Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define	NR_RAID1_BIOS 256
  48
  49/* when we get a read error on a read-only array, we redirect to another
  50 * device without failing the first device, or trying to over-write to
  51 * correct the read error.  To keep track of bad blocks on a per-bio
  52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  53 */
  54#define IO_BLOCKED ((struct bio *)1)
  55/* When we successfully write to a known bad-block, we need to remove the
  56 * bad-block marking which must be done from process context.  So we record
  57 * the success by setting devs[n].bio to IO_MADE_GOOD
  58 */
  59#define IO_MADE_GOOD ((struct bio *)2)
  60
  61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  62
  63/* When there are this many requests queue to be written by
  64 * the raid1 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
  68
  69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  70			  sector_t bi_sector);
  71static void lower_barrier(struct r1conf *conf);
  72
  73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  74{
  75	struct pool_info *pi = data;
  76	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  77
  78	/* allocate a r1bio with room for raid_disks entries in the bios array */
  79	return kzalloc(size, gfp_flags);
  80}
  81
  82static void r1bio_pool_free(void *r1_bio, void *data)
  83{
  84	kfree(r1_bio);
  85}
  86
  87#define RESYNC_BLOCK_SIZE (64*1024)
  88#define RESYNC_DEPTH 32
  89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
  93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
  94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
  95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
  96
  97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  98{
  99	struct pool_info *pi = data;
 100	struct r1bio *r1_bio;
 101	struct bio *bio;
 102	int need_pages;
 103	int i, j;
 104
 105	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 106	if (!r1_bio)
 107		return NULL;
 108
 109	/*
 110	 * Allocate bios : 1 for reading, n-1 for writing
 111	 */
 112	for (j = pi->raid_disks ; j-- ; ) {
 113		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 114		if (!bio)
 115			goto out_free_bio;
 116		r1_bio->bios[j] = bio;
 117	}
 118	/*
 119	 * Allocate RESYNC_PAGES data pages and attach them to
 120	 * the first bio.
 121	 * If this is a user-requested check/repair, allocate
 122	 * RESYNC_PAGES for each bio.
 123	 */
 124	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 125		need_pages = pi->raid_disks;
 126	else
 127		need_pages = 1;
 128	for (j = 0; j < need_pages; j++) {
 129		bio = r1_bio->bios[j];
 130		bio->bi_vcnt = RESYNC_PAGES;
 131
 132		if (bio_alloc_pages(bio, gfp_flags))
 133			goto out_free_pages;
 134	}
 135	/* If not user-requests, copy the page pointers to all bios */
 136	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 137		for (i=0; i<RESYNC_PAGES ; i++)
 138			for (j=1; j<pi->raid_disks; j++)
 139				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 140					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 141	}
 142
 143	r1_bio->master_bio = NULL;
 144
 145	return r1_bio;
 146
 147out_free_pages:
 148	while (--j >= 0) {
 149		struct bio_vec *bv;
 150
 151		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
 152			__free_page(bv->bv_page);
 153	}
 154
 155out_free_bio:
 156	while (++j < pi->raid_disks)
 157		bio_put(r1_bio->bios[j]);
 158	r1bio_pool_free(r1_bio, data);
 159	return NULL;
 160}
 161
 162static void r1buf_pool_free(void *__r1_bio, void *data)
 163{
 164	struct pool_info *pi = data;
 165	int i,j;
 166	struct r1bio *r1bio = __r1_bio;
 167
 168	for (i = 0; i < RESYNC_PAGES; i++)
 169		for (j = pi->raid_disks; j-- ;) {
 170			if (j == 0 ||
 171			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 172			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 173				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 174		}
 175	for (i=0 ; i < pi->raid_disks; i++)
 176		bio_put(r1bio->bios[i]);
 177
 178	r1bio_pool_free(r1bio, data);
 179}
 180
 181static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 182{
 183	int i;
 184
 185	for (i = 0; i < conf->raid_disks * 2; i++) {
 186		struct bio **bio = r1_bio->bios + i;
 187		if (!BIO_SPECIAL(*bio))
 188			bio_put(*bio);
 189		*bio = NULL;
 190	}
 191}
 192
 193static void free_r1bio(struct r1bio *r1_bio)
 194{
 195	struct r1conf *conf = r1_bio->mddev->private;
 196
 197	put_all_bios(conf, r1_bio);
 198	mempool_free(r1_bio, conf->r1bio_pool);
 199}
 200
 201static void put_buf(struct r1bio *r1_bio)
 202{
 203	struct r1conf *conf = r1_bio->mddev->private;
 204	int i;
 205
 206	for (i = 0; i < conf->raid_disks * 2; i++) {
 207		struct bio *bio = r1_bio->bios[i];
 208		if (bio->bi_end_io)
 209			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 210	}
 211
 212	mempool_free(r1_bio, conf->r1buf_pool);
 213
 214	lower_barrier(conf);
 215}
 216
 217static void reschedule_retry(struct r1bio *r1_bio)
 218{
 219	unsigned long flags;
 220	struct mddev *mddev = r1_bio->mddev;
 221	struct r1conf *conf = mddev->private;
 222
 223	spin_lock_irqsave(&conf->device_lock, flags);
 224	list_add(&r1_bio->retry_list, &conf->retry_list);
 225	conf->nr_queued ++;
 226	spin_unlock_irqrestore(&conf->device_lock, flags);
 227
 228	wake_up(&conf->wait_barrier);
 229	md_wakeup_thread(mddev->thread);
 230}
 231
 232/*
 233 * raid_end_bio_io() is called when we have finished servicing a mirrored
 234 * operation and are ready to return a success/failure code to the buffer
 235 * cache layer.
 236 */
 237static void call_bio_endio(struct r1bio *r1_bio)
 238{
 239	struct bio *bio = r1_bio->master_bio;
 240	int done;
 241	struct r1conf *conf = r1_bio->mddev->private;
 242	sector_t start_next_window = r1_bio->start_next_window;
 243	sector_t bi_sector = bio->bi_iter.bi_sector;
 244
 245	if (bio->bi_phys_segments) {
 246		unsigned long flags;
 247		spin_lock_irqsave(&conf->device_lock, flags);
 248		bio->bi_phys_segments--;
 249		done = (bio->bi_phys_segments == 0);
 250		spin_unlock_irqrestore(&conf->device_lock, flags);
 251		/*
 252		 * make_request() might be waiting for
 253		 * bi_phys_segments to decrease
 254		 */
 255		wake_up(&conf->wait_barrier);
 256	} else
 257		done = 1;
 258
 259	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 260		bio->bi_error = -EIO;
 261
 262	if (done) {
 263		bio_endio(bio);
 264		/*
 265		 * Wake up any possible resync thread that waits for the device
 266		 * to go idle.
 267		 */
 268		allow_barrier(conf, start_next_window, bi_sector);
 269	}
 270}
 271
 272static void raid_end_bio_io(struct r1bio *r1_bio)
 273{
 274	struct bio *bio = r1_bio->master_bio;
 275
 276	/* if nobody has done the final endio yet, do it now */
 277	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 278		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 279			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 280			 (unsigned long long) bio->bi_iter.bi_sector,
 281			 (unsigned long long) bio_end_sector(bio) - 1);
 282
 283		call_bio_endio(r1_bio);
 284	}
 285	free_r1bio(r1_bio);
 286}
 287
 288/*
 289 * Update disk head position estimator based on IRQ completion info.
 290 */
 291static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 292{
 293	struct r1conf *conf = r1_bio->mddev->private;
 294
 295	conf->mirrors[disk].head_position =
 296		r1_bio->sector + (r1_bio->sectors);
 297}
 298
 299/*
 300 * Find the disk number which triggered given bio
 301 */
 302static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 303{
 304	int mirror;
 305	struct r1conf *conf = r1_bio->mddev->private;
 306	int raid_disks = conf->raid_disks;
 307
 308	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 309		if (r1_bio->bios[mirror] == bio)
 310			break;
 311
 312	BUG_ON(mirror == raid_disks * 2);
 313	update_head_pos(mirror, r1_bio);
 314
 315	return mirror;
 316}
 317
 318static void raid1_end_read_request(struct bio *bio)
 319{
 320	int uptodate = !bio->bi_error;
 321	struct r1bio *r1_bio = bio->bi_private;
 322	int mirror;
 323	struct r1conf *conf = r1_bio->mddev->private;
 324
 325	mirror = r1_bio->read_disk;
 326	/*
 327	 * this branch is our 'one mirror IO has finished' event handler:
 328	 */
 329	update_head_pos(mirror, r1_bio);
 330
 331	if (uptodate)
 332		set_bit(R1BIO_Uptodate, &r1_bio->state);
 333	else {
 334		/* If all other devices have failed, we want to return
 335		 * the error upwards rather than fail the last device.
 336		 * Here we redefine "uptodate" to mean "Don't want to retry"
 337		 */
 338		unsigned long flags;
 339		spin_lock_irqsave(&conf->device_lock, flags);
 340		if (r1_bio->mddev->degraded == conf->raid_disks ||
 341		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 342		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
 343			uptodate = 1;
 344		spin_unlock_irqrestore(&conf->device_lock, flags);
 345	}
 346
 347	if (uptodate) {
 348		raid_end_bio_io(r1_bio);
 349		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 350	} else {
 351		/*
 352		 * oops, read error:
 353		 */
 354		char b[BDEVNAME_SIZE];
 355		printk_ratelimited(
 356			KERN_ERR "md/raid1:%s: %s: "
 357			"rescheduling sector %llu\n",
 358			mdname(conf->mddev),
 359			bdevname(conf->mirrors[mirror].rdev->bdev,
 360				 b),
 361			(unsigned long long)r1_bio->sector);
 362		set_bit(R1BIO_ReadError, &r1_bio->state);
 363		reschedule_retry(r1_bio);
 364		/* don't drop the reference on read_disk yet */
 365	}
 366}
 367
 368static void close_write(struct r1bio *r1_bio)
 369{
 370	/* it really is the end of this request */
 371	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 372		/* free extra copy of the data pages */
 373		int i = r1_bio->behind_page_count;
 374		while (i--)
 375			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 376		kfree(r1_bio->behind_bvecs);
 377		r1_bio->behind_bvecs = NULL;
 378	}
 379	/* clear the bitmap if all writes complete successfully */
 380	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 381			r1_bio->sectors,
 382			!test_bit(R1BIO_Degraded, &r1_bio->state),
 383			test_bit(R1BIO_BehindIO, &r1_bio->state));
 384	md_write_end(r1_bio->mddev);
 385}
 386
 387static void r1_bio_write_done(struct r1bio *r1_bio)
 388{
 389	if (!atomic_dec_and_test(&r1_bio->remaining))
 390		return;
 391
 392	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 393		reschedule_retry(r1_bio);
 394	else {
 395		close_write(r1_bio);
 396		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 397			reschedule_retry(r1_bio);
 398		else
 399			raid_end_bio_io(r1_bio);
 400	}
 401}
 402
 403static void raid1_end_write_request(struct bio *bio)
 404{
 
 405	struct r1bio *r1_bio = bio->bi_private;
 406	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 407	struct r1conf *conf = r1_bio->mddev->private;
 408	struct bio *to_put = NULL;
 409
 410	mirror = find_bio_disk(r1_bio, bio);
 411
 412	/*
 413	 * 'one mirror IO has finished' event handler:
 414	 */
 415	if (bio->bi_error) {
 416		set_bit(WriteErrorSeen,
 417			&conf->mirrors[mirror].rdev->flags);
 418		if (!test_and_set_bit(WantReplacement,
 419				      &conf->mirrors[mirror].rdev->flags))
 420			set_bit(MD_RECOVERY_NEEDED, &
 421				conf->mddev->recovery);
 422
 423		set_bit(R1BIO_WriteError, &r1_bio->state);
 424	} else {
 425		/*
 426		 * Set R1BIO_Uptodate in our master bio, so that we
 427		 * will return a good error code for to the higher
 428		 * levels even if IO on some other mirrored buffer
 429		 * fails.
 430		 *
 431		 * The 'master' represents the composite IO operation
 432		 * to user-side. So if something waits for IO, then it
 433		 * will wait for the 'master' bio.
 434		 */
 435		sector_t first_bad;
 436		int bad_sectors;
 437
 438		r1_bio->bios[mirror] = NULL;
 439		to_put = bio;
 440		/*
 441		 * Do not set R1BIO_Uptodate if the current device is
 442		 * rebuilding or Faulty. This is because we cannot use
 443		 * such device for properly reading the data back (we could
 444		 * potentially use it, if the current write would have felt
 445		 * before rdev->recovery_offset, but for simplicity we don't
 446		 * check this here.
 447		 */
 448		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
 449		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
 450			set_bit(R1BIO_Uptodate, &r1_bio->state);
 451
 452		/* Maybe we can clear some bad blocks. */
 453		if (is_badblock(conf->mirrors[mirror].rdev,
 454				r1_bio->sector, r1_bio->sectors,
 455				&first_bad, &bad_sectors)) {
 456			r1_bio->bios[mirror] = IO_MADE_GOOD;
 457			set_bit(R1BIO_MadeGood, &r1_bio->state);
 458		}
 459	}
 460
 461	if (behind) {
 462		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 463			atomic_dec(&r1_bio->behind_remaining);
 464
 465		/*
 466		 * In behind mode, we ACK the master bio once the I/O
 467		 * has safely reached all non-writemostly
 468		 * disks. Setting the Returned bit ensures that this
 469		 * gets done only once -- we don't ever want to return
 470		 * -EIO here, instead we'll wait
 471		 */
 472		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 473		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 474			/* Maybe we can return now */
 475			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 476				struct bio *mbio = r1_bio->master_bio;
 477				pr_debug("raid1: behind end write sectors"
 478					 " %llu-%llu\n",
 479					 (unsigned long long) mbio->bi_iter.bi_sector,
 480					 (unsigned long long) bio_end_sector(mbio) - 1);
 481				call_bio_endio(r1_bio);
 482			}
 483		}
 484	}
 485	if (r1_bio->bios[mirror] == NULL)
 486		rdev_dec_pending(conf->mirrors[mirror].rdev,
 487				 conf->mddev);
 488
 489	/*
 490	 * Let's see if all mirrored write operations have finished
 491	 * already.
 492	 */
 493	r1_bio_write_done(r1_bio);
 494
 495	if (to_put)
 496		bio_put(to_put);
 497}
 498
 
 499/*
 500 * This routine returns the disk from which the requested read should
 501 * be done. There is a per-array 'next expected sequential IO' sector
 502 * number - if this matches on the next IO then we use the last disk.
 503 * There is also a per-disk 'last know head position' sector that is
 504 * maintained from IRQ contexts, both the normal and the resync IO
 505 * completion handlers update this position correctly. If there is no
 506 * perfect sequential match then we pick the disk whose head is closest.
 507 *
 508 * If there are 2 mirrors in the same 2 devices, performance degrades
 509 * because position is mirror, not device based.
 510 *
 511 * The rdev for the device selected will have nr_pending incremented.
 512 */
 513static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 514{
 515	const sector_t this_sector = r1_bio->sector;
 516	int sectors;
 517	int best_good_sectors;
 518	int best_disk, best_dist_disk, best_pending_disk;
 519	int has_nonrot_disk;
 520	int disk;
 521	sector_t best_dist;
 522	unsigned int min_pending;
 523	struct md_rdev *rdev;
 524	int choose_first;
 525	int choose_next_idle;
 526
 527	rcu_read_lock();
 528	/*
 529	 * Check if we can balance. We can balance on the whole
 530	 * device if no resync is going on, or below the resync window.
 531	 * We take the first readable disk when above the resync window.
 532	 */
 533 retry:
 534	sectors = r1_bio->sectors;
 535	best_disk = -1;
 536	best_dist_disk = -1;
 537	best_dist = MaxSector;
 538	best_pending_disk = -1;
 539	min_pending = UINT_MAX;
 540	best_good_sectors = 0;
 541	has_nonrot_disk = 0;
 542	choose_next_idle = 0;
 543
 544	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 545	    (mddev_is_clustered(conf->mddev) &&
 546	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 547		    this_sector + sectors)))
 548		choose_first = 1;
 549	else
 550		choose_first = 0;
 551
 552	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 553		sector_t dist;
 554		sector_t first_bad;
 555		int bad_sectors;
 556		unsigned int pending;
 557		bool nonrot;
 558
 559		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 560		if (r1_bio->bios[disk] == IO_BLOCKED
 561		    || rdev == NULL
 
 562		    || test_bit(Faulty, &rdev->flags))
 563			continue;
 564		if (!test_bit(In_sync, &rdev->flags) &&
 565		    rdev->recovery_offset < this_sector + sectors)
 566			continue;
 567		if (test_bit(WriteMostly, &rdev->flags)) {
 568			/* Don't balance among write-mostly, just
 569			 * use the first as a last resort */
 570			if (best_dist_disk < 0) {
 571				if (is_badblock(rdev, this_sector, sectors,
 572						&first_bad, &bad_sectors)) {
 573					if (first_bad <= this_sector)
 574						/* Cannot use this */
 575						continue;
 576					best_good_sectors = first_bad - this_sector;
 577				} else
 578					best_good_sectors = sectors;
 579				best_dist_disk = disk;
 580				best_pending_disk = disk;
 581			}
 582			continue;
 583		}
 584		/* This is a reasonable device to use.  It might
 585		 * even be best.
 586		 */
 587		if (is_badblock(rdev, this_sector, sectors,
 588				&first_bad, &bad_sectors)) {
 589			if (best_dist < MaxSector)
 590				/* already have a better device */
 591				continue;
 592			if (first_bad <= this_sector) {
 593				/* cannot read here. If this is the 'primary'
 594				 * device, then we must not read beyond
 595				 * bad_sectors from another device..
 596				 */
 597				bad_sectors -= (this_sector - first_bad);
 598				if (choose_first && sectors > bad_sectors)
 599					sectors = bad_sectors;
 600				if (best_good_sectors > sectors)
 601					best_good_sectors = sectors;
 602
 603			} else {
 604				sector_t good_sectors = first_bad - this_sector;
 605				if (good_sectors > best_good_sectors) {
 606					best_good_sectors = good_sectors;
 607					best_disk = disk;
 608				}
 609				if (choose_first)
 610					break;
 611			}
 612			continue;
 613		} else
 614			best_good_sectors = sectors;
 615
 616		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 617		has_nonrot_disk |= nonrot;
 618		pending = atomic_read(&rdev->nr_pending);
 619		dist = abs(this_sector - conf->mirrors[disk].head_position);
 620		if (choose_first) {
 621			best_disk = disk;
 622			break;
 623		}
 624		/* Don't change to another disk for sequential reads */
 625		if (conf->mirrors[disk].next_seq_sect == this_sector
 626		    || dist == 0) {
 627			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 628			struct raid1_info *mirror = &conf->mirrors[disk];
 629
 630			best_disk = disk;
 631			/*
 632			 * If buffered sequential IO size exceeds optimal
 633			 * iosize, check if there is idle disk. If yes, choose
 634			 * the idle disk. read_balance could already choose an
 635			 * idle disk before noticing it's a sequential IO in
 636			 * this disk. This doesn't matter because this disk
 637			 * will idle, next time it will be utilized after the
 638			 * first disk has IO size exceeds optimal iosize. In
 639			 * this way, iosize of the first disk will be optimal
 640			 * iosize at least. iosize of the second disk might be
 641			 * small, but not a big deal since when the second disk
 642			 * starts IO, the first disk is likely still busy.
 643			 */
 644			if (nonrot && opt_iosize > 0 &&
 645			    mirror->seq_start != MaxSector &&
 646			    mirror->next_seq_sect > opt_iosize &&
 647			    mirror->next_seq_sect - opt_iosize >=
 648			    mirror->seq_start) {
 649				choose_next_idle = 1;
 650				continue;
 651			}
 652			break;
 653		}
 654		/* If device is idle, use it */
 655		if (pending == 0) {
 656			best_disk = disk;
 657			break;
 658		}
 659
 660		if (choose_next_idle)
 661			continue;
 662
 663		if (min_pending > pending) {
 664			min_pending = pending;
 665			best_pending_disk = disk;
 666		}
 667
 668		if (dist < best_dist) {
 669			best_dist = dist;
 670			best_dist_disk = disk;
 671		}
 672	}
 673
 674	/*
 675	 * If all disks are rotational, choose the closest disk. If any disk is
 676	 * non-rotational, choose the disk with less pending request even the
 677	 * disk is rotational, which might/might not be optimal for raids with
 678	 * mixed ratation/non-rotational disks depending on workload.
 679	 */
 680	if (best_disk == -1) {
 681		if (has_nonrot_disk)
 682			best_disk = best_pending_disk;
 683		else
 684			best_disk = best_dist_disk;
 685	}
 686
 687	if (best_disk >= 0) {
 688		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 689		if (!rdev)
 690			goto retry;
 691		atomic_inc(&rdev->nr_pending);
 692		if (test_bit(Faulty, &rdev->flags)) {
 693			/* cannot risk returning a device that failed
 694			 * before we inc'ed nr_pending
 695			 */
 696			rdev_dec_pending(rdev, conf->mddev);
 697			goto retry;
 698		}
 699		sectors = best_good_sectors;
 700
 701		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 702			conf->mirrors[best_disk].seq_start = this_sector;
 703
 704		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 705	}
 706	rcu_read_unlock();
 707	*max_sectors = sectors;
 708
 709	return best_disk;
 710}
 711
 712static int raid1_congested(struct mddev *mddev, int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713{
 714	struct r1conf *conf = mddev->private;
 715	int i, ret = 0;
 716
 717	if ((bits & (1 << WB_async_congested)) &&
 718	    conf->pending_count >= max_queued_requests)
 719		return 1;
 720
 721	rcu_read_lock();
 722	for (i = 0; i < conf->raid_disks * 2; i++) {
 723		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 724		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 725			struct request_queue *q = bdev_get_queue(rdev->bdev);
 726
 727			BUG_ON(!q);
 728
 729			/* Note the '|| 1' - when read_balance prefers
 730			 * non-congested targets, it can be removed
 731			 */
 732			if ((bits & (1 << WB_async_congested)) || 1)
 733				ret |= bdi_congested(&q->backing_dev_info, bits);
 734			else
 735				ret &= bdi_congested(&q->backing_dev_info, bits);
 736		}
 737	}
 738	rcu_read_unlock();
 739	return ret;
 740}
 
 
 
 
 
 
 
 
 
 741
 742static void flush_pending_writes(struct r1conf *conf)
 743{
 744	/* Any writes that have been queued but are awaiting
 745	 * bitmap updates get flushed here.
 746	 */
 747	spin_lock_irq(&conf->device_lock);
 748
 749	if (conf->pending_bio_list.head) {
 750		struct bio *bio;
 751		bio = bio_list_get(&conf->pending_bio_list);
 752		conf->pending_count = 0;
 753		spin_unlock_irq(&conf->device_lock);
 754		/* flush any pending bitmap writes to
 755		 * disk before proceeding w/ I/O */
 756		bitmap_unplug(conf->mddev->bitmap);
 757		wake_up(&conf->wait_barrier);
 758
 759		while (bio) { /* submit pending writes */
 760			struct bio *next = bio->bi_next;
 761			bio->bi_next = NULL;
 762			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 763			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 764				/* Just ignore it */
 765				bio_endio(bio);
 766			else
 767				generic_make_request(bio);
 768			bio = next;
 769		}
 770	} else
 771		spin_unlock_irq(&conf->device_lock);
 772}
 773
 774/* Barriers....
 775 * Sometimes we need to suspend IO while we do something else,
 776 * either some resync/recovery, or reconfigure the array.
 777 * To do this we raise a 'barrier'.
 778 * The 'barrier' is a counter that can be raised multiple times
 779 * to count how many activities are happening which preclude
 780 * normal IO.
 781 * We can only raise the barrier if there is no pending IO.
 782 * i.e. if nr_pending == 0.
 783 * We choose only to raise the barrier if no-one is waiting for the
 784 * barrier to go down.  This means that as soon as an IO request
 785 * is ready, no other operations which require a barrier will start
 786 * until the IO request has had a chance.
 787 *
 788 * So: regular IO calls 'wait_barrier'.  When that returns there
 789 *    is no backgroup IO happening,  It must arrange to call
 790 *    allow_barrier when it has finished its IO.
 791 * backgroup IO calls must call raise_barrier.  Once that returns
 792 *    there is no normal IO happeing.  It must arrange to call
 793 *    lower_barrier when the particular background IO completes.
 794 */
 795static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
 796{
 797	spin_lock_irq(&conf->resync_lock);
 798
 799	/* Wait until no block IO is waiting */
 800	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 801			    conf->resync_lock);
 802
 803	/* block any new IO from starting */
 804	conf->barrier++;
 805	conf->next_resync = sector_nr;
 806
 807	/* For these conditions we must wait:
 808	 * A: while the array is in frozen state
 809	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 810	 *    the max count which allowed.
 811	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 812	 *    next resync will reach to the window which normal bios are
 813	 *    handling.
 814	 * D: while there are any active requests in the current window.
 815	 */
 816	wait_event_lock_irq(conf->wait_barrier,
 817			    !conf->array_frozen &&
 818			    conf->barrier < RESYNC_DEPTH &&
 819			    conf->current_window_requests == 0 &&
 820			    (conf->start_next_window >=
 821			     conf->next_resync + RESYNC_SECTORS),
 822			    conf->resync_lock);
 823
 824	conf->nr_pending++;
 825	spin_unlock_irq(&conf->resync_lock);
 826}
 827
 828static void lower_barrier(struct r1conf *conf)
 829{
 830	unsigned long flags;
 831	BUG_ON(conf->barrier <= 0);
 832	spin_lock_irqsave(&conf->resync_lock, flags);
 833	conf->barrier--;
 834	conf->nr_pending--;
 835	spin_unlock_irqrestore(&conf->resync_lock, flags);
 836	wake_up(&conf->wait_barrier);
 837}
 838
 839static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 840{
 841	bool wait = false;
 842
 843	if (conf->array_frozen || !bio)
 844		wait = true;
 845	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 846		if ((conf->mddev->curr_resync_completed
 847		     >= bio_end_sector(bio)) ||
 848		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
 849		     <= bio->bi_iter.bi_sector))
 
