Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/blkdev.h>
  22#include <linux/list_sort.h>
 
 
 
  23#include "tree-log.h"
  24#include "disk-io.h"
  25#include "locking.h"
  26#include "print-tree.h"
  27#include "backref.h"
  28#include "hash.h"
  29#include "compression.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  30
  31/* magic values for the inode_only field in btrfs_log_inode:
  32 *
  33 * LOG_INODE_ALL means to log everything
  34 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  35 * during log replay
  36 */
  37#define LOG_INODE_ALL 0
  38#define LOG_INODE_EXISTS 1
 
 
  39
  40/*
  41 * directory trouble cases
  42 *
  43 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  44 * log, we must force a full commit before doing an fsync of the directory
  45 * where the unlink was done.
  46 * ---> record transid of last unlink/rename per directory
  47 *
  48 * mkdir foo/some_dir
  49 * normal commit
  50 * rename foo/some_dir foo2/some_dir
  51 * mkdir foo/some_dir
  52 * fsync foo/some_dir/some_file
  53 *
  54 * The fsync above will unlink the original some_dir without recording
  55 * it in its new location (foo2).  After a crash, some_dir will be gone
  56 * unless the fsync of some_file forces a full commit
  57 *
  58 * 2) we must log any new names for any file or dir that is in the fsync
  59 * log. ---> check inode while renaming/linking.
  60 *
  61 * 2a) we must log any new names for any file or dir during rename
  62 * when the directory they are being removed from was logged.
  63 * ---> check inode and old parent dir during rename
  64 *
  65 *  2a is actually the more important variant.  With the extra logging
  66 *  a crash might unlink the old name without recreating the new one
  67 *
  68 * 3) after a crash, we must go through any directories with a link count
  69 * of zero and redo the rm -rf
  70 *
  71 * mkdir f1/foo
  72 * normal commit
  73 * rm -rf f1/foo
  74 * fsync(f1)
  75 *
  76 * The directory f1 was fully removed from the FS, but fsync was never
  77 * called on f1, only its parent dir.  After a crash the rm -rf must
  78 * be replayed.  This must be able to recurse down the entire
  79 * directory tree.  The inode link count fixup code takes care of the
  80 * ugly details.
  81 */
  82
  83/*
  84 * stages for the tree walking.  The first
  85 * stage (0) is to only pin down the blocks we find
  86 * the second stage (1) is to make sure that all the inodes
  87 * we find in the log are created in the subvolume.
  88 *
  89 * The last stage is to deal with directories and links and extents
  90 * and all the other fun semantics
  91 */
  92#define LOG_WALK_PIN_ONLY 0
  93#define LOG_WALK_REPLAY_INODES 1
  94#define LOG_WALK_REPLAY_DIR_INDEX 2
  95#define LOG_WALK_REPLAY_ALL 3
 
 
  96
  97static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  98			   struct btrfs_root *root, struct inode *inode,
  99			   int inode_only,
 100			   const loff_t start,
 101			   const loff_t end,
 102			   struct btrfs_log_ctx *ctx);
 103static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 104			     struct btrfs_root *root,
 105			     struct btrfs_path *path, u64 objectid);
 106static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 107				       struct btrfs_root *root,
 108				       struct btrfs_root *log,
 109				       struct btrfs_path *path,
 110				       u64 dirid, int del_all);
 
 111
 112/*
 113 * tree logging is a special write ahead log used to make sure that
 114 * fsyncs and O_SYNCs can happen without doing full tree commits.
 115 *
 116 * Full tree commits are expensive because they require commonly
 117 * modified blocks to be recowed, creating many dirty pages in the
 118 * extent tree an 4x-6x higher write load than ext3.
 119 *
 120 * Instead of doing a tree commit on every fsync, we use the
 121 * key ranges and transaction ids to find items for a given file or directory
 122 * that have changed in this transaction.  Those items are copied into
 123 * a special tree (one per subvolume root), that tree is written to disk
 124 * and then the fsync is considered complete.
 125 *
 126 * After a crash, items are copied out of the log-tree back into the
 127 * subvolume tree.  Any file data extents found are recorded in the extent
 128 * allocation tree, and the log-tree freed.
 129 *
 130 * The log tree is read three times, once to pin down all the extents it is
 131 * using in ram and once, once to create all the inodes logged in the tree
 132 * and once to do all the other items.
 133 */
 134
 135/*
 136 * start a sub transaction and setup the log tree
 137 * this increments the log tree writer count to make the people
 138 * syncing the tree wait for us to finish
 139 */
 140static int start_log_trans(struct btrfs_trans_handle *trans,
 141			   struct btrfs_root *root,
 142			   struct btrfs_log_ctx *ctx)
 143{
 
 
 
 144	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 145
 146	mutex_lock(&root->log_mutex);
 147
 
 148	if (root->log_root) {
 149		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
 150			ret = -EAGAIN;
 
 
 151			goto out;
 152		}
 153
 
 
 
 
 
 154		if (!root->log_start_pid) {
 155			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 156			root->log_start_pid = current->pid;
 157		} else if (root->log_start_pid != current->pid) {
 158			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 159		}
 160	} else {
 161		mutex_lock(&root->fs_info->tree_log_mutex);
 162		if (!root->fs_info->log_root_tree)
 163			ret = btrfs_init_log_root_tree(trans, root->fs_info);
 164		mutex_unlock(&root->fs_info->tree_log_mutex);
 165		if (ret)
 
 
 
 166			goto out;
 
 167
 168		ret = btrfs_add_log_tree(trans, root);
 169		if (ret)
 170			goto out;
 171
 
 172		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 173		root->log_start_pid = current->pid;
 174	}
 175
 176	atomic_inc(&root->log_batch);
 177	atomic_inc(&root->log_writers);
 178	if (ctx) {
 179		int index = root->log_transid % 2;
 180		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 181		ctx->log_transid = root->log_transid;
 182	}
 183
 184out:
 185	mutex_unlock(&root->log_mutex);
 186	return ret;
 187}
 188
 189/*
 190 * returns 0 if there was a log transaction running and we were able
 191 * to join, or returns -ENOENT if there were not transactions
 192 * in progress
 193 */
 194static int join_running_log_trans(struct btrfs_root *root)
 195{
 
 196	int ret = -ENOENT;
 197
 198	smp_mb();
 199	if (!root->log_root)
 200		return -ENOENT;
 201
 202	mutex_lock(&root->log_mutex);
 
 203	if (root->log_root) {
 
 
 204		ret = 0;
 
 
 
 
 205		atomic_inc(&root->log_writers);
 206	}
 207	mutex_unlock(&root->log_mutex);
 208	return ret;
 209}
 210
 211/*
 212 * This either makes the current running log transaction wait
 213 * until you call btrfs_end_log_trans() or it makes any future
 214 * log transactions wait until you call btrfs_end_log_trans()
 215 */
 216int btrfs_pin_log_trans(struct btrfs_root *root)
 217{
 218	int ret = -ENOENT;
 219
 220	mutex_lock(&root->log_mutex);
 221	atomic_inc(&root->log_writers);
 222	mutex_unlock(&root->log_mutex);
 223	return ret;
 224}
 225
 226/*
 227 * indicate we're done making changes to the log tree
 228 * and wake up anyone waiting to do a sync
 229 */
 230void btrfs_end_log_trans(struct btrfs_root *root)
 231{
 232	if (atomic_dec_and_test(&root->log_writers)) {
 233		/*
 234		 * Implicit memory barrier after atomic_dec_and_test
 235		 */
 236		if (waitqueue_active(&root->log_writer_wait))
 237			wake_up(&root->log_writer_wait);
 238	}
 239}
 240
 
 
 
 
 
 241
 242/*
 243 * the walk control struct is used to pass state down the chain when
 244 * processing the log tree.  The stage field tells us which part
 245 * of the log tree processing we are currently doing.  The others
 246 * are state fields used for that specific part
 247 */
 248struct walk_control {
 249	/* should we free the extent on disk when done?  This is used
 250	 * at transaction commit time while freeing a log tree
 251	 */
 252	int free;
 253
 254	/* should we write out the extent buffer?  This is used
 255	 * while flushing the log tree to disk during a sync
 256	 */
 257	int write;
 258
 259	/* should we wait for the extent buffer io to finish?  Also used
 260	 * while flushing the log tree to disk for a sync
 261	 */
 262	int wait;
 263
 264	/* pin only walk, we record which extents on disk belong to the
 265	 * log trees
 266	 */
 267	int pin;
 268
 269	/* what stage of the replay code we're currently in */
 270	int stage;
 271
 
 
 
 
 
 
 
 272	/* the root we are currently replaying */
 273	struct btrfs_root *replay_dest;
 274
 275	/* the trans handle for the current replay */
 276	struct btrfs_trans_handle *trans;
 277
 278	/* the function that gets used to process blocks we find in the
 279	 * tree.  Note the extent_buffer might not be up to date when it is
 280	 * passed in, and it must be checked or read if you need the data
 281	 * inside it
 282	 */
 283	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 284			    struct walk_control *wc, u64 gen);
 285};
 286
 287/*
 288 * process_func used to pin down extents, write them or wait on them
 289 */
 290static int process_one_buffer(struct btrfs_root *log,
 291			      struct extent_buffer *eb,
 292			      struct walk_control *wc, u64 gen)
 293{
 
 294	int ret = 0;
 295
 296	/*
 297	 * If this fs is mixed then we need to be able to process the leaves to
 298	 * pin down any logged extents, so we have to read the block.
 299	 */
 300	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
 301		ret = btrfs_read_buffer(eb, gen);
 
 
 
 
 
 302		if (ret)
 303			return ret;
 304	}
 305
 306	if (wc->pin)
 307		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
 308						      eb->start, eb->len);
 309
 310	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 311		if (wc->pin && btrfs_header_level(eb) == 0)
 312			ret = btrfs_exclude_logged_extents(log, eb);
 313		if (wc->write)
 314			btrfs_write_tree_block(eb);
 315		if (wc->wait)
 316			btrfs_wait_tree_block_writeback(eb);
 317	}
 318	return ret;
 319}
 320
 321/*
 322 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 323 * to the src data we are copying out.
 324 *
 325 * root is the tree we are copying into, and path is a scratch
 326 * path for use in this function (it should be released on entry and
 327 * will be released on exit).
 328 *
 329 * If the key is already in the destination tree the existing item is
 330 * overwritten.  If the existing item isn't big enough, it is extended.
 331 * If it is too large, it is truncated.
 332 *
 333 * If the key isn't in the destination yet, a new item is inserted.
 334 */
 335static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 336				   struct btrfs_root *root,
 337				   struct btrfs_path *path,
 338				   struct extent_buffer *eb, int slot,
 339				   struct btrfs_key *key)
 340{
 341	int ret;
 342	u32 item_size;
 343	u64 saved_i_size = 0;
 344	int save_old_i_size = 0;
 345	unsigned long src_ptr;
 346	unsigned long dst_ptr;
 347	int overwrite_root = 0;
 348	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 349
 350	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 351		overwrite_root = 1;
 
 
 
 
 
 
 352
 353	item_size = btrfs_item_size_nr(eb, slot);
 354	src_ptr = btrfs_item_ptr_offset(eb, slot);
 355
 356	/* look for the key in the destination tree */
 357	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 358	if (ret < 0)
 359		return ret;
 360
 361	if (ret == 0) {
 362		char *src_copy;
 363		char *dst_copy;
 364		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 365						  path->slots[0]);
 366		if (dst_size != item_size)
 367			goto insert;
 368
 369		if (item_size == 0) {
 370			btrfs_release_path(path);
 371			return 0;
 372		}
 373		dst_copy = kmalloc(item_size, GFP_NOFS);
 374		src_copy = kmalloc(item_size, GFP_NOFS);
 375		if (!dst_copy || !src_copy) {
 376			btrfs_release_path(path);
 377			kfree(dst_copy);
 378			kfree(src_copy);
 379			return -ENOMEM;
 380		}
 381
 382		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 383
 384		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 385		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 386				   item_size);
 387		ret = memcmp(dst_copy, src_copy, item_size);
 388
 389		kfree(dst_copy);
 390		kfree(src_copy);
 391		/*
 392		 * they have the same contents, just return, this saves
 393		 * us from cowing blocks in the destination tree and doing
 394		 * extra writes that may not have been done by a previous
 395		 * sync
 396		 */
 397		if (ret == 0) {
 398			btrfs_release_path(path);
 399			return 0;
 400		}
 401
 402		/*
 403		 * We need to load the old nbytes into the inode so when we
 404		 * replay the extents we've logged we get the right nbytes.
 405		 */
 406		if (inode_item) {
 407			struct btrfs_inode_item *item;
 408			u64 nbytes;
 409			u32 mode;
 410
 411			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 412					      struct btrfs_inode_item);
 413			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 414			item = btrfs_item_ptr(eb, slot,
 415					      struct btrfs_inode_item);
 416			btrfs_set_inode_nbytes(eb, item, nbytes);
 417
 418			/*
 419			 * If this is a directory we need to reset the i_size to
 420			 * 0 so that we can set it up properly when replaying
 421			 * the rest of the items in this log.
 422			 */
 423			mode = btrfs_inode_mode(eb, item);
 424			if (S_ISDIR(mode))
 425				btrfs_set_inode_size(eb, item, 0);
 426		}
 427	} else if (inode_item) {
 428		struct btrfs_inode_item *item;
 429		u32 mode;
 430
 431		/*
 432		 * New inode, set nbytes to 0 so that the nbytes comes out
 433		 * properly when we replay the extents.
 434		 */
 435		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 436		btrfs_set_inode_nbytes(eb, item, 0);
 437
 438		/*
 439		 * If this is a directory we need to reset the i_size to 0 so
 440		 * that we can set it up properly when replaying the rest of
 441		 * the items in this log.
 442		 */
 443		mode = btrfs_inode_mode(eb, item);
 444		if (S_ISDIR(mode))
 445			btrfs_set_inode_size(eb, item, 0);
 446	}
 447insert:
 448	btrfs_release_path(path);
 449	/* try to insert the key into the destination tree */
 450	path->skip_release_on_error = 1;
 451	ret = btrfs_insert_empty_item(trans, root, path,
 452				      key, item_size);
 453	path->skip_release_on_error = 0;
 454
 455	/* make sure any existing item is the correct size */
 456	if (ret == -EEXIST || ret == -EOVERFLOW) {
 457		u32 found_size;
 458		found_size = btrfs_item_size_nr(path->nodes[0],
 459						path->slots[0]);
 460		if (found_size > item_size)
 461			btrfs_truncate_item(root, path, item_size, 1);
 462		else if (found_size < item_size)
 463			btrfs_extend_item(root, path,
 464					  item_size - found_size);
 465	} else if (ret) {
 466		return ret;
 467	}
 468	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 469					path->slots[0]);
 470
 471	/* don't overwrite an existing inode if the generation number
 472	 * was logged as zero.  This is done when the tree logging code
 473	 * is just logging an inode to make sure it exists after recovery.
 474	 *
 475	 * Also, don't overwrite i_size on directories during replay.
 476	 * log replay inserts and removes directory items based on the
 477	 * state of the tree found in the subvolume, and i_size is modified
 478	 * as it goes
 479	 */
 480	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 481		struct btrfs_inode_item *src_item;
 482		struct btrfs_inode_item *dst_item;
 483
 484		src_item = (struct btrfs_inode_item *)src_ptr;
 485		dst_item = (struct btrfs_inode_item *)dst_ptr;
 486
 487		if (btrfs_inode_generation(eb, src_item) == 0) {
 488			struct extent_buffer *dst_eb = path->nodes[0];
 489			const u64 ino_size = btrfs_inode_size(eb, src_item);
 490
 491			/*
 492			 * For regular files an ino_size == 0 is used only when
 493			 * logging that an inode exists, as part of a directory
 494			 * fsync, and the inode wasn't fsynced before. In this
 495			 * case don't set the size of the inode in the fs/subvol
 496			 * tree, otherwise we would be throwing valid data away.
 497			 */
 498			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 499			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 500			    ino_size != 0) {
 501				struct btrfs_map_token token;
 502
 503				btrfs_init_map_token(&token);
 504				btrfs_set_token_inode_size(dst_eb, dst_item,
 505							   ino_size, &token);
 506			}
 507			goto no_copy;
 508		}
 509
 510		if (overwrite_root &&
 511		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 512		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 513			save_old_i_size = 1;
 514			saved_i_size = btrfs_inode_size(path->nodes[0],
 515							dst_item);
 516		}
 517	}
 518
 519	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 520			   src_ptr, item_size);
 521
 522	if (save_old_i_size) {
 523		struct btrfs_inode_item *dst_item;
 524		dst_item = (struct btrfs_inode_item *)dst_ptr;
 525		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 526	}
 527
 528	/* make sure the generation is filled in */
 529	if (key->type == BTRFS_INODE_ITEM_KEY) {
 530		struct btrfs_inode_item *dst_item;
 531		dst_item = (struct btrfs_inode_item *)dst_ptr;
 532		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 533			btrfs_set_inode_generation(path->nodes[0], dst_item,
 534						   trans->transid);
 535		}
 536	}
 537no_copy:
 538	btrfs_mark_buffer_dirty(path->nodes[0]);
 539	btrfs_release_path(path);
 540	return 0;
 541}
 542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543/*
 544 * simple helper to read an inode off the disk from a given root
 545 * This can only be called for subvolume roots and not for the log
 546 */
 547static noinline struct inode *read_one_inode(struct btrfs_root *root,
 548					     u64 objectid)
 549{
 550	struct btrfs_key key;
 551	struct inode *inode;
 552
 553	key.objectid = objectid;
 554	key.type = BTRFS_INODE_ITEM_KEY;
 555	key.offset = 0;
 556	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 557	if (IS_ERR(inode)) {
 558		inode = NULL;
 559	} else if (is_bad_inode(inode)) {
 560		iput(inode);
 561		inode = NULL;
 562	}
 563	return inode;
 564}
 565
 566/* replays a single extent in 'eb' at 'slot' with 'key' into the
 567 * subvolume 'root'.  path is released on entry and should be released
 568 * on exit.
 569 *
 570 * extents in the log tree have not been allocated out of the extent
 571 * tree yet.  So, this completes the allocation, taking a reference
 572 * as required if the extent already exists or creating a new extent
 573 * if it isn't in the extent allocation tree yet.
 574 *
 575 * The extent is inserted into the file, dropping any existing extents
 576 * from the file that overlap the new one.
 577 */
 578static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 579				      struct btrfs_root *root,
 580				      struct btrfs_path *path,
 581				      struct extent_buffer *eb, int slot,
 582				      struct btrfs_key *key)
 583{
 
 
 584	int found_type;
 585	u64 extent_end;
 586	u64 start = key->offset;
 587	u64 nbytes = 0;
 588	struct btrfs_file_extent_item *item;
 589	struct inode *inode = NULL;
 590	unsigned long size;
 591	int ret = 0;
 592
 593	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 594	found_type = btrfs_file_extent_type(eb, item);
 595
 596	if (found_type == BTRFS_FILE_EXTENT_REG ||
 597	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 598		nbytes = btrfs_file_extent_num_bytes(eb, item);
 599		extent_end = start + nbytes;
 600
 601		/*
 602		 * We don't add to the inodes nbytes if we are prealloc or a
 603		 * hole.
 604		 */
 605		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 606			nbytes = 0;
 607	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 608		size = btrfs_file_extent_inline_len(eb, slot, item);
 609		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 610		extent_end = ALIGN(start + size, root->sectorsize);
 
 611	} else {
 612		ret = 0;
 613		goto out;
 614	}
 615
 616	inode = read_one_inode(root, key->objectid);
 617	if (!inode) {
 618		ret = -EIO;
 619		goto out;
 620	}
 621
 622	/*
 623	 * first check to see if we already have this extent in the
 624	 * file.  This must be done before the btrfs_drop_extents run
 625	 * so we don't try to drop this extent.
 626	 */
 627	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 628				       start, 0);
 629
 630	if (ret == 0 &&
 631	    (found_type == BTRFS_FILE_EXTENT_REG ||
 632	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 633		struct btrfs_file_extent_item cmp1;
 634		struct btrfs_file_extent_item cmp2;
 635		struct btrfs_file_extent_item *existing;
 636		struct extent_buffer *leaf;
 637
 638		leaf = path->nodes[0];
 639		existing = btrfs_item_ptr(leaf, path->slots[0],
 640					  struct btrfs_file_extent_item);
 641
 642		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 643				   sizeof(cmp1));
 644		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 645				   sizeof(cmp2));
 646
 647		/*
 648		 * we already have a pointer to this exact extent,
 649		 * we don't have to do anything
 650		 */
 651		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 652			btrfs_release_path(path);
 653			goto out;
 654		}
 655	}
 656	btrfs_release_path(path);
 657
 658	/* drop any overlapping extents */
 659	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 
 
 
 660	if (ret)
 661		goto out;
 662
 663	if (found_type == BTRFS_FILE_EXTENT_REG ||
 664	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 665		u64 offset;
 666		unsigned long dest_offset;
 667		struct btrfs_key ins;
 668
 
 
 
 
 669		ret = btrfs_insert_empty_item(trans, root, path, key,
 670					      sizeof(*item));
 671		if (ret)
 672			goto out;
 673		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 674						    path->slots[0]);
 675		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 676				(unsigned long)item,  sizeof(*item));
 677
 678		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 679		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 680		ins.type = BTRFS_EXTENT_ITEM_KEY;
 681		offset = key->offset - btrfs_file_extent_offset(eb, item);
 682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683		if (ins.objectid > 0) {
 
 684			u64 csum_start;
 685			u64 csum_end;
 686			LIST_HEAD(ordered_sums);
 
 687			/*
 688			 * is this extent already allocated in the extent
 689			 * allocation tree?  If so, just add a reference
 690			 */
 691			ret = btrfs_lookup_data_extent(root, ins.objectid,
 692						ins.offset);
 693			if (ret == 0) {
 694				ret = btrfs_inc_extent_ref(trans, root,
 695						ins.objectid, ins.offset,
 696						0, root->root_key.objectid,
 697						key->objectid, offset);
 
 
 
 
 
 698				if (ret)
 699					goto out;
 700			} else {
 701				/*
 702				 * insert the extent pointer in the extent
 703				 * allocation tree
 704				 */
 705				ret = btrfs_alloc_logged_file_extent(trans,
 706						root, root->root_key.objectid,
 707						key->objectid, offset, &ins);
 708				if (ret)
 709					goto out;
 710			}
 711			btrfs_release_path(path);
 712
 713			if (btrfs_file_extent_compression(eb, item)) {
 714				csum_start = ins.objectid;
 715				csum_end = csum_start + ins.offset;
 716			} else {
 717				csum_start = ins.objectid +
 718					btrfs_file_extent_offset(eb, item);
 719				csum_end = csum_start +
 720					btrfs_file_extent_num_bytes(eb, item);
 721			}
 722
 723			ret = btrfs_lookup_csums_range(root->log_root,
 724						csum_start, csum_end - 1,
 725						&ordered_sums, 0);
 726			if (ret)
 727				goto out;
 728			/*
 729			 * Now delete all existing cums in the csum root that
 730			 * cover our range. We do this because we can have an
 731			 * extent that is completely referenced by one file
 732			 * extent item and partially referenced by another
 733			 * file extent item (like after using the clone or
 734			 * extent_same ioctls). In this case if we end up doing
 735			 * the replay of the one that partially references the
 736			 * extent first, and we do not do the csum deletion
 737			 * below, we can get 2 csum items in the csum tree that
 738			 * overlap each other. For example, imagine our log has
 739			 * the two following file extent items:
 740			 *
 741			 * key (257 EXTENT_DATA 409600)
 742			 *     extent data disk byte 12845056 nr 102400
 743			 *     extent data offset 20480 nr 20480 ram 102400
 744			 *
 745			 * key (257 EXTENT_DATA 819200)
 746			 *     extent data disk byte 12845056 nr 102400
 747			 *     extent data offset 0 nr 102400 ram 102400
 748			 *
 749			 * Where the second one fully references the 100K extent
 750			 * that starts at disk byte 12845056, and the log tree
 751			 * has a single csum item that covers the entire range
 752			 * of the extent:
 753			 *
 754			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 755			 *
 756			 * After the first file extent item is replayed, the
 757			 * csum tree gets the following csum item:
 758			 *
 759			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 760			 *
 761			 * Which covers the 20K sub-range starting at offset 20K
 762			 * of our extent. Now when we replay the second file
 763			 * extent item, if we do not delete existing csum items
 764			 * that cover any of its blocks, we end up getting two
 765			 * csum items in our csum tree that overlap each other:
 766			 *
 767			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 768			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 769			 *
 770			 * Which is a problem, because after this anyone trying
 771			 * to lookup up for the checksum of any block of our
 772			 * extent starting at an offset of 40K or higher, will
 773			 * end up looking at the second csum item only, which
 774			 * does not contain the checksum for any block starting
 775			 * at offset 40K or higher of our extent.
 776			 */
 777			while (!list_empty(&ordered_sums)) {
 778				struct btrfs_ordered_sum *sums;
 
 
 779				sums = list_entry(ordered_sums.next,
 780						struct btrfs_ordered_sum,
 781						list);
 
 
 782				if (!ret)
 783					ret = btrfs_del_csums(trans,
 784						      root->fs_info->csum_root,
 785						      sums->bytenr,
 786						      sums->len);
 787				if (!ret)
 788					ret = btrfs_csum_file_blocks(trans,
 789						root->fs_info->csum_root,
 790						sums);
 791				list_del(&sums->list);
 792				kfree(sums);
 793			}
 794			if (ret)
 795				goto out;
 796		} else {
 797			btrfs_release_path(path);
 798		}
 799	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 800		/* inline extents are easy, we just overwrite them */
 801		ret = overwrite_item(trans, root, path, eb, slot, key);
 802		if (ret)
 803			goto out;
 804	}
 805
 806	inode_add_bytes(inode, nbytes);
 807	ret = btrfs_update_inode(trans, root, inode);
 
 
 
 
 
 
 808out:
 809	if (inode)
 810		iput(inode);
 811	return ret;
 812}
 813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814/*
 815 * when cleaning up conflicts between the directory names in the
 816 * subvolume, directory names in the log and directory names in the
 817 * inode back references, we may have to unlink inodes from directories.
 818 *
 819 * This is a helper function to do the unlink of a specific directory
 820 * item
 821 */
 822static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 823				      struct btrfs_root *root,
 824				      struct btrfs_path *path,
 825				      struct inode *dir,
 826				      struct btrfs_dir_item *di)
 827{
 
 828	struct inode *inode;
 829	char *name;
 830	int name_len;
 831	struct extent_buffer *leaf;
 832	struct btrfs_key location;
 833	int ret;
 834
 835	leaf = path->nodes[0];
 836
 837	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 838	name_len = btrfs_dir_name_len(leaf, di);
 839	name = kmalloc(name_len, GFP_NOFS);
 840	if (!name)
 841		return -ENOMEM;
 842
 843	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 844	btrfs_release_path(path);
 845
 846	inode = read_one_inode(root, location.objectid);
 847	if (!inode) {
 848		ret = -EIO;
 849		goto out;
 850	}
 851
 852	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 853	if (ret)
 854		goto out;
 855
 856	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 857	if (ret)
 858		goto out;
 859	else
 860		ret = btrfs_run_delayed_items(trans, root);
 861out:
 862	kfree(name);
 863	iput(inode);
 864	return ret;
 865}
 866
 867/*
 868 * helper function to see if a given name and sequence number found
 869 * in an inode back reference are already in a directory and correctly
 870 * point to this inode
 
 
 871 */
 872static noinline int inode_in_dir(struct btrfs_root *root,
 873				 struct btrfs_path *path,
 874				 u64 dirid, u64 objectid, u64 index,
 875				 const char *name, int name_len)
 876{
 877	struct btrfs_dir_item *di;
 878	struct btrfs_key location;
 879	int match = 0;
 880
 881	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 882					 index, name, name_len, 0);
 883	if (di && !IS_ERR(di)) {
 
 
 
 884		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 885		if (location.objectid != objectid)
 886			goto out;
 887	} else
 888		goto out;
 889	btrfs_release_path(path);
 890
 891	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 892	if (di && !IS_ERR(di)) {
 893		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 894		if (location.objectid != objectid)
 895			goto out;
 896	} else
 897		goto out;
 898	match = 1;
 
 
 
 
 899out:
 900	btrfs_release_path(path);
 901	return match;
 902}
 903
 904/*
 905 * helper function to check a log tree for a named back reference in
 906 * an inode.  This is used to decide if a back reference that is
 907 * found in the subvolume conflicts with what we find in the log.
 908 *
 909 * inode backreferences may have multiple refs in a single item,
 910 * during replay we process one reference at a time, and we don't
 911 * want to delete valid links to a file from the subvolume if that
 912 * link is also in the log.
 913 */
 914static noinline int backref_in_log(struct btrfs_root *log,
 915				   struct btrfs_key *key,
 916				   u64 ref_objectid,
 917				   const char *name, int namelen)
 918{
 919	struct btrfs_path *path;
 920	struct btrfs_inode_ref *ref;
 921	unsigned long ptr;
 922	unsigned long ptr_end;
 923	unsigned long name_ptr;
 924	int found_name_len;
 925	int item_size;
 926	int ret;
 927	int match = 0;
 928
 929	path = btrfs_alloc_path();
 930	if (!path)
 931		return -ENOMEM;
 932
 933	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 934	if (ret != 0)
 935		goto out;
 936
 937	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 938
 939	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 940		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
 941						   name, namelen, NULL))
 942			match = 1;
 943
 944		goto out;
 945	}
 946
 947	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 948	ptr_end = ptr + item_size;
 949	while (ptr < ptr_end) {
 950		ref = (struct btrfs_inode_ref *)ptr;
 951		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 952		if (found_name_len == namelen) {
 953			name_ptr = (unsigned long)(ref + 1);
 954			ret = memcmp_extent_buffer(path->nodes[0], name,
 955						   name_ptr, namelen);
 956			if (ret == 0) {
 957				match = 1;
 958				goto out;
 959			}
 960		}
 961		ptr = (unsigned long)(ref + 1) + found_name_len;
 962	}
 963out:
 964	btrfs_free_path(path);
 965	return match;
 966}
 967
 968static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 969				  struct btrfs_root *root,
 970				  struct btrfs_path *path,
 971				  struct btrfs_root *log_root,
 972				  struct inode *dir, struct inode *inode,
 973				  struct extent_buffer *eb,
 974				  u64 inode_objectid, u64 parent_objectid,
 975				  u64 ref_index, char *name, int namelen,
 976				  int *search_done)
 977{
 978	int ret;
 979	char *victim_name;
 980	int victim_name_len;
 981	struct extent_buffer *leaf;
 982	struct btrfs_dir_item *di;
 983	struct btrfs_key search_key;
 984	struct btrfs_inode_extref *extref;
 985
 986again:
 987	/* Search old style refs */
 988	search_key.objectid = inode_objectid;
 989	search_key.type = BTRFS_INODE_REF_KEY;
 990	search_key.offset = parent_objectid;
 991	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 992	if (ret == 0) {
 993		struct btrfs_inode_ref *victim_ref;
 994		unsigned long ptr;
 995		unsigned long ptr_end;
 996
 997		leaf = path->nodes[0];
 998
 999		/* are we trying to overwrite a back ref for the root directory
1000		 * if so, just jump out, we're done
1001		 */
1002		if (search_key.objectid == search_key.offset)
1003			return 1;
1004
1005		/* check all the names in this back reference to see
1006		 * if they are in the log.  if so, we allow them to stay
1007		 * otherwise they must be unlinked as a conflict
1008		 */
1009		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1010		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1011		while (ptr < ptr_end) {
 
 
1012			victim_ref = (struct btrfs_inode_ref *)ptr;
1013			victim_name_len = btrfs_inode_ref_name_len(leaf,
1014								   victim_ref);
1015			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1016			if (!victim_name)
1017				return -ENOMEM;
1018
1019			read_extent_buffer(leaf, victim_name,
1020					   (unsigned long)(victim_ref + 1),
1021					   victim_name_len);
1022
1023			if (!backref_in_log(log_root, &search_key,
1024					    parent_objectid,
1025					    victim_name,
1026					    victim_name_len)) {
1027				inc_nlink(inode);
1028				btrfs_release_path(path);
1029
1030				ret = btrfs_unlink_inode(trans, root, dir,
1031							 inode, victim_name,
1032							 victim_name_len);
1033				kfree(victim_name);
1034				if (ret)
1035					return ret;
1036				ret = btrfs_run_delayed_items(trans, root);
1037				if (ret)
1038					return ret;
1039				*search_done = 1;
1040				goto again;
1041			}
1042			kfree(victim_name);
1043
1044			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1045		}
1046
1047		/*
1048		 * NOTE: we have searched root tree and checked the
1049		 * corresponding ref, it does not need to check again.
1050		 */
1051		*search_done = 1;
1052	}
1053	btrfs_release_path(path);
1054
1055	/* Same search but for extended refs */
1056	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1057					   inode_objectid, parent_objectid, 0,
1058					   0);
1059	if (!IS_ERR_OR_NULL(extref)) {
 
 
1060		u32 item_size;
1061		u32 cur_offset = 0;
1062		unsigned long base;
1063		struct inode *victim_parent;
1064
1065		leaf = path->nodes[0];
1066
1067		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1068		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1069
1070		while (cur_offset < item_size) {
1071			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1072
1073			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1074
1075			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1076				goto next;
1077
1078			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1079			if (!victim_name)
1080				return -ENOMEM;
1081			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1082					   victim_name_len);
1083
1084			search_key.objectid = inode_objectid;
1085			search_key.type = BTRFS_INODE_EXTREF_KEY;
1086			search_key.offset = btrfs_extref_hash(parent_objectid,
1087							      victim_name,
1088							      victim_name_len);
1089			ret = 0;
1090			if (!backref_in_log(log_root, &search_key,
1091					    parent_objectid, victim_name,
1092					    victim_name_len)) {
 
 
1093				ret = -ENOENT;
1094				victim_parent = read_one_inode(root,
1095							       parent_objectid);
1096				if (victim_parent) {
1097					inc_nlink(inode);
1098					btrfs_release_path(path);
1099
1100					ret = btrfs_unlink_inode(trans, root,
1101								 victim_parent,
1102								 inode,
1103								 victim_name,
1104								 victim_name_len);
1105					if (!ret)
1106						ret = btrfs_run_delayed_items(
1107								  trans, root);
1108				}
1109				iput(victim_parent);
1110				kfree(victim_name);
1111				if (ret)
1112					return ret;
1113				*search_done = 1;
1114				goto again;
1115			}
1116			kfree(victim_name);
1117			if (ret)
1118				return ret;
1119next:
1120			cur_offset += victim_name_len + sizeof(*extref);
1121		}
1122		*search_done = 1;
1123	}
1124	btrfs_release_path(path);
1125
1126	/* look for a conflicting sequence number */
1127	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1128					 ref_index, name, namelen, 0);
1129	if (di && !IS_ERR(di)) {
1130		ret = drop_one_dir_item(trans, root, path, dir, di);
 
 
1131		if (ret)
1132			return ret;
1133	}
1134	btrfs_release_path(path);
1135
1136	/* look for a conflicing name */
1137	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1138				   name, namelen, 0);
1139	if (di && !IS_ERR(di)) {
1140		ret = drop_one_dir_item(trans, root, path, dir, di);
 
1141		if (ret)
1142			return ret;
1143	}
1144	btrfs_release_path(path);
1145
1146	return 0;
1147}
1148
1149static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1150			     u32 *namelen, char **name, u64 *index,
1151			     u64 *parent_objectid)
1152{
1153	struct btrfs_inode_extref *extref;
 
1154
1155	extref = (struct btrfs_inode_extref *)ref_ptr;
1156
1157	*namelen = btrfs_inode_extref_name_len(eb, extref);
1158	*name = kmalloc(*namelen, GFP_NOFS);
1159	if (*name == NULL)
1160		return -ENOMEM;
1161
1162	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1163			   *namelen);
1164
1165	*index = btrfs_inode_extref_index(eb, extref);
 
1166	if (parent_objectid)
1167		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1168
1169	return 0;
1170}
1171
1172static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1173			  u32 *namelen, char **name, u64 *index)
1174{
1175	struct btrfs_inode_ref *ref;
 
1176
1177	ref = (struct btrfs_inode_ref *)ref_ptr;
1178
1179	*namelen = btrfs_inode_ref_name_len(eb, ref);
1180	*name = kmalloc(*namelen, GFP_NOFS);
1181	if (*name == NULL)
1182		return -ENOMEM;
1183
1184	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1185
1186	*index = btrfs_inode_ref_index(eb, ref);
 
1187
1188	return 0;
1189}
1190
1191/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192 * replay one inode back reference item found in the log tree.
1193 * eb, slot and key refer to the buffer and key found in the log tree.
1194 * root is the destination we are replaying into, and path is for temp
1195 * use by this function.  (it should be released on return).
1196 */
1197static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1198				  struct btrfs_root *root,
1199				  struct btrfs_root *log,
1200				  struct btrfs_path *path,
1201				  struct extent_buffer *eb, int slot,
1202				  struct btrfs_key *key)
1203{
1204	struct inode *dir = NULL;
1205	struct inode *inode = NULL;
1206	unsigned long ref_ptr;
1207	unsigned long ref_end;
1208	char *name = NULL;
1209	int namelen;
1210	int ret;
1211	int search_done = 0;
1212	int log_ref_ver = 0;
1213	u64 parent_objectid;
1214	u64 inode_objectid;
1215	u64 ref_index = 0;
1216	int ref_struct_size;
1217
1218	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1219	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1220
1221	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1222		struct btrfs_inode_extref *r;
1223
1224		ref_struct_size = sizeof(struct btrfs_inode_extref);
1225		log_ref_ver = 1;
1226		r = (struct btrfs_inode_extref *)ref_ptr;
1227		parent_objectid = btrfs_inode_extref_parent(eb, r);
1228	} else {
1229		ref_struct_size = sizeof(struct btrfs_inode_ref);
1230		parent_objectid = key->offset;
1231	}
1232	inode_objectid = key->objectid;
1233
1234	/*
1235	 * it is possible that we didn't log all the parent directories
1236	 * for a given inode.  If we don't find the dir, just don't
1237	 * copy the back ref in.  The link count fixup code will take
1238	 * care of the rest
1239	 */
1240	dir = read_one_inode(root, parent_objectid);
1241	if (!dir) {
1242		ret = -ENOENT;
1243		goto out;
1244	}
1245
1246	inode = read_one_inode(root, inode_objectid);
1247	if (!inode) {
1248		ret = -EIO;
1249		goto out;
1250	}
1251
1252	while (ref_ptr < ref_end) {
1253		if (log_ref_ver) {
1254			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1255						&ref_index, &parent_objectid);
1256			/*
1257			 * parent object can change from one array
1258			 * item to another.
1259			 */
1260			if (!dir)
1261				dir = read_one_inode(root, parent_objectid);
1262			if (!dir) {
1263				ret = -ENOENT;
1264				goto out;
1265			}
1266		} else {
1267			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1268					     &ref_index);
1269		}
1270		if (ret)
1271			goto out;
1272
1273		/* if we already have a perfect match, we're done */
1274		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1275				  ref_index, name, namelen)) {
 
 
1276			/*
1277			 * look for a conflicting back reference in the
1278			 * metadata. if we find one we have to unlink that name
1279			 * of the file before we add our new link.  Later on, we
1280			 * overwrite any existing back reference, and we don't
1281			 * want to create dangling pointers in the directory.
1282			 */
1283
1284			if (!search_done) {
1285				ret = __add_inode_ref(trans, root, path, log,
1286						      dir, inode, eb,
1287						      inode_objectid,
1288						      parent_objectid,
1289						      ref_index, name, namelen,
1290						      &search_done);
1291				if (ret) {
1292					if (ret == 1)
1293						ret = 0;
1294					goto out;
1295				}
1296			}
1297
1298			/* insert our name */
1299			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1300					     0, ref_index);
1301			if (ret)
1302				goto out;
1303
1304			btrfs_update_inode(trans, root, inode);
 
 
1305		}
 
1306
1307		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1308		kfree(name);
1309		name = NULL;
1310		if (log_ref_ver) {
1311			iput(dir);
1312			dir = NULL;
1313		}
1314	}
1315
 
 
 
 
 
 
 
 
 
 
 
 
 
1316	/* finally write the back reference in the inode */
1317	ret = overwrite_item(trans, root, path, eb, slot, key);
1318out:
1319	btrfs_release_path(path);
1320	kfree(name);
1321	iput(dir);
1322	iput(inode);
1323	return ret;
1324}
1325
1326static int insert_orphan_item(struct btrfs_trans_handle *trans,
1327			      struct btrfs_root *root, u64 ino)
1328{
1329	int ret;
1330
1331	ret = btrfs_insert_orphan_item(trans, root, ino);
1332	if (ret == -EEXIST)
1333		ret = 0;
1334
1335	return ret;
1336}
1337
1338static int count_inode_extrefs(struct btrfs_root *root,
1339			       struct inode *inode, struct btrfs_path *path)
1340{
1341	int ret = 0;
1342	int name_len;
1343	unsigned int nlink = 0;
1344	u32 item_size;
1345	u32 cur_offset = 0;
1346	u64 inode_objectid = btrfs_ino(inode);
1347	u64 offset = 0;
1348	unsigned long ptr;
1349	struct btrfs_inode_extref *extref;
1350	struct extent_buffer *leaf;
1351
1352	while (1) {
1353		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1354					    &extref, &offset);
1355		if (ret)
1356			break;
1357
1358		leaf = path->nodes[0];
1359		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1360		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1361		cur_offset = 0;
1362
1363		while (cur_offset < item_size) {
1364			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1365			name_len = btrfs_inode_extref_name_len(leaf, extref);
1366
1367			nlink++;
1368
1369			cur_offset += name_len + sizeof(*extref);
1370		}
1371
1372		offset++;
1373		btrfs_release_path(path);
1374	}
1375	btrfs_release_path(path);
1376
1377	if (ret < 0 && ret != -ENOENT)
1378		return ret;
1379	return nlink;
1380}
1381
1382static int count_inode_refs(struct btrfs_root *root,
1383			       struct inode *inode, struct btrfs_path *path)
1384{
1385	int ret;
1386	struct btrfs_key key;
1387	unsigned int nlink = 0;
1388	unsigned long ptr;
1389	unsigned long ptr_end;
1390	int name_len;
1391	u64 ino = btrfs_ino(inode);
1392
1393	key.objectid = ino;
1394	key.type = BTRFS_INODE_REF_KEY;
1395	key.offset = (u64)-1;
1396
1397	while (1) {
1398		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1399		if (ret < 0)
1400			break;
1401		if (ret > 0) {
1402			if (path->slots[0] == 0)
1403				break;
1404			path->slots[0]--;
1405		}
1406process_slot:
1407		btrfs_item_key_to_cpu(path->nodes[0], &key,
1408				      path->slots[0]);
1409		if (key.objectid != ino ||
1410		    key.type != BTRFS_INODE_REF_KEY)
1411			break;
1412		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1413		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1414						   path->slots[0]);
1415		while (ptr < ptr_end) {
1416			struct btrfs_inode_ref *ref;
1417
1418			ref = (struct btrfs_inode_ref *)ptr;
1419			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1420							    ref);
1421			ptr = (unsigned long)(ref + 1) + name_len;
1422			nlink++;
1423		}
1424
1425		if (key.offset == 0)
1426			break;
1427		if (path->slots[0] > 0) {
1428			path->slots[0]--;
1429			goto process_slot;
1430		}
1431		key.offset--;
1432		btrfs_release_path(path);
1433	}
1434	btrfs_release_path(path);
1435
1436	return nlink;
1437}
1438
1439/*
1440 * There are a few corners where the link count of the file can't
1441 * be properly maintained during replay.  So, instead of adding
1442 * lots of complexity to the log code, we just scan the backrefs
1443 * for any file that has been through replay.
1444 *
1445 * The scan will update the link count on the inode to reflect the
1446 * number of back refs found.  If it goes down to zero, the iput
1447 * will free the inode.
1448 */
1449static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1450					   struct btrfs_root *root,
1451					   struct inode *inode)
1452{
1453	struct btrfs_path *path;
1454	int ret;
1455	u64 nlink = 0;
1456	u64 ino = btrfs_ino(inode);
1457
1458	path = btrfs_alloc_path();
1459	if (!path)
1460		return -ENOMEM;
1461
1462	ret = count_inode_refs(root, inode, path);
1463	if (ret < 0)
1464		goto out;
1465
1466	nlink = ret;
1467
1468	ret = count_inode_extrefs(root, inode, path);
1469	if (ret < 0)
1470		goto out;
1471
1472	nlink += ret;
1473
1474	ret = 0;
1475
1476	if (nlink != inode->i_nlink) {
1477		set_nlink(inode, nlink);
1478		btrfs_update_inode(trans, root, inode);
 
 
1479	}
1480	BTRFS_I(inode)->index_cnt = (u64)-1;
1481
1482	if (inode->i_nlink == 0) {
1483		if (S_ISDIR(inode->i_mode)) {
1484			ret = replay_dir_deletes(trans, root, NULL, path,
1485						 ino, 1);
1486			if (ret)
1487				goto out;
1488		}
1489		ret = insert_orphan_item(trans, root, ino);
 
 
1490	}
1491
1492out:
1493	btrfs_free_path(path);
1494	return ret;
1495}
1496
1497static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1498					    struct btrfs_root *root,
1499					    struct btrfs_path *path)
1500{
1501	int ret;
1502	struct btrfs_key key;
1503	struct inode *inode;
1504
1505	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1506	key.type = BTRFS_ORPHAN_ITEM_KEY;
1507	key.offset = (u64)-1;
1508	while (1) {
1509		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1510		if (ret < 0)
1511			break;
1512
1513		if (ret == 1) {
 
1514			if (path->slots[0] == 0)
1515				break;
1516			path->slots[0]--;
1517		}
1518
1519		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1520		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1521		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1522			break;
1523
1524		ret = btrfs_del_item(trans, root, path);
1525		if (ret)
1526			goto out;
1527
1528		btrfs_release_path(path);
1529		inode = read_one_inode(root, key.offset);
1530		if (!inode)
1531			return -EIO;
 
 
1532
1533		ret = fixup_inode_link_count(trans, root, inode);
1534		iput(inode);
1535		if (ret)
1536			goto out;
1537
1538		/*
1539		 * fixup on a directory may create new entries,
1540		 * make sure we always look for the highset possible
1541		 * offset
1542		 */
1543		key.offset = (u64)-1;
1544	}
1545	ret = 0;
1546out:
1547	btrfs_release_path(path);
1548	return ret;
1549}
1550
1551
1552/*
1553 * record a given inode in the fixup dir so we can check its link
1554 * count when replay is done.  The link count is incremented here
1555 * so the inode won't go away until we check it
1556 */
1557static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1558				      struct btrfs_root *root,
1559				      struct btrfs_path *path,
1560				      u64 objectid)
1561{
1562	struct btrfs_key key;
1563	int ret = 0;
1564	struct inode *inode;
1565
1566	inode = read_one_inode(root, objectid);
1567	if (!inode)
1568		return -EIO;
1569
1570	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1571	key.type = BTRFS_ORPHAN_ITEM_KEY;
1572	key.offset = objectid;
1573
1574	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1575
1576	btrfs_release_path(path);
1577	if (ret == 0) {
1578		if (!inode->i_nlink)
1579			set_nlink(inode, 1);
1580		else
1581			inc_nlink(inode);
1582		ret = btrfs_update_inode(trans, root, inode);
1583	} else if (ret == -EEXIST) {
1584		ret = 0;
1585	} else {
1586		BUG(); /* Logic Error */
1587	}
1588	iput(inode);
1589
1590	return ret;
1591}
1592
1593/*
1594 * when replaying the log for a directory, we only insert names
1595 * for inodes that actually exist.  This means an fsync on a directory
1596 * does not implicitly fsync all the new files in it
1597 */
1598static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1599				    struct btrfs_root *root,
1600				    u64 dirid, u64 index,
1601				    char *name, int name_len,
1602				    struct btrfs_key *location)
1603{
1604	struct inode *inode;
1605	struct inode *dir;
1606	int ret;
1607
1608	inode = read_one_inode(root, location->objectid);
1609	if (!inode)
1610		return -ENOENT;
1611
1612	dir = read_one_inode(root, dirid);
1613	if (!dir) {
1614		iput(inode);
1615		return -EIO;
1616	}
1617
1618	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
 
1619
1620	/* FIXME, put inode into FIXUP list */
1621
1622	iput(inode);
1623	iput(dir);
1624	return ret;
1625}
1626
1627/*
1628 * Return true if an inode reference exists in the log for the given name,
1629 * inode and parent inode.
1630 */
1631static bool name_in_log_ref(struct btrfs_root *log_root,
1632			    const char *name, const int name_len,
1633			    const u64 dirid, const u64 ino)
1634{
1635	struct btrfs_key search_key;
1636
1637	search_key.objectid = ino;
1638	search_key.type = BTRFS_INODE_REF_KEY;
1639	search_key.offset = dirid;
1640	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1641		return true;
 
 
1642
1643	search_key.type = BTRFS_INODE_EXTREF_KEY;
1644	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1645	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1646		return true;
 
 
1647
1648	return false;
1649}
1650
1651/*
1652 * take a single entry in a log directory item and replay it into
1653 * the subvolume.
1654 *
1655 * if a conflicting item exists in the subdirectory already,
1656 * the inode it points to is unlinked and put into the link count
1657 * fix up tree.
1658 *
1659 * If a name from the log points to a file or directory that does
1660 * not exist in the FS, it is skipped.  fsyncs on directories
1661 * do not force down inodes inside that directory, just changes to the
1662 * names or unlinks in a directory.
1663 *
1664 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1665 * non-existing inode) and 1 if the name was replayed.
1666 */
1667static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1668				    struct btrfs_root *root,
1669				    struct btrfs_path *path,
1670				    struct extent_buffer *eb,
1671				    struct btrfs_dir_item *di,
1672				    struct btrfs_key *key)
1673{
1674	char *name;
1675	int name_len;
1676	struct btrfs_dir_item *dst_di;
1677	struct btrfs_key found_key;
 
1678	struct btrfs_key log_key;
 
1679	struct inode *dir;
1680	u8 log_type;
1681	int exists;
1682	int ret = 0;
1683	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1684	bool name_added = false;
1685
1686	dir = read_one_inode(root, key->objectid);
1687	if (!dir)
1688		return -EIO;
1689
1690	name_len = btrfs_dir_name_len(eb, di);
1691	name = kmalloc(name_len, GFP_NOFS);
1692	if (!name) {
1693		ret = -ENOMEM;
1694		goto out;
1695	}
1696
1697	log_type = btrfs_dir_type(eb, di);
1698	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1699		   name_len);
1700
 
1701	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1702	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1703	if (exists == 0)
1704		exists = 1;
1705	else
1706		exists = 0;
1707	btrfs_release_path(path);
 
 
 
 
1708
1709	if (key->type == BTRFS_DIR_ITEM_KEY) {
1710		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1711				       name, name_len, 1);
1712	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1713		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1714						     key->objectid,
1715						     key->offset, name,
1716						     name_len, 1);
1717	} else {
1718		/* Corruption */
1719		ret = -EINVAL;
1720		goto out;
 
 
 
 
 
 
 
1721	}
1722	if (IS_ERR_OR_NULL(dst_di)) {
1723		/* we need a sequence number to insert, so we only
1724		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1725		 */
1726		if (key->type != BTRFS_DIR_INDEX_KEY)
 
 
 
 
 
 
 
 
 
