Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <linux/string_helpers.h>
  24#include <asm/uaccess.h>
  25#include <linux/poll.h>
  26#include <linux/seq_file.h>
  27#include <linux/proc_fs.h>
  28#include <linux/net.h>
  29#include <linux/workqueue.h>
  30#include <linux/mutex.h>
  31#include <linux/pagemap.h>
  32#include <asm/ioctls.h>
  33#include <linux/sunrpc/types.h>
  34#include <linux/sunrpc/cache.h>
  35#include <linux/sunrpc/stats.h>
  36#include <linux/sunrpc/rpc_pipe_fs.h>
  37#include "netns.h"
  38
  39#define	 RPCDBG_FACILITY RPCDBG_CACHE
  40
  41static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  42static void cache_revisit_request(struct cache_head *item);
  43
  44static void cache_init(struct cache_head *h, struct cache_detail *detail)
  45{
  46	time_t now = seconds_since_boot();
  47	INIT_HLIST_NODE(&h->cache_list);
  48	h->flags = 0;
  49	kref_init(&h->ref);
  50	h->expiry_time = now + CACHE_NEW_EXPIRY;
  51	if (now <= detail->flush_time)
  52		/* ensure it isn't already expired */
  53		now = detail->flush_time + 1;
  54	h->last_refresh = now;
  55}
  56
  57struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  58				       struct cache_head *key, int hash)
  59{
  60	struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL;
  61	struct hlist_head *head;
  62
  63	head = &detail->hash_table[hash];
  64
  65	read_lock(&detail->hash_lock);
  66
  67	hlist_for_each_entry(tmp, head, cache_list) {
 
  68		if (detail->match(tmp, key)) {
  69			if (cache_is_expired(detail, tmp))
  70				/* This entry is expired, we will discard it. */
  71				break;
  72			cache_get(tmp);
  73			read_unlock(&detail->hash_lock);
  74			return tmp;
  75		}
  76	}
  77	read_unlock(&detail->hash_lock);
  78	/* Didn't find anything, insert an empty entry */
  79
  80	new = detail->alloc();
  81	if (!new)
  82		return NULL;
  83	/* must fully initialise 'new', else
  84	 * we might get lose if we need to
  85	 * cache_put it soon.
  86	 */
  87	cache_init(new, detail);
  88	detail->init(new, key);
  89
  90	write_lock(&detail->hash_lock);
  91
  92	/* check if entry appeared while we slept */
  93	hlist_for_each_entry(tmp, head, cache_list) {
 
  94		if (detail->match(tmp, key)) {
  95			if (cache_is_expired(detail, tmp)) {
  96				hlist_del_init(&tmp->cache_list);
 
  97				detail->entries --;
  98				freeme = tmp;
  99				break;
 100			}
 101			cache_get(tmp);
 102			write_unlock(&detail->hash_lock);
 103			cache_put(new, detail);
 104			return tmp;
 105		}
 106	}
 107
 108	hlist_add_head(&new->cache_list, head);
 109	detail->entries++;
 110	cache_get(new);
 111	write_unlock(&detail->hash_lock);
 112
 113	if (freeme)
 114		cache_put(freeme, detail);
 115	return new;
 116}
 117EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
 118
 119
 120static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 121
 122static void cache_fresh_locked(struct cache_head *head, time_t expiry,
 123			       struct cache_detail *detail)
 124{
 125	time_t now = seconds_since_boot();
 126	if (now <= detail->flush_time)
 127		/* ensure it isn't immediately treated as expired */
 128		now = detail->flush_time + 1;
 129	head->expiry_time = expiry;
 130	head->last_refresh = now;
 131	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 132	set_bit(CACHE_VALID, &head->flags);
 133}
 134
 135static void cache_fresh_unlocked(struct cache_head *head,
 136				 struct cache_detail *detail)
 137{
 138	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 139		cache_revisit_request(head);
 140		cache_dequeue(detail, head);
 141	}
 142}
 143
 144struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 145				       struct cache_head *new, struct cache_head *old, int hash)
 146{
 147	/* The 'old' entry is to be replaced by 'new'.
 148	 * If 'old' is not VALID, we update it directly,
 149	 * otherwise we need to replace it
 150	 */
 
 151	struct cache_head *tmp;
 152
 153	if (!test_bit(CACHE_VALID, &old->flags)) {
 154		write_lock(&detail->hash_lock);
 155		if (!test_bit(CACHE_VALID, &old->flags)) {
 156			if (test_bit(CACHE_NEGATIVE, &new->flags))
 157				set_bit(CACHE_NEGATIVE, &old->flags);
 158			else
 159				detail->update(old, new);
 160			cache_fresh_locked(old, new->expiry_time, detail);
 161			write_unlock(&detail->hash_lock);
 162			cache_fresh_unlocked(old, detail);
 163			return old;
 164		}
 165		write_unlock(&detail->hash_lock);
 166	}
 167	/* We need to insert a new entry */
 168	tmp = detail->alloc();
 169	if (!tmp) {
 170		cache_put(old, detail);
 171		return NULL;
 172	}
 173	cache_init(tmp, detail);
 174	detail->init(tmp, old);
 
 175
 176	write_lock(&detail->hash_lock);
 177	if (test_bit(CACHE_NEGATIVE, &new->flags))
 178		set_bit(CACHE_NEGATIVE, &tmp->flags);
 179	else
 180		detail->update(tmp, new);
 181	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
 
 182	detail->entries++;
 183	cache_get(tmp);
 184	cache_fresh_locked(tmp, new->expiry_time, detail);
 185	cache_fresh_locked(old, 0, detail);
 186	write_unlock(&detail->hash_lock);
 187	cache_fresh_unlocked(tmp, detail);
 188	cache_fresh_unlocked(old, detail);
 189	cache_put(old, detail);
 190	return tmp;
 191}
 192EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 193
 194static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 195{
 196	if (cd->cache_upcall)
 197		return cd->cache_upcall(cd, h);
 198	return sunrpc_cache_pipe_upcall(cd, h);
 199}
 200
 201static inline int cache_is_valid(struct cache_head *h)
 202{
 203	if (!test_bit(CACHE_VALID, &h->flags))
 204		return -EAGAIN;
 205	else {
 206		/* entry is valid */
 207		if (test_bit(CACHE_NEGATIVE, &h->flags))
 208			return -ENOENT;
 209		else {
 210			/*
 211			 * In combination with write barrier in
 212			 * sunrpc_cache_update, ensures that anyone
 213			 * using the cache entry after this sees the
 214			 * updated contents:
 215			 */
 216			smp_rmb();
 217			return 0;
 218		}
 219	}
 220}
 221
 222static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 223{
 224	int rv;
 225
 226	write_lock(&detail->hash_lock);
 227	rv = cache_is_valid(h);
 228	if (rv == -EAGAIN) {
 229		set_bit(CACHE_NEGATIVE, &h->flags);
 230		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
 231				   detail);
 232		rv = -ENOENT;
 233	}
 234	write_unlock(&detail->hash_lock);
 235	cache_fresh_unlocked(h, detail);
 236	return rv;
 237}
 238
 239/*
 240 * This is the generic cache management routine for all
 241 * the authentication caches.
 242 * It checks the currency of a cache item and will (later)
 243 * initiate an upcall to fill it if needed.
 244 *
 245 *
 246 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 247 * -EAGAIN if upcall is pending and request has been queued
 248 * -ETIMEDOUT if upcall failed or request could not be queue or
 249 *           upcall completed but item is still invalid (implying that
 250 *           the cache item has been replaced with a newer one).
 251 * -ENOENT if cache entry was negative
 252 */
 253int cache_check(struct cache_detail *detail,
 254		    struct cache_head *h, struct cache_req *rqstp)
 255{
 256	int rv;
 257	long refresh_age, age;
 258
 259	/* First decide return status as best we can */
 260	rv = cache_is_valid(h);
 261
 262	/* now see if we want to start an upcall */
 263	refresh_age = (h->expiry_time - h->last_refresh);
 264	age = seconds_since_boot() - h->last_refresh;
 265
 266	if (rqstp == NULL) {
 267		if (rv == -EAGAIN)
 268			rv = -ENOENT;
 269	} else if (rv == -EAGAIN ||
 270		   (h->expiry_time != 0 && age > refresh_age/2)) {
 271		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 272				refresh_age, age);
 273		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 274			switch (cache_make_upcall(detail, h)) {
 275			case -EINVAL:
 276				rv = try_to_negate_entry(detail, h);
 277				break;
 278			case -EAGAIN:
 279				cache_fresh_unlocked(h, detail);
 280				break;
 281			}
 282		}
 283	}
 284
 285	if (rv == -EAGAIN) {
 286		if (!cache_defer_req(rqstp, h)) {
 287			/*
 288			 * Request was not deferred; handle it as best
 289			 * we can ourselves:
 290			 */
 291			rv = cache_is_valid(h);
 292			if (rv == -EAGAIN)
 293				rv = -ETIMEDOUT;
 294		}
 295	}
 296	if (rv)
 297		cache_put(h, detail);
 298	return rv;
 299}
 300EXPORT_SYMBOL_GPL(cache_check);
 301
 302/*
 303 * caches need to be periodically cleaned.
 304 * For this we maintain a list of cache_detail and
 305 * a current pointer into that list and into the table
 306 * for that entry.
 307 *
 308 * Each time cache_clean is called it finds the next non-empty entry
 309 * in the current table and walks the list in that entry
 310 * looking for entries that can be removed.
 311 *
 312 * An entry gets removed if:
 313 * - The expiry is before current time
 314 * - The last_refresh time is before the flush_time for that cache
 315 *
 316 * later we might drop old entries with non-NEVER expiry if that table
 317 * is getting 'full' for some definition of 'full'
 318 *
 319 * The question of "how often to scan a table" is an interesting one
 320 * and is answered in part by the use of the "nextcheck" field in the
 321 * cache_detail.
 322 * When a scan of a table begins, the nextcheck field is set to a time
 323 * that is well into the future.
 324 * While scanning, if an expiry time is found that is earlier than the
 325 * current nextcheck time, nextcheck is set to that expiry time.
 326 * If the flush_time is ever set to a time earlier than the nextcheck
 327 * time, the nextcheck time is then set to that flush_time.
 328 *
 329 * A table is then only scanned if the current time is at least
 330 * the nextcheck time.
 331 *
 332 */
 333
 334static LIST_HEAD(cache_list);
 335static DEFINE_SPINLOCK(cache_list_lock);
 336static struct cache_detail *current_detail;
 337static int current_index;
 338
 339static void do_cache_clean(struct work_struct *work);
 340static struct delayed_work cache_cleaner;
 341
 342void sunrpc_init_cache_detail(struct cache_detail *cd)
 343{
 344	rwlock_init(&cd->hash_lock);
 345	INIT_LIST_HEAD(&cd->queue);
 346	spin_lock(&cache_list_lock);
 347	cd->nextcheck = 0;
 348	cd->entries = 0;
 349	atomic_set(&cd->readers, 0);
 350	cd->last_close = 0;
 351	cd->last_warn = -1;
 352	list_add(&cd->others, &cache_list);
 353	spin_unlock(&cache_list_lock);
 354
 355	/* start the cleaning process */
 356	schedule_delayed_work(&cache_cleaner, 0);
 357}
 358EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 359
 360void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 361{
 362	cache_purge(cd);
 363	spin_lock(&cache_list_lock);
 364	write_lock(&cd->hash_lock);
 365	if (cd->entries || atomic_read(&cd->inuse)) {
 366		write_unlock(&cd->hash_lock);
 367		spin_unlock(&cache_list_lock);
 368		goto out;
 369	}
 370	if (current_detail == cd)
 371		current_detail = NULL;
 372	list_del_init(&cd->others);
 373	write_unlock(&cd->hash_lock);
 374	spin_unlock(&cache_list_lock);
 375	if (list_empty(&cache_list)) {
 376		/* module must be being unloaded so its safe to kill the worker */
 377		cancel_delayed_work_sync(&cache_cleaner);
 378	}
 379	return;
 380out:
 381	printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
 382}
 383EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 384
 385/* clean cache tries to find something to clean
 386 * and cleans it.
 387 * It returns 1 if it cleaned something,
 388 *            0 if it didn't find anything this time
 389 *           -1 if it fell off the end of the list.
 390 */
 391static int cache_clean(void)
 392{
 393	int rv = 0;
 394	struct list_head *next;
 395
 396	spin_lock(&cache_list_lock);
 397
 398	/* find a suitable table if we don't already have one */
 399	while (current_detail == NULL ||
 400	    current_index >= current_detail->hash_size) {
 401		if (current_detail)
 402			next = current_detail->others.next;
 403		else
 404			next = cache_list.next;
 405		if (next == &cache_list) {
 406			current_detail = NULL;
 407			spin_unlock(&cache_list_lock);
 408			return -1;
 409		}
 410		current_detail = list_entry(next, struct cache_detail, others);
 411		if (current_detail->nextcheck > seconds_since_boot())
 412			current_index = current_detail->hash_size;
 413		else {
 414			current_index = 0;
 415			current_detail->nextcheck = seconds_since_boot()+30*60;
 416		}
 417	}
 418
 419	/* find a non-empty bucket in the table */
 420	while (current_detail &&
 421	       current_index < current_detail->hash_size &&
 422	       hlist_empty(&current_detail->hash_table[current_index]))
 423		current_index++;
 424
 425	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
 426
 427	if (current_detail && current_index < current_detail->hash_size) {
 428		struct cache_head *ch = NULL;
 429		struct cache_detail *d;
 430		struct hlist_head *head;
 431		struct hlist_node *tmp;
 432
 433		write_lock(&current_detail->hash_lock);
 434
 435		/* Ok, now to clean this strand */
 436
 437		head = &current_detail->hash_table[current_index];
 438		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
 439			if (current_detail->nextcheck > ch->expiry_time)
 440				current_detail->nextcheck = ch->expiry_time+1;
 441			if (!cache_is_expired(current_detail, ch))
 442				continue;
 443
 444			hlist_del_init(&ch->cache_list);
 
