Loading...
1/*
2 * arch/arm/include/asm/io.h
3 *
4 * Copyright (C) 1996-2000 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Modifications:
11 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
12 * constant addresses and variable addresses.
13 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
14 * specific IO header files.
15 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
16 * 04-Apr-1999 PJB Added check_signature.
17 * 12-Dec-1999 RMK More cleanups
18 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions
19 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem
20 */
21#ifndef __ASM_ARM_IO_H
22#define __ASM_ARM_IO_H
23
24#ifdef __KERNEL__
25
26#include <linux/string.h>
27#include <linux/types.h>
28#include <linux/blk_types.h>
29#include <asm/byteorder.h>
30#include <asm/memory.h>
31#include <asm-generic/pci_iomap.h>
32#include <xen/xen.h>
33
34/*
35 * ISA I/O bus memory addresses are 1:1 with the physical address.
36 */
37#define isa_virt_to_bus virt_to_phys
38#define isa_page_to_bus page_to_phys
39#define isa_bus_to_virt phys_to_virt
40
41/*
42 * Atomic MMIO-wide IO modify
43 */
44extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
45extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
46
47/*
48 * Generic IO read/write. These perform native-endian accesses. Note
49 * that some architectures will want to re-define __raw_{read,write}w.
50 */
51void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
52void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
53void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
54
55void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
56void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
57void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
58
59#if __LINUX_ARM_ARCH__ < 6
60/*
61 * Half-word accesses are problematic with RiscPC due to limitations of
62 * the bus. Rather than special-case the machine, just let the compiler
63 * generate the access for CPUs prior to ARMv6.
64 */
65#define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
66#define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
67#else
68/*
69 * When running under a hypervisor, we want to avoid I/O accesses with
70 * writeback addressing modes as these incur a significant performance
71 * overhead (the address generation must be emulated in software).
72 */
73#define __raw_writew __raw_writew
74static inline void __raw_writew(u16 val, volatile void __iomem *addr)
75{
76 asm volatile("strh %1, %0"
77 : : "Q" (*(volatile u16 __force *)addr), "r" (val));
78}
79
80#define __raw_readw __raw_readw
81static inline u16 __raw_readw(const volatile void __iomem *addr)
82{
83 u16 val;
84 asm volatile("ldrh %0, %1"
85 : "=r" (val)
86 : "Q" (*(volatile u16 __force *)addr));
87 return val;
88}
89#endif
90
91#define __raw_writeb __raw_writeb
92static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
93{
94 asm volatile("strb %1, %0"
95 : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
96}
97
98#define __raw_writel __raw_writel
99static inline void __raw_writel(u32 val, volatile void __iomem *addr)
100{
101 asm volatile("str %1, %0"
102 : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
103}
104
105#define __raw_readb __raw_readb
106static inline u8 __raw_readb(const volatile void __iomem *addr)
107{
108 u8 val;
109 asm volatile("ldrb %0, %1"
110 : "=r" (val)
111 : "Qo" (*(volatile u8 __force *)addr));
112 return val;
113}
114
115#define __raw_readl __raw_readl
116static inline u32 __raw_readl(const volatile void __iomem *addr)
117{
118 u32 val;
119 asm volatile("ldr %0, %1"
120 : "=r" (val)
121 : "Qo" (*(volatile u32 __force *)addr));
122 return val;
123}
124
125/*
126 * Architecture ioremap implementation.
127 */
128#define MT_DEVICE 0
129#define MT_DEVICE_NONSHARED 1
130#define MT_DEVICE_CACHED 2
131#define MT_DEVICE_WC 3
132/*
133 * types 4 onwards can be found in asm/mach/map.h and are undefined
134 * for ioremap
135 */
136
137/*
138 * __arm_ioremap takes CPU physical address.
139 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
140 * The _caller variety takes a __builtin_return_address(0) value for
141 * /proc/vmalloc to use - and should only be used in non-inline functions.
142 */
143extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
144 void *);
145extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
146extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
147extern void __iounmap(volatile void __iomem *addr);
148
149extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
150 unsigned int, void *);
151extern void (*arch_iounmap)(volatile void __iomem *);
152
153/*
154 * Bad read/write accesses...
