Linux Audio

Check our new training course

Loading...
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <asm/uaccess.h>
  24#include <linux/poll.h>
  25#include <linux/seq_file.h>
  26#include <linux/proc_fs.h>
  27#include <linux/net.h>
  28#include <linux/workqueue.h>
  29#include <linux/mutex.h>
  30#include <linux/pagemap.h>
  31#include <asm/ioctls.h>
  32#include <linux/sunrpc/types.h>
  33#include <linux/sunrpc/cache.h>
  34#include <linux/sunrpc/stats.h>
  35#include <linux/sunrpc/rpc_pipe_fs.h>
  36#include "netns.h"
  37
  38#define	 RPCDBG_FACILITY RPCDBG_CACHE
  39
  40static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  41static void cache_revisit_request(struct cache_head *item);
  42
  43static void cache_init(struct cache_head *h)
  44{
  45	time_t now = seconds_since_boot();
  46	h->next = NULL;
  47	h->flags = 0;
  48	kref_init(&h->ref);
  49	h->expiry_time = now + CACHE_NEW_EXPIRY;
  50	h->last_refresh = now;
  51}
  52
  53static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
  54{
  55	return  (h->expiry_time < seconds_since_boot()) ||
  56		(detail->flush_time > h->last_refresh);
  57}
  58
  59struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  60				       struct cache_head *key, int hash)
  61{
  62	struct cache_head **head,  **hp;
  63	struct cache_head *new = NULL, *freeme = NULL;
  64
  65	head = &detail->hash_table[hash];
  66
  67	read_lock(&detail->hash_lock);
  68
  69	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  70		struct cache_head *tmp = *hp;
  71		if (detail->match(tmp, key)) {
  72			if (cache_is_expired(detail, tmp))
  73				/* This entry is expired, we will discard it. */
  74				break;
  75			cache_get(tmp);
  76			read_unlock(&detail->hash_lock);
  77			return tmp;
  78		}
  79	}
  80	read_unlock(&detail->hash_lock);
  81	/* Didn't find anything, insert an empty entry */
  82
  83	new = detail->alloc();
  84	if (!new)
  85		return NULL;
  86	/* must fully initialise 'new', else
  87	 * we might get lose if we need to
  88	 * cache_put it soon.
  89	 */
  90	cache_init(new);
  91	detail->init(new, key);
  92
  93	write_lock(&detail->hash_lock);
  94
  95	/* check if entry appeared while we slept */
  96	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  97		struct cache_head *tmp = *hp;
  98		if (detail->match(tmp, key)) {
  99			if (cache_is_expired(detail, tmp)) {
 100				*hp = tmp->next;
 101				tmp->next = NULL;
 102				detail->entries --;
 103				freeme = tmp;
 104				break;
 105			}
 106			cache_get(tmp);
 107			write_unlock(&detail->hash_lock);
 108			cache_put(new, detail);
 109			return tmp;
 110		}
 111	}
 112	new->next = *head;
 113	*head = new;
 114	detail->entries++;
 115	cache_get(new);
 116	write_unlock(&detail->hash_lock);
 117
 118	if (freeme)
 119		cache_put(freeme, detail);
 120	return new;
 121}
 122EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
 123
 124
 125static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 126
 127static void cache_fresh_locked(struct cache_head *head, time_t expiry)
 128{
 129	head->expiry_time = expiry;
 130	head->last_refresh = seconds_since_boot();
 131	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 132	set_bit(CACHE_VALID, &head->flags);
 133}
 134
 135static void cache_fresh_unlocked(struct cache_head *head,
 136				 struct cache_detail *detail)
 137{
 138	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 139		cache_revisit_request(head);
 140		cache_dequeue(detail, head);
 141	}
 142}
 143
 144struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 145				       struct cache_head *new, struct cache_head *old, int hash)
 146{
 147	/* The 'old' entry is to be replaced by 'new'.
 148	 * If 'old' is not VALID, we update it directly,
 149	 * otherwise we need to replace it
 150	 */
 151	struct cache_head **head;
 152	struct cache_head *tmp;
 153
 154	if (!test_bit(CACHE_VALID, &old->flags)) {
 155		write_lock(&detail->hash_lock);
 156		if (!test_bit(CACHE_VALID, &old->flags)) {
 157			if (test_bit(CACHE_NEGATIVE, &new->flags))
 158				set_bit(CACHE_NEGATIVE, &old->flags);
 159			else
 160				detail->update(old, new);
 161			cache_fresh_locked(old, new->expiry_time);
 162			write_unlock(&detail->hash_lock);
 163			cache_fresh_unlocked(old, detail);
 164			return old;
 165		}
 166		write_unlock(&detail->hash_lock);
 167	}
 168	/* We need to insert a new entry */
 169	tmp = detail->alloc();
 170	if (!tmp) {
 171		cache_put(old, detail);
 172		return NULL;
 173	}
 174	cache_init(tmp);
 175	detail->init(tmp, old);
 176	head = &detail->hash_table[hash];
 177
 178	write_lock(&detail->hash_lock);
 179	if (test_bit(CACHE_NEGATIVE, &new->flags))
 180		set_bit(CACHE_NEGATIVE, &tmp->flags);
 181	else
 182		detail->update(tmp, new);
 183	tmp->next = *head;
 184	*head = tmp;
 185	detail->entries++;
 186	cache_get(tmp);
 187	cache_fresh_locked(tmp, new->expiry_time);
 188	cache_fresh_locked(old, 0);
 189	write_unlock(&detail->hash_lock);
 190	cache_fresh_unlocked(tmp, detail);
 191	cache_fresh_unlocked(old, detail);
 192	cache_put(old, detail);
 193	return tmp;
 194}
 195EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 196
 197static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 198{
 199	if (!cd->cache_upcall)
 200		return -EINVAL;
 201	return cd->cache_upcall(cd, h);
 202}
 203
 204static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
 205{
 206	if (!test_bit(CACHE_VALID, &h->flags))
 207		return -EAGAIN;
 208	else {
 209		/* entry is valid */
 210		if (test_bit(CACHE_NEGATIVE, &h->flags))
 211			return -ENOENT;
 212		else {
 213			/*
 214			 * In combination with write barrier in
 215			 * sunrpc_cache_update, ensures that anyone
 216			 * using the cache entry after this sees the
 217			 * updated contents:
 218			 */
 219			smp_rmb();
 220			return 0;
 221		}
 222	}
 223}
 224
 225static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 226{
 227	int rv;
 228
 229	write_lock(&detail->hash_lock);
 230	rv = cache_is_valid(detail, h);
 231	if (rv != -EAGAIN) {
 232		write_unlock(&detail->hash_lock);
 233		return rv;
 234	}
 235	set_bit(CACHE_NEGATIVE, &h->flags);
 236	cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
 237	write_unlock(&detail->hash_lock);
 238	cache_fresh_unlocked(h, detail);
 239	return -ENOENT;
 240}
 241
 242/*
 243 * This is the generic cache management routine for all
 244 * the authentication caches.
