Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <linux/string_helpers.h>
  24#include <asm/uaccess.h>
  25#include <linux/poll.h>
  26#include <linux/seq_file.h>
  27#include <linux/proc_fs.h>
  28#include <linux/net.h>
  29#include <linux/workqueue.h>
  30#include <linux/mutex.h>
  31#include <linux/pagemap.h>
  32#include <asm/ioctls.h>
  33#include <linux/sunrpc/types.h>
  34#include <linux/sunrpc/cache.h>
  35#include <linux/sunrpc/stats.h>
  36#include <linux/sunrpc/rpc_pipe_fs.h>
  37#include "netns.h"
  38
  39#define	 RPCDBG_FACILITY RPCDBG_CACHE
  40
  41static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  42static void cache_revisit_request(struct cache_head *item);
  43
  44static void cache_init(struct cache_head *h, struct cache_detail *detail)
  45{
  46	time_t now = seconds_since_boot();
  47	INIT_HLIST_NODE(&h->cache_list);
  48	h->flags = 0;
  49	kref_init(&h->ref);
  50	h->expiry_time = now + CACHE_NEW_EXPIRY;
  51	if (now <= detail->flush_time)
  52		/* ensure it isn't already expired */
  53		now = detail->flush_time + 1;
  54	h->last_refresh = now;
  55}
  56
  57struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  58				       struct cache_head *key, int hash)
  59{
  60	struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL;
  61	struct hlist_head *head;
  62
  63	head = &detail->hash_table[hash];
  64
  65	read_lock(&detail->hash_lock);
  66
  67	hlist_for_each_entry(tmp, head, cache_list) {
  68		if (detail->match(tmp, key)) {
  69			if (cache_is_expired(detail, tmp))
  70				/* This entry is expired, we will discard it. */
  71				break;
  72			cache_get(tmp);
  73			read_unlock(&detail->hash_lock);
  74			return tmp;
  75		}
  76	}
  77	read_unlock(&detail->hash_lock);
  78	/* Didn't find anything, insert an empty entry */
  79
  80	new = detail->alloc();
  81	if (!new)
  82		return NULL;
  83	/* must fully initialise 'new', else
  84	 * we might get lose if we need to
  85	 * cache_put it soon.
  86	 */
  87	cache_init(new, detail);
  88	detail->init(new, key);
  89
  90	write_lock(&detail->hash_lock);
  91
  92	/* check if entry appeared while we slept */
  93	hlist_for_each_entry(tmp, head, cache_list) {
  94		if (detail->match(tmp, key)) {
  95			if (cache_is_expired(detail, tmp)) {
  96				hlist_del_init(&tmp->cache_list);
  97				detail->entries --;
  98				freeme = tmp;
  99				break;
 100			}
 101			cache_get(tmp);
 102			write_unlock(&detail->hash_lock);
 103			cache_put(new, detail);
 104			return tmp;
 105		}
 106	}
 107
 108	hlist_add_head(&new->cache_list, head);
 109	detail->entries++;
 110	cache_get(new);
 111	write_unlock(&detail->hash_lock);
 112
 113	if (freeme)
 114		cache_put(freeme, detail);
 115	return new;
 116}
 117EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
 118
 119
 120static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 121
 122static void cache_fresh_locked(struct cache_head *head, time_t expiry,
 123			       struct cache_detail *detail)
 124{
 125	time_t now = seconds_since_boot();
 126	if (now <= detail->flush_time)
 127		/* ensure it isn't immediately treated as expired */
 128		now = detail->flush_time + 1;
 129	head->expiry_time = expiry;
 130	head->last_refresh = now;
 131	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 132	set_bit(CACHE_VALID, &head->flags);
 133}
 134
 135static void cache_fresh_unlocked(struct cache_head *head,
 136				 struct cache_detail *detail)
 137{
 138	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 139		cache_revisit_request(head);
 140		cache_dequeue(detail, head);
 141	}
 142}
 143
 144struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 145				       struct cache_head *new, struct cache_head *old, int hash)
 146{
 147	/* The 'old' entry is to be replaced by 'new'.
 148	 * If 'old' is not VALID, we update it directly,
 149	 * otherwise we need to replace it
 150	 */
 151	struct cache_head *tmp;
 152
 153	if (!test_bit(CACHE_VALID, &old->flags)) {
 154		write_lock(&detail->hash_lock);
 155		if (!test_bit(CACHE_VALID, &old->flags)) {
 156			if (test_bit(CACHE_NEGATIVE, &new->flags))
 157				set_bit(CACHE_NEGATIVE, &old->flags);
 158			else
 159				detail->update(old, new);
 160			cache_fresh_locked(old, new->expiry_time, detail);
 161			write_unlock(&detail->hash_lock);
 162			cache_fresh_unlocked(old, detail);
 163			return old;
 164		}
 165		write_unlock(&detail->hash_lock);
 166	}
 167	/* We need to insert a new entry */
 168	tmp = detail->alloc();
 169	if (!tmp) {
 170		cache_put(old, detail);
 171		return NULL;
 172	}
 173	cache_init(tmp, detail);
 174	detail->init(tmp, old);
 175
 176	write_lock(&detail->hash_lock);
 177	if (test_bit(CACHE_NEGATIVE, &new->flags))
 178		set_bit(CACHE_NEGATIVE, &tmp->flags);
 179	else
 180		detail->update(tmp, new);
 181	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
 182	detail->entries++;
 183	cache_get(tmp);
 184	cache_fresh_locked(tmp, new->expiry_time, detail);
 185	cache_fresh_locked(old, 0, detail);
 186	write_unlock(&detail->hash_lock);
 187	cache_fresh_unlocked(tmp, detail);
 188	cache_fresh_unlocked(old, detail);
 189	cache_put(old, detail);
 190	return tmp;
 191}
 192EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 193
 194static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 195{
 196	if (cd->cache_upcall)
 197		return cd->cache_upcall(cd, h);
 198	return sunrpc_cache_pipe_upcall(cd, h);
 199}
 200
 201static inline int cache_is_valid(struct cache_head *h)
 202{
 203	if (!test_bit(CACHE_VALID, &h->flags))
 204		return -EAGAIN;
 205	else {
 206		/* entry is valid */
 207		if (test_bit(CACHE_NEGATIVE, &h->flags))
 208			return -ENOENT;
 209		else {
 210			/*
 211			 * In combination with write barrier in
 212			 * sunrpc_cache_update, ensures that anyone
 213			 * using the cache entry after this sees the
 214			 * updated contents:
 215			 */
 216			smp_rmb();
 217			return 0;
 218		}
 219	}
 220}
 221
 222static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 223{
 224	int rv;
 225
 226	write_lock(&detail->hash_lock);
 227	rv = cache_is_valid(h);
 228	if (rv == -EAGAIN) {
 229		set_bit(CACHE_NEGATIVE, &h->flags);
 230		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
 231				   detail);
 232		rv = -ENOENT;
 233	}
 234	write_unlock(&detail->hash_lock);
 235	cache_fresh_unlocked(h, detail);
 236	return rv;
 237}
 238
 239/*
 240 * This is the generic cache management routine for all
 241 * the authentication caches.
 242 * It checks the currency of a cache item and will (later)
 243 * initiate an upcall to fill it if needed.
 244 *
 245 *
 246 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 247 * -EAGAIN if upcall is pending and request has been queued
 248 * -ETIMEDOUT if upcall failed or request could not be queue or
 249 *           upcall completed but item is still invalid (implying that
 250 *           the cache item has been replaced with a newer one).
 251 * -ENOENT if cache entry was negative
 252 */
 253int cache_check(struct cache_detail *detail,
 254		    struct cache_head *h, struct cache_req *rqstp)
 255{
 256	int rv;
 257	long refresh_age, age;
 258
 259	/* First decide return status as best we can */
 260	rv = cache_is_valid(h);
 261
 262	/* now see if we want to start an upcall */
 263	refresh_age = (h->expiry_time - h->last_refresh);
 264	age = seconds_since_boot() - h->last_refresh;
 265
 266	if (rqstp == NULL) {
 267		if (rv == -EAGAIN)
 268			rv = -ENOENT;
 269	} else if (rv == -EAGAIN ||
 270		   (h->expiry_time != 0 && age > refresh_age/2)) {
 271		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 272				refresh_age, age);
 273		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 274			switch (cache_make_upcall(detail, h)) {
 275			case -EINVAL:
 276				rv = try_to_negate_entry(detail, h);
 277				break;
 278			case -EAGAIN:
 279				cache_fresh_unlocked(h, detail);
 280				break;
 281			}
 282		}
 283	}
 284
 285	if (rv == -EAGAIN) {
 286		if (!cache_defer_req(rqstp, h)) {
 287			/*
 288			 * Request was not deferred; handle it as best
 289			 * we can ourselves:
 290			 */
 291			rv = cache_is_valid(h);
 292			if (rv == -EAGAIN)
 293				rv = -ETIMEDOUT;
 294		}
 295	}
 296	if (rv)
 297		cache_put(h, detail);
 298	return rv;
 299}
 300EXPORT_SYMBOL_GPL(cache_check);
 301
 302/*
 303 * caches need to be periodically cleaned.
 304 * For this we maintain a list of cache_detail and
 305 * a current pointer into that list and into the table
 306 * for that entry.
 307 *
 308 * Each time cache_clean is called it finds the next non-empty entry
 309 * in the current table and walks the list in that entry
 310 * looking for entries that can be removed.
 311 *
 312 * An entry gets removed if:
 313 * - The expiry is before current time
 314 * - The last_refresh time is before the flush_time for that cache
 315 *
 316 * later we might drop old entries with non-NEVER expiry if that table
 317 * is getting 'full' for some definition of 'full'
 318 *
 319 * The question of "how often to scan a table" is an interesting one
 320 * and is answered in part by the use of the "nextcheck" field in the
 321 * cache_detail.
 322 * When a scan of a table begins, the nextcheck field is set to a time
 323 * that is well into the future.
 324 * While scanning, if an expiry time is found that is earlier than the
 325 * current nextcheck time, nextcheck is set to that expiry time.
 326 * If the flush_time is ever set to a time earlier than the nextcheck
 327 * time, the nextcheck time is then set to that flush_time.
 328 *
 329 * A table is then only scanned if the current time is at least
 330 * the nextcheck time.
 331 *
 332 */
 333
 334static LIST_HEAD(cache_list);
 335static DEFINE_SPINLOCK(cache_list_lock);
 336static struct cache_detail *current_detail;
 337static int current_index;
 338
 339static void do_cache_clean(struct work_struct *work);
 340static struct delayed_work cache_cleaner;
 341
 342void sunrpc_init_cache_detail(struct cache_detail *cd)
 343{
 344	rwlock_init(&cd->hash_lock);
 345	INIT_LIST_HEAD(&cd->queue);
 346	spin_lock(&cache_list_lock);
 347	cd->nextcheck = 0;
 348	cd->entries = 0;
 349	atomic_set(&cd->readers, 0);
 350	cd->last_close = 0;
 351	cd->last_warn = -1;
 352	list_add(&cd->others, &cache_list);
 353	spin_unlock(&cache_list_lock);
 354
 355	/* start the cleaning process */
 356	schedule_delayed_work(&cache_cleaner, 0);
 357}
 358EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 359
 360void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 361{
 362	cache_purge(cd);
 363	spin_lock(&cache_list_lock);
 364	write_lock(&cd->hash_lock);
 365	if (cd->entries || atomic_read(&cd->inuse)) {
 366		write_unlock(&cd->hash_lock);
 367		spin_unlock(&cache_list_lock);
 368		goto out;
 369	}
 370	if (current_detail == cd)
 371		current_detail = NULL;
 372	list_del_init(&cd->others);
 373	write_unlock(&cd->hash_lock);
 374	spin_unlock(&cache_list_lock);
 375	if (list_empty(&cache_list)) {
 376		/* module must be being unloaded so its safe to kill the worker */
 377		cancel_delayed_work_sync(&cache_cleaner);
 378	}
 379	return;
 380out:
 381	printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
 382}
 383EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 384
 385/* clean cache tries to find something to clean
 386 * and cleans it.
 387 * It returns 1 if it cleaned something,
 388 *            0 if it didn't find anything this time
 389 *           -1 if it fell off the end of the list.
 390 */
 391static int cache_clean(void)
 392{
 393	int rv = 0;
 394	struct list_head *next;
 395
 396	spin_lock(&cache_list_lock);
 397
 398	/* find a suitable table if we don't already have one */
 399	while (current_detail == NULL ||
 400	    current_index >= current_detail->hash_size) {
 401		if (current_detail)
 402			next = current_detail->others.next;
 403		else
 404			next = cache_list.next;
 405		if (next == &cache_list) {
 406			current_detail = NULL;
 407			spin_unlock(&cache_list_lock);
 408			return -1;
 409		}
 410		current_detail = list_entry(next, struct cache_detail, others);
 411		if (current_detail->nextcheck > seconds_since_boot())
 412			current_index = current_detail->hash_size;
 413		else {
 414			current_index = 0;
 415			current_detail->nextcheck = seconds_since_boot()+30*60;
 416		}
 417	}
 418
 419	/* find a non-empty bucket in the table */
 420	while (current_detail &&
 421	       current_index < current_detail->hash_size &&
 422	       hlist_empty(&current_detail->hash_table[current_index]))
 423		current_index++;
 424
 425	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
 426
 427	if (current_detail && current_index < current_detail->hash_size) {
 428		struct cache_head *ch = NULL;
 429		struct cache_detail *d;
 430		struct hlist_head *head;
 431		struct hlist_node *tmp;
 432
 433		write_lock(&current_detail->hash_lock);
 434
 435		/* Ok, now to clean this strand */
 436
 437		head = &current_detail->hash_table[current_index];
 438		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
 439			if (current_detail->nextcheck > ch->expiry_time)
 440				current_detail->nextcheck = ch->expiry_time+1;
 441			if (!cache_is_expired(current_detail, ch))
 442				continue;
 443
 444			hlist_del_init(&ch->cache_list);
 445			current_detail->entries--;
 446			rv = 1;
 447			break;
 448		}
 449
 450		write_unlock(&current_detail->hash_lock);
 451		d = current_detail;
 452		if (!ch)
 453			current_index ++;
 454		spin_unlock(&cache_list_lock);
 455		if (ch) {
 456			set_bit(CACHE_CLEANED, &ch->flags);
 457			cache_fresh_unlocked(ch, d);
 458			cache_put(ch, d);
 459		}
 460	} else
 461		spin_unlock(&cache_list_lock);
 462
 463	return rv;
 464}
 465
 466/*
 467 * We want to regularly clean the cache, so we need to schedule some work ...
 468 */
 469static void do_cache_clean(struct work_struct *work)
 470{
 471	int delay = 5;
 472	if (cache_clean() == -1)
 473		delay = round_jiffies_relative(30*HZ);
 474
 475	if (list_empty(&cache_list))
 476		delay = 0;
 477
 478	if (delay)
 479		schedule_delayed_work(&cache_cleaner, delay);
 