 445			current_detail->entries--;
 446			rv = 1;
 447			break;
 448		}
 449
 450		write_unlock(&current_detail->hash_lock);
 451		d = current_detail;
 452		if (!ch)
 453			current_index ++;
 454		spin_unlock(&cache_list_lock);
 455		if (ch) {
 456			set_bit(CACHE_CLEANED, &ch->flags);
 457			cache_fresh_unlocked(ch, d);
 458			cache_put(ch, d);
 459		}
 460	} else
 461		spin_unlock(&cache_list_lock);
 462
 463	return rv;
 464}
 465
 466/*
 467 * We want to regularly clean the cache, so we need to schedule some work ...
 468 */
 469static void do_cache_clean(struct work_struct *work)
 470{
 471	int delay = 5;
 472	if (cache_clean() == -1)
 473		delay = round_jiffies_relative(30*HZ);
 474
 475	if (list_empty(&cache_list))
 476		delay = 0;
 477
 478	if (delay)
 479		schedule_delayed_work(&cache_cleaner, delay);
 480}
 481
 482
 483/*
 484 * Clean all caches promptly.  This just calls cache_clean
 485 * repeatedly until we are sure that every cache has had a chance to
 486 * be fully cleaned
 487 */
 488void cache_flush(void)
 489{
 490	while (cache_clean() != -1)
 491		cond_resched();
 492	while (cache_clean() != -1)
 493		cond_resched();
 494}
 495EXPORT_SYMBOL_GPL(cache_flush);
 496
 497void cache_purge(struct cache_detail *detail)
 498{
 499	time_t now = seconds_since_boot();
 500	if (detail->flush_time >= now)
 501		now = detail->flush_time + 1;
 502	/* 'now' is the maximum value any 'last_refresh' can have */
 503	detail->flush_time = now;
 504	detail->nextcheck = seconds_since_boot();
 505	cache_flush();
 
 506}
 507EXPORT_SYMBOL_GPL(cache_purge);
 508
 509
 510/*
 511 * Deferral and Revisiting of Requests.
 512 *
 513 * If a cache lookup finds a pending entry, we
 514 * need to defer the request and revisit it later.
 515 * All deferred requests are stored in a hash table,
 516 * indexed by "struct cache_head *".
 517 * As it may be wasteful to store a whole request
 518 * structure, we allow the request to provide a
 519 * deferred form, which must contain a
 520 * 'struct cache_deferred_req'
 521 * This cache_deferred_req contains a method to allow
 522 * it to be revisited when cache info is available
 523 */
 524
 525#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
 526#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 527
 528#define	DFR_MAX	300	/* ??? */
 529
 530static DEFINE_SPINLOCK(cache_defer_lock);
 531static LIST_HEAD(cache_defer_list);
 532static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 533static int cache_defer_cnt;
 534
 535static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 536{
 537	hlist_del_init(&dreq->hash);
 538	if (!list_empty(&dreq->recent)) {
 539		list_del_init(&dreq->recent);
 540		cache_defer_cnt--;
 541	}
 542}
 543
 544static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 545{
 546	int hash = DFR_HASH(item);
 547
 548	INIT_LIST_HEAD(&dreq->recent);
 549	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 550}
 551
 552static void setup_deferral(struct cache_deferred_req *dreq,
 553			   struct cache_head *item,
 554			   int count_me)
 555{
 556
 557	dreq->item = item;
 558
 559	spin_lock(&cache_defer_lock);
 560
 561	__hash_deferred_req(dreq, item);
 562
 563	if (count_me) {
 564		cache_defer_cnt++;
 565		list_add(&dreq->recent, &cache_defer_list);
 566	}
 567
 568	spin_unlock(&cache_defer_lock);
 569
 570}
 571
 572struct thread_deferred_req {
 573	struct cache_deferred_req handle;
 574	struct completion completion;
 575};
 576
 577static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 578{
 579	struct thread_deferred_req *dr =
 580		container_of(dreq, struct thread_deferred_req, handle);
 581	complete(&dr->completion);
 582}
 583
 584static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 585{
 586	struct thread_deferred_req sleeper;
 587	struct cache_deferred_req *dreq = &sleeper.handle;
 588
 589	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 590	dreq->revisit = cache_restart_thread;
 591
 592	setup_deferral(dreq, item, 0);
 593
 594	if (!test_bit(CACHE_PENDING, &item->flags) ||
 595	    wait_for_completion_interruptible_timeout(
 596		    &sleeper.completion, req->thread_wait) <= 0) {
 597		/* The completion wasn't completed, so we need
 598		 * to clean up
 599		 */
 600		spin_lock(&cache_defer_lock);
 601		if (!hlist_unhashed(&sleeper.handle.hash)) {
 602			__unhash_deferred_req(&sleeper.handle);
 603			spin_unlock(&cache_defer_lock);
 604		} else {
 605			/* cache_revisit_request already removed
 606			 * this from the hash table, but hasn't
 607			 * called ->revisit yet.  It will very soon
 608			 * and we need to wait for it.
 609			 */
 610			spin_unlock(&cache_defer_lock);
 611			wait_for_completion(&sleeper.completion);
 612		}
 613	}
 614}
 615
 616static void cache_limit_defers(void)
 617{
 618	/* Make sure we haven't exceed the limit of allowed deferred
 619	 * requests.
 620	 */
 621	struct cache_deferred_req *discard = NULL;
 622
 623	if (cache_defer_cnt <= DFR_MAX)
 624		return;
 625
 626	spin_lock(&cache_defer_lock);
 627
 628	/* Consider removing either the first or the last */
 629	if (cache_defer_cnt > DFR_MAX) {
 630		if (prandom_u32() & 1)
 631			discard = list_entry(cache_defer_list.next,
 632					     struct cache_deferred_req, recent);
 633		else
 634			discard = list_entry(cache_defer_list.prev,
 635					     struct cache_deferred_req, recent);
 636		__unhash_deferred_req(discard);
 637	}
 638	spin_unlock(&cache_defer_lock);
 639	if (discard)
 640		discard->revisit(discard, 1);
 641}
 642
 643/* Return true if and only if a deferred request is queued. */
 644static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 645{
 646	struct cache_deferred_req *dreq;
 647
 648	if (req->thread_wait) {
 649		cache_wait_req(req, item);
 650		if (!test_bit(CACHE_PENDING, &item->flags))
 651			return false;
 652	}
 653	dreq = req->defer(req);
 654	if (dreq == NULL)
 655		return false;
 656	setup_deferral(dreq, item, 1);
 657	if (!test_bit(CACHE_PENDING, &item->flags))
 658		/* Bit could have been cleared before we managed to
 659		 * set up the deferral, so need to revisit just in case
 660		 */
 661		cache_revisit_request(item);
 662
 663	cache_limit_defers();
 664	return true;
 665}
 666
 667static void cache_revisit_request(struct cache_head *item)
 668{
 669	struct cache_deferred_req *dreq;
 670	struct list_head pending;
 671	struct hlist_node *tmp;
 672	int hash = DFR_HASH(item);
 673
 674	INIT_LIST_HEAD(&pending);
 675	spin_lock(&cache_defer_lock);
 676
 677	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 678		if (dreq->item == item) {
 679			__unhash_deferred_req(dreq);
 680			list_add(&dreq->recent, &pending);
 681		}
 682
 683	spin_unlock(&cache_defer_lock);
 684
 685	while (!list_empty(&pending)) {
 686		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 687		list_del_init(&dreq->recent);
 688		dreq->revisit(dreq, 0);
 689	}
 690}
 691
 692void cache_clean_deferred(void *owner)
 693{
 694	struct cache_deferred_req *dreq, *tmp;
 695	struct list_head pending;
 696
 697
 698	INIT_LIST_HEAD(&pending);
 699	spin_lock(&cache_defer_lock);
 700
 701	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 702		if (dreq->owner == owner) {
 703			__unhash_deferred_req(dreq);
 704			list_add(&dreq->recent, &pending);
 705		}
 706	}
 707	spin_unlock(&cache_defer_lock);
 708
 709	while (!list_empty(&pending)) {
 710		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 711		list_del_init(&dreq->recent);
 712		dreq->revisit(dreq, 1);
 713	}
 714}
 715
 716/*
 717 * communicate with user-space
 718 *
 719 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
 720 * On read, you get a full request, or block.
 721 * On write, an update request is processed.
 722 * Poll works if anything to read, and always allows write.
 723 *
 724 * Implemented by linked list of requests.  Each open file has
 725 * a ->private that also exists in this list.  New requests are added
 726 * to the end and may wakeup and preceding readers.
 727 * New readers are added to the head.  If, on read, an item is found with
 728 * CACHE_UPCALLING clear, we free it from the list.
 729 *
 730 */
 731
 732static DEFINE_SPINLOCK(queue_lock);
 733static DEFINE_MUTEX(queue_io_mutex);
 734
 735struct cache_queue {
 736	struct list_head	list;
 737	int			reader;	/* if 0, then request */
 738};
 739struct cache_request {
 740	struct cache_queue	q;
 741	struct cache_head	*item;
 742	char			* buf;
 743	int			len;
 744	int			readers;
 745};
 746struct cache_reader {
 747	struct cache_queue	q;
 748	int			offset;	/* if non-0, we have a refcnt on next request */
 749};
 750
 751static int cache_request(struct cache_detail *detail,
 752			       struct cache_request *crq)
 753{
 754	char *bp = crq->buf;
 755	int len = PAGE_SIZE;
 756
 757	detail->cache_request(detail, crq->item, &bp, &len);
 758	if (len < 0)
 759		return -EAGAIN;
 760	return PAGE_SIZE - len;
 761}
 762
 763static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 764			  loff_t *ppos, struct cache_detail *cd)
 765{
 766	struct cache_reader *rp = filp->private_data;
 767	struct cache_request *rq;
 768	struct inode *inode = file_inode(filp);
 769	int err;
 770
 771	if (count == 0)
 772		return 0;
 773
 774	inode_lock(inode); /* protect against multiple concurrent
 775			      * readers on this file */
 776 again:
 777	spin_lock(&queue_lock);
 778	/* need to find next request */
 779	while (rp->q.list.next != &cd->queue &&
 780	       list_entry(rp->q.list.next, struct cache_queue, list)
 781	       ->reader) {
 782		struct list_head *next = rp->q.list.next;
 783		list_move(&rp->q.list, next);
 784	}
 785	if (rp->q.list.next == &cd->queue) {
 786		spin_unlock(&queue_lock);
 787		inode_unlock(inode);
 788		WARN_ON_ONCE(rp->offset);
 789		return 0;
 790	}
 791	rq = container_of(rp->q.list.next, struct cache_request, q.list);
 792	WARN_ON_ONCE(rq->q.reader);
 793	if (rp->offset == 0)
 794		rq->readers++;
 795	spin_unlock(&queue_lock);
 796
 797	if (rq->len == 0) {
 798		err = cache_request(cd, rq);
 799		if (err < 0)
 800			goto out;
 801		rq->len = err;
 802	}
 803
 804	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 805		err = -EAGAIN;
 806		spin_lock(&queue_lock);
 807		list_move(&rp->q.list, &rq->q.list);
 808		spin_unlock(&queue_lock);
 809	} else {
 810		if (rp->offset + count > rq->len)
 811			count = rq->len - rp->offset;
 812		err = -EFAULT;
 813		if (copy_to_user(buf, rq->buf + rp->offset, count))
 814			goto out;
 815		rp->offset += count;
 816		if (rp->offset >= rq->len) {
 817			rp->offset = 0;
 818			spin_lock(&queue_lock);
 819			list_move(&rp->q.list, &rq->q.list);
 820			spin_unlock(&queue_lock);
 821		}
 822		err = 0;
 823	}
 824 out:
 825	if (rp->offset == 0) {
 826		/* need to release rq */
 827		spin_lock(&queue_lock);
 828		rq->readers--;
 829		if (rq->readers == 0 &&
 830		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 831			list_del(&rq->q.list);
 832			spin_unlock(&queue_lock);
 833			cache_put(rq->item, cd);
 834			kfree(rq->buf);
 835			kfree(rq);
 836		} else
 837			spin_unlock(&queue_lock);
 838	}
 839	if (err == -EAGAIN)
 840		goto again;
 841	inode_unlock(inode);
 842	return err ? err :  count;
 843}
 844
 845static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 846				 size_t count, struct cache_detail *cd)
 847{
 848	ssize_t ret;
 849
 850	if (count == 0)
 851		return -EINVAL;
 852	if (copy_from_user(kaddr, buf, count))
 853		return -EFAULT;
 854	kaddr[count] = '\0';
 855	ret = cd->cache_parse(cd, kaddr, count);
 856	if (!ret)
 857		ret = count;
 858	return ret;
 859}
 860
 861static ssize_t cache_slow_downcall(const char __user *buf,
 862				   size_t count, struct cache_detail *cd)
 863{
 864	static char write_buf[8192]; /* protected by queue_io_mutex */
 865	ssize_t ret = -EINVAL;
 866
 867	if (count >= sizeof(write_buf))
 868		goto out;
 869	mutex_lock(&queue_io_mutex);
 870	ret = cache_do_downcall(write_buf, buf, count, cd);
 871	mutex_unlock(&queue_io_mutex);
 872out:
 873	return ret;
 874}
 875
 876static ssize_t cache_downcall(struct address_space *mapping,
 877			      const char __user *buf,
 878			      size_t count, struct cache_detail *cd)
 879{
 880	struct page *page;
 881	char *kaddr;
 882	ssize_t ret = -ENOMEM;
 883
 884	if (count >= PAGE_SIZE)
 885		goto out_slow;
 886
 887	page = find_or_create_page(mapping, 0, GFP_KERNEL);
 888	if (!page)
 889		goto out_slow;
 890
 891	kaddr = kmap(page);
 892	ret = cache_do_downcall(kaddr, buf, count, cd);
 893	kunmap(page);
 894	unlock_page(page);
 895	put_page(page);
 896	return ret;
 897out_slow:
 898	return cache_slow_downcall(buf, count, cd);
 899}
 900
 901static ssize_t cache_write(struct file *filp, const char __user *buf,
 902			   size_t count, loff_t *ppos,
 903			   struct cache_detail *cd)
 904{
 905	struct address_space *mapping = filp->f_mapping;
 906	struct inode *inode = file_inode(filp);
 907	ssize_t ret = -EINVAL;
 908
 909	if (!cd->cache_parse)
 910		goto out;
 911
 912	inode_lock(inode);
 913	ret = cache_downcall(mapping, buf, count, cd);
 914	inode_unlock(inode);
 915out:
 916	return ret;
 917}
 918
 919static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 920
 921static unsigned int cache_poll(struct file *filp, poll_table *wait,
 922			       struct cache_detail *cd)
 923{
 924	unsigned int mask;
 925	struct cache_reader *rp = filp->private_data;
 926	struct cache_queue *cq;
 927
 928	poll_wait(filp, &queue_wait, wait);
 929
 930	/* alway allow write */
 931	mask = POLLOUT | POLLWRNORM;
 932
 933	if (!rp)
 934		return mask;
 935
 936	spin_lock(&queue_lock);
 937
 938	for (cq= &rp->q; &cq->list != &cd->queue;
 939	     cq = list_entry(cq->list.next, struct cache_queue, list))
 940		if (!cq->reader) {
 941			mask |= POLLIN | POLLRDNORM;
 942			break;
 943		}
 944	spin_unlock(&queue_lock);
 945	return mask;
 946}
 947
 948static int cache_ioctl(struct inode *ino, struct file *filp,
 949		       unsigned int cmd, unsigned long arg,
 950		       struct cache_detail *cd)
 951{
 952	int len = 0;
 953	struct cache_reader *rp = filp->private_data;
 954	struct cache_queue *cq;
 955
 956	if (cmd != FIONREAD || !rp)
 957		return -EINVAL;
 958
 959	spin_lock(&queue_lock);
 960
 961	/* only find the length remaining in current request,
 962	 * or the length of the next request
 963	 */
 964	for (cq= &rp->q; &cq->list != &cd->queue;
 965	     cq = list_entry(cq->list.next, struct cache_queue, list))
 966		if (!cq->reader) {
 967			struct cache_request *cr =
 968				container_of(cq, struct cache_request, q);
 969			len = cr->len - rp->offset;
 970			break;
 971		}
 972	spin_unlock(&queue_lock);
 973
 974	return put_user(len, (int __user *)arg);
 975}
 976
 977static int cache_open(struct inode *inode, struct file *filp,
 978		      struct cache_detail *cd)
 979{
 980	struct cache_reader *rp = NULL;
 981
 982	if (!cd || !try_module_get(cd->owner))
 983		return -EACCES;
 984	nonseekable_open(inode, filp);
 985	if (filp->f_mode & FMODE_READ) {
 986		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 987		if (!rp) {
 988			module_put(cd->owner);
 989			return -ENOMEM;
 990		}
 991		rp->offset = 0;
 992		rp->q.reader = 1;
 993		atomic_inc(&cd->readers);
 994		spin_lock(&queue_lock);
 995		list_add(&rp->q.list, &cd->queue);
 996		spin_unlock(&queue_lock);
 997	}
 998	filp->private_data = rp;
 999	return 0;
1000}
1001
1002static int cache_release(struct inode *inode, struct file *filp,
1003			 struct cache_detail *cd)
1004{
1005	struct cache_reader *rp = filp->private_data;
1006
1007	if (rp) {
1008		spin_lock(&queue_lock);
1009		if (rp->offset) {
1010			struct cache_queue *cq;
1011			for (cq= &rp->q; &cq->list != &cd->queue;
1012			     cq = list_entry(cq->list.next, struct cache_queue, list))
1013				if (!cq->reader) {
1014					container_of(cq, struct cache_request, q)
1015						->readers--;
1016					break;
1017				}
1018			rp->offset = 0;
1019		}
1020		list_del(&rp->q.list);
1021		spin_unlock(&queue_lock);
1022
1023		filp->private_data = NULL;
1024		kfree(rp);
1025
1026		cd->last_close = seconds_since_boot();
1027		atomic_dec(&cd->readers);
1028	}
1029	module_put(cd->owner);
1030	return 0;
1031}
1032
1033
1034
1035static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1036{
1037	struct cache_queue *cq, *tmp;
1038	struct cache_request *cr;
1039	struct list_head dequeued;
1040
1041	INIT_LIST_HEAD(&dequeued);
1042	spin_lock(&queue_lock);
1043	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1044		if (!cq->reader) {
1045			cr = container_of(cq, struct cache_request, q);
1046			if (cr->item != ch)
1047				continue;
1048			if (test_bit(CACHE_PENDING, &ch->flags))
1049				/* Lost a race and it is pending again */
1050				break;
1051			if (cr->readers != 0)
1052				continue;
1053			list_move(&cr->q.list, &dequeued);
1054		}
1055	spin_unlock(&queue_lock);
1056	while (!list_empty(&dequeued)) {
1057		cr = list_entry(dequeued.next, struct cache_request, q.list);
1058		list_del(&cr->q.list);
1059		cache_put(cr->item, detail);
1060		kfree(cr->buf);
1061		kfree(cr);
1062	}
1063}
1064
1065/*
1066 * Support routines for text-based upcalls.
1067 * Fields are separated by spaces.
1068 * Fields are either mangled to quote space tab newline slosh with slosh
1069 * or a hexified with a leading \x
1070 * Record is terminated with newline.
1071 *
1072 */
1073
1074void qword_add(char **bpp, int *lp, char *str)
1075{
1076	char *bp = *bpp;
1077	int len = *lp;
1078	int ret;
1079
1080	if (len < 0) return;
1081
1082	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1083	if (ret >= len) {
1084		bp += len;
1085		len = -1;
1086	} else {
1087		bp += ret;
1088		len -= ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1089		*bp++ = ' ';
1090		len--;
1091	}
1092	*bpp = bp;
1093	*lp = len;
1094}
1095EXPORT_SYMBOL_GPL(qword_add);
1096
1097void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1098{
1099	char *bp = *bpp;
1100	int len = *lp;
1101
1102	if (len < 0) return;
1103
1104	if (len > 2) {
1105		*bp++ = '\\';
1106		*bp++ = 'x';
1107		len -= 2;
1108		while (blen && len >= 2) {
1109			bp = hex_byte_pack(bp, *buf++);
1110			len -= 2;
1111			blen--;
1112		}
1113	}
1114	if (blen || len<1) len = -1;
1115	else {
1116		*bp++ = ' ';
1117		len--;
1118	}
1119	*bpp = bp;
1120	*lp = len;
1121}
1122EXPORT_SYMBOL_GPL(qword_addhex);
1123
1124static void warn_no_listener(struct cache_detail *detail)
1125{
1126	if (detail->last_warn != detail->last_close) {
1127		detail->last_warn = detail->last_close;
1128		if (detail->warn_no_listener)
1129			detail->warn_no_listener(detail, detail->last_close != 0);
1130	}
1131}
1132
1133static bool cache_listeners_exist(struct cache_detail *detail)
1134{
1135	if (atomic_read(&detail->readers))
1136		return true;
1137	if (detail->last_close == 0)
1138		/* This cache was never opened */
1139		return false;
1140	if (detail->last_close < seconds_since_boot() - 30)
1141		/*
1142		 * We allow for the possibility that someone might
1143		 * restart a userspace daemon without restarting the
1144		 * server; but after 30 seconds, we give up.
1145		 */
1146		 return false;
1147	return true;
1148}
1149
1150/*
1151 * register an upcall request to user-space and queue it up for read() by the
1152 * upcall daemon.
1153 *
1154 * Each request is at most one page long.
1155 */
1156int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1157{
1158
1159	char *buf;
1160	struct cache_request *crq;
1161	int ret = 0;
1162
1163	if (!detail->cache_request)
1164		return -EINVAL;
1165
1166	if (!cache_listeners_exist(detail)) {
1167		warn_no_listener(detail);
1168		return -EINVAL;
1169	}
1170	if (test_bit(CACHE_CLEANED, &h->flags))
1171		/* Too late to make an upcall */
1172		return -EAGAIN;
1173
1174	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1175	if (!buf)
1176		return -EAGAIN;
1177
1178	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1179	if (!crq) {
1180		kfree(buf);
1181		return -EAGAIN;
1182	}
1183
1184	crq->q.reader = 0;
 