1727			goto out;
1728		goto insert;
1729	}
1730
1731	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1732	/* the existing item matches the logged item */
1733	if (found_key.objectid == log_key.objectid &&
1734	    found_key.type == log_key.type &&
1735	    found_key.offset == log_key.offset &&
1736	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1737		update_size = false;
1738		goto out;
1739	}
1740
1741	/*
1742	 * don't drop the conflicting directory entry if the inode
1743	 * for the new entry doesn't exist
1744	 */
1745	if (!exists)
1746		goto out;
1747
1748	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1749	if (ret)
1750		goto out;
1751
1752	if (key->type == BTRFS_DIR_INDEX_KEY)
1753		goto insert;
1754out:
1755	btrfs_release_path(path);
1756	if (!ret && update_size) {
1757		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1758		ret = btrfs_update_inode(trans, root, dir);
1759	}
1760	kfree(name);
1761	iput(dir);
1762	if (!ret && name_added)
1763		ret = 1;
1764	return ret;
1765
1766insert:
1767	if (name_in_log_ref(root->log_root, name, name_len,
1768			    key->objectid, log_key.objectid)) {
 
 
 
 
1769		/* The dentry will be added later. */
1770		ret = 0;
1771		update_size = false;
1772		goto out;
1773	}
1774	btrfs_release_path(path);
1775	ret = insert_one_name(trans, root, key->objectid, key->offset,
1776			      name, name_len, &log_key);
1777	if (ret && ret != -ENOENT && ret != -EEXIST)
1778		goto out;
1779	if (!ret)
1780		name_added = true;
1781	update_size = false;
1782	ret = 0;
1783	goto out;
 
 
 
 
 
 
 
 
 
 
1784}
1785
1786/*
1787 * find all the names in a directory item and reconcile them into
1788 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1789 * one name in a directory item, but the same code gets used for
1790 * both directory index types
1791 */
1792static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1793					struct btrfs_root *root,
1794					struct btrfs_path *path,
1795					struct extent_buffer *eb, int slot,
1796					struct btrfs_key *key)
1797{
1798	int ret = 0;
1799	u32 item_size = btrfs_item_size_nr(eb, slot);
1800	struct btrfs_dir_item *di;
1801	int name_len;
1802	unsigned long ptr;
1803	unsigned long ptr_end;
1804	struct btrfs_path *fixup_path = NULL;
1805
1806	ptr = btrfs_item_ptr_offset(eb, slot);
1807	ptr_end = ptr + item_size;
1808	while (ptr < ptr_end) {
1809		di = (struct btrfs_dir_item *)ptr;
1810		if (verify_dir_item(root, eb, di))
1811			return -EIO;
1812		name_len = btrfs_dir_name_len(eb, di);
1813		ret = replay_one_name(trans, root, path, eb, di, key);
1814		if (ret < 0)
1815			break;
1816		ptr = (unsigned long)(di + 1);
1817		ptr += name_len;
1818
1819		/*
1820		 * If this entry refers to a non-directory (directories can not
1821		 * have a link count > 1) and it was added in the transaction
1822		 * that was not committed, make sure we fixup the link count of
1823		 * the inode it the entry points to. Otherwise something like
1824		 * the following would result in a directory pointing to an
1825		 * inode with a wrong link that does not account for this dir
1826		 * entry:
1827		 *
1828		 * mkdir testdir
1829		 * touch testdir/foo
1830		 * touch testdir/bar
1831		 * sync
1832		 *
1833		 * ln testdir/bar testdir/bar_link
1834		 * ln testdir/foo testdir/foo_link
1835		 * xfs_io -c "fsync" testdir/bar
1836		 *
1837		 * <power failure>
1838		 *
1839		 * mount fs, log replay happens
1840		 *
1841		 * File foo would remain with a link count of 1 when it has two
1842		 * entries pointing to it in the directory testdir. This would
1843		 * make it impossible to ever delete the parent directory has
1844		 * it would result in stale dentries that can never be deleted.
1845		 */
1846		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1847			struct btrfs_key di_key;
1848
1849			if (!fixup_path) {
1850				fixup_path = btrfs_alloc_path();
1851				if (!fixup_path) {
1852					ret = -ENOMEM;
1853					break;
1854				}
1855			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856
1857			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1858			ret = link_to_fixup_dir(trans, root, fixup_path,
1859						di_key.objectid);
1860			if (ret)
1861				break;
1862		}
1863		ret = 0;
1864	}
1865	btrfs_free_path(fixup_path);
1866	return ret;
1867}
1868
1869/*
1870 * directory replay has two parts.  There are the standard directory
1871 * items in the log copied from the subvolume, and range items
1872 * created in the log while the subvolume was logged.
1873 *
1874 * The range items tell us which parts of the key space the log
1875 * is authoritative for.  During replay, if a key in the subvolume
1876 * directory is in a logged range item, but not actually in the log
1877 * that means it was deleted from the directory before the fsync
1878 * and should be removed.
1879 */
1880static noinline int find_dir_range(struct btrfs_root *root,
1881				   struct btrfs_path *path,
1882				   u64 dirid, int key_type,
1883				   u64 *start_ret, u64 *end_ret)
1884{
1885	struct btrfs_key key;
1886	u64 found_end;
1887	struct btrfs_dir_log_item *item;
1888	int ret;
1889	int nritems;
1890
1891	if (*start_ret == (u64)-1)
1892		return 1;
1893
1894	key.objectid = dirid;
1895	key.type = key_type;
1896	key.offset = *start_ret;
1897
1898	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1899	if (ret < 0)
1900		goto out;
1901	if (ret > 0) {
1902		if (path->slots[0] == 0)
1903			goto out;
1904		path->slots[0]--;
1905	}
1906	if (ret != 0)
1907		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1908
1909	if (key.type != key_type || key.objectid != dirid) {
1910		ret = 1;
1911		goto next;
1912	}
1913	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1914			      struct btrfs_dir_log_item);
1915	found_end = btrfs_dir_log_end(path->nodes[0], item);
1916
1917	if (*start_ret >= key.offset && *start_ret <= found_end) {
1918		ret = 0;
1919		*start_ret = key.offset;
1920		*end_ret = found_end;
1921		goto out;
1922	}
1923	ret = 1;
1924next:
1925	/* check the next slot in the tree to see if it is a valid item */
1926	nritems = btrfs_header_nritems(path->nodes[0]);
 
1927	if (path->slots[0] >= nritems) {
1928		ret = btrfs_next_leaf(root, path);
1929		if (ret)
1930			goto out;
1931	} else {
1932		path->slots[0]++;
1933	}
1934
1935	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1936
1937	if (key.type != key_type || key.objectid != dirid) {
1938		ret = 1;
1939		goto out;
1940	}
1941	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1942			      struct btrfs_dir_log_item);
1943	found_end = btrfs_dir_log_end(path->nodes[0], item);
1944	*start_ret = key.offset;
1945	*end_ret = found_end;
1946	ret = 0;
1947out:
1948	btrfs_release_path(path);
1949	return ret;
1950}
1951
1952/*
1953 * this looks for a given directory item in the log.  If the directory
1954 * item is not in the log, the item is removed and the inode it points
1955 * to is unlinked
1956 */
1957static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1958				      struct btrfs_root *root,
1959				      struct btrfs_root *log,
1960				      struct btrfs_path *path,
1961				      struct btrfs_path *log_path,
1962				      struct inode *dir,
1963				      struct btrfs_key *dir_key)
1964{
 
1965	int ret;
1966	struct extent_buffer *eb;
1967	int slot;
1968	u32 item_size;
1969	struct btrfs_dir_item *di;
1970	struct btrfs_dir_item *log_di;
1971	int name_len;
1972	unsigned long ptr;
1973	unsigned long ptr_end;
1974	char *name;
1975	struct inode *inode;
1976	struct btrfs_key location;
1977
1978again:
 
 
 
 
 
 
 
1979	eb = path->nodes[0];
1980	slot = path->slots[0];
1981	item_size = btrfs_item_size_nr(eb, slot);
1982	ptr = btrfs_item_ptr_offset(eb, slot);
1983	ptr_end = ptr + item_size;
1984	while (ptr < ptr_end) {
1985		di = (struct btrfs_dir_item *)ptr;
1986		if (verify_dir_item(root, eb, di)) {
1987			ret = -EIO;
1988			goto out;
1989		}
1990
1991		name_len = btrfs_dir_name_len(eb, di);
1992		name = kmalloc(name_len, GFP_NOFS);
1993		if (!name) {
1994			ret = -ENOMEM;
1995			goto out;
1996		}
1997		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1998				  name_len);
1999		log_di = NULL;
2000		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2001			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2002						       dir_key->objectid,
2003						       name, name_len, 0);
2004		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2005			log_di = btrfs_lookup_dir_index_item(trans, log,
2006						     log_path,
2007						     dir_key->objectid,
2008						     dir_key->offset,
2009						     name, name_len, 0);
2010		}
2011		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2012			btrfs_dir_item_key_to_cpu(eb, di, &location);
2013			btrfs_release_path(path);
2014			btrfs_release_path(log_path);
2015			inode = read_one_inode(root, location.objectid);
2016			if (!inode) {
2017				kfree(name);
2018				return -EIO;
2019			}
2020
2021			ret = link_to_fixup_dir(trans, root,
2022						path, location.objectid);
2023			if (ret) {
2024				kfree(name);
2025				iput(inode);
2026				goto out;
2027			}
2028
2029			inc_nlink(inode);
2030			ret = btrfs_unlink_inode(trans, root, dir, inode,
2031						 name, name_len);
2032			if (!ret)
2033				ret = btrfs_run_delayed_items(trans, root);
2034			kfree(name);
2035			iput(inode);
2036			if (ret)
2037				goto out;
2038
2039			/* there might still be more names under this key
2040			 * check and repeat if required
2041			 */
2042			ret = btrfs_search_slot(NULL, root, dir_key, path,
2043						0, 0);
2044			if (ret == 0)
2045				goto again;
 
2046			ret = 0;
2047			goto out;
2048		} else if (IS_ERR(log_di)) {
2049			kfree(name);
2050			return PTR_ERR(log_di);
2051		}
2052		btrfs_release_path(log_path);
2053		kfree(name);
2054
2055		ptr = (unsigned long)(di + 1);
2056		ptr += name_len;
 
 
 
 
 
2057	}
2058	ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
2059out:
2060	btrfs_release_path(path);
2061	btrfs_release_path(log_path);
 
 
2062	return ret;
2063}
2064
2065static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2066			      struct btrfs_root *root,
2067			      struct btrfs_root *log,
2068			      struct btrfs_path *path,
2069			      const u64 ino)
2070{
2071	struct btrfs_key search_key;
2072	struct btrfs_path *log_path;
2073	int i;
2074	int nritems;
2075	int ret;
2076
2077	log_path = btrfs_alloc_path();
2078	if (!log_path)
2079		return -ENOMEM;
2080
2081	search_key.objectid = ino;
2082	search_key.type = BTRFS_XATTR_ITEM_KEY;
2083	search_key.offset = 0;
2084again:
2085	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2086	if (ret < 0)
2087		goto out;
2088process_leaf:
2089	nritems = btrfs_header_nritems(path->nodes[0]);
2090	for (i = path->slots[0]; i < nritems; i++) {
2091		struct btrfs_key key;
2092		struct btrfs_dir_item *di;
2093		struct btrfs_dir_item *log_di;
2094		u32 total_size;
2095		u32 cur;
2096
2097		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2098		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2099			ret = 0;
2100			goto out;
2101		}
2102
2103		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2104		total_size = btrfs_item_size_nr(path->nodes[0], i);
2105		cur = 0;
2106		while (cur < total_size) {
2107			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2108			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2109			u32 this_len = sizeof(*di) + name_len + data_len;
2110			char *name;
2111
2112			name = kmalloc(name_len, GFP_NOFS);
2113			if (!name) {
2114				ret = -ENOMEM;
2115				goto out;
2116			}
2117			read_extent_buffer(path->nodes[0], name,
2118					   (unsigned long)(di + 1), name_len);
2119
2120			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2121						    name, name_len, 0);
2122			btrfs_release_path(log_path);
2123			if (!log_di) {
2124				/* Doesn't exist in log tree, so delete it. */
2125				btrfs_release_path(path);
2126				di = btrfs_lookup_xattr(trans, root, path, ino,
2127							name, name_len, -1);
2128				kfree(name);
2129				if (IS_ERR(di)) {
2130					ret = PTR_ERR(di);
2131					goto out;
2132				}
2133				ASSERT(di);
2134				ret = btrfs_delete_one_dir_name(trans, root,
2135								path, di);
2136				if (ret)
2137					goto out;
2138				btrfs_release_path(path);
2139				search_key = key;
2140				goto again;
2141			}
2142			kfree(name);
2143			if (IS_ERR(log_di)) {
2144				ret = PTR_ERR(log_di);
2145				goto out;
2146			}
2147			cur += this_len;
2148			di = (struct btrfs_dir_item *)((char *)di + this_len);
2149		}
2150	}
2151	ret = btrfs_next_leaf(root, path);
2152	if (ret > 0)
2153		ret = 0;
2154	else if (ret == 0)
2155		goto process_leaf;
2156out:
2157	btrfs_free_path(log_path);
2158	btrfs_release_path(path);
2159	return ret;
2160}
2161
2162
2163/*
2164 * deletion replay happens before we copy any new directory items
2165 * out of the log or out of backreferences from inodes.  It
2166 * scans the log to find ranges of keys that log is authoritative for,
2167 * and then scans the directory to find items in those ranges that are
2168 * not present in the log.
2169 *
2170 * Anything we don't find in the log is unlinked and removed from the
2171 * directory.
2172 */
2173static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2174				       struct btrfs_root *root,
2175				       struct btrfs_root *log,
2176				       struct btrfs_path *path,
2177				       u64 dirid, int del_all)
2178{
2179	u64 range_start;
2180	u64 range_end;
2181	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2182	int ret = 0;
2183	struct btrfs_key dir_key;
2184	struct btrfs_key found_key;
2185	struct btrfs_path *log_path;
2186	struct inode *dir;
2187
2188	dir_key.objectid = dirid;
2189	dir_key.type = BTRFS_DIR_ITEM_KEY;
2190	log_path = btrfs_alloc_path();
2191	if (!log_path)
2192		return -ENOMEM;
2193
2194	dir = read_one_inode(root, dirid);
2195	/* it isn't an error if the inode isn't there, that can happen
2196	 * because we replay the deletes before we copy in the inode item
2197	 * from the log
2198	 */
2199	if (!dir) {
2200		btrfs_free_path(log_path);
2201		return 0;
2202	}
2203again:
2204	range_start = 0;
2205	range_end = 0;
2206	while (1) {
2207		if (del_all)
2208			range_end = (u64)-1;
2209		else {
2210			ret = find_dir_range(log, path, dirid, key_type,
2211					     &range_start, &range_end);
2212			if (ret != 0)
 
 
2213				break;
2214		}
2215
2216		dir_key.offset = range_start;
2217		while (1) {
2218			int nritems;
2219			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2220						0, 0);
2221			if (ret < 0)
2222				goto out;
2223
2224			nritems = btrfs_header_nritems(path->nodes[0]);
2225			if (path->slots[0] >= nritems) {
2226				ret = btrfs_next_leaf(root, path);
2227				if (ret)
2228					break;
 
 
2229			}
2230			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2231					      path->slots[0]);
2232			if (found_key.objectid != dirid ||
2233			    found_key.type != dir_key.type)
2234				goto next_type;
 
 
2235
2236			if (found_key.offset > range_end)
2237				break;
2238
2239			ret = check_item_in_log(trans, root, log, path,
2240						log_path, dir,
2241						&found_key);
2242			if (ret)
2243				goto out;
2244			if (found_key.offset == (u64)-1)
2245				break;
2246			dir_key.offset = found_key.offset + 1;
2247		}
2248		btrfs_release_path(path);
2249		if (range_end == (u64)-1)
2250			break;
2251		range_start = range_end + 1;
2252	}
2253
2254next_type:
2255	ret = 0;
2256	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2257		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2258		dir_key.type = BTRFS_DIR_INDEX_KEY;
2259		btrfs_release_path(path);
2260		goto again;
2261	}
2262out:
2263	btrfs_release_path(path);
2264	btrfs_free_path(log_path);
2265	iput(dir);
2266	return ret;
2267}
2268
2269/*
2270 * the process_func used to replay items from the log tree.  This
2271 * gets called in two different stages.  The first stage just looks
2272 * for inodes and makes sure they are all copied into the subvolume.
2273 *
2274 * The second stage copies all the other item types from the log into
2275 * the subvolume.  The two stage approach is slower, but gets rid of
2276 * lots of complexity around inodes referencing other inodes that exist
2277 * only in the log (references come from either directory items or inode
2278 * back refs).
2279 */
2280static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2281			     struct walk_control *wc, u64 gen)
2282{
2283	int nritems;
 
 
 
 
2284	struct btrfs_path *path;
2285	struct btrfs_root *root = wc->replay_dest;
2286	struct btrfs_key key;
2287	int level;
2288	int i;
2289	int ret;
2290
2291	ret = btrfs_read_buffer(eb, gen);
2292	if (ret)
2293		return ret;
2294
2295	level = btrfs_header_level(eb);
2296
2297	if (level != 0)
2298		return 0;
2299
2300	path = btrfs_alloc_path();
2301	if (!path)
2302		return -ENOMEM;
2303
2304	nritems = btrfs_header_nritems(eb);
2305	for (i = 0; i < nritems; i++) {
2306		btrfs_item_key_to_cpu(eb, &key, i);
2307
2308		/* inode keys are done during the first stage */
2309		if (key.type == BTRFS_INODE_ITEM_KEY &&
2310		    wc->stage == LOG_WALK_REPLAY_INODES) {
2311			struct btrfs_inode_item *inode_item;
2312			u32 mode;
2313
2314			inode_item = btrfs_item_ptr(eb, i,
2315					    struct btrfs_inode_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2316			ret = replay_xattr_deletes(wc->trans, root, log,
2317						   path, key.objectid);
2318			if (ret)
2319				break;
2320			mode = btrfs_inode_mode(eb, inode_item);
2321			if (S_ISDIR(mode)) {
2322				ret = replay_dir_deletes(wc->trans,
2323					 root, log, path, key.objectid, 0);
2324				if (ret)
2325					break;
2326			}
2327			ret = overwrite_item(wc->trans, root, path,
2328					     eb, i, &key);
2329			if (ret)
2330				break;
2331
2332			/* for regular files, make sure corresponding
2333			 * orhpan item exist. extents past the new EOF
2334			 * will be truncated later by orphan cleanup.
 
 
 
 
2335			 */
2336			if (S_ISREG(mode)) {
2337				ret = insert_orphan_item(wc->trans, root,
2338							 key.objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339				if (ret)
2340					break;
2341			}
2342
2343			ret = link_to_fixup_dir(wc->trans, root,
2344						path, key.objectid);
2345			if (ret)
2346				break;
2347		}
2348
 
 
 
2349		if (key.type == BTRFS_DIR_INDEX_KEY &&
2350		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2351			ret = replay_one_dir_item(wc->trans, root, path,
2352						  eb, i, &key);
2353			if (ret)
2354				break;
2355		}
2356
2357		if (wc->stage < LOG_WALK_REPLAY_ALL)
2358			continue;
2359
2360		/* these keys are simply copied */
2361		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2362			ret = overwrite_item(wc->trans, root, path,
2363					     eb, i, &key);
2364			if (ret)
2365				break;
2366		} else if (key.type == BTRFS_INODE_REF_KEY ||
2367			   key.type == BTRFS_INODE_EXTREF_KEY) {
2368			ret = add_inode_ref(wc->trans, root, log, path,
2369					    eb, i, &key);
2370			if (ret && ret != -ENOENT)
2371				break;
2372			ret = 0;
2373		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2374			ret = replay_one_extent(wc->trans, root, path,
2375						eb, i, &key);
2376			if (ret)
2377				break;
2378		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2379			ret = replay_one_dir_item(wc->trans, root, path,
2380						  eb, i, &key);
2381			if (ret)
2382				break;
2383		}
 
 
 
 
 
 
2384	}
2385	btrfs_free_path(path);
2386	return ret;
2387}
2388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2390				   struct btrfs_root *root,
2391				   struct btrfs_path *path, int *level,
2392				   struct walk_control *wc)
2393{
2394	u64 root_owner;
2395	u64 bytenr;
2396	u64 ptr_gen;
2397	struct extent_buffer *next;
2398	struct extent_buffer *cur;
2399	struct extent_buffer *parent;
2400	u32 blocksize;
2401	int ret = 0;
2402
2403	WARN_ON(*level < 0);
2404	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2405
2406	while (*level > 0) {
2407		WARN_ON(*level < 0);
2408		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2409		cur = path->nodes[*level];
2410
2411		WARN_ON(btrfs_header_level(cur) != *level);
2412
2413		if (path->slots[*level] >=
2414		    btrfs_header_nritems(cur))
2415			break;
2416
2417		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2418		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2419		blocksize = root->nodesize;
2420
2421		parent = path->nodes[*level];
2422		root_owner = btrfs_header_owner(parent);
2423
2424		next = btrfs_find_create_tree_block(root, bytenr);
2425		if (!next)
2426			return -ENOMEM;
 
 
 
2427
2428		if (*level == 1) {
2429			ret = wc->process_func(root, next, wc, ptr_gen);
 
2430			if (ret) {
2431				free_extent_buffer(next);
2432				return ret;
2433			}
2434
2435			path->slots[*level]++;
2436			if (wc->free) {
2437				ret = btrfs_read_buffer(next, ptr_gen);
2438				if (ret) {
2439					free_extent_buffer(next);
2440					return ret;
2441				}
2442
2443				if (trans) {
2444					btrfs_tree_lock(next);
2445					btrfs_set_lock_blocking(next);
2446					clean_tree_block(trans, root->fs_info,
2447							next);
2448					btrfs_wait_tree_block_writeback(next);
2449					btrfs_tree_unlock(next);
2450				}
2451
2452				WARN_ON(root_owner !=
2453					BTRFS_TREE_LOG_OBJECTID);
2454				ret = btrfs_free_and_pin_reserved_extent(root,
2455							 bytenr, blocksize);
2456				if (ret) {
2457					free_extent_buffer(next);
2458					return ret;
 
 
 
2459				}
2460			}
2461			free_extent_buffer(next);
2462			continue;
2463		}
2464		ret = btrfs_read_buffer(next, ptr_gen);
2465		if (ret) {
2466			free_extent_buffer(next);
2467			return ret;
2468		}
2469
2470		WARN_ON(*level <= 0);
2471		if (path->nodes[*level-1])
2472			free_extent_buffer(path->nodes[*level-1]);
2473		path->nodes[*level-1] = next;
2474		*level = btrfs_header_level(next);
2475		path->slots[*level] = 0;
2476		cond_resched();
2477	}
2478	WARN_ON(*level < 0);
2479	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2480
2481	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2482
2483	cond_resched();
2484	return 0;
2485}
2486
2487static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2488				 struct btrfs_root *root,
2489				 struct btrfs_path *path, int *level,
2490				 struct walk_control *wc)
2491{
2492	u64 root_owner;
2493	int i;
2494	int slot;
2495	int ret;
2496
2497	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2498		slot = path->slots[i];
2499		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2500			path->slots[i]++;
2501			*level = i;
2502			WARN_ON(*level == 0);
2503			return 0;
2504		} else {
2505			struct extent_buffer *parent;
2506			if (path->nodes[*level] == root->node)
2507				parent = path->nodes[*level];
2508			else
2509				parent = path->nodes[*level + 1];
2510
2511			root_owner = btrfs_header_owner(parent);
2512			ret = wc->process_func(root, path->nodes[*level], wc,
2513				 btrfs_header_generation(path->nodes[*level]));
 
2514			if (ret)
2515				return ret;
2516
2517			if (wc->free) {
2518				struct extent_buffer *next;
2519
2520				next = path->nodes[*level];
2521
2522				if (trans) {
2523					btrfs_tree_lock(next);
2524					btrfs_set_lock_blocking(next);
2525					clean_tree_block(trans, root->fs_info,
2526							next);
2527					btrfs_wait_tree_block_writeback(next);
2528					btrfs_tree_unlock(next);
2529				}
 
 
 
 
 
 
 
 
 
2530
2531				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2532				ret = btrfs_free_and_pin_reserved_extent(root,
2533						path->nodes[*level]->start,
2534						path->nodes[*level]->len);
2535				if (ret)
2536					return ret;
2537			}
2538			free_extent_buffer(path->nodes[*level]);
2539			path->nodes[*level] = NULL;
2540			*level = i + 1;
2541		}
2542	}
2543	return 1;
2544}
2545
2546/*
2547 * drop the reference count on the tree rooted at 'snap'.  This traverses
2548 * the tree freeing any blocks that have a ref count of zero after being
2549 * decremented.
2550 */
2551static int walk_log_tree(struct btrfs_trans_handle *trans,
2552			 struct btrfs_root *log, struct walk_control *wc)
2553{
 
2554	int ret = 0;
2555	int wret;
2556	int level;
2557	struct btrfs_path *path;
2558	int orig_level;
2559
2560	path = btrfs_alloc_path();
2561	if (!path)
2562		return -ENOMEM;
2563
2564	level = btrfs_header_level(log->node);
2565	orig_level = level;
2566	path->nodes[level] = log->node;
2567	extent_buffer_get(log->node);
2568	path->slots[level] = 0;
2569
2570	while (1) {
2571		wret = walk_down_log_tree(trans, log, path, &level, wc);
2572		if (wret > 0)
2573			break;
2574		if (wret < 0) {
2575			ret = wret;
2576			goto out;
2577		}
2578
2579		wret = walk_up_log_tree(trans, log, path, &level, wc);
2580		if (wret > 0)
2581			break;
2582		if (wret < 0) {
2583			ret = wret;
2584			goto out;
2585		}
2586	}
2587
2588	/* was the root node processed? if not, catch it here */
2589	if (path->nodes[orig_level]) {
2590		ret = wc->process_func(log, path->nodes[orig_level], wc,
2591			 btrfs_header_generation(path->nodes[orig_level]));
 
2592		if (ret)
2593			goto out;
2594		if (wc->free) {
2595			struct extent_buffer *next;
2596
2597			next = path->nodes[orig_level];
2598
2599			if (trans) {
2600				btrfs_tree_lock(next);
2601				btrfs_set_lock_blocking(next);
2602				clean_tree_block(trans, log->fs_info, next);
2603				btrfs_wait_tree_block_writeback(next);
2604				btrfs_tree_unlock(next);
 
 
 
 
 
 
 
 
 
2605			}
2606
2607			WARN_ON(log->root_key.objectid !=
2608				BTRFS_TREE_LOG_OBJECTID);
2609			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2610							 next->len);
2611			if (ret)
2612				goto out;
2613		}
2614	}
2615
2616out:
2617	btrfs_free_path(path);
2618	return ret;
2619}
2620
2621/*
2622 * helper function to update the item for a given subvolumes log root
2623 * in the tree of log roots
2624 */
2625static int update_log_root(struct btrfs_trans_handle *trans,
2626			   struct btrfs_root *log)
 
2627{
 
2628	int ret;
2629
2630	if (log->log_transid == 1) {
2631		/* insert root item on the first sync */
2632		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2633				&log->root_key, &log->root_item);
2634	} else {
2635		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2636				&log->root_key, &log->root_item);
2637	}
2638	return ret;
2639}
2640
2641static void wait_log_commit(struct btrfs_root *root, int transid)
2642{
2643	DEFINE_WAIT(wait);
2644	int index = transid % 2;
2645
2646	/*
2647	 * we only allow two pending log transactions at a time,
2648	 * so we know that if ours is more than 2 older than the
2649	 * current transaction, we're done
2650	 */
2651	do {
2652		prepare_to_wait(&root->log_commit_wait[index],
2653				&wait, TASK_UNINTERRUPTIBLE);
2654		mutex_unlock(&root->log_mutex);
2655
2656		if (root->log_transid_committed < transid &&
2657		    atomic_read(&root->log_commit[index]))
2658			schedule();
2659
2660		finish_wait(&root->log_commit_wait[index], &wait);
 
2661		mutex_lock(&root->log_mutex);
2662	} while (root->log_transid_committed < transid &&
2663		 atomic_read(&root->log_commit[index]));
2664}
2665
2666static void wait_for_writer(struct btrfs_root *root)
2667{
2668	DEFINE_WAIT(wait);
2669
2670	while (atomic_read(&root->log_writers)) {
2671		prepare_to_wait(&root->log_writer_wait,
2672				&wait, TASK_UNINTERRUPTIBLE);
 
 
 
2673		mutex_unlock(&root->log_mutex);
2674		if (atomic_read(&root->log_writers))
2675			schedule();
2676		finish_wait(&root->log_writer_wait, &wait);
2677		mutex_lock(&root->log_mutex);
2678	}
 
2679}
2680
2681static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2682					struct btrfs_log_ctx *ctx)
2683{
2684	if (!ctx)
2685		return;
2686
2687	mutex_lock(&root->log_mutex);
2688	list_del_init(&ctx->list);
2689	mutex_unlock(&root->log_mutex);
2690}
2691
2692/* 
2693 * Invoked in log mutex context, or be sure there is no other task which
2694 * can access the list.
2695 */
2696static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2697					     int index, int error)
2698{
2699	struct btrfs_log_ctx *ctx;
 
2700
2701	if (!error) {
2702		INIT_LIST_HEAD(&root->log_ctxs[index]);
2703		return;
2704	}
2705
2706	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2707		ctx->log_ret = error;
2708
2709	INIT_LIST_HEAD(&root->log_ctxs[index]);
2710}
2711
2712/*
2713 * btrfs_sync_log does sends a given tree log down to the disk and
2714 * updates the super blocks to record it.  When this call is done,
2715 * you know that any inodes previously logged are safely on disk only
2716 * if it returns 0.
2717 *
2718 * Any other return value means you need to call btrfs_commit_transaction.
2719 * Some of the edge cases for fsyncing directories that have had unlinks
2720 * or renames done in the past mean that sometimes the only safe
2721 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2722 * that has happened.
2723 */
2724int btrfs_sync_log(struct btrfs_trans_handle *trans,
2725		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2726{
2727	int index1;
2728	int index2;
2729	int mark;
2730	int ret;
 
2731	struct btrfs_root *log = root->log_root;
2732	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
 
2733	int log_transid = 0;
2734	struct btrfs_log_ctx root_log_ctx;
2735	struct blk_plug plug;
 
 
2736
2737	mutex_lock(&root->log_mutex);
2738	log_transid = ctx->log_transid;
2739	if (root->log_transid_committed >= log_transid) {
2740		mutex_unlock(&root->log_mutex);
2741		return ctx->log_ret;
2742	}
2743
2744	index1 = log_transid % 2;
2745	if (atomic_read(&root->log_commit[index1])) {
2746		wait_log_commit(root, log_transid);
2747		mutex_unlock(&root->log_mutex);
2748		return ctx->log_ret;
2749	}
2750	ASSERT(log_transid == root->log_transid);
2751	atomic_set(&root->log_commit[index1], 1);
2752
2753	/* wait for previous tree log sync to complete */
2754	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2755		wait_log_commit(root, log_transid - 1);
2756
2757	while (1) {
2758		int batch = atomic_read(&root->log_batch);
2759		/* when we're on an ssd, just kick the log commit out */
2760		if (!btrfs_test_opt(root, SSD) &&
2761		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2762			mutex_unlock(&root->log_mutex);
2763			schedule_timeout_uninterruptible(1);
2764			mutex_lock(&root->log_mutex);
2765		}
2766		wait_for_writer(root);
2767		if (batch == atomic_read(&root->log_batch))
2768			break;
2769	}
2770
2771	/* bail out if we need to do a full commit */
2772	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2773		ret = -EAGAIN;
2774		btrfs_free_logged_extents(log, log_transid);
2775		mutex_unlock(&root->log_mutex);
2776		goto out;
2777	}
2778
2779	if (log_transid % 2 == 0)
2780		mark = EXTENT_DIRTY;
2781	else
2782		mark = EXTENT_NEW;
2783
2784	/* we start IO on  all the marked extents here, but we don't actually
2785	 * wait for them until later.
2786	 */
2787	blk_start_plug(&plug);
2788	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
 
 
 
 
 
 
 
 
 
 
 
2789	if (ret) {
2790		blk_finish_plug(&plug);
2791		btrfs_abort_transaction(trans, root, ret);
2792		btrfs_free_logged_extents(log, log_transid);
2793		btrfs_set_log_full_commit(root->fs_info, trans);
2794		mutex_unlock(&root->log_mutex);
2795		goto out;
2796	}
2797
 
 
 
 
 
 
 
 
 
 
 
 
 
2798	btrfs_set_root_node(&log->root_item, log->node);
 
2799
2800	root->log_transid++;
2801	log->log_transid = root->log_transid;
2802	root->log_start_pid = 0;
2803	/*
2804	 * IO has been started, blocks of the log tree have WRITTEN flag set
2805	 * in their headers. new modifications of the log will be written to
2806	 * new positions. so it's safe to allow log writers to go in.
2807	 */
2808	mutex_unlock(&root->log_mutex);
2809
2810	btrfs_init_log_ctx(&root_log_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
2811
2812	mutex_lock(&log_root_tree->log_mutex);
2813	atomic_inc(&log_root_tree->log_batch);
2814	atomic_inc(&log_root_tree->log_writers);
2815
2816	index2 = log_root_tree->log_transid % 2;
2817	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2818	root_log_ctx.log_transid = log_root_tree->log_transid;
2819
2820	mutex_unlock(&log_root_tree->log_mutex);
2821
2822	ret = update_log_root(trans, log);
2823
2824	mutex_lock(&log_root_tree->log_mutex);
2825	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2826		/*
2827		 * Implicit memory barrier after atomic_dec_and_test
2828		 */
2829		if (waitqueue_active(&log_root_tree->log_writer_wait))
2830			wake_up(&log_root_tree->log_writer_wait);
2831	}
2832
2833	if (ret) {
2834		if (!list_empty(&root_log_ctx.list))
2835			list_del_init(&root_log_ctx.list);
2836
2837		blk_finish_plug(&plug);
2838		btrfs_set_log_full_commit(root->fs_info, trans);
2839
2840		if (ret != -ENOSPC) {
2841			btrfs_abort_transaction(trans, root, ret);
2842			mutex_unlock(&log_root_tree->log_mutex);
2843			goto out;
2844		}
2845		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2846		btrfs_free_logged_extents(log, log_transid);
2847		mutex_unlock(&log_root_tree->log_mutex);
2848		ret = -EAGAIN;
2849		goto out;
2850	}
2851
2852	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2853		blk_finish_plug(&plug);
 
2854		mutex_unlock(&log_root_tree->log_mutex);
2855		ret = root_log_ctx.log_ret;
2856		goto out;
2857	}
2858
2859	index2 = root_log_ctx.log_transid % 2;
2860	if (atomic_read(&log_root_tree->log_commit[index2])) {
2861		blk_finish_plug(&plug);
2862		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2863						mark);
2864		btrfs_wait_logged_extents(trans, log, log_transid);
2865		wait_log_commit(log_root_tree,
2866				root_log_ctx.log_transid);
2867		mutex_unlock(&log_root_tree->log_mutex);
2868		if (!ret)
2869			ret = root_log_ctx.log_ret;
2870		goto out;
2871	}
2872	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2873	atomic_set(&log_root_tree->log_commit[index2], 1);
2874
2875	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2876		wait_log_commit(log_root_tree,
2877				root_log_ctx.log_transid - 1);
2878	}
2879
2880	wait_for_writer(log_root_tree);
2881
2882	/*
2883	 * now that we've moved on to the tree of log tree roots,
2884	 * check the full commit flag again
2885	 */
2886	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2887		blk_finish_plug(&plug);
2888		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2889		btrfs_free_logged_extents(log, log_transid);
2890		mutex_unlock(&log_root_tree->log_mutex);
2891		ret = -EAGAIN;
2892		goto out_wake_log_root;
2893	}
2894
2895	ret = btrfs_write_marked_extents(log_root_tree,
2896					 &log_root_tree->dirty_log_pages,
2897					 EXTENT_DIRTY | EXTENT_NEW);
2898	blk_finish_plug(&plug);
2899	if (ret) {
2900		btrfs_set_log_full_commit(root->fs_info, trans);
2901		btrfs_abort_transaction(trans, root, ret);
2902		btrfs_free_logged_extents(log, log_transid);
 
 
 
 
 
 
 
 
2903		mutex_unlock(&log_root_tree->log_mutex);
2904		goto out_wake_log_root;
2905	}
2906	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2907	if (!ret)
2908		ret = btrfs_wait_marked_extents(log_root_tree,
2909						&log_root_tree->dirty_log_pages,
2910						EXTENT_NEW | EXTENT_DIRTY);
2911	if (ret) {
2912		btrfs_set_log_full_commit(root->fs_info, trans);
2913		btrfs_free_logged_extents(log, log_transid);
2914		mutex_unlock(&log_root_tree->log_mutex);
2915		goto out_wake_log_root;
2916	}
2917	btrfs_wait_logged_extents(trans, log, log_transid);
2918
2919	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2920				log_root_tree->node->start);
2921	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2922				btrfs_header_level(log_root_tree->node));
2923
 
 
2924	log_root_tree->log_transid++;
2925	mutex_unlock(&log_root_tree->log_mutex);
2926
2927	/*
2928	 * nobody else is going to jump in and write the the ctree
2929	 * super here because the log_commit atomic below is protecting
2930	 * us.  We must be called with a transaction handle pinning
2931	 * the running transaction open, so a full commit can't hop
2932	 * in and cause problems either.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2933	 */
2934	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2935	if (ret) {
2936		btrfs_set_log_full_commit(root->fs_info, trans);
2937		btrfs_abort_transaction(trans, root, ret);
 
2938		goto out_wake_log_root;
2939	}
2940
2941	mutex_lock(&root->log_mutex);
2942	if (root->last_log_commit < log_transid)
2943		root->last_log_commit = log_transid;
2944	mutex_unlock(&root->log_mutex);
 
 
 
 
 
2945
2946out_wake_log_root:
2947	/*
2948	 * We needn't get log_mutex here because we are sure all
2949	 * the other tasks are blocked.
 
 
 
 
2950	 */
2951	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
 
2952
 
2953	mutex_lock(&log_root_tree->log_mutex);
 
 
2954	log_root_tree->log_transid_committed++;
2955	atomic_set(&log_root_tree->log_commit[index2], 0);
2956	mutex_unlock(&log_root_tree->log_mutex);
2957
2958	/*
2959	 * The barrier before waitqueue_active is implied by mutex_unlock
 
 
2960	 */
2961	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2962		wake_up(&log_root_tree->log_commit_wait[index2]);
2963out:
2964	/* See above. */
2965	btrfs_remove_all_log_ctxs(root, index1, ret);
2966
2967	mutex_lock(&root->log_mutex);
 
2968	root->log_transid_committed++;
2969	atomic_set(&root->log_commit[index1], 0);
2970	mutex_unlock(&root->log_mutex);
2971
2972	/*
2973	 * The barrier before waitqueue_active is implied by mutex_unlock
 
 
2974	 */
2975	if (waitqueue_active(&root->log_commit_wait[index1]))
2976		wake_up(&root->log_commit_wait[index1]);
2977	return ret;
2978}
2979
2980static void free_log_tree(struct btrfs_trans_handle *trans,
2981			  struct btrfs_root *log)
2982{
2983	int ret;
2984	u64 start;
2985	u64 end;
2986	struct walk_control wc = {
2987		.free = 1,
2988		.process_func = process_one_buffer
2989	};
2990
2991	ret = walk_log_tree(trans, log, &wc);
2992	/* I don't think this can happen but just in case */
2993	if (ret)
2994		btrfs_abort_transaction(trans, log, ret);
 
 
 
 
 
 
 
2995
2996	while (1) {
2997		ret = find_first_extent_bit(&log->dirty_log_pages,
2998				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2999				NULL);
3000		if (ret)
3001			break;
 
 
 
 
 
 
 
3002
3003		clear_extent_bits(&log->dirty_log_pages, start, end,
3004				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
 
 
 
3005	}
3006
3007	/*
3008	 * We may have short-circuited the log tree with the full commit logic
3009	 * and left ordered extents on our list, so clear these out to keep us
3010	 * from leaking inodes and memory.
3011	 */
3012	btrfs_free_logged_extents(log, 0);
3013	btrfs_free_logged_extents(log, 1);
3014
3015	free_extent_buffer(log->node);
3016	kfree(log);
3017}
3018
3019/*
3020 * free all the extents used by the tree log.  This should be called
3021 * at commit time of the full transaction
3022 */
3023int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3024{
3025	if (root->log_root) {
3026		free_log_tree(trans, root->log_root);
3027		root->log_root = NULL;
 
3028	}
3029	return 0;
3030}
3031
3032int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3033			     struct btrfs_fs_info *fs_info)
3034{
3035	if (fs_info->log_root_tree) {
3036		free_log_tree(trans, fs_info->log_root_tree);
3037		fs_info->log_root_tree = NULL;
 
3038	}
3039	return 0;
3040}
3041
3042/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3043 * If both a file and directory are logged, and unlinks or renames are
3044 * mixed in, we have a few interesting corners:
3045 *
3046 * create file X in dir Y
3047 * link file X to X.link in dir Y
3048 * fsync file X
3049 * unlink file X but leave X.link
3050 * fsync dir Y
3051 *
3052 * After a crash we would expect only X.link to exist.  But file X
3053 * didn't get fsync'd again so the log has back refs for X and X.link.
3054 *
3055 * We solve this by removing directory entries and inode backrefs from the
3056 * log when a file that was logged in the current transaction is
3057 * unlinked.  Any later fsync will include the updated log entries, and
3058 * we'll be able to reconstruct the proper directory items from backrefs.
3059 *
3060 * This optimizations allows us to avoid relogging the entire inode
3061 * or the entire directory.
3062 */
3063int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3064				 struct btrfs_root *root,
3065				 const char *name, int name_len,
3066				 struct inode *dir, u64 index)
3067{
3068	struct btrfs_root *log;
3069	struct btrfs_dir_item *di;
3070	struct btrfs_path *path;
3071	int ret;
3072	int err = 0;
3073	int bytes_del = 0;
3074	u64 dir_ino = btrfs_ino(dir);
3075
3076	if (BTRFS_I(dir)->logged_trans < trans->transid)
3077		return 0;
 
 
 
 
 
3078
3079	ret = join_running_log_trans(root);
3080	if (ret)
3081		return 0;
3082
3083	mutex_lock(&BTRFS_I(dir)->log_mutex);
3084
3085	log = root->log_root;
3086	path = btrfs_alloc_path();
3087	if (!path) {
3088		err = -ENOMEM;
3089		goto out_unlock;
3090	}
3091
3092	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3093				   name, name_len, -1);
3094	if (IS_ERR(di)) {
3095		err = PTR_ERR(di);
3096		goto fail;
3097	}
3098	if (di) {
3099		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3100		bytes_del += name_len;
3101		if (ret) {
3102			err = ret;
3103			goto fail;
3104		}
3105	}
3106	btrfs_release_path(path);
3107	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3108					 index, name, name_len, -1);
3109	if (IS_ERR(di)) {
3110		err = PTR_ERR(di);
3111		goto fail;
3112	}
3113	if (di) {
3114		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3115		bytes_del += name_len;
3116		if (ret) {
3117			err = ret;
3118			goto fail;
3119		}
3120	}
3121
3122	/* update the directory size in the log to reflect the names
3123	 * we have removed
3124	 */
3125	if (bytes_del) {
3126		struct btrfs_key key;
3127
3128		key.objectid = dir_ino;
3129		key.offset = 0;
3130		key.type = BTRFS_INODE_ITEM_KEY;
3131		btrfs_release_path(path);
3132
3133		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3134		if (ret < 0) {
3135			err = ret;
3136			goto fail;
3137		}
3138		if (ret == 0) {
3139			struct btrfs_inode_item *item;
3140			u64 i_size;
3141
3142			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3143					      struct btrfs_inode_item);
3144			i_size = btrfs_inode_size(path->nodes[0], item);
3145			if (i_size > bytes_del)
3146				i_size -= bytes_del;
3147			else
3148				i_size = 0;
3149			btrfs_set_inode_size(path->nodes[0], item, i_size);
3150			btrfs_mark_buffer_dirty(path->nodes[0]);
3151		} else
3152			ret = 0;
3153		btrfs_release_path(path);
3154	}
3155fail:
3156	btrfs_free_path(path);
3157out_unlock:
3158	mutex_unlock(&BTRFS_I(dir)->log_mutex);
3159	if (ret == -ENOSPC) {
3160		btrfs_set_log_full_commit(root->fs_info, trans);
3161		ret = 0;
3162	} else if (ret < 0)
3163		btrfs_abort_transaction(trans, root, ret);
3164
3165	btrfs_end_log_trans(root);
3166
3167	return err;
3168}
3169
3170/* see comments for btrfs_del_dir_entries_in_log */
3171int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3172			       struct btrfs_root *root,
3173			       const char *name, int name_len,
3174			       struct inode *inode, u64 dirid)
3175{
3176	struct btrfs_root *log;
3177	u64 index;
3178	int ret;
3179
3180	if (BTRFS_I(inode)->logged_trans < trans->transid)
3181		return 0;
 
 
 
 
 
3182
3183	ret = join_running_log_trans(root);
3184	if (ret)
3185		return 0;
3186	log = root->log_root;
3187	mutex_lock(&BTRFS_I(inode)->log_mutex);
3188
3189	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3190				  dirid, &index);
3191	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3192	if (ret == -ENOSPC) {
3193		btrfs_set_log_full_commit(root->fs_info, trans);
3194		ret = 0;
3195	} else if (ret < 0 && ret != -ENOENT)
3196		btrfs_abort_transaction(trans, root, ret);
3197	btrfs_end_log_trans(root);
3198
3199	return ret;
3200}
3201
3202/*
3203 * creates a range item in the log for 'dirid'.  first_offset and
3204 * last_offset tell us which parts of the key space the log should
3205 * be considered authoritative for.
3206 */
3207static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3208				       struct btrfs_root *log,
3209				       struct btrfs_path *path,
3210				       int key_type, u64 dirid,
3211				       u64 first_offset, u64 last_offset)
3212{
3213	int ret;
3214	struct btrfs_key key;
3215	struct btrfs_dir_log_item *item;
3216
3217	key.objectid = dirid;
3218	key.offset = first_offset;
3219	if (key_type == BTRFS_DIR_ITEM_KEY)
3220		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3221	else
3222		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3223	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3224	if (ret)
 
 
 
 
 
 
 
3225		return ret;
3226
3227	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3228			      struct btrfs_dir_log_item);
 
 
 
 
 
 
 
 
 
 
 
3229	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3230	btrfs_mark_buffer_dirty(path->nodes[0]);
3231	btrfs_release_path(path);
3232	return 0;
3233}
3234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235/*
3236 * log all the items included in the current transaction for a given
3237 * directory.  This also creates the range items in the log tree required
3238 * to replay anything deleted before the fsync
3239 */
3240static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3241			  struct btrfs_root *root, struct inode *inode,
3242			  struct btrfs_path *path,
3243			  struct btrfs_path *dst_path, int key_type,
3244			  struct btrfs_log_ctx *ctx,
3245			  u64 min_offset, u64 *last_offset_ret)
3246{
3247	struct btrfs_key min_key;
 
3248	struct btrfs_root *log = root->log_root;
3249	struct extent_buffer *src;
3250	int err = 0;
3251	int ret;
3252	int i;
3253	int nritems;
3254	u64 first_offset = min_offset;
3255	u64 last_offset = (u64)-1;
3256	u64 ino = btrfs_ino(inode);
3257
3258	log = root->log_root;
3259
3260	min_key.objectid = ino;
3261	min_key.type = key_type;
3262	min_key.offset = min_offset;
3263
3264	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3265
3266	/*
3267	 * we didn't find anything from this transaction, see if there
3268	 * is anything at all
3269	 */
3270	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
 
3271		min_key.objectid = ino;
3272		min_key.type = key_type;
3273		min_key.offset = (u64)-1;
3274		btrfs_release_path(path);
3275		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3276		if (ret < 0) {
3277			btrfs_release_path(path);
3278			return ret;
3279		}
3280		ret = btrfs_previous_item(root, path, ino, key_type);
3281
3282		/* if ret == 0 there are items for this type,
3283		 * create a range to tell us the last key of this type.
3284		 * otherwise, there are no items in this directory after
3285		 * *min_offset, and we create a range to indicate that.
3286		 */
3287		if (ret == 0) {
3288			struct btrfs_key tmp;
 
3289			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3290					      path->slots[0]);
3291			if (key_type == tmp.type)
3292				first_offset = max(min_offset, tmp.offset) + 1;
 
 
3293		}
 
3294		goto done;
3295	}
3296
3297	/* go backward to find any previous key */
3298	ret = btrfs_previous_item(root, path, ino, key_type);
3299	if (ret == 0) {
3300		struct btrfs_key tmp;
 
3301		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3302		if (key_type == tmp.type) {
3303			first_offset = tmp.offset;
3304			ret = overwrite_item(trans, log, dst_path,
3305					     path->nodes[0], path->slots[0],
3306					     &tmp);
3307			if (ret) {
3308				err = ret;
3309				goto done;
3310			}
3311		}
 
 
 
3312	}
 
3313	btrfs_release_path(path);
3314
3315	/* find the first key from this transaction again */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3316	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3317	if (WARN_ON(ret != 0))
 
 
 
 
 
3318		goto done;
3319
3320	/*
3321	 * we have a block from this transaction, log every item in it
3322	 * from our directory
3323	 */
3324	while (1) {
3325		struct btrfs_key tmp;
3326		src = path->nodes[0];
3327		nritems = btrfs_header_nritems(src);
3328		for (i = path->slots[0]; i < nritems; i++) {
3329			struct btrfs_dir_item *di;
3330
3331			btrfs_item_key_to_cpu(src, &min_key, i);
3332
3333			if (min_key.objectid != ino || min_key.type != key_type)
3334				goto done;
3335			ret = overwrite_item(trans, log, dst_path, src, i,
3336					     &min_key);
3337			if (ret) {
3338				err = ret;
3339				goto done;
3340			}
3341
3342			/*
3343			 * We must make sure that when we log a directory entry,
3344			 * the corresponding inode, after log replay, has a
3345			 * matching link count. For example:
3346			 *
3347			 * touch foo
3348			 * mkdir mydir
3349			 * sync
3350			 * ln foo mydir/bar
3351			 * xfs_io -c "fsync" mydir
3352			 * <crash>
3353			 * <mount fs and log replay>
3354			 *
3355			 * Would result in a fsync log that when replayed, our
3356			 * file inode would have a link count of 1, but we get
3357			 * two directory entries pointing to the same inode.
3358			 * After removing one of the names, it would not be
3359			 * possible to remove the other name, which resulted
3360			 * always in stale file handle errors, and would not
3361			 * be possible to rmdir the parent directory, since
3362			 * its i_size could never decrement to the value
3363			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3364			 */
3365			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3366			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3367			if (ctx &&
3368			    (btrfs_dir_transid(src, di) == trans->transid ||
3369			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3370			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3371				ctx->log_new_dentries = true;
3372		}
3373		path->slots[0] = nritems;
3374
3375		/*
3376		 * look ahead to the next item and see if it is also
3377		 * from this directory and from this transaction
3378		 */
3379		ret = btrfs_next_leaf(root, path);
3380		if (ret == 1) {
3381			last_offset = (u64)-1;
 
 
 
3382			goto done;
3383		}
3384		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3385		if (tmp.objectid != ino || tmp.type != key_type) {
3386			last_offset = (u64)-1;
3387			goto done;
3388		}
3389		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3390			ret = overwrite_item(trans, log, dst_path,
3391					     path->nodes[0], path->slots[0],
3392					     &tmp);
3393			if (ret)
3394				err = ret;
3395			else
3396				last_offset = tmp.offset;
 
 
 
3397			goto done;
3398		}
 
 
 
 
 
3399	}
3400done:
3401	btrfs_release_path(path);
3402	btrfs_release_path(dst_path);
3403
3404	if (err == 0) {
3405		*last_offset_ret = last_offset;
3406		/*
3407		 * insert the log range keys to indicate where the log
3408		 * is valid
 
 
 
 
3409		 */
3410		ret = insert_dir_log_key(trans, log, path, key_type,
3411					 ino, first_offset, last_offset);
3412		if (ret)
3413			err = ret;
 
 
 
 
3414	}
3415	return err;
3416}
3417
3418/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3419 * logging directories is very similar to logging inodes, We find all the items
3420 * from the current transaction and write them to the log.
3421 *
3422 * The recovery code scans the directory in the subvolume, and if it finds a
3423 * key in the range logged that is not present in the log tree, then it means
3424 * that dir entry was unlinked during the transaction.
3425 *
3426 * In order for that scan to work, we must include one key smaller than
3427 * the smallest logged by this transaction and one key larger than the largest
3428 * key logged by this transaction.
3429 */
3430static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3431			  struct btrfs_root *root, struct inode *inode,
3432			  struct btrfs_path *path,
3433			  struct btrfs_path *dst_path,
3434			  struct btrfs_log_ctx *ctx)
3435{
3436	u64 min_key;
3437	u64 max_key;
3438	int ret;
3439	int key_type = BTRFS_DIR_ITEM_KEY;
3440
3441again:
3442	min_key = 0;
 
 
 
3443	max_key = 0;
 
3444	while (1) {
3445		ret = log_dir_items(trans, root, inode, path,
3446				    dst_path, key_type, ctx, min_key,
3447				    &max_key);
3448		if (ret)
3449			return ret;
3450		if (max_key == (u64)-1)
3451			break;
3452		min_key = max_key + 1;
3453	}
3454
3455	if (key_type == BTRFS_DIR_ITEM_KEY) {
3456		key_type = BTRFS_DIR_INDEX_KEY;
3457		goto again;
3458	}
3459	return 0;
3460}
3461
3462/*
3463 * a helper function to drop items from the log before we relog an
3464 * inode.  max_key_type indicates the highest item type to remove.
3465 * This cannot be run for file data extents because it does not
3466 * free the extents they point to.
3467 */
3468static int drop_objectid_items(struct btrfs_trans_handle *trans,
3469				  struct btrfs_root *log,
3470				  struct btrfs_path *path,
3471				  u64 objectid, int max_key_type)
 
3472{
3473	int ret;
3474	struct btrfs_key key;
3475	struct btrfs_key found_key;
3476	int start_slot;
3477
3478	key.objectid = objectid;
3479	key.type = max_key_type;
3480	key.offset = (u64)-1;
3481
3482	while (1) {
3483		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3484		BUG_ON(ret == 0); /* Logic error */
3485		if (ret < 0)
3486			break;
3487
3488		if (path->slots[0] == 0)
3489			break;
3490
3491		path->slots[0]--;
3492		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3493				      path->slots[0]);
3494
3495		if (found_key.objectid != objectid)
3496			break;
3497
3498		found_key.offset = 0;
3499		found_key.type = 0;
3500		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3501				       &start_slot);
 
3502
3503		ret = btrfs_del_items(trans, log, path, start_slot,
3504				      path->slots[0] - start_slot + 1);
3505		/*
3506		 * If start slot isn't 0 then we don't need to re-search, we've
3507		 * found the last guy with the objectid in this tree.
3508		 */
3509		if (ret || start_slot != 0)
3510			break;
3511		btrfs_release_path(path);
3512	}
3513	btrfs_release_path(path);
3514	if (ret > 0)
3515		ret = 0;
3516	return ret;
3517}
3518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3519static void fill_inode_item(struct btrfs_trans_handle *trans,
3520			    struct extent_buffer *leaf,
3521			    struct btrfs_inode_item *item,
3522			    struct inode *inode, int log_inode_only,
3523			    u64 logged_isize)
3524{
3525	struct btrfs_map_token token;
 
3526
3527	btrfs_init_map_token(&token);
3528
3529	if (log_inode_only) {
3530		/* set the generation to zero so the recover code
3531		 * can tell the difference between an logging
3532		 * just to say 'this inode exists' and a logging
3533		 * to say 'update this inode with these values'
3534		 */
3535		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3536		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3537	} else {
3538		btrfs_set_token_inode_generation(leaf, item,
3539						 BTRFS_I(inode)->generation,
3540						 &token);
3541		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3542	}
3543
3544	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3545	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3546	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3547	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3548
3549	btrfs_set_token_timespec_sec(leaf, &item->atime,
3550				     inode->i_atime.tv_sec, &token);
3551	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3552				      inode->i_atime.tv_nsec, &token);
3553
3554	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3555				     inode->i_mtime.tv_sec, &token);
3556	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3557				      inode->i_mtime.tv_nsec, &token);
3558
3559	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3560				     inode->i_ctime.tv_sec, &token);
3561	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3562				      inode->i_ctime.tv_nsec, &token);
3563
3564	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3565				     &token);
3566
3567	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3568	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3569	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3570	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3571	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
 
 
 
 
 
 
 
3572}
3573
3574static int log_inode_item(struct btrfs_trans_handle *trans,
3575			  struct btrfs_root *log, struct btrfs_path *path,
3576			  struct inode *inode)
3577{
3578	struct btrfs_inode_item *inode_item;
3579	int ret;
3580
3581	ret = btrfs_insert_empty_item(trans, log, path,
3582				      &BTRFS_I(inode)->location,
3583				      sizeof(*inode_item));
3584	if (ret && ret != -EEXIST)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3585		return ret;
3586	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3587				    struct btrfs_inode_item);
3588	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
 
3589	btrfs_release_path(path);
3590	return 0;
3591}
3592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3593static noinline int copy_items(struct btrfs_trans_handle *trans,
3594			       struct inode *inode,
3595			       struct btrfs_path *dst_path,
3596			       struct btrfs_path *src_path, u64 *last_extent,
3597			       int start_slot, int nr, int inode_only,
3598			       u64 logged_isize)
3599{
3600	unsigned long src_offset;
3601	unsigned long dst_offset;
3602	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3603	struct btrfs_file_extent_item *extent;
3604	struct btrfs_inode_item *inode_item;
3605	struct extent_buffer *src = src_path->nodes[0];
3606	struct btrfs_key first_key, last_key, key;
3607	int ret;
3608	struct btrfs_key *ins_keys;
3609	u32 *ins_sizes;
 
3610	char *ins_data;
3611	int i;
3612	struct list_head ordered_sums;
3613	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3614	bool has_extents = false;
3615	bool need_find_last_extent = true;
3616	bool done = false;
3617
3618	INIT_LIST_HEAD(&ordered_sums);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3619
3620	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3621			   nr * sizeof(u32), GFP_NOFS);
3622	if (!ins_data)
3623		return -ENOMEM;
3624
3625	first_key.objectid = (u64)-1;
3626
3627	ins_sizes = (u32 *)ins_data;
3628	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
 
 
 
 
3629
 
3630	for (i = 0; i < nr; i++) {
3631		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3632		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3633	}
3634	ret = btrfs_insert_empty_items(trans, log, dst_path,
3635				       ins_keys, ins_sizes, nr);
3636	if (ret) {
3637		kfree(ins_data);
3638		return ret;
3639	}
 
3640
3641	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3642		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3643						   dst_path->slots[0]);
3644
3645		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3646
3647		if ((i == (nr - 1)))
3648			last_key = ins_keys[i];
3649
3650		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3651			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3652						    dst_path->slots[0],
3653						    struct btrfs_inode_item);
3654			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3655					inode, inode_only == LOG_INODE_EXISTS,
3656					logged_isize);
3657		} else {
3658			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3659					   src_offset, ins_sizes[i]);
3660		}
3661
3662		/*
3663		 * We set need_find_last_extent here in case we know we were
3664		 * processing other items and then walk into the first extent in
3665		 * the inode.  If we don't hit an extent then nothing changes,
3666		 * we'll do the last search the next time around.
 