 480}
 481
 482
 483/*
 484 * Clean all caches promptly.  This just calls cache_clean
 485 * repeatedly until we are sure that every cache has had a chance to
 486 * be fully cleaned
 487 */
 488void cache_flush(void)
 489{
 490	while (cache_clean() != -1)
 491		cond_resched();
 492	while (cache_clean() != -1)
 493		cond_resched();
 494}
 495EXPORT_SYMBOL_GPL(cache_flush);
 496
 497void cache_purge(struct cache_detail *detail)
 498{
 499	time_t now = seconds_since_boot();
 500	if (detail->flush_time >= now)
 501		now = detail->flush_time + 1;
 502	/* 'now' is the maximum value any 'last_refresh' can have */
 503	detail->flush_time = now;
 504	detail->nextcheck = seconds_since_boot();
 505	cache_flush();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506}
 507EXPORT_SYMBOL_GPL(cache_purge);
 508
 509
 510/*
 511 * Deferral and Revisiting of Requests.
 512 *
 513 * If a cache lookup finds a pending entry, we
 514 * need to defer the request and revisit it later.
 515 * All deferred requests are stored in a hash table,
 516 * indexed by "struct cache_head *".
 517 * As it may be wasteful to store a whole request
 518 * structure, we allow the request to provide a
 519 * deferred form, which must contain a
 520 * 'struct cache_deferred_req'
 521 * This cache_deferred_req contains a method to allow
 522 * it to be revisited when cache info is available
 523 */
 524
 525#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
 526#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 527
 528#define	DFR_MAX	300	/* ??? */
 529
 530static DEFINE_SPINLOCK(cache_defer_lock);
 531static LIST_HEAD(cache_defer_list);
 532static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 533static int cache_defer_cnt;
 534
 535static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 536{
 537	hlist_del_init(&dreq->hash);
 538	if (!list_empty(&dreq->recent)) {
 539		list_del_init(&dreq->recent);
 540		cache_defer_cnt--;
 541	}
 542}
 543
 544static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 545{
 546	int hash = DFR_HASH(item);
 547
 548	INIT_LIST_HEAD(&dreq->recent);
 549	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 550}
 551
 552static void setup_deferral(struct cache_deferred_req *dreq,
 553			   struct cache_head *item,
 554			   int count_me)
 555{
 556
 557	dreq->item = item;
 558
 559	spin_lock(&cache_defer_lock);
 560
 561	__hash_deferred_req(dreq, item);
 562
 563	if (count_me) {
 564		cache_defer_cnt++;
 565		list_add(&dreq->recent, &cache_defer_list);
 566	}
 567
 568	spin_unlock(&cache_defer_lock);
 569
 570}
 571
 572struct thread_deferred_req {
 573	struct cache_deferred_req handle;
 574	struct completion completion;
 575};
 576
 577static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 578{
 579	struct thread_deferred_req *dr =
 580		container_of(dreq, struct thread_deferred_req, handle);
 581	complete(&dr->completion);
 582}
 583
 584static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 585{
 586	struct thread_deferred_req sleeper;
 587	struct cache_deferred_req *dreq = &sleeper.handle;
 588
 589	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 590	dreq->revisit = cache_restart_thread;
 591
 592	setup_deferral(dreq, item, 0);
 593
 594	if (!test_bit(CACHE_PENDING, &item->flags) ||
 595	    wait_for_completion_interruptible_timeout(
 596		    &sleeper.completion, req->thread_wait) <= 0) {
 597		/* The completion wasn't completed, so we need
 598		 * to clean up
 599		 */
 600		spin_lock(&cache_defer_lock);
 601		if (!hlist_unhashed(&sleeper.handle.hash)) {
 602			__unhash_deferred_req(&sleeper.handle);
 603			spin_unlock(&cache_defer_lock);
 604		} else {
 605			/* cache_revisit_request already removed
 606			 * this from the hash table, but hasn't
 607			 * called ->revisit yet.  It will very soon
 608			 * and we need to wait for it.
 609			 */
 610			spin_unlock(&cache_defer_lock);
 611			wait_for_completion(&sleeper.completion);
 612		}
 613	}
 614}
 615
 616static void cache_limit_defers(void)
 617{
 618	/* Make sure we haven't exceed the limit of allowed deferred
 619	 * requests.
 620	 */
 621	struct cache_deferred_req *discard = NULL;
 622
 623	if (cache_defer_cnt <= DFR_MAX)
 624		return;
 625
 626	spin_lock(&cache_defer_lock);
 627
 628	/* Consider removing either the first or the last */
 629	if (cache_defer_cnt > DFR_MAX) {
 630		if (prandom_u32() & 1)
 631			discard = list_entry(cache_defer_list.next,
 632					     struct cache_deferred_req, recent);
 633		else
 634			discard = list_entry(cache_defer_list.prev,
 635					     struct cache_deferred_req, recent);
 636		__unhash_deferred_req(discard);
 637	}
 638	spin_unlock(&cache_defer_lock);
 639	if (discard)
 640		discard->revisit(discard, 1);
 641}
 642
 643/* Return true if and only if a deferred request is queued. */
 644static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 645{
 646	struct cache_deferred_req *dreq;
 647
 648	if (req->thread_wait) {
 649		cache_wait_req(req, item);
 650		if (!test_bit(CACHE_PENDING, &item->flags))
 651			return false;
 652	}
 653	dreq = req->defer(req);
 654	if (dreq == NULL)
 655		return false;
 656	setup_deferral(dreq, item, 1);
 657	if (!test_bit(CACHE_PENDING, &item->flags))
 658		/* Bit could have been cleared before we managed to
 659		 * set up the deferral, so need to revisit just in case
 660		 */
 661		cache_revisit_request(item);
 662
 663	cache_limit_defers();
 664	return true;
 665}
 666
 667static void cache_revisit_request(struct cache_head *item)
 668{
 669	struct cache_deferred_req *dreq;
 670	struct list_head pending;
 671	struct hlist_node *tmp;
 672	int hash = DFR_HASH(item);
 673
 674	INIT_LIST_HEAD(&pending);
 675	spin_lock(&cache_defer_lock);
 676
 677	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 678		if (dreq->item == item) {
 679			__unhash_deferred_req(dreq);
 680			list_add(&dreq->recent, &pending);
 681		}
 682
 683	spin_unlock(&cache_defer_lock);
 684
 685	while (!list_empty(&pending)) {
 686		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 687		list_del_init(&dreq->recent);
 688		dreq->revisit(dreq, 0);
 689	}
 690}
 691
 692void cache_clean_deferred(void *owner)
 693{
 694	struct cache_deferred_req *dreq, *tmp;
 695	struct list_head pending;
 696
 697
 698	INIT_LIST_HEAD(&pending);
 699	spin_lock(&cache_defer_lock);
 700
 701	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 702		if (dreq->owner == owner) {
 703			__unhash_deferred_req(dreq);
 704			list_add(&dreq->recent, &pending);
 705		}
 706	}
 707	spin_unlock(&cache_defer_lock);
 708
 709	while (!list_empty(&pending)) {
 710		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 711		list_del_init(&dreq->recent);
 712		dreq->revisit(dreq, 1);
 713	}
 714}
 715
 716/*
 717 * communicate with user-space
 718 *
 719 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
 720 * On read, you get a full request, or block.
 721 * On write, an update request is processed.
 722 * Poll works if anything to read, and always allows write.
 723 *
 724 * Implemented by linked list of requests.  Each open file has
 725 * a ->private that also exists in this list.  New requests are added
 726 * to the end and may wakeup and preceding readers.
 727 * New readers are added to the head.  If, on read, an item is found with
 728 * CACHE_UPCALLING clear, we free it from the list.
 729 *
 730 */
 731
 732static DEFINE_SPINLOCK(queue_lock);
 733static DEFINE_MUTEX(queue_io_mutex);
 734
 735struct cache_queue {
 736	struct list_head	list;
 737	int			reader;	/* if 0, then request */
 738};
 739struct cache_request {
 740	struct cache_queue	q;
 741	struct cache_head	*item;
 742	char			* buf;
 743	int			len;
 744	int			readers;
 745};
 746struct cache_reader {
 747	struct cache_queue	q;
 748	int			offset;	/* if non-0, we have a refcnt on next request */
 749};
 750
 751static int cache_request(struct cache_detail *detail,
 752			       struct cache_request *crq)
 753{
 754	char *bp = crq->buf;
 755	int len = PAGE_SIZE;
 756
 757	detail->cache_request(detail, crq->item, &bp, &len);
 758	if (len < 0)
 759		return -EAGAIN;
 760	return PAGE_SIZE - len;
 761}
 762
 763static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 764			  loff_t *ppos, struct cache_detail *cd)
 765{
 766	struct cache_reader *rp = filp->private_data;
 767	struct cache_request *rq;
 768	struct inode *inode = file_inode(filp);
 769	int err;
 770
 771	if (count == 0)
 772		return 0;
 773
 774	inode_lock(inode); /* protect against multiple concurrent
 775			      * readers on this file */
 776 again:
 777	spin_lock(&queue_lock);
 778	/* need to find next request */
 779	while (rp->q.list.next != &cd->queue &&
 780	       list_entry(rp->q.list.next, struct cache_queue, list)
 781	       ->reader) {
 782		struct list_head *next = rp->q.list.next;
 783		list_move(&rp->q.list, next);
 784	}
 785	if (rp->q.list.next == &cd->queue) {
 786		spin_unlock(&queue_lock);
 787		inode_unlock(inode);
 788		WARN_ON_ONCE(rp->offset);
 789		return 0;
 790	}
 791	rq = container_of(rp->q.list.next, struct cache_request, q.list);
 792	WARN_ON_ONCE(rq->q.reader);
 793	if (rp->offset == 0)
 794		rq->readers++;
 795	spin_unlock(&queue_lock);
 796
 797	if (rq->len == 0) {
 798		err = cache_request(cd, rq);
 799		if (err < 0)
 800			goto out;
 801		rq->len = err;
 802	}
 803
 804	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 805		err = -EAGAIN;
 806		spin_lock(&queue_lock);
 807		list_move(&rp->q.list, &rq->q.list);
 808		spin_unlock(&queue_lock);
 809	} else {
 810		if (rp->offset + count > rq->len)
 811			count = rq->len - rp->offset;
 812		err = -EFAULT;
 813		if (copy_to_user(buf, rq->buf + rp->offset, count))
 814			goto out;
 815		rp->offset += count;
 816		if (rp->offset >= rq->len) {
 817			rp->offset = 0;
 818			spin_lock(&queue_lock);
 819			list_move(&rp->q.list, &rq->q.list);
 820			spin_unlock(&queue_lock);
 821		}
 822		err = 0;
 823	}
 824 out:
 825	if (rp->offset == 0) {
 826		/* need to release rq */
 827		spin_lock(&queue_lock);
 828		rq->readers--;
 829		if (rq->readers == 0 &&
 830		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 831			list_del(&rq->q.list);
 832			spin_unlock(&queue_lock);
 833			cache_put(rq->item, cd);
 834			kfree(rq->buf);
 835			kfree(rq);
 836		} else
 837			spin_unlock(&queue_lock);
 838	}
 839	if (err == -EAGAIN)
 840		goto again;
 841	inode_unlock(inode);
 842	return err ? err :  count;
 843}
 844
 845static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 846				 size_t count, struct cache_detail *cd)
 847{
 848	ssize_t ret;
 849
 850	if (count == 0)
 851		return -EINVAL;
 852	if (copy_from_user(kaddr, buf, count))
 853		return -EFAULT;
 854	kaddr[count] = '\0';
 855	ret = cd->cache_parse(cd, kaddr, count);
 856	if (!ret)
 857		ret = count;
 858	return ret;
 859}
 860
 861static ssize_t cache_slow_downcall(const char __user *buf,
 862				   size_t count, struct cache_detail *cd)
 863{
 864	static char write_buf[8192]; /* protected by queue_io_mutex */
 865	ssize_t ret = -EINVAL;
 866
 867	if (count >= sizeof(write_buf))
 868		goto out;
 869	mutex_lock(&queue_io_mutex);
 870	ret = cache_do_downcall(write_buf, buf, count, cd);
 871	mutex_unlock(&queue_io_mutex);
 872out:
 873	return ret;
 874}
 875
 876static ssize_t cache_downcall(struct address_space *mapping,
 877			      const char __user *buf,
 878			      size_t count, struct cache_detail *cd)
 879{
 880	struct page *page;
 881	char *kaddr;
 882	ssize_t ret = -ENOMEM;
 883
 884	if (count >= PAGE_SIZE)
 885		goto out_slow;
 886
 887	page = find_or_create_page(mapping, 0, GFP_KERNEL);
 888	if (!page)
 889		goto out_slow;
 890
 891	kaddr = kmap(page);
 892	ret = cache_do_downcall(kaddr, buf, count, cd);
 893	kunmap(page);
 894	unlock_page(page);
 895	put_page(page);
 896	return ret;
 897out_slow:
 898	return cache_slow_downcall(buf, count, cd);
 899}
 900
 901static ssize_t cache_write(struct file *filp, const char __user *buf,
 902			   size_t count, loff_t *ppos,
 903			   struct cache_detail *cd)
 904{
 905	struct address_space *mapping = filp->f_mapping;
 906	struct inode *inode = file_inode(filp);
 907	ssize_t ret = -EINVAL;
 908
 909	if (!cd->cache_parse)
 910		goto out;
 911
 912	inode_lock(inode);
 913	ret = cache_downcall(mapping, buf, count, cd);
 914	inode_unlock(inode);
 915out:
 916	return ret;
 917}
 918
 919static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 920
 921static unsigned int cache_poll(struct file *filp, poll_table *wait,
 922			       struct cache_detail *cd)
 923{
 924	unsigned int mask;
 925	struct cache_reader *rp = filp->private_data;
 926	struct cache_queue *cq;
 927
 928	poll_wait(filp, &queue_wait, wait);
 929
 930	/* alway allow write */
 931	mask = POLLOUT | POLLWRNORM;
 932
 933	if (!rp)
 934		return mask;
 935
 936	spin_lock(&queue_lock);
 937
 938	for (cq= &rp->q; &cq->list != &cd->queue;
 939	     cq = list_entry(cq->list.next, struct cache_queue, list))
 940		if (!cq->reader) {
 941			mask |= POLLIN | POLLRDNORM;
 942			break;
 943		}
 944	spin_unlock(&queue_lock);
 945	return mask;
 946}
 947