1185	crq->buf = buf;
1186	crq->len = 0;
1187	crq->readers = 0;
1188	spin_lock(&queue_lock);
1189	if (test_bit(CACHE_PENDING, &h->flags)) {
1190		crq->item = cache_get(h);
1191		list_add_tail(&crq->q.list, &detail->queue);
1192	} else
1193		/* Lost a race, no longer PENDING, so don't enqueue */
1194		ret = -EAGAIN;
1195	spin_unlock(&queue_lock);
1196	wake_up(&queue_wait);
1197	if (ret == -EAGAIN) {
1198		kfree(buf);
1199		kfree(crq);
1200	}
1201	return ret;
1202}
1203EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1204
1205/*
1206 * parse a message from user-space and pass it
1207 * to an appropriate cache
1208 * Messages are, like requests, separated into fields by
1209 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1210 *
1211 * Message is
1212 *   reply cachename expiry key ... content....
1213 *
1214 * key and content are both parsed by cache
1215 */
1216
1217int qword_get(char **bpp, char *dest, int bufsize)
1218{
1219	/* return bytes copied, or -1 on error */
1220	char *bp = *bpp;
1221	int len = 0;
1222
1223	while (*bp == ' ') bp++;
1224
1225	if (bp[0] == '\\' && bp[1] == 'x') {
1226		/* HEX STRING */
1227		bp += 2;
1228		while (len < bufsize - 1) {
1229			int h, l;
1230
1231			h = hex_to_bin(bp[0]);
1232			if (h < 0)
1233				break;
1234
1235			l = hex_to_bin(bp[1]);
1236			if (l < 0)
1237				break;
1238
1239			*dest++ = (h << 4) | l;
1240			bp += 2;
1241			len++;
1242		}
1243	} else {
1244		/* text with \nnn octal quoting */
1245		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1246			if (*bp == '\\' &&
1247			    isodigit(bp[1]) && (bp[1] <= '3') &&
1248			    isodigit(bp[2]) &&
1249			    isodigit(bp[3])) {
1250				int byte = (*++bp -'0');
1251				bp++;
1252				byte = (byte << 3) | (*bp++ - '0');
1253				byte = (byte << 3) | (*bp++ - '0');
1254				*dest++ = byte;
1255				len++;
1256			} else {
1257				*dest++ = *bp++;
1258				len++;
1259			}
1260		}
1261	}
1262
1263	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1264		return -1;
1265	while (*bp == ' ') bp++;
1266	*bpp = bp;
1267	*dest = '\0';
1268	return len;
1269}
1270EXPORT_SYMBOL_GPL(qword_get);
1271
1272
1273/*
1274 * support /proc/sunrpc/cache/$CACHENAME/content
1275 * as a seqfile.
1276 * We call ->cache_show passing NULL for the item to
1277 * get a header, then pass each real item in the cache
1278 */
1279
1280void *cache_seq_start(struct seq_file *m, loff_t *pos)
 
 
 
 
1281	__acquires(cd->hash_lock)
1282{
1283	loff_t n = *pos;
1284	unsigned int hash, entry;
1285	struct cache_head *ch;
1286	struct cache_detail *cd = m->private;
 