 
 
 
 
 
 
3667		 */
3668		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3669			has_extents = true;
3670			if (first_key.objectid == (u64)-1)
3671				first_key = ins_keys[i];
3672		} else {
3673			need_find_last_extent = false;
3674		}
 
 
 
 
3675
3676		/* take a reference on file data extents so that truncates
3677		 * or deletes of this inode don't have to relog the inode
3678		 * again
 
3679		 */
3680		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3681		    !skip_csum) {
3682			int found_type;
3683			extent = btrfs_item_ptr(src, start_slot + i,
3684						struct btrfs_file_extent_item);
3685
3686			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3687				continue;
 
 
 
 
 
 
 
 
 
 
 
 
3688
3689			found_type = btrfs_file_extent_type(src, extent);
3690			if (found_type == BTRFS_FILE_EXTENT_REG) {
3691				u64 ds, dl, cs, cl;
3692				ds = btrfs_file_extent_disk_bytenr(src,
3693								extent);
3694				/* ds == 0 is a hole */
3695				if (ds == 0)
3696					continue;
3697
3698				dl = btrfs_file_extent_disk_num_bytes(src,
3699								extent);
3700				cs = btrfs_file_extent_offset(src, extent);
3701				cl = btrfs_file_extent_num_bytes(src,
3702								extent);
3703				if (btrfs_file_extent_compression(src,
3704								  extent)) {
3705					cs = 0;
3706					cl = dl;
3707				}
3708
3709				ret = btrfs_lookup_csums_range(
3710						log->fs_info->csum_root,
3711						ds + cs, ds + cs + cl - 1,
3712						&ordered_sums, 0);
3713				if (ret) {
3714					btrfs_release_path(dst_path);
3715					kfree(ins_data);
3716					return ret;
3717				}
3718			}
3719		}
3720	}
 
3721
3722	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3723	btrfs_release_path(dst_path);
3724	kfree(ins_data);
 
 
 
3725
3726	/*
3727	 * we have to do this after the loop above to avoid changing the
3728	 * log tree while trying to change the log tree.
3729	 */
3730	ret = 0;
3731	while (!list_empty(&ordered_sums)) {
3732		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3733						   struct btrfs_ordered_sum,
3734						   list);
3735		if (!ret)
3736			ret = btrfs_csum_file_blocks(trans, log, sums);
3737		list_del(&sums->list);
3738		kfree(sums);
3739	}
3740
3741	if (!has_extents)
3742		return ret;
 
 
 
 
 
 
 
 
 
3743
3744	if (need_find_last_extent && *last_extent == first_key.offset) {
3745		/*
3746		 * We don't have any leafs between our current one and the one
3747		 * we processed before that can have file extent items for our
3748		 * inode (and have a generation number smaller than our current
3749		 * transaction id).
3750		 */
3751		need_find_last_extent = false;
3752	}
3753
3754	/*
3755	 * Because we use btrfs_search_forward we could skip leaves that were
3756	 * not modified and then assume *last_extent is valid when it really
3757	 * isn't.  So back up to the previous leaf and read the end of the last
3758	 * extent before we go and fill in holes.
3759	 */
3760	if (need_find_last_extent) {
3761		u64 len;
3762
3763		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3764		if (ret < 0)
3765			return ret;
3766		if (ret)
3767			goto fill_holes;
3768		if (src_path->slots[0])
3769			src_path->slots[0]--;
3770		src = src_path->nodes[0];
3771		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3772		if (key.objectid != btrfs_ino(inode) ||
3773		    key.type != BTRFS_EXTENT_DATA_KEY)
3774			goto fill_holes;
3775		extent = btrfs_item_ptr(src, src_path->slots[0],
3776					struct btrfs_file_extent_item);
3777		if (btrfs_file_extent_type(src, extent) ==
3778		    BTRFS_FILE_EXTENT_INLINE) {
3779			len = btrfs_file_extent_inline_len(src,
3780							   src_path->slots[0],
3781							   extent);
3782			*last_extent = ALIGN(key.offset + len,
3783					     log->sectorsize);
3784		} else {
3785			len = btrfs_file_extent_num_bytes(src, extent);
3786			*last_extent = key.offset + len;
3787		}
3788	}
3789fill_holes:
3790	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3791	 * things could have happened
3792	 *
3793	 * 1) A merge could have happened, so we could currently be on a leaf
3794	 * that holds what we were copying in the first place.
3795	 * 2) A split could have happened, and now not all of the items we want
3796	 * are on the same leaf.
3797	 *
3798	 * So we need to adjust how we search for holes, we need to drop the
3799	 * path and re-search for the first extent key we found, and then walk
3800	 * forward until we hit the last one we copied.
3801	 */
3802	if (need_find_last_extent) {
3803		/* btrfs_prev_leaf could return 1 without releasing the path */
3804		btrfs_release_path(src_path);
3805		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3806					src_path, 0, 0);
3807		if (ret < 0)
3808			return ret;
3809		ASSERT(ret == 0);
3810		src = src_path->nodes[0];
3811		i = src_path->slots[0];
3812	} else {
3813		i = start_slot;
3814	}
3815
3816	/*
3817	 * Ok so here we need to go through and fill in any holes we may have
3818	 * to make sure that holes are punched for those areas in case they had
3819	 * extents previously.
3820	 */
3821	while (!done) {
3822		u64 offset, len;
3823		u64 extent_end;
3824
3825		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3826			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3827			if (ret < 0)
3828				return ret;
3829			ASSERT(ret == 0);
3830			src = src_path->nodes[0];
3831			i = 0;
3832		}
3833
3834		btrfs_item_key_to_cpu(src, &key, i);
3835		if (!btrfs_comp_cpu_keys(&key, &last_key))
3836			done = true;
3837		if (key.objectid != btrfs_ino(inode) ||
3838		    key.type != BTRFS_EXTENT_DATA_KEY) {
3839			i++;
3840			continue;
3841		}
3842		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3843		if (btrfs_file_extent_type(src, extent) ==
3844		    BTRFS_FILE_EXTENT_INLINE) {
3845			len = btrfs_file_extent_inline_len(src, i, extent);
3846			extent_end = ALIGN(key.offset + len, log->sectorsize);
3847		} else {
3848			len = btrfs_file_extent_num_bytes(src, extent);
3849			extent_end = key.offset + len;
3850		}
3851		i++;
3852
3853		if (*last_extent == key.offset) {
3854			*last_extent = extent_end;
3855			continue;
3856		}
3857		offset = *last_extent;
3858		len = key.offset - *last_extent;
3859		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3860					       offset, 0, 0, len, 0, len, 0,
3861					       0, 0);
3862		if (ret)
3863			break;
3864		*last_extent = extent_end;
3865	}
3866	/*
3867	 * Need to let the callers know we dropped the path so they should
3868	 * re-search.
3869	 */
3870	if (!ret && need_find_last_extent)
3871		ret = 1;
3872	return ret;
3873}
3874
3875static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
 
3876{
3877	struct extent_map *em1, *em2;
3878
3879	em1 = list_entry(a, struct extent_map, list);
3880	em2 = list_entry(b, struct extent_map, list);
3881
3882	if (em1->start < em2->start)
3883		return -1;
3884	else if (em1->start > em2->start)
3885		return 1;
3886	return 0;
3887}
3888
3889static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3890				struct inode *inode,
3891				struct btrfs_root *root,
3892				const struct extent_map *em,
3893				const struct list_head *logged_list,
3894				bool *ordered_io_error)
3895{
3896	struct btrfs_ordered_extent *ordered;
3897	struct btrfs_root *log = root->log_root;
3898	u64 mod_start = em->mod_start;
3899	u64 mod_len = em->mod_len;
3900	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3901	u64 csum_offset;
3902	u64 csum_len;
 
 
3903	LIST_HEAD(ordered_sums);
3904	int ret = 0;
3905
3906	*ordered_io_error = false;
3907
3908	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3909	    em->block_start == EXTENT_MAP_HOLE)
3910		return 0;
3911
3912	/*
3913	 * Wait far any ordered extent that covers our extent map. If it
3914	 * finishes without an error, first check and see if our csums are on
3915	 * our outstanding ordered extents.
3916	 */
3917	list_for_each_entry(ordered, logged_list, log_list) {
3918		struct btrfs_ordered_sum *sum;
3919
3920		if (!mod_len)
3921			break;
3922
3923		if (ordered->file_offset + ordered->len <= mod_start ||
3924		    mod_start + mod_len <= ordered->file_offset)
3925			continue;
3926
3927		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3928		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3929		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3930			const u64 start = ordered->file_offset;
3931			const u64 end = ordered->file_offset + ordered->len - 1;
3932
3933			WARN_ON(ordered->inode != inode);
3934			filemap_fdatawrite_range(inode->i_mapping, start, end);
3935		}
3936
3937		wait_event(ordered->wait,
3938			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3939			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3940
3941		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3942			/*
3943			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3944			 * i_mapping flags, so that the next fsync won't get
3945			 * an outdated io error too.
3946			 */
3947			btrfs_inode_check_errors(inode);
3948			*ordered_io_error = true;
3949			break;
3950		}
3951		/*
3952		 * We are going to copy all the csums on this ordered extent, so
3953		 * go ahead and adjust mod_start and mod_len in case this
3954		 * ordered extent has already been logged.
3955		 */
3956		if (ordered->file_offset > mod_start) {
3957			if (ordered->file_offset + ordered->len >=
3958			    mod_start + mod_len)
3959				mod_len = ordered->file_offset - mod_start;
3960			/*
3961			 * If we have this case
3962			 *
3963			 * |--------- logged extent ---------|
3964			 *       |----- ordered extent ----|
3965			 *
3966			 * Just don't mess with mod_start and mod_len, we'll
3967			 * just end up logging more csums than we need and it
3968			 * will be ok.
3969			 */
3970		} else {
3971			if (ordered->file_offset + ordered->len <
3972			    mod_start + mod_len) {
3973				mod_len = (mod_start + mod_len) -
3974					(ordered->file_offset + ordered->len);
3975				mod_start = ordered->file_offset +
3976					ordered->len;
3977			} else {
3978				mod_len = 0;
3979			}
3980		}
3981
3982		if (skip_csum)
3983			continue;
3984
3985		/*
3986		 * To keep us from looping for the above case of an ordered
3987		 * extent that falls inside of the logged extent.
3988		 */
3989		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3990				     &ordered->flags))
3991			continue;
3992
3993		list_for_each_entry(sum, &ordered->list, list) {
3994			ret = btrfs_csum_file_blocks(trans, log, sum);
3995			if (ret)
3996				break;
3997		}
3998	}
3999
4000	if (*ordered_io_error || !mod_len || ret || skip_csum)
4001		return ret;
 
4002
 
4003	if (em->compress_type) {
4004		csum_offset = 0;
4005		csum_len = max(em->block_len, em->orig_block_len);
4006	} else {
4007		csum_offset = mod_start - em->start;
4008		csum_len = mod_len;
4009	}
4010
4011	/* block start is already adjusted for the file extent offset. */
4012	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4013				       em->block_start + csum_offset,
4014				       em->block_start + csum_offset +
4015				       csum_len - 1, &ordered_sums, 0);
4016	if (ret)
4017		return ret;
4018
4019	while (!list_empty(&ordered_sums)) {
4020		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4021						   struct btrfs_ordered_sum,
4022						   list);
4023		if (!ret)
4024			ret = btrfs_csum_file_blocks(trans, log, sums);
4025		list_del(&sums->list);
4026		kfree(sums);
4027	}
4028
4029	return ret;
4030}
4031
4032static int log_one_extent(struct btrfs_trans_handle *trans,
4033			  struct inode *inode, struct btrfs_root *root,
4034			  const struct extent_map *em,
4035			  struct btrfs_path *path,
4036			  const struct list_head *logged_list,
4037			  struct btrfs_log_ctx *ctx)
4038{
4039	struct btrfs_root *log = root->log_root;
4040	struct btrfs_file_extent_item *fi;
 
4041	struct extent_buffer *leaf;
4042	struct btrfs_map_token token;
4043	struct btrfs_key key;
4044	u64 extent_offset = em->start - em->orig_start;
4045	u64 block_len;
4046	int ret;
4047	int extent_inserted = 0;
4048	bool ordered_io_err = false;
4049
4050	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4051				   &ordered_io_err);
4052	if (ret)
4053		return ret;
 
4054
4055	if (ordered_io_err) {
4056		ctx->io_err = -EIO;
4057		return 0;
 
 
 
 
 
4058	}
4059
4060	btrfs_init_map_token(&token);
 
 
 
4061
4062	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4063				   em->start + em->len, NULL, 0, 1,
4064				   sizeof(*fi), &extent_inserted);
4065	if (ret)
4066		return ret;
4067
4068	if (!extent_inserted) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4069		key.objectid = btrfs_ino(inode);
4070		key.type = BTRFS_EXTENT_DATA_KEY;
4071		key.offset = em->start;
4072
4073		ret = btrfs_insert_empty_item(trans, log, path, &key,
4074					      sizeof(*fi));
4075		if (ret)
4076			return ret;
4077	}
4078	leaf = path->nodes[0];
4079	fi = btrfs_item_ptr(leaf, path->slots[0],
4080			    struct btrfs_file_extent_item);
 
 
4081
4082	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4083					       &token);
4084	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4085		btrfs_set_token_file_extent_type(leaf, fi,
4086						 BTRFS_FILE_EXTENT_PREALLOC,
4087						 &token);
4088	else
4089		btrfs_set_token_file_extent_type(leaf, fi,
4090						 BTRFS_FILE_EXTENT_REG,
4091						 &token);
4092
4093	block_len = max(em->block_len, em->orig_block_len);
4094	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4095		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4096							em->block_start,
4097							&token);
4098		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4099							   &token);
4100	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4101		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4102							em->block_start -
4103							extent_offset, &token);
4104		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4105							   &token);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4106	} else {
4107		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4108		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4109							   &token);
4110	}
4111
4112	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4113	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4114	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4115	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4116						&token);
4117	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4118	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4119	btrfs_mark_buffer_dirty(leaf);
4120
4121	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4123	return ret;
4124}
4125
4126static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4127				     struct btrfs_root *root,
4128				     struct inode *inode,
4129				     struct btrfs_path *path,
4130				     struct list_head *logged_list,
4131				     struct btrfs_log_ctx *ctx,
4132				     const u64 start,
4133				     const u64 end)
4134{
 
 
4135	struct extent_map *em, *n;
4136	struct list_head extents;
4137	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4138	u64 test_gen;
4139	int ret = 0;
4140	int num = 0;
4141
4142	INIT_LIST_HEAD(&extents);
4143
4144	write_lock(&tree->lock);
4145	test_gen = root->fs_info->last_trans_committed;
4146
4147	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4148		list_del_init(&em->list);
4149
4150		/*
4151		 * Just an arbitrary number, this can be really CPU intensive
4152		 * once we start getting a lot of extents, and really once we
4153		 * have a bunch of extents we just want to commit since it will
4154		 * be faster.
4155		 */
4156		if (++num > 32768) {
4157			list_del_init(&tree->modified_extents);
4158			ret = -EFBIG;
4159			goto process;
4160		}
4161
4162		if (em->generation <= test_gen)
4163			continue;
 
 
 
 
 
 
4164		/* Need a ref to keep it from getting evicted from cache */
4165		atomic_inc(&em->refs);
4166		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4167		list_add_tail(&em->list, &extents);
4168		num++;
4169	}
4170
4171	list_sort(NULL, &extents, extent_cmp);
4172	/*
4173	 * Collect any new ordered extents within the range. This is to
4174	 * prevent logging file extent items without waiting for the disk
4175	 * location they point to being written. We do this only to deal
4176	 * with races against concurrent lockless direct IO writes.
4177	 */
4178	btrfs_get_logged_extents(inode, logged_list, start, end);
4179process:
4180	while (!list_empty(&extents)) {
4181		em = list_entry(extents.next, struct extent_map, list);
4182
4183		list_del_init(&em->list);
4184
4185		/*
4186		 * If we had an error we just need to delete everybody from our
4187		 * private list.
4188		 */
4189		if (ret) {
4190			clear_em_logging(tree, em);
4191			free_extent_map(em);
4192			continue;
4193		}
4194
4195		write_unlock(&tree->lock);
4196
4197		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4198				     ctx);
4199		write_lock(&tree->lock);
4200		clear_em_logging(tree, em);
4201		free_extent_map(em);
4202	}
4203	WARN_ON(!list_empty(&extents));
4204	write_unlock(&tree->lock);
4205
4206	btrfs_release_path(path);
4207	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4208}
4209
4210static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4211			     struct btrfs_path *path, u64 *size_ret)
4212{
4213	struct btrfs_key key;
4214	int ret;
4215
4216	key.objectid = btrfs_ino(inode);
4217	key.type = BTRFS_INODE_ITEM_KEY;
4218	key.offset = 0;
4219
4220	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4221	if (ret < 0) {
4222		return ret;
4223	} else if (ret > 0) {
4224		*size_ret = 0;
4225	} else {
4226		struct btrfs_inode_item *item;
4227
4228		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4229				      struct btrfs_inode_item);
4230		*size_ret = btrfs_inode_size(path->nodes[0], item);
 
 
 
 
 
 
 
 
 
 
 
 
 
4231	}
4232
4233	btrfs_release_path(path);
4234	return 0;
4235}
4236
4237/*
4238 * At the moment we always log all xattrs. This is to figure out at log replay
4239 * time which xattrs must have their deletion replayed. If a xattr is missing
4240 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4241 * because if a xattr is deleted, the inode is fsynced and a power failure
4242 * happens, causing the log to be replayed the next time the fs is mounted,
4243 * we want the xattr to not exist anymore (same behaviour as other filesystems
4244 * with a journal, ext3/4, xfs, f2fs, etc).
4245 */
4246static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4247				struct btrfs_root *root,
4248				struct inode *inode,
4249				struct btrfs_path *path,
4250				struct btrfs_path *dst_path)
4251{
 
4252	int ret;
4253	struct btrfs_key key;
4254	const u64 ino = btrfs_ino(inode);
4255	int ins_nr = 0;
4256	int start_slot = 0;
 
 
 
 
4257
4258	key.objectid = ino;
4259	key.type = BTRFS_XATTR_ITEM_KEY;
4260	key.offset = 0;
4261
4262	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4263	if (ret < 0)
4264		return ret;
4265
4266	while (true) {
4267		int slot = path->slots[0];
4268		struct extent_buffer *leaf = path->nodes[0];
4269		int nritems = btrfs_header_nritems(leaf);
4270
4271		if (slot >= nritems) {
4272			if (ins_nr > 0) {
4273				u64 last_extent = 0;
4274
4275				ret = copy_items(trans, inode, dst_path, path,
4276						 &last_extent, start_slot,
4277						 ins_nr, 1, 0);
4278				/* can't be 1, extent items aren't processed */
4279				ASSERT(ret <= 0);
4280				if (ret < 0)
4281					return ret;
4282				ins_nr = 0;
4283			}
4284			ret = btrfs_next_leaf(root, path);
4285			if (ret < 0)
4286				return ret;
4287			else if (ret > 0)
4288				break;
4289			continue;
4290		}
4291
4292		btrfs_item_key_to_cpu(leaf, &key, slot);
4293		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4294			break;
4295
4296		if (ins_nr == 0)
4297			start_slot = slot;
4298		ins_nr++;
4299		path->slots[0]++;
 
4300		cond_resched();
4301	}
4302	if (ins_nr > 0) {
4303		u64 last_extent = 0;
4304
4305		ret = copy_items(trans, inode, dst_path, path,
4306				 &last_extent, start_slot,
4307				 ins_nr, 1, 0);
4308		/* can't be 1, extent items aren't processed */
4309		ASSERT(ret <= 0);
4310		if (ret < 0)
4311			return ret;
4312	}
4313
 
 
 
4314	return 0;
4315}
4316
4317/*
4318 * If the no holes feature is enabled we need to make sure any hole between the
4319 * last extent and the i_size of our inode is explicitly marked in the log. This
4320 * is to make sure that doing something like:
4321 *
4322 *      1) create file with 128Kb of data
4323 *      2) truncate file to 64Kb
4324 *      3) truncate file to 256Kb
4325 *      4) fsync file
4326 *      5) <crash/power failure>
4327 *      6) mount fs and trigger log replay
4328 *
4329 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4330 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4331 * file correspond to a hole. The presence of explicit holes in a log tree is
4332 * what guarantees that log replay will remove/adjust file extent items in the
4333 * fs/subvol tree.
4334 *
4335 * Here we do not need to care about holes between extents, that is already done
4336 * by copy_items(). We also only need to do this in the full sync path, where we
4337 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4338 * lookup the list of modified extent maps and if any represents a hole, we
4339 * insert a corresponding extent representing a hole in the log tree.
4340 */
4341static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4342				   struct btrfs_root *root,
4343				   struct inode *inode,
4344				   struct btrfs_path *path)
4345{
4346	int ret;
 
4347	struct btrfs_key key;
4348	u64 hole_start;
4349	u64 hole_size;
4350	struct extent_buffer *leaf;
4351	struct btrfs_root *log = root->log_root;
4352	const u64 ino = btrfs_ino(inode);
4353	const u64 i_size = i_size_read(inode);
 
 
4354
4355	if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4356		return 0;
4357
4358	key.objectid = ino;
4359	key.type = BTRFS_EXTENT_DATA_KEY;
4360	key.offset = (u64)-1;
4361
4362	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4363	ASSERT(ret != 0);
4364	if (ret < 0)
4365		return ret;
4366
4367	ASSERT(path->slots[0] > 0);
4368	path->slots[0]--;
4369	leaf = path->nodes[0];
4370	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4371
4372	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4373		/* inode does not have any extents */
4374		hole_start = 0;
4375		hole_size = i_size;
4376	} else {
4377		struct btrfs_file_extent_item *extent;
4378		u64 len;
 
 
 
4379
4380		/*
4381		 * If there's an extent beyond i_size, an explicit hole was
4382		 * already inserted by copy_items().
4383		 */
4384		if (key.offset >= i_size)
4385			return 0;
4386
4387		extent = btrfs_item_ptr(leaf, path->slots[0],
4388					struct btrfs_file_extent_item);
 
4389
4390		if (btrfs_file_extent_type(leaf, extent) ==
4391		    BTRFS_FILE_EXTENT_INLINE) {
4392			len = btrfs_file_extent_inline_len(leaf,
4393							   path->slots[0],
4394							   extent);
4395			ASSERT(len == i_size);
4396			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4397		}
4398
4399		len = btrfs_file_extent_num_bytes(leaf, extent);
4400		/* Last extent goes beyond i_size, no need to log a hole. */
4401		if (key.offset + len > i_size)
4402			return 0;
4403		hole_start = key.offset + len;
4404		hole_size = i_size - hole_start;
4405	}
4406	btrfs_release_path(path);
4407
4408	/* Last extent ends at i_size. */
4409	if (hole_size == 0)
4410		return 0;
4411
4412	hole_size = ALIGN(hole_size, root->sectorsize);
4413	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4414				       hole_size, 0, hole_size, 0, 0, 0);
4415	return ret;
 
 
 
 
 
4416}
4417
4418/*
4419 * When we are logging a new inode X, check if it doesn't have a reference that
4420 * matches the reference from some other inode Y created in a past transaction
4421 * and that was renamed in the current transaction. If we don't do this, then at
4422 * log replay time we can lose inode Y (and all its files if it's a directory):
4423 *
4424 * mkdir /mnt/x
4425 * echo "hello world" > /mnt/x/foobar
4426 * sync
4427 * mv /mnt/x /mnt/y
4428 * mkdir /mnt/x                 # or touch /mnt/x
4429 * xfs_io -c fsync /mnt/x
4430 * <power fail>
4431 * mount fs, trigger log replay
4432 *
4433 * After the log replay procedure, we would lose the first directory and all its
4434 * files (file foobar).
4435 * For the case where inode Y is not a directory we simply end up losing it:
4436 *
4437 * echo "123" > /mnt/foo
4438 * sync
4439 * mv /mnt/foo /mnt/bar
4440 * echo "abc" > /mnt/foo
4441 * xfs_io -c fsync /mnt/foo
4442 * <power fail>
4443 *
4444 * We also need this for cases where a snapshot entry is replaced by some other
4445 * entry (file or directory) otherwise we end up with an unreplayable log due to
4446 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4447 * if it were a regular entry:
4448 *
4449 * mkdir /mnt/x
4450 * btrfs subvolume snapshot /mnt /mnt/x/snap
4451 * btrfs subvolume delete /mnt/x/snap
4452 * rmdir /mnt/x
4453 * mkdir /mnt/x
4454 * fsync /mnt/x or fsync some new file inside it
4455 * <power fail>
4456 *
4457 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4458 * the same transaction.
4459 */
4460static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4461					 const int slot,
4462					 const struct btrfs_key *key,
4463					 struct inode *inode)
 
4464{
4465	int ret;
4466	struct btrfs_path *search_path;
4467	char *name = NULL;
4468	u32 name_len = 0;
4469	u32 item_size = btrfs_item_size_nr(eb, slot);
4470	u32 cur_offset = 0;
4471	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4472
4473	search_path = btrfs_alloc_path();
4474	if (!search_path)
4475		return -ENOMEM;
4476	search_path->search_commit_root = 1;
4477	search_path->skip_locking = 1;
4478
4479	while (cur_offset < item_size) {
4480		u64 parent;
4481		u32 this_name_len;
4482		u32 this_len;
4483		unsigned long name_ptr;
4484		struct btrfs_dir_item *di;
 
4485
4486		if (key->type == BTRFS_INODE_REF_KEY) {
4487			struct btrfs_inode_ref *iref;
4488
4489			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4490			parent = key->offset;
4491			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4492			name_ptr = (unsigned long)(iref + 1);
4493			this_len = sizeof(*iref) + this_name_len;
4494		} else {
4495			struct btrfs_inode_extref *extref;
4496
4497			extref = (struct btrfs_inode_extref *)(ptr +
4498							       cur_offset);
4499			parent = btrfs_inode_extref_parent(eb, extref);
4500			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4501			name_ptr = (unsigned long)&extref->name;
4502			this_len = sizeof(*extref) + this_name_len;
4503		}
4504
4505		if (this_name_len > name_len) {
4506			char *new_name;
4507
4508			new_name = krealloc(name, this_name_len, GFP_NOFS);
4509			if (!new_name) {
4510				ret = -ENOMEM;
4511				goto out;
4512			}
4513			name_len = this_name_len;
4514			name = new_name;
4515		}
4516
4517		read_extent_buffer(eb, name, name_ptr, this_name_len);
4518		di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4519					   search_path, parent,
4520					   name, this_name_len, 0);
 
 
4521		if (di && !IS_ERR(di)) {
4522			ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4523			goto out;
4524		} else if (IS_ERR(di)) {
4525			ret = PTR_ERR(di);
4526			goto out;
4527		}
4528		btrfs_release_path(search_path);
4529
4530		cur_offset += this_len;
4531	}
4532	ret = 0;
4533out:
4534	btrfs_free_path(search_path);
4535	kfree(name);
4536	return ret;
4537}
4538
4539/* log a single inode in the tree log.
4540 * At least one parent directory for this inode must exist in the tree
4541 * or be logged already.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4542 *
4543 * Any items from this inode changed by the current transaction are copied
4544 * to the log tree.  An extra reference is taken on any extents in this
4545 * file, allowing us to avoid a whole pile of corner cases around logging
4546 * blocks that have been removed from the tree.
 
 
4547 *
4548 * See LOG_INODE_ALL and related defines for a description of what inode_only
4549 * does.
 
4550 *
4551 * This handles both files and directories.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4552 */
4553static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4554			   struct btrfs_root *root, struct inode *inode,
4555			   int inode_only,
4556			   const loff_t start,
4557			   const loff_t end,
4558			   struct btrfs_log_ctx *ctx)
4559{
 
 
4560	struct btrfs_path *path;
4561	struct btrfs_path *dst_path;
4562	struct btrfs_key min_key;
4563	struct btrfs_key max_key;
4564	struct btrfs_root *log = root->log_root;
4565	struct extent_buffer *src = NULL;
4566	LIST_HEAD(logged_list);
4567	u64 last_extent = 0;
4568	int err = 0;
4569	int ret;
4570	int nritems;
4571	int ins_start_slot = 0;
4572	int ins_nr;
4573	bool fast_search = false;
4574	u64 ino = btrfs_ino(inode);
4575	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4576	u64 logged_isize = 0;
4577	bool need_log_inode_item = true;
4578
4579	path = btrfs_alloc_path();
4580	if (!path)
4581		return -ENOMEM;
4582	dst_path = btrfs_alloc_path();
4583	if (!dst_path) {
4584		btrfs_free_path(path);
4585		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4586	}
 
 
 
 
4587
4588	min_key.objectid = ino;
4589	min_key.type = BTRFS_INODE_ITEM_KEY;
4590	min_key.offset = 0;
4591
4592	max_key.objectid = ino;
 
4593
 
 
 
 
 
4594
4595	/* today the code can only do partial logging of directories */
4596	if (S_ISDIR(inode->i_mode) ||
4597	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4598		       &BTRFS_I(inode)->runtime_flags) &&
4599	     inode_only == LOG_INODE_EXISTS))
4600		max_key.type = BTRFS_XATTR_ITEM_KEY;
4601	else
4602		max_key.type = (u8)-1;
4603	max_key.offset = (u64)-1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4604
4605	/*
4606	 * Only run delayed items if we are a dir or a new file.
4607	 * Otherwise commit the delayed inode only, which is needed in
4608	 * order for the log replay code to mark inodes for link count
4609	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4610	 */
4611	if (S_ISDIR(inode->i_mode) ||
4612	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4613		ret = btrfs_commit_inode_delayed_items(trans, inode);
4614	else
4615		ret = btrfs_commit_inode_delayed_inode(inode);
4616
4617	if (ret) {
4618		btrfs_free_path(path);
4619		btrfs_free_path(dst_path);
4620		return ret;
4621	}
 
 
 
 
 
 
 
 
 
 
 
4622
4623	mutex_lock(&BTRFS_I(inode)->log_mutex);
 
4624
4625	/*
4626	 * Collect ordered extents only if we are logging data. This is to
4627	 * ensure a subsequent request to log this inode in LOG_INODE_ALL mode
4628	 * will process the ordered extents if they still exists at the time,
4629	 * because when we collect them we test and set for the flag
4630	 * BTRFS_ORDERED_LOGGED to prevent multiple log requests to process the
4631	 * same ordered extents. The consequence for the LOG_INODE_ALL log mode
4632	 * not processing the ordered extents is that we end up logging the
4633	 * corresponding file extent items, based on the extent maps in the
4634	 * inode's extent_map_tree's modified_list, without logging the
4635	 * respective checksums (since the may still be only attached to the
4636	 * ordered extents and have not been inserted in the csum tree by
4637	 * btrfs_finish_ordered_io() yet).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4638	 */
4639	if (inode_only == LOG_INODE_ALL)
4640		btrfs_get_logged_extents(inode, &logged_list, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4641
4642	/*
4643	 * a brute force approach to making sure we get the most uptodate
4644	 * copies of everything.
 
4645	 */
4646	if (S_ISDIR(inode->i_mode)) {
4647		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4648
4649		if (inode_only == LOG_INODE_EXISTS)
4650			max_key_type = BTRFS_XATTR_ITEM_KEY;
4651		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4652	} else {
4653		if (inode_only == LOG_INODE_EXISTS) {
4654			/*
4655			 * Make sure the new inode item we write to the log has
4656			 * the same isize as the current one (if it exists).
4657			 * This is necessary to prevent data loss after log
4658			 * replay, and also to prevent doing a wrong expanding
4659			 * truncate - for e.g. create file, write 4K into offset
4660			 * 0, fsync, write 4K into offset 4096, add hard link,
4661			 * fsync some other file (to sync log), power fail - if
4662			 * we use the inode's current i_size, after log replay
4663			 * we get a 8Kb file, with the last 4Kb extent as a hole
4664			 * (zeroes), as if an expanding truncate happened,
4665			 * instead of getting a file of 4Kb only.
4666			 */
4667			err = logged_inode_size(log, inode, path,
4668						&logged_isize);
4669			if (err)
4670				goto out_unlock;
 
 
4671		}
4672		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4673			     &BTRFS_I(inode)->runtime_flags)) {
4674			if (inode_only == LOG_INODE_EXISTS) {
4675				max_key.type = BTRFS_XATTR_ITEM_KEY;
4676				ret = drop_objectid_items(trans, log, path, ino,
4677							  max_key.type);
4678			} else {
4679				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4680					  &BTRFS_I(inode)->runtime_flags);
4681				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4682					  &BTRFS_I(inode)->runtime_flags);
4683				while(1) {
4684					ret = btrfs_truncate_inode_items(trans,
4685							 log, inode, 0, 0);
4686					if (ret != -EAGAIN)
4687						break;
4688				}
4689			}
4690		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4691					      &BTRFS_I(inode)->runtime_flags) ||
4692			   inode_only == LOG_INODE_EXISTS) {
4693			if (inode_only == LOG_INODE_ALL)
4694				fast_search = true;
4695			max_key.type = BTRFS_XATTR_ITEM_KEY;
4696			ret = drop_objectid_items(trans, log, path, ino,
4697						  max_key.type);
4698		} else {
4699			if (inode_only == LOG_INODE_ALL)
4700				fast_search = true;
4701			goto log_extents;
4702		}
4703
4704	}
4705	if (ret) {
4706		err = ret;
4707		goto out_unlock;
 
 
 
 
 
 
 
4708	}
4709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4710	while (1) {
4711		ins_nr = 0;
4712		ret = btrfs_search_forward(root, &min_key,
4713					   path, trans->transid);
4714		if (ret != 0)
 
4715			break;
 
4716again:
4717		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4718		if (min_key.objectid != ino)
4719			break;
4720		if (min_key.type > max_key.type)
4721			break;
4722
4723		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4724			need_log_inode_item = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4725
4726		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4727		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4728		    BTRFS_I(inode)->generation == trans->transid) {
4729			ret = btrfs_check_ref_name_override(path->nodes[0],
4730							    path->slots[0],
4731							    &min_key, inode);
4732			if (ret < 0) {
4733				err = ret;
4734				goto out_unlock;
4735			} else if (ret > 0) {
4736				err = 1;
4737				btrfs_set_log_full_commit(root->fs_info, trans);
4738				goto out_unlock;
4739			}
4740		}
 
 
 
 
 
 
 
4741
4742		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4743		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
 
 
 
 
 
 
 
 
4744			if (ins_nr == 0)
4745				goto next_slot;
4746			ret = copy_items(trans, inode, dst_path, path,
4747					 &last_extent, ins_start_slot,
4748					 ins_nr, inode_only, logged_isize);
4749			if (ret < 0) {
4750				err = ret;
4751				goto out_unlock;
4752			}
4753			ins_nr = 0;
4754			if (ret) {
4755				btrfs_release_path(path);
4756				continue;
4757			}
4758			goto next_slot;
4759		}
4760
4761		src = path->nodes[0];
4762		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4763			ins_nr++;
4764			goto next_slot;
4765		} else if (!ins_nr) {
4766			ins_start_slot = path->slots[0];
4767			ins_nr = 1;
4768			goto next_slot;
4769		}
4770
4771		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4772				 ins_start_slot, ins_nr, inode_only,
4773				 logged_isize);
4774		if (ret < 0) {
4775			err = ret;
4776			goto out_unlock;
4777		}
4778		if (ret) {
4779			ins_nr = 0;
4780			btrfs_release_path(path);
4781			continue;
4782		}
4783		ins_nr = 1;
4784		ins_start_slot = path->slots[0];
4785next_slot:
4786
4787		nritems = btrfs_header_nritems(path->nodes[0]);
4788		path->slots[0]++;
4789		if (path->slots[0] < nritems) {
4790			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4791					      path->slots[0]);
4792			goto again;
4793		}
4794		if (ins_nr) {
4795			ret = copy_items(trans, inode, dst_path, path,
4796					 &last_extent, ins_start_slot,
4797					 ins_nr, inode_only, logged_isize);
4798			if (ret < 0) {
4799				err = ret;
4800				goto out_unlock;
4801			}
4802			ret = 0;
4803			ins_nr = 0;
4804		}
4805		btrfs_release_path(path);
4806
4807		if (min_key.offset < (u64)-1) {
4808			min_key.offset++;
4809		} else if (min_key.type < max_key.type) {
4810			min_key.type++;
4811			min_key.offset = 0;
4812		} else {
4813			break;
4814		}
 
 
 
 
 
 
 
4815	}
4816	if (ins_nr) {
4817		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4818				 ins_start_slot, ins_nr, inode_only,
4819				 logged_isize);
4820		if (ret < 0) {
4821			err = ret;
4822			goto out_unlock;
4823		}
4824		ret = 0;
4825		ins_nr = 0;
4826	}
4827
4828	btrfs_release_path(path);
4829	btrfs_release_path(dst_path);
4830	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4831	if (err)
4832		goto out_unlock;
4833	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4834		btrfs_release_path(path);
4835		btrfs_release_path(dst_path);
4836		err = btrfs_log_trailing_hole(trans, root, inode, path);
4837		if (err)
4838			goto out_unlock;
4839	}
4840log_extents:
4841	btrfs_release_path(path);
4842	btrfs_release_path(dst_path);
4843	if (need_log_inode_item) {
4844		err = log_inode_item(trans, log, dst_path, inode);
4845		if (err)
4846			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4847	}
4848	if (fast_search) {
4849		/*
4850		 * Some ordered extents started by fsync might have completed
4851		 * before we collected the ordered extents in logged_list, which
4852		 * means they're gone, not in our logged_list nor in the inode's
4853		 * ordered tree. We want the application/user space to know an
4854		 * error happened while attempting to persist file data so that
4855		 * it can take proper action. If such error happened, we leave
4856		 * without writing to the log tree and the fsync must report the
4857		 * file data write error and not commit the current transaction.
4858		 */
4859		err = btrfs_inode_check_errors(inode);
4860		if (err) {
4861			ctx->io_err = err;
4862			goto out_unlock;
4863		}
4864		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4865						&logged_list, ctx, start, end);
4866		if (ret) {
4867			err = ret;
4868			goto out_unlock;
4869		}
4870	} else if (inode_only == LOG_INODE_ALL) {
4871		struct extent_map *em, *n;
4872
4873		write_lock(&em_tree->lock);
4874		/*
4875		 * We can't just remove every em if we're called for a ranged
4876		 * fsync - that is, one that doesn't cover the whole possible
4877		 * file range (0 to LLONG_MAX). This is because we can have
4878		 * em's that fall outside the range we're logging and therefore
4879		 * their ordered operations haven't completed yet
4880		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4881		 * didn't get their respective file extent item in the fs/subvol
4882		 * tree yet, and need to let the next fast fsync (one which
4883		 * consults the list of modified extent maps) find the em so
4884		 * that it logs a matching file extent item and waits for the
4885		 * respective ordered operation to complete (if it's still
4886		 * running).
4887		 *
4888		 * Removing every em outside the range we're logging would make
4889		 * the next fast fsync not log their matching file extent items,
4890		 * therefore making us lose data after a log replay.
4891		 */
4892		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4893					 list) {
4894			const u64 mod_end = em->mod_start + em->mod_len - 1;
 
 
 
 
 
 
4895
4896			if (em->mod_start >= start && mod_end <= end)
4897				list_del_init(&em->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
4898		}
4899		write_unlock(&em_tree->lock);
4900	}
4901
4902	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4903		ret = log_directory_changes(trans, root, inode, path, dst_path,
4904					    ctx);
4905		if (ret) {
4906			err = ret;
4907			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4908		}
 
 
 
 
 
 
 
 
 
4909	}
4910
4911	spin_lock(&BTRFS_I(inode)->lock);
4912	BTRFS_I(inode)->logged_trans = trans->transid;
4913	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4914	spin_unlock(&BTRFS_I(inode)->lock);
4915out_unlock:
4916	if (unlikely(err))
4917		btrfs_put_logged_extents(&logged_list);
4918	else
4919		btrfs_submit_logged_extents(&logged_list, log);
4920	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4921
4922	btrfs_free_path(path);
4923	btrfs_free_path(dst_path);
4924	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4925}
4926
4927/*
4928 * Check if we must fallback to a transaction commit when logging an inode.
4929 * This must be called after logging the inode and is used only in the context
4930 * when fsyncing an inode requires the need to log some other inode - in which
4931 * case we can't lock the i_mutex of each other inode we need to log as that
4932 * can lead to deadlocks with concurrent fsync against other inodes (as we can
4933 * log inodes up or down in the hierarchy) or rename operations for example. So
4934 * we take the log_mutex of the inode after we have logged it and then check for
4935 * its last_unlink_trans value - this is safe because any task setting
4936 * last_unlink_trans must take the log_mutex and it must do this before it does
4937 * the actual unlink operation, so if we do this check before a concurrent task
4938 * sets last_unlink_trans it means we've logged a consistent version/state of
4939 * all the inode items, otherwise we are not sure and must do a transaction
4940 * commit (the concurrent task migth have only updated last_unlink_trans before
4941 * we logged the inode or it might have also done the unlink).
4942 */
4943static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
4944					  struct inode *inode)
4945{
4946	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4947	bool ret = false;
 
 
 
4948
4949	mutex_lock(&BTRFS_I(inode)->log_mutex);
4950	if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4951		/*
4952		 * Make sure any commits to the log are forced to be full
4953		 * commits.
 
