	uint_fixed_16_16_t linetime_us;
5223
5224	if (!crtc_state->hw.active)
5225		return u32_to_fixed16(0);
 
5226
5227	pixel_rate = crtc_state->pixel_rate;
 
 
5228
5229	if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5230		return u32_to_fixed16(0);
5231
5232	crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
5233	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
 
 
 
5234
5235	return linetime_us;
 
5236}
5237
5238static int
5239skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
5240		      int width, const struct drm_format_info *format,
5241		      u64 modifier, unsigned int rotation,
5242		      u32 plane_pixel_rate, struct skl_wm_params *wp,
5243		      int color_plane)
 
 
5244{
5245	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5246	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5247	u32 interm_pbpl;
5248
5249	/* only planar format has two planes */
5250	if (color_plane == 1 &&
5251	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5252		drm_dbg_kms(&dev_priv->drm,
5253			    "Non planar format have single plane\n");
5254		return -EINVAL;
5255	}
5256
5257	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
5258		      modifier == I915_FORMAT_MOD_Yf_TILED ||
5259		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5260		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5261	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
5262	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5263			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5264	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5265
5266	wp->width = width;
5267	if (color_plane == 1 && wp->is_planar)
5268		wp->width /= 2;
5269
5270	wp->cpp = format->cpp[color_plane];
5271	wp->plane_pixel_rate = plane_pixel_rate;
5272
5273	if (DISPLAY_VER(dev_priv) >= 11 &&
5274	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
5275		wp->dbuf_block_size = 256;
5276	else
5277		wp->dbuf_block_size = 512;
5278
5279	if (drm_rotation_90_or_270(rotation)) {
5280		switch (wp->cpp) {
5281		case 1:
5282			wp->y_min_scanlines = 16;
5283			break;
5284		case 2:
5285			wp->y_min_scanlines = 8;
5286			break;
5287		case 4:
5288			wp->y_min_scanlines = 4;
5289			break;
5290		default:
5291			MISSING_CASE(wp->cpp);
5292			return -EINVAL;
5293		}
5294	} else {
5295		wp->y_min_scanlines = 4;
5296	}
 
 
5297
5298	if (skl_needs_memory_bw_wa(dev_priv))
5299		wp->y_min_scanlines *= 2;
 
5300
5301	wp->plane_bytes_per_line = wp->width * wp->cpp;
5302	if (wp->y_tiled) {
5303		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5304					   wp->y_min_scanlines,
5305					   wp->dbuf_block_size);
 
 
 
 
 
5306
5307		if (DISPLAY_VER(dev_priv) >= 10)
5308			interm_pbpl++;
 
 
 
5309
5310		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
5311							wp->y_min_scanlines);
5312	} else {
5313		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5314					   wp->dbuf_block_size);
 
 
 
 
 
 
5315
5316		if (!wp->x_tiled || DISPLAY_VER(dev_priv) >= 10)
5317			interm_pbpl++;
 
 
 
5318
5319		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
 
 
 
 
 
 
 
 
 
 
 
 
 
5320	}
 
 
5321
5322	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
5323					     wp->plane_blocks_per_line);
 
 
 
 
 
5324
5325	wp->linetime_us = fixed16_to_u32_round_up(
5326					intel_get_linetime_us(crtc_state));
 
5327
5328	return 0;
 
5329}
5330
5331static int
5332skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
5333			    const struct intel_plane_state *plane_state,
5334			    struct skl_wm_params *wp, int color_plane)
5335{
5336	const struct drm_framebuffer *fb = plane_state->hw.fb;
5337	int width;
 
 
 
5338
5339	/*
5340	 * Src coordinates are already rotated by 270 degrees for
5341	 * the 90/270 degree plane rotation cases (to match the
5342	 * GTT mapping), hence no need to account for rotation here.
5343	 */
5344	width = drm_rect_width(&plane_state->uapi.src) >> 16;
5345
5346	return skl_compute_wm_params(crtc_state, width,
5347				     fb->format, fb->modifier,
5348				     plane_state->hw.rotation,
5349				     intel_plane_pixel_rate(crtc_state, plane_state),
5350				     wp, color_plane);
5351}
5352
5353static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
5354{
5355	if (DISPLAY_VER(dev_priv) >= 10)
5356		return true;
 
 
 
 
 
5357
5358	/* The number of lines are ignored for the level 0 watermark. */
5359	return level > 0;
5360}
5361
5362static int skl_wm_max_lines(struct drm_i915_private *dev_priv)
5363{
5364	if (DISPLAY_VER(dev_priv) >= 13)
5365		return 255;
 
 
 
 
 
 
 
 
 
 
5366	else
5367		return 31;
 
5368}
5369
5370static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5371				 int level,
5372				 unsigned int latency,
5373				 const struct skl_wm_params *wp,
5374				 const struct skl_wm_level *result_prev,
5375				 struct skl_wm_level *result /* out */)
5376{
5377	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5378	uint_fixed_16_16_t method1, method2;
5379	uint_fixed_16_16_t selected_result;
5380	u32 blocks, lines, min_ddb_alloc = 0;
5381
5382	if (latency == 0) {
5383		/* reject it */
5384		result->min_ddb_alloc = U16_MAX;
5385		return;
5386	}
5387
5388	/*
5389	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
5390	 * Display WA #1141: kbl,cfl
5391	 */
5392	if ((IS_KABYLAKE(dev_priv) ||
5393	     IS_COFFEELAKE(dev_priv) ||
5394	     IS_COMETLAKE(dev_priv)) &&
5395	    dev_priv->ipc_enabled)
5396		latency += 4;
5397
5398	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5399		latency += 15;
5400
5401	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5402				 wp->cpp, latency, wp->dbuf_block_size);
5403	method2 = skl_wm_method2(wp->plane_pixel_rate,
5404				 crtc_state->hw.pipe_mode.crtc_htotal,
5405				 latency,
5406				 wp->plane_blocks_per_line);
5407
5408	if (wp->y_tiled) {
5409		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5410	} else {
5411		if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
5412		     wp->dbuf_block_size < 1) &&
5413		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5414			selected_result = method2;
5415		} else if (latency >= wp->linetime_us) {
5416			if (DISPLAY_VER(dev_priv) == 9)
5417				selected_result = min_fixed16(method1, method2);
5418			else
5419				selected_result = method2;
5420		} else {
5421			selected_result = method1;
5422		}
5423	}
5424
5425	blocks = fixed16_to_u32_round_up(selected_result) + 1;
5426	lines = div_round_up_fixed16(selected_result,
5427				     wp->plane_blocks_per_line);
5428
5429	if (DISPLAY_VER(dev_priv) == 9) {
5430		/* Display WA #1125: skl,bxt,kbl */
5431		if (level == 0 && wp->rc_surface)
5432			blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5433
5434		/* Display WA #1126: skl,bxt,kbl */
5435		if (level >= 1 && level <= 7) {
5436			if (wp->y_tiled) {
5437				blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5438				lines += wp->y_min_scanlines;
5439			} else {
5440				blocks++;
5441			}
5442
5443			/*
5444			 * Make sure result blocks for higher latency levels are
5445			 * atleast as high as level below the current level.
5446			 * Assumption in DDB algorithm optimization for special
5447			 * cases. Also covers Display WA #1125 for RC.
5448			 */
5449			if (result_prev->blocks > blocks)
5450				blocks = result_prev->blocks;
5451		}
5452	}
5453
5454	if (DISPLAY_VER(dev_priv) >= 11) {
5455		if (wp->y_tiled) {
5456			int extra_lines;
 
 
5457
5458			if (lines % wp->y_min_scanlines == 0)
5459				extra_lines = wp->y_min_scanlines;
5460			else
5461				extra_lines = wp->y_min_scanlines * 2 -
5462					lines % wp->y_min_scanlines;
5463
5464			min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
5465								 wp->plane_blocks_per_line);
5466		} else {
5467			min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
5468		}
5469	}
5470
5471	if (!skl_wm_has_lines(dev_priv, level))
5472		lines = 0;
 
 
 
 
 
 
 
5473
5474	if (lines > skl_wm_max_lines(dev_priv)) {
5475		/* reject it */
5476		result->min_ddb_alloc = U16_MAX;
5477		return;
 
5478	}
5479
5480	/*
5481	 * If lines is valid, assume we can use this watermark level
5482	 * for now.  We'll come back and disable it after we calculate the
5483	 * DDB allocation if it turns out we don't actually have enough
5484	 * blocks to satisfy it.
5485	 */
5486	result->blocks = blocks;
5487	result->lines = lines;
5488	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5489	result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
5490	result->enable = true;
5491
5492	if (DISPLAY_VER(dev_priv) < 12)
5493		result->can_sagv = latency >= dev_priv->sagv_block_time_us;
5494}
5495
5496static void
5497skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5498		      const struct skl_wm_params *wm_params,
5499		      struct skl_wm_level *levels)
5500{
5501	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5502	int level, max_level = ilk_wm_max_level(dev_priv);
5503	struct skl_wm_level *result_prev = &levels[0];
5504
5505	for (level = 0; level <= max_level; level++) {
5506		struct skl_wm_level *result = &levels[level];
5507		unsigned int latency = dev_priv->wm.skl_latency[level];
 
 
 
5508
5509		skl_compute_plane_wm(crtc_state, level, latency,
5510				     wm_params, result_prev, result);
 
 
 
 
 
 
 
 
 
 
 
 
5511
5512		result_prev = result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5513	}
5514}
5515
5516static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
5517				const struct skl_wm_params *wm_params,
5518				struct skl_plane_wm *plane_wm)
5519{
5520	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5521	struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
5522	struct skl_wm_level *levels = plane_wm->wm;
5523	unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5524
5525	skl_compute_plane_wm(crtc_state, 0, latency,
5526			     wm_params, &levels[0],
5527			     sagv_wm);
 
 
 
 
 
 
5528}
5529
5530static void skl_compute_transition_wm(struct drm_i915_private *dev_priv,
5531				      struct skl_wm_level *trans_wm,
5532				      const struct skl_wm_level *wm0,
5533				      const struct skl_wm_params *wp)
5534{
5535	u16 trans_min, trans_amount, trans_y_tile_min;
5536	u16 wm0_blocks, trans_offset, blocks;
 
 
5537
5538	/* Transition WM don't make any sense if ipc is disabled */
5539	if (!dev_priv->ipc_enabled)
5540		return;
 
 
 
5541
5542	/*
5543	 * WaDisableTWM:skl,kbl,cfl,bxt
5544	 * Transition WM are not recommended by HW team for GEN9
5545	 */
5546	if (DISPLAY_VER(dev_priv) == 9)
5547		return;
5548
5549	if (DISPLAY_VER(dev_priv) >= 11)
5550		trans_min = 4;
5551	else
5552		trans_min = 14;
5553
5554	/* Display WA #1140: glk,cnl */
5555	if (DISPLAY_VER(dev_priv) == 10)
5556		trans_amount = 0;
5557	else
5558		trans_amount = 10; /* This is configurable amount */
5559
5560	trans_offset = trans_min + trans_amount;
5561
5562	/*
5563	 * The spec asks for Selected Result Blocks for wm0 (the real value),
5564	 * not Result Blocks (the integer value). Pay attention to the capital
5565	 * letters. The value wm_l0->blocks is actually Result Blocks, but
5566	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5567	 * and since we later will have to get the ceiling of the sum in the
5568	 * transition watermarks calculation, we can just pretend Selected
5569	 * Result Blocks is Result Blocks minus 1 and it should work for the
5570	 * current platforms.
5571	 */
5572	wm0_blocks = wm0->blocks - 1;
5573
5574	if (wp->y_tiled) {
5575		trans_y_tile_min =
5576			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5577		blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
 