1287
1288	read_lock(&cd->hash_lock);
1289	if (!n--)
1290		return SEQ_START_TOKEN;
1291	hash = n >> 32;
1292	entry = n & ((1LL<<32) - 1);
1293
1294	hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list)
1295		if (!entry--)
1296			return ch;
1297	n &= ~((1LL<<32) - 1);
1298	do {
1299		hash++;
1300		n += 1LL<<32;
1301	} while(hash < cd->hash_size &&
1302		hlist_empty(&cd->hash_table[hash]));
1303	if (hash >= cd->hash_size)
1304		return NULL;
1305	*pos = n+1;
1306	return hlist_entry_safe(cd->hash_table[hash].first,
1307				struct cache_head, cache_list);
1308}
1309EXPORT_SYMBOL_GPL(cache_seq_start);
1310
1311void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1312{
1313	struct cache_head *ch = p;
1314	int hash = (*pos >> 32);
1315	struct cache_detail *cd = m->private;
1316
1317	if (p == SEQ_START_TOKEN)
1318		hash = 0;
1319	else if (ch->cache_list.next == NULL) {
1320		hash++;
1321		*pos += 1LL<<32;
1322	} else {
1323		++*pos;
1324		return hlist_entry_safe(ch->cache_list.next,
1325					struct cache_head, cache_list);
1326	}
1327	*pos &= ~((1LL<<32) - 1);
1328	while (hash < cd->hash_size &&
1329	       hlist_empty(&cd->hash_table[hash])) {
1330		hash++;
1331		*pos += 1LL<<32;
1332	}
1333	if (hash >= cd->hash_size)
1334		return NULL;
1335	++*pos;
1336	return hlist_entry_safe(cd->hash_table[hash].first,
1337				struct cache_head, cache_list);
1338}
1339EXPORT_SYMBOL_GPL(cache_seq_next);
1340
1341void cache_seq_stop(struct seq_file *m, void *p)
1342	__releases(cd->hash_lock)
1343{
1344	struct cache_detail *cd = m->private;
1345	read_unlock(&cd->hash_lock);
1346}
1347EXPORT_SYMBOL_GPL(cache_seq_stop);
1348
1349static int c_show(struct seq_file *m, void *p)
1350{
1351	struct cache_head *cp = p;
1352	struct cache_detail *cd = m->private;
1353
1354	if (p == SEQ_START_TOKEN)
1355		return cd->cache_show(m, cd, NULL);
1356
1357	ifdebug(CACHE)
1358		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1359			   convert_to_wallclock(cp->expiry_time),
1360			   atomic_read(&cp->ref.refcount), cp->flags);
1361	cache_get(cp);
1362	if (cache_check(cd, cp, NULL))
1363		/* cache_check does a cache_put on failure */
1364		seq_printf(m, "# ");
1365	else {
1366		if (cache_is_expired(cd, cp))
1367			seq_printf(m, "# ");
1368		cache_put(cp, cd);
1369	}
1370
1371	return cd->cache_show(m, cd, cp);
1372}
1373
1374static const struct seq_operations cache_content_op = {
1375	.start	= cache_seq_start,
1376	.next	= cache_seq_next,
1377	.stop	= cache_seq_stop,
1378	.show	= c_show,
1379};
1380
1381static int content_open(struct inode *inode, struct file *file,
1382			struct cache_detail *cd)
1383{
1384	struct seq_file *seq;
1385	int err;
1386
1387	if (!cd || !try_module_get(cd->owner))
1388		return -EACCES;
1389
1390	err = seq_open(file, &cache_content_op);
1391	if (err) {
1392		module_put(cd->owner);
1393		return err;
1394	}
1395
1396	seq = file->private_data;
1397	seq->private = cd;
1398	return 0;
1399}
1400
1401static int content_release(struct inode *inode, struct file *file,
1402		struct cache_detail *cd)
1403{
1404	int ret = seq_release(inode, file);
1405	module_put(cd->owner);
1406	return ret;
1407}
1408
1409static int open_flush(struct inode *inode, struct file *file,
1410			struct cache_detail *cd)
1411{
1412	if (!cd || !try_module_get(cd->owner))
1413		return -EACCES;
1414	return nonseekable_open(inode, file);
1415}
1416
1417static int release_flush(struct inode *inode, struct file *file,
1418			struct cache_detail *cd)
1419{
1420	module_put(cd->owner);
1421	return 0;
1422}
1423
1424static ssize_t read_flush(struct file *file, char __user *buf,
1425			  size_t count, loff_t *ppos,
1426			  struct cache_detail *cd)
1427{
1428	char tbuf[22];
1429	unsigned long p = *ppos;
1430	size_t len;
1431
1432	snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1433	len = strlen(tbuf);
1434	if (p >= len)
1435		return 0;
1436	len -= p;
1437	if (len > count)
1438		len = count;
1439	if (copy_to_user(buf, (void*)(tbuf+p), len))
1440		return -EFAULT;
1441	*ppos += len;
1442	return len;
1443}
1444
1445static ssize_t write_flush(struct file *file, const char __user *buf,
1446			   size_t count, loff_t *ppos,
1447			   struct cache_detail *cd)
1448{
1449	char tbuf[20];
1450	char *bp, *ep;
1451	time_t then, now;
1452
1453	if (*ppos || count > sizeof(tbuf)-1)
1454		return -EINVAL;
1455	if (copy_from_user(tbuf, buf, count))
1456		return -EFAULT;
1457	tbuf[count] = 0;
1458	simple_strtoul(tbuf, &ep, 0);
1459	if (*ep && *ep != '\n')
1460		return -EINVAL;
1461
1462	bp = tbuf;
1463	then = get_expiry(&bp);
1464	now = seconds_since_boot();
1465	cd->nextcheck = now;
1466	/* Can only set flush_time to 1 second beyond "now", or
1467	 * possibly 1 second beyond flushtime.  This is because
1468	 * flush_time never goes backwards so it mustn't get too far
1469	 * ahead of time.
1470	 */
1471	if (then >= now) {
1472		/* Want to flush everything, so behave like cache_purge() */
1473		if (cd->flush_time >= now)
1474			now = cd->flush_time + 1;
1475		then = now;
1476	}
1477
1478	cd->flush_time = then;
1479	cache_flush();
1480
1481	*ppos += count;
1482	return count;
1483}
1484
1485static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1486				 size_t count, loff_t *ppos)
1487{
1488	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1489
1490	return cache_read(filp, buf, count, ppos, cd);
1491}
1492
1493static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1494				  size_t count, loff_t *ppos)
1495{
1496	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1497
1498	return cache_write(filp, buf, count, ppos, cd);
1499}
1500
1501static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1502{
1503	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1504
1505	return cache_poll(filp, wait, cd);
1506}
1507
1508static long cache_ioctl_procfs(struct file *filp,
1509			       unsigned int cmd, unsigned long arg)
1510{
1511	struct inode *inode = file_inode(filp);
1512	struct cache_detail *cd = PDE_DATA(inode);
1513
1514	return cache_ioctl(inode, filp, cmd, arg, cd);
1515}
1516
1517static int cache_open_procfs(struct inode *inode, struct file *filp)
1518{
1519	struct cache_detail *cd = PDE_DATA(inode);
1520
1521	return cache_open(inode, filp, cd);
1522}
1523
1524static int cache_release_procfs(struct inode *inode, struct file *filp)
1525{
1526	struct cache_detail *cd = PDE_DATA(inode);
1527
1528	return cache_release(inode, filp, cd);
1529}
1530
1531static const struct file_operations cache_file_operations_procfs = {
1532	.owner		= THIS_MODULE,
1533	.llseek		= no_llseek,
1534	.read		= cache_read_procfs,
1535	.write		= cache_write_procfs,
1536	.poll		= cache_poll_procfs,
1537	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1538	.open		= cache_open_procfs,
1539	.release	= cache_release_procfs,
1540};
1541
1542static int content_open_procfs(struct inode *inode, struct file *filp)
1543{
1544	struct cache_detail *cd = PDE_DATA(inode);
1545
1546	return content_open(inode, filp, cd);
1547}
1548
1549static int content_release_procfs(struct inode *inode, struct file *filp)
1550{
1551	struct cache_detail *cd = PDE_DATA(inode);
1552
1553	return content_release(inode, filp, cd);
1554}
1555
1556static const struct file_operations content_file_operations_procfs = {
1557	.open		= content_open_procfs,
1558	.read		= seq_read,
1559	.llseek		= seq_lseek,
1560	.release	= content_release_procfs,
1561};
1562
1563static int open_flush_procfs(struct inode *inode, struct file *filp)
1564{
1565	struct cache_detail *cd = PDE_DATA(inode);
1566
1567	return open_flush(inode, filp, cd);
1568}
1569
1570static int release_flush_procfs(struct inode *inode, struct file *filp)
1571{
1572	struct cache_detail *cd = PDE_DATA(inode);
1573
1574	return release_flush(inode, filp, cd);
1575}
1576
1577static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1578			    size_t count, loff_t *ppos)
1579{
1580	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1581
1582	return read_flush(filp, buf, count, ppos, cd);
1583}
1584
1585static ssize_t write_flush_procfs(struct file *filp,
1586				  const char __user *buf,
1587				  size_t count, loff_t *ppos)
1588{
1589	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1590
1591	return write_flush(filp, buf, count, ppos, cd);
1592}
1593
1594static const struct file_operations cache_flush_operations_procfs = {
1595	.open		= open_flush_procfs,
1596	.read		= read_flush_procfs,
1597	.write		= write_flush_procfs,
1598	.release	= release_flush_procfs,
1599	.llseek		= no_llseek,
1600};
1601
1602static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1603{
1604	struct sunrpc_net *sn;
1605
1606	if (cd->u.procfs.proc_ent == NULL)
1607		return;
1608	if (cd->u.procfs.flush_ent)
1609		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1610	if (cd->u.procfs.channel_ent)
1611		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1612	if (cd->u.procfs.content_ent)
1613		remove_proc_entry("content", cd->u.procfs.proc_ent);
1614	cd->u.procfs.proc_ent = NULL;
1615	sn = net_generic(net, sunrpc_net_id);
1616	remove_proc_entry(cd->name, sn->proc_net_rpc);
1617}
1618
1619#ifdef CONFIG_PROC_FS
1620static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1621{
1622	struct proc_dir_entry *p;
1623	struct sunrpc_net *sn;
1624
1625	sn = net_generic(net, sunrpc_net_id);
1626	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1627	if (cd->u.procfs.proc_ent == NULL)
1628		goto out_nomem;
1629	cd->u.procfs.channel_ent = NULL;
1630	cd->u.procfs.content_ent = NULL;
1631
1632	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1633			     cd->u.procfs.proc_ent,
1634			     &cache_flush_operations_procfs, cd);
1635	cd->u.procfs.flush_ent = p;
1636	if (p == NULL)
1637		goto out_nomem;
1638
1639	if (cd->cache_request || cd->cache_parse) {
1640		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1641				     cd->u.procfs.proc_ent,
1642				     &cache_file_operations_procfs, cd);
1643		cd->u.procfs.channel_ent = p;
1644		if (p == NULL)
1645			goto out_nomem;
1646	}
1647	if (cd->cache_show) {
1648		p = proc_create_data("content", S_IFREG|S_IRUSR,
1649				cd->u.procfs.proc_ent,
1650				&content_file_operations_procfs, cd);
1651		cd->u.procfs.content_ent = p;
1652		if (p == NULL)
1653			goto out_nomem;
1654	}
1655	return 0;
1656out_nomem:
1657	remove_cache_proc_entries(cd, net);
1658	return -ENOMEM;
1659}
1660#else /* CONFIG_PROC_FS */
1661static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1662{
1663	return 0;
1664}
1665#endif
1666
1667void __init cache_initialize(void)
1668{
1669	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1670}
1671
1672int cache_register_net(struct cache_detail *cd, struct net *net)
1673{
1674	int ret;
1675
1676	sunrpc_init_cache_detail(cd);
1677	ret = create_cache_proc_entries(cd, net);
1678	if (ret)
1679		sunrpc_destroy_cache_detail(cd);
1680	return ret;
1681}
1682EXPORT_SYMBOL_GPL(cache_register_net);
1683
1684void cache_unregister_net(struct cache_detail *cd, struct net *net)
1685{
1686	remove_cache_proc_entries(cd, net);
1687	sunrpc_destroy_cache_detail(cd);
1688}
1689EXPORT_SYMBOL_GPL(cache_unregister_net);
1690
1691struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1692{
1693	struct cache_detail *cd;
1694	int i;
1695
1696	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1697	if (cd == NULL)
1698		return ERR_PTR(-ENOMEM);
1699
1700	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head),
1701				 GFP_KERNEL);
1702	if (cd->hash_table == NULL) {
1703		kfree(cd);
1704		return ERR_PTR(-ENOMEM);
1705	}
1706
1707	for (i = 0; i < cd->hash_size; i++)
1708		INIT_HLIST_HEAD(&cd->hash_table[i]);
1709	cd->net = net;
1710	return cd;
1711}
1712EXPORT_SYMBOL_GPL(cache_create_net);
1713
1714void cache_destroy_net(struct cache_detail *cd, struct net *net)
1715{
1716	kfree(cd->hash_table);
1717	kfree(cd);
1718}
1719EXPORT_SYMBOL_GPL(cache_destroy_net);
1720
1721static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1722				 size_t count, loff_t *ppos)
1723{
1724	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1725
1726	return cache_read(filp, buf, count, ppos, cd);
1727}
1728
1729static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1730				  size_t count, loff_t *ppos)
1731{
1732	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1733
1734	return cache_write(filp, buf, count, ppos, cd);
1735}
1736
1737static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1738{
1739	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1740
1741	return cache_poll(filp, wait, cd);
1742}
1743
1744static long cache_ioctl_pipefs(struct file *filp,
1745			      unsigned int cmd, unsigned long arg)
1746{
1747	struct inode *inode = file_inode(filp);
1748	struct cache_detail *cd = RPC_I(inode)->private;
1749
1750	return cache_ioctl(inode, filp, cmd, arg, cd);
1751}
1752
1753static int cache_open_pipefs(struct inode *inode, struct file *filp)
1754{
1755	struct cache_detail *cd = RPC_I(inode)->private;
1756
1757	return cache_open(inode, filp, cd);
1758}
1759
1760static int cache_release_pipefs(struct inode *inode, struct file *filp)
1761{
1762	struct cache_detail *cd = RPC_I(inode)->private;
1763
1764	return cache_release(inode, filp, cd);
1765}
1766
1767const struct file_operations cache_file_operations_pipefs = {
1768	.owner		= THIS_MODULE,
1769	.llseek		= no_llseek,
1770	.read		= cache_read_pipefs,
1771	.write		= cache_write_pipefs,
1772	.poll		= cache_poll_pipefs,
1773	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1774	.open		= cache_open_pipefs,
1775	.release	= cache_release_pipefs,
1776};
1777
1778static int content_open_pipefs(struct inode *inode, struct file *filp)
1779{
1780	struct cache_detail *cd = RPC_I(inode)->private;
1781
1782	return content_open(inode, filp, cd);
1783}
1784
1785static int content_release_pipefs(struct inode *inode, struct file *filp)
1786{
1787	struct cache_detail *cd = RPC_I(inode)->private;
1788
1789	return content_release(inode, filp, cd);
1790}
1791
1792const struct file_operations content_file_operations_pipefs = {
1793	.open		= content_open_pipefs,
1794	.read		= seq_read,
1795	.llseek		= seq_lseek,
1796	.release	= content_release_pipefs,
1797};
1798
1799static int open_flush_pipefs(struct inode *inode, struct file *filp)
1800{
1801	struct cache_detail *cd = RPC_I(inode)->private;
1802
1803	return open_flush(inode, filp, cd);
1804}
1805
1806static int release_flush_pipefs(struct inode *inode, struct file *filp)
1807{
1808	struct cache_detail *cd = RPC_I(inode)->private;
1809
1810	return release_flush(inode, filp, cd);
1811}
1812
1813static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1814			    size_t count, loff_t *ppos)
1815{
1816	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1817
1818	return read_flush(filp, buf, count, ppos, cd);
1819}
1820
1821static ssize_t write_flush_pipefs(struct file *filp,
1822				  const char __user *buf,
1823				  size_t count, loff_t *ppos)
1824{
1825	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1826
1827	return write_flush(filp, buf, count, ppos, cd);
1828}
1829
1830const struct file_operations cache_flush_operations_pipefs = {
1831	.open		= open_flush_pipefs,
1832	.read		= read_flush_pipefs,
1833	.write		= write_flush_pipefs,
1834	.release	= release_flush_pipefs,
1835	.llseek		= no_llseek,
1836};
1837
1838int sunrpc_cache_register_pipefs(struct dentry *parent,
1839				 const char *name, umode_t umode,
1840				 struct cache_detail *cd)
1841{
1842	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1843	if (IS_ERR(dir))
1844		return PTR_ERR(dir);
1845	cd->u.pipefs.dir = dir;
1846	return 0;
1847}
1848EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1849
1850void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1851{
1852	rpc_remove_cache_dir(cd->u.pipefs.dir);
1853	cd->u.pipefs.dir = NULL;
1854}
1855EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1856
v3.15
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
 
