Loading...
1/*
2 * arch/arm/include/asm/io.h
3 *
4 * Copyright (C) 1996-2000 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Modifications:
11 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
12 * constant addresses and variable addresses.
13 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
14 * specific IO header files.
15 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
16 * 04-Apr-1999 PJB Added check_signature.
17 * 12-Dec-1999 RMK More cleanups
18 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions
19 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem
20 */
21#ifndef __ASM_ARM_IO_H
22#define __ASM_ARM_IO_H
23
24#ifdef __KERNEL__
25
26#include <linux/string.h>
27#include <linux/types.h>
28#include <linux/blk_types.h>
29#include <asm/byteorder.h>
30#include <asm/memory.h>
31#include <asm-generic/pci_iomap.h>
32#include <xen/xen.h>
33
34/*
35 * ISA I/O bus memory addresses are 1:1 with the physical address.
36 */
37#define isa_virt_to_bus virt_to_phys
38#define isa_page_to_bus page_to_phys
39#define isa_bus_to_virt phys_to_virt
40
41/*
42 * Atomic MMIO-wide IO modify
43 */
44extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
45extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
46
47/*
48 * Generic IO read/write. These perform native-endian accesses. Note
49 * that some architectures will want to re-define __raw_{read,write}w.
50 */
51void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
52void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
53void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
54
55void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
56void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
57void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
58
59#if __LINUX_ARM_ARCH__ < 6
60/*
61 * Half-word accesses are problematic with RiscPC due to limitations of
62 * the bus. Rather than special-case the machine, just let the compiler
63 * generate the access for CPUs prior to ARMv6.
64 */
65#define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
66#define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
67#else
68/*
69 * When running under a hypervisor, we want to avoid I/O accesses with
70 * writeback addressing modes as these incur a significant performance
71 * overhead (the address generation must be emulated in software).
72 */
73#define __raw_writew __raw_writew
74static inline void __raw_writew(u16 val, volatile void __iomem *addr)
75{
76 asm volatile("strh %1, %0"
77 : : "Q" (*(volatile u16 __force *)addr), "r" (val));
78}
79
80#define __raw_readw __raw_readw
81static inline u16 __raw_readw(const volatile void __iomem *addr)
82{
83 u16 val;
84 asm volatile("ldrh %0, %1"
85 : "=r" (val)
86 : "Q" (*(volatile u16 __force *)addr));
87 return val;
88}
89#endif
90
91#define __raw_writeb __raw_writeb
92static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
93{
94 asm volatile("strb %1, %0"
95 : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
96}
97
98#define __raw_writel __raw_writel
99static inline void __raw_writel(u32 val, volatile void __iomem *addr)
100{
101 asm volatile("str %1, %0"
102 : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
103}
104
105#define __raw_readb __raw_readb
106static inline u8 __raw_readb(const volatile void __iomem *addr)
107{
108 u8 val;
109 asm volatile("ldrb %0, %1"
110 : "=r" (val)
111 : "Qo" (*(volatile u8 __force *)addr));
112 return val;
113}
114
115#define __raw_readl __raw_readl
116static inline u32 __raw_readl(const volatile void __iomem *addr)
117{
118 u32 val;
119 asm volatile("ldr %0, %1"
120 : "=r" (val)
121 : "Qo" (*(volatile u32 __force *)addr));
122 return val;
123}
124
125/*
126 * Architecture ioremap implementation.
127 */
128#define MT_DEVICE 0
129#define MT_DEVICE_NONSHARED 1
130#define MT_DEVICE_CACHED 2
131#define MT_DEVICE_WC 3
132/*
133 * types 4 onwards can be found in asm/mach/map.h and are undefined
134 * for ioremap
135 */
136
137/*
138 * __arm_ioremap takes CPU physical address.
139 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
140 * The _caller variety takes a __builtin_return_address(0) value for
141 * /proc/vmalloc to use - and should only be used in non-inline functions.
