Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/pfn_t.h>
  54#include <linux/writeback.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/kallsyms.h>
  58#include <linux/swapops.h>
  59#include <linux/elf.h>
  60#include <linux/gfp.h>
  61#include <linux/migrate.h>
  62#include <linux/string.h>
  63#include <linux/dma-debug.h>
  64#include <linux/debugfs.h>
  65#include <linux/userfaultfd_k.h>
  66
  67#include <asm/io.h>
  68#include <asm/mmu_context.h>
  69#include <asm/pgalloc.h>
  70#include <asm/uaccess.h>
  71#include <asm/tlb.h>
  72#include <asm/tlbflush.h>
  73#include <asm/pgtable.h>
  74
  75#include "internal.h"
  76
  77#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  78#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  79#endif
  80
  81#ifndef CONFIG_NEED_MULTIPLE_NODES
  82/* use the per-pgdat data instead for discontigmem - mbligh */
  83unsigned long max_mapnr;
  84struct page *mem_map;
  85
  86EXPORT_SYMBOL(max_mapnr);
  87EXPORT_SYMBOL(mem_map);
  88#endif
  89
  90/*
  91 * A number of key systems in x86 including ioremap() rely on the assumption
  92 * that high_memory defines the upper bound on direct map memory, then end
  93 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  95 * and ZONE_HIGHMEM.
  96 */
  97void * high_memory;
  98
  99EXPORT_SYMBOL(high_memory);
 100
 101/*
 102 * Randomize the address space (stacks, mmaps, brk, etc.).
 103 *
 104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 105 *   as ancient (libc5 based) binaries can segfault. )
 106 */
 107int randomize_va_space __read_mostly =
 108#ifdef CONFIG_COMPAT_BRK
 109					1;
 110#else
 111					2;
 112#endif
 113
 114static int __init disable_randmaps(char *s)
 115{
 116	randomize_va_space = 0;
 117	return 1;
 118}
 119__setup("norandmaps", disable_randmaps);
 120
 121unsigned long zero_pfn __read_mostly;
 122unsigned long highest_memmap_pfn __read_mostly;
 123
 124EXPORT_SYMBOL(zero_pfn);
 125
 126/*
 127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 128 */
 129static int __init init_zero_pfn(void)
 130{
 131	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 132	return 0;
 133}
 134core_initcall(init_zero_pfn);
 135
 136
 137#if defined(SPLIT_RSS_COUNTING)
 138
 139void sync_mm_rss(struct mm_struct *mm)
 140{
 141	int i;
 142
 143	for (i = 0; i < NR_MM_COUNTERS; i++) {
 144		if (current->rss_stat.count[i]) {
 145			add_mm_counter(mm, i, current->rss_stat.count[i]);
 146			current->rss_stat.count[i] = 0;
 147		}
 148	}
 149	current->rss_stat.events = 0;
 150}
 151
 152static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 153{
 154	struct task_struct *task = current;
 155
 156	if (likely(task->mm == mm))
 157		task->rss_stat.count[member] += val;
 158	else
 159		add_mm_counter(mm, member, val);
 160}
 161#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 162#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 163
 164/* sync counter once per 64 page faults */
 165#define TASK_RSS_EVENTS_THRESH	(64)
 166static void check_sync_rss_stat(struct task_struct *task)
 167{
 168	if (unlikely(task != current))
 169		return;
 170	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 171		sync_mm_rss(task->mm);
 172}
 173#else /* SPLIT_RSS_COUNTING */
 174
 175#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 176#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 177
 178static void check_sync_rss_stat(struct task_struct *task)
 179{
 180}
 181
 182#endif /* SPLIT_RSS_COUNTING */
 183
 184#ifdef HAVE_GENERIC_MMU_GATHER
 185
 186static bool tlb_next_batch(struct mmu_gather *tlb)
 187{
 188	struct mmu_gather_batch *batch;
 189
 190	batch = tlb->active;
 191	if (batch->next) {
 192		tlb->active = batch->next;
 193		return true;
 194	}
 195
 196	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 197		return false;
 198
 199	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 200	if (!batch)
 201		return false;
 202
 203	tlb->batch_count++;
 204	batch->next = NULL;
 205	batch->nr   = 0;
 206	batch->max  = MAX_GATHER_BATCH;
 207
 208	tlb->active->next = batch;
 209	tlb->active = batch;
 210
 211	return true;
 212}
 213
 214/* tlb_gather_mmu
 215 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 216 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 217 *	users and we're going to destroy the full address space (exit/execve).
 218 */
 219void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 220{
 221	tlb->mm = mm;
 222
 223	/* Is it from 0 to ~0? */
 224	tlb->fullmm     = !(start | (end+1));
 225	tlb->need_flush_all = 0;
 
 
 
 226	tlb->local.next = NULL;
 227	tlb->local.nr   = 0;
 228	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 229	tlb->active     = &tlb->local;
 230	tlb->batch_count = 0;
 231
 232#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 233	tlb->batch = NULL;
 234#endif
 235
 236	__tlb_reset_range(tlb);
 237}
 238
 239static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 240{
 241	if (!tlb->end)
 242		return;
 243
 244	tlb_flush(tlb);
 245	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 246#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 247	tlb_table_flush(tlb);
 248#endif
 249	__tlb_reset_range(tlb);
 250}
 251
 252static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 253{
 254	struct mmu_gather_batch *batch;
 255
 256	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 257		free_pages_and_swap_cache(batch->pages, batch->nr);
 258		batch->nr = 0;
 259	}
 260	tlb->active = &tlb->local;
 261}
 262
 263void tlb_flush_mmu(struct mmu_gather *tlb)
 264{
 
 
 265	tlb_flush_mmu_tlbonly(tlb);
 266	tlb_flush_mmu_free(tlb);
 267}
 268
 269/* tlb_finish_mmu
 270 *	Called at the end of the shootdown operation to free up any resources
 271 *	that were required.
 272 */
 273void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 274{
 275	struct mmu_gather_batch *batch, *next;
 276
 277	tlb_flush_mmu(tlb);
 278
 279	/* keep the page table cache within bounds */
 280	check_pgt_cache();
 281
 282	for (batch = tlb->local.next; batch; batch = next) {
 283		next = batch->next;
 284		free_pages((unsigned long)batch, 0);
 285	}
 286	tlb->local.next = NULL;
 287}
 288
 289/* __tlb_remove_page
 290 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 291 *	handling the additional races in SMP caused by other CPUs caching valid
 292 *	mappings in their TLBs. Returns the number of free page slots left.
 293 *	When out of page slots we must call tlb_flush_mmu().
 294 */
 295int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 296{
 297	struct mmu_gather_batch *batch;
 298
 299	VM_BUG_ON(!tlb->end);
 300
 301	batch = tlb->active;
 302	batch->pages[batch->nr++] = page;
 303	if (batch->nr == batch->max) {
 304		if (!tlb_next_batch(tlb))
 305			return 0;
 306		batch = tlb->active;
 307	}
 308	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 309
 310	return batch->max - batch->nr;
 311}
 312
 313#endif /* HAVE_GENERIC_MMU_GATHER */
 314
 315#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 316
 317/*
 318 * See the comment near struct mmu_table_batch.
 319 */
 320
 321static void tlb_remove_table_smp_sync(void *arg)
 322{
 323	/* Simply deliver the interrupt */
 324}
 325
 326static void tlb_remove_table_one(void *table)
 327{
 328	/*
 329	 * This isn't an RCU grace period and hence the page-tables cannot be
 330	 * assumed to be actually RCU-freed.
 331	 *
 332	 * It is however sufficient for software page-table walkers that rely on
 333	 * IRQ disabling. See the comment near struct mmu_table_batch.
 334	 */
 335	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 336	__tlb_remove_table(table);
 337}
 338
 339static void tlb_remove_table_rcu(struct rcu_head *head)
 340{
 341	struct mmu_table_batch *batch;
 342	int i;
 343
 344	batch = container_of(head, struct mmu_table_batch, rcu);
 345
 346	for (i = 0; i < batch->nr; i++)
 347		__tlb_remove_table(batch->tables[i]);
 348
 349	free_page((unsigned long)batch);
 350}
 351
 352void tlb_table_flush(struct mmu_gather *tlb)
 353{
 354	struct mmu_table_batch **batch = &tlb->batch;
 355
 356	if (*batch) {
 357		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 358		*batch = NULL;
 359	}
 360}
 361
 362void tlb_remove_table(struct mmu_gather *tlb, void *table)
 363{
 364	struct mmu_table_batch **batch = &tlb->batch;
 365
 
 
 366	/*
 367	 * When there's less then two users of this mm there cannot be a
 368	 * concurrent page-table walk.
 369	 */
 370	if (atomic_read(&tlb->mm->mm_users) < 2) {
 371		__tlb_remove_table(table);
 372		return;
 373	}
 374
 375	if (*batch == NULL) {
 376		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 377		if (*batch == NULL) {
 378			tlb_remove_table_one(table);
 379			return;
 380		}
 381		(*batch)->nr = 0;
 382	}
 383	(*batch)->tables[(*batch)->nr++] = table;
 384	if ((*batch)->nr == MAX_TABLE_BATCH)
 385		tlb_table_flush(tlb);
 386}
 387
 388#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 389
 390/*
 391 * Note: this doesn't free the actual pages themselves. That
 392 * has been handled earlier when unmapping all the memory regions.
 393 */
 394static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 395			   unsigned long addr)
 396{
 397	pgtable_t token = pmd_pgtable(*pmd);
 398	pmd_clear(pmd);
 399	pte_free_tlb(tlb, token, addr);
 400	atomic_long_dec(&tlb->mm->nr_ptes);
 401}
 402
 403static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 404				unsigned long addr, unsigned long end,
 405				unsigned long floor, unsigned long ceiling)
 406{
 407	pmd_t *pmd;
 408	unsigned long next;
 409	unsigned long start;
 410
 411	start = addr;
 412	pmd = pmd_offset(pud, addr);
 413	do {
 414		next = pmd_addr_end(addr, end);
 415		if (pmd_none_or_clear_bad(pmd))
 416			continue;
 417		free_pte_range(tlb, pmd, addr);
 418	} while (pmd++, addr = next, addr != end);
 419
 420	start &= PUD_MASK;
 421	if (start < floor)
 422		return;
 423	if (ceiling) {
 424		ceiling &= PUD_MASK;
 425		if (!ceiling)
 426			return;
 427	}
 428	if (end - 1 > ceiling - 1)
 429		return;
 430
 431	pmd = pmd_offset(pud, start);
 432	pud_clear(pud);
 433	pmd_free_tlb(tlb, pmd, start);
 434	mm_dec_nr_pmds(tlb->mm);
 435}
 436
 437static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 438				unsigned long addr, unsigned long end,
 439				unsigned long floor, unsigned long ceiling)
 440{
 441	pud_t *pud;
 442	unsigned long next;
 443	unsigned long start;
 444
 445	start = addr;
 446	pud = pud_offset(pgd, addr);
 447	do {
 448		next = pud_addr_end(addr, end);
 449		if (pud_none_or_clear_bad(pud))
 450			continue;
 451		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 452	} while (pud++, addr = next, addr != end);
 453
 454	start &= PGDIR_MASK;
 455	if (start < floor)
 456		return;
 457	if (ceiling) {
 458		ceiling &= PGDIR_MASK;
 459		if (!ceiling)
 460			return;
 461	}
 462	if (end - 1 > ceiling - 1)
 463		return;
 464
 465	pud = pud_offset(pgd, start);
 466	pgd_clear(pgd);
 467	pud_free_tlb(tlb, pud, start);
 468}
 469
 470/*
 471 * This function frees user-level page tables of a process.
 472 */
 473void free_pgd_range(struct mmu_gather *tlb,
 474			unsigned long addr, unsigned long end,
 475			unsigned long floor, unsigned long ceiling)
 476{
 477	pgd_t *pgd;
 478	unsigned long next;
 479
 480	/*
 481	 * The next few lines have given us lots of grief...
 482	 *
 483	 * Why are we testing PMD* at this top level?  Because often
 484	 * there will be no work to do at all, and we'd prefer not to
 485	 * go all the way down to the bottom just to discover that.
 486	 *
 487	 * Why all these "- 1"s?  Because 0 represents both the bottom
 488	 * of the address space and the top of it (using -1 for the
 489	 * top wouldn't help much: the masks would do the wrong thing).
 490	 * The rule is that addr 0 and floor 0 refer to the bottom of
 491	 * the address space, but end 0 and ceiling 0 refer to the top
 492	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 493	 * that end 0 case should be mythical).
 494	 *
 495	 * Wherever addr is brought up or ceiling brought down, we must
 496	 * be careful to reject "the opposite 0" before it confuses the
 497	 * subsequent tests.  But what about where end is brought down
 498	 * by PMD_SIZE below? no, end can't go down to 0 there.
 499	 *
 500	 * Whereas we round start (addr) and ceiling down, by different
 501	 * masks at different levels, in order to test whether a table
 502	 * now has no other vmas using it, so can be freed, we don't
 503	 * bother to round floor or end up - the tests don't need that.
 504	 */
 505
 506	addr &= PMD_MASK;
 507	if (addr < floor) {
 508		addr += PMD_SIZE;
 509		if (!addr)
 510			return;
 511	}
 512	if (ceiling) {
 513		ceiling &= PMD_MASK;
 514		if (!ceiling)
 515			return;
 516	}
 517	if (end - 1 > ceiling - 1)
 518		end -= PMD_SIZE;
 519	if (addr > end - 1)
 520		return;
 521
 522	pgd = pgd_offset(tlb->mm, addr);
 523	do {
 524		next = pgd_addr_end(addr, end);
 525		if (pgd_none_or_clear_bad(pgd))
 526			continue;
 527		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 528	} while (pgd++, addr = next, addr != end);
 529}
 530
 531void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 532		unsigned long floor, unsigned long ceiling)
 533{
 534	while (vma) {
 535		struct vm_area_struct *next = vma->vm_next;
 536		unsigned long addr = vma->vm_start;
 537
 538		/*
 539		 * Hide vma from rmap and truncate_pagecache before freeing
 540		 * pgtables
 541		 */
 542		unlink_anon_vmas(vma);
 543		unlink_file_vma(vma);
 544
 545		if (is_vm_hugetlb_page(vma)) {
 546			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 547				floor, next? next->vm_start: ceiling);
 548		} else {
 549			/*
 550			 * Optimization: gather nearby vmas into one call down
 551			 */
 552			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 553			       && !is_vm_hugetlb_page(next)) {
 554				vma = next;
 555				next = vma->vm_next;
 556				unlink_anon_vmas(vma);
 557				unlink_file_vma(vma);
 558			}
 559			free_pgd_range(tlb, addr, vma->vm_end,
 560				floor, next? next->vm_start: ceiling);
 561		}
 562		vma = next;
 563	}
 564}
 565
 566int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 
 567{
 568	spinlock_t *ptl;
 569	pgtable_t new = pte_alloc_one(mm, address);
 
 570	if (!new)
 571		return -ENOMEM;
 572
 573	/*
 574	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 575	 * visible before the pte is made visible to other CPUs by being
 576	 * put into page tables.
 577	 *
 578	 * The other side of the story is the pointer chasing in the page
 579	 * table walking code (when walking the page table without locking;
 580	 * ie. most of the time). Fortunately, these data accesses consist
 581	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 582	 * being the notable exception) will already guarantee loads are
 583	 * seen in-order. See the alpha page table accessors for the
 584	 * smp_read_barrier_depends() barriers in page table walking code.
 585	 */
 586	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 587
 588	ptl = pmd_lock(mm, pmd);
 
 589	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 590		atomic_long_inc(&mm->nr_ptes);
 591		pmd_populate(mm, pmd, new);
 592		new = NULL;
 593	}
 
 594	spin_unlock(ptl);
 595	if (new)
 596		pte_free(mm, new);
 
 
 597	return 0;
 598}
 599
 600int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 601{
 602	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 603	if (!new)
 604		return -ENOMEM;
 605
 606	smp_wmb(); /* See comment in __pte_alloc */
 607
 608	spin_lock(&init_mm.page_table_lock);
 609	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 610		pmd_populate_kernel(&init_mm, pmd, new);
 611		new = NULL;
 612	}
 
 613	spin_unlock(&init_mm.page_table_lock);
 614	if (new)
 615		pte_free_kernel(&init_mm, new);
 616	return 0;
 617}
 618
 619static inline void init_rss_vec(int *rss)
 620{
 621	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 622}
 623
 624static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 625{
 626	int i;
 627
 628	if (current->mm == mm)
 629		sync_mm_rss(mm);
 630	for (i = 0; i < NR_MM_COUNTERS; i++)
 631		if (rss[i])
 632			add_mm_counter(mm, i, rss[i]);
 633}
 634
 635/*
 636 * This function is called to print an error when a bad pte
 637 * is found. For example, we might have a PFN-mapped pte in
 638 * a region that doesn't allow it.
 639 *
 640 * The calling function must still handle the error.
 641 */
 642static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 643			  pte_t pte, struct page *page)
 644{
 645	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 646	pud_t *pud = pud_offset(pgd, addr);
 647	pmd_t *pmd = pmd_offset(pud, addr);
 648	struct address_space *mapping;
 649	pgoff_t index;
 650	static unsigned long resume;
 651	static unsigned long nr_shown;
 652	static unsigned long nr_unshown;
 653
 654	/*
 655	 * Allow a burst of 60 reports, then keep quiet for that minute;
 656	 * or allow a steady drip of one report per second.
 657	 */
 658	if (nr_shown == 60) {
 659		if (time_before(jiffies, resume)) {
 660			nr_unshown++;
 661			return;
 662		}
 663		if (nr_unshown) {
 664			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 665				 nr_unshown);
 
 666			nr_unshown = 0;
 667		}
 668		nr_shown = 0;
 669	}
 670	if (nr_shown++ == 0)
 671		resume = jiffies + 60 * HZ;
 672
 673	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 674	index = linear_page_index(vma, addr);
 675
 676	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 677		 current->comm,
 678		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 
 679	if (page)
 680		dump_page(page, "bad pte");
 681	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 682		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 
 683	/*
 684	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 685	 */
 686	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 687		 vma->vm_file,
 688		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 689		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 690		 mapping ? mapping->a_ops->readpage : NULL);
 
 691	dump_stack();
 692	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 693}
 694
 
 
 
 
 
 695/*
 696 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 697 *
 698 * "Special" mappings do not wish to be associated with a "struct page" (either
 699 * it doesn't exist, or it exists but they don't want to touch it). In this
 700 * case, NULL is returned here. "Normal" mappings do have a struct page.
 701 *
 702 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 703 * pte bit, in which case this function is trivial. Secondly, an architecture
 704 * may not have a spare pte bit, which requires a more complicated scheme,
 705 * described below.
 706 *
 707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 708 * special mapping (even if there are underlying and valid "struct pages").
 709 * COWed pages of a VM_PFNMAP are always normal.
 710 *
 711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 714 * mapping will always honor the rule
 715 *
 716 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 717 *
 718 * And for normal mappings this is false.
 719 *
 720 * This restricts such mappings to be a linear translation from virtual address
 721 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 722 * as the vma is not a COW mapping; in that case, we know that all ptes are
 723 * special (because none can have been COWed).
 724 *
 725 *
 726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 727 *
 728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 729 * page" backing, however the difference is that _all_ pages with a struct
 730 * page (that is, those where pfn_valid is true) are refcounted and considered
 731 * normal pages by the VM. The disadvantage is that pages are refcounted
 732 * (which can be slower and simply not an option for some PFNMAP users). The
 733 * advantage is that we don't have to follow the strict linearity rule of
 734 * PFNMAP mappings in order to support COWable mappings.
 735 *
 736 */
 737#ifdef __HAVE_ARCH_PTE_SPECIAL
 738# define HAVE_PTE_SPECIAL 1
 739#else
 740# define HAVE_PTE_SPECIAL 0
 741#endif
 742struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 743				pte_t pte)
 744{
 745	unsigned long pfn = pte_pfn(pte);
 746
 747	if (HAVE_PTE_SPECIAL) {
 748		if (likely(!pte_special(pte)))
 749			goto check_pfn;
 750		if (vma->vm_ops && vma->vm_ops->find_special_page)
 751			return vma->vm_ops->find_special_page(vma, addr);
 752		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 753			return NULL;
 754		if (!is_zero_pfn(pfn))
 755			print_bad_pte(vma, addr, pte, NULL);
 756		return NULL;
 757	}
 758
 759	/* !HAVE_PTE_SPECIAL case follows: */
 760
 761	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 762		if (vma->vm_flags & VM_MIXEDMAP) {
 763			if (!pfn_valid(pfn))
 764				return NULL;
 765			goto out;
 766		} else {
 767			unsigned long off;
 768			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 769			if (pfn == vma->vm_pgoff + off)
 770				return NULL;
 771			if (!is_cow_mapping(vma->vm_flags))
 772				return NULL;
 773		}
 774	}
 775
 776	if (is_zero_pfn(pfn))
 777		return NULL;
 778check_pfn:
 779	if (unlikely(pfn > highest_memmap_pfn)) {
 780		print_bad_pte(vma, addr, pte, NULL);
 781		return NULL;
 782	}
 783
 784	/*
 785	 * NOTE! We still have PageReserved() pages in the page tables.
 786	 * eg. VDSO mappings can cause them to exist.
 787	 */
 788out:
 789	return pfn_to_page(pfn);
 790}
 791
 792#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 793struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 794				pmd_t pmd)
 795{
 796	unsigned long pfn = pmd_pfn(pmd);
 797
 798	/*
 799	 * There is no pmd_special() but there may be special pmds, e.g.
 800	 * in a direct-access (dax) mapping, so let's just replicate the
 801	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 802	 */
 803	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 804		if (vma->vm_flags & VM_MIXEDMAP) {
 805			if (!pfn_valid(pfn))
 806				return NULL;
 807			goto out;
 808		} else {
 809			unsigned long off;
 810			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 811			if (pfn == vma->vm_pgoff + off)
 812				return NULL;
 813			if (!is_cow_mapping(vma->vm_flags))
 814				return NULL;
 815		}
 816	}
 817
 818	if (is_zero_pfn(pfn))
 819		return NULL;
 820	if (unlikely(pfn > highest_memmap_pfn))
 821		return NULL;
 822
 823	/*
 824	 * NOTE! We still have PageReserved() pages in the page tables.
 825	 * eg. VDSO mappings can cause them to exist.
 826	 */
 827out:
 828	return pfn_to_page(pfn);
 829}
 830#endif
 831
 832/*
 833 * copy one vm_area from one task to the other. Assumes the page tables
 834 * already present in the new task to be cleared in the whole range
 835 * covered by this vma.
 836 */
 837
 838static inline unsigned long
 839copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 840		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 841		unsigned long addr, int *rss)
 842{
 843	unsigned long vm_flags = vma->vm_flags;
 844	pte_t pte = *src_pte;
 845	struct page *page;
 846
 847	/* pte contains position in swap or file, so copy. */
 848	if (unlikely(!pte_present(pte))) {
 849		swp_entry_t entry = pte_to_swp_entry(pte);
 
 850
 851		if (likely(!non_swap_entry(entry))) {
 852			if (swap_duplicate(entry) < 0)
 853				return entry.val;
 854
 855			/* make sure dst_mm is on swapoff's mmlist. */
 856			if (unlikely(list_empty(&dst_mm->mmlist))) {
 857				spin_lock(&mmlist_lock);
 858				if (list_empty(&dst_mm->mmlist))
 859					list_add(&dst_mm->mmlist,
 860							&src_mm->mmlist);
 861				spin_unlock(&mmlist_lock);
 862			}
 863			rss[MM_SWAPENTS]++;
 864		} else if (is_migration_entry(entry)) {
 865			page = migration_entry_to_page(entry);
 
 
 
 
 
 
 866
 867			rss[mm_counter(page)]++;
 868
 869			if (is_write_migration_entry(entry) &&
 870					is_cow_mapping(vm_flags)) {
 871				/*
 872				 * COW mappings require pages in both
 873				 * parent and child to be set to read.
 874				 */
 875				make_migration_entry_read(&entry);
 876				pte = swp_entry_to_pte(entry);
 877				if (pte_swp_soft_dirty(*src_pte))
 878					pte = pte_swp_mksoft_dirty(pte);
 879				set_pte_at(src_mm, addr, src_pte, pte);
 880			}
 881		}
 882		goto out_set_pte;
 883	}
 884
 885	/*
 886	 * If it's a COW mapping, write protect it both
 887	 * in the parent and the child
 888	 */
 889	if (is_cow_mapping(vm_flags)) {
 890		ptep_set_wrprotect(src_mm, addr, src_pte);
 891		pte = pte_wrprotect(pte);
 892	}
 893
 894	/*
 895	 * If it's a shared mapping, mark it clean in
 896	 * the child
 897	 */
 898	if (vm_flags & VM_SHARED)
 899		pte = pte_mkclean(pte);
 900	pte = pte_mkold(pte);
 901
 902	page = vm_normal_page(vma, addr, pte);
 903	if (page) {
 904		get_page(page);
 905		page_dup_rmap(page, false);
 906		rss[mm_counter(page)]++;
 
 
 
 907	}
 908
 909out_set_pte:
 910	set_pte_at(dst_mm, addr, dst_pte, pte);
 911	return 0;
 912}
 913
 914static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 915		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 916		   unsigned long addr, unsigned long end)
 917{
 918	pte_t *orig_src_pte, *orig_dst_pte;
 919	pte_t *src_pte, *dst_pte;
 920	spinlock_t *src_ptl, *dst_ptl;
 921	int progress = 0;
 922	int rss[NR_MM_COUNTERS];
 923	swp_entry_t entry = (swp_entry_t){0};
 924
 925again:
 926	init_rss_vec(rss);
 927
 928	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 929	if (!dst_pte)
 930		return -ENOMEM;
 931	src_pte = pte_offset_map(src_pmd, addr);
 932	src_ptl = pte_lockptr(src_mm, src_pmd);
 933	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 934	orig_src_pte = src_pte;
 935	orig_dst_pte = dst_pte;
 936	arch_enter_lazy_mmu_mode();
 937
 938	do {
 939		/*
 940		 * We are holding two locks at this point - either of them
 941		 * could generate latencies in another task on another CPU.
 942		 */
 943		if (progress >= 32) {
 944			progress = 0;
 945			if (need_resched() ||
 946			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 947				break;
 948		}
 949		if (pte_none(*src_pte)) {
 950			progress++;
 951			continue;
 952		}
 953		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 954							vma, addr, rss);
 955		if (entry.val)
 956			break;
 957		progress += 8;
 958	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 959
 960	arch_leave_lazy_mmu_mode();
 961	spin_unlock(src_ptl);
 962	pte_unmap(orig_src_pte);
 963	add_mm_rss_vec(dst_mm, rss);
 964	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 965	cond_resched();
 966
 967	if (entry.val) {
 968		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 969			return -ENOMEM;
 970		progress = 0;
 971	}
 972	if (addr != end)
 973		goto again;
 974	return 0;
 975}
 976
 977static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 978		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 979		unsigned long addr, unsigned long end)
 980{
 981	pmd_t *src_pmd, *dst_pmd;
 982	unsigned long next;
 983
 984	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 985	if (!dst_pmd)
 986		return -ENOMEM;
 987	src_pmd = pmd_offset(src_pud, addr);
 988	do {
 989		next = pmd_addr_end(addr, end);
 990		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
 991			int err;
 992			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 993			err = copy_huge_pmd(dst_mm, src_mm,
 994					    dst_pmd, src_pmd, addr, vma);
 995			if (err == -ENOMEM)
 996				return -ENOMEM;
 997			if (!err)
 998				continue;
 999			/* fall through */
1000		}
1001		if (pmd_none_or_clear_bad(src_pmd))
1002			continue;
1003		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004						vma, addr, next))
1005			return -ENOMEM;
1006	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007	return 0;
1008}
1009
1010static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012		unsigned long addr, unsigned long end)
1013{
1014	pud_t *src_pud, *dst_pud;
1015	unsigned long next;
1016
1017	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018	if (!dst_pud)
1019		return -ENOMEM;
1020	src_pud = pud_offset(src_pgd, addr);
1021	do {
1022		next = pud_addr_end(addr, end);
1023		if (pud_none_or_clear_bad(src_pud))
1024			continue;
1025		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026						vma, addr, next))
1027			return -ENOMEM;
1028	} while (dst_pud++, src_pud++, addr = next, addr != end);
1029	return 0;
1030}
1031
1032int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033		struct vm_area_struct *vma)
1034{
1035	pgd_t *src_pgd, *dst_pgd;
1036	unsigned long next;
1037	unsigned long addr = vma->vm_start;
1038	unsigned long end = vma->vm_end;
1039	unsigned long mmun_start;	/* For mmu_notifiers */
1040	unsigned long mmun_end;		/* For mmu_notifiers */
1041	bool is_cow;
1042	int ret;
1043
1044	/*
1045	 * Don't copy ptes where a page fault will fill them correctly.
1046	 * Fork becomes much lighter when there are big shared or private
1047	 * readonly mappings. The tradeoff is that copy_page_range is more
1048	 * efficient than faulting.
1049	 */
1050	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1051			!vma->anon_vma)
1052		return 0;
 
 
1053
1054	if (is_vm_hugetlb_page(vma))
1055		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1056
1057	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1058		/*
1059		 * We do not free on error cases below as remove_vma
1060		 * gets called on error from higher level routine
1061		 */
1062		ret = track_pfn_copy(vma);
1063		if (ret)
1064			return ret;
1065	}
1066
1067	/*
1068	 * We need to invalidate the secondary MMU mappings only when
1069	 * there could be a permission downgrade on the ptes of the
1070	 * parent mm. And a permission downgrade will only happen if
1071	 * is_cow_mapping() returns true.
1072	 */
1073	is_cow = is_cow_mapping(vma->vm_flags);
1074	mmun_start = addr;
1075	mmun_end   = end;
1076	if (is_cow)
1077		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1078						    mmun_end);
1079
1080	ret = 0;
1081	dst_pgd = pgd_offset(dst_mm, addr);
1082	src_pgd = pgd_offset(src_mm, addr);
1083	do {
1084		next = pgd_addr_end(addr, end);
1085		if (pgd_none_or_clear_bad(src_pgd))
1086			continue;
1087		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1088					    vma, addr, next))) {
1089			ret = -ENOMEM;
1090			break;
1091		}
1092	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1093
1094	if (is_cow)
1095		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1096	return ret;
1097}
1098
1099static unsigned long zap_pte_range(struct mmu_gather *tlb,
1100				struct vm_area_struct *vma, pmd_t *pmd,
1101				unsigned long addr, unsigned long end,
1102				struct zap_details *details)
1103{
1104	struct mm_struct *mm = tlb->mm;
1105	int force_flush = 0;
1106	int rss[NR_MM_COUNTERS];
1107	spinlock_t *ptl;
1108	pte_t *start_pte;
1109	pte_t *pte;
1110	swp_entry_t entry;
1111
1112again:
1113	init_rss_vec(rss);
1114	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1115	pte = start_pte;
1116	arch_enter_lazy_mmu_mode();
1117	do {
1118		pte_t ptent = *pte;
1119		if (pte_none(ptent)) {
1120			continue;
1121		}
1122
1123		if (pte_present(ptent)) {
1124			struct page *page;
1125
1126			page = vm_normal_page(vma, addr, ptent);
1127			if (unlikely(details) && page) {
1128				/*
1129				 * unmap_shared_mapping_pages() wants to
1130				 * invalidate cache without truncating:
1131				 * unmap shared but keep private pages.
1132				 */
1133				if (details->check_mapping &&
1134				    details->check_mapping != page->mapping)
1135					continue;
 
 
 
 
 
 
 
 
1136			}
1137			ptent = ptep_get_and_clear_full(mm, addr, pte,
1138							tlb->fullmm);
1139			tlb_remove_tlb_entry(tlb, pte, addr);
1140			if (unlikely(!page))
1141				continue;
1142
1143			if (!PageAnon(page)) {
 
 
 
 
 
 
 
 
 
1144				if (pte_dirty(ptent)) {
1145					/*
1146					 * oom_reaper cannot tear down dirty
1147					 * pages
1148					 */
1149					if (unlikely(details && details->ignore_dirty))
1150						continue;
1151					force_flush = 1;
1152					set_page_dirty(page);
1153				}
1154				if (pte_young(ptent) &&
1155				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1156					mark_page_accessed(page);
 