  23#include <asm/uaccess.h>
  24#include <linux/poll.h>
  25#include <linux/seq_file.h>
  26#include <linux/proc_fs.h>
  27#include <linux/net.h>
  28#include <linux/workqueue.h>
  29#include <linux/mutex.h>
  30#include <linux/pagemap.h>
  31#include <asm/ioctls.h>
  32#include <linux/sunrpc/types.h>
  33#include <linux/sunrpc/cache.h>
  34#include <linux/sunrpc/stats.h>
  35#include <linux/sunrpc/rpc_pipe_fs.h>
  36#include "netns.h"
  37
  38#define	 RPCDBG_FACILITY RPCDBG_CACHE
  39
  40static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  41static void cache_revisit_request(struct cache_head *item);
  42
  43static void cache_init(struct cache_head *h)
  44{
  45	time_t now = seconds_since_boot();
  46	h->next = NULL;
  47	h->flags = 0;
  48	kref_init(&h->ref);
  49	h->expiry_time = now + CACHE_NEW_EXPIRY;
 
 
 
  50	h->last_refresh = now;
  51}
  52
  53struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  54				       struct cache_head *key, int hash)
  55{
  56	struct cache_head **head,  **hp;
  57	struct cache_head *new = NULL, *freeme = NULL;
  58
  59	head = &detail->hash_table[hash];
  60
  61	read_lock(&detail->hash_lock);
  62
  63	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  64		struct cache_head *tmp = *hp;
  65		if (detail->match(tmp, key)) {
  66			if (cache_is_expired(detail, tmp))
  67				/* This entry is expired, we will discard it. */
  68				break;
  69			cache_get(tmp);
  70			read_unlock(&detail->hash_lock);
  71			return tmp;
  72		}
  73	}
  74	read_unlock(&detail->hash_lock);
  75	/* Didn't find anything, insert an empty entry */
  76
  77	new = detail->alloc();
  78	if (!new)
  79		return NULL;
  80	/* must fully initialise 'new', else
  81	 * we might get lose if we need to
  82	 * cache_put it soon.
  83	 */
  84	cache_init(new);
  85	detail->init(new, key);
  86
  87	write_lock(&detail->hash_lock);
  88
  89	/* check if entry appeared while we slept */
  90	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  91		struct cache_head *tmp = *hp;
  92		if (detail->match(tmp, key)) {
  93			if (cache_is_expired(detail, tmp)) {
  94				*hp = tmp->next;
  95				tmp->next = NULL;
  96				detail->entries --;
  97				freeme = tmp;
  98				break;
  99			}
 100			cache_get(tmp);
 101			write_unlock(&detail->hash_lock);
 102			cache_put(new, detail);
 103			return tmp;
 104		}
 105	}
 106	new->next = *head;
 107	*head = new;
 108	detail->entries++;
 109	cache_get(new);
 110	write_unlock(&detail->hash_lock);
 111
 112	if (freeme)
 113		cache_put(freeme, detail);
 114	return new;
 115}
 116EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
 117
 118
 119static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 120
 121static void cache_fresh_locked(struct cache_head *head, time_t expiry)
 
 122{
 
 
 
 
 123	head->expiry_time = expiry;
 124	head->last_refresh = seconds_since_boot();
 125	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 126	set_bit(CACHE_VALID, &head->flags);
 127}
 128
 129static void cache_fresh_unlocked(struct cache_head *head,
 130				 struct cache_detail *detail)
 131{
 132	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 133		cache_revisit_request(head);
 134		cache_dequeue(detail, head);
 135	}
 136}
 137
 138struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 139				       struct cache_head *new, struct cache_head *old, int hash)
 140{
 141	/* The 'old' entry is to be replaced by 'new'.
 142	 * If 'old' is not VALID, we update it directly,
 143	 * otherwise we need to replace it
 144	 */
 145	struct cache_head **head;
 146	struct cache_head *tmp;
 147
 148	if (!test_bit(CACHE_VALID, &old->flags)) {
 149		write_lock(&detail->hash_lock);
 150		if (!test_bit(CACHE_VALID, &old->flags)) {
 151			if (test_bit(CACHE_NEGATIVE, &new->flags))
 152				set_bit(CACHE_NEGATIVE, &old->flags);
 153			else
 154				detail->update(old, new);
 155			cache_fresh_locked(old, new->expiry_time);
 156			write_unlock(&detail->hash_lock);
 157			cache_fresh_unlocked(old, detail);
 158			return old;
 159		}
 160		write_unlock(&detail->hash_lock);
 161	}
 162	/* We need to insert a new entry */
 163	tmp = detail->alloc();
 164	if (!tmp) {
 165		cache_put(old, detail);
 166		return NULL;
 167	}
 168	cache_init(tmp);
 169	detail->init(tmp, old);
 170	head = &detail->hash_table[hash];
 171
 172	write_lock(&detail->hash_lock);
 173	if (test_bit(CACHE_NEGATIVE, &new->flags))
 174		set_bit(CACHE_NEGATIVE, &tmp->flags);
 175	else
 176		detail->update(tmp, new);
 177	tmp->next = *head;
 178	*head = tmp;
 179	detail->entries++;
 180	cache_get(tmp);
 181	cache_fresh_locked(tmp, new->expiry_time);
 182	cache_fresh_locked(old, 0);
 183	write_unlock(&detail->hash_lock);
 184	cache_fresh_unlocked(tmp, detail);
 185	cache_fresh_unlocked(old, detail);
 186	cache_put(old, detail);
 187	return tmp;
 188}
 189EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 190
 191static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 192{
 193	if (cd->cache_upcall)
 194		return cd->cache_upcall(cd, h);
 195	return sunrpc_cache_pipe_upcall(cd, h);
 196}
 197
 198static inline int cache_is_valid(struct cache_head *h)
 199{
 200	if (!test_bit(CACHE_VALID, &h->flags))
 201		return -EAGAIN;
 202	else {
 203		/* entry is valid */
 204		if (test_bit(CACHE_NEGATIVE, &h->flags))
 205			return -ENOENT;
 206		else {
 207			/*
 208			 * In combination with write barrier in
 209			 * sunrpc_cache_update, ensures that anyone
 210			 * using the cache entry after this sees the
 211			 * updated contents:
 212			 */
 213			smp_rmb();
 214			return 0;
 215		}
 216	}
 217}
 218
 219static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 220{
 221	int rv;
 222
 223	write_lock(&detail->hash_lock);
 224	rv = cache_is_valid(h);
 225	if (rv == -EAGAIN) {
 226		set_bit(CACHE_NEGATIVE, &h->flags);
 227		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
 
 228		rv = -ENOENT;
 229	}
 230	write_unlock(&detail->hash_lock);
 231	cache_fresh_unlocked(h, detail);
 232	return rv;
 233}
 234
 235/*
 236 * This is the generic cache management routine for all
 237 * the authentication caches.
 238 * It checks the currency of a cache item and will (later)
 239 * initiate an upcall to fill it if needed.
 240 *
 241 *
 242 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 243 * -EAGAIN if upcall is pending and request has been queued
 244 * -ETIMEDOUT if upcall failed or request could not be queue or
 245 *           upcall completed but item is still invalid (implying that
 246 *           the cache item has been replaced with a newer one).
 247 * -ENOENT if cache entry was negative
 248 */
 249int cache_check(struct cache_detail *detail,
 250		    struct cache_head *h, struct cache_req *rqstp)
 251{
 252	int rv;
 253	long refresh_age, age;
 254
 255	/* First decide return status as best we can */
 256	rv = cache_is_valid(h);
 257
 258	/* now see if we want to start an upcall */
 259	refresh_age = (h->expiry_time - h->last_refresh);
 260	age = seconds_since_boot() - h->last_refresh;
 261
 262	if (rqstp == NULL) {
 263		if (rv == -EAGAIN)
 264			rv = -ENOENT;
 265	} else if (rv == -EAGAIN ||
 266		   (h->expiry_time != 0 && age > refresh_age/2)) {
 267		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 268				refresh_age, age);
 269		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 270			switch (cache_make_upcall(detail, h)) {
 271			case -EINVAL:
 272				rv = try_to_negate_entry(detail, h);
 273				break;
 274			case -EAGAIN:
 275				cache_fresh_unlocked(h, detail);
 276				break;
 277			}
 278		}
 279	}
 280
 281	if (rv == -EAGAIN) {
 282		if (!cache_defer_req(rqstp, h)) {
 283			/*
 284			 * Request was not deferred; handle it as best
 285			 * we can ourselves:
 286			 */
 287			rv = cache_is_valid(h);
 288			if (rv == -EAGAIN)
 289				rv = -ETIMEDOUT;
 290		}
 291	}
 292	if (rv)
 293		cache_put(h, detail);
 294	return rv;
 295}
 296EXPORT_SYMBOL_GPL(cache_check);
 297
 298/*
 299 * caches need to be periodically cleaned.
 300 * For this we maintain a list of cache_detail and
 301 * a current pointer into that list and into the table
 302 * for that entry.
 303 *
 304 * Each time cache_clean is called it finds the next non-empty entry
 305 * in the current table and walks the list in that entry
 306 * looking for entries that can be removed.
 307 *
 308 * An entry gets removed if:
 309 * - The expiry is before current time
 310 * - The last_refresh time is before the flush_time for that cache
 311 *
 312 * later we might drop old entries with non-NEVER expiry if that table
 313 * is getting 'full' for some definition of 'full'
 314 *
 315 * The question of "how often to scan a table" is an interesting one
 316 * and is answered in part by the use of the "nextcheck" field in the
 317 * cache_detail.
 318 * When a scan of a table begins, the nextcheck field is set to a time
 319 * that is well into the future.
 320 * While scanning, if an expiry time is found that is earlier than the
 321 * current nextcheck time, nextcheck is set to that expiry time.
 322 * If the flush_time is ever set to a time earlier than the nextcheck
 323 * time, the nextcheck time is then set to that flush_time.
 324 *
 325 * A table is then only scanned if the current time is at least
 326 * the nextcheck time.
 327 *
 328 */
 329
 330static LIST_HEAD(cache_list);
 331static DEFINE_SPINLOCK(cache_list_lock);
 332static struct cache_detail *current_detail;
 333static int current_index;
 334
 335static void do_cache_clean(struct work_struct *work);
 336static struct delayed_work cache_cleaner;
 337
 338void sunrpc_init_cache_detail(struct cache_detail *cd)
 339{
 340	rwlock_init(&cd->hash_lock);
 341	INIT_LIST_HEAD(&cd->queue);
 342	spin_lock(&cache_list_lock);
 343	cd->nextcheck = 0;
 344	cd->entries = 0;
 345	atomic_set(&cd->readers, 0);
 346	cd->last_close = 0;
 347	cd->last_warn = -1;
 348	list_add(&cd->others, &cache_list);
 349	spin_unlock(&cache_list_lock);
 350
 351	/* start the cleaning process */
 352	schedule_delayed_work(&cache_cleaner, 0);
 353}
 354EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 355
 356void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 357{
 358	cache_purge(cd);
 359	spin_lock(&cache_list_lock);
 360	write_lock(&cd->hash_lock);
 361	if (cd->entries || atomic_read(&cd->inuse)) {
 362		write_unlock(&cd->hash_lock);
 363		spin_unlock(&cache_list_lock);
 364		goto out;
 365	}
 366	if (current_detail == cd)
 367		current_detail = NULL;
 368	list_del_init(&cd->others);
 369	write_unlock(&cd->hash_lock);
 370	spin_unlock(&cache_list_lock);
 371	if (list_empty(&cache_list)) {
 372		/* module must be being unloaded so its safe to kill the worker */
 373		cancel_delayed_work_sync(&cache_cleaner);
 374	}
 375	return;
 376out:
 377	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
 378}
 379EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 380
 381/* clean cache tries to find something to clean
 382 * and cleans it.
 383 * It returns 1 if it cleaned something,
 384 *            0 if it didn't find anything this time
 385 *           -1 if it fell off the end of the list.
 386 */
 387static int cache_clean(void)
 388{
 389	int rv = 0;
 390	struct list_head *next;
 391
 392	spin_lock(&cache_list_lock);
 393
 394	/* find a suitable table if we don't already have one */
 395	while (current_detail == NULL ||
 396	    current_index >= current_detail->hash_size) {
 397		if (current_detail)
 398			next = current_detail->others.next;
 399		else
 400			next = cache_list.next;
 401		if (next == &cache_list) {
 402			current_detail = NULL;
 403			spin_unlock(&cache_list_lock);
 404			return -1;
 405		}
 406		current_detail = list_entry(next, struct cache_detail, others);
 407		if (current_detail->nextcheck > seconds_since_boot())
 408			current_index = current_detail->hash_size;
 409		else {
 410			current_index = 0;
 411			current_detail->nextcheck = seconds_since_boot()+30*60;
 412		}
 413	}
 414
 415	/* find a non-empty bucket in the table */
 416	while (current_detail &&
 417	       current_index < current_detail->hash_size &&
 418	       current_detail->hash_table[current_index] == NULL)
 419		current_index++;
 420
 421	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
 422
 423	if (current_detail && current_index < current_detail->hash_size) {
 424		struct cache_head *ch, **cp;
 425		struct cache_detail *d;
 