 
4954		 */
4955		btrfs_set_log_full_commit(fs_info, trans);
4956		ret = true;
 
 
 
 
 
 
 
 
 
 
4957	}
4958	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4959
4960	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4961}
4962
4963/*
4964 * follow the dentry parent pointers up the chain and see if any
4965 * of the directories in it require a full commit before they can
4966 * be logged.  Returns zero if nothing special needs to be done or 1 if
4967 * a full commit is required.
4968 */
4969static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4970					       struct inode *inode,
4971					       struct dentry *parent,
4972					       struct super_block *sb,
4973					       u64 last_committed)
4974{
 
 
 
4975	int ret = 0;
4976	struct dentry *old_parent = NULL;
4977	struct inode *orig_inode = inode;
4978
4979	/*
4980	 * for regular files, if its inode is already on disk, we don't
4981	 * have to worry about the parents at all.  This is because
4982	 * we can use the last_unlink_trans field to record renames
4983	 * and other fun in this file.
4984	 */
4985	if (S_ISREG(inode->i_mode) &&
4986	    BTRFS_I(inode)->generation <= last_committed &&
4987	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4988			goto out;
 
 
 
 
 
4989
4990	if (!S_ISDIR(inode->i_mode)) {
4991		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4992			goto out;
4993		inode = d_inode(parent);
4994	}
4995
4996	while (1) {
4997		/*
4998		 * If we are logging a directory then we start with our inode,
4999		 * not our parents inode, so we need to skipp setting the
5000		 * logged_trans so that further down in the log code we don't
5001		 * think this inode has already been logged.
5002		 */
5003		if (inode != orig_inode)
5004			BTRFS_I(inode)->logged_trans = trans->transid;
5005		smp_mb();
5006
5007		if (btrfs_must_commit_transaction(trans, inode)) {
5008			ret = 1;
 
5009			break;
5010		}
5011
5012		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5013			break;
 
 
5014
5015		if (IS_ROOT(parent))
5016			break;
5017
5018		parent = dget_parent(parent);
5019		dput(old_parent);
5020		old_parent = parent;
5021		inode = d_inode(parent);
 
5022
 
 
 
 
5023	}
5024	dput(old_parent);
5025out:
 
 
5026	return ret;
5027}
5028
5029struct btrfs_dir_list {
5030	u64 ino;
5031	struct list_head list;
5032};
5033
5034/*
5035 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5036 * details about the why it is needed.
5037 * This is a recursive operation - if an existing dentry corresponds to a
5038 * directory, that directory's new entries are logged too (same behaviour as
5039 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5040 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5041 * complains about the following circular lock dependency / possible deadlock:
5042 *
5043 *        CPU0                                        CPU1
5044 *        ----                                        ----
5045 * lock(&type->i_mutex_dir_key#3/2);
5046 *                                            lock(sb_internal#2);
5047 *                                            lock(&type->i_mutex_dir_key#3/2);
5048 * lock(&sb->s_type->i_mutex_key#14);
5049 *
5050 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5051 * sb_start_intwrite() in btrfs_start_transaction().
5052 * Not locking i_mutex of the inodes is still safe because:
 
5053 *
5054 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5055 *    that while logging the inode new references (names) are added or removed
5056 *    from the inode, leaving the logged inode item with a link count that does
5057 *    not match the number of logged inode reference items. This is fine because
5058 *    at log replay time we compute the real number of links and correct the
5059 *    link count in the inode item (see replay_one_buffer() and
5060 *    link_to_fixup_dir());
5061 *
5062 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5063 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5064 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5065 *    has a size that doesn't match the sum of the lengths of all the logged
5066 *    names. This does not result in a problem because if a dir_item key is
5067 *    logged but its matching dir_index key is not logged, at log replay time we
5068 *    don't use it to replay the respective name (see replay_one_name()). On the
5069 *    other hand if only the dir_index key ends up being logged, the respective
5070 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5071 *    keys created (see replay_one_name()).
5072 *    The directory's inode item with a wrong i_size is not a problem as well,
5073 *    since we don't use it at log replay time to set the i_size in the inode
5074 *    item of the fs/subvol tree (see overwrite_item()).
5075 */
5076static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5077				struct btrfs_root *root,
5078				struct inode *start_inode,
5079				struct btrfs_log_ctx *ctx)
5080{
5081	struct btrfs_root *log = root->log_root;
5082	struct btrfs_path *path;
5083	LIST_HEAD(dir_list);
5084	struct btrfs_dir_list *dir_elem;
5085	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
5086
5087	path = btrfs_alloc_path();
5088	if (!path)
5089		return -ENOMEM;
5090
5091	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5092	if (!dir_elem) {
5093		btrfs_free_path(path);
5094		return -ENOMEM;
5095	}
5096	dir_elem->ino = btrfs_ino(start_inode);
5097	list_add_tail(&dir_elem->list, &dir_list);
5098
5099	while (!list_empty(&dir_list)) {
5100		struct extent_buffer *leaf;
5101		struct btrfs_key min_key;
5102		int nritems;
5103		int i;
5104
5105		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5106					    list);
5107		if (ret)
5108			goto next_dir_inode;
5109
5110		min_key.objectid = dir_elem->ino;
5111		min_key.type = BTRFS_DIR_ITEM_KEY;
5112		min_key.offset = 0;
5113again:
5114		btrfs_release_path(path);
5115		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5116		if (ret < 0) {
5117			goto next_dir_inode;
5118		} else if (ret > 0) {
5119			ret = 0;
5120			goto next_dir_inode;
5121		}
5122
5123process_leaf:
5124		leaf = path->nodes[0];
5125		nritems = btrfs_header_nritems(leaf);
5126		for (i = path->slots[0]; i < nritems; i++) {
5127			struct btrfs_dir_item *di;
5128			struct btrfs_key di_key;
5129			struct inode *di_inode;
5130			struct btrfs_dir_list *new_dir_elem;
5131			int log_mode = LOG_INODE_EXISTS;
5132			int type;
5133
5134			btrfs_item_key_to_cpu(leaf, &min_key, i);
5135			if (min_key.objectid != dir_elem->ino ||
5136			    min_key.type != BTRFS_DIR_ITEM_KEY)
5137				goto next_dir_inode;
5138
5139			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5140			type = btrfs_dir_type(leaf, di);
5141			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5142			    type != BTRFS_FT_DIR)
5143				continue;
5144			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5145			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5146				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5147
5148			di_inode = btrfs_iget(root->fs_info->sb, &di_key,
5149					      root, NULL);
5150			if (IS_ERR(di_inode)) {
5151				ret = PTR_ERR(di_inode);
5152				goto next_dir_inode;
5153			}
5154
5155			if (btrfs_inode_in_log(di_inode, trans->transid)) {
5156				iput(di_inode);
5157				continue;
5158			}
 
 
 
 
 
 
 
5159
5160			ctx->log_new_dentries = false;
5161			if (type == BTRFS_FT_DIR)
5162				log_mode = LOG_INODE_ALL;
5163			btrfs_release_path(path);
5164			ret = btrfs_log_inode(trans, root, di_inode,
5165					      log_mode, 0, LLONG_MAX, ctx);
5166			if (!ret &&
5167			    btrfs_must_commit_transaction(trans, di_inode))
5168				ret = 1;
5169			iput(di_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5170			if (ret)
5171				goto next_dir_inode;
5172			if (ctx->log_new_dentries) {
5173				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5174						       GFP_NOFS);
5175				if (!new_dir_elem) {
5176					ret = -ENOMEM;
5177					goto next_dir_inode;
5178				}
5179				new_dir_elem->ino = di_key.objectid;
5180				list_add_tail(&new_dir_elem->list, &dir_list);
5181			}
5182			break;
5183		}
5184		if (i == nritems) {
5185			ret = btrfs_next_leaf(log, path);
5186			if (ret < 0) {
5187				goto next_dir_inode;
5188			} else if (ret > 0) {
5189				ret = 0;
5190				goto next_dir_inode;
 
 
 
 
 
 
 
 
5191			}
5192			goto process_leaf;
 
 
 
 
 
 
 
 
 
 
 
 
 
5193		}
5194		if (min_key.offset < (u64)-1) {
5195			min_key.offset++;
5196			goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5197		}
5198next_dir_inode:
5199		list_del(&dir_elem->list);
5200		kfree(dir_elem);
5201	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5202
 
 
 
 
 
 
 
 
 
 
5203	btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5204	return ret;
5205}
5206
5207static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5208				 struct inode *inode,
5209				 struct btrfs_log_ctx *ctx)
5210{
 
5211	int ret;
5212	struct btrfs_path *path;
5213	struct btrfs_key key;
5214	struct btrfs_root *root = BTRFS_I(inode)->root;
5215	const u64 ino = btrfs_ino(inode);
5216
5217	path = btrfs_alloc_path();
5218	if (!path)
5219		return -ENOMEM;
5220	path->skip_locking = 1;
5221	path->search_commit_root = 1;
5222
5223	key.objectid = ino;
5224	key.type = BTRFS_INODE_REF_KEY;
5225	key.offset = 0;
5226	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5227	if (ret < 0)
5228		goto out;
5229
5230	while (true) {
5231		struct extent_buffer *leaf = path->nodes[0];
5232		int slot = path->slots[0];
5233		u32 cur_offset = 0;
5234		u32 item_size;
5235		unsigned long ptr;
5236
5237		if (slot >= btrfs_header_nritems(leaf)) {
5238			ret = btrfs_next_leaf(root, path);
5239			if (ret < 0)
5240				goto out;
5241			else if (ret > 0)
5242				break;
5243			continue;
5244		}
5245
5246		btrfs_item_key_to_cpu(leaf, &key, slot);
5247		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5248		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5249			break;
5250
5251		item_size = btrfs_item_size_nr(leaf, slot);
5252		ptr = btrfs_item_ptr_offset(leaf, slot);
5253		while (cur_offset < item_size) {
5254			struct btrfs_key inode_key;
5255			struct inode *dir_inode;
5256
5257			inode_key.type = BTRFS_INODE_ITEM_KEY;
5258			inode_key.offset = 0;
5259
5260			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5261				struct btrfs_inode_extref *extref;
5262
5263				extref = (struct btrfs_inode_extref *)
5264					(ptr + cur_offset);
5265				inode_key.objectid = btrfs_inode_extref_parent(
5266					leaf, extref);
5267				cur_offset += sizeof(*extref);
5268				cur_offset += btrfs_inode_extref_name_len(leaf,
5269					extref);
5270			} else {
5271				inode_key.objectid = key.offset;
5272				cur_offset = item_size;
5273			}
5274
5275			dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5276					       root, NULL);
5277			/* If parent inode was deleted, skip it. */
5278			if (IS_ERR(dir_inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5279				continue;
 
5280
5281			ret = btrfs_log_inode(trans, root, dir_inode,
5282					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5283			if (!ret &&
5284			    btrfs_must_commit_transaction(trans, dir_inode))
5285				ret = 1;
5286			iput(dir_inode);
 
5287			if (ret)
5288				goto out;
5289		}
5290		path->slots[0]++;
5291	}
5292	ret = 0;
5293out:
5294	btrfs_free_path(path);
5295	return ret;
5296}
5297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5298/*
5299 * helper function around btrfs_log_inode to make sure newly created
5300 * parent directories also end up in the log.  A minimal inode and backref
5301 * only logging is done of any parent directories that are older than
5302 * the last committed transaction
5303 */
5304static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5305			    	  struct btrfs_root *root, struct inode *inode,
5306				  struct dentry *parent,
5307				  const loff_t start,
5308				  const loff_t end,
5309				  int exists_only,
5310				  struct btrfs_log_ctx *ctx)
5311{
5312	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5313	struct super_block *sb;
5314	struct dentry *old_parent = NULL;
5315	int ret = 0;
5316	u64 last_committed = root->fs_info->last_trans_committed;
5317	bool log_dentries = false;
5318	struct inode *orig_inode = inode;
5319
5320	sb = inode->i_sb;
5321
5322	if (btrfs_test_opt(root, NOTREELOG)) {
5323		ret = 1;
5324		goto end_no_trans;
5325	}
5326
5327	/*
5328	 * The prev transaction commit doesn't complete, we need do
5329	 * full commit by ourselves.
5330	 */
5331	if (root->fs_info->last_trans_log_full_commit >
5332	    root->fs_info->last_trans_committed) {
5333		ret = 1;
5334		goto end_no_trans;
5335	}
5336
5337	if (root != BTRFS_I(inode)->root ||
5338	    btrfs_root_refs(&root->root_item) == 0) {
5339		ret = 1;
5340		goto end_no_trans;
5341	}
5342
5343	ret = check_parent_dirs_for_sync(trans, inode, parent,
5344					 sb, last_committed);
5345	if (ret)
5346		goto end_no_trans;
5347
5348	if (btrfs_inode_in_log(inode, trans->transid)) {
5349		ret = BTRFS_NO_LOG_SYNC;
5350		goto end_no_trans;
5351	}
5352
5353	ret = start_log_trans(trans, root, ctx);
5354	if (ret)
5355		goto end_no_trans;
5356
5357	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5358	if (ret)
5359		goto end_trans;
5360
5361	/*
5362	 * for regular files, if its inode is already on disk, we don't
5363	 * have to worry about the parents at all.  This is because
5364	 * we can use the last_unlink_trans field to record renames
5365	 * and other fun in this file.
5366	 */
5367	if (S_ISREG(inode->i_mode) &&
5368	    BTRFS_I(inode)->generation <= last_committed &&
5369	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5370		ret = 0;
5371		goto end_trans;
5372	}
5373
5374	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5375		log_dentries = true;
5376
5377	/*
5378	 * On unlink we must make sure all our current and old parent directores
5379	 * inodes are fully logged. This is to prevent leaving dangling
5380	 * directory index entries in directories that were our parents but are
5381	 * not anymore. Not doing this results in old parent directory being
5382	 * impossible to delete after log replay (rmdir will always fail with
5383	 * error -ENOTEMPTY).
5384	 *
5385	 * Example 1:
5386	 *
5387	 * mkdir testdir
5388	 * touch testdir/foo
5389	 * ln testdir/foo testdir/bar
5390	 * sync
5391	 * unlink testdir/bar
5392	 * xfs_io -c fsync testdir/foo
5393	 * <power failure>
5394	 * mount fs, triggers log replay
5395	 *
5396	 * If we don't log the parent directory (testdir), after log replay the
5397	 * directory still has an entry pointing to the file inode using the bar
5398	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5399	 * the file inode has a link count of 1.
5400	 *
5401	 * Example 2:
5402	 *
5403	 * mkdir testdir
5404	 * touch foo
5405	 * ln foo testdir/foo2
5406	 * ln foo testdir/foo3
5407	 * sync
5408	 * unlink testdir/foo3
5409	 * xfs_io -c fsync foo
5410	 * <power failure>
5411	 * mount fs, triggers log replay
5412	 *
5413	 * Similar as the first example, after log replay the parent directory
5414	 * testdir still has an entry pointing to the inode file with name foo3
5415	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5416	 * and has a link count of 2.
5417	 */
5418	if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5419		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5420		if (ret)
5421			goto end_trans;
5422	}
5423
5424	while (1) {
5425		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5426			break;
5427
5428		inode = d_inode(parent);
5429		if (root != BTRFS_I(inode)->root)
5430			break;
5431
5432		if (BTRFS_I(inode)->generation > last_committed) {
5433			ret = btrfs_log_inode(trans, root, inode,
5434					      LOG_INODE_EXISTS,
5435					      0, LLONG_MAX, ctx);
5436			if (ret)
5437				goto end_trans;
5438		}
5439		if (IS_ROOT(parent))
5440			break;
5441
5442		parent = dget_parent(parent);
5443		dput(old_parent);
5444		old_parent = parent;
5445	}
5446	if (log_dentries)
5447		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5448	else
5449		ret = 0;
5450end_trans:
5451	dput(old_parent);
5452	if (ret < 0) {
5453		btrfs_set_log_full_commit(root->fs_info, trans);
5454		ret = 1;
5455	}
5456
5457	if (ret)
5458		btrfs_remove_log_ctx(root, ctx);
5459	btrfs_end_log_trans(root);
5460end_no_trans:
5461	return ret;
5462}
5463
5464/*
5465 * it is not safe to log dentry if the chunk root has added new
5466 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5467 * If this returns 1, you must commit the transaction to safely get your
5468 * data on disk.
5469 */
5470int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5471			  struct btrfs_root *root, struct dentry *dentry,
5472			  const loff_t start,
5473			  const loff_t end,
5474			  struct btrfs_log_ctx *ctx)
5475{
5476	struct dentry *parent = dget_parent(dentry);
5477	int ret;
5478
5479	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5480				     start, end, 0, ctx);
5481	dput(parent);
5482
5483	return ret;
5484}
5485
5486/*
5487 * should be called during mount to recover any replay any log trees
5488 * from the FS
5489 */
5490int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5491{
5492	int ret;
5493	struct btrfs_path *path;
5494	struct btrfs_trans_handle *trans;
5495	struct btrfs_key key;
5496	struct btrfs_key found_key;
5497	struct btrfs_key tmp_key;
5498	struct btrfs_root *log;
5499	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5500	struct walk_control wc = {
5501		.process_func = process_one_buffer,
5502		.stage = 0,
5503	};
5504
5505	path = btrfs_alloc_path();
5506	if (!path)
5507		return -ENOMEM;
5508
5509	fs_info->log_root_recovering = 1;
5510
5511	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5512	if (IS_ERR(trans)) {
5513		ret = PTR_ERR(trans);
5514		goto error;
5515	}
5516
5517	wc.trans = trans;
5518	wc.pin = 1;
5519
5520	ret = walk_log_tree(trans, log_root_tree, &wc);
5521	if (ret) {
5522		btrfs_std_error(fs_info, ret, "Failed to pin buffers while "
5523			    "recovering log root tree.");
5524		goto error;
5525	}
5526
5527again:
5528	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5529	key.offset = (u64)-1;
5530	key.type = BTRFS_ROOT_ITEM_KEY;
5531
5532	while (1) {
5533		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5534
5535		if (ret < 0) {
5536			btrfs_std_error(fs_info, ret,
5537				    "Couldn't find tree log root.");
5538			goto error;
5539		}
5540		if (ret > 0) {
5541			if (path->slots[0] == 0)
5542				break;
5543			path->slots[0]--;
5544		}
5545		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5546				      path->slots[0]);
5547		btrfs_release_path(path);
5548		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5549			break;
5550
5551		log = btrfs_read_fs_root(log_root_tree, &found_key);
5552		if (IS_ERR(log)) {
5553			ret = PTR_ERR(log);
5554			btrfs_std_error(fs_info, ret,
5555				    "Couldn't read tree log root.");
5556			goto error;
5557		}
5558
5559		tmp_key.objectid = found_key.offset;
5560		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5561		tmp_key.offset = (u64)-1;
5562
5563		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5564		if (IS_ERR(wc.replay_dest)) {
5565			ret = PTR_ERR(wc.replay_dest);
5566			free_extent_buffer(log->node);
5567			free_extent_buffer(log->commit_root);
5568			kfree(log);
5569			btrfs_std_error(fs_info, ret, "Couldn't read target root "
5570				    "for tree log recovery.");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5571			goto error;
5572		}
5573
5574		wc.replay_dest->log_root = log;
5575		btrfs_record_root_in_trans(trans, wc.replay_dest);
5576		ret = walk_log_tree(trans, log, &wc);
 
 
 
 
5577
5578		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5579			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5580						      path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5581		}
5582
5583		key.offset = found_key.offset - 1;
5584		wc.replay_dest->log_root = NULL;
5585		free_extent_buffer(log->node);
5586		free_extent_buffer(log->commit_root);
5587		kfree(log);
5588
5589		if (ret)
5590			goto error;
5591
5592		if (found_key.offset == 0)
5593			break;
 
5594	}
5595	btrfs_release_path(path);
5596
5597	/* step one is to pin it all, step two is to replay just inodes */
5598	if (wc.pin) {
5599		wc.pin = 0;
5600		wc.process_func = replay_one_buffer;
5601		wc.stage = LOG_WALK_REPLAY_INODES;
5602		goto again;
5603	}
5604	/* step three is to replay everything */
5605	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5606		wc.stage++;
5607		goto again;
5608	}
5609
5610	btrfs_free_path(path);
5611
5612	/* step 4: commit the transaction, which also unpins the blocks */
5613	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5614	if (ret)
5615		return ret;
5616
5617	free_extent_buffer(log_root_tree->node);
5618	log_root_tree->log_root = NULL;
5619	fs_info->log_root_recovering = 0;
5620	kfree(log_root_tree);
5621
5622	return 0;
5623error:
5624	if (wc.trans)
5625		btrfs_end_transaction(wc.trans, fs_info->tree_root);
 
5626	btrfs_free_path(path);
5627	return ret;
5628}
5629
5630/*
5631 * there are some corner cases where we want to force a full
5632 * commit instead of allowing a directory to be logged.
5633 *
5634 * They revolve around files there were unlinked from the directory, and
5635 * this function updates the parent directory so that a full commit is
5636 * properly done if it is fsync'd later after the unlinks are done.
5637 *
5638 * Must be called before the unlink operations (updates to the subvolume tree,
5639 * inodes, etc) are done.
5640 */
5641void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5642			     struct inode *dir, struct inode *inode,
5643			     int for_rename)
5644{
5645	/*
5646	 * when we're logging a file, if it hasn't been renamed
5647	 * or unlinked, and its inode is fully committed on disk,
5648	 * we don't have to worry about walking up the directory chain
5649	 * to log its parents.
5650	 *
5651	 * So, we use the last_unlink_trans field to put this transid
5652	 * into the file.  When the file is logged we check it and
5653	 * don't log the parents if the file is fully on disk.
5654	 */
5655	if (S_ISREG(inode->i_mode)) {
5656		mutex_lock(&BTRFS_I(inode)->log_mutex);
5657		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5658		mutex_unlock(&BTRFS_I(inode)->log_mutex);
5659	}
5660
5661	/*
5662	 * if this directory was already logged any new
5663	 * names for this file/dir will get recorded
5664	 */
5665	smp_mb();
5666	if (BTRFS_I(dir)->logged_trans == trans->transid)
5667		return;
5668
5669	/*
5670	 * if the inode we're about to unlink was logged,
5671	 * the log will be properly updated for any new names
5672	 */
5673	if (BTRFS_I(inode)->logged_trans == trans->transid)
5674		return;
5675
5676	/*
5677	 * when renaming files across directories, if the directory
5678	 * there we're unlinking from gets fsync'd later on, there's
5679	 * no way to find the destination directory later and fsync it
5680	 * properly.  So, we have to be conservative and force commits
5681	 * so the new name gets discovered.
5682	 */
5683	if (for_rename)
5684		goto record;
5685
5686	/* we can safely do the unlink without any special recording */
5687	return;
5688
5689record:
5690	mutex_lock(&BTRFS_I(dir)->log_mutex);
5691	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5692	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5693}
5694
5695/*
5696 * Make sure that if someone attempts to fsync the parent directory of a deleted
5697 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5698 * that after replaying the log tree of the parent directory's root we will not
5699 * see the snapshot anymore and at log replay time we will not see any log tree
5700 * corresponding to the deleted snapshot's root, which could lead to replaying
5701 * it after replaying the log tree of the parent directory (which would replay
5702 * the snapshot delete operation).
5703 *
5704 * Must be called before the actual snapshot destroy operation (updates to the
5705 * parent root and tree of tree roots trees, etc) are done.
5706 */
5707void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5708				   struct inode *dir)
5709{
5710	mutex_lock(&BTRFS_I(dir)->log_mutex);
5711	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5712	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5713}
5714
5715/*
5716 * Call this after adding a new name for a file and it will properly
5717 * update the log to reflect the new name.
5718 *
5719 * It will return zero if all goes well, and it will return 1 if a
5720 * full transaction commit is required.
5721 */
5722int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5723			struct inode *inode, struct inode *old_dir,
5724			struct dentry *parent)
5725{
5726	struct btrfs_root * root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5727
5728	/*
5729	 * this will force the logging code to walk the dentry chain
5730	 * up for the file
5731	 */
5732	if (S_ISREG(inode->i_mode))
5733		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5734
5735	/*
5736	 * if this inode hasn't been logged and directory we're renaming it
5737	 * from hasn't been logged, we don't need to log it
5738	 */
5739	if (BTRFS_I(inode)->logged_trans <=
5740	    root->fs_info->last_trans_committed &&
5741	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5742		    root->fs_info->last_trans_committed))
5743		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5744
5745	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5746				      LLONG_MAX, 1, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5747}
5748
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "misc.h"
  12#include "ctree.h"
  13#include "tree-log.h"
  14#include "disk-io.h"
  15#include "locking.h"
  16#include "print-tree.h"
  17#include "backref.h"
 
  18#include "compression.h"
  19#include "qgroup.h"
  20#include "block-group.h"
  21#include "space-info.h"
  22#include "zoned.h"
  23#include "inode-item.h"
  24#include "fs.h"
  25#include "accessors.h"
  26#include "extent-tree.h"
  27#include "root-tree.h"
  28#include "dir-item.h"
  29#include "file-item.h"
  30#include "file.h"
  31#include "orphan.h"
  32#include "tree-checker.h"
  33
  34#define MAX_CONFLICT_INODES 10
  35
  36/* magic values for the inode_only field in btrfs_log_inode:
  37 *
  38 * LOG_INODE_ALL means to log everything
  39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  40 * during log replay
  41 */
  42enum {
  43	LOG_INODE_ALL,
  44	LOG_INODE_EXISTS,
  45};
  46
  47/*
  48 * directory trouble cases
  49 *
  50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  51 * log, we must force a full commit before doing an fsync of the directory
  52 * where the unlink was done.
  53 * ---> record transid of last unlink/rename per directory
  54 *
  55 * mkdir foo/some_dir
  56 * normal commit
  57 * rename foo/some_dir foo2/some_dir
  58 * mkdir foo/some_dir
  59 * fsync foo/some_dir/some_file
  60 *
  61 * The fsync above will unlink the original some_dir without recording
  62 * it in its new location (foo2).  After a crash, some_dir will be gone
  63 * unless the fsync of some_file forces a full commit
  64 *
  65 * 2) we must log any new names for any file or dir that is in the fsync
  66 * log. ---> check inode while renaming/linking.
  67 *
  68 * 2a) we must log any new names for any file or dir during rename
  69 * when the directory they are being removed from was logged.
  70 * ---> check inode and old parent dir during rename
  71 *
  72 *  2a is actually the more important variant.  With the extra logging
  73 *  a crash might unlink the old name without recreating the new one
  74 *
  75 * 3) after a crash, we must go through any directories with a link count
  76 * of zero and redo the rm -rf
  77 *
  78 * mkdir f1/foo
  79 * normal commit
  80 * rm -rf f1/foo
  81 * fsync(f1)
  82 *
  83 * The directory f1 was fully removed from the FS, but fsync was never
  84 * called on f1, only its parent dir.  After a crash the rm -rf must
  85 * be replayed.  This must be able to recurse down the entire
  86 * directory tree.  The inode link count fixup code takes care of the
  87 * ugly details.
  88 */
  89
  90/*
  91 * stages for the tree walking.  The first
  92 * stage (0) is to only pin down the blocks we find
  93 * the second stage (1) is to make sure that all the inodes
  94 * we find in the log are created in the subvolume.
  95 *
  96 * The last stage is to deal with directories and links and extents
  97 * and all the other fun semantics
  98 */
  99enum {
 100	LOG_WALK_PIN_ONLY,
 101	LOG_WALK_REPLAY_INODES,
 102	LOG_WALK_REPLAY_DIR_INDEX,
 103	LOG_WALK_REPLAY_ALL,
 104};
 105
 106static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 107			   struct btrfs_inode *inode,
 108			   int inode_only,
 
 
 109			   struct btrfs_log_ctx *ctx);
 110static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 111			     struct btrfs_root *root,
 112			     struct btrfs_path *path, u64 objectid);
 113static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 114				       struct btrfs_root *root,
 115				       struct btrfs_root *log,
 116				       struct btrfs_path *path,
 117				       u64 dirid, int del_all);
 118static void wait_log_commit(struct btrfs_root *root, int transid);
 119
 120/*
 121 * tree logging is a special write ahead log used to make sure that
 122 * fsyncs and O_SYNCs can happen without doing full tree commits.
 123 *
 124 * Full tree commits are expensive because they require commonly
 125 * modified blocks to be recowed, creating many dirty pages in the
 126 * extent tree an 4x-6x higher write load than ext3.
 127 *
 128 * Instead of doing a tree commit on every fsync, we use the
 129 * key ranges and transaction ids to find items for a given file or directory
 130 * that have changed in this transaction.  Those items are copied into
 131 * a special tree (one per subvolume root), that tree is written to disk
 132 * and then the fsync is considered complete.
 133 *
 134 * After a crash, items are copied out of the log-tree back into the
 135 * subvolume tree.  Any file data extents found are recorded in the extent
 136 * allocation tree, and the log-tree freed.
 137 *
 138 * The log tree is read three times, once to pin down all the extents it is
 139 * using in ram and once, once to create all the inodes logged in the tree
 140 * and once to do all the other items.
 141 */
 142
 143/*
 144 * start a sub transaction and setup the log tree
 145 * this increments the log tree writer count to make the people
 146 * syncing the tree wait for us to finish
 147 */
 148static int start_log_trans(struct btrfs_trans_handle *trans,
 149			   struct btrfs_root *root,
 150			   struct btrfs_log_ctx *ctx)
 151{
 152	struct btrfs_fs_info *fs_info = root->fs_info;
 153	struct btrfs_root *tree_root = fs_info->tree_root;
 154	const bool zoned = btrfs_is_zoned(fs_info);
 155	int ret = 0;
 156	bool created = false;
 157
 158	/*
 159	 * First check if the log root tree was already created. If not, create
 160	 * it before locking the root's log_mutex, just to keep lockdep happy.
 161	 */
 162	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
 163		mutex_lock(&tree_root->log_mutex);
 164		if (!fs_info->log_root_tree) {
 165			ret = btrfs_init_log_root_tree(trans, fs_info);
 166			if (!ret) {
 167				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
 168				created = true;
 169			}
 170		}
 171		mutex_unlock(&tree_root->log_mutex);
 172		if (ret)
 173			return ret;
 174	}
 175
 176	mutex_lock(&root->log_mutex);
 177
 178again:
 179	if (root->log_root) {
 180		int index = (root->log_transid + 1) % 2;
 181
 182		if (btrfs_need_log_full_commit(trans)) {
 183			ret = BTRFS_LOG_FORCE_COMMIT;
 184			goto out;
 185		}
 186
 187		if (zoned && atomic_read(&root->log_commit[index])) {
 188			wait_log_commit(root, root->log_transid - 1);
 189			goto again;
 190		}
 191
 192		if (!root->log_start_pid) {
 193			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 194			root->log_start_pid = current->pid;
 195		} else if (root->log_start_pid != current->pid) {
 196			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 197		}
 198	} else {
 199		/*
 200		 * This means fs_info->log_root_tree was already created
 201		 * for some other FS trees. Do the full commit not to mix
 202		 * nodes from multiple log transactions to do sequential
 203		 * writing.
 204		 */
 205		if (zoned && !created) {
 206			ret = BTRFS_LOG_FORCE_COMMIT;
 207			goto out;
 208		}
 209
 210		ret = btrfs_add_log_tree(trans, root);
 211		if (ret)
 212			goto out;
 213
 214		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
 215		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 216		root->log_start_pid = current->pid;
 217	}
 218
 
 219	atomic_inc(&root->log_writers);
 220	if (!ctx->logging_new_name) {
 221		int index = root->log_transid % 2;
 222		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 223		ctx->log_transid = root->log_transid;
 224	}
 225
 226out:
 227	mutex_unlock(&root->log_mutex);
 228	return ret;
 229}
 230
 231/*
 232 * returns 0 if there was a log transaction running and we were able
 233 * to join, or returns -ENOENT if there were not transactions
 234 * in progress
 235 */
 236static int join_running_log_trans(struct btrfs_root *root)
 237{
 238	const bool zoned = btrfs_is_zoned(root->fs_info);
 239	int ret = -ENOENT;
 240
 241	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
 242		return ret;
 
 243
 244	mutex_lock(&root->log_mutex);
 245again:
 246	if (root->log_root) {
 247		int index = (root->log_transid + 1) % 2;
 248
 249		ret = 0;
 250		if (zoned && atomic_read(&root->log_commit[index])) {
 251			wait_log_commit(root, root->log_transid - 1);
 252			goto again;
 253		}
 254		atomic_inc(&root->log_writers);
 255	}
 256	mutex_unlock(&root->log_mutex);
 257	return ret;
 258}
 259
 260/*
 261 * This either makes the current running log transaction wait
 262 * until you call btrfs_end_log_trans() or it makes any future
 263 * log transactions wait until you call btrfs_end_log_trans()
 264 */
 265void btrfs_pin_log_trans(struct btrfs_root *root)
 266{
 
 
 
 267	atomic_inc(&root->log_writers);
 
 
 268}
 269
 270/*
 271 * indicate we're done making changes to the log tree
 272 * and wake up anyone waiting to do a sync
 273 */
 274void btrfs_end_log_trans(struct btrfs_root *root)
 275{
 276	if (atomic_dec_and_test(&root->log_writers)) {
 277		/* atomic_dec_and_test implies a barrier */
 278		cond_wake_up_nomb(&root->log_writer_wait);
 
 
 
 279	}
 280}
 281
 282static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
 283{
 284	filemap_fdatawait_range(buf->pages[0]->mapping,
 285			        buf->start, buf->start + buf->len - 1);
 286}
 287
 288/*
 289 * the walk control struct is used to pass state down the chain when
 290 * processing the log tree.  The stage field tells us which part
 291 * of the log tree processing we are currently doing.  The others
 292 * are state fields used for that specific part
 293 */
 294struct walk_control {
 295	/* should we free the extent on disk when done?  This is used
 296	 * at transaction commit time while freeing a log tree
 297	 */
 298	int free;
 299
 
 
 
 
 
 
 
 
 
 
 300	/* pin only walk, we record which extents on disk belong to the
 301	 * log trees
 302	 */
 303	int pin;
 304
 305	/* what stage of the replay code we're currently in */
 306	int stage;
 307
 308	/*
 309	 * Ignore any items from the inode currently being processed. Needs
 310	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 311	 * the LOG_WALK_REPLAY_INODES stage.
 312	 */
 313	bool ignore_cur_inode;
 314
 315	/* the root we are currently replaying */
 316	struct btrfs_root *replay_dest;
 317
 318	/* the trans handle for the current replay */
 319	struct btrfs_trans_handle *trans;
 320
 321	/* the function that gets used to process blocks we find in the
 322	 * tree.  Note the extent_buffer might not be up to date when it is
 323	 * passed in, and it must be checked or read if you need the data
 324	 * inside it
 325	 */
 326	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 327			    struct walk_control *wc, u64 gen, int level);
 328};
 329
 330/*
 331 * process_func used to pin down extents, write them or wait on them
 332 */
 333static int process_one_buffer(struct btrfs_root *log,
 334			      struct extent_buffer *eb,
 335			      struct walk_control *wc, u64 gen, int level)
 336{
 337	struct btrfs_fs_info *fs_info = log->fs_info;
 338	int ret = 0;
 339
 340	/*
 341	 * If this fs is mixed then we need to be able to process the leaves to
 342	 * pin down any logged extents, so we have to read the block.
 343	 */
 344	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 345		struct btrfs_tree_parent_check check = {
 346			.level = level,
 347			.transid = gen
 348		};
 349
 350		ret = btrfs_read_extent_buffer(eb, &check);
 351		if (ret)
 352			return ret;
 353	}
 354
 355	if (wc->pin) {
 356		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
 357						      eb->len);
 358		if (ret)
 359			return ret;
 360
 361		if (btrfs_buffer_uptodate(eb, gen, 0) &&
 362		    btrfs_header_level(eb) == 0)
 363			ret = btrfs_exclude_logged_extents(eb);
 
 
 364	}
 365	return ret;
 366}
 367
 368/*
 369 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 370 * to the src data we are copying out.
 371 *
 372 * root is the tree we are copying into, and path is a scratch
 373 * path for use in this function (it should be released on entry and
 374 * will be released on exit).
 375 *
 376 * If the key is already in the destination tree the existing item is
 377 * overwritten.  If the existing item isn't big enough, it is extended.
 378 * If it is too large, it is truncated.
 379 *
 380 * If the key isn't in the destination yet, a new item is inserted.
 381 */
 382static int overwrite_item(struct btrfs_trans_handle *trans,
 383			  struct btrfs_root *root,
 384			  struct btrfs_path *path,
 385			  struct extent_buffer *eb, int slot,
 386			  struct btrfs_key *key)
 387{
 388	int ret;
 389	u32 item_size;
 390	u64 saved_i_size = 0;
 391	int save_old_i_size = 0;
 392	unsigned long src_ptr;
 393	unsigned long dst_ptr;
 
 394	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 395
 396	/*
 397	 * This is only used during log replay, so the root is always from a
 398	 * fs/subvolume tree. In case we ever need to support a log root, then
 399	 * we'll have to clone the leaf in the path, release the path and use
 400	 * the leaf before writing into the log tree. See the comments at
 401	 * copy_items() for more details.
 402	 */
 403	ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
 404
 405	item_size = btrfs_item_size(eb, slot);
 406	src_ptr = btrfs_item_ptr_offset(eb, slot);
 407
 408	/* Look for the key in the destination tree. */
 409	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 410	if (ret < 0)
 411		return ret;
 412
 413	if (ret == 0) {
 414		char *src_copy;
 415		char *dst_copy;
 416		u32 dst_size = btrfs_item_size(path->nodes[0],
 417						  path->slots[0]);
 418		if (dst_size != item_size)
 419			goto insert;
 420
 421		if (item_size == 0) {
 422			btrfs_release_path(path);
 423			return 0;
 424		}
 425		dst_copy = kmalloc(item_size, GFP_NOFS);
 426		src_copy = kmalloc(item_size, GFP_NOFS);
 427		if (!dst_copy || !src_copy) {
 428			btrfs_release_path(path);
 429			kfree(dst_copy);
 430			kfree(src_copy);
 431			return -ENOMEM;
 432		}
 433
 434		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 435
 436		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 437		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 438				   item_size);
 439		ret = memcmp(dst_copy, src_copy, item_size);
 440
 441		kfree(dst_copy);
 442		kfree(src_copy);
 443		/*
 444		 * they have the same contents, just return, this saves
 445		 * us from cowing blocks in the destination tree and doing
 446		 * extra writes that may not have been done by a previous
 447		 * sync
 448		 */
 449		if (ret == 0) {
 450			btrfs_release_path(path);
 451			return 0;
 452		}
 453
 454		/*
 455		 * We need to load the old nbytes into the inode so when we
 456		 * replay the extents we've logged we get the right nbytes.
 457		 */
 458		if (inode_item) {
 459			struct btrfs_inode_item *item;
 460			u64 nbytes;
 461			u32 mode;
 462
 463			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 464					      struct btrfs_inode_item);
 465			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 466			item = btrfs_item_ptr(eb, slot,
 467					      struct btrfs_inode_item);
 468			btrfs_set_inode_nbytes(eb, item, nbytes);
 469
 470			/*
 471			 * If this is a directory we need to reset the i_size to
 472			 * 0 so that we can set it up properly when replaying
 473			 * the rest of the items in this log.
 474			 */
 475			mode = btrfs_inode_mode(eb, item);
 476			if (S_ISDIR(mode))
 477				btrfs_set_inode_size(eb, item, 0);
 478		}
 479	} else if (inode_item) {
 480		struct btrfs_inode_item *item;
 481		u32 mode;
 482
 483		/*
 484		 * New inode, set nbytes to 0 so that the nbytes comes out
 485		 * properly when we replay the extents.
 486		 */
 487		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 488		btrfs_set_inode_nbytes(eb, item, 0);
 489
 490		/*
 491		 * If this is a directory we need to reset the i_size to 0 so
 492		 * that we can set it up properly when replaying the rest of
 493		 * the items in this log.
 494		 */
 495		mode = btrfs_inode_mode(eb, item);
 496		if (S_ISDIR(mode))
 497			btrfs_set_inode_size(eb, item, 0);
 498	}
 499insert:
 500	btrfs_release_path(path);
 501	/* try to insert the key into the destination tree */
 502	path->skip_release_on_error = 1;
 503	ret = btrfs_insert_empty_item(trans, root, path,
 504				      key, item_size);
 505	path->skip_release_on_error = 0;
 506
 507	/* make sure any existing item is the correct size */
 508	if (ret == -EEXIST || ret == -EOVERFLOW) {
 509		u32 found_size;
 510		found_size = btrfs_item_size(path->nodes[0],
 511						path->slots[0]);
 512		if (found_size > item_size)
 513			btrfs_truncate_item(path, item_size, 1);
 514		else if (found_size < item_size)
 515			btrfs_extend_item(path, item_size - found_size);
 
 516	} else if (ret) {
 517		return ret;
 518	}
 519	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 520					path->slots[0]);
 521
 522	/* don't overwrite an existing inode if the generation number
 523	 * was logged as zero.  This is done when the tree logging code
 524	 * is just logging an inode to make sure it exists after recovery.
 525	 *
 526	 * Also, don't overwrite i_size on directories during replay.
 527	 * log replay inserts and removes directory items based on the
 528	 * state of the tree found in the subvolume, and i_size is modified
 529	 * as it goes
 530	 */
 531	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 532		struct btrfs_inode_item *src_item;
 533		struct btrfs_inode_item *dst_item;
 534
 535		src_item = (struct btrfs_inode_item *)src_ptr;
 536		dst_item = (struct btrfs_inode_item *)dst_ptr;
 537
 538		if (btrfs_inode_generation(eb, src_item) == 0) {
 539			struct extent_buffer *dst_eb = path->nodes[0];
 540			const u64 ino_size = btrfs_inode_size(eb, src_item);
 541
 542			/*
 543			 * For regular files an ino_size == 0 is used only when
 544			 * logging that an inode exists, as part of a directory
 545			 * fsync, and the inode wasn't fsynced before. In this
 546			 * case don't set the size of the inode in the fs/subvol
 547			 * tree, otherwise we would be throwing valid data away.
 548			 */
 549			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 550			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 551			    ino_size != 0)
 552				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
 
 
 
 
 
 553			goto no_copy;
 554		}
 555
 556		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 
 557		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 558			save_old_i_size = 1;
 559			saved_i_size = btrfs_inode_size(path->nodes[0],
 560							dst_item);
 561		}
 562	}
 563
 564	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 565			   src_ptr, item_size);
 566
 567	if (save_old_i_size) {
 568		struct btrfs_inode_item *dst_item;
 569		dst_item = (struct btrfs_inode_item *)dst_ptr;
 570		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 571	}
 572
 573	/* make sure the generation is filled in */
 574	if (key->type == BTRFS_INODE_ITEM_KEY) {
 575		struct btrfs_inode_item *dst_item;
 576		dst_item = (struct btrfs_inode_item *)dst_ptr;
 577		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 578			btrfs_set_inode_generation(path->nodes[0], dst_item,
 579						   trans->transid);
 580		}
 581	}
 582no_copy:
 583	btrfs_mark_buffer_dirty(path->nodes[0]);
 584	btrfs_release_path(path);
 585	return 0;
 586}
 587
 588static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
 589			       struct fscrypt_str *name)
 590{
 591	char *buf;
 592
 593	buf = kmalloc(len, GFP_NOFS);
 594	if (!buf)
 595		return -ENOMEM;
 596
 597	read_extent_buffer(eb, buf, (unsigned long)start, len);
 598	name->name = buf;
 599	name->len = len;
 600	return 0;
 601}
 602
 603/*
 604 * simple helper to read an inode off the disk from a given root
 605 * This can only be called for subvolume roots and not for the log
 606 */
 607static noinline struct inode *read_one_inode(struct btrfs_root *root,
 608					     u64 objectid)
 609{
 
 610	struct inode *inode;
 611
 612	inode = btrfs_iget(root->fs_info->sb, objectid, root);
 613	if (IS_ERR(inode))
 
 
 
 
 
 
 614		inode = NULL;
 
 615	return inode;
 616}
 617
 618/* replays a single extent in 'eb' at 'slot' with 'key' into the
 619 * subvolume 'root'.  path is released on entry and should be released
 620 * on exit.
 621 *
 622 * extents in the log tree have not been allocated out of the extent
 623 * tree yet.  So, this completes the allocation, taking a reference
 624 * as required if the extent already exists or creating a new extent
 625 * if it isn't in the extent allocation tree yet.
 626 *
 627 * The extent is inserted into the file, dropping any existing extents
 628 * from the file that overlap the new one.
 629 */
 630static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 631				      struct btrfs_root *root,
 632				      struct btrfs_path *path,
 633				      struct extent_buffer *eb, int slot,
 634				      struct btrfs_key *key)
 635{
 636	struct btrfs_drop_extents_args drop_args = { 0 };
 637	struct btrfs_fs_info *fs_info = root->fs_info;
 638	int found_type;
 639	u64 extent_end;
 640	u64 start = key->offset;
 641	u64 nbytes = 0;
 642	struct btrfs_file_extent_item *item;
 643	struct inode *inode = NULL;
 644	unsigned long size;
 645	int ret = 0;
 646
 647	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 648	found_type = btrfs_file_extent_type(eb, item);
 649
 650	if (found_type == BTRFS_FILE_EXTENT_REG ||
 651	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 652		nbytes = btrfs_file_extent_num_bytes(eb, item);
 653		extent_end = start + nbytes;
 654
 655		/*
 656		 * We don't add to the inodes nbytes if we are prealloc or a
 657		 * hole.
 658		 */
 659		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 660			nbytes = 0;
 661	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 662		size = btrfs_file_extent_ram_bytes(eb, item);
 663		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 664		extent_end = ALIGN(start + size,
 665				   fs_info->sectorsize);
 666	} else {
 667		ret = 0;
 668		goto out;
 669	}
 670
 671	inode = read_one_inode(root, key->objectid);
 672	if (!inode) {
 673		ret = -EIO;
 674		goto out;
 675	}
 676
 677	/*
 678	 * first check to see if we already have this extent in the
 679	 * file.  This must be done before the btrfs_drop_extents run
 680	 * so we don't try to drop this extent.
 681	 */
 682	ret = btrfs_lookup_file_extent(trans, root, path,
 683			btrfs_ino(BTRFS_I(inode)), start, 0);
 684
 685	if (ret == 0 &&
 686	    (found_type == BTRFS_FILE_EXTENT_REG ||
 687	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 688		struct btrfs_file_extent_item cmp1;
 689		struct btrfs_file_extent_item cmp2;
 690		struct btrfs_file_extent_item *existing;
 691		struct extent_buffer *leaf;
 692
 693		leaf = path->nodes[0];
 694		existing = btrfs_item_ptr(leaf, path->slots[0],
 695					  struct btrfs_file_extent_item);
 696
 697		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 698				   sizeof(cmp1));
 699		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 700				   sizeof(cmp2));
 701
 702		/*
 703		 * we already have a pointer to this exact extent,
 704		 * we don't have to do anything
 705		 */
 706		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 707			btrfs_release_path(path);
 708			goto out;
 709		}
 710	}
 711	btrfs_release_path(path);
 712
 713	/* drop any overlapping extents */
 714	drop_args.start = start;
 715	drop_args.end = extent_end;
 716	drop_args.drop_cache = true;
 717	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
 718	if (ret)
 719		goto out;
 720
 721	if (found_type == BTRFS_FILE_EXTENT_REG ||
 722	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 723		u64 offset;
 724		unsigned long dest_offset;
 725		struct btrfs_key ins;
 726
 727		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 728		    btrfs_fs_incompat(fs_info, NO_HOLES))
 729			goto update_inode;
 730
 731		ret = btrfs_insert_empty_item(trans, root, path, key,
 732					      sizeof(*item));
 733		if (ret)
 734			goto out;
 735		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 736						    path->slots[0]);
 737		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 738				(unsigned long)item,  sizeof(*item));
 739
 740		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 741		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 742		ins.type = BTRFS_EXTENT_ITEM_KEY;
 743		offset = key->offset - btrfs_file_extent_offset(eb, item);
 744
 745		/*
 746		 * Manually record dirty extent, as here we did a shallow
 747		 * file extent item copy and skip normal backref update,
 748		 * but modifying extent tree all by ourselves.
 749		 * So need to manually record dirty extent for qgroup,
 750		 * as the owner of the file extent changed from log tree
 751		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 752		 */
 753		ret = btrfs_qgroup_trace_extent(trans,
 754				btrfs_file_extent_disk_bytenr(eb, item),
 755				btrfs_file_extent_disk_num_bytes(eb, item));
 756		if (ret < 0)
 757			goto out;
 758
 759		if (ins.objectid > 0) {
 760			struct btrfs_ref ref = { 0 };
 761			u64 csum_start;
 762			u64 csum_end;
 763			LIST_HEAD(ordered_sums);
 764
 765			/*
 766			 * is this extent already allocated in the extent
 767			 * allocation tree?  If so, just add a reference
 768			 */
 769			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 770						ins.offset);
 771			if (ret < 0) {
 772				goto out;
 773			} else if (ret == 0) {
 774				btrfs_init_generic_ref(&ref,
 775						BTRFS_ADD_DELAYED_REF,
 776						ins.objectid, ins.offset, 0);
 777				btrfs_init_data_ref(&ref,
 778						root->root_key.objectid,
 779						key->objectid, offset, 0, false);
 780				ret = btrfs_inc_extent_ref(trans, &ref);
 781				if (ret)
 782					goto out;
 783			} else {
 784				/*
 785				 * insert the extent pointer in the extent
 786				 * allocation tree
 787				 */
 788				ret = btrfs_alloc_logged_file_extent(trans,
 789						root->root_key.objectid,
 790						key->objectid, offset, &ins);
 791				if (ret)
 792					goto out;
 793			}
 794			btrfs_release_path(path);
 795
 796			if (btrfs_file_extent_compression(eb, item)) {
 797				csum_start = ins.objectid;
 798				csum_end = csum_start + ins.offset;
 799			} else {
 800				csum_start = ins.objectid +
 801					btrfs_file_extent_offset(eb, item);
 802				csum_end = csum_start +
 803					btrfs_file_extent_num_bytes(eb, item);
 804			}
 805
 806			ret = btrfs_lookup_csums_list(root->log_root,
 807						csum_start, csum_end - 1,
 808						&ordered_sums, 0, false);
 809			if (ret)
 810				goto out;
 811			/*
 812			 * Now delete all existing cums in the csum root that
 813			 * cover our range. We do this because we can have an
 814			 * extent that is completely referenced by one file
 815			 * extent item and partially referenced by another
 816			 * file extent item (like after using the clone or
 817			 * extent_same ioctls). In this case if we end up doing
 818			 * the replay of the one that partially references the
 819			 * extent first, and we do not do the csum deletion
 820			 * below, we can get 2 csum items in the csum tree that
 821			 * overlap each other. For example, imagine our log has
 822			 * the two following file extent items:
 823			 *
 824			 * key (257 EXTENT_DATA 409600)
 825			 *     extent data disk byte 12845056 nr 102400
 826			 *     extent data offset 20480 nr 20480 ram 102400
 827			 *
 828			 * key (257 EXTENT_DATA 819200)
 829			 *     extent data disk byte 12845056 nr 102400
 830			 *     extent data offset 0 nr 102400 ram 102400
 831			 *
 832			 * Where the second one fully references the 100K extent
 833			 * that starts at disk byte 12845056, and the log tree
 834			 * has a single csum item that covers the entire range
 835			 * of the extent:
 836			 *
 837			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 838			 *
 839			 * After the first file extent item is replayed, the
 840			 * csum tree gets the following csum item:
 841			 *
 842			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 843			 *
 844			 * Which covers the 20K sub-range starting at offset 20K
 845			 * of our extent. Now when we replay the second file
 846			 * extent item, if we do not delete existing csum items
 847			 * that cover any of its blocks, we end up getting two
 848			 * csum items in our csum tree that overlap each other:
 849			 *
 850			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 851			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 852			 *
 853			 * Which is a problem, because after this anyone trying
 854			 * to lookup up for the checksum of any block of our
 855			 * extent starting at an offset of 40K or higher, will
 856			 * end up looking at the second csum item only, which
 857			 * does not contain the checksum for any block starting
 858			 * at offset 40K or higher of our extent.
 859			 */
 860			while (!list_empty(&ordered_sums)) {
 861				struct btrfs_ordered_sum *sums;
 862				struct btrfs_root *csum_root;
 863
 864				sums = list_entry(ordered_sums.next,
 865						struct btrfs_ordered_sum,
 866						list);
 867				csum_root = btrfs_csum_root(fs_info,
 868							    sums->bytenr);
 869				if (!ret)
 870					ret = btrfs_del_csums(trans, csum_root,
 871							      sums->bytenr,
 872							      sums->len);
 
 873				if (!ret)
 874					ret = btrfs_csum_file_blocks(trans,
 875								     csum_root,
 876								     sums);
 877				list_del(&sums->list);
 878				kfree(sums);
 879			}
 880			if (ret)
 881				goto out;
 882		} else {
 883			btrfs_release_path(path);
 884		}
 885	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 886		/* inline extents are easy, we just overwrite them */
 887		ret = overwrite_item(trans, root, path, eb, slot, key);
 888		if (ret)
 889			goto out;
 890	}
 891
 892	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
 893						extent_end - start);
 894	if (ret)
 895		goto out;
 896
 897update_inode:
 898	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
 899	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 900out:
 901	iput(inode);
 
 902	return ret;
 903}
 904
 905static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
 906				       struct btrfs_inode *dir,
 907				       struct btrfs_inode *inode,
 908				       const struct fscrypt_str *name)
 909{
 910	int ret;
 911
 912	ret = btrfs_unlink_inode(trans, dir, inode, name);
 913	if (ret)
 914		return ret;
 915	/*
 916	 * Whenever we need to check if a name exists or not, we check the
 917	 * fs/subvolume tree. So after an unlink we must run delayed items, so
 918	 * that future checks for a name during log replay see that the name
 919	 * does not exists anymore.
 920	 */
 921	return btrfs_run_delayed_items(trans);
 922}
 923
 924/*
 925 * when cleaning up conflicts between the directory names in the
 926 * subvolume, directory names in the log and directory names in the
 927 * inode back references, we may have to unlink inodes from directories.
 928 *
 929 * This is a helper function to do the unlink of a specific directory
 930 * item
 931 */
 932static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 
 933				      struct btrfs_path *path,
 934				      struct btrfs_inode *dir,
 935				      struct btrfs_dir_item *di)
 936{
 937	struct btrfs_root *root = dir->root;
 938	struct inode *inode;
 939	struct fscrypt_str name;
 