 245 * It checks the currency of a cache item and will (later)
 246 * initiate an upcall to fill it if needed.
 247 *
 248 *
 249 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 250 * -EAGAIN if upcall is pending and request has been queued
 251 * -ETIMEDOUT if upcall failed or request could not be queue or
 252 *           upcall completed but item is still invalid (implying that
 253 *           the cache item has been replaced with a newer one).
 254 * -ENOENT if cache entry was negative
 255 */
 256int cache_check(struct cache_detail *detail,
 257		    struct cache_head *h, struct cache_req *rqstp)
 258{
 259	int rv;
 260	long refresh_age, age;
 261
 262	/* First decide return status as best we can */
 263	rv = cache_is_valid(detail, h);
 264
 265	/* now see if we want to start an upcall */
 266	refresh_age = (h->expiry_time - h->last_refresh);
 267	age = seconds_since_boot() - h->last_refresh;
 268
 269	if (rqstp == NULL) {
 270		if (rv == -EAGAIN)
 271			rv = -ENOENT;
 272	} else if (rv == -EAGAIN || age > refresh_age/2) {
 273		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 274				refresh_age, age);
 275		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 276			switch (cache_make_upcall(detail, h)) {
 277			case -EINVAL:
 278				clear_bit(CACHE_PENDING, &h->flags);
 279				cache_revisit_request(h);
 280				rv = try_to_negate_entry(detail, h);
 281				break;
 282			case -EAGAIN:
 283				clear_bit(CACHE_PENDING, &h->flags);
 284				cache_revisit_request(h);
 285				break;
 286			}
 287		}
 288	}
 289
 290	if (rv == -EAGAIN) {
 291		if (!cache_defer_req(rqstp, h)) {
 292			/*
 293			 * Request was not deferred; handle it as best
 294			 * we can ourselves:
 295			 */
 296			rv = cache_is_valid(detail, h);
 297			if (rv == -EAGAIN)
 298				rv = -ETIMEDOUT;
 299		}
 300	}
 301	if (rv)
 302		cache_put(h, detail);
 303	return rv;
 304}
 305EXPORT_SYMBOL_GPL(cache_check);
 306
 307/*
 308 * caches need to be periodically cleaned.
 309 * For this we maintain a list of cache_detail and
 310 * a current pointer into that list and into the table
 311 * for that entry.
 312 *
 313 * Each time clean_cache is called it finds the next non-empty entry
 314 * in the current table and walks the list in that entry
 315 * looking for entries that can be removed.
 316 *
 317 * An entry gets removed if:
 318 * - The expiry is before current time
 319 * - The last_refresh time is before the flush_time for that cache
 320 *
 321 * later we might drop old entries with non-NEVER expiry if that table
 322 * is getting 'full' for some definition of 'full'
 323 *
 324 * The question of "how often to scan a table" is an interesting one
 325 * and is answered in part by the use of the "nextcheck" field in the
 326 * cache_detail.
 327 * When a scan of a table begins, the nextcheck field is set to a time
 328 * that is well into the future.
 329 * While scanning, if an expiry time is found that is earlier than the
 330 * current nextcheck time, nextcheck is set to that expiry time.
 331 * If the flush_time is ever set to a time earlier than the nextcheck
 332 * time, the nextcheck time is then set to that flush_time.
 333 *
 334 * A table is then only scanned if the current time is at least
 335 * the nextcheck time.
 336 *
 337 */
 338
 339static LIST_HEAD(cache_list);
 340static DEFINE_SPINLOCK(cache_list_lock);
 341static struct cache_detail *current_detail;
 342static int current_index;
 343
 344static void do_cache_clean(struct work_struct *work);
 345static struct delayed_work cache_cleaner;
 346
 347void sunrpc_init_cache_detail(struct cache_detail *cd)
 348{
 349	rwlock_init(&cd->hash_lock);
 350	INIT_LIST_HEAD(&cd->queue);
 351	spin_lock(&cache_list_lock);
 352	cd->nextcheck = 0;
 353	cd->entries = 0;
 354	atomic_set(&cd->readers, 0);
 355	cd->last_close = 0;
 356	cd->last_warn = -1;
 357	list_add(&cd->others, &cache_list);
 358	spin_unlock(&cache_list_lock);
 359
 360	/* start the cleaning process */
 361	schedule_delayed_work(&cache_cleaner, 0);
 362}
 363EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 364
 365void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 366{
 367	cache_purge(cd);
 368	spin_lock(&cache_list_lock);
 369	write_lock(&cd->hash_lock);
 370	if (cd->entries || atomic_read(&cd->inuse)) {
 371		write_unlock(&cd->hash_lock);
 372		spin_unlock(&cache_list_lock);
 373		goto out;
 374	}
 375	if (current_detail == cd)
 376		current_detail = NULL;
 377	list_del_init(&cd->others);
 378	write_unlock(&cd->hash_lock);
 379	spin_unlock(&cache_list_lock);
 380	if (list_empty(&cache_list)) {
 381		/* module must be being unloaded so its safe to kill the worker */
 382		cancel_delayed_work_sync(&cache_cleaner);
 383	}
 384	return;
 385out:
 386	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
 387}
 388EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 389
 390/* clean cache tries to find something to clean
 391 * and cleans it.
 392 * It returns 1 if it cleaned something,
 393 *            0 if it didn't find anything this time
 394 *           -1 if it fell off the end of the list.
 395 */
 396static int cache_clean(void)
 397{
 398	int rv = 0;
 399	struct list_head *next;
 400
 401	spin_lock(&cache_list_lock);
 402
 403	/* find a suitable table if we don't already have one */
 404	while (current_detail == NULL ||
 405	    current_index >= current_detail->hash_size) {
 406		if (current_detail)
 407			next = current_detail->others.next;
 408		else
 409			next = cache_list.next;
 410		if (next == &cache_list) {
 411			current_detail = NULL;
 412			spin_unlock(&cache_list_lock);
 413			return -1;
 414		}
 415		current_detail = list_entry(next, struct cache_detail, others);
 416		if (current_detail->nextcheck > seconds_since_boot())
 417			current_index = current_detail->hash_size;
 418		else {
 419			current_index = 0;
 420			current_detail->nextcheck = seconds_since_boot()+30*60;
 421		}
 422	}
 423
 424	/* find a non-empty bucket in the table */
 425	while (current_detail &&
 426	       current_index < current_detail->hash_size &&
 427	       current_detail->hash_table[current_index] == NULL)
 428		current_index++;
 429
 430	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
 431
 432	if (current_detail && current_index < current_detail->hash_size) {
 433		struct cache_head *ch, **cp;
 434		struct cache_detail *d;
 435
 436		write_lock(&current_detail->hash_lock);
 437
 438		/* Ok, now to clean this strand */
 439
 440		cp = & current_detail->hash_table[current_index];
 441		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
 442			if (current_detail->nextcheck > ch->expiry_time)
 443				current_detail->nextcheck = ch->expiry_time+1;
 444			if (!cache_is_expired(current_detail, ch))
 445				continue;
 446
 447			*cp = ch->next;
 448			ch->next = NULL;
 449			current_detail->entries--;
 450			rv = 1;
 451			break;
 452		}
 453
 454		write_unlock(&current_detail->hash_lock);
 455		d = current_detail;
 456		if (!ch)
 457			current_index ++;
 458		spin_unlock(&cache_list_lock);
 459		if (ch) {
 460			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
 461				cache_dequeue(current_detail, ch);
 462			cache_revisit_request(ch);
 463			cache_put(ch, d);
 464		}
 465	} else
 466		spin_unlock(&cache_list_lock);
 467
 468	return rv;
 469}
 470
 471/*
 472 * We want to regularly clean the cache, so we need to schedule some work ...