 948static int cache_ioctl(struct inode *ino, struct file *filp,
 949		       unsigned int cmd, unsigned long arg,
 950		       struct cache_detail *cd)
 951{
 952	int len = 0;
 953	struct cache_reader *rp = filp->private_data;
 954	struct cache_queue *cq;
 955
 956	if (cmd != FIONREAD || !rp)
 957		return -EINVAL;
 958
 959	spin_lock(&queue_lock);
 960
 961	/* only find the length remaining in current request,
 962	 * or the length of the next request
 963	 */
 964	for (cq= &rp->q; &cq->list != &cd->queue;
 965	     cq = list_entry(cq->list.next, struct cache_queue, list))
 966		if (!cq->reader) {
 967			struct cache_request *cr =
 968				container_of(cq, struct cache_request, q);
 969			len = cr->len - rp->offset;
 970			break;
 971		}
 972	spin_unlock(&queue_lock);
 973
 974	return put_user(len, (int __user *)arg);
 975}
 976
 977static int cache_open(struct inode *inode, struct file *filp,
 978		      struct cache_detail *cd)
 979{
 980	struct cache_reader *rp = NULL;
 981
 982	if (!cd || !try_module_get(cd->owner))
 983		return -EACCES;
 984	nonseekable_open(inode, filp);
 985	if (filp->f_mode & FMODE_READ) {
 986		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 987		if (!rp) {
 988			module_put(cd->owner);
 989			return -ENOMEM;
 990		}
 991		rp->offset = 0;
 992		rp->q.reader = 1;
 993		atomic_inc(&cd->readers);
 994		spin_lock(&queue_lock);
 995		list_add(&rp->q.list, &cd->queue);
 996		spin_unlock(&queue_lock);
 997	}
 998	filp->private_data = rp;
 999	return 0;
1000}
1001
1002static int cache_release(struct inode *inode, struct file *filp,
1003			 struct cache_detail *cd)
1004{
1005	struct cache_reader *rp = filp->private_data;
1006
1007	if (rp) {
1008		spin_lock(&queue_lock);
1009		if (rp->offset) {
1010			struct cache_queue *cq;
1011			for (cq= &rp->q; &cq->list != &cd->queue;
1012			     cq = list_entry(cq->list.next, struct cache_queue, list))
1013				if (!cq->reader) {
1014					container_of(cq, struct cache_request, q)
1015						->readers--;
1016					break;
1017				}
1018			rp->offset = 0;
1019		}
1020		list_del(&rp->q.list);
1021		spin_unlock(&queue_lock);
1022
1023		filp->private_data = NULL;
1024		kfree(rp);
1025
1026		cd->last_close = seconds_since_boot();
1027		atomic_dec(&cd->readers);
1028	}
1029	module_put(cd->owner);
1030	return 0;
1031}
1032
1033
1034
1035static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1036{
1037	struct cache_queue *cq, *tmp;
1038	struct cache_request *cr;
1039	struct list_head dequeued;
1040
1041	INIT_LIST_HEAD(&dequeued);
1042	spin_lock(&queue_lock);
1043	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1044		if (!cq->reader) {
1045			cr = container_of(cq, struct cache_request, q);
1046			if (cr->item != ch)
1047				continue;
1048			if (test_bit(CACHE_PENDING, &ch->flags))
1049				/* Lost a race and it is pending again */
1050				break;
1051			if (cr->readers != 0)
1052				continue;
1053			list_move(&cr->q.list, &dequeued);
1054		}
1055	spin_unlock(&queue_lock);
1056	while (!list_empty(&dequeued)) {
1057		cr = list_entry(dequeued.next, struct cache_request, q.list);
1058		list_del(&cr->q.list);
1059		cache_put(cr->item, detail);
1060		kfree(cr->buf);
1061		kfree(cr);
1062	}
1063}
1064
1065/*
1066 * Support routines for text-based upcalls.
1067 * Fields are separated by spaces.
1068 * Fields are either mangled to quote space tab newline slosh with slosh
1069 * or a hexified with a leading \x
1070 * Record is terminated with newline.
1071 *
1072 */
1073
1074void qword_add(char **bpp, int *lp, char *str)
1075{
1076	char *bp = *bpp;
1077	int len = *lp;
1078	int ret;
1079
1080	if (len < 0) return;
1081
1082	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1083	if (ret >= len) {
1084		bp += len;
1085		len = -1;
1086	} else {
1087		bp += ret;
1088		len -= ret;
1089		*bp++ = ' ';
1090		len--;
1091	}
1092	*bpp = bp;
1093	*lp = len;
1094}
1095EXPORT_SYMBOL_GPL(qword_add);
1096
1097void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1098{
1099	char *bp = *bpp;
1100	int len = *lp;
1101
1102	if (len < 0) return;
1103
1104	if (len > 2) {
1105		*bp++ = '\\';
1106		*bp++ = 'x';
1107		len -= 2;
1108		while (blen && len >= 2) {
1109			bp = hex_byte_pack(bp, *buf++);
1110			len -= 2;
1111			blen--;
1112		}
1113	}
1114	if (blen || len<1) len = -1;
1115	else {
1116		*bp++ = ' ';
1117		len--;
1118	}
1119	*bpp = bp;
1120	*lp = len;
1121}
1122EXPORT_SYMBOL_GPL(qword_addhex);
1123
1124static void warn_no_listener(struct cache_detail *detail)
1125{
1126	if (detail->last_warn != detail->last_close) {
1127		detail->last_warn = detail->last_close;
1128		if (detail->warn_no_listener)
1129			detail->warn_no_listener(detail, detail->last_close != 0);
1130	}
1131}
1132
1133static bool cache_listeners_exist(struct cache_detail *detail)
1134{
1135	if (atomic_read(&detail->readers))
1136		return true;
1137	if (detail->last_close == 0)
1138		/* This cache was never opened */
1139		return false;
1140	if (detail->last_close < seconds_since_boot() - 30)
1141		/*
1142		 * We allow for the possibility that someone might
1143		 * restart a userspace daemon without restarting the
1144		 * server; but after 30 seconds, we give up.
1145		 */
1146		 return false;
1147	return true;
1148}
1149
1150/*
1151 * register an upcall request to user-space and queue it up for read() by the
1152 * upcall daemon.
1153 *
1154 * Each request is at most one page long.
1155 */
1156int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1157{
1158
1159	char *buf;
1160	struct cache_request *crq;
1161	int ret = 0;
1162
1163	if (!detail->cache_request)
1164		return -EINVAL;
1165
1166	if (!cache_listeners_exist(detail)) {
1167		warn_no_listener(detail);
1168		return -EINVAL;
1169	}
1170	if (test_bit(CACHE_CLEANED, &h->flags))
1171		/* Too late to make an upcall */
1172		return -EAGAIN;
1173
1174	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1175	if (!buf)
1176		return -EAGAIN;
1177
1178	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1179	if (!crq) {
1180		kfree(buf);
1181		return -EAGAIN;
1182	}
1183
1184	crq->q.reader = 0;
1185	crq->buf = buf;
1186	crq->len = 0;
1187	crq->readers = 0;
1188	spin_lock(&queue_lock);
1189	if (test_bit(CACHE_PENDING, &h->flags)) {
1190		crq->item = cache_get(h);
1191		list_add_tail(&crq->q.list, &detail->queue);
1192	} else
1193		/* Lost a race, no longer PENDING, so don't enqueue */
1194		ret = -EAGAIN;
1195	spin_unlock(&queue_lock);
1196	wake_up(&queue_wait);
1197	if (ret == -EAGAIN) {
1198		kfree(buf);
1199		kfree(crq);
1200	}
1201	return ret;
1202}
1203EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1204
1205/*
1206 * parse a message from user-space and pass it
1207 * to an appropriate cache
1208 * Messages are, like requests, separated into fields by
1209 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1210 *
1211 * Message is
1212 *   reply cachename expiry key ... content....
1213 *
1214 * key and content are both parsed by cache
1215 */
1216
1217int qword_get(char **bpp, char *dest, int bufsize)
1218{
1219	/* return bytes copied, or -1 on error */
1220	char *bp = *bpp;
1221	int len = 0;
1222
1223	while (*bp == ' ') bp++;
1224
1225	if (bp[0] == '\\' && bp[1] == 'x') {
1226		/* HEX STRING */
1227		bp += 2;
1228		while (len < bufsize - 1) {
1229			int h, l;
1230
1231			h = hex_to_bin(bp[0]);
1232			if (h < 0)
1233				break;
1234
1235			l = hex_to_bin(bp[1]);
1236			if (l < 0)
1237				break;
1238
1239			*dest++ = (h << 4) | l;
1240			bp += 2;
1241			len++;
1242		}
1243	} else {
1244		/* text with \nnn octal quoting */
1245		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1246			if (*bp == '\\' &&
1247			    isodigit(bp[1]) && (bp[1] <= '3') &&
1248			    isodigit(bp[2]) &&
1249			    isodigit(bp[3])) {
1250				int byte = (*++bp -'0');
1251				bp++;
1252				byte = (byte << 3) | (*bp++ - '0');
1253				byte = (byte << 3) | (*bp++ - '0');
1254				*dest++ = byte;
1255				len++;
1256			} else {
1257				*dest++ = *bp++;
1258				len++;
1259			}
1260		}
1261	}
1262
1263	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1264		return -1;
1265	while (*bp == ' ') bp++;
1266	*bpp = bp;
1267	*dest = '\0';
1268	return len;
1269}
1270EXPORT_SYMBOL_GPL(qword_get);
1271
1272
1273/*
1274 * support /proc/sunrpc/cache/$CACHENAME/content
1275 * as a seqfile.
1276 * We call ->cache_show passing NULL for the item to
1277 * get a header, then pass each real item in the cache
1278 */
1279
1280void *cache_seq_start(struct seq_file *m, loff_t *pos)
1281	__acquires(cd->hash_lock)
1282{
1283	loff_t n = *pos;
1284	unsigned int hash, entry;
1285	struct cache_head *ch;
1286	struct cache_detail *cd = m->private;
1287
1288	read_lock(&cd->hash_lock);
1289	if (!n--)
1290		return SEQ_START_TOKEN;
1291	hash = n >> 32;
1292	entry = n & ((1LL<<32) - 1);
1293
1294	hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list)
1295		if (!entry--)
1296			return ch;
1297	n &= ~((1LL<<32) - 1);
1298	do {
1299		hash++;
1300		n += 1LL<<32;
1301	} while(hash < cd->hash_size &&
1302		hlist_empty(&cd->hash_table[hash]));
1303	if (hash >= cd->hash_size)
1304		return NULL;
1305	*pos = n+1;
1306	return hlist_entry_safe(cd->hash_table[hash].first,
1307				struct cache_head, cache_list);
1308}
1309EXPORT_SYMBOL_GPL(cache_seq_start);
1310
1311void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1312{
1313	struct cache_head *ch = p;
1314	int hash = (*pos >> 32);
1315	struct cache_detail *cd = m->private;
1316
1317	if (p == SEQ_START_TOKEN)
1318		hash = 0;
1319	else if (ch->cache_list.next == NULL) {
1320		hash++;
1321		*pos += 1LL<<32;
1322	} else {
1323		++*pos;
1324		return hlist_entry_safe(ch->cache_list.next,
1325					struct cache_head, cache_list);
1326	}
1327	*pos &= ~((1LL<<32) - 1);
1328	while (hash < cd->hash_size &&
1329	       hlist_empty(&cd->hash_table[hash])) {
1330		hash++;
1331		*pos += 1LL<<32;
1332	}
1333	if (hash >= cd->hash_size)
1334		return NULL;
1335	++*pos;
1336	return hlist_entry_safe(cd->hash_table[hash].first,
1337				struct cache_head, cache_list);
1338}
1339EXPORT_SYMBOL_GPL(cache_seq_next);
1340
1341void cache_seq_stop(struct seq_file *m, void *p)
1342	__releases(cd->hash_lock)
1343{
1344	struct cache_detail *cd = m->private;
1345	read_unlock(&cd->hash_lock);
1346}
1347EXPORT_SYMBOL_GPL(cache_seq_stop);
1348
1349static int c_show(struct seq_file *m, void *p)
1350{
1351	struct cache_head *cp = p;
1352	struct cache_detail *cd = m->private;
1353
1354	if (p == SEQ_START_TOKEN)
1355		return cd->cache_show(m, cd, NULL);
1356
1357	ifdebug(CACHE)
1358		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1359			   convert_to_wallclock(cp->expiry_time),
1360			   atomic_read(&cp->ref.refcount), cp->flags);
1361	cache_get(cp);
1362	if (cache_check(cd, cp, NULL))
1363		/* cache_check does a cache_put on failure */
1364		seq_printf(m, "# ");
1365	else {
1366		if (cache_is_expired(cd, cp))
1367			seq_printf(m, "# ");
1368		cache_put(cp, cd);
1369	}
1370
1371	return cd->cache_show(m, cd, cp);
1372}
1373
1374static const struct seq_operations cache_content_op = {
1375	.start	= cache_seq_start,
1376	.next	= cache_seq_next,
1377	.stop	= cache_seq_stop,
1378	.show	= c_show,
1379};
1380
1381static int content_open(struct inode *inode, struct file *file,
1382			struct cache_detail *cd)
1383{
1384	struct seq_file *seq;
1385	int err;
1386
1387	if (!cd || !try_module_get(cd->owner))
1388		return -EACCES;
1389
1390	err = seq_open(file, &cache_content_op);
1391	if (err) {
1392		module_put(cd->owner);
1393		return err;
1394	}
1395
1396	seq = file->private_data;
1397	seq->private = cd;
1398	return 0;
1399}
1400
1401static int content_release(struct inode *inode, struct file *file,
1402		struct cache_detail *cd)
1403{
1404	int ret = seq_release(inode, file);
1405	module_put(cd->owner);
1406	return ret;
1407}
1408
1409static int open_flush(struct inode *inode, struct file *file,
1410			struct cache_detail *cd)
1411{
1412	if (!cd || !try_module_get(cd->owner))
1413		return -EACCES;
1414	return nonseekable_open(inode, file);
1415}
1416
1417static int release_flush(struct inode *inode, struct file *file,
1418			struct cache_detail *cd)
1419{
1420	module_put(cd->owner);
1421	return 0;
1422}
1423
1424static ssize_t read_flush(struct file *file, char __user *buf,
1425			  size_t count, loff_t *ppos,
1426			  struct cache_detail *cd)
1427{
1428	char tbuf[22];
1429	unsigned long p = *ppos;
1430	size_t len;
1431
1432	snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1433	len = strlen(tbuf);
1434	if (p >= len)
1435		return 0;
1436	len -= p;
1437	if (len > count)
1438		len = count;
1439	if (copy_to_user(buf, (void*)(tbuf+p), len))
1440		return -EFAULT;
1441	*ppos += len;
1442	return len;
1443}
1444
1445static ssize_t write_flush(struct file *file, const char __user *buf,
1446			   size_t count, loff_t *ppos,
1447			   struct cache_detail *cd)
1448{
1449	char tbuf[20];
1450	char *bp, *ep;
1451	time_t then, now;
1452
1453	if (*ppos || count > sizeof(tbuf)-1)
1454		return -EINVAL;
1455	if (copy_from_user(tbuf, buf, count))
1456		return -EFAULT;
1457	tbuf[count] = 0;
1458	simple_strtoul(tbuf, &ep, 0);
1459	if (*ep && *ep != '\n')
1460		return -EINVAL;
 
