Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/pfn_t.h>
  54#include <linux/writeback.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/kallsyms.h>
  58#include <linux/swapops.h>
  59#include <linux/elf.h>
  60#include <linux/gfp.h>
  61#include <linux/migrate.h>
  62#include <linux/string.h>
  63#include <linux/dma-debug.h>
  64#include <linux/debugfs.h>
  65#include <linux/userfaultfd_k.h>
  66
  67#include <asm/io.h>
  68#include <asm/mmu_context.h>
  69#include <asm/pgalloc.h>
  70#include <asm/uaccess.h>
  71#include <asm/tlb.h>
  72#include <asm/tlbflush.h>
  73#include <asm/pgtable.h>
  74
  75#include "internal.h"
  76
  77#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  78#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  79#endif
  80
  81#ifndef CONFIG_NEED_MULTIPLE_NODES
  82/* use the per-pgdat data instead for discontigmem - mbligh */
  83unsigned long max_mapnr;
  84struct page *mem_map;
  85
  86EXPORT_SYMBOL(max_mapnr);
  87EXPORT_SYMBOL(mem_map);
  88#endif
  89
 
  90/*
  91 * A number of key systems in x86 including ioremap() rely on the assumption
  92 * that high_memory defines the upper bound on direct map memory, then end
  93 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  95 * and ZONE_HIGHMEM.
  96 */
  97void * high_memory;
  98
 
  99EXPORT_SYMBOL(high_memory);
 100
 101/*
 102 * Randomize the address space (stacks, mmaps, brk, etc.).
 103 *
 104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 105 *   as ancient (libc5 based) binaries can segfault. )
 106 */
 107int randomize_va_space __read_mostly =
 108#ifdef CONFIG_COMPAT_BRK
 109					1;
 110#else
 111					2;
 112#endif
 113
 114static int __init disable_randmaps(char *s)
 115{
 116	randomize_va_space = 0;
 117	return 1;
 118}
 119__setup("norandmaps", disable_randmaps);
 120
 121unsigned long zero_pfn __read_mostly;
 122unsigned long highest_memmap_pfn __read_mostly;
 123
 124EXPORT_SYMBOL(zero_pfn);
 125
 126/*
 127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 128 */
 129static int __init init_zero_pfn(void)
 130{
 131	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 132	return 0;
 133}
 134core_initcall(init_zero_pfn);
 135
 136
 137#if defined(SPLIT_RSS_COUNTING)
 138
 139void sync_mm_rss(struct mm_struct *mm)
 140{
 141	int i;
 142
 143	for (i = 0; i < NR_MM_COUNTERS; i++) {
 144		if (current->rss_stat.count[i]) {
 145			add_mm_counter(mm, i, current->rss_stat.count[i]);
 146			current->rss_stat.count[i] = 0;
 147		}
 148	}
 149	current->rss_stat.events = 0;
 150}
 151
 152static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 153{
 154	struct task_struct *task = current;
 155
 156	if (likely(task->mm == mm))
 157		task->rss_stat.count[member] += val;
 158	else
 159		add_mm_counter(mm, member, val);
 160}
 161#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 162#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 163
 164/* sync counter once per 64 page faults */
 165#define TASK_RSS_EVENTS_THRESH	(64)
 166static void check_sync_rss_stat(struct task_struct *task)
 167{
 168	if (unlikely(task != current))
 169		return;
 170	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 171		sync_mm_rss(task->mm);
 172}
 173#else /* SPLIT_RSS_COUNTING */
 174
 175#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 176#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 177
 178static void check_sync_rss_stat(struct task_struct *task)
 179{
 180}
 181
 182#endif /* SPLIT_RSS_COUNTING */
 183
 184#ifdef HAVE_GENERIC_MMU_GATHER
 185
 186static bool tlb_next_batch(struct mmu_gather *tlb)
 187{
 188	struct mmu_gather_batch *batch;
 189
 190	batch = tlb->active;
 191	if (batch->next) {
 192		tlb->active = batch->next;
 193		return true;
 194	}
 195
 196	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 197		return false;
 198
 199	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 200	if (!batch)
 201		return false;
 202
 203	tlb->batch_count++;
 204	batch->next = NULL;
 205	batch->nr   = 0;
 206	batch->max  = MAX_GATHER_BATCH;
 207
 208	tlb->active->next = batch;
 209	tlb->active = batch;
 210
 211	return true;
 212}
 213
 214/* tlb_gather_mmu
 215 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 216 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 217 *	users and we're going to destroy the full address space (exit/execve).
 218 */
 219void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 220{
 221	tlb->mm = mm;
 222
 223	/* Is it from 0 to ~0? */
 224	tlb->fullmm     = !(start | (end+1));
 225	tlb->need_flush_all = 0;
 226	tlb->local.next = NULL;
 227	tlb->local.nr   = 0;
 228	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 229	tlb->active     = &tlb->local;
 230	tlb->batch_count = 0;
 231
 232#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 233	tlb->batch = NULL;
 234#endif
 235
 236	__tlb_reset_range(tlb);
 237}
 238
 239static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 240{
 241	if (!tlb->end)
 242		return;
 243
 
 
 
 244	tlb_flush(tlb);
 245	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 246#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 247	tlb_table_flush(tlb);
 248#endif
 249	__tlb_reset_range(tlb);
 250}
 251
 252static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 253{
 254	struct mmu_gather_batch *batch;
 255
 256	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 257		free_pages_and_swap_cache(batch->pages, batch->nr);
 258		batch->nr = 0;
 259	}
 260	tlb->active = &tlb->local;
 261}
 262
 263void tlb_flush_mmu(struct mmu_gather *tlb)
 264{
 265	tlb_flush_mmu_tlbonly(tlb);
 266	tlb_flush_mmu_free(tlb);
 267}
 268
 269/* tlb_finish_mmu
 270 *	Called at the end of the shootdown operation to free up any resources
 271 *	that were required.
 272 */
 273void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 274{
 275	struct mmu_gather_batch *batch, *next;
 276
 277	tlb_flush_mmu(tlb);
 278
 279	/* keep the page table cache within bounds */
 280	check_pgt_cache();
 281
 282	for (batch = tlb->local.next; batch; batch = next) {
 283		next = batch->next;
 284		free_pages((unsigned long)batch, 0);
 285	}
 286	tlb->local.next = NULL;
 287}
 288
 289/* __tlb_remove_page
 290 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 291 *	handling the additional races in SMP caused by other CPUs caching valid
 292 *	mappings in their TLBs. Returns the number of free page slots left.
 293 *	When out of page slots we must call tlb_flush_mmu().
 294 */
 295int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 296{
 297	struct mmu_gather_batch *batch;
 298
 299	VM_BUG_ON(!tlb->end);
 
 
 
 
 
 300
 301	batch = tlb->active;
 302	batch->pages[batch->nr++] = page;
 303	if (batch->nr == batch->max) {
 304		if (!tlb_next_batch(tlb))
 305			return 0;
 306		batch = tlb->active;
 307	}
 308	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 309
 310	return batch->max - batch->nr;
 311}
 312
 313#endif /* HAVE_GENERIC_MMU_GATHER */
 314
 315#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 316
 317/*
 318 * See the comment near struct mmu_table_batch.
 319 */
 320
 321static void tlb_remove_table_smp_sync(void *arg)
 322{
 323	/* Simply deliver the interrupt */
 324}
 325
 326static void tlb_remove_table_one(void *table)
 327{
 328	/*
 329	 * This isn't an RCU grace period and hence the page-tables cannot be
 330	 * assumed to be actually RCU-freed.
 331	 *
 332	 * It is however sufficient for software page-table walkers that rely on
 333	 * IRQ disabling. See the comment near struct mmu_table_batch.
 334	 */
 335	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 336	__tlb_remove_table(table);
 337}
 338
 339static void tlb_remove_table_rcu(struct rcu_head *head)
 340{
 341	struct mmu_table_batch *batch;
 342	int i;
 343
 344	batch = container_of(head, struct mmu_table_batch, rcu);
 345
 346	for (i = 0; i < batch->nr; i++)
 347		__tlb_remove_table(batch->tables[i]);
 348
 349	free_page((unsigned long)batch);
 350}
 351
 352void tlb_table_flush(struct mmu_gather *tlb)
 353{
 354	struct mmu_table_batch **batch = &tlb->batch;
 355
 356	if (*batch) {
 357		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 358		*batch = NULL;
 359	}
 360}
 361
 362void tlb_remove_table(struct mmu_gather *tlb, void *table)
 363{
 364	struct mmu_table_batch **batch = &tlb->batch;
 365
 
 
 366	/*
 367	 * When there's less then two users of this mm there cannot be a
 368	 * concurrent page-table walk.
 369	 */
 370	if (atomic_read(&tlb->mm->mm_users) < 2) {
 371		__tlb_remove_table(table);
 372		return;
 373	}
 374
 375	if (*batch == NULL) {
 376		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 377		if (*batch == NULL) {
 378			tlb_remove_table_one(table);
 379			return;
 380		}
 381		(*batch)->nr = 0;
 382	}
 383	(*batch)->tables[(*batch)->nr++] = table;
 384	if ((*batch)->nr == MAX_TABLE_BATCH)
 385		tlb_table_flush(tlb);
 386}
 387
 388#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 389
 390/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391 * Note: this doesn't free the actual pages themselves. That
 392 * has been handled earlier when unmapping all the memory regions.
 393 */
 394static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 395			   unsigned long addr)
 396{
 397	pgtable_t token = pmd_pgtable(*pmd);
 398	pmd_clear(pmd);
 399	pte_free_tlb(tlb, token, addr);
 400	atomic_long_dec(&tlb->mm->nr_ptes);
 401}
 402
 403static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 404				unsigned long addr, unsigned long end,
 405				unsigned long floor, unsigned long ceiling)
 406{
 407	pmd_t *pmd;
 408	unsigned long next;
 409	unsigned long start;
 410
 411	start = addr;
 412	pmd = pmd_offset(pud, addr);
 413	do {
 414		next = pmd_addr_end(addr, end);
 415		if (pmd_none_or_clear_bad(pmd))
 416			continue;
 417		free_pte_range(tlb, pmd, addr);
 418	} while (pmd++, addr = next, addr != end);
 419
 420	start &= PUD_MASK;
 421	if (start < floor)
 422		return;
 423	if (ceiling) {
 424		ceiling &= PUD_MASK;
 425		if (!ceiling)
 426			return;
 427	}
 428	if (end - 1 > ceiling - 1)
 429		return;
 430
 431	pmd = pmd_offset(pud, start);
 432	pud_clear(pud);
 433	pmd_free_tlb(tlb, pmd, start);
 434	mm_dec_nr_pmds(tlb->mm);
 435}
 436
 437static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 438				unsigned long addr, unsigned long end,
 439				unsigned long floor, unsigned long ceiling)
 440{
 441	pud_t *pud;
 442	unsigned long next;
 443	unsigned long start;
 444
 445	start = addr;
 446	pud = pud_offset(pgd, addr);
 447	do {
 448		next = pud_addr_end(addr, end);
 449		if (pud_none_or_clear_bad(pud))
 450			continue;
 451		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 452	} while (pud++, addr = next, addr != end);
 453
 454	start &= PGDIR_MASK;
 455	if (start < floor)
 456		return;
 457	if (ceiling) {
 458		ceiling &= PGDIR_MASK;
 459		if (!ceiling)
 460			return;
 461	}
 462	if (end - 1 > ceiling - 1)
 463		return;
 464
 465	pud = pud_offset(pgd, start);
 466	pgd_clear(pgd);
 467	pud_free_tlb(tlb, pud, start);
 468}
 469
 470/*
 471 * This function frees user-level page tables of a process.
 
 
 472 */
 473void free_pgd_range(struct mmu_gather *tlb,
 474			unsigned long addr, unsigned long end,
 475			unsigned long floor, unsigned long ceiling)
 476{
 477	pgd_t *pgd;
 478	unsigned long next;
 479
 480	/*
 481	 * The next few lines have given us lots of grief...
 482	 *
 483	 * Why are we testing PMD* at this top level?  Because often
 484	 * there will be no work to do at all, and we'd prefer not to
 485	 * go all the way down to the bottom just to discover that.
 486	 *
 487	 * Why all these "- 1"s?  Because 0 represents both the bottom
 488	 * of the address space and the top of it (using -1 for the
 489	 * top wouldn't help much: the masks would do the wrong thing).
 490	 * The rule is that addr 0 and floor 0 refer to the bottom of
 491	 * the address space, but end 0 and ceiling 0 refer to the top
 492	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 493	 * that end 0 case should be mythical).
 494	 *
 495	 * Wherever addr is brought up or ceiling brought down, we must
 496	 * be careful to reject "the opposite 0" before it confuses the
 497	 * subsequent tests.  But what about where end is brought down
 498	 * by PMD_SIZE below? no, end can't go down to 0 there.
 499	 *
 500	 * Whereas we round start (addr) and ceiling down, by different
 501	 * masks at different levels, in order to test whether a table
 502	 * now has no other vmas using it, so can be freed, we don't
 503	 * bother to round floor or end up - the tests don't need that.
 504	 */
 505
 506	addr &= PMD_MASK;
 507	if (addr < floor) {
 508		addr += PMD_SIZE;
 509		if (!addr)
 510			return;
 511	}
 512	if (ceiling) {
 513		ceiling &= PMD_MASK;
 514		if (!ceiling)
 515			return;
 516	}
 517	if (end - 1 > ceiling - 1)
 518		end -= PMD_SIZE;
 519	if (addr > end - 1)
 520		return;
 521
 522	pgd = pgd_offset(tlb->mm, addr);
 523	do {
 524		next = pgd_addr_end(addr, end);
 525		if (pgd_none_or_clear_bad(pgd))
 526			continue;
 527		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 528	} while (pgd++, addr = next, addr != end);
 529}
 530
 531void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 532		unsigned long floor, unsigned long ceiling)
 533{
 534	while (vma) {
 535		struct vm_area_struct *next = vma->vm_next;
 536		unsigned long addr = vma->vm_start;
 537
 538		/*
 539		 * Hide vma from rmap and truncate_pagecache before freeing
 540		 * pgtables
 541		 */
 542		unlink_anon_vmas(vma);
 543		unlink_file_vma(vma);
 544
 545		if (is_vm_hugetlb_page(vma)) {
 546			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 547				floor, next? next->vm_start: ceiling);
 548		} else {
 549			/*
 550			 * Optimization: gather nearby vmas into one call down
 551			 */
 552			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 553			       && !is_vm_hugetlb_page(next)) {
 554				vma = next;
 555				next = vma->vm_next;
 556				unlink_anon_vmas(vma);
 557				unlink_file_vma(vma);
 558			}
 559			free_pgd_range(tlb, addr, vma->vm_end,
 560				floor, next? next->vm_start: ceiling);
 561		}
 562		vma = next;
 563	}
 564}
 565
 566int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 
 567{
 568	spinlock_t *ptl;
 569	pgtable_t new = pte_alloc_one(mm, address);
 
 570	if (!new)
 571		return -ENOMEM;
 572
 573	/*
 574	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 575	 * visible before the pte is made visible to other CPUs by being
 576	 * put into page tables.
 577	 *
 578	 * The other side of the story is the pointer chasing in the page
 579	 * table walking code (when walking the page table without locking;
 580	 * ie. most of the time). Fortunately, these data accesses consist
 581	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 582	 * being the notable exception) will already guarantee loads are
 583	 * seen in-order. See the alpha page table accessors for the
 584	 * smp_read_barrier_depends() barriers in page table walking code.
 585	 */
 586	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 587
 588	ptl = pmd_lock(mm, pmd);
 
 589	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 590		atomic_long_inc(&mm->nr_ptes);
 591		pmd_populate(mm, pmd, new);
 592		new = NULL;
 593	}
 594	spin_unlock(ptl);
 
 595	if (new)
 596		pte_free(mm, new);
 
 
 597	return 0;
 598}
 599
 600int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 601{
 602	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 603	if (!new)
 604		return -ENOMEM;
 605
 606	smp_wmb(); /* See comment in __pte_alloc */
 607
 608	spin_lock(&init_mm.page_table_lock);
 609	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 610		pmd_populate_kernel(&init_mm, pmd, new);
 611		new = NULL;
 612	}
 
 613	spin_unlock(&init_mm.page_table_lock);
 614	if (new)
 615		pte_free_kernel(&init_mm, new);
 616	return 0;
 617}
 618
 619static inline void init_rss_vec(int *rss)
 620{
 621	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 622}
 623
 624static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 625{
 626	int i;
 627
 628	if (current->mm == mm)
 629		sync_mm_rss(mm);
 630	for (i = 0; i < NR_MM_COUNTERS; i++)
 631		if (rss[i])
 632			add_mm_counter(mm, i, rss[i]);
 633}
 634
 635/*
 636 * This function is called to print an error when a bad pte
 637 * is found. For example, we might have a PFN-mapped pte in
 638 * a region that doesn't allow it.
 639 *
 640 * The calling function must still handle the error.
 641 */
 642static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 643			  pte_t pte, struct page *page)
 644{
 645	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 646	pud_t *pud = pud_offset(pgd, addr);
 647	pmd_t *pmd = pmd_offset(pud, addr);
 648	struct address_space *mapping;
 649	pgoff_t index;
 650	static unsigned long resume;
 651	static unsigned long nr_shown;
 652	static unsigned long nr_unshown;
 653
 654	/*
 655	 * Allow a burst of 60 reports, then keep quiet for that minute;
 656	 * or allow a steady drip of one report per second.
 657	 */
 658	if (nr_shown == 60) {
 659		if (time_before(jiffies, resume)) {
 660			nr_unshown++;
 661			return;
 662		}
 663		if (nr_unshown) {
 664			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 665				 nr_unshown);
 
 666			nr_unshown = 0;
 667		}
 668		nr_shown = 0;
 669	}
 670	if (nr_shown++ == 0)
 671		resume = jiffies + 60 * HZ;
 672
 673	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 674	index = linear_page_index(vma, addr);
 675
 676	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 677		 current->comm,
 678		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 
 679	if (page)
 680		dump_page(page, "bad pte");
 681	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 682		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 
 683	/*
 684	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 685	 */
 686	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 687		 vma->vm_file,
 688		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 689		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 690		 mapping ? mapping->a_ops->readpage : NULL);
 
 691	dump_stack();
 692	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 
 
 
 
 
 
 
 
 
 
 
 693}
 
 
 
 
 
 
 
 
 694
 695/*
 696 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 697 *
 698 * "Special" mappings do not wish to be associated with a "struct page" (either
 699 * it doesn't exist, or it exists but they don't want to touch it). In this
 700 * case, NULL is returned here. "Normal" mappings do have a struct page.
 701 *
 702 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 703 * pte bit, in which case this function is trivial. Secondly, an architecture
 704 * may not have a spare pte bit, which requires a more complicated scheme,
 705 * described below.
 706 *
 707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 708 * special mapping (even if there are underlying and valid "struct pages").
 709 * COWed pages of a VM_PFNMAP are always normal.
 710 *
 711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 714 * mapping will always honor the rule
 715 *
 716 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 717 *
 718 * And for normal mappings this is false.
 719 *
 720 * This restricts such mappings to be a linear translation from virtual address
 721 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 722 * as the vma is not a COW mapping; in that case, we know that all ptes are
 723 * special (because none can have been COWed).
 724 *
 725 *
 726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 727 *
 728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 729 * page" backing, however the difference is that _all_ pages with a struct
 730 * page (that is, those where pfn_valid is true) are refcounted and considered
 731 * normal pages by the VM. The disadvantage is that pages are refcounted
 732 * (which can be slower and simply not an option for some PFNMAP users). The
 733 * advantage is that we don't have to follow the strict linearity rule of
 734 * PFNMAP mappings in order to support COWable mappings.
 735 *
 736 */
 737#ifdef __HAVE_ARCH_PTE_SPECIAL
 738# define HAVE_PTE_SPECIAL 1
 739#else
 740# define HAVE_PTE_SPECIAL 0
 741#endif
 742struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 743				pte_t pte)
 744{
 745	unsigned long pfn = pte_pfn(pte);
 746
 747	if (HAVE_PTE_SPECIAL) {
 748		if (likely(!pte_special(pte)))
 749			goto check_pfn;
 750		if (vma->vm_ops && vma->vm_ops->find_special_page)
 751			return vma->vm_ops->find_special_page(vma, addr);
 752		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 753			return NULL;
 754		if (!is_zero_pfn(pfn))
 755			print_bad_pte(vma, addr, pte, NULL);
 756		return NULL;
 757	}
 758
 759	/* !HAVE_PTE_SPECIAL case follows: */
 760
 761	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 762		if (vma->vm_flags & VM_MIXEDMAP) {
 763			if (!pfn_valid(pfn))
 764				return NULL;
 765			goto out;
 766		} else {
 767			unsigned long off;
 768			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 769			if (pfn == vma->vm_pgoff + off)
 770				return NULL;
 771			if (!is_cow_mapping(vma->vm_flags))
 772				return NULL;
 773		}
 774	}
 775
 776	if (is_zero_pfn(pfn))
 777		return NULL;
 778check_pfn:
 779	if (unlikely(pfn > highest_memmap_pfn)) {
 780		print_bad_pte(vma, addr, pte, NULL);
 781		return NULL;
 782	}
 783
 784	/*
 785	 * NOTE! We still have PageReserved() pages in the page tables.
 786	 * eg. VDSO mappings can cause them to exist.
 787	 */
 788out:
 789	return pfn_to_page(pfn);
 790}
 791
 792#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 793struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 794				pmd_t pmd)
 795{
 796	unsigned long pfn = pmd_pfn(pmd);
 797
 798	/*
 799	 * There is no pmd_special() but there may be special pmds, e.g.
 800	 * in a direct-access (dax) mapping, so let's just replicate the
 801	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 802	 */
 803	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 804		if (vma->vm_flags & VM_MIXEDMAP) {
 805			if (!pfn_valid(pfn))
 806				return NULL;
 807			goto out;
 808		} else {
 809			unsigned long off;
 810			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 811			if (pfn == vma->vm_pgoff + off)
 812				return NULL;
 813			if (!is_cow_mapping(vma->vm_flags))
 814				return NULL;
 815		}
 816	}
 817
 818	if (is_zero_pfn(pfn))
 819		return NULL;
 820	if (unlikely(pfn > highest_memmap_pfn))
 821		return NULL;
 822
 823	/*
 824	 * NOTE! We still have PageReserved() pages in the page tables.
 825	 * eg. VDSO mappings can cause them to exist.
 826	 */
 827out:
 828	return pfn_to_page(pfn);
 829}
 830#endif
 831
 832/*
 833 * copy one vm_area from one task to the other. Assumes the page tables
 834 * already present in the new task to be cleared in the whole range
 835 * covered by this vma.
 836 */
 837
 838static inline unsigned long
 839copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 840		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 841		unsigned long addr, int *rss)
 842{
 843	unsigned long vm_flags = vma->vm_flags;
 844	pte_t pte = *src_pte;
 845	struct page *page;
 846
 847	/* pte contains position in swap or file, so copy. */
 848	if (unlikely(!pte_present(pte))) {
 849		swp_entry_t entry = pte_to_swp_entry(pte);
 
 850
 851		if (likely(!non_swap_entry(entry))) {
 852			if (swap_duplicate(entry) < 0)
 853				return entry.val;
 854
 855			/* make sure dst_mm is on swapoff's mmlist. */
 856			if (unlikely(list_empty(&dst_mm->mmlist))) {
 857				spin_lock(&mmlist_lock);
 858				if (list_empty(&dst_mm->mmlist))
 859					list_add(&dst_mm->mmlist,
 860							&src_mm->mmlist);
 861				spin_unlock(&mmlist_lock);
 862			}
 863			rss[MM_SWAPENTS]++;
 864		} else if (is_migration_entry(entry)) {
 865			page = migration_entry_to_page(entry);
 
 
 
 
 
 
 866
 867			rss[mm_counter(page)]++;
 868
 869			if (is_write_migration_entry(entry) &&
 870					is_cow_mapping(vm_flags)) {
 871				/*
 872				 * COW mappings require pages in both
 873				 * parent and child to be set to read.
 874				 */
 875				make_migration_entry_read(&entry);
 876				pte = swp_entry_to_pte(entry);
 877				if (pte_swp_soft_dirty(*src_pte))
 878					pte = pte_swp_mksoft_dirty(pte);
 879				set_pte_at(src_mm, addr, src_pte, pte);
 880			}
 881		}
 882		goto out_set_pte;
 883	}
 884
 885	/*
 886	 * If it's a COW mapping, write protect it both
 887	 * in the parent and the child
 888	 */
 889	if (is_cow_mapping(vm_flags)) {
 890		ptep_set_wrprotect(src_mm, addr, src_pte);
 891		pte = pte_wrprotect(pte);
 892	}
 893
 894	/*
 895	 * If it's a shared mapping, mark it clean in
 896	 * the child
 897	 */
 898	if (vm_flags & VM_SHARED)
 899		pte = pte_mkclean(pte);
 900	pte = pte_mkold(pte);
 901
 902	page = vm_normal_page(vma, addr, pte);
 903	if (page) {
 904		get_page(page);
 905		page_dup_rmap(page, false);
 906		rss[mm_counter(page)]++;
 
 
 
 907	}
 908
 909out_set_pte:
 910	set_pte_at(dst_mm, addr, dst_pte, pte);
 911	return 0;
 912}
 913
 914static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 915		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 916		   unsigned long addr, unsigned long end)
 917{
 918	pte_t *orig_src_pte, *orig_dst_pte;
 919	pte_t *src_pte, *dst_pte;
 920	spinlock_t *src_ptl, *dst_ptl;
 921	int progress = 0;
 922	int rss[NR_MM_COUNTERS];
 923	swp_entry_t entry = (swp_entry_t){0};
 924
 925again:
 926	init_rss_vec(rss);
 927
 928	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 929	if (!dst_pte)
 930		return -ENOMEM;
 931	src_pte = pte_offset_map(src_pmd, addr);
 932	src_ptl = pte_lockptr(src_mm, src_pmd);
 933	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 934	orig_src_pte = src_pte;
 935	orig_dst_pte = dst_pte;
 936	arch_enter_lazy_mmu_mode();
 937
 938	do {
 939		/*
 940		 * We are holding two locks at this point - either of them
 941		 * could generate latencies in another task on another CPU.
 942		 */
 943		if (progress >= 32) {
 944			progress = 0;
 945			if (need_resched() ||
 946			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 947				break;
 948		}
 949		if (pte_none(*src_pte)) {
 950			progress++;
 951			continue;
 952		}
 953		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 954							vma, addr, rss);
 955		if (entry.val)
 956			break;
 957		progress += 8;
 958	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 959
 960	arch_leave_lazy_mmu_mode();
 961	spin_unlock(src_ptl);
 962	pte_unmap(orig_src_pte);
 963	add_mm_rss_vec(dst_mm, rss);
 964	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 965	cond_resched();
 966
 967	if (entry.val) {
 968		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 969			return -ENOMEM;
 970		progress = 0;
 971	}
 972	if (addr != end)
 973		goto again;
 974	return 0;
 975}
 976
 977static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 978		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 979		unsigned long addr, unsigned long end)
 980{
 981	pmd_t *src_pmd, *dst_pmd;
 982	unsigned long next;
 983
 984	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 985	if (!dst_pmd)
 986		return -ENOMEM;
 987	src_pmd = pmd_offset(src_pud, addr);
 988	do {
 989		next = pmd_addr_end(addr, end);
 990		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
 991			int err;
 992			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 993			err = copy_huge_pmd(dst_mm, src_mm,
 994					    dst_pmd, src_pmd, addr, vma);
 995			if (err == -ENOMEM)
 996				return -ENOMEM;
 997			if (!err)
 998				continue;
 999			/* fall through */
1000		}
1001		if (pmd_none_or_clear_bad(src_pmd))
1002			continue;
1003		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004						vma, addr, next))
1005			return -ENOMEM;
1006	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007	return 0;
1008}
1009
1010static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012		unsigned long addr, unsigned long end)
1013{
1014	pud_t *src_pud, *dst_pud;
1015	unsigned long next;
1016
1017	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018	if (!dst_pud)
1019		return -ENOMEM;
1020	src_pud = pud_offset(src_pgd, addr);
1021	do {
1022		next = pud_addr_end(addr, end);
1023		if (pud_none_or_clear_bad(src_pud))
1024			continue;
1025		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026						vma, addr, next))
1027			return -ENOMEM;
1028	} while (dst_pud++, src_pud++, addr = next, addr != end);
1029	return 0;
1030}
1031
1032int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033		struct vm_area_struct *vma)
1034{
1035	pgd_t *src_pgd, *dst_pgd;
1036	unsigned long next;
1037	unsigned long addr = vma->vm_start;
1038	unsigned long end = vma->vm_end;
1039	unsigned long mmun_start;	/* For mmu_notifiers */
1040	unsigned long mmun_end;		/* For mmu_notifiers */
1041	bool is_cow;
1042	int ret;
1043
1044	/*
1045	 * Don't copy ptes where a page fault will fill them correctly.
1046	 * Fork becomes much lighter when there are big shared or private
1047	 * readonly mappings. The tradeoff is that copy_page_range is more
1048	 * efficient than faulting.
1049	 */
1050	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1051			!vma->anon_vma)
1052		return 0;
 
1053
1054	if (is_vm_hugetlb_page(vma))
1055		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1056
1057	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1058		/*
1059		 * We do not free on error cases below as remove_vma
1060		 * gets called on error from higher level routine
1061		 */
1062		ret = track_pfn_copy(vma);
1063		if (ret)
1064			return ret;
1065	}
1066
1067	/*
1068	 * We need to invalidate the secondary MMU mappings only when
1069	 * there could be a permission downgrade on the ptes of the
1070	 * parent mm. And a permission downgrade will only happen if
1071	 * is_cow_mapping() returns true.
1072	 */
1073	is_cow = is_cow_mapping(vma->vm_flags);
1074	mmun_start = addr;
1075	mmun_end   = end;
1076	if (is_cow)
1077		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1078						    mmun_end);
1079
1080	ret = 0;
1081	dst_pgd = pgd_offset(dst_mm, addr);
1082	src_pgd = pgd_offset(src_mm, addr);
1083	do {
1084		next = pgd_addr_end(addr, end);
1085		if (pgd_none_or_clear_bad(src_pgd))
1086			continue;
1087		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1088					    vma, addr, next))) {
1089			ret = -ENOMEM;
1090			break;
1091		}
1092	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1093
1094	if (is_cow)
1095		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
 