155 */
156extern void __readwrite_bug(const char *fn);
157
158/*
159 * A typesafe __io() helper
160 */
161static inline void __iomem *__typesafe_io(unsigned long addr)
162{
163 return (void __iomem *)addr;
164}
165
166#define IOMEM(x) ((void __force __iomem *)(x))
167
168/* IO barriers */
169#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
170#include <asm/barrier.h>
171#define __iormb() rmb()
172#define __iowmb() wmb()
173#else
174#define __iormb() do { } while (0)
175#define __iowmb() do { } while (0)
176#endif
177
178/* PCI fixed i/o mapping */
179#define PCI_IO_VIRT_BASE 0xfee00000
180#define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE)
181
182#if defined(CONFIG_PCI)
183void pci_ioremap_set_mem_type(int mem_type);
184#else
185static inline void pci_ioremap_set_mem_type(int mem_type) {}
186#endif
187
188extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
189
190/*
191 * Now, pick up the machine-defined IO definitions
192 */
193#ifdef CONFIG_NEED_MACH_IO_H
194#include <mach/io.h>
195#elif defined(CONFIG_PCI)
196#define IO_SPACE_LIMIT ((resource_size_t)0xfffff)
197#define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
198#else
199#define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT)
200#endif
201
202/*
203 * This is the limit of PC card/PCI/ISA IO space, which is by default
204 * 64K if we have PC card, PCI or ISA support. Otherwise, default to
205 * zero to prevent ISA/PCI drivers claiming IO space (and potentially
206 * oopsing.)
207 *
208 * Only set this larger if you really need inb() et.al. to operate over
209 * a larger address space. Note that SOC_COMMON ioremaps each sockets
210 * IO space area, and so inb() et.al. must be defined to operate as per
211 * readb() et.al. on such platforms.
212 */
213#ifndef IO_SPACE_LIMIT
214#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
215#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
216#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
217#define IO_SPACE_LIMIT ((resource_size_t)0xffff)
218#else
219#define IO_SPACE_LIMIT ((resource_size_t)0)
220#endif
221#endif
222
223/*
224 * IO port access primitives
225 * -------------------------
226 *
227 * The ARM doesn't have special IO access instructions; all IO is memory
228 * mapped. Note that these are defined to perform little endian accesses
229 * only. Their primary purpose is to access PCI and ISA peripherals.
230 *
231 * Note that for a big endian machine, this implies that the following
232 * big endian mode connectivity is in place, as described by numerous
233 * ARM documents:
234 *
235 * PCI: D0-D7 D8-D15 D16-D23 D24-D31
236 * ARM: D24-D31 D16-D23 D8-D15 D0-D7
237 *
238 * The machine specific io.h include defines __io to translate an "IO"
239 * address to a memory address.
240 *
241 * Note that we prevent GCC re-ordering or caching values in expressions
242 * by introducing sequence points into the in*() definitions. Note that
243 * __raw_* do not guarantee this behaviour.
244 *
245 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
246 */
247#ifdef __io
248#define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); })
249#define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \
250 cpu_to_le16(v),__io(p)); })
251#define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \
252 cpu_to_le32(v),__io(p)); })
253
254#define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
255#define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
256 __raw_readw(__io(p))); __iormb(); __v; })
257#define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
258 __raw_readl(__io(p))); __iormb(); __v; })
259
260#define outsb(p,d,l) __raw_writesb(__io(p),d,l)
261#define outsw(p,d,l) __raw_writesw(__io(p),d,l)
262#define outsl(p,d,l) __raw_writesl(__io(p),d,l)
263
264#define insb(p,d,l) __raw_readsb(__io(p),d,l)
265#define insw(p,d,l) __raw_readsw(__io(p),d,l)
266#define insl(p,d,l) __raw_readsl(__io(p),d,l)
267#endif
268
269/*
270 * String version of IO memory access ops:
271 */
272extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
273extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
274extern void _memset_io(volatile void __iomem *, int, size_t);
275
276#define mmiowb()
277
278/*
279 * Memory access primitives
280 * ------------------------
281 *
282 * These perform PCI memory accesses via an ioremap region. They don't
283 * take an address as such, but a cookie.
284 *
285 * Again, this are defined to perform little endian accesses. See the
286 * IO port primitives for more information.
