Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define	NR_RAID1_BIOS 256
  48
  49/* when we get a read error on a read-only array, we redirect to another
  50 * device without failing the first device, or trying to over-write to
  51 * correct the read error.  To keep track of bad blocks on a per-bio
  52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  53 */
  54#define IO_BLOCKED ((struct bio *)1)
  55/* When we successfully write to a known bad-block, we need to remove the
  56 * bad-block marking which must be done from process context.  So we record
  57 * the success by setting devs[n].bio to IO_MADE_GOOD
  58 */
  59#define IO_MADE_GOOD ((struct bio *)2)
  60
  61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  62
  63/* When there are this many requests queue to be written by
  64 * the raid1 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
  68
  69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  70			  sector_t bi_sector);
  71static void lower_barrier(struct r1conf *conf);
  72
  73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  74{
  75	struct pool_info *pi = data;
  76	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  77
  78	/* allocate a r1bio with room for raid_disks entries in the bios array */
  79	return kzalloc(size, gfp_flags);
  80}
  81
  82static void r1bio_pool_free(void *r1_bio, void *data)
  83{
  84	kfree(r1_bio);
  85}
  86
  87#define RESYNC_BLOCK_SIZE (64*1024)
  88#define RESYNC_DEPTH 32
  89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
  93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
  94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
  95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
  96
  97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  98{
  99	struct pool_info *pi = data;
 
 100	struct r1bio *r1_bio;
 101	struct bio *bio;
 102	int need_pages;
 103	int i, j;
 104
 105	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 106	if (!r1_bio)
 107		return NULL;
 108
 109	/*
 110	 * Allocate bios : 1 for reading, n-1 for writing
 111	 */
 112	for (j = pi->raid_disks ; j-- ; ) {
 113		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 114		if (!bio)
 115			goto out_free_bio;
 116		r1_bio->bios[j] = bio;
 117	}
 118	/*
 119	 * Allocate RESYNC_PAGES data pages and attach them to
 120	 * the first bio.
 121	 * If this is a user-requested check/repair, allocate
 122	 * RESYNC_PAGES for each bio.
 123	 */
 124	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 125		need_pages = pi->raid_disks;
 126	else
 127		need_pages = 1;
 128	for (j = 0; j < need_pages; j++) {
 129		bio = r1_bio->bios[j];
 130		bio->bi_vcnt = RESYNC_PAGES;
 
 
 
 131
 132		if (bio_alloc_pages(bio, gfp_flags))
 133			goto out_free_pages;
 