 
 
 
 
 
5578	} else {
5579		blocks = wm0_blocks + trans_offset;
 
 
 
5580	}
5581	blocks++;
5582
5583	/*
5584	 * Just assume we can enable the transition watermark.  After
5585	 * computing the DDB we'll come back and disable it if that
5586	 * assumption turns out to be false.
5587	 */
5588	trans_wm->blocks = blocks;
5589	trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
5590	trans_wm->enable = true;
 
 
 
 
 
5591}
5592
5593static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5594				     const struct intel_plane_state *plane_state,
5595				     enum plane_id plane_id, int color_plane)
5596{
5597	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5598	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5599	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5600	struct skl_wm_params wm_params;
5601	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
5602
5603	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5604					  &wm_params, color_plane);
5605	if (ret)
5606		return ret;
 
 
 
 
 
 
 
5607
5608	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5609
5610	skl_compute_transition_wm(dev_priv, &wm->trans_wm,
5611				  &wm->wm[0], &wm_params);
5612
5613	if (DISPLAY_VER(dev_priv) >= 12) {
5614		tgl_compute_sagv_wm(crtc_state, &wm_params, wm);
 
 
 
 
 
5615
5616		skl_compute_transition_wm(dev_priv, &wm->sagv.trans_wm,
5617					  &wm->sagv.wm0, &wm_params);
 
 
5618	}
5619
5620	return 0;
5621}
 
 
 
 
 
 
 
 
 
 
 
5622
5623static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5624				 const struct intel_plane_state *plane_state,
5625				 enum plane_id plane_id)
5626{
5627	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5628	struct skl_wm_params wm_params;
5629	int ret;
5630
5631	wm->is_planar = true;
 
 
 
 
 
 
 
5632
5633	/* uv plane watermarks must also be validated for NV12/Planar */
5634	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5635					  &wm_params, 1);
5636	if (ret)
5637		return ret;
5638
5639	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
 
 
 
5640
5641	return 0;
5642}
 
5643
5644static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5645			      const struct intel_plane_state *plane_state)
5646{
5647	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5648	enum plane_id plane_id = plane->id;
5649	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5650	const struct drm_framebuffer *fb = plane_state->hw.fb;
5651	int ret;
5652
5653	memset(wm, 0, sizeof(*wm));
 
 
 
5654
5655	if (!intel_wm_plane_visible(crtc_state, plane_state))
5656		return 0;
 
5657
5658	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5659					plane_id, 0);
5660	if (ret)
5661		return ret;
5662
5663	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5664		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5665					    plane_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5666		if (ret)
5667			return ret;
5668	}
5669
5670	return 0;
5671}
5672
5673static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5674			      const struct intel_plane_state *plane_state)
5675{
5676	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5677	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5678	enum plane_id plane_id = plane->id;
5679	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5680	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5681
5682	/* Watermarks calculated in master */
5683	if (plane_state->planar_slave)
5684		return 0;
5685
5686	memset(wm, 0, sizeof(*wm));
 
 
5687
5688	if (plane_state->planar_linked_plane) {
5689		const struct drm_framebuffer *fb = plane_state->hw.fb;
5690		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5691
5692		drm_WARN_ON(&dev_priv->drm,
5693			    !intel_wm_plane_visible(crtc_state, plane_state));
5694		drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
5695			    fb->format->num_planes == 1);
5696
5697		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5698						y_plane_id, 0);
5699		if (ret)
5700			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5701
5702		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5703						plane_id, 1);
5704		if (ret)
5705			return ret;
5706	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5707		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5708						plane_id, 0);
5709		if (ret)
5710			return ret;
5711	}
 
 
 
 
 
 
 
 
5712
5713	return 0;
 
 
5714}
5715
5716static int skl_build_pipe_wm(struct intel_atomic_state *state,
5717			     struct intel_crtc *crtc)
5718{
5719	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5720	struct intel_crtc_state *crtc_state =
5721		intel_atomic_get_new_crtc_state(state, crtc);
5722	const struct intel_plane_state *plane_state;
5723	struct intel_plane *plane;
5724	int ret, i;
5725
5726	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
5727		/*
5728		 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
5729		 * instead but we don't populate that correctly for NV12 Y
5730		 * planes so for now hack this.
5731		 */
5732		if (plane->pipe != crtc->pipe)
5733			continue;
5734
5735		if (DISPLAY_VER(dev_priv) >= 11)
5736			ret = icl_build_plane_wm(crtc_state, plane_state);
5737		else
5738			ret = skl_build_plane_wm(crtc_state, plane_state);
5739		if (ret)
5740			return ret;
 
 
 
 
 
 
 
 
 
5741	}
5742
5743	crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
5744
5745	return 0;
5746}
5747
5748static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5749				i915_reg_t reg,
5750				const struct skl_ddb_entry *entry)
5751{
5752	if (entry->end)
5753		intel_de_write_fw(dev_priv, reg,
5754				  (entry->end - 1) << 16 | entry->start);
5755	else
5756		intel_de_write_fw(dev_priv, reg, 0);
 
5757}
5758
5759static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5760			       i915_reg_t reg,
5761			       const struct skl_wm_level *level)
5762{
5763	u32 val = 0;
5764
5765	if (level->enable)
5766		val |= PLANE_WM_EN;
5767	if (level->ignore_lines)
5768		val |= PLANE_WM_IGNORE_LINES;
5769	val |= level->blocks;
5770	val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
5771
5772	intel_de_write_fw(dev_priv, reg, val);
5773}
5774
5775void skl_write_plane_wm(struct intel_plane *plane,
5776			const struct intel_crtc_state *crtc_state)
5777{
5778	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5779	int level, max_level = ilk_wm_max_level(dev_priv);
5780	enum plane_id plane_id = plane->id;
5781	enum pipe pipe = plane->pipe;
5782	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5783	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5784	const struct skl_ddb_entry *ddb_y =
5785		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5786	const struct skl_ddb_entry *ddb_uv =
5787		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5788
5789	for (level = 0; level <= max_level; level++)
5790		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5791				   skl_plane_wm_level(pipe_wm, plane_id, level));
5792
5793	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5794			   skl_plane_trans_wm(pipe_wm, plane_id));
5795
5796	if (HAS_HW_SAGV_WM(dev_priv)) {
5797		skl_write_wm_level(dev_priv, PLANE_WM_SAGV(pipe, plane_id),
5798				   &wm->sagv.wm0);
5799		skl_write_wm_level(dev_priv, PLANE_WM_SAGV_TRANS(pipe, plane_id),
5800				   &wm->sagv.trans_wm);
5801	}
5802
5803	if (DISPLAY_VER(dev_priv) >= 11) {
5804		skl_ddb_entry_write(dev_priv,
5805				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5806		return;
5807	}
5808
5809	if (wm->is_planar)
5810		swap(ddb_y, ddb_uv);
5811
5812	skl_ddb_entry_write(dev_priv,
5813			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5814	skl_ddb_entry_write(dev_priv,
5815			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5816}
5817
5818void skl_write_cursor_wm(struct intel_plane *plane,
5819			 const struct intel_crtc_state *crtc_state)
5820{
5821	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5822	int level, max_level = ilk_wm_max_level(dev_priv);
5823	enum plane_id plane_id = plane->id;
5824	enum pipe pipe = plane->pipe;
5825	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5826	const struct skl_ddb_entry *ddb =
5827		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5828
5829	for (level = 0; level <= max_level; level++)
5830		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5831				   skl_plane_wm_level(pipe_wm, plane_id, level));
5832
5833	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe),
5834			   skl_plane_trans_wm(pipe_wm, plane_id));
5835
5836	if (HAS_HW_SAGV_WM(dev_priv)) {
5837		const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
 
5838
5839		skl_write_wm_level(dev_priv, CUR_WM_SAGV(pipe),
5840				   &wm->sagv.wm0);
5841		skl_write_wm_level(dev_priv, CUR_WM_SAGV_TRANS(pipe),
5842				   &wm->sagv.trans_wm);
5843	}
5844
5845	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5846}
5847
5848bool skl_wm_level_equals(const struct skl_wm_level *l1,
5849			 const struct skl_wm_level *l2)
5850{
5851	return l1->enable == l2->enable &&
5852		l1->ignore_lines == l2->ignore_lines &&
5853		l1->lines == l2->lines &&
5854		l1->blocks == l2->blocks;
 
 
 
 
 
 
 
5855}
5856
5857static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5858				const struct skl_plane_wm *wm1,
5859				const struct skl_plane_wm *wm2)
5860{
5861	int level, max_level = ilk_wm_max_level(dev_priv);
5862
5863	for (level = 0; level <= max_level; level++) {
5864		/*
5865		 * We don't check uv_wm as the hardware doesn't actually
5866		 * use it. It only gets used for calculating the required
5867		 * ddb allocation.
5868		 */
5869		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5870			return false;
5871	}
5872
5873	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
5874		skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
5875		skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
5876}
5877
5878static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5879				    const struct skl_ddb_entry *b)
5880{
5881	return a->start < b->end && b->start < a->end;
 
 
5882}
5883
5884static void skl_ddb_entry_union(struct skl_ddb_entry *a,
5885				const struct skl_ddb_entry *b)
5886{
5887	if (a->end && b->end) {
5888		a->start = min(a->start, b->start);
5889		a->end = max(a->end, b->end);
5890	} else if (b->end) {
5891		a->start = b->start;
5892		a->end = b->end;
5893	}
5894}
5895
5896bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5897				 const struct skl_ddb_entry *entries,
5898				 int num_entries, int ignore_idx)
5899{
5900	int i;
5901
5902	for (i = 0; i < num_entries; i++) {
5903		if (i != ignore_idx &&
5904		    skl_ddb_entries_overlap(ddb, &entries[i]))
5905			return true;
5906	}
5907
5908	return false;
5909}
5910
5911static int
5912skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5913			    struct intel_crtc_state *new_crtc_state)
5914{
5915	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
5916	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5917	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5918	struct intel_plane *plane;
 
 
 
 
 
 
 
 
5919
5920	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5921		struct intel_plane_state *plane_state;
5922		enum plane_id plane_id = plane->id;
5923
5924		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5925					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5926		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5927					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5928			continue;
5929
5930		plane_state = intel_atomic_get_plane_state(state, plane);
5931		if (IS_ERR(plane_state))
5932			return PTR_ERR(plane_state);
5933
5934		new_crtc_state->update_planes |= BIT(plane_id);
 
 
 
 
 
 
 
 
 