287 */
288#ifndef readl
289#define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
290#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
291 __raw_readw(c)); __r; })
292#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
293 __raw_readl(c)); __r; })
294
295#define writeb_relaxed(v,c) __raw_writeb(v,c)
296#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
297#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
298
299#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
300#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
301#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
302
303#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
304#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
305#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
306
307#define readsb(p,d,l) __raw_readsb(p,d,l)
308#define readsw(p,d,l) __raw_readsw(p,d,l)
309#define readsl(p,d,l) __raw_readsl(p,d,l)
310
311#define writesb(p,d,l) __raw_writesb(p,d,l)
312#define writesw(p,d,l) __raw_writesw(p,d,l)
313#define writesl(p,d,l) __raw_writesl(p,d,l)
314
315#ifndef __ARMBE__
316static inline void memset_io(volatile void __iomem *dst, unsigned c,
317 size_t count)
318{
319 extern void mmioset(void *, unsigned int, size_t);
320 mmioset((void __force *)dst, c, count);
321}
322#define memset_io(dst,c,count) memset_io(dst,c,count)
323
324static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
325 size_t count)
326{
327 extern void mmiocpy(void *, const void *, size_t);
328 mmiocpy(to, (const void __force *)from, count);
329}
330#define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
331
332static inline void memcpy_toio(volatile void __iomem *to, const void *from,
333 size_t count)
334{
335 extern void mmiocpy(void *, const void *, size_t);
336 mmiocpy((void __force *)to, from, count);
337}
338#define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
339
340#else
341#define memset_io(c,v,l) _memset_io(c,(v),(l))
342#define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l))
343#define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l))
344#endif
345
346#endif /* readl */
347
348/*
349 * ioremap() and friends.
350 *
351 * ioremap() takes a resource address, and size. Due to the ARM memory
352 * types, it is important to use the correct ioremap() function as each
353 * mapping has specific properties.
354 *
355 * Function Memory type Cacheability Cache hint
356 * ioremap() Device n/a n/a
357 * ioremap_nocache() Device n/a n/a
358 * ioremap_cache() Normal Writeback Read allocate
359 * ioremap_wc() Normal Non-cacheable n/a
360 * ioremap_wt() Normal Non-cacheable n/a
361 *
362 * All device mappings have the following properties:
363 * - no access speculation
364 * - no repetition (eg, on return from an exception)
365 * - number, order and size of accesses are maintained
366 * - unaligned accesses are "unpredictable"
367 * - writes may be delayed before they hit the endpoint device
368 *
369 * ioremap_nocache() is the same as ioremap() as there are too many device
370 * drivers using this for device registers, and documentation which tells
371 * people to use it for such for this to be any different. This is not a
372 * safe fallback for memory-like mappings, or memory regions where the
373 * compiler may generate unaligned accesses - eg, via inlining its own
374 * memcpy.
375 *
376 * All normal memory mappings have the following properties:
377 * - reads can be repeated with no side effects
378 * - repeated reads return the last value written
379 * - reads can fetch additional locations without side effects
380 * - writes can be repeated (in certain cases) with no side effects
381 * - writes can be merged before accessing the target
382 * - unaligned accesses can be supported
383 * - ordering is not guaranteed without explicit dependencies or barrier
384 * instructions
385 * - writes may be delayed before they hit the endpoint memory
386 *
387 * The cache hint is only a performance hint: CPUs may alias these hints.
388 * Eg, a CPU not implementing read allocate but implementing write allocate
389 * will provide a write allocate mapping instead.
390 */
391void __iomem *ioremap(resource_size_t res_cookie, size_t size);
392#define ioremap ioremap
393#define ioremap_nocache ioremap
394
395void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
396#define ioremap_cache ioremap_cache
397
398void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
399#define ioremap_wc ioremap_wc
400#define ioremap_wt ioremap_wc
401
402void iounmap(volatile void __iomem *iomem_cookie);
403#define iounmap iounmap
404
405/*
406 * io{read,write}{16,32}be() macros
407 */
408#define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
409#define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
410
411#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
412#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
413
414#ifndef ioport_map
415#define ioport_map ioport_map
416extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
417#endif
418#ifndef ioport_unmap
419#define ioport_unmap ioport_unmap
420extern void ioport_unmap(void __iomem *addr);
421#endif
422
423struct pci_dev;
424
425#define pci_iounmap pci_iounmap
426extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
427
428/*
429 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
430 * access
431 */
432#define xlate_dev_mem_ptr(p) __va(p)
433
434/*
435 * Convert a virtual cached pointer to an uncached pointer
436 */
437#define xlate_dev_kmem_ptr(p) p
438
439#include <asm-generic/io.h>
440
441/*
442 * can the hardware map this into one segment or not, given no other
443 * constraints.