 940	struct extent_buffer *leaf;
 941	struct btrfs_key location;
 942	int ret;
 943
 944	leaf = path->nodes[0];
 945
 946	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 947	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
 948	if (ret)
 
 949		return -ENOMEM;
 950
 
 951	btrfs_release_path(path);
 952
 953	inode = read_one_inode(root, location.objectid);
 954	if (!inode) {
 955		ret = -EIO;
 956		goto out;
 957	}
 958
 959	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 960	if (ret)
 961		goto out;
 962
 963	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
 
 
 
 
 964out:
 965	kfree(name.name);
 966	iput(inode);
 967	return ret;
 968}
 969
 970/*
 971 * See if a given name and sequence number found in an inode back reference are
 972 * already in a directory and correctly point to this inode.
 973 *
 974 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
 975 * exists.
 976 */
 977static noinline int inode_in_dir(struct btrfs_root *root,
 978				 struct btrfs_path *path,
 979				 u64 dirid, u64 objectid, u64 index,
 980				 struct fscrypt_str *name)
 981{
 982	struct btrfs_dir_item *di;
 983	struct btrfs_key location;
 984	int ret = 0;
 985
 986	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 987					 index, name, 0);
 988	if (IS_ERR(di)) {
 989		ret = PTR_ERR(di);
 990		goto out;
 991	} else if (di) {
 992		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 993		if (location.objectid != objectid)
 994			goto out;
 995	} else {
 996		goto out;
 997	}
 998
 999	btrfs_release_path(path);
1000	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1001	if (IS_ERR(di)) {
1002		ret = PTR_ERR(di);
 
 
1003		goto out;
1004	} else if (di) {
1005		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006		if (location.objectid == objectid)
1007			ret = 1;
1008	}
1009out:
1010	btrfs_release_path(path);
1011	return ret;
1012}
1013
1014/*
1015 * helper function to check a log tree for a named back reference in
1016 * an inode.  This is used to decide if a back reference that is
1017 * found in the subvolume conflicts with what we find in the log.
1018 *
1019 * inode backreferences may have multiple refs in a single item,
1020 * during replay we process one reference at a time, and we don't
1021 * want to delete valid links to a file from the subvolume if that
1022 * link is also in the log.
1023 */
1024static noinline int backref_in_log(struct btrfs_root *log,
1025				   struct btrfs_key *key,
1026				   u64 ref_objectid,
1027				   const struct fscrypt_str *name)
1028{
1029	struct btrfs_path *path;
 
 
 
 
 
 
1030	int ret;
 
1031
1032	path = btrfs_alloc_path();
1033	if (!path)
1034		return -ENOMEM;
1035
1036	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1037	if (ret < 0) {
1038		goto out;
1039	} else if (ret == 1) {
1040		ret = 0;
 
 
 
 
 
 
1041		goto out;
1042	}
1043
1044	if (key->type == BTRFS_INODE_EXTREF_KEY)
1045		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1046						       path->slots[0],
1047						       ref_objectid, name);
1048	else
1049		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1050						   path->slots[0], name);
 
 
 
 
 
 
 
 
 
1051out:
1052	btrfs_free_path(path);
1053	return ret;
1054}
1055
1056static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1057				  struct btrfs_root *root,
1058				  struct btrfs_path *path,
1059				  struct btrfs_root *log_root,
1060				  struct btrfs_inode *dir,
1061				  struct btrfs_inode *inode,
1062				  u64 inode_objectid, u64 parent_objectid,
1063				  u64 ref_index, struct fscrypt_str *name)
 
1064{
1065	int ret;
 
 
1066	struct extent_buffer *leaf;
1067	struct btrfs_dir_item *di;
1068	struct btrfs_key search_key;
1069	struct btrfs_inode_extref *extref;
1070
1071again:
1072	/* Search old style refs */
1073	search_key.objectid = inode_objectid;
1074	search_key.type = BTRFS_INODE_REF_KEY;
1075	search_key.offset = parent_objectid;
1076	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1077	if (ret == 0) {
1078		struct btrfs_inode_ref *victim_ref;
1079		unsigned long ptr;
1080		unsigned long ptr_end;
1081
1082		leaf = path->nodes[0];
1083
1084		/* are we trying to overwrite a back ref for the root directory
1085		 * if so, just jump out, we're done
1086		 */
1087		if (search_key.objectid == search_key.offset)
1088			return 1;
1089
1090		/* check all the names in this back reference to see
1091		 * if they are in the log.  if so, we allow them to stay
1092		 * otherwise they must be unlinked as a conflict
1093		 */
1094		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1095		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1096		while (ptr < ptr_end) {
1097			struct fscrypt_str victim_name;
1098
1099			victim_ref = (struct btrfs_inode_ref *)ptr;
1100			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1101				 btrfs_inode_ref_name_len(leaf, victim_ref),
1102				 &victim_name);
1103			if (ret)
1104				return ret;
1105
1106			ret = backref_in_log(log_root, &search_key,
1107					     parent_objectid, &victim_name);
1108			if (ret < 0) {
1109				kfree(victim_name.name);
1110				return ret;
1111			} else if (!ret) {
1112				inc_nlink(&inode->vfs_inode);
 
 
1113				btrfs_release_path(path);
1114
1115				ret = unlink_inode_for_log_replay(trans, dir, inode,
1116						&victim_name);
1117				kfree(victim_name.name);
 
1118				if (ret)
1119					return ret;
 
 
 
 
1120				goto again;
1121			}
1122			kfree(victim_name.name);
1123
1124			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1125		}
 
 
 
 
 
 
1126	}
1127	btrfs_release_path(path);
1128
1129	/* Same search but for extended refs */
1130	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1131					   inode_objectid, parent_objectid, 0,
1132					   0);
1133	if (IS_ERR(extref)) {
1134		return PTR_ERR(extref);
1135	} else if (extref) {
1136		u32 item_size;
1137		u32 cur_offset = 0;
1138		unsigned long base;
1139		struct inode *victim_parent;
1140
1141		leaf = path->nodes[0];
1142
1143		item_size = btrfs_item_size(leaf, path->slots[0]);
1144		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1145
1146		while (cur_offset < item_size) {
1147			struct fscrypt_str victim_name;
1148
1149			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1150
1151			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1152				goto next;
1153
1154			ret = read_alloc_one_name(leaf, &extref->name,
1155				 btrfs_inode_extref_name_len(leaf, extref),
1156				 &victim_name);
1157			if (ret)
1158				return ret;
1159
1160			search_key.objectid = inode_objectid;
1161			search_key.type = BTRFS_INODE_EXTREF_KEY;
1162			search_key.offset = btrfs_extref_hash(parent_objectid,
1163							      victim_name.name,
1164							      victim_name.len);
1165			ret = backref_in_log(log_root, &search_key,
1166					     parent_objectid, &victim_name);
1167			if (ret < 0) {
1168				kfree(victim_name.name);
1169				return ret;
1170			} else if (!ret) {
1171				ret = -ENOENT;
1172				victim_parent = read_one_inode(root,
1173						parent_objectid);
1174				if (victim_parent) {
1175					inc_nlink(&inode->vfs_inode);
1176					btrfs_release_path(path);
1177
1178					ret = unlink_inode_for_log_replay(trans,
1179							BTRFS_I(victim_parent),
1180							inode, &victim_name);
 
 
 
 
 
1181				}
1182				iput(victim_parent);
1183				kfree(victim_name.name);
1184				if (ret)
1185					return ret;
 
1186				goto again;
1187			}
1188			kfree(victim_name.name);
 
 
1189next:
1190			cur_offset += victim_name.len + sizeof(*extref);
1191		}
 
1192	}
1193	btrfs_release_path(path);
1194
1195	/* look for a conflicting sequence number */
1196	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1197					 ref_index, name, 0);
1198	if (IS_ERR(di)) {
1199		return PTR_ERR(di);
1200	} else if (di) {
1201		ret = drop_one_dir_item(trans, path, dir, di);
1202		if (ret)
1203			return ret;
1204	}
1205	btrfs_release_path(path);
1206
1207	/* look for a conflicting name */
1208	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1209	if (IS_ERR(di)) {
1210		return PTR_ERR(di);
1211	} else if (di) {
1212		ret = drop_one_dir_item(trans, path, dir, di);
1213		if (ret)
1214			return ret;
1215	}
1216	btrfs_release_path(path);
1217
1218	return 0;
1219}
1220
1221static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1222			     struct fscrypt_str *name, u64 *index,
1223			     u64 *parent_objectid)
1224{
1225	struct btrfs_inode_extref *extref;
1226	int ret;
1227
1228	extref = (struct btrfs_inode_extref *)ref_ptr;
1229
1230	ret = read_alloc_one_name(eb, &extref->name,
1231				  btrfs_inode_extref_name_len(eb, extref), name);
1232	if (ret)
1233		return ret;
 
 
 
1234
1235	if (index)
1236		*index = btrfs_inode_extref_index(eb, extref);
1237	if (parent_objectid)
1238		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1239
1240	return 0;
1241}
1242
1243static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1244			  struct fscrypt_str *name, u64 *index)
1245{
1246	struct btrfs_inode_ref *ref;
1247	int ret;
1248
1249	ref = (struct btrfs_inode_ref *)ref_ptr;
1250
1251	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1252				  name);
1253	if (ret)
1254		return ret;
 
 
1255
1256	if (index)
1257		*index = btrfs_inode_ref_index(eb, ref);
1258
1259	return 0;
1260}
1261
1262/*
1263 * Take an inode reference item from the log tree and iterate all names from the
1264 * inode reference item in the subvolume tree with the same key (if it exists).
1265 * For any name that is not in the inode reference item from the log tree, do a
1266 * proper unlink of that name (that is, remove its entry from the inode
1267 * reference item and both dir index keys).
1268 */
1269static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270				 struct btrfs_root *root,
1271				 struct btrfs_path *path,
1272				 struct btrfs_inode *inode,
1273				 struct extent_buffer *log_eb,
1274				 int log_slot,
1275				 struct btrfs_key *key)
1276{
1277	int ret;
1278	unsigned long ref_ptr;
1279	unsigned long ref_end;
1280	struct extent_buffer *eb;
1281
1282again:
1283	btrfs_release_path(path);
1284	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1285	if (ret > 0) {
1286		ret = 0;
1287		goto out;
1288	}
1289	if (ret < 0)
1290		goto out;
1291
1292	eb = path->nodes[0];
1293	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1294	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1295	while (ref_ptr < ref_end) {
1296		struct fscrypt_str name;
1297		u64 parent_id;
1298
1299		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1300			ret = extref_get_fields(eb, ref_ptr, &name,
1301						NULL, &parent_id);
1302		} else {
1303			parent_id = key->offset;
1304			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1305		}
1306		if (ret)
1307			goto out;
1308
1309		if (key->type == BTRFS_INODE_EXTREF_KEY)
1310			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1311							       parent_id, &name);
1312		else
1313			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1314
1315		if (!ret) {
1316			struct inode *dir;
1317
1318			btrfs_release_path(path);
1319			dir = read_one_inode(root, parent_id);
1320			if (!dir) {
1321				ret = -ENOENT;
1322				kfree(name.name);
1323				goto out;
1324			}
1325			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1326						 inode, &name);
1327			kfree(name.name);
1328			iput(dir);
1329			if (ret)
1330				goto out;
1331			goto again;
1332		}
1333
1334		kfree(name.name);
1335		ref_ptr += name.len;
1336		if (key->type == BTRFS_INODE_EXTREF_KEY)
1337			ref_ptr += sizeof(struct btrfs_inode_extref);
1338		else
1339			ref_ptr += sizeof(struct btrfs_inode_ref);
1340	}
1341	ret = 0;
1342 out:
1343	btrfs_release_path(path);
1344	return ret;
1345}
1346
1347/*
1348 * replay one inode back reference item found in the log tree.
1349 * eb, slot and key refer to the buffer and key found in the log tree.
1350 * root is the destination we are replaying into, and path is for temp
1351 * use by this function.  (it should be released on return).
1352 */
1353static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1354				  struct btrfs_root *root,
1355				  struct btrfs_root *log,
1356				  struct btrfs_path *path,
1357				  struct extent_buffer *eb, int slot,
1358				  struct btrfs_key *key)
1359{
1360	struct inode *dir = NULL;
1361	struct inode *inode = NULL;
1362	unsigned long ref_ptr;
1363	unsigned long ref_end;
1364	struct fscrypt_str name;
 
1365	int ret;
 
1366	int log_ref_ver = 0;
1367	u64 parent_objectid;
1368	u64 inode_objectid;
1369	u64 ref_index = 0;
1370	int ref_struct_size;
1371
1372	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1373	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1374
1375	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1376		struct btrfs_inode_extref *r;
1377
1378		ref_struct_size = sizeof(struct btrfs_inode_extref);
1379		log_ref_ver = 1;
1380		r = (struct btrfs_inode_extref *)ref_ptr;
1381		parent_objectid = btrfs_inode_extref_parent(eb, r);
1382	} else {
1383		ref_struct_size = sizeof(struct btrfs_inode_ref);
1384		parent_objectid = key->offset;
1385	}
1386	inode_objectid = key->objectid;
1387
1388	/*
1389	 * it is possible that we didn't log all the parent directories
1390	 * for a given inode.  If we don't find the dir, just don't
1391	 * copy the back ref in.  The link count fixup code will take
1392	 * care of the rest
1393	 */
1394	dir = read_one_inode(root, parent_objectid);
1395	if (!dir) {
1396		ret = -ENOENT;
1397		goto out;
1398	}
1399
1400	inode = read_one_inode(root, inode_objectid);
1401	if (!inode) {
1402		ret = -EIO;
1403		goto out;
1404	}
1405
1406	while (ref_ptr < ref_end) {
1407		if (log_ref_ver) {
1408			ret = extref_get_fields(eb, ref_ptr, &name,
1409						&ref_index, &parent_objectid);
1410			/*
1411			 * parent object can change from one array
1412			 * item to another.
1413			 */
1414			if (!dir)
1415				dir = read_one_inode(root, parent_objectid);
1416			if (!dir) {
1417				ret = -ENOENT;
1418				goto out;
1419			}
1420		} else {
1421			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
 
1422		}
1423		if (ret)
1424			goto out;
1425
1426		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1427				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1428		if (ret < 0) {
1429			goto out;
1430		} else if (ret == 0) {
1431			/*
1432			 * look for a conflicting back reference in the
1433			 * metadata. if we find one we have to unlink that name
1434			 * of the file before we add our new link.  Later on, we
1435			 * overwrite any existing back reference, and we don't
1436			 * want to create dangling pointers in the directory.
1437			 */
1438			ret = __add_inode_ref(trans, root, path, log,
1439					      BTRFS_I(dir), BTRFS_I(inode),
1440					      inode_objectid, parent_objectid,
1441					      ref_index, &name);
1442			if (ret) {
1443				if (ret == 1)
1444					ret = 0;
1445				goto out;
 
 
 
 
 
1446			}
1447
1448			/* insert our name */
1449			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1450					     &name, 0, ref_index);
1451			if (ret)
1452				goto out;
1453
1454			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1455			if (ret)
1456				goto out;
1457		}
1458		/* Else, ret == 1, we already have a perfect match, we're done. */
1459
1460		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1461		kfree(name.name);
1462		name.name = NULL;
1463		if (log_ref_ver) {
1464			iput(dir);
1465			dir = NULL;
1466		}
1467	}
1468
1469	/*
1470	 * Before we overwrite the inode reference item in the subvolume tree
1471	 * with the item from the log tree, we must unlink all names from the
1472	 * parent directory that are in the subvolume's tree inode reference
1473	 * item, otherwise we end up with an inconsistent subvolume tree where
1474	 * dir index entries exist for a name but there is no inode reference
1475	 * item with the same name.
1476	 */
1477	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1478				    key);
1479	if (ret)
1480		goto out;
1481
1482	/* finally write the back reference in the inode */
1483	ret = overwrite_item(trans, root, path, eb, slot, key);
1484out:
1485	btrfs_release_path(path);
1486	kfree(name.name);
1487	iput(dir);
1488	iput(inode);
1489	return ret;
1490}
1491
 
 
 
 
 
 
 
 
 
 
 
 
1492static int count_inode_extrefs(struct btrfs_root *root,
1493		struct btrfs_inode *inode, struct btrfs_path *path)
1494{
1495	int ret = 0;
1496	int name_len;
1497	unsigned int nlink = 0;
1498	u32 item_size;
1499	u32 cur_offset = 0;
1500	u64 inode_objectid = btrfs_ino(inode);
1501	u64 offset = 0;
1502	unsigned long ptr;
1503	struct btrfs_inode_extref *extref;
1504	struct extent_buffer *leaf;
1505
1506	while (1) {
1507		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1508					    &extref, &offset);
1509		if (ret)
1510			break;
1511
1512		leaf = path->nodes[0];
1513		item_size = btrfs_item_size(leaf, path->slots[0]);
1514		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1515		cur_offset = 0;
1516
1517		while (cur_offset < item_size) {
1518			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1519			name_len = btrfs_inode_extref_name_len(leaf, extref);
1520
1521			nlink++;
1522
1523			cur_offset += name_len + sizeof(*extref);
1524		}
1525
1526		offset++;
1527		btrfs_release_path(path);
1528	}
1529	btrfs_release_path(path);
1530
1531	if (ret < 0 && ret != -ENOENT)
1532		return ret;
1533	return nlink;
1534}
1535
1536static int count_inode_refs(struct btrfs_root *root,
1537			struct btrfs_inode *inode, struct btrfs_path *path)
1538{
1539	int ret;
1540	struct btrfs_key key;
1541	unsigned int nlink = 0;
1542	unsigned long ptr;
1543	unsigned long ptr_end;
1544	int name_len;
1545	u64 ino = btrfs_ino(inode);
1546
1547	key.objectid = ino;
1548	key.type = BTRFS_INODE_REF_KEY;
1549	key.offset = (u64)-1;
1550
1551	while (1) {
1552		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1553		if (ret < 0)
1554			break;
1555		if (ret > 0) {
1556			if (path->slots[0] == 0)
1557				break;
1558			path->slots[0]--;
1559		}
1560process_slot:
1561		btrfs_item_key_to_cpu(path->nodes[0], &key,
1562				      path->slots[0]);
1563		if (key.objectid != ino ||
1564		    key.type != BTRFS_INODE_REF_KEY)
1565			break;
1566		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1567		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1568						   path->slots[0]);
1569		while (ptr < ptr_end) {
1570			struct btrfs_inode_ref *ref;
1571
1572			ref = (struct btrfs_inode_ref *)ptr;
1573			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1574							    ref);
1575			ptr = (unsigned long)(ref + 1) + name_len;
1576			nlink++;
1577		}
1578
1579		if (key.offset == 0)
1580			break;
1581		if (path->slots[0] > 0) {
1582			path->slots[0]--;
1583			goto process_slot;
1584		}
1585		key.offset--;
1586		btrfs_release_path(path);
1587	}
1588	btrfs_release_path(path);
1589
1590	return nlink;
1591}
1592
1593/*
1594 * There are a few corners where the link count of the file can't
1595 * be properly maintained during replay.  So, instead of adding
1596 * lots of complexity to the log code, we just scan the backrefs
1597 * for any file that has been through replay.
1598 *
1599 * The scan will update the link count on the inode to reflect the
1600 * number of back refs found.  If it goes down to zero, the iput
1601 * will free the inode.
1602 */
1603static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1604					   struct btrfs_root *root,
1605					   struct inode *inode)
1606{
1607	struct btrfs_path *path;
1608	int ret;
1609	u64 nlink = 0;
1610	u64 ino = btrfs_ino(BTRFS_I(inode));
1611
1612	path = btrfs_alloc_path();
1613	if (!path)
1614		return -ENOMEM;
1615
1616	ret = count_inode_refs(root, BTRFS_I(inode), path);
1617	if (ret < 0)
1618		goto out;
1619
1620	nlink = ret;
1621
1622	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1623	if (ret < 0)
1624		goto out;
1625
1626	nlink += ret;
1627
1628	ret = 0;
1629
1630	if (nlink != inode->i_nlink) {
1631		set_nlink(inode, nlink);
1632		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1633		if (ret)
1634			goto out;
1635	}
1636	BTRFS_I(inode)->index_cnt = (u64)-1;
1637
1638	if (inode->i_nlink == 0) {
1639		if (S_ISDIR(inode->i_mode)) {
1640			ret = replay_dir_deletes(trans, root, NULL, path,
1641						 ino, 1);
1642			if (ret)
1643				goto out;
1644		}
1645		ret = btrfs_insert_orphan_item(trans, root, ino);
1646		if (ret == -EEXIST)
1647			ret = 0;
1648	}
1649
1650out:
1651	btrfs_free_path(path);
1652	return ret;
1653}
1654
1655static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1656					    struct btrfs_root *root,
1657					    struct btrfs_path *path)
1658{
1659	int ret;
1660	struct btrfs_key key;
1661	struct inode *inode;
1662
1663	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1664	key.type = BTRFS_ORPHAN_ITEM_KEY;
1665	key.offset = (u64)-1;
1666	while (1) {
1667		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1668		if (ret < 0)
1669			break;
1670
1671		if (ret == 1) {
1672			ret = 0;
1673			if (path->slots[0] == 0)
1674				break;
1675			path->slots[0]--;
1676		}
1677
1678		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1679		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1680		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1681			break;
1682
1683		ret = btrfs_del_item(trans, root, path);
1684		if (ret)
1685			break;
1686
1687		btrfs_release_path(path);
1688		inode = read_one_inode(root, key.offset);
1689		if (!inode) {
1690			ret = -EIO;
1691			break;
1692		}
1693
1694		ret = fixup_inode_link_count(trans, root, inode);
1695		iput(inode);
1696		if (ret)
1697			break;
1698
1699		/*
1700		 * fixup on a directory may create new entries,
1701		 * make sure we always look for the highset possible
1702		 * offset
1703		 */
1704		key.offset = (u64)-1;
1705	}
 
 
1706	btrfs_release_path(path);
1707	return ret;
1708}
1709
1710
1711/*
1712 * record a given inode in the fixup dir so we can check its link
1713 * count when replay is done.  The link count is incremented here
1714 * so the inode won't go away until we check it
1715 */
1716static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1717				      struct btrfs_root *root,
1718				      struct btrfs_path *path,
1719				      u64 objectid)
1720{
1721	struct btrfs_key key;
1722	int ret = 0;
1723	struct inode *inode;
1724
1725	inode = read_one_inode(root, objectid);
1726	if (!inode)
1727		return -EIO;
1728
1729	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1730	key.type = BTRFS_ORPHAN_ITEM_KEY;
1731	key.offset = objectid;
1732
1733	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1734
1735	btrfs_release_path(path);
1736	if (ret == 0) {
1737		if (!inode->i_nlink)
1738			set_nlink(inode, 1);
1739		else
1740			inc_nlink(inode);
1741		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1742	} else if (ret == -EEXIST) {
1743		ret = 0;
 
 
1744	}
1745	iput(inode);
1746
1747	return ret;
1748}
1749
1750/*
1751 * when replaying the log for a directory, we only insert names
1752 * for inodes that actually exist.  This means an fsync on a directory
1753 * does not implicitly fsync all the new files in it
1754 */
1755static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1756				    struct btrfs_root *root,
1757				    u64 dirid, u64 index,
1758				    const struct fscrypt_str *name,
1759				    struct btrfs_key *location)
1760{
1761	struct inode *inode;
1762	struct inode *dir;
1763	int ret;
1764
1765	inode = read_one_inode(root, location->objectid);
1766	if (!inode)
1767		return -ENOENT;
1768
1769	dir = read_one_inode(root, dirid);
1770	if (!dir) {
1771		iput(inode);
1772		return -EIO;
1773	}
1774
1775	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1776			     1, index);
1777
1778	/* FIXME, put inode into FIXUP list */
1779
1780	iput(inode);
1781	iput(dir);
1782	return ret;
1783}
1784
1785static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1786					struct btrfs_inode *dir,
1787					struct btrfs_path *path,
1788					struct btrfs_dir_item *dst_di,
1789					const struct btrfs_key *log_key,
1790					u8 log_flags,
1791					bool exists)
1792{
1793	struct btrfs_key found_key;
1794
1795	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1796	/* The existing dentry points to the same inode, don't delete it. */
1797	if (found_key.objectid == log_key->objectid &&
1798	    found_key.type == log_key->type &&
1799	    found_key.offset == log_key->offset &&
1800	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1801		return 1;
1802
1803	/*
1804	 * Don't drop the conflicting directory entry if the inode for the new
1805	 * entry doesn't exist.
1806	 */
1807	if (!exists)
1808		return 0;
1809
1810	return drop_one_dir_item(trans, path, dir, dst_di);
1811}
1812
1813/*
1814 * take a single entry in a log directory item and replay it into
1815 * the subvolume.
1816 *
1817 * if a conflicting item exists in the subdirectory already,
1818 * the inode it points to is unlinked and put into the link count
1819 * fix up tree.
1820 *
1821 * If a name from the log points to a file or directory that does
1822 * not exist in the FS, it is skipped.  fsyncs on directories
1823 * do not force down inodes inside that directory, just changes to the
1824 * names or unlinks in a directory.
1825 *
1826 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1827 * non-existing inode) and 1 if the name was replayed.
1828 */
1829static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1830				    struct btrfs_root *root,
1831				    struct btrfs_path *path,
1832				    struct extent_buffer *eb,
1833				    struct btrfs_dir_item *di,
1834				    struct btrfs_key *key)
1835{
1836	struct fscrypt_str name;
1837	struct btrfs_dir_item *dir_dst_di;
1838	struct btrfs_dir_item *index_dst_di;
1839	bool dir_dst_matches = false;
1840	bool index_dst_matches = false;
1841	struct btrfs_key log_key;
1842	struct btrfs_key search_key;
1843	struct inode *dir;
1844	u8 log_flags;
1845	bool exists;
1846	int ret;
1847	bool update_size = true;
1848	bool name_added = false;
1849
1850	dir = read_one_inode(root, key->objectid);
1851	if (!dir)
1852		return -EIO;
1853
1854	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1855	if (ret)
 
 
1856		goto out;
 
 
 
 
 
1857
1858	log_flags = btrfs_dir_flags(eb, di);
1859	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1860	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
 
 
 
 
1861	btrfs_release_path(path);
1862	if (ret < 0)
1863		goto out;
1864	exists = (ret == 0);
1865	ret = 0;
1866
1867	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1868					   &name, 1);
1869	if (IS_ERR(dir_dst_di)) {
1870		ret = PTR_ERR(dir_dst_di);
 
 
 
 
 
 
 
1871		goto out;
1872	} else if (dir_dst_di) {
1873		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1874						   dir_dst_di, &log_key,
1875						   log_flags, exists);
1876		if (ret < 0)
1877			goto out;
1878		dir_dst_matches = (ret == 1);
1879	}
1880
1881	btrfs_release_path(path);
1882
1883	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1884						   key->objectid, key->offset,
1885						   &name, 1);
1886	if (IS_ERR(index_dst_di)) {
1887		ret = PTR_ERR(index_dst_di);
1888		goto out;
1889	} else if (index_dst_di) {
1890		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1891						   index_dst_di, &log_key,
1892						   log_flags, exists);
1893		if (ret < 0)
1894			goto out;
1895		index_dst_matches = (ret == 1);
1896	}
1897
1898	btrfs_release_path(path);
1899
1900	if (dir_dst_matches && index_dst_matches) {
1901		ret = 0;
 
 
1902		update_size = false;
1903		goto out;
1904	}
1905
1906	/*
1907	 * Check if the inode reference exists in the log for the given name,
1908	 * inode and parent inode
1909	 */
1910	search_key.objectid = log_key.objectid;
1911	search_key.type = BTRFS_INODE_REF_KEY;
1912	search_key.offset = key->objectid;
1913	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1914	if (ret < 0) {
1915	        goto out;
1916	} else if (ret) {
1917	        /* The dentry will be added later. */
1918	        ret = 0;
1919	        update_size = false;
1920	        goto out;
 
 
 
1921	}
 
 
 
 
 
1922
1923	search_key.objectid = log_key.objectid;
1924	search_key.type = BTRFS_INODE_EXTREF_KEY;
1925	search_key.offset = key->objectid;
1926	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1927	if (ret < 0) {
1928		goto out;
1929	} else if (ret) {
1930		/* The dentry will be added later. */
1931		ret = 0;
1932		update_size = false;
1933		goto out;
1934	}
1935	btrfs_release_path(path);
1936	ret = insert_one_name(trans, root, key->objectid, key->offset,
1937			      &name, &log_key);
1938	if (ret && ret != -ENOENT && ret != -EEXIST)
1939		goto out;
1940	if (!ret)
1941		name_added = true;
1942	update_size = false;
1943	ret = 0;
1944
1945out:
1946	if (!ret && update_size) {
1947		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1948		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1949	}
1950	kfree(name.name);
1951	iput(dir);
1952	if (!ret && name_added)
1953		ret = 1;
1954	return ret;
1955}
1956
1957/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
 
 
 
 
 
1958static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1959					struct btrfs_root *root,
1960					struct btrfs_path *path,
1961					struct extent_buffer *eb, int slot,
1962					struct btrfs_key *key)
1963{
1964	int ret;
 
1965	struct btrfs_dir_item *di;
 
 
 
 
1966
1967	/* We only log dir index keys, which only contain a single dir item. */
1968	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
 
 
 
 
 
 
 
 
 
 
1969
1970	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1971	ret = replay_one_name(trans, root, path, eb, di, key);
1972	if (ret < 0)
1973		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974
1975	/*
1976	 * If this entry refers to a non-directory (directories can not have a
1977	 * link count > 1) and it was added in the transaction that was not
1978	 * committed, make sure we fixup the link count of the inode the entry
1979	 * points to. Otherwise something like the following would result in a
1980	 * directory pointing to an inode with a wrong link that does not account
1981	 * for this dir entry:
1982	 *
1983	 * mkdir testdir
1984	 * touch testdir/foo
1985	 * touch testdir/bar
1986	 * sync
1987	 *
1988	 * ln testdir/bar testdir/bar_link
1989	 * ln testdir/foo testdir/foo_link
1990	 * xfs_io -c "fsync" testdir/bar
1991	 *
1992	 * <power failure>
1993	 *
1994	 * mount fs, log replay happens
1995	 *
1996	 * File foo would remain with a link count of 1 when it has two entries
1997	 * pointing to it in the directory testdir. This would make it impossible
1998	 * to ever delete the parent directory has it would result in stale
1999	 * dentries that can never be deleted.
2000	 */
2001	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2002		struct btrfs_path *fixup_path;
2003		struct btrfs_key di_key;
2004
2005		fixup_path = btrfs_alloc_path();
2006		if (!fixup_path)
2007			return -ENOMEM;
2008
2009		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2010		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2011		btrfs_free_path(fixup_path);
2012	}
2013
2014	return ret;
2015}
2016
2017/*
2018 * directory replay has two parts.  There are the standard directory
2019 * items in the log copied from the subvolume, and range items
2020 * created in the log while the subvolume was logged.
2021 *
2022 * The range items tell us which parts of the key space the log
2023 * is authoritative for.  During replay, if a key in the subvolume
2024 * directory is in a logged range item, but not actually in the log
2025 * that means it was deleted from the directory before the fsync
2026 * and should be removed.
2027 */
2028static noinline int find_dir_range(struct btrfs_root *root,
2029				   struct btrfs_path *path,
2030				   u64 dirid,
2031				   u64 *start_ret, u64 *end_ret)
2032{
2033	struct btrfs_key key;
2034	u64 found_end;
2035	struct btrfs_dir_log_item *item;
2036	int ret;
2037	int nritems;
2038
2039	if (*start_ret == (u64)-1)
2040		return 1;
2041
2042	key.objectid = dirid;
2043	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2044	key.offset = *start_ret;
2045
2046	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2047	if (ret < 0)
2048		goto out;
2049	if (ret > 0) {
2050		if (path->slots[0] == 0)
2051			goto out;
2052		path->slots[0]--;
2053	}
2054	if (ret != 0)
2055		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056
2057	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2058		ret = 1;
2059		goto next;
2060	}
2061	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062			      struct btrfs_dir_log_item);
2063	found_end = btrfs_dir_log_end(path->nodes[0], item);
2064
2065	if (*start_ret >= key.offset && *start_ret <= found_end) {
2066		ret = 0;
2067		*start_ret = key.offset;
2068		*end_ret = found_end;
2069		goto out;
2070	}
2071	ret = 1;
2072next:
2073	/* check the next slot in the tree to see if it is a valid item */
2074	nritems = btrfs_header_nritems(path->nodes[0]);
2075	path->slots[0]++;
2076	if (path->slots[0] >= nritems) {
2077		ret = btrfs_next_leaf(root, path);
2078		if (ret)
2079			goto out;
 
 
2080	}
2081
2082	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2083
2084	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2085		ret = 1;
2086		goto out;
2087	}
2088	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2089			      struct btrfs_dir_log_item);
2090	found_end = btrfs_dir_log_end(path->nodes[0], item);
2091	*start_ret = key.offset;
2092	*end_ret = found_end;
2093	ret = 0;
2094out:
2095	btrfs_release_path(path);
2096	return ret;
2097}
2098
2099/*
2100 * this looks for a given directory item in the log.  If the directory
2101 * item is not in the log, the item is removed and the inode it points
2102 * to is unlinked
2103 */
2104static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
 
2105				      struct btrfs_root *log,
2106				      struct btrfs_path *path,
2107				      struct btrfs_path *log_path,
2108				      struct inode *dir,
2109				      struct btrfs_key *dir_key)
2110{
2111	struct btrfs_root *root = BTRFS_I(dir)->root;
2112	int ret;
2113	struct extent_buffer *eb;
2114	int slot;
 
2115	struct btrfs_dir_item *di;
2116	struct fscrypt_str name;
2117	struct inode *inode = NULL;
 
 
 
 
2118	struct btrfs_key location;
2119
2120	/*
2121	 * Currently we only log dir index keys. Even if we replay a log created
2122	 * by an older kernel that logged both dir index and dir item keys, all
2123	 * we need to do is process the dir index keys, we (and our caller) can
2124	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2125	 */
2126	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2127
2128	eb = path->nodes[0];
2129	slot = path->slots[0];
2130	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2131	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2132	if (ret)
2133		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2134
2135	if (log) {
2136		struct btrfs_dir_item *log_di;
 
 
 
 
 
 
 
2137
2138		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2139						     dir_key->objectid,
2140						     dir_key->offset, &name, 0);
2141		if (IS_ERR(log_di)) {
2142			ret = PTR_ERR(log_di);
2143			goto out;
2144		} else if (log_di) {
2145			/* The dentry exists in the log, we have nothing to do. */
2146			ret = 0;
2147			goto out;
 
 
 
2148		}
2149	}
 
2150
2151	btrfs_dir_item_key_to_cpu(eb, di, &location);
2152	btrfs_release_path(path);
2153	btrfs_release_path(log_path);
2154	inode = read_one_inode(root, location.objectid);
2155	if (!inode) {
2156		ret = -EIO;
2157		goto out;
2158	}
2159
2160	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2161	if (ret)
2162		goto out;
2163
2164	inc_nlink(inode);
2165	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2166					  &name);
2167	/*
2168	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2169	 * them, as there are no key collisions since each key has a unique offset
2170	 * (an index number), so we're done.
2171	 */
2172out:
2173	btrfs_release_path(path);
2174	btrfs_release_path(log_path);
2175	kfree(name.name);
2176	iput(inode);
2177	return ret;
2178}
2179
2180static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181			      struct btrfs_root *root,
2182			      struct btrfs_root *log,
2183			      struct btrfs_path *path,
2184			      const u64 ino)
2185{
2186	struct btrfs_key search_key;
2187	struct btrfs_path *log_path;
2188	int i;
2189	int nritems;
2190	int ret;
2191
2192	log_path = btrfs_alloc_path();
2193	if (!log_path)
2194		return -ENOMEM;
2195
2196	search_key.objectid = ino;
2197	search_key.type = BTRFS_XATTR_ITEM_KEY;
2198	search_key.offset = 0;
2199again:
2200	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201	if (ret < 0)
2202		goto out;
2203process_leaf:
2204	nritems = btrfs_header_nritems(path->nodes[0]);
2205	for (i = path->slots[0]; i < nritems; i++) {
2206		struct btrfs_key key;
2207		struct btrfs_dir_item *di;
2208		struct btrfs_dir_item *log_di;
2209		u32 total_size;
2210		u32 cur;
2211
2212		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214			ret = 0;
2215			goto out;
2216		}
2217
2218		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219		total_size = btrfs_item_size(path->nodes[0], i);
2220		cur = 0;
2221		while (cur < total_size) {
2222			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224			u32 this_len = sizeof(*di) + name_len + data_len;
2225			char *name;
2226
2227			name = kmalloc(name_len, GFP_NOFS);
2228			if (!name) {
2229				ret = -ENOMEM;
2230				goto out;
2231			}
2232			read_extent_buffer(path->nodes[0], name,
2233					   (unsigned long)(di + 1), name_len);
2234
2235			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236						    name, name_len, 0);
2237			btrfs_release_path(log_path);
2238			if (!log_di) {
2239				/* Doesn't exist in log tree, so delete it. */
2240				btrfs_release_path(path);
2241				di = btrfs_lookup_xattr(trans, root, path, ino,
2242							name, name_len, -1);
2243				kfree(name);
2244				if (IS_ERR(di)) {
2245					ret = PTR_ERR(di);
2246					goto out;
2247				}
2248				ASSERT(di);
2249				ret = btrfs_delete_one_dir_name(trans, root,
2250								path, di);
2251				if (ret)
2252					goto out;
2253				btrfs_release_path(path);
2254				search_key = key;
2255				goto again;
2256			}
2257			kfree(name);
2258			if (IS_ERR(log_di)) {
2259				ret = PTR_ERR(log_di);
2260				goto out;
2261			}
2262			cur += this_len;
2263			di = (struct btrfs_dir_item *)((char *)di + this_len);
2264		}
2265	}
2266	ret = btrfs_next_leaf(root, path);
2267	if (ret > 0)
2268		ret = 0;
2269	else if (ret == 0)
2270		goto process_leaf;
2271out:
2272	btrfs_free_path(log_path);
2273	btrfs_release_path(path);
2274	return ret;
2275}
2276
2277
2278/*
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes.  It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2284 *
2285 * Anything we don't find in the log is unlinked and removed from the
2286 * directory.
2287 */
2288static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289				       struct btrfs_root *root,
2290				       struct btrfs_root *log,
2291				       struct btrfs_path *path,
2292				       u64 dirid, int del_all)
2293{
2294	u64 range_start;
2295	u64 range_end;
 
2296	int ret = 0;
2297	struct btrfs_key dir_key;
2298	struct btrfs_key found_key;
2299	struct btrfs_path *log_path;
2300	struct inode *dir;
2301
2302	dir_key.objectid = dirid;
2303	dir_key.type = BTRFS_DIR_INDEX_KEY;
2304	log_path = btrfs_alloc_path();
2305	if (!log_path)
2306		return -ENOMEM;
2307
2308	dir = read_one_inode(root, dirid);
2309	/* it isn't an error if the inode isn't there, that can happen
2310	 * because we replay the deletes before we copy in the inode item
2311	 * from the log
2312	 */
2313	if (!dir) {
2314		btrfs_free_path(log_path);
2315		return 0;
2316	}
2317
2318	range_start = 0;
2319	range_end = 0;
2320	while (1) {
2321		if (del_all)
2322			range_end = (u64)-1;
2323		else {
2324			ret = find_dir_range(log, path, dirid,
2325					     &range_start, &range_end);
2326			if (ret < 0)
2327				goto out;
2328			else if (ret > 0)
2329				break;
2330		}
2331
2332		dir_key.offset = range_start;
2333		while (1) {
2334			int nritems;
2335			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2336						0, 0);
2337			if (ret < 0)
2338				goto out;
2339
2340			nritems = btrfs_header_nritems(path->nodes[0]);
2341			if (path->slots[0] >= nritems) {
2342				ret = btrfs_next_leaf(root, path);
2343				if (ret == 1)
2344					break;
2345				else if (ret < 0)
2346					goto out;
2347			}
2348			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2349					      path->slots[0]);
2350			if (found_key.objectid != dirid ||
2351			    found_key.type != dir_key.type) {
2352				ret = 0;
2353				goto out;
2354			}
2355
2356			if (found_key.offset > range_end)
2357				break;
2358
2359			ret = check_item_in_log(trans, log, path,
2360						log_path, dir,
2361						&found_key);
2362			if (ret)
2363				goto out;
2364			if (found_key.offset == (u64)-1)
2365				break;
2366			dir_key.offset = found_key.offset + 1;
2367		}
2368		btrfs_release_path(path);
2369		if (range_end == (u64)-1)
2370			break;
2371		range_start = range_end + 1;
2372	}
 
 
2373	ret = 0;
 
 
 
 
 
 
2374out:
2375	btrfs_release_path(path);
2376	btrfs_free_path(log_path);
2377	iput(dir);
2378	return ret;
2379}
2380
2381/*
2382 * the process_func used to replay items from the log tree.  This
2383 * gets called in two different stages.  The first stage just looks
2384 * for inodes and makes sure they are all copied into the subvolume.
2385 *
2386 * The second stage copies all the other item types from the log into
2387 * the subvolume.  The two stage approach is slower, but gets rid of
2388 * lots of complexity around inodes referencing other inodes that exist
2389 * only in the log (references come from either directory items or inode
2390 * back refs).
2391 */
2392static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2393			     struct walk_control *wc, u64 gen, int level)
2394{
2395	int nritems;
2396	struct btrfs_tree_parent_check check = {
2397		.transid = gen,
2398		.level = level
2399	};
2400	struct btrfs_path *path;
2401	struct btrfs_root *root = wc->replay_dest;
2402	struct btrfs_key key;
 
2403	int i;
2404	int ret;
2405
2406	ret = btrfs_read_extent_buffer(eb, &check);
2407	if (ret)
2408		return ret;
2409
2410	level = btrfs_header_level(eb);
2411
2412	if (level != 0)
2413		return 0;
2414
2415	path = btrfs_alloc_path();
2416	if (!path)
2417		return -ENOMEM;
2418
2419	nritems = btrfs_header_nritems(eb);
2420	for (i = 0; i < nritems; i++) {
2421		btrfs_item_key_to_cpu(eb, &key, i);
2422
2423		/* inode keys are done during the first stage */
2424		if (key.type == BTRFS_INODE_ITEM_KEY &&
2425		    wc->stage == LOG_WALK_REPLAY_INODES) {
2426			struct btrfs_inode_item *inode_item;
2427			u32 mode;
2428
2429			inode_item = btrfs_item_ptr(eb, i,
2430					    struct btrfs_inode_item);
2431			/*
2432			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2433			 * and never got linked before the fsync, skip it, as
2434			 * replaying it is pointless since it would be deleted
2435			 * later. We skip logging tmpfiles, but it's always
2436			 * possible we are replaying a log created with a kernel
2437			 * that used to log tmpfiles.
2438			 */
2439			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2440				wc->ignore_cur_inode = true;
2441				continue;
2442			} else {
2443				wc->ignore_cur_inode = false;
2444			}
2445			ret = replay_xattr_deletes(wc->trans, root, log,
2446						   path, key.objectid);
2447			if (ret)
2448				break;
2449			mode = btrfs_inode_mode(eb, inode_item);
2450			if (S_ISDIR(mode)) {
2451				ret = replay_dir_deletes(wc->trans,
2452					 root, log, path, key.objectid, 0);
2453				if (ret)
2454					break;
2455			}
2456			ret = overwrite_item(wc->trans, root, path,
2457					     eb, i, &key);
2458			if (ret)
2459				break;
2460
2461			/*
2462			 * Before replaying extents, truncate the inode to its
2463			 * size. We need to do it now and not after log replay
2464			 * because before an fsync we can have prealloc extents
2465			 * added beyond the inode's i_size. If we did it after,
2466			 * through orphan cleanup for example, we would drop
2467			 * those prealloc extents just after replaying them.
2468			 */
2469			if (S_ISREG(mode)) {
2470				struct btrfs_drop_extents_args drop_args = { 0 };
2471				struct inode *inode;
2472				u64 from;
2473
2474				inode = read_one_inode(root, key.objectid);
2475				if (!inode) {
2476					ret = -EIO;
2477					break;
2478				}
2479				from = ALIGN(i_size_read(inode),
2480					     root->fs_info->sectorsize);
2481				drop_args.start = from;
2482				drop_args.end = (u64)-1;
2483				drop_args.drop_cache = true;
2484				ret = btrfs_drop_extents(wc->trans, root,
2485							 BTRFS_I(inode),
2486							 &drop_args);
2487				if (!ret) {
2488					inode_sub_bytes(inode,
2489							drop_args.bytes_found);
2490					/* Update the inode's nbytes. */
2491					ret = btrfs_update_inode(wc->trans,
2492							root, BTRFS_I(inode));
2493				}
2494				iput(inode);
2495				if (ret)
2496					break;
2497			}
2498
2499			ret = link_to_fixup_dir(wc->trans, root,
2500						path, key.objectid);
2501			if (ret)
2502				break;
2503		}
2504
2505		if (wc->ignore_cur_inode)
2506			continue;
2507
2508		if (key.type == BTRFS_DIR_INDEX_KEY &&
2509		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2510			ret = replay_one_dir_item(wc->trans, root, path,
2511						  eb, i, &key);
2512			if (ret)
2513				break;
2514		}
2515
2516		if (wc->stage < LOG_WALK_REPLAY_ALL)
2517			continue;
2518
2519		/* these keys are simply copied */
2520		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2521			ret = overwrite_item(wc->trans, root, path,
2522					     eb, i, &key);
2523			if (ret)
2524				break;
2525		} else if (key.type == BTRFS_INODE_REF_KEY ||
2526			   key.type == BTRFS_INODE_EXTREF_KEY) {
2527			ret = add_inode_ref(wc->trans, root, log, path,
2528					    eb, i, &key);
2529			if (ret && ret != -ENOENT)
2530				break;
2531			ret = 0;
2532		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2533			ret = replay_one_extent(wc->trans, root, path,
2534						eb, i, &key);
2535			if (ret)
2536				break;
 
 
 
 
 
2537		}
2538		/*
2539		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2540		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2541		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2542		 * older kernel with such keys, ignore them.
2543		 */
2544	}
2545	btrfs_free_path(path);
2546	return ret;
2547}
2548
2549/*
2550 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2551 */
2552static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2553{
2554	struct btrfs_block_group *cache;
2555
2556	cache = btrfs_lookup_block_group(fs_info, start);
2557	if (!cache) {
2558		btrfs_err(fs_info, "unable to find block group for %llu", start);
2559		return;
2560	}
2561
2562	spin_lock(&cache->space_info->lock);
2563	spin_lock(&cache->lock);
2564	cache->reserved -= fs_info->nodesize;
2565	cache->space_info->bytes_reserved -= fs_info->nodesize;
2566	spin_unlock(&cache->lock);
2567	spin_unlock(&cache->space_info->lock);
2568
2569	btrfs_put_block_group(cache);
2570}
2571
2572static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2573				   struct btrfs_root *root,
2574				   struct btrfs_path *path, int *level,
2575				   struct walk_control *wc)
2576{
2577	struct btrfs_fs_info *fs_info = root->fs_info;
2578	u64 bytenr;
2579	u64 ptr_gen;
2580	struct extent_buffer *next;
2581	struct extent_buffer *cur;
 
2582	u32 blocksize;
2583	int ret = 0;
2584
 
 
 
2585	while (*level > 0) {
2586		struct btrfs_tree_parent_check check = { 0 };
2587
2588		cur = path->nodes[*level];
2589
2590		WARN_ON(btrfs_header_level(cur) != *level);
2591
2592		if (path->slots[*level] >=
2593		    btrfs_header_nritems(cur))
2594			break;
2595
2596		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2597		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2598		check.transid = ptr_gen;
2599		check.level = *level - 1;
2600		check.has_first_key = true;
2601		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2602		blocksize = fs_info->nodesize;
2603
2604		next = btrfs_find_create_tree_block(fs_info, bytenr,
2605						    btrfs_header_owner(cur),
2606						    *level - 1);
2607		if (IS_ERR(next))
2608			return PTR_ERR(next);
2609
2610		if (*level == 1) {
2611			ret = wc->process_func(root, next, wc, ptr_gen,
2612					       *level - 1);
2613			if (ret) {
2614				free_extent_buffer(next);
2615				return ret;
2616			}
2617
2618			path->slots[*level]++;
2619			if (wc->free) {
2620				ret = btrfs_read_extent_buffer(next, &check);
2621				if (ret) {
2622					free_extent_buffer(next);
2623					return ret;
2624				}
2625
2626				if (trans) {
2627					btrfs_tree_lock(next);
2628					btrfs_clean_tree_block(next);
 
 
2629					btrfs_wait_tree_block_writeback(next);
2630					btrfs_tree_unlock(next);
2631					ret = btrfs_pin_reserved_extent(trans,
2632							bytenr, blocksize);
2633					if (ret) {
2634						free_extent_buffer(next);
2635						return ret;
2636					}
2637					btrfs_redirty_list_add(
2638						trans->transaction, next);
2639				} else {
2640					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2641						clear_extent_buffer_dirty(next);
2642					unaccount_log_buffer(fs_info, bytenr);
2643				}
2644			}
2645			free_extent_buffer(next);
2646			continue;
2647		}
2648		ret = btrfs_read_extent_buffer(next, &check);
2649		if (ret) {
2650			free_extent_buffer(next);
2651			return ret;
2652		}
2653
 
2654		if (path->nodes[*level-1])
2655			free_extent_buffer(path->nodes[*level-1]);
2656		path->nodes[*level-1] = next;
2657		*level = btrfs_header_level(next);
2658		path->slots[*level] = 0;
2659		cond_resched();
2660	}
 
 
 
2661	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2662
2663	cond_resched();
2664	return 0;
2665}
2666
2667static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2668				 struct btrfs_root *root,
2669				 struct btrfs_path *path, int *level,
2670				 struct walk_control *wc)
2671{
2672	struct btrfs_fs_info *fs_info = root->fs_info;
2673	int i;
2674	int slot;
2675	int ret;
2676
2677	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2678		slot = path->slots[i];
2679		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2680			path->slots[i]++;
2681			*level = i;
2682			WARN_ON(*level == 0);
2683			return 0;
2684		} else {
 
 
 
 
 
 
 
2685			ret = wc->process_func(root, path->nodes[*level], wc,
2686				 btrfs_header_generation(path->nodes[*level]),
2687				 *level);
2688			if (ret)
2689				return ret;
2690
2691			if (wc->free) {
2692				struct extent_buffer *next;
2693
2694				next = path->nodes[*level];
2695
2696				if (trans) {
2697					btrfs_tree_lock(next);
2698					btrfs_clean_tree_block(next);
 
 
2699					btrfs_wait_tree_block_writeback(next);
2700					btrfs_tree_unlock(next);
2701					ret = btrfs_pin_reserved_extent(trans,
2702						     path->nodes[*level]->start,
2703						     path->nodes[*level]->len);
2704					if (ret)
2705						return ret;
2706					btrfs_redirty_list_add(trans->transaction,
2707							       next);
2708				} else {
2709					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2710						clear_extent_buffer_dirty(next);
2711
2712					unaccount_log_buffer(fs_info,
2713						path->nodes[*level]->start);
2714				}
 
 
 