1157			}
1158			rss[mm_counter(page)]--;
1159			page_remove_rmap(page, false);
1160			if (unlikely(page_mapcount(page) < 0))
1161				print_bad_pte(vma, addr, ptent, page);
1162			if (unlikely(!__tlb_remove_page(tlb, page))) {
1163				force_flush = 1;
1164				addr += PAGE_SIZE;
1165				break;
1166			}
1167			continue;
1168		}
1169		/* only check swap_entries if explicitly asked for in details */
1170		if (unlikely(details && !details->check_swap_entries))
 
 
 
1171			continue;
 
 
 
 
 
1172
1173		entry = pte_to_swp_entry(ptent);
1174		if (!non_swap_entry(entry))
1175			rss[MM_SWAPENTS]--;
1176		else if (is_migration_entry(entry)) {
1177			struct page *page;
1178
1179			page = migration_entry_to_page(entry);
1180			rss[mm_counter(page)]--;
 
 
 
 
 
 
1181		}
1182		if (unlikely(!free_swap_and_cache(entry)))
1183			print_bad_pte(vma, addr, ptent, NULL);
1184		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185	} while (pte++, addr += PAGE_SIZE, addr != end);
1186
1187	add_mm_rss_vec(mm, rss);
1188	arch_leave_lazy_mmu_mode();
1189
1190	/* Do the actual TLB flush before dropping ptl */
1191	if (force_flush)
 
 
 
 
 
 
 
 
 
1192		tlb_flush_mmu_tlbonly(tlb);
 
 
 
1193	pte_unmap_unlock(start_pte, ptl);
1194
1195	/*
1196	 * If we forced a TLB flush (either due to running out of
1197	 * batch buffers or because we needed to flush dirty TLB
1198	 * entries before releasing the ptl), free the batched
1199	 * memory too. Restart if we didn't do everything.
1200	 */
1201	if (force_flush) {
1202		force_flush = 0;
1203		tlb_flush_mmu_free(tlb);
1204
1205		if (addr != end)
1206			goto again;
1207	}
1208
1209	return addr;
1210}
1211
1212static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1213				struct vm_area_struct *vma, pud_t *pud,
1214				unsigned long addr, unsigned long end,
1215				struct zap_details *details)
1216{
1217	pmd_t *pmd;
1218	unsigned long next;
1219
1220	pmd = pmd_offset(pud, addr);
1221	do {
1222		next = pmd_addr_end(addr, end);
1223		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1224			if (next - addr != HPAGE_PMD_SIZE) {
1225				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1226				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1227				split_huge_pmd(vma, pmd, addr);
 
 
 
 
 
 
 
1228			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1229				goto next;
1230			/* fall through */
1231		}
1232		/*
1233		 * Here there can be other concurrent MADV_DONTNEED or
1234		 * trans huge page faults running, and if the pmd is
1235		 * none or trans huge it can change under us. This is
1236		 * because MADV_DONTNEED holds the mmap_sem in read
1237		 * mode.
1238		 */
1239		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1240			goto next;
1241		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1242next:
1243		cond_resched();
1244	} while (pmd++, addr = next, addr != end);
1245
1246	return addr;
1247}
1248
1249static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1250				struct vm_area_struct *vma, pgd_t *pgd,
1251				unsigned long addr, unsigned long end,
1252				struct zap_details *details)
1253{
1254	pud_t *pud;
1255	unsigned long next;
1256
1257	pud = pud_offset(pgd, addr);
1258	do {
1259		next = pud_addr_end(addr, end);
1260		if (pud_none_or_clear_bad(pud))
1261			continue;
1262		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1263	} while (pud++, addr = next, addr != end);
1264
1265	return addr;
1266}
1267
1268void unmap_page_range(struct mmu_gather *tlb,
1269			     struct vm_area_struct *vma,
1270			     unsigned long addr, unsigned long end,
1271			     struct zap_details *details)
1272{
1273	pgd_t *pgd;
1274	unsigned long next;
1275
 
 
 
1276	BUG_ON(addr >= end);
 
1277	tlb_start_vma(tlb, vma);
1278	pgd = pgd_offset(vma->vm_mm, addr);
1279	do {
1280		next = pgd_addr_end(addr, end);
1281		if (pgd_none_or_clear_bad(pgd))
1282			continue;
1283		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1284	} while (pgd++, addr = next, addr != end);
1285	tlb_end_vma(tlb, vma);
 
1286}
1287
1288
1289static void unmap_single_vma(struct mmu_gather *tlb,
1290		struct vm_area_struct *vma, unsigned long start_addr,
1291		unsigned long end_addr,
1292		struct zap_details *details)
1293{
1294	unsigned long start = max(vma->vm_start, start_addr);
1295	unsigned long end;
1296
1297	if (start >= vma->vm_end)
1298		return;
1299	end = min(vma->vm_end, end_addr);
1300	if (end <= vma->vm_start)
1301		return;
1302
1303	if (vma->vm_file)
1304		uprobe_munmap(vma, start, end);
1305
1306	if (unlikely(vma->vm_flags & VM_PFNMAP))
1307		untrack_pfn(vma, 0, 0);
1308
1309	if (start != end) {
1310		if (unlikely(is_vm_hugetlb_page(vma))) {
1311			/*
1312			 * It is undesirable to test vma->vm_file as it
1313			 * should be non-null for valid hugetlb area.
1314			 * However, vm_file will be NULL in the error
1315			 * cleanup path of mmap_region. When
1316			 * hugetlbfs ->mmap method fails,
1317			 * mmap_region() nullifies vma->vm_file
1318			 * before calling this function to clean up.
1319			 * Since no pte has actually been setup, it is
1320			 * safe to do nothing in this case.
1321			 */
1322			if (vma->vm_file) {
1323				i_mmap_lock_write(vma->vm_file->f_mapping);
1324				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1325				i_mmap_unlock_write(vma->vm_file->f_mapping);
1326			}
1327		} else
1328			unmap_page_range(tlb, vma, start, end, details);
1329	}
1330}
1331
1332/**
1333 * unmap_vmas - unmap a range of memory covered by a list of vma's
1334 * @tlb: address of the caller's struct mmu_gather
1335 * @vma: the starting vma
1336 * @start_addr: virtual address at which to start unmapping
1337 * @end_addr: virtual address at which to end unmapping
1338 *
1339 * Unmap all pages in the vma list.
1340 *
1341 * Only addresses between `start' and `end' will be unmapped.
1342 *
1343 * The VMA list must be sorted in ascending virtual address order.
1344 *
1345 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1346 * range after unmap_vmas() returns.  So the only responsibility here is to
1347 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1348 * drops the lock and schedules.
1349 */
1350void unmap_vmas(struct mmu_gather *tlb,
1351		struct vm_area_struct *vma, unsigned long start_addr,
1352		unsigned long end_addr)
1353{
1354	struct mm_struct *mm = vma->vm_mm;
1355
1356	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1357	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1358		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1359	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1360}
1361
1362/**
1363 * zap_page_range - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @start: starting address of pages to zap
1366 * @size: number of bytes to zap
1367 * @details: details of shared cache invalidation
1368 *
1369 * Caller must protect the VMA list
1370 */
1371void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1372		unsigned long size, struct zap_details *details)
1373{
1374	struct mm_struct *mm = vma->vm_mm;
1375	struct mmu_gather tlb;
1376	unsigned long end = start + size;
1377
1378	lru_add_drain();
1379	tlb_gather_mmu(&tlb, mm, start, end);
1380	update_hiwater_rss(mm);
1381	mmu_notifier_invalidate_range_start(mm, start, end);
1382	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1383		unmap_single_vma(&tlb, vma, start, end, details);
1384	mmu_notifier_invalidate_range_end(mm, start, end);
1385	tlb_finish_mmu(&tlb, start, end);
1386}
1387
1388/**
1389 * zap_page_range_single - remove user pages in a given range
1390 * @vma: vm_area_struct holding the applicable pages
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1393 * @details: details of shared cache invalidation
1394 *
1395 * The range must fit into one VMA.
1396 */
1397static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1398		unsigned long size, struct zap_details *details)
1399{
1400	struct mm_struct *mm = vma->vm_mm;
1401	struct mmu_gather tlb;
1402	unsigned long end = address + size;
1403
1404	lru_add_drain();
1405	tlb_gather_mmu(&tlb, mm, address, end);
1406	update_hiwater_rss(mm);
1407	mmu_notifier_invalidate_range_start(mm, address, end);
1408	unmap_single_vma(&tlb, vma, address, end, details);
1409	mmu_notifier_invalidate_range_end(mm, address, end);
1410	tlb_finish_mmu(&tlb, address, end);
1411}
1412
1413/**
1414 * zap_vma_ptes - remove ptes mapping the vma
1415 * @vma: vm_area_struct holding ptes to be zapped
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1418 *
1419 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1420 *
1421 * The entire address range must be fully contained within the vma.
1422 *
1423 * Returns 0 if successful.
1424 */
1425int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1426		unsigned long size)
1427{
1428	if (address < vma->vm_start || address + size > vma->vm_end ||
1429	    		!(vma->vm_flags & VM_PFNMAP))
1430		return -1;
1431	zap_page_range_single(vma, address, size, NULL);
1432	return 0;
1433}
1434EXPORT_SYMBOL_GPL(zap_vma_ptes);
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1437			spinlock_t **ptl)
1438{
1439	pgd_t * pgd = pgd_offset(mm, addr);
1440	pud_t * pud = pud_alloc(mm, pgd, addr);
1441	if (pud) {
1442		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1443		if (pmd) {
1444			VM_BUG_ON(pmd_trans_huge(*pmd));
1445			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1446		}
1447	}
1448	return NULL;
1449}
1450
1451/*
1452 * This is the old fallback for page remapping.
1453 *
1454 * For historical reasons, it only allows reserved pages. Only
1455 * old drivers should use this, and they needed to mark their
1456 * pages reserved for the old functions anyway.
1457 */
1458static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1459			struct page *page, pgprot_t prot)
1460{
1461	struct mm_struct *mm = vma->vm_mm;
1462	int retval;
1463	pte_t *pte;
1464	spinlock_t *ptl;
1465
1466	retval = -EINVAL;
1467	if (PageAnon(page))
1468		goto out;
1469	retval = -ENOMEM;
1470	flush_dcache_page(page);
1471	pte = get_locked_pte(mm, addr, &ptl);
1472	if (!pte)
1473		goto out;
1474	retval = -EBUSY;
1475	if (!pte_none(*pte))
1476		goto out_unlock;
1477
1478	/* Ok, finally just insert the thing.. */
1479	get_page(page);
1480	inc_mm_counter_fast(mm, mm_counter_file(page));
1481	page_add_file_rmap(page);
1482	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1483
1484	retval = 0;
1485	pte_unmap_unlock(pte, ptl);
1486	return retval;
1487out_unlock:
1488	pte_unmap_unlock(pte, ptl);
1489out:
1490	return retval;
1491}
1492
1493/**
1494 * vm_insert_page - insert single page into user vma
1495 * @vma: user vma to map to
1496 * @addr: target user address of this page
1497 * @page: source kernel page
1498 *
1499 * This allows drivers to insert individual pages they've allocated
1500 * into a user vma.
1501 *
1502 * The page has to be a nice clean _individual_ kernel allocation.
1503 * If you allocate a compound page, you need to have marked it as
1504 * such (__GFP_COMP), or manually just split the page up yourself
1505 * (see split_page()).
1506 *
1507 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1508 * took an arbitrary page protection parameter. This doesn't allow
1509 * that. Your vma protection will have to be set up correctly, which
1510 * means that if you want a shared writable mapping, you'd better
1511 * ask for a shared writable mapping!
1512 *
1513 * The page does not need to be reserved.
1514 *
1515 * Usually this function is called from f_op->mmap() handler
1516 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1517 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1518 * function from other places, for example from page-fault handler.
1519 */
1520int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1521			struct page *page)
1522{
1523	if (addr < vma->vm_start || addr >= vma->vm_end)
1524		return -EFAULT;
1525	if (!page_count(page))
1526		return -EINVAL;
1527	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1528		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1529		BUG_ON(vma->vm_flags & VM_PFNMAP);
1530		vma->vm_flags |= VM_MIXEDMAP;
1531	}
1532	return insert_page(vma, addr, page, vma->vm_page_prot);
1533}
1534EXPORT_SYMBOL(vm_insert_page);
1535
1536static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1537			pfn_t pfn, pgprot_t prot)
1538{
1539	struct mm_struct *mm = vma->vm_mm;
1540	int retval;
1541	pte_t *pte, entry;
1542	spinlock_t *ptl;
1543
1544	retval = -ENOMEM;
1545	pte = get_locked_pte(mm, addr, &ptl);
1546	if (!pte)
1547		goto out;
1548	retval = -EBUSY;
1549	if (!pte_none(*pte))
1550		goto out_unlock;
1551
1552	/* Ok, finally just insert the thing.. */
1553	if (pfn_t_devmap(pfn))
1554		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1555	else
1556		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1557	set_pte_at(mm, addr, pte, entry);
1558	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1559
1560	retval = 0;
1561out_unlock:
1562	pte_unmap_unlock(pte, ptl);
1563out:
1564	return retval;
1565}
1566
1567/**
1568 * vm_insert_pfn - insert single pfn into user vma
1569 * @vma: user vma to map to
1570 * @addr: target user address of this page
1571 * @pfn: source kernel pfn
1572 *
1573 * Similar to vm_insert_page, this allows drivers to insert individual pages
1574 * they've allocated into a user vma. Same comments apply.
1575 *
1576 * This function should only be called from a vm_ops->fault handler, and
1577 * in that case the handler should return NULL.
1578 *
1579 * vma cannot be a COW mapping.
1580 *
1581 * As this is called only for pages that do not currently exist, we
1582 * do not need to flush old virtual caches or the TLB.
1583 */
1584int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1585			unsigned long pfn)
1586{
1587	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1588}
1589EXPORT_SYMBOL(vm_insert_pfn);
1590
1591/**
1592 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1593 * @vma: user vma to map to
1594 * @addr: target user address of this page
1595 * @pfn: source kernel pfn
1596 * @pgprot: pgprot flags for the inserted page
1597 *
1598 * This is exactly like vm_insert_pfn, except that it allows drivers to
1599 * to override pgprot on a per-page basis.
1600 *
1601 * This only makes sense for IO mappings, and it makes no sense for
1602 * cow mappings.  In general, using multiple vmas is preferable;
1603 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1604 * impractical.
1605 */
1606int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1607			unsigned long pfn, pgprot_t pgprot)
1608{
1609	int ret;
 
1610	/*
1611	 * Technically, architectures with pte_special can avoid all these
1612	 * restrictions (same for remap_pfn_range).  However we would like
1613	 * consistency in testing and feature parity among all, so we should
1614	 * try to keep these invariants in place for everybody.
1615	 */
1616	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1617	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1618						(VM_PFNMAP|VM_MIXEDMAP));
1619	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1620	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1621
1622	if (addr < vma->vm_start || addr >= vma->vm_end)
1623		return -EFAULT;
1624	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1625		return -EINVAL;
1626
1627	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1628
1629	return ret;
1630}
1631EXPORT_SYMBOL(vm_insert_pfn_prot);
1632
1633int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634			pfn_t pfn)
1635{
1636	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1637
1638	if (addr < vma->vm_start || addr >= vma->vm_end)
1639		return -EFAULT;
1640
1641	/*
1642	 * If we don't have pte special, then we have to use the pfn_valid()
1643	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644	 * refcount the page if pfn_valid is true (hence insert_page rather
1645	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1646	 * without pte special, it would there be refcounted as a normal page.
1647	 */
1648	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1649		struct page *page;
1650
1651		/*
1652		 * At this point we are committed to insert_page()
1653		 * regardless of whether the caller specified flags that
1654		 * result in pfn_t_has_page() == false.
1655		 */
1656		page = pfn_to_page(pfn_t_to_pfn(pfn));
1657		return insert_page(vma, addr, page, vma->vm_page_prot);
1658	}
1659	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1660}
1661EXPORT_SYMBOL(vm_insert_mixed);
1662
1663/*
1664 * maps a range of physical memory into the requested pages. the old
1665 * mappings are removed. any references to nonexistent pages results
1666 * in null mappings (currently treated as "copy-on-access")
1667 */
1668static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1669			unsigned long addr, unsigned long end,
1670			unsigned long pfn, pgprot_t prot)
1671{
1672	pte_t *pte;
1673	spinlock_t *ptl;
1674
1675	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1676	if (!pte)
1677		return -ENOMEM;
1678	arch_enter_lazy_mmu_mode();
1679	do {
1680		BUG_ON(!pte_none(*pte));
1681		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1682		pfn++;
1683	} while (pte++, addr += PAGE_SIZE, addr != end);
1684	arch_leave_lazy_mmu_mode();
1685	pte_unmap_unlock(pte - 1, ptl);
1686	return 0;
1687}
1688
1689static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1690			unsigned long addr, unsigned long end,
1691			unsigned long pfn, pgprot_t prot)
1692{
1693	pmd_t *pmd;
1694	unsigned long next;
1695
1696	pfn -= addr >> PAGE_SHIFT;
1697	pmd = pmd_alloc(mm, pud, addr);
1698	if (!pmd)
1699		return -ENOMEM;
1700	VM_BUG_ON(pmd_trans_huge(*pmd));
1701	do {
1702		next = pmd_addr_end(addr, end);
1703		if (remap_pte_range(mm, pmd, addr, next,
1704				pfn + (addr >> PAGE_SHIFT), prot))
1705			return -ENOMEM;
1706	} while (pmd++, addr = next, addr != end);
1707	return 0;
1708}
1709
1710static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1711			unsigned long addr, unsigned long end,
1712			unsigned long pfn, pgprot_t prot)
1713{
1714	pud_t *pud;
1715	unsigned long next;
1716
1717	pfn -= addr >> PAGE_SHIFT;
1718	pud = pud_alloc(mm, pgd, addr);
1719	if (!pud)
1720		return -ENOMEM;
1721	do {
1722		next = pud_addr_end(addr, end);
1723		if (remap_pmd_range(mm, pud, addr, next,
1724				pfn + (addr >> PAGE_SHIFT), prot))
1725			return -ENOMEM;
1726	} while (pud++, addr = next, addr != end);
1727	return 0;
1728}
1729
1730/**
1731 * remap_pfn_range - remap kernel memory to userspace
1732 * @vma: user vma to map to
1733 * @addr: target user address to start at
1734 * @pfn: physical address of kernel memory
1735 * @size: size of map area
1736 * @prot: page protection flags for this mapping
1737 *
1738 *  Note: this is only safe if the mm semaphore is held when called.
1739 */
1740int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1741		    unsigned long pfn, unsigned long size, pgprot_t prot)
1742{
1743	pgd_t *pgd;
1744	unsigned long next;
1745	unsigned long end = addr + PAGE_ALIGN(size);
1746	struct mm_struct *mm = vma->vm_mm;
1747	int err;
1748
1749	/*
1750	 * Physically remapped pages are special. Tell the
1751	 * rest of the world about it:
1752	 *   VM_IO tells people not to look at these pages
1753	 *	(accesses can have side effects).
1754	 *   VM_PFNMAP tells the core MM that the base pages are just
1755	 *	raw PFN mappings, and do not have a "struct page" associated
1756	 *	with them.
1757	 *   VM_DONTEXPAND
1758	 *      Disable vma merging and expanding with mremap().
1759	 *   VM_DONTDUMP
1760	 *      Omit vma from core dump, even when VM_IO turned off.
1761	 *
1762	 * There's a horrible special case to handle copy-on-write
1763	 * behaviour that some programs depend on. We mark the "original"
1764	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1765	 * See vm_normal_page() for details.
1766	 */
1767	if (is_cow_mapping(vma->vm_flags)) {
1768		if (addr != vma->vm_start || end != vma->vm_end)
1769			return -EINVAL;
1770		vma->vm_pgoff = pfn;
1771	}
1772
1773	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1774	if (err)
1775		return -EINVAL;
1776
1777	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1778
1779	BUG_ON(addr >= end);
1780	pfn -= addr >> PAGE_SHIFT;
1781	pgd = pgd_offset(mm, addr);
1782	flush_cache_range(vma, addr, end);
1783	do {
1784		next = pgd_addr_end(addr, end);
1785		err = remap_pud_range(mm, pgd, addr, next,
1786				pfn + (addr >> PAGE_SHIFT), prot);
1787		if (err)
1788			break;
1789	} while (pgd++, addr = next, addr != end);
1790
1791	if (err)
1792		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1793
1794	return err;
1795}
1796EXPORT_SYMBOL(remap_pfn_range);
1797
1798/**
1799 * vm_iomap_memory - remap memory to userspace
1800 * @vma: user vma to map to
1801 * @start: start of area
1802 * @len: size of area
1803 *
1804 * This is a simplified io_remap_pfn_range() for common driver use. The
1805 * driver just needs to give us the physical memory range to be mapped,
1806 * we'll figure out the rest from the vma information.
1807 *
1808 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1809 * whatever write-combining details or similar.
1810 */
1811int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1812{
1813	unsigned long vm_len, pfn, pages;
1814
1815	/* Check that the physical memory area passed in looks valid */
1816	if (start + len < start)
1817		return -EINVAL;
1818	/*
1819	 * You *really* shouldn't map things that aren't page-aligned,
1820	 * but we've historically allowed it because IO memory might
1821	 * just have smaller alignment.
1822	 */
1823	len += start & ~PAGE_MASK;
1824	pfn = start >> PAGE_SHIFT;
1825	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1826	if (pfn + pages < pfn)
1827		return -EINVAL;
1828
1829	/* We start the mapping 'vm_pgoff' pages into the area */
1830	if (vma->vm_pgoff > pages)
1831		return -EINVAL;
1832	pfn += vma->vm_pgoff;
1833	pages -= vma->vm_pgoff;
1834
1835	/* Can we fit all of the mapping? */
1836	vm_len = vma->vm_end - vma->vm_start;
1837	if (vm_len >> PAGE_SHIFT > pages)
1838		return -EINVAL;
1839
1840	/* Ok, let it rip */
1841	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1842}
1843EXPORT_SYMBOL(vm_iomap_memory);
1844
1845static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1846				     unsigned long addr, unsigned long end,
1847				     pte_fn_t fn, void *data)
1848{
1849	pte_t *pte;
1850	int err;
1851	pgtable_t token;
1852	spinlock_t *uninitialized_var(ptl);
1853
1854	pte = (mm == &init_mm) ?
1855		pte_alloc_kernel(pmd, addr) :
1856		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1857	if (!pte)
1858		return -ENOMEM;
1859
1860	BUG_ON(pmd_huge(*pmd));
1861
1862	arch_enter_lazy_mmu_mode();
1863
1864	token = pmd_pgtable(*pmd);
1865
1866	do {
1867		err = fn(pte++, token, addr, data);
1868		if (err)
1869			break;
1870	} while (addr += PAGE_SIZE, addr != end);
1871
1872	arch_leave_lazy_mmu_mode();
1873
1874	if (mm != &init_mm)
1875		pte_unmap_unlock(pte-1, ptl);
1876	return err;
1877}
1878
1879static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1880				     unsigned long addr, unsigned long end,
1881				     pte_fn_t fn, void *data)
1882{
1883	pmd_t *pmd;
1884	unsigned long next;
1885	int err;
1886
1887	BUG_ON(pud_huge(*pud));
1888
1889	pmd = pmd_alloc(mm, pud, addr);
1890	if (!pmd)
1891		return -ENOMEM;
1892	do {
1893		next = pmd_addr_end(addr, end);
1894		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1895		if (err)
1896			break;
1897	} while (pmd++, addr = next, addr != end);
1898	return err;
1899}
1900
1901static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1902				     unsigned long addr, unsigned long end,
1903				     pte_fn_t fn, void *data)
1904{
1905	pud_t *pud;
1906	unsigned long next;
1907	int err;
1908
1909	pud = pud_alloc(mm, pgd, addr);
1910	if (!pud)
1911		return -ENOMEM;
1912	do {
1913		next = pud_addr_end(addr, end);
1914		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1915		if (err)
1916			break;
1917	} while (pud++, addr = next, addr != end);
1918	return err;
1919}
1920
1921/*
1922 * Scan a region of virtual memory, filling in page tables as necessary
1923 * and calling a provided function on each leaf page table.
1924 */
1925int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1926			unsigned long size, pte_fn_t fn, void *data)
1927{
1928	pgd_t *pgd;
1929	unsigned long next;
1930	unsigned long end = addr + size;
1931	int err;
1932
1933	if (WARN_ON(addr >= end))
1934		return -EINVAL;
1935
1936	pgd = pgd_offset(mm, addr);
1937	do {
1938		next = pgd_addr_end(addr, end);
1939		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1940		if (err)
1941			break;
1942	} while (pgd++, addr = next, addr != end);
1943
1944	return err;
1945}
1946EXPORT_SYMBOL_GPL(apply_to_page_range);
1947
1948/*
1949 * handle_pte_fault chooses page fault handler according to an entry which was
1950 * read non-atomically.  Before making any commitment, on those architectures
1951 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1952 * parts, do_swap_page must check under lock before unmapping the pte and
1953 * proceeding (but do_wp_page is only called after already making such a check;
 
1954 * and do_anonymous_page can safely check later on).
1955 */
1956static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1957				pte_t *page_table, pte_t orig_pte)
1958{
1959	int same = 1;
1960#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1961	if (sizeof(pte_t) > sizeof(unsigned long)) {
1962		spinlock_t *ptl = pte_lockptr(mm, pmd);
1963		spin_lock(ptl);
1964		same = pte_same(*page_table, orig_pte);
1965		spin_unlock(ptl);
1966	}
1967#endif
1968	pte_unmap(page_table);
1969	return same;
1970}
1971
1972static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1973{
1974	debug_dma_assert_idle(src);
1975
1976	/*
1977	 * If the source page was a PFN mapping, we don't have
1978	 * a "struct page" for it. We do a best-effort copy by
1979	 * just copying from the original user address. If that
1980	 * fails, we just zero-fill it. Live with it.
1981	 */
1982	if (unlikely(!src)) {
1983		void *kaddr = kmap_atomic(dst);
1984		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1985
1986		/*
1987		 * This really shouldn't fail, because the page is there
1988		 * in the page tables. But it might just be unreadable,
1989		 * in which case we just give up and fill the result with
1990		 * zeroes.
1991		 */
1992		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1993			clear_page(kaddr);
1994		kunmap_atomic(kaddr);
1995		flush_dcache_page(dst);
1996	} else
1997		copy_user_highpage(dst, src, va, vma);
1998}
1999
2000static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2001{
2002	struct file *vm_file = vma->vm_file;
2003
2004	if (vm_file)
2005		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2006
2007	/*
2008	 * Special mappings (e.g. VDSO) do not have any file so fake
2009	 * a default GFP_KERNEL for them.
2010	 */
2011	return GFP_KERNEL;
2012}
2013
2014/*
2015 * Notify the address space that the page is about to become writable so that
2016 * it can prohibit this or wait for the page to get into an appropriate state.
2017 *
2018 * We do this without the lock held, so that it can sleep if it needs to.
2019 */
2020static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2021	       unsigned long address)
2022{
2023	struct vm_fault vmf;
2024	int ret;
2025
2026	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2027	vmf.pgoff = page->index;
2028	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2029	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2030	vmf.page = page;
2031	vmf.cow_page = NULL;
2032
2033	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2034	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2035		return ret;
2036	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2037		lock_page(page);
2038		if (!page->mapping) {
2039			unlock_page(page);
2040			return 0; /* retry */
2041		}
2042		ret |= VM_FAULT_LOCKED;
2043	} else
2044		VM_BUG_ON_PAGE(!PageLocked(page), page);
2045	return ret;
2046}
2047
2048/*
2049 * Handle write page faults for pages that can be reused in the current vma
 
 
2050 *
2051 * This can happen either due to the mapping being with the VM_SHARED flag,
2052 * or due to us being the last reference standing to the page. In either
2053 * case, all we need to do here is to mark the page as writable and update
2054 * any related book-keeping.
2055 */
2056static inline int wp_page_reuse(struct mm_struct *mm,
2057			struct vm_area_struct *vma, unsigned long address,
2058			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2059			struct page *page, int page_mkwrite,
2060			int dirty_shared)
 
 
 
 
 
 
2061	__releases(ptl)
2062{
 
2063	pte_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064	/*
2065	 * Clear the pages cpupid information as the existing
2066	 * information potentially belongs to a now completely
2067	 * unrelated process.
2068	 */
2069	if (page)
2070		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071
2072	flush_cache_page(vma, address, pte_pfn(orig_pte));
2073	entry = pte_mkyoung(orig_pte);
2074	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2075	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2076		update_mmu_cache(vma, address, page_table);
2077	pte_unmap_unlock(page_table, ptl);
2078
2079	if (dirty_shared) {
2080		struct address_space *mapping;
2081		int dirtied;
2082
2083		if (!page_mkwrite)
2084			lock_page(page);
2085
2086		dirtied = set_page_dirty(page);
2087		VM_BUG_ON_PAGE(PageAnon(page), page);
2088		mapping = page->mapping;
2089		unlock_page(page);
2090		put_page(page);
2091
2092		if ((dirtied || page_mkwrite) && mapping) {
2093			/*
2094			 * Some device drivers do not set page.mapping
2095			 * but still dirty their pages
2096			 */
2097			balance_dirty_pages_ratelimited(mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098		}
2099
2100		if (!page_mkwrite)
2101			file_update_time(vma->vm_file);
2102	}
2103
2104	return VM_FAULT_WRITE;
2105}
2106
2107/*
2108 * Handle the case of a page which we actually need to copy to a new page.
2109 *
2110 * Called with mmap_sem locked and the old page referenced, but
2111 * without the ptl held.
2112 *
2113 * High level logic flow:
2114 *
2115 * - Allocate a page, copy the content of the old page to the new one.
2116 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2117 * - Take the PTL. If the pte changed, bail out and release the allocated page
2118 * - If the pte is still the way we remember it, update the page table and all
2119 *   relevant references. This includes dropping the reference the page-table
2120 *   held to the old page, as well as updating the rmap.
2121 * - In any case, unlock the PTL and drop the reference we took to the old page.
2122 */
2123static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2124			unsigned long address, pte_t *page_table, pmd_t *pmd,
2125			pte_t orig_pte, struct page *old_page)
2126{
2127	struct page *new_page = NULL;
2128	spinlock_t *ptl = NULL;
2129	pte_t entry;
2130	int page_copied = 0;
2131	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2132	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2133	struct mem_cgroup *memcg;
2134
2135	if (unlikely(anon_vma_prepare(vma)))
2136		goto oom;
2137
2138	if (is_zero_pfn(pte_pfn(orig_pte))) {
2139		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2140		if (!new_page)
2141			goto oom;
2142	} else {
2143		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2144		if (!new_page)
2145			goto oom;
2146		cow_user_page(new_page, old_page, address, vma);
2147	}
 