444 */
445#define BIOVEC_MERGEABLE(vec1, vec2) \
446 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
447
448struct bio_vec;
449extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
450 const struct bio_vec *vec2);
451#define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
452 (__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \
453 (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
454
455#ifdef CONFIG_MMU
456#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
457extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
458extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
459extern int devmem_is_allowed(unsigned long pfn);
460#endif
461
462/*
463 * Register ISA memory and port locations for glibc iopl/inb/outb
464 * emulation.
465 */
466extern void register_isa_ports(unsigned int mmio, unsigned int io,
467 unsigned int io_shift);
468
469#endif /* __KERNEL__ */
470#endif /* __ASM_ARM_IO_H */
1/*
2 * arch/arm/include/asm/io.h
3 *
4 * Copyright (C) 1996-2000 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Modifications:
11 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
12 * constant addresses and variable addresses.
13 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
14 * specific IO header files.
15 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
16 * 04-Apr-1999 PJB Added check_signature.
17 * 12-Dec-1999 RMK More cleanups
18 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions
19 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem
20 */
21#ifndef __ASM_ARM_IO_H
22#define __ASM_ARM_IO_H
23
24#ifdef __KERNEL__
25
26#include <linux/types.h>
27#include <asm/byteorder.h>
28#include <asm/memory.h>
29#include <asm/system.h>
30
31/*
32 * ISA I/O bus memory addresses are 1:1 with the physical address.
33 */
34#define isa_virt_to_bus virt_to_phys
35#define isa_page_to_bus page_to_phys
36#define isa_bus_to_virt phys_to_virt
37
38/*
39 * Generic IO read/write. These perform native-endian accesses. Note
40 * that some architectures will want to re-define __raw_{read,write}w.
41 */
42extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen);
43extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen);
44extern void __raw_writesl(void __iomem *addr, const void *data, int longlen);
45
46extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen);
47extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen);
48extern void __raw_readsl(const void __iomem *addr, void *data, int longlen);
49
50#define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile unsigned char __force *)(a) = (v))
51#define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v))
52#define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile unsigned int __force *)(a) = (v))
53
54#define __raw_readb(a) (__chk_io_ptr(a), *(volatile unsigned char __force *)(a))
55#define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
56#define __raw_readl(a) (__chk_io_ptr(a), *(volatile unsigned int __force *)(a))
57
58/*
59 * Architecture ioremap implementation.
60 */
61#define MT_DEVICE 0
62#define MT_DEVICE_NONSHARED 1
63#define MT_DEVICE_CACHED 2
64#define MT_DEVICE_WC 3
65/*
66 * types 4 onwards can be found in asm/mach/map.h and are undefined
67 * for ioremap
68 */
69
70/*
71 * __arm_ioremap takes CPU physical address.
72 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
73 * The _caller variety takes a __builtin_return_address(0) value for
74 * /proc/vmalloc to use - and should only be used in non-inline functions.
75 */
76extern void __iomem *__arm_ioremap_pfn_caller(unsigned long, unsigned long,
77 size_t, unsigned int, void *);
78extern void __iomem *__arm_ioremap_caller(unsigned long, size_t, unsigned int,
79 void *);
80
81extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
82extern void __iomem *__arm_ioremap(unsigned long, size_t, unsigned int);
83extern void __iounmap(volatile void __iomem *addr);
84
85/*
86 * Bad read/write accesses...
87 */
88extern void __readwrite_bug(const char *fn);
89
90/*
91 * A typesafe __io() helper
92 */
93static inline void __iomem *__typesafe_io(unsigned long addr)
94{
95 return (void __iomem *)addr;
96}
97
98/* IO barriers */
99#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
100#define __iormb() rmb()
101#define __iowmb() wmb()
102#else
103#define __iormb() do { } while (0)
104#define __iowmb() do { } while (0)
105#endif
106
107/*
108 * Now, pick up the machine-defined IO definitions
109 */
110#include <mach/io.h>
111
112/*
113 * IO port access primitives
114 * -------------------------
115 *
116 * The ARM doesn't have special IO access instructions; all IO is memory
117 * mapped. Note that these are defined to perform little endian accesses
118 * only. Their primary purpose is to access PCI and ISA peripherals.