 
 
5935	}
5936
5937	return 0;
 
 
 
 
 
 
5938}
5939
5940static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
5941{
5942	struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev);
5943	u8 enabled_slices;
5944	enum pipe pipe;
5945
5946	/*
5947	 * FIXME: For now we always enable slice S1 as per
5948	 * the Bspec display initialization sequence.
5949	 */
5950	enabled_slices = BIT(DBUF_S1);
5951
5952	for_each_pipe(dev_priv, pipe)
5953		enabled_slices |= dbuf_state->slices[pipe];
5954
5955	return enabled_slices;
5956}
5957
5958static int
5959skl_compute_ddb(struct intel_atomic_state *state)
5960{
5961	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5962	const struct intel_dbuf_state *old_dbuf_state;
5963	struct intel_dbuf_state *new_dbuf_state = NULL;
5964	const struct intel_crtc_state *old_crtc_state;
5965	struct intel_crtc_state *new_crtc_state;
5966	struct intel_crtc *crtc;
5967	int ret, i;
5968
5969	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
5970		new_dbuf_state = intel_atomic_get_dbuf_state(state);
5971		if (IS_ERR(new_dbuf_state))
5972			return PTR_ERR(new_dbuf_state);
5973
5974		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
 
 
 
 
 
 
 
 
 
 
5975		break;
5976	}
 
5977
5978	if (!new_dbuf_state)
5979		return 0;
 
 
 
 
 
 
 
 
5980
5981	new_dbuf_state->active_pipes =
5982		intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
 
 
5983
5984	if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
5985		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
5986		if (ret)
5987			return ret;
5988	}
5989
5990	for_each_intel_crtc(&dev_priv->drm, crtc) {
5991		enum pipe pipe = crtc->pipe;
5992
5993		new_dbuf_state->slices[pipe] =
5994			skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes);
 
5995
5996		if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
5997			continue;
5998
5999		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6000		if (ret)
6001			return ret;
6002	}
6003
6004	new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
 
 
 
6005
6006	if (IS_ALDERLAKE_P(dev_priv))
6007		new_dbuf_state->joined_mbus = adlp_check_mbus_joined(new_dbuf_state->active_pipes);
6008
6009	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
6010	    old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6011		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
6012		if (ret)
6013			return ret;
6014
6015		if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6016			/* TODO: Implement vblank synchronized MBUS joining changes */
6017			ret = intel_modeset_all_pipes(state);
6018			if (ret)
6019				return ret;
6020		}
6021
6022		drm_dbg_kms(&dev_priv->drm,
6023			    "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
6024			    old_dbuf_state->enabled_slices,
6025			    new_dbuf_state->enabled_slices,
6026			    INTEL_INFO(dev_priv)->dbuf.slice_mask,
6027			    yesno(old_dbuf_state->joined_mbus),
6028			    yesno(new_dbuf_state->joined_mbus));
6029	}
 
6030
6031	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6032		enum pipe pipe = crtc->pipe;
 
 
 
 
 
 
 
 
6033
6034		new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
 
 
 
6035
6036		if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
6037			continue;
 
 
 
6038
6039		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6040		if (ret)
6041			return ret;
6042	}
 
6043
6044	for_each_intel_crtc(&dev_priv->drm, crtc) {
6045		ret = skl_crtc_allocate_ddb(state, crtc);
6046		if (ret)
6047			return ret;
6048	}
6049
6050	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6051					    new_crtc_state, i) {
6052		ret = skl_allocate_plane_ddb(state, crtc);
6053		if (ret)
6054			return ret;
6055
6056		ret = skl_ddb_add_affected_planes(old_crtc_state,
6057						  new_crtc_state);
6058		if (ret)
6059			return ret;
6060	}
6061
6062	return 0;
6063}
6064
6065static char enast(bool enable)
6066{
6067	return enable ? '*' : ' ';
6068}
6069
6070static void
6071skl_print_wm_changes(struct intel_atomic_state *state)
6072{
6073	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6074	const struct intel_crtc_state *old_crtc_state;
6075	const struct intel_crtc_state *new_crtc_state;
6076	struct intel_plane *plane;
6077	struct intel_crtc *crtc;
6078	int i;
6079
6080	if (!drm_debug_enabled(DRM_UT_KMS))
6081		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6082
6083	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6084					    new_crtc_state, i) {
6085		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
6086
6087		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
6088		new_pipe_wm = &new_crtc_state->wm.skl.optimal;
6089
6090		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6091			enum plane_id plane_id = plane->id;
6092			const struct skl_ddb_entry *old, *new;
6093
6094			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
6095			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
6096
6097			if (skl_ddb_entry_equal(old, new))
6098				continue;
6099
6100			drm_dbg_kms(&dev_priv->drm,
6101				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
6102				    plane->base.base.id, plane->base.name,
6103				    old->start, old->end, new->start, new->end,
6104				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
6105		}
6106
6107		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6108			enum plane_id plane_id = plane->id;
6109			const struct skl_plane_wm *old_wm, *new_wm;
6110
6111			old_wm = &old_pipe_wm->planes[plane_id];
6112			new_wm = &new_pipe_wm->planes[plane_id];
6113
6114			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
6115				continue;
6116
6117			drm_dbg_kms(&dev_priv->drm,
6118				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
6119				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
6120				    plane->base.base.id, plane->base.name,
6121				    enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
6122				    enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
6123				    enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
6124				    enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
6125				    enast(old_wm->trans_wm.enable),
6126				    enast(old_wm->sagv.wm0.enable),
6127				    enast(old_wm->sagv.trans_wm.enable),
6128				    enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
6129				    enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
6130				    enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
6131				    enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
6132				    enast(new_wm->trans_wm.enable),
6133				    enast(new_wm->sagv.wm0.enable),
6134				    enast(new_wm->sagv.trans_wm.enable));
6135
6136			drm_dbg_kms(&dev_priv->drm,
6137				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
6138				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
6139				    plane->base.base.id, plane->base.name,
6140				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
6141				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
6142				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
6143				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
6144				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
6145				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
6146				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
6147				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
6148				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
6149				    enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
6150				    enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
6151				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
6152				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
6153				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
6154				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
6155				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
6156				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
6157				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
6158				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
6159				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
6160				    enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
6161				    enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
6162
6163			drm_dbg_kms(&dev_priv->drm,
6164				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6165				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6166				    plane->base.base.id, plane->base.name,
6167				    old_wm->wm[0].blocks, old_wm->wm[1].blocks,
6168				    old_wm->wm[2].blocks, old_wm->wm[3].blocks,
6169				    old_wm->wm[4].blocks, old_wm->wm[5].blocks,
6170				    old_wm->wm[6].blocks, old_wm->wm[7].blocks,
6171				    old_wm->trans_wm.blocks,
6172				    old_wm->sagv.wm0.blocks,
6173				    old_wm->sagv.trans_wm.blocks,
6174				    new_wm->wm[0].blocks, new_wm->wm[1].blocks,
6175				    new_wm->wm[2].blocks, new_wm->wm[3].blocks,
6176				    new_wm->wm[4].blocks, new_wm->wm[5].blocks,
6177				    new_wm->wm[6].blocks, new_wm->wm[7].blocks,
6178				    new_wm->trans_wm.blocks,
6179				    new_wm->sagv.wm0.blocks,
6180				    new_wm->sagv.trans_wm.blocks);
6181
6182			drm_dbg_kms(&dev_priv->drm,
6183				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6184				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6185				    plane->base.base.id, plane->base.name,
6186				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
6187				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
6188				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
6189				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
6190				    old_wm->trans_wm.min_ddb_alloc,
6191				    old_wm->sagv.wm0.min_ddb_alloc,
6192				    old_wm->sagv.trans_wm.min_ddb_alloc,
6193				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
6194				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
6195				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
6196				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
6197				    new_wm->trans_wm.min_ddb_alloc,
6198				    new_wm->sagv.wm0.min_ddb_alloc,
6199				    new_wm->sagv.trans_wm.min_ddb_alloc);
6200		}
6201	}
6202}
6203
6204static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
6205					 const struct skl_pipe_wm *old_pipe_wm,
6206					 const struct skl_pipe_wm *new_pipe_wm)
6207{
6208	struct drm_i915_private *i915 = to_i915(plane->base.dev);
6209	int level, max_level = ilk_wm_max_level(i915);
6210
6211	for (level = 0; level <= max_level; level++) {
6212		/*
6213		 * We don't check uv_wm as the hardware doesn't actually
6214		 * use it. It only gets used for calculating the required
6215		 * ddb allocation.
6216		 */
6217		if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
6218					 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
6219			return false;
6220	}
6221
6222	if (HAS_HW_SAGV_WM(i915)) {
6223		const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
6224		const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
 
 
 
 
6225
6226		if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
6227		    !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
6228			return false;
6229	}
 
6230
6231	return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
6232				   skl_plane_trans_wm(new_pipe_wm, plane->id));
6233}
6234
6235/*
6236 * To make sure the cursor watermark registers are always consistent
6237 * with our computed state the following scenario needs special
6238 * treatment:
6239 *
6240 * 1. enable cursor
6241 * 2. move cursor entirely offscreen
6242 * 3. disable cursor
6243 *
6244 * Step 2. does call .disable_plane() but does not zero the watermarks
6245 * (since we consider an offscreen cursor still active for the purposes
6246 * of watermarks). Step 3. would not normally call .disable_plane()
6247 * because the actual plane visibility isn't changing, and we don't
6248 * deallocate the cursor ddb until the pipe gets disabled. So we must
6249 * force step 3. to call .disable_plane() to update the watermark
6250 * registers properly.
6251 *
6252 * Other planes do not suffer from this issues as their watermarks are
6253 * calculated based on the actual plane visibility. The only time this
6254 * can trigger for the other planes is during the initial readout as the
6255 * default value of the watermarks registers is not zero.
6256 */
6257static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
6258				      struct intel_crtc *crtc)
6259{
6260	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6261	const struct intel_crtc_state *old_crtc_state =
6262		intel_atomic_get_old_crtc_state(state, crtc);
6263	struct intel_crtc_state *new_crtc_state =
6264		intel_atomic_get_new_crtc_state(state, crtc);
6265	struct intel_plane *plane;
6266
6267	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6268		struct intel_plane_state *plane_state;
6269		enum plane_id plane_id = plane->id;
6270
6271		/*
6272		 * Force a full wm update for every plane on modeset.
6273		 * Required because the reset value of the wm registers
6274		 * is non-zero, whereas we want all disabled planes to
6275		 * have zero watermarks. So if we turn off the relevant
6276		 * power well the hardware state will go out of sync
6277		 * with the software state.
6278		 */
6279		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6280		    skl_plane_selected_wm_equals(plane,
6281						 &old_crtc_state->wm.skl.optimal,
6282						 &new_crtc_state->wm.skl.optimal))
6283			continue;
6284
6285		plane_state = intel_atomic_get_plane_state(state, plane);
6286		if (IS_ERR(plane_state))
6287			return PTR_ERR(plane_state);
6288
6289		new_crtc_state->update_planes |= BIT(plane_id);
6290	}
6291
6292	return 0;
6293}
6294
6295static int
6296skl_compute_wm(struct intel_atomic_state *state)
6297{
6298	struct intel_crtc *crtc;
6299	struct intel_crtc_state *new_crtc_state;
6300	int ret, i;
 