2715			}
2716			free_extent_buffer(path->nodes[*level]);
2717			path->nodes[*level] = NULL;
2718			*level = i + 1;
2719		}
2720	}
2721	return 1;
2722}
2723
2724/*
2725 * drop the reference count on the tree rooted at 'snap'.  This traverses
2726 * the tree freeing any blocks that have a ref count of zero after being
2727 * decremented.
2728 */
2729static int walk_log_tree(struct btrfs_trans_handle *trans,
2730			 struct btrfs_root *log, struct walk_control *wc)
2731{
2732	struct btrfs_fs_info *fs_info = log->fs_info;
2733	int ret = 0;
2734	int wret;
2735	int level;
2736	struct btrfs_path *path;
2737	int orig_level;
2738
2739	path = btrfs_alloc_path();
2740	if (!path)
2741		return -ENOMEM;
2742
2743	level = btrfs_header_level(log->node);
2744	orig_level = level;
2745	path->nodes[level] = log->node;
2746	atomic_inc(&log->node->refs);
2747	path->slots[level] = 0;
2748
2749	while (1) {
2750		wret = walk_down_log_tree(trans, log, path, &level, wc);
2751		if (wret > 0)
2752			break;
2753		if (wret < 0) {
2754			ret = wret;
2755			goto out;
2756		}
2757
2758		wret = walk_up_log_tree(trans, log, path, &level, wc);
2759		if (wret > 0)
2760			break;
2761		if (wret < 0) {
2762			ret = wret;
2763			goto out;
2764		}
2765	}
2766
2767	/* was the root node processed? if not, catch it here */
2768	if (path->nodes[orig_level]) {
2769		ret = wc->process_func(log, path->nodes[orig_level], wc,
2770			 btrfs_header_generation(path->nodes[orig_level]),
2771			 orig_level);
2772		if (ret)
2773			goto out;
2774		if (wc->free) {
2775			struct extent_buffer *next;
2776
2777			next = path->nodes[orig_level];
2778
2779			if (trans) {
2780				btrfs_tree_lock(next);
2781				btrfs_clean_tree_block(next);
 
2782				btrfs_wait_tree_block_writeback(next);
2783				btrfs_tree_unlock(next);
2784				ret = btrfs_pin_reserved_extent(trans,
2785						next->start, next->len);
2786				if (ret)
2787					goto out;
2788				btrfs_redirty_list_add(trans->transaction, next);
2789			} else {
2790				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2791					clear_extent_buffer_dirty(next);
2792				unaccount_log_buffer(fs_info, next->start);
2793			}
 
 
 
 
 
 
 
2794		}
2795	}
2796
2797out:
2798	btrfs_free_path(path);
2799	return ret;
2800}
2801
2802/*
2803 * helper function to update the item for a given subvolumes log root
2804 * in the tree of log roots
2805 */
2806static int update_log_root(struct btrfs_trans_handle *trans,
2807			   struct btrfs_root *log,
2808			   struct btrfs_root_item *root_item)
2809{
2810	struct btrfs_fs_info *fs_info = log->fs_info;
2811	int ret;
2812
2813	if (log->log_transid == 1) {
2814		/* insert root item on the first sync */
2815		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2816				&log->root_key, root_item);
2817	} else {
2818		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2819				&log->root_key, root_item);
2820	}
2821	return ret;
2822}
2823
2824static void wait_log_commit(struct btrfs_root *root, int transid)
2825{
2826	DEFINE_WAIT(wait);
2827	int index = transid % 2;
2828
2829	/*
2830	 * we only allow two pending log transactions at a time,
2831	 * so we know that if ours is more than 2 older than the
2832	 * current transaction, we're done
2833	 */
2834	for (;;) {
2835		prepare_to_wait(&root->log_commit_wait[index],
2836				&wait, TASK_UNINTERRUPTIBLE);
 
2837
2838		if (!(root->log_transid_committed < transid &&
2839		      atomic_read(&root->log_commit[index])))
2840			break;
2841
2842		mutex_unlock(&root->log_mutex);
2843		schedule();
2844		mutex_lock(&root->log_mutex);
2845	}
2846	finish_wait(&root->log_commit_wait[index], &wait);
2847}
2848
2849static void wait_for_writer(struct btrfs_root *root)
2850{
2851	DEFINE_WAIT(wait);
2852
2853	for (;;) {
2854		prepare_to_wait(&root->log_writer_wait, &wait,
2855				TASK_UNINTERRUPTIBLE);
2856		if (!atomic_read(&root->log_writers))
2857			break;
2858
2859		mutex_unlock(&root->log_mutex);
2860		schedule();
 
 
2861		mutex_lock(&root->log_mutex);
2862	}
2863	finish_wait(&root->log_writer_wait, &wait);
2864}
2865
2866static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2867					struct btrfs_log_ctx *ctx)
2868{
 
 
 
2869	mutex_lock(&root->log_mutex);
2870	list_del_init(&ctx->list);
2871	mutex_unlock(&root->log_mutex);
2872}
2873
2874/* 
2875 * Invoked in log mutex context, or be sure there is no other task which
2876 * can access the list.
2877 */
2878static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2879					     int index, int error)
2880{
2881	struct btrfs_log_ctx *ctx;
2882	struct btrfs_log_ctx *safe;
2883
2884	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2885		list_del_init(&ctx->list);
 
 
 
 
2886		ctx->log_ret = error;
2887	}
 
2888}
2889
2890/*
2891 * btrfs_sync_log does sends a given tree log down to the disk and
2892 * updates the super blocks to record it.  When this call is done,
2893 * you know that any inodes previously logged are safely on disk only
2894 * if it returns 0.
2895 *
2896 * Any other return value means you need to call btrfs_commit_transaction.
2897 * Some of the edge cases for fsyncing directories that have had unlinks
2898 * or renames done in the past mean that sometimes the only safe
2899 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2900 * that has happened.
2901 */
2902int btrfs_sync_log(struct btrfs_trans_handle *trans,
2903		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2904{
2905	int index1;
2906	int index2;
2907	int mark;
2908	int ret;
2909	struct btrfs_fs_info *fs_info = root->fs_info;
2910	struct btrfs_root *log = root->log_root;
2911	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2912	struct btrfs_root_item new_root_item;
2913	int log_transid = 0;
2914	struct btrfs_log_ctx root_log_ctx;
2915	struct blk_plug plug;
2916	u64 log_root_start;
2917	u64 log_root_level;
2918
2919	mutex_lock(&root->log_mutex);
2920	log_transid = ctx->log_transid;
2921	if (root->log_transid_committed >= log_transid) {
2922		mutex_unlock(&root->log_mutex);
2923		return ctx->log_ret;
2924	}
2925
2926	index1 = log_transid % 2;
2927	if (atomic_read(&root->log_commit[index1])) {
2928		wait_log_commit(root, log_transid);
2929		mutex_unlock(&root->log_mutex);
2930		return ctx->log_ret;
2931	}
2932	ASSERT(log_transid == root->log_transid);
2933	atomic_set(&root->log_commit[index1], 1);
2934
2935	/* wait for previous tree log sync to complete */
2936	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2937		wait_log_commit(root, log_transid - 1);
2938
2939	while (1) {
2940		int batch = atomic_read(&root->log_batch);
2941		/* when we're on an ssd, just kick the log commit out */
2942		if (!btrfs_test_opt(fs_info, SSD) &&
2943		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2944			mutex_unlock(&root->log_mutex);
2945			schedule_timeout_uninterruptible(1);
2946			mutex_lock(&root->log_mutex);
2947		}
2948		wait_for_writer(root);
2949		if (batch == atomic_read(&root->log_batch))
2950			break;
2951	}
2952
2953	/* bail out if we need to do a full commit */
2954	if (btrfs_need_log_full_commit(trans)) {
2955		ret = BTRFS_LOG_FORCE_COMMIT;
 
2956		mutex_unlock(&root->log_mutex);
2957		goto out;
2958	}
2959
2960	if (log_transid % 2 == 0)
2961		mark = EXTENT_DIRTY;
2962	else
2963		mark = EXTENT_NEW;
2964
2965	/* we start IO on  all the marked extents here, but we don't actually
2966	 * wait for them until later.
2967	 */
2968	blk_start_plug(&plug);
2969	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2970	/*
2971	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972	 *  commit, writes a dirty extent in this tree-log commit. This
2973	 *  concurrent write will create a hole writing out the extents,
2974	 *  and we cannot proceed on a zoned filesystem, requiring
2975	 *  sequential writing. While we can bail out to a full commit
2976	 *  here, but we can continue hoping the concurrent writing fills
2977	 *  the hole.
2978	 */
2979	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2980		ret = 0;
2981	if (ret) {
2982		blk_finish_plug(&plug);
2983		btrfs_set_log_full_commit(trans);
 
 
2984		mutex_unlock(&root->log_mutex);
2985		goto out;
2986	}
2987
2988	/*
2989	 * We _must_ update under the root->log_mutex in order to make sure we
2990	 * have a consistent view of the log root we are trying to commit at
2991	 * this moment.
2992	 *
2993	 * We _must_ copy this into a local copy, because we are not holding the
2994	 * log_root_tree->log_mutex yet.  This is important because when we
2995	 * commit the log_root_tree we must have a consistent view of the
2996	 * log_root_tree when we update the super block to point at the
2997	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
2998	 * with the commit and possibly point at the new block which we may not
2999	 * have written out.
3000	 */
3001	btrfs_set_root_node(&log->root_item, log->node);
3002	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3003
3004	root->log_transid++;
3005	log->log_transid = root->log_transid;
3006	root->log_start_pid = 0;
3007	/*
3008	 * IO has been started, blocks of the log tree have WRITTEN flag set
3009	 * in their headers. new modifications of the log will be written to
3010	 * new positions. so it's safe to allow log writers to go in.
3011	 */
3012	mutex_unlock(&root->log_mutex);
3013
3014	if (btrfs_is_zoned(fs_info)) {
3015		mutex_lock(&fs_info->tree_root->log_mutex);
3016		if (!log_root_tree->node) {
3017			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3018			if (ret) {
3019				mutex_unlock(&fs_info->tree_root->log_mutex);
3020				blk_finish_plug(&plug);
3021				goto out;
3022			}
3023		}
3024		mutex_unlock(&fs_info->tree_root->log_mutex);
3025	}
3026
3027	btrfs_init_log_ctx(&root_log_ctx, NULL);
3028
3029	mutex_lock(&log_root_tree->log_mutex);
 
 
3030
3031	index2 = log_root_tree->log_transid % 2;
3032	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3033	root_log_ctx.log_transid = log_root_tree->log_transid;
3034
3035	/*
3036	 * Now we are safe to update the log_root_tree because we're under the
3037	 * log_mutex, and we're a current writer so we're holding the commit
3038	 * open until we drop the log_mutex.
3039	 */
3040	ret = update_log_root(trans, log, &new_root_item);
 
 
 
 
 
 
 
3041	if (ret) {
3042		if (!list_empty(&root_log_ctx.list))
3043			list_del_init(&root_log_ctx.list);
3044
3045		blk_finish_plug(&plug);
3046		btrfs_set_log_full_commit(trans);
3047		if (ret != -ENOSPC)
3048			btrfs_err(fs_info,
3049				  "failed to update log for root %llu ret %d",
3050				  root->root_key.objectid, ret);
3051		btrfs_wait_tree_log_extents(log, mark);
 
 
 
3052		mutex_unlock(&log_root_tree->log_mutex);
 
3053		goto out;
3054	}
3055
3056	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3057		blk_finish_plug(&plug);
3058		list_del_init(&root_log_ctx.list);
3059		mutex_unlock(&log_root_tree->log_mutex);
3060		ret = root_log_ctx.log_ret;
3061		goto out;
3062	}
3063
3064	index2 = root_log_ctx.log_transid % 2;
3065	if (atomic_read(&log_root_tree->log_commit[index2])) {
3066		blk_finish_plug(&plug);
3067		ret = btrfs_wait_tree_log_extents(log, mark);
 
 
3068		wait_log_commit(log_root_tree,
3069				root_log_ctx.log_transid);
3070		mutex_unlock(&log_root_tree->log_mutex);
3071		if (!ret)
3072			ret = root_log_ctx.log_ret;
3073		goto out;
3074	}
3075	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3076	atomic_set(&log_root_tree->log_commit[index2], 1);
3077
3078	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3079		wait_log_commit(log_root_tree,
3080				root_log_ctx.log_transid - 1);
3081	}
3082
 
 
3083	/*
3084	 * now that we've moved on to the tree of log tree roots,
3085	 * check the full commit flag again
3086	 */
3087	if (btrfs_need_log_full_commit(trans)) {
3088		blk_finish_plug(&plug);
3089		btrfs_wait_tree_log_extents(log, mark);
 
3090		mutex_unlock(&log_root_tree->log_mutex);
3091		ret = BTRFS_LOG_FORCE_COMMIT;
3092		goto out_wake_log_root;
3093	}
3094
3095	ret = btrfs_write_marked_extents(fs_info,
3096					 &log_root_tree->dirty_log_pages,
3097					 EXTENT_DIRTY | EXTENT_NEW);
3098	blk_finish_plug(&plug);
3099	/*
3100	 * As described above, -EAGAIN indicates a hole in the extents. We
3101	 * cannot wait for these write outs since the waiting cause a
3102	 * deadlock. Bail out to the full commit instead.
3103	 */
3104	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3105		btrfs_set_log_full_commit(trans);
3106		btrfs_wait_tree_log_extents(log, mark);
3107		mutex_unlock(&log_root_tree->log_mutex);
3108		goto out_wake_log_root;
3109	} else if (ret) {
3110		btrfs_set_log_full_commit(trans);
3111		mutex_unlock(&log_root_tree->log_mutex);
3112		goto out_wake_log_root;
3113	}
3114	ret = btrfs_wait_tree_log_extents(log, mark);
3115	if (!ret)
3116		ret = btrfs_wait_tree_log_extents(log_root_tree,
3117						  EXTENT_NEW | EXTENT_DIRTY);
 
3118	if (ret) {
3119		btrfs_set_log_full_commit(trans);
 
3120		mutex_unlock(&log_root_tree->log_mutex);
3121		goto out_wake_log_root;
3122	}
 
 
 
 
 
 
3123
3124	log_root_start = log_root_tree->node->start;
3125	log_root_level = btrfs_header_level(log_root_tree->node);
3126	log_root_tree->log_transid++;
3127	mutex_unlock(&log_root_tree->log_mutex);
3128
3129	/*
3130	 * Here we are guaranteed that nobody is going to write the superblock
3131	 * for the current transaction before us and that neither we do write
3132	 * our superblock before the previous transaction finishes its commit
3133	 * and writes its superblock, because:
3134	 *
3135	 * 1) We are holding a handle on the current transaction, so no body
3136	 *    can commit it until we release the handle;
3137	 *
3138	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3139	 *    if the previous transaction is still committing, and hasn't yet
3140	 *    written its superblock, we wait for it to do it, because a
3141	 *    transaction commit acquires the tree_log_mutex when the commit
3142	 *    begins and releases it only after writing its superblock.
3143	 */
3144	mutex_lock(&fs_info->tree_log_mutex);
3145
3146	/*
3147	 * The previous transaction writeout phase could have failed, and thus
3148	 * marked the fs in an error state.  We must not commit here, as we
3149	 * could have updated our generation in the super_for_commit and
3150	 * writing the super here would result in transid mismatches.  If there
3151	 * is an error here just bail.
3152	 */
3153	if (BTRFS_FS_ERROR(fs_info)) {
3154		ret = -EIO;
3155		btrfs_set_log_full_commit(trans);
3156		btrfs_abort_transaction(trans, ret);
3157		mutex_unlock(&fs_info->tree_log_mutex);
3158		goto out_wake_log_root;
3159	}
3160
3161	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3162	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3163	ret = write_all_supers(fs_info, 1);
3164	mutex_unlock(&fs_info->tree_log_mutex);
3165	if (ret) {
3166		btrfs_set_log_full_commit(trans);
3167		btrfs_abort_transaction(trans, ret);
3168		goto out_wake_log_root;
3169	}
3170
 
3171	/*
3172	 * We know there can only be one task here, since we have not yet set
3173	 * root->log_commit[index1] to 0 and any task attempting to sync the
3174	 * log must wait for the previous log transaction to commit if it's
3175	 * still in progress or wait for the current log transaction commit if
3176	 * someone else already started it. We use <= and not < because the
3177	 * first log transaction has an ID of 0.
3178	 */
3179	ASSERT(root->last_log_commit <= log_transid);
3180	root->last_log_commit = log_transid;
3181
3182out_wake_log_root:
3183	mutex_lock(&log_root_tree->log_mutex);
3184	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3185
3186	log_root_tree->log_transid_committed++;
3187	atomic_set(&log_root_tree->log_commit[index2], 0);
3188	mutex_unlock(&log_root_tree->log_mutex);
3189
3190	/*
3191	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3192	 * all the updates above are seen by the woken threads. It might not be
3193	 * necessary, but proving that seems to be hard.
3194	 */
3195	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
 
3196out:
 
 
 
3197	mutex_lock(&root->log_mutex);
3198	btrfs_remove_all_log_ctxs(root, index1, ret);
3199	root->log_transid_committed++;
3200	atomic_set(&root->log_commit[index1], 0);
3201	mutex_unlock(&root->log_mutex);
3202
3203	/*
3204	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3205	 * all the updates above are seen by the woken threads. It might not be
3206	 * necessary, but proving that seems to be hard.
3207	 */
3208	cond_wake_up(&root->log_commit_wait[index1]);
 
3209	return ret;
3210}
3211
3212static void free_log_tree(struct btrfs_trans_handle *trans,
3213			  struct btrfs_root *log)
3214{
3215	int ret;
 
 
3216	struct walk_control wc = {
3217		.free = 1,
3218		.process_func = process_one_buffer
3219	};
3220
3221	if (log->node) {
3222		ret = walk_log_tree(trans, log, &wc);
3223		if (ret) {
3224			/*
3225			 * We weren't able to traverse the entire log tree, the
3226			 * typical scenario is getting an -EIO when reading an
3227			 * extent buffer of the tree, due to a previous writeback
3228			 * failure of it.
3229			 */
3230			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3231				&log->fs_info->fs_state);
3232
3233			/*
3234			 * Some extent buffers of the log tree may still be dirty
3235			 * and not yet written back to storage, because we may
3236			 * have updates to a log tree without syncing a log tree,
3237			 * such as during rename and link operations. So flush
3238			 * them out and wait for their writeback to complete, so
3239			 * that we properly cleanup their state and pages.
3240			 */
3241			btrfs_write_marked_extents(log->fs_info,
3242						   &log->dirty_log_pages,
3243						   EXTENT_DIRTY | EXTENT_NEW);
3244			btrfs_wait_tree_log_extents(log,
3245						    EXTENT_DIRTY | EXTENT_NEW);
3246
3247			if (trans)
3248				btrfs_abort_transaction(trans, ret);
3249			else
3250				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3251		}
3252	}
3253
3254	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3255			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3256	extent_io_tree_release(&log->log_csum_range);
 
 
 
 
3257
3258	btrfs_put_root(log);
 
3259}
3260
3261/*
3262 * free all the extents used by the tree log.  This should be called
3263 * at commit time of the full transaction
3264 */
3265int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3266{
3267	if (root->log_root) {
3268		free_log_tree(trans, root->log_root);
3269		root->log_root = NULL;
3270		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3271	}
3272	return 0;
3273}
3274
3275int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3276			     struct btrfs_fs_info *fs_info)
3277{
3278	if (fs_info->log_root_tree) {
3279		free_log_tree(trans, fs_info->log_root_tree);
3280		fs_info->log_root_tree = NULL;
3281		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3282	}
3283	return 0;
3284}
3285
3286/*
3287 * Check if an inode was logged in the current transaction. This correctly deals
3288 * with the case where the inode was logged but has a logged_trans of 0, which
3289 * happens if the inode is evicted and loaded again, as logged_trans is an in
3290 * memory only field (not persisted).
3291 *
3292 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3293 * and < 0 on error.
3294 */
3295static int inode_logged(struct btrfs_trans_handle *trans,
3296			struct btrfs_inode *inode,
3297			struct btrfs_path *path_in)
3298{
3299	struct btrfs_path *path = path_in;
3300	struct btrfs_key key;
3301	int ret;
3302
3303	if (inode->logged_trans == trans->transid)
3304		return 1;
3305
3306	/*
3307	 * If logged_trans is not 0, then we know the inode logged was not logged
3308	 * in this transaction, so we can return false right away.
3309	 */
3310	if (inode->logged_trans > 0)
3311		return 0;
3312
3313	/*
3314	 * If no log tree was created for this root in this transaction, then
3315	 * the inode can not have been logged in this transaction. In that case
3316	 * set logged_trans to anything greater than 0 and less than the current
3317	 * transaction's ID, to avoid the search below in a future call in case
3318	 * a log tree gets created after this.
3319	 */
3320	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3321		inode->logged_trans = trans->transid - 1;
3322		return 0;
3323	}
3324
3325	/*
3326	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3327	 * for sure if the inode was logged before in this transaction by looking
3328	 * only at logged_trans. We could be pessimistic and assume it was, but
3329	 * that can lead to unnecessarily logging an inode during rename and link
3330	 * operations, and then further updating the log in followup rename and
3331	 * link operations, specially if it's a directory, which adds latency
3332	 * visible to applications doing a series of rename or link operations.
3333	 *
3334	 * A logged_trans of 0 here can mean several things:
3335	 *
3336	 * 1) The inode was never logged since the filesystem was mounted, and may
3337	 *    or may have not been evicted and loaded again;
3338	 *
3339	 * 2) The inode was logged in a previous transaction, then evicted and
3340	 *    then loaded again;
3341	 *
3342	 * 3) The inode was logged in the current transaction, then evicted and
3343	 *    then loaded again.
3344	 *
3345	 * For cases 1) and 2) we don't want to return true, but we need to detect
3346	 * case 3) and return true. So we do a search in the log root for the inode
3347	 * item.
3348	 */
3349	key.objectid = btrfs_ino(inode);
3350	key.type = BTRFS_INODE_ITEM_KEY;
3351	key.offset = 0;
3352
3353	if (!path) {
3354		path = btrfs_alloc_path();
3355		if (!path)
3356			return -ENOMEM;
3357	}
3358
3359	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3360
3361	if (path_in)
3362		btrfs_release_path(path);
3363	else
3364		btrfs_free_path(path);
3365
3366	/*
3367	 * Logging an inode always results in logging its inode item. So if we
3368	 * did not find the item we know the inode was not logged for sure.
3369	 */
3370	if (ret < 0) {
3371		return ret;
3372	} else if (ret > 0) {
3373		/*
3374		 * Set logged_trans to a value greater than 0 and less then the
3375		 * current transaction to avoid doing the search in future calls.
3376		 */
3377		inode->logged_trans = trans->transid - 1;
3378		return 0;
3379	}
3380
3381	/*
3382	 * The inode was previously logged and then evicted, set logged_trans to
3383	 * the current transacion's ID, to avoid future tree searches as long as
3384	 * the inode is not evicted again.
3385	 */
3386	inode->logged_trans = trans->transid;
3387
3388	/*
3389	 * If it's a directory, then we must set last_dir_index_offset to the
3390	 * maximum possible value, so that the next attempt to log the inode does
3391	 * not skip checking if dir index keys found in modified subvolume tree
3392	 * leaves have been logged before, otherwise it would result in attempts
3393	 * to insert duplicate dir index keys in the log tree. This must be done
3394	 * because last_dir_index_offset is an in-memory only field, not persisted
3395	 * in the inode item or any other on-disk structure, so its value is lost
3396	 * once the inode is evicted.
3397	 */
3398	if (S_ISDIR(inode->vfs_inode.i_mode))
3399		inode->last_dir_index_offset = (u64)-1;
3400
3401	return 1;
3402}
3403
3404/*
3405 * Delete a directory entry from the log if it exists.
3406 *
3407 * Returns < 0 on error
3408 *           1 if the entry does not exists
3409 *           0 if the entry existed and was successfully deleted
3410 */
3411static int del_logged_dentry(struct btrfs_trans_handle *trans,
3412			     struct btrfs_root *log,
3413			     struct btrfs_path *path,
3414			     u64 dir_ino,
3415			     const struct fscrypt_str *name,
3416			     u64 index)
3417{
3418	struct btrfs_dir_item *di;
3419
3420	/*
3421	 * We only log dir index items of a directory, so we don't need to look
3422	 * for dir item keys.
3423	 */
3424	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3425					 index, name, -1);
3426	if (IS_ERR(di))
3427		return PTR_ERR(di);
3428	else if (!di)
3429		return 1;
3430
3431	/*
3432	 * We do not need to update the size field of the directory's
3433	 * inode item because on log replay we update the field to reflect
3434	 * all existing entries in the directory (see overwrite_item()).
3435	 */
3436	return btrfs_delete_one_dir_name(trans, log, path, di);
3437}
3438
3439/*
3440 * If both a file and directory are logged, and unlinks or renames are
3441 * mixed in, we have a few interesting corners:
3442 *
3443 * create file X in dir Y
3444 * link file X to X.link in dir Y
3445 * fsync file X
3446 * unlink file X but leave X.link
3447 * fsync dir Y
3448 *
3449 * After a crash we would expect only X.link to exist.  But file X
3450 * didn't get fsync'd again so the log has back refs for X and X.link.
3451 *
3452 * We solve this by removing directory entries and inode backrefs from the
3453 * log when a file that was logged in the current transaction is
3454 * unlinked.  Any later fsync will include the updated log entries, and
3455 * we'll be able to reconstruct the proper directory items from backrefs.
3456 *
3457 * This optimizations allows us to avoid relogging the entire inode
3458 * or the entire directory.
3459 */
3460void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3461				  struct btrfs_root *root,
3462				  const struct fscrypt_str *name,
3463				  struct btrfs_inode *dir, u64 index)
3464{
 
 
3465	struct btrfs_path *path;
3466	int ret;
 
 
 
3467
3468	ret = inode_logged(trans, dir, NULL);
3469	if (ret == 0)
3470		return;
3471	else if (ret < 0) {
3472		btrfs_set_log_full_commit(trans);
3473		return;
3474	}
3475
3476	ret = join_running_log_trans(root);
3477	if (ret)
3478		return;
3479
3480	mutex_lock(&dir->log_mutex);
3481
 
3482	path = btrfs_alloc_path();
3483	if (!path) {
3484		ret = -ENOMEM;
3485		goto out_unlock;
3486	}
3487
3488	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3489				name, index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3490	btrfs_free_path(path);
3491out_unlock:
3492	mutex_unlock(&dir->log_mutex);
3493	if (ret < 0)
3494		btrfs_set_log_full_commit(trans);
 
 
 
 
3495	btrfs_end_log_trans(root);
 
 
3496}
3497
3498/* see comments for btrfs_del_dir_entries_in_log */
3499void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3500				struct btrfs_root *root,
3501				const struct fscrypt_str *name,
3502				struct btrfs_inode *inode, u64 dirid)
3503{
3504	struct btrfs_root *log;
3505	u64 index;
3506	int ret;
3507
3508	ret = inode_logged(trans, inode, NULL);
3509	if (ret == 0)
3510		return;
3511	else if (ret < 0) {
3512		btrfs_set_log_full_commit(trans);
3513		return;
3514	}
3515
3516	ret = join_running_log_trans(root);
3517	if (ret)
3518		return;
3519	log = root->log_root;
3520	mutex_lock(&inode->log_mutex);
3521
3522	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3523				  dirid, &index);
3524	mutex_unlock(&inode->log_mutex);
3525	if (ret < 0 && ret != -ENOENT)
3526		btrfs_set_log_full_commit(trans);
 
 
 
3527	btrfs_end_log_trans(root);
 
 
3528}
3529
3530/*
3531 * creates a range item in the log for 'dirid'.  first_offset and
3532 * last_offset tell us which parts of the key space the log should
3533 * be considered authoritative for.
3534 */
3535static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3536				       struct btrfs_root *log,
3537				       struct btrfs_path *path,
3538				       u64 dirid,
3539				       u64 first_offset, u64 last_offset)
3540{
3541	int ret;
3542	struct btrfs_key key;
3543	struct btrfs_dir_log_item *item;
3544
3545	key.objectid = dirid;
3546	key.offset = first_offset;
3547	key.type = BTRFS_DIR_LOG_INDEX_KEY;
 
 
 
3548	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3549	/*
3550	 * -EEXIST is fine and can happen sporadically when we are logging a
3551	 * directory and have concurrent insertions in the subvolume's tree for
3552	 * items from other inodes and that result in pushing off some dir items
3553	 * from one leaf to another in order to accommodate for the new items.
3554	 * This results in logging the same dir index range key.
3555	 */
3556	if (ret && ret != -EEXIST)
3557		return ret;
3558
3559	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3560			      struct btrfs_dir_log_item);
3561	if (ret == -EEXIST) {
3562		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3563
3564		/*
3565		 * btrfs_del_dir_entries_in_log() might have been called during
3566		 * an unlink between the initial insertion of this key and the
3567		 * current update, or we might be logging a single entry deletion
3568		 * during a rename, so set the new last_offset to the max value.
3569		 */
3570		last_offset = max(last_offset, curr_end);
3571	}
3572	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3573	btrfs_mark_buffer_dirty(path->nodes[0]);
3574	btrfs_release_path(path);
3575	return 0;
3576}
3577
3578static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3579				 struct btrfs_inode *inode,
3580				 struct extent_buffer *src,
3581				 struct btrfs_path *dst_path,
3582				 int start_slot,
3583				 int count)
3584{
3585	struct btrfs_root *log = inode->root->log_root;
3586	char *ins_data = NULL;
3587	struct btrfs_item_batch batch;
3588	struct extent_buffer *dst;
3589	unsigned long src_offset;
3590	unsigned long dst_offset;
3591	u64 last_index;
3592	struct btrfs_key key;
3593	u32 item_size;
3594	int ret;
3595	int i;
3596
3597	ASSERT(count > 0);
3598	batch.nr = count;
3599
3600	if (count == 1) {
3601		btrfs_item_key_to_cpu(src, &key, start_slot);
3602		item_size = btrfs_item_size(src, start_slot);
3603		batch.keys = &key;
3604		batch.data_sizes = &item_size;
3605		batch.total_data_size = item_size;
3606	} else {
3607		struct btrfs_key *ins_keys;
3608		u32 *ins_sizes;
3609
3610		ins_data = kmalloc(count * sizeof(u32) +
3611				   count * sizeof(struct btrfs_key), GFP_NOFS);
3612		if (!ins_data)
3613			return -ENOMEM;
3614
3615		ins_sizes = (u32 *)ins_data;
3616		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3617		batch.keys = ins_keys;
3618		batch.data_sizes = ins_sizes;
3619		batch.total_data_size = 0;
3620
3621		for (i = 0; i < count; i++) {
3622			const int slot = start_slot + i;
3623
3624			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3625			ins_sizes[i] = btrfs_item_size(src, slot);
3626			batch.total_data_size += ins_sizes[i];
3627		}
3628	}
3629
3630	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3631	if (ret)
3632		goto out;
3633
3634	dst = dst_path->nodes[0];
3635	/*
3636	 * Copy all the items in bulk, in a single copy operation. Item data is
3637	 * organized such that it's placed at the end of a leaf and from right
3638	 * to left. For example, the data for the second item ends at an offset
3639	 * that matches the offset where the data for the first item starts, the
3640	 * data for the third item ends at an offset that matches the offset
3641	 * where the data of the second items starts, and so on.
3642	 * Therefore our source and destination start offsets for copy match the
3643	 * offsets of the last items (highest slots).
3644	 */
3645	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3646	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3647	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3648	btrfs_release_path(dst_path);
3649
3650	last_index = batch.keys[count - 1].offset;
3651	ASSERT(last_index > inode->last_dir_index_offset);
3652
3653	/*
3654	 * If for some unexpected reason the last item's index is not greater
3655	 * than the last index we logged, warn and return an error to fallback
3656	 * to a transaction commit.
3657	 */
3658	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3659		ret = -EUCLEAN;
3660	else
3661		inode->last_dir_index_offset = last_index;
3662out:
3663	kfree(ins_data);
3664
3665	return ret;
3666}
3667
3668static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3669				  struct btrfs_inode *inode,
3670				  struct btrfs_path *path,
3671				  struct btrfs_path *dst_path,
3672				  struct btrfs_log_ctx *ctx,
3673				  u64 *last_old_dentry_offset)
3674{
3675	struct btrfs_root *log = inode->root->log_root;
3676	struct extent_buffer *src;
3677	const int nritems = btrfs_header_nritems(path->nodes[0]);
3678	const u64 ino = btrfs_ino(inode);
3679	bool last_found = false;
3680	int batch_start = 0;
3681	int batch_size = 0;
3682	int i;
3683
3684	/*
3685	 * We need to clone the leaf, release the read lock on it, and use the
3686	 * clone before modifying the log tree. See the comment at copy_items()
3687	 * about why we need to do this.
3688	 */
3689	src = btrfs_clone_extent_buffer(path->nodes[0]);
3690	if (!src)
3691		return -ENOMEM;
3692
3693	i = path->slots[0];
3694	btrfs_release_path(path);
3695	path->nodes[0] = src;
3696	path->slots[0] = i;
3697
3698	for (; i < nritems; i++) {
3699		struct btrfs_dir_item *di;
3700		struct btrfs_key key;
3701		int ret;
3702
3703		btrfs_item_key_to_cpu(src, &key, i);
3704
3705		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3706			last_found = true;
3707			break;
3708		}
3709
3710		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3711
3712		/*
3713		 * Skip ranges of items that consist only of dir item keys created
3714		 * in past transactions. However if we find a gap, we must log a
3715		 * dir index range item for that gap, so that index keys in that
3716		 * gap are deleted during log replay.
3717		 */
3718		if (btrfs_dir_transid(src, di) < trans->transid) {
3719			if (key.offset > *last_old_dentry_offset + 1) {
3720				ret = insert_dir_log_key(trans, log, dst_path,
3721						 ino, *last_old_dentry_offset + 1,
3722						 key.offset - 1);
3723				if (ret < 0)
3724					return ret;
3725			}
3726
3727			*last_old_dentry_offset = key.offset;
3728			continue;
3729		}
3730
3731		/* If we logged this dir index item before, we can skip it. */
3732		if (key.offset <= inode->last_dir_index_offset)
3733			continue;
3734
3735		/*
3736		 * We must make sure that when we log a directory entry, the
3737		 * corresponding inode, after log replay, has a matching link
3738		 * count. For example:
3739		 *
3740		 * touch foo
3741		 * mkdir mydir
3742		 * sync
3743		 * ln foo mydir/bar
3744		 * xfs_io -c "fsync" mydir
3745		 * <crash>
3746		 * <mount fs and log replay>
3747		 *
3748		 * Would result in a fsync log that when replayed, our file inode
3749		 * would have a link count of 1, but we get two directory entries
3750		 * pointing to the same inode. After removing one of the names,
3751		 * it would not be possible to remove the other name, which
3752		 * resulted always in stale file handle errors, and would not be
3753		 * possible to rmdir the parent directory, since its i_size could
3754		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3755		 * resulting in -ENOTEMPTY errors.
3756		 */
3757		if (!ctx->log_new_dentries) {
3758			struct btrfs_key di_key;
3759
3760			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3761			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3762				ctx->log_new_dentries = true;
3763		}
3764
3765		if (batch_size == 0)
3766			batch_start = i;
3767		batch_size++;
3768	}
3769
3770	if (batch_size > 0) {
3771		int ret;
3772
3773		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3774					    batch_start, batch_size);
3775		if (ret < 0)
3776			return ret;
3777	}
3778
3779	return last_found ? 1 : 0;
3780}
3781
3782/*
3783 * log all the items included in the current transaction for a given
3784 * directory.  This also creates the range items in the log tree required
3785 * to replay anything deleted before the fsync
3786 */
3787static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3788			  struct btrfs_inode *inode,
3789			  struct btrfs_path *path,
3790			  struct btrfs_path *dst_path,
3791			  struct btrfs_log_ctx *ctx,
3792			  u64 min_offset, u64 *last_offset_ret)
3793{
3794	struct btrfs_key min_key;
3795	struct btrfs_root *root = inode->root;
3796	struct btrfs_root *log = root->log_root;
 
3797	int err = 0;
3798	int ret;
3799	u64 last_old_dentry_offset = min_offset - 1;
 
 
3800	u64 last_offset = (u64)-1;
3801	u64 ino = btrfs_ino(inode);
3802
 
 
3803	min_key.objectid = ino;
3804	min_key.type = BTRFS_DIR_INDEX_KEY;
3805	min_key.offset = min_offset;
3806
3807	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3808
3809	/*
3810	 * we didn't find anything from this transaction, see if there
3811	 * is anything at all
3812	 */
3813	if (ret != 0 || min_key.objectid != ino ||
3814	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3815		min_key.objectid = ino;
3816		min_key.type = BTRFS_DIR_INDEX_KEY;
3817		min_key.offset = (u64)-1;
3818		btrfs_release_path(path);
3819		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3820		if (ret < 0) {
3821			btrfs_release_path(path);
3822			return ret;
3823		}
3824		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3825
3826		/* if ret == 0 there are items for this type,
3827		 * create a range to tell us the last key of this type.
3828		 * otherwise, there are no items in this directory after
3829		 * *min_offset, and we create a range to indicate that.
3830		 */
3831		if (ret == 0) {
3832			struct btrfs_key tmp;
3833
3834			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3835					      path->slots[0]);
3836			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3837				last_old_dentry_offset = tmp.offset;
3838		} else if (ret < 0) {
3839			err = ret;
3840		}
3841
3842		goto done;
3843	}
3844
3845	/* go backward to find any previous key */
3846	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3847	if (ret == 0) {
3848		struct btrfs_key tmp;
3849
3850		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3851		/*
3852		 * The dir index key before the first one we found that needs to
3853		 * be logged might be in a previous leaf, and there might be a
3854		 * gap between these keys, meaning that we had deletions that
3855		 * happened. So the key range item we log (key type
3856		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3857		 * previous key's offset plus 1, so that those deletes are replayed.
3858		 */
3859		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3860			last_old_dentry_offset = tmp.offset;
3861	} else if (ret < 0) {
3862		err = ret;
3863		goto done;
3864	}
3865
3866	btrfs_release_path(path);
3867
3868	/*
3869	 * Find the first key from this transaction again or the one we were at
3870	 * in the loop below in case we had to reschedule. We may be logging the
3871	 * directory without holding its VFS lock, which happen when logging new
3872	 * dentries (through log_new_dir_dentries()) or in some cases when we
3873	 * need to log the parent directory of an inode. This means a dir index
3874	 * key might be deleted from the inode's root, and therefore we may not
3875	 * find it anymore. If we can't find it, just move to the next key. We
3876	 * can not bail out and ignore, because if we do that we will simply
3877	 * not log dir index keys that come after the one that was just deleted
3878	 * and we can end up logging a dir index range that ends at (u64)-1
3879	 * (@last_offset is initialized to that), resulting in removing dir
3880	 * entries we should not remove at log replay time.
3881	 */
3882search:
3883	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3884	if (ret > 0)
3885		ret = btrfs_next_item(root, path);
3886	if (ret < 0)
3887		err = ret;
3888	/* If ret is 1, there are no more keys in the inode's root. */
3889	if (ret != 0)
3890		goto done;
3891
3892	/*
3893	 * we have a block from this transaction, log every item in it
3894	 * from our directory
3895	 */
3896	while (1) {
3897		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3898					     &last_old_dentry_offset);
3899		if (ret != 0) {
3900			if (ret < 0)
 
 
 
 
 
 
 
 
 
3901				err = ret;
3902			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3903		}
3904		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3905
3906		/*
3907		 * look ahead to the next item and see if it is also
3908		 * from this directory and from this transaction
3909		 */
3910		ret = btrfs_next_leaf(root, path);
3911		if (ret) {
3912			if (ret == 1)
3913				last_offset = (u64)-1;
3914			else
3915				err = ret;
3916			goto done;
3917		}
3918		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3919		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3920			last_offset = (u64)-1;
3921			goto done;
3922		}
3923		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3924			/*
3925			 * The next leaf was not changed in the current transaction
3926			 * and has at least one dir index key.
3927			 * We check for the next key because there might have been
3928			 * one or more deletions between the last key we logged and
3929			 * that next key. So the key range item we log (key type
3930			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3931			 * offset minus 1, so that those deletes are replayed.
3932			 */
3933			last_offset = min_key.offset - 1;
3934			goto done;
3935		}
3936		if (need_resched()) {
3937			btrfs_release_path(path);
3938			cond_resched();
3939			goto search;
3940		}
3941	}
3942done:
3943	btrfs_release_path(path);
3944	btrfs_release_path(dst_path);
3945
3946	if (err == 0) {
3947		*last_offset_ret = last_offset;
3948		/*
3949		 * In case the leaf was changed in the current transaction but
3950		 * all its dir items are from a past transaction, the last item
3951		 * in the leaf is a dir item and there's no gap between that last
3952		 * dir item and the first one on the next leaf (which did not
3953		 * change in the current transaction), then we don't need to log
3954		 * a range, last_old_dentry_offset is == to last_offset.
3955		 */
3956		ASSERT(last_old_dentry_offset <= last_offset);
3957		if (last_old_dentry_offset < last_offset) {
3958			ret = insert_dir_log_key(trans, log, path, ino,
3959						 last_old_dentry_offset + 1,
3960						 last_offset);
3961			if (ret)
3962				err = ret;
3963		}
3964	}
3965	return err;
3966}
3967
3968/*
3969 * If the inode was logged before and it was evicted, then its
3970 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3971 * key offset. If that's the case, search for it and update the inode. This
3972 * is to avoid lookups in the log tree every time we try to insert a dir index
3973 * key from a leaf changed in the current transaction, and to allow us to always
3974 * do batch insertions of dir index keys.
3975 */
3976static int update_last_dir_index_offset(struct btrfs_inode *inode,
3977					struct btrfs_path *path,
3978					const struct btrfs_log_ctx *ctx)
3979{
3980	const u64 ino = btrfs_ino(inode);
3981	struct btrfs_key key;
3982	int ret;
3983
3984	lockdep_assert_held(&inode->log_mutex);
3985
3986	if (inode->last_dir_index_offset != (u64)-1)
3987		return 0;
3988
3989	if (!ctx->logged_before) {
3990		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3991		return 0;
3992	}
3993
3994	key.objectid = ino;
3995	key.type = BTRFS_DIR_INDEX_KEY;
3996	key.offset = (u64)-1;
3997
3998	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3999	/*
4000	 * An error happened or we actually have an index key with an offset
4001	 * value of (u64)-1. Bail out, we're done.
4002	 */
4003	if (ret <= 0)
4004		goto out;
4005
4006	ret = 0;
4007	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4008
4009	/*
4010	 * No dir index items, bail out and leave last_dir_index_offset with
4011	 * the value right before the first valid index value.
4012	 */
4013	if (path->slots[0] == 0)
4014		goto out;
4015
4016	/*
4017	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4018	 * index key, or beyond the last key of the directory that is not an
4019	 * index key. If we have an index key before, set last_dir_index_offset
4020	 * to its offset value, otherwise leave it with a value right before the
4021	 * first valid index value, as it means we have an empty directory.
4022	 */
4023	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4024	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4025		inode->last_dir_index_offset = key.offset;
4026
4027out:
4028	btrfs_release_path(path);
4029
4030	return ret;
4031}
4032
4033/*
4034 * logging directories is very similar to logging inodes, We find all the items
4035 * from the current transaction and write them to the log.
4036 *
4037 * The recovery code scans the directory in the subvolume, and if it finds a
4038 * key in the range logged that is not present in the log tree, then it means
4039 * that dir entry was unlinked during the transaction.
4040 *
4041 * In order for that scan to work, we must include one key smaller than
4042 * the smallest logged by this transaction and one key larger than the largest
4043 * key logged by this transaction.
4044 */
4045static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4046			  struct btrfs_inode *inode,
4047			  struct btrfs_path *path,
4048			  struct btrfs_path *dst_path,
4049			  struct btrfs_log_ctx *ctx)
4050{
4051	u64 min_key;
4052	u64 max_key;
4053	int ret;
 
4054
4055	ret = update_last_dir_index_offset(inode, path, ctx);
4056	if (ret)
4057		return ret;
4058
4059	min_key = BTRFS_DIR_START_INDEX;
4060	max_key = 0;
4061
4062	while (1) {
4063		ret = log_dir_items(trans, inode, path, dst_path,
4064				ctx, min_key, &max_key);
 
4065		if (ret)
4066			return ret;
4067		if (max_key == (u64)-1)
4068			break;
4069		min_key = max_key + 1;
4070	}
4071
 
 
 
 
4072	return 0;
4073}
4074
4075/*
4076 * a helper function to drop items from the log before we relog an
4077 * inode.  max_key_type indicates the highest item type to remove.
4078 * This cannot be run for file data extents because it does not
4079 * free the extents they point to.
4080 */
4081static int drop_inode_items(struct btrfs_trans_handle *trans,
4082				  struct btrfs_root *log,
4083				  struct btrfs_path *path,
4084				  struct btrfs_inode *inode,
4085				  int max_key_type)
4086{
4087	int ret;
4088	struct btrfs_key key;
4089	struct btrfs_key found_key;
4090	int start_slot;
4091
4092	key.objectid = btrfs_ino(inode);
4093	key.type = max_key_type;
4094	key.offset = (u64)-1;
4095
4096	while (1) {
4097		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4098		BUG_ON(ret == 0); /* Logic error */
4099		if (ret < 0)
4100			break;
4101
4102		if (path->slots[0] == 0)
4103			break;
4104
4105		path->slots[0]--;
4106		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4107				      path->slots[0]);
4108
4109		if (found_key.objectid != key.objectid)
4110			break;
4111
4112		found_key.offset = 0;
4113		found_key.type = 0;
4114		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4115		if (ret < 0)
4116			break;
4117
4118		ret = btrfs_del_items(trans, log, path, start_slot,
4119				      path->slots[0] - start_slot + 1);
4120		/*
4121		 * If start slot isn't 0 then we don't need to re-search, we've
4122		 * found the last guy with the objectid in this tree.
4123		 */
4124		if (ret || start_slot != 0)
4125			break;
4126		btrfs_release_path(path);
4127	}
4128	btrfs_release_path(path);
4129	if (ret > 0)
4130		ret = 0;
4131	return ret;
4132}
4133
4134static int truncate_inode_items(struct btrfs_trans_handle *trans,
4135				struct btrfs_root *log_root,
4136				struct btrfs_inode *inode,
4137				u64 new_size, u32 min_type)
4138{
4139	struct btrfs_truncate_control control = {
4140		.new_size = new_size,
4141		.ino = btrfs_ino(inode),
4142		.min_type = min_type,
4143		.skip_ref_updates = true,
4144	};
4145
4146	return btrfs_truncate_inode_items(trans, log_root, &control);
4147}
4148
4149static void fill_inode_item(struct btrfs_trans_handle *trans,
4150			    struct extent_buffer *leaf,
4151			    struct btrfs_inode_item *item,
4152			    struct inode *inode, int log_inode_only,
4153			    u64 logged_isize)
4154{
4155	struct btrfs_map_token token;
4156	u64 flags;
4157
4158	btrfs_init_map_token(&token, leaf);
4159
4160	if (log_inode_only) {
4161		/* set the generation to zero so the recover code
4162		 * can tell the difference between an logging
4163		 * just to say 'this inode exists' and a logging
4164		 * to say 'update this inode with these values'
4165		 */
4166		btrfs_set_token_inode_generation(&token, item, 0);
4167		btrfs_set_token_inode_size(&token, item, logged_isize);
4168	} else {
4169		btrfs_set_token_inode_generation(&token, item,
4170						 BTRFS_I(inode)->generation);
4171		btrfs_set_token_inode_size(&token, item, inode->i_size);
4172	}
4173
4174	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4175	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4176	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4177	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4178
4179	btrfs_set_token_timespec_sec(&token, &item->atime,
4180				     inode->i_atime.tv_sec);
4181	btrfs_set_token_timespec_nsec(&token, &item->atime,
4182				      inode->i_atime.tv_nsec);
4183
4184	btrfs_set_token_timespec_sec(&token, &item->mtime,
4185				     inode->i_mtime.tv_sec);
4186	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4187				      inode->i_mtime.tv_nsec);
4188
4189	btrfs_set_token_timespec_sec(&token, &item->ctime,
4190				     inode->i_ctime.tv_sec);
4191	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4192				      inode->i_ctime.tv_nsec);
4193
4194	/*
4195	 * We do not need to set the nbytes field, in fact during a fast fsync
4196	 * its value may not even be correct, since a fast fsync does not wait
4197	 * for ordered extent completion, which is where we update nbytes, it
4198	 * only waits for writeback to complete. During log replay as we find
4199	 * file extent items and replay them, we adjust the nbytes field of the
4200	 * inode item in subvolume tree as needed (see overwrite_item()).
4201	 */
4202
4203	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4204	btrfs_set_token_inode_transid(&token, item, trans->transid);
4205	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4206	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4207					  BTRFS_I(inode)->ro_flags);
4208	btrfs_set_token_inode_flags(&token, item, flags);
4209	btrfs_set_token_inode_block_group(&token, item, 0);
4210}
4211
4212static int log_inode_item(struct btrfs_trans_handle *trans,
4213			  struct btrfs_root *log, struct btrfs_path *path,
4214			  struct btrfs_inode *inode, bool inode_item_dropped)
4215{
4216	struct btrfs_inode_item *inode_item;
4217	int ret;
4218
4219	/*
4220	 * If we are doing a fast fsync and the inode was logged before in the
4221	 * current transaction, then we know the inode was previously logged and
4222	 * it exists in the log tree. For performance reasons, in this case use
4223	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4224	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4225	 * contention in case there are concurrent fsyncs for other inodes of the
4226	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4227	 * already exists can also result in unnecessarily splitting a leaf.
4228	 */
4229	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4230		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4231		ASSERT(ret <= 0);
4232		if (ret > 0)
4233			ret = -ENOENT;
4234	} else {
4235		/*
4236		 * This means it is the first fsync in the current transaction,
4237		 * so the inode item is not in the log and we need to insert it.
4238		 * We can never get -EEXIST because we are only called for a fast
4239		 * fsync and in case an inode eviction happens after the inode was
4240		 * logged before in the current transaction, when we load again
4241		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4242		 * flags and set ->logged_trans to 0.
4243		 */
4244		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4245					      sizeof(*inode_item));
4246		ASSERT(ret != -EEXIST);
4247	}
4248	if (ret)
4249		return ret;
4250	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4251				    struct btrfs_inode_item);
4252	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4253			0, 0);
4254	btrfs_release_path(path);
4255	return 0;
4256}
4257
4258static int log_csums(struct btrfs_trans_handle *trans,
4259		     struct btrfs_inode *inode,
4260		     struct btrfs_root *log_root,
4261		     struct btrfs_ordered_sum *sums)
4262{
4263	const u64 lock_end = sums->bytenr + sums->len - 1;
4264	struct extent_state *cached_state = NULL;
4265	int ret;
4266
4267	/*
4268	 * If this inode was not used for reflink operations in the current
4269	 * transaction with new extents, then do the fast path, no need to
4270	 * worry about logging checksum items with overlapping ranges.
4271	 */
4272	if (inode->last_reflink_trans < trans->transid)
4273		return btrfs_csum_file_blocks(trans, log_root, sums);
4274
4275	/*
4276	 * Serialize logging for checksums. This is to avoid racing with the
4277	 * same checksum being logged by another task that is logging another
4278	 * file which happens to refer to the same extent as well. Such races
4279	 * can leave checksum items in the log with overlapping ranges.
4280	 */
4281	ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4282			  &cached_state);
4283	if (ret)
4284		return ret;
4285	/*
4286	 * Due to extent cloning, we might have logged a csum item that covers a
4287	 * subrange of a cloned extent, and later we can end up logging a csum
4288	 * item for a larger subrange of the same extent or the entire range.
4289	 * This would leave csum items in the log tree that cover the same range
4290	 * and break the searches for checksums in the log tree, resulting in
4291	 * some checksums missing in the fs/subvolume tree. So just delete (or
4292	 * trim and adjust) any existing csum items in the log for this range.
4293	 */
4294	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4295	if (!ret)
4296		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4297
4298	unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4299		      &cached_state);
4300
4301	return ret;
4302}
4303
4304static noinline int copy_items(struct btrfs_trans_handle *trans,
4305			       struct btrfs_inode *inode,
4306			       struct btrfs_path *dst_path,
4307			       struct btrfs_path *src_path,
4308			       int start_slot, int nr, int inode_only,
4309			       u64 logged_isize)
4310{
4311	struct btrfs_root *log = inode->root->log_root;
 
 
4312	struct btrfs_file_extent_item *extent;
4313	struct extent_buffer *src;
4314	int ret = 0;
 
 
4315	struct btrfs_key *ins_keys;
4316	u32 *ins_sizes;
4317	struct btrfs_item_batch batch;
4318	char *ins_data;
4319	int i;
4320	int dst_index;
4321	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4322	const u64 i_size = i_size_read(&inode->vfs_inode);
 
 
4323
4324	/*
4325	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4326	 * use the clone. This is because otherwise we would be changing the log
4327	 * tree, to insert items from the subvolume tree or insert csum items,
4328	 * while holding a read lock on a leaf from the subvolume tree, which
4329	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4330	 *
4331	 * 1) Modifying the log tree triggers an extent buffer allocation while
4332	 *    holding a write lock on a parent extent buffer from the log tree.
4333	 *    Allocating the pages for an extent buffer, or the extent buffer
4334	 *    struct, can trigger inode eviction and finally the inode eviction
4335	 *    will trigger a release/remove of a delayed node, which requires
4336	 *    taking the delayed node's mutex;
4337	 *
4338	 * 2) Allocating a metadata extent for a log tree can trigger the async
4339	 *    reclaim thread and make us wait for it to release enough space and
4340	 *    unblock our reservation ticket. The reclaim thread can start
4341	 *    flushing delayed items, and that in turn results in the need to
4342	 *    lock delayed node mutexes and in the need to write lock extent
4343	 *    buffers of a subvolume tree - all this while holding a write lock
4344	 *    on the parent extent buffer in the log tree.
4345	 *
4346	 * So one task in scenario 1) running in parallel with another task in
4347	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4348	 * node mutex while having a read lock on a leaf from the subvolume,
4349	 * while the other is holding the delayed node's mutex and wants to
4350	 * write lock the same subvolume leaf for flushing delayed items.
4351	 */
4352	src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4353	if (!src)
4354		return -ENOMEM;
4355
4356	i = src_path->slots[0];
4357	btrfs_release_path(src_path);
4358	src_path->nodes[0] = src;
4359	src_path->slots[0] = i;
4360
4361	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4362			   nr * sizeof(u32), GFP_NOFS);
4363	if (!ins_data)
4364		return -ENOMEM;
4365
 
 
4366	ins_sizes = (u32 *)ins_data;
4367	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4368	batch.keys = ins_keys;
4369	batch.data_sizes = ins_sizes;
4370	batch.total_data_size = 0;
4371	batch.nr = 0;
4372
4373	dst_index = 0;
4374	for (i = 0; i < nr; i++) {
4375		const int src_slot = start_slot + i;
4376		struct btrfs_root *csum_root;
4377		struct btrfs_ordered_sum *sums;
4378		struct btrfs_ordered_sum *sums_next;
4379		LIST_HEAD(ordered_sums);
4380		u64 disk_bytenr;
4381		u64 disk_num_bytes;
4382		u64 extent_offset;
4383		u64 extent_num_bytes;
4384		bool is_old_extent;
4385
4386		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4387
4388		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4389			goto add_to_batch;
4390
4391		extent = btrfs_item_ptr(src, src_slot,
4392					struct btrfs_file_extent_item);
4393
4394		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4395				 trans->transid);
 
 
 
 
 
 
 
 
 
 
4396
4397		/*
4398		 * Don't copy extents from past generations. That would make us
4399		 * log a lot more metadata for common cases like doing only a
4400		 * few random writes into a file and then fsync it for the first
4401		 * time or after the full sync flag is set on the inode. We can
4402		 * get leaves full of extent items, most of which are from past
4403		 * generations, so we can skip them - as long as the inode has
4404		 * not been the target of a reflink operation in this transaction,
4405		 * as in that case it might have had file extent items with old
4406		 * generations copied into it. We also must always log prealloc
4407		 * extents that start at or beyond eof, otherwise we would lose
4408		 * them on log replay.
4409		 */
4410		if (is_old_extent &&
4411		    ins_keys[dst_index].offset < i_size &&
4412		    inode->last_reflink_trans < trans->transid)
4413			continue;
4414
4415		if (skip_csum)
4416			goto add_to_batch;
4417
4418		/* Only regular extents have checksums. */
4419		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4420			goto add_to_batch;
4421
4422		/*
4423		 * If it's an extent created in a past transaction, then its
4424		 * checksums are already accessible from the committed csum tree,
4425		 * no need to log them.
4426		 */
4427		if (is_old_extent)
4428			goto add_to_batch;
 
 
 
4429
4430		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4431		/* If it's an explicit hole, there are no checksums. */
4432		if (disk_bytenr == 0)
4433			goto add_to_batch;
4434
4435		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4436
4437		if (btrfs_file_extent_compression(src, extent)) {
4438			extent_offset = 0;
4439			extent_num_bytes = disk_num_bytes;
4440		} else {
4441			extent_offset = btrfs_file_extent_offset(src, extent);
4442			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4443		}
4444
4445		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4446		disk_bytenr += extent_offset;
4447		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4448					      disk_bytenr + extent_num_bytes - 1,
4449					      &ordered_sums, 0, false);
4450		if (ret)
4451			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
4452
4453		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4454			if (!ret)
4455				ret = log_csums(trans, inode, log, sums);
4456			list_del(&sums->list);
4457			kfree(sums);
 
 
 
 
 
4458		}
4459		if (ret)
4460			goto out;
4461
4462add_to_batch:
4463		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4464		batch.total_data_size += ins_sizes[dst_index];
4465		batch.nr++;
4466		dst_index++;
4467	}
4468
4469	/*
4470	 * We have a leaf full of old extent items that don't need to be logged,
4471	 * so we don't need to do anything.
4472	 */
4473	if (batch.nr == 0)
4474		goto out;
 
 
 
 
 
 
 
 
4475
4476	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4477	if (ret)
4478		goto out;
4479
4480	dst_index = 0;
4481	for (i = 0; i < nr; i++) {
4482		const int src_slot = start_slot + i;
4483		const int dst_slot = dst_path->slots[0] + dst_index;
4484		struct btrfs_key key;
4485		unsigned long src_offset;
4486		unsigned long dst_offset;
4487
 
4488		/*
4489		 * We're done, all the remaining items in the source leaf
4490		 * correspond to old file extent items.
 