 
 
 
1461
1462	bp = tbuf;
1463	then = get_expiry(&bp);
1464	now = seconds_since_boot();
1465	cd->nextcheck = now;
1466	/* Can only set flush_time to 1 second beyond "now", or
1467	 * possibly 1 second beyond flushtime.  This is because
1468	 * flush_time never goes backwards so it mustn't get too far
1469	 * ahead of time.
1470	 */
1471	if (then >= now) {
1472		/* Want to flush everything, so behave like cache_purge() */
1473		if (cd->flush_time >= now)
1474			now = cd->flush_time + 1;
1475		then = now;
1476	}
1477
1478	cd->flush_time = then;
 
 
 
 
1479	cache_flush();
1480
1481	*ppos += count;
1482	return count;
1483}
1484
1485static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1486				 size_t count, loff_t *ppos)
1487{
1488	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1489
1490	return cache_read(filp, buf, count, ppos, cd);
1491}
1492
1493static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1494				  size_t count, loff_t *ppos)
1495{
1496	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1497
1498	return cache_write(filp, buf, count, ppos, cd);
1499}
1500
1501static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1502{
1503	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1504
1505	return cache_poll(filp, wait, cd);
1506}
1507
1508static long cache_ioctl_procfs(struct file *filp,
1509			       unsigned int cmd, unsigned long arg)
1510{
1511	struct inode *inode = file_inode(filp);
1512	struct cache_detail *cd = PDE_DATA(inode);
1513
1514	return cache_ioctl(inode, filp, cmd, arg, cd);
1515}
1516
1517static int cache_open_procfs(struct inode *inode, struct file *filp)
1518{
1519	struct cache_detail *cd = PDE_DATA(inode);
1520
1521	return cache_open(inode, filp, cd);
1522}
1523
1524static int cache_release_procfs(struct inode *inode, struct file *filp)
1525{
1526	struct cache_detail *cd = PDE_DATA(inode);
1527
1528	return cache_release(inode, filp, cd);
1529}
1530
1531static const struct file_operations cache_file_operations_procfs = {
1532	.owner		= THIS_MODULE,
1533	.llseek		= no_llseek,
1534	.read		= cache_read_procfs,
1535	.write		= cache_write_procfs,
1536	.poll		= cache_poll_procfs,
1537	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1538	.open		= cache_open_procfs,
1539	.release	= cache_release_procfs,
1540};
1541
1542static int content_open_procfs(struct inode *inode, struct file *filp)
1543{
1544	struct cache_detail *cd = PDE_DATA(inode);
1545
1546	return content_open(inode, filp, cd);
1547}
1548
1549static int content_release_procfs(struct inode *inode, struct file *filp)
1550{
1551	struct cache_detail *cd = PDE_DATA(inode);
1552
1553	return content_release(inode, filp, cd);
1554}
1555
1556static const struct file_operations content_file_operations_procfs = {
1557	.open		= content_open_procfs,
1558	.read		= seq_read,
1559	.llseek		= seq_lseek,
1560	.release	= content_release_procfs,
1561};
1562
1563static int open_flush_procfs(struct inode *inode, struct file *filp)
1564{
1565	struct cache_detail *cd = PDE_DATA(inode);
1566
1567	return open_flush(inode, filp, cd);
1568}
1569
1570static int release_flush_procfs(struct inode *inode, struct file *filp)
1571{
1572	struct cache_detail *cd = PDE_DATA(inode);
1573
1574	return release_flush(inode, filp, cd);
1575}
1576
1577static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1578			    size_t count, loff_t *ppos)
1579{
1580	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1581
1582	return read_flush(filp, buf, count, ppos, cd);
1583}
1584
1585static ssize_t write_flush_procfs(struct file *filp,
1586				  const char __user *buf,
1587				  size_t count, loff_t *ppos)
1588{
1589	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1590
1591	return write_flush(filp, buf, count, ppos, cd);
1592}
1593
1594static const struct file_operations cache_flush_operations_procfs = {
1595	.open		= open_flush_procfs,
1596	.read		= read_flush_procfs,
1597	.write		= write_flush_procfs,
1598	.release	= release_flush_procfs,
1599	.llseek		= no_llseek,
1600};
1601
1602static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1603{
1604	struct sunrpc_net *sn;
1605
1606	if (cd->u.procfs.proc_ent == NULL)
1607		return;
1608	if (cd->u.procfs.flush_ent)
1609		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1610	if (cd->u.procfs.channel_ent)
1611		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1612	if (cd->u.procfs.content_ent)
1613		remove_proc_entry("content", cd->u.procfs.proc_ent);
1614	cd->u.procfs.proc_ent = NULL;
1615	sn = net_generic(net, sunrpc_net_id);
1616	remove_proc_entry(cd->name, sn->proc_net_rpc);
1617}
1618
1619#ifdef CONFIG_PROC_FS
1620static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1621{
1622	struct proc_dir_entry *p;
1623	struct sunrpc_net *sn;
1624
1625	sn = net_generic(net, sunrpc_net_id);
1626	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1627	if (cd->u.procfs.proc_ent == NULL)
1628		goto out_nomem;
1629	cd->u.procfs.channel_ent = NULL;
1630	cd->u.procfs.content_ent = NULL;
1631
1632	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1633			     cd->u.procfs.proc_ent,
1634			     &cache_flush_operations_procfs, cd);
1635	cd->u.procfs.flush_ent = p;
1636	if (p == NULL)
1637		goto out_nomem;
1638
1639	if (cd->cache_request || cd->cache_parse) {
1640		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1641				     cd->u.procfs.proc_ent,
1642				     &cache_file_operations_procfs, cd);
1643		cd->u.procfs.channel_ent = p;
1644		if (p == NULL)
1645			goto out_nomem;
1646	}
1647	if (cd->cache_show) {
1648		p = proc_create_data("content", S_IFREG|S_IRUSR,
1649				cd->u.procfs.proc_ent,
1650				&content_file_operations_procfs, cd);
1651		cd->u.procfs.content_ent = p;
1652		if (p == NULL)
1653			goto out_nomem;
1654	}
1655	return 0;
1656out_nomem:
1657	remove_cache_proc_entries(cd, net);
1658	return -ENOMEM;
1659}
1660#else /* CONFIG_PROC_FS */
1661static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1662{
1663	return 0;
1664}
1665#endif
1666
1667void __init cache_initialize(void)
1668{
1669	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1670}
1671
1672int cache_register_net(struct cache_detail *cd, struct net *net)
1673{
1674	int ret;
1675
1676	sunrpc_init_cache_detail(cd);
1677	ret = create_cache_proc_entries(cd, net);
1678	if (ret)
1679		sunrpc_destroy_cache_detail(cd);
1680	return ret;
1681}
1682EXPORT_SYMBOL_GPL(cache_register_net);
1683
1684void cache_unregister_net(struct cache_detail *cd, struct net *net)
1685{
1686	remove_cache_proc_entries(cd, net);
1687	sunrpc_destroy_cache_detail(cd);
1688}
1689EXPORT_SYMBOL_GPL(cache_unregister_net);
1690
1691struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1692{
1693	struct cache_detail *cd;
1694	int i;
1695
1696	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1697	if (cd == NULL)
1698		return ERR_PTR(-ENOMEM);
1699
1700	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head),
1701				 GFP_KERNEL);
1702	if (cd->hash_table == NULL) {
1703		kfree(cd);
1704		return ERR_PTR(-ENOMEM);
1705	}
1706
1707	for (i = 0; i < cd->hash_size; i++)
1708		INIT_HLIST_HEAD(&cd->hash_table[i]);
1709	cd->net = net;
1710	return cd;
1711}
1712EXPORT_SYMBOL_GPL(cache_create_net);
1713
1714void cache_destroy_net(struct cache_detail *cd, struct net *net)
1715{
1716	kfree(cd->hash_table);
1717	kfree(cd);
1718}
1719EXPORT_SYMBOL_GPL(cache_destroy_net);
1720
1721static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1722				 size_t count, loff_t *ppos)
1723{
1724	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1725
1726	return cache_read(filp, buf, count, ppos, cd);
1727}
1728
1729static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1730				  size_t count, loff_t *ppos)
1731{
1732	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1733
1734	return cache_write(filp, buf, count, ppos, cd);
1735}
1736
1737static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1738{
1739	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1740
1741	return cache_poll(filp, wait, cd);
1742}
1743
1744static long cache_ioctl_pipefs(struct file *filp,
1745			      unsigned int cmd, unsigned long arg)
1746{
1747	struct inode *inode = file_inode(filp);
1748	struct cache_detail *cd = RPC_I(inode)->private;
1749
1750	return cache_ioctl(inode, filp, cmd, arg, cd);
1751}
1752
1753static int cache_open_pipefs(struct inode *inode, struct file *filp)
1754{
1755	struct cache_detail *cd = RPC_I(inode)->private;
1756
1757	return cache_open(inode, filp, cd);
1758}
1759
1760static int cache_release_pipefs(struct inode *inode, struct file *filp)
1761{
1762	struct cache_detail *cd = RPC_I(inode)->private;
1763
1764	return cache_release(inode, filp, cd);
1765}
1766
1767const struct file_operations cache_file_operations_pipefs = {
1768	.owner		= THIS_MODULE,
1769	.llseek		= no_llseek,
1770	.read		= cache_read_pipefs,
1771	.write		= cache_write_pipefs,
1772	.poll		= cache_poll_pipefs,
1773	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1774	.open		= cache_open_pipefs,
1775	.release	= cache_release_pipefs,
1776};
1777
1778static int content_open_pipefs(struct inode *inode, struct file *filp)
1779{
1780	struct cache_detail *cd = RPC_I(inode)->private;
1781
1782	return content_open(inode, filp, cd);
1783}
1784
1785static int content_release_pipefs(struct inode *inode, struct file *filp)
1786{
1787	struct cache_detail *cd = RPC_I(inode)->private;
1788
1789	return content_release(inode, filp, cd);
1790}
1791
1792const struct file_operations content_file_operations_pipefs = {
1793	.open		= content_open_pipefs,
1794	.read		= seq_read,
1795	.llseek		= seq_lseek,
1796	.release	= content_release_pipefs,
1797};
1798
1799static int open_flush_pipefs(struct inode *inode, struct file *filp)
1800{
1801	struct cache_detail *cd = RPC_I(inode)->private;
1802
1803	return open_flush(inode, filp, cd);
1804}
1805
1806static int release_flush_pipefs(struct inode *inode, struct file *filp)
1807{
1808	struct cache_detail *cd = RPC_I(inode)->private;
1809
1810	return release_flush(inode, filp, cd);
1811}
1812
1813static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1814			    size_t count, loff_t *ppos)
1815{
1816	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1817
1818	return read_flush(filp, buf, count, ppos, cd);
1819}
1820
1821static ssize_t write_flush_pipefs(struct file *filp,
1822				  const char __user *buf,
1823				  size_t count, loff_t *ppos)
1824{
1825	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1826
1827	return write_flush(filp, buf, count, ppos, cd);
1828}
1829
1830const struct file_operations cache_flush_operations_pipefs = {
1831	.open		= open_flush_pipefs,
1832	.read		= read_flush_pipefs,
1833	.write		= write_flush_pipefs,
1834	.release	= release_flush_pipefs,
1835	.llseek		= no_llseek,
1836};
1837
1838int sunrpc_cache_register_pipefs(struct dentry *parent,
1839				 const char *name, umode_t umode,
1840				 struct cache_detail *cd)
1841{
1842	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1843	if (IS_ERR(dir))
1844		return PTR_ERR(dir);
1845	cd->u.pipefs.dir = dir;
1846	return 0;
1847}
1848EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1849
1850void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1851{
1852	rpc_remove_cache_dir(cd->u.pipefs.dir);
1853	cd->u.pipefs.dir = NULL;
 