142 */
143extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
144 void *);
145extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
146extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
147extern void __iounmap(volatile void __iomem *addr);
148
149extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
150 unsigned int, void *);
151extern void (*arch_iounmap)(volatile void __iomem *);
152
153/*
154 * Bad read/write accesses...
155 */
156extern void __readwrite_bug(const char *fn);
157
158/*
159 * A typesafe __io() helper
160 */
161static inline void __iomem *__typesafe_io(unsigned long addr)
162{
163 return (void __iomem *)addr;
164}
165
166#define IOMEM(x) ((void __force __iomem *)(x))
167
168/* IO barriers */
169#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
170#include <asm/barrier.h>
171#define __iormb() rmb()
172#define __iowmb() wmb()
173#else
174#define __iormb() do { } while (0)
175#define __iowmb() do { } while (0)
176#endif
177
178/* PCI fixed i/o mapping */
179#define PCI_IO_VIRT_BASE 0xfee00000
180#define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE)
181
182#if defined(CONFIG_PCI)
183void pci_ioremap_set_mem_type(int mem_type);
184#else
185static inline void pci_ioremap_set_mem_type(int mem_type) {}
186#endif
187
188extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
189
190/*
191 * Now, pick up the machine-defined IO definitions
192 */
193#ifdef CONFIG_NEED_MACH_IO_H
194#include <mach/io.h>
195#elif defined(CONFIG_PCI)
196#define IO_SPACE_LIMIT ((resource_size_t)0xfffff)
197#define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
198#else
199#define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT)
200#endif
201
202/*
203 * This is the limit of PC card/PCI/ISA IO space, which is by default
204 * 64K if we have PC card, PCI or ISA support. Otherwise, default to
205 * zero to prevent ISA/PCI drivers claiming IO space (and potentially
206 * oopsing.)
207 *
208 * Only set this larger if you really need inb() et.al. to operate over
209 * a larger address space. Note that SOC_COMMON ioremaps each sockets
210 * IO space area, and so inb() et.al. must be defined to operate as per
211 * readb() et.al. on such platforms.
212 */
213#ifndef IO_SPACE_LIMIT
214#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
215#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
216#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
217#define IO_SPACE_LIMIT ((resource_size_t)0xffff)
218#else
219#define IO_SPACE_LIMIT ((resource_size_t)0)
220#endif
221#endif
222
223/*
224 * IO port access primitives
225 * -------------------------
226 *
227 * The ARM doesn't have special IO access instructions; all IO is memory
228 * mapped. Note that these are defined to perform little endian accesses
229 * only. Their primary purpose is to access PCI and ISA peripherals.
230 *
231 * Note that for a big endian machine, this implies that the following
232 * big endian mode connectivity is in place, as described by numerous
233 * ARM documents:
234 *
235 * PCI: D0-D7 D8-D15 D16-D23 D24-D31
236 * ARM: D24-D31 D16-D23 D8-D15 D0-D7
237 *
238 * The machine specific io.h include defines __io to translate an "IO"
239 * address to a memory address.
240 *
241 * Note that we prevent GCC re-ordering or caching values in expressions
242 * by introducing sequence points into the in*() definitions. Note that
243 * __raw_* do not guarantee this behaviour.
244 *
245 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
246 */
247#ifdef __io
248#define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); })
249#define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \
250 cpu_to_le16(v),__io(p)); })
251#define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \
252 cpu_to_le32(v),__io(p)); })
253
254#define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
255#define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
256 __raw_readw(__io(p))); __iormb(); __v; })
257#define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
258 __raw_readl(__io(p))); __iormb(); __v; })
259
260#define outsb(p,d,l) __raw_writesb(__io(p),d,l)
261#define outsw(p,d,l) __raw_writesw(__io(p),d,l)
262#define outsl(p,d,l) __raw_writesl(__io(p),d,l)
263
264#define insb(p,d,l) __raw_readsb(__io(p),d,l)
265#define insw(p,d,l) __raw_readsw(__io(p),d,l)
266#define insl(p,d,l) __raw_readsl(__io(p),d,l)
267#endif
268
269/*
270 * String version of IO memory access ops:
271 */
272extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
273extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
274extern void _memset_io(volatile void __iomem *, int, size_t);
275
276#define mmiowb()
277
278/*
279 * Memory access primitives
280 * ------------------------
281 *
282 * These perform PCI memory accesses via an ioremap region. They don't
283 * take an address as such, but a cookie.