 
 
 
 
6301
6302	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6303		ret = skl_build_pipe_wm(state, crtc);
6304		if (ret)
6305			return ret;
6306	}
6307
6308	ret = skl_compute_ddb(state);
6309	if (ret)
6310		return ret;
 
 
6311
6312	ret = intel_compute_sagv_mask(state);
6313	if (ret)
6314		return ret;
 
 
6315
6316	/*
6317	 * skl_compute_ddb() will have adjusted the final watermarks
6318	 * based on how much ddb is available. Now we can actually
6319	 * check if the final watermarks changed.
6320	 */
6321	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6322		ret = skl_wm_add_affected_planes(state, crtc);
6323		if (ret)
6324			return ret;
6325	}
6326
6327	skl_print_wm_changes(state);
 
 
 
 
 
 
6328
6329	return 0;
6330}
 
6331
6332static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6333				  struct intel_wm_config *config)
6334{
6335	struct intel_crtc *crtc;
6336
6337	/* Compute the currently _active_ config */
6338	for_each_intel_crtc(&dev_priv->drm, crtc) {
6339		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
6340
6341		if (!wm->pipe_enabled)
6342			continue;
 
 
 
 
6343
6344		config->sprites_enabled |= wm->sprites_enabled;
6345		config->sprites_scaled |= wm->sprites_scaled;
6346		config->num_pipes_active++;
6347	}
6348}
6349
6350static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6351{
6352	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6353	struct ilk_wm_maximums max;
6354	struct intel_wm_config config = {};
6355	struct ilk_wm_values results = {};
6356	enum intel_ddb_partitioning partitioning;
6357
6358	ilk_compute_wm_config(dev_priv, &config);
6359
6360	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
6361	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
 
 
 
6362
6363	/* 5/6 split only in single pipe config on IVB+ */
6364	if (DISPLAY_VER(dev_priv) >= 7 &&
6365	    config.num_pipes_active == 1 && config.sprites_enabled) {
6366		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
6367		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6368
6369		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6370	} else {
6371		best_lp_wm = &lp_wm_1_2;
6372	}
6373
6374	partitioning = (best_lp_wm == &lp_wm_1_2) ?
6375		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6376
6377	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
 
 
 
6378
6379	ilk_write_wm_values(dev_priv, &results);
6380}
 
6381
6382static void ilk_initial_watermarks(struct intel_atomic_state *state,
6383				   struct intel_crtc *crtc)
6384{
6385	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6386	const struct intel_crtc_state *crtc_state =
6387		intel_atomic_get_new_crtc_state(state, crtc);
6388
6389	mutex_lock(&dev_priv->wm.wm_mutex);
6390	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6391	ilk_program_watermarks(dev_priv);
6392	mutex_unlock(&dev_priv->wm.wm_mutex);
6393}
6394
6395static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6396				    struct intel_crtc *crtc)
6397{
6398	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6399	const struct intel_crtc_state *crtc_state =
6400		intel_atomic_get_new_crtc_state(state, crtc);
 
 
 
 
6401
6402	if (!crtc_state->wm.need_postvbl_update)
6403		return;
6404
6405	mutex_lock(&dev_priv->wm.wm_mutex);
6406	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
6407	ilk_program_watermarks(dev_priv);
6408	mutex_unlock(&dev_priv->wm.wm_mutex);
6409}
6410
6411static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6412{
6413	level->enable = val & PLANE_WM_EN;
6414	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6415	level->blocks = val & PLANE_WM_BLOCKS_MASK;
6416	level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
6417}
6418
6419void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6420			      struct skl_pipe_wm *out)
6421{
6422	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6423	enum pipe pipe = crtc->pipe;
6424	int level, max_level;
6425	enum plane_id plane_id;
6426	u32 val;
6427
6428	max_level = ilk_wm_max_level(dev_priv);
6429
6430	for_each_plane_id_on_crtc(crtc, plane_id) {
6431		struct skl_plane_wm *wm = &out->planes[plane_id];
 
 
 
 
 
6432
6433		for (level = 0; level <= max_level; level++) {
6434			if (plane_id != PLANE_CURSOR)
6435				val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level));
6436			else
6437				val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level));
6438
6439			skl_wm_level_from_reg_val(val, &wm->wm[level]);
6440		}
6441
6442		if (plane_id != PLANE_CURSOR)
6443			val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id));
6444		else
6445			val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe));
 
 
 
6446
6447		skl_wm_level_from_reg_val(val, &wm->trans_wm);
 
 
 
 
 
 
 
6448
6449		if (HAS_HW_SAGV_WM(dev_priv)) {
6450			if (plane_id != PLANE_CURSOR)
6451				val = intel_uncore_read(&dev_priv->uncore,
6452							PLANE_WM_SAGV(pipe, plane_id));
6453			else
6454				val = intel_uncore_read(&dev_priv->uncore,
6455							CUR_WM_SAGV(pipe));
6456
6457			skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
 
6458
6459			if (plane_id != PLANE_CURSOR)
6460				val = intel_uncore_read(&dev_priv->uncore,
6461							PLANE_WM_SAGV_TRANS(pipe, plane_id));
6462			else
6463				val = intel_uncore_read(&dev_priv->uncore,
6464							CUR_WM_SAGV_TRANS(pipe));
6465
6466			skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
6467		} else if (DISPLAY_VER(dev_priv) >= 12) {
6468			wm->sagv.wm0 = wm->wm[0];
6469			wm->sagv.trans_wm = wm->trans_wm;
6470		}
6471	}
6472}
6473
6474void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6475{
6476	struct intel_dbuf_state *dbuf_state =
6477		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
6478	struct intel_crtc *crtc;
 
 
 
 
 
 
6479
6480	if (IS_ALDERLAKE_P(dev_priv))
6481		dbuf_state->joined_mbus = intel_de_read(dev_priv, MBUS_CTL) & MBUS_JOIN;
6482
6483	for_each_intel_crtc(&dev_priv->drm, crtc) {
6484		struct intel_crtc_state *crtc_state =
6485			to_intel_crtc_state(crtc->base.state);
6486		enum pipe pipe = crtc->pipe;
6487		unsigned int mbus_offset;
6488		enum plane_id plane_id;
6489
6490		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6491		crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
 
 
6492
6493		memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
6494
6495		for_each_plane_id_on_crtc(crtc, plane_id) {
6496			struct skl_ddb_entry *ddb_y =
6497				&crtc_state->wm.skl.plane_ddb_y[plane_id];
6498			struct skl_ddb_entry *ddb_uv =
6499				&crtc_state->wm.skl.plane_ddb_uv[plane_id];
6500
6501			skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe,
6502						   plane_id, ddb_y, ddb_uv);
6503
6504			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
6505			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_uv);
6506		}
 
 
 
 
6507
6508		dbuf_state->slices[pipe] =
6509			skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes);
6510
6511		dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
 
6512
6513		/*
6514		 * Used for checking overlaps, so we need absolute
6515		 * offsets instead of MBUS relative offsets.
6516		 */
6517		mbus_offset = mbus_ddb_offset(dev_priv, dbuf_state->slices[pipe]);
6518		crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
6519		crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
6520
6521		drm_dbg_kms(&dev_priv->drm,
6522			    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
6523			    crtc->base.base.id, crtc->base.name,
6524			    dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
6525			    dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
6526			    yesno(dbuf_state->joined_mbus));
6527	}
6528
6529	dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices;
6530}
6531
6532static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6533{
6534	struct drm_device *dev = crtc->base.dev;
6535	struct drm_i915_private *dev_priv = to_i915(dev);
6536	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6537	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
6538	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6539	enum pipe pipe = crtc->pipe;
6540
6541	hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
6542
6543	memset(active, 0, sizeof(*active));
 
 
6544
6545	active->pipe_enabled = crtc->active;
 
 
6546
6547	if (active->pipe_enabled) {
6548		u32 tmp = hw->wm_pipe[pipe];
6549
6550		/*
6551		 * For active pipes LP0 watermark is marked as
6552		 * enabled, and LP1+ watermaks as disabled since
6553		 * we can't really reverse compute them in case
6554		 * multiple pipes are active.
6555		 */
6556		active->wm[0].enable = true;
6557		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
6558		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
6559		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
6560	} else {
6561		int level, max_level = ilk_wm_max_level(dev_priv);
 
6562
6563		/*
6564		 * For inactive pipes, all watermark levels
6565		 * should be marked as enabled but zeroed,
6566		 * which is what we'd compute them to.
6567		 */
6568		for (level = 0; level <= max_level; level++)
6569			active->wm[level].enable = true;
6570	}
6571
6572	crtc->wm.active.ilk = *active;
 
 
 
6573}
6574
6575#define _FW_WM(value, plane) \
6576	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6577#define _FW_WM_VLV(value, plane) \
6578	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
 
 
6579
6580static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6581			       struct g4x_wm_values *wm)
6582{
6583	u32 tmp;
6584
6585	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6586	wm->sr.plane = _FW_WM(tmp, SR);
6587	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6588	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6589	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6590
6591	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6592	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6593	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6594	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6595	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6596	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6597	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6598
6599	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6600	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6601	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6602	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6603	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6604}
6605
6606static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6607			       struct vlv_wm_values *wm)
6608{
6609	enum pipe pipe;
6610	u32 tmp;
 
 
 
 
 
 
 
 
6611
6612	for_each_pipe(dev_priv, pipe) {
6613		tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
6614
6615		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6616			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6617		wm->ddl[pipe].plane[PLANE_CURSOR] =
6618			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6619		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6620			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6621		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6622			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6623	}
6624
6625	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6626	wm->sr.plane = _FW_WM(tmp, SR);
6627	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6628	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6629	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6630
6631	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6632	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6633	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6634	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6635
6636	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6637	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
 
6638
6639	if (IS_CHERRYVIEW(dev_priv)) {
6640		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
6641		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6642		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6643
6644		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
6645		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6646		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6647
6648		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
6649		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6650		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6651
6652		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6653		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6654		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6655		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6656		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6657		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6658		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6659		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6660		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6661		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6662		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6663	} else {
6664		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
6665		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6666		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6667
6668		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6669		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6670		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6671		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6672		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6673		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6674		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6675		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6676	}
6677}
6678
6679#undef _FW_WM
6680#undef _FW_WM_VLV
6681
6682void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6683{
6684	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6685	struct intel_crtc *crtc;
6686
6687	g4x_read_wm_values(dev_priv, wm);
 