 134	}
 135	/* If not user-requests, copy the page pointers to all bios */
 136	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 137		for (i=0; i<RESYNC_PAGES ; i++)
 138			for (j=1; j<pi->raid_disks; j++)
 139				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 140					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 141	}
 142
 143	r1_bio->master_bio = NULL;
 144
 145	return r1_bio;
 146
 147out_free_pages:
 148	while (--j >= 0) {
 149		struct bio_vec *bv;
 150
 151		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
 152			__free_page(bv->bv_page);
 153	}
 154
 155out_free_bio:
 156	while (++j < pi->raid_disks)
 157		bio_put(r1_bio->bios[j]);
 158	r1bio_pool_free(r1_bio, data);
 159	return NULL;
 160}
 161
 162static void r1buf_pool_free(void *__r1_bio, void *data)
 163{
 164	struct pool_info *pi = data;
 165	int i,j;
 166	struct r1bio *r1bio = __r1_bio;
 167
 168	for (i = 0; i < RESYNC_PAGES; i++)
 169		for (j = pi->raid_disks; j-- ;) {
 170			if (j == 0 ||
 171			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 172			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 173				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 174		}
 175	for (i=0 ; i < pi->raid_disks; i++)
 176		bio_put(r1bio->bios[i]);
 177
 178	r1bio_pool_free(r1bio, data);
 179}
 180
 181static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 182{
 183	int i;
 184
 185	for (i = 0; i < conf->raid_disks * 2; i++) {
 186		struct bio **bio = r1_bio->bios + i;
 187		if (!BIO_SPECIAL(*bio))
 188			bio_put(*bio);
 189		*bio = NULL;
 190	}
 191}
 192
 193static void free_r1bio(struct r1bio *r1_bio)
 194{
 195	struct r1conf *conf = r1_bio->mddev->private;
 196
 197	put_all_bios(conf, r1_bio);
 198	mempool_free(r1_bio, conf->r1bio_pool);
 199}
 200
 201static void put_buf(struct r1bio *r1_bio)
 202{
 203	struct r1conf *conf = r1_bio->mddev->private;
 204	int i;
 205
 206	for (i = 0; i < conf->raid_disks * 2; i++) {
 207		struct bio *bio = r1_bio->bios[i];
 208		if (bio->bi_end_io)
 209			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 210	}
 211
 212	mempool_free(r1_bio, conf->r1buf_pool);
 213
 214	lower_barrier(conf);
 215}
 216
 217static void reschedule_retry(struct r1bio *r1_bio)
 218{
 219	unsigned long flags;
 220	struct mddev *mddev = r1_bio->mddev;
 221	struct r1conf *conf = mddev->private;
 222
 223	spin_lock_irqsave(&conf->device_lock, flags);
 224	list_add(&r1_bio->retry_list, &conf->retry_list);
 225	conf->nr_queued ++;
 226	spin_unlock_irqrestore(&conf->device_lock, flags);
 227
 228	wake_up(&conf->wait_barrier);
 229	md_wakeup_thread(mddev->thread);
 230}
 231
 232/*
 233 * raid_end_bio_io() is called when we have finished servicing a mirrored
 234 * operation and are ready to return a success/failure code to the buffer
 235 * cache layer.
 236 */
 237static void call_bio_endio(struct r1bio *r1_bio)
 238{
 239	struct bio *bio = r1_bio->master_bio;
 240	int done;
 241	struct r1conf *conf = r1_bio->mddev->private;
 242	sector_t start_next_window = r1_bio->start_next_window;
 243	sector_t bi_sector = bio->bi_iter.bi_sector;
 244
 245	if (bio->bi_phys_segments) {
 246		unsigned long flags;
 247		spin_lock_irqsave(&conf->device_lock, flags);
 248		bio->bi_phys_segments--;
 249		done = (bio->bi_phys_segments == 0);
 250		spin_unlock_irqrestore(&conf->device_lock, flags);
 251		/*
 252		 * make_request() might be waiting for
 253		 * bi_phys_segments to decrease
 254		 */
 255		wake_up(&conf->wait_barrier);
 256	} else
 257		done = 1;
 258
 259	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 260		bio->bi_error = -EIO;
 261
 262	if (done) {
 263		bio_endio(bio);
 264		/*
 265		 * Wake up any possible resync thread that waits for the device
 266		 * to go idle.
 267		 */
 268		allow_barrier(conf, start_next_window, bi_sector);
 269	}
 270}
 271
 272static void raid_end_bio_io(struct r1bio *r1_bio)
 273{
 274	struct bio *bio = r1_bio->master_bio;
 275
 276	/* if nobody has done the final endio yet, do it now */
 277	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 278		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 279			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 280			 (unsigned long long) bio->bi_iter.bi_sector,
 281			 (unsigned long long) bio_end_sector(bio) - 1);
 
 282
 283		call_bio_endio(r1_bio);
 284	}
 285	free_r1bio(r1_bio);
 286}
 287
 288/*
 289 * Update disk head position estimator based on IRQ completion info.
 290 */
 291static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 292{
 293	struct r1conf *conf = r1_bio->mddev->private;
 294
 295	conf->mirrors[disk].head_position =
 296		r1_bio->sector + (r1_bio->sectors);
 297}
 298
 299/*
 300 * Find the disk number which triggered given bio
 301 */
 302static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 303{
 304	int mirror;
 305	struct r1conf *conf = r1_bio->mddev->private;
 306	int raid_disks = conf->raid_disks;
 307
 308	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 309		if (r1_bio->bios[mirror] == bio)
 310			break;
 311
 312	BUG_ON(mirror == raid_disks * 2);
 313	update_head_pos(mirror, r1_bio);
 314
 315	return mirror;
 316}
 317
 318static void raid1_end_read_request(struct bio *bio)
 319{
 320	int uptodate = !bio->bi_error;
 321	struct r1bio *r1_bio = bio->bi_private;
 322	int mirror;
 323	struct r1conf *conf = r1_bio->mddev->private;
 324
 325	mirror = r1_bio->read_disk;
 326	/*
 327	 * this branch is our 'one mirror IO has finished' event handler:
 328	 */
 329	update_head_pos(mirror, r1_bio);
 330
 331	if (uptodate)
 332		set_bit(R1BIO_Uptodate, &r1_bio->state);
 333	else {
 334		/* If all other devices have failed, we want to return
 335		 * the error upwards rather than fail the last device.
 336		 * Here we redefine "uptodate" to mean "Don't want to retry"
 337		 */
 338		unsigned long flags;
 339		spin_lock_irqsave(&conf->device_lock, flags);
 340		if (r1_bio->mddev->degraded == conf->raid_disks ||
 341		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 342		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
 343			uptodate = 1;
 344		spin_unlock_irqrestore(&conf->device_lock, flags);
 345	}
 346
 347	if (uptodate) {
 348		raid_end_bio_io(r1_bio);
 349		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 350	} else {
 351		/*
 352		 * oops, read error:
 353		 */
 354		char b[BDEVNAME_SIZE];
 355		printk_ratelimited(
 356			KERN_ERR "md/raid1:%s: %s: "
 357			"rescheduling sector %llu\n",
 358			mdname(conf->mddev),
 359			bdevname(conf->mirrors[mirror].rdev->bdev,
 360				 b),
 361			(unsigned long long)r1_bio->sector);
 362		set_bit(R1BIO_ReadError, &r1_bio->state);
 363		reschedule_retry(r1_bio);
 364		/* don't drop the reference on read_disk yet */
 365	}
 