 
 850			wait = false;
 851		else
 852			wait = true;
 853	}
 854
 855	return wait;
 856}
 857
 858static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 859{
 860	sector_t sector = 0;
 861
 862	spin_lock_irq(&conf->resync_lock);
 863	if (need_to_wait_for_sync(conf, bio)) {
 864		conf->nr_waiting++;
 865		/* Wait for the barrier to drop.
 866		 * However if there are already pending
 867		 * requests (preventing the barrier from
 868		 * rising completely), and the
 869		 * per-process bio queue isn't empty,
 870		 * then don't wait, as we need to empty
 871		 * that queue to allow conf->start_next_window
 872		 * to increase.
 873		 */
 874		wait_event_lock_irq(conf->wait_barrier,
 875				    !conf->array_frozen &&
 876				    (!conf->barrier ||
 877				     ((conf->start_next_window <
 878				       conf->next_resync + RESYNC_SECTORS) &&
 879				      current->bio_list &&
 880				      !bio_list_empty(current->bio_list))),
 881				    conf->resync_lock);
 882		conf->nr_waiting--;
 883	}
 884
 885	if (bio && bio_data_dir(bio) == WRITE) {
 886		if (bio->bi_iter.bi_sector >= conf->next_resync) {
 
 887			if (conf->start_next_window == MaxSector)
 888				conf->start_next_window =
 889					conf->next_resync +
 890					NEXT_NORMALIO_DISTANCE;
 891
 892			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 893			    <= bio->bi_iter.bi_sector)
 894				conf->next_window_requests++;
 895			else
 896				conf->current_window_requests++;
 897			sector = conf->start_next_window;
 898		}
 899	}
 900
 901	conf->nr_pending++;
 902	spin_unlock_irq(&conf->resync_lock);
 903	return sector;
 904}
 905
 906static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 907			  sector_t bi_sector)
 908{
 909	unsigned long flags;
 910
 911	spin_lock_irqsave(&conf->resync_lock, flags);
 912	conf->nr_pending--;
 913	if (start_next_window) {
 914		if (start_next_window == conf->start_next_window) {
 915			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 916			    <= bi_sector)
 917				conf->next_window_requests--;
 918			else
 919				conf->current_window_requests--;
 920		} else
 921			conf->current_window_requests--;
 922
 923		if (!conf->current_window_requests) {
 924			if (conf->next_window_requests) {
 925				conf->current_window_requests =
 926					conf->next_window_requests;
 927				conf->next_window_requests = 0;
 928				conf->start_next_window +=
 929					NEXT_NORMALIO_DISTANCE;
 930			} else
 931				conf->start_next_window = MaxSector;
 932		}
 933	}
 934	spin_unlock_irqrestore(&conf->resync_lock, flags);
 935	wake_up(&conf->wait_barrier);
 936}
 937
 938static void freeze_array(struct r1conf *conf, int extra)
 939{
 940	/* stop syncio and normal IO and wait for everything to
 941	 * go quite.
 942	 * We wait until nr_pending match nr_queued+extra
 943	 * This is called in the context of one normal IO request
 944	 * that has failed. Thus any sync request that might be pending
 945	 * will be blocked by nr_pending, and we need to wait for
 946	 * pending IO requests to complete or be queued for re-try.
 947	 * Thus the number queued (nr_queued) plus this request (extra)
 948	 * must match the number of pending IOs (nr_pending) before
 949	 * we continue.
 950	 */
 951	spin_lock_irq(&conf->resync_lock);
 952	conf->array_frozen = 1;
 953	wait_event_lock_irq_cmd(conf->wait_barrier,
 954				conf->nr_pending == conf->nr_queued+extra,
 955				conf->resync_lock,
 956				flush_pending_writes(conf));
 957	spin_unlock_irq(&conf->resync_lock);
 958}
 959static void unfreeze_array(struct r1conf *conf)
 960{
 961	/* reverse the effect of the freeze */
 962	spin_lock_irq(&conf->resync_lock);
 963	conf->array_frozen = 0;
 964	wake_up(&conf->wait_barrier);
 965	spin_unlock_irq(&conf->resync_lock);
 966}
 967
 968/* duplicate the data pages for behind I/O
 
 969 */
 970static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
 971{
 972	int i;
 973	struct bio_vec *bvec;
 974	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 975					GFP_NOIO);
 976	if (unlikely(!bvecs))
 977		return;
 978
 979	bio_for_each_segment_all(bvec, bio, i) {
 980		bvecs[i] = *bvec;
 981		bvecs[i].bv_page = alloc_page(GFP_NOIO);
 982		if (unlikely(!bvecs[i].bv_page))
 983			goto do_sync_io;
 984		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 985		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 986		kunmap(bvecs[i].bv_page);
 987		kunmap(bvec->bv_page);
 988	}
 989	r1_bio->behind_bvecs = bvecs;
 990	r1_bio->behind_page_count = bio->bi_vcnt;
 991	set_bit(R1BIO_BehindIO, &r1_bio->state);
 992	return;
 993
 994do_sync_io:
 995	for (i = 0; i < bio->bi_vcnt; i++)
 996		if (bvecs[i].bv_page)
 997			put_page(bvecs[i].bv_page);
 998	kfree(bvecs);
 999	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000		 bio->bi_iter.bi_size);
1001}
1002
1003struct raid1_plug_cb {
1004	struct blk_plug_cb	cb;
1005	struct bio_list		pending;
1006	int			pending_cnt;
1007};
1008
1009static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010{
1011	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1012						  cb);
1013	struct mddev *mddev = plug->cb.data;
1014	struct r1conf *conf = mddev->private;
1015	struct bio *bio;
1016
1017	if (from_schedule || current->bio_list) {
1018		spin_lock_irq(&conf->device_lock);
1019		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020		conf->pending_count += plug->pending_cnt;
1021		spin_unlock_irq(&conf->device_lock);
1022		wake_up(&conf->wait_barrier);
1023		md_wakeup_thread(mddev->thread);
1024		kfree(plug);
1025		return;
1026	}
1027
1028	/* we aren't scheduling, so we can do the write-out directly. */
1029	bio = bio_list_get(&plug->pending);
1030	bitmap_unplug(mddev->bitmap);
1031	wake_up(&conf->wait_barrier);
1032
1033	while (bio) { /* submit pending writes */
1034		struct bio *next = bio->bi_next;
1035		bio->bi_next = NULL;
1036		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1037		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038			/* Just ignore it */
1039			bio_endio(bio);
1040		else
1041			generic_make_request(bio);
1042		bio = next;
1043	}
1044	kfree(plug);
1045}
1046
1047static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1048{
1049	struct r1conf *conf = mddev->private;
1050	struct raid1_info *mirror;
1051	struct r1bio *r1_bio;
1052	struct bio *read_bio;
1053	int i, disks;
1054	struct bitmap *bitmap;
1055	unsigned long flags;
1056	const int rw = bio_data_dir(bio);
1057	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1058	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1059	const unsigned long do_discard = (bio->bi_rw
1060					  & (REQ_DISCARD | REQ_SECURE));
1061	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1062	struct md_rdev *blocked_rdev;
1063	struct blk_plug_cb *cb;
1064	struct raid1_plug_cb *plug = NULL;
1065	int first_clone;
1066	int sectors_handled;
1067	int max_sectors;
1068	sector_t start_next_window;
1069
1070	/*
1071	 * Register the new request and wait if the reconstruction
1072	 * thread has put up a bar for new requests.
1073	 * Continue immediately if no resync is active currently.
1074	 */
1075
1076	md_write_start(mddev, bio); /* wait on superblock update early */
1077
1078	if (bio_data_dir(bio) == WRITE &&
1079	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1080	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1081	    (mddev_is_clustered(mddev) &&
1082	     md_cluster_ops->area_resyncing(mddev, WRITE,
1083		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1084		/* As the suspend_* range is controlled by
1085		 * userspace, we want an interruptible
1086		 * wait.
1087		 */
1088		DEFINE_WAIT(w);
1089		for (;;) {
1090			flush_signals(current);
1091			prepare_to_wait(&conf->wait_barrier,
1092					&w, TASK_INTERRUPTIBLE);
1093			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1094			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1095			    (mddev_is_clustered(mddev) &&
1096			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1097				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1098				break;
1099			schedule();
1100		}
1101		finish_wait(&conf->wait_barrier, &w);
1102	}
1103
1104	start_next_window = wait_barrier(conf, bio);
1105
1106	bitmap = mddev->bitmap;
1107
1108	/*
1109	 * make_request() can abort the operation when READA is being
1110	 * used and no empty request is available.
1111	 *
1112	 */
1113	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1114
1115	r1_bio->master_bio = bio;
1116	r1_bio->sectors = bio_sectors(bio);
1117	r1_bio->state = 0;
1118	r1_bio->mddev = mddev;
1119	r1_bio->sector = bio->bi_iter.bi_sector;
1120
1121	/* We might need to issue multiple reads to different
1122	 * devices if there are bad blocks around, so we keep
1123	 * track of the number of reads in bio->bi_phys_segments.
1124	 * If this is 0, there is only one r1_bio and no locking
1125	 * will be needed when requests complete.  If it is
1126	 * non-zero, then it is the number of not-completed requests.
1127	 */
1128	bio->bi_phys_segments = 0;
1129	bio_clear_flag(bio, BIO_SEG_VALID);
1130
1131	if (rw == READ) {
1132		/*
1133		 * read balancing logic:
1134		 */
1135		int rdisk;
1136
1137read_again:
1138		rdisk = read_balance(conf, r1_bio, &max_sectors);
1139
1140		if (rdisk < 0) {
1141			/* couldn't find anywhere to read from */
1142			raid_end_bio_io(r1_bio);
1143			return;
1144		}
1145		mirror = conf->mirrors + rdisk;
1146
1147		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1148		    bitmap) {
1149			/* Reading from a write-mostly device must
1150			 * take care not to over-take any writes
1151			 * that are 'behind'
1152			 */
1153			wait_event(bitmap->behind_wait,
1154				   atomic_read(&bitmap->behind_writes) == 0);
1155		}
1156		r1_bio->read_disk = rdisk;
1157		r1_bio->start_next_window = 0;
1158
1159		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1160		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1161			 max_sectors);
1162
1163		r1_bio->bios[rdisk] = read_bio;
1164
1165		read_bio->bi_iter.bi_sector = r1_bio->sector +
1166			mirror->rdev->data_offset;
1167		read_bio->bi_bdev = mirror->rdev->bdev;
1168		read_bio->bi_end_io = raid1_end_read_request;
1169		read_bio->bi_rw = READ | do_sync;
1170		read_bio->bi_private = r1_bio;
1171
1172		if (max_sectors < r1_bio->sectors) {
1173			/* could not read all from this device, so we will
1174			 * need another r1_bio.
1175			 */
1176
1177			sectors_handled = (r1_bio->sector + max_sectors
1178					   - bio->bi_iter.bi_sector);
1179			r1_bio->sectors = max_sectors;
1180			spin_lock_irq(&conf->device_lock);
1181			if (bio->bi_phys_segments == 0)
1182				bio->bi_phys_segments = 2;
1183			else
1184				bio->bi_phys_segments++;
1185			spin_unlock_irq(&conf->device_lock);
1186			/* Cannot call generic_make_request directly
1187			 * as that will be queued in __make_request
1188			 * and subsequent mempool_alloc might block waiting
1189			 * for it.  So hand bio over to raid1d.
1190			 */
1191			reschedule_retry(r1_bio);
1192
1193			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1194
1195			r1_bio->master_bio = bio;
1196			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1197			r1_bio->state = 0;
1198			r1_bio->mddev = mddev;
1199			r1_bio->sector = bio->bi_iter.bi_sector +
1200				sectors_handled;
1201			goto read_again;
1202		} else
1203			generic_make_request(read_bio);
1204		return;
1205	}
1206
1207	/*
1208	 * WRITE:
1209	 */
1210	if (conf->pending_count >= max_queued_requests) {
1211		md_wakeup_thread(mddev->thread);
1212		wait_event(conf->wait_barrier,
1213			   conf->pending_count < max_queued_requests);
1214	}
1215	/* first select target devices under rcu_lock and
1216	 * inc refcount on their rdev.  Record them by setting
1217	 * bios[x] to bio
1218	 * If there are known/acknowledged bad blocks on any device on
1219	 * which we have seen a write error, we want to avoid writing those
1220	 * blocks.
1221	 * This potentially requires several writes to write around
1222	 * the bad blocks.  Each set of writes gets it's own r1bio
1223	 * with a set of bios attached.
1224	 */
1225
1226	disks = conf->raid_disks * 2;
1227 retry_write:
1228	r1_bio->start_next_window = start_next_window;
1229	blocked_rdev = NULL;
1230	rcu_read_lock();
1231	max_sectors = r1_bio->sectors;
1232	for (i = 0;  i < disks; i++) {
1233		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1234		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1235			atomic_inc(&rdev->nr_pending);
1236			blocked_rdev = rdev;
1237			break;
1238		}
1239		r1_bio->bios[i] = NULL;
1240		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 
1241			if (i < conf->raid_disks)
1242				set_bit(R1BIO_Degraded, &r1_bio->state);
1243			continue;
1244		}
1245
1246		atomic_inc(&rdev->nr_pending);
1247		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1248			sector_t first_bad;
1249			int bad_sectors;
1250			int is_bad;
1251
1252			is_bad = is_badblock(rdev, r1_bio->sector,
1253					     max_sectors,
1254					     &first_bad, &bad_sectors);
1255			if (is_bad < 0) {
1256				/* mustn't write here until the bad block is
1257				 * acknowledged*/
1258				set_bit(BlockedBadBlocks, &rdev->flags);
1259				blocked_rdev = rdev;
1260				break;
1261			}
1262			if (is_bad && first_bad <= r1_bio->sector) {
1263				/* Cannot write here at all */
1264				bad_sectors -= (r1_bio->sector - first_bad);
1265				if (bad_sectors < max_sectors)
1266					/* mustn't write more than bad_sectors
1267					 * to other devices yet
1268					 */
1269					max_sectors = bad_sectors;
1270				rdev_dec_pending(rdev, mddev);
1271				/* We don't set R1BIO_Degraded as that
1272				 * only applies if the disk is
1273				 * missing, so it might be re-added,
1274				 * and we want to know to recover this
1275				 * chunk.
1276				 * In this case the device is here,
1277				 * and the fact that this chunk is not
1278				 * in-sync is recorded in the bad
1279				 * block log
1280				 */
1281				continue;
1282			}
1283			if (is_bad) {
1284				int good_sectors = first_bad - r1_bio->sector;
1285				if (good_sectors < max_sectors)
1286					max_sectors = good_sectors;
1287			}
1288		}
1289		r1_bio->bios[i] = bio;
1290	}
1291	rcu_read_unlock();
1292
1293	if (unlikely(blocked_rdev)) {
1294		/* Wait for this device to become unblocked */
1295		int j;
1296		sector_t old = start_next_window;
1297
1298		for (j = 0; j < i; j++)
1299			if (r1_bio->bios[j])
1300				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1301		r1_bio->state = 0;
1302		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1303		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1304		start_next_window = wait_barrier(conf, bio);
1305		/*
1306		 * We must make sure the multi r1bios of bio have
1307		 * the same value of bi_phys_segments
1308		 */
1309		if (bio->bi_phys_segments && old &&
1310		    old != start_next_window)
1311			/* Wait for the former r1bio(s) to complete */
1312			wait_event(conf->wait_barrier,
1313				   bio->bi_phys_segments == 1);
1314		goto retry_write;
1315	}
1316
1317	if (max_sectors < r1_bio->sectors) {
1318		/* We are splitting this write into multiple parts, so
1319		 * we need to prepare for allocating another r1_bio.
1320		 */
1321		r1_bio->sectors = max_sectors;
1322		spin_lock_irq(&conf->device_lock);
1323		if (bio->bi_phys_segments == 0)
1324			bio->bi_phys_segments = 2;
1325		else
1326			bio->bi_phys_segments++;
1327		spin_unlock_irq(&conf->device_lock);
1328	}
1329	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1330
1331	atomic_set(&r1_bio->remaining, 1);
1332	atomic_set(&r1_bio->behind_remaining, 0);
1333
1334	first_clone = 1;
1335	for (i = 0; i < disks; i++) {
1336		struct bio *mbio;
1337		if (!r1_bio->bios[i])
1338			continue;
1339
1340		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1341		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1342
1343		if (first_clone) {
1344			/* do behind I/O ?
1345			 * Not if there are too many, or cannot
1346			 * allocate memory, or a reader on WriteMostly
1347			 * is waiting for behind writes to flush */
1348			if (bitmap &&
1349			    (atomic_read(&bitmap->behind_writes)
1350			     < mddev->bitmap_info.max_write_behind) &&
1351			    !waitqueue_active(&bitmap->behind_wait))
1352				alloc_behind_pages(mbio, r1_bio);
1353
1354			bitmap_startwrite(bitmap, r1_bio->sector,
1355					  r1_bio->sectors,
1356					  test_bit(R1BIO_BehindIO,
1357						   &r1_bio->state));
1358			first_clone = 0;
1359		}
1360		if (r1_bio->behind_bvecs) {
1361			struct bio_vec *bvec;
1362			int j;
1363
1364			/*
1365			 * We trimmed the bio, so _all is legit
1366			 */
1367			bio_for_each_segment_all(bvec, mbio, j)
1368				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1369			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1370				atomic_inc(&r1_bio->behind_remaining);
1371		}
1372
1373		r1_bio->bios[i] = mbio;
1374
1375		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1376				   conf->mirrors[i].rdev->data_offset);
1377		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1378		mbio->bi_end_io	= raid1_end_write_request;
1379		mbio->bi_rw =
1380			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1381		mbio->bi_private = r1_bio;
1382
1383		atomic_inc(&r1_bio->remaining);
1384
1385		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1386		if (cb)
1387			plug = container_of(cb, struct raid1_plug_cb, cb);
1388		else
1389			plug = NULL;
1390		spin_lock_irqsave(&conf->device_lock, flags);
1391		if (plug) {
1392			bio_list_add(&plug->pending, mbio);
1393			plug->pending_cnt++;
1394		} else {
1395			bio_list_add(&conf->pending_bio_list, mbio);
1396			conf->pending_count++;
1397		}
1398		spin_unlock_irqrestore(&conf->device_lock, flags);
1399		if (!plug)
1400			md_wakeup_thread(mddev->thread);
1401	}
1402	/* Mustn't call r1_bio_write_done before this next test,
1403	 * as it could result in the bio being freed.
1404	 */
1405	if (sectors_handled < bio_sectors(bio)) {
1406		r1_bio_write_done(r1_bio);
1407		/* We need another r1_bio.  It has already been counted
1408		 * in bio->bi_phys_segments
1409		 */
1410		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1411		r1_bio->master_bio = bio;
1412		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1413		r1_bio->state = 0;
1414		r1_bio->mddev = mddev;
1415		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1416		goto retry_write;
1417	}
1418
1419	r1_bio_write_done(r1_bio);
1420
1421	/* In case raid1d snuck in to freeze_array */
1422	wake_up(&conf->wait_barrier);
1423}
1424
1425static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1426{
1427	struct r1conf *conf = mddev->private;
1428	int i;
1429
1430	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1431		   conf->raid_disks - mddev->degraded);
1432	rcu_read_lock();
1433	for (i = 0; i < conf->raid_disks; i++) {
1434		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1435		seq_printf(seq, "%s",
1436			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1437	}
1438	rcu_read_unlock();
1439	seq_printf(seq, "]");
1440}
1441
1442static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
 
1443{
1444	char b[BDEVNAME_SIZE];
1445	struct r1conf *conf = mddev->private;
1446	unsigned long flags;
1447
1448	/*
1449	 * If it is not operational, then we have already marked it as dead
1450	 * else if it is the last working disks, ignore the error, let the
1451	 * next level up know.
1452	 * else mark the drive as failed
1453	 */
1454	if (test_bit(In_sync, &rdev->flags)
1455	    && (conf->raid_disks - mddev->degraded) == 1) {
1456		/*
1457		 * Don't fail the drive, act as though we were just a
1458		 * normal single drive.
1459		 * However don't try a recovery from this drive as
1460		 * it is very likely to fail.
1461		 */
1462		conf->recovery_disabled = mddev->recovery_disabled;
1463		return;
1464	}
1465	set_bit(Blocked, &rdev->flags);
1466	spin_lock_irqsave(&conf->device_lock, flags);
1467	if (test_and_clear_bit(In_sync, &rdev->flags)) {
 
 
1468		mddev->degraded++;
1469		set_bit(Faulty, &rdev->flags);
 
 
 
 
 
1470	} else
1471		set_bit(Faulty, &rdev->flags);
1472	spin_unlock_irqrestore(&conf->device_lock, flags);
1473	/*
1474	 * if recovery is running, make sure it aborts.
1475	 */
1476	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1477	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1478	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1479	printk(KERN_ALERT
1480	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1481	       "md/raid1:%s: Operation continuing on %d devices.\n",
1482	       mdname(mddev), bdevname(rdev->bdev, b),
1483	       mdname(mddev), conf->raid_disks - mddev->degraded);
1484}
1485
1486static void print_conf(struct r1conf *conf)
1487{
1488	int i;
1489
1490	printk(KERN_DEBUG "RAID1 conf printout:\n");
1491	if (!conf) {
1492		printk(KERN_DEBUG "(!conf)\n");
1493		return;
1494	}
1495	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1496		conf->raid_disks);
1497
1498	rcu_read_lock();
1499	for (i = 0; i < conf->raid_disks; i++) {
1500		char b[BDEVNAME_SIZE];
1501		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502		if (rdev)
1503			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1504			       i, !test_bit(In_sync, &rdev->flags),
1505			       !test_bit(Faulty, &rdev->flags),
1506			       bdevname(rdev->bdev,b));
1507	}
1508	rcu_read_unlock();
1509}
1510
1511static void close_sync(struct r1conf *conf)
1512{
1513	wait_barrier(conf, NULL);
1514	allow_barrier(conf, 0, 0);
1515
1516	mempool_destroy(conf->r1buf_pool);
1517	conf->r1buf_pool = NULL;
1518
1519	spin_lock_irq(&conf->resync_lock);
1520	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1521	conf->start_next_window = MaxSector;
1522	conf->current_window_requests +=
1523		conf->next_window_requests;
1524	conf->next_window_requests = 0;
1525	spin_unlock_irq(&conf->resync_lock);
1526}
1527
1528static int raid1_spare_active(struct mddev *mddev)
1529{
1530	int i;
1531	struct r1conf *conf = mddev->private;
1532	int count = 0;
1533	unsigned long flags;
1534
1535	/*
1536	 * Find all failed disks within the RAID1 configuration
1537	 * and mark them readable.
1538	 * Called under mddev lock, so rcu protection not needed.
1539	 * device_lock used to avoid races with raid1_end_read_request
1540	 * which expects 'In_sync' flags and ->degraded to be consistent.
1541	 */
1542	spin_lock_irqsave(&conf->device_lock, flags);
1543	for (i = 0; i < conf->raid_disks; i++) {
1544		struct md_rdev *rdev = conf->mirrors[i].rdev;
1545		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1546		if (repl
1547		    && !test_bit(Candidate, &repl->flags)
1548		    && repl->recovery_offset == MaxSector
1549		    && !test_bit(Faulty, &repl->flags)
1550		    && !test_and_set_bit(In_sync, &repl->flags)) {
1551			/* replacement has just become active */
1552			if (!rdev ||
1553			    !test_and_clear_bit(In_sync, &rdev->flags))
1554				count++;
1555			if (rdev) {
1556				/* Replaced device not technically
1557				 * faulty, but we need to be sure
1558				 * it gets removed and never re-added
1559				 */
1560				set_bit(Faulty, &rdev->flags);
1561				sysfs_notify_dirent_safe(
1562					rdev->sysfs_state);
1563			}
1564		}
1565		if (rdev
1566		    && rdev->recovery_offset == MaxSector
1567		    && !test_bit(Faulty, &rdev->flags)
1568		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1569			count++;
1570			sysfs_notify_dirent_safe(rdev->sysfs_state);
1571		}
1572	}
 
1573	mddev->degraded -= count;
1574	spin_unlock_irqrestore(&conf->device_lock, flags);
1575
1576	print_conf(conf);
1577	return count;
1578}
1579
 
1580static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1581{
1582	struct r1conf *conf = mddev->private;
1583	int err = -EEXIST;
1584	int mirror = 0;
1585	struct raid1_info *p;
1586	int first = 0;
1587	int last = conf->raid_disks - 1;
 