 473 */
 474static void do_cache_clean(struct work_struct *work)
 475{
 476	int delay = 5;
 477	if (cache_clean() == -1)
 478		delay = round_jiffies_relative(30*HZ);
 479
 480	if (list_empty(&cache_list))
 481		delay = 0;
 482
 483	if (delay)
 484		schedule_delayed_work(&cache_cleaner, delay);
 485}
 486
 487
 488/*
 489 * Clean all caches promptly.  This just calls cache_clean
 490 * repeatedly until we are sure that every cache has had a chance to
 491 * be fully cleaned
 492 */
 493void cache_flush(void)
 494{
 495	while (cache_clean() != -1)
 496		cond_resched();
 497	while (cache_clean() != -1)
 498		cond_resched();
 499}
 500EXPORT_SYMBOL_GPL(cache_flush);
 501
 502void cache_purge(struct cache_detail *detail)
 503{
 504	detail->flush_time = LONG_MAX;
 505	detail->nextcheck = seconds_since_boot();
 506	cache_flush();
 507	detail->flush_time = 1;
 508}
 509EXPORT_SYMBOL_GPL(cache_purge);
 510
 511
 512/*
 513 * Deferral and Revisiting of Requests.
 514 *
 515 * If a cache lookup finds a pending entry, we
 516 * need to defer the request and revisit it later.
 517 * All deferred requests are stored in a hash table,
 518 * indexed by "struct cache_head *".
 519 * As it may be wasteful to store a whole request
 520 * structure, we allow the request to provide a
 521 * deferred form, which must contain a
 522 * 'struct cache_deferred_req'
 523 * This cache_deferred_req contains a method to allow
 524 * it to be revisited when cache info is available
 525 */
 526
 527#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
 528#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 529
 530#define	DFR_MAX	300	/* ??? */
 531
 532static DEFINE_SPINLOCK(cache_defer_lock);
 533static LIST_HEAD(cache_defer_list);
 534static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 535static int cache_defer_cnt;
 536
 537static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 538{
 539	hlist_del_init(&dreq->hash);
 540	if (!list_empty(&dreq->recent)) {
 541		list_del_init(&dreq->recent);
 542		cache_defer_cnt--;
 543	}
 544}
 545
 546static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 547{
 548	int hash = DFR_HASH(item);
 549
 550	INIT_LIST_HEAD(&dreq->recent);
 551	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 552}
 553
 554static void setup_deferral(struct cache_deferred_req *dreq,
 555			   struct cache_head *item,
 556			   int count_me)
 557{
 558
 559	dreq->item = item;
 560
 561	spin_lock(&cache_defer_lock);
 562
 563	__hash_deferred_req(dreq, item);
 564
 565	if (count_me) {
 566		cache_defer_cnt++;
 567		list_add(&dreq->recent, &cache_defer_list);
 568	}
 569
 570	spin_unlock(&cache_defer_lock);
 571
 572}
 573
 574struct thread_deferred_req {
 575	struct cache_deferred_req handle;
 576	struct completion completion;
 577};
 578
 579static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 580{
 581	struct thread_deferred_req *dr =
 582		container_of(dreq, struct thread_deferred_req, handle);
 583	complete(&dr->completion);
 584}
 585
 586static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 587{
 588	struct thread_deferred_req sleeper;
 589	struct cache_deferred_req *dreq = &sleeper.handle;
 590
 591	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 592	dreq->revisit = cache_restart_thread;
 593
 594	setup_deferral(dreq, item, 0);
 595
 596	if (!test_bit(CACHE_PENDING, &item->flags) ||
 597	    wait_for_completion_interruptible_timeout(
 598		    &sleeper.completion, req->thread_wait) <= 0) {
 599		/* The completion wasn't completed, so we need
 600		 * to clean up
 601		 */
 602		spin_lock(&cache_defer_lock);
 603		if (!hlist_unhashed(&sleeper.handle.hash)) {
 604			__unhash_deferred_req(&sleeper.handle);
 605			spin_unlock(&cache_defer_lock);
 606		} else {
 607			/* cache_revisit_request already removed
 608			 * this from the hash table, but hasn't
 609			 * called ->revisit yet.  It will very soon
 610			 * and we need to wait for it.
 611			 */
 612			spin_unlock(&cache_defer_lock);
 613			wait_for_completion(&sleeper.completion);
 614		}
 615	}
 616}
 617
 618static void cache_limit_defers(void)
 619{
 620	/* Make sure we haven't exceed the limit of allowed deferred
 621	 * requests.
 622	 */
 623	struct cache_deferred_req *discard = NULL;
 624
 625	if (cache_defer_cnt <= DFR_MAX)
 626		return;
 627
 628	spin_lock(&cache_defer_lock);
 629
 630	/* Consider removing either the first or the last */
 631	if (cache_defer_cnt > DFR_MAX) {
 632		if (net_random() & 1)
 633			discard = list_entry(cache_defer_list.next,
 634					     struct cache_deferred_req, recent);
 635		else
 636			discard = list_entry(cache_defer_list.prev,
 637					     struct cache_deferred_req, recent);
 638		__unhash_deferred_req(discard);
 639	}
 640	spin_unlock(&cache_defer_lock);
 641	if (discard)
 642		discard->revisit(discard, 1);
 643}
 644
 645/* Return true if and only if a deferred request is queued. */
 646static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 647{
 648	struct cache_deferred_req *dreq;
 649
 650	if (req->thread_wait) {
 651		cache_wait_req(req, item);
 652		if (!test_bit(CACHE_PENDING, &item->flags))
 653			return false;
 654	}
 655	dreq = req->defer(req);
 656	if (dreq == NULL)
 657		return false;
 658	setup_deferral(dreq, item, 1);
 659	if (!test_bit(CACHE_PENDING, &item->flags))
 660		/* Bit could have been cleared before we managed to
 661		 * set up the deferral, so need to revisit just in case
 662		 */
 663		cache_revisit_request(item);
 664
 665	cache_limit_defers();
 666	return true;
 667}
 668
 669static void cache_revisit_request(struct cache_head *item)
 670{
 671	struct cache_deferred_req *dreq;
 672	struct list_head pending;
 673	struct hlist_node *lp, *tmp;
 674	int hash = DFR_HASH(item);
 675
 676	INIT_LIST_HEAD(&pending);
 677	spin_lock(&cache_defer_lock);
 678
 679	hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
 680		if (dreq->item == item) {
 681			__unhash_deferred_req(dreq);
 682			list_add(&dreq->recent, &pending);
 683		}
 684
 685	spin_unlock(&cache_defer_lock);
 686
 687	while (!list_empty(&pending)) {
 688		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 689		list_del_init(&dreq->recent);
 690		dreq->revisit(dreq, 0);
 691	}
 692}
 693
 694void cache_clean_deferred(void *owner)
 695{
 696	struct cache_deferred_req *dreq, *tmp;
 697	struct list_head pending;
 698
 699
 700	INIT_LIST_HEAD(&pending);
 701	spin_lock(&cache_defer_lock);
 702
 703	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 704		if (dreq->owner == owner) {
 705			__unhash_deferred_req(dreq);
 706			list_add(&dreq->recent, &pending);
 707		}
 708	}
 709	spin_unlock(&cache_defer_lock);
 710
 711	while (!list_empty(&pending)) {
 712		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 713		list_del_init(&dreq->recent);
 714		dreq->revisit(dreq, 1);
 715	}
 716}
 717
 718/*
 719 * communicate with user-space
 720 *
 721 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
 722 * On read, you get a full request, or block.