6688
6689	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
6690
6691	for_each_intel_crtc(&dev_priv->drm, crtc) {
6692		struct intel_crtc_state *crtc_state =
6693			to_intel_crtc_state(crtc->base.state);
6694		struct g4x_wm_state *active = &crtc->wm.active.g4x;
6695		struct g4x_pipe_wm *raw;
6696		enum pipe pipe = crtc->pipe;
6697		enum plane_id plane_id;
6698		int level, max_level;
6699
6700		active->cxsr = wm->cxsr;
6701		active->hpll_en = wm->hpll_en;
6702		active->fbc_en = wm->fbc_en;
6703
6704		active->sr = wm->sr;
6705		active->hpll = wm->hpll;
6706
6707		for_each_plane_id_on_crtc(crtc, plane_id) {
6708			active->wm.plane[plane_id] =
6709				wm->pipe[pipe].plane[plane_id];
6710		}
6711
6712		if (wm->cxsr && wm->hpll_en)
6713			max_level = G4X_WM_LEVEL_HPLL;
6714		else if (wm->cxsr)
6715			max_level = G4X_WM_LEVEL_SR;
6716		else
6717			max_level = G4X_WM_LEVEL_NORMAL;
6718
6719		level = G4X_WM_LEVEL_NORMAL;
6720		raw = &crtc_state->wm.g4x.raw[level];
6721		for_each_plane_id_on_crtc(crtc, plane_id)
6722			raw->plane[plane_id] = active->wm.plane[plane_id];
6723
6724		if (++level > max_level)
6725			goto out;
6726
6727		raw = &crtc_state->wm.g4x.raw[level];
6728		raw->plane[PLANE_PRIMARY] = active->sr.plane;
6729		raw->plane[PLANE_CURSOR] = active->sr.cursor;
6730		raw->plane[PLANE_SPRITE0] = 0;
6731		raw->fbc = active->sr.fbc;
6732
6733		if (++level > max_level)
6734			goto out;
6735
6736		raw = &crtc_state->wm.g4x.raw[level];
6737		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6738		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6739		raw->plane[PLANE_SPRITE0] = 0;
6740		raw->fbc = active->hpll.fbc;
6741
6742	out:
6743		for_each_plane_id_on_crtc(crtc, plane_id)
6744			g4x_raw_plane_wm_set(crtc_state, level,
6745					     plane_id, USHRT_MAX);
6746		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6747
6748		crtc_state->wm.g4x.optimal = *active;
6749		crtc_state->wm.g4x.intermediate = *active;
6750
6751		drm_dbg_kms(&dev_priv->drm,
6752			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6753			    pipe_name(pipe),
6754			    wm->pipe[pipe].plane[PLANE_PRIMARY],
6755			    wm->pipe[pipe].plane[PLANE_CURSOR],
6756			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6757	}
6758
6759	drm_dbg_kms(&dev_priv->drm,
6760		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6761		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6762	drm_dbg_kms(&dev_priv->drm,
6763		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6764		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6765	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6766		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6767}
6768
6769void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
6770{
6771	struct intel_plane *plane;
6772	struct intel_crtc *crtc;
6773
6774	mutex_lock(&dev_priv->wm.wm_mutex);
 
 
 
6775
6776	for_each_intel_plane(&dev_priv->drm, plane) {
6777		struct intel_crtc *crtc =
6778			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6779		struct intel_crtc_state *crtc_state =
6780			to_intel_crtc_state(crtc->base.state);
6781		struct intel_plane_state *plane_state =
6782			to_intel_plane_state(plane->base.state);
6783		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6784		enum plane_id plane_id = plane->id;
6785		int level;
6786
6787		if (plane_state->uapi.visible)
6788			continue;
6789
6790		for (level = 0; level < 3; level++) {
6791			struct g4x_pipe_wm *raw =
6792				&crtc_state->wm.g4x.raw[level];
6793
6794			raw->plane[plane_id] = 0;
6795			wm_state->wm.plane[plane_id] = 0;
6796		}
6797
6798		if (plane_id == PLANE_PRIMARY) {
6799			for (level = 0; level < 3; level++) {
6800				struct g4x_pipe_wm *raw =
6801					&crtc_state->wm.g4x.raw[level];
6802				raw->fbc = 0;
6803			}
 
 
 
6804
6805			wm_state->sr.fbc = 0;
6806			wm_state->hpll.fbc = 0;
6807			wm_state->fbc_en = false;
6808		}
6809	}
 
6810
6811	for_each_intel_crtc(&dev_priv->drm, crtc) {
6812		struct intel_crtc_state *crtc_state =
6813			to_intel_crtc_state(crtc->base.state);
6814
6815		crtc_state->wm.g4x.intermediate =
6816			crtc_state->wm.g4x.optimal;
6817		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6818	}
6819
6820	g4x_program_watermarks(dev_priv);
 
6821
6822	mutex_unlock(&dev_priv->wm.wm_mutex);
6823}
 
6824
6825void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
6826{
6827	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6828	struct intel_crtc *crtc;
6829	u32 val;
6830
6831	vlv_read_wm_values(dev_priv, wm);
 
 
 
 
 
6832
6833	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6834	wm->level = VLV_WM_LEVEL_PM2;
6835
6836	if (IS_CHERRYVIEW(dev_priv)) {
6837		vlv_punit_get(dev_priv);
6838
6839		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6840		if (val & DSP_MAXFIFO_PM5_ENABLE)
6841			wm->level = VLV_WM_LEVEL_PM5;
6842
6843		/*
6844		 * If DDR DVFS is disabled in the BIOS, Punit
6845		 * will never ack the request. So if that happens
6846		 * assume we don't have to enable/disable DDR DVFS
6847		 * dynamically. To test that just set the REQ_ACK
6848		 * bit to poke the Punit, but don't change the
6849		 * HIGH/LOW bits so that we don't actually change
6850		 * the current state.
6851		 */
6852		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6853		val |= FORCE_DDR_FREQ_REQ_ACK;
6854		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6855
6856		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6857			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6858			drm_dbg_kms(&dev_priv->drm,
6859				    "Punit not acking DDR DVFS request, "
6860				    "assuming DDR DVFS is disabled\n");
6861			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6862		} else {
6863			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6864			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6865				wm->level = VLV_WM_LEVEL_DDR_DVFS;
6866		}
6867
6868		vlv_punit_put(dev_priv);
6869	}
6870
6871	for_each_intel_crtc(&dev_priv->drm, crtc) {
6872		struct intel_crtc_state *crtc_state =
6873			to_intel_crtc_state(crtc->base.state);
6874		struct vlv_wm_state *active = &crtc->wm.active.vlv;
6875		const struct vlv_fifo_state *fifo_state =
6876			&crtc_state->wm.vlv.fifo_state;
6877		enum pipe pipe = crtc->pipe;
6878		enum plane_id plane_id;
6879		int level;
6880
6881		vlv_get_fifo_size(crtc_state);
 
 
6882
6883		active->num_levels = wm->level + 1;
6884		active->cxsr = wm->cxsr;
 
 
 
 
 
 
 
 
6885
6886		for (level = 0; level < active->num_levels; level++) {
6887			struct g4x_pipe_wm *raw =
6888				&crtc_state->wm.vlv.raw[level];
 
 
 
6889
6890			active->sr[level].plane = wm->sr.plane;
6891			active->sr[level].cursor = wm->sr.cursor;
6892
6893			for_each_plane_id_on_crtc(crtc, plane_id) {
6894				active->wm[level].plane[plane_id] =
6895					wm->pipe[pipe].plane[plane_id];
6896
6897				raw->plane[plane_id] =
6898					vlv_invert_wm_value(active->wm[level].plane[plane_id],
6899							    fifo_state->plane[plane_id]);
6900			}
6901		}
6902
6903		for_each_plane_id_on_crtc(crtc, plane_id)
6904			vlv_raw_plane_wm_set(crtc_state, level,
6905					     plane_id, USHRT_MAX);
6906		vlv_invalidate_wms(crtc, active, level);
6907
6908		crtc_state->wm.vlv.optimal = *active;
6909		crtc_state->wm.vlv.intermediate = *active;
 
 
 
 
 
 
 
 
 
 
6910
6911		drm_dbg_kms(&dev_priv->drm,
6912			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6913			    pipe_name(pipe),
6914			    wm->pipe[pipe].plane[PLANE_PRIMARY],
6915			    wm->pipe[pipe].plane[PLANE_CURSOR],
6916			    wm->pipe[pipe].plane[PLANE_SPRITE0],
6917			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6918	}
 
6919
6920	drm_dbg_kms(&dev_priv->drm,
6921		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6922		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
 
 
 
 
 
 
 
 
 
 
 
 
 
6923}
6924
6925void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6926{
6927	struct intel_plane *plane;
6928	struct intel_crtc *crtc;
 
 
6929
6930	mutex_lock(&dev_priv->wm.wm_mutex);
 
 
6931
6932	for_each_intel_plane(&dev_priv->drm, plane) {
6933		struct intel_crtc *crtc =
6934			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6935		struct intel_crtc_state *crtc_state =
6936			to_intel_crtc_state(crtc->base.state);
6937		struct intel_plane_state *plane_state =
6938			to_intel_plane_state(plane->base.state);
6939		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6940		const struct vlv_fifo_state *fifo_state =
6941			&crtc_state->wm.vlv.fifo_state;
6942		enum plane_id plane_id = plane->id;
6943		int level;
6944
6945		if (plane_state->uapi.visible)
6946			continue;
 
 
6947
6948		for (level = 0; level < wm_state->num_levels; level++) {
6949			struct g4x_pipe_wm *raw =
6950				&crtc_state->wm.vlv.raw[level];
 
 
 
 
6951
6952			raw->plane[plane_id] = 0;
 
 
 
 
 
 
 
 
 
 
6953
6954			wm_state->wm[level].plane[plane_id] =
6955				vlv_invert_wm_value(raw->plane[plane_id],
6956						    fifo_state->plane[plane_id]);
6957		}
6958	}
6959
6960	for_each_intel_crtc(&dev_priv->drm, crtc) {
6961		struct intel_crtc_state *crtc_state =
6962			to_intel_crtc_state(crtc->base.state);
 
 
 
 
 
 
 
 
 
 
 
6963
6964		crtc_state->wm.vlv.intermediate =
6965			crtc_state->wm.vlv.optimal;
6966		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6967	}
6968
6969	vlv_program_watermarks(dev_priv);
6970
6971	mutex_unlock(&dev_priv->wm.wm_mutex);
6972}
6973
6974/*
6975 * FIXME should probably kill this and improve
6976 * the real watermark readout/sanitation instead
6977 */
6978static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6979{
6980	intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM1_LP_SR_EN);
6981	intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM1_LP_SR_EN);
6982	intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM1_LP_SR_EN);
6983
6984	/*
6985	 * Don't touch WM1S_LP_EN here.
6986	 * Doing so could cause underruns.
6987	 */
 
 
 
 
 
 
 
 
 
6988}
6989
6990void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6991{
6992	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6993	struct intel_crtc *crtc;
6994
6995	ilk_init_lp_watermarks(dev_priv);
 
 
 
6996
6997	for_each_intel_crtc(&dev_priv->drm, crtc)
6998		ilk_pipe_wm_get_hw_state(crtc);
 