1096	return ret;
1097}
1098
1099static unsigned long zap_pte_range(struct mmu_gather *tlb,
1100				struct vm_area_struct *vma, pmd_t *pmd,
1101				unsigned long addr, unsigned long end,
1102				struct zap_details *details)
1103{
1104	struct mm_struct *mm = tlb->mm;
1105	int force_flush = 0;
1106	int rss[NR_MM_COUNTERS];
1107	spinlock_t *ptl;
1108	pte_t *start_pte;
1109	pte_t *pte;
1110	swp_entry_t entry;
1111
1112again:
1113	init_rss_vec(rss);
1114	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1115	pte = start_pte;
1116	arch_enter_lazy_mmu_mode();
1117	do {
1118		pte_t ptent = *pte;
1119		if (pte_none(ptent)) {
1120			continue;
1121		}
1122
1123		if (pte_present(ptent)) {
1124			struct page *page;
1125
1126			page = vm_normal_page(vma, addr, ptent);
1127			if (unlikely(details) && page) {
1128				/*
1129				 * unmap_shared_mapping_pages() wants to
1130				 * invalidate cache without truncating:
1131				 * unmap shared but keep private pages.
1132				 */
1133				if (details->check_mapping &&
1134				    details->check_mapping != page->mapping)
1135					continue;
 
 
 
 
 
 
 
 
1136			}
1137			ptent = ptep_get_and_clear_full(mm, addr, pte,
1138							tlb->fullmm);
1139			tlb_remove_tlb_entry(tlb, pte, addr);
1140			if (unlikely(!page))
1141				continue;
1142
1143			if (!PageAnon(page)) {
1144				if (pte_dirty(ptent)) {
1145					/*
1146					 * oom_reaper cannot tear down dirty
1147					 * pages
1148					 */
1149					if (unlikely(details && details->ignore_dirty))
1150						continue;
1151					force_flush = 1;
1152					set_page_dirty(page);
1153				}
1154				if (pte_young(ptent) &&
1155				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1156					mark_page_accessed(page);
 
1157			}
1158			rss[mm_counter(page)]--;
1159			page_remove_rmap(page, false);
1160			if (unlikely(page_mapcount(page) < 0))
1161				print_bad_pte(vma, addr, ptent, page);
1162			if (unlikely(!__tlb_remove_page(tlb, page))) {
1163				force_flush = 1;
1164				addr += PAGE_SIZE;
1165				break;
1166			}
1167			continue;
1168		}
1169		/* only check swap_entries if explicitly asked for in details */
1170		if (unlikely(details && !details->check_swap_entries))
 
 
 
1171			continue;
 
 
 
 
 
1172
1173		entry = pte_to_swp_entry(ptent);
1174		if (!non_swap_entry(entry))
1175			rss[MM_SWAPENTS]--;
1176		else if (is_migration_entry(entry)) {
1177			struct page *page;
1178
1179			page = migration_entry_to_page(entry);
1180			rss[mm_counter(page)]--;
 
 
 
 
 
 
1181		}
1182		if (unlikely(!free_swap_and_cache(entry)))
1183			print_bad_pte(vma, addr, ptent, NULL);
1184		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185	} while (pte++, addr += PAGE_SIZE, addr != end);
1186
1187	add_mm_rss_vec(mm, rss);
1188	arch_leave_lazy_mmu_mode();
1189
1190	/* Do the actual TLB flush before dropping ptl */
1191	if (force_flush)
1192		tlb_flush_mmu_tlbonly(tlb);
1193	pte_unmap_unlock(start_pte, ptl);
1194
1195	/*
1196	 * If we forced a TLB flush (either due to running out of
1197	 * batch buffers or because we needed to flush dirty TLB
1198	 * entries before releasing the ptl), free the batched
1199	 * memory too. Restart if we didn't do everything.
1200	 */
1201	if (force_flush) {
1202		force_flush = 0;
1203		tlb_flush_mmu_free(tlb);
1204
1205		if (addr != end)
1206			goto again;
1207	}
1208
1209	return addr;
1210}
1211
1212static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1213				struct vm_area_struct *vma, pud_t *pud,
1214				unsigned long addr, unsigned long end,
1215				struct zap_details *details)
1216{
1217	pmd_t *pmd;
1218	unsigned long next;
1219
1220	pmd = pmd_offset(pud, addr);
1221	do {
1222		next = pmd_addr_end(addr, end);
1223		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1224			if (next - addr != HPAGE_PMD_SIZE) {
1225				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1226				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1227				split_huge_pmd(vma, pmd, addr);
 
 
 
 
 
 
 
1228			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1229				goto next;
1230			/* fall through */
1231		}
1232		/*
1233		 * Here there can be other concurrent MADV_DONTNEED or
1234		 * trans huge page faults running, and if the pmd is
1235		 * none or trans huge it can change under us. This is
1236		 * because MADV_DONTNEED holds the mmap_sem in read
1237		 * mode.
1238		 */
1239		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1240			goto next;
1241		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1242next:
1243		cond_resched();
1244	} while (pmd++, addr = next, addr != end);
1245
1246	return addr;
1247}
1248
1249static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1250				struct vm_area_struct *vma, pgd_t *pgd,
1251				unsigned long addr, unsigned long end,
1252				struct zap_details *details)
1253{
1254	pud_t *pud;
1255	unsigned long next;
1256
1257	pud = pud_offset(pgd, addr);
1258	do {
1259		next = pud_addr_end(addr, end);
1260		if (pud_none_or_clear_bad(pud))
1261			continue;
1262		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1263	} while (pud++, addr = next, addr != end);
1264
1265	return addr;
1266}
1267
1268void unmap_page_range(struct mmu_gather *tlb,
1269			     struct vm_area_struct *vma,
1270			     unsigned long addr, unsigned long end,
1271			     struct zap_details *details)
1272{
1273	pgd_t *pgd;
1274	unsigned long next;
1275
 
 
 
1276	BUG_ON(addr >= end);
 
1277	tlb_start_vma(tlb, vma);
1278	pgd = pgd_offset(vma->vm_mm, addr);
1279	do {
1280		next = pgd_addr_end(addr, end);
1281		if (pgd_none_or_clear_bad(pgd))
1282			continue;
1283		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1284	} while (pgd++, addr = next, addr != end);
1285	tlb_end_vma(tlb, vma);
 
1286}
1287
1288
1289static void unmap_single_vma(struct mmu_gather *tlb,
1290		struct vm_area_struct *vma, unsigned long start_addr,
1291		unsigned long end_addr,
1292		struct zap_details *details)
1293{
1294	unsigned long start = max(vma->vm_start, start_addr);
1295	unsigned long end;
1296
1297	if (start >= vma->vm_end)
1298		return;
1299	end = min(vma->vm_end, end_addr);
1300	if (end <= vma->vm_start)
1301		return;
1302
1303	if (vma->vm_file)
1304		uprobe_munmap(vma, start, end);
1305
1306	if (unlikely(vma->vm_flags & VM_PFNMAP))
1307		untrack_pfn(vma, 0, 0);
1308
1309	if (start != end) {
1310		if (unlikely(is_vm_hugetlb_page(vma))) {
1311			/*
1312			 * It is undesirable to test vma->vm_file as it
1313			 * should be non-null for valid hugetlb area.
1314			 * However, vm_file will be NULL in the error
1315			 * cleanup path of mmap_region. When
1316			 * hugetlbfs ->mmap method fails,
1317			 * mmap_region() nullifies vma->vm_file
1318			 * before calling this function to clean up.
1319			 * Since no pte has actually been setup, it is
1320			 * safe to do nothing in this case.
1321			 */
1322			if (vma->vm_file) {
1323				i_mmap_lock_write(vma->vm_file->f_mapping);
1324				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1325				i_mmap_unlock_write(vma->vm_file->f_mapping);
1326			}
1327		} else
1328			unmap_page_range(tlb, vma, start, end, details);
1329	}
1330}
1331
1332/**
1333 * unmap_vmas - unmap a range of memory covered by a list of vma's
1334 * @tlb: address of the caller's struct mmu_gather
1335 * @vma: the starting vma
1336 * @start_addr: virtual address at which to start unmapping
1337 * @end_addr: virtual address at which to end unmapping
1338 *
1339 * Unmap all pages in the vma list.
1340 *
1341 * Only addresses between `start' and `end' will be unmapped.
1342 *
1343 * The VMA list must be sorted in ascending virtual address order.
1344 *
1345 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1346 * range after unmap_vmas() returns.  So the only responsibility here is to
1347 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1348 * drops the lock and schedules.
1349 */
1350void unmap_vmas(struct mmu_gather *tlb,
1351		struct vm_area_struct *vma, unsigned long start_addr,
1352		unsigned long end_addr)
1353{
1354	struct mm_struct *mm = vma->vm_mm;
1355
1356	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1357	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1358		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1359	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1360}
1361
1362/**
1363 * zap_page_range - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @start: starting address of pages to zap
1366 * @size: number of bytes to zap
1367 * @details: details of shared cache invalidation
1368 *
1369 * Caller must protect the VMA list
1370 */
1371void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1372		unsigned long size, struct zap_details *details)
1373{
1374	struct mm_struct *mm = vma->vm_mm;
1375	struct mmu_gather tlb;
1376	unsigned long end = start + size;
1377
1378	lru_add_drain();
1379	tlb_gather_mmu(&tlb, mm, start, end);
1380	update_hiwater_rss(mm);
1381	mmu_notifier_invalidate_range_start(mm, start, end);
1382	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1383		unmap_single_vma(&tlb, vma, start, end, details);
1384	mmu_notifier_invalidate_range_end(mm, start, end);
1385	tlb_finish_mmu(&tlb, start, end);
1386}
1387
1388/**
1389 * zap_page_range_single - remove user pages in a given range
1390 * @vma: vm_area_struct holding the applicable pages
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1393 * @details: details of shared cache invalidation
1394 *
1395 * The range must fit into one VMA.
1396 */
1397static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1398		unsigned long size, struct zap_details *details)
1399{
1400	struct mm_struct *mm = vma->vm_mm;
1401	struct mmu_gather tlb;
1402	unsigned long end = address + size;
1403
1404	lru_add_drain();
1405	tlb_gather_mmu(&tlb, mm, address, end);
1406	update_hiwater_rss(mm);
1407	mmu_notifier_invalidate_range_start(mm, address, end);
1408	unmap_single_vma(&tlb, vma, address, end, details);
1409	mmu_notifier_invalidate_range_end(mm, address, end);
1410	tlb_finish_mmu(&tlb, address, end);
1411}
1412
1413/**
1414 * zap_vma_ptes - remove ptes mapping the vma
1415 * @vma: vm_area_struct holding ptes to be zapped
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1418 *
1419 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1420 *
1421 * The entire address range must be fully contained within the vma.
1422 *
1423 * Returns 0 if successful.
1424 */
1425int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1426		unsigned long size)
1427{
1428	if (address < vma->vm_start || address + size > vma->vm_end ||
1429	    		!(vma->vm_flags & VM_PFNMAP))
1430		return -1;
1431	zap_page_range_single(vma, address, size, NULL);
1432	return 0;
1433}
1434EXPORT_SYMBOL_GPL(zap_vma_ptes);
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1437			spinlock_t **ptl)
1438{
1439	pgd_t * pgd = pgd_offset(mm, addr);
1440	pud_t * pud = pud_alloc(mm, pgd, addr);
1441	if (pud) {
1442		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1443		if (pmd) {
1444			VM_BUG_ON(pmd_trans_huge(*pmd));
1445			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1446		}
1447	}
1448	return NULL;
1449}
1450
1451/*
1452 * This is the old fallback for page remapping.
1453 *
1454 * For historical reasons, it only allows reserved pages. Only
1455 * old drivers should use this, and they needed to mark their
1456 * pages reserved for the old functions anyway.
1457 */
1458static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1459			struct page *page, pgprot_t prot)
1460{
1461	struct mm_struct *mm = vma->vm_mm;
1462	int retval;
1463	pte_t *pte;
1464	spinlock_t *ptl;
1465
1466	retval = -EINVAL;
1467	if (PageAnon(page))
1468		goto out;
1469	retval = -ENOMEM;
1470	flush_dcache_page(page);
1471	pte = get_locked_pte(mm, addr, &ptl);
1472	if (!pte)
1473		goto out;
1474	retval = -EBUSY;
1475	if (!pte_none(*pte))
1476		goto out_unlock;
1477
1478	/* Ok, finally just insert the thing.. */
1479	get_page(page);
1480	inc_mm_counter_fast(mm, mm_counter_file(page));
1481	page_add_file_rmap(page);
1482	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1483
1484	retval = 0;
1485	pte_unmap_unlock(pte, ptl);
1486	return retval;
1487out_unlock:
1488	pte_unmap_unlock(pte, ptl);
1489out:
1490	return retval;
1491}
1492
1493/**
1494 * vm_insert_page - insert single page into user vma
1495 * @vma: user vma to map to
1496 * @addr: target user address of this page
1497 * @page: source kernel page
1498 *
1499 * This allows drivers to insert individual pages they've allocated
1500 * into a user vma.
1501 *
1502 * The page has to be a nice clean _individual_ kernel allocation.
1503 * If you allocate a compound page, you need to have marked it as
1504 * such (__GFP_COMP), or manually just split the page up yourself
1505 * (see split_page()).
1506 *
1507 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1508 * took an arbitrary page protection parameter. This doesn't allow
1509 * that. Your vma protection will have to be set up correctly, which
1510 * means that if you want a shared writable mapping, you'd better
1511 * ask for a shared writable mapping!
1512 *
1513 * The page does not need to be reserved.
1514 *
1515 * Usually this function is called from f_op->mmap() handler
1516 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1517 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1518 * function from other places, for example from page-fault handler.
1519 */
1520int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1521			struct page *page)
1522{
1523	if (addr < vma->vm_start || addr >= vma->vm_end)
1524		return -EFAULT;
1525	if (!page_count(page))
1526		return -EINVAL;
1527	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1528		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1529		BUG_ON(vma->vm_flags & VM_PFNMAP);
1530		vma->vm_flags |= VM_MIXEDMAP;
1531	}
1532	return insert_page(vma, addr, page, vma->vm_page_prot);
1533}
1534EXPORT_SYMBOL(vm_insert_page);
1535
1536static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1537			pfn_t pfn, pgprot_t prot)
1538{
1539	struct mm_struct *mm = vma->vm_mm;
1540	int retval;
1541	pte_t *pte, entry;
1542	spinlock_t *ptl;
1543
1544	retval = -ENOMEM;
1545	pte = get_locked_pte(mm, addr, &ptl);
1546	if (!pte)
1547		goto out;
1548	retval = -EBUSY;
1549	if (!pte_none(*pte))
1550		goto out_unlock;
1551
1552	/* Ok, finally just insert the thing.. */
1553	if (pfn_t_devmap(pfn))
1554		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1555	else
1556		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1557	set_pte_at(mm, addr, pte, entry);
1558	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1559
1560	retval = 0;
1561out_unlock:
1562	pte_unmap_unlock(pte, ptl);
1563out:
1564	return retval;
1565}
1566
1567/**
1568 * vm_insert_pfn - insert single pfn into user vma
1569 * @vma: user vma to map to
1570 * @addr: target user address of this page
1571 * @pfn: source kernel pfn
1572 *
1573 * Similar to vm_insert_page, this allows drivers to insert individual pages
1574 * they've allocated into a user vma. Same comments apply.
1575 *
1576 * This function should only be called from a vm_ops->fault handler, and
1577 * in that case the handler should return NULL.
1578 *
1579 * vma cannot be a COW mapping.
1580 *
1581 * As this is called only for pages that do not currently exist, we
1582 * do not need to flush old virtual caches or the TLB.
1583 */
1584int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1585			unsigned long pfn)
1586{
1587	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1588}
1589EXPORT_SYMBOL(vm_insert_pfn);
1590
1591/**
1592 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1593 * @vma: user vma to map to
1594 * @addr: target user address of this page
1595 * @pfn: source kernel pfn
1596 * @pgprot: pgprot flags for the inserted page
1597 *
1598 * This is exactly like vm_insert_pfn, except that it allows drivers to
1599 * to override pgprot on a per-page basis.
1600 *
1601 * This only makes sense for IO mappings, and it makes no sense for
1602 * cow mappings.  In general, using multiple vmas is preferable;
1603 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1604 * impractical.
1605 */
1606int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1607			unsigned long pfn, pgprot_t pgprot)
1608{
1609	int ret;
 
1610	/*
1611	 * Technically, architectures with pte_special can avoid all these
1612	 * restrictions (same for remap_pfn_range).  However we would like
1613	 * consistency in testing and feature parity among all, so we should
1614	 * try to keep these invariants in place for everybody.
1615	 */
1616	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1617	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1618						(VM_PFNMAP|VM_MIXEDMAP));
1619	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1620	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1621
1622	if (addr < vma->vm_start || addr >= vma->vm_end)
1623		return -EFAULT;
1624	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1625		return -EINVAL;
1626
1627	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
 
 
 
1628
1629	return ret;
1630}
1631EXPORT_SYMBOL(vm_insert_pfn_prot);
1632
1633int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634			pfn_t pfn)
1635{
1636	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1637
1638	if (addr < vma->vm_start || addr >= vma->vm_end)
1639		return -EFAULT;
1640
1641	/*
1642	 * If we don't have pte special, then we have to use the pfn_valid()
1643	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644	 * refcount the page if pfn_valid is true (hence insert_page rather
1645	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1646	 * without pte special, it would there be refcounted as a normal page.
1647	 */
1648	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1649		struct page *page;
1650
1651		/*
1652		 * At this point we are committed to insert_page()
1653		 * regardless of whether the caller specified flags that
1654		 * result in pfn_t_has_page() == false.
1655		 */
1656		page = pfn_to_page(pfn_t_to_pfn(pfn));
1657		return insert_page(vma, addr, page, vma->vm_page_prot);
1658	}
1659	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1660}
1661EXPORT_SYMBOL(vm_insert_mixed);
1662
1663/*
1664 * maps a range of physical memory into the requested pages. the old
1665 * mappings are removed. any references to nonexistent pages results
1666 * in null mappings (currently treated as "copy-on-access")
1667 */
1668static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1669			unsigned long addr, unsigned long end,
1670			unsigned long pfn, pgprot_t prot)
1671{
1672	pte_t *pte;
1673	spinlock_t *ptl;
1674
1675	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1676	if (!pte)
1677		return -ENOMEM;
1678	arch_enter_lazy_mmu_mode();
1679	do {
1680		BUG_ON(!pte_none(*pte));
1681		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1682		pfn++;
1683	} while (pte++, addr += PAGE_SIZE, addr != end);
1684	arch_leave_lazy_mmu_mode();
1685	pte_unmap_unlock(pte - 1, ptl);
1686	return 0;
1687}
1688
1689static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1690			unsigned long addr, unsigned long end,
1691			unsigned long pfn, pgprot_t prot)
1692{
1693	pmd_t *pmd;
1694	unsigned long next;
1695
1696	pfn -= addr >> PAGE_SHIFT;
1697	pmd = pmd_alloc(mm, pud, addr);
1698	if (!pmd)
1699		return -ENOMEM;
1700	VM_BUG_ON(pmd_trans_huge(*pmd));
1701	do {
1702		next = pmd_addr_end(addr, end);
1703		if (remap_pte_range(mm, pmd, addr, next,
1704				pfn + (addr >> PAGE_SHIFT), prot))
1705			return -ENOMEM;
1706	} while (pmd++, addr = next, addr != end);
1707	return 0;
1708}
1709
1710static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1711			unsigned long addr, unsigned long end,
1712			unsigned long pfn, pgprot_t prot)
1713{
1714	pud_t *pud;
1715	unsigned long next;
1716
1717	pfn -= addr >> PAGE_SHIFT;
1718	pud = pud_alloc(mm, pgd, addr);
1719	if (!pud)
1720		return -ENOMEM;
1721	do {
1722		next = pud_addr_end(addr, end);
1723		if (remap_pmd_range(mm, pud, addr, next,
1724				pfn + (addr >> PAGE_SHIFT), prot))
1725			return -ENOMEM;
1726	} while (pud++, addr = next, addr != end);
1727	return 0;
1728}
1729
1730/**
1731 * remap_pfn_range - remap kernel memory to userspace
1732 * @vma: user vma to map to
1733 * @addr: target user address to start at
1734 * @pfn: physical address of kernel memory
1735 * @size: size of map area
1736 * @prot: page protection flags for this mapping
1737 *
1738 *  Note: this is only safe if the mm semaphore is held when called.
1739 */
1740int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1741		    unsigned long pfn, unsigned long size, pgprot_t prot)
1742{
1743	pgd_t *pgd;
1744	unsigned long next;
1745	unsigned long end = addr + PAGE_ALIGN(size);
1746	struct mm_struct *mm = vma->vm_mm;
1747	int err;
1748
1749	/*
1750	 * Physically remapped pages are special. Tell the
1751	 * rest of the world about it:
1752	 *   VM_IO tells people not to look at these pages
1753	 *	(accesses can have side effects).
 
 
 
 
 
1754	 *   VM_PFNMAP tells the core MM that the base pages are just
1755	 *	raw PFN mappings, and do not have a "struct page" associated
1756	 *	with them.
1757	 *   VM_DONTEXPAND
1758	 *      Disable vma merging and expanding with mremap().
1759	 *   VM_DONTDUMP
1760	 *      Omit vma from core dump, even when VM_IO turned off.
1761	 *
1762	 * There's a horrible special case to handle copy-on-write
1763	 * behaviour that some programs depend on. We mark the "original"
1764	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1765	 * See vm_normal_page() for details.
1766	 */
1767	if (is_cow_mapping(vma->vm_flags)) {
1768		if (addr != vma->vm_start || end != vma->vm_end)
1769			return -EINVAL;
1770		vma->vm_pgoff = pfn;
1771	}
1772
1773	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1774	if (err)
1775		return -EINVAL;
1776
1777	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
 
 
 
 
 
 
 
 
 
 
 
1778
1779	BUG_ON(addr >= end);
1780	pfn -= addr >> PAGE_SHIFT;
1781	pgd = pgd_offset(mm, addr);
1782	flush_cache_range(vma, addr, end);
1783	do {
1784		next = pgd_addr_end(addr, end);
1785		err = remap_pud_range(mm, pgd, addr, next,
1786				pfn + (addr >> PAGE_SHIFT), prot);
1787		if (err)
1788			break;
1789	} while (pgd++, addr = next, addr != end);
1790
1791	if (err)
1792		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1793
1794	return err;
1795}
1796EXPORT_SYMBOL(remap_pfn_range);
1797
1798/**
1799 * vm_iomap_memory - remap memory to userspace
1800 * @vma: user vma to map to
1801 * @start: start of area
1802 * @len: size of area
1803 *
1804 * This is a simplified io_remap_pfn_range() for common driver use. The
1805 * driver just needs to give us the physical memory range to be mapped,
1806 * we'll figure out the rest from the vma information.
1807 *
1808 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1809 * whatever write-combining details or similar.
1810 */
1811int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1812{
1813	unsigned long vm_len, pfn, pages;
1814
1815	/* Check that the physical memory area passed in looks valid */
1816	if (start + len < start)
1817		return -EINVAL;
1818	/*
1819	 * You *really* shouldn't map things that aren't page-aligned,
1820	 * but we've historically allowed it because IO memory might
1821	 * just have smaller alignment.
1822	 */
1823	len += start & ~PAGE_MASK;
1824	pfn = start >> PAGE_SHIFT;
1825	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1826	if (pfn + pages < pfn)
1827		return -EINVAL;
1828
1829	/* We start the mapping 'vm_pgoff' pages into the area */
1830	if (vma->vm_pgoff > pages)
1831		return -EINVAL;
1832	pfn += vma->vm_pgoff;
1833	pages -= vma->vm_pgoff;
1834
1835	/* Can we fit all of the mapping? */
1836	vm_len = vma->vm_end - vma->vm_start;
1837	if (vm_len >> PAGE_SHIFT > pages)
1838		return -EINVAL;
1839
1840	/* Ok, let it rip */
1841	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1842}
1843EXPORT_SYMBOL(vm_iomap_memory);
1844
1845static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1846				     unsigned long addr, unsigned long end,
1847				     pte_fn_t fn, void *data)
1848{
1849	pte_t *pte;
1850	int err;
1851	pgtable_t token;
1852	spinlock_t *uninitialized_var(ptl);
1853
1854	pte = (mm == &init_mm) ?
1855		pte_alloc_kernel(pmd, addr) :
1856		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1857	if (!pte)
1858		return -ENOMEM;
1859
1860	BUG_ON(pmd_huge(*pmd));
1861
1862	arch_enter_lazy_mmu_mode();
1863
1864	token = pmd_pgtable(*pmd);
1865
1866	do {
1867		err = fn(pte++, token, addr, data);
1868		if (err)
1869			break;
1870	} while (addr += PAGE_SIZE, addr != end);
1871
1872	arch_leave_lazy_mmu_mode();
1873
1874	if (mm != &init_mm)
1875		pte_unmap_unlock(pte-1, ptl);
1876	return err;
1877}
1878
1879static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1880				     unsigned long addr, unsigned long end,
1881				     pte_fn_t fn, void *data)
1882{
1883	pmd_t *pmd;
1884	unsigned long next;
1885	int err;
1886
1887	BUG_ON(pud_huge(*pud));
1888
1889	pmd = pmd_alloc(mm, pud, addr);
1890	if (!pmd)
1891		return -ENOMEM;
1892	do {
1893		next = pmd_addr_end(addr, end);
1894		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1895		if (err)
1896			break;
1897	} while (pmd++, addr = next, addr != end);
1898	return err;
1899}
1900
1901static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1902				     unsigned long addr, unsigned long end,
1903				     pte_fn_t fn, void *data)
1904{
1905	pud_t *pud;
1906	unsigned long next;
1907	int err;
1908
1909	pud = pud_alloc(mm, pgd, addr);
1910	if (!pud)
1911		return -ENOMEM;
1912	do {
1913		next = pud_addr_end(addr, end);
1914		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1915		if (err)
1916			break;
1917	} while (pud++, addr = next, addr != end);
1918	return err;
1919}
1920
1921/*
1922 * Scan a region of virtual memory, filling in page tables as necessary
1923 * and calling a provided function on each leaf page table.
1924 */
1925int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1926			unsigned long size, pte_fn_t fn, void *data)
1927{
1928	pgd_t *pgd;
1929	unsigned long next;
1930	unsigned long end = addr + size;
1931	int err;
1932
1933	if (WARN_ON(addr >= end))
1934		return -EINVAL;
1935
1936	pgd = pgd_offset(mm, addr);
1937	do {
1938		next = pgd_addr_end(addr, end);
1939		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1940		if (err)
1941			break;
1942	} while (pgd++, addr = next, addr != end);
1943
1944	return err;
1945}
1946EXPORT_SYMBOL_GPL(apply_to_page_range);
1947
1948/*
1949 * handle_pte_fault chooses page fault handler according to an entry which was
1950 * read non-atomically.  Before making any commitment, on those architectures
1951 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1952 * parts, do_swap_page must check under lock before unmapping the pte and
1953 * proceeding (but do_wp_page is only called after already making such a check;
 
1954 * and do_anonymous_page can safely check later on).
1955 */
1956static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1957				pte_t *page_table, pte_t orig_pte)
1958{
1959	int same = 1;
1960#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1961	if (sizeof(pte_t) > sizeof(unsigned long)) {
1962		spinlock_t *ptl = pte_lockptr(mm, pmd);
1963		spin_lock(ptl);
1964		same = pte_same(*page_table, orig_pte);
1965		spin_unlock(ptl);
1966	}
1967#endif
1968	pte_unmap(page_table);
1969	return same;
1970}
1971
1972static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1973{
1974	debug_dma_assert_idle(src);
1975
1976	/*
1977	 * If the source page was a PFN mapping, we don't have
1978	 * a "struct page" for it. We do a best-effort copy by
1979	 * just copying from the original user address. If that
1980	 * fails, we just zero-fill it. Live with it.
1981	 */
1982	if (unlikely(!src)) {
1983		void *kaddr = kmap_atomic(dst);
1984		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1985
1986		/*
1987		 * This really shouldn't fail, because the page is there
1988		 * in the page tables. But it might just be unreadable,
1989		 * in which case we just give up and fill the result with
1990		 * zeroes.
1991		 */
1992		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1993			clear_page(kaddr);
1994		kunmap_atomic(kaddr);
1995		flush_dcache_page(dst);
1996	} else
1997		copy_user_highpage(dst, src, va, vma);
1998}
1999
2000static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2001{
2002	struct file *vm_file = vma->vm_file;
2003
2004	if (vm_file)
2005		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2006
2007	/*
2008	 * Special mappings (e.g. VDSO) do not have any file so fake
2009	 * a default GFP_KERNEL for them.
2010	 */
2011	return GFP_KERNEL;
2012}
2013
2014/*
2015 * Notify the address space that the page is about to become writable so that
2016 * it can prohibit this or wait for the page to get into an appropriate state.
 