1588
1589	if (mddev->recovery_disabled == conf->recovery_disabled)
1590		return -EBUSY;
1591
1592	if (md_integrity_add_rdev(rdev, mddev))
1593		return -ENXIO;
1594
1595	if (rdev->raid_disk >= 0)
1596		first = last = rdev->raid_disk;
1597
1598	/*
1599	 * find the disk ... but prefer rdev->saved_raid_disk
1600	 * if possible.
1601	 */
1602	if (rdev->saved_raid_disk >= 0 &&
1603	    rdev->saved_raid_disk >= first &&
1604	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1605		first = last = rdev->saved_raid_disk;
1606
1607	for (mirror = first; mirror <= last; mirror++) {
1608		p = conf->mirrors+mirror;
1609		if (!p->rdev) {
1610
1611			if (mddev->gendisk)
1612				disk_stack_limits(mddev->gendisk, rdev->bdev,
1613						  rdev->data_offset << 9);
1614
1615			p->head_position = 0;
1616			rdev->raid_disk = mirror;
1617			err = 0;
1618			/* As all devices are equivalent, we don't need a full recovery
1619			 * if this was recently any drive of the array
1620			 */
1621			if (rdev->saved_raid_disk < 0)
1622				conf->fullsync = 1;
1623			rcu_assign_pointer(p->rdev, rdev);
1624			break;
1625		}
1626		if (test_bit(WantReplacement, &p->rdev->flags) &&
1627		    p[conf->raid_disks].rdev == NULL) {
1628			/* Add this device as a replacement */
1629			clear_bit(In_sync, &rdev->flags);
1630			set_bit(Replacement, &rdev->flags);
1631			rdev->raid_disk = mirror;
1632			err = 0;
1633			conf->fullsync = 1;
1634			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1635			break;
1636		}
1637	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1639		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1640	print_conf(conf);
1641	return err;
1642}
1643
1644static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1645{
1646	struct r1conf *conf = mddev->private;
1647	int err = 0;
1648	int number = rdev->raid_disk;
1649	struct raid1_info *p = conf->mirrors + number;
1650
1651	if (rdev != p->rdev)
1652		p = conf->mirrors + conf->raid_disks + number;
1653
1654	print_conf(conf);
1655	if (rdev == p->rdev) {
1656		if (test_bit(In_sync, &rdev->flags) ||
1657		    atomic_read(&rdev->nr_pending)) {
1658			err = -EBUSY;
1659			goto abort;
1660		}
1661		/* Only remove non-faulty devices if recovery
1662		 * is not possible.
1663		 */
1664		if (!test_bit(Faulty, &rdev->flags) &&
1665		    mddev->recovery_disabled != conf->recovery_disabled &&
1666		    mddev->degraded < conf->raid_disks) {
1667			err = -EBUSY;
1668			goto abort;
1669		}
1670		p->rdev = NULL;
1671		synchronize_rcu();
1672		if (atomic_read(&rdev->nr_pending)) {
1673			/* lost the race, try later */
1674			err = -EBUSY;
1675			p->rdev = rdev;
1676			goto abort;
1677		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1678			/* We just removed a device that is being replaced.
1679			 * Move down the replacement.  We drain all IO before
1680			 * doing this to avoid confusion.
1681			 */
1682			struct md_rdev *repl =
1683				conf->mirrors[conf->raid_disks + number].rdev;
1684			freeze_array(conf, 0);
1685			clear_bit(Replacement, &repl->flags);
1686			p->rdev = repl;
1687			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1688			unfreeze_array(conf);
1689			clear_bit(WantReplacement, &rdev->flags);
1690		} else
1691			clear_bit(WantReplacement, &rdev->flags);
1692		err = md_integrity_register(mddev);
1693	}
1694abort:
1695
1696	print_conf(conf);
1697	return err;
1698}
1699
1700static void end_sync_read(struct bio *bio)
 
1701{
1702	struct r1bio *r1_bio = bio->bi_private;
1703
1704	update_head_pos(r1_bio->read_disk, r1_bio);
1705
1706	/*
1707	 * we have read a block, now it needs to be re-written,
1708	 * or re-read if the read failed.
1709	 * We don't do much here, just schedule handling by raid1d
1710	 */
1711	if (!bio->bi_error)
1712		set_bit(R1BIO_Uptodate, &r1_bio->state);
1713
1714	if (atomic_dec_and_test(&r1_bio->remaining))
1715		reschedule_retry(r1_bio);
1716}
1717
1718static void end_sync_write(struct bio *bio)
1719{
1720	int uptodate = !bio->bi_error;
1721	struct r1bio *r1_bio = bio->bi_private;
1722	struct mddev *mddev = r1_bio->mddev;
1723	struct r1conf *conf = mddev->private;
1724	int mirror=0;
1725	sector_t first_bad;
1726	int bad_sectors;
1727
1728	mirror = find_bio_disk(r1_bio, bio);
1729
1730	if (!uptodate) {
1731		sector_t sync_blocks = 0;
1732		sector_t s = r1_bio->sector;
1733		long sectors_to_go = r1_bio->sectors;
1734		/* make sure these bits doesn't get cleared. */
1735		do {
1736			bitmap_end_sync(mddev->bitmap, s,
1737					&sync_blocks, 1);
1738			s += sync_blocks;
1739			sectors_to_go -= sync_blocks;
1740		} while (sectors_to_go > 0);
1741		set_bit(WriteErrorSeen,
1742			&conf->mirrors[mirror].rdev->flags);
1743		if (!test_and_set_bit(WantReplacement,
1744				      &conf->mirrors[mirror].rdev->flags))
1745			set_bit(MD_RECOVERY_NEEDED, &
1746				mddev->recovery);
1747		set_bit(R1BIO_WriteError, &r1_bio->state);
1748	} else if (is_badblock(conf->mirrors[mirror].rdev,
1749			       r1_bio->sector,
1750			       r1_bio->sectors,
1751			       &first_bad, &bad_sectors) &&
1752		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1753				r1_bio->sector,
1754				r1_bio->sectors,
1755				&first_bad, &bad_sectors)
1756		)
1757		set_bit(R1BIO_MadeGood, &r1_bio->state);
1758
1759	if (atomic_dec_and_test(&r1_bio->remaining)) {
1760		int s = r1_bio->sectors;
1761		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1762		    test_bit(R1BIO_WriteError, &r1_bio->state))
1763			reschedule_retry(r1_bio);
1764		else {
1765			put_buf(r1_bio);
1766			md_done_sync(mddev, s, uptodate);
1767		}
1768	}
1769}
1770
1771static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1772			    int sectors, struct page *page, int rw)
1773{
1774	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1775		/* success */
1776		return 1;
1777	if (rw == WRITE) {
1778		set_bit(WriteErrorSeen, &rdev->flags);
1779		if (!test_and_set_bit(WantReplacement,
1780				      &rdev->flags))
1781			set_bit(MD_RECOVERY_NEEDED, &
1782				rdev->mddev->recovery);
1783	}
1784	/* need to record an error - either for the block or the device */
1785	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1786		md_error(rdev->mddev, rdev);
1787	return 0;
1788}
1789
1790static int fix_sync_read_error(struct r1bio *r1_bio)
1791{
1792	/* Try some synchronous reads of other devices to get
1793	 * good data, much like with normal read errors.  Only
1794	 * read into the pages we already have so we don't
1795	 * need to re-issue the read request.
1796	 * We don't need to freeze the array, because being in an
1797	 * active sync request, there is no normal IO, and
1798	 * no overlapping syncs.
1799	 * We don't need to check is_badblock() again as we
1800	 * made sure that anything with a bad block in range
1801	 * will have bi_end_io clear.
1802	 */
1803	struct mddev *mddev = r1_bio->mddev;
1804	struct r1conf *conf = mddev->private;
1805	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1806	sector_t sect = r1_bio->sector;
1807	int sectors = r1_bio->sectors;
1808	int idx = 0;
1809
1810	while(sectors) {
1811		int s = sectors;
1812		int d = r1_bio->read_disk;
1813		int success = 0;
1814		struct md_rdev *rdev;
1815		int start;
1816
1817		if (s > (PAGE_SIZE>>9))
1818			s = PAGE_SIZE >> 9;
1819		do {
1820			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1821				/* No rcu protection needed here devices
1822				 * can only be removed when no resync is
1823				 * active, and resync is currently active
1824				 */
1825				rdev = conf->mirrors[d].rdev;
1826				if (sync_page_io(rdev, sect, s<<9,
1827						 bio->bi_io_vec[idx].bv_page,
1828						 READ, false)) {
1829					success = 1;
1830					break;
1831				}
1832			}
1833			d++;
1834			if (d == conf->raid_disks * 2)
1835				d = 0;
1836		} while (!success && d != r1_bio->read_disk);
1837
1838		if (!success) {
1839			char b[BDEVNAME_SIZE];
1840			int abort = 0;
1841			/* Cannot read from anywhere, this block is lost.
1842			 * Record a bad block on each device.  If that doesn't
1843			 * work just disable and interrupt the recovery.
1844			 * Don't fail devices as that won't really help.
1845			 */
1846			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1847			       " for block %llu\n",
1848			       mdname(mddev),
1849			       bdevname(bio->bi_bdev, b),
1850			       (unsigned long long)r1_bio->sector);
1851			for (d = 0; d < conf->raid_disks * 2; d++) {
1852				rdev = conf->mirrors[d].rdev;
1853				if (!rdev || test_bit(Faulty, &rdev->flags))
1854					continue;
1855				if (!rdev_set_badblocks(rdev, sect, s, 0))
1856					abort = 1;
1857			}
1858			if (abort) {
1859				conf->recovery_disabled =
1860					mddev->recovery_disabled;
1861				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1862				md_done_sync(mddev, r1_bio->sectors, 0);
1863				put_buf(r1_bio);
1864				return 0;
1865			}
1866			/* Try next page */
1867			sectors -= s;
1868			sect += s;
1869			idx++;
1870			continue;
1871		}
1872
1873		start = d;
1874		/* write it back and re-read */
1875		while (d != r1_bio->read_disk) {
1876			if (d == 0)
1877				d = conf->raid_disks * 2;
1878			d--;
1879			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1880				continue;
1881			rdev = conf->mirrors[d].rdev;
1882			if (r1_sync_page_io(rdev, sect, s,
1883					    bio->bi_io_vec[idx].bv_page,
1884					    WRITE) == 0) {
1885				r1_bio->bios[d]->bi_end_io = NULL;
1886				rdev_dec_pending(rdev, mddev);
1887			}
1888		}
1889		d = start;
1890		while (d != r1_bio->read_disk) {
1891			if (d == 0)
1892				d = conf->raid_disks * 2;
1893			d--;
1894			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1895				continue;
1896			rdev = conf->mirrors[d].rdev;
1897			if (r1_sync_page_io(rdev, sect, s,
1898					    bio->bi_io_vec[idx].bv_page,
1899					    READ) != 0)
1900				atomic_add(s, &rdev->corrected_errors);
1901		}
1902		sectors -= s;
1903		sect += s;
1904		idx ++;
1905	}
1906	set_bit(R1BIO_Uptodate, &r1_bio->state);
1907	bio->bi_error = 0;
1908	return 1;
1909}
1910
1911static void process_checks(struct r1bio *r1_bio)
1912{
1913	/* We have read all readable devices.  If we haven't
1914	 * got the block, then there is no hope left.
1915	 * If we have, then we want to do a comparison
1916	 * and skip the write if everything is the same.
1917	 * If any blocks failed to read, then we need to
1918	 * attempt an over-write
1919	 */
1920	struct mddev *mddev = r1_bio->mddev;
1921	struct r1conf *conf = mddev->private;
1922	int primary;
1923	int i;
1924	int vcnt;
1925
1926	/* Fix variable parts of all bios */
1927	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1928	for (i = 0; i < conf->raid_disks * 2; i++) {
1929		int j;
1930		int size;
1931		int error;
1932		struct bio *b = r1_bio->bios[i];
1933		if (b->bi_end_io != end_sync_read)
1934			continue;
1935		/* fixup the bio for reuse, but preserve errno */
1936		error = b->bi_error;
1937		bio_reset(b);
1938		b->bi_error = error;
 
1939		b->bi_vcnt = vcnt;
1940		b->bi_iter.bi_size = r1_bio->sectors << 9;
1941		b->bi_iter.bi_sector = r1_bio->sector +
1942			conf->mirrors[i].rdev->data_offset;
1943		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1944		b->bi_end_io = end_sync_read;
1945		b->bi_private = r1_bio;
1946
1947		size = b->bi_iter.bi_size;
1948		for (j = 0; j < vcnt ; j++) {
1949			struct bio_vec *bi;
1950			bi = &b->bi_io_vec[j];
1951			bi->bv_offset = 0;
1952			if (size > PAGE_SIZE)
1953				bi->bv_len = PAGE_SIZE;
1954			else
1955				bi->bv_len = size;
1956			size -= PAGE_SIZE;
1957		}
1958	}
1959	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1960		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1961		    !r1_bio->bios[primary]->bi_error) {
1962			r1_bio->bios[primary]->bi_end_io = NULL;
1963			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1964			break;
1965		}
1966	r1_bio->read_disk = primary;
1967	for (i = 0; i < conf->raid_disks * 2; i++) {
1968		int j;
1969		struct bio *pbio = r1_bio->bios[primary];
1970		struct bio *sbio = r1_bio->bios[i];
1971		int error = sbio->bi_error;
1972
1973		if (sbio->bi_end_io != end_sync_read)
1974			continue;
1975		/* Now we can 'fixup' the error value */
1976		sbio->bi_error = 0;
1977
1978		if (!error) {
1979			for (j = vcnt; j-- ; ) {
1980				struct page *p, *s;
1981				p = pbio->bi_io_vec[j].bv_page;
1982				s = sbio->bi_io_vec[j].bv_page;
1983				if (memcmp(page_address(p),
1984					   page_address(s),
1985					   sbio->bi_io_vec[j].bv_len))
1986					break;
1987			}
1988		} else
1989			j = 0;
1990		if (j >= 0)
1991			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1992		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1993			      && !error)) {
1994			/* No need to write to this device. */
1995			sbio->bi_end_io = NULL;
1996			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1997			continue;
1998		}
1999
2000		bio_copy_data(sbio, pbio);
2001	}
 
2002}
2003
2004static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2005{
2006	struct r1conf *conf = mddev->private;
2007	int i;
2008	int disks = conf->raid_disks * 2;
2009	struct bio *bio, *wbio;
2010
2011	bio = r1_bio->bios[r1_bio->read_disk];
2012
2013	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2014		/* ouch - failed to read all of that. */
2015		if (!fix_sync_read_error(r1_bio))
2016			return;
2017
2018	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2019		process_checks(r1_bio);
2020
2021	/*
2022	 * schedule writes
2023	 */
2024	atomic_set(&r1_bio->remaining, 1);
2025	for (i = 0; i < disks ; i++) {
2026		wbio = r1_bio->bios[i];
2027		if (wbio->bi_end_io == NULL ||
2028		    (wbio->bi_end_io == end_sync_read &&
2029		     (i == r1_bio->read_disk ||
2030		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2031			continue;
2032
2033		wbio->bi_rw = WRITE;
2034		wbio->bi_end_io = end_sync_write;
2035		atomic_inc(&r1_bio->remaining);
2036		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2037
2038		generic_make_request(wbio);
2039	}
2040
2041	if (atomic_dec_and_test(&r1_bio->remaining)) {
2042		/* if we're here, all write(s) have completed, so clean up */
2043		int s = r1_bio->sectors;
2044		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045		    test_bit(R1BIO_WriteError, &r1_bio->state))
2046			reschedule_retry(r1_bio);
2047		else {
2048			put_buf(r1_bio);
2049			md_done_sync(mddev, s, 1);
2050		}
2051	}
2052}
2053
2054/*
2055 * This is a kernel thread which:
2056 *
2057 *	1.	Retries failed read operations on working mirrors.
2058 *	2.	Updates the raid superblock when problems encounter.
2059 *	3.	Performs writes following reads for array synchronising.
2060 */
2061
2062static void fix_read_error(struct r1conf *conf, int read_disk,
2063			   sector_t sect, int sectors)
2064{
2065	struct mddev *mddev = conf->mddev;
2066	while(sectors) {
2067		int s = sectors;
2068		int d = read_disk;
2069		int success = 0;
2070		int start;
2071		struct md_rdev *rdev;
2072
2073		if (s > (PAGE_SIZE>>9))
2074			s = PAGE_SIZE >> 9;
2075
2076		do {
2077			/* Note: no rcu protection needed here
2078			 * as this is synchronous in the raid1d thread
2079			 * which is the thread that might remove
2080			 * a device.  If raid1d ever becomes multi-threaded....
2081			 */
2082			sector_t first_bad;
2083			int bad_sectors;
2084
2085			rdev = conf->mirrors[d].rdev;
2086			if (rdev &&
2087			    (test_bit(In_sync, &rdev->flags) ||
2088			     (!test_bit(Faulty, &rdev->flags) &&
2089			      rdev->recovery_offset >= sect + s)) &&
2090			    is_badblock(rdev, sect, s,
2091					&first_bad, &bad_sectors) == 0 &&
2092			    sync_page_io(rdev, sect, s<<9,
2093					 conf->tmppage, READ, false))
2094				success = 1;
2095			else {
2096				d++;
2097				if (d == conf->raid_disks * 2)
2098					d = 0;
2099			}
2100		} while (!success && d != read_disk);
2101
2102		if (!success) {
2103			/* Cannot read from anywhere - mark it bad */
2104			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2105			if (!rdev_set_badblocks(rdev, sect, s, 0))
2106				md_error(mddev, rdev);
2107			break;
2108		}
2109		/* write it back and re-read */
2110		start = d;
2111		while (d != read_disk) {
2112			if (d==0)
2113				d = conf->raid_disks * 2;
2114			d--;
2115			rdev = conf->mirrors[d].rdev;
2116			if (rdev &&
2117			    !test_bit(Faulty, &rdev->flags))
2118				r1_sync_page_io(rdev, sect, s,
2119						conf->tmppage, WRITE);
2120		}
2121		d = start;
2122		while (d != read_disk) {
2123			char b[BDEVNAME_SIZE];
2124			if (d==0)
2125				d = conf->raid_disks * 2;
2126			d--;
2127			rdev = conf->mirrors[d].rdev;
2128			if (rdev &&
2129			    !test_bit(Faulty, &rdev->flags)) {
2130				if (r1_sync_page_io(rdev, sect, s,
2131						    conf->tmppage, READ)) {
2132					atomic_add(s, &rdev->corrected_errors);
2133					printk(KERN_INFO
2134					       "md/raid1:%s: read error corrected "
2135					       "(%d sectors at %llu on %s)\n",
2136					       mdname(mddev), s,
2137					       (unsigned long long)(sect +
2138					           rdev->data_offset),
2139					       bdevname(rdev->bdev, b));
2140				}
2141			}
2142		}
2143		sectors -= s;
2144		sect += s;
2145	}
2146}
2147
2148static int narrow_write_error(struct r1bio *r1_bio, int i)
2149{
2150	struct mddev *mddev = r1_bio->mddev;
2151	struct r1conf *conf = mddev->private;
2152	struct md_rdev *rdev = conf->mirrors[i].rdev;
2153
2154	/* bio has the data to be written to device 'i' where
2155	 * we just recently had a write error.
2156	 * We repeatedly clone the bio and trim down to one block,
2157	 * then try the write.  Where the write fails we record
2158	 * a bad block.
2159	 * It is conceivable that the bio doesn't exactly align with
2160	 * blocks.  We must handle this somehow.
2161	 *
2162	 * We currently own a reference on the rdev.
2163	 */
2164
2165	int block_sectors;
2166	sector_t sector;
2167	int sectors;
2168	int sect_to_write = r1_bio->sectors;
2169	int ok = 1;
2170
2171	if (rdev->badblocks.shift < 0)
2172		return 0;
2173
2174	block_sectors = roundup(1 << rdev->badblocks.shift,
2175				bdev_logical_block_size(rdev->bdev) >> 9);
2176	sector = r1_bio->sector;
2177	sectors = ((sector + block_sectors)
2178		   & ~(sector_t)(block_sectors - 1))
2179		- sector;
2180
2181	while (sect_to_write) {
2182		struct bio *wbio;
2183		if (sectors > sect_to_write)
2184			sectors = sect_to_write;
2185		/* Write at 'sector' for 'sectors'*/
2186
2187		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2188			unsigned vcnt = r1_bio->behind_page_count;
2189			struct bio_vec *vec = r1_bio->behind_bvecs;
2190
2191			while (!vec->bv_page) {
2192				vec++;
2193				vcnt--;
2194			}
2195
2196			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2197			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2198
2199			wbio->bi_vcnt = vcnt;
2200		} else {
2201			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2202		}
2203
2204		wbio->bi_rw = WRITE;
2205		wbio->bi_iter.bi_sector = r1_bio->sector;
2206		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2207
2208		bio_trim(wbio, sector - r1_bio->sector, sectors);
2209		wbio->bi_iter.bi_sector += rdev->data_offset;
2210		wbio->bi_bdev = rdev->bdev;
2211		if (submit_bio_wait(WRITE, wbio) < 0)
2212			/* failure! */
2213			ok = rdev_set_badblocks(rdev, sector,
2214						sectors, 0)
2215				&& ok;
2216
2217		bio_put(wbio);
2218		sect_to_write -= sectors;
2219		sector += sectors;
2220		sectors = block_sectors;
2221	}
2222	return ok;
2223}
2224
2225static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2226{
2227	int m;
2228	int s = r1_bio->sectors;
2229	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2230		struct md_rdev *rdev = conf->mirrors[m].rdev;
2231		struct bio *bio = r1_bio->bios[m];
2232		if (bio->bi_end_io == NULL)
2233			continue;
2234		if (!bio->bi_error &&
2235		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2236			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2237		}
2238		if (bio->bi_error &&
2239		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2240			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2241				md_error(conf->mddev, rdev);
2242		}
2243	}
2244	put_buf(r1_bio);
2245	md_done_sync(conf->mddev, s, 1);
2246}
2247
2248static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2249{
2250	int m;
2251	bool fail = false;
2252	for (m = 0; m < conf->raid_disks * 2 ; m++)
2253		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2254			struct md_rdev *rdev = conf->mirrors[m].rdev;
2255			rdev_clear_badblocks(rdev,
2256					     r1_bio->sector,
2257					     r1_bio->sectors, 0);
2258			rdev_dec_pending(rdev, conf->mddev);
2259		} else if (r1_bio->bios[m] != NULL) {
2260			/* This drive got a write error.  We need to
2261			 * narrow down and record precise write
2262			 * errors.
2263			 */
2264			fail = true;
2265			if (!narrow_write_error(r1_bio, m)) {
2266				md_error(conf->mddev,
2267					 conf->mirrors[m].rdev);
2268				/* an I/O failed, we can't clear the bitmap */
2269				set_bit(R1BIO_Degraded, &r1_bio->state);
2270			}
2271			rdev_dec_pending(conf->mirrors[m].rdev,
2272					 conf->mddev);
2273		}
2274	if (fail) {
2275		spin_lock_irq(&conf->device_lock);
2276		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2277		conf->nr_queued++;
2278		spin_unlock_irq(&conf->device_lock);
2279		md_wakeup_thread(conf->mddev->thread);
2280	} else {
2281		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2282			close_write(r1_bio);
2283		raid_end_bio_io(r1_bio);
2284	}
2285}
2286
2287static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2288{
2289	int disk;
2290	int max_sectors;
2291	struct mddev *mddev = conf->mddev;
2292	struct bio *bio;
2293	char b[BDEVNAME_SIZE];
2294	struct md_rdev *rdev;
2295
2296	clear_bit(R1BIO_ReadError, &r1_bio->state);
2297	/* we got a read error. Maybe the drive is bad.  Maybe just
2298	 * the block and we can fix it.
2299	 * We freeze all other IO, and try reading the block from
2300	 * other devices.  When we find one, we re-write
2301	 * and check it that fixes the read error.
2302	 * This is all done synchronously while the array is
2303	 * frozen
2304	 */
2305	if (mddev->ro == 0) {
2306		freeze_array(conf, 1);
2307		fix_read_error(conf, r1_bio->read_disk,
2308			       r1_bio->sector, r1_bio->sectors);
2309		unfreeze_array(conf);
2310	} else
2311		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2312	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2313
2314	bio = r1_bio->bios[r1_bio->read_disk];
2315	bdevname(bio->bi_bdev, b);
2316read_more:
2317	disk = read_balance(conf, r1_bio, &max_sectors);
2318	if (disk == -1) {
2319		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2320		       " read error for block %llu\n",
2321		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2322		raid_end_bio_io(r1_bio);
2323	} else {
2324		const unsigned long do_sync
2325			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2326		if (bio) {
2327			r1_bio->bios[r1_bio->read_disk] =
2328				mddev->ro ? IO_BLOCKED : NULL;
2329			bio_put(bio);
2330		}
2331		r1_bio->read_disk = disk;
2332		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2333		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2334			 max_sectors);
2335		r1_bio->bios[r1_bio->read_disk] = bio;
2336		rdev = conf->mirrors[disk].rdev;
2337		printk_ratelimited(KERN_ERR
2338				   "md/raid1:%s: redirecting sector %llu"
2339				   " to other mirror: %s\n",
2340				   mdname(mddev),
2341				   (unsigned long long)r1_bio->sector,
2342				   bdevname(rdev->bdev, b));
2343		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2344		bio->bi_bdev = rdev->bdev;
2345		bio->bi_end_io = raid1_end_read_request;
2346		bio->bi_rw = READ | do_sync;
2347		bio->bi_private = r1_bio;
2348		if (max_sectors < r1_bio->sectors) {
2349			/* Drat - have to split this up more */
2350			struct bio *mbio = r1_bio->master_bio;
2351			int sectors_handled = (r1_bio->sector + max_sectors
2352					       - mbio->bi_iter.bi_sector);
2353			r1_bio->sectors = max_sectors;
2354			spin_lock_irq(&conf->device_lock);
2355			if (mbio->bi_phys_segments == 0)
2356				mbio->bi_phys_segments = 2;
2357			else
2358				mbio->bi_phys_segments++;
2359			spin_unlock_irq(&conf->device_lock);
2360			generic_make_request(bio);
2361			bio = NULL;
2362
2363			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2364
2365			r1_bio->master_bio = mbio;
2366			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2367			r1_bio->state = 0;
2368			set_bit(R1BIO_ReadError, &r1_bio->state);
2369			r1_bio->mddev = mddev;
2370			r1_bio->sector = mbio->bi_iter.bi_sector +
2371				sectors_handled;
2372
2373			goto read_more;
2374		} else
2375			generic_make_request(bio);
2376	}
2377}
2378
2379static void raid1d(struct md_thread *thread)
2380{
2381	struct mddev *mddev = thread->mddev;
2382	struct r1bio *r1_bio;
2383	unsigned long flags;
2384	struct r1conf *conf = mddev->private;
2385	struct list_head *head = &conf->retry_list;
2386	struct blk_plug plug;
2387
2388	md_check_recovery(mddev);
2389
2390	if (!list_empty_careful(&conf->bio_end_io_list) &&
2391	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2392		LIST_HEAD(tmp);
2393		spin_lock_irqsave(&conf->device_lock, flags);
2394		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2395			while (!list_empty(&conf->bio_end_io_list)) {
2396				list_move(conf->bio_end_io_list.prev, &tmp);
2397				conf->nr_queued--;
2398			}
2399		}
2400		spin_unlock_irqrestore(&conf->device_lock, flags);
2401		while (!list_empty(&tmp)) {
2402			r1_bio = list_first_entry(&tmp, struct r1bio,
2403						  retry_list);
2404			list_del(&r1_bio->retry_list);
2405			if (mddev->degraded)
2406				set_bit(R1BIO_Degraded, &r1_bio->state);
2407			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2408				close_write(r1_bio);
2409			raid_end_bio_io(r1_bio);
2410		}
2411	}
2412
2413	blk_start_plug(&plug);
2414	for (;;) {
2415
2416		flush_pending_writes(conf);
2417
2418		spin_lock_irqsave(&conf->device_lock, flags);
2419		if (list_empty(head)) {
2420			spin_unlock_irqrestore(&conf->device_lock, flags);
2421			break;
2422		}
2423		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2424		list_del(head->prev);
2425		conf->nr_queued--;
2426		spin_unlock_irqrestore(&conf->device_lock, flags);
2427
2428		mddev = r1_bio->mddev;
2429		conf = mddev->private;
2430		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2431			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2432			    test_bit(R1BIO_WriteError, &r1_bio->state))
2433				handle_sync_write_finished(conf, r1_bio);
2434			else
2435				sync_request_write(mddev, r1_bio);
2436		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2437			   test_bit(R1BIO_WriteError, &r1_bio->state))
2438			handle_write_finished(conf, r1_bio);
2439		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2440			handle_read_error(conf, r1_bio);
2441		else
2442			/* just a partial read to be scheduled from separate
2443			 * context
2444			 */
2445			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2446
2447		cond_resched();
2448		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2449			md_check_recovery(mddev);
2450	}
2451	blk_finish_plug(&plug);
2452}
2453
 