 
 426
 427		write_lock(&current_detail->hash_lock);
 428
 429		/* Ok, now to clean this strand */
 430
 431		cp = & current_detail->hash_table[current_index];
 432		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
 433			if (current_detail->nextcheck > ch->expiry_time)
 434				current_detail->nextcheck = ch->expiry_time+1;
 435			if (!cache_is_expired(current_detail, ch))
 436				continue;
 437
 438			*cp = ch->next;
 439			ch->next = NULL;
 440			current_detail->entries--;
 441			rv = 1;
 442			break;
 443		}
 444
 445		write_unlock(&current_detail->hash_lock);
 446		d = current_detail;
 447		if (!ch)
 448			current_index ++;
 449		spin_unlock(&cache_list_lock);
 450		if (ch) {
 451			set_bit(CACHE_CLEANED, &ch->flags);
 452			cache_fresh_unlocked(ch, d);
 453			cache_put(ch, d);
 454		}
 455	} else
 456		spin_unlock(&cache_list_lock);
 457
 458	return rv;
 459}
 460
 461/*
 462 * We want to regularly clean the cache, so we need to schedule some work ...
 463 */
 464static void do_cache_clean(struct work_struct *work)
 465{
 466	int delay = 5;
 467	if (cache_clean() == -1)
 468		delay = round_jiffies_relative(30*HZ);
 469
 470	if (list_empty(&cache_list))
 471		delay = 0;
 472
 473	if (delay)
 474		schedule_delayed_work(&cache_cleaner, delay);
 475}
 476
 477
 478/*
 479 * Clean all caches promptly.  This just calls cache_clean
 480 * repeatedly until we are sure that every cache has had a chance to
 481 * be fully cleaned
 482 */
 483void cache_flush(void)
 484{
 485	while (cache_clean() != -1)
 486		cond_resched();
 487	while (cache_clean() != -1)
 488		cond_resched();
 489}
 490EXPORT_SYMBOL_GPL(cache_flush);
 491
 492void cache_purge(struct cache_detail *detail)
 493{
 494	detail->flush_time = LONG_MAX;
 
 
 
 
 495	detail->nextcheck = seconds_since_boot();
 496	cache_flush();
 497	detail->flush_time = 1;
 498}
 499EXPORT_SYMBOL_GPL(cache_purge);
 500
 501
 502/*
 503 * Deferral and Revisiting of Requests.
 504 *
 505 * If a cache lookup finds a pending entry, we
 506 * need to defer the request and revisit it later.
 507 * All deferred requests are stored in a hash table,
 508 * indexed by "struct cache_head *".
 509 * As it may be wasteful to store a whole request
 510 * structure, we allow the request to provide a
 511 * deferred form, which must contain a
 512 * 'struct cache_deferred_req'
 513 * This cache_deferred_req contains a method to allow
 514 * it to be revisited when cache info is available
 515 */
 516
 517#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
 518#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 519
 520#define	DFR_MAX	300	/* ??? */
 521
 522static DEFINE_SPINLOCK(cache_defer_lock);
 523static LIST_HEAD(cache_defer_list);
 524static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 525static int cache_defer_cnt;
 526
 527static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 528{
 529	hlist_del_init(&dreq->hash);
 530	if (!list_empty(&dreq->recent)) {
 531		list_del_init(&dreq->recent);
 532		cache_defer_cnt--;
 533	}
 534}
 535
 536static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 537{
 538	int hash = DFR_HASH(item);
 539
 540	INIT_LIST_HEAD(&dreq->recent);
 541	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 542}
 543
 544static void setup_deferral(struct cache_deferred_req *dreq,
 545			   struct cache_head *item,
 546			   int count_me)
 547{
 548
 549	dreq->item = item;
 550
 551	spin_lock(&cache_defer_lock);
 552
 553	__hash_deferred_req(dreq, item);
 554
 555	if (count_me) {
 556		cache_defer_cnt++;
 557		list_add(&dreq->recent, &cache_defer_list);
 558	}
 559
 560	spin_unlock(&cache_defer_lock);
 561
 562}
 563
 564struct thread_deferred_req {
 565	struct cache_deferred_req handle;
 566	struct completion completion;
 567};
 568
 569static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 570{
 571	struct thread_deferred_req *dr =
 572		container_of(dreq, struct thread_deferred_req, handle);
 573	complete(&dr->completion);
 574}
 575
 576static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 577{
 578	struct thread_deferred_req sleeper;
 579	struct cache_deferred_req *dreq = &sleeper.handle;
 580
 581	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 582	dreq->revisit = cache_restart_thread;
 583
 584	setup_deferral(dreq, item, 0);
 585
 586	if (!test_bit(CACHE_PENDING, &item->flags) ||
 587	    wait_for_completion_interruptible_timeout(
 588		    &sleeper.completion, req->thread_wait) <= 0) {
 589		/* The completion wasn't completed, so we need
 590		 * to clean up
 591		 */
 592		spin_lock(&cache_defer_lock);
 593		if (!hlist_unhashed(&sleeper.handle.hash)) {
 594			__unhash_deferred_req(&sleeper.handle);
 595			spin_unlock(&cache_defer_lock);
 596		} else {
 597			/* cache_revisit_request already removed
 598			 * this from the hash table, but hasn't
 599			 * called ->revisit yet.  It will very soon
 600			 * and we need to wait for it.
 601			 */
 602			spin_unlock(&cache_defer_lock);
 603			wait_for_completion(&sleeper.completion);
 604		}
 605	}
 606}
 607
 608static void cache_limit_defers(void)
 609{
 610	/* Make sure we haven't exceed the limit of allowed deferred
 611	 * requests.
 612	 */
 613	struct cache_deferred_req *discard = NULL;
 614
 615	if (cache_defer_cnt <= DFR_MAX)
 616		return;
 617
 618	spin_lock(&cache_defer_lock);
 619
 620	/* Consider removing either the first or the last */
 621	if (cache_defer_cnt > DFR_MAX) {
 622		if (prandom_u32() & 1)
 623			discard = list_entry(cache_defer_list.next,
 624					     struct cache_deferred_req, recent);
 625		else
 626			discard = list_entry(cache_defer_list.prev,
 627					     struct cache_deferred_req, recent);
 628		__unhash_deferred_req(discard);
 629	}
 630	spin_unlock(&cache_defer_lock);
 631	if (discard)
 632		discard->revisit(discard, 1);
 633}
 634
 635/* Return true if and only if a deferred request is queued. */
 636static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 637{
 638	struct cache_deferred_req *dreq;
 639
 640	if (req->thread_wait) {
 641		cache_wait_req(req, item);
 642		if (!test_bit(CACHE_PENDING, &item->flags))
 643			return false;
 644	}
 645	dreq = req->defer(req);
 646	if (dreq == NULL)
 647		return false;
 648	setup_deferral(dreq, item, 1);
 649	if (!test_bit(CACHE_PENDING, &item->flags))
 650		/* Bit could have been cleared before we managed to
 651		 * set up the deferral, so need to revisit just in case
 652		 */
 653		cache_revisit_request(item);
 654
 655	cache_limit_defers();
 656	return true;
 657}
 658
 659static void cache_revisit_request(struct cache_head *item)
 660{
 661	struct cache_deferred_req *dreq;
 662	struct list_head pending;
 663	struct hlist_node *tmp;
 664	int hash = DFR_HASH(item);
 665
 666	INIT_LIST_HEAD(&pending);
 667	spin_lock(&cache_defer_lock);
 668
 669	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 670		if (dreq->item == item) {
 671			__unhash_deferred_req(dreq);
 672			list_add(&dreq->recent, &pending);
 673		}
 674
 675	spin_unlock(&cache_defer_lock);
 676
 677	while (!list_empty(&pending)) {
 678		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 679		list_del_init(&dreq->recent);
 680		dreq->revisit(dreq, 0);
 681	}
 682}
 683
 684void cache_clean_deferred(void *owner)
 685{
 686	struct cache_deferred_req *dreq, *tmp;
 687	struct list_head pending;
 688
 689
 690	INIT_LIST_HEAD(&pending);
 691	spin_lock(&cache_defer_lock);
 692
 693	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 694		if (dreq->owner == owner) {
 695			__unhash_deferred_req(dreq);
 696			list_add(&dreq->recent, &pending);
 697		}
 698	}
 699	spin_unlock(&cache_defer_lock);
 700
 701	while (!list_empty(&pending)) {
 702		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 703		list_del_init(&dreq->recent);
 704		dreq->revisit(dreq, 1);
 705	}
 706}
 707
 708/*
 709 * communicate with user-space
 710 *
 711 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
 712 * On read, you get a full request, or block.
 713 * On write, an update request is processed.
 714 * Poll works if anything to read, and always allows write.
 715 *
 716 * Implemented by linked list of requests.  Each open file has
 717 * a ->private that also exists in this list.  New requests are added
 718 * to the end and may wakeup and preceding readers.
 719 * New readers are added to the head.  If, on read, an item is found with
 720 * CACHE_UPCALLING clear, we free it from the list.
 721 *
 722 */
 723
 724static DEFINE_SPINLOCK(queue_lock);
 725static DEFINE_MUTEX(queue_io_mutex);
 726
 727struct cache_queue {
 728	struct list_head	list;
 729	int			reader;	/* if 0, then request */
 730};
 731struct cache_request {
 732	struct cache_queue	q;
 733	struct cache_head	*item;
 734	char			* buf;
 735	int			len;
 736	int			readers;
 737};
 738struct cache_reader {
 739	struct cache_queue	q;
 740	int			offset;	/* if non-0, we have a refcnt on next request */
 741};
 742
 743static int cache_request(struct cache_detail *detail,
 744			       struct cache_request *crq)
 745{
 746	char *bp = crq->buf;
 747	int len = PAGE_SIZE;
 748
 749	detail->cache_request(detail, crq->item, &bp, &len);
 750	if (len < 0)
 751		return -EAGAIN;
 752	return PAGE_SIZE - len;
 753}
 754
 755static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 756			  loff_t *ppos, struct cache_detail *cd)
 757{
 758	struct cache_reader *rp = filp->private_data;
 759	struct cache_request *rq;
 760	struct inode *inode = file_inode(filp);
 761	int err;
 762
 763	if (count == 0)
 764		return 0;
 765
 766	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
 767			      * readers on this file */
 768 again:
 769	spin_lock(&queue_lock);
 770	/* need to find next request */
 771	while (rp->q.list.next != &cd->queue &&
 772	       list_entry(rp->q.list.next, struct cache_queue, list)
 773	       ->reader) {
 774		struct list_head *next = rp->q.list.next;
 775		list_move(&rp->q.list, next);
 776	}
 777	if (rp->q.list.next == &cd->queue) {
 778		spin_unlock(&queue_lock);
 779		mutex_unlock(&inode->i_mutex);
 780		WARN_ON_ONCE(rp->offset);
 781		return 0;
 782	}
 783	rq = container_of(rp->q.list.next, struct cache_request, q.list);
 784	WARN_ON_ONCE(rq->q.reader);
 785	if (rp->offset == 0)
 786		rq->readers++;
 787	spin_unlock(&queue_lock);
 788
 789	if (rq->len == 0) {
 790		err = cache_request(cd, rq);
 791		if (err < 0)
 792			goto out;
 793		rq->len = err;
 794	}
 795
 796	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 797		err = -EAGAIN;
 798		spin_lock(&queue_lock);
 799		list_move(&rp->q.list, &rq->q.list);
 800		spin_unlock(&queue_lock);
 801	} else {
 802		if (rp->offset + count > rq->len)
 803			count = rq->len - rp->offset;
 804		err = -EFAULT;
 805		if (copy_to_user(buf, rq->buf + rp->offset, count))
 806			goto out;
 807		rp->offset += count;
 808		if (rp->offset >= rq->len) {
 809			rp->offset = 0;
 810			spin_lock(&queue_lock);
 811			list_move(&rp->q.list, &rq->q.list);
 812			spin_unlock(&queue_lock);
 813		}
 814		err = 0;
 815	}
 816 out:
 817	if (rp->offset == 0) {
 818		/* need to release rq */
 819		spin_lock(&queue_lock);
 820		rq->readers--;
 821		if (rq->readers == 0 &&
 822		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 823			list_del(&rq->q.list);
 824			spin_unlock(&queue_lock);
 825			cache_put(rq->item, cd);
 826			kfree(rq->buf);
 827			kfree(rq);
 828		} else
 829			spin_unlock(&queue_lock);
 830	}
 831	if (err == -EAGAIN)
 832		goto again;
 833	mutex_unlock(&inode->i_mutex);
 834	return err ? err :  count;
 835}
 836
 837static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 838				 size_t count, struct cache_detail *cd)
 839{
 840	ssize_t ret;
 841
 842	if (count == 0)
 843		return -EINVAL;
 844	if (copy_from_user(kaddr, buf, count))
 845		return -EFAULT;
 846	kaddr[count] = '\0';
 847	ret = cd->cache_parse(cd, kaddr, count);
 848	if (!ret)
 849		ret = count;
 850	return ret;
 851}
 852
 853static ssize_t cache_slow_downcall(const char __user *buf,
 854				   size_t count, struct cache_detail *cd)
 855{
 856	static char write_buf[8192]; /* protected by queue_io_mutex */
 857	ssize_t ret = -EINVAL;
 858
 859	if (count >= sizeof(write_buf))
 860		goto out;
 861	mutex_lock(&queue_io_mutex);
 862	ret = cache_do_downcall(write_buf, buf, count, cd);
 863	mutex_unlock(&queue_io_mutex);
 864out:
 865	return ret;
 866}
 867
 868static ssize_t cache_downcall(struct address_space *mapping,
 869			      const char __user *buf,
 870			      size_t count, struct cache_detail *cd)
 871{
 872	struct page *page;
 873	char *kaddr;
 874	ssize_t ret = -ENOMEM;
 875
 876	if (count >= PAGE_CACHE_SIZE)
 877		goto out_slow;
 878
 879	page = find_or_create_page(mapping, 0, GFP_KERNEL);
 880	if (!page)
 881		goto out_slow;
 882
 883	kaddr = kmap(page);
 884	ret = cache_do_downcall(kaddr, buf, count, cd);
 885	kunmap(page);
 886	unlock_page(page);
 887	page_cache_release(page);
 888	return ret;
 889out_slow:
 890	return cache_slow_downcall(buf, count, cd);
 891}
 892
 893static ssize_t cache_write(struct file *filp, const char __user *buf,
 894			   size_t count, loff_t *ppos,
 895			   struct cache_detail *cd)
 896{
 897	struct address_space *mapping = filp->f_mapping;
 898	struct inode *inode = file_inode(filp);
 899	ssize_t ret = -EINVAL;
 900
 901	if (!cd->cache_parse)
 902		goto out;
 903
 904	mutex_lock(&inode->i_mutex);
 905	ret = cache_downcall(mapping, buf, count, cd);
 906	mutex_unlock(&inode->i_mutex);
 907out:
 908	return ret;
 909}
 910
 911static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 912
 913static unsigned int cache_poll(struct file *filp, poll_table *wait,
 914			       struct cache_detail *cd)
 915{
 916	unsigned int mask;
 917	struct cache_reader *rp = filp->private_data;
 918	struct cache_queue *cq;
 919
 920	poll_wait(filp, &queue_wait, wait);
 921
 922	/* alway allow write */
 923	mask = POLL_OUT | POLLWRNORM;
 924
 925	if (!rp)
 926		return mask;
 927
 928	spin_lock(&queue_lock);
 929
 930	for (cq= &rp->q; &cq->list != &cd->queue;
 931	     cq = list_entry(cq->list.next, struct cache_queue, list))
 932		if (!cq->reader) {
 933			mask |= POLLIN | POLLRDNORM;
 934			break;
 935		}
 936	spin_unlock(&queue_lock);
 937	return mask;
 938}
 939
 940static int cache_ioctl(struct inode *ino, struct file *filp,
 941		       unsigned int cmd, unsigned long arg,
 942		       struct cache_detail *cd)
 943{
 944	int len = 0;
 945	struct cache_reader *rp = filp->private_data;
 946	struct cache_queue *cq;
 947
 948	if (cmd != FIONREAD || !rp)
 949		return -EINVAL;
 950
 951	spin_lock(&queue_lock);
 952
 953	/* only find the length remaining in current request,
 954	 * or the length of the next request
 955	 */
 956	for (cq= &rp->q; &cq->list != &cd->queue;
 957	     cq = list_entry(cq->list.next, struct cache_queue, list))
 958		if (!cq->reader) {
 959			struct cache_request *cr =
 960				container_of(cq, struct cache_request, q);
 961			len = cr->len - rp->offset;
 962			break;
 963		}
 964	spin_unlock(&queue_lock);
 965
 966	return put_user(len, (int __user *)arg);
 967}
 968
 969static int cache_open(struct inode *inode, struct file *filp,
 970		      struct cache_detail *cd)
 971{
 972	struct cache_reader *rp = NULL;
 973
 974	if (!cd || !try_module_get(cd->owner))
 975		return -EACCES;
 976	nonseekable_open(inode, filp);
 977	if (filp->f_mode & FMODE_READ) {
 978		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 979		if (!rp) {
 980			module_put(cd->owner);
 981			return -ENOMEM;
 982		}
 983		rp->offset = 0;
 984		rp->q.reader = 1;
 985		atomic_inc(&cd->readers);
 986		spin_lock(&queue_lock);
 987		list_add(&rp->q.list, &cd->queue);
 988		spin_unlock(&queue_lock);
 989	}
 990	filp->private_data = rp;
 991	return 0;
 992}
 993
 994static int cache_release(struct inode *inode, struct file *filp,
 995			 struct cache_detail *cd)
 996{
 997	struct cache_reader *rp = filp->private_data;
 998
 999	if (rp) {
1000		spin_lock(&queue_lock);
1001		if (rp->offset) {
1002			struct cache_queue *cq;
1003			for (cq= &rp->q; &cq->list != &cd->queue;
1004			     cq = list_entry(cq->list.next, struct cache_queue, list))
1005				if (!cq->reader) {
1006					container_of(cq, struct cache_request, q)
1007						->readers--;
1008					break;
1009				}
1010			rp->offset = 0;
1011		}
1012		list_del(&rp->q.list);
1013		spin_unlock(&queue_lock);
1014
1015		filp->private_data = NULL;
1016		kfree(rp);
1017
1018		cd->last_close = seconds_since_boot();
1019		atomic_dec(&cd->readers);
1020	}
1021	module_put(cd->owner);
1022	return 0;
1023}
1024
1025
1026
1027static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1028{
1029	struct cache_queue *cq, *tmp;
1030	struct cache_request *cr;
1031	struct list_head dequeued;
1032
1033	INIT_LIST_HEAD(&dequeued);
1034	spin_lock(&queue_lock);
1035	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1036		if (!cq->reader) {
1037			cr = container_of(cq, struct cache_request, q);
1038			if (cr->item != ch)
1039				continue;
1040			if (test_bit(CACHE_PENDING, &ch->flags))
1041				/* Lost a race and it is pending again */
1042				break;
1043			if (cr->readers != 0)
1044				continue;
1045			list_move(&cr->q.list, &dequeued);
1046		}
1047	spin_unlock(&queue_lock);
1048	while (!list_empty(&dequeued)) {
1049		cr = list_entry(dequeued.next, struct cache_request, q.list);
1050		list_del(&cr->q.list);
1051		cache_put(cr->item, detail);
1052		kfree(cr->buf);
1053		kfree(cr);
1054	}
1055}
1056
1057/*
1058 * Support routines for text-based upcalls.
1059 * Fields are separated by spaces.
1060 * Fields are either mangled to quote space tab newline slosh with slosh
1061 * or a hexified with a leading \x
1062 * Record is terminated with newline.
1063 *
1064 */
1065
1066void qword_add(char **bpp, int *lp, char *str)
1067{
1068	char *bp = *bpp;
1069	int len = *lp;
1070	char c;
1071
1072	if (len < 0) return;
1073
1074	while ((c=*str++) && len)
1075		switch(c) {
1076		case ' ':
1077		case '\t':
1078		case '\n':
1079		case '\\':
1080			if (len >= 4) {
1081				*bp++ = '\\';
1082				*bp++ = '0' + ((c & 0300)>>6);
1083				*bp++ = '0' + ((c & 0070)>>3);
1084				*bp++ = '0' + ((c & 0007)>>0);
1085			}
1086			len -= 4;
1087			break;
1088		default:
1089			*bp++ = c;
1090			len--;
1091		}
1092	if (c || len <1) len = -1;
1093	else {
1094		*bp++ = ' ';
1095		len--;
1096	}
1097	*bpp = bp;
1098	*lp = len;
1099}
1100EXPORT_SYMBOL_GPL(qword_add);
1101
1102void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1103{
1104	char *bp = *bpp;
1105	int len = *lp;
1106
1107	if (len < 0) return;
1108
1109	if (len > 2) {
1110		*bp++ = '\\';
1111		*bp++ = 'x';
1112		len -= 2;
1113		while (blen && len >= 2) {
1114			bp = hex_byte_pack(bp, *buf++);
1115			len -= 2;
1116			blen--;
1117		}
1118	}
1119	if (blen || len<1) len = -1;
1120	else {
1121		*bp++ = ' ';
1122		len--;
1123	}
1124	*bpp = bp;
1125	*lp = len;
1126}
1127EXPORT_SYMBOL_GPL(qword_addhex);
1128
1129static void warn_no_listener(struct cache_detail *detail)
1130{
1131	if (detail->last_warn != detail->last_close) {
1132		detail->last_warn = detail->last_close;
1133		if (detail->warn_no_listener)
1134			detail->warn_no_listener(detail, detail->last_close != 0);
1135	}
1136}
1137
1138static bool cache_listeners_exist(struct cache_detail *detail)
1139{
1140	if (atomic_read(&detail->readers))
1141		return true;
1142	if (detail->last_close == 0)
1143		/* This cache was never opened */
1144		return false;
1145	if (detail->last_close < seconds_since_boot() - 30)
1146		/*
1147		 * We allow for the possibility that someone might
1148		 * restart a userspace daemon without restarting the
1149		 * server; but after 30 seconds, we give up.
1150		 */
1151		 return false;
1152	return true;
1153}
1154
1155/*
1156 * register an upcall request to user-space and queue it up for read() by the
1157 * upcall daemon.
1158 *
1159 * Each request is at most one page long.
1160 */
1161int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1162{
1163
1164	char *buf;
1165	struct cache_request *crq;
1166	int ret = 0;
1167
1168	if (!detail->cache_request)
1169		return -EINVAL;
1170
1171	if (!cache_listeners_exist(detail)) {
1172		warn_no_listener(detail);
1173		return -EINVAL;
1174	}
1175	if (test_bit(CACHE_CLEANED, &h->flags))
1176		/* Too late to make an upcall */
1177		return -EAGAIN;
1178
1179	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1180	if (!buf)
1181		return -EAGAIN;
1182
1183	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1184	if (!crq) {
1185		kfree(buf);
1186		return -EAGAIN;
1187	}
1188
1189	crq->q.reader = 0;
1190	crq->item = cache_get(h);
1191	crq->buf = buf;
1192	crq->len = 0;
1193	crq->readers = 0;
1194	spin_lock(&queue_lock);
1195	if (test_bit(CACHE_PENDING, &h->flags))
 