 723 * On write, an update request is processed.
 724 * Poll works if anything to read, and always allows write.
 725 *
 726 * Implemented by linked list of requests.  Each open file has
 727 * a ->private that also exists in this list.  New requests are added
 728 * to the end and may wakeup and preceding readers.
 729 * New readers are added to the head.  If, on read, an item is found with
 730 * CACHE_UPCALLING clear, we free it from the list.
 731 *
 732 */
 733
 734static DEFINE_SPINLOCK(queue_lock);
 735static DEFINE_MUTEX(queue_io_mutex);
 736
 737struct cache_queue {
 738	struct list_head	list;
 739	int			reader;	/* if 0, then request */
 740};
 741struct cache_request {
 742	struct cache_queue	q;
 743	struct cache_head	*item;
 744	char			* buf;
 745	int			len;
 746	int			readers;
 747};
 748struct cache_reader {
 749	struct cache_queue	q;
 750	int			offset;	/* if non-0, we have a refcnt on next request */
 751};
 752
 753static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 754			  loff_t *ppos, struct cache_detail *cd)
 755{
 756	struct cache_reader *rp = filp->private_data;
 757	struct cache_request *rq;
 758	struct inode *inode = filp->f_path.dentry->d_inode;
 759	int err;
 760
 761	if (count == 0)
 762		return 0;
 763
 764	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
 765			      * readers on this file */
 766 again:
 767	spin_lock(&queue_lock);
 768	/* need to find next request */
 769	while (rp->q.list.next != &cd->queue &&
 770	       list_entry(rp->q.list.next, struct cache_queue, list)
 771	       ->reader) {
 772		struct list_head *next = rp->q.list.next;
 773		list_move(&rp->q.list, next);
 774	}
 775	if (rp->q.list.next == &cd->queue) {
 776		spin_unlock(&queue_lock);
 777		mutex_unlock(&inode->i_mutex);
 778		BUG_ON(rp->offset);
 779		return 0;
 780	}
 781	rq = container_of(rp->q.list.next, struct cache_request, q.list);
 782	BUG_ON(rq->q.reader);
 783	if (rp->offset == 0)
 784		rq->readers++;
 785	spin_unlock(&queue_lock);
 786
 787	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 788		err = -EAGAIN;
 789		spin_lock(&queue_lock);
 790		list_move(&rp->q.list, &rq->q.list);
 791		spin_unlock(&queue_lock);
 792	} else {
 793		if (rp->offset + count > rq->len)
 794			count = rq->len - rp->offset;
 795		err = -EFAULT;
 796		if (copy_to_user(buf, rq->buf + rp->offset, count))
 797			goto out;
 798		rp->offset += count;
 799		if (rp->offset >= rq->len) {
 800			rp->offset = 0;
 801			spin_lock(&queue_lock);
 802			list_move(&rp->q.list, &rq->q.list);
 803			spin_unlock(&queue_lock);
 804		}
 805		err = 0;
 806	}
 807 out:
 808	if (rp->offset == 0) {
 809		/* need to release rq */
 810		spin_lock(&queue_lock);
 811		rq->readers--;
 812		if (rq->readers == 0 &&
 813		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 814			list_del(&rq->q.list);
 815			spin_unlock(&queue_lock);
 816			cache_put(rq->item, cd);
 817			kfree(rq->buf);
 818			kfree(rq);
 819		} else
 820			spin_unlock(&queue_lock);
 821	}
 822	if (err == -EAGAIN)
 823		goto again;
 824	mutex_unlock(&inode->i_mutex);
 825	return err ? err :  count;
 826}
 827
 828static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 829				 size_t count, struct cache_detail *cd)
 830{
 831	ssize_t ret;
 832
 833	if (count == 0)
 834		return -EINVAL;
 835	if (copy_from_user(kaddr, buf, count))
 836		return -EFAULT;
 837	kaddr[count] = '\0';
 838	ret = cd->cache_parse(cd, kaddr, count);
 839	if (!ret)
 840		ret = count;
 841	return ret;
 842}
 843
 844static ssize_t cache_slow_downcall(const char __user *buf,
 845				   size_t count, struct cache_detail *cd)
 846{
 847	static char write_buf[8192]; /* protected by queue_io_mutex */
 848	ssize_t ret = -EINVAL;
 849
 850	if (count >= sizeof(write_buf))
 851		goto out;
 852	mutex_lock(&queue_io_mutex);
 853	ret = cache_do_downcall(write_buf, buf, count, cd);
 854	mutex_unlock(&queue_io_mutex);
 855out:
 856	return ret;
 857}
 858
 859static ssize_t cache_downcall(struct address_space *mapping,
 860			      const char __user *buf,
 861			      size_t count, struct cache_detail *cd)
 862{
 863	struct page *page;
 864	char *kaddr;
 865	ssize_t ret = -ENOMEM;
 866
 867	if (count >= PAGE_CACHE_SIZE)
 868		goto out_slow;
 869
 870	page = find_or_create_page(mapping, 0, GFP_KERNEL);
 871	if (!page)
 872		goto out_slow;
 873
 874	kaddr = kmap(page);
 875	ret = cache_do_downcall(kaddr, buf, count, cd);
 876	kunmap(page);
 877	unlock_page(page);
 878	page_cache_release(page);
 879	return ret;
 880out_slow:
 881	return cache_slow_downcall(buf, count, cd);
 882}
 883
 884static ssize_t cache_write(struct file *filp, const char __user *buf,
 885			   size_t count, loff_t *ppos,
 886			   struct cache_detail *cd)
 887{
 888	struct address_space *mapping = filp->f_mapping;
 889	struct inode *inode = filp->f_path.dentry->d_inode;
 890	ssize_t ret = -EINVAL;
 891
 892	if (!cd->cache_parse)
 893		goto out;
 894
 895	mutex_lock(&inode->i_mutex);
 896	ret = cache_downcall(mapping, buf, count, cd);
 897	mutex_unlock(&inode->i_mutex);
 898out:
 899	return ret;
 900}
 901
 902static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 903
 904static unsigned int cache_poll(struct file *filp, poll_table *wait,
 905			       struct cache_detail *cd)
 906{
 907	unsigned int mask;
 908	struct cache_reader *rp = filp->private_data;
 909	struct cache_queue *cq;
 910
 911	poll_wait(filp, &queue_wait, wait);
 912
 913	/* alway allow write */
 914	mask = POLL_OUT | POLLWRNORM;
 915
 916	if (!rp)