284 *
285 * Again, this are defined to perform little endian accesses. See the
286 * IO port primitives for more information.
287 */
288#ifndef readl
289#define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
290#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
291 __raw_readw(c)); __r; })
292#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
293 __raw_readl(c)); __r; })
294
295#define writeb_relaxed(v,c) __raw_writeb(v,c)
296#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
297#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
298
299#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
300#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
301#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
302
303#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
304#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
305#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
306
307#define readsb(p,d,l) __raw_readsb(p,d,l)
308#define readsw(p,d,l) __raw_readsw(p,d,l)
309#define readsl(p,d,l) __raw_readsl(p,d,l)
310
311#define writesb(p,d,l) __raw_writesb(p,d,l)
312#define writesw(p,d,l) __raw_writesw(p,d,l)
313#define writesl(p,d,l) __raw_writesl(p,d,l)
314
315#ifndef __ARMBE__
316static inline void memset_io(volatile void __iomem *dst, unsigned c,
317 size_t count)
318{
319 extern void mmioset(void *, unsigned int, size_t);
320 mmioset((void __force *)dst, c, count);
321}
322#define memset_io(dst,c,count) memset_io(dst,c,count)
323
324static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
325 size_t count)
326{
327 extern void mmiocpy(void *, const void *, size_t);
328 mmiocpy(to, (const void __force *)from, count);
329}
330#define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
331
332static inline void memcpy_toio(volatile void __iomem *to, const void *from,
333 size_t count)
334{
335 extern void mmiocpy(void *, const void *, size_t);
336 mmiocpy((void __force *)to, from, count);
337}
338#define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
339
340#else
341#define memset_io(c,v,l) _memset_io(c,(v),(l))
342#define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l))
343#define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l))
344#endif
345
346#endif /* readl */
347
348/*
349 * ioremap() and friends.
350 *
351 * ioremap() takes a resource address, and size. Due to the ARM memory
352 * types, it is important to use the correct ioremap() function as each
353 * mapping has specific properties.
354 *
355 * Function Memory type Cacheability Cache hint
356 * ioremap() Device n/a n/a
357 * ioremap_nocache() Device n/a n/a
358 * ioremap_cache() Normal Writeback Read allocate
359 * ioremap_wc() Normal Non-cacheable n/a
360 * ioremap_wt() Normal Non-cacheable n/a
361 *
362 * All device mappings have the following properties:
363 * - no access speculation
364 * - no repetition (eg, on return from an exception)
365 * - number, order and size of accesses are maintained
366 * - unaligned accesses are "unpredictable"
367 * - writes may be delayed before they hit the endpoint device
368 *
369 * ioremap_nocache() is the same as ioremap() as there are too many device
370 * drivers using this for device registers, and documentation which tells
371 * people to use it for such for this to be any different. This is not a
372 * safe fallback for memory-like mappings, or memory regions where the
373 * compiler may generate unaligned accesses - eg, via inlining its own
374 * memcpy.
375 *
376 * All normal memory mappings have the following properties:
377 * - reads can be repeated with no side effects
378 * - repeated reads return the last value written
379 * - reads can fetch additional locations without side effects
380 * - writes can be repeated (in certain cases) with no side effects
381 * - writes can be merged before accessing the target
382 * - unaligned accesses can be supported
383 * - ordering is not guaranteed without explicit dependencies or barrier
384 * instructions
385 * - writes may be delayed before they hit the endpoint memory
386 *
387 * The cache hint is only a performance hint: CPUs may alias these hints.
388 * Eg, a CPU not implementing read allocate but implementing write allocate
389 * will provide a write allocate mapping instead.