 
 366}
 367
 368static void close_write(struct r1bio *r1_bio)
 369{
 370	/* it really is the end of this request */
 371	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 372		/* free extra copy of the data pages */
 373		int i = r1_bio->behind_page_count;
 374		while (i--)
 375			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 376		kfree(r1_bio->behind_bvecs);
 377		r1_bio->behind_bvecs = NULL;
 378	}
 379	/* clear the bitmap if all writes complete successfully */
 380	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 381			r1_bio->sectors,
 382			!test_bit(R1BIO_Degraded, &r1_bio->state),
 383			test_bit(R1BIO_BehindIO, &r1_bio->state));
 384	md_write_end(r1_bio->mddev);
 385}
 386
 387static void r1_bio_write_done(struct r1bio *r1_bio)
 388{
 389	if (!atomic_dec_and_test(&r1_bio->remaining))
 390		return;
 391
 392	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 393		reschedule_retry(r1_bio);
 394	else {
 395		close_write(r1_bio);
 396		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 397			reschedule_retry(r1_bio);
 398		else
 399			raid_end_bio_io(r1_bio);
 400	}
 401}
 402
 403static void raid1_end_write_request(struct bio *bio)
 404{
 
 405	struct r1bio *r1_bio = bio->bi_private;
 406	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 407	struct r1conf *conf = r1_bio->mddev->private;
 408	struct bio *to_put = NULL;
 409
 410	mirror = find_bio_disk(r1_bio, bio);
 411
 412	/*
 413	 * 'one mirror IO has finished' event handler:
 414	 */
 415	if (bio->bi_error) {
 416		set_bit(WriteErrorSeen,
 417			&conf->mirrors[mirror].rdev->flags);
 418		if (!test_and_set_bit(WantReplacement,
 419				      &conf->mirrors[mirror].rdev->flags))
 420			set_bit(MD_RECOVERY_NEEDED, &
 421				conf->mddev->recovery);
 422
 423		set_bit(R1BIO_WriteError, &r1_bio->state);
 424	} else {
 425		/*
 426		 * Set R1BIO_Uptodate in our master bio, so that we
 427		 * will return a good error code for to the higher
 428		 * levels even if IO on some other mirrored buffer
 429		 * fails.
 430		 *
 431		 * The 'master' represents the composite IO operation
 432		 * to user-side. So if something waits for IO, then it
 433		 * will wait for the 'master' bio.
 434		 */
 435		sector_t first_bad;
 436		int bad_sectors;
 437
 438		r1_bio->bios[mirror] = NULL;
 439		to_put = bio;
 440		/*
 441		 * Do not set R1BIO_Uptodate if the current device is
 442		 * rebuilding or Faulty. This is because we cannot use
 443		 * such device for properly reading the data back (we could
 444		 * potentially use it, if the current write would have felt
 445		 * before rdev->recovery_offset, but for simplicity we don't
 446		 * check this here.
 447		 */
 448		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
 449		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
 450			set_bit(R1BIO_Uptodate, &r1_bio->state);
 451
 452		/* Maybe we can clear some bad blocks. */
 453		if (is_badblock(conf->mirrors[mirror].rdev,
 454				r1_bio->sector, r1_bio->sectors,
 455				&first_bad, &bad_sectors)) {
 456			r1_bio->bios[mirror] = IO_MADE_GOOD;
 457			set_bit(R1BIO_MadeGood, &r1_bio->state);
 458		}
 459	}
 460
 461	if (behind) {
 462		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 463			atomic_dec(&r1_bio->behind_remaining);
 464
 465		/*
 466		 * In behind mode, we ACK the master bio once the I/O
 467		 * has safely reached all non-writemostly
 468		 * disks. Setting the Returned bit ensures that this
 469		 * gets done only once -- we don't ever want to return
 470		 * -EIO here, instead we'll wait
 471		 */
 472		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 473		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 474			/* Maybe we can return now */
 475			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 476				struct bio *mbio = r1_bio->master_bio;
 477				pr_debug("raid1: behind end write sectors"
 478					 " %llu-%llu\n",
 479					 (unsigned long long) mbio->bi_iter.bi_sector,
 480					 (unsigned long long) bio_end_sector(mbio) - 1);
 
