Loading...
1
2#include <linux/sched.h>
3#include <linux/sched/sysctl.h>
4#include <linux/sched/rt.h>
5#include <linux/sched/deadline.h>
6#include <linux/binfmts.h>
7#include <linux/mutex.h>
8#include <linux/spinlock.h>
9#include <linux/stop_machine.h>
10#include <linux/irq_work.h>
11#include <linux/tick.h>
12#include <linux/slab.h>
13
14#include "cpupri.h"
15#include "cpudeadline.h"
16#include "cpuacct.h"
17
18struct rq;
19struct cpuidle_state;
20
21/* task_struct::on_rq states: */
22#define TASK_ON_RQ_QUEUED 1
23#define TASK_ON_RQ_MIGRATING 2
24
25extern __read_mostly int scheduler_running;
26
27extern unsigned long calc_load_update;
28extern atomic_long_t calc_load_tasks;
29
30extern void calc_global_load_tick(struct rq *this_rq);
31extern long calc_load_fold_active(struct rq *this_rq);
32
33#ifdef CONFIG_SMP
34extern void update_cpu_load_active(struct rq *this_rq);
35#else
36static inline void update_cpu_load_active(struct rq *this_rq) { }
37#endif
38
39/*
40 * Helpers for converting nanosecond timing to jiffy resolution
41 */
42#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
43
44/*
45 * Increase resolution of nice-level calculations for 64-bit architectures.
46 * The extra resolution improves shares distribution and load balancing of
47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48 * hierarchies, especially on larger systems. This is not a user-visible change
49 * and does not change the user-interface for setting shares/weights.
50 *
51 * We increase resolution only if we have enough bits to allow this increased
52 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
53 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
54 * increased costs.
55 */
56#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
57# define SCHED_LOAD_RESOLUTION 10
58# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
59# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
60#else
61# define SCHED_LOAD_RESOLUTION 0
62# define scale_load(w) (w)
63# define scale_load_down(w) (w)
64#endif
65
66#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
67#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
68
69#define NICE_0_LOAD SCHED_LOAD_SCALE
70#define NICE_0_SHIFT SCHED_LOAD_SHIFT
71
72/*
73 * Single value that decides SCHED_DEADLINE internal math precision.
74 * 10 -> just above 1us
75 * 9 -> just above 0.5us
76 */
77#define DL_SCALE (10)
78
79/*
80 * These are the 'tuning knobs' of the scheduler:
81 */
82
83/*
84 * single value that denotes runtime == period, ie unlimited time.
85 */
86#define RUNTIME_INF ((u64)~0ULL)
87
88static inline int idle_policy(int policy)
89{
90 return policy == SCHED_IDLE;
91}
92static inline int fair_policy(int policy)
93{
94 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
95}
96
97static inline int rt_policy(int policy)
98{
99 return policy == SCHED_FIFO || policy == SCHED_RR;
100}
101
102static inline int dl_policy(int policy)
103{
104 return policy == SCHED_DEADLINE;
105}
106static inline bool valid_policy(int policy)
107{
108 return idle_policy(policy) || fair_policy(policy) ||
109 rt_policy(policy) || dl_policy(policy);
110}
111
112static inline int task_has_rt_policy(struct task_struct *p)
113{
114 return rt_policy(p->policy);
115}
116
117static inline int task_has_dl_policy(struct task_struct *p)
118{
119 return dl_policy(p->policy);
120}
121
122/*
123 * Tells if entity @a should preempt entity @b.
124 */
125static inline bool
126dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
127{
128 return dl_time_before(a->deadline, b->deadline);
129}
130
131/*
132 * This is the priority-queue data structure of the RT scheduling class:
133 */
134struct rt_prio_array {
135 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
136 struct list_head queue[MAX_RT_PRIO];
137};
138
139struct rt_bandwidth {
140 /* nests inside the rq lock: */
141 raw_spinlock_t rt_runtime_lock;
142 ktime_t rt_period;
143 u64 rt_runtime;
144 struct hrtimer rt_period_timer;
145 unsigned int rt_period_active;
146};
147
148void __dl_clear_params(struct task_struct *p);
149
150/*
151 * To keep the bandwidth of -deadline tasks and groups under control
152 * we need some place where:
153 * - store the maximum -deadline bandwidth of the system (the group);
154 * - cache the fraction of that bandwidth that is currently allocated.
155 *
156 * This is all done in the data structure below. It is similar to the
157 * one used for RT-throttling (rt_bandwidth), with the main difference
158 * that, since here we are only interested in admission control, we
159 * do not decrease any runtime while the group "executes", neither we
160 * need a timer to replenish it.
161 *
162 * With respect to SMP, the bandwidth is given on a per-CPU basis,
163 * meaning that:
164 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
165 * - dl_total_bw array contains, in the i-eth element, the currently
166 * allocated bandwidth on the i-eth CPU.
167 * Moreover, groups consume bandwidth on each CPU, while tasks only
168 * consume bandwidth on the CPU they're running on.
169 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
170 * that will be shown the next time the proc or cgroup controls will
171 * be red. It on its turn can be changed by writing on its own
172 * control.
173 */
174struct dl_bandwidth {
175 raw_spinlock_t dl_runtime_lock;
176 u64 dl_runtime;
177 u64 dl_period;
178};
179
180static inline int dl_bandwidth_enabled(void)
181{
182 return sysctl_sched_rt_runtime >= 0;
183}
184
185extern struct dl_bw *dl_bw_of(int i);
186
187struct dl_bw {
188 raw_spinlock_t lock;
189 u64 bw, total_bw;
190};
191
192static inline
193void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
194{
195 dl_b->total_bw -= tsk_bw;
196}
197
198static inline
199void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
200{
201 dl_b->total_bw += tsk_bw;
202}
203
204static inline
205bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
206{
207 return dl_b->bw != -1 &&
208 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
209}
210
211extern struct mutex sched_domains_mutex;
212
213#ifdef CONFIG_CGROUP_SCHED
214
215#include <linux/cgroup.h>
216
217struct cfs_rq;
218struct rt_rq;
219
220extern struct list_head task_groups;
221
222struct cfs_bandwidth {
223#ifdef CONFIG_CFS_BANDWIDTH
224 raw_spinlock_t lock;
225 ktime_t period;
226 u64 quota, runtime;
227 s64 hierarchical_quota;
228 u64 runtime_expires;
229
230 int idle, period_active;
231 struct hrtimer period_timer, slack_timer;
232 struct list_head throttled_cfs_rq;
233
234 /* statistics */
235 int nr_periods, nr_throttled;
236 u64 throttled_time;
237#endif
238};
239
240/* task group related information */
241struct task_group {
242 struct cgroup_subsys_state css;
243
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 /* schedulable entities of this group on each cpu */
246 struct sched_entity **se;
247 /* runqueue "owned" by this group on each cpu */
248 struct cfs_rq **cfs_rq;
249 unsigned long shares;
250
251#ifdef CONFIG_SMP
252 /*
253 * load_avg can be heavily contended at clock tick time, so put
254 * it in its own cacheline separated from the fields above which
255 * will also be accessed at each tick.
256 */
257 atomic_long_t load_avg ____cacheline_aligned;
258#endif
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
265 struct rt_bandwidth rt_bandwidth;
266#endif
267
268 struct rcu_head rcu;
269 struct list_head list;
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
278
279 struct cfs_bandwidth cfs_bandwidth;
280};
281
282#ifdef CONFIG_FAIR_GROUP_SCHED
283#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
284
285/*
286 * A weight of 0 or 1 can cause arithmetics problems.
287 * A weight of a cfs_rq is the sum of weights of which entities
288 * are queued on this cfs_rq, so a weight of a entity should not be
289 * too large, so as the shares value of a task group.
290 * (The default weight is 1024 - so there's no practical
291 * limitation from this.)
292 */
293#define MIN_SHARES (1UL << 1)
294#define MAX_SHARES (1UL << 18)
295#endif
296
297typedef int (*tg_visitor)(struct task_group *, void *);
298
299extern int walk_tg_tree_from(struct task_group *from,
300 tg_visitor down, tg_visitor up, void *data);
301
302/*
303 * Iterate the full tree, calling @down when first entering a node and @up when
304 * leaving it for the final time.
305 *
306 * Caller must hold rcu_lock or sufficient equivalent.
307 */
308static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
309{
310 return walk_tg_tree_from(&root_task_group, down, up, data);
311}
312
313extern int tg_nop(struct task_group *tg, void *data);
314
315extern void free_fair_sched_group(struct task_group *tg);
316extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
317extern void unregister_fair_sched_group(struct task_group *tg);
318extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
319 struct sched_entity *se, int cpu,
320 struct sched_entity *parent);
321extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
322
323extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
324extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
325extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
326
327extern void free_rt_sched_group(struct task_group *tg);
328extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
329extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
330 struct sched_rt_entity *rt_se, int cpu,
331 struct sched_rt_entity *parent);
332
333extern struct task_group *sched_create_group(struct task_group *parent);
334extern void sched_online_group(struct task_group *tg,
335 struct task_group *parent);
336extern void sched_destroy_group(struct task_group *tg);
337extern void sched_offline_group(struct task_group *tg);
338
339extern void sched_move_task(struct task_struct *tsk);
340
341#ifdef CONFIG_FAIR_GROUP_SCHED
342extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
343
344#ifdef CONFIG_SMP
345extern void set_task_rq_fair(struct sched_entity *se,
346 struct cfs_rq *prev, struct cfs_rq *next);
347#else /* !CONFIG_SMP */
348static inline void set_task_rq_fair(struct sched_entity *se,
349 struct cfs_rq *prev, struct cfs_rq *next) { }
350#endif /* CONFIG_SMP */
351#endif /* CONFIG_FAIR_GROUP_SCHED */
352
353#else /* CONFIG_CGROUP_SCHED */
354
355struct cfs_bandwidth { };
356
357#endif /* CONFIG_CGROUP_SCHED */
358
359/* CFS-related fields in a runqueue */
360struct cfs_rq {
361 struct load_weight load;
362 unsigned int nr_running, h_nr_running;
363
364 u64 exec_clock;
365 u64 min_vruntime;
366#ifndef CONFIG_64BIT
367 u64 min_vruntime_copy;
368#endif
369
370 struct rb_root tasks_timeline;
371 struct rb_node *rb_leftmost;
372
373 /*
374 * 'curr' points to currently running entity on this cfs_rq.
375 * It is set to NULL otherwise (i.e when none are currently running).
376 */
377 struct sched_entity *curr, *next, *last, *skip;
378
379#ifdef CONFIG_SCHED_DEBUG
380 unsigned int nr_spread_over;
381#endif
382
383#ifdef CONFIG_SMP
384 /*
385 * CFS load tracking
386 */
387 struct sched_avg avg;
388 u64 runnable_load_sum;
389 unsigned long runnable_load_avg;
390#ifdef CONFIG_FAIR_GROUP_SCHED
391 unsigned long tg_load_avg_contrib;
392#endif
393 atomic_long_t removed_load_avg, removed_util_avg;
394#ifndef CONFIG_64BIT
395 u64 load_last_update_time_copy;
396#endif
397
398#ifdef CONFIG_FAIR_GROUP_SCHED
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
406 u64 last_h_load_update;
407 struct sched_entity *h_load_next;
408#endif /* CONFIG_FAIR_GROUP_SCHED */
409#endif /* CONFIG_SMP */
410
411#ifdef CONFIG_FAIR_GROUP_SCHED
412 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
413
414 /*
415 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
416 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
417 * (like users, containers etc.)
418 *
419 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
420 * list is used during load balance.
421 */
422 int on_list;
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
425
426#ifdef CONFIG_CFS_BANDWIDTH
427 int runtime_enabled;
428 u64 runtime_expires;
429 s64 runtime_remaining;
430
431 u64 throttled_clock, throttled_clock_task;
432 u64 throttled_clock_task_time;
433 int throttled, throttle_count;
434 struct list_head throttled_list;
435#endif /* CONFIG_CFS_BANDWIDTH */
436#endif /* CONFIG_FAIR_GROUP_SCHED */
437};
438
439static inline int rt_bandwidth_enabled(void)
440{
441 return sysctl_sched_rt_runtime >= 0;
442}
443
444/* RT IPI pull logic requires IRQ_WORK */
445#ifdef CONFIG_IRQ_WORK
446# define HAVE_RT_PUSH_IPI
447#endif
448
449/* Real-Time classes' related field in a runqueue: */
450struct rt_rq {
451 struct rt_prio_array active;
452 unsigned int rt_nr_running;
453 unsigned int rr_nr_running;
454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457#ifdef CONFIG_SMP
458 int next; /* next highest */
459#endif
460 } highest_prio;
461#endif
462#ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
467#ifdef HAVE_RT_PUSH_IPI
468 int push_flags;
469 int push_cpu;
470 struct irq_work push_work;
471 raw_spinlock_t push_lock;
472#endif
473#endif /* CONFIG_SMP */
474 int rt_queued;
475
476 int rt_throttled;
477 u64 rt_time;
478 u64 rt_runtime;
479 /* Nests inside the rq lock: */
480 raw_spinlock_t rt_runtime_lock;
481
482#ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted;
484
485 struct rq *rq;
486 struct task_group *tg;
487#endif
488};
489
490/* Deadline class' related fields in a runqueue */
491struct dl_rq {
492 /* runqueue is an rbtree, ordered by deadline */
493 struct rb_root rb_root;
494 struct rb_node *rb_leftmost;
495
496 unsigned long dl_nr_running;
497
498#ifdef CONFIG_SMP
499 /*
500 * Deadline values of the currently executing and the
501 * earliest ready task on this rq. Caching these facilitates
502 * the decision wether or not a ready but not running task
503 * should migrate somewhere else.
504 */
505 struct {
506 u64 curr;
507 u64 next;
508 } earliest_dl;
509
510 unsigned long dl_nr_migratory;
511 int overloaded;
512
513 /*
514 * Tasks on this rq that can be pushed away. They are kept in
515 * an rb-tree, ordered by tasks' deadlines, with caching
516 * of the leftmost (earliest deadline) element.
517 */
518 struct rb_root pushable_dl_tasks_root;
519 struct rb_node *pushable_dl_tasks_leftmost;
520#else
521 struct dl_bw dl_bw;
522#endif
523};
524
525#ifdef CONFIG_SMP
526
527/*
528 * We add the notion of a root-domain which will be used to define per-domain
529 * variables. Each exclusive cpuset essentially defines an island domain by
530 * fully partitioning the member cpus from any other cpuset. Whenever a new
531 * exclusive cpuset is created, we also create and attach a new root-domain
532 * object.
533 *
534 */
535struct root_domain {
536 atomic_t refcount;
537 atomic_t rto_count;
538 struct rcu_head rcu;
539 cpumask_var_t span;
540 cpumask_var_t online;
541
542 /* Indicate more than one runnable task for any CPU */
543 bool overload;
544
545 /*
546 * The bit corresponding to a CPU gets set here if such CPU has more
547 * than one runnable -deadline task (as it is below for RT tasks).
548 */
549 cpumask_var_t dlo_mask;
550 atomic_t dlo_count;
551 struct dl_bw dl_bw;
552 struct cpudl cpudl;
553
554 /*
555 * The "RT overload" flag: it gets set if a CPU has more than
556 * one runnable RT task.
557 */
558 cpumask_var_t rto_mask;
559 struct cpupri cpupri;
560};
561
562extern struct root_domain def_root_domain;
563
564#endif /* CONFIG_SMP */
565
566/*
567 * This is the main, per-CPU runqueue data structure.
568 *
569 * Locking rule: those places that want to lock multiple runqueues
570 * (such as the load balancing or the thread migration code), lock
571 * acquire operations must be ordered by ascending &runqueue.
572 */
573struct rq {
574 /* runqueue lock: */
575 raw_spinlock_t lock;
576
577 /*
578 * nr_running and cpu_load should be in the same cacheline because
579 * remote CPUs use both these fields when doing load calculation.
580 */
581 unsigned int nr_running;
582#ifdef CONFIG_NUMA_BALANCING
583 unsigned int nr_numa_running;
584 unsigned int nr_preferred_running;
585#endif
586 #define CPU_LOAD_IDX_MAX 5
587 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
588 unsigned long last_load_update_tick;
589#ifdef CONFIG_NO_HZ_COMMON
590 u64 nohz_stamp;
591 unsigned long nohz_flags;
592#endif
593#ifdef CONFIG_NO_HZ_FULL
594 unsigned long last_sched_tick;
595#endif
596 /* capture load from *all* tasks on this cpu: */
597 struct load_weight load;
598 unsigned long nr_load_updates;
599 u64 nr_switches;
600
601 struct cfs_rq cfs;
602 struct rt_rq rt;
603 struct dl_rq dl;
604
605#ifdef CONFIG_FAIR_GROUP_SCHED
606 /* list of leaf cfs_rq on this cpu: */
607 struct list_head leaf_cfs_rq_list;
608#endif /* CONFIG_FAIR_GROUP_SCHED */
609
610 /*
611 * This is part of a global counter where only the total sum
612 * over all CPUs matters. A task can increase this counter on
613 * one CPU and if it got migrated afterwards it may decrease
614 * it on another CPU. Always updated under the runqueue lock:
615 */
616 unsigned long nr_uninterruptible;
617
618 struct task_struct *curr, *idle, *stop;
619 unsigned long next_balance;
620 struct mm_struct *prev_mm;
621
622 unsigned int clock_skip_update;
623 u64 clock;
624 u64 clock_task;
625
626 atomic_t nr_iowait;
627
628#ifdef CONFIG_SMP
629 struct root_domain *rd;
630 struct sched_domain *sd;
631
632 unsigned long cpu_capacity;
633 unsigned long cpu_capacity_orig;
634
635 struct callback_head *balance_callback;
636
637 unsigned char idle_balance;
638 /* For active balancing */
639 int active_balance;
640 int push_cpu;
641 struct cpu_stop_work active_balance_work;
642 /* cpu of this runqueue: */
643 int cpu;
644 int online;
645
646 struct list_head cfs_tasks;
647
648 u64 rt_avg;
649 u64 age_stamp;
650 u64 idle_stamp;
651 u64 avg_idle;
652
653 /* This is used to determine avg_idle's max value */
654 u64 max_idle_balance_cost;
655#endif
656
657#ifdef CONFIG_IRQ_TIME_ACCOUNTING
658 u64 prev_irq_time;
659#endif
660#ifdef CONFIG_PARAVIRT
661 u64 prev_steal_time;
662#endif
663#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
664 u64 prev_steal_time_rq;
665#endif
666
667 /* calc_load related fields */
668 unsigned long calc_load_update;
669 long calc_load_active;
670
671#ifdef CONFIG_SCHED_HRTICK
672#ifdef CONFIG_SMP
673 int hrtick_csd_pending;
674 struct call_single_data hrtick_csd;
675#endif
676 struct hrtimer hrtick_timer;
677#endif
678
679#ifdef CONFIG_SCHEDSTATS
680 /* latency stats */
681 struct sched_info rq_sched_info;
682 unsigned long long rq_cpu_time;
683 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
684
685 /* sys_sched_yield() stats */
686 unsigned int yld_count;
687
688 /* schedule() stats */
689 unsigned int sched_count;
690 unsigned int sched_goidle;
691
692 /* try_to_wake_up() stats */
693 unsigned int ttwu_count;
694 unsigned int ttwu_local;
695#endif
696
697#ifdef CONFIG_SMP
698 struct llist_head wake_list;
699#endif
700
701#ifdef CONFIG_CPU_IDLE
702 /* Must be inspected within a rcu lock section */
703 struct cpuidle_state *idle_state;
704#endif
705};
706
707static inline int cpu_of(struct rq *rq)
708{
709#ifdef CONFIG_SMP
710 return rq->cpu;
711#else
712 return 0;
713#endif
714}
715
716DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
717
718#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
719#define this_rq() this_cpu_ptr(&runqueues)
720#define task_rq(p) cpu_rq(task_cpu(p))
721#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
722#define raw_rq() raw_cpu_ptr(&runqueues)
723
724static inline u64 __rq_clock_broken(struct rq *rq)
725{
726 return READ_ONCE(rq->clock);
727}
728
729static inline u64 rq_clock(struct rq *rq)
730{
731 lockdep_assert_held(&rq->lock);
732 return rq->clock;
733}
734
735static inline u64 rq_clock_task(struct rq *rq)
736{
737 lockdep_assert_held(&rq->lock);
738 return rq->clock_task;
739}
740
741#define RQCF_REQ_SKIP 0x01
742#define RQCF_ACT_SKIP 0x02
743
744static inline void rq_clock_skip_update(struct rq *rq, bool skip)
745{
746 lockdep_assert_held(&rq->lock);
747 if (skip)
748 rq->clock_skip_update |= RQCF_REQ_SKIP;
749 else
750 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
751}
752
753#ifdef CONFIG_NUMA
754enum numa_topology_type {
755 NUMA_DIRECT,
756 NUMA_GLUELESS_MESH,
757 NUMA_BACKPLANE,
758};
759extern enum numa_topology_type sched_numa_topology_type;
760extern int sched_max_numa_distance;
761extern bool find_numa_distance(int distance);
762#endif
763
764#ifdef CONFIG_NUMA_BALANCING
765/* The regions in numa_faults array from task_struct */
766enum numa_faults_stats {
767 NUMA_MEM = 0,
768 NUMA_CPU,
769 NUMA_MEMBUF,
770 NUMA_CPUBUF
771};
772extern void sched_setnuma(struct task_struct *p, int node);
773extern int migrate_task_to(struct task_struct *p, int cpu);
774extern int migrate_swap(struct task_struct *, struct task_struct *);
775#endif /* CONFIG_NUMA_BALANCING */
776
777#ifdef CONFIG_SMP
778
779static inline void
780queue_balance_callback(struct rq *rq,
781 struct callback_head *head,
782 void (*func)(struct rq *rq))
783{
784 lockdep_assert_held(&rq->lock);
785
786 if (unlikely(head->next))
787 return;
788
789 head->func = (void (*)(struct callback_head *))func;
790 head->next = rq->balance_callback;
791 rq->balance_callback = head;
792}
793
794extern void sched_ttwu_pending(void);
795
796#define rcu_dereference_check_sched_domain(p) \
797 rcu_dereference_check((p), \
798 lockdep_is_held(&sched_domains_mutex))
799
800/*
801 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
802 * See detach_destroy_domains: synchronize_sched for details.
803 *
804 * The domain tree of any CPU may only be accessed from within
805 * preempt-disabled sections.
806 */
807#define for_each_domain(cpu, __sd) \
808 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
809 __sd; __sd = __sd->parent)
810
811#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
812
813/**
814 * highest_flag_domain - Return highest sched_domain containing flag.
815 * @cpu: The cpu whose highest level of sched domain is to
816 * be returned.
817 * @flag: The flag to check for the highest sched_domain
818 * for the given cpu.
819 *
820 * Returns the highest sched_domain of a cpu which contains the given flag.
821 */
822static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
823{
824 struct sched_domain *sd, *hsd = NULL;
825
826 for_each_domain(cpu, sd) {
827 if (!(sd->flags & flag))
828 break;
829 hsd = sd;
830 }
831
832 return hsd;
833}
834
835static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
836{
837 struct sched_domain *sd;
838
839 for_each_domain(cpu, sd) {
840 if (sd->flags & flag)
841 break;
842 }
843
844 return sd;
845}
846
847DECLARE_PER_CPU(struct sched_domain *, sd_llc);
848DECLARE_PER_CPU(int, sd_llc_size);
849DECLARE_PER_CPU(int, sd_llc_id);
850DECLARE_PER_CPU(struct sched_domain *, sd_numa);
851DECLARE_PER_CPU(struct sched_domain *, sd_busy);
852DECLARE_PER_CPU(struct sched_domain *, sd_asym);
853
854struct sched_group_capacity {
855 atomic_t ref;
856 /*
857 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
858 * for a single CPU.
859 */
860 unsigned int capacity;
861 unsigned long next_update;
862 int imbalance; /* XXX unrelated to capacity but shared group state */
863 /*
864 * Number of busy cpus in this group.
865 */
866 atomic_t nr_busy_cpus;
867
868 unsigned long cpumask[0]; /* iteration mask */
869};
870
871struct sched_group {
872 struct sched_group *next; /* Must be a circular list */
873 atomic_t ref;
874
875 unsigned int group_weight;
876 struct sched_group_capacity *sgc;
877
878 /*
879 * The CPUs this group covers.
880 *
881 * NOTE: this field is variable length. (Allocated dynamically
882 * by attaching extra space to the end of the structure,
883 * depending on how many CPUs the kernel has booted up with)
884 */
885 unsigned long cpumask[0];
886};
887
888static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
889{
890 return to_cpumask(sg->cpumask);
891}
892
893/*
894 * cpumask masking which cpus in the group are allowed to iterate up the domain
895 * tree.
896 */
897static inline struct cpumask *sched_group_mask(struct sched_group *sg)
898{
899 return to_cpumask(sg->sgc->cpumask);
900}
901
902/**
903 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
904 * @group: The group whose first cpu is to be returned.
905 */
906static inline unsigned int group_first_cpu(struct sched_group *group)
907{
908 return cpumask_first(sched_group_cpus(group));
909}
910
911extern int group_balance_cpu(struct sched_group *sg);
912
913#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
914void register_sched_domain_sysctl(void);
915void unregister_sched_domain_sysctl(void);
916#else
917static inline void register_sched_domain_sysctl(void)
918{
919}
920static inline void unregister_sched_domain_sysctl(void)
921{
922}
923#endif
924
925#else
926
927static inline void sched_ttwu_pending(void) { }
928
929#endif /* CONFIG_SMP */
930
931#include "stats.h"
932#include "auto_group.h"
933
934#ifdef CONFIG_CGROUP_SCHED
935
936/*
937 * Return the group to which this tasks belongs.
938 *
939 * We cannot use task_css() and friends because the cgroup subsystem
940 * changes that value before the cgroup_subsys::attach() method is called,
941 * therefore we cannot pin it and might observe the wrong value.
942 *
943 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
944 * core changes this before calling sched_move_task().
945 *
946 * Instead we use a 'copy' which is updated from sched_move_task() while
947 * holding both task_struct::pi_lock and rq::lock.
948 */
949static inline struct task_group *task_group(struct task_struct *p)
950{
951 return p->sched_task_group;
952}
953
954/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
955static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
956{
957#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
958 struct task_group *tg = task_group(p);
959#endif
960
961#ifdef CONFIG_FAIR_GROUP_SCHED
962 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
963 p->se.cfs_rq = tg->cfs_rq[cpu];
964 p->se.parent = tg->se[cpu];
965#endif
966
967#ifdef CONFIG_RT_GROUP_SCHED
968 p->rt.rt_rq = tg->rt_rq[cpu];
969 p->rt.parent = tg->rt_se[cpu];
970#endif
971}
972
973#else /* CONFIG_CGROUP_SCHED */
974
975static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
976static inline struct task_group *task_group(struct task_struct *p)
977{
978 return NULL;
979}
980
981#endif /* CONFIG_CGROUP_SCHED */
982
983static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
984{
985 set_task_rq(p, cpu);
986#ifdef CONFIG_SMP
987 /*
988 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
989 * successfuly executed on another CPU. We must ensure that updates of
990 * per-task data have been completed by this moment.
991 */
992 smp_wmb();
993 task_thread_info(p)->cpu = cpu;
994 p->wake_cpu = cpu;
995#endif
996}
997
998/*
999 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1000 */
1001#ifdef CONFIG_SCHED_DEBUG
1002# include <linux/static_key.h>
1003# define const_debug __read_mostly
1004#else
1005# define const_debug const
1006#endif
1007
1008extern const_debug unsigned int sysctl_sched_features;
1009
1010#define SCHED_FEAT(name, enabled) \
1011 __SCHED_FEAT_##name ,
1012
1013enum {
1014#include "features.h"
1015 __SCHED_FEAT_NR,
1016};
1017
1018#undef SCHED_FEAT
1019
1020#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1021#define SCHED_FEAT(name, enabled) \
1022static __always_inline bool static_branch_##name(struct static_key *key) \
1023{ \
1024 return static_key_##enabled(key); \
1025}
1026
1027#include "features.h"
1028
1029#undef SCHED_FEAT
1030
1031extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1032#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1033#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1034#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1035#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1036
1037extern struct static_key_false sched_numa_balancing;
1038extern struct static_key_false sched_schedstats;
1039
1040static inline u64 global_rt_period(void)
1041{
1042 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1043}
1044
1045static inline u64 global_rt_runtime(void)
1046{
1047 if (sysctl_sched_rt_runtime < 0)
1048 return RUNTIME_INF;
1049
1050 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1051}
1052
1053static inline int task_current(struct rq *rq, struct task_struct *p)
1054{
1055 return rq->curr == p;
1056}
1057
1058static inline int task_running(struct rq *rq, struct task_struct *p)
1059{
1060#ifdef CONFIG_SMP
1061 return p->on_cpu;
1062#else
1063 return task_current(rq, p);
1064#endif
1065}
1066
1067static inline int task_on_rq_queued(struct task_struct *p)
1068{
1069 return p->on_rq == TASK_ON_RQ_QUEUED;
1070}
1071
1072static inline int task_on_rq_migrating(struct task_struct *p)
1073{
1074 return p->on_rq == TASK_ON_RQ_MIGRATING;
1075}
1076
1077#ifndef prepare_arch_switch
1078# define prepare_arch_switch(next) do { } while (0)
1079#endif
1080#ifndef finish_arch_post_lock_switch
1081# define finish_arch_post_lock_switch() do { } while (0)
1082#endif
1083
1084static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1085{
1086#ifdef CONFIG_SMP
1087 /*
1088 * We can optimise this out completely for !SMP, because the
1089 * SMP rebalancing from interrupt is the only thing that cares
1090 * here.
1091 */
1092 next->on_cpu = 1;
1093#endif
1094}
1095
1096static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1097{
1098#ifdef CONFIG_SMP
1099 /*
1100 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1101 * We must ensure this doesn't happen until the switch is completely
1102 * finished.
1103 *
1104 * In particular, the load of prev->state in finish_task_switch() must
1105 * happen before this.
1106 *
1107 * Pairs with the smp_cond_acquire() in try_to_wake_up().
1108 */
1109 smp_store_release(&prev->on_cpu, 0);
1110#endif
1111#ifdef CONFIG_DEBUG_SPINLOCK
1112 /* this is a valid case when another task releases the spinlock */
1113 rq->lock.owner = current;
1114#endif
1115 /*
1116 * If we are tracking spinlock dependencies then we have to
1117 * fix up the runqueue lock - which gets 'carried over' from
1118 * prev into current:
1119 */
1120 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1121
1122 raw_spin_unlock_irq(&rq->lock);
1123}
1124
1125/*
1126 * wake flags
1127 */
1128#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1129#define WF_FORK 0x02 /* child wakeup after fork */
1130#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1131
1132/*
1133 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1134 * of tasks with abnormal "nice" values across CPUs the contribution that
1135 * each task makes to its run queue's load is weighted according to its
1136 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1137 * scaled version of the new time slice allocation that they receive on time
1138 * slice expiry etc.
1139 */
1140
1141#define WEIGHT_IDLEPRIO 3
1142#define WMULT_IDLEPRIO 1431655765
1143
1144extern const int sched_prio_to_weight[40];
1145extern const u32 sched_prio_to_wmult[40];
1146
1147/*
1148 * {de,en}queue flags:
1149 *
1150 * DEQUEUE_SLEEP - task is no longer runnable
1151 * ENQUEUE_WAKEUP - task just became runnable
1152 *
1153 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1154 * are in a known state which allows modification. Such pairs
1155 * should preserve as much state as possible.
1156 *
1157 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1158 * in the runqueue.
1159 *
1160 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1161 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1162 * ENQUEUE_WAKING - sched_class::task_waking was called
1163 *
1164 */
1165
1166#define DEQUEUE_SLEEP 0x01
1167#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1168#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1169
1170#define ENQUEUE_WAKEUP 0x01
1171#define ENQUEUE_RESTORE 0x02
1172#define ENQUEUE_MOVE 0x04
1173
1174#define ENQUEUE_HEAD 0x08
1175#define ENQUEUE_REPLENISH 0x10
1176#ifdef CONFIG_SMP
1177#define ENQUEUE_WAKING 0x20
1178#else
1179#define ENQUEUE_WAKING 0x00
1180#endif
1181
1182#define RETRY_TASK ((void *)-1UL)
1183
1184struct sched_class {
1185 const struct sched_class *next;
1186
1187 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1188 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1189 void (*yield_task) (struct rq *rq);
1190 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1191
1192 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1193
1194 /*
1195 * It is the responsibility of the pick_next_task() method that will
1196 * return the next task to call put_prev_task() on the @prev task or
1197 * something equivalent.
1198 *
1199 * May return RETRY_TASK when it finds a higher prio class has runnable
1200 * tasks.
1201 */
1202 struct task_struct * (*pick_next_task) (struct rq *rq,
1203 struct task_struct *prev);
1204 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1205
1206#ifdef CONFIG_SMP
1207 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1208 void (*migrate_task_rq)(struct task_struct *p);
1209
1210 void (*task_waking) (struct task_struct *task);
1211 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1212
1213 void (*set_cpus_allowed)(struct task_struct *p,
1214 const struct cpumask *newmask);
1215
1216 void (*rq_online)(struct rq *rq);
1217 void (*rq_offline)(struct rq *rq);
1218#endif
1219
1220 void (*set_curr_task) (struct rq *rq);
1221 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1222 void (*task_fork) (struct task_struct *p);
1223 void (*task_dead) (struct task_struct *p);
1224
1225 /*
1226 * The switched_from() call is allowed to drop rq->lock, therefore we
1227 * cannot assume the switched_from/switched_to pair is serliazed by
1228 * rq->lock. They are however serialized by p->pi_lock.
1229 */
1230 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1231 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1232 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1233 int oldprio);
1234
1235 unsigned int (*get_rr_interval) (struct rq *rq,
1236 struct task_struct *task);
1237
1238 void (*update_curr) (struct rq *rq);
1239
1240#ifdef CONFIG_FAIR_GROUP_SCHED
1241 void (*task_move_group) (struct task_struct *p);
1242#endif
1243};
1244
1245static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1246{
1247 prev->sched_class->put_prev_task(rq, prev);
1248}
1249
1250#define sched_class_highest (&stop_sched_class)
1251#define for_each_class(class) \
1252 for (class = sched_class_highest; class; class = class->next)
1253
1254extern const struct sched_class stop_sched_class;
1255extern const struct sched_class dl_sched_class;
1256extern const struct sched_class rt_sched_class;
1257extern const struct sched_class fair_sched_class;
1258extern const struct sched_class idle_sched_class;
1259
1260
1261#ifdef CONFIG_SMP
1262
1263extern void update_group_capacity(struct sched_domain *sd, int cpu);
1264
1265extern void trigger_load_balance(struct rq *rq);
1266
1267extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1268
1269#endif
1270
1271#ifdef CONFIG_CPU_IDLE
1272static inline void idle_set_state(struct rq *rq,
1273 struct cpuidle_state *idle_state)
1274{
1275 rq->idle_state = idle_state;
1276}
1277
1278static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1279{
1280 WARN_ON(!rcu_read_lock_held());
1281 return rq->idle_state;
1282}
1283#else
1284static inline void idle_set_state(struct rq *rq,
1285 struct cpuidle_state *idle_state)
1286{
1287}
1288
1289static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1290{
1291 return NULL;
1292}
1293#endif
1294
1295extern void sysrq_sched_debug_show(void);
1296extern void sched_init_granularity(void);
1297extern void update_max_interval(void);
1298
1299extern void init_sched_dl_class(void);
1300extern void init_sched_rt_class(void);
1301extern void init_sched_fair_class(void);
1302
1303extern void resched_curr(struct rq *rq);
1304extern void resched_cpu(int cpu);
1305
1306extern struct rt_bandwidth def_rt_bandwidth;
1307extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1308
1309extern struct dl_bandwidth def_dl_bandwidth;
1310extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1311extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1312
1313unsigned long to_ratio(u64 period, u64 runtime);
1314
1315extern void init_entity_runnable_average(struct sched_entity *se);
1316
1317#ifdef CONFIG_NO_HZ_FULL
1318extern bool sched_can_stop_tick(struct rq *rq);
1319
1320/*
1321 * Tick may be needed by tasks in the runqueue depending on their policy and
1322 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1323 * nohz mode if necessary.
1324 */
1325static inline void sched_update_tick_dependency(struct rq *rq)
1326{
1327 int cpu;
1328
1329 if (!tick_nohz_full_enabled())
1330 return;
1331
1332 cpu = cpu_of(rq);
1333
1334 if (!tick_nohz_full_cpu(cpu))
1335 return;
1336
1337 if (sched_can_stop_tick(rq))
1338 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1339 else
1340 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1341}
1342#else
1343static inline void sched_update_tick_dependency(struct rq *rq) { }
1344#endif
1345
1346static inline void add_nr_running(struct rq *rq, unsigned count)
1347{
1348 unsigned prev_nr = rq->nr_running;
1349
1350 rq->nr_running = prev_nr + count;
1351
1352 if (prev_nr < 2 && rq->nr_running >= 2) {
1353#ifdef CONFIG_SMP
1354 if (!rq->rd->overload)
1355 rq->rd->overload = true;
1356#endif
1357 }
1358
1359 sched_update_tick_dependency(rq);
1360}
1361
1362static inline void sub_nr_running(struct rq *rq, unsigned count)
1363{
1364 rq->nr_running -= count;
1365 /* Check if we still need preemption */
1366 sched_update_tick_dependency(rq);
1367}
1368
1369static inline void rq_last_tick_reset(struct rq *rq)
1370{
1371#ifdef CONFIG_NO_HZ_FULL
1372 rq->last_sched_tick = jiffies;
1373#endif
1374}
1375
1376extern void update_rq_clock(struct rq *rq);
1377
1378extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1379extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1380
1381extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1382
1383extern const_debug unsigned int sysctl_sched_time_avg;
1384extern const_debug unsigned int sysctl_sched_nr_migrate;
1385extern const_debug unsigned int sysctl_sched_migration_cost;
1386
1387static inline u64 sched_avg_period(void)
1388{
1389 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1390}
1391
1392#ifdef CONFIG_SCHED_HRTICK
1393
1394/*
1395 * Use hrtick when:
1396 * - enabled by features
1397 * - hrtimer is actually high res
1398 */
1399static inline int hrtick_enabled(struct rq *rq)
1400{
1401 if (!sched_feat(HRTICK))
1402 return 0;
1403 if (!cpu_active(cpu_of(rq)))
1404 return 0;
1405 return hrtimer_is_hres_active(&rq->hrtick_timer);
1406}
1407
1408void hrtick_start(struct rq *rq, u64 delay);
1409
1410#else
1411
1412static inline int hrtick_enabled(struct rq *rq)
1413{
1414 return 0;
1415}
1416
1417#endif /* CONFIG_SCHED_HRTICK */
1418
1419#ifdef CONFIG_SMP
1420extern void sched_avg_update(struct rq *rq);
1421
1422#ifndef arch_scale_freq_capacity
1423static __always_inline
1424unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1425{
1426 return SCHED_CAPACITY_SCALE;
1427}
1428#endif
1429
1430#ifndef arch_scale_cpu_capacity
1431static __always_inline
1432unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1433{
1434 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1435 return sd->smt_gain / sd->span_weight;
1436
1437 return SCHED_CAPACITY_SCALE;
1438}
1439#endif
1440
1441static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1442{
1443 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1444 sched_avg_update(rq);
1445}
1446#else
1447static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1448static inline void sched_avg_update(struct rq *rq) { }
1449#endif
1450
1451/*
1452 * __task_rq_lock - lock the rq @p resides on.
1453 */
1454static inline struct rq *__task_rq_lock(struct task_struct *p)
1455 __acquires(rq->lock)
1456{
1457 struct rq *rq;
1458
1459 lockdep_assert_held(&p->pi_lock);
1460
1461 for (;;) {
1462 rq = task_rq(p);
1463 raw_spin_lock(&rq->lock);
1464 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1465 lockdep_pin_lock(&rq->lock);
1466 return rq;
1467 }
1468 raw_spin_unlock(&rq->lock);
1469
1470 while (unlikely(task_on_rq_migrating(p)))
1471 cpu_relax();
1472 }
1473}
1474
1475/*
1476 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1477 */
1478static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1479 __acquires(p->pi_lock)
1480 __acquires(rq->lock)
1481{
1482 struct rq *rq;
1483
1484 for (;;) {
1485 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1486 rq = task_rq(p);
1487 raw_spin_lock(&rq->lock);
1488 /*
1489 * move_queued_task() task_rq_lock()
1490 *
1491 * ACQUIRE (rq->lock)
1492 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1493 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1494 * [S] ->cpu = new_cpu [L] task_rq()
1495 * [L] ->on_rq
1496 * RELEASE (rq->lock)
1497 *
1498 * If we observe the old cpu in task_rq_lock, the acquire of
1499 * the old rq->lock will fully serialize against the stores.
1500 *
1501 * If we observe the new cpu in task_rq_lock, the acquire will
1502 * pair with the WMB to ensure we must then also see migrating.
1503 */
1504 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1505 lockdep_pin_lock(&rq->lock);
1506 return rq;
1507 }
1508 raw_spin_unlock(&rq->lock);
1509 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1510
1511 while (unlikely(task_on_rq_migrating(p)))
1512 cpu_relax();
1513 }
1514}
1515
1516static inline void __task_rq_unlock(struct rq *rq)
1517 __releases(rq->lock)
1518{
1519 lockdep_unpin_lock(&rq->lock);
1520 raw_spin_unlock(&rq->lock);
1521}
1522
1523static inline void
1524task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1525 __releases(rq->lock)
1526 __releases(p->pi_lock)
1527{
1528 lockdep_unpin_lock(&rq->lock);
1529 raw_spin_unlock(&rq->lock);
1530 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1531}
1532
1533#ifdef CONFIG_SMP
1534#ifdef CONFIG_PREEMPT
1535
1536static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1537
1538/*
1539 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1540 * way at the expense of forcing extra atomic operations in all
1541 * invocations. This assures that the double_lock is acquired using the
1542 * same underlying policy as the spinlock_t on this architecture, which
1543 * reduces latency compared to the unfair variant below. However, it
1544 * also adds more overhead and therefore may reduce throughput.
1545 */
1546static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1547 __releases(this_rq->lock)
1548 __acquires(busiest->lock)
1549 __acquires(this_rq->lock)
1550{
1551 raw_spin_unlock(&this_rq->lock);
1552 double_rq_lock(this_rq, busiest);
1553
1554 return 1;
1555}
1556
1557#else
1558/*
1559 * Unfair double_lock_balance: Optimizes throughput at the expense of
1560 * latency by eliminating extra atomic operations when the locks are
1561 * already in proper order on entry. This favors lower cpu-ids and will
1562 * grant the double lock to lower cpus over higher ids under contention,
1563 * regardless of entry order into the function.
1564 */
1565static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1566 __releases(this_rq->lock)
1567 __acquires(busiest->lock)
1568 __acquires(this_rq->lock)
1569{
1570 int ret = 0;
1571
1572 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1573 if (busiest < this_rq) {
1574 raw_spin_unlock(&this_rq->lock);
1575 raw_spin_lock(&busiest->lock);
1576 raw_spin_lock_nested(&this_rq->lock,
1577 SINGLE_DEPTH_NESTING);
1578 ret = 1;
1579 } else
1580 raw_spin_lock_nested(&busiest->lock,
1581 SINGLE_DEPTH_NESTING);
1582 }
1583 return ret;
1584}
1585
1586#endif /* CONFIG_PREEMPT */
1587
1588/*
1589 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1590 */
1591static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592{
1593 if (unlikely(!irqs_disabled())) {
1594 /* printk() doesn't work good under rq->lock */
1595 raw_spin_unlock(&this_rq->lock);
1596 BUG_ON(1);
1597 }
1598
1599 return _double_lock_balance(this_rq, busiest);
1600}
1601
1602static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1603 __releases(busiest->lock)
1604{
1605 raw_spin_unlock(&busiest->lock);
1606 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1607}
1608
1609static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1610{
1611 if (l1 > l2)
1612 swap(l1, l2);
1613
1614 spin_lock(l1);
1615 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1616}
1617
1618static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1619{
1620 if (l1 > l2)
1621 swap(l1, l2);
1622
1623 spin_lock_irq(l1);
1624 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1625}
1626
1627static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1628{
1629 if (l1 > l2)
1630 swap(l1, l2);
1631
1632 raw_spin_lock(l1);
1633 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1634}
1635
1636/*
1637 * double_rq_lock - safely lock two runqueues
1638 *
1639 * Note this does not disable interrupts like task_rq_lock,
1640 * you need to do so manually before calling.
1641 */
1642static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1643 __acquires(rq1->lock)
1644 __acquires(rq2->lock)
1645{
1646 BUG_ON(!irqs_disabled());
1647 if (rq1 == rq2) {
1648 raw_spin_lock(&rq1->lock);
1649 __acquire(rq2->lock); /* Fake it out ;) */
1650 } else {
1651 if (rq1 < rq2) {
1652 raw_spin_lock(&rq1->lock);
1653 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1654 } else {
1655 raw_spin_lock(&rq2->lock);
1656 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1657 }
1658 }
1659}
1660
1661/*
1662 * double_rq_unlock - safely unlock two runqueues
1663 *
1664 * Note this does not restore interrupts like task_rq_unlock,
1665 * you need to do so manually after calling.
1666 */
1667static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1668 __releases(rq1->lock)
1669 __releases(rq2->lock)
1670{
1671 raw_spin_unlock(&rq1->lock);
1672 if (rq1 != rq2)
1673 raw_spin_unlock(&rq2->lock);
1674 else
1675 __release(rq2->lock);
1676}
1677
1678#else /* CONFIG_SMP */
1679
1680/*
1681 * double_rq_lock - safely lock two runqueues
1682 *
1683 * Note this does not disable interrupts like task_rq_lock,
1684 * you need to do so manually before calling.
1685 */
1686static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1687 __acquires(rq1->lock)
1688 __acquires(rq2->lock)
1689{
1690 BUG_ON(!irqs_disabled());
1691 BUG_ON(rq1 != rq2);
1692 raw_spin_lock(&rq1->lock);
1693 __acquire(rq2->lock); /* Fake it out ;) */
1694}
1695
1696/*
1697 * double_rq_unlock - safely unlock two runqueues
1698 *
1699 * Note this does not restore interrupts like task_rq_unlock,
1700 * you need to do so manually after calling.
1701 */
1702static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1703 __releases(rq1->lock)
1704 __releases(rq2->lock)
1705{
1706 BUG_ON(rq1 != rq2);
1707 raw_spin_unlock(&rq1->lock);
1708 __release(rq2->lock);
1709}
1710
1711#endif
1712
1713extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1714extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1715
1716#ifdef CONFIG_SCHED_DEBUG
1717extern void print_cfs_stats(struct seq_file *m, int cpu);
1718extern void print_rt_stats(struct seq_file *m, int cpu);
1719extern void print_dl_stats(struct seq_file *m, int cpu);
1720extern void
1721print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1722
1723#ifdef CONFIG_NUMA_BALANCING
1724extern void
1725show_numa_stats(struct task_struct *p, struct seq_file *m);
1726extern void
1727print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1728 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1729#endif /* CONFIG_NUMA_BALANCING */
1730#endif /* CONFIG_SCHED_DEBUG */
1731
1732extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1733extern void init_rt_rq(struct rt_rq *rt_rq);
1734extern void init_dl_rq(struct dl_rq *dl_rq);
1735
1736extern void cfs_bandwidth_usage_inc(void);
1737extern void cfs_bandwidth_usage_dec(void);
1738
1739#ifdef CONFIG_NO_HZ_COMMON
1740enum rq_nohz_flag_bits {
1741 NOHZ_TICK_STOPPED,
1742 NOHZ_BALANCE_KICK,
1743};
1744
1745#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1746#endif
1747
1748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1749
1750DECLARE_PER_CPU(u64, cpu_hardirq_time);
1751DECLARE_PER_CPU(u64, cpu_softirq_time);
1752
1753#ifndef CONFIG_64BIT
1754DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1755
1756static inline void irq_time_write_begin(void)
1757{
1758 __this_cpu_inc(irq_time_seq.sequence);
1759 smp_wmb();
1760}
1761
1762static inline void irq_time_write_end(void)
1763{
1764 smp_wmb();
1765 __this_cpu_inc(irq_time_seq.sequence);
1766}
1767
1768static inline u64 irq_time_read(int cpu)
1769{
1770 u64 irq_time;
1771 unsigned seq;
1772
1773 do {
1774 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1775 irq_time = per_cpu(cpu_softirq_time, cpu) +
1776 per_cpu(cpu_hardirq_time, cpu);
1777 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1778
1779 return irq_time;
1780}
1781#else /* CONFIG_64BIT */
1782static inline void irq_time_write_begin(void)
1783{
1784}
1785
1786static inline void irq_time_write_end(void)
1787{
1788}
1789
1790static inline u64 irq_time_read(int cpu)
1791{
1792 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1793}
1794#endif /* CONFIG_64BIT */
1795#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1796
1797#ifdef CONFIG_CPU_FREQ
1798DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1799
1800/**
1801 * cpufreq_update_util - Take a note about CPU utilization changes.
1802 * @time: Current time.
1803 * @util: Current utilization.
1804 * @max: Utilization ceiling.
1805 *
1806 * This function is called by the scheduler on every invocation of
1807 * update_load_avg() on the CPU whose utilization is being updated.
1808 *
1809 * It can only be called from RCU-sched read-side critical sections.
1810 */
1811static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
1812{
1813 struct update_util_data *data;
1814
1815 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1816 if (data)
1817 data->func(data, time, util, max);
1818}
1819
1820/**
1821 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1822 * @time: Current time.
1823 *
1824 * The way cpufreq is currently arranged requires it to evaluate the CPU
1825 * performance state (frequency/voltage) on a regular basis to prevent it from
1826 * being stuck in a completely inadequate performance level for too long.
1827 * That is not guaranteed to happen if the updates are only triggered from CFS,
1828 * though, because they may not be coming in if RT or deadline tasks are active
1829 * all the time (or there are RT and DL tasks only).
1830 *
1831 * As a workaround for that issue, this function is called by the RT and DL
1832 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1833 * but that really is a band-aid. Going forward it should be replaced with
1834 * solutions targeted more specifically at RT and DL tasks.
1835 */
1836static inline void cpufreq_trigger_update(u64 time)
1837{
1838 cpufreq_update_util(time, ULONG_MAX, 0);
1839}
1840#else
1841static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1842static inline void cpufreq_trigger_update(u64 time) {}
1843#endif /* CONFIG_CPU_FREQ */
1844
1845static inline void account_reset_rq(struct rq *rq)
1846{
1847#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1848 rq->prev_irq_time = 0;
1849#endif
1850#ifdef CONFIG_PARAVIRT
1851 rq->prev_steal_time = 0;
1852#endif
1853#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1854 rq->prev_steal_time_rq = 0;
1855#endif
1856}
1
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
7#include "cpupri.h"
8
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
39 */
40
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
83extern struct list_head task_groups;
84
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
107#ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
115#endif
116
117#ifdef CONFIG_RT_GROUP_SCHED
118 struct sched_rt_entity **rt_se;
119 struct rt_rq **rt_rq;
120
121 struct rt_bandwidth rt_bandwidth;
122#endif
123
124 struct rcu_head rcu;
125 struct list_head list;
126
127 struct task_group *parent;
128 struct list_head siblings;
129 struct list_head children;
130
131#ifdef CONFIG_SCHED_AUTOGROUP
132 struct autogroup *autogroup;
133#endif
134
135 struct cfs_bandwidth cfs_bandwidth;
136};
137
138#ifdef CONFIG_FAIR_GROUP_SCHED
139#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
140
141/*
142 * A weight of 0 or 1 can cause arithmetics problems.
143 * A weight of a cfs_rq is the sum of weights of which entities
144 * are queued on this cfs_rq, so a weight of a entity should not be
145 * too large, so as the shares value of a task group.
146 * (The default weight is 1024 - so there's no practical
147 * limitation from this.)
148 */
149#define MIN_SHARES (1UL << 1)
150#define MAX_SHARES (1UL << 18)
151#endif
152
153/* Default task group.
154 * Every task in system belong to this group at bootup.
155 */
156extern struct task_group root_task_group;
157
158typedef int (*tg_visitor)(struct task_group *, void *);
159
160extern int walk_tg_tree_from(struct task_group *from,
161 tg_visitor down, tg_visitor up, void *data);
162
163/*
164 * Iterate the full tree, calling @down when first entering a node and @up when
165 * leaving it for the final time.
166 *
167 * Caller must hold rcu_lock or sufficient equivalent.
168 */
169static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
170{
171 return walk_tg_tree_from(&root_task_group, down, up, data);
172}
173
174extern int tg_nop(struct task_group *tg, void *data);
175
176extern void free_fair_sched_group(struct task_group *tg);
177extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
178extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
179extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
180 struct sched_entity *se, int cpu,
181 struct sched_entity *parent);
182extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
183extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
184
185extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
186extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
188
189extern void free_rt_sched_group(struct task_group *tg);
190extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
191extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
192 struct sched_rt_entity *rt_se, int cpu,
193 struct sched_rt_entity *parent);
194
195#else /* CONFIG_CGROUP_SCHED */
196
197struct cfs_bandwidth { };
198
199#endif /* CONFIG_CGROUP_SCHED */
200
201/* CFS-related fields in a runqueue */
202struct cfs_rq {
203 struct load_weight load;
204 unsigned int nr_running, h_nr_running;
205
206 u64 exec_clock;
207 u64 min_vruntime;
208#ifndef CONFIG_64BIT
209 u64 min_vruntime_copy;
210#endif
211
212 struct rb_root tasks_timeline;
213 struct rb_node *rb_leftmost;
214
215 /*
216 * 'curr' points to currently running entity on this cfs_rq.
217 * It is set to NULL otherwise (i.e when none are currently running).
218 */
219 struct sched_entity *curr, *next, *last, *skip;
220
221#ifdef CONFIG_SCHED_DEBUG
222 unsigned int nr_spread_over;
223#endif
224
225#ifdef CONFIG_FAIR_GROUP_SCHED
226 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
227
228 /*
229 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
230 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
231 * (like users, containers etc.)
232 *
233 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
234 * list is used during load balance.
235 */
236 int on_list;
237 struct list_head leaf_cfs_rq_list;
238 struct task_group *tg; /* group that "owns" this runqueue */
239
240#ifdef CONFIG_SMP
241 /*
242 * h_load = weight * f(tg)
243 *
244 * Where f(tg) is the recursive weight fraction assigned to
245 * this group.
246 */
247 unsigned long h_load;
248
249 /*
250 * Maintaining per-cpu shares distribution for group scheduling
251 *
252 * load_stamp is the last time we updated the load average
253 * load_last is the last time we updated the load average and saw load
254 * load_unacc_exec_time is currently unaccounted execution time
255 */
256 u64 load_avg;
257 u64 load_period;
258 u64 load_stamp, load_last, load_unacc_exec_time;
259
260 unsigned long load_contribution;
261#endif /* CONFIG_SMP */
262#ifdef CONFIG_CFS_BANDWIDTH
263 int runtime_enabled;
264 u64 runtime_expires;
265 s64 runtime_remaining;
266
267 u64 throttled_timestamp;
268 int throttled, throttle_count;
269 struct list_head throttled_list;
270#endif /* CONFIG_CFS_BANDWIDTH */
271#endif /* CONFIG_FAIR_GROUP_SCHED */
272};
273
274static inline int rt_bandwidth_enabled(void)
275{
276 return sysctl_sched_rt_runtime >= 0;
277}
278
279/* Real-Time classes' related field in a runqueue: */
280struct rt_rq {
281 struct rt_prio_array active;
282 unsigned int rt_nr_running;
283#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
284 struct {
285 int curr; /* highest queued rt task prio */
286#ifdef CONFIG_SMP
287 int next; /* next highest */
288#endif
289 } highest_prio;
290#endif
291#ifdef CONFIG_SMP
292 unsigned long rt_nr_migratory;
293 unsigned long rt_nr_total;
294 int overloaded;
295 struct plist_head pushable_tasks;
296#endif
297 int rt_throttled;
298 u64 rt_time;
299 u64 rt_runtime;
300 /* Nests inside the rq lock: */
301 raw_spinlock_t rt_runtime_lock;
302
303#ifdef CONFIG_RT_GROUP_SCHED
304 unsigned long rt_nr_boosted;
305
306 struct rq *rq;
307 struct list_head leaf_rt_rq_list;
308 struct task_group *tg;
309#endif
310};
311
312#ifdef CONFIG_SMP
313
314/*
315 * We add the notion of a root-domain which will be used to define per-domain
316 * variables. Each exclusive cpuset essentially defines an island domain by
317 * fully partitioning the member cpus from any other cpuset. Whenever a new
318 * exclusive cpuset is created, we also create and attach a new root-domain
319 * object.
320 *
321 */
322struct root_domain {
323 atomic_t refcount;
324 atomic_t rto_count;
325 struct rcu_head rcu;
326 cpumask_var_t span;
327 cpumask_var_t online;
328
329 /*
330 * The "RT overload" flag: it gets set if a CPU has more than
331 * one runnable RT task.
332 */
333 cpumask_var_t rto_mask;
334 struct cpupri cpupri;
335};
336
337extern struct root_domain def_root_domain;
338
339#endif /* CONFIG_SMP */
340
341/*
342 * This is the main, per-CPU runqueue data structure.
343 *
344 * Locking rule: those places that want to lock multiple runqueues
345 * (such as the load balancing or the thread migration code), lock
346 * acquire operations must be ordered by ascending &runqueue.
347 */
348struct rq {
349 /* runqueue lock: */
350 raw_spinlock_t lock;
351
352 /*
353 * nr_running and cpu_load should be in the same cacheline because
354 * remote CPUs use both these fields when doing load calculation.
355 */
356 unsigned int nr_running;
357 #define CPU_LOAD_IDX_MAX 5
358 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
359 unsigned long last_load_update_tick;
360#ifdef CONFIG_NO_HZ
361 u64 nohz_stamp;
362 unsigned long nohz_flags;
363#endif
364 int skip_clock_update;
365
366 /* capture load from *all* tasks on this cpu: */
367 struct load_weight load;
368 unsigned long nr_load_updates;
369 u64 nr_switches;
370
371 struct cfs_rq cfs;
372 struct rt_rq rt;
373
374#ifdef CONFIG_FAIR_GROUP_SCHED
375 /* list of leaf cfs_rq on this cpu: */
376 struct list_head leaf_cfs_rq_list;
377#endif
378#ifdef CONFIG_RT_GROUP_SCHED
379 struct list_head leaf_rt_rq_list;
380#endif
381
382 /*
383 * This is part of a global counter where only the total sum
384 * over all CPUs matters. A task can increase this counter on
385 * one CPU and if it got migrated afterwards it may decrease
386 * it on another CPU. Always updated under the runqueue lock:
387 */
388 unsigned long nr_uninterruptible;
389
390 struct task_struct *curr, *idle, *stop;
391 unsigned long next_balance;
392 struct mm_struct *prev_mm;
393
394 u64 clock;
395 u64 clock_task;
396
397 atomic_t nr_iowait;
398
399#ifdef CONFIG_SMP
400 struct root_domain *rd;
401 struct sched_domain *sd;
402
403 unsigned long cpu_power;
404
405 unsigned char idle_balance;
406 /* For active balancing */
407 int post_schedule;
408 int active_balance;
409 int push_cpu;
410 struct cpu_stop_work active_balance_work;
411 /* cpu of this runqueue: */
412 int cpu;
413 int online;
414
415 struct list_head cfs_tasks;
416
417 u64 rt_avg;
418 u64 age_stamp;
419 u64 idle_stamp;
420 u64 avg_idle;
421#endif
422
423#ifdef CONFIG_IRQ_TIME_ACCOUNTING
424 u64 prev_irq_time;
425#endif
426#ifdef CONFIG_PARAVIRT
427 u64 prev_steal_time;
428#endif
429#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
430 u64 prev_steal_time_rq;
431#endif
432
433 /* calc_load related fields */
434 unsigned long calc_load_update;
435 long calc_load_active;
436
437#ifdef CONFIG_SCHED_HRTICK
438#ifdef CONFIG_SMP
439 int hrtick_csd_pending;
440 struct call_single_data hrtick_csd;
441#endif
442 struct hrtimer hrtick_timer;
443#endif
444
445#ifdef CONFIG_SCHEDSTATS
446 /* latency stats */
447 struct sched_info rq_sched_info;
448 unsigned long long rq_cpu_time;
449 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
450
451 /* sys_sched_yield() stats */
452 unsigned int yld_count;
453
454 /* schedule() stats */
455 unsigned int sched_count;
456 unsigned int sched_goidle;
457
458 /* try_to_wake_up() stats */
459 unsigned int ttwu_count;
460 unsigned int ttwu_local;
461#endif
462
463#ifdef CONFIG_SMP
464 struct llist_head wake_list;
465#endif
466};
467
468static inline int cpu_of(struct rq *rq)
469{
470#ifdef CONFIG_SMP
471 return rq->cpu;
472#else
473 return 0;
474#endif
475}
476
477DECLARE_PER_CPU(struct rq, runqueues);
478
479#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
480#define this_rq() (&__get_cpu_var(runqueues))
481#define task_rq(p) cpu_rq(task_cpu(p))
482#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
483#define raw_rq() (&__raw_get_cpu_var(runqueues))
484
485#ifdef CONFIG_SMP
486
487#define rcu_dereference_check_sched_domain(p) \
488 rcu_dereference_check((p), \
489 lockdep_is_held(&sched_domains_mutex))
490
491/*
492 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
493 * See detach_destroy_domains: synchronize_sched for details.
494 *
495 * The domain tree of any CPU may only be accessed from within
496 * preempt-disabled sections.
497 */
498#define for_each_domain(cpu, __sd) \
499 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
500 __sd; __sd = __sd->parent)
501
502#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
503
504/**
505 * highest_flag_domain - Return highest sched_domain containing flag.
506 * @cpu: The cpu whose highest level of sched domain is to
507 * be returned.
508 * @flag: The flag to check for the highest sched_domain
509 * for the given cpu.
510 *
511 * Returns the highest sched_domain of a cpu which contains the given flag.
512 */
513static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
514{
515 struct sched_domain *sd, *hsd = NULL;
516
517 for_each_domain(cpu, sd) {
518 if (!(sd->flags & flag))
519 break;
520 hsd = sd;
521 }
522
523 return hsd;
524}
525
526DECLARE_PER_CPU(struct sched_domain *, sd_llc);
527DECLARE_PER_CPU(int, sd_llc_id);
528
529extern int group_balance_cpu(struct sched_group *sg);
530
531#endif /* CONFIG_SMP */
532
533#include "stats.h"
534#include "auto_group.h"
535
536#ifdef CONFIG_CGROUP_SCHED
537
538/*
539 * Return the group to which this tasks belongs.
540 *
541 * We cannot use task_subsys_state() and friends because the cgroup
542 * subsystem changes that value before the cgroup_subsys::attach() method
543 * is called, therefore we cannot pin it and might observe the wrong value.
544 *
545 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
546 * core changes this before calling sched_move_task().
547 *
548 * Instead we use a 'copy' which is updated from sched_move_task() while
549 * holding both task_struct::pi_lock and rq::lock.
550 */
551static inline struct task_group *task_group(struct task_struct *p)
552{
553 return p->sched_task_group;
554}
555
556/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
557static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
558{
559#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
560 struct task_group *tg = task_group(p);
561#endif
562
563#ifdef CONFIG_FAIR_GROUP_SCHED
564 p->se.cfs_rq = tg->cfs_rq[cpu];
565 p->se.parent = tg->se[cpu];
566#endif
567
568#ifdef CONFIG_RT_GROUP_SCHED
569 p->rt.rt_rq = tg->rt_rq[cpu];
570 p->rt.parent = tg->rt_se[cpu];
571#endif
572}
573
574#else /* CONFIG_CGROUP_SCHED */
575
576static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
577static inline struct task_group *task_group(struct task_struct *p)
578{
579 return NULL;
580}
581
582#endif /* CONFIG_CGROUP_SCHED */
583
584static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
585{
586 set_task_rq(p, cpu);
587#ifdef CONFIG_SMP
588 /*
589 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
590 * successfuly executed on another CPU. We must ensure that updates of
591 * per-task data have been completed by this moment.
592 */
593 smp_wmb();
594 task_thread_info(p)->cpu = cpu;
595#endif
596}
597
598/*
599 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
600 */
601#ifdef CONFIG_SCHED_DEBUG
602# include <linux/static_key.h>
603# define const_debug __read_mostly
604#else
605# define const_debug const
606#endif
607
608extern const_debug unsigned int sysctl_sched_features;
609
610#define SCHED_FEAT(name, enabled) \
611 __SCHED_FEAT_##name ,
612
613enum {
614#include "features.h"
615 __SCHED_FEAT_NR,
616};
617
618#undef SCHED_FEAT
619
620#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
621static __always_inline bool static_branch__true(struct static_key *key)
622{
623 return static_key_true(key); /* Not out of line branch. */
624}
625
626static __always_inline bool static_branch__false(struct static_key *key)
627{
628 return static_key_false(key); /* Out of line branch. */
629}
630
631#define SCHED_FEAT(name, enabled) \
632static __always_inline bool static_branch_##name(struct static_key *key) \
633{ \
634 return static_branch__##enabled(key); \
635}
636
637#include "features.h"
638
639#undef SCHED_FEAT
640
641extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
642#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
643#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
644#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
645#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
646
647static inline u64 global_rt_period(void)
648{
649 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
650}
651
652static inline u64 global_rt_runtime(void)
653{
654 if (sysctl_sched_rt_runtime < 0)
655 return RUNTIME_INF;
656
657 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
658}
659
660
661
662static inline int task_current(struct rq *rq, struct task_struct *p)
663{
664 return rq->curr == p;
665}
666
667static inline int task_running(struct rq *rq, struct task_struct *p)
668{
669#ifdef CONFIG_SMP
670 return p->on_cpu;
671#else
672 return task_current(rq, p);
673#endif
674}
675
676
677#ifndef prepare_arch_switch
678# define prepare_arch_switch(next) do { } while (0)
679#endif
680#ifndef finish_arch_switch
681# define finish_arch_switch(prev) do { } while (0)
682#endif
683#ifndef finish_arch_post_lock_switch
684# define finish_arch_post_lock_switch() do { } while (0)
685#endif
686
687#ifndef __ARCH_WANT_UNLOCKED_CTXSW
688static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
689{
690#ifdef CONFIG_SMP
691 /*
692 * We can optimise this out completely for !SMP, because the
693 * SMP rebalancing from interrupt is the only thing that cares
694 * here.
695 */
696 next->on_cpu = 1;
697#endif
698}
699
700static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
701{
702#ifdef CONFIG_SMP
703 /*
704 * After ->on_cpu is cleared, the task can be moved to a different CPU.
705 * We must ensure this doesn't happen until the switch is completely
706 * finished.
707 */
708 smp_wmb();
709 prev->on_cpu = 0;
710#endif
711#ifdef CONFIG_DEBUG_SPINLOCK
712 /* this is a valid case when another task releases the spinlock */
713 rq->lock.owner = current;
714#endif
715 /*
716 * If we are tracking spinlock dependencies then we have to
717 * fix up the runqueue lock - which gets 'carried over' from
718 * prev into current:
719 */
720 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
721
722 raw_spin_unlock_irq(&rq->lock);
723}
724
725#else /* __ARCH_WANT_UNLOCKED_CTXSW */
726static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
727{
728#ifdef CONFIG_SMP
729 /*
730 * We can optimise this out completely for !SMP, because the
731 * SMP rebalancing from interrupt is the only thing that cares
732 * here.
733 */
734 next->on_cpu = 1;
735#endif
736#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
737 raw_spin_unlock_irq(&rq->lock);
738#else
739 raw_spin_unlock(&rq->lock);
740#endif
741}
742
743static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
744{
745#ifdef CONFIG_SMP
746 /*
747 * After ->on_cpu is cleared, the task can be moved to a different CPU.
748 * We must ensure this doesn't happen until the switch is completely
749 * finished.
750 */
751 smp_wmb();
752 prev->on_cpu = 0;
753#endif
754#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
755 local_irq_enable();
756#endif
757}
758#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
759
760
761static inline void update_load_add(struct load_weight *lw, unsigned long inc)
762{
763 lw->weight += inc;
764 lw->inv_weight = 0;
765}
766
767static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
768{
769 lw->weight -= dec;
770 lw->inv_weight = 0;
771}
772
773static inline void update_load_set(struct load_weight *lw, unsigned long w)
774{
775 lw->weight = w;
776 lw->inv_weight = 0;
777}
778
779/*
780 * To aid in avoiding the subversion of "niceness" due to uneven distribution
781 * of tasks with abnormal "nice" values across CPUs the contribution that
782 * each task makes to its run queue's load is weighted according to its
783 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
784 * scaled version of the new time slice allocation that they receive on time
785 * slice expiry etc.
786 */
787
788#define WEIGHT_IDLEPRIO 3
789#define WMULT_IDLEPRIO 1431655765
790
791/*
792 * Nice levels are multiplicative, with a gentle 10% change for every
793 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
794 * nice 1, it will get ~10% less CPU time than another CPU-bound task
795 * that remained on nice 0.
796 *
797 * The "10% effect" is relative and cumulative: from _any_ nice level,
798 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
799 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
800 * If a task goes up by ~10% and another task goes down by ~10% then
801 * the relative distance between them is ~25%.)
802 */
803static const int prio_to_weight[40] = {
804 /* -20 */ 88761, 71755, 56483, 46273, 36291,
805 /* -15 */ 29154, 23254, 18705, 14949, 11916,
806 /* -10 */ 9548, 7620, 6100, 4904, 3906,
807 /* -5 */ 3121, 2501, 1991, 1586, 1277,
808 /* 0 */ 1024, 820, 655, 526, 423,
809 /* 5 */ 335, 272, 215, 172, 137,
810 /* 10 */ 110, 87, 70, 56, 45,
811 /* 15 */ 36, 29, 23, 18, 15,
812};
813
814/*
815 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
816 *
817 * In cases where the weight does not change often, we can use the
818 * precalculated inverse to speed up arithmetics by turning divisions
819 * into multiplications:
820 */
821static const u32 prio_to_wmult[40] = {
822 /* -20 */ 48388, 59856, 76040, 92818, 118348,
823 /* -15 */ 147320, 184698, 229616, 287308, 360437,
824 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
825 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
826 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
827 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
828 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
829 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
830};
831
832/* Time spent by the tasks of the cpu accounting group executing in ... */
833enum cpuacct_stat_index {
834 CPUACCT_STAT_USER, /* ... user mode */
835 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
836
837 CPUACCT_STAT_NSTATS,
838};
839
840
841#define sched_class_highest (&stop_sched_class)
842#define for_each_class(class) \
843 for (class = sched_class_highest; class; class = class->next)
844
845extern const struct sched_class stop_sched_class;
846extern const struct sched_class rt_sched_class;
847extern const struct sched_class fair_sched_class;
848extern const struct sched_class idle_sched_class;
849
850
851#ifdef CONFIG_SMP
852
853extern void trigger_load_balance(struct rq *rq, int cpu);
854extern void idle_balance(int this_cpu, struct rq *this_rq);
855
856#else /* CONFIG_SMP */
857
858static inline void idle_balance(int cpu, struct rq *rq)
859{
860}
861
862#endif
863
864extern void sysrq_sched_debug_show(void);
865extern void sched_init_granularity(void);
866extern void update_max_interval(void);
867extern void update_group_power(struct sched_domain *sd, int cpu);
868extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
869extern void init_sched_rt_class(void);
870extern void init_sched_fair_class(void);
871
872extern void resched_task(struct task_struct *p);
873extern void resched_cpu(int cpu);
874
875extern struct rt_bandwidth def_rt_bandwidth;
876extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
877
878extern void update_idle_cpu_load(struct rq *this_rq);
879
880#ifdef CONFIG_CGROUP_CPUACCT
881#include <linux/cgroup.h>
882/* track cpu usage of a group of tasks and its child groups */
883struct cpuacct {
884 struct cgroup_subsys_state css;
885 /* cpuusage holds pointer to a u64-type object on every cpu */
886 u64 __percpu *cpuusage;
887 struct kernel_cpustat __percpu *cpustat;
888};
889
890/* return cpu accounting group corresponding to this container */
891static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
892{
893 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
894 struct cpuacct, css);
895}
896
897/* return cpu accounting group to which this task belongs */
898static inline struct cpuacct *task_ca(struct task_struct *tsk)
899{
900 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
901 struct cpuacct, css);
902}
903
904static inline struct cpuacct *parent_ca(struct cpuacct *ca)
905{
906 if (!ca || !ca->css.cgroup->parent)
907 return NULL;
908 return cgroup_ca(ca->css.cgroup->parent);
909}
910
911extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
912#else
913static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
914#endif
915
916static inline void inc_nr_running(struct rq *rq)
917{
918 rq->nr_running++;
919}
920
921static inline void dec_nr_running(struct rq *rq)
922{
923 rq->nr_running--;
924}
925
926extern void update_rq_clock(struct rq *rq);
927
928extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
929extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
930
931extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
932
933extern const_debug unsigned int sysctl_sched_time_avg;
934extern const_debug unsigned int sysctl_sched_nr_migrate;
935extern const_debug unsigned int sysctl_sched_migration_cost;
936
937static inline u64 sched_avg_period(void)
938{
939 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
940}
941
942#ifdef CONFIG_SCHED_HRTICK
943
944/*
945 * Use hrtick when:
946 * - enabled by features
947 * - hrtimer is actually high res
948 */
949static inline int hrtick_enabled(struct rq *rq)
950{
951 if (!sched_feat(HRTICK))
952 return 0;
953 if (!cpu_active(cpu_of(rq)))
954 return 0;
955 return hrtimer_is_hres_active(&rq->hrtick_timer);
956}
957
958void hrtick_start(struct rq *rq, u64 delay);
959
960#else
961
962static inline int hrtick_enabled(struct rq *rq)
963{
964 return 0;
965}
966
967#endif /* CONFIG_SCHED_HRTICK */
968
969#ifdef CONFIG_SMP
970extern void sched_avg_update(struct rq *rq);
971static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
972{
973 rq->rt_avg += rt_delta;
974 sched_avg_update(rq);
975}
976#else
977static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
978static inline void sched_avg_update(struct rq *rq) { }
979#endif
980
981extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
982
983#ifdef CONFIG_SMP
984#ifdef CONFIG_PREEMPT
985
986static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
987
988/*
989 * fair double_lock_balance: Safely acquires both rq->locks in a fair
990 * way at the expense of forcing extra atomic operations in all
991 * invocations. This assures that the double_lock is acquired using the
992 * same underlying policy as the spinlock_t on this architecture, which
993 * reduces latency compared to the unfair variant below. However, it
994 * also adds more overhead and therefore may reduce throughput.
995 */
996static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
997 __releases(this_rq->lock)
998 __acquires(busiest->lock)
999 __acquires(this_rq->lock)
1000{
1001 raw_spin_unlock(&this_rq->lock);
1002 double_rq_lock(this_rq, busiest);
1003
1004 return 1;
1005}
1006
1007#else
1008/*
1009 * Unfair double_lock_balance: Optimizes throughput at the expense of
1010 * latency by eliminating extra atomic operations when the locks are
1011 * already in proper order on entry. This favors lower cpu-ids and will
1012 * grant the double lock to lower cpus over higher ids under contention,
1013 * regardless of entry order into the function.
1014 */
1015static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1016 __releases(this_rq->lock)
1017 __acquires(busiest->lock)
1018 __acquires(this_rq->lock)
1019{
1020 int ret = 0;
1021
1022 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1023 if (busiest < this_rq) {
1024 raw_spin_unlock(&this_rq->lock);
1025 raw_spin_lock(&busiest->lock);
1026 raw_spin_lock_nested(&this_rq->lock,
1027 SINGLE_DEPTH_NESTING);
1028 ret = 1;
1029 } else
1030 raw_spin_lock_nested(&busiest->lock,
1031 SINGLE_DEPTH_NESTING);
1032 }
1033 return ret;
1034}
1035
1036#endif /* CONFIG_PREEMPT */
1037
1038/*
1039 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1040 */
1041static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1042{
1043 if (unlikely(!irqs_disabled())) {
1044 /* printk() doesn't work good under rq->lock */
1045 raw_spin_unlock(&this_rq->lock);
1046 BUG_ON(1);
1047 }
1048
1049 return _double_lock_balance(this_rq, busiest);
1050}
1051
1052static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1053 __releases(busiest->lock)
1054{
1055 raw_spin_unlock(&busiest->lock);
1056 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1057}
1058
1059/*
1060 * double_rq_lock - safely lock two runqueues
1061 *
1062 * Note this does not disable interrupts like task_rq_lock,
1063 * you need to do so manually before calling.
1064 */
1065static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1066 __acquires(rq1->lock)
1067 __acquires(rq2->lock)
1068{
1069 BUG_ON(!irqs_disabled());
1070 if (rq1 == rq2) {
1071 raw_spin_lock(&rq1->lock);
1072 __acquire(rq2->lock); /* Fake it out ;) */
1073 } else {
1074 if (rq1 < rq2) {
1075 raw_spin_lock(&rq1->lock);
1076 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1077 } else {
1078 raw_spin_lock(&rq2->lock);
1079 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1080 }
1081 }
1082}
1083
1084/*
1085 * double_rq_unlock - safely unlock two runqueues
1086 *
1087 * Note this does not restore interrupts like task_rq_unlock,
1088 * you need to do so manually after calling.
1089 */
1090static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1091 __releases(rq1->lock)
1092 __releases(rq2->lock)
1093{
1094 raw_spin_unlock(&rq1->lock);
1095 if (rq1 != rq2)
1096 raw_spin_unlock(&rq2->lock);
1097 else
1098 __release(rq2->lock);
1099}
1100
1101#else /* CONFIG_SMP */
1102
1103/*
1104 * double_rq_lock - safely lock two runqueues
1105 *
1106 * Note this does not disable interrupts like task_rq_lock,
1107 * you need to do so manually before calling.
1108 */
1109static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1110 __acquires(rq1->lock)
1111 __acquires(rq2->lock)
1112{
1113 BUG_ON(!irqs_disabled());
1114 BUG_ON(rq1 != rq2);
1115 raw_spin_lock(&rq1->lock);
1116 __acquire(rq2->lock); /* Fake it out ;) */
1117}
1118
1119/*
1120 * double_rq_unlock - safely unlock two runqueues
1121 *
1122 * Note this does not restore interrupts like task_rq_unlock,
1123 * you need to do so manually after calling.
1124 */
1125static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1126 __releases(rq1->lock)
1127 __releases(rq2->lock)
1128{
1129 BUG_ON(rq1 != rq2);
1130 raw_spin_unlock(&rq1->lock);
1131 __release(rq2->lock);
1132}
1133
1134#endif
1135
1136extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1137extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1138extern void print_cfs_stats(struct seq_file *m, int cpu);
1139extern void print_rt_stats(struct seq_file *m, int cpu);
1140
1141extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1142extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1143extern void unthrottle_offline_cfs_rqs(struct rq *rq);
1144
1145extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1146
1147#ifdef CONFIG_NO_HZ
1148enum rq_nohz_flag_bits {
1149 NOHZ_TICK_STOPPED,
1150 NOHZ_BALANCE_KICK,
1151 NOHZ_IDLE,
1152};
1153
1154#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1155#endif