 917		return mask;
 918
 919	spin_lock(&queue_lock);
 920
 921	for (cq= &rp->q; &cq->list != &cd->queue;
 922	     cq = list_entry(cq->list.next, struct cache_queue, list))
 923		if (!cq->reader) {
 924			mask |= POLLIN | POLLRDNORM;
 925			break;
 926		}
 927	spin_unlock(&queue_lock);
 928	return mask;
 929}
 930
 931static int cache_ioctl(struct inode *ino, struct file *filp,
 932		       unsigned int cmd, unsigned long arg,
 933		       struct cache_detail *cd)
 934{
 935	int len = 0;
 936	struct cache_reader *rp = filp->private_data;
 937	struct cache_queue *cq;
 938
 939	if (cmd != FIONREAD || !rp)
 940		return -EINVAL;
 941
 942	spin_lock(&queue_lock);
 943
 944	/* only find the length remaining in current request,
 945	 * or the length of the next request
 946	 */
 947	for (cq= &rp->q; &cq->list != &cd->queue;
 948	     cq = list_entry(cq->list.next, struct cache_queue, list))
 949		if (!cq->reader) {
 950			struct cache_request *cr =
 951				container_of(cq, struct cache_request, q);
 952			len = cr->len - rp->offset;
 953			break;
 954		}
 955	spin_unlock(&queue_lock);
 956
 957	return put_user(len, (int __user *)arg);
 958}
 959
 960static int cache_open(struct inode *inode, struct file *filp,
 961		      struct cache_detail *cd)
 962{
 963	struct cache_reader *rp = NULL;
 964
 965	if (!cd || !try_module_get(cd->owner))
 966		return -EACCES;
 967	nonseekable_open(inode, filp);
 968	if (filp->f_mode & FMODE_READ) {
 969		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 970		if (!rp)
 971			return -ENOMEM;
 972		rp->offset = 0;
 973		rp->q.reader = 1;
 974		atomic_inc(&cd->readers);
 975		spin_lock(&queue_lock);
 976		list_add(&rp->q.list, &cd->queue);
 977		spin_unlock(&queue_lock);
 978	}
 979	filp->private_data = rp;
 980	return 0;
 981}
 982
 983static int cache_release(struct inode *inode, struct file *filp,
 984			 struct cache_detail *cd)
 985{
 986	struct cache_reader *rp = filp->private_data;
 987
 988	if (rp) {
 989		spin_lock(&queue_lock);
 990		if (rp->offset) {
 991			struct cache_queue *cq;
 992			for (cq= &rp->q; &cq->list != &cd->queue;
 993			     cq = list_entry(cq->list.next, struct cache_queue, list))
 994				if (!cq->reader) {
 995					container_of(cq, struct cache_request, q)
 996						->readers--;
 997					break;
 998				}
 999			rp->offset = 0;
1000		}
1001		list_del(&rp->q.list);
1002		spin_unlock(&queue_lock);
1003
1004		filp->private_data = NULL;
1005		kfree(rp);
1006
1007		cd->last_close = seconds_since_boot();
1008		atomic_dec(&cd->readers);
1009	}
1010	module_put(cd->owner);
1011	return 0;
1012}
1013
1014
1015
1016static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1017{
1018	struct cache_queue *cq;
1019	spin_lock(&queue_lock);
1020	list_for_each_entry(cq, &detail->queue, list)
1021		if (!cq->reader) {
1022			struct cache_request *cr = container_of(cq, struct cache_request, q);
1023			if (cr->item != ch)
1024				continue;
1025			if (cr->readers != 0)
1026				continue;
1027			list_del(&cr->q.list);
1028			spin_unlock(&queue_lock);
1029			cache_put(cr->item, detail);
1030			kfree(cr->buf);
1031			kfree(cr);
1032			return;
1033		}
1034	spin_unlock(&queue_lock);
1035}
1036
1037/*
1038 * Support routines for text-based upcalls.
1039 * Fields are separated by spaces.
1040 * Fields are either mangled to quote space tab newline slosh with slosh
1041 * or a hexified with a leading \x
1042 * Record is terminated with newline.
1043 *
1044 */
1045
1046void qword_add(char **bpp, int *lp, char *str)
1047{
1048	char *bp = *bpp;
1049	int len = *lp;
1050	char c;
1051
1052	if (len < 0) return;
1053
1054	while ((c=*str++) && len)
1055		switch(c) {
1056		case ' ':
1057		case '\t':
1058		case '\n':
1059		case '\\':
1060			if (len >= 4) {
1061				*bp++ = '\\';
1062				*bp++ = '0' + ((c & 0300)>>6);
1063				*bp++ = '0' + ((c & 0070)>>3);
1064				*bp++ = '0' + ((c & 0007)>>0);
1065			}
1066			len -= 4;
1067			break;
1068		default:
1069			*bp++ = c;
1070			len--;
1071		}
1072	if (c || len <1) len = -1;
1073	else {
1074		*bp++ = ' ';
1075		len--;
1076	}
1077	*bpp = bp;
1078	*lp = len;
1079}
1080EXPORT_SYMBOL_GPL(qword_add);
1081
1082void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1083{
1084	char *bp = *bpp;
1085	int len = *lp;
1086
1087	if (len < 0) return;
1088
1089	if (len > 2) {
1090		*bp++ = '\\';
1091		*bp++ = 'x';
1092		len -= 2;
1093		while (blen && len >= 2) {
1094			unsigned char c = *buf++;
1095			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1096			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1097			len -= 2;
1098			blen--;
1099		}
1100	}
1101	if (blen || len<1) len = -1;
1102	else {
1103		*bp++ = ' ';
1104		len--;
1105	}
1106	*bpp = bp;
1107	*lp = len;
1108}
1109EXPORT_SYMBOL_GPL(qword_addhex);
1110
1111static void warn_no_listener(struct cache_detail *detail)
1112{
1113	if (detail->last_warn != detail->last_close) {
1114		detail->last_warn = detail->last_close;
1115		if (detail->warn_no_listener)
1116			detail->warn_no_listener(detail, detail->last_close != 0);
1117	}
1118}
1119
1120static bool cache_listeners_exist(struct cache_detail *detail)
1121{
1122	if (atomic_read(&detail->readers))
1123		return true;
1124	if (detail->last_close == 0)
1125		/* This cache was never opened */
1126		return false;
1127	if (detail->last_close < seconds_since_boot() - 30)
1128		/*
1129		 * We allow for the possibility that someone might
1130		 * restart a userspace daemon without restarting the
1131		 * server; but after 30 seconds, we give up.