 
1854}
1855EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1856
v4.17
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <linux/string_helpers.h>
  24#include <linux/uaccess.h>
  25#include <linux/poll.h>
  26#include <linux/seq_file.h>
  27#include <linux/proc_fs.h>
  28#include <linux/net.h>
  29#include <linux/workqueue.h>
  30#include <linux/mutex.h>
  31#include <linux/pagemap.h>
  32#include <asm/ioctls.h>
  33#include <linux/sunrpc/types.h>
  34#include <linux/sunrpc/cache.h>
  35#include <linux/sunrpc/stats.h>
  36#include <linux/sunrpc/rpc_pipe_fs.h>
  37#include "netns.h"
  38
  39#define	 RPCDBG_FACILITY RPCDBG_CACHE
  40
  41static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  42static void cache_revisit_request(struct cache_head *item);
  43
  44static void cache_init(struct cache_head *h, struct cache_detail *detail)
  45{
  46	time_t now = seconds_since_boot();
  47	INIT_HLIST_NODE(&h->cache_list);
  48	h->flags = 0;
  49	kref_init(&h->ref);
  50	h->expiry_time = now + CACHE_NEW_EXPIRY;
  51	if (now <= detail->flush_time)
  52		/* ensure it isn't already expired */
  53		now = detail->flush_time + 1;
  54	h->last_refresh = now;
  55}
  56
  57struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  58				       struct cache_head *key, int hash)
  59{
  60	struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL;
  61	struct hlist_head *head;
  62
  63	head = &detail->hash_table[hash];
  64
  65	read_lock(&detail->hash_lock);
  66
  67	hlist_for_each_entry(tmp, head, cache_list) {
  68		if (detail->match(tmp, key)) {
  69			if (cache_is_expired(detail, tmp))
  70				/* This entry is expired, we will discard it. */
  71				break;
  72			cache_get(tmp);
  73			read_unlock(&detail->hash_lock);
  74			return tmp;
  75		}
  76	}
  77	read_unlock(&detail->hash_lock);
  78	/* Didn't find anything, insert an empty entry */
  79
  80	new = detail->alloc();
  81	if (!new)
  82		return NULL;
  83	/* must fully initialise 'new', else
  84	 * we might get lose if we need to
  85	 * cache_put it soon.
  86	 */
  87	cache_init(new, detail);
  88	detail->init(new, key);
  89
  90	write_lock(&detail->hash_lock);
  91
  92	/* check if entry appeared while we slept */
  93	hlist_for_each_entry(tmp, head, cache_list) {
  94		if (detail->match(tmp, key)) {
  95			if (cache_is_expired(detail, tmp)) {
  96				hlist_del_init(&tmp->cache_list);
  97				detail->entries --;
  98				freeme = tmp;
  99				break;
 100			}
 101			cache_get(tmp);
 102			write_unlock(&detail->hash_lock);
 103			cache_put(new, detail);
 104			return tmp;
 105		}
 106	}
 107
 108	hlist_add_head(&new->cache_list, head);
 109	detail->entries++;
 110	cache_get(new);
 111	write_unlock(&detail->hash_lock);
 112
 113	if (freeme)
 114		cache_put(freeme, detail);
 115	return new;
 116}
 117EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
 118
 119
 120static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 121
 122static void cache_fresh_locked(struct cache_head *head, time_t expiry,
 123			       struct cache_detail *detail)
 124{
 125	time_t now = seconds_since_boot();
 126	if (now <= detail->flush_time)
 127		/* ensure it isn't immediately treated as expired */
 128		now = detail->flush_time + 1;
 129	head->expiry_time = expiry;
 130	head->last_refresh = now;
 131	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 132	set_bit(CACHE_VALID, &head->flags);
 133}
 134
 135static void cache_fresh_unlocked(struct cache_head *head,
 136				 struct cache_detail *detail)
 137{
 138	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 139		cache_revisit_request(head);
 140		cache_dequeue(detail, head);
 141	}
 142}
 143
 144struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 145				       struct cache_head *new, struct cache_head *old, int hash)
 146{
 147	/* The 'old' entry is to be replaced by 'new'.
 148	 * If 'old' is not VALID, we update it directly,
 149	 * otherwise we need to replace it
 150	 */
 151	struct cache_head *tmp;
 152
 153	if (!test_bit(CACHE_VALID, &old->flags)) {
 154		write_lock(&detail->hash_lock);
 155		if (!test_bit(CACHE_VALID, &old->flags)) {
 156			if (test_bit(CACHE_NEGATIVE, &new->flags))
 157				set_bit(CACHE_NEGATIVE, &old->flags);
 158			else
 159				detail->update(old, new);
 160			cache_fresh_locked(old, new->expiry_time, detail);
 161			write_unlock(&detail->hash_lock);
 162			cache_fresh_unlocked(old, detail);
 163			return old;
 164		}
 165		write_unlock(&detail->hash_lock);
 166	}
 167	/* We need to insert a new entry */
 168	tmp = detail->alloc();
 169	if (!tmp) {
 170		cache_put(old, detail);
 171		return NULL;
 172	}
 173	cache_init(tmp, detail);
 174	detail->init(tmp, old);
 175
 176	write_lock(&detail->hash_lock);
 177	if (test_bit(CACHE_NEGATIVE, &new->flags))
 178		set_bit(CACHE_NEGATIVE, &tmp->flags);
 179	else
 180		detail->update(tmp, new);
 181	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
 182	detail->entries++;
 183	cache_get(tmp);
 184	cache_fresh_locked(tmp, new->expiry_time, detail);
 185	cache_fresh_locked(old, 0, detail);
 186	write_unlock(&detail->hash_lock);
 187	cache_fresh_unlocked(tmp, detail);
 188	cache_fresh_unlocked(old, detail);
 189	cache_put(old, detail);
 190	return tmp;
 191}
 192EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 193
 194static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 195{
 196	if (cd->cache_upcall)
 197		return cd->cache_upcall(cd, h);
 198	return sunrpc_cache_pipe_upcall(cd, h);
 199}
 200
 201static inline int cache_is_valid(struct cache_head *h)
 202{
 203	if (!test_bit(CACHE_VALID, &h->flags))
 204		return -EAGAIN;
 205	else {
 206		/* entry is valid */
 207		if (test_bit(CACHE_NEGATIVE, &h->flags))
 208			return -ENOENT;
 209		else {
 210			/*
 211			 * In combination with write barrier in
 212			 * sunrpc_cache_update, ensures that anyone
 213			 * using the cache entry after this sees the
 214			 * updated contents:
 215			 */
 216			smp_rmb();
 217			return 0;
 218		}
 219	}
 220}
 221
 222static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 223{
 224	int rv;
 225
 226	write_lock(&detail->hash_lock);
 227	rv = cache_is_valid(h);
 228	if (rv == -EAGAIN) {
 229		set_bit(CACHE_NEGATIVE, &h->flags);
 230		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
 231				   detail);
 232		rv = -ENOENT;
 233	}
 234	write_unlock(&detail->hash_lock);
 235	cache_fresh_unlocked(h, detail);
 236	return rv;
 237}
 238
 239/*
 240 * This is the generic cache management routine for all
 241 * the authentication caches.
 242 * It checks the currency of a cache item and will (later)
 243 * initiate an upcall to fill it if needed.
 244 *
 245 *
 246 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 247 * -EAGAIN if upcall is pending and request has been queued
 248 * -ETIMEDOUT if upcall failed or request could not be queue or
 249 *           upcall completed but item is still invalid (implying that
 250 *           the cache item has been replaced with a newer one).
 251 * -ENOENT if cache entry was negative
 252 */
 253int cache_check(struct cache_detail *detail,
 254		    struct cache_head *h, struct cache_req *rqstp)
 255{
 256	int rv;
 257	long refresh_age, age;
 258
 259	/* First decide return status as best we can */
 260	rv = cache_is_valid(h);
 261
 262	/* now see if we want to start an upcall */
 263	refresh_age = (h->expiry_time - h->last_refresh);
 264	age = seconds_since_boot() - h->last_refresh;
 265
 266	if (rqstp == NULL) {
 267		if (rv == -EAGAIN)
 268			rv = -ENOENT;
 269	} else if (rv == -EAGAIN ||
 270		   (h->expiry_time != 0 && age > refresh_age/2)) {
 271		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 272				refresh_age, age);
 273		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 274			switch (cache_make_upcall(detail, h)) {
 275			case -EINVAL:
 276				rv = try_to_negate_entry(detail, h);
 277				break;
 278			case -EAGAIN:
 279				cache_fresh_unlocked(h, detail);
 280				break;
 281			}
 282		}
 283	}
 284
 285	if (rv == -EAGAIN) {
 286		if (!cache_defer_req(rqstp, h)) {
 287			/*
 288			 * Request was not deferred; handle it as best
 289			 * we can ourselves:
 290			 */
 291			rv = cache_is_valid(h);
 292			if (rv == -EAGAIN)
 293				rv = -ETIMEDOUT;
 294		}
 295	}
 296	if (rv)
 297		cache_put(h, detail);
 298	return rv;
 299}
 300EXPORT_SYMBOL_GPL(cache_check);
 301
 302/*
 303 * caches need to be periodically cleaned.
 304 * For this we maintain a list of cache_detail and
 305 * a current pointer into that list and into the table
 306 * for that entry.
 307 *
 308 * Each time cache_clean is called it finds the next non-empty entry
 309 * in the current table and walks the list in that entry
 310 * looking for entries that can be removed.
 311 *
 312 * An entry gets removed if:
 313 * - The expiry is before current time
 314 * - The last_refresh time is before the flush_time for that cache
 315 *
 316 * later we might drop old entries with non-NEVER expiry if that table
 317 * is getting 'full' for some definition of 'full'
 318 *
 319 * The question of "how often to scan a table" is an interesting one
 320 * and is answered in part by the use of the "nextcheck" field in the
 321 * cache_detail.
 322 * When a scan of a table begins, the nextcheck field is set to a time
 323 * that is well into the future.
 324 * While scanning, if an expiry time is found that is earlier than the
 325 * current nextcheck time, nextcheck is set to that expiry time.
 326 * If the flush_time is ever set to a time earlier than the nextcheck
 327 * time, the nextcheck time is then set to that flush_time.
 328 *
 329 * A table is then only scanned if the current time is at least
 330 * the nextcheck time.
 331 *
 332 */
 333
 334static LIST_HEAD(cache_list);
 335static DEFINE_SPINLOCK(cache_list_lock);
 336static struct cache_detail *current_detail;
 337static int current_index;
 338
 339static void do_cache_clean(struct work_struct *work);
 340static struct delayed_work cache_cleaner;
 341
 342void sunrpc_init_cache_detail(struct cache_detail *cd)
 343{
 344	rwlock_init(&cd->hash_lock);
 345	INIT_LIST_HEAD(&cd->queue);
 346	spin_lock(&cache_list_lock);
 347	cd->nextcheck = 0;
 348	cd->entries = 0;
 349	atomic_set(&cd->readers, 0);
 350	cd->last_close = 0;
 351	cd->last_warn = -1;
 352	list_add(&cd->others, &cache_list);
 353	spin_unlock(&cache_list_lock);
 354
 355	/* start the cleaning process */
 356	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
 357}
 358EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 359
 360void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 361{
 362	cache_purge(cd);
 363	spin_lock(&cache_list_lock);
 364	write_lock(&cd->hash_lock);
 
 
 
 
 
 365	if (current_detail == cd)
 366		current_detail = NULL;
 367	list_del_init(&cd->others);
 368	write_unlock(&cd->hash_lock);
 369	spin_unlock(&cache_list_lock);
 370	if (list_empty(&cache_list)) {
 371		/* module must be being unloaded so its safe to kill the worker */
 372		cancel_delayed_work_sync(&cache_cleaner);
 373	}
 
 
 