 
4491		 */
4492		if (dst_index >= batch.nr)
4493			break;
4494
4495		btrfs_item_key_to_cpu(src, &key, src_slot);
 
 
 
 
 
 
 
4496
4497		if (key.type != BTRFS_EXTENT_DATA_KEY)
4498			goto copy_item;
4499
4500		extent = btrfs_item_ptr(src, src_slot,
 
 
 
 
 
 
 
 
 
4501					struct btrfs_file_extent_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4502
4503		/* See the comment in the previous loop, same logic. */
4504		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4505		    key.offset < i_size &&
4506		    inode->last_reflink_trans < trans->transid)
4507			continue;
 
 
 
4508
4509copy_item:
4510		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4511		src_offset = btrfs_item_ptr_offset(src, src_slot);
 
 
 
 
 
4512
4513		if (key.type == BTRFS_INODE_ITEM_KEY) {
4514			struct btrfs_inode_item *inode_item;
4515
4516			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4517						    struct btrfs_inode_item);
4518			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4519					&inode->vfs_inode,
4520					inode_only == LOG_INODE_EXISTS,
4521					logged_isize);
 
 
 
 
4522		} else {
4523			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4524					   src_offset, ins_sizes[dst_index]);
4525		}
 
4526
4527		dst_index++;
 
 
 
 
 
 
 
 
 
 
 
4528	}
4529
4530	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4531	btrfs_release_path(dst_path);
4532out:
4533	kfree(ins_data);
4534
4535	return ret;
4536}
4537
4538static int extent_cmp(void *priv, const struct list_head *a,
4539		      const struct list_head *b)
4540{
4541	const struct extent_map *em1, *em2;
4542
4543	em1 = list_entry(a, struct extent_map, list);
4544	em2 = list_entry(b, struct extent_map, list);
4545
4546	if (em1->start < em2->start)
4547		return -1;
4548	else if (em1->start > em2->start)
4549		return 1;
4550	return 0;
4551}
4552
4553static int log_extent_csums(struct btrfs_trans_handle *trans,
4554			    struct btrfs_inode *inode,
4555			    struct btrfs_root *log_root,
4556			    const struct extent_map *em,
4557			    struct btrfs_log_ctx *ctx)
 
4558{
4559	struct btrfs_ordered_extent *ordered;
4560	struct btrfs_root *csum_root;
 
 
 
4561	u64 csum_offset;
4562	u64 csum_len;
4563	u64 mod_start = em->mod_start;
4564	u64 mod_len = em->mod_len;
4565	LIST_HEAD(ordered_sums);
4566	int ret = 0;
4567
4568	if (inode->flags & BTRFS_INODE_NODATASUM ||
4569	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
 
4570	    em->block_start == EXTENT_MAP_HOLE)
4571		return 0;
4572
4573	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4574		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4575		const u64 mod_end = mod_start + mod_len;
4576		struct btrfs_ordered_sum *sums;
 
 
 
4577
4578		if (mod_len == 0)
4579			break;
4580
4581		if (ordered_end <= mod_start)
 
4582			continue;
4583		if (mod_end <= ordered->file_offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4584			break;
4585
4586		/*
4587		 * We are going to copy all the csums on this ordered extent, so
4588		 * go ahead and adjust mod_start and mod_len in case this ordered
4589		 * extent has already been logged.
4590		 */
4591		if (ordered->file_offset > mod_start) {
4592			if (ordered_end >= mod_end)
 
4593				mod_len = ordered->file_offset - mod_start;
4594			/*
4595			 * If we have this case
4596			 *
4597			 * |--------- logged extent ---------|
4598			 *       |----- ordered extent ----|
4599			 *
4600			 * Just don't mess with mod_start and mod_len, we'll
4601			 * just end up logging more csums than we need and it
4602			 * will be ok.
4603			 */
4604		} else {
4605			if (ordered_end < mod_end) {
4606				mod_len = mod_end - ordered_end;
4607				mod_start = ordered_end;
 
 
 
4608			} else {
4609				mod_len = 0;
4610			}
4611		}
4612
 
 
 
4613		/*
4614		 * To keep us from looping for the above case of an ordered
4615		 * extent that falls inside of the logged extent.
4616		 */
4617		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
 
4618			continue;
4619
4620		list_for_each_entry(sums, &ordered->list, list) {
4621			ret = log_csums(trans, inode, log_root, sums);
4622			if (ret)
4623				return ret;
4624		}
4625	}
4626
4627	/* We're done, found all csums in the ordered extents. */
4628	if (mod_len == 0)
4629		return 0;
4630
4631	/* If we're compressed we have to save the entire range of csums. */
4632	if (em->compress_type) {
4633		csum_offset = 0;
4634		csum_len = max(em->block_len, em->orig_block_len);
4635	} else {
4636		csum_offset = mod_start - em->start;
4637		csum_len = mod_len;
4638	}
4639
4640	/* block start is already adjusted for the file extent offset. */
4641	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4642	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4643				      em->block_start + csum_offset +
4644				      csum_len - 1, &ordered_sums, 0, false);
4645	if (ret)
4646		return ret;
4647
4648	while (!list_empty(&ordered_sums)) {
4649		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4650						   struct btrfs_ordered_sum,
4651						   list);
4652		if (!ret)
4653			ret = log_csums(trans, inode, log_root, sums);
4654		list_del(&sums->list);
4655		kfree(sums);
4656	}
4657
4658	return ret;
4659}
4660
4661static int log_one_extent(struct btrfs_trans_handle *trans,
4662			  struct btrfs_inode *inode,
4663			  const struct extent_map *em,
4664			  struct btrfs_path *path,
 
4665			  struct btrfs_log_ctx *ctx)
4666{
4667	struct btrfs_drop_extents_args drop_args = { 0 };
4668	struct btrfs_root *log = inode->root->log_root;
4669	struct btrfs_file_extent_item fi = { 0 };
4670	struct extent_buffer *leaf;
 
4671	struct btrfs_key key;
4672	u64 extent_offset = em->start - em->orig_start;
4673	u64 block_len;
4674	int ret;
 
 
4675
4676	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4677	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4678		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4679	else
4680		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4681
4682	block_len = max(em->block_len, em->orig_block_len);
4683	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4684		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4685		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4686	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4687		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4688							extent_offset);
4689		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4690	}
4691
4692	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4693	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4694	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4695	btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4696
4697	ret = log_extent_csums(trans, inode, log, em, ctx);
 
 
4698	if (ret)
4699		return ret;
4700
4701	/*
4702	 * If this is the first time we are logging the inode in the current
4703	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4704	 * because it does a deletion search, which always acquires write locks
4705	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4706	 * but also adds significant contention in a log tree, since log trees
4707	 * are small, with a root at level 2 or 3 at most, due to their short
4708	 * life span.
4709	 */
4710	if (ctx->logged_before) {
4711		drop_args.path = path;
4712		drop_args.start = em->start;
4713		drop_args.end = em->start + em->len;
4714		drop_args.replace_extent = true;
4715		drop_args.extent_item_size = sizeof(fi);
4716		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4717		if (ret)
4718			return ret;
4719	}
4720
4721	if (!drop_args.extent_inserted) {
4722		key.objectid = btrfs_ino(inode);
4723		key.type = BTRFS_EXTENT_DATA_KEY;
4724		key.offset = em->start;
4725
4726		ret = btrfs_insert_empty_item(trans, log, path, &key,
4727					      sizeof(fi));
4728		if (ret)
4729			return ret;
4730	}
4731	leaf = path->nodes[0];
4732	write_extent_buffer(leaf, &fi,
4733			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4734			    sizeof(fi));
4735	btrfs_mark_buffer_dirty(leaf);
4736
4737	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
4738
4739	return ret;
4740}
4741
4742/*
4743 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4744 * lose them after doing a full/fast fsync and replaying the log. We scan the
4745 * subvolume's root instead of iterating the inode's extent map tree because
4746 * otherwise we can log incorrect extent items based on extent map conversion.
4747 * That can happen due to the fact that extent maps are merged when they
4748 * are not in the extent map tree's list of modified extents.
4749 */
4750static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4751				      struct btrfs_inode *inode,
4752				      struct btrfs_path *path)
4753{
4754	struct btrfs_root *root = inode->root;
4755	struct btrfs_key key;
4756	const u64 i_size = i_size_read(&inode->vfs_inode);
4757	const u64 ino = btrfs_ino(inode);
4758	struct btrfs_path *dst_path = NULL;
4759	bool dropped_extents = false;
4760	u64 truncate_offset = i_size;
4761	struct extent_buffer *leaf;
4762	int slot;
4763	int ins_nr = 0;
4764	int start_slot;
4765	int ret;
4766
4767	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4768		return 0;
4769
4770	key.objectid = ino;
4771	key.type = BTRFS_EXTENT_DATA_KEY;
4772	key.offset = i_size;
4773	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4774	if (ret < 0)
4775		goto out;
4776
4777	/*
4778	 * We must check if there is a prealloc extent that starts before the
4779	 * i_size and crosses the i_size boundary. This is to ensure later we
4780	 * truncate down to the end of that extent and not to the i_size, as
4781	 * otherwise we end up losing part of the prealloc extent after a log
4782	 * replay and with an implicit hole if there is another prealloc extent
4783	 * that starts at an offset beyond i_size.
4784	 */
4785	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4786	if (ret < 0)
4787		goto out;
4788
4789	if (ret == 0) {
4790		struct btrfs_file_extent_item *ei;
4791
4792		leaf = path->nodes[0];
4793		slot = path->slots[0];
4794		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4795
4796		if (btrfs_file_extent_type(leaf, ei) ==
4797		    BTRFS_FILE_EXTENT_PREALLOC) {
4798			u64 extent_end;
4799
4800			btrfs_item_key_to_cpu(leaf, &key, slot);
4801			extent_end = key.offset +
4802				btrfs_file_extent_num_bytes(leaf, ei);
4803
4804			if (extent_end > i_size)
4805				truncate_offset = extent_end;
4806		}
4807	} else {
4808		ret = 0;
 
 
4809	}
4810
4811	while (true) {
4812		leaf = path->nodes[0];
4813		slot = path->slots[0];
 
 
 
 
 
4814
4815		if (slot >= btrfs_header_nritems(leaf)) {
4816			if (ins_nr > 0) {
4817				ret = copy_items(trans, inode, dst_path, path,
4818						 start_slot, ins_nr, 1, 0);
4819				if (ret < 0)
4820					goto out;
4821				ins_nr = 0;
4822			}
4823			ret = btrfs_next_leaf(root, path);
4824			if (ret < 0)
4825				goto out;
4826			if (ret > 0) {
4827				ret = 0;
4828				break;
4829			}
4830			continue;
4831		}
4832
4833		btrfs_item_key_to_cpu(leaf, &key, slot);
4834		if (key.objectid > ino)
4835			break;
4836		if (WARN_ON_ONCE(key.objectid < ino) ||
4837		    key.type < BTRFS_EXTENT_DATA_KEY ||
4838		    key.offset < i_size) {
4839			path->slots[0]++;
4840			continue;
4841		}
4842		if (!dropped_extents) {
4843			/*
4844			 * Avoid logging extent items logged in past fsync calls
4845			 * and leading to duplicate keys in the log tree.
4846			 */
4847			ret = truncate_inode_items(trans, root->log_root, inode,
4848						   truncate_offset,
4849						   BTRFS_EXTENT_DATA_KEY);
4850			if (ret)
4851				goto out;
4852			dropped_extents = true;
4853		}
4854		if (ins_nr == 0)
4855			start_slot = slot;
4856		ins_nr++;
4857		path->slots[0]++;
4858		if (!dst_path) {
4859			dst_path = btrfs_alloc_path();
4860			if (!dst_path) {
4861				ret = -ENOMEM;
4862				goto out;
4863			}
4864		}
4865	}
4866	if (ins_nr > 0)
4867		ret = copy_items(trans, inode, dst_path, path,
4868				 start_slot, ins_nr, 1, 0);
4869out:
4870	btrfs_release_path(path);
4871	btrfs_free_path(dst_path);
4872	return ret;
4873}
4874
4875static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4876				     struct btrfs_inode *inode,
 
4877				     struct btrfs_path *path,
4878				     struct btrfs_log_ctx *ctx)
 
 
 
4879{
4880	struct btrfs_ordered_extent *ordered;
4881	struct btrfs_ordered_extent *tmp;
4882	struct extent_map *em, *n;
4883	struct list_head extents;
4884	struct extent_map_tree *tree = &inode->extent_tree;
 
4885	int ret = 0;
4886	int num = 0;
4887
4888	INIT_LIST_HEAD(&extents);
4889
4890	write_lock(&tree->lock);
 
4891
4892	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4893		list_del_init(&em->list);
 
4894		/*
4895		 * Just an arbitrary number, this can be really CPU intensive
4896		 * once we start getting a lot of extents, and really once we
4897		 * have a bunch of extents we just want to commit since it will
4898		 * be faster.
4899		 */
4900		if (++num > 32768) {
4901			list_del_init(&tree->modified_extents);
4902			ret = -EFBIG;
4903			goto process;
4904		}
4905
4906		if (em->generation < trans->transid)
4907			continue;
4908
4909		/* We log prealloc extents beyond eof later. */
4910		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4911		    em->start >= i_size_read(&inode->vfs_inode))
4912			continue;
4913
4914		/* Need a ref to keep it from getting evicted from cache */
4915		refcount_inc(&em->refs);
4916		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4917		list_add_tail(&em->list, &extents);
4918		num++;
4919	}
4920
4921	list_sort(NULL, &extents, extent_cmp);
 
 
 
 
 
 
 
4922process:
4923	while (!list_empty(&extents)) {
4924		em = list_entry(extents.next, struct extent_map, list);
4925
4926		list_del_init(&em->list);
4927
4928		/*
4929		 * If we had an error we just need to delete everybody from our
4930		 * private list.
4931		 */
4932		if (ret) {
4933			clear_em_logging(tree, em);
4934			free_extent_map(em);
4935			continue;
4936		}
4937
4938		write_unlock(&tree->lock);
4939
4940		ret = log_one_extent(trans, inode, em, path, ctx);
 
4941		write_lock(&tree->lock);
4942		clear_em_logging(tree, em);
4943		free_extent_map(em);
4944	}
4945	WARN_ON(!list_empty(&extents));
4946	write_unlock(&tree->lock);
4947
4948	if (!ret)
4949		ret = btrfs_log_prealloc_extents(trans, inode, path);
4950	if (ret)
4951		return ret;
4952
4953	/*
4954	 * We have logged all extents successfully, now make sure the commit of
4955	 * the current transaction waits for the ordered extents to complete
4956	 * before it commits and wipes out the log trees, otherwise we would
4957	 * lose data if an ordered extents completes after the transaction
4958	 * commits and a power failure happens after the transaction commit.
4959	 */
4960	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4961		list_del_init(&ordered->log_list);
4962		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4963
4964		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4965			spin_lock_irq(&inode->ordered_tree.lock);
4966			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4967				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4968				atomic_inc(&trans->transaction->pending_ordered);
4969			}
4970			spin_unlock_irq(&inode->ordered_tree.lock);
4971		}
4972		btrfs_put_ordered_extent(ordered);
4973	}
4974
4975	return 0;
4976}
4977
4978static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4979			     struct btrfs_path *path, u64 *size_ret)
4980{
4981	struct btrfs_key key;
4982	int ret;
4983
4984	key.objectid = btrfs_ino(inode);
4985	key.type = BTRFS_INODE_ITEM_KEY;
4986	key.offset = 0;
4987
4988	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4989	if (ret < 0) {
4990		return ret;
4991	} else if (ret > 0) {
4992		*size_ret = 0;
4993	} else {
4994		struct btrfs_inode_item *item;
4995
4996		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4997				      struct btrfs_inode_item);
4998		*size_ret = btrfs_inode_size(path->nodes[0], item);
4999		/*
5000		 * If the in-memory inode's i_size is smaller then the inode
5001		 * size stored in the btree, return the inode's i_size, so
5002		 * that we get a correct inode size after replaying the log
5003		 * when before a power failure we had a shrinking truncate
5004		 * followed by addition of a new name (rename / new hard link).
5005		 * Otherwise return the inode size from the btree, to avoid
5006		 * data loss when replaying a log due to previously doing a
5007		 * write that expands the inode's size and logging a new name
5008		 * immediately after.
5009		 */
5010		if (*size_ret > inode->vfs_inode.i_size)
5011			*size_ret = inode->vfs_inode.i_size;
5012	}
5013
5014	btrfs_release_path(path);
5015	return 0;
5016}
5017
5018/*
5019 * At the moment we always log all xattrs. This is to figure out at log replay
5020 * time which xattrs must have their deletion replayed. If a xattr is missing
5021 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5022 * because if a xattr is deleted, the inode is fsynced and a power failure
5023 * happens, causing the log to be replayed the next time the fs is mounted,
5024 * we want the xattr to not exist anymore (same behaviour as other filesystems
5025 * with a journal, ext3/4, xfs, f2fs, etc).
5026 */
5027static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5028				struct btrfs_inode *inode,
 
5029				struct btrfs_path *path,
5030				struct btrfs_path *dst_path)
5031{
5032	struct btrfs_root *root = inode->root;
5033	int ret;
5034	struct btrfs_key key;
5035	const u64 ino = btrfs_ino(inode);
5036	int ins_nr = 0;
5037	int start_slot = 0;
5038	bool found_xattrs = false;
5039
5040	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5041		return 0;
5042
5043	key.objectid = ino;
5044	key.type = BTRFS_XATTR_ITEM_KEY;
5045	key.offset = 0;
5046
5047	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5048	if (ret < 0)
5049		return ret;
5050
5051	while (true) {
5052		int slot = path->slots[0];
5053		struct extent_buffer *leaf = path->nodes[0];
5054		int nritems = btrfs_header_nritems(leaf);
5055
5056		if (slot >= nritems) {
5057			if (ins_nr > 0) {
 
 
5058				ret = copy_items(trans, inode, dst_path, path,
5059						 start_slot, ins_nr, 1, 0);
 
 
 
5060				if (ret < 0)
5061					return ret;
5062				ins_nr = 0;
5063			}
5064			ret = btrfs_next_leaf(root, path);
5065			if (ret < 0)
5066				return ret;
5067			else if (ret > 0)
5068				break;
5069			continue;
5070		}
5071
5072		btrfs_item_key_to_cpu(leaf, &key, slot);
5073		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5074			break;
5075
5076		if (ins_nr == 0)
5077			start_slot = slot;
5078		ins_nr++;
5079		path->slots[0]++;
5080		found_xattrs = true;
5081		cond_resched();
5082	}
5083	if (ins_nr > 0) {
 
 
5084		ret = copy_items(trans, inode, dst_path, path,
5085				 start_slot, ins_nr, 1, 0);
 
 
 
5086		if (ret < 0)
5087			return ret;
5088	}
5089
5090	if (!found_xattrs)
5091		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5092
5093	return 0;
5094}
5095
5096/*
5097 * When using the NO_HOLES feature if we punched a hole that causes the
5098 * deletion of entire leafs or all the extent items of the first leaf (the one
5099 * that contains the inode item and references) we may end up not processing
5100 * any extents, because there are no leafs with a generation matching the
5101 * current transaction that have extent items for our inode. So we need to find
5102 * if any holes exist and then log them. We also need to log holes after any
5103 * truncate operation that changes the inode's size.
5104 */
5105static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5106			   struct btrfs_inode *inode,
5107			   struct btrfs_path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5108{
5109	struct btrfs_root *root = inode->root;
5110	struct btrfs_fs_info *fs_info = root->fs_info;
5111	struct btrfs_key key;
 
 
 
 
5112	const u64 ino = btrfs_ino(inode);
5113	const u64 i_size = i_size_read(&inode->vfs_inode);
5114	u64 prev_extent_end = 0;
5115	int ret;
5116
5117	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5118		return 0;
5119
5120	key.objectid = ino;
5121	key.type = BTRFS_EXTENT_DATA_KEY;
5122	key.offset = 0;
5123
5124	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
5125	if (ret < 0)
5126		return ret;
5127
5128	while (true) {
5129		struct extent_buffer *leaf = path->nodes[0];
 
 
5130
5131		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5132			ret = btrfs_next_leaf(root, path);
5133			if (ret < 0)
5134				return ret;
5135			if (ret > 0) {
5136				ret = 0;
5137				break;
5138			}
5139			leaf = path->nodes[0];
5140		}
5141
5142		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5143		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5144			break;
 
 
 
5145
5146		/* We have a hole, log it. */
5147		if (prev_extent_end < key.offset) {
5148			const u64 hole_len = key.offset - prev_extent_end;
5149
5150			/*
5151			 * Release the path to avoid deadlocks with other code
5152			 * paths that search the root while holding locks on
5153			 * leafs from the log root.
5154			 */
5155			btrfs_release_path(path);
5156			ret = btrfs_insert_hole_extent(trans, root->log_root,
5157						       ino, prev_extent_end,
5158						       hole_len);
5159			if (ret < 0)
5160				return ret;
5161
5162			/*
5163			 * Search for the same key again in the root. Since it's
5164			 * an extent item and we are holding the inode lock, the
5165			 * key must still exist. If it doesn't just emit warning
5166			 * and return an error to fall back to a transaction
5167			 * commit.
5168			 */
5169			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5170			if (ret < 0)
5171				return ret;
5172			if (WARN_ON(ret > 0))
5173				return -ENOENT;
5174			leaf = path->nodes[0];
5175		}
5176
5177		prev_extent_end = btrfs_file_extent_end(path);
5178		path->slots[0]++;
5179		cond_resched();
 
 
 
5180	}
 
5181
5182	if (prev_extent_end < i_size) {
5183		u64 hole_len;
 
5184
5185		btrfs_release_path(path);
5186		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5187		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5188					       prev_extent_end, hole_len);
5189		if (ret < 0)
5190			return ret;
5191	}
5192
5193	return 0;
5194}
5195
5196/*
5197 * When we are logging a new inode X, check if it doesn't have a reference that
5198 * matches the reference from some other inode Y created in a past transaction
5199 * and that was renamed in the current transaction. If we don't do this, then at
5200 * log replay time we can lose inode Y (and all its files if it's a directory):
5201 *
5202 * mkdir /mnt/x
5203 * echo "hello world" > /mnt/x/foobar
5204 * sync
5205 * mv /mnt/x /mnt/y
5206 * mkdir /mnt/x                 # or touch /mnt/x
5207 * xfs_io -c fsync /mnt/x
5208 * <power fail>
5209 * mount fs, trigger log replay
5210 *
5211 * After the log replay procedure, we would lose the first directory and all its
5212 * files (file foobar).
5213 * For the case where inode Y is not a directory we simply end up losing it:
5214 *
5215 * echo "123" > /mnt/foo
5216 * sync
5217 * mv /mnt/foo /mnt/bar
5218 * echo "abc" > /mnt/foo
5219 * xfs_io -c fsync /mnt/foo
5220 * <power fail>
5221 *
5222 * We also need this for cases where a snapshot entry is replaced by some other
5223 * entry (file or directory) otherwise we end up with an unreplayable log due to
5224 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5225 * if it were a regular entry:
5226 *
5227 * mkdir /mnt/x
5228 * btrfs subvolume snapshot /mnt /mnt/x/snap
5229 * btrfs subvolume delete /mnt/x/snap
5230 * rmdir /mnt/x
5231 * mkdir /mnt/x
5232 * fsync /mnt/x or fsync some new file inside it
5233 * <power fail>
5234 *
5235 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5236 * the same transaction.
5237 */
5238static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5239					 const int slot,
5240					 const struct btrfs_key *key,
5241					 struct btrfs_inode *inode,
5242					 u64 *other_ino, u64 *other_parent)
5243{
5244	int ret;
5245	struct btrfs_path *search_path;
5246	char *name = NULL;
5247	u32 name_len = 0;
5248	u32 item_size = btrfs_item_size(eb, slot);
5249	u32 cur_offset = 0;
5250	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5251
5252	search_path = btrfs_alloc_path();
5253	if (!search_path)
5254		return -ENOMEM;
5255	search_path->search_commit_root = 1;
5256	search_path->skip_locking = 1;
5257
5258	while (cur_offset < item_size) {
5259		u64 parent;
5260		u32 this_name_len;
5261		u32 this_len;
5262		unsigned long name_ptr;
5263		struct btrfs_dir_item *di;
5264		struct fscrypt_str name_str;
5265
5266		if (key->type == BTRFS_INODE_REF_KEY) {
5267			struct btrfs_inode_ref *iref;
5268
5269			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5270			parent = key->offset;
5271			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5272			name_ptr = (unsigned long)(iref + 1);
5273			this_len = sizeof(*iref) + this_name_len;
5274		} else {
5275			struct btrfs_inode_extref *extref;
5276
5277			extref = (struct btrfs_inode_extref *)(ptr +
5278							       cur_offset);
5279			parent = btrfs_inode_extref_parent(eb, extref);
5280			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5281			name_ptr = (unsigned long)&extref->name;
5282			this_len = sizeof(*extref) + this_name_len;
5283		}
5284
5285		if (this_name_len > name_len) {
5286			char *new_name;
5287
5288			new_name = krealloc(name, this_name_len, GFP_NOFS);
5289			if (!new_name) {
5290				ret = -ENOMEM;
5291				goto out;
5292			}
5293			name_len = this_name_len;
5294			name = new_name;
5295		}
5296
5297		read_extent_buffer(eb, name, name_ptr, this_name_len);
5298
5299		name_str.name = name;
5300		name_str.len = this_name_len;
5301		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5302				parent, &name_str, 0);
5303		if (di && !IS_ERR(di)) {
5304			struct btrfs_key di_key;
5305
5306			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5307						  di, &di_key);
5308			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5309				if (di_key.objectid != key->objectid) {
5310					ret = 1;
5311					*other_ino = di_key.objectid;
5312					*other_parent = parent;
5313				} else {
5314					ret = 0;
5315				}
5316			} else {
5317				ret = -EAGAIN;
5318			}
5319			goto out;
5320		} else if (IS_ERR(di)) {
5321			ret = PTR_ERR(di);
5322			goto out;
5323		}
5324		btrfs_release_path(search_path);
5325
5326		cur_offset += this_len;
5327	}
5328	ret = 0;
5329out:
5330	btrfs_free_path(search_path);
5331	kfree(name);
5332	return ret;
5333}
5334
5335/*
5336 * Check if we need to log an inode. This is used in contexts where while
5337 * logging an inode we need to log another inode (either that it exists or in
5338 * full mode). This is used instead of btrfs_inode_in_log() because the later
5339 * requires the inode to be in the log and have the log transaction committed,
5340 * while here we do not care if the log transaction was already committed - our
5341 * caller will commit the log later - and we want to avoid logging an inode
5342 * multiple times when multiple tasks have joined the same log transaction.
5343 */
5344static bool need_log_inode(const struct btrfs_trans_handle *trans,
5345			   const struct btrfs_inode *inode)
5346{
5347	/*
5348	 * If a directory was not modified, no dentries added or removed, we can
5349	 * and should avoid logging it.
5350	 */
5351	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5352		return false;
5353
5354	/*
5355	 * If this inode does not have new/updated/deleted xattrs since the last
5356	 * time it was logged and is flagged as logged in the current transaction,
5357	 * we can skip logging it. As for new/deleted names, those are updated in
5358	 * the log by link/unlink/rename operations.
5359	 * In case the inode was logged and then evicted and reloaded, its
5360	 * logged_trans will be 0, in which case we have to fully log it since
5361	 * logged_trans is a transient field, not persisted.
5362	 */
5363	if (inode->logged_trans == trans->transid &&
5364	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5365		return false;
5366
5367	return true;
5368}
5369
5370struct btrfs_dir_list {
5371	u64 ino;
5372	struct list_head list;
5373};
5374
5375/*
5376 * Log the inodes of the new dentries of a directory.
5377 * See process_dir_items_leaf() for details about why it is needed.
5378 * This is a recursive operation - if an existing dentry corresponds to a
5379 * directory, that directory's new entries are logged too (same behaviour as
5380 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5381 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5382 * complains about the following circular lock dependency / possible deadlock:
5383 *
5384 *        CPU0                                        CPU1
5385 *        ----                                        ----
5386 * lock(&type->i_mutex_dir_key#3/2);
5387 *                                            lock(sb_internal#2);
5388 *                                            lock(&type->i_mutex_dir_key#3/2);
5389 * lock(&sb->s_type->i_mutex_key#14);
5390 *
5391 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5392 * sb_start_intwrite() in btrfs_start_transaction().
5393 * Not acquiring the VFS lock of the inodes is still safe because:
5394 *
5395 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5396 *    that while logging the inode new references (names) are added or removed
5397 *    from the inode, leaving the logged inode item with a link count that does
5398 *    not match the number of logged inode reference items. This is fine because
5399 *    at log replay time we compute the real number of links and correct the
5400 *    link count in the inode item (see replay_one_buffer() and
5401 *    link_to_fixup_dir());
5402 *
5403 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5404 *    while logging the inode's items new index items (key type
5405 *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5406 *    has a size that doesn't match the sum of the lengths of all the logged
5407 *    names - this is ok, not a problem, because at log replay time we set the
5408 *    directory's i_size to the correct value (see replay_one_name() and
5409 *    overwrite_item()).
5410 */
5411static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5412				struct btrfs_inode *start_inode,
5413				struct btrfs_log_ctx *ctx)
 
 
 
5414{
5415	struct btrfs_root *root = start_inode->root;
5416	struct btrfs_fs_info *fs_info = root->fs_info;
5417	struct btrfs_path *path;
5418	LIST_HEAD(dir_list);
5419	struct btrfs_dir_list *dir_elem;
5420	u64 ino = btrfs_ino(start_inode);
5421	int ret = 0;
5422
5423	/*
5424	 * If we are logging a new name, as part of a link or rename operation,
5425	 * don't bother logging new dentries, as we just want to log the names
5426	 * of an inode and that any new parents exist.
5427	 */
5428	if (ctx->logging_new_name)
5429		return 0;
 
 
 
 
 
5430
5431	path = btrfs_alloc_path();
5432	if (!path)
5433		return -ENOMEM;
5434
5435	while (true) {
5436		struct extent_buffer *leaf;
5437		struct btrfs_key min_key;
5438		bool continue_curr_inode = true;
5439		int nritems;
5440		int i;
5441
5442		min_key.objectid = ino;
5443		min_key.type = BTRFS_DIR_INDEX_KEY;
5444		min_key.offset = 0;
5445again:
5446		btrfs_release_path(path);
5447		ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5448		if (ret < 0) {
5449			break;
5450		} else if (ret > 0) {
5451			ret = 0;
5452			goto next;
5453		}
5454
5455		leaf = path->nodes[0];
5456		nritems = btrfs_header_nritems(leaf);
5457		for (i = path->slots[0]; i < nritems; i++) {
5458			struct btrfs_dir_item *di;
5459			struct btrfs_key di_key;
5460			struct inode *di_inode;
5461			int log_mode = LOG_INODE_EXISTS;
5462			int type;
5463
5464			btrfs_item_key_to_cpu(leaf, &min_key, i);
5465			if (min_key.objectid != ino ||
5466			    min_key.type != BTRFS_DIR_INDEX_KEY) {
5467				continue_curr_inode = false;
5468				break;
5469			}
5470
5471			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5472			type = btrfs_dir_ftype(leaf, di);
5473			if (btrfs_dir_transid(leaf, di) < trans->transid)
5474				continue;
5475			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5476			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5477				continue;
5478
5479			btrfs_release_path(path);
5480			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5481			if (IS_ERR(di_inode)) {
5482				ret = PTR_ERR(di_inode);
5483				goto out;
5484			}
5485
5486			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5487				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5488				break;
5489			}
5490
5491			ctx->log_new_dentries = false;
5492			if (type == BTRFS_FT_DIR)
5493				log_mode = LOG_INODE_ALL;
5494			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5495					      log_mode, ctx);
5496			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5497			if (ret)
5498				goto out;
5499			if (ctx->log_new_dentries) {
5500				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5501				if (!dir_elem) {
5502					ret = -ENOMEM;
5503					goto out;
5504				}
5505				dir_elem->ino = di_key.objectid;
5506				list_add_tail(&dir_elem->list, &dir_list);
5507			}
5508			break;
5509		}
5510
5511		if (continue_curr_inode && min_key.offset < (u64)-1) {
5512			min_key.offset++;
5513			goto again;
5514		}
5515
5516next:
5517		if (list_empty(&dir_list))
5518			break;
5519
5520		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5521		ino = dir_elem->ino;
5522		list_del(&dir_elem->list);
5523		kfree(dir_elem);
5524	}
5525out:
5526	btrfs_free_path(path);
5527	if (ret) {
5528		struct btrfs_dir_list *next;
5529
5530		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5531			kfree(dir_elem);
5532	}
5533
5534	return ret;
5535}
5536
5537struct btrfs_ino_list {
5538	u64 ino;
5539	u64 parent;
5540	struct list_head list;
5541};
5542
5543static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5544{
5545	struct btrfs_ino_list *curr;
5546	struct btrfs_ino_list *next;
5547
5548	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5549		list_del(&curr->list);
5550		kfree(curr);
5551	}
5552}
5553
5554static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5555				    struct btrfs_path *path)
5556{
5557	struct btrfs_key key;
5558	int ret;
5559
5560	key.objectid = ino;
5561	key.type = BTRFS_INODE_ITEM_KEY;
5562	key.offset = 0;
5563
5564	path->search_commit_root = 1;
5565	path->skip_locking = 1;
5566
5567	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5568	if (WARN_ON_ONCE(ret > 0)) {
5569		/*
5570		 * We have previously found the inode through the commit root
5571		 * so this should not happen. If it does, just error out and
5572		 * fallback to a transaction commit.
5573		 */
5574		ret = -ENOENT;
5575	} else if (ret == 0) {
5576		struct btrfs_inode_item *item;
5577
5578		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5579				      struct btrfs_inode_item);
5580		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5581			ret = 1;
5582	}
5583
5584	btrfs_release_path(path);
5585	path->search_commit_root = 0;
5586	path->skip_locking = 0;
5587
5588	return ret;
5589}
5590
5591static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5592				 struct btrfs_root *root,
5593				 struct btrfs_path *path,
5594				 u64 ino, u64 parent,
5595				 struct btrfs_log_ctx *ctx)
5596{
5597	struct btrfs_ino_list *ino_elem;
5598	struct inode *inode;
5599
5600	/*
5601	 * It's rare to have a lot of conflicting inodes, in practice it is not
5602	 * common to have more than 1 or 2. We don't want to collect too many,
5603	 * as we could end up logging too many inodes (even if only in
5604	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5605	 * commits.
5606	 */
5607	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) {
5608		btrfs_set_log_full_commit(trans);
5609		return BTRFS_LOG_FORCE_COMMIT;
5610	}
5611
5612	inode = btrfs_iget(root->fs_info->sb, ino, root);
5613	/*
5614	 * If the other inode that had a conflicting dir entry was deleted in
5615	 * the current transaction then we either:
5616	 *
5617	 * 1) Log the parent directory (later after adding it to the list) if
5618	 *    the inode is a directory. This is because it may be a deleted
5619	 *    subvolume/snapshot or it may be a regular directory that had
5620	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5621	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5622	 *    during log replay. So we just log the parent, which will result in
5623	 *    a fallback to a transaction commit if we are dealing with those
5624	 *    cases (last_unlink_trans will match the current transaction);
5625	 *
5626	 * 2) Do nothing if it's not a directory. During log replay we simply
5627	 *    unlink the conflicting dentry from the parent directory and then
5628	 *    add the dentry for our inode. Like this we can avoid logging the
5629	 *    parent directory (and maybe fallback to a transaction commit in
5630	 *    case it has a last_unlink_trans == trans->transid, due to moving
5631	 *    some inode from it to some other directory).
5632	 */
5633	if (IS_ERR(inode)) {
5634		int ret = PTR_ERR(inode);
 
 
 
5635
5636		if (ret != -ENOENT)
5637			return ret;
5638
5639		ret = conflicting_inode_is_dir(root, ino, path);
5640		/* Not a directory or we got an error. */
5641		if (ret <= 0)
5642			return ret;
5643
5644		/* Conflicting inode is a directory, so we'll log its parent. */
5645		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5646		if (!ino_elem)
5647			return -ENOMEM;
5648		ino_elem->ino = ino;
5649		ino_elem->parent = parent;
5650		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5651		ctx->num_conflict_inodes++;
5652
5653		return 0;
5654	}
5655
5656	/*
5657	 * If the inode was already logged skip it - otherwise we can hit an
5658	 * infinite loop. Example:
5659	 *
5660	 * From the commit root (previous transaction) we have the following
5661	 * inodes:
5662	 *
5663	 * inode 257 a directory
5664	 * inode 258 with references "zz" and "zz_link" on inode 257
5665	 * inode 259 with reference "a" on inode 257
5666	 *
5667	 * And in the current (uncommitted) transaction we have:
5668	 *
5669	 * inode 257 a directory, unchanged
5670	 * inode 258 with references "a" and "a2" on inode 257
5671	 * inode 259 with reference "zz_link" on inode 257
5672	 * inode 261 with reference "zz" on inode 257
5673	 *
5674	 * When logging inode 261 the following infinite loop could
5675	 * happen if we don't skip already logged inodes:
5676	 *
5677	 * - we detect inode 258 as a conflicting inode, with inode 261
5678	 *   on reference "zz", and log it;
5679	 *
5680	 * - we detect inode 259 as a conflicting inode, with inode 258
5681	 *   on reference "a", and log it;
5682	 *
5683	 * - we detect inode 258 as a conflicting inode, with inode 259
5684	 *   on reference "zz_link", and log it - again! After this we
5685	 *   repeat the above steps forever.
5686	 *
5687	 * Here we can use need_log_inode() because we only need to log the
5688	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5689	 * so that the log ends up with the new name and without the old name.
5690	 */
5691	if (!need_log_inode(trans, BTRFS_I(inode))) {
5692		btrfs_add_delayed_iput(BTRFS_I(inode));
5693		return 0;
5694	}
5695
5696	btrfs_add_delayed_iput(BTRFS_I(inode));
5697
5698	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5699	if (!ino_elem)
5700		return -ENOMEM;
5701	ino_elem->ino = ino;
5702	ino_elem->parent = parent;
5703	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5704	ctx->num_conflict_inodes++;
5705
5706	return 0;
5707}
5708
5709static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5710				  struct btrfs_root *root,
5711				  struct btrfs_log_ctx *ctx)
5712{
5713	struct btrfs_fs_info *fs_info = root->fs_info;
5714	int ret = 0;
5715
5716	/*
5717	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5718	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5719	 * calls. This check guarantees we can have only 1 level of recursion.
5720	 */
5721	if (ctx->logging_conflict_inodes)
5722		return 0;
5723
5724	ctx->logging_conflict_inodes = true;
5725
5726	/*
5727	 * New conflicting inodes may be found and added to the list while we
5728	 * are logging a conflicting inode, so keep iterating while the list is
5729	 * not empty.
5730	 */
5731	while (!list_empty(&ctx->conflict_inodes)) {
5732		struct btrfs_ino_list *curr;
5733		struct inode *inode;
5734		u64 ino;
5735		u64 parent;
5736
5737		curr = list_first_entry(&ctx->conflict_inodes,
5738					struct btrfs_ino_list, list);
5739		ino = curr->ino;
5740		parent = curr->parent;
5741		list_del(&curr->list);
5742		kfree(curr);
5743
5744		inode = btrfs_iget(fs_info->sb, ino, root);
5745		/*
5746		 * If the other inode that had a conflicting dir entry was
5747		 * deleted in the current transaction, we need to log its parent
5748		 * directory. See the comment at add_conflicting_inode().
5749		 */
5750		if (IS_ERR(inode)) {
5751			ret = PTR_ERR(inode);
5752			if (ret != -ENOENT)
5753				break;
5754
5755			inode = btrfs_iget(fs_info->sb, parent, root);
5756			if (IS_ERR(inode)) {
5757				ret = PTR_ERR(inode);
5758				break;
5759			}
5760
 
 
 
 
 
5761			/*
5762			 * Always log the directory, we cannot make this
5763			 * conditional on need_log_inode() because the directory
5764			 * might have been logged in LOG_INODE_EXISTS mode or
5765			 * the dir index of the conflicting inode is not in a
5766			 * dir index key range logged for the directory. So we
5767			 * must make sure the deletion is recorded.
 