2454static int init_resync(struct r1conf *conf)
2455{
2456	int buffs;
2457
2458	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2459	BUG_ON(conf->r1buf_pool);
2460	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2461					  conf->poolinfo);
2462	if (!conf->r1buf_pool)
2463		return -ENOMEM;
2464	conf->next_resync = 0;
2465	return 0;
2466}
2467
2468/*
2469 * perform a "sync" on one "block"
2470 *
2471 * We need to make sure that no normal I/O request - particularly write
2472 * requests - conflict with active sync requests.
2473 *
2474 * This is achieved by tracking pending requests and a 'barrier' concept
2475 * that can be installed to exclude normal IO requests.
2476 */
2477
2478static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2479				   int *skipped)
2480{
2481	struct r1conf *conf = mddev->private;
2482	struct r1bio *r1_bio;
2483	struct bio *bio;
2484	sector_t max_sector, nr_sectors;
2485	int disk = -1;
2486	int i;
2487	int wonly = -1;
2488	int write_targets = 0, read_targets = 0;
2489	sector_t sync_blocks;
2490	int still_degraded = 0;
2491	int good_sectors = RESYNC_SECTORS;
2492	int min_bad = 0; /* number of sectors that are bad in all devices */
2493
2494	if (!conf->r1buf_pool)
2495		if (init_resync(conf))
2496			return 0;
2497
2498	max_sector = mddev->dev_sectors;
2499	if (sector_nr >= max_sector) {
2500		/* If we aborted, we need to abort the
2501		 * sync on the 'current' bitmap chunk (there will
2502		 * only be one in raid1 resync.
2503		 * We can find the current addess in mddev->curr_resync
2504		 */
2505		if (mddev->curr_resync < max_sector) /* aborted */
2506			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2507						&sync_blocks, 1);
2508		else /* completed sync */
2509			conf->fullsync = 0;
2510
2511		bitmap_close_sync(mddev->bitmap);
2512		close_sync(conf);
2513
2514		if (mddev_is_clustered(mddev)) {
2515			conf->cluster_sync_low = 0;
2516			conf->cluster_sync_high = 0;
2517		}
2518		return 0;
2519	}
2520
2521	if (mddev->bitmap == NULL &&
2522	    mddev->recovery_cp == MaxSector &&
2523	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2524	    conf->fullsync == 0) {
2525		*skipped = 1;
2526		return max_sector - sector_nr;
2527	}
2528	/* before building a request, check if we can skip these blocks..
2529	 * This call the bitmap_start_sync doesn't actually record anything
2530	 */
2531	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2532	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2533		/* We can skip this block, and probably several more */
2534		*skipped = 1;
2535		return sync_blocks;
2536	}
2537
2538	/* we are incrementing sector_nr below. To be safe, we check against
2539	 * sector_nr + two times RESYNC_SECTORS
 
2540	 */
 
 
2541
2542	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2543		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2544	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
 
2545
2546	raise_barrier(conf, sector_nr);
2547
2548	rcu_read_lock();
2549	/*
2550	 * If we get a correctably read error during resync or recovery,
2551	 * we might want to read from a different device.  So we
2552	 * flag all drives that could conceivably be read from for READ,
2553	 * and any others (which will be non-In_sync devices) for WRITE.
2554	 * If a read fails, we try reading from something else for which READ
2555	 * is OK.
2556	 */
2557
2558	r1_bio->mddev = mddev;
2559	r1_bio->sector = sector_nr;
2560	r1_bio->state = 0;
2561	set_bit(R1BIO_IsSync, &r1_bio->state);
2562
2563	for (i = 0; i < conf->raid_disks * 2; i++) {
2564		struct md_rdev *rdev;
2565		bio = r1_bio->bios[i];
2566		bio_reset(bio);
2567
2568		rdev = rcu_dereference(conf->mirrors[i].rdev);
2569		if (rdev == NULL ||
2570		    test_bit(Faulty, &rdev->flags)) {
2571			if (i < conf->raid_disks)
2572				still_degraded = 1;
2573		} else if (!test_bit(In_sync, &rdev->flags)) {
2574			bio->bi_rw = WRITE;
2575			bio->bi_end_io = end_sync_write;
2576			write_targets ++;
2577		} else {
2578			/* may need to read from here */
2579			sector_t first_bad = MaxSector;
2580			int bad_sectors;
2581
2582			if (is_badblock(rdev, sector_nr, good_sectors,
2583					&first_bad, &bad_sectors)) {
2584				if (first_bad > sector_nr)
2585					good_sectors = first_bad - sector_nr;
2586				else {
2587					bad_sectors -= (sector_nr - first_bad);
2588					if (min_bad == 0 ||
2589					    min_bad > bad_sectors)
2590						min_bad = bad_sectors;
2591				}
2592			}
2593			if (sector_nr < first_bad) {
2594				if (test_bit(WriteMostly, &rdev->flags)) {
2595					if (wonly < 0)
2596						wonly = i;
2597				} else {
2598					if (disk < 0)
2599						disk = i;
2600				}
2601				bio->bi_rw = READ;
2602				bio->bi_end_io = end_sync_read;
2603				read_targets++;
2604			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607				/*
2608				 * The device is suitable for reading (InSync),
2609				 * but has bad block(s) here. Let's try to correct them,
2610				 * if we are doing resync or repair. Otherwise, leave
2611				 * this device alone for this sync request.
2612				 */
2613				bio->bi_rw = WRITE;
2614				bio->bi_end_io = end_sync_write;
2615				write_targets++;
2616			}
2617		}
2618		if (bio->bi_end_io) {
2619			atomic_inc(&rdev->nr_pending);
2620			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621			bio->bi_bdev = rdev->bdev;
2622			bio->bi_private = r1_bio;
2623		}
2624	}
2625	rcu_read_unlock();
2626	if (disk < 0)
2627		disk = wonly;
2628	r1_bio->read_disk = disk;
2629
2630	if (read_targets == 0 && min_bad > 0) {
2631		/* These sectors are bad on all InSync devices, so we
2632		 * need to mark them bad on all write targets
2633		 */
2634		int ok = 1;
2635		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637				struct md_rdev *rdev = conf->mirrors[i].rdev;
2638				ok = rdev_set_badblocks(rdev, sector_nr,
2639							min_bad, 0
2640					) && ok;
2641			}
2642		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643		*skipped = 1;
2644		put_buf(r1_bio);
2645
2646		if (!ok) {
2647			/* Cannot record the badblocks, so need to
2648			 * abort the resync.
2649			 * If there are multiple read targets, could just
2650			 * fail the really bad ones ???
2651			 */
2652			conf->recovery_disabled = mddev->recovery_disabled;
2653			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654			return 0;
2655		} else
2656			return min_bad;
2657
2658	}
2659	if (min_bad > 0 && min_bad < good_sectors) {
2660		/* only resync enough to reach the next bad->good
2661		 * transition */
2662		good_sectors = min_bad;
2663	}
2664
2665	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666		/* extra read targets are also write targets */
2667		write_targets += read_targets-1;
2668
2669	if (write_targets == 0 || read_targets == 0) {
2670		/* There is nowhere to write, so all non-sync
2671		 * drives must be failed - so we are finished
2672		 */
2673		sector_t rv;
2674		if (min_bad > 0)
2675			max_sector = sector_nr + min_bad;
2676		rv = max_sector - sector_nr;
2677		*skipped = 1;
2678		put_buf(r1_bio);
2679		return rv;
2680	}
2681
2682	if (max_sector > mddev->resync_max)
2683		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684	if (max_sector > sector_nr + good_sectors)
2685		max_sector = sector_nr + good_sectors;
2686	nr_sectors = 0;
2687	sync_blocks = 0;
2688	do {
2689		struct page *page;
2690		int len = PAGE_SIZE;
2691		if (sector_nr + (len>>9) > max_sector)
2692			len = (max_sector - sector_nr) << 9;
2693		if (len == 0)
2694			break;
2695		if (sync_blocks == 0) {
2696			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697					       &sync_blocks, still_degraded) &&
2698			    !conf->fullsync &&
2699			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700				break;
 
2701			if ((len >> 9) > sync_blocks)
2702				len = sync_blocks<<9;
2703		}
2704
2705		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2706			bio = r1_bio->bios[i];
2707			if (bio->bi_end_io) {
2708				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2709				if (bio_add_page(bio, page, len, 0) == 0) {
2710					/* stop here */
2711					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2712					while (i > 0) {
2713						i--;
2714						bio = r1_bio->bios[i];
2715						if (bio->bi_end_io==NULL)
2716							continue;
2717						/* remove last page from this bio */
2718						bio->bi_vcnt--;
2719						bio->bi_iter.bi_size -= len;
2720						bio_clear_flag(bio, BIO_SEG_VALID);
2721					}
2722					goto bio_full;
2723				}
2724			}
2725		}
2726		nr_sectors += len>>9;
2727		sector_nr += len>>9;
2728		sync_blocks -= (len>>9);
2729	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2730 bio_full:
2731	r1_bio->sectors = nr_sectors;
2732
2733	if (mddev_is_clustered(mddev) &&
2734			conf->cluster_sync_high < sector_nr + nr_sectors) {
2735		conf->cluster_sync_low = mddev->curr_resync_completed;
2736		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2737		/* Send resync message */
2738		md_cluster_ops->resync_info_update(mddev,
2739				conf->cluster_sync_low,
2740				conf->cluster_sync_high);
2741	}
2742
2743	/* For a user-requested sync, we read all readable devices and do a
2744	 * compare
2745	 */
2746	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2747		atomic_set(&r1_bio->remaining, read_targets);
2748		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2749			bio = r1_bio->bios[i];
2750			if (bio->bi_end_io == end_sync_read) {
2751				read_targets--;
2752				md_sync_acct(bio->bi_bdev, nr_sectors);
2753				generic_make_request(bio);
2754			}
2755		}
2756	} else {
2757		atomic_set(&r1_bio->remaining, 1);
2758		bio = r1_bio->bios[r1_bio->read_disk];
2759		md_sync_acct(bio->bi_bdev, nr_sectors);
2760		generic_make_request(bio);
2761
2762	}
2763	return nr_sectors;
2764}
2765
2766static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2767{
2768	if (sectors)
2769		return sectors;
2770
2771	return mddev->dev_sectors;
2772}
2773
2774static struct r1conf *setup_conf(struct mddev *mddev)
2775{
2776	struct r1conf *conf;
2777	int i;
2778	struct raid1_info *disk;
2779	struct md_rdev *rdev;
2780	int err = -ENOMEM;
2781
2782	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2783	if (!conf)
2784		goto abort;
2785
2786	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2787				* mddev->raid_disks * 2,
2788				 GFP_KERNEL);
2789	if (!conf->mirrors)
2790		goto abort;
2791
2792	conf->tmppage = alloc_page(GFP_KERNEL);
2793	if (!conf->tmppage)
2794		goto abort;
2795
2796	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2797	if (!conf->poolinfo)
2798		goto abort;
2799	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2800	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2801					  r1bio_pool_free,
2802					  conf->poolinfo);
2803	if (!conf->r1bio_pool)
2804		goto abort;
2805
2806	conf->poolinfo->mddev = mddev;
2807
2808	err = -EINVAL;
2809	spin_lock_init(&conf->device_lock);
2810	rdev_for_each(rdev, mddev) {
2811		struct request_queue *q;
2812		int disk_idx = rdev->raid_disk;
2813		if (disk_idx >= mddev->raid_disks
2814		    || disk_idx < 0)
2815			continue;
2816		if (test_bit(Replacement, &rdev->flags))
2817			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2818		else
2819			disk = conf->mirrors + disk_idx;
2820
2821		if (disk->rdev)
2822			goto abort;
2823		disk->rdev = rdev;
2824		q = bdev_get_queue(rdev->bdev);
 
 
2825
2826		disk->head_position = 0;
2827		disk->seq_start = MaxSector;
2828	}
2829	conf->raid_disks = mddev->raid_disks;
2830	conf->mddev = mddev;
2831	INIT_LIST_HEAD(&conf->retry_list);
2832	INIT_LIST_HEAD(&conf->bio_end_io_list);
2833
2834	spin_lock_init(&conf->resync_lock);
2835	init_waitqueue_head(&conf->wait_barrier);
2836
2837	bio_list_init(&conf->pending_bio_list);
2838	conf->pending_count = 0;
2839	conf->recovery_disabled = mddev->recovery_disabled - 1;
2840
2841	conf->start_next_window = MaxSector;
2842	conf->current_window_requests = conf->next_window_requests = 0;
2843
2844	err = -EIO;
2845	for (i = 0; i < conf->raid_disks * 2; i++) {
2846
2847		disk = conf->mirrors + i;
2848
2849		if (i < conf->raid_disks &&
2850		    disk[conf->raid_disks].rdev) {
2851			/* This slot has a replacement. */
2852			if (!disk->rdev) {
2853				/* No original, just make the replacement
2854				 * a recovering spare
2855				 */
2856				disk->rdev =
2857					disk[conf->raid_disks].rdev;
2858				disk[conf->raid_disks].rdev = NULL;
2859			} else if (!test_bit(In_sync, &disk->rdev->flags))
2860				/* Original is not in_sync - bad */
2861				goto abort;
2862		}
2863
2864		if (!disk->rdev ||
2865		    !test_bit(In_sync, &disk->rdev->flags)) {
2866			disk->head_position = 0;
2867			if (disk->rdev &&
2868			    (disk->rdev->saved_raid_disk < 0))
2869				conf->fullsync = 1;
2870		}
2871	}
2872
2873	err = -ENOMEM;
2874	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2875	if (!conf->thread) {
2876		printk(KERN_ERR
2877		       "md/raid1:%s: couldn't allocate thread\n",
2878		       mdname(mddev));
2879		goto abort;
2880	}
2881
2882	return conf;
2883
2884 abort:
2885	if (conf) {
2886		mempool_destroy(conf->r1bio_pool);
 
2887		kfree(conf->mirrors);
2888		safe_put_page(conf->tmppage);
2889		kfree(conf->poolinfo);
2890		kfree(conf);
2891	}
2892	return ERR_PTR(err);
2893}
2894
2895static void raid1_free(struct mddev *mddev, void *priv);
2896static int raid1_run(struct mddev *mddev)
2897{
2898	struct r1conf *conf;
2899	int i;
2900	struct md_rdev *rdev;
2901	int ret;
2902	bool discard_supported = false;
2903
2904	if (mddev->level != 1) {
2905		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2906		       mdname(mddev), mddev->level);
2907		return -EIO;
2908	}
2909	if (mddev->reshape_position != MaxSector) {
2910		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2911		       mdname(mddev));
2912		return -EIO;
2913	}
2914	/*
2915	 * copy the already verified devices into our private RAID1
2916	 * bookkeeping area. [whatever we allocate in run(),
2917	 * should be freed in raid1_free()]
2918	 */
2919	if (mddev->private == NULL)
2920		conf = setup_conf(mddev);
2921	else
2922		conf = mddev->private;
2923
2924	if (IS_ERR(conf))
2925		return PTR_ERR(conf);
2926
2927	if (mddev->queue)
2928		blk_queue_max_write_same_sectors(mddev->queue, 0);
2929
2930	rdev_for_each(rdev, mddev) {
2931		if (!mddev->gendisk)
2932			continue;
2933		disk_stack_limits(mddev->gendisk, rdev->bdev,
2934				  rdev->data_offset << 9);
2935		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2936			discard_supported = true;
2937	}
2938
2939	mddev->degraded = 0;
2940	for (i=0; i < conf->raid_disks; i++)
2941		if (conf->mirrors[i].rdev == NULL ||
2942		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2943		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2944			mddev->degraded++;
2945
2946	if (conf->raid_disks - mddev->degraded == 1)
2947		mddev->recovery_cp = MaxSector;
2948
2949	if (mddev->recovery_cp != MaxSector)
2950		printk(KERN_NOTICE "md/raid1:%s: not clean"
2951		       " -- starting background reconstruction\n",
2952		       mdname(mddev));
2953	printk(KERN_INFO
2954		"md/raid1:%s: active with %d out of %d mirrors\n",
2955		mdname(mddev), mddev->raid_disks - mddev->degraded,
2956		mddev->raid_disks);
2957
2958	/*
2959	 * Ok, everything is just fine now
2960	 */
2961	mddev->thread = conf->thread;
2962	conf->thread = NULL;
2963	mddev->private = conf;
2964
2965	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2966
2967	if (mddev->queue) {
 
 
 
 
2968		if (discard_supported)
2969			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2970						mddev->queue);
2971		else
2972			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2973						  mddev->queue);
2974	}
2975
2976	ret =  md_integrity_register(mddev);
2977	if (ret) {
2978		md_unregister_thread(&mddev->thread);
2979		raid1_free(mddev, conf);
2980	}
2981	return ret;
2982}
2983
2984static void raid1_free(struct mddev *mddev, void *priv)
2985{
2986	struct r1conf *conf = priv;
 
 
 
 
 
 
 
 
 
 
2987
2988	mempool_destroy(conf->r1bio_pool);
 
 
 
 
 
2989	kfree(conf->mirrors);
2990	safe_put_page(conf->tmppage);
2991	kfree(conf->poolinfo);
2992	kfree(conf);
 
 
2993}
2994
2995static int raid1_resize(struct mddev *mddev, sector_t sectors)
2996{
2997	/* no resync is happening, and there is enough space
2998	 * on all devices, so we can resize.
2999	 * We need to make sure resync covers any new space.
3000	 * If the array is shrinking we should possibly wait until
3001	 * any io in the removed space completes, but it hardly seems
3002	 * worth it.
3003	 */
3004	sector_t newsize = raid1_size(mddev, sectors, 0);
3005	if (mddev->external_size &&
3006	    mddev->array_sectors > newsize)
3007		return -EINVAL;
3008	if (mddev->bitmap) {
3009		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3010		if (ret)
3011			return ret;
3012	}
3013	md_set_array_sectors(mddev, newsize);
3014	set_capacity(mddev->gendisk, mddev->array_sectors);
3015	revalidate_disk(mddev->gendisk);
3016	if (sectors > mddev->dev_sectors &&
3017	    mddev->recovery_cp > mddev->dev_sectors) {
3018		mddev->recovery_cp = mddev->dev_sectors;
3019		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3020	}
3021	mddev->dev_sectors = sectors;
3022	mddev->resync_max_sectors = sectors;
3023	return 0;
3024}
3025
3026static int raid1_reshape(struct mddev *mddev)
3027{
3028	/* We need to:
3029	 * 1/ resize the r1bio_pool
3030	 * 2/ resize conf->mirrors
3031	 *
3032	 * We allocate a new r1bio_pool if we can.
3033	 * Then raise a device barrier and wait until all IO stops.
3034	 * Then resize conf->mirrors and swap in the new r1bio pool.
3035	 *
3036	 * At the same time, we "pack" the devices so that all the missing
3037	 * devices have the higher raid_disk numbers.
3038	 */
3039	mempool_t *newpool, *oldpool;
3040	struct pool_info *newpoolinfo;
3041	struct raid1_info *newmirrors;
3042	struct r1conf *conf = mddev->private;
3043	int cnt, raid_disks;
3044	unsigned long flags;
3045	int d, d2, err;
3046
3047	/* Cannot change chunk_size, layout, or level */
3048	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3049	    mddev->layout != mddev->new_layout ||
3050	    mddev->level != mddev->new_level) {
3051		mddev->new_chunk_sectors = mddev->chunk_sectors;
3052		mddev->new_layout = mddev->layout;
3053		mddev->new_level = mddev->level;
3054		return -EINVAL;
3055	}
3056
3057	if (!mddev_is_clustered(mddev)) {
3058		err = md_allow_write(mddev);
3059		if (err)
3060			return err;
3061	}
3062
3063	raid_disks = mddev->raid_disks + mddev->delta_disks;
3064
3065	if (raid_disks < conf->raid_disks) {
3066		cnt=0;
3067		for (d= 0; d < conf->raid_disks; d++)
3068			if (conf->mirrors[d].rdev)
3069				cnt++;
3070		if (cnt > raid_disks)
3071			return -EBUSY;
3072	}
3073
3074	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3075	if (!newpoolinfo)
3076		return -ENOMEM;
3077	newpoolinfo->mddev = mddev;
3078	newpoolinfo->raid_disks = raid_disks * 2;
3079
3080	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3081				 r1bio_pool_free, newpoolinfo);
3082	if (!newpool) {
3083		kfree(newpoolinfo);
3084		return -ENOMEM;
3085	}
3086	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3087			     GFP_KERNEL);
3088	if (!newmirrors) {
3089		kfree(newpoolinfo);
3090		mempool_destroy(newpool);
3091		return -ENOMEM;
3092	}
3093
3094	freeze_array(conf, 0);
3095
3096	/* ok, everything is stopped */
3097	oldpool = conf->r1bio_pool;
3098	conf->r1bio_pool = newpool;
3099
3100	for (d = d2 = 0; d < conf->raid_disks; d++) {
3101		struct md_rdev *rdev = conf->mirrors[d].rdev;
3102		if (rdev && rdev->raid_disk != d2) {
3103			sysfs_unlink_rdev(mddev, rdev);
3104			rdev->raid_disk = d2;
3105			sysfs_unlink_rdev(mddev, rdev);
3106			if (sysfs_link_rdev(mddev, rdev))
3107				printk(KERN_WARNING
3108				       "md/raid1:%s: cannot register rd%d\n",
3109				       mdname(mddev), rdev->raid_disk);
3110		}
3111		if (rdev)
3112			newmirrors[d2++].rdev = rdev;
3113	}
3114	kfree(conf->mirrors);
3115	conf->mirrors = newmirrors;
3116	kfree(conf->poolinfo);
3117	conf->poolinfo = newpoolinfo;
3118
3119	spin_lock_irqsave(&conf->device_lock, flags);
3120	mddev->degraded += (raid_disks - conf->raid_disks);
3121	spin_unlock_irqrestore(&conf->device_lock, flags);
3122	conf->raid_disks = mddev->raid_disks = raid_disks;
3123	mddev->delta_disks = 0;
3124
3125	unfreeze_array(conf);
3126
3127	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3128	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129	md_wakeup_thread(mddev->thread);
3130
3131	mempool_destroy(oldpool);
3132	return 0;
3133}
3134
3135static void raid1_quiesce(struct mddev *mddev, int state)
3136{
3137	struct r1conf *conf = mddev->private;
3138
3139	switch(state) {
3140	case 2: /* wake for suspend */
3141		wake_up(&conf->wait_barrier);
3142		break;
3143	case 1:
3144		freeze_array(conf, 0);
3145		break;
3146	case 0:
3147		unfreeze_array(conf);
3148		break;
3149	}
3150}
3151
3152static void *raid1_takeover(struct mddev *mddev)
3153{
3154	/* raid1 can take over:
3155	 *  raid5 with 2 devices, any layout or chunk size
3156	 */
3157	if (mddev->level == 5 && mddev->raid_disks == 2) {
3158		struct r1conf *conf;
3159		mddev->new_level = 1;
3160		mddev->new_layout = 0;
3161		mddev->new_chunk_sectors = 0;
3162		conf = setup_conf(mddev);
3163		if (!IS_ERR(conf))
3164			/* Array must appear to be quiesced */
3165			conf->array_frozen = 1;
3166		return conf;
3167	}
3168	return ERR_PTR(-EINVAL);
3169}
3170
3171static struct md_personality raid1_personality =
3172{
3173	.name		= "raid1",
3174	.level		= 1,
3175	.owner		= THIS_MODULE,
3176	.make_request	= raid1_make_request,
3177	.run		= raid1_run,
3178	.free		= raid1_free,
3179	.status		= raid1_status,
3180	.error_handler	= raid1_error,
3181	.hot_add_disk	= raid1_add_disk,
3182	.hot_remove_disk= raid1_remove_disk,
3183	.spare_active	= raid1_spare_active,
3184	.sync_request	= raid1_sync_request,
3185	.resize		= raid1_resize,
3186	.size		= raid1_size,
3187	.check_reshape	= raid1_reshape,
3188	.quiesce	= raid1_quiesce,
3189	.takeover	= raid1_takeover,
3190	.congested	= raid1_congested,
3191};
3192
3193static int __init raid_init(void)
3194{
3195	return register_md_personality(&raid1_personality);
3196}
3197
3198static void raid_exit(void)
3199{
3200	unregister_md_personality(&raid1_personality);
3201}
3202
3203module_init(raid_init);
3204module_exit(raid_exit);
3205MODULE_LICENSE("GPL");
3206MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3207MODULE_ALIAS("md-personality-3"); /* RAID1 */
3208MODULE_ALIAS("md-raid1");
3209MODULE_ALIAS("md-level-1");
3210
3211module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
v3.15
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define	NR_RAID1_BIOS 256
  48
  49/* when we get a read error on a read-only array, we redirect to another
  50 * device without failing the first device, or trying to over-write to
  51 * correct the read error.  To keep track of bad blocks on a per-bio
  52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  53 */
  54#define IO_BLOCKED ((struct bio *)1)
  55/* When we successfully write to a known bad-block, we need to remove the
  56 * bad-block marking which must be done from process context.  So we record
  57 * the success by setting devs[n].bio to IO_MADE_GOOD
  58 */
  59#define IO_MADE_GOOD ((struct bio *)2)
  60
  61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  62
  63/* When there are this many requests queue to be written by
  64 * the raid1 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
  68
  69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  70			  sector_t bi_sector);
  71static void lower_barrier(struct r1conf *conf);
  72
  73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  74{
  75	struct pool_info *pi = data;
  76	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  77
  78	/* allocate a r1bio with room for raid_disks entries in the bios array */
  79	return kzalloc(size, gfp_flags);
  80}
  81
  82static void r1bio_pool_free(void *r1_bio, void *data)
  83{
  84	kfree(r1_bio);
  85}
  86
  87#define RESYNC_BLOCK_SIZE (64*1024)
  88#define RESYNC_DEPTH 32
  89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 
 