119 *
120 * Note that for a big endian machine, this implies that the following
121 * big endian mode connectivity is in place, as described by numerous
122 * ARM documents:
123 *
124 * PCI: D0-D7 D8-D15 D16-D23 D24-D31
125 * ARM: D24-D31 D16-D23 D8-D15 D0-D7
126 *
127 * The machine specific io.h include defines __io to translate an "IO"
128 * address to a memory address.
129 *
130 * Note that we prevent GCC re-ordering or caching values in expressions
131 * by introducing sequence points into the in*() definitions. Note that
132 * __raw_* do not guarantee this behaviour.
133 *
134 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
135 */
136#ifdef __io
137#define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); })
138#define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \
139 cpu_to_le16(v),__io(p)); })
140#define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \
141 cpu_to_le32(v),__io(p)); })
142
143#define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
144#define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
145 __raw_readw(__io(p))); __iormb(); __v; })
146#define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
147 __raw_readl(__io(p))); __iormb(); __v; })
148
149#define outsb(p,d,l) __raw_writesb(__io(p),d,l)
150#define outsw(p,d,l) __raw_writesw(__io(p),d,l)
151#define outsl(p,d,l) __raw_writesl(__io(p),d,l)
152
153#define insb(p,d,l) __raw_readsb(__io(p),d,l)
154#define insw(p,d,l) __raw_readsw(__io(p),d,l)
155#define insl(p,d,l) __raw_readsl(__io(p),d,l)
156#endif
157
158#define outb_p(val,port) outb((val),(port))
159#define outw_p(val,port) outw((val),(port))
160#define outl_p(val,port) outl((val),(port))
161#define inb_p(port) inb((port))
162#define inw_p(port) inw((port))
163#define inl_p(port) inl((port))
164
165#define outsb_p(port,from,len) outsb(port,from,len)
166#define outsw_p(port,from,len) outsw(port,from,len)
167#define outsl_p(port,from,len) outsl(port,from,len)
168#define insb_p(port,to,len) insb(port,to,len)
169#define insw_p(port,to,len) insw(port,to,len)
170#define insl_p(port,to,len) insl(port,to,len)
171
172/*
173 * String version of IO memory access ops:
174 */
175extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
176extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
177extern void _memset_io(volatile void __iomem *, int, size_t);
178
179#define mmiowb()
180
181/*
182 * Memory access primitives
183 * ------------------------
184 *
185 * These perform PCI memory accesses via an ioremap region. They don't
186 * take an address as such, but a cookie.
187 *
188 * Again, this are defined to perform little endian accesses. See the
189 * IO port primitives for more information.
190 */
191#ifdef __mem_pci
192#define readb_relaxed(c) ({ u8 __v = __raw_readb(__mem_pci(c)); __v; })
193#define readw_relaxed(c) ({ u16 __v = le16_to_cpu((__force __le16) \
194 __raw_readw(__mem_pci(c))); __v; })
195#define readl_relaxed(c) ({ u32 __v = le32_to_cpu((__force __le32) \
196 __raw_readl(__mem_pci(c))); __v; })
197
198#define writeb_relaxed(v,c) ((void)__raw_writeb(v,__mem_pci(c)))
199#define writew_relaxed(v,c) ((void)__raw_writew((__force u16) \
200 cpu_to_le16(v),__mem_pci(c)))
201#define writel_relaxed(v,c) ((void)__raw_writel((__force u32) \
202 cpu_to_le32(v),__mem_pci(c)))
203
204#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
205#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
206#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
207
208#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
209#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
210#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
211
212#define readsb(p,d,l) __raw_readsb(__mem_pci(p),d,l)
213#define readsw(p,d,l) __raw_readsw(__mem_pci(p),d,l)
214#define readsl(p,d,l) __raw_readsl(__mem_pci(p),d,l)
215
216#define writesb(p,d,l) __raw_writesb(__mem_pci(p),d,l)
217#define writesw(p,d,l) __raw_writesw(__mem_pci(p),d,l)
218#define writesl(p,d,l) __raw_writesl(__mem_pci(p),d,l)
219
220#define memset_io(c,v,l) _memset_io(__mem_pci(c),(v),(l))
221#define memcpy_fromio(a,c,l) _memcpy_fromio((a),__mem_pci(c),(l))
222#define memcpy_toio(c,a,l) _memcpy_toio(__mem_pci(c),(a),(l))
223
224#elif !defined(readb)
225
226#define readb(c) (__readwrite_bug("readb"),0)
227#define readw(c) (__readwrite_bug("readw"),0)
228#define readl(c) (__readwrite_bug("readl"),0)
229#define writeb(v,c) __readwrite_bug("writeb")
230#define writew(v,c) __readwrite_bug("writew")
231#define writel(v,c) __readwrite_bug("writel")
232
233#define check_signature(io,sig,len) (0)
234
235#endif /* __mem_pci */
236
237/*
238 * ioremap and friends.