2148
2149	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2150		goto oom_free_new;
2151
2152	__SetPageUptodate(new_page);
2153
2154	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2155
2156	/*
2157	 * Re-check the pte - we dropped the lock
2158	 */
2159	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2160	if (likely(pte_same(*page_table, orig_pte))) {
2161		if (old_page) {
2162			if (!PageAnon(old_page)) {
2163				dec_mm_counter_fast(mm,
2164						mm_counter_file(old_page));
2165				inc_mm_counter_fast(mm, MM_ANONPAGES);
2166			}
2167		} else {
2168			inc_mm_counter_fast(mm, MM_ANONPAGES);
2169		}
2170		flush_cache_page(vma, address, pte_pfn(orig_pte));
2171		entry = mk_pte(new_page, vma->vm_page_prot);
2172		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2173		/*
2174		 * Clear the pte entry and flush it first, before updating the
2175		 * pte with the new entry. This will avoid a race condition
2176		 * seen in the presence of one thread doing SMC and another
2177		 * thread doing COW.
2178		 */
2179		ptep_clear_flush_notify(vma, address, page_table);
2180		page_add_new_anon_rmap(new_page, vma, address, false);
2181		mem_cgroup_commit_charge(new_page, memcg, false, false);
2182		lru_cache_add_active_or_unevictable(new_page, vma);
2183		/*
2184		 * We call the notify macro here because, when using secondary
2185		 * mmu page tables (such as kvm shadow page tables), we want the
2186		 * new page to be mapped directly into the secondary page table.
2187		 */
2188		set_pte_at_notify(mm, address, page_table, entry);
2189		update_mmu_cache(vma, address, page_table);
2190		if (old_page) {
2191			/*
2192			 * Only after switching the pte to the new page may
2193			 * we remove the mapcount here. Otherwise another
2194			 * process may come and find the rmap count decremented
2195			 * before the pte is switched to the new page, and
2196			 * "reuse" the old page writing into it while our pte
2197			 * here still points into it and can be read by other
2198			 * threads.
2199			 *
2200			 * The critical issue is to order this
2201			 * page_remove_rmap with the ptp_clear_flush above.
2202			 * Those stores are ordered by (if nothing else,)
2203			 * the barrier present in the atomic_add_negative
2204			 * in page_remove_rmap.
2205			 *
2206			 * Then the TLB flush in ptep_clear_flush ensures that
2207			 * no process can access the old page before the
2208			 * decremented mapcount is visible. And the old page
2209			 * cannot be reused until after the decremented
2210			 * mapcount is visible. So transitively, TLBs to
2211			 * old page will be flushed before it can be reused.
2212			 */
2213			page_remove_rmap(old_page, false);
2214		}
2215
2216		/* Free the old page.. */
2217		new_page = old_page;
2218		page_copied = 1;
2219	} else {
2220		mem_cgroup_cancel_charge(new_page, memcg, false);
2221	}
2222
2223	if (new_page)
2224		put_page(new_page);
2225
2226	pte_unmap_unlock(page_table, ptl);
2227	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 
2228	if (old_page) {
2229		/*
2230		 * Don't let another task, with possibly unlocked vma,
2231		 * keep the mlocked page.
2232		 */
2233		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2234			lock_page(old_page);	/* LRU manipulation */
2235			if (PageMlocked(old_page))
2236				munlock_vma_page(old_page);
2237			unlock_page(old_page);
2238		}
2239		put_page(old_page);
2240	}
2241	return page_copied ? VM_FAULT_WRITE : 0;
2242oom_free_new:
2243	put_page(new_page);
2244oom:
2245	if (old_page)
2246		put_page(old_page);
2247	return VM_FAULT_OOM;
2248}
2249
2250/*
2251 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2252 * mapping
2253 */
2254static int wp_pfn_shared(struct mm_struct *mm,
2255			struct vm_area_struct *vma, unsigned long address,
2256			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2257			pmd_t *pmd)
2258{
2259	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2260		struct vm_fault vmf = {
2261			.page = NULL,
2262			.pgoff = linear_page_index(vma, address),
2263			.virtual_address = (void __user *)(address & PAGE_MASK),
2264			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2265		};
2266		int ret;
2267
2268		pte_unmap_unlock(page_table, ptl);
2269		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2270		if (ret & VM_FAULT_ERROR)
2271			return ret;
2272		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2273		/*
2274		 * We might have raced with another page fault while we
2275		 * released the pte_offset_map_lock.
2276		 */
2277		if (!pte_same(*page_table, orig_pte)) {
2278			pte_unmap_unlock(page_table, ptl);
2279			return 0;
2280		}
2281	}
2282	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2283			     NULL, 0, 0);
2284}
2285
2286static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2287			  unsigned long address, pte_t *page_table,
2288			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2289			  struct page *old_page)
2290	__releases(ptl)
2291{
2292	int page_mkwrite = 0;
2293
2294	get_page(old_page);
2295
2296	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2297		int tmp;
2298
2299		pte_unmap_unlock(page_table, ptl);
2300		tmp = do_page_mkwrite(vma, old_page, address);
2301		if (unlikely(!tmp || (tmp &
2302				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2303			put_page(old_page);
2304			return tmp;
2305		}
2306		/*
2307		 * Since we dropped the lock we need to revalidate
2308		 * the PTE as someone else may have changed it.  If
2309		 * they did, we just return, as we can count on the
2310		 * MMU to tell us if they didn't also make it writable.
2311		 */
2312		page_table = pte_offset_map_lock(mm, pmd, address,
2313						 &ptl);
2314		if (!pte_same(*page_table, orig_pte)) {
2315			unlock_page(old_page);
2316			pte_unmap_unlock(page_table, ptl);
2317			put_page(old_page);
2318			return 0;
2319		}
2320		page_mkwrite = 1;
2321	}
2322
2323	return wp_page_reuse(mm, vma, address, page_table, ptl,
2324			     orig_pte, old_page, page_mkwrite, 1);
2325}
2326
2327/*
2328 * This routine handles present pages, when users try to write
2329 * to a shared page. It is done by copying the page to a new address
2330 * and decrementing the shared-page counter for the old page.
2331 *
2332 * Note that this routine assumes that the protection checks have been
2333 * done by the caller (the low-level page fault routine in most cases).
2334 * Thus we can safely just mark it writable once we've done any necessary
2335 * COW.
2336 *
2337 * We also mark the page dirty at this point even though the page will
2338 * change only once the write actually happens. This avoids a few races,
2339 * and potentially makes it more efficient.
2340 *
2341 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2342 * but allow concurrent faults), with pte both mapped and locked.
2343 * We return with mmap_sem still held, but pte unmapped and unlocked.
2344 */
2345static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2346		unsigned long address, pte_t *page_table, pmd_t *pmd,
2347		spinlock_t *ptl, pte_t orig_pte)
2348	__releases(ptl)
2349{
2350	struct page *old_page;
2351
2352	old_page = vm_normal_page(vma, address, orig_pte);
2353	if (!old_page) {
2354		/*
2355		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2356		 * VM_PFNMAP VMA.
2357		 *
2358		 * We should not cow pages in a shared writeable mapping.
2359		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2360		 */
2361		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2362				     (VM_WRITE|VM_SHARED))
2363			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2364					     orig_pte, pmd);
2365
2366		pte_unmap_unlock(page_table, ptl);
2367		return wp_page_copy(mm, vma, address, page_table, pmd,
2368				    orig_pte, old_page);
2369	}
2370
2371	/*
2372	 * Take out anonymous pages first, anonymous shared vmas are
2373	 * not dirty accountable.
2374	 */
2375	if (PageAnon(old_page) && !PageKsm(old_page)) {
2376		int total_mapcount;
2377		if (!trylock_page(old_page)) {
2378			get_page(old_page);
2379			pte_unmap_unlock(page_table, ptl);
2380			lock_page(old_page);
2381			page_table = pte_offset_map_lock(mm, pmd, address,
2382							 &ptl);
2383			if (!pte_same(*page_table, orig_pte)) {
2384				unlock_page(old_page);
2385				pte_unmap_unlock(page_table, ptl);
2386				put_page(old_page);
2387				return 0;
2388			}
2389			put_page(old_page);
2390		}
2391		if (reuse_swap_page(old_page, &total_mapcount)) {
2392			if (total_mapcount == 1) {
2393				/*
2394				 * The page is all ours. Move it to
2395				 * our anon_vma so the rmap code will
2396				 * not search our parent or siblings.
2397				 * Protected against the rmap code by
2398				 * the page lock.
2399				 */
2400				page_move_anon_rmap(compound_head(old_page),
2401						    vma, address);
2402			}
2403			unlock_page(old_page);
2404			return wp_page_reuse(mm, vma, address, page_table, ptl,
2405					     orig_pte, old_page, 0, 0);
2406		}
2407		unlock_page(old_page);
2408	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2409					(VM_WRITE|VM_SHARED))) {
2410		return wp_page_shared(mm, vma, address, page_table, pmd,
2411				      ptl, orig_pte, old_page);
2412	}
2413
2414	/*
2415	 * Ok, we need to copy. Oh, well..
2416	 */
2417	get_page(old_page);
2418
2419	pte_unmap_unlock(page_table, ptl);
2420	return wp_page_copy(mm, vma, address, page_table, pmd,
2421			    orig_pte, old_page);
2422}
2423
2424static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2425		unsigned long start_addr, unsigned long end_addr,
2426		struct zap_details *details)
2427{
2428	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2429}
2430
2431static inline void unmap_mapping_range_tree(struct rb_root *root,
2432					    struct zap_details *details)
2433{
2434	struct vm_area_struct *vma;
2435	pgoff_t vba, vea, zba, zea;
2436
2437	vma_interval_tree_foreach(vma, root,
2438			details->first_index, details->last_index) {
2439
2440		vba = vma->vm_pgoff;
2441		vea = vba + vma_pages(vma) - 1;
 
2442		zba = details->first_index;
2443		if (zba < vba)
2444			zba = vba;
2445		zea = details->last_index;
2446		if (zea > vea)
2447			zea = vea;
2448
2449		unmap_mapping_range_vma(vma,
2450			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2451			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2452				details);
2453	}
2454}
2455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2456/**
2457 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2458 * address_space corresponding to the specified page range in the underlying
2459 * file.
2460 *
2461 * @mapping: the address space containing mmaps to be unmapped.
2462 * @holebegin: byte in first page to unmap, relative to the start of
2463 * the underlying file.  This will be rounded down to a PAGE_SIZE
2464 * boundary.  Note that this is different from truncate_pagecache(), which
2465 * must keep the partial page.  In contrast, we must get rid of
2466 * partial pages.
2467 * @holelen: size of prospective hole in bytes.  This will be rounded
2468 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2469 * end of the file.
2470 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2471 * but 0 when invalidating pagecache, don't throw away private data.
2472 */
2473void unmap_mapping_range(struct address_space *mapping,
2474		loff_t const holebegin, loff_t const holelen, int even_cows)
2475{
2476	struct zap_details details = { };
2477	pgoff_t hba = holebegin >> PAGE_SHIFT;
2478	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2479
2480	/* Check for overflow. */
2481	if (sizeof(holelen) > sizeof(hlen)) {
2482		long long holeend =
2483			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2484		if (holeend & ~(long long)ULONG_MAX)
2485			hlen = ULONG_MAX - hba + 1;
2486	}
2487
2488	details.check_mapping = even_cows? NULL: mapping;
 
2489	details.first_index = hba;
2490	details.last_index = hba + hlen - 1;
2491	if (details.last_index < details.first_index)
2492		details.last_index = ULONG_MAX;
2493
2494
2495	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2496	i_mmap_lock_write(mapping);
2497	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2498		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2499	i_mmap_unlock_write(mapping);
 
 
2500}
2501EXPORT_SYMBOL(unmap_mapping_range);
2502
2503/*
2504 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2505 * but allow concurrent faults), and pte mapped but not yet locked.
2506 * We return with pte unmapped and unlocked.
2507 *
2508 * We return with the mmap_sem locked or unlocked in the same cases
2509 * as does filemap_fault().
2510 */
2511static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2512		unsigned long address, pte_t *page_table, pmd_t *pmd,
2513		unsigned int flags, pte_t orig_pte)
2514{
2515	spinlock_t *ptl;
2516	struct page *page, *swapcache;
2517	struct mem_cgroup *memcg;
2518	swp_entry_t entry;
2519	pte_t pte;
2520	int locked;
 
2521	int exclusive = 0;
2522	int ret = 0;
2523
2524	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2525		goto out;
2526
2527	entry = pte_to_swp_entry(orig_pte);
2528	if (unlikely(non_swap_entry(entry))) {
2529		if (is_migration_entry(entry)) {
2530			migration_entry_wait(mm, pmd, address);
2531		} else if (is_hwpoison_entry(entry)) {
2532			ret = VM_FAULT_HWPOISON;
2533		} else {
2534			print_bad_pte(vma, address, orig_pte, NULL);
2535			ret = VM_FAULT_SIGBUS;
2536		}
2537		goto out;
2538	}
2539	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2540	page = lookup_swap_cache(entry);
2541	if (!page) {
2542		page = swapin_readahead(entry,
2543					GFP_HIGHUSER_MOVABLE, vma, address);
2544		if (!page) {
2545			/*
2546			 * Back out if somebody else faulted in this pte
2547			 * while we released the pte lock.
2548			 */
2549			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2550			if (likely(pte_same(*page_table, orig_pte)))
2551				ret = VM_FAULT_OOM;
2552			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2553			goto unlock;
2554		}
2555
2556		/* Had to read the page from swap area: Major fault */
2557		ret = VM_FAULT_MAJOR;
2558		count_vm_event(PGMAJFAULT);
2559		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2560	} else if (PageHWPoison(page)) {
2561		/*
2562		 * hwpoisoned dirty swapcache pages are kept for killing
2563		 * owner processes (which may be unknown at hwpoison time)
2564		 */
2565		ret = VM_FAULT_HWPOISON;
2566		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2567		swapcache = page;
2568		goto out_release;
2569	}
2570
2571	swapcache = page;
2572	locked = lock_page_or_retry(page, mm, flags);
2573
2574	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575	if (!locked) {
2576		ret |= VM_FAULT_RETRY;
2577		goto out_release;
2578	}
2579
2580	/*
2581	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2582	 * release the swapcache from under us.  The page pin, and pte_same
2583	 * test below, are not enough to exclude that.  Even if it is still
2584	 * swapcache, we need to check that the page's swap has not changed.
2585	 */
2586	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2587		goto out_page;
2588
2589	page = ksm_might_need_to_copy(page, vma, address);
2590	if (unlikely(!page)) {
2591		ret = VM_FAULT_OOM;
2592		page = swapcache;
2593		goto out_page;
2594	}
2595
2596	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2597		ret = VM_FAULT_OOM;
2598		goto out_page;
2599	}
2600
2601	/*
2602	 * Back out if somebody else already faulted in this pte.
2603	 */
2604	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2605	if (unlikely(!pte_same(*page_table, orig_pte)))
2606		goto out_nomap;
2607
2608	if (unlikely(!PageUptodate(page))) {
2609		ret = VM_FAULT_SIGBUS;
2610		goto out_nomap;
2611	}
2612
2613	/*
2614	 * The page isn't present yet, go ahead with the fault.
2615	 *
2616	 * Be careful about the sequence of operations here.
2617	 * To get its accounting right, reuse_swap_page() must be called
2618	 * while the page is counted on swap but not yet in mapcount i.e.
2619	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2620	 * must be called after the swap_free(), or it will never succeed.
 
 
 
 
2621	 */
2622
2623	inc_mm_counter_fast(mm, MM_ANONPAGES);
2624	dec_mm_counter_fast(mm, MM_SWAPENTS);
2625	pte = mk_pte(page, vma->vm_page_prot);
2626	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2627		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2628		flags &= ~FAULT_FLAG_WRITE;
2629		ret |= VM_FAULT_WRITE;
2630		exclusive = RMAP_EXCLUSIVE;
2631	}
2632	flush_icache_page(vma, page);
2633	if (pte_swp_soft_dirty(orig_pte))
2634		pte = pte_mksoft_dirty(pte);
2635	set_pte_at(mm, address, page_table, pte);
2636	if (page == swapcache) {
2637		do_page_add_anon_rmap(page, vma, address, exclusive);
2638		mem_cgroup_commit_charge(page, memcg, true, false);
2639	} else { /* ksm created a completely new copy */
2640		page_add_new_anon_rmap(page, vma, address, false);
2641		mem_cgroup_commit_charge(page, memcg, false, false);
2642		lru_cache_add_active_or_unevictable(page, vma);
2643	}
2644
2645	swap_free(entry);
2646	if (mem_cgroup_swap_full(page) ||
2647	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2648		try_to_free_swap(page);
2649	unlock_page(page);
2650	if (page != swapcache) {
2651		/*
2652		 * Hold the lock to avoid the swap entry to be reused
2653		 * until we take the PT lock for the pte_same() check
2654		 * (to avoid false positives from pte_same). For
2655		 * further safety release the lock after the swap_free
2656		 * so that the swap count won't change under a
2657		 * parallel locked swapcache.
2658		 */
2659		unlock_page(swapcache);
2660		put_page(swapcache);
2661	}
2662
2663	if (flags & FAULT_FLAG_WRITE) {
2664		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2665		if (ret & VM_FAULT_ERROR)
2666			ret &= VM_FAULT_ERROR;
2667		goto out;
2668	}
2669
2670	/* No need to invalidate - it was non-present before */
2671	update_mmu_cache(vma, address, page_table);
2672unlock:
2673	pte_unmap_unlock(page_table, ptl);
2674out:
2675	return ret;
2676out_nomap:
2677	mem_cgroup_cancel_charge(page, memcg, false);
2678	pte_unmap_unlock(page_table, ptl);
2679out_page:
2680	unlock_page(page);
2681out_release:
2682	put_page(page);
2683	if (page != swapcache) {
2684		unlock_page(swapcache);
2685		put_page(swapcache);
2686	}
2687	return ret;
2688}
2689
2690/*
2691 * This is like a special single-page "expand_{down|up}wards()",
2692 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2693 * doesn't hit another vma.
2694 */
2695static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2696{
2697	address &= PAGE_MASK;
2698	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2699		struct vm_area_struct *prev = vma->vm_prev;
2700
2701		/*
2702		 * Is there a mapping abutting this one below?
2703		 *
2704		 * That's only ok if it's the same stack mapping
2705		 * that has gotten split..
2706		 */
2707		if (prev && prev->vm_end == address)
2708			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2709
2710		return expand_downwards(vma, address - PAGE_SIZE);
2711	}
2712	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2713		struct vm_area_struct *next = vma->vm_next;
2714
2715		/* As VM_GROWSDOWN but s/below/above/ */
2716		if (next && next->vm_start == address + PAGE_SIZE)
2717			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2718
2719		return expand_upwards(vma, address + PAGE_SIZE);
2720	}
2721	return 0;
2722}
2723
2724/*
2725 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2726 * but allow concurrent faults), and pte mapped but not yet locked.
2727 * We return with mmap_sem still held, but pte unmapped and unlocked.
2728 */
2729static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2730		unsigned long address, pte_t *page_table, pmd_t *pmd,
2731		unsigned int flags)
2732{
2733	struct mem_cgroup *memcg;
2734	struct page *page;
2735	spinlock_t *ptl;
2736	pte_t entry;
2737
2738	pte_unmap(page_table);
2739
2740	/* File mapping without ->vm_ops ? */
2741	if (vma->vm_flags & VM_SHARED)
2742		return VM_FAULT_SIGBUS;
2743
2744	/* Check if we need to add a guard page to the stack */
2745	if (check_stack_guard_page(vma, address) < 0)
2746		return VM_FAULT_SIGSEGV;
2747
2748	/* Use the zero-page for reads */
2749	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2750		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2751						vma->vm_page_prot));
2752		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2753		if (!pte_none(*page_table))
2754			goto unlock;
2755		/* Deliver the page fault to userland, check inside PT lock */
2756		if (userfaultfd_missing(vma)) {
2757			pte_unmap_unlock(page_table, ptl);
2758			return handle_userfault(vma, address, flags,
2759						VM_UFFD_MISSING);
2760		}
2761		goto setpte;
2762	}
2763
2764	/* Allocate our own private page. */
2765	if (unlikely(anon_vma_prepare(vma)))
2766		goto oom;
2767	page = alloc_zeroed_user_highpage_movable(vma, address);
2768	if (!page)
2769		goto oom;
2770
2771	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2772		goto oom_free_page;
2773
2774	/*
2775	 * The memory barrier inside __SetPageUptodate makes sure that
2776	 * preceeding stores to the page contents become visible before
2777	 * the set_pte_at() write.
2778	 */
2779	__SetPageUptodate(page);
2780
 
 
 
2781	entry = mk_pte(page, vma->vm_page_prot);
2782	if (vma->vm_flags & VM_WRITE)
2783		entry = pte_mkwrite(pte_mkdirty(entry));
2784
2785	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2786	if (!pte_none(*page_table))
2787		goto release;
2788
2789	/* Deliver the page fault to userland, check inside PT lock */
2790	if (userfaultfd_missing(vma)) {
2791		pte_unmap_unlock(page_table, ptl);
2792		mem_cgroup_cancel_charge(page, memcg, false);
2793		put_page(page);
2794		return handle_userfault(vma, address, flags,
2795					VM_UFFD_MISSING);
2796	}
2797
2798	inc_mm_counter_fast(mm, MM_ANONPAGES);
2799	page_add_new_anon_rmap(page, vma, address, false);
2800	mem_cgroup_commit_charge(page, memcg, false, false);
2801	lru_cache_add_active_or_unevictable(page, vma);
2802setpte:
2803	set_pte_at(mm, address, page_table, entry);
2804
2805	/* No need to invalidate - it was non-present before */
2806	update_mmu_cache(vma, address, page_table);
2807unlock:
2808	pte_unmap_unlock(page_table, ptl);
2809	return 0;
2810release:
2811	mem_cgroup_cancel_charge(page, memcg, false);
2812	put_page(page);
2813	goto unlock;
2814oom_free_page:
2815	put_page(page);
2816oom:
2817	return VM_FAULT_OOM;
2818}
2819
2820/*
2821 * The mmap_sem must have been held on entry, and may have been
2822 * released depending on flags and vma->vm_ops->fault() return value.
2823 * See filemap_fault() and __lock_page_retry().
2824 */
2825static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2826			pgoff_t pgoff, unsigned int flags,
2827			struct page *cow_page, struct page **page)
2828{
2829	struct vm_fault vmf;
2830	int ret;
2831
2832	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2833	vmf.pgoff = pgoff;
2834	vmf.flags = flags;
2835	vmf.page = NULL;
2836	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2837	vmf.cow_page = cow_page;
2838
2839	ret = vma->vm_ops->fault(vma, &vmf);
2840	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2841		return ret;
2842	if (!vmf.page)
2843		goto out;
2844
2845	if (unlikely(PageHWPoison(vmf.page))) {
2846		if (ret & VM_FAULT_LOCKED)
2847			unlock_page(vmf.page);
2848		put_page(vmf.page);
2849		return VM_FAULT_HWPOISON;
2850	}
2851
2852	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2853		lock_page(vmf.page);
2854	else
2855		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2856
2857 out:
2858	*page = vmf.page;
2859	return ret;
2860}
2861
2862/**
2863 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2864 *
2865 * @vma: virtual memory area
2866 * @address: user virtual address
2867 * @page: page to map
2868 * @pte: pointer to target page table entry
2869 * @write: true, if new entry is writable
2870 * @anon: true, if it's anonymous page
2871 *
2872 * Caller must hold page table lock relevant for @pte.
2873 *
2874 * Target users are page handler itself and implementations of
2875 * vm_ops->map_pages.
2876 */
2877void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2878		struct page *page, pte_t *pte, bool write, bool anon)
2879{
2880	pte_t entry;
2881
2882	flush_icache_page(vma, page);
2883	entry = mk_pte(page, vma->vm_page_prot);
2884	if (write)
2885		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 
 
2886	if (anon) {
2887		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2888		page_add_new_anon_rmap(page, vma, address, false);
2889	} else {
2890		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2891		page_add_file_rmap(page);
2892	}
2893	set_pte_at(vma->vm_mm, address, pte, entry);
2894
2895	/* no need to invalidate: a not-present page won't be cached */
2896	update_mmu_cache(vma, address, pte);
2897}
2898
2899static unsigned long fault_around_bytes __read_mostly =
2900	rounddown_pow_of_two(65536);
2901
2902#ifdef CONFIG_DEBUG_FS
2903static int fault_around_bytes_get(void *data, u64 *val)
 
 
2904{
2905	*val = fault_around_bytes;
2906	return 0;
2907}
2908
2909/*
2910 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2911 * rounded down to nearest page order. It's what do_fault_around() expects to
2912 * see.
2913 */
2914static int fault_around_bytes_set(void *data, u64 val)
2915{
2916	if (val / PAGE_SIZE > PTRS_PER_PTE)
 
2917		return -EINVAL;
2918	if (val > PAGE_SIZE)
2919		fault_around_bytes = rounddown_pow_of_two(val);
2920	else
2921		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2922	return 0;
2923}
2924DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2925		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2926
2927static int __init fault_around_debugfs(void)
2928{
2929	void *ret;
2930
2931	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2932			&fault_around_bytes_fops);
2933	if (!ret)
2934		pr_warn("Failed to create fault_around_bytes in debugfs");
2935	return 0;
2936}
2937late_initcall(fault_around_debugfs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2938#endif
2939
2940/*
2941 * do_fault_around() tries to map few pages around the fault address. The hope
2942 * is that the pages will be needed soon and this will lower the number of
2943 * faults to handle.
2944 *
2945 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2946 * not ready to be mapped: not up-to-date, locked, etc.
2947 *
2948 * This function is called with the page table lock taken. In the split ptlock
2949 * case the page table lock only protects only those entries which belong to
2950 * the page table corresponding to the fault address.
2951 *
2952 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2953 * only once.
2954 *
2955 * fault_around_pages() defines how many pages we'll try to map.
2956 * do_fault_around() expects it to return a power of two less than or equal to
2957 * PTRS_PER_PTE.
2958 *
2959 * The virtual address of the area that we map is naturally aligned to the
2960 * fault_around_pages() value (and therefore to page order).  This way it's
2961 * easier to guarantee that we don't cross page table boundaries.
2962 */
2963static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2964		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2965{
2966	unsigned long start_addr, nr_pages, mask;
2967	pgoff_t max_pgoff;
2968	struct vm_fault vmf;
2969	int off;
2970
2971	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2972	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2973
2974	start_addr = max(address & mask, vma->vm_start);
2975	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2976	pte -= off;
2977	pgoff -= off;
2978
2979	/*
2980	 *  max_pgoff is either end of page table or end of vma
2981	 *  or fault_around_pages() from pgoff, depending what is nearest.
2982	 */
2983	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2984		PTRS_PER_PTE - 1;
2985	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2986			pgoff + nr_pages - 1);
2987
2988	/* Check if it makes any sense to call ->map_pages */
2989	while (!pte_none(*pte)) {
2990		if (++pgoff > max_pgoff)
2991			return;
2992		start_addr += PAGE_SIZE;
2993		if (start_addr >= vma->vm_end)
2994			return;
2995		pte++;
2996	}
2997
2998	vmf.virtual_address = (void __user *) start_addr;
2999	vmf.pte = pte;
3000	vmf.pgoff = pgoff;
3001	vmf.max_pgoff = max_pgoff;
3002	vmf.flags = flags;
3003	vmf.gfp_mask = __get_fault_gfp_mask(vma);
3004	vma->vm_ops->map_pages(vma, &vmf);
3005}
3006
3007static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3008		unsigned long address, pmd_t *pmd,
3009		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3010{
3011	struct page *fault_page;
3012	spinlock_t *ptl;
3013	pte_t *pte;
3014	int ret = 0;
3015
3016	/*
3017	 * Let's call ->map_pages() first and use ->fault() as fallback
3018	 * if page by the offset is not ready to be mapped (cold cache or
3019	 * something).
3020	 */
3021	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3022		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3023		do_fault_around(vma, address, pte, pgoff, flags);
3024		if (!pte_same(*pte, orig_pte))
3025			goto unlock_out;
3026		pte_unmap_unlock(pte, ptl);
3027	}
3028
3029	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3030	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3031		return ret;
3032
3033	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3034	if (unlikely(!pte_same(*pte, orig_pte))) {
3035		pte_unmap_unlock(pte, ptl);
3036		unlock_page(fault_page);
3037		put_page(fault_page);
3038		return ret;
3039	}
3040	do_set_pte(vma, address, fault_page, pte, false, false);
3041	unlock_page(fault_page);
3042unlock_out:
3043	pte_unmap_unlock(pte, ptl);
3044	return ret;
3045}
3046
3047static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3048		unsigned long address, pmd_t *pmd,
3049		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3050{
3051	struct page *fault_page, *new_page;
3052	struct mem_cgroup *memcg;
3053	spinlock_t *ptl;
3054	pte_t *pte;
3055	int ret;
3056
3057	if (unlikely(anon_vma_prepare(vma)))
3058		return VM_FAULT_OOM;
3059
3060	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3061	if (!new_page)
3062		return VM_FAULT_OOM;
3063
3064	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3065		put_page(new_page);
3066		return VM_FAULT_OOM;
3067	}
3068
3069	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3070	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3071		goto uncharge_out;
3072
3073	if (fault_page)
3074		copy_user_highpage(new_page, fault_page, address, vma);
3075	__SetPageUptodate(new_page);
3076
3077	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3078	if (unlikely(!pte_same(*pte, orig_pte))) {
3079		pte_unmap_unlock(pte, ptl);
3080		if (fault_page) {
3081			unlock_page(fault_page);
3082			put_page(fault_page);
3083		} else {
3084			/*
3085			 * The fault handler has no page to lock, so it holds
3086			 * i_mmap_lock for read to protect against truncate.
3087			 */
3088			i_mmap_unlock_read(vma->vm_file->f_mapping);
3089		}
3090		goto uncharge_out;
3091	}
3092	do_set_pte(vma, address, new_page, pte, true, true);
3093	mem_cgroup_commit_charge(new_page, memcg, false, false);
3094	lru_cache_add_active_or_unevictable(new_page, vma);
3095	pte_unmap_unlock(pte, ptl);
3096	if (fault_page) {
3097		unlock_page(fault_page);
3098		put_page(fault_page);
3099	} else {
3100		/*
3101		 * The fault handler has no page to lock, so it holds
3102		 * i_mmap_lock for read to protect against truncate.
3103		 */
3104		i_mmap_unlock_read(vma->vm_file->f_mapping);
3105	}
3106	return ret;
3107uncharge_out:
3108	mem_cgroup_cancel_charge(new_page, memcg, false);
3109	put_page(new_page);
3110	return ret;
3111}
3112
3113static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3114		unsigned long address, pmd_t *pmd,
3115		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3116{
3117	struct page *fault_page;
3118	struct address_space *mapping;
3119	spinlock_t *ptl;
3120	pte_t *pte;
3121	int dirtied = 0;
3122	int ret, tmp;
3123
3124	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3125	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3126		return ret;
3127
3128	/*
3129	 * Check if the backing address space wants to know that the page is
3130	 * about to become writable
3131	 */
3132	if (vma->vm_ops->page_mkwrite) {
3133		unlock_page(fault_page);
3134		tmp = do_page_mkwrite(vma, fault_page, address);
3135		if (unlikely(!tmp ||
3136				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3137			put_page(fault_page);
3138			return tmp;
3139		}
3140	}
3141
3142	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3143	if (unlikely(!pte_same(*pte, orig_pte))) {
3144		pte_unmap_unlock(pte, ptl);
3145		unlock_page(fault_page);
3146		put_page(fault_page);
3147		return ret;
3148	}
3149	do_set_pte(vma, address, fault_page, pte, true, false);
3150	pte_unmap_unlock(pte, ptl);
3151
3152	if (set_page_dirty(fault_page))
3153		dirtied = 1;
3154	/*
3155	 * Take a local copy of the address_space - page.mapping may be zeroed
3156	 * by truncate after unlock_page().   The address_space itself remains
3157	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3158	 * release semantics to prevent the compiler from undoing this copying.
3159	 */
3160	mapping = page_rmapping(fault_page);
3161	unlock_page(fault_page);
3162	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3163		/*
3164		 * Some device drivers do not set page.mapping but still
3165		 * dirty their pages
3166		 */
3167		balance_dirty_pages_ratelimited(mapping);
3168	}
3169
3170	if (!vma->vm_ops->page_mkwrite)
 
3171		file_update_time(vma->vm_file);
3172
3173	return ret;
3174}
3175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3176/*
 
 
 
 
3177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178 * but allow concurrent faults).
3179 * The mmap_sem may have been released depending on flags and our
3180 * return value.  See filemap_fault() and __lock_page_or_retry().
3181 */
3182static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3183		unsigned long address, pte_t *page_table, pmd_t *pmd,
3184		unsigned int flags, pte_t orig_pte)
3185{
3186	pgoff_t pgoff = linear_page_index(vma, address);
3187
3188	pte_unmap(page_table);
3189	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3190	if (!vma->vm_ops->fault)
 
 
 
 
 
 
 
3191		return VM_FAULT_SIGBUS;
 
 
 