6999
7000	hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
7001	hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
7002	hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
7003
7004	hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
7005	if (DISPLAY_VER(dev_priv) >= 7) {
7006		hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
7007		hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
7008	}
7009
7010	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7011		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
7012			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7013	else if (IS_IVYBRIDGE(dev_priv))
7014		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
7015			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7016
7017	hw->enable_fbc_wm =
7018		!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
7019}
7020
7021/**
7022 * intel_update_watermarks - update FIFO watermark values based on current modes
7023 * @crtc: the #intel_crtc on which to compute the WM
7024 *
7025 * Calculate watermark values for the various WM regs based on current mode
7026 * and plane configuration.
7027 *
7028 * There are several cases to deal with here:
7029 *   - normal (i.e. non-self-refresh)
7030 *   - self-refresh (SR) mode
7031 *   - lines are large relative to FIFO size (buffer can hold up to 2)
7032 *   - lines are small relative to FIFO size (buffer can hold more than 2
7033 *     lines), so need to account for TLB latency
7034 *
7035 *   The normal calculation is:
7036 *     watermark = dotclock * bytes per pixel * latency
7037 *   where latency is platform & configuration dependent (we assume pessimal
7038 *   values here).
7039 *
7040 *   The SR calculation is:
7041 *     watermark = (trunc(latency/line time)+1) * surface width *
7042 *       bytes per pixel
7043 *   where
7044 *     line time = htotal / dotclock
7045 *     surface width = hdisplay for normal plane and 64 for cursor
7046 *   and latency is assumed to be high, as above.
7047 *
7048 * The final value programmed to the register should always be rounded up,
7049 * and include an extra 2 entries to account for clock crossings.
7050 *
7051 * We don't use the sprite, so we can ignore that.  And on Crestline we have
7052 * to set the non-SR watermarks to 8.
7053 */
7054void intel_update_watermarks(struct intel_crtc *crtc)
7055{
7056	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7057
7058	if (dev_priv->display.update_wm)
7059		dev_priv->display.update_wm(crtc);
 
7060}
7061
7062void intel_enable_ipc(struct drm_i915_private *dev_priv)
7063{
7064	u32 val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7065
7066	if (!HAS_IPC(dev_priv))
7067		return;
7068
7069	val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
7070
7071	if (dev_priv->ipc_enabled)
7072		val |= DISP_IPC_ENABLE;
7073	else
7074		val &= ~DISP_IPC_ENABLE;
7075
7076	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
7077}
7078
7079static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
7080{
7081	/* Display WA #0477 WaDisableIPC: skl */
7082	if (IS_SKYLAKE(dev_priv))
7083		return false;
7084
7085	/* Display WA #1141: SKL:all KBL:all CFL */
7086	if (IS_KABYLAKE(dev_priv) ||
7087	    IS_COFFEELAKE(dev_priv) ||
7088	    IS_COMETLAKE(dev_priv))
7089		return dev_priv->dram_info.symmetric_memory;
7090
7091	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7092}
7093
7094void intel_init_ipc(struct drm_i915_private *dev_priv)
7095{
7096	if (!HAS_IPC(dev_priv))
 
 
7097		return;
7098
7099	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
7100
7101	intel_enable_ipc(dev_priv);
7102}
7103
7104static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7105{
 
 
7106	/*
7107	 * On Ibex Peak and Cougar Point, we need to disable clock
7108	 * gating for the panel power sequencer or it will fail to
7109	 * start up when no ports are active.
7110	 */
7111	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7112}
7113
7114static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7115{
 
7116	enum pipe pipe;
7117
7118	for_each_pipe(dev_priv, pipe) {
7119		intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe),
7120			   intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) |
7121			   DISPPLANE_TRICKLE_FEED_DISABLE);
7122
7123		intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe)));
7124		intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
7125	}
7126}
7127
7128static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
7129{
7130	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7131
7132	/*
7133	 * Required for FBC
7134	 * WaFbcDisableDpfcClockGating:ilk
7135	 */
7136	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7137		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7138		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7139
7140	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
7141		   MARIUNIT_CLOCK_GATE_DISABLE |
7142		   SVSMUNIT_CLOCK_GATE_DISABLE);
7143	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
7144		   VFMUNIT_CLOCK_GATE_DISABLE);
7145
7146	/*
7147	 * According to the spec the following bits should be set in
7148	 * order to enable memory self-refresh
7149	 * The bit 22/21 of 0x42004
7150	 * The bit 5 of 0x42020
7151	 * The bit 15 of 0x45000
7152	 */
7153	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7154		   (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7155		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7156	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7157	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
7158		   (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7159		    DISP_FBC_WM_DIS));
7160
 
 
7161	/*
7162	 * Based on the document from hardware guys the following bits
7163	 * should be set unconditionally in order to enable FBC.
7164	 * The bit 22 of 0x42000
7165	 * The bit 22 of 0x42004
7166	 * The bit 7,8,9 of 0x42020.
7167	 */
7168	if (IS_IRONLAKE_M(dev_priv)) {
7169		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
7170		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7171			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7172			   ILK_FBCQ_DIS);
7173		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7174			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7175			   ILK_DPARB_GATE);
7176	}
7177
7178	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7179
7180	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7181		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7182		   ILK_ELPIN_409_SELECT);
 
 
 
 
 
 
 
 
 
 
7183
7184	g4x_disable_trickle_feed(dev_priv);
7185
7186	ibx_init_clock_gating(dev_priv);
7187}
7188
7189static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7190{
7191	enum pipe pipe;
7192	u32 val;
 
7193
7194	/*
7195	 * On Ibex Peak and Cougar Point, we need to disable clock
7196	 * gating for the panel power sequencer or it will fail to
7197	 * start up when no ports are active.
7198	 */
7199	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7200		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7201		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7202	intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) |
7203		   DPLS_EDP_PPS_FIX_DIS);
7204	/* The below fixes the weird display corruption, a few pixels shifted
7205	 * downward, on (only) LVDS of some HP laptops with IVY.
7206	 */
7207	for_each_pipe(dev_priv, pipe) {
7208		val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
7209		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7210		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7211		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7212			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
 
7213		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7214		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7215		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
7216	}
7217	/* WADP0ClockGatingDisable */
7218	for_each_pipe(dev_priv, pipe) {
7219		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
7220			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7221	}
7222}
7223
7224static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7225{
7226	u32 tmp;
 
7227
7228	tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
7229	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7230		drm_dbg_kms(&dev_priv->drm,
7231			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7232			    tmp);
7233}
7234
7235static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7236{
7237	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
 
7238
7239	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7240
7241	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7242		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7243		   ILK_ELPIN_409_SELECT);
7244
7245	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7246		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7247		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7248		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7249
7250	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7251	 * gating disable must be set.  Failure to set it results in
7252	 * flickering pixels due to Z write ordering failures after
7253	 * some amount of runtime in the Mesa "fire" demo, and Unigine
7254	 * Sanctuary and Tropics, and apparently anything else with
7255	 * alpha test or pixel discard.
7256	 *
7257	 * According to the spec, bit 11 (RCCUNIT) must also be set,
7258	 * but we didn't debug actual testcases to find it out.
7259	 *
7260	 * WaDisableRCCUnitClockGating:snb
7261	 * WaDisableRCPBUnitClockGating:snb
7262	 */
7263	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7264		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7265		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7266
 
 
 
 
 
 
 
 
 
 
 
 
7267	/*
7268	 * According to the spec the following bits should be
7269	 * set in order to enable memory self-refresh and fbc:
7270	 * The bit21 and bit22 of 0x42000
7271	 * The bit21 and bit22 of 0x42004
7272	 * The bit5 and bit7 of 0x42020
7273	 * The bit14 of 0x70180
7274	 * The bit14 of 0x71180
7275	 *
7276	 * WaFbcAsynchFlipDisableFbcQueue:snb
7277	 */
7278	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7279		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7280		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7281	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7282		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7283		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7284	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
7285		   intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
7286		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7287		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7288
7289	g4x_disable_trickle_feed(dev_priv);
7290
7291	cpt_init_clock_gating(dev_priv);
7292
7293	gen6_check_mch_setup(dev_priv);
7294}
7295
7296static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7297{
7298	/*
7299	 * TODO: this bit should only be enabled when really needed, then
7300	 * disabled when not needed anymore in order to save power.
7301	 */
7302	if (HAS_PCH_LPT_LP(dev_priv))
7303		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
7304			   intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7305			   PCH_LP_PARTITION_LEVEL_DISABLE);
7306
7307	/* WADPOClockGatingDisable:hsw */
7308	intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
7309		   intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) |
7310		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7311}
7312
7313static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7314{
7315	if (HAS_PCH_LPT_LP(dev_priv)) {
7316		u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
7317
7318		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7319		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
7320	}
7321}
7322
7323static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7324				   int general_prio_credits,
7325				   int high_prio_credits)
7326{
7327	u32 misccpctl;
7328	u32 val;
7329
7330	/* WaTempDisableDOPClkGating:bdw */
7331	misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
7332	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7333
7334	val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7335	val &= ~L3_PRIO_CREDITS_MASK;
7336	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
7337	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7338	intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val);
7339
7340	/*
7341	 * Wait at least 100 clocks before re-enabling clock gating.
7342	 * See the definition of L3SQCREG1 in BSpec.
7343	 */
7344	intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7345	udelay(1);
7346	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
7347}
7348
7349static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
7350{
7351	/* Wa_1409120013:icl,ehl */
7352	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7353		   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7354
7355	/* This is not an Wa. Enable to reduce Sampler power */
7356	intel_uncore_write(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
7357		   intel_uncore_read(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
7358
7359	/*Wa_14010594013:icl, ehl */
7360	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
7361			 0, CNL_DELAY_PMRSP);
7362}
7363
7364static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
7365{
7366	/* Wa_1409120013:tgl,rkl,adl_s,dg1 */
7367	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7368			   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7369
7370	/* Wa_1409825376:tgl (pre-prod)*/
7371	if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B1))
7372		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7373			   TGL_VRH_GATING_DIS);
7374
7375	/* Wa_14011059788:tgl,rkl,adl_s,dg1 */
7376	intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
7377			 0, DFR_DISABLE);
7378
7379	/* Wa_14013723622:tgl,rkl,dg1,adl-s */
7380	if (DISPLAY_VER(dev_priv) == 12)
7381		intel_uncore_rmw(&dev_priv->uncore, CLKREQ_POLICY,
7382				 CLKREQ_POLICY_MEM_UP_OVRD, 0);
7383}
7384
7385static void adlp_init_clock_gating(struct drm_i915_private *dev_priv)
7386{
7387	gen12lp_init_clock_gating(dev_priv);
7388
7389	/* Wa_22011091694:adlp */
7390	intel_de_rmw(dev_priv, GEN9_CLKGATE_DIS_5, 0, DPCE_GATING_DIS);
7391}
7392
7393static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
7394{
7395	gen12lp_init_clock_gating(dev_priv);
7396
7397	/* Wa_1409836686:dg1[a0] */
7398	if (IS_DG1_REVID(dev_priv, DG1_REVID_A0, DG1_REVID_A0))
7399		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7400			   DPT_GATING_DIS);
7401}
7402
7403static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
7404{
7405	if (!HAS_PCH_CNP(dev_priv))
7406		return;
7407
7408	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7409	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7410		   CNP_PWM_CGE_GATING_DISABLE);
7411}
7412
7413static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
7414{
7415	u32 val;
7416	cnp_init_clock_gating(dev_priv);
7417
7418	/* This is not an Wa. Enable for better image quality */
7419	intel_uncore_write(&dev_priv->uncore, _3D_CHICKEN3,
7420		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
7421
7422	/* WaEnableChickenDCPR:cnl */
7423	intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
7424		   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
7425
7426	/*
7427	 * WaFbcWakeMemOn:cnl
7428	 * Display WA #0859: cnl
 