  93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
  94
  95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  96{
  97	struct pool_info *pi = data;
  98	struct r1bio *r1_bio;
  99	struct bio *bio;
 100	int need_pages;
 101	int i, j;
 102
 103	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 104	if (!r1_bio)
 105		return NULL;
 106
 107	/*
 108	 * Allocate bios : 1 for reading, n-1 for writing
 109	 */
 110	for (j = pi->raid_disks ; j-- ; ) {
 111		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 112		if (!bio)
 113			goto out_free_bio;
 114		r1_bio->bios[j] = bio;
 115	}
 116	/*
 117	 * Allocate RESYNC_PAGES data pages and attach them to
 118	 * the first bio.
 119	 * If this is a user-requested check/repair, allocate
 120	 * RESYNC_PAGES for each bio.
 121	 */
 122	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 123		need_pages = pi->raid_disks;
 124	else
 125		need_pages = 1;
 126	for (j = 0; j < need_pages; j++) {
 127		bio = r1_bio->bios[j];
 128		bio->bi_vcnt = RESYNC_PAGES;
 129
 130		if (bio_alloc_pages(bio, gfp_flags))
 131			goto out_free_pages;
 132	}
 133	/* If not user-requests, copy the page pointers to all bios */
 134	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 135		for (i=0; i<RESYNC_PAGES ; i++)
 136			for (j=1; j<pi->raid_disks; j++)
 137				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 138					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 139	}
 140
 141	r1_bio->master_bio = NULL;
 142
 143	return r1_bio;
 144
 145out_free_pages:
 146	while (--j >= 0) {
 147		struct bio_vec *bv;
 148
 149		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
 150			__free_page(bv->bv_page);
 151	}
 152
 153out_free_bio:
 154	while (++j < pi->raid_disks)
 155		bio_put(r1_bio->bios[j]);
 156	r1bio_pool_free(r1_bio, data);
 157	return NULL;
 158}
 159
 160static void r1buf_pool_free(void *__r1_bio, void *data)
 161{
 162	struct pool_info *pi = data;
 163	int i,j;
 164	struct r1bio *r1bio = __r1_bio;
 165
 166	for (i = 0; i < RESYNC_PAGES; i++)
 167		for (j = pi->raid_disks; j-- ;) {
 168			if (j == 0 ||
 169			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 170			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 171				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 172		}
 173	for (i=0 ; i < pi->raid_disks; i++)
 174		bio_put(r1bio->bios[i]);
 175
 176	r1bio_pool_free(r1bio, data);
 177}
 178
 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 180{
 181	int i;
 182
 183	for (i = 0; i < conf->raid_disks * 2; i++) {
 184		struct bio **bio = r1_bio->bios + i;
 185		if (!BIO_SPECIAL(*bio))
 186			bio_put(*bio);
 187		*bio = NULL;
 188	}
 189}
 190
 191static void free_r1bio(struct r1bio *r1_bio)
 192{
 193	struct r1conf *conf = r1_bio->mddev->private;
 194
 195	put_all_bios(conf, r1_bio);
 196	mempool_free(r1_bio, conf->r1bio_pool);
 197}
 198
 199static void put_buf(struct r1bio *r1_bio)
 200{
 201	struct r1conf *conf = r1_bio->mddev->private;
 202	int i;
 203
 204	for (i = 0; i < conf->raid_disks * 2; i++) {
 205		struct bio *bio = r1_bio->bios[i];
 206		if (bio->bi_end_io)
 207			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 208	}
 209
 210	mempool_free(r1_bio, conf->r1buf_pool);
 211
 212	lower_barrier(conf);
 213}
 214
 215static void reschedule_retry(struct r1bio *r1_bio)
 216{
 217	unsigned long flags;
 218	struct mddev *mddev = r1_bio->mddev;
 219	struct r1conf *conf = mddev->private;
 220
 221	spin_lock_irqsave(&conf->device_lock, flags);
 222	list_add(&r1_bio->retry_list, &conf->retry_list);
 223	conf->nr_queued ++;
 224	spin_unlock_irqrestore(&conf->device_lock, flags);
 225
 226	wake_up(&conf->wait_barrier);
 227	md_wakeup_thread(mddev->thread);
 228}
 229
 230/*
 231 * raid_end_bio_io() is called when we have finished servicing a mirrored
 232 * operation and are ready to return a success/failure code to the buffer
 233 * cache layer.
 234 */
 235static void call_bio_endio(struct r1bio *r1_bio)
 236{
 237	struct bio *bio = r1_bio->master_bio;
 238	int done;
 239	struct r1conf *conf = r1_bio->mddev->private;
 240	sector_t start_next_window = r1_bio->start_next_window;
 241	sector_t bi_sector = bio->bi_iter.bi_sector;
 242
 243	if (bio->bi_phys_segments) {
 244		unsigned long flags;
 245		spin_lock_irqsave(&conf->device_lock, flags);
 246		bio->bi_phys_segments--;
 247		done = (bio->bi_phys_segments == 0);
 248		spin_unlock_irqrestore(&conf->device_lock, flags);
 249		/*
 250		 * make_request() might be waiting for
 251		 * bi_phys_segments to decrease
 252		 */
 253		wake_up(&conf->wait_barrier);
 254	} else
 255		done = 1;
 256
 257	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 258		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 
 259	if (done) {
 260		bio_endio(bio, 0);
 261		/*
 262		 * Wake up any possible resync thread that waits for the device
 263		 * to go idle.
 264		 */
 265		allow_barrier(conf, start_next_window, bi_sector);
 266	}
 267}
 268
 269static void raid_end_bio_io(struct r1bio *r1_bio)
 270{
 271	struct bio *bio = r1_bio->master_bio;
 272
 273	/* if nobody has done the final endio yet, do it now */
 274	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 275		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 276			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 277			 (unsigned long long) bio->bi_iter.bi_sector,
 278			 (unsigned long long) bio_end_sector(bio) - 1);
 279
 280		call_bio_endio(r1_bio);
 281	}
 282	free_r1bio(r1_bio);
 283}
 284
 285/*
 286 * Update disk head position estimator based on IRQ completion info.
 287 */
 288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 289{
 290	struct r1conf *conf = r1_bio->mddev->private;
 291
 292	conf->mirrors[disk].head_position =
 293		r1_bio->sector + (r1_bio->sectors);
 294}
 295
 296/*
 297 * Find the disk number which triggered given bio
 298 */
 299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 300{
 301	int mirror;
 302	struct r1conf *conf = r1_bio->mddev->private;
 303	int raid_disks = conf->raid_disks;
 304
 305	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 306		if (r1_bio->bios[mirror] == bio)
 307			break;
 308
 309	BUG_ON(mirror == raid_disks * 2);
 310	update_head_pos(mirror, r1_bio);
 311
 312	return mirror;
 313}
 314
 315static void raid1_end_read_request(struct bio *bio, int error)
 316{
 317	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 318	struct r1bio *r1_bio = bio->bi_private;
 319	int mirror;
 320	struct r1conf *conf = r1_bio->mddev->private;
 321
 322	mirror = r1_bio->read_disk;
 323	/*
 324	 * this branch is our 'one mirror IO has finished' event handler:
 325	 */
 326	update_head_pos(mirror, r1_bio);
 327
 328	if (uptodate)
 329		set_bit(R1BIO_Uptodate, &r1_bio->state);
 330	else {
 331		/* If all other devices have failed, we want to return
 332		 * the error upwards rather than fail the last device.
 333		 * Here we redefine "uptodate" to mean "Don't want to retry"
 334		 */
 335		unsigned long flags;
 336		spin_lock_irqsave(&conf->device_lock, flags);
 337		if (r1_bio->mddev->degraded == conf->raid_disks ||
 338		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 339		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 340			uptodate = 1;
 341		spin_unlock_irqrestore(&conf->device_lock, flags);
 342	}
 343
 344	if (uptodate) {
 345		raid_end_bio_io(r1_bio);
 346		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 347	} else {
 348		/*
 349		 * oops, read error:
 350		 */
 351		char b[BDEVNAME_SIZE];
 352		printk_ratelimited(
 353			KERN_ERR "md/raid1:%s: %s: "
 354			"rescheduling sector %llu\n",
 355			mdname(conf->mddev),
 356			bdevname(conf->mirrors[mirror].rdev->bdev,
 357				 b),
 358			(unsigned long long)r1_bio->sector);
 359		set_bit(R1BIO_ReadError, &r1_bio->state);
 360		reschedule_retry(r1_bio);
 361		/* don't drop the reference on read_disk yet */
 362	}
 363}
 364
 365static void close_write(struct r1bio *r1_bio)
 366{
 367	/* it really is the end of this request */
 368	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 369		/* free extra copy of the data pages */
 370		int i = r1_bio->behind_page_count;
 371		while (i--)
 372			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 373		kfree(r1_bio->behind_bvecs);
 374		r1_bio->behind_bvecs = NULL;
 375	}
 376	/* clear the bitmap if all writes complete successfully */
 377	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 378			r1_bio->sectors,
 379			!test_bit(R1BIO_Degraded, &r1_bio->state),
 380			test_bit(R1BIO_BehindIO, &r1_bio->state));
 381	md_write_end(r1_bio->mddev);
 382}
 383
 384static void r1_bio_write_done(struct r1bio *r1_bio)
 385{
 386	if (!atomic_dec_and_test(&r1_bio->remaining))
 387		return;
 388
 389	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 390		reschedule_retry(r1_bio);
 391	else {
 392		close_write(r1_bio);
 393		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 394			reschedule_retry(r1_bio);
 395		else
 396			raid_end_bio_io(r1_bio);
 397	}
 398}
 399
 400static void raid1_end_write_request(struct bio *bio, int error)
 401{
 402	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 403	struct r1bio *r1_bio = bio->bi_private;
 404	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 405	struct r1conf *conf = r1_bio->mddev->private;
 406	struct bio *to_put = NULL;
 407
 408	mirror = find_bio_disk(r1_bio, bio);
 409
 410	/*
 411	 * 'one mirror IO has finished' event handler:
 412	 */
 413	if (!uptodate) {
 414		set_bit(WriteErrorSeen,
 415			&conf->mirrors[mirror].rdev->flags);
 416		if (!test_and_set_bit(WantReplacement,
 417				      &conf->mirrors[mirror].rdev->flags))
 418			set_bit(MD_RECOVERY_NEEDED, &
 419				conf->mddev->recovery);
 420
 421		set_bit(R1BIO_WriteError, &r1_bio->state);
 422	} else {
 423		/*
 424		 * Set R1BIO_Uptodate in our master bio, so that we
 425		 * will return a good error code for to the higher
 426		 * levels even if IO on some other mirrored buffer
 427		 * fails.
 428		 *
 429		 * The 'master' represents the composite IO operation
 430		 * to user-side. So if something waits for IO, then it
 431		 * will wait for the 'master' bio.
 432		 */
 433		sector_t first_bad;
 434		int bad_sectors;
 435
 436		r1_bio->bios[mirror] = NULL;
 437		to_put = bio;
 438		/*
 439		 * Do not set R1BIO_Uptodate if the current device is
 440		 * rebuilding or Faulty. This is because we cannot use
 441		 * such device for properly reading the data back (we could
 442		 * potentially use it, if the current write would have felt
 443		 * before rdev->recovery_offset, but for simplicity we don't
 444		 * check this here.
 445		 */
 446		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
 447		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
 448			set_bit(R1BIO_Uptodate, &r1_bio->state);
 449
 450		/* Maybe we can clear some bad blocks. */
 451		if (is_badblock(conf->mirrors[mirror].rdev,
 452				r1_bio->sector, r1_bio->sectors,
 453				&first_bad, &bad_sectors)) {
 454			r1_bio->bios[mirror] = IO_MADE_GOOD;
 455			set_bit(R1BIO_MadeGood, &r1_bio->state);
 456		}
 457	}
 458
 459	if (behind) {
 460		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 461			atomic_dec(&r1_bio->behind_remaining);
 462
 463		/*
 464		 * In behind mode, we ACK the master bio once the I/O
 465		 * has safely reached all non-writemostly
 466		 * disks. Setting the Returned bit ensures that this
 467		 * gets done only once -- we don't ever want to return
 468		 * -EIO here, instead we'll wait
 469		 */
 470		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 471		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 472			/* Maybe we can return now */
 473			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 474				struct bio *mbio = r1_bio->master_bio;
 475				pr_debug("raid1: behind end write sectors"
 476					 " %llu-%llu\n",
 477					 (unsigned long long) mbio->bi_iter.bi_sector,
 478					 (unsigned long long) bio_end_sector(mbio) - 1);
 479				call_bio_endio(r1_bio);
 480			}
 481		}
 482	}
 483	if (r1_bio->bios[mirror] == NULL)
 484		rdev_dec_pending(conf->mirrors[mirror].rdev,
 485				 conf->mddev);
 486
 487	/*
 488	 * Let's see if all mirrored write operations have finished
 489	 * already.
 490	 */
 491	r1_bio_write_done(r1_bio);
 492
 493	if (to_put)
 494		bio_put(to_put);
 495}
 496
 497
 498/*
 499 * This routine returns the disk from which the requested read should
 500 * be done. There is a per-array 'next expected sequential IO' sector
 501 * number - if this matches on the next IO then we use the last disk.
 502 * There is also a per-disk 'last know head position' sector that is
 503 * maintained from IRQ contexts, both the normal and the resync IO
 504 * completion handlers update this position correctly. If there is no
 505 * perfect sequential match then we pick the disk whose head is closest.
 506 *
 507 * If there are 2 mirrors in the same 2 devices, performance degrades
 508 * because position is mirror, not device based.
 509 *
 510 * The rdev for the device selected will have nr_pending incremented.
 511 */
 512static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 513{
 514	const sector_t this_sector = r1_bio->sector;
 515	int sectors;
 516	int best_good_sectors;
 517	int best_disk, best_dist_disk, best_pending_disk;
 518	int has_nonrot_disk;
 519	int disk;
 520	sector_t best_dist;
 521	unsigned int min_pending;
 522	struct md_rdev *rdev;
 523	int choose_first;
 524	int choose_next_idle;
 525
 526	rcu_read_lock();
 527	/*
 528	 * Check if we can balance. We can balance on the whole
 529	 * device if no resync is going on, or below the resync window.
 530	 * We take the first readable disk when above the resync window.
 531	 */
 532 retry:
 533	sectors = r1_bio->sectors;
 534	best_disk = -1;
 535	best_dist_disk = -1;
 536	best_dist = MaxSector;
 537	best_pending_disk = -1;
 538	min_pending = UINT_MAX;
 539	best_good_sectors = 0;
 540	has_nonrot_disk = 0;
 541	choose_next_idle = 0;
 542
 543	if (conf->mddev->recovery_cp < MaxSector &&
 544	    (this_sector + sectors >= conf->next_resync))
 
 
 545		choose_first = 1;
 546	else
 547		choose_first = 0;
 548
 549	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 550		sector_t dist;
 551		sector_t first_bad;
 552		int bad_sectors;
 553		unsigned int pending;
 554		bool nonrot;
 555
 556		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 557		if (r1_bio->bios[disk] == IO_BLOCKED
 558		    || rdev == NULL
 559		    || test_bit(Unmerged, &rdev->flags)
 560		    || test_bit(Faulty, &rdev->flags))
 561			continue;
 562		if (!test_bit(In_sync, &rdev->flags) &&
 563		    rdev->recovery_offset < this_sector + sectors)
 564			continue;
 565		if (test_bit(WriteMostly, &rdev->flags)) {
 566			/* Don't balance among write-mostly, just
 567			 * use the first as a last resort */
 568			if (best_disk < 0) {
 569				if (is_badblock(rdev, this_sector, sectors,
 570						&first_bad, &bad_sectors)) {
 571					if (first_bad < this_sector)
 572						/* Cannot use this */
 573						continue;
 574					best_good_sectors = first_bad - this_sector;
 575				} else
 576					best_good_sectors = sectors;
 577				best_disk = disk;
 
 578			}
 579			continue;
 580		}
 581		/* This is a reasonable device to use.  It might
 582		 * even be best.
 583		 */
 584		if (is_badblock(rdev, this_sector, sectors,
 585				&first_bad, &bad_sectors)) {
 586			if (best_dist < MaxSector)
 587				/* already have a better device */
 588				continue;
 589			if (first_bad <= this_sector) {
 590				/* cannot read here. If this is the 'primary'
 591				 * device, then we must not read beyond
 592				 * bad_sectors from another device..
 593				 */
 594				bad_sectors -= (this_sector - first_bad);
 595				if (choose_first && sectors > bad_sectors)
 596					sectors = bad_sectors;
 597				if (best_good_sectors > sectors)
 598					best_good_sectors = sectors;
 599
 600			} else {
 601				sector_t good_sectors = first_bad - this_sector;
 602				if (good_sectors > best_good_sectors) {
 603					best_good_sectors = good_sectors;
 604					best_disk = disk;
 605				}
 606				if (choose_first)
 607					break;
 608			}
 609			continue;
 610		} else
 611			best_good_sectors = sectors;
 612
 613		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 614		has_nonrot_disk |= nonrot;
 615		pending = atomic_read(&rdev->nr_pending);
 616		dist = abs(this_sector - conf->mirrors[disk].head_position);
 617		if (choose_first) {
 618			best_disk = disk;
 619			break;
 620		}
 621		/* Don't change to another disk for sequential reads */
 622		if (conf->mirrors[disk].next_seq_sect == this_sector
 623		    || dist == 0) {
 624			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 625			struct raid1_info *mirror = &conf->mirrors[disk];
 626
 627			best_disk = disk;
 628			/*
 629			 * If buffered sequential IO size exceeds optimal
 630			 * iosize, check if there is idle disk. If yes, choose
 631			 * the idle disk. read_balance could already choose an
 632			 * idle disk before noticing it's a sequential IO in
 633			 * this disk. This doesn't matter because this disk
 634			 * will idle, next time it will be utilized after the
 635			 * first disk has IO size exceeds optimal iosize. In
 636			 * this way, iosize of the first disk will be optimal
 637			 * iosize at least. iosize of the second disk might be
 638			 * small, but not a big deal since when the second disk
 639			 * starts IO, the first disk is likely still busy.
 640			 */
 641			if (nonrot && opt_iosize > 0 &&
 642			    mirror->seq_start != MaxSector &&
 643			    mirror->next_seq_sect > opt_iosize &&
 644			    mirror->next_seq_sect - opt_iosize >=
 645			    mirror->seq_start) {
 646				choose_next_idle = 1;
 647				continue;
 648			}
 649			break;
 650		}
 651		/* If device is idle, use it */
 652		if (pending == 0) {
 653			best_disk = disk;
 654			break;
 655		}
 656
 657		if (choose_next_idle)
 658			continue;
 659
 660		if (min_pending > pending) {
 661			min_pending = pending;
 662			best_pending_disk = disk;
 663		}
 664
 665		if (dist < best_dist) {
 666			best_dist = dist;
 667			best_dist_disk = disk;
 668		}
 669	}
 670
 671	/*
 672	 * If all disks are rotational, choose the closest disk. If any disk is
 673	 * non-rotational, choose the disk with less pending request even the
 674	 * disk is rotational, which might/might not be optimal for raids with
 675	 * mixed ratation/non-rotational disks depending on workload.
 676	 */
 677	if (best_disk == -1) {
 678		if (has_nonrot_disk)
 679			best_disk = best_pending_disk;
 680		else
 681			best_disk = best_dist_disk;
 682	}
 683
 684	if (best_disk >= 0) {
 685		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 686		if (!rdev)
 687			goto retry;
 688		atomic_inc(&rdev->nr_pending);
 689		if (test_bit(Faulty, &rdev->flags)) {
 690			/* cannot risk returning a device that failed
 691			 * before we inc'ed nr_pending
 692			 */
 693			rdev_dec_pending(rdev, conf->mddev);
 694			goto retry;
 695		}
 696		sectors = best_good_sectors;
 697
 698		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 699			conf->mirrors[best_disk].seq_start = this_sector;
 700
 701		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 702	}
 703	rcu_read_unlock();
 704	*max_sectors = sectors;
 705
 706	return best_disk;
 707}
 708
 709static int raid1_mergeable_bvec(struct request_queue *q,
 710				struct bvec_merge_data *bvm,
 711				struct bio_vec *biovec)
 712{
 713	struct mddev *mddev = q->queuedata;
 714	struct r1conf *conf = mddev->private;
 715	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 716	int max = biovec->bv_len;
 717
 718	if (mddev->merge_check_needed) {
 719		int disk;
 720		rcu_read_lock();
 721		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
 722			struct md_rdev *rdev = rcu_dereference(
 723				conf->mirrors[disk].rdev);
 724			if (rdev && !test_bit(Faulty, &rdev->flags)) {
 725				struct request_queue *q =
 726					bdev_get_queue(rdev->bdev);
 727				if (q->merge_bvec_fn) {
 728					bvm->bi_sector = sector +
 729						rdev->data_offset;
 730					bvm->bi_bdev = rdev->bdev;
 731					max = min(max, q->merge_bvec_fn(
 732							  q, bvm, biovec));
 733				}
 734			}
 735		}
 736		rcu_read_unlock();
 737	}
 738	return max;
 739
 740}
 741
 742int md_raid1_congested(struct mddev *mddev, int bits)
 743{
 744	struct r1conf *conf = mddev->private;
 745	int i, ret = 0;
 746
 747	if ((bits & (1 << BDI_async_congested)) &&
 748	    conf->pending_count >= max_queued_requests)
 749		return 1;
 750
 751	rcu_read_lock();
 752	for (i = 0; i < conf->raid_disks * 2; i++) {
 753		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 754		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 755			struct request_queue *q = bdev_get_queue(rdev->bdev);
 756
 757			BUG_ON(!q);
 758
 759			/* Note the '|| 1' - when read_balance prefers
 760			 * non-congested targets, it can be removed
 761			 */
 762			if ((bits & (1<<BDI_async_congested)) || 1)
 763				ret |= bdi_congested(&q->backing_dev_info, bits);
 764			else
 765				ret &= bdi_congested(&q->backing_dev_info, bits);
 766		}
 767	}
 768	rcu_read_unlock();
 769	return ret;
 770}
 771EXPORT_SYMBOL_GPL(md_raid1_congested);
 772
 773static int raid1_congested(void *data, int bits)
 774{
 775	struct mddev *mddev = data;
 776
 777	return mddev_congested(mddev, bits) ||
 778		md_raid1_congested(mddev, bits);
 779}
 780
 781static void flush_pending_writes(struct r1conf *conf)
 782{
 783	/* Any writes that have been queued but are awaiting
 784	 * bitmap updates get flushed here.
 785	 */
 786	spin_lock_irq(&conf->device_lock);
 787
 788	if (conf->pending_bio_list.head) {
 789		struct bio *bio;
 790		bio = bio_list_get(&conf->pending_bio_list);
 791		conf->pending_count = 0;
 792		spin_unlock_irq(&conf->device_lock);
 793		/* flush any pending bitmap writes to
 794		 * disk before proceeding w/ I/O */
 795		bitmap_unplug(conf->mddev->bitmap);
 796		wake_up(&conf->wait_barrier);
 797
 798		while (bio) { /* submit pending writes */
 799			struct bio *next = bio->bi_next;
 800			bio->bi_next = NULL;
 801			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 802			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 803				/* Just ignore it */
 804				bio_endio(bio, 0);
 805			else
 806				generic_make_request(bio);
 807			bio = next;
 808		}
 809	} else
 810		spin_unlock_irq(&conf->device_lock);
 811}
 812
 813/* Barriers....
 814 * Sometimes we need to suspend IO while we do something else,
 815 * either some resync/recovery, or reconfigure the array.
 816 * To do this we raise a 'barrier'.
 817 * The 'barrier' is a counter that can be raised multiple times
 818 * to count how many activities are happening which preclude
 819 * normal IO.
 820 * We can only raise the barrier if there is no pending IO.
 821 * i.e. if nr_pending == 0.
 822 * We choose only to raise the barrier if no-one is waiting for the
 823 * barrier to go down.  This means that as soon as an IO request
 824 * is ready, no other operations which require a barrier will start
 825 * until the IO request has had a chance.
 826 *
 827 * So: regular IO calls 'wait_barrier'.  When that returns there
 828 *    is no backgroup IO happening,  It must arrange to call
 829 *    allow_barrier when it has finished its IO.
 830 * backgroup IO calls must call raise_barrier.  Once that returns
 831 *    there is no normal IO happeing.  It must arrange to call
 832 *    lower_barrier when the particular background IO completes.
 833 */
 834static void raise_barrier(struct r1conf *conf)
 835{
 836	spin_lock_irq(&conf->resync_lock);
 837
 838	/* Wait until no block IO is waiting */
 839	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 840			    conf->resync_lock);
 841
 842	/* block any new IO from starting */
 843	conf->barrier++;
 
 844
 845	/* For these conditions we must wait:
 846	 * A: while the array is in frozen state
 847	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 848	 *    the max count which allowed.
 849	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 850	 *    next resync will reach to the window which normal bios are
 851	 *    handling.
 