 374}
 375EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 376
 377/* clean cache tries to find something to clean
 378 * and cleans it.
 379 * It returns 1 if it cleaned something,
 380 *            0 if it didn't find anything this time
 381 *           -1 if it fell off the end of the list.
 382 */
 383static int cache_clean(void)
 384{
 385	int rv = 0;
 386	struct list_head *next;
 387
 388	spin_lock(&cache_list_lock);
 389
 390	/* find a suitable table if we don't already have one */
 391	while (current_detail == NULL ||
 392	    current_index >= current_detail->hash_size) {
 393		if (current_detail)
 394			next = current_detail->others.next;
 395		else
 396			next = cache_list.next;
 397		if (next == &cache_list) {
 398			current_detail = NULL;
 399			spin_unlock(&cache_list_lock);
 400			return -1;
 401		}
 402		current_detail = list_entry(next, struct cache_detail, others);
 403		if (current_detail->nextcheck > seconds_since_boot())
 404			current_index = current_detail->hash_size;
 405		else {
 406			current_index = 0;
 407			current_detail->nextcheck = seconds_since_boot()+30*60;
 408		}
 409	}
 410
 411	/* find a non-empty bucket in the table */
 412	while (current_detail &&
 413	       current_index < current_detail->hash_size &&
 414	       hlist_empty(&current_detail->hash_table[current_index]))
 415		current_index++;
 416
 417	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
 418
 419	if (current_detail && current_index < current_detail->hash_size) {
 420		struct cache_head *ch = NULL;
 421		struct cache_detail *d;
 422		struct hlist_head *head;
 423		struct hlist_node *tmp;
 424
 425		write_lock(&current_detail->hash_lock);
 426
 427		/* Ok, now to clean this strand */
 428
 429		head = &current_detail->hash_table[current_index];
 430		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
 431			if (current_detail->nextcheck > ch->expiry_time)
 432				current_detail->nextcheck = ch->expiry_time+1;
 433			if (!cache_is_expired(current_detail, ch))
 434				continue;
 435
 436			hlist_del_init(&ch->cache_list);
 437			current_detail->entries--;
 438			rv = 1;
 439			break;
 440		}
 441
 442		write_unlock(&current_detail->hash_lock);
 443		d = current_detail;
 444		if (!ch)
 445			current_index ++;
 446		spin_unlock(&cache_list_lock);
 447		if (ch) {
 448			set_bit(CACHE_CLEANED, &ch->flags);
 449			cache_fresh_unlocked(ch, d);
 450			cache_put(ch, d);
 451		}
 452	} else
 453		spin_unlock(&cache_list_lock);
 454
 455	return rv;
 456}
 457
 458/*
 459 * We want to regularly clean the cache, so we need to schedule some work ...
 460 */
 461static void do_cache_clean(struct work_struct *work)
 462{
 463	int delay = 5;
 464	if (cache_clean() == -1)
 465		delay = round_jiffies_relative(30*HZ);
 466
 467	if (list_empty(&cache_list))
 468		delay = 0;
 469
 470	if (delay)
 471		queue_delayed_work(system_power_efficient_wq,
 472				   &cache_cleaner, delay);
 473}
 474
 475
 476/*
 477 * Clean all caches promptly.  This just calls cache_clean
 478 * repeatedly until we are sure that every cache has had a chance to
 479 * be fully cleaned
 480 */
 481void cache_flush(void)
 482{
 483	while (cache_clean() != -1)
 484		cond_resched();
 485	while (cache_clean() != -1)
 486		cond_resched();
 487}
 488EXPORT_SYMBOL_GPL(cache_flush);
 489
 490void cache_purge(struct cache_detail *detail)
 491{
 492	struct cache_head *ch = NULL;
 493	struct hlist_head *head = NULL;
 494	struct hlist_node *tmp = NULL;
 495	int i = 0;
 496
 497	write_lock(&detail->hash_lock);
 498	if (!detail->entries) {
 499		write_unlock(&detail->hash_lock);
 500		return;
 501	}
 502
 503	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
 504	for (i = 0; i < detail->hash_size; i++) {
 505		head = &detail->hash_table[i];
 506		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
 507			hlist_del_init(&ch->cache_list);
 508			detail->entries--;
 509
 510			set_bit(CACHE_CLEANED, &ch->flags);
 511			write_unlock(&detail->hash_lock);
 512			cache_fresh_unlocked(ch, detail);
 513			cache_put(ch, detail);
 514			write_lock(&detail->hash_lock);
 515		}
 516	}
 517	write_unlock(&detail->hash_lock);
 518}
 519EXPORT_SYMBOL_GPL(cache_purge);
 520
 521
 522/*
 523 * Deferral and Revisiting of Requests.
 524 *
 525 * If a cache lookup finds a pending entry, we
 526 * need to defer the request and revisit it later.
 527 * All deferred requests are stored in a hash table,
 528 * indexed by "struct cache_head *".
 529 * As it may be wasteful to store a whole request
 530 * structure, we allow the request to provide a
 531 * deferred form, which must contain a
 532 * 'struct cache_deferred_req'
 533 * This cache_deferred_req contains a method to allow
 534 * it to be revisited when cache info is available
 535 */
 536
 537#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
 538#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 539
 540#define	DFR_MAX	300	/* ??? */
 541
 542static DEFINE_SPINLOCK(cache_defer_lock);
 543static LIST_HEAD(cache_defer_list);
 544static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 545static int cache_defer_cnt;
 546
 547static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 548{
 549	hlist_del_init(&dreq->hash);
 550	if (!list_empty(&dreq->recent)) {
 551		list_del_init(&dreq->recent);
 552		cache_defer_cnt--;
 553	}
 554}
 555
 556static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 557{
 558	int hash = DFR_HASH(item);
 559
 560	INIT_LIST_HEAD(&dreq->recent);
 561	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 562}
 563
 564static void setup_deferral(struct cache_deferred_req *dreq,
 565			   struct cache_head *item,
 566			   int count_me)
 567{
 568
 569	dreq->item = item;
 570
 571	spin_lock(&cache_defer_lock);
 572
 573	__hash_deferred_req(dreq, item);
 574
 575	if (count_me) {
 576		cache_defer_cnt++;
 577		list_add(&dreq->recent, &cache_defer_list);
 578	}
 579
 580	spin_unlock(&cache_defer_lock);
 581
 582}
 583
 584struct thread_deferred_req {
 585	struct cache_deferred_req handle;
 586	struct completion completion;
 587};
 588
 589static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 590{
 591	struct thread_deferred_req *dr =
 592		container_of(dreq, struct thread_deferred_req, handle);
 593	complete(&dr->completion);
 594}
 595
 596static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 597{
 598	struct thread_deferred_req sleeper;
 599	struct cache_deferred_req *dreq = &sleeper.handle;
 600
 601	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 602	dreq->revisit = cache_restart_thread;
 603
 604	setup_deferral(dreq, item, 0);
 605
 606	if (!test_bit(CACHE_PENDING, &item->flags) ||
 607	    wait_for_completion_interruptible_timeout(
 608		    &sleeper.completion, req->thread_wait) <= 0) {
 609		/* The completion wasn't completed, so we need
 610		 * to clean up
 611		 */
 612		spin_lock(&cache_defer_lock);
 613		if (!hlist_unhashed(&sleeper.handle.hash)) {
 614			__unhash_deferred_req(&sleeper.handle);
 615			spin_unlock(&cache_defer_lock);
 616		} else {
 617			/* cache_revisit_request already removed
 618			 * this from the hash table, but hasn't
 619			 * called ->revisit yet.  It will very soon
 620			 * and we need to wait for it.
 621			 */
 622			spin_unlock(&cache_defer_lock);
 623			wait_for_completion(&sleeper.completion);
 624		}
 625	}
 626}
 627
 628static void cache_limit_defers(void)
 629{
 630	/* Make sure we haven't exceed the limit of allowed deferred
 631	 * requests.
 632	 */
 633	struct cache_deferred_req *discard = NULL;
 634
 635	if (cache_defer_cnt <= DFR_MAX)
 636		return;
 637
 638	spin_lock(&cache_defer_lock);
 639
 640	/* Consider removing either the first or the last */
 641	if (cache_defer_cnt > DFR_MAX) {
 642		if (prandom_u32() & 1)
 643			discard = list_entry(cache_defer_list.next,
 644					     struct cache_deferred_req, recent);
 645		else
 646			discard = list_entry(cache_defer_list.prev,
 647					     struct cache_deferred_req, recent);
 648		__unhash_deferred_req(discard);
 649	}
 650	spin_unlock(&cache_defer_lock);
 651	if (discard)
 652		discard->revisit(discard, 1);
 653}
 654
 655/* Return true if and only if a deferred request is queued. */
 656static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 657{
 658	struct cache_deferred_req *dreq;
 659
 660	if (req->thread_wait) {
 661		cache_wait_req(req, item);
 662		if (!test_bit(CACHE_PENDING, &item->flags))
 663			return false;
 664	}
 665	dreq = req->defer(req);
 666	if (dreq == NULL)
 667		return false;
 668	setup_deferral(dreq, item, 1);
 669	if (!test_bit(CACHE_PENDING, &item->flags))
 670		/* Bit could have been cleared before we managed to
 671		 * set up the deferral, so need to revisit just in case
 672		 */
 673		cache_revisit_request(item);
 674
 675	cache_limit_defers();
 676	return true;
 677}
 678
 679static void cache_revisit_request(struct cache_head *item)
 680{
 681	struct cache_deferred_req *dreq;
 682	struct list_head pending;
 683	struct hlist_node *tmp;
 684	int hash = DFR_HASH(item);
 685
 686	INIT_LIST_HEAD(&pending);
 687	spin_lock(&cache_defer_lock);
 688
 689	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 690		if (dreq->item == item) {
 691			__unhash_deferred_req(dreq);
 692			list_add(&dreq->recent, &pending);
 693		}
 694
 695	spin_unlock(&cache_defer_lock);
 696
 697	while (!list_empty(&pending)) {
 698		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 699		list_del_init(&dreq->recent);
 700		dreq->revisit(dreq, 0);
 701	}
 702}
 703
 704void cache_clean_deferred(void *owner)
 705{
 706	struct cache_deferred_req *dreq, *tmp;
 707	struct list_head pending;
 708
 709
 710	INIT_LIST_HEAD(&pending);
 711	spin_lock(&cache_defer_lock);
 712
 713	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 714		if (dreq->owner == owner) {
 715			__unhash_deferred_req(dreq);
 716			list_add(&dreq->recent, &pending);
 717		}
 718	}
 719	spin_unlock(&cache_defer_lock);
 720
 721	while (!list_empty(&pending)) {
 722		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 723		list_del_init(&dreq->recent);
 724		dreq->revisit(dreq, 1);
 725	}
 726}
 727
 728/*
 729 * communicate with user-space
 730 *
 731 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
 732 * On read, you get a full request, or block.
 733 * On write, an update request is processed.
 734 * Poll works if anything to read, and always allows write.
 735 *
 736 * Implemented by linked list of requests.  Each open file has
 737 * a ->private that also exists in this list.  New requests are added
 738 * to the end and may wakeup and preceding readers.
 739 * New readers are added to the head.  If, on read, an item is found with
 740 * CACHE_UPCALLING clear, we free it from the list.
 741 *
 742 */
 743
 744static DEFINE_SPINLOCK(queue_lock);
 745static DEFINE_MUTEX(queue_io_mutex);
 746
 747struct cache_queue {
 748	struct list_head	list;
 749	int			reader;	/* if 0, then request */
 750};
 751struct cache_request {
 752	struct cache_queue	q;
 753	struct cache_head	*item;
 754	char			* buf;
 755	int			len;
 756	int			readers;
 757};
 758struct cache_reader {
 759	struct cache_queue	q;
 760	int			offset;	/* if non-0, we have a refcnt on next request */
 761};
 762
 763static int cache_request(struct cache_detail *detail,
 764			       struct cache_request *crq)
 765{
 766	char *bp = crq->buf;
 767	int len = PAGE_SIZE;
 768
 769	detail->cache_request(detail, crq->item, &bp, &len);
 770	if (len < 0)
 771		return -EAGAIN;
 772	return PAGE_SIZE - len;
 773}
 774
 775static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 776			  loff_t *ppos, struct cache_detail *cd)
 777{
 778	struct cache_reader *rp = filp->private_data;
 779	struct cache_request *rq;
 780	struct inode *inode = file_inode(filp);
 781	int err;
 782
 783	if (count == 0)
 784		return 0;
 785
 786	inode_lock(inode); /* protect against multiple concurrent
 787			      * readers on this file */
 788 again:
 789	spin_lock(&queue_lock);
 790	/* need to find next request */
 791	while (rp->q.list.next != &cd->queue &&
 792	       list_entry(rp->q.list.next, struct cache_queue, list)
 793	       ->reader) {
 794		struct list_head *next = rp->q.list.next;
 795		list_move(&rp->q.list, next);
 796	}
 797	if (rp->q.list.next == &cd->queue) {
 798		spin_unlock(&queue_lock);
 799		inode_unlock(inode);
 800		WARN_ON_ONCE(rp->offset);
 801		return 0;
 802	}
 803	rq = container_of(rp->q.list.next, struct cache_request, q.list);
 804	WARN_ON_ONCE(rq->q.reader);
 805	if (rp->offset == 0)
 806		rq->readers++;
 807	spin_unlock(&queue_lock);
 808
 809	if (rq->len == 0) {
 810		err = cache_request(cd, rq);
 811		if (err < 0)
 812			goto out;
 813		rq->len = err;
 814	}
 815
 816	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 817		err = -EAGAIN;
 818		spin_lock(&queue_lock);
 819		list_move(&rp->q.list, &rq->q.list);
 820		spin_unlock(&queue_lock);
 821	} else {
 822		if (rp->offset + count > rq->len)
 823			count = rq->len - rp->offset;
 824		err = -EFAULT;
 825		if (copy_to_user(buf, rq->buf + rp->offset, count))
 826			goto out;
 827		rp->offset += count;
 828		if (rp->offset >= rq->len) {
 829			rp->offset = 0;
 830			spin_lock(&queue_lock);
 831			list_move(&rp->q.list, &rq->q.list);
 832			spin_unlock(&queue_lock);
 833		}
 834		err = 0;
 835	}
 836 out:
 837	if (rp->offset == 0) {
 838		/* need to release rq */
 839		spin_lock(&queue_lock);
 840		rq->readers--;
 841		if (rq->readers == 0 &&
 842		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 843			list_del(&rq->q.list);
 844			spin_unlock(&queue_lock);
 845			cache_put(rq->item, cd);
 846			kfree(rq->buf);
 847			kfree(rq);
 848		} else
 849			spin_unlock(&queue_lock);
 850	}
 851	if (err == -EAGAIN)
 852		goto again;
 853	inode_unlock(inode);
 854	return err ? err :  count;
 855}
 856
 857static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 858				 size_t count, struct cache_detail *cd)
 859{
 860	ssize_t ret;
 861
 862	if (count == 0)
 863		return -EINVAL;
 864	if (copy_from_user(kaddr, buf, count))
 865		return -EFAULT;
 866	kaddr[count] = '\0';
 867	ret = cd->cache_parse(cd, kaddr, count);
 868	if (!ret)
 869		ret = count;
 870	return ret;
 871}
 872
 873static ssize_t cache_slow_downcall(const char __user *buf,
 874				   size_t count, struct cache_detail *cd)
 875{
 876	static char write_buf[8192]; /* protected by queue_io_mutex */