3192	if (!(flags & FAULT_FLAG_WRITE))
3193		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3194				orig_pte);
3195	if (!(vma->vm_flags & VM_SHARED))
3196		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3197				orig_pte);
3198	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3199}
3200
3201static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3202				unsigned long addr, int page_nid,
3203				int *flags)
3204{
3205	get_page(page);
3206
3207	count_vm_numa_event(NUMA_HINT_FAULTS);
3208	if (page_nid == numa_node_id()) {
3209		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3210		*flags |= TNF_FAULT_LOCAL;
3211	}
3212
3213	return mpol_misplaced(page, vma, addr);
3214}
3215
3216static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3217		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3218{
3219	struct page *page = NULL;
3220	spinlock_t *ptl;
3221	int page_nid = -1;
3222	int last_cpupid;
3223	int target_nid;
3224	bool migrated = false;
3225	bool was_writable = pte_write(pte);
3226	int flags = 0;
3227
3228	/* A PROT_NONE fault should not end up here */
3229	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3230
3231	/*
3232	* The "pte" at this point cannot be used safely without
3233	* validation through pte_unmap_same(). It's of NUMA type but
3234	* the pfn may be screwed if the read is non atomic.
3235	*
3236	* We can safely just do a "set_pte_at()", because the old
3237	* page table entry is not accessible, so there would be no
3238	* concurrent hardware modifications to the PTE.
3239	*/
3240	ptl = pte_lockptr(mm, pmd);
3241	spin_lock(ptl);
3242	if (unlikely(!pte_same(*ptep, pte))) {
3243		pte_unmap_unlock(ptep, ptl);
3244		goto out;
3245	}
3246
3247	/* Make it present again */
3248	pte = pte_modify(pte, vma->vm_page_prot);
3249	pte = pte_mkyoung(pte);
3250	if (was_writable)
3251		pte = pte_mkwrite(pte);
3252	set_pte_at(mm, addr, ptep, pte);
3253	update_mmu_cache(vma, addr, ptep);
3254
3255	page = vm_normal_page(vma, addr, pte);
3256	if (!page) {
3257		pte_unmap_unlock(ptep, ptl);
3258		return 0;
3259	}
3260
3261	/* TODO: handle PTE-mapped THP */
3262	if (PageCompound(page)) {
3263		pte_unmap_unlock(ptep, ptl);
3264		return 0;
3265	}
3266
3267	/*
3268	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3269	 * much anyway since they can be in shared cache state. This misses
3270	 * the case where a mapping is writable but the process never writes
3271	 * to it but pte_write gets cleared during protection updates and
3272	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3273	 * background writeback, dirty balancing and application behaviour.
3274	 */
3275	if (!(vma->vm_flags & VM_WRITE))
3276		flags |= TNF_NO_GROUP;
3277
3278	/*
3279	 * Flag if the page is shared between multiple address spaces. This
3280	 * is later used when determining whether to group tasks together
3281	 */
3282	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3283		flags |= TNF_SHARED;
3284
3285	last_cpupid = page_cpupid_last(page);
3286	page_nid = page_to_nid(page);
3287	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3288	pte_unmap_unlock(ptep, ptl);
3289	if (target_nid == -1) {
3290		put_page(page);
3291		goto out;
3292	}
3293
3294	/* Migrate to the requested node */
3295	migrated = migrate_misplaced_page(page, vma, target_nid);
3296	if (migrated) {
3297		page_nid = target_nid;
3298		flags |= TNF_MIGRATED;
3299	} else
3300		flags |= TNF_MIGRATE_FAIL;
3301
3302out:
3303	if (page_nid != -1)
3304		task_numa_fault(last_cpupid, page_nid, 1, flags);
3305	return 0;
3306}
3307
3308static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3309			unsigned long address, pmd_t *pmd, unsigned int flags)
3310{
3311	if (vma_is_anonymous(vma))
3312		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3313	if (vma->vm_ops->pmd_fault)
3314		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3315	return VM_FAULT_FALLBACK;
3316}
3317
3318static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3319			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3320			unsigned int flags)
3321{
3322	if (vma_is_anonymous(vma))
3323		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3324	if (vma->vm_ops->pmd_fault)
3325		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3326	return VM_FAULT_FALLBACK;
3327}
3328
3329/*
3330 * These routines also need to handle stuff like marking pages dirty
3331 * and/or accessed for architectures that don't do it in hardware (most
3332 * RISC architectures).  The early dirtying is also good on the i386.
3333 *
3334 * There is also a hook called "update_mmu_cache()" that architectures
3335 * with external mmu caches can use to update those (ie the Sparc or
3336 * PowerPC hashed page tables that act as extended TLBs).
3337 *
3338 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3339 * but allow concurrent faults), and pte mapped but not yet locked.
3340 * We return with pte unmapped and unlocked.
3341 *
3342 * The mmap_sem may have been released depending on flags and our
3343 * return value.  See filemap_fault() and __lock_page_or_retry().
3344 */
3345static int handle_pte_fault(struct mm_struct *mm,
3346		     struct vm_area_struct *vma, unsigned long address,
3347		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3348{
3349	pte_t entry;
3350	spinlock_t *ptl;
3351
3352	/*
3353	 * some architectures can have larger ptes than wordsize,
3354	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3355	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3356	 * The code below just needs a consistent view for the ifs and
3357	 * we later double check anyway with the ptl lock held. So here
3358	 * a barrier will do.
3359	 */
3360	entry = *pte;
3361	barrier();
3362	if (!pte_present(entry)) {
3363		if (pte_none(entry)) {
3364			if (vma_is_anonymous(vma))
3365				return do_anonymous_page(mm, vma, address,
3366							 pte, pmd, flags);
3367			else
3368				return do_fault(mm, vma, address, pte, pmd,
3369						flags, entry);
 
3370		}
 
 
 
3371		return do_swap_page(mm, vma, address,
3372					pte, pmd, flags, entry);
3373	}
3374
3375	if (pte_protnone(entry))
3376		return do_numa_page(mm, vma, address, entry, pte, pmd);
3377
3378	ptl = pte_lockptr(mm, pmd);
3379	spin_lock(ptl);
3380	if (unlikely(!pte_same(*pte, entry)))
3381		goto unlock;
3382	if (flags & FAULT_FLAG_WRITE) {
3383		if (!pte_write(entry))
3384			return do_wp_page(mm, vma, address,
3385					pte, pmd, ptl, entry);
3386		entry = pte_mkdirty(entry);
3387	}
3388	entry = pte_mkyoung(entry);
3389	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3390		update_mmu_cache(vma, address, pte);
3391	} else {
3392		/*
3393		 * This is needed only for protection faults but the arch code
3394		 * is not yet telling us if this is a protection fault or not.
3395		 * This still avoids useless tlb flushes for .text page faults
3396		 * with threads.
3397		 */
3398		if (flags & FAULT_FLAG_WRITE)
3399			flush_tlb_fix_spurious_fault(vma, address);
3400	}
3401unlock:
3402	pte_unmap_unlock(pte, ptl);
3403	return 0;
3404}
3405
3406/*
3407 * By the time we get here, we already hold the mm semaphore
3408 *
3409 * The mmap_sem may have been released depending on flags and our
3410 * return value.  See filemap_fault() and __lock_page_or_retry().
3411 */
3412static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3413			     unsigned long address, unsigned int flags)
3414{
3415	pgd_t *pgd;
3416	pud_t *pud;
3417	pmd_t *pmd;
3418	pte_t *pte;
3419
3420	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3421					    flags & FAULT_FLAG_INSTRUCTION,
3422					    flags & FAULT_FLAG_REMOTE))
3423		return VM_FAULT_SIGSEGV;
3424
3425	if (unlikely(is_vm_hugetlb_page(vma)))
3426		return hugetlb_fault(mm, vma, address, flags);
3427
3428	pgd = pgd_offset(mm, address);
3429	pud = pud_alloc(mm, pgd, address);
3430	if (!pud)
3431		return VM_FAULT_OOM;
3432	pmd = pmd_alloc(mm, pud, address);
3433	if (!pmd)
3434		return VM_FAULT_OOM;
3435	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3436		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
 
 
 
3437		if (!(ret & VM_FAULT_FALLBACK))
3438			return ret;
3439	} else {
3440		pmd_t orig_pmd = *pmd;
3441		int ret;
3442
3443		barrier();
3444		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3445			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3446
3447			if (pmd_protnone(orig_pmd))
 
 
 
 
 
 
 
 
3448				return do_huge_pmd_numa_page(mm, vma, address,
3449							     orig_pmd, pmd);
3450
3451			if (dirty && !pmd_write(orig_pmd)) {
3452				ret = wp_huge_pmd(mm, vma, address, pmd,
3453							orig_pmd, flags);
3454				if (!(ret & VM_FAULT_FALLBACK))
3455					return ret;
3456			} else {
3457				huge_pmd_set_accessed(mm, vma, address, pmd,
3458						      orig_pmd, dirty);
3459				return 0;
3460			}
3461		}
3462	}
3463
 
 
 
3464	/*
3465	 * Use pte_alloc() instead of pte_alloc_map, because we can't
3466	 * run pte_offset_map on the pmd, if an huge pmd could
3467	 * materialize from under us from a different thread.
3468	 */
3469	if (unlikely(pte_alloc(mm, pmd, address)))
 
3470		return VM_FAULT_OOM;
3471	/*
3472	 * If a huge pmd materialized under us just retry later.  Use
3473	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3474	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3475	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3476	 * in a different thread of this mm, in turn leading to a misleading
3477	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3478	 * regular pmd that we can walk with pte_offset_map() and we can do that
3479	 * through an atomic read in C, which is what pmd_trans_unstable()
3480	 * provides.
3481	 */
3482	if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3483		return 0;
3484	/*
3485	 * A regular pmd is established and it can't morph into a huge pmd
3486	 * from under us anymore at this point because we hold the mmap_sem
3487	 * read mode and khugepaged takes it in write mode. So now it's
3488	 * safe to run pte_offset_map().
3489	 */
3490	pte = pte_offset_map(pmd, address);
3491
3492	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3493}
3494
3495/*
3496 * By the time we get here, we already hold the mm semaphore
3497 *
3498 * The mmap_sem may have been released depending on flags and our
3499 * return value.  See filemap_fault() and __lock_page_or_retry().
3500 */
3501int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3502		    unsigned long address, unsigned int flags)
3503{
3504	int ret;
3505
3506	__set_current_state(TASK_RUNNING);
3507
3508	count_vm_event(PGFAULT);
3509	mem_cgroup_count_vm_event(mm, PGFAULT);
3510
3511	/* do counter updates before entering really critical section. */
3512	check_sync_rss_stat(current);
3513
3514	/*
3515	 * Enable the memcg OOM handling for faults triggered in user
3516	 * space.  Kernel faults are handled more gracefully.
3517	 */
3518	if (flags & FAULT_FLAG_USER)
3519		mem_cgroup_oom_enable();
3520
3521	ret = __handle_mm_fault(mm, vma, address, flags);
3522
3523	if (flags & FAULT_FLAG_USER) {
3524		mem_cgroup_oom_disable();
3525                /*
3526                 * The task may have entered a memcg OOM situation but
3527                 * if the allocation error was handled gracefully (no
3528                 * VM_FAULT_OOM), there is no need to kill anything.
3529                 * Just clean up the OOM state peacefully.
3530                 */
3531                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3532                        mem_cgroup_oom_synchronize(false);
3533	}
3534
3535	return ret;
3536}
3537EXPORT_SYMBOL_GPL(handle_mm_fault);
3538
3539#ifndef __PAGETABLE_PUD_FOLDED
3540/*
3541 * Allocate page upper directory.
3542 * We've already handled the fast-path in-line.
3543 */
3544int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3545{
3546	pud_t *new = pud_alloc_one(mm, address);
3547	if (!new)
3548		return -ENOMEM;
3549
3550	smp_wmb(); /* See comment in __pte_alloc */
3551
3552	spin_lock(&mm->page_table_lock);
3553	if (pgd_present(*pgd))		/* Another has populated it */
3554		pud_free(mm, new);
3555	else
3556		pgd_populate(mm, pgd, new);
3557	spin_unlock(&mm->page_table_lock);
3558	return 0;
3559}
3560#endif /* __PAGETABLE_PUD_FOLDED */
3561
3562#ifndef __PAGETABLE_PMD_FOLDED
3563/*
3564 * Allocate page middle directory.
3565 * We've already handled the fast-path in-line.
3566 */
3567int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3568{
3569	pmd_t *new = pmd_alloc_one(mm, address);
3570	if (!new)
3571		return -ENOMEM;
3572
3573	smp_wmb(); /* See comment in __pte_alloc */
3574
3575	spin_lock(&mm->page_table_lock);
3576#ifndef __ARCH_HAS_4LEVEL_HACK
3577	if (!pud_present(*pud)) {
3578		mm_inc_nr_pmds(mm);
3579		pud_populate(mm, pud, new);
3580	} else	/* Another has populated it */
3581		pmd_free(mm, new);
 
 
3582#else
3583	if (!pgd_present(*pud)) {
3584		mm_inc_nr_pmds(mm);
3585		pgd_populate(mm, pud, new);
3586	} else /* Another has populated it */
3587		pmd_free(mm, new);
 
 
3588#endif /* __ARCH_HAS_4LEVEL_HACK */
3589	spin_unlock(&mm->page_table_lock);
3590	return 0;
3591}
3592#endif /* __PAGETABLE_PMD_FOLDED */
3593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3594static int __follow_pte(struct mm_struct *mm, unsigned long address,
3595		pte_t **ptepp, spinlock_t **ptlp)
3596{
3597	pgd_t *pgd;
3598	pud_t *pud;
3599	pmd_t *pmd;
3600	pte_t *ptep;
3601
3602	pgd = pgd_offset(mm, address);
3603	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3604		goto out;
3605
3606	pud = pud_offset(pgd, address);
3607	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3608		goto out;
3609
3610	pmd = pmd_offset(pud, address);
3611	VM_BUG_ON(pmd_trans_huge(*pmd));
3612	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3613		goto out;
3614
3615	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3616	if (pmd_huge(*pmd))
3617		goto out;
3618
3619	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3620	if (!ptep)
3621		goto out;
3622	if (!pte_present(*ptep))
3623		goto unlock;
3624	*ptepp = ptep;
3625	return 0;
3626unlock:
3627	pte_unmap_unlock(ptep, *ptlp);
3628out:
3629	return -EINVAL;
3630}
3631
3632static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3633			     pte_t **ptepp, spinlock_t **ptlp)
3634{
3635	int res;
3636
3637	/* (void) is needed to make gcc happy */
3638	(void) __cond_lock(*ptlp,
3639			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3640	return res;
3641}
3642
3643/**
3644 * follow_pfn - look up PFN at a user virtual address
3645 * @vma: memory mapping
3646 * @address: user virtual address
3647 * @pfn: location to store found PFN
3648 *
3649 * Only IO mappings and raw PFN mappings are allowed.
3650 *
3651 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3652 */
3653int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3654	unsigned long *pfn)
3655{
3656	int ret = -EINVAL;
3657	spinlock_t *ptl;
3658	pte_t *ptep;
3659
3660	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3661		return ret;
3662
3663	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3664	if (ret)
3665		return ret;
3666	*pfn = pte_pfn(*ptep);
3667	pte_unmap_unlock(ptep, ptl);
3668	return 0;
3669}
3670EXPORT_SYMBOL(follow_pfn);
3671
3672#ifdef CONFIG_HAVE_IOREMAP_PROT
3673int follow_phys(struct vm_area_struct *vma,
3674		unsigned long address, unsigned int flags,
3675		unsigned long *prot, resource_size_t *phys)
3676{
3677	int ret = -EINVAL;
3678	pte_t *ptep, pte;
3679	spinlock_t *ptl;
3680
3681	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3682		goto out;
3683
3684	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3685		goto out;
3686	pte = *ptep;
3687
3688	if ((flags & FOLL_WRITE) && !pte_write(pte))
3689		goto unlock;
3690
3691	*prot = pgprot_val(pte_pgprot(pte));
3692	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3693
3694	ret = 0;
3695unlock:
3696	pte_unmap_unlock(ptep, ptl);
3697out:
3698	return ret;
3699}
3700
3701int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3702			void *buf, int len, int write)
3703{
3704	resource_size_t phys_addr;
3705	unsigned long prot = 0;
3706	void __iomem *maddr;
3707	int offset = addr & (PAGE_SIZE-1);
3708
3709	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3710		return -EINVAL;
3711
3712	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3713	if (write)
3714		memcpy_toio(maddr + offset, buf, len);
3715	else
3716		memcpy_fromio(buf, maddr + offset, len);
3717	iounmap(maddr);
3718
3719	return len;
3720}
3721EXPORT_SYMBOL_GPL(generic_access_phys);
3722#endif
3723
3724/*
3725 * Access another process' address space as given in mm.  If non-NULL, use the
3726 * given task for page fault accounting.
3727 */
3728static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3729		unsigned long addr, void *buf, int len, int write)
3730{
3731	struct vm_area_struct *vma;
3732	void *old_buf = buf;
3733
3734	down_read(&mm->mmap_sem);
3735	/* ignore errors, just check how much was successfully transferred */
3736	while (len) {
3737		int bytes, ret, offset;
3738		void *maddr;
3739		struct page *page = NULL;
3740
3741		ret = get_user_pages_remote(tsk, mm, addr, 1,
3742				write, 1, &page, &vma);
3743		if (ret <= 0) {
3744#ifndef CONFIG_HAVE_IOREMAP_PROT
3745			break;
3746#else
3747			/*
3748			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3749			 * we can access using slightly different code.
3750			 */
 
3751			vma = find_vma(mm, addr);
3752			if (!vma || vma->vm_start > addr)
3753				break;
3754			if (vma->vm_ops && vma->vm_ops->access)
3755				ret = vma->vm_ops->access(vma, addr, buf,
3756							  len, write);
3757			if (ret <= 0)
 
3758				break;
3759			bytes = ret;
3760#endif
3761		} else {
3762			bytes = len;
3763			offset = addr & (PAGE_SIZE-1);
3764			if (bytes > PAGE_SIZE-offset)
3765				bytes = PAGE_SIZE-offset;
3766
3767			maddr = kmap(page);
3768			if (write) {
3769				copy_to_user_page(vma, page, addr,
3770						  maddr + offset, buf, bytes);
3771				set_page_dirty_lock(page);
3772			} else {
3773				copy_from_user_page(vma, page, addr,
3774						    buf, maddr + offset, bytes);
3775			}
3776			kunmap(page);
3777			put_page(page);
3778		}
3779		len -= bytes;
3780		buf += bytes;
3781		addr += bytes;
3782	}
3783	up_read(&mm->mmap_sem);
3784
3785	return buf - old_buf;
3786}
3787
3788/**
3789 * access_remote_vm - access another process' address space
3790 * @mm:		the mm_struct of the target address space
3791 * @addr:	start address to access
3792 * @buf:	source or destination buffer
3793 * @len:	number of bytes to transfer
3794 * @write:	whether the access is a write
3795 *
3796 * The caller must hold a reference on @mm.
3797 */
3798int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3799		void *buf, int len, int write)
3800{
3801	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3802}
3803
3804/*
3805 * Access another process' address space.
3806 * Source/target buffer must be kernel space,
3807 * Do not walk the page table directly, use get_user_pages
3808 */
3809int access_process_vm(struct task_struct *tsk, unsigned long addr,
3810		void *buf, int len, int write)
3811{
3812	struct mm_struct *mm;
3813	int ret;
3814
3815	mm = get_task_mm(tsk);
3816	if (!mm)
3817		return 0;
3818
3819	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3820	mmput(mm);
3821
3822	return ret;
3823}
3824
3825/*
3826 * Print the name of a VMA.
3827 */
3828void print_vma_addr(char *prefix, unsigned long ip)
3829{
3830	struct mm_struct *mm = current->mm;
3831	struct vm_area_struct *vma;
3832
3833	/*
3834	 * Do not print if we are in atomic
3835	 * contexts (in exception stacks, etc.):
3836	 */
3837	if (preempt_count())
3838		return;
3839
3840	down_read(&mm->mmap_sem);
3841	vma = find_vma(mm, ip);
3842	if (vma && vma->vm_file) {
3843		struct file *f = vma->vm_file;
3844		char *buf = (char *)__get_free_page(GFP_KERNEL);
3845		if (buf) {
3846			char *p;
3847
3848			p = file_path(f, buf, PAGE_SIZE);
3849			if (IS_ERR(p))
3850				p = "?";
3851			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3852					vma->vm_start,
3853					vma->vm_end - vma->vm_start);
3854			free_page((unsigned long)buf);
3855		}
3856	}
3857	up_read(&mm->mmap_sem);
3858}
3859
3860#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3861void __might_fault(const char *file, int line)
3862{
3863	/*
3864	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3865	 * holding the mmap_sem, this is safe because kernel memory doesn't
3866	 * get paged out, therefore we'll never actually fault, and the
3867	 * below annotations will generate false positives.
3868	 */
3869	if (segment_eq(get_fs(), KERNEL_DS))
3870		return;
3871	if (pagefault_disabled())
 
 
 
 
 
 
3872		return;
3873	__might_sleep(file, line, 0);
3874#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
 
3875	if (current->mm)
3876		might_lock_read(&current->mm->mmap_sem);
3877#endif
3878}
3879EXPORT_SYMBOL(__might_fault);
3880#endif
3881
3882#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3883static void clear_gigantic_page(struct page *page,
3884				unsigned long addr,
3885				unsigned int pages_per_huge_page)
3886{
3887	int i;
3888	struct page *p = page;
3889
3890	might_sleep();
3891	for (i = 0; i < pages_per_huge_page;
3892	     i++, p = mem_map_next(p, page, i)) {
3893		cond_resched();
3894		clear_user_highpage(p, addr + i * PAGE_SIZE);
3895	}
3896}
3897void clear_huge_page(struct page *page,
3898		     unsigned long addr, unsigned int pages_per_huge_page)
3899{
3900	int i;
3901
3902	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3903		clear_gigantic_page(page, addr, pages_per_huge_page);
3904		return;
3905	}
3906
3907	might_sleep();
3908	for (i = 0; i < pages_per_huge_page; i++) {
3909		cond_resched();
3910		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3911	}
3912}
3913
3914static void copy_user_gigantic_page(struct page *dst, struct page *src,
3915				    unsigned long addr,
3916				    struct vm_area_struct *vma,
3917				    unsigned int pages_per_huge_page)
3918{
3919	int i;
3920	struct page *dst_base = dst;
3921	struct page *src_base = src;
3922
3923	for (i = 0; i < pages_per_huge_page; ) {
3924		cond_resched();
3925		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3926
3927		i++;
3928		dst = mem_map_next(dst, dst_base, i);
3929		src = mem_map_next(src, src_base, i);
3930	}
3931}
3932
3933void copy_user_huge_page(struct page *dst, struct page *src,
3934			 unsigned long addr, struct vm_area_struct *vma,
3935			 unsigned int pages_per_huge_page)
3936{
3937	int i;
3938
3939	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3940		copy_user_gigantic_page(dst, src, addr, vma,
3941					pages_per_huge_page);
3942		return;
3943	}
3944
3945	might_sleep();
3946	for (i = 0; i < pages_per_huge_page; i++) {
3947		cond_resched();
3948		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3949	}
3950}
3951#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3952
3953#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3954
3955static struct kmem_cache *page_ptl_cachep;
3956
3957void __init ptlock_cache_init(void)
3958{
3959	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3960			SLAB_PANIC, NULL);
3961}
3962
3963bool ptlock_alloc(struct page *page)
3964{
3965	spinlock_t *ptl;
3966
3967	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3968	if (!ptl)
3969		return false;
3970	page->ptl = ptl;
3971	return true;
3972}
3973
3974void ptlock_free(struct page *page)
3975{
3976	kmem_cache_free(page_ptl_cachep, page->ptl);
3977}
3978#endif
v3.15
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
 
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
  60#include <linux/migrate.h>
  61#include <linux/string.h>
  62#include <linux/dma-debug.h>
  63#include <linux/debugfs.h>
 
  64
  65#include <asm/io.h>
 
  66#include <asm/pgalloc.h>
  67#include <asm/uaccess.h>
  68#include <asm/tlb.h>
  69#include <asm/tlbflush.h>
  70#include <asm/pgtable.h>
  71
  72#include "internal.h"
  73
  74#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  75#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  76#endif
  77
  78#ifndef CONFIG_NEED_MULTIPLE_NODES
  79/* use the per-pgdat data instead for discontigmem - mbligh */
  80unsigned long max_mapnr;
  81struct page *mem_map;
  82
  83EXPORT_SYMBOL(max_mapnr);
  84EXPORT_SYMBOL(mem_map);
  85#endif
  86
  87/*
  88 * A number of key systems in x86 including ioremap() rely on the assumption
  89 * that high_memory defines the upper bound on direct map memory, then end
  90 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  92 * and ZONE_HIGHMEM.
  93 */
  94void * high_memory;
  95
  96EXPORT_SYMBOL(high_memory);
  97
  98/*
  99 * Randomize the address space (stacks, mmaps, brk, etc.).
 100 *
 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 102 *   as ancient (libc5 based) binaries can segfault. )
 103 */
 104int randomize_va_space __read_mostly =
 105#ifdef CONFIG_COMPAT_BRK
 106					1;
 107#else
 108					2;
 109#endif
 110
 111static int __init disable_randmaps(char *s)
 112{
 113	randomize_va_space = 0;
 114	return 1;
 115}
 116__setup("norandmaps", disable_randmaps);
 117
 118unsigned long zero_pfn __read_mostly;
 119unsigned long highest_memmap_pfn __read_mostly;
 120
 
 
 121/*
 122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 123 */
 124static int __init init_zero_pfn(void)
 125{
 126	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 127	return 0;
 128}
 129core_initcall(init_zero_pfn);
 130
 131
 132#if defined(SPLIT_RSS_COUNTING)
 133
 134void sync_mm_rss(struct mm_struct *mm)
 135{
 136	int i;
 137
 138	for (i = 0; i < NR_MM_COUNTERS; i++) {
 139		if (current->rss_stat.count[i]) {
 140			add_mm_counter(mm, i, current->rss_stat.count[i]);
 141			current->rss_stat.count[i] = 0;
 142		}
 143	}
 144	current->rss_stat.events = 0;
 145}
 146
 147static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 148{
 149	struct task_struct *task = current;
 150
 151	if (likely(task->mm == mm))
 152		task->rss_stat.count[member] += val;
 153	else
 154		add_mm_counter(mm, member, val);
 155}
 156#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 157#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 158
 159/* sync counter once per 64 page faults */
 160#define TASK_RSS_EVENTS_THRESH	(64)
 161static void check_sync_rss_stat(struct task_struct *task)
 162{
 163	if (unlikely(task != current))
 164		return;
 165	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 166		sync_mm_rss(task->mm);
 167}
 168#else /* SPLIT_RSS_COUNTING */
 169
 170#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 171#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 172
 173static void check_sync_rss_stat(struct task_struct *task)
 174{
 175}
 176
 177#endif /* SPLIT_RSS_COUNTING */
 178
 179#ifdef HAVE_GENERIC_MMU_GATHER
 180
 181static int tlb_next_batch(struct mmu_gather *tlb)
 182{
 183	struct mmu_gather_batch *batch;
 184
 185	batch = tlb->active;
 186	if (batch->next) {
 187		tlb->active = batch->next;
 188		return 1;
 189	}
 190
 191	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 192		return 0;
 193
 194	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 195	if (!batch)
 196		return 0;
 197
 198	tlb->batch_count++;
 199	batch->next = NULL;
 200	batch->nr   = 0;
 201	batch->max  = MAX_GATHER_BATCH;
 202
 203	tlb->active->next = batch;
 204	tlb->active = batch;
 205
 206	return 1;
 207}
 208
 209/* tlb_gather_mmu
 210 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 211 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 212 *	users and we're going to destroy the full address space (exit/execve).
 213 */
 214void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 215{
 216	tlb->mm = mm;
 217
 218	/* Is it from 0 to ~0? */
 219	tlb->fullmm     = !(start | (end+1));
 220	tlb->need_flush_all = 0;
 221	tlb->start	= start;
 222	tlb->end	= end;
 223	tlb->need_flush = 0;
 224	tlb->local.next = NULL;
 225	tlb->local.nr   = 0;
 226	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 227	tlb->active     = &tlb->local;
 228	tlb->batch_count = 0;
 229
 230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 231	tlb->batch = NULL;
 232#endif
 
 
 233}
 234
 235static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 236{
 237	tlb->need_flush = 0;
 
 
 238	tlb_flush(tlb);
 
 239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 240	tlb_table_flush(tlb);
 241#endif
 
 242}
 243
 244static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 245{
 246	struct mmu_gather_batch *batch;
 247
 248	for (batch = &tlb->local; batch; batch = batch->next) {
 249		free_pages_and_swap_cache(batch->pages, batch->nr);
 250		batch->nr = 0;
 251	}
 252	tlb->active = &tlb->local;
 253}
 254
 255void tlb_flush_mmu(struct mmu_gather *tlb)
 256{
 257	if (!tlb->need_flush)
 258		return;
 259	tlb_flush_mmu_tlbonly(tlb);
 260	tlb_flush_mmu_free(tlb);
 261}
 262
 263/* tlb_finish_mmu
 264 *	Called at the end of the shootdown operation to free up any resources
 265 *	that were required.
 266 */
 267void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 268{
 269	struct mmu_gather_batch *batch, *next;
 270
 271	tlb_flush_mmu(tlb);
 272
 273	/* keep the page table cache within bounds */
 274	check_pgt_cache();
 275
 276	for (batch = tlb->local.next; batch; batch = next) {
 277		next = batch->next;
 278		free_pages((unsigned long)batch, 0);
 279	}
 280	tlb->local.next = NULL;
 281}
 282
 283/* __tlb_remove_page
 284 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 285 *	handling the additional races in SMP caused by other CPUs caching valid
 286 *	mappings in their TLBs. Returns the number of free page slots left.
 287 *	When out of page slots we must call tlb_flush_mmu().
 288 */
 289int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 290{
 291	struct mmu_gather_batch *batch;
 292
 293	VM_BUG_ON(!tlb->need_flush);
 294
 295	batch = tlb->active;
 296	batch->pages[batch->nr++] = page;
 297	if (batch->nr == batch->max) {
 298		if (!tlb_next_batch(tlb))
 299			return 0;
 300		batch = tlb->active;
 301	}
 302	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 303
 304	return batch->max - batch->nr;
 305}
 306
 307#endif /* HAVE_GENERIC_MMU_GATHER */
 308
 309#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 310
 311/*
 312 * See the comment near struct mmu_table_batch.
 313 */
 314
 315static void tlb_remove_table_smp_sync(void *arg)
 316{
 317	/* Simply deliver the interrupt */
 318}
 319
 320static void tlb_remove_table_one(void *table)
 321{
 322	/*
 323	 * This isn't an RCU grace period and hence the page-tables cannot be
 324	 * assumed to be actually RCU-freed.
 325	 *
 326	 * It is however sufficient for software page-table walkers that rely on
 327	 * IRQ disabling. See the comment near struct mmu_table_batch.
 328	 */
 329	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 330	__tlb_remove_table(table);
 331}
 332
 333static void tlb_remove_table_rcu(struct rcu_head *head)
 334{
 335	struct mmu_table_batch *batch;
 336	int i;
 337
 338	batch = container_of(head, struct mmu_table_batch, rcu);
 339
 340	for (i = 0; i < batch->nr; i++)
 341		__tlb_remove_table(batch->tables[i]);
 342
 343	free_page((unsigned long)batch);
 344}
 345
 346void tlb_table_flush(struct mmu_gather *tlb)
 347{
 348	struct mmu_table_batch **batch = &tlb->batch;
 349
 350	if (*batch) {
 351		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 352		*batch = NULL;
 353	}
 354}
 355
 356void tlb_remove_table(struct mmu_gather *tlb, void *table)
 357{
 358	struct mmu_table_batch **batch = &tlb->batch;
 359
 360	tlb->need_flush = 1;
 361
 362	/*
 363	 * When there's less then two users of this mm there cannot be a
 364	 * concurrent page-table walk.
 365	 */
 366	if (atomic_read(&tlb->mm->mm_users) < 2) {
 367		__tlb_remove_table(table);
 368		return;
 369	}
 370
 371	if (*batch == NULL) {
 372		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 373		if (*batch == NULL) {
 374			tlb_remove_table_one(table);
 375			return;
 376		}
 377		(*batch)->nr = 0;
 378	}
 379	(*batch)->tables[(*batch)->nr++] = table;
 380	if ((*batch)->nr == MAX_TABLE_BATCH)
 381		tlb_table_flush(tlb);
 382}
 383
 384#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 385
 386/*
 387 * Note: this doesn't free the actual pages themselves. That
 388 * has been handled earlier when unmapping all the memory regions.
 389 */
 390static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 391			   unsigned long addr)
 392{
 393	pgtable_t token = pmd_pgtable(*pmd);
 394	pmd_clear(pmd);
 395	pte_free_tlb(tlb, token, addr);
 396	atomic_long_dec(&tlb->mm->nr_ptes);
 397}
 398
 399static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 400				unsigned long addr, unsigned long end,
 401				unsigned long floor, unsigned long ceiling)
 402{
 403	pmd_t *pmd;
 404	unsigned long next;
 405	unsigned long start;
 406
 407	start = addr;
 408	pmd = pmd_offset(pud, addr);
 409	do {
 410		next = pmd_addr_end(addr, end);
 411		if (pmd_none_or_clear_bad(pmd))
 412			continue;
 413		free_pte_range(tlb, pmd, addr);
 414	} while (pmd++, addr = next, addr != end);
 415
 416	start &= PUD_MASK;
 417	if (start < floor)
 418		return;
 419	if (ceiling) {
 420		ceiling &= PUD_MASK;
 421		if (!ceiling)
 422			return;
 423	}
 424	if (end - 1 > ceiling - 1)
 425		return;
 426
 427	pmd = pmd_offset(pud, start);
 428	pud_clear(pud);
 429	pmd_free_tlb(tlb, pmd, start);
 