1132		 */
1133		 return false;
1134	return true;
1135}
1136
1137/*
1138 * register an upcall request to user-space and queue it up for read() by the
1139 * upcall daemon.
1140 *
1141 * Each request is at most one page long.
1142 */
1143int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1144		void (*cache_request)(struct cache_detail *,
1145				      struct cache_head *,
1146				      char **,
1147				      int *))
1148{
1149
1150	char *buf;
1151	struct cache_request *crq;
1152	char *bp;
1153	int len;
1154
1155	if (!cache_listeners_exist(detail)) {
1156		warn_no_listener(detail);
1157		return -EINVAL;
1158	}
1159
1160	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1161	if (!buf)
1162		return -EAGAIN;
1163
1164	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1165	if (!crq) {
1166		kfree(buf);
1167		return -EAGAIN;
1168	}
1169
1170	bp = buf; len = PAGE_SIZE;
1171
1172	cache_request(detail, h, &bp, &len);
1173
1174	if (len < 0) {
1175		kfree(buf);
1176		kfree(crq);
1177		return -EAGAIN;
1178	}
1179	crq->q.reader = 0;
1180	crq->item = cache_get(h);
1181	crq->buf = buf;
1182	crq->len = PAGE_SIZE - len;
1183	crq->readers = 0;
1184	spin_lock(&queue_lock);
1185	list_add_tail(&crq->q.list, &detail->queue);
1186	spin_unlock(&queue_lock);
1187	wake_up(&queue_wait);
1188	return 0;
1189}
1190EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1191
1192/*
1193 * parse a message from user-space and pass it
1194 * to an appropriate cache
1195 * Messages are, like requests, separated into fields by
1196 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1197 *
1198 * Message is
1199 *   reply cachename expiry key ... content....
1200 *
1201 * key and content are both parsed by cache
1202 */
1203
1204#define isodigit(c) (isdigit(c) && c <= '7')
1205int qword_get(char **bpp, char *dest, int bufsize)
1206{
1207	/* return bytes copied, or -1 on error */
1208	char *bp = *bpp;
1209	int len = 0;
1210
1211	while (*bp == ' ') bp++;
1212
1213	if (bp[0] == '\\' && bp[1] == 'x') {
1214		/* HEX STRING */
1215		bp += 2;
1216		while (len < bufsize) {
1217			int h, l;
1218
1219			h = hex_to_bin(bp[0]);
1220			if (h < 0)
1221				break;
1222
1223			l = hex_to_bin(bp[1]);
1224			if (l < 0)
1225				break;
1226
1227			*dest++ = (h << 4) | l;
1228			bp += 2;
1229			len++;
1230		}
1231	} else {
1232		/* text with \nnn octal quoting */
1233		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1234			if (*bp == '\\' &&
1235			    isodigit(bp[1]) && (bp[1] <= '3') &&
1236			    isodigit(bp[2]) &&
1237			    isodigit(bp[3])) {
1238				int byte = (*++bp -'0');
1239				bp++;
1240				byte = (byte << 3) | (*bp++ - '0');
1241				byte = (byte << 3) | (*bp++ - '0');
1242				*dest++ = byte;
1243				len++;
1244			} else {
1245				*dest++ = *bp++;
1246				len++;
1247			}
1248		}
1249	}
1250
1251	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1252		return -1;
1253	while (*bp == ' ') bp++;
1254	*bpp = bp;
1255	*dest = '\0';
1256	return len;
1257}
1258EXPORT_SYMBOL_GPL(qword_get);
1259
1260
1261/*
1262 * support /proc/sunrpc/cache/$CACHENAME/content
1263 * as a seqfile.
1264 * We call ->cache_show passing NULL for the item to
1265 * get a header, then pass each real item in the cache
1266 */
1267
1268struct handle {
1269	struct cache_detail *cd;
1270};
1271
1272static void *c_start(struct seq_file *m, loff_t *pos)
1273	__acquires(cd->hash_lock)
1274{
1275	loff_t n = *pos;
1276	unsigned int hash, entry;
1277	struct cache_head *ch;
1278	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1279
1280
1281	read_lock(&cd->hash_lock);
1282	if (!n--)
1283		return SEQ_START_TOKEN;
1284	hash = n >> 32;
1285	entry = n & ((1LL<<32) - 1);
1286
1287	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1288		if (!entry--)
1289			return ch;
1290	n &= ~((1LL<<32) - 1);
1291	do {
1292		hash++;
1293		n += 1LL<<32;
1294	} while(hash < cd->hash_size &&
1295		cd->hash_table[hash]==NULL);
1296	if (hash >= cd->hash_size)
1297		return NULL;
1298	*pos = n+1;
1299	return cd->hash_table[hash];
1300}
1301
1302static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1303{
1304	struct cache_head *ch = p;
1305	int hash = (*pos >> 32);
1306	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1307
1308	if (p == SEQ_START_TOKEN)
1309		hash = 0;
1310	else if (ch->next == NULL) {
1311		hash++;
1312		*pos += 1LL<<32;
1313	} else {
1314		++*pos;
1315		return ch->next;
1316	}
1317	*pos &= ~((1LL<<32) - 1);
1318	while (hash < cd->hash_size &&
1319	       cd->hash_table[hash] == NULL) {
1320		hash++;
1321		*pos += 1LL<<32;
1322	}
1323	if (hash >= cd->hash_size)
1324		return NULL;
1325	++*pos;
1326	return cd->hash_table[hash];
1327}
1328
1329static void c_stop(struct seq_file *m, void *p)
1330	__releases(cd->hash_lock)
1331{
1332	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1333	read_unlock(&cd->hash_lock);
1334}
1335
1336static int c_show(struct seq_file *m, void *p)
1337{
1338	struct cache_head *cp = p;
1339	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1340
1341	if (p == SEQ_START_TOKEN)
1342		return cd->cache_show(m, cd, NULL);
1343
1344	ifdebug(CACHE)
1345		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1346			   convert_to_wallclock(cp->expiry_time),
1347			   atomic_read(&cp->ref.refcount), cp->flags);
1348	cache_get(cp);
1349	if (cache_check(cd, cp, NULL))
1350		/* cache_check does a cache_put on failure */
1351		seq_printf(m, "# ");
1352	else
1353		cache_put(cp, cd);
1354
1355	return cd->cache_show(m, cd, cp);
1356}
1357
1358static const struct seq_operations cache_content_op = {
1359	.start	= c_start,
1360	.next	= c_next,
1361	.stop	= c_stop,
1362	.show	= c_show,
1363};
1364
1365static int content_open(struct inode *inode, struct file *file,
1366			struct cache_detail *cd)
1367{
1368	struct handle *han;
1369
1370	if (!cd || !try_module_get(cd->owner))
1371		return -EACCES;
1372	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1373	if (han == NULL) {
1374		module_put(cd->owner);
1375		return -ENOMEM;
1376	}
1377
1378	han->cd = cd;
1379	return 0;
1380}
1381
1382static int content_release(struct inode *inode, struct file *file,
1383		struct cache_detail *cd)
1384{
1385	int ret = seq_release_private(inode, file);