 877	ssize_t ret = -EINVAL;
 878
 879	if (count >= sizeof(write_buf))
 880		goto out;
 881	mutex_lock(&queue_io_mutex);
 882	ret = cache_do_downcall(write_buf, buf, count, cd);
 883	mutex_unlock(&queue_io_mutex);
 884out:
 885	return ret;
 886}
 887
 888static ssize_t cache_downcall(struct address_space *mapping,
 889			      const char __user *buf,
 890			      size_t count, struct cache_detail *cd)
 891{
 892	struct page *page;
 893	char *kaddr;
 894	ssize_t ret = -ENOMEM;
 895
 896	if (count >= PAGE_SIZE)
 897		goto out_slow;
 898
 899	page = find_or_create_page(mapping, 0, GFP_KERNEL);
 900	if (!page)
 901		goto out_slow;
 902
 903	kaddr = kmap(page);
 904	ret = cache_do_downcall(kaddr, buf, count, cd);
 905	kunmap(page);
 906	unlock_page(page);
 907	put_page(page);
 908	return ret;
 909out_slow:
 910	return cache_slow_downcall(buf, count, cd);
 911}
 912
 913static ssize_t cache_write(struct file *filp, const char __user *buf,
 914			   size_t count, loff_t *ppos,
 915			   struct cache_detail *cd)
 916{
 917	struct address_space *mapping = filp->f_mapping;
 918	struct inode *inode = file_inode(filp);
 919	ssize_t ret = -EINVAL;
 920
 921	if (!cd->cache_parse)
 922		goto out;
 923
 924	inode_lock(inode);
 925	ret = cache_downcall(mapping, buf, count, cd);
 926	inode_unlock(inode);
 927out:
 928	return ret;
 929}
 930
 931static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 932
 933static __poll_t cache_poll(struct file *filp, poll_table *wait,
 934			       struct cache_detail *cd)
 935{
 936	__poll_t mask;
 937	struct cache_reader *rp = filp->private_data;
 938	struct cache_queue *cq;
 939
 940	poll_wait(filp, &queue_wait, wait);
 941
 942	/* alway allow write */
 943	mask = EPOLLOUT | EPOLLWRNORM;
 944
 945	if (!rp)
 946		return mask;
 947
 948	spin_lock(&queue_lock);
 949
 950	for (cq= &rp->q; &cq->list != &cd->queue;
 951	     cq = list_entry(cq->list.next, struct cache_queue, list))
 952		if (!cq->reader) {
 953			mask |= EPOLLIN | EPOLLRDNORM;
 954			break;
 955		}
 956	spin_unlock(&queue_lock);
 957	return mask;
 958}
 959
 960static int cache_ioctl(struct inode *ino, struct file *filp,
 961		       unsigned int cmd, unsigned long arg,
 962		       struct cache_detail *cd)
 963{
 964	int len = 0;
 965	struct cache_reader *rp = filp->private_data;
 966	struct cache_queue *cq;
 967
 968	if (cmd != FIONREAD || !rp)
 969		return -EINVAL;
 970
 971	spin_lock(&queue_lock);
 972
 973	/* only find the length remaining in current request,
 974	 * or the length of the next request
 975	 */
 976	for (cq= &rp->q; &cq->list != &cd->queue;
 977	     cq = list_entry(cq->list.next, struct cache_queue, list))
 978		if (!cq->reader) {
 979			struct cache_request *cr =
 980				container_of(cq, struct cache_request, q);
 981			len = cr->len - rp->offset;
 982			break;
 983		}
 984	spin_unlock(&queue_lock);
 985
 986	return put_user(len, (int __user *)arg);
 987}
 988
 989static int cache_open(struct inode *inode, struct file *filp,
 990		      struct cache_detail *cd)
 991{
 992	struct cache_reader *rp = NULL;
 993
 994	if (!cd || !try_module_get(cd->owner))
 995		return -EACCES;
 996	nonseekable_open(inode, filp);
 997	if (filp->f_mode & FMODE_READ) {
 998		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 999		if (!rp) {
1000			module_put(cd->owner);
1001			return -ENOMEM;
1002		}
1003		rp->offset = 0;
1004		rp->q.reader = 1;
1005		atomic_inc(&cd->readers);
1006		spin_lock(&queue_lock);
1007		list_add(&rp->q.list, &cd->queue);
1008		spin_unlock(&queue_lock);
1009	}
1010	filp->private_data = rp;
1011	return 0;
1012}
1013
1014static int cache_release(struct inode *inode, struct file *filp,
1015			 struct cache_detail *cd)
1016{
1017	struct cache_reader *rp = filp->private_data;
1018
1019	if (rp) {
1020		spin_lock(&queue_lock);
1021		if (rp->offset) {
1022			struct cache_queue *cq;
1023			for (cq= &rp->q; &cq->list != &cd->queue;
1024			     cq = list_entry(cq->list.next, struct cache_queue, list))
1025				if (!cq->reader) {
1026					container_of(cq, struct cache_request, q)
1027						->readers--;
1028					break;
1029				}
1030			rp->offset = 0;
1031		}
1032		list_del(&rp->q.list);
1033		spin_unlock(&queue_lock);
1034
1035		filp->private_data = NULL;
1036		kfree(rp);
1037
1038		cd->last_close = seconds_since_boot();
1039		atomic_dec(&cd->readers);
1040	}
1041	module_put(cd->owner);
1042	return 0;
1043}
1044
1045
1046
1047static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1048{
1049	struct cache_queue *cq, *tmp;
1050	struct cache_request *cr;
1051	struct list_head dequeued;
1052
1053	INIT_LIST_HEAD(&dequeued);
1054	spin_lock(&queue_lock);
1055	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1056		if (!cq->reader) {
1057			cr = container_of(cq, struct cache_request, q);
1058			if (cr->item != ch)
1059				continue;
1060			if (test_bit(CACHE_PENDING, &ch->flags))
1061				/* Lost a race and it is pending again */
1062				break;
1063			if (cr->readers != 0)
1064				continue;
1065			list_move(&cr->q.list, &dequeued);
1066		}
1067	spin_unlock(&queue_lock);
1068	while (!list_empty(&dequeued)) {
1069		cr = list_entry(dequeued.next, struct cache_request, q.list);
1070		list_del(&cr->q.list);
1071		cache_put(cr->item, detail);
1072		kfree(cr->buf);
1073		kfree(cr);
1074	}
1075}
1076
1077/*
1078 * Support routines for text-based upcalls.
1079 * Fields are separated by spaces.
1080 * Fields are either mangled to quote space tab newline slosh with slosh
1081 * or a hexified with a leading \x
1082 * Record is terminated with newline.
1083 *
1084 */
1085
1086void qword_add(char **bpp, int *lp, char *str)
1087{
1088	char *bp = *bpp;
1089	int len = *lp;
1090	int ret;
1091
1092	if (len < 0) return;
1093
1094	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1095	if (ret >= len) {
1096		bp += len;
1097		len = -1;
1098	} else {
1099		bp += ret;
1100		len -= ret;
1101		*bp++ = ' ';
1102		len--;
1103	}
1104	*bpp = bp;
1105	*lp = len;
1106}
1107EXPORT_SYMBOL_GPL(qword_add);
1108
1109void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1110{
1111	char *bp = *bpp;
1112	int len = *lp;
1113
1114	if (len < 0) return;
1115
1116	if (len > 2) {
1117		*bp++ = '\\';
1118		*bp++ = 'x';
1119		len -= 2;
1120		while (blen && len >= 2) {
1121			bp = hex_byte_pack(bp, *buf++);
1122			len -= 2;
1123			blen--;
1124		}
1125	}
1126	if (blen || len<1) len = -1;
1127	else {
1128		*bp++ = ' ';
1129		len--;
1130	}
1131	*bpp = bp;
1132	*lp = len;
1133}
1134EXPORT_SYMBOL_GPL(qword_addhex);
1135
1136static void warn_no_listener(struct cache_detail *detail)
1137{
1138	if (detail->last_warn != detail->last_close) {
1139		detail->last_warn = detail->last_close;
1140		if (detail->warn_no_listener)
1141			detail->warn_no_listener(detail, detail->last_close != 0);
1142	}
1143}
1144
1145static bool cache_listeners_exist(struct cache_detail *detail)
1146{
1147	if (atomic_read(&detail->readers))
1148		return true;
1149	if (detail->last_close == 0)
1150		/* This cache was never opened */
1151		return false;
1152	if (detail->last_close < seconds_since_boot() - 30)
1153		/*
1154		 * We allow for the possibility that someone might
1155		 * restart a userspace daemon without restarting the
1156		 * server; but after 30 seconds, we give up.
1157		 */
1158		 return false;
1159	return true;
1160}
1161
1162/*
1163 * register an upcall request to user-space and queue it up for read() by the
1164 * upcall daemon.
1165 *
1166 * Each request is at most one page long.
1167 */
1168int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1169{
1170
1171	char *buf;
1172	struct cache_request *crq;
1173	int ret = 0;
1174
1175	if (!detail->cache_request)
1176		return -EINVAL;
1177
1178	if (!cache_listeners_exist(detail)) {
1179		warn_no_listener(detail);
1180		return -EINVAL;
1181	}
1182	if (test_bit(CACHE_CLEANED, &h->flags))
1183		/* Too late to make an upcall */
1184		return -EAGAIN;
1185
1186	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1187	if (!buf)
1188		return -EAGAIN;
1189
1190	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1191	if (!crq) {
1192		kfree(buf);
1193		return -EAGAIN;
1194	}
1195
1196	crq->q.reader = 0;
1197	crq->buf = buf;
1198	crq->len = 0;
1199	crq->readers = 0;
1200	spin_lock(&queue_lock);
1201	if (test_bit(CACHE_PENDING, &h->flags)) {
1202		crq->item = cache_get(h);
1203		list_add_tail(&crq->q.list, &detail->queue);
1204	} else
1205		/* Lost a race, no longer PENDING, so don't enqueue */
1206		ret = -EAGAIN;
1207	spin_unlock(&queue_lock);
1208	wake_up(&queue_wait);
1209	if (ret == -EAGAIN) {
1210		kfree(buf);
1211		kfree(crq);
1212	}
1213	return ret;
1214}
1215EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1216
1217/*
1218 * parse a message from user-space and pass it
1219 * to an appropriate cache
1220 * Messages are, like requests, separated into fields by
1221 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1222 *
1223 * Message is
1224 *   reply cachename expiry key ... content....
1225 *
1226 * key and content are both parsed by cache
1227 */
1228
1229int qword_get(char **bpp, char *dest, int bufsize)
1230{
1231	/* return bytes copied, or -1 on error */
1232	char *bp = *bpp;
1233	int len = 0;
1234
1235	while (*bp == ' ') bp++;
1236
1237	if (bp[0] == '\\' && bp[1] == 'x') {
1238		/* HEX STRING */
1239		bp += 2;
1240		while (len < bufsize - 1) {
1241			int h, l;
1242
1243			h = hex_to_bin(bp[0]);
1244			if (h < 0)
1245				break;
1246
1247			l = hex_to_bin(bp[1]);
1248			if (l < 0)
1249				break;
1250
1251			*dest++ = (h << 4) | l;
1252			bp += 2;
1253			len++;
1254		}
1255	} else {
1256		/* text with \nnn octal quoting */
1257		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1258			if (*bp == '\\' &&
1259			    isodigit(bp[1]) && (bp[1] <= '3') &&
1260			    isodigit(bp[2]) &&
1261			    isodigit(bp[3])) {
1262				int byte = (*++bp -'0');
1263				bp++;
1264				byte = (byte << 3) | (*bp++ - '0');
1265				byte = (byte << 3) | (*bp++ - '0');
1266				*dest++ = byte;
1267				len++;
1268			} else {
1269				*dest++ = *bp++;
1270				len++;
1271			}
1272		}
1273	}
1274
1275	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1276		return -1;
1277	while (*bp == ' ') bp++;
1278	*bpp = bp;
1279	*dest = '\0';
1280	return len;
1281}
1282EXPORT_SYMBOL_GPL(qword_get);
1283
1284
1285/*
1286 * support /proc/net/rpc/$CACHENAME/content
1287 * as a seqfile.
1288 * We call ->cache_show passing NULL for the item to
1289 * get a header, then pass each real item in the cache
1290 */
1291
1292void *cache_seq_start(struct seq_file *m, loff_t *pos)
1293	__acquires(cd->hash_lock)
1294{
1295	loff_t n = *pos;
1296	unsigned int hash, entry;
1297	struct cache_head *ch;
1298	struct cache_detail *cd = m->private;
1299
1300	read_lock(&cd->hash_lock);
1301	if (!n--)
1302		return SEQ_START_TOKEN;
1303	hash = n >> 32;
1304	entry = n & ((1LL<<32) - 1);
1305
1306	hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list)
1307		if (!entry--)
1308			return ch;
1309	n &= ~((1LL<<32) - 1);
1310	do {
1311		hash++;
1312		n += 1LL<<32;
1313	} while(hash < cd->hash_size &&
1314		hlist_empty(&cd->hash_table[hash]));
1315	if (hash >= cd->hash_size)
1316		return NULL;
1317	*pos = n+1;
1318	return hlist_entry_safe(cd->hash_table[hash].first,
1319				struct cache_head, cache_list);
1320}
1321EXPORT_SYMBOL_GPL(cache_seq_start);
1322
1323void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1324{
1325	struct cache_head *ch = p;
1326	int hash = (*pos >> 32);
1327	struct cache_detail *cd = m->private;
1328
1329	if (p == SEQ_START_TOKEN)
1330		hash = 0;
1331	else if (ch->cache_list.next == NULL) {
1332		hash++;
1333		*pos += 1LL<<32;
1334	} else {
1335		++*pos;
1336		return hlist_entry_safe(ch->cache_list.next,
1337					struct cache_head, cache_list);
1338	}
1339	*pos &= ~((1LL<<32) - 1);
1340	while (hash < cd->hash_size &&
1341	       hlist_empty(&cd->hash_table[hash])) {
1342		hash++;
1343		*pos += 1LL<<32;
1344	}
1345	if (hash >= cd->hash_size)
1346		return NULL;
1347	++*pos;
1348	return hlist_entry_safe(cd->hash_table[hash].first,
1349				struct cache_head, cache_list);
1350}
1351EXPORT_SYMBOL_GPL(cache_seq_next);
1352
1353void cache_seq_stop(struct seq_file *m, void *p)
1354	__releases(cd->hash_lock)
1355{
1356	struct cache_detail *cd = m->private;
1357	read_unlock(&cd->hash_lock);
1358}
1359EXPORT_SYMBOL_GPL(cache_seq_stop);
1360
1361static int c_show(struct seq_file *m, void *p)
1362{
1363	struct cache_head *cp = p;
1364	struct cache_detail *cd = m->private;
1365
1366	if (p == SEQ_START_TOKEN)
1367		return cd->cache_show(m, cd, NULL);
1368
1369	ifdebug(CACHE)
1370		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1371			   convert_to_wallclock(cp->expiry_time),
1372			   kref_read(&cp->ref), cp->flags);
1373	cache_get(cp);
1374	if (cache_check(cd, cp, NULL))
1375		/* cache_check does a cache_put on failure */
1376		seq_printf(m, "# ");
1377	else {
1378		if (cache_is_expired(cd, cp))
1379			seq_printf(m, "# ");
1380		cache_put(cp, cd);
1381	}
1382
1383	return cd->cache_show(m, cd, cp);
1384}
1385
1386static const struct seq_operations cache_content_op = {
1387	.start	= cache_seq_start,
1388	.next	= cache_seq_next,
1389	.stop	= cache_seq_stop,
1390	.show	= c_show,
1391};
1392
1393static int content_open(struct inode *inode, struct file *file,
1394			struct cache_detail *cd)
1395{
1396	struct seq_file *seq;
1397	int err;
1398
1399	if (!cd || !try_module_get(cd->owner))
1400		return -EACCES;
1401
1402	err = seq_open(file, &cache_content_op);
1403	if (err) {
1404		module_put(cd->owner);
1405		return err;
1406	}
1407
1408	seq = file->private_data;
1409	seq->private = cd;
1410	return 0;
1411}
1412
1413static int content_release(struct inode *inode, struct file *file,
1414		struct cache_detail *cd)
1415{
1416	int ret = seq_release(inode, file);
1417	module_put(cd->owner);
1418	return ret;
1419}
1420
1421static int open_flush(struct inode *inode, struct file *file,
1422			struct cache_detail *cd)
1423{
1424	if (!cd || !try_module_get(cd->owner))
1425		return -EACCES;
1426	return nonseekable_open(inode, file);
1427}
1428
1429static int release_flush(struct inode *inode, struct file *file,
1430			struct cache_detail *cd)
1431{
1432	module_put(cd->owner);
1433	return 0;
1434}
1435
1436static ssize_t read_flush(struct file *file, char __user *buf,
1437			  size_t count, loff_t *ppos,
1438			  struct cache_detail *cd)
1439{
1440	char tbuf[22];
 