 481				call_bio_endio(r1_bio);
 482			}
 483		}
 484	}
 485	if (r1_bio->bios[mirror] == NULL)
 486		rdev_dec_pending(conf->mirrors[mirror].rdev,
 487				 conf->mddev);
 488
 489	/*
 490	 * Let's see if all mirrored write operations have finished
 491	 * already.
 492	 */
 493	r1_bio_write_done(r1_bio);
 494
 495	if (to_put)
 496		bio_put(to_put);
 497}
 498
 
 499/*
 500 * This routine returns the disk from which the requested read should
 501 * be done. There is a per-array 'next expected sequential IO' sector
 502 * number - if this matches on the next IO then we use the last disk.
 503 * There is also a per-disk 'last know head position' sector that is
 504 * maintained from IRQ contexts, both the normal and the resync IO
 505 * completion handlers update this position correctly. If there is no
 506 * perfect sequential match then we pick the disk whose head is closest.
 507 *
 508 * If there are 2 mirrors in the same 2 devices, performance degrades
 509 * because position is mirror, not device based.
 510 *
 511 * The rdev for the device selected will have nr_pending incremented.
 512 */
 513static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 514{
 515	const sector_t this_sector = r1_bio->sector;
 516	int sectors;
 517	int best_good_sectors;
 518	int best_disk, best_dist_disk, best_pending_disk;
 519	int has_nonrot_disk;
 520	int disk;
 521	sector_t best_dist;
 522	unsigned int min_pending;
 523	struct md_rdev *rdev;
 524	int choose_first;
 525	int choose_next_idle;
 526
 527	rcu_read_lock();
 528	/*
 529	 * Check if we can balance. We can balance on the whole
 530	 * device if no resync is going on, or below the resync window.
 531	 * We take the first readable disk when above the resync window.
 532	 */
 533 retry:
 534	sectors = r1_bio->sectors;
 535	best_disk = -1;
 536	best_dist_disk = -1;
 537	best_dist = MaxSector;
 538	best_pending_disk = -1;
 539	min_pending = UINT_MAX;
 540	best_good_sectors = 0;
 541	has_nonrot_disk = 0;
 542	choose_next_idle = 0;
 543
 544	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 545	    (mddev_is_clustered(conf->mddev) &&
 546	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 547		    this_sector + sectors)))
 548		choose_first = 1;
 549	else
 
 550		choose_first = 0;
 
 
 551
 552	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 553		sector_t dist;
 554		sector_t first_bad;
 555		int bad_sectors;
 556		unsigned int pending;
 557		bool nonrot;
 
 
 558
 559		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 560		if (r1_bio->bios[disk] == IO_BLOCKED
 561		    || rdev == NULL
 