1196		list_add_tail(&crq->q.list, &detail->queue);
1197	else
1198		/* Lost a race, no longer PENDING, so don't enqueue */
1199		ret = -EAGAIN;
1200	spin_unlock(&queue_lock);
1201	wake_up(&queue_wait);
1202	if (ret == -EAGAIN) {
1203		kfree(buf);
1204		kfree(crq);
1205	}
1206	return ret;
1207}
1208EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1209
1210/*
1211 * parse a message from user-space and pass it
1212 * to an appropriate cache
1213 * Messages are, like requests, separated into fields by
1214 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1215 *
1216 * Message is
1217 *   reply cachename expiry key ... content....
1218 *
1219 * key and content are both parsed by cache
1220 */
1221
1222int qword_get(char **bpp, char *dest, int bufsize)
1223{
1224	/* return bytes copied, or -1 on error */
1225	char *bp = *bpp;
1226	int len = 0;
1227
1228	while (*bp == ' ') bp++;
1229
1230	if (bp[0] == '\\' && bp[1] == 'x') {
1231		/* HEX STRING */
1232		bp += 2;
1233		while (len < bufsize) {
1234			int h, l;
1235
1236			h = hex_to_bin(bp[0]);
1237			if (h < 0)
1238				break;
1239
1240			l = hex_to_bin(bp[1]);
1241			if (l < 0)
1242				break;
1243
1244			*dest++ = (h << 4) | l;
1245			bp += 2;
1246			len++;
1247		}
1248	} else {
1249		/* text with \nnn octal quoting */
1250		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1251			if (*bp == '\\' &&
1252			    isodigit(bp[1]) && (bp[1] <= '3') &&
1253			    isodigit(bp[2]) &&
1254			    isodigit(bp[3])) {
1255				int byte = (*++bp -'0');
1256				bp++;
1257				byte = (byte << 3) | (*bp++ - '0');
1258				byte = (byte << 3) | (*bp++ - '0');
1259				*dest++ = byte;
1260				len++;
1261			} else {
1262				*dest++ = *bp++;
1263				len++;
1264			}
1265		}
1266	}
1267
1268	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1269		return -1;
1270	while (*bp == ' ') bp++;
1271	*bpp = bp;
1272	*dest = '\0';
1273	return len;
1274}
1275EXPORT_SYMBOL_GPL(qword_get);
1276
1277
1278/*
1279 * support /proc/sunrpc/cache/$CACHENAME/content
1280 * as a seqfile.
1281 * We call ->cache_show passing NULL for the item to
1282 * get a header, then pass each real item in the cache
1283 */
1284
1285struct handle {
1286	struct cache_detail *cd;
1287};
1288
1289static void *c_start(struct seq_file *m, loff_t *pos)
1290	__acquires(cd->hash_lock)
1291{
1292	loff_t n = *pos;
1293	unsigned int hash, entry;
1294	struct cache_head *ch;
1295	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1296
1297
1298	read_lock(&cd->hash_lock);
1299	if (!n--)
1300		return SEQ_START_TOKEN;
1301	hash = n >> 32;
1302	entry = n & ((1LL<<32) - 1);
1303
1304	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1305		if (!entry--)
1306			return ch;
1307	n &= ~((1LL<<32) - 1);
1308	do {
1309		hash++;
1310		n += 1LL<<32;
1311	} while(hash < cd->hash_size &&
1312		cd->hash_table[hash]==NULL);
1313	if (hash >= cd->hash_size)
1314		return NULL;
1315	*pos = n+1;
1316	return cd->hash_table[hash];
 
1317}
 
1318
1319static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1320{
1321	struct cache_head *ch = p;
1322	int hash = (*pos >> 32);
1323	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1324
1325	if (p == SEQ_START_TOKEN)
1326		hash = 0;
1327	else if (ch->next == NULL) {
1328		hash++;
1329		*pos += 1LL<<32;
1330	} else {
1331		++*pos;
1332		return ch->next;
 
1333	}
1334	*pos &= ~((1LL<<32) - 1);
1335	while (hash < cd->hash_size &&
1336	       cd->hash_table[hash] == NULL) {
1337		hash++;
1338		*pos += 1LL<<32;
1339	}
1340	if (hash >= cd->hash_size)
1341		return NULL;
1342	++*pos;
1343	return cd->hash_table[hash];
 
1344}
 
1345
1346static void c_stop(struct seq_file *m, void *p)
1347	__releases(cd->hash_lock)
1348{
1349	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1350	read_unlock(&cd->hash_lock);
1351}
 