 852	 */
 853	wait_event_lock_irq(conf->wait_barrier,
 854			    !conf->array_frozen &&
 855			    conf->barrier < RESYNC_DEPTH &&
 
 856			    (conf->start_next_window >=
 857			     conf->next_resync + RESYNC_SECTORS),
 858			    conf->resync_lock);
 859
 
 860	spin_unlock_irq(&conf->resync_lock);
 861}
 862
 863static void lower_barrier(struct r1conf *conf)
 864{
 865	unsigned long flags;
 866	BUG_ON(conf->barrier <= 0);
 867	spin_lock_irqsave(&conf->resync_lock, flags);
 868	conf->barrier--;
 
 869	spin_unlock_irqrestore(&conf->resync_lock, flags);
 870	wake_up(&conf->wait_barrier);
 871}
 872
 873static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 874{
 875	bool wait = false;
 876
 877	if (conf->array_frozen || !bio)
 878		wait = true;
 879	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 880		if (conf->next_resync < RESYNC_WINDOW_SECTORS)
 881			wait = true;
 882		else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
 883				>= bio_end_sector(bio)) ||
 884			 (conf->next_resync + NEXT_NORMALIO_DISTANCE
 885				<= bio->bi_iter.bi_sector))
 886			wait = false;
 887		else
 888			wait = true;
 889	}
 890
 891	return wait;
 892}
 893
 894static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 895{
 896	sector_t sector = 0;
 897
 898	spin_lock_irq(&conf->resync_lock);
 899	if (need_to_wait_for_sync(conf, bio)) {
 900		conf->nr_waiting++;
 901		/* Wait for the barrier to drop.
 902		 * However if there are already pending
 903		 * requests (preventing the barrier from
 904		 * rising completely), and the
 905		 * pre-process bio queue isn't empty,
 906		 * then don't wait, as we need to empty
 907		 * that queue to get the nr_pending
 908		 * count down.
 909		 */
 910		wait_event_lock_irq(conf->wait_barrier,
 911				    !conf->array_frozen &&
 912				    (!conf->barrier ||
 913				    ((conf->start_next_window <
 914				      conf->next_resync + RESYNC_SECTORS) &&
 915				     current->bio_list &&
 916				     !bio_list_empty(current->bio_list))),
 917				    conf->resync_lock);
 918		conf->nr_waiting--;
 919	}
 920
 921	if (bio && bio_data_dir(bio) == WRITE) {
 922		if (conf->next_resync + NEXT_NORMALIO_DISTANCE
 923		    <= bio->bi_iter.bi_sector) {
 924			if (conf->start_next_window == MaxSector)
 925				conf->start_next_window =
 926					conf->next_resync +
 927					NEXT_NORMALIO_DISTANCE;
 928
 929			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 930			    <= bio->bi_iter.bi_sector)
 931				conf->next_window_requests++;
 932			else
 933				conf->current_window_requests++;
 934			sector = conf->start_next_window;
 935		}
 936	}
 937
 938	conf->nr_pending++;
 939	spin_unlock_irq(&conf->resync_lock);
 940	return sector;
 941}
 942
 943static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 944			  sector_t bi_sector)
 945{
 946	unsigned long flags;
 947
 948	spin_lock_irqsave(&conf->resync_lock, flags);
 949	conf->nr_pending--;
 950	if (start_next_window) {
 951		if (start_next_window == conf->start_next_window) {
 952			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 953			    <= bi_sector)
 954				conf->next_window_requests--;
 955			else
 956				conf->current_window_requests--;
 957		} else
 958			conf->current_window_requests--;
 959
 960		if (!conf->current_window_requests) {
 961			if (conf->next_window_requests) {
 962				conf->current_window_requests =
 963					conf->next_window_requests;
 964				conf->next_window_requests = 0;
 965				conf->start_next_window +=
 966					NEXT_NORMALIO_DISTANCE;
 967			} else
 968				conf->start_next_window = MaxSector;
 969		}
 970	}
 971	spin_unlock_irqrestore(&conf->resync_lock, flags);
 972	wake_up(&conf->wait_barrier);
 973}
 974
 975static void freeze_array(struct r1conf *conf, int extra)
 976{
 977	/* stop syncio and normal IO and wait for everything to
 978	 * go quite.
 979	 * We wait until nr_pending match nr_queued+extra
 980	 * This is called in the context of one normal IO request
 981	 * that has failed. Thus any sync request that might be pending
 982	 * will be blocked by nr_pending, and we need to wait for
 983	 * pending IO requests to complete or be queued for re-try.
 984	 * Thus the number queued (nr_queued) plus this request (extra)
 985	 * must match the number of pending IOs (nr_pending) before
 986	 * we continue.
 987	 */
 988	spin_lock_irq(&conf->resync_lock);
 989	conf->array_frozen = 1;
 990	wait_event_lock_irq_cmd(conf->wait_barrier,
 991				conf->nr_pending == conf->nr_queued+extra,
 992				conf->resync_lock,
 993				flush_pending_writes(conf));
 994	spin_unlock_irq(&conf->resync_lock);
 995}
 996static void unfreeze_array(struct r1conf *conf)
 997{
 998	/* reverse the effect of the freeze */
 999	spin_lock_irq(&conf->resync_lock);
1000	conf->array_frozen = 0;
1001	wake_up(&conf->wait_barrier);
1002	spin_unlock_irq(&conf->resync_lock);
1003}
1004
1005
1006/* duplicate the data pages for behind I/O 
1007 */
1008static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1009{
1010	int i;
1011	struct bio_vec *bvec;
1012	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1013					GFP_NOIO);
1014	if (unlikely(!bvecs))
1015		return;
1016
1017	bio_for_each_segment_all(bvec, bio, i) {
1018		bvecs[i] = *bvec;
1019		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1020		if (unlikely(!bvecs[i].bv_page))
1021			goto do_sync_io;
1022		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1023		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1024		kunmap(bvecs[i].bv_page);
1025		kunmap(bvec->bv_page);
1026	}
1027	r1_bio->behind_bvecs = bvecs;
1028	r1_bio->behind_page_count = bio->bi_vcnt;
1029	set_bit(R1BIO_BehindIO, &r1_bio->state);
1030	return;
1031
1032do_sync_io:
1033	for (i = 0; i < bio->bi_vcnt; i++)
1034		if (bvecs[i].bv_page)
1035			put_page(bvecs[i].bv_page);
1036	kfree(bvecs);
1037	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1038		 bio->bi_iter.bi_size);
1039}
1040
1041struct raid1_plug_cb {
1042	struct blk_plug_cb	cb;
1043	struct bio_list		pending;
1044	int			pending_cnt;
1045};
1046
1047static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1048{
1049	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1050						  cb);
1051	struct mddev *mddev = plug->cb.data;
1052	struct r1conf *conf = mddev->private;
1053	struct bio *bio;
1054
1055	if (from_schedule || current->bio_list) {
1056		spin_lock_irq(&conf->device_lock);
1057		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1058		conf->pending_count += plug->pending_cnt;
1059		spin_unlock_irq(&conf->device_lock);
1060		wake_up(&conf->wait_barrier);
1061		md_wakeup_thread(mddev->thread);
1062		kfree(plug);
1063		return;
1064	}
1065
1066	/* we aren't scheduling, so we can do the write-out directly. */
1067	bio = bio_list_get(&plug->pending);
1068	bitmap_unplug(mddev->bitmap);
1069	wake_up(&conf->wait_barrier);
1070
1071	while (bio) { /* submit pending writes */
1072		struct bio *next = bio->bi_next;
1073		bio->bi_next = NULL;
1074		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1075		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1076			/* Just ignore it */
1077			bio_endio(bio, 0);
1078		else
1079			generic_make_request(bio);
1080		bio = next;
1081	}
1082	kfree(plug);
1083}
1084
1085static void make_request(struct mddev *mddev, struct bio * bio)
1086{
1087	struct r1conf *conf = mddev->private;
1088	struct raid1_info *mirror;
1089	struct r1bio *r1_bio;
1090	struct bio *read_bio;
1091	int i, disks;
1092	struct bitmap *bitmap;
1093	unsigned long flags;
1094	const int rw = bio_data_dir(bio);
1095	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1096	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1097	const unsigned long do_discard = (bio->bi_rw
1098					  & (REQ_DISCARD | REQ_SECURE));
1099	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1100	struct md_rdev *blocked_rdev;
1101	struct blk_plug_cb *cb;
1102	struct raid1_plug_cb *plug = NULL;
1103	int first_clone;
1104	int sectors_handled;
1105	int max_sectors;
1106	sector_t start_next_window;
1107
1108	/*
1109	 * Register the new request and wait if the reconstruction
1110	 * thread has put up a bar for new requests.
1111	 * Continue immediately if no resync is active currently.
1112	 */
1113
1114	md_write_start(mddev, bio); /* wait on superblock update early */
1115
1116	if (bio_data_dir(bio) == WRITE &&
1117	    bio_end_sector(bio) > mddev->suspend_lo &&
1118	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
 
 
 
1119		/* As the suspend_* range is controlled by
1120		 * userspace, we want an interruptible
1121		 * wait.
1122		 */
1123		DEFINE_WAIT(w);
1124		for (;;) {
1125			flush_signals(current);
1126			prepare_to_wait(&conf->wait_barrier,
1127					&w, TASK_INTERRUPTIBLE);
1128			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1129			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
 
 
 
1130				break;
1131			schedule();
1132		}
1133		finish_wait(&conf->wait_barrier, &w);
1134	}
1135
1136	start_next_window = wait_barrier(conf, bio);
1137
1138	bitmap = mddev->bitmap;
1139
1140	/*
1141	 * make_request() can abort the operation when READA is being
1142	 * used and no empty request is available.
1143	 *
1144	 */
1145	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146
1147	r1_bio->master_bio = bio;
1148	r1_bio->sectors = bio_sectors(bio);
1149	r1_bio->state = 0;
1150	r1_bio->mddev = mddev;
1151	r1_bio->sector = bio->bi_iter.bi_sector;
1152
1153	/* We might need to issue multiple reads to different
1154	 * devices if there are bad blocks around, so we keep
1155	 * track of the number of reads in bio->bi_phys_segments.
1156	 * If this is 0, there is only one r1_bio and no locking
1157	 * will be needed when requests complete.  If it is
1158	 * non-zero, then it is the number of not-completed requests.
1159	 */
1160	bio->bi_phys_segments = 0;
1161	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162
1163	if (rw == READ) {
1164		/*
1165		 * read balancing logic:
1166		 */
1167		int rdisk;
1168
1169read_again:
1170		rdisk = read_balance(conf, r1_bio, &max_sectors);
1171
1172		if (rdisk < 0) {
1173			/* couldn't find anywhere to read from */
1174			raid_end_bio_io(r1_bio);
1175			return;
1176		}
1177		mirror = conf->mirrors + rdisk;
1178
1179		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180		    bitmap) {
1181			/* Reading from a write-mostly device must
1182			 * take care not to over-take any writes
1183			 * that are 'behind'
1184			 */
1185			wait_event(bitmap->behind_wait,
1186				   atomic_read(&bitmap->behind_writes) == 0);
1187		}
1188		r1_bio->read_disk = rdisk;
 
1189
1190		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1191		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1192			 max_sectors);
1193
1194		r1_bio->bios[rdisk] = read_bio;
1195
1196		read_bio->bi_iter.bi_sector = r1_bio->sector +
1197			mirror->rdev->data_offset;
1198		read_bio->bi_bdev = mirror->rdev->bdev;
1199		read_bio->bi_end_io = raid1_end_read_request;
1200		read_bio->bi_rw = READ | do_sync;
1201		read_bio->bi_private = r1_bio;
1202
1203		if (max_sectors < r1_bio->sectors) {
1204			/* could not read all from this device, so we will
1205			 * need another r1_bio.
1206			 */
1207
1208			sectors_handled = (r1_bio->sector + max_sectors
1209					   - bio->bi_iter.bi_sector);
1210			r1_bio->sectors = max_sectors;
1211			spin_lock_irq(&conf->device_lock);
1212			if (bio->bi_phys_segments == 0)
1213				bio->bi_phys_segments = 2;
1214			else
1215				bio->bi_phys_segments++;
1216			spin_unlock_irq(&conf->device_lock);
1217			/* Cannot call generic_make_request directly
1218			 * as that will be queued in __make_request
1219			 * and subsequent mempool_alloc might block waiting
1220			 * for it.  So hand bio over to raid1d.
1221			 */
1222			reschedule_retry(r1_bio);
1223
1224			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1225
1226			r1_bio->master_bio = bio;
1227			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1228			r1_bio->state = 0;
1229			r1_bio->mddev = mddev;
1230			r1_bio->sector = bio->bi_iter.bi_sector +
1231				sectors_handled;
1232			goto read_again;
1233		} else
1234			generic_make_request(read_bio);
1235		return;
1236	}
1237
1238	/*
1239	 * WRITE:
1240	 */
1241	if (conf->pending_count >= max_queued_requests) {
1242		md_wakeup_thread(mddev->thread);
1243		wait_event(conf->wait_barrier,
1244			   conf->pending_count < max_queued_requests);
1245	}
1246	/* first select target devices under rcu_lock and
1247	 * inc refcount on their rdev.  Record them by setting
1248	 * bios[x] to bio
1249	 * If there are known/acknowledged bad blocks on any device on
1250	 * which we have seen a write error, we want to avoid writing those
1251	 * blocks.
1252	 * This potentially requires several writes to write around
1253	 * the bad blocks.  Each set of writes gets it's own r1bio
1254	 * with a set of bios attached.
1255	 */
1256
1257	disks = conf->raid_disks * 2;
1258 retry_write:
1259	r1_bio->start_next_window = start_next_window;
1260	blocked_rdev = NULL;
1261	rcu_read_lock();
1262	max_sectors = r1_bio->sectors;
1263	for (i = 0;  i < disks; i++) {
1264		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1265		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266			atomic_inc(&rdev->nr_pending);
1267			blocked_rdev = rdev;
1268			break;
1269		}
1270		r1_bio->bios[i] = NULL;
1271		if (!rdev || test_bit(Faulty, &rdev->flags)
1272		    || test_bit(Unmerged, &rdev->flags)) {
1273			if (i < conf->raid_disks)
1274				set_bit(R1BIO_Degraded, &r1_bio->state);
1275			continue;
1276		}
1277
1278		atomic_inc(&rdev->nr_pending);
1279		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280			sector_t first_bad;
1281			int bad_sectors;
1282			int is_bad;
1283
1284			is_bad = is_badblock(rdev, r1_bio->sector,
1285					     max_sectors,
1286					     &first_bad, &bad_sectors);
1287			if (is_bad < 0) {
1288				/* mustn't write here until the bad block is
1289				 * acknowledged*/
1290				set_bit(BlockedBadBlocks, &rdev->flags);
1291				blocked_rdev = rdev;
1292				break;
1293			}
1294			if (is_bad && first_bad <= r1_bio->sector) {
1295				/* Cannot write here at all */
1296				bad_sectors -= (r1_bio->sector - first_bad);
1297				if (bad_sectors < max_sectors)
1298					/* mustn't write more than bad_sectors
1299					 * to other devices yet
1300					 */
1301					max_sectors = bad_sectors;
1302				rdev_dec_pending(rdev, mddev);
1303				/* We don't set R1BIO_Degraded as that
1304				 * only applies if the disk is
1305				 * missing, so it might be re-added,
1306				 * and we want to know to recover this
1307				 * chunk.
1308				 * In this case the device is here,
1309				 * and the fact that this chunk is not
1310				 * in-sync is recorded in the bad
1311				 * block log
1312				 */
1313				continue;
1314			}
1315			if (is_bad) {
1316				int good_sectors = first_bad - r1_bio->sector;
1317				if (good_sectors < max_sectors)
1318					max_sectors = good_sectors;
1319			}
1320		}
1321		r1_bio->bios[i] = bio;
1322	}
1323	rcu_read_unlock();
1324
1325	if (unlikely(blocked_rdev)) {
1326		/* Wait for this device to become unblocked */
1327		int j;
1328		sector_t old = start_next_window;
1329
1330		for (j = 0; j < i; j++)
1331			if (r1_bio->bios[j])
1332				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1333		r1_bio->state = 0;
1334		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1335		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336		start_next_window = wait_barrier(conf, bio);
1337		/*
1338		 * We must make sure the multi r1bios of bio have
1339		 * the same value of bi_phys_segments
1340		 */
1341		if (bio->bi_phys_segments && old &&
1342		    old != start_next_window)
1343			/* Wait for the former r1bio(s) to complete */
1344			wait_event(conf->wait_barrier,
1345				   bio->bi_phys_segments == 1);
1346		goto retry_write;
1347	}
1348
1349	if (max_sectors < r1_bio->sectors) {
1350		/* We are splitting this write into multiple parts, so
1351		 * we need to prepare for allocating another r1_bio.
1352		 */
1353		r1_bio->sectors = max_sectors;
1354		spin_lock_irq(&conf->device_lock);
1355		if (bio->bi_phys_segments == 0)
1356			bio->bi_phys_segments = 2;
1357		else
1358			bio->bi_phys_segments++;
1359		spin_unlock_irq(&conf->device_lock);
1360	}
1361	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1362
1363	atomic_set(&r1_bio->remaining, 1);
1364	atomic_set(&r1_bio->behind_remaining, 0);
1365
1366	first_clone = 1;
1367	for (i = 0; i < disks; i++) {
1368		struct bio *mbio;
1369		if (!r1_bio->bios[i])
1370			continue;
1371
1372		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1373		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1374
1375		if (first_clone) {
1376			/* do behind I/O ?
1377			 * Not if there are too many, or cannot
1378			 * allocate memory, or a reader on WriteMostly
1379			 * is waiting for behind writes to flush */
1380			if (bitmap &&
1381			    (atomic_read(&bitmap->behind_writes)
1382			     < mddev->bitmap_info.max_write_behind) &&
1383			    !waitqueue_active(&bitmap->behind_wait))
1384				alloc_behind_pages(mbio, r1_bio);
1385
1386			bitmap_startwrite(bitmap, r1_bio->sector,
1387					  r1_bio->sectors,
1388					  test_bit(R1BIO_BehindIO,
1389						   &r1_bio->state));
1390			first_clone = 0;
1391		}
1392		if (r1_bio->behind_bvecs) {
1393			struct bio_vec *bvec;
1394			int j;
1395
1396			/*
1397			 * We trimmed the bio, so _all is legit
1398			 */
1399			bio_for_each_segment_all(bvec, mbio, j)
1400				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1401			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1402				atomic_inc(&r1_bio->behind_remaining);
1403		}
1404
1405		r1_bio->bios[i] = mbio;
1406
1407		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1408				   conf->mirrors[i].rdev->data_offset);
1409		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410		mbio->bi_end_io	= raid1_end_write_request;
1411		mbio->bi_rw =
1412			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1413		mbio->bi_private = r1_bio;
1414
1415		atomic_inc(&r1_bio->remaining);
1416
1417		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1418		if (cb)
1419			plug = container_of(cb, struct raid1_plug_cb, cb);
1420		else
1421			plug = NULL;
1422		spin_lock_irqsave(&conf->device_lock, flags);
1423		if (plug) {
1424			bio_list_add(&plug->pending, mbio);
1425			plug->pending_cnt++;
1426		} else {
1427			bio_list_add(&conf->pending_bio_list, mbio);
1428			conf->pending_count++;
1429		}
1430		spin_unlock_irqrestore(&conf->device_lock, flags);
1431		if (!plug)
1432			md_wakeup_thread(mddev->thread);
1433	}
1434	/* Mustn't call r1_bio_write_done before this next test,
1435	 * as it could result in the bio being freed.
1436	 */
1437	if (sectors_handled < bio_sectors(bio)) {
1438		r1_bio_write_done(r1_bio);
1439		/* We need another r1_bio.  It has already been counted
1440		 * in bio->bi_phys_segments
1441		 */
1442		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443		r1_bio->master_bio = bio;
1444		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1445		r1_bio->state = 0;
1446		r1_bio->mddev = mddev;
1447		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1448		goto retry_write;
1449	}
1450
1451	r1_bio_write_done(r1_bio);
1452
1453	/* In case raid1d snuck in to freeze_array */
1454	wake_up(&conf->wait_barrier);
1455}
1456
1457static void status(struct seq_file *seq, struct mddev *mddev)
1458{
1459	struct r1conf *conf = mddev->private;
1460	int i;
1461
1462	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1463		   conf->raid_disks - mddev->degraded);
1464	rcu_read_lock();
1465	for (i = 0; i < conf->raid_disks; i++) {
1466		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1467		seq_printf(seq, "%s",
1468			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1469	}
1470	rcu_read_unlock();
1471	seq_printf(seq, "]");
1472}
1473
1474
1475static void error(struct mddev *mddev, struct md_rdev *rdev)
1476{
1477	char b[BDEVNAME_SIZE];
1478	struct r1conf *conf = mddev->private;
 
1479
1480	/*
1481	 * If it is not operational, then we have already marked it as dead
1482	 * else if it is the last working disks, ignore the error, let the
1483	 * next level up know.
1484	 * else mark the drive as failed
1485	 */
1486	if (test_bit(In_sync, &rdev->flags)
1487	    && (conf->raid_disks - mddev->degraded) == 1) {
1488		/*
1489		 * Don't fail the drive, act as though we were just a
1490		 * normal single drive.
1491		 * However don't try a recovery from this drive as
1492		 * it is very likely to fail.
1493		 */
1494		conf->recovery_disabled = mddev->recovery_disabled;
1495		return;
1496	}
1497	set_bit(Blocked, &rdev->flags);
 
1498	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1499		unsigned long flags;
1500		spin_lock_irqsave(&conf->device_lock, flags);
1501		mddev->degraded++;
1502		set_bit(Faulty, &rdev->flags);
1503		spin_unlock_irqrestore(&conf->device_lock, flags);
1504		/*
1505		 * if recovery is running, make sure it aborts.
1506		 */
1507		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1508	} else
1509		set_bit(Faulty, &rdev->flags);
 
 
 
 
 
1510	set_bit(MD_CHANGE_DEVS, &mddev->flags);
 
1511	printk(KERN_ALERT
1512	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513	       "md/raid1:%s: Operation continuing on %d devices.\n",
1514	       mdname(mddev), bdevname(rdev->bdev, b),
1515	       mdname(mddev), conf->raid_disks - mddev->degraded);
1516}
1517
1518static void print_conf(struct r1conf *conf)
1519{
1520	int i;
1521
1522	printk(KERN_DEBUG "RAID1 conf printout:\n");
1523	if (!conf) {
1524		printk(KERN_DEBUG "(!conf)\n");
1525		return;
1526	}
1527	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1528		conf->raid_disks);
1529
1530	rcu_read_lock();
1531	for (i = 0; i < conf->raid_disks; i++) {
1532		char b[BDEVNAME_SIZE];
1533		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1534		if (rdev)
1535			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1536			       i, !test_bit(In_sync, &rdev->flags),
1537			       !test_bit(Faulty, &rdev->flags),
1538			       bdevname(rdev->bdev,b));
1539	}
1540	rcu_read_unlock();
1541}
1542
1543static void close_sync(struct r1conf *conf)
1544{
1545	wait_barrier(conf, NULL);
1546	allow_barrier(conf, 0, 0);
1547
1548	mempool_destroy(conf->r1buf_pool);
1549	conf->r1buf_pool = NULL;
1550
1551	conf->next_resync = 0;
 
1552	conf->start_next_window = MaxSector;
 
 
 
 
1553}
1554
1555static int raid1_spare_active(struct mddev *mddev)
1556{
1557	int i;
1558	struct r1conf *conf = mddev->private;
1559	int count = 0;
1560	unsigned long flags;
1561
1562	/*
1563	 * Find all failed disks within the RAID1 configuration 
1564	 * and mark them readable.
1565	 * Called under mddev lock, so rcu protection not needed.
 