2017 *
2018 * We do this without the lock held, so that it can sleep if it needs to.
2019 */
2020static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2021	       unsigned long address)
2022{
2023	struct vm_fault vmf;
2024	int ret;
2025
2026	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2027	vmf.pgoff = page->index;
2028	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2029	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2030	vmf.page = page;
2031	vmf.cow_page = NULL;
2032
2033	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2034	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2035		return ret;
2036	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2037		lock_page(page);
2038		if (!page->mapping) {
2039			unlock_page(page);
2040			return 0; /* retry */
2041		}
2042		ret |= VM_FAULT_LOCKED;
2043	} else
2044		VM_BUG_ON_PAGE(!PageLocked(page), page);
2045	return ret;
2046}
2047
2048/*
2049 * Handle write page faults for pages that can be reused in the current vma
2050 *
2051 * This can happen either due to the mapping being with the VM_SHARED flag,
2052 * or due to us being the last reference standing to the page. In either
2053 * case, all we need to do here is to mark the page as writable and update
2054 * any related book-keeping.
2055 */
2056static inline int wp_page_reuse(struct mm_struct *mm,
2057			struct vm_area_struct *vma, unsigned long address,
2058			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2059			struct page *page, int page_mkwrite,
2060			int dirty_shared)
 
2061	__releases(ptl)
2062{
 
2063	pte_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064	/*
2065	 * Clear the pages cpupid information as the existing
2066	 * information potentially belongs to a now completely
2067	 * unrelated process.
2068	 */
2069	if (page)
2070		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071
2072	flush_cache_page(vma, address, pte_pfn(orig_pte));
2073	entry = pte_mkyoung(orig_pte);
2074	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2075	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2076		update_mmu_cache(vma, address, page_table);
2077	pte_unmap_unlock(page_table, ptl);
 
 
 
 
2078
2079	if (dirty_shared) {
2080		struct address_space *mapping;
2081		int dirtied;
2082
2083		if (!page_mkwrite)
2084			lock_page(page);
2085
2086		dirtied = set_page_dirty(page);
2087		VM_BUG_ON_PAGE(PageAnon(page), page);
2088		mapping = page->mapping;
2089		unlock_page(page);
2090		put_page(page);
 
 
 
2091
2092		if ((dirtied || page_mkwrite) && mapping) {
2093			/*
2094			 * Some device drivers do not set page.mapping
2095			 * but still dirty their pages
 
 
2096			 */
2097			balance_dirty_pages_ratelimited(mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098		}
2099
2100		if (!page_mkwrite)
 
2101			file_update_time(vma->vm_file);
2102	}
2103
2104	return VM_FAULT_WRITE;
2105}
2106
2107/*
2108 * Handle the case of a page which we actually need to copy to a new page.
2109 *
2110 * Called with mmap_sem locked and the old page referenced, but
2111 * without the ptl held.
2112 *
2113 * High level logic flow:
2114 *
2115 * - Allocate a page, copy the content of the old page to the new one.
2116 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2117 * - Take the PTL. If the pte changed, bail out and release the allocated page
2118 * - If the pte is still the way we remember it, update the page table and all
2119 *   relevant references. This includes dropping the reference the page-table
2120 *   held to the old page, as well as updating the rmap.
2121 * - In any case, unlock the PTL and drop the reference we took to the old page.
2122 */
2123static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2124			unsigned long address, pte_t *page_table, pmd_t *pmd,
2125			pte_t orig_pte, struct page *old_page)
2126{
2127	struct page *new_page = NULL;
2128	spinlock_t *ptl = NULL;
2129	pte_t entry;
2130	int page_copied = 0;
2131	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2132	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2133	struct mem_cgroup *memcg;
2134
2135	if (unlikely(anon_vma_prepare(vma)))
2136		goto oom;
2137
2138	if (is_zero_pfn(pte_pfn(orig_pte))) {
2139		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2140		if (!new_page)
2141			goto oom;
2142	} else {
2143		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2144		if (!new_page)
2145			goto oom;
2146		cow_user_page(new_page, old_page, address, vma);
2147	}
2148
2149	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2150		goto oom_free_new;
2151
2152	__SetPageUptodate(new_page);
2153
2154	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 
2155
2156	/*
2157	 * Re-check the pte - we dropped the lock
2158	 */
2159	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2160	if (likely(pte_same(*page_table, orig_pte))) {
2161		if (old_page) {
2162			if (!PageAnon(old_page)) {
2163				dec_mm_counter_fast(mm,
2164						mm_counter_file(old_page));
2165				inc_mm_counter_fast(mm, MM_ANONPAGES);
2166			}
2167		} else {
2168			inc_mm_counter_fast(mm, MM_ANONPAGES);
2169		}
2170		flush_cache_page(vma, address, pte_pfn(orig_pte));
2171		entry = mk_pte(new_page, vma->vm_page_prot);
2172		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2173		/*
2174		 * Clear the pte entry and flush it first, before updating the
2175		 * pte with the new entry. This will avoid a race condition
2176		 * seen in the presence of one thread doing SMC and another
2177		 * thread doing COW.
2178		 */
2179		ptep_clear_flush_notify(vma, address, page_table);
2180		page_add_new_anon_rmap(new_page, vma, address, false);
2181		mem_cgroup_commit_charge(new_page, memcg, false, false);
2182		lru_cache_add_active_or_unevictable(new_page, vma);
2183		/*
2184		 * We call the notify macro here because, when using secondary
2185		 * mmu page tables (such as kvm shadow page tables), we want the
2186		 * new page to be mapped directly into the secondary page table.
2187		 */
2188		set_pte_at_notify(mm, address, page_table, entry);
2189		update_mmu_cache(vma, address, page_table);
2190		if (old_page) {
2191			/*
2192			 * Only after switching the pte to the new page may
2193			 * we remove the mapcount here. Otherwise another
2194			 * process may come and find the rmap count decremented
2195			 * before the pte is switched to the new page, and
2196			 * "reuse" the old page writing into it while our pte
2197			 * here still points into it and can be read by other
2198			 * threads.
2199			 *
2200			 * The critical issue is to order this
2201			 * page_remove_rmap with the ptp_clear_flush above.
2202			 * Those stores are ordered by (if nothing else,)
2203			 * the barrier present in the atomic_add_negative
2204			 * in page_remove_rmap.
2205			 *
2206			 * Then the TLB flush in ptep_clear_flush ensures that
2207			 * no process can access the old page before the
2208			 * decremented mapcount is visible. And the old page
2209			 * cannot be reused until after the decremented
2210			 * mapcount is visible. So transitively, TLBs to
2211			 * old page will be flushed before it can be reused.
2212			 */
2213			page_remove_rmap(old_page, false);
2214		}
2215
2216		/* Free the old page.. */
2217		new_page = old_page;
2218		page_copied = 1;
2219	} else {
2220		mem_cgroup_cancel_charge(new_page, memcg, false);
2221	}
2222
2223	if (new_page)
2224		put_page(new_page);
2225
2226	pte_unmap_unlock(page_table, ptl);
2227	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2228	if (old_page) {
2229		/*
2230		 * Don't let another task, with possibly unlocked vma,
2231		 * keep the mlocked page.
2232		 */
2233		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2234			lock_page(old_page);	/* LRU manipulation */
2235			if (PageMlocked(old_page))
2236				munlock_vma_page(old_page);
2237			unlock_page(old_page);
2238		}
2239		put_page(old_page);
2240	}
2241	return page_copied ? VM_FAULT_WRITE : 0;
2242oom_free_new:
2243	put_page(new_page);
2244oom:
2245	if (old_page)
2246		put_page(old_page);
2247	return VM_FAULT_OOM;
2248}
2249
2250/*
2251 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2252 * mapping
2253 */
2254static int wp_pfn_shared(struct mm_struct *mm,
2255			struct vm_area_struct *vma, unsigned long address,
2256			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2257			pmd_t *pmd)
2258{
2259	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2260		struct vm_fault vmf = {
2261			.page = NULL,
2262			.pgoff = linear_page_index(vma, address),
2263			.virtual_address = (void __user *)(address & PAGE_MASK),
2264			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2265		};
2266		int ret;
2267
2268		pte_unmap_unlock(page_table, ptl);
2269		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2270		if (ret & VM_FAULT_ERROR)
2271			return ret;
2272		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2273		/*
2274		 * We might have raced with another page fault while we
2275		 * released the pte_offset_map_lock.
2276		 */
2277		if (!pte_same(*page_table, orig_pte)) {
2278			pte_unmap_unlock(page_table, ptl);
2279			return 0;
2280		}
2281	}
2282	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2283			     NULL, 0, 0);
2284}
2285
2286static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2287			  unsigned long address, pte_t *page_table,
2288			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2289			  struct page *old_page)
2290	__releases(ptl)
2291{
2292	int page_mkwrite = 0;
2293
2294	get_page(old_page);
2295
2296	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2297		int tmp;
2298
2299		pte_unmap_unlock(page_table, ptl);
2300		tmp = do_page_mkwrite(vma, old_page, address);
2301		if (unlikely(!tmp || (tmp &
2302				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2303			put_page(old_page);
2304			return tmp;
2305		}
2306		/*
2307		 * Since we dropped the lock we need to revalidate
2308		 * the PTE as someone else may have changed it.  If
2309		 * they did, we just return, as we can count on the
2310		 * MMU to tell us if they didn't also make it writable.
2311		 */
2312		page_table = pte_offset_map_lock(mm, pmd, address,
2313						 &ptl);
2314		if (!pte_same(*page_table, orig_pte)) {
2315			unlock_page(old_page);
2316			pte_unmap_unlock(page_table, ptl);
2317			put_page(old_page);
2318			return 0;
2319		}
2320		page_mkwrite = 1;
2321	}
2322
2323	return wp_page_reuse(mm, vma, address, page_table, ptl,
2324			     orig_pte, old_page, page_mkwrite, 1);
2325}
2326
2327/*
2328 * This routine handles present pages, when users try to write
2329 * to a shared page. It is done by copying the page to a new address
2330 * and decrementing the shared-page counter for the old page.
2331 *
2332 * Note that this routine assumes that the protection checks have been
2333 * done by the caller (the low-level page fault routine in most cases).
2334 * Thus we can safely just mark it writable once we've done any necessary
2335 * COW.
2336 *
2337 * We also mark the page dirty at this point even though the page will
2338 * change only once the write actually happens. This avoids a few races,
2339 * and potentially makes it more efficient.
2340 *
2341 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2342 * but allow concurrent faults), with pte both mapped and locked.
2343 * We return with mmap_sem still held, but pte unmapped and unlocked.
2344 */
2345static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2346		unsigned long address, pte_t *page_table, pmd_t *pmd,
2347		spinlock_t *ptl, pte_t orig_pte)
2348	__releases(ptl)
2349{
2350	struct page *old_page;
2351
2352	old_page = vm_normal_page(vma, address, orig_pte);
2353	if (!old_page) {
2354		/*
2355		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2356		 * VM_PFNMAP VMA.
2357		 *
2358		 * We should not cow pages in a shared writeable mapping.
2359		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2360		 */
2361		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2362				     (VM_WRITE|VM_SHARED))
2363			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2364					     orig_pte, pmd);
2365
2366		pte_unmap_unlock(page_table, ptl);
2367		return wp_page_copy(mm, vma, address, page_table, pmd,
2368				    orig_pte, old_page);
2369	}
2370
2371	/*
2372	 * Take out anonymous pages first, anonymous shared vmas are
2373	 * not dirty accountable.
2374	 */
2375	if (PageAnon(old_page) && !PageKsm(old_page)) {
2376		int total_mapcount;
2377		if (!trylock_page(old_page)) {
2378			get_page(old_page);
2379			pte_unmap_unlock(page_table, ptl);
2380			lock_page(old_page);
2381			page_table = pte_offset_map_lock(mm, pmd, address,
2382							 &ptl);
2383			if (!pte_same(*page_table, orig_pte)) {
2384				unlock_page(old_page);
2385				pte_unmap_unlock(page_table, ptl);
2386				put_page(old_page);
2387				return 0;
2388			}
2389			put_page(old_page);
2390		}
2391		if (reuse_swap_page(old_page, &total_mapcount)) {
2392			if (total_mapcount == 1) {
2393				/*
2394				 * The page is all ours. Move it to
2395				 * our anon_vma so the rmap code will
2396				 * not search our parent or siblings.
2397				 * Protected against the rmap code by
2398				 * the page lock.
2399				 */
2400				page_move_anon_rmap(compound_head(old_page),
2401						    vma, address);
2402			}
2403			unlock_page(old_page);
2404			return wp_page_reuse(mm, vma, address, page_table, ptl,
2405					     orig_pte, old_page, 0, 0);
2406		}
2407		unlock_page(old_page);
2408	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2409					(VM_WRITE|VM_SHARED))) {
2410		return wp_page_shared(mm, vma, address, page_table, pmd,
2411				      ptl, orig_pte, old_page);
2412	}
 
2413
2414	/*
2415	 * Ok, we need to copy. Oh, well..
2416	 */
2417	get_page(old_page);
2418
2419	pte_unmap_unlock(page_table, ptl);
2420	return wp_page_copy(mm, vma, address, page_table, pmd,
2421			    orig_pte, old_page);
2422}
2423
2424static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2425		unsigned long start_addr, unsigned long end_addr,
2426		struct zap_details *details)
2427{
2428	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2429}
2430
2431static inline void unmap_mapping_range_tree(struct rb_root *root,
2432					    struct zap_details *details)
2433{
2434	struct vm_area_struct *vma;
 
2435	pgoff_t vba, vea, zba, zea;
2436
2437	vma_interval_tree_foreach(vma, root,
2438			details->first_index, details->last_index) {
2439
2440		vba = vma->vm_pgoff;
2441		vea = vba + vma_pages(vma) - 1;
 
2442		zba = details->first_index;
2443		if (zba < vba)
2444			zba = vba;
2445		zea = details->last_index;
2446		if (zea > vea)
2447			zea = vea;
2448
2449		unmap_mapping_range_vma(vma,
2450			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2451			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2452				details);
2453	}
2454}
2455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2456/**
2457 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2458 * address_space corresponding to the specified page range in the underlying
2459 * file.
2460 *
2461 * @mapping: the address space containing mmaps to be unmapped.
2462 * @holebegin: byte in first page to unmap, relative to the start of
2463 * the underlying file.  This will be rounded down to a PAGE_SIZE
2464 * boundary.  Note that this is different from truncate_pagecache(), which
2465 * must keep the partial page.  In contrast, we must get rid of
2466 * partial pages.
2467 * @holelen: size of prospective hole in bytes.  This will be rounded
2468 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2469 * end of the file.
2470 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2471 * but 0 when invalidating pagecache, don't throw away private data.
2472 */
2473void unmap_mapping_range(struct address_space *mapping,
2474		loff_t const holebegin, loff_t const holelen, int even_cows)
2475{
2476	struct zap_details details = { };
2477	pgoff_t hba = holebegin >> PAGE_SHIFT;
2478	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2479
2480	/* Check for overflow. */
2481	if (sizeof(holelen) > sizeof(hlen)) {
2482		long long holeend =
2483			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2484		if (holeend & ~(long long)ULONG_MAX)
2485			hlen = ULONG_MAX - hba + 1;
2486	}
2487
2488	details.check_mapping = even_cows? NULL: mapping;
 
2489	details.first_index = hba;
2490	details.last_index = hba + hlen - 1;
2491	if (details.last_index < details.first_index)
2492		details.last_index = ULONG_MAX;
2493
2494
2495	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2496	i_mmap_lock_write(mapping);
2497	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2498		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2499	i_mmap_unlock_write(mapping);
 
 
2500}
2501EXPORT_SYMBOL(unmap_mapping_range);
2502
2503/*
2504 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2505 * but allow concurrent faults), and pte mapped but not yet locked.
2506 * We return with pte unmapped and unlocked.
2507 *
2508 * We return with the mmap_sem locked or unlocked in the same cases
2509 * as does filemap_fault().
2510 */
2511static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2512		unsigned long address, pte_t *page_table, pmd_t *pmd,
2513		unsigned int flags, pte_t orig_pte)
2514{
2515	spinlock_t *ptl;
2516	struct page *page, *swapcache;
2517	struct mem_cgroup *memcg;
2518	swp_entry_t entry;
2519	pte_t pte;
2520	int locked;
 
2521	int exclusive = 0;
2522	int ret = 0;
2523
2524	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2525		goto out;
2526
2527	entry = pte_to_swp_entry(orig_pte);
2528	if (unlikely(non_swap_entry(entry))) {
2529		if (is_migration_entry(entry)) {
2530			migration_entry_wait(mm, pmd, address);
2531		} else if (is_hwpoison_entry(entry)) {
2532			ret = VM_FAULT_HWPOISON;
2533		} else {
2534			print_bad_pte(vma, address, orig_pte, NULL);
2535			ret = VM_FAULT_SIGBUS;
2536		}
2537		goto out;
2538	}
2539	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2540	page = lookup_swap_cache(entry);
2541	if (!page) {
2542		page = swapin_readahead(entry,
2543					GFP_HIGHUSER_MOVABLE, vma, address);
2544		if (!page) {
2545			/*
2546			 * Back out if somebody else faulted in this pte
2547			 * while we released the pte lock.
2548			 */
2549			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2550			if (likely(pte_same(*page_table, orig_pte)))
2551				ret = VM_FAULT_OOM;
2552			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2553			goto unlock;
2554		}
2555
2556		/* Had to read the page from swap area: Major fault */
2557		ret = VM_FAULT_MAJOR;
2558		count_vm_event(PGMAJFAULT);
2559		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2560	} else if (PageHWPoison(page)) {
2561		/*
2562		 * hwpoisoned dirty swapcache pages are kept for killing
2563		 * owner processes (which may be unknown at hwpoison time)
2564		 */
2565		ret = VM_FAULT_HWPOISON;
2566		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2567		swapcache = page;
2568		goto out_release;
2569	}
2570
2571	swapcache = page;
2572	locked = lock_page_or_retry(page, mm, flags);
2573
2574	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575	if (!locked) {
2576		ret |= VM_FAULT_RETRY;
2577		goto out_release;
2578	}
2579
2580	/*
2581	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2582	 * release the swapcache from under us.  The page pin, and pte_same
2583	 * test below, are not enough to exclude that.  Even if it is still
2584	 * swapcache, we need to check that the page's swap has not changed.
2585	 */
2586	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2587		goto out_page;
2588
2589	page = ksm_might_need_to_copy(page, vma, address);
2590	if (unlikely(!page)) {
2591		ret = VM_FAULT_OOM;
2592		page = swapcache;
2593		goto out_page;
 
 
 
 
 
2594	}
2595
2596	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2597		ret = VM_FAULT_OOM;
2598		goto out_page;
2599	}
2600
2601	/*
2602	 * Back out if somebody else already faulted in this pte.
2603	 */
2604	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2605	if (unlikely(!pte_same(*page_table, orig_pte)))
2606		goto out_nomap;
2607
2608	if (unlikely(!PageUptodate(page))) {
2609		ret = VM_FAULT_SIGBUS;
2610		goto out_nomap;
2611	}
2612
2613	/*
2614	 * The page isn't present yet, go ahead with the fault.
2615	 *
2616	 * Be careful about the sequence of operations here.
2617	 * To get its accounting right, reuse_swap_page() must be called
2618	 * while the page is counted on swap but not yet in mapcount i.e.
2619	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2620	 * must be called after the swap_free(), or it will never succeed.
 
 
 
 
2621	 */
2622
2623	inc_mm_counter_fast(mm, MM_ANONPAGES);
2624	dec_mm_counter_fast(mm, MM_SWAPENTS);
2625	pte = mk_pte(page, vma->vm_page_prot);
2626	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2627		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2628		flags &= ~FAULT_FLAG_WRITE;
2629		ret |= VM_FAULT_WRITE;
2630		exclusive = RMAP_EXCLUSIVE;
2631	}
2632	flush_icache_page(vma, page);
2633	if (pte_swp_soft_dirty(orig_pte))
2634		pte = pte_mksoft_dirty(pte);
2635	set_pte_at(mm, address, page_table, pte);
2636	if (page == swapcache) {
2637		do_page_add_anon_rmap(page, vma, address, exclusive);
2638		mem_cgroup_commit_charge(page, memcg, true, false);
2639	} else { /* ksm created a completely new copy */
2640		page_add_new_anon_rmap(page, vma, address, false);
2641		mem_cgroup_commit_charge(page, memcg, false, false);
2642		lru_cache_add_active_or_unevictable(page, vma);
2643	}
2644
2645	swap_free(entry);
2646	if (mem_cgroup_swap_full(page) ||
2647	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2648		try_to_free_swap(page);
2649	unlock_page(page);
2650	if (page != swapcache) {
2651		/*
2652		 * Hold the lock to avoid the swap entry to be reused
2653		 * until we take the PT lock for the pte_same() check
2654		 * (to avoid false positives from pte_same). For
2655		 * further safety release the lock after the swap_free
2656		 * so that the swap count won't change under a
2657		 * parallel locked swapcache.
2658		 */
2659		unlock_page(swapcache);
2660		put_page(swapcache);
2661	}
2662
2663	if (flags & FAULT_FLAG_WRITE) {
2664		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2665		if (ret & VM_FAULT_ERROR)
2666			ret &= VM_FAULT_ERROR;
2667		goto out;
2668	}
2669
2670	/* No need to invalidate - it was non-present before */
2671	update_mmu_cache(vma, address, page_table);
2672unlock:
2673	pte_unmap_unlock(page_table, ptl);
2674out:
2675	return ret;
2676out_nomap:
2677	mem_cgroup_cancel_charge(page, memcg, false);
2678	pte_unmap_unlock(page_table, ptl);
2679out_page:
2680	unlock_page(page);
2681out_release:
2682	put_page(page);
2683	if (page != swapcache) {
2684		unlock_page(swapcache);
2685		put_page(swapcache);
2686	}
2687	return ret;
2688}
2689
2690/*
2691 * This is like a special single-page "expand_{down|up}wards()",
2692 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2693 * doesn't hit another vma.
2694 */
2695static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2696{
2697	address &= PAGE_MASK;
2698	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2699		struct vm_area_struct *prev = vma->vm_prev;
2700
2701		/*
2702		 * Is there a mapping abutting this one below?
2703		 *
2704		 * That's only ok if it's the same stack mapping
2705		 * that has gotten split..
2706		 */
2707		if (prev && prev->vm_end == address)
2708			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2709
2710		return expand_downwards(vma, address - PAGE_SIZE);
2711	}
2712	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2713		struct vm_area_struct *next = vma->vm_next;
2714
2715		/* As VM_GROWSDOWN but s/below/above/ */
2716		if (next && next->vm_start == address + PAGE_SIZE)
2717			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2718
2719		return expand_upwards(vma, address + PAGE_SIZE);
2720	}
2721	return 0;
2722}
2723
2724/*
2725 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2726 * but allow concurrent faults), and pte mapped but not yet locked.
2727 * We return with mmap_sem still held, but pte unmapped and unlocked.
2728 */
2729static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2730		unsigned long address, pte_t *page_table, pmd_t *pmd,
2731		unsigned int flags)
2732{
2733	struct mem_cgroup *memcg;
2734	struct page *page;
2735	spinlock_t *ptl;
2736	pte_t entry;
2737
2738	pte_unmap(page_table);
2739
2740	/* File mapping without ->vm_ops ? */
2741	if (vma->vm_flags & VM_SHARED)
2742		return VM_FAULT_SIGBUS;
2743
2744	/* Check if we need to add a guard page to the stack */
2745	if (check_stack_guard_page(vma, address) < 0)
2746		return VM_FAULT_SIGSEGV;
2747
2748	/* Use the zero-page for reads */
2749	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2750		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2751						vma->vm_page_prot));
2752		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2753		if (!pte_none(*page_table))
2754			goto unlock;
2755		/* Deliver the page fault to userland, check inside PT lock */
2756		if (userfaultfd_missing(vma)) {
2757			pte_unmap_unlock(page_table, ptl);
2758			return handle_userfault(vma, address, flags,
2759						VM_UFFD_MISSING);
2760		}
2761		goto setpte;
2762	}
2763
2764	/* Allocate our own private page. */
2765	if (unlikely(anon_vma_prepare(vma)))
2766		goto oom;
2767	page = alloc_zeroed_user_highpage_movable(vma, address);
2768	if (!page)
2769		goto oom;
 
2770
2771	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2772		goto oom_free_page;
2773
2774	/*
2775	 * The memory barrier inside __SetPageUptodate makes sure that
2776	 * preceeding stores to the page contents become visible before
2777	 * the set_pte_at() write.
2778	 */
2779	__SetPageUptodate(page);
2780
2781	entry = mk_pte(page, vma->vm_page_prot);
2782	if (vma->vm_flags & VM_WRITE)
2783		entry = pte_mkwrite(pte_mkdirty(entry));
2784
2785	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2786	if (!pte_none(*page_table))
2787		goto release;
2788
2789	/* Deliver the page fault to userland, check inside PT lock */
2790	if (userfaultfd_missing(vma)) {
2791		pte_unmap_unlock(page_table, ptl);
2792		mem_cgroup_cancel_charge(page, memcg, false);
2793		put_page(page);
2794		return handle_userfault(vma, address, flags,
2795					VM_UFFD_MISSING);
2796	}
2797
2798	inc_mm_counter_fast(mm, MM_ANONPAGES);
2799	page_add_new_anon_rmap(page, vma, address, false);
2800	mem_cgroup_commit_charge(page, memcg, false, false);
2801	lru_cache_add_active_or_unevictable(page, vma);
2802setpte:
2803	set_pte_at(mm, address, page_table, entry);
2804
2805	/* No need to invalidate - it was non-present before */
2806	update_mmu_cache(vma, address, page_table);
2807unlock:
2808	pte_unmap_unlock(page_table, ptl);
2809	return 0;
2810release:
2811	mem_cgroup_cancel_charge(page, memcg, false);
2812	put_page(page);
2813	goto unlock;
2814oom_free_page:
2815	put_page(page);
2816oom:
2817	return VM_FAULT_OOM;
2818}
2819
2820/*
2821 * The mmap_sem must have been held on entry, and may have been
2822 * released depending on flags and vma->vm_ops->fault() return value.
2823 * See filemap_fault() and __lock_page_retry().
2824 */
2825static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2826			pgoff_t pgoff, unsigned int flags,
2827			struct page *cow_page, struct page **page)
 
 
 
 
 
 
 
 
2828{
 
 
 
 
 
 
 
2829	struct vm_fault vmf;
2830	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2831
2832	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2833	vmf.pgoff = pgoff;
2834	vmf.flags = flags;
2835	vmf.page = NULL;
2836	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2837	vmf.cow_page = cow_page;
2838
2839	ret = vma->vm_ops->fault(vma, &vmf);
2840	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2841		return ret;
2842	if (!vmf.page)
2843		goto out;
2844
2845	if (unlikely(PageHWPoison(vmf.page))) {
2846		if (ret & VM_FAULT_LOCKED)
2847			unlock_page(vmf.page);
2848		put_page(vmf.page);
2849		return VM_FAULT_HWPOISON;
2850	}
2851
 
 
 
 
2852	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2853		lock_page(vmf.page);
2854	else
2855		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2856
2857 out:
2858	*page = vmf.page;
2859	return ret;
2860}
2861
2862/**
2863 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2864 *
2865 * @vma: virtual memory area
2866 * @address: user virtual address
2867 * @page: page to map
2868 * @pte: pointer to target page table entry
2869 * @write: true, if new entry is writable
2870 * @anon: true, if it's anonymous page
2871 *
2872 * Caller must hold page table lock relevant for @pte.
2873 *
2874 * Target users are page handler itself and implementations of
2875 * vm_ops->map_pages.
2876 */
2877void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2878		struct page *page, pte_t *pte, bool write, bool anon)
2879{
2880	pte_t entry;
2881
2882	flush_icache_page(vma, page);
2883	entry = mk_pte(page, vma->vm_page_prot);
2884	if (write)
2885		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2886	if (anon) {
2887		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2888		page_add_new_anon_rmap(page, vma, address, false);
2889	} else {
2890		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2891		page_add_file_rmap(page);
2892	}
2893	set_pte_at(vma->vm_mm, address, pte, entry);
2894
2895	/* no need to invalidate: a not-present page won't be cached */
2896	update_mmu_cache(vma, address, pte);
2897}
2898
2899static unsigned long fault_around_bytes __read_mostly =
2900	rounddown_pow_of_two(65536);
2901
2902#ifdef CONFIG_DEBUG_FS
2903static int fault_around_bytes_get(void *data, u64 *val)
2904{
2905	*val = fault_around_bytes;
2906	return 0;
2907}
2908
2909/*
2910 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2911 * rounded down to nearest page order. It's what do_fault_around() expects to
2912 * see.
2913 */
2914static int fault_around_bytes_set(void *data, u64 val)
2915{
2916	if (val / PAGE_SIZE > PTRS_PER_PTE)
2917		return -EINVAL;
2918	if (val > PAGE_SIZE)
2919		fault_around_bytes = rounddown_pow_of_two(val);
2920	else
2921		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2922	return 0;
2923}
2924DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2925		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2926
2927static int __init fault_around_debugfs(void)
2928{
2929	void *ret;
2930
2931	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2932			&fault_around_bytes_fops);
2933	if (!ret)
2934		pr_warn("Failed to create fault_around_bytes in debugfs");
2935	return 0;
2936}
2937late_initcall(fault_around_debugfs);
2938#endif
2939
2940/*
2941 * do_fault_around() tries to map few pages around the fault address. The hope
2942 * is that the pages will be needed soon and this will lower the number of
2943 * faults to handle.
2944 *
2945 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2946 * not ready to be mapped: not up-to-date, locked, etc.
2947 *
2948 * This function is called with the page table lock taken. In the split ptlock
2949 * case the page table lock only protects only those entries which belong to
2950 * the page table corresponding to the fault address.
2951 *
2952 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2953 * only once.
2954 *
2955 * fault_around_pages() defines how many pages we'll try to map.
2956 * do_fault_around() expects it to return a power of two less than or equal to
2957 * PTRS_PER_PTE.
2958 *
2959 * The virtual address of the area that we map is naturally aligned to the
2960 * fault_around_pages() value (and therefore to page order).  This way it's
2961 * easier to guarantee that we don't cross page table boundaries.
2962 */
2963static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2964		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2965{
2966	unsigned long start_addr, nr_pages, mask;
2967	pgoff_t max_pgoff;
2968	struct vm_fault vmf;
2969	int off;
2970
2971	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2972	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2973
2974	start_addr = max(address & mask, vma->vm_start);
2975	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2976	pte -= off;
2977	pgoff -= off;
2978
2979	/*
2980	 *  max_pgoff is either end of page table or end of vma
2981	 *  or fault_around_pages() from pgoff, depending what is nearest.
2982	 */
2983	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2984		PTRS_PER_PTE - 1;
2985	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2986			pgoff + nr_pages - 1);
2987
2988	/* Check if it makes any sense to call ->map_pages */
2989	while (!pte_none(*pte)) {
2990		if (++pgoff > max_pgoff)
2991			return;
2992		start_addr += PAGE_SIZE;
2993		if (start_addr >= vma->vm_end)
2994			return;
2995		pte++;
2996	}
2997
2998	vmf.virtual_address = (void __user *) start_addr;
2999	vmf.pte = pte;
3000	vmf.pgoff = pgoff;
3001	vmf.max_pgoff = max_pgoff;
3002	vmf.flags = flags;
3003	vmf.gfp_mask = __get_fault_gfp_mask(vma);
3004	vma->vm_ops->map_pages(vma, &vmf);
3005}
3006
3007static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3008		unsigned long address, pmd_t *pmd,
3009		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3010{
3011	struct page *fault_page;
3012	spinlock_t *ptl;
3013	pte_t *pte;
3014	int ret = 0;
3015
3016	/*
3017	 * Let's call ->map_pages() first and use ->fault() as fallback
3018	 * if page by the offset is not ready to be mapped (cold cache or
3019	 * something).
3020	 */
3021	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3022		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3023		do_fault_around(vma, address, pte, pgoff, flags);
3024		if (!pte_same(*pte, orig_pte))
3025			goto unlock_out;
3026		pte_unmap_unlock(pte, ptl);
3027	}
3028
3029	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3030	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3031		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032
3033	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3034	if (unlikely(!pte_same(*pte, orig_pte))) {
3035		pte_unmap_unlock(pte, ptl);
3036		unlock_page(fault_page);
3037		put_page(fault_page);
3038		return ret;
3039	}
3040	do_set_pte(vma, address, fault_page, pte, false, false);
3041	unlock_page(fault_page);
3042unlock_out:
3043	pte_unmap_unlock(pte, ptl);
3044	return ret;
3045}
3046
3047static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3048		unsigned long address, pmd_t *pmd,
3049		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3050{
3051	struct page *fault_page, *new_page;
3052	struct mem_cgroup *memcg;
3053	spinlock_t *ptl;
3054	pte_t *pte;
3055	int ret;
3056
3057	if (unlikely(anon_vma_prepare(vma)))
3058		return VM_FAULT_OOM;
3059
3060	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3061	if (!new_page)
3062		return VM_FAULT_OOM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3063
3064	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3065		put_page(new_page);
3066		return VM_FAULT_OOM;
 