390 */
391void __iomem *ioremap(resource_size_t res_cookie, size_t size);
392#define ioremap ioremap
393#define ioremap_nocache ioremap
394
395void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
396#define ioremap_cache ioremap_cache
397
398void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
399#define ioremap_wc ioremap_wc
400#define ioremap_wt ioremap_wc
401
402void iounmap(volatile void __iomem *iomem_cookie);
403#define iounmap iounmap
404
405/*
406 * io{read,write}{16,32}be() macros
407 */
408#define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
409#define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
410
411#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
412#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
413
414#ifndef ioport_map
415#define ioport_map ioport_map
416extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
417#endif
418#ifndef ioport_unmap
419#define ioport_unmap ioport_unmap
420extern void ioport_unmap(void __iomem *addr);
421#endif
422
423struct pci_dev;
424
425#define pci_iounmap pci_iounmap
426extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
427
428/*
429 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
430 * access
431 */
432#define xlate_dev_mem_ptr(p) __va(p)
433
434/*
435 * Convert a virtual cached pointer to an uncached pointer
436 */
437#define xlate_dev_kmem_ptr(p) p
438
439#include <asm-generic/io.h>
440
441/*
442 * can the hardware map this into one segment or not, given no other
443 * constraints.
444 */
445#define BIOVEC_MERGEABLE(vec1, vec2) \
446 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
447
448struct bio_vec;
449extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
450 const struct bio_vec *vec2);
451#define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
452 (__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \
453 (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
454
455#ifdef CONFIG_MMU
456#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
457extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
458extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
459extern int devmem_is_allowed(unsigned long pfn);
460#endif
461
462/*
463 * Register ISA memory and port locations for glibc iopl/inb/outb
464 * emulation.
465 */
466extern void register_isa_ports(unsigned int mmio, unsigned int io,
467 unsigned int io_shift);
468
469#endif /* __KERNEL__ */
470#endif /* __ASM_ARM_IO_H */
1/*
2 * arch/arm/include/asm/io.h
3 *
4 * Copyright (C) 1996-2000 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Modifications:
11 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
12 * constant addresses and variable addresses.
13 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
14 * specific IO header files.
15 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
16 * 04-Apr-1999 PJB Added check_signature.
17 * 12-Dec-1999 RMK More cleanups
18 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions
19 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem
20 */
21#ifndef __ASM_ARM_IO_H
22#define __ASM_ARM_IO_H
23
24#ifdef __KERNEL__
25
26#include <linux/string.h>
27#include <linux/types.h>
28#include <asm/byteorder.h>
29#include <asm/memory.h>
30#include <asm-generic/pci_iomap.h>
31#include <xen/xen.h>
32
33/*
34 * ISA I/O bus memory addresses are 1:1 with the physical address.
35 */
36#define isa_virt_to_bus virt_to_phys
37#define isa_page_to_bus page_to_phys
38#define isa_bus_to_virt phys_to_virt
39
40/*
41 * Atomic MMIO-wide IO modify
42 */
43extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
44extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
45
46/*
47 * Generic IO read/write. These perform native-endian accesses. Note
48 * that some architectures will want to re-define __raw_{read,write}w.
49 */
50void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
51void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
52void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
53
54void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
55void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
56void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
57
58#if __LINUX_ARM_ARCH__ < 6
59/*
60 * Half-word accesses are problematic with RiscPC due to limitations of
61 * the bus. Rather than special-case the machine, just let the compiler
62 * generate the access for CPUs prior to ARMv6.
63 */
64#define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
65#define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
66#else
67/*
68 * When running under a hypervisor, we want to avoid I/O accesses with
69 * writeback addressing modes as these incur a significant performance
70 * overhead (the address generation must be emulated in software).