 
1566	 */
 
1567	for (i = 0; i < conf->raid_disks; i++) {
1568		struct md_rdev *rdev = conf->mirrors[i].rdev;
1569		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1570		if (repl
 
1571		    && repl->recovery_offset == MaxSector
1572		    && !test_bit(Faulty, &repl->flags)
1573		    && !test_and_set_bit(In_sync, &repl->flags)) {
1574			/* replacement has just become active */
1575			if (!rdev ||
1576			    !test_and_clear_bit(In_sync, &rdev->flags))
1577				count++;
1578			if (rdev) {
1579				/* Replaced device not technically
1580				 * faulty, but we need to be sure
1581				 * it gets removed and never re-added
1582				 */
1583				set_bit(Faulty, &rdev->flags);
1584				sysfs_notify_dirent_safe(
1585					rdev->sysfs_state);
1586			}
1587		}
1588		if (rdev
1589		    && rdev->recovery_offset == MaxSector
1590		    && !test_bit(Faulty, &rdev->flags)
1591		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1592			count++;
1593			sysfs_notify_dirent_safe(rdev->sysfs_state);
1594		}
1595	}
1596	spin_lock_irqsave(&conf->device_lock, flags);
1597	mddev->degraded -= count;
1598	spin_unlock_irqrestore(&conf->device_lock, flags);
1599
1600	print_conf(conf);
1601	return count;
1602}
1603
1604
1605static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1606{
1607	struct r1conf *conf = mddev->private;
1608	int err = -EEXIST;
1609	int mirror = 0;
1610	struct raid1_info *p;
1611	int first = 0;
1612	int last = conf->raid_disks - 1;
1613	struct request_queue *q = bdev_get_queue(rdev->bdev);
1614
1615	if (mddev->recovery_disabled == conf->recovery_disabled)
1616		return -EBUSY;
1617
 
 
 
1618	if (rdev->raid_disk >= 0)
1619		first = last = rdev->raid_disk;
1620
1621	if (q->merge_bvec_fn) {
1622		set_bit(Unmerged, &rdev->flags);
1623		mddev->merge_check_needed = 1;
1624	}
 
 
 
 
1625
1626	for (mirror = first; mirror <= last; mirror++) {
1627		p = conf->mirrors+mirror;
1628		if (!p->rdev) {
1629
1630			if (mddev->gendisk)
1631				disk_stack_limits(mddev->gendisk, rdev->bdev,
1632						  rdev->data_offset << 9);
1633
1634			p->head_position = 0;
1635			rdev->raid_disk = mirror;
1636			err = 0;
1637			/* As all devices are equivalent, we don't need a full recovery
1638			 * if this was recently any drive of the array
1639			 */
1640			if (rdev->saved_raid_disk < 0)
1641				conf->fullsync = 1;
1642			rcu_assign_pointer(p->rdev, rdev);
1643			break;
1644		}
1645		if (test_bit(WantReplacement, &p->rdev->flags) &&
1646		    p[conf->raid_disks].rdev == NULL) {
1647			/* Add this device as a replacement */
1648			clear_bit(In_sync, &rdev->flags);
1649			set_bit(Replacement, &rdev->flags);
1650			rdev->raid_disk = mirror;
1651			err = 0;
1652			conf->fullsync = 1;
1653			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1654			break;
1655		}
1656	}
1657	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1658		/* Some requests might not have seen this new
1659		 * merge_bvec_fn.  We must wait for them to complete
1660		 * before merging the device fully.
1661		 * First we make sure any code which has tested
1662		 * our function has submitted the request, then
1663		 * we wait for all outstanding requests to complete.
1664		 */
1665		synchronize_sched();
1666		freeze_array(conf, 0);
1667		unfreeze_array(conf);
1668		clear_bit(Unmerged, &rdev->flags);
1669	}
1670	md_integrity_add_rdev(rdev, mddev);
1671	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1672		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1673	print_conf(conf);
1674	return err;
1675}
1676
1677static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1678{
1679	struct r1conf *conf = mddev->private;
1680	int err = 0;
1681	int number = rdev->raid_disk;
1682	struct raid1_info *p = conf->mirrors + number;
1683
1684	if (rdev != p->rdev)
1685		p = conf->mirrors + conf->raid_disks + number;
1686
1687	print_conf(conf);
1688	if (rdev == p->rdev) {
1689		if (test_bit(In_sync, &rdev->flags) ||
1690		    atomic_read(&rdev->nr_pending)) {
1691			err = -EBUSY;
1692			goto abort;
1693		}
1694		/* Only remove non-faulty devices if recovery
1695		 * is not possible.
1696		 */
1697		if (!test_bit(Faulty, &rdev->flags) &&
1698		    mddev->recovery_disabled != conf->recovery_disabled &&
1699		    mddev->degraded < conf->raid_disks) {
1700			err = -EBUSY;
1701			goto abort;
1702		}
1703		p->rdev = NULL;
1704		synchronize_rcu();
1705		if (atomic_read(&rdev->nr_pending)) {
1706			/* lost the race, try later */
1707			err = -EBUSY;
1708			p->rdev = rdev;
1709			goto abort;
1710		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1711			/* We just removed a device that is being replaced.
1712			 * Move down the replacement.  We drain all IO before
1713			 * doing this to avoid confusion.
1714			 */
1715			struct md_rdev *repl =
1716				conf->mirrors[conf->raid_disks + number].rdev;
1717			freeze_array(conf, 0);
1718			clear_bit(Replacement, &repl->flags);
1719			p->rdev = repl;
1720			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1721			unfreeze_array(conf);
1722			clear_bit(WantReplacement, &rdev->flags);
1723		} else
1724			clear_bit(WantReplacement, &rdev->flags);
1725		err = md_integrity_register(mddev);
1726	}
1727abort:
1728
1729	print_conf(conf);
1730	return err;
1731}
1732
1733
1734static void end_sync_read(struct bio *bio, int error)
1735{
1736	struct r1bio *r1_bio = bio->bi_private;
1737
1738	update_head_pos(r1_bio->read_disk, r1_bio);
1739
1740	/*
1741	 * we have read a block, now it needs to be re-written,
1742	 * or re-read if the read failed.
1743	 * We don't do much here, just schedule handling by raid1d
1744	 */
1745	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1746		set_bit(R1BIO_Uptodate, &r1_bio->state);
1747
1748	if (atomic_dec_and_test(&r1_bio->remaining))
1749		reschedule_retry(r1_bio);
1750}
1751
1752static void end_sync_write(struct bio *bio, int error)
1753{
1754	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1755	struct r1bio *r1_bio = bio->bi_private;
1756	struct mddev *mddev = r1_bio->mddev;
1757	struct r1conf *conf = mddev->private;
1758	int mirror=0;
1759	sector_t first_bad;
1760	int bad_sectors;
1761
1762	mirror = find_bio_disk(r1_bio, bio);
1763
1764	if (!uptodate) {
1765		sector_t sync_blocks = 0;
1766		sector_t s = r1_bio->sector;
1767		long sectors_to_go = r1_bio->sectors;
1768		/* make sure these bits doesn't get cleared. */
1769		do {
1770			bitmap_end_sync(mddev->bitmap, s,
1771					&sync_blocks, 1);
1772			s += sync_blocks;
1773			sectors_to_go -= sync_blocks;
1774		} while (sectors_to_go > 0);
1775		set_bit(WriteErrorSeen,
1776			&conf->mirrors[mirror].rdev->flags);
1777		if (!test_and_set_bit(WantReplacement,
1778				      &conf->mirrors[mirror].rdev->flags))
1779			set_bit(MD_RECOVERY_NEEDED, &
1780				mddev->recovery);
1781		set_bit(R1BIO_WriteError, &r1_bio->state);
1782	} else if (is_badblock(conf->mirrors[mirror].rdev,
1783			       r1_bio->sector,
1784			       r1_bio->sectors,
1785			       &first_bad, &bad_sectors) &&
1786		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1787				r1_bio->sector,
1788				r1_bio->sectors,
1789				&first_bad, &bad_sectors)
1790		)
1791		set_bit(R1BIO_MadeGood, &r1_bio->state);
1792
1793	if (atomic_dec_and_test(&r1_bio->remaining)) {
1794		int s = r1_bio->sectors;
1795		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1796		    test_bit(R1BIO_WriteError, &r1_bio->state))
1797			reschedule_retry(r1_bio);
1798		else {
1799			put_buf(r1_bio);
1800			md_done_sync(mddev, s, uptodate);
1801		}
1802	}
1803}
1804
1805static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1806			    int sectors, struct page *page, int rw)
1807{
1808	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1809		/* success */
1810		return 1;
1811	if (rw == WRITE) {
1812		set_bit(WriteErrorSeen, &rdev->flags);
1813		if (!test_and_set_bit(WantReplacement,
1814				      &rdev->flags))
1815			set_bit(MD_RECOVERY_NEEDED, &
1816				rdev->mddev->recovery);
1817	}
1818	/* need to record an error - either for the block or the device */
1819	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1820		md_error(rdev->mddev, rdev);
1821	return 0;
1822}
1823
1824static int fix_sync_read_error(struct r1bio *r1_bio)
1825{
1826	/* Try some synchronous reads of other devices to get
1827	 * good data, much like with normal read errors.  Only
1828	 * read into the pages we already have so we don't
1829	 * need to re-issue the read request.
1830	 * We don't need to freeze the array, because being in an
1831	 * active sync request, there is no normal IO, and
1832	 * no overlapping syncs.
1833	 * We don't need to check is_badblock() again as we
1834	 * made sure that anything with a bad block in range
1835	 * will have bi_end_io clear.
1836	 */
1837	struct mddev *mddev = r1_bio->mddev;
1838	struct r1conf *conf = mddev->private;
1839	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1840	sector_t sect = r1_bio->sector;
1841	int sectors = r1_bio->sectors;
1842	int idx = 0;
1843
1844	while(sectors) {
1845		int s = sectors;
1846		int d = r1_bio->read_disk;
1847		int success = 0;
1848		struct md_rdev *rdev;
1849		int start;
1850
1851		if (s > (PAGE_SIZE>>9))
1852			s = PAGE_SIZE >> 9;
1853		do {
1854			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1855				/* No rcu protection needed here devices
1856				 * can only be removed when no resync is
1857				 * active, and resync is currently active
1858				 */
1859				rdev = conf->mirrors[d].rdev;
1860				if (sync_page_io(rdev, sect, s<<9,
1861						 bio->bi_io_vec[idx].bv_page,
1862						 READ, false)) {
1863					success = 1;
1864					break;
1865				}
1866			}
1867			d++;
1868			if (d == conf->raid_disks * 2)
1869				d = 0;
1870		} while (!success && d != r1_bio->read_disk);
1871
1872		if (!success) {
1873			char b[BDEVNAME_SIZE];
1874			int abort = 0;
1875			/* Cannot read from anywhere, this block is lost.
1876			 * Record a bad block on each device.  If that doesn't
1877			 * work just disable and interrupt the recovery.
1878			 * Don't fail devices as that won't really help.
1879			 */
1880			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1881			       " for block %llu\n",
1882			       mdname(mddev),
1883			       bdevname(bio->bi_bdev, b),
1884			       (unsigned long long)r1_bio->sector);
1885			for (d = 0; d < conf->raid_disks * 2; d++) {
1886				rdev = conf->mirrors[d].rdev;
1887				if (!rdev || test_bit(Faulty, &rdev->flags))
1888					continue;
1889				if (!rdev_set_badblocks(rdev, sect, s, 0))
1890					abort = 1;
1891			}
1892			if (abort) {
1893				conf->recovery_disabled =
1894					mddev->recovery_disabled;
1895				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1896				md_done_sync(mddev, r1_bio->sectors, 0);
1897				put_buf(r1_bio);
1898				return 0;
1899			}
1900			/* Try next page */
1901			sectors -= s;
1902			sect += s;
1903			idx++;
1904			continue;
1905		}
1906
1907		start = d;
1908		/* write it back and re-read */
1909		while (d != r1_bio->read_disk) {
1910			if (d == 0)
1911				d = conf->raid_disks * 2;
1912			d--;
1913			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1914				continue;
1915			rdev = conf->mirrors[d].rdev;
1916			if (r1_sync_page_io(rdev, sect, s,
1917					    bio->bi_io_vec[idx].bv_page,
1918					    WRITE) == 0) {
1919				r1_bio->bios[d]->bi_end_io = NULL;
1920				rdev_dec_pending(rdev, mddev);
1921			}
1922		}
1923		d = start;
1924		while (d != r1_bio->read_disk) {
1925			if (d == 0)
1926				d = conf->raid_disks * 2;
1927			d--;
1928			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1929				continue;
1930			rdev = conf->mirrors[d].rdev;
1931			if (r1_sync_page_io(rdev, sect, s,
1932					    bio->bi_io_vec[idx].bv_page,
1933					    READ) != 0)
1934				atomic_add(s, &rdev->corrected_errors);
1935		}
1936		sectors -= s;
1937		sect += s;
1938		idx ++;
1939	}
1940	set_bit(R1BIO_Uptodate, &r1_bio->state);
1941	set_bit(BIO_UPTODATE, &bio->bi_flags);
1942	return 1;
1943}
1944
1945static int process_checks(struct r1bio *r1_bio)
1946{
1947	/* We have read all readable devices.  If we haven't
1948	 * got the block, then there is no hope left.
1949	 * If we have, then we want to do a comparison
1950	 * and skip the write if everything is the same.
1951	 * If any blocks failed to read, then we need to
1952	 * attempt an over-write
1953	 */
1954	struct mddev *mddev = r1_bio->mddev;
1955	struct r1conf *conf = mddev->private;
1956	int primary;
1957	int i;
1958	int vcnt;
1959
1960	/* Fix variable parts of all bios */
1961	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1962	for (i = 0; i < conf->raid_disks * 2; i++) {
1963		int j;
1964		int size;
1965		int uptodate;
1966		struct bio *b = r1_bio->bios[i];
1967		if (b->bi_end_io != end_sync_read)
1968			continue;
1969		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1971		bio_reset(b);
1972		if (!uptodate)
1973			clear_bit(BIO_UPTODATE, &b->bi_flags);
1974		b->bi_vcnt = vcnt;
1975		b->bi_iter.bi_size = r1_bio->sectors << 9;
1976		b->bi_iter.bi_sector = r1_bio->sector +
1977			conf->mirrors[i].rdev->data_offset;
1978		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1979		b->bi_end_io = end_sync_read;
1980		b->bi_private = r1_bio;
1981
1982		size = b->bi_iter.bi_size;
1983		for (j = 0; j < vcnt ; j++) {
1984			struct bio_vec *bi;
1985			bi = &b->bi_io_vec[j];
1986			bi->bv_offset = 0;
1987			if (size > PAGE_SIZE)
1988				bi->bv_len = PAGE_SIZE;
1989			else
1990				bi->bv_len = size;
1991			size -= PAGE_SIZE;
1992		}
1993	}
1994	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1995		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1996		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1997			r1_bio->bios[primary]->bi_end_io = NULL;
1998			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1999			break;
2000		}
2001	r1_bio->read_disk = primary;
2002	for (i = 0; i < conf->raid_disks * 2; i++) {
2003		int j;
2004		struct bio *pbio = r1_bio->bios[primary];
2005		struct bio *sbio = r1_bio->bios[i];
2006		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2007
2008		if (sbio->bi_end_io != end_sync_read)
2009			continue;
2010		/* Now we can 'fixup' the BIO_UPTODATE flag */
2011		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2012
2013		if (uptodate) {
2014			for (j = vcnt; j-- ; ) {
2015				struct page *p, *s;
2016				p = pbio->bi_io_vec[j].bv_page;
2017				s = sbio->bi_io_vec[j].bv_page;
2018				if (memcmp(page_address(p),
2019					   page_address(s),
2020					   sbio->bi_io_vec[j].bv_len))
2021					break;
2022			}
2023		} else
2024			j = 0;
2025		if (j >= 0)
2026			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2027		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2028			      && uptodate)) {
2029			/* No need to write to this device. */
2030			sbio->bi_end_io = NULL;
2031			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2032			continue;
2033		}
2034
2035		bio_copy_data(sbio, pbio);
2036	}
2037	return 0;
2038}
2039
2040static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2041{
2042	struct r1conf *conf = mddev->private;
2043	int i;
2044	int disks = conf->raid_disks * 2;
2045	struct bio *bio, *wbio;
2046
2047	bio = r1_bio->bios[r1_bio->read_disk];
2048
2049	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2050		/* ouch - failed to read all of that. */
2051		if (!fix_sync_read_error(r1_bio))
2052			return;
2053
2054	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2055		if (process_checks(r1_bio) < 0)
2056			return;
2057	/*
2058	 * schedule writes
2059	 */
2060	atomic_set(&r1_bio->remaining, 1);
2061	for (i = 0; i < disks ; i++) {
2062		wbio = r1_bio->bios[i];
2063		if (wbio->bi_end_io == NULL ||
2064		    (wbio->bi_end_io == end_sync_read &&
2065		     (i == r1_bio->read_disk ||
2066		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2067			continue;
2068
2069		wbio->bi_rw = WRITE;
2070		wbio->bi_end_io = end_sync_write;
2071		atomic_inc(&r1_bio->remaining);
2072		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2073
2074		generic_make_request(wbio);
2075	}
2076
2077	if (atomic_dec_and_test(&r1_bio->remaining)) {
2078		/* if we're here, all write(s) have completed, so clean up */
2079		int s = r1_bio->sectors;
2080		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2081		    test_bit(R1BIO_WriteError, &r1_bio->state))
2082			reschedule_retry(r1_bio);
2083		else {
2084			put_buf(r1_bio);
2085			md_done_sync(mddev, s, 1);
2086		}
2087	}
2088}
2089
2090/*
2091 * This is a kernel thread which:
2092 *
2093 *	1.	Retries failed read operations on working mirrors.
2094 *	2.	Updates the raid superblock when problems encounter.
2095 *	3.	Performs writes following reads for array synchronising.
2096 */
2097
2098static void fix_read_error(struct r1conf *conf, int read_disk,
2099			   sector_t sect, int sectors)
2100{
2101	struct mddev *mddev = conf->mddev;
2102	while(sectors) {
2103		int s = sectors;
2104		int d = read_disk;
2105		int success = 0;
2106		int start;
2107		struct md_rdev *rdev;
2108
2109		if (s > (PAGE_SIZE>>9))
2110			s = PAGE_SIZE >> 9;
2111
2112		do {
2113			/* Note: no rcu protection needed here
2114			 * as this is synchronous in the raid1d thread
2115			 * which is the thread that might remove
2116			 * a device.  If raid1d ever becomes multi-threaded....
2117			 */
2118			sector_t first_bad;
2119			int bad_sectors;
2120
2121			rdev = conf->mirrors[d].rdev;
2122			if (rdev &&
2123			    (test_bit(In_sync, &rdev->flags) ||
2124			     (!test_bit(Faulty, &rdev->flags) &&
2125			      rdev->recovery_offset >= sect + s)) &&
2126			    is_badblock(rdev, sect, s,
2127					&first_bad, &bad_sectors) == 0 &&
2128			    sync_page_io(rdev, sect, s<<9,
2129					 conf->tmppage, READ, false))
2130				success = 1;
2131			else {
2132				d++;
2133				if (d == conf->raid_disks * 2)
2134					d = 0;
2135			}
2136		} while (!success && d != read_disk);
2137
2138		if (!success) {
2139			/* Cannot read from anywhere - mark it bad */
2140			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2141			if (!rdev_set_badblocks(rdev, sect, s, 0))
2142				md_error(mddev, rdev);
2143			break;
2144		}
2145		/* write it back and re-read */
2146		start = d;
2147		while (d != read_disk) {
2148			if (d==0)
2149				d = conf->raid_disks * 2;
2150			d--;
2151			rdev = conf->mirrors[d].rdev;
2152			if (rdev &&
2153			    test_bit(In_sync, &rdev->flags))
2154				r1_sync_page_io(rdev, sect, s,
2155						conf->tmppage, WRITE);
2156		}
2157		d = start;
2158		while (d != read_disk) {
2159			char b[BDEVNAME_SIZE];
2160			if (d==0)
2161				d = conf->raid_disks * 2;
2162			d--;
2163			rdev = conf->mirrors[d].rdev;
2164			if (rdev &&
2165			    test_bit(In_sync, &rdev->flags)) {
2166				if (r1_sync_page_io(rdev, sect, s,
2167						    conf->tmppage, READ)) {
2168					atomic_add(s, &rdev->corrected_errors);
2169					printk(KERN_INFO
2170					       "md/raid1:%s: read error corrected "
2171					       "(%d sectors at %llu on %s)\n",
2172					       mdname(mddev), s,
2173					       (unsigned long long)(sect +
2174					           rdev->data_offset),
2175					       bdevname(rdev->bdev, b));
2176				}
2177			}
2178		}
2179		sectors -= s;
2180		sect += s;
2181	}
2182}
2183
2184static int narrow_write_error(struct r1bio *r1_bio, int i)
2185{
2186	struct mddev *mddev = r1_bio->mddev;
2187	struct r1conf *conf = mddev->private;
2188	struct md_rdev *rdev = conf->mirrors[i].rdev;
2189
2190	/* bio has the data to be written to device 'i' where
2191	 * we just recently had a write error.
2192	 * We repeatedly clone the bio and trim down to one block,
2193	 * then try the write.  Where the write fails we record
2194	 * a bad block.
2195	 * It is conceivable that the bio doesn't exactly align with
2196	 * blocks.  We must handle this somehow.
2197	 *
2198	 * We currently own a reference on the rdev.
2199	 */
2200
2201	int block_sectors;
2202	sector_t sector;
2203	int sectors;
2204	int sect_to_write = r1_bio->sectors;
2205	int ok = 1;
2206
2207	if (rdev->badblocks.shift < 0)
2208		return 0;
2209
2210	block_sectors = 1 << rdev->badblocks.shift;
 
2211	sector = r1_bio->sector;
2212	sectors = ((sector + block_sectors)
2213		   & ~(sector_t)(block_sectors - 1))
2214		- sector;
2215
2216	while (sect_to_write) {
2217		struct bio *wbio;
2218		if (sectors > sect_to_write)
2219			sectors = sect_to_write;
2220		/* Write at 'sector' for 'sectors'*/
2221
2222		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2223			unsigned vcnt = r1_bio->behind_page_count;
2224			struct bio_vec *vec = r1_bio->behind_bvecs;
2225
2226			while (!vec->bv_page) {
2227				vec++;
2228				vcnt--;
2229			}
2230
2231			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2232			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2233
2234			wbio->bi_vcnt = vcnt;
2235		} else {
2236			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2237		}
2238
2239		wbio->bi_rw = WRITE;
2240		wbio->bi_iter.bi_sector = r1_bio->sector;
2241		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2242
2243		bio_trim(wbio, sector - r1_bio->sector, sectors);
2244		wbio->bi_iter.bi_sector += rdev->data_offset;
2245		wbio->bi_bdev = rdev->bdev;
2246		if (submit_bio_wait(WRITE, wbio) == 0)
2247			/* failure! */
2248			ok = rdev_set_badblocks(rdev, sector,
2249						sectors, 0)
2250				&& ok;
2251
2252		bio_put(wbio);
2253		sect_to_write -= sectors;
2254		sector += sectors;
2255		sectors = block_sectors;
2256	}
2257	return ok;
2258}
2259
2260static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2261{
2262	int m;
2263	int s = r1_bio->sectors;
2264	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2265		struct md_rdev *rdev = conf->mirrors[m].rdev;
2266		struct bio *bio = r1_bio->bios[m];
2267		if (bio->bi_end_io == NULL)
2268			continue;
2269		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2270		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2271			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2272		}
2273		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2274		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2275			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2276				md_error(conf->mddev, rdev);
2277		}
2278	}
2279	put_buf(r1_bio);
2280	md_done_sync(conf->mddev, s, 1);
2281}
2282
2283static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2284{
2285	int m;
 
2286	for (m = 0; m < conf->raid_disks * 2 ; m++)
2287		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2288			struct md_rdev *rdev = conf->mirrors[m].rdev;
2289			rdev_clear_badblocks(rdev,
2290					     r1_bio->sector,
2291					     r1_bio->sectors, 0);
2292			rdev_dec_pending(rdev, conf->mddev);
2293		} else if (r1_bio->bios[m] != NULL) {
2294			/* This drive got a write error.  We need to
2295			 * narrow down and record precise write
2296			 * errors.
2297			 */
 
2298			if (!narrow_write_error(r1_bio, m)) {
2299				md_error(conf->mddev,
2300					 conf->mirrors[m].rdev);
2301				/* an I/O failed, we can't clear the bitmap */
2302				set_bit(R1BIO_Degraded, &r1_bio->state);
2303			}
2304			rdev_dec_pending(conf->mirrors[m].rdev,
2305					 conf->mddev);
2306		}
2307	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2308		close_write(r1_bio);
2309	raid_end_bio_io(r1_bio);
 
 
 
 
 
 
 
 
2310}
2311
2312static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2313{
2314	int disk;
2315	int max_sectors;
2316	struct mddev *mddev = conf->mddev;
2317	struct bio *bio;
2318	char b[BDEVNAME_SIZE];
2319	struct md_rdev *rdev;
2320
2321	clear_bit(R1BIO_ReadError, &r1_bio->state);
2322	/* we got a read error. Maybe the drive is bad.  Maybe just
2323	 * the block and we can fix it.
2324	 * We freeze all other IO, and try reading the block from
2325	 * other devices.  When we find one, we re-write
2326	 * and check it that fixes the read error.
2327	 * This is all done synchronously while the array is
2328	 * frozen
2329	 */
2330	if (mddev->ro == 0) {
2331		freeze_array(conf, 1);
2332		fix_read_error(conf, r1_bio->read_disk,
2333			       r1_bio->sector, r1_bio->sectors);
2334		unfreeze_array(conf);
2335	} else
2336		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2337	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2338
2339	bio = r1_bio->bios[r1_bio->read_disk];
2340	bdevname(bio->bi_bdev, b);
2341read_more:
2342	disk = read_balance(conf, r1_bio, &max_sectors);
2343	if (disk == -1) {
2344		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2345		       " read error for block %llu\n",
2346		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2347		raid_end_bio_io(r1_bio);
2348	} else {
2349		const unsigned long do_sync
2350			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2351		if (bio) {
2352			r1_bio->bios[r1_bio->read_disk] =
2353				mddev->ro ? IO_BLOCKED : NULL;
2354			bio_put(bio);
2355		}
2356		r1_bio->read_disk = disk;
2357		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2358		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2359			 max_sectors);
2360		r1_bio->bios[r1_bio->read_disk] = bio;
2361		rdev = conf->mirrors[disk].rdev;
2362		printk_ratelimited(KERN_ERR
2363				   "md/raid1:%s: redirecting sector %llu"
2364				   " to other mirror: %s\n",
2365				   mdname(mddev),
2366				   (unsigned long long)r1_bio->sector,
2367				   bdevname(rdev->bdev, b));
2368		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2369		bio->bi_bdev = rdev->bdev;
2370		bio->bi_end_io = raid1_end_read_request;
2371		bio->bi_rw = READ | do_sync;
2372		bio->bi_private = r1_bio;
2373		if (max_sectors < r1_bio->sectors) {
2374			/* Drat - have to split this up more */
2375			struct bio *mbio = r1_bio->master_bio;
2376			int sectors_handled = (r1_bio->sector + max_sectors
2377					       - mbio->bi_iter.bi_sector);
2378			r1_bio->sectors = max_sectors;
2379			spin_lock_irq(&conf->device_lock);
2380			if (mbio->bi_phys_segments == 0)
2381				mbio->bi_phys_segments = 2;
2382			else
2383				mbio->bi_phys_segments++;
2384			spin_unlock_irq(&conf->device_lock);
2385			generic_make_request(bio);
2386			bio = NULL;
2387
2388			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2389
2390			r1_bio->master_bio = mbio;
2391			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2392			r1_bio->state = 0;
2393			set_bit(R1BIO_ReadError, &r1_bio->state);
2394			r1_bio->mddev = mddev;
2395			r1_bio->sector = mbio->bi_iter.bi_sector +
2396				sectors_handled;
2397
2398			goto read_more;
2399		} else
2400			generic_make_request(bio);
2401	}
2402}
2403
2404static void raid1d(struct md_thread *thread)
2405{
2406	struct mddev *mddev = thread->mddev;
2407	struct r1bio *r1_bio;
2408	unsigned long flags;
2409	struct r1conf *conf = mddev->private;
2410	struct list_head *head = &conf->retry_list;
2411	struct blk_plug plug;
2412
2413	md_check_recovery(mddev);
2414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2415	blk_start_plug(&plug);
2416	for (;;) {
2417
2418		flush_pending_writes(conf);
2419
2420		spin_lock_irqsave(&conf->device_lock, flags);
2421		if (list_empty(head)) {
2422			spin_unlock_irqrestore(&conf->device_lock, flags);
2423			break;
2424		}
2425		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2426		list_del(head->prev);
2427		conf->nr_queued--;
2428		spin_unlock_irqrestore(&conf->device_lock, flags);
2429
2430		mddev = r1_bio->mddev;
2431		conf = mddev->private;
2432		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2433			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2434			    test_bit(R1BIO_WriteError, &r1_bio->state))
2435				handle_sync_write_finished(conf, r1_bio);
2436			else
2437				sync_request_write(mddev, r1_bio);
2438		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2439			   test_bit(R1BIO_WriteError, &r1_bio->state))
2440			handle_write_finished(conf, r1_bio);
2441		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2442			handle_read_error(conf, r1_bio);
2443		else
2444			/* just a partial read to be scheduled from separate
2445			 * context
2446			 */
2447			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2448
2449		cond_resched();
2450		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2451			md_check_recovery(mddev);
2452	}
2453	blk_finish_plug(&plug);
2454}
2455
2456
2457static int init_resync(struct r1conf *conf)
2458{
2459	int buffs;
2460
2461	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2462	BUG_ON(conf->r1buf_pool);
2463	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2464					  conf->poolinfo);
2465	if (!conf->r1buf_pool)
2466		return -ENOMEM;
2467	conf->next_resync = 0;
2468	return 0;
2469}
2470
2471/*
2472 * perform a "sync" on one "block"
2473 *
2474 * We need to make sure that no normal I/O request - particularly write
2475 * requests - conflict with active sync requests.
2476 *
2477 * This is achieved by tracking pending requests and a 'barrier' concept
2478 * that can be installed to exclude normal IO requests.
2479 */
2480
2481static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
 