 
 
 
 
 
3067	}
3068
3069	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3070	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3071		goto uncharge_out;
3072
3073	if (fault_page)
3074		copy_user_highpage(new_page, fault_page, address, vma);
3075	__SetPageUptodate(new_page);
3076
3077	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3078	if (unlikely(!pte_same(*pte, orig_pte))) {
3079		pte_unmap_unlock(pte, ptl);
3080		if (fault_page) {
3081			unlock_page(fault_page);
3082			put_page(fault_page);
3083		} else {
3084			/*
3085			 * The fault handler has no page to lock, so it holds
3086			 * i_mmap_lock for read to protect against truncate.
3087			 */
3088			i_mmap_unlock_read(vma->vm_file->f_mapping);
3089		}
3090		goto uncharge_out;
3091	}
3092	do_set_pte(vma, address, new_page, pte, true, true);
3093	mem_cgroup_commit_charge(new_page, memcg, false, false);
3094	lru_cache_add_active_or_unevictable(new_page, vma);
3095	pte_unmap_unlock(pte, ptl);
3096	if (fault_page) {
3097		unlock_page(fault_page);
3098		put_page(fault_page);
3099	} else {
3100		/*
3101		 * The fault handler has no page to lock, so it holds
3102		 * i_mmap_lock for read to protect against truncate.
3103		 */
3104		i_mmap_unlock_read(vma->vm_file->f_mapping);
3105	}
 
 
 
 
 
3106	return ret;
3107uncharge_out:
3108	mem_cgroup_cancel_charge(new_page, memcg, false);
3109	put_page(new_page);
 
 
 
3110	return ret;
3111}
3112
3113static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3114		unsigned long address, pmd_t *pmd,
3115		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3116{
3117	struct page *fault_page;
3118	struct address_space *mapping;
3119	spinlock_t *ptl;
3120	pte_t *pte;
3121	int dirtied = 0;
3122	int ret, tmp;
3123
3124	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3125	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3126		return ret;
3127
3128	/*
3129	 * Check if the backing address space wants to know that the page is
3130	 * about to become writable
3131	 */
3132	if (vma->vm_ops->page_mkwrite) {
3133		unlock_page(fault_page);
3134		tmp = do_page_mkwrite(vma, fault_page, address);
3135		if (unlikely(!tmp ||
3136				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3137			put_page(fault_page);
3138			return tmp;
3139		}
3140	}
3141
3142	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3143	if (unlikely(!pte_same(*pte, orig_pte))) {
3144		pte_unmap_unlock(pte, ptl);
3145		unlock_page(fault_page);
3146		put_page(fault_page);
3147		return ret;
3148	}
3149	do_set_pte(vma, address, fault_page, pte, true, false);
3150	pte_unmap_unlock(pte, ptl);
3151
3152	if (set_page_dirty(fault_page))
3153		dirtied = 1;
3154	/*
3155	 * Take a local copy of the address_space - page.mapping may be zeroed
3156	 * by truncate after unlock_page().   The address_space itself remains
3157	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3158	 * release semantics to prevent the compiler from undoing this copying.
3159	 */
3160	mapping = page_rmapping(fault_page);
3161	unlock_page(fault_page);
3162	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3163		/*
3164		 * Some device drivers do not set page.mapping but still
3165		 * dirty their pages
3166		 */
3167		balance_dirty_pages_ratelimited(mapping);
3168	}
3169
3170	if (!vma->vm_ops->page_mkwrite)
3171		file_update_time(vma->vm_file);
3172
3173	return ret;
3174}
3175
3176/*
 
 
 
 
3177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178 * but allow concurrent faults).
3179 * The mmap_sem may have been released depending on flags and our
3180 * return value.  See filemap_fault() and __lock_page_or_retry().
3181 */
3182static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3183		unsigned long address, pte_t *page_table, pmd_t *pmd,
3184		unsigned int flags, pte_t orig_pte)
3185{
3186	pgoff_t pgoff = linear_page_index(vma, address);
3187
3188	pte_unmap(page_table);
3189	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3190	if (!vma->vm_ops->fault)
3191		return VM_FAULT_SIGBUS;
3192	if (!(flags & FAULT_FLAG_WRITE))
3193		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3194				orig_pte);
3195	if (!(vma->vm_flags & VM_SHARED))
3196		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3197				orig_pte);
3198	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3199}
3200
3201static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3202				unsigned long addr, int page_nid,
3203				int *flags)
3204{
3205	get_page(page);
3206
3207	count_vm_numa_event(NUMA_HINT_FAULTS);
3208	if (page_nid == numa_node_id()) {
3209		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3210		*flags |= TNF_FAULT_LOCAL;
3211	}
3212
3213	return mpol_misplaced(page, vma, addr);
3214}
3215
3216static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3217		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3218{
3219	struct page *page = NULL;
3220	spinlock_t *ptl;
3221	int page_nid = -1;
3222	int last_cpupid;
3223	int target_nid;
3224	bool migrated = false;
3225	bool was_writable = pte_write(pte);
3226	int flags = 0;
3227
3228	/* A PROT_NONE fault should not end up here */
3229	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3230
3231	/*
3232	* The "pte" at this point cannot be used safely without
3233	* validation through pte_unmap_same(). It's of NUMA type but
3234	* the pfn may be screwed if the read is non atomic.
3235	*
3236	* We can safely just do a "set_pte_at()", because the old
3237	* page table entry is not accessible, so there would be no
3238	* concurrent hardware modifications to the PTE.
3239	*/
3240	ptl = pte_lockptr(mm, pmd);
3241	spin_lock(ptl);
3242	if (unlikely(!pte_same(*ptep, pte))) {
3243		pte_unmap_unlock(ptep, ptl);
3244		goto out;
3245	}
3246
3247	/* Make it present again */
3248	pte = pte_modify(pte, vma->vm_page_prot);
3249	pte = pte_mkyoung(pte);
3250	if (was_writable)
3251		pte = pte_mkwrite(pte);
3252	set_pte_at(mm, addr, ptep, pte);
3253	update_mmu_cache(vma, addr, ptep);
3254
3255	page = vm_normal_page(vma, addr, pte);
3256	if (!page) {
3257		pte_unmap_unlock(ptep, ptl);
3258		return 0;
3259	}
3260
3261	/* TODO: handle PTE-mapped THP */
3262	if (PageCompound(page)) {
3263		pte_unmap_unlock(ptep, ptl);
3264		return 0;
3265	}
3266
3267	/*
3268	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3269	 * much anyway since they can be in shared cache state. This misses
3270	 * the case where a mapping is writable but the process never writes
3271	 * to it but pte_write gets cleared during protection updates and
3272	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3273	 * background writeback, dirty balancing and application behaviour.
3274	 */
3275	if (!(vma->vm_flags & VM_WRITE))
3276		flags |= TNF_NO_GROUP;
3277
3278	/*
3279	 * Flag if the page is shared between multiple address spaces. This
3280	 * is later used when determining whether to group tasks together
3281	 */
3282	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3283		flags |= TNF_SHARED;
3284
3285	last_cpupid = page_cpupid_last(page);
3286	page_nid = page_to_nid(page);
3287	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3288	pte_unmap_unlock(ptep, ptl);
3289	if (target_nid == -1) {
3290		put_page(page);
3291		goto out;
3292	}
3293
3294	/* Migrate to the requested node */
3295	migrated = migrate_misplaced_page(page, vma, target_nid);
3296	if (migrated) {
3297		page_nid = target_nid;
3298		flags |= TNF_MIGRATED;
3299	} else
3300		flags |= TNF_MIGRATE_FAIL;
3301
3302out:
3303	if (page_nid != -1)
3304		task_numa_fault(last_cpupid, page_nid, 1, flags);
3305	return 0;
3306}
3307
3308static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3309			unsigned long address, pmd_t *pmd, unsigned int flags)
3310{
3311	if (vma_is_anonymous(vma))
3312		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3313	if (vma->vm_ops->pmd_fault)
3314		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3315	return VM_FAULT_FALLBACK;
3316}
3317
3318static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3319			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3320			unsigned int flags)
3321{
3322	if (vma_is_anonymous(vma))
3323		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3324	if (vma->vm_ops->pmd_fault)
3325		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3326	return VM_FAULT_FALLBACK;
3327}
3328
3329/*
3330 * These routines also need to handle stuff like marking pages dirty
3331 * and/or accessed for architectures that don't do it in hardware (most
3332 * RISC architectures).  The early dirtying is also good on the i386.
3333 *
3334 * There is also a hook called "update_mmu_cache()" that architectures
3335 * with external mmu caches can use to update those (ie the Sparc or
3336 * PowerPC hashed page tables that act as extended TLBs).
3337 *
3338 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3339 * but allow concurrent faults), and pte mapped but not yet locked.
3340 * We return with pte unmapped and unlocked.
3341 *
3342 * The mmap_sem may have been released depending on flags and our
3343 * return value.  See filemap_fault() and __lock_page_or_retry().
3344 */
3345static int handle_pte_fault(struct mm_struct *mm,
3346		     struct vm_area_struct *vma, unsigned long address,
3347		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3348{
3349	pte_t entry;
3350	spinlock_t *ptl;
3351
3352	/*
3353	 * some architectures can have larger ptes than wordsize,
3354	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3355	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3356	 * The code below just needs a consistent view for the ifs and
3357	 * we later double check anyway with the ptl lock held. So here
3358	 * a barrier will do.
3359	 */
3360	entry = *pte;
3361	barrier();
3362	if (!pte_present(entry)) {
3363		if (pte_none(entry)) {
3364			if (vma_is_anonymous(vma))
3365				return do_anonymous_page(mm, vma, address,
3366							 pte, pmd, flags);
3367			else
3368				return do_fault(mm, vma, address, pte, pmd,
3369						flags, entry);
 
3370		}
 
 
 
3371		return do_swap_page(mm, vma, address,
3372					pte, pmd, flags, entry);
3373	}
3374
3375	if (pte_protnone(entry))
3376		return do_numa_page(mm, vma, address, entry, pte, pmd);
3377
3378	ptl = pte_lockptr(mm, pmd);
3379	spin_lock(ptl);
3380	if (unlikely(!pte_same(*pte, entry)))
3381		goto unlock;
3382	if (flags & FAULT_FLAG_WRITE) {
3383		if (!pte_write(entry))
3384			return do_wp_page(mm, vma, address,
3385					pte, pmd, ptl, entry);
3386		entry = pte_mkdirty(entry);
3387	}
3388	entry = pte_mkyoung(entry);
3389	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3390		update_mmu_cache(vma, address, pte);
3391	} else {
3392		/*
3393		 * This is needed only for protection faults but the arch code
3394		 * is not yet telling us if this is a protection fault or not.
3395		 * This still avoids useless tlb flushes for .text page faults
3396		 * with threads.
3397		 */
3398		if (flags & FAULT_FLAG_WRITE)
3399			flush_tlb_fix_spurious_fault(vma, address);
3400	}
3401unlock:
3402	pte_unmap_unlock(pte, ptl);
3403	return 0;
3404}
3405
3406/*
3407 * By the time we get here, we already hold the mm semaphore
3408 *
3409 * The mmap_sem may have been released depending on flags and our
3410 * return value.  See filemap_fault() and __lock_page_or_retry().
3411 */
3412static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3413			     unsigned long address, unsigned int flags)
3414{
3415	pgd_t *pgd;
3416	pud_t *pud;
3417	pmd_t *pmd;
3418	pte_t *pte;
3419
3420	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3421					    flags & FAULT_FLAG_INSTRUCTION,
3422					    flags & FAULT_FLAG_REMOTE))
3423		return VM_FAULT_SIGSEGV;
 
 
 
3424
3425	if (unlikely(is_vm_hugetlb_page(vma)))
3426		return hugetlb_fault(mm, vma, address, flags);
3427
 
3428	pgd = pgd_offset(mm, address);
3429	pud = pud_alloc(mm, pgd, address);
3430	if (!pud)
3431		return VM_FAULT_OOM;
3432	pmd = pmd_alloc(mm, pud, address);
3433	if (!pmd)
3434		return VM_FAULT_OOM;
3435	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3436		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3437		if (!(ret & VM_FAULT_FALLBACK))
3438			return ret;
3439	} else {
3440		pmd_t orig_pmd = *pmd;
3441		int ret;
3442
3443		barrier();
3444		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3445			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3446
3447			if (pmd_protnone(orig_pmd))
3448				return do_huge_pmd_numa_page(mm, vma, address,
3449							     orig_pmd, pmd);
3450
3451			if (dirty && !pmd_write(orig_pmd)) {
3452				ret = wp_huge_pmd(mm, vma, address, pmd,
3453							orig_pmd, flags);
3454				if (!(ret & VM_FAULT_FALLBACK))
3455					return ret;
3456			} else {
3457				huge_pmd_set_accessed(mm, vma, address, pmd,
3458						      orig_pmd, dirty);
3459				return 0;
3460			}
 
3461		}
3462	}
3463
3464	/*
3465	 * Use pte_alloc() instead of pte_alloc_map, because we can't
3466	 * run pte_offset_map on the pmd, if an huge pmd could
3467	 * materialize from under us from a different thread.
3468	 */
3469	if (unlikely(pte_alloc(mm, pmd, address)))
3470		return VM_FAULT_OOM;
3471	/*
3472	 * If a huge pmd materialized under us just retry later.  Use
3473	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3474	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3475	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3476	 * in a different thread of this mm, in turn leading to a misleading
3477	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3478	 * regular pmd that we can walk with pte_offset_map() and we can do that
3479	 * through an atomic read in C, which is what pmd_trans_unstable()
3480	 * provides.
3481	 */
3482	if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3483		return 0;
3484	/*
3485	 * A regular pmd is established and it can't morph into a huge pmd
3486	 * from under us anymore at this point because we hold the mmap_sem
3487	 * read mode and khugepaged takes it in write mode. So now it's
3488	 * safe to run pte_offset_map().
3489	 */
3490	pte = pte_offset_map(pmd, address);
3491
3492	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3493}
3494
3495/*
3496 * By the time we get here, we already hold the mm semaphore
3497 *
3498 * The mmap_sem may have been released depending on flags and our
3499 * return value.  See filemap_fault() and __lock_page_or_retry().
3500 */
3501int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3502		    unsigned long address, unsigned int flags)
3503{
3504	int ret;
3505
3506	__set_current_state(TASK_RUNNING);
3507
3508	count_vm_event(PGFAULT);
3509	mem_cgroup_count_vm_event(mm, PGFAULT);
3510
3511	/* do counter updates before entering really critical section. */
3512	check_sync_rss_stat(current);
3513
3514	/*
3515	 * Enable the memcg OOM handling for faults triggered in user
3516	 * space.  Kernel faults are handled more gracefully.
3517	 */
3518	if (flags & FAULT_FLAG_USER)
3519		mem_cgroup_oom_enable();
3520
3521	ret = __handle_mm_fault(mm, vma, address, flags);
3522
3523	if (flags & FAULT_FLAG_USER) {
3524		mem_cgroup_oom_disable();
3525                /*
3526                 * The task may have entered a memcg OOM situation but
3527                 * if the allocation error was handled gracefully (no
3528                 * VM_FAULT_OOM), there is no need to kill anything.
3529                 * Just clean up the OOM state peacefully.
3530                 */
3531                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3532                        mem_cgroup_oom_synchronize(false);
3533	}
3534
3535	return ret;
3536}
3537EXPORT_SYMBOL_GPL(handle_mm_fault);
3538
3539#ifndef __PAGETABLE_PUD_FOLDED
3540/*
3541 * Allocate page upper directory.
3542 * We've already handled the fast-path in-line.
3543 */
3544int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3545{
3546	pud_t *new = pud_alloc_one(mm, address);
3547	if (!new)
3548		return -ENOMEM;
3549
3550	smp_wmb(); /* See comment in __pte_alloc */
3551
3552	spin_lock(&mm->page_table_lock);
3553	if (pgd_present(*pgd))		/* Another has populated it */
3554		pud_free(mm, new);
3555	else
3556		pgd_populate(mm, pgd, new);
3557	spin_unlock(&mm->page_table_lock);
3558	return 0;
3559}
3560#endif /* __PAGETABLE_PUD_FOLDED */
3561
3562#ifndef __PAGETABLE_PMD_FOLDED
3563/*
3564 * Allocate page middle directory.
3565 * We've already handled the fast-path in-line.
3566 */
3567int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3568{
3569	pmd_t *new = pmd_alloc_one(mm, address);
3570	if (!new)
3571		return -ENOMEM;
3572
3573	smp_wmb(); /* See comment in __pte_alloc */
3574
3575	spin_lock(&mm->page_table_lock);
3576#ifndef __ARCH_HAS_4LEVEL_HACK
3577	if (!pud_present(*pud)) {
3578		mm_inc_nr_pmds(mm);
3579		pud_populate(mm, pud, new);
3580	} else	/* Another has populated it */
3581		pmd_free(mm, new);
 
 
3582#else
3583	if (!pgd_present(*pud)) {
3584		mm_inc_nr_pmds(mm);
3585		pgd_populate(mm, pud, new);
3586	} else /* Another has populated it */
3587		pmd_free(mm, new);
 
 
3588#endif /* __ARCH_HAS_4LEVEL_HACK */
3589	spin_unlock(&mm->page_table_lock);
3590	return 0;
3591}
3592#endif /* __PAGETABLE_PMD_FOLDED */
3593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3594static int __follow_pte(struct mm_struct *mm, unsigned long address,
3595		pte_t **ptepp, spinlock_t **ptlp)
3596{
3597	pgd_t *pgd;
3598	pud_t *pud;
3599	pmd_t *pmd;
3600	pte_t *ptep;
3601
3602	pgd = pgd_offset(mm, address);
3603	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3604		goto out;
3605
3606	pud = pud_offset(pgd, address);
3607	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3608		goto out;
3609
3610	pmd = pmd_offset(pud, address);
3611	VM_BUG_ON(pmd_trans_huge(*pmd));
3612	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3613		goto out;
3614
3615	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3616	if (pmd_huge(*pmd))
3617		goto out;
3618
3619	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3620	if (!ptep)
3621		goto out;
3622	if (!pte_present(*ptep))
3623		goto unlock;
3624	*ptepp = ptep;
3625	return 0;
3626unlock:
3627	pte_unmap_unlock(ptep, *ptlp);
3628out:
3629	return -EINVAL;
3630}
3631
3632static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3633			     pte_t **ptepp, spinlock_t **ptlp)
3634{
3635	int res;
3636
3637	/* (void) is needed to make gcc happy */
3638	(void) __cond_lock(*ptlp,
3639			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3640	return res;
3641}
3642
3643/**
3644 * follow_pfn - look up PFN at a user virtual address
3645 * @vma: memory mapping
3646 * @address: user virtual address
3647 * @pfn: location to store found PFN
3648 *
3649 * Only IO mappings and raw PFN mappings are allowed.
3650 *
3651 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3652 */
3653int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3654	unsigned long *pfn)
3655{
3656	int ret = -EINVAL;
3657	spinlock_t *ptl;
3658	pte_t *ptep;
3659
3660	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3661		return ret;
3662
3663	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3664	if (ret)
3665		return ret;
3666	*pfn = pte_pfn(*ptep);
3667	pte_unmap_unlock(ptep, ptl);
3668	return 0;
3669}
3670EXPORT_SYMBOL(follow_pfn);
3671
3672#ifdef CONFIG_HAVE_IOREMAP_PROT
3673int follow_phys(struct vm_area_struct *vma,
3674		unsigned long address, unsigned int flags,
3675		unsigned long *prot, resource_size_t *phys)
3676{
3677	int ret = -EINVAL;
3678	pte_t *ptep, pte;
3679	spinlock_t *ptl;
3680
3681	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3682		goto out;
3683
3684	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3685		goto out;
3686	pte = *ptep;
3687
3688	if ((flags & FOLL_WRITE) && !pte_write(pte))
3689		goto unlock;
3690
3691	*prot = pgprot_val(pte_pgprot(pte));
3692	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3693
3694	ret = 0;
3695unlock:
3696	pte_unmap_unlock(ptep, ptl);
3697out:
3698	return ret;
3699}
3700
3701int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3702			void *buf, int len, int write)
3703{
3704	resource_size_t phys_addr;
3705	unsigned long prot = 0;
3706	void __iomem *maddr;
3707	int offset = addr & (PAGE_SIZE-1);
3708
3709	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3710		return -EINVAL;
3711
3712	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3713	if (write)
3714		memcpy_toio(maddr + offset, buf, len);
3715	else
3716		memcpy_fromio(buf, maddr + offset, len);
3717	iounmap(maddr);
3718
3719	return len;
3720}
3721EXPORT_SYMBOL_GPL(generic_access_phys);
3722#endif
3723
3724/*
3725 * Access another process' address space as given in mm.  If non-NULL, use the
3726 * given task for page fault accounting.
3727 */
3728static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3729		unsigned long addr, void *buf, int len, int write)
3730{
3731	struct vm_area_struct *vma;
3732	void *old_buf = buf;
3733
3734	down_read(&mm->mmap_sem);
3735	/* ignore errors, just check how much was successfully transferred */
3736	while (len) {
3737		int bytes, ret, offset;
3738		void *maddr;
3739		struct page *page = NULL;
3740
3741		ret = get_user_pages_remote(tsk, mm, addr, 1,
3742				write, 1, &page, &vma);
3743		if (ret <= 0) {
3744#ifndef CONFIG_HAVE_IOREMAP_PROT
3745			break;
3746#else
3747			/*
3748			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3749			 * we can access using slightly different code.
3750			 */
 
3751			vma = find_vma(mm, addr);
3752			if (!vma || vma->vm_start > addr)
3753				break;
3754			if (vma->vm_ops && vma->vm_ops->access)
3755				ret = vma->vm_ops->access(vma, addr, buf,
3756							  len, write);
3757			if (ret <= 0)
 
3758				break;
3759			bytes = ret;
3760#endif
3761		} else {
3762			bytes = len;
3763			offset = addr & (PAGE_SIZE-1);
3764			if (bytes > PAGE_SIZE-offset)
3765				bytes = PAGE_SIZE-offset;
3766
3767			maddr = kmap(page);
3768			if (write) {
3769				copy_to_user_page(vma, page, addr,
3770						  maddr + offset, buf, bytes);
3771				set_page_dirty_lock(page);
3772			} else {
3773				copy_from_user_page(vma, page, addr,
3774						    buf, maddr + offset, bytes);
3775			}
3776			kunmap(page);
3777			put_page(page);
3778		}
3779		len -= bytes;
3780		buf += bytes;
3781		addr += bytes;
3782	}
3783	up_read(&mm->mmap_sem);
3784
3785	return buf - old_buf;
3786}
3787
3788/**
3789 * access_remote_vm - access another process' address space
3790 * @mm:		the mm_struct of the target address space
3791 * @addr:	start address to access
3792 * @buf:	source or destination buffer
3793 * @len:	number of bytes to transfer
3794 * @write:	whether the access is a write
3795 *
3796 * The caller must hold a reference on @mm.
3797 */
3798int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3799		void *buf, int len, int write)
3800{
3801	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3802}
3803
3804/*
3805 * Access another process' address space.
3806 * Source/target buffer must be kernel space,
3807 * Do not walk the page table directly, use get_user_pages
3808 */
3809int access_process_vm(struct task_struct *tsk, unsigned long addr,
3810		void *buf, int len, int write)
3811{
3812	struct mm_struct *mm;
3813	int ret;
3814
3815	mm = get_task_mm(tsk);
3816	if (!mm)
3817		return 0;
3818
3819	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3820	mmput(mm);
3821
3822	return ret;
3823}
3824
3825/*
3826 * Print the name of a VMA.
3827 */
3828void print_vma_addr(char *prefix, unsigned long ip)
3829{
3830	struct mm_struct *mm = current->mm;
3831	struct vm_area_struct *vma;
3832
3833	/*
3834	 * Do not print if we are in atomic
3835	 * contexts (in exception stacks, etc.):
3836	 */
3837	if (preempt_count())
3838		return;
3839
3840	down_read(&mm->mmap_sem);
3841	vma = find_vma(mm, ip);
3842	if (vma && vma->vm_file) {
3843		struct file *f = vma->vm_file;
3844		char *buf = (char *)__get_free_page(GFP_KERNEL);
3845		if (buf) {
3846			char *p;
3847
3848			p = file_path(f, buf, PAGE_SIZE);
3849			if (IS_ERR(p))
3850				p = "?";
3851			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
 
 
 
3852					vma->vm_start,
3853					vma->vm_end - vma->vm_start);
3854			free_page((unsigned long)buf);
3855		}
3856	}
3857	up_read(&mm->mmap_sem);
3858}
3859
3860#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3861void __might_fault(const char *file, int line)
3862{
3863	/*
3864	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3865	 * holding the mmap_sem, this is safe because kernel memory doesn't
3866	 * get paged out, therefore we'll never actually fault, and the
3867	 * below annotations will generate false positives.
3868	 */
3869	if (segment_eq(get_fs(), KERNEL_DS))
3870		return;
3871	if (pagefault_disabled())
3872		return;
3873	__might_sleep(file, line, 0);
3874#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3875	if (current->mm)
 
 
 
3876		might_lock_read(&current->mm->mmap_sem);
3877#endif
3878}
3879EXPORT_SYMBOL(__might_fault);
3880#endif
3881
3882#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3883static void clear_gigantic_page(struct page *page,
3884				unsigned long addr,
3885				unsigned int pages_per_huge_page)
3886{
3887	int i;
3888	struct page *p = page;
3889
3890	might_sleep();
3891	for (i = 0; i < pages_per_huge_page;
3892	     i++, p = mem_map_next(p, page, i)) {
3893		cond_resched();
3894		clear_user_highpage(p, addr + i * PAGE_SIZE);
3895	}
3896}
3897void clear_huge_page(struct page *page,
3898		     unsigned long addr, unsigned int pages_per_huge_page)
3899{
3900	int i;
3901
3902	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3903		clear_gigantic_page(page, addr, pages_per_huge_page);
3904		return;
3905	}
3906
3907	might_sleep();
3908	for (i = 0; i < pages_per_huge_page; i++) {
3909		cond_resched();
3910		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3911	}
3912}
3913
3914static void copy_user_gigantic_page(struct page *dst, struct page *src,
3915				    unsigned long addr,
3916				    struct vm_area_struct *vma,
3917				    unsigned int pages_per_huge_page)
3918{
3919	int i;
3920	struct page *dst_base = dst;
3921	struct page *src_base = src;
3922
3923	for (i = 0; i < pages_per_huge_page; ) {
3924		cond_resched();
3925		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3926
3927		i++;
3928		dst = mem_map_next(dst, dst_base, i);
3929		src = mem_map_next(src, src_base, i);
3930	}
3931}
3932
3933void copy_user_huge_page(struct page *dst, struct page *src,
3934			 unsigned long addr, struct vm_area_struct *vma,
3935			 unsigned int pages_per_huge_page)
3936{
3937	int i;
3938
3939	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3940		copy_user_gigantic_page(dst, src, addr, vma,
3941					pages_per_huge_page);
3942		return;
3943	}
3944
3945	might_sleep();
3946	for (i = 0; i < pages_per_huge_page; i++) {
3947		cond_resched();
3948		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3949	}
3950}
3951#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3952
3953#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3954
3955static struct kmem_cache *page_ptl_cachep;
3956
3957void __init ptlock_cache_init(void)
3958{
3959	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3960			SLAB_PANIC, NULL);
3961}
3962
3963bool ptlock_alloc(struct page *page)
3964{
3965	spinlock_t *ptl;
3966
3967	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3968	if (!ptl)
3969		return false;
3970	page->ptl = ptl;
3971	return true;
3972}
3973
3974void ptlock_free(struct page *page)
3975{
3976	kmem_cache_free(page_ptl_cachep, page->ptl);
3977}
3978#endif
v3.5.6
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
 
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
 
 
 
 
 
  60
  61#include <asm/io.h>
 
  62#include <asm/pgalloc.h>
  63#include <asm/uaccess.h>
  64#include <asm/tlb.h>
  65#include <asm/tlbflush.h>
  66#include <asm/pgtable.h>
  67
  68#include "internal.h"
  69
 
 
 
 
  70#ifndef CONFIG_NEED_MULTIPLE_NODES
  71/* use the per-pgdat data instead for discontigmem - mbligh */
  72unsigned long max_mapnr;
  73struct page *mem_map;
  74
  75EXPORT_SYMBOL(max_mapnr);
  76EXPORT_SYMBOL(mem_map);
  77#endif
  78
  79unsigned long num_physpages;
  80/*
  81 * A number of key systems in x86 including ioremap() rely on the assumption
  82 * that high_memory defines the upper bound on direct map memory, then end
  83 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  85 * and ZONE_HIGHMEM.
  86 */
  87void * high_memory;
  88
  89EXPORT_SYMBOL(num_physpages);
  90EXPORT_SYMBOL(high_memory);
  91
  92/*
  93 * Randomize the address space (stacks, mmaps, brk, etc.).
  94 *
  95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  96 *   as ancient (libc5 based) binaries can segfault. )
  97 */
  98int randomize_va_space __read_mostly =
  99#ifdef CONFIG_COMPAT_BRK
 100					1;
 101#else
 102					2;
 103#endif
 104
 105static int __init disable_randmaps(char *s)
 106{
 107	randomize_va_space = 0;
 108	return 1;
 109}
 110__setup("norandmaps", disable_randmaps);
 111
 112unsigned long zero_pfn __read_mostly;
 113unsigned long highest_memmap_pfn __read_mostly;
 114
 
 
 115/*
 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 117 */
 118static int __init init_zero_pfn(void)
 119{
 120	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 121	return 0;
 122}
 123core_initcall(init_zero_pfn);
 124
 125
 126#if defined(SPLIT_RSS_COUNTING)
 127
 128void sync_mm_rss(struct mm_struct *mm)
 129{
 130	int i;
 131
 132	for (i = 0; i < NR_MM_COUNTERS; i++) {
 133		if (current->rss_stat.count[i]) {
 134			add_mm_counter(mm, i, current->rss_stat.count[i]);
 135			current->rss_stat.count[i] = 0;
 136		}
 137	}
 138	current->rss_stat.events = 0;
 139}
 140
 141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 142{
 143	struct task_struct *task = current;
 144
 145	if (likely(task->mm == mm))
 146		task->rss_stat.count[member] += val;
 147	else
 148		add_mm_counter(mm, member, val);
 149}
 150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 152
 153/* sync counter once per 64 page faults */
 154#define TASK_RSS_EVENTS_THRESH	(64)
 155static void check_sync_rss_stat(struct task_struct *task)
 156{
 157	if (unlikely(task != current))
 158		return;
 159	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 160		sync_mm_rss(task->mm);
 161}
 162#else /* SPLIT_RSS_COUNTING */
 163
 164#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 165#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 166
 167static void check_sync_rss_stat(struct task_struct *task)
 168{
 169}
 170
 171#endif /* SPLIT_RSS_COUNTING */
 172
 173#ifdef HAVE_GENERIC_MMU_GATHER
 174
 175static int tlb_next_batch(struct mmu_gather *tlb)
 176{
 177	struct mmu_gather_batch *batch;
 178
 179	batch = tlb->active;
 180	if (batch->next) {
 181		tlb->active = batch->next;
 182		return 1;
 183	}
 184
 