 562		    || test_bit(Faulty, &rdev->flags))
 563			continue;
 564		if (!test_bit(In_sync, &rdev->flags) &&
 565		    rdev->recovery_offset < this_sector + sectors)
 566			continue;
 567		if (test_bit(WriteMostly, &rdev->flags)) {
 568			/* Don't balance among write-mostly, just
 569			 * use the first as a last resort */
 570			if (best_dist_disk < 0) {
 571				if (is_badblock(rdev, this_sector, sectors,
 572						&first_bad, &bad_sectors)) {
 573					if (first_bad <= this_sector)
 574						/* Cannot use this */
 575						continue;
 576					best_good_sectors = first_bad - this_sector;
 577				} else
 578					best_good_sectors = sectors;
 579				best_dist_disk = disk;
 580				best_pending_disk = disk;
 581			}
 582			continue;
 583		}
 584		/* This is a reasonable device to use.  It might
 585		 * even be best.
 586		 */
 587		if (is_badblock(rdev, this_sector, sectors,
 588				&first_bad, &bad_sectors)) {
 589			if (best_dist < MaxSector)
 590				/* already have a better device */
 591				continue;
 592			if (first_bad <= this_sector) {
 593				/* cannot read here. If this is the 'primary'
 594				 * device, then we must not read beyond
 595				 * bad_sectors from another device..
 596				 */
 597				bad_sectors -= (this_sector - first_bad);
 598				if (choose_first && sectors > bad_sectors)
 599					sectors = bad_sectors;
 600				if (best_good_sectors > sectors)
 601					best_good_sectors = sectors;
 602
 603			} else {
 604				sector_t good_sectors = first_bad - this_sector;
 605				if (good_sectors > best_good_sectors) {
 606					best_good_sectors = good_sectors;
 607					best_disk = disk;
 608				}
 609				if (choose_first)
 610					break;
 611			}
 612			continue;
 613		} else
 614			best_good_sectors = sectors;
 615
 616		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 617		has_nonrot_disk |= nonrot;
 618		pending = atomic_read(&rdev->nr_pending);
 619		dist = abs(this_sector - conf->mirrors[disk].head_position);
 620		if (choose_first) {
 
 
 
 
 
 621			best_disk = disk;
 622			break;
 623		}
 624		/* Don't change to another disk for sequential reads */
 625		if (conf->mirrors[disk].next_seq_sect == this_sector
 626		    || dist == 0) {
 627			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 628			struct raid1_info *mirror = &conf->mirrors[disk];
 629
 630			best_disk = disk;
 631			/*
 632			 * If buffered sequential IO size exceeds optimal
 633			 * iosize, check if there is idle disk. If yes, choose
 634			 * the idle disk. read_balance could already choose an
 635			 * idle disk before noticing it's a sequential IO in
 636			 * this disk. This doesn't matter because this disk
 637			 * will idle, next time it will be utilized after the
 638			 * first disk has IO size exceeds optimal iosize. In
 639			 * this way, iosize of the first disk will be optimal
 640			 * iosize at least. iosize of the second disk might be
 641			 * small, but not a big deal since when the second disk
 642			 * starts IO, the first disk is likely still busy.
 643			 */
 644			if (nonrot && opt_iosize > 0 &&
 645			    mirror->seq_start != MaxSector &&
 646			    mirror->next_seq_sect > opt_iosize &&
 647			    mirror->next_seq_sect - opt_iosize >=
 648			    mirror->seq_start) {
 649				choose_next_idle = 1;
 650				continue;
 651			}
 652			break;
 653		}
 654		/* If device is idle, use it */
 655		if (pending == 0) {
 656			best_disk = disk;
 657			break;
 658		}
 659
 660		if (choose_next_idle)
 661			continue;
 662
 663		if (min_pending > pending) {
 664			min_pending = pending;
 665			best_pending_disk = disk;
 666		}
 667
 668		if (dist < best_dist) {
 669			best_dist = dist;
 670			best_dist_disk = disk;
 671		}
 672	}
 673
 674	/*
 675	 * If all disks are rotational, choose the closest disk. If any disk is
 676	 * non-rotational, choose the disk with less pending request even the
 677	 * disk is rotational, which might/might not be optimal for raids with
 678	 * mixed ratation/non-rotational disks depending on workload.
 679	 */
 680	if (best_disk == -1) {
 681		if (has_nonrot_disk)
 682			best_disk = best_pending_disk;
 683		else
 684			best_disk = best_dist_disk;
 685	}
 686
 687	if (best_disk >= 0) {
 688		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 689		if (!rdev)
 690			goto retry;
 691		atomic_inc(&rdev->nr_pending);
 692		if (test_bit(Faulty, &rdev->flags)) {
 693			/* cannot risk returning a device that failed
 694			 * before we inc'ed nr_pending
 695			 */
 696			rdev_dec_pending(rdev, conf->mddev);
 697			goto retry;
 698		}
 699		sectors = best_good_sectors;
 700
 701		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 702			conf->mirrors[best_disk].seq_start = this_sector;
 703
 704		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 705	}
 706	rcu_read_unlock();
 707	*max_sectors = sectors;
 708
 709	return best_disk;
 710}
 711
 712static int raid1_congested(struct mddev *mddev, int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713{
 714	struct r1conf *conf = mddev->private;
 715	int i, ret = 0;
 716
 717	if ((bits & (1 << WB_async_congested)) &&
 718	    conf->pending_count >= max_queued_requests)
 719		return 1;
 720
 721	rcu_read_lock();
 722	for (i = 0; i < conf->raid_disks * 2; i++) {
 723		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 724		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 725			struct request_queue *q = bdev_get_queue(rdev->bdev);
 726
 727			BUG_ON(!q);
 728
 729			/* Note the '|| 1' - when read_balance prefers
 730			 * non-congested targets, it can be removed
 731			 */
 732			if ((bits & (1 << WB_async_congested)) || 1)
 733				ret |= bdi_congested(&q->backing_dev_info, bits);
 734			else
 735				ret &= bdi_congested(&q->backing_dev_info, bits);
 736		}
 737	}
 738	rcu_read_unlock();
 739	return ret;
 740}
 