 
7429	 */
7430	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7431		   DISP_FBC_MEMORY_WAKE);
7432
7433	val = intel_uncore_read(&dev_priv->uncore, SLICE_UNIT_LEVEL_CLKGATE);
7434	/* ReadHitWriteOnlyDisable:cnl */
7435	val |= RCCUNIT_CLKGATE_DIS;
7436	intel_uncore_write(&dev_priv->uncore, SLICE_UNIT_LEVEL_CLKGATE, val);
7437
7438	/* Wa_2201832410:cnl */
7439	val = intel_uncore_read(&dev_priv->uncore, SUBSLICE_UNIT_LEVEL_CLKGATE);
7440	val |= GWUNIT_CLKGATE_DIS;
7441	intel_uncore_write(&dev_priv->uncore, SUBSLICE_UNIT_LEVEL_CLKGATE, val);
7442
7443	/* WaDisableVFclkgate:cnl */
7444	/* WaVFUnitClockGatingDisable:cnl */
7445	val = intel_uncore_read(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE);
7446	val |= VFUNIT_CLKGATE_DIS;
7447	intel_uncore_write(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE, val);
7448}
7449
7450static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
7451{
7452	cnp_init_clock_gating(dev_priv);
7453	gen9_init_clock_gating(dev_priv);
7454
7455	/* WAC6entrylatency:cfl */
7456	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7457		   FBC_LLC_FULLY_OPEN);
7458
7459	/*
7460	 * WaFbcTurnOffFbcWatermark:cfl
7461	 * Display WA #0562: cfl
7462	 */
7463	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7464		   DISP_FBC_WM_DIS);
 
 
7465
7466	/*
7467	 * WaFbcNukeOnHostModify:cfl
7468	 * Display WA #0873: cfl
7469	 */
7470	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7471		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7472}
7473
7474static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7475{
7476	gen9_init_clock_gating(dev_priv);
7477
7478	/* WAC6entrylatency:kbl */
7479	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7480		   FBC_LLC_FULLY_OPEN);
7481
7482	/* WaDisableSDEUnitClockGating:kbl */
7483	if (IS_KBL_GT_STEP(dev_priv, 0, STEP_B0))
7484		intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7485			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7486
7487	/* WaDisableGamClockGating:kbl */
7488	if (IS_KBL_GT_STEP(dev_priv, 0, STEP_B0))
7489		intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7490			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7491
7492	/*
7493	 * WaFbcTurnOffFbcWatermark:kbl
7494	 * Display WA #0562: kbl
7495	 */
7496	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7497		   DISP_FBC_WM_DIS);
7498
7499	/*
7500	 * WaFbcNukeOnHostModify:kbl
7501	 * Display WA #0873: kbl
7502	 */
7503	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7504		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7505}
7506
7507static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7508{
7509	gen9_init_clock_gating(dev_priv);
7510
7511	/* WaDisableDopClockGating:skl */
7512	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) &
7513		   ~GEN7_DOP_CLOCK_GATE_ENABLE);
7514
7515	/* WAC6entrylatency:skl */
7516	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7517		   FBC_LLC_FULLY_OPEN);
7518
7519	/*
7520	 * WaFbcTurnOffFbcWatermark:skl
7521	 * Display WA #0562: skl
7522	 */
7523	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7524		   DISP_FBC_WM_DIS);
7525
7526	/*
7527	 * WaFbcNukeOnHostModify:skl
7528	 * Display WA #0873: skl
7529	 */
7530	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7531		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7532
7533	/*
7534	 * WaFbcHighMemBwCorruptionAvoidance:skl
7535	 * Display WA #0883: skl
7536	 */
7537	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7538		   ILK_DPFC_DISABLE_DUMMY0);
7539}
7540
7541static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
7542{
 
7543	enum pipe pipe;
 
7544
7545	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7546	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7547		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7548		   HSW_FBCQ_DIS);
7549
7550	/* WaSwitchSolVfFArbitrationPriority:bdw */
7551	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7552
7553	/* WaPsrDPAMaskVBlankInSRD:bdw */
7554	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
7555		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7556
 
7557	for_each_pipe(dev_priv, pipe) {
7558		/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7559		intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7560			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) |
7561			   BDW_DPRS_MASK_VBLANK_SRD);
7562
7563		/* Undocumented but fixes async flip + VT-d corruption */
7564		if (intel_vtd_active())
7565			intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7566					 HSW_PRI_STRETCH_MAX_MASK, HSW_PRI_STRETCH_MAX_X1);
7567	}
7568
7569	/* WaVSRefCountFullforceMissDisable:bdw */
7570	/* WaDSRefCountFullforceMissDisable:bdw */
7571	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7572		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7573		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7574
7575	intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7576		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7577
7578	/* WaDisableSDEUnitClockGating:bdw */
7579	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7580		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7581
7582	/* WaProgramL3SqcReg1Default:bdw */
7583	gen8_set_l3sqc_credits(dev_priv, 30, 2);
 
 
 
 
 
 
 
 
 
 
 
 
7584
7585	/* WaKVMNotificationOnConfigChange:bdw */
7586	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1)
7587		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7588
7589	lpt_init_clock_gating(dev_priv);
 
7590
7591	/* WaDisableDopClockGating:bdw
7592	 *
7593	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7594	 * clock gating.
7595	 */
7596	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7597		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7598}
7599
7600static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7601{
7602	enum pipe pipe;
7603
7604	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7605	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7606		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7607		   HSW_FBCQ_DIS);
7608
7609	for_each_pipe(dev_priv, pipe) {
7610		/* Undocumented but fixes async flip + VT-d corruption */
7611		if (intel_vtd_active())
7612			intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7613					 HSW_PRI_STRETCH_MAX_MASK, HSW_PRI_STRETCH_MAX_X1);
7614	}
7615
7616	/* This is required by WaCatErrorRejectionIssue:hsw */
7617	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7618		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7619		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7620
7621	/* WaSwitchSolVfFArbitrationPriority:hsw */
7622	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7623
7624	lpt_init_clock_gating(dev_priv);
 
 
 
 
7625}
7626
7627static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7628{
7629	u32 snpcr;
 
 
 
7630
7631	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7632
7633	/* WaFbcAsynchFlipDisableFbcQueue:ivb */
7634	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7635		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7636		   ILK_FBCQ_DIS);
7637
7638	/* WaDisableBackToBackFlipFix:ivb */
7639	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7640		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7641		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7642
7643	if (IS_IVB_GT1(dev_priv))
7644		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7645			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7646	else {
7647		/* must write both registers */
7648		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7649			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7650		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
7651			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7652	}
7653
 
 
 
 
7654	/*
7655	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7656	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7657	 */
7658	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7659		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7660
7661	/* This is required by WaCatErrorRejectionIssue:ivb */
7662	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7663			intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7664			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7665
7666	g4x_disable_trickle_feed(dev_priv);
 
 
7667
7668	snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7669	snpcr &= ~GEN6_MBC_SNPCR_MASK;
7670	snpcr |= GEN6_MBC_SNPCR_MED;
7671	intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr);
7672
7673	if (!HAS_PCH_NOP(dev_priv))
7674		cpt_init_clock_gating(dev_priv);
7675
7676	gen6_check_mch_setup(dev_priv);
7677}
7678
7679static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7680{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7681	/* WaDisableBackToBackFlipFix:vlv */
7682	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7683		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7684		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7685
 
 
 
 
 
 
 
 
 
 
 
 
 
7686	/* WaDisableDopClockGating:vlv */
7687	intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7688		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7689
7690	/* This is required by WaCatErrorRejectionIssue:vlv */
7691	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7692		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7693		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7694
 
 
7695	/*
7696	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7697	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7698	 */
7699	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7700		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7701
7702	/* WaDisableL3Bank2xClockGate:vlv
7703	 * Disabling L3 clock gating- MMIO 940c[25] = 1
7704	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7705	intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4,
7706		   intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7707
7708	/*
7709	 * WaDisableVLVClockGating_VBIIssue:vlv
7710	 * Disable clock gating on th GCFG unit to prevent a delay
7711	 * in the reporting of vblank events.
7712	 */
7713	intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7714}
7715
7716static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7717{
 
 
 
 
7718	/* WaVSRefCountFullforceMissDisable:chv */
7719	/* WaDSRefCountFullforceMissDisable:chv */
7720	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7721		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7722		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7723
7724	/* WaDisableSemaphoreAndSyncFlipWait:chv */
7725	intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7726		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7727
7728	/* WaDisableCSUnitClockGating:chv */
7729	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7730		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7731
7732	/* WaDisableSDEUnitClockGating:chv */
7733	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7734		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7735
7736	/*
7737	 * WaProgramL3SqcReg1Default:chv
7738	 * See gfxspecs/Related Documents/Performance Guide/
7739	 * LSQC Setting Recommendations.
7740	 */
7741	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7742}
7743
7744static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7745{
7746	u32 dspclk_gate;
 
7747
7748	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
7749	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7750		   GS_UNIT_CLOCK_GATE_DISABLE |
7751		   CL_UNIT_CLOCK_GATE_DISABLE);
7752	intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
7753	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7754		OVRUNIT_CLOCK_GATE_DISABLE |
7755		OVCUNIT_CLOCK_GATE_DISABLE;
7756	if (IS_GM45(dev_priv))
7757		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7758	intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate);
7759
7760	g4x_disable_trickle_feed(dev_priv);
 
 
 
 
 
 
 
7761}
7762
7763static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7764{
7765	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
 
 
 
 
 
7766
7767	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7768	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7769	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7770	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7771	intel_uncore_write16(uncore, DEUC, 0);
7772	intel_uncore_write(uncore,
7773			   MI_ARB_STATE,
7774			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7775}
7776
7777static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7778{
7779	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
 
 
7780		   I965_RCC_CLOCK_GATE_DISABLE |
7781		   I965_RCPB_CLOCK_GATE_DISABLE |
7782		   I965_ISC_CLOCK_GATE_DISABLE |
7783		   I965_FBC_CLOCK_GATE_DISABLE);
7784	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
7785	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7786		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
 
 
 
7787}
7788
7789static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7790{
7791	u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
 
7792
7793	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7794		DSTATE_DOT_CLOCK_GATING;
7795	intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
7796
7797	if (IS_PINEVIEW(dev_priv))
7798		intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7799
7800	/* IIR "flip pending" means done if this bit is set */
7801	intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7802
7803	/* interrupts should cause a wake up from C3 */
7804	intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7805
7806	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7807	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7808
7809	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7810		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7811}
7812
7813static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7814{
7815	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
 