 
 
 185	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 186	if (!batch)
 187		return 0;
 188
 
 189	batch->next = NULL;
 190	batch->nr   = 0;
 191	batch->max  = MAX_GATHER_BATCH;
 192
 193	tlb->active->next = batch;
 194	tlb->active = batch;
 195
 196	return 1;
 197}
 198
 199/* tlb_gather_mmu
 200 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 201 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 202 *	users and we're going to destroy the full address space (exit/execve).
 203 */
 204void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
 205{
 206	tlb->mm = mm;
 207
 208	tlb->fullmm     = fullmm;
 209	tlb->need_flush = 0;
 210	tlb->fast_mode  = (num_possible_cpus() == 1);
 211	tlb->local.next = NULL;
 212	tlb->local.nr   = 0;
 213	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 214	tlb->active     = &tlb->local;
 
 215
 216#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 217	tlb->batch = NULL;
 218#endif
 
 
 219}
 220
 221void tlb_flush_mmu(struct mmu_gather *tlb)
 222{
 223	struct mmu_gather_batch *batch;
 
 224
 225	if (!tlb->need_flush)
 226		return;
 227	tlb->need_flush = 0;
 228	tlb_flush(tlb);
 
 229#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 230	tlb_table_flush(tlb);
 231#endif
 
 
 232
 233	if (tlb_fast_mode(tlb))
 234		return;
 
 235
 236	for (batch = &tlb->local; batch; batch = batch->next) {
 237		free_pages_and_swap_cache(batch->pages, batch->nr);
 238		batch->nr = 0;
 239	}
 240	tlb->active = &tlb->local;
 241}
 242
 
 
 
 
 
 
 243/* tlb_finish_mmu
 244 *	Called at the end of the shootdown operation to free up any resources
 245 *	that were required.
 246 */
 247void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 248{
 249	struct mmu_gather_batch *batch, *next;
 250
 251	tlb_flush_mmu(tlb);
 252
 253	/* keep the page table cache within bounds */
 254	check_pgt_cache();
 255
 256	for (batch = tlb->local.next; batch; batch = next) {
 257		next = batch->next;
 258		free_pages((unsigned long)batch, 0);
 259	}
 260	tlb->local.next = NULL;
 261}
 262
 263/* __tlb_remove_page
 264 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 265 *	handling the additional races in SMP caused by other CPUs caching valid
 266 *	mappings in their TLBs. Returns the number of free page slots left.
 267 *	When out of page slots we must call tlb_flush_mmu().
 268 */
 269int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 270{
 271	struct mmu_gather_batch *batch;
 272
 273	VM_BUG_ON(!tlb->need_flush);
 274
 275	if (tlb_fast_mode(tlb)) {
 276		free_page_and_swap_cache(page);
 277		return 1; /* avoid calling tlb_flush_mmu() */
 278	}
 279
 280	batch = tlb->active;
 281	batch->pages[batch->nr++] = page;
 282	if (batch->nr == batch->max) {
 283		if (!tlb_next_batch(tlb))
 284			return 0;
 285		batch = tlb->active;
 286	}
 287	VM_BUG_ON(batch->nr > batch->max);
 288
 289	return batch->max - batch->nr;
 290}
 291
 292#endif /* HAVE_GENERIC_MMU_GATHER */
 293
 294#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 295
 296/*
 297 * See the comment near struct mmu_table_batch.
 298 */
 299
 300static void tlb_remove_table_smp_sync(void *arg)
 301{
 302	/* Simply deliver the interrupt */
 303}
 304
 305static void tlb_remove_table_one(void *table)
 306{
 307	/*
 308	 * This isn't an RCU grace period and hence the page-tables cannot be
 309	 * assumed to be actually RCU-freed.
 310	 *
 311	 * It is however sufficient for software page-table walkers that rely on
 312	 * IRQ disabling. See the comment near struct mmu_table_batch.
 313	 */
 314	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 315	__tlb_remove_table(table);
 316}
 317
 318static void tlb_remove_table_rcu(struct rcu_head *head)
 319{
 320	struct mmu_table_batch *batch;
 321	int i;
 322
 323	batch = container_of(head, struct mmu_table_batch, rcu);
 324
 325	for (i = 0; i < batch->nr; i++)
 326		__tlb_remove_table(batch->tables[i]);
 327
 328	free_page((unsigned long)batch);
 329}
 330
 331void tlb_table_flush(struct mmu_gather *tlb)
 332{
 333	struct mmu_table_batch **batch = &tlb->batch;
 334
 335	if (*batch) {
 336		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 337		*batch = NULL;
 338	}
 339}
 340
 341void tlb_remove_table(struct mmu_gather *tlb, void *table)
 342{
 343	struct mmu_table_batch **batch = &tlb->batch;
 344
 345	tlb->need_flush = 1;
 346
 347	/*
 348	 * When there's less then two users of this mm there cannot be a
 349	 * concurrent page-table walk.
 350	 */
 351	if (atomic_read(&tlb->mm->mm_users) < 2) {
 352		__tlb_remove_table(table);
 353		return;
 354	}
 355
 356	if (*batch == NULL) {
 357		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 358		if (*batch == NULL) {
 359			tlb_remove_table_one(table);
 360			return;
 361		}
 362		(*batch)->nr = 0;
 363	}
 364	(*batch)->tables[(*batch)->nr++] = table;
 365	if ((*batch)->nr == MAX_TABLE_BATCH)
 366		tlb_table_flush(tlb);
 367}
 368
 369#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 370
 371/*
 372 * If a p?d_bad entry is found while walking page tables, report
 373 * the error, before resetting entry to p?d_none.  Usually (but
 374 * very seldom) called out from the p?d_none_or_clear_bad macros.
 375 */
 376
 377void pgd_clear_bad(pgd_t *pgd)
 378{
 379	pgd_ERROR(*pgd);
 380	pgd_clear(pgd);
 381}
 382
 383void pud_clear_bad(pud_t *pud)
 384{
 385	pud_ERROR(*pud);
 386	pud_clear(pud);
 387}
 388
 389void pmd_clear_bad(pmd_t *pmd)
 390{
 391	pmd_ERROR(*pmd);
 392	pmd_clear(pmd);
 393}
 394
 395/*
 396 * Note: this doesn't free the actual pages themselves. That
 397 * has been handled earlier when unmapping all the memory regions.
 398 */
 399static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 400			   unsigned long addr)
 401{
 402	pgtable_t token = pmd_pgtable(*pmd);
 403	pmd_clear(pmd);
 404	pte_free_tlb(tlb, token, addr);
 405	tlb->mm->nr_ptes--;
 406}
 407
 408static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 409				unsigned long addr, unsigned long end,
 410				unsigned long floor, unsigned long ceiling)
 411{
 412	pmd_t *pmd;
 413	unsigned long next;
 414	unsigned long start;
 415
 416	start = addr;
 417	pmd = pmd_offset(pud, addr);
 418	do {
 419		next = pmd_addr_end(addr, end);
 420		if (pmd_none_or_clear_bad(pmd))
 421			continue;
 422		free_pte_range(tlb, pmd, addr);
 423	} while (pmd++, addr = next, addr != end);
 424
 425	start &= PUD_MASK;
 426	if (start < floor)
 427		return;
 428	if (ceiling) {
 429		ceiling &= PUD_MASK;
 430		if (!ceiling)
 431			return;
 432	}
 433	if (end - 1 > ceiling - 1)
 434		return;
 435
 436	pmd = pmd_offset(pud, start);
 437	pud_clear(pud);
 438	pmd_free_tlb(tlb, pmd, start);
 
 439}
 440
 441static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 442				unsigned long addr, unsigned long end,
 443				unsigned long floor, unsigned long ceiling)
 444{
 445	pud_t *pud;
 446	unsigned long next;
 447	unsigned long start;
 448
 449	start = addr;
 450	pud = pud_offset(pgd, addr);
 451	do {
 452		next = pud_addr_end(addr, end);
 453		if (pud_none_or_clear_bad(pud))
 454			continue;
 455		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 456	} while (pud++, addr = next, addr != end);
 457
 458	start &= PGDIR_MASK;
 459	if (start < floor)
 460		return;
 461	if (ceiling) {
 462		ceiling &= PGDIR_MASK;
 463		if (!ceiling)
 464			return;
 465	}
 466	if (end - 1 > ceiling - 1)
 467		return;
 468
 469	pud = pud_offset(pgd, start);
 470	pgd_clear(pgd);
 471	pud_free_tlb(tlb, pud, start);
 472}
 473
 474/*
 475 * This function frees user-level page tables of a process.
 476 *
 477 * Must be called with pagetable lock held.
 478 */
 479void free_pgd_range(struct mmu_gather *tlb,
 480			unsigned long addr, unsigned long end,
 481			unsigned long floor, unsigned long ceiling)
 482{
 483	pgd_t *pgd;
 484	unsigned long next;
 485
 486	/*
 487	 * The next few lines have given us lots of grief...
 488	 *
 489	 * Why are we testing PMD* at this top level?  Because often
 490	 * there will be no work to do at all, and we'd prefer not to
 491	 * go all the way down to the bottom just to discover that.
 492	 *
 493	 * Why all these "- 1"s?  Because 0 represents both the bottom
 494	 * of the address space and the top of it (using -1 for the
 495	 * top wouldn't help much: the masks would do the wrong thing).
 496	 * The rule is that addr 0 and floor 0 refer to the bottom of
 497	 * the address space, but end 0 and ceiling 0 refer to the top
 498	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 499	 * that end 0 case should be mythical).
 500	 *
 501	 * Wherever addr is brought up or ceiling brought down, we must
 502	 * be careful to reject "the opposite 0" before it confuses the
 503	 * subsequent tests.  But what about where end is brought down
 504	 * by PMD_SIZE below? no, end can't go down to 0 there.
 505	 *
 506	 * Whereas we round start (addr) and ceiling down, by different
 507	 * masks at different levels, in order to test whether a table
 508	 * now has no other vmas using it, so can be freed, we don't
 509	 * bother to round floor or end up - the tests don't need that.
 510	 */
 511
 512	addr &= PMD_MASK;
 513	if (addr < floor) {
 514		addr += PMD_SIZE;
 515		if (!addr)
 516			return;
 517	}
 518	if (ceiling) {
 519		ceiling &= PMD_MASK;
 520		if (!ceiling)
 521			return;
 522	}
 523	if (end - 1 > ceiling - 1)
 524		end -= PMD_SIZE;
 525	if (addr > end - 1)
 526		return;
 527
 528	pgd = pgd_offset(tlb->mm, addr);
 529	do {
 530		next = pgd_addr_end(addr, end);
 531		if (pgd_none_or_clear_bad(pgd))
 532			continue;
 533		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 534	} while (pgd++, addr = next, addr != end);
 535}
 536
 537void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 538		unsigned long floor, unsigned long ceiling)
 539{
 540	while (vma) {
 541		struct vm_area_struct *next = vma->vm_next;
 542		unsigned long addr = vma->vm_start;
 543
 544		/*
 545		 * Hide vma from rmap and truncate_pagecache before freeing
 546		 * pgtables
 547		 */
 548		unlink_anon_vmas(vma);
 549		unlink_file_vma(vma);
 550
 551		if (is_vm_hugetlb_page(vma)) {
 552			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 553				floor, next? next->vm_start: ceiling);
 554		} else {
 555			/*
 556			 * Optimization: gather nearby vmas into one call down
 557			 */
 558			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 559			       && !is_vm_hugetlb_page(next)) {
 560				vma = next;
 561				next = vma->vm_next;
 562				unlink_anon_vmas(vma);
 563				unlink_file_vma(vma);
 564			}
 565			free_pgd_range(tlb, addr, vma->vm_end,
 566				floor, next? next->vm_start: ceiling);
 567		}
 568		vma = next;
 569	}
 570}
 571
 572int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 573		pmd_t *pmd, unsigned long address)
 574{
 
 575	pgtable_t new = pte_alloc_one(mm, address);
 576	int wait_split_huge_page;
 577	if (!new)
 578		return -ENOMEM;
 579
 580	/*
 581	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 582	 * visible before the pte is made visible to other CPUs by being
 583	 * put into page tables.
 584	 *
 585	 * The other side of the story is the pointer chasing in the page
 586	 * table walking code (when walking the page table without locking;
 587	 * ie. most of the time). Fortunately, these data accesses consist
 588	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 589	 * being the notable exception) will already guarantee loads are
 590	 * seen in-order. See the alpha page table accessors for the
 591	 * smp_read_barrier_depends() barriers in page table walking code.
 592	 */
 593	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 594
 595	spin_lock(&mm->page_table_lock);
 596	wait_split_huge_page = 0;
 597	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 598		mm->nr_ptes++;
 599		pmd_populate(mm, pmd, new);
 600		new = NULL;
 601	} else if (unlikely(pmd_trans_splitting(*pmd)))
 602		wait_split_huge_page = 1;
 603	spin_unlock(&mm->page_table_lock);
 604	if (new)
 605		pte_free(mm, new);
 606	if (wait_split_huge_page)
 607		wait_split_huge_page(vma->anon_vma, pmd);
 608	return 0;
 609}
 610
 611int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 612{
 613	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 614	if (!new)
 615		return -ENOMEM;
 616
 617	smp_wmb(); /* See comment in __pte_alloc */
 618
 619	spin_lock(&init_mm.page_table_lock);
 620	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 621		pmd_populate_kernel(&init_mm, pmd, new);
 622		new = NULL;
 623	} else
 624		VM_BUG_ON(pmd_trans_splitting(*pmd));
 625	spin_unlock(&init_mm.page_table_lock);
 626	if (new)
 627		pte_free_kernel(&init_mm, new);
 628	return 0;
 629}
 630
 631static inline void init_rss_vec(int *rss)
 632{
 633	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 634}
 635
 636static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 637{
 638	int i;
 639
 640	if (current->mm == mm)
 641		sync_mm_rss(mm);
 642	for (i = 0; i < NR_MM_COUNTERS; i++)
 643		if (rss[i])
 644			add_mm_counter(mm, i, rss[i]);
 645}
 646
 647/*
 648 * This function is called to print an error when a bad pte
 649 * is found. For example, we might have a PFN-mapped pte in
 650 * a region that doesn't allow it.
 651 *
 652 * The calling function must still handle the error.
 653 */
 654static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 655			  pte_t pte, struct page *page)
 656{
 657	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 658	pud_t *pud = pud_offset(pgd, addr);
 659	pmd_t *pmd = pmd_offset(pud, addr);
 660	struct address_space *mapping;
 661	pgoff_t index;
 662	static unsigned long resume;
 663	static unsigned long nr_shown;
 664	static unsigned long nr_unshown;
 665
 666	/*
 667	 * Allow a burst of 60 reports, then keep quiet for that minute;
 668	 * or allow a steady drip of one report per second.
 669	 */
 670	if (nr_shown == 60) {
 671		if (time_before(jiffies, resume)) {
 672			nr_unshown++;
 673			return;
 674		}
 675		if (nr_unshown) {
 676			printk(KERN_ALERT
 677				"BUG: Bad page map: %lu messages suppressed\n",
 678				nr_unshown);
 679			nr_unshown = 0;
 680		}
 681		nr_shown = 0;
 682	}
 683	if (nr_shown++ == 0)
 684		resume = jiffies + 60 * HZ;
 685
 686	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 687	index = linear_page_index(vma, addr);
 688
 689	printk(KERN_ALERT
 690		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 691		current->comm,
 692		(long long)pte_val(pte), (long long)pmd_val(*pmd));
 693	if (page)
 694		dump_page(page);
 695	printk(KERN_ALERT
 696		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 697		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 698	/*
 699	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 700	 */
 701	if (vma->vm_ops)
 702		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
 703				(unsigned long)vma->vm_ops->fault);
 704	if (vma->vm_file && vma->vm_file->f_op)
 705		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
 706				(unsigned long)vma->vm_file->f_op->mmap);
 707	dump_stack();
 708	add_taint(TAINT_BAD_PAGE);
 709}
 710
 711static inline int is_cow_mapping(vm_flags_t flags)
 712{
 713	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 714}
 715
 716#ifndef is_zero_pfn
 717static inline int is_zero_pfn(unsigned long pfn)
 718{
 719	return pfn == zero_pfn;
 720}
 721#endif
 722
 723#ifndef my_zero_pfn
 724static inline unsigned long my_zero_pfn(unsigned long addr)
 725{
 726	return zero_pfn;
 727}
 728#endif
 729
 730/*
 731 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 732 *
 733 * "Special" mappings do not wish to be associated with a "struct page" (either
 734 * it doesn't exist, or it exists but they don't want to touch it). In this
 735 * case, NULL is returned here. "Normal" mappings do have a struct page.
 736 *
 737 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 738 * pte bit, in which case this function is trivial. Secondly, an architecture
 739 * may not have a spare pte bit, which requires a more complicated scheme,
 740 * described below.
 741 *
 742 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 743 * special mapping (even if there are underlying and valid "struct pages").
 744 * COWed pages of a VM_PFNMAP are always normal.
 745 *
 746 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 747 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 748 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 749 * mapping will always honor the rule
 750 *
 751 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 752 *
 753 * And for normal mappings this is false.
 754 *
 755 * This restricts such mappings to be a linear translation from virtual address
 756 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 757 * as the vma is not a COW mapping; in that case, we know that all ptes are
 758 * special (because none can have been COWed).
 759 *
 760 *
 761 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 762 *
 763 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 764 * page" backing, however the difference is that _all_ pages with a struct
 765 * page (that is, those where pfn_valid is true) are refcounted and considered
 766 * normal pages by the VM. The disadvantage is that pages are refcounted
 767 * (which can be slower and simply not an option for some PFNMAP users). The
 768 * advantage is that we don't have to follow the strict linearity rule of
 769 * PFNMAP mappings in order to support COWable mappings.
 770 *
 771 */
 772#ifdef __HAVE_ARCH_PTE_SPECIAL
 773# define HAVE_PTE_SPECIAL 1
 774#else
 775# define HAVE_PTE_SPECIAL 0
 776#endif
 777struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 778				pte_t pte)
 779{
 780	unsigned long pfn = pte_pfn(pte);
 781
 782	if (HAVE_PTE_SPECIAL) {
 783		if (likely(!pte_special(pte)))
 784			goto check_pfn;
 
 
 785		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 786			return NULL;
 787		if (!is_zero_pfn(pfn))
 788			print_bad_pte(vma, addr, pte, NULL);
 789		return NULL;
 790	}
 791
 792	/* !HAVE_PTE_SPECIAL case follows: */
 793
 794	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 795		if (vma->vm_flags & VM_MIXEDMAP) {
 796			if (!pfn_valid(pfn))
 797				return NULL;
 798			goto out;
 799		} else {
 800			unsigned long off;
 801			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 802			if (pfn == vma->vm_pgoff + off)
 803				return NULL;
 804			if (!is_cow_mapping(vma->vm_flags))
 805				return NULL;
 806		}
 807	}
 808
 809	if (is_zero_pfn(pfn))
 810		return NULL;
 811check_pfn:
 812	if (unlikely(pfn > highest_memmap_pfn)) {
 813		print_bad_pte(vma, addr, pte, NULL);
 814		return NULL;
 815	}
 816
 817	/*
 818	 * NOTE! We still have PageReserved() pages in the page tables.
 819	 * eg. VDSO mappings can cause them to exist.
 820	 */
 821out:
 822	return pfn_to_page(pfn);
 823}
 824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825/*
 826 * copy one vm_area from one task to the other. Assumes the page tables
 827 * already present in the new task to be cleared in the whole range
 828 * covered by this vma.
 829 */
 830
 831static inline unsigned long
 832copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 833		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 834		unsigned long addr, int *rss)
 835{
 836	unsigned long vm_flags = vma->vm_flags;
 837	pte_t pte = *src_pte;
 838	struct page *page;
 839
 840	/* pte contains position in swap or file, so copy. */
 841	if (unlikely(!pte_present(pte))) {
 842		if (!pte_file(pte)) {
 843			swp_entry_t entry = pte_to_swp_entry(pte);
 844
 
 845			if (swap_duplicate(entry) < 0)
 846				return entry.val;
 847
 848			/* make sure dst_mm is on swapoff's mmlist. */
 849			if (unlikely(list_empty(&dst_mm->mmlist))) {
 850				spin_lock(&mmlist_lock);
 851				if (list_empty(&dst_mm->mmlist))
 852					list_add(&dst_mm->mmlist,
 853						 &src_mm->mmlist);
 854				spin_unlock(&mmlist_lock);
 855			}
 856			if (likely(!non_swap_entry(entry)))
 857				rss[MM_SWAPENTS]++;
 858			else if (is_migration_entry(entry)) {
 859				page = migration_entry_to_page(entry);
 860
 861				if (PageAnon(page))
 862					rss[MM_ANONPAGES]++;
 863				else
 864					rss[MM_FILEPAGES]++;
 865
 866				if (is_write_migration_entry(entry) &&
 867				    is_cow_mapping(vm_flags)) {
 868					/*
 869					 * COW mappings require pages in both
 870					 * parent and child to be set to read.
 871					 */
 872					make_migration_entry_read(&entry);
 873					pte = swp_entry_to_pte(entry);
 874					set_pte_at(src_mm, addr, src_pte, pte);
 875				}
 
 
 
 876			}
 877		}
 878		goto out_set_pte;
 879	}
 880
 881	/*
 882	 * If it's a COW mapping, write protect it both
 883	 * in the parent and the child
 884	 */
 885	if (is_cow_mapping(vm_flags)) {
 886		ptep_set_wrprotect(src_mm, addr, src_pte);
 887		pte = pte_wrprotect(pte);
 888	}
 889
 890	/*
 891	 * If it's a shared mapping, mark it clean in
 892	 * the child
 893	 */
 894	if (vm_flags & VM_SHARED)
 895		pte = pte_mkclean(pte);
 896	pte = pte_mkold(pte);
 897
 898	page = vm_normal_page(vma, addr, pte);
 899	if (page) {
 900		get_page(page);
 901		page_dup_rmap(page);
 902		if (PageAnon(page))
 903			rss[MM_ANONPAGES]++;
 904		else
 905			rss[MM_FILEPAGES]++;
 906	}
 907
 908out_set_pte:
 909	set_pte_at(dst_mm, addr, dst_pte, pte);
 910	return 0;
 911}
 912
 913int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 914		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 915		   unsigned long addr, unsigned long end)
 916{
 917	pte_t *orig_src_pte, *orig_dst_pte;
 918	pte_t *src_pte, *dst_pte;
 919	spinlock_t *src_ptl, *dst_ptl;
 920	int progress = 0;
 921	int rss[NR_MM_COUNTERS];
 922	swp_entry_t entry = (swp_entry_t){0};
 923
 924again:
 925	init_rss_vec(rss);
 926
 927	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 928	if (!dst_pte)
 929		return -ENOMEM;
 930	src_pte = pte_offset_map(src_pmd, addr);
 931	src_ptl = pte_lockptr(src_mm, src_pmd);
 932	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 933	orig_src_pte = src_pte;
 934	orig_dst_pte = dst_pte;
 935	arch_enter_lazy_mmu_mode();
 936
 937	do {
 938		/*
 939		 * We are holding two locks at this point - either of them
 940		 * could generate latencies in another task on another CPU.
 941		 */
 942		if (progress >= 32) {
 943			progress = 0;
 944			if (need_resched() ||
 945			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 946				break;
 947		}
 948		if (pte_none(*src_pte)) {
 949			progress++;
 950			continue;
 951		}
 952		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 953							vma, addr, rss);
 954		if (entry.val)
 955			break;
 956		progress += 8;
 957	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 958
 959	arch_leave_lazy_mmu_mode();
 960	spin_unlock(src_ptl);
 961	pte_unmap(orig_src_pte);
 962	add_mm_rss_vec(dst_mm, rss);
 963	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 964	cond_resched();
 965
 966	if (entry.val) {
 967		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 968			return -ENOMEM;
 969		progress = 0;
 970	}
 971	if (addr != end)
 972		goto again;
 973	return 0;
 974}
 975
 976static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 977		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 978		unsigned long addr, unsigned long end)
 979{
 980	pmd_t *src_pmd, *dst_pmd;
 981	unsigned long next;
 982
 983	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 984	if (!dst_pmd)
 985		return -ENOMEM;
 986	src_pmd = pmd_offset(src_pud, addr);
 987	do {
 988		next = pmd_addr_end(addr, end);
 989		if (pmd_trans_huge(*src_pmd)) {
 990			int err;
 991			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 992			err = copy_huge_pmd(dst_mm, src_mm,
 993					    dst_pmd, src_pmd, addr, vma);
 994			if (err == -ENOMEM)
 995				return -ENOMEM;
 996			if (!err)
 997				continue;
 998			/* fall through */
 999		}
1000		if (pmd_none_or_clear_bad(src_pmd))
1001			continue;
1002		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1003						vma, addr, next))
1004			return -ENOMEM;
1005	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1006	return 0;
1007}
1008
1009static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1011		unsigned long addr, unsigned long end)
1012{
1013	pud_t *src_pud, *dst_pud;
1014	unsigned long next;
1015
1016	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1017	if (!dst_pud)
1018		return -ENOMEM;
1019	src_pud = pud_offset(src_pgd, addr);
1020	do {
1021		next = pud_addr_end(addr, end);
1022		if (pud_none_or_clear_bad(src_pud))
1023			continue;
1024		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1025						vma, addr, next))
1026			return -ENOMEM;
1027	} while (dst_pud++, src_pud++, addr = next, addr != end);
1028	return 0;
1029}
1030
1031int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032		struct vm_area_struct *vma)
1033{
1034	pgd_t *src_pgd, *dst_pgd;
1035	unsigned long next;
1036	unsigned long addr = vma->vm_start;
1037	unsigned long end = vma->vm_end;
 
 
 
1038	int ret;
1039
1040	/*
1041	 * Don't copy ptes where a page fault will fill them correctly.
1042	 * Fork becomes much lighter when there are big shared or private
1043	 * readonly mappings. The tradeoff is that copy_page_range is more
1044	 * efficient than faulting.
1045	 */
1046	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1047		if (!vma->anon_vma)
1048			return 0;
1049	}
1050
1051	if (is_vm_hugetlb_page(vma))
1052		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1053
1054	if (unlikely(is_pfn_mapping(vma))) {
1055		/*
1056		 * We do not free on error cases below as remove_vma
1057		 * gets called on error from higher level routine
1058		 */
1059		ret = track_pfn_vma_copy(vma);
1060		if (ret)
1061			return ret;
1062	}
1063
1064	/*
1065	 * We need to invalidate the secondary MMU mappings only when
1066	 * there could be a permission downgrade on the ptes of the
1067	 * parent mm. And a permission downgrade will only happen if
1068	 * is_cow_mapping() returns true.
1069	 */
1070	if (is_cow_mapping(vma->vm_flags))
1071		mmu_notifier_invalidate_range_start(src_mm, addr, end);
 
 
 
 
1072
1073	ret = 0;
1074	dst_pgd = pgd_offset(dst_mm, addr);
1075	src_pgd = pgd_offset(src_mm, addr);
1076	do {
1077		next = pgd_addr_end(addr, end);
1078		if (pgd_none_or_clear_bad(src_pgd))
1079			continue;
1080		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081					    vma, addr, next))) {
1082			ret = -ENOMEM;
1083			break;
1084		}
1085	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087	if (is_cow_mapping(vma->vm_flags))
1088		mmu_notifier_invalidate_range_end(src_mm,
1089						  vma->vm_start, end);
1090	return ret;
1091}
1092
1093static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094				struct vm_area_struct *vma, pmd_t *pmd,
1095				unsigned long addr, unsigned long end,
1096				struct zap_details *details)
1097{
1098	struct mm_struct *mm = tlb->mm;
1099	int force_flush = 0;
1100	int rss[NR_MM_COUNTERS];
1101	spinlock_t *ptl;
1102	pte_t *start_pte;
1103	pte_t *pte;
 
1104
1105again:
1106	init_rss_vec(rss);
1107	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108	pte = start_pte;
1109	arch_enter_lazy_mmu_mode();
1110	do {
1111		pte_t ptent = *pte;
1112		if (pte_none(ptent)) {
1113			continue;
1114		}
1115
1116		if (pte_present(ptent)) {
1117			struct page *page;
1118
1119			page = vm_normal_page(vma, addr, ptent);
1120			if (unlikely(details) && page) {
1121				/*
1122				 * unmap_shared_mapping_pages() wants to
1123				 * invalidate cache without truncating:
1124				 * unmap shared but keep private pages.
1125				 */
1126				if (details->check_mapping &&
1127				    details->check_mapping != page->mapping)
1128					continue;
1129				/*
1130				 * Each page->index must be checked when
1131				 * invalidating or truncating nonlinear.
1132				 */
1133				if (details->nonlinear_vma &&
1134				    (page->index < details->first_index ||
1135				     page->index > details->last_index))
1136					continue;
1137			}
1138			ptent = ptep_get_and_clear_full(mm, addr, pte,
1139							tlb->fullmm);
1140			tlb_remove_tlb_entry(tlb, pte, addr);
1141			if (unlikely(!page))
1142				continue;
1143			if (unlikely(details) && details->nonlinear_vma
1144			    && linear_page_index(details->nonlinear_vma,
1145						addr) != page->index)
1146				set_pte_at(mm, addr, pte,
1147					   pgoff_to_pte(page->index));
1148			if (PageAnon(page))
1149				rss[MM_ANONPAGES]--;
1150			else {
1151				if (pte_dirty(ptent))
 
1152					set_page_dirty(page);
 
1153				if (pte_young(ptent) &&
1154				    likely(!VM_SequentialReadHint(vma)))
1155					mark_page_accessed(page);
1156				rss[MM_FILEPAGES]--;
1157			}
1158			page_remove_rmap(page);
 
1159			if (unlikely(page_mapcount(page) < 0))
1160				print_bad_pte(vma, addr, ptent, page);
1161			force_flush = !__tlb_remove_page(tlb, page);
1162			if (force_flush)
 
1163				break;
 
1164			continue;
1165		}
1166		/*
1167		 * If details->check_mapping, we leave swap entries;
1168		 * if details->nonlinear_vma, we leave file entries.
1169		 */
1170		if (unlikely(details))
1171			continue;
1172		if (pte_file(ptent)) {
1173			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174				print_bad_pte(vma, addr, ptent, NULL);
1175		} else {
1176			swp_entry_t entry = pte_to_swp_entry(ptent);
1177
1178			if (!non_swap_entry(entry))
1179				rss[MM_SWAPENTS]--;
1180			else if (is_migration_entry(entry)) {
1181				struct page *page;
1182
1183				page = migration_entry_to_page(entry);
1184
1185				if (PageAnon(page))
1186					rss[MM_ANONPAGES]--;
1187				else
1188					rss[MM_FILEPAGES]--;
1189			}
1190			if (unlikely(!free_swap_and_cache(entry)))
1191				print_bad_pte(vma, addr, ptent, NULL);
1192		}
 
 
1193		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194	} while (pte++, addr += PAGE_SIZE, addr != end);
1195
1196	add_mm_rss_vec(mm, rss);
1197	arch_leave_lazy_mmu_mode();
 
 
 
 
1198	pte_unmap_unlock(start_pte, ptl);
1199
1200	/*
1201	 * mmu_gather ran out of room to batch pages, we break out of
1202	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203	 * and page-free while holding it.
 