 
 
 
 
5768			 */
5769			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5770					      LOG_INODE_ALL, ctx);
5771			btrfs_add_delayed_iput(BTRFS_I(inode));
5772			if (ret)
5773				break;
5774			continue;
5775		}
5776
5777		/*
5778		 * Here we can use need_log_inode() because we only need to log
5779		 * the inode in LOG_INODE_EXISTS mode and rename operations
5780		 * update the log, so that the log ends up with the new name and
5781		 * without the old name.
5782		 *
5783		 * We did this check at add_conflicting_inode(), but here we do
5784		 * it again because if some other task logged the inode after
5785		 * that, we can avoid doing it again.
5786		 */
5787		if (!need_log_inode(trans, BTRFS_I(inode))) {
5788			btrfs_add_delayed_iput(BTRFS_I(inode));
5789			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5790		}
5791
5792		/*
5793		 * We are safe logging the other inode without acquiring its
5794		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5795		 * are safe against concurrent renames of the other inode as
5796		 * well because during a rename we pin the log and update the
5797		 * log with the new name before we unpin it.
5798		 */
5799		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5800		btrfs_add_delayed_iput(BTRFS_I(inode));
5801		if (ret)
5802			break;
5803	}
5804
5805	ctx->logging_conflict_inodes = false;
5806	if (ret)
5807		free_conflicting_inodes(ctx);
5808
5809	return ret;
5810}
5811
5812static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5813				   struct btrfs_inode *inode,
5814				   struct btrfs_key *min_key,
5815				   const struct btrfs_key *max_key,
5816				   struct btrfs_path *path,
5817				   struct btrfs_path *dst_path,
5818				   const u64 logged_isize,
5819				   const int inode_only,
5820				   struct btrfs_log_ctx *ctx,
5821				   bool *need_log_inode_item)
5822{
5823	const u64 i_size = i_size_read(&inode->vfs_inode);
5824	struct btrfs_root *root = inode->root;
5825	int ins_start_slot = 0;
5826	int ins_nr = 0;
5827	int ret;
5828
5829	while (1) {
5830		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5831		if (ret < 0)
5832			return ret;
5833		if (ret > 0) {
5834			ret = 0;
5835			break;
5836		}
5837again:
5838		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5839		if (min_key->objectid != max_key->objectid)
5840			break;
5841		if (min_key->type > max_key->type)
5842			break;
5843
5844		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5845			*need_log_inode_item = false;
5846		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5847			   min_key->offset >= i_size) {
5848			/*
5849			 * Extents at and beyond eof are logged with
5850			 * btrfs_log_prealloc_extents().
5851			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5852			 * and no keys greater than that, so bail out.
5853			 */
5854			break;
5855		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5856			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5857			   (inode->generation == trans->transid ||
5858			    ctx->logging_conflict_inodes)) {
5859			u64 other_ino = 0;
5860			u64 other_parent = 0;
5861
 
 
 
5862			ret = btrfs_check_ref_name_override(path->nodes[0],
5863					path->slots[0], min_key, inode,
5864					&other_ino, &other_parent);
5865			if (ret < 0) {
5866				return ret;
5867			} else if (ret > 0 &&
5868				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5869				if (ins_nr > 0) {
5870					ins_nr++;
5871				} else {
5872					ins_nr = 1;
5873					ins_start_slot = path->slots[0];
5874				}
5875				ret = copy_items(trans, inode, dst_path, path,
5876						 ins_start_slot, ins_nr,
5877						 inode_only, logged_isize);
5878				if (ret < 0)
5879					return ret;
5880				ins_nr = 0;
5881
5882				btrfs_release_path(path);
5883				ret = add_conflicting_inode(trans, root, path,
5884							    other_ino,
5885							    other_parent, ctx);
5886				if (ret)
5887					return ret;
5888				goto next_key;
5889			}
5890		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5891			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5892			if (ins_nr == 0)
5893				goto next_slot;
5894			ret = copy_items(trans, inode, dst_path, path,
5895					 ins_start_slot,
5896					 ins_nr, inode_only, logged_isize);
5897			if (ret < 0)
5898				return ret;
 
 
5899			ins_nr = 0;
 
 
 
 
5900			goto next_slot;
5901		}
5902
 
5903		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5904			ins_nr++;
5905			goto next_slot;
5906		} else if (!ins_nr) {
5907			ins_start_slot = path->slots[0];
5908			ins_nr = 1;
5909			goto next_slot;
5910		}
5911
5912		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5913				 ins_nr, inode_only, logged_isize);
5914		if (ret < 0)
5915			return ret;
 
 
 
 
 
 
 
 
5916		ins_nr = 1;
5917		ins_start_slot = path->slots[0];
5918next_slot:
 
 
5919		path->slots[0]++;
5920		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5921			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5922					      path->slots[0]);
5923			goto again;
5924		}
5925		if (ins_nr) {
5926			ret = copy_items(trans, inode, dst_path, path,
5927					 ins_start_slot, ins_nr, inode_only,
5928					 logged_isize);
5929			if (ret < 0)
5930				return ret;
 
 
 
5931			ins_nr = 0;
5932		}
5933		btrfs_release_path(path);
5934next_key:
5935		if (min_key->offset < (u64)-1) {
5936			min_key->offset++;
5937		} else if (min_key->type < max_key->type) {
5938			min_key->type++;
5939			min_key->offset = 0;
5940		} else {
5941			break;
5942		}
5943
5944		/*
5945		 * We may process many leaves full of items for our inode, so
5946		 * avoid monopolizing a cpu for too long by rescheduling while
5947		 * not holding locks on any tree.
5948		 */
5949		cond_resched();
5950	}
5951	if (ins_nr) {
5952		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5953				 ins_nr, inode_only, logged_isize);
5954		if (ret)
5955			return ret;
 
 
 
 
 
5956	}
5957
5958	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5959		/*
5960		 * Release the path because otherwise we might attempt to double
5961		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5962		 */
 
5963		btrfs_release_path(path);
5964		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
 
 
 
5965	}
5966
5967	return ret;
5968}
5969
5970static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5971				      struct btrfs_root *log,
5972				      struct btrfs_path *path,
5973				      const struct btrfs_item_batch *batch,
5974				      const struct btrfs_delayed_item *first_item)
5975{
5976	const struct btrfs_delayed_item *curr = first_item;
5977	int ret;
5978
5979	ret = btrfs_insert_empty_items(trans, log, path, batch);
5980	if (ret)
5981		return ret;
5982
5983	for (int i = 0; i < batch->nr; i++) {
5984		char *data_ptr;
5985
5986		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5987		write_extent_buffer(path->nodes[0], &curr->data,
5988				    (unsigned long)data_ptr, curr->data_len);
5989		curr = list_next_entry(curr, log_list);
5990		path->slots[0]++;
5991	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5992
5993	btrfs_release_path(path);
5994
5995	return 0;
5996}
5997
5998static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5999				       struct btrfs_inode *inode,
6000				       struct btrfs_path *path,
6001				       const struct list_head *delayed_ins_list,
6002				       struct btrfs_log_ctx *ctx)
6003{
6004	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6005	const int max_batch_size = 195;
6006	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6007	const u64 ino = btrfs_ino(inode);
6008	struct btrfs_root *log = inode->root->log_root;
6009	struct btrfs_item_batch batch = {
6010		.nr = 0,
6011		.total_data_size = 0,
6012	};
6013	const struct btrfs_delayed_item *first = NULL;
6014	const struct btrfs_delayed_item *curr;
6015	char *ins_data;
6016	struct btrfs_key *ins_keys;
6017	u32 *ins_sizes;
6018	u64 curr_batch_size = 0;
6019	int batch_idx = 0;
6020	int ret;
6021
6022	/* We are adding dir index items to the log tree. */
6023	lockdep_assert_held(&inode->log_mutex);
6024
6025	/*
6026	 * We collect delayed items before copying index keys from the subvolume
6027	 * to the log tree. However just after we collected them, they may have
6028	 * been flushed (all of them or just some of them), and therefore we
6029	 * could have copied them from the subvolume tree to the log tree.
6030	 * So find the first delayed item that was not yet logged (they are
6031	 * sorted by index number).
6032	 */
6033	list_for_each_entry(curr, delayed_ins_list, log_list) {
6034		if (curr->index > inode->last_dir_index_offset) {
6035			first = curr;
6036			break;
6037		}
 
6038	}
6039
6040	/* Empty list or all delayed items were already logged. */
6041	if (!first)
6042		return 0;
6043
6044	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6045			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6046	if (!ins_data)
6047		return -ENOMEM;
6048	ins_sizes = (u32 *)ins_data;
6049	batch.data_sizes = ins_sizes;
6050	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6051	batch.keys = ins_keys;
6052
6053	curr = first;
6054	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6055		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6056
6057		if (curr_batch_size + curr_size > leaf_data_size ||
6058		    batch.nr == max_batch_size) {
6059			ret = insert_delayed_items_batch(trans, log, path,
6060							 &batch, first);
6061			if (ret)
6062				goto out;
6063			batch_idx = 0;
6064			batch.nr = 0;
6065			batch.total_data_size = 0;
6066			curr_batch_size = 0;
6067			first = curr;
6068		}
6069
6070		ins_sizes[batch_idx] = curr->data_len;
6071		ins_keys[batch_idx].objectid = ino;
6072		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6073		ins_keys[batch_idx].offset = curr->index;
6074		curr_batch_size += curr_size;
6075		batch.total_data_size += curr->data_len;
6076		batch.nr++;
6077		batch_idx++;
6078		curr = list_next_entry(curr, log_list);
6079	}
6080
6081	ASSERT(batch.nr >= 1);
6082	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6083
6084	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6085			       log_list);
6086	inode->last_dir_index_offset = curr->index;
6087out:
6088	kfree(ins_data);
6089
6090	return ret;
6091}
6092
6093static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6094				      struct btrfs_inode *inode,
6095				      struct btrfs_path *path,
6096				      const struct list_head *delayed_del_list,
6097				      struct btrfs_log_ctx *ctx)
6098{
6099	const u64 ino = btrfs_ino(inode);
6100	const struct btrfs_delayed_item *curr;
6101
6102	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6103				log_list);
6104
6105	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6106		u64 first_dir_index = curr->index;
6107		u64 last_dir_index;
6108		const struct btrfs_delayed_item *next;
6109		int ret;
6110
6111		/*
6112		 * Find a range of consecutive dir index items to delete. Like
6113		 * this we log a single dir range item spanning several contiguous
6114		 * dir items instead of logging one range item per dir index item.
6115		 */
6116		next = list_next_entry(curr, log_list);
6117		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6118			if (next->index != curr->index + 1)
6119				break;
6120			curr = next;
6121			next = list_next_entry(next, log_list);
6122		}
6123
6124		last_dir_index = curr->index;
6125		ASSERT(last_dir_index >= first_dir_index);
6126
6127		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6128					 ino, first_dir_index, last_dir_index);
6129		if (ret)
6130			return ret;
6131		curr = list_next_entry(curr, log_list);
6132	}
6133
6134	return 0;
6135}
 
 
 
 
 
 
 
 
6136
6137static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6138					struct btrfs_inode *inode,
6139					struct btrfs_path *path,
6140					struct btrfs_log_ctx *ctx,
6141					const struct list_head *delayed_del_list,
6142					const struct btrfs_delayed_item *first,
6143					const struct btrfs_delayed_item **last_ret)
6144{
6145	const struct btrfs_delayed_item *next;
6146	struct extent_buffer *leaf = path->nodes[0];
6147	const int last_slot = btrfs_header_nritems(leaf) - 1;
6148	int slot = path->slots[0] + 1;
6149	const u64 ino = btrfs_ino(inode);
6150
6151	next = list_next_entry(first, log_list);
6152
6153	while (slot < last_slot &&
6154	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6155		struct btrfs_key key;
6156
6157		btrfs_item_key_to_cpu(leaf, &key, slot);
6158		if (key.objectid != ino ||
6159		    key.type != BTRFS_DIR_INDEX_KEY ||
6160		    key.offset != next->index)
6161			break;
6162
6163		slot++;
6164		*last_ret = next;
6165		next = list_next_entry(next, log_list);
6166	}
6167
6168	return btrfs_del_items(trans, inode->root->log_root, path,
6169			       path->slots[0], slot - path->slots[0]);
6170}
6171
6172static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6173					     struct btrfs_inode *inode,
6174					     struct btrfs_path *path,
6175					     const struct list_head *delayed_del_list,
6176					     struct btrfs_log_ctx *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
6177{
6178	struct btrfs_root *log = inode->root->log_root;
6179	const struct btrfs_delayed_item *curr;
6180	u64 last_range_start;
6181	u64 last_range_end = 0;
6182	struct btrfs_key key;
6183
6184	key.objectid = btrfs_ino(inode);
6185	key.type = BTRFS_DIR_INDEX_KEY;
6186	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6187				log_list);
6188
6189	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6190		const struct btrfs_delayed_item *last = curr;
6191		u64 first_dir_index = curr->index;
6192		u64 last_dir_index;
6193		bool deleted_items = false;
6194		int ret;
6195
6196		key.offset = curr->index;
6197		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6198		if (ret < 0) {
6199			return ret;
6200		} else if (ret == 0) {
6201			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6202							   delayed_del_list, curr,
6203							   &last);
6204			if (ret)
6205				return ret;
6206			deleted_items = true;
6207		}
6208
6209		btrfs_release_path(path);
6210
6211		/*
6212		 * If we deleted items from the leaf, it means we have a range
6213		 * item logging their range, so no need to add one or update an
6214		 * existing one. Otherwise we have to log a dir range item.
6215		 */
6216		if (deleted_items)
6217			goto next_batch;
6218
6219		last_dir_index = last->index;
6220		ASSERT(last_dir_index >= first_dir_index);
6221		/*
6222		 * If this range starts right after where the previous one ends,
6223		 * then we want to reuse the previous range item and change its
6224		 * end offset to the end of this range. This is just to minimize
6225		 * leaf space usage, by avoiding adding a new range item.
6226		 */
6227		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6228			first_dir_index = last_range_start;
6229
6230		ret = insert_dir_log_key(trans, log, path, key.objectid,
6231					 first_dir_index, last_dir_index);
6232		if (ret)
6233			return ret;
6234
6235		last_range_start = first_dir_index;
6236		last_range_end = last_dir_index;
6237next_batch:
6238		curr = list_next_entry(last, log_list);
6239	}
 
6240
6241	return 0;
6242}
6243
6244static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6245				      struct btrfs_inode *inode,
6246				      struct btrfs_path *path,
6247				      const struct list_head *delayed_del_list,
6248				      struct btrfs_log_ctx *ctx)
6249{
6250	/*
6251	 * We are deleting dir index items from the log tree or adding range
6252	 * items to it.
6253	 */
6254	lockdep_assert_held(&inode->log_mutex);
6255
6256	if (list_empty(delayed_del_list))
6257		return 0;
6258
6259	if (ctx->logged_before)
6260		return log_delayed_deletions_incremental(trans, inode, path,
6261							 delayed_del_list, ctx);
6262
6263	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6264					  ctx);
6265}
6266
6267/*
6268 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6269 * items instead of the subvolume tree.
 
 
6270 */
6271static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6272				    struct btrfs_inode *inode,
6273				    const struct list_head *delayed_ins_list,
6274				    struct btrfs_log_ctx *ctx)
 
6275{
6276	const bool orig_log_new_dentries = ctx->log_new_dentries;
6277	struct btrfs_fs_info *fs_info = trans->fs_info;
6278	struct btrfs_delayed_item *item;
6279	int ret = 0;
 
 
6280
6281	/*
6282	 * No need for the log mutex, plus to avoid potential deadlocks or
6283	 * lockdep annotations due to nesting of delayed inode mutexes and log
6284	 * mutexes.
6285	 */
6286	lockdep_assert_not_held(&inode->log_mutex);
6287
6288	ASSERT(!ctx->logging_new_delayed_dentries);
6289	ctx->logging_new_delayed_dentries = true;
6290
6291	list_for_each_entry(item, delayed_ins_list, log_list) {
6292		struct btrfs_dir_item *dir_item;
6293		struct inode *di_inode;
6294		struct btrfs_key key;
6295		int log_mode = LOG_INODE_EXISTS;
6296
6297		dir_item = (struct btrfs_dir_item *)item->data;
6298		btrfs_disk_key_to_cpu(&key, &dir_item->location);
 
 
 
6299
6300		if (key.type == BTRFS_ROOT_ITEM_KEY)
6301			continue;
 
 
 
 
 
 
 
 
6302
6303		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6304		if (IS_ERR(di_inode)) {
6305			ret = PTR_ERR(di_inode);
6306			break;
6307		}
6308
6309		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6310			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6311			continue;
6312		}
6313
6314		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6315			log_mode = LOG_INODE_ALL;
6316
6317		ctx->log_new_dentries = false;
6318		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6319
6320		if (!ret && ctx->log_new_dentries)
6321			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6322
6323		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6324
6325		if (ret)
6326			break;
6327	}
6328
6329	ctx->log_new_dentries = orig_log_new_dentries;
6330	ctx->logging_new_delayed_dentries = false;
6331
6332	return ret;
6333}
6334
6335/* log a single inode in the tree log.
6336 * At least one parent directory for this inode must exist in the tree
6337 * or be logged already.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6338 *
6339 * Any items from this inode changed by the current transaction are copied
6340 * to the log tree.  An extra reference is taken on any extents in this
6341 * file, allowing us to avoid a whole pile of corner cases around logging
6342 * blocks that have been removed from the tree.
6343 *
6344 * See LOG_INODE_ALL and related defines for a description of what inode_only
6345 * does.
 
 
 
 
 
6346 *
6347 * This handles both files and directories.
 
 
 
 
 
 
 
 
 
 
 
 
6348 */
6349static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6350			   struct btrfs_inode *inode,
6351			   int inode_only,
6352			   struct btrfs_log_ctx *ctx)
6353{
 
6354	struct btrfs_path *path;
6355	struct btrfs_path *dst_path;
6356	struct btrfs_key min_key;
6357	struct btrfs_key max_key;
6358	struct btrfs_root *log = inode->root->log_root;
6359	int ret;
6360	bool fast_search = false;
6361	u64 ino = btrfs_ino(inode);
6362	struct extent_map_tree *em_tree = &inode->extent_tree;
6363	u64 logged_isize = 0;
6364	bool need_log_inode_item = true;
6365	bool xattrs_logged = false;
6366	bool inode_item_dropped = true;
6367	bool full_dir_logging = false;
6368	LIST_HEAD(delayed_ins_list);
6369	LIST_HEAD(delayed_del_list);
6370
6371	path = btrfs_alloc_path();
6372	if (!path)
6373		return -ENOMEM;
6374	dst_path = btrfs_alloc_path();
6375	if (!dst_path) {
 
6376		btrfs_free_path(path);
6377		return -ENOMEM;
6378	}
 
 
6379
6380	min_key.objectid = ino;
6381	min_key.type = BTRFS_INODE_ITEM_KEY;
6382	min_key.offset = 0;
 
 
6383
6384	max_key.objectid = ino;
 
 
 
6385
 
 
 
 
 
 
 
 
 
 
 
 
6386
6387	/* today the code can only do partial logging of directories */
6388	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6389	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6390		       &inode->runtime_flags) &&
6391	     inode_only >= LOG_INODE_EXISTS))
6392		max_key.type = BTRFS_XATTR_ITEM_KEY;
6393	else
6394		max_key.type = (u8)-1;
6395	max_key.offset = (u64)-1;
 
6396
6397	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6398		full_dir_logging = true;
 
 
6399
6400	/*
6401	 * If we are logging a directory while we are logging dentries of the
6402	 * delayed items of some other inode, then we need to flush the delayed
6403	 * items of this directory and not log the delayed items directly. This
6404	 * is to prevent more than one level of recursion into btrfs_log_inode()
6405	 * by having something like this:
6406	 *
6407	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6408	 *     $ xfs_io -c "fsync" a
6409	 *
6410	 * Where all directories in the path did not exist before and are
6411	 * created in the current transaction.
6412	 * So in such a case we directly log the delayed items of the main
6413	 * directory ("a") without flushing them first, while for each of its
6414	 * subdirectories we flush their delayed items before logging them.
6415	 * This prevents a potential unbounded recursion like this:
6416	 *
6417	 * btrfs_log_inode()
6418	 *   log_new_delayed_dentries()
6419	 *      btrfs_log_inode()
6420	 *        log_new_delayed_dentries()
6421	 *          btrfs_log_inode()
6422	 *            log_new_delayed_dentries()
6423	 *              (...)
6424	 *
6425	 * We have thresholds for the maximum number of delayed items to have in
6426	 * memory, and once they are hit, the items are flushed asynchronously.
6427	 * However the limit is quite high, so lets prevent deep levels of
6428	 * recursion to happen by limiting the maximum depth to be 1.
6429	 */
6430	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6431		ret = btrfs_commit_inode_delayed_items(trans, inode);
6432		if (ret)
6433			goto out;
6434	}
6435
6436	mutex_lock(&inode->log_mutex);
 
 
 
 
 
6437
6438	/*
6439	 * For symlinks, we must always log their content, which is stored in an
6440	 * inline extent, otherwise we could end up with an empty symlink after
6441	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6442	 * one attempts to create an empty symlink).
6443	 * We don't need to worry about flushing delalloc, because when we create
6444	 * the inline extent when the symlink is created (we never have delalloc
6445	 * for symlinks).
6446	 */
6447	if (S_ISLNK(inode->vfs_inode.i_mode))
6448		inode_only = LOG_INODE_ALL;
6449
6450	/*
6451	 * Before logging the inode item, cache the value returned by
6452	 * inode_logged(), because after that we have the need to figure out if
6453	 * the inode was previously logged in this transaction.
6454	 */
6455	ret = inode_logged(trans, inode, path);
6456	if (ret < 0)
6457		goto out_unlock;
6458	ctx->logged_before = (ret == 1);
6459	ret = 0;
6460
6461	/*
6462	 * This is for cases where logging a directory could result in losing a
6463	 * a file after replaying the log. For example, if we move a file from a
6464	 * directory A to a directory B, then fsync directory A, we have no way
6465	 * to known the file was moved from A to B, so logging just A would
6466	 * result in losing the file after a log replay.
6467	 */
6468	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6469		btrfs_set_log_full_commit(trans);
6470		ret = BTRFS_LOG_FORCE_COMMIT;
6471		goto out_unlock;
6472	}
6473
6474	/*
6475	 * a brute force approach to making sure we get the most uptodate
6476	 * copies of everything.
6477	 */
6478	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6479		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6480		if (ctx->logged_before)
6481			ret = drop_inode_items(trans, log, path, inode,
6482					       BTRFS_XATTR_ITEM_KEY);
6483	} else {
6484		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6485			/*
6486			 * Make sure the new inode item we write to the log has
6487			 * the same isize as the current one (if it exists).
6488			 * This is necessary to prevent data loss after log
6489			 * replay, and also to prevent doing a wrong expanding
6490			 * truncate - for e.g. create file, write 4K into offset
6491			 * 0, fsync, write 4K into offset 4096, add hard link,
6492			 * fsync some other file (to sync log), power fail - if
6493			 * we use the inode's current i_size, after log replay
6494			 * we get a 8Kb file, with the last 4Kb extent as a hole
6495			 * (zeroes), as if an expanding truncate happened,
6496			 * instead of getting a file of 4Kb only.
6497			 */
6498			ret = logged_inode_size(log, inode, path, &logged_isize);
6499			if (ret)
6500				goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
6501		}
6502		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6503			     &inode->runtime_flags)) {
6504			if (inode_only == LOG_INODE_EXISTS) {
6505				max_key.type = BTRFS_XATTR_ITEM_KEY;
6506				if (ctx->logged_before)
6507					ret = drop_inode_items(trans, log, path,
6508							       inode, max_key.type);
6509			} else {
6510				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6511					  &inode->runtime_flags);
6512				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6513					  &inode->runtime_flags);
6514				if (ctx->logged_before)
6515					ret = truncate_inode_items(trans, log,
6516								   inode, 0, 0);
6517			}
6518		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6519					      &inode->runtime_flags) ||
6520			   inode_only == LOG_INODE_EXISTS) {
6521			if (inode_only == LOG_INODE_ALL)
6522				fast_search = true;
6523			max_key.type = BTRFS_XATTR_ITEM_KEY;
6524			if (ctx->logged_before)
6525				ret = drop_inode_items(trans, log, path, inode,
6526						       max_key.type);
6527		} else {
6528			if (inode_only == LOG_INODE_ALL)
6529				fast_search = true;
6530			inode_item_dropped = false;
6531			goto log_extents;
6532		}
6533
6534	}
6535	if (ret)
6536		goto out_unlock;
6537
6538	/*
6539	 * If we are logging a directory in full mode, collect the delayed items
6540	 * before iterating the subvolume tree, so that we don't miss any new
6541	 * dir index items in case they get flushed while or right after we are
6542	 * iterating the subvolume tree.
6543	 */
6544	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6545		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6546					    &delayed_del_list);
6547
6548	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6549				      path, dst_path, logged_isize,
6550				      inode_only, ctx,
6551				      &need_log_inode_item);
6552	if (ret)
6553		goto out_unlock;
6554
6555	btrfs_release_path(path);
6556	btrfs_release_path(dst_path);
6557	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6558	if (ret)
6559		goto out_unlock;
6560	xattrs_logged = true;
6561	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6562		btrfs_release_path(path);
6563		btrfs_release_path(dst_path);
6564		ret = btrfs_log_holes(trans, inode, path);
6565		if (ret)
6566			goto out_unlock;
6567	}
6568log_extents:
6569	btrfs_release_path(path);
6570	btrfs_release_path(dst_path);
6571	if (need_log_inode_item) {
6572		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6573		if (ret)
6574			goto out_unlock;
6575		/*
6576		 * If we are doing a fast fsync and the inode was logged before
6577		 * in this transaction, we don't need to log the xattrs because
6578		 * they were logged before. If xattrs were added, changed or
6579		 * deleted since the last time we logged the inode, then we have
6580		 * already logged them because the inode had the runtime flag
6581		 * BTRFS_INODE_COPY_EVERYTHING set.
6582		 */
6583		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6584			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6585			if (ret)
6586				goto out_unlock;
6587			btrfs_release_path(path);
6588		}
 
 
 
6589	}
6590	if (fast_search) {
6591		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6592		if (ret)
6593			goto out_unlock;
6594	} else if (inode_only == LOG_INODE_ALL) {
6595		struct extent_map *em, *n;
6596
6597		write_lock(&em_tree->lock);
6598		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6599			list_del_init(&em->list);
6600		write_unlock(&em_tree->lock);
6601	}
6602
6603	if (full_dir_logging) {
6604		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6605		if (ret)
6606			goto out_unlock;
6607		ret = log_delayed_insertion_items(trans, inode, path,
6608						  &delayed_ins_list, ctx);
6609		if (ret)
6610			goto out_unlock;
6611		ret = log_delayed_deletion_items(trans, inode, path,
6612						 &delayed_del_list, ctx);
6613		if (ret)
6614			goto out_unlock;
6615	}
6616
6617	spin_lock(&inode->lock);
6618	inode->logged_trans = trans->transid;
6619	/*
6620	 * Don't update last_log_commit if we logged that an inode exists.
6621	 * We do this for three reasons:
6622	 *
6623	 * 1) We might have had buffered writes to this inode that were
6624	 *    flushed and had their ordered extents completed in this
6625	 *    transaction, but we did not previously log the inode with
6626	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6627	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6628	 *    happened. We must make sure that if an explicit fsync against
6629	 *    the inode is performed later, it logs the new extents, an
6630	 *    updated inode item, etc, and syncs the log. The same logic
6631	 *    applies to direct IO writes instead of buffered writes.
6632	 *
6633	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6634	 *    is logged with an i_size of 0 or whatever value was logged
6635	 *    before. If later the i_size of the inode is increased by a
6636	 *    truncate operation, the log is synced through an fsync of
6637	 *    some other inode and then finally an explicit fsync against
6638	 *    this inode is made, we must make sure this fsync logs the
6639	 *    inode with the new i_size, the hole between old i_size and
6640	 *    the new i_size, and syncs the log.
6641	 *
6642	 * 3) If we are logging that an ancestor inode exists as part of
6643	 *    logging a new name from a link or rename operation, don't update
6644	 *    its last_log_commit - otherwise if an explicit fsync is made
6645	 *    against an ancestor, the fsync considers the inode in the log
6646	 *    and doesn't sync the log, resulting in the ancestor missing after
6647	 *    a power failure unless the log was synced as part of an fsync
6648	 *    against any other unrelated inode.
6649	 */
6650	if (inode_only != LOG_INODE_EXISTS)
6651		inode->last_log_commit = inode->last_sub_trans;
6652	spin_unlock(&inode->lock);
6653
6654	/*
6655	 * Reset the last_reflink_trans so that the next fsync does not need to
6656	 * go through the slower path when logging extents and their checksums.
6657	 */
6658	if (inode_only == LOG_INODE_ALL)
6659		inode->last_reflink_trans = 0;
6660
6661out_unlock:
6662	mutex_unlock(&inode->log_mutex);
6663out:
6664	btrfs_free_path(path);
6665	btrfs_free_path(dst_path);
6666
6667	if (ret)
6668		free_conflicting_inodes(ctx);
6669	else
6670		ret = log_conflicting_inodes(trans, inode->root, ctx);
6671
6672	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6673		if (!ret)
6674			ret = log_new_delayed_dentries(trans, inode,
6675						       &delayed_ins_list, ctx);
6676
6677		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6678					    &delayed_del_list);
6679	}
6680
6681	return ret;
6682}
6683
6684static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6685				 struct btrfs_inode *inode,
6686				 struct btrfs_log_ctx *ctx)
6687{
6688	struct btrfs_fs_info *fs_info = trans->fs_info;
6689	int ret;
6690	struct btrfs_path *path;
6691	struct btrfs_key key;
6692	struct btrfs_root *root = inode->root;
6693	const u64 ino = btrfs_ino(inode);
6694
6695	path = btrfs_alloc_path();
6696	if (!path)
6697		return -ENOMEM;
6698	path->skip_locking = 1;
6699	path->search_commit_root = 1;
6700
6701	key.objectid = ino;
6702	key.type = BTRFS_INODE_REF_KEY;
6703	key.offset = 0;
6704	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6705	if (ret < 0)
6706		goto out;
6707
6708	while (true) {
6709		struct extent_buffer *leaf = path->nodes[0];
6710		int slot = path->slots[0];
6711		u32 cur_offset = 0;
6712		u32 item_size;
6713		unsigned long ptr;
6714
6715		if (slot >= btrfs_header_nritems(leaf)) {
6716			ret = btrfs_next_leaf(root, path);
6717			if (ret < 0)
6718				goto out;
6719			else if (ret > 0)
6720				break;
6721			continue;
6722		}
6723
6724		btrfs_item_key_to_cpu(leaf, &key, slot);
6725		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6726		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6727			break;
6728
6729		item_size = btrfs_item_size(leaf, slot);
6730		ptr = btrfs_item_ptr_offset(leaf, slot);
6731		while (cur_offset < item_size) {
6732			struct btrfs_key inode_key;
6733			struct inode *dir_inode;
6734
6735			inode_key.type = BTRFS_INODE_ITEM_KEY;
6736			inode_key.offset = 0;
6737
6738			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6739				struct btrfs_inode_extref *extref;
6740
6741				extref = (struct btrfs_inode_extref *)
6742					(ptr + cur_offset);
6743				inode_key.objectid = btrfs_inode_extref_parent(
6744					leaf, extref);
6745				cur_offset += sizeof(*extref);
6746				cur_offset += btrfs_inode_extref_name_len(leaf,
6747					extref);
6748			} else {
6749				inode_key.objectid = key.offset;
6750				cur_offset = item_size;
6751			}
6752
6753			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6754					       root);
6755			/*
6756			 * If the parent inode was deleted, return an error to
6757			 * fallback to a transaction commit. This is to prevent
6758			 * getting an inode that was moved from one parent A to
6759			 * a parent B, got its former parent A deleted and then
6760			 * it got fsync'ed, from existing at both parents after
6761			 * a log replay (and the old parent still existing).
6762			 * Example:
6763			 *
6764			 * mkdir /mnt/A
6765			 * mkdir /mnt/B
6766			 * touch /mnt/B/bar
6767			 * sync
6768			 * mv /mnt/B/bar /mnt/A/bar
6769			 * mv -T /mnt/A /mnt/B
6770			 * fsync /mnt/B/bar
6771			 * <power fail>
6772			 *
6773			 * If we ignore the old parent B which got deleted,
6774			 * after a log replay we would have file bar linked
6775			 * at both parents and the old parent B would still
6776			 * exist.
6777			 */
6778			if (IS_ERR(dir_inode)) {
6779				ret = PTR_ERR(dir_inode);
6780				goto out;
6781			}
6782
6783			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6784				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6785				continue;
6786			}
6787
6788			ctx->log_new_dentries = false;
6789			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6790					      LOG_INODE_ALL, ctx);
6791			if (!ret && ctx->log_new_dentries)
6792				ret = log_new_dir_dentries(trans,
6793						   BTRFS_I(dir_inode), ctx);
6794			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6795			if (ret)
6796				goto out;
6797		}
6798		path->slots[0]++;
6799	}
6800	ret = 0;
6801out:
6802	btrfs_free_path(path);
6803	return ret;
6804}
6805
6806static int log_new_ancestors(struct btrfs_trans_handle *trans,
6807			     struct btrfs_root *root,
6808			     struct btrfs_path *path,
6809			     struct btrfs_log_ctx *ctx)
6810{
6811	struct btrfs_key found_key;
6812
6813	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6814
6815	while (true) {
6816		struct btrfs_fs_info *fs_info = root->fs_info;
6817		struct extent_buffer *leaf = path->nodes[0];
6818		int slot = path->slots[0];
6819		struct btrfs_key search_key;
6820		struct inode *inode;
6821		u64 ino;
6822		int ret = 0;
6823
6824		btrfs_release_path(path);
6825
6826		ino = found_key.offset;
6827
6828		search_key.objectid = found_key.offset;
6829		search_key.type = BTRFS_INODE_ITEM_KEY;
6830		search_key.offset = 0;
6831		inode = btrfs_iget(fs_info->sb, ino, root);
6832		if (IS_ERR(inode))
6833			return PTR_ERR(inode);
6834
6835		if (BTRFS_I(inode)->generation >= trans->transid &&
6836		    need_log_inode(trans, BTRFS_I(inode)))
6837			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6838					      LOG_INODE_EXISTS, ctx);
6839		btrfs_add_delayed_iput(BTRFS_I(inode));
6840		if (ret)
6841			return ret;
6842
6843		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6844			break;
6845
6846		search_key.type = BTRFS_INODE_REF_KEY;
6847		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6848		if (ret < 0)
6849			return ret;
6850
6851		leaf = path->nodes[0];
6852		slot = path->slots[0];
6853		if (slot >= btrfs_header_nritems(leaf)) {
6854			ret = btrfs_next_leaf(root, path);
6855			if (ret < 0)
6856				return ret;
6857			else if (ret > 0)
6858				return -ENOENT;
6859			leaf = path->nodes[0];
6860			slot = path->slots[0];
6861		}
6862
6863		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6864		if (found_key.objectid != search_key.objectid ||
6865		    found_key.type != BTRFS_INODE_REF_KEY)
6866			return -ENOENT;
6867	}
6868	return 0;
6869}
6870
6871static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6872				  struct btrfs_inode *inode,
6873				  struct dentry *parent,
6874				  struct btrfs_log_ctx *ctx)
6875{
6876	struct btrfs_root *root = inode->root;
6877	struct dentry *old_parent = NULL;
6878	struct super_block *sb = inode->vfs_inode.i_sb;
6879	int ret = 0;
6880
6881	while (true) {
6882		if (!parent || d_really_is_negative(parent) ||
6883		    sb != parent->d_sb)
6884			break;
6885
6886		inode = BTRFS_I(d_inode(parent));
6887		if (root != inode->root)
6888			break;
6889
6890		if (inode->generation >= trans->transid &&
6891		    need_log_inode(trans, inode)) {
6892			ret = btrfs_log_inode(trans, inode,
6893					      LOG_INODE_EXISTS, ctx);
6894			if (ret)
6895				break;
6896		}
6897		if (IS_ROOT(parent))
6898			break;
6899
6900		parent = dget_parent(parent);
6901		dput(old_parent);
6902		old_parent = parent;
6903	}
6904	dput(old_parent);
6905
6906	return ret;
6907}
6908
6909static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6910				 struct btrfs_inode *inode,
6911				 struct dentry *parent,
6912				 struct btrfs_log_ctx *ctx)
6913{
6914	struct btrfs_root *root = inode->root;
6915	const u64 ino = btrfs_ino(inode);
6916	struct btrfs_path *path;
6917	struct btrfs_key search_key;
6918	int ret;
6919
6920	/*
6921	 * For a single hard link case, go through a fast path that does not
6922	 * need to iterate the fs/subvolume tree.
6923	 */
6924	if (inode->vfs_inode.i_nlink < 2)
6925		return log_new_ancestors_fast(trans, inode, parent, ctx);
6926
6927	path = btrfs_alloc_path();
6928	if (!path)
6929		return -ENOMEM;
6930
6931	search_key.objectid = ino;
6932	search_key.type = BTRFS_INODE_REF_KEY;
6933	search_key.offset = 0;
6934again:
6935	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6936	if (ret < 0)
6937		goto out;
6938	if (ret == 0)
6939		path->slots[0]++;
6940
6941	while (true) {
6942		struct extent_buffer *leaf = path->nodes[0];
6943		int slot = path->slots[0];
6944		struct btrfs_key found_key;
6945
6946		if (slot >= btrfs_header_nritems(leaf)) {
6947			ret = btrfs_next_leaf(root, path);
6948			if (ret < 0)
6949				goto out;
6950			else if (ret > 0)
6951				break;
6952			continue;
6953		}
6954
6955		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6956		if (found_key.objectid != ino ||
6957		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6958			break;
6959
6960		/*
6961		 * Don't deal with extended references because they are rare
6962		 * cases and too complex to deal with (we would need to keep
6963		 * track of which subitem we are processing for each item in
6964		 * this loop, etc). So just return some error to fallback to
6965		 * a transaction commit.
6966		 */
6967		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6968			ret = -EMLINK;
6969			goto out;
6970		}
6971
6972		/*
6973		 * Logging ancestors needs to do more searches on the fs/subvol
6974		 * tree, so it releases the path as needed to avoid deadlocks.
6975		 * Keep track of the last inode ref key and resume from that key
6976		 * after logging all new ancestors for the current hard link.
6977		 */
6978		memcpy(&search_key, &found_key, sizeof(search_key));
6979
6980		ret = log_new_ancestors(trans, root, path, ctx);
6981		if (ret)
6982			goto out;
6983		btrfs_release_path(path);
6984		goto again;
6985	}
6986	ret = 0;
6987out:
6988	btrfs_free_path(path);
6989	return ret;
6990}
6991
6992/*
6993 * helper function around btrfs_log_inode to make sure newly created
6994 * parent directories also end up in the log.  A minimal inode and backref
6995 * only logging is done of any parent directories that are older than
6996 * the last committed transaction
6997 */
6998static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6999				  struct btrfs_inode *inode,
7000				  struct dentry *parent,
7001				  int inode_only,
 
 
7002				  struct btrfs_log_ctx *ctx)
7003{
7004	struct btrfs_root *root = inode->root;
7005	struct btrfs_fs_info *fs_info = root->fs_info;
 
7006	int ret = 0;
 
7007	bool log_dentries = false;
 
 
 
7008
7009	if (btrfs_test_opt(fs_info, NOTREELOG)) {
7010		ret = BTRFS_LOG_FORCE_COMMIT;
7011		goto end_no_trans;
7012	}
7013
7014	if (btrfs_root_refs(&root->root_item) == 0) {
7015		ret = BTRFS_LOG_FORCE_COMMIT;
 
 
 
 
 
7016		goto end_no_trans;
7017	}
7018
7019	/*
7020	 * Skip already logged inodes or inodes corresponding to tmpfiles
7021	 * (since logging them is pointless, a link count of 0 means they
7022	 * will never be accessible).
7023	 */
7024	if ((btrfs_inode_in_log(inode, trans->transid) &&
7025	     list_empty(&ctx->ordered_extents)) ||
7026	    inode->vfs_inode.i_nlink == 0) {
 
 
 
 
7027		ret = BTRFS_NO_LOG_SYNC;
7028		goto end_no_trans;
7029	}
7030
7031	ret = start_log_trans(trans, root, ctx);
7032	if (ret)
7033		goto end_no_trans;
7034
7035	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7036	if (ret)
7037		goto end_trans;
7038
7039	/*
7040	 * for regular files, if its inode is already on disk, we don't
7041	 * have to worry about the parents at all.  This is because
7042	 * we can use the last_unlink_trans field to record renames
7043	 * and other fun in this file.
7044	 */
7045	if (S_ISREG(inode->vfs_inode.i_mode) &&
7046	    inode->generation < trans->transid &&
7047	    inode->last_unlink_trans < trans->transid) {
7048		ret = 0;
7049		goto end_trans;
7050	}
7051
7052	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7053		log_dentries = true;
7054
7055	/*
7056	 * On unlink we must make sure all our current and old parent directory
7057	 * inodes are fully logged. This is to prevent leaving dangling
7058	 * directory index entries in directories that were our parents but are
7059	 * not anymore. Not doing this results in old parent directory being
7060	 * impossible to delete after log replay (rmdir will always fail with
7061	 * error -ENOTEMPTY).
7062	 *
7063	 * Example 1:
7064	 *
7065	 * mkdir testdir
7066	 * touch testdir/foo
7067	 * ln testdir/foo testdir/bar
7068	 * sync
7069	 * unlink testdir/bar
7070	 * xfs_io -c fsync testdir/foo
7071	 * <power failure>
7072	 * mount fs, triggers log replay
7073	 *
7074	 * If we don't log the parent directory (testdir), after log replay the
7075	 * directory still has an entry pointing to the file inode using the bar
7076	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7077	 * the file inode has a link count of 1.
7078	 *
7079	 * Example 2:
7080	 *
7081	 * mkdir testdir
7082	 * touch foo
7083	 * ln foo testdir/foo2
7084	 * ln foo testdir/foo3
7085	 * sync
7086	 * unlink testdir/foo3
7087	 * xfs_io -c fsync foo
7088	 * <power failure>
7089	 * mount fs, triggers log replay
7090	 *
7091	 * Similar as the first example, after log replay the parent directory
7092	 * testdir still has an entry pointing to the inode file with name foo3
7093	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7094	 * and has a link count of 2.
7095	 */
7096	if (inode->last_unlink_trans >= trans->transid) {
7097		ret = btrfs_log_all_parents(trans, inode, ctx);
7098		if (ret)
7099			goto end_trans;
7100	}
7101
7102	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7103	if (ret)
7104		goto end_trans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7105
 
 
 
 
7106	if (log_dentries)
7107		ret = log_new_dir_dentries(trans, inode, ctx);
7108	else
7109		ret = 0;
7110end_trans:
 
7111	if (ret < 0) {
7112		btrfs_set_log_full_commit(trans);
7113		ret = BTRFS_LOG_FORCE_COMMIT;
7114	}
7115
7116	if (ret)
7117		btrfs_remove_log_ctx(root, ctx);
7118	btrfs_end_log_trans(root);
7119end_no_trans:
7120	return ret;
7121}
7122
7123/*
7124 * it is not safe to log dentry if the chunk root has added new
7125 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7126 * If this returns 1, you must commit the transaction to safely get your
7127 * data on disk.
7128 */
7129int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7130			  struct dentry *dentry,
 
 
7131			  struct btrfs_log_ctx *ctx)
7132{
7133	struct dentry *parent = dget_parent(dentry);
7134	int ret;
7135
7136	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7137				     LOG_INODE_ALL, ctx);
7138	dput(parent);
7139
7140	return ret;
7141}
7142
7143/*
7144 * should be called during mount to recover any replay any log trees
7145 * from the FS
7146 */
7147int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7148{
7149	int ret;
7150	struct btrfs_path *path;
7151	struct btrfs_trans_handle *trans;
7152	struct btrfs_key key;
7153	struct btrfs_key found_key;
 
7154	struct btrfs_root *log;
7155	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7156	struct walk_control wc = {
7157		.process_func = process_one_buffer,
7158		.stage = LOG_WALK_PIN_ONLY,
7159	};
7160
7161	path = btrfs_alloc_path();
7162	if (!path)
7163		return -ENOMEM;
7164
7165	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7166
7167	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7168	if (IS_ERR(trans)) {
7169		ret = PTR_ERR(trans);
7170		goto error;
7171	}
7172
7173	wc.trans = trans;
7174	wc.pin = 1;
7175
7176	ret = walk_log_tree(trans, log_root_tree, &wc);
7177	if (ret) {
7178		btrfs_abort_transaction(trans, ret);
 
7179		goto error;
7180	}
7181
7182again:
7183	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7184	key.offset = (u64)-1;
7185	key.type = BTRFS_ROOT_ITEM_KEY;
7186
7187	while (1) {
7188		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7189
7190		if (ret < 0) {
7191			btrfs_abort_transaction(trans, ret);
 
7192			goto error;
7193		}
7194		if (ret > 0) {
7195			if (path->slots[0] == 0)
7196				break;
7197			path->slots[0]--;
7198		}
7199		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7200				      path->slots[0]);
7201		btrfs_release_path(path);
7202		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7203			break;
7204
7205		log = btrfs_read_tree_root(log_root_tree, &found_key);
7206		if (IS_ERR(log)) {
7207			ret = PTR_ERR(log);
7208			btrfs_abort_transaction(trans, ret);
 
7209			goto error;
7210		}
7211
7212		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7213						   true);
 
 
 
7214		if (IS_ERR(wc.replay_dest)) {
7215			ret = PTR_ERR(wc.replay_dest);
7216
7217			/*
7218			 * We didn't find the subvol, likely because it was
7219			 * deleted.  This is ok, simply skip this log and go to
7220			 * the next one.
7221			 *
7222			 * We need to exclude the root because we can't have
7223			 * other log replays overwriting this log as we'll read
7224			 * it back in a few more times.  This will keep our
7225			 * block from being modified, and we'll just bail for
7226			 * each subsequent pass.
7227			 */
7228			if (ret == -ENOENT)
7229				ret = btrfs_pin_extent_for_log_replay(trans,
7230							log->node->start,
7231							log->node->len);
7232			btrfs_put_root(log);
7233
7234			if (!ret)
7235				goto next;
7236			btrfs_abort_transaction(trans, ret);
7237			goto error;
7238		}
7239
7240		wc.replay_dest->log_root = log;
7241		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7242		if (ret)
7243			/* The loop needs to continue due to the root refs */
7244			btrfs_abort_transaction(trans, ret);
7245		else
7246			ret = walk_log_tree(trans, log, &wc);
7247
7248		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7249			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7250						      path);
7251			if (ret)
7252				btrfs_abort_transaction(trans, ret);
7253		}
7254
7255		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7256			struct btrfs_root *root = wc.replay_dest;
7257
7258			btrfs_release_path(path);
7259
7260			/*
7261			 * We have just replayed everything, and the highest
7262			 * objectid of fs roots probably has changed in case
7263			 * some inode_item's got replayed.
7264			 *
7265			 * root->objectid_mutex is not acquired as log replay
7266			 * could only happen during mount.
7267			 */
7268			ret = btrfs_init_root_free_objectid(root);
7269			if (ret)
7270				btrfs_abort_transaction(trans, ret);
7271		}
7272
 
7273		wc.replay_dest->log_root = NULL;
7274		btrfs_put_root(wc.replay_dest);
7275		btrfs_put_root(log);
 
7276
7277		if (ret)
7278			goto error;
7279next:
7280		if (found_key.offset == 0)
7281			break;
7282		key.offset = found_key.offset - 1;
7283	}
7284	btrfs_release_path(path);
7285
7286	/* step one is to pin it all, step two is to replay just inodes */
7287	if (wc.pin) {
7288		wc.pin = 0;
7289		wc.process_func = replay_one_buffer;
7290		wc.stage = LOG_WALK_REPLAY_INODES;
7291		goto again;
7292	}
7293	/* step three is to replay everything */
7294	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7295		wc.stage++;
7296		goto again;
7297	}
7298
7299	btrfs_free_path(path);
7300
7301	/* step 4: commit the transaction, which also unpins the blocks */
7302	ret = btrfs_commit_transaction(trans);
7303	if (ret)
7304		return ret;
7305
 
7306	log_root_tree->log_root = NULL;
7307	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7308	btrfs_put_root(log_root_tree);
7309
7310	return 0;
7311error:
7312	if (wc.trans)
7313		btrfs_end_transaction(wc.trans);
7314	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7315	btrfs_free_path(path);
7316	return ret;
7317}
7318
7319/*
7320 * there are some corner cases where we want to force a full
7321 * commit instead of allowing a directory to be logged.
7322 *
7323 * They revolve around files there were unlinked from the directory, and
7324 * this function updates the parent directory so that a full commit is
7325 * properly done if it is fsync'd later after the unlinks are done.
7326 *
7327 * Must be called before the unlink operations (updates to the subvolume tree,
7328 * inodes, etc) are done.
7329 */
7330void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7331			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7332			     int for_rename)
7333{
7334	/*
7335	 * when we're logging a file, if it hasn't been renamed
7336	 * or unlinked, and its inode is fully committed on disk,
7337	 * we don't have to worry about walking up the directory chain
7338	 * to log its parents.
7339	 *
7340	 * So, we use the last_unlink_trans field to put this transid
7341	 * into the file.  When the file is logged we check it and
7342	 * don't log the parents if the file is fully on disk.
7343	 */
7344	mutex_lock(&inode->log_mutex);
7345	inode->last_unlink_trans = trans->transid;
7346	mutex_unlock(&inode->log_mutex);
 
 
7347
7348	/*
7349	 * if this directory was already logged any new
7350	 * names for this file/dir will get recorded
7351	 */
7352	if (dir->logged_trans == trans->transid)
 
7353		return;
7354
7355	/*
7356	 * if the inode we're about to unlink was logged,
7357	 * the log will be properly updated for any new names
7358	 */
7359	if (inode->logged_trans == trans->transid)
7360		return;
7361
7362	/*
7363	 * when renaming files across directories, if the directory
7364	 * there we're unlinking from gets fsync'd later on, there's
7365	 * no way to find the destination directory later and fsync it
7366	 * properly.  So, we have to be conservative and force commits
7367	 * so the new name gets discovered.
7368	 */
7369	if (for_rename)
7370		goto record;
7371
7372	/* we can safely do the unlink without any special recording */
7373	return;
7374
7375record:
7376	mutex_lock(&dir->log_mutex);
7377	dir->last_unlink_trans = trans->transid;
7378	mutex_unlock(&dir->log_mutex);
7379}
7380
7381/*
7382 * Make sure that if someone attempts to fsync the parent directory of a deleted
7383 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7384 * that after replaying the log tree of the parent directory's root we will not
7385 * see the snapshot anymore and at log replay time we will not see any log tree
7386 * corresponding to the deleted snapshot's root, which could lead to replaying
7387 * it after replaying the log tree of the parent directory (which would replay
7388 * the snapshot delete operation).
7389 *
7390 * Must be called before the actual snapshot destroy operation (updates to the
7391 * parent root and tree of tree roots trees, etc) are done.
7392 */
7393void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7394				   struct btrfs_inode *dir)
7395{
7396	mutex_lock(&dir->log_mutex);
7397	dir->last_unlink_trans = trans->transid;
7398	mutex_unlock(&dir->log_mutex);
7399}
7400
7401/*
7402 * Update the log after adding a new name for an inode.
7403 *
7404 * @trans:              Transaction handle.
7405 * @old_dentry:         The dentry associated with the old name and the old
7406 *                      parent directory.
7407 * @old_dir:            The inode of the previous parent directory for the case
7408 *                      of a rename. For a link operation, it must be NULL.
7409 * @old_dir_index:      The index number associated with the old name, meaningful
7410 *                      only for rename operations (when @old_dir is not NULL).
7411 *                      Ignored for link operations.
7412 * @parent:             The dentry associated with the directory under which the
7413 *                      new name is located.
7414 *
7415 * Call this after adding a new name for an inode, as a result of a link or
7416 * rename operation, and it will properly update the log to reflect the new name.
7417 */
7418void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7419			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7420			u64 old_dir_index, struct dentry *parent)
7421{
7422	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7423	struct btrfs_root *root = inode->root;
7424	struct btrfs_log_ctx ctx;
7425	bool log_pinned = false;
7426	int ret;
7427
7428	/*
7429	 * this will force the logging code to walk the dentry chain
7430	 * up for the file
7431	 */
7432	if (!S_ISDIR(inode->vfs_inode.i_mode))
7433		inode->last_unlink_trans = trans->transid;
7434
7435	/*
7436	 * if this inode hasn't been logged and directory we're renaming it
7437	 * from hasn't been logged, we don't need to log it
7438	 */
7439	ret = inode_logged(trans, inode, NULL);
7440	if (ret < 0) {
7441		goto out;
7442	} else if (ret == 0) {
7443		if (!old_dir)
7444			return;
7445		/*
7446		 * If the inode was not logged and we are doing a rename (old_dir is not
7447		 * NULL), check if old_dir was logged - if it was not we can return and
7448		 * do nothing.
7449		 */
7450		ret = inode_logged(trans, old_dir, NULL);
7451		if (ret < 0)
7452			goto out;
7453		else if (ret == 0)
7454			return;
7455	}
7456	ret = 0;
7457
7458	/*
7459	 * If we are doing a rename (old_dir is not NULL) from a directory that
7460	 * was previously logged, make sure that on log replay we get the old
7461	 * dir entry deleted. This is needed because we will also log the new
7462	 * name of the renamed inode, so we need to make sure that after log
7463	 * replay we don't end up with both the new and old dir entries existing.
7464	 */
7465	if (old_dir && old_dir->logged_trans == trans->transid) {
7466		struct btrfs_root *log = old_dir->root->log_root;
7467		struct btrfs_path *path;
7468		struct fscrypt_name fname;
7469
7470		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7471
7472		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7473					     &old_dentry->d_name, 0, &fname);
7474		if (ret)
7475			goto out;
7476		/*
7477		 * We have two inodes to update in the log, the old directory and
7478		 * the inode that got renamed, so we must pin the log to prevent
7479		 * anyone from syncing the log until we have updated both inodes
7480		 * in the log.
7481		 */
7482		ret = join_running_log_trans(root);
7483		/*
7484		 * At least one of the inodes was logged before, so this should
7485		 * not fail, but if it does, it's not serious, just bail out and
7486		 * mark the log for a full commit.
7487		 */
7488		if (WARN_ON_ONCE(ret < 0)) {
7489			fscrypt_free_filename(&fname);
7490			goto out;
7491		}
7492
7493		log_pinned = true;
7494
7495		path = btrfs_alloc_path();
7496		if (!path) {
7497			ret = -ENOMEM;
7498			fscrypt_free_filename(&fname);
7499			goto out;
7500		}
7501
7502		/*
7503		 * Other concurrent task might be logging the old directory,
7504		 * as it can be triggered when logging other inode that had or
7505		 * still has a dentry in the old directory. We lock the old
7506		 * directory's log_mutex to ensure the deletion of the old
7507		 * name is persisted, because during directory logging we
7508		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7509		 * the old name's dir index item is in the delayed items, so
7510		 * it could be missed by an in progress directory logging.
7511		 */
7512		mutex_lock(&old_dir->log_mutex);
7513		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7514					&fname.disk_name, old_dir_index);
7515		if (ret > 0) {
7516			/*
7517			 * The dentry does not exist in the log, so record its
7518			 * deletion.
7519			 */
7520			btrfs_release_path(path);
7521			ret = insert_dir_log_key(trans, log, path,
7522						 btrfs_ino(old_dir),
7523						 old_dir_index, old_dir_index);
7524		}
7525		mutex_unlock(&old_dir->log_mutex);
7526
7527		btrfs_free_path(path);
7528		fscrypt_free_filename(&fname);
7529		if (ret < 0)
7530			goto out;
7531	}
7532
7533	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7534	ctx.logging_new_name = true;
7535	/*
7536	 * We don't care about the return value. If we fail to log the new name
7537	 * then we know the next attempt to sync the log will fallback to a full
7538	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7539	 * we don't need to worry about getting a log committed that has an
7540	 * inconsistent state after a rename operation.
7541	 */
7542	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7543	ASSERT(list_empty(&ctx.conflict_inodes));
7544out:
7545	/*
7546	 * If an error happened mark the log for a full commit because it's not
7547	 * consistent and up to date or we couldn't find out if one of the
7548	 * inodes was logged before in this transaction. Do it before unpinning
7549	 * the log, to avoid any races with someone else trying to commit it.
7550	 */
7551	if (ret < 0)
7552		btrfs_set_log_full_commit(trans);
7553	if (log_pinned)
7554		btrfs_end_log_trans(root);
7555}
7556