1386	module_put(cd->owner);
1387	return ret;
1388}
1389
1390static int open_flush(struct inode *inode, struct file *file,
1391			struct cache_detail *cd)
1392{
1393	if (!cd || !try_module_get(cd->owner))
1394		return -EACCES;
1395	return nonseekable_open(inode, file);
1396}
1397
1398static int release_flush(struct inode *inode, struct file *file,
1399			struct cache_detail *cd)
1400{
1401	module_put(cd->owner);
1402	return 0;
1403}
1404
1405static ssize_t read_flush(struct file *file, char __user *buf,
1406			  size_t count, loff_t *ppos,
1407			  struct cache_detail *cd)
1408{
1409	char tbuf[20];
1410	unsigned long p = *ppos;
1411	size_t len;
1412
1413	sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1414	len = strlen(tbuf);
1415	if (p >= len)
1416		return 0;
1417	len -= p;
1418	if (len > count)
1419		len = count;
1420	if (copy_to_user(buf, (void*)(tbuf+p), len))
1421		return -EFAULT;
1422	*ppos += len;
1423	return len;
1424}
1425
1426static ssize_t write_flush(struct file *file, const char __user *buf,
1427			   size_t count, loff_t *ppos,
1428			   struct cache_detail *cd)
1429{
1430	char tbuf[20];
1431	char *bp, *ep;
1432
1433	if (*ppos || count > sizeof(tbuf)-1)
1434		return -EINVAL;
1435	if (copy_from_user(tbuf, buf, count))
1436		return -EFAULT;
1437	tbuf[count] = 0;
1438	simple_strtoul(tbuf, &ep, 0);
1439	if (*ep && *ep != '\n')
1440		return -EINVAL;
1441
1442	bp = tbuf;
1443	cd->flush_time = get_expiry(&bp);
1444	cd->nextcheck = seconds_since_boot();
1445	cache_flush();
1446
1447	*ppos += count;
1448	return count;
1449}
1450
1451static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1452				 size_t count, loff_t *ppos)
1453{
1454	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1455
1456	return cache_read(filp, buf, count, ppos, cd);
1457}
1458
1459static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1460				  size_t count, loff_t *ppos)
1461{
1462	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1463
1464	return cache_write(filp, buf, count, ppos, cd);
1465}
1466
1467static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1468{
1469	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1470
1471	return cache_poll(filp, wait, cd);
1472}
1473
1474static long cache_ioctl_procfs(struct file *filp,
1475			       unsigned int cmd, unsigned long arg)
1476{
1477	struct inode *inode = filp->f_path.dentry->d_inode;
1478	struct cache_detail *cd = PDE(inode)->data;
1479
1480	return cache_ioctl(inode, filp, cmd, arg, cd);
1481}
1482
1483static int cache_open_procfs(struct inode *inode, struct file *filp)
1484{
1485	struct cache_detail *cd = PDE(inode)->data;
1486
1487	return cache_open(inode, filp, cd);
1488}
1489
1490static int cache_release_procfs(struct inode *inode, struct file *filp)
1491{
1492	struct cache_detail *cd = PDE(inode)->data;
1493
1494	return cache_release(inode, filp, cd);
1495}
1496
1497static const struct file_operations cache_file_operations_procfs = {
1498	.owner		= THIS_MODULE,
1499	.llseek		= no_llseek,
1500	.read		= cache_read_procfs,
1501	.write		= cache_write_procfs,
1502	.poll		= cache_poll_procfs,
1503	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1504	.open		= cache_open_procfs,
1505	.release	= cache_release_procfs,
1506};
1507
1508static int content_open_procfs(struct inode *inode, struct file *filp)
1509{
1510	struct cache_detail *cd = PDE(inode)->data;
1511
1512	return content_open(inode, filp, cd);
1513}
1514
1515static int content_release_procfs(struct inode *inode, struct file *filp)
1516{
1517	struct cache_detail *cd = PDE(inode)->data;
1518
1519	return content_release(inode, filp, cd);
1520}
1521
1522static const struct file_operations content_file_operations_procfs = {
1523	.open		= content_open_procfs,
1524	.read		= seq_read,
1525	.llseek		= seq_lseek,
1526	.release	= content_release_procfs,
1527};
1528
1529static int open_flush_procfs(struct inode *inode, struct file *filp)
1530{
1531	struct cache_detail *cd = PDE(inode)->data;
1532
1533	return open_flush(inode, filp, cd);
1534}
1535
1536static int release_flush_procfs(struct inode *inode, struct file *filp)
1537{
1538	struct cache_detail *cd = PDE(inode)->data;
1539
1540	return release_flush(inode, filp, cd);
1541}
1542
1543static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1544			    size_t count, loff_t *ppos)
1545{
1546	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1547
1548	return read_flush(filp, buf, count, ppos, cd);
1549}
1550
1551static ssize_t write_flush_procfs(struct file *filp,
1552				  const char __user *buf,
1553				  size_t count, loff_t *ppos)
1554{
1555	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1556
1557	return write_flush(filp, buf, count, ppos, cd);
1558}
1559
1560static const struct file_operations cache_flush_operations_procfs = {
1561	.open		= open_flush_procfs,
1562	.read		= read_flush_procfs,
1563	.write		= write_flush_procfs,
1564	.release	= release_flush_procfs,
1565	.llseek		= no_llseek,
1566};
1567
1568static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1569{
1570	struct sunrpc_net *sn;
1571
1572	if (cd->u.procfs.proc_ent == NULL)
1573		return;
1574	if (cd->u.procfs.flush_ent)
1575		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1576	if (cd->u.procfs.channel_ent)
1577		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1578	if (cd->u.procfs.content_ent)
1579		remove_proc_entry("content", cd->u.procfs.proc_ent);
1580	cd->u.procfs.proc_ent = NULL;
1581	sn = net_generic(net, sunrpc_net_id);
1582	remove_proc_entry(cd->name, sn->proc_net_rpc);
1583}
1584
1585#ifdef CONFIG_PROC_FS
1586static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1587{
1588	struct proc_dir_entry *p;
1589	struct sunrpc_net *sn;
1590
1591	sn = net_generic(net, sunrpc_net_id);
1592	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1593	if (cd->u.procfs.proc_ent == NULL)
1594		goto out_nomem;
1595	cd->u.procfs.channel_ent = NULL;
1596	cd->u.procfs.content_ent = NULL;
1597
1598	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1599			     cd->u.procfs.proc_ent,
1600			     &cache_flush_operations_procfs, cd);
1601	cd->u.procfs.flush_ent = p;
1602	if (p == NULL)
1603		goto out_nomem;
1604