1204	 */
1205	if (force_flush) {
1206		force_flush = 0;
1207		tlb_flush_mmu(tlb);
 
1208		if (addr != end)
1209			goto again;
1210	}
1211
1212	return addr;
1213}
1214
1215static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1216				struct vm_area_struct *vma, pud_t *pud,
1217				unsigned long addr, unsigned long end,
1218				struct zap_details *details)
1219{
1220	pmd_t *pmd;
1221	unsigned long next;
1222
1223	pmd = pmd_offset(pud, addr);
1224	do {
1225		next = pmd_addr_end(addr, end);
1226		if (pmd_trans_huge(*pmd)) {
1227			if (next - addr != HPAGE_PMD_SIZE) {
1228#ifdef CONFIG_DEBUG_VM
1229				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1230					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1231						__func__, addr, end,
1232						vma->vm_start,
1233						vma->vm_end);
1234					BUG();
1235				}
1236#endif
1237				split_huge_page_pmd(vma->vm_mm, pmd);
1238			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1239				goto next;
1240			/* fall through */
1241		}
1242		/*
1243		 * Here there can be other concurrent MADV_DONTNEED or
1244		 * trans huge page faults running, and if the pmd is
1245		 * none or trans huge it can change under us. This is
1246		 * because MADV_DONTNEED holds the mmap_sem in read
1247		 * mode.
1248		 */
1249		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1250			goto next;
1251		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1252next:
1253		cond_resched();
1254	} while (pmd++, addr = next, addr != end);
1255
1256	return addr;
1257}
1258
1259static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1260				struct vm_area_struct *vma, pgd_t *pgd,
1261				unsigned long addr, unsigned long end,
1262				struct zap_details *details)
1263{
1264	pud_t *pud;
1265	unsigned long next;
1266
1267	pud = pud_offset(pgd, addr);
1268	do {
1269		next = pud_addr_end(addr, end);
1270		if (pud_none_or_clear_bad(pud))
1271			continue;
1272		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1273	} while (pud++, addr = next, addr != end);
1274
1275	return addr;
1276}
1277
1278static void unmap_page_range(struct mmu_gather *tlb,
1279			     struct vm_area_struct *vma,
1280			     unsigned long addr, unsigned long end,
1281			     struct zap_details *details)
1282{
1283	pgd_t *pgd;
1284	unsigned long next;
1285
1286	if (details && !details->check_mapping && !details->nonlinear_vma)
1287		details = NULL;
1288
1289	BUG_ON(addr >= end);
1290	mem_cgroup_uncharge_start();
1291	tlb_start_vma(tlb, vma);
1292	pgd = pgd_offset(vma->vm_mm, addr);
1293	do {
1294		next = pgd_addr_end(addr, end);
1295		if (pgd_none_or_clear_bad(pgd))
1296			continue;
1297		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1298	} while (pgd++, addr = next, addr != end);
1299	tlb_end_vma(tlb, vma);
1300	mem_cgroup_uncharge_end();
1301}
1302
1303
1304static void unmap_single_vma(struct mmu_gather *tlb,
1305		struct vm_area_struct *vma, unsigned long start_addr,
1306		unsigned long end_addr,
1307		struct zap_details *details)
1308{
1309	unsigned long start = max(vma->vm_start, start_addr);
1310	unsigned long end;
1311
1312	if (start >= vma->vm_end)
1313		return;
1314	end = min(vma->vm_end, end_addr);
1315	if (end <= vma->vm_start)
1316		return;
1317
1318	if (vma->vm_file)
1319		uprobe_munmap(vma, start, end);
1320
1321	if (unlikely(is_pfn_mapping(vma)))
1322		untrack_pfn_vma(vma, 0, 0);
1323
1324	if (start != end) {
1325		if (unlikely(is_vm_hugetlb_page(vma))) {
1326			/*
1327			 * It is undesirable to test vma->vm_file as it
1328			 * should be non-null for valid hugetlb area.
1329			 * However, vm_file will be NULL in the error
1330			 * cleanup path of do_mmap_pgoff. When
1331			 * hugetlbfs ->mmap method fails,
1332			 * do_mmap_pgoff() nullifies vma->vm_file
1333			 * before calling this function to clean up.
1334			 * Since no pte has actually been setup, it is
1335			 * safe to do nothing in this case.
1336			 */
1337			if (vma->vm_file)
1338				unmap_hugepage_range(vma, start, end, NULL);
 
 
 
1339		} else
1340			unmap_page_range(tlb, vma, start, end, details);
1341	}
1342}
1343
1344/**
1345 * unmap_vmas - unmap a range of memory covered by a list of vma's
1346 * @tlb: address of the caller's struct mmu_gather
1347 * @vma: the starting vma
1348 * @start_addr: virtual address at which to start unmapping
1349 * @end_addr: virtual address at which to end unmapping
1350 *
1351 * Unmap all pages in the vma list.
1352 *
1353 * Only addresses between `start' and `end' will be unmapped.
1354 *
1355 * The VMA list must be sorted in ascending virtual address order.
1356 *
1357 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1358 * range after unmap_vmas() returns.  So the only responsibility here is to
1359 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1360 * drops the lock and schedules.
1361 */
1362void unmap_vmas(struct mmu_gather *tlb,
1363		struct vm_area_struct *vma, unsigned long start_addr,
1364		unsigned long end_addr)
1365{
1366	struct mm_struct *mm = vma->vm_mm;
1367
1368	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1369	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1370		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1371	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1372}
1373
1374/**
1375 * zap_page_range - remove user pages in a given range
1376 * @vma: vm_area_struct holding the applicable pages
1377 * @start: starting address of pages to zap
1378 * @size: number of bytes to zap
1379 * @details: details of nonlinear truncation or shared cache invalidation
1380 *
1381 * Caller must protect the VMA list
1382 */
1383void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1384		unsigned long size, struct zap_details *details)
1385{
1386	struct mm_struct *mm = vma->vm_mm;
1387	struct mmu_gather tlb;
1388	unsigned long end = start + size;
1389
1390	lru_add_drain();
1391	tlb_gather_mmu(&tlb, mm, 0);
1392	update_hiwater_rss(mm);
1393	mmu_notifier_invalidate_range_start(mm, start, end);
1394	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1395		unmap_single_vma(&tlb, vma, start, end, details);
1396	mmu_notifier_invalidate_range_end(mm, start, end);
1397	tlb_finish_mmu(&tlb, start, end);
1398}
1399
1400/**
1401 * zap_page_range_single - remove user pages in a given range
1402 * @vma: vm_area_struct holding the applicable pages
1403 * @address: starting address of pages to zap
1404 * @size: number of bytes to zap
1405 * @details: details of nonlinear truncation or shared cache invalidation
1406 *
1407 * The range must fit into one VMA.
1408 */
1409static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1410		unsigned long size, struct zap_details *details)
1411{
1412	struct mm_struct *mm = vma->vm_mm;
1413	struct mmu_gather tlb;
1414	unsigned long end = address + size;
1415
1416	lru_add_drain();
1417	tlb_gather_mmu(&tlb, mm, 0);
1418	update_hiwater_rss(mm);
1419	mmu_notifier_invalidate_range_start(mm, address, end);
1420	unmap_single_vma(&tlb, vma, address, end, details);
1421	mmu_notifier_invalidate_range_end(mm, address, end);
1422	tlb_finish_mmu(&tlb, address, end);
1423}
1424
1425/**
1426 * zap_vma_ptes - remove ptes mapping the vma
1427 * @vma: vm_area_struct holding ptes to be zapped
1428 * @address: starting address of pages to zap
1429 * @size: number of bytes to zap
1430 *
1431 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432 *
1433 * The entire address range must be fully contained within the vma.
1434 *
1435 * Returns 0 if successful.
1436 */
1437int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1438		unsigned long size)
1439{
1440	if (address < vma->vm_start || address + size > vma->vm_end ||
1441	    		!(vma->vm_flags & VM_PFNMAP))
1442		return -1;
1443	zap_page_range_single(vma, address, size, NULL);
1444	return 0;
1445}
1446EXPORT_SYMBOL_GPL(zap_vma_ptes);
1447
1448/**
1449 * follow_page - look up a page descriptor from a user-virtual address
1450 * @vma: vm_area_struct mapping @address
1451 * @address: virtual address to look up
1452 * @flags: flags modifying lookup behaviour
1453 *
1454 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1455 *
1456 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1457 * an error pointer if there is a mapping to something not represented
1458 * by a page descriptor (see also vm_normal_page()).
1459 */
1460struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1461			unsigned int flags)
1462{
1463	pgd_t *pgd;
1464	pud_t *pud;
1465	pmd_t *pmd;
1466	pte_t *ptep, pte;
1467	spinlock_t *ptl;
1468	struct page *page;
1469	struct mm_struct *mm = vma->vm_mm;
1470
1471	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472	if (!IS_ERR(page)) {
1473		BUG_ON(flags & FOLL_GET);
1474		goto out;
1475	}
1476
1477	page = NULL;
1478	pgd = pgd_offset(mm, address);
1479	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480		goto no_page_table;
1481
1482	pud = pud_offset(pgd, address);
1483	if (pud_none(*pud))
1484		goto no_page_table;
1485	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486		BUG_ON(flags & FOLL_GET);
1487		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1488		goto out;
1489	}
1490	if (unlikely(pud_bad(*pud)))
1491		goto no_page_table;
1492
1493	pmd = pmd_offset(pud, address);
1494	if (pmd_none(*pmd))
1495		goto no_page_table;
1496	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1497		BUG_ON(flags & FOLL_GET);
1498		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1499		goto out;
1500	}
1501	if (pmd_trans_huge(*pmd)) {
1502		if (flags & FOLL_SPLIT) {
1503			split_huge_page_pmd(mm, pmd);
1504			goto split_fallthrough;
1505		}
1506		spin_lock(&mm->page_table_lock);
1507		if (likely(pmd_trans_huge(*pmd))) {
1508			if (unlikely(pmd_trans_splitting(*pmd))) {
1509				spin_unlock(&mm->page_table_lock);
1510				wait_split_huge_page(vma->anon_vma, pmd);
1511			} else {
1512				page = follow_trans_huge_pmd(mm, address,
1513							     pmd, flags);
1514				spin_unlock(&mm->page_table_lock);
1515				goto out;
1516			}
1517		} else
1518			spin_unlock(&mm->page_table_lock);
1519		/* fall through */
1520	}
1521split_fallthrough:
1522	if (unlikely(pmd_bad(*pmd)))
1523		goto no_page_table;
1524
1525	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1526
1527	pte = *ptep;
1528	if (!pte_present(pte))
1529		goto no_page;
1530	if ((flags & FOLL_WRITE) && !pte_write(pte))
1531		goto unlock;
1532
1533	page = vm_normal_page(vma, address, pte);
1534	if (unlikely(!page)) {
1535		if ((flags & FOLL_DUMP) ||
1536		    !is_zero_pfn(pte_pfn(pte)))
1537			goto bad_page;
1538		page = pte_page(pte);
1539	}
1540
1541	if (flags & FOLL_GET)
1542		get_page_foll(page);
1543	if (flags & FOLL_TOUCH) {
1544		if ((flags & FOLL_WRITE) &&
1545		    !pte_dirty(pte) && !PageDirty(page))
1546			set_page_dirty(page);
1547		/*
1548		 * pte_mkyoung() would be more correct here, but atomic care
1549		 * is needed to avoid losing the dirty bit: it is easier to use
1550		 * mark_page_accessed().
1551		 */
1552		mark_page_accessed(page);
1553	}
1554	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1555		/*
1556		 * The preliminary mapping check is mainly to avoid the
1557		 * pointless overhead of lock_page on the ZERO_PAGE
1558		 * which might bounce very badly if there is contention.
1559		 *
1560		 * If the page is already locked, we don't need to
1561		 * handle it now - vmscan will handle it later if and
1562		 * when it attempts to reclaim the page.
1563		 */
1564		if (page->mapping && trylock_page(page)) {
1565			lru_add_drain();  /* push cached pages to LRU */
1566			/*
1567			 * Because we lock page here and migration is
1568			 * blocked by the pte's page reference, we need
1569			 * only check for file-cache page truncation.
1570			 */
1571			if (page->mapping)
1572				mlock_vma_page(page);
1573			unlock_page(page);
1574		}
1575	}
1576unlock:
1577	pte_unmap_unlock(ptep, ptl);
1578out:
1579	return page;
1580
1581bad_page:
1582	pte_unmap_unlock(ptep, ptl);
1583	return ERR_PTR(-EFAULT);
1584
1585no_page:
1586	pte_unmap_unlock(ptep, ptl);
1587	if (!pte_none(pte))
1588		return page;
1589
1590no_page_table:
1591	/*
1592	 * When core dumping an enormous anonymous area that nobody
1593	 * has touched so far, we don't want to allocate unnecessary pages or
1594	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1595	 * then get_dump_page() will return NULL to leave a hole in the dump.
1596	 * But we can only make this optimization where a hole would surely
1597	 * be zero-filled if handle_mm_fault() actually did handle it.
1598	 */
1599	if ((flags & FOLL_DUMP) &&
1600	    (!vma->vm_ops || !vma->vm_ops->fault))
1601		return ERR_PTR(-EFAULT);
1602	return page;
1603}
1604
1605static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1606{
1607	return stack_guard_page_start(vma, addr) ||
1608	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1609}
1610
1611/**
1612 * __get_user_pages() - pin user pages in memory
1613 * @tsk:	task_struct of target task
1614 * @mm:		mm_struct of target mm
1615 * @start:	starting user address
1616 * @nr_pages:	number of pages from start to pin
1617 * @gup_flags:	flags modifying pin behaviour
1618 * @pages:	array that receives pointers to the pages pinned.
1619 *		Should be at least nr_pages long. Or NULL, if caller
1620 *		only intends to ensure the pages are faulted in.
1621 * @vmas:	array of pointers to vmas corresponding to each page.
1622 *		Or NULL if the caller does not require them.
1623 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1624 *
1625 * Returns number of pages pinned. This may be fewer than the number
1626 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1627 * were pinned, returns -errno. Each page returned must be released
1628 * with a put_page() call when it is finished with. vmas will only
1629 * remain valid while mmap_sem is held.
1630 *
1631 * Must be called with mmap_sem held for read or write.
1632 *
1633 * __get_user_pages walks a process's page tables and takes a reference to
1634 * each struct page that each user address corresponds to at a given
1635 * instant. That is, it takes the page that would be accessed if a user
1636 * thread accesses the given user virtual address at that instant.
1637 *
1638 * This does not guarantee that the page exists in the user mappings when
1639 * __get_user_pages returns, and there may even be a completely different
1640 * page there in some cases (eg. if mmapped pagecache has been invalidated
1641 * and subsequently re faulted). However it does guarantee that the page
1642 * won't be freed completely. And mostly callers simply care that the page
1643 * contains data that was valid *at some point in time*. Typically, an IO
1644 * or similar operation cannot guarantee anything stronger anyway because
1645 * locks can't be held over the syscall boundary.
1646 *
1647 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1648 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1649 * appropriate) must be called after the page is finished with, and
1650 * before put_page is called.
1651 *
1652 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1653 * or mmap_sem contention, and if waiting is needed to pin all pages,
1654 * *@nonblocking will be set to 0.
1655 *
1656 * In most cases, get_user_pages or get_user_pages_fast should be used
1657 * instead of __get_user_pages. __get_user_pages should be used only if
1658 * you need some special @gup_flags.
1659 */
1660int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1661		     unsigned long start, int nr_pages, unsigned int gup_flags,
1662		     struct page **pages, struct vm_area_struct **vmas,
1663		     int *nonblocking)
1664{
1665	int i;
1666	unsigned long vm_flags;
1667
1668	if (nr_pages <= 0)
1669		return 0;
1670
1671	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1672
1673	/* 
1674	 * Require read or write permissions.
1675	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1676	 */
1677	vm_flags  = (gup_flags & FOLL_WRITE) ?
1678			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1679	vm_flags &= (gup_flags & FOLL_FORCE) ?
1680			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1681	i = 0;
1682
1683	do {
1684		struct vm_area_struct *vma;
1685
1686		vma = find_extend_vma(mm, start);
1687		if (!vma && in_gate_area(mm, start)) {
1688			unsigned long pg = start & PAGE_MASK;
1689			pgd_t *pgd;
1690			pud_t *pud;
1691			pmd_t *pmd;
1692			pte_t *pte;
1693
1694			/* user gate pages are read-only */
1695			if (gup_flags & FOLL_WRITE)
1696				return i ? : -EFAULT;
1697			if (pg > TASK_SIZE)
1698				pgd = pgd_offset_k(pg);
1699			else
1700				pgd = pgd_offset_gate(mm, pg);
1701			BUG_ON(pgd_none(*pgd));
1702			pud = pud_offset(pgd, pg);
1703			BUG_ON(pud_none(*pud));
1704			pmd = pmd_offset(pud, pg);
1705			if (pmd_none(*pmd))
1706				return i ? : -EFAULT;
1707			VM_BUG_ON(pmd_trans_huge(*pmd));
1708			pte = pte_offset_map(pmd, pg);
1709			if (pte_none(*pte)) {
1710				pte_unmap(pte);
1711				return i ? : -EFAULT;
1712			}
1713			vma = get_gate_vma(mm);
1714			if (pages) {
1715				struct page *page;
1716
1717				page = vm_normal_page(vma, start, *pte);
1718				if (!page) {
1719					if (!(gup_flags & FOLL_DUMP) &&
1720					     is_zero_pfn(pte_pfn(*pte)))
1721						page = pte_page(*pte);
1722					else {
1723						pte_unmap(pte);
1724						return i ? : -EFAULT;
1725					}
1726				}
1727				pages[i] = page;
1728				get_page(page);
1729			}
1730			pte_unmap(pte);
1731			goto next_page;
1732		}
1733
1734		if (!vma ||
1735		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1736		    !(vm_flags & vma->vm_flags))
1737			return i ? : -EFAULT;
1738
1739		if (is_vm_hugetlb_page(vma)) {
1740			i = follow_hugetlb_page(mm, vma, pages, vmas,
1741					&start, &nr_pages, i, gup_flags);
1742			continue;
1743		}
1744
1745		do {
1746			struct page *page;
1747			unsigned int foll_flags = gup_flags;
1748
1749			/*
1750			 * If we have a pending SIGKILL, don't keep faulting
1751			 * pages and potentially allocating memory.
1752			 */
1753			if (unlikely(fatal_signal_pending(current)))
1754				return i ? i : -ERESTARTSYS;
1755
1756			cond_resched();
1757			while (!(page = follow_page(vma, start, foll_flags))) {
1758				int ret;
1759				unsigned int fault_flags = 0;
1760
1761				/* For mlock, just skip the stack guard page. */
1762				if (foll_flags & FOLL_MLOCK) {
1763					if (stack_guard_page(vma, start))
1764						goto next_page;
1765				}
1766				if (foll_flags & FOLL_WRITE)
1767					fault_flags |= FAULT_FLAG_WRITE;
1768				if (nonblocking)
1769					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1770				if (foll_flags & FOLL_NOWAIT)
1771					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1772
1773				ret = handle_mm_fault(mm, vma, start,
1774							fault_flags);
1775
1776				if (ret & VM_FAULT_ERROR) {
1777					if (ret & VM_FAULT_OOM)
1778						return i ? i : -ENOMEM;
1779					if (ret & (VM_FAULT_HWPOISON |
1780						   VM_FAULT_HWPOISON_LARGE)) {
1781						if (i)
1782							return i;
1783						else if (gup_flags & FOLL_HWPOISON)
1784							return -EHWPOISON;
1785						else
1786							return -EFAULT;
1787					}
1788					if (ret & VM_FAULT_SIGBUS)
1789						return i ? i : -EFAULT;
1790					BUG();
1791				}
1792
1793				if (tsk) {
1794					if (ret & VM_FAULT_MAJOR)
1795						tsk->maj_flt++;
1796					else
1797						tsk->min_flt++;
1798				}
1799
1800				if (ret & VM_FAULT_RETRY) {
1801					if (nonblocking)
1802						*nonblocking = 0;
1803					return i;
1804				}
1805
1806				/*
1807				 * The VM_FAULT_WRITE bit tells us that
1808				 * do_wp_page has broken COW when necessary,
1809				 * even if maybe_mkwrite decided not to set
1810				 * pte_write. We can thus safely do subsequent
1811				 * page lookups as if they were reads. But only
1812				 * do so when looping for pte_write is futile:
1813				 * in some cases userspace may also be wanting
1814				 * to write to the gotten user page, which a
1815				 * read fault here might prevent (a readonly
1816				 * page might get reCOWed by userspace write).
1817				 */
1818				if ((ret & VM_FAULT_WRITE) &&
1819				    !(vma->vm_flags & VM_WRITE))
1820					foll_flags &= ~FOLL_WRITE;
1821
1822				cond_resched();
1823			}
1824			if (IS_ERR(page))
1825				return i ? i : PTR_ERR(page);
1826			if (pages) {
1827				pages[i] = page;
1828
1829				flush_anon_page(vma, page, start);
1830				flush_dcache_page(page);
1831			}
1832next_page:
1833			if (vmas)
1834				vmas[i] = vma;
1835			i++;
1836			start += PAGE_SIZE;
1837			nr_pages--;
1838		} while (nr_pages && start < vma->vm_end);
1839	} while (nr_pages);
1840	return i;
1841}
1842EXPORT_SYMBOL(__get_user_pages);
1843
1844/*
1845 * fixup_user_fault() - manually resolve a user page fault
1846 * @tsk:	the task_struct to use for page fault accounting, or
1847 *		NULL if faults are not to be recorded.
1848 * @mm:		mm_struct of target mm
1849 * @address:	user address
1850 * @fault_flags:flags to pass down to handle_mm_fault()
1851 *
1852 * This is meant to be called in the specific scenario where for locking reasons
1853 * we try to access user memory in atomic context (within a pagefault_disable()
1854 * section), this returns -EFAULT, and we want to resolve the user fault before
1855 * trying again.
1856 *
1857 * Typically this is meant to be used by the futex code.
1858 *
1859 * The main difference with get_user_pages() is that this function will
1860 * unconditionally call handle_mm_fault() which will in turn perform all the
1861 * necessary SW fixup of the dirty and young bits in the PTE, while
1862 * handle_mm_fault() only guarantees to update these in the struct page.
1863 *
1864 * This is important for some architectures where those bits also gate the
1865 * access permission to the page because they are maintained in software.  On
1866 * such architectures, gup() will not be enough to make a subsequent access
1867 * succeed.
1868 *
1869 * This should be called with the mm_sem held for read.
1870 */
1871int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1872		     unsigned long address, unsigned int fault_flags)
1873{
1874	struct vm_area_struct *vma;
1875	int ret;
1876
1877	vma = find_extend_vma(mm, address);
1878	if (!vma || address < vma->vm_start)
1879		return -EFAULT;
1880
1881	ret = handle_mm_fault(mm, vma, address, fault_flags);
1882	if (ret & VM_FAULT_ERROR) {
1883		if (ret & VM_FAULT_OOM)
1884			return -ENOMEM;
1885		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1886			return -EHWPOISON;
1887		if (ret & VM_FAULT_SIGBUS)
1888			return -EFAULT;
1889		BUG();
1890	}
1891	if (tsk) {
1892		if (ret & VM_FAULT_MAJOR)
1893			tsk->maj_flt++;
1894		else
1895			tsk->min_flt++;
1896	}
1897	return 0;
1898}
1899
1900/*
1901 * get_user_pages() - pin user pages in memory
1902 * @tsk:	the task_struct to use for page fault accounting, or
1903 *		NULL if faults are not to be recorded.
1904 * @mm:		mm_struct of target mm
1905 * @start:	starting user address
1906 * @nr_pages:	number of pages from start to pin
1907 * @write:	whether pages will be written to by the caller
1908 * @force:	whether to force write access even if user mapping is
1909 *		readonly. This will result in the page being COWed even
1910 *		in MAP_SHARED mappings. You do not want this.
1911 * @pages:	array that receives pointers to the pages pinned.
1912 *		Should be at least nr_pages long. Or NULL, if caller
1913 *		only intends to ensure the pages are faulted in.
1914 * @vmas:	array of pointers to vmas corresponding to each page.
1915 *		Or NULL if the caller does not require them.
1916 *
1917 * Returns number of pages pinned. This may be fewer than the number
1918 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1919 * were pinned, returns -errno. Each page returned must be released
1920 * with a put_page() call when it is finished with. vmas will only
1921 * remain valid while mmap_sem is held.
1922 *
1923 * Must be called with mmap_sem held for read or write.
1924 *
1925 * get_user_pages walks a process's page tables and takes a reference to
1926 * each struct page that each user address corresponds to at a given
1927 * instant. That is, it takes the page that would be accessed if a user
1928 * thread accesses the given user virtual address at that instant.
1929 *
1930 * This does not guarantee that the page exists in the user mappings when
1931 * get_user_pages returns, and there may even be a completely different
1932 * page there in some cases (eg. if mmapped pagecache has been invalidated
1933 * and subsequently re faulted). However it does guarantee that the page
1934 * won't be freed completely. And mostly callers simply care that the page
1935 * contains data that was valid *at some point in time*. Typically, an IO
1936 * or similar operation cannot guarantee anything stronger anyway because
1937 * locks can't be held over the syscall boundary.
1938 *
1939 * If write=0, the page must not be written to. If the page is written to,
1940 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1941 * after the page is finished with, and before put_page is called.
1942 *
1943 * get_user_pages is typically used for fewer-copy IO operations, to get a
1944 * handle on the memory by some means other than accesses via the user virtual
1945 * addresses. The pages may be submitted for DMA to devices or accessed via
1946 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1947 * use the correct cache flushing APIs.
1948 *
1949 * See also get_user_pages_fast, for performance critical applications.
1950 */
1951int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1952		unsigned long start, int nr_pages, int write, int force,
1953		struct page **pages, struct vm_area_struct **vmas)
1954{
1955	int flags = FOLL_TOUCH;
1956
1957	if (pages)
1958		flags |= FOLL_GET;
1959	if (write)
1960		flags |= FOLL_WRITE;
1961	if (force)
1962		flags |= FOLL_FORCE;
1963
1964	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1965				NULL);
1966}
1967EXPORT_SYMBOL(get_user_pages);
1968
1969/**
1970 * get_dump_page() - pin user page in memory while writing it to core dump
1971 * @addr: user address
1972 *
1973 * Returns struct page pointer of user page pinned for dump,
1974 * to be freed afterwards by page_cache_release() or put_page().
1975 *
1976 * Returns NULL on any kind of failure - a hole must then be inserted into
1977 * the corefile, to preserve alignment with its headers; and also returns
1978 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1979 * allowing a hole to be left in the corefile to save diskspace.
1980 *
1981 * Called without mmap_sem, but after all other threads have been killed.
1982 */
1983#ifdef CONFIG_ELF_CORE
1984struct page *get_dump_page(unsigned long addr)
1985{
1986	struct vm_area_struct *vma;
1987	struct page *page;
1988
1989	if (__get_user_pages(current, current->mm, addr, 1,
1990			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1991			     NULL) < 1)
1992		return NULL;
1993	flush_cache_page(vma, addr, page_to_pfn(page));
1994	return page;
1995}
1996#endif /* CONFIG_ELF_CORE */
1997
1998pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1999			spinlock_t **ptl)
2000{
2001	pgd_t * pgd = pgd_offset(mm, addr);
2002	pud_t * pud = pud_alloc(mm, pgd, addr);
2003	if (pud) {
2004		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2005		if (pmd) {
2006			VM_BUG_ON(pmd_trans_huge(*pmd));
2007			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2008		}
2009	}
2010	return NULL;
2011}
2012
2013/*
2014 * This is the old fallback for page remapping.
2015 *
2016 * For historical reasons, it only allows reserved pages. Only
2017 * old drivers should use this, and they needed to mark their
2018 * pages reserved for the old functions anyway.
2019 */
2020static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2021			struct page *page, pgprot_t prot)
2022{
2023	struct mm_struct *mm = vma->vm_mm;
2024	int retval;
2025	pte_t *pte;
2026	spinlock_t *ptl;
2027
2028	retval = -EINVAL;
2029	if (PageAnon(page))
2030		goto out;
2031	retval = -ENOMEM;
2032	flush_dcache_page(page);
2033	pte = get_locked_pte(mm, addr, &ptl);
2034	if (!pte)
2035		goto out;
2036	retval = -EBUSY;
2037	if (!pte_none(*pte))
2038		goto out_unlock;
2039
2040	/* Ok, finally just insert the thing.. */
2041	get_page(page);
2042	inc_mm_counter_fast(mm, MM_FILEPAGES);
2043	page_add_file_rmap(page);
2044	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2045
2046	retval = 0;
2047	pte_unmap_unlock(pte, ptl);
2048	return retval;
2049out_unlock:
2050	pte_unmap_unlock(pte, ptl);
2051out:
2052	return retval;
2053}
2054
2055/**
2056 * vm_insert_page - insert single page into user vma
2057 * @vma: user vma to map to
2058 * @addr: target user address of this page
2059 * @page: source kernel page
2060 *
2061 * This allows drivers to insert individual pages they've allocated
2062 * into a user vma.
2063 *
2064 * The page has to be a nice clean _individual_ kernel allocation.
2065 * If you allocate a compound page, you need to have marked it as
2066 * such (__GFP_COMP), or manually just split the page up yourself
2067 * (see split_page()).
2068 *
2069 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2070 * took an arbitrary page protection parameter. This doesn't allow
2071 * that. Your vma protection will have to be set up correctly, which
2072 * means that if you want a shared writable mapping, you'd better
2073 * ask for a shared writable mapping!
2074 *
2075 * The page does not need to be reserved.
 