1441	size_t len;
1442
1443	len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1444			convert_to_wallclock(cd->flush_time));
1445	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
 
 
 
 
 
 
 
 
1446}
1447
1448static ssize_t write_flush(struct file *file, const char __user *buf,
1449			   size_t count, loff_t *ppos,
1450			   struct cache_detail *cd)
1451{
1452	char tbuf[20];
1453	char *ep;
1454	time_t now;
1455
1456	if (*ppos || count > sizeof(tbuf)-1)
1457		return -EINVAL;
1458	if (copy_from_user(tbuf, buf, count))
1459		return -EFAULT;
1460	tbuf[count] = 0;
1461	simple_strtoul(tbuf, &ep, 0);
1462	if (*ep && *ep != '\n')
1463		return -EINVAL;
1464	/* Note that while we check that 'buf' holds a valid number,
1465	 * we always ignore the value and just flush everything.
1466	 * Making use of the number leads to races.
1467	 */
1468
 
 
1469	now = seconds_since_boot();
1470	/* Always flush everything, so behave like cache_purge()
1471	 * Do this by advancing flush_time to the current time,
1472	 * or by one second if it has already reached the current time.
1473	 * Newly added cache entries will always have ->last_refresh greater
1474	 * that ->flush_time, so they don't get flushed prematurely.
1475	 */
 
 
 
 
 
 
1476
1477	if (cd->flush_time >= now)
1478		now = cd->flush_time + 1;
1479
1480	cd->flush_time = now;
1481	cd->nextcheck = now;
1482	cache_flush();
1483
1484	*ppos += count;
1485	return count;
1486}
1487
1488static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1489				 size_t count, loff_t *ppos)
1490{
1491	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1492
1493	return cache_read(filp, buf, count, ppos, cd);
1494}
1495
1496static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1497				  size_t count, loff_t *ppos)
1498{
1499	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1500
1501	return cache_write(filp, buf, count, ppos, cd);
1502}
1503
1504static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1505{
1506	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1507
1508	return cache_poll(filp, wait, cd);
1509}
1510
1511static long cache_ioctl_procfs(struct file *filp,
1512			       unsigned int cmd, unsigned long arg)
1513{
1514	struct inode *inode = file_inode(filp);
1515	struct cache_detail *cd = PDE_DATA(inode);
1516
1517	return cache_ioctl(inode, filp, cmd, arg, cd);
1518}
1519
1520static int cache_open_procfs(struct inode *inode, struct file *filp)
1521{
1522	struct cache_detail *cd = PDE_DATA(inode);
1523
1524	return cache_open(inode, filp, cd);
1525}
1526
1527static int cache_release_procfs(struct inode *inode, struct file *filp)
1528{
1529	struct cache_detail *cd = PDE_DATA(inode);
1530
1531	return cache_release(inode, filp, cd);
1532}
1533
1534static const struct file_operations cache_file_operations_procfs = {
1535	.owner		= THIS_MODULE,
1536	.llseek		= no_llseek,
1537	.read		= cache_read_procfs,
1538	.write		= cache_write_procfs,
1539	.poll		= cache_poll_procfs,
1540	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1541	.open		= cache_open_procfs,
1542	.release	= cache_release_procfs,
1543};
1544
1545static int content_open_procfs(struct inode *inode, struct file *filp)
1546{
1547	struct cache_detail *cd = PDE_DATA(inode);
1548
1549	return content_open(inode, filp, cd);
1550}
1551
1552static int content_release_procfs(struct inode *inode, struct file *filp)
1553{
1554	struct cache_detail *cd = PDE_DATA(inode);
1555
1556	return content_release(inode, filp, cd);
1557}
1558
1559static const struct file_operations content_file_operations_procfs = {
1560	.open		= content_open_procfs,
1561	.read		= seq_read,
1562	.llseek		= seq_lseek,
1563	.release	= content_release_procfs,
1564};
1565
1566static int open_flush_procfs(struct inode *inode, struct file *filp)
1567{
1568	struct cache_detail *cd = PDE_DATA(inode);
1569
1570	return open_flush(inode, filp, cd);
1571}
1572
1573static int release_flush_procfs(struct inode *inode, struct file *filp)
1574{
1575	struct cache_detail *cd = PDE_DATA(inode);
1576
1577	return release_flush(inode, filp, cd);
1578}
1579
1580static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1581			    size_t count, loff_t *ppos)
1582{
1583	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1584
1585	return read_flush(filp, buf, count, ppos, cd);
1586}
1587
1588static ssize_t write_flush_procfs(struct file *filp,
1589				  const char __user *buf,
1590				  size_t count, loff_t *ppos)
1591{
1592	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1593
1594	return write_flush(filp, buf, count, ppos, cd);
1595}
1596
1597static const struct file_operations cache_flush_operations_procfs = {
1598	.open		= open_flush_procfs,
1599	.read		= read_flush_procfs,
1600	.write		= write_flush_procfs,
1601	.release	= release_flush_procfs,
1602	.llseek		= no_llseek,
1603};
1604
1605static void remove_cache_proc_entries(struct cache_detail *cd)
1606{
1607	if (cd->procfs) {
1608		proc_remove(cd->procfs);
1609		cd->procfs = NULL;
1610	}
 
 
 
 
 
 
 
 
 
1611}
1612
1613#ifdef CONFIG_PROC_FS
1614static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1615{
1616	struct proc_dir_entry *p;
1617	struct sunrpc_net *sn;
1618
1619	sn = net_generic(net, sunrpc_net_id);
1620	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1621	if (cd->procfs == NULL)
1622		goto out_nomem;
 
 
1623
1624	p = proc_create_data("flush", S_IFREG | 0600,
1625			     cd->procfs, &cache_flush_operations_procfs, cd);
 
 
1626	if (p == NULL)
1627		goto out_nomem;
1628
1629	if (cd->cache_request || cd->cache_parse) {
1630		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
 
1631				     &cache_file_operations_procfs, cd);
 
1632		if (p == NULL)
1633			goto out_nomem;
1634	}
1635	if (cd->cache_show) {
1636		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1637				     &content_file_operations_procfs, cd);
 
 
1638		if (p == NULL)
1639			goto out_nomem;
1640	}
1641	return 0;
1642out_nomem:
1643	remove_cache_proc_entries(cd);
1644	return -ENOMEM;
1645}
1646#else /* CONFIG_PROC_FS */
1647static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1648{
1649	return 0;
1650}
1651#endif
1652
1653void __init cache_initialize(void)
1654{
1655	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1656}
1657
1658int cache_register_net(struct cache_detail *cd, struct net *net)
1659{
1660	int ret;
1661
1662	sunrpc_init_cache_detail(cd);
1663	ret = create_cache_proc_entries(cd, net);
1664	if (ret)
1665		sunrpc_destroy_cache_detail(cd);
1666	return ret;
1667}
1668EXPORT_SYMBOL_GPL(cache_register_net);
1669
1670void cache_unregister_net(struct cache_detail *cd, struct net *net)
1671{
1672	remove_cache_proc_entries(cd);
1673	sunrpc_destroy_cache_detail(cd);
1674}
1675EXPORT_SYMBOL_GPL(cache_unregister_net);
1676
1677struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1678{
1679	struct cache_detail *cd;
1680	int i;
1681
1682	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1683	if (cd == NULL)
1684		return ERR_PTR(-ENOMEM);
1685
1686	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head),
1687				 GFP_KERNEL);
1688	if (cd->hash_table == NULL) {
1689		kfree(cd);
1690		return ERR_PTR(-ENOMEM);
1691	}
1692
1693	for (i = 0; i < cd->hash_size; i++)
1694		INIT_HLIST_HEAD(&cd->hash_table[i]);
1695	cd->net = net;
1696	return cd;
1697}
1698EXPORT_SYMBOL_GPL(cache_create_net);
1699
1700void cache_destroy_net(struct cache_detail *cd, struct net *net)
1701{
1702	kfree(cd->hash_table);
1703	kfree(cd);
1704}
1705EXPORT_SYMBOL_GPL(cache_destroy_net);
1706
1707static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1708				 size_t count, loff_t *ppos)
1709{
1710	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1711
1712	return cache_read(filp, buf, count, ppos, cd);
1713}
1714
1715static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1716				  size_t count, loff_t *ppos)
1717{
1718	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1719
1720	return cache_write(filp, buf, count, ppos, cd);
1721}
1722
1723static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1724{
1725	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1726
1727	return cache_poll(filp, wait, cd);
1728}
1729
1730static long cache_ioctl_pipefs(struct file *filp,
1731			      unsigned int cmd, unsigned long arg)
1732{
1733	struct inode *inode = file_inode(filp);
1734	struct cache_detail *cd = RPC_I(inode)->private;
1735
1736	return cache_ioctl(inode, filp, cmd, arg, cd);
1737}
1738
1739static int cache_open_pipefs(struct inode *inode, struct file *filp)
1740{
1741	struct cache_detail *cd = RPC_I(inode)->private;
1742
1743	return cache_open(inode, filp, cd);
1744}
1745
1746static int cache_release_pipefs(struct inode *inode, struct file *filp)
1747{
1748	struct cache_detail *cd = RPC_I(inode)->private;
1749
1750	return cache_release(inode, filp, cd);
1751}
1752
1753const struct file_operations cache_file_operations_pipefs = {
1754	.owner		= THIS_MODULE,
1755	.llseek		= no_llseek,
1756	.read		= cache_read_pipefs,
1757	.write		= cache_write_pipefs,
1758	.poll		= cache_poll_pipefs,
1759	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1760	.open		= cache_open_pipefs,
1761	.release	= cache_release_pipefs,
1762};
1763
1764static int content_open_pipefs(struct inode *inode, struct file *filp)
1765{
1766	struct cache_detail *cd = RPC_I(inode)->private;
1767
1768	return content_open(inode, filp, cd);
1769}
1770
1771static int content_release_pipefs(struct inode *inode, struct file *filp)
1772{
1773	struct cache_detail *cd = RPC_I(inode)->private;
1774
1775	return content_release(inode, filp, cd);
1776}
1777
1778const struct file_operations content_file_operations_pipefs = {
1779	.open		= content_open_pipefs,
1780	.read		= seq_read,
1781	.llseek		= seq_lseek,
1782	.release	= content_release_pipefs,
1783};
1784
1785static int open_flush_pipefs(struct inode *inode, struct file *filp)
1786{
1787	struct cache_detail *cd = RPC_I(inode)->private;
1788
1789	return open_flush(inode, filp, cd);
1790}
1791
1792static int release_flush_pipefs(struct inode *inode, struct file *filp)
1793{
1794	struct cache_detail *cd = RPC_I(inode)->private;
1795
1796	return release_flush(inode, filp, cd);
1797}
1798
1799static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1800			    size_t count, loff_t *ppos)
1801{
1802	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1803
1804	return read_flush(filp, buf, count, ppos, cd);
1805}
1806
1807static ssize_t write_flush_pipefs(struct file *filp,
1808				  const char __user *buf,
1809				  size_t count, loff_t *ppos)
1810{
1811	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1812
1813	return write_flush(filp, buf, count, ppos, cd);
1814}
1815
1816const struct file_operations cache_flush_operations_pipefs = {
1817	.open		= open_flush_pipefs,
1818	.read		= read_flush_pipefs,
1819	.write		= write_flush_pipefs,
1820	.release	= release_flush_pipefs,
1821	.llseek		= no_llseek,
1822};
1823
1824int sunrpc_cache_register_pipefs(struct dentry *parent,
1825				 const char *name, umode_t umode,
1826				 struct cache_detail *cd)
1827{
1828	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1829	if (IS_ERR(dir))
1830		return PTR_ERR(dir);
1831	cd->pipefs = dir;
1832	return 0;
1833}
1834EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1835
1836void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1837{
1838	if (cd->pipefs) {
1839		rpc_remove_cache_dir(cd->pipefs);
1840		cd->pipefs = NULL;
1841	}
1842}
1843EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1844
1845void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1846{
1847	write_lock(&cd->hash_lock);
1848	if (!hlist_unhashed(&h->cache_list)){
1849		hlist_del_init(&h->cache_list);
1850		cd->entries--;
1851		write_unlock(&cd->hash_lock);
1852		cache_put(h, cd);
1853	} else
1854		write_unlock(&cd->hash_lock);
1855}
1856EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);