71 */
72#define __raw_writew __raw_writew
73static inline void __raw_writew(u16 val, volatile void __iomem *addr)
74{
75 asm volatile("strh %1, %0"
76 : : "Q" (*(volatile u16 __force *)addr), "r" (val));
77}
78
79#define __raw_readw __raw_readw
80static inline u16 __raw_readw(const volatile void __iomem *addr)
81{
82 u16 val;
83 asm volatile("ldrh %0, %1"
84 : "=r" (val)
85 : "Q" (*(volatile u16 __force *)addr));
86 return val;
87}
88#endif
89
90#define __raw_writeb __raw_writeb
91static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
92{
93 asm volatile("strb %1, %0"
94 : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
95}
96
97#define __raw_writel __raw_writel
98static inline void __raw_writel(u32 val, volatile void __iomem *addr)
99{
100 asm volatile("str %1, %0"
101 : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
102}
103
104#define __raw_readb __raw_readb
105static inline u8 __raw_readb(const volatile void __iomem *addr)
106{
107 u8 val;
108 asm volatile("ldrb %0, %1"
109 : "=r" (val)
110 : "Qo" (*(volatile u8 __force *)addr));
111 return val;
112}
113
114#define __raw_readl __raw_readl
115static inline u32 __raw_readl(const volatile void __iomem *addr)
116{
117 u32 val;
118 asm volatile("ldr %0, %1"
119 : "=r" (val)
120 : "Qo" (*(volatile u32 __force *)addr));
121 return val;
122}
123
124/*
125 * Architecture ioremap implementation.
126 */
127#define MT_DEVICE 0
128#define MT_DEVICE_NONSHARED 1
129#define MT_DEVICE_CACHED 2
130#define MT_DEVICE_WC 3
131/*
132 * types 4 onwards can be found in asm/mach/map.h and are undefined
133 * for ioremap
134 */
135
136/*
137 * __arm_ioremap takes CPU physical address.
138 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
139 * The _caller variety takes a __builtin_return_address(0) value for
140 * /proc/vmalloc to use - and should only be used in non-inline functions.
141 */
142extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
143 void *);
144extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
145extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
146extern void __iounmap(volatile void __iomem *addr);
147
148extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
149 unsigned int, void *);
150extern void (*arch_iounmap)(volatile void __iomem *);
151
152/*
153 * Bad read/write accesses...
154 */
155extern void __readwrite_bug(const char *fn);
156
157/*
158 * A typesafe __io() helper
159 */
160static inline void __iomem *__typesafe_io(unsigned long addr)
161{
162 return (void __iomem *)addr;
163}
164
165#define IOMEM(x) ((void __force __iomem *)(x))
166
167/* IO barriers */
168#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
169#include <asm/barrier.h>
170#define __iormb() rmb()
171#define __iowmb() wmb()
172#else
173#define __iormb() do { } while (0)
174#define __iowmb() do { } while (0)
175#endif
176
177/* PCI fixed i/o mapping */
178#define PCI_IO_VIRT_BASE 0xfee00000
179#define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE)
180
181#if defined(CONFIG_PCI)
182void pci_ioremap_set_mem_type(int mem_type);
183#else
184static inline void pci_ioremap_set_mem_type(int mem_type) {}
185#endif
186
187extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
188
189/*
190 * Now, pick up the machine-defined IO definitions
191 */
192#ifdef CONFIG_NEED_MACH_IO_H
193#include <mach/io.h>
194#elif defined(CONFIG_PCI)
195#define IO_SPACE_LIMIT ((resource_size_t)0xfffff)
196#define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
197#else
198#define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT)
199#endif
200
201/*
202 * This is the limit of PC card/PCI/ISA IO space, which is by default
203 * 64K if we have PC card, PCI or ISA support. Otherwise, default to
204 * zero to prevent ISA/PCI drivers claiming IO space (and potentially
205 * oopsing.)
206 *
207 * Only set this larger if you really need inb() et.al. to operate over
208 * a larger address space. Note that SOC_COMMON ioremaps each sockets
209 * IO space area, and so inb() et.al. must be defined to operate as per
210 * readb() et.al. on such platforms.
211 */
212#ifndef IO_SPACE_LIMIT
213#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
214#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
215#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
216#define IO_SPACE_LIMIT ((resource_size_t)0xffff)
217#else
218#define IO_SPACE_LIMIT ((resource_size_t)0)
219#endif
220#endif
221
222/*
223 * IO port access primitives
224 * -------------------------
225 *
226 * The ARM doesn't have special IO access instructions; all IO is memory
227 * mapped. Note that these are defined to perform little endian accesses
228 * only. Their primary purpose is to access PCI and ISA peripherals.