 430}
 431
 432static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 433				unsigned long addr, unsigned long end,
 434				unsigned long floor, unsigned long ceiling)
 435{
 436	pud_t *pud;
 437	unsigned long next;
 438	unsigned long start;
 439
 440	start = addr;
 441	pud = pud_offset(pgd, addr);
 442	do {
 443		next = pud_addr_end(addr, end);
 444		if (pud_none_or_clear_bad(pud))
 445			continue;
 446		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 447	} while (pud++, addr = next, addr != end);
 448
 449	start &= PGDIR_MASK;
 450	if (start < floor)
 451		return;
 452	if (ceiling) {
 453		ceiling &= PGDIR_MASK;
 454		if (!ceiling)
 455			return;
 456	}
 457	if (end - 1 > ceiling - 1)
 458		return;
 459
 460	pud = pud_offset(pgd, start);
 461	pgd_clear(pgd);
 462	pud_free_tlb(tlb, pud, start);
 463}
 464
 465/*
 466 * This function frees user-level page tables of a process.
 467 */
 468void free_pgd_range(struct mmu_gather *tlb,
 469			unsigned long addr, unsigned long end,
 470			unsigned long floor, unsigned long ceiling)
 471{
 472	pgd_t *pgd;
 473	unsigned long next;
 474
 475	/*
 476	 * The next few lines have given us lots of grief...
 477	 *
 478	 * Why are we testing PMD* at this top level?  Because often
 479	 * there will be no work to do at all, and we'd prefer not to
 480	 * go all the way down to the bottom just to discover that.
 481	 *
 482	 * Why all these "- 1"s?  Because 0 represents both the bottom
 483	 * of the address space and the top of it (using -1 for the
 484	 * top wouldn't help much: the masks would do the wrong thing).
 485	 * The rule is that addr 0 and floor 0 refer to the bottom of
 486	 * the address space, but end 0 and ceiling 0 refer to the top
 487	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 488	 * that end 0 case should be mythical).
 489	 *
 490	 * Wherever addr is brought up or ceiling brought down, we must
 491	 * be careful to reject "the opposite 0" before it confuses the
 492	 * subsequent tests.  But what about where end is brought down
 493	 * by PMD_SIZE below? no, end can't go down to 0 there.
 494	 *
 495	 * Whereas we round start (addr) and ceiling down, by different
 496	 * masks at different levels, in order to test whether a table
 497	 * now has no other vmas using it, so can be freed, we don't
 498	 * bother to round floor or end up - the tests don't need that.
 499	 */
 500
 501	addr &= PMD_MASK;
 502	if (addr < floor) {
 503		addr += PMD_SIZE;
 504		if (!addr)
 505			return;
 506	}
 507	if (ceiling) {
 508		ceiling &= PMD_MASK;
 509		if (!ceiling)
 510			return;
 511	}
 512	if (end - 1 > ceiling - 1)
 513		end -= PMD_SIZE;
 514	if (addr > end - 1)
 515		return;
 516
 517	pgd = pgd_offset(tlb->mm, addr);
 518	do {
 519		next = pgd_addr_end(addr, end);
 520		if (pgd_none_or_clear_bad(pgd))
 521			continue;
 522		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 523	} while (pgd++, addr = next, addr != end);
 524}
 525
 526void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 527		unsigned long floor, unsigned long ceiling)
 528{
 529	while (vma) {
 530		struct vm_area_struct *next = vma->vm_next;
 531		unsigned long addr = vma->vm_start;
 532
 533		/*
 534		 * Hide vma from rmap and truncate_pagecache before freeing
 535		 * pgtables
 536		 */
 537		unlink_anon_vmas(vma);
 538		unlink_file_vma(vma);
 539
 540		if (is_vm_hugetlb_page(vma)) {
 541			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 542				floor, next? next->vm_start: ceiling);
 543		} else {
 544			/*
 545			 * Optimization: gather nearby vmas into one call down
 546			 */
 547			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 548			       && !is_vm_hugetlb_page(next)) {
 549				vma = next;
 550				next = vma->vm_next;
 551				unlink_anon_vmas(vma);
 552				unlink_file_vma(vma);
 553			}
 554			free_pgd_range(tlb, addr, vma->vm_end,
 555				floor, next? next->vm_start: ceiling);
 556		}
 557		vma = next;
 558	}
 559}
 560
 561int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 562		pmd_t *pmd, unsigned long address)
 563{
 564	spinlock_t *ptl;
 565	pgtable_t new = pte_alloc_one(mm, address);
 566	int wait_split_huge_page;
 567	if (!new)
 568		return -ENOMEM;
 569
 570	/*
 571	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 572	 * visible before the pte is made visible to other CPUs by being
 573	 * put into page tables.
 574	 *
 575	 * The other side of the story is the pointer chasing in the page
 576	 * table walking code (when walking the page table without locking;
 577	 * ie. most of the time). Fortunately, these data accesses consist
 578	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 579	 * being the notable exception) will already guarantee loads are
 580	 * seen in-order. See the alpha page table accessors for the
 581	 * smp_read_barrier_depends() barriers in page table walking code.
 582	 */
 583	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 584
 585	ptl = pmd_lock(mm, pmd);
 586	wait_split_huge_page = 0;
 587	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 588		atomic_long_inc(&mm->nr_ptes);
 589		pmd_populate(mm, pmd, new);
 590		new = NULL;
 591	} else if (unlikely(pmd_trans_splitting(*pmd)))
 592		wait_split_huge_page = 1;
 593	spin_unlock(ptl);
 594	if (new)
 595		pte_free(mm, new);
 596	if (wait_split_huge_page)
 597		wait_split_huge_page(vma->anon_vma, pmd);
 598	return 0;
 599}
 600
 601int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 602{
 603	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 604	if (!new)
 605		return -ENOMEM;
 606
 607	smp_wmb(); /* See comment in __pte_alloc */
 608
 609	spin_lock(&init_mm.page_table_lock);
 610	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 611		pmd_populate_kernel(&init_mm, pmd, new);
 612		new = NULL;
 613	} else
 614		VM_BUG_ON(pmd_trans_splitting(*pmd));
 615	spin_unlock(&init_mm.page_table_lock);
 616	if (new)
 617		pte_free_kernel(&init_mm, new);
 618	return 0;
 619}
 620
 621static inline void init_rss_vec(int *rss)
 622{
 623	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 624}
 625
 626static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 627{
 628	int i;
 629
 630	if (current->mm == mm)
 631		sync_mm_rss(mm);
 632	for (i = 0; i < NR_MM_COUNTERS; i++)
 633		if (rss[i])
 634			add_mm_counter(mm, i, rss[i]);
 635}
 636
 637/*
 638 * This function is called to print an error when a bad pte
 639 * is found. For example, we might have a PFN-mapped pte in
 640 * a region that doesn't allow it.
 641 *
 642 * The calling function must still handle the error.
 643 */
 644static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 645			  pte_t pte, struct page *page)
 646{
 647	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 648	pud_t *pud = pud_offset(pgd, addr);
 649	pmd_t *pmd = pmd_offset(pud, addr);
 650	struct address_space *mapping;
 651	pgoff_t index;
 652	static unsigned long resume;
 653	static unsigned long nr_shown;
 654	static unsigned long nr_unshown;
 655
 656	/*
 657	 * Allow a burst of 60 reports, then keep quiet for that minute;
 658	 * or allow a steady drip of one report per second.
 659	 */
 660	if (nr_shown == 60) {
 661		if (time_before(jiffies, resume)) {
 662			nr_unshown++;
 663			return;
 664		}
 665		if (nr_unshown) {
 666			printk(KERN_ALERT
 667				"BUG: Bad page map: %lu messages suppressed\n",
 668				nr_unshown);
 669			nr_unshown = 0;
 670		}
 671		nr_shown = 0;
 672	}
 673	if (nr_shown++ == 0)
 674		resume = jiffies + 60 * HZ;
 675
 676	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 677	index = linear_page_index(vma, addr);
 678
 679	printk(KERN_ALERT
 680		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 681		current->comm,
 682		(long long)pte_val(pte), (long long)pmd_val(*pmd));
 683	if (page)
 684		dump_page(page, "bad pte");
 685	printk(KERN_ALERT
 686		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 687		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 688	/*
 689	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 690	 */
 691	if (vma->vm_ops)
 692		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
 693		       vma->vm_ops->fault);
 694	if (vma->vm_file)
 695		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
 696		       vma->vm_file->f_op->mmap);
 697	dump_stack();
 698	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 699}
 700
 701static inline bool is_cow_mapping(vm_flags_t flags)
 702{
 703	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 704}
 705
 706/*
 707 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 708 *
 709 * "Special" mappings do not wish to be associated with a "struct page" (either
 710 * it doesn't exist, or it exists but they don't want to touch it). In this
 711 * case, NULL is returned here. "Normal" mappings do have a struct page.
 712 *
 713 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 714 * pte bit, in which case this function is trivial. Secondly, an architecture
 715 * may not have a spare pte bit, which requires a more complicated scheme,
 716 * described below.
 717 *
 718 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 719 * special mapping (even if there are underlying and valid "struct pages").
 720 * COWed pages of a VM_PFNMAP are always normal.
 721 *
 722 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 723 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 724 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 725 * mapping will always honor the rule
 726 *
 727 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 728 *
 729 * And for normal mappings this is false.
 730 *
 731 * This restricts such mappings to be a linear translation from virtual address
 732 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 733 * as the vma is not a COW mapping; in that case, we know that all ptes are
 734 * special (because none can have been COWed).
 735 *
 736 *
 737 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 738 *
 739 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 740 * page" backing, however the difference is that _all_ pages with a struct
 741 * page (that is, those where pfn_valid is true) are refcounted and considered
 742 * normal pages by the VM. The disadvantage is that pages are refcounted
 743 * (which can be slower and simply not an option for some PFNMAP users). The
 744 * advantage is that we don't have to follow the strict linearity rule of
 745 * PFNMAP mappings in order to support COWable mappings.
 746 *
 747 */
 748#ifdef __HAVE_ARCH_PTE_SPECIAL
 749# define HAVE_PTE_SPECIAL 1
 750#else
 751# define HAVE_PTE_SPECIAL 0
 752#endif
 753struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 754				pte_t pte)
 755{
 756	unsigned long pfn = pte_pfn(pte);
 757
 758	if (HAVE_PTE_SPECIAL) {
 759		if (likely(!pte_special(pte)))
 760			goto check_pfn;
 
 
 761		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 762			return NULL;
 763		if (!is_zero_pfn(pfn))
 764			print_bad_pte(vma, addr, pte, NULL);
 765		return NULL;
 766	}
 767
 768	/* !HAVE_PTE_SPECIAL case follows: */
 769
 770	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 771		if (vma->vm_flags & VM_MIXEDMAP) {
 772			if (!pfn_valid(pfn))
 773				return NULL;
 774			goto out;
 775		} else {
 776			unsigned long off;
 777			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 778			if (pfn == vma->vm_pgoff + off)
 779				return NULL;
 780			if (!is_cow_mapping(vma->vm_flags))
 781				return NULL;
 782		}
 783	}
 784
 785	if (is_zero_pfn(pfn))
 786		return NULL;
 787check_pfn:
 788	if (unlikely(pfn > highest_memmap_pfn)) {
 789		print_bad_pte(vma, addr, pte, NULL);
 790		return NULL;
 791	}
 792
 793	/*
 794	 * NOTE! We still have PageReserved() pages in the page tables.
 795	 * eg. VDSO mappings can cause them to exist.
 796	 */
 797out:
 798	return pfn_to_page(pfn);
 799}
 800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801/*
 802 * copy one vm_area from one task to the other. Assumes the page tables
 803 * already present in the new task to be cleared in the whole range
 804 * covered by this vma.
 805 */
 806
 807static inline unsigned long
 808copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 809		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 810		unsigned long addr, int *rss)
 811{
 812	unsigned long vm_flags = vma->vm_flags;
 813	pte_t pte = *src_pte;
 814	struct page *page;
 815
 816	/* pte contains position in swap or file, so copy. */
 817	if (unlikely(!pte_present(pte))) {
 818		if (!pte_file(pte)) {
 819			swp_entry_t entry = pte_to_swp_entry(pte);
 820
 
 821			if (swap_duplicate(entry) < 0)
 822				return entry.val;
 823
 824			/* make sure dst_mm is on swapoff's mmlist. */
 825			if (unlikely(list_empty(&dst_mm->mmlist))) {
 826				spin_lock(&mmlist_lock);
 827				if (list_empty(&dst_mm->mmlist))
 828					list_add(&dst_mm->mmlist,
 829						 &src_mm->mmlist);
 830				spin_unlock(&mmlist_lock);
 831			}
 832			if (likely(!non_swap_entry(entry)))
 833				rss[MM_SWAPENTS]++;
 834			else if (is_migration_entry(entry)) {
 835				page = migration_entry_to_page(entry);
 836
 837				if (PageAnon(page))
 838					rss[MM_ANONPAGES]++;
 839				else
 840					rss[MM_FILEPAGES]++;
 841
 842				if (is_write_migration_entry(entry) &&
 843				    is_cow_mapping(vm_flags)) {
 844					/*
 845					 * COW mappings require pages in both
 846					 * parent and child to be set to read.
 847					 */
 848					make_migration_entry_read(&entry);
 849					pte = swp_entry_to_pte(entry);
 850					if (pte_swp_soft_dirty(*src_pte))
 851						pte = pte_swp_mksoft_dirty(pte);
 852					set_pte_at(src_mm, addr, src_pte, pte);
 853				}
 
 854			}
 855		}
 856		goto out_set_pte;
 857	}
 858
 859	/*
 860	 * If it's a COW mapping, write protect it both
 861	 * in the parent and the child
 862	 */
 863	if (is_cow_mapping(vm_flags)) {
 864		ptep_set_wrprotect(src_mm, addr, src_pte);
 865		pte = pte_wrprotect(pte);
 866	}
 867
 868	/*
 869	 * If it's a shared mapping, mark it clean in
 870	 * the child
 871	 */
 872	if (vm_flags & VM_SHARED)
 873		pte = pte_mkclean(pte);
 874	pte = pte_mkold(pte);
 875
 876	page = vm_normal_page(vma, addr, pte);
 877	if (page) {
 878		get_page(page);
 879		page_dup_rmap(page);
 880		if (PageAnon(page))
 881			rss[MM_ANONPAGES]++;
 882		else
 883			rss[MM_FILEPAGES]++;
 884	}
 885
 886out_set_pte:
 887	set_pte_at(dst_mm, addr, dst_pte, pte);
 888	return 0;
 889}
 890
 891int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 892		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 893		   unsigned long addr, unsigned long end)
 894{
 895	pte_t *orig_src_pte, *orig_dst_pte;
 896	pte_t *src_pte, *dst_pte;
 897	spinlock_t *src_ptl, *dst_ptl;
 898	int progress = 0;
 899	int rss[NR_MM_COUNTERS];
 900	swp_entry_t entry = (swp_entry_t){0};
 901
 902again:
 903	init_rss_vec(rss);
 904
 905	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 906	if (!dst_pte)
 907		return -ENOMEM;
 908	src_pte = pte_offset_map(src_pmd, addr);
 909	src_ptl = pte_lockptr(src_mm, src_pmd);
 910	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 911	orig_src_pte = src_pte;
 912	orig_dst_pte = dst_pte;
 913	arch_enter_lazy_mmu_mode();
 914
 915	do {
 916		/*
 917		 * We are holding two locks at this point - either of them
 918		 * could generate latencies in another task on another CPU.
 919		 */
 920		if (progress >= 32) {
 921			progress = 0;
 922			if (need_resched() ||
 923			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 924				break;
 925		}
 926		if (pte_none(*src_pte)) {
 927			progress++;
 928			continue;
 929		}
 930		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 931							vma, addr, rss);
 932		if (entry.val)
 933			break;
 934		progress += 8;
 935	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 936
 937	arch_leave_lazy_mmu_mode();
 938	spin_unlock(src_ptl);
 939	pte_unmap(orig_src_pte);
 940	add_mm_rss_vec(dst_mm, rss);
 941	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 942	cond_resched();
 943
 944	if (entry.val) {
 945		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 946			return -ENOMEM;
 947		progress = 0;
 948	}
 949	if (addr != end)
 950		goto again;
 951	return 0;
 952}
 953
 954static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 955		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 956		unsigned long addr, unsigned long end)
 957{
 958	pmd_t *src_pmd, *dst_pmd;
 959	unsigned long next;
 960
 961	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 962	if (!dst_pmd)
 963		return -ENOMEM;
 964	src_pmd = pmd_offset(src_pud, addr);
 965	do {
 966		next = pmd_addr_end(addr, end);
 967		if (pmd_trans_huge(*src_pmd)) {
 968			int err;
 969			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 970			err = copy_huge_pmd(dst_mm, src_mm,
 971					    dst_pmd, src_pmd, addr, vma);
 972			if (err == -ENOMEM)
 973				return -ENOMEM;
 974			if (!err)
 975				continue;
 976			/* fall through */
 977		}
 978		if (pmd_none_or_clear_bad(src_pmd))
 979			continue;
 980		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 981						vma, addr, next))
 982			return -ENOMEM;
 983	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
 984	return 0;
 985}
 986
 987static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 988		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 989		unsigned long addr, unsigned long end)
 990{
 991	pud_t *src_pud, *dst_pud;
 992	unsigned long next;
 993
 994	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
 995	if (!dst_pud)
 996		return -ENOMEM;
 997	src_pud = pud_offset(src_pgd, addr);
 998	do {
 999		next = pud_addr_end(addr, end);
1000		if (pud_none_or_clear_bad(src_pud))
1001			continue;
1002		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1003						vma, addr, next))
1004			return -ENOMEM;
1005	} while (dst_pud++, src_pud++, addr = next, addr != end);
1006	return 0;
1007}
1008
1009int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010		struct vm_area_struct *vma)
1011{
1012	pgd_t *src_pgd, *dst_pgd;
1013	unsigned long next;
1014	unsigned long addr = vma->vm_start;
1015	unsigned long end = vma->vm_end;
1016	unsigned long mmun_start;	/* For mmu_notifiers */
1017	unsigned long mmun_end;		/* For mmu_notifiers */
1018	bool is_cow;
1019	int ret;
1020
1021	/*
1022	 * Don't copy ptes where a page fault will fill them correctly.
1023	 * Fork becomes much lighter when there are big shared or private
1024	 * readonly mappings. The tradeoff is that copy_page_range is more
1025	 * efficient than faulting.
1026	 */
1027	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1028			       VM_PFNMAP | VM_MIXEDMAP))) {
1029		if (!vma->anon_vma)
1030			return 0;
1031	}
1032
1033	if (is_vm_hugetlb_page(vma))
1034		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1035
1036	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1037		/*
1038		 * We do not free on error cases below as remove_vma
1039		 * gets called on error from higher level routine
1040		 */
1041		ret = track_pfn_copy(vma);
1042		if (ret)
1043			return ret;
1044	}
1045
1046	/*
1047	 * We need to invalidate the secondary MMU mappings only when
1048	 * there could be a permission downgrade on the ptes of the
1049	 * parent mm. And a permission downgrade will only happen if
1050	 * is_cow_mapping() returns true.
1051	 */
1052	is_cow = is_cow_mapping(vma->vm_flags);
1053	mmun_start = addr;
1054	mmun_end   = end;
1055	if (is_cow)
1056		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1057						    mmun_end);
1058
1059	ret = 0;
1060	dst_pgd = pgd_offset(dst_mm, addr);
1061	src_pgd = pgd_offset(src_mm, addr);
1062	do {
1063		next = pgd_addr_end(addr, end);
1064		if (pgd_none_or_clear_bad(src_pgd))
1065			continue;
1066		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1067					    vma, addr, next))) {
1068			ret = -ENOMEM;
1069			break;
1070		}
1071	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1072
1073	if (is_cow)
1074		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1075	return ret;
1076}
1077
1078static unsigned long zap_pte_range(struct mmu_gather *tlb,
1079				struct vm_area_struct *vma, pmd_t *pmd,
1080				unsigned long addr, unsigned long end,
1081				struct zap_details *details)
1082{
1083	struct mm_struct *mm = tlb->mm;
1084	int force_flush = 0;
1085	int rss[NR_MM_COUNTERS];
1086	spinlock_t *ptl;
1087	pte_t *start_pte;
1088	pte_t *pte;
 
1089
1090again:
1091	init_rss_vec(rss);
1092	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1093	pte = start_pte;
1094	arch_enter_lazy_mmu_mode();
1095	do {
1096		pte_t ptent = *pte;
1097		if (pte_none(ptent)) {
1098			continue;
1099		}
1100
1101		if (pte_present(ptent)) {
1102			struct page *page;
1103
1104			page = vm_normal_page(vma, addr, ptent);
1105			if (unlikely(details) && page) {
1106				/*
1107				 * unmap_shared_mapping_pages() wants to
1108				 * invalidate cache without truncating:
1109				 * unmap shared but keep private pages.
1110				 */
1111				if (details->check_mapping &&
1112				    details->check_mapping != page->mapping)
1113					continue;
1114				/*
1115				 * Each page->index must be checked when
1116				 * invalidating or truncating nonlinear.
1117				 */
1118				if (details->nonlinear_vma &&
1119				    (page->index < details->first_index ||
1120				     page->index > details->last_index))
1121					continue;
1122			}
1123			ptent = ptep_get_and_clear_full(mm, addr, pte,
1124							tlb->fullmm);
1125			tlb_remove_tlb_entry(tlb, pte, addr);
1126			if (unlikely(!page))
1127				continue;
1128			if (unlikely(details) && details->nonlinear_vma
1129			    && linear_page_index(details->nonlinear_vma,
1130						addr) != page->index) {
1131				pte_t ptfile = pgoff_to_pte(page->index);
1132				if (pte_soft_dirty(ptent))
1133					pte_file_mksoft_dirty(ptfile);
1134				set_pte_at(mm, addr, pte, ptfile);
1135			}
1136			if (PageAnon(page))
1137				rss[MM_ANONPAGES]--;
1138			else {
1139				if (pte_dirty(ptent)) {
 
 
 
 
 
 
1140					force_flush = 1;
1141					set_page_dirty(page);
1142				}
1143				if (pte_young(ptent) &&
1144				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1145					mark_page_accessed(page);
1146				rss[MM_FILEPAGES]--;
1147			}
1148			page_remove_rmap(page);
 
1149			if (unlikely(page_mapcount(page) < 0))
1150				print_bad_pte(vma, addr, ptent, page);
1151			if (unlikely(!__tlb_remove_page(tlb, page))) {
1152				force_flush = 1;
 
1153				break;
1154			}
1155			continue;
1156		}
1157		/*
1158		 * If details->check_mapping, we leave swap entries;
1159		 * if details->nonlinear_vma, we leave file entries.
1160		 */
1161		if (unlikely(details))
1162			continue;
1163		if (pte_file(ptent)) {
1164			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1165				print_bad_pte(vma, addr, ptent, NULL);
1166		} else {
1167			swp_entry_t entry = pte_to_swp_entry(ptent);
1168
1169			if (!non_swap_entry(entry))
1170				rss[MM_SWAPENTS]--;
1171			else if (is_migration_entry(entry)) {
1172				struct page *page;
1173
1174				page = migration_entry_to_page(entry);
1175
1176				if (PageAnon(page))
1177					rss[MM_ANONPAGES]--;
1178				else
1179					rss[MM_FILEPAGES]--;
1180			}
1181			if (unlikely(!free_swap_and_cache(entry)))
1182				print_bad_pte(vma, addr, ptent, NULL);
1183		}
 