 
 
 
 
 
 
 
 
 741
 742static void flush_pending_writes(struct r1conf *conf)
 743{
 744	/* Any writes that have been queued but are awaiting
 745	 * bitmap updates get flushed here.
 746	 */
 747	spin_lock_irq(&conf->device_lock);
 748
 749	if (conf->pending_bio_list.head) {
 750		struct bio *bio;
 751		bio = bio_list_get(&conf->pending_bio_list);
 752		conf->pending_count = 0;
 753		spin_unlock_irq(&conf->device_lock);
 754		/* flush any pending bitmap writes to
 755		 * disk before proceeding w/ I/O */
 756		bitmap_unplug(conf->mddev->bitmap);
 757		wake_up(&conf->wait_barrier);
 758
 759		while (bio) { /* submit pending writes */
 760			struct bio *next = bio->bi_next;
 761			bio->bi_next = NULL;
 762			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 763			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 764				/* Just ignore it */
 765				bio_endio(bio);
 766			else
 767				generic_make_request(bio);
 768			bio = next;
 769		}
 770	} else
 771		spin_unlock_irq(&conf->device_lock);
 772}
 773
 774/* Barriers....
 775 * Sometimes we need to suspend IO while we do something else,
 776 * either some resync/recovery, or reconfigure the array.
 777 * To do this we raise a 'barrier'.
 778 * The 'barrier' is a counter that can be raised multiple times
 779 * to count how many activities are happening which preclude
 780 * normal IO.
 781 * We can only raise the barrier if there is no pending IO.
 782 * i.e. if nr_pending == 0.
 783 * We choose only to raise the barrier if no-one is waiting for the
 784 * barrier to go down.  This means that as soon as an IO request
 785 * is ready, no other operations which require a barrier will start
 786 * until the IO request has had a chance.
 787 *
 788 * So: regular IO calls 'wait_barrier'.  When that returns there
 789 *    is no backgroup IO happening,  It must arrange to call
 790 *    allow_barrier when it has finished its IO.
 791 * backgroup IO calls must call raise_barrier.  Once that returns
 792 *    there is no normal IO happeing.  It must arrange to call
 793 *    lower_barrier when the particular background IO completes.
 794 */
 795static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
 
 
 796{
 797	spin_lock_irq(&conf->resync_lock);
 798
 799	/* Wait until no block IO is waiting */
 800	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 801			    conf->resync_lock);
 802
 803	/* block any new IO from starting */
 804	conf->barrier++;
 805	conf->next_resync = sector_nr;
 806
 807	/* For these conditions we must wait:
 808	 * A: while the array is in frozen state
 809	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 810	 *    the max count which allowed.
 811	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 812	 *    next resync will reach to the window which normal bios are
 813	 *    handling.
 814	 * D: while there are any active requests in the current window.
 815	 */
 816	wait_event_lock_irq(conf->wait_barrier,
 817			    !conf->array_frozen &&
 818			    conf->barrier < RESYNC_DEPTH &&
 819			    conf->current_window_requests == 0 &&
 820			    (conf->start_next_window >=
 821			     conf->next_resync + RESYNC_SECTORS),
 822			    conf->resync_lock);
 823
 824	conf->nr_pending++;
 825	spin_unlock_irq(&conf->resync_lock);
 826}
 827
 828static void lower_barrier(struct r1conf *conf)
 829{
 830	unsigned long flags;
 831	BUG_ON(conf->barrier <= 0);
 832	spin_lock_irqsave(&conf->resync_lock, flags);
 833	conf->barrier--;
 834	conf->nr_pending--;
 835	