229 *
230 * Note that for a big endian machine, this implies that the following
231 * big endian mode connectivity is in place, as described by numerous
232 * ARM documents:
233 *
234 * PCI: D0-D7 D8-D15 D16-D23 D24-D31
235 * ARM: D24-D31 D16-D23 D8-D15 D0-D7
236 *
237 * The machine specific io.h include defines __io to translate an "IO"
238 * address to a memory address.
239 *
240 * Note that we prevent GCC re-ordering or caching values in expressions
241 * by introducing sequence points into the in*() definitions. Note that
242 * __raw_* do not guarantee this behaviour.
243 *
244 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
245 */
246#ifdef __io
247#define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); })
248#define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \
249 cpu_to_le16(v),__io(p)); })
250#define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \
251 cpu_to_le32(v),__io(p)); })
252
253#define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
254#define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
255 __raw_readw(__io(p))); __iormb(); __v; })
256#define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
257 __raw_readl(__io(p))); __iormb(); __v; })
258
259#define outsb(p,d,l) __raw_writesb(__io(p),d,l)
260#define outsw(p,d,l) __raw_writesw(__io(p),d,l)
261#define outsl(p,d,l) __raw_writesl(__io(p),d,l)
262
263#define insb(p,d,l) __raw_readsb(__io(p),d,l)
264#define insw(p,d,l) __raw_readsw(__io(p),d,l)
265#define insl(p,d,l) __raw_readsl(__io(p),d,l)
266#endif
267
268/*
269 * String version of IO memory access ops:
270 */
271extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
272extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
273extern void _memset_io(volatile void __iomem *, int, size_t);
274
275#define mmiowb()
276
277/*
278 * Memory access primitives
279 * ------------------------
280 *
281 * These perform PCI memory accesses via an ioremap region. They don't
282 * take an address as such, but a cookie.
283 *
284 * Again, these are defined to perform little endian accesses. See the
285 * IO port primitives for more information.
286 */
287#ifndef readl
288#define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
289#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
290 __raw_readw(c)); __r; })
291#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
292 __raw_readl(c)); __r; })
293
294#define writeb_relaxed(v,c) __raw_writeb(v,c)
295#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
296#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
297
298#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
299#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
300#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
301
302#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
303#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
304#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
305
306#define readsb(p,d,l) __raw_readsb(p,d,l)
307#define readsw(p,d,l) __raw_readsw(p,d,l)
308#define readsl(p,d,l) __raw_readsl(p,d,l)
309
310#define writesb(p,d,l) __raw_writesb(p,d,l)
311#define writesw(p,d,l) __raw_writesw(p,d,l)
312#define writesl(p,d,l) __raw_writesl(p,d,l)
313
314#ifndef __ARMBE__
315static inline void memset_io(volatile void __iomem *dst, unsigned c,
316 size_t count)
317{
318 extern void mmioset(void *, unsigned int, size_t);
319 mmioset((void __force *)dst, c, count);
320}
321#define memset_io(dst,c,count) memset_io(dst,c,count)
322
323static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
324 size_t count)
325{
326 extern void mmiocpy(void *, const void *, size_t);
327 mmiocpy(to, (const void __force *)from, count);
328}
329#define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
330
331static inline void memcpy_toio(volatile void __iomem *to, const void *from,
332 size_t count)
333{
334 extern void mmiocpy(void *, const void *, size_t);
335 mmiocpy((void __force *)to, from, count);
336}
337#define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
338
339#else
340#define memset_io(c,v,l) _memset_io(c,(v),(l))
341#define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l))
342#define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l))
343#endif
344
345#endif /* readl */
346
347/*
348 * ioremap() and friends.
349 *
350 * ioremap() takes a resource address, and size. Due to the ARM memory
351 * types, it is important to use the correct ioremap() function as each
352 * mapping has specific properties.