 
 
 
 
2076 */
2077int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2078			struct page *page)
2079{
2080	if (addr < vma->vm_start || addr >= vma->vm_end)
2081		return -EFAULT;
2082	if (!page_count(page))
2083		return -EINVAL;
2084	vma->vm_flags |= VM_INSERTPAGE;
 
 
 
 
2085	return insert_page(vma, addr, page, vma->vm_page_prot);
2086}
2087EXPORT_SYMBOL(vm_insert_page);
2088
2089static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2090			unsigned long pfn, pgprot_t prot)
2091{
2092	struct mm_struct *mm = vma->vm_mm;
2093	int retval;
2094	pte_t *pte, entry;
2095	spinlock_t *ptl;
2096
2097	retval = -ENOMEM;
2098	pte = get_locked_pte(mm, addr, &ptl);
2099	if (!pte)
2100		goto out;
2101	retval = -EBUSY;
2102	if (!pte_none(*pte))
2103		goto out_unlock;
2104
2105	/* Ok, finally just insert the thing.. */
2106	entry = pte_mkspecial(pfn_pte(pfn, prot));
 
 
 
2107	set_pte_at(mm, addr, pte, entry);
2108	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2109
2110	retval = 0;
2111out_unlock:
2112	pte_unmap_unlock(pte, ptl);
2113out:
2114	return retval;
2115}
2116
2117/**
2118 * vm_insert_pfn - insert single pfn into user vma
2119 * @vma: user vma to map to
2120 * @addr: target user address of this page
2121 * @pfn: source kernel pfn
2122 *
2123 * Similar to vm_inert_page, this allows drivers to insert individual pages
2124 * they've allocated into a user vma. Same comments apply.
2125 *
2126 * This function should only be called from a vm_ops->fault handler, and
2127 * in that case the handler should return NULL.
2128 *
2129 * vma cannot be a COW mapping.
2130 *
2131 * As this is called only for pages that do not currently exist, we
2132 * do not need to flush old virtual caches or the TLB.
2133 */
2134int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2135			unsigned long pfn)
2136{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2137	int ret;
2138	pgprot_t pgprot = vma->vm_page_prot;
2139	/*
2140	 * Technically, architectures with pte_special can avoid all these
2141	 * restrictions (same for remap_pfn_range).  However we would like
2142	 * consistency in testing and feature parity among all, so we should
2143	 * try to keep these invariants in place for everybody.
2144	 */
2145	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2146	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2147						(VM_PFNMAP|VM_MIXEDMAP));
2148	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2149	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2150
2151	if (addr < vma->vm_start || addr >= vma->vm_end)
2152		return -EFAULT;
2153	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2154		return -EINVAL;
2155
2156	ret = insert_pfn(vma, addr, pfn, pgprot);
2157
2158	if (ret)
2159		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2160
2161	return ret;
2162}
2163EXPORT_SYMBOL(vm_insert_pfn);
2164
2165int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2166			unsigned long pfn)
2167{
2168	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2169
2170	if (addr < vma->vm_start || addr >= vma->vm_end)
2171		return -EFAULT;
2172
2173	/*
2174	 * If we don't have pte special, then we have to use the pfn_valid()
2175	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2176	 * refcount the page if pfn_valid is true (hence insert_page rather
2177	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2178	 * without pte special, it would there be refcounted as a normal page.
2179	 */
2180	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2181		struct page *page;
2182
2183		page = pfn_to_page(pfn);
 
 
 
 
 
2184		return insert_page(vma, addr, page, vma->vm_page_prot);
2185	}
2186	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2187}
2188EXPORT_SYMBOL(vm_insert_mixed);
2189
2190/*
2191 * maps a range of physical memory into the requested pages. the old
2192 * mappings are removed. any references to nonexistent pages results
2193 * in null mappings (currently treated as "copy-on-access")
2194 */
2195static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2196			unsigned long addr, unsigned long end,
2197			unsigned long pfn, pgprot_t prot)
2198{
2199	pte_t *pte;
2200	spinlock_t *ptl;
2201
2202	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2203	if (!pte)
2204		return -ENOMEM;
2205	arch_enter_lazy_mmu_mode();
2206	do {
2207		BUG_ON(!pte_none(*pte));
2208		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2209		pfn++;
2210	} while (pte++, addr += PAGE_SIZE, addr != end);
2211	arch_leave_lazy_mmu_mode();
2212	pte_unmap_unlock(pte - 1, ptl);
2213	return 0;
2214}
2215
2216static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2217			unsigned long addr, unsigned long end,
2218			unsigned long pfn, pgprot_t prot)
2219{
2220	pmd_t *pmd;
2221	unsigned long next;
2222
2223	pfn -= addr >> PAGE_SHIFT;
2224	pmd = pmd_alloc(mm, pud, addr);
2225	if (!pmd)
2226		return -ENOMEM;
2227	VM_BUG_ON(pmd_trans_huge(*pmd));
2228	do {
2229		next = pmd_addr_end(addr, end);
2230		if (remap_pte_range(mm, pmd, addr, next,
2231				pfn + (addr >> PAGE_SHIFT), prot))
2232			return -ENOMEM;
2233	} while (pmd++, addr = next, addr != end);
2234	return 0;
2235}
2236
2237static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2238			unsigned long addr, unsigned long end,
2239			unsigned long pfn, pgprot_t prot)
2240{
2241	pud_t *pud;
2242	unsigned long next;
2243
2244	pfn -= addr >> PAGE_SHIFT;
2245	pud = pud_alloc(mm, pgd, addr);
2246	if (!pud)
2247		return -ENOMEM;
2248	do {
2249		next = pud_addr_end(addr, end);
2250		if (remap_pmd_range(mm, pud, addr, next,
2251				pfn + (addr >> PAGE_SHIFT), prot))
2252			return -ENOMEM;
2253	} while (pud++, addr = next, addr != end);
2254	return 0;
2255}
2256
2257/**
2258 * remap_pfn_range - remap kernel memory to userspace
2259 * @vma: user vma to map to
2260 * @addr: target user address to start at
2261 * @pfn: physical address of kernel memory
2262 * @size: size of map area
2263 * @prot: page protection flags for this mapping
2264 *
2265 *  Note: this is only safe if the mm semaphore is held when called.
2266 */
2267int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2268		    unsigned long pfn, unsigned long size, pgprot_t prot)
2269{
2270	pgd_t *pgd;
2271	unsigned long next;
2272	unsigned long end = addr + PAGE_ALIGN(size);
2273	struct mm_struct *mm = vma->vm_mm;
2274	int err;
2275
2276	/*
2277	 * Physically remapped pages are special. Tell the
2278	 * rest of the world about it:
2279	 *   VM_IO tells people not to look at these pages
2280	 *	(accesses can have side effects).
2281	 *   VM_RESERVED is specified all over the place, because
2282	 *	in 2.4 it kept swapout's vma scan off this vma; but
2283	 *	in 2.6 the LRU scan won't even find its pages, so this
2284	 *	flag means no more than count its pages in reserved_vm,
2285	 * 	and omit it from core dump, even when VM_IO turned off.
2286	 *   VM_PFNMAP tells the core MM that the base pages are just
2287	 *	raw PFN mappings, and do not have a "struct page" associated
2288	 *	with them.
 
 
 
 
2289	 *
2290	 * There's a horrible special case to handle copy-on-write
2291	 * behaviour that some programs depend on. We mark the "original"
2292	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
 
2293	 */
2294	if (addr == vma->vm_start && end == vma->vm_end) {
 
 
2295		vma->vm_pgoff = pfn;
2296		vma->vm_flags |= VM_PFN_AT_MMAP;
2297	} else if (is_cow_mapping(vma->vm_flags))
 
 
2298		return -EINVAL;
2299
2300	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2301
2302	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2303	if (err) {
2304		/*
2305		 * To indicate that track_pfn related cleanup is not
2306		 * needed from higher level routine calling unmap_vmas
2307		 */
2308		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2309		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2310		return -EINVAL;
2311	}
2312
2313	BUG_ON(addr >= end);
2314	pfn -= addr >> PAGE_SHIFT;
2315	pgd = pgd_offset(mm, addr);
2316	flush_cache_range(vma, addr, end);
2317	do {
2318		next = pgd_addr_end(addr, end);
2319		err = remap_pud_range(mm, pgd, addr, next,
2320				pfn + (addr >> PAGE_SHIFT), prot);
2321		if (err)
2322			break;
2323	} while (pgd++, addr = next, addr != end);
2324
2325	if (err)
2326		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2327
2328	return err;
2329}
2330EXPORT_SYMBOL(remap_pfn_range);
2331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2333				     unsigned long addr, unsigned long end,
2334				     pte_fn_t fn, void *data)
2335{
2336	pte_t *pte;
2337	int err;
2338	pgtable_t token;
2339	spinlock_t *uninitialized_var(ptl);
2340
2341	pte = (mm == &init_mm) ?
2342		pte_alloc_kernel(pmd, addr) :
2343		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2344	if (!pte)
2345		return -ENOMEM;
2346
2347	BUG_ON(pmd_huge(*pmd));
2348
2349	arch_enter_lazy_mmu_mode();
2350
2351	token = pmd_pgtable(*pmd);
2352
2353	do {
2354		err = fn(pte++, token, addr, data);
2355		if (err)
2356			break;
2357	} while (addr += PAGE_SIZE, addr != end);
2358
2359	arch_leave_lazy_mmu_mode();
2360
2361	if (mm != &init_mm)
2362		pte_unmap_unlock(pte-1, ptl);
2363	return err;
2364}
2365
2366static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2367				     unsigned long addr, unsigned long end,
2368				     pte_fn_t fn, void *data)
2369{
2370	pmd_t *pmd;
2371	unsigned long next;
2372	int err;
2373
2374	BUG_ON(pud_huge(*pud));
2375
2376	pmd = pmd_alloc(mm, pud, addr);
2377	if (!pmd)
2378		return -ENOMEM;
2379	do {
2380		next = pmd_addr_end(addr, end);
2381		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2382		if (err)
2383			break;
2384	} while (pmd++, addr = next, addr != end);
2385	return err;
2386}
2387
2388static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2389				     unsigned long addr, unsigned long end,
2390				     pte_fn_t fn, void *data)
2391{
2392	pud_t *pud;
2393	unsigned long next;
2394	int err;
2395
2396	pud = pud_alloc(mm, pgd, addr);
2397	if (!pud)
2398		return -ENOMEM;
2399	do {
2400		next = pud_addr_end(addr, end);
2401		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2402		if (err)
2403			break;
2404	} while (pud++, addr = next, addr != end);
2405	return err;
2406}
2407
2408/*
2409 * Scan a region of virtual memory, filling in page tables as necessary
2410 * and calling a provided function on each leaf page table.
2411 */
2412int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2413			unsigned long size, pte_fn_t fn, void *data)
2414{
2415	pgd_t *pgd;
2416	unsigned long next;
2417	unsigned long end = addr + size;
2418	int err;
2419
2420	BUG_ON(addr >= end);
 
 
2421	pgd = pgd_offset(mm, addr);
2422	do {
2423		next = pgd_addr_end(addr, end);
2424		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2425		if (err)
2426			break;
2427	} while (pgd++, addr = next, addr != end);
2428
2429	return err;
2430}
2431EXPORT_SYMBOL_GPL(apply_to_page_range);
2432
2433/*
2434 * handle_pte_fault chooses page fault handler according to an entry
2435 * which was read non-atomically.  Before making any commitment, on
2436 * those architectures or configurations (e.g. i386 with PAE) which
2437 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2438 * must check under lock before unmapping the pte and proceeding
2439 * (but do_wp_page is only called after already making such a check;
2440 * and do_anonymous_page can safely check later on).
2441 */
2442static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2443				pte_t *page_table, pte_t orig_pte)
2444{
2445	int same = 1;
2446#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2447	if (sizeof(pte_t) > sizeof(unsigned long)) {
2448		spinlock_t *ptl = pte_lockptr(mm, pmd);
2449		spin_lock(ptl);
2450		same = pte_same(*page_table, orig_pte);
2451		spin_unlock(ptl);
2452	}
2453#endif
2454	pte_unmap(page_table);
2455	return same;
2456}
2457
2458static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2459{
 
 
2460	/*
2461	 * If the source page was a PFN mapping, we don't have
2462	 * a "struct page" for it. We do a best-effort copy by
2463	 * just copying from the original user address. If that
2464	 * fails, we just zero-fill it. Live with it.
2465	 */
2466	if (unlikely(!src)) {
2467		void *kaddr = kmap_atomic(dst);
2468		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2469
2470		/*
2471		 * This really shouldn't fail, because the page is there
2472		 * in the page tables. But it might just be unreadable,
2473		 * in which case we just give up and fill the result with
2474		 * zeroes.
2475		 */
2476		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2477			clear_page(kaddr);
2478		kunmap_atomic(kaddr);
2479		flush_dcache_page(dst);
2480	} else
2481		copy_user_highpage(dst, src, va, vma);
2482}
2483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484/*
2485 * This routine handles present pages, when users try to write
2486 * to a shared page. It is done by copying the page to a new address
2487 * and decrementing the shared-page counter for the old page.
2488 *
2489 * Note that this routine assumes that the protection checks have been
2490 * done by the caller (the low-level page fault routine in most cases).
2491 * Thus we can safely just mark it writable once we've done any necessary
2492 * COW.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493 *
2494 * We also mark the page dirty at this point even though the page will
2495 * change only once the write actually happens. This avoids a few races,
2496 * and potentially makes it more efficient.
2497 *
2498 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2499 * but allow concurrent faults), with pte both mapped and locked.
2500 * We return with mmap_sem still held, but pte unmapped and unlocked.
2501 */
2502static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2503		unsigned long address, pte_t *page_table, pmd_t *pmd,
2504		spinlock_t *ptl, pte_t orig_pte)
2505	__releases(ptl)
2506{
2507	struct page *old_page, *new_page;
2508	pte_t entry;
2509	int ret = 0;
2510	int page_mkwrite = 0;
2511	struct page *dirty_page = NULL;
2512
2513	old_page = vm_normal_page(vma, address, orig_pte);
2514	if (!old_page) {
2515		/*
2516		 * VM_MIXEDMAP !pfn_valid() case
2517		 *
2518		 * We should not cow pages in a shared writeable mapping.
2519		 * Just mark the pages writable as we can't do any dirty
2520		 * accounting on raw pfn maps.
2521		 */
2522		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2523				     (VM_WRITE|VM_SHARED))
2524			goto reuse;
2525		goto gotten;
2526	}
2527
2528	/*
2529	 * Take out anonymous pages first, anonymous shared vmas are
2530	 * not dirty accountable.
 
2531	 */
2532	if (PageAnon(old_page) && !PageKsm(old_page)) {
2533		if (!trylock_page(old_page)) {
2534			page_cache_get(old_page);
2535			pte_unmap_unlock(page_table, ptl);
2536			lock_page(old_page);
2537			page_table = pte_offset_map_lock(mm, pmd, address,
2538							 &ptl);
2539			if (!pte_same(*page_table, orig_pte)) {
2540				unlock_page(old_page);
2541				goto unlock;
2542			}
2543			page_cache_release(old_page);
2544		}
2545		if (reuse_swap_page(old_page)) {
2546			/*
2547			 * The page is all ours.  Move it to our anon_vma so
2548			 * the rmap code will not search our parent or siblings.
2549			 * Protected against the rmap code by the page lock.
2550			 */
2551			page_move_anon_rmap(old_page, vma, address);
2552			unlock_page(old_page);
2553			goto reuse;
2554		}
2555		unlock_page(old_page);
2556	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2557					(VM_WRITE|VM_SHARED))) {
2558		/*
2559		 * Only catch write-faults on shared writable pages,
2560		 * read-only shared pages can get COWed by
2561		 * get_user_pages(.write=1, .force=1).
2562		 */
2563		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2564			struct vm_fault vmf;
2565			int tmp;
2566
2567			vmf.virtual_address = (void __user *)(address &
2568								PAGE_MASK);
2569			vmf.pgoff = old_page->index;
2570			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2571			vmf.page = old_page;
2572
2573			/*
2574			 * Notify the address space that the page is about to
2575			 * become writable so that it can prohibit this or wait
2576			 * for the page to get into an appropriate state.
2577			 *
2578			 * We do this without the lock held, so that it can
2579			 * sleep if it needs to.
2580			 */
2581			page_cache_get(old_page);
2582			pte_unmap_unlock(page_table, ptl);
2583
2584			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2585			if (unlikely(tmp &
2586					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2587				ret = tmp;
2588				goto unwritable_page;
2589			}
2590			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2591				lock_page(old_page);
2592				if (!old_page->mapping) {
2593					ret = 0; /* retry the fault */
2594					unlock_page(old_page);
2595					goto unwritable_page;
2596				}
2597			} else
2598				VM_BUG_ON(!PageLocked(old_page));
2599
 
2600			/*
2601			 * Since we dropped the lock we need to revalidate
2602			 * the PTE as someone else may have changed it.  If
2603			 * they did, we just return, as we can count on the
2604			 * MMU to tell us if they didn't also make it writable.
2605			 */
2606			page_table = pte_offset_map_lock(mm, pmd, address,
2607							 &ptl);
2608			if (!pte_same(*page_table, orig_pte)) {
2609				unlock_page(old_page);
2610				goto unlock;
2611			}
2612
2613			page_mkwrite = 1;
2614		}
2615		dirty_page = old_page;
2616		get_page(dirty_page);
2617
2618reuse:
2619		flush_cache_page(vma, address, pte_pfn(orig_pte));
2620		entry = pte_mkyoung(orig_pte);
2621		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2622		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2623			update_mmu_cache(vma, address, page_table);
2624		pte_unmap_unlock(page_table, ptl);
2625		ret |= VM_FAULT_WRITE;
2626
2627		if (!dirty_page)
2628			return ret;
2629
2630		/*
2631		 * Yes, Virginia, this is actually required to prevent a race
2632		 * with clear_page_dirty_for_io() from clearing the page dirty
2633		 * bit after it clear all dirty ptes, but before a racing
2634		 * do_wp_page installs a dirty pte.
2635		 *
2636		 * __do_fault is protected similarly.
2637		 */
2638		if (!page_mkwrite) {
2639			wait_on_page_locked(dirty_page);
2640			set_page_dirty_balance(dirty_page, page_mkwrite);
2641		}
2642		put_page(dirty_page);
2643		if (page_mkwrite) {
2644			struct address_space *mapping = dirty_page->mapping;
2645
2646			set_page_dirty(dirty_page);
2647			unlock_page(dirty_page);
2648			page_cache_release(dirty_page);
2649			if (mapping)	{
2650				/*
2651				 * Some device drivers do not set page.mapping
2652				 * but still dirty their pages
2653				 */
2654				balance_dirty_pages_ratelimited(mapping);
2655			}
2656		}
2657
2658		/* file_update_time outside page_lock */
2659		if (vma->vm_file)
2660			file_update_time(vma->vm_file);
 
2661
2662		return ret;
2663	}
2664
2665	/*
2666	 * Ok, we need to copy. Oh, well..
2667	 */
2668	page_cache_get(old_page);
2669gotten:
2670	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2671
2672	if (unlikely(anon_vma_prepare(vma)))
2673		goto oom;
2674
2675	if (is_zero_pfn(pte_pfn(orig_pte))) {
2676		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2677		if (!new_page)
2678			goto oom;
2679	} else {
2680		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2681		if (!new_page)
2682			goto oom;
2683		cow_user_page(new_page, old_page, address, vma);
2684	}
 
 
 
 
2685	__SetPageUptodate(new_page);
2686
2687	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2688		goto oom_free_new;
2689
2690	/*
2691	 * Re-check the pte - we dropped the lock
2692	 */
2693	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2694	if (likely(pte_same(*page_table, orig_pte))) {
2695		if (old_page) {
2696			if (!PageAnon(old_page)) {
2697				dec_mm_counter_fast(mm, MM_FILEPAGES);
 
2698				inc_mm_counter_fast(mm, MM_ANONPAGES);
2699			}
2700		} else
2701			inc_mm_counter_fast(mm, MM_ANONPAGES);
 
2702		flush_cache_page(vma, address, pte_pfn(orig_pte));
2703		entry = mk_pte(new_page, vma->vm_page_prot);
2704		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2705		/*
2706		 * Clear the pte entry and flush it first, before updating the
2707		 * pte with the new entry. This will avoid a race condition
2708		 * seen in the presence of one thread doing SMC and another
2709		 * thread doing COW.
2710		 */
2711		ptep_clear_flush(vma, address, page_table);
2712		page_add_new_anon_rmap(new_page, vma, address);
 
 
2713		/*
2714		 * We call the notify macro here because, when using secondary
2715		 * mmu page tables (such as kvm shadow page tables), we want the
2716		 * new page to be mapped directly into the secondary page table.
2717		 */
2718		set_pte_at_notify(mm, address, page_table, entry);
2719		update_mmu_cache(vma, address, page_table);
2720		if (old_page) {
2721			/*
2722			 * Only after switching the pte to the new page may
2723			 * we remove the mapcount here. Otherwise another
2724			 * process may come and find the rmap count decremented
2725			 * before the pte is switched to the new page, and
2726			 * "reuse" the old page writing into it while our pte
2727			 * here still points into it and can be read by other
2728			 * threads.
2729			 *
2730			 * The critical issue is to order this
2731			 * page_remove_rmap with the ptp_clear_flush above.
2732			 * Those stores are ordered by (if nothing else,)
2733			 * the barrier present in the atomic_add_negative
2734			 * in page_remove_rmap.
2735			 *
2736			 * Then the TLB flush in ptep_clear_flush ensures that
2737			 * no process can access the old page before the
2738			 * decremented mapcount is visible. And the old page
2739			 * cannot be reused until after the decremented
2740			 * mapcount is visible. So transitively, TLBs to
2741			 * old page will be flushed before it can be reused.
2742			 */
2743			page_remove_rmap(old_page);
2744		}
2745
2746		/* Free the old page.. */
2747		new_page = old_page;
2748		ret |= VM_FAULT_WRITE;
2749	} else
2750		mem_cgroup_uncharge_page(new_page);
 
2751
2752	if (new_page)
2753		page_cache_release(new_page);
2754unlock:
2755	pte_unmap_unlock(page_table, ptl);
 
2756	if (old_page) {
2757		/*
2758		 * Don't let another task, with possibly unlocked vma,
2759		 * keep the mlocked page.
2760		 */
2761		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2762			lock_page(old_page);	/* LRU manipulation */
2763			munlock_vma_page(old_page);
 
2764			unlock_page(old_page);
2765		}
2766		page_cache_release(old_page);
2767	}
2768	return ret;
2769oom_free_new:
2770	page_cache_release(new_page);
2771oom:
2772	if (old_page) {
2773		if (page_mkwrite) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2774			unlock_page(old_page);
2775			page_cache_release(old_page);
 
2776		}
2777		page_cache_release(old_page);
 
 
 
 
2778	}
2779	return VM_FAULT_OOM;
2780
2781unwritable_page:
2782	page_cache_release(old_page);
2783	return ret;
 
 
 
 
 
2784}
2785
2786static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2787		unsigned long start_addr, unsigned long end_addr,
2788		struct zap_details *details)
2789{
2790	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2791}
2792
2793static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2794					    struct zap_details *details)
2795{
2796	struct vm_area_struct *vma;
2797	struct prio_tree_iter iter;
2798	pgoff_t vba, vea, zba, zea;
2799
2800	vma_prio_tree_foreach(vma, &iter, root,
2801			details->first_index, details->last_index) {
2802
2803		vba = vma->vm_pgoff;
2804		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2805		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2806		zba = details->first_index;
2807		if (zba < vba)
2808			zba = vba;
2809		zea = details->last_index;
2810		if (zea > vea)
2811			zea = vea;
2812
2813		unmap_mapping_range_vma(vma,
2814			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2815			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2816				details);
2817	}
2818}
2819
2820static inline void unmap_mapping_range_list(struct list_head *head,
2821					    struct zap_details *details)
2822{
2823	struct vm_area_struct *vma;
2824
2825	/*
2826	 * In nonlinear VMAs there is no correspondence between virtual address
2827	 * offset and file offset.  So we must perform an exhaustive search
2828	 * across *all* the pages in each nonlinear VMA, not just the pages
2829	 * whose virtual address lies outside the file truncation point.
2830	 */
2831	list_for_each_entry(vma, head, shared.vm_set.list) {
2832		details->nonlinear_vma = vma;
2833		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2834	}
2835}
2836
2837/**
2838 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
 
 
 
2839 * @mapping: the address space containing mmaps to be unmapped.
2840 * @holebegin: byte in first page to unmap, relative to the start of
2841 * the underlying file.  This will be rounded down to a PAGE_SIZE
2842 * boundary.  Note that this is different from truncate_pagecache(), which
2843 * must keep the partial page.  In contrast, we must get rid of
2844 * partial pages.
2845 * @holelen: size of prospective hole in bytes.  This will be rounded
2846 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2847 * end of the file.
2848 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2849 * but 0 when invalidating pagecache, don't throw away private data.
2850 */
2851void unmap_mapping_range(struct address_space *mapping,
2852		loff_t const holebegin, loff_t const holelen, int even_cows)
2853{
2854	struct zap_details details;
2855	pgoff_t hba = holebegin >> PAGE_SHIFT;
2856	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2857
2858	/* Check for overflow. */
2859	if (sizeof(holelen) > sizeof(hlen)) {
2860		long long holeend =
2861			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862		if (holeend & ~(long long)ULONG_MAX)
2863			hlen = ULONG_MAX - hba + 1;
2864	}
2865
2866	details.check_mapping = even_cows? NULL: mapping;
2867	details.nonlinear_vma = NULL;
2868	details.first_index = hba;
2869	details.last_index = hba + hlen - 1;
2870	if (details.last_index < details.first_index)
2871		details.last_index = ULONG_MAX;
2872
2873
2874	mutex_lock(&mapping->i_mmap_mutex);
2875	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
 
2876		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2877	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2878		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2879	mutex_unlock(&mapping->i_mmap_mutex);
2880}
2881EXPORT_SYMBOL(unmap_mapping_range);
2882
2883/*
2884 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2885 * but allow concurrent faults), and pte mapped but not yet locked.
2886 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
 
2887 */
2888static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2889		unsigned long address, pte_t *page_table, pmd_t *pmd,
2890		unsigned int flags, pte_t orig_pte)
2891{
2892	spinlock_t *ptl;
2893	struct page *page, *swapcache = NULL;
 
2894	swp_entry_t entry;
2895	pte_t pte;
2896	int locked;
2897	struct mem_cgroup *ptr;
2898	int exclusive = 0;
2899	int ret = 0;
2900
2901	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2902		goto out;
2903
2904	entry = pte_to_swp_entry(orig_pte);
2905	if (unlikely(non_swap_entry(entry))) {
2906		if (is_migration_entry(entry)) {
2907			migration_entry_wait(mm, pmd, address);
2908		} else if (is_hwpoison_entry(entry)) {
2909			ret = VM_FAULT_HWPOISON;
2910		} else {
2911			print_bad_pte(vma, address, orig_pte, NULL);
2912			ret = VM_FAULT_SIGBUS;
2913		}
2914		goto out;
2915	}
2916	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2917	page = lookup_swap_cache(entry);
2918	if (!page) {
2919		page = swapin_readahead(entry,
2920					GFP_HIGHUSER_MOVABLE, vma, address);
2921		if (!page) {
2922			/*
2923			 * Back out if somebody else faulted in this pte
2924			 * while we released the pte lock.
2925			 */
2926			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2927			if (likely(pte_same(*page_table, orig_pte)))
2928				ret = VM_FAULT_OOM;
2929			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2930			goto unlock;
2931		}
2932
2933		/* Had to read the page from swap area: Major fault */
2934		ret = VM_FAULT_MAJOR;
2935		count_vm_event(PGMAJFAULT);
2936		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2937	} else if (PageHWPoison(page)) {
2938		/*
2939		 * hwpoisoned dirty swapcache pages are kept for killing
2940		 * owner processes (which may be unknown at hwpoison time)
2941		 */
2942		ret = VM_FAULT_HWPOISON;
2943		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
 
2944		goto out_release;
2945	}
2946
 
2947	locked = lock_page_or_retry(page, mm, flags);
2948
2949	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2950	if (!locked) {
2951		ret |= VM_FAULT_RETRY;
2952		goto out_release;
2953	}
2954
2955	/*
2956	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2957	 * release the swapcache from under us.  The page pin, and pte_same
2958	 * test below, are not enough to exclude that.  Even if it is still
2959	 * swapcache, we need to check that the page's swap has not changed.
2960	 */
2961	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2962		goto out_page;
2963
2964	if (ksm_might_need_to_copy(page, vma, address)) {
2965		swapcache = page;
2966		page = ksm_does_need_to_copy(page, vma, address);
2967
2968		if (unlikely(!page)) {
2969			ret = VM_FAULT_OOM;
2970			page = swapcache;
2971			swapcache = NULL;
2972			goto out_page;
2973		}
2974	}
2975
2976	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2977		ret = VM_FAULT_OOM;
2978		goto out_page;
2979	}
2980
2981	/*
2982	 * Back out if somebody else already faulted in this pte.
2983	 */
2984	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2985	if (unlikely(!pte_same(*page_table, orig_pte)))
2986		goto out_nomap;
2987
2988	if (unlikely(!PageUptodate(page))) {
2989		ret = VM_FAULT_SIGBUS;
2990		goto out_nomap;
2991	}
2992
2993	/*
2994	 * The page isn't present yet, go ahead with the fault.
2995	 *
2996	 * Be careful about the sequence of operations here.
2997	 * To get its accounting right, reuse_swap_page() must be called
2998	 * while the page is counted on swap but not yet in mapcount i.e.
2999	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3000	 * must be called after the swap_free(), or it will never succeed.
3001	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3002	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3003	 * in page->private. In this case, a record in swap_cgroup  is silently
3004	 * discarded at swap_free().
3005	 */
3006
3007	inc_mm_counter_fast(mm, MM_ANONPAGES);
3008	dec_mm_counter_fast(mm, MM_SWAPENTS);
3009	pte = mk_pte(page, vma->vm_page_prot);
3010	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3011		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3012		flags &= ~FAULT_FLAG_WRITE;
3013		ret |= VM_FAULT_WRITE;
3014		exclusive = 1;
3015	}
3016	flush_icache_page(vma, page);
 
 
3017	set_pte_at(mm, address, page_table, pte);
3018	do_page_add_anon_rmap(page, vma, address, exclusive);
3019	/* It's better to call commit-charge after rmap is established */
3020	mem_cgroup_commit_charge_swapin(page, ptr);
 