 
7816
7817	/* interrupts should cause a wake up from C3 */
7818	intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7819		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7820
7821	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7822		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7823
7824	/*
7825	 * Have FBC ignore 3D activity since we use software
7826	 * render tracking, and otherwise a pure 3D workload
7827	 * (even if it just renders a single frame and then does
7828	 * abosultely nothing) would not allow FBC to recompress
7829	 * until a 2D blit occurs.
7830	 */
7831	intel_uncore_write(&dev_priv->uncore, SCPD0,
7832		   _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7833}
7834
7835static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7836{
7837	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
 
 
 
 
7838		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7839		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7840}
7841
7842void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7843{
7844	dev_priv->display.init_clock_gating(dev_priv);
 
 
 
7845}
7846
7847void intel_suspend_hw(struct drm_i915_private *dev_priv)
7848{
7849	if (HAS_PCH_LPT(dev_priv))
7850		lpt_suspend_hw(dev_priv);
7851}
7852
7853static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
 
7854{
7855	drm_dbg_kms(&dev_priv->drm,
7856		    "No clock gating settings or workarounds applied.\n");
7857}
7858
7859/**
7860 * intel_init_clock_gating_hooks - setup the clock gating hooks
7861 * @dev_priv: device private
7862 *
7863 * Setup the hooks that configure which clocks of a given platform can be
7864 * gated and also apply various GT and display specific workarounds for these
7865 * platforms. Note that some GT specific workarounds are applied separately
7866 * when GPU contexts or batchbuffers start their execution.
7867 */
7868void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7869{
7870	if (IS_ALDERLAKE_P(dev_priv))
7871		dev_priv->display.init_clock_gating = adlp_init_clock_gating;
7872	else if (IS_DG1(dev_priv))
7873		dev_priv->display.init_clock_gating = dg1_init_clock_gating;
7874	else if (GRAPHICS_VER(dev_priv) == 12)
7875		dev_priv->display.init_clock_gating = gen12lp_init_clock_gating;
7876	else if (GRAPHICS_VER(dev_priv) == 11)
7877		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7878	else if (IS_CANNONLAKE(dev_priv))
7879		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7880	else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
7881		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7882	else if (IS_SKYLAKE(dev_priv))
7883		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7884	else if (IS_KABYLAKE(dev_priv))
7885		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7886	else if (IS_BROXTON(dev_priv))
7887		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7888	else if (IS_GEMINILAKE(dev_priv))
7889		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7890	else if (IS_BROADWELL(dev_priv))
7891		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7892	else if (IS_CHERRYVIEW(dev_priv))
7893		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7894	else if (IS_HASWELL(dev_priv))
7895		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7896	else if (IS_IVYBRIDGE(dev_priv))
7897		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7898	else if (IS_VALLEYVIEW(dev_priv))
7899		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7900	else if (GRAPHICS_VER(dev_priv) == 6)
7901		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7902	else if (GRAPHICS_VER(dev_priv) == 5)
7903		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7904	else if (IS_G4X(dev_priv))
7905		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7906	else if (IS_I965GM(dev_priv))
7907		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7908	else if (IS_I965G(dev_priv))
7909		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7910	else if (GRAPHICS_VER(dev_priv) == 3)
7911		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7912	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7913		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7914	else if (GRAPHICS_VER(dev_priv) == 2)
7915		dev_priv->display.init_clock_gating = i830_init_clock_gating;
7916	else {
7917		MISSING_CASE(INTEL_DEVID(dev_priv));
7918		dev_priv->display.init_clock_gating = nop_init_clock_gating;
7919	}
7920}
7921
7922/* Set up chip specific power management-related functions */
7923void intel_init_pm(struct drm_i915_private *dev_priv)
7924{
7925	/* For cxsr */
7926	if (IS_PINEVIEW(dev_priv))
7927		pnv_get_mem_freq(dev_priv);
7928	else if (GRAPHICS_VER(dev_priv) == 5)
7929		ilk_get_mem_freq(dev_priv);
7930
7931	if (intel_has_sagv(dev_priv))
7932		skl_setup_sagv_block_time(dev_priv);
 
7933
7934	/* For FIFO watermark updates */
7935	if (DISPLAY_VER(dev_priv) >= 9) {
7936		skl_setup_wm_latency(dev_priv);
7937		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7938	} else if (HAS_PCH_SPLIT(dev_priv)) {
7939		ilk_setup_wm_latency(dev_priv);
7940
7941		if ((DISPLAY_VER(dev_priv) == 5 && dev_priv->wm.pri_latency[1] &&
7942		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7943		    (DISPLAY_VER(dev_priv) != 5 && dev_priv->wm.pri_latency[0] &&
7944		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
 
7945			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7946			dev_priv->display.compute_intermediate_wm =
7947				ilk_compute_intermediate_wm;
7948			dev_priv->display.initial_watermarks =
7949				ilk_initial_watermarks;
7950			dev_priv->display.optimize_watermarks =
7951				ilk_optimize_watermarks;
7952		} else {
7953			drm_dbg_kms(&dev_priv->drm,
7954				    "Failed to read display plane latency. "
7955				    "Disable CxSR\n");
7956		}
7957	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7958		vlv_setup_wm_latency(dev_priv);
7959		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7960		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7961		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7962		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7963		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7964	} else if (IS_G4X(dev_priv)) {
7965		g4x_setup_wm_latency(dev_priv);
7966		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
7967		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
7968		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
7969		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7970	} else if (IS_PINEVIEW(dev_priv)) {
7971		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
 
 
 
 
 
 
 
 
 
 
7972					    dev_priv->is_ddr3,
7973					    dev_priv->fsb_freq,
7974					    dev_priv->mem_freq)) {
7975			drm_info(&dev_priv->drm,
7976				 "failed to find known CxSR latency "
7977				 "(found ddr%s fsb freq %d, mem freq %d), "
7978				 "disabling CxSR\n",
7979				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7980				 dev_priv->fsb_freq, dev_priv->mem_freq);
7981			/* Disable CxSR and never update its watermark again */
7982			intel_set_memory_cxsr(dev_priv, false);
7983			dev_priv->display.update_wm = NULL;
7984		} else
7985			dev_priv->display.update_wm = pnv_update_wm;
7986	} else if (DISPLAY_VER(dev_priv) == 4) {
 
 
 
 
7987		dev_priv->display.update_wm = i965_update_wm;
7988	} else if (DISPLAY_VER(dev_priv) == 3) {
 
 
 
 
7989		dev_priv->display.update_wm = i9xx_update_wm;
7990		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7991	} else if (DISPLAY_VER(dev_priv) == 2) {
7992		if (INTEL_NUM_PIPES(dev_priv) == 1) {
 
7993			dev_priv->display.update_wm = i845_update_wm;
7994			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7995		} else {
7996			dev_priv->display.update_wm = i9xx_update_wm;
7997			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7998		}
 
 
 
 
 
7999	} else {
8000		drm_err(&dev_priv->drm,
8001			"unexpected fall-through in %s\n", __func__);
8002	}
8003}
8004
8005void intel_pm_setup(struct drm_i915_private *dev_priv)
8006{
8007	dev_priv->runtime_pm.suspended = false;
8008	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8009}
8010
8011static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
8012{
8013	struct intel_dbuf_state *dbuf_state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8014
8015	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
8016	if (!dbuf_state)
8017		return NULL;
8018
8019	return &dbuf_state->base;
8020}
8021
8022static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
8023				     struct intel_global_state *state)
8024{
8025	kfree(state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8026}
8027
8028static const struct intel_global_state_funcs intel_dbuf_funcs = {
8029	.atomic_duplicate_state = intel_dbuf_duplicate_state,
8030	.atomic_destroy_state = intel_dbuf_destroy_state,
8031};
 
 
 
 
 
 
8032
8033struct intel_dbuf_state *
8034intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
8035{
8036	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8037	struct intel_global_state *dbuf_state;
8038
8039	dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
8040	if (IS_ERR(dbuf_state))
8041		return ERR_CAST(dbuf_state);
 
8042
8043	return to_intel_dbuf_state(dbuf_state);
8044}
8045
8046int intel_dbuf_init(struct drm_i915_private *dev_priv)
8047{
8048	struct intel_dbuf_state *dbuf_state;
8049
8050	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
8051	if (!dbuf_state)
8052		return -ENOMEM;
 
8053
8054	intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
8055				     &dbuf_state->base, &intel_dbuf_funcs);
 
8056
8057	return 0;
 
 
 
 
 
 
 
 
 
 
8058}
8059
8060/*
8061 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
8062 * update the request state of all DBUS slices.
8063 */
8064static void update_mbus_pre_enable(struct intel_atomic_state *state)
8065{
8066	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8067	u32 mbus_ctl, dbuf_min_tracker_val;
8068	enum dbuf_slice slice;
8069	const struct intel_dbuf_state *dbuf_state =
8070		intel_atomic_get_new_dbuf_state(state);
 
 
 
 
 
8071
8072	if (!IS_ALDERLAKE_P(dev_priv))
8073		return;
 
 
8074
8075	/*
8076	 * TODO: Implement vblank synchronized MBUS joining changes.
8077	 * Must be properly coordinated with dbuf reprogramming.
8078	 */
8079	if (dbuf_state->joined_mbus) {
8080		mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
8081			MBUS_JOIN_PIPE_SELECT_NONE;
8082		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
8083	} else {
8084		mbus_ctl = MBUS_HASHING_MODE_2x2 |
8085			MBUS_JOIN_PIPE_SELECT_NONE;
8086		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
8087	}
8088
8089	intel_de_rmw(dev_priv, MBUS_CTL,
8090		     MBUS_HASHING_MODE_MASK | MBUS_JOIN |
8091		     MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
8092
8093	for_each_dbuf_slice(dev_priv, slice)
8094		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
8095			     DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
8096			     dbuf_min_tracker_val);
8097}
8098
8099void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
 
8100{
8101	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8102	const struct intel_dbuf_state *new_dbuf_state =
8103		intel_atomic_get_new_dbuf_state(state);
8104	const struct intel_dbuf_state *old_dbuf_state =
8105		intel_atomic_get_old_dbuf_state(state);
 
 
8106
8107	if (!new_dbuf_state ||
8108	    ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8109	    && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8110		return;
8111
8112	WARN_ON(!new_dbuf_state->base.changed);
 
8113
8114	update_mbus_pre_enable(state);
8115	gen9_dbuf_slices_update(dev_priv,
8116				old_dbuf_state->enabled_slices |
8117				new_dbuf_state->enabled_slices);
8118}
8119
8120void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
8121{
8122	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8123	const struct intel_dbuf_state *new_dbuf_state =
8124		intel_atomic_get_new_dbuf_state(state);
8125	const struct intel_dbuf_state *old_dbuf_state =
8126		intel_atomic_get_old_dbuf_state(state);
8127
8128	if (!new_dbuf_state ||
8129	    ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8130	    && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8131		return;
8132
8133	WARN_ON(!new_dbuf_state->base.changed);
 
 
 
 
8134
8135	gen9_dbuf_slices_update(dev_priv,
8136				new_dbuf_state->enabled_slices);
 
8137}