353 *
354 * Function Memory type Cacheability Cache hint
355 * ioremap() Device n/a n/a
356 * ioremap_nocache() Device n/a n/a
357 * ioremap_cache() Normal Writeback Read allocate
358 * ioremap_wc() Normal Non-cacheable n/a
359 * ioremap_wt() Normal Non-cacheable n/a
360 *
361 * All device mappings have the following properties:
362 * - no access speculation
363 * - no repetition (eg, on return from an exception)
364 * - number, order and size of accesses are maintained
365 * - unaligned accesses are "unpredictable"
366 * - writes may be delayed before they hit the endpoint device
367 *
368 * ioremap_nocache() is the same as ioremap() as there are too many device
369 * drivers using this for device registers, and documentation which tells
370 * people to use it for such for this to be any different. This is not a
371 * safe fallback for memory-like mappings, or memory regions where the
372 * compiler may generate unaligned accesses - eg, via inlining its own
373 * memcpy.
374 *
375 * All normal memory mappings have the following properties:
376 * - reads can be repeated with no side effects
377 * - repeated reads return the last value written
378 * - reads can fetch additional locations without side effects
379 * - writes can be repeated (in certain cases) with no side effects
380 * - writes can be merged before accessing the target
381 * - unaligned accesses can be supported
382 * - ordering is not guaranteed without explicit dependencies or barrier
383 * instructions
384 * - writes may be delayed before they hit the endpoint memory
385 *
386 * The cache hint is only a performance hint: CPUs may alias these hints.
387 * Eg, a CPU not implementing read allocate but implementing write allocate
388 * will provide a write allocate mapping instead.
389 */
390void __iomem *ioremap(resource_size_t res_cookie, size_t size);
391#define ioremap ioremap
392#define ioremap_nocache ioremap
393
394/*
395 * Do not use ioremap_cache for mapping memory. Use memremap instead.
396 */
397void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
398#define ioremap_cache ioremap_cache
399
400/*
401 * Do not use ioremap_cached in new code. Provided for the benefit of
402 * the pxa2xx-flash MTD driver only.
403 */
404void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size);
405
406void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
407#define ioremap_wc ioremap_wc
408#define ioremap_wt ioremap_wc
409
410void iounmap(volatile void __iomem *iomem_cookie);
411#define iounmap iounmap
412
413void *arch_memremap_wb(phys_addr_t phys_addr, size_t size);
414#define arch_memremap_wb arch_memremap_wb
415
416/*
417 * io{read,write}{16,32}be() macros
418 */
419#define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
420#define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
421
422#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
423#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
424
425#ifndef ioport_map
426#define ioport_map ioport_map
427extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
428#endif
429#ifndef ioport_unmap
430#define ioport_unmap ioport_unmap
431extern void ioport_unmap(void __iomem *addr);
432#endif
433
434struct pci_dev;
435
436#define pci_iounmap pci_iounmap
437extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
438
439/*
440 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
441 * access
442 */
443#define xlate_dev_mem_ptr(p) __va(p)
444
445/*
446 * Convert a virtual cached pointer to an uncached pointer
447 */
448#define xlate_dev_kmem_ptr(p) p
449
450#include <asm-generic/io.h>
451
452/*
453 * can the hardware map this into one segment or not, given no other
454 * constraints.
455 */
456#define BIOVEC_MERGEABLE(vec1, vec2) \
457 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
458
459struct bio_vec;
460extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
461 const struct bio_vec *vec2);
462#define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
463 (__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \
464 (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
465
466#ifdef CONFIG_MMU
467#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
468extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
469extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
470extern int devmem_is_allowed(unsigned long pfn);
471#endif
472
473/*
474 * Register ISA memory and port locations for glibc iopl/inb/outb
475 * emulation.
476 */
477extern void register_isa_ports(unsigned int mmio, unsigned int io,
478 unsigned int io_shift);
479
480#endif /* __KERNEL__ */
481#endif /* __ASM_ARM_IO_H */