Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/blkdev.h>
  22#include <linux/list_sort.h>
  23#include "tree-log.h"
  24#include "disk-io.h"
  25#include "locking.h"
  26#include "print-tree.h"
  27#include "backref.h"
  28#include "hash.h"
  29#include "compression.h"
  30
  31/* magic values for the inode_only field in btrfs_log_inode:
  32 *
  33 * LOG_INODE_ALL means to log everything
  34 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  35 * during log replay
  36 */
  37#define LOG_INODE_ALL 0
  38#define LOG_INODE_EXISTS 1
  39
  40/*
  41 * directory trouble cases
  42 *
  43 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  44 * log, we must force a full commit before doing an fsync of the directory
  45 * where the unlink was done.
  46 * ---> record transid of last unlink/rename per directory
  47 *
  48 * mkdir foo/some_dir
  49 * normal commit
  50 * rename foo/some_dir foo2/some_dir
  51 * mkdir foo/some_dir
  52 * fsync foo/some_dir/some_file
  53 *
  54 * The fsync above will unlink the original some_dir without recording
  55 * it in its new location (foo2).  After a crash, some_dir will be gone
  56 * unless the fsync of some_file forces a full commit
  57 *
  58 * 2) we must log any new names for any file or dir that is in the fsync
  59 * log. ---> check inode while renaming/linking.
  60 *
  61 * 2a) we must log any new names for any file or dir during rename
  62 * when the directory they are being removed from was logged.
  63 * ---> check inode and old parent dir during rename
  64 *
  65 *  2a is actually the more important variant.  With the extra logging
  66 *  a crash might unlink the old name without recreating the new one
  67 *
  68 * 3) after a crash, we must go through any directories with a link count
  69 * of zero and redo the rm -rf
  70 *
  71 * mkdir f1/foo
  72 * normal commit
  73 * rm -rf f1/foo
  74 * fsync(f1)
  75 *
  76 * The directory f1 was fully removed from the FS, but fsync was never
  77 * called on f1, only its parent dir.  After a crash the rm -rf must
  78 * be replayed.  This must be able to recurse down the entire
  79 * directory tree.  The inode link count fixup code takes care of the
  80 * ugly details.
  81 */
  82
  83/*
  84 * stages for the tree walking.  The first
  85 * stage (0) is to only pin down the blocks we find
  86 * the second stage (1) is to make sure that all the inodes
  87 * we find in the log are created in the subvolume.
  88 *
  89 * The last stage is to deal with directories and links and extents
  90 * and all the other fun semantics
  91 */
  92#define LOG_WALK_PIN_ONLY 0
  93#define LOG_WALK_REPLAY_INODES 1
  94#define LOG_WALK_REPLAY_DIR_INDEX 2
  95#define LOG_WALK_REPLAY_ALL 3
  96
  97static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  98			   struct btrfs_root *root, struct inode *inode,
  99			   int inode_only,
 100			   const loff_t start,
 101			   const loff_t end,
 102			   struct btrfs_log_ctx *ctx);
 103static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 104			     struct btrfs_root *root,
 105			     struct btrfs_path *path, u64 objectid);
 106static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 107				       struct btrfs_root *root,
 108				       struct btrfs_root *log,
 109				       struct btrfs_path *path,
 110				       u64 dirid, int del_all);
 111
 112/*
 113 * tree logging is a special write ahead log used to make sure that
 114 * fsyncs and O_SYNCs can happen without doing full tree commits.
 115 *
 116 * Full tree commits are expensive because they require commonly
 117 * modified blocks to be recowed, creating many dirty pages in the
 118 * extent tree an 4x-6x higher write load than ext3.
 119 *
 120 * Instead of doing a tree commit on every fsync, we use the
 121 * key ranges and transaction ids to find items for a given file or directory
 122 * that have changed in this transaction.  Those items are copied into
 123 * a special tree (one per subvolume root), that tree is written to disk
 124 * and then the fsync is considered complete.
 125 *
 126 * After a crash, items are copied out of the log-tree back into the
 127 * subvolume tree.  Any file data extents found are recorded in the extent
 128 * allocation tree, and the log-tree freed.
 129 *
 130 * The log tree is read three times, once to pin down all the extents it is
 131 * using in ram and once, once to create all the inodes logged in the tree
 132 * and once to do all the other items.
 133 */
 134
 135/*
 136 * start a sub transaction and setup the log tree
 137 * this increments the log tree writer count to make the people
 138 * syncing the tree wait for us to finish
 139 */
 140static int start_log_trans(struct btrfs_trans_handle *trans,
 141			   struct btrfs_root *root,
 142			   struct btrfs_log_ctx *ctx)
 143{
 144	int ret = 0;
 
 145
 146	mutex_lock(&root->log_mutex);
 147
 148	if (root->log_root) {
 149		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
 150			ret = -EAGAIN;
 151			goto out;
 152		}
 153
 154		if (!root->log_start_pid) {
 155			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 156			root->log_start_pid = current->pid;
 
 157		} else if (root->log_start_pid != current->pid) {
 158			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 159		}
 160	} else {
 161		mutex_lock(&root->fs_info->tree_log_mutex);
 162		if (!root->fs_info->log_root_tree)
 163			ret = btrfs_init_log_root_tree(trans, root->fs_info);
 164		mutex_unlock(&root->fs_info->tree_log_mutex);
 165		if (ret)
 166			goto out;
 167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168		ret = btrfs_add_log_tree(trans, root);
 169		if (ret)
 170			goto out;
 171
 172		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 173		root->log_start_pid = current->pid;
 174	}
 175
 176	atomic_inc(&root->log_batch);
 177	atomic_inc(&root->log_writers);
 178	if (ctx) {
 179		int index = root->log_transid % 2;
 180		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 181		ctx->log_transid = root->log_transid;
 182	}
 183
 184out:
 185	mutex_unlock(&root->log_mutex);
 186	return ret;
 187}
 188
 189/*
 190 * returns 0 if there was a log transaction running and we were able
 191 * to join, or returns -ENOENT if there were not transactions
 192 * in progress
 193 */
 194static int join_running_log_trans(struct btrfs_root *root)
 195{
 196	int ret = -ENOENT;
 197
 198	smp_mb();
 199	if (!root->log_root)
 200		return -ENOENT;
 201
 202	mutex_lock(&root->log_mutex);
 203	if (root->log_root) {
 204		ret = 0;
 205		atomic_inc(&root->log_writers);
 206	}
 207	mutex_unlock(&root->log_mutex);
 208	return ret;
 209}
 210
 211/*
 212 * This either makes the current running log transaction wait
 213 * until you call btrfs_end_log_trans() or it makes any future
 214 * log transactions wait until you call btrfs_end_log_trans()
 215 */
 216int btrfs_pin_log_trans(struct btrfs_root *root)
 217{
 218	int ret = -ENOENT;
 219
 220	mutex_lock(&root->log_mutex);
 221	atomic_inc(&root->log_writers);
 222	mutex_unlock(&root->log_mutex);
 223	return ret;
 224}
 225
 226/*
 227 * indicate we're done making changes to the log tree
 228 * and wake up anyone waiting to do a sync
 229 */
 230void btrfs_end_log_trans(struct btrfs_root *root)
 231{
 232	if (atomic_dec_and_test(&root->log_writers)) {
 233		/*
 234		 * Implicit memory barrier after atomic_dec_and_test
 235		 */
 236		if (waitqueue_active(&root->log_writer_wait))
 237			wake_up(&root->log_writer_wait);
 238	}
 239}
 240
 241
 242/*
 243 * the walk control struct is used to pass state down the chain when
 244 * processing the log tree.  The stage field tells us which part
 245 * of the log tree processing we are currently doing.  The others
 246 * are state fields used for that specific part
 247 */
 248struct walk_control {
 249	/* should we free the extent on disk when done?  This is used
 250	 * at transaction commit time while freeing a log tree
 251	 */
 252	int free;
 253
 254	/* should we write out the extent buffer?  This is used
 255	 * while flushing the log tree to disk during a sync
 256	 */
 257	int write;
 258
 259	/* should we wait for the extent buffer io to finish?  Also used
 260	 * while flushing the log tree to disk for a sync
 261	 */
 262	int wait;
 263
 264	/* pin only walk, we record which extents on disk belong to the
 265	 * log trees
 266	 */
 267	int pin;
 268
 269	/* what stage of the replay code we're currently in */
 270	int stage;
 271
 272	/* the root we are currently replaying */
 273	struct btrfs_root *replay_dest;
 274
 275	/* the trans handle for the current replay */
 276	struct btrfs_trans_handle *trans;
 277
 278	/* the function that gets used to process blocks we find in the
 279	 * tree.  Note the extent_buffer might not be up to date when it is
 280	 * passed in, and it must be checked or read if you need the data
 281	 * inside it
 282	 */
 283	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 284			    struct walk_control *wc, u64 gen);
 285};
 286
 287/*
 288 * process_func used to pin down extents, write them or wait on them
 289 */
 290static int process_one_buffer(struct btrfs_root *log,
 291			      struct extent_buffer *eb,
 292			      struct walk_control *wc, u64 gen)
 293{
 294	int ret = 0;
 295
 296	/*
 297	 * If this fs is mixed then we need to be able to process the leaves to
 298	 * pin down any logged extents, so we have to read the block.
 299	 */
 300	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
 301		ret = btrfs_read_buffer(eb, gen);
 302		if (ret)
 303			return ret;
 304	}
 305
 306	if (wc->pin)
 307		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
 308						      eb->start, eb->len);
 
 309
 310	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 311		if (wc->pin && btrfs_header_level(eb) == 0)
 312			ret = btrfs_exclude_logged_extents(log, eb);
 313		if (wc->write)
 314			btrfs_write_tree_block(eb);
 315		if (wc->wait)
 316			btrfs_wait_tree_block_writeback(eb);
 317	}
 318	return ret;
 319}
 320
 321/*
 322 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 323 * to the src data we are copying out.
 324 *
 325 * root is the tree we are copying into, and path is a scratch
 326 * path for use in this function (it should be released on entry and
 327 * will be released on exit).
 328 *
 329 * If the key is already in the destination tree the existing item is
 330 * overwritten.  If the existing item isn't big enough, it is extended.
 331 * If it is too large, it is truncated.
 332 *
 333 * If the key isn't in the destination yet, a new item is inserted.
 334 */
 335static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 336				   struct btrfs_root *root,
 337				   struct btrfs_path *path,
 338				   struct extent_buffer *eb, int slot,
 339				   struct btrfs_key *key)
 340{
 341	int ret;
 342	u32 item_size;
 343	u64 saved_i_size = 0;
 344	int save_old_i_size = 0;
 345	unsigned long src_ptr;
 346	unsigned long dst_ptr;
 347	int overwrite_root = 0;
 348	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 349
 350	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 351		overwrite_root = 1;
 352
 353	item_size = btrfs_item_size_nr(eb, slot);
 354	src_ptr = btrfs_item_ptr_offset(eb, slot);
 355
 356	/* look for the key in the destination tree */
 357	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 358	if (ret < 0)
 359		return ret;
 360
 361	if (ret == 0) {
 362		char *src_copy;
 363		char *dst_copy;
 364		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 365						  path->slots[0]);
 366		if (dst_size != item_size)
 367			goto insert;
 368
 369		if (item_size == 0) {
 370			btrfs_release_path(path);
 371			return 0;
 372		}
 373		dst_copy = kmalloc(item_size, GFP_NOFS);
 374		src_copy = kmalloc(item_size, GFP_NOFS);
 375		if (!dst_copy || !src_copy) {
 376			btrfs_release_path(path);
 377			kfree(dst_copy);
 378			kfree(src_copy);
 379			return -ENOMEM;
 380		}
 381
 382		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 383
 384		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 385		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 386				   item_size);
 387		ret = memcmp(dst_copy, src_copy, item_size);
 388
 389		kfree(dst_copy);
 390		kfree(src_copy);
 391		/*
 392		 * they have the same contents, just return, this saves
 393		 * us from cowing blocks in the destination tree and doing
 394		 * extra writes that may not have been done by a previous
 395		 * sync
 396		 */
 397		if (ret == 0) {
 398			btrfs_release_path(path);
 399			return 0;
 400		}
 401
 402		/*
 403		 * We need to load the old nbytes into the inode so when we
 404		 * replay the extents we've logged we get the right nbytes.
 405		 */
 406		if (inode_item) {
 407			struct btrfs_inode_item *item;
 408			u64 nbytes;
 409			u32 mode;
 410
 411			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 412					      struct btrfs_inode_item);
 413			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 414			item = btrfs_item_ptr(eb, slot,
 415					      struct btrfs_inode_item);
 416			btrfs_set_inode_nbytes(eb, item, nbytes);
 417
 418			/*
 419			 * If this is a directory we need to reset the i_size to
 420			 * 0 so that we can set it up properly when replaying
 421			 * the rest of the items in this log.
 422			 */
 423			mode = btrfs_inode_mode(eb, item);
 424			if (S_ISDIR(mode))
 425				btrfs_set_inode_size(eb, item, 0);
 426		}
 427	} else if (inode_item) {
 428		struct btrfs_inode_item *item;
 429		u32 mode;
 430
 431		/*
 432		 * New inode, set nbytes to 0 so that the nbytes comes out
 433		 * properly when we replay the extents.
 434		 */
 435		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 436		btrfs_set_inode_nbytes(eb, item, 0);
 437
 438		/*
 439		 * If this is a directory we need to reset the i_size to 0 so
 440		 * that we can set it up properly when replaying the rest of
 441		 * the items in this log.
 442		 */
 443		mode = btrfs_inode_mode(eb, item);
 444		if (S_ISDIR(mode))
 445			btrfs_set_inode_size(eb, item, 0);
 446	}
 447insert:
 448	btrfs_release_path(path);
 449	/* try to insert the key into the destination tree */
 450	path->skip_release_on_error = 1;
 451	ret = btrfs_insert_empty_item(trans, root, path,
 452				      key, item_size);
 453	path->skip_release_on_error = 0;
 454
 455	/* make sure any existing item is the correct size */
 456	if (ret == -EEXIST || ret == -EOVERFLOW) {
 457		u32 found_size;
 458		found_size = btrfs_item_size_nr(path->nodes[0],
 459						path->slots[0]);
 460		if (found_size > item_size)
 461			btrfs_truncate_item(root, path, item_size, 1);
 462		else if (found_size < item_size)
 463			btrfs_extend_item(root, path,
 464					  item_size - found_size);
 465	} else if (ret) {
 466		return ret;
 467	}
 468	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 469					path->slots[0]);
 470
 471	/* don't overwrite an existing inode if the generation number
 472	 * was logged as zero.  This is done when the tree logging code
 473	 * is just logging an inode to make sure it exists after recovery.
 474	 *
 475	 * Also, don't overwrite i_size on directories during replay.
 476	 * log replay inserts and removes directory items based on the
 477	 * state of the tree found in the subvolume, and i_size is modified
 478	 * as it goes
 479	 */
 480	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 481		struct btrfs_inode_item *src_item;
 482		struct btrfs_inode_item *dst_item;
 483
 484		src_item = (struct btrfs_inode_item *)src_ptr;
 485		dst_item = (struct btrfs_inode_item *)dst_ptr;
 486
 487		if (btrfs_inode_generation(eb, src_item) == 0) {
 488			struct extent_buffer *dst_eb = path->nodes[0];
 489			const u64 ino_size = btrfs_inode_size(eb, src_item);
 490
 491			/*
 492			 * For regular files an ino_size == 0 is used only when
 493			 * logging that an inode exists, as part of a directory
 494			 * fsync, and the inode wasn't fsynced before. In this
 495			 * case don't set the size of the inode in the fs/subvol
 496			 * tree, otherwise we would be throwing valid data away.
 497			 */
 498			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 499			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 500			    ino_size != 0) {
 501				struct btrfs_map_token token;
 502
 503				btrfs_init_map_token(&token);
 504				btrfs_set_token_inode_size(dst_eb, dst_item,
 505							   ino_size, &token);
 506			}
 507			goto no_copy;
 508		}
 509
 510		if (overwrite_root &&
 511		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 512		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 513			save_old_i_size = 1;
 514			saved_i_size = btrfs_inode_size(path->nodes[0],
 515							dst_item);
 516		}
 517	}
 518
 519	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 520			   src_ptr, item_size);
 521
 522	if (save_old_i_size) {
 523		struct btrfs_inode_item *dst_item;
 524		dst_item = (struct btrfs_inode_item *)dst_ptr;
 525		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 526	}
 527
 528	/* make sure the generation is filled in */
 529	if (key->type == BTRFS_INODE_ITEM_KEY) {
 530		struct btrfs_inode_item *dst_item;
 531		dst_item = (struct btrfs_inode_item *)dst_ptr;
 532		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 533			btrfs_set_inode_generation(path->nodes[0], dst_item,
 534						   trans->transid);
 535		}
 536	}
 537no_copy:
 538	btrfs_mark_buffer_dirty(path->nodes[0]);
 539	btrfs_release_path(path);
 540	return 0;
 541}
 542
 543/*
 544 * simple helper to read an inode off the disk from a given root
 545 * This can only be called for subvolume roots and not for the log
 546 */
 547static noinline struct inode *read_one_inode(struct btrfs_root *root,
 548					     u64 objectid)
 549{
 550	struct btrfs_key key;
 551	struct inode *inode;
 552
 553	key.objectid = objectid;
 554	key.type = BTRFS_INODE_ITEM_KEY;
 555	key.offset = 0;
 556	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 557	if (IS_ERR(inode)) {
 558		inode = NULL;
 559	} else if (is_bad_inode(inode)) {
 560		iput(inode);
 561		inode = NULL;
 562	}
 563	return inode;
 564}
 565
 566/* replays a single extent in 'eb' at 'slot' with 'key' into the
 567 * subvolume 'root'.  path is released on entry and should be released
 568 * on exit.
 569 *
 570 * extents in the log tree have not been allocated out of the extent
 571 * tree yet.  So, this completes the allocation, taking a reference
 572 * as required if the extent already exists or creating a new extent
 573 * if it isn't in the extent allocation tree yet.
 574 *
 575 * The extent is inserted into the file, dropping any existing extents
 576 * from the file that overlap the new one.
 577 */
 578static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 579				      struct btrfs_root *root,
 580				      struct btrfs_path *path,
 581				      struct extent_buffer *eb, int slot,
 582				      struct btrfs_key *key)
 583{
 584	int found_type;
 
 585	u64 extent_end;
 
 586	u64 start = key->offset;
 587	u64 nbytes = 0;
 588	struct btrfs_file_extent_item *item;
 589	struct inode *inode = NULL;
 590	unsigned long size;
 591	int ret = 0;
 592
 593	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 594	found_type = btrfs_file_extent_type(eb, item);
 595
 596	if (found_type == BTRFS_FILE_EXTENT_REG ||
 597	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 598		nbytes = btrfs_file_extent_num_bytes(eb, item);
 599		extent_end = start + nbytes;
 600
 601		/*
 602		 * We don't add to the inodes nbytes if we are prealloc or a
 603		 * hole.
 604		 */
 605		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 606			nbytes = 0;
 607	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 608		size = btrfs_file_extent_inline_len(eb, slot, item);
 609		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 610		extent_end = ALIGN(start + size, root->sectorsize);
 611	} else {
 612		ret = 0;
 613		goto out;
 614	}
 615
 616	inode = read_one_inode(root, key->objectid);
 617	if (!inode) {
 618		ret = -EIO;
 619		goto out;
 620	}
 621
 622	/*
 623	 * first check to see if we already have this extent in the
 624	 * file.  This must be done before the btrfs_drop_extents run
 625	 * so we don't try to drop this extent.
 626	 */
 627	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 628				       start, 0);
 629
 630	if (ret == 0 &&
 631	    (found_type == BTRFS_FILE_EXTENT_REG ||
 632	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 633		struct btrfs_file_extent_item cmp1;
 634		struct btrfs_file_extent_item cmp2;
 635		struct btrfs_file_extent_item *existing;
 636		struct extent_buffer *leaf;
 637
 638		leaf = path->nodes[0];
 639		existing = btrfs_item_ptr(leaf, path->slots[0],
 640					  struct btrfs_file_extent_item);
 641
 642		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 643				   sizeof(cmp1));
 644		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 645				   sizeof(cmp2));
 646
 647		/*
 648		 * we already have a pointer to this exact extent,
 649		 * we don't have to do anything
 650		 */
 651		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 652			btrfs_release_path(path);
 653			goto out;
 654		}
 655	}
 656	btrfs_release_path(path);
 657
 
 658	/* drop any overlapping extents */
 659	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 660	if (ret)
 661		goto out;
 662
 663	if (found_type == BTRFS_FILE_EXTENT_REG ||
 664	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 665		u64 offset;
 666		unsigned long dest_offset;
 667		struct btrfs_key ins;
 668
 669		ret = btrfs_insert_empty_item(trans, root, path, key,
 670					      sizeof(*item));
 671		if (ret)
 672			goto out;
 673		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 674						    path->slots[0]);
 675		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 676				(unsigned long)item,  sizeof(*item));
 677
 678		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 679		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 680		ins.type = BTRFS_EXTENT_ITEM_KEY;
 681		offset = key->offset - btrfs_file_extent_offset(eb, item);
 682
 683		if (ins.objectid > 0) {
 684			u64 csum_start;
 685			u64 csum_end;
 686			LIST_HEAD(ordered_sums);
 687			/*
 688			 * is this extent already allocated in the extent
 689			 * allocation tree?  If so, just add a reference
 690			 */
 691			ret = btrfs_lookup_data_extent(root, ins.objectid,
 692						ins.offset);
 693			if (ret == 0) {
 694				ret = btrfs_inc_extent_ref(trans, root,
 695						ins.objectid, ins.offset,
 696						0, root->root_key.objectid,
 697						key->objectid, offset);
 698				if (ret)
 699					goto out;
 700			} else {
 701				/*
 702				 * insert the extent pointer in the extent
 703				 * allocation tree
 704				 */
 705				ret = btrfs_alloc_logged_file_extent(trans,
 706						root, root->root_key.objectid,
 707						key->objectid, offset, &ins);
 708				if (ret)
 709					goto out;
 710			}
 711			btrfs_release_path(path);
 712
 713			if (btrfs_file_extent_compression(eb, item)) {
 714				csum_start = ins.objectid;
 715				csum_end = csum_start + ins.offset;
 716			} else {
 717				csum_start = ins.objectid +
 718					btrfs_file_extent_offset(eb, item);
 719				csum_end = csum_start +
 720					btrfs_file_extent_num_bytes(eb, item);
 721			}
 722
 723			ret = btrfs_lookup_csums_range(root->log_root,
 724						csum_start, csum_end - 1,
 725						&ordered_sums, 0);
 726			if (ret)
 727				goto out;
 728			/*
 729			 * Now delete all existing cums in the csum root that
 730			 * cover our range. We do this because we can have an
 731			 * extent that is completely referenced by one file
 732			 * extent item and partially referenced by another
 733			 * file extent item (like after using the clone or
 734			 * extent_same ioctls). In this case if we end up doing
 735			 * the replay of the one that partially references the
 736			 * extent first, and we do not do the csum deletion
 737			 * below, we can get 2 csum items in the csum tree that
 738			 * overlap each other. For example, imagine our log has
 739			 * the two following file extent items:
 740			 *
 741			 * key (257 EXTENT_DATA 409600)
 742			 *     extent data disk byte 12845056 nr 102400
 743			 *     extent data offset 20480 nr 20480 ram 102400
 744			 *
 745			 * key (257 EXTENT_DATA 819200)
 746			 *     extent data disk byte 12845056 nr 102400
 747			 *     extent data offset 0 nr 102400 ram 102400
 748			 *
 749			 * Where the second one fully references the 100K extent
 750			 * that starts at disk byte 12845056, and the log tree
 751			 * has a single csum item that covers the entire range
 752			 * of the extent:
 753			 *
 754			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 755			 *
 756			 * After the first file extent item is replayed, the
 757			 * csum tree gets the following csum item:
 758			 *
 759			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 760			 *
 761			 * Which covers the 20K sub-range starting at offset 20K
 762			 * of our extent. Now when we replay the second file
 763			 * extent item, if we do not delete existing csum items
 764			 * that cover any of its blocks, we end up getting two
 765			 * csum items in our csum tree that overlap each other:
 766			 *
 767			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 768			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 769			 *
 770			 * Which is a problem, because after this anyone trying
 771			 * to lookup up for the checksum of any block of our
 772			 * extent starting at an offset of 40K or higher, will
 773			 * end up looking at the second csum item only, which
 774			 * does not contain the checksum for any block starting
 775			 * at offset 40K or higher of our extent.
 776			 */
 777			while (!list_empty(&ordered_sums)) {
 778				struct btrfs_ordered_sum *sums;
 779				sums = list_entry(ordered_sums.next,
 780						struct btrfs_ordered_sum,
 781						list);
 782				if (!ret)
 783					ret = btrfs_del_csums(trans,
 784						      root->fs_info->csum_root,
 785						      sums->bytenr,
 786						      sums->len);
 787				if (!ret)
 788					ret = btrfs_csum_file_blocks(trans,
 789						root->fs_info->csum_root,
 790						sums);
 
 791				list_del(&sums->list);
 792				kfree(sums);
 793			}
 794			if (ret)
 795				goto out;
 796		} else {
 797			btrfs_release_path(path);
 798		}
 799	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 800		/* inline extents are easy, we just overwrite them */
 801		ret = overwrite_item(trans, root, path, eb, slot, key);
 802		if (ret)
 803			goto out;
 804	}
 805
 806	inode_add_bytes(inode, nbytes);
 807	ret = btrfs_update_inode(trans, root, inode);
 808out:
 809	if (inode)
 810		iput(inode);
 811	return ret;
 812}
 813
 814/*
 815 * when cleaning up conflicts between the directory names in the
 816 * subvolume, directory names in the log and directory names in the
 817 * inode back references, we may have to unlink inodes from directories.
 818 *
 819 * This is a helper function to do the unlink of a specific directory
 820 * item
 821 */
 822static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 823				      struct btrfs_root *root,
 824				      struct btrfs_path *path,
 825				      struct inode *dir,
 826				      struct btrfs_dir_item *di)
 827{
 828	struct inode *inode;
 829	char *name;
 830	int name_len;
 831	struct extent_buffer *leaf;
 832	struct btrfs_key location;
 833	int ret;
 834
 835	leaf = path->nodes[0];
 836
 837	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 838	name_len = btrfs_dir_name_len(leaf, di);
 839	name = kmalloc(name_len, GFP_NOFS);
 840	if (!name)
 841		return -ENOMEM;
 842
 843	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 844	btrfs_release_path(path);
 845
 846	inode = read_one_inode(root, location.objectid);
 847	if (!inode) {
 848		ret = -EIO;
 849		goto out;
 850	}
 851
 852	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 853	if (ret)
 854		goto out;
 855
 856	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 857	if (ret)
 858		goto out;
 859	else
 860		ret = btrfs_run_delayed_items(trans, root);
 861out:
 862	kfree(name);
 
 863	iput(inode);
 
 
 864	return ret;
 865}
 866
 867/*
 868 * helper function to see if a given name and sequence number found
 869 * in an inode back reference are already in a directory and correctly
 870 * point to this inode
 871 */
 872static noinline int inode_in_dir(struct btrfs_root *root,
 873				 struct btrfs_path *path,
 874				 u64 dirid, u64 objectid, u64 index,
 875				 const char *name, int name_len)
 876{
 877	struct btrfs_dir_item *di;
 878	struct btrfs_key location;
 879	int match = 0;
 880
 881	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 882					 index, name, name_len, 0);
 883	if (di && !IS_ERR(di)) {
 884		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 885		if (location.objectid != objectid)
 886			goto out;
 887	} else
 888		goto out;
 889	btrfs_release_path(path);
 890
 891	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 892	if (di && !IS_ERR(di)) {
 893		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 894		if (location.objectid != objectid)
 895			goto out;
 896	} else
 897		goto out;
 898	match = 1;
 899out:
 900	btrfs_release_path(path);
 901	return match;
 902}
 903
 904/*
 905 * helper function to check a log tree for a named back reference in
 906 * an inode.  This is used to decide if a back reference that is
 907 * found in the subvolume conflicts with what we find in the log.
 908 *
 909 * inode backreferences may have multiple refs in a single item,
 910 * during replay we process one reference at a time, and we don't
 911 * want to delete valid links to a file from the subvolume if that
 912 * link is also in the log.
 913 */
 914static noinline int backref_in_log(struct btrfs_root *log,
 915				   struct btrfs_key *key,
 916				   u64 ref_objectid,
 917				   const char *name, int namelen)
 918{
 919	struct btrfs_path *path;
 920	struct btrfs_inode_ref *ref;
 921	unsigned long ptr;
 922	unsigned long ptr_end;
 923	unsigned long name_ptr;
 924	int found_name_len;
 925	int item_size;
 926	int ret;
 927	int match = 0;
 928
 929	path = btrfs_alloc_path();
 930	if (!path)
 931		return -ENOMEM;
 932
 933	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 934	if (ret != 0)
 935		goto out;
 936
 937	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 938
 939	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 940		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
 941						   name, namelen, NULL))
 942			match = 1;
 943
 944		goto out;
 945	}
 946
 947	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 
 948	ptr_end = ptr + item_size;
 949	while (ptr < ptr_end) {
 950		ref = (struct btrfs_inode_ref *)ptr;
 951		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 952		if (found_name_len == namelen) {
 953			name_ptr = (unsigned long)(ref + 1);
 954			ret = memcmp_extent_buffer(path->nodes[0], name,
 955						   name_ptr, namelen);
 956			if (ret == 0) {
 957				match = 1;
 958				goto out;
 959			}
 960		}
 961		ptr = (unsigned long)(ref + 1) + found_name_len;
 962	}
 963out:
 964	btrfs_free_path(path);
 965	return match;
 966}
 967
 968static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 
 
 
 
 
 
 
 969				  struct btrfs_root *root,
 
 970				  struct btrfs_path *path,
 971				  struct btrfs_root *log_root,
 972				  struct inode *dir, struct inode *inode,
 973				  struct extent_buffer *eb,
 974				  u64 inode_objectid, u64 parent_objectid,
 975				  u64 ref_index, char *name, int namelen,
 976				  int *search_done)
 977{
 978	int ret;
 979	char *victim_name;
 980	int victim_name_len;
 981	struct extent_buffer *leaf;
 982	struct btrfs_dir_item *di;
 983	struct btrfs_key search_key;
 984	struct btrfs_inode_extref *extref;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985
 986again:
 987	/* Search old style refs */
 988	search_key.objectid = inode_objectid;
 989	search_key.type = BTRFS_INODE_REF_KEY;
 990	search_key.offset = parent_objectid;
 991	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992	if (ret == 0) {
 
 
 993		struct btrfs_inode_ref *victim_ref;
 994		unsigned long ptr;
 995		unsigned long ptr_end;
 996
 997		leaf = path->nodes[0];
 998
 999		/* are we trying to overwrite a back ref for the root directory
1000		 * if so, just jump out, we're done
1001		 */
1002		if (search_key.objectid == search_key.offset)
1003			return 1;
1004
1005		/* check all the names in this back reference to see
1006		 * if they are in the log.  if so, we allow them to stay
1007		 * otherwise they must be unlinked as a conflict
1008		 */
1009		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1010		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1011		while (ptr < ptr_end) {
1012			victim_ref = (struct btrfs_inode_ref *)ptr;
1013			victim_name_len = btrfs_inode_ref_name_len(leaf,
1014								   victim_ref);
1015			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1016			if (!victim_name)
1017				return -ENOMEM;
1018
1019			read_extent_buffer(leaf, victim_name,
1020					   (unsigned long)(victim_ref + 1),
1021					   victim_name_len);
1022
1023			if (!backref_in_log(log_root, &search_key,
1024					    parent_objectid,
1025					    victim_name,
1026					    victim_name_len)) {
1027				inc_nlink(inode);
1028				btrfs_release_path(path);
1029
1030				ret = btrfs_unlink_inode(trans, root, dir,
1031							 inode, victim_name,
1032							 victim_name_len);
1033				kfree(victim_name);
1034				if (ret)
1035					return ret;
1036				ret = btrfs_run_delayed_items(trans, root);
1037				if (ret)
1038					return ret;
1039				*search_done = 1;
1040				goto again;
1041			}
1042			kfree(victim_name);
1043
1044			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1045		}
 
1046
1047		/*
1048		 * NOTE: we have searched root tree and checked the
1049		 * corresponding ref, it does not need to check again.
1050		 */
1051		*search_done = 1;
1052	}
1053	btrfs_release_path(path);
1054
1055	/* Same search but for extended refs */
1056	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1057					   inode_objectid, parent_objectid, 0,
1058					   0);
1059	if (!IS_ERR_OR_NULL(extref)) {
1060		u32 item_size;
1061		u32 cur_offset = 0;
1062		unsigned long base;
1063		struct inode *victim_parent;
1064
1065		leaf = path->nodes[0];
1066
1067		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1068		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1069
1070		while (cur_offset < item_size) {
1071			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1072
1073			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1074
1075			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1076				goto next;
1077
1078			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1079			if (!victim_name)
1080				return -ENOMEM;
1081			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1082					   victim_name_len);
1083
1084			search_key.objectid = inode_objectid;
1085			search_key.type = BTRFS_INODE_EXTREF_KEY;
1086			search_key.offset = btrfs_extref_hash(parent_objectid,
1087							      victim_name,
1088							      victim_name_len);
1089			ret = 0;
1090			if (!backref_in_log(log_root, &search_key,
1091					    parent_objectid, victim_name,
1092					    victim_name_len)) {
1093				ret = -ENOENT;
1094				victim_parent = read_one_inode(root,
1095							       parent_objectid);
1096				if (victim_parent) {
1097					inc_nlink(inode);
1098					btrfs_release_path(path);
1099
1100					ret = btrfs_unlink_inode(trans, root,
1101								 victim_parent,
1102								 inode,
1103								 victim_name,
1104								 victim_name_len);
1105					if (!ret)
1106						ret = btrfs_run_delayed_items(
1107								  trans, root);
1108				}
1109				iput(victim_parent);
1110				kfree(victim_name);
1111				if (ret)
1112					return ret;
1113				*search_done = 1;
1114				goto again;
1115			}
1116			kfree(victim_name);
1117			if (ret)
1118				return ret;
1119next:
1120			cur_offset += victim_name_len + sizeof(*extref);
1121		}
1122		*search_done = 1;
1123	}
1124	btrfs_release_path(path);
1125
1126	/* look for a conflicting sequence number */
1127	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1128					 ref_index, name, namelen, 0);
 
1129	if (di && !IS_ERR(di)) {
1130		ret = drop_one_dir_item(trans, root, path, dir, di);
1131		if (ret)
1132			return ret;
1133	}
1134	btrfs_release_path(path);
1135
1136	/* look for a conflicing name */
1137	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1138				   name, namelen, 0);
1139	if (di && !IS_ERR(di)) {
1140		ret = drop_one_dir_item(trans, root, path, dir, di);
1141		if (ret)
1142			return ret;
1143	}
1144	btrfs_release_path(path);
1145
1146	return 0;
1147}
1148
1149static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1150			     u32 *namelen, char **name, u64 *index,
1151			     u64 *parent_objectid)
1152{
1153	struct btrfs_inode_extref *extref;
1154
1155	extref = (struct btrfs_inode_extref *)ref_ptr;
1156
1157	*namelen = btrfs_inode_extref_name_len(eb, extref);
1158	*name = kmalloc(*namelen, GFP_NOFS);
1159	if (*name == NULL)
1160		return -ENOMEM;
1161
1162	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1163			   *namelen);
1164
1165	*index = btrfs_inode_extref_index(eb, extref);
1166	if (parent_objectid)
1167		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1168
1169	return 0;
1170}
1171
1172static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1173			  u32 *namelen, char **name, u64 *index)
1174{
1175	struct btrfs_inode_ref *ref;
1176
1177	ref = (struct btrfs_inode_ref *)ref_ptr;
1178
1179	*namelen = btrfs_inode_ref_name_len(eb, ref);
1180	*name = kmalloc(*namelen, GFP_NOFS);
1181	if (*name == NULL)
1182		return -ENOMEM;
1183
1184	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1185
1186	*index = btrfs_inode_ref_index(eb, ref);
1187
1188	return 0;
1189}
1190
1191/*
1192 * replay one inode back reference item found in the log tree.
1193 * eb, slot and key refer to the buffer and key found in the log tree.
1194 * root is the destination we are replaying into, and path is for temp
1195 * use by this function.  (it should be released on return).
1196 */
1197static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1198				  struct btrfs_root *root,
1199				  struct btrfs_root *log,
1200				  struct btrfs_path *path,
1201				  struct extent_buffer *eb, int slot,
1202				  struct btrfs_key *key)
1203{
1204	struct inode *dir = NULL;
1205	struct inode *inode = NULL;
1206	unsigned long ref_ptr;
1207	unsigned long ref_end;
1208	char *name = NULL;
1209	int namelen;
1210	int ret;
1211	int search_done = 0;
1212	int log_ref_ver = 0;
1213	u64 parent_objectid;
1214	u64 inode_objectid;
1215	u64 ref_index = 0;
1216	int ref_struct_size;
1217
1218	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1219	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1220
1221	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1222		struct btrfs_inode_extref *r;
1223
1224		ref_struct_size = sizeof(struct btrfs_inode_extref);
1225		log_ref_ver = 1;
1226		r = (struct btrfs_inode_extref *)ref_ptr;
1227		parent_objectid = btrfs_inode_extref_parent(eb, r);
1228	} else {
1229		ref_struct_size = sizeof(struct btrfs_inode_ref);
1230		parent_objectid = key->offset;
1231	}
1232	inode_objectid = key->objectid;
1233
1234	/*
1235	 * it is possible that we didn't log all the parent directories
1236	 * for a given inode.  If we don't find the dir, just don't
1237	 * copy the back ref in.  The link count fixup code will take
1238	 * care of the rest
1239	 */
1240	dir = read_one_inode(root, parent_objectid);
1241	if (!dir) {
1242		ret = -ENOENT;
1243		goto out;
1244	}
1245
1246	inode = read_one_inode(root, inode_objectid);
1247	if (!inode) {
1248		ret = -EIO;
1249		goto out;
1250	}
1251
1252	while (ref_ptr < ref_end) {
1253		if (log_ref_ver) {
1254			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1255						&ref_index, &parent_objectid);
1256			/*
1257			 * parent object can change from one array
1258			 * item to another.
1259			 */
1260			if (!dir)
1261				dir = read_one_inode(root, parent_objectid);
1262			if (!dir) {
1263				ret = -ENOENT;
1264				goto out;
1265			}
1266		} else {
1267			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1268					     &ref_index);
1269		}
1270		if (ret)
1271			goto out;
1272
1273		/* if we already have a perfect match, we're done */
1274		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1275				  ref_index, name, namelen)) {
1276			/*
1277			 * look for a conflicting back reference in the
1278			 * metadata. if we find one we have to unlink that name
1279			 * of the file before we add our new link.  Later on, we
1280			 * overwrite any existing back reference, and we don't
1281			 * want to create dangling pointers in the directory.
1282			 */
1283
1284			if (!search_done) {
1285				ret = __add_inode_ref(trans, root, path, log,
1286						      dir, inode, eb,
1287						      inode_objectid,
1288						      parent_objectid,
1289						      ref_index, name, namelen,
1290						      &search_done);
1291				if (ret) {
1292					if (ret == 1)
1293						ret = 0;
1294					goto out;
1295				}
1296			}
1297
1298			/* insert our name */
1299			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1300					     0, ref_index);
1301			if (ret)
1302				goto out;
1303
1304			btrfs_update_inode(trans, root, inode);
1305		}
1306
1307		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1308		kfree(name);
1309		name = NULL;
1310		if (log_ref_ver) {
1311			iput(dir);
1312			dir = NULL;
1313		}
1314	}
1315
1316	/* finally write the back reference in the inode */
1317	ret = overwrite_item(trans, root, path, eb, slot, key);
1318out:
 
 
1319	btrfs_release_path(path);
1320	kfree(name);
1321	iput(dir);
1322	iput(inode);
1323	return ret;
1324}
1325
1326static int insert_orphan_item(struct btrfs_trans_handle *trans,
1327			      struct btrfs_root *root, u64 ino)
1328{
1329	int ret;
1330
1331	ret = btrfs_insert_orphan_item(trans, root, ino);
1332	if (ret == -EEXIST)
1333		ret = 0;
1334
1335	return ret;
1336}
1337
1338static int count_inode_extrefs(struct btrfs_root *root,
1339			       struct inode *inode, struct btrfs_path *path)
1340{
1341	int ret = 0;
1342	int name_len;
1343	unsigned int nlink = 0;
1344	u32 item_size;
1345	u32 cur_offset = 0;
1346	u64 inode_objectid = btrfs_ino(inode);
1347	u64 offset = 0;
1348	unsigned long ptr;
1349	struct btrfs_inode_extref *extref;
1350	struct extent_buffer *leaf;
1351
1352	while (1) {
1353		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1354					    &extref, &offset);
1355		if (ret)
1356			break;
1357
1358		leaf = path->nodes[0];
1359		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1360		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1361		cur_offset = 0;
1362
1363		while (cur_offset < item_size) {
1364			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1365			name_len = btrfs_inode_extref_name_len(leaf, extref);
1366
1367			nlink++;
1368
1369			cur_offset += name_len + sizeof(*extref);
1370		}
1371
1372		offset++;
1373		btrfs_release_path(path);
1374	}
1375	btrfs_release_path(path);
1376
1377	if (ret < 0 && ret != -ENOENT)
1378		return ret;
1379	return nlink;
1380}
1381
1382static int count_inode_refs(struct btrfs_root *root,
1383			       struct inode *inode, struct btrfs_path *path)
1384{
 
1385	int ret;
1386	struct btrfs_key key;
1387	unsigned int nlink = 0;
1388	unsigned long ptr;
1389	unsigned long ptr_end;
1390	int name_len;
1391	u64 ino = btrfs_ino(inode);
1392
1393	key.objectid = ino;
1394	key.type = BTRFS_INODE_REF_KEY;
1395	key.offset = (u64)-1;
1396
 
 
 
 
1397	while (1) {
1398		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1399		if (ret < 0)
1400			break;
1401		if (ret > 0) {
1402			if (path->slots[0] == 0)
1403				break;
1404			path->slots[0]--;
1405		}
1406process_slot:
1407		btrfs_item_key_to_cpu(path->nodes[0], &key,
1408				      path->slots[0]);
1409		if (key.objectid != ino ||
1410		    key.type != BTRFS_INODE_REF_KEY)
1411			break;
1412		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1413		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1414						   path->slots[0]);
1415		while (ptr < ptr_end) {
1416			struct btrfs_inode_ref *ref;
1417
1418			ref = (struct btrfs_inode_ref *)ptr;
1419			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1420							    ref);
1421			ptr = (unsigned long)(ref + 1) + name_len;
1422			nlink++;
1423		}
1424
1425		if (key.offset == 0)
1426			break;
1427		if (path->slots[0] > 0) {
1428			path->slots[0]--;
1429			goto process_slot;
1430		}
1431		key.offset--;
1432		btrfs_release_path(path);
1433	}
1434	btrfs_release_path(path);
1435
1436	return nlink;
1437}
1438
1439/*
1440 * There are a few corners where the link count of the file can't
1441 * be properly maintained during replay.  So, instead of adding
1442 * lots of complexity to the log code, we just scan the backrefs
1443 * for any file that has been through replay.
1444 *
1445 * The scan will update the link count on the inode to reflect the
1446 * number of back refs found.  If it goes down to zero, the iput
1447 * will free the inode.
1448 */
1449static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1450					   struct btrfs_root *root,
1451					   struct inode *inode)
1452{
1453	struct btrfs_path *path;
1454	int ret;
1455	u64 nlink = 0;
1456	u64 ino = btrfs_ino(inode);
1457
1458	path = btrfs_alloc_path();
1459	if (!path)
1460		return -ENOMEM;
1461
1462	ret = count_inode_refs(root, inode, path);
1463	if (ret < 0)
1464		goto out;
1465
1466	nlink = ret;
1467
1468	ret = count_inode_extrefs(root, inode, path);
1469	if (ret < 0)
1470		goto out;
1471
1472	nlink += ret;
1473
1474	ret = 0;
1475
1476	if (nlink != inode->i_nlink) {
1477		set_nlink(inode, nlink);
1478		btrfs_update_inode(trans, root, inode);
1479	}
1480	BTRFS_I(inode)->index_cnt = (u64)-1;
1481
1482	if (inode->i_nlink == 0) {
1483		if (S_ISDIR(inode->i_mode)) {
1484			ret = replay_dir_deletes(trans, root, NULL, path,
1485						 ino, 1);
1486			if (ret)
1487				goto out;
1488		}
1489		ret = insert_orphan_item(trans, root, ino);
 
1490	}
1491
1492out:
1493	btrfs_free_path(path);
1494	return ret;
 
1495}
1496
1497static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1498					    struct btrfs_root *root,
1499					    struct btrfs_path *path)
1500{
1501	int ret;
1502	struct btrfs_key key;
1503	struct inode *inode;
1504
1505	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1506	key.type = BTRFS_ORPHAN_ITEM_KEY;
1507	key.offset = (u64)-1;
1508	while (1) {
1509		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1510		if (ret < 0)
1511			break;
1512
1513		if (ret == 1) {
1514			if (path->slots[0] == 0)
1515				break;
1516			path->slots[0]--;
1517		}
1518
1519		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1520		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1521		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1522			break;
1523
1524		ret = btrfs_del_item(trans, root, path);
1525		if (ret)
1526			goto out;
1527
1528		btrfs_release_path(path);
1529		inode = read_one_inode(root, key.offset);
1530		if (!inode)
1531			return -EIO;
1532
1533		ret = fixup_inode_link_count(trans, root, inode);
 
 
1534		iput(inode);
1535		if (ret)
1536			goto out;
1537
1538		/*
1539		 * fixup on a directory may create new entries,
1540		 * make sure we always look for the highset possible
1541		 * offset
1542		 */
1543		key.offset = (u64)-1;
1544	}
1545	ret = 0;
1546out:
1547	btrfs_release_path(path);
1548	return ret;
1549}
1550
1551
1552/*
1553 * record a given inode in the fixup dir so we can check its link
1554 * count when replay is done.  The link count is incremented here
1555 * so the inode won't go away until we check it
1556 */
1557static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1558				      struct btrfs_root *root,
1559				      struct btrfs_path *path,
1560				      u64 objectid)
1561{
1562	struct btrfs_key key;
1563	int ret = 0;
1564	struct inode *inode;
1565
1566	inode = read_one_inode(root, objectid);
1567	if (!inode)
1568		return -EIO;
1569
1570	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1571	key.type = BTRFS_ORPHAN_ITEM_KEY;
1572	key.offset = objectid;
1573
1574	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1575
1576	btrfs_release_path(path);
1577	if (ret == 0) {
1578		if (!inode->i_nlink)
1579			set_nlink(inode, 1);
1580		else
1581			inc_nlink(inode);
1582		ret = btrfs_update_inode(trans, root, inode);
1583	} else if (ret == -EEXIST) {
1584		ret = 0;
1585	} else {
1586		BUG(); /* Logic Error */
1587	}
1588	iput(inode);
1589
1590	return ret;
1591}
1592
1593/*
1594 * when replaying the log for a directory, we only insert names
1595 * for inodes that actually exist.  This means an fsync on a directory
1596 * does not implicitly fsync all the new files in it
1597 */
1598static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1599				    struct btrfs_root *root,
 
1600				    u64 dirid, u64 index,
1601				    char *name, int name_len,
1602				    struct btrfs_key *location)
1603{
1604	struct inode *inode;
1605	struct inode *dir;
1606	int ret;
1607
1608	inode = read_one_inode(root, location->objectid);
1609	if (!inode)
1610		return -ENOENT;
1611
1612	dir = read_one_inode(root, dirid);
1613	if (!dir) {
1614		iput(inode);
1615		return -EIO;
1616	}
1617
1618	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1619
1620	/* FIXME, put inode into FIXUP list */
1621
1622	iput(inode);
1623	iput(dir);
1624	return ret;
1625}
1626
1627/*
1628 * Return true if an inode reference exists in the log for the given name,
1629 * inode and parent inode.
1630 */
1631static bool name_in_log_ref(struct btrfs_root *log_root,
1632			    const char *name, const int name_len,
1633			    const u64 dirid, const u64 ino)
1634{
1635	struct btrfs_key search_key;
1636
1637	search_key.objectid = ino;
1638	search_key.type = BTRFS_INODE_REF_KEY;
1639	search_key.offset = dirid;
1640	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1641		return true;
1642
1643	search_key.type = BTRFS_INODE_EXTREF_KEY;
1644	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1645	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1646		return true;
1647
1648	return false;
1649}
1650
1651/*
1652 * take a single entry in a log directory item and replay it into
1653 * the subvolume.
1654 *
1655 * if a conflicting item exists in the subdirectory already,
1656 * the inode it points to is unlinked and put into the link count
1657 * fix up tree.
1658 *
1659 * If a name from the log points to a file or directory that does
1660 * not exist in the FS, it is skipped.  fsyncs on directories
1661 * do not force down inodes inside that directory, just changes to the
1662 * names or unlinks in a directory.
1663 *
1664 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1665 * non-existing inode) and 1 if the name was replayed.
1666 */
1667static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1668				    struct btrfs_root *root,
1669				    struct btrfs_path *path,
1670				    struct extent_buffer *eb,
1671				    struct btrfs_dir_item *di,
1672				    struct btrfs_key *key)
1673{
1674	char *name;
1675	int name_len;
1676	struct btrfs_dir_item *dst_di;
1677	struct btrfs_key found_key;
1678	struct btrfs_key log_key;
1679	struct inode *dir;
1680	u8 log_type;
1681	int exists;
1682	int ret = 0;
1683	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1684	bool name_added = false;
1685
1686	dir = read_one_inode(root, key->objectid);
1687	if (!dir)
1688		return -EIO;
1689
1690	name_len = btrfs_dir_name_len(eb, di);
1691	name = kmalloc(name_len, GFP_NOFS);
1692	if (!name) {
1693		ret = -ENOMEM;
1694		goto out;
1695	}
1696
1697	log_type = btrfs_dir_type(eb, di);
1698	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1699		   name_len);
1700
1701	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1702	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1703	if (exists == 0)
1704		exists = 1;
1705	else
1706		exists = 0;
1707	btrfs_release_path(path);
1708
1709	if (key->type == BTRFS_DIR_ITEM_KEY) {
1710		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1711				       name, name_len, 1);
1712	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1713		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1714						     key->objectid,
1715						     key->offset, name,
1716						     name_len, 1);
1717	} else {
1718		/* Corruption */
1719		ret = -EINVAL;
1720		goto out;
1721	}
1722	if (IS_ERR_OR_NULL(dst_di)) {
1723		/* we need a sequence number to insert, so we only
1724		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1725		 */
1726		if (key->type != BTRFS_DIR_INDEX_KEY)
1727			goto out;
1728		goto insert;
1729	}
1730
1731	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1732	/* the existing item matches the logged item */
1733	if (found_key.objectid == log_key.objectid &&
1734	    found_key.type == log_key.type &&
1735	    found_key.offset == log_key.offset &&
1736	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1737		update_size = false;
1738		goto out;
1739	}
1740
1741	/*
1742	 * don't drop the conflicting directory entry if the inode
1743	 * for the new entry doesn't exist
1744	 */
1745	if (!exists)
1746		goto out;
1747
1748	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1749	if (ret)
1750		goto out;
1751
1752	if (key->type == BTRFS_DIR_INDEX_KEY)
1753		goto insert;
1754out:
1755	btrfs_release_path(path);
1756	if (!ret && update_size) {
1757		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1758		ret = btrfs_update_inode(trans, root, dir);
1759	}
1760	kfree(name);
1761	iput(dir);
1762	if (!ret && name_added)
1763		ret = 1;
1764	return ret;
1765
1766insert:
1767	if (name_in_log_ref(root->log_root, name, name_len,
1768			    key->objectid, log_key.objectid)) {
1769		/* The dentry will be added later. */
1770		ret = 0;
1771		update_size = false;
1772		goto out;
1773	}
1774	btrfs_release_path(path);
1775	ret = insert_one_name(trans, root, key->objectid, key->offset,
1776			      name, name_len, &log_key);
1777	if (ret && ret != -ENOENT && ret != -EEXIST)
1778		goto out;
1779	if (!ret)
1780		name_added = true;
1781	update_size = false;
1782	ret = 0;
1783	goto out;
1784}
1785
1786/*
1787 * find all the names in a directory item and reconcile them into
1788 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1789 * one name in a directory item, but the same code gets used for
1790 * both directory index types
1791 */
1792static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1793					struct btrfs_root *root,
1794					struct btrfs_path *path,
1795					struct extent_buffer *eb, int slot,
1796					struct btrfs_key *key)
1797{
1798	int ret = 0;
1799	u32 item_size = btrfs_item_size_nr(eb, slot);
1800	struct btrfs_dir_item *di;
1801	int name_len;
1802	unsigned long ptr;
1803	unsigned long ptr_end;
1804	struct btrfs_path *fixup_path = NULL;
1805
1806	ptr = btrfs_item_ptr_offset(eb, slot);
1807	ptr_end = ptr + item_size;
1808	while (ptr < ptr_end) {
1809		di = (struct btrfs_dir_item *)ptr;
1810		if (verify_dir_item(root, eb, di))
1811			return -EIO;
1812		name_len = btrfs_dir_name_len(eb, di);
1813		ret = replay_one_name(trans, root, path, eb, di, key);
1814		if (ret < 0)
1815			break;
1816		ptr = (unsigned long)(di + 1);
1817		ptr += name_len;
1818
1819		/*
1820		 * If this entry refers to a non-directory (directories can not
1821		 * have a link count > 1) and it was added in the transaction
1822		 * that was not committed, make sure we fixup the link count of
1823		 * the inode it the entry points to. Otherwise something like
1824		 * the following would result in a directory pointing to an
1825		 * inode with a wrong link that does not account for this dir
1826		 * entry:
1827		 *
1828		 * mkdir testdir
1829		 * touch testdir/foo
1830		 * touch testdir/bar
1831		 * sync
1832		 *
1833		 * ln testdir/bar testdir/bar_link
1834		 * ln testdir/foo testdir/foo_link
1835		 * xfs_io -c "fsync" testdir/bar
1836		 *
1837		 * <power failure>
1838		 *
1839		 * mount fs, log replay happens
1840		 *
1841		 * File foo would remain with a link count of 1 when it has two
1842		 * entries pointing to it in the directory testdir. This would
1843		 * make it impossible to ever delete the parent directory has
1844		 * it would result in stale dentries that can never be deleted.
1845		 */
1846		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1847			struct btrfs_key di_key;
1848
1849			if (!fixup_path) {
1850				fixup_path = btrfs_alloc_path();
1851				if (!fixup_path) {
1852					ret = -ENOMEM;
1853					break;
1854				}
1855			}
1856
1857			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1858			ret = link_to_fixup_dir(trans, root, fixup_path,
1859						di_key.objectid);
1860			if (ret)
1861				break;
1862		}
1863		ret = 0;
1864	}
1865	btrfs_free_path(fixup_path);
1866	return ret;
1867}
1868
1869/*
1870 * directory replay has two parts.  There are the standard directory
1871 * items in the log copied from the subvolume, and range items
1872 * created in the log while the subvolume was logged.
1873 *
1874 * The range items tell us which parts of the key space the log
1875 * is authoritative for.  During replay, if a key in the subvolume
1876 * directory is in a logged range item, but not actually in the log
1877 * that means it was deleted from the directory before the fsync
1878 * and should be removed.
1879 */
1880static noinline int find_dir_range(struct btrfs_root *root,
1881				   struct btrfs_path *path,
1882				   u64 dirid, int key_type,
1883				   u64 *start_ret, u64 *end_ret)
1884{
1885	struct btrfs_key key;
1886	u64 found_end;
1887	struct btrfs_dir_log_item *item;
1888	int ret;
1889	int nritems;
1890
1891	if (*start_ret == (u64)-1)
1892		return 1;
1893
1894	key.objectid = dirid;
1895	key.type = key_type;
1896	key.offset = *start_ret;
1897
1898	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1899	if (ret < 0)
1900		goto out;
1901	if (ret > 0) {
1902		if (path->slots[0] == 0)
1903			goto out;
1904		path->slots[0]--;
1905	}
1906	if (ret != 0)
1907		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1908
1909	if (key.type != key_type || key.objectid != dirid) {
1910		ret = 1;
1911		goto next;
1912	}
1913	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1914			      struct btrfs_dir_log_item);
1915	found_end = btrfs_dir_log_end(path->nodes[0], item);
1916
1917	if (*start_ret >= key.offset && *start_ret <= found_end) {
1918		ret = 0;
1919		*start_ret = key.offset;
1920		*end_ret = found_end;
1921		goto out;
1922	}
1923	ret = 1;
1924next:
1925	/* check the next slot in the tree to see if it is a valid item */
1926	nritems = btrfs_header_nritems(path->nodes[0]);
1927	if (path->slots[0] >= nritems) {
1928		ret = btrfs_next_leaf(root, path);
1929		if (ret)
1930			goto out;
1931	} else {
1932		path->slots[0]++;
1933	}
1934
1935	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1936
1937	if (key.type != key_type || key.objectid != dirid) {
1938		ret = 1;
1939		goto out;
1940	}
1941	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1942			      struct btrfs_dir_log_item);
1943	found_end = btrfs_dir_log_end(path->nodes[0], item);
1944	*start_ret = key.offset;
1945	*end_ret = found_end;
1946	ret = 0;
1947out:
1948	btrfs_release_path(path);
1949	return ret;
1950}
1951
1952/*
1953 * this looks for a given directory item in the log.  If the directory
1954 * item is not in the log, the item is removed and the inode it points
1955 * to is unlinked
1956 */
1957static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1958				      struct btrfs_root *root,
1959				      struct btrfs_root *log,
1960				      struct btrfs_path *path,
1961				      struct btrfs_path *log_path,
1962				      struct inode *dir,
1963				      struct btrfs_key *dir_key)
1964{
1965	int ret;
1966	struct extent_buffer *eb;
1967	int slot;
1968	u32 item_size;
1969	struct btrfs_dir_item *di;
1970	struct btrfs_dir_item *log_di;
1971	int name_len;
1972	unsigned long ptr;
1973	unsigned long ptr_end;
1974	char *name;
1975	struct inode *inode;
1976	struct btrfs_key location;
1977
1978again:
1979	eb = path->nodes[0];
1980	slot = path->slots[0];
1981	item_size = btrfs_item_size_nr(eb, slot);
1982	ptr = btrfs_item_ptr_offset(eb, slot);
1983	ptr_end = ptr + item_size;
1984	while (ptr < ptr_end) {
1985		di = (struct btrfs_dir_item *)ptr;
1986		if (verify_dir_item(root, eb, di)) {
1987			ret = -EIO;
1988			goto out;
1989		}
1990
1991		name_len = btrfs_dir_name_len(eb, di);
1992		name = kmalloc(name_len, GFP_NOFS);
1993		if (!name) {
1994			ret = -ENOMEM;
1995			goto out;
1996		}
1997		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1998				  name_len);
1999		log_di = NULL;
2000		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2001			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2002						       dir_key->objectid,
2003						       name, name_len, 0);
2004		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2005			log_di = btrfs_lookup_dir_index_item(trans, log,
2006						     log_path,
2007						     dir_key->objectid,
2008						     dir_key->offset,
2009						     name, name_len, 0);
2010		}
2011		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2012			btrfs_dir_item_key_to_cpu(eb, di, &location);
2013			btrfs_release_path(path);
2014			btrfs_release_path(log_path);
2015			inode = read_one_inode(root, location.objectid);
2016			if (!inode) {
2017				kfree(name);
2018				return -EIO;
2019			}
2020
2021			ret = link_to_fixup_dir(trans, root,
2022						path, location.objectid);
2023			if (ret) {
2024				kfree(name);
2025				iput(inode);
2026				goto out;
2027			}
2028
2029			inc_nlink(inode);
2030			ret = btrfs_unlink_inode(trans, root, dir, inode,
2031						 name, name_len);
2032			if (!ret)
2033				ret = btrfs_run_delayed_items(trans, root);
 
 
2034			kfree(name);
2035			iput(inode);
2036			if (ret)
2037				goto out;
2038
2039			/* there might still be more names under this key
2040			 * check and repeat if required
2041			 */
2042			ret = btrfs_search_slot(NULL, root, dir_key, path,
2043						0, 0);
2044			if (ret == 0)
2045				goto again;
2046			ret = 0;
2047			goto out;
2048		} else if (IS_ERR(log_di)) {
2049			kfree(name);
2050			return PTR_ERR(log_di);
2051		}
2052		btrfs_release_path(log_path);
2053		kfree(name);
2054
2055		ptr = (unsigned long)(di + 1);
2056		ptr += name_len;
2057	}
2058	ret = 0;
2059out:
2060	btrfs_release_path(path);
2061	btrfs_release_path(log_path);
2062	return ret;
2063}
2064
2065static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2066			      struct btrfs_root *root,
2067			      struct btrfs_root *log,
2068			      struct btrfs_path *path,
2069			      const u64 ino)
2070{
2071	struct btrfs_key search_key;
2072	struct btrfs_path *log_path;
2073	int i;
2074	int nritems;
2075	int ret;
2076
2077	log_path = btrfs_alloc_path();
2078	if (!log_path)
2079		return -ENOMEM;
2080
2081	search_key.objectid = ino;
2082	search_key.type = BTRFS_XATTR_ITEM_KEY;
2083	search_key.offset = 0;
2084again:
2085	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2086	if (ret < 0)
2087		goto out;
2088process_leaf:
2089	nritems = btrfs_header_nritems(path->nodes[0]);
2090	for (i = path->slots[0]; i < nritems; i++) {
2091		struct btrfs_key key;
2092		struct btrfs_dir_item *di;
2093		struct btrfs_dir_item *log_di;
2094		u32 total_size;
2095		u32 cur;
2096
2097		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2098		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2099			ret = 0;
2100			goto out;
2101		}
2102
2103		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2104		total_size = btrfs_item_size_nr(path->nodes[0], i);
2105		cur = 0;
2106		while (cur < total_size) {
2107			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2108			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2109			u32 this_len = sizeof(*di) + name_len + data_len;
2110			char *name;
2111
2112			name = kmalloc(name_len, GFP_NOFS);
2113			if (!name) {
2114				ret = -ENOMEM;
2115				goto out;
2116			}
2117			read_extent_buffer(path->nodes[0], name,
2118					   (unsigned long)(di + 1), name_len);
2119
2120			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2121						    name, name_len, 0);
2122			btrfs_release_path(log_path);
2123			if (!log_di) {
2124				/* Doesn't exist in log tree, so delete it. */
2125				btrfs_release_path(path);
2126				di = btrfs_lookup_xattr(trans, root, path, ino,
2127							name, name_len, -1);
2128				kfree(name);
2129				if (IS_ERR(di)) {
2130					ret = PTR_ERR(di);
2131					goto out;
2132				}
2133				ASSERT(di);
2134				ret = btrfs_delete_one_dir_name(trans, root,
2135								path, di);
2136				if (ret)
2137					goto out;
2138				btrfs_release_path(path);
2139				search_key = key;
2140				goto again;
2141			}
2142			kfree(name);
2143			if (IS_ERR(log_di)) {
2144				ret = PTR_ERR(log_di);
2145				goto out;
2146			}
2147			cur += this_len;
2148			di = (struct btrfs_dir_item *)((char *)di + this_len);
2149		}
2150	}
2151	ret = btrfs_next_leaf(root, path);
2152	if (ret > 0)
2153		ret = 0;
2154	else if (ret == 0)
2155		goto process_leaf;
2156out:
2157	btrfs_free_path(log_path);
2158	btrfs_release_path(path);
2159	return ret;
2160}
2161
2162
2163/*
2164 * deletion replay happens before we copy any new directory items
2165 * out of the log or out of backreferences from inodes.  It
2166 * scans the log to find ranges of keys that log is authoritative for,
2167 * and then scans the directory to find items in those ranges that are
2168 * not present in the log.
2169 *
2170 * Anything we don't find in the log is unlinked and removed from the
2171 * directory.
2172 */
2173static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2174				       struct btrfs_root *root,
2175				       struct btrfs_root *log,
2176				       struct btrfs_path *path,
2177				       u64 dirid, int del_all)
2178{
2179	u64 range_start;
2180	u64 range_end;
2181	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2182	int ret = 0;
2183	struct btrfs_key dir_key;
2184	struct btrfs_key found_key;
2185	struct btrfs_path *log_path;
2186	struct inode *dir;
2187
2188	dir_key.objectid = dirid;
2189	dir_key.type = BTRFS_DIR_ITEM_KEY;
2190	log_path = btrfs_alloc_path();
2191	if (!log_path)
2192		return -ENOMEM;
2193
2194	dir = read_one_inode(root, dirid);
2195	/* it isn't an error if the inode isn't there, that can happen
2196	 * because we replay the deletes before we copy in the inode item
2197	 * from the log
2198	 */
2199	if (!dir) {
2200		btrfs_free_path(log_path);
2201		return 0;
2202	}
2203again:
2204	range_start = 0;
2205	range_end = 0;
2206	while (1) {
2207		if (del_all)
2208			range_end = (u64)-1;
2209		else {
2210			ret = find_dir_range(log, path, dirid, key_type,
2211					     &range_start, &range_end);
2212			if (ret != 0)
2213				break;
2214		}
2215
2216		dir_key.offset = range_start;
2217		while (1) {
2218			int nritems;
2219			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2220						0, 0);
2221			if (ret < 0)
2222				goto out;
2223
2224			nritems = btrfs_header_nritems(path->nodes[0]);
2225			if (path->slots[0] >= nritems) {
2226				ret = btrfs_next_leaf(root, path);
2227				if (ret)
2228					break;
2229			}
2230			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2231					      path->slots[0]);
2232			if (found_key.objectid != dirid ||
2233			    found_key.type != dir_key.type)
2234				goto next_type;
2235
2236			if (found_key.offset > range_end)
2237				break;
2238
2239			ret = check_item_in_log(trans, root, log, path,
2240						log_path, dir,
2241						&found_key);
2242			if (ret)
2243				goto out;
2244			if (found_key.offset == (u64)-1)
2245				break;
2246			dir_key.offset = found_key.offset + 1;
2247		}
2248		btrfs_release_path(path);
2249		if (range_end == (u64)-1)
2250			break;
2251		range_start = range_end + 1;
2252	}
2253
2254next_type:
2255	ret = 0;
2256	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2257		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2258		dir_key.type = BTRFS_DIR_INDEX_KEY;
2259		btrfs_release_path(path);
2260		goto again;
2261	}
2262out:
2263	btrfs_release_path(path);
2264	btrfs_free_path(log_path);
2265	iput(dir);
2266	return ret;
2267}
2268
2269/*
2270 * the process_func used to replay items from the log tree.  This
2271 * gets called in two different stages.  The first stage just looks
2272 * for inodes and makes sure they are all copied into the subvolume.
2273 *
2274 * The second stage copies all the other item types from the log into
2275 * the subvolume.  The two stage approach is slower, but gets rid of
2276 * lots of complexity around inodes referencing other inodes that exist
2277 * only in the log (references come from either directory items or inode
2278 * back refs).
2279 */
2280static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2281			     struct walk_control *wc, u64 gen)
2282{
2283	int nritems;
2284	struct btrfs_path *path;
2285	struct btrfs_root *root = wc->replay_dest;
2286	struct btrfs_key key;
2287	int level;
2288	int i;
2289	int ret;
2290
2291	ret = btrfs_read_buffer(eb, gen);
2292	if (ret)
2293		return ret;
2294
2295	level = btrfs_header_level(eb);
2296
2297	if (level != 0)
2298		return 0;
2299
2300	path = btrfs_alloc_path();
2301	if (!path)
2302		return -ENOMEM;
2303
2304	nritems = btrfs_header_nritems(eb);
2305	for (i = 0; i < nritems; i++) {
2306		btrfs_item_key_to_cpu(eb, &key, i);
2307
2308		/* inode keys are done during the first stage */
2309		if (key.type == BTRFS_INODE_ITEM_KEY &&
2310		    wc->stage == LOG_WALK_REPLAY_INODES) {
2311			struct btrfs_inode_item *inode_item;
2312			u32 mode;
2313
2314			inode_item = btrfs_item_ptr(eb, i,
2315					    struct btrfs_inode_item);
2316			ret = replay_xattr_deletes(wc->trans, root, log,
2317						   path, key.objectid);
2318			if (ret)
2319				break;
2320			mode = btrfs_inode_mode(eb, inode_item);
2321			if (S_ISDIR(mode)) {
2322				ret = replay_dir_deletes(wc->trans,
2323					 root, log, path, key.objectid, 0);
2324				if (ret)
2325					break;
2326			}
2327			ret = overwrite_item(wc->trans, root, path,
2328					     eb, i, &key);
2329			if (ret)
2330				break;
2331
2332			/* for regular files, make sure corresponding
2333			 * orhpan item exist. extents past the new EOF
2334			 * will be truncated later by orphan cleanup.
2335			 */
2336			if (S_ISREG(mode)) {
2337				ret = insert_orphan_item(wc->trans, root,
2338							 key.objectid);
2339				if (ret)
2340					break;
2341			}
2342
2343			ret = link_to_fixup_dir(wc->trans, root,
2344						path, key.objectid);
2345			if (ret)
2346				break;
2347		}
2348
2349		if (key.type == BTRFS_DIR_INDEX_KEY &&
2350		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2351			ret = replay_one_dir_item(wc->trans, root, path,
2352						  eb, i, &key);
2353			if (ret)
2354				break;
2355		}
2356
2357		if (wc->stage < LOG_WALK_REPLAY_ALL)
2358			continue;
2359
2360		/* these keys are simply copied */
2361		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2362			ret = overwrite_item(wc->trans, root, path,
2363					     eb, i, &key);
2364			if (ret)
2365				break;
2366		} else if (key.type == BTRFS_INODE_REF_KEY ||
2367			   key.type == BTRFS_INODE_EXTREF_KEY) {
2368			ret = add_inode_ref(wc->trans, root, log, path,
2369					    eb, i, &key);
2370			if (ret && ret != -ENOENT)
2371				break;
2372			ret = 0;
2373		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2374			ret = replay_one_extent(wc->trans, root, path,
2375						eb, i, &key);
2376			if (ret)
2377				break;
2378		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2379			ret = replay_one_dir_item(wc->trans, root, path,
2380						  eb, i, &key);
2381			if (ret)
2382				break;
2383		}
2384	}
2385	btrfs_free_path(path);
2386	return ret;
2387}
2388
2389static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2390				   struct btrfs_root *root,
2391				   struct btrfs_path *path, int *level,
2392				   struct walk_control *wc)
2393{
2394	u64 root_owner;
2395	u64 bytenr;
2396	u64 ptr_gen;
2397	struct extent_buffer *next;
2398	struct extent_buffer *cur;
2399	struct extent_buffer *parent;
2400	u32 blocksize;
2401	int ret = 0;
2402
2403	WARN_ON(*level < 0);
2404	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2405
2406	while (*level > 0) {
2407		WARN_ON(*level < 0);
2408		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2409		cur = path->nodes[*level];
2410
2411		WARN_ON(btrfs_header_level(cur) != *level);
 
2412
2413		if (path->slots[*level] >=
2414		    btrfs_header_nritems(cur))
2415			break;
2416
2417		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2418		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2419		blocksize = root->nodesize;
2420
2421		parent = path->nodes[*level];
2422		root_owner = btrfs_header_owner(parent);
2423
2424		next = btrfs_find_create_tree_block(root, bytenr);
2425		if (!next)
2426			return -ENOMEM;
2427
2428		if (*level == 1) {
2429			ret = wc->process_func(root, next, wc, ptr_gen);
2430			if (ret) {
2431				free_extent_buffer(next);
2432				return ret;
2433			}
2434
2435			path->slots[*level]++;
2436			if (wc->free) {
2437				ret = btrfs_read_buffer(next, ptr_gen);
2438				if (ret) {
2439					free_extent_buffer(next);
2440					return ret;
2441				}
2442
2443				if (trans) {
2444					btrfs_tree_lock(next);
2445					btrfs_set_lock_blocking(next);
2446					clean_tree_block(trans, root->fs_info,
2447							next);
2448					btrfs_wait_tree_block_writeback(next);
2449					btrfs_tree_unlock(next);
2450				}
2451
2452				WARN_ON(root_owner !=
2453					BTRFS_TREE_LOG_OBJECTID);
2454				ret = btrfs_free_and_pin_reserved_extent(root,
2455							 bytenr, blocksize);
2456				if (ret) {
2457					free_extent_buffer(next);
2458					return ret;
2459				}
2460			}
2461			free_extent_buffer(next);
2462			continue;
2463		}
2464		ret = btrfs_read_buffer(next, ptr_gen);
2465		if (ret) {
2466			free_extent_buffer(next);
2467			return ret;
2468		}
2469
2470		WARN_ON(*level <= 0);
2471		if (path->nodes[*level-1])
2472			free_extent_buffer(path->nodes[*level-1]);
2473		path->nodes[*level-1] = next;
2474		*level = btrfs_header_level(next);
2475		path->slots[*level] = 0;
2476		cond_resched();
2477	}
2478	WARN_ON(*level < 0);
2479	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2480
2481	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2482
2483	cond_resched();
2484	return 0;
2485}
2486
2487static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2488				 struct btrfs_root *root,
2489				 struct btrfs_path *path, int *level,
2490				 struct walk_control *wc)
2491{
2492	u64 root_owner;
2493	int i;
2494	int slot;
2495	int ret;
2496
2497	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2498		slot = path->slots[i];
2499		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2500			path->slots[i]++;
2501			*level = i;
2502			WARN_ON(*level == 0);
2503			return 0;
2504		} else {
2505			struct extent_buffer *parent;
2506			if (path->nodes[*level] == root->node)
2507				parent = path->nodes[*level];
2508			else
2509				parent = path->nodes[*level + 1];
2510
2511			root_owner = btrfs_header_owner(parent);
2512			ret = wc->process_func(root, path->nodes[*level], wc,
2513				 btrfs_header_generation(path->nodes[*level]));
2514			if (ret)
2515				return ret;
2516
2517			if (wc->free) {
2518				struct extent_buffer *next;
2519
2520				next = path->nodes[*level];
2521
2522				if (trans) {
2523					btrfs_tree_lock(next);
2524					btrfs_set_lock_blocking(next);
2525					clean_tree_block(trans, root->fs_info,
2526							next);
2527					btrfs_wait_tree_block_writeback(next);
2528					btrfs_tree_unlock(next);
2529				}
2530
2531				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2532				ret = btrfs_free_and_pin_reserved_extent(root,
2533						path->nodes[*level]->start,
2534						path->nodes[*level]->len);
2535				if (ret)
2536					return ret;
2537			}
2538			free_extent_buffer(path->nodes[*level]);
2539			path->nodes[*level] = NULL;
2540			*level = i + 1;
2541		}
2542	}
2543	return 1;
2544}
2545
2546/*
2547 * drop the reference count on the tree rooted at 'snap'.  This traverses
2548 * the tree freeing any blocks that have a ref count of zero after being
2549 * decremented.
2550 */
2551static int walk_log_tree(struct btrfs_trans_handle *trans,
2552			 struct btrfs_root *log, struct walk_control *wc)
2553{
2554	int ret = 0;
2555	int wret;
2556	int level;
2557	struct btrfs_path *path;
 
2558	int orig_level;
2559
2560	path = btrfs_alloc_path();
2561	if (!path)
2562		return -ENOMEM;
2563
2564	level = btrfs_header_level(log->node);
2565	orig_level = level;
2566	path->nodes[level] = log->node;
2567	extent_buffer_get(log->node);
2568	path->slots[level] = 0;
2569
2570	while (1) {
2571		wret = walk_down_log_tree(trans, log, path, &level, wc);
2572		if (wret > 0)
2573			break;
2574		if (wret < 0) {
2575			ret = wret;
2576			goto out;
2577		}
2578
2579		wret = walk_up_log_tree(trans, log, path, &level, wc);
2580		if (wret > 0)
2581			break;
2582		if (wret < 0) {
2583			ret = wret;
2584			goto out;
2585		}
2586	}
2587
2588	/* was the root node processed? if not, catch it here */
2589	if (path->nodes[orig_level]) {
2590		ret = wc->process_func(log, path->nodes[orig_level], wc,
2591			 btrfs_header_generation(path->nodes[orig_level]));
2592		if (ret)
2593			goto out;
2594		if (wc->free) {
2595			struct extent_buffer *next;
2596
2597			next = path->nodes[orig_level];
2598
2599			if (trans) {
2600				btrfs_tree_lock(next);
2601				btrfs_set_lock_blocking(next);
2602				clean_tree_block(trans, log->fs_info, next);
2603				btrfs_wait_tree_block_writeback(next);
2604				btrfs_tree_unlock(next);
2605			}
2606
2607			WARN_ON(log->root_key.objectid !=
2608				BTRFS_TREE_LOG_OBJECTID);
2609			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2610							 next->len);
2611			if (ret)
2612				goto out;
2613		}
2614	}
2615
2616out:
 
 
 
 
 
 
2617	btrfs_free_path(path);
2618	return ret;
2619}
2620
2621/*
2622 * helper function to update the item for a given subvolumes log root
2623 * in the tree of log roots
2624 */
2625static int update_log_root(struct btrfs_trans_handle *trans,
2626			   struct btrfs_root *log)
2627{
2628	int ret;
2629
2630	if (log->log_transid == 1) {
2631		/* insert root item on the first sync */
2632		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2633				&log->root_key, &log->root_item);
2634	} else {
2635		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2636				&log->root_key, &log->root_item);
2637	}
2638	return ret;
2639}
2640
2641static void wait_log_commit(struct btrfs_root *root, int transid)
 
2642{
2643	DEFINE_WAIT(wait);
2644	int index = transid % 2;
2645
2646	/*
2647	 * we only allow two pending log transactions at a time,
2648	 * so we know that if ours is more than 2 older than the
2649	 * current transaction, we're done
2650	 */
2651	do {
2652		prepare_to_wait(&root->log_commit_wait[index],
2653				&wait, TASK_UNINTERRUPTIBLE);
2654		mutex_unlock(&root->log_mutex);
2655
2656		if (root->log_transid_committed < transid &&
 
2657		    atomic_read(&root->log_commit[index]))
2658			schedule();
2659
2660		finish_wait(&root->log_commit_wait[index], &wait);
2661		mutex_lock(&root->log_mutex);
2662	} while (root->log_transid_committed < transid &&
 
2663		 atomic_read(&root->log_commit[index]));
 
2664}
2665
2666static void wait_for_writer(struct btrfs_root *root)
 
2667{
2668	DEFINE_WAIT(wait);
2669
2670	while (atomic_read(&root->log_writers)) {
2671		prepare_to_wait(&root->log_writer_wait,
2672				&wait, TASK_UNINTERRUPTIBLE);
2673		mutex_unlock(&root->log_mutex);
2674		if (atomic_read(&root->log_writers))
 
2675			schedule();
2676		finish_wait(&root->log_writer_wait, &wait);
2677		mutex_lock(&root->log_mutex);
 
2678	}
2679}
2680
2681static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2682					struct btrfs_log_ctx *ctx)
2683{
2684	if (!ctx)
2685		return;
2686
2687	mutex_lock(&root->log_mutex);
2688	list_del_init(&ctx->list);
2689	mutex_unlock(&root->log_mutex);
2690}
2691
2692/* 
2693 * Invoked in log mutex context, or be sure there is no other task which
2694 * can access the list.
2695 */
2696static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2697					     int index, int error)
2698{
2699	struct btrfs_log_ctx *ctx;
2700
2701	if (!error) {
2702		INIT_LIST_HEAD(&root->log_ctxs[index]);
2703		return;
2704	}
2705
2706	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2707		ctx->log_ret = error;
2708
2709	INIT_LIST_HEAD(&root->log_ctxs[index]);
2710}
2711
2712/*
2713 * btrfs_sync_log does sends a given tree log down to the disk and
2714 * updates the super blocks to record it.  When this call is done,
2715 * you know that any inodes previously logged are safely on disk only
2716 * if it returns 0.
2717 *
2718 * Any other return value means you need to call btrfs_commit_transaction.
2719 * Some of the edge cases for fsyncing directories that have had unlinks
2720 * or renames done in the past mean that sometimes the only safe
2721 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2722 * that has happened.
2723 */
2724int btrfs_sync_log(struct btrfs_trans_handle *trans,
2725		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2726{
2727	int index1;
2728	int index2;
2729	int mark;
2730	int ret;
2731	struct btrfs_root *log = root->log_root;
2732	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2733	int log_transid = 0;
2734	struct btrfs_log_ctx root_log_ctx;
2735	struct blk_plug plug;
2736
2737	mutex_lock(&root->log_mutex);
2738	log_transid = ctx->log_transid;
2739	if (root->log_transid_committed >= log_transid) {
2740		mutex_unlock(&root->log_mutex);
2741		return ctx->log_ret;
2742	}
2743
2744	index1 = log_transid % 2;
2745	if (atomic_read(&root->log_commit[index1])) {
2746		wait_log_commit(root, log_transid);
2747		mutex_unlock(&root->log_mutex);
2748		return ctx->log_ret;
2749	}
2750	ASSERT(log_transid == root->log_transid);
2751	atomic_set(&root->log_commit[index1], 1);
2752
2753	/* wait for previous tree log sync to complete */
2754	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2755		wait_log_commit(root, log_transid - 1);
2756
2757	while (1) {
2758		int batch = atomic_read(&root->log_batch);
2759		/* when we're on an ssd, just kick the log commit out */
2760		if (!btrfs_test_opt(root, SSD) &&
2761		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2762			mutex_unlock(&root->log_mutex);
2763			schedule_timeout_uninterruptible(1);
2764			mutex_lock(&root->log_mutex);
2765		}
2766		wait_for_writer(root);
2767		if (batch == atomic_read(&root->log_batch))
2768			break;
2769	}
2770
2771	/* bail out if we need to do a full commit */
2772	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2773		ret = -EAGAIN;
2774		btrfs_free_logged_extents(log, log_transid);
2775		mutex_unlock(&root->log_mutex);
2776		goto out;
2777	}
2778
 
2779	if (log_transid % 2 == 0)
2780		mark = EXTENT_DIRTY;
2781	else
2782		mark = EXTENT_NEW;
2783
2784	/* we start IO on  all the marked extents here, but we don't actually
2785	 * wait for them until later.
2786	 */
2787	blk_start_plug(&plug);
2788	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2789	if (ret) {
2790		blk_finish_plug(&plug);
2791		btrfs_abort_transaction(trans, root, ret);
2792		btrfs_free_logged_extents(log, log_transid);
2793		btrfs_set_log_full_commit(root->fs_info, trans);
2794		mutex_unlock(&root->log_mutex);
2795		goto out;
2796	}
2797
2798	btrfs_set_root_node(&log->root_item, log->node);
2799
 
2800	root->log_transid++;
2801	log->log_transid = root->log_transid;
2802	root->log_start_pid = 0;
 
2803	/*
2804	 * IO has been started, blocks of the log tree have WRITTEN flag set
2805	 * in their headers. new modifications of the log will be written to
2806	 * new positions. so it's safe to allow log writers to go in.
2807	 */
2808	mutex_unlock(&root->log_mutex);
2809
2810	btrfs_init_log_ctx(&root_log_ctx);
2811
2812	mutex_lock(&log_root_tree->log_mutex);
2813	atomic_inc(&log_root_tree->log_batch);
2814	atomic_inc(&log_root_tree->log_writers);
2815
2816	index2 = log_root_tree->log_transid % 2;
2817	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2818	root_log_ctx.log_transid = log_root_tree->log_transid;
2819
2820	mutex_unlock(&log_root_tree->log_mutex);
2821
2822	ret = update_log_root(trans, log);
2823
2824	mutex_lock(&log_root_tree->log_mutex);
2825	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2826		/*
2827		 * Implicit memory barrier after atomic_dec_and_test
2828		 */
2829		if (waitqueue_active(&log_root_tree->log_writer_wait))
2830			wake_up(&log_root_tree->log_writer_wait);
2831	}
2832
2833	if (ret) {
2834		if (!list_empty(&root_log_ctx.list))
2835			list_del_init(&root_log_ctx.list);
2836
2837		blk_finish_plug(&plug);
2838		btrfs_set_log_full_commit(root->fs_info, trans);
2839
2840		if (ret != -ENOSPC) {
2841			btrfs_abort_transaction(trans, root, ret);
2842			mutex_unlock(&log_root_tree->log_mutex);
2843			goto out;
2844		}
 
2845		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2846		btrfs_free_logged_extents(log, log_transid);
2847		mutex_unlock(&log_root_tree->log_mutex);
2848		ret = -EAGAIN;
2849		goto out;
2850	}
2851
2852	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2853		blk_finish_plug(&plug);
2854		mutex_unlock(&log_root_tree->log_mutex);
2855		ret = root_log_ctx.log_ret;
2856		goto out;
2857	}
2858
2859	index2 = root_log_ctx.log_transid % 2;
2860	if (atomic_read(&log_root_tree->log_commit[index2])) {
2861		blk_finish_plug(&plug);
2862		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2863						mark);
2864		btrfs_wait_logged_extents(trans, log, log_transid);
2865		wait_log_commit(log_root_tree,
2866				root_log_ctx.log_transid);
2867		mutex_unlock(&log_root_tree->log_mutex);
2868		if (!ret)
2869			ret = root_log_ctx.log_ret;
2870		goto out;
2871	}
2872	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2873	atomic_set(&log_root_tree->log_commit[index2], 1);
2874
2875	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2876		wait_log_commit(log_root_tree,
2877				root_log_ctx.log_transid - 1);
2878	}
2879
2880	wait_for_writer(log_root_tree);
2881
2882	/*
2883	 * now that we've moved on to the tree of log tree roots,
2884	 * check the full commit flag again
2885	 */
2886	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2887		blk_finish_plug(&plug);
2888		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2889		btrfs_free_logged_extents(log, log_transid);
2890		mutex_unlock(&log_root_tree->log_mutex);
2891		ret = -EAGAIN;
2892		goto out_wake_log_root;
2893	}
2894
2895	ret = btrfs_write_marked_extents(log_root_tree,
2896					 &log_root_tree->dirty_log_pages,
2897					 EXTENT_DIRTY | EXTENT_NEW);
2898	blk_finish_plug(&plug);
2899	if (ret) {
2900		btrfs_set_log_full_commit(root->fs_info, trans);
2901		btrfs_abort_transaction(trans, root, ret);
2902		btrfs_free_logged_extents(log, log_transid);
2903		mutex_unlock(&log_root_tree->log_mutex);
2904		goto out_wake_log_root;
2905	}
2906	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2907	if (!ret)
2908		ret = btrfs_wait_marked_extents(log_root_tree,
2909						&log_root_tree->dirty_log_pages,
2910						EXTENT_NEW | EXTENT_DIRTY);
2911	if (ret) {
2912		btrfs_set_log_full_commit(root->fs_info, trans);
2913		btrfs_free_logged_extents(log, log_transid);
2914		mutex_unlock(&log_root_tree->log_mutex);
2915		goto out_wake_log_root;
2916	}
2917	btrfs_wait_logged_extents(trans, log, log_transid);
2918
2919	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2920				log_root_tree->node->start);
2921	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2922				btrfs_header_level(log_root_tree->node));
2923
 
2924	log_root_tree->log_transid++;
 
 
2925	mutex_unlock(&log_root_tree->log_mutex);
2926
2927	/*
2928	 * nobody else is going to jump in and write the the ctree
2929	 * super here because the log_commit atomic below is protecting
2930	 * us.  We must be called with a transaction handle pinning
2931	 * the running transaction open, so a full commit can't hop
2932	 * in and cause problems either.
2933	 */
2934	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2935	if (ret) {
2936		btrfs_set_log_full_commit(root->fs_info, trans);
2937		btrfs_abort_transaction(trans, root, ret);
2938		goto out_wake_log_root;
2939	}
2940
2941	mutex_lock(&root->log_mutex);
2942	if (root->last_log_commit < log_transid)
2943		root->last_log_commit = log_transid;
2944	mutex_unlock(&root->log_mutex);
2945
2946out_wake_log_root:
2947	/*
2948	 * We needn't get log_mutex here because we are sure all
2949	 * the other tasks are blocked.
2950	 */
2951	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2952
2953	mutex_lock(&log_root_tree->log_mutex);
2954	log_root_tree->log_transid_committed++;
2955	atomic_set(&log_root_tree->log_commit[index2], 0);
2956	mutex_unlock(&log_root_tree->log_mutex);
2957
2958	/*
2959	 * The barrier before waitqueue_active is implied by mutex_unlock
2960	 */
2961	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2962		wake_up(&log_root_tree->log_commit_wait[index2]);
2963out:
2964	/* See above. */
2965	btrfs_remove_all_log_ctxs(root, index1, ret);
2966
2967	mutex_lock(&root->log_mutex);
2968	root->log_transid_committed++;
2969	atomic_set(&root->log_commit[index1], 0);
2970	mutex_unlock(&root->log_mutex);
2971
2972	/*
2973	 * The barrier before waitqueue_active is implied by mutex_unlock
2974	 */
2975	if (waitqueue_active(&root->log_commit_wait[index1]))
2976		wake_up(&root->log_commit_wait[index1]);
2977	return ret;
2978}
2979
2980static void free_log_tree(struct btrfs_trans_handle *trans,
2981			  struct btrfs_root *log)
2982{
2983	int ret;
2984	u64 start;
2985	u64 end;
2986	struct walk_control wc = {
2987		.free = 1,
2988		.process_func = process_one_buffer
2989	};
2990
2991	ret = walk_log_tree(trans, log, &wc);
2992	/* I don't think this can happen but just in case */
2993	if (ret)
2994		btrfs_abort_transaction(trans, log, ret);
2995
2996	while (1) {
2997		ret = find_first_extent_bit(&log->dirty_log_pages,
2998				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2999				NULL);
3000		if (ret)
3001			break;
3002
3003		clear_extent_bits(&log->dirty_log_pages, start, end,
3004				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
3005	}
3006
3007	/*
3008	 * We may have short-circuited the log tree with the full commit logic
3009	 * and left ordered extents on our list, so clear these out to keep us
3010	 * from leaking inodes and memory.
3011	 */
3012	btrfs_free_logged_extents(log, 0);
3013	btrfs_free_logged_extents(log, 1);
3014
3015	free_extent_buffer(log->node);
3016	kfree(log);
3017}
3018
3019/*
3020 * free all the extents used by the tree log.  This should be called
3021 * at commit time of the full transaction
3022 */
3023int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3024{
3025	if (root->log_root) {
3026		free_log_tree(trans, root->log_root);
3027		root->log_root = NULL;
3028	}
3029	return 0;
3030}
3031
3032int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3033			     struct btrfs_fs_info *fs_info)
3034{
3035	if (fs_info->log_root_tree) {
3036		free_log_tree(trans, fs_info->log_root_tree);
3037		fs_info->log_root_tree = NULL;
3038	}
3039	return 0;
3040}
3041
3042/*
3043 * If both a file and directory are logged, and unlinks or renames are
3044 * mixed in, we have a few interesting corners:
3045 *
3046 * create file X in dir Y
3047 * link file X to X.link in dir Y
3048 * fsync file X
3049 * unlink file X but leave X.link
3050 * fsync dir Y
3051 *
3052 * After a crash we would expect only X.link to exist.  But file X
3053 * didn't get fsync'd again so the log has back refs for X and X.link.
3054 *
3055 * We solve this by removing directory entries and inode backrefs from the
3056 * log when a file that was logged in the current transaction is
3057 * unlinked.  Any later fsync will include the updated log entries, and
3058 * we'll be able to reconstruct the proper directory items from backrefs.
3059 *
3060 * This optimizations allows us to avoid relogging the entire inode
3061 * or the entire directory.
3062 */
3063int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3064				 struct btrfs_root *root,
3065				 const char *name, int name_len,
3066				 struct inode *dir, u64 index)
3067{
3068	struct btrfs_root *log;
3069	struct btrfs_dir_item *di;
3070	struct btrfs_path *path;
3071	int ret;
3072	int err = 0;
3073	int bytes_del = 0;
3074	u64 dir_ino = btrfs_ino(dir);
3075
3076	if (BTRFS_I(dir)->logged_trans < trans->transid)
3077		return 0;
3078
3079	ret = join_running_log_trans(root);
3080	if (ret)
3081		return 0;
3082
3083	mutex_lock(&BTRFS_I(dir)->log_mutex);
3084
3085	log = root->log_root;
3086	path = btrfs_alloc_path();
3087	if (!path) {
3088		err = -ENOMEM;
3089		goto out_unlock;
3090	}
3091
3092	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3093				   name, name_len, -1);
3094	if (IS_ERR(di)) {
3095		err = PTR_ERR(di);
3096		goto fail;
3097	}
3098	if (di) {
3099		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3100		bytes_del += name_len;
3101		if (ret) {
3102			err = ret;
3103			goto fail;
3104		}
3105	}
3106	btrfs_release_path(path);
3107	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3108					 index, name, name_len, -1);
3109	if (IS_ERR(di)) {
3110		err = PTR_ERR(di);
3111		goto fail;
3112	}
3113	if (di) {
3114		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3115		bytes_del += name_len;
3116		if (ret) {
3117			err = ret;
3118			goto fail;
3119		}
3120	}
3121
3122	/* update the directory size in the log to reflect the names
3123	 * we have removed
3124	 */
3125	if (bytes_del) {
3126		struct btrfs_key key;
3127
3128		key.objectid = dir_ino;
3129		key.offset = 0;
3130		key.type = BTRFS_INODE_ITEM_KEY;
3131		btrfs_release_path(path);
3132
3133		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3134		if (ret < 0) {
3135			err = ret;
3136			goto fail;
3137		}
3138		if (ret == 0) {
3139			struct btrfs_inode_item *item;
3140			u64 i_size;
3141
3142			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3143					      struct btrfs_inode_item);
3144			i_size = btrfs_inode_size(path->nodes[0], item);
3145			if (i_size > bytes_del)
3146				i_size -= bytes_del;
3147			else
3148				i_size = 0;
3149			btrfs_set_inode_size(path->nodes[0], item, i_size);
3150			btrfs_mark_buffer_dirty(path->nodes[0]);
3151		} else
3152			ret = 0;
3153		btrfs_release_path(path);
3154	}
3155fail:
3156	btrfs_free_path(path);
3157out_unlock:
3158	mutex_unlock(&BTRFS_I(dir)->log_mutex);
3159	if (ret == -ENOSPC) {
3160		btrfs_set_log_full_commit(root->fs_info, trans);
3161		ret = 0;
3162	} else if (ret < 0)
3163		btrfs_abort_transaction(trans, root, ret);
3164
3165	btrfs_end_log_trans(root);
3166
3167	return err;
3168}
3169
3170/* see comments for btrfs_del_dir_entries_in_log */
3171int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3172			       struct btrfs_root *root,
3173			       const char *name, int name_len,
3174			       struct inode *inode, u64 dirid)
3175{
3176	struct btrfs_root *log;
3177	u64 index;
3178	int ret;
3179
3180	if (BTRFS_I(inode)->logged_trans < trans->transid)
3181		return 0;
3182
3183	ret = join_running_log_trans(root);
3184	if (ret)
3185		return 0;
3186	log = root->log_root;
3187	mutex_lock(&BTRFS_I(inode)->log_mutex);
3188
3189	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3190				  dirid, &index);
3191	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3192	if (ret == -ENOSPC) {
3193		btrfs_set_log_full_commit(root->fs_info, trans);
3194		ret = 0;
3195	} else if (ret < 0 && ret != -ENOENT)
3196		btrfs_abort_transaction(trans, root, ret);
3197	btrfs_end_log_trans(root);
3198
3199	return ret;
3200}
3201
3202/*
3203 * creates a range item in the log for 'dirid'.  first_offset and
3204 * last_offset tell us which parts of the key space the log should
3205 * be considered authoritative for.
3206 */
3207static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3208				       struct btrfs_root *log,
3209				       struct btrfs_path *path,
3210				       int key_type, u64 dirid,
3211				       u64 first_offset, u64 last_offset)
3212{
3213	int ret;
3214	struct btrfs_key key;
3215	struct btrfs_dir_log_item *item;
3216
3217	key.objectid = dirid;
3218	key.offset = first_offset;
3219	if (key_type == BTRFS_DIR_ITEM_KEY)
3220		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3221	else
3222		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3223	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3224	if (ret)
3225		return ret;
3226
3227	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3228			      struct btrfs_dir_log_item);
3229	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3230	btrfs_mark_buffer_dirty(path->nodes[0]);
3231	btrfs_release_path(path);
3232	return 0;
3233}
3234
3235/*
3236 * log all the items included in the current transaction for a given
3237 * directory.  This also creates the range items in the log tree required
3238 * to replay anything deleted before the fsync
3239 */
3240static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3241			  struct btrfs_root *root, struct inode *inode,
3242			  struct btrfs_path *path,
3243			  struct btrfs_path *dst_path, int key_type,
3244			  struct btrfs_log_ctx *ctx,
3245			  u64 min_offset, u64 *last_offset_ret)
3246{
3247	struct btrfs_key min_key;
 
3248	struct btrfs_root *log = root->log_root;
3249	struct extent_buffer *src;
3250	int err = 0;
3251	int ret;
3252	int i;
3253	int nritems;
3254	u64 first_offset = min_offset;
3255	u64 last_offset = (u64)-1;
3256	u64 ino = btrfs_ino(inode);
3257
3258	log = root->log_root;
 
 
 
3259
3260	min_key.objectid = ino;
3261	min_key.type = key_type;
3262	min_key.offset = min_offset;
3263
3264	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
 
 
 
3265
3266	/*
3267	 * we didn't find anything from this transaction, see if there
3268	 * is anything at all
3269	 */
3270	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3271		min_key.objectid = ino;
3272		min_key.type = key_type;
3273		min_key.offset = (u64)-1;
3274		btrfs_release_path(path);
3275		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3276		if (ret < 0) {
3277			btrfs_release_path(path);
3278			return ret;
3279		}
3280		ret = btrfs_previous_item(root, path, ino, key_type);
3281
3282		/* if ret == 0 there are items for this type,
3283		 * create a range to tell us the last key of this type.
3284		 * otherwise, there are no items in this directory after
3285		 * *min_offset, and we create a range to indicate that.
3286		 */
3287		if (ret == 0) {
3288			struct btrfs_key tmp;
3289			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3290					      path->slots[0]);
3291			if (key_type == tmp.type)
3292				first_offset = max(min_offset, tmp.offset) + 1;
3293		}
3294		goto done;
3295	}
3296
3297	/* go backward to find any previous key */
3298	ret = btrfs_previous_item(root, path, ino, key_type);
3299	if (ret == 0) {
3300		struct btrfs_key tmp;
3301		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3302		if (key_type == tmp.type) {
3303			first_offset = tmp.offset;
3304			ret = overwrite_item(trans, log, dst_path,
3305					     path->nodes[0], path->slots[0],
3306					     &tmp);
3307			if (ret) {
3308				err = ret;
3309				goto done;
3310			}
3311		}
3312	}
3313	btrfs_release_path(path);
3314
3315	/* find the first key from this transaction again */
3316	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3317	if (WARN_ON(ret != 0))
 
3318		goto done;
 
3319
3320	/*
3321	 * we have a block from this transaction, log every item in it
3322	 * from our directory
3323	 */
3324	while (1) {
3325		struct btrfs_key tmp;
3326		src = path->nodes[0];
3327		nritems = btrfs_header_nritems(src);
3328		for (i = path->slots[0]; i < nritems; i++) {
3329			struct btrfs_dir_item *di;
3330
3331			btrfs_item_key_to_cpu(src, &min_key, i);
3332
3333			if (min_key.objectid != ino || min_key.type != key_type)
3334				goto done;
3335			ret = overwrite_item(trans, log, dst_path, src, i,
3336					     &min_key);
3337			if (ret) {
3338				err = ret;
3339				goto done;
3340			}
3341
3342			/*
3343			 * We must make sure that when we log a directory entry,
3344			 * the corresponding inode, after log replay, has a
3345			 * matching link count. For example:
3346			 *
3347			 * touch foo
3348			 * mkdir mydir
3349			 * sync
3350			 * ln foo mydir/bar
3351			 * xfs_io -c "fsync" mydir
3352			 * <crash>
3353			 * <mount fs and log replay>
3354			 *
3355			 * Would result in a fsync log that when replayed, our
3356			 * file inode would have a link count of 1, but we get
3357			 * two directory entries pointing to the same inode.
3358			 * After removing one of the names, it would not be
3359			 * possible to remove the other name, which resulted
3360			 * always in stale file handle errors, and would not
3361			 * be possible to rmdir the parent directory, since
3362			 * its i_size could never decrement to the value
3363			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3364			 */
3365			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3366			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3367			if (ctx &&
3368			    (btrfs_dir_transid(src, di) == trans->transid ||
3369			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3370			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3371				ctx->log_new_dentries = true;
3372		}
3373		path->slots[0] = nritems;
3374
3375		/*
3376		 * look ahead to the next item and see if it is also
3377		 * from this directory and from this transaction
3378		 */
3379		ret = btrfs_next_leaf(root, path);
3380		if (ret == 1) {
3381			last_offset = (u64)-1;
3382			goto done;
3383		}
3384		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3385		if (tmp.objectid != ino || tmp.type != key_type) {
3386			last_offset = (u64)-1;
3387			goto done;
3388		}
3389		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3390			ret = overwrite_item(trans, log, dst_path,
3391					     path->nodes[0], path->slots[0],
3392					     &tmp);
3393			if (ret)
3394				err = ret;
3395			else
3396				last_offset = tmp.offset;
3397			goto done;
3398		}
3399	}
3400done:
3401	btrfs_release_path(path);
3402	btrfs_release_path(dst_path);
3403
3404	if (err == 0) {
3405		*last_offset_ret = last_offset;
3406		/*
3407		 * insert the log range keys to indicate where the log
3408		 * is valid
3409		 */
3410		ret = insert_dir_log_key(trans, log, path, key_type,
3411					 ino, first_offset, last_offset);
3412		if (ret)
3413			err = ret;
3414	}
3415	return err;
3416}
3417
3418/*
3419 * logging directories is very similar to logging inodes, We find all the items
3420 * from the current transaction and write them to the log.
3421 *
3422 * The recovery code scans the directory in the subvolume, and if it finds a
3423 * key in the range logged that is not present in the log tree, then it means
3424 * that dir entry was unlinked during the transaction.
3425 *
3426 * In order for that scan to work, we must include one key smaller than
3427 * the smallest logged by this transaction and one key larger than the largest
3428 * key logged by this transaction.
3429 */
3430static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3431			  struct btrfs_root *root, struct inode *inode,
3432			  struct btrfs_path *path,
3433			  struct btrfs_path *dst_path,
3434			  struct btrfs_log_ctx *ctx)
3435{
3436	u64 min_key;
3437	u64 max_key;
3438	int ret;
3439	int key_type = BTRFS_DIR_ITEM_KEY;
3440
3441again:
3442	min_key = 0;
3443	max_key = 0;
3444	while (1) {
3445		ret = log_dir_items(trans, root, inode, path,
3446				    dst_path, key_type, ctx, min_key,
3447				    &max_key);
3448		if (ret)
3449			return ret;
3450		if (max_key == (u64)-1)
3451			break;
3452		min_key = max_key + 1;
3453	}
3454
3455	if (key_type == BTRFS_DIR_ITEM_KEY) {
3456		key_type = BTRFS_DIR_INDEX_KEY;
3457		goto again;
3458	}
3459	return 0;
3460}
3461
3462/*
3463 * a helper function to drop items from the log before we relog an
3464 * inode.  max_key_type indicates the highest item type to remove.
3465 * This cannot be run for file data extents because it does not
3466 * free the extents they point to.
3467 */
3468static int drop_objectid_items(struct btrfs_trans_handle *trans,
3469				  struct btrfs_root *log,
3470				  struct btrfs_path *path,
3471				  u64 objectid, int max_key_type)
3472{
3473	int ret;
3474	struct btrfs_key key;
3475	struct btrfs_key found_key;
3476	int start_slot;
3477
3478	key.objectid = objectid;
3479	key.type = max_key_type;
3480	key.offset = (u64)-1;
3481
3482	while (1) {
3483		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3484		BUG_ON(ret == 0); /* Logic error */
3485		if (ret < 0)
3486			break;
3487
3488		if (path->slots[0] == 0)
3489			break;
3490
3491		path->slots[0]--;
3492		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3493				      path->slots[0]);
3494
3495		if (found_key.objectid != objectid)
3496			break;
3497
3498		found_key.offset = 0;
3499		found_key.type = 0;
3500		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3501				       &start_slot);
3502
3503		ret = btrfs_del_items(trans, log, path, start_slot,
3504				      path->slots[0] - start_slot + 1);
3505		/*
3506		 * If start slot isn't 0 then we don't need to re-search, we've
3507		 * found the last guy with the objectid in this tree.
3508		 */
3509		if (ret || start_slot != 0)
3510			break;
3511		btrfs_release_path(path);
3512	}
3513	btrfs_release_path(path);
3514	if (ret > 0)
3515		ret = 0;
3516	return ret;
3517}
3518
3519static void fill_inode_item(struct btrfs_trans_handle *trans,
3520			    struct extent_buffer *leaf,
3521			    struct btrfs_inode_item *item,
3522			    struct inode *inode, int log_inode_only,
3523			    u64 logged_isize)
3524{
3525	struct btrfs_map_token token;
3526
3527	btrfs_init_map_token(&token);
3528
3529	if (log_inode_only) {
3530		/* set the generation to zero so the recover code
3531		 * can tell the difference between an logging
3532		 * just to say 'this inode exists' and a logging
3533		 * to say 'update this inode with these values'
3534		 */
3535		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3536		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3537	} else {
3538		btrfs_set_token_inode_generation(leaf, item,
3539						 BTRFS_I(inode)->generation,
3540						 &token);
3541		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3542	}
3543
3544	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3545	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3546	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3547	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3548
3549	btrfs_set_token_timespec_sec(leaf, &item->atime,
3550				     inode->i_atime.tv_sec, &token);
3551	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3552				      inode->i_atime.tv_nsec, &token);
3553
3554	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3555				     inode->i_mtime.tv_sec, &token);
3556	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3557				      inode->i_mtime.tv_nsec, &token);
3558
3559	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3560				     inode->i_ctime.tv_sec, &token);
3561	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3562				      inode->i_ctime.tv_nsec, &token);
3563
3564	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3565				     &token);
3566
3567	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3568	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3569	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3570	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3571	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3572}
3573
3574static int log_inode_item(struct btrfs_trans_handle *trans,
3575			  struct btrfs_root *log, struct btrfs_path *path,
3576			  struct inode *inode)
3577{
3578	struct btrfs_inode_item *inode_item;
3579	int ret;
3580
3581	ret = btrfs_insert_empty_item(trans, log, path,
3582				      &BTRFS_I(inode)->location,
3583				      sizeof(*inode_item));
3584	if (ret && ret != -EEXIST)
3585		return ret;
3586	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3587				    struct btrfs_inode_item);
3588	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3589	btrfs_release_path(path);
3590	return 0;
3591}
3592
3593static noinline int copy_items(struct btrfs_trans_handle *trans,
3594			       struct inode *inode,
3595			       struct btrfs_path *dst_path,
3596			       struct btrfs_path *src_path, u64 *last_extent,
3597			       int start_slot, int nr, int inode_only,
3598			       u64 logged_isize)
3599{
3600	unsigned long src_offset;
3601	unsigned long dst_offset;
3602	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3603	struct btrfs_file_extent_item *extent;
3604	struct btrfs_inode_item *inode_item;
3605	struct extent_buffer *src = src_path->nodes[0];
3606	struct btrfs_key first_key, last_key, key;
3607	int ret;
3608	struct btrfs_key *ins_keys;
3609	u32 *ins_sizes;
3610	char *ins_data;
3611	int i;
3612	struct list_head ordered_sums;
3613	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3614	bool has_extents = false;
3615	bool need_find_last_extent = true;
3616	bool done = false;
3617
3618	INIT_LIST_HEAD(&ordered_sums);
3619
3620	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3621			   nr * sizeof(u32), GFP_NOFS);
3622	if (!ins_data)
3623		return -ENOMEM;
3624
3625	first_key.objectid = (u64)-1;
3626
3627	ins_sizes = (u32 *)ins_data;
3628	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3629
3630	for (i = 0; i < nr; i++) {
3631		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3632		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3633	}
3634	ret = btrfs_insert_empty_items(trans, log, dst_path,
3635				       ins_keys, ins_sizes, nr);
3636	if (ret) {
3637		kfree(ins_data);
3638		return ret;
3639	}
3640
3641	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3642		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3643						   dst_path->slots[0]);
3644
3645		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3646
3647		if ((i == (nr - 1)))
3648			last_key = ins_keys[i];
3649
3650		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
 
3651			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3652						    dst_path->slots[0],
3653						    struct btrfs_inode_item);
3654			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3655					inode, inode_only == LOG_INODE_EXISTS,
3656					logged_isize);
3657		} else {
3658			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3659					   src_offset, ins_sizes[i]);
3660		}
3661
3662		/*
3663		 * We set need_find_last_extent here in case we know we were
3664		 * processing other items and then walk into the first extent in
3665		 * the inode.  If we don't hit an extent then nothing changes,
3666		 * we'll do the last search the next time around.
3667		 */
3668		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3669			has_extents = true;
3670			if (first_key.objectid == (u64)-1)
3671				first_key = ins_keys[i];
3672		} else {
3673			need_find_last_extent = false;
3674		}
3675
3676		/* take a reference on file data extents so that truncates
3677		 * or deletes of this inode don't have to relog the inode
3678		 * again
3679		 */
3680		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3681		    !skip_csum) {
3682			int found_type;
3683			extent = btrfs_item_ptr(src, start_slot + i,
3684						struct btrfs_file_extent_item);
3685
3686			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3687				continue;
3688
3689			found_type = btrfs_file_extent_type(src, extent);
3690			if (found_type == BTRFS_FILE_EXTENT_REG) {
 
3691				u64 ds, dl, cs, cl;
3692				ds = btrfs_file_extent_disk_bytenr(src,
3693								extent);
3694				/* ds == 0 is a hole */
3695				if (ds == 0)
3696					continue;
3697
3698				dl = btrfs_file_extent_disk_num_bytes(src,
3699								extent);
3700				cs = btrfs_file_extent_offset(src, extent);
3701				cl = btrfs_file_extent_num_bytes(src,
3702								extent);
3703				if (btrfs_file_extent_compression(src,
3704								  extent)) {
3705					cs = 0;
3706					cl = dl;
3707				}
3708
3709				ret = btrfs_lookup_csums_range(
3710						log->fs_info->csum_root,
3711						ds + cs, ds + cs + cl - 1,
3712						&ordered_sums, 0);
3713				if (ret) {
3714					btrfs_release_path(dst_path);
3715					kfree(ins_data);
3716					return ret;
3717				}
3718			}
3719		}
3720	}
3721
3722	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3723	btrfs_release_path(dst_path);
3724	kfree(ins_data);
3725
3726	/*
3727	 * we have to do this after the loop above to avoid changing the
3728	 * log tree while trying to change the log tree.
3729	 */
3730	ret = 0;
3731	while (!list_empty(&ordered_sums)) {
3732		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3733						   struct btrfs_ordered_sum,
3734						   list);
3735		if (!ret)
3736			ret = btrfs_csum_file_blocks(trans, log, sums);
3737		list_del(&sums->list);
3738		kfree(sums);
3739	}
3740
3741	if (!has_extents)
3742		return ret;
3743
3744	if (need_find_last_extent && *last_extent == first_key.offset) {
3745		/*
3746		 * We don't have any leafs between our current one and the one
3747		 * we processed before that can have file extent items for our
3748		 * inode (and have a generation number smaller than our current
3749		 * transaction id).
3750		 */
3751		need_find_last_extent = false;
3752	}
3753
3754	/*
3755	 * Because we use btrfs_search_forward we could skip leaves that were
3756	 * not modified and then assume *last_extent is valid when it really
3757	 * isn't.  So back up to the previous leaf and read the end of the last
3758	 * extent before we go and fill in holes.
3759	 */
3760	if (need_find_last_extent) {
3761		u64 len;
3762
3763		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3764		if (ret < 0)
3765			return ret;
3766		if (ret)
3767			goto fill_holes;
3768		if (src_path->slots[0])
3769			src_path->slots[0]--;
3770		src = src_path->nodes[0];
3771		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3772		if (key.objectid != btrfs_ino(inode) ||
3773		    key.type != BTRFS_EXTENT_DATA_KEY)
3774			goto fill_holes;
3775		extent = btrfs_item_ptr(src, src_path->slots[0],
3776					struct btrfs_file_extent_item);
3777		if (btrfs_file_extent_type(src, extent) ==
3778		    BTRFS_FILE_EXTENT_INLINE) {
3779			len = btrfs_file_extent_inline_len(src,
3780							   src_path->slots[0],
3781							   extent);
3782			*last_extent = ALIGN(key.offset + len,
3783					     log->sectorsize);
3784		} else {
3785			len = btrfs_file_extent_num_bytes(src, extent);
3786			*last_extent = key.offset + len;
3787		}
3788	}
3789fill_holes:
3790	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3791	 * things could have happened
3792	 *
3793	 * 1) A merge could have happened, so we could currently be on a leaf
3794	 * that holds what we were copying in the first place.
3795	 * 2) A split could have happened, and now not all of the items we want
3796	 * are on the same leaf.
3797	 *
3798	 * So we need to adjust how we search for holes, we need to drop the
3799	 * path and re-search for the first extent key we found, and then walk
3800	 * forward until we hit the last one we copied.
3801	 */
3802	if (need_find_last_extent) {
3803		/* btrfs_prev_leaf could return 1 without releasing the path */
3804		btrfs_release_path(src_path);
3805		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3806					src_path, 0, 0);
3807		if (ret < 0)
3808			return ret;
3809		ASSERT(ret == 0);
3810		src = src_path->nodes[0];
3811		i = src_path->slots[0];
3812	} else {
3813		i = start_slot;
3814	}
3815
3816	/*
3817	 * Ok so here we need to go through and fill in any holes we may have
3818	 * to make sure that holes are punched for those areas in case they had
3819	 * extents previously.
3820	 */
3821	while (!done) {
3822		u64 offset, len;
3823		u64 extent_end;
3824
3825		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3826			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3827			if (ret < 0)
3828				return ret;
3829			ASSERT(ret == 0);
3830			src = src_path->nodes[0];
3831			i = 0;
3832		}
3833
3834		btrfs_item_key_to_cpu(src, &key, i);
3835		if (!btrfs_comp_cpu_keys(&key, &last_key))
3836			done = true;
3837		if (key.objectid != btrfs_ino(inode) ||
3838		    key.type != BTRFS_EXTENT_DATA_KEY) {
3839			i++;
3840			continue;
3841		}
3842		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3843		if (btrfs_file_extent_type(src, extent) ==
3844		    BTRFS_FILE_EXTENT_INLINE) {
3845			len = btrfs_file_extent_inline_len(src, i, extent);
3846			extent_end = ALIGN(key.offset + len, log->sectorsize);
3847		} else {
3848			len = btrfs_file_extent_num_bytes(src, extent);
3849			extent_end = key.offset + len;
3850		}
3851		i++;
3852
3853		if (*last_extent == key.offset) {
3854			*last_extent = extent_end;
3855			continue;
3856		}
3857		offset = *last_extent;
3858		len = key.offset - *last_extent;
3859		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3860					       offset, 0, 0, len, 0, len, 0,
3861					       0, 0);
3862		if (ret)
3863			break;
3864		*last_extent = extent_end;
3865	}
3866	/*
3867	 * Need to let the callers know we dropped the path so they should
3868	 * re-search.
3869	 */
3870	if (!ret && need_find_last_extent)
3871		ret = 1;
3872	return ret;
3873}
3874
3875static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3876{
3877	struct extent_map *em1, *em2;
3878
3879	em1 = list_entry(a, struct extent_map, list);
3880	em2 = list_entry(b, struct extent_map, list);
3881
3882	if (em1->start < em2->start)
3883		return -1;
3884	else if (em1->start > em2->start)
3885		return 1;
3886	return 0;
3887}
3888
3889static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3890				struct inode *inode,
3891				struct btrfs_root *root,
3892				const struct extent_map *em,
3893				const struct list_head *logged_list,
3894				bool *ordered_io_error)
3895{
3896	struct btrfs_ordered_extent *ordered;
3897	struct btrfs_root *log = root->log_root;
3898	u64 mod_start = em->mod_start;
3899	u64 mod_len = em->mod_len;
3900	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3901	u64 csum_offset;
3902	u64 csum_len;
3903	LIST_HEAD(ordered_sums);
3904	int ret = 0;
3905
3906	*ordered_io_error = false;
3907
3908	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3909	    em->block_start == EXTENT_MAP_HOLE)
3910		return 0;
3911
3912	/*
3913	 * Wait far any ordered extent that covers our extent map. If it
3914	 * finishes without an error, first check and see if our csums are on
3915	 * our outstanding ordered extents.
3916	 */
3917	list_for_each_entry(ordered, logged_list, log_list) {
3918		struct btrfs_ordered_sum *sum;
3919
3920		if (!mod_len)
3921			break;
3922
3923		if (ordered->file_offset + ordered->len <= mod_start ||
3924		    mod_start + mod_len <= ordered->file_offset)
3925			continue;
3926
3927		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3928		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3929		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3930			const u64 start = ordered->file_offset;
3931			const u64 end = ordered->file_offset + ordered->len - 1;
3932
3933			WARN_ON(ordered->inode != inode);
3934			filemap_fdatawrite_range(inode->i_mapping, start, end);
3935		}
3936
3937		wait_event(ordered->wait,
3938			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3939			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3940
3941		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3942			/*
3943			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3944			 * i_mapping flags, so that the next fsync won't get
3945			 * an outdated io error too.
3946			 */
3947			btrfs_inode_check_errors(inode);
3948			*ordered_io_error = true;
3949			break;
3950		}
3951		/*
3952		 * We are going to copy all the csums on this ordered extent, so
3953		 * go ahead and adjust mod_start and mod_len in case this
3954		 * ordered extent has already been logged.
3955		 */
3956		if (ordered->file_offset > mod_start) {
3957			if (ordered->file_offset + ordered->len >=
3958			    mod_start + mod_len)
3959				mod_len = ordered->file_offset - mod_start;
3960			/*
3961			 * If we have this case
3962			 *
3963			 * |--------- logged extent ---------|
3964			 *       |----- ordered extent ----|
3965			 *
3966			 * Just don't mess with mod_start and mod_len, we'll
3967			 * just end up logging more csums than we need and it
3968			 * will be ok.
3969			 */
3970		} else {
3971			if (ordered->file_offset + ordered->len <
3972			    mod_start + mod_len) {
3973				mod_len = (mod_start + mod_len) -
3974					(ordered->file_offset + ordered->len);
3975				mod_start = ordered->file_offset +
3976					ordered->len;
3977			} else {
3978				mod_len = 0;
3979			}
3980		}
3981
3982		if (skip_csum)
3983			continue;
3984
3985		/*
3986		 * To keep us from looping for the above case of an ordered
3987		 * extent that falls inside of the logged extent.
3988		 */
3989		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3990				     &ordered->flags))
3991			continue;
3992
3993		list_for_each_entry(sum, &ordered->list, list) {
3994			ret = btrfs_csum_file_blocks(trans, log, sum);
3995			if (ret)
3996				break;
3997		}
3998	}
3999
4000	if (*ordered_io_error || !mod_len || ret || skip_csum)
4001		return ret;
4002
4003	if (em->compress_type) {
4004		csum_offset = 0;
4005		csum_len = max(em->block_len, em->orig_block_len);
4006	} else {
4007		csum_offset = mod_start - em->start;
4008		csum_len = mod_len;
4009	}
4010
4011	/* block start is already adjusted for the file extent offset. */
4012	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4013				       em->block_start + csum_offset,
4014				       em->block_start + csum_offset +
4015				       csum_len - 1, &ordered_sums, 0);
4016	if (ret)
4017		return ret;
4018
4019	while (!list_empty(&ordered_sums)) {
4020		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4021						   struct btrfs_ordered_sum,
4022						   list);
4023		if (!ret)
4024			ret = btrfs_csum_file_blocks(trans, log, sums);
4025		list_del(&sums->list);
4026		kfree(sums);
4027	}
4028
4029	return ret;
4030}
4031
4032static int log_one_extent(struct btrfs_trans_handle *trans,
4033			  struct inode *inode, struct btrfs_root *root,
4034			  const struct extent_map *em,
4035			  struct btrfs_path *path,
4036			  const struct list_head *logged_list,
4037			  struct btrfs_log_ctx *ctx)
4038{
4039	struct btrfs_root *log = root->log_root;
4040	struct btrfs_file_extent_item *fi;
4041	struct extent_buffer *leaf;
4042	struct btrfs_map_token token;
4043	struct btrfs_key key;
4044	u64 extent_offset = em->start - em->orig_start;
4045	u64 block_len;
4046	int ret;
4047	int extent_inserted = 0;
4048	bool ordered_io_err = false;
4049
4050	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4051				   &ordered_io_err);
4052	if (ret)
4053		return ret;
4054
4055	if (ordered_io_err) {
4056		ctx->io_err = -EIO;
4057		return 0;
4058	}
4059
4060	btrfs_init_map_token(&token);
4061
4062	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4063				   em->start + em->len, NULL, 0, 1,
4064				   sizeof(*fi), &extent_inserted);
4065	if (ret)
4066		return ret;
4067
4068	if (!extent_inserted) {
4069		key.objectid = btrfs_ino(inode);
4070		key.type = BTRFS_EXTENT_DATA_KEY;
4071		key.offset = em->start;
4072
4073		ret = btrfs_insert_empty_item(trans, log, path, &key,
4074					      sizeof(*fi));
4075		if (ret)
4076			return ret;
4077	}
4078	leaf = path->nodes[0];
4079	fi = btrfs_item_ptr(leaf, path->slots[0],
4080			    struct btrfs_file_extent_item);
4081
4082	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4083					       &token);
4084	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4085		btrfs_set_token_file_extent_type(leaf, fi,
4086						 BTRFS_FILE_EXTENT_PREALLOC,
4087						 &token);
4088	else
4089		btrfs_set_token_file_extent_type(leaf, fi,
4090						 BTRFS_FILE_EXTENT_REG,
4091						 &token);
4092
4093	block_len = max(em->block_len, em->orig_block_len);
4094	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4095		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4096							em->block_start,
4097							&token);
4098		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4099							   &token);
4100	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4101		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4102							em->block_start -
4103							extent_offset, &token);
4104		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4105							   &token);
4106	} else {
4107		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4108		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4109							   &token);
4110	}
4111
4112	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4113	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4114	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4115	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4116						&token);
4117	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4118	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4119	btrfs_mark_buffer_dirty(leaf);
4120
4121	btrfs_release_path(path);
4122
4123	return ret;
4124}
4125
4126static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4127				     struct btrfs_root *root,
4128				     struct inode *inode,
4129				     struct btrfs_path *path,
4130				     struct list_head *logged_list,
4131				     struct btrfs_log_ctx *ctx,
4132				     const u64 start,
4133				     const u64 end)
4134{
4135	struct extent_map *em, *n;
4136	struct list_head extents;
4137	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4138	u64 test_gen;
4139	int ret = 0;
4140	int num = 0;
4141
4142	INIT_LIST_HEAD(&extents);
4143
4144	write_lock(&tree->lock);
4145	test_gen = root->fs_info->last_trans_committed;
4146
4147	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4148		list_del_init(&em->list);
4149
4150		/*
4151		 * Just an arbitrary number, this can be really CPU intensive
4152		 * once we start getting a lot of extents, and really once we
4153		 * have a bunch of extents we just want to commit since it will
4154		 * be faster.
4155		 */
4156		if (++num > 32768) {
4157			list_del_init(&tree->modified_extents);
4158			ret = -EFBIG;
4159			goto process;
4160		}
4161
4162		if (em->generation <= test_gen)
4163			continue;
4164		/* Need a ref to keep it from getting evicted from cache */
4165		atomic_inc(&em->refs);
4166		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4167		list_add_tail(&em->list, &extents);
4168		num++;
4169	}
4170
4171	list_sort(NULL, &extents, extent_cmp);
4172	/*
4173	 * Collect any new ordered extents within the range. This is to
4174	 * prevent logging file extent items without waiting for the disk
4175	 * location they point to being written. We do this only to deal
4176	 * with races against concurrent lockless direct IO writes.
4177	 */
4178	btrfs_get_logged_extents(inode, logged_list, start, end);
4179process:
4180	while (!list_empty(&extents)) {
4181		em = list_entry(extents.next, struct extent_map, list);
4182
4183		list_del_init(&em->list);
4184
4185		/*
4186		 * If we had an error we just need to delete everybody from our
4187		 * private list.
4188		 */
4189		if (ret) {
4190			clear_em_logging(tree, em);
4191			free_extent_map(em);
4192			continue;
4193		}
4194
4195		write_unlock(&tree->lock);
4196
4197		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4198				     ctx);
4199		write_lock(&tree->lock);
4200		clear_em_logging(tree, em);
4201		free_extent_map(em);
4202	}
4203	WARN_ON(!list_empty(&extents));
4204	write_unlock(&tree->lock);
4205
4206	btrfs_release_path(path);
4207	return ret;
4208}
4209
4210static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4211			     struct btrfs_path *path, u64 *size_ret)
4212{
4213	struct btrfs_key key;
4214	int ret;
4215
4216	key.objectid = btrfs_ino(inode);
4217	key.type = BTRFS_INODE_ITEM_KEY;
4218	key.offset = 0;
4219
4220	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4221	if (ret < 0) {
4222		return ret;
4223	} else if (ret > 0) {
4224		*size_ret = 0;
4225	} else {
4226		struct btrfs_inode_item *item;
4227
4228		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4229				      struct btrfs_inode_item);
4230		*size_ret = btrfs_inode_size(path->nodes[0], item);
4231	}
4232
4233	btrfs_release_path(path);
4234	return 0;
4235}
4236
4237/*
4238 * At the moment we always log all xattrs. This is to figure out at log replay
4239 * time which xattrs must have their deletion replayed. If a xattr is missing
4240 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4241 * because if a xattr is deleted, the inode is fsynced and a power failure
4242 * happens, causing the log to be replayed the next time the fs is mounted,
4243 * we want the xattr to not exist anymore (same behaviour as other filesystems
4244 * with a journal, ext3/4, xfs, f2fs, etc).
4245 */
4246static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4247				struct btrfs_root *root,
4248				struct inode *inode,
4249				struct btrfs_path *path,
4250				struct btrfs_path *dst_path)
4251{
4252	int ret;
4253	struct btrfs_key key;
4254	const u64 ino = btrfs_ino(inode);
4255	int ins_nr = 0;
4256	int start_slot = 0;
4257
4258	key.objectid = ino;
4259	key.type = BTRFS_XATTR_ITEM_KEY;
4260	key.offset = 0;
4261
4262	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4263	if (ret < 0)
4264		return ret;
4265
4266	while (true) {
4267		int slot = path->slots[0];
4268		struct extent_buffer *leaf = path->nodes[0];
4269		int nritems = btrfs_header_nritems(leaf);
4270
4271		if (slot >= nritems) {
4272			if (ins_nr > 0) {
4273				u64 last_extent = 0;
4274
4275				ret = copy_items(trans, inode, dst_path, path,
4276						 &last_extent, start_slot,
4277						 ins_nr, 1, 0);
4278				/* can't be 1, extent items aren't processed */
4279				ASSERT(ret <= 0);
4280				if (ret < 0)
4281					return ret;
4282				ins_nr = 0;
4283			}
4284			ret = btrfs_next_leaf(root, path);
4285			if (ret < 0)
4286				return ret;
4287			else if (ret > 0)
4288				break;
4289			continue;
4290		}
4291
4292		btrfs_item_key_to_cpu(leaf, &key, slot);
4293		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4294			break;
4295
4296		if (ins_nr == 0)
4297			start_slot = slot;
4298		ins_nr++;
4299		path->slots[0]++;
4300		cond_resched();
4301	}
4302	if (ins_nr > 0) {
4303		u64 last_extent = 0;
4304
4305		ret = copy_items(trans, inode, dst_path, path,
4306				 &last_extent, start_slot,
4307				 ins_nr, 1, 0);
4308		/* can't be 1, extent items aren't processed */
4309		ASSERT(ret <= 0);
4310		if (ret < 0)
4311			return ret;
4312	}
4313
4314	return 0;
4315}
4316
4317/*
4318 * If the no holes feature is enabled we need to make sure any hole between the
4319 * last extent and the i_size of our inode is explicitly marked in the log. This
4320 * is to make sure that doing something like:
4321 *
4322 *      1) create file with 128Kb of data
4323 *      2) truncate file to 64Kb
4324 *      3) truncate file to 256Kb
4325 *      4) fsync file
4326 *      5) <crash/power failure>
4327 *      6) mount fs and trigger log replay
4328 *
4329 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4330 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4331 * file correspond to a hole. The presence of explicit holes in a log tree is
4332 * what guarantees that log replay will remove/adjust file extent items in the
4333 * fs/subvol tree.
4334 *
4335 * Here we do not need to care about holes between extents, that is already done
4336 * by copy_items(). We also only need to do this in the full sync path, where we
4337 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4338 * lookup the list of modified extent maps and if any represents a hole, we
4339 * insert a corresponding extent representing a hole in the log tree.
4340 */
4341static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4342				   struct btrfs_root *root,
4343				   struct inode *inode,
4344				   struct btrfs_path *path)
4345{
4346	int ret;
4347	struct btrfs_key key;
4348	u64 hole_start;
4349	u64 hole_size;
4350	struct extent_buffer *leaf;
4351	struct btrfs_root *log = root->log_root;
4352	const u64 ino = btrfs_ino(inode);
4353	const u64 i_size = i_size_read(inode);
4354
4355	if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4356		return 0;
4357
4358	key.objectid = ino;
4359	key.type = BTRFS_EXTENT_DATA_KEY;
4360	key.offset = (u64)-1;
4361
4362	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4363	ASSERT(ret != 0);
4364	if (ret < 0)
4365		return ret;
4366
4367	ASSERT(path->slots[0] > 0);
4368	path->slots[0]--;
4369	leaf = path->nodes[0];
4370	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4371
4372	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4373		/* inode does not have any extents */
4374		hole_start = 0;
4375		hole_size = i_size;
4376	} else {
4377		struct btrfs_file_extent_item *extent;
4378		u64 len;
4379
4380		/*
4381		 * If there's an extent beyond i_size, an explicit hole was
4382		 * already inserted by copy_items().
4383		 */
4384		if (key.offset >= i_size)
4385			return 0;
4386
4387		extent = btrfs_item_ptr(leaf, path->slots[0],
4388					struct btrfs_file_extent_item);
4389
4390		if (btrfs_file_extent_type(leaf, extent) ==
4391		    BTRFS_FILE_EXTENT_INLINE) {
4392			len = btrfs_file_extent_inline_len(leaf,
4393							   path->slots[0],
4394							   extent);
4395			ASSERT(len == i_size);
4396			return 0;
4397		}
4398
4399		len = btrfs_file_extent_num_bytes(leaf, extent);
4400		/* Last extent goes beyond i_size, no need to log a hole. */
4401		if (key.offset + len > i_size)
4402			return 0;
4403		hole_start = key.offset + len;
4404		hole_size = i_size - hole_start;
4405	}
4406	btrfs_release_path(path);
4407
4408	/* Last extent ends at i_size. */
4409	if (hole_size == 0)
4410		return 0;
4411
4412	hole_size = ALIGN(hole_size, root->sectorsize);
4413	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4414				       hole_size, 0, hole_size, 0, 0, 0);
4415	return ret;
4416}
4417
4418/*
4419 * When we are logging a new inode X, check if it doesn't have a reference that
4420 * matches the reference from some other inode Y created in a past transaction
4421 * and that was renamed in the current transaction. If we don't do this, then at
4422 * log replay time we can lose inode Y (and all its files if it's a directory):
4423 *
4424 * mkdir /mnt/x
4425 * echo "hello world" > /mnt/x/foobar
4426 * sync
4427 * mv /mnt/x /mnt/y
4428 * mkdir /mnt/x                 # or touch /mnt/x
4429 * xfs_io -c fsync /mnt/x
4430 * <power fail>
4431 * mount fs, trigger log replay
4432 *
4433 * After the log replay procedure, we would lose the first directory and all its
4434 * files (file foobar).
4435 * For the case where inode Y is not a directory we simply end up losing it:
4436 *
4437 * echo "123" > /mnt/foo
4438 * sync
4439 * mv /mnt/foo /mnt/bar
4440 * echo "abc" > /mnt/foo
4441 * xfs_io -c fsync /mnt/foo
4442 * <power fail>
4443 *
4444 * We also need this for cases where a snapshot entry is replaced by some other
4445 * entry (file or directory) otherwise we end up with an unreplayable log due to
4446 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4447 * if it were a regular entry:
4448 *
4449 * mkdir /mnt/x
4450 * btrfs subvolume snapshot /mnt /mnt/x/snap
4451 * btrfs subvolume delete /mnt/x/snap
4452 * rmdir /mnt/x
4453 * mkdir /mnt/x
4454 * fsync /mnt/x or fsync some new file inside it
4455 * <power fail>
4456 *
4457 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4458 * the same transaction.
4459 */
4460static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4461					 const int slot,
4462					 const struct btrfs_key *key,
4463					 struct inode *inode)
4464{
4465	int ret;
4466	struct btrfs_path *search_path;
4467	char *name = NULL;
4468	u32 name_len = 0;
4469	u32 item_size = btrfs_item_size_nr(eb, slot);
4470	u32 cur_offset = 0;
4471	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4472
4473	search_path = btrfs_alloc_path();
4474	if (!search_path)
4475		return -ENOMEM;
4476	search_path->search_commit_root = 1;
4477	search_path->skip_locking = 1;
4478
4479	while (cur_offset < item_size) {
4480		u64 parent;
4481		u32 this_name_len;
4482		u32 this_len;
4483		unsigned long name_ptr;
4484		struct btrfs_dir_item *di;
4485
4486		if (key->type == BTRFS_INODE_REF_KEY) {
4487			struct btrfs_inode_ref *iref;
4488
4489			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4490			parent = key->offset;
4491			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4492			name_ptr = (unsigned long)(iref + 1);
4493			this_len = sizeof(*iref) + this_name_len;
4494		} else {
4495			struct btrfs_inode_extref *extref;
4496
4497			extref = (struct btrfs_inode_extref *)(ptr +
4498							       cur_offset);
4499			parent = btrfs_inode_extref_parent(eb, extref);
4500			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4501			name_ptr = (unsigned long)&extref->name;
4502			this_len = sizeof(*extref) + this_name_len;
4503		}
4504
4505		if (this_name_len > name_len) {
4506			char *new_name;
4507
4508			new_name = krealloc(name, this_name_len, GFP_NOFS);
4509			if (!new_name) {
4510				ret = -ENOMEM;
4511				goto out;
4512			}
4513			name_len = this_name_len;
4514			name = new_name;
4515		}
4516
4517		read_extent_buffer(eb, name, name_ptr, this_name_len);
4518		di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4519					   search_path, parent,
4520					   name, this_name_len, 0);
4521		if (di && !IS_ERR(di)) {
4522			ret = 1;
4523			goto out;
4524		} else if (IS_ERR(di)) {
4525			ret = PTR_ERR(di);
4526			goto out;
4527		}
4528		btrfs_release_path(search_path);
4529
4530		cur_offset += this_len;
4531	}
4532	ret = 0;
4533out:
4534	btrfs_free_path(search_path);
4535	kfree(name);
4536	return ret;
4537}
4538
4539/* log a single inode in the tree log.
4540 * At least one parent directory for this inode must exist in the tree
4541 * or be logged already.
4542 *
4543 * Any items from this inode changed by the current transaction are copied
4544 * to the log tree.  An extra reference is taken on any extents in this
4545 * file, allowing us to avoid a whole pile of corner cases around logging
4546 * blocks that have been removed from the tree.
4547 *
4548 * See LOG_INODE_ALL and related defines for a description of what inode_only
4549 * does.
4550 *
4551 * This handles both files and directories.
4552 */
4553static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4554			   struct btrfs_root *root, struct inode *inode,
4555			   int inode_only,
4556			   const loff_t start,
4557			   const loff_t end,
4558			   struct btrfs_log_ctx *ctx)
4559{
4560	struct btrfs_path *path;
4561	struct btrfs_path *dst_path;
4562	struct btrfs_key min_key;
4563	struct btrfs_key max_key;
4564	struct btrfs_root *log = root->log_root;
4565	struct extent_buffer *src = NULL;
4566	LIST_HEAD(logged_list);
4567	u64 last_extent = 0;
4568	int err = 0;
4569	int ret;
4570	int nritems;
4571	int ins_start_slot = 0;
4572	int ins_nr;
4573	bool fast_search = false;
4574	u64 ino = btrfs_ino(inode);
4575	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4576	u64 logged_isize = 0;
4577	bool need_log_inode_item = true;
4578
4579	path = btrfs_alloc_path();
4580	if (!path)
4581		return -ENOMEM;
4582	dst_path = btrfs_alloc_path();
4583	if (!dst_path) {
4584		btrfs_free_path(path);
4585		return -ENOMEM;
4586	}
4587
4588	min_key.objectid = ino;
4589	min_key.type = BTRFS_INODE_ITEM_KEY;
4590	min_key.offset = 0;
4591
4592	max_key.objectid = ino;
4593
4594
4595	/* today the code can only do partial logging of directories */
4596	if (S_ISDIR(inode->i_mode) ||
4597	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4598		       &BTRFS_I(inode)->runtime_flags) &&
4599	     inode_only == LOG_INODE_EXISTS))
4600		max_key.type = BTRFS_XATTR_ITEM_KEY;
4601	else
4602		max_key.type = (u8)-1;
4603	max_key.offset = (u64)-1;
4604
4605	/*
4606	 * Only run delayed items if we are a dir or a new file.
4607	 * Otherwise commit the delayed inode only, which is needed in
4608	 * order for the log replay code to mark inodes for link count
4609	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4610	 */
4611	if (S_ISDIR(inode->i_mode) ||
4612	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4613		ret = btrfs_commit_inode_delayed_items(trans, inode);
4614	else
4615		ret = btrfs_commit_inode_delayed_inode(inode);
4616
4617	if (ret) {
4618		btrfs_free_path(path);
4619		btrfs_free_path(dst_path);
4620		return ret;
4621	}
4622
4623	mutex_lock(&BTRFS_I(inode)->log_mutex);
4624
4625	/*
4626	 * Collect ordered extents only if we are logging data. This is to
4627	 * ensure a subsequent request to log this inode in LOG_INODE_ALL mode
4628	 * will process the ordered extents if they still exists at the time,
4629	 * because when we collect them we test and set for the flag
4630	 * BTRFS_ORDERED_LOGGED to prevent multiple log requests to process the
4631	 * same ordered extents. The consequence for the LOG_INODE_ALL log mode
4632	 * not processing the ordered extents is that we end up logging the
4633	 * corresponding file extent items, based on the extent maps in the
4634	 * inode's extent_map_tree's modified_list, without logging the
4635	 * respective checksums (since the may still be only attached to the
4636	 * ordered extents and have not been inserted in the csum tree by
4637	 * btrfs_finish_ordered_io() yet).
4638	 */
4639	if (inode_only == LOG_INODE_ALL)
4640		btrfs_get_logged_extents(inode, &logged_list, start, end);
4641
4642	/*
4643	 * a brute force approach to making sure we get the most uptodate
4644	 * copies of everything.
4645	 */
4646	if (S_ISDIR(inode->i_mode)) {
4647		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4648
4649		if (inode_only == LOG_INODE_EXISTS)
4650			max_key_type = BTRFS_XATTR_ITEM_KEY;
4651		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4652	} else {
4653		if (inode_only == LOG_INODE_EXISTS) {
4654			/*
4655			 * Make sure the new inode item we write to the log has
4656			 * the same isize as the current one (if it exists).
4657			 * This is necessary to prevent data loss after log
4658			 * replay, and also to prevent doing a wrong expanding
4659			 * truncate - for e.g. create file, write 4K into offset
4660			 * 0, fsync, write 4K into offset 4096, add hard link,
4661			 * fsync some other file (to sync log), power fail - if
4662			 * we use the inode's current i_size, after log replay
4663			 * we get a 8Kb file, with the last 4Kb extent as a hole
4664			 * (zeroes), as if an expanding truncate happened,
4665			 * instead of getting a file of 4Kb only.
4666			 */
4667			err = logged_inode_size(log, inode, path,
4668						&logged_isize);
4669			if (err)
4670				goto out_unlock;
4671		}
4672		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4673			     &BTRFS_I(inode)->runtime_flags)) {
4674			if (inode_only == LOG_INODE_EXISTS) {
4675				max_key.type = BTRFS_XATTR_ITEM_KEY;
4676				ret = drop_objectid_items(trans, log, path, ino,
4677							  max_key.type);
4678			} else {
4679				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4680					  &BTRFS_I(inode)->runtime_flags);
4681				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4682					  &BTRFS_I(inode)->runtime_flags);
4683				while(1) {
4684					ret = btrfs_truncate_inode_items(trans,
4685							 log, inode, 0, 0);
4686					if (ret != -EAGAIN)
4687						break;
4688				}
4689			}
4690		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4691					      &BTRFS_I(inode)->runtime_flags) ||
4692			   inode_only == LOG_INODE_EXISTS) {
4693			if (inode_only == LOG_INODE_ALL)
4694				fast_search = true;
4695			max_key.type = BTRFS_XATTR_ITEM_KEY;
4696			ret = drop_objectid_items(trans, log, path, ino,
4697						  max_key.type);
4698		} else {
4699			if (inode_only == LOG_INODE_ALL)
4700				fast_search = true;
4701			goto log_extents;
4702		}
4703
4704	}
4705	if (ret) {
4706		err = ret;
4707		goto out_unlock;
4708	}
 
4709
4710	while (1) {
4711		ins_nr = 0;
4712		ret = btrfs_search_forward(root, &min_key,
4713					   path, trans->transid);
4714		if (ret != 0)
4715			break;
4716again:
4717		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4718		if (min_key.objectid != ino)
4719			break;
4720		if (min_key.type > max_key.type)
4721			break;
4722
4723		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4724			need_log_inode_item = false;
4725
4726		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4727		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4728		    BTRFS_I(inode)->generation == trans->transid) {
4729			ret = btrfs_check_ref_name_override(path->nodes[0],
4730							    path->slots[0],
4731							    &min_key, inode);
4732			if (ret < 0) {
4733				err = ret;
4734				goto out_unlock;
4735			} else if (ret > 0) {
4736				err = 1;
4737				btrfs_set_log_full_commit(root->fs_info, trans);
4738				goto out_unlock;
4739			}
4740		}
4741
4742		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4743		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4744			if (ins_nr == 0)
4745				goto next_slot;
4746			ret = copy_items(trans, inode, dst_path, path,
4747					 &last_extent, ins_start_slot,
4748					 ins_nr, inode_only, logged_isize);
4749			if (ret < 0) {
4750				err = ret;
4751				goto out_unlock;
4752			}
4753			ins_nr = 0;
4754			if (ret) {
4755				btrfs_release_path(path);
4756				continue;
4757			}
4758			goto next_slot;
4759		}
4760
4761		src = path->nodes[0];
4762		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4763			ins_nr++;
4764			goto next_slot;
4765		} else if (!ins_nr) {
4766			ins_start_slot = path->slots[0];
4767			ins_nr = 1;
4768			goto next_slot;
4769		}
4770
4771		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4772				 ins_start_slot, ins_nr, inode_only,
4773				 logged_isize);
4774		if (ret < 0) {
4775			err = ret;
4776			goto out_unlock;
4777		}
4778		if (ret) {
4779			ins_nr = 0;
4780			btrfs_release_path(path);
4781			continue;
4782		}
4783		ins_nr = 1;
4784		ins_start_slot = path->slots[0];
4785next_slot:
4786
4787		nritems = btrfs_header_nritems(path->nodes[0]);
4788		path->slots[0]++;
4789		if (path->slots[0] < nritems) {
4790			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4791					      path->slots[0]);
4792			goto again;
4793		}
4794		if (ins_nr) {
4795			ret = copy_items(trans, inode, dst_path, path,
4796					 &last_extent, ins_start_slot,
4797					 ins_nr, inode_only, logged_isize);
4798			if (ret < 0) {
4799				err = ret;
4800				goto out_unlock;
4801			}
4802			ret = 0;
4803			ins_nr = 0;
4804		}
4805		btrfs_release_path(path);
4806
4807		if (min_key.offset < (u64)-1) {
4808			min_key.offset++;
4809		} else if (min_key.type < max_key.type) {
4810			min_key.type++;
4811			min_key.offset = 0;
4812		} else {
 
4813			break;
4814		}
4815	}
4816	if (ins_nr) {
4817		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4818				 ins_start_slot, ins_nr, inode_only,
4819				 logged_isize);
4820		if (ret < 0) {
4821			err = ret;
4822			goto out_unlock;
4823		}
4824		ret = 0;
4825		ins_nr = 0;
4826	}
4827
4828	btrfs_release_path(path);
4829	btrfs_release_path(dst_path);
4830	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4831	if (err)
4832		goto out_unlock;
4833	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4834		btrfs_release_path(path);
4835		btrfs_release_path(dst_path);
4836		err = btrfs_log_trailing_hole(trans, root, inode, path);
4837		if (err)
4838			goto out_unlock;
4839	}
4840log_extents:
4841	btrfs_release_path(path);
4842	btrfs_release_path(dst_path);
4843	if (need_log_inode_item) {
4844		err = log_inode_item(trans, log, dst_path, inode);
4845		if (err)
4846			goto out_unlock;
4847	}
4848	if (fast_search) {
4849		/*
4850		 * Some ordered extents started by fsync might have completed
4851		 * before we collected the ordered extents in logged_list, which
4852		 * means they're gone, not in our logged_list nor in the inode's
4853		 * ordered tree. We want the application/user space to know an
4854		 * error happened while attempting to persist file data so that
4855		 * it can take proper action. If such error happened, we leave
4856		 * without writing to the log tree and the fsync must report the
4857		 * file data write error and not commit the current transaction.
4858		 */
4859		err = btrfs_inode_check_errors(inode);
4860		if (err) {
4861			ctx->io_err = err;
4862			goto out_unlock;
4863		}
4864		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4865						&logged_list, ctx, start, end);
4866		if (ret) {
4867			err = ret;
4868			goto out_unlock;
4869		}
4870	} else if (inode_only == LOG_INODE_ALL) {
4871		struct extent_map *em, *n;
4872
4873		write_lock(&em_tree->lock);
4874		/*
4875		 * We can't just remove every em if we're called for a ranged
4876		 * fsync - that is, one that doesn't cover the whole possible
4877		 * file range (0 to LLONG_MAX). This is because we can have
4878		 * em's that fall outside the range we're logging and therefore
4879		 * their ordered operations haven't completed yet
4880		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4881		 * didn't get their respective file extent item in the fs/subvol
4882		 * tree yet, and need to let the next fast fsync (one which
4883		 * consults the list of modified extent maps) find the em so
4884		 * that it logs a matching file extent item and waits for the
4885		 * respective ordered operation to complete (if it's still
4886		 * running).
4887		 *
4888		 * Removing every em outside the range we're logging would make
4889		 * the next fast fsync not log their matching file extent items,
4890		 * therefore making us lose data after a log replay.
4891		 */
4892		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4893					 list) {
4894			const u64 mod_end = em->mod_start + em->mod_len - 1;
4895
4896			if (em->mod_start >= start && mod_end <= end)
4897				list_del_init(&em->list);
4898		}
4899		write_unlock(&em_tree->lock);
4900	}
4901
4902	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4903		ret = log_directory_changes(trans, root, inode, path, dst_path,
4904					    ctx);
4905		if (ret) {
4906			err = ret;
4907			goto out_unlock;
4908		}
4909	}
4910
4911	spin_lock(&BTRFS_I(inode)->lock);
4912	BTRFS_I(inode)->logged_trans = trans->transid;
4913	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4914	spin_unlock(&BTRFS_I(inode)->lock);
4915out_unlock:
4916	if (unlikely(err))
4917		btrfs_put_logged_extents(&logged_list);
4918	else
4919		btrfs_submit_logged_extents(&logged_list, log);
4920	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4921
4922	btrfs_free_path(path);
4923	btrfs_free_path(dst_path);
4924	return err;
4925}
4926
4927/*
4928 * Check if we must fallback to a transaction commit when logging an inode.
4929 * This must be called after logging the inode and is used only in the context
4930 * when fsyncing an inode requires the need to log some other inode - in which
4931 * case we can't lock the i_mutex of each other inode we need to log as that
4932 * can lead to deadlocks with concurrent fsync against other inodes (as we can
4933 * log inodes up or down in the hierarchy) or rename operations for example. So
4934 * we take the log_mutex of the inode after we have logged it and then check for
4935 * its last_unlink_trans value - this is safe because any task setting
4936 * last_unlink_trans must take the log_mutex and it must do this before it does
4937 * the actual unlink operation, so if we do this check before a concurrent task
4938 * sets last_unlink_trans it means we've logged a consistent version/state of
4939 * all the inode items, otherwise we are not sure and must do a transaction
4940 * commit (the concurrent task migth have only updated last_unlink_trans before
4941 * we logged the inode or it might have also done the unlink).
4942 */
4943static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
4944					  struct inode *inode)
4945{
4946	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4947	bool ret = false;
4948
4949	mutex_lock(&BTRFS_I(inode)->log_mutex);
4950	if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
4951		/*
4952		 * Make sure any commits to the log are forced to be full
4953		 * commits.
4954		 */
4955		btrfs_set_log_full_commit(fs_info, trans);
4956		ret = true;
4957	}
4958	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4959
4960	return ret;
4961}
4962
4963/*
4964 * follow the dentry parent pointers up the chain and see if any
4965 * of the directories in it require a full commit before they can
4966 * be logged.  Returns zero if nothing special needs to be done or 1 if
4967 * a full commit is required.
4968 */
4969static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4970					       struct inode *inode,
4971					       struct dentry *parent,
4972					       struct super_block *sb,
4973					       u64 last_committed)
4974{
4975	int ret = 0;
 
4976	struct dentry *old_parent = NULL;
4977	struct inode *orig_inode = inode;
4978
4979	/*
4980	 * for regular files, if its inode is already on disk, we don't
4981	 * have to worry about the parents at all.  This is because
4982	 * we can use the last_unlink_trans field to record renames
4983	 * and other fun in this file.
4984	 */
4985	if (S_ISREG(inode->i_mode) &&
4986	    BTRFS_I(inode)->generation <= last_committed &&
4987	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4988			goto out;
4989
4990	if (!S_ISDIR(inode->i_mode)) {
4991		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4992			goto out;
4993		inode = d_inode(parent);
4994	}
4995
4996	while (1) {
4997		/*
4998		 * If we are logging a directory then we start with our inode,
4999		 * not our parents inode, so we need to skipp setting the
5000		 * logged_trans so that further down in the log code we don't
5001		 * think this inode has already been logged.
5002		 */
5003		if (inode != orig_inode)
5004			BTRFS_I(inode)->logged_trans = trans->transid;
5005		smp_mb();
5006
5007		if (btrfs_must_commit_transaction(trans, inode)) {
 
 
 
 
 
 
 
 
5008			ret = 1;
5009			break;
5010		}
5011
5012		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5013			break;
5014
5015		if (IS_ROOT(parent))
5016			break;
5017
5018		parent = dget_parent(parent);
5019		dput(old_parent);
5020		old_parent = parent;
5021		inode = d_inode(parent);
5022
5023	}
5024	dput(old_parent);
5025out:
5026	return ret;
5027}
5028
5029struct btrfs_dir_list {
5030	u64 ino;
5031	struct list_head list;
5032};
5033
5034/*
5035 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5036 * details about the why it is needed.
5037 * This is a recursive operation - if an existing dentry corresponds to a
5038 * directory, that directory's new entries are logged too (same behaviour as
5039 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5040 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5041 * complains about the following circular lock dependency / possible deadlock:
5042 *
5043 *        CPU0                                        CPU1
5044 *        ----                                        ----
5045 * lock(&type->i_mutex_dir_key#3/2);
5046 *                                            lock(sb_internal#2);
5047 *                                            lock(&type->i_mutex_dir_key#3/2);
5048 * lock(&sb->s_type->i_mutex_key#14);
5049 *
5050 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5051 * sb_start_intwrite() in btrfs_start_transaction().
5052 * Not locking i_mutex of the inodes is still safe because:
5053 *
5054 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5055 *    that while logging the inode new references (names) are added or removed
5056 *    from the inode, leaving the logged inode item with a link count that does
5057 *    not match the number of logged inode reference items. This is fine because
5058 *    at log replay time we compute the real number of links and correct the
5059 *    link count in the inode item (see replay_one_buffer() and
5060 *    link_to_fixup_dir());
5061 *
5062 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5063 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5064 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5065 *    has a size that doesn't match the sum of the lengths of all the logged
5066 *    names. This does not result in a problem because if a dir_item key is
5067 *    logged but its matching dir_index key is not logged, at log replay time we
5068 *    don't use it to replay the respective name (see replay_one_name()). On the
5069 *    other hand if only the dir_index key ends up being logged, the respective
5070 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5071 *    keys created (see replay_one_name()).
5072 *    The directory's inode item with a wrong i_size is not a problem as well,
5073 *    since we don't use it at log replay time to set the i_size in the inode
5074 *    item of the fs/subvol tree (see overwrite_item()).
5075 */
5076static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5077				struct btrfs_root *root,
5078				struct inode *start_inode,
5079				struct btrfs_log_ctx *ctx)
5080{
5081	struct btrfs_root *log = root->log_root;
5082	struct btrfs_path *path;
5083	LIST_HEAD(dir_list);
5084	struct btrfs_dir_list *dir_elem;
5085	int ret = 0;
5086
5087	path = btrfs_alloc_path();
5088	if (!path)
5089		return -ENOMEM;
5090
5091	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5092	if (!dir_elem) {
5093		btrfs_free_path(path);
5094		return -ENOMEM;
5095	}
5096	dir_elem->ino = btrfs_ino(start_inode);
5097	list_add_tail(&dir_elem->list, &dir_list);
5098
5099	while (!list_empty(&dir_list)) {
5100		struct extent_buffer *leaf;
5101		struct btrfs_key min_key;
5102		int nritems;
5103		int i;
5104
5105		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5106					    list);
5107		if (ret)
5108			goto next_dir_inode;
5109
5110		min_key.objectid = dir_elem->ino;
5111		min_key.type = BTRFS_DIR_ITEM_KEY;
5112		min_key.offset = 0;
5113again:
5114		btrfs_release_path(path);
5115		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5116		if (ret < 0) {
5117			goto next_dir_inode;
5118		} else if (ret > 0) {
5119			ret = 0;
5120			goto next_dir_inode;
5121		}
5122
5123process_leaf:
5124		leaf = path->nodes[0];
5125		nritems = btrfs_header_nritems(leaf);
5126		for (i = path->slots[0]; i < nritems; i++) {
5127			struct btrfs_dir_item *di;
5128			struct btrfs_key di_key;
5129			struct inode *di_inode;
5130			struct btrfs_dir_list *new_dir_elem;
5131			int log_mode = LOG_INODE_EXISTS;
5132			int type;
5133
5134			btrfs_item_key_to_cpu(leaf, &min_key, i);
5135			if (min_key.objectid != dir_elem->ino ||
5136			    min_key.type != BTRFS_DIR_ITEM_KEY)
5137				goto next_dir_inode;
5138
5139			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5140			type = btrfs_dir_type(leaf, di);
5141			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5142			    type != BTRFS_FT_DIR)
5143				continue;
5144			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5145			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5146				continue;
5147
5148			di_inode = btrfs_iget(root->fs_info->sb, &di_key,
5149					      root, NULL);
5150			if (IS_ERR(di_inode)) {
5151				ret = PTR_ERR(di_inode);
5152				goto next_dir_inode;
5153			}
5154
5155			if (btrfs_inode_in_log(di_inode, trans->transid)) {
5156				iput(di_inode);
5157				continue;
5158			}
5159
5160			ctx->log_new_dentries = false;
5161			if (type == BTRFS_FT_DIR)
5162				log_mode = LOG_INODE_ALL;
5163			btrfs_release_path(path);
5164			ret = btrfs_log_inode(trans, root, di_inode,
5165					      log_mode, 0, LLONG_MAX, ctx);
5166			if (!ret &&
5167			    btrfs_must_commit_transaction(trans, di_inode))
5168				ret = 1;
5169			iput(di_inode);
5170			if (ret)
5171				goto next_dir_inode;
5172			if (ctx->log_new_dentries) {
5173				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5174						       GFP_NOFS);
5175				if (!new_dir_elem) {
5176					ret = -ENOMEM;
5177					goto next_dir_inode;
5178				}
5179				new_dir_elem->ino = di_key.objectid;
5180				list_add_tail(&new_dir_elem->list, &dir_list);
5181			}
5182			break;
5183		}
5184		if (i == nritems) {
5185			ret = btrfs_next_leaf(log, path);
5186			if (ret < 0) {
5187				goto next_dir_inode;
5188			} else if (ret > 0) {
5189				ret = 0;
5190				goto next_dir_inode;
5191			}
5192			goto process_leaf;
5193		}
5194		if (min_key.offset < (u64)-1) {
5195			min_key.offset++;
5196			goto again;
5197		}
5198next_dir_inode:
5199		list_del(&dir_elem->list);
5200		kfree(dir_elem);
5201	}
5202
5203	btrfs_free_path(path);
5204	return ret;
5205}
5206
5207static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5208				 struct inode *inode,
5209				 struct btrfs_log_ctx *ctx)
5210{
5211	int ret;
5212	struct btrfs_path *path;
5213	struct btrfs_key key;
5214	struct btrfs_root *root = BTRFS_I(inode)->root;
5215	const u64 ino = btrfs_ino(inode);
5216
5217	path = btrfs_alloc_path();
5218	if (!path)
5219		return -ENOMEM;
5220	path->skip_locking = 1;
5221	path->search_commit_root = 1;
5222
5223	key.objectid = ino;
5224	key.type = BTRFS_INODE_REF_KEY;
5225	key.offset = 0;
5226	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5227	if (ret < 0)
5228		goto out;
5229
5230	while (true) {
5231		struct extent_buffer *leaf = path->nodes[0];
5232		int slot = path->slots[0];
5233		u32 cur_offset = 0;
5234		u32 item_size;
5235		unsigned long ptr;
5236
5237		if (slot >= btrfs_header_nritems(leaf)) {
5238			ret = btrfs_next_leaf(root, path);
5239			if (ret < 0)
5240				goto out;
5241			else if (ret > 0)
5242				break;
5243			continue;
5244		}
5245
5246		btrfs_item_key_to_cpu(leaf, &key, slot);
5247		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5248		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5249			break;
5250
5251		item_size = btrfs_item_size_nr(leaf, slot);
5252		ptr = btrfs_item_ptr_offset(leaf, slot);
5253		while (cur_offset < item_size) {
5254			struct btrfs_key inode_key;
5255			struct inode *dir_inode;
5256
5257			inode_key.type = BTRFS_INODE_ITEM_KEY;
5258			inode_key.offset = 0;
5259
5260			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5261				struct btrfs_inode_extref *extref;
5262
5263				extref = (struct btrfs_inode_extref *)
5264					(ptr + cur_offset);
5265				inode_key.objectid = btrfs_inode_extref_parent(
5266					leaf, extref);
5267				cur_offset += sizeof(*extref);
5268				cur_offset += btrfs_inode_extref_name_len(leaf,
5269					extref);
5270			} else {
5271				inode_key.objectid = key.offset;
5272				cur_offset = item_size;
5273			}
5274
5275			dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5276					       root, NULL);
5277			/* If parent inode was deleted, skip it. */
5278			if (IS_ERR(dir_inode))
5279				continue;
5280
5281			ret = btrfs_log_inode(trans, root, dir_inode,
5282					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5283			if (!ret &&
5284			    btrfs_must_commit_transaction(trans, dir_inode))
5285				ret = 1;
5286			iput(dir_inode);
5287			if (ret)
5288				goto out;
5289		}
5290		path->slots[0]++;
5291	}
5292	ret = 0;
5293out:
5294	btrfs_free_path(path);
5295	return ret;
5296}
5297
5298/*
5299 * helper function around btrfs_log_inode to make sure newly created
5300 * parent directories also end up in the log.  A minimal inode and backref
5301 * only logging is done of any parent directories that are older than
5302 * the last committed transaction
5303 */
5304static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5305			    	  struct btrfs_root *root, struct inode *inode,
5306				  struct dentry *parent,
5307				  const loff_t start,
5308				  const loff_t end,
5309				  int exists_only,
5310				  struct btrfs_log_ctx *ctx)
5311{
5312	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5313	struct super_block *sb;
5314	struct dentry *old_parent = NULL;
5315	int ret = 0;
5316	u64 last_committed = root->fs_info->last_trans_committed;
5317	bool log_dentries = false;
5318	struct inode *orig_inode = inode;
5319
5320	sb = inode->i_sb;
5321
5322	if (btrfs_test_opt(root, NOTREELOG)) {
5323		ret = 1;
5324		goto end_no_trans;
5325	}
5326
5327	/*
5328	 * The prev transaction commit doesn't complete, we need do
5329	 * full commit by ourselves.
5330	 */
5331	if (root->fs_info->last_trans_log_full_commit >
5332	    root->fs_info->last_trans_committed) {
5333		ret = 1;
5334		goto end_no_trans;
5335	}
5336
5337	if (root != BTRFS_I(inode)->root ||
5338	    btrfs_root_refs(&root->root_item) == 0) {
5339		ret = 1;
5340		goto end_no_trans;
5341	}
5342
5343	ret = check_parent_dirs_for_sync(trans, inode, parent,
5344					 sb, last_committed);
5345	if (ret)
5346		goto end_no_trans;
5347
5348	if (btrfs_inode_in_log(inode, trans->transid)) {
5349		ret = BTRFS_NO_LOG_SYNC;
5350		goto end_no_trans;
5351	}
5352
5353	ret = start_log_trans(trans, root, ctx);
5354	if (ret)
5355		goto end_no_trans;
5356
5357	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5358	if (ret)
5359		goto end_trans;
5360
5361	/*
5362	 * for regular files, if its inode is already on disk, we don't
5363	 * have to worry about the parents at all.  This is because
5364	 * we can use the last_unlink_trans field to record renames
5365	 * and other fun in this file.
5366	 */
5367	if (S_ISREG(inode->i_mode) &&
5368	    BTRFS_I(inode)->generation <= last_committed &&
5369	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5370		ret = 0;
5371		goto end_trans;
5372	}
5373
5374	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5375		log_dentries = true;
5376
5377	/*
5378	 * On unlink we must make sure all our current and old parent directores
5379	 * inodes are fully logged. This is to prevent leaving dangling
5380	 * directory index entries in directories that were our parents but are
5381	 * not anymore. Not doing this results in old parent directory being
5382	 * impossible to delete after log replay (rmdir will always fail with
5383	 * error -ENOTEMPTY).
5384	 *
5385	 * Example 1:
5386	 *
5387	 * mkdir testdir
5388	 * touch testdir/foo
5389	 * ln testdir/foo testdir/bar
5390	 * sync
5391	 * unlink testdir/bar
5392	 * xfs_io -c fsync testdir/foo
5393	 * <power failure>
5394	 * mount fs, triggers log replay
5395	 *
5396	 * If we don't log the parent directory (testdir), after log replay the
5397	 * directory still has an entry pointing to the file inode using the bar
5398	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5399	 * the file inode has a link count of 1.
5400	 *
5401	 * Example 2:
5402	 *
5403	 * mkdir testdir
5404	 * touch foo
5405	 * ln foo testdir/foo2
5406	 * ln foo testdir/foo3
5407	 * sync
5408	 * unlink testdir/foo3
5409	 * xfs_io -c fsync foo
5410	 * <power failure>
5411	 * mount fs, triggers log replay
5412	 *
5413	 * Similar as the first example, after log replay the parent directory
5414	 * testdir still has an entry pointing to the inode file with name foo3
5415	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5416	 * and has a link count of 2.
5417	 */
5418	if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5419		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5420		if (ret)
5421			goto end_trans;
5422	}
5423
5424	while (1) {
5425		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5426			break;
5427
5428		inode = d_inode(parent);
5429		if (root != BTRFS_I(inode)->root)
5430			break;
5431
5432		if (BTRFS_I(inode)->generation > last_committed) {
5433			ret = btrfs_log_inode(trans, root, inode,
5434					      LOG_INODE_EXISTS,
5435					      0, LLONG_MAX, ctx);
5436			if (ret)
5437				goto end_trans;
5438		}
5439		if (IS_ROOT(parent))
5440			break;
5441
5442		parent = dget_parent(parent);
5443		dput(old_parent);
5444		old_parent = parent;
5445	}
5446	if (log_dentries)
5447		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5448	else
5449		ret = 0;
5450end_trans:
5451	dput(old_parent);
5452	if (ret < 0) {
5453		btrfs_set_log_full_commit(root->fs_info, trans);
 
5454		ret = 1;
5455	}
5456
5457	if (ret)
5458		btrfs_remove_log_ctx(root, ctx);
5459	btrfs_end_log_trans(root);
5460end_no_trans:
5461	return ret;
5462}
5463
5464/*
5465 * it is not safe to log dentry if the chunk root has added new
5466 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5467 * If this returns 1, you must commit the transaction to safely get your
5468 * data on disk.
5469 */
5470int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5471			  struct btrfs_root *root, struct dentry *dentry,
5472			  const loff_t start,
5473			  const loff_t end,
5474			  struct btrfs_log_ctx *ctx)
5475{
5476	struct dentry *parent = dget_parent(dentry);
5477	int ret;
5478
5479	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5480				     start, end, 0, ctx);
5481	dput(parent);
5482
5483	return ret;
5484}
5485
5486/*
5487 * should be called during mount to recover any replay any log trees
5488 * from the FS
5489 */
5490int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5491{
5492	int ret;
5493	struct btrfs_path *path;
5494	struct btrfs_trans_handle *trans;
5495	struct btrfs_key key;
5496	struct btrfs_key found_key;
5497	struct btrfs_key tmp_key;
5498	struct btrfs_root *log;
5499	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5500	struct walk_control wc = {
5501		.process_func = process_one_buffer,
5502		.stage = 0,
5503	};
5504
5505	path = btrfs_alloc_path();
5506	if (!path)
5507		return -ENOMEM;
5508
5509	fs_info->log_root_recovering = 1;
5510
5511	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5512	if (IS_ERR(trans)) {
5513		ret = PTR_ERR(trans);
5514		goto error;
5515	}
5516
5517	wc.trans = trans;
5518	wc.pin = 1;
5519
5520	ret = walk_log_tree(trans, log_root_tree, &wc);
5521	if (ret) {
5522		btrfs_std_error(fs_info, ret, "Failed to pin buffers while "
5523			    "recovering log root tree.");
5524		goto error;
5525	}
5526
5527again:
5528	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5529	key.offset = (u64)-1;
5530	key.type = BTRFS_ROOT_ITEM_KEY;
5531
5532	while (1) {
5533		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5534
5535		if (ret < 0) {
5536			btrfs_std_error(fs_info, ret,
5537				    "Couldn't find tree log root.");
5538			goto error;
5539		}
5540		if (ret > 0) {
5541			if (path->slots[0] == 0)
5542				break;
5543			path->slots[0]--;
5544		}
5545		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5546				      path->slots[0]);
5547		btrfs_release_path(path);
5548		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5549			break;
5550
5551		log = btrfs_read_fs_root(log_root_tree, &found_key);
 
5552		if (IS_ERR(log)) {
5553			ret = PTR_ERR(log);
5554			btrfs_std_error(fs_info, ret,
5555				    "Couldn't read tree log root.");
5556			goto error;
5557		}
5558
5559		tmp_key.objectid = found_key.offset;
5560		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5561		tmp_key.offset = (u64)-1;
5562
5563		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5564		if (IS_ERR(wc.replay_dest)) {
5565			ret = PTR_ERR(wc.replay_dest);
5566			free_extent_buffer(log->node);
5567			free_extent_buffer(log->commit_root);
5568			kfree(log);
5569			btrfs_std_error(fs_info, ret, "Couldn't read target root "
5570				    "for tree log recovery.");
5571			goto error;
5572		}
5573
5574		wc.replay_dest->log_root = log;
5575		btrfs_record_root_in_trans(trans, wc.replay_dest);
5576		ret = walk_log_tree(trans, log, &wc);
 
5577
5578		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5579			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5580						      path);
 
5581		}
5582
5583		key.offset = found_key.offset - 1;
5584		wc.replay_dest->log_root = NULL;
5585		free_extent_buffer(log->node);
5586		free_extent_buffer(log->commit_root);
5587		kfree(log);
5588
5589		if (ret)
5590			goto error;
5591
5592		if (found_key.offset == 0)
5593			break;
5594	}
5595	btrfs_release_path(path);
5596
5597	/* step one is to pin it all, step two is to replay just inodes */
5598	if (wc.pin) {
5599		wc.pin = 0;
5600		wc.process_func = replay_one_buffer;
5601		wc.stage = LOG_WALK_REPLAY_INODES;
5602		goto again;
5603	}
5604	/* step three is to replay everything */
5605	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5606		wc.stage++;
5607		goto again;
5608	}
5609
5610	btrfs_free_path(path);
5611
5612	/* step 4: commit the transaction, which also unpins the blocks */
5613	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5614	if (ret)
5615		return ret;
5616
5617	free_extent_buffer(log_root_tree->node);
5618	log_root_tree->log_root = NULL;
5619	fs_info->log_root_recovering = 0;
5620	kfree(log_root_tree);
5621
 
 
 
 
5622	return 0;
 
5623error:
5624	if (wc.trans)
5625		btrfs_end_transaction(wc.trans, fs_info->tree_root);
5626	btrfs_free_path(path);
5627	return ret;
5628}
5629
5630/*
5631 * there are some corner cases where we want to force a full
5632 * commit instead of allowing a directory to be logged.
5633 *
5634 * They revolve around files there were unlinked from the directory, and
5635 * this function updates the parent directory so that a full commit is
5636 * properly done if it is fsync'd later after the unlinks are done.
5637 *
5638 * Must be called before the unlink operations (updates to the subvolume tree,
5639 * inodes, etc) are done.
5640 */
5641void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5642			     struct inode *dir, struct inode *inode,
5643			     int for_rename)
5644{
5645	/*
5646	 * when we're logging a file, if it hasn't been renamed
5647	 * or unlinked, and its inode is fully committed on disk,
5648	 * we don't have to worry about walking up the directory chain
5649	 * to log its parents.
5650	 *
5651	 * So, we use the last_unlink_trans field to put this transid
5652	 * into the file.  When the file is logged we check it and
5653	 * don't log the parents if the file is fully on disk.
5654	 */
5655	if (S_ISREG(inode->i_mode)) {
5656		mutex_lock(&BTRFS_I(inode)->log_mutex);
5657		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5658		mutex_unlock(&BTRFS_I(inode)->log_mutex);
5659	}
5660
5661	/*
5662	 * if this directory was already logged any new
5663	 * names for this file/dir will get recorded
5664	 */
5665	smp_mb();
5666	if (BTRFS_I(dir)->logged_trans == trans->transid)
5667		return;
5668
5669	/*
5670	 * if the inode we're about to unlink was logged,
5671	 * the log will be properly updated for any new names
5672	 */
5673	if (BTRFS_I(inode)->logged_trans == trans->transid)
5674		return;
5675
5676	/*
5677	 * when renaming files across directories, if the directory
5678	 * there we're unlinking from gets fsync'd later on, there's
5679	 * no way to find the destination directory later and fsync it
5680	 * properly.  So, we have to be conservative and force commits
5681	 * so the new name gets discovered.
5682	 */
5683	if (for_rename)
5684		goto record;
5685
5686	/* we can safely do the unlink without any special recording */
5687	return;
5688
5689record:
5690	mutex_lock(&BTRFS_I(dir)->log_mutex);
5691	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5692	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5693}
5694
5695/*
5696 * Make sure that if someone attempts to fsync the parent directory of a deleted
5697 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5698 * that after replaying the log tree of the parent directory's root we will not
5699 * see the snapshot anymore and at log replay time we will not see any log tree
5700 * corresponding to the deleted snapshot's root, which could lead to replaying
5701 * it after replaying the log tree of the parent directory (which would replay
5702 * the snapshot delete operation).
5703 *
5704 * Must be called before the actual snapshot destroy operation (updates to the
5705 * parent root and tree of tree roots trees, etc) are done.
5706 */
5707void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5708				   struct inode *dir)
5709{
5710	mutex_lock(&BTRFS_I(dir)->log_mutex);
5711	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5712	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5713}
5714
5715/*
5716 * Call this after adding a new name for a file and it will properly
5717 * update the log to reflect the new name.
5718 *
5719 * It will return zero if all goes well, and it will return 1 if a
5720 * full transaction commit is required.
5721 */
5722int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5723			struct inode *inode, struct inode *old_dir,
5724			struct dentry *parent)
5725{
5726	struct btrfs_root * root = BTRFS_I(inode)->root;
5727
5728	/*
5729	 * this will force the logging code to walk the dentry chain
5730	 * up for the file
5731	 */
5732	if (S_ISREG(inode->i_mode))
5733		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5734
5735	/*
5736	 * if this inode hasn't been logged and directory we're renaming it
5737	 * from hasn't been logged, we don't need to log it
5738	 */
5739	if (BTRFS_I(inode)->logged_trans <=
5740	    root->fs_info->last_trans_committed &&
5741	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5742		    root->fs_info->last_trans_committed))
5743		return 0;
5744
5745	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5746				      LLONG_MAX, 1, NULL);
5747}
5748
v3.5.6
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include "ctree.h"
  22#include "transaction.h"
 
  23#include "disk-io.h"
  24#include "locking.h"
  25#include "print-tree.h"
  26#include "compat.h"
  27#include "tree-log.h"
 
  28
  29/* magic values for the inode_only field in btrfs_log_inode:
  30 *
  31 * LOG_INODE_ALL means to log everything
  32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  33 * during log replay
  34 */
  35#define LOG_INODE_ALL 0
  36#define LOG_INODE_EXISTS 1
  37
  38/*
  39 * directory trouble cases
  40 *
  41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  42 * log, we must force a full commit before doing an fsync of the directory
  43 * where the unlink was done.
  44 * ---> record transid of last unlink/rename per directory
  45 *
  46 * mkdir foo/some_dir
  47 * normal commit
  48 * rename foo/some_dir foo2/some_dir
  49 * mkdir foo/some_dir
  50 * fsync foo/some_dir/some_file
  51 *
  52 * The fsync above will unlink the original some_dir without recording
  53 * it in its new location (foo2).  After a crash, some_dir will be gone
  54 * unless the fsync of some_file forces a full commit
  55 *
  56 * 2) we must log any new names for any file or dir that is in the fsync
  57 * log. ---> check inode while renaming/linking.
  58 *
  59 * 2a) we must log any new names for any file or dir during rename
  60 * when the directory they are being removed from was logged.
  61 * ---> check inode and old parent dir during rename
  62 *
  63 *  2a is actually the more important variant.  With the extra logging
  64 *  a crash might unlink the old name without recreating the new one
  65 *
  66 * 3) after a crash, we must go through any directories with a link count
  67 * of zero and redo the rm -rf
  68 *
  69 * mkdir f1/foo
  70 * normal commit
  71 * rm -rf f1/foo
  72 * fsync(f1)
  73 *
  74 * The directory f1 was fully removed from the FS, but fsync was never
  75 * called on f1, only its parent dir.  After a crash the rm -rf must
  76 * be replayed.  This must be able to recurse down the entire
  77 * directory tree.  The inode link count fixup code takes care of the
  78 * ugly details.
  79 */
  80
  81/*
  82 * stages for the tree walking.  The first
  83 * stage (0) is to only pin down the blocks we find
  84 * the second stage (1) is to make sure that all the inodes
  85 * we find in the log are created in the subvolume.
  86 *
  87 * The last stage is to deal with directories and links and extents
  88 * and all the other fun semantics
  89 */
  90#define LOG_WALK_PIN_ONLY 0
  91#define LOG_WALK_REPLAY_INODES 1
  92#define LOG_WALK_REPLAY_ALL 2
 
  93
  94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  95			     struct btrfs_root *root, struct inode *inode,
  96			     int inode_only);
 
 
 
  97static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  98			     struct btrfs_root *root,
  99			     struct btrfs_path *path, u64 objectid);
 100static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 101				       struct btrfs_root *root,
 102				       struct btrfs_root *log,
 103				       struct btrfs_path *path,
 104				       u64 dirid, int del_all);
 105
 106/*
 107 * tree logging is a special write ahead log used to make sure that
 108 * fsyncs and O_SYNCs can happen without doing full tree commits.
 109 *
 110 * Full tree commits are expensive because they require commonly
 111 * modified blocks to be recowed, creating many dirty pages in the
 112 * extent tree an 4x-6x higher write load than ext3.
 113 *
 114 * Instead of doing a tree commit on every fsync, we use the
 115 * key ranges and transaction ids to find items for a given file or directory
 116 * that have changed in this transaction.  Those items are copied into
 117 * a special tree (one per subvolume root), that tree is written to disk
 118 * and then the fsync is considered complete.
 119 *
 120 * After a crash, items are copied out of the log-tree back into the
 121 * subvolume tree.  Any file data extents found are recorded in the extent
 122 * allocation tree, and the log-tree freed.
 123 *
 124 * The log tree is read three times, once to pin down all the extents it is
 125 * using in ram and once, once to create all the inodes logged in the tree
 126 * and once to do all the other items.
 127 */
 128
 129/*
 130 * start a sub transaction and setup the log tree
 131 * this increments the log tree writer count to make the people
 132 * syncing the tree wait for us to finish
 133 */
 134static int start_log_trans(struct btrfs_trans_handle *trans,
 135			   struct btrfs_root *root)
 
 136{
 137	int ret;
 138	int err = 0;
 139
 140	mutex_lock(&root->log_mutex);
 
 141	if (root->log_root) {
 
 
 
 
 
 142		if (!root->log_start_pid) {
 
 143			root->log_start_pid = current->pid;
 144			root->log_multiple_pids = false;
 145		} else if (root->log_start_pid != current->pid) {
 146			root->log_multiple_pids = true;
 147		}
 
 
 
 
 
 
 
 148
 149		root->log_batch++;
 150		atomic_inc(&root->log_writers);
 151		mutex_unlock(&root->log_mutex);
 152		return 0;
 153	}
 154	root->log_multiple_pids = false;
 155	root->log_start_pid = current->pid;
 156	mutex_lock(&root->fs_info->tree_log_mutex);
 157	if (!root->fs_info->log_root_tree) {
 158		ret = btrfs_init_log_root_tree(trans, root->fs_info);
 159		if (ret)
 160			err = ret;
 161	}
 162	if (err == 0 && !root->log_root) {
 163		ret = btrfs_add_log_tree(trans, root);
 164		if (ret)
 165			err = ret;
 
 
 
 166	}
 167	mutex_unlock(&root->fs_info->tree_log_mutex);
 168	root->log_batch++;
 169	atomic_inc(&root->log_writers);
 
 
 
 
 
 
 
 170	mutex_unlock(&root->log_mutex);
 171	return err;
 172}
 173
 174/*
 175 * returns 0 if there was a log transaction running and we were able
 176 * to join, or returns -ENOENT if there were not transactions
 177 * in progress
 178 */
 179static int join_running_log_trans(struct btrfs_root *root)
 180{
 181	int ret = -ENOENT;
 182
 183	smp_mb();
 184	if (!root->log_root)
 185		return -ENOENT;
 186
 187	mutex_lock(&root->log_mutex);
 188	if (root->log_root) {
 189		ret = 0;
 190		atomic_inc(&root->log_writers);
 191	}
 192	mutex_unlock(&root->log_mutex);
 193	return ret;
 194}
 195
 196/*
 197 * This either makes the current running log transaction wait
 198 * until you call btrfs_end_log_trans() or it makes any future
 199 * log transactions wait until you call btrfs_end_log_trans()
 200 */
 201int btrfs_pin_log_trans(struct btrfs_root *root)
 202{
 203	int ret = -ENOENT;
 204
 205	mutex_lock(&root->log_mutex);
 206	atomic_inc(&root->log_writers);
 207	mutex_unlock(&root->log_mutex);
 208	return ret;
 209}
 210
 211/*
 212 * indicate we're done making changes to the log tree
 213 * and wake up anyone waiting to do a sync
 214 */
 215void btrfs_end_log_trans(struct btrfs_root *root)
 216{
 217	if (atomic_dec_and_test(&root->log_writers)) {
 218		smp_mb();
 
 
 219		if (waitqueue_active(&root->log_writer_wait))
 220			wake_up(&root->log_writer_wait);
 221	}
 222}
 223
 224
 225/*
 226 * the walk control struct is used to pass state down the chain when
 227 * processing the log tree.  The stage field tells us which part
 228 * of the log tree processing we are currently doing.  The others
 229 * are state fields used for that specific part
 230 */
 231struct walk_control {
 232	/* should we free the extent on disk when done?  This is used
 233	 * at transaction commit time while freeing a log tree
 234	 */
 235	int free;
 236
 237	/* should we write out the extent buffer?  This is used
 238	 * while flushing the log tree to disk during a sync
 239	 */
 240	int write;
 241
 242	/* should we wait for the extent buffer io to finish?  Also used
 243	 * while flushing the log tree to disk for a sync
 244	 */
 245	int wait;
 246
 247	/* pin only walk, we record which extents on disk belong to the
 248	 * log trees
 249	 */
 250	int pin;
 251
 252	/* what stage of the replay code we're currently in */
 253	int stage;
 254
 255	/* the root we are currently replaying */
 256	struct btrfs_root *replay_dest;
 257
 258	/* the trans handle for the current replay */
 259	struct btrfs_trans_handle *trans;
 260
 261	/* the function that gets used to process blocks we find in the
 262	 * tree.  Note the extent_buffer might not be up to date when it is
 263	 * passed in, and it must be checked or read if you need the data
 264	 * inside it
 265	 */
 266	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 267			    struct walk_control *wc, u64 gen);
 268};
 269
 270/*
 271 * process_func used to pin down extents, write them or wait on them
 272 */
 273static int process_one_buffer(struct btrfs_root *log,
 274			      struct extent_buffer *eb,
 275			      struct walk_control *wc, u64 gen)
 276{
 
 
 
 
 
 
 
 
 
 
 
 
 277	if (wc->pin)
 278		btrfs_pin_extent_for_log_replay(wc->trans,
 279						log->fs_info->extent_root,
 280						eb->start, eb->len);
 281
 282	if (btrfs_buffer_uptodate(eb, gen, 0)) {
 
 
 283		if (wc->write)
 284			btrfs_write_tree_block(eb);
 285		if (wc->wait)
 286			btrfs_wait_tree_block_writeback(eb);
 287	}
 288	return 0;
 289}
 290
 291/*
 292 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 293 * to the src data we are copying out.
 294 *
 295 * root is the tree we are copying into, and path is a scratch
 296 * path for use in this function (it should be released on entry and
 297 * will be released on exit).
 298 *
 299 * If the key is already in the destination tree the existing item is
 300 * overwritten.  If the existing item isn't big enough, it is extended.
 301 * If it is too large, it is truncated.
 302 *
 303 * If the key isn't in the destination yet, a new item is inserted.
 304 */
 305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 306				   struct btrfs_root *root,
 307				   struct btrfs_path *path,
 308				   struct extent_buffer *eb, int slot,
 309				   struct btrfs_key *key)
 310{
 311	int ret;
 312	u32 item_size;
 313	u64 saved_i_size = 0;
 314	int save_old_i_size = 0;
 315	unsigned long src_ptr;
 316	unsigned long dst_ptr;
 317	int overwrite_root = 0;
 
 318
 319	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 320		overwrite_root = 1;
 321
 322	item_size = btrfs_item_size_nr(eb, slot);
 323	src_ptr = btrfs_item_ptr_offset(eb, slot);
 324
 325	/* look for the key in the destination tree */
 326	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 
 
 
 327	if (ret == 0) {
 328		char *src_copy;
 329		char *dst_copy;
 330		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 331						  path->slots[0]);
 332		if (dst_size != item_size)
 333			goto insert;
 334
 335		if (item_size == 0) {
 336			btrfs_release_path(path);
 337			return 0;
 338		}
 339		dst_copy = kmalloc(item_size, GFP_NOFS);
 340		src_copy = kmalloc(item_size, GFP_NOFS);
 341		if (!dst_copy || !src_copy) {
 342			btrfs_release_path(path);
 343			kfree(dst_copy);
 344			kfree(src_copy);
 345			return -ENOMEM;
 346		}
 347
 348		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 349
 350		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 351		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 352				   item_size);
 353		ret = memcmp(dst_copy, src_copy, item_size);
 354
 355		kfree(dst_copy);
 356		kfree(src_copy);
 357		/*
 358		 * they have the same contents, just return, this saves
 359		 * us from cowing blocks in the destination tree and doing
 360		 * extra writes that may not have been done by a previous
 361		 * sync
 362		 */
 363		if (ret == 0) {
 364			btrfs_release_path(path);
 365			return 0;
 366		}
 367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368	}
 369insert:
 370	btrfs_release_path(path);
 371	/* try to insert the key into the destination tree */
 
 372	ret = btrfs_insert_empty_item(trans, root, path,
 373				      key, item_size);
 
 374
 375	/* make sure any existing item is the correct size */
 376	if (ret == -EEXIST) {
 377		u32 found_size;
 378		found_size = btrfs_item_size_nr(path->nodes[0],
 379						path->slots[0]);
 380		if (found_size > item_size)
 381			btrfs_truncate_item(trans, root, path, item_size, 1);
 382		else if (found_size < item_size)
 383			btrfs_extend_item(trans, root, path,
 384					  item_size - found_size);
 385	} else if (ret) {
 386		return ret;
 387	}
 388	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 389					path->slots[0]);
 390
 391	/* don't overwrite an existing inode if the generation number
 392	 * was logged as zero.  This is done when the tree logging code
 393	 * is just logging an inode to make sure it exists after recovery.
 394	 *
 395	 * Also, don't overwrite i_size on directories during replay.
 396	 * log replay inserts and removes directory items based on the
 397	 * state of the tree found in the subvolume, and i_size is modified
 398	 * as it goes
 399	 */
 400	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 401		struct btrfs_inode_item *src_item;
 402		struct btrfs_inode_item *dst_item;
 403
 404		src_item = (struct btrfs_inode_item *)src_ptr;
 405		dst_item = (struct btrfs_inode_item *)dst_ptr;
 406
 407		if (btrfs_inode_generation(eb, src_item) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408			goto no_copy;
 
 409
 410		if (overwrite_root &&
 411		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 412		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 413			save_old_i_size = 1;
 414			saved_i_size = btrfs_inode_size(path->nodes[0],
 415							dst_item);
 416		}
 417	}
 418
 419	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 420			   src_ptr, item_size);
 421
 422	if (save_old_i_size) {
 423		struct btrfs_inode_item *dst_item;
 424		dst_item = (struct btrfs_inode_item *)dst_ptr;
 425		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 426	}
 427
 428	/* make sure the generation is filled in */
 429	if (key->type == BTRFS_INODE_ITEM_KEY) {
 430		struct btrfs_inode_item *dst_item;
 431		dst_item = (struct btrfs_inode_item *)dst_ptr;
 432		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 433			btrfs_set_inode_generation(path->nodes[0], dst_item,
 434						   trans->transid);
 435		}
 436	}
 437no_copy:
 438	btrfs_mark_buffer_dirty(path->nodes[0]);
 439	btrfs_release_path(path);
 440	return 0;
 441}
 442
 443/*
 444 * simple helper to read an inode off the disk from a given root
 445 * This can only be called for subvolume roots and not for the log
 446 */
 447static noinline struct inode *read_one_inode(struct btrfs_root *root,
 448					     u64 objectid)
 449{
 450	struct btrfs_key key;
 451	struct inode *inode;
 452
 453	key.objectid = objectid;
 454	key.type = BTRFS_INODE_ITEM_KEY;
 455	key.offset = 0;
 456	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 457	if (IS_ERR(inode)) {
 458		inode = NULL;
 459	} else if (is_bad_inode(inode)) {
 460		iput(inode);
 461		inode = NULL;
 462	}
 463	return inode;
 464}
 465
 466/* replays a single extent in 'eb' at 'slot' with 'key' into the
 467 * subvolume 'root'.  path is released on entry and should be released
 468 * on exit.
 469 *
 470 * extents in the log tree have not been allocated out of the extent
 471 * tree yet.  So, this completes the allocation, taking a reference
 472 * as required if the extent already exists or creating a new extent
 473 * if it isn't in the extent allocation tree yet.
 474 *
 475 * The extent is inserted into the file, dropping any existing extents
 476 * from the file that overlap the new one.
 477 */
 478static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 479				      struct btrfs_root *root,
 480				      struct btrfs_path *path,
 481				      struct extent_buffer *eb, int slot,
 482				      struct btrfs_key *key)
 483{
 484	int found_type;
 485	u64 mask = root->sectorsize - 1;
 486	u64 extent_end;
 487	u64 alloc_hint;
 488	u64 start = key->offset;
 489	u64 saved_nbytes;
 490	struct btrfs_file_extent_item *item;
 491	struct inode *inode = NULL;
 492	unsigned long size;
 493	int ret = 0;
 494
 495	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 496	found_type = btrfs_file_extent_type(eb, item);
 497
 498	if (found_type == BTRFS_FILE_EXTENT_REG ||
 499	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
 500		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
 501	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 502		size = btrfs_file_extent_inline_len(eb, item);
 503		extent_end = (start + size + mask) & ~mask;
 
 
 
 
 
 
 
 
 
 504	} else {
 505		ret = 0;
 506		goto out;
 507	}
 508
 509	inode = read_one_inode(root, key->objectid);
 510	if (!inode) {
 511		ret = -EIO;
 512		goto out;
 513	}
 514
 515	/*
 516	 * first check to see if we already have this extent in the
 517	 * file.  This must be done before the btrfs_drop_extents run
 518	 * so we don't try to drop this extent.
 519	 */
 520	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 521				       start, 0);
 522
 523	if (ret == 0 &&
 524	    (found_type == BTRFS_FILE_EXTENT_REG ||
 525	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 526		struct btrfs_file_extent_item cmp1;
 527		struct btrfs_file_extent_item cmp2;
 528		struct btrfs_file_extent_item *existing;
 529		struct extent_buffer *leaf;
 530
 531		leaf = path->nodes[0];
 532		existing = btrfs_item_ptr(leaf, path->slots[0],
 533					  struct btrfs_file_extent_item);
 534
 535		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 536				   sizeof(cmp1));
 537		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 538				   sizeof(cmp2));
 539
 540		/*
 541		 * we already have a pointer to this exact extent,
 542		 * we don't have to do anything
 543		 */
 544		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 545			btrfs_release_path(path);
 546			goto out;
 547		}
 548	}
 549	btrfs_release_path(path);
 550
 551	saved_nbytes = inode_get_bytes(inode);
 552	/* drop any overlapping extents */
 553	ret = btrfs_drop_extents(trans, inode, start, extent_end,
 554				 &alloc_hint, 1);
 555	BUG_ON(ret);
 556
 557	if (found_type == BTRFS_FILE_EXTENT_REG ||
 558	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 559		u64 offset;
 560		unsigned long dest_offset;
 561		struct btrfs_key ins;
 562
 563		ret = btrfs_insert_empty_item(trans, root, path, key,
 564					      sizeof(*item));
 565		BUG_ON(ret);
 
 566		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 567						    path->slots[0]);
 568		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 569				(unsigned long)item,  sizeof(*item));
 570
 571		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 572		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 573		ins.type = BTRFS_EXTENT_ITEM_KEY;
 574		offset = key->offset - btrfs_file_extent_offset(eb, item);
 575
 576		if (ins.objectid > 0) {
 577			u64 csum_start;
 578			u64 csum_end;
 579			LIST_HEAD(ordered_sums);
 580			/*
 581			 * is this extent already allocated in the extent
 582			 * allocation tree?  If so, just add a reference
 583			 */
 584			ret = btrfs_lookup_extent(root, ins.objectid,
 585						ins.offset);
 586			if (ret == 0) {
 587				ret = btrfs_inc_extent_ref(trans, root,
 588						ins.objectid, ins.offset,
 589						0, root->root_key.objectid,
 590						key->objectid, offset, 0);
 591				BUG_ON(ret);
 
 592			} else {
 593				/*
 594				 * insert the extent pointer in the extent
 595				 * allocation tree
 596				 */
 597				ret = btrfs_alloc_logged_file_extent(trans,
 598						root, root->root_key.objectid,
 599						key->objectid, offset, &ins);
 600				BUG_ON(ret);
 
 601			}
 602			btrfs_release_path(path);
 603
 604			if (btrfs_file_extent_compression(eb, item)) {
 605				csum_start = ins.objectid;
 606				csum_end = csum_start + ins.offset;
 607			} else {
 608				csum_start = ins.objectid +
 609					btrfs_file_extent_offset(eb, item);
 610				csum_end = csum_start +
 611					btrfs_file_extent_num_bytes(eb, item);
 612			}
 613
 614			ret = btrfs_lookup_csums_range(root->log_root,
 615						csum_start, csum_end - 1,
 616						&ordered_sums, 0);
 617			BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618			while (!list_empty(&ordered_sums)) {
 619				struct btrfs_ordered_sum *sums;
 620				sums = list_entry(ordered_sums.next,
 621						struct btrfs_ordered_sum,
 622						list);
 623				ret = btrfs_csum_file_blocks(trans,
 
 
 
 
 
 
 624						root->fs_info->csum_root,
 625						sums);
 626				BUG_ON(ret);
 627				list_del(&sums->list);
 628				kfree(sums);
 629			}
 
 
 630		} else {
 631			btrfs_release_path(path);
 632		}
 633	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 634		/* inline extents are easy, we just overwrite them */
 635		ret = overwrite_item(trans, root, path, eb, slot, key);
 636		BUG_ON(ret);
 
 637	}
 638
 639	inode_set_bytes(inode, saved_nbytes);
 640	btrfs_update_inode(trans, root, inode);
 641out:
 642	if (inode)
 643		iput(inode);
 644	return ret;
 645}
 646
 647/*
 648 * when cleaning up conflicts between the directory names in the
 649 * subvolume, directory names in the log and directory names in the
 650 * inode back references, we may have to unlink inodes from directories.
 651 *
 652 * This is a helper function to do the unlink of a specific directory
 653 * item
 654 */
 655static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 656				      struct btrfs_root *root,
 657				      struct btrfs_path *path,
 658				      struct inode *dir,
 659				      struct btrfs_dir_item *di)
 660{
 661	struct inode *inode;
 662	char *name;
 663	int name_len;
 664	struct extent_buffer *leaf;
 665	struct btrfs_key location;
 666	int ret;
 667
 668	leaf = path->nodes[0];
 669
 670	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 671	name_len = btrfs_dir_name_len(leaf, di);
 672	name = kmalloc(name_len, GFP_NOFS);
 673	if (!name)
 674		return -ENOMEM;
 675
 676	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 677	btrfs_release_path(path);
 678
 679	inode = read_one_inode(root, location.objectid);
 680	if (!inode) {
 681		kfree(name);
 682		return -EIO;
 683	}
 684
 685	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 686	BUG_ON(ret);
 
 687
 688	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 689	BUG_ON(ret);
 
 
 
 
 690	kfree(name);
 691
 692	iput(inode);
 693
 694	btrfs_run_delayed_items(trans, root);
 695	return ret;
 696}
 697
 698/*
 699 * helper function to see if a given name and sequence number found
 700 * in an inode back reference are already in a directory and correctly
 701 * point to this inode
 702 */
 703static noinline int inode_in_dir(struct btrfs_root *root,
 704				 struct btrfs_path *path,
 705				 u64 dirid, u64 objectid, u64 index,
 706				 const char *name, int name_len)
 707{
 708	struct btrfs_dir_item *di;
 709	struct btrfs_key location;
 710	int match = 0;
 711
 712	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 713					 index, name, name_len, 0);
 714	if (di && !IS_ERR(di)) {
 715		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 716		if (location.objectid != objectid)
 717			goto out;
 718	} else
 719		goto out;
 720	btrfs_release_path(path);
 721
 722	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 723	if (di && !IS_ERR(di)) {
 724		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 725		if (location.objectid != objectid)
 726			goto out;
 727	} else
 728		goto out;
 729	match = 1;
 730out:
 731	btrfs_release_path(path);
 732	return match;
 733}
 734
 735/*
 736 * helper function to check a log tree for a named back reference in
 737 * an inode.  This is used to decide if a back reference that is
 738 * found in the subvolume conflicts with what we find in the log.
 739 *
 740 * inode backreferences may have multiple refs in a single item,
 741 * during replay we process one reference at a time, and we don't
 742 * want to delete valid links to a file from the subvolume if that
 743 * link is also in the log.
 744 */
 745static noinline int backref_in_log(struct btrfs_root *log,
 746				   struct btrfs_key *key,
 747				   char *name, int namelen)
 
 748{
 749	struct btrfs_path *path;
 750	struct btrfs_inode_ref *ref;
 751	unsigned long ptr;
 752	unsigned long ptr_end;
 753	unsigned long name_ptr;
 754	int found_name_len;
 755	int item_size;
 756	int ret;
 757	int match = 0;
 758
 759	path = btrfs_alloc_path();
 760	if (!path)
 761		return -ENOMEM;
 762
 763	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 764	if (ret != 0)
 765		goto out;
 766
 
 
 
 
 
 
 
 
 
 
 767	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 768	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 769	ptr_end = ptr + item_size;
 770	while (ptr < ptr_end) {
 771		ref = (struct btrfs_inode_ref *)ptr;
 772		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 773		if (found_name_len == namelen) {
 774			name_ptr = (unsigned long)(ref + 1);
 775			ret = memcmp_extent_buffer(path->nodes[0], name,
 776						   name_ptr, namelen);
 777			if (ret == 0) {
 778				match = 1;
 779				goto out;
 780			}
 781		}
 782		ptr = (unsigned long)(ref + 1) + found_name_len;
 783	}
 784out:
 785	btrfs_free_path(path);
 786	return match;
 787}
 788
 789
 790/*
 791 * replay one inode back reference item found in the log tree.
 792 * eb, slot and key refer to the buffer and key found in the log tree.
 793 * root is the destination we are replaying into, and path is for temp
 794 * use by this function.  (it should be released on return).
 795 */
 796static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 797				  struct btrfs_root *root,
 798				  struct btrfs_root *log,
 799				  struct btrfs_path *path,
 800				  struct extent_buffer *eb, int slot,
 801				  struct btrfs_key *key)
 
 
 
 
 802{
 803	struct btrfs_inode_ref *ref;
 
 
 
 804	struct btrfs_dir_item *di;
 805	struct inode *dir;
 806	struct inode *inode;
 807	unsigned long ref_ptr;
 808	unsigned long ref_end;
 809	char *name;
 810	int namelen;
 811	int ret;
 812	int search_done = 0;
 813
 814	/*
 815	 * it is possible that we didn't log all the parent directories
 816	 * for a given inode.  If we don't find the dir, just don't
 817	 * copy the back ref in.  The link count fixup code will take
 818	 * care of the rest
 819	 */
 820	dir = read_one_inode(root, key->offset);
 821	if (!dir)
 822		return -ENOENT;
 823
 824	inode = read_one_inode(root, key->objectid);
 825	if (!inode) {
 826		iput(dir);
 827		return -EIO;
 828	}
 829
 830	ref_ptr = btrfs_item_ptr_offset(eb, slot);
 831	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 832
 833again:
 834	ref = (struct btrfs_inode_ref *)ref_ptr;
 835
 836	namelen = btrfs_inode_ref_name_len(eb, ref);
 837	name = kmalloc(namelen, GFP_NOFS);
 838	BUG_ON(!name);
 839
 840	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
 841
 842	/* if we already have a perfect match, we're done */
 843	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
 844			 btrfs_inode_ref_index(eb, ref),
 845			 name, namelen)) {
 846		goto out;
 847	}
 848
 849	/*
 850	 * look for a conflicting back reference in the metadata.
 851	 * if we find one we have to unlink that name of the file
 852	 * before we add our new link.  Later on, we overwrite any
 853	 * existing back reference, and we don't want to create
 854	 * dangling pointers in the directory.
 855	 */
 856
 857	if (search_done)
 858		goto insert;
 859
 860	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 861	if (ret == 0) {
 862		char *victim_name;
 863		int victim_name_len;
 864		struct btrfs_inode_ref *victim_ref;
 865		unsigned long ptr;
 866		unsigned long ptr_end;
 867		struct extent_buffer *leaf = path->nodes[0];
 
 868
 869		/* are we trying to overwrite a back ref for the root directory
 870		 * if so, just jump out, we're done
 871		 */
 872		if (key->objectid == key->offset)
 873			goto out_nowrite;
 874
 875		/* check all the names in this back reference to see
 876		 * if they are in the log.  if so, we allow them to stay
 877		 * otherwise they must be unlinked as a conflict
 878		 */
 879		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 880		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 881		while (ptr < ptr_end) {
 882			victim_ref = (struct btrfs_inode_ref *)ptr;
 883			victim_name_len = btrfs_inode_ref_name_len(leaf,
 884								   victim_ref);
 885			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 886			BUG_ON(!victim_name);
 
 887
 888			read_extent_buffer(leaf, victim_name,
 889					   (unsigned long)(victim_ref + 1),
 890					   victim_name_len);
 891
 892			if (!backref_in_log(log, key, victim_name,
 
 
 893					    victim_name_len)) {
 894				btrfs_inc_nlink(inode);
 895				btrfs_release_path(path);
 896
 897				ret = btrfs_unlink_inode(trans, root, dir,
 898							 inode, victim_name,
 899							 victim_name_len);
 900				btrfs_run_delayed_items(trans, root);
 
 
 
 
 
 
 
 901			}
 902			kfree(victim_name);
 
 903			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 904		}
 905		BUG_ON(ret);
 906
 907		/*
 908		 * NOTE: we have searched root tree and checked the
 909		 * coresponding ref, it does not need to check again.
 910		 */
 911		search_done = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912	}
 913	btrfs_release_path(path);
 914
 915	/* look for a conflicting sequence number */
 916	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
 917					 btrfs_inode_ref_index(eb, ref),
 918					 name, namelen, 0);
 919	if (di && !IS_ERR(di)) {
 920		ret = drop_one_dir_item(trans, root, path, dir, di);
 921		BUG_ON(ret);
 
 922	}
 923	btrfs_release_path(path);
 924
 925	/* look for a conflicing name */
 926	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
 927				   name, namelen, 0);
 928	if (di && !IS_ERR(di)) {
 929		ret = drop_one_dir_item(trans, root, path, dir, di);
 930		BUG_ON(ret);
 
 931	}
 932	btrfs_release_path(path);
 933
 934insert:
 935	/* insert our name */
 936	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
 937			     btrfs_inode_ref_index(eb, ref));
 938	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939
 940	btrfs_update_inode(trans, root, inode);
 
 941
 942out:
 943	ref_ptr = (unsigned long)(ref + 1) + namelen;
 944	kfree(name);
 945	if (ref_ptr < ref_end)
 946		goto again;
 
 
 
 947
 948	/* finally write the back reference in the inode */
 949	ret = overwrite_item(trans, root, path, eb, slot, key);
 950	BUG_ON(ret);
 951
 952out_nowrite:
 953	btrfs_release_path(path);
 
 954	iput(dir);
 955	iput(inode);
 956	return 0;
 957}
 958
 959static int insert_orphan_item(struct btrfs_trans_handle *trans,
 960			      struct btrfs_root *root, u64 offset)
 961{
 962	int ret;
 963	ret = btrfs_find_orphan_item(root, offset);
 964	if (ret > 0)
 965		ret = btrfs_insert_orphan_item(trans, root, offset);
 
 
 966	return ret;
 967}
 968
 
 
 
 
 
 
 
 
 
 
 
 
 
 969
 970/*
 971 * There are a few corners where the link count of the file can't
 972 * be properly maintained during replay.  So, instead of adding
 973 * lots of complexity to the log code, we just scan the backrefs
 974 * for any file that has been through replay.
 975 *
 976 * The scan will update the link count on the inode to reflect the
 977 * number of back refs found.  If it goes down to zero, the iput
 978 * will free the inode.
 979 */
 980static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 981					   struct btrfs_root *root,
 982					   struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983{
 984	struct btrfs_path *path;
 985	int ret;
 986	struct btrfs_key key;
 987	u64 nlink = 0;
 988	unsigned long ptr;
 989	unsigned long ptr_end;
 990	int name_len;
 991	u64 ino = btrfs_ino(inode);
 992
 993	key.objectid = ino;
 994	key.type = BTRFS_INODE_REF_KEY;
 995	key.offset = (u64)-1;
 996
 997	path = btrfs_alloc_path();
 998	if (!path)
 999		return -ENOMEM;
1000
1001	while (1) {
1002		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1003		if (ret < 0)
1004			break;
1005		if (ret > 0) {
1006			if (path->slots[0] == 0)
1007				break;
1008			path->slots[0]--;
1009		}
 
1010		btrfs_item_key_to_cpu(path->nodes[0], &key,
1011				      path->slots[0]);
1012		if (key.objectid != ino ||
1013		    key.type != BTRFS_INODE_REF_KEY)
1014			break;
1015		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1016		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1017						   path->slots[0]);
1018		while (ptr < ptr_end) {
1019			struct btrfs_inode_ref *ref;
1020
1021			ref = (struct btrfs_inode_ref *)ptr;
1022			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1023							    ref);
1024			ptr = (unsigned long)(ref + 1) + name_len;
1025			nlink++;
1026		}
1027
1028		if (key.offset == 0)
1029			break;
 
 
 
 
1030		key.offset--;
1031		btrfs_release_path(path);
1032	}
1033	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034	if (nlink != inode->i_nlink) {
1035		set_nlink(inode, nlink);
1036		btrfs_update_inode(trans, root, inode);
1037	}
1038	BTRFS_I(inode)->index_cnt = (u64)-1;
1039
1040	if (inode->i_nlink == 0) {
1041		if (S_ISDIR(inode->i_mode)) {
1042			ret = replay_dir_deletes(trans, root, NULL, path,
1043						 ino, 1);
1044			BUG_ON(ret);
 
1045		}
1046		ret = insert_orphan_item(trans, root, ino);
1047		BUG_ON(ret);
1048	}
 
 
1049	btrfs_free_path(path);
1050
1051	return 0;
1052}
1053
1054static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1055					    struct btrfs_root *root,
1056					    struct btrfs_path *path)
1057{
1058	int ret;
1059	struct btrfs_key key;
1060	struct inode *inode;
1061
1062	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1063	key.type = BTRFS_ORPHAN_ITEM_KEY;
1064	key.offset = (u64)-1;
1065	while (1) {
1066		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1067		if (ret < 0)
1068			break;
1069
1070		if (ret == 1) {
1071			if (path->slots[0] == 0)
1072				break;
1073			path->slots[0]--;
1074		}
1075
1076		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1077		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1078		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1079			break;
1080
1081		ret = btrfs_del_item(trans, root, path);
1082		if (ret)
1083			goto out;
1084
1085		btrfs_release_path(path);
1086		inode = read_one_inode(root, key.offset);
1087		if (!inode)
1088			return -EIO;
1089
1090		ret = fixup_inode_link_count(trans, root, inode);
1091		BUG_ON(ret);
1092
1093		iput(inode);
 
 
1094
1095		/*
1096		 * fixup on a directory may create new entries,
1097		 * make sure we always look for the highset possible
1098		 * offset
1099		 */
1100		key.offset = (u64)-1;
1101	}
1102	ret = 0;
1103out:
1104	btrfs_release_path(path);
1105	return ret;
1106}
1107
1108
1109/*
1110 * record a given inode in the fixup dir so we can check its link
1111 * count when replay is done.  The link count is incremented here
1112 * so the inode won't go away until we check it
1113 */
1114static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1115				      struct btrfs_root *root,
1116				      struct btrfs_path *path,
1117				      u64 objectid)
1118{
1119	struct btrfs_key key;
1120	int ret = 0;
1121	struct inode *inode;
1122
1123	inode = read_one_inode(root, objectid);
1124	if (!inode)
1125		return -EIO;
1126
1127	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1128	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1129	key.offset = objectid;
1130
1131	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1132
1133	btrfs_release_path(path);
1134	if (ret == 0) {
1135		btrfs_inc_nlink(inode);
1136		btrfs_update_inode(trans, root, inode);
 
 
 
1137	} else if (ret == -EEXIST) {
1138		ret = 0;
1139	} else {
1140		BUG();
1141	}
1142	iput(inode);
1143
1144	return ret;
1145}
1146
1147/*
1148 * when replaying the log for a directory, we only insert names
1149 * for inodes that actually exist.  This means an fsync on a directory
1150 * does not implicitly fsync all the new files in it
1151 */
1152static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1153				    struct btrfs_root *root,
1154				    struct btrfs_path *path,
1155				    u64 dirid, u64 index,
1156				    char *name, int name_len, u8 type,
1157				    struct btrfs_key *location)
1158{
1159	struct inode *inode;
1160	struct inode *dir;
1161	int ret;
1162
1163	inode = read_one_inode(root, location->objectid);
1164	if (!inode)
1165		return -ENOENT;
1166
1167	dir = read_one_inode(root, dirid);
1168	if (!dir) {
1169		iput(inode);
1170		return -EIO;
1171	}
 
1172	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1173
1174	/* FIXME, put inode into FIXUP list */
1175
1176	iput(inode);
1177	iput(dir);
1178	return ret;
1179}
1180
1181/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182 * take a single entry in a log directory item and replay it into
1183 * the subvolume.
1184 *
1185 * if a conflicting item exists in the subdirectory already,
1186 * the inode it points to is unlinked and put into the link count
1187 * fix up tree.
1188 *
1189 * If a name from the log points to a file or directory that does
1190 * not exist in the FS, it is skipped.  fsyncs on directories
1191 * do not force down inodes inside that directory, just changes to the
1192 * names or unlinks in a directory.
 
 
 
1193 */
1194static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1195				    struct btrfs_root *root,
1196				    struct btrfs_path *path,
1197				    struct extent_buffer *eb,
1198				    struct btrfs_dir_item *di,
1199				    struct btrfs_key *key)
1200{
1201	char *name;
1202	int name_len;
1203	struct btrfs_dir_item *dst_di;
1204	struct btrfs_key found_key;
1205	struct btrfs_key log_key;
1206	struct inode *dir;
1207	u8 log_type;
1208	int exists;
1209	int ret;
 
 
1210
1211	dir = read_one_inode(root, key->objectid);
1212	if (!dir)
1213		return -EIO;
1214
1215	name_len = btrfs_dir_name_len(eb, di);
1216	name = kmalloc(name_len, GFP_NOFS);
1217	if (!name)
1218		return -ENOMEM;
 
 
1219
1220	log_type = btrfs_dir_type(eb, di);
1221	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1222		   name_len);
1223
1224	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1225	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1226	if (exists == 0)
1227		exists = 1;
1228	else
1229		exists = 0;
1230	btrfs_release_path(path);
1231
1232	if (key->type == BTRFS_DIR_ITEM_KEY) {
1233		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1234				       name, name_len, 1);
1235	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1236		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1237						     key->objectid,
1238						     key->offset, name,
1239						     name_len, 1);
1240	} else {
1241		BUG();
 
 
1242	}
1243	if (IS_ERR_OR_NULL(dst_di)) {
1244		/* we need a sequence number to insert, so we only
1245		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1246		 */
1247		if (key->type != BTRFS_DIR_INDEX_KEY)
1248			goto out;
1249		goto insert;
1250	}
1251
1252	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1253	/* the existing item matches the logged item */
1254	if (found_key.objectid == log_key.objectid &&
1255	    found_key.type == log_key.type &&
1256	    found_key.offset == log_key.offset &&
1257	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
 
1258		goto out;
1259	}
1260
1261	/*
1262	 * don't drop the conflicting directory entry if the inode
1263	 * for the new entry doesn't exist
1264	 */
1265	if (!exists)
1266		goto out;
1267
1268	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1269	BUG_ON(ret);
 
1270
1271	if (key->type == BTRFS_DIR_INDEX_KEY)
1272		goto insert;
1273out:
1274	btrfs_release_path(path);
 
 
 
 
1275	kfree(name);
1276	iput(dir);
1277	return 0;
 
 
1278
1279insert:
 
 
 
 
 
 
 
1280	btrfs_release_path(path);
1281	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1282			      name, name_len, log_type, &log_key);
1283
1284	BUG_ON(ret && ret != -ENOENT);
 
 
 
 
1285	goto out;
1286}
1287
1288/*
1289 * find all the names in a directory item and reconcile them into
1290 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1291 * one name in a directory item, but the same code gets used for
1292 * both directory index types
1293 */
1294static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1295					struct btrfs_root *root,
1296					struct btrfs_path *path,
1297					struct extent_buffer *eb, int slot,
1298					struct btrfs_key *key)
1299{
1300	int ret;
1301	u32 item_size = btrfs_item_size_nr(eb, slot);
1302	struct btrfs_dir_item *di;
1303	int name_len;
1304	unsigned long ptr;
1305	unsigned long ptr_end;
 
1306
1307	ptr = btrfs_item_ptr_offset(eb, slot);
1308	ptr_end = ptr + item_size;
1309	while (ptr < ptr_end) {
1310		di = (struct btrfs_dir_item *)ptr;
1311		if (verify_dir_item(root, eb, di))
1312			return -EIO;
1313		name_len = btrfs_dir_name_len(eb, di);
1314		ret = replay_one_name(trans, root, path, eb, di, key);
1315		BUG_ON(ret);
 
1316		ptr = (unsigned long)(di + 1);
1317		ptr += name_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1318	}
1319	return 0;
 
1320}
1321
1322/*
1323 * directory replay has two parts.  There are the standard directory
1324 * items in the log copied from the subvolume, and range items
1325 * created in the log while the subvolume was logged.
1326 *
1327 * The range items tell us which parts of the key space the log
1328 * is authoritative for.  During replay, if a key in the subvolume
1329 * directory is in a logged range item, but not actually in the log
1330 * that means it was deleted from the directory before the fsync
1331 * and should be removed.
1332 */
1333static noinline int find_dir_range(struct btrfs_root *root,
1334				   struct btrfs_path *path,
1335				   u64 dirid, int key_type,
1336				   u64 *start_ret, u64 *end_ret)
1337{
1338	struct btrfs_key key;
1339	u64 found_end;
1340	struct btrfs_dir_log_item *item;
1341	int ret;
1342	int nritems;
1343
1344	if (*start_ret == (u64)-1)
1345		return 1;
1346
1347	key.objectid = dirid;
1348	key.type = key_type;
1349	key.offset = *start_ret;
1350
1351	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1352	if (ret < 0)
1353		goto out;
1354	if (ret > 0) {
1355		if (path->slots[0] == 0)
1356			goto out;
1357		path->slots[0]--;
1358	}
1359	if (ret != 0)
1360		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1361
1362	if (key.type != key_type || key.objectid != dirid) {
1363		ret = 1;
1364		goto next;
1365	}
1366	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1367			      struct btrfs_dir_log_item);
1368	found_end = btrfs_dir_log_end(path->nodes[0], item);
1369
1370	if (*start_ret >= key.offset && *start_ret <= found_end) {
1371		ret = 0;
1372		*start_ret = key.offset;
1373		*end_ret = found_end;
1374		goto out;
1375	}
1376	ret = 1;
1377next:
1378	/* check the next slot in the tree to see if it is a valid item */
1379	nritems = btrfs_header_nritems(path->nodes[0]);
1380	if (path->slots[0] >= nritems) {
1381		ret = btrfs_next_leaf(root, path);
1382		if (ret)
1383			goto out;
1384	} else {
1385		path->slots[0]++;
1386	}
1387
1388	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1389
1390	if (key.type != key_type || key.objectid != dirid) {
1391		ret = 1;
1392		goto out;
1393	}
1394	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1395			      struct btrfs_dir_log_item);
1396	found_end = btrfs_dir_log_end(path->nodes[0], item);
1397	*start_ret = key.offset;
1398	*end_ret = found_end;
1399	ret = 0;
1400out:
1401	btrfs_release_path(path);
1402	return ret;
1403}
1404
1405/*
1406 * this looks for a given directory item in the log.  If the directory
1407 * item is not in the log, the item is removed and the inode it points
1408 * to is unlinked
1409 */
1410static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1411				      struct btrfs_root *root,
1412				      struct btrfs_root *log,
1413				      struct btrfs_path *path,
1414				      struct btrfs_path *log_path,
1415				      struct inode *dir,
1416				      struct btrfs_key *dir_key)
1417{
1418	int ret;
1419	struct extent_buffer *eb;
1420	int slot;
1421	u32 item_size;
1422	struct btrfs_dir_item *di;
1423	struct btrfs_dir_item *log_di;
1424	int name_len;
1425	unsigned long ptr;
1426	unsigned long ptr_end;
1427	char *name;
1428	struct inode *inode;
1429	struct btrfs_key location;
1430
1431again:
1432	eb = path->nodes[0];
1433	slot = path->slots[0];
1434	item_size = btrfs_item_size_nr(eb, slot);
1435	ptr = btrfs_item_ptr_offset(eb, slot);
1436	ptr_end = ptr + item_size;
1437	while (ptr < ptr_end) {
1438		di = (struct btrfs_dir_item *)ptr;
1439		if (verify_dir_item(root, eb, di)) {
1440			ret = -EIO;
1441			goto out;
1442		}
1443
1444		name_len = btrfs_dir_name_len(eb, di);
1445		name = kmalloc(name_len, GFP_NOFS);
1446		if (!name) {
1447			ret = -ENOMEM;
1448			goto out;
1449		}
1450		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1451				  name_len);
1452		log_di = NULL;
1453		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1454			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1455						       dir_key->objectid,
1456						       name, name_len, 0);
1457		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1458			log_di = btrfs_lookup_dir_index_item(trans, log,
1459						     log_path,
1460						     dir_key->objectid,
1461						     dir_key->offset,
1462						     name, name_len, 0);
1463		}
1464		if (IS_ERR_OR_NULL(log_di)) {
1465			btrfs_dir_item_key_to_cpu(eb, di, &location);
1466			btrfs_release_path(path);
1467			btrfs_release_path(log_path);
1468			inode = read_one_inode(root, location.objectid);
1469			if (!inode) {
1470				kfree(name);
1471				return -EIO;
1472			}
1473
1474			ret = link_to_fixup_dir(trans, root,
1475						path, location.objectid);
1476			BUG_ON(ret);
1477			btrfs_inc_nlink(inode);
 
 
 
 
 
1478			ret = btrfs_unlink_inode(trans, root, dir, inode,
1479						 name, name_len);
1480			BUG_ON(ret);
1481
1482			btrfs_run_delayed_items(trans, root);
1483
1484			kfree(name);
1485			iput(inode);
 
 
1486
1487			/* there might still be more names under this key
1488			 * check and repeat if required
1489			 */
1490			ret = btrfs_search_slot(NULL, root, dir_key, path,
1491						0, 0);
1492			if (ret == 0)
1493				goto again;
1494			ret = 0;
1495			goto out;
 
 
 
1496		}
1497		btrfs_release_path(log_path);
1498		kfree(name);
1499
1500		ptr = (unsigned long)(di + 1);
1501		ptr += name_len;
1502	}
1503	ret = 0;
1504out:
1505	btrfs_release_path(path);
1506	btrfs_release_path(log_path);
1507	return ret;
1508}
1509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510/*
1511 * deletion replay happens before we copy any new directory items
1512 * out of the log or out of backreferences from inodes.  It
1513 * scans the log to find ranges of keys that log is authoritative for,
1514 * and then scans the directory to find items in those ranges that are
1515 * not present in the log.
1516 *
1517 * Anything we don't find in the log is unlinked and removed from the
1518 * directory.
1519 */
1520static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1521				       struct btrfs_root *root,
1522				       struct btrfs_root *log,
1523				       struct btrfs_path *path,
1524				       u64 dirid, int del_all)
1525{
1526	u64 range_start;
1527	u64 range_end;
1528	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1529	int ret = 0;
1530	struct btrfs_key dir_key;
1531	struct btrfs_key found_key;
1532	struct btrfs_path *log_path;
1533	struct inode *dir;
1534
1535	dir_key.objectid = dirid;
1536	dir_key.type = BTRFS_DIR_ITEM_KEY;
1537	log_path = btrfs_alloc_path();
1538	if (!log_path)
1539		return -ENOMEM;
1540
1541	dir = read_one_inode(root, dirid);
1542	/* it isn't an error if the inode isn't there, that can happen
1543	 * because we replay the deletes before we copy in the inode item
1544	 * from the log
1545	 */
1546	if (!dir) {
1547		btrfs_free_path(log_path);
1548		return 0;
1549	}
1550again:
1551	range_start = 0;
1552	range_end = 0;
1553	while (1) {
1554		if (del_all)
1555			range_end = (u64)-1;
1556		else {
1557			ret = find_dir_range(log, path, dirid, key_type,
1558					     &range_start, &range_end);
1559			if (ret != 0)
1560				break;
1561		}
1562
1563		dir_key.offset = range_start;
1564		while (1) {
1565			int nritems;
1566			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1567						0, 0);
1568			if (ret < 0)
1569				goto out;
1570
1571			nritems = btrfs_header_nritems(path->nodes[0]);
1572			if (path->slots[0] >= nritems) {
1573				ret = btrfs_next_leaf(root, path);
1574				if (ret)
1575					break;
1576			}
1577			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1578					      path->slots[0]);
1579			if (found_key.objectid != dirid ||
1580			    found_key.type != dir_key.type)
1581				goto next_type;
1582
1583			if (found_key.offset > range_end)
1584				break;
1585
1586			ret = check_item_in_log(trans, root, log, path,
1587						log_path, dir,
1588						&found_key);
1589			BUG_ON(ret);
 
1590			if (found_key.offset == (u64)-1)
1591				break;
1592			dir_key.offset = found_key.offset + 1;
1593		}
1594		btrfs_release_path(path);
1595		if (range_end == (u64)-1)
1596			break;
1597		range_start = range_end + 1;
1598	}
1599
1600next_type:
1601	ret = 0;
1602	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1603		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1604		dir_key.type = BTRFS_DIR_INDEX_KEY;
1605		btrfs_release_path(path);
1606		goto again;
1607	}
1608out:
1609	btrfs_release_path(path);
1610	btrfs_free_path(log_path);
1611	iput(dir);
1612	return ret;
1613}
1614
1615/*
1616 * the process_func used to replay items from the log tree.  This
1617 * gets called in two different stages.  The first stage just looks
1618 * for inodes and makes sure they are all copied into the subvolume.
1619 *
1620 * The second stage copies all the other item types from the log into
1621 * the subvolume.  The two stage approach is slower, but gets rid of
1622 * lots of complexity around inodes referencing other inodes that exist
1623 * only in the log (references come from either directory items or inode
1624 * back refs).
1625 */
1626static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1627			     struct walk_control *wc, u64 gen)
1628{
1629	int nritems;
1630	struct btrfs_path *path;
1631	struct btrfs_root *root = wc->replay_dest;
1632	struct btrfs_key key;
1633	int level;
1634	int i;
1635	int ret;
1636
1637	ret = btrfs_read_buffer(eb, gen);
1638	if (ret)
1639		return ret;
1640
1641	level = btrfs_header_level(eb);
1642
1643	if (level != 0)
1644		return 0;
1645
1646	path = btrfs_alloc_path();
1647	if (!path)
1648		return -ENOMEM;
1649
1650	nritems = btrfs_header_nritems(eb);
1651	for (i = 0; i < nritems; i++) {
1652		btrfs_item_key_to_cpu(eb, &key, i);
1653
1654		/* inode keys are done during the first stage */
1655		if (key.type == BTRFS_INODE_ITEM_KEY &&
1656		    wc->stage == LOG_WALK_REPLAY_INODES) {
1657			struct btrfs_inode_item *inode_item;
1658			u32 mode;
1659
1660			inode_item = btrfs_item_ptr(eb, i,
1661					    struct btrfs_inode_item);
 
 
 
 
1662			mode = btrfs_inode_mode(eb, inode_item);
1663			if (S_ISDIR(mode)) {
1664				ret = replay_dir_deletes(wc->trans,
1665					 root, log, path, key.objectid, 0);
1666				BUG_ON(ret);
 
1667			}
1668			ret = overwrite_item(wc->trans, root, path,
1669					     eb, i, &key);
1670			BUG_ON(ret);
 
1671
1672			/* for regular files, make sure corresponding
1673			 * orhpan item exist. extents past the new EOF
1674			 * will be truncated later by orphan cleanup.
1675			 */
1676			if (S_ISREG(mode)) {
1677				ret = insert_orphan_item(wc->trans, root,
1678							 key.objectid);
1679				BUG_ON(ret);
 
1680			}
1681
1682			ret = link_to_fixup_dir(wc->trans, root,
1683						path, key.objectid);
1684			BUG_ON(ret);
 
1685		}
 
 
 
 
 
 
 
 
 
1686		if (wc->stage < LOG_WALK_REPLAY_ALL)
1687			continue;
1688
1689		/* these keys are simply copied */
1690		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1691			ret = overwrite_item(wc->trans, root, path,
1692					     eb, i, &key);
1693			BUG_ON(ret);
1694		} else if (key.type == BTRFS_INODE_REF_KEY) {
 
 
1695			ret = add_inode_ref(wc->trans, root, log, path,
1696					    eb, i, &key);
1697			BUG_ON(ret && ret != -ENOENT);
 
 
1698		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1699			ret = replay_one_extent(wc->trans, root, path,
1700						eb, i, &key);
1701			BUG_ON(ret);
1702		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1703			   key.type == BTRFS_DIR_INDEX_KEY) {
1704			ret = replay_one_dir_item(wc->trans, root, path,
1705						  eb, i, &key);
1706			BUG_ON(ret);
 
1707		}
1708	}
1709	btrfs_free_path(path);
1710	return 0;
1711}
1712
1713static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1714				   struct btrfs_root *root,
1715				   struct btrfs_path *path, int *level,
1716				   struct walk_control *wc)
1717{
1718	u64 root_owner;
1719	u64 bytenr;
1720	u64 ptr_gen;
1721	struct extent_buffer *next;
1722	struct extent_buffer *cur;
1723	struct extent_buffer *parent;
1724	u32 blocksize;
1725	int ret = 0;
1726
1727	WARN_ON(*level < 0);
1728	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1729
1730	while (*level > 0) {
1731		WARN_ON(*level < 0);
1732		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1733		cur = path->nodes[*level];
1734
1735		if (btrfs_header_level(cur) != *level)
1736			WARN_ON(1);
1737
1738		if (path->slots[*level] >=
1739		    btrfs_header_nritems(cur))
1740			break;
1741
1742		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1743		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1744		blocksize = btrfs_level_size(root, *level - 1);
1745
1746		parent = path->nodes[*level];
1747		root_owner = btrfs_header_owner(parent);
1748
1749		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1750		if (!next)
1751			return -ENOMEM;
1752
1753		if (*level == 1) {
1754			ret = wc->process_func(root, next, wc, ptr_gen);
1755			if (ret)
 
1756				return ret;
 
1757
1758			path->slots[*level]++;
1759			if (wc->free) {
1760				ret = btrfs_read_buffer(next, ptr_gen);
1761				if (ret) {
1762					free_extent_buffer(next);
1763					return ret;
1764				}
1765
1766				btrfs_tree_lock(next);
1767				btrfs_set_lock_blocking(next);
1768				clean_tree_block(trans, root, next);
1769				btrfs_wait_tree_block_writeback(next);
1770				btrfs_tree_unlock(next);
 
 
 
1771
1772				WARN_ON(root_owner !=
1773					BTRFS_TREE_LOG_OBJECTID);
1774				ret = btrfs_free_and_pin_reserved_extent(root,
1775							 bytenr, blocksize);
1776				BUG_ON(ret); /* -ENOMEM or logic errors */
 
 
 
1777			}
1778			free_extent_buffer(next);
1779			continue;
1780		}
1781		ret = btrfs_read_buffer(next, ptr_gen);
1782		if (ret) {
1783			free_extent_buffer(next);
1784			return ret;
1785		}
1786
1787		WARN_ON(*level <= 0);
1788		if (path->nodes[*level-1])
1789			free_extent_buffer(path->nodes[*level-1]);
1790		path->nodes[*level-1] = next;
1791		*level = btrfs_header_level(next);
1792		path->slots[*level] = 0;
1793		cond_resched();
1794	}
1795	WARN_ON(*level < 0);
1796	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1797
1798	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1799
1800	cond_resched();
1801	return 0;
1802}
1803
1804static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1805				 struct btrfs_root *root,
1806				 struct btrfs_path *path, int *level,
1807				 struct walk_control *wc)
1808{
1809	u64 root_owner;
1810	int i;
1811	int slot;
1812	int ret;
1813
1814	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1815		slot = path->slots[i];
1816		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1817			path->slots[i]++;
1818			*level = i;
1819			WARN_ON(*level == 0);
1820			return 0;
1821		} else {
1822			struct extent_buffer *parent;
1823			if (path->nodes[*level] == root->node)
1824				parent = path->nodes[*level];
1825			else
1826				parent = path->nodes[*level + 1];
1827
1828			root_owner = btrfs_header_owner(parent);
1829			ret = wc->process_func(root, path->nodes[*level], wc,
1830				 btrfs_header_generation(path->nodes[*level]));
1831			if (ret)
1832				return ret;
1833
1834			if (wc->free) {
1835				struct extent_buffer *next;
1836
1837				next = path->nodes[*level];
1838
1839				btrfs_tree_lock(next);
1840				btrfs_set_lock_blocking(next);
1841				clean_tree_block(trans, root, next);
1842				btrfs_wait_tree_block_writeback(next);
1843				btrfs_tree_unlock(next);
 
 
 
1844
1845				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1846				ret = btrfs_free_and_pin_reserved_extent(root,
1847						path->nodes[*level]->start,
1848						path->nodes[*level]->len);
1849				BUG_ON(ret);
 
1850			}
1851			free_extent_buffer(path->nodes[*level]);
1852			path->nodes[*level] = NULL;
1853			*level = i + 1;
1854		}
1855	}
1856	return 1;
1857}
1858
1859/*
1860 * drop the reference count on the tree rooted at 'snap'.  This traverses
1861 * the tree freeing any blocks that have a ref count of zero after being
1862 * decremented.
1863 */
1864static int walk_log_tree(struct btrfs_trans_handle *trans,
1865			 struct btrfs_root *log, struct walk_control *wc)
1866{
1867	int ret = 0;
1868	int wret;
1869	int level;
1870	struct btrfs_path *path;
1871	int i;
1872	int orig_level;
1873
1874	path = btrfs_alloc_path();
1875	if (!path)
1876		return -ENOMEM;
1877
1878	level = btrfs_header_level(log->node);
1879	orig_level = level;
1880	path->nodes[level] = log->node;
1881	extent_buffer_get(log->node);
1882	path->slots[level] = 0;
1883
1884	while (1) {
1885		wret = walk_down_log_tree(trans, log, path, &level, wc);
1886		if (wret > 0)
1887			break;
1888		if (wret < 0) {
1889			ret = wret;
1890			goto out;
1891		}
1892
1893		wret = walk_up_log_tree(trans, log, path, &level, wc);
1894		if (wret > 0)
1895			break;
1896		if (wret < 0) {
1897			ret = wret;
1898			goto out;
1899		}
1900	}
1901
1902	/* was the root node processed? if not, catch it here */
1903	if (path->nodes[orig_level]) {
1904		ret = wc->process_func(log, path->nodes[orig_level], wc,
1905			 btrfs_header_generation(path->nodes[orig_level]));
1906		if (ret)
1907			goto out;
1908		if (wc->free) {
1909			struct extent_buffer *next;
1910
1911			next = path->nodes[orig_level];
1912
1913			btrfs_tree_lock(next);
1914			btrfs_set_lock_blocking(next);
1915			clean_tree_block(trans, log, next);
1916			btrfs_wait_tree_block_writeback(next);
1917			btrfs_tree_unlock(next);
 
 
1918
1919			WARN_ON(log->root_key.objectid !=
1920				BTRFS_TREE_LOG_OBJECTID);
1921			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
1922							 next->len);
1923			BUG_ON(ret); /* -ENOMEM or logic errors */
 
1924		}
1925	}
1926
1927out:
1928	for (i = 0; i <= orig_level; i++) {
1929		if (path->nodes[i]) {
1930			free_extent_buffer(path->nodes[i]);
1931			path->nodes[i] = NULL;
1932		}
1933	}
1934	btrfs_free_path(path);
1935	return ret;
1936}
1937
1938/*
1939 * helper function to update the item for a given subvolumes log root
1940 * in the tree of log roots
1941 */
1942static int update_log_root(struct btrfs_trans_handle *trans,
1943			   struct btrfs_root *log)
1944{
1945	int ret;
1946
1947	if (log->log_transid == 1) {
1948		/* insert root item on the first sync */
1949		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1950				&log->root_key, &log->root_item);
1951	} else {
1952		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1953				&log->root_key, &log->root_item);
1954	}
1955	return ret;
1956}
1957
1958static int wait_log_commit(struct btrfs_trans_handle *trans,
1959			   struct btrfs_root *root, unsigned long transid)
1960{
1961	DEFINE_WAIT(wait);
1962	int index = transid % 2;
1963
1964	/*
1965	 * we only allow two pending log transactions at a time,
1966	 * so we know that if ours is more than 2 older than the
1967	 * current transaction, we're done
1968	 */
1969	do {
1970		prepare_to_wait(&root->log_commit_wait[index],
1971				&wait, TASK_UNINTERRUPTIBLE);
1972		mutex_unlock(&root->log_mutex);
1973
1974		if (root->fs_info->last_trans_log_full_commit !=
1975		    trans->transid && root->log_transid < transid + 2 &&
1976		    atomic_read(&root->log_commit[index]))
1977			schedule();
1978
1979		finish_wait(&root->log_commit_wait[index], &wait);
1980		mutex_lock(&root->log_mutex);
1981	} while (root->fs_info->last_trans_log_full_commit !=
1982		 trans->transid && root->log_transid < transid + 2 &&
1983		 atomic_read(&root->log_commit[index]));
1984	return 0;
1985}
1986
1987static void wait_for_writer(struct btrfs_trans_handle *trans,
1988			    struct btrfs_root *root)
1989{
1990	DEFINE_WAIT(wait);
1991	while (root->fs_info->last_trans_log_full_commit !=
1992	       trans->transid && atomic_read(&root->log_writers)) {
1993		prepare_to_wait(&root->log_writer_wait,
1994				&wait, TASK_UNINTERRUPTIBLE);
1995		mutex_unlock(&root->log_mutex);
1996		if (root->fs_info->last_trans_log_full_commit !=
1997		    trans->transid && atomic_read(&root->log_writers))
1998			schedule();
 
1999		mutex_lock(&root->log_mutex);
2000		finish_wait(&root->log_writer_wait, &wait);
2001	}
2002}
2003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2004/*
2005 * btrfs_sync_log does sends a given tree log down to the disk and
2006 * updates the super blocks to record it.  When this call is done,
2007 * you know that any inodes previously logged are safely on disk only
2008 * if it returns 0.
2009 *
2010 * Any other return value means you need to call btrfs_commit_transaction.
2011 * Some of the edge cases for fsyncing directories that have had unlinks
2012 * or renames done in the past mean that sometimes the only safe
2013 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2014 * that has happened.
2015 */
2016int btrfs_sync_log(struct btrfs_trans_handle *trans,
2017		   struct btrfs_root *root)
2018{
2019	int index1;
2020	int index2;
2021	int mark;
2022	int ret;
2023	struct btrfs_root *log = root->log_root;
2024	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2025	unsigned long log_transid = 0;
 
 
2026
2027	mutex_lock(&root->log_mutex);
2028	index1 = root->log_transid % 2;
 
 
 
 
 
 
2029	if (atomic_read(&root->log_commit[index1])) {
2030		wait_log_commit(trans, root, root->log_transid);
2031		mutex_unlock(&root->log_mutex);
2032		return 0;
2033	}
 
2034	atomic_set(&root->log_commit[index1], 1);
2035
2036	/* wait for previous tree log sync to complete */
2037	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2038		wait_log_commit(trans, root, root->log_transid - 1);
 
2039	while (1) {
2040		unsigned long batch = root->log_batch;
2041		/* when we're on an ssd, just kick the log commit out */
2042		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
 
2043			mutex_unlock(&root->log_mutex);
2044			schedule_timeout_uninterruptible(1);
2045			mutex_lock(&root->log_mutex);
2046		}
2047		wait_for_writer(trans, root);
2048		if (batch == root->log_batch)
2049			break;
2050	}
2051
2052	/* bail out if we need to do a full commit */
2053	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2054		ret = -EAGAIN;
 
2055		mutex_unlock(&root->log_mutex);
2056		goto out;
2057	}
2058
2059	log_transid = root->log_transid;
2060	if (log_transid % 2 == 0)
2061		mark = EXTENT_DIRTY;
2062	else
2063		mark = EXTENT_NEW;
2064
2065	/* we start IO on  all the marked extents here, but we don't actually
2066	 * wait for them until later.
2067	 */
 
2068	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2069	if (ret) {
 
2070		btrfs_abort_transaction(trans, root, ret);
 
 
2071		mutex_unlock(&root->log_mutex);
2072		goto out;
2073	}
2074
2075	btrfs_set_root_node(&log->root_item, log->node);
2076
2077	root->log_batch = 0;
2078	root->log_transid++;
2079	log->log_transid = root->log_transid;
2080	root->log_start_pid = 0;
2081	smp_mb();
2082	/*
2083	 * IO has been started, blocks of the log tree have WRITTEN flag set
2084	 * in their headers. new modifications of the log will be written to
2085	 * new positions. so it's safe to allow log writers to go in.
2086	 */
2087	mutex_unlock(&root->log_mutex);
2088
 
 
2089	mutex_lock(&log_root_tree->log_mutex);
2090	log_root_tree->log_batch++;
2091	atomic_inc(&log_root_tree->log_writers);
 
 
 
 
 
2092	mutex_unlock(&log_root_tree->log_mutex);
2093
2094	ret = update_log_root(trans, log);
2095
2096	mutex_lock(&log_root_tree->log_mutex);
2097	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2098		smp_mb();
 
 
2099		if (waitqueue_active(&log_root_tree->log_writer_wait))
2100			wake_up(&log_root_tree->log_writer_wait);
2101	}
2102
2103	if (ret) {
 
 
 
 
 
 
2104		if (ret != -ENOSPC) {
2105			btrfs_abort_transaction(trans, root, ret);
2106			mutex_unlock(&log_root_tree->log_mutex);
2107			goto out;
2108		}
2109		root->fs_info->last_trans_log_full_commit = trans->transid;
2110		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 
2111		mutex_unlock(&log_root_tree->log_mutex);
2112		ret = -EAGAIN;
2113		goto out;
2114	}
2115
2116	index2 = log_root_tree->log_transid % 2;
 
 
 
 
 
 
 
2117	if (atomic_read(&log_root_tree->log_commit[index2])) {
2118		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2119		wait_log_commit(trans, log_root_tree,
2120				log_root_tree->log_transid);
 
 
 
2121		mutex_unlock(&log_root_tree->log_mutex);
2122		ret = 0;
 
2123		goto out;
2124	}
 
2125	atomic_set(&log_root_tree->log_commit[index2], 1);
2126
2127	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2128		wait_log_commit(trans, log_root_tree,
2129				log_root_tree->log_transid - 1);
2130	}
2131
2132	wait_for_writer(trans, log_root_tree);
2133
2134	/*
2135	 * now that we've moved on to the tree of log tree roots,
2136	 * check the full commit flag again
2137	 */
2138	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
 
2139		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 
2140		mutex_unlock(&log_root_tree->log_mutex);
2141		ret = -EAGAIN;
2142		goto out_wake_log_root;
2143	}
2144
2145	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2146				&log_root_tree->dirty_log_pages,
2147				EXTENT_DIRTY | EXTENT_NEW);
 
2148	if (ret) {
 
2149		btrfs_abort_transaction(trans, root, ret);
 
 
 
 
 
 
 
 
 
 
 
 
2150		mutex_unlock(&log_root_tree->log_mutex);
2151		goto out_wake_log_root;
2152	}
2153	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2154
2155	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2156				log_root_tree->node->start);
2157	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2158				btrfs_header_level(log_root_tree->node));
2159
2160	log_root_tree->log_batch = 0;
2161	log_root_tree->log_transid++;
2162	smp_mb();
2163
2164	mutex_unlock(&log_root_tree->log_mutex);
2165
2166	/*
2167	 * nobody else is going to jump in and write the the ctree
2168	 * super here because the log_commit atomic below is protecting
2169	 * us.  We must be called with a transaction handle pinning
2170	 * the running transaction open, so a full commit can't hop
2171	 * in and cause problems either.
2172	 */
2173	btrfs_scrub_pause_super(root);
2174	write_ctree_super(trans, root->fs_info->tree_root, 1);
2175	btrfs_scrub_continue_super(root);
2176	ret = 0;
 
 
2177
2178	mutex_lock(&root->log_mutex);
2179	if (root->last_log_commit < log_transid)
2180		root->last_log_commit = log_transid;
2181	mutex_unlock(&root->log_mutex);
2182
2183out_wake_log_root:
 
 
 
 
 
 
 
 
2184	atomic_set(&log_root_tree->log_commit[index2], 0);
2185	smp_mb();
 
 
 
 
2186	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2187		wake_up(&log_root_tree->log_commit_wait[index2]);
2188out:
 
 
 
 
 
2189	atomic_set(&root->log_commit[index1], 0);
2190	smp_mb();
 
 
 
 
2191	if (waitqueue_active(&root->log_commit_wait[index1]))
2192		wake_up(&root->log_commit_wait[index1]);
2193	return ret;
2194}
2195
2196static void free_log_tree(struct btrfs_trans_handle *trans,
2197			  struct btrfs_root *log)
2198{
2199	int ret;
2200	u64 start;
2201	u64 end;
2202	struct walk_control wc = {
2203		.free = 1,
2204		.process_func = process_one_buffer
2205	};
2206
2207	ret = walk_log_tree(trans, log, &wc);
2208	BUG_ON(ret);
 
 
2209
2210	while (1) {
2211		ret = find_first_extent_bit(&log->dirty_log_pages,
2212				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
 
2213		if (ret)
2214			break;
2215
2216		clear_extent_bits(&log->dirty_log_pages, start, end,
2217				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2218	}
2219
 
 
 
 
 
 
 
 
2220	free_extent_buffer(log->node);
2221	kfree(log);
2222}
2223
2224/*
2225 * free all the extents used by the tree log.  This should be called
2226 * at commit time of the full transaction
2227 */
2228int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2229{
2230	if (root->log_root) {
2231		free_log_tree(trans, root->log_root);
2232		root->log_root = NULL;
2233	}
2234	return 0;
2235}
2236
2237int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2238			     struct btrfs_fs_info *fs_info)
2239{
2240	if (fs_info->log_root_tree) {
2241		free_log_tree(trans, fs_info->log_root_tree);
2242		fs_info->log_root_tree = NULL;
2243	}
2244	return 0;
2245}
2246
2247/*
2248 * If both a file and directory are logged, and unlinks or renames are
2249 * mixed in, we have a few interesting corners:
2250 *
2251 * create file X in dir Y
2252 * link file X to X.link in dir Y
2253 * fsync file X
2254 * unlink file X but leave X.link
2255 * fsync dir Y
2256 *
2257 * After a crash we would expect only X.link to exist.  But file X
2258 * didn't get fsync'd again so the log has back refs for X and X.link.
2259 *
2260 * We solve this by removing directory entries and inode backrefs from the
2261 * log when a file that was logged in the current transaction is
2262 * unlinked.  Any later fsync will include the updated log entries, and
2263 * we'll be able to reconstruct the proper directory items from backrefs.
2264 *
2265 * This optimizations allows us to avoid relogging the entire inode
2266 * or the entire directory.
2267 */
2268int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2269				 struct btrfs_root *root,
2270				 const char *name, int name_len,
2271				 struct inode *dir, u64 index)
2272{
2273	struct btrfs_root *log;
2274	struct btrfs_dir_item *di;
2275	struct btrfs_path *path;
2276	int ret;
2277	int err = 0;
2278	int bytes_del = 0;
2279	u64 dir_ino = btrfs_ino(dir);
2280
2281	if (BTRFS_I(dir)->logged_trans < trans->transid)
2282		return 0;
2283
2284	ret = join_running_log_trans(root);
2285	if (ret)
2286		return 0;
2287
2288	mutex_lock(&BTRFS_I(dir)->log_mutex);
2289
2290	log = root->log_root;
2291	path = btrfs_alloc_path();
2292	if (!path) {
2293		err = -ENOMEM;
2294		goto out_unlock;
2295	}
2296
2297	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2298				   name, name_len, -1);
2299	if (IS_ERR(di)) {
2300		err = PTR_ERR(di);
2301		goto fail;
2302	}
2303	if (di) {
2304		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2305		bytes_del += name_len;
2306		BUG_ON(ret);
 
 
 
2307	}
2308	btrfs_release_path(path);
2309	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2310					 index, name, name_len, -1);
2311	if (IS_ERR(di)) {
2312		err = PTR_ERR(di);
2313		goto fail;
2314	}
2315	if (di) {
2316		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2317		bytes_del += name_len;
2318		BUG_ON(ret);
 
 
 
2319	}
2320
2321	/* update the directory size in the log to reflect the names
2322	 * we have removed
2323	 */
2324	if (bytes_del) {
2325		struct btrfs_key key;
2326
2327		key.objectid = dir_ino;
2328		key.offset = 0;
2329		key.type = BTRFS_INODE_ITEM_KEY;
2330		btrfs_release_path(path);
2331
2332		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2333		if (ret < 0) {
2334			err = ret;
2335			goto fail;
2336		}
2337		if (ret == 0) {
2338			struct btrfs_inode_item *item;
2339			u64 i_size;
2340
2341			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2342					      struct btrfs_inode_item);
2343			i_size = btrfs_inode_size(path->nodes[0], item);
2344			if (i_size > bytes_del)
2345				i_size -= bytes_del;
2346			else
2347				i_size = 0;
2348			btrfs_set_inode_size(path->nodes[0], item, i_size);
2349			btrfs_mark_buffer_dirty(path->nodes[0]);
2350		} else
2351			ret = 0;
2352		btrfs_release_path(path);
2353	}
2354fail:
2355	btrfs_free_path(path);
2356out_unlock:
2357	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2358	if (ret == -ENOSPC) {
2359		root->fs_info->last_trans_log_full_commit = trans->transid;
2360		ret = 0;
2361	} else if (ret < 0)
2362		btrfs_abort_transaction(trans, root, ret);
2363
2364	btrfs_end_log_trans(root);
2365
2366	return err;
2367}
2368
2369/* see comments for btrfs_del_dir_entries_in_log */
2370int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2371			       struct btrfs_root *root,
2372			       const char *name, int name_len,
2373			       struct inode *inode, u64 dirid)
2374{
2375	struct btrfs_root *log;
2376	u64 index;
2377	int ret;
2378
2379	if (BTRFS_I(inode)->logged_trans < trans->transid)
2380		return 0;
2381
2382	ret = join_running_log_trans(root);
2383	if (ret)
2384		return 0;
2385	log = root->log_root;
2386	mutex_lock(&BTRFS_I(inode)->log_mutex);
2387
2388	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2389				  dirid, &index);
2390	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2391	if (ret == -ENOSPC) {
2392		root->fs_info->last_trans_log_full_commit = trans->transid;
2393		ret = 0;
2394	} else if (ret < 0 && ret != -ENOENT)
2395		btrfs_abort_transaction(trans, root, ret);
2396	btrfs_end_log_trans(root);
2397
2398	return ret;
2399}
2400
2401/*
2402 * creates a range item in the log for 'dirid'.  first_offset and
2403 * last_offset tell us which parts of the key space the log should
2404 * be considered authoritative for.
2405 */
2406static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2407				       struct btrfs_root *log,
2408				       struct btrfs_path *path,
2409				       int key_type, u64 dirid,
2410				       u64 first_offset, u64 last_offset)
2411{
2412	int ret;
2413	struct btrfs_key key;
2414	struct btrfs_dir_log_item *item;
2415
2416	key.objectid = dirid;
2417	key.offset = first_offset;
2418	if (key_type == BTRFS_DIR_ITEM_KEY)
2419		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2420	else
2421		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2422	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2423	if (ret)
2424		return ret;
2425
2426	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2427			      struct btrfs_dir_log_item);
2428	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2429	btrfs_mark_buffer_dirty(path->nodes[0]);
2430	btrfs_release_path(path);
2431	return 0;
2432}
2433
2434/*
2435 * log all the items included in the current transaction for a given
2436 * directory.  This also creates the range items in the log tree required
2437 * to replay anything deleted before the fsync
2438 */
2439static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2440			  struct btrfs_root *root, struct inode *inode,
2441			  struct btrfs_path *path,
2442			  struct btrfs_path *dst_path, int key_type,
 
2443			  u64 min_offset, u64 *last_offset_ret)
2444{
2445	struct btrfs_key min_key;
2446	struct btrfs_key max_key;
2447	struct btrfs_root *log = root->log_root;
2448	struct extent_buffer *src;
2449	int err = 0;
2450	int ret;
2451	int i;
2452	int nritems;
2453	u64 first_offset = min_offset;
2454	u64 last_offset = (u64)-1;
2455	u64 ino = btrfs_ino(inode);
2456
2457	log = root->log_root;
2458	max_key.objectid = ino;
2459	max_key.offset = (u64)-1;
2460	max_key.type = key_type;
2461
2462	min_key.objectid = ino;
2463	min_key.type = key_type;
2464	min_key.offset = min_offset;
2465
2466	path->keep_locks = 1;
2467
2468	ret = btrfs_search_forward(root, &min_key, &max_key,
2469				   path, 0, trans->transid);
2470
2471	/*
2472	 * we didn't find anything from this transaction, see if there
2473	 * is anything at all
2474	 */
2475	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2476		min_key.objectid = ino;
2477		min_key.type = key_type;
2478		min_key.offset = (u64)-1;
2479		btrfs_release_path(path);
2480		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2481		if (ret < 0) {
2482			btrfs_release_path(path);
2483			return ret;
2484		}
2485		ret = btrfs_previous_item(root, path, ino, key_type);
2486
2487		/* if ret == 0 there are items for this type,
2488		 * create a range to tell us the last key of this type.
2489		 * otherwise, there are no items in this directory after
2490		 * *min_offset, and we create a range to indicate that.
2491		 */
2492		if (ret == 0) {
2493			struct btrfs_key tmp;
2494			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2495					      path->slots[0]);
2496			if (key_type == tmp.type)
2497				first_offset = max(min_offset, tmp.offset) + 1;
2498		}
2499		goto done;
2500	}
2501
2502	/* go backward to find any previous key */
2503	ret = btrfs_previous_item(root, path, ino, key_type);
2504	if (ret == 0) {
2505		struct btrfs_key tmp;
2506		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2507		if (key_type == tmp.type) {
2508			first_offset = tmp.offset;
2509			ret = overwrite_item(trans, log, dst_path,
2510					     path->nodes[0], path->slots[0],
2511					     &tmp);
2512			if (ret) {
2513				err = ret;
2514				goto done;
2515			}
2516		}
2517	}
2518	btrfs_release_path(path);
2519
2520	/* find the first key from this transaction again */
2521	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2522	if (ret != 0) {
2523		WARN_ON(1);
2524		goto done;
2525	}
2526
2527	/*
2528	 * we have a block from this transaction, log every item in it
2529	 * from our directory
2530	 */
2531	while (1) {
2532		struct btrfs_key tmp;
2533		src = path->nodes[0];
2534		nritems = btrfs_header_nritems(src);
2535		for (i = path->slots[0]; i < nritems; i++) {
 
 
2536			btrfs_item_key_to_cpu(src, &min_key, i);
2537
2538			if (min_key.objectid != ino || min_key.type != key_type)
2539				goto done;
2540			ret = overwrite_item(trans, log, dst_path, src, i,
2541					     &min_key);
2542			if (ret) {
2543				err = ret;
2544				goto done;
2545			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546		}
2547		path->slots[0] = nritems;
2548
2549		/*
2550		 * look ahead to the next item and see if it is also
2551		 * from this directory and from this transaction
2552		 */
2553		ret = btrfs_next_leaf(root, path);
2554		if (ret == 1) {
2555			last_offset = (u64)-1;
2556			goto done;
2557		}
2558		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2559		if (tmp.objectid != ino || tmp.type != key_type) {
2560			last_offset = (u64)-1;
2561			goto done;
2562		}
2563		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2564			ret = overwrite_item(trans, log, dst_path,
2565					     path->nodes[0], path->slots[0],
2566					     &tmp);
2567			if (ret)
2568				err = ret;
2569			else
2570				last_offset = tmp.offset;
2571			goto done;
2572		}
2573	}
2574done:
2575	btrfs_release_path(path);
2576	btrfs_release_path(dst_path);
2577
2578	if (err == 0) {
2579		*last_offset_ret = last_offset;
2580		/*
2581		 * insert the log range keys to indicate where the log
2582		 * is valid
2583		 */
2584		ret = insert_dir_log_key(trans, log, path, key_type,
2585					 ino, first_offset, last_offset);
2586		if (ret)
2587			err = ret;
2588	}
2589	return err;
2590}
2591
2592/*
2593 * logging directories is very similar to logging inodes, We find all the items
2594 * from the current transaction and write them to the log.
2595 *
2596 * The recovery code scans the directory in the subvolume, and if it finds a
2597 * key in the range logged that is not present in the log tree, then it means
2598 * that dir entry was unlinked during the transaction.
2599 *
2600 * In order for that scan to work, we must include one key smaller than
2601 * the smallest logged by this transaction and one key larger than the largest
2602 * key logged by this transaction.
2603 */
2604static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2605			  struct btrfs_root *root, struct inode *inode,
2606			  struct btrfs_path *path,
2607			  struct btrfs_path *dst_path)
 
2608{
2609	u64 min_key;
2610	u64 max_key;
2611	int ret;
2612	int key_type = BTRFS_DIR_ITEM_KEY;
2613
2614again:
2615	min_key = 0;
2616	max_key = 0;
2617	while (1) {
2618		ret = log_dir_items(trans, root, inode, path,
2619				    dst_path, key_type, min_key,
2620				    &max_key);
2621		if (ret)
2622			return ret;
2623		if (max_key == (u64)-1)
2624			break;
2625		min_key = max_key + 1;
2626	}
2627
2628	if (key_type == BTRFS_DIR_ITEM_KEY) {
2629		key_type = BTRFS_DIR_INDEX_KEY;
2630		goto again;
2631	}
2632	return 0;
2633}
2634
2635/*
2636 * a helper function to drop items from the log before we relog an
2637 * inode.  max_key_type indicates the highest item type to remove.
2638 * This cannot be run for file data extents because it does not
2639 * free the extents they point to.
2640 */
2641static int drop_objectid_items(struct btrfs_trans_handle *trans,
2642				  struct btrfs_root *log,
2643				  struct btrfs_path *path,
2644				  u64 objectid, int max_key_type)
2645{
2646	int ret;
2647	struct btrfs_key key;
2648	struct btrfs_key found_key;
 
2649
2650	key.objectid = objectid;
2651	key.type = max_key_type;
2652	key.offset = (u64)-1;
2653
2654	while (1) {
2655		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2656		BUG_ON(ret == 0);
2657		if (ret < 0)
2658			break;
2659
2660		if (path->slots[0] == 0)
2661			break;
2662
2663		path->slots[0]--;
2664		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2665				      path->slots[0]);
2666
2667		if (found_key.objectid != objectid)
2668			break;
2669
2670		ret = btrfs_del_item(trans, log, path);
2671		if (ret)
 
 
 
 
 
 
 
 
 
 
2672			break;
2673		btrfs_release_path(path);
2674	}
2675	btrfs_release_path(path);
2676	if (ret > 0)
2677		ret = 0;
2678	return ret;
2679}
2680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681static noinline int copy_items(struct btrfs_trans_handle *trans,
2682			       struct btrfs_root *log,
2683			       struct btrfs_path *dst_path,
2684			       struct extent_buffer *src,
2685			       int start_slot, int nr, int inode_only)
 
2686{
2687	unsigned long src_offset;
2688	unsigned long dst_offset;
 
2689	struct btrfs_file_extent_item *extent;
2690	struct btrfs_inode_item *inode_item;
 
 
2691	int ret;
2692	struct btrfs_key *ins_keys;
2693	u32 *ins_sizes;
2694	char *ins_data;
2695	int i;
2696	struct list_head ordered_sums;
 
 
 
 
2697
2698	INIT_LIST_HEAD(&ordered_sums);
2699
2700	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2701			   nr * sizeof(u32), GFP_NOFS);
2702	if (!ins_data)
2703		return -ENOMEM;
2704
 
 
2705	ins_sizes = (u32 *)ins_data;
2706	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2707
2708	for (i = 0; i < nr; i++) {
2709		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2710		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2711	}
2712	ret = btrfs_insert_empty_items(trans, log, dst_path,
2713				       ins_keys, ins_sizes, nr);
2714	if (ret) {
2715		kfree(ins_data);
2716		return ret;
2717	}
2718
2719	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2720		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2721						   dst_path->slots[0]);
2722
2723		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2724
2725		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2726				   src_offset, ins_sizes[i]);
2727
2728		if (inode_only == LOG_INODE_EXISTS &&
2729		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2730			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2731						    dst_path->slots[0],
2732						    struct btrfs_inode_item);
2733			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
 
 
 
 
 
 
2734
2735			/* set the generation to zero so the recover code
2736			 * can tell the difference between an logging
2737			 * just to say 'this inode exists' and a logging
2738			 * to say 'update this inode with these values'
2739			 */
2740			btrfs_set_inode_generation(dst_path->nodes[0],
2741						   inode_item, 0);
 
 
 
 
 
2742		}
 
2743		/* take a reference on file data extents so that truncates
2744		 * or deletes of this inode don't have to relog the inode
2745		 * again
2746		 */
2747		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
 
2748			int found_type;
2749			extent = btrfs_item_ptr(src, start_slot + i,
2750						struct btrfs_file_extent_item);
2751
2752			if (btrfs_file_extent_generation(src, extent) < trans->transid)
2753				continue;
2754
2755			found_type = btrfs_file_extent_type(src, extent);
2756			if (found_type == BTRFS_FILE_EXTENT_REG ||
2757			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2758				u64 ds, dl, cs, cl;
2759				ds = btrfs_file_extent_disk_bytenr(src,
2760								extent);
2761				/* ds == 0 is a hole */
2762				if (ds == 0)
2763					continue;
2764
2765				dl = btrfs_file_extent_disk_num_bytes(src,
2766								extent);
2767				cs = btrfs_file_extent_offset(src, extent);
2768				cl = btrfs_file_extent_num_bytes(src,
2769								extent);
2770				if (btrfs_file_extent_compression(src,
2771								  extent)) {
2772					cs = 0;
2773					cl = dl;
2774				}
2775
2776				ret = btrfs_lookup_csums_range(
2777						log->fs_info->csum_root,
2778						ds + cs, ds + cs + cl - 1,
2779						&ordered_sums, 0);
2780				BUG_ON(ret);
 
 
 
 
2781			}
2782		}
2783	}
2784
2785	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2786	btrfs_release_path(dst_path);
2787	kfree(ins_data);
2788
2789	/*
2790	 * we have to do this after the loop above to avoid changing the
2791	 * log tree while trying to change the log tree.
2792	 */
2793	ret = 0;
2794	while (!list_empty(&ordered_sums)) {
2795		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2796						   struct btrfs_ordered_sum,
2797						   list);
2798		if (!ret)
2799			ret = btrfs_csum_file_blocks(trans, log, sums);
2800		list_del(&sums->list);
2801		kfree(sums);
2802	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2803	return ret;
2804}
2805
2806/* log a single inode in the tree log.
2807 * At least one parent directory for this inode must exist in the tree
2808 * or be logged already.
2809 *
2810 * Any items from this inode changed by the current transaction are copied
2811 * to the log tree.  An extra reference is taken on any extents in this
2812 * file, allowing us to avoid a whole pile of corner cases around logging
2813 * blocks that have been removed from the tree.
2814 *
2815 * See LOG_INODE_ALL and related defines for a description of what inode_only
2816 * does.
2817 *
2818 * This handles both files and directories.
2819 */
2820static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2821			     struct btrfs_root *root, struct inode *inode,
2822			     int inode_only)
 
 
 
2823{
2824	struct btrfs_path *path;
2825	struct btrfs_path *dst_path;
2826	struct btrfs_key min_key;
2827	struct btrfs_key max_key;
2828	struct btrfs_root *log = root->log_root;
2829	struct extent_buffer *src = NULL;
 
 
2830	int err = 0;
2831	int ret;
2832	int nritems;
2833	int ins_start_slot = 0;
2834	int ins_nr;
 
2835	u64 ino = btrfs_ino(inode);
2836
2837	log = root->log_root;
 
2838
2839	path = btrfs_alloc_path();
2840	if (!path)
2841		return -ENOMEM;
2842	dst_path = btrfs_alloc_path();
2843	if (!dst_path) {
2844		btrfs_free_path(path);
2845		return -ENOMEM;
2846	}
2847
2848	min_key.objectid = ino;
2849	min_key.type = BTRFS_INODE_ITEM_KEY;
2850	min_key.offset = 0;
2851
2852	max_key.objectid = ino;
2853
 
2854	/* today the code can only do partial logging of directories */
2855	if (!S_ISDIR(inode->i_mode))
2856	    inode_only = LOG_INODE_ALL;
2857
2858	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2859		max_key.type = BTRFS_XATTR_ITEM_KEY;
2860	else
2861		max_key.type = (u8)-1;
2862	max_key.offset = (u64)-1;
2863
2864	ret = btrfs_commit_inode_delayed_items(trans, inode);
 
 
 
 
 
 
 
 
 
 
 
2865	if (ret) {
2866		btrfs_free_path(path);
2867		btrfs_free_path(dst_path);
2868		return ret;
2869	}
2870
2871	mutex_lock(&BTRFS_I(inode)->log_mutex);
2872
2873	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2874	 * a brute force approach to making sure we get the most uptodate
2875	 * copies of everything.
2876	 */
2877	if (S_ISDIR(inode->i_mode)) {
2878		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2879
2880		if (inode_only == LOG_INODE_EXISTS)
2881			max_key_type = BTRFS_XATTR_ITEM_KEY;
2882		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2883	} else {
2884		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2885	}
2886	if (ret) {
2887		err = ret;
2888		goto out_unlock;
2889	}
2890	path->keep_locks = 1;
2891
2892	while (1) {
2893		ins_nr = 0;
2894		ret = btrfs_search_forward(root, &min_key, &max_key,
2895					   path, 0, trans->transid);
2896		if (ret != 0)
2897			break;
2898again:
2899		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2900		if (min_key.objectid != ino)
2901			break;
2902		if (min_key.type > max_key.type)
2903			break;
2904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2905		src = path->nodes[0];
2906		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2907			ins_nr++;
2908			goto next_slot;
2909		} else if (!ins_nr) {
2910			ins_start_slot = path->slots[0];
2911			ins_nr = 1;
2912			goto next_slot;
2913		}
2914
2915		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2916				 ins_nr, inode_only);
2917		if (ret) {
 
2918			err = ret;
2919			goto out_unlock;
2920		}
 
 
 
 
 
2921		ins_nr = 1;
2922		ins_start_slot = path->slots[0];
2923next_slot:
2924
2925		nritems = btrfs_header_nritems(path->nodes[0]);
2926		path->slots[0]++;
2927		if (path->slots[0] < nritems) {
2928			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2929					      path->slots[0]);
2930			goto again;
2931		}
2932		if (ins_nr) {
2933			ret = copy_items(trans, log, dst_path, src,
2934					 ins_start_slot,
2935					 ins_nr, inode_only);
2936			if (ret) {
2937				err = ret;
2938				goto out_unlock;
2939			}
 
2940			ins_nr = 0;
2941		}
2942		btrfs_release_path(path);
2943
2944		if (min_key.offset < (u64)-1)
2945			min_key.offset++;
2946		else if (min_key.type < (u8)-1)
2947			min_key.type++;
2948		else if (min_key.objectid < (u64)-1)
2949			min_key.objectid++;
2950		else
2951			break;
 
2952	}
2953	if (ins_nr) {
2954		ret = copy_items(trans, log, dst_path, src,
2955				 ins_start_slot,
2956				 ins_nr, inode_only);
2957		if (ret) {
2958			err = ret;
2959			goto out_unlock;
2960		}
 
2961		ins_nr = 0;
2962	}
2963	WARN_ON(ins_nr);
2964	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
 
 
 
 
 
2965		btrfs_release_path(path);
2966		btrfs_release_path(dst_path);
2967		ret = log_directory_changes(trans, root, inode, path, dst_path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2968		if (ret) {
2969			err = ret;
2970			goto out_unlock;
2971		}
2972	}
 
 
2973	BTRFS_I(inode)->logged_trans = trans->transid;
 
 
2974out_unlock:
 
 
 
 
2975	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2976
2977	btrfs_free_path(path);
2978	btrfs_free_path(dst_path);
2979	return err;
2980}
2981
2982/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2983 * follow the dentry parent pointers up the chain and see if any
2984 * of the directories in it require a full commit before they can
2985 * be logged.  Returns zero if nothing special needs to be done or 1 if
2986 * a full commit is required.
2987 */
2988static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2989					       struct inode *inode,
2990					       struct dentry *parent,
2991					       struct super_block *sb,
2992					       u64 last_committed)
2993{
2994	int ret = 0;
2995	struct btrfs_root *root;
2996	struct dentry *old_parent = NULL;
 
2997
2998	/*
2999	 * for regular files, if its inode is already on disk, we don't
3000	 * have to worry about the parents at all.  This is because
3001	 * we can use the last_unlink_trans field to record renames
3002	 * and other fun in this file.
3003	 */
3004	if (S_ISREG(inode->i_mode) &&
3005	    BTRFS_I(inode)->generation <= last_committed &&
3006	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
3007			goto out;
3008
3009	if (!S_ISDIR(inode->i_mode)) {
3010		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3011			goto out;
3012		inode = parent->d_inode;
3013	}
3014
3015	while (1) {
3016		BTRFS_I(inode)->logged_trans = trans->transid;
 
 
 
 
 
 
 
3017		smp_mb();
3018
3019		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3020			root = BTRFS_I(inode)->root;
3021
3022			/*
3023			 * make sure any commits to the log are forced
3024			 * to be full commits
3025			 */
3026			root->fs_info->last_trans_log_full_commit =
3027				trans->transid;
3028			ret = 1;
3029			break;
3030		}
3031
3032		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3033			break;
3034
3035		if (IS_ROOT(parent))
3036			break;
3037
3038		parent = dget_parent(parent);
3039		dput(old_parent);
3040		old_parent = parent;
3041		inode = parent->d_inode;
3042
3043	}
3044	dput(old_parent);
3045out:
3046	return ret;
3047}
3048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3049/*
3050 * helper function around btrfs_log_inode to make sure newly created
3051 * parent directories also end up in the log.  A minimal inode and backref
3052 * only logging is done of any parent directories that are older than
3053 * the last committed transaction
3054 */
3055int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3056		    struct btrfs_root *root, struct inode *inode,
3057		    struct dentry *parent, int exists_only)
 
 
 
 
3058{
3059	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3060	struct super_block *sb;
3061	struct dentry *old_parent = NULL;
3062	int ret = 0;
3063	u64 last_committed = root->fs_info->last_trans_committed;
 
 
3064
3065	sb = inode->i_sb;
3066
3067	if (btrfs_test_opt(root, NOTREELOG)) {
3068		ret = 1;
3069		goto end_no_trans;
3070	}
3071
 
 
 
 
3072	if (root->fs_info->last_trans_log_full_commit >
3073	    root->fs_info->last_trans_committed) {
3074		ret = 1;
3075		goto end_no_trans;
3076	}
3077
3078	if (root != BTRFS_I(inode)->root ||
3079	    btrfs_root_refs(&root->root_item) == 0) {
3080		ret = 1;
3081		goto end_no_trans;
3082	}
3083
3084	ret = check_parent_dirs_for_sync(trans, inode, parent,
3085					 sb, last_committed);
3086	if (ret)
3087		goto end_no_trans;
3088
3089	if (btrfs_inode_in_log(inode, trans->transid)) {
3090		ret = BTRFS_NO_LOG_SYNC;
3091		goto end_no_trans;
3092	}
3093
3094	ret = start_log_trans(trans, root);
3095	if (ret)
3096		goto end_trans;
3097
3098	ret = btrfs_log_inode(trans, root, inode, inode_only);
3099	if (ret)
3100		goto end_trans;
3101
3102	/*
3103	 * for regular files, if its inode is already on disk, we don't
3104	 * have to worry about the parents at all.  This is because
3105	 * we can use the last_unlink_trans field to record renames
3106	 * and other fun in this file.
3107	 */
3108	if (S_ISREG(inode->i_mode) &&
3109	    BTRFS_I(inode)->generation <= last_committed &&
3110	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3111		ret = 0;
3112		goto end_trans;
3113	}
3114
3115	inode_only = LOG_INODE_EXISTS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3116	while (1) {
3117		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3118			break;
3119
3120		inode = parent->d_inode;
3121		if (root != BTRFS_I(inode)->root)
3122			break;
3123
3124		if (BTRFS_I(inode)->generation >
3125		    root->fs_info->last_trans_committed) {
3126			ret = btrfs_log_inode(trans, root, inode, inode_only);
 
3127			if (ret)
3128				goto end_trans;
3129		}
3130		if (IS_ROOT(parent))
3131			break;
3132
3133		parent = dget_parent(parent);
3134		dput(old_parent);
3135		old_parent = parent;
3136	}
3137	ret = 0;
 
 
 
3138end_trans:
3139	dput(old_parent);
3140	if (ret < 0) {
3141		BUG_ON(ret != -ENOSPC);
3142		root->fs_info->last_trans_log_full_commit = trans->transid;
3143		ret = 1;
3144	}
 
 
 
3145	btrfs_end_log_trans(root);
3146end_no_trans:
3147	return ret;
3148}
3149
3150/*
3151 * it is not safe to log dentry if the chunk root has added new
3152 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3153 * If this returns 1, you must commit the transaction to safely get your
3154 * data on disk.
3155 */
3156int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3157			  struct btrfs_root *root, struct dentry *dentry)
 
 
 
3158{
3159	struct dentry *parent = dget_parent(dentry);
3160	int ret;
3161
3162	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
 
3163	dput(parent);
3164
3165	return ret;
3166}
3167
3168/*
3169 * should be called during mount to recover any replay any log trees
3170 * from the FS
3171 */
3172int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3173{
3174	int ret;
3175	struct btrfs_path *path;
3176	struct btrfs_trans_handle *trans;
3177	struct btrfs_key key;
3178	struct btrfs_key found_key;
3179	struct btrfs_key tmp_key;
3180	struct btrfs_root *log;
3181	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3182	struct walk_control wc = {
3183		.process_func = process_one_buffer,
3184		.stage = 0,
3185	};
3186
3187	path = btrfs_alloc_path();
3188	if (!path)
3189		return -ENOMEM;
3190
3191	fs_info->log_root_recovering = 1;
3192
3193	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3194	if (IS_ERR(trans)) {
3195		ret = PTR_ERR(trans);
3196		goto error;
3197	}
3198
3199	wc.trans = trans;
3200	wc.pin = 1;
3201
3202	ret = walk_log_tree(trans, log_root_tree, &wc);
3203	if (ret) {
3204		btrfs_error(fs_info, ret, "Failed to pin buffers while "
3205			    "recovering log root tree.");
3206		goto error;
3207	}
3208
3209again:
3210	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3211	key.offset = (u64)-1;
3212	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3213
3214	while (1) {
3215		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3216
3217		if (ret < 0) {
3218			btrfs_error(fs_info, ret,
3219				    "Couldn't find tree log root.");
3220			goto error;
3221		}
3222		if (ret > 0) {
3223			if (path->slots[0] == 0)
3224				break;
3225			path->slots[0]--;
3226		}
3227		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3228				      path->slots[0]);
3229		btrfs_release_path(path);
3230		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3231			break;
3232
3233		log = btrfs_read_fs_root_no_radix(log_root_tree,
3234						  &found_key);
3235		if (IS_ERR(log)) {
3236			ret = PTR_ERR(log);
3237			btrfs_error(fs_info, ret,
3238				    "Couldn't read tree log root.");
3239			goto error;
3240		}
3241
3242		tmp_key.objectid = found_key.offset;
3243		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3244		tmp_key.offset = (u64)-1;
3245
3246		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3247		if (IS_ERR(wc.replay_dest)) {
3248			ret = PTR_ERR(wc.replay_dest);
3249			btrfs_error(fs_info, ret, "Couldn't read target root "
 
 
 
3250				    "for tree log recovery.");
3251			goto error;
3252		}
3253
3254		wc.replay_dest->log_root = log;
3255		btrfs_record_root_in_trans(trans, wc.replay_dest);
3256		ret = walk_log_tree(trans, log, &wc);
3257		BUG_ON(ret);
3258
3259		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3260			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3261						      path);
3262			BUG_ON(ret);
3263		}
3264
3265		key.offset = found_key.offset - 1;
3266		wc.replay_dest->log_root = NULL;
3267		free_extent_buffer(log->node);
3268		free_extent_buffer(log->commit_root);
3269		kfree(log);
3270
 
 
 
3271		if (found_key.offset == 0)
3272			break;
3273	}
3274	btrfs_release_path(path);
3275
3276	/* step one is to pin it all, step two is to replay just inodes */
3277	if (wc.pin) {
3278		wc.pin = 0;
3279		wc.process_func = replay_one_buffer;
3280		wc.stage = LOG_WALK_REPLAY_INODES;
3281		goto again;
3282	}
3283	/* step three is to replay everything */
3284	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3285		wc.stage++;
3286		goto again;
3287	}
3288
3289	btrfs_free_path(path);
3290
 
 
 
 
 
3291	free_extent_buffer(log_root_tree->node);
3292	log_root_tree->log_root = NULL;
3293	fs_info->log_root_recovering = 0;
 
3294
3295	/* step 4: commit the transaction, which also unpins the blocks */
3296	btrfs_commit_transaction(trans, fs_info->tree_root);
3297
3298	kfree(log_root_tree);
3299	return 0;
3300
3301error:
 
 
3302	btrfs_free_path(path);
3303	return ret;
3304}
3305
3306/*
3307 * there are some corner cases where we want to force a full
3308 * commit instead of allowing a directory to be logged.
3309 *
3310 * They revolve around files there were unlinked from the directory, and
3311 * this function updates the parent directory so that a full commit is
3312 * properly done if it is fsync'd later after the unlinks are done.
 
 
 
3313 */
3314void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3315			     struct inode *dir, struct inode *inode,
3316			     int for_rename)
3317{
3318	/*
3319	 * when we're logging a file, if it hasn't been renamed
3320	 * or unlinked, and its inode is fully committed on disk,
3321	 * we don't have to worry about walking up the directory chain
3322	 * to log its parents.
3323	 *
3324	 * So, we use the last_unlink_trans field to put this transid
3325	 * into the file.  When the file is logged we check it and
3326	 * don't log the parents if the file is fully on disk.
3327	 */
3328	if (S_ISREG(inode->i_mode))
 
3329		BTRFS_I(inode)->last_unlink_trans = trans->transid;
 
 
3330
3331	/*
3332	 * if this directory was already logged any new
3333	 * names for this file/dir will get recorded
3334	 */
3335	smp_mb();
3336	if (BTRFS_I(dir)->logged_trans == trans->transid)
3337		return;
3338
3339	/*
3340	 * if the inode we're about to unlink was logged,
3341	 * the log will be properly updated for any new names
3342	 */
3343	if (BTRFS_I(inode)->logged_trans == trans->transid)
3344		return;
3345
3346	/*
3347	 * when renaming files across directories, if the directory
3348	 * there we're unlinking from gets fsync'd later on, there's
3349	 * no way to find the destination directory later and fsync it
3350	 * properly.  So, we have to be conservative and force commits
3351	 * so the new name gets discovered.
3352	 */
3353	if (for_rename)
3354		goto record;
3355
3356	/* we can safely do the unlink without any special recording */
3357	return;
3358
3359record:
 
3360	BTRFS_I(dir)->last_unlink_trans = trans->transid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3361}
3362
3363/*
3364 * Call this after adding a new name for a file and it will properly
3365 * update the log to reflect the new name.
3366 *
3367 * It will return zero if all goes well, and it will return 1 if a
3368 * full transaction commit is required.
3369 */
3370int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3371			struct inode *inode, struct inode *old_dir,
3372			struct dentry *parent)
3373{
3374	struct btrfs_root * root = BTRFS_I(inode)->root;
3375
3376	/*
3377	 * this will force the logging code to walk the dentry chain
3378	 * up for the file
3379	 */
3380	if (S_ISREG(inode->i_mode))
3381		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3382
3383	/*
3384	 * if this inode hasn't been logged and directory we're renaming it
3385	 * from hasn't been logged, we don't need to log it
3386	 */
3387	if (BTRFS_I(inode)->logged_trans <=
3388	    root->fs_info->last_trans_committed &&
3389	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3390		    root->fs_info->last_trans_committed))
3391		return 0;
3392
3393	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
 
3394}
3395