1352
1353static int c_show(struct seq_file *m, void *p)
1354{
1355	struct cache_head *cp = p;
1356	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1357
1358	if (p == SEQ_START_TOKEN)
1359		return cd->cache_show(m, cd, NULL);
1360
1361	ifdebug(CACHE)
1362		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1363			   convert_to_wallclock(cp->expiry_time),
1364			   atomic_read(&cp->ref.refcount), cp->flags);
1365	cache_get(cp);
1366	if (cache_check(cd, cp, NULL))
1367		/* cache_check does a cache_put on failure */
1368		seq_printf(m, "# ");
1369	else {
1370		if (cache_is_expired(cd, cp))
1371			seq_printf(m, "# ");
1372		cache_put(cp, cd);
1373	}
1374
1375	return cd->cache_show(m, cd, cp);
1376}
1377
1378static const struct seq_operations cache_content_op = {
1379	.start	= c_start,
1380	.next	= c_next,
1381	.stop	= c_stop,
1382	.show	= c_show,
1383};
1384
1385static int content_open(struct inode *inode, struct file *file,
1386			struct cache_detail *cd)
1387{
1388	struct handle *han;
 
1389
1390	if (!cd || !try_module_get(cd->owner))
1391		return -EACCES;
1392	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1393	if (han == NULL) {
 
1394		module_put(cd->owner);
1395		return -ENOMEM;
1396	}
1397
1398	han->cd = cd;
 
1399	return 0;
1400}
1401
1402static int content_release(struct inode *inode, struct file *file,
1403		struct cache_detail *cd)
1404{
1405	int ret = seq_release_private(inode, file);
1406	module_put(cd->owner);
1407	return ret;
1408}
1409
1410static int open_flush(struct inode *inode, struct file *file,
1411			struct cache_detail *cd)
1412{
1413	if (!cd || !try_module_get(cd->owner))
1414		return -EACCES;
1415	return nonseekable_open(inode, file);
1416}
1417
1418static int release_flush(struct inode *inode, struct file *file,
1419			struct cache_detail *cd)
1420{
1421	module_put(cd->owner);
1422	return 0;
1423}
1424
1425static ssize_t read_flush(struct file *file, char __user *buf,
1426			  size_t count, loff_t *ppos,
1427			  struct cache_detail *cd)
1428{
1429	char tbuf[22];
1430	unsigned long p = *ppos;
1431	size_t len;
1432
1433	snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1434	len = strlen(tbuf);
1435	if (p >= len)
1436		return 0;
1437	len -= p;
1438	if (len > count)
1439		len = count;
1440	if (copy_to_user(buf, (void*)(tbuf+p), len))
1441		return -EFAULT;
1442	*ppos += len;
1443	return len;
1444}
1445
1446static ssize_t write_flush(struct file *file, const char __user *buf,
1447			   size_t count, loff_t *ppos,
1448			   struct cache_detail *cd)
1449{
1450	char tbuf[20];
1451	char *bp, *ep;
 
1452
1453	if (*ppos || count > sizeof(tbuf)-1)
1454		return -EINVAL;
1455	if (copy_from_user(tbuf, buf, count))
1456		return -EFAULT;
1457	tbuf[count] = 0;
1458	simple_strtoul(tbuf, &ep, 0);
1459	if (*ep && *ep != '\n')
1460		return -EINVAL;
1461
1462	bp = tbuf;
1463	cd->flush_time = get_expiry(&bp);
1464	cd->nextcheck = seconds_since_boot();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1465	cache_flush();
1466
1467	*ppos += count;
1468	return count;
1469}
1470
1471static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1472				 size_t count, loff_t *ppos)
1473{
1474	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1475
1476	return cache_read(filp, buf, count, ppos, cd);
1477}
1478
1479static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1480				  size_t count, loff_t *ppos)
1481{
1482	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1483
1484	return cache_write(filp, buf, count, ppos, cd);
1485}
1486
1487static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1488{
1489	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1490
1491	return cache_poll(filp, wait, cd);
1492}
1493
1494static long cache_ioctl_procfs(struct file *filp,
1495			       unsigned int cmd, unsigned long arg)
1496{
1497	struct inode *inode = file_inode(filp);
1498	struct cache_detail *cd = PDE_DATA(inode);
1499
1500	return cache_ioctl(inode, filp, cmd, arg, cd);
1501}
1502
1503static int cache_open_procfs(struct inode *inode, struct file *filp)
1504{
1505	struct cache_detail *cd = PDE_DATA(inode);
1506
1507	return cache_open(inode, filp, cd);
1508}
1509
1510static int cache_release_procfs(struct inode *inode, struct file *filp)
1511{
1512	struct cache_detail *cd = PDE_DATA(inode);
1513
1514	return cache_release(inode, filp, cd);
1515}
1516
1517static const struct file_operations cache_file_operations_procfs = {
1518	.owner		= THIS_MODULE,
1519	.llseek		= no_llseek,
1520	.read		= cache_read_procfs,
1521	.write		= cache_write_procfs,
1522	.poll		= cache_poll_procfs,
1523	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1524	.open		= cache_open_procfs,
1525	.release	= cache_release_procfs,
1526};
1527
1528static int content_open_procfs(struct inode *inode, struct file *filp)
1529{
1530	struct cache_detail *cd = PDE_DATA(inode);
1531
1532	return content_open(inode, filp, cd);
1533}
1534
1535static int content_release_procfs(struct inode *inode, struct file *filp)
1536{
1537	struct cache_detail *cd = PDE_DATA(inode);
1538
1539	return content_release(inode, filp, cd);
1540}
1541
1542static const struct file_operations content_file_operations_procfs = {
1543	.open		= content_open_procfs,
1544	.read		= seq_read,
1545	.llseek		= seq_lseek,
1546	.release	= content_release_procfs,
1547};
1548
1549static int open_flush_procfs(struct inode *inode, struct file *filp)
1550{
1551	struct cache_detail *cd = PDE_DATA(inode);
1552
1553	return open_flush(inode, filp, cd);
1554}
1555
1556static int release_flush_procfs(struct inode *inode, struct file *filp)
1557{
1558	struct cache_detail *cd = PDE_DATA(inode);
1559
1560	return release_flush(inode, filp, cd);
1561}
1562
1563static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1564			    size_t count, loff_t *ppos)
1565{
1566	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1567
1568	return read_flush(filp, buf, count, ppos, cd);
1569}
1570
1571static ssize_t write_flush_procfs(struct file *filp,
1572				  const char __user *buf,
1573				  size_t count, loff_t *ppos)
1574{
1575	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1576
1577	return write_flush(filp, buf, count, ppos, cd);
1578}
1579
1580static const struct file_operations cache_flush_operations_procfs = {
1581	.open		= open_flush_procfs,
1582	.read		= read_flush_procfs,
1583	.write		= write_flush_procfs,
1584	.release	= release_flush_procfs,
1585	.llseek		= no_llseek,
1586};
1587
1588static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1589{
1590	struct sunrpc_net *sn;
1591
1592	if (cd->u.procfs.proc_ent == NULL)
1593		return;
1594	if (cd->u.procfs.flush_ent)
1595		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1596	if (cd->u.procfs.channel_ent)
1597		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1598	if (cd->u.procfs.content_ent)
1599		remove_proc_entry("content", cd->u.procfs.proc_ent);
1600	cd->u.procfs.proc_ent = NULL;
1601	sn = net_generic(net, sunrpc_net_id);
1602	remove_proc_entry(cd->name, sn->proc_net_rpc);
1603}
1604
1605#ifdef CONFIG_PROC_FS
1606static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1607{
1608	struct proc_dir_entry *p;
1609	struct sunrpc_net *sn;
1610
1611	sn = net_generic(net, sunrpc_net_id);
1612	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1613	if (cd->u.procfs.proc_ent == NULL)
1614		goto out_nomem;
1615	cd->u.procfs.channel_ent = NULL;
1616	cd->u.procfs.content_ent = NULL;
1617
1618	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1619			     cd->u.procfs.proc_ent,
1620			     &cache_flush_operations_procfs, cd);
1621	cd->u.procfs.flush_ent = p;
1622	if (p == NULL)
1623		goto out_nomem;
1624
1625	if (cd->cache_request || cd->cache_parse) {
1626		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1627				     cd->u.procfs.proc_ent,
1628				     &cache_file_operations_procfs, cd);
1629		cd->u.procfs.channel_ent = p;
1630		if (p == NULL)
1631			goto out_nomem;
1632	}
1633	if (cd->cache_show) {
1634		p = proc_create_data("content", S_IFREG|S_IRUSR,
1635				cd->u.procfs.proc_ent,
1636				&content_file_operations_procfs, cd);
1637		cd->u.procfs.content_ent = p;
1638		if (p == NULL)
1639			goto out_nomem;
1640	}
1641	return 0;
1642out_nomem:
1643	remove_cache_proc_entries(cd, net);
1644	return -ENOMEM;
1645}
1646#else /* CONFIG_PROC_FS */
1647static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1648{
1649	return 0;
1650}
1651#endif
1652
1653void __init cache_initialize(void)
1654{
1655	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1656}
1657
1658int cache_register_net(struct cache_detail *cd, struct net *net)
1659{
1660	int ret;
1661
1662	sunrpc_init_cache_detail(cd);
1663	ret = create_cache_proc_entries(cd, net);
1664	if (ret)
1665		sunrpc_destroy_cache_detail(cd);
1666	return ret;
1667}
1668EXPORT_SYMBOL_GPL(cache_register_net);
1669
1670void cache_unregister_net(struct cache_detail *cd, struct net *net)
1671{
1672	remove_cache_proc_entries(cd, net);
1673	sunrpc_destroy_cache_detail(cd);
1674}
1675EXPORT_SYMBOL_GPL(cache_unregister_net);
1676
1677struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1678{
1679	struct cache_detail *cd;
 
1680
1681	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1682	if (cd == NULL)
1683		return ERR_PTR(-ENOMEM);
1684
1685	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1686				 GFP_KERNEL);
1687	if (cd->hash_table == NULL) {
1688		kfree(cd);
1689		return ERR_PTR(-ENOMEM);
1690	}
 
 
 
1691	cd->net = net;
1692	return cd;
1693}
1694EXPORT_SYMBOL_GPL(cache_create_net);
1695
1696void cache_destroy_net(struct cache_detail *cd, struct net *net)
1697{
1698	kfree(cd->hash_table);
1699	kfree(cd);
1700}
1701EXPORT_SYMBOL_GPL(cache_destroy_net);
1702
1703static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1704				 size_t count, loff_t *ppos)
1705{
1706	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1707
1708	return cache_read(filp, buf, count, ppos, cd);
1709}
1710
1711static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1712				  size_t count, loff_t *ppos)
1713{
1714	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1715
1716	return cache_write(filp, buf, count, ppos, cd);
1717}
1718
1719static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1720{
1721	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1722
1723	return cache_poll(filp, wait, cd);
1724}
1725
1726static long cache_ioctl_pipefs(struct file *filp,
1727			      unsigned int cmd, unsigned long arg)
1728{
1729	struct inode *inode = file_inode(filp);
1730	struct cache_detail *cd = RPC_I(inode)->private;
1731
1732	return cache_ioctl(inode, filp, cmd, arg, cd);
1733}
1734
1735static int cache_open_pipefs(struct inode *inode, struct file *filp)
1736{
1737	struct cache_detail *cd = RPC_I(inode)->private;
1738
1739	return cache_open(inode, filp, cd);
1740}
1741
1742static int cache_release_pipefs(struct inode *inode, struct file *filp)
1743{
1744	struct cache_detail *cd = RPC_I(inode)->private;
1745
1746	return cache_release(inode, filp, cd);
1747}
1748
1749const struct file_operations cache_file_operations_pipefs = {
1750	.owner		= THIS_MODULE,
1751	.llseek		= no_llseek,
1752	.read		= cache_read_pipefs,
1753	.write		= cache_write_pipefs,
1754	.poll		= cache_poll_pipefs,
1755	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1756	.open		= cache_open_pipefs,
1757	.release	= cache_release_pipefs,
1758};
1759
1760static int content_open_pipefs(struct inode *inode, struct file *filp)
1761{
1762	struct cache_detail *cd = RPC_I(inode)->private;
1763
1764	return content_open(inode, filp, cd);
1765}
1766
1767static int content_release_pipefs(struct inode *inode, struct file *filp)
1768{
1769	struct cache_detail *cd = RPC_I(inode)->private;
1770
1771	return content_release(inode, filp, cd);
1772}
1773
1774const struct file_operations content_file_operations_pipefs = {
1775	.open		= content_open_pipefs,
1776	.read		= seq_read,
1777	.llseek		= seq_lseek,
1778	.release	= content_release_pipefs,
1779};
1780
1781static int open_flush_pipefs(struct inode *inode, struct file *filp)
1782{
1783	struct cache_detail *cd = RPC_I(inode)->private;
1784
1785	return open_flush(inode, filp, cd);
1786}
1787
1788static int release_flush_pipefs(struct inode *inode, struct file *filp)
1789{
1790	struct cache_detail *cd = RPC_I(inode)->private;
1791
1792	return release_flush(inode, filp, cd);
1793}
1794
1795static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1796			    size_t count, loff_t *ppos)
1797{
1798	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1799
1800	return read_flush(filp, buf, count, ppos, cd);
1801}
1802
1803static ssize_t write_flush_pipefs(struct file *filp,
1804				  const char __user *buf,
1805				  size_t count, loff_t *ppos)
1806{
1807	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1808
1809	return write_flush(filp, buf, count, ppos, cd);
1810}
1811
1812const struct file_operations cache_flush_operations_pipefs = {
1813	.open		= open_flush_pipefs,
1814	.read		= read_flush_pipefs,
1815	.write		= write_flush_pipefs,
1816	.release	= release_flush_pipefs,
1817	.llseek		= no_llseek,
1818};
1819
1820int sunrpc_cache_register_pipefs(struct dentry *parent,
1821				 const char *name, umode_t umode,
1822				 struct cache_detail *cd)
1823{
1824	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1825	if (IS_ERR(dir))
1826		return PTR_ERR(dir);
1827	cd->u.pipefs.dir = dir;
1828	return 0;
1829}
1830EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1831
1832void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1833{
1834	rpc_remove_cache_dir(cd->u.pipefs.dir);
1835	cd->u.pipefs.dir = NULL;
1836}
1837EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1838