 
 
 
 
3021
3022	swap_free(entry);
3023	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
 
3024		try_to_free_swap(page);
3025	unlock_page(page);
3026	if (swapcache) {
3027		/*
3028		 * Hold the lock to avoid the swap entry to be reused
3029		 * until we take the PT lock for the pte_same() check
3030		 * (to avoid false positives from pte_same). For
3031		 * further safety release the lock after the swap_free
3032		 * so that the swap count won't change under a
3033		 * parallel locked swapcache.
3034		 */
3035		unlock_page(swapcache);
3036		page_cache_release(swapcache);
3037	}
3038
3039	if (flags & FAULT_FLAG_WRITE) {
3040		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3041		if (ret & VM_FAULT_ERROR)
3042			ret &= VM_FAULT_ERROR;
3043		goto out;
3044	}
3045
3046	/* No need to invalidate - it was non-present before */
3047	update_mmu_cache(vma, address, page_table);
3048unlock:
3049	pte_unmap_unlock(page_table, ptl);
3050out:
3051	return ret;
3052out_nomap:
3053	mem_cgroup_cancel_charge_swapin(ptr);
3054	pte_unmap_unlock(page_table, ptl);
3055out_page:
3056	unlock_page(page);
3057out_release:
3058	page_cache_release(page);
3059	if (swapcache) {
3060		unlock_page(swapcache);
3061		page_cache_release(swapcache);
3062	}
3063	return ret;
3064}
3065
3066/*
3067 * This is like a special single-page "expand_{down|up}wards()",
3068 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3069 * doesn't hit another vma.
3070 */
3071static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3072{
3073	address &= PAGE_MASK;
3074	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3075		struct vm_area_struct *prev = vma->vm_prev;
3076
3077		/*
3078		 * Is there a mapping abutting this one below?
3079		 *
3080		 * That's only ok if it's the same stack mapping
3081		 * that has gotten split..
3082		 */
3083		if (prev && prev->vm_end == address)
3084			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3085
3086		expand_downwards(vma, address - PAGE_SIZE);
3087	}
3088	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3089		struct vm_area_struct *next = vma->vm_next;
3090
3091		/* As VM_GROWSDOWN but s/below/above/ */
3092		if (next && next->vm_start == address + PAGE_SIZE)
3093			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3094
3095		expand_upwards(vma, address + PAGE_SIZE);
3096	}
3097	return 0;
3098}
3099
3100/*
3101 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3102 * but allow concurrent faults), and pte mapped but not yet locked.
3103 * We return with mmap_sem still held, but pte unmapped and unlocked.
3104 */
3105static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3106		unsigned long address, pte_t *page_table, pmd_t *pmd,
3107		unsigned int flags)
3108{
 
3109	struct page *page;
3110	spinlock_t *ptl;
3111	pte_t entry;
3112
3113	pte_unmap(page_table);
3114
 
 
 
 
3115	/* Check if we need to add a guard page to the stack */
3116	if (check_stack_guard_page(vma, address) < 0)
3117		return VM_FAULT_SIGBUS;
3118
3119	/* Use the zero-page for reads */
3120	if (!(flags & FAULT_FLAG_WRITE)) {
3121		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3122						vma->vm_page_prot));
3123		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3124		if (!pte_none(*page_table))
3125			goto unlock;
 
 
 
 
 
 
3126		goto setpte;
3127	}
3128
3129	/* Allocate our own private page. */
3130	if (unlikely(anon_vma_prepare(vma)))
3131		goto oom;
3132	page = alloc_zeroed_user_highpage_movable(vma, address);
3133	if (!page)
3134		goto oom;
3135	__SetPageUptodate(page);
3136
3137	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3138		goto oom_free_page;
3139
 
 
 
 
 
 
 
3140	entry = mk_pte(page, vma->vm_page_prot);
3141	if (vma->vm_flags & VM_WRITE)
3142		entry = pte_mkwrite(pte_mkdirty(entry));
3143
3144	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3145	if (!pte_none(*page_table))
3146		goto release;
3147
 
 
 
 
 
 
 
 
 
3148	inc_mm_counter_fast(mm, MM_ANONPAGES);
3149	page_add_new_anon_rmap(page, vma, address);
 
 
3150setpte:
3151	set_pte_at(mm, address, page_table, entry);
3152
3153	/* No need to invalidate - it was non-present before */
3154	update_mmu_cache(vma, address, page_table);
3155unlock:
3156	pte_unmap_unlock(page_table, ptl);
3157	return 0;
3158release:
3159	mem_cgroup_uncharge_page(page);
3160	page_cache_release(page);
3161	goto unlock;
3162oom_free_page:
3163	page_cache_release(page);
3164oom:
3165	return VM_FAULT_OOM;
3166}
3167
3168/*
3169 * __do_fault() tries to create a new page mapping. It aggressively
3170 * tries to share with existing pages, but makes a separate copy if
3171 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3172 * the next page fault.
3173 *
3174 * As this is called only for pages that do not currently exist, we
3175 * do not need to flush old virtual caches or the TLB.
3176 *
3177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178 * but allow concurrent faults), and pte neither mapped nor locked.
3179 * We return with mmap_sem still held, but pte unmapped and unlocked.
3180 */
3181static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3182		unsigned long address, pmd_t *pmd,
3183		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3184{
3185	pte_t *page_table;
3186	spinlock_t *ptl;
3187	struct page *page;
3188	struct page *cow_page;
3189	pte_t entry;
3190	int anon = 0;
3191	struct page *dirty_page = NULL;
3192	struct vm_fault vmf;
3193	int ret;
3194	int page_mkwrite = 0;
3195
3196	/*
3197	 * If we do COW later, allocate page befor taking lock_page()
3198	 * on the file cache page. This will reduce lock holding time.
3199	 */
3200	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3201
3202		if (unlikely(anon_vma_prepare(vma)))
3203			return VM_FAULT_OOM;
3204
3205		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3206		if (!cow_page)
3207			return VM_FAULT_OOM;
3208
3209		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3210			page_cache_release(cow_page);
3211			return VM_FAULT_OOM;
3212		}
3213	} else
3214		cow_page = NULL;
3215
3216	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3217	vmf.pgoff = pgoff;
3218	vmf.flags = flags;
3219	vmf.page = NULL;
 
 
3220
3221	ret = vma->vm_ops->fault(vma, &vmf);
3222	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3223			    VM_FAULT_RETRY)))
3224		goto uncharge_out;
 
3225
3226	if (unlikely(PageHWPoison(vmf.page))) {
3227		if (ret & VM_FAULT_LOCKED)
3228			unlock_page(vmf.page);
3229		ret = VM_FAULT_HWPOISON;
3230		goto uncharge_out;
3231	}
3232
3233	/*
3234	 * For consistency in subsequent calls, make the faulted page always
3235	 * locked.
3236	 */
3237	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3238		lock_page(vmf.page);
3239	else
3240		VM_BUG_ON(!PageLocked(vmf.page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3241
3242	/*
3243	 * Should we do an early C-O-W break?
 
3244	 */
3245	page = vmf.page;
3246	if (flags & FAULT_FLAG_WRITE) {
3247		if (!(vma->vm_flags & VM_SHARED)) {
3248			page = cow_page;
3249			anon = 1;
3250			copy_user_highpage(page, vmf.page, address, vma);
3251			__SetPageUptodate(page);
3252		} else {
3253			/*
3254			 * If the page will be shareable, see if the backing
3255			 * address space wants to know that the page is about
3256			 * to become writable
3257			 */
3258			if (vma->vm_ops->page_mkwrite) {
3259				int tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3260
3261				unlock_page(page);
3262				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3263				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3264				if (unlikely(tmp &
3265					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3266					ret = tmp;
3267					goto unwritable_page;
3268				}
3269				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3270					lock_page(page);
3271					if (!page->mapping) {
3272						ret = 0; /* retry the fault */
3273						unlock_page(page);
3274						goto unwritable_page;
3275					}
3276				} else
3277					VM_BUG_ON(!PageLocked(page));
3278				page_mkwrite = 1;
3279			}
3280		}
3281
 
 
 
 
 
 
3282	}
 
 
 
 
 
 
3283
3284	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 
 
 
 
 
 
 
 
 
 
 
3285
3286	/*
3287	 * This silly early PAGE_DIRTY setting removes a race
3288	 * due to the bad i386 page protection. But it's valid
3289	 * for other architectures too.
3290	 *
3291	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3292	 * an exclusive copy of the page, or this is a shared mapping,
3293	 * so we can make it writable and dirty to avoid having to
3294	 * handle that later.
3295	 */
3296	/* Only go through if we didn't race with anybody else... */
3297	if (likely(pte_same(*page_table, orig_pte))) {
3298		flush_icache_page(vma, page);
3299		entry = mk_pte(page, vma->vm_page_prot);
3300		if (flags & FAULT_FLAG_WRITE)
3301			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3302		if (anon) {
3303			inc_mm_counter_fast(mm, MM_ANONPAGES);
3304			page_add_new_anon_rmap(page, vma, address);
3305		} else {
3306			inc_mm_counter_fast(mm, MM_FILEPAGES);
3307			page_add_file_rmap(page);
3308			if (flags & FAULT_FLAG_WRITE) {
3309				dirty_page = page;
3310				get_page(dirty_page);
3311			}
3312		}
3313		set_pte_at(mm, address, page_table, entry);
3314
3315		/* no need to invalidate: a not-present page won't be cached */
3316		update_mmu_cache(vma, address, page_table);
3317	} else {
3318		if (cow_page)
3319			mem_cgroup_uncharge_page(cow_page);
3320		if (anon)
3321			page_cache_release(page);
3322		else
3323			anon = 1; /* no anon but release faulted_page */
3324	}
3325
3326	pte_unmap_unlock(page_table, ptl);
 
 
3327
3328	if (dirty_page) {
3329		struct address_space *mapping = page->mapping;
 
3330
3331		if (set_page_dirty(dirty_page))
3332			page_mkwrite = 1;
3333		unlock_page(dirty_page);
3334		put_page(dirty_page);
3335		if (page_mkwrite && mapping) {
 
 
3336			/*
3337			 * Some device drivers do not set page.mapping but still
3338			 * dirty their pages
3339			 */
3340			balance_dirty_pages_ratelimited(mapping);
3341		}
3342
3343		/* file_update_time outside page_lock */
3344		if (vma->vm_file)
3345			file_update_time(vma->vm_file);
 
 
 
 
 
3346	} else {
3347		unlock_page(vmf.page);
3348		if (anon)
3349			page_cache_release(vmf.page);
 
 
3350	}
3351
3352	return ret;
3353
3354unwritable_page:
3355	page_cache_release(page);
3356	return ret;
3357uncharge_out:
3358	/* fs's fault handler get error */
3359	if (cow_page) {
3360		mem_cgroup_uncharge_page(cow_page);
3361		page_cache_release(cow_page);
3362	}
3363	return ret;
3364}
3365
3366static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3367		unsigned long address, pte_t *page_table, pmd_t *pmd,
3368		unsigned int flags, pte_t orig_pte)
3369{
3370	pgoff_t pgoff = (((address & PAGE_MASK)
3371			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3372
3373	pte_unmap(page_table);
3374	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3375}
3376
3377/*
3378 * Fault of a previously existing named mapping. Repopulate the pte
3379 * from the encoded file_pte if possible. This enables swappable
3380 * nonlinear vmas.
3381 *
3382 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3383 * but allow concurrent faults), and pte mapped but not yet locked.
3384 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
3385 */
3386static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3387		unsigned long address, pte_t *page_table, pmd_t *pmd,
3388		unsigned int flags, pte_t orig_pte)
3389{
3390	pgoff_t pgoff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3391
3392	flags |= FAULT_FLAG_NONLINEAR;
 
 
 
 
3393
3394	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
 
 
3395		return 0;
 
3396
3397	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3398		/*
3399		 * Page table corrupted: show pte and kill process.
3400		 */
3401		print_bad_pte(vma, address, orig_pte, NULL);
3402		return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403	}
3404
3405	pgoff = pte_to_pgoff(orig_pte);
3406	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3407}
3408
3409/*
3410 * These routines also need to handle stuff like marking pages dirty
3411 * and/or accessed for architectures that don't do it in hardware (most
3412 * RISC architectures).  The early dirtying is also good on the i386.
3413 *
3414 * There is also a hook called "update_mmu_cache()" that architectures
3415 * with external mmu caches can use to update those (ie the Sparc or
3416 * PowerPC hashed page tables that act as extended TLBs).
3417 *
3418 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3419 * but allow concurrent faults), and pte mapped but not yet locked.
3420 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
 
3421 */
3422int handle_pte_fault(struct mm_struct *mm,
3423		     struct vm_area_struct *vma, unsigned long address,
3424		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3425{
3426	pte_t entry;
3427	spinlock_t *ptl;
3428
 
 
 
 
 
 
 
 
3429	entry = *pte;
 
3430	if (!pte_present(entry)) {
3431		if (pte_none(entry)) {
3432			if (vma->vm_ops) {
3433				if (likely(vma->vm_ops->fault))
3434					return do_linear_fault(mm, vma, address,
3435						pte, pmd, flags, entry);
3436			}
3437			return do_anonymous_page(mm, vma, address,
3438						 pte, pmd, flags);
3439		}
3440		if (pte_file(entry))
3441			return do_nonlinear_fault(mm, vma, address,
3442					pte, pmd, flags, entry);
3443		return do_swap_page(mm, vma, address,
3444					pte, pmd, flags, entry);
3445	}
3446
 
 
 
3447	ptl = pte_lockptr(mm, pmd);
3448	spin_lock(ptl);
3449	if (unlikely(!pte_same(*pte, entry)))
3450		goto unlock;
3451	if (flags & FAULT_FLAG_WRITE) {
3452		if (!pte_write(entry))
3453			return do_wp_page(mm, vma, address,
3454					pte, pmd, ptl, entry);
3455		entry = pte_mkdirty(entry);
3456	}
3457	entry = pte_mkyoung(entry);
3458	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3459		update_mmu_cache(vma, address, pte);
3460	} else {
3461		/*
3462		 * This is needed only for protection faults but the arch code
3463		 * is not yet telling us if this is a protection fault or not.
3464		 * This still avoids useless tlb flushes for .text page faults
3465		 * with threads.
3466		 */
3467		if (flags & FAULT_FLAG_WRITE)
3468			flush_tlb_fix_spurious_fault(vma, address);
3469	}
3470unlock:
3471	pte_unmap_unlock(pte, ptl);
3472	return 0;
3473}
3474
3475/*
3476 * By the time we get here, we already hold the mm semaphore
 
 
 
3477 */
3478int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3479		unsigned long address, unsigned int flags)
3480{
3481	pgd_t *pgd;
3482	pud_t *pud;
3483	pmd_t *pmd;
3484	pte_t *pte;
3485
3486	__set_current_state(TASK_RUNNING);
3487
3488	count_vm_event(PGFAULT);
3489	mem_cgroup_count_vm_event(mm, PGFAULT);
3490
3491	/* do counter updates before entering really critical section. */
3492	check_sync_rss_stat(current);
3493
3494	if (unlikely(is_vm_hugetlb_page(vma)))
3495		return hugetlb_fault(mm, vma, address, flags);
3496
3497retry:
3498	pgd = pgd_offset(mm, address);
3499	pud = pud_alloc(mm, pgd, address);
3500	if (!pud)
3501		return VM_FAULT_OOM;
3502	pmd = pmd_alloc(mm, pud, address);
3503	if (!pmd)
3504		return VM_FAULT_OOM;
3505	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3506		if (!vma->vm_ops)
3507			return do_huge_pmd_anonymous_page(mm, vma, address,
3508							  pmd, flags);
3509	} else {
3510		pmd_t orig_pmd = *pmd;
3511		int ret;
3512
3513		barrier();
3514		if (pmd_trans_huge(orig_pmd)) {
3515			if (flags & FAULT_FLAG_WRITE &&
3516			    !pmd_write(orig_pmd) &&
3517			    !pmd_trans_splitting(orig_pmd)) {
3518				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3519							  orig_pmd);
3520				/*
3521				 * If COW results in an oom, the huge pmd will
3522				 * have been split, so retry the fault on the
3523				 * pte for a smaller charge.
3524				 */
3525				if (unlikely(ret & VM_FAULT_OOM))
3526					goto retry;
3527				return ret;
 
 
3528			}
3529			return 0;
3530		}
3531	}
3532
3533	/*
3534	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3535	 * run pte_offset_map on the pmd, if an huge pmd could
3536	 * materialize from under us from a different thread.
3537	 */
3538	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3539		return VM_FAULT_OOM;
3540	/* if an huge pmd materialized from under us just retry later */
3541	if (unlikely(pmd_trans_huge(*pmd)))
 
 
 
 
 
 
 
 
 
 
3542		return 0;
3543	/*
3544	 * A regular pmd is established and it can't morph into a huge pmd
3545	 * from under us anymore at this point because we hold the mmap_sem
3546	 * read mode and khugepaged takes it in write mode. So now it's
3547	 * safe to run pte_offset_map().
3548	 */
3549	pte = pte_offset_map(pmd, address);
3550
3551	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3552}
3553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3554#ifndef __PAGETABLE_PUD_FOLDED
3555/*
3556 * Allocate page upper directory.
3557 * We've already handled the fast-path in-line.
3558 */
3559int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3560{
3561	pud_t *new = pud_alloc_one(mm, address);
3562	if (!new)
3563		return -ENOMEM;
3564
3565	smp_wmb(); /* See comment in __pte_alloc */
3566
3567	spin_lock(&mm->page_table_lock);
3568	if (pgd_present(*pgd))		/* Another has populated it */
3569		pud_free(mm, new);
3570	else
3571		pgd_populate(mm, pgd, new);
3572	spin_unlock(&mm->page_table_lock);
3573	return 0;
3574}
3575#endif /* __PAGETABLE_PUD_FOLDED */
3576
3577#ifndef __PAGETABLE_PMD_FOLDED
3578/*
3579 * Allocate page middle directory.
3580 * We've already handled the fast-path in-line.
3581 */
3582int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3583{
3584	pmd_t *new = pmd_alloc_one(mm, address);
3585	if (!new)
3586		return -ENOMEM;
3587
3588	smp_wmb(); /* See comment in __pte_alloc */
3589
3590	spin_lock(&mm->page_table_lock);
3591#ifndef __ARCH_HAS_4LEVEL_HACK
3592	if (pud_present(*pud))		/* Another has populated it */
 
 
 
3593		pmd_free(mm, new);
3594	else
3595		pud_populate(mm, pud, new);
3596#else
3597	if (pgd_present(*pud))		/* Another has populated it */
 
 
 
3598		pmd_free(mm, new);
3599	else
3600		pgd_populate(mm, pud, new);
3601#endif /* __ARCH_HAS_4LEVEL_HACK */
3602	spin_unlock(&mm->page_table_lock);
3603	return 0;
3604}
3605#endif /* __PAGETABLE_PMD_FOLDED */
3606
3607int make_pages_present(unsigned long addr, unsigned long end)
3608{
3609	int ret, len, write;
3610	struct vm_area_struct * vma;
3611
3612	vma = find_vma(current->mm, addr);
3613	if (!vma)
3614		return -ENOMEM;
3615	/*
3616	 * We want to touch writable mappings with a write fault in order
3617	 * to break COW, except for shared mappings because these don't COW
3618	 * and we would not want to dirty them for nothing.
3619	 */
3620	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3621	BUG_ON(addr >= end);
3622	BUG_ON(end > vma->vm_end);
3623	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3624	ret = get_user_pages(current, current->mm, addr,
3625			len, write, 0, NULL, NULL);
3626	if (ret < 0)
3627		return ret;
3628	return ret == len ? 0 : -EFAULT;
3629}
3630
3631#if !defined(__HAVE_ARCH_GATE_AREA)
3632
3633#if defined(AT_SYSINFO_EHDR)
3634static struct vm_area_struct gate_vma;
3635
3636static int __init gate_vma_init(void)
3637{
3638	gate_vma.vm_mm = NULL;
3639	gate_vma.vm_start = FIXADDR_USER_START;
3640	gate_vma.vm_end = FIXADDR_USER_END;
3641	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3642	gate_vma.vm_page_prot = __P101;
3643
3644	return 0;
3645}
3646__initcall(gate_vma_init);
3647#endif
3648
3649struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3650{
3651#ifdef AT_SYSINFO_EHDR
3652	return &gate_vma;
3653#else
3654	return NULL;
3655#endif
3656}
3657
3658int in_gate_area_no_mm(unsigned long addr)
3659{
3660#ifdef AT_SYSINFO_EHDR
3661	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3662		return 1;
3663#endif
3664	return 0;
3665}
3666
3667#endif	/* __HAVE_ARCH_GATE_AREA */
3668
3669static int __follow_pte(struct mm_struct *mm, unsigned long address,
3670		pte_t **ptepp, spinlock_t **ptlp)
3671{
3672	pgd_t *pgd;
3673	pud_t *pud;
3674	pmd_t *pmd;
3675	pte_t *ptep;
3676
3677	pgd = pgd_offset(mm, address);
3678	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3679		goto out;
3680
3681	pud = pud_offset(pgd, address);
3682	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3683		goto out;
3684
3685	pmd = pmd_offset(pud, address);
3686	VM_BUG_ON(pmd_trans_huge(*pmd));
3687	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3688		goto out;
3689
3690	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3691	if (pmd_huge(*pmd))
3692		goto out;
3693
3694	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3695	if (!ptep)
3696		goto out;
3697	if (!pte_present(*ptep))
3698		goto unlock;
3699	*ptepp = ptep;
3700	return 0;
3701unlock:
3702	pte_unmap_unlock(ptep, *ptlp);
3703out:
3704	return -EINVAL;
3705}
3706
3707static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3708			     pte_t **ptepp, spinlock_t **ptlp)
3709{
3710	int res;
3711
3712	/* (void) is needed to make gcc happy */
3713	(void) __cond_lock(*ptlp,
3714			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3715	return res;
3716}
3717
3718/**
3719 * follow_pfn - look up PFN at a user virtual address
3720 * @vma: memory mapping
3721 * @address: user virtual address
3722 * @pfn: location to store found PFN
3723 *
3724 * Only IO mappings and raw PFN mappings are allowed.
3725 *
3726 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3727 */
3728int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3729	unsigned long *pfn)
3730{
3731	int ret = -EINVAL;
3732	spinlock_t *ptl;
3733	pte_t *ptep;
3734
3735	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3736		return ret;
3737
3738	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3739	if (ret)
3740		return ret;
3741	*pfn = pte_pfn(*ptep);
3742	pte_unmap_unlock(ptep, ptl);
3743	return 0;
3744}
3745EXPORT_SYMBOL(follow_pfn);
3746
3747#ifdef CONFIG_HAVE_IOREMAP_PROT
3748int follow_phys(struct vm_area_struct *vma,
3749		unsigned long address, unsigned int flags,
3750		unsigned long *prot, resource_size_t *phys)
3751{
3752	int ret = -EINVAL;
3753	pte_t *ptep, pte;
3754	spinlock_t *ptl;
3755
3756	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3757		goto out;
3758
3759	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3760		goto out;
3761	pte = *ptep;
3762
3763	if ((flags & FOLL_WRITE) && !pte_write(pte))
3764		goto unlock;
3765
3766	*prot = pgprot_val(pte_pgprot(pte));
3767	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3768
3769	ret = 0;
3770unlock:
3771	pte_unmap_unlock(ptep, ptl);
3772out:
3773	return ret;
3774}
3775
3776int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3777			void *buf, int len, int write)
3778{
3779	resource_size_t phys_addr;
3780	unsigned long prot = 0;
3781	void __iomem *maddr;
3782	int offset = addr & (PAGE_SIZE-1);
3783
3784	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3785		return -EINVAL;
3786
3787	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3788	if (write)
3789		memcpy_toio(maddr + offset, buf, len);
3790	else
3791		memcpy_fromio(buf, maddr + offset, len);
3792	iounmap(maddr);
3793
3794	return len;
3795}
 
3796#endif
3797
3798/*
3799 * Access another process' address space as given in mm.  If non-NULL, use the
3800 * given task for page fault accounting.
3801 */
3802static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3803		unsigned long addr, void *buf, int len, int write)
3804{
3805	struct vm_area_struct *vma;
3806	void *old_buf = buf;
3807
3808	down_read(&mm->mmap_sem);
3809	/* ignore errors, just check how much was successfully transferred */
3810	while (len) {
3811		int bytes, ret, offset;
3812		void *maddr;
3813		struct page *page = NULL;
3814
3815		ret = get_user_pages(tsk, mm, addr, 1,
3816				write, 1, &page, &vma);
3817		if (ret <= 0) {
 
 
 
3818			/*
3819			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3820			 * we can access using slightly different code.
3821			 */
3822#ifdef CONFIG_HAVE_IOREMAP_PROT
3823			vma = find_vma(mm, addr);
3824			if (!vma || vma->vm_start > addr)
3825				break;
3826			if (vma->vm_ops && vma->vm_ops->access)
3827				ret = vma->vm_ops->access(vma, addr, buf,
3828							  len, write);
3829			if (ret <= 0)
3830#endif
3831				break;
3832			bytes = ret;
 
3833		} else {
3834			bytes = len;
3835			offset = addr & (PAGE_SIZE-1);
3836			if (bytes > PAGE_SIZE-offset)
3837				bytes = PAGE_SIZE-offset;
3838
3839			maddr = kmap(page);
3840			if (write) {
3841				copy_to_user_page(vma, page, addr,
3842						  maddr + offset, buf, bytes);
3843				set_page_dirty_lock(page);
3844			} else {
3845				copy_from_user_page(vma, page, addr,
3846						    buf, maddr + offset, bytes);
3847			}
3848			kunmap(page);
3849			page_cache_release(page);
3850		}
3851		len -= bytes;
3852		buf += bytes;
3853		addr += bytes;
3854	}
3855	up_read(&mm->mmap_sem);
3856
3857	return buf - old_buf;
3858}
3859
3860/**
3861 * access_remote_vm - access another process' address space
3862 * @mm:		the mm_struct of the target address space
3863 * @addr:	start address to access
3864 * @buf:	source or destination buffer
3865 * @len:	number of bytes to transfer
3866 * @write:	whether the access is a write
3867 *
3868 * The caller must hold a reference on @mm.
3869 */
3870int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3871		void *buf, int len, int write)
3872{
3873	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3874}
3875
3876/*
3877 * Access another process' address space.
3878 * Source/target buffer must be kernel space,
3879 * Do not walk the page table directly, use get_user_pages
3880 */
3881int access_process_vm(struct task_struct *tsk, unsigned long addr,
3882		void *buf, int len, int write)
3883{
3884	struct mm_struct *mm;
3885	int ret;
3886
3887	mm = get_task_mm(tsk);
3888	if (!mm)
3889		return 0;
3890
3891	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3892	mmput(mm);
3893
3894	return ret;
3895}
3896
3897/*
3898 * Print the name of a VMA.
3899 */
3900void print_vma_addr(char *prefix, unsigned long ip)
3901{
3902	struct mm_struct *mm = current->mm;
3903	struct vm_area_struct *vma;
3904
3905	/*
3906	 * Do not print if we are in atomic
3907	 * contexts (in exception stacks, etc.):
3908	 */
3909	if (preempt_count())
3910		return;
3911
3912	down_read(&mm->mmap_sem);
3913	vma = find_vma(mm, ip);
3914	if (vma && vma->vm_file) {
3915		struct file *f = vma->vm_file;
3916		char *buf = (char *)__get_free_page(GFP_KERNEL);
3917		if (buf) {
3918			char *p, *s;
3919
3920			p = d_path(&f->f_path, buf, PAGE_SIZE);
3921			if (IS_ERR(p))
3922				p = "?";
3923			s = strrchr(p, '/');
3924			if (s)
3925				p = s+1;
3926			printk("%s%s[%lx+%lx]", prefix, p,
3927					vma->vm_start,
3928					vma->vm_end - vma->vm_start);
3929			free_page((unsigned long)buf);
3930		}
3931	}
3932	up_read(&current->mm->mmap_sem);
3933}
3934
3935#ifdef CONFIG_PROVE_LOCKING
3936void might_fault(void)
3937{
3938	/*
3939	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3940	 * holding the mmap_sem, this is safe because kernel memory doesn't
3941	 * get paged out, therefore we'll never actually fault, and the
3942	 * below annotations will generate false positives.
3943	 */
3944	if (segment_eq(get_fs(), KERNEL_DS))
3945		return;
3946
3947	might_sleep();
3948	/*
3949	 * it would be nicer only to annotate paths which are not under
3950	 * pagefault_disable, however that requires a larger audit and
3951	 * providing helpers like get_user_atomic.
3952	 */
3953	if (!in_atomic() && current->mm)
3954		might_lock_read(&current->mm->mmap_sem);
 
3955}
3956EXPORT_SYMBOL(might_fault);
3957#endif
3958
3959#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3960static void clear_gigantic_page(struct page *page,
3961				unsigned long addr,
3962				unsigned int pages_per_huge_page)
3963{
3964	int i;
3965	struct page *p = page;
3966
3967	might_sleep();
3968	for (i = 0; i < pages_per_huge_page;
3969	     i++, p = mem_map_next(p, page, i)) {
3970		cond_resched();
3971		clear_user_highpage(p, addr + i * PAGE_SIZE);
3972	}
3973}
3974void clear_huge_page(struct page *page,
3975		     unsigned long addr, unsigned int pages_per_huge_page)
3976{
3977	int i;
3978
3979	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3980		clear_gigantic_page(page, addr, pages_per_huge_page);
3981		return;
3982	}
3983
3984	might_sleep();
3985	for (i = 0; i < pages_per_huge_page; i++) {
3986		cond_resched();
3987		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3988	}
3989}
3990
3991static void copy_user_gigantic_page(struct page *dst, struct page *src,
3992				    unsigned long addr,
3993				    struct vm_area_struct *vma,
3994				    unsigned int pages_per_huge_page)
3995{
3996	int i;
3997	struct page *dst_base = dst;
3998	struct page *src_base = src;
3999
4000	for (i = 0; i < pages_per_huge_page; ) {
4001		cond_resched();
4002		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4003
4004		i++;
4005		dst = mem_map_next(dst, dst_base, i);
4006		src = mem_map_next(src, src_base, i);
4007	}
4008}
4009
4010void copy_user_huge_page(struct page *dst, struct page *src,
4011			 unsigned long addr, struct vm_area_struct *vma,
4012			 unsigned int pages_per_huge_page)
4013{
4014	int i;
4015
4016	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4017		copy_user_gigantic_page(dst, src, addr, vma,
4018					pages_per_huge_page);
4019		return;
4020	}
4021
4022	might_sleep();
4023	for (i = 0; i < pages_per_huge_page; i++) {
4024		cond_resched();
4025		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4026	}
4027}
4028#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */