Loading...
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <linux/blkdev.h>
22#include <linux/list_sort.h>
23#include "tree-log.h"
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
27#include "backref.h"
28#include "hash.h"
29#include "compression.h"
30
31/* magic values for the inode_only field in btrfs_log_inode:
32 *
33 * LOG_INODE_ALL means to log everything
34 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 * during log replay
36 */
37#define LOG_INODE_ALL 0
38#define LOG_INODE_EXISTS 1
39
40/*
41 * directory trouble cases
42 *
43 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
44 * log, we must force a full commit before doing an fsync of the directory
45 * where the unlink was done.
46 * ---> record transid of last unlink/rename per directory
47 *
48 * mkdir foo/some_dir
49 * normal commit
50 * rename foo/some_dir foo2/some_dir
51 * mkdir foo/some_dir
52 * fsync foo/some_dir/some_file
53 *
54 * The fsync above will unlink the original some_dir without recording
55 * it in its new location (foo2). After a crash, some_dir will be gone
56 * unless the fsync of some_file forces a full commit
57 *
58 * 2) we must log any new names for any file or dir that is in the fsync
59 * log. ---> check inode while renaming/linking.
60 *
61 * 2a) we must log any new names for any file or dir during rename
62 * when the directory they are being removed from was logged.
63 * ---> check inode and old parent dir during rename
64 *
65 * 2a is actually the more important variant. With the extra logging
66 * a crash might unlink the old name without recreating the new one
67 *
68 * 3) after a crash, we must go through any directories with a link count
69 * of zero and redo the rm -rf
70 *
71 * mkdir f1/foo
72 * normal commit
73 * rm -rf f1/foo
74 * fsync(f1)
75 *
76 * The directory f1 was fully removed from the FS, but fsync was never
77 * called on f1, only its parent dir. After a crash the rm -rf must
78 * be replayed. This must be able to recurse down the entire
79 * directory tree. The inode link count fixup code takes care of the
80 * ugly details.
81 */
82
83/*
84 * stages for the tree walking. The first
85 * stage (0) is to only pin down the blocks we find
86 * the second stage (1) is to make sure that all the inodes
87 * we find in the log are created in the subvolume.
88 *
89 * The last stage is to deal with directories and links and extents
90 * and all the other fun semantics
91 */
92#define LOG_WALK_PIN_ONLY 0
93#define LOG_WALK_REPLAY_INODES 1
94#define LOG_WALK_REPLAY_DIR_INDEX 2
95#define LOG_WALK_REPLAY_ALL 3
96
97static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode,
99 int inode_only,
100 const loff_t start,
101 const loff_t end,
102 struct btrfs_log_ctx *ctx);
103static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_path *path, u64 objectid);
106static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root,
108 struct btrfs_root *log,
109 struct btrfs_path *path,
110 u64 dirid, int del_all);
111
112/*
113 * tree logging is a special write ahead log used to make sure that
114 * fsyncs and O_SYNCs can happen without doing full tree commits.
115 *
116 * Full tree commits are expensive because they require commonly
117 * modified blocks to be recowed, creating many dirty pages in the
118 * extent tree an 4x-6x higher write load than ext3.
119 *
120 * Instead of doing a tree commit on every fsync, we use the
121 * key ranges and transaction ids to find items for a given file or directory
122 * that have changed in this transaction. Those items are copied into
123 * a special tree (one per subvolume root), that tree is written to disk
124 * and then the fsync is considered complete.
125 *
126 * After a crash, items are copied out of the log-tree back into the
127 * subvolume tree. Any file data extents found are recorded in the extent
128 * allocation tree, and the log-tree freed.
129 *
130 * The log tree is read three times, once to pin down all the extents it is
131 * using in ram and once, once to create all the inodes logged in the tree
132 * and once to do all the other items.
133 */
134
135/*
136 * start a sub transaction and setup the log tree
137 * this increments the log tree writer count to make the people
138 * syncing the tree wait for us to finish
139 */
140static int start_log_trans(struct btrfs_trans_handle *trans,
141 struct btrfs_root *root,
142 struct btrfs_log_ctx *ctx)
143{
144 int ret = 0;
145
146 mutex_lock(&root->log_mutex);
147
148 if (root->log_root) {
149 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
150 ret = -EAGAIN;
151 goto out;
152 }
153
154 if (!root->log_start_pid) {
155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 root->log_start_pid = current->pid;
157 } else if (root->log_start_pid != current->pid) {
158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 }
160 } else {
161 mutex_lock(&root->fs_info->tree_log_mutex);
162 if (!root->fs_info->log_root_tree)
163 ret = btrfs_init_log_root_tree(trans, root->fs_info);
164 mutex_unlock(&root->fs_info->tree_log_mutex);
165 if (ret)
166 goto out;
167
168 ret = btrfs_add_log_tree(trans, root);
169 if (ret)
170 goto out;
171
172 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
173 root->log_start_pid = current->pid;
174 }
175
176 atomic_inc(&root->log_batch);
177 atomic_inc(&root->log_writers);
178 if (ctx) {
179 int index = root->log_transid % 2;
180 list_add_tail(&ctx->list, &root->log_ctxs[index]);
181 ctx->log_transid = root->log_transid;
182 }
183
184out:
185 mutex_unlock(&root->log_mutex);
186 return ret;
187}
188
189/*
190 * returns 0 if there was a log transaction running and we were able
191 * to join, or returns -ENOENT if there were not transactions
192 * in progress
193 */
194static int join_running_log_trans(struct btrfs_root *root)
195{
196 int ret = -ENOENT;
197
198 smp_mb();
199 if (!root->log_root)
200 return -ENOENT;
201
202 mutex_lock(&root->log_mutex);
203 if (root->log_root) {
204 ret = 0;
205 atomic_inc(&root->log_writers);
206 }
207 mutex_unlock(&root->log_mutex);
208 return ret;
209}
210
211/*
212 * This either makes the current running log transaction wait
213 * until you call btrfs_end_log_trans() or it makes any future
214 * log transactions wait until you call btrfs_end_log_trans()
215 */
216int btrfs_pin_log_trans(struct btrfs_root *root)
217{
218 int ret = -ENOENT;
219
220 mutex_lock(&root->log_mutex);
221 atomic_inc(&root->log_writers);
222 mutex_unlock(&root->log_mutex);
223 return ret;
224}
225
226/*
227 * indicate we're done making changes to the log tree
228 * and wake up anyone waiting to do a sync
229 */
230void btrfs_end_log_trans(struct btrfs_root *root)
231{
232 if (atomic_dec_and_test(&root->log_writers)) {
233 /*
234 * Implicit memory barrier after atomic_dec_and_test
235 */
236 if (waitqueue_active(&root->log_writer_wait))
237 wake_up(&root->log_writer_wait);
238 }
239}
240
241
242/*
243 * the walk control struct is used to pass state down the chain when
244 * processing the log tree. The stage field tells us which part
245 * of the log tree processing we are currently doing. The others
246 * are state fields used for that specific part
247 */
248struct walk_control {
249 /* should we free the extent on disk when done? This is used
250 * at transaction commit time while freeing a log tree
251 */
252 int free;
253
254 /* should we write out the extent buffer? This is used
255 * while flushing the log tree to disk during a sync
256 */
257 int write;
258
259 /* should we wait for the extent buffer io to finish? Also used
260 * while flushing the log tree to disk for a sync
261 */
262 int wait;
263
264 /* pin only walk, we record which extents on disk belong to the
265 * log trees
266 */
267 int pin;
268
269 /* what stage of the replay code we're currently in */
270 int stage;
271
272 /* the root we are currently replaying */
273 struct btrfs_root *replay_dest;
274
275 /* the trans handle for the current replay */
276 struct btrfs_trans_handle *trans;
277
278 /* the function that gets used to process blocks we find in the
279 * tree. Note the extent_buffer might not be up to date when it is
280 * passed in, and it must be checked or read if you need the data
281 * inside it
282 */
283 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
284 struct walk_control *wc, u64 gen);
285};
286
287/*
288 * process_func used to pin down extents, write them or wait on them
289 */
290static int process_one_buffer(struct btrfs_root *log,
291 struct extent_buffer *eb,
292 struct walk_control *wc, u64 gen)
293{
294 int ret = 0;
295
296 /*
297 * If this fs is mixed then we need to be able to process the leaves to
298 * pin down any logged extents, so we have to read the block.
299 */
300 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
301 ret = btrfs_read_buffer(eb, gen);
302 if (ret)
303 return ret;
304 }
305
306 if (wc->pin)
307 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
308 eb->start, eb->len);
309
310 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
311 if (wc->pin && btrfs_header_level(eb) == 0)
312 ret = btrfs_exclude_logged_extents(log, eb);
313 if (wc->write)
314 btrfs_write_tree_block(eb);
315 if (wc->wait)
316 btrfs_wait_tree_block_writeback(eb);
317 }
318 return ret;
319}
320
321/*
322 * Item overwrite used by replay and tree logging. eb, slot and key all refer
323 * to the src data we are copying out.
324 *
325 * root is the tree we are copying into, and path is a scratch
326 * path for use in this function (it should be released on entry and
327 * will be released on exit).
328 *
329 * If the key is already in the destination tree the existing item is
330 * overwritten. If the existing item isn't big enough, it is extended.
331 * If it is too large, it is truncated.
332 *
333 * If the key isn't in the destination yet, a new item is inserted.
334 */
335static noinline int overwrite_item(struct btrfs_trans_handle *trans,
336 struct btrfs_root *root,
337 struct btrfs_path *path,
338 struct extent_buffer *eb, int slot,
339 struct btrfs_key *key)
340{
341 int ret;
342 u32 item_size;
343 u64 saved_i_size = 0;
344 int save_old_i_size = 0;
345 unsigned long src_ptr;
346 unsigned long dst_ptr;
347 int overwrite_root = 0;
348 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
349
350 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
351 overwrite_root = 1;
352
353 item_size = btrfs_item_size_nr(eb, slot);
354 src_ptr = btrfs_item_ptr_offset(eb, slot);
355
356 /* look for the key in the destination tree */
357 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
358 if (ret < 0)
359 return ret;
360
361 if (ret == 0) {
362 char *src_copy;
363 char *dst_copy;
364 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
365 path->slots[0]);
366 if (dst_size != item_size)
367 goto insert;
368
369 if (item_size == 0) {
370 btrfs_release_path(path);
371 return 0;
372 }
373 dst_copy = kmalloc(item_size, GFP_NOFS);
374 src_copy = kmalloc(item_size, GFP_NOFS);
375 if (!dst_copy || !src_copy) {
376 btrfs_release_path(path);
377 kfree(dst_copy);
378 kfree(src_copy);
379 return -ENOMEM;
380 }
381
382 read_extent_buffer(eb, src_copy, src_ptr, item_size);
383
384 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
385 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
386 item_size);
387 ret = memcmp(dst_copy, src_copy, item_size);
388
389 kfree(dst_copy);
390 kfree(src_copy);
391 /*
392 * they have the same contents, just return, this saves
393 * us from cowing blocks in the destination tree and doing
394 * extra writes that may not have been done by a previous
395 * sync
396 */
397 if (ret == 0) {
398 btrfs_release_path(path);
399 return 0;
400 }
401
402 /*
403 * We need to load the old nbytes into the inode so when we
404 * replay the extents we've logged we get the right nbytes.
405 */
406 if (inode_item) {
407 struct btrfs_inode_item *item;
408 u64 nbytes;
409 u32 mode;
410
411 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
412 struct btrfs_inode_item);
413 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
414 item = btrfs_item_ptr(eb, slot,
415 struct btrfs_inode_item);
416 btrfs_set_inode_nbytes(eb, item, nbytes);
417
418 /*
419 * If this is a directory we need to reset the i_size to
420 * 0 so that we can set it up properly when replaying
421 * the rest of the items in this log.
422 */
423 mode = btrfs_inode_mode(eb, item);
424 if (S_ISDIR(mode))
425 btrfs_set_inode_size(eb, item, 0);
426 }
427 } else if (inode_item) {
428 struct btrfs_inode_item *item;
429 u32 mode;
430
431 /*
432 * New inode, set nbytes to 0 so that the nbytes comes out
433 * properly when we replay the extents.
434 */
435 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
436 btrfs_set_inode_nbytes(eb, item, 0);
437
438 /*
439 * If this is a directory we need to reset the i_size to 0 so
440 * that we can set it up properly when replaying the rest of
441 * the items in this log.
442 */
443 mode = btrfs_inode_mode(eb, item);
444 if (S_ISDIR(mode))
445 btrfs_set_inode_size(eb, item, 0);
446 }
447insert:
448 btrfs_release_path(path);
449 /* try to insert the key into the destination tree */
450 path->skip_release_on_error = 1;
451 ret = btrfs_insert_empty_item(trans, root, path,
452 key, item_size);
453 path->skip_release_on_error = 0;
454
455 /* make sure any existing item is the correct size */
456 if (ret == -EEXIST || ret == -EOVERFLOW) {
457 u32 found_size;
458 found_size = btrfs_item_size_nr(path->nodes[0],
459 path->slots[0]);
460 if (found_size > item_size)
461 btrfs_truncate_item(root, path, item_size, 1);
462 else if (found_size < item_size)
463 btrfs_extend_item(root, path,
464 item_size - found_size);
465 } else if (ret) {
466 return ret;
467 }
468 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
469 path->slots[0]);
470
471 /* don't overwrite an existing inode if the generation number
472 * was logged as zero. This is done when the tree logging code
473 * is just logging an inode to make sure it exists after recovery.
474 *
475 * Also, don't overwrite i_size on directories during replay.
476 * log replay inserts and removes directory items based on the
477 * state of the tree found in the subvolume, and i_size is modified
478 * as it goes
479 */
480 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
481 struct btrfs_inode_item *src_item;
482 struct btrfs_inode_item *dst_item;
483
484 src_item = (struct btrfs_inode_item *)src_ptr;
485 dst_item = (struct btrfs_inode_item *)dst_ptr;
486
487 if (btrfs_inode_generation(eb, src_item) == 0) {
488 struct extent_buffer *dst_eb = path->nodes[0];
489 const u64 ino_size = btrfs_inode_size(eb, src_item);
490
491 /*
492 * For regular files an ino_size == 0 is used only when
493 * logging that an inode exists, as part of a directory
494 * fsync, and the inode wasn't fsynced before. In this
495 * case don't set the size of the inode in the fs/subvol
496 * tree, otherwise we would be throwing valid data away.
497 */
498 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
499 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
500 ino_size != 0) {
501 struct btrfs_map_token token;
502
503 btrfs_init_map_token(&token);
504 btrfs_set_token_inode_size(dst_eb, dst_item,
505 ino_size, &token);
506 }
507 goto no_copy;
508 }
509
510 if (overwrite_root &&
511 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
512 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
513 save_old_i_size = 1;
514 saved_i_size = btrfs_inode_size(path->nodes[0],
515 dst_item);
516 }
517 }
518
519 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
520 src_ptr, item_size);
521
522 if (save_old_i_size) {
523 struct btrfs_inode_item *dst_item;
524 dst_item = (struct btrfs_inode_item *)dst_ptr;
525 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
526 }
527
528 /* make sure the generation is filled in */
529 if (key->type == BTRFS_INODE_ITEM_KEY) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
533 btrfs_set_inode_generation(path->nodes[0], dst_item,
534 trans->transid);
535 }
536 }
537no_copy:
538 btrfs_mark_buffer_dirty(path->nodes[0]);
539 btrfs_release_path(path);
540 return 0;
541}
542
543/*
544 * simple helper to read an inode off the disk from a given root
545 * This can only be called for subvolume roots and not for the log
546 */
547static noinline struct inode *read_one_inode(struct btrfs_root *root,
548 u64 objectid)
549{
550 struct btrfs_key key;
551 struct inode *inode;
552
553 key.objectid = objectid;
554 key.type = BTRFS_INODE_ITEM_KEY;
555 key.offset = 0;
556 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
557 if (IS_ERR(inode)) {
558 inode = NULL;
559 } else if (is_bad_inode(inode)) {
560 iput(inode);
561 inode = NULL;
562 }
563 return inode;
564}
565
566/* replays a single extent in 'eb' at 'slot' with 'key' into the
567 * subvolume 'root'. path is released on entry and should be released
568 * on exit.
569 *
570 * extents in the log tree have not been allocated out of the extent
571 * tree yet. So, this completes the allocation, taking a reference
572 * as required if the extent already exists or creating a new extent
573 * if it isn't in the extent allocation tree yet.
574 *
575 * The extent is inserted into the file, dropping any existing extents
576 * from the file that overlap the new one.
577 */
578static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
579 struct btrfs_root *root,
580 struct btrfs_path *path,
581 struct extent_buffer *eb, int slot,
582 struct btrfs_key *key)
583{
584 int found_type;
585 u64 extent_end;
586 u64 start = key->offset;
587 u64 nbytes = 0;
588 struct btrfs_file_extent_item *item;
589 struct inode *inode = NULL;
590 unsigned long size;
591 int ret = 0;
592
593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 found_type = btrfs_file_extent_type(eb, item);
595
596 if (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 nbytes = btrfs_file_extent_num_bytes(eb, item);
599 extent_end = start + nbytes;
600
601 /*
602 * We don't add to the inodes nbytes if we are prealloc or a
603 * hole.
604 */
605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 nbytes = 0;
607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
608 size = btrfs_file_extent_inline_len(eb, slot, item);
609 nbytes = btrfs_file_extent_ram_bytes(eb, item);
610 extent_end = ALIGN(start + size, root->sectorsize);
611 } else {
612 ret = 0;
613 goto out;
614 }
615
616 inode = read_one_inode(root, key->objectid);
617 if (!inode) {
618 ret = -EIO;
619 goto out;
620 }
621
622 /*
623 * first check to see if we already have this extent in the
624 * file. This must be done before the btrfs_drop_extents run
625 * so we don't try to drop this extent.
626 */
627 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
628 start, 0);
629
630 if (ret == 0 &&
631 (found_type == BTRFS_FILE_EXTENT_REG ||
632 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
633 struct btrfs_file_extent_item cmp1;
634 struct btrfs_file_extent_item cmp2;
635 struct btrfs_file_extent_item *existing;
636 struct extent_buffer *leaf;
637
638 leaf = path->nodes[0];
639 existing = btrfs_item_ptr(leaf, path->slots[0],
640 struct btrfs_file_extent_item);
641
642 read_extent_buffer(eb, &cmp1, (unsigned long)item,
643 sizeof(cmp1));
644 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
645 sizeof(cmp2));
646
647 /*
648 * we already have a pointer to this exact extent,
649 * we don't have to do anything
650 */
651 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
652 btrfs_release_path(path);
653 goto out;
654 }
655 }
656 btrfs_release_path(path);
657
658 /* drop any overlapping extents */
659 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
660 if (ret)
661 goto out;
662
663 if (found_type == BTRFS_FILE_EXTENT_REG ||
664 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
665 u64 offset;
666 unsigned long dest_offset;
667 struct btrfs_key ins;
668
669 ret = btrfs_insert_empty_item(trans, root, path, key,
670 sizeof(*item));
671 if (ret)
672 goto out;
673 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 path->slots[0]);
675 copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 (unsigned long)item, sizeof(*item));
677
678 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 ins.type = BTRFS_EXTENT_ITEM_KEY;
681 offset = key->offset - btrfs_file_extent_offset(eb, item);
682
683 if (ins.objectid > 0) {
684 u64 csum_start;
685 u64 csum_end;
686 LIST_HEAD(ordered_sums);
687 /*
688 * is this extent already allocated in the extent
689 * allocation tree? If so, just add a reference
690 */
691 ret = btrfs_lookup_data_extent(root, ins.objectid,
692 ins.offset);
693 if (ret == 0) {
694 ret = btrfs_inc_extent_ref(trans, root,
695 ins.objectid, ins.offset,
696 0, root->root_key.objectid,
697 key->objectid, offset);
698 if (ret)
699 goto out;
700 } else {
701 /*
702 * insert the extent pointer in the extent
703 * allocation tree
704 */
705 ret = btrfs_alloc_logged_file_extent(trans,
706 root, root->root_key.objectid,
707 key->objectid, offset, &ins);
708 if (ret)
709 goto out;
710 }
711 btrfs_release_path(path);
712
713 if (btrfs_file_extent_compression(eb, item)) {
714 csum_start = ins.objectid;
715 csum_end = csum_start + ins.offset;
716 } else {
717 csum_start = ins.objectid +
718 btrfs_file_extent_offset(eb, item);
719 csum_end = csum_start +
720 btrfs_file_extent_num_bytes(eb, item);
721 }
722
723 ret = btrfs_lookup_csums_range(root->log_root,
724 csum_start, csum_end - 1,
725 &ordered_sums, 0);
726 if (ret)
727 goto out;
728 /*
729 * Now delete all existing cums in the csum root that
730 * cover our range. We do this because we can have an
731 * extent that is completely referenced by one file
732 * extent item and partially referenced by another
733 * file extent item (like after using the clone or
734 * extent_same ioctls). In this case if we end up doing
735 * the replay of the one that partially references the
736 * extent first, and we do not do the csum deletion
737 * below, we can get 2 csum items in the csum tree that
738 * overlap each other. For example, imagine our log has
739 * the two following file extent items:
740 *
741 * key (257 EXTENT_DATA 409600)
742 * extent data disk byte 12845056 nr 102400
743 * extent data offset 20480 nr 20480 ram 102400
744 *
745 * key (257 EXTENT_DATA 819200)
746 * extent data disk byte 12845056 nr 102400
747 * extent data offset 0 nr 102400 ram 102400
748 *
749 * Where the second one fully references the 100K extent
750 * that starts at disk byte 12845056, and the log tree
751 * has a single csum item that covers the entire range
752 * of the extent:
753 *
754 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
755 *
756 * After the first file extent item is replayed, the
757 * csum tree gets the following csum item:
758 *
759 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
760 *
761 * Which covers the 20K sub-range starting at offset 20K
762 * of our extent. Now when we replay the second file
763 * extent item, if we do not delete existing csum items
764 * that cover any of its blocks, we end up getting two
765 * csum items in our csum tree that overlap each other:
766 *
767 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
769 *
770 * Which is a problem, because after this anyone trying
771 * to lookup up for the checksum of any block of our
772 * extent starting at an offset of 40K or higher, will
773 * end up looking at the second csum item only, which
774 * does not contain the checksum for any block starting
775 * at offset 40K or higher of our extent.
776 */
777 while (!list_empty(&ordered_sums)) {
778 struct btrfs_ordered_sum *sums;
779 sums = list_entry(ordered_sums.next,
780 struct btrfs_ordered_sum,
781 list);
782 if (!ret)
783 ret = btrfs_del_csums(trans,
784 root->fs_info->csum_root,
785 sums->bytenr,
786 sums->len);
787 if (!ret)
788 ret = btrfs_csum_file_blocks(trans,
789 root->fs_info->csum_root,
790 sums);
791 list_del(&sums->list);
792 kfree(sums);
793 }
794 if (ret)
795 goto out;
796 } else {
797 btrfs_release_path(path);
798 }
799 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
800 /* inline extents are easy, we just overwrite them */
801 ret = overwrite_item(trans, root, path, eb, slot, key);
802 if (ret)
803 goto out;
804 }
805
806 inode_add_bytes(inode, nbytes);
807 ret = btrfs_update_inode(trans, root, inode);
808out:
809 if (inode)
810 iput(inode);
811 return ret;
812}
813
814/*
815 * when cleaning up conflicts between the directory names in the
816 * subvolume, directory names in the log and directory names in the
817 * inode back references, we may have to unlink inodes from directories.
818 *
819 * This is a helper function to do the unlink of a specific directory
820 * item
821 */
822static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
823 struct btrfs_root *root,
824 struct btrfs_path *path,
825 struct inode *dir,
826 struct btrfs_dir_item *di)
827{
828 struct inode *inode;
829 char *name;
830 int name_len;
831 struct extent_buffer *leaf;
832 struct btrfs_key location;
833 int ret;
834
835 leaf = path->nodes[0];
836
837 btrfs_dir_item_key_to_cpu(leaf, di, &location);
838 name_len = btrfs_dir_name_len(leaf, di);
839 name = kmalloc(name_len, GFP_NOFS);
840 if (!name)
841 return -ENOMEM;
842
843 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
844 btrfs_release_path(path);
845
846 inode = read_one_inode(root, location.objectid);
847 if (!inode) {
848 ret = -EIO;
849 goto out;
850 }
851
852 ret = link_to_fixup_dir(trans, root, path, location.objectid);
853 if (ret)
854 goto out;
855
856 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
857 if (ret)
858 goto out;
859 else
860 ret = btrfs_run_delayed_items(trans, root);
861out:
862 kfree(name);
863 iput(inode);
864 return ret;
865}
866
867/*
868 * helper function to see if a given name and sequence number found
869 * in an inode back reference are already in a directory and correctly
870 * point to this inode
871 */
872static noinline int inode_in_dir(struct btrfs_root *root,
873 struct btrfs_path *path,
874 u64 dirid, u64 objectid, u64 index,
875 const char *name, int name_len)
876{
877 struct btrfs_dir_item *di;
878 struct btrfs_key location;
879 int match = 0;
880
881 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
882 index, name, name_len, 0);
883 if (di && !IS_ERR(di)) {
884 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
885 if (location.objectid != objectid)
886 goto out;
887 } else
888 goto out;
889 btrfs_release_path(path);
890
891 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
892 if (di && !IS_ERR(di)) {
893 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
894 if (location.objectid != objectid)
895 goto out;
896 } else
897 goto out;
898 match = 1;
899out:
900 btrfs_release_path(path);
901 return match;
902}
903
904/*
905 * helper function to check a log tree for a named back reference in
906 * an inode. This is used to decide if a back reference that is
907 * found in the subvolume conflicts with what we find in the log.
908 *
909 * inode backreferences may have multiple refs in a single item,
910 * during replay we process one reference at a time, and we don't
911 * want to delete valid links to a file from the subvolume if that
912 * link is also in the log.
913 */
914static noinline int backref_in_log(struct btrfs_root *log,
915 struct btrfs_key *key,
916 u64 ref_objectid,
917 const char *name, int namelen)
918{
919 struct btrfs_path *path;
920 struct btrfs_inode_ref *ref;
921 unsigned long ptr;
922 unsigned long ptr_end;
923 unsigned long name_ptr;
924 int found_name_len;
925 int item_size;
926 int ret;
927 int match = 0;
928
929 path = btrfs_alloc_path();
930 if (!path)
931 return -ENOMEM;
932
933 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
934 if (ret != 0)
935 goto out;
936
937 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
938
939 if (key->type == BTRFS_INODE_EXTREF_KEY) {
940 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
941 name, namelen, NULL))
942 match = 1;
943
944 goto out;
945 }
946
947 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
948 ptr_end = ptr + item_size;
949 while (ptr < ptr_end) {
950 ref = (struct btrfs_inode_ref *)ptr;
951 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
952 if (found_name_len == namelen) {
953 name_ptr = (unsigned long)(ref + 1);
954 ret = memcmp_extent_buffer(path->nodes[0], name,
955 name_ptr, namelen);
956 if (ret == 0) {
957 match = 1;
958 goto out;
959 }
960 }
961 ptr = (unsigned long)(ref + 1) + found_name_len;
962 }
963out:
964 btrfs_free_path(path);
965 return match;
966}
967
968static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
969 struct btrfs_root *root,
970 struct btrfs_path *path,
971 struct btrfs_root *log_root,
972 struct inode *dir, struct inode *inode,
973 struct extent_buffer *eb,
974 u64 inode_objectid, u64 parent_objectid,
975 u64 ref_index, char *name, int namelen,
976 int *search_done)
977{
978 int ret;
979 char *victim_name;
980 int victim_name_len;
981 struct extent_buffer *leaf;
982 struct btrfs_dir_item *di;
983 struct btrfs_key search_key;
984 struct btrfs_inode_extref *extref;
985
986again:
987 /* Search old style refs */
988 search_key.objectid = inode_objectid;
989 search_key.type = BTRFS_INODE_REF_KEY;
990 search_key.offset = parent_objectid;
991 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
992 if (ret == 0) {
993 struct btrfs_inode_ref *victim_ref;
994 unsigned long ptr;
995 unsigned long ptr_end;
996
997 leaf = path->nodes[0];
998
999 /* are we trying to overwrite a back ref for the root directory
1000 * if so, just jump out, we're done
1001 */
1002 if (search_key.objectid == search_key.offset)
1003 return 1;
1004
1005 /* check all the names in this back reference to see
1006 * if they are in the log. if so, we allow them to stay
1007 * otherwise they must be unlinked as a conflict
1008 */
1009 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1010 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1011 while (ptr < ptr_end) {
1012 victim_ref = (struct btrfs_inode_ref *)ptr;
1013 victim_name_len = btrfs_inode_ref_name_len(leaf,
1014 victim_ref);
1015 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1016 if (!victim_name)
1017 return -ENOMEM;
1018
1019 read_extent_buffer(leaf, victim_name,
1020 (unsigned long)(victim_ref + 1),
1021 victim_name_len);
1022
1023 if (!backref_in_log(log_root, &search_key,
1024 parent_objectid,
1025 victim_name,
1026 victim_name_len)) {
1027 inc_nlink(inode);
1028 btrfs_release_path(path);
1029
1030 ret = btrfs_unlink_inode(trans, root, dir,
1031 inode, victim_name,
1032 victim_name_len);
1033 kfree(victim_name);
1034 if (ret)
1035 return ret;
1036 ret = btrfs_run_delayed_items(trans, root);
1037 if (ret)
1038 return ret;
1039 *search_done = 1;
1040 goto again;
1041 }
1042 kfree(victim_name);
1043
1044 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1045 }
1046
1047 /*
1048 * NOTE: we have searched root tree and checked the
1049 * corresponding ref, it does not need to check again.
1050 */
1051 *search_done = 1;
1052 }
1053 btrfs_release_path(path);
1054
1055 /* Same search but for extended refs */
1056 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1057 inode_objectid, parent_objectid, 0,
1058 0);
1059 if (!IS_ERR_OR_NULL(extref)) {
1060 u32 item_size;
1061 u32 cur_offset = 0;
1062 unsigned long base;
1063 struct inode *victim_parent;
1064
1065 leaf = path->nodes[0];
1066
1067 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1068 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1069
1070 while (cur_offset < item_size) {
1071 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1072
1073 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1074
1075 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1076 goto next;
1077
1078 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1079 if (!victim_name)
1080 return -ENOMEM;
1081 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1082 victim_name_len);
1083
1084 search_key.objectid = inode_objectid;
1085 search_key.type = BTRFS_INODE_EXTREF_KEY;
1086 search_key.offset = btrfs_extref_hash(parent_objectid,
1087 victim_name,
1088 victim_name_len);
1089 ret = 0;
1090 if (!backref_in_log(log_root, &search_key,
1091 parent_objectid, victim_name,
1092 victim_name_len)) {
1093 ret = -ENOENT;
1094 victim_parent = read_one_inode(root,
1095 parent_objectid);
1096 if (victim_parent) {
1097 inc_nlink(inode);
1098 btrfs_release_path(path);
1099
1100 ret = btrfs_unlink_inode(trans, root,
1101 victim_parent,
1102 inode,
1103 victim_name,
1104 victim_name_len);
1105 if (!ret)
1106 ret = btrfs_run_delayed_items(
1107 trans, root);
1108 }
1109 iput(victim_parent);
1110 kfree(victim_name);
1111 if (ret)
1112 return ret;
1113 *search_done = 1;
1114 goto again;
1115 }
1116 kfree(victim_name);
1117 if (ret)
1118 return ret;
1119next:
1120 cur_offset += victim_name_len + sizeof(*extref);
1121 }
1122 *search_done = 1;
1123 }
1124 btrfs_release_path(path);
1125
1126 /* look for a conflicting sequence number */
1127 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1128 ref_index, name, namelen, 0);
1129 if (di && !IS_ERR(di)) {
1130 ret = drop_one_dir_item(trans, root, path, dir, di);
1131 if (ret)
1132 return ret;
1133 }
1134 btrfs_release_path(path);
1135
1136 /* look for a conflicing name */
1137 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1138 name, namelen, 0);
1139 if (di && !IS_ERR(di)) {
1140 ret = drop_one_dir_item(trans, root, path, dir, di);
1141 if (ret)
1142 return ret;
1143 }
1144 btrfs_release_path(path);
1145
1146 return 0;
1147}
1148
1149static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1150 u32 *namelen, char **name, u64 *index,
1151 u64 *parent_objectid)
1152{
1153 struct btrfs_inode_extref *extref;
1154
1155 extref = (struct btrfs_inode_extref *)ref_ptr;
1156
1157 *namelen = btrfs_inode_extref_name_len(eb, extref);
1158 *name = kmalloc(*namelen, GFP_NOFS);
1159 if (*name == NULL)
1160 return -ENOMEM;
1161
1162 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1163 *namelen);
1164
1165 *index = btrfs_inode_extref_index(eb, extref);
1166 if (parent_objectid)
1167 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1168
1169 return 0;
1170}
1171
1172static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1173 u32 *namelen, char **name, u64 *index)
1174{
1175 struct btrfs_inode_ref *ref;
1176
1177 ref = (struct btrfs_inode_ref *)ref_ptr;
1178
1179 *namelen = btrfs_inode_ref_name_len(eb, ref);
1180 *name = kmalloc(*namelen, GFP_NOFS);
1181 if (*name == NULL)
1182 return -ENOMEM;
1183
1184 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1185
1186 *index = btrfs_inode_ref_index(eb, ref);
1187
1188 return 0;
1189}
1190
1191/*
1192 * replay one inode back reference item found in the log tree.
1193 * eb, slot and key refer to the buffer and key found in the log tree.
1194 * root is the destination we are replaying into, and path is for temp
1195 * use by this function. (it should be released on return).
1196 */
1197static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1198 struct btrfs_root *root,
1199 struct btrfs_root *log,
1200 struct btrfs_path *path,
1201 struct extent_buffer *eb, int slot,
1202 struct btrfs_key *key)
1203{
1204 struct inode *dir = NULL;
1205 struct inode *inode = NULL;
1206 unsigned long ref_ptr;
1207 unsigned long ref_end;
1208 char *name = NULL;
1209 int namelen;
1210 int ret;
1211 int search_done = 0;
1212 int log_ref_ver = 0;
1213 u64 parent_objectid;
1214 u64 inode_objectid;
1215 u64 ref_index = 0;
1216 int ref_struct_size;
1217
1218 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1219 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1220
1221 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1222 struct btrfs_inode_extref *r;
1223
1224 ref_struct_size = sizeof(struct btrfs_inode_extref);
1225 log_ref_ver = 1;
1226 r = (struct btrfs_inode_extref *)ref_ptr;
1227 parent_objectid = btrfs_inode_extref_parent(eb, r);
1228 } else {
1229 ref_struct_size = sizeof(struct btrfs_inode_ref);
1230 parent_objectid = key->offset;
1231 }
1232 inode_objectid = key->objectid;
1233
1234 /*
1235 * it is possible that we didn't log all the parent directories
1236 * for a given inode. If we don't find the dir, just don't
1237 * copy the back ref in. The link count fixup code will take
1238 * care of the rest
1239 */
1240 dir = read_one_inode(root, parent_objectid);
1241 if (!dir) {
1242 ret = -ENOENT;
1243 goto out;
1244 }
1245
1246 inode = read_one_inode(root, inode_objectid);
1247 if (!inode) {
1248 ret = -EIO;
1249 goto out;
1250 }
1251
1252 while (ref_ptr < ref_end) {
1253 if (log_ref_ver) {
1254 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1255 &ref_index, &parent_objectid);
1256 /*
1257 * parent object can change from one array
1258 * item to another.
1259 */
1260 if (!dir)
1261 dir = read_one_inode(root, parent_objectid);
1262 if (!dir) {
1263 ret = -ENOENT;
1264 goto out;
1265 }
1266 } else {
1267 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1268 &ref_index);
1269 }
1270 if (ret)
1271 goto out;
1272
1273 /* if we already have a perfect match, we're done */
1274 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1275 ref_index, name, namelen)) {
1276 /*
1277 * look for a conflicting back reference in the
1278 * metadata. if we find one we have to unlink that name
1279 * of the file before we add our new link. Later on, we
1280 * overwrite any existing back reference, and we don't
1281 * want to create dangling pointers in the directory.
1282 */
1283
1284 if (!search_done) {
1285 ret = __add_inode_ref(trans, root, path, log,
1286 dir, inode, eb,
1287 inode_objectid,
1288 parent_objectid,
1289 ref_index, name, namelen,
1290 &search_done);
1291 if (ret) {
1292 if (ret == 1)
1293 ret = 0;
1294 goto out;
1295 }
1296 }
1297
1298 /* insert our name */
1299 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1300 0, ref_index);
1301 if (ret)
1302 goto out;
1303
1304 btrfs_update_inode(trans, root, inode);
1305 }
1306
1307 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1308 kfree(name);
1309 name = NULL;
1310 if (log_ref_ver) {
1311 iput(dir);
1312 dir = NULL;
1313 }
1314 }
1315
1316 /* finally write the back reference in the inode */
1317 ret = overwrite_item(trans, root, path, eb, slot, key);
1318out:
1319 btrfs_release_path(path);
1320 kfree(name);
1321 iput(dir);
1322 iput(inode);
1323 return ret;
1324}
1325
1326static int insert_orphan_item(struct btrfs_trans_handle *trans,
1327 struct btrfs_root *root, u64 ino)
1328{
1329 int ret;
1330
1331 ret = btrfs_insert_orphan_item(trans, root, ino);
1332 if (ret == -EEXIST)
1333 ret = 0;
1334
1335 return ret;
1336}
1337
1338static int count_inode_extrefs(struct btrfs_root *root,
1339 struct inode *inode, struct btrfs_path *path)
1340{
1341 int ret = 0;
1342 int name_len;
1343 unsigned int nlink = 0;
1344 u32 item_size;
1345 u32 cur_offset = 0;
1346 u64 inode_objectid = btrfs_ino(inode);
1347 u64 offset = 0;
1348 unsigned long ptr;
1349 struct btrfs_inode_extref *extref;
1350 struct extent_buffer *leaf;
1351
1352 while (1) {
1353 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1354 &extref, &offset);
1355 if (ret)
1356 break;
1357
1358 leaf = path->nodes[0];
1359 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1360 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1361 cur_offset = 0;
1362
1363 while (cur_offset < item_size) {
1364 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1365 name_len = btrfs_inode_extref_name_len(leaf, extref);
1366
1367 nlink++;
1368
1369 cur_offset += name_len + sizeof(*extref);
1370 }
1371
1372 offset++;
1373 btrfs_release_path(path);
1374 }
1375 btrfs_release_path(path);
1376
1377 if (ret < 0 && ret != -ENOENT)
1378 return ret;
1379 return nlink;
1380}
1381
1382static int count_inode_refs(struct btrfs_root *root,
1383 struct inode *inode, struct btrfs_path *path)
1384{
1385 int ret;
1386 struct btrfs_key key;
1387 unsigned int nlink = 0;
1388 unsigned long ptr;
1389 unsigned long ptr_end;
1390 int name_len;
1391 u64 ino = btrfs_ino(inode);
1392
1393 key.objectid = ino;
1394 key.type = BTRFS_INODE_REF_KEY;
1395 key.offset = (u64)-1;
1396
1397 while (1) {
1398 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1399 if (ret < 0)
1400 break;
1401 if (ret > 0) {
1402 if (path->slots[0] == 0)
1403 break;
1404 path->slots[0]--;
1405 }
1406process_slot:
1407 btrfs_item_key_to_cpu(path->nodes[0], &key,
1408 path->slots[0]);
1409 if (key.objectid != ino ||
1410 key.type != BTRFS_INODE_REF_KEY)
1411 break;
1412 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1413 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1414 path->slots[0]);
1415 while (ptr < ptr_end) {
1416 struct btrfs_inode_ref *ref;
1417
1418 ref = (struct btrfs_inode_ref *)ptr;
1419 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1420 ref);
1421 ptr = (unsigned long)(ref + 1) + name_len;
1422 nlink++;
1423 }
1424
1425 if (key.offset == 0)
1426 break;
1427 if (path->slots[0] > 0) {
1428 path->slots[0]--;
1429 goto process_slot;
1430 }
1431 key.offset--;
1432 btrfs_release_path(path);
1433 }
1434 btrfs_release_path(path);
1435
1436 return nlink;
1437}
1438
1439/*
1440 * There are a few corners where the link count of the file can't
1441 * be properly maintained during replay. So, instead of adding
1442 * lots of complexity to the log code, we just scan the backrefs
1443 * for any file that has been through replay.
1444 *
1445 * The scan will update the link count on the inode to reflect the
1446 * number of back refs found. If it goes down to zero, the iput
1447 * will free the inode.
1448 */
1449static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root,
1451 struct inode *inode)
1452{
1453 struct btrfs_path *path;
1454 int ret;
1455 u64 nlink = 0;
1456 u64 ino = btrfs_ino(inode);
1457
1458 path = btrfs_alloc_path();
1459 if (!path)
1460 return -ENOMEM;
1461
1462 ret = count_inode_refs(root, inode, path);
1463 if (ret < 0)
1464 goto out;
1465
1466 nlink = ret;
1467
1468 ret = count_inode_extrefs(root, inode, path);
1469 if (ret < 0)
1470 goto out;
1471
1472 nlink += ret;
1473
1474 ret = 0;
1475
1476 if (nlink != inode->i_nlink) {
1477 set_nlink(inode, nlink);
1478 btrfs_update_inode(trans, root, inode);
1479 }
1480 BTRFS_I(inode)->index_cnt = (u64)-1;
1481
1482 if (inode->i_nlink == 0) {
1483 if (S_ISDIR(inode->i_mode)) {
1484 ret = replay_dir_deletes(trans, root, NULL, path,
1485 ino, 1);
1486 if (ret)
1487 goto out;
1488 }
1489 ret = insert_orphan_item(trans, root, ino);
1490 }
1491
1492out:
1493 btrfs_free_path(path);
1494 return ret;
1495}
1496
1497static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1498 struct btrfs_root *root,
1499 struct btrfs_path *path)
1500{
1501 int ret;
1502 struct btrfs_key key;
1503 struct inode *inode;
1504
1505 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1506 key.type = BTRFS_ORPHAN_ITEM_KEY;
1507 key.offset = (u64)-1;
1508 while (1) {
1509 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1510 if (ret < 0)
1511 break;
1512
1513 if (ret == 1) {
1514 if (path->slots[0] == 0)
1515 break;
1516 path->slots[0]--;
1517 }
1518
1519 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1520 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1521 key.type != BTRFS_ORPHAN_ITEM_KEY)
1522 break;
1523
1524 ret = btrfs_del_item(trans, root, path);
1525 if (ret)
1526 goto out;
1527
1528 btrfs_release_path(path);
1529 inode = read_one_inode(root, key.offset);
1530 if (!inode)
1531 return -EIO;
1532
1533 ret = fixup_inode_link_count(trans, root, inode);
1534 iput(inode);
1535 if (ret)
1536 goto out;
1537
1538 /*
1539 * fixup on a directory may create new entries,
1540 * make sure we always look for the highset possible
1541 * offset
1542 */
1543 key.offset = (u64)-1;
1544 }
1545 ret = 0;
1546out:
1547 btrfs_release_path(path);
1548 return ret;
1549}
1550
1551
1552/*
1553 * record a given inode in the fixup dir so we can check its link
1554 * count when replay is done. The link count is incremented here
1555 * so the inode won't go away until we check it
1556 */
1557static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1558 struct btrfs_root *root,
1559 struct btrfs_path *path,
1560 u64 objectid)
1561{
1562 struct btrfs_key key;
1563 int ret = 0;
1564 struct inode *inode;
1565
1566 inode = read_one_inode(root, objectid);
1567 if (!inode)
1568 return -EIO;
1569
1570 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1571 key.type = BTRFS_ORPHAN_ITEM_KEY;
1572 key.offset = objectid;
1573
1574 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1575
1576 btrfs_release_path(path);
1577 if (ret == 0) {
1578 if (!inode->i_nlink)
1579 set_nlink(inode, 1);
1580 else
1581 inc_nlink(inode);
1582 ret = btrfs_update_inode(trans, root, inode);
1583 } else if (ret == -EEXIST) {
1584 ret = 0;
1585 } else {
1586 BUG(); /* Logic Error */
1587 }
1588 iput(inode);
1589
1590 return ret;
1591}
1592
1593/*
1594 * when replaying the log for a directory, we only insert names
1595 * for inodes that actually exist. This means an fsync on a directory
1596 * does not implicitly fsync all the new files in it
1597 */
1598static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1599 struct btrfs_root *root,
1600 u64 dirid, u64 index,
1601 char *name, int name_len,
1602 struct btrfs_key *location)
1603{
1604 struct inode *inode;
1605 struct inode *dir;
1606 int ret;
1607
1608 inode = read_one_inode(root, location->objectid);
1609 if (!inode)
1610 return -ENOENT;
1611
1612 dir = read_one_inode(root, dirid);
1613 if (!dir) {
1614 iput(inode);
1615 return -EIO;
1616 }
1617
1618 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1619
1620 /* FIXME, put inode into FIXUP list */
1621
1622 iput(inode);
1623 iput(dir);
1624 return ret;
1625}
1626
1627/*
1628 * Return true if an inode reference exists in the log for the given name,
1629 * inode and parent inode.
1630 */
1631static bool name_in_log_ref(struct btrfs_root *log_root,
1632 const char *name, const int name_len,
1633 const u64 dirid, const u64 ino)
1634{
1635 struct btrfs_key search_key;
1636
1637 search_key.objectid = ino;
1638 search_key.type = BTRFS_INODE_REF_KEY;
1639 search_key.offset = dirid;
1640 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1641 return true;
1642
1643 search_key.type = BTRFS_INODE_EXTREF_KEY;
1644 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1645 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1646 return true;
1647
1648 return false;
1649}
1650
1651/*
1652 * take a single entry in a log directory item and replay it into
1653 * the subvolume.
1654 *
1655 * if a conflicting item exists in the subdirectory already,
1656 * the inode it points to is unlinked and put into the link count
1657 * fix up tree.
1658 *
1659 * If a name from the log points to a file or directory that does
1660 * not exist in the FS, it is skipped. fsyncs on directories
1661 * do not force down inodes inside that directory, just changes to the
1662 * names or unlinks in a directory.
1663 *
1664 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1665 * non-existing inode) and 1 if the name was replayed.
1666 */
1667static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1668 struct btrfs_root *root,
1669 struct btrfs_path *path,
1670 struct extent_buffer *eb,
1671 struct btrfs_dir_item *di,
1672 struct btrfs_key *key)
1673{
1674 char *name;
1675 int name_len;
1676 struct btrfs_dir_item *dst_di;
1677 struct btrfs_key found_key;
1678 struct btrfs_key log_key;
1679 struct inode *dir;
1680 u8 log_type;
1681 int exists;
1682 int ret = 0;
1683 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1684 bool name_added = false;
1685
1686 dir = read_one_inode(root, key->objectid);
1687 if (!dir)
1688 return -EIO;
1689
1690 name_len = btrfs_dir_name_len(eb, di);
1691 name = kmalloc(name_len, GFP_NOFS);
1692 if (!name) {
1693 ret = -ENOMEM;
1694 goto out;
1695 }
1696
1697 log_type = btrfs_dir_type(eb, di);
1698 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1699 name_len);
1700
1701 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1702 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1703 if (exists == 0)
1704 exists = 1;
1705 else
1706 exists = 0;
1707 btrfs_release_path(path);
1708
1709 if (key->type == BTRFS_DIR_ITEM_KEY) {
1710 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1711 name, name_len, 1);
1712 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1713 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1714 key->objectid,
1715 key->offset, name,
1716 name_len, 1);
1717 } else {
1718 /* Corruption */
1719 ret = -EINVAL;
1720 goto out;
1721 }
1722 if (IS_ERR_OR_NULL(dst_di)) {
1723 /* we need a sequence number to insert, so we only
1724 * do inserts for the BTRFS_DIR_INDEX_KEY types
1725 */
1726 if (key->type != BTRFS_DIR_INDEX_KEY)
1727 goto out;
1728 goto insert;
1729 }
1730
1731 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1732 /* the existing item matches the logged item */
1733 if (found_key.objectid == log_key.objectid &&
1734 found_key.type == log_key.type &&
1735 found_key.offset == log_key.offset &&
1736 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1737 update_size = false;
1738 goto out;
1739 }
1740
1741 /*
1742 * don't drop the conflicting directory entry if the inode
1743 * for the new entry doesn't exist
1744 */
1745 if (!exists)
1746 goto out;
1747
1748 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1749 if (ret)
1750 goto out;
1751
1752 if (key->type == BTRFS_DIR_INDEX_KEY)
1753 goto insert;
1754out:
1755 btrfs_release_path(path);
1756 if (!ret && update_size) {
1757 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1758 ret = btrfs_update_inode(trans, root, dir);
1759 }
1760 kfree(name);
1761 iput(dir);
1762 if (!ret && name_added)
1763 ret = 1;
1764 return ret;
1765
1766insert:
1767 if (name_in_log_ref(root->log_root, name, name_len,
1768 key->objectid, log_key.objectid)) {
1769 /* The dentry will be added later. */
1770 ret = 0;
1771 update_size = false;
1772 goto out;
1773 }
1774 btrfs_release_path(path);
1775 ret = insert_one_name(trans, root, key->objectid, key->offset,
1776 name, name_len, &log_key);
1777 if (ret && ret != -ENOENT && ret != -EEXIST)
1778 goto out;
1779 if (!ret)
1780 name_added = true;
1781 update_size = false;
1782 ret = 0;
1783 goto out;
1784}
1785
1786/*
1787 * find all the names in a directory item and reconcile them into
1788 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1789 * one name in a directory item, but the same code gets used for
1790 * both directory index types
1791 */
1792static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1793 struct btrfs_root *root,
1794 struct btrfs_path *path,
1795 struct extent_buffer *eb, int slot,
1796 struct btrfs_key *key)
1797{
1798 int ret = 0;
1799 u32 item_size = btrfs_item_size_nr(eb, slot);
1800 struct btrfs_dir_item *di;
1801 int name_len;
1802 unsigned long ptr;
1803 unsigned long ptr_end;
1804 struct btrfs_path *fixup_path = NULL;
1805
1806 ptr = btrfs_item_ptr_offset(eb, slot);
1807 ptr_end = ptr + item_size;
1808 while (ptr < ptr_end) {
1809 di = (struct btrfs_dir_item *)ptr;
1810 if (verify_dir_item(root, eb, di))
1811 return -EIO;
1812 name_len = btrfs_dir_name_len(eb, di);
1813 ret = replay_one_name(trans, root, path, eb, di, key);
1814 if (ret < 0)
1815 break;
1816 ptr = (unsigned long)(di + 1);
1817 ptr += name_len;
1818
1819 /*
1820 * If this entry refers to a non-directory (directories can not
1821 * have a link count > 1) and it was added in the transaction
1822 * that was not committed, make sure we fixup the link count of
1823 * the inode it the entry points to. Otherwise something like
1824 * the following would result in a directory pointing to an
1825 * inode with a wrong link that does not account for this dir
1826 * entry:
1827 *
1828 * mkdir testdir
1829 * touch testdir/foo
1830 * touch testdir/bar
1831 * sync
1832 *
1833 * ln testdir/bar testdir/bar_link
1834 * ln testdir/foo testdir/foo_link
1835 * xfs_io -c "fsync" testdir/bar
1836 *
1837 * <power failure>
1838 *
1839 * mount fs, log replay happens
1840 *
1841 * File foo would remain with a link count of 1 when it has two
1842 * entries pointing to it in the directory testdir. This would
1843 * make it impossible to ever delete the parent directory has
1844 * it would result in stale dentries that can never be deleted.
1845 */
1846 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1847 struct btrfs_key di_key;
1848
1849 if (!fixup_path) {
1850 fixup_path = btrfs_alloc_path();
1851 if (!fixup_path) {
1852 ret = -ENOMEM;
1853 break;
1854 }
1855 }
1856
1857 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1858 ret = link_to_fixup_dir(trans, root, fixup_path,
1859 di_key.objectid);
1860 if (ret)
1861 break;
1862 }
1863 ret = 0;
1864 }
1865 btrfs_free_path(fixup_path);
1866 return ret;
1867}
1868
1869/*
1870 * directory replay has two parts. There are the standard directory
1871 * items in the log copied from the subvolume, and range items
1872 * created in the log while the subvolume was logged.
1873 *
1874 * The range items tell us which parts of the key space the log
1875 * is authoritative for. During replay, if a key in the subvolume
1876 * directory is in a logged range item, but not actually in the log
1877 * that means it was deleted from the directory before the fsync
1878 * and should be removed.
1879 */
1880static noinline int find_dir_range(struct btrfs_root *root,
1881 struct btrfs_path *path,
1882 u64 dirid, int key_type,
1883 u64 *start_ret, u64 *end_ret)
1884{
1885 struct btrfs_key key;
1886 u64 found_end;
1887 struct btrfs_dir_log_item *item;
1888 int ret;
1889 int nritems;
1890
1891 if (*start_ret == (u64)-1)
1892 return 1;
1893
1894 key.objectid = dirid;
1895 key.type = key_type;
1896 key.offset = *start_ret;
1897
1898 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1899 if (ret < 0)
1900 goto out;
1901 if (ret > 0) {
1902 if (path->slots[0] == 0)
1903 goto out;
1904 path->slots[0]--;
1905 }
1906 if (ret != 0)
1907 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1908
1909 if (key.type != key_type || key.objectid != dirid) {
1910 ret = 1;
1911 goto next;
1912 }
1913 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1914 struct btrfs_dir_log_item);
1915 found_end = btrfs_dir_log_end(path->nodes[0], item);
1916
1917 if (*start_ret >= key.offset && *start_ret <= found_end) {
1918 ret = 0;
1919 *start_ret = key.offset;
1920 *end_ret = found_end;
1921 goto out;
1922 }
1923 ret = 1;
1924next:
1925 /* check the next slot in the tree to see if it is a valid item */
1926 nritems = btrfs_header_nritems(path->nodes[0]);
1927 if (path->slots[0] >= nritems) {
1928 ret = btrfs_next_leaf(root, path);
1929 if (ret)
1930 goto out;
1931 } else {
1932 path->slots[0]++;
1933 }
1934
1935 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1936
1937 if (key.type != key_type || key.objectid != dirid) {
1938 ret = 1;
1939 goto out;
1940 }
1941 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1942 struct btrfs_dir_log_item);
1943 found_end = btrfs_dir_log_end(path->nodes[0], item);
1944 *start_ret = key.offset;
1945 *end_ret = found_end;
1946 ret = 0;
1947out:
1948 btrfs_release_path(path);
1949 return ret;
1950}
1951
1952/*
1953 * this looks for a given directory item in the log. If the directory
1954 * item is not in the log, the item is removed and the inode it points
1955 * to is unlinked
1956 */
1957static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1958 struct btrfs_root *root,
1959 struct btrfs_root *log,
1960 struct btrfs_path *path,
1961 struct btrfs_path *log_path,
1962 struct inode *dir,
1963 struct btrfs_key *dir_key)
1964{
1965 int ret;
1966 struct extent_buffer *eb;
1967 int slot;
1968 u32 item_size;
1969 struct btrfs_dir_item *di;
1970 struct btrfs_dir_item *log_di;
1971 int name_len;
1972 unsigned long ptr;
1973 unsigned long ptr_end;
1974 char *name;
1975 struct inode *inode;
1976 struct btrfs_key location;
1977
1978again:
1979 eb = path->nodes[0];
1980 slot = path->slots[0];
1981 item_size = btrfs_item_size_nr(eb, slot);
1982 ptr = btrfs_item_ptr_offset(eb, slot);
1983 ptr_end = ptr + item_size;
1984 while (ptr < ptr_end) {
1985 di = (struct btrfs_dir_item *)ptr;
1986 if (verify_dir_item(root, eb, di)) {
1987 ret = -EIO;
1988 goto out;
1989 }
1990
1991 name_len = btrfs_dir_name_len(eb, di);
1992 name = kmalloc(name_len, GFP_NOFS);
1993 if (!name) {
1994 ret = -ENOMEM;
1995 goto out;
1996 }
1997 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1998 name_len);
1999 log_di = NULL;
2000 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2001 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2002 dir_key->objectid,
2003 name, name_len, 0);
2004 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2005 log_di = btrfs_lookup_dir_index_item(trans, log,
2006 log_path,
2007 dir_key->objectid,
2008 dir_key->offset,
2009 name, name_len, 0);
2010 }
2011 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2012 btrfs_dir_item_key_to_cpu(eb, di, &location);
2013 btrfs_release_path(path);
2014 btrfs_release_path(log_path);
2015 inode = read_one_inode(root, location.objectid);
2016 if (!inode) {
2017 kfree(name);
2018 return -EIO;
2019 }
2020
2021 ret = link_to_fixup_dir(trans, root,
2022 path, location.objectid);
2023 if (ret) {
2024 kfree(name);
2025 iput(inode);
2026 goto out;
2027 }
2028
2029 inc_nlink(inode);
2030 ret = btrfs_unlink_inode(trans, root, dir, inode,
2031 name, name_len);
2032 if (!ret)
2033 ret = btrfs_run_delayed_items(trans, root);
2034 kfree(name);
2035 iput(inode);
2036 if (ret)
2037 goto out;
2038
2039 /* there might still be more names under this key
2040 * check and repeat if required
2041 */
2042 ret = btrfs_search_slot(NULL, root, dir_key, path,
2043 0, 0);
2044 if (ret == 0)
2045 goto again;
2046 ret = 0;
2047 goto out;
2048 } else if (IS_ERR(log_di)) {
2049 kfree(name);
2050 return PTR_ERR(log_di);
2051 }
2052 btrfs_release_path(log_path);
2053 kfree(name);
2054
2055 ptr = (unsigned long)(di + 1);
2056 ptr += name_len;
2057 }
2058 ret = 0;
2059out:
2060 btrfs_release_path(path);
2061 btrfs_release_path(log_path);
2062 return ret;
2063}
2064
2065static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2066 struct btrfs_root *root,
2067 struct btrfs_root *log,
2068 struct btrfs_path *path,
2069 const u64 ino)
2070{
2071 struct btrfs_key search_key;
2072 struct btrfs_path *log_path;
2073 int i;
2074 int nritems;
2075 int ret;
2076
2077 log_path = btrfs_alloc_path();
2078 if (!log_path)
2079 return -ENOMEM;
2080
2081 search_key.objectid = ino;
2082 search_key.type = BTRFS_XATTR_ITEM_KEY;
2083 search_key.offset = 0;
2084again:
2085 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2086 if (ret < 0)
2087 goto out;
2088process_leaf:
2089 nritems = btrfs_header_nritems(path->nodes[0]);
2090 for (i = path->slots[0]; i < nritems; i++) {
2091 struct btrfs_key key;
2092 struct btrfs_dir_item *di;
2093 struct btrfs_dir_item *log_di;
2094 u32 total_size;
2095 u32 cur;
2096
2097 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2098 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2099 ret = 0;
2100 goto out;
2101 }
2102
2103 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2104 total_size = btrfs_item_size_nr(path->nodes[0], i);
2105 cur = 0;
2106 while (cur < total_size) {
2107 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2108 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2109 u32 this_len = sizeof(*di) + name_len + data_len;
2110 char *name;
2111
2112 name = kmalloc(name_len, GFP_NOFS);
2113 if (!name) {
2114 ret = -ENOMEM;
2115 goto out;
2116 }
2117 read_extent_buffer(path->nodes[0], name,
2118 (unsigned long)(di + 1), name_len);
2119
2120 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2121 name, name_len, 0);
2122 btrfs_release_path(log_path);
2123 if (!log_di) {
2124 /* Doesn't exist in log tree, so delete it. */
2125 btrfs_release_path(path);
2126 di = btrfs_lookup_xattr(trans, root, path, ino,
2127 name, name_len, -1);
2128 kfree(name);
2129 if (IS_ERR(di)) {
2130 ret = PTR_ERR(di);
2131 goto out;
2132 }
2133 ASSERT(di);
2134 ret = btrfs_delete_one_dir_name(trans, root,
2135 path, di);
2136 if (ret)
2137 goto out;
2138 btrfs_release_path(path);
2139 search_key = key;
2140 goto again;
2141 }
2142 kfree(name);
2143 if (IS_ERR(log_di)) {
2144 ret = PTR_ERR(log_di);
2145 goto out;
2146 }
2147 cur += this_len;
2148 di = (struct btrfs_dir_item *)((char *)di + this_len);
2149 }
2150 }
2151 ret = btrfs_next_leaf(root, path);
2152 if (ret > 0)
2153 ret = 0;
2154 else if (ret == 0)
2155 goto process_leaf;
2156out:
2157 btrfs_free_path(log_path);
2158 btrfs_release_path(path);
2159 return ret;
2160}
2161
2162
2163/*
2164 * deletion replay happens before we copy any new directory items
2165 * out of the log or out of backreferences from inodes. It
2166 * scans the log to find ranges of keys that log is authoritative for,
2167 * and then scans the directory to find items in those ranges that are
2168 * not present in the log.
2169 *
2170 * Anything we don't find in the log is unlinked and removed from the
2171 * directory.
2172 */
2173static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2174 struct btrfs_root *root,
2175 struct btrfs_root *log,
2176 struct btrfs_path *path,
2177 u64 dirid, int del_all)
2178{
2179 u64 range_start;
2180 u64 range_end;
2181 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2182 int ret = 0;
2183 struct btrfs_key dir_key;
2184 struct btrfs_key found_key;
2185 struct btrfs_path *log_path;
2186 struct inode *dir;
2187
2188 dir_key.objectid = dirid;
2189 dir_key.type = BTRFS_DIR_ITEM_KEY;
2190 log_path = btrfs_alloc_path();
2191 if (!log_path)
2192 return -ENOMEM;
2193
2194 dir = read_one_inode(root, dirid);
2195 /* it isn't an error if the inode isn't there, that can happen
2196 * because we replay the deletes before we copy in the inode item
2197 * from the log
2198 */
2199 if (!dir) {
2200 btrfs_free_path(log_path);
2201 return 0;
2202 }
2203again:
2204 range_start = 0;
2205 range_end = 0;
2206 while (1) {
2207 if (del_all)
2208 range_end = (u64)-1;
2209 else {
2210 ret = find_dir_range(log, path, dirid, key_type,
2211 &range_start, &range_end);
2212 if (ret != 0)
2213 break;
2214 }
2215
2216 dir_key.offset = range_start;
2217 while (1) {
2218 int nritems;
2219 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2220 0, 0);
2221 if (ret < 0)
2222 goto out;
2223
2224 nritems = btrfs_header_nritems(path->nodes[0]);
2225 if (path->slots[0] >= nritems) {
2226 ret = btrfs_next_leaf(root, path);
2227 if (ret)
2228 break;
2229 }
2230 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2231 path->slots[0]);
2232 if (found_key.objectid != dirid ||
2233 found_key.type != dir_key.type)
2234 goto next_type;
2235
2236 if (found_key.offset > range_end)
2237 break;
2238
2239 ret = check_item_in_log(trans, root, log, path,
2240 log_path, dir,
2241 &found_key);
2242 if (ret)
2243 goto out;
2244 if (found_key.offset == (u64)-1)
2245 break;
2246 dir_key.offset = found_key.offset + 1;
2247 }
2248 btrfs_release_path(path);
2249 if (range_end == (u64)-1)
2250 break;
2251 range_start = range_end + 1;
2252 }
2253
2254next_type:
2255 ret = 0;
2256 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2257 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2258 dir_key.type = BTRFS_DIR_INDEX_KEY;
2259 btrfs_release_path(path);
2260 goto again;
2261 }
2262out:
2263 btrfs_release_path(path);
2264 btrfs_free_path(log_path);
2265 iput(dir);
2266 return ret;
2267}
2268
2269/*
2270 * the process_func used to replay items from the log tree. This
2271 * gets called in two different stages. The first stage just looks
2272 * for inodes and makes sure they are all copied into the subvolume.
2273 *
2274 * The second stage copies all the other item types from the log into
2275 * the subvolume. The two stage approach is slower, but gets rid of
2276 * lots of complexity around inodes referencing other inodes that exist
2277 * only in the log (references come from either directory items or inode
2278 * back refs).
2279 */
2280static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2281 struct walk_control *wc, u64 gen)
2282{
2283 int nritems;
2284 struct btrfs_path *path;
2285 struct btrfs_root *root = wc->replay_dest;
2286 struct btrfs_key key;
2287 int level;
2288 int i;
2289 int ret;
2290
2291 ret = btrfs_read_buffer(eb, gen);
2292 if (ret)
2293 return ret;
2294
2295 level = btrfs_header_level(eb);
2296
2297 if (level != 0)
2298 return 0;
2299
2300 path = btrfs_alloc_path();
2301 if (!path)
2302 return -ENOMEM;
2303
2304 nritems = btrfs_header_nritems(eb);
2305 for (i = 0; i < nritems; i++) {
2306 btrfs_item_key_to_cpu(eb, &key, i);
2307
2308 /* inode keys are done during the first stage */
2309 if (key.type == BTRFS_INODE_ITEM_KEY &&
2310 wc->stage == LOG_WALK_REPLAY_INODES) {
2311 struct btrfs_inode_item *inode_item;
2312 u32 mode;
2313
2314 inode_item = btrfs_item_ptr(eb, i,
2315 struct btrfs_inode_item);
2316 ret = replay_xattr_deletes(wc->trans, root, log,
2317 path, key.objectid);
2318 if (ret)
2319 break;
2320 mode = btrfs_inode_mode(eb, inode_item);
2321 if (S_ISDIR(mode)) {
2322 ret = replay_dir_deletes(wc->trans,
2323 root, log, path, key.objectid, 0);
2324 if (ret)
2325 break;
2326 }
2327 ret = overwrite_item(wc->trans, root, path,
2328 eb, i, &key);
2329 if (ret)
2330 break;
2331
2332 /* for regular files, make sure corresponding
2333 * orhpan item exist. extents past the new EOF
2334 * will be truncated later by orphan cleanup.
2335 */
2336 if (S_ISREG(mode)) {
2337 ret = insert_orphan_item(wc->trans, root,
2338 key.objectid);
2339 if (ret)
2340 break;
2341 }
2342
2343 ret = link_to_fixup_dir(wc->trans, root,
2344 path, key.objectid);
2345 if (ret)
2346 break;
2347 }
2348
2349 if (key.type == BTRFS_DIR_INDEX_KEY &&
2350 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2351 ret = replay_one_dir_item(wc->trans, root, path,
2352 eb, i, &key);
2353 if (ret)
2354 break;
2355 }
2356
2357 if (wc->stage < LOG_WALK_REPLAY_ALL)
2358 continue;
2359
2360 /* these keys are simply copied */
2361 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2362 ret = overwrite_item(wc->trans, root, path,
2363 eb, i, &key);
2364 if (ret)
2365 break;
2366 } else if (key.type == BTRFS_INODE_REF_KEY ||
2367 key.type == BTRFS_INODE_EXTREF_KEY) {
2368 ret = add_inode_ref(wc->trans, root, log, path,
2369 eb, i, &key);
2370 if (ret && ret != -ENOENT)
2371 break;
2372 ret = 0;
2373 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2374 ret = replay_one_extent(wc->trans, root, path,
2375 eb, i, &key);
2376 if (ret)
2377 break;
2378 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2379 ret = replay_one_dir_item(wc->trans, root, path,
2380 eb, i, &key);
2381 if (ret)
2382 break;
2383 }
2384 }
2385 btrfs_free_path(path);
2386 return ret;
2387}
2388
2389static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2390 struct btrfs_root *root,
2391 struct btrfs_path *path, int *level,
2392 struct walk_control *wc)
2393{
2394 u64 root_owner;
2395 u64 bytenr;
2396 u64 ptr_gen;
2397 struct extent_buffer *next;
2398 struct extent_buffer *cur;
2399 struct extent_buffer *parent;
2400 u32 blocksize;
2401 int ret = 0;
2402
2403 WARN_ON(*level < 0);
2404 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2405
2406 while (*level > 0) {
2407 WARN_ON(*level < 0);
2408 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2409 cur = path->nodes[*level];
2410
2411 WARN_ON(btrfs_header_level(cur) != *level);
2412
2413 if (path->slots[*level] >=
2414 btrfs_header_nritems(cur))
2415 break;
2416
2417 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2418 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2419 blocksize = root->nodesize;
2420
2421 parent = path->nodes[*level];
2422 root_owner = btrfs_header_owner(parent);
2423
2424 next = btrfs_find_create_tree_block(root, bytenr);
2425 if (!next)
2426 return -ENOMEM;
2427
2428 if (*level == 1) {
2429 ret = wc->process_func(root, next, wc, ptr_gen);
2430 if (ret) {
2431 free_extent_buffer(next);
2432 return ret;
2433 }
2434
2435 path->slots[*level]++;
2436 if (wc->free) {
2437 ret = btrfs_read_buffer(next, ptr_gen);
2438 if (ret) {
2439 free_extent_buffer(next);
2440 return ret;
2441 }
2442
2443 if (trans) {
2444 btrfs_tree_lock(next);
2445 btrfs_set_lock_blocking(next);
2446 clean_tree_block(trans, root->fs_info,
2447 next);
2448 btrfs_wait_tree_block_writeback(next);
2449 btrfs_tree_unlock(next);
2450 }
2451
2452 WARN_ON(root_owner !=
2453 BTRFS_TREE_LOG_OBJECTID);
2454 ret = btrfs_free_and_pin_reserved_extent(root,
2455 bytenr, blocksize);
2456 if (ret) {
2457 free_extent_buffer(next);
2458 return ret;
2459 }
2460 }
2461 free_extent_buffer(next);
2462 continue;
2463 }
2464 ret = btrfs_read_buffer(next, ptr_gen);
2465 if (ret) {
2466 free_extent_buffer(next);
2467 return ret;
2468 }
2469
2470 WARN_ON(*level <= 0);
2471 if (path->nodes[*level-1])
2472 free_extent_buffer(path->nodes[*level-1]);
2473 path->nodes[*level-1] = next;
2474 *level = btrfs_header_level(next);
2475 path->slots[*level] = 0;
2476 cond_resched();
2477 }
2478 WARN_ON(*level < 0);
2479 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2480
2481 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2482
2483 cond_resched();
2484 return 0;
2485}
2486
2487static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2488 struct btrfs_root *root,
2489 struct btrfs_path *path, int *level,
2490 struct walk_control *wc)
2491{
2492 u64 root_owner;
2493 int i;
2494 int slot;
2495 int ret;
2496
2497 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2498 slot = path->slots[i];
2499 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2500 path->slots[i]++;
2501 *level = i;
2502 WARN_ON(*level == 0);
2503 return 0;
2504 } else {
2505 struct extent_buffer *parent;
2506 if (path->nodes[*level] == root->node)
2507 parent = path->nodes[*level];
2508 else
2509 parent = path->nodes[*level + 1];
2510
2511 root_owner = btrfs_header_owner(parent);
2512 ret = wc->process_func(root, path->nodes[*level], wc,
2513 btrfs_header_generation(path->nodes[*level]));
2514 if (ret)
2515 return ret;
2516
2517 if (wc->free) {
2518 struct extent_buffer *next;
2519
2520 next = path->nodes[*level];
2521
2522 if (trans) {
2523 btrfs_tree_lock(next);
2524 btrfs_set_lock_blocking(next);
2525 clean_tree_block(trans, root->fs_info,
2526 next);
2527 btrfs_wait_tree_block_writeback(next);
2528 btrfs_tree_unlock(next);
2529 }
2530
2531 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2532 ret = btrfs_free_and_pin_reserved_extent(root,
2533 path->nodes[*level]->start,
2534 path->nodes[*level]->len);
2535 if (ret)
2536 return ret;
2537 }
2538 free_extent_buffer(path->nodes[*level]);
2539 path->nodes[*level] = NULL;
2540 *level = i + 1;
2541 }
2542 }
2543 return 1;
2544}
2545
2546/*
2547 * drop the reference count on the tree rooted at 'snap'. This traverses
2548 * the tree freeing any blocks that have a ref count of zero after being
2549 * decremented.
2550 */
2551static int walk_log_tree(struct btrfs_trans_handle *trans,
2552 struct btrfs_root *log, struct walk_control *wc)
2553{
2554 int ret = 0;
2555 int wret;
2556 int level;
2557 struct btrfs_path *path;
2558 int orig_level;
2559
2560 path = btrfs_alloc_path();
2561 if (!path)
2562 return -ENOMEM;
2563
2564 level = btrfs_header_level(log->node);
2565 orig_level = level;
2566 path->nodes[level] = log->node;
2567 extent_buffer_get(log->node);
2568 path->slots[level] = 0;
2569
2570 while (1) {
2571 wret = walk_down_log_tree(trans, log, path, &level, wc);
2572 if (wret > 0)
2573 break;
2574 if (wret < 0) {
2575 ret = wret;
2576 goto out;
2577 }
2578
2579 wret = walk_up_log_tree(trans, log, path, &level, wc);
2580 if (wret > 0)
2581 break;
2582 if (wret < 0) {
2583 ret = wret;
2584 goto out;
2585 }
2586 }
2587
2588 /* was the root node processed? if not, catch it here */
2589 if (path->nodes[orig_level]) {
2590 ret = wc->process_func(log, path->nodes[orig_level], wc,
2591 btrfs_header_generation(path->nodes[orig_level]));
2592 if (ret)
2593 goto out;
2594 if (wc->free) {
2595 struct extent_buffer *next;
2596
2597 next = path->nodes[orig_level];
2598
2599 if (trans) {
2600 btrfs_tree_lock(next);
2601 btrfs_set_lock_blocking(next);
2602 clean_tree_block(trans, log->fs_info, next);
2603 btrfs_wait_tree_block_writeback(next);
2604 btrfs_tree_unlock(next);
2605 }
2606
2607 WARN_ON(log->root_key.objectid !=
2608 BTRFS_TREE_LOG_OBJECTID);
2609 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2610 next->len);
2611 if (ret)
2612 goto out;
2613 }
2614 }
2615
2616out:
2617 btrfs_free_path(path);
2618 return ret;
2619}
2620
2621/*
2622 * helper function to update the item for a given subvolumes log root
2623 * in the tree of log roots
2624 */
2625static int update_log_root(struct btrfs_trans_handle *trans,
2626 struct btrfs_root *log)
2627{
2628 int ret;
2629
2630 if (log->log_transid == 1) {
2631 /* insert root item on the first sync */
2632 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2633 &log->root_key, &log->root_item);
2634 } else {
2635 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2636 &log->root_key, &log->root_item);
2637 }
2638 return ret;
2639}
2640
2641static void wait_log_commit(struct btrfs_root *root, int transid)
2642{
2643 DEFINE_WAIT(wait);
2644 int index = transid % 2;
2645
2646 /*
2647 * we only allow two pending log transactions at a time,
2648 * so we know that if ours is more than 2 older than the
2649 * current transaction, we're done
2650 */
2651 do {
2652 prepare_to_wait(&root->log_commit_wait[index],
2653 &wait, TASK_UNINTERRUPTIBLE);
2654 mutex_unlock(&root->log_mutex);
2655
2656 if (root->log_transid_committed < transid &&
2657 atomic_read(&root->log_commit[index]))
2658 schedule();
2659
2660 finish_wait(&root->log_commit_wait[index], &wait);
2661 mutex_lock(&root->log_mutex);
2662 } while (root->log_transid_committed < transid &&
2663 atomic_read(&root->log_commit[index]));
2664}
2665
2666static void wait_for_writer(struct btrfs_root *root)
2667{
2668 DEFINE_WAIT(wait);
2669
2670 while (atomic_read(&root->log_writers)) {
2671 prepare_to_wait(&root->log_writer_wait,
2672 &wait, TASK_UNINTERRUPTIBLE);
2673 mutex_unlock(&root->log_mutex);
2674 if (atomic_read(&root->log_writers))
2675 schedule();
2676 finish_wait(&root->log_writer_wait, &wait);
2677 mutex_lock(&root->log_mutex);
2678 }
2679}
2680
2681static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2682 struct btrfs_log_ctx *ctx)
2683{
2684 if (!ctx)
2685 return;
2686
2687 mutex_lock(&root->log_mutex);
2688 list_del_init(&ctx->list);
2689 mutex_unlock(&root->log_mutex);
2690}
2691
2692/*
2693 * Invoked in log mutex context, or be sure there is no other task which
2694 * can access the list.
2695 */
2696static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2697 int index, int error)
2698{
2699 struct btrfs_log_ctx *ctx;
2700
2701 if (!error) {
2702 INIT_LIST_HEAD(&root->log_ctxs[index]);
2703 return;
2704 }
2705
2706 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2707 ctx->log_ret = error;
2708
2709 INIT_LIST_HEAD(&root->log_ctxs[index]);
2710}
2711
2712/*
2713 * btrfs_sync_log does sends a given tree log down to the disk and
2714 * updates the super blocks to record it. When this call is done,
2715 * you know that any inodes previously logged are safely on disk only
2716 * if it returns 0.
2717 *
2718 * Any other return value means you need to call btrfs_commit_transaction.
2719 * Some of the edge cases for fsyncing directories that have had unlinks
2720 * or renames done in the past mean that sometimes the only safe
2721 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2722 * that has happened.
2723 */
2724int btrfs_sync_log(struct btrfs_trans_handle *trans,
2725 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2726{
2727 int index1;
2728 int index2;
2729 int mark;
2730 int ret;
2731 struct btrfs_root *log = root->log_root;
2732 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2733 int log_transid = 0;
2734 struct btrfs_log_ctx root_log_ctx;
2735 struct blk_plug plug;
2736
2737 mutex_lock(&root->log_mutex);
2738 log_transid = ctx->log_transid;
2739 if (root->log_transid_committed >= log_transid) {
2740 mutex_unlock(&root->log_mutex);
2741 return ctx->log_ret;
2742 }
2743
2744 index1 = log_transid % 2;
2745 if (atomic_read(&root->log_commit[index1])) {
2746 wait_log_commit(root, log_transid);
2747 mutex_unlock(&root->log_mutex);
2748 return ctx->log_ret;
2749 }
2750 ASSERT(log_transid == root->log_transid);
2751 atomic_set(&root->log_commit[index1], 1);
2752
2753 /* wait for previous tree log sync to complete */
2754 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2755 wait_log_commit(root, log_transid - 1);
2756
2757 while (1) {
2758 int batch = atomic_read(&root->log_batch);
2759 /* when we're on an ssd, just kick the log commit out */
2760 if (!btrfs_test_opt(root, SSD) &&
2761 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2762 mutex_unlock(&root->log_mutex);
2763 schedule_timeout_uninterruptible(1);
2764 mutex_lock(&root->log_mutex);
2765 }
2766 wait_for_writer(root);
2767 if (batch == atomic_read(&root->log_batch))
2768 break;
2769 }
2770
2771 /* bail out if we need to do a full commit */
2772 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2773 ret = -EAGAIN;
2774 btrfs_free_logged_extents(log, log_transid);
2775 mutex_unlock(&root->log_mutex);
2776 goto out;
2777 }
2778
2779 if (log_transid % 2 == 0)
2780 mark = EXTENT_DIRTY;
2781 else
2782 mark = EXTENT_NEW;
2783
2784 /* we start IO on all the marked extents here, but we don't actually
2785 * wait for them until later.
2786 */
2787 blk_start_plug(&plug);
2788 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2789 if (ret) {
2790 blk_finish_plug(&plug);
2791 btrfs_abort_transaction(trans, root, ret);
2792 btrfs_free_logged_extents(log, log_transid);
2793 btrfs_set_log_full_commit(root->fs_info, trans);
2794 mutex_unlock(&root->log_mutex);
2795 goto out;
2796 }
2797
2798 btrfs_set_root_node(&log->root_item, log->node);
2799
2800 root->log_transid++;
2801 log->log_transid = root->log_transid;
2802 root->log_start_pid = 0;
2803 /*
2804 * IO has been started, blocks of the log tree have WRITTEN flag set
2805 * in their headers. new modifications of the log will be written to
2806 * new positions. so it's safe to allow log writers to go in.
2807 */
2808 mutex_unlock(&root->log_mutex);
2809
2810 btrfs_init_log_ctx(&root_log_ctx);
2811
2812 mutex_lock(&log_root_tree->log_mutex);
2813 atomic_inc(&log_root_tree->log_batch);
2814 atomic_inc(&log_root_tree->log_writers);
2815
2816 index2 = log_root_tree->log_transid % 2;
2817 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2818 root_log_ctx.log_transid = log_root_tree->log_transid;
2819
2820 mutex_unlock(&log_root_tree->log_mutex);
2821
2822 ret = update_log_root(trans, log);
2823
2824 mutex_lock(&log_root_tree->log_mutex);
2825 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2826 /*
2827 * Implicit memory barrier after atomic_dec_and_test
2828 */
2829 if (waitqueue_active(&log_root_tree->log_writer_wait))
2830 wake_up(&log_root_tree->log_writer_wait);
2831 }
2832
2833 if (ret) {
2834 if (!list_empty(&root_log_ctx.list))
2835 list_del_init(&root_log_ctx.list);
2836
2837 blk_finish_plug(&plug);
2838 btrfs_set_log_full_commit(root->fs_info, trans);
2839
2840 if (ret != -ENOSPC) {
2841 btrfs_abort_transaction(trans, root, ret);
2842 mutex_unlock(&log_root_tree->log_mutex);
2843 goto out;
2844 }
2845 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2846 btrfs_free_logged_extents(log, log_transid);
2847 mutex_unlock(&log_root_tree->log_mutex);
2848 ret = -EAGAIN;
2849 goto out;
2850 }
2851
2852 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2853 blk_finish_plug(&plug);
2854 mutex_unlock(&log_root_tree->log_mutex);
2855 ret = root_log_ctx.log_ret;
2856 goto out;
2857 }
2858
2859 index2 = root_log_ctx.log_transid % 2;
2860 if (atomic_read(&log_root_tree->log_commit[index2])) {
2861 blk_finish_plug(&plug);
2862 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2863 mark);
2864 btrfs_wait_logged_extents(trans, log, log_transid);
2865 wait_log_commit(log_root_tree,
2866 root_log_ctx.log_transid);
2867 mutex_unlock(&log_root_tree->log_mutex);
2868 if (!ret)
2869 ret = root_log_ctx.log_ret;
2870 goto out;
2871 }
2872 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2873 atomic_set(&log_root_tree->log_commit[index2], 1);
2874
2875 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2876 wait_log_commit(log_root_tree,
2877 root_log_ctx.log_transid - 1);
2878 }
2879
2880 wait_for_writer(log_root_tree);
2881
2882 /*
2883 * now that we've moved on to the tree of log tree roots,
2884 * check the full commit flag again
2885 */
2886 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2887 blk_finish_plug(&plug);
2888 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2889 btrfs_free_logged_extents(log, log_transid);
2890 mutex_unlock(&log_root_tree->log_mutex);
2891 ret = -EAGAIN;
2892 goto out_wake_log_root;
2893 }
2894
2895 ret = btrfs_write_marked_extents(log_root_tree,
2896 &log_root_tree->dirty_log_pages,
2897 EXTENT_DIRTY | EXTENT_NEW);
2898 blk_finish_plug(&plug);
2899 if (ret) {
2900 btrfs_set_log_full_commit(root->fs_info, trans);
2901 btrfs_abort_transaction(trans, root, ret);
2902 btrfs_free_logged_extents(log, log_transid);
2903 mutex_unlock(&log_root_tree->log_mutex);
2904 goto out_wake_log_root;
2905 }
2906 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2907 if (!ret)
2908 ret = btrfs_wait_marked_extents(log_root_tree,
2909 &log_root_tree->dirty_log_pages,
2910 EXTENT_NEW | EXTENT_DIRTY);
2911 if (ret) {
2912 btrfs_set_log_full_commit(root->fs_info, trans);
2913 btrfs_free_logged_extents(log, log_transid);
2914 mutex_unlock(&log_root_tree->log_mutex);
2915 goto out_wake_log_root;
2916 }
2917 btrfs_wait_logged_extents(trans, log, log_transid);
2918
2919 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2920 log_root_tree->node->start);
2921 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2922 btrfs_header_level(log_root_tree->node));
2923
2924 log_root_tree->log_transid++;
2925 mutex_unlock(&log_root_tree->log_mutex);
2926
2927 /*
2928 * nobody else is going to jump in and write the the ctree
2929 * super here because the log_commit atomic below is protecting
2930 * us. We must be called with a transaction handle pinning
2931 * the running transaction open, so a full commit can't hop
2932 * in and cause problems either.
2933 */
2934 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2935 if (ret) {
2936 btrfs_set_log_full_commit(root->fs_info, trans);
2937 btrfs_abort_transaction(trans, root, ret);
2938 goto out_wake_log_root;
2939 }
2940
2941 mutex_lock(&root->log_mutex);
2942 if (root->last_log_commit < log_transid)
2943 root->last_log_commit = log_transid;
2944 mutex_unlock(&root->log_mutex);
2945
2946out_wake_log_root:
2947 /*
2948 * We needn't get log_mutex here because we are sure all
2949 * the other tasks are blocked.
2950 */
2951 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2952
2953 mutex_lock(&log_root_tree->log_mutex);
2954 log_root_tree->log_transid_committed++;
2955 atomic_set(&log_root_tree->log_commit[index2], 0);
2956 mutex_unlock(&log_root_tree->log_mutex);
2957
2958 /*
2959 * The barrier before waitqueue_active is implied by mutex_unlock
2960 */
2961 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2962 wake_up(&log_root_tree->log_commit_wait[index2]);
2963out:
2964 /* See above. */
2965 btrfs_remove_all_log_ctxs(root, index1, ret);
2966
2967 mutex_lock(&root->log_mutex);
2968 root->log_transid_committed++;
2969 atomic_set(&root->log_commit[index1], 0);
2970 mutex_unlock(&root->log_mutex);
2971
2972 /*
2973 * The barrier before waitqueue_active is implied by mutex_unlock
2974 */
2975 if (waitqueue_active(&root->log_commit_wait[index1]))
2976 wake_up(&root->log_commit_wait[index1]);
2977 return ret;
2978}
2979
2980static void free_log_tree(struct btrfs_trans_handle *trans,
2981 struct btrfs_root *log)
2982{
2983 int ret;
2984 u64 start;
2985 u64 end;
2986 struct walk_control wc = {
2987 .free = 1,
2988 .process_func = process_one_buffer
2989 };
2990
2991 ret = walk_log_tree(trans, log, &wc);
2992 /* I don't think this can happen but just in case */
2993 if (ret)
2994 btrfs_abort_transaction(trans, log, ret);
2995
2996 while (1) {
2997 ret = find_first_extent_bit(&log->dirty_log_pages,
2998 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2999 NULL);
3000 if (ret)
3001 break;
3002
3003 clear_extent_bits(&log->dirty_log_pages, start, end,
3004 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
3005 }
3006
3007 /*
3008 * We may have short-circuited the log tree with the full commit logic
3009 * and left ordered extents on our list, so clear these out to keep us
3010 * from leaking inodes and memory.
3011 */
3012 btrfs_free_logged_extents(log, 0);
3013 btrfs_free_logged_extents(log, 1);
3014
3015 free_extent_buffer(log->node);
3016 kfree(log);
3017}
3018
3019/*
3020 * free all the extents used by the tree log. This should be called
3021 * at commit time of the full transaction
3022 */
3023int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3024{
3025 if (root->log_root) {
3026 free_log_tree(trans, root->log_root);
3027 root->log_root = NULL;
3028 }
3029 return 0;
3030}
3031
3032int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3033 struct btrfs_fs_info *fs_info)
3034{
3035 if (fs_info->log_root_tree) {
3036 free_log_tree(trans, fs_info->log_root_tree);
3037 fs_info->log_root_tree = NULL;
3038 }
3039 return 0;
3040}
3041
3042/*
3043 * If both a file and directory are logged, and unlinks or renames are
3044 * mixed in, we have a few interesting corners:
3045 *
3046 * create file X in dir Y
3047 * link file X to X.link in dir Y
3048 * fsync file X
3049 * unlink file X but leave X.link
3050 * fsync dir Y
3051 *
3052 * After a crash we would expect only X.link to exist. But file X
3053 * didn't get fsync'd again so the log has back refs for X and X.link.
3054 *
3055 * We solve this by removing directory entries and inode backrefs from the
3056 * log when a file that was logged in the current transaction is
3057 * unlinked. Any later fsync will include the updated log entries, and
3058 * we'll be able to reconstruct the proper directory items from backrefs.
3059 *
3060 * This optimizations allows us to avoid relogging the entire inode
3061 * or the entire directory.
3062 */
3063int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3064 struct btrfs_root *root,
3065 const char *name, int name_len,
3066 struct inode *dir, u64 index)
3067{
3068 struct btrfs_root *log;
3069 struct btrfs_dir_item *di;
3070 struct btrfs_path *path;
3071 int ret;
3072 int err = 0;
3073 int bytes_del = 0;
3074 u64 dir_ino = btrfs_ino(dir);
3075
3076 if (BTRFS_I(dir)->logged_trans < trans->transid)
3077 return 0;
3078
3079 ret = join_running_log_trans(root);
3080 if (ret)
3081 return 0;
3082
3083 mutex_lock(&BTRFS_I(dir)->log_mutex);
3084
3085 log = root->log_root;
3086 path = btrfs_alloc_path();
3087 if (!path) {
3088 err = -ENOMEM;
3089 goto out_unlock;
3090 }
3091
3092 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3093 name, name_len, -1);
3094 if (IS_ERR(di)) {
3095 err = PTR_ERR(di);
3096 goto fail;
3097 }
3098 if (di) {
3099 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3100 bytes_del += name_len;
3101 if (ret) {
3102 err = ret;
3103 goto fail;
3104 }
3105 }
3106 btrfs_release_path(path);
3107 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3108 index, name, name_len, -1);
3109 if (IS_ERR(di)) {
3110 err = PTR_ERR(di);
3111 goto fail;
3112 }
3113 if (di) {
3114 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3115 bytes_del += name_len;
3116 if (ret) {
3117 err = ret;
3118 goto fail;
3119 }
3120 }
3121
3122 /* update the directory size in the log to reflect the names
3123 * we have removed
3124 */
3125 if (bytes_del) {
3126 struct btrfs_key key;
3127
3128 key.objectid = dir_ino;
3129 key.offset = 0;
3130 key.type = BTRFS_INODE_ITEM_KEY;
3131 btrfs_release_path(path);
3132
3133 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3134 if (ret < 0) {
3135 err = ret;
3136 goto fail;
3137 }
3138 if (ret == 0) {
3139 struct btrfs_inode_item *item;
3140 u64 i_size;
3141
3142 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3143 struct btrfs_inode_item);
3144 i_size = btrfs_inode_size(path->nodes[0], item);
3145 if (i_size > bytes_del)
3146 i_size -= bytes_del;
3147 else
3148 i_size = 0;
3149 btrfs_set_inode_size(path->nodes[0], item, i_size);
3150 btrfs_mark_buffer_dirty(path->nodes[0]);
3151 } else
3152 ret = 0;
3153 btrfs_release_path(path);
3154 }
3155fail:
3156 btrfs_free_path(path);
3157out_unlock:
3158 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3159 if (ret == -ENOSPC) {
3160 btrfs_set_log_full_commit(root->fs_info, trans);
3161 ret = 0;
3162 } else if (ret < 0)
3163 btrfs_abort_transaction(trans, root, ret);
3164
3165 btrfs_end_log_trans(root);
3166
3167 return err;
3168}
3169
3170/* see comments for btrfs_del_dir_entries_in_log */
3171int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3172 struct btrfs_root *root,
3173 const char *name, int name_len,
3174 struct inode *inode, u64 dirid)
3175{
3176 struct btrfs_root *log;
3177 u64 index;
3178 int ret;
3179
3180 if (BTRFS_I(inode)->logged_trans < trans->transid)
3181 return 0;
3182
3183 ret = join_running_log_trans(root);
3184 if (ret)
3185 return 0;
3186 log = root->log_root;
3187 mutex_lock(&BTRFS_I(inode)->log_mutex);
3188
3189 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3190 dirid, &index);
3191 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3192 if (ret == -ENOSPC) {
3193 btrfs_set_log_full_commit(root->fs_info, trans);
3194 ret = 0;
3195 } else if (ret < 0 && ret != -ENOENT)
3196 btrfs_abort_transaction(trans, root, ret);
3197 btrfs_end_log_trans(root);
3198
3199 return ret;
3200}
3201
3202/*
3203 * creates a range item in the log for 'dirid'. first_offset and
3204 * last_offset tell us which parts of the key space the log should
3205 * be considered authoritative for.
3206 */
3207static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3208 struct btrfs_root *log,
3209 struct btrfs_path *path,
3210 int key_type, u64 dirid,
3211 u64 first_offset, u64 last_offset)
3212{
3213 int ret;
3214 struct btrfs_key key;
3215 struct btrfs_dir_log_item *item;
3216
3217 key.objectid = dirid;
3218 key.offset = first_offset;
3219 if (key_type == BTRFS_DIR_ITEM_KEY)
3220 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3221 else
3222 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3223 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3224 if (ret)
3225 return ret;
3226
3227 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3228 struct btrfs_dir_log_item);
3229 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3230 btrfs_mark_buffer_dirty(path->nodes[0]);
3231 btrfs_release_path(path);
3232 return 0;
3233}
3234
3235/*
3236 * log all the items included in the current transaction for a given
3237 * directory. This also creates the range items in the log tree required
3238 * to replay anything deleted before the fsync
3239 */
3240static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3241 struct btrfs_root *root, struct inode *inode,
3242 struct btrfs_path *path,
3243 struct btrfs_path *dst_path, int key_type,
3244 struct btrfs_log_ctx *ctx,
3245 u64 min_offset, u64 *last_offset_ret)
3246{
3247 struct btrfs_key min_key;
3248 struct btrfs_root *log = root->log_root;
3249 struct extent_buffer *src;
3250 int err = 0;
3251 int ret;
3252 int i;
3253 int nritems;
3254 u64 first_offset = min_offset;
3255 u64 last_offset = (u64)-1;
3256 u64 ino = btrfs_ino(inode);
3257
3258 log = root->log_root;
3259
3260 min_key.objectid = ino;
3261 min_key.type = key_type;
3262 min_key.offset = min_offset;
3263
3264 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3265
3266 /*
3267 * we didn't find anything from this transaction, see if there
3268 * is anything at all
3269 */
3270 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3271 min_key.objectid = ino;
3272 min_key.type = key_type;
3273 min_key.offset = (u64)-1;
3274 btrfs_release_path(path);
3275 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3276 if (ret < 0) {
3277 btrfs_release_path(path);
3278 return ret;
3279 }
3280 ret = btrfs_previous_item(root, path, ino, key_type);
3281
3282 /* if ret == 0 there are items for this type,
3283 * create a range to tell us the last key of this type.
3284 * otherwise, there are no items in this directory after
3285 * *min_offset, and we create a range to indicate that.
3286 */
3287 if (ret == 0) {
3288 struct btrfs_key tmp;
3289 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3290 path->slots[0]);
3291 if (key_type == tmp.type)
3292 first_offset = max(min_offset, tmp.offset) + 1;
3293 }
3294 goto done;
3295 }
3296
3297 /* go backward to find any previous key */
3298 ret = btrfs_previous_item(root, path, ino, key_type);
3299 if (ret == 0) {
3300 struct btrfs_key tmp;
3301 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3302 if (key_type == tmp.type) {
3303 first_offset = tmp.offset;
3304 ret = overwrite_item(trans, log, dst_path,
3305 path->nodes[0], path->slots[0],
3306 &tmp);
3307 if (ret) {
3308 err = ret;
3309 goto done;
3310 }
3311 }
3312 }
3313 btrfs_release_path(path);
3314
3315 /* find the first key from this transaction again */
3316 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3317 if (WARN_ON(ret != 0))
3318 goto done;
3319
3320 /*
3321 * we have a block from this transaction, log every item in it
3322 * from our directory
3323 */
3324 while (1) {
3325 struct btrfs_key tmp;
3326 src = path->nodes[0];
3327 nritems = btrfs_header_nritems(src);
3328 for (i = path->slots[0]; i < nritems; i++) {
3329 struct btrfs_dir_item *di;
3330
3331 btrfs_item_key_to_cpu(src, &min_key, i);
3332
3333 if (min_key.objectid != ino || min_key.type != key_type)
3334 goto done;
3335 ret = overwrite_item(trans, log, dst_path, src, i,
3336 &min_key);
3337 if (ret) {
3338 err = ret;
3339 goto done;
3340 }
3341
3342 /*
3343 * We must make sure that when we log a directory entry,
3344 * the corresponding inode, after log replay, has a
3345 * matching link count. For example:
3346 *
3347 * touch foo
3348 * mkdir mydir
3349 * sync
3350 * ln foo mydir/bar
3351 * xfs_io -c "fsync" mydir
3352 * <crash>
3353 * <mount fs and log replay>
3354 *
3355 * Would result in a fsync log that when replayed, our
3356 * file inode would have a link count of 1, but we get
3357 * two directory entries pointing to the same inode.
3358 * After removing one of the names, it would not be
3359 * possible to remove the other name, which resulted
3360 * always in stale file handle errors, and would not
3361 * be possible to rmdir the parent directory, since
3362 * its i_size could never decrement to the value
3363 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3364 */
3365 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3366 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3367 if (ctx &&
3368 (btrfs_dir_transid(src, di) == trans->transid ||
3369 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3370 tmp.type != BTRFS_ROOT_ITEM_KEY)
3371 ctx->log_new_dentries = true;
3372 }
3373 path->slots[0] = nritems;
3374
3375 /*
3376 * look ahead to the next item and see if it is also
3377 * from this directory and from this transaction
3378 */
3379 ret = btrfs_next_leaf(root, path);
3380 if (ret == 1) {
3381 last_offset = (u64)-1;
3382 goto done;
3383 }
3384 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3385 if (tmp.objectid != ino || tmp.type != key_type) {
3386 last_offset = (u64)-1;
3387 goto done;
3388 }
3389 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3390 ret = overwrite_item(trans, log, dst_path,
3391 path->nodes[0], path->slots[0],
3392 &tmp);
3393 if (ret)
3394 err = ret;
3395 else
3396 last_offset = tmp.offset;
3397 goto done;
3398 }
3399 }
3400done:
3401 btrfs_release_path(path);
3402 btrfs_release_path(dst_path);
3403
3404 if (err == 0) {
3405 *last_offset_ret = last_offset;
3406 /*
3407 * insert the log range keys to indicate where the log
3408 * is valid
3409 */
3410 ret = insert_dir_log_key(trans, log, path, key_type,
3411 ino, first_offset, last_offset);
3412 if (ret)
3413 err = ret;
3414 }
3415 return err;
3416}
3417
3418/*
3419 * logging directories is very similar to logging inodes, We find all the items
3420 * from the current transaction and write them to the log.
3421 *
3422 * The recovery code scans the directory in the subvolume, and if it finds a
3423 * key in the range logged that is not present in the log tree, then it means
3424 * that dir entry was unlinked during the transaction.
3425 *
3426 * In order for that scan to work, we must include one key smaller than
3427 * the smallest logged by this transaction and one key larger than the largest
3428 * key logged by this transaction.
3429 */
3430static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3431 struct btrfs_root *root, struct inode *inode,
3432 struct btrfs_path *path,
3433 struct btrfs_path *dst_path,
3434 struct btrfs_log_ctx *ctx)
3435{
3436 u64 min_key;
3437 u64 max_key;
3438 int ret;
3439 int key_type = BTRFS_DIR_ITEM_KEY;
3440
3441again:
3442 min_key = 0;
3443 max_key = 0;
3444 while (1) {
3445 ret = log_dir_items(trans, root, inode, path,
3446 dst_path, key_type, ctx, min_key,
3447 &max_key);
3448 if (ret)
3449 return ret;
3450 if (max_key == (u64)-1)
3451 break;
3452 min_key = max_key + 1;
3453 }
3454
3455 if (key_type == BTRFS_DIR_ITEM_KEY) {
3456 key_type = BTRFS_DIR_INDEX_KEY;
3457 goto again;
3458 }
3459 return 0;
3460}
3461
3462/*
3463 * a helper function to drop items from the log before we relog an
3464 * inode. max_key_type indicates the highest item type to remove.
3465 * This cannot be run for file data extents because it does not
3466 * free the extents they point to.
3467 */
3468static int drop_objectid_items(struct btrfs_trans_handle *trans,
3469 struct btrfs_root *log,
3470 struct btrfs_path *path,
3471 u64 objectid, int max_key_type)
3472{
3473 int ret;
3474 struct btrfs_key key;
3475 struct btrfs_key found_key;
3476 int start_slot;
3477
3478 key.objectid = objectid;
3479 key.type = max_key_type;
3480 key.offset = (u64)-1;
3481
3482 while (1) {
3483 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3484 BUG_ON(ret == 0); /* Logic error */
3485 if (ret < 0)
3486 break;
3487
3488 if (path->slots[0] == 0)
3489 break;
3490
3491 path->slots[0]--;
3492 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3493 path->slots[0]);
3494
3495 if (found_key.objectid != objectid)
3496 break;
3497
3498 found_key.offset = 0;
3499 found_key.type = 0;
3500 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3501 &start_slot);
3502
3503 ret = btrfs_del_items(trans, log, path, start_slot,
3504 path->slots[0] - start_slot + 1);
3505 /*
3506 * If start slot isn't 0 then we don't need to re-search, we've
3507 * found the last guy with the objectid in this tree.
3508 */
3509 if (ret || start_slot != 0)
3510 break;
3511 btrfs_release_path(path);
3512 }
3513 btrfs_release_path(path);
3514 if (ret > 0)
3515 ret = 0;
3516 return ret;
3517}
3518
3519static void fill_inode_item(struct btrfs_trans_handle *trans,
3520 struct extent_buffer *leaf,
3521 struct btrfs_inode_item *item,
3522 struct inode *inode, int log_inode_only,
3523 u64 logged_isize)
3524{
3525 struct btrfs_map_token token;
3526
3527 btrfs_init_map_token(&token);
3528
3529 if (log_inode_only) {
3530 /* set the generation to zero so the recover code
3531 * can tell the difference between an logging
3532 * just to say 'this inode exists' and a logging
3533 * to say 'update this inode with these values'
3534 */
3535 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3536 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3537 } else {
3538 btrfs_set_token_inode_generation(leaf, item,
3539 BTRFS_I(inode)->generation,
3540 &token);
3541 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3542 }
3543
3544 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3545 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3546 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3547 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3548
3549 btrfs_set_token_timespec_sec(leaf, &item->atime,
3550 inode->i_atime.tv_sec, &token);
3551 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3552 inode->i_atime.tv_nsec, &token);
3553
3554 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3555 inode->i_mtime.tv_sec, &token);
3556 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3557 inode->i_mtime.tv_nsec, &token);
3558
3559 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3560 inode->i_ctime.tv_sec, &token);
3561 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3562 inode->i_ctime.tv_nsec, &token);
3563
3564 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3565 &token);
3566
3567 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3568 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3569 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3570 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3571 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3572}
3573
3574static int log_inode_item(struct btrfs_trans_handle *trans,
3575 struct btrfs_root *log, struct btrfs_path *path,
3576 struct inode *inode)
3577{
3578 struct btrfs_inode_item *inode_item;
3579 int ret;
3580
3581 ret = btrfs_insert_empty_item(trans, log, path,
3582 &BTRFS_I(inode)->location,
3583 sizeof(*inode_item));
3584 if (ret && ret != -EEXIST)
3585 return ret;
3586 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3587 struct btrfs_inode_item);
3588 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3589 btrfs_release_path(path);
3590 return 0;
3591}
3592
3593static noinline int copy_items(struct btrfs_trans_handle *trans,
3594 struct inode *inode,
3595 struct btrfs_path *dst_path,
3596 struct btrfs_path *src_path, u64 *last_extent,
3597 int start_slot, int nr, int inode_only,
3598 u64 logged_isize)
3599{
3600 unsigned long src_offset;
3601 unsigned long dst_offset;
3602 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3603 struct btrfs_file_extent_item *extent;
3604 struct btrfs_inode_item *inode_item;
3605 struct extent_buffer *src = src_path->nodes[0];
3606 struct btrfs_key first_key, last_key, key;
3607 int ret;
3608 struct btrfs_key *ins_keys;
3609 u32 *ins_sizes;
3610 char *ins_data;
3611 int i;
3612 struct list_head ordered_sums;
3613 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3614 bool has_extents = false;
3615 bool need_find_last_extent = true;
3616 bool done = false;
3617
3618 INIT_LIST_HEAD(&ordered_sums);
3619
3620 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3621 nr * sizeof(u32), GFP_NOFS);
3622 if (!ins_data)
3623 return -ENOMEM;
3624
3625 first_key.objectid = (u64)-1;
3626
3627 ins_sizes = (u32 *)ins_data;
3628 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3629
3630 for (i = 0; i < nr; i++) {
3631 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3632 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3633 }
3634 ret = btrfs_insert_empty_items(trans, log, dst_path,
3635 ins_keys, ins_sizes, nr);
3636 if (ret) {
3637 kfree(ins_data);
3638 return ret;
3639 }
3640
3641 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3642 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3643 dst_path->slots[0]);
3644
3645 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3646
3647 if ((i == (nr - 1)))
3648 last_key = ins_keys[i];
3649
3650 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3651 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3652 dst_path->slots[0],
3653 struct btrfs_inode_item);
3654 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3655 inode, inode_only == LOG_INODE_EXISTS,
3656 logged_isize);
3657 } else {
3658 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3659 src_offset, ins_sizes[i]);
3660 }
3661
3662 /*
3663 * We set need_find_last_extent here in case we know we were
3664 * processing other items and then walk into the first extent in
3665 * the inode. If we don't hit an extent then nothing changes,
3666 * we'll do the last search the next time around.
3667 */
3668 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3669 has_extents = true;
3670 if (first_key.objectid == (u64)-1)
3671 first_key = ins_keys[i];
3672 } else {
3673 need_find_last_extent = false;
3674 }
3675
3676 /* take a reference on file data extents so that truncates
3677 * or deletes of this inode don't have to relog the inode
3678 * again
3679 */
3680 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3681 !skip_csum) {
3682 int found_type;
3683 extent = btrfs_item_ptr(src, start_slot + i,
3684 struct btrfs_file_extent_item);
3685
3686 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3687 continue;
3688
3689 found_type = btrfs_file_extent_type(src, extent);
3690 if (found_type == BTRFS_FILE_EXTENT_REG) {
3691 u64 ds, dl, cs, cl;
3692 ds = btrfs_file_extent_disk_bytenr(src,
3693 extent);
3694 /* ds == 0 is a hole */
3695 if (ds == 0)
3696 continue;
3697
3698 dl = btrfs_file_extent_disk_num_bytes(src,
3699 extent);
3700 cs = btrfs_file_extent_offset(src, extent);
3701 cl = btrfs_file_extent_num_bytes(src,
3702 extent);
3703 if (btrfs_file_extent_compression(src,
3704 extent)) {
3705 cs = 0;
3706 cl = dl;
3707 }
3708
3709 ret = btrfs_lookup_csums_range(
3710 log->fs_info->csum_root,
3711 ds + cs, ds + cs + cl - 1,
3712 &ordered_sums, 0);
3713 if (ret) {
3714 btrfs_release_path(dst_path);
3715 kfree(ins_data);
3716 return ret;
3717 }
3718 }
3719 }
3720 }
3721
3722 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3723 btrfs_release_path(dst_path);
3724 kfree(ins_data);
3725
3726 /*
3727 * we have to do this after the loop above to avoid changing the
3728 * log tree while trying to change the log tree.
3729 */
3730 ret = 0;
3731 while (!list_empty(&ordered_sums)) {
3732 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3733 struct btrfs_ordered_sum,
3734 list);
3735 if (!ret)
3736 ret = btrfs_csum_file_blocks(trans, log, sums);
3737 list_del(&sums->list);
3738 kfree(sums);
3739 }
3740
3741 if (!has_extents)
3742 return ret;
3743
3744 if (need_find_last_extent && *last_extent == first_key.offset) {
3745 /*
3746 * We don't have any leafs between our current one and the one
3747 * we processed before that can have file extent items for our
3748 * inode (and have a generation number smaller than our current
3749 * transaction id).
3750 */
3751 need_find_last_extent = false;
3752 }
3753
3754 /*
3755 * Because we use btrfs_search_forward we could skip leaves that were
3756 * not modified and then assume *last_extent is valid when it really
3757 * isn't. So back up to the previous leaf and read the end of the last
3758 * extent before we go and fill in holes.
3759 */
3760 if (need_find_last_extent) {
3761 u64 len;
3762
3763 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3764 if (ret < 0)
3765 return ret;
3766 if (ret)
3767 goto fill_holes;
3768 if (src_path->slots[0])
3769 src_path->slots[0]--;
3770 src = src_path->nodes[0];
3771 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3772 if (key.objectid != btrfs_ino(inode) ||
3773 key.type != BTRFS_EXTENT_DATA_KEY)
3774 goto fill_holes;
3775 extent = btrfs_item_ptr(src, src_path->slots[0],
3776 struct btrfs_file_extent_item);
3777 if (btrfs_file_extent_type(src, extent) ==
3778 BTRFS_FILE_EXTENT_INLINE) {
3779 len = btrfs_file_extent_inline_len(src,
3780 src_path->slots[0],
3781 extent);
3782 *last_extent = ALIGN(key.offset + len,
3783 log->sectorsize);
3784 } else {
3785 len = btrfs_file_extent_num_bytes(src, extent);
3786 *last_extent = key.offset + len;
3787 }
3788 }
3789fill_holes:
3790 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3791 * things could have happened
3792 *
3793 * 1) A merge could have happened, so we could currently be on a leaf
3794 * that holds what we were copying in the first place.
3795 * 2) A split could have happened, and now not all of the items we want
3796 * are on the same leaf.
3797 *
3798 * So we need to adjust how we search for holes, we need to drop the
3799 * path and re-search for the first extent key we found, and then walk
3800 * forward until we hit the last one we copied.
3801 */
3802 if (need_find_last_extent) {
3803 /* btrfs_prev_leaf could return 1 without releasing the path */
3804 btrfs_release_path(src_path);
3805 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3806 src_path, 0, 0);
3807 if (ret < 0)
3808 return ret;
3809 ASSERT(ret == 0);
3810 src = src_path->nodes[0];
3811 i = src_path->slots[0];
3812 } else {
3813 i = start_slot;
3814 }
3815
3816 /*
3817 * Ok so here we need to go through and fill in any holes we may have
3818 * to make sure that holes are punched for those areas in case they had
3819 * extents previously.
3820 */
3821 while (!done) {
3822 u64 offset, len;
3823 u64 extent_end;
3824
3825 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3826 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3827 if (ret < 0)
3828 return ret;
3829 ASSERT(ret == 0);
3830 src = src_path->nodes[0];
3831 i = 0;
3832 }
3833
3834 btrfs_item_key_to_cpu(src, &key, i);
3835 if (!btrfs_comp_cpu_keys(&key, &last_key))
3836 done = true;
3837 if (key.objectid != btrfs_ino(inode) ||
3838 key.type != BTRFS_EXTENT_DATA_KEY) {
3839 i++;
3840 continue;
3841 }
3842 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3843 if (btrfs_file_extent_type(src, extent) ==
3844 BTRFS_FILE_EXTENT_INLINE) {
3845 len = btrfs_file_extent_inline_len(src, i, extent);
3846 extent_end = ALIGN(key.offset + len, log->sectorsize);
3847 } else {
3848 len = btrfs_file_extent_num_bytes(src, extent);
3849 extent_end = key.offset + len;
3850 }
3851 i++;
3852
3853 if (*last_extent == key.offset) {
3854 *last_extent = extent_end;
3855 continue;
3856 }
3857 offset = *last_extent;
3858 len = key.offset - *last_extent;
3859 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3860 offset, 0, 0, len, 0, len, 0,
3861 0, 0);
3862 if (ret)
3863 break;
3864 *last_extent = extent_end;
3865 }
3866 /*
3867 * Need to let the callers know we dropped the path so they should
3868 * re-search.
3869 */
3870 if (!ret && need_find_last_extent)
3871 ret = 1;
3872 return ret;
3873}
3874
3875static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3876{
3877 struct extent_map *em1, *em2;
3878
3879 em1 = list_entry(a, struct extent_map, list);
3880 em2 = list_entry(b, struct extent_map, list);
3881
3882 if (em1->start < em2->start)
3883 return -1;
3884 else if (em1->start > em2->start)
3885 return 1;
3886 return 0;
3887}
3888
3889static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3890 struct inode *inode,
3891 struct btrfs_root *root,
3892 const struct extent_map *em,
3893 const struct list_head *logged_list,
3894 bool *ordered_io_error)
3895{
3896 struct btrfs_ordered_extent *ordered;
3897 struct btrfs_root *log = root->log_root;
3898 u64 mod_start = em->mod_start;
3899 u64 mod_len = em->mod_len;
3900 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3901 u64 csum_offset;
3902 u64 csum_len;
3903 LIST_HEAD(ordered_sums);
3904 int ret = 0;
3905
3906 *ordered_io_error = false;
3907
3908 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3909 em->block_start == EXTENT_MAP_HOLE)
3910 return 0;
3911
3912 /*
3913 * Wait far any ordered extent that covers our extent map. If it
3914 * finishes without an error, first check and see if our csums are on
3915 * our outstanding ordered extents.
3916 */
3917 list_for_each_entry(ordered, logged_list, log_list) {
3918 struct btrfs_ordered_sum *sum;
3919
3920 if (!mod_len)
3921 break;
3922
3923 if (ordered->file_offset + ordered->len <= mod_start ||
3924 mod_start + mod_len <= ordered->file_offset)
3925 continue;
3926
3927 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3928 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3929 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3930 const u64 start = ordered->file_offset;
3931 const u64 end = ordered->file_offset + ordered->len - 1;
3932
3933 WARN_ON(ordered->inode != inode);
3934 filemap_fdatawrite_range(inode->i_mapping, start, end);
3935 }
3936
3937 wait_event(ordered->wait,
3938 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3939 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3940
3941 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3942 /*
3943 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3944 * i_mapping flags, so that the next fsync won't get
3945 * an outdated io error too.
3946 */
3947 btrfs_inode_check_errors(inode);
3948 *ordered_io_error = true;
3949 break;
3950 }
3951 /*
3952 * We are going to copy all the csums on this ordered extent, so
3953 * go ahead and adjust mod_start and mod_len in case this
3954 * ordered extent has already been logged.
3955 */
3956 if (ordered->file_offset > mod_start) {
3957 if (ordered->file_offset + ordered->len >=
3958 mod_start + mod_len)
3959 mod_len = ordered->file_offset - mod_start;
3960 /*
3961 * If we have this case
3962 *
3963 * |--------- logged extent ---------|
3964 * |----- ordered extent ----|
3965 *
3966 * Just don't mess with mod_start and mod_len, we'll
3967 * just end up logging more csums than we need and it
3968 * will be ok.
3969 */
3970 } else {
3971 if (ordered->file_offset + ordered->len <
3972 mod_start + mod_len) {
3973 mod_len = (mod_start + mod_len) -
3974 (ordered->file_offset + ordered->len);
3975 mod_start = ordered->file_offset +
3976 ordered->len;
3977 } else {
3978 mod_len = 0;
3979 }
3980 }
3981
3982 if (skip_csum)
3983 continue;
3984
3985 /*
3986 * To keep us from looping for the above case of an ordered
3987 * extent that falls inside of the logged extent.
3988 */
3989 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3990 &ordered->flags))
3991 continue;
3992
3993 list_for_each_entry(sum, &ordered->list, list) {
3994 ret = btrfs_csum_file_blocks(trans, log, sum);
3995 if (ret)
3996 break;
3997 }
3998 }
3999
4000 if (*ordered_io_error || !mod_len || ret || skip_csum)
4001 return ret;
4002
4003 if (em->compress_type) {
4004 csum_offset = 0;
4005 csum_len = max(em->block_len, em->orig_block_len);
4006 } else {
4007 csum_offset = mod_start - em->start;
4008 csum_len = mod_len;
4009 }
4010
4011 /* block start is already adjusted for the file extent offset. */
4012 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4013 em->block_start + csum_offset,
4014 em->block_start + csum_offset +
4015 csum_len - 1, &ordered_sums, 0);
4016 if (ret)
4017 return ret;
4018
4019 while (!list_empty(&ordered_sums)) {
4020 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4021 struct btrfs_ordered_sum,
4022 list);
4023 if (!ret)
4024 ret = btrfs_csum_file_blocks(trans, log, sums);
4025 list_del(&sums->list);
4026 kfree(sums);
4027 }
4028
4029 return ret;
4030}
4031
4032static int log_one_extent(struct btrfs_trans_handle *trans,
4033 struct inode *inode, struct btrfs_root *root,
4034 const struct extent_map *em,
4035 struct btrfs_path *path,
4036 const struct list_head *logged_list,
4037 struct btrfs_log_ctx *ctx)
4038{
4039 struct btrfs_root *log = root->log_root;
4040 struct btrfs_file_extent_item *fi;
4041 struct extent_buffer *leaf;
4042 struct btrfs_map_token token;
4043 struct btrfs_key key;
4044 u64 extent_offset = em->start - em->orig_start;
4045 u64 block_len;
4046 int ret;
4047 int extent_inserted = 0;
4048 bool ordered_io_err = false;
4049
4050 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4051 &ordered_io_err);
4052 if (ret)
4053 return ret;
4054
4055 if (ordered_io_err) {
4056 ctx->io_err = -EIO;
4057 return 0;
4058 }
4059
4060 btrfs_init_map_token(&token);
4061
4062 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4063 em->start + em->len, NULL, 0, 1,
4064 sizeof(*fi), &extent_inserted);
4065 if (ret)
4066 return ret;
4067
4068 if (!extent_inserted) {
4069 key.objectid = btrfs_ino(inode);
4070 key.type = BTRFS_EXTENT_DATA_KEY;
4071 key.offset = em->start;
4072
4073 ret = btrfs_insert_empty_item(trans, log, path, &key,
4074 sizeof(*fi));
4075 if (ret)
4076 return ret;
4077 }
4078 leaf = path->nodes[0];
4079 fi = btrfs_item_ptr(leaf, path->slots[0],
4080 struct btrfs_file_extent_item);
4081
4082 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4083 &token);
4084 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4085 btrfs_set_token_file_extent_type(leaf, fi,
4086 BTRFS_FILE_EXTENT_PREALLOC,
4087 &token);
4088 else
4089 btrfs_set_token_file_extent_type(leaf, fi,
4090 BTRFS_FILE_EXTENT_REG,
4091 &token);
4092
4093 block_len = max(em->block_len, em->orig_block_len);
4094 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4095 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4096 em->block_start,
4097 &token);
4098 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4099 &token);
4100 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4101 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4102 em->block_start -
4103 extent_offset, &token);
4104 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4105 &token);
4106 } else {
4107 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4108 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4109 &token);
4110 }
4111
4112 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4113 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4114 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4115 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4116 &token);
4117 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4118 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4119 btrfs_mark_buffer_dirty(leaf);
4120
4121 btrfs_release_path(path);
4122
4123 return ret;
4124}
4125
4126static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4127 struct btrfs_root *root,
4128 struct inode *inode,
4129 struct btrfs_path *path,
4130 struct list_head *logged_list,
4131 struct btrfs_log_ctx *ctx,
4132 const u64 start,
4133 const u64 end)
4134{
4135 struct extent_map *em, *n;
4136 struct list_head extents;
4137 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4138 u64 test_gen;
4139 int ret = 0;
4140 int num = 0;
4141
4142 INIT_LIST_HEAD(&extents);
4143
4144 write_lock(&tree->lock);
4145 test_gen = root->fs_info->last_trans_committed;
4146
4147 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4148 list_del_init(&em->list);
4149
4150 /*
4151 * Just an arbitrary number, this can be really CPU intensive
4152 * once we start getting a lot of extents, and really once we
4153 * have a bunch of extents we just want to commit since it will
4154 * be faster.
4155 */
4156 if (++num > 32768) {
4157 list_del_init(&tree->modified_extents);
4158 ret = -EFBIG;
4159 goto process;
4160 }
4161
4162 if (em->generation <= test_gen)
4163 continue;
4164 /* Need a ref to keep it from getting evicted from cache */
4165 atomic_inc(&em->refs);
4166 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4167 list_add_tail(&em->list, &extents);
4168 num++;
4169 }
4170
4171 list_sort(NULL, &extents, extent_cmp);
4172 /*
4173 * Collect any new ordered extents within the range. This is to
4174 * prevent logging file extent items without waiting for the disk
4175 * location they point to being written. We do this only to deal
4176 * with races against concurrent lockless direct IO writes.
4177 */
4178 btrfs_get_logged_extents(inode, logged_list, start, end);
4179process:
4180 while (!list_empty(&extents)) {
4181 em = list_entry(extents.next, struct extent_map, list);
4182
4183 list_del_init(&em->list);
4184
4185 /*
4186 * If we had an error we just need to delete everybody from our
4187 * private list.
4188 */
4189 if (ret) {
4190 clear_em_logging(tree, em);
4191 free_extent_map(em);
4192 continue;
4193 }
4194
4195 write_unlock(&tree->lock);
4196
4197 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4198 ctx);
4199 write_lock(&tree->lock);
4200 clear_em_logging(tree, em);
4201 free_extent_map(em);
4202 }
4203 WARN_ON(!list_empty(&extents));
4204 write_unlock(&tree->lock);
4205
4206 btrfs_release_path(path);
4207 return ret;
4208}
4209
4210static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4211 struct btrfs_path *path, u64 *size_ret)
4212{
4213 struct btrfs_key key;
4214 int ret;
4215
4216 key.objectid = btrfs_ino(inode);
4217 key.type = BTRFS_INODE_ITEM_KEY;
4218 key.offset = 0;
4219
4220 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4221 if (ret < 0) {
4222 return ret;
4223 } else if (ret > 0) {
4224 *size_ret = 0;
4225 } else {
4226 struct btrfs_inode_item *item;
4227
4228 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4229 struct btrfs_inode_item);
4230 *size_ret = btrfs_inode_size(path->nodes[0], item);
4231 }
4232
4233 btrfs_release_path(path);
4234 return 0;
4235}
4236
4237/*
4238 * At the moment we always log all xattrs. This is to figure out at log replay
4239 * time which xattrs must have their deletion replayed. If a xattr is missing
4240 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4241 * because if a xattr is deleted, the inode is fsynced and a power failure
4242 * happens, causing the log to be replayed the next time the fs is mounted,
4243 * we want the xattr to not exist anymore (same behaviour as other filesystems
4244 * with a journal, ext3/4, xfs, f2fs, etc).
4245 */
4246static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4247 struct btrfs_root *root,
4248 struct inode *inode,
4249 struct btrfs_path *path,
4250 struct btrfs_path *dst_path)
4251{
4252 int ret;
4253 struct btrfs_key key;
4254 const u64 ino = btrfs_ino(inode);
4255 int ins_nr = 0;
4256 int start_slot = 0;
4257
4258 key.objectid = ino;
4259 key.type = BTRFS_XATTR_ITEM_KEY;
4260 key.offset = 0;
4261
4262 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4263 if (ret < 0)
4264 return ret;
4265
4266 while (true) {
4267 int slot = path->slots[0];
4268 struct extent_buffer *leaf = path->nodes[0];
4269 int nritems = btrfs_header_nritems(leaf);
4270
4271 if (slot >= nritems) {
4272 if (ins_nr > 0) {
4273 u64 last_extent = 0;
4274
4275 ret = copy_items(trans, inode, dst_path, path,
4276 &last_extent, start_slot,
4277 ins_nr, 1, 0);
4278 /* can't be 1, extent items aren't processed */
4279 ASSERT(ret <= 0);
4280 if (ret < 0)
4281 return ret;
4282 ins_nr = 0;
4283 }
4284 ret = btrfs_next_leaf(root, path);
4285 if (ret < 0)
4286 return ret;
4287 else if (ret > 0)
4288 break;
4289 continue;
4290 }
4291
4292 btrfs_item_key_to_cpu(leaf, &key, slot);
4293 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4294 break;
4295
4296 if (ins_nr == 0)
4297 start_slot = slot;
4298 ins_nr++;
4299 path->slots[0]++;
4300 cond_resched();
4301 }
4302 if (ins_nr > 0) {
4303 u64 last_extent = 0;
4304
4305 ret = copy_items(trans, inode, dst_path, path,
4306 &last_extent, start_slot,
4307 ins_nr, 1, 0);
4308 /* can't be 1, extent items aren't processed */
4309 ASSERT(ret <= 0);
4310 if (ret < 0)
4311 return ret;
4312 }
4313
4314 return 0;
4315}
4316
4317/*
4318 * If the no holes feature is enabled we need to make sure any hole between the
4319 * last extent and the i_size of our inode is explicitly marked in the log. This
4320 * is to make sure that doing something like:
4321 *
4322 * 1) create file with 128Kb of data
4323 * 2) truncate file to 64Kb
4324 * 3) truncate file to 256Kb
4325 * 4) fsync file
4326 * 5) <crash/power failure>
4327 * 6) mount fs and trigger log replay
4328 *
4329 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4330 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4331 * file correspond to a hole. The presence of explicit holes in a log tree is
4332 * what guarantees that log replay will remove/adjust file extent items in the
4333 * fs/subvol tree.
4334 *
4335 * Here we do not need to care about holes between extents, that is already done
4336 * by copy_items(). We also only need to do this in the full sync path, where we
4337 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4338 * lookup the list of modified extent maps and if any represents a hole, we
4339 * insert a corresponding extent representing a hole in the log tree.
4340 */
4341static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4342 struct btrfs_root *root,
4343 struct inode *inode,
4344 struct btrfs_path *path)
4345{
4346 int ret;
4347 struct btrfs_key key;
4348 u64 hole_start;
4349 u64 hole_size;
4350 struct extent_buffer *leaf;
4351 struct btrfs_root *log = root->log_root;
4352 const u64 ino = btrfs_ino(inode);
4353 const u64 i_size = i_size_read(inode);
4354
4355 if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4356 return 0;
4357
4358 key.objectid = ino;
4359 key.type = BTRFS_EXTENT_DATA_KEY;
4360 key.offset = (u64)-1;
4361
4362 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4363 ASSERT(ret != 0);
4364 if (ret < 0)
4365 return ret;
4366
4367 ASSERT(path->slots[0] > 0);
4368 path->slots[0]--;
4369 leaf = path->nodes[0];
4370 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4371
4372 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4373 /* inode does not have any extents */
4374 hole_start = 0;
4375 hole_size = i_size;
4376 } else {
4377 struct btrfs_file_extent_item *extent;
4378 u64 len;
4379
4380 /*
4381 * If there's an extent beyond i_size, an explicit hole was
4382 * already inserted by copy_items().
4383 */
4384 if (key.offset >= i_size)
4385 return 0;
4386
4387 extent = btrfs_item_ptr(leaf, path->slots[0],
4388 struct btrfs_file_extent_item);
4389
4390 if (btrfs_file_extent_type(leaf, extent) ==
4391 BTRFS_FILE_EXTENT_INLINE) {
4392 len = btrfs_file_extent_inline_len(leaf,
4393 path->slots[0],
4394 extent);
4395 ASSERT(len == i_size);
4396 return 0;
4397 }
4398
4399 len = btrfs_file_extent_num_bytes(leaf, extent);
4400 /* Last extent goes beyond i_size, no need to log a hole. */
4401 if (key.offset + len > i_size)
4402 return 0;
4403 hole_start = key.offset + len;
4404 hole_size = i_size - hole_start;
4405 }
4406 btrfs_release_path(path);
4407
4408 /* Last extent ends at i_size. */
4409 if (hole_size == 0)
4410 return 0;
4411
4412 hole_size = ALIGN(hole_size, root->sectorsize);
4413 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4414 hole_size, 0, hole_size, 0, 0, 0);
4415 return ret;
4416}
4417
4418/*
4419 * When we are logging a new inode X, check if it doesn't have a reference that
4420 * matches the reference from some other inode Y created in a past transaction
4421 * and that was renamed in the current transaction. If we don't do this, then at
4422 * log replay time we can lose inode Y (and all its files if it's a directory):
4423 *
4424 * mkdir /mnt/x
4425 * echo "hello world" > /mnt/x/foobar
4426 * sync
4427 * mv /mnt/x /mnt/y
4428 * mkdir /mnt/x # or touch /mnt/x
4429 * xfs_io -c fsync /mnt/x
4430 * <power fail>
4431 * mount fs, trigger log replay
4432 *
4433 * After the log replay procedure, we would lose the first directory and all its
4434 * files (file foobar).
4435 * For the case where inode Y is not a directory we simply end up losing it:
4436 *
4437 * echo "123" > /mnt/foo
4438 * sync
4439 * mv /mnt/foo /mnt/bar
4440 * echo "abc" > /mnt/foo
4441 * xfs_io -c fsync /mnt/foo
4442 * <power fail>
4443 *
4444 * We also need this for cases where a snapshot entry is replaced by some other
4445 * entry (file or directory) otherwise we end up with an unreplayable log due to
4446 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4447 * if it were a regular entry:
4448 *
4449 * mkdir /mnt/x
4450 * btrfs subvolume snapshot /mnt /mnt/x/snap
4451 * btrfs subvolume delete /mnt/x/snap
4452 * rmdir /mnt/x
4453 * mkdir /mnt/x
4454 * fsync /mnt/x or fsync some new file inside it
4455 * <power fail>
4456 *
4457 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4458 * the same transaction.
4459 */
4460static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4461 const int slot,
4462 const struct btrfs_key *key,
4463 struct inode *inode)
4464{
4465 int ret;
4466 struct btrfs_path *search_path;
4467 char *name = NULL;
4468 u32 name_len = 0;
4469 u32 item_size = btrfs_item_size_nr(eb, slot);
4470 u32 cur_offset = 0;
4471 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4472
4473 search_path = btrfs_alloc_path();
4474 if (!search_path)
4475 return -ENOMEM;
4476 search_path->search_commit_root = 1;
4477 search_path->skip_locking = 1;
4478
4479 while (cur_offset < item_size) {
4480 u64 parent;
4481 u32 this_name_len;
4482 u32 this_len;
4483 unsigned long name_ptr;
4484 struct btrfs_dir_item *di;
4485
4486 if (key->type == BTRFS_INODE_REF_KEY) {
4487 struct btrfs_inode_ref *iref;
4488
4489 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4490 parent = key->offset;
4491 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4492 name_ptr = (unsigned long)(iref + 1);
4493 this_len = sizeof(*iref) + this_name_len;
4494 } else {
4495 struct btrfs_inode_extref *extref;
4496
4497 extref = (struct btrfs_inode_extref *)(ptr +
4498 cur_offset);
4499 parent = btrfs_inode_extref_parent(eb, extref);
4500 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4501 name_ptr = (unsigned long)&extref->name;
4502 this_len = sizeof(*extref) + this_name_len;
4503 }
4504
4505 if (this_name_len > name_len) {
4506 char *new_name;
4507
4508 new_name = krealloc(name, this_name_len, GFP_NOFS);
4509 if (!new_name) {
4510 ret = -ENOMEM;
4511 goto out;
4512 }
4513 name_len = this_name_len;
4514 name = new_name;
4515 }
4516
4517 read_extent_buffer(eb, name, name_ptr, this_name_len);
4518 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4519 search_path, parent,
4520 name, this_name_len, 0);
4521 if (di && !IS_ERR(di)) {
4522 ret = 1;
4523 goto out;
4524 } else if (IS_ERR(di)) {
4525 ret = PTR_ERR(di);
4526 goto out;
4527 }
4528 btrfs_release_path(search_path);
4529
4530 cur_offset += this_len;
4531 }
4532 ret = 0;
4533out:
4534 btrfs_free_path(search_path);
4535 kfree(name);
4536 return ret;
4537}
4538
4539/* log a single inode in the tree log.
4540 * At least one parent directory for this inode must exist in the tree
4541 * or be logged already.
4542 *
4543 * Any items from this inode changed by the current transaction are copied
4544 * to the log tree. An extra reference is taken on any extents in this
4545 * file, allowing us to avoid a whole pile of corner cases around logging
4546 * blocks that have been removed from the tree.
4547 *
4548 * See LOG_INODE_ALL and related defines for a description of what inode_only
4549 * does.
4550 *
4551 * This handles both files and directories.
4552 */
4553static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4554 struct btrfs_root *root, struct inode *inode,
4555 int inode_only,
4556 const loff_t start,
4557 const loff_t end,
4558 struct btrfs_log_ctx *ctx)
4559{
4560 struct btrfs_path *path;
4561 struct btrfs_path *dst_path;
4562 struct btrfs_key min_key;
4563 struct btrfs_key max_key;
4564 struct btrfs_root *log = root->log_root;
4565 struct extent_buffer *src = NULL;
4566 LIST_HEAD(logged_list);
4567 u64 last_extent = 0;
4568 int err = 0;
4569 int ret;
4570 int nritems;
4571 int ins_start_slot = 0;
4572 int ins_nr;
4573 bool fast_search = false;
4574 u64 ino = btrfs_ino(inode);
4575 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4576 u64 logged_isize = 0;
4577 bool need_log_inode_item = true;
4578
4579 path = btrfs_alloc_path();
4580 if (!path)
4581 return -ENOMEM;
4582 dst_path = btrfs_alloc_path();
4583 if (!dst_path) {
4584 btrfs_free_path(path);
4585 return -ENOMEM;
4586 }
4587
4588 min_key.objectid = ino;
4589 min_key.type = BTRFS_INODE_ITEM_KEY;
4590 min_key.offset = 0;
4591
4592 max_key.objectid = ino;
4593
4594
4595 /* today the code can only do partial logging of directories */
4596 if (S_ISDIR(inode->i_mode) ||
4597 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4598 &BTRFS_I(inode)->runtime_flags) &&
4599 inode_only == LOG_INODE_EXISTS))
4600 max_key.type = BTRFS_XATTR_ITEM_KEY;
4601 else
4602 max_key.type = (u8)-1;
4603 max_key.offset = (u64)-1;
4604
4605 /*
4606 * Only run delayed items if we are a dir or a new file.
4607 * Otherwise commit the delayed inode only, which is needed in
4608 * order for the log replay code to mark inodes for link count
4609 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4610 */
4611 if (S_ISDIR(inode->i_mode) ||
4612 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4613 ret = btrfs_commit_inode_delayed_items(trans, inode);
4614 else
4615 ret = btrfs_commit_inode_delayed_inode(inode);
4616
4617 if (ret) {
4618 btrfs_free_path(path);
4619 btrfs_free_path(dst_path);
4620 return ret;
4621 }
4622
4623 mutex_lock(&BTRFS_I(inode)->log_mutex);
4624
4625 /*
4626 * Collect ordered extents only if we are logging data. This is to
4627 * ensure a subsequent request to log this inode in LOG_INODE_ALL mode
4628 * will process the ordered extents if they still exists at the time,
4629 * because when we collect them we test and set for the flag
4630 * BTRFS_ORDERED_LOGGED to prevent multiple log requests to process the
4631 * same ordered extents. The consequence for the LOG_INODE_ALL log mode
4632 * not processing the ordered extents is that we end up logging the
4633 * corresponding file extent items, based on the extent maps in the
4634 * inode's extent_map_tree's modified_list, without logging the
4635 * respective checksums (since the may still be only attached to the
4636 * ordered extents and have not been inserted in the csum tree by
4637 * btrfs_finish_ordered_io() yet).
4638 */
4639 if (inode_only == LOG_INODE_ALL)
4640 btrfs_get_logged_extents(inode, &logged_list, start, end);
4641
4642 /*
4643 * a brute force approach to making sure we get the most uptodate
4644 * copies of everything.
4645 */
4646 if (S_ISDIR(inode->i_mode)) {
4647 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4648
4649 if (inode_only == LOG_INODE_EXISTS)
4650 max_key_type = BTRFS_XATTR_ITEM_KEY;
4651 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4652 } else {
4653 if (inode_only == LOG_INODE_EXISTS) {
4654 /*
4655 * Make sure the new inode item we write to the log has
4656 * the same isize as the current one (if it exists).
4657 * This is necessary to prevent data loss after log
4658 * replay, and also to prevent doing a wrong expanding
4659 * truncate - for e.g. create file, write 4K into offset
4660 * 0, fsync, write 4K into offset 4096, add hard link,
4661 * fsync some other file (to sync log), power fail - if
4662 * we use the inode's current i_size, after log replay
4663 * we get a 8Kb file, with the last 4Kb extent as a hole
4664 * (zeroes), as if an expanding truncate happened,
4665 * instead of getting a file of 4Kb only.
4666 */
4667 err = logged_inode_size(log, inode, path,
4668 &logged_isize);
4669 if (err)
4670 goto out_unlock;
4671 }
4672 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4673 &BTRFS_I(inode)->runtime_flags)) {
4674 if (inode_only == LOG_INODE_EXISTS) {
4675 max_key.type = BTRFS_XATTR_ITEM_KEY;
4676 ret = drop_objectid_items(trans, log, path, ino,
4677 max_key.type);
4678 } else {
4679 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4680 &BTRFS_I(inode)->runtime_flags);
4681 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4682 &BTRFS_I(inode)->runtime_flags);
4683 while(1) {
4684 ret = btrfs_truncate_inode_items(trans,
4685 log, inode, 0, 0);
4686 if (ret != -EAGAIN)
4687 break;
4688 }
4689 }
4690 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4691 &BTRFS_I(inode)->runtime_flags) ||
4692 inode_only == LOG_INODE_EXISTS) {
4693 if (inode_only == LOG_INODE_ALL)
4694 fast_search = true;
4695 max_key.type = BTRFS_XATTR_ITEM_KEY;
4696 ret = drop_objectid_items(trans, log, path, ino,
4697 max_key.type);
4698 } else {
4699 if (inode_only == LOG_INODE_ALL)
4700 fast_search = true;
4701 goto log_extents;
4702 }
4703
4704 }
4705 if (ret) {
4706 err = ret;
4707 goto out_unlock;
4708 }
4709
4710 while (1) {
4711 ins_nr = 0;
4712 ret = btrfs_search_forward(root, &min_key,
4713 path, trans->transid);
4714 if (ret != 0)
4715 break;
4716again:
4717 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4718 if (min_key.objectid != ino)
4719 break;
4720 if (min_key.type > max_key.type)
4721 break;
4722
4723 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4724 need_log_inode_item = false;
4725
4726 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4727 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4728 BTRFS_I(inode)->generation == trans->transid) {
4729 ret = btrfs_check_ref_name_override(path->nodes[0],
4730 path->slots[0],
4731 &min_key, inode);
4732 if (ret < 0) {
4733 err = ret;
4734 goto out_unlock;
4735 } else if (ret > 0) {
4736 err = 1;
4737 btrfs_set_log_full_commit(root->fs_info, trans);
4738 goto out_unlock;
4739 }
4740 }
4741
4742 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4743 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4744 if (ins_nr == 0)
4745 goto next_slot;
4746 ret = copy_items(trans, inode, dst_path, path,
4747 &last_extent, ins_start_slot,
4748 ins_nr, inode_only, logged_isize);
4749 if (ret < 0) {
4750 err = ret;
4751 goto out_unlock;
4752 }
4753 ins_nr = 0;
4754 if (ret) {
4755 btrfs_release_path(path);
4756 continue;
4757 }
4758 goto next_slot;
4759 }
4760
4761 src = path->nodes[0];
4762 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4763 ins_nr++;
4764 goto next_slot;
4765 } else if (!ins_nr) {
4766 ins_start_slot = path->slots[0];
4767 ins_nr = 1;
4768 goto next_slot;
4769 }
4770
4771 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4772 ins_start_slot, ins_nr, inode_only,
4773 logged_isize);
4774 if (ret < 0) {
4775 err = ret;
4776 goto out_unlock;
4777 }
4778 if (ret) {
4779 ins_nr = 0;
4780 btrfs_release_path(path);
4781 continue;
4782 }
4783 ins_nr = 1;
4784 ins_start_slot = path->slots[0];
4785next_slot:
4786
4787 nritems = btrfs_header_nritems(path->nodes[0]);
4788 path->slots[0]++;
4789 if (path->slots[0] < nritems) {
4790 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4791 path->slots[0]);
4792 goto again;
4793 }
4794 if (ins_nr) {
4795 ret = copy_items(trans, inode, dst_path, path,
4796 &last_extent, ins_start_slot,
4797 ins_nr, inode_only, logged_isize);
4798 if (ret < 0) {
4799 err = ret;
4800 goto out_unlock;
4801 }
4802 ret = 0;
4803 ins_nr = 0;
4804 }
4805 btrfs_release_path(path);
4806
4807 if (min_key.offset < (u64)-1) {
4808 min_key.offset++;
4809 } else if (min_key.type < max_key.type) {
4810 min_key.type++;
4811 min_key.offset = 0;
4812 } else {
4813 break;
4814 }
4815 }
4816 if (ins_nr) {
4817 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4818 ins_start_slot, ins_nr, inode_only,
4819 logged_isize);
4820 if (ret < 0) {
4821 err = ret;
4822 goto out_unlock;
4823 }
4824 ret = 0;
4825 ins_nr = 0;
4826 }
4827
4828 btrfs_release_path(path);
4829 btrfs_release_path(dst_path);
4830 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4831 if (err)
4832 goto out_unlock;
4833 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4834 btrfs_release_path(path);
4835 btrfs_release_path(dst_path);
4836 err = btrfs_log_trailing_hole(trans, root, inode, path);
4837 if (err)
4838 goto out_unlock;
4839 }
4840log_extents:
4841 btrfs_release_path(path);
4842 btrfs_release_path(dst_path);
4843 if (need_log_inode_item) {
4844 err = log_inode_item(trans, log, dst_path, inode);
4845 if (err)
4846 goto out_unlock;
4847 }
4848 if (fast_search) {
4849 /*
4850 * Some ordered extents started by fsync might have completed
4851 * before we collected the ordered extents in logged_list, which
4852 * means they're gone, not in our logged_list nor in the inode's
4853 * ordered tree. We want the application/user space to know an
4854 * error happened while attempting to persist file data so that
4855 * it can take proper action. If such error happened, we leave
4856 * without writing to the log tree and the fsync must report the
4857 * file data write error and not commit the current transaction.
4858 */
4859 err = btrfs_inode_check_errors(inode);
4860 if (err) {
4861 ctx->io_err = err;
4862 goto out_unlock;
4863 }
4864 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4865 &logged_list, ctx, start, end);
4866 if (ret) {
4867 err = ret;
4868 goto out_unlock;
4869 }
4870 } else if (inode_only == LOG_INODE_ALL) {
4871 struct extent_map *em, *n;
4872
4873 write_lock(&em_tree->lock);
4874 /*
4875 * We can't just remove every em if we're called for a ranged
4876 * fsync - that is, one that doesn't cover the whole possible
4877 * file range (0 to LLONG_MAX). This is because we can have
4878 * em's that fall outside the range we're logging and therefore
4879 * their ordered operations haven't completed yet
4880 * (btrfs_finish_ordered_io() not invoked yet). This means we
4881 * didn't get their respective file extent item in the fs/subvol
4882 * tree yet, and need to let the next fast fsync (one which
4883 * consults the list of modified extent maps) find the em so
4884 * that it logs a matching file extent item and waits for the
4885 * respective ordered operation to complete (if it's still
4886 * running).
4887 *
4888 * Removing every em outside the range we're logging would make
4889 * the next fast fsync not log their matching file extent items,
4890 * therefore making us lose data after a log replay.
4891 */
4892 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4893 list) {
4894 const u64 mod_end = em->mod_start + em->mod_len - 1;
4895
4896 if (em->mod_start >= start && mod_end <= end)
4897 list_del_init(&em->list);
4898 }
4899 write_unlock(&em_tree->lock);
4900 }
4901
4902 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4903 ret = log_directory_changes(trans, root, inode, path, dst_path,
4904 ctx);
4905 if (ret) {
4906 err = ret;
4907 goto out_unlock;
4908 }
4909 }
4910
4911 spin_lock(&BTRFS_I(inode)->lock);
4912 BTRFS_I(inode)->logged_trans = trans->transid;
4913 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4914 spin_unlock(&BTRFS_I(inode)->lock);
4915out_unlock:
4916 if (unlikely(err))
4917 btrfs_put_logged_extents(&logged_list);
4918 else
4919 btrfs_submit_logged_extents(&logged_list, log);
4920 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4921
4922 btrfs_free_path(path);
4923 btrfs_free_path(dst_path);
4924 return err;
4925}
4926
4927/*
4928 * Check if we must fallback to a transaction commit when logging an inode.
4929 * This must be called after logging the inode and is used only in the context
4930 * when fsyncing an inode requires the need to log some other inode - in which
4931 * case we can't lock the i_mutex of each other inode we need to log as that
4932 * can lead to deadlocks with concurrent fsync against other inodes (as we can
4933 * log inodes up or down in the hierarchy) or rename operations for example. So
4934 * we take the log_mutex of the inode after we have logged it and then check for
4935 * its last_unlink_trans value - this is safe because any task setting
4936 * last_unlink_trans must take the log_mutex and it must do this before it does
4937 * the actual unlink operation, so if we do this check before a concurrent task
4938 * sets last_unlink_trans it means we've logged a consistent version/state of
4939 * all the inode items, otherwise we are not sure and must do a transaction
4940 * commit (the concurrent task migth have only updated last_unlink_trans before
4941 * we logged the inode or it might have also done the unlink).
4942 */
4943static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
4944 struct inode *inode)
4945{
4946 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4947 bool ret = false;
4948
4949 mutex_lock(&BTRFS_I(inode)->log_mutex);
4950 if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
4951 /*
4952 * Make sure any commits to the log are forced to be full
4953 * commits.
4954 */
4955 btrfs_set_log_full_commit(fs_info, trans);
4956 ret = true;
4957 }
4958 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4959
4960 return ret;
4961}
4962
4963/*
4964 * follow the dentry parent pointers up the chain and see if any
4965 * of the directories in it require a full commit before they can
4966 * be logged. Returns zero if nothing special needs to be done or 1 if
4967 * a full commit is required.
4968 */
4969static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4970 struct inode *inode,
4971 struct dentry *parent,
4972 struct super_block *sb,
4973 u64 last_committed)
4974{
4975 int ret = 0;
4976 struct dentry *old_parent = NULL;
4977 struct inode *orig_inode = inode;
4978
4979 /*
4980 * for regular files, if its inode is already on disk, we don't
4981 * have to worry about the parents at all. This is because
4982 * we can use the last_unlink_trans field to record renames
4983 * and other fun in this file.
4984 */
4985 if (S_ISREG(inode->i_mode) &&
4986 BTRFS_I(inode)->generation <= last_committed &&
4987 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4988 goto out;
4989
4990 if (!S_ISDIR(inode->i_mode)) {
4991 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4992 goto out;
4993 inode = d_inode(parent);
4994 }
4995
4996 while (1) {
4997 /*
4998 * If we are logging a directory then we start with our inode,
4999 * not our parents inode, so we need to skipp setting the
5000 * logged_trans so that further down in the log code we don't
5001 * think this inode has already been logged.
5002 */
5003 if (inode != orig_inode)
5004 BTRFS_I(inode)->logged_trans = trans->transid;
5005 smp_mb();
5006
5007 if (btrfs_must_commit_transaction(trans, inode)) {
5008 ret = 1;
5009 break;
5010 }
5011
5012 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5013 break;
5014
5015 if (IS_ROOT(parent))
5016 break;
5017
5018 parent = dget_parent(parent);
5019 dput(old_parent);
5020 old_parent = parent;
5021 inode = d_inode(parent);
5022
5023 }
5024 dput(old_parent);
5025out:
5026 return ret;
5027}
5028
5029struct btrfs_dir_list {
5030 u64 ino;
5031 struct list_head list;
5032};
5033
5034/*
5035 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5036 * details about the why it is needed.
5037 * This is a recursive operation - if an existing dentry corresponds to a
5038 * directory, that directory's new entries are logged too (same behaviour as
5039 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5040 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5041 * complains about the following circular lock dependency / possible deadlock:
5042 *
5043 * CPU0 CPU1
5044 * ---- ----
5045 * lock(&type->i_mutex_dir_key#3/2);
5046 * lock(sb_internal#2);
5047 * lock(&type->i_mutex_dir_key#3/2);
5048 * lock(&sb->s_type->i_mutex_key#14);
5049 *
5050 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5051 * sb_start_intwrite() in btrfs_start_transaction().
5052 * Not locking i_mutex of the inodes is still safe because:
5053 *
5054 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5055 * that while logging the inode new references (names) are added or removed
5056 * from the inode, leaving the logged inode item with a link count that does
5057 * not match the number of logged inode reference items. This is fine because
5058 * at log replay time we compute the real number of links and correct the
5059 * link count in the inode item (see replay_one_buffer() and
5060 * link_to_fixup_dir());
5061 *
5062 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5063 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5064 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5065 * has a size that doesn't match the sum of the lengths of all the logged
5066 * names. This does not result in a problem because if a dir_item key is
5067 * logged but its matching dir_index key is not logged, at log replay time we
5068 * don't use it to replay the respective name (see replay_one_name()). On the
5069 * other hand if only the dir_index key ends up being logged, the respective
5070 * name is added to the fs/subvol tree with both the dir_item and dir_index
5071 * keys created (see replay_one_name()).
5072 * The directory's inode item with a wrong i_size is not a problem as well,
5073 * since we don't use it at log replay time to set the i_size in the inode
5074 * item of the fs/subvol tree (see overwrite_item()).
5075 */
5076static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5077 struct btrfs_root *root,
5078 struct inode *start_inode,
5079 struct btrfs_log_ctx *ctx)
5080{
5081 struct btrfs_root *log = root->log_root;
5082 struct btrfs_path *path;
5083 LIST_HEAD(dir_list);
5084 struct btrfs_dir_list *dir_elem;
5085 int ret = 0;
5086
5087 path = btrfs_alloc_path();
5088 if (!path)
5089 return -ENOMEM;
5090
5091 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5092 if (!dir_elem) {
5093 btrfs_free_path(path);
5094 return -ENOMEM;
5095 }
5096 dir_elem->ino = btrfs_ino(start_inode);
5097 list_add_tail(&dir_elem->list, &dir_list);
5098
5099 while (!list_empty(&dir_list)) {
5100 struct extent_buffer *leaf;
5101 struct btrfs_key min_key;
5102 int nritems;
5103 int i;
5104
5105 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5106 list);
5107 if (ret)
5108 goto next_dir_inode;
5109
5110 min_key.objectid = dir_elem->ino;
5111 min_key.type = BTRFS_DIR_ITEM_KEY;
5112 min_key.offset = 0;
5113again:
5114 btrfs_release_path(path);
5115 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5116 if (ret < 0) {
5117 goto next_dir_inode;
5118 } else if (ret > 0) {
5119 ret = 0;
5120 goto next_dir_inode;
5121 }
5122
5123process_leaf:
5124 leaf = path->nodes[0];
5125 nritems = btrfs_header_nritems(leaf);
5126 for (i = path->slots[0]; i < nritems; i++) {
5127 struct btrfs_dir_item *di;
5128 struct btrfs_key di_key;
5129 struct inode *di_inode;
5130 struct btrfs_dir_list *new_dir_elem;
5131 int log_mode = LOG_INODE_EXISTS;
5132 int type;
5133
5134 btrfs_item_key_to_cpu(leaf, &min_key, i);
5135 if (min_key.objectid != dir_elem->ino ||
5136 min_key.type != BTRFS_DIR_ITEM_KEY)
5137 goto next_dir_inode;
5138
5139 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5140 type = btrfs_dir_type(leaf, di);
5141 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5142 type != BTRFS_FT_DIR)
5143 continue;
5144 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5145 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5146 continue;
5147
5148 di_inode = btrfs_iget(root->fs_info->sb, &di_key,
5149 root, NULL);
5150 if (IS_ERR(di_inode)) {
5151 ret = PTR_ERR(di_inode);
5152 goto next_dir_inode;
5153 }
5154
5155 if (btrfs_inode_in_log(di_inode, trans->transid)) {
5156 iput(di_inode);
5157 continue;
5158 }
5159
5160 ctx->log_new_dentries = false;
5161 if (type == BTRFS_FT_DIR)
5162 log_mode = LOG_INODE_ALL;
5163 btrfs_release_path(path);
5164 ret = btrfs_log_inode(trans, root, di_inode,
5165 log_mode, 0, LLONG_MAX, ctx);
5166 if (!ret &&
5167 btrfs_must_commit_transaction(trans, di_inode))
5168 ret = 1;
5169 iput(di_inode);
5170 if (ret)
5171 goto next_dir_inode;
5172 if (ctx->log_new_dentries) {
5173 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5174 GFP_NOFS);
5175 if (!new_dir_elem) {
5176 ret = -ENOMEM;
5177 goto next_dir_inode;
5178 }
5179 new_dir_elem->ino = di_key.objectid;
5180 list_add_tail(&new_dir_elem->list, &dir_list);
5181 }
5182 break;
5183 }
5184 if (i == nritems) {
5185 ret = btrfs_next_leaf(log, path);
5186 if (ret < 0) {
5187 goto next_dir_inode;
5188 } else if (ret > 0) {
5189 ret = 0;
5190 goto next_dir_inode;
5191 }
5192 goto process_leaf;
5193 }
5194 if (min_key.offset < (u64)-1) {
5195 min_key.offset++;
5196 goto again;
5197 }
5198next_dir_inode:
5199 list_del(&dir_elem->list);
5200 kfree(dir_elem);
5201 }
5202
5203 btrfs_free_path(path);
5204 return ret;
5205}
5206
5207static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5208 struct inode *inode,
5209 struct btrfs_log_ctx *ctx)
5210{
5211 int ret;
5212 struct btrfs_path *path;
5213 struct btrfs_key key;
5214 struct btrfs_root *root = BTRFS_I(inode)->root;
5215 const u64 ino = btrfs_ino(inode);
5216
5217 path = btrfs_alloc_path();
5218 if (!path)
5219 return -ENOMEM;
5220 path->skip_locking = 1;
5221 path->search_commit_root = 1;
5222
5223 key.objectid = ino;
5224 key.type = BTRFS_INODE_REF_KEY;
5225 key.offset = 0;
5226 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5227 if (ret < 0)
5228 goto out;
5229
5230 while (true) {
5231 struct extent_buffer *leaf = path->nodes[0];
5232 int slot = path->slots[0];
5233 u32 cur_offset = 0;
5234 u32 item_size;
5235 unsigned long ptr;
5236
5237 if (slot >= btrfs_header_nritems(leaf)) {
5238 ret = btrfs_next_leaf(root, path);
5239 if (ret < 0)
5240 goto out;
5241 else if (ret > 0)
5242 break;
5243 continue;
5244 }
5245
5246 btrfs_item_key_to_cpu(leaf, &key, slot);
5247 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5248 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5249 break;
5250
5251 item_size = btrfs_item_size_nr(leaf, slot);
5252 ptr = btrfs_item_ptr_offset(leaf, slot);
5253 while (cur_offset < item_size) {
5254 struct btrfs_key inode_key;
5255 struct inode *dir_inode;
5256
5257 inode_key.type = BTRFS_INODE_ITEM_KEY;
5258 inode_key.offset = 0;
5259
5260 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5261 struct btrfs_inode_extref *extref;
5262
5263 extref = (struct btrfs_inode_extref *)
5264 (ptr + cur_offset);
5265 inode_key.objectid = btrfs_inode_extref_parent(
5266 leaf, extref);
5267 cur_offset += sizeof(*extref);
5268 cur_offset += btrfs_inode_extref_name_len(leaf,
5269 extref);
5270 } else {
5271 inode_key.objectid = key.offset;
5272 cur_offset = item_size;
5273 }
5274
5275 dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5276 root, NULL);
5277 /* If parent inode was deleted, skip it. */
5278 if (IS_ERR(dir_inode))
5279 continue;
5280
5281 ret = btrfs_log_inode(trans, root, dir_inode,
5282 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5283 if (!ret &&
5284 btrfs_must_commit_transaction(trans, dir_inode))
5285 ret = 1;
5286 iput(dir_inode);
5287 if (ret)
5288 goto out;
5289 }
5290 path->slots[0]++;
5291 }
5292 ret = 0;
5293out:
5294 btrfs_free_path(path);
5295 return ret;
5296}
5297
5298/*
5299 * helper function around btrfs_log_inode to make sure newly created
5300 * parent directories also end up in the log. A minimal inode and backref
5301 * only logging is done of any parent directories that are older than
5302 * the last committed transaction
5303 */
5304static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5305 struct btrfs_root *root, struct inode *inode,
5306 struct dentry *parent,
5307 const loff_t start,
5308 const loff_t end,
5309 int exists_only,
5310 struct btrfs_log_ctx *ctx)
5311{
5312 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5313 struct super_block *sb;
5314 struct dentry *old_parent = NULL;
5315 int ret = 0;
5316 u64 last_committed = root->fs_info->last_trans_committed;
5317 bool log_dentries = false;
5318 struct inode *orig_inode = inode;
5319
5320 sb = inode->i_sb;
5321
5322 if (btrfs_test_opt(root, NOTREELOG)) {
5323 ret = 1;
5324 goto end_no_trans;
5325 }
5326
5327 /*
5328 * The prev transaction commit doesn't complete, we need do
5329 * full commit by ourselves.
5330 */
5331 if (root->fs_info->last_trans_log_full_commit >
5332 root->fs_info->last_trans_committed) {
5333 ret = 1;
5334 goto end_no_trans;
5335 }
5336
5337 if (root != BTRFS_I(inode)->root ||
5338 btrfs_root_refs(&root->root_item) == 0) {
5339 ret = 1;
5340 goto end_no_trans;
5341 }
5342
5343 ret = check_parent_dirs_for_sync(trans, inode, parent,
5344 sb, last_committed);
5345 if (ret)
5346 goto end_no_trans;
5347
5348 if (btrfs_inode_in_log(inode, trans->transid)) {
5349 ret = BTRFS_NO_LOG_SYNC;
5350 goto end_no_trans;
5351 }
5352
5353 ret = start_log_trans(trans, root, ctx);
5354 if (ret)
5355 goto end_no_trans;
5356
5357 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5358 if (ret)
5359 goto end_trans;
5360
5361 /*
5362 * for regular files, if its inode is already on disk, we don't
5363 * have to worry about the parents at all. This is because
5364 * we can use the last_unlink_trans field to record renames
5365 * and other fun in this file.
5366 */
5367 if (S_ISREG(inode->i_mode) &&
5368 BTRFS_I(inode)->generation <= last_committed &&
5369 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5370 ret = 0;
5371 goto end_trans;
5372 }
5373
5374 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5375 log_dentries = true;
5376
5377 /*
5378 * On unlink we must make sure all our current and old parent directores
5379 * inodes are fully logged. This is to prevent leaving dangling
5380 * directory index entries in directories that were our parents but are
5381 * not anymore. Not doing this results in old parent directory being
5382 * impossible to delete after log replay (rmdir will always fail with
5383 * error -ENOTEMPTY).
5384 *
5385 * Example 1:
5386 *
5387 * mkdir testdir
5388 * touch testdir/foo
5389 * ln testdir/foo testdir/bar
5390 * sync
5391 * unlink testdir/bar
5392 * xfs_io -c fsync testdir/foo
5393 * <power failure>
5394 * mount fs, triggers log replay
5395 *
5396 * If we don't log the parent directory (testdir), after log replay the
5397 * directory still has an entry pointing to the file inode using the bar
5398 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5399 * the file inode has a link count of 1.
5400 *
5401 * Example 2:
5402 *
5403 * mkdir testdir
5404 * touch foo
5405 * ln foo testdir/foo2
5406 * ln foo testdir/foo3
5407 * sync
5408 * unlink testdir/foo3
5409 * xfs_io -c fsync foo
5410 * <power failure>
5411 * mount fs, triggers log replay
5412 *
5413 * Similar as the first example, after log replay the parent directory
5414 * testdir still has an entry pointing to the inode file with name foo3
5415 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5416 * and has a link count of 2.
5417 */
5418 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5419 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5420 if (ret)
5421 goto end_trans;
5422 }
5423
5424 while (1) {
5425 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5426 break;
5427
5428 inode = d_inode(parent);
5429 if (root != BTRFS_I(inode)->root)
5430 break;
5431
5432 if (BTRFS_I(inode)->generation > last_committed) {
5433 ret = btrfs_log_inode(trans, root, inode,
5434 LOG_INODE_EXISTS,
5435 0, LLONG_MAX, ctx);
5436 if (ret)
5437 goto end_trans;
5438 }
5439 if (IS_ROOT(parent))
5440 break;
5441
5442 parent = dget_parent(parent);
5443 dput(old_parent);
5444 old_parent = parent;
5445 }
5446 if (log_dentries)
5447 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5448 else
5449 ret = 0;
5450end_trans:
5451 dput(old_parent);
5452 if (ret < 0) {
5453 btrfs_set_log_full_commit(root->fs_info, trans);
5454 ret = 1;
5455 }
5456
5457 if (ret)
5458 btrfs_remove_log_ctx(root, ctx);
5459 btrfs_end_log_trans(root);
5460end_no_trans:
5461 return ret;
5462}
5463
5464/*
5465 * it is not safe to log dentry if the chunk root has added new
5466 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5467 * If this returns 1, you must commit the transaction to safely get your
5468 * data on disk.
5469 */
5470int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5471 struct btrfs_root *root, struct dentry *dentry,
5472 const loff_t start,
5473 const loff_t end,
5474 struct btrfs_log_ctx *ctx)
5475{
5476 struct dentry *parent = dget_parent(dentry);
5477 int ret;
5478
5479 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5480 start, end, 0, ctx);
5481 dput(parent);
5482
5483 return ret;
5484}
5485
5486/*
5487 * should be called during mount to recover any replay any log trees
5488 * from the FS
5489 */
5490int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5491{
5492 int ret;
5493 struct btrfs_path *path;
5494 struct btrfs_trans_handle *trans;
5495 struct btrfs_key key;
5496 struct btrfs_key found_key;
5497 struct btrfs_key tmp_key;
5498 struct btrfs_root *log;
5499 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5500 struct walk_control wc = {
5501 .process_func = process_one_buffer,
5502 .stage = 0,
5503 };
5504
5505 path = btrfs_alloc_path();
5506 if (!path)
5507 return -ENOMEM;
5508
5509 fs_info->log_root_recovering = 1;
5510
5511 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5512 if (IS_ERR(trans)) {
5513 ret = PTR_ERR(trans);
5514 goto error;
5515 }
5516
5517 wc.trans = trans;
5518 wc.pin = 1;
5519
5520 ret = walk_log_tree(trans, log_root_tree, &wc);
5521 if (ret) {
5522 btrfs_std_error(fs_info, ret, "Failed to pin buffers while "
5523 "recovering log root tree.");
5524 goto error;
5525 }
5526
5527again:
5528 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5529 key.offset = (u64)-1;
5530 key.type = BTRFS_ROOT_ITEM_KEY;
5531
5532 while (1) {
5533 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5534
5535 if (ret < 0) {
5536 btrfs_std_error(fs_info, ret,
5537 "Couldn't find tree log root.");
5538 goto error;
5539 }
5540 if (ret > 0) {
5541 if (path->slots[0] == 0)
5542 break;
5543 path->slots[0]--;
5544 }
5545 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5546 path->slots[0]);
5547 btrfs_release_path(path);
5548 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5549 break;
5550
5551 log = btrfs_read_fs_root(log_root_tree, &found_key);
5552 if (IS_ERR(log)) {
5553 ret = PTR_ERR(log);
5554 btrfs_std_error(fs_info, ret,
5555 "Couldn't read tree log root.");
5556 goto error;
5557 }
5558
5559 tmp_key.objectid = found_key.offset;
5560 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5561 tmp_key.offset = (u64)-1;
5562
5563 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5564 if (IS_ERR(wc.replay_dest)) {
5565 ret = PTR_ERR(wc.replay_dest);
5566 free_extent_buffer(log->node);
5567 free_extent_buffer(log->commit_root);
5568 kfree(log);
5569 btrfs_std_error(fs_info, ret, "Couldn't read target root "
5570 "for tree log recovery.");
5571 goto error;
5572 }
5573
5574 wc.replay_dest->log_root = log;
5575 btrfs_record_root_in_trans(trans, wc.replay_dest);
5576 ret = walk_log_tree(trans, log, &wc);
5577
5578 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5579 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5580 path);
5581 }
5582
5583 key.offset = found_key.offset - 1;
5584 wc.replay_dest->log_root = NULL;
5585 free_extent_buffer(log->node);
5586 free_extent_buffer(log->commit_root);
5587 kfree(log);
5588
5589 if (ret)
5590 goto error;
5591
5592 if (found_key.offset == 0)
5593 break;
5594 }
5595 btrfs_release_path(path);
5596
5597 /* step one is to pin it all, step two is to replay just inodes */
5598 if (wc.pin) {
5599 wc.pin = 0;
5600 wc.process_func = replay_one_buffer;
5601 wc.stage = LOG_WALK_REPLAY_INODES;
5602 goto again;
5603 }
5604 /* step three is to replay everything */
5605 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5606 wc.stage++;
5607 goto again;
5608 }
5609
5610 btrfs_free_path(path);
5611
5612 /* step 4: commit the transaction, which also unpins the blocks */
5613 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5614 if (ret)
5615 return ret;
5616
5617 free_extent_buffer(log_root_tree->node);
5618 log_root_tree->log_root = NULL;
5619 fs_info->log_root_recovering = 0;
5620 kfree(log_root_tree);
5621
5622 return 0;
5623error:
5624 if (wc.trans)
5625 btrfs_end_transaction(wc.trans, fs_info->tree_root);
5626 btrfs_free_path(path);
5627 return ret;
5628}
5629
5630/*
5631 * there are some corner cases where we want to force a full
5632 * commit instead of allowing a directory to be logged.
5633 *
5634 * They revolve around files there were unlinked from the directory, and
5635 * this function updates the parent directory so that a full commit is
5636 * properly done if it is fsync'd later after the unlinks are done.
5637 *
5638 * Must be called before the unlink operations (updates to the subvolume tree,
5639 * inodes, etc) are done.
5640 */
5641void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5642 struct inode *dir, struct inode *inode,
5643 int for_rename)
5644{
5645 /*
5646 * when we're logging a file, if it hasn't been renamed
5647 * or unlinked, and its inode is fully committed on disk,
5648 * we don't have to worry about walking up the directory chain
5649 * to log its parents.
5650 *
5651 * So, we use the last_unlink_trans field to put this transid
5652 * into the file. When the file is logged we check it and
5653 * don't log the parents if the file is fully on disk.
5654 */
5655 if (S_ISREG(inode->i_mode)) {
5656 mutex_lock(&BTRFS_I(inode)->log_mutex);
5657 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5658 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5659 }
5660
5661 /*
5662 * if this directory was already logged any new
5663 * names for this file/dir will get recorded
5664 */
5665 smp_mb();
5666 if (BTRFS_I(dir)->logged_trans == trans->transid)
5667 return;
5668
5669 /*
5670 * if the inode we're about to unlink was logged,
5671 * the log will be properly updated for any new names
5672 */
5673 if (BTRFS_I(inode)->logged_trans == trans->transid)
5674 return;
5675
5676 /*
5677 * when renaming files across directories, if the directory
5678 * there we're unlinking from gets fsync'd later on, there's
5679 * no way to find the destination directory later and fsync it
5680 * properly. So, we have to be conservative and force commits
5681 * so the new name gets discovered.
5682 */
5683 if (for_rename)
5684 goto record;
5685
5686 /* we can safely do the unlink without any special recording */
5687 return;
5688
5689record:
5690 mutex_lock(&BTRFS_I(dir)->log_mutex);
5691 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5692 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5693}
5694
5695/*
5696 * Make sure that if someone attempts to fsync the parent directory of a deleted
5697 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5698 * that after replaying the log tree of the parent directory's root we will not
5699 * see the snapshot anymore and at log replay time we will not see any log tree
5700 * corresponding to the deleted snapshot's root, which could lead to replaying
5701 * it after replaying the log tree of the parent directory (which would replay
5702 * the snapshot delete operation).
5703 *
5704 * Must be called before the actual snapshot destroy operation (updates to the
5705 * parent root and tree of tree roots trees, etc) are done.
5706 */
5707void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5708 struct inode *dir)
5709{
5710 mutex_lock(&BTRFS_I(dir)->log_mutex);
5711 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5712 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5713}
5714
5715/*
5716 * Call this after adding a new name for a file and it will properly
5717 * update the log to reflect the new name.
5718 *
5719 * It will return zero if all goes well, and it will return 1 if a
5720 * full transaction commit is required.
5721 */
5722int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5723 struct inode *inode, struct inode *old_dir,
5724 struct dentry *parent)
5725{
5726 struct btrfs_root * root = BTRFS_I(inode)->root;
5727
5728 /*
5729 * this will force the logging code to walk the dentry chain
5730 * up for the file
5731 */
5732 if (S_ISREG(inode->i_mode))
5733 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5734
5735 /*
5736 * if this inode hasn't been logged and directory we're renaming it
5737 * from hasn't been logged, we don't need to log it
5738 */
5739 if (BTRFS_I(inode)->logged_trans <=
5740 root->fs_info->last_trans_committed &&
5741 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5742 root->fs_info->last_trans_committed))
5743 return 0;
5744
5745 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5746 LLONG_MAX, 1, NULL);
5747}
5748
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
17#include "backref.h"
18#include "compression.h"
19#include "qgroup.h"
20#include "block-group.h"
21#include "space-info.h"
22#include "zoned.h"
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
36
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
95
96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct btrfs_inode *inode,
98 int inode_only,
99 struct btrfs_log_ctx *ctx);
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108static void wait_log_commit(struct btrfs_root *root, int transid);
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
141{
142 struct btrfs_fs_info *fs_info = root->fs_info;
143 struct btrfs_root *tree_root = fs_info->tree_root;
144 const bool zoned = btrfs_is_zoned(fs_info);
145 int ret = 0;
146 bool created = false;
147
148 /*
149 * First check if the log root tree was already created. If not, create
150 * it before locking the root's log_mutex, just to keep lockdep happy.
151 */
152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 mutex_lock(&tree_root->log_mutex);
154 if (!fs_info->log_root_tree) {
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 if (!ret) {
157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
158 created = true;
159 }
160 }
161 mutex_unlock(&tree_root->log_mutex);
162 if (ret)
163 return ret;
164 }
165
166 mutex_lock(&root->log_mutex);
167
168again:
169 if (root->log_root) {
170 int index = (root->log_transid + 1) % 2;
171
172 if (btrfs_need_log_full_commit(trans)) {
173 ret = -EAGAIN;
174 goto out;
175 }
176
177 if (zoned && atomic_read(&root->log_commit[index])) {
178 wait_log_commit(root, root->log_transid - 1);
179 goto again;
180 }
181
182 if (!root->log_start_pid) {
183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 root->log_start_pid = current->pid;
185 } else if (root->log_start_pid != current->pid) {
186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
187 }
188 } else {
189 /*
190 * This means fs_info->log_root_tree was already created
191 * for some other FS trees. Do the full commit not to mix
192 * nodes from multiple log transactions to do sequential
193 * writing.
194 */
195 if (zoned && !created) {
196 ret = -EAGAIN;
197 goto out;
198 }
199
200 ret = btrfs_add_log_tree(trans, root);
201 if (ret)
202 goto out;
203
204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 root->log_start_pid = current->pid;
207 }
208
209 atomic_inc(&root->log_writers);
210 if (ctx && !ctx->logging_new_name) {
211 int index = root->log_transid % 2;
212 list_add_tail(&ctx->list, &root->log_ctxs[index]);
213 ctx->log_transid = root->log_transid;
214 }
215
216out:
217 mutex_unlock(&root->log_mutex);
218 return ret;
219}
220
221/*
222 * returns 0 if there was a log transaction running and we were able
223 * to join, or returns -ENOENT if there were not transactions
224 * in progress
225 */
226static int join_running_log_trans(struct btrfs_root *root)
227{
228 const bool zoned = btrfs_is_zoned(root->fs_info);
229 int ret = -ENOENT;
230
231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 return ret;
233
234 mutex_lock(&root->log_mutex);
235again:
236 if (root->log_root) {
237 int index = (root->log_transid + 1) % 2;
238
239 ret = 0;
240 if (zoned && atomic_read(&root->log_commit[index])) {
241 wait_log_commit(root, root->log_transid - 1);
242 goto again;
243 }
244 atomic_inc(&root->log_writers);
245 }
246 mutex_unlock(&root->log_mutex);
247 return ret;
248}
249
250/*
251 * This either makes the current running log transaction wait
252 * until you call btrfs_end_log_trans() or it makes any future
253 * log transactions wait until you call btrfs_end_log_trans()
254 */
255void btrfs_pin_log_trans(struct btrfs_root *root)
256{
257 atomic_inc(&root->log_writers);
258}
259
260/*
261 * indicate we're done making changes to the log tree
262 * and wake up anyone waiting to do a sync
263 */
264void btrfs_end_log_trans(struct btrfs_root *root)
265{
266 if (atomic_dec_and_test(&root->log_writers)) {
267 /* atomic_dec_and_test implies a barrier */
268 cond_wake_up_nomb(&root->log_writer_wait);
269 }
270}
271
272static int btrfs_write_tree_block(struct extent_buffer *buf)
273{
274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 buf->start + buf->len - 1);
276}
277
278static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279{
280 filemap_fdatawait_range(buf->pages[0]->mapping,
281 buf->start, buf->start + buf->len - 1);
282}
283
284/*
285 * the walk control struct is used to pass state down the chain when
286 * processing the log tree. The stage field tells us which part
287 * of the log tree processing we are currently doing. The others
288 * are state fields used for that specific part
289 */
290struct walk_control {
291 /* should we free the extent on disk when done? This is used
292 * at transaction commit time while freeing a log tree
293 */
294 int free;
295
296 /* should we write out the extent buffer? This is used
297 * while flushing the log tree to disk during a sync
298 */
299 int write;
300
301 /* should we wait for the extent buffer io to finish? Also used
302 * while flushing the log tree to disk for a sync
303 */
304 int wait;
305
306 /* pin only walk, we record which extents on disk belong to the
307 * log trees
308 */
309 int pin;
310
311 /* what stage of the replay code we're currently in */
312 int stage;
313
314 /*
315 * Ignore any items from the inode currently being processed. Needs
316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 * the LOG_WALK_REPLAY_INODES stage.
318 */
319 bool ignore_cur_inode;
320
321 /* the root we are currently replaying */
322 struct btrfs_root *replay_dest;
323
324 /* the trans handle for the current replay */
325 struct btrfs_trans_handle *trans;
326
327 /* the function that gets used to process blocks we find in the
328 * tree. Note the extent_buffer might not be up to date when it is
329 * passed in, and it must be checked or read if you need the data
330 * inside it
331 */
332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
333 struct walk_control *wc, u64 gen, int level);
334};
335
336/*
337 * process_func used to pin down extents, write them or wait on them
338 */
339static int process_one_buffer(struct btrfs_root *log,
340 struct extent_buffer *eb,
341 struct walk_control *wc, u64 gen, int level)
342{
343 struct btrfs_fs_info *fs_info = log->fs_info;
344 int ret = 0;
345
346 /*
347 * If this fs is mixed then we need to be able to process the leaves to
348 * pin down any logged extents, so we have to read the block.
349 */
350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
351 ret = btrfs_read_buffer(eb, gen, level, NULL);
352 if (ret)
353 return ret;
354 }
355
356 if (wc->pin)
357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
358 eb->len);
359
360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
361 if (wc->pin && btrfs_header_level(eb) == 0)
362 ret = btrfs_exclude_logged_extents(eb);
363 if (wc->write)
364 btrfs_write_tree_block(eb);
365 if (wc->wait)
366 btrfs_wait_tree_block_writeback(eb);
367 }
368 return ret;
369}
370
371/*
372 * Item overwrite used by replay and tree logging. eb, slot and key all refer
373 * to the src data we are copying out.
374 *
375 * root is the tree we are copying into, and path is a scratch
376 * path for use in this function (it should be released on entry and
377 * will be released on exit).
378 *
379 * If the key is already in the destination tree the existing item is
380 * overwritten. If the existing item isn't big enough, it is extended.
381 * If it is too large, it is truncated.
382 *
383 * If the key isn't in the destination yet, a new item is inserted.
384 */
385static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 struct btrfs_root *root,
387 struct btrfs_path *path,
388 struct extent_buffer *eb, int slot,
389 struct btrfs_key *key)
390{
391 int ret;
392 u32 item_size;
393 u64 saved_i_size = 0;
394 int save_old_i_size = 0;
395 unsigned long src_ptr;
396 unsigned long dst_ptr;
397 int overwrite_root = 0;
398 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
399
400 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 overwrite_root = 1;
402
403 item_size = btrfs_item_size_nr(eb, slot);
404 src_ptr = btrfs_item_ptr_offset(eb, slot);
405
406 /* look for the key in the destination tree */
407 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
408 if (ret < 0)
409 return ret;
410
411 if (ret == 0) {
412 char *src_copy;
413 char *dst_copy;
414 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 path->slots[0]);
416 if (dst_size != item_size)
417 goto insert;
418
419 if (item_size == 0) {
420 btrfs_release_path(path);
421 return 0;
422 }
423 dst_copy = kmalloc(item_size, GFP_NOFS);
424 src_copy = kmalloc(item_size, GFP_NOFS);
425 if (!dst_copy || !src_copy) {
426 btrfs_release_path(path);
427 kfree(dst_copy);
428 kfree(src_copy);
429 return -ENOMEM;
430 }
431
432 read_extent_buffer(eb, src_copy, src_ptr, item_size);
433
434 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 item_size);
437 ret = memcmp(dst_copy, src_copy, item_size);
438
439 kfree(dst_copy);
440 kfree(src_copy);
441 /*
442 * they have the same contents, just return, this saves
443 * us from cowing blocks in the destination tree and doing
444 * extra writes that may not have been done by a previous
445 * sync
446 */
447 if (ret == 0) {
448 btrfs_release_path(path);
449 return 0;
450 }
451
452 /*
453 * We need to load the old nbytes into the inode so when we
454 * replay the extents we've logged we get the right nbytes.
455 */
456 if (inode_item) {
457 struct btrfs_inode_item *item;
458 u64 nbytes;
459 u32 mode;
460
461 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 struct btrfs_inode_item);
463 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 item = btrfs_item_ptr(eb, slot,
465 struct btrfs_inode_item);
466 btrfs_set_inode_nbytes(eb, item, nbytes);
467
468 /*
469 * If this is a directory we need to reset the i_size to
470 * 0 so that we can set it up properly when replaying
471 * the rest of the items in this log.
472 */
473 mode = btrfs_inode_mode(eb, item);
474 if (S_ISDIR(mode))
475 btrfs_set_inode_size(eb, item, 0);
476 }
477 } else if (inode_item) {
478 struct btrfs_inode_item *item;
479 u32 mode;
480
481 /*
482 * New inode, set nbytes to 0 so that the nbytes comes out
483 * properly when we replay the extents.
484 */
485 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 btrfs_set_inode_nbytes(eb, item, 0);
487
488 /*
489 * If this is a directory we need to reset the i_size to 0 so
490 * that we can set it up properly when replaying the rest of
491 * the items in this log.
492 */
493 mode = btrfs_inode_mode(eb, item);
494 if (S_ISDIR(mode))
495 btrfs_set_inode_size(eb, item, 0);
496 }
497insert:
498 btrfs_release_path(path);
499 /* try to insert the key into the destination tree */
500 path->skip_release_on_error = 1;
501 ret = btrfs_insert_empty_item(trans, root, path,
502 key, item_size);
503 path->skip_release_on_error = 0;
504
505 /* make sure any existing item is the correct size */
506 if (ret == -EEXIST || ret == -EOVERFLOW) {
507 u32 found_size;
508 found_size = btrfs_item_size_nr(path->nodes[0],
509 path->slots[0]);
510 if (found_size > item_size)
511 btrfs_truncate_item(path, item_size, 1);
512 else if (found_size < item_size)
513 btrfs_extend_item(path, item_size - found_size);
514 } else if (ret) {
515 return ret;
516 }
517 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 path->slots[0]);
519
520 /* don't overwrite an existing inode if the generation number
521 * was logged as zero. This is done when the tree logging code
522 * is just logging an inode to make sure it exists after recovery.
523 *
524 * Also, don't overwrite i_size on directories during replay.
525 * log replay inserts and removes directory items based on the
526 * state of the tree found in the subvolume, and i_size is modified
527 * as it goes
528 */
529 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 struct btrfs_inode_item *src_item;
531 struct btrfs_inode_item *dst_item;
532
533 src_item = (struct btrfs_inode_item *)src_ptr;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
535
536 if (btrfs_inode_generation(eb, src_item) == 0) {
537 struct extent_buffer *dst_eb = path->nodes[0];
538 const u64 ino_size = btrfs_inode_size(eb, src_item);
539
540 /*
541 * For regular files an ino_size == 0 is used only when
542 * logging that an inode exists, as part of a directory
543 * fsync, and the inode wasn't fsynced before. In this
544 * case don't set the size of the inode in the fs/subvol
545 * tree, otherwise we would be throwing valid data away.
546 */
547 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
548 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
549 ino_size != 0)
550 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
551 goto no_copy;
552 }
553
554 if (overwrite_root &&
555 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 save_old_i_size = 1;
558 saved_i_size = btrfs_inode_size(path->nodes[0],
559 dst_item);
560 }
561 }
562
563 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 src_ptr, item_size);
565
566 if (save_old_i_size) {
567 struct btrfs_inode_item *dst_item;
568 dst_item = (struct btrfs_inode_item *)dst_ptr;
569 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 }
571
572 /* make sure the generation is filled in */
573 if (key->type == BTRFS_INODE_ITEM_KEY) {
574 struct btrfs_inode_item *dst_item;
575 dst_item = (struct btrfs_inode_item *)dst_ptr;
576 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 btrfs_set_inode_generation(path->nodes[0], dst_item,
578 trans->transid);
579 }
580 }
581no_copy:
582 btrfs_mark_buffer_dirty(path->nodes[0]);
583 btrfs_release_path(path);
584 return 0;
585}
586
587/*
588 * simple helper to read an inode off the disk from a given root
589 * This can only be called for subvolume roots and not for the log
590 */
591static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 u64 objectid)
593{
594 struct inode *inode;
595
596 inode = btrfs_iget(root->fs_info->sb, objectid, root);
597 if (IS_ERR(inode))
598 inode = NULL;
599 return inode;
600}
601
602/* replays a single extent in 'eb' at 'slot' with 'key' into the
603 * subvolume 'root'. path is released on entry and should be released
604 * on exit.
605 *
606 * extents in the log tree have not been allocated out of the extent
607 * tree yet. So, this completes the allocation, taking a reference
608 * as required if the extent already exists or creating a new extent
609 * if it isn't in the extent allocation tree yet.
610 *
611 * The extent is inserted into the file, dropping any existing extents
612 * from the file that overlap the new one.
613 */
614static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 struct btrfs_root *root,
616 struct btrfs_path *path,
617 struct extent_buffer *eb, int slot,
618 struct btrfs_key *key)
619{
620 struct btrfs_drop_extents_args drop_args = { 0 };
621 struct btrfs_fs_info *fs_info = root->fs_info;
622 int found_type;
623 u64 extent_end;
624 u64 start = key->offset;
625 u64 nbytes = 0;
626 struct btrfs_file_extent_item *item;
627 struct inode *inode = NULL;
628 unsigned long size;
629 int ret = 0;
630
631 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 found_type = btrfs_file_extent_type(eb, item);
633
634 if (found_type == BTRFS_FILE_EXTENT_REG ||
635 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 nbytes = btrfs_file_extent_num_bytes(eb, item);
637 extent_end = start + nbytes;
638
639 /*
640 * We don't add to the inodes nbytes if we are prealloc or a
641 * hole.
642 */
643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 nbytes = 0;
645 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
646 size = btrfs_file_extent_ram_bytes(eb, item);
647 nbytes = btrfs_file_extent_ram_bytes(eb, item);
648 extent_end = ALIGN(start + size,
649 fs_info->sectorsize);
650 } else {
651 ret = 0;
652 goto out;
653 }
654
655 inode = read_one_inode(root, key->objectid);
656 if (!inode) {
657 ret = -EIO;
658 goto out;
659 }
660
661 /*
662 * first check to see if we already have this extent in the
663 * file. This must be done before the btrfs_drop_extents run
664 * so we don't try to drop this extent.
665 */
666 ret = btrfs_lookup_file_extent(trans, root, path,
667 btrfs_ino(BTRFS_I(inode)), start, 0);
668
669 if (ret == 0 &&
670 (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
672 struct btrfs_file_extent_item cmp1;
673 struct btrfs_file_extent_item cmp2;
674 struct btrfs_file_extent_item *existing;
675 struct extent_buffer *leaf;
676
677 leaf = path->nodes[0];
678 existing = btrfs_item_ptr(leaf, path->slots[0],
679 struct btrfs_file_extent_item);
680
681 read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 sizeof(cmp1));
683 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 sizeof(cmp2));
685
686 /*
687 * we already have a pointer to this exact extent,
688 * we don't have to do anything
689 */
690 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
691 btrfs_release_path(path);
692 goto out;
693 }
694 }
695 btrfs_release_path(path);
696
697 /* drop any overlapping extents */
698 drop_args.start = start;
699 drop_args.end = extent_end;
700 drop_args.drop_cache = true;
701 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
702 if (ret)
703 goto out;
704
705 if (found_type == BTRFS_FILE_EXTENT_REG ||
706 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
707 u64 offset;
708 unsigned long dest_offset;
709 struct btrfs_key ins;
710
711 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 btrfs_fs_incompat(fs_info, NO_HOLES))
713 goto update_inode;
714
715 ret = btrfs_insert_empty_item(trans, root, path, key,
716 sizeof(*item));
717 if (ret)
718 goto out;
719 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 path->slots[0]);
721 copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 (unsigned long)item, sizeof(*item));
723
724 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 ins.type = BTRFS_EXTENT_ITEM_KEY;
727 offset = key->offset - btrfs_file_extent_offset(eb, item);
728
729 /*
730 * Manually record dirty extent, as here we did a shallow
731 * file extent item copy and skip normal backref update,
732 * but modifying extent tree all by ourselves.
733 * So need to manually record dirty extent for qgroup,
734 * as the owner of the file extent changed from log tree
735 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 */
737 ret = btrfs_qgroup_trace_extent(trans,
738 btrfs_file_extent_disk_bytenr(eb, item),
739 btrfs_file_extent_disk_num_bytes(eb, item),
740 GFP_NOFS);
741 if (ret < 0)
742 goto out;
743
744 if (ins.objectid > 0) {
745 struct btrfs_ref ref = { 0 };
746 u64 csum_start;
747 u64 csum_end;
748 LIST_HEAD(ordered_sums);
749
750 /*
751 * is this extent already allocated in the extent
752 * allocation tree? If so, just add a reference
753 */
754 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
755 ins.offset);
756 if (ret < 0) {
757 goto out;
758 } else if (ret == 0) {
759 btrfs_init_generic_ref(&ref,
760 BTRFS_ADD_DELAYED_REF,
761 ins.objectid, ins.offset, 0);
762 btrfs_init_data_ref(&ref,
763 root->root_key.objectid,
764 key->objectid, offset);
765 ret = btrfs_inc_extent_ref(trans, &ref);
766 if (ret)
767 goto out;
768 } else {
769 /*
770 * insert the extent pointer in the extent
771 * allocation tree
772 */
773 ret = btrfs_alloc_logged_file_extent(trans,
774 root->root_key.objectid,
775 key->objectid, offset, &ins);
776 if (ret)
777 goto out;
778 }
779 btrfs_release_path(path);
780
781 if (btrfs_file_extent_compression(eb, item)) {
782 csum_start = ins.objectid;
783 csum_end = csum_start + ins.offset;
784 } else {
785 csum_start = ins.objectid +
786 btrfs_file_extent_offset(eb, item);
787 csum_end = csum_start +
788 btrfs_file_extent_num_bytes(eb, item);
789 }
790
791 ret = btrfs_lookup_csums_range(root->log_root,
792 csum_start, csum_end - 1,
793 &ordered_sums, 0);
794 if (ret)
795 goto out;
796 /*
797 * Now delete all existing cums in the csum root that
798 * cover our range. We do this because we can have an
799 * extent that is completely referenced by one file
800 * extent item and partially referenced by another
801 * file extent item (like after using the clone or
802 * extent_same ioctls). In this case if we end up doing
803 * the replay of the one that partially references the
804 * extent first, and we do not do the csum deletion
805 * below, we can get 2 csum items in the csum tree that
806 * overlap each other. For example, imagine our log has
807 * the two following file extent items:
808 *
809 * key (257 EXTENT_DATA 409600)
810 * extent data disk byte 12845056 nr 102400
811 * extent data offset 20480 nr 20480 ram 102400
812 *
813 * key (257 EXTENT_DATA 819200)
814 * extent data disk byte 12845056 nr 102400
815 * extent data offset 0 nr 102400 ram 102400
816 *
817 * Where the second one fully references the 100K extent
818 * that starts at disk byte 12845056, and the log tree
819 * has a single csum item that covers the entire range
820 * of the extent:
821 *
822 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
823 *
824 * After the first file extent item is replayed, the
825 * csum tree gets the following csum item:
826 *
827 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
828 *
829 * Which covers the 20K sub-range starting at offset 20K
830 * of our extent. Now when we replay the second file
831 * extent item, if we do not delete existing csum items
832 * that cover any of its blocks, we end up getting two
833 * csum items in our csum tree that overlap each other:
834 *
835 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
836 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837 *
838 * Which is a problem, because after this anyone trying
839 * to lookup up for the checksum of any block of our
840 * extent starting at an offset of 40K or higher, will
841 * end up looking at the second csum item only, which
842 * does not contain the checksum for any block starting
843 * at offset 40K or higher of our extent.
844 */
845 while (!list_empty(&ordered_sums)) {
846 struct btrfs_ordered_sum *sums;
847 sums = list_entry(ordered_sums.next,
848 struct btrfs_ordered_sum,
849 list);
850 if (!ret)
851 ret = btrfs_del_csums(trans,
852 fs_info->csum_root,
853 sums->bytenr,
854 sums->len);
855 if (!ret)
856 ret = btrfs_csum_file_blocks(trans,
857 fs_info->csum_root, sums);
858 list_del(&sums->list);
859 kfree(sums);
860 }
861 if (ret)
862 goto out;
863 } else {
864 btrfs_release_path(path);
865 }
866 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
867 /* inline extents are easy, we just overwrite them */
868 ret = overwrite_item(trans, root, path, eb, slot, key);
869 if (ret)
870 goto out;
871 }
872
873 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
874 extent_end - start);
875 if (ret)
876 goto out;
877
878update_inode:
879 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
880 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
881out:
882 if (inode)
883 iput(inode);
884 return ret;
885}
886
887/*
888 * when cleaning up conflicts between the directory names in the
889 * subvolume, directory names in the log and directory names in the
890 * inode back references, we may have to unlink inodes from directories.
891 *
892 * This is a helper function to do the unlink of a specific directory
893 * item
894 */
895static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
896 struct btrfs_root *root,
897 struct btrfs_path *path,
898 struct btrfs_inode *dir,
899 struct btrfs_dir_item *di)
900{
901 struct inode *inode;
902 char *name;
903 int name_len;
904 struct extent_buffer *leaf;
905 struct btrfs_key location;
906 int ret;
907
908 leaf = path->nodes[0];
909
910 btrfs_dir_item_key_to_cpu(leaf, di, &location);
911 name_len = btrfs_dir_name_len(leaf, di);
912 name = kmalloc(name_len, GFP_NOFS);
913 if (!name)
914 return -ENOMEM;
915
916 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
917 btrfs_release_path(path);
918
919 inode = read_one_inode(root, location.objectid);
920 if (!inode) {
921 ret = -EIO;
922 goto out;
923 }
924
925 ret = link_to_fixup_dir(trans, root, path, location.objectid);
926 if (ret)
927 goto out;
928
929 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
930 name_len);
931 if (ret)
932 goto out;
933 else
934 ret = btrfs_run_delayed_items(trans);
935out:
936 kfree(name);
937 iput(inode);
938 return ret;
939}
940
941/*
942 * See if a given name and sequence number found in an inode back reference are
943 * already in a directory and correctly point to this inode.
944 *
945 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
946 * exists.
947 */
948static noinline int inode_in_dir(struct btrfs_root *root,
949 struct btrfs_path *path,
950 u64 dirid, u64 objectid, u64 index,
951 const char *name, int name_len)
952{
953 struct btrfs_dir_item *di;
954 struct btrfs_key location;
955 int ret = 0;
956
957 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
958 index, name, name_len, 0);
959 if (IS_ERR(di)) {
960 if (PTR_ERR(di) != -ENOENT)
961 ret = PTR_ERR(di);
962 goto out;
963 } else if (di) {
964 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
965 if (location.objectid != objectid)
966 goto out;
967 } else {
968 goto out;
969 }
970
971 btrfs_release_path(path);
972 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
973 if (IS_ERR(di)) {
974 ret = PTR_ERR(di);
975 goto out;
976 } else if (di) {
977 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
978 if (location.objectid == objectid)
979 ret = 1;
980 }
981out:
982 btrfs_release_path(path);
983 return ret;
984}
985
986/*
987 * helper function to check a log tree for a named back reference in
988 * an inode. This is used to decide if a back reference that is
989 * found in the subvolume conflicts with what we find in the log.
990 *
991 * inode backreferences may have multiple refs in a single item,
992 * during replay we process one reference at a time, and we don't
993 * want to delete valid links to a file from the subvolume if that
994 * link is also in the log.
995 */
996static noinline int backref_in_log(struct btrfs_root *log,
997 struct btrfs_key *key,
998 u64 ref_objectid,
999 const char *name, int namelen)
1000{
1001 struct btrfs_path *path;
1002 int ret;
1003
1004 path = btrfs_alloc_path();
1005 if (!path)
1006 return -ENOMEM;
1007
1008 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1009 if (ret < 0) {
1010 goto out;
1011 } else if (ret == 1) {
1012 ret = 0;
1013 goto out;
1014 }
1015
1016 if (key->type == BTRFS_INODE_EXTREF_KEY)
1017 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1018 path->slots[0],
1019 ref_objectid,
1020 name, namelen);
1021 else
1022 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1023 path->slots[0],
1024 name, namelen);
1025out:
1026 btrfs_free_path(path);
1027 return ret;
1028}
1029
1030static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path,
1033 struct btrfs_root *log_root,
1034 struct btrfs_inode *dir,
1035 struct btrfs_inode *inode,
1036 u64 inode_objectid, u64 parent_objectid,
1037 u64 ref_index, char *name, int namelen,
1038 int *search_done)
1039{
1040 int ret;
1041 char *victim_name;
1042 int victim_name_len;
1043 struct extent_buffer *leaf;
1044 struct btrfs_dir_item *di;
1045 struct btrfs_key search_key;
1046 struct btrfs_inode_extref *extref;
1047
1048again:
1049 /* Search old style refs */
1050 search_key.objectid = inode_objectid;
1051 search_key.type = BTRFS_INODE_REF_KEY;
1052 search_key.offset = parent_objectid;
1053 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1054 if (ret == 0) {
1055 struct btrfs_inode_ref *victim_ref;
1056 unsigned long ptr;
1057 unsigned long ptr_end;
1058
1059 leaf = path->nodes[0];
1060
1061 /* are we trying to overwrite a back ref for the root directory
1062 * if so, just jump out, we're done
1063 */
1064 if (search_key.objectid == search_key.offset)
1065 return 1;
1066
1067 /* check all the names in this back reference to see
1068 * if they are in the log. if so, we allow them to stay
1069 * otherwise they must be unlinked as a conflict
1070 */
1071 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1072 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1073 while (ptr < ptr_end) {
1074 victim_ref = (struct btrfs_inode_ref *)ptr;
1075 victim_name_len = btrfs_inode_ref_name_len(leaf,
1076 victim_ref);
1077 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1078 if (!victim_name)
1079 return -ENOMEM;
1080
1081 read_extent_buffer(leaf, victim_name,
1082 (unsigned long)(victim_ref + 1),
1083 victim_name_len);
1084
1085 ret = backref_in_log(log_root, &search_key,
1086 parent_objectid, victim_name,
1087 victim_name_len);
1088 if (ret < 0) {
1089 kfree(victim_name);
1090 return ret;
1091 } else if (!ret) {
1092 inc_nlink(&inode->vfs_inode);
1093 btrfs_release_path(path);
1094
1095 ret = btrfs_unlink_inode(trans, root, dir, inode,
1096 victim_name, victim_name_len);
1097 kfree(victim_name);
1098 if (ret)
1099 return ret;
1100 ret = btrfs_run_delayed_items(trans);
1101 if (ret)
1102 return ret;
1103 *search_done = 1;
1104 goto again;
1105 }
1106 kfree(victim_name);
1107
1108 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1109 }
1110
1111 /*
1112 * NOTE: we have searched root tree and checked the
1113 * corresponding ref, it does not need to check again.
1114 */
1115 *search_done = 1;
1116 }
1117 btrfs_release_path(path);
1118
1119 /* Same search but for extended refs */
1120 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1121 inode_objectid, parent_objectid, 0,
1122 0);
1123 if (!IS_ERR_OR_NULL(extref)) {
1124 u32 item_size;
1125 u32 cur_offset = 0;
1126 unsigned long base;
1127 struct inode *victim_parent;
1128
1129 leaf = path->nodes[0];
1130
1131 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1132 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1133
1134 while (cur_offset < item_size) {
1135 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1136
1137 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1138
1139 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1140 goto next;
1141
1142 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1143 if (!victim_name)
1144 return -ENOMEM;
1145 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1146 victim_name_len);
1147
1148 search_key.objectid = inode_objectid;
1149 search_key.type = BTRFS_INODE_EXTREF_KEY;
1150 search_key.offset = btrfs_extref_hash(parent_objectid,
1151 victim_name,
1152 victim_name_len);
1153 ret = backref_in_log(log_root, &search_key,
1154 parent_objectid, victim_name,
1155 victim_name_len);
1156 if (ret < 0) {
1157 return ret;
1158 } else if (!ret) {
1159 ret = -ENOENT;
1160 victim_parent = read_one_inode(root,
1161 parent_objectid);
1162 if (victim_parent) {
1163 inc_nlink(&inode->vfs_inode);
1164 btrfs_release_path(path);
1165
1166 ret = btrfs_unlink_inode(trans, root,
1167 BTRFS_I(victim_parent),
1168 inode,
1169 victim_name,
1170 victim_name_len);
1171 if (!ret)
1172 ret = btrfs_run_delayed_items(
1173 trans);
1174 }
1175 iput(victim_parent);
1176 kfree(victim_name);
1177 if (ret)
1178 return ret;
1179 *search_done = 1;
1180 goto again;
1181 }
1182 kfree(victim_name);
1183next:
1184 cur_offset += victim_name_len + sizeof(*extref);
1185 }
1186 *search_done = 1;
1187 }
1188 btrfs_release_path(path);
1189
1190 /* look for a conflicting sequence number */
1191 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1192 ref_index, name, namelen, 0);
1193 if (IS_ERR(di)) {
1194 if (PTR_ERR(di) != -ENOENT)
1195 return PTR_ERR(di);
1196 } else if (di) {
1197 ret = drop_one_dir_item(trans, root, path, dir, di);
1198 if (ret)
1199 return ret;
1200 }
1201 btrfs_release_path(path);
1202
1203 /* look for a conflicting name */
1204 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1205 name, namelen, 0);
1206 if (IS_ERR(di)) {
1207 return PTR_ERR(di);
1208 } else if (di) {
1209 ret = drop_one_dir_item(trans, root, path, dir, di);
1210 if (ret)
1211 return ret;
1212 }
1213 btrfs_release_path(path);
1214
1215 return 0;
1216}
1217
1218static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1219 u32 *namelen, char **name, u64 *index,
1220 u64 *parent_objectid)
1221{
1222 struct btrfs_inode_extref *extref;
1223
1224 extref = (struct btrfs_inode_extref *)ref_ptr;
1225
1226 *namelen = btrfs_inode_extref_name_len(eb, extref);
1227 *name = kmalloc(*namelen, GFP_NOFS);
1228 if (*name == NULL)
1229 return -ENOMEM;
1230
1231 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1232 *namelen);
1233
1234 if (index)
1235 *index = btrfs_inode_extref_index(eb, extref);
1236 if (parent_objectid)
1237 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1238
1239 return 0;
1240}
1241
1242static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1243 u32 *namelen, char **name, u64 *index)
1244{
1245 struct btrfs_inode_ref *ref;
1246
1247 ref = (struct btrfs_inode_ref *)ref_ptr;
1248
1249 *namelen = btrfs_inode_ref_name_len(eb, ref);
1250 *name = kmalloc(*namelen, GFP_NOFS);
1251 if (*name == NULL)
1252 return -ENOMEM;
1253
1254 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1255
1256 if (index)
1257 *index = btrfs_inode_ref_index(eb, ref);
1258
1259 return 0;
1260}
1261
1262/*
1263 * Take an inode reference item from the log tree and iterate all names from the
1264 * inode reference item in the subvolume tree with the same key (if it exists).
1265 * For any name that is not in the inode reference item from the log tree, do a
1266 * proper unlink of that name (that is, remove its entry from the inode
1267 * reference item and both dir index keys).
1268 */
1269static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root,
1271 struct btrfs_path *path,
1272 struct btrfs_inode *inode,
1273 struct extent_buffer *log_eb,
1274 int log_slot,
1275 struct btrfs_key *key)
1276{
1277 int ret;
1278 unsigned long ref_ptr;
1279 unsigned long ref_end;
1280 struct extent_buffer *eb;
1281
1282again:
1283 btrfs_release_path(path);
1284 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1285 if (ret > 0) {
1286 ret = 0;
1287 goto out;
1288 }
1289 if (ret < 0)
1290 goto out;
1291
1292 eb = path->nodes[0];
1293 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1294 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1295 while (ref_ptr < ref_end) {
1296 char *name = NULL;
1297 int namelen;
1298 u64 parent_id;
1299
1300 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1301 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1302 NULL, &parent_id);
1303 } else {
1304 parent_id = key->offset;
1305 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1306 NULL);
1307 }
1308 if (ret)
1309 goto out;
1310
1311 if (key->type == BTRFS_INODE_EXTREF_KEY)
1312 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1313 parent_id, name,
1314 namelen);
1315 else
1316 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1317 name, namelen);
1318
1319 if (!ret) {
1320 struct inode *dir;
1321
1322 btrfs_release_path(path);
1323 dir = read_one_inode(root, parent_id);
1324 if (!dir) {
1325 ret = -ENOENT;
1326 kfree(name);
1327 goto out;
1328 }
1329 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1330 inode, name, namelen);
1331 kfree(name);
1332 iput(dir);
1333 if (ret)
1334 goto out;
1335 goto again;
1336 }
1337
1338 kfree(name);
1339 ref_ptr += namelen;
1340 if (key->type == BTRFS_INODE_EXTREF_KEY)
1341 ref_ptr += sizeof(struct btrfs_inode_extref);
1342 else
1343 ref_ptr += sizeof(struct btrfs_inode_ref);
1344 }
1345 ret = 0;
1346 out:
1347 btrfs_release_path(path);
1348 return ret;
1349}
1350
1351static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1352 const u8 ref_type, const char *name,
1353 const int namelen)
1354{
1355 struct btrfs_key key;
1356 struct btrfs_path *path;
1357 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1358 int ret;
1359
1360 path = btrfs_alloc_path();
1361 if (!path)
1362 return -ENOMEM;
1363
1364 key.objectid = btrfs_ino(BTRFS_I(inode));
1365 key.type = ref_type;
1366 if (key.type == BTRFS_INODE_REF_KEY)
1367 key.offset = parent_id;
1368 else
1369 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1370
1371 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1372 if (ret < 0)
1373 goto out;
1374 if (ret > 0) {
1375 ret = 0;
1376 goto out;
1377 }
1378 if (key.type == BTRFS_INODE_EXTREF_KEY)
1379 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1380 path->slots[0], parent_id, name, namelen);
1381 else
1382 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1383 name, namelen);
1384
1385out:
1386 btrfs_free_path(path);
1387 return ret;
1388}
1389
1390static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1391 struct inode *dir, struct inode *inode, const char *name,
1392 int namelen, u64 ref_index)
1393{
1394 struct btrfs_dir_item *dir_item;
1395 struct btrfs_key key;
1396 struct btrfs_path *path;
1397 struct inode *other_inode = NULL;
1398 int ret;
1399
1400 path = btrfs_alloc_path();
1401 if (!path)
1402 return -ENOMEM;
1403
1404 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1405 btrfs_ino(BTRFS_I(dir)),
1406 name, namelen, 0);
1407 if (!dir_item) {
1408 btrfs_release_path(path);
1409 goto add_link;
1410 } else if (IS_ERR(dir_item)) {
1411 ret = PTR_ERR(dir_item);
1412 goto out;
1413 }
1414
1415 /*
1416 * Our inode's dentry collides with the dentry of another inode which is
1417 * in the log but not yet processed since it has a higher inode number.
1418 * So delete that other dentry.
1419 */
1420 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1421 btrfs_release_path(path);
1422 other_inode = read_one_inode(root, key.objectid);
1423 if (!other_inode) {
1424 ret = -ENOENT;
1425 goto out;
1426 }
1427 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1428 name, namelen);
1429 if (ret)
1430 goto out;
1431 /*
1432 * If we dropped the link count to 0, bump it so that later the iput()
1433 * on the inode will not free it. We will fixup the link count later.
1434 */
1435 if (other_inode->i_nlink == 0)
1436 inc_nlink(other_inode);
1437
1438 ret = btrfs_run_delayed_items(trans);
1439 if (ret)
1440 goto out;
1441add_link:
1442 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1443 name, namelen, 0, ref_index);
1444out:
1445 iput(other_inode);
1446 btrfs_free_path(path);
1447
1448 return ret;
1449}
1450
1451/*
1452 * replay one inode back reference item found in the log tree.
1453 * eb, slot and key refer to the buffer and key found in the log tree.
1454 * root is the destination we are replaying into, and path is for temp
1455 * use by this function. (it should be released on return).
1456 */
1457static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root,
1459 struct btrfs_root *log,
1460 struct btrfs_path *path,
1461 struct extent_buffer *eb, int slot,
1462 struct btrfs_key *key)
1463{
1464 struct inode *dir = NULL;
1465 struct inode *inode = NULL;
1466 unsigned long ref_ptr;
1467 unsigned long ref_end;
1468 char *name = NULL;
1469 int namelen;
1470 int ret;
1471 int search_done = 0;
1472 int log_ref_ver = 0;
1473 u64 parent_objectid;
1474 u64 inode_objectid;
1475 u64 ref_index = 0;
1476 int ref_struct_size;
1477
1478 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1479 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1480
1481 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1482 struct btrfs_inode_extref *r;
1483
1484 ref_struct_size = sizeof(struct btrfs_inode_extref);
1485 log_ref_ver = 1;
1486 r = (struct btrfs_inode_extref *)ref_ptr;
1487 parent_objectid = btrfs_inode_extref_parent(eb, r);
1488 } else {
1489 ref_struct_size = sizeof(struct btrfs_inode_ref);
1490 parent_objectid = key->offset;
1491 }
1492 inode_objectid = key->objectid;
1493
1494 /*
1495 * it is possible that we didn't log all the parent directories
1496 * for a given inode. If we don't find the dir, just don't
1497 * copy the back ref in. The link count fixup code will take
1498 * care of the rest
1499 */
1500 dir = read_one_inode(root, parent_objectid);
1501 if (!dir) {
1502 ret = -ENOENT;
1503 goto out;
1504 }
1505
1506 inode = read_one_inode(root, inode_objectid);
1507 if (!inode) {
1508 ret = -EIO;
1509 goto out;
1510 }
1511
1512 while (ref_ptr < ref_end) {
1513 if (log_ref_ver) {
1514 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1515 &ref_index, &parent_objectid);
1516 /*
1517 * parent object can change from one array
1518 * item to another.
1519 */
1520 if (!dir)
1521 dir = read_one_inode(root, parent_objectid);
1522 if (!dir) {
1523 ret = -ENOENT;
1524 goto out;
1525 }
1526 } else {
1527 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1528 &ref_index);
1529 }
1530 if (ret)
1531 goto out;
1532
1533 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1534 btrfs_ino(BTRFS_I(inode)), ref_index,
1535 name, namelen);
1536 if (ret < 0) {
1537 goto out;
1538 } else if (ret == 0) {
1539 /*
1540 * look for a conflicting back reference in the
1541 * metadata. if we find one we have to unlink that name
1542 * of the file before we add our new link. Later on, we
1543 * overwrite any existing back reference, and we don't
1544 * want to create dangling pointers in the directory.
1545 */
1546
1547 if (!search_done) {
1548 ret = __add_inode_ref(trans, root, path, log,
1549 BTRFS_I(dir),
1550 BTRFS_I(inode),
1551 inode_objectid,
1552 parent_objectid,
1553 ref_index, name, namelen,
1554 &search_done);
1555 if (ret) {
1556 if (ret == 1)
1557 ret = 0;
1558 goto out;
1559 }
1560 }
1561
1562 /*
1563 * If a reference item already exists for this inode
1564 * with the same parent and name, but different index,
1565 * drop it and the corresponding directory index entries
1566 * from the parent before adding the new reference item
1567 * and dir index entries, otherwise we would fail with
1568 * -EEXIST returned from btrfs_add_link() below.
1569 */
1570 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1571 name, namelen);
1572 if (ret > 0) {
1573 ret = btrfs_unlink_inode(trans, root,
1574 BTRFS_I(dir),
1575 BTRFS_I(inode),
1576 name, namelen);
1577 /*
1578 * If we dropped the link count to 0, bump it so
1579 * that later the iput() on the inode will not
1580 * free it. We will fixup the link count later.
1581 */
1582 if (!ret && inode->i_nlink == 0)
1583 inc_nlink(inode);
1584 }
1585 if (ret < 0)
1586 goto out;
1587
1588 /* insert our name */
1589 ret = add_link(trans, root, dir, inode, name, namelen,
1590 ref_index);
1591 if (ret)
1592 goto out;
1593
1594 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1595 if (ret)
1596 goto out;
1597 }
1598 /* Else, ret == 1, we already have a perfect match, we're done. */
1599
1600 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1601 kfree(name);
1602 name = NULL;
1603 if (log_ref_ver) {
1604 iput(dir);
1605 dir = NULL;
1606 }
1607 }
1608
1609 /*
1610 * Before we overwrite the inode reference item in the subvolume tree
1611 * with the item from the log tree, we must unlink all names from the
1612 * parent directory that are in the subvolume's tree inode reference
1613 * item, otherwise we end up with an inconsistent subvolume tree where
1614 * dir index entries exist for a name but there is no inode reference
1615 * item with the same name.
1616 */
1617 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1618 key);
1619 if (ret)
1620 goto out;
1621
1622 /* finally write the back reference in the inode */
1623 ret = overwrite_item(trans, root, path, eb, slot, key);
1624out:
1625 btrfs_release_path(path);
1626 kfree(name);
1627 iput(dir);
1628 iput(inode);
1629 return ret;
1630}
1631
1632static int count_inode_extrefs(struct btrfs_root *root,
1633 struct btrfs_inode *inode, struct btrfs_path *path)
1634{
1635 int ret = 0;
1636 int name_len;
1637 unsigned int nlink = 0;
1638 u32 item_size;
1639 u32 cur_offset = 0;
1640 u64 inode_objectid = btrfs_ino(inode);
1641 u64 offset = 0;
1642 unsigned long ptr;
1643 struct btrfs_inode_extref *extref;
1644 struct extent_buffer *leaf;
1645
1646 while (1) {
1647 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1648 &extref, &offset);
1649 if (ret)
1650 break;
1651
1652 leaf = path->nodes[0];
1653 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1654 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1655 cur_offset = 0;
1656
1657 while (cur_offset < item_size) {
1658 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1659 name_len = btrfs_inode_extref_name_len(leaf, extref);
1660
1661 nlink++;
1662
1663 cur_offset += name_len + sizeof(*extref);
1664 }
1665
1666 offset++;
1667 btrfs_release_path(path);
1668 }
1669 btrfs_release_path(path);
1670
1671 if (ret < 0 && ret != -ENOENT)
1672 return ret;
1673 return nlink;
1674}
1675
1676static int count_inode_refs(struct btrfs_root *root,
1677 struct btrfs_inode *inode, struct btrfs_path *path)
1678{
1679 int ret;
1680 struct btrfs_key key;
1681 unsigned int nlink = 0;
1682 unsigned long ptr;
1683 unsigned long ptr_end;
1684 int name_len;
1685 u64 ino = btrfs_ino(inode);
1686
1687 key.objectid = ino;
1688 key.type = BTRFS_INODE_REF_KEY;
1689 key.offset = (u64)-1;
1690
1691 while (1) {
1692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1693 if (ret < 0)
1694 break;
1695 if (ret > 0) {
1696 if (path->slots[0] == 0)
1697 break;
1698 path->slots[0]--;
1699 }
1700process_slot:
1701 btrfs_item_key_to_cpu(path->nodes[0], &key,
1702 path->slots[0]);
1703 if (key.objectid != ino ||
1704 key.type != BTRFS_INODE_REF_KEY)
1705 break;
1706 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1707 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1708 path->slots[0]);
1709 while (ptr < ptr_end) {
1710 struct btrfs_inode_ref *ref;
1711
1712 ref = (struct btrfs_inode_ref *)ptr;
1713 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1714 ref);
1715 ptr = (unsigned long)(ref + 1) + name_len;
1716 nlink++;
1717 }
1718
1719 if (key.offset == 0)
1720 break;
1721 if (path->slots[0] > 0) {
1722 path->slots[0]--;
1723 goto process_slot;
1724 }
1725 key.offset--;
1726 btrfs_release_path(path);
1727 }
1728 btrfs_release_path(path);
1729
1730 return nlink;
1731}
1732
1733/*
1734 * There are a few corners where the link count of the file can't
1735 * be properly maintained during replay. So, instead of adding
1736 * lots of complexity to the log code, we just scan the backrefs
1737 * for any file that has been through replay.
1738 *
1739 * The scan will update the link count on the inode to reflect the
1740 * number of back refs found. If it goes down to zero, the iput
1741 * will free the inode.
1742 */
1743static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1744 struct btrfs_root *root,
1745 struct inode *inode)
1746{
1747 struct btrfs_path *path;
1748 int ret;
1749 u64 nlink = 0;
1750 u64 ino = btrfs_ino(BTRFS_I(inode));
1751
1752 path = btrfs_alloc_path();
1753 if (!path)
1754 return -ENOMEM;
1755
1756 ret = count_inode_refs(root, BTRFS_I(inode), path);
1757 if (ret < 0)
1758 goto out;
1759
1760 nlink = ret;
1761
1762 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1763 if (ret < 0)
1764 goto out;
1765
1766 nlink += ret;
1767
1768 ret = 0;
1769
1770 if (nlink != inode->i_nlink) {
1771 set_nlink(inode, nlink);
1772 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1773 if (ret)
1774 goto out;
1775 }
1776 BTRFS_I(inode)->index_cnt = (u64)-1;
1777
1778 if (inode->i_nlink == 0) {
1779 if (S_ISDIR(inode->i_mode)) {
1780 ret = replay_dir_deletes(trans, root, NULL, path,
1781 ino, 1);
1782 if (ret)
1783 goto out;
1784 }
1785 ret = btrfs_insert_orphan_item(trans, root, ino);
1786 if (ret == -EEXIST)
1787 ret = 0;
1788 }
1789
1790out:
1791 btrfs_free_path(path);
1792 return ret;
1793}
1794
1795static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1796 struct btrfs_root *root,
1797 struct btrfs_path *path)
1798{
1799 int ret;
1800 struct btrfs_key key;
1801 struct inode *inode;
1802
1803 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1804 key.type = BTRFS_ORPHAN_ITEM_KEY;
1805 key.offset = (u64)-1;
1806 while (1) {
1807 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1808 if (ret < 0)
1809 break;
1810
1811 if (ret == 1) {
1812 ret = 0;
1813 if (path->slots[0] == 0)
1814 break;
1815 path->slots[0]--;
1816 }
1817
1818 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1819 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1820 key.type != BTRFS_ORPHAN_ITEM_KEY)
1821 break;
1822
1823 ret = btrfs_del_item(trans, root, path);
1824 if (ret)
1825 break;
1826
1827 btrfs_release_path(path);
1828 inode = read_one_inode(root, key.offset);
1829 if (!inode) {
1830 ret = -EIO;
1831 break;
1832 }
1833
1834 ret = fixup_inode_link_count(trans, root, inode);
1835 iput(inode);
1836 if (ret)
1837 break;
1838
1839 /*
1840 * fixup on a directory may create new entries,
1841 * make sure we always look for the highset possible
1842 * offset
1843 */
1844 key.offset = (u64)-1;
1845 }
1846 btrfs_release_path(path);
1847 return ret;
1848}
1849
1850
1851/*
1852 * record a given inode in the fixup dir so we can check its link
1853 * count when replay is done. The link count is incremented here
1854 * so the inode won't go away until we check it
1855 */
1856static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1857 struct btrfs_root *root,
1858 struct btrfs_path *path,
1859 u64 objectid)
1860{
1861 struct btrfs_key key;
1862 int ret = 0;
1863 struct inode *inode;
1864
1865 inode = read_one_inode(root, objectid);
1866 if (!inode)
1867 return -EIO;
1868
1869 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1870 key.type = BTRFS_ORPHAN_ITEM_KEY;
1871 key.offset = objectid;
1872
1873 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1874
1875 btrfs_release_path(path);
1876 if (ret == 0) {
1877 if (!inode->i_nlink)
1878 set_nlink(inode, 1);
1879 else
1880 inc_nlink(inode);
1881 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1882 } else if (ret == -EEXIST) {
1883 ret = 0;
1884 }
1885 iput(inode);
1886
1887 return ret;
1888}
1889
1890/*
1891 * when replaying the log for a directory, we only insert names
1892 * for inodes that actually exist. This means an fsync on a directory
1893 * does not implicitly fsync all the new files in it
1894 */
1895static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1896 struct btrfs_root *root,
1897 u64 dirid, u64 index,
1898 char *name, int name_len,
1899 struct btrfs_key *location)
1900{
1901 struct inode *inode;
1902 struct inode *dir;
1903 int ret;
1904
1905 inode = read_one_inode(root, location->objectid);
1906 if (!inode)
1907 return -ENOENT;
1908
1909 dir = read_one_inode(root, dirid);
1910 if (!dir) {
1911 iput(inode);
1912 return -EIO;
1913 }
1914
1915 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1916 name_len, 1, index);
1917
1918 /* FIXME, put inode into FIXUP list */
1919
1920 iput(inode);
1921 iput(dir);
1922 return ret;
1923}
1924
1925/*
1926 * take a single entry in a log directory item and replay it into
1927 * the subvolume.
1928 *
1929 * if a conflicting item exists in the subdirectory already,
1930 * the inode it points to is unlinked and put into the link count
1931 * fix up tree.
1932 *
1933 * If a name from the log points to a file or directory that does
1934 * not exist in the FS, it is skipped. fsyncs on directories
1935 * do not force down inodes inside that directory, just changes to the
1936 * names or unlinks in a directory.
1937 *
1938 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1939 * non-existing inode) and 1 if the name was replayed.
1940 */
1941static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 struct btrfs_path *path,
1944 struct extent_buffer *eb,
1945 struct btrfs_dir_item *di,
1946 struct btrfs_key *key)
1947{
1948 char *name;
1949 int name_len;
1950 struct btrfs_dir_item *dst_di;
1951 struct btrfs_key found_key;
1952 struct btrfs_key log_key;
1953 struct inode *dir;
1954 u8 log_type;
1955 bool exists;
1956 int ret;
1957 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1958 bool name_added = false;
1959
1960 dir = read_one_inode(root, key->objectid);
1961 if (!dir)
1962 return -EIO;
1963
1964 name_len = btrfs_dir_name_len(eb, di);
1965 name = kmalloc(name_len, GFP_NOFS);
1966 if (!name) {
1967 ret = -ENOMEM;
1968 goto out;
1969 }
1970
1971 log_type = btrfs_dir_type(eb, di);
1972 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1973 name_len);
1974
1975 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1976 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1977 btrfs_release_path(path);
1978 if (ret < 0)
1979 goto out;
1980 exists = (ret == 0);
1981 ret = 0;
1982
1983 if (key->type == BTRFS_DIR_ITEM_KEY) {
1984 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1985 name, name_len, 1);
1986 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1987 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1988 key->objectid,
1989 key->offset, name,
1990 name_len, 1);
1991 } else {
1992 /* Corruption */
1993 ret = -EINVAL;
1994 goto out;
1995 }
1996
1997 if (dst_di == ERR_PTR(-ENOENT))
1998 dst_di = NULL;
1999
2000 if (IS_ERR(dst_di)) {
2001 ret = PTR_ERR(dst_di);
2002 goto out;
2003 } else if (!dst_di) {
2004 /* we need a sequence number to insert, so we only
2005 * do inserts for the BTRFS_DIR_INDEX_KEY types
2006 */
2007 if (key->type != BTRFS_DIR_INDEX_KEY)
2008 goto out;
2009 goto insert;
2010 }
2011
2012 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
2013 /* the existing item matches the logged item */
2014 if (found_key.objectid == log_key.objectid &&
2015 found_key.type == log_key.type &&
2016 found_key.offset == log_key.offset &&
2017 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
2018 update_size = false;
2019 goto out;
2020 }
2021
2022 /*
2023 * don't drop the conflicting directory entry if the inode
2024 * for the new entry doesn't exist
2025 */
2026 if (!exists)
2027 goto out;
2028
2029 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2030 if (ret)
2031 goto out;
2032
2033 if (key->type == BTRFS_DIR_INDEX_KEY)
2034 goto insert;
2035out:
2036 btrfs_release_path(path);
2037 if (!ret && update_size) {
2038 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2039 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2040 }
2041 kfree(name);
2042 iput(dir);
2043 if (!ret && name_added)
2044 ret = 1;
2045 return ret;
2046
2047insert:
2048 /*
2049 * Check if the inode reference exists in the log for the given name,
2050 * inode and parent inode
2051 */
2052 found_key.objectid = log_key.objectid;
2053 found_key.type = BTRFS_INODE_REF_KEY;
2054 found_key.offset = key->objectid;
2055 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2056 if (ret < 0) {
2057 goto out;
2058 } else if (ret) {
2059 /* The dentry will be added later. */
2060 ret = 0;
2061 update_size = false;
2062 goto out;
2063 }
2064
2065 found_key.objectid = log_key.objectid;
2066 found_key.type = BTRFS_INODE_EXTREF_KEY;
2067 found_key.offset = key->objectid;
2068 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2069 name_len);
2070 if (ret < 0) {
2071 goto out;
2072 } else if (ret) {
2073 /* The dentry will be added later. */
2074 ret = 0;
2075 update_size = false;
2076 goto out;
2077 }
2078 btrfs_release_path(path);
2079 ret = insert_one_name(trans, root, key->objectid, key->offset,
2080 name, name_len, &log_key);
2081 if (ret && ret != -ENOENT && ret != -EEXIST)
2082 goto out;
2083 if (!ret)
2084 name_added = true;
2085 update_size = false;
2086 ret = 0;
2087 goto out;
2088}
2089
2090/*
2091 * find all the names in a directory item and reconcile them into
2092 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2093 * one name in a directory item, but the same code gets used for
2094 * both directory index types
2095 */
2096static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2097 struct btrfs_root *root,
2098 struct btrfs_path *path,
2099 struct extent_buffer *eb, int slot,
2100 struct btrfs_key *key)
2101{
2102 int ret = 0;
2103 u32 item_size = btrfs_item_size_nr(eb, slot);
2104 struct btrfs_dir_item *di;
2105 int name_len;
2106 unsigned long ptr;
2107 unsigned long ptr_end;
2108 struct btrfs_path *fixup_path = NULL;
2109
2110 ptr = btrfs_item_ptr_offset(eb, slot);
2111 ptr_end = ptr + item_size;
2112 while (ptr < ptr_end) {
2113 di = (struct btrfs_dir_item *)ptr;
2114 name_len = btrfs_dir_name_len(eb, di);
2115 ret = replay_one_name(trans, root, path, eb, di, key);
2116 if (ret < 0)
2117 break;
2118 ptr = (unsigned long)(di + 1);
2119 ptr += name_len;
2120
2121 /*
2122 * If this entry refers to a non-directory (directories can not
2123 * have a link count > 1) and it was added in the transaction
2124 * that was not committed, make sure we fixup the link count of
2125 * the inode it the entry points to. Otherwise something like
2126 * the following would result in a directory pointing to an
2127 * inode with a wrong link that does not account for this dir
2128 * entry:
2129 *
2130 * mkdir testdir
2131 * touch testdir/foo
2132 * touch testdir/bar
2133 * sync
2134 *
2135 * ln testdir/bar testdir/bar_link
2136 * ln testdir/foo testdir/foo_link
2137 * xfs_io -c "fsync" testdir/bar
2138 *
2139 * <power failure>
2140 *
2141 * mount fs, log replay happens
2142 *
2143 * File foo would remain with a link count of 1 when it has two
2144 * entries pointing to it in the directory testdir. This would
2145 * make it impossible to ever delete the parent directory has
2146 * it would result in stale dentries that can never be deleted.
2147 */
2148 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2149 struct btrfs_key di_key;
2150
2151 if (!fixup_path) {
2152 fixup_path = btrfs_alloc_path();
2153 if (!fixup_path) {
2154 ret = -ENOMEM;
2155 break;
2156 }
2157 }
2158
2159 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2160 ret = link_to_fixup_dir(trans, root, fixup_path,
2161 di_key.objectid);
2162 if (ret)
2163 break;
2164 }
2165 ret = 0;
2166 }
2167 btrfs_free_path(fixup_path);
2168 return ret;
2169}
2170
2171/*
2172 * directory replay has two parts. There are the standard directory
2173 * items in the log copied from the subvolume, and range items
2174 * created in the log while the subvolume was logged.
2175 *
2176 * The range items tell us which parts of the key space the log
2177 * is authoritative for. During replay, if a key in the subvolume
2178 * directory is in a logged range item, but not actually in the log
2179 * that means it was deleted from the directory before the fsync
2180 * and should be removed.
2181 */
2182static noinline int find_dir_range(struct btrfs_root *root,
2183 struct btrfs_path *path,
2184 u64 dirid, int key_type,
2185 u64 *start_ret, u64 *end_ret)
2186{
2187 struct btrfs_key key;
2188 u64 found_end;
2189 struct btrfs_dir_log_item *item;
2190 int ret;
2191 int nritems;
2192
2193 if (*start_ret == (u64)-1)
2194 return 1;
2195
2196 key.objectid = dirid;
2197 key.type = key_type;
2198 key.offset = *start_ret;
2199
2200 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2201 if (ret < 0)
2202 goto out;
2203 if (ret > 0) {
2204 if (path->slots[0] == 0)
2205 goto out;
2206 path->slots[0]--;
2207 }
2208 if (ret != 0)
2209 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2210
2211 if (key.type != key_type || key.objectid != dirid) {
2212 ret = 1;
2213 goto next;
2214 }
2215 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2216 struct btrfs_dir_log_item);
2217 found_end = btrfs_dir_log_end(path->nodes[0], item);
2218
2219 if (*start_ret >= key.offset && *start_ret <= found_end) {
2220 ret = 0;
2221 *start_ret = key.offset;
2222 *end_ret = found_end;
2223 goto out;
2224 }
2225 ret = 1;
2226next:
2227 /* check the next slot in the tree to see if it is a valid item */
2228 nritems = btrfs_header_nritems(path->nodes[0]);
2229 path->slots[0]++;
2230 if (path->slots[0] >= nritems) {
2231 ret = btrfs_next_leaf(root, path);
2232 if (ret)
2233 goto out;
2234 }
2235
2236 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2237
2238 if (key.type != key_type || key.objectid != dirid) {
2239 ret = 1;
2240 goto out;
2241 }
2242 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2243 struct btrfs_dir_log_item);
2244 found_end = btrfs_dir_log_end(path->nodes[0], item);
2245 *start_ret = key.offset;
2246 *end_ret = found_end;
2247 ret = 0;
2248out:
2249 btrfs_release_path(path);
2250 return ret;
2251}
2252
2253/*
2254 * this looks for a given directory item in the log. If the directory
2255 * item is not in the log, the item is removed and the inode it points
2256 * to is unlinked
2257 */
2258static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2259 struct btrfs_root *root,
2260 struct btrfs_root *log,
2261 struct btrfs_path *path,
2262 struct btrfs_path *log_path,
2263 struct inode *dir,
2264 struct btrfs_key *dir_key)
2265{
2266 int ret;
2267 struct extent_buffer *eb;
2268 int slot;
2269 u32 item_size;
2270 struct btrfs_dir_item *di;
2271 struct btrfs_dir_item *log_di;
2272 int name_len;
2273 unsigned long ptr;
2274 unsigned long ptr_end;
2275 char *name;
2276 struct inode *inode;
2277 struct btrfs_key location;
2278
2279again:
2280 eb = path->nodes[0];
2281 slot = path->slots[0];
2282 item_size = btrfs_item_size_nr(eb, slot);
2283 ptr = btrfs_item_ptr_offset(eb, slot);
2284 ptr_end = ptr + item_size;
2285 while (ptr < ptr_end) {
2286 di = (struct btrfs_dir_item *)ptr;
2287 name_len = btrfs_dir_name_len(eb, di);
2288 name = kmalloc(name_len, GFP_NOFS);
2289 if (!name) {
2290 ret = -ENOMEM;
2291 goto out;
2292 }
2293 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2294 name_len);
2295 log_di = NULL;
2296 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2297 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2298 dir_key->objectid,
2299 name, name_len, 0);
2300 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2301 log_di = btrfs_lookup_dir_index_item(trans, log,
2302 log_path,
2303 dir_key->objectid,
2304 dir_key->offset,
2305 name, name_len, 0);
2306 }
2307 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2308 btrfs_dir_item_key_to_cpu(eb, di, &location);
2309 btrfs_release_path(path);
2310 btrfs_release_path(log_path);
2311 inode = read_one_inode(root, location.objectid);
2312 if (!inode) {
2313 kfree(name);
2314 return -EIO;
2315 }
2316
2317 ret = link_to_fixup_dir(trans, root,
2318 path, location.objectid);
2319 if (ret) {
2320 kfree(name);
2321 iput(inode);
2322 goto out;
2323 }
2324
2325 inc_nlink(inode);
2326 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2327 BTRFS_I(inode), name, name_len);
2328 if (!ret)
2329 ret = btrfs_run_delayed_items(trans);
2330 kfree(name);
2331 iput(inode);
2332 if (ret)
2333 goto out;
2334
2335 /* there might still be more names under this key
2336 * check and repeat if required
2337 */
2338 ret = btrfs_search_slot(NULL, root, dir_key, path,
2339 0, 0);
2340 if (ret == 0)
2341 goto again;
2342 ret = 0;
2343 goto out;
2344 } else if (IS_ERR(log_di)) {
2345 kfree(name);
2346 return PTR_ERR(log_di);
2347 }
2348 btrfs_release_path(log_path);
2349 kfree(name);
2350
2351 ptr = (unsigned long)(di + 1);
2352 ptr += name_len;
2353 }
2354 ret = 0;
2355out:
2356 btrfs_release_path(path);
2357 btrfs_release_path(log_path);
2358 return ret;
2359}
2360
2361static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2362 struct btrfs_root *root,
2363 struct btrfs_root *log,
2364 struct btrfs_path *path,
2365 const u64 ino)
2366{
2367 struct btrfs_key search_key;
2368 struct btrfs_path *log_path;
2369 int i;
2370 int nritems;
2371 int ret;
2372
2373 log_path = btrfs_alloc_path();
2374 if (!log_path)
2375 return -ENOMEM;
2376
2377 search_key.objectid = ino;
2378 search_key.type = BTRFS_XATTR_ITEM_KEY;
2379 search_key.offset = 0;
2380again:
2381 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2382 if (ret < 0)
2383 goto out;
2384process_leaf:
2385 nritems = btrfs_header_nritems(path->nodes[0]);
2386 for (i = path->slots[0]; i < nritems; i++) {
2387 struct btrfs_key key;
2388 struct btrfs_dir_item *di;
2389 struct btrfs_dir_item *log_di;
2390 u32 total_size;
2391 u32 cur;
2392
2393 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2394 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2395 ret = 0;
2396 goto out;
2397 }
2398
2399 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2400 total_size = btrfs_item_size_nr(path->nodes[0], i);
2401 cur = 0;
2402 while (cur < total_size) {
2403 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2404 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2405 u32 this_len = sizeof(*di) + name_len + data_len;
2406 char *name;
2407
2408 name = kmalloc(name_len, GFP_NOFS);
2409 if (!name) {
2410 ret = -ENOMEM;
2411 goto out;
2412 }
2413 read_extent_buffer(path->nodes[0], name,
2414 (unsigned long)(di + 1), name_len);
2415
2416 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2417 name, name_len, 0);
2418 btrfs_release_path(log_path);
2419 if (!log_di) {
2420 /* Doesn't exist in log tree, so delete it. */
2421 btrfs_release_path(path);
2422 di = btrfs_lookup_xattr(trans, root, path, ino,
2423 name, name_len, -1);
2424 kfree(name);
2425 if (IS_ERR(di)) {
2426 ret = PTR_ERR(di);
2427 goto out;
2428 }
2429 ASSERT(di);
2430 ret = btrfs_delete_one_dir_name(trans, root,
2431 path, di);
2432 if (ret)
2433 goto out;
2434 btrfs_release_path(path);
2435 search_key = key;
2436 goto again;
2437 }
2438 kfree(name);
2439 if (IS_ERR(log_di)) {
2440 ret = PTR_ERR(log_di);
2441 goto out;
2442 }
2443 cur += this_len;
2444 di = (struct btrfs_dir_item *)((char *)di + this_len);
2445 }
2446 }
2447 ret = btrfs_next_leaf(root, path);
2448 if (ret > 0)
2449 ret = 0;
2450 else if (ret == 0)
2451 goto process_leaf;
2452out:
2453 btrfs_free_path(log_path);
2454 btrfs_release_path(path);
2455 return ret;
2456}
2457
2458
2459/*
2460 * deletion replay happens before we copy any new directory items
2461 * out of the log or out of backreferences from inodes. It
2462 * scans the log to find ranges of keys that log is authoritative for,
2463 * and then scans the directory to find items in those ranges that are
2464 * not present in the log.
2465 *
2466 * Anything we don't find in the log is unlinked and removed from the
2467 * directory.
2468 */
2469static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root,
2471 struct btrfs_root *log,
2472 struct btrfs_path *path,
2473 u64 dirid, int del_all)
2474{
2475 u64 range_start;
2476 u64 range_end;
2477 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2478 int ret = 0;
2479 struct btrfs_key dir_key;
2480 struct btrfs_key found_key;
2481 struct btrfs_path *log_path;
2482 struct inode *dir;
2483
2484 dir_key.objectid = dirid;
2485 dir_key.type = BTRFS_DIR_ITEM_KEY;
2486 log_path = btrfs_alloc_path();
2487 if (!log_path)
2488 return -ENOMEM;
2489
2490 dir = read_one_inode(root, dirid);
2491 /* it isn't an error if the inode isn't there, that can happen
2492 * because we replay the deletes before we copy in the inode item
2493 * from the log
2494 */
2495 if (!dir) {
2496 btrfs_free_path(log_path);
2497 return 0;
2498 }
2499again:
2500 range_start = 0;
2501 range_end = 0;
2502 while (1) {
2503 if (del_all)
2504 range_end = (u64)-1;
2505 else {
2506 ret = find_dir_range(log, path, dirid, key_type,
2507 &range_start, &range_end);
2508 if (ret != 0)
2509 break;
2510 }
2511
2512 dir_key.offset = range_start;
2513 while (1) {
2514 int nritems;
2515 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2516 0, 0);
2517 if (ret < 0)
2518 goto out;
2519
2520 nritems = btrfs_header_nritems(path->nodes[0]);
2521 if (path->slots[0] >= nritems) {
2522 ret = btrfs_next_leaf(root, path);
2523 if (ret == 1)
2524 break;
2525 else if (ret < 0)
2526 goto out;
2527 }
2528 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2529 path->slots[0]);
2530 if (found_key.objectid != dirid ||
2531 found_key.type != dir_key.type)
2532 goto next_type;
2533
2534 if (found_key.offset > range_end)
2535 break;
2536
2537 ret = check_item_in_log(trans, root, log, path,
2538 log_path, dir,
2539 &found_key);
2540 if (ret)
2541 goto out;
2542 if (found_key.offset == (u64)-1)
2543 break;
2544 dir_key.offset = found_key.offset + 1;
2545 }
2546 btrfs_release_path(path);
2547 if (range_end == (u64)-1)
2548 break;
2549 range_start = range_end + 1;
2550 }
2551
2552next_type:
2553 ret = 0;
2554 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2555 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2556 dir_key.type = BTRFS_DIR_INDEX_KEY;
2557 btrfs_release_path(path);
2558 goto again;
2559 }
2560out:
2561 btrfs_release_path(path);
2562 btrfs_free_path(log_path);
2563 iput(dir);
2564 return ret;
2565}
2566
2567/*
2568 * the process_func used to replay items from the log tree. This
2569 * gets called in two different stages. The first stage just looks
2570 * for inodes and makes sure they are all copied into the subvolume.
2571 *
2572 * The second stage copies all the other item types from the log into
2573 * the subvolume. The two stage approach is slower, but gets rid of
2574 * lots of complexity around inodes referencing other inodes that exist
2575 * only in the log (references come from either directory items or inode
2576 * back refs).
2577 */
2578static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2579 struct walk_control *wc, u64 gen, int level)
2580{
2581 int nritems;
2582 struct btrfs_path *path;
2583 struct btrfs_root *root = wc->replay_dest;
2584 struct btrfs_key key;
2585 int i;
2586 int ret;
2587
2588 ret = btrfs_read_buffer(eb, gen, level, NULL);
2589 if (ret)
2590 return ret;
2591
2592 level = btrfs_header_level(eb);
2593
2594 if (level != 0)
2595 return 0;
2596
2597 path = btrfs_alloc_path();
2598 if (!path)
2599 return -ENOMEM;
2600
2601 nritems = btrfs_header_nritems(eb);
2602 for (i = 0; i < nritems; i++) {
2603 btrfs_item_key_to_cpu(eb, &key, i);
2604
2605 /* inode keys are done during the first stage */
2606 if (key.type == BTRFS_INODE_ITEM_KEY &&
2607 wc->stage == LOG_WALK_REPLAY_INODES) {
2608 struct btrfs_inode_item *inode_item;
2609 u32 mode;
2610
2611 inode_item = btrfs_item_ptr(eb, i,
2612 struct btrfs_inode_item);
2613 /*
2614 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2615 * and never got linked before the fsync, skip it, as
2616 * replaying it is pointless since it would be deleted
2617 * later. We skip logging tmpfiles, but it's always
2618 * possible we are replaying a log created with a kernel
2619 * that used to log tmpfiles.
2620 */
2621 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2622 wc->ignore_cur_inode = true;
2623 continue;
2624 } else {
2625 wc->ignore_cur_inode = false;
2626 }
2627 ret = replay_xattr_deletes(wc->trans, root, log,
2628 path, key.objectid);
2629 if (ret)
2630 break;
2631 mode = btrfs_inode_mode(eb, inode_item);
2632 if (S_ISDIR(mode)) {
2633 ret = replay_dir_deletes(wc->trans,
2634 root, log, path, key.objectid, 0);
2635 if (ret)
2636 break;
2637 }
2638 ret = overwrite_item(wc->trans, root, path,
2639 eb, i, &key);
2640 if (ret)
2641 break;
2642
2643 /*
2644 * Before replaying extents, truncate the inode to its
2645 * size. We need to do it now and not after log replay
2646 * because before an fsync we can have prealloc extents
2647 * added beyond the inode's i_size. If we did it after,
2648 * through orphan cleanup for example, we would drop
2649 * those prealloc extents just after replaying them.
2650 */
2651 if (S_ISREG(mode)) {
2652 struct btrfs_drop_extents_args drop_args = { 0 };
2653 struct inode *inode;
2654 u64 from;
2655
2656 inode = read_one_inode(root, key.objectid);
2657 if (!inode) {
2658 ret = -EIO;
2659 break;
2660 }
2661 from = ALIGN(i_size_read(inode),
2662 root->fs_info->sectorsize);
2663 drop_args.start = from;
2664 drop_args.end = (u64)-1;
2665 drop_args.drop_cache = true;
2666 ret = btrfs_drop_extents(wc->trans, root,
2667 BTRFS_I(inode),
2668 &drop_args);
2669 if (!ret) {
2670 inode_sub_bytes(inode,
2671 drop_args.bytes_found);
2672 /* Update the inode's nbytes. */
2673 ret = btrfs_update_inode(wc->trans,
2674 root, BTRFS_I(inode));
2675 }
2676 iput(inode);
2677 if (ret)
2678 break;
2679 }
2680
2681 ret = link_to_fixup_dir(wc->trans, root,
2682 path, key.objectid);
2683 if (ret)
2684 break;
2685 }
2686
2687 if (wc->ignore_cur_inode)
2688 continue;
2689
2690 if (key.type == BTRFS_DIR_INDEX_KEY &&
2691 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2692 ret = replay_one_dir_item(wc->trans, root, path,
2693 eb, i, &key);
2694 if (ret)
2695 break;
2696 }
2697
2698 if (wc->stage < LOG_WALK_REPLAY_ALL)
2699 continue;
2700
2701 /* these keys are simply copied */
2702 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2703 ret = overwrite_item(wc->trans, root, path,
2704 eb, i, &key);
2705 if (ret)
2706 break;
2707 } else if (key.type == BTRFS_INODE_REF_KEY ||
2708 key.type == BTRFS_INODE_EXTREF_KEY) {
2709 ret = add_inode_ref(wc->trans, root, log, path,
2710 eb, i, &key);
2711 if (ret && ret != -ENOENT)
2712 break;
2713 ret = 0;
2714 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2715 ret = replay_one_extent(wc->trans, root, path,
2716 eb, i, &key);
2717 if (ret)
2718 break;
2719 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2720 ret = replay_one_dir_item(wc->trans, root, path,
2721 eb, i, &key);
2722 if (ret)
2723 break;
2724 }
2725 }
2726 btrfs_free_path(path);
2727 return ret;
2728}
2729
2730/*
2731 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2732 */
2733static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2734{
2735 struct btrfs_block_group *cache;
2736
2737 cache = btrfs_lookup_block_group(fs_info, start);
2738 if (!cache) {
2739 btrfs_err(fs_info, "unable to find block group for %llu", start);
2740 return;
2741 }
2742
2743 spin_lock(&cache->space_info->lock);
2744 spin_lock(&cache->lock);
2745 cache->reserved -= fs_info->nodesize;
2746 cache->space_info->bytes_reserved -= fs_info->nodesize;
2747 spin_unlock(&cache->lock);
2748 spin_unlock(&cache->space_info->lock);
2749
2750 btrfs_put_block_group(cache);
2751}
2752
2753static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2754 struct btrfs_root *root,
2755 struct btrfs_path *path, int *level,
2756 struct walk_control *wc)
2757{
2758 struct btrfs_fs_info *fs_info = root->fs_info;
2759 u64 bytenr;
2760 u64 ptr_gen;
2761 struct extent_buffer *next;
2762 struct extent_buffer *cur;
2763 u32 blocksize;
2764 int ret = 0;
2765
2766 while (*level > 0) {
2767 struct btrfs_key first_key;
2768
2769 cur = path->nodes[*level];
2770
2771 WARN_ON(btrfs_header_level(cur) != *level);
2772
2773 if (path->slots[*level] >=
2774 btrfs_header_nritems(cur))
2775 break;
2776
2777 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2778 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2779 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2780 blocksize = fs_info->nodesize;
2781
2782 next = btrfs_find_create_tree_block(fs_info, bytenr,
2783 btrfs_header_owner(cur),
2784 *level - 1);
2785 if (IS_ERR(next))
2786 return PTR_ERR(next);
2787
2788 if (*level == 1) {
2789 ret = wc->process_func(root, next, wc, ptr_gen,
2790 *level - 1);
2791 if (ret) {
2792 free_extent_buffer(next);
2793 return ret;
2794 }
2795
2796 path->slots[*level]++;
2797 if (wc->free) {
2798 ret = btrfs_read_buffer(next, ptr_gen,
2799 *level - 1, &first_key);
2800 if (ret) {
2801 free_extent_buffer(next);
2802 return ret;
2803 }
2804
2805 if (trans) {
2806 btrfs_tree_lock(next);
2807 btrfs_clean_tree_block(next);
2808 btrfs_wait_tree_block_writeback(next);
2809 btrfs_tree_unlock(next);
2810 ret = btrfs_pin_reserved_extent(trans,
2811 bytenr, blocksize);
2812 if (ret) {
2813 free_extent_buffer(next);
2814 return ret;
2815 }
2816 btrfs_redirty_list_add(
2817 trans->transaction, next);
2818 } else {
2819 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2820 clear_extent_buffer_dirty(next);
2821 unaccount_log_buffer(fs_info, bytenr);
2822 }
2823 }
2824 free_extent_buffer(next);
2825 continue;
2826 }
2827 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2828 if (ret) {
2829 free_extent_buffer(next);
2830 return ret;
2831 }
2832
2833 if (path->nodes[*level-1])
2834 free_extent_buffer(path->nodes[*level-1]);
2835 path->nodes[*level-1] = next;
2836 *level = btrfs_header_level(next);
2837 path->slots[*level] = 0;
2838 cond_resched();
2839 }
2840 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2841
2842 cond_resched();
2843 return 0;
2844}
2845
2846static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2847 struct btrfs_root *root,
2848 struct btrfs_path *path, int *level,
2849 struct walk_control *wc)
2850{
2851 struct btrfs_fs_info *fs_info = root->fs_info;
2852 int i;
2853 int slot;
2854 int ret;
2855
2856 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2857 slot = path->slots[i];
2858 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2859 path->slots[i]++;
2860 *level = i;
2861 WARN_ON(*level == 0);
2862 return 0;
2863 } else {
2864 ret = wc->process_func(root, path->nodes[*level], wc,
2865 btrfs_header_generation(path->nodes[*level]),
2866 *level);
2867 if (ret)
2868 return ret;
2869
2870 if (wc->free) {
2871 struct extent_buffer *next;
2872
2873 next = path->nodes[*level];
2874
2875 if (trans) {
2876 btrfs_tree_lock(next);
2877 btrfs_clean_tree_block(next);
2878 btrfs_wait_tree_block_writeback(next);
2879 btrfs_tree_unlock(next);
2880 ret = btrfs_pin_reserved_extent(trans,
2881 path->nodes[*level]->start,
2882 path->nodes[*level]->len);
2883 if (ret)
2884 return ret;
2885 } else {
2886 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2887 clear_extent_buffer_dirty(next);
2888
2889 unaccount_log_buffer(fs_info,
2890 path->nodes[*level]->start);
2891 }
2892 }
2893 free_extent_buffer(path->nodes[*level]);
2894 path->nodes[*level] = NULL;
2895 *level = i + 1;
2896 }
2897 }
2898 return 1;
2899}
2900
2901/*
2902 * drop the reference count on the tree rooted at 'snap'. This traverses
2903 * the tree freeing any blocks that have a ref count of zero after being
2904 * decremented.
2905 */
2906static int walk_log_tree(struct btrfs_trans_handle *trans,
2907 struct btrfs_root *log, struct walk_control *wc)
2908{
2909 struct btrfs_fs_info *fs_info = log->fs_info;
2910 int ret = 0;
2911 int wret;
2912 int level;
2913 struct btrfs_path *path;
2914 int orig_level;
2915
2916 path = btrfs_alloc_path();
2917 if (!path)
2918 return -ENOMEM;
2919
2920 level = btrfs_header_level(log->node);
2921 orig_level = level;
2922 path->nodes[level] = log->node;
2923 atomic_inc(&log->node->refs);
2924 path->slots[level] = 0;
2925
2926 while (1) {
2927 wret = walk_down_log_tree(trans, log, path, &level, wc);
2928 if (wret > 0)
2929 break;
2930 if (wret < 0) {
2931 ret = wret;
2932 goto out;
2933 }
2934
2935 wret = walk_up_log_tree(trans, log, path, &level, wc);
2936 if (wret > 0)
2937 break;
2938 if (wret < 0) {
2939 ret = wret;
2940 goto out;
2941 }
2942 }
2943
2944 /* was the root node processed? if not, catch it here */
2945 if (path->nodes[orig_level]) {
2946 ret = wc->process_func(log, path->nodes[orig_level], wc,
2947 btrfs_header_generation(path->nodes[orig_level]),
2948 orig_level);
2949 if (ret)
2950 goto out;
2951 if (wc->free) {
2952 struct extent_buffer *next;
2953
2954 next = path->nodes[orig_level];
2955
2956 if (trans) {
2957 btrfs_tree_lock(next);
2958 btrfs_clean_tree_block(next);
2959 btrfs_wait_tree_block_writeback(next);
2960 btrfs_tree_unlock(next);
2961 ret = btrfs_pin_reserved_extent(trans,
2962 next->start, next->len);
2963 if (ret)
2964 goto out;
2965 } else {
2966 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2967 clear_extent_buffer_dirty(next);
2968 unaccount_log_buffer(fs_info, next->start);
2969 }
2970 }
2971 }
2972
2973out:
2974 btrfs_free_path(path);
2975 return ret;
2976}
2977
2978/*
2979 * helper function to update the item for a given subvolumes log root
2980 * in the tree of log roots
2981 */
2982static int update_log_root(struct btrfs_trans_handle *trans,
2983 struct btrfs_root *log,
2984 struct btrfs_root_item *root_item)
2985{
2986 struct btrfs_fs_info *fs_info = log->fs_info;
2987 int ret;
2988
2989 if (log->log_transid == 1) {
2990 /* insert root item on the first sync */
2991 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2992 &log->root_key, root_item);
2993 } else {
2994 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2995 &log->root_key, root_item);
2996 }
2997 return ret;
2998}
2999
3000static void wait_log_commit(struct btrfs_root *root, int transid)
3001{
3002 DEFINE_WAIT(wait);
3003 int index = transid % 2;
3004
3005 /*
3006 * we only allow two pending log transactions at a time,
3007 * so we know that if ours is more than 2 older than the
3008 * current transaction, we're done
3009 */
3010 for (;;) {
3011 prepare_to_wait(&root->log_commit_wait[index],
3012 &wait, TASK_UNINTERRUPTIBLE);
3013
3014 if (!(root->log_transid_committed < transid &&
3015 atomic_read(&root->log_commit[index])))
3016 break;
3017
3018 mutex_unlock(&root->log_mutex);
3019 schedule();
3020 mutex_lock(&root->log_mutex);
3021 }
3022 finish_wait(&root->log_commit_wait[index], &wait);
3023}
3024
3025static void wait_for_writer(struct btrfs_root *root)
3026{
3027 DEFINE_WAIT(wait);
3028
3029 for (;;) {
3030 prepare_to_wait(&root->log_writer_wait, &wait,
3031 TASK_UNINTERRUPTIBLE);
3032 if (!atomic_read(&root->log_writers))
3033 break;
3034
3035 mutex_unlock(&root->log_mutex);
3036 schedule();
3037 mutex_lock(&root->log_mutex);
3038 }
3039 finish_wait(&root->log_writer_wait, &wait);
3040}
3041
3042static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3043 struct btrfs_log_ctx *ctx)
3044{
3045 if (!ctx)
3046 return;
3047
3048 mutex_lock(&root->log_mutex);
3049 list_del_init(&ctx->list);
3050 mutex_unlock(&root->log_mutex);
3051}
3052
3053/*
3054 * Invoked in log mutex context, or be sure there is no other task which
3055 * can access the list.
3056 */
3057static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3058 int index, int error)
3059{
3060 struct btrfs_log_ctx *ctx;
3061 struct btrfs_log_ctx *safe;
3062
3063 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3064 list_del_init(&ctx->list);
3065 ctx->log_ret = error;
3066 }
3067
3068 INIT_LIST_HEAD(&root->log_ctxs[index]);
3069}
3070
3071/*
3072 * btrfs_sync_log does sends a given tree log down to the disk and
3073 * updates the super blocks to record it. When this call is done,
3074 * you know that any inodes previously logged are safely on disk only
3075 * if it returns 0.
3076 *
3077 * Any other return value means you need to call btrfs_commit_transaction.
3078 * Some of the edge cases for fsyncing directories that have had unlinks
3079 * or renames done in the past mean that sometimes the only safe
3080 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3081 * that has happened.
3082 */
3083int btrfs_sync_log(struct btrfs_trans_handle *trans,
3084 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3085{
3086 int index1;
3087 int index2;
3088 int mark;
3089 int ret;
3090 struct btrfs_fs_info *fs_info = root->fs_info;
3091 struct btrfs_root *log = root->log_root;
3092 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3093 struct btrfs_root_item new_root_item;
3094 int log_transid = 0;
3095 struct btrfs_log_ctx root_log_ctx;
3096 struct blk_plug plug;
3097 u64 log_root_start;
3098 u64 log_root_level;
3099
3100 mutex_lock(&root->log_mutex);
3101 log_transid = ctx->log_transid;
3102 if (root->log_transid_committed >= log_transid) {
3103 mutex_unlock(&root->log_mutex);
3104 return ctx->log_ret;
3105 }
3106
3107 index1 = log_transid % 2;
3108 if (atomic_read(&root->log_commit[index1])) {
3109 wait_log_commit(root, log_transid);
3110 mutex_unlock(&root->log_mutex);
3111 return ctx->log_ret;
3112 }
3113 ASSERT(log_transid == root->log_transid);
3114 atomic_set(&root->log_commit[index1], 1);
3115
3116 /* wait for previous tree log sync to complete */
3117 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3118 wait_log_commit(root, log_transid - 1);
3119
3120 while (1) {
3121 int batch = atomic_read(&root->log_batch);
3122 /* when we're on an ssd, just kick the log commit out */
3123 if (!btrfs_test_opt(fs_info, SSD) &&
3124 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3125 mutex_unlock(&root->log_mutex);
3126 schedule_timeout_uninterruptible(1);
3127 mutex_lock(&root->log_mutex);
3128 }
3129 wait_for_writer(root);
3130 if (batch == atomic_read(&root->log_batch))
3131 break;
3132 }
3133
3134 /* bail out if we need to do a full commit */
3135 if (btrfs_need_log_full_commit(trans)) {
3136 ret = -EAGAIN;
3137 mutex_unlock(&root->log_mutex);
3138 goto out;
3139 }
3140
3141 if (log_transid % 2 == 0)
3142 mark = EXTENT_DIRTY;
3143 else
3144 mark = EXTENT_NEW;
3145
3146 /* we start IO on all the marked extents here, but we don't actually
3147 * wait for them until later.
3148 */
3149 blk_start_plug(&plug);
3150 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3151 /*
3152 * -EAGAIN happens when someone, e.g., a concurrent transaction
3153 * commit, writes a dirty extent in this tree-log commit. This
3154 * concurrent write will create a hole writing out the extents,
3155 * and we cannot proceed on a zoned filesystem, requiring
3156 * sequential writing. While we can bail out to a full commit
3157 * here, but we can continue hoping the concurrent writing fills
3158 * the hole.
3159 */
3160 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3161 ret = 0;
3162 if (ret) {
3163 blk_finish_plug(&plug);
3164 btrfs_abort_transaction(trans, ret);
3165 btrfs_set_log_full_commit(trans);
3166 mutex_unlock(&root->log_mutex);
3167 goto out;
3168 }
3169
3170 /*
3171 * We _must_ update under the root->log_mutex in order to make sure we
3172 * have a consistent view of the log root we are trying to commit at
3173 * this moment.
3174 *
3175 * We _must_ copy this into a local copy, because we are not holding the
3176 * log_root_tree->log_mutex yet. This is important because when we
3177 * commit the log_root_tree we must have a consistent view of the
3178 * log_root_tree when we update the super block to point at the
3179 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3180 * with the commit and possibly point at the new block which we may not
3181 * have written out.
3182 */
3183 btrfs_set_root_node(&log->root_item, log->node);
3184 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3185
3186 root->log_transid++;
3187 log->log_transid = root->log_transid;
3188 root->log_start_pid = 0;
3189 /*
3190 * IO has been started, blocks of the log tree have WRITTEN flag set
3191 * in their headers. new modifications of the log will be written to
3192 * new positions. so it's safe to allow log writers to go in.
3193 */
3194 mutex_unlock(&root->log_mutex);
3195
3196 if (btrfs_is_zoned(fs_info)) {
3197 mutex_lock(&fs_info->tree_root->log_mutex);
3198 if (!log_root_tree->node) {
3199 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3200 if (ret) {
3201 mutex_unlock(&fs_info->tree_root->log_mutex);
3202 goto out;
3203 }
3204 }
3205 mutex_unlock(&fs_info->tree_root->log_mutex);
3206 }
3207
3208 btrfs_init_log_ctx(&root_log_ctx, NULL);
3209
3210 mutex_lock(&log_root_tree->log_mutex);
3211
3212 index2 = log_root_tree->log_transid % 2;
3213 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3214 root_log_ctx.log_transid = log_root_tree->log_transid;
3215
3216 /*
3217 * Now we are safe to update the log_root_tree because we're under the
3218 * log_mutex, and we're a current writer so we're holding the commit
3219 * open until we drop the log_mutex.
3220 */
3221 ret = update_log_root(trans, log, &new_root_item);
3222 if (ret) {
3223 if (!list_empty(&root_log_ctx.list))
3224 list_del_init(&root_log_ctx.list);
3225
3226 blk_finish_plug(&plug);
3227 btrfs_set_log_full_commit(trans);
3228
3229 if (ret != -ENOSPC) {
3230 btrfs_abort_transaction(trans, ret);
3231 mutex_unlock(&log_root_tree->log_mutex);
3232 goto out;
3233 }
3234 btrfs_wait_tree_log_extents(log, mark);
3235 mutex_unlock(&log_root_tree->log_mutex);
3236 ret = -EAGAIN;
3237 goto out;
3238 }
3239
3240 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3241 blk_finish_plug(&plug);
3242 list_del_init(&root_log_ctx.list);
3243 mutex_unlock(&log_root_tree->log_mutex);
3244 ret = root_log_ctx.log_ret;
3245 goto out;
3246 }
3247
3248 index2 = root_log_ctx.log_transid % 2;
3249 if (atomic_read(&log_root_tree->log_commit[index2])) {
3250 blk_finish_plug(&plug);
3251 ret = btrfs_wait_tree_log_extents(log, mark);
3252 wait_log_commit(log_root_tree,
3253 root_log_ctx.log_transid);
3254 mutex_unlock(&log_root_tree->log_mutex);
3255 if (!ret)
3256 ret = root_log_ctx.log_ret;
3257 goto out;
3258 }
3259 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3260 atomic_set(&log_root_tree->log_commit[index2], 1);
3261
3262 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3263 wait_log_commit(log_root_tree,
3264 root_log_ctx.log_transid - 1);
3265 }
3266
3267 /*
3268 * now that we've moved on to the tree of log tree roots,
3269 * check the full commit flag again
3270 */
3271 if (btrfs_need_log_full_commit(trans)) {
3272 blk_finish_plug(&plug);
3273 btrfs_wait_tree_log_extents(log, mark);
3274 mutex_unlock(&log_root_tree->log_mutex);
3275 ret = -EAGAIN;
3276 goto out_wake_log_root;
3277 }
3278
3279 ret = btrfs_write_marked_extents(fs_info,
3280 &log_root_tree->dirty_log_pages,
3281 EXTENT_DIRTY | EXTENT_NEW);
3282 blk_finish_plug(&plug);
3283 /*
3284 * As described above, -EAGAIN indicates a hole in the extents. We
3285 * cannot wait for these write outs since the waiting cause a
3286 * deadlock. Bail out to the full commit instead.
3287 */
3288 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3289 btrfs_set_log_full_commit(trans);
3290 btrfs_wait_tree_log_extents(log, mark);
3291 mutex_unlock(&log_root_tree->log_mutex);
3292 goto out_wake_log_root;
3293 } else if (ret) {
3294 btrfs_set_log_full_commit(trans);
3295 btrfs_abort_transaction(trans, ret);
3296 mutex_unlock(&log_root_tree->log_mutex);
3297 goto out_wake_log_root;
3298 }
3299 ret = btrfs_wait_tree_log_extents(log, mark);
3300 if (!ret)
3301 ret = btrfs_wait_tree_log_extents(log_root_tree,
3302 EXTENT_NEW | EXTENT_DIRTY);
3303 if (ret) {
3304 btrfs_set_log_full_commit(trans);
3305 mutex_unlock(&log_root_tree->log_mutex);
3306 goto out_wake_log_root;
3307 }
3308
3309 log_root_start = log_root_tree->node->start;
3310 log_root_level = btrfs_header_level(log_root_tree->node);
3311 log_root_tree->log_transid++;
3312 mutex_unlock(&log_root_tree->log_mutex);
3313
3314 /*
3315 * Here we are guaranteed that nobody is going to write the superblock
3316 * for the current transaction before us and that neither we do write
3317 * our superblock before the previous transaction finishes its commit
3318 * and writes its superblock, because:
3319 *
3320 * 1) We are holding a handle on the current transaction, so no body
3321 * can commit it until we release the handle;
3322 *
3323 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3324 * if the previous transaction is still committing, and hasn't yet
3325 * written its superblock, we wait for it to do it, because a
3326 * transaction commit acquires the tree_log_mutex when the commit
3327 * begins and releases it only after writing its superblock.
3328 */
3329 mutex_lock(&fs_info->tree_log_mutex);
3330
3331 /*
3332 * The previous transaction writeout phase could have failed, and thus
3333 * marked the fs in an error state. We must not commit here, as we
3334 * could have updated our generation in the super_for_commit and
3335 * writing the super here would result in transid mismatches. If there
3336 * is an error here just bail.
3337 */
3338 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3339 ret = -EIO;
3340 btrfs_set_log_full_commit(trans);
3341 btrfs_abort_transaction(trans, ret);
3342 mutex_unlock(&fs_info->tree_log_mutex);
3343 goto out_wake_log_root;
3344 }
3345
3346 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3347 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3348 ret = write_all_supers(fs_info, 1);
3349 mutex_unlock(&fs_info->tree_log_mutex);
3350 if (ret) {
3351 btrfs_set_log_full_commit(trans);
3352 btrfs_abort_transaction(trans, ret);
3353 goto out_wake_log_root;
3354 }
3355
3356 mutex_lock(&root->log_mutex);
3357 if (root->last_log_commit < log_transid)
3358 root->last_log_commit = log_transid;
3359 mutex_unlock(&root->log_mutex);
3360
3361out_wake_log_root:
3362 mutex_lock(&log_root_tree->log_mutex);
3363 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3364
3365 log_root_tree->log_transid_committed++;
3366 atomic_set(&log_root_tree->log_commit[index2], 0);
3367 mutex_unlock(&log_root_tree->log_mutex);
3368
3369 /*
3370 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3371 * all the updates above are seen by the woken threads. It might not be
3372 * necessary, but proving that seems to be hard.
3373 */
3374 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3375out:
3376 mutex_lock(&root->log_mutex);
3377 btrfs_remove_all_log_ctxs(root, index1, ret);
3378 root->log_transid_committed++;
3379 atomic_set(&root->log_commit[index1], 0);
3380 mutex_unlock(&root->log_mutex);
3381
3382 /*
3383 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3384 * all the updates above are seen by the woken threads. It might not be
3385 * necessary, but proving that seems to be hard.
3386 */
3387 cond_wake_up(&root->log_commit_wait[index1]);
3388 return ret;
3389}
3390
3391static void free_log_tree(struct btrfs_trans_handle *trans,
3392 struct btrfs_root *log)
3393{
3394 int ret;
3395 struct walk_control wc = {
3396 .free = 1,
3397 .process_func = process_one_buffer
3398 };
3399
3400 if (log->node) {
3401 ret = walk_log_tree(trans, log, &wc);
3402 if (ret) {
3403 if (trans)
3404 btrfs_abort_transaction(trans, ret);
3405 else
3406 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3407 }
3408 }
3409
3410 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3411 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3412 extent_io_tree_release(&log->log_csum_range);
3413
3414 if (trans && log->node)
3415 btrfs_redirty_list_add(trans->transaction, log->node);
3416 btrfs_put_root(log);
3417}
3418
3419/*
3420 * free all the extents used by the tree log. This should be called
3421 * at commit time of the full transaction
3422 */
3423int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3424{
3425 if (root->log_root) {
3426 free_log_tree(trans, root->log_root);
3427 root->log_root = NULL;
3428 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3429 }
3430 return 0;
3431}
3432
3433int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3434 struct btrfs_fs_info *fs_info)
3435{
3436 if (fs_info->log_root_tree) {
3437 free_log_tree(trans, fs_info->log_root_tree);
3438 fs_info->log_root_tree = NULL;
3439 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3440 }
3441 return 0;
3442}
3443
3444/*
3445 * Check if an inode was logged in the current transaction. We can't always rely
3446 * on an inode's logged_trans value, because it's an in-memory only field and
3447 * therefore not persisted. This means that its value is lost if the inode gets
3448 * evicted and loaded again from disk (in which case it has a value of 0, and
3449 * certainly it is smaller then any possible transaction ID), when that happens
3450 * the full_sync flag is set in the inode's runtime flags, so on that case we
3451 * assume eviction happened and ignore the logged_trans value, assuming the
3452 * worst case, that the inode was logged before in the current transaction.
3453 */
3454static bool inode_logged(struct btrfs_trans_handle *trans,
3455 struct btrfs_inode *inode)
3456{
3457 if (inode->logged_trans == trans->transid)
3458 return true;
3459
3460 if (inode->last_trans == trans->transid &&
3461 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3462 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3463 return true;
3464
3465 return false;
3466}
3467
3468/*
3469 * If both a file and directory are logged, and unlinks or renames are
3470 * mixed in, we have a few interesting corners:
3471 *
3472 * create file X in dir Y
3473 * link file X to X.link in dir Y
3474 * fsync file X
3475 * unlink file X but leave X.link
3476 * fsync dir Y
3477 *
3478 * After a crash we would expect only X.link to exist. But file X
3479 * didn't get fsync'd again so the log has back refs for X and X.link.
3480 *
3481 * We solve this by removing directory entries and inode backrefs from the
3482 * log when a file that was logged in the current transaction is
3483 * unlinked. Any later fsync will include the updated log entries, and
3484 * we'll be able to reconstruct the proper directory items from backrefs.
3485 *
3486 * This optimizations allows us to avoid relogging the entire inode
3487 * or the entire directory.
3488 */
3489int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3490 struct btrfs_root *root,
3491 const char *name, int name_len,
3492 struct btrfs_inode *dir, u64 index)
3493{
3494 struct btrfs_root *log;
3495 struct btrfs_dir_item *di;
3496 struct btrfs_path *path;
3497 int ret;
3498 int err = 0;
3499 u64 dir_ino = btrfs_ino(dir);
3500
3501 if (!inode_logged(trans, dir))
3502 return 0;
3503
3504 ret = join_running_log_trans(root);
3505 if (ret)
3506 return 0;
3507
3508 mutex_lock(&dir->log_mutex);
3509
3510 log = root->log_root;
3511 path = btrfs_alloc_path();
3512 if (!path) {
3513 err = -ENOMEM;
3514 goto out_unlock;
3515 }
3516
3517 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3518 name, name_len, -1);
3519 if (IS_ERR(di)) {
3520 err = PTR_ERR(di);
3521 goto fail;
3522 }
3523 if (di) {
3524 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3525 if (ret) {
3526 err = ret;
3527 goto fail;
3528 }
3529 }
3530 btrfs_release_path(path);
3531 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3532 index, name, name_len, -1);
3533 if (IS_ERR(di)) {
3534 err = PTR_ERR(di);
3535 goto fail;
3536 }
3537 if (di) {
3538 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3539 if (ret) {
3540 err = ret;
3541 goto fail;
3542 }
3543 }
3544
3545 /*
3546 * We do not need to update the size field of the directory's inode item
3547 * because on log replay we update the field to reflect all existing
3548 * entries in the directory (see overwrite_item()).
3549 */
3550fail:
3551 btrfs_free_path(path);
3552out_unlock:
3553 mutex_unlock(&dir->log_mutex);
3554 if (err == -ENOSPC) {
3555 btrfs_set_log_full_commit(trans);
3556 err = 0;
3557 } else if (err < 0 && err != -ENOENT) {
3558 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3559 btrfs_abort_transaction(trans, err);
3560 }
3561
3562 btrfs_end_log_trans(root);
3563
3564 return err;
3565}
3566
3567/* see comments for btrfs_del_dir_entries_in_log */
3568int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3569 struct btrfs_root *root,
3570 const char *name, int name_len,
3571 struct btrfs_inode *inode, u64 dirid)
3572{
3573 struct btrfs_root *log;
3574 u64 index;
3575 int ret;
3576
3577 if (!inode_logged(trans, inode))
3578 return 0;
3579
3580 ret = join_running_log_trans(root);
3581 if (ret)
3582 return 0;
3583 log = root->log_root;
3584 mutex_lock(&inode->log_mutex);
3585
3586 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3587 dirid, &index);
3588 mutex_unlock(&inode->log_mutex);
3589 if (ret == -ENOSPC) {
3590 btrfs_set_log_full_commit(trans);
3591 ret = 0;
3592 } else if (ret < 0 && ret != -ENOENT)
3593 btrfs_abort_transaction(trans, ret);
3594 btrfs_end_log_trans(root);
3595
3596 return ret;
3597}
3598
3599/*
3600 * creates a range item in the log for 'dirid'. first_offset and
3601 * last_offset tell us which parts of the key space the log should
3602 * be considered authoritative for.
3603 */
3604static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3605 struct btrfs_root *log,
3606 struct btrfs_path *path,
3607 int key_type, u64 dirid,
3608 u64 first_offset, u64 last_offset)
3609{
3610 int ret;
3611 struct btrfs_key key;
3612 struct btrfs_dir_log_item *item;
3613
3614 key.objectid = dirid;
3615 key.offset = first_offset;
3616 if (key_type == BTRFS_DIR_ITEM_KEY)
3617 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3618 else
3619 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3620 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3621 if (ret)
3622 return ret;
3623
3624 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3625 struct btrfs_dir_log_item);
3626 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3627 btrfs_mark_buffer_dirty(path->nodes[0]);
3628 btrfs_release_path(path);
3629 return 0;
3630}
3631
3632/*
3633 * log all the items included in the current transaction for a given
3634 * directory. This also creates the range items in the log tree required
3635 * to replay anything deleted before the fsync
3636 */
3637static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3638 struct btrfs_root *root, struct btrfs_inode *inode,
3639 struct btrfs_path *path,
3640 struct btrfs_path *dst_path, int key_type,
3641 struct btrfs_log_ctx *ctx,
3642 u64 min_offset, u64 *last_offset_ret)
3643{
3644 struct btrfs_key min_key;
3645 struct btrfs_root *log = root->log_root;
3646 struct extent_buffer *src;
3647 int err = 0;
3648 int ret;
3649 int i;
3650 int nritems;
3651 u64 first_offset = min_offset;
3652 u64 last_offset = (u64)-1;
3653 u64 ino = btrfs_ino(inode);
3654
3655 log = root->log_root;
3656
3657 min_key.objectid = ino;
3658 min_key.type = key_type;
3659 min_key.offset = min_offset;
3660
3661 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3662
3663 /*
3664 * we didn't find anything from this transaction, see if there
3665 * is anything at all
3666 */
3667 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3668 min_key.objectid = ino;
3669 min_key.type = key_type;
3670 min_key.offset = (u64)-1;
3671 btrfs_release_path(path);
3672 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3673 if (ret < 0) {
3674 btrfs_release_path(path);
3675 return ret;
3676 }
3677 ret = btrfs_previous_item(root, path, ino, key_type);
3678
3679 /* if ret == 0 there are items for this type,
3680 * create a range to tell us the last key of this type.
3681 * otherwise, there are no items in this directory after
3682 * *min_offset, and we create a range to indicate that.
3683 */
3684 if (ret == 0) {
3685 struct btrfs_key tmp;
3686 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3687 path->slots[0]);
3688 if (key_type == tmp.type)
3689 first_offset = max(min_offset, tmp.offset) + 1;
3690 }
3691 goto done;
3692 }
3693
3694 /* go backward to find any previous key */
3695 ret = btrfs_previous_item(root, path, ino, key_type);
3696 if (ret == 0) {
3697 struct btrfs_key tmp;
3698 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3699 if (key_type == tmp.type) {
3700 first_offset = tmp.offset;
3701 ret = overwrite_item(trans, log, dst_path,
3702 path->nodes[0], path->slots[0],
3703 &tmp);
3704 if (ret) {
3705 err = ret;
3706 goto done;
3707 }
3708 }
3709 }
3710 btrfs_release_path(path);
3711
3712 /*
3713 * Find the first key from this transaction again. See the note for
3714 * log_new_dir_dentries, if we're logging a directory recursively we
3715 * won't be holding its i_mutex, which means we can modify the directory
3716 * while we're logging it. If we remove an entry between our first
3717 * search and this search we'll not find the key again and can just
3718 * bail.
3719 */
3720search:
3721 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3722 if (ret != 0)
3723 goto done;
3724
3725 /*
3726 * we have a block from this transaction, log every item in it
3727 * from our directory
3728 */
3729 while (1) {
3730 struct btrfs_key tmp;
3731 src = path->nodes[0];
3732 nritems = btrfs_header_nritems(src);
3733 for (i = path->slots[0]; i < nritems; i++) {
3734 struct btrfs_dir_item *di;
3735
3736 btrfs_item_key_to_cpu(src, &min_key, i);
3737
3738 if (min_key.objectid != ino || min_key.type != key_type)
3739 goto done;
3740
3741 if (need_resched()) {
3742 btrfs_release_path(path);
3743 cond_resched();
3744 goto search;
3745 }
3746
3747 ret = overwrite_item(trans, log, dst_path, src, i,
3748 &min_key);
3749 if (ret) {
3750 err = ret;
3751 goto done;
3752 }
3753
3754 /*
3755 * We must make sure that when we log a directory entry,
3756 * the corresponding inode, after log replay, has a
3757 * matching link count. For example:
3758 *
3759 * touch foo
3760 * mkdir mydir
3761 * sync
3762 * ln foo mydir/bar
3763 * xfs_io -c "fsync" mydir
3764 * <crash>
3765 * <mount fs and log replay>
3766 *
3767 * Would result in a fsync log that when replayed, our
3768 * file inode would have a link count of 1, but we get
3769 * two directory entries pointing to the same inode.
3770 * After removing one of the names, it would not be
3771 * possible to remove the other name, which resulted
3772 * always in stale file handle errors, and would not
3773 * be possible to rmdir the parent directory, since
3774 * its i_size could never decrement to the value
3775 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3776 */
3777 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3778 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3779 if (ctx &&
3780 (btrfs_dir_transid(src, di) == trans->transid ||
3781 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3782 tmp.type != BTRFS_ROOT_ITEM_KEY)
3783 ctx->log_new_dentries = true;
3784 }
3785 path->slots[0] = nritems;
3786
3787 /*
3788 * look ahead to the next item and see if it is also
3789 * from this directory and from this transaction
3790 */
3791 ret = btrfs_next_leaf(root, path);
3792 if (ret) {
3793 if (ret == 1)
3794 last_offset = (u64)-1;
3795 else
3796 err = ret;
3797 goto done;
3798 }
3799 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3800 if (tmp.objectid != ino || tmp.type != key_type) {
3801 last_offset = (u64)-1;
3802 goto done;
3803 }
3804 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3805 ret = overwrite_item(trans, log, dst_path,
3806 path->nodes[0], path->slots[0],
3807 &tmp);
3808 if (ret)
3809 err = ret;
3810 else
3811 last_offset = tmp.offset;
3812 goto done;
3813 }
3814 }
3815done:
3816 btrfs_release_path(path);
3817 btrfs_release_path(dst_path);
3818
3819 if (err == 0) {
3820 *last_offset_ret = last_offset;
3821 /*
3822 * insert the log range keys to indicate where the log
3823 * is valid
3824 */
3825 ret = insert_dir_log_key(trans, log, path, key_type,
3826 ino, first_offset, last_offset);
3827 if (ret)
3828 err = ret;
3829 }
3830 return err;
3831}
3832
3833/*
3834 * logging directories is very similar to logging inodes, We find all the items
3835 * from the current transaction and write them to the log.
3836 *
3837 * The recovery code scans the directory in the subvolume, and if it finds a
3838 * key in the range logged that is not present in the log tree, then it means
3839 * that dir entry was unlinked during the transaction.
3840 *
3841 * In order for that scan to work, we must include one key smaller than
3842 * the smallest logged by this transaction and one key larger than the largest
3843 * key logged by this transaction.
3844 */
3845static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3846 struct btrfs_root *root, struct btrfs_inode *inode,
3847 struct btrfs_path *path,
3848 struct btrfs_path *dst_path,
3849 struct btrfs_log_ctx *ctx)
3850{
3851 u64 min_key;
3852 u64 max_key;
3853 int ret;
3854 int key_type = BTRFS_DIR_ITEM_KEY;
3855
3856again:
3857 min_key = 0;
3858 max_key = 0;
3859 while (1) {
3860 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3861 ctx, min_key, &max_key);
3862 if (ret)
3863 return ret;
3864 if (max_key == (u64)-1)
3865 break;
3866 min_key = max_key + 1;
3867 }
3868
3869 if (key_type == BTRFS_DIR_ITEM_KEY) {
3870 key_type = BTRFS_DIR_INDEX_KEY;
3871 goto again;
3872 }
3873 return 0;
3874}
3875
3876/*
3877 * a helper function to drop items from the log before we relog an
3878 * inode. max_key_type indicates the highest item type to remove.
3879 * This cannot be run for file data extents because it does not
3880 * free the extents they point to.
3881 */
3882static int drop_objectid_items(struct btrfs_trans_handle *trans,
3883 struct btrfs_root *log,
3884 struct btrfs_path *path,
3885 u64 objectid, int max_key_type)
3886{
3887 int ret;
3888 struct btrfs_key key;
3889 struct btrfs_key found_key;
3890 int start_slot;
3891
3892 key.objectid = objectid;
3893 key.type = max_key_type;
3894 key.offset = (u64)-1;
3895
3896 while (1) {
3897 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3898 BUG_ON(ret == 0); /* Logic error */
3899 if (ret < 0)
3900 break;
3901
3902 if (path->slots[0] == 0)
3903 break;
3904
3905 path->slots[0]--;
3906 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3907 path->slots[0]);
3908
3909 if (found_key.objectid != objectid)
3910 break;
3911
3912 found_key.offset = 0;
3913 found_key.type = 0;
3914 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3915 if (ret < 0)
3916 break;
3917
3918 ret = btrfs_del_items(trans, log, path, start_slot,
3919 path->slots[0] - start_slot + 1);
3920 /*
3921 * If start slot isn't 0 then we don't need to re-search, we've
3922 * found the last guy with the objectid in this tree.
3923 */
3924 if (ret || start_slot != 0)
3925 break;
3926 btrfs_release_path(path);
3927 }
3928 btrfs_release_path(path);
3929 if (ret > 0)
3930 ret = 0;
3931 return ret;
3932}
3933
3934static void fill_inode_item(struct btrfs_trans_handle *trans,
3935 struct extent_buffer *leaf,
3936 struct btrfs_inode_item *item,
3937 struct inode *inode, int log_inode_only,
3938 u64 logged_isize)
3939{
3940 struct btrfs_map_token token;
3941
3942 btrfs_init_map_token(&token, leaf);
3943
3944 if (log_inode_only) {
3945 /* set the generation to zero so the recover code
3946 * can tell the difference between an logging
3947 * just to say 'this inode exists' and a logging
3948 * to say 'update this inode with these values'
3949 */
3950 btrfs_set_token_inode_generation(&token, item, 0);
3951 btrfs_set_token_inode_size(&token, item, logged_isize);
3952 } else {
3953 btrfs_set_token_inode_generation(&token, item,
3954 BTRFS_I(inode)->generation);
3955 btrfs_set_token_inode_size(&token, item, inode->i_size);
3956 }
3957
3958 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3959 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3960 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3961 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3962
3963 btrfs_set_token_timespec_sec(&token, &item->atime,
3964 inode->i_atime.tv_sec);
3965 btrfs_set_token_timespec_nsec(&token, &item->atime,
3966 inode->i_atime.tv_nsec);
3967
3968 btrfs_set_token_timespec_sec(&token, &item->mtime,
3969 inode->i_mtime.tv_sec);
3970 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3971 inode->i_mtime.tv_nsec);
3972
3973 btrfs_set_token_timespec_sec(&token, &item->ctime,
3974 inode->i_ctime.tv_sec);
3975 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3976 inode->i_ctime.tv_nsec);
3977
3978 /*
3979 * We do not need to set the nbytes field, in fact during a fast fsync
3980 * its value may not even be correct, since a fast fsync does not wait
3981 * for ordered extent completion, which is where we update nbytes, it
3982 * only waits for writeback to complete. During log replay as we find
3983 * file extent items and replay them, we adjust the nbytes field of the
3984 * inode item in subvolume tree as needed (see overwrite_item()).
3985 */
3986
3987 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3988 btrfs_set_token_inode_transid(&token, item, trans->transid);
3989 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3990 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3991 btrfs_set_token_inode_block_group(&token, item, 0);
3992}
3993
3994static int log_inode_item(struct btrfs_trans_handle *trans,
3995 struct btrfs_root *log, struct btrfs_path *path,
3996 struct btrfs_inode *inode)
3997{
3998 struct btrfs_inode_item *inode_item;
3999 int ret;
4000
4001 ret = btrfs_insert_empty_item(trans, log, path,
4002 &inode->location, sizeof(*inode_item));
4003 if (ret && ret != -EEXIST)
4004 return ret;
4005 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4006 struct btrfs_inode_item);
4007 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4008 0, 0);
4009 btrfs_release_path(path);
4010 return 0;
4011}
4012
4013static int log_csums(struct btrfs_trans_handle *trans,
4014 struct btrfs_inode *inode,
4015 struct btrfs_root *log_root,
4016 struct btrfs_ordered_sum *sums)
4017{
4018 const u64 lock_end = sums->bytenr + sums->len - 1;
4019 struct extent_state *cached_state = NULL;
4020 int ret;
4021
4022 /*
4023 * If this inode was not used for reflink operations in the current
4024 * transaction with new extents, then do the fast path, no need to
4025 * worry about logging checksum items with overlapping ranges.
4026 */
4027 if (inode->last_reflink_trans < trans->transid)
4028 return btrfs_csum_file_blocks(trans, log_root, sums);
4029
4030 /*
4031 * Serialize logging for checksums. This is to avoid racing with the
4032 * same checksum being logged by another task that is logging another
4033 * file which happens to refer to the same extent as well. Such races
4034 * can leave checksum items in the log with overlapping ranges.
4035 */
4036 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4037 lock_end, &cached_state);
4038 if (ret)
4039 return ret;
4040 /*
4041 * Due to extent cloning, we might have logged a csum item that covers a
4042 * subrange of a cloned extent, and later we can end up logging a csum
4043 * item for a larger subrange of the same extent or the entire range.
4044 * This would leave csum items in the log tree that cover the same range
4045 * and break the searches for checksums in the log tree, resulting in
4046 * some checksums missing in the fs/subvolume tree. So just delete (or
4047 * trim and adjust) any existing csum items in the log for this range.
4048 */
4049 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4050 if (!ret)
4051 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4052
4053 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4054 &cached_state);
4055
4056 return ret;
4057}
4058
4059static noinline int copy_items(struct btrfs_trans_handle *trans,
4060 struct btrfs_inode *inode,
4061 struct btrfs_path *dst_path,
4062 struct btrfs_path *src_path,
4063 int start_slot, int nr, int inode_only,
4064 u64 logged_isize)
4065{
4066 struct btrfs_fs_info *fs_info = trans->fs_info;
4067 unsigned long src_offset;
4068 unsigned long dst_offset;
4069 struct btrfs_root *log = inode->root->log_root;
4070 struct btrfs_file_extent_item *extent;
4071 struct btrfs_inode_item *inode_item;
4072 struct extent_buffer *src = src_path->nodes[0];
4073 int ret;
4074 struct btrfs_key *ins_keys;
4075 u32 *ins_sizes;
4076 char *ins_data;
4077 int i;
4078 struct list_head ordered_sums;
4079 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4080
4081 INIT_LIST_HEAD(&ordered_sums);
4082
4083 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4084 nr * sizeof(u32), GFP_NOFS);
4085 if (!ins_data)
4086 return -ENOMEM;
4087
4088 ins_sizes = (u32 *)ins_data;
4089 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4090
4091 for (i = 0; i < nr; i++) {
4092 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4093 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4094 }
4095 ret = btrfs_insert_empty_items(trans, log, dst_path,
4096 ins_keys, ins_sizes, nr);
4097 if (ret) {
4098 kfree(ins_data);
4099 return ret;
4100 }
4101
4102 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4103 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4104 dst_path->slots[0]);
4105
4106 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4107
4108 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4109 inode_item = btrfs_item_ptr(dst_path->nodes[0],
4110 dst_path->slots[0],
4111 struct btrfs_inode_item);
4112 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4113 &inode->vfs_inode,
4114 inode_only == LOG_INODE_EXISTS,
4115 logged_isize);
4116 } else {
4117 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4118 src_offset, ins_sizes[i]);
4119 }
4120
4121 /* take a reference on file data extents so that truncates
4122 * or deletes of this inode don't have to relog the inode
4123 * again
4124 */
4125 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4126 !skip_csum) {
4127 int found_type;
4128 extent = btrfs_item_ptr(src, start_slot + i,
4129 struct btrfs_file_extent_item);
4130
4131 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4132 continue;
4133
4134 found_type = btrfs_file_extent_type(src, extent);
4135 if (found_type == BTRFS_FILE_EXTENT_REG) {
4136 u64 ds, dl, cs, cl;
4137 ds = btrfs_file_extent_disk_bytenr(src,
4138 extent);
4139 /* ds == 0 is a hole */
4140 if (ds == 0)
4141 continue;
4142
4143 dl = btrfs_file_extent_disk_num_bytes(src,
4144 extent);
4145 cs = btrfs_file_extent_offset(src, extent);
4146 cl = btrfs_file_extent_num_bytes(src,
4147 extent);
4148 if (btrfs_file_extent_compression(src,
4149 extent)) {
4150 cs = 0;
4151 cl = dl;
4152 }
4153
4154 ret = btrfs_lookup_csums_range(
4155 fs_info->csum_root,
4156 ds + cs, ds + cs + cl - 1,
4157 &ordered_sums, 0);
4158 if (ret)
4159 break;
4160 }
4161 }
4162 }
4163
4164 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4165 btrfs_release_path(dst_path);
4166 kfree(ins_data);
4167
4168 /*
4169 * we have to do this after the loop above to avoid changing the
4170 * log tree while trying to change the log tree.
4171 */
4172 while (!list_empty(&ordered_sums)) {
4173 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4174 struct btrfs_ordered_sum,
4175 list);
4176 if (!ret)
4177 ret = log_csums(trans, inode, log, sums);
4178 list_del(&sums->list);
4179 kfree(sums);
4180 }
4181
4182 return ret;
4183}
4184
4185static int extent_cmp(void *priv, const struct list_head *a,
4186 const struct list_head *b)
4187{
4188 struct extent_map *em1, *em2;
4189
4190 em1 = list_entry(a, struct extent_map, list);
4191 em2 = list_entry(b, struct extent_map, list);
4192
4193 if (em1->start < em2->start)
4194 return -1;
4195 else if (em1->start > em2->start)
4196 return 1;
4197 return 0;
4198}
4199
4200static int log_extent_csums(struct btrfs_trans_handle *trans,
4201 struct btrfs_inode *inode,
4202 struct btrfs_root *log_root,
4203 const struct extent_map *em,
4204 struct btrfs_log_ctx *ctx)
4205{
4206 struct btrfs_ordered_extent *ordered;
4207 u64 csum_offset;
4208 u64 csum_len;
4209 u64 mod_start = em->mod_start;
4210 u64 mod_len = em->mod_len;
4211 LIST_HEAD(ordered_sums);
4212 int ret = 0;
4213
4214 if (inode->flags & BTRFS_INODE_NODATASUM ||
4215 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4216 em->block_start == EXTENT_MAP_HOLE)
4217 return 0;
4218
4219 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4220 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4221 const u64 mod_end = mod_start + mod_len;
4222 struct btrfs_ordered_sum *sums;
4223
4224 if (mod_len == 0)
4225 break;
4226
4227 if (ordered_end <= mod_start)
4228 continue;
4229 if (mod_end <= ordered->file_offset)
4230 break;
4231
4232 /*
4233 * We are going to copy all the csums on this ordered extent, so
4234 * go ahead and adjust mod_start and mod_len in case this ordered
4235 * extent has already been logged.
4236 */
4237 if (ordered->file_offset > mod_start) {
4238 if (ordered_end >= mod_end)
4239 mod_len = ordered->file_offset - mod_start;
4240 /*
4241 * If we have this case
4242 *
4243 * |--------- logged extent ---------|
4244 * |----- ordered extent ----|
4245 *
4246 * Just don't mess with mod_start and mod_len, we'll
4247 * just end up logging more csums than we need and it
4248 * will be ok.
4249 */
4250 } else {
4251 if (ordered_end < mod_end) {
4252 mod_len = mod_end - ordered_end;
4253 mod_start = ordered_end;
4254 } else {
4255 mod_len = 0;
4256 }
4257 }
4258
4259 /*
4260 * To keep us from looping for the above case of an ordered
4261 * extent that falls inside of the logged extent.
4262 */
4263 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4264 continue;
4265
4266 list_for_each_entry(sums, &ordered->list, list) {
4267 ret = log_csums(trans, inode, log_root, sums);
4268 if (ret)
4269 return ret;
4270 }
4271 }
4272
4273 /* We're done, found all csums in the ordered extents. */
4274 if (mod_len == 0)
4275 return 0;
4276
4277 /* If we're compressed we have to save the entire range of csums. */
4278 if (em->compress_type) {
4279 csum_offset = 0;
4280 csum_len = max(em->block_len, em->orig_block_len);
4281 } else {
4282 csum_offset = mod_start - em->start;
4283 csum_len = mod_len;
4284 }
4285
4286 /* block start is already adjusted for the file extent offset. */
4287 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4288 em->block_start + csum_offset,
4289 em->block_start + csum_offset +
4290 csum_len - 1, &ordered_sums, 0);
4291 if (ret)
4292 return ret;
4293
4294 while (!list_empty(&ordered_sums)) {
4295 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4296 struct btrfs_ordered_sum,
4297 list);
4298 if (!ret)
4299 ret = log_csums(trans, inode, log_root, sums);
4300 list_del(&sums->list);
4301 kfree(sums);
4302 }
4303
4304 return ret;
4305}
4306
4307static int log_one_extent(struct btrfs_trans_handle *trans,
4308 struct btrfs_inode *inode, struct btrfs_root *root,
4309 const struct extent_map *em,
4310 struct btrfs_path *path,
4311 struct btrfs_log_ctx *ctx)
4312{
4313 struct btrfs_drop_extents_args drop_args = { 0 };
4314 struct btrfs_root *log = root->log_root;
4315 struct btrfs_file_extent_item *fi;
4316 struct extent_buffer *leaf;
4317 struct btrfs_map_token token;
4318 struct btrfs_key key;
4319 u64 extent_offset = em->start - em->orig_start;
4320 u64 block_len;
4321 int ret;
4322
4323 ret = log_extent_csums(trans, inode, log, em, ctx);
4324 if (ret)
4325 return ret;
4326
4327 drop_args.path = path;
4328 drop_args.start = em->start;
4329 drop_args.end = em->start + em->len;
4330 drop_args.replace_extent = true;
4331 drop_args.extent_item_size = sizeof(*fi);
4332 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4333 if (ret)
4334 return ret;
4335
4336 if (!drop_args.extent_inserted) {
4337 key.objectid = btrfs_ino(inode);
4338 key.type = BTRFS_EXTENT_DATA_KEY;
4339 key.offset = em->start;
4340
4341 ret = btrfs_insert_empty_item(trans, log, path, &key,
4342 sizeof(*fi));
4343 if (ret)
4344 return ret;
4345 }
4346 leaf = path->nodes[0];
4347 btrfs_init_map_token(&token, leaf);
4348 fi = btrfs_item_ptr(leaf, path->slots[0],
4349 struct btrfs_file_extent_item);
4350
4351 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4352 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4353 btrfs_set_token_file_extent_type(&token, fi,
4354 BTRFS_FILE_EXTENT_PREALLOC);
4355 else
4356 btrfs_set_token_file_extent_type(&token, fi,
4357 BTRFS_FILE_EXTENT_REG);
4358
4359 block_len = max(em->block_len, em->orig_block_len);
4360 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4361 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4362 em->block_start);
4363 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4364 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4365 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4366 em->block_start -
4367 extent_offset);
4368 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4369 } else {
4370 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4371 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4372 }
4373
4374 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4375 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4376 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4377 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4378 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4379 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4380 btrfs_mark_buffer_dirty(leaf);
4381
4382 btrfs_release_path(path);
4383
4384 return ret;
4385}
4386
4387/*
4388 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4389 * lose them after doing a fast fsync and replaying the log. We scan the
4390 * subvolume's root instead of iterating the inode's extent map tree because
4391 * otherwise we can log incorrect extent items based on extent map conversion.
4392 * That can happen due to the fact that extent maps are merged when they
4393 * are not in the extent map tree's list of modified extents.
4394 */
4395static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4396 struct btrfs_inode *inode,
4397 struct btrfs_path *path)
4398{
4399 struct btrfs_root *root = inode->root;
4400 struct btrfs_key key;
4401 const u64 i_size = i_size_read(&inode->vfs_inode);
4402 const u64 ino = btrfs_ino(inode);
4403 struct btrfs_path *dst_path = NULL;
4404 bool dropped_extents = false;
4405 u64 truncate_offset = i_size;
4406 struct extent_buffer *leaf;
4407 int slot;
4408 int ins_nr = 0;
4409 int start_slot;
4410 int ret;
4411
4412 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4413 return 0;
4414
4415 key.objectid = ino;
4416 key.type = BTRFS_EXTENT_DATA_KEY;
4417 key.offset = i_size;
4418 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4419 if (ret < 0)
4420 goto out;
4421
4422 /*
4423 * We must check if there is a prealloc extent that starts before the
4424 * i_size and crosses the i_size boundary. This is to ensure later we
4425 * truncate down to the end of that extent and not to the i_size, as
4426 * otherwise we end up losing part of the prealloc extent after a log
4427 * replay and with an implicit hole if there is another prealloc extent
4428 * that starts at an offset beyond i_size.
4429 */
4430 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4431 if (ret < 0)
4432 goto out;
4433
4434 if (ret == 0) {
4435 struct btrfs_file_extent_item *ei;
4436
4437 leaf = path->nodes[0];
4438 slot = path->slots[0];
4439 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4440
4441 if (btrfs_file_extent_type(leaf, ei) ==
4442 BTRFS_FILE_EXTENT_PREALLOC) {
4443 u64 extent_end;
4444
4445 btrfs_item_key_to_cpu(leaf, &key, slot);
4446 extent_end = key.offset +
4447 btrfs_file_extent_num_bytes(leaf, ei);
4448
4449 if (extent_end > i_size)
4450 truncate_offset = extent_end;
4451 }
4452 } else {
4453 ret = 0;
4454 }
4455
4456 while (true) {
4457 leaf = path->nodes[0];
4458 slot = path->slots[0];
4459
4460 if (slot >= btrfs_header_nritems(leaf)) {
4461 if (ins_nr > 0) {
4462 ret = copy_items(trans, inode, dst_path, path,
4463 start_slot, ins_nr, 1, 0);
4464 if (ret < 0)
4465 goto out;
4466 ins_nr = 0;
4467 }
4468 ret = btrfs_next_leaf(root, path);
4469 if (ret < 0)
4470 goto out;
4471 if (ret > 0) {
4472 ret = 0;
4473 break;
4474 }
4475 continue;
4476 }
4477
4478 btrfs_item_key_to_cpu(leaf, &key, slot);
4479 if (key.objectid > ino)
4480 break;
4481 if (WARN_ON_ONCE(key.objectid < ino) ||
4482 key.type < BTRFS_EXTENT_DATA_KEY ||
4483 key.offset < i_size) {
4484 path->slots[0]++;
4485 continue;
4486 }
4487 if (!dropped_extents) {
4488 /*
4489 * Avoid logging extent items logged in past fsync calls
4490 * and leading to duplicate keys in the log tree.
4491 */
4492 do {
4493 ret = btrfs_truncate_inode_items(trans,
4494 root->log_root,
4495 inode, truncate_offset,
4496 BTRFS_EXTENT_DATA_KEY,
4497 NULL);
4498 } while (ret == -EAGAIN);
4499 if (ret)
4500 goto out;
4501 dropped_extents = true;
4502 }
4503 if (ins_nr == 0)
4504 start_slot = slot;
4505 ins_nr++;
4506 path->slots[0]++;
4507 if (!dst_path) {
4508 dst_path = btrfs_alloc_path();
4509 if (!dst_path) {
4510 ret = -ENOMEM;
4511 goto out;
4512 }
4513 }
4514 }
4515 if (ins_nr > 0)
4516 ret = copy_items(trans, inode, dst_path, path,
4517 start_slot, ins_nr, 1, 0);
4518out:
4519 btrfs_release_path(path);
4520 btrfs_free_path(dst_path);
4521 return ret;
4522}
4523
4524static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4525 struct btrfs_root *root,
4526 struct btrfs_inode *inode,
4527 struct btrfs_path *path,
4528 struct btrfs_log_ctx *ctx)
4529{
4530 struct btrfs_ordered_extent *ordered;
4531 struct btrfs_ordered_extent *tmp;
4532 struct extent_map *em, *n;
4533 struct list_head extents;
4534 struct extent_map_tree *tree = &inode->extent_tree;
4535 int ret = 0;
4536 int num = 0;
4537
4538 INIT_LIST_HEAD(&extents);
4539
4540 write_lock(&tree->lock);
4541
4542 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4543 list_del_init(&em->list);
4544 /*
4545 * Just an arbitrary number, this can be really CPU intensive
4546 * once we start getting a lot of extents, and really once we
4547 * have a bunch of extents we just want to commit since it will
4548 * be faster.
4549 */
4550 if (++num > 32768) {
4551 list_del_init(&tree->modified_extents);
4552 ret = -EFBIG;
4553 goto process;
4554 }
4555
4556 if (em->generation < trans->transid)
4557 continue;
4558
4559 /* We log prealloc extents beyond eof later. */
4560 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4561 em->start >= i_size_read(&inode->vfs_inode))
4562 continue;
4563
4564 /* Need a ref to keep it from getting evicted from cache */
4565 refcount_inc(&em->refs);
4566 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4567 list_add_tail(&em->list, &extents);
4568 num++;
4569 }
4570
4571 list_sort(NULL, &extents, extent_cmp);
4572process:
4573 while (!list_empty(&extents)) {
4574 em = list_entry(extents.next, struct extent_map, list);
4575
4576 list_del_init(&em->list);
4577
4578 /*
4579 * If we had an error we just need to delete everybody from our
4580 * private list.
4581 */
4582 if (ret) {
4583 clear_em_logging(tree, em);
4584 free_extent_map(em);
4585 continue;
4586 }
4587
4588 write_unlock(&tree->lock);
4589
4590 ret = log_one_extent(trans, inode, root, em, path, ctx);
4591 write_lock(&tree->lock);
4592 clear_em_logging(tree, em);
4593 free_extent_map(em);
4594 }
4595 WARN_ON(!list_empty(&extents));
4596 write_unlock(&tree->lock);
4597
4598 btrfs_release_path(path);
4599 if (!ret)
4600 ret = btrfs_log_prealloc_extents(trans, inode, path);
4601 if (ret)
4602 return ret;
4603
4604 /*
4605 * We have logged all extents successfully, now make sure the commit of
4606 * the current transaction waits for the ordered extents to complete
4607 * before it commits and wipes out the log trees, otherwise we would
4608 * lose data if an ordered extents completes after the transaction
4609 * commits and a power failure happens after the transaction commit.
4610 */
4611 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4612 list_del_init(&ordered->log_list);
4613 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4614
4615 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4616 spin_lock_irq(&inode->ordered_tree.lock);
4617 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4618 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4619 atomic_inc(&trans->transaction->pending_ordered);
4620 }
4621 spin_unlock_irq(&inode->ordered_tree.lock);
4622 }
4623 btrfs_put_ordered_extent(ordered);
4624 }
4625
4626 return 0;
4627}
4628
4629static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4630 struct btrfs_path *path, u64 *size_ret)
4631{
4632 struct btrfs_key key;
4633 int ret;
4634
4635 key.objectid = btrfs_ino(inode);
4636 key.type = BTRFS_INODE_ITEM_KEY;
4637 key.offset = 0;
4638
4639 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4640 if (ret < 0) {
4641 return ret;
4642 } else if (ret > 0) {
4643 *size_ret = 0;
4644 } else {
4645 struct btrfs_inode_item *item;
4646
4647 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4648 struct btrfs_inode_item);
4649 *size_ret = btrfs_inode_size(path->nodes[0], item);
4650 /*
4651 * If the in-memory inode's i_size is smaller then the inode
4652 * size stored in the btree, return the inode's i_size, so
4653 * that we get a correct inode size after replaying the log
4654 * when before a power failure we had a shrinking truncate
4655 * followed by addition of a new name (rename / new hard link).
4656 * Otherwise return the inode size from the btree, to avoid
4657 * data loss when replaying a log due to previously doing a
4658 * write that expands the inode's size and logging a new name
4659 * immediately after.
4660 */
4661 if (*size_ret > inode->vfs_inode.i_size)
4662 *size_ret = inode->vfs_inode.i_size;
4663 }
4664
4665 btrfs_release_path(path);
4666 return 0;
4667}
4668
4669/*
4670 * At the moment we always log all xattrs. This is to figure out at log replay
4671 * time which xattrs must have their deletion replayed. If a xattr is missing
4672 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4673 * because if a xattr is deleted, the inode is fsynced and a power failure
4674 * happens, causing the log to be replayed the next time the fs is mounted,
4675 * we want the xattr to not exist anymore (same behaviour as other filesystems
4676 * with a journal, ext3/4, xfs, f2fs, etc).
4677 */
4678static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4679 struct btrfs_root *root,
4680 struct btrfs_inode *inode,
4681 struct btrfs_path *path,
4682 struct btrfs_path *dst_path)
4683{
4684 int ret;
4685 struct btrfs_key key;
4686 const u64 ino = btrfs_ino(inode);
4687 int ins_nr = 0;
4688 int start_slot = 0;
4689 bool found_xattrs = false;
4690
4691 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4692 return 0;
4693
4694 key.objectid = ino;
4695 key.type = BTRFS_XATTR_ITEM_KEY;
4696 key.offset = 0;
4697
4698 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4699 if (ret < 0)
4700 return ret;
4701
4702 while (true) {
4703 int slot = path->slots[0];
4704 struct extent_buffer *leaf = path->nodes[0];
4705 int nritems = btrfs_header_nritems(leaf);
4706
4707 if (slot >= nritems) {
4708 if (ins_nr > 0) {
4709 ret = copy_items(trans, inode, dst_path, path,
4710 start_slot, ins_nr, 1, 0);
4711 if (ret < 0)
4712 return ret;
4713 ins_nr = 0;
4714 }
4715 ret = btrfs_next_leaf(root, path);
4716 if (ret < 0)
4717 return ret;
4718 else if (ret > 0)
4719 break;
4720 continue;
4721 }
4722
4723 btrfs_item_key_to_cpu(leaf, &key, slot);
4724 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4725 break;
4726
4727 if (ins_nr == 0)
4728 start_slot = slot;
4729 ins_nr++;
4730 path->slots[0]++;
4731 found_xattrs = true;
4732 cond_resched();
4733 }
4734 if (ins_nr > 0) {
4735 ret = copy_items(trans, inode, dst_path, path,
4736 start_slot, ins_nr, 1, 0);
4737 if (ret < 0)
4738 return ret;
4739 }
4740
4741 if (!found_xattrs)
4742 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4743
4744 return 0;
4745}
4746
4747/*
4748 * When using the NO_HOLES feature if we punched a hole that causes the
4749 * deletion of entire leafs or all the extent items of the first leaf (the one
4750 * that contains the inode item and references) we may end up not processing
4751 * any extents, because there are no leafs with a generation matching the
4752 * current transaction that have extent items for our inode. So we need to find
4753 * if any holes exist and then log them. We also need to log holes after any
4754 * truncate operation that changes the inode's size.
4755 */
4756static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4757 struct btrfs_root *root,
4758 struct btrfs_inode *inode,
4759 struct btrfs_path *path)
4760{
4761 struct btrfs_fs_info *fs_info = root->fs_info;
4762 struct btrfs_key key;
4763 const u64 ino = btrfs_ino(inode);
4764 const u64 i_size = i_size_read(&inode->vfs_inode);
4765 u64 prev_extent_end = 0;
4766 int ret;
4767
4768 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4769 return 0;
4770
4771 key.objectid = ino;
4772 key.type = BTRFS_EXTENT_DATA_KEY;
4773 key.offset = 0;
4774
4775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4776 if (ret < 0)
4777 return ret;
4778
4779 while (true) {
4780 struct extent_buffer *leaf = path->nodes[0];
4781
4782 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4783 ret = btrfs_next_leaf(root, path);
4784 if (ret < 0)
4785 return ret;
4786 if (ret > 0) {
4787 ret = 0;
4788 break;
4789 }
4790 leaf = path->nodes[0];
4791 }
4792
4793 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4794 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4795 break;
4796
4797 /* We have a hole, log it. */
4798 if (prev_extent_end < key.offset) {
4799 const u64 hole_len = key.offset - prev_extent_end;
4800
4801 /*
4802 * Release the path to avoid deadlocks with other code
4803 * paths that search the root while holding locks on
4804 * leafs from the log root.
4805 */
4806 btrfs_release_path(path);
4807 ret = btrfs_insert_file_extent(trans, root->log_root,
4808 ino, prev_extent_end, 0,
4809 0, hole_len, 0, hole_len,
4810 0, 0, 0);
4811 if (ret < 0)
4812 return ret;
4813
4814 /*
4815 * Search for the same key again in the root. Since it's
4816 * an extent item and we are holding the inode lock, the
4817 * key must still exist. If it doesn't just emit warning
4818 * and return an error to fall back to a transaction
4819 * commit.
4820 */
4821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4822 if (ret < 0)
4823 return ret;
4824 if (WARN_ON(ret > 0))
4825 return -ENOENT;
4826 leaf = path->nodes[0];
4827 }
4828
4829 prev_extent_end = btrfs_file_extent_end(path);
4830 path->slots[0]++;
4831 cond_resched();
4832 }
4833
4834 if (prev_extent_end < i_size) {
4835 u64 hole_len;
4836
4837 btrfs_release_path(path);
4838 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4839 ret = btrfs_insert_file_extent(trans, root->log_root,
4840 ino, prev_extent_end, 0, 0,
4841 hole_len, 0, hole_len,
4842 0, 0, 0);
4843 if (ret < 0)
4844 return ret;
4845 }
4846
4847 return 0;
4848}
4849
4850/*
4851 * When we are logging a new inode X, check if it doesn't have a reference that
4852 * matches the reference from some other inode Y created in a past transaction
4853 * and that was renamed in the current transaction. If we don't do this, then at
4854 * log replay time we can lose inode Y (and all its files if it's a directory):
4855 *
4856 * mkdir /mnt/x
4857 * echo "hello world" > /mnt/x/foobar
4858 * sync
4859 * mv /mnt/x /mnt/y
4860 * mkdir /mnt/x # or touch /mnt/x
4861 * xfs_io -c fsync /mnt/x
4862 * <power fail>
4863 * mount fs, trigger log replay
4864 *
4865 * After the log replay procedure, we would lose the first directory and all its
4866 * files (file foobar).
4867 * For the case where inode Y is not a directory we simply end up losing it:
4868 *
4869 * echo "123" > /mnt/foo
4870 * sync
4871 * mv /mnt/foo /mnt/bar
4872 * echo "abc" > /mnt/foo
4873 * xfs_io -c fsync /mnt/foo
4874 * <power fail>
4875 *
4876 * We also need this for cases where a snapshot entry is replaced by some other
4877 * entry (file or directory) otherwise we end up with an unreplayable log due to
4878 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4879 * if it were a regular entry:
4880 *
4881 * mkdir /mnt/x
4882 * btrfs subvolume snapshot /mnt /mnt/x/snap
4883 * btrfs subvolume delete /mnt/x/snap
4884 * rmdir /mnt/x
4885 * mkdir /mnt/x
4886 * fsync /mnt/x or fsync some new file inside it
4887 * <power fail>
4888 *
4889 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4890 * the same transaction.
4891 */
4892static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4893 const int slot,
4894 const struct btrfs_key *key,
4895 struct btrfs_inode *inode,
4896 u64 *other_ino, u64 *other_parent)
4897{
4898 int ret;
4899 struct btrfs_path *search_path;
4900 char *name = NULL;
4901 u32 name_len = 0;
4902 u32 item_size = btrfs_item_size_nr(eb, slot);
4903 u32 cur_offset = 0;
4904 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4905
4906 search_path = btrfs_alloc_path();
4907 if (!search_path)
4908 return -ENOMEM;
4909 search_path->search_commit_root = 1;
4910 search_path->skip_locking = 1;
4911
4912 while (cur_offset < item_size) {
4913 u64 parent;
4914 u32 this_name_len;
4915 u32 this_len;
4916 unsigned long name_ptr;
4917 struct btrfs_dir_item *di;
4918
4919 if (key->type == BTRFS_INODE_REF_KEY) {
4920 struct btrfs_inode_ref *iref;
4921
4922 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4923 parent = key->offset;
4924 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4925 name_ptr = (unsigned long)(iref + 1);
4926 this_len = sizeof(*iref) + this_name_len;
4927 } else {
4928 struct btrfs_inode_extref *extref;
4929
4930 extref = (struct btrfs_inode_extref *)(ptr +
4931 cur_offset);
4932 parent = btrfs_inode_extref_parent(eb, extref);
4933 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4934 name_ptr = (unsigned long)&extref->name;
4935 this_len = sizeof(*extref) + this_name_len;
4936 }
4937
4938 if (this_name_len > name_len) {
4939 char *new_name;
4940
4941 new_name = krealloc(name, this_name_len, GFP_NOFS);
4942 if (!new_name) {
4943 ret = -ENOMEM;
4944 goto out;
4945 }
4946 name_len = this_name_len;
4947 name = new_name;
4948 }
4949
4950 read_extent_buffer(eb, name, name_ptr, this_name_len);
4951 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4952 parent, name, this_name_len, 0);
4953 if (di && !IS_ERR(di)) {
4954 struct btrfs_key di_key;
4955
4956 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4957 di, &di_key);
4958 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4959 if (di_key.objectid != key->objectid) {
4960 ret = 1;
4961 *other_ino = di_key.objectid;
4962 *other_parent = parent;
4963 } else {
4964 ret = 0;
4965 }
4966 } else {
4967 ret = -EAGAIN;
4968 }
4969 goto out;
4970 } else if (IS_ERR(di)) {
4971 ret = PTR_ERR(di);
4972 goto out;
4973 }
4974 btrfs_release_path(search_path);
4975
4976 cur_offset += this_len;
4977 }
4978 ret = 0;
4979out:
4980 btrfs_free_path(search_path);
4981 kfree(name);
4982 return ret;
4983}
4984
4985struct btrfs_ino_list {
4986 u64 ino;
4987 u64 parent;
4988 struct list_head list;
4989};
4990
4991static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4992 struct btrfs_root *root,
4993 struct btrfs_path *path,
4994 struct btrfs_log_ctx *ctx,
4995 u64 ino, u64 parent)
4996{
4997 struct btrfs_ino_list *ino_elem;
4998 LIST_HEAD(inode_list);
4999 int ret = 0;
5000
5001 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5002 if (!ino_elem)
5003 return -ENOMEM;
5004 ino_elem->ino = ino;
5005 ino_elem->parent = parent;
5006 list_add_tail(&ino_elem->list, &inode_list);
5007
5008 while (!list_empty(&inode_list)) {
5009 struct btrfs_fs_info *fs_info = root->fs_info;
5010 struct btrfs_key key;
5011 struct inode *inode;
5012
5013 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5014 list);
5015 ino = ino_elem->ino;
5016 parent = ino_elem->parent;
5017 list_del(&ino_elem->list);
5018 kfree(ino_elem);
5019 if (ret)
5020 continue;
5021
5022 btrfs_release_path(path);
5023
5024 inode = btrfs_iget(fs_info->sb, ino, root);
5025 /*
5026 * If the other inode that had a conflicting dir entry was
5027 * deleted in the current transaction, we need to log its parent
5028 * directory.
5029 */
5030 if (IS_ERR(inode)) {
5031 ret = PTR_ERR(inode);
5032 if (ret == -ENOENT) {
5033 inode = btrfs_iget(fs_info->sb, parent, root);
5034 if (IS_ERR(inode)) {
5035 ret = PTR_ERR(inode);
5036 } else {
5037 ret = btrfs_log_inode(trans, root,
5038 BTRFS_I(inode),
5039 LOG_OTHER_INODE_ALL,
5040 ctx);
5041 btrfs_add_delayed_iput(inode);
5042 }
5043 }
5044 continue;
5045 }
5046 /*
5047 * If the inode was already logged skip it - otherwise we can
5048 * hit an infinite loop. Example:
5049 *
5050 * From the commit root (previous transaction) we have the
5051 * following inodes:
5052 *
5053 * inode 257 a directory
5054 * inode 258 with references "zz" and "zz_link" on inode 257
5055 * inode 259 with reference "a" on inode 257
5056 *
5057 * And in the current (uncommitted) transaction we have:
5058 *
5059 * inode 257 a directory, unchanged
5060 * inode 258 with references "a" and "a2" on inode 257
5061 * inode 259 with reference "zz_link" on inode 257
5062 * inode 261 with reference "zz" on inode 257
5063 *
5064 * When logging inode 261 the following infinite loop could
5065 * happen if we don't skip already logged inodes:
5066 *
5067 * - we detect inode 258 as a conflicting inode, with inode 261
5068 * on reference "zz", and log it;
5069 *
5070 * - we detect inode 259 as a conflicting inode, with inode 258
5071 * on reference "a", and log it;
5072 *
5073 * - we detect inode 258 as a conflicting inode, with inode 259
5074 * on reference "zz_link", and log it - again! After this we
5075 * repeat the above steps forever.
5076 */
5077 spin_lock(&BTRFS_I(inode)->lock);
5078 /*
5079 * Check the inode's logged_trans only instead of
5080 * btrfs_inode_in_log(). This is because the last_log_commit of
5081 * the inode is not updated when we only log that it exists and
5082 * it has the full sync bit set (see btrfs_log_inode()).
5083 */
5084 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5085 spin_unlock(&BTRFS_I(inode)->lock);
5086 btrfs_add_delayed_iput(inode);
5087 continue;
5088 }
5089 spin_unlock(&BTRFS_I(inode)->lock);
5090 /*
5091 * We are safe logging the other inode without acquiring its
5092 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5093 * are safe against concurrent renames of the other inode as
5094 * well because during a rename we pin the log and update the
5095 * log with the new name before we unpin it.
5096 */
5097 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5098 LOG_OTHER_INODE, ctx);
5099 if (ret) {
5100 btrfs_add_delayed_iput(inode);
5101 continue;
5102 }
5103
5104 key.objectid = ino;
5105 key.type = BTRFS_INODE_REF_KEY;
5106 key.offset = 0;
5107 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5108 if (ret < 0) {
5109 btrfs_add_delayed_iput(inode);
5110 continue;
5111 }
5112
5113 while (true) {
5114 struct extent_buffer *leaf = path->nodes[0];
5115 int slot = path->slots[0];
5116 u64 other_ino = 0;
5117 u64 other_parent = 0;
5118
5119 if (slot >= btrfs_header_nritems(leaf)) {
5120 ret = btrfs_next_leaf(root, path);
5121 if (ret < 0) {
5122 break;
5123 } else if (ret > 0) {
5124 ret = 0;
5125 break;
5126 }
5127 continue;
5128 }
5129
5130 btrfs_item_key_to_cpu(leaf, &key, slot);
5131 if (key.objectid != ino ||
5132 (key.type != BTRFS_INODE_REF_KEY &&
5133 key.type != BTRFS_INODE_EXTREF_KEY)) {
5134 ret = 0;
5135 break;
5136 }
5137
5138 ret = btrfs_check_ref_name_override(leaf, slot, &key,
5139 BTRFS_I(inode), &other_ino,
5140 &other_parent);
5141 if (ret < 0)
5142 break;
5143 if (ret > 0) {
5144 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5145 if (!ino_elem) {
5146 ret = -ENOMEM;
5147 break;
5148 }
5149 ino_elem->ino = other_ino;
5150 ino_elem->parent = other_parent;
5151 list_add_tail(&ino_elem->list, &inode_list);
5152 ret = 0;
5153 }
5154 path->slots[0]++;
5155 }
5156 btrfs_add_delayed_iput(inode);
5157 }
5158
5159 return ret;
5160}
5161
5162static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5163 struct btrfs_inode *inode,
5164 struct btrfs_key *min_key,
5165 const struct btrfs_key *max_key,
5166 struct btrfs_path *path,
5167 struct btrfs_path *dst_path,
5168 const u64 logged_isize,
5169 const bool recursive_logging,
5170 const int inode_only,
5171 struct btrfs_log_ctx *ctx,
5172 bool *need_log_inode_item)
5173{
5174 struct btrfs_root *root = inode->root;
5175 int ins_start_slot = 0;
5176 int ins_nr = 0;
5177 int ret;
5178
5179 while (1) {
5180 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5181 if (ret < 0)
5182 return ret;
5183 if (ret > 0) {
5184 ret = 0;
5185 break;
5186 }
5187again:
5188 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5189 if (min_key->objectid != max_key->objectid)
5190 break;
5191 if (min_key->type > max_key->type)
5192 break;
5193
5194 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5195 *need_log_inode_item = false;
5196
5197 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5198 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5199 inode->generation == trans->transid &&
5200 !recursive_logging) {
5201 u64 other_ino = 0;
5202 u64 other_parent = 0;
5203
5204 ret = btrfs_check_ref_name_override(path->nodes[0],
5205 path->slots[0], min_key, inode,
5206 &other_ino, &other_parent);
5207 if (ret < 0) {
5208 return ret;
5209 } else if (ret > 0 && ctx &&
5210 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5211 if (ins_nr > 0) {
5212 ins_nr++;
5213 } else {
5214 ins_nr = 1;
5215 ins_start_slot = path->slots[0];
5216 }
5217 ret = copy_items(trans, inode, dst_path, path,
5218 ins_start_slot, ins_nr,
5219 inode_only, logged_isize);
5220 if (ret < 0)
5221 return ret;
5222 ins_nr = 0;
5223
5224 ret = log_conflicting_inodes(trans, root, path,
5225 ctx, other_ino, other_parent);
5226 if (ret)
5227 return ret;
5228 btrfs_release_path(path);
5229 goto next_key;
5230 }
5231 }
5232
5233 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5234 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5235 if (ins_nr == 0)
5236 goto next_slot;
5237 ret = copy_items(trans, inode, dst_path, path,
5238 ins_start_slot,
5239 ins_nr, inode_only, logged_isize);
5240 if (ret < 0)
5241 return ret;
5242 ins_nr = 0;
5243 goto next_slot;
5244 }
5245
5246 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5247 ins_nr++;
5248 goto next_slot;
5249 } else if (!ins_nr) {
5250 ins_start_slot = path->slots[0];
5251 ins_nr = 1;
5252 goto next_slot;
5253 }
5254
5255 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5256 ins_nr, inode_only, logged_isize);
5257 if (ret < 0)
5258 return ret;
5259 ins_nr = 1;
5260 ins_start_slot = path->slots[0];
5261next_slot:
5262 path->slots[0]++;
5263 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5264 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5265 path->slots[0]);
5266 goto again;
5267 }
5268 if (ins_nr) {
5269 ret = copy_items(trans, inode, dst_path, path,
5270 ins_start_slot, ins_nr, inode_only,
5271 logged_isize);
5272 if (ret < 0)
5273 return ret;
5274 ins_nr = 0;
5275 }
5276 btrfs_release_path(path);
5277next_key:
5278 if (min_key->offset < (u64)-1) {
5279 min_key->offset++;
5280 } else if (min_key->type < max_key->type) {
5281 min_key->type++;
5282 min_key->offset = 0;
5283 } else {
5284 break;
5285 }
5286 }
5287 if (ins_nr)
5288 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5289 ins_nr, inode_only, logged_isize);
5290
5291 return ret;
5292}
5293
5294/* log a single inode in the tree log.
5295 * At least one parent directory for this inode must exist in the tree
5296 * or be logged already.
5297 *
5298 * Any items from this inode changed by the current transaction are copied
5299 * to the log tree. An extra reference is taken on any extents in this
5300 * file, allowing us to avoid a whole pile of corner cases around logging
5301 * blocks that have been removed from the tree.
5302 *
5303 * See LOG_INODE_ALL and related defines for a description of what inode_only
5304 * does.
5305 *
5306 * This handles both files and directories.
5307 */
5308static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5309 struct btrfs_root *root, struct btrfs_inode *inode,
5310 int inode_only,
5311 struct btrfs_log_ctx *ctx)
5312{
5313 struct btrfs_path *path;
5314 struct btrfs_path *dst_path;
5315 struct btrfs_key min_key;
5316 struct btrfs_key max_key;
5317 struct btrfs_root *log = root->log_root;
5318 int err = 0;
5319 int ret = 0;
5320 bool fast_search = false;
5321 u64 ino = btrfs_ino(inode);
5322 struct extent_map_tree *em_tree = &inode->extent_tree;
5323 u64 logged_isize = 0;
5324 bool need_log_inode_item = true;
5325 bool xattrs_logged = false;
5326 bool recursive_logging = false;
5327
5328 path = btrfs_alloc_path();
5329 if (!path)
5330 return -ENOMEM;
5331 dst_path = btrfs_alloc_path();
5332 if (!dst_path) {
5333 btrfs_free_path(path);
5334 return -ENOMEM;
5335 }
5336
5337 min_key.objectid = ino;
5338 min_key.type = BTRFS_INODE_ITEM_KEY;
5339 min_key.offset = 0;
5340
5341 max_key.objectid = ino;
5342
5343
5344 /* today the code can only do partial logging of directories */
5345 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5346 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5347 &inode->runtime_flags) &&
5348 inode_only >= LOG_INODE_EXISTS))
5349 max_key.type = BTRFS_XATTR_ITEM_KEY;
5350 else
5351 max_key.type = (u8)-1;
5352 max_key.offset = (u64)-1;
5353
5354 /*
5355 * Only run delayed items if we are a directory. We want to make sure
5356 * all directory indexes hit the fs/subvolume tree so we can find them
5357 * and figure out which index ranges have to be logged.
5358 *
5359 * Otherwise commit the delayed inode only if the full sync flag is set,
5360 * as we want to make sure an up to date version is in the subvolume
5361 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5362 * it to the log tree. For a non full sync, we always log the inode item
5363 * based on the in-memory struct btrfs_inode which is always up to date.
5364 */
5365 if (S_ISDIR(inode->vfs_inode.i_mode))
5366 ret = btrfs_commit_inode_delayed_items(trans, inode);
5367 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5368 ret = btrfs_commit_inode_delayed_inode(inode);
5369
5370 if (ret) {
5371 btrfs_free_path(path);
5372 btrfs_free_path(dst_path);
5373 return ret;
5374 }
5375
5376 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5377 recursive_logging = true;
5378 if (inode_only == LOG_OTHER_INODE)
5379 inode_only = LOG_INODE_EXISTS;
5380 else
5381 inode_only = LOG_INODE_ALL;
5382 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5383 } else {
5384 mutex_lock(&inode->log_mutex);
5385 }
5386
5387 /*
5388 * This is for cases where logging a directory could result in losing a
5389 * a file after replaying the log. For example, if we move a file from a
5390 * directory A to a directory B, then fsync directory A, we have no way
5391 * to known the file was moved from A to B, so logging just A would
5392 * result in losing the file after a log replay.
5393 */
5394 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5395 inode_only == LOG_INODE_ALL &&
5396 inode->last_unlink_trans >= trans->transid) {
5397 btrfs_set_log_full_commit(trans);
5398 err = 1;
5399 goto out_unlock;
5400 }
5401
5402 /*
5403 * a brute force approach to making sure we get the most uptodate
5404 * copies of everything.
5405 */
5406 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5407 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5408
5409 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5410 if (inode_only == LOG_INODE_EXISTS)
5411 max_key_type = BTRFS_XATTR_ITEM_KEY;
5412 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5413 } else {
5414 if (inode_only == LOG_INODE_EXISTS) {
5415 /*
5416 * Make sure the new inode item we write to the log has
5417 * the same isize as the current one (if it exists).
5418 * This is necessary to prevent data loss after log
5419 * replay, and also to prevent doing a wrong expanding
5420 * truncate - for e.g. create file, write 4K into offset
5421 * 0, fsync, write 4K into offset 4096, add hard link,
5422 * fsync some other file (to sync log), power fail - if
5423 * we use the inode's current i_size, after log replay
5424 * we get a 8Kb file, with the last 4Kb extent as a hole
5425 * (zeroes), as if an expanding truncate happened,
5426 * instead of getting a file of 4Kb only.
5427 */
5428 err = logged_inode_size(log, inode, path, &logged_isize);
5429 if (err)
5430 goto out_unlock;
5431 }
5432 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5433 &inode->runtime_flags)) {
5434 if (inode_only == LOG_INODE_EXISTS) {
5435 max_key.type = BTRFS_XATTR_ITEM_KEY;
5436 ret = drop_objectid_items(trans, log, path, ino,
5437 max_key.type);
5438 } else {
5439 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5440 &inode->runtime_flags);
5441 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5442 &inode->runtime_flags);
5443 while(1) {
5444 ret = btrfs_truncate_inode_items(trans,
5445 log, inode, 0, 0, NULL);
5446 if (ret != -EAGAIN)
5447 break;
5448 }
5449 }
5450 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5451 &inode->runtime_flags) ||
5452 inode_only == LOG_INODE_EXISTS) {
5453 if (inode_only == LOG_INODE_ALL)
5454 fast_search = true;
5455 max_key.type = BTRFS_XATTR_ITEM_KEY;
5456 ret = drop_objectid_items(trans, log, path, ino,
5457 max_key.type);
5458 } else {
5459 if (inode_only == LOG_INODE_ALL)
5460 fast_search = true;
5461 goto log_extents;
5462 }
5463
5464 }
5465 if (ret) {
5466 err = ret;
5467 goto out_unlock;
5468 }
5469
5470 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5471 path, dst_path, logged_isize,
5472 recursive_logging, inode_only, ctx,
5473 &need_log_inode_item);
5474 if (err)
5475 goto out_unlock;
5476
5477 btrfs_release_path(path);
5478 btrfs_release_path(dst_path);
5479 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5480 if (err)
5481 goto out_unlock;
5482 xattrs_logged = true;
5483 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5484 btrfs_release_path(path);
5485 btrfs_release_path(dst_path);
5486 err = btrfs_log_holes(trans, root, inode, path);
5487 if (err)
5488 goto out_unlock;
5489 }
5490log_extents:
5491 btrfs_release_path(path);
5492 btrfs_release_path(dst_path);
5493 if (need_log_inode_item) {
5494 err = log_inode_item(trans, log, dst_path, inode);
5495 if (err)
5496 goto out_unlock;
5497 /*
5498 * If we are doing a fast fsync and the inode was logged before
5499 * in this transaction, we don't need to log the xattrs because
5500 * they were logged before. If xattrs were added, changed or
5501 * deleted since the last time we logged the inode, then we have
5502 * already logged them because the inode had the runtime flag
5503 * BTRFS_INODE_COPY_EVERYTHING set.
5504 */
5505 if (!xattrs_logged && inode->logged_trans < trans->transid) {
5506 err = btrfs_log_all_xattrs(trans, root, inode, path,
5507 dst_path);
5508 if (err)
5509 goto out_unlock;
5510 btrfs_release_path(path);
5511 }
5512 }
5513 if (fast_search) {
5514 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5515 ctx);
5516 if (ret) {
5517 err = ret;
5518 goto out_unlock;
5519 }
5520 } else if (inode_only == LOG_INODE_ALL) {
5521 struct extent_map *em, *n;
5522
5523 write_lock(&em_tree->lock);
5524 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5525 list_del_init(&em->list);
5526 write_unlock(&em_tree->lock);
5527 }
5528
5529 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5530 ret = log_directory_changes(trans, root, inode, path, dst_path,
5531 ctx);
5532 if (ret) {
5533 err = ret;
5534 goto out_unlock;
5535 }
5536 }
5537
5538 /*
5539 * If we are logging that an ancestor inode exists as part of logging a
5540 * new name from a link or rename operation, don't mark the inode as
5541 * logged - otherwise if an explicit fsync is made against an ancestor,
5542 * the fsync considers the inode in the log and doesn't sync the log,
5543 * resulting in the ancestor missing after a power failure unless the
5544 * log was synced as part of an fsync against any other unrelated inode.
5545 * So keep it simple for this case and just don't flag the ancestors as
5546 * logged.
5547 */
5548 if (!ctx ||
5549 !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5550 &inode->vfs_inode != ctx->inode)) {
5551 spin_lock(&inode->lock);
5552 inode->logged_trans = trans->transid;
5553 /*
5554 * Don't update last_log_commit if we logged that an inode exists.
5555 * We do this for two reasons:
5556 *
5557 * 1) We might have had buffered writes to this inode that were
5558 * flushed and had their ordered extents completed in this
5559 * transaction, but we did not previously log the inode with
5560 * LOG_INODE_ALL. Later the inode was evicted and after that
5561 * it was loaded again and this LOG_INODE_EXISTS log operation
5562 * happened. We must make sure that if an explicit fsync against
5563 * the inode is performed later, it logs the new extents, an
5564 * updated inode item, etc, and syncs the log. The same logic
5565 * applies to direct IO writes instead of buffered writes.
5566 *
5567 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5568 * is logged with an i_size of 0 or whatever value was logged
5569 * before. If later the i_size of the inode is increased by a
5570 * truncate operation, the log is synced through an fsync of
5571 * some other inode and then finally an explicit fsync against
5572 * this inode is made, we must make sure this fsync logs the
5573 * inode with the new i_size, the hole between old i_size and
5574 * the new i_size, and syncs the log.
5575 */
5576 if (inode_only != LOG_INODE_EXISTS)
5577 inode->last_log_commit = inode->last_sub_trans;
5578 spin_unlock(&inode->lock);
5579 }
5580out_unlock:
5581 mutex_unlock(&inode->log_mutex);
5582
5583 btrfs_free_path(path);
5584 btrfs_free_path(dst_path);
5585 return err;
5586}
5587
5588/*
5589 * Check if we need to log an inode. This is used in contexts where while
5590 * logging an inode we need to log another inode (either that it exists or in
5591 * full mode). This is used instead of btrfs_inode_in_log() because the later
5592 * requires the inode to be in the log and have the log transaction committed,
5593 * while here we do not care if the log transaction was already committed - our
5594 * caller will commit the log later - and we want to avoid logging an inode
5595 * multiple times when multiple tasks have joined the same log transaction.
5596 */
5597static bool need_log_inode(struct btrfs_trans_handle *trans,
5598 struct btrfs_inode *inode)
5599{
5600 /*
5601 * If this inode does not have new/updated/deleted xattrs since the last
5602 * time it was logged and is flagged as logged in the current transaction,
5603 * we can skip logging it. As for new/deleted names, those are updated in
5604 * the log by link/unlink/rename operations.
5605 * In case the inode was logged and then evicted and reloaded, its
5606 * logged_trans will be 0, in which case we have to fully log it since
5607 * logged_trans is a transient field, not persisted.
5608 */
5609 if (inode->logged_trans == trans->transid &&
5610 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5611 return false;
5612
5613 return true;
5614}
5615
5616struct btrfs_dir_list {
5617 u64 ino;
5618 struct list_head list;
5619};
5620
5621/*
5622 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5623 * details about the why it is needed.
5624 * This is a recursive operation - if an existing dentry corresponds to a
5625 * directory, that directory's new entries are logged too (same behaviour as
5626 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5627 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5628 * complains about the following circular lock dependency / possible deadlock:
5629 *
5630 * CPU0 CPU1
5631 * ---- ----
5632 * lock(&type->i_mutex_dir_key#3/2);
5633 * lock(sb_internal#2);
5634 * lock(&type->i_mutex_dir_key#3/2);
5635 * lock(&sb->s_type->i_mutex_key#14);
5636 *
5637 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5638 * sb_start_intwrite() in btrfs_start_transaction().
5639 * Not locking i_mutex of the inodes is still safe because:
5640 *
5641 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5642 * that while logging the inode new references (names) are added or removed
5643 * from the inode, leaving the logged inode item with a link count that does
5644 * not match the number of logged inode reference items. This is fine because
5645 * at log replay time we compute the real number of links and correct the
5646 * link count in the inode item (see replay_one_buffer() and
5647 * link_to_fixup_dir());
5648 *
5649 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5650 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5651 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5652 * has a size that doesn't match the sum of the lengths of all the logged
5653 * names. This does not result in a problem because if a dir_item key is
5654 * logged but its matching dir_index key is not logged, at log replay time we
5655 * don't use it to replay the respective name (see replay_one_name()). On the
5656 * other hand if only the dir_index key ends up being logged, the respective
5657 * name is added to the fs/subvol tree with both the dir_item and dir_index
5658 * keys created (see replay_one_name()).
5659 * The directory's inode item with a wrong i_size is not a problem as well,
5660 * since we don't use it at log replay time to set the i_size in the inode
5661 * item of the fs/subvol tree (see overwrite_item()).
5662 */
5663static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5664 struct btrfs_root *root,
5665 struct btrfs_inode *start_inode,
5666 struct btrfs_log_ctx *ctx)
5667{
5668 struct btrfs_fs_info *fs_info = root->fs_info;
5669 struct btrfs_root *log = root->log_root;
5670 struct btrfs_path *path;
5671 LIST_HEAD(dir_list);
5672 struct btrfs_dir_list *dir_elem;
5673 int ret = 0;
5674
5675 path = btrfs_alloc_path();
5676 if (!path)
5677 return -ENOMEM;
5678
5679 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5680 if (!dir_elem) {
5681 btrfs_free_path(path);
5682 return -ENOMEM;
5683 }
5684 dir_elem->ino = btrfs_ino(start_inode);
5685 list_add_tail(&dir_elem->list, &dir_list);
5686
5687 while (!list_empty(&dir_list)) {
5688 struct extent_buffer *leaf;
5689 struct btrfs_key min_key;
5690 int nritems;
5691 int i;
5692
5693 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5694 list);
5695 if (ret)
5696 goto next_dir_inode;
5697
5698 min_key.objectid = dir_elem->ino;
5699 min_key.type = BTRFS_DIR_ITEM_KEY;
5700 min_key.offset = 0;
5701again:
5702 btrfs_release_path(path);
5703 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5704 if (ret < 0) {
5705 goto next_dir_inode;
5706 } else if (ret > 0) {
5707 ret = 0;
5708 goto next_dir_inode;
5709 }
5710
5711process_leaf:
5712 leaf = path->nodes[0];
5713 nritems = btrfs_header_nritems(leaf);
5714 for (i = path->slots[0]; i < nritems; i++) {
5715 struct btrfs_dir_item *di;
5716 struct btrfs_key di_key;
5717 struct inode *di_inode;
5718 struct btrfs_dir_list *new_dir_elem;
5719 int log_mode = LOG_INODE_EXISTS;
5720 int type;
5721
5722 btrfs_item_key_to_cpu(leaf, &min_key, i);
5723 if (min_key.objectid != dir_elem->ino ||
5724 min_key.type != BTRFS_DIR_ITEM_KEY)
5725 goto next_dir_inode;
5726
5727 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5728 type = btrfs_dir_type(leaf, di);
5729 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5730 type != BTRFS_FT_DIR)
5731 continue;
5732 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5733 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5734 continue;
5735
5736 btrfs_release_path(path);
5737 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5738 if (IS_ERR(di_inode)) {
5739 ret = PTR_ERR(di_inode);
5740 goto next_dir_inode;
5741 }
5742
5743 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5744 btrfs_add_delayed_iput(di_inode);
5745 break;
5746 }
5747
5748 ctx->log_new_dentries = false;
5749 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5750 log_mode = LOG_INODE_ALL;
5751 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5752 log_mode, ctx);
5753 btrfs_add_delayed_iput(di_inode);
5754 if (ret)
5755 goto next_dir_inode;
5756 if (ctx->log_new_dentries) {
5757 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5758 GFP_NOFS);
5759 if (!new_dir_elem) {
5760 ret = -ENOMEM;
5761 goto next_dir_inode;
5762 }
5763 new_dir_elem->ino = di_key.objectid;
5764 list_add_tail(&new_dir_elem->list, &dir_list);
5765 }
5766 break;
5767 }
5768 if (i == nritems) {
5769 ret = btrfs_next_leaf(log, path);
5770 if (ret < 0) {
5771 goto next_dir_inode;
5772 } else if (ret > 0) {
5773 ret = 0;
5774 goto next_dir_inode;
5775 }
5776 goto process_leaf;
5777 }
5778 if (min_key.offset < (u64)-1) {
5779 min_key.offset++;
5780 goto again;
5781 }
5782next_dir_inode:
5783 list_del(&dir_elem->list);
5784 kfree(dir_elem);
5785 }
5786
5787 btrfs_free_path(path);
5788 return ret;
5789}
5790
5791static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5792 struct btrfs_inode *inode,
5793 struct btrfs_log_ctx *ctx)
5794{
5795 struct btrfs_fs_info *fs_info = trans->fs_info;
5796 int ret;
5797 struct btrfs_path *path;
5798 struct btrfs_key key;
5799 struct btrfs_root *root = inode->root;
5800 const u64 ino = btrfs_ino(inode);
5801
5802 path = btrfs_alloc_path();
5803 if (!path)
5804 return -ENOMEM;
5805 path->skip_locking = 1;
5806 path->search_commit_root = 1;
5807
5808 key.objectid = ino;
5809 key.type = BTRFS_INODE_REF_KEY;
5810 key.offset = 0;
5811 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5812 if (ret < 0)
5813 goto out;
5814
5815 while (true) {
5816 struct extent_buffer *leaf = path->nodes[0];
5817 int slot = path->slots[0];
5818 u32 cur_offset = 0;
5819 u32 item_size;
5820 unsigned long ptr;
5821
5822 if (slot >= btrfs_header_nritems(leaf)) {
5823 ret = btrfs_next_leaf(root, path);
5824 if (ret < 0)
5825 goto out;
5826 else if (ret > 0)
5827 break;
5828 continue;
5829 }
5830
5831 btrfs_item_key_to_cpu(leaf, &key, slot);
5832 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5833 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5834 break;
5835
5836 item_size = btrfs_item_size_nr(leaf, slot);
5837 ptr = btrfs_item_ptr_offset(leaf, slot);
5838 while (cur_offset < item_size) {
5839 struct btrfs_key inode_key;
5840 struct inode *dir_inode;
5841
5842 inode_key.type = BTRFS_INODE_ITEM_KEY;
5843 inode_key.offset = 0;
5844
5845 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5846 struct btrfs_inode_extref *extref;
5847
5848 extref = (struct btrfs_inode_extref *)
5849 (ptr + cur_offset);
5850 inode_key.objectid = btrfs_inode_extref_parent(
5851 leaf, extref);
5852 cur_offset += sizeof(*extref);
5853 cur_offset += btrfs_inode_extref_name_len(leaf,
5854 extref);
5855 } else {
5856 inode_key.objectid = key.offset;
5857 cur_offset = item_size;
5858 }
5859
5860 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5861 root);
5862 /*
5863 * If the parent inode was deleted, return an error to
5864 * fallback to a transaction commit. This is to prevent
5865 * getting an inode that was moved from one parent A to
5866 * a parent B, got its former parent A deleted and then
5867 * it got fsync'ed, from existing at both parents after
5868 * a log replay (and the old parent still existing).
5869 * Example:
5870 *
5871 * mkdir /mnt/A
5872 * mkdir /mnt/B
5873 * touch /mnt/B/bar
5874 * sync
5875 * mv /mnt/B/bar /mnt/A/bar
5876 * mv -T /mnt/A /mnt/B
5877 * fsync /mnt/B/bar
5878 * <power fail>
5879 *
5880 * If we ignore the old parent B which got deleted,
5881 * after a log replay we would have file bar linked
5882 * at both parents and the old parent B would still
5883 * exist.
5884 */
5885 if (IS_ERR(dir_inode)) {
5886 ret = PTR_ERR(dir_inode);
5887 goto out;
5888 }
5889
5890 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5891 btrfs_add_delayed_iput(dir_inode);
5892 continue;
5893 }
5894
5895 if (ctx)
5896 ctx->log_new_dentries = false;
5897 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5898 LOG_INODE_ALL, ctx);
5899 if (!ret && ctx && ctx->log_new_dentries)
5900 ret = log_new_dir_dentries(trans, root,
5901 BTRFS_I(dir_inode), ctx);
5902 btrfs_add_delayed_iput(dir_inode);
5903 if (ret)
5904 goto out;
5905 }
5906 path->slots[0]++;
5907 }
5908 ret = 0;
5909out:
5910 btrfs_free_path(path);
5911 return ret;
5912}
5913
5914static int log_new_ancestors(struct btrfs_trans_handle *trans,
5915 struct btrfs_root *root,
5916 struct btrfs_path *path,
5917 struct btrfs_log_ctx *ctx)
5918{
5919 struct btrfs_key found_key;
5920
5921 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5922
5923 while (true) {
5924 struct btrfs_fs_info *fs_info = root->fs_info;
5925 struct extent_buffer *leaf = path->nodes[0];
5926 int slot = path->slots[0];
5927 struct btrfs_key search_key;
5928 struct inode *inode;
5929 u64 ino;
5930 int ret = 0;
5931
5932 btrfs_release_path(path);
5933
5934 ino = found_key.offset;
5935
5936 search_key.objectid = found_key.offset;
5937 search_key.type = BTRFS_INODE_ITEM_KEY;
5938 search_key.offset = 0;
5939 inode = btrfs_iget(fs_info->sb, ino, root);
5940 if (IS_ERR(inode))
5941 return PTR_ERR(inode);
5942
5943 if (BTRFS_I(inode)->generation >= trans->transid &&
5944 need_log_inode(trans, BTRFS_I(inode)))
5945 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5946 LOG_INODE_EXISTS, ctx);
5947 btrfs_add_delayed_iput(inode);
5948 if (ret)
5949 return ret;
5950
5951 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5952 break;
5953
5954 search_key.type = BTRFS_INODE_REF_KEY;
5955 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5956 if (ret < 0)
5957 return ret;
5958
5959 leaf = path->nodes[0];
5960 slot = path->slots[0];
5961 if (slot >= btrfs_header_nritems(leaf)) {
5962 ret = btrfs_next_leaf(root, path);
5963 if (ret < 0)
5964 return ret;
5965 else if (ret > 0)
5966 return -ENOENT;
5967 leaf = path->nodes[0];
5968 slot = path->slots[0];
5969 }
5970
5971 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5972 if (found_key.objectid != search_key.objectid ||
5973 found_key.type != BTRFS_INODE_REF_KEY)
5974 return -ENOENT;
5975 }
5976 return 0;
5977}
5978
5979static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5980 struct btrfs_inode *inode,
5981 struct dentry *parent,
5982 struct btrfs_log_ctx *ctx)
5983{
5984 struct btrfs_root *root = inode->root;
5985 struct dentry *old_parent = NULL;
5986 struct super_block *sb = inode->vfs_inode.i_sb;
5987 int ret = 0;
5988
5989 while (true) {
5990 if (!parent || d_really_is_negative(parent) ||
5991 sb != parent->d_sb)
5992 break;
5993
5994 inode = BTRFS_I(d_inode(parent));
5995 if (root != inode->root)
5996 break;
5997
5998 if (inode->generation >= trans->transid &&
5999 need_log_inode(trans, inode)) {
6000 ret = btrfs_log_inode(trans, root, inode,
6001 LOG_INODE_EXISTS, ctx);
6002 if (ret)
6003 break;
6004 }
6005 if (IS_ROOT(parent))
6006 break;
6007
6008 parent = dget_parent(parent);
6009 dput(old_parent);
6010 old_parent = parent;
6011 }
6012 dput(old_parent);
6013
6014 return ret;
6015}
6016
6017static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6018 struct btrfs_inode *inode,
6019 struct dentry *parent,
6020 struct btrfs_log_ctx *ctx)
6021{
6022 struct btrfs_root *root = inode->root;
6023 const u64 ino = btrfs_ino(inode);
6024 struct btrfs_path *path;
6025 struct btrfs_key search_key;
6026 int ret;
6027
6028 /*
6029 * For a single hard link case, go through a fast path that does not
6030 * need to iterate the fs/subvolume tree.
6031 */
6032 if (inode->vfs_inode.i_nlink < 2)
6033 return log_new_ancestors_fast(trans, inode, parent, ctx);
6034
6035 path = btrfs_alloc_path();
6036 if (!path)
6037 return -ENOMEM;
6038
6039 search_key.objectid = ino;
6040 search_key.type = BTRFS_INODE_REF_KEY;
6041 search_key.offset = 0;
6042again:
6043 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6044 if (ret < 0)
6045 goto out;
6046 if (ret == 0)
6047 path->slots[0]++;
6048
6049 while (true) {
6050 struct extent_buffer *leaf = path->nodes[0];
6051 int slot = path->slots[0];
6052 struct btrfs_key found_key;
6053
6054 if (slot >= btrfs_header_nritems(leaf)) {
6055 ret = btrfs_next_leaf(root, path);
6056 if (ret < 0)
6057 goto out;
6058 else if (ret > 0)
6059 break;
6060 continue;
6061 }
6062
6063 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6064 if (found_key.objectid != ino ||
6065 found_key.type > BTRFS_INODE_EXTREF_KEY)
6066 break;
6067
6068 /*
6069 * Don't deal with extended references because they are rare
6070 * cases and too complex to deal with (we would need to keep
6071 * track of which subitem we are processing for each item in
6072 * this loop, etc). So just return some error to fallback to
6073 * a transaction commit.
6074 */
6075 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6076 ret = -EMLINK;
6077 goto out;
6078 }
6079
6080 /*
6081 * Logging ancestors needs to do more searches on the fs/subvol
6082 * tree, so it releases the path as needed to avoid deadlocks.
6083 * Keep track of the last inode ref key and resume from that key
6084 * after logging all new ancestors for the current hard link.
6085 */
6086 memcpy(&search_key, &found_key, sizeof(search_key));
6087
6088 ret = log_new_ancestors(trans, root, path, ctx);
6089 if (ret)
6090 goto out;
6091 btrfs_release_path(path);
6092 goto again;
6093 }
6094 ret = 0;
6095out:
6096 btrfs_free_path(path);
6097 return ret;
6098}
6099
6100/*
6101 * helper function around btrfs_log_inode to make sure newly created
6102 * parent directories also end up in the log. A minimal inode and backref
6103 * only logging is done of any parent directories that are older than
6104 * the last committed transaction
6105 */
6106static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6107 struct btrfs_inode *inode,
6108 struct dentry *parent,
6109 int inode_only,
6110 struct btrfs_log_ctx *ctx)
6111{
6112 struct btrfs_root *root = inode->root;
6113 struct btrfs_fs_info *fs_info = root->fs_info;
6114 int ret = 0;
6115 bool log_dentries = false;
6116
6117 if (btrfs_test_opt(fs_info, NOTREELOG)) {
6118 ret = 1;
6119 goto end_no_trans;
6120 }
6121
6122 if (btrfs_root_refs(&root->root_item) == 0) {
6123 ret = 1;
6124 goto end_no_trans;
6125 }
6126
6127 /*
6128 * Skip already logged inodes or inodes corresponding to tmpfiles
6129 * (since logging them is pointless, a link count of 0 means they
6130 * will never be accessible).
6131 */
6132 if ((btrfs_inode_in_log(inode, trans->transid) &&
6133 list_empty(&ctx->ordered_extents)) ||
6134 inode->vfs_inode.i_nlink == 0) {
6135 ret = BTRFS_NO_LOG_SYNC;
6136 goto end_no_trans;
6137 }
6138
6139 ret = start_log_trans(trans, root, ctx);
6140 if (ret)
6141 goto end_no_trans;
6142
6143 ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6144 if (ret)
6145 goto end_trans;
6146
6147 /*
6148 * for regular files, if its inode is already on disk, we don't
6149 * have to worry about the parents at all. This is because
6150 * we can use the last_unlink_trans field to record renames
6151 * and other fun in this file.
6152 */
6153 if (S_ISREG(inode->vfs_inode.i_mode) &&
6154 inode->generation < trans->transid &&
6155 inode->last_unlink_trans < trans->transid) {
6156 ret = 0;
6157 goto end_trans;
6158 }
6159
6160 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6161 log_dentries = true;
6162
6163 /*
6164 * On unlink we must make sure all our current and old parent directory
6165 * inodes are fully logged. This is to prevent leaving dangling
6166 * directory index entries in directories that were our parents but are
6167 * not anymore. Not doing this results in old parent directory being
6168 * impossible to delete after log replay (rmdir will always fail with
6169 * error -ENOTEMPTY).
6170 *
6171 * Example 1:
6172 *
6173 * mkdir testdir
6174 * touch testdir/foo
6175 * ln testdir/foo testdir/bar
6176 * sync
6177 * unlink testdir/bar
6178 * xfs_io -c fsync testdir/foo
6179 * <power failure>
6180 * mount fs, triggers log replay
6181 *
6182 * If we don't log the parent directory (testdir), after log replay the
6183 * directory still has an entry pointing to the file inode using the bar
6184 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6185 * the file inode has a link count of 1.
6186 *
6187 * Example 2:
6188 *
6189 * mkdir testdir
6190 * touch foo
6191 * ln foo testdir/foo2
6192 * ln foo testdir/foo3
6193 * sync
6194 * unlink testdir/foo3
6195 * xfs_io -c fsync foo
6196 * <power failure>
6197 * mount fs, triggers log replay
6198 *
6199 * Similar as the first example, after log replay the parent directory
6200 * testdir still has an entry pointing to the inode file with name foo3
6201 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6202 * and has a link count of 2.
6203 */
6204 if (inode->last_unlink_trans >= trans->transid) {
6205 ret = btrfs_log_all_parents(trans, inode, ctx);
6206 if (ret)
6207 goto end_trans;
6208 }
6209
6210 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6211 if (ret)
6212 goto end_trans;
6213
6214 if (log_dentries)
6215 ret = log_new_dir_dentries(trans, root, inode, ctx);
6216 else
6217 ret = 0;
6218end_trans:
6219 if (ret < 0) {
6220 btrfs_set_log_full_commit(trans);
6221 ret = 1;
6222 }
6223
6224 if (ret)
6225 btrfs_remove_log_ctx(root, ctx);
6226 btrfs_end_log_trans(root);
6227end_no_trans:
6228 return ret;
6229}
6230
6231/*
6232 * it is not safe to log dentry if the chunk root has added new
6233 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6234 * If this returns 1, you must commit the transaction to safely get your
6235 * data on disk.
6236 */
6237int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6238 struct dentry *dentry,
6239 struct btrfs_log_ctx *ctx)
6240{
6241 struct dentry *parent = dget_parent(dentry);
6242 int ret;
6243
6244 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6245 LOG_INODE_ALL, ctx);
6246 dput(parent);
6247
6248 return ret;
6249}
6250
6251/*
6252 * should be called during mount to recover any replay any log trees
6253 * from the FS
6254 */
6255int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6256{
6257 int ret;
6258 struct btrfs_path *path;
6259 struct btrfs_trans_handle *trans;
6260 struct btrfs_key key;
6261 struct btrfs_key found_key;
6262 struct btrfs_root *log;
6263 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6264 struct walk_control wc = {
6265 .process_func = process_one_buffer,
6266 .stage = LOG_WALK_PIN_ONLY,
6267 };
6268
6269 path = btrfs_alloc_path();
6270 if (!path)
6271 return -ENOMEM;
6272
6273 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6274
6275 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6276 if (IS_ERR(trans)) {
6277 ret = PTR_ERR(trans);
6278 goto error;
6279 }
6280
6281 wc.trans = trans;
6282 wc.pin = 1;
6283
6284 ret = walk_log_tree(trans, log_root_tree, &wc);
6285 if (ret) {
6286 btrfs_handle_fs_error(fs_info, ret,
6287 "Failed to pin buffers while recovering log root tree.");
6288 goto error;
6289 }
6290
6291again:
6292 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6293 key.offset = (u64)-1;
6294 key.type = BTRFS_ROOT_ITEM_KEY;
6295
6296 while (1) {
6297 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6298
6299 if (ret < 0) {
6300 btrfs_handle_fs_error(fs_info, ret,
6301 "Couldn't find tree log root.");
6302 goto error;
6303 }
6304 if (ret > 0) {
6305 if (path->slots[0] == 0)
6306 break;
6307 path->slots[0]--;
6308 }
6309 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6310 path->slots[0]);
6311 btrfs_release_path(path);
6312 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6313 break;
6314
6315 log = btrfs_read_tree_root(log_root_tree, &found_key);
6316 if (IS_ERR(log)) {
6317 ret = PTR_ERR(log);
6318 btrfs_handle_fs_error(fs_info, ret,
6319 "Couldn't read tree log root.");
6320 goto error;
6321 }
6322
6323 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6324 true);
6325 if (IS_ERR(wc.replay_dest)) {
6326 ret = PTR_ERR(wc.replay_dest);
6327
6328 /*
6329 * We didn't find the subvol, likely because it was
6330 * deleted. This is ok, simply skip this log and go to
6331 * the next one.
6332 *
6333 * We need to exclude the root because we can't have
6334 * other log replays overwriting this log as we'll read
6335 * it back in a few more times. This will keep our
6336 * block from being modified, and we'll just bail for
6337 * each subsequent pass.
6338 */
6339 if (ret == -ENOENT)
6340 ret = btrfs_pin_extent_for_log_replay(trans,
6341 log->node->start,
6342 log->node->len);
6343 btrfs_put_root(log);
6344
6345 if (!ret)
6346 goto next;
6347 btrfs_handle_fs_error(fs_info, ret,
6348 "Couldn't read target root for tree log recovery.");
6349 goto error;
6350 }
6351
6352 wc.replay_dest->log_root = log;
6353 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6354 if (ret)
6355 /* The loop needs to continue due to the root refs */
6356 btrfs_handle_fs_error(fs_info, ret,
6357 "failed to record the log root in transaction");
6358 else
6359 ret = walk_log_tree(trans, log, &wc);
6360
6361 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6362 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6363 path);
6364 }
6365
6366 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6367 struct btrfs_root *root = wc.replay_dest;
6368
6369 btrfs_release_path(path);
6370
6371 /*
6372 * We have just replayed everything, and the highest
6373 * objectid of fs roots probably has changed in case
6374 * some inode_item's got replayed.
6375 *
6376 * root->objectid_mutex is not acquired as log replay
6377 * could only happen during mount.
6378 */
6379 ret = btrfs_init_root_free_objectid(root);
6380 }
6381
6382 wc.replay_dest->log_root = NULL;
6383 btrfs_put_root(wc.replay_dest);
6384 btrfs_put_root(log);
6385
6386 if (ret)
6387 goto error;
6388next:
6389 if (found_key.offset == 0)
6390 break;
6391 key.offset = found_key.offset - 1;
6392 }
6393 btrfs_release_path(path);
6394
6395 /* step one is to pin it all, step two is to replay just inodes */
6396 if (wc.pin) {
6397 wc.pin = 0;
6398 wc.process_func = replay_one_buffer;
6399 wc.stage = LOG_WALK_REPLAY_INODES;
6400 goto again;
6401 }
6402 /* step three is to replay everything */
6403 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6404 wc.stage++;
6405 goto again;
6406 }
6407
6408 btrfs_free_path(path);
6409
6410 /* step 4: commit the transaction, which also unpins the blocks */
6411 ret = btrfs_commit_transaction(trans);
6412 if (ret)
6413 return ret;
6414
6415 log_root_tree->log_root = NULL;
6416 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6417 btrfs_put_root(log_root_tree);
6418
6419 return 0;
6420error:
6421 if (wc.trans)
6422 btrfs_end_transaction(wc.trans);
6423 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6424 btrfs_free_path(path);
6425 return ret;
6426}
6427
6428/*
6429 * there are some corner cases where we want to force a full
6430 * commit instead of allowing a directory to be logged.
6431 *
6432 * They revolve around files there were unlinked from the directory, and
6433 * this function updates the parent directory so that a full commit is
6434 * properly done if it is fsync'd later after the unlinks are done.
6435 *
6436 * Must be called before the unlink operations (updates to the subvolume tree,
6437 * inodes, etc) are done.
6438 */
6439void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6440 struct btrfs_inode *dir, struct btrfs_inode *inode,
6441 int for_rename)
6442{
6443 /*
6444 * when we're logging a file, if it hasn't been renamed
6445 * or unlinked, and its inode is fully committed on disk,
6446 * we don't have to worry about walking up the directory chain
6447 * to log its parents.
6448 *
6449 * So, we use the last_unlink_trans field to put this transid
6450 * into the file. When the file is logged we check it and
6451 * don't log the parents if the file is fully on disk.
6452 */
6453 mutex_lock(&inode->log_mutex);
6454 inode->last_unlink_trans = trans->transid;
6455 mutex_unlock(&inode->log_mutex);
6456
6457 /*
6458 * if this directory was already logged any new
6459 * names for this file/dir will get recorded
6460 */
6461 if (dir->logged_trans == trans->transid)
6462 return;
6463
6464 /*
6465 * if the inode we're about to unlink was logged,
6466 * the log will be properly updated for any new names
6467 */
6468 if (inode->logged_trans == trans->transid)
6469 return;
6470
6471 /*
6472 * when renaming files across directories, if the directory
6473 * there we're unlinking from gets fsync'd later on, there's
6474 * no way to find the destination directory later and fsync it
6475 * properly. So, we have to be conservative and force commits
6476 * so the new name gets discovered.
6477 */
6478 if (for_rename)
6479 goto record;
6480
6481 /* we can safely do the unlink without any special recording */
6482 return;
6483
6484record:
6485 mutex_lock(&dir->log_mutex);
6486 dir->last_unlink_trans = trans->transid;
6487 mutex_unlock(&dir->log_mutex);
6488}
6489
6490/*
6491 * Make sure that if someone attempts to fsync the parent directory of a deleted
6492 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6493 * that after replaying the log tree of the parent directory's root we will not
6494 * see the snapshot anymore and at log replay time we will not see any log tree
6495 * corresponding to the deleted snapshot's root, which could lead to replaying
6496 * it after replaying the log tree of the parent directory (which would replay
6497 * the snapshot delete operation).
6498 *
6499 * Must be called before the actual snapshot destroy operation (updates to the
6500 * parent root and tree of tree roots trees, etc) are done.
6501 */
6502void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6503 struct btrfs_inode *dir)
6504{
6505 mutex_lock(&dir->log_mutex);
6506 dir->last_unlink_trans = trans->transid;
6507 mutex_unlock(&dir->log_mutex);
6508}
6509
6510/*
6511 * Call this after adding a new name for a file and it will properly
6512 * update the log to reflect the new name.
6513 */
6514void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6515 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6516 struct dentry *parent)
6517{
6518 struct btrfs_log_ctx ctx;
6519
6520 /*
6521 * this will force the logging code to walk the dentry chain
6522 * up for the file
6523 */
6524 if (!S_ISDIR(inode->vfs_inode.i_mode))
6525 inode->last_unlink_trans = trans->transid;
6526
6527 /*
6528 * if this inode hasn't been logged and directory we're renaming it
6529 * from hasn't been logged, we don't need to log it
6530 */
6531 if (!inode_logged(trans, inode) &&
6532 (!old_dir || !inode_logged(trans, old_dir)))
6533 return;
6534
6535 /*
6536 * If we are doing a rename (old_dir is not NULL) from a directory that
6537 * was previously logged, make sure the next log attempt on the directory
6538 * is not skipped and logs the inode again. This is because the log may
6539 * not currently be authoritative for a range including the old
6540 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6541 * sure after a log replay we do not end up with both the new and old
6542 * dentries around (in case the inode is a directory we would have a
6543 * directory with two hard links and 2 inode references for different
6544 * parents). The next log attempt of old_dir will happen at
6545 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6546 * below, because we have previously set inode->last_unlink_trans to the
6547 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6548 * case inode is a directory.
6549 */
6550 if (old_dir)
6551 old_dir->logged_trans = 0;
6552
6553 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6554 ctx.logging_new_name = true;
6555 /*
6556 * We don't care about the return value. If we fail to log the new name
6557 * then we know the next attempt to sync the log will fallback to a full
6558 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6559 * we don't need to worry about getting a log committed that has an
6560 * inconsistent state after a rename operation.
6561 */
6562 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6563}
6564