 
1184		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185	} while (pte++, addr += PAGE_SIZE, addr != end);
1186
1187	add_mm_rss_vec(mm, rss);
1188	arch_leave_lazy_mmu_mode();
1189
1190	/* Do the actual TLB flush before dropping ptl */
1191	if (force_flush) {
1192		unsigned long old_end;
1193
1194		/*
1195		 * Flush the TLB just for the previous segment,
1196		 * then update the range to be the remaining
1197		 * TLB range.
1198		 */
1199		old_end = tlb->end;
1200		tlb->end = addr;
1201		tlb_flush_mmu_tlbonly(tlb);
1202		tlb->start = addr;
1203		tlb->end = old_end;
1204	}
1205	pte_unmap_unlock(start_pte, ptl);
1206
1207	/*
1208	 * If we forced a TLB flush (either due to running out of
1209	 * batch buffers or because we needed to flush dirty TLB
1210	 * entries before releasing the ptl), free the batched
1211	 * memory too. Restart if we didn't do everything.
1212	 */
1213	if (force_flush) {
1214		force_flush = 0;
1215		tlb_flush_mmu_free(tlb);
1216
1217		if (addr != end)
1218			goto again;
1219	}
1220
1221	return addr;
1222}
1223
1224static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225				struct vm_area_struct *vma, pud_t *pud,
1226				unsigned long addr, unsigned long end,
1227				struct zap_details *details)
1228{
1229	pmd_t *pmd;
1230	unsigned long next;
1231
1232	pmd = pmd_offset(pud, addr);
1233	do {
1234		next = pmd_addr_end(addr, end);
1235		if (pmd_trans_huge(*pmd)) {
1236			if (next - addr != HPAGE_PMD_SIZE) {
1237#ifdef CONFIG_DEBUG_VM
1238				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240						__func__, addr, end,
1241						vma->vm_start,
1242						vma->vm_end);
1243					BUG();
1244				}
1245#endif
1246				split_huge_page_pmd(vma, addr, pmd);
1247			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248				goto next;
1249			/* fall through */
1250		}
1251		/*
1252		 * Here there can be other concurrent MADV_DONTNEED or
1253		 * trans huge page faults running, and if the pmd is
1254		 * none or trans huge it can change under us. This is
1255		 * because MADV_DONTNEED holds the mmap_sem in read
1256		 * mode.
1257		 */
1258		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259			goto next;
1260		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261next:
1262		cond_resched();
1263	} while (pmd++, addr = next, addr != end);
1264
1265	return addr;
1266}
1267
1268static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269				struct vm_area_struct *vma, pgd_t *pgd,
1270				unsigned long addr, unsigned long end,
1271				struct zap_details *details)
1272{
1273	pud_t *pud;
1274	unsigned long next;
1275
1276	pud = pud_offset(pgd, addr);
1277	do {
1278		next = pud_addr_end(addr, end);
1279		if (pud_none_or_clear_bad(pud))
1280			continue;
1281		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282	} while (pud++, addr = next, addr != end);
1283
1284	return addr;
1285}
1286
1287static void unmap_page_range(struct mmu_gather *tlb,
1288			     struct vm_area_struct *vma,
1289			     unsigned long addr, unsigned long end,
1290			     struct zap_details *details)
1291{
1292	pgd_t *pgd;
1293	unsigned long next;
1294
1295	if (details && !details->check_mapping && !details->nonlinear_vma)
1296		details = NULL;
1297
1298	BUG_ON(addr >= end);
1299	mem_cgroup_uncharge_start();
1300	tlb_start_vma(tlb, vma);
1301	pgd = pgd_offset(vma->vm_mm, addr);
1302	do {
1303		next = pgd_addr_end(addr, end);
1304		if (pgd_none_or_clear_bad(pgd))
1305			continue;
1306		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307	} while (pgd++, addr = next, addr != end);
1308	tlb_end_vma(tlb, vma);
1309	mem_cgroup_uncharge_end();
1310}
1311
1312
1313static void unmap_single_vma(struct mmu_gather *tlb,
1314		struct vm_area_struct *vma, unsigned long start_addr,
1315		unsigned long end_addr,
1316		struct zap_details *details)
1317{
1318	unsigned long start = max(vma->vm_start, start_addr);
1319	unsigned long end;
1320
1321	if (start >= vma->vm_end)
1322		return;
1323	end = min(vma->vm_end, end_addr);
1324	if (end <= vma->vm_start)
1325		return;
1326
1327	if (vma->vm_file)
1328		uprobe_munmap(vma, start, end);
1329
1330	if (unlikely(vma->vm_flags & VM_PFNMAP))
1331		untrack_pfn(vma, 0, 0);
1332
1333	if (start != end) {
1334		if (unlikely(is_vm_hugetlb_page(vma))) {
1335			/*
1336			 * It is undesirable to test vma->vm_file as it
1337			 * should be non-null for valid hugetlb area.
1338			 * However, vm_file will be NULL in the error
1339			 * cleanup path of mmap_region. When
1340			 * hugetlbfs ->mmap method fails,
1341			 * mmap_region() nullifies vma->vm_file
1342			 * before calling this function to clean up.
1343			 * Since no pte has actually been setup, it is
1344			 * safe to do nothing in this case.
1345			 */
1346			if (vma->vm_file) {
1347				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1348				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1350			}
1351		} else
1352			unmap_page_range(tlb, vma, start, end, details);
1353	}
1354}
1355
1356/**
1357 * unmap_vmas - unmap a range of memory covered by a list of vma's
1358 * @tlb: address of the caller's struct mmu_gather
1359 * @vma: the starting vma
1360 * @start_addr: virtual address at which to start unmapping
1361 * @end_addr: virtual address at which to end unmapping
1362 *
1363 * Unmap all pages in the vma list.
1364 *
1365 * Only addresses between `start' and `end' will be unmapped.
1366 *
1367 * The VMA list must be sorted in ascending virtual address order.
1368 *
1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370 * range after unmap_vmas() returns.  So the only responsibility here is to
1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372 * drops the lock and schedules.
1373 */
1374void unmap_vmas(struct mmu_gather *tlb,
1375		struct vm_area_struct *vma, unsigned long start_addr,
1376		unsigned long end_addr)
1377{
1378	struct mm_struct *mm = vma->vm_mm;
1379
1380	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1384}
1385
1386/**
1387 * zap_page_range - remove user pages in a given range
1388 * @vma: vm_area_struct holding the applicable pages
1389 * @start: starting address of pages to zap
1390 * @size: number of bytes to zap
1391 * @details: details of nonlinear truncation or shared cache invalidation
1392 *
1393 * Caller must protect the VMA list
1394 */
1395void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396		unsigned long size, struct zap_details *details)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct mmu_gather tlb;
1400	unsigned long end = start + size;
1401
1402	lru_add_drain();
1403	tlb_gather_mmu(&tlb, mm, start, end);
1404	update_hiwater_rss(mm);
1405	mmu_notifier_invalidate_range_start(mm, start, end);
1406	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407		unmap_single_vma(&tlb, vma, start, end, details);
1408	mmu_notifier_invalidate_range_end(mm, start, end);
1409	tlb_finish_mmu(&tlb, start, end);
1410}
1411
1412/**
1413 * zap_page_range_single - remove user pages in a given range
1414 * @vma: vm_area_struct holding the applicable pages
1415 * @address: starting address of pages to zap
1416 * @size: number of bytes to zap
1417 * @details: details of nonlinear truncation or shared cache invalidation
1418 *
1419 * The range must fit into one VMA.
1420 */
1421static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422		unsigned long size, struct zap_details *details)
1423{
1424	struct mm_struct *mm = vma->vm_mm;
1425	struct mmu_gather tlb;
1426	unsigned long end = address + size;
1427
1428	lru_add_drain();
1429	tlb_gather_mmu(&tlb, mm, address, end);
1430	update_hiwater_rss(mm);
1431	mmu_notifier_invalidate_range_start(mm, address, end);
1432	unmap_single_vma(&tlb, vma, address, end, details);
1433	mmu_notifier_invalidate_range_end(mm, address, end);
1434	tlb_finish_mmu(&tlb, address, end);
1435}
1436
1437/**
1438 * zap_vma_ptes - remove ptes mapping the vma
1439 * @vma: vm_area_struct holding ptes to be zapped
1440 * @address: starting address of pages to zap
1441 * @size: number of bytes to zap
1442 *
1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444 *
1445 * The entire address range must be fully contained within the vma.
1446 *
1447 * Returns 0 if successful.
1448 */
1449int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450		unsigned long size)
1451{
1452	if (address < vma->vm_start || address + size > vma->vm_end ||
1453	    		!(vma->vm_flags & VM_PFNMAP))
1454		return -1;
1455	zap_page_range_single(vma, address, size, NULL);
1456	return 0;
1457}
1458EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459
1460/**
1461 * follow_page_mask - look up a page descriptor from a user-virtual address
1462 * @vma: vm_area_struct mapping @address
1463 * @address: virtual address to look up
1464 * @flags: flags modifying lookup behaviour
1465 * @page_mask: on output, *page_mask is set according to the size of the page
1466 *
1467 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1468 *
1469 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1470 * an error pointer if there is a mapping to something not represented
1471 * by a page descriptor (see also vm_normal_page()).
1472 */
1473struct page *follow_page_mask(struct vm_area_struct *vma,
1474			      unsigned long address, unsigned int flags,
1475			      unsigned int *page_mask)
1476{
1477	pgd_t *pgd;
1478	pud_t *pud;
1479	pmd_t *pmd;
1480	pte_t *ptep, pte;
1481	spinlock_t *ptl;
1482	struct page *page;
1483	struct mm_struct *mm = vma->vm_mm;
1484
1485	*page_mask = 0;
1486
1487	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1488	if (!IS_ERR(page)) {
1489		BUG_ON(flags & FOLL_GET);
1490		goto out;
1491	}
1492
1493	page = NULL;
1494	pgd = pgd_offset(mm, address);
1495	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1496		goto no_page_table;
1497
1498	pud = pud_offset(pgd, address);
1499	if (pud_none(*pud))
1500		goto no_page_table;
1501	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1502		if (flags & FOLL_GET)
1503			goto out;
1504		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1505		goto out;
1506	}
1507	if (unlikely(pud_bad(*pud)))
1508		goto no_page_table;
1509
1510	pmd = pmd_offset(pud, address);
1511	if (pmd_none(*pmd))
1512		goto no_page_table;
1513	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1514		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1515		if (flags & FOLL_GET) {
1516			/*
1517			 * Refcount on tail pages are not well-defined and
1518			 * shouldn't be taken. The caller should handle a NULL
1519			 * return when trying to follow tail pages.
1520			 */
1521			if (PageHead(page))
1522				get_page(page);
1523			else {
1524				page = NULL;
1525				goto out;
1526			}
1527		}
1528		goto out;
1529	}
1530	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1531		goto no_page_table;
1532	if (pmd_trans_huge(*pmd)) {
1533		if (flags & FOLL_SPLIT) {
1534			split_huge_page_pmd(vma, address, pmd);
1535			goto split_fallthrough;
1536		}
1537		ptl = pmd_lock(mm, pmd);
1538		if (likely(pmd_trans_huge(*pmd))) {
1539			if (unlikely(pmd_trans_splitting(*pmd))) {
1540				spin_unlock(ptl);
1541				wait_split_huge_page(vma->anon_vma, pmd);
1542			} else {
1543				page = follow_trans_huge_pmd(vma, address,
1544							     pmd, flags);
1545				spin_unlock(ptl);
1546				*page_mask = HPAGE_PMD_NR - 1;
1547				goto out;
1548			}
1549		} else
1550			spin_unlock(ptl);
1551		/* fall through */
1552	}
1553split_fallthrough:
1554	if (unlikely(pmd_bad(*pmd)))
1555		goto no_page_table;
1556
1557	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1558
1559	pte = *ptep;
1560	if (!pte_present(pte)) {
1561		swp_entry_t entry;
1562		/*
1563		 * KSM's break_ksm() relies upon recognizing a ksm page
1564		 * even while it is being migrated, so for that case we
1565		 * need migration_entry_wait().
1566		 */
1567		if (likely(!(flags & FOLL_MIGRATION)))
1568			goto no_page;
1569		if (pte_none(pte) || pte_file(pte))
1570			goto no_page;
1571		entry = pte_to_swp_entry(pte);
1572		if (!is_migration_entry(entry))
1573			goto no_page;
1574		pte_unmap_unlock(ptep, ptl);
1575		migration_entry_wait(mm, pmd, address);
1576		goto split_fallthrough;
1577	}
1578	if ((flags & FOLL_NUMA) && pte_numa(pte))
1579		goto no_page;
1580	if ((flags & FOLL_WRITE) && !pte_write(pte))
1581		goto unlock;
1582
1583	page = vm_normal_page(vma, address, pte);
1584	if (unlikely(!page)) {
1585		if ((flags & FOLL_DUMP) ||
1586		    !is_zero_pfn(pte_pfn(pte)))
1587			goto bad_page;
1588		page = pte_page(pte);
1589	}
1590
1591	if (flags & FOLL_GET)
1592		get_page_foll(page);
1593	if (flags & FOLL_TOUCH) {
1594		if ((flags & FOLL_WRITE) &&
1595		    !pte_dirty(pte) && !PageDirty(page))
1596			set_page_dirty(page);
1597		/*
1598		 * pte_mkyoung() would be more correct here, but atomic care
1599		 * is needed to avoid losing the dirty bit: it is easier to use
1600		 * mark_page_accessed().
1601		 */
1602		mark_page_accessed(page);
1603	}
1604	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1605		/*
1606		 * The preliminary mapping check is mainly to avoid the
1607		 * pointless overhead of lock_page on the ZERO_PAGE
1608		 * which might bounce very badly if there is contention.
1609		 *
1610		 * If the page is already locked, we don't need to
1611		 * handle it now - vmscan will handle it later if and
1612		 * when it attempts to reclaim the page.
1613		 */
1614		if (page->mapping && trylock_page(page)) {
1615			lru_add_drain();  /* push cached pages to LRU */
1616			/*
1617			 * Because we lock page here, and migration is
1618			 * blocked by the pte's page reference, and we
1619			 * know the page is still mapped, we don't even
1620			 * need to check for file-cache page truncation.
1621			 */
1622			mlock_vma_page(page);
1623			unlock_page(page);
1624		}
1625	}
1626unlock:
1627	pte_unmap_unlock(ptep, ptl);
1628out:
1629	return page;
1630
1631bad_page:
1632	pte_unmap_unlock(ptep, ptl);
1633	return ERR_PTR(-EFAULT);
1634
1635no_page:
1636	pte_unmap_unlock(ptep, ptl);
1637	if (!pte_none(pte))
1638		return page;
1639
1640no_page_table:
1641	/*
1642	 * When core dumping an enormous anonymous area that nobody
1643	 * has touched so far, we don't want to allocate unnecessary pages or
1644	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1645	 * then get_dump_page() will return NULL to leave a hole in the dump.
1646	 * But we can only make this optimization where a hole would surely
1647	 * be zero-filled if handle_mm_fault() actually did handle it.
1648	 */
1649	if ((flags & FOLL_DUMP) &&
1650	    (!vma->vm_ops || !vma->vm_ops->fault))
1651		return ERR_PTR(-EFAULT);
1652	return page;
1653}
1654
1655static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1656{
1657	return stack_guard_page_start(vma, addr) ||
1658	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1659}
1660
1661/**
1662 * __get_user_pages() - pin user pages in memory
1663 * @tsk:	task_struct of target task
1664 * @mm:		mm_struct of target mm
1665 * @start:	starting user address
1666 * @nr_pages:	number of pages from start to pin
1667 * @gup_flags:	flags modifying pin behaviour
1668 * @pages:	array that receives pointers to the pages pinned.
1669 *		Should be at least nr_pages long. Or NULL, if caller
1670 *		only intends to ensure the pages are faulted in.
1671 * @vmas:	array of pointers to vmas corresponding to each page.
1672 *		Or NULL if the caller does not require them.
1673 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1674 *
1675 * Returns number of pages pinned. This may be fewer than the number
1676 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1677 * were pinned, returns -errno. Each page returned must be released
1678 * with a put_page() call when it is finished with. vmas will only
1679 * remain valid while mmap_sem is held.
1680 *
1681 * Must be called with mmap_sem held for read or write.
1682 *
1683 * __get_user_pages walks a process's page tables and takes a reference to
1684 * each struct page that each user address corresponds to at a given
1685 * instant. That is, it takes the page that would be accessed if a user
1686 * thread accesses the given user virtual address at that instant.
1687 *
1688 * This does not guarantee that the page exists in the user mappings when
1689 * __get_user_pages returns, and there may even be a completely different
1690 * page there in some cases (eg. if mmapped pagecache has been invalidated
1691 * and subsequently re faulted). However it does guarantee that the page
1692 * won't be freed completely. And mostly callers simply care that the page
1693 * contains data that was valid *at some point in time*. Typically, an IO
1694 * or similar operation cannot guarantee anything stronger anyway because
1695 * locks can't be held over the syscall boundary.
1696 *
1697 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1698 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1699 * appropriate) must be called after the page is finished with, and
1700 * before put_page is called.
1701 *
1702 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1703 * or mmap_sem contention, and if waiting is needed to pin all pages,
1704 * *@nonblocking will be set to 0.
1705 *
1706 * In most cases, get_user_pages or get_user_pages_fast should be used
1707 * instead of __get_user_pages. __get_user_pages should be used only if
1708 * you need some special @gup_flags.
1709 */
1710long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1711		unsigned long start, unsigned long nr_pages,
1712		unsigned int gup_flags, struct page **pages,
1713		struct vm_area_struct **vmas, int *nonblocking)
1714{
1715	long i;
1716	unsigned long vm_flags;
1717	unsigned int page_mask;
1718
1719	if (!nr_pages)
1720		return 0;
1721
1722	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1723
1724	/*
1725	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1726	 * would be called on PROT_NONE ranges. We must never invoke
1727	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1728	 * page faults would unprotect the PROT_NONE ranges if
1729	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1730	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1731	 * FOLL_FORCE is set.
1732	 */
1733	if (!(gup_flags & FOLL_FORCE))
1734		gup_flags |= FOLL_NUMA;
1735
1736	i = 0;
1737
1738	do {
1739		struct vm_area_struct *vma;
1740
1741		vma = find_extend_vma(mm, start);
1742		if (!vma && in_gate_area(mm, start)) {
1743			unsigned long pg = start & PAGE_MASK;
1744			pgd_t *pgd;
1745			pud_t *pud;
1746			pmd_t *pmd;
1747			pte_t *pte;
1748
1749			/* user gate pages are read-only */
1750			if (gup_flags & FOLL_WRITE)
1751				goto efault;
1752			if (pg > TASK_SIZE)
1753				pgd = pgd_offset_k(pg);
1754			else
1755				pgd = pgd_offset_gate(mm, pg);
1756			BUG_ON(pgd_none(*pgd));
1757			pud = pud_offset(pgd, pg);
1758			BUG_ON(pud_none(*pud));
1759			pmd = pmd_offset(pud, pg);
1760			if (pmd_none(*pmd))
1761				goto efault;
1762			VM_BUG_ON(pmd_trans_huge(*pmd));
1763			pte = pte_offset_map(pmd, pg);
1764			if (pte_none(*pte)) {
1765				pte_unmap(pte);
1766				goto efault;
1767			}
1768			vma = get_gate_vma(mm);
1769			if (pages) {
1770				struct page *page;
1771
1772				page = vm_normal_page(vma, start, *pte);
1773				if (!page) {
1774					if (!(gup_flags & FOLL_DUMP) &&
1775					     is_zero_pfn(pte_pfn(*pte)))
1776						page = pte_page(*pte);
1777					else {
1778						pte_unmap(pte);
1779						goto efault;
1780					}
1781				}
1782				pages[i] = page;
1783				get_page(page);
1784			}
1785			pte_unmap(pte);
1786			page_mask = 0;
1787			goto next_page;
1788		}
1789
1790		if (!vma)
1791			goto efault;
1792		vm_flags = vma->vm_flags;
1793		if (vm_flags & (VM_IO | VM_PFNMAP))
1794			goto efault;
1795
1796		if (gup_flags & FOLL_WRITE) {
1797			if (!(vm_flags & VM_WRITE)) {
1798				if (!(gup_flags & FOLL_FORCE))
1799					goto efault;
1800				/*
1801				 * We used to let the write,force case do COW
1802				 * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1803				 * ptrace could set a breakpoint in a read-only
1804				 * mapping of an executable, without corrupting
1805				 * the file (yet only when that file had been
1806				 * opened for writing!).  Anon pages in shared
1807				 * mappings are surprising: now just reject it.
1808				 */
1809				if (!is_cow_mapping(vm_flags)) {
1810					WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
1811					goto efault;
1812				}
1813			}
1814		} else {
1815			if (!(vm_flags & VM_READ)) {
1816				if (!(gup_flags & FOLL_FORCE))
1817					goto efault;
1818				/*
1819				 * Is there actually any vma we can reach here
1820				 * which does not have VM_MAYREAD set?
1821				 */
1822				if (!(vm_flags & VM_MAYREAD))
1823					goto efault;
1824			}
1825		}
1826
1827		if (is_vm_hugetlb_page(vma)) {
1828			i = follow_hugetlb_page(mm, vma, pages, vmas,
1829					&start, &nr_pages, i, gup_flags);
1830			continue;
1831		}
1832
1833		do {
1834			struct page *page;
1835			unsigned int foll_flags = gup_flags;
1836			unsigned int page_increm;
1837
1838			/*
1839			 * If we have a pending SIGKILL, don't keep faulting
1840			 * pages and potentially allocating memory.
1841			 */
1842			if (unlikely(fatal_signal_pending(current)))
1843				return i ? i : -ERESTARTSYS;
1844
1845			cond_resched();
1846			while (!(page = follow_page_mask(vma, start,
1847						foll_flags, &page_mask))) {
1848				int ret;
1849				unsigned int fault_flags = 0;
1850
1851				/* For mlock, just skip the stack guard page. */
1852				if (foll_flags & FOLL_MLOCK) {
1853					if (stack_guard_page(vma, start))
1854						goto next_page;
1855				}
1856				if (foll_flags & FOLL_WRITE)
1857					fault_flags |= FAULT_FLAG_WRITE;
1858				if (nonblocking)
1859					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1860				if (foll_flags & FOLL_NOWAIT)
1861					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1862
1863				ret = handle_mm_fault(mm, vma, start,
1864							fault_flags);
1865
1866				if (ret & VM_FAULT_ERROR) {
1867					if (ret & VM_FAULT_OOM)
1868						return i ? i : -ENOMEM;
1869					if (ret & (VM_FAULT_HWPOISON |
1870						   VM_FAULT_HWPOISON_LARGE)) {
1871						if (i)
1872							return i;
1873						else if (gup_flags & FOLL_HWPOISON)
1874							return -EHWPOISON;
1875						else
1876							return -EFAULT;
1877					}
1878					if (ret & VM_FAULT_SIGBUS)
1879						goto efault;
1880					BUG();
1881				}
1882
1883				if (tsk) {
1884					if (ret & VM_FAULT_MAJOR)
1885						tsk->maj_flt++;
1886					else
1887						tsk->min_flt++;
1888				}
1889
1890				if (ret & VM_FAULT_RETRY) {
1891					if (nonblocking)
1892						*nonblocking = 0;
1893					return i;
1894				}
1895
1896				/*
1897				 * The VM_FAULT_WRITE bit tells us that
1898				 * do_wp_page has broken COW when necessary,
1899				 * even if maybe_mkwrite decided not to set
1900				 * pte_write. We can thus safely do subsequent
1901				 * page lookups as if they were reads. But only
1902				 * do so when looping for pte_write is futile:
1903				 * in some cases userspace may also be wanting
1904				 * to write to the gotten user page, which a
1905				 * read fault here might prevent (a readonly
1906				 * page might get reCOWed by userspace write).
1907				 */
1908				if ((ret & VM_FAULT_WRITE) &&
1909				    !(vma->vm_flags & VM_WRITE))
1910					foll_flags &= ~FOLL_WRITE;
1911
1912				cond_resched();
1913			}
1914			if (IS_ERR(page))
1915				return i ? i : PTR_ERR(page);
1916			if (pages) {
1917				pages[i] = page;
1918
1919				flush_anon_page(vma, page, start);
1920				flush_dcache_page(page);
1921				page_mask = 0;
1922			}
1923next_page:
1924			if (vmas) {
1925				vmas[i] = vma;
1926				page_mask = 0;
1927			}
1928			page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1929			if (page_increm > nr_pages)
1930				page_increm = nr_pages;
1931			i += page_increm;
1932			start += page_increm * PAGE_SIZE;
1933			nr_pages -= page_increm;
1934		} while (nr_pages && start < vma->vm_end);
1935	} while (nr_pages);
1936	return i;
1937efault:
1938	return i ? : -EFAULT;
1939}
1940EXPORT_SYMBOL(__get_user_pages);
1941
1942/*
1943 * fixup_user_fault() - manually resolve a user page fault
1944 * @tsk:	the task_struct to use for page fault accounting, or
1945 *		NULL if faults are not to be recorded.
1946 * @mm:		mm_struct of target mm
1947 * @address:	user address
1948 * @fault_flags:flags to pass down to handle_mm_fault()
1949 *
1950 * This is meant to be called in the specific scenario where for locking reasons
1951 * we try to access user memory in atomic context (within a pagefault_disable()
1952 * section), this returns -EFAULT, and we want to resolve the user fault before
1953 * trying again.
1954 *
1955 * Typically this is meant to be used by the futex code.
1956 *
1957 * The main difference with get_user_pages() is that this function will
1958 * unconditionally call handle_mm_fault() which will in turn perform all the
1959 * necessary SW fixup of the dirty and young bits in the PTE, while
1960 * handle_mm_fault() only guarantees to update these in the struct page.
1961 *
1962 * This is important for some architectures where those bits also gate the
1963 * access permission to the page because they are maintained in software.  On
1964 * such architectures, gup() will not be enough to make a subsequent access
1965 * succeed.
1966 *
1967 * This should be called with the mm_sem held for read.
1968 */
1969int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1970		     unsigned long address, unsigned int fault_flags)
1971{
1972	struct vm_area_struct *vma;
1973	vm_flags_t vm_flags;
1974	int ret;
1975
1976	vma = find_extend_vma(mm, address);
1977	if (!vma || address < vma->vm_start)
1978		return -EFAULT;
1979
1980	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1981	if (!(vm_flags & vma->vm_flags))
1982		return -EFAULT;
1983
1984	ret = handle_mm_fault(mm, vma, address, fault_flags);
1985	if (ret & VM_FAULT_ERROR) {
1986		if (ret & VM_FAULT_OOM)
1987			return -ENOMEM;
1988		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1989			return -EHWPOISON;
1990		if (ret & VM_FAULT_SIGBUS)
1991			return -EFAULT;
1992		BUG();
1993	}
1994	if (tsk) {
1995		if (ret & VM_FAULT_MAJOR)
1996			tsk->maj_flt++;
1997		else
1998			tsk->min_flt++;
1999	}
2000	return 0;
2001}
2002
2003/*
2004 * get_user_pages() - pin user pages in memory
2005 * @tsk:	the task_struct to use for page fault accounting, or
2006 *		NULL if faults are not to be recorded.
2007 * @mm:		mm_struct of target mm
2008 * @start:	starting user address
2009 * @nr_pages:	number of pages from start to pin
2010 * @write:	whether pages will be written to by the caller
2011 * @force:	whether to force access even when user mapping is currently
2012 *		protected (but never forces write access to shared mapping).
2013 * @pages:	array that receives pointers to the pages pinned.
2014 *		Should be at least nr_pages long. Or NULL, if caller
2015 *		only intends to ensure the pages are faulted in.
2016 * @vmas:	array of pointers to vmas corresponding to each page.
2017 *		Or NULL if the caller does not require them.
2018 *
2019 * Returns number of pages pinned. This may be fewer than the number
2020 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2021 * were pinned, returns -errno. Each page returned must be released
2022 * with a put_page() call when it is finished with. vmas will only
2023 * remain valid while mmap_sem is held.
2024 *
2025 * Must be called with mmap_sem held for read or write.
2026 *
2027 * get_user_pages walks a process's page tables and takes a reference to
2028 * each struct page that each user address corresponds to at a given
2029 * instant. That is, it takes the page that would be accessed if a user
2030 * thread accesses the given user virtual address at that instant.
2031 *
2032 * This does not guarantee that the page exists in the user mappings when
2033 * get_user_pages returns, and there may even be a completely different
2034 * page there in some cases (eg. if mmapped pagecache has been invalidated
2035 * and subsequently re faulted). However it does guarantee that the page
2036 * won't be freed completely. And mostly callers simply care that the page
2037 * contains data that was valid *at some point in time*. Typically, an IO
2038 * or similar operation cannot guarantee anything stronger anyway because
2039 * locks can't be held over the syscall boundary.
2040 *
2041 * If write=0, the page must not be written to. If the page is written to,
2042 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2043 * after the page is finished with, and before put_page is called.
2044 *
2045 * get_user_pages is typically used for fewer-copy IO operations, to get a
2046 * handle on the memory by some means other than accesses via the user virtual
2047 * addresses. The pages may be submitted for DMA to devices or accessed via
2048 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2049 * use the correct cache flushing APIs.
2050 *
2051 * See also get_user_pages_fast, for performance critical applications.
2052 */
2053long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2054		unsigned long start, unsigned long nr_pages, int write,
2055		int force, struct page **pages, struct vm_area_struct **vmas)
2056{
2057	int flags = FOLL_TOUCH;
2058
2059	if (pages)
2060		flags |= FOLL_GET;
2061	if (write)
2062		flags |= FOLL_WRITE;
2063	if (force)
2064		flags |= FOLL_FORCE;
2065
2066	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2067				NULL);
2068}
2069EXPORT_SYMBOL(get_user_pages);
2070
2071/**
2072 * get_dump_page() - pin user page in memory while writing it to core dump
2073 * @addr: user address
2074 *
2075 * Returns struct page pointer of user page pinned for dump,
2076 * to be freed afterwards by page_cache_release() or put_page().
2077 *
2078 * Returns NULL on any kind of failure - a hole must then be inserted into
2079 * the corefile, to preserve alignment with its headers; and also returns
2080 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2081 * allowing a hole to be left in the corefile to save diskspace.
2082 *
2083 * Called without mmap_sem, but after all other threads have been killed.
2084 */
2085#ifdef CONFIG_ELF_CORE
2086struct page *get_dump_page(unsigned long addr)
2087{
2088	struct vm_area_struct *vma;
2089	struct page *page;
2090
2091	if (__get_user_pages(current, current->mm, addr, 1,
2092			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2093			     NULL) < 1)
2094		return NULL;
2095	flush_cache_page(vma, addr, page_to_pfn(page));
2096	return page;
2097}
2098#endif /* CONFIG_ELF_CORE */
2099
2100pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2101			spinlock_t **ptl)
2102{
2103	pgd_t * pgd = pgd_offset(mm, addr);
2104	pud_t * pud = pud_alloc(mm, pgd, addr);
2105	if (pud) {
2106		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2107		if (pmd) {
2108			VM_BUG_ON(pmd_trans_huge(*pmd));
2109			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2110		}
2111	}
2112	return NULL;
2113}
2114
2115/*
2116 * This is the old fallback for page remapping.
2117 *
2118 * For historical reasons, it only allows reserved pages. Only
2119 * old drivers should use this, and they needed to mark their
2120 * pages reserved for the old functions anyway.
2121 */
2122static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2123			struct page *page, pgprot_t prot)
2124{
2125	struct mm_struct *mm = vma->vm_mm;
2126	int retval;
2127	pte_t *pte;
2128	spinlock_t *ptl;
2129
2130	retval = -EINVAL;
2131	if (PageAnon(page))
2132		goto out;
2133	retval = -ENOMEM;
2134	flush_dcache_page(page);
2135	pte = get_locked_pte(mm, addr, &ptl);
2136	if (!pte)
2137		goto out;
2138	retval = -EBUSY;
2139	if (!pte_none(*pte))
2140		goto out_unlock;
2141
2142	/* Ok, finally just insert the thing.. */
2143	get_page(page);
2144	inc_mm_counter_fast(mm, MM_FILEPAGES);
2145	page_add_file_rmap(page);
2146	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2147
2148	retval = 0;
2149	pte_unmap_unlock(pte, ptl);
2150	return retval;
2151out_unlock:
2152	pte_unmap_unlock(pte, ptl);
2153out:
2154	return retval;
2155}
2156
2157/**
2158 * vm_insert_page - insert single page into user vma
2159 * @vma: user vma to map to
2160 * @addr: target user address of this page
2161 * @page: source kernel page
2162 *
2163 * This allows drivers to insert individual pages they've allocated
2164 * into a user vma.
2165 *
2166 * The page has to be a nice clean _individual_ kernel allocation.
2167 * If you allocate a compound page, you need to have marked it as
2168 * such (__GFP_COMP), or manually just split the page up yourself
2169 * (see split_page()).
2170 *
2171 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2172 * took an arbitrary page protection parameter. This doesn't allow
2173 * that. Your vma protection will have to be set up correctly, which
2174 * means that if you want a shared writable mapping, you'd better
2175 * ask for a shared writable mapping!
2176 *
2177 * The page does not need to be reserved.
2178 *
2179 * Usually this function is called from f_op->mmap() handler
2180 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2181 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2182 * function from other places, for example from page-fault handler.
2183 */
2184int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2185			struct page *page)
2186{
2187	if (addr < vma->vm_start || addr >= vma->vm_end)
2188		return -EFAULT;
2189	if (!page_count(page))
2190		return -EINVAL;
2191	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2192		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2193		BUG_ON(vma->vm_flags & VM_PFNMAP);
2194		vma->vm_flags |= VM_MIXEDMAP;
2195	}
2196	return insert_page(vma, addr, page, vma->vm_page_prot);
2197}
2198EXPORT_SYMBOL(vm_insert_page);
2199
2200static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2201			unsigned long pfn, pgprot_t prot)
2202{
2203	struct mm_struct *mm = vma->vm_mm;
2204	int retval;
2205	pte_t *pte, entry;
2206	spinlock_t *ptl;
2207
2208	retval = -ENOMEM;
2209	pte = get_locked_pte(mm, addr, &ptl);
2210	if (!pte)
2211		goto out;
2212	retval = -EBUSY;
2213	if (!pte_none(*pte))
2214		goto out_unlock;
2215
2216	/* Ok, finally just insert the thing.. */
2217	entry = pte_mkspecial(pfn_pte(pfn, prot));
 
 
 
2218	set_pte_at(mm, addr, pte, entry);
2219	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2220
2221	retval = 0;
2222out_unlock:
2223	pte_unmap_unlock(pte, ptl);
2224out:
2225	return retval;
2226}
2227
2228/**
2229 * vm_insert_pfn - insert single pfn into user vma
2230 * @vma: user vma to map to
2231 * @addr: target user address of this page
2232 * @pfn: source kernel pfn
2233 *
2234 * Similar to vm_insert_page, this allows drivers to insert individual pages
2235 * they've allocated into a user vma. Same comments apply.
2236 *
2237 * This function should only be called from a vm_ops->fault handler, and
2238 * in that case the handler should return NULL.
2239 *
2240 * vma cannot be a COW mapping.
2241 *
2242 * As this is called only for pages that do not currently exist, we
2243 * do not need to flush old virtual caches or the TLB.
2244 */
2245int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2246			unsigned long pfn)
2247{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248	int ret;
2249	pgprot_t pgprot = vma->vm_page_prot;
2250	/*
2251	 * Technically, architectures with pte_special can avoid all these
2252	 * restrictions (same for remap_pfn_range).  However we would like
2253	 * consistency in testing and feature parity among all, so we should
2254	 * try to keep these invariants in place for everybody.
2255	 */
2256	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2257	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2258						(VM_PFNMAP|VM_MIXEDMAP));
2259	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2260	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2261
2262	if (addr < vma->vm_start || addr >= vma->vm_end)
2263		return -EFAULT;
2264	if (track_pfn_insert(vma, &pgprot, pfn))
2265		return -EINVAL;
2266
2267	ret = insert_pfn(vma, addr, pfn, pgprot);
2268
2269	return ret;
2270}
2271EXPORT_SYMBOL(vm_insert_pfn);
2272
2273int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2274			unsigned long pfn)
2275{
2276	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2277
2278	if (addr < vma->vm_start || addr >= vma->vm_end)
2279		return -EFAULT;
2280
2281	/*
2282	 * If we don't have pte special, then we have to use the pfn_valid()
2283	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2284	 * refcount the page if pfn_valid is true (hence insert_page rather
2285	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2286	 * without pte special, it would there be refcounted as a normal page.
2287	 */
2288	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2289		struct page *page;
2290
2291		page = pfn_to_page(pfn);
 
 
 
 
 