2482{
2483	struct r1conf *conf = mddev->private;
2484	struct r1bio *r1_bio;
2485	struct bio *bio;
2486	sector_t max_sector, nr_sectors;
2487	int disk = -1;
2488	int i;
2489	int wonly = -1;
2490	int write_targets = 0, read_targets = 0;
2491	sector_t sync_blocks;
2492	int still_degraded = 0;
2493	int good_sectors = RESYNC_SECTORS;
2494	int min_bad = 0; /* number of sectors that are bad in all devices */
2495
2496	if (!conf->r1buf_pool)
2497		if (init_resync(conf))
2498			return 0;
2499
2500	max_sector = mddev->dev_sectors;
2501	if (sector_nr >= max_sector) {
2502		/* If we aborted, we need to abort the
2503		 * sync on the 'current' bitmap chunk (there will
2504		 * only be one in raid1 resync.
2505		 * We can find the current addess in mddev->curr_resync
2506		 */
2507		if (mddev->curr_resync < max_sector) /* aborted */
2508			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2509						&sync_blocks, 1);
2510		else /* completed sync */
2511			conf->fullsync = 0;
2512
2513		bitmap_close_sync(mddev->bitmap);
2514		close_sync(conf);
 
 
 
 
 
2515		return 0;
2516	}
2517
2518	if (mddev->bitmap == NULL &&
2519	    mddev->recovery_cp == MaxSector &&
2520	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2521	    conf->fullsync == 0) {
2522		*skipped = 1;
2523		return max_sector - sector_nr;
2524	}
2525	/* before building a request, check if we can skip these blocks..
2526	 * This call the bitmap_start_sync doesn't actually record anything
2527	 */
2528	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2529	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2530		/* We can skip this block, and probably several more */
2531		*skipped = 1;
2532		return sync_blocks;
2533	}
2534	/*
2535	 * If there is non-resync activity waiting for a turn,
2536	 * and resync is going fast enough,
2537	 * then let it though before starting on this new sync request.
2538	 */
2539	if (!go_faster && conf->nr_waiting)
2540		msleep_interruptible(1000);
2541
2542	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
 
2543	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544	raise_barrier(conf);
2545
2546	conf->next_resync = sector_nr;
2547
2548	rcu_read_lock();
2549	/*
2550	 * If we get a correctably read error during resync or recovery,
2551	 * we might want to read from a different device.  So we
2552	 * flag all drives that could conceivably be read from for READ,
2553	 * and any others (which will be non-In_sync devices) for WRITE.
2554	 * If a read fails, we try reading from something else for which READ
2555	 * is OK.
2556	 */
2557
2558	r1_bio->mddev = mddev;
2559	r1_bio->sector = sector_nr;
2560	r1_bio->state = 0;
2561	set_bit(R1BIO_IsSync, &r1_bio->state);
2562
2563	for (i = 0; i < conf->raid_disks * 2; i++) {
2564		struct md_rdev *rdev;
2565		bio = r1_bio->bios[i];
2566		bio_reset(bio);
2567
2568		rdev = rcu_dereference(conf->mirrors[i].rdev);
2569		if (rdev == NULL ||
2570		    test_bit(Faulty, &rdev->flags)) {
2571			if (i < conf->raid_disks)
2572				still_degraded = 1;
2573		} else if (!test_bit(In_sync, &rdev->flags)) {
2574			bio->bi_rw = WRITE;
2575			bio->bi_end_io = end_sync_write;
2576			write_targets ++;
2577		} else {
2578			/* may need to read from here */
2579			sector_t first_bad = MaxSector;
2580			int bad_sectors;
2581
2582			if (is_badblock(rdev, sector_nr, good_sectors,
2583					&first_bad, &bad_sectors)) {
2584				if (first_bad > sector_nr)
2585					good_sectors = first_bad - sector_nr;
2586				else {
2587					bad_sectors -= (sector_nr - first_bad);
2588					if (min_bad == 0 ||
2589					    min_bad > bad_sectors)
2590						min_bad = bad_sectors;
2591				}
2592			}
2593			if (sector_nr < first_bad) {
2594				if (test_bit(WriteMostly, &rdev->flags)) {
2595					if (wonly < 0)
2596						wonly = i;
2597				} else {
2598					if (disk < 0)
2599						disk = i;
2600				}
2601				bio->bi_rw = READ;
2602				bio->bi_end_io = end_sync_read;
2603				read_targets++;
2604			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607				/*
2608				 * The device is suitable for reading (InSync),
2609				 * but has bad block(s) here. Let's try to correct them,
2610				 * if we are doing resync or repair. Otherwise, leave
2611				 * this device alone for this sync request.
2612				 */
2613				bio->bi_rw = WRITE;
2614				bio->bi_end_io = end_sync_write;
2615				write_targets++;
2616			}
2617		}
2618		if (bio->bi_end_io) {
2619			atomic_inc(&rdev->nr_pending);
2620			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621			bio->bi_bdev = rdev->bdev;
2622			bio->bi_private = r1_bio;
2623		}
2624	}
2625	rcu_read_unlock();
2626	if (disk < 0)
2627		disk = wonly;
2628	r1_bio->read_disk = disk;
2629
2630	if (read_targets == 0 && min_bad > 0) {
2631		/* These sectors are bad on all InSync devices, so we
2632		 * need to mark them bad on all write targets
2633		 */
2634		int ok = 1;
2635		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637				struct md_rdev *rdev = conf->mirrors[i].rdev;
2638				ok = rdev_set_badblocks(rdev, sector_nr,
2639							min_bad, 0
2640					) && ok;
2641			}
2642		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643		*skipped = 1;
2644		put_buf(r1_bio);
2645
2646		if (!ok) {
2647			/* Cannot record the badblocks, so need to
2648			 * abort the resync.
2649			 * If there are multiple read targets, could just
2650			 * fail the really bad ones ???
2651			 */
2652			conf->recovery_disabled = mddev->recovery_disabled;
2653			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654			return 0;
2655		} else
2656			return min_bad;
2657
2658	}
2659	if (min_bad > 0 && min_bad < good_sectors) {
2660		/* only resync enough to reach the next bad->good
2661		 * transition */
2662		good_sectors = min_bad;
2663	}
2664
2665	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666		/* extra read targets are also write targets */
2667		write_targets += read_targets-1;
2668
2669	if (write_targets == 0 || read_targets == 0) {
2670		/* There is nowhere to write, so all non-sync
2671		 * drives must be failed - so we are finished
2672		 */
2673		sector_t rv;
2674		if (min_bad > 0)
2675			max_sector = sector_nr + min_bad;
2676		rv = max_sector - sector_nr;
2677		*skipped = 1;
2678		put_buf(r1_bio);
2679		return rv;
2680	}
2681
2682	if (max_sector > mddev->resync_max)
2683		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684	if (max_sector > sector_nr + good_sectors)
2685		max_sector = sector_nr + good_sectors;
2686	nr_sectors = 0;
2687	sync_blocks = 0;
2688	do {
2689		struct page *page;
2690		int len = PAGE_SIZE;
2691		if (sector_nr + (len>>9) > max_sector)
2692			len = (max_sector - sector_nr) << 9;
2693		if (len == 0)
2694			break;
2695		if (sync_blocks == 0) {
2696			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697					       &sync_blocks, still_degraded) &&
2698			    !conf->fullsync &&
2699			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700				break;
2701			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2702			if ((len >> 9) > sync_blocks)
2703				len = sync_blocks<<9;
2704		}
2705
2706		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2707			bio = r1_bio->bios[i];
2708			if (bio->bi_end_io) {
2709				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2710				if (bio_add_page(bio, page, len, 0) == 0) {
2711					/* stop here */
2712					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2713					while (i > 0) {
2714						i--;
2715						bio = r1_bio->bios[i];
2716						if (bio->bi_end_io==NULL)
2717							continue;
2718						/* remove last page from this bio */
2719						bio->bi_vcnt--;
2720						bio->bi_iter.bi_size -= len;
2721						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2722					}
2723					goto bio_full;
2724				}
2725			}
2726		}
2727		nr_sectors += len>>9;
2728		sector_nr += len>>9;
2729		sync_blocks -= (len>>9);
2730	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2731 bio_full:
2732	r1_bio->sectors = nr_sectors;
2733
 
 
 
 
 
 
 
 
 
 
2734	/* For a user-requested sync, we read all readable devices and do a
2735	 * compare
2736	 */
2737	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2738		atomic_set(&r1_bio->remaining, read_targets);
2739		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2740			bio = r1_bio->bios[i];
2741			if (bio->bi_end_io == end_sync_read) {
2742				read_targets--;
2743				md_sync_acct(bio->bi_bdev, nr_sectors);
2744				generic_make_request(bio);
2745			}
2746		}
2747	} else {
2748		atomic_set(&r1_bio->remaining, 1);
2749		bio = r1_bio->bios[r1_bio->read_disk];
2750		md_sync_acct(bio->bi_bdev, nr_sectors);
2751		generic_make_request(bio);
2752
2753	}
2754	return nr_sectors;
2755}
2756
2757static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2758{
2759	if (sectors)
2760		return sectors;
2761
2762	return mddev->dev_sectors;
2763}
2764
2765static struct r1conf *setup_conf(struct mddev *mddev)
2766{
2767	struct r1conf *conf;
2768	int i;
2769	struct raid1_info *disk;
2770	struct md_rdev *rdev;
2771	int err = -ENOMEM;
2772
2773	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2774	if (!conf)
2775		goto abort;
2776
2777	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2778				* mddev->raid_disks * 2,
2779				 GFP_KERNEL);
2780	if (!conf->mirrors)
2781		goto abort;
2782
2783	conf->tmppage = alloc_page(GFP_KERNEL);
2784	if (!conf->tmppage)
2785		goto abort;
2786
2787	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2788	if (!conf->poolinfo)
2789		goto abort;
2790	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2791	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2792					  r1bio_pool_free,
2793					  conf->poolinfo);
2794	if (!conf->r1bio_pool)
2795		goto abort;
2796
2797	conf->poolinfo->mddev = mddev;
2798
2799	err = -EINVAL;
2800	spin_lock_init(&conf->device_lock);
2801	rdev_for_each(rdev, mddev) {
2802		struct request_queue *q;
2803		int disk_idx = rdev->raid_disk;
2804		if (disk_idx >= mddev->raid_disks
2805		    || disk_idx < 0)
2806			continue;
2807		if (test_bit(Replacement, &rdev->flags))
2808			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2809		else
2810			disk = conf->mirrors + disk_idx;
2811
2812		if (disk->rdev)
2813			goto abort;
2814		disk->rdev = rdev;
2815		q = bdev_get_queue(rdev->bdev);
2816		if (q->merge_bvec_fn)
2817			mddev->merge_check_needed = 1;
2818
2819		disk->head_position = 0;
2820		disk->seq_start = MaxSector;
2821	}
2822	conf->raid_disks = mddev->raid_disks;
2823	conf->mddev = mddev;
2824	INIT_LIST_HEAD(&conf->retry_list);
 
2825
2826	spin_lock_init(&conf->resync_lock);
2827	init_waitqueue_head(&conf->wait_barrier);
2828
2829	bio_list_init(&conf->pending_bio_list);
2830	conf->pending_count = 0;
2831	conf->recovery_disabled = mddev->recovery_disabled - 1;
2832
2833	conf->start_next_window = MaxSector;
2834	conf->current_window_requests = conf->next_window_requests = 0;
2835
2836	err = -EIO;
2837	for (i = 0; i < conf->raid_disks * 2; i++) {
2838
2839		disk = conf->mirrors + i;
2840
2841		if (i < conf->raid_disks &&
2842		    disk[conf->raid_disks].rdev) {
2843			/* This slot has a replacement. */
2844			if (!disk->rdev) {
2845				/* No original, just make the replacement
2846				 * a recovering spare
2847				 */
2848				disk->rdev =
2849					disk[conf->raid_disks].rdev;
2850				disk[conf->raid_disks].rdev = NULL;
2851			} else if (!test_bit(In_sync, &disk->rdev->flags))
2852				/* Original is not in_sync - bad */
2853				goto abort;
2854		}
2855
2856		if (!disk->rdev ||
2857		    !test_bit(In_sync, &disk->rdev->flags)) {
2858			disk->head_position = 0;
2859			if (disk->rdev &&
2860			    (disk->rdev->saved_raid_disk < 0))
2861				conf->fullsync = 1;
2862		}
2863	}
2864
2865	err = -ENOMEM;
2866	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2867	if (!conf->thread) {
2868		printk(KERN_ERR
2869		       "md/raid1:%s: couldn't allocate thread\n",
2870		       mdname(mddev));
2871		goto abort;
2872	}
2873
2874	return conf;
2875
2876 abort:
2877	if (conf) {
2878		if (conf->r1bio_pool)
2879			mempool_destroy(conf->r1bio_pool);
2880		kfree(conf->mirrors);
2881		safe_put_page(conf->tmppage);
2882		kfree(conf->poolinfo);
2883		kfree(conf);
2884	}
2885	return ERR_PTR(err);
2886}
2887
2888static int stop(struct mddev *mddev);
2889static int run(struct mddev *mddev)
2890{
2891	struct r1conf *conf;
2892	int i;
2893	struct md_rdev *rdev;
2894	int ret;
2895	bool discard_supported = false;
2896
2897	if (mddev->level != 1) {
2898		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2899		       mdname(mddev), mddev->level);
2900		return -EIO;
2901	}
2902	if (mddev->reshape_position != MaxSector) {
2903		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2904		       mdname(mddev));
2905		return -EIO;
2906	}
2907	/*
2908	 * copy the already verified devices into our private RAID1
2909	 * bookkeeping area. [whatever we allocate in run(),
2910	 * should be freed in stop()]
2911	 */
2912	if (mddev->private == NULL)
2913		conf = setup_conf(mddev);
2914	else
2915		conf = mddev->private;
2916
2917	if (IS_ERR(conf))
2918		return PTR_ERR(conf);
2919
2920	if (mddev->queue)
2921		blk_queue_max_write_same_sectors(mddev->queue, 0);
2922
2923	rdev_for_each(rdev, mddev) {
2924		if (!mddev->gendisk)
2925			continue;
2926		disk_stack_limits(mddev->gendisk, rdev->bdev,
2927				  rdev->data_offset << 9);
2928		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2929			discard_supported = true;
2930	}
2931
2932	mddev->degraded = 0;
2933	for (i=0; i < conf->raid_disks; i++)
2934		if (conf->mirrors[i].rdev == NULL ||
2935		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2936		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2937			mddev->degraded++;
2938
2939	if (conf->raid_disks - mddev->degraded == 1)
2940		mddev->recovery_cp = MaxSector;
2941
2942	if (mddev->recovery_cp != MaxSector)
2943		printk(KERN_NOTICE "md/raid1:%s: not clean"
2944		       " -- starting background reconstruction\n",
2945		       mdname(mddev));
2946	printk(KERN_INFO 
2947		"md/raid1:%s: active with %d out of %d mirrors\n",
2948		mdname(mddev), mddev->raid_disks - mddev->degraded, 
2949		mddev->raid_disks);
2950
2951	/*
2952	 * Ok, everything is just fine now
2953	 */
2954	mddev->thread = conf->thread;
2955	conf->thread = NULL;
2956	mddev->private = conf;
2957
2958	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2959
2960	if (mddev->queue) {
2961		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2962		mddev->queue->backing_dev_info.congested_data = mddev;
2963		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2964
2965		if (discard_supported)
2966			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2967						mddev->queue);
2968		else
2969			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2970						  mddev->queue);
2971	}
2972
2973	ret =  md_integrity_register(mddev);
2974	if (ret)
2975		stop(mddev);
 
 
2976	return ret;
2977}
2978
2979static int stop(struct mddev *mddev)
2980{
2981	struct r1conf *conf = mddev->private;
2982	struct bitmap *bitmap = mddev->bitmap;
2983
2984	/* wait for behind writes to complete */
2985	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2986		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2987		       mdname(mddev));
2988		/* need to kick something here to make sure I/O goes? */
2989		wait_event(bitmap->behind_wait,
2990			   atomic_read(&bitmap->behind_writes) == 0);
2991	}
2992
2993	freeze_array(conf, 0);
2994	unfreeze_array(conf);
2995
2996	md_unregister_thread(&mddev->thread);
2997	if (conf->r1bio_pool)
2998		mempool_destroy(conf->r1bio_pool);
2999	kfree(conf->mirrors);
3000	safe_put_page(conf->tmppage);
3001	kfree(conf->poolinfo);
3002	kfree(conf);
3003	mddev->private = NULL;
3004	return 0;
3005}
3006
3007static int raid1_resize(struct mddev *mddev, sector_t sectors)
3008{
3009	/* no resync is happening, and there is enough space
3010	 * on all devices, so we can resize.
3011	 * We need to make sure resync covers any new space.
3012	 * If the array is shrinking we should possibly wait until
3013	 * any io in the removed space completes, but it hardly seems
3014	 * worth it.
3015	 */
3016	sector_t newsize = raid1_size(mddev, sectors, 0);
3017	if (mddev->external_size &&
3018	    mddev->array_sectors > newsize)
3019		return -EINVAL;
3020	if (mddev->bitmap) {
3021		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3022		if (ret)
3023			return ret;
3024	}
3025	md_set_array_sectors(mddev, newsize);
3026	set_capacity(mddev->gendisk, mddev->array_sectors);
3027	revalidate_disk(mddev->gendisk);
3028	if (sectors > mddev->dev_sectors &&
3029	    mddev->recovery_cp > mddev->dev_sectors) {
3030		mddev->recovery_cp = mddev->dev_sectors;
3031		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3032	}
3033	mddev->dev_sectors = sectors;
3034	mddev->resync_max_sectors = sectors;
3035	return 0;
3036}
3037
3038static int raid1_reshape(struct mddev *mddev)
3039{
3040	/* We need to:
3041	 * 1/ resize the r1bio_pool
3042	 * 2/ resize conf->mirrors
3043	 *
3044	 * We allocate a new r1bio_pool if we can.
3045	 * Then raise a device barrier and wait until all IO stops.
3046	 * Then resize conf->mirrors and swap in the new r1bio pool.
3047	 *
3048	 * At the same time, we "pack" the devices so that all the missing
3049	 * devices have the higher raid_disk numbers.
3050	 */
3051	mempool_t *newpool, *oldpool;
3052	struct pool_info *newpoolinfo;
3053	struct raid1_info *newmirrors;
3054	struct r1conf *conf = mddev->private;
3055	int cnt, raid_disks;
3056	unsigned long flags;
3057	int d, d2, err;
3058
3059	/* Cannot change chunk_size, layout, or level */
3060	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3061	    mddev->layout != mddev->new_layout ||
3062	    mddev->level != mddev->new_level) {
3063		mddev->new_chunk_sectors = mddev->chunk_sectors;
3064		mddev->new_layout = mddev->layout;
3065		mddev->new_level = mddev->level;
3066		return -EINVAL;
3067	}
3068
3069	err = md_allow_write(mddev);
3070	if (err)
3071		return err;
 
 
3072
3073	raid_disks = mddev->raid_disks + mddev->delta_disks;
3074
3075	if (raid_disks < conf->raid_disks) {
3076		cnt=0;
3077		for (d= 0; d < conf->raid_disks; d++)
3078			if (conf->mirrors[d].rdev)
3079				cnt++;
3080		if (cnt > raid_disks)
3081			return -EBUSY;
3082	}
3083
3084	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3085	if (!newpoolinfo)
3086		return -ENOMEM;
3087	newpoolinfo->mddev = mddev;
3088	newpoolinfo->raid_disks = raid_disks * 2;
3089
3090	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3091				 r1bio_pool_free, newpoolinfo);
3092	if (!newpool) {
3093		kfree(newpoolinfo);
3094		return -ENOMEM;
3095	}
3096	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3097			     GFP_KERNEL);
3098	if (!newmirrors) {
3099		kfree(newpoolinfo);
3100		mempool_destroy(newpool);
3101		return -ENOMEM;
3102	}
3103
3104	freeze_array(conf, 0);
3105
3106	/* ok, everything is stopped */
3107	oldpool = conf->r1bio_pool;
3108	conf->r1bio_pool = newpool;
3109
3110	for (d = d2 = 0; d < conf->raid_disks; d++) {
3111		struct md_rdev *rdev = conf->mirrors[d].rdev;
3112		if (rdev && rdev->raid_disk != d2) {
3113			sysfs_unlink_rdev(mddev, rdev);
3114			rdev->raid_disk = d2;
3115			sysfs_unlink_rdev(mddev, rdev);
3116			if (sysfs_link_rdev(mddev, rdev))
3117				printk(KERN_WARNING
3118				       "md/raid1:%s: cannot register rd%d\n",
3119				       mdname(mddev), rdev->raid_disk);
3120		}
3121		if (rdev)
3122			newmirrors[d2++].rdev = rdev;
3123	}
3124	kfree(conf->mirrors);
3125	conf->mirrors = newmirrors;
3126	kfree(conf->poolinfo);
3127	conf->poolinfo = newpoolinfo;
3128
3129	spin_lock_irqsave(&conf->device_lock, flags);
3130	mddev->degraded += (raid_disks - conf->raid_disks);
3131	spin_unlock_irqrestore(&conf->device_lock, flags);
3132	conf->raid_disks = mddev->raid_disks = raid_disks;
3133	mddev->delta_disks = 0;
3134
3135	unfreeze_array(conf);
3136
 
3137	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3138	md_wakeup_thread(mddev->thread);
3139
3140	mempool_destroy(oldpool);
3141	return 0;
3142}
3143
3144static void raid1_quiesce(struct mddev *mddev, int state)
3145{
3146	struct r1conf *conf = mddev->private;
3147
3148	switch(state) {
3149	case 2: /* wake for suspend */
3150		wake_up(&conf->wait_barrier);
3151		break;
3152	case 1:
3153		freeze_array(conf, 0);
3154		break;
3155	case 0:
3156		unfreeze_array(conf);
3157		break;
3158	}
3159}
3160
3161static void *raid1_takeover(struct mddev *mddev)
3162{
3163	/* raid1 can take over:
3164	 *  raid5 with 2 devices, any layout or chunk size
3165	 */
3166	if (mddev->level == 5 && mddev->raid_disks == 2) {
3167		struct r1conf *conf;
3168		mddev->new_level = 1;
3169		mddev->new_layout = 0;
3170		mddev->new_chunk_sectors = 0;
3171		conf = setup_conf(mddev);
3172		if (!IS_ERR(conf))
3173			/* Array must appear to be quiesced */
3174			conf->array_frozen = 1;
3175		return conf;
3176	}
3177	return ERR_PTR(-EINVAL);
3178}
3179
3180static struct md_personality raid1_personality =
3181{
3182	.name		= "raid1",
3183	.level		= 1,
3184	.owner		= THIS_MODULE,
3185	.make_request	= make_request,
3186	.run		= run,
3187	.stop		= stop,
3188	.status		= status,
3189	.error_handler	= error,
3190	.hot_add_disk	= raid1_add_disk,
3191	.hot_remove_disk= raid1_remove_disk,
3192	.spare_active	= raid1_spare_active,
3193	.sync_request	= sync_request,
3194	.resize		= raid1_resize,
3195	.size		= raid1_size,
3196	.check_reshape	= raid1_reshape,
3197	.quiesce	= raid1_quiesce,
3198	.takeover	= raid1_takeover,
 
3199};
3200
3201static int __init raid_init(void)
3202{
3203	return register_md_personality(&raid1_personality);
3204}
3205
3206static void raid_exit(void)
3207{
3208	unregister_md_personality(&raid1_personality);
3209}
3210
3211module_init(raid_init);
3212module_exit(raid_exit);
3213MODULE_LICENSE("GPL");
3214MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3215MODULE_ALIAS("md-personality-3"); /* RAID1 */
3216MODULE_ALIAS("md-raid1");
3217MODULE_ALIAS("md-level-1");
3218
3219module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);