1605	if (cd->cache_upcall || cd->cache_parse) {
1606		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1607				     cd->u.procfs.proc_ent,
1608				     &cache_file_operations_procfs, cd);
1609		cd->u.procfs.channel_ent = p;
1610		if (p == NULL)
1611			goto out_nomem;
1612	}
1613	if (cd->cache_show) {
1614		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1615				cd->u.procfs.proc_ent,
1616				&content_file_operations_procfs, cd);
1617		cd->u.procfs.content_ent = p;
1618		if (p == NULL)
1619			goto out_nomem;
1620	}
1621	return 0;
1622out_nomem:
1623	remove_cache_proc_entries(cd, net);
1624	return -ENOMEM;
1625}
1626#else /* CONFIG_PROC_FS */
1627static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1628{
1629	return 0;
1630}
1631#endif
1632
1633void __init cache_initialize(void)
1634{
1635	INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1636}
1637
1638int cache_register_net(struct cache_detail *cd, struct net *net)
1639{
1640	int ret;
1641
1642	sunrpc_init_cache_detail(cd);
1643	ret = create_cache_proc_entries(cd, net);
1644	if (ret)
1645		sunrpc_destroy_cache_detail(cd);
1646	return ret;
1647}
1648EXPORT_SYMBOL_GPL(cache_register_net);
1649
1650void cache_unregister_net(struct cache_detail *cd, struct net *net)
1651{
1652	remove_cache_proc_entries(cd, net);
1653	sunrpc_destroy_cache_detail(cd);
1654}
1655EXPORT_SYMBOL_GPL(cache_unregister_net);
1656
1657struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1658{
1659	struct cache_detail *cd;
1660
1661	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1662	if (cd == NULL)
1663		return ERR_PTR(-ENOMEM);
1664
1665	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1666				 GFP_KERNEL);
1667	if (cd->hash_table == NULL) {
1668		kfree(cd);
1669		return ERR_PTR(-ENOMEM);
1670	}
1671	cd->net = net;
1672	return cd;
1673}
1674EXPORT_SYMBOL_GPL(cache_create_net);
1675
1676void cache_destroy_net(struct cache_detail *cd, struct net *net)
1677{
1678	kfree(cd->hash_table);
1679	kfree(cd);
1680}
1681EXPORT_SYMBOL_GPL(cache_destroy_net);
1682
1683static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1684				 size_t count, loff_t *ppos)
1685{
1686	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1687
1688	return cache_read(filp, buf, count, ppos, cd);
1689}
1690
1691static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1692				  size_t count, loff_t *ppos)
1693{
1694	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1695
1696	return cache_write(filp, buf, count, ppos, cd);
1697}
1698
1699static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1700{
1701	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1702
1703	return cache_poll(filp, wait, cd);
1704}
1705
1706static long cache_ioctl_pipefs(struct file *filp,
1707			      unsigned int cmd, unsigned long arg)
1708{
1709	struct inode *inode = filp->f_dentry->d_inode;
1710	struct cache_detail *cd = RPC_I(inode)->private;
1711
1712	return cache_ioctl(inode, filp, cmd, arg, cd);
1713}
1714
1715static int cache_open_pipefs(struct inode *inode, struct file *filp)
1716{
1717	struct cache_detail *cd = RPC_I(inode)->private;
1718
1719	return cache_open(inode, filp, cd);
1720}
1721
1722static int cache_release_pipefs(struct inode *inode, struct file *filp)
1723{
1724	struct cache_detail *cd = RPC_I(inode)->private;
1725
1726	return cache_release(inode, filp, cd);
1727}
1728
1729const struct file_operations cache_file_operations_pipefs = {
1730	.owner		= THIS_MODULE,
1731	.llseek		= no_llseek,
1732	.read		= cache_read_pipefs,
1733	.write		= cache_write_pipefs,
1734	.poll		= cache_poll_pipefs,
1735	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1736	.open		= cache_open_pipefs,
1737	.release	= cache_release_pipefs,
1738};
1739
1740static int content_open_pipefs(struct inode *inode, struct file *filp)
1741{
1742	struct cache_detail *cd = RPC_I(inode)->private;
1743
1744	return content_open(inode, filp, cd);
1745}
1746
1747static int content_release_pipefs(struct inode *inode, struct file *filp)
1748{
1749	struct cache_detail *cd = RPC_I(inode)->private;
1750
1751	return content_release(inode, filp, cd);
1752}
1753
1754const struct file_operations content_file_operations_pipefs = {
1755	.open		= content_open_pipefs,
1756	.read		= seq_read,
1757	.llseek		= seq_lseek,
1758	.release	= content_release_pipefs,
1759};
1760
1761static int open_flush_pipefs(struct inode *inode, struct file *filp)
1762{
1763	struct cache_detail *cd = RPC_I(inode)->private;
1764
1765	return open_flush(inode, filp, cd);
1766}
1767
1768static int release_flush_pipefs(struct inode *inode, struct file *filp)
1769{
1770	struct cache_detail *cd = RPC_I(inode)->private;
1771
1772	return release_flush(inode, filp, cd);
1773}
1774
1775static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1776			    size_t count, loff_t *ppos)
1777{
1778	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1779
1780	return read_flush(filp, buf, count, ppos, cd);
1781}
1782
1783static ssize_t write_flush_pipefs(struct file *filp,
1784				  const char __user *buf,
1785				  size_t count, loff_t *ppos)
1786{
1787	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1788
1789	return write_flush(filp, buf, count, ppos, cd);
1790}
1791
1792const struct file_operations cache_flush_operations_pipefs = {
1793	.open		= open_flush_pipefs,
1794	.read		= read_flush_pipefs,
1795	.write		= write_flush_pipefs,
1796	.release	= release_flush_pipefs,
1797	.llseek		= no_llseek,
1798};
1799
1800int sunrpc_cache_register_pipefs(struct dentry *parent,
1801				 const char *name, umode_t umode,
1802				 struct cache_detail *cd)
1803{
1804	struct qstr q;
1805	struct dentry *dir;
1806	int ret = 0;
1807
1808	q.name = name;
1809	q.len = strlen(name);
1810	q.hash = full_name_hash(q.name, q.len);
1811	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1812	if (!IS_ERR(dir))
1813		cd->u.pipefs.dir = dir;
1814	else
1815		ret = PTR_ERR(dir);
1816	return ret;
1817}
1818EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1819
1820void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1821{
1822	rpc_remove_cache_dir(cd->u.pipefs.dir);
1823	cd->u.pipefs.dir = NULL;
1824}
1825EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1826