2292		return insert_page(vma, addr, page, vma->vm_page_prot);
2293	}
2294	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2295}
2296EXPORT_SYMBOL(vm_insert_mixed);
2297
2298/*
2299 * maps a range of physical memory into the requested pages. the old
2300 * mappings are removed. any references to nonexistent pages results
2301 * in null mappings (currently treated as "copy-on-access")
2302 */
2303static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2304			unsigned long addr, unsigned long end,
2305			unsigned long pfn, pgprot_t prot)
2306{
2307	pte_t *pte;
2308	spinlock_t *ptl;
2309
2310	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2311	if (!pte)
2312		return -ENOMEM;
2313	arch_enter_lazy_mmu_mode();
2314	do {
2315		BUG_ON(!pte_none(*pte));
2316		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2317		pfn++;
2318	} while (pte++, addr += PAGE_SIZE, addr != end);
2319	arch_leave_lazy_mmu_mode();
2320	pte_unmap_unlock(pte - 1, ptl);
2321	return 0;
2322}
2323
2324static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2325			unsigned long addr, unsigned long end,
2326			unsigned long pfn, pgprot_t prot)
2327{
2328	pmd_t *pmd;
2329	unsigned long next;
2330
2331	pfn -= addr >> PAGE_SHIFT;
2332	pmd = pmd_alloc(mm, pud, addr);
2333	if (!pmd)
2334		return -ENOMEM;
2335	VM_BUG_ON(pmd_trans_huge(*pmd));
2336	do {
2337		next = pmd_addr_end(addr, end);
2338		if (remap_pte_range(mm, pmd, addr, next,
2339				pfn + (addr >> PAGE_SHIFT), prot))
2340			return -ENOMEM;
2341	} while (pmd++, addr = next, addr != end);
2342	return 0;
2343}
2344
2345static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2346			unsigned long addr, unsigned long end,
2347			unsigned long pfn, pgprot_t prot)
2348{
2349	pud_t *pud;
2350	unsigned long next;
2351
2352	pfn -= addr >> PAGE_SHIFT;
2353	pud = pud_alloc(mm, pgd, addr);
2354	if (!pud)
2355		return -ENOMEM;
2356	do {
2357		next = pud_addr_end(addr, end);
2358		if (remap_pmd_range(mm, pud, addr, next,
2359				pfn + (addr >> PAGE_SHIFT), prot))
2360			return -ENOMEM;
2361	} while (pud++, addr = next, addr != end);
2362	return 0;
2363}
2364
2365/**
2366 * remap_pfn_range - remap kernel memory to userspace
2367 * @vma: user vma to map to
2368 * @addr: target user address to start at
2369 * @pfn: physical address of kernel memory
2370 * @size: size of map area
2371 * @prot: page protection flags for this mapping
2372 *
2373 *  Note: this is only safe if the mm semaphore is held when called.
2374 */
2375int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2376		    unsigned long pfn, unsigned long size, pgprot_t prot)
2377{
2378	pgd_t *pgd;
2379	unsigned long next;
2380	unsigned long end = addr + PAGE_ALIGN(size);
2381	struct mm_struct *mm = vma->vm_mm;
2382	int err;
2383
2384	/*
2385	 * Physically remapped pages are special. Tell the
2386	 * rest of the world about it:
2387	 *   VM_IO tells people not to look at these pages
2388	 *	(accesses can have side effects).
2389	 *   VM_PFNMAP tells the core MM that the base pages are just
2390	 *	raw PFN mappings, and do not have a "struct page" associated
2391	 *	with them.
2392	 *   VM_DONTEXPAND
2393	 *      Disable vma merging and expanding with mremap().
2394	 *   VM_DONTDUMP
2395	 *      Omit vma from core dump, even when VM_IO turned off.
2396	 *
2397	 * There's a horrible special case to handle copy-on-write
2398	 * behaviour that some programs depend on. We mark the "original"
2399	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2400	 * See vm_normal_page() for details.
2401	 */
2402	if (is_cow_mapping(vma->vm_flags)) {
2403		if (addr != vma->vm_start || end != vma->vm_end)
2404			return -EINVAL;
2405		vma->vm_pgoff = pfn;
2406	}
2407
2408	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2409	if (err)
2410		return -EINVAL;
2411
2412	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2413
2414	BUG_ON(addr >= end);
2415	pfn -= addr >> PAGE_SHIFT;
2416	pgd = pgd_offset(mm, addr);
2417	flush_cache_range(vma, addr, end);
2418	do {
2419		next = pgd_addr_end(addr, end);
2420		err = remap_pud_range(mm, pgd, addr, next,
2421				pfn + (addr >> PAGE_SHIFT), prot);
2422		if (err)
2423			break;
2424	} while (pgd++, addr = next, addr != end);
2425
2426	if (err)
2427		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2428
2429	return err;
2430}
2431EXPORT_SYMBOL(remap_pfn_range);
2432
2433/**
2434 * vm_iomap_memory - remap memory to userspace
2435 * @vma: user vma to map to
2436 * @start: start of area
2437 * @len: size of area
2438 *
2439 * This is a simplified io_remap_pfn_range() for common driver use. The
2440 * driver just needs to give us the physical memory range to be mapped,
2441 * we'll figure out the rest from the vma information.
2442 *
2443 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2444 * whatever write-combining details or similar.
2445 */
2446int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2447{
2448	unsigned long vm_len, pfn, pages;
2449
2450	/* Check that the physical memory area passed in looks valid */
2451	if (start + len < start)
2452		return -EINVAL;
2453	/*
2454	 * You *really* shouldn't map things that aren't page-aligned,
2455	 * but we've historically allowed it because IO memory might
2456	 * just have smaller alignment.
2457	 */
2458	len += start & ~PAGE_MASK;
2459	pfn = start >> PAGE_SHIFT;
2460	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2461	if (pfn + pages < pfn)
2462		return -EINVAL;
2463
2464	/* We start the mapping 'vm_pgoff' pages into the area */
2465	if (vma->vm_pgoff > pages)
2466		return -EINVAL;
2467	pfn += vma->vm_pgoff;
2468	pages -= vma->vm_pgoff;
2469
2470	/* Can we fit all of the mapping? */
2471	vm_len = vma->vm_end - vma->vm_start;
2472	if (vm_len >> PAGE_SHIFT > pages)
2473		return -EINVAL;
2474
2475	/* Ok, let it rip */
2476	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2477}
2478EXPORT_SYMBOL(vm_iomap_memory);
2479
2480static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2481				     unsigned long addr, unsigned long end,
2482				     pte_fn_t fn, void *data)
2483{
2484	pte_t *pte;
2485	int err;
2486	pgtable_t token;
2487	spinlock_t *uninitialized_var(ptl);
2488
2489	pte = (mm == &init_mm) ?
2490		pte_alloc_kernel(pmd, addr) :
2491		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2492	if (!pte)
2493		return -ENOMEM;
2494
2495	BUG_ON(pmd_huge(*pmd));
2496
2497	arch_enter_lazy_mmu_mode();
2498
2499	token = pmd_pgtable(*pmd);
2500
2501	do {
2502		err = fn(pte++, token, addr, data);
2503		if (err)
2504			break;
2505	} while (addr += PAGE_SIZE, addr != end);
2506
2507	arch_leave_lazy_mmu_mode();
2508
2509	if (mm != &init_mm)
2510		pte_unmap_unlock(pte-1, ptl);
2511	return err;
2512}
2513
2514static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2515				     unsigned long addr, unsigned long end,
2516				     pte_fn_t fn, void *data)
2517{
2518	pmd_t *pmd;
2519	unsigned long next;
2520	int err;
2521
2522	BUG_ON(pud_huge(*pud));
2523
2524	pmd = pmd_alloc(mm, pud, addr);
2525	if (!pmd)
2526		return -ENOMEM;
2527	do {
2528		next = pmd_addr_end(addr, end);
2529		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2530		if (err)
2531			break;
2532	} while (pmd++, addr = next, addr != end);
2533	return err;
2534}
2535
2536static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2537				     unsigned long addr, unsigned long end,
2538				     pte_fn_t fn, void *data)
2539{
2540	pud_t *pud;
2541	unsigned long next;
2542	int err;
2543
2544	pud = pud_alloc(mm, pgd, addr);
2545	if (!pud)
2546		return -ENOMEM;
2547	do {
2548		next = pud_addr_end(addr, end);
2549		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2550		if (err)
2551			break;
2552	} while (pud++, addr = next, addr != end);
2553	return err;
2554}
2555
2556/*
2557 * Scan a region of virtual memory, filling in page tables as necessary
2558 * and calling a provided function on each leaf page table.
2559 */
2560int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2561			unsigned long size, pte_fn_t fn, void *data)
2562{
2563	pgd_t *pgd;
2564	unsigned long next;
2565	unsigned long end = addr + size;
2566	int err;
2567
2568	BUG_ON(addr >= end);
 
 
2569	pgd = pgd_offset(mm, addr);
2570	do {
2571		next = pgd_addr_end(addr, end);
2572		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2573		if (err)
2574			break;
2575	} while (pgd++, addr = next, addr != end);
2576
2577	return err;
2578}
2579EXPORT_SYMBOL_GPL(apply_to_page_range);
2580
2581/*
2582 * handle_pte_fault chooses page fault handler according to an entry
2583 * which was read non-atomically.  Before making any commitment, on
2584 * those architectures or configurations (e.g. i386 with PAE) which
2585 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2586 * must check under lock before unmapping the pte and proceeding
2587 * (but do_wp_page is only called after already making such a check;
2588 * and do_anonymous_page can safely check later on).
2589 */
2590static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2591				pte_t *page_table, pte_t orig_pte)
2592{
2593	int same = 1;
2594#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2595	if (sizeof(pte_t) > sizeof(unsigned long)) {
2596		spinlock_t *ptl = pte_lockptr(mm, pmd);
2597		spin_lock(ptl);
2598		same = pte_same(*page_table, orig_pte);
2599		spin_unlock(ptl);
2600	}
2601#endif
2602	pte_unmap(page_table);
2603	return same;
2604}
2605
2606static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2607{
2608	debug_dma_assert_idle(src);
2609
2610	/*
2611	 * If the source page was a PFN mapping, we don't have
2612	 * a "struct page" for it. We do a best-effort copy by
2613	 * just copying from the original user address. If that
2614	 * fails, we just zero-fill it. Live with it.
2615	 */
2616	if (unlikely(!src)) {
2617		void *kaddr = kmap_atomic(dst);
2618		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2619
2620		/*
2621		 * This really shouldn't fail, because the page is there
2622		 * in the page tables. But it might just be unreadable,
2623		 * in which case we just give up and fill the result with
2624		 * zeroes.
2625		 */
2626		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2627			clear_page(kaddr);
2628		kunmap_atomic(kaddr);
2629		flush_dcache_page(dst);
2630	} else
2631		copy_user_highpage(dst, src, va, vma);
2632}
2633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634/*
2635 * Notify the address space that the page is about to become writable so that
2636 * it can prohibit this or wait for the page to get into an appropriate state.
2637 *
2638 * We do this without the lock held, so that it can sleep if it needs to.
2639 */
2640static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2641	       unsigned long address)
2642{
2643	struct vm_fault vmf;
2644	int ret;
2645
2646	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2647	vmf.pgoff = page->index;
2648	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
 
2649	vmf.page = page;
 
2650
2651	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2652	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2653		return ret;
2654	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2655		lock_page(page);
2656		if (!page->mapping) {
2657			unlock_page(page);
2658			return 0; /* retry */
2659		}
2660		ret |= VM_FAULT_LOCKED;
2661	} else
2662		VM_BUG_ON_PAGE(!PageLocked(page), page);
2663	return ret;
2664}
2665
2666/*
2667 * This routine handles present pages, when users try to write
2668 * to a shared page. It is done by copying the page to a new address
2669 * and decrementing the shared-page counter for the old page.
2670 *
2671 * Note that this routine assumes that the protection checks have been
2672 * done by the caller (the low-level page fault routine in most cases).
2673 * Thus we can safely just mark it writable once we've done any necessary
2674 * COW.
2675 *
2676 * We also mark the page dirty at this point even though the page will
2677 * change only once the write actually happens. This avoids a few races,
2678 * and potentially makes it more efficient.
2679 *
2680 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2681 * but allow concurrent faults), with pte both mapped and locked.
2682 * We return with mmap_sem still held, but pte unmapped and unlocked.
2683 */
2684static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2685		unsigned long address, pte_t *page_table, pmd_t *pmd,
2686		spinlock_t *ptl, pte_t orig_pte)
2687	__releases(ptl)
2688{
2689	struct page *old_page, *new_page = NULL;
2690	pte_t entry;
2691	int ret = 0;
2692	int page_mkwrite = 0;
2693	struct page *dirty_page = NULL;
2694	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2695	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2696
2697	old_page = vm_normal_page(vma, address, orig_pte);
2698	if (!old_page) {
2699		/*
2700		 * VM_MIXEDMAP !pfn_valid() case
2701		 *
2702		 * We should not cow pages in a shared writeable mapping.
2703		 * Just mark the pages writable as we can't do any dirty
2704		 * accounting on raw pfn maps.
2705		 */
2706		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2707				     (VM_WRITE|VM_SHARED))
2708			goto reuse;
2709		goto gotten;
2710	}
2711
2712	/*
2713	 * Take out anonymous pages first, anonymous shared vmas are
2714	 * not dirty accountable.
 
2715	 */
2716	if (PageAnon(old_page) && !PageKsm(old_page)) {
2717		if (!trylock_page(old_page)) {
2718			page_cache_get(old_page);
2719			pte_unmap_unlock(page_table, ptl);
2720			lock_page(old_page);
2721			page_table = pte_offset_map_lock(mm, pmd, address,
2722							 &ptl);
2723			if (!pte_same(*page_table, orig_pte)) {
2724				unlock_page(old_page);
2725				goto unlock;
2726			}
2727			page_cache_release(old_page);
2728		}
2729		if (reuse_swap_page(old_page)) {
2730			/*
2731			 * The page is all ours.  Move it to our anon_vma so
2732			 * the rmap code will not search our parent or siblings.
2733			 * Protected against the rmap code by the page lock.
2734			 */
2735			page_move_anon_rmap(old_page, vma, address);
2736			unlock_page(old_page);
2737			goto reuse;
2738		}
2739		unlock_page(old_page);
2740	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2741					(VM_WRITE|VM_SHARED))) {
2742		/*
2743		 * Only catch write-faults on shared writable pages,
2744		 * read-only shared pages can get COWed by
2745		 * get_user_pages(.write=1, .force=1).
2746		 */
2747		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2748			int tmp;
2749			page_cache_get(old_page);
2750			pte_unmap_unlock(page_table, ptl);
2751			tmp = do_page_mkwrite(vma, old_page, address);
2752			if (unlikely(!tmp || (tmp &
2753					(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2754				page_cache_release(old_page);
2755				return tmp;
2756			}
2757			/*
2758			 * Since we dropped the lock we need to revalidate
2759			 * the PTE as someone else may have changed it.  If
2760			 * they did, we just return, as we can count on the
2761			 * MMU to tell us if they didn't also make it writable.
2762			 */
2763			page_table = pte_offset_map_lock(mm, pmd, address,
2764							 &ptl);
2765			if (!pte_same(*page_table, orig_pte)) {
2766				unlock_page(old_page);
2767				goto unlock;
2768			}
2769
2770			page_mkwrite = 1;
2771		}
2772		dirty_page = old_page;
2773		get_page(dirty_page);
 
 
2774
2775reuse:
2776		/*
2777		 * Clear the pages cpupid information as the existing
2778		 * information potentially belongs to a now completely
2779		 * unrelated process.
2780		 */
2781		if (old_page)
2782			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
 
 
 
 
2783
2784		flush_cache_page(vma, address, pte_pfn(orig_pte));
2785		entry = pte_mkyoung(orig_pte);
2786		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2787		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2788			update_mmu_cache(vma, address, page_table);
2789		pte_unmap_unlock(page_table, ptl);
2790		ret |= VM_FAULT_WRITE;
2791
2792		if (!dirty_page)
2793			return ret;
2794
2795		/*
2796		 * Yes, Virginia, this is actually required to prevent a race
2797		 * with clear_page_dirty_for_io() from clearing the page dirty
2798		 * bit after it clear all dirty ptes, but before a racing
2799		 * do_wp_page installs a dirty pte.
2800		 *
2801		 * do_shared_fault is protected similarly.
2802		 */
2803		if (!page_mkwrite) {
2804			wait_on_page_locked(dirty_page);
2805			set_page_dirty_balance(dirty_page);
2806			/* file_update_time outside page_lock */
2807			if (vma->vm_file)
2808				file_update_time(vma->vm_file);
2809		}
2810		put_page(dirty_page);
2811		if (page_mkwrite) {
2812			struct address_space *mapping = dirty_page->mapping;
2813
2814			set_page_dirty(dirty_page);
2815			unlock_page(dirty_page);
2816			page_cache_release(dirty_page);
2817			if (mapping)	{
2818				/*
2819				 * Some device drivers do not set page.mapping
2820				 * but still dirty their pages
2821				 */
2822				balance_dirty_pages_ratelimited(mapping);
2823			}
2824		}
2825
2826		return ret;
 
2827	}
2828
2829	/*
2830	 * Ok, we need to copy. Oh, well..
2831	 */
2832	page_cache_get(old_page);
2833gotten:
2834	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2835
2836	if (unlikely(anon_vma_prepare(vma)))
2837		goto oom;
2838
2839	if (is_zero_pfn(pte_pfn(orig_pte))) {
2840		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2841		if (!new_page)
2842			goto oom;
2843	} else {
2844		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2845		if (!new_page)
2846			goto oom;
2847		cow_user_page(new_page, old_page, address, vma);
2848	}
2849	__SetPageUptodate(new_page);
2850
2851	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
2852		goto oom_free_new;
2853
2854	mmun_start  = address & PAGE_MASK;
2855	mmun_end    = mmun_start + PAGE_SIZE;
2856	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2857
2858	/*
2859	 * Re-check the pte - we dropped the lock
2860	 */
2861	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2862	if (likely(pte_same(*page_table, orig_pte))) {
2863		if (old_page) {
2864			if (!PageAnon(old_page)) {
2865				dec_mm_counter_fast(mm, MM_FILEPAGES);
 
2866				inc_mm_counter_fast(mm, MM_ANONPAGES);
2867			}
2868		} else
2869			inc_mm_counter_fast(mm, MM_ANONPAGES);
 
2870		flush_cache_page(vma, address, pte_pfn(orig_pte));
2871		entry = mk_pte(new_page, vma->vm_page_prot);
2872		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2873		/*
2874		 * Clear the pte entry and flush it first, before updating the
2875		 * pte with the new entry. This will avoid a race condition
2876		 * seen in the presence of one thread doing SMC and another
2877		 * thread doing COW.
2878		 */
2879		ptep_clear_flush(vma, address, page_table);
2880		page_add_new_anon_rmap(new_page, vma, address);
 
 
2881		/*
2882		 * We call the notify macro here because, when using secondary
2883		 * mmu page tables (such as kvm shadow page tables), we want the
2884		 * new page to be mapped directly into the secondary page table.
2885		 */
2886		set_pte_at_notify(mm, address, page_table, entry);
2887		update_mmu_cache(vma, address, page_table);
2888		if (old_page) {
2889			/*
2890			 * Only after switching the pte to the new page may
2891			 * we remove the mapcount here. Otherwise another
2892			 * process may come and find the rmap count decremented
2893			 * before the pte is switched to the new page, and
2894			 * "reuse" the old page writing into it while our pte
2895			 * here still points into it and can be read by other
2896			 * threads.
2897			 *
2898			 * The critical issue is to order this
2899			 * page_remove_rmap with the ptp_clear_flush above.
2900			 * Those stores are ordered by (if nothing else,)
2901			 * the barrier present in the atomic_add_negative
2902			 * in page_remove_rmap.
2903			 *
2904			 * Then the TLB flush in ptep_clear_flush ensures that
2905			 * no process can access the old page before the
2906			 * decremented mapcount is visible. And the old page
2907			 * cannot be reused until after the decremented
2908			 * mapcount is visible. So transitively, TLBs to
2909			 * old page will be flushed before it can be reused.
2910			 */
2911			page_remove_rmap(old_page);
2912		}
2913
2914		/* Free the old page.. */
2915		new_page = old_page;
2916		ret |= VM_FAULT_WRITE;
2917	} else
2918		mem_cgroup_uncharge_page(new_page);
 
2919
2920	if (new_page)
2921		page_cache_release(new_page);
2922unlock:
2923	pte_unmap_unlock(page_table, ptl);
2924	if (mmun_end > mmun_start)
2925		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2926	if (old_page) {
2927		/*
2928		 * Don't let another task, with possibly unlocked vma,
2929		 * keep the mlocked page.
2930		 */
2931		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2932			lock_page(old_page);	/* LRU manipulation */
2933			munlock_vma_page(old_page);
 
2934			unlock_page(old_page);
2935		}
2936		page_cache_release(old_page);
2937	}
2938	return ret;
2939oom_free_new:
2940	page_cache_release(new_page);
2941oom:
2942	if (old_page)
2943		page_cache_release(old_page);
2944	return VM_FAULT_OOM;
2945}
2946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2947static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2948		unsigned long start_addr, unsigned long end_addr,
2949		struct zap_details *details)
2950{
2951	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2952}
2953
2954static inline void unmap_mapping_range_tree(struct rb_root *root,
2955					    struct zap_details *details)
2956{
2957	struct vm_area_struct *vma;
2958	pgoff_t vba, vea, zba, zea;
2959
2960	vma_interval_tree_foreach(vma, root,
2961			details->first_index, details->last_index) {
2962
2963		vba = vma->vm_pgoff;
2964		vea = vba + vma_pages(vma) - 1;
2965		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2966		zba = details->first_index;
2967		if (zba < vba)
2968			zba = vba;
2969		zea = details->last_index;
2970		if (zea > vea)
2971			zea = vea;
2972
2973		unmap_mapping_range_vma(vma,
2974			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2975			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2976				details);
2977	}
2978}
2979
2980static inline void unmap_mapping_range_list(struct list_head *head,
2981					    struct zap_details *details)
2982{
2983	struct vm_area_struct *vma;
2984
2985	/*
2986	 * In nonlinear VMAs there is no correspondence between virtual address
2987	 * offset and file offset.  So we must perform an exhaustive search
2988	 * across *all* the pages in each nonlinear VMA, not just the pages
2989	 * whose virtual address lies outside the file truncation point.
2990	 */
2991	list_for_each_entry(vma, head, shared.nonlinear) {
2992		details->nonlinear_vma = vma;
2993		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2994	}
2995}
2996
2997/**
2998 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
 
 
 
2999 * @mapping: the address space containing mmaps to be unmapped.
3000 * @holebegin: byte in first page to unmap, relative to the start of
3001 * the underlying file.  This will be rounded down to a PAGE_SIZE
3002 * boundary.  Note that this is different from truncate_pagecache(), which
3003 * must keep the partial page.  In contrast, we must get rid of
3004 * partial pages.
3005 * @holelen: size of prospective hole in bytes.  This will be rounded
3006 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3007 * end of the file.
3008 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3009 * but 0 when invalidating pagecache, don't throw away private data.
3010 */
3011void unmap_mapping_range(struct address_space *mapping,
3012		loff_t const holebegin, loff_t const holelen, int even_cows)
3013{
3014	struct zap_details details;
3015	pgoff_t hba = holebegin >> PAGE_SHIFT;
3016	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3017
3018	/* Check for overflow. */
3019	if (sizeof(holelen) > sizeof(hlen)) {
3020		long long holeend =
3021			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3022		if (holeend & ~(long long)ULONG_MAX)
3023			hlen = ULONG_MAX - hba + 1;
3024	}
3025
3026	details.check_mapping = even_cows? NULL: mapping;
3027	details.nonlinear_vma = NULL;
3028	details.first_index = hba;
3029	details.last_index = hba + hlen - 1;
3030	if (details.last_index < details.first_index)
3031		details.last_index = ULONG_MAX;
3032
3033
3034	mutex_lock(&mapping->i_mmap_mutex);
 
3035	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3036		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3037	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3038		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3039	mutex_unlock(&mapping->i_mmap_mutex);
3040}
3041EXPORT_SYMBOL(unmap_mapping_range);
3042
3043/*
3044 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3045 * but allow concurrent faults), and pte mapped but not yet locked.
3046 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
 
3047 */
3048static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3049		unsigned long address, pte_t *page_table, pmd_t *pmd,
3050		unsigned int flags, pte_t orig_pte)
3051{
3052	spinlock_t *ptl;
3053	struct page *page, *swapcache;
 
3054	swp_entry_t entry;
3055	pte_t pte;
3056	int locked;
3057	struct mem_cgroup *ptr;
3058	int exclusive = 0;
3059	int ret = 0;
3060
3061	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3062		goto out;
3063
3064	entry = pte_to_swp_entry(orig_pte);
3065	if (unlikely(non_swap_entry(entry))) {
3066		if (is_migration_entry(entry)) {
3067			migration_entry_wait(mm, pmd, address);
3068		} else if (is_hwpoison_entry(entry)) {
3069			ret = VM_FAULT_HWPOISON;
3070		} else {
3071			print_bad_pte(vma, address, orig_pte, NULL);
3072			ret = VM_FAULT_SIGBUS;
3073		}
3074		goto out;
3075	}
3076	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3077	page = lookup_swap_cache(entry);
3078	if (!page) {
3079		page = swapin_readahead(entry,
3080					GFP_HIGHUSER_MOVABLE, vma, address);
3081		if (!page) {
3082			/*
3083			 * Back out if somebody else faulted in this pte
3084			 * while we released the pte lock.
3085			 */
3086			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3087			if (likely(pte_same(*page_table, orig_pte)))
3088				ret = VM_FAULT_OOM;
3089			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3090			goto unlock;
3091		}
3092
3093		/* Had to read the page from swap area: Major fault */
3094		ret = VM_FAULT_MAJOR;
3095		count_vm_event(PGMAJFAULT);
3096		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3097	} else if (PageHWPoison(page)) {
3098		/*
3099		 * hwpoisoned dirty swapcache pages are kept for killing
3100		 * owner processes (which may be unknown at hwpoison time)
3101		 */
3102		ret = VM_FAULT_HWPOISON;
3103		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3104		swapcache = page;
3105		goto out_release;
3106	}
3107
3108	swapcache = page;
3109	locked = lock_page_or_retry(page, mm, flags);
3110
3111	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3112	if (!locked) {
3113		ret |= VM_FAULT_RETRY;
3114		goto out_release;
3115	}
3116
3117	/*
3118	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3119	 * release the swapcache from under us.  The page pin, and pte_same
3120	 * test below, are not enough to exclude that.  Even if it is still
3121	 * swapcache, we need to check that the page's swap has not changed.
3122	 */
3123	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3124		goto out_page;
3125
3126	page = ksm_might_need_to_copy(page, vma, address);
3127	if (unlikely(!page)) {
3128		ret = VM_FAULT_OOM;
3129		page = swapcache;
3130		goto out_page;
3131	}
3132
3133	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3134		ret = VM_FAULT_OOM;
3135		goto out_page;
3136	}
3137
3138	/*
3139	 * Back out if somebody else already faulted in this pte.
3140	 */
3141	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3142	if (unlikely(!pte_same(*page_table, orig_pte)))
3143		goto out_nomap;
3144
3145	if (unlikely(!PageUptodate(page))) {
3146		ret = VM_FAULT_SIGBUS;
3147		goto out_nomap;
3148	}
3149
3150	/*
3151	 * The page isn't present yet, go ahead with the fault.
3152	 *
3153	 * Be careful about the sequence of operations here.
3154	 * To get its accounting right, reuse_swap_page() must be called
3155	 * while the page is counted on swap but not yet in mapcount i.e.
3156	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3157	 * must be called after the swap_free(), or it will never succeed.
3158	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3159	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3160	 * in page->private. In this case, a record in swap_cgroup  is silently
3161	 * discarded at swap_free().
3162	 */
3163
3164	inc_mm_counter_fast(mm, MM_ANONPAGES);
3165	dec_mm_counter_fast(mm, MM_SWAPENTS);
3166	pte = mk_pte(page, vma->vm_page_prot);
3167	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3168		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3169		flags &= ~FAULT_FLAG_WRITE;
3170		ret |= VM_FAULT_WRITE;
3171		exclusive = 1;
3172	}
3173	flush_icache_page(vma, page);
3174	if (pte_swp_soft_dirty(orig_pte))
3175		pte = pte_mksoft_dirty(pte);
3176	set_pte_at(mm, address, page_table, pte);
3177	if (page == swapcache)
3178		do_page_add_anon_rmap(page, vma, address, exclusive);
3179	else /* ksm created a completely new copy */
3180		page_add_new_anon_rmap(page, vma, address);
3181	/* It's better to call commit-charge after rmap is established */
3182	mem_cgroup_commit_charge_swapin(page, ptr);
 
 
3183
3184	swap_free(entry);
3185	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
 
3186		try_to_free_swap(page);
3187	unlock_page(page);
3188	if (page != swapcache) {
3189		/*
3190		 * Hold the lock to avoid the swap entry to be reused
3191		 * until we take the PT lock for the pte_same() check
3192		 * (to avoid false positives from pte_same). For
3193		 * further safety release the lock after the swap_free
3194		 * so that the swap count won't change under a
3195		 * parallel locked swapcache.
3196		 */
3197		unlock_page(swapcache);
3198		page_cache_release(swapcache);
3199	}
3200
3201	if (flags & FAULT_FLAG_WRITE) {
3202		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3203		if (ret & VM_FAULT_ERROR)
3204			ret &= VM_FAULT_ERROR;
3205		goto out;
3206	}
3207
3208	/* No need to invalidate - it was non-present before */
3209	update_mmu_cache(vma, address, page_table);
3210unlock:
3211	pte_unmap_unlock(page_table, ptl);
3212out:
3213	return ret;
3214out_nomap:
3215	mem_cgroup_cancel_charge_swapin(ptr);
3216	pte_unmap_unlock(page_table, ptl);
3217out_page:
3218	unlock_page(page);
3219out_release:
3220	page_cache_release(page);
3221	if (page != swapcache) {
3222		unlock_page(swapcache);
3223		page_cache_release(swapcache);
3224	}
3225	return ret;
3226}
3227
3228/*
3229 * This is like a special single-page "expand_{down|up}wards()",
3230 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3231 * doesn't hit another vma.
3232 */
3233static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3234{
3235	address &= PAGE_MASK;
3236	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3237		struct vm_area_struct *prev = vma->vm_prev;
3238
3239		/*
3240		 * Is there a mapping abutting this one below?
3241		 *
3242		 * That's only ok if it's the same stack mapping
3243		 * that has gotten split..
3244		 */
3245		if (prev && prev->vm_end == address)
3246			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3247
3248		expand_downwards(vma, address - PAGE_SIZE);
3249	}
3250	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3251		struct vm_area_struct *next = vma->vm_next;
3252
3253		/* As VM_GROWSDOWN but s/below/above/ */
3254		if (next && next->vm_start == address + PAGE_SIZE)
3255			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3256
3257		expand_upwards(vma, address + PAGE_SIZE);
3258	}
3259	return 0;
3260}
3261
3262/*
3263 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3264 * but allow concurrent faults), and pte mapped but not yet locked.
3265 * We return with mmap_sem still held, but pte unmapped and unlocked.
3266 */
3267static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3268		unsigned long address, pte_t *page_table, pmd_t *pmd,
3269		unsigned int flags)
3270{
 
3271	struct page *page;
3272	spinlock_t *ptl;
3273	pte_t entry;
3274
3275	pte_unmap(page_table);
3276
 
 
 
 
3277	/* Check if we need to add a guard page to the stack */
3278	if (check_stack_guard_page(vma, address) < 0)
3279		return VM_FAULT_SIGBUS;
3280
3281	/* Use the zero-page for reads */
3282	if (!(flags & FAULT_FLAG_WRITE)) {
3283		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3284						vma->vm_page_prot));
3285		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3286		if (!pte_none(*page_table))
3287			goto unlock;
 
 
 
 
 
 
3288		goto setpte;
3289	}
3290
3291	/* Allocate our own private page. */
3292	if (unlikely(anon_vma_prepare(vma)))
3293		goto oom;
3294	page = alloc_zeroed_user_highpage_movable(vma, address);
3295	if (!page)
3296		goto oom;
 
 
 
 
3297	/*
3298	 * The memory barrier inside __SetPageUptodate makes sure that
3299	 * preceeding stores to the page contents become visible before
3300	 * the set_pte_at() write.
3301	 */
3302	__SetPageUptodate(page);
3303
3304	if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
3305		goto oom_free_page;
3306
3307	entry = mk_pte(page, vma->vm_page_prot);
3308	if (vma->vm_flags & VM_WRITE)
3309		entry = pte_mkwrite(pte_mkdirty(entry));
3310
3311	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3312	if (!pte_none(*page_table))
3313		goto release;
3314
 
 
 
 
 
 
 
 
 
3315	inc_mm_counter_fast(mm, MM_ANONPAGES);
3316	page_add_new_anon_rmap(page, vma, address);
 
 
3317setpte:
3318	set_pte_at(mm, address, page_table, entry);
3319
3320	/* No need to invalidate - it was non-present before */
3321	update_mmu_cache(vma, address, page_table);
3322unlock:
3323	pte_unmap_unlock(page_table, ptl);
3324	return 0;
3325release:
3326	mem_cgroup_uncharge_page(page);
3327	page_cache_release(page);
3328	goto unlock;
3329oom_free_page:
3330	page_cache_release(page);
3331oom:
3332	return VM_FAULT_OOM;
3333}
3334
 
 
 
 
 
3335static int __do_fault(struct vm_area_struct *vma, unsigned long address,
3336		pgoff_t pgoff, unsigned int flags, struct page **page)
 
3337{
3338	struct vm_fault vmf;
3339	int ret;
3340
3341	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3342	vmf.pgoff = pgoff;
3343	vmf.flags = flags;
3344	vmf.page = NULL;
 
 
3345
3346	ret = vma->vm_ops->fault(vma, &vmf);
3347	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3348		return ret;
 
 
3349
3350	if (unlikely(PageHWPoison(vmf.page))) {
3351		if (ret & VM_FAULT_LOCKED)
3352			unlock_page(vmf.page);
3353		page_cache_release(vmf.page);
3354		return VM_FAULT_HWPOISON;
3355	}
3356
3357	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3358		lock_page(vmf.page);
3359	else
3360		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3361
 
3362	*page = vmf.page;
3363	return ret;
3364}
3365
3366/**
3367 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
3368 *
3369 * @vma: virtual memory area
3370 * @address: user virtual address
3371 * @page: page to map
3372 * @pte: pointer to target page table entry
3373 * @write: true, if new entry is writable
3374 * @anon: true, if it's anonymous page
3375 *
3376 * Caller must hold page table lock relevant for @pte.
3377 *
3378 * Target users are page handler itself and implementations of
3379 * vm_ops->map_pages.
3380 */
3381void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3382		struct page *page, pte_t *pte, bool write, bool anon)
3383{
3384	pte_t entry;
3385
3386	flush_icache_page(vma, page);
3387	entry = mk_pte(page, vma->vm_page_prot);
3388	if (write)
3389		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3390	else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
3391		pte_mksoft_dirty(entry);
3392	if (anon) {
3393		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3394		page_add_new_anon_rmap(page, vma, address);
3395	} else {
3396		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
3397		page_add_file_rmap(page);
3398	}
3399	set_pte_at(vma->vm_mm, address, pte, entry);
3400
3401	/* no need to invalidate: a not-present page won't be cached */
3402	update_mmu_cache(vma, address, pte);
3403}
3404
3405#define FAULT_AROUND_ORDER 4
 
3406
3407#ifdef CONFIG_DEBUG_FS
3408static unsigned int fault_around_order = FAULT_AROUND_ORDER;
3409
3410static int fault_around_order_get(void *data, u64 *val)
3411{
3412	*val = fault_around_order;
3413	return 0;
3414}
3415
3416static int fault_around_order_set(void *data, u64 val)
 
 
 
 
 
3417{
3418	BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER) > PTRS_PER_PTE);
3419	if (1UL << val > PTRS_PER_PTE)
3420		return -EINVAL;
3421	fault_around_order = val;
 
 
 
3422	return 0;
3423}
3424DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops,
3425		fault_around_order_get, fault_around_order_set, "%llu\n");
3426
3427static int __init fault_around_debugfs(void)
3428{
3429	void *ret;
3430
3431	ret = debugfs_create_file("fault_around_order",	0644, NULL, NULL,
3432			&fault_around_order_fops);
3433	if (!ret)
3434		pr_warn("Failed to create fault_around_order in debugfs");
3435	return 0;
3436}
3437late_initcall(fault_around_debugfs);
3438
3439static inline unsigned long fault_around_pages(void)
3440{
3441	return 1UL << fault_around_order;
3442}
3443
3444static inline unsigned long fault_around_mask(void)
3445{
3446	return ~((1UL << (PAGE_SHIFT + fault_around_order)) - 1);
3447}
3448#else
3449static inline unsigned long fault_around_pages(void)
3450{
3451	unsigned long nr_pages;
3452
3453	nr_pages = 1UL << FAULT_AROUND_ORDER;
3454	BUILD_BUG_ON(nr_pages > PTRS_PER_PTE);
3455	return nr_pages;
3456}
3457
3458static inline unsigned long fault_around_mask(void)
3459{
3460	return ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1);
3461}
3462#endif
3463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3464static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
3465		pte_t *pte, pgoff_t pgoff, unsigned int flags)
3466{
3467	unsigned long start_addr;
3468	pgoff_t max_pgoff;
3469	struct vm_fault vmf;
3470	int off;
3471
3472	start_addr = max(address & fault_around_mask(), vma->vm_start);
 
 
 
3473	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3474	pte -= off;
3475	pgoff -= off;
3476
3477	/*
3478	 *  max_pgoff is either end of page table or end of vma
3479	 *  or fault_around_pages() from pgoff, depending what is neast.
3480	 */
3481	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3482		PTRS_PER_PTE - 1;
3483	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
3484			pgoff + fault_around_pages() - 1);
3485
3486	/* Check if it makes any sense to call ->map_pages */
3487	while (!pte_none(*pte)) {
3488		if (++pgoff > max_pgoff)
3489			return;
3490		start_addr += PAGE_SIZE;
3491		if (start_addr >= vma->vm_end)
3492			return;
3493		pte++;
3494	}
3495
3496	vmf.virtual_address = (void __user *) start_addr;
3497	vmf.pte = pte;
3498	vmf.pgoff = pgoff;
3499	vmf.max_pgoff = max_pgoff;
3500	vmf.flags = flags;
 
3501	vma->vm_ops->map_pages(vma, &vmf);
3502}
3503
3504static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3505		unsigned long address, pmd_t *pmd,
3506		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3507{
3508	struct page *fault_page;
3509	spinlock_t *ptl;
3510	pte_t *pte;
3511	int ret = 0;
3512
3513	/*
3514	 * Let's call ->map_pages() first and use ->fault() as fallback
3515	 * if page by the offset is not ready to be mapped (cold cache or
3516	 * something).
3517	 */
3518	if (vma->vm_ops->map_pages) {
3519		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3520		do_fault_around(vma, address, pte, pgoff, flags);
3521		if (!pte_same(*pte, orig_pte))
3522			goto unlock_out;
3523		pte_unmap_unlock(pte, ptl);
3524	}
3525
3526	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3527	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3528		return ret;
3529
3530	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3531	if (unlikely(!pte_same(*pte, orig_pte))) {
3532		pte_unmap_unlock(pte, ptl);
3533		unlock_page(fault_page);
3534		page_cache_release(fault_page);
3535		return ret;
3536	}
3537	do_set_pte(vma, address, fault_page, pte, false, false);
3538	unlock_page(fault_page);
3539unlock_out:
3540	pte_unmap_unlock(pte, ptl);
3541	return ret;
3542}
3543
3544static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3545		unsigned long address, pmd_t *pmd,
3546		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3547{
3548	struct page *fault_page, *new_page;
 
3549	spinlock_t *ptl;
3550	pte_t *pte;
3551	int ret;
3552
3553	if (unlikely(anon_vma_prepare(vma)))
3554		return VM_FAULT_OOM;
3555
3556	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3557	if (!new_page)
3558		return VM_FAULT_OOM;
3559
3560	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
3561		page_cache_release(new_page);
3562		return VM_FAULT_OOM;
3563	}
3564
3565	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3566	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3567		goto uncharge_out;
3568
3569	copy_user_highpage(new_page, fault_page, address, vma);
 
3570	__SetPageUptodate(new_page);
3571
3572	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3573	if (unlikely(!pte_same(*pte, orig_pte))) {
3574		pte_unmap_unlock(pte, ptl);
3575		unlock_page(fault_page);
3576		page_cache_release(fault_page);
 
 
 
 
 
 
 
 
3577		goto uncharge_out;
3578	}
3579	do_set_pte(vma, address, new_page, pte, true, true);
 
 
3580	pte_unmap_unlock(pte, ptl);
3581	unlock_page(fault_page);
3582	page_cache_release(fault_page);
 
 
 
 
 
 
 
 
3583	return ret;
3584uncharge_out:
3585	mem_cgroup_uncharge_page(new_page);
3586	page_cache_release(new_page);
3587	return ret;
3588}
3589
3590static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3591		unsigned long address, pmd_t *pmd,
3592		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3593{
3594	struct page *fault_page;
3595	struct address_space *mapping;
3596	spinlock_t *ptl;
3597	pte_t *pte;
3598	int dirtied = 0;
3599	int ret, tmp;
3600
3601	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3602	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3603		return ret;
3604
3605	/*
3606	 * Check if the backing address space wants to know that the page is
3607	 * about to become writable
3608	 */
3609	if (vma->vm_ops->page_mkwrite) {
3610		unlock_page(fault_page);
3611		tmp = do_page_mkwrite(vma, fault_page, address);
3612		if (unlikely(!tmp ||
3613				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3614			page_cache_release(fault_page);
3615			return tmp;
3616		}
3617	}
3618
3619	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3620	if (unlikely(!pte_same(*pte, orig_pte))) {
3621		pte_unmap_unlock(pte, ptl);
3622		unlock_page(fault_page);
3623		page_cache_release(fault_page);
3624		return ret;
3625	}
3626	do_set_pte(vma, address, fault_page, pte, true, false);
3627	pte_unmap_unlock(pte, ptl);
3628
3629	if (set_page_dirty(fault_page))
3630		dirtied = 1;
3631	mapping = fault_page->mapping;
 
 
 
 
 
 
3632	unlock_page(fault_page);
3633	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3634		/*
3635		 * Some device drivers do not set page.mapping but still
3636		 * dirty their pages
3637		 */
3638		balance_dirty_pages_ratelimited(mapping);
3639	}
3640
3641	/* file_update_time outside page_lock */
3642	if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3643		file_update_time(vma->vm_file);
3644
3645	return ret;
3646}
3647
3648static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3649		unsigned long address, pte_t *page_table, pmd_t *pmd,
3650		unsigned int flags, pte_t orig_pte)
3651{
3652	pgoff_t pgoff = (((address & PAGE_MASK)
3653			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3654
3655	pte_unmap(page_table);
3656	if (!(flags & FAULT_FLAG_WRITE))
3657		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3658				orig_pte);
3659	if (!(vma->vm_flags & VM_SHARED))
3660		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3661				orig_pte);
3662	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3663}
3664
3665/*
3666 * Fault of a previously existing named mapping. Repopulate the pte
3667 * from the encoded file_pte if possible. This enables swappable
3668 * nonlinear vmas.
3669 *
3670 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3671 * but allow concurrent faults), and pte mapped but not yet locked.
3672 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
3673 */
3674static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3675		unsigned long address, pte_t *page_table, pmd_t *pmd,
3676		unsigned int flags, pte_t orig_pte)
3677{
3678	pgoff_t pgoff;
3679
3680	flags |= FAULT_FLAG_NONLINEAR;
3681
3682	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3683		return 0;
3684
3685	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3686		/*
3687		 * Page table corrupted: show pte and kill process.
3688		 */
3689		print_bad_pte(vma, address, orig_pte, NULL);
3690		return VM_FAULT_SIGBUS;
3691	}
3692
3693	pgoff = pte_to_pgoff(orig_pte);
3694	if (!(flags & FAULT_FLAG_WRITE))
3695		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3696				orig_pte);
3697	if (!(vma->vm_flags & VM_SHARED))
3698		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3699				orig_pte);
3700	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3701}
3702
3703static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3704				unsigned long addr, int page_nid,
3705				int *flags)
3706{
3707	get_page(page);
3708
3709	count_vm_numa_event(NUMA_HINT_FAULTS);
3710	if (page_nid == numa_node_id()) {
3711		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3712		*flags |= TNF_FAULT_LOCAL;
3713	}
3714
3715	return mpol_misplaced(page, vma, addr);
3716}
3717
3718static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3719		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3720{
3721	struct page *page = NULL;
3722	spinlock_t *ptl;
3723	int page_nid = -1;
3724	int last_cpupid;
3725	int target_nid;
3726	bool migrated = false;
 
3727	int flags = 0;
3728
 
 
 
3729	/*
3730	* The "pte" at this point cannot be used safely without
3731	* validation through pte_unmap_same(). It's of NUMA type but
3732	* the pfn may be screwed if the read is non atomic.
3733	*
3734	* ptep_modify_prot_start is not called as this is clearing
3735	* the _PAGE_NUMA bit and it is not really expected that there
3736	* would be concurrent hardware modifications to the PTE.
3737	*/
3738	ptl = pte_lockptr(mm, pmd);
3739	spin_lock(ptl);
3740	if (unlikely(!pte_same(*ptep, pte))) {
3741		pte_unmap_unlock(ptep, ptl);
3742		goto out;
3743	}
3744
3745	pte = pte_mknonnuma(pte);
 
 
 
 
3746	set_pte_at(mm, addr, ptep, pte);
3747	update_mmu_cache(vma, addr, ptep);
3748
3749	page = vm_normal_page(vma, addr, pte);
3750	if (!page) {
3751		pte_unmap_unlock(ptep, ptl);
3752		return 0;
3753	}
3754	BUG_ON(is_zero_pfn(page_to_pfn(page)));
 
 
 
 
 
3755
3756	/*
3757	 * Avoid grouping on DSO/COW pages in specific and RO pages
3758	 * in general, RO pages shouldn't hurt as much anyway since
3759	 * they can be in shared cache state.
 
 
 
3760	 */
3761	if (!pte_write(pte))
3762		flags |= TNF_NO_GROUP;
3763
3764	/*
3765	 * Flag if the page is shared between multiple address spaces. This
3766	 * is later used when determining whether to group tasks together
3767	 */
3768	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3769		flags |= TNF_SHARED;
3770
3771	last_cpupid = page_cpupid_last(page);
3772	page_nid = page_to_nid(page);
3773	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3774	pte_unmap_unlock(ptep, ptl);
3775	if (target_nid == -1) {
3776		put_page(page);
3777		goto out;
3778	}
3779
3780	/* Migrate to the requested node */
3781	migrated = migrate_misplaced_page(page, vma, target_nid);
3782	if (migrated) {
3783		page_nid = target_nid;
3784		flags |= TNF_MIGRATED;
3785	}
 
3786
3787out:
3788	if (page_nid != -1)
3789		task_numa_fault(last_cpupid, page_nid, 1, flags);
3790	return 0;
3791}
3792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3793/*
3794 * These routines also need to handle stuff like marking pages dirty
3795 * and/or accessed for architectures that don't do it in hardware (most
3796 * RISC architectures).  The early dirtying is also good on the i386.
3797 *
3798 * There is also a hook called "update_mmu_cache()" that architectures
3799 * with external mmu caches can use to update those (ie the Sparc or
3800 * PowerPC hashed page tables that act as extended TLBs).
3801 *
3802 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3803 * but allow concurrent faults), and pte mapped but not yet locked.
3804 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
 
3805 */
3806static int handle_pte_fault(struct mm_struct *mm,
3807		     struct vm_area_struct *vma, unsigned long address,
3808		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3809{
3810	pte_t entry;
3811	spinlock_t *ptl;
3812
 
 
 
 
 
 
 
 
3813	entry = *pte;
 
3814	if (!pte_present(entry)) {
3815		if (pte_none(entry)) {
3816			if (vma->vm_ops) {
3817				if (likely(vma->vm_ops->fault))
3818					return do_linear_fault(mm, vma, address,
3819						pte, pmd, flags, entry);
3820			}
3821			return do_anonymous_page(mm, vma, address,
3822						 pte, pmd, flags);
3823		}
3824		if (pte_file(entry))
3825			return do_nonlinear_fault(mm, vma, address,
3826					pte, pmd, flags, entry);
3827		return do_swap_page(mm, vma, address,
3828					pte, pmd, flags, entry);
3829	}
3830
3831	if (pte_numa(entry))
3832		return do_numa_page(mm, vma, address, entry, pte, pmd);
3833
3834	ptl = pte_lockptr(mm, pmd);
3835	spin_lock(ptl);
3836	if (unlikely(!pte_same(*pte, entry)))
3837		goto unlock;
3838	if (flags & FAULT_FLAG_WRITE) {
3839		if (!pte_write(entry))
3840			return do_wp_page(mm, vma, address,
3841					pte, pmd, ptl, entry);
3842		entry = pte_mkdirty(entry);
3843	}
3844	entry = pte_mkyoung(entry);
3845	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3846		update_mmu_cache(vma, address, pte);
3847	} else {
3848		/*
3849		 * This is needed only for protection faults but the arch code
3850		 * is not yet telling us if this is a protection fault or not.
3851		 * This still avoids useless tlb flushes for .text page faults
3852		 * with threads.
3853		 */
3854		if (flags & FAULT_FLAG_WRITE)
3855			flush_tlb_fix_spurious_fault(vma, address);
3856	}
3857unlock:
3858	pte_unmap_unlock(pte, ptl);
3859	return 0;
3860}
3861
3862/*
3863 * By the time we get here, we already hold the mm semaphore
 
 
 
3864 */
3865static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3866			     unsigned long address, unsigned int flags)
3867{
3868	pgd_t *pgd;
3869	pud_t *pud;
3870	pmd_t *pmd;
3871	pte_t *pte;
3872
 
 
 
 
 
3873	if (unlikely(is_vm_hugetlb_page(vma)))
3874		return hugetlb_fault(mm, vma, address, flags);
3875
3876	pgd = pgd_offset(mm, address);
3877	pud = pud_alloc(mm, pgd, address);
3878	if (!pud)
3879		return VM_FAULT_OOM;
3880	pmd = pmd_alloc(mm, pud, address);
3881	if (!pmd)
3882		return VM_FAULT_OOM;
3883	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3884		int ret = VM_FAULT_FALLBACK;
3885		if (!vma->vm_ops)
3886			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3887					pmd, flags);
3888		if (!(ret & VM_FAULT_FALLBACK))
3889			return ret;
3890	} else {
3891		pmd_t orig_pmd = *pmd;
3892		int ret;
3893
3894		barrier();
3895		if (pmd_trans_huge(orig_pmd)) {
3896			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3897
3898			/*
3899			 * If the pmd is splitting, return and retry the
3900			 * the fault.  Alternative: wait until the split
3901			 * is done, and goto retry.
3902			 */
3903			if (pmd_trans_splitting(orig_pmd))
3904				return 0;
3905
3906			if (pmd_numa(orig_pmd))
3907				return do_huge_pmd_numa_page(mm, vma, address,
3908							     orig_pmd, pmd);
3909
3910			if (dirty && !pmd_write(orig_pmd)) {
3911				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3912							  orig_pmd);
3913				if (!(ret & VM_FAULT_FALLBACK))
3914					return ret;
3915			} else {
3916				huge_pmd_set_accessed(mm, vma, address, pmd,
3917						      orig_pmd, dirty);
3918				return 0;
3919			}
3920		}
3921	}
3922
3923	/* THP should already have been handled */
3924	BUG_ON(pmd_numa(*pmd));
3925
3926	/*
3927	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3928	 * run pte_offset_map on the pmd, if an huge pmd could
3929	 * materialize from under us from a different thread.
3930	 */
3931	if (unlikely(pmd_none(*pmd)) &&
3932	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3933		return VM_FAULT_OOM;
3934	/* if an huge pmd materialized from under us just retry later */
3935	if (unlikely(pmd_trans_huge(*pmd)))
 
 
 
 
 
 
 
 
 
 
3936		return 0;
3937	/*
3938	 * A regular pmd is established and it can't morph into a huge pmd
3939	 * from under us anymore at this point because we hold the mmap_sem
3940	 * read mode and khugepaged takes it in write mode. So now it's
3941	 * safe to run pte_offset_map().
3942	 */
3943	pte = pte_offset_map(pmd, address);
3944
3945	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3946}
3947
 
 
 
 
 
 
3948int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3949		    unsigned long address, unsigned int flags)
3950{
3951	int ret;
3952
3953	__set_current_state(TASK_RUNNING);
3954
3955	count_vm_event(PGFAULT);
3956	mem_cgroup_count_vm_event(mm, PGFAULT);
3957
3958	/* do counter updates before entering really critical section. */
3959	check_sync_rss_stat(current);
3960
3961	/*
3962	 * Enable the memcg OOM handling for faults triggered in user
3963	 * space.  Kernel faults are handled more gracefully.
3964	 */
3965	if (flags & FAULT_FLAG_USER)
3966		mem_cgroup_oom_enable();
3967
3968	ret = __handle_mm_fault(mm, vma, address, flags);
3969
3970	if (flags & FAULT_FLAG_USER) {
3971		mem_cgroup_oom_disable();
3972                /*
3973                 * The task may have entered a memcg OOM situation but
3974                 * if the allocation error was handled gracefully (no
3975                 * VM_FAULT_OOM), there is no need to kill anything.
3976                 * Just clean up the OOM state peacefully.
3977                 */
3978                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3979                        mem_cgroup_oom_synchronize(false);
3980	}
3981
3982	return ret;
3983}
 
3984
3985#ifndef __PAGETABLE_PUD_FOLDED
3986/*
3987 * Allocate page upper directory.
3988 * We've already handled the fast-path in-line.
3989 */
3990int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3991{
3992	pud_t *new = pud_alloc_one(mm, address);
3993	if (!new)
3994		return -ENOMEM;
3995
3996	smp_wmb(); /* See comment in __pte_alloc */
3997
3998	spin_lock(&mm->page_table_lock);
3999	if (pgd_present(*pgd))		/* Another has populated it */
4000		pud_free(mm, new);
4001	else
4002		pgd_populate(mm, pgd, new);
4003	spin_unlock(&mm->page_table_lock);
4004	return 0;
4005}
4006#endif /* __PAGETABLE_PUD_FOLDED */
4007
4008#ifndef __PAGETABLE_PMD_FOLDED
4009/*
4010 * Allocate page middle directory.
4011 * We've already handled the fast-path in-line.
4012 */
4013int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4014{
4015	pmd_t *new = pmd_alloc_one(mm, address);
4016	if (!new)
4017		return -ENOMEM;
4018
4019	smp_wmb(); /* See comment in __pte_alloc */
4020
4021	spin_lock(&mm->page_table_lock);
4022#ifndef __ARCH_HAS_4LEVEL_HACK
4023	if (pud_present(*pud))		/* Another has populated it */
 
 
 
4024		pmd_free(mm, new);
4025	else
4026		pud_populate(mm, pud, new);
4027#else
4028	if (pgd_present(*pud))		/* Another has populated it */
 
 
 
4029		pmd_free(mm, new);
4030	else
4031		pgd_populate(mm, pud, new);
4032#endif /* __ARCH_HAS_4LEVEL_HACK */
4033	spin_unlock(&mm->page_table_lock);
4034	return 0;
4035}
4036#endif /* __PAGETABLE_PMD_FOLDED */
4037
4038#if !defined(__HAVE_ARCH_GATE_AREA)
4039
4040#if defined(AT_SYSINFO_EHDR)
4041static struct vm_area_struct gate_vma;
4042
4043static int __init gate_vma_init(void)
4044{
4045	gate_vma.vm_mm = NULL;
4046	gate_vma.vm_start = FIXADDR_USER_START;
4047	gate_vma.vm_end = FIXADDR_USER_END;
4048	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
4049	gate_vma.vm_page_prot = __P101;
4050
4051	return 0;
4052}
4053__initcall(gate_vma_init);
4054#endif
4055
4056struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4057{
4058#ifdef AT_SYSINFO_EHDR
4059	return &gate_vma;
4060#else
4061	return NULL;
4062#endif
4063}
4064
4065int in_gate_area_no_mm(unsigned long addr)
4066{
4067#ifdef AT_SYSINFO_EHDR
4068	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4069		return 1;
4070#endif
4071	return 0;
4072}
4073
4074#endif	/* __HAVE_ARCH_GATE_AREA */
4075
4076static int __follow_pte(struct mm_struct *mm, unsigned long address,
4077		pte_t **ptepp, spinlock_t **ptlp)
4078{
4079	pgd_t *pgd;
4080	pud_t *pud;
4081	pmd_t *pmd;
4082	pte_t *ptep;
4083
4084	pgd = pgd_offset(mm, address);
4085	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4086		goto out;
4087
4088	pud = pud_offset(pgd, address);
4089	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4090		goto out;
4091
4092	pmd = pmd_offset(pud, address);
4093	VM_BUG_ON(pmd_trans_huge(*pmd));
4094	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4095		goto out;
4096
4097	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
4098	if (pmd_huge(*pmd))
4099		goto out;
4100
4101	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4102	if (!ptep)
4103		goto out;
4104	if (!pte_present(*ptep))
4105		goto unlock;
4106	*ptepp = ptep;
4107	return 0;
4108unlock:
4109	pte_unmap_unlock(ptep, *ptlp);
4110out:
4111	return -EINVAL;
4112}
4113
4114static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4115			     pte_t **ptepp, spinlock_t **ptlp)
4116{
4117	int res;
4118
4119	/* (void) is needed to make gcc happy */
4120	(void) __cond_lock(*ptlp,
4121			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
4122	return res;
4123}
4124
4125/**
4126 * follow_pfn - look up PFN at a user virtual address
4127 * @vma: memory mapping
4128 * @address: user virtual address
4129 * @pfn: location to store found PFN
4130 *
4131 * Only IO mappings and raw PFN mappings are allowed.
4132 *
4133 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4134 */
4135int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4136	unsigned long *pfn)
4137{
4138	int ret = -EINVAL;
4139	spinlock_t *ptl;
4140	pte_t *ptep;
4141
4142	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4143		return ret;
4144
4145	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4146	if (ret)
4147		return ret;
4148	*pfn = pte_pfn(*ptep);
4149	pte_unmap_unlock(ptep, ptl);
4150	return 0;
4151}
4152EXPORT_SYMBOL(follow_pfn);
4153
4154#ifdef CONFIG_HAVE_IOREMAP_PROT
4155int follow_phys(struct vm_area_struct *vma,
4156		unsigned long address, unsigned int flags,
4157		unsigned long *prot, resource_size_t *phys)
4158{
4159	int ret = -EINVAL;
4160	pte_t *ptep, pte;
4161	spinlock_t *ptl;
4162
4163	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4164		goto out;
4165
4166	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4167		goto out;
4168	pte = *ptep;
4169
4170	if ((flags & FOLL_WRITE) && !pte_write(pte))
4171		goto unlock;
4172
4173	*prot = pgprot_val(pte_pgprot(pte));
4174	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4175
4176	ret = 0;
4177unlock:
4178	pte_unmap_unlock(ptep, ptl);
4179out:
4180	return ret;
4181}
4182
4183int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4184			void *buf, int len, int write)
4185{
4186	resource_size_t phys_addr;
4187	unsigned long prot = 0;
4188	void __iomem *maddr;
4189	int offset = addr & (PAGE_SIZE-1);
4190
4191	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4192		return -EINVAL;
4193
4194	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4195	if (write)
4196		memcpy_toio(maddr + offset, buf, len);
4197	else
4198		memcpy_fromio(buf, maddr + offset, len);
4199	iounmap(maddr);
4200
4201	return len;
4202}
4203EXPORT_SYMBOL_GPL(generic_access_phys);
4204#endif
4205
4206/*
4207 * Access another process' address space as given in mm.  If non-NULL, use the
4208 * given task for page fault accounting.
4209 */
4210static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4211		unsigned long addr, void *buf, int len, int write)
4212{
4213	struct vm_area_struct *vma;
4214	void *old_buf = buf;
4215
4216	down_read(&mm->mmap_sem);
4217	/* ignore errors, just check how much was successfully transferred */
4218	while (len) {
4219		int bytes, ret, offset;
4220		void *maddr;
4221		struct page *page = NULL;
4222
4223		ret = get_user_pages(tsk, mm, addr, 1,
4224				write, 1, &page, &vma);
4225		if (ret <= 0) {
 
 
 
4226			/*
4227			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4228			 * we can access using slightly different code.
4229			 */
4230#ifdef CONFIG_HAVE_IOREMAP_PROT
4231			vma = find_vma(mm, addr);
4232			if (!vma || vma->vm_start > addr)
4233				break;
4234			if (vma->vm_ops && vma->vm_ops->access)
4235				ret = vma->vm_ops->access(vma, addr, buf,
4236							  len, write);
4237			if (ret <= 0)
4238#endif
4239				break;
4240			bytes = ret;
 
4241		} else {
4242			bytes = len;
4243			offset = addr & (PAGE_SIZE-1);
4244			if (bytes > PAGE_SIZE-offset)
4245				bytes = PAGE_SIZE-offset;
4246
4247			maddr = kmap(page);
4248			if (write) {
4249				copy_to_user_page(vma, page, addr,
4250						  maddr + offset, buf, bytes);
4251				set_page_dirty_lock(page);
4252			} else {
4253				copy_from_user_page(vma, page, addr,
4254						    buf, maddr + offset, bytes);
4255			}
4256			kunmap(page);
4257			page_cache_release(page);
4258		}
4259		len -= bytes;
4260		buf += bytes;
4261		addr += bytes;
4262	}
4263	up_read(&mm->mmap_sem);
4264
4265	return buf - old_buf;
4266}
4267
4268/**
4269 * access_remote_vm - access another process' address space
4270 * @mm:		the mm_struct of the target address space
4271 * @addr:	start address to access
4272 * @buf:	source or destination buffer
4273 * @len:	number of bytes to transfer
4274 * @write:	whether the access is a write
4275 *
4276 * The caller must hold a reference on @mm.
4277 */
4278int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4279		void *buf, int len, int write)
4280{
4281	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4282}
4283
4284/*
4285 * Access another process' address space.
4286 * Source/target buffer must be kernel space,
4287 * Do not walk the page table directly, use get_user_pages
4288 */
4289int access_process_vm(struct task_struct *tsk, unsigned long addr,
4290		void *buf, int len, int write)
4291{
4292	struct mm_struct *mm;
4293	int ret;
4294
4295	mm = get_task_mm(tsk);
4296	if (!mm)
4297		return 0;
4298
4299	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4300	mmput(mm);
4301
4302	return ret;
4303}
4304
4305/*
4306 * Print the name of a VMA.
4307 */
4308void print_vma_addr(char *prefix, unsigned long ip)
4309{
4310	struct mm_struct *mm = current->mm;
4311	struct vm_area_struct *vma;
4312
4313	/*
4314	 * Do not print if we are in atomic
4315	 * contexts (in exception stacks, etc.):
4316	 */
4317	if (preempt_count())
4318		return;
4319
4320	down_read(&mm->mmap_sem);
4321	vma = find_vma(mm, ip);
4322	if (vma && vma->vm_file) {
4323		struct file *f = vma->vm_file;
4324		char *buf = (char *)__get_free_page(GFP_KERNEL);
4325		if (buf) {
4326			char *p;
4327
4328			p = d_path(&f->f_path, buf, PAGE_SIZE);
4329			if (IS_ERR(p))
4330				p = "?";
4331			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4332					vma->vm_start,
4333					vma->vm_end - vma->vm_start);
4334			free_page((unsigned long)buf);
4335		}
4336	}
4337	up_read(&mm->mmap_sem);
4338}
4339
4340#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4341void might_fault(void)
4342{
4343	/*
4344	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4345	 * holding the mmap_sem, this is safe because kernel memory doesn't
4346	 * get paged out, therefore we'll never actually fault, and the
4347	 * below annotations will generate false positives.
4348	 */
4349	if (segment_eq(get_fs(), KERNEL_DS))
4350		return;
4351
4352	/*
4353	 * it would be nicer only to annotate paths which are not under
4354	 * pagefault_disable, however that requires a larger audit and
4355	 * providing helpers like get_user_atomic.
4356	 */
4357	if (in_atomic())
4358		return;
4359
4360	__might_sleep(__FILE__, __LINE__, 0);
4361
4362	if (current->mm)
4363		might_lock_read(&current->mm->mmap_sem);
 
4364}
4365EXPORT_SYMBOL(might_fault);
4366#endif
4367
4368#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4369static void clear_gigantic_page(struct page *page,
4370				unsigned long addr,
4371				unsigned int pages_per_huge_page)
4372{
4373	int i;
4374	struct page *p = page;
4375
4376	might_sleep();
4377	for (i = 0; i < pages_per_huge_page;
4378	     i++, p = mem_map_next(p, page, i)) {
4379		cond_resched();
4380		clear_user_highpage(p, addr + i * PAGE_SIZE);
4381	}
4382}
4383void clear_huge_page(struct page *page,
4384		     unsigned long addr, unsigned int pages_per_huge_page)
4385{
4386	int i;
4387
4388	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4389		clear_gigantic_page(page, addr, pages_per_huge_page);
4390		return;
4391	}
4392
4393	might_sleep();
4394	for (i = 0; i < pages_per_huge_page; i++) {
4395		cond_resched();
4396		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4397	}
4398}
4399
4400static void copy_user_gigantic_page(struct page *dst, struct page *src,
4401				    unsigned long addr,
4402				    struct vm_area_struct *vma,
4403				    unsigned int pages_per_huge_page)
4404{
4405	int i;
4406	struct page *dst_base = dst;
4407	struct page *src_base = src;
4408
4409	for (i = 0; i < pages_per_huge_page; ) {
4410		cond_resched();
4411		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4412
4413		i++;
4414		dst = mem_map_next(dst, dst_base, i);
4415		src = mem_map_next(src, src_base, i);
4416	}
4417}
4418
4419void copy_user_huge_page(struct page *dst, struct page *src,
4420			 unsigned long addr, struct vm_area_struct *vma,
4421			 unsigned int pages_per_huge_page)
4422{
4423	int i;
4424
4425	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4426		copy_user_gigantic_page(dst, src, addr, vma,
4427					pages_per_huge_page);
4428		return;
4429	}
4430
4431	might_sleep();
4432	for (i = 0; i < pages_per_huge_page; i++) {
4433		cond_resched();
4434		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4435	}
4436}
4437#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4438
4439#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4440
4441static struct kmem_cache *page_ptl_cachep;
4442
4443void __init ptlock_cache_init(void)
4444{
4445	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4446			SLAB_PANIC, NULL);
4447}
4448
4449bool ptlock_alloc(struct page *page)
4450{
4451	spinlock_t *ptl;
4452
4453	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4454	if (!ptl)
4455		return false;
4456	page->ptl = ptl;
4457	return true;
4458}
4459
4460void ptlock_free(struct page *page)
4461{
4462	kmem_cache_free(page_ptl_cachep, page->ptl);
4463}
4464#endif