239 *
240 * ioremap takes a PCI memory address, as specified in
241 * Documentation/IO-mapping.txt.
242 *
243 */
244#ifndef __arch_ioremap
245#define __arch_ioremap __arm_ioremap
246#define __arch_iounmap __iounmap
247#endif
248
249#define ioremap(cookie,size) __arch_ioremap((cookie), (size), MT_DEVICE)
250#define ioremap_nocache(cookie,size) __arch_ioremap((cookie), (size), MT_DEVICE)
251#define ioremap_cached(cookie,size) __arch_ioremap((cookie), (size), MT_DEVICE_CACHED)
252#define ioremap_wc(cookie,size) __arch_ioremap((cookie), (size), MT_DEVICE_WC)
253#define iounmap __arch_iounmap
254
255/*
256 * io{read,write}{8,16,32} macros
257 */
258#ifndef ioread8
259#define ioread8(p) ({ unsigned int __v = __raw_readb(p); __iormb(); __v; })
260#define ioread16(p) ({ unsigned int __v = le16_to_cpu((__force __le16)__raw_readw(p)); __iormb(); __v; })
261#define ioread32(p) ({ unsigned int __v = le32_to_cpu((__force __le32)__raw_readl(p)); __iormb(); __v; })
262
263#define iowrite8(v,p) ({ __iowmb(); (void)__raw_writeb(v, p); })
264#define iowrite16(v,p) ({ __iowmb(); (void)__raw_writew((__force __u16)cpu_to_le16(v), p); })
265#define iowrite32(v,p) ({ __iowmb(); (void)__raw_writel((__force __u32)cpu_to_le32(v), p); })
266
267#define ioread8_rep(p,d,c) __raw_readsb(p,d,c)
268#define ioread16_rep(p,d,c) __raw_readsw(p,d,c)
269#define ioread32_rep(p,d,c) __raw_readsl(p,d,c)
270
271#define iowrite8_rep(p,s,c) __raw_writesb(p,s,c)
272#define iowrite16_rep(p,s,c) __raw_writesw(p,s,c)
273#define iowrite32_rep(p,s,c) __raw_writesl(p,s,c)
274
275extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
276extern void ioport_unmap(void __iomem *addr);
277#endif
278
279struct pci_dev;
280
281extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen);
282extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
283
284/*
285 * can the hardware map this into one segment or not, given no other
286 * constraints.
287 */
288#define BIOVEC_MERGEABLE(vec1, vec2) \
289 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
290
291#ifdef CONFIG_MMU
292#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
293extern int valid_phys_addr_range(unsigned long addr, size_t size);
294extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
295extern int devmem_is_allowed(unsigned long pfn);
296#endif
297
298/*
299 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
300 * access
301 */
302#define xlate_dev_mem_ptr(p) __va(p)
303
304/*
305 * Convert a virtual cached pointer to an uncached pointer
306 */
307#define xlate_dev_kmem_ptr(p) p
308
309/*
310 * Register ISA memory and port locations for glibc iopl/inb/outb
311 * emulation.
312 */
313extern void register_isa_ports(unsigned int mmio, unsigned int io,
314 unsigned int io_shift);
315
316#endif /* __KERNEL__ */
317#endif /* __ASM_ARM_IO_H */