Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.6
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/pfn_t.h>
  54#include <linux/writeback.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/kallsyms.h>
  58#include <linux/swapops.h>
  59#include <linux/elf.h>
  60#include <linux/gfp.h>
  61#include <linux/migrate.h>
  62#include <linux/string.h>
  63#include <linux/dma-debug.h>
  64#include <linux/debugfs.h>
  65#include <linux/userfaultfd_k.h>
 
  66
  67#include <asm/io.h>
  68#include <asm/mmu_context.h>
  69#include <asm/pgalloc.h>
  70#include <asm/uaccess.h>
  71#include <asm/tlb.h>
  72#include <asm/tlbflush.h>
  73#include <asm/pgtable.h>
  74
  75#include "internal.h"
  76
  77#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  78#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  79#endif
  80
  81#ifndef CONFIG_NEED_MULTIPLE_NODES
  82/* use the per-pgdat data instead for discontigmem - mbligh */
  83unsigned long max_mapnr;
  84struct page *mem_map;
  85
  86EXPORT_SYMBOL(max_mapnr);
  87EXPORT_SYMBOL(mem_map);
  88#endif
  89
  90/*
  91 * A number of key systems in x86 including ioremap() rely on the assumption
  92 * that high_memory defines the upper bound on direct map memory, then end
  93 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  95 * and ZONE_HIGHMEM.
  96 */
  97void * high_memory;
  98
  99EXPORT_SYMBOL(high_memory);
 100
 101/*
 102 * Randomize the address space (stacks, mmaps, brk, etc.).
 103 *
 104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 105 *   as ancient (libc5 based) binaries can segfault. )
 106 */
 107int randomize_va_space __read_mostly =
 108#ifdef CONFIG_COMPAT_BRK
 109					1;
 110#else
 111					2;
 112#endif
 113
 114static int __init disable_randmaps(char *s)
 115{
 116	randomize_va_space = 0;
 117	return 1;
 118}
 119__setup("norandmaps", disable_randmaps);
 120
 121unsigned long zero_pfn __read_mostly;
 122unsigned long highest_memmap_pfn __read_mostly;
 123
 124EXPORT_SYMBOL(zero_pfn);
 125
 126/*
 127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 128 */
 129static int __init init_zero_pfn(void)
 130{
 131	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 132	return 0;
 133}
 134core_initcall(init_zero_pfn);
 135
 136
 137#if defined(SPLIT_RSS_COUNTING)
 138
 139void sync_mm_rss(struct mm_struct *mm)
 140{
 141	int i;
 142
 143	for (i = 0; i < NR_MM_COUNTERS; i++) {
 144		if (current->rss_stat.count[i]) {
 145			add_mm_counter(mm, i, current->rss_stat.count[i]);
 146			current->rss_stat.count[i] = 0;
 147		}
 148	}
 149	current->rss_stat.events = 0;
 150}
 151
 152static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 153{
 154	struct task_struct *task = current;
 155
 156	if (likely(task->mm == mm))
 157		task->rss_stat.count[member] += val;
 158	else
 159		add_mm_counter(mm, member, val);
 160}
 161#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 162#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 163
 164/* sync counter once per 64 page faults */
 165#define TASK_RSS_EVENTS_THRESH	(64)
 166static void check_sync_rss_stat(struct task_struct *task)
 167{
 168	if (unlikely(task != current))
 169		return;
 170	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 171		sync_mm_rss(task->mm);
 172}
 173#else /* SPLIT_RSS_COUNTING */
 174
 175#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 176#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 177
 178static void check_sync_rss_stat(struct task_struct *task)
 179{
 180}
 181
 182#endif /* SPLIT_RSS_COUNTING */
 183
 184#ifdef HAVE_GENERIC_MMU_GATHER
 185
 186static bool tlb_next_batch(struct mmu_gather *tlb)
 187{
 188	struct mmu_gather_batch *batch;
 189
 190	batch = tlb->active;
 191	if (batch->next) {
 192		tlb->active = batch->next;
 193		return true;
 194	}
 195
 196	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 197		return false;
 198
 199	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 200	if (!batch)
 201		return false;
 202
 203	tlb->batch_count++;
 204	batch->next = NULL;
 205	batch->nr   = 0;
 206	batch->max  = MAX_GATHER_BATCH;
 207
 208	tlb->active->next = batch;
 209	tlb->active = batch;
 210
 211	return true;
 212}
 213
 214/* tlb_gather_mmu
 215 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 216 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 217 *	users and we're going to destroy the full address space (exit/execve).
 218 */
 219void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 220{
 221	tlb->mm = mm;
 222
 223	/* Is it from 0 to ~0? */
 224	tlb->fullmm     = !(start | (end+1));
 225	tlb->need_flush_all = 0;
 226	tlb->local.next = NULL;
 227	tlb->local.nr   = 0;
 228	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 229	tlb->active     = &tlb->local;
 230	tlb->batch_count = 0;
 231
 232#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 233	tlb->batch = NULL;
 234#endif
 
 235
 236	__tlb_reset_range(tlb);
 237}
 238
 239static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 240{
 241	if (!tlb->end)
 242		return;
 243
 244	tlb_flush(tlb);
 245	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 246#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 247	tlb_table_flush(tlb);
 248#endif
 249	__tlb_reset_range(tlb);
 250}
 251
 252static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 253{
 254	struct mmu_gather_batch *batch;
 255
 256	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 257		free_pages_and_swap_cache(batch->pages, batch->nr);
 258		batch->nr = 0;
 259	}
 260	tlb->active = &tlb->local;
 261}
 262
 263void tlb_flush_mmu(struct mmu_gather *tlb)
 264{
 265	tlb_flush_mmu_tlbonly(tlb);
 266	tlb_flush_mmu_free(tlb);
 267}
 268
 269/* tlb_finish_mmu
 270 *	Called at the end of the shootdown operation to free up any resources
 271 *	that were required.
 272 */
 273void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 274{
 275	struct mmu_gather_batch *batch, *next;
 276
 277	tlb_flush_mmu(tlb);
 278
 279	/* keep the page table cache within bounds */
 280	check_pgt_cache();
 281
 282	for (batch = tlb->local.next; batch; batch = next) {
 283		next = batch->next;
 284		free_pages((unsigned long)batch, 0);
 285	}
 286	tlb->local.next = NULL;
 287}
 288
 289/* __tlb_remove_page
 290 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 291 *	handling the additional races in SMP caused by other CPUs caching valid
 292 *	mappings in their TLBs. Returns the number of free page slots left.
 293 *	When out of page slots we must call tlb_flush_mmu().
 
 294 */
 295int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 296{
 297	struct mmu_gather_batch *batch;
 298
 299	VM_BUG_ON(!tlb->end);
 
 300
 301	batch = tlb->active;
 
 
 
 
 302	batch->pages[batch->nr++] = page;
 303	if (batch->nr == batch->max) {
 304		if (!tlb_next_batch(tlb))
 305			return 0;
 306		batch = tlb->active;
 307	}
 308	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 309
 310	return batch->max - batch->nr;
 311}
 312
 313#endif /* HAVE_GENERIC_MMU_GATHER */
 314
 315#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 316
 317/*
 318 * See the comment near struct mmu_table_batch.
 319 */
 320
 321static void tlb_remove_table_smp_sync(void *arg)
 322{
 323	/* Simply deliver the interrupt */
 324}
 325
 326static void tlb_remove_table_one(void *table)
 327{
 328	/*
 329	 * This isn't an RCU grace period and hence the page-tables cannot be
 330	 * assumed to be actually RCU-freed.
 331	 *
 332	 * It is however sufficient for software page-table walkers that rely on
 333	 * IRQ disabling. See the comment near struct mmu_table_batch.
 334	 */
 335	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 336	__tlb_remove_table(table);
 337}
 338
 339static void tlb_remove_table_rcu(struct rcu_head *head)
 340{
 341	struct mmu_table_batch *batch;
 342	int i;
 343
 344	batch = container_of(head, struct mmu_table_batch, rcu);
 345
 346	for (i = 0; i < batch->nr; i++)
 347		__tlb_remove_table(batch->tables[i]);
 348
 349	free_page((unsigned long)batch);
 350}
 351
 352void tlb_table_flush(struct mmu_gather *tlb)
 353{
 354	struct mmu_table_batch **batch = &tlb->batch;
 355
 356	if (*batch) {
 357		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 358		*batch = NULL;
 359	}
 360}
 361
 362void tlb_remove_table(struct mmu_gather *tlb, void *table)
 363{
 364	struct mmu_table_batch **batch = &tlb->batch;
 365
 366	/*
 367	 * When there's less then two users of this mm there cannot be a
 368	 * concurrent page-table walk.
 369	 */
 370	if (atomic_read(&tlb->mm->mm_users) < 2) {
 371		__tlb_remove_table(table);
 372		return;
 373	}
 374
 375	if (*batch == NULL) {
 376		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 377		if (*batch == NULL) {
 378			tlb_remove_table_one(table);
 379			return;
 380		}
 381		(*batch)->nr = 0;
 382	}
 383	(*batch)->tables[(*batch)->nr++] = table;
 384	if ((*batch)->nr == MAX_TABLE_BATCH)
 385		tlb_table_flush(tlb);
 386}
 387
 388#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 389
 390/*
 391 * Note: this doesn't free the actual pages themselves. That
 392 * has been handled earlier when unmapping all the memory regions.
 393 */
 394static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 395			   unsigned long addr)
 396{
 397	pgtable_t token = pmd_pgtable(*pmd);
 398	pmd_clear(pmd);
 399	pte_free_tlb(tlb, token, addr);
 400	atomic_long_dec(&tlb->mm->nr_ptes);
 401}
 402
 403static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 404				unsigned long addr, unsigned long end,
 405				unsigned long floor, unsigned long ceiling)
 406{
 407	pmd_t *pmd;
 408	unsigned long next;
 409	unsigned long start;
 410
 411	start = addr;
 412	pmd = pmd_offset(pud, addr);
 413	do {
 414		next = pmd_addr_end(addr, end);
 415		if (pmd_none_or_clear_bad(pmd))
 416			continue;
 417		free_pte_range(tlb, pmd, addr);
 418	} while (pmd++, addr = next, addr != end);
 419
 420	start &= PUD_MASK;
 421	if (start < floor)
 422		return;
 423	if (ceiling) {
 424		ceiling &= PUD_MASK;
 425		if (!ceiling)
 426			return;
 427	}
 428	if (end - 1 > ceiling - 1)
 429		return;
 430
 431	pmd = pmd_offset(pud, start);
 432	pud_clear(pud);
 433	pmd_free_tlb(tlb, pmd, start);
 434	mm_dec_nr_pmds(tlb->mm);
 435}
 436
 437static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 438				unsigned long addr, unsigned long end,
 439				unsigned long floor, unsigned long ceiling)
 440{
 441	pud_t *pud;
 442	unsigned long next;
 443	unsigned long start;
 444
 445	start = addr;
 446	pud = pud_offset(pgd, addr);
 447	do {
 448		next = pud_addr_end(addr, end);
 449		if (pud_none_or_clear_bad(pud))
 450			continue;
 451		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 452	} while (pud++, addr = next, addr != end);
 453
 454	start &= PGDIR_MASK;
 455	if (start < floor)
 456		return;
 457	if (ceiling) {
 458		ceiling &= PGDIR_MASK;
 459		if (!ceiling)
 460			return;
 461	}
 462	if (end - 1 > ceiling - 1)
 463		return;
 464
 465	pud = pud_offset(pgd, start);
 466	pgd_clear(pgd);
 467	pud_free_tlb(tlb, pud, start);
 468}
 469
 470/*
 471 * This function frees user-level page tables of a process.
 472 */
 473void free_pgd_range(struct mmu_gather *tlb,
 474			unsigned long addr, unsigned long end,
 475			unsigned long floor, unsigned long ceiling)
 476{
 477	pgd_t *pgd;
 478	unsigned long next;
 479
 480	/*
 481	 * The next few lines have given us lots of grief...
 482	 *
 483	 * Why are we testing PMD* at this top level?  Because often
 484	 * there will be no work to do at all, and we'd prefer not to
 485	 * go all the way down to the bottom just to discover that.
 486	 *
 487	 * Why all these "- 1"s?  Because 0 represents both the bottom
 488	 * of the address space and the top of it (using -1 for the
 489	 * top wouldn't help much: the masks would do the wrong thing).
 490	 * The rule is that addr 0 and floor 0 refer to the bottom of
 491	 * the address space, but end 0 and ceiling 0 refer to the top
 492	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 493	 * that end 0 case should be mythical).
 494	 *
 495	 * Wherever addr is brought up or ceiling brought down, we must
 496	 * be careful to reject "the opposite 0" before it confuses the
 497	 * subsequent tests.  But what about where end is brought down
 498	 * by PMD_SIZE below? no, end can't go down to 0 there.
 499	 *
 500	 * Whereas we round start (addr) and ceiling down, by different
 501	 * masks at different levels, in order to test whether a table
 502	 * now has no other vmas using it, so can be freed, we don't
 503	 * bother to round floor or end up - the tests don't need that.
 504	 */
 505
 506	addr &= PMD_MASK;
 507	if (addr < floor) {
 508		addr += PMD_SIZE;
 509		if (!addr)
 510			return;
 511	}
 512	if (ceiling) {
 513		ceiling &= PMD_MASK;
 514		if (!ceiling)
 515			return;
 516	}
 517	if (end - 1 > ceiling - 1)
 518		end -= PMD_SIZE;
 519	if (addr > end - 1)
 520		return;
 521
 
 
 
 
 522	pgd = pgd_offset(tlb->mm, addr);
 523	do {
 524		next = pgd_addr_end(addr, end);
 525		if (pgd_none_or_clear_bad(pgd))
 526			continue;
 527		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 528	} while (pgd++, addr = next, addr != end);
 529}
 530
 531void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 532		unsigned long floor, unsigned long ceiling)
 533{
 534	while (vma) {
 535		struct vm_area_struct *next = vma->vm_next;
 536		unsigned long addr = vma->vm_start;
 537
 538		/*
 539		 * Hide vma from rmap and truncate_pagecache before freeing
 540		 * pgtables
 541		 */
 542		unlink_anon_vmas(vma);
 543		unlink_file_vma(vma);
 544
 545		if (is_vm_hugetlb_page(vma)) {
 546			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 547				floor, next? next->vm_start: ceiling);
 548		} else {
 549			/*
 550			 * Optimization: gather nearby vmas into one call down
 551			 */
 552			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 553			       && !is_vm_hugetlb_page(next)) {
 554				vma = next;
 555				next = vma->vm_next;
 556				unlink_anon_vmas(vma);
 557				unlink_file_vma(vma);
 558			}
 559			free_pgd_range(tlb, addr, vma->vm_end,
 560				floor, next? next->vm_start: ceiling);
 561		}
 562		vma = next;
 563	}
 564}
 565
 566int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 567{
 568	spinlock_t *ptl;
 569	pgtable_t new = pte_alloc_one(mm, address);
 570	if (!new)
 571		return -ENOMEM;
 572
 573	/*
 574	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 575	 * visible before the pte is made visible to other CPUs by being
 576	 * put into page tables.
 577	 *
 578	 * The other side of the story is the pointer chasing in the page
 579	 * table walking code (when walking the page table without locking;
 580	 * ie. most of the time). Fortunately, these data accesses consist
 581	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 582	 * being the notable exception) will already guarantee loads are
 583	 * seen in-order. See the alpha page table accessors for the
 584	 * smp_read_barrier_depends() barriers in page table walking code.
 585	 */
 586	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 587
 588	ptl = pmd_lock(mm, pmd);
 589	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 590		atomic_long_inc(&mm->nr_ptes);
 591		pmd_populate(mm, pmd, new);
 592		new = NULL;
 593	}
 594	spin_unlock(ptl);
 595	if (new)
 596		pte_free(mm, new);
 597	return 0;
 598}
 599
 600int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 601{
 602	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 603	if (!new)
 604		return -ENOMEM;
 605
 606	smp_wmb(); /* See comment in __pte_alloc */
 607
 608	spin_lock(&init_mm.page_table_lock);
 609	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 610		pmd_populate_kernel(&init_mm, pmd, new);
 611		new = NULL;
 612	}
 613	spin_unlock(&init_mm.page_table_lock);
 614	if (new)
 615		pte_free_kernel(&init_mm, new);
 616	return 0;
 617}
 618
 619static inline void init_rss_vec(int *rss)
 620{
 621	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 622}
 623
 624static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 625{
 626	int i;
 627
 628	if (current->mm == mm)
 629		sync_mm_rss(mm);
 630	for (i = 0; i < NR_MM_COUNTERS; i++)
 631		if (rss[i])
 632			add_mm_counter(mm, i, rss[i]);
 633}
 634
 635/*
 636 * This function is called to print an error when a bad pte
 637 * is found. For example, we might have a PFN-mapped pte in
 638 * a region that doesn't allow it.
 639 *
 640 * The calling function must still handle the error.
 641 */
 642static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 643			  pte_t pte, struct page *page)
 644{
 645	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 646	pud_t *pud = pud_offset(pgd, addr);
 647	pmd_t *pmd = pmd_offset(pud, addr);
 648	struct address_space *mapping;
 649	pgoff_t index;
 650	static unsigned long resume;
 651	static unsigned long nr_shown;
 652	static unsigned long nr_unshown;
 653
 654	/*
 655	 * Allow a burst of 60 reports, then keep quiet for that minute;
 656	 * or allow a steady drip of one report per second.
 657	 */
 658	if (nr_shown == 60) {
 659		if (time_before(jiffies, resume)) {
 660			nr_unshown++;
 661			return;
 662		}
 663		if (nr_unshown) {
 664			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 665				 nr_unshown);
 666			nr_unshown = 0;
 667		}
 668		nr_shown = 0;
 669	}
 670	if (nr_shown++ == 0)
 671		resume = jiffies + 60 * HZ;
 672
 673	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 674	index = linear_page_index(vma, addr);
 675
 676	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 677		 current->comm,
 678		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 679	if (page)
 680		dump_page(page, "bad pte");
 681	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 682		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 683	/*
 684	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 685	 */
 686	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 687		 vma->vm_file,
 688		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 689		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 690		 mapping ? mapping->a_ops->readpage : NULL);
 691	dump_stack();
 692	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 693}
 694
 695/*
 696 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 697 *
 698 * "Special" mappings do not wish to be associated with a "struct page" (either
 699 * it doesn't exist, or it exists but they don't want to touch it). In this
 700 * case, NULL is returned here. "Normal" mappings do have a struct page.
 701 *
 702 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 703 * pte bit, in which case this function is trivial. Secondly, an architecture
 704 * may not have a spare pte bit, which requires a more complicated scheme,
 705 * described below.
 706 *
 707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 708 * special mapping (even if there are underlying and valid "struct pages").
 709 * COWed pages of a VM_PFNMAP are always normal.
 710 *
 711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 714 * mapping will always honor the rule
 715 *
 716 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 717 *
 718 * And for normal mappings this is false.
 719 *
 720 * This restricts such mappings to be a linear translation from virtual address
 721 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 722 * as the vma is not a COW mapping; in that case, we know that all ptes are
 723 * special (because none can have been COWed).
 724 *
 725 *
 726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 727 *
 728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 729 * page" backing, however the difference is that _all_ pages with a struct
 730 * page (that is, those where pfn_valid is true) are refcounted and considered
 731 * normal pages by the VM. The disadvantage is that pages are refcounted
 732 * (which can be slower and simply not an option for some PFNMAP users). The
 733 * advantage is that we don't have to follow the strict linearity rule of
 734 * PFNMAP mappings in order to support COWable mappings.
 735 *
 736 */
 737#ifdef __HAVE_ARCH_PTE_SPECIAL
 738# define HAVE_PTE_SPECIAL 1
 739#else
 740# define HAVE_PTE_SPECIAL 0
 741#endif
 742struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 743				pte_t pte)
 744{
 745	unsigned long pfn = pte_pfn(pte);
 746
 747	if (HAVE_PTE_SPECIAL) {
 748		if (likely(!pte_special(pte)))
 749			goto check_pfn;
 750		if (vma->vm_ops && vma->vm_ops->find_special_page)
 751			return vma->vm_ops->find_special_page(vma, addr);
 752		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 753			return NULL;
 754		if (!is_zero_pfn(pfn))
 755			print_bad_pte(vma, addr, pte, NULL);
 756		return NULL;
 757	}
 758
 759	/* !HAVE_PTE_SPECIAL case follows: */
 760
 761	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 762		if (vma->vm_flags & VM_MIXEDMAP) {
 763			if (!pfn_valid(pfn))
 764				return NULL;
 765			goto out;
 766		} else {
 767			unsigned long off;
 768			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 769			if (pfn == vma->vm_pgoff + off)
 770				return NULL;
 771			if (!is_cow_mapping(vma->vm_flags))
 772				return NULL;
 773		}
 774	}
 775
 776	if (is_zero_pfn(pfn))
 777		return NULL;
 778check_pfn:
 779	if (unlikely(pfn > highest_memmap_pfn)) {
 780		print_bad_pte(vma, addr, pte, NULL);
 781		return NULL;
 782	}
 783
 784	/*
 785	 * NOTE! We still have PageReserved() pages in the page tables.
 786	 * eg. VDSO mappings can cause them to exist.
 787	 */
 788out:
 789	return pfn_to_page(pfn);
 790}
 791
 792#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 793struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 794				pmd_t pmd)
 795{
 796	unsigned long pfn = pmd_pfn(pmd);
 797
 798	/*
 799	 * There is no pmd_special() but there may be special pmds, e.g.
 800	 * in a direct-access (dax) mapping, so let's just replicate the
 801	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 802	 */
 803	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 804		if (vma->vm_flags & VM_MIXEDMAP) {
 805			if (!pfn_valid(pfn))
 806				return NULL;
 807			goto out;
 808		} else {
 809			unsigned long off;
 810			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 811			if (pfn == vma->vm_pgoff + off)
 812				return NULL;
 813			if (!is_cow_mapping(vma->vm_flags))
 814				return NULL;
 815		}
 816	}
 817
 818	if (is_zero_pfn(pfn))
 819		return NULL;
 820	if (unlikely(pfn > highest_memmap_pfn))
 821		return NULL;
 822
 823	/*
 824	 * NOTE! We still have PageReserved() pages in the page tables.
 825	 * eg. VDSO mappings can cause them to exist.
 826	 */
 827out:
 828	return pfn_to_page(pfn);
 829}
 830#endif
 831
 832/*
 833 * copy one vm_area from one task to the other. Assumes the page tables
 834 * already present in the new task to be cleared in the whole range
 835 * covered by this vma.
 836 */
 837
 838static inline unsigned long
 839copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 840		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 841		unsigned long addr, int *rss)
 842{
 843	unsigned long vm_flags = vma->vm_flags;
 844	pte_t pte = *src_pte;
 845	struct page *page;
 846
 847	/* pte contains position in swap or file, so copy. */
 848	if (unlikely(!pte_present(pte))) {
 849		swp_entry_t entry = pte_to_swp_entry(pte);
 850
 851		if (likely(!non_swap_entry(entry))) {
 852			if (swap_duplicate(entry) < 0)
 853				return entry.val;
 854
 855			/* make sure dst_mm is on swapoff's mmlist. */
 856			if (unlikely(list_empty(&dst_mm->mmlist))) {
 857				spin_lock(&mmlist_lock);
 858				if (list_empty(&dst_mm->mmlist))
 859					list_add(&dst_mm->mmlist,
 860							&src_mm->mmlist);
 861				spin_unlock(&mmlist_lock);
 862			}
 863			rss[MM_SWAPENTS]++;
 864		} else if (is_migration_entry(entry)) {
 865			page = migration_entry_to_page(entry);
 866
 867			rss[mm_counter(page)]++;
 868
 869			if (is_write_migration_entry(entry) &&
 870					is_cow_mapping(vm_flags)) {
 871				/*
 872				 * COW mappings require pages in both
 873				 * parent and child to be set to read.
 874				 */
 875				make_migration_entry_read(&entry);
 876				pte = swp_entry_to_pte(entry);
 877				if (pte_swp_soft_dirty(*src_pte))
 878					pte = pte_swp_mksoft_dirty(pte);
 879				set_pte_at(src_mm, addr, src_pte, pte);
 880			}
 881		}
 882		goto out_set_pte;
 883	}
 884
 885	/*
 886	 * If it's a COW mapping, write protect it both
 887	 * in the parent and the child
 888	 */
 889	if (is_cow_mapping(vm_flags)) {
 890		ptep_set_wrprotect(src_mm, addr, src_pte);
 891		pte = pte_wrprotect(pte);
 892	}
 893
 894	/*
 895	 * If it's a shared mapping, mark it clean in
 896	 * the child
 897	 */
 898	if (vm_flags & VM_SHARED)
 899		pte = pte_mkclean(pte);
 900	pte = pte_mkold(pte);
 901
 902	page = vm_normal_page(vma, addr, pte);
 903	if (page) {
 904		get_page(page);
 905		page_dup_rmap(page, false);
 906		rss[mm_counter(page)]++;
 907	}
 908
 909out_set_pte:
 910	set_pte_at(dst_mm, addr, dst_pte, pte);
 911	return 0;
 912}
 913
 914static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 915		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 916		   unsigned long addr, unsigned long end)
 917{
 918	pte_t *orig_src_pte, *orig_dst_pte;
 919	pte_t *src_pte, *dst_pte;
 920	spinlock_t *src_ptl, *dst_ptl;
 921	int progress = 0;
 922	int rss[NR_MM_COUNTERS];
 923	swp_entry_t entry = (swp_entry_t){0};
 924
 925again:
 926	init_rss_vec(rss);
 927
 928	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 929	if (!dst_pte)
 930		return -ENOMEM;
 931	src_pte = pte_offset_map(src_pmd, addr);
 932	src_ptl = pte_lockptr(src_mm, src_pmd);
 933	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 934	orig_src_pte = src_pte;
 935	orig_dst_pte = dst_pte;
 936	arch_enter_lazy_mmu_mode();
 937
 938	do {
 939		/*
 940		 * We are holding two locks at this point - either of them
 941		 * could generate latencies in another task on another CPU.
 942		 */
 943		if (progress >= 32) {
 944			progress = 0;
 945			if (need_resched() ||
 946			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 947				break;
 948		}
 949		if (pte_none(*src_pte)) {
 950			progress++;
 951			continue;
 952		}
 953		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 954							vma, addr, rss);
 955		if (entry.val)
 956			break;
 957		progress += 8;
 958	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 959
 960	arch_leave_lazy_mmu_mode();
 961	spin_unlock(src_ptl);
 962	pte_unmap(orig_src_pte);
 963	add_mm_rss_vec(dst_mm, rss);
 964	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 965	cond_resched();
 966
 967	if (entry.val) {
 968		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 969			return -ENOMEM;
 970		progress = 0;
 971	}
 972	if (addr != end)
 973		goto again;
 974	return 0;
 975}
 976
 977static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 978		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 979		unsigned long addr, unsigned long end)
 980{
 981	pmd_t *src_pmd, *dst_pmd;
 982	unsigned long next;
 983
 984	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 985	if (!dst_pmd)
 986		return -ENOMEM;
 987	src_pmd = pmd_offset(src_pud, addr);
 988	do {
 989		next = pmd_addr_end(addr, end);
 990		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
 991			int err;
 992			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 993			err = copy_huge_pmd(dst_mm, src_mm,
 994					    dst_pmd, src_pmd, addr, vma);
 995			if (err == -ENOMEM)
 996				return -ENOMEM;
 997			if (!err)
 998				continue;
 999			/* fall through */
1000		}
1001		if (pmd_none_or_clear_bad(src_pmd))
1002			continue;
1003		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004						vma, addr, next))
1005			return -ENOMEM;
1006	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007	return 0;
1008}
1009
1010static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012		unsigned long addr, unsigned long end)
1013{
1014	pud_t *src_pud, *dst_pud;
1015	unsigned long next;
1016
1017	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018	if (!dst_pud)
1019		return -ENOMEM;
1020	src_pud = pud_offset(src_pgd, addr);
1021	do {
1022		next = pud_addr_end(addr, end);
1023		if (pud_none_or_clear_bad(src_pud))
1024			continue;
1025		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026						vma, addr, next))
1027			return -ENOMEM;
1028	} while (dst_pud++, src_pud++, addr = next, addr != end);
1029	return 0;
1030}
1031
1032int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033		struct vm_area_struct *vma)
1034{
1035	pgd_t *src_pgd, *dst_pgd;
1036	unsigned long next;
1037	unsigned long addr = vma->vm_start;
1038	unsigned long end = vma->vm_end;
1039	unsigned long mmun_start;	/* For mmu_notifiers */
1040	unsigned long mmun_end;		/* For mmu_notifiers */
1041	bool is_cow;
1042	int ret;
1043
1044	/*
1045	 * Don't copy ptes where a page fault will fill them correctly.
1046	 * Fork becomes much lighter when there are big shared or private
1047	 * readonly mappings. The tradeoff is that copy_page_range is more
1048	 * efficient than faulting.
1049	 */
1050	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1051			!vma->anon_vma)
1052		return 0;
1053
1054	if (is_vm_hugetlb_page(vma))
1055		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1056
1057	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1058		/*
1059		 * We do not free on error cases below as remove_vma
1060		 * gets called on error from higher level routine
1061		 */
1062		ret = track_pfn_copy(vma);
1063		if (ret)
1064			return ret;
1065	}
1066
1067	/*
1068	 * We need to invalidate the secondary MMU mappings only when
1069	 * there could be a permission downgrade on the ptes of the
1070	 * parent mm. And a permission downgrade will only happen if
1071	 * is_cow_mapping() returns true.
1072	 */
1073	is_cow = is_cow_mapping(vma->vm_flags);
1074	mmun_start = addr;
1075	mmun_end   = end;
1076	if (is_cow)
1077		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1078						    mmun_end);
1079
1080	ret = 0;
1081	dst_pgd = pgd_offset(dst_mm, addr);
1082	src_pgd = pgd_offset(src_mm, addr);
1083	do {
1084		next = pgd_addr_end(addr, end);
1085		if (pgd_none_or_clear_bad(src_pgd))
1086			continue;
1087		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1088					    vma, addr, next))) {
1089			ret = -ENOMEM;
1090			break;
1091		}
1092	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1093
1094	if (is_cow)
1095		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1096	return ret;
1097}
1098
1099static unsigned long zap_pte_range(struct mmu_gather *tlb,
1100				struct vm_area_struct *vma, pmd_t *pmd,
1101				unsigned long addr, unsigned long end,
1102				struct zap_details *details)
1103{
1104	struct mm_struct *mm = tlb->mm;
1105	int force_flush = 0;
1106	int rss[NR_MM_COUNTERS];
1107	spinlock_t *ptl;
1108	pte_t *start_pte;
1109	pte_t *pte;
1110	swp_entry_t entry;
1111
 
1112again:
1113	init_rss_vec(rss);
1114	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1115	pte = start_pte;
1116	arch_enter_lazy_mmu_mode();
1117	do {
1118		pte_t ptent = *pte;
1119		if (pte_none(ptent)) {
1120			continue;
1121		}
1122
1123		if (pte_present(ptent)) {
1124			struct page *page;
1125
1126			page = vm_normal_page(vma, addr, ptent);
1127			if (unlikely(details) && page) {
1128				/*
1129				 * unmap_shared_mapping_pages() wants to
1130				 * invalidate cache without truncating:
1131				 * unmap shared but keep private pages.
1132				 */
1133				if (details->check_mapping &&
1134				    details->check_mapping != page->mapping)
1135					continue;
1136			}
1137			ptent = ptep_get_and_clear_full(mm, addr, pte,
1138							tlb->fullmm);
1139			tlb_remove_tlb_entry(tlb, pte, addr);
1140			if (unlikely(!page))
1141				continue;
1142
1143			if (!PageAnon(page)) {
1144				if (pte_dirty(ptent)) {
1145					/*
1146					 * oom_reaper cannot tear down dirty
1147					 * pages
1148					 */
1149					if (unlikely(details && details->ignore_dirty))
1150						continue;
1151					force_flush = 1;
1152					set_page_dirty(page);
1153				}
1154				if (pte_young(ptent) &&
1155				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1156					mark_page_accessed(page);
1157			}
1158			rss[mm_counter(page)]--;
1159			page_remove_rmap(page, false);
1160			if (unlikely(page_mapcount(page) < 0))
1161				print_bad_pte(vma, addr, ptent, page);
1162			if (unlikely(!__tlb_remove_page(tlb, page))) {
1163				force_flush = 1;
1164				addr += PAGE_SIZE;
1165				break;
1166			}
1167			continue;
1168		}
1169		/* only check swap_entries if explicitly asked for in details */
1170		if (unlikely(details && !details->check_swap_entries))
1171			continue;
1172
1173		entry = pte_to_swp_entry(ptent);
1174		if (!non_swap_entry(entry))
1175			rss[MM_SWAPENTS]--;
1176		else if (is_migration_entry(entry)) {
1177			struct page *page;
1178
1179			page = migration_entry_to_page(entry);
1180			rss[mm_counter(page)]--;
1181		}
1182		if (unlikely(!free_swap_and_cache(entry)))
1183			print_bad_pte(vma, addr, ptent, NULL);
1184		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185	} while (pte++, addr += PAGE_SIZE, addr != end);
1186
1187	add_mm_rss_vec(mm, rss);
1188	arch_leave_lazy_mmu_mode();
1189
1190	/* Do the actual TLB flush before dropping ptl */
1191	if (force_flush)
1192		tlb_flush_mmu_tlbonly(tlb);
1193	pte_unmap_unlock(start_pte, ptl);
1194
1195	/*
1196	 * If we forced a TLB flush (either due to running out of
1197	 * batch buffers or because we needed to flush dirty TLB
1198	 * entries before releasing the ptl), free the batched
1199	 * memory too. Restart if we didn't do everything.
1200	 */
1201	if (force_flush) {
1202		force_flush = 0;
1203		tlb_flush_mmu_free(tlb);
1204
1205		if (addr != end)
1206			goto again;
1207	}
1208
1209	return addr;
1210}
1211
1212static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1213				struct vm_area_struct *vma, pud_t *pud,
1214				unsigned long addr, unsigned long end,
1215				struct zap_details *details)
1216{
1217	pmd_t *pmd;
1218	unsigned long next;
1219
1220	pmd = pmd_offset(pud, addr);
1221	do {
1222		next = pmd_addr_end(addr, end);
1223		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1224			if (next - addr != HPAGE_PMD_SIZE) {
1225				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1226				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1227				split_huge_pmd(vma, pmd, addr);
1228			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1229				goto next;
1230			/* fall through */
1231		}
1232		/*
1233		 * Here there can be other concurrent MADV_DONTNEED or
1234		 * trans huge page faults running, and if the pmd is
1235		 * none or trans huge it can change under us. This is
1236		 * because MADV_DONTNEED holds the mmap_sem in read
1237		 * mode.
1238		 */
1239		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1240			goto next;
1241		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1242next:
1243		cond_resched();
1244	} while (pmd++, addr = next, addr != end);
1245
1246	return addr;
1247}
1248
1249static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1250				struct vm_area_struct *vma, pgd_t *pgd,
1251				unsigned long addr, unsigned long end,
1252				struct zap_details *details)
1253{
1254	pud_t *pud;
1255	unsigned long next;
1256
1257	pud = pud_offset(pgd, addr);
1258	do {
1259		next = pud_addr_end(addr, end);
1260		if (pud_none_or_clear_bad(pud))
1261			continue;
1262		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1263	} while (pud++, addr = next, addr != end);
1264
1265	return addr;
1266}
1267
1268void unmap_page_range(struct mmu_gather *tlb,
1269			     struct vm_area_struct *vma,
1270			     unsigned long addr, unsigned long end,
1271			     struct zap_details *details)
1272{
1273	pgd_t *pgd;
1274	unsigned long next;
1275
1276	BUG_ON(addr >= end);
1277	tlb_start_vma(tlb, vma);
1278	pgd = pgd_offset(vma->vm_mm, addr);
1279	do {
1280		next = pgd_addr_end(addr, end);
1281		if (pgd_none_or_clear_bad(pgd))
1282			continue;
1283		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1284	} while (pgd++, addr = next, addr != end);
1285	tlb_end_vma(tlb, vma);
1286}
1287
1288
1289static void unmap_single_vma(struct mmu_gather *tlb,
1290		struct vm_area_struct *vma, unsigned long start_addr,
1291		unsigned long end_addr,
1292		struct zap_details *details)
1293{
1294	unsigned long start = max(vma->vm_start, start_addr);
1295	unsigned long end;
1296
1297	if (start >= vma->vm_end)
1298		return;
1299	end = min(vma->vm_end, end_addr);
1300	if (end <= vma->vm_start)
1301		return;
1302
1303	if (vma->vm_file)
1304		uprobe_munmap(vma, start, end);
1305
1306	if (unlikely(vma->vm_flags & VM_PFNMAP))
1307		untrack_pfn(vma, 0, 0);
1308
1309	if (start != end) {
1310		if (unlikely(is_vm_hugetlb_page(vma))) {
1311			/*
1312			 * It is undesirable to test vma->vm_file as it
1313			 * should be non-null for valid hugetlb area.
1314			 * However, vm_file will be NULL in the error
1315			 * cleanup path of mmap_region. When
1316			 * hugetlbfs ->mmap method fails,
1317			 * mmap_region() nullifies vma->vm_file
1318			 * before calling this function to clean up.
1319			 * Since no pte has actually been setup, it is
1320			 * safe to do nothing in this case.
1321			 */
1322			if (vma->vm_file) {
1323				i_mmap_lock_write(vma->vm_file->f_mapping);
1324				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1325				i_mmap_unlock_write(vma->vm_file->f_mapping);
1326			}
1327		} else
1328			unmap_page_range(tlb, vma, start, end, details);
1329	}
1330}
1331
1332/**
1333 * unmap_vmas - unmap a range of memory covered by a list of vma's
1334 * @tlb: address of the caller's struct mmu_gather
1335 * @vma: the starting vma
1336 * @start_addr: virtual address at which to start unmapping
1337 * @end_addr: virtual address at which to end unmapping
1338 *
1339 * Unmap all pages in the vma list.
1340 *
1341 * Only addresses between `start' and `end' will be unmapped.
1342 *
1343 * The VMA list must be sorted in ascending virtual address order.
1344 *
1345 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1346 * range after unmap_vmas() returns.  So the only responsibility here is to
1347 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1348 * drops the lock and schedules.
1349 */
1350void unmap_vmas(struct mmu_gather *tlb,
1351		struct vm_area_struct *vma, unsigned long start_addr,
1352		unsigned long end_addr)
1353{
1354	struct mm_struct *mm = vma->vm_mm;
1355
1356	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1357	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1358		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1359	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1360}
1361
1362/**
1363 * zap_page_range - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @start: starting address of pages to zap
1366 * @size: number of bytes to zap
1367 * @details: details of shared cache invalidation
1368 *
1369 * Caller must protect the VMA list
1370 */
1371void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1372		unsigned long size, struct zap_details *details)
1373{
1374	struct mm_struct *mm = vma->vm_mm;
1375	struct mmu_gather tlb;
1376	unsigned long end = start + size;
1377
1378	lru_add_drain();
1379	tlb_gather_mmu(&tlb, mm, start, end);
1380	update_hiwater_rss(mm);
1381	mmu_notifier_invalidate_range_start(mm, start, end);
1382	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1383		unmap_single_vma(&tlb, vma, start, end, details);
1384	mmu_notifier_invalidate_range_end(mm, start, end);
1385	tlb_finish_mmu(&tlb, start, end);
1386}
1387
1388/**
1389 * zap_page_range_single - remove user pages in a given range
1390 * @vma: vm_area_struct holding the applicable pages
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1393 * @details: details of shared cache invalidation
1394 *
1395 * The range must fit into one VMA.
1396 */
1397static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1398		unsigned long size, struct zap_details *details)
1399{
1400	struct mm_struct *mm = vma->vm_mm;
1401	struct mmu_gather tlb;
1402	unsigned long end = address + size;
1403
1404	lru_add_drain();
1405	tlb_gather_mmu(&tlb, mm, address, end);
1406	update_hiwater_rss(mm);
1407	mmu_notifier_invalidate_range_start(mm, address, end);
1408	unmap_single_vma(&tlb, vma, address, end, details);
1409	mmu_notifier_invalidate_range_end(mm, address, end);
1410	tlb_finish_mmu(&tlb, address, end);
1411}
1412
1413/**
1414 * zap_vma_ptes - remove ptes mapping the vma
1415 * @vma: vm_area_struct holding ptes to be zapped
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1418 *
1419 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1420 *
1421 * The entire address range must be fully contained within the vma.
1422 *
1423 * Returns 0 if successful.
1424 */
1425int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1426		unsigned long size)
1427{
1428	if (address < vma->vm_start || address + size > vma->vm_end ||
1429	    		!(vma->vm_flags & VM_PFNMAP))
1430		return -1;
1431	zap_page_range_single(vma, address, size, NULL);
1432	return 0;
1433}
1434EXPORT_SYMBOL_GPL(zap_vma_ptes);
1435
1436pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1437			spinlock_t **ptl)
1438{
1439	pgd_t * pgd = pgd_offset(mm, addr);
1440	pud_t * pud = pud_alloc(mm, pgd, addr);
1441	if (pud) {
1442		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1443		if (pmd) {
1444			VM_BUG_ON(pmd_trans_huge(*pmd));
1445			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1446		}
1447	}
1448	return NULL;
1449}
1450
1451/*
1452 * This is the old fallback for page remapping.
1453 *
1454 * For historical reasons, it only allows reserved pages. Only
1455 * old drivers should use this, and they needed to mark their
1456 * pages reserved for the old functions anyway.
1457 */
1458static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1459			struct page *page, pgprot_t prot)
1460{
1461	struct mm_struct *mm = vma->vm_mm;
1462	int retval;
1463	pte_t *pte;
1464	spinlock_t *ptl;
1465
1466	retval = -EINVAL;
1467	if (PageAnon(page))
1468		goto out;
1469	retval = -ENOMEM;
1470	flush_dcache_page(page);
1471	pte = get_locked_pte(mm, addr, &ptl);
1472	if (!pte)
1473		goto out;
1474	retval = -EBUSY;
1475	if (!pte_none(*pte))
1476		goto out_unlock;
1477
1478	/* Ok, finally just insert the thing.. */
1479	get_page(page);
1480	inc_mm_counter_fast(mm, mm_counter_file(page));
1481	page_add_file_rmap(page);
1482	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1483
1484	retval = 0;
1485	pte_unmap_unlock(pte, ptl);
1486	return retval;
1487out_unlock:
1488	pte_unmap_unlock(pte, ptl);
1489out:
1490	return retval;
1491}
1492
1493/**
1494 * vm_insert_page - insert single page into user vma
1495 * @vma: user vma to map to
1496 * @addr: target user address of this page
1497 * @page: source kernel page
1498 *
1499 * This allows drivers to insert individual pages they've allocated
1500 * into a user vma.
1501 *
1502 * The page has to be a nice clean _individual_ kernel allocation.
1503 * If you allocate a compound page, you need to have marked it as
1504 * such (__GFP_COMP), or manually just split the page up yourself
1505 * (see split_page()).
1506 *
1507 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1508 * took an arbitrary page protection parameter. This doesn't allow
1509 * that. Your vma protection will have to be set up correctly, which
1510 * means that if you want a shared writable mapping, you'd better
1511 * ask for a shared writable mapping!
1512 *
1513 * The page does not need to be reserved.
1514 *
1515 * Usually this function is called from f_op->mmap() handler
1516 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1517 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1518 * function from other places, for example from page-fault handler.
1519 */
1520int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1521			struct page *page)
1522{
1523	if (addr < vma->vm_start || addr >= vma->vm_end)
1524		return -EFAULT;
1525	if (!page_count(page))
1526		return -EINVAL;
1527	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1528		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1529		BUG_ON(vma->vm_flags & VM_PFNMAP);
1530		vma->vm_flags |= VM_MIXEDMAP;
1531	}
1532	return insert_page(vma, addr, page, vma->vm_page_prot);
1533}
1534EXPORT_SYMBOL(vm_insert_page);
1535
1536static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1537			pfn_t pfn, pgprot_t prot)
1538{
1539	struct mm_struct *mm = vma->vm_mm;
1540	int retval;
1541	pte_t *pte, entry;
1542	spinlock_t *ptl;
1543
1544	retval = -ENOMEM;
1545	pte = get_locked_pte(mm, addr, &ptl);
1546	if (!pte)
1547		goto out;
1548	retval = -EBUSY;
1549	if (!pte_none(*pte))
1550		goto out_unlock;
1551
1552	/* Ok, finally just insert the thing.. */
1553	if (pfn_t_devmap(pfn))
1554		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1555	else
1556		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1557	set_pte_at(mm, addr, pte, entry);
1558	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1559
1560	retval = 0;
1561out_unlock:
1562	pte_unmap_unlock(pte, ptl);
1563out:
1564	return retval;
1565}
1566
1567/**
1568 * vm_insert_pfn - insert single pfn into user vma
1569 * @vma: user vma to map to
1570 * @addr: target user address of this page
1571 * @pfn: source kernel pfn
1572 *
1573 * Similar to vm_insert_page, this allows drivers to insert individual pages
1574 * they've allocated into a user vma. Same comments apply.
1575 *
1576 * This function should only be called from a vm_ops->fault handler, and
1577 * in that case the handler should return NULL.
1578 *
1579 * vma cannot be a COW mapping.
1580 *
1581 * As this is called only for pages that do not currently exist, we
1582 * do not need to flush old virtual caches or the TLB.
1583 */
1584int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1585			unsigned long pfn)
1586{
1587	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1588}
1589EXPORT_SYMBOL(vm_insert_pfn);
1590
1591/**
1592 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1593 * @vma: user vma to map to
1594 * @addr: target user address of this page
1595 * @pfn: source kernel pfn
1596 * @pgprot: pgprot flags for the inserted page
1597 *
1598 * This is exactly like vm_insert_pfn, except that it allows drivers to
1599 * to override pgprot on a per-page basis.
1600 *
1601 * This only makes sense for IO mappings, and it makes no sense for
1602 * cow mappings.  In general, using multiple vmas is preferable;
1603 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1604 * impractical.
1605 */
1606int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1607			unsigned long pfn, pgprot_t pgprot)
1608{
1609	int ret;
1610	/*
1611	 * Technically, architectures with pte_special can avoid all these
1612	 * restrictions (same for remap_pfn_range).  However we would like
1613	 * consistency in testing and feature parity among all, so we should
1614	 * try to keep these invariants in place for everybody.
1615	 */
1616	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1617	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1618						(VM_PFNMAP|VM_MIXEDMAP));
1619	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1620	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1621
1622	if (addr < vma->vm_start || addr >= vma->vm_end)
1623		return -EFAULT;
1624	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1625		return -EINVAL;
1626
1627	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1628
1629	return ret;
1630}
1631EXPORT_SYMBOL(vm_insert_pfn_prot);
1632
1633int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634			pfn_t pfn)
1635{
 
 
1636	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1637
1638	if (addr < vma->vm_start || addr >= vma->vm_end)
1639		return -EFAULT;
1640
 
 
1641	/*
1642	 * If we don't have pte special, then we have to use the pfn_valid()
1643	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644	 * refcount the page if pfn_valid is true (hence insert_page rather
1645	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1646	 * without pte special, it would there be refcounted as a normal page.
1647	 */
1648	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1649		struct page *page;
1650
1651		/*
1652		 * At this point we are committed to insert_page()
1653		 * regardless of whether the caller specified flags that
1654		 * result in pfn_t_has_page() == false.
1655		 */
1656		page = pfn_to_page(pfn_t_to_pfn(pfn));
1657		return insert_page(vma, addr, page, vma->vm_page_prot);
1658	}
1659	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1660}
1661EXPORT_SYMBOL(vm_insert_mixed);
1662
1663/*
1664 * maps a range of physical memory into the requested pages. the old
1665 * mappings are removed. any references to nonexistent pages results
1666 * in null mappings (currently treated as "copy-on-access")
1667 */
1668static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1669			unsigned long addr, unsigned long end,
1670			unsigned long pfn, pgprot_t prot)
1671{
1672	pte_t *pte;
1673	spinlock_t *ptl;
1674
1675	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1676	if (!pte)
1677		return -ENOMEM;
1678	arch_enter_lazy_mmu_mode();
1679	do {
1680		BUG_ON(!pte_none(*pte));
1681		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1682		pfn++;
1683	} while (pte++, addr += PAGE_SIZE, addr != end);
1684	arch_leave_lazy_mmu_mode();
1685	pte_unmap_unlock(pte - 1, ptl);
1686	return 0;
1687}
1688
1689static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1690			unsigned long addr, unsigned long end,
1691			unsigned long pfn, pgprot_t prot)
1692{
1693	pmd_t *pmd;
1694	unsigned long next;
1695
1696	pfn -= addr >> PAGE_SHIFT;
1697	pmd = pmd_alloc(mm, pud, addr);
1698	if (!pmd)
1699		return -ENOMEM;
1700	VM_BUG_ON(pmd_trans_huge(*pmd));
1701	do {
1702		next = pmd_addr_end(addr, end);
1703		if (remap_pte_range(mm, pmd, addr, next,
1704				pfn + (addr >> PAGE_SHIFT), prot))
1705			return -ENOMEM;
1706	} while (pmd++, addr = next, addr != end);
1707	return 0;
1708}
1709
1710static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1711			unsigned long addr, unsigned long end,
1712			unsigned long pfn, pgprot_t prot)
1713{
1714	pud_t *pud;
1715	unsigned long next;
1716
1717	pfn -= addr >> PAGE_SHIFT;
1718	pud = pud_alloc(mm, pgd, addr);
1719	if (!pud)
1720		return -ENOMEM;
1721	do {
1722		next = pud_addr_end(addr, end);
1723		if (remap_pmd_range(mm, pud, addr, next,
1724				pfn + (addr >> PAGE_SHIFT), prot))
1725			return -ENOMEM;
1726	} while (pud++, addr = next, addr != end);
1727	return 0;
1728}
1729
1730/**
1731 * remap_pfn_range - remap kernel memory to userspace
1732 * @vma: user vma to map to
1733 * @addr: target user address to start at
1734 * @pfn: physical address of kernel memory
1735 * @size: size of map area
1736 * @prot: page protection flags for this mapping
1737 *
1738 *  Note: this is only safe if the mm semaphore is held when called.
1739 */
1740int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1741		    unsigned long pfn, unsigned long size, pgprot_t prot)
1742{
1743	pgd_t *pgd;
1744	unsigned long next;
1745	unsigned long end = addr + PAGE_ALIGN(size);
1746	struct mm_struct *mm = vma->vm_mm;
 
1747	int err;
1748
1749	/*
1750	 * Physically remapped pages are special. Tell the
1751	 * rest of the world about it:
1752	 *   VM_IO tells people not to look at these pages
1753	 *	(accesses can have side effects).
1754	 *   VM_PFNMAP tells the core MM that the base pages are just
1755	 *	raw PFN mappings, and do not have a "struct page" associated
1756	 *	with them.
1757	 *   VM_DONTEXPAND
1758	 *      Disable vma merging and expanding with mremap().
1759	 *   VM_DONTDUMP
1760	 *      Omit vma from core dump, even when VM_IO turned off.
1761	 *
1762	 * There's a horrible special case to handle copy-on-write
1763	 * behaviour that some programs depend on. We mark the "original"
1764	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1765	 * See vm_normal_page() for details.
1766	 */
1767	if (is_cow_mapping(vma->vm_flags)) {
1768		if (addr != vma->vm_start || end != vma->vm_end)
1769			return -EINVAL;
1770		vma->vm_pgoff = pfn;
1771	}
1772
1773	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1774	if (err)
1775		return -EINVAL;
1776
1777	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1778
1779	BUG_ON(addr >= end);
1780	pfn -= addr >> PAGE_SHIFT;
1781	pgd = pgd_offset(mm, addr);
1782	flush_cache_range(vma, addr, end);
1783	do {
1784		next = pgd_addr_end(addr, end);
1785		err = remap_pud_range(mm, pgd, addr, next,
1786				pfn + (addr >> PAGE_SHIFT), prot);
1787		if (err)
1788			break;
1789	} while (pgd++, addr = next, addr != end);
1790
1791	if (err)
1792		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1793
1794	return err;
1795}
1796EXPORT_SYMBOL(remap_pfn_range);
1797
1798/**
1799 * vm_iomap_memory - remap memory to userspace
1800 * @vma: user vma to map to
1801 * @start: start of area
1802 * @len: size of area
1803 *
1804 * This is a simplified io_remap_pfn_range() for common driver use. The
1805 * driver just needs to give us the physical memory range to be mapped,
1806 * we'll figure out the rest from the vma information.
1807 *
1808 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1809 * whatever write-combining details or similar.
1810 */
1811int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1812{
1813	unsigned long vm_len, pfn, pages;
1814
1815	/* Check that the physical memory area passed in looks valid */
1816	if (start + len < start)
1817		return -EINVAL;
1818	/*
1819	 * You *really* shouldn't map things that aren't page-aligned,
1820	 * but we've historically allowed it because IO memory might
1821	 * just have smaller alignment.
1822	 */
1823	len += start & ~PAGE_MASK;
1824	pfn = start >> PAGE_SHIFT;
1825	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1826	if (pfn + pages < pfn)
1827		return -EINVAL;
1828
1829	/* We start the mapping 'vm_pgoff' pages into the area */
1830	if (vma->vm_pgoff > pages)
1831		return -EINVAL;
1832	pfn += vma->vm_pgoff;
1833	pages -= vma->vm_pgoff;
1834
1835	/* Can we fit all of the mapping? */
1836	vm_len = vma->vm_end - vma->vm_start;
1837	if (vm_len >> PAGE_SHIFT > pages)
1838		return -EINVAL;
1839
1840	/* Ok, let it rip */
1841	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1842}
1843EXPORT_SYMBOL(vm_iomap_memory);
1844
1845static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1846				     unsigned long addr, unsigned long end,
1847				     pte_fn_t fn, void *data)
1848{
1849	pte_t *pte;
1850	int err;
1851	pgtable_t token;
1852	spinlock_t *uninitialized_var(ptl);
1853
1854	pte = (mm == &init_mm) ?
1855		pte_alloc_kernel(pmd, addr) :
1856		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1857	if (!pte)
1858		return -ENOMEM;
1859
1860	BUG_ON(pmd_huge(*pmd));
1861
1862	arch_enter_lazy_mmu_mode();
1863
1864	token = pmd_pgtable(*pmd);
1865
1866	do {
1867		err = fn(pte++, token, addr, data);
1868		if (err)
1869			break;
1870	} while (addr += PAGE_SIZE, addr != end);
1871
1872	arch_leave_lazy_mmu_mode();
1873
1874	if (mm != &init_mm)
1875		pte_unmap_unlock(pte-1, ptl);
1876	return err;
1877}
1878
1879static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1880				     unsigned long addr, unsigned long end,
1881				     pte_fn_t fn, void *data)
1882{
1883	pmd_t *pmd;
1884	unsigned long next;
1885	int err;
1886
1887	BUG_ON(pud_huge(*pud));
1888
1889	pmd = pmd_alloc(mm, pud, addr);
1890	if (!pmd)
1891		return -ENOMEM;
1892	do {
1893		next = pmd_addr_end(addr, end);
1894		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1895		if (err)
1896			break;
1897	} while (pmd++, addr = next, addr != end);
1898	return err;
1899}
1900
1901static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1902				     unsigned long addr, unsigned long end,
1903				     pte_fn_t fn, void *data)
1904{
1905	pud_t *pud;
1906	unsigned long next;
1907	int err;
1908
1909	pud = pud_alloc(mm, pgd, addr);
1910	if (!pud)
1911		return -ENOMEM;
1912	do {
1913		next = pud_addr_end(addr, end);
1914		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1915		if (err)
1916			break;
1917	} while (pud++, addr = next, addr != end);
1918	return err;
1919}
1920
1921/*
1922 * Scan a region of virtual memory, filling in page tables as necessary
1923 * and calling a provided function on each leaf page table.
1924 */
1925int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1926			unsigned long size, pte_fn_t fn, void *data)
1927{
1928	pgd_t *pgd;
1929	unsigned long next;
1930	unsigned long end = addr + size;
1931	int err;
1932
1933	if (WARN_ON(addr >= end))
1934		return -EINVAL;
1935
1936	pgd = pgd_offset(mm, addr);
1937	do {
1938		next = pgd_addr_end(addr, end);
1939		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1940		if (err)
1941			break;
1942	} while (pgd++, addr = next, addr != end);
1943
1944	return err;
1945}
1946EXPORT_SYMBOL_GPL(apply_to_page_range);
1947
1948/*
1949 * handle_pte_fault chooses page fault handler according to an entry which was
1950 * read non-atomically.  Before making any commitment, on those architectures
1951 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1952 * parts, do_swap_page must check under lock before unmapping the pte and
1953 * proceeding (but do_wp_page is only called after already making such a check;
1954 * and do_anonymous_page can safely check later on).
1955 */
1956static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1957				pte_t *page_table, pte_t orig_pte)
1958{
1959	int same = 1;
1960#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1961	if (sizeof(pte_t) > sizeof(unsigned long)) {
1962		spinlock_t *ptl = pte_lockptr(mm, pmd);
1963		spin_lock(ptl);
1964		same = pte_same(*page_table, orig_pte);
1965		spin_unlock(ptl);
1966	}
1967#endif
1968	pte_unmap(page_table);
1969	return same;
1970}
1971
1972static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1973{
1974	debug_dma_assert_idle(src);
1975
1976	/*
1977	 * If the source page was a PFN mapping, we don't have
1978	 * a "struct page" for it. We do a best-effort copy by
1979	 * just copying from the original user address. If that
1980	 * fails, we just zero-fill it. Live with it.
1981	 */
1982	if (unlikely(!src)) {
1983		void *kaddr = kmap_atomic(dst);
1984		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1985
1986		/*
1987		 * This really shouldn't fail, because the page is there
1988		 * in the page tables. But it might just be unreadable,
1989		 * in which case we just give up and fill the result with
1990		 * zeroes.
1991		 */
1992		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1993			clear_page(kaddr);
1994		kunmap_atomic(kaddr);
1995		flush_dcache_page(dst);
1996	} else
1997		copy_user_highpage(dst, src, va, vma);
1998}
1999
2000static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2001{
2002	struct file *vm_file = vma->vm_file;
2003
2004	if (vm_file)
2005		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2006
2007	/*
2008	 * Special mappings (e.g. VDSO) do not have any file so fake
2009	 * a default GFP_KERNEL for them.
2010	 */
2011	return GFP_KERNEL;
2012}
2013
2014/*
2015 * Notify the address space that the page is about to become writable so that
2016 * it can prohibit this or wait for the page to get into an appropriate state.
2017 *
2018 * We do this without the lock held, so that it can sleep if it needs to.
2019 */
2020static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2021	       unsigned long address)
2022{
2023	struct vm_fault vmf;
2024	int ret;
 
 
2025
2026	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2027	vmf.pgoff = page->index;
2028	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2029	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2030	vmf.page = page;
2031	vmf.cow_page = NULL;
2032
2033	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
 
 
2034	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2035		return ret;
2036	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2037		lock_page(page);
2038		if (!page->mapping) {
2039			unlock_page(page);
2040			return 0; /* retry */
2041		}
2042		ret |= VM_FAULT_LOCKED;
2043	} else
2044		VM_BUG_ON_PAGE(!PageLocked(page), page);
2045	return ret;
2046}
2047
2048/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049 * Handle write page faults for pages that can be reused in the current vma
2050 *
2051 * This can happen either due to the mapping being with the VM_SHARED flag,
2052 * or due to us being the last reference standing to the page. In either
2053 * case, all we need to do here is to mark the page as writable and update
2054 * any related book-keeping.
2055 */
2056static inline int wp_page_reuse(struct mm_struct *mm,
2057			struct vm_area_struct *vma, unsigned long address,
2058			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2059			struct page *page, int page_mkwrite,
2060			int dirty_shared)
2061	__releases(ptl)
2062{
 
 
2063	pte_t entry;
2064	/*
2065	 * Clear the pages cpupid information as the existing
2066	 * information potentially belongs to a now completely
2067	 * unrelated process.
2068	 */
2069	if (page)
2070		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2071
2072	flush_cache_page(vma, address, pte_pfn(orig_pte));
2073	entry = pte_mkyoung(orig_pte);
2074	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2075	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2076		update_mmu_cache(vma, address, page_table);
2077	pte_unmap_unlock(page_table, ptl);
2078
2079	if (dirty_shared) {
2080		struct address_space *mapping;
2081		int dirtied;
2082
2083		if (!page_mkwrite)
2084			lock_page(page);
2085
2086		dirtied = set_page_dirty(page);
2087		VM_BUG_ON_PAGE(PageAnon(page), page);
2088		mapping = page->mapping;
2089		unlock_page(page);
2090		put_page(page);
2091
2092		if ((dirtied || page_mkwrite) && mapping) {
2093			/*
2094			 * Some device drivers do not set page.mapping
2095			 * but still dirty their pages
2096			 */
2097			balance_dirty_pages_ratelimited(mapping);
2098		}
2099
2100		if (!page_mkwrite)
2101			file_update_time(vma->vm_file);
2102	}
2103
2104	return VM_FAULT_WRITE;
2105}
2106
2107/*
2108 * Handle the case of a page which we actually need to copy to a new page.
2109 *
2110 * Called with mmap_sem locked and the old page referenced, but
2111 * without the ptl held.
2112 *
2113 * High level logic flow:
2114 *
2115 * - Allocate a page, copy the content of the old page to the new one.
2116 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2117 * - Take the PTL. If the pte changed, bail out and release the allocated page
2118 * - If the pte is still the way we remember it, update the page table and all
2119 *   relevant references. This includes dropping the reference the page-table
2120 *   held to the old page, as well as updating the rmap.
2121 * - In any case, unlock the PTL and drop the reference we took to the old page.
2122 */
2123static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2124			unsigned long address, pte_t *page_table, pmd_t *pmd,
2125			pte_t orig_pte, struct page *old_page)
2126{
 
 
 
2127	struct page *new_page = NULL;
2128	spinlock_t *ptl = NULL;
2129	pte_t entry;
2130	int page_copied = 0;
2131	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2132	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2133	struct mem_cgroup *memcg;
2134
2135	if (unlikely(anon_vma_prepare(vma)))
2136		goto oom;
2137
2138	if (is_zero_pfn(pte_pfn(orig_pte))) {
2139		new_page = alloc_zeroed_user_highpage_movable(vma, address);
 
2140		if (!new_page)
2141			goto oom;
2142	} else {
2143		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
2144		if (!new_page)
2145			goto oom;
2146		cow_user_page(new_page, old_page, address, vma);
2147	}
2148
2149	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2150		goto oom_free_new;
2151
2152	__SetPageUptodate(new_page);
2153
2154	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2155
2156	/*
2157	 * Re-check the pte - we dropped the lock
2158	 */
2159	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2160	if (likely(pte_same(*page_table, orig_pte))) {
2161		if (old_page) {
2162			if (!PageAnon(old_page)) {
2163				dec_mm_counter_fast(mm,
2164						mm_counter_file(old_page));
2165				inc_mm_counter_fast(mm, MM_ANONPAGES);
2166			}
2167		} else {
2168			inc_mm_counter_fast(mm, MM_ANONPAGES);
2169		}
2170		flush_cache_page(vma, address, pte_pfn(orig_pte));
2171		entry = mk_pte(new_page, vma->vm_page_prot);
2172		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2173		/*
2174		 * Clear the pte entry and flush it first, before updating the
2175		 * pte with the new entry. This will avoid a race condition
2176		 * seen in the presence of one thread doing SMC and another
2177		 * thread doing COW.
2178		 */
2179		ptep_clear_flush_notify(vma, address, page_table);
2180		page_add_new_anon_rmap(new_page, vma, address, false);
2181		mem_cgroup_commit_charge(new_page, memcg, false, false);
2182		lru_cache_add_active_or_unevictable(new_page, vma);
2183		/*
2184		 * We call the notify macro here because, when using secondary
2185		 * mmu page tables (such as kvm shadow page tables), we want the
2186		 * new page to be mapped directly into the secondary page table.
2187		 */
2188		set_pte_at_notify(mm, address, page_table, entry);
2189		update_mmu_cache(vma, address, page_table);
2190		if (old_page) {
2191			/*
2192			 * Only after switching the pte to the new page may
2193			 * we remove the mapcount here. Otherwise another
2194			 * process may come and find the rmap count decremented
2195			 * before the pte is switched to the new page, and
2196			 * "reuse" the old page writing into it while our pte
2197			 * here still points into it and can be read by other
2198			 * threads.
2199			 *
2200			 * The critical issue is to order this
2201			 * page_remove_rmap with the ptp_clear_flush above.
2202			 * Those stores are ordered by (if nothing else,)
2203			 * the barrier present in the atomic_add_negative
2204			 * in page_remove_rmap.
2205			 *
2206			 * Then the TLB flush in ptep_clear_flush ensures that
2207			 * no process can access the old page before the
2208			 * decremented mapcount is visible. And the old page
2209			 * cannot be reused until after the decremented
2210			 * mapcount is visible. So transitively, TLBs to
2211			 * old page will be flushed before it can be reused.
2212			 */
2213			page_remove_rmap(old_page, false);
2214		}
2215
2216		/* Free the old page.. */
2217		new_page = old_page;
2218		page_copied = 1;
2219	} else {
2220		mem_cgroup_cancel_charge(new_page, memcg, false);
2221	}
2222
2223	if (new_page)
2224		put_page(new_page);
2225
2226	pte_unmap_unlock(page_table, ptl);
2227	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2228	if (old_page) {
2229		/*
2230		 * Don't let another task, with possibly unlocked vma,
2231		 * keep the mlocked page.
2232		 */
2233		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2234			lock_page(old_page);	/* LRU manipulation */
2235			if (PageMlocked(old_page))
2236				munlock_vma_page(old_page);
2237			unlock_page(old_page);
2238		}
2239		put_page(old_page);
2240	}
2241	return page_copied ? VM_FAULT_WRITE : 0;
2242oom_free_new:
2243	put_page(new_page);
2244oom:
2245	if (old_page)
2246		put_page(old_page);
2247	return VM_FAULT_OOM;
2248}
2249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250/*
2251 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2252 * mapping
2253 */
2254static int wp_pfn_shared(struct mm_struct *mm,
2255			struct vm_area_struct *vma, unsigned long address,
2256			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2257			pmd_t *pmd)
2258{
 
 
2259	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2260		struct vm_fault vmf = {
2261			.page = NULL,
2262			.pgoff = linear_page_index(vma, address),
2263			.virtual_address = (void __user *)(address & PAGE_MASK),
2264			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2265		};
2266		int ret;
2267
2268		pte_unmap_unlock(page_table, ptl);
2269		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2270		if (ret & VM_FAULT_ERROR)
 
2271			return ret;
2272		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2273		/*
2274		 * We might have raced with another page fault while we
2275		 * released the pte_offset_map_lock.
2276		 */
2277		if (!pte_same(*page_table, orig_pte)) {
2278			pte_unmap_unlock(page_table, ptl);
2279			return 0;
2280		}
2281	}
2282	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2283			     NULL, 0, 0);
2284}
2285
2286static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2287			  unsigned long address, pte_t *page_table,
2288			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2289			  struct page *old_page)
2290	__releases(ptl)
2291{
2292	int page_mkwrite = 0;
2293
2294	get_page(old_page);
2295
2296	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2297		int tmp;
2298
2299		pte_unmap_unlock(page_table, ptl);
2300		tmp = do_page_mkwrite(vma, old_page, address);
2301		if (unlikely(!tmp || (tmp &
2302				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2303			put_page(old_page);
2304			return tmp;
2305		}
2306		/*
2307		 * Since we dropped the lock we need to revalidate
2308		 * the PTE as someone else may have changed it.  If
2309		 * they did, we just return, as we can count on the
2310		 * MMU to tell us if they didn't also make it writable.
2311		 */
2312		page_table = pte_offset_map_lock(mm, pmd, address,
2313						 &ptl);
2314		if (!pte_same(*page_table, orig_pte)) {
2315			unlock_page(old_page);
2316			pte_unmap_unlock(page_table, ptl);
2317			put_page(old_page);
2318			return 0;
2319		}
2320		page_mkwrite = 1;
 
 
2321	}
 
 
2322
2323	return wp_page_reuse(mm, vma, address, page_table, ptl,
2324			     orig_pte, old_page, page_mkwrite, 1);
2325}
2326
2327/*
2328 * This routine handles present pages, when users try to write
2329 * to a shared page. It is done by copying the page to a new address
2330 * and decrementing the shared-page counter for the old page.
2331 *
2332 * Note that this routine assumes that the protection checks have been
2333 * done by the caller (the low-level page fault routine in most cases).
2334 * Thus we can safely just mark it writable once we've done any necessary
2335 * COW.
2336 *
2337 * We also mark the page dirty at this point even though the page will
2338 * change only once the write actually happens. This avoids a few races,
2339 * and potentially makes it more efficient.
2340 *
2341 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2342 * but allow concurrent faults), with pte both mapped and locked.
2343 * We return with mmap_sem still held, but pte unmapped and unlocked.
2344 */
2345static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2346		unsigned long address, pte_t *page_table, pmd_t *pmd,
2347		spinlock_t *ptl, pte_t orig_pte)
2348	__releases(ptl)
2349{
2350	struct page *old_page;
2351
2352	old_page = vm_normal_page(vma, address, orig_pte);
2353	if (!old_page) {
2354		/*
2355		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2356		 * VM_PFNMAP VMA.
2357		 *
2358		 * We should not cow pages in a shared writeable mapping.
2359		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2360		 */
2361		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2362				     (VM_WRITE|VM_SHARED))
2363			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2364					     orig_pte, pmd);
2365
2366		pte_unmap_unlock(page_table, ptl);
2367		return wp_page_copy(mm, vma, address, page_table, pmd,
2368				    orig_pte, old_page);
2369	}
2370
2371	/*
2372	 * Take out anonymous pages first, anonymous shared vmas are
2373	 * not dirty accountable.
2374	 */
2375	if (PageAnon(old_page) && !PageKsm(old_page)) {
2376		int total_mapcount;
2377		if (!trylock_page(old_page)) {
2378			get_page(old_page);
2379			pte_unmap_unlock(page_table, ptl);
2380			lock_page(old_page);
2381			page_table = pte_offset_map_lock(mm, pmd, address,
2382							 &ptl);
2383			if (!pte_same(*page_table, orig_pte)) {
2384				unlock_page(old_page);
2385				pte_unmap_unlock(page_table, ptl);
2386				put_page(old_page);
2387				return 0;
2388			}
2389			put_page(old_page);
2390		}
2391		if (reuse_swap_page(old_page, &total_mapcount)) {
2392			if (total_mapcount == 1) {
2393				/*
2394				 * The page is all ours. Move it to
2395				 * our anon_vma so the rmap code will
2396				 * not search our parent or siblings.
2397				 * Protected against the rmap code by
2398				 * the page lock.
2399				 */
2400				page_move_anon_rmap(compound_head(old_page),
2401						    vma, address);
2402			}
2403			unlock_page(old_page);
2404			return wp_page_reuse(mm, vma, address, page_table, ptl,
2405					     orig_pte, old_page, 0, 0);
2406		}
2407		unlock_page(old_page);
2408	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2409					(VM_WRITE|VM_SHARED))) {
2410		return wp_page_shared(mm, vma, address, page_table, pmd,
2411				      ptl, orig_pte, old_page);
2412	}
2413
2414	/*
2415	 * Ok, we need to copy. Oh, well..
2416	 */
2417	get_page(old_page);
2418
2419	pte_unmap_unlock(page_table, ptl);
2420	return wp_page_copy(mm, vma, address, page_table, pmd,
2421			    orig_pte, old_page);
2422}
2423
2424static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2425		unsigned long start_addr, unsigned long end_addr,
2426		struct zap_details *details)
2427{
2428	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2429}
2430
2431static inline void unmap_mapping_range_tree(struct rb_root *root,
2432					    struct zap_details *details)
2433{
2434	struct vm_area_struct *vma;
2435	pgoff_t vba, vea, zba, zea;
2436
2437	vma_interval_tree_foreach(vma, root,
2438			details->first_index, details->last_index) {
2439
2440		vba = vma->vm_pgoff;
2441		vea = vba + vma_pages(vma) - 1;
2442		zba = details->first_index;
2443		if (zba < vba)
2444			zba = vba;
2445		zea = details->last_index;
2446		if (zea > vea)
2447			zea = vea;
2448
2449		unmap_mapping_range_vma(vma,
2450			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2451			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2452				details);
2453	}
2454}
2455
2456/**
2457 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2458 * address_space corresponding to the specified page range in the underlying
2459 * file.
2460 *
2461 * @mapping: the address space containing mmaps to be unmapped.
2462 * @holebegin: byte in first page to unmap, relative to the start of
2463 * the underlying file.  This will be rounded down to a PAGE_SIZE
2464 * boundary.  Note that this is different from truncate_pagecache(), which
2465 * must keep the partial page.  In contrast, we must get rid of
2466 * partial pages.
2467 * @holelen: size of prospective hole in bytes.  This will be rounded
2468 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2469 * end of the file.
2470 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2471 * but 0 when invalidating pagecache, don't throw away private data.
2472 */
2473void unmap_mapping_range(struct address_space *mapping,
2474		loff_t const holebegin, loff_t const holelen, int even_cows)
2475{
2476	struct zap_details details = { };
2477	pgoff_t hba = holebegin >> PAGE_SHIFT;
2478	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2479
2480	/* Check for overflow. */
2481	if (sizeof(holelen) > sizeof(hlen)) {
2482		long long holeend =
2483			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2484		if (holeend & ~(long long)ULONG_MAX)
2485			hlen = ULONG_MAX - hba + 1;
2486	}
2487
2488	details.check_mapping = even_cows? NULL: mapping;
2489	details.first_index = hba;
2490	details.last_index = hba + hlen - 1;
2491	if (details.last_index < details.first_index)
2492		details.last_index = ULONG_MAX;
2493
2494
2495	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2496	i_mmap_lock_write(mapping);
2497	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2498		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2499	i_mmap_unlock_write(mapping);
2500}
2501EXPORT_SYMBOL(unmap_mapping_range);
2502
2503/*
2504 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2505 * but allow concurrent faults), and pte mapped but not yet locked.
2506 * We return with pte unmapped and unlocked.
2507 *
2508 * We return with the mmap_sem locked or unlocked in the same cases
2509 * as does filemap_fault().
2510 */
2511static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2512		unsigned long address, pte_t *page_table, pmd_t *pmd,
2513		unsigned int flags, pte_t orig_pte)
2514{
2515	spinlock_t *ptl;
2516	struct page *page, *swapcache;
2517	struct mem_cgroup *memcg;
2518	swp_entry_t entry;
2519	pte_t pte;
2520	int locked;
2521	int exclusive = 0;
2522	int ret = 0;
2523
2524	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2525		goto out;
2526
2527	entry = pte_to_swp_entry(orig_pte);
2528	if (unlikely(non_swap_entry(entry))) {
2529		if (is_migration_entry(entry)) {
2530			migration_entry_wait(mm, pmd, address);
 
2531		} else if (is_hwpoison_entry(entry)) {
2532			ret = VM_FAULT_HWPOISON;
2533		} else {
2534			print_bad_pte(vma, address, orig_pte, NULL);
2535			ret = VM_FAULT_SIGBUS;
2536		}
2537		goto out;
2538	}
2539	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2540	page = lookup_swap_cache(entry);
2541	if (!page) {
2542		page = swapin_readahead(entry,
2543					GFP_HIGHUSER_MOVABLE, vma, address);
2544		if (!page) {
2545			/*
2546			 * Back out if somebody else faulted in this pte
2547			 * while we released the pte lock.
2548			 */
2549			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2550			if (likely(pte_same(*page_table, orig_pte)))
 
2551				ret = VM_FAULT_OOM;
2552			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2553			goto unlock;
2554		}
2555
2556		/* Had to read the page from swap area: Major fault */
2557		ret = VM_FAULT_MAJOR;
2558		count_vm_event(PGMAJFAULT);
2559		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2560	} else if (PageHWPoison(page)) {
2561		/*
2562		 * hwpoisoned dirty swapcache pages are kept for killing
2563		 * owner processes (which may be unknown at hwpoison time)
2564		 */
2565		ret = VM_FAULT_HWPOISON;
2566		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2567		swapcache = page;
2568		goto out_release;
2569	}
2570
2571	swapcache = page;
2572	locked = lock_page_or_retry(page, mm, flags);
2573
2574	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575	if (!locked) {
2576		ret |= VM_FAULT_RETRY;
2577		goto out_release;
2578	}
2579
2580	/*
2581	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2582	 * release the swapcache from under us.  The page pin, and pte_same
2583	 * test below, are not enough to exclude that.  Even if it is still
2584	 * swapcache, we need to check that the page's swap has not changed.
2585	 */
2586	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2587		goto out_page;
2588
2589	page = ksm_might_need_to_copy(page, vma, address);
2590	if (unlikely(!page)) {
2591		ret = VM_FAULT_OOM;
2592		page = swapcache;
2593		goto out_page;
2594	}
2595
2596	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
 
2597		ret = VM_FAULT_OOM;
2598		goto out_page;
2599	}
2600
2601	/*
2602	 * Back out if somebody else already faulted in this pte.
2603	 */
2604	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2605	if (unlikely(!pte_same(*page_table, orig_pte)))
 
2606		goto out_nomap;
2607
2608	if (unlikely(!PageUptodate(page))) {
2609		ret = VM_FAULT_SIGBUS;
2610		goto out_nomap;
2611	}
2612
2613	/*
2614	 * The page isn't present yet, go ahead with the fault.
2615	 *
2616	 * Be careful about the sequence of operations here.
2617	 * To get its accounting right, reuse_swap_page() must be called
2618	 * while the page is counted on swap but not yet in mapcount i.e.
2619	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2620	 * must be called after the swap_free(), or it will never succeed.
2621	 */
2622
2623	inc_mm_counter_fast(mm, MM_ANONPAGES);
2624	dec_mm_counter_fast(mm, MM_SWAPENTS);
2625	pte = mk_pte(page, vma->vm_page_prot);
2626	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2627		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2628		flags &= ~FAULT_FLAG_WRITE;
2629		ret |= VM_FAULT_WRITE;
2630		exclusive = RMAP_EXCLUSIVE;
2631	}
2632	flush_icache_page(vma, page);
2633	if (pte_swp_soft_dirty(orig_pte))
2634		pte = pte_mksoft_dirty(pte);
2635	set_pte_at(mm, address, page_table, pte);
 
2636	if (page == swapcache) {
2637		do_page_add_anon_rmap(page, vma, address, exclusive);
2638		mem_cgroup_commit_charge(page, memcg, true, false);
 
2639	} else { /* ksm created a completely new copy */
2640		page_add_new_anon_rmap(page, vma, address, false);
2641		mem_cgroup_commit_charge(page, memcg, false, false);
2642		lru_cache_add_active_or_unevictable(page, vma);
2643	}
2644
2645	swap_free(entry);
2646	if (mem_cgroup_swap_full(page) ||
2647	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2648		try_to_free_swap(page);
2649	unlock_page(page);
2650	if (page != swapcache) {
2651		/*
2652		 * Hold the lock to avoid the swap entry to be reused
2653		 * until we take the PT lock for the pte_same() check
2654		 * (to avoid false positives from pte_same). For
2655		 * further safety release the lock after the swap_free
2656		 * so that the swap count won't change under a
2657		 * parallel locked swapcache.
2658		 */
2659		unlock_page(swapcache);
2660		put_page(swapcache);
2661	}
2662
2663	if (flags & FAULT_FLAG_WRITE) {
2664		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2665		if (ret & VM_FAULT_ERROR)
2666			ret &= VM_FAULT_ERROR;
2667		goto out;
2668	}
2669
2670	/* No need to invalidate - it was non-present before */
2671	update_mmu_cache(vma, address, page_table);
2672unlock:
2673	pte_unmap_unlock(page_table, ptl);
2674out:
2675	return ret;
2676out_nomap:
2677	mem_cgroup_cancel_charge(page, memcg, false);
2678	pte_unmap_unlock(page_table, ptl);
2679out_page:
2680	unlock_page(page);
2681out_release:
2682	put_page(page);
2683	if (page != swapcache) {
2684		unlock_page(swapcache);
2685		put_page(swapcache);
2686	}
2687	return ret;
2688}
2689
2690/*
2691 * This is like a special single-page "expand_{down|up}wards()",
2692 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2693 * doesn't hit another vma.
2694 */
2695static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2696{
2697	address &= PAGE_MASK;
2698	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2699		struct vm_area_struct *prev = vma->vm_prev;
2700
2701		/*
2702		 * Is there a mapping abutting this one below?
2703		 *
2704		 * That's only ok if it's the same stack mapping
2705		 * that has gotten split..
2706		 */
2707		if (prev && prev->vm_end == address)
2708			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2709
2710		return expand_downwards(vma, address - PAGE_SIZE);
2711	}
2712	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2713		struct vm_area_struct *next = vma->vm_next;
2714
2715		/* As VM_GROWSDOWN but s/below/above/ */
2716		if (next && next->vm_start == address + PAGE_SIZE)
2717			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2718
2719		return expand_upwards(vma, address + PAGE_SIZE);
2720	}
2721	return 0;
2722}
2723
2724/*
2725 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2726 * but allow concurrent faults), and pte mapped but not yet locked.
2727 * We return with mmap_sem still held, but pte unmapped and unlocked.
2728 */
2729static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2730		unsigned long address, pte_t *page_table, pmd_t *pmd,
2731		unsigned int flags)
2732{
 
2733	struct mem_cgroup *memcg;
2734	struct page *page;
2735	spinlock_t *ptl;
2736	pte_t entry;
2737
2738	pte_unmap(page_table);
2739
2740	/* File mapping without ->vm_ops ? */
2741	if (vma->vm_flags & VM_SHARED)
2742		return VM_FAULT_SIGBUS;
2743
2744	/* Check if we need to add a guard page to the stack */
2745	if (check_stack_guard_page(vma, address) < 0)
2746		return VM_FAULT_SIGSEGV;
2747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2748	/* Use the zero-page for reads */
2749	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2750		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
 
2751						vma->vm_page_prot));
2752		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2753		if (!pte_none(*page_table))
 
2754			goto unlock;
2755		/* Deliver the page fault to userland, check inside PT lock */
2756		if (userfaultfd_missing(vma)) {
2757			pte_unmap_unlock(page_table, ptl);
2758			return handle_userfault(vma, address, flags,
2759						VM_UFFD_MISSING);
2760		}
2761		goto setpte;
2762	}
2763
2764	/* Allocate our own private page. */
2765	if (unlikely(anon_vma_prepare(vma)))
2766		goto oom;
2767	page = alloc_zeroed_user_highpage_movable(vma, address);
2768	if (!page)
2769		goto oom;
2770
2771	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2772		goto oom_free_page;
2773
2774	/*
2775	 * The memory barrier inside __SetPageUptodate makes sure that
2776	 * preceeding stores to the page contents become visible before
2777	 * the set_pte_at() write.
2778	 */
2779	__SetPageUptodate(page);
2780
2781	entry = mk_pte(page, vma->vm_page_prot);
2782	if (vma->vm_flags & VM_WRITE)
2783		entry = pte_mkwrite(pte_mkdirty(entry));
2784
2785	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2786	if (!pte_none(*page_table))
 
2787		goto release;
2788
2789	/* Deliver the page fault to userland, check inside PT lock */
2790	if (userfaultfd_missing(vma)) {
2791		pte_unmap_unlock(page_table, ptl);
2792		mem_cgroup_cancel_charge(page, memcg, false);
2793		put_page(page);
2794		return handle_userfault(vma, address, flags,
2795					VM_UFFD_MISSING);
2796	}
2797
2798	inc_mm_counter_fast(mm, MM_ANONPAGES);
2799	page_add_new_anon_rmap(page, vma, address, false);
2800	mem_cgroup_commit_charge(page, memcg, false, false);
2801	lru_cache_add_active_or_unevictable(page, vma);
2802setpte:
2803	set_pte_at(mm, address, page_table, entry);
2804
2805	/* No need to invalidate - it was non-present before */
2806	update_mmu_cache(vma, address, page_table);
2807unlock:
2808	pte_unmap_unlock(page_table, ptl);
2809	return 0;
2810release:
2811	mem_cgroup_cancel_charge(page, memcg, false);
2812	put_page(page);
2813	goto unlock;
2814oom_free_page:
2815	put_page(page);
2816oom:
2817	return VM_FAULT_OOM;
2818}
2819
2820/*
2821 * The mmap_sem must have been held on entry, and may have been
2822 * released depending on flags and vma->vm_ops->fault() return value.
2823 * See filemap_fault() and __lock_page_retry().
2824 */
2825static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2826			pgoff_t pgoff, unsigned int flags,
2827			struct page *cow_page, struct page **page)
2828{
2829	struct vm_fault vmf;
2830	int ret;
2831
2832	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2833	vmf.pgoff = pgoff;
2834	vmf.flags = flags;
2835	vmf.page = NULL;
2836	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2837	vmf.cow_page = cow_page;
2838
2839	ret = vma->vm_ops->fault(vma, &vmf);
2840	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2841		return ret;
2842	if (!vmf.page)
2843		goto out;
2844
2845	if (unlikely(PageHWPoison(vmf.page))) {
2846		if (ret & VM_FAULT_LOCKED)
2847			unlock_page(vmf.page);
2848		put_page(vmf.page);
 
2849		return VM_FAULT_HWPOISON;
2850	}
2851
2852	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2853		lock_page(vmf.page);
2854	else
2855		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2856
2857 out:
2858	*page = vmf.page;
2859	return ret;
2860}
2861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2862/**
2863 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
 
2864 *
2865 * @vma: virtual memory area
2866 * @address: user virtual address
2867 * @page: page to map
2868 * @pte: pointer to target page table entry
2869 * @write: true, if new entry is writable
2870 * @anon: true, if it's anonymous page
2871 *
2872 * Caller must hold page table lock relevant for @pte.
 
2873 *
2874 * Target users are page handler itself and implementations of
2875 * vm_ops->map_pages.
2876 */
2877void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2878		struct page *page, pte_t *pte, bool write, bool anon)
2879{
 
 
2880	pte_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2881
2882	flush_icache_page(vma, page);
2883	entry = mk_pte(page, vma->vm_page_prot);
2884	if (write)
2885		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2886	if (anon) {
 
2887		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2888		page_add_new_anon_rmap(page, vma, address, false);
 
 
2889	} else {
2890		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2891		page_add_file_rmap(page);
2892	}
2893	set_pte_at(vma->vm_mm, address, pte, entry);
2894
2895	/* no need to invalidate: a not-present page won't be cached */
2896	update_mmu_cache(vma, address, pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2897}
2898
2899static unsigned long fault_around_bytes __read_mostly =
2900	rounddown_pow_of_two(65536);
2901
2902#ifdef CONFIG_DEBUG_FS
2903static int fault_around_bytes_get(void *data, u64 *val)
2904{
2905	*val = fault_around_bytes;
2906	return 0;
2907}
2908
2909/*
2910 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2911 * rounded down to nearest page order. It's what do_fault_around() expects to
2912 * see.
2913 */
2914static int fault_around_bytes_set(void *data, u64 val)
2915{
2916	if (val / PAGE_SIZE > PTRS_PER_PTE)
2917		return -EINVAL;
2918	if (val > PAGE_SIZE)
2919		fault_around_bytes = rounddown_pow_of_two(val);
2920	else
2921		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2922	return 0;
2923}
2924DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2925		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2926
2927static int __init fault_around_debugfs(void)
2928{
2929	void *ret;
2930
2931	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2932			&fault_around_bytes_fops);
2933	if (!ret)
2934		pr_warn("Failed to create fault_around_bytes in debugfs");
2935	return 0;
2936}
2937late_initcall(fault_around_debugfs);
2938#endif
2939
2940/*
2941 * do_fault_around() tries to map few pages around the fault address. The hope
2942 * is that the pages will be needed soon and this will lower the number of
2943 * faults to handle.
2944 *
2945 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2946 * not ready to be mapped: not up-to-date, locked, etc.
2947 *
2948 * This function is called with the page table lock taken. In the split ptlock
2949 * case the page table lock only protects only those entries which belong to
2950 * the page table corresponding to the fault address.
2951 *
2952 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2953 * only once.
2954 *
2955 * fault_around_pages() defines how many pages we'll try to map.
2956 * do_fault_around() expects it to return a power of two less than or equal to
2957 * PTRS_PER_PTE.
2958 *
2959 * The virtual address of the area that we map is naturally aligned to the
2960 * fault_around_pages() value (and therefore to page order).  This way it's
2961 * easier to guarantee that we don't cross page table boundaries.
2962 */
2963static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2964		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2965{
2966	unsigned long start_addr, nr_pages, mask;
2967	pgoff_t max_pgoff;
2968	struct vm_fault vmf;
2969	int off;
2970
2971	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2972	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2973
2974	start_addr = max(address & mask, vma->vm_start);
2975	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2976	pte -= off;
2977	pgoff -= off;
2978
2979	/*
2980	 *  max_pgoff is either end of page table or end of vma
2981	 *  or fault_around_pages() from pgoff, depending what is nearest.
2982	 */
2983	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
 
2984		PTRS_PER_PTE - 1;
2985	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2986			pgoff + nr_pages - 1);
2987
2988	/* Check if it makes any sense to call ->map_pages */
2989	while (!pte_none(*pte)) {
2990		if (++pgoff > max_pgoff)
2991			return;
2992		start_addr += PAGE_SIZE;
2993		if (start_addr >= vma->vm_end)
2994			return;
2995		pte++;
 
 
 
 
 
 
2996	}
2997
2998	vmf.virtual_address = (void __user *) start_addr;
2999	vmf.pte = pte;
3000	vmf.pgoff = pgoff;
3001	vmf.max_pgoff = max_pgoff;
3002	vmf.flags = flags;
3003	vmf.gfp_mask = __get_fault_gfp_mask(vma);
3004	vma->vm_ops->map_pages(vma, &vmf);
 
 
 
 
 
 
3005}
3006
3007static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3008		unsigned long address, pmd_t *pmd,
3009		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3010{
3011	struct page *fault_page;
3012	spinlock_t *ptl;
3013	pte_t *pte;
3014	int ret = 0;
3015
3016	/*
3017	 * Let's call ->map_pages() first and use ->fault() as fallback
3018	 * if page by the offset is not ready to be mapped (cold cache or
3019	 * something).
3020	 */
3021	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3022		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3023		do_fault_around(vma, address, pte, pgoff, flags);
3024		if (!pte_same(*pte, orig_pte))
3025			goto unlock_out;
3026		pte_unmap_unlock(pte, ptl);
3027	}
3028
3029	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3030	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3031		return ret;
3032
3033	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3034	if (unlikely(!pte_same(*pte, orig_pte))) {
3035		pte_unmap_unlock(pte, ptl);
3036		unlock_page(fault_page);
3037		put_page(fault_page);
3038		return ret;
3039	}
3040	do_set_pte(vma, address, fault_page, pte, false, false);
3041	unlock_page(fault_page);
3042unlock_out:
3043	pte_unmap_unlock(pte, ptl);
3044	return ret;
3045}
3046
3047static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3048		unsigned long address, pmd_t *pmd,
3049		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3050{
3051	struct page *fault_page, *new_page;
3052	struct mem_cgroup *memcg;
3053	spinlock_t *ptl;
3054	pte_t *pte;
3055	int ret;
3056
3057	if (unlikely(anon_vma_prepare(vma)))
3058		return VM_FAULT_OOM;
3059
3060	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3061	if (!new_page)
3062		return VM_FAULT_OOM;
3063
3064	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3065		put_page(new_page);
 
3066		return VM_FAULT_OOM;
3067	}
3068
3069	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3070	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3071		goto uncharge_out;
 
 
3072
3073	if (fault_page)
3074		copy_user_highpage(new_page, fault_page, address, vma);
3075	__SetPageUptodate(new_page);
3076
3077	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3078	if (unlikely(!pte_same(*pte, orig_pte))) {
3079		pte_unmap_unlock(pte, ptl);
3080		if (fault_page) {
3081			unlock_page(fault_page);
3082			put_page(fault_page);
3083		} else {
3084			/*
3085			 * The fault handler has no page to lock, so it holds
3086			 * i_mmap_lock for read to protect against truncate.
3087			 */
3088			i_mmap_unlock_read(vma->vm_file->f_mapping);
3089		}
3090		goto uncharge_out;
3091	}
3092	do_set_pte(vma, address, new_page, pte, true, true);
3093	mem_cgroup_commit_charge(new_page, memcg, false, false);
3094	lru_cache_add_active_or_unevictable(new_page, vma);
3095	pte_unmap_unlock(pte, ptl);
3096	if (fault_page) {
3097		unlock_page(fault_page);
3098		put_page(fault_page);
3099	} else {
3100		/*
3101		 * The fault handler has no page to lock, so it holds
3102		 * i_mmap_lock for read to protect against truncate.
3103		 */
3104		i_mmap_unlock_read(vma->vm_file->f_mapping);
3105	}
3106	return ret;
3107uncharge_out:
3108	mem_cgroup_cancel_charge(new_page, memcg, false);
3109	put_page(new_page);
3110	return ret;
3111}
3112
3113static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3114		unsigned long address, pmd_t *pmd,
3115		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3116{
3117	struct page *fault_page;
3118	struct address_space *mapping;
3119	spinlock_t *ptl;
3120	pte_t *pte;
3121	int dirtied = 0;
3122	int ret, tmp;
3123
3124	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3125	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3126		return ret;
3127
3128	/*
3129	 * Check if the backing address space wants to know that the page is
3130	 * about to become writable
3131	 */
3132	if (vma->vm_ops->page_mkwrite) {
3133		unlock_page(fault_page);
3134		tmp = do_page_mkwrite(vma, fault_page, address);
3135		if (unlikely(!tmp ||
3136				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3137			put_page(fault_page);
3138			return tmp;
3139		}
3140	}
3141
3142	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3143	if (unlikely(!pte_same(*pte, orig_pte))) {
3144		pte_unmap_unlock(pte, ptl);
3145		unlock_page(fault_page);
3146		put_page(fault_page);
3147		return ret;
3148	}
3149	do_set_pte(vma, address, fault_page, pte, true, false);
3150	pte_unmap_unlock(pte, ptl);
3151
3152	if (set_page_dirty(fault_page))
3153		dirtied = 1;
3154	/*
3155	 * Take a local copy of the address_space - page.mapping may be zeroed
3156	 * by truncate after unlock_page().   The address_space itself remains
3157	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3158	 * release semantics to prevent the compiler from undoing this copying.
3159	 */
3160	mapping = page_rmapping(fault_page);
3161	unlock_page(fault_page);
3162	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3163		/*
3164		 * Some device drivers do not set page.mapping but still
3165		 * dirty their pages
3166		 */
3167		balance_dirty_pages_ratelimited(mapping);
3168	}
3169
3170	if (!vma->vm_ops->page_mkwrite)
3171		file_update_time(vma->vm_file);
3172
 
3173	return ret;
3174}
3175
3176/*
3177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178 * but allow concurrent faults).
3179 * The mmap_sem may have been released depending on flags and our
3180 * return value.  See filemap_fault() and __lock_page_or_retry().
3181 */
3182static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3183		unsigned long address, pte_t *page_table, pmd_t *pmd,
3184		unsigned int flags, pte_t orig_pte)
3185{
3186	pgoff_t pgoff = linear_page_index(vma, address);
 
3187
3188	pte_unmap(page_table);
3189	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3190	if (!vma->vm_ops->fault)
3191		return VM_FAULT_SIGBUS;
3192	if (!(flags & FAULT_FLAG_WRITE))
3193		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3194				orig_pte);
3195	if (!(vma->vm_flags & VM_SHARED))
3196		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3197				orig_pte);
3198	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 
 
 
 
 
 
3199}
3200
3201static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3202				unsigned long addr, int page_nid,
3203				int *flags)
3204{
3205	get_page(page);
3206
3207	count_vm_numa_event(NUMA_HINT_FAULTS);
3208	if (page_nid == numa_node_id()) {
3209		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3210		*flags |= TNF_FAULT_LOCAL;
3211	}
3212
3213	return mpol_misplaced(page, vma, addr);
3214}
3215
3216static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3217		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3218{
 
3219	struct page *page = NULL;
3220	spinlock_t *ptl;
3221	int page_nid = -1;
3222	int last_cpupid;
3223	int target_nid;
3224	bool migrated = false;
 
3225	bool was_writable = pte_write(pte);
3226	int flags = 0;
3227
3228	/* A PROT_NONE fault should not end up here */
3229	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3230
3231	/*
3232	* The "pte" at this point cannot be used safely without
3233	* validation through pte_unmap_same(). It's of NUMA type but
3234	* the pfn may be screwed if the read is non atomic.
3235	*
3236	* We can safely just do a "set_pte_at()", because the old
3237	* page table entry is not accessible, so there would be no
3238	* concurrent hardware modifications to the PTE.
3239	*/
3240	ptl = pte_lockptr(mm, pmd);
3241	spin_lock(ptl);
3242	if (unlikely(!pte_same(*ptep, pte))) {
3243		pte_unmap_unlock(ptep, ptl);
3244		goto out;
3245	}
3246
3247	/* Make it present again */
3248	pte = pte_modify(pte, vma->vm_page_prot);
3249	pte = pte_mkyoung(pte);
3250	if (was_writable)
3251		pte = pte_mkwrite(pte);
3252	set_pte_at(mm, addr, ptep, pte);
3253	update_mmu_cache(vma, addr, ptep);
3254
3255	page = vm_normal_page(vma, addr, pte);
3256	if (!page) {
3257		pte_unmap_unlock(ptep, ptl);
3258		return 0;
3259	}
3260
3261	/* TODO: handle PTE-mapped THP */
3262	if (PageCompound(page)) {
3263		pte_unmap_unlock(ptep, ptl);
3264		return 0;
3265	}
3266
3267	/*
3268	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3269	 * much anyway since they can be in shared cache state. This misses
3270	 * the case where a mapping is writable but the process never writes
3271	 * to it but pte_write gets cleared during protection updates and
3272	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3273	 * background writeback, dirty balancing and application behaviour.
3274	 */
3275	if (!(vma->vm_flags & VM_WRITE))
3276		flags |= TNF_NO_GROUP;
3277
3278	/*
3279	 * Flag if the page is shared between multiple address spaces. This
3280	 * is later used when determining whether to group tasks together
3281	 */
3282	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3283		flags |= TNF_SHARED;
3284
3285	last_cpupid = page_cpupid_last(page);
3286	page_nid = page_to_nid(page);
3287	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3288	pte_unmap_unlock(ptep, ptl);
 
3289	if (target_nid == -1) {
3290		put_page(page);
3291		goto out;
3292	}
3293
3294	/* Migrate to the requested node */
3295	migrated = migrate_misplaced_page(page, vma, target_nid);
3296	if (migrated) {
3297		page_nid = target_nid;
3298		flags |= TNF_MIGRATED;
3299	} else
3300		flags |= TNF_MIGRATE_FAIL;
3301
3302out:
3303	if (page_nid != -1)
3304		task_numa_fault(last_cpupid, page_nid, 1, flags);
3305	return 0;
3306}
3307
3308static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3309			unsigned long address, pmd_t *pmd, unsigned int flags)
3310{
 
3311	if (vma_is_anonymous(vma))
3312		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3313	if (vma->vm_ops->pmd_fault)
3314		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
 
3315	return VM_FAULT_FALLBACK;
3316}
3317
3318static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3319			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3320			unsigned int flags)
3321{
3322	if (vma_is_anonymous(vma))
3323		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3324	if (vma->vm_ops->pmd_fault)
3325		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
 
 
 
 
 
 
3326	return VM_FAULT_FALLBACK;
3327}
3328
 
 
 
 
 
3329/*
3330 * These routines also need to handle stuff like marking pages dirty
3331 * and/or accessed for architectures that don't do it in hardware (most
3332 * RISC architectures).  The early dirtying is also good on the i386.
3333 *
3334 * There is also a hook called "update_mmu_cache()" that architectures
3335 * with external mmu caches can use to update those (ie the Sparc or
3336 * PowerPC hashed page tables that act as extended TLBs).
3337 *
3338 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3339 * but allow concurrent faults), and pte mapped but not yet locked.
3340 * We return with pte unmapped and unlocked.
3341 *
3342 * The mmap_sem may have been released depending on flags and our
3343 * return value.  See filemap_fault() and __lock_page_or_retry().
3344 */
3345static int handle_pte_fault(struct mm_struct *mm,
3346		     struct vm_area_struct *vma, unsigned long address,
3347		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3348{
3349	pte_t entry;
3350	spinlock_t *ptl;
3351
3352	/*
3353	 * some architectures can have larger ptes than wordsize,
3354	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3355	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3356	 * The code below just needs a consistent view for the ifs and
3357	 * we later double check anyway with the ptl lock held. So here
3358	 * a barrier will do.
3359	 */
3360	entry = *pte;
3361	barrier();
3362	if (!pte_present(entry)) {
3363		if (pte_none(entry)) {
3364			if (vma_is_anonymous(vma))
3365				return do_anonymous_page(mm, vma, address,
3366							 pte, pmd, flags);
3367			else
3368				return do_fault(mm, vma, address, pte, pmd,
3369						flags, entry);
3370		}
3371		return do_swap_page(mm, vma, address,
3372					pte, pmd, flags, entry);
3373	}
3374
3375	if (pte_protnone(entry))
3376		return do_numa_page(mm, vma, address, entry, pte, pmd);
3377
3378	ptl = pte_lockptr(mm, pmd);
3379	spin_lock(ptl);
3380	if (unlikely(!pte_same(*pte, entry)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3381		goto unlock;
3382	if (flags & FAULT_FLAG_WRITE) {
3383		if (!pte_write(entry))
3384			return do_wp_page(mm, vma, address,
3385					pte, pmd, ptl, entry);
3386		entry = pte_mkdirty(entry);
3387	}
3388	entry = pte_mkyoung(entry);
3389	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3390		update_mmu_cache(vma, address, pte);
 
3391	} else {
3392		/*
3393		 * This is needed only for protection faults but the arch code
3394		 * is not yet telling us if this is a protection fault or not.
3395		 * This still avoids useless tlb flushes for .text page faults
3396		 * with threads.
3397		 */
3398		if (flags & FAULT_FLAG_WRITE)
3399			flush_tlb_fix_spurious_fault(vma, address);
3400	}
3401unlock:
3402	pte_unmap_unlock(pte, ptl);
3403	return 0;
3404}
3405
3406/*
3407 * By the time we get here, we already hold the mm semaphore
3408 *
3409 * The mmap_sem may have been released depending on flags and our
3410 * return value.  See filemap_fault() and __lock_page_or_retry().
3411 */
3412static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3413			     unsigned long address, unsigned int flags)
3414{
 
 
 
 
 
 
 
 
3415	pgd_t *pgd;
3416	pud_t *pud;
3417	pmd_t *pmd;
3418	pte_t *pte;
3419
3420	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3421					    flags & FAULT_FLAG_INSTRUCTION,
3422					    flags & FAULT_FLAG_REMOTE))
3423		return VM_FAULT_SIGSEGV;
3424
3425	if (unlikely(is_vm_hugetlb_page(vma)))
3426		return hugetlb_fault(mm, vma, address, flags);
3427
3428	pgd = pgd_offset(mm, address);
3429	pud = pud_alloc(mm, pgd, address);
3430	if (!pud)
3431		return VM_FAULT_OOM;
3432	pmd = pmd_alloc(mm, pud, address);
3433	if (!pmd)
3434		return VM_FAULT_OOM;
3435	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3436		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3437		if (!(ret & VM_FAULT_FALLBACK))
3438			return ret;
3439	} else {
3440		pmd_t orig_pmd = *pmd;
3441		int ret;
3442
3443		barrier();
3444		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3445			unsigned int dirty = flags & FAULT_FLAG_WRITE;
 
3446
3447			if (pmd_protnone(orig_pmd))
3448				return do_huge_pmd_numa_page(mm, vma, address,
3449							     orig_pmd, pmd);
3450
3451			if (dirty && !pmd_write(orig_pmd)) {
3452				ret = wp_huge_pmd(mm, vma, address, pmd,
3453							orig_pmd, flags);
3454				if (!(ret & VM_FAULT_FALLBACK))
3455					return ret;
3456			} else {
3457				huge_pmd_set_accessed(mm, vma, address, pmd,
3458						      orig_pmd, dirty);
3459				return 0;
3460			}
3461		}
3462	}
3463
3464	/*
3465	 * Use pte_alloc() instead of pte_alloc_map, because we can't
3466	 * run pte_offset_map on the pmd, if an huge pmd could
3467	 * materialize from under us from a different thread.
3468	 */
3469	if (unlikely(pte_alloc(mm, pmd, address)))
3470		return VM_FAULT_OOM;
3471	/*
3472	 * If a huge pmd materialized under us just retry later.  Use
3473	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3474	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3475	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3476	 * in a different thread of this mm, in turn leading to a misleading
3477	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3478	 * regular pmd that we can walk with pte_offset_map() and we can do that
3479	 * through an atomic read in C, which is what pmd_trans_unstable()
3480	 * provides.
3481	 */
3482	if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3483		return 0;
3484	/*
3485	 * A regular pmd is established and it can't morph into a huge pmd
3486	 * from under us anymore at this point because we hold the mmap_sem
3487	 * read mode and khugepaged takes it in write mode. So now it's
3488	 * safe to run pte_offset_map().
3489	 */
3490	pte = pte_offset_map(pmd, address);
3491
3492	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3493}
3494
3495/*
3496 * By the time we get here, we already hold the mm semaphore
3497 *
3498 * The mmap_sem may have been released depending on flags and our
3499 * return value.  See filemap_fault() and __lock_page_or_retry().
3500 */
3501int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3502		    unsigned long address, unsigned int flags)
3503{
3504	int ret;
3505
3506	__set_current_state(TASK_RUNNING);
3507
3508	count_vm_event(PGFAULT);
3509	mem_cgroup_count_vm_event(mm, PGFAULT);
3510
3511	/* do counter updates before entering really critical section. */
3512	check_sync_rss_stat(current);
3513
3514	/*
3515	 * Enable the memcg OOM handling for faults triggered in user
3516	 * space.  Kernel faults are handled more gracefully.
3517	 */
3518	if (flags & FAULT_FLAG_USER)
3519		mem_cgroup_oom_enable();
3520
3521	ret = __handle_mm_fault(mm, vma, address, flags);
 
 
 
 
 
 
 
 
3522
3523	if (flags & FAULT_FLAG_USER) {
3524		mem_cgroup_oom_disable();
3525                /*
3526                 * The task may have entered a memcg OOM situation but
3527                 * if the allocation error was handled gracefully (no
3528                 * VM_FAULT_OOM), there is no need to kill anything.
3529                 * Just clean up the OOM state peacefully.
3530                 */
3531                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3532                        mem_cgroup_oom_synchronize(false);
3533	}
3534
 
 
 
 
 
 
 
 
 
 
 
 
 
3535	return ret;
3536}
3537EXPORT_SYMBOL_GPL(handle_mm_fault);
3538
3539#ifndef __PAGETABLE_PUD_FOLDED
3540/*
3541 * Allocate page upper directory.
3542 * We've already handled the fast-path in-line.
3543 */
3544int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3545{
3546	pud_t *new = pud_alloc_one(mm, address);
3547	if (!new)
3548		return -ENOMEM;
3549
3550	smp_wmb(); /* See comment in __pte_alloc */
3551
3552	spin_lock(&mm->page_table_lock);
3553	if (pgd_present(*pgd))		/* Another has populated it */
3554		pud_free(mm, new);
3555	else
3556		pgd_populate(mm, pgd, new);
3557	spin_unlock(&mm->page_table_lock);
3558	return 0;
3559}
3560#endif /* __PAGETABLE_PUD_FOLDED */
3561
3562#ifndef __PAGETABLE_PMD_FOLDED
3563/*
3564 * Allocate page middle directory.
3565 * We've already handled the fast-path in-line.
3566 */
3567int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3568{
3569	pmd_t *new = pmd_alloc_one(mm, address);
3570	if (!new)
3571		return -ENOMEM;
3572
3573	smp_wmb(); /* See comment in __pte_alloc */
3574
3575	spin_lock(&mm->page_table_lock);
3576#ifndef __ARCH_HAS_4LEVEL_HACK
3577	if (!pud_present(*pud)) {
3578		mm_inc_nr_pmds(mm);
3579		pud_populate(mm, pud, new);
3580	} else	/* Another has populated it */
3581		pmd_free(mm, new);
3582#else
3583	if (!pgd_present(*pud)) {
3584		mm_inc_nr_pmds(mm);
3585		pgd_populate(mm, pud, new);
3586	} else /* Another has populated it */
3587		pmd_free(mm, new);
3588#endif /* __ARCH_HAS_4LEVEL_HACK */
3589	spin_unlock(&mm->page_table_lock);
3590	return 0;
3591}
3592#endif /* __PAGETABLE_PMD_FOLDED */
3593
3594static int __follow_pte(struct mm_struct *mm, unsigned long address,
3595		pte_t **ptepp, spinlock_t **ptlp)
3596{
3597	pgd_t *pgd;
3598	pud_t *pud;
3599	pmd_t *pmd;
3600	pte_t *ptep;
3601
3602	pgd = pgd_offset(mm, address);
3603	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3604		goto out;
3605
3606	pud = pud_offset(pgd, address);
3607	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3608		goto out;
3609
3610	pmd = pmd_offset(pud, address);
3611	VM_BUG_ON(pmd_trans_huge(*pmd));
3612	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3613		goto out;
3614
3615	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3616	if (pmd_huge(*pmd))
 
 
 
 
 
 
 
 
 
 
 
3617		goto out;
3618
3619	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3620	if (!ptep)
3621		goto out;
3622	if (!pte_present(*ptep))
3623		goto unlock;
3624	*ptepp = ptep;
3625	return 0;
3626unlock:
3627	pte_unmap_unlock(ptep, *ptlp);
3628out:
3629	return -EINVAL;
3630}
3631
3632static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3633			     pte_t **ptepp, spinlock_t **ptlp)
3634{
3635	int res;
3636
3637	/* (void) is needed to make gcc happy */
3638	(void) __cond_lock(*ptlp,
3639			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
 
 
 
 
 
 
 
 
 
 
 
 
 
3640	return res;
3641}
 
3642
3643/**
3644 * follow_pfn - look up PFN at a user virtual address
3645 * @vma: memory mapping
3646 * @address: user virtual address
3647 * @pfn: location to store found PFN
3648 *
3649 * Only IO mappings and raw PFN mappings are allowed.
3650 *
3651 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3652 */
3653int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3654	unsigned long *pfn)
3655{
3656	int ret = -EINVAL;
3657	spinlock_t *ptl;
3658	pte_t *ptep;
3659
3660	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3661		return ret;
3662
3663	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3664	if (ret)
3665		return ret;
3666	*pfn = pte_pfn(*ptep);
3667	pte_unmap_unlock(ptep, ptl);
3668	return 0;
3669}
3670EXPORT_SYMBOL(follow_pfn);
3671
3672#ifdef CONFIG_HAVE_IOREMAP_PROT
3673int follow_phys(struct vm_area_struct *vma,
3674		unsigned long address, unsigned int flags,
3675		unsigned long *prot, resource_size_t *phys)
3676{
3677	int ret = -EINVAL;
3678	pte_t *ptep, pte;
3679	spinlock_t *ptl;
3680
3681	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3682		goto out;
3683
3684	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3685		goto out;
3686	pte = *ptep;
3687
3688	if ((flags & FOLL_WRITE) && !pte_write(pte))
3689		goto unlock;
3690
3691	*prot = pgprot_val(pte_pgprot(pte));
3692	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3693
3694	ret = 0;
3695unlock:
3696	pte_unmap_unlock(ptep, ptl);
3697out:
3698	return ret;
3699}
3700
3701int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3702			void *buf, int len, int write)
3703{
3704	resource_size_t phys_addr;
3705	unsigned long prot = 0;
3706	void __iomem *maddr;
3707	int offset = addr & (PAGE_SIZE-1);
3708
3709	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3710		return -EINVAL;
3711
3712	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3713	if (write)
3714		memcpy_toio(maddr + offset, buf, len);
3715	else
3716		memcpy_fromio(buf, maddr + offset, len);
3717	iounmap(maddr);
3718
3719	return len;
3720}
3721EXPORT_SYMBOL_GPL(generic_access_phys);
3722#endif
3723
3724/*
3725 * Access another process' address space as given in mm.  If non-NULL, use the
3726 * given task for page fault accounting.
3727 */
3728static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3729		unsigned long addr, void *buf, int len, int write)
3730{
3731	struct vm_area_struct *vma;
3732	void *old_buf = buf;
 
3733
3734	down_read(&mm->mmap_sem);
3735	/* ignore errors, just check how much was successfully transferred */
3736	while (len) {
3737		int bytes, ret, offset;
3738		void *maddr;
3739		struct page *page = NULL;
3740
3741		ret = get_user_pages_remote(tsk, mm, addr, 1,
3742				write, 1, &page, &vma);
3743		if (ret <= 0) {
3744#ifndef CONFIG_HAVE_IOREMAP_PROT
3745			break;
3746#else
3747			/*
3748			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3749			 * we can access using slightly different code.
3750			 */
3751			vma = find_vma(mm, addr);
3752			if (!vma || vma->vm_start > addr)
3753				break;
3754			if (vma->vm_ops && vma->vm_ops->access)
3755				ret = vma->vm_ops->access(vma, addr, buf,
3756							  len, write);
3757			if (ret <= 0)
3758				break;
3759			bytes = ret;
3760#endif
3761		} else {
3762			bytes = len;
3763			offset = addr & (PAGE_SIZE-1);
3764			if (bytes > PAGE_SIZE-offset)
3765				bytes = PAGE_SIZE-offset;
3766
3767			maddr = kmap(page);
3768			if (write) {
3769				copy_to_user_page(vma, page, addr,
3770						  maddr + offset, buf, bytes);
3771				set_page_dirty_lock(page);
3772			} else {
3773				copy_from_user_page(vma, page, addr,
3774						    buf, maddr + offset, bytes);
3775			}
3776			kunmap(page);
3777			put_page(page);
3778		}
3779		len -= bytes;
3780		buf += bytes;
3781		addr += bytes;
3782	}
3783	up_read(&mm->mmap_sem);
3784
3785	return buf - old_buf;
3786}
3787
3788/**
3789 * access_remote_vm - access another process' address space
3790 * @mm:		the mm_struct of the target address space
3791 * @addr:	start address to access
3792 * @buf:	source or destination buffer
3793 * @len:	number of bytes to transfer
3794 * @write:	whether the access is a write
3795 *
3796 * The caller must hold a reference on @mm.
3797 */
3798int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3799		void *buf, int len, int write)
3800{
3801	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3802}
3803
3804/*
3805 * Access another process' address space.
3806 * Source/target buffer must be kernel space,
3807 * Do not walk the page table directly, use get_user_pages
3808 */
3809int access_process_vm(struct task_struct *tsk, unsigned long addr,
3810		void *buf, int len, int write)
3811{
3812	struct mm_struct *mm;
3813	int ret;
3814
3815	mm = get_task_mm(tsk);
3816	if (!mm)
3817		return 0;
3818
3819	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
 
3820	mmput(mm);
3821
3822	return ret;
3823}
 
3824
3825/*
3826 * Print the name of a VMA.
3827 */
3828void print_vma_addr(char *prefix, unsigned long ip)
3829{
3830	struct mm_struct *mm = current->mm;
3831	struct vm_area_struct *vma;
3832
3833	/*
3834	 * Do not print if we are in atomic
3835	 * contexts (in exception stacks, etc.):
3836	 */
3837	if (preempt_count())
3838		return;
3839
3840	down_read(&mm->mmap_sem);
3841	vma = find_vma(mm, ip);
3842	if (vma && vma->vm_file) {
3843		struct file *f = vma->vm_file;
3844		char *buf = (char *)__get_free_page(GFP_KERNEL);
3845		if (buf) {
3846			char *p;
3847
3848			p = file_path(f, buf, PAGE_SIZE);
3849			if (IS_ERR(p))
3850				p = "?";
3851			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3852					vma->vm_start,
3853					vma->vm_end - vma->vm_start);
3854			free_page((unsigned long)buf);
3855		}
3856	}
3857	up_read(&mm->mmap_sem);
3858}
3859
3860#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3861void __might_fault(const char *file, int line)
3862{
3863	/*
3864	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3865	 * holding the mmap_sem, this is safe because kernel memory doesn't
3866	 * get paged out, therefore we'll never actually fault, and the
3867	 * below annotations will generate false positives.
3868	 */
3869	if (segment_eq(get_fs(), KERNEL_DS))
3870		return;
3871	if (pagefault_disabled())
3872		return;
3873	__might_sleep(file, line, 0);
3874#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3875	if (current->mm)
3876		might_lock_read(&current->mm->mmap_sem);
3877#endif
3878}
3879EXPORT_SYMBOL(__might_fault);
3880#endif
3881
3882#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3883static void clear_gigantic_page(struct page *page,
3884				unsigned long addr,
3885				unsigned int pages_per_huge_page)
3886{
3887	int i;
3888	struct page *p = page;
3889
3890	might_sleep();
3891	for (i = 0; i < pages_per_huge_page;
3892	     i++, p = mem_map_next(p, page, i)) {
3893		cond_resched();
3894		clear_user_highpage(p, addr + i * PAGE_SIZE);
3895	}
3896}
3897void clear_huge_page(struct page *page,
3898		     unsigned long addr, unsigned int pages_per_huge_page)
3899{
3900	int i;
3901
3902	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3903		clear_gigantic_page(page, addr, pages_per_huge_page);
3904		return;
3905	}
3906
3907	might_sleep();
3908	for (i = 0; i < pages_per_huge_page; i++) {
3909		cond_resched();
3910		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3911	}
3912}
3913
3914static void copy_user_gigantic_page(struct page *dst, struct page *src,
3915				    unsigned long addr,
3916				    struct vm_area_struct *vma,
3917				    unsigned int pages_per_huge_page)
3918{
3919	int i;
3920	struct page *dst_base = dst;
3921	struct page *src_base = src;
3922
3923	for (i = 0; i < pages_per_huge_page; ) {
3924		cond_resched();
3925		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3926
3927		i++;
3928		dst = mem_map_next(dst, dst_base, i);
3929		src = mem_map_next(src, src_base, i);
3930	}
3931}
3932
3933void copy_user_huge_page(struct page *dst, struct page *src,
3934			 unsigned long addr, struct vm_area_struct *vma,
3935			 unsigned int pages_per_huge_page)
3936{
3937	int i;
3938
3939	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3940		copy_user_gigantic_page(dst, src, addr, vma,
3941					pages_per_huge_page);
3942		return;
3943	}
3944
3945	might_sleep();
3946	for (i = 0; i < pages_per_huge_page; i++) {
3947		cond_resched();
3948		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3949	}
3950}
3951#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3952
3953#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3954
3955static struct kmem_cache *page_ptl_cachep;
3956
3957void __init ptlock_cache_init(void)
3958{
3959	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3960			SLAB_PANIC, NULL);
3961}
3962
3963bool ptlock_alloc(struct page *page)
3964{
3965	spinlock_t *ptl;
3966
3967	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3968	if (!ptl)
3969		return false;
3970	page->ptl = ptl;
3971	return true;
3972}
3973
3974void ptlock_free(struct page *page)
3975{
3976	kmem_cache_free(page_ptl_cachep, page->ptl);
3977}
3978#endif
v4.10.11
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/pfn_t.h>
  54#include <linux/writeback.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/kallsyms.h>
  58#include <linux/swapops.h>
  59#include <linux/elf.h>
  60#include <linux/gfp.h>
  61#include <linux/migrate.h>
  62#include <linux/string.h>
  63#include <linux/dma-debug.h>
  64#include <linux/debugfs.h>
  65#include <linux/userfaultfd_k.h>
  66#include <linux/dax.h>
  67
  68#include <asm/io.h>
  69#include <asm/mmu_context.h>
  70#include <asm/pgalloc.h>
  71#include <linux/uaccess.h>
  72#include <asm/tlb.h>
  73#include <asm/tlbflush.h>
  74#include <asm/pgtable.h>
  75
  76#include "internal.h"
  77
  78#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  79#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  80#endif
  81
  82#ifndef CONFIG_NEED_MULTIPLE_NODES
  83/* use the per-pgdat data instead for discontigmem - mbligh */
  84unsigned long max_mapnr;
  85struct page *mem_map;
  86
  87EXPORT_SYMBOL(max_mapnr);
  88EXPORT_SYMBOL(mem_map);
  89#endif
  90
  91/*
  92 * A number of key systems in x86 including ioremap() rely on the assumption
  93 * that high_memory defines the upper bound on direct map memory, then end
  94 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  96 * and ZONE_HIGHMEM.
  97 */
  98void * high_memory;
  99
 100EXPORT_SYMBOL(high_memory);
 101
 102/*
 103 * Randomize the address space (stacks, mmaps, brk, etc.).
 104 *
 105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 106 *   as ancient (libc5 based) binaries can segfault. )
 107 */
 108int randomize_va_space __read_mostly =
 109#ifdef CONFIG_COMPAT_BRK
 110					1;
 111#else
 112					2;
 113#endif
 114
 115static int __init disable_randmaps(char *s)
 116{
 117	randomize_va_space = 0;
 118	return 1;
 119}
 120__setup("norandmaps", disable_randmaps);
 121
 122unsigned long zero_pfn __read_mostly;
 123unsigned long highest_memmap_pfn __read_mostly;
 124
 125EXPORT_SYMBOL(zero_pfn);
 126
 127/*
 128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 129 */
 130static int __init init_zero_pfn(void)
 131{
 132	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 133	return 0;
 134}
 135core_initcall(init_zero_pfn);
 136
 137
 138#if defined(SPLIT_RSS_COUNTING)
 139
 140void sync_mm_rss(struct mm_struct *mm)
 141{
 142	int i;
 143
 144	for (i = 0; i < NR_MM_COUNTERS; i++) {
 145		if (current->rss_stat.count[i]) {
 146			add_mm_counter(mm, i, current->rss_stat.count[i]);
 147			current->rss_stat.count[i] = 0;
 148		}
 149	}
 150	current->rss_stat.events = 0;
 151}
 152
 153static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 154{
 155	struct task_struct *task = current;
 156
 157	if (likely(task->mm == mm))
 158		task->rss_stat.count[member] += val;
 159	else
 160		add_mm_counter(mm, member, val);
 161}
 162#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 163#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 164
 165/* sync counter once per 64 page faults */
 166#define TASK_RSS_EVENTS_THRESH	(64)
 167static void check_sync_rss_stat(struct task_struct *task)
 168{
 169	if (unlikely(task != current))
 170		return;
 171	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 172		sync_mm_rss(task->mm);
 173}
 174#else /* SPLIT_RSS_COUNTING */
 175
 176#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 177#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 178
 179static void check_sync_rss_stat(struct task_struct *task)
 180{
 181}
 182
 183#endif /* SPLIT_RSS_COUNTING */
 184
 185#ifdef HAVE_GENERIC_MMU_GATHER
 186
 187static bool tlb_next_batch(struct mmu_gather *tlb)
 188{
 189	struct mmu_gather_batch *batch;
 190
 191	batch = tlb->active;
 192	if (batch->next) {
 193		tlb->active = batch->next;
 194		return true;
 195	}
 196
 197	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 198		return false;
 199
 200	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 201	if (!batch)
 202		return false;
 203
 204	tlb->batch_count++;
 205	batch->next = NULL;
 206	batch->nr   = 0;
 207	batch->max  = MAX_GATHER_BATCH;
 208
 209	tlb->active->next = batch;
 210	tlb->active = batch;
 211
 212	return true;
 213}
 214
 215/* tlb_gather_mmu
 216 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 217 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 218 *	users and we're going to destroy the full address space (exit/execve).
 219 */
 220void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 221{
 222	tlb->mm = mm;
 223
 224	/* Is it from 0 to ~0? */
 225	tlb->fullmm     = !(start | (end+1));
 226	tlb->need_flush_all = 0;
 227	tlb->local.next = NULL;
 228	tlb->local.nr   = 0;
 229	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 230	tlb->active     = &tlb->local;
 231	tlb->batch_count = 0;
 232
 233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 234	tlb->batch = NULL;
 235#endif
 236	tlb->page_size = 0;
 237
 238	__tlb_reset_range(tlb);
 239}
 240
 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 242{
 243	if (!tlb->end)
 244		return;
 245
 246	tlb_flush(tlb);
 247	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 249	tlb_table_flush(tlb);
 250#endif
 251	__tlb_reset_range(tlb);
 252}
 253
 254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 255{
 256	struct mmu_gather_batch *batch;
 257
 258	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 259		free_pages_and_swap_cache(batch->pages, batch->nr);
 260		batch->nr = 0;
 261	}
 262	tlb->active = &tlb->local;
 263}
 264
 265void tlb_flush_mmu(struct mmu_gather *tlb)
 266{
 267	tlb_flush_mmu_tlbonly(tlb);
 268	tlb_flush_mmu_free(tlb);
 269}
 270
 271/* tlb_finish_mmu
 272 *	Called at the end of the shootdown operation to free up any resources
 273 *	that were required.
 274 */
 275void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 276{
 277	struct mmu_gather_batch *batch, *next;
 278
 279	tlb_flush_mmu(tlb);
 280
 281	/* keep the page table cache within bounds */
 282	check_pgt_cache();
 283
 284	for (batch = tlb->local.next; batch; batch = next) {
 285		next = batch->next;
 286		free_pages((unsigned long)batch, 0);
 287	}
 288	tlb->local.next = NULL;
 289}
 290
 291/* __tlb_remove_page
 292 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 293 *	handling the additional races in SMP caused by other CPUs caching valid
 294 *	mappings in their TLBs. Returns the number of free page slots left.
 295 *	When out of page slots we must call tlb_flush_mmu().
 296 *returns true if the caller should flush.
 297 */
 298bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
 299{
 300	struct mmu_gather_batch *batch;
 301
 302	VM_BUG_ON(!tlb->end);
 303	VM_WARN_ON(tlb->page_size != page_size);
 304
 305	batch = tlb->active;
 306	/*
 307	 * Add the page and check if we are full. If so
 308	 * force a flush.
 309	 */
 310	batch->pages[batch->nr++] = page;
 311	if (batch->nr == batch->max) {
 312		if (!tlb_next_batch(tlb))
 313			return true;
 314		batch = tlb->active;
 315	}
 316	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 317
 318	return false;
 319}
 320
 321#endif /* HAVE_GENERIC_MMU_GATHER */
 322
 323#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 324
 325/*
 326 * See the comment near struct mmu_table_batch.
 327 */
 328
 329static void tlb_remove_table_smp_sync(void *arg)
 330{
 331	/* Simply deliver the interrupt */
 332}
 333
 334static void tlb_remove_table_one(void *table)
 335{
 336	/*
 337	 * This isn't an RCU grace period and hence the page-tables cannot be
 338	 * assumed to be actually RCU-freed.
 339	 *
 340	 * It is however sufficient for software page-table walkers that rely on
 341	 * IRQ disabling. See the comment near struct mmu_table_batch.
 342	 */
 343	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 344	__tlb_remove_table(table);
 345}
 346
 347static void tlb_remove_table_rcu(struct rcu_head *head)
 348{
 349	struct mmu_table_batch *batch;
 350	int i;
 351
 352	batch = container_of(head, struct mmu_table_batch, rcu);
 353
 354	for (i = 0; i < batch->nr; i++)
 355		__tlb_remove_table(batch->tables[i]);
 356
 357	free_page((unsigned long)batch);
 358}
 359
 360void tlb_table_flush(struct mmu_gather *tlb)
 361{
 362	struct mmu_table_batch **batch = &tlb->batch;
 363
 364	if (*batch) {
 365		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 366		*batch = NULL;
 367	}
 368}
 369
 370void tlb_remove_table(struct mmu_gather *tlb, void *table)
 371{
 372	struct mmu_table_batch **batch = &tlb->batch;
 373
 374	/*
 375	 * When there's less then two users of this mm there cannot be a
 376	 * concurrent page-table walk.
 377	 */
 378	if (atomic_read(&tlb->mm->mm_users) < 2) {
 379		__tlb_remove_table(table);
 380		return;
 381	}
 382
 383	if (*batch == NULL) {
 384		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 385		if (*batch == NULL) {
 386			tlb_remove_table_one(table);
 387			return;
 388		}
 389		(*batch)->nr = 0;
 390	}
 391	(*batch)->tables[(*batch)->nr++] = table;
 392	if ((*batch)->nr == MAX_TABLE_BATCH)
 393		tlb_table_flush(tlb);
 394}
 395
 396#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 397
 398/*
 399 * Note: this doesn't free the actual pages themselves. That
 400 * has been handled earlier when unmapping all the memory regions.
 401 */
 402static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 403			   unsigned long addr)
 404{
 405	pgtable_t token = pmd_pgtable(*pmd);
 406	pmd_clear(pmd);
 407	pte_free_tlb(tlb, token, addr);
 408	atomic_long_dec(&tlb->mm->nr_ptes);
 409}
 410
 411static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 412				unsigned long addr, unsigned long end,
 413				unsigned long floor, unsigned long ceiling)
 414{
 415	pmd_t *pmd;
 416	unsigned long next;
 417	unsigned long start;
 418
 419	start = addr;
 420	pmd = pmd_offset(pud, addr);
 421	do {
 422		next = pmd_addr_end(addr, end);
 423		if (pmd_none_or_clear_bad(pmd))
 424			continue;
 425		free_pte_range(tlb, pmd, addr);
 426	} while (pmd++, addr = next, addr != end);
 427
 428	start &= PUD_MASK;
 429	if (start < floor)
 430		return;
 431	if (ceiling) {
 432		ceiling &= PUD_MASK;
 433		if (!ceiling)
 434			return;
 435	}
 436	if (end - 1 > ceiling - 1)
 437		return;
 438
 439	pmd = pmd_offset(pud, start);
 440	pud_clear(pud);
 441	pmd_free_tlb(tlb, pmd, start);
 442	mm_dec_nr_pmds(tlb->mm);
 443}
 444
 445static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 446				unsigned long addr, unsigned long end,
 447				unsigned long floor, unsigned long ceiling)
 448{
 449	pud_t *pud;
 450	unsigned long next;
 451	unsigned long start;
 452
 453	start = addr;
 454	pud = pud_offset(pgd, addr);
 455	do {
 456		next = pud_addr_end(addr, end);
 457		if (pud_none_or_clear_bad(pud))
 458			continue;
 459		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 460	} while (pud++, addr = next, addr != end);
 461
 462	start &= PGDIR_MASK;
 463	if (start < floor)
 464		return;
 465	if (ceiling) {
 466		ceiling &= PGDIR_MASK;
 467		if (!ceiling)
 468			return;
 469	}
 470	if (end - 1 > ceiling - 1)
 471		return;
 472
 473	pud = pud_offset(pgd, start);
 474	pgd_clear(pgd);
 475	pud_free_tlb(tlb, pud, start);
 476}
 477
 478/*
 479 * This function frees user-level page tables of a process.
 480 */
 481void free_pgd_range(struct mmu_gather *tlb,
 482			unsigned long addr, unsigned long end,
 483			unsigned long floor, unsigned long ceiling)
 484{
 485	pgd_t *pgd;
 486	unsigned long next;
 487
 488	/*
 489	 * The next few lines have given us lots of grief...
 490	 *
 491	 * Why are we testing PMD* at this top level?  Because often
 492	 * there will be no work to do at all, and we'd prefer not to
 493	 * go all the way down to the bottom just to discover that.
 494	 *
 495	 * Why all these "- 1"s?  Because 0 represents both the bottom
 496	 * of the address space and the top of it (using -1 for the
 497	 * top wouldn't help much: the masks would do the wrong thing).
 498	 * The rule is that addr 0 and floor 0 refer to the bottom of
 499	 * the address space, but end 0 and ceiling 0 refer to the top
 500	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 501	 * that end 0 case should be mythical).
 502	 *
 503	 * Wherever addr is brought up or ceiling brought down, we must
 504	 * be careful to reject "the opposite 0" before it confuses the
 505	 * subsequent tests.  But what about where end is brought down
 506	 * by PMD_SIZE below? no, end can't go down to 0 there.
 507	 *
 508	 * Whereas we round start (addr) and ceiling down, by different
 509	 * masks at different levels, in order to test whether a table
 510	 * now has no other vmas using it, so can be freed, we don't
 511	 * bother to round floor or end up - the tests don't need that.
 512	 */
 513
 514	addr &= PMD_MASK;
 515	if (addr < floor) {
 516		addr += PMD_SIZE;
 517		if (!addr)
 518			return;
 519	}
 520	if (ceiling) {
 521		ceiling &= PMD_MASK;
 522		if (!ceiling)
 523			return;
 524	}
 525	if (end - 1 > ceiling - 1)
 526		end -= PMD_SIZE;
 527	if (addr > end - 1)
 528		return;
 529	/*
 530	 * We add page table cache pages with PAGE_SIZE,
 531	 * (see pte_free_tlb()), flush the tlb if we need
 532	 */
 533	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
 534	pgd = pgd_offset(tlb->mm, addr);
 535	do {
 536		next = pgd_addr_end(addr, end);
 537		if (pgd_none_or_clear_bad(pgd))
 538			continue;
 539		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 540	} while (pgd++, addr = next, addr != end);
 541}
 542
 543void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 544		unsigned long floor, unsigned long ceiling)
 545{
 546	while (vma) {
 547		struct vm_area_struct *next = vma->vm_next;
 548		unsigned long addr = vma->vm_start;
 549
 550		/*
 551		 * Hide vma from rmap and truncate_pagecache before freeing
 552		 * pgtables
 553		 */
 554		unlink_anon_vmas(vma);
 555		unlink_file_vma(vma);
 556
 557		if (is_vm_hugetlb_page(vma)) {
 558			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 559				floor, next? next->vm_start: ceiling);
 560		} else {
 561			/*
 562			 * Optimization: gather nearby vmas into one call down
 563			 */
 564			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 565			       && !is_vm_hugetlb_page(next)) {
 566				vma = next;
 567				next = vma->vm_next;
 568				unlink_anon_vmas(vma);
 569				unlink_file_vma(vma);
 570			}
 571			free_pgd_range(tlb, addr, vma->vm_end,
 572				floor, next? next->vm_start: ceiling);
 573		}
 574		vma = next;
 575	}
 576}
 577
 578int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 579{
 580	spinlock_t *ptl;
 581	pgtable_t new = pte_alloc_one(mm, address);
 582	if (!new)
 583		return -ENOMEM;
 584
 585	/*
 586	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 587	 * visible before the pte is made visible to other CPUs by being
 588	 * put into page tables.
 589	 *
 590	 * The other side of the story is the pointer chasing in the page
 591	 * table walking code (when walking the page table without locking;
 592	 * ie. most of the time). Fortunately, these data accesses consist
 593	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 594	 * being the notable exception) will already guarantee loads are
 595	 * seen in-order. See the alpha page table accessors for the
 596	 * smp_read_barrier_depends() barriers in page table walking code.
 597	 */
 598	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 599
 600	ptl = pmd_lock(mm, pmd);
 601	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 602		atomic_long_inc(&mm->nr_ptes);
 603		pmd_populate(mm, pmd, new);
 604		new = NULL;
 605	}
 606	spin_unlock(ptl);
 607	if (new)
 608		pte_free(mm, new);
 609	return 0;
 610}
 611
 612int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 613{
 614	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 615	if (!new)
 616		return -ENOMEM;
 617
 618	smp_wmb(); /* See comment in __pte_alloc */
 619
 620	spin_lock(&init_mm.page_table_lock);
 621	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 622		pmd_populate_kernel(&init_mm, pmd, new);
 623		new = NULL;
 624	}
 625	spin_unlock(&init_mm.page_table_lock);
 626	if (new)
 627		pte_free_kernel(&init_mm, new);
 628	return 0;
 629}
 630
 631static inline void init_rss_vec(int *rss)
 632{
 633	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 634}
 635
 636static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 637{
 638	int i;
 639
 640	if (current->mm == mm)
 641		sync_mm_rss(mm);
 642	for (i = 0; i < NR_MM_COUNTERS; i++)
 643		if (rss[i])
 644			add_mm_counter(mm, i, rss[i]);
 645}
 646
 647/*
 648 * This function is called to print an error when a bad pte
 649 * is found. For example, we might have a PFN-mapped pte in
 650 * a region that doesn't allow it.
 651 *
 652 * The calling function must still handle the error.
 653 */
 654static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 655			  pte_t pte, struct page *page)
 656{
 657	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 658	pud_t *pud = pud_offset(pgd, addr);
 659	pmd_t *pmd = pmd_offset(pud, addr);
 660	struct address_space *mapping;
 661	pgoff_t index;
 662	static unsigned long resume;
 663	static unsigned long nr_shown;
 664	static unsigned long nr_unshown;
 665
 666	/*
 667	 * Allow a burst of 60 reports, then keep quiet for that minute;
 668	 * or allow a steady drip of one report per second.
 669	 */
 670	if (nr_shown == 60) {
 671		if (time_before(jiffies, resume)) {
 672			nr_unshown++;
 673			return;
 674		}
 675		if (nr_unshown) {
 676			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 677				 nr_unshown);
 678			nr_unshown = 0;
 679		}
 680		nr_shown = 0;
 681	}
 682	if (nr_shown++ == 0)
 683		resume = jiffies + 60 * HZ;
 684
 685	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 686	index = linear_page_index(vma, addr);
 687
 688	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 689		 current->comm,
 690		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 691	if (page)
 692		dump_page(page, "bad pte");
 693	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 694		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 695	/*
 696	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 697	 */
 698	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 699		 vma->vm_file,
 700		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 701		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 702		 mapping ? mapping->a_ops->readpage : NULL);
 703	dump_stack();
 704	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 705}
 706
 707/*
 708 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 709 *
 710 * "Special" mappings do not wish to be associated with a "struct page" (either
 711 * it doesn't exist, or it exists but they don't want to touch it). In this
 712 * case, NULL is returned here. "Normal" mappings do have a struct page.
 713 *
 714 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 715 * pte bit, in which case this function is trivial. Secondly, an architecture
 716 * may not have a spare pte bit, which requires a more complicated scheme,
 717 * described below.
 718 *
 719 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 720 * special mapping (even if there are underlying and valid "struct pages").
 721 * COWed pages of a VM_PFNMAP are always normal.
 722 *
 723 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 724 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 725 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 726 * mapping will always honor the rule
 727 *
 728 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 729 *
 730 * And for normal mappings this is false.
 731 *
 732 * This restricts such mappings to be a linear translation from virtual address
 733 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 734 * as the vma is not a COW mapping; in that case, we know that all ptes are
 735 * special (because none can have been COWed).
 736 *
 737 *
 738 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 739 *
 740 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 741 * page" backing, however the difference is that _all_ pages with a struct
 742 * page (that is, those where pfn_valid is true) are refcounted and considered
 743 * normal pages by the VM. The disadvantage is that pages are refcounted
 744 * (which can be slower and simply not an option for some PFNMAP users). The
 745 * advantage is that we don't have to follow the strict linearity rule of
 746 * PFNMAP mappings in order to support COWable mappings.
 747 *
 748 */
 749#ifdef __HAVE_ARCH_PTE_SPECIAL
 750# define HAVE_PTE_SPECIAL 1
 751#else
 752# define HAVE_PTE_SPECIAL 0
 753#endif
 754struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 755				pte_t pte)
 756{
 757	unsigned long pfn = pte_pfn(pte);
 758
 759	if (HAVE_PTE_SPECIAL) {
 760		if (likely(!pte_special(pte)))
 761			goto check_pfn;
 762		if (vma->vm_ops && vma->vm_ops->find_special_page)
 763			return vma->vm_ops->find_special_page(vma, addr);
 764		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 765			return NULL;
 766		if (!is_zero_pfn(pfn))
 767			print_bad_pte(vma, addr, pte, NULL);
 768		return NULL;
 769	}
 770
 771	/* !HAVE_PTE_SPECIAL case follows: */
 772
 773	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 774		if (vma->vm_flags & VM_MIXEDMAP) {
 775			if (!pfn_valid(pfn))
 776				return NULL;
 777			goto out;
 778		} else {
 779			unsigned long off;
 780			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 781			if (pfn == vma->vm_pgoff + off)
 782				return NULL;
 783			if (!is_cow_mapping(vma->vm_flags))
 784				return NULL;
 785		}
 786	}
 787
 788	if (is_zero_pfn(pfn))
 789		return NULL;
 790check_pfn:
 791	if (unlikely(pfn > highest_memmap_pfn)) {
 792		print_bad_pte(vma, addr, pte, NULL);
 793		return NULL;
 794	}
 795
 796	/*
 797	 * NOTE! We still have PageReserved() pages in the page tables.
 798	 * eg. VDSO mappings can cause them to exist.
 799	 */
 800out:
 801	return pfn_to_page(pfn);
 802}
 803
 804#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 805struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 806				pmd_t pmd)
 807{
 808	unsigned long pfn = pmd_pfn(pmd);
 809
 810	/*
 811	 * There is no pmd_special() but there may be special pmds, e.g.
 812	 * in a direct-access (dax) mapping, so let's just replicate the
 813	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 814	 */
 815	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 816		if (vma->vm_flags & VM_MIXEDMAP) {
 817			if (!pfn_valid(pfn))
 818				return NULL;
 819			goto out;
 820		} else {
 821			unsigned long off;
 822			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 823			if (pfn == vma->vm_pgoff + off)
 824				return NULL;
 825			if (!is_cow_mapping(vma->vm_flags))
 826				return NULL;
 827		}
 828	}
 829
 830	if (is_zero_pfn(pfn))
 831		return NULL;
 832	if (unlikely(pfn > highest_memmap_pfn))
 833		return NULL;
 834
 835	/*
 836	 * NOTE! We still have PageReserved() pages in the page tables.
 837	 * eg. VDSO mappings can cause them to exist.
 838	 */
 839out:
 840	return pfn_to_page(pfn);
 841}
 842#endif
 843
 844/*
 845 * copy one vm_area from one task to the other. Assumes the page tables
 846 * already present in the new task to be cleared in the whole range
 847 * covered by this vma.
 848 */
 849
 850static inline unsigned long
 851copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 852		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 853		unsigned long addr, int *rss)
 854{
 855	unsigned long vm_flags = vma->vm_flags;
 856	pte_t pte = *src_pte;
 857	struct page *page;
 858
 859	/* pte contains position in swap or file, so copy. */
 860	if (unlikely(!pte_present(pte))) {
 861		swp_entry_t entry = pte_to_swp_entry(pte);
 862
 863		if (likely(!non_swap_entry(entry))) {
 864			if (swap_duplicate(entry) < 0)
 865				return entry.val;
 866
 867			/* make sure dst_mm is on swapoff's mmlist. */
 868			if (unlikely(list_empty(&dst_mm->mmlist))) {
 869				spin_lock(&mmlist_lock);
 870				if (list_empty(&dst_mm->mmlist))
 871					list_add(&dst_mm->mmlist,
 872							&src_mm->mmlist);
 873				spin_unlock(&mmlist_lock);
 874			}
 875			rss[MM_SWAPENTS]++;
 876		} else if (is_migration_entry(entry)) {
 877			page = migration_entry_to_page(entry);
 878
 879			rss[mm_counter(page)]++;
 880
 881			if (is_write_migration_entry(entry) &&
 882					is_cow_mapping(vm_flags)) {
 883				/*
 884				 * COW mappings require pages in both
 885				 * parent and child to be set to read.
 886				 */
 887				make_migration_entry_read(&entry);
 888				pte = swp_entry_to_pte(entry);
 889				if (pte_swp_soft_dirty(*src_pte))
 890					pte = pte_swp_mksoft_dirty(pte);
 891				set_pte_at(src_mm, addr, src_pte, pte);
 892			}
 893		}
 894		goto out_set_pte;
 895	}
 896
 897	/*
 898	 * If it's a COW mapping, write protect it both
 899	 * in the parent and the child
 900	 */
 901	if (is_cow_mapping(vm_flags)) {
 902		ptep_set_wrprotect(src_mm, addr, src_pte);
 903		pte = pte_wrprotect(pte);
 904	}
 905
 906	/*
 907	 * If it's a shared mapping, mark it clean in
 908	 * the child
 909	 */
 910	if (vm_flags & VM_SHARED)
 911		pte = pte_mkclean(pte);
 912	pte = pte_mkold(pte);
 913
 914	page = vm_normal_page(vma, addr, pte);
 915	if (page) {
 916		get_page(page);
 917		page_dup_rmap(page, false);
 918		rss[mm_counter(page)]++;
 919	}
 920
 921out_set_pte:
 922	set_pte_at(dst_mm, addr, dst_pte, pte);
 923	return 0;
 924}
 925
 926static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 927		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 928		   unsigned long addr, unsigned long end)
 929{
 930	pte_t *orig_src_pte, *orig_dst_pte;
 931	pte_t *src_pte, *dst_pte;
 932	spinlock_t *src_ptl, *dst_ptl;
 933	int progress = 0;
 934	int rss[NR_MM_COUNTERS];
 935	swp_entry_t entry = (swp_entry_t){0};
 936
 937again:
 938	init_rss_vec(rss);
 939
 940	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 941	if (!dst_pte)
 942		return -ENOMEM;
 943	src_pte = pte_offset_map(src_pmd, addr);
 944	src_ptl = pte_lockptr(src_mm, src_pmd);
 945	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 946	orig_src_pte = src_pte;
 947	orig_dst_pte = dst_pte;
 948	arch_enter_lazy_mmu_mode();
 949
 950	do {
 951		/*
 952		 * We are holding two locks at this point - either of them
 953		 * could generate latencies in another task on another CPU.
 954		 */
 955		if (progress >= 32) {
 956			progress = 0;
 957			if (need_resched() ||
 958			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 959				break;
 960		}
 961		if (pte_none(*src_pte)) {
 962			progress++;
 963			continue;
 964		}
 965		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 966							vma, addr, rss);
 967		if (entry.val)
 968			break;
 969		progress += 8;
 970	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 971
 972	arch_leave_lazy_mmu_mode();
 973	spin_unlock(src_ptl);
 974	pte_unmap(orig_src_pte);
 975	add_mm_rss_vec(dst_mm, rss);
 976	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 977	cond_resched();
 978
 979	if (entry.val) {
 980		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 981			return -ENOMEM;
 982		progress = 0;
 983	}
 984	if (addr != end)
 985		goto again;
 986	return 0;
 987}
 988
 989static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 990		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 991		unsigned long addr, unsigned long end)
 992{
 993	pmd_t *src_pmd, *dst_pmd;
 994	unsigned long next;
 995
 996	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 997	if (!dst_pmd)
 998		return -ENOMEM;
 999	src_pmd = pmd_offset(src_pud, addr);
1000	do {
1001		next = pmd_addr_end(addr, end);
1002		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1003			int err;
1004			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1005			err = copy_huge_pmd(dst_mm, src_mm,
1006					    dst_pmd, src_pmd, addr, vma);
1007			if (err == -ENOMEM)
1008				return -ENOMEM;
1009			if (!err)
1010				continue;
1011			/* fall through */
1012		}
1013		if (pmd_none_or_clear_bad(src_pmd))
1014			continue;
1015		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1016						vma, addr, next))
1017			return -ENOMEM;
1018	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1019	return 0;
1020}
1021
1022static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1024		unsigned long addr, unsigned long end)
1025{
1026	pud_t *src_pud, *dst_pud;
1027	unsigned long next;
1028
1029	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1030	if (!dst_pud)
1031		return -ENOMEM;
1032	src_pud = pud_offset(src_pgd, addr);
1033	do {
1034		next = pud_addr_end(addr, end);
1035		if (pud_none_or_clear_bad(src_pud))
1036			continue;
1037		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1038						vma, addr, next))
1039			return -ENOMEM;
1040	} while (dst_pud++, src_pud++, addr = next, addr != end);
1041	return 0;
1042}
1043
1044int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045		struct vm_area_struct *vma)
1046{
1047	pgd_t *src_pgd, *dst_pgd;
1048	unsigned long next;
1049	unsigned long addr = vma->vm_start;
1050	unsigned long end = vma->vm_end;
1051	unsigned long mmun_start;	/* For mmu_notifiers */
1052	unsigned long mmun_end;		/* For mmu_notifiers */
1053	bool is_cow;
1054	int ret;
1055
1056	/*
1057	 * Don't copy ptes where a page fault will fill them correctly.
1058	 * Fork becomes much lighter when there are big shared or private
1059	 * readonly mappings. The tradeoff is that copy_page_range is more
1060	 * efficient than faulting.
1061	 */
1062	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1063			!vma->anon_vma)
1064		return 0;
1065
1066	if (is_vm_hugetlb_page(vma))
1067		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1068
1069	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1070		/*
1071		 * We do not free on error cases below as remove_vma
1072		 * gets called on error from higher level routine
1073		 */
1074		ret = track_pfn_copy(vma);
1075		if (ret)
1076			return ret;
1077	}
1078
1079	/*
1080	 * We need to invalidate the secondary MMU mappings only when
1081	 * there could be a permission downgrade on the ptes of the
1082	 * parent mm. And a permission downgrade will only happen if
1083	 * is_cow_mapping() returns true.
1084	 */
1085	is_cow = is_cow_mapping(vma->vm_flags);
1086	mmun_start = addr;
1087	mmun_end   = end;
1088	if (is_cow)
1089		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1090						    mmun_end);
1091
1092	ret = 0;
1093	dst_pgd = pgd_offset(dst_mm, addr);
1094	src_pgd = pgd_offset(src_mm, addr);
1095	do {
1096		next = pgd_addr_end(addr, end);
1097		if (pgd_none_or_clear_bad(src_pgd))
1098			continue;
1099		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100					    vma, addr, next))) {
1101			ret = -ENOMEM;
1102			break;
1103		}
1104	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1105
1106	if (is_cow)
1107		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1108	return ret;
1109}
1110
1111static unsigned long zap_pte_range(struct mmu_gather *tlb,
1112				struct vm_area_struct *vma, pmd_t *pmd,
1113				unsigned long addr, unsigned long end,
1114				struct zap_details *details)
1115{
1116	struct mm_struct *mm = tlb->mm;
1117	int force_flush = 0;
1118	int rss[NR_MM_COUNTERS];
1119	spinlock_t *ptl;
1120	pte_t *start_pte;
1121	pte_t *pte;
1122	swp_entry_t entry;
1123
1124	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1125again:
1126	init_rss_vec(rss);
1127	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1128	pte = start_pte;
1129	arch_enter_lazy_mmu_mode();
1130	do {
1131		pte_t ptent = *pte;
1132		if (pte_none(ptent)) {
1133			continue;
1134		}
1135
1136		if (pte_present(ptent)) {
1137			struct page *page;
1138
1139			page = vm_normal_page(vma, addr, ptent);
1140			if (unlikely(details) && page) {
1141				/*
1142				 * unmap_shared_mapping_pages() wants to
1143				 * invalidate cache without truncating:
1144				 * unmap shared but keep private pages.
1145				 */
1146				if (details->check_mapping &&
1147				    details->check_mapping != page_rmapping(page))
1148					continue;
1149			}
1150			ptent = ptep_get_and_clear_full(mm, addr, pte,
1151							tlb->fullmm);
1152			tlb_remove_tlb_entry(tlb, pte, addr);
1153			if (unlikely(!page))
1154				continue;
1155
1156			if (!PageAnon(page)) {
1157				if (pte_dirty(ptent)) {
1158					/*
1159					 * oom_reaper cannot tear down dirty
1160					 * pages
1161					 */
1162					if (unlikely(details && details->ignore_dirty))
1163						continue;
1164					force_flush = 1;
1165					set_page_dirty(page);
1166				}
1167				if (pte_young(ptent) &&
1168				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1169					mark_page_accessed(page);
1170			}
1171			rss[mm_counter(page)]--;
1172			page_remove_rmap(page, false);
1173			if (unlikely(page_mapcount(page) < 0))
1174				print_bad_pte(vma, addr, ptent, page);
1175			if (unlikely(__tlb_remove_page(tlb, page))) {
1176				force_flush = 1;
1177				addr += PAGE_SIZE;
1178				break;
1179			}
1180			continue;
1181		}
1182		/* only check swap_entries if explicitly asked for in details */
1183		if (unlikely(details && !details->check_swap_entries))
1184			continue;
1185
1186		entry = pte_to_swp_entry(ptent);
1187		if (!non_swap_entry(entry))
1188			rss[MM_SWAPENTS]--;
1189		else if (is_migration_entry(entry)) {
1190			struct page *page;
1191
1192			page = migration_entry_to_page(entry);
1193			rss[mm_counter(page)]--;
1194		}
1195		if (unlikely(!free_swap_and_cache(entry)))
1196			print_bad_pte(vma, addr, ptent, NULL);
1197		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198	} while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200	add_mm_rss_vec(mm, rss);
1201	arch_leave_lazy_mmu_mode();
1202
1203	/* Do the actual TLB flush before dropping ptl */
1204	if (force_flush)
1205		tlb_flush_mmu_tlbonly(tlb);
1206	pte_unmap_unlock(start_pte, ptl);
1207
1208	/*
1209	 * If we forced a TLB flush (either due to running out of
1210	 * batch buffers or because we needed to flush dirty TLB
1211	 * entries before releasing the ptl), free the batched
1212	 * memory too. Restart if we didn't do everything.
1213	 */
1214	if (force_flush) {
1215		force_flush = 0;
1216		tlb_flush_mmu_free(tlb);
 
1217		if (addr != end)
1218			goto again;
1219	}
1220
1221	return addr;
1222}
1223
1224static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225				struct vm_area_struct *vma, pud_t *pud,
1226				unsigned long addr, unsigned long end,
1227				struct zap_details *details)
1228{
1229	pmd_t *pmd;
1230	unsigned long next;
1231
1232	pmd = pmd_offset(pud, addr);
1233	do {
1234		next = pmd_addr_end(addr, end);
1235		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1236			if (next - addr != HPAGE_PMD_SIZE) {
1237				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1238				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1239				__split_huge_pmd(vma, pmd, addr, false, NULL);
1240			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1241				goto next;
1242			/* fall through */
1243		}
1244		/*
1245		 * Here there can be other concurrent MADV_DONTNEED or
1246		 * trans huge page faults running, and if the pmd is
1247		 * none or trans huge it can change under us. This is
1248		 * because MADV_DONTNEED holds the mmap_sem in read
1249		 * mode.
1250		 */
1251		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1252			goto next;
1253		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1254next:
1255		cond_resched();
1256	} while (pmd++, addr = next, addr != end);
1257
1258	return addr;
1259}
1260
1261static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1262				struct vm_area_struct *vma, pgd_t *pgd,
1263				unsigned long addr, unsigned long end,
1264				struct zap_details *details)
1265{
1266	pud_t *pud;
1267	unsigned long next;
1268
1269	pud = pud_offset(pgd, addr);
1270	do {
1271		next = pud_addr_end(addr, end);
1272		if (pud_none_or_clear_bad(pud))
1273			continue;
1274		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1275	} while (pud++, addr = next, addr != end);
1276
1277	return addr;
1278}
1279
1280void unmap_page_range(struct mmu_gather *tlb,
1281			     struct vm_area_struct *vma,
1282			     unsigned long addr, unsigned long end,
1283			     struct zap_details *details)
1284{
1285	pgd_t *pgd;
1286	unsigned long next;
1287
1288	BUG_ON(addr >= end);
1289	tlb_start_vma(tlb, vma);
1290	pgd = pgd_offset(vma->vm_mm, addr);
1291	do {
1292		next = pgd_addr_end(addr, end);
1293		if (pgd_none_or_clear_bad(pgd))
1294			continue;
1295		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1296	} while (pgd++, addr = next, addr != end);
1297	tlb_end_vma(tlb, vma);
1298}
1299
1300
1301static void unmap_single_vma(struct mmu_gather *tlb,
1302		struct vm_area_struct *vma, unsigned long start_addr,
1303		unsigned long end_addr,
1304		struct zap_details *details)
1305{
1306	unsigned long start = max(vma->vm_start, start_addr);
1307	unsigned long end;
1308
1309	if (start >= vma->vm_end)
1310		return;
1311	end = min(vma->vm_end, end_addr);
1312	if (end <= vma->vm_start)
1313		return;
1314
1315	if (vma->vm_file)
1316		uprobe_munmap(vma, start, end);
1317
1318	if (unlikely(vma->vm_flags & VM_PFNMAP))
1319		untrack_pfn(vma, 0, 0);
1320
1321	if (start != end) {
1322		if (unlikely(is_vm_hugetlb_page(vma))) {
1323			/*
1324			 * It is undesirable to test vma->vm_file as it
1325			 * should be non-null for valid hugetlb area.
1326			 * However, vm_file will be NULL in the error
1327			 * cleanup path of mmap_region. When
1328			 * hugetlbfs ->mmap method fails,
1329			 * mmap_region() nullifies vma->vm_file
1330			 * before calling this function to clean up.
1331			 * Since no pte has actually been setup, it is
1332			 * safe to do nothing in this case.
1333			 */
1334			if (vma->vm_file) {
1335				i_mmap_lock_write(vma->vm_file->f_mapping);
1336				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1337				i_mmap_unlock_write(vma->vm_file->f_mapping);
1338			}
1339		} else
1340			unmap_page_range(tlb, vma, start, end, details);
1341	}
1342}
1343
1344/**
1345 * unmap_vmas - unmap a range of memory covered by a list of vma's
1346 * @tlb: address of the caller's struct mmu_gather
1347 * @vma: the starting vma
1348 * @start_addr: virtual address at which to start unmapping
1349 * @end_addr: virtual address at which to end unmapping
1350 *
1351 * Unmap all pages in the vma list.
1352 *
1353 * Only addresses between `start' and `end' will be unmapped.
1354 *
1355 * The VMA list must be sorted in ascending virtual address order.
1356 *
1357 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1358 * range after unmap_vmas() returns.  So the only responsibility here is to
1359 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1360 * drops the lock and schedules.
1361 */
1362void unmap_vmas(struct mmu_gather *tlb,
1363		struct vm_area_struct *vma, unsigned long start_addr,
1364		unsigned long end_addr)
1365{
1366	struct mm_struct *mm = vma->vm_mm;
1367
1368	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1369	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1370		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1371	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1372}
1373
1374/**
1375 * zap_page_range - remove user pages in a given range
1376 * @vma: vm_area_struct holding the applicable pages
1377 * @start: starting address of pages to zap
1378 * @size: number of bytes to zap
1379 * @details: details of shared cache invalidation
1380 *
1381 * Caller must protect the VMA list
1382 */
1383void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1384		unsigned long size, struct zap_details *details)
1385{
1386	struct mm_struct *mm = vma->vm_mm;
1387	struct mmu_gather tlb;
1388	unsigned long end = start + size;
1389
1390	lru_add_drain();
1391	tlb_gather_mmu(&tlb, mm, start, end);
1392	update_hiwater_rss(mm);
1393	mmu_notifier_invalidate_range_start(mm, start, end);
1394	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1395		unmap_single_vma(&tlb, vma, start, end, details);
1396	mmu_notifier_invalidate_range_end(mm, start, end);
1397	tlb_finish_mmu(&tlb, start, end);
1398}
1399
1400/**
1401 * zap_page_range_single - remove user pages in a given range
1402 * @vma: vm_area_struct holding the applicable pages
1403 * @address: starting address of pages to zap
1404 * @size: number of bytes to zap
1405 * @details: details of shared cache invalidation
1406 *
1407 * The range must fit into one VMA.
1408 */
1409static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1410		unsigned long size, struct zap_details *details)
1411{
1412	struct mm_struct *mm = vma->vm_mm;
1413	struct mmu_gather tlb;
1414	unsigned long end = address + size;
1415
1416	lru_add_drain();
1417	tlb_gather_mmu(&tlb, mm, address, end);
1418	update_hiwater_rss(mm);
1419	mmu_notifier_invalidate_range_start(mm, address, end);
1420	unmap_single_vma(&tlb, vma, address, end, details);
1421	mmu_notifier_invalidate_range_end(mm, address, end);
1422	tlb_finish_mmu(&tlb, address, end);
1423}
1424
1425/**
1426 * zap_vma_ptes - remove ptes mapping the vma
1427 * @vma: vm_area_struct holding ptes to be zapped
1428 * @address: starting address of pages to zap
1429 * @size: number of bytes to zap
1430 *
1431 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432 *
1433 * The entire address range must be fully contained within the vma.
1434 *
1435 * Returns 0 if successful.
1436 */
1437int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1438		unsigned long size)
1439{
1440	if (address < vma->vm_start || address + size > vma->vm_end ||
1441	    		!(vma->vm_flags & VM_PFNMAP))
1442		return -1;
1443	zap_page_range_single(vma, address, size, NULL);
1444	return 0;
1445}
1446EXPORT_SYMBOL_GPL(zap_vma_ptes);
1447
1448pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1449			spinlock_t **ptl)
1450{
1451	pgd_t * pgd = pgd_offset(mm, addr);
1452	pud_t * pud = pud_alloc(mm, pgd, addr);
1453	if (pud) {
1454		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1455		if (pmd) {
1456			VM_BUG_ON(pmd_trans_huge(*pmd));
1457			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1458		}
1459	}
1460	return NULL;
1461}
1462
1463/*
1464 * This is the old fallback for page remapping.
1465 *
1466 * For historical reasons, it only allows reserved pages. Only
1467 * old drivers should use this, and they needed to mark their
1468 * pages reserved for the old functions anyway.
1469 */
1470static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1471			struct page *page, pgprot_t prot)
1472{
1473	struct mm_struct *mm = vma->vm_mm;
1474	int retval;
1475	pte_t *pte;
1476	spinlock_t *ptl;
1477
1478	retval = -EINVAL;
1479	if (PageAnon(page))
1480		goto out;
1481	retval = -ENOMEM;
1482	flush_dcache_page(page);
1483	pte = get_locked_pte(mm, addr, &ptl);
1484	if (!pte)
1485		goto out;
1486	retval = -EBUSY;
1487	if (!pte_none(*pte))
1488		goto out_unlock;
1489
1490	/* Ok, finally just insert the thing.. */
1491	get_page(page);
1492	inc_mm_counter_fast(mm, mm_counter_file(page));
1493	page_add_file_rmap(page, false);
1494	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1495
1496	retval = 0;
1497	pte_unmap_unlock(pte, ptl);
1498	return retval;
1499out_unlock:
1500	pte_unmap_unlock(pte, ptl);
1501out:
1502	return retval;
1503}
1504
1505/**
1506 * vm_insert_page - insert single page into user vma
1507 * @vma: user vma to map to
1508 * @addr: target user address of this page
1509 * @page: source kernel page
1510 *
1511 * This allows drivers to insert individual pages they've allocated
1512 * into a user vma.
1513 *
1514 * The page has to be a nice clean _individual_ kernel allocation.
1515 * If you allocate a compound page, you need to have marked it as
1516 * such (__GFP_COMP), or manually just split the page up yourself
1517 * (see split_page()).
1518 *
1519 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1520 * took an arbitrary page protection parameter. This doesn't allow
1521 * that. Your vma protection will have to be set up correctly, which
1522 * means that if you want a shared writable mapping, you'd better
1523 * ask for a shared writable mapping!
1524 *
1525 * The page does not need to be reserved.
1526 *
1527 * Usually this function is called from f_op->mmap() handler
1528 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1529 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1530 * function from other places, for example from page-fault handler.
1531 */
1532int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1533			struct page *page)
1534{
1535	if (addr < vma->vm_start || addr >= vma->vm_end)
1536		return -EFAULT;
1537	if (!page_count(page))
1538		return -EINVAL;
1539	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1540		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1541		BUG_ON(vma->vm_flags & VM_PFNMAP);
1542		vma->vm_flags |= VM_MIXEDMAP;
1543	}
1544	return insert_page(vma, addr, page, vma->vm_page_prot);
1545}
1546EXPORT_SYMBOL(vm_insert_page);
1547
1548static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1549			pfn_t pfn, pgprot_t prot)
1550{
1551	struct mm_struct *mm = vma->vm_mm;
1552	int retval;
1553	pte_t *pte, entry;
1554	spinlock_t *ptl;
1555
1556	retval = -ENOMEM;
1557	pte = get_locked_pte(mm, addr, &ptl);
1558	if (!pte)
1559		goto out;
1560	retval = -EBUSY;
1561	if (!pte_none(*pte))
1562		goto out_unlock;
1563
1564	/* Ok, finally just insert the thing.. */
1565	if (pfn_t_devmap(pfn))
1566		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1567	else
1568		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1569	set_pte_at(mm, addr, pte, entry);
1570	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1571
1572	retval = 0;
1573out_unlock:
1574	pte_unmap_unlock(pte, ptl);
1575out:
1576	return retval;
1577}
1578
1579/**
1580 * vm_insert_pfn - insert single pfn into user vma
1581 * @vma: user vma to map to
1582 * @addr: target user address of this page
1583 * @pfn: source kernel pfn
1584 *
1585 * Similar to vm_insert_page, this allows drivers to insert individual pages
1586 * they've allocated into a user vma. Same comments apply.
1587 *
1588 * This function should only be called from a vm_ops->fault handler, and
1589 * in that case the handler should return NULL.
1590 *
1591 * vma cannot be a COW mapping.
1592 *
1593 * As this is called only for pages that do not currently exist, we
1594 * do not need to flush old virtual caches or the TLB.
1595 */
1596int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1597			unsigned long pfn)
1598{
1599	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1600}
1601EXPORT_SYMBOL(vm_insert_pfn);
1602
1603/**
1604 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1605 * @vma: user vma to map to
1606 * @addr: target user address of this page
1607 * @pfn: source kernel pfn
1608 * @pgprot: pgprot flags for the inserted page
1609 *
1610 * This is exactly like vm_insert_pfn, except that it allows drivers to
1611 * to override pgprot on a per-page basis.
1612 *
1613 * This only makes sense for IO mappings, and it makes no sense for
1614 * cow mappings.  In general, using multiple vmas is preferable;
1615 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1616 * impractical.
1617 */
1618int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1619			unsigned long pfn, pgprot_t pgprot)
1620{
1621	int ret;
1622	/*
1623	 * Technically, architectures with pte_special can avoid all these
1624	 * restrictions (same for remap_pfn_range).  However we would like
1625	 * consistency in testing and feature parity among all, so we should
1626	 * try to keep these invariants in place for everybody.
1627	 */
1628	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1629	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1630						(VM_PFNMAP|VM_MIXEDMAP));
1631	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1632	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1633
1634	if (addr < vma->vm_start || addr >= vma->vm_end)
1635		return -EFAULT;
1636
1637	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1638
1639	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1640
1641	return ret;
1642}
1643EXPORT_SYMBOL(vm_insert_pfn_prot);
1644
1645int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1646			pfn_t pfn)
1647{
1648	pgprot_t pgprot = vma->vm_page_prot;
1649
1650	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1651
1652	if (addr < vma->vm_start || addr >= vma->vm_end)
1653		return -EFAULT;
1654
1655	track_pfn_insert(vma, &pgprot, pfn);
1656
1657	/*
1658	 * If we don't have pte special, then we have to use the pfn_valid()
1659	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1660	 * refcount the page if pfn_valid is true (hence insert_page rather
1661	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1662	 * without pte special, it would there be refcounted as a normal page.
1663	 */
1664	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1665		struct page *page;
1666
1667		/*
1668		 * At this point we are committed to insert_page()
1669		 * regardless of whether the caller specified flags that
1670		 * result in pfn_t_has_page() == false.
1671		 */
1672		page = pfn_to_page(pfn_t_to_pfn(pfn));
1673		return insert_page(vma, addr, page, pgprot);
1674	}
1675	return insert_pfn(vma, addr, pfn, pgprot);
1676}
1677EXPORT_SYMBOL(vm_insert_mixed);
1678
1679/*
1680 * maps a range of physical memory into the requested pages. the old
1681 * mappings are removed. any references to nonexistent pages results
1682 * in null mappings (currently treated as "copy-on-access")
1683 */
1684static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1685			unsigned long addr, unsigned long end,
1686			unsigned long pfn, pgprot_t prot)
1687{
1688	pte_t *pte;
1689	spinlock_t *ptl;
1690
1691	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1692	if (!pte)
1693		return -ENOMEM;
1694	arch_enter_lazy_mmu_mode();
1695	do {
1696		BUG_ON(!pte_none(*pte));
1697		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1698		pfn++;
1699	} while (pte++, addr += PAGE_SIZE, addr != end);
1700	arch_leave_lazy_mmu_mode();
1701	pte_unmap_unlock(pte - 1, ptl);
1702	return 0;
1703}
1704
1705static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1706			unsigned long addr, unsigned long end,
1707			unsigned long pfn, pgprot_t prot)
1708{
1709	pmd_t *pmd;
1710	unsigned long next;
1711
1712	pfn -= addr >> PAGE_SHIFT;
1713	pmd = pmd_alloc(mm, pud, addr);
1714	if (!pmd)
1715		return -ENOMEM;
1716	VM_BUG_ON(pmd_trans_huge(*pmd));
1717	do {
1718		next = pmd_addr_end(addr, end);
1719		if (remap_pte_range(mm, pmd, addr, next,
1720				pfn + (addr >> PAGE_SHIFT), prot))
1721			return -ENOMEM;
1722	} while (pmd++, addr = next, addr != end);
1723	return 0;
1724}
1725
1726static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1727			unsigned long addr, unsigned long end,
1728			unsigned long pfn, pgprot_t prot)
1729{
1730	pud_t *pud;
1731	unsigned long next;
1732
1733	pfn -= addr >> PAGE_SHIFT;
1734	pud = pud_alloc(mm, pgd, addr);
1735	if (!pud)
1736		return -ENOMEM;
1737	do {
1738		next = pud_addr_end(addr, end);
1739		if (remap_pmd_range(mm, pud, addr, next,
1740				pfn + (addr >> PAGE_SHIFT), prot))
1741			return -ENOMEM;
1742	} while (pud++, addr = next, addr != end);
1743	return 0;
1744}
1745
1746/**
1747 * remap_pfn_range - remap kernel memory to userspace
1748 * @vma: user vma to map to
1749 * @addr: target user address to start at
1750 * @pfn: physical address of kernel memory
1751 * @size: size of map area
1752 * @prot: page protection flags for this mapping
1753 *
1754 *  Note: this is only safe if the mm semaphore is held when called.
1755 */
1756int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1757		    unsigned long pfn, unsigned long size, pgprot_t prot)
1758{
1759	pgd_t *pgd;
1760	unsigned long next;
1761	unsigned long end = addr + PAGE_ALIGN(size);
1762	struct mm_struct *mm = vma->vm_mm;
1763	unsigned long remap_pfn = pfn;
1764	int err;
1765
1766	/*
1767	 * Physically remapped pages are special. Tell the
1768	 * rest of the world about it:
1769	 *   VM_IO tells people not to look at these pages
1770	 *	(accesses can have side effects).
1771	 *   VM_PFNMAP tells the core MM that the base pages are just
1772	 *	raw PFN mappings, and do not have a "struct page" associated
1773	 *	with them.
1774	 *   VM_DONTEXPAND
1775	 *      Disable vma merging and expanding with mremap().
1776	 *   VM_DONTDUMP
1777	 *      Omit vma from core dump, even when VM_IO turned off.
1778	 *
1779	 * There's a horrible special case to handle copy-on-write
1780	 * behaviour that some programs depend on. We mark the "original"
1781	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1782	 * See vm_normal_page() for details.
1783	 */
1784	if (is_cow_mapping(vma->vm_flags)) {
1785		if (addr != vma->vm_start || end != vma->vm_end)
1786			return -EINVAL;
1787		vma->vm_pgoff = pfn;
1788	}
1789
1790	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1791	if (err)
1792		return -EINVAL;
1793
1794	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1795
1796	BUG_ON(addr >= end);
1797	pfn -= addr >> PAGE_SHIFT;
1798	pgd = pgd_offset(mm, addr);
1799	flush_cache_range(vma, addr, end);
1800	do {
1801		next = pgd_addr_end(addr, end);
1802		err = remap_pud_range(mm, pgd, addr, next,
1803				pfn + (addr >> PAGE_SHIFT), prot);
1804		if (err)
1805			break;
1806	} while (pgd++, addr = next, addr != end);
1807
1808	if (err)
1809		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1810
1811	return err;
1812}
1813EXPORT_SYMBOL(remap_pfn_range);
1814
1815/**
1816 * vm_iomap_memory - remap memory to userspace
1817 * @vma: user vma to map to
1818 * @start: start of area
1819 * @len: size of area
1820 *
1821 * This is a simplified io_remap_pfn_range() for common driver use. The
1822 * driver just needs to give us the physical memory range to be mapped,
1823 * we'll figure out the rest from the vma information.
1824 *
1825 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1826 * whatever write-combining details or similar.
1827 */
1828int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1829{
1830	unsigned long vm_len, pfn, pages;
1831
1832	/* Check that the physical memory area passed in looks valid */
1833	if (start + len < start)
1834		return -EINVAL;
1835	/*
1836	 * You *really* shouldn't map things that aren't page-aligned,
1837	 * but we've historically allowed it because IO memory might
1838	 * just have smaller alignment.
1839	 */
1840	len += start & ~PAGE_MASK;
1841	pfn = start >> PAGE_SHIFT;
1842	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1843	if (pfn + pages < pfn)
1844		return -EINVAL;
1845
1846	/* We start the mapping 'vm_pgoff' pages into the area */
1847	if (vma->vm_pgoff > pages)
1848		return -EINVAL;
1849	pfn += vma->vm_pgoff;
1850	pages -= vma->vm_pgoff;
1851
1852	/* Can we fit all of the mapping? */
1853	vm_len = vma->vm_end - vma->vm_start;
1854	if (vm_len >> PAGE_SHIFT > pages)
1855		return -EINVAL;
1856
1857	/* Ok, let it rip */
1858	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1859}
1860EXPORT_SYMBOL(vm_iomap_memory);
1861
1862static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1863				     unsigned long addr, unsigned long end,
1864				     pte_fn_t fn, void *data)
1865{
1866	pte_t *pte;
1867	int err;
1868	pgtable_t token;
1869	spinlock_t *uninitialized_var(ptl);
1870
1871	pte = (mm == &init_mm) ?
1872		pte_alloc_kernel(pmd, addr) :
1873		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1874	if (!pte)
1875		return -ENOMEM;
1876
1877	BUG_ON(pmd_huge(*pmd));
1878
1879	arch_enter_lazy_mmu_mode();
1880
1881	token = pmd_pgtable(*pmd);
1882
1883	do {
1884		err = fn(pte++, token, addr, data);
1885		if (err)
1886			break;
1887	} while (addr += PAGE_SIZE, addr != end);
1888
1889	arch_leave_lazy_mmu_mode();
1890
1891	if (mm != &init_mm)
1892		pte_unmap_unlock(pte-1, ptl);
1893	return err;
1894}
1895
1896static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1897				     unsigned long addr, unsigned long end,
1898				     pte_fn_t fn, void *data)
1899{
1900	pmd_t *pmd;
1901	unsigned long next;
1902	int err;
1903
1904	BUG_ON(pud_huge(*pud));
1905
1906	pmd = pmd_alloc(mm, pud, addr);
1907	if (!pmd)
1908		return -ENOMEM;
1909	do {
1910		next = pmd_addr_end(addr, end);
1911		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1912		if (err)
1913			break;
1914	} while (pmd++, addr = next, addr != end);
1915	return err;
1916}
1917
1918static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1919				     unsigned long addr, unsigned long end,
1920				     pte_fn_t fn, void *data)
1921{
1922	pud_t *pud;
1923	unsigned long next;
1924	int err;
1925
1926	pud = pud_alloc(mm, pgd, addr);
1927	if (!pud)
1928		return -ENOMEM;
1929	do {
1930		next = pud_addr_end(addr, end);
1931		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1932		if (err)
1933			break;
1934	} while (pud++, addr = next, addr != end);
1935	return err;
1936}
1937
1938/*
1939 * Scan a region of virtual memory, filling in page tables as necessary
1940 * and calling a provided function on each leaf page table.
1941 */
1942int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1943			unsigned long size, pte_fn_t fn, void *data)
1944{
1945	pgd_t *pgd;
1946	unsigned long next;
1947	unsigned long end = addr + size;
1948	int err;
1949
1950	if (WARN_ON(addr >= end))
1951		return -EINVAL;
1952
1953	pgd = pgd_offset(mm, addr);
1954	do {
1955		next = pgd_addr_end(addr, end);
1956		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1957		if (err)
1958			break;
1959	} while (pgd++, addr = next, addr != end);
1960
1961	return err;
1962}
1963EXPORT_SYMBOL_GPL(apply_to_page_range);
1964
1965/*
1966 * handle_pte_fault chooses page fault handler according to an entry which was
1967 * read non-atomically.  Before making any commitment, on those architectures
1968 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1969 * parts, do_swap_page must check under lock before unmapping the pte and
1970 * proceeding (but do_wp_page is only called after already making such a check;
1971 * and do_anonymous_page can safely check later on).
1972 */
1973static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1974				pte_t *page_table, pte_t orig_pte)
1975{
1976	int same = 1;
1977#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1978	if (sizeof(pte_t) > sizeof(unsigned long)) {
1979		spinlock_t *ptl = pte_lockptr(mm, pmd);
1980		spin_lock(ptl);
1981		same = pte_same(*page_table, orig_pte);
1982		spin_unlock(ptl);
1983	}
1984#endif
1985	pte_unmap(page_table);
1986	return same;
1987}
1988
1989static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1990{
1991	debug_dma_assert_idle(src);
1992
1993	/*
1994	 * If the source page was a PFN mapping, we don't have
1995	 * a "struct page" for it. We do a best-effort copy by
1996	 * just copying from the original user address. If that
1997	 * fails, we just zero-fill it. Live with it.
1998	 */
1999	if (unlikely(!src)) {
2000		void *kaddr = kmap_atomic(dst);
2001		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2002
2003		/*
2004		 * This really shouldn't fail, because the page is there
2005		 * in the page tables. But it might just be unreadable,
2006		 * in which case we just give up and fill the result with
2007		 * zeroes.
2008		 */
2009		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2010			clear_page(kaddr);
2011		kunmap_atomic(kaddr);
2012		flush_dcache_page(dst);
2013	} else
2014		copy_user_highpage(dst, src, va, vma);
2015}
2016
2017static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2018{
2019	struct file *vm_file = vma->vm_file;
2020
2021	if (vm_file)
2022		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2023
2024	/*
2025	 * Special mappings (e.g. VDSO) do not have any file so fake
2026	 * a default GFP_KERNEL for them.
2027	 */
2028	return GFP_KERNEL;
2029}
2030
2031/*
2032 * Notify the address space that the page is about to become writable so that
2033 * it can prohibit this or wait for the page to get into an appropriate state.
2034 *
2035 * We do this without the lock held, so that it can sleep if it needs to.
2036 */
2037static int do_page_mkwrite(struct vm_fault *vmf)
 
2038{
 
2039	int ret;
2040	struct page *page = vmf->page;
2041	unsigned int old_flags = vmf->flags;
2042
2043	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
 
 
 
 
 
2044
2045	ret = vmf->vma->vm_ops->page_mkwrite(vmf->vma, vmf);
2046	/* Restore original flags so that caller is not surprised */
2047	vmf->flags = old_flags;
2048	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2049		return ret;
2050	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2051		lock_page(page);
2052		if (!page->mapping) {
2053			unlock_page(page);
2054			return 0; /* retry */
2055		}
2056		ret |= VM_FAULT_LOCKED;
2057	} else
2058		VM_BUG_ON_PAGE(!PageLocked(page), page);
2059	return ret;
2060}
2061
2062/*
2063 * Handle dirtying of a page in shared file mapping on a write fault.
2064 *
2065 * The function expects the page to be locked and unlocks it.
2066 */
2067static void fault_dirty_shared_page(struct vm_area_struct *vma,
2068				    struct page *page)
2069{
2070	struct address_space *mapping;
2071	bool dirtied;
2072	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2073
2074	dirtied = set_page_dirty(page);
2075	VM_BUG_ON_PAGE(PageAnon(page), page);
2076	/*
2077	 * Take a local copy of the address_space - page.mapping may be zeroed
2078	 * by truncate after unlock_page().   The address_space itself remains
2079	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2080	 * release semantics to prevent the compiler from undoing this copying.
2081	 */
2082	mapping = page_rmapping(page);
2083	unlock_page(page);
2084
2085	if ((dirtied || page_mkwrite) && mapping) {
2086		/*
2087		 * Some device drivers do not set page.mapping
2088		 * but still dirty their pages
2089		 */
2090		balance_dirty_pages_ratelimited(mapping);
2091	}
2092
2093	if (!page_mkwrite)
2094		file_update_time(vma->vm_file);
2095}
2096
2097/*
2098 * Handle write page faults for pages that can be reused in the current vma
2099 *
2100 * This can happen either due to the mapping being with the VM_SHARED flag,
2101 * or due to us being the last reference standing to the page. In either
2102 * case, all we need to do here is to mark the page as writable and update
2103 * any related book-keeping.
2104 */
2105static inline void wp_page_reuse(struct vm_fault *vmf)
2106	__releases(vmf->ptl)
 
 
 
 
2107{
2108	struct vm_area_struct *vma = vmf->vma;
2109	struct page *page = vmf->page;
2110	pte_t entry;
2111	/*
2112	 * Clear the pages cpupid information as the existing
2113	 * information potentially belongs to a now completely
2114	 * unrelated process.
2115	 */
2116	if (page)
2117		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2118
2119	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2120	entry = pte_mkyoung(vmf->orig_pte);
2121	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2122	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2123		update_mmu_cache(vma, vmf->address, vmf->pte);
2124	pte_unmap_unlock(vmf->pte, vmf->ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2125}
2126
2127/*
2128 * Handle the case of a page which we actually need to copy to a new page.
2129 *
2130 * Called with mmap_sem locked and the old page referenced, but
2131 * without the ptl held.
2132 *
2133 * High level logic flow:
2134 *
2135 * - Allocate a page, copy the content of the old page to the new one.
2136 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2137 * - Take the PTL. If the pte changed, bail out and release the allocated page
2138 * - If the pte is still the way we remember it, update the page table and all
2139 *   relevant references. This includes dropping the reference the page-table
2140 *   held to the old page, as well as updating the rmap.
2141 * - In any case, unlock the PTL and drop the reference we took to the old page.
2142 */
2143static int wp_page_copy(struct vm_fault *vmf)
 
 
2144{
2145	struct vm_area_struct *vma = vmf->vma;
2146	struct mm_struct *mm = vma->vm_mm;
2147	struct page *old_page = vmf->page;
2148	struct page *new_page = NULL;
 
2149	pte_t entry;
2150	int page_copied = 0;
2151	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2152	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2153	struct mem_cgroup *memcg;
2154
2155	if (unlikely(anon_vma_prepare(vma)))
2156		goto oom;
2157
2158	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2159		new_page = alloc_zeroed_user_highpage_movable(vma,
2160							      vmf->address);
2161		if (!new_page)
2162			goto oom;
2163	} else {
2164		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2165				vmf->address);
2166		if (!new_page)
2167			goto oom;
2168		cow_user_page(new_page, old_page, vmf->address, vma);
2169	}
2170
2171	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2172		goto oom_free_new;
2173
2174	__SetPageUptodate(new_page);
2175
2176	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2177
2178	/*
2179	 * Re-check the pte - we dropped the lock
2180	 */
2181	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2182	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2183		if (old_page) {
2184			if (!PageAnon(old_page)) {
2185				dec_mm_counter_fast(mm,
2186						mm_counter_file(old_page));
2187				inc_mm_counter_fast(mm, MM_ANONPAGES);
2188			}
2189		} else {
2190			inc_mm_counter_fast(mm, MM_ANONPAGES);
2191		}
2192		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2193		entry = mk_pte(new_page, vma->vm_page_prot);
2194		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2195		/*
2196		 * Clear the pte entry and flush it first, before updating the
2197		 * pte with the new entry. This will avoid a race condition
2198		 * seen in the presence of one thread doing SMC and another
2199		 * thread doing COW.
2200		 */
2201		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2202		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2203		mem_cgroup_commit_charge(new_page, memcg, false, false);
2204		lru_cache_add_active_or_unevictable(new_page, vma);
2205		/*
2206		 * We call the notify macro here because, when using secondary
2207		 * mmu page tables (such as kvm shadow page tables), we want the
2208		 * new page to be mapped directly into the secondary page table.
2209		 */
2210		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2211		update_mmu_cache(vma, vmf->address, vmf->pte);
2212		if (old_page) {
2213			/*
2214			 * Only after switching the pte to the new page may
2215			 * we remove the mapcount here. Otherwise another
2216			 * process may come and find the rmap count decremented
2217			 * before the pte is switched to the new page, and
2218			 * "reuse" the old page writing into it while our pte
2219			 * here still points into it and can be read by other
2220			 * threads.
2221			 *
2222			 * The critical issue is to order this
2223			 * page_remove_rmap with the ptp_clear_flush above.
2224			 * Those stores are ordered by (if nothing else,)
2225			 * the barrier present in the atomic_add_negative
2226			 * in page_remove_rmap.
2227			 *
2228			 * Then the TLB flush in ptep_clear_flush ensures that
2229			 * no process can access the old page before the
2230			 * decremented mapcount is visible. And the old page
2231			 * cannot be reused until after the decremented
2232			 * mapcount is visible. So transitively, TLBs to
2233			 * old page will be flushed before it can be reused.
2234			 */
2235			page_remove_rmap(old_page, false);
2236		}
2237
2238		/* Free the old page.. */
2239		new_page = old_page;
2240		page_copied = 1;
2241	} else {
2242		mem_cgroup_cancel_charge(new_page, memcg, false);
2243	}
2244
2245	if (new_page)
2246		put_page(new_page);
2247
2248	pte_unmap_unlock(vmf->pte, vmf->ptl);
2249	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2250	if (old_page) {
2251		/*
2252		 * Don't let another task, with possibly unlocked vma,
2253		 * keep the mlocked page.
2254		 */
2255		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2256			lock_page(old_page);	/* LRU manipulation */
2257			if (PageMlocked(old_page))
2258				munlock_vma_page(old_page);
2259			unlock_page(old_page);
2260		}
2261		put_page(old_page);
2262	}
2263	return page_copied ? VM_FAULT_WRITE : 0;
2264oom_free_new:
2265	put_page(new_page);
2266oom:
2267	if (old_page)
2268		put_page(old_page);
2269	return VM_FAULT_OOM;
2270}
2271
2272/**
2273 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2274 *			  writeable once the page is prepared
2275 *
2276 * @vmf: structure describing the fault
2277 *
2278 * This function handles all that is needed to finish a write page fault in a
2279 * shared mapping due to PTE being read-only once the mapped page is prepared.
2280 * It handles locking of PTE and modifying it. The function returns
2281 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2282 * lock.
2283 *
2284 * The function expects the page to be locked or other protection against
2285 * concurrent faults / writeback (such as DAX radix tree locks).
2286 */
2287int finish_mkwrite_fault(struct vm_fault *vmf)
2288{
2289	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2290	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2291				       &vmf->ptl);
2292	/*
2293	 * We might have raced with another page fault while we released the
2294	 * pte_offset_map_lock.
2295	 */
2296	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2297		pte_unmap_unlock(vmf->pte, vmf->ptl);
2298		return VM_FAULT_NOPAGE;
2299	}
2300	wp_page_reuse(vmf);
2301	return 0;
2302}
2303
2304/*
2305 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2306 * mapping
2307 */
2308static int wp_pfn_shared(struct vm_fault *vmf)
 
 
 
2309{
2310	struct vm_area_struct *vma = vmf->vma;
2311
2312	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
 
 
 
 
 
 
2313		int ret;
2314
2315		pte_unmap_unlock(vmf->pte, vmf->ptl);
2316		vmf->flags |= FAULT_FLAG_MKWRITE;
2317		ret = vma->vm_ops->pfn_mkwrite(vma, vmf);
2318		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2319			return ret;
2320		return finish_mkwrite_fault(vmf);
 
 
 
 
 
 
 
 
2321	}
2322	wp_page_reuse(vmf);
2323	return VM_FAULT_WRITE;
2324}
2325
2326static int wp_page_shared(struct vm_fault *vmf)
2327	__releases(vmf->ptl)
 
 
 
2328{
2329	struct vm_area_struct *vma = vmf->vma;
2330
2331	get_page(vmf->page);
2332
2333	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2334		int tmp;
2335
2336		pte_unmap_unlock(vmf->pte, vmf->ptl);
2337		tmp = do_page_mkwrite(vmf);
2338		if (unlikely(!tmp || (tmp &
2339				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2340			put_page(vmf->page);
2341			return tmp;
2342		}
2343		tmp = finish_mkwrite_fault(vmf);
2344		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2345			unlock_page(vmf->page);
2346			put_page(vmf->page);
2347			return tmp;
 
 
 
 
 
 
 
 
2348		}
2349	} else {
2350		wp_page_reuse(vmf);
2351		lock_page(vmf->page);
2352	}
2353	fault_dirty_shared_page(vma, vmf->page);
2354	put_page(vmf->page);
2355
2356	return VM_FAULT_WRITE;
 
2357}
2358
2359/*
2360 * This routine handles present pages, when users try to write
2361 * to a shared page. It is done by copying the page to a new address
2362 * and decrementing the shared-page counter for the old page.
2363 *
2364 * Note that this routine assumes that the protection checks have been
2365 * done by the caller (the low-level page fault routine in most cases).
2366 * Thus we can safely just mark it writable once we've done any necessary
2367 * COW.
2368 *
2369 * We also mark the page dirty at this point even though the page will
2370 * change only once the write actually happens. This avoids a few races,
2371 * and potentially makes it more efficient.
2372 *
2373 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2374 * but allow concurrent faults), with pte both mapped and locked.
2375 * We return with mmap_sem still held, but pte unmapped and unlocked.
2376 */
2377static int do_wp_page(struct vm_fault *vmf)
2378	__releases(vmf->ptl)
 
 
2379{
2380	struct vm_area_struct *vma = vmf->vma;
2381
2382	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2383	if (!vmf->page) {
2384		/*
2385		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2386		 * VM_PFNMAP VMA.
2387		 *
2388		 * We should not cow pages in a shared writeable mapping.
2389		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2390		 */
2391		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2392				     (VM_WRITE|VM_SHARED))
2393			return wp_pfn_shared(vmf);
 
2394
2395		pte_unmap_unlock(vmf->pte, vmf->ptl);
2396		return wp_page_copy(vmf);
 
2397	}
2398
2399	/*
2400	 * Take out anonymous pages first, anonymous shared vmas are
2401	 * not dirty accountable.
2402	 */
2403	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2404		int total_mapcount;
2405		if (!trylock_page(vmf->page)) {
2406			get_page(vmf->page);
2407			pte_unmap_unlock(vmf->pte, vmf->ptl);
2408			lock_page(vmf->page);
2409			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2410					vmf->address, &vmf->ptl);
2411			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2412				unlock_page(vmf->page);
2413				pte_unmap_unlock(vmf->pte, vmf->ptl);
2414				put_page(vmf->page);
2415				return 0;
2416			}
2417			put_page(vmf->page);
2418		}
2419		if (reuse_swap_page(vmf->page, &total_mapcount)) {
2420			if (total_mapcount == 1) {
2421				/*
2422				 * The page is all ours. Move it to
2423				 * our anon_vma so the rmap code will
2424				 * not search our parent or siblings.
2425				 * Protected against the rmap code by
2426				 * the page lock.
2427				 */
2428				page_move_anon_rmap(vmf->page, vma);
 
2429			}
2430			unlock_page(vmf->page);
2431			wp_page_reuse(vmf);
2432			return VM_FAULT_WRITE;
2433		}
2434		unlock_page(vmf->page);
2435	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2436					(VM_WRITE|VM_SHARED))) {
2437		return wp_page_shared(vmf);
 
2438	}
2439
2440	/*
2441	 * Ok, we need to copy. Oh, well..
2442	 */
2443	get_page(vmf->page);
2444
2445	pte_unmap_unlock(vmf->pte, vmf->ptl);
2446	return wp_page_copy(vmf);
 
2447}
2448
2449static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2450		unsigned long start_addr, unsigned long end_addr,
2451		struct zap_details *details)
2452{
2453	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2454}
2455
2456static inline void unmap_mapping_range_tree(struct rb_root *root,
2457					    struct zap_details *details)
2458{
2459	struct vm_area_struct *vma;
2460	pgoff_t vba, vea, zba, zea;
2461
2462	vma_interval_tree_foreach(vma, root,
2463			details->first_index, details->last_index) {
2464
2465		vba = vma->vm_pgoff;
2466		vea = vba + vma_pages(vma) - 1;
2467		zba = details->first_index;
2468		if (zba < vba)
2469			zba = vba;
2470		zea = details->last_index;
2471		if (zea > vea)
2472			zea = vea;
2473
2474		unmap_mapping_range_vma(vma,
2475			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2476			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2477				details);
2478	}
2479}
2480
2481/**
2482 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2483 * address_space corresponding to the specified page range in the underlying
2484 * file.
2485 *
2486 * @mapping: the address space containing mmaps to be unmapped.
2487 * @holebegin: byte in first page to unmap, relative to the start of
2488 * the underlying file.  This will be rounded down to a PAGE_SIZE
2489 * boundary.  Note that this is different from truncate_pagecache(), which
2490 * must keep the partial page.  In contrast, we must get rid of
2491 * partial pages.
2492 * @holelen: size of prospective hole in bytes.  This will be rounded
2493 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2494 * end of the file.
2495 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2496 * but 0 when invalidating pagecache, don't throw away private data.
2497 */
2498void unmap_mapping_range(struct address_space *mapping,
2499		loff_t const holebegin, loff_t const holelen, int even_cows)
2500{
2501	struct zap_details details = { };
2502	pgoff_t hba = holebegin >> PAGE_SHIFT;
2503	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2504
2505	/* Check for overflow. */
2506	if (sizeof(holelen) > sizeof(hlen)) {
2507		long long holeend =
2508			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2509		if (holeend & ~(long long)ULONG_MAX)
2510			hlen = ULONG_MAX - hba + 1;
2511	}
2512
2513	details.check_mapping = even_cows? NULL: mapping;
2514	details.first_index = hba;
2515	details.last_index = hba + hlen - 1;
2516	if (details.last_index < details.first_index)
2517		details.last_index = ULONG_MAX;
2518
 
 
2519	i_mmap_lock_write(mapping);
2520	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2521		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2522	i_mmap_unlock_write(mapping);
2523}
2524EXPORT_SYMBOL(unmap_mapping_range);
2525
2526/*
2527 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2528 * but allow concurrent faults), and pte mapped but not yet locked.
2529 * We return with pte unmapped and unlocked.
2530 *
2531 * We return with the mmap_sem locked or unlocked in the same cases
2532 * as does filemap_fault().
2533 */
2534int do_swap_page(struct vm_fault *vmf)
 
 
2535{
2536	struct vm_area_struct *vma = vmf->vma;
2537	struct page *page, *swapcache;
2538	struct mem_cgroup *memcg;
2539	swp_entry_t entry;
2540	pte_t pte;
2541	int locked;
2542	int exclusive = 0;
2543	int ret = 0;
2544
2545	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2546		goto out;
2547
2548	entry = pte_to_swp_entry(vmf->orig_pte);
2549	if (unlikely(non_swap_entry(entry))) {
2550		if (is_migration_entry(entry)) {
2551			migration_entry_wait(vma->vm_mm, vmf->pmd,
2552					     vmf->address);
2553		} else if (is_hwpoison_entry(entry)) {
2554			ret = VM_FAULT_HWPOISON;
2555		} else {
2556			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2557			ret = VM_FAULT_SIGBUS;
2558		}
2559		goto out;
2560	}
2561	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2562	page = lookup_swap_cache(entry);
2563	if (!page) {
2564		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2565					vmf->address);
2566		if (!page) {
2567			/*
2568			 * Back out if somebody else faulted in this pte
2569			 * while we released the pte lock.
2570			 */
2571			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2572					vmf->address, &vmf->ptl);
2573			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2574				ret = VM_FAULT_OOM;
2575			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2576			goto unlock;
2577		}
2578
2579		/* Had to read the page from swap area: Major fault */
2580		ret = VM_FAULT_MAJOR;
2581		count_vm_event(PGMAJFAULT);
2582		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2583	} else if (PageHWPoison(page)) {
2584		/*
2585		 * hwpoisoned dirty swapcache pages are kept for killing
2586		 * owner processes (which may be unknown at hwpoison time)
2587		 */
2588		ret = VM_FAULT_HWPOISON;
2589		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2590		swapcache = page;
2591		goto out_release;
2592	}
2593
2594	swapcache = page;
2595	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2596
2597	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2598	if (!locked) {
2599		ret |= VM_FAULT_RETRY;
2600		goto out_release;
2601	}
2602
2603	/*
2604	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2605	 * release the swapcache from under us.  The page pin, and pte_same
2606	 * test below, are not enough to exclude that.  Even if it is still
2607	 * swapcache, we need to check that the page's swap has not changed.
2608	 */
2609	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2610		goto out_page;
2611
2612	page = ksm_might_need_to_copy(page, vma, vmf->address);
2613	if (unlikely(!page)) {
2614		ret = VM_FAULT_OOM;
2615		page = swapcache;
2616		goto out_page;
2617	}
2618
2619	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2620				&memcg, false)) {
2621		ret = VM_FAULT_OOM;
2622		goto out_page;
2623	}
2624
2625	/*
2626	 * Back out if somebody else already faulted in this pte.
2627	 */
2628	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2629			&vmf->ptl);
2630	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2631		goto out_nomap;
2632
2633	if (unlikely(!PageUptodate(page))) {
2634		ret = VM_FAULT_SIGBUS;
2635		goto out_nomap;
2636	}
2637
2638	/*
2639	 * The page isn't present yet, go ahead with the fault.
2640	 *
2641	 * Be careful about the sequence of operations here.
2642	 * To get its accounting right, reuse_swap_page() must be called
2643	 * while the page is counted on swap but not yet in mapcount i.e.
2644	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2645	 * must be called after the swap_free(), or it will never succeed.
2646	 */
2647
2648	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2649	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2650	pte = mk_pte(page, vma->vm_page_prot);
2651	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2652		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2653		vmf->flags &= ~FAULT_FLAG_WRITE;
2654		ret |= VM_FAULT_WRITE;
2655		exclusive = RMAP_EXCLUSIVE;
2656	}
2657	flush_icache_page(vma, page);
2658	if (pte_swp_soft_dirty(vmf->orig_pte))
2659		pte = pte_mksoft_dirty(pte);
2660	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2661	vmf->orig_pte = pte;
2662	if (page == swapcache) {
2663		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2664		mem_cgroup_commit_charge(page, memcg, true, false);
2665		activate_page(page);
2666	} else { /* ksm created a completely new copy */
2667		page_add_new_anon_rmap(page, vma, vmf->address, false);
2668		mem_cgroup_commit_charge(page, memcg, false, false);
2669		lru_cache_add_active_or_unevictable(page, vma);
2670	}
2671
2672	swap_free(entry);
2673	if (mem_cgroup_swap_full(page) ||
2674	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2675		try_to_free_swap(page);
2676	unlock_page(page);
2677	if (page != swapcache) {
2678		/*
2679		 * Hold the lock to avoid the swap entry to be reused
2680		 * until we take the PT lock for the pte_same() check
2681		 * (to avoid false positives from pte_same). For
2682		 * further safety release the lock after the swap_free
2683		 * so that the swap count won't change under a
2684		 * parallel locked swapcache.
2685		 */
2686		unlock_page(swapcache);
2687		put_page(swapcache);
2688	}
2689
2690	if (vmf->flags & FAULT_FLAG_WRITE) {
2691		ret |= do_wp_page(vmf);
2692		if (ret & VM_FAULT_ERROR)
2693			ret &= VM_FAULT_ERROR;
2694		goto out;
2695	}
2696
2697	/* No need to invalidate - it was non-present before */
2698	update_mmu_cache(vma, vmf->address, vmf->pte);
2699unlock:
2700	pte_unmap_unlock(vmf->pte, vmf->ptl);
2701out:
2702	return ret;
2703out_nomap:
2704	mem_cgroup_cancel_charge(page, memcg, false);
2705	pte_unmap_unlock(vmf->pte, vmf->ptl);
2706out_page:
2707	unlock_page(page);
2708out_release:
2709	put_page(page);
2710	if (page != swapcache) {
2711		unlock_page(swapcache);
2712		put_page(swapcache);
2713	}
2714	return ret;
2715}
2716
2717/*
2718 * This is like a special single-page "expand_{down|up}wards()",
2719 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2720 * doesn't hit another vma.
2721 */
2722static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2723{
2724	address &= PAGE_MASK;
2725	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2726		struct vm_area_struct *prev = vma->vm_prev;
2727
2728		/*
2729		 * Is there a mapping abutting this one below?
2730		 *
2731		 * That's only ok if it's the same stack mapping
2732		 * that has gotten split..
2733		 */
2734		if (prev && prev->vm_end == address)
2735			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2736
2737		return expand_downwards(vma, address - PAGE_SIZE);
2738	}
2739	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2740		struct vm_area_struct *next = vma->vm_next;
2741
2742		/* As VM_GROWSDOWN but s/below/above/ */
2743		if (next && next->vm_start == address + PAGE_SIZE)
2744			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2745
2746		return expand_upwards(vma, address + PAGE_SIZE);
2747	}
2748	return 0;
2749}
2750
2751/*
2752 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2753 * but allow concurrent faults), and pte mapped but not yet locked.
2754 * We return with mmap_sem still held, but pte unmapped and unlocked.
2755 */
2756static int do_anonymous_page(struct vm_fault *vmf)
 
 
2757{
2758	struct vm_area_struct *vma = vmf->vma;
2759	struct mem_cgroup *memcg;
2760	struct page *page;
 
2761	pte_t entry;
2762
 
 
2763	/* File mapping without ->vm_ops ? */
2764	if (vma->vm_flags & VM_SHARED)
2765		return VM_FAULT_SIGBUS;
2766
2767	/* Check if we need to add a guard page to the stack */
2768	if (check_stack_guard_page(vma, vmf->address) < 0)
2769		return VM_FAULT_SIGSEGV;
2770
2771	/*
2772	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2773	 * pte_offset_map() on pmds where a huge pmd might be created
2774	 * from a different thread.
2775	 *
2776	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2777	 * parallel threads are excluded by other means.
2778	 *
2779	 * Here we only have down_read(mmap_sem).
2780	 */
2781	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2782		return VM_FAULT_OOM;
2783
2784	/* See the comment in pte_alloc_one_map() */
2785	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2786		return 0;
2787
2788	/* Use the zero-page for reads */
2789	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2790			!mm_forbids_zeropage(vma->vm_mm)) {
2791		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2792						vma->vm_page_prot));
2793		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2794				vmf->address, &vmf->ptl);
2795		if (!pte_none(*vmf->pte))
2796			goto unlock;
2797		/* Deliver the page fault to userland, check inside PT lock */
2798		if (userfaultfd_missing(vma)) {
2799			pte_unmap_unlock(vmf->pte, vmf->ptl);
2800			return handle_userfault(vmf, VM_UFFD_MISSING);
 
2801		}
2802		goto setpte;
2803	}
2804
2805	/* Allocate our own private page. */
2806	if (unlikely(anon_vma_prepare(vma)))
2807		goto oom;
2808	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2809	if (!page)
2810		goto oom;
2811
2812	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2813		goto oom_free_page;
2814
2815	/*
2816	 * The memory barrier inside __SetPageUptodate makes sure that
2817	 * preceeding stores to the page contents become visible before
2818	 * the set_pte_at() write.
2819	 */
2820	__SetPageUptodate(page);
2821
2822	entry = mk_pte(page, vma->vm_page_prot);
2823	if (vma->vm_flags & VM_WRITE)
2824		entry = pte_mkwrite(pte_mkdirty(entry));
2825
2826	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2827			&vmf->ptl);
2828	if (!pte_none(*vmf->pte))
2829		goto release;
2830
2831	/* Deliver the page fault to userland, check inside PT lock */
2832	if (userfaultfd_missing(vma)) {
2833		pte_unmap_unlock(vmf->pte, vmf->ptl);
2834		mem_cgroup_cancel_charge(page, memcg, false);
2835		put_page(page);
2836		return handle_userfault(vmf, VM_UFFD_MISSING);
 
2837	}
2838
2839	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2840	page_add_new_anon_rmap(page, vma, vmf->address, false);
2841	mem_cgroup_commit_charge(page, memcg, false, false);
2842	lru_cache_add_active_or_unevictable(page, vma);
2843setpte:
2844	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2845
2846	/* No need to invalidate - it was non-present before */
2847	update_mmu_cache(vma, vmf->address, vmf->pte);
2848unlock:
2849	pte_unmap_unlock(vmf->pte, vmf->ptl);
2850	return 0;
2851release:
2852	mem_cgroup_cancel_charge(page, memcg, false);
2853	put_page(page);
2854	goto unlock;
2855oom_free_page:
2856	put_page(page);
2857oom:
2858	return VM_FAULT_OOM;
2859}
2860
2861/*
2862 * The mmap_sem must have been held on entry, and may have been
2863 * released depending on flags and vma->vm_ops->fault() return value.
2864 * See filemap_fault() and __lock_page_retry().
2865 */
2866static int __do_fault(struct vm_fault *vmf)
 
 
2867{
2868	struct vm_area_struct *vma = vmf->vma;
2869	int ret;
2870
2871	ret = vma->vm_ops->fault(vma, vmf);
2872	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2873			    VM_FAULT_DONE_COW)))
 
 
 
 
 
 
2874		return ret;
 
 
2875
2876	if (unlikely(PageHWPoison(vmf->page))) {
2877		if (ret & VM_FAULT_LOCKED)
2878			unlock_page(vmf->page);
2879		put_page(vmf->page);
2880		vmf->page = NULL;
2881		return VM_FAULT_HWPOISON;
2882	}
2883
2884	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2885		lock_page(vmf->page);
2886	else
2887		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2888
 
 
2889	return ret;
2890}
2891
2892static int pte_alloc_one_map(struct vm_fault *vmf)
2893{
2894	struct vm_area_struct *vma = vmf->vma;
2895
2896	if (!pmd_none(*vmf->pmd))
2897		goto map_pte;
2898	if (vmf->prealloc_pte) {
2899		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2900		if (unlikely(!pmd_none(*vmf->pmd))) {
2901			spin_unlock(vmf->ptl);
2902			goto map_pte;
2903		}
2904
2905		atomic_long_inc(&vma->vm_mm->nr_ptes);
2906		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2907		spin_unlock(vmf->ptl);
2908		vmf->prealloc_pte = 0;
2909	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
2910		return VM_FAULT_OOM;
2911	}
2912map_pte:
2913	/*
2914	 * If a huge pmd materialized under us just retry later.  Use
2915	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2916	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2917	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2918	 * in a different thread of this mm, in turn leading to a misleading
2919	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
2920	 * regular pmd that we can walk with pte_offset_map() and we can do that
2921	 * through an atomic read in C, which is what pmd_trans_unstable()
2922	 * provides.
2923	 */
2924	if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
2925		return VM_FAULT_NOPAGE;
2926
2927	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2928			&vmf->ptl);
2929	return 0;
2930}
2931
2932#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2933
2934#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2935static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2936		unsigned long haddr)
2937{
2938	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2939			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2940		return false;
2941	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2942		return false;
2943	return true;
2944}
2945
2946static void deposit_prealloc_pte(struct vm_fault *vmf)
2947{
2948	struct vm_area_struct *vma = vmf->vma;
2949
2950	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2951	/*
2952	 * We are going to consume the prealloc table,
2953	 * count that as nr_ptes.
2954	 */
2955	atomic_long_inc(&vma->vm_mm->nr_ptes);
2956	vmf->prealloc_pte = 0;
2957}
2958
2959static int do_set_pmd(struct vm_fault *vmf, struct page *page)
2960{
2961	struct vm_area_struct *vma = vmf->vma;
2962	bool write = vmf->flags & FAULT_FLAG_WRITE;
2963	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2964	pmd_t entry;
2965	int i, ret;
2966
2967	if (!transhuge_vma_suitable(vma, haddr))
2968		return VM_FAULT_FALLBACK;
2969
2970	ret = VM_FAULT_FALLBACK;
2971	page = compound_head(page);
2972
2973	/*
2974	 * Archs like ppc64 need additonal space to store information
2975	 * related to pte entry. Use the preallocated table for that.
2976	 */
2977	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2978		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2979		if (!vmf->prealloc_pte)
2980			return VM_FAULT_OOM;
2981		smp_wmb(); /* See comment in __pte_alloc() */
2982	}
2983
2984	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2985	if (unlikely(!pmd_none(*vmf->pmd)))
2986		goto out;
2987
2988	for (i = 0; i < HPAGE_PMD_NR; i++)
2989		flush_icache_page(vma, page + i);
2990
2991	entry = mk_huge_pmd(page, vma->vm_page_prot);
2992	if (write)
2993		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2994
2995	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
2996	page_add_file_rmap(page, true);
2997	/*
2998	 * deposit and withdraw with pmd lock held
2999	 */
3000	if (arch_needs_pgtable_deposit())
3001		deposit_prealloc_pte(vmf);
3002
3003	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3004
3005	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3006
3007	/* fault is handled */
3008	ret = 0;
3009	count_vm_event(THP_FILE_MAPPED);
3010out:
3011	spin_unlock(vmf->ptl);
3012	return ret;
3013}
3014#else
3015static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3016{
3017	BUILD_BUG();
3018	return 0;
3019}
3020#endif
3021
3022/**
3023 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3024 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3025 *
3026 * @vmf: fault environment
3027 * @memcg: memcg to charge page (only for private mappings)
3028 * @page: page to map
 
 
 
3029 *
3030 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3031 * return.
3032 *
3033 * Target users are page handler itself and implementations of
3034 * vm_ops->map_pages.
3035 */
3036int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3037		struct page *page)
3038{
3039	struct vm_area_struct *vma = vmf->vma;
3040	bool write = vmf->flags & FAULT_FLAG_WRITE;
3041	pte_t entry;
3042	int ret;
3043
3044	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3045			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3046		/* THP on COW? */
3047		VM_BUG_ON_PAGE(memcg, page);
3048
3049		ret = do_set_pmd(vmf, page);
3050		if (ret != VM_FAULT_FALLBACK)
3051			return ret;
3052	}
3053
3054	if (!vmf->pte) {
3055		ret = pte_alloc_one_map(vmf);
3056		if (ret)
3057			return ret;
3058	}
3059
3060	/* Re-check under ptl */
3061	if (unlikely(!pte_none(*vmf->pte)))
3062		return VM_FAULT_NOPAGE;
3063
3064	flush_icache_page(vma, page);
3065	entry = mk_pte(page, vma->vm_page_prot);
3066	if (write)
3067		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3068	/* copy-on-write page */
3069	if (write && !(vma->vm_flags & VM_SHARED)) {
3070		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3071		page_add_new_anon_rmap(page, vma, vmf->address, false);
3072		mem_cgroup_commit_charge(page, memcg, false, false);
3073		lru_cache_add_active_or_unevictable(page, vma);
3074	} else {
3075		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3076		page_add_file_rmap(page, false);
3077	}
3078	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3079
3080	/* no need to invalidate: a not-present page won't be cached */
3081	update_mmu_cache(vma, vmf->address, vmf->pte);
3082
3083	return 0;
3084}
3085
3086
3087/**
3088 * finish_fault - finish page fault once we have prepared the page to fault
3089 *
3090 * @vmf: structure describing the fault
3091 *
3092 * This function handles all that is needed to finish a page fault once the
3093 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3094 * given page, adds reverse page mapping, handles memcg charges and LRU
3095 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3096 * error.
3097 *
3098 * The function expects the page to be locked and on success it consumes a
3099 * reference of a page being mapped (for the PTE which maps it).
3100 */
3101int finish_fault(struct vm_fault *vmf)
3102{
3103	struct page *page;
3104	int ret;
3105
3106	/* Did we COW the page? */
3107	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3108	    !(vmf->vma->vm_flags & VM_SHARED))
3109		page = vmf->cow_page;
3110	else
3111		page = vmf->page;
3112	ret = alloc_set_pte(vmf, vmf->memcg, page);
3113	if (vmf->pte)
3114		pte_unmap_unlock(vmf->pte, vmf->ptl);
3115	return ret;
3116}
3117
3118static unsigned long fault_around_bytes __read_mostly =
3119	rounddown_pow_of_two(65536);
3120
3121#ifdef CONFIG_DEBUG_FS
3122static int fault_around_bytes_get(void *data, u64 *val)
3123{
3124	*val = fault_around_bytes;
3125	return 0;
3126}
3127
3128/*
3129 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3130 * rounded down to nearest page order. It's what do_fault_around() expects to
3131 * see.
3132 */
3133static int fault_around_bytes_set(void *data, u64 val)
3134{
3135	if (val / PAGE_SIZE > PTRS_PER_PTE)
3136		return -EINVAL;
3137	if (val > PAGE_SIZE)
3138		fault_around_bytes = rounddown_pow_of_two(val);
3139	else
3140		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3141	return 0;
3142}
3143DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3144		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3145
3146static int __init fault_around_debugfs(void)
3147{
3148	void *ret;
3149
3150	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3151			&fault_around_bytes_fops);
3152	if (!ret)
3153		pr_warn("Failed to create fault_around_bytes in debugfs");
3154	return 0;
3155}
3156late_initcall(fault_around_debugfs);
3157#endif
3158
3159/*
3160 * do_fault_around() tries to map few pages around the fault address. The hope
3161 * is that the pages will be needed soon and this will lower the number of
3162 * faults to handle.
3163 *
3164 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3165 * not ready to be mapped: not up-to-date, locked, etc.
3166 *
3167 * This function is called with the page table lock taken. In the split ptlock
3168 * case the page table lock only protects only those entries which belong to
3169 * the page table corresponding to the fault address.
3170 *
3171 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3172 * only once.
3173 *
3174 * fault_around_pages() defines how many pages we'll try to map.
3175 * do_fault_around() expects it to return a power of two less than or equal to
3176 * PTRS_PER_PTE.
3177 *
3178 * The virtual address of the area that we map is naturally aligned to the
3179 * fault_around_pages() value (and therefore to page order).  This way it's
3180 * easier to guarantee that we don't cross page table boundaries.
3181 */
3182static int do_fault_around(struct vm_fault *vmf)
 
3183{
3184	unsigned long address = vmf->address, nr_pages, mask;
3185	pgoff_t start_pgoff = vmf->pgoff;
3186	pgoff_t end_pgoff;
3187	int off, ret = 0;
3188
3189	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3190	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3191
3192	vmf->address = max(address & mask, vmf->vma->vm_start);
3193	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3194	start_pgoff -= off;
 
3195
3196	/*
3197	 *  end_pgoff is either end of page table or end of vma
3198	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3199	 */
3200	end_pgoff = start_pgoff -
3201		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3202		PTRS_PER_PTE - 1;
3203	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3204			start_pgoff + nr_pages - 1);
3205
3206	if (pmd_none(*vmf->pmd)) {
3207		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3208						  vmf->address);
3209		if (!vmf->prealloc_pte)
3210			goto out;
3211		smp_wmb(); /* See comment in __pte_alloc() */
3212	}
3213
3214	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3215
3216	/* Huge page is mapped? Page fault is solved */
3217	if (pmd_trans_huge(*vmf->pmd)) {
3218		ret = VM_FAULT_NOPAGE;
3219		goto out;
3220	}
3221
3222	/* ->map_pages() haven't done anything useful. Cold page cache? */
3223	if (!vmf->pte)
3224		goto out;
3225
3226	/* check if the page fault is solved */
3227	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3228	if (!pte_none(*vmf->pte))
3229		ret = VM_FAULT_NOPAGE;
3230	pte_unmap_unlock(vmf->pte, vmf->ptl);
3231out:
3232	vmf->address = address;
3233	vmf->pte = NULL;
3234	return ret;
3235}
3236
3237static int do_read_fault(struct vm_fault *vmf)
 
 
3238{
3239	struct vm_area_struct *vma = vmf->vma;
 
 
3240	int ret = 0;
3241
3242	/*
3243	 * Let's call ->map_pages() first and use ->fault() as fallback
3244	 * if page by the offset is not ready to be mapped (cold cache or
3245	 * something).
3246	 */
3247	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3248		ret = do_fault_around(vmf);
3249		if (ret)
3250			return ret;
 
 
3251	}
3252
3253	ret = __do_fault(vmf);
3254	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3255		return ret;
3256
3257	ret |= finish_fault(vmf);
3258	unlock_page(vmf->page);
3259	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3260		put_page(vmf->page);
 
 
 
 
 
 
 
3261	return ret;
3262}
3263
3264static int do_cow_fault(struct vm_fault *vmf)
 
 
3265{
3266	struct vm_area_struct *vma = vmf->vma;
 
 
 
3267	int ret;
3268
3269	if (unlikely(anon_vma_prepare(vma)))
3270		return VM_FAULT_OOM;
3271
3272	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3273	if (!vmf->cow_page)
3274		return VM_FAULT_OOM;
3275
3276	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3277				&vmf->memcg, false)) {
3278		put_page(vmf->cow_page);
3279		return VM_FAULT_OOM;
3280	}
3281
3282	ret = __do_fault(vmf);
3283	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3284		goto uncharge_out;
3285	if (ret & VM_FAULT_DONE_COW)
3286		return ret;
3287
3288	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3289	__SetPageUptodate(vmf->cow_page);
 
3290
3291	ret |= finish_fault(vmf);
3292	unlock_page(vmf->page);
3293	put_page(vmf->page);
3294	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
 
 
 
 
 
 
 
 
 
3295		goto uncharge_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3296	return ret;
3297uncharge_out:
3298	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3299	put_page(vmf->cow_page);
3300	return ret;
3301}
3302
3303static int do_shared_fault(struct vm_fault *vmf)
 
 
3304{
3305	struct vm_area_struct *vma = vmf->vma;
 
 
 
 
3306	int ret, tmp;
3307
3308	ret = __do_fault(vmf);
3309	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3310		return ret;
3311
3312	/*
3313	 * Check if the backing address space wants to know that the page is
3314	 * about to become writable
3315	 */
3316	if (vma->vm_ops->page_mkwrite) {
3317		unlock_page(vmf->page);
3318		tmp = do_page_mkwrite(vmf);
3319		if (unlikely(!tmp ||
3320				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3321			put_page(vmf->page);
3322			return tmp;
3323		}
3324	}
3325
3326	ret |= finish_fault(vmf);
3327	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3328					VM_FAULT_RETRY))) {
3329		unlock_page(vmf->page);
3330		put_page(vmf->page);
3331		return ret;
3332	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3333
3334	fault_dirty_shared_page(vma, vmf->page);
3335	return ret;
3336}
3337
3338/*
3339 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3340 * but allow concurrent faults).
3341 * The mmap_sem may have been released depending on flags and our
3342 * return value.  See filemap_fault() and __lock_page_or_retry().
3343 */
3344static int do_fault(struct vm_fault *vmf)
 
 
3345{
3346	struct vm_area_struct *vma = vmf->vma;
3347	int ret;
3348
 
3349	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3350	if (!vma->vm_ops->fault)
3351		ret = VM_FAULT_SIGBUS;
3352	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3353		ret = do_read_fault(vmf);
3354	else if (!(vma->vm_flags & VM_SHARED))
3355		ret = do_cow_fault(vmf);
3356	else
3357		ret = do_shared_fault(vmf);
3358
3359	/* preallocated pagetable is unused: free it */
3360	if (vmf->prealloc_pte) {
3361		pte_free(vma->vm_mm, vmf->prealloc_pte);
3362		vmf->prealloc_pte = 0;
3363	}
3364	return ret;
3365}
3366
3367static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3368				unsigned long addr, int page_nid,
3369				int *flags)
3370{
3371	get_page(page);
3372
3373	count_vm_numa_event(NUMA_HINT_FAULTS);
3374	if (page_nid == numa_node_id()) {
3375		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3376		*flags |= TNF_FAULT_LOCAL;
3377	}
3378
3379	return mpol_misplaced(page, vma, addr);
3380}
3381
3382static int do_numa_page(struct vm_fault *vmf)
 
3383{
3384	struct vm_area_struct *vma = vmf->vma;
3385	struct page *page = NULL;
 
3386	int page_nid = -1;
3387	int last_cpupid;
3388	int target_nid;
3389	bool migrated = false;
3390	pte_t pte = vmf->orig_pte;
3391	bool was_writable = pte_write(pte);
3392	int flags = 0;
3393
 
 
 
3394	/*
3395	* The "pte" at this point cannot be used safely without
3396	* validation through pte_unmap_same(). It's of NUMA type but
3397	* the pfn may be screwed if the read is non atomic.
3398	*
3399	* We can safely just do a "set_pte_at()", because the old
3400	* page table entry is not accessible, so there would be no
3401	* concurrent hardware modifications to the PTE.
3402	*/
3403	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3404	spin_lock(vmf->ptl);
3405	if (unlikely(!pte_same(*vmf->pte, pte))) {
3406		pte_unmap_unlock(vmf->pte, vmf->ptl);
3407		goto out;
3408	}
3409
3410	/* Make it present again */
3411	pte = pte_modify(pte, vma->vm_page_prot);
3412	pte = pte_mkyoung(pte);
3413	if (was_writable)
3414		pte = pte_mkwrite(pte);
3415	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3416	update_mmu_cache(vma, vmf->address, vmf->pte);
3417
3418	page = vm_normal_page(vma, vmf->address, pte);
3419	if (!page) {
3420		pte_unmap_unlock(vmf->pte, vmf->ptl);
3421		return 0;
3422	}
3423
3424	/* TODO: handle PTE-mapped THP */
3425	if (PageCompound(page)) {
3426		pte_unmap_unlock(vmf->pte, vmf->ptl);
3427		return 0;
3428	}
3429
3430	/*
3431	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3432	 * much anyway since they can be in shared cache state. This misses
3433	 * the case where a mapping is writable but the process never writes
3434	 * to it but pte_write gets cleared during protection updates and
3435	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3436	 * background writeback, dirty balancing and application behaviour.
3437	 */
3438	if (!pte_write(pte))
3439		flags |= TNF_NO_GROUP;
3440
3441	/*
3442	 * Flag if the page is shared between multiple address spaces. This
3443	 * is later used when determining whether to group tasks together
3444	 */
3445	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3446		flags |= TNF_SHARED;
3447
3448	last_cpupid = page_cpupid_last(page);
3449	page_nid = page_to_nid(page);
3450	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3451			&flags);
3452	pte_unmap_unlock(vmf->pte, vmf->ptl);
3453	if (target_nid == -1) {
3454		put_page(page);
3455		goto out;
3456	}
3457
3458	/* Migrate to the requested node */
3459	migrated = migrate_misplaced_page(page, vma, target_nid);
3460	if (migrated) {
3461		page_nid = target_nid;
3462		flags |= TNF_MIGRATED;
3463	} else
3464		flags |= TNF_MIGRATE_FAIL;
3465
3466out:
3467	if (page_nid != -1)
3468		task_numa_fault(last_cpupid, page_nid, 1, flags);
3469	return 0;
3470}
3471
3472static int create_huge_pmd(struct vm_fault *vmf)
 
3473{
3474	struct vm_area_struct *vma = vmf->vma;
3475	if (vma_is_anonymous(vma))
3476		return do_huge_pmd_anonymous_page(vmf);
3477	if (vma->vm_ops->pmd_fault)
3478		return vma->vm_ops->pmd_fault(vma, vmf->address, vmf->pmd,
3479				vmf->flags);
3480	return VM_FAULT_FALLBACK;
3481}
3482
3483static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
 
 
3484{
3485	if (vma_is_anonymous(vmf->vma))
3486		return do_huge_pmd_wp_page(vmf, orig_pmd);
3487	if (vmf->vma->vm_ops->pmd_fault)
3488		return vmf->vma->vm_ops->pmd_fault(vmf->vma, vmf->address,
3489						   vmf->pmd, vmf->flags);
3490
3491	/* COW handled on pte level: split pmd */
3492	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3493	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3494
3495	return VM_FAULT_FALLBACK;
3496}
3497
3498static inline bool vma_is_accessible(struct vm_area_struct *vma)
3499{
3500	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3501}
3502
3503/*
3504 * These routines also need to handle stuff like marking pages dirty
3505 * and/or accessed for architectures that don't do it in hardware (most
3506 * RISC architectures).  The early dirtying is also good on the i386.
3507 *
3508 * There is also a hook called "update_mmu_cache()" that architectures
3509 * with external mmu caches can use to update those (ie the Sparc or
3510 * PowerPC hashed page tables that act as extended TLBs).
3511 *
3512 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3513 * concurrent faults).
 
3514 *
3515 * The mmap_sem may have been released depending on flags and our return value.
3516 * See filemap_fault() and __lock_page_or_retry().
3517 */
3518static int handle_pte_fault(struct vm_fault *vmf)
 
 
3519{
3520	pte_t entry;
 
3521
3522	if (unlikely(pmd_none(*vmf->pmd))) {
3523		/*
3524		 * Leave __pte_alloc() until later: because vm_ops->fault may
3525		 * want to allocate huge page, and if we expose page table
3526		 * for an instant, it will be difficult to retract from
3527		 * concurrent faults and from rmap lookups.
3528		 */
3529		vmf->pte = NULL;
3530	} else {
3531		/* See comment in pte_alloc_one_map() */
3532		if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3533			return 0;
3534		/*
3535		 * A regular pmd is established and it can't morph into a huge
3536		 * pmd from under us anymore at this point because we hold the
3537		 * mmap_sem read mode and khugepaged takes it in write mode.
3538		 * So now it's safe to run pte_offset_map().
3539		 */
3540		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3541		vmf->orig_pte = *vmf->pte;
3542
3543		/*
3544		 * some architectures can have larger ptes than wordsize,
3545		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3546		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3547		 * atomic accesses.  The code below just needs a consistent
3548		 * view for the ifs and we later double check anyway with the
3549		 * ptl lock held. So here a barrier will do.
3550		 */
3551		barrier();
3552		if (pte_none(vmf->orig_pte)) {
3553			pte_unmap(vmf->pte);
3554			vmf->pte = NULL;
3555		}
3556	}
3557
3558	if (!vmf->pte) {
3559		if (vma_is_anonymous(vmf->vma))
3560			return do_anonymous_page(vmf);
3561		else
3562			return do_fault(vmf);
3563	}
3564
3565	if (!pte_present(vmf->orig_pte))
3566		return do_swap_page(vmf);
3567
3568	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3569		return do_numa_page(vmf);
3570
3571	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3572	spin_lock(vmf->ptl);
3573	entry = vmf->orig_pte;
3574	if (unlikely(!pte_same(*vmf->pte, entry)))
3575		goto unlock;
3576	if (vmf->flags & FAULT_FLAG_WRITE) {
3577		if (!pte_write(entry))
3578			return do_wp_page(vmf);
 
3579		entry = pte_mkdirty(entry);
3580	}
3581	entry = pte_mkyoung(entry);
3582	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3583				vmf->flags & FAULT_FLAG_WRITE)) {
3584		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3585	} else {
3586		/*
3587		 * This is needed only for protection faults but the arch code
3588		 * is not yet telling us if this is a protection fault or not.
3589		 * This still avoids useless tlb flushes for .text page faults
3590		 * with threads.
3591		 */
3592		if (vmf->flags & FAULT_FLAG_WRITE)
3593			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3594	}
3595unlock:
3596	pte_unmap_unlock(vmf->pte, vmf->ptl);
3597	return 0;
3598}
3599
3600/*
3601 * By the time we get here, we already hold the mm semaphore
3602 *
3603 * The mmap_sem may have been released depending on flags and our
3604 * return value.  See filemap_fault() and __lock_page_or_retry().
3605 */
3606static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3607		unsigned int flags)
3608{
3609	struct vm_fault vmf = {
3610		.vma = vma,
3611		.address = address & PAGE_MASK,
3612		.flags = flags,
3613		.pgoff = linear_page_index(vma, address),
3614		.gfp_mask = __get_fault_gfp_mask(vma),
3615	};
3616	struct mm_struct *mm = vma->vm_mm;
3617	pgd_t *pgd;
3618	pud_t *pud;
 
 
 
 
 
 
 
 
 
 
3619
3620	pgd = pgd_offset(mm, address);
3621	pud = pud_alloc(mm, pgd, address);
3622	if (!pud)
3623		return VM_FAULT_OOM;
3624	vmf.pmd = pmd_alloc(mm, pud, address);
3625	if (!vmf.pmd)
3626		return VM_FAULT_OOM;
3627	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3628		int ret = create_huge_pmd(&vmf);
3629		if (!(ret & VM_FAULT_FALLBACK))
3630			return ret;
3631	} else {
3632		pmd_t orig_pmd = *vmf.pmd;
3633		int ret;
3634
3635		barrier();
3636		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3637			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3638				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3639
3640			if ((vmf.flags & FAULT_FLAG_WRITE) &&
3641					!pmd_write(orig_pmd)) {
3642				ret = wp_huge_pmd(&vmf, orig_pmd);
 
 
 
 
3643				if (!(ret & VM_FAULT_FALLBACK))
3644					return ret;
3645			} else {
3646				huge_pmd_set_accessed(&vmf, orig_pmd);
 
3647				return 0;
3648			}
3649		}
3650	}
3651
3652	return handle_pte_fault(&vmf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3653}
3654
3655/*
3656 * By the time we get here, we already hold the mm semaphore
3657 *
3658 * The mmap_sem may have been released depending on flags and our
3659 * return value.  See filemap_fault() and __lock_page_or_retry().
3660 */
3661int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3662		unsigned int flags)
3663{
3664	int ret;
3665
3666	__set_current_state(TASK_RUNNING);
3667
3668	count_vm_event(PGFAULT);
3669	mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3670
3671	/* do counter updates before entering really critical section. */
3672	check_sync_rss_stat(current);
3673
3674	/*
3675	 * Enable the memcg OOM handling for faults triggered in user
3676	 * space.  Kernel faults are handled more gracefully.
3677	 */
3678	if (flags & FAULT_FLAG_USER)
3679		mem_cgroup_oom_enable();
3680
3681	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3682					    flags & FAULT_FLAG_INSTRUCTION,
3683					    flags & FAULT_FLAG_REMOTE))
3684		return VM_FAULT_SIGSEGV;
3685
3686	if (unlikely(is_vm_hugetlb_page(vma)))
3687		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3688	else
3689		ret = __handle_mm_fault(vma, address, flags);
3690
3691	if (flags & FAULT_FLAG_USER) {
3692		mem_cgroup_oom_disable();
3693                /*
3694                 * The task may have entered a memcg OOM situation but
3695                 * if the allocation error was handled gracefully (no
3696                 * VM_FAULT_OOM), there is no need to kill anything.
3697                 * Just clean up the OOM state peacefully.
3698                 */
3699                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3700                        mem_cgroup_oom_synchronize(false);
3701	}
3702
3703	/*
3704	 * This mm has been already reaped by the oom reaper and so the
3705	 * refault cannot be trusted in general. Anonymous refaults would
3706	 * lose data and give a zero page instead e.g. This is especially
3707	 * problem for use_mm() because regular tasks will just die and
3708	 * the corrupted data will not be visible anywhere while kthread
3709	 * will outlive the oom victim and potentially propagate the date
3710	 * further.
3711	 */
3712	if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3713				&& test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3714		ret = VM_FAULT_SIGBUS;
3715
3716	return ret;
3717}
3718EXPORT_SYMBOL_GPL(handle_mm_fault);
3719
3720#ifndef __PAGETABLE_PUD_FOLDED
3721/*
3722 * Allocate page upper directory.
3723 * We've already handled the fast-path in-line.
3724 */
3725int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3726{
3727	pud_t *new = pud_alloc_one(mm, address);
3728	if (!new)
3729		return -ENOMEM;
3730
3731	smp_wmb(); /* See comment in __pte_alloc */
3732
3733	spin_lock(&mm->page_table_lock);
3734	if (pgd_present(*pgd))		/* Another has populated it */
3735		pud_free(mm, new);
3736	else
3737		pgd_populate(mm, pgd, new);
3738	spin_unlock(&mm->page_table_lock);
3739	return 0;
3740}
3741#endif /* __PAGETABLE_PUD_FOLDED */
3742
3743#ifndef __PAGETABLE_PMD_FOLDED
3744/*
3745 * Allocate page middle directory.
3746 * We've already handled the fast-path in-line.
3747 */
3748int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3749{
3750	pmd_t *new = pmd_alloc_one(mm, address);
3751	if (!new)
3752		return -ENOMEM;
3753
3754	smp_wmb(); /* See comment in __pte_alloc */
3755
3756	spin_lock(&mm->page_table_lock);
3757#ifndef __ARCH_HAS_4LEVEL_HACK
3758	if (!pud_present(*pud)) {
3759		mm_inc_nr_pmds(mm);
3760		pud_populate(mm, pud, new);
3761	} else	/* Another has populated it */
3762		pmd_free(mm, new);
3763#else
3764	if (!pgd_present(*pud)) {
3765		mm_inc_nr_pmds(mm);
3766		pgd_populate(mm, pud, new);
3767	} else /* Another has populated it */
3768		pmd_free(mm, new);
3769#endif /* __ARCH_HAS_4LEVEL_HACK */
3770	spin_unlock(&mm->page_table_lock);
3771	return 0;
3772}
3773#endif /* __PAGETABLE_PMD_FOLDED */
3774
3775static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3776		pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3777{
3778	pgd_t *pgd;
3779	pud_t *pud;
3780	pmd_t *pmd;
3781	pte_t *ptep;
3782
3783	pgd = pgd_offset(mm, address);
3784	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3785		goto out;
3786
3787	pud = pud_offset(pgd, address);
3788	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3789		goto out;
3790
3791	pmd = pmd_offset(pud, address);
3792	VM_BUG_ON(pmd_trans_huge(*pmd));
 
 
3793
3794	if (pmd_huge(*pmd)) {
3795		if (!pmdpp)
3796			goto out;
3797
3798		*ptlp = pmd_lock(mm, pmd);
3799		if (pmd_huge(*pmd)) {
3800			*pmdpp = pmd;
3801			return 0;
3802		}
3803		spin_unlock(*ptlp);
3804	}
3805
3806	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3807		goto out;
3808
3809	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3810	if (!ptep)
3811		goto out;
3812	if (!pte_present(*ptep))
3813		goto unlock;
3814	*ptepp = ptep;
3815	return 0;
3816unlock:
3817	pte_unmap_unlock(ptep, *ptlp);
3818out:
3819	return -EINVAL;
3820}
3821
3822static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3823			     pte_t **ptepp, spinlock_t **ptlp)
3824{
3825	int res;
3826
3827	/* (void) is needed to make gcc happy */
3828	(void) __cond_lock(*ptlp,
3829			   !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3830					   ptlp)));
3831	return res;
3832}
3833
3834int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3835			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3836{
3837	int res;
3838
3839	/* (void) is needed to make gcc happy */
3840	(void) __cond_lock(*ptlp,
3841			   !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3842					   ptlp)));
3843	return res;
3844}
3845EXPORT_SYMBOL(follow_pte_pmd);
3846
3847/**
3848 * follow_pfn - look up PFN at a user virtual address
3849 * @vma: memory mapping
3850 * @address: user virtual address
3851 * @pfn: location to store found PFN
3852 *
3853 * Only IO mappings and raw PFN mappings are allowed.
3854 *
3855 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3856 */
3857int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3858	unsigned long *pfn)
3859{
3860	int ret = -EINVAL;
3861	spinlock_t *ptl;
3862	pte_t *ptep;
3863
3864	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3865		return ret;
3866
3867	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3868	if (ret)
3869		return ret;
3870	*pfn = pte_pfn(*ptep);
3871	pte_unmap_unlock(ptep, ptl);
3872	return 0;
3873}
3874EXPORT_SYMBOL(follow_pfn);
3875
3876#ifdef CONFIG_HAVE_IOREMAP_PROT
3877int follow_phys(struct vm_area_struct *vma,
3878		unsigned long address, unsigned int flags,
3879		unsigned long *prot, resource_size_t *phys)
3880{
3881	int ret = -EINVAL;
3882	pte_t *ptep, pte;
3883	spinlock_t *ptl;
3884
3885	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3886		goto out;
3887
3888	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3889		goto out;
3890	pte = *ptep;
3891
3892	if ((flags & FOLL_WRITE) && !pte_write(pte))
3893		goto unlock;
3894
3895	*prot = pgprot_val(pte_pgprot(pte));
3896	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3897
3898	ret = 0;
3899unlock:
3900	pte_unmap_unlock(ptep, ptl);
3901out:
3902	return ret;
3903}
3904
3905int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3906			void *buf, int len, int write)
3907{
3908	resource_size_t phys_addr;
3909	unsigned long prot = 0;
3910	void __iomem *maddr;
3911	int offset = addr & (PAGE_SIZE-1);
3912
3913	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3914		return -EINVAL;
3915
3916	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3917	if (write)
3918		memcpy_toio(maddr + offset, buf, len);
3919	else
3920		memcpy_fromio(buf, maddr + offset, len);
3921	iounmap(maddr);
3922
3923	return len;
3924}
3925EXPORT_SYMBOL_GPL(generic_access_phys);
3926#endif
3927
3928/*
3929 * Access another process' address space as given in mm.  If non-NULL, use the
3930 * given task for page fault accounting.
3931 */
3932int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3933		unsigned long addr, void *buf, int len, unsigned int gup_flags)
3934{
3935	struct vm_area_struct *vma;
3936	void *old_buf = buf;
3937	int write = gup_flags & FOLL_WRITE;
3938
3939	down_read(&mm->mmap_sem);
3940	/* ignore errors, just check how much was successfully transferred */
3941	while (len) {
3942		int bytes, ret, offset;
3943		void *maddr;
3944		struct page *page = NULL;
3945
3946		ret = get_user_pages_remote(tsk, mm, addr, 1,
3947				gup_flags, &page, &vma, NULL);
3948		if (ret <= 0) {
3949#ifndef CONFIG_HAVE_IOREMAP_PROT
3950			break;
3951#else
3952			/*
3953			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3954			 * we can access using slightly different code.
3955			 */
3956			vma = find_vma(mm, addr);
3957			if (!vma || vma->vm_start > addr)
3958				break;
3959			if (vma->vm_ops && vma->vm_ops->access)
3960				ret = vma->vm_ops->access(vma, addr, buf,
3961							  len, write);
3962			if (ret <= 0)
3963				break;
3964			bytes = ret;
3965#endif
3966		} else {
3967			bytes = len;
3968			offset = addr & (PAGE_SIZE-1);
3969			if (bytes > PAGE_SIZE-offset)
3970				bytes = PAGE_SIZE-offset;
3971
3972			maddr = kmap(page);
3973			if (write) {
3974				copy_to_user_page(vma, page, addr,
3975						  maddr + offset, buf, bytes);
3976				set_page_dirty_lock(page);
3977			} else {
3978				copy_from_user_page(vma, page, addr,
3979						    buf, maddr + offset, bytes);
3980			}
3981			kunmap(page);
3982			put_page(page);
3983		}
3984		len -= bytes;
3985		buf += bytes;
3986		addr += bytes;
3987	}
3988	up_read(&mm->mmap_sem);
3989
3990	return buf - old_buf;
3991}
3992
3993/**
3994 * access_remote_vm - access another process' address space
3995 * @mm:		the mm_struct of the target address space
3996 * @addr:	start address to access
3997 * @buf:	source or destination buffer
3998 * @len:	number of bytes to transfer
3999 * @gup_flags:	flags modifying lookup behaviour
4000 *
4001 * The caller must hold a reference on @mm.
4002 */
4003int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4004		void *buf, int len, unsigned int gup_flags)
4005{
4006	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4007}
4008
4009/*
4010 * Access another process' address space.
4011 * Source/target buffer must be kernel space,
4012 * Do not walk the page table directly, use get_user_pages
4013 */
4014int access_process_vm(struct task_struct *tsk, unsigned long addr,
4015		void *buf, int len, unsigned int gup_flags)
4016{
4017	struct mm_struct *mm;
4018	int ret;
4019
4020	mm = get_task_mm(tsk);
4021	if (!mm)
4022		return 0;
4023
4024	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4025
4026	mmput(mm);
4027
4028	return ret;
4029}
4030EXPORT_SYMBOL_GPL(access_process_vm);
4031
4032/*
4033 * Print the name of a VMA.
4034 */
4035void print_vma_addr(char *prefix, unsigned long ip)
4036{
4037	struct mm_struct *mm = current->mm;
4038	struct vm_area_struct *vma;
4039
4040	/*
4041	 * Do not print if we are in atomic
4042	 * contexts (in exception stacks, etc.):
4043	 */
4044	if (preempt_count())
4045		return;
4046
4047	down_read(&mm->mmap_sem);
4048	vma = find_vma(mm, ip);
4049	if (vma && vma->vm_file) {
4050		struct file *f = vma->vm_file;
4051		char *buf = (char *)__get_free_page(GFP_KERNEL);
4052		if (buf) {
4053			char *p;
4054
4055			p = file_path(f, buf, PAGE_SIZE);
4056			if (IS_ERR(p))
4057				p = "?";
4058			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4059					vma->vm_start,
4060					vma->vm_end - vma->vm_start);
4061			free_page((unsigned long)buf);
4062		}
4063	}
4064	up_read(&mm->mmap_sem);
4065}
4066
4067#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4068void __might_fault(const char *file, int line)
4069{
4070	/*
4071	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4072	 * holding the mmap_sem, this is safe because kernel memory doesn't
4073	 * get paged out, therefore we'll never actually fault, and the
4074	 * below annotations will generate false positives.
4075	 */
4076	if (segment_eq(get_fs(), KERNEL_DS))
4077		return;
4078	if (pagefault_disabled())
4079		return;
4080	__might_sleep(file, line, 0);
4081#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4082	if (current->mm)
4083		might_lock_read(&current->mm->mmap_sem);
4084#endif
4085}
4086EXPORT_SYMBOL(__might_fault);
4087#endif
4088
4089#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4090static void clear_gigantic_page(struct page *page,
4091				unsigned long addr,
4092				unsigned int pages_per_huge_page)
4093{
4094	int i;
4095	struct page *p = page;
4096
4097	might_sleep();
4098	for (i = 0; i < pages_per_huge_page;
4099	     i++, p = mem_map_next(p, page, i)) {
4100		cond_resched();
4101		clear_user_highpage(p, addr + i * PAGE_SIZE);
4102	}
4103}
4104void clear_huge_page(struct page *page,
4105		     unsigned long addr, unsigned int pages_per_huge_page)
4106{
4107	int i;
4108
4109	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4110		clear_gigantic_page(page, addr, pages_per_huge_page);
4111		return;
4112	}
4113
4114	might_sleep();
4115	for (i = 0; i < pages_per_huge_page; i++) {
4116		cond_resched();
4117		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4118	}
4119}
4120
4121static void copy_user_gigantic_page(struct page *dst, struct page *src,
4122				    unsigned long addr,
4123				    struct vm_area_struct *vma,
4124				    unsigned int pages_per_huge_page)
4125{
4126	int i;
4127	struct page *dst_base = dst;
4128	struct page *src_base = src;
4129
4130	for (i = 0; i < pages_per_huge_page; ) {
4131		cond_resched();
4132		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4133
4134		i++;
4135		dst = mem_map_next(dst, dst_base, i);
4136		src = mem_map_next(src, src_base, i);
4137	}
4138}
4139
4140void copy_user_huge_page(struct page *dst, struct page *src,
4141			 unsigned long addr, struct vm_area_struct *vma,
4142			 unsigned int pages_per_huge_page)
4143{
4144	int i;
4145
4146	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4147		copy_user_gigantic_page(dst, src, addr, vma,
4148					pages_per_huge_page);
4149		return;
4150	}
4151
4152	might_sleep();
4153	for (i = 0; i < pages_per_huge_page; i++) {
4154		cond_resched();
4155		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4156	}
4157}
4158#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4159
4160#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4161
4162static struct kmem_cache *page_ptl_cachep;
4163
4164void __init ptlock_cache_init(void)
4165{
4166	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4167			SLAB_PANIC, NULL);
4168}
4169
4170bool ptlock_alloc(struct page *page)
4171{
4172	spinlock_t *ptl;
4173
4174	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4175	if (!ptl)
4176		return false;
4177	page->ptl = ptl;
4178	return true;
4179}
4180
4181void ptlock_free(struct page *page)
4182{
4183	kmem_cache_free(page_ptl_cachep, page->ptl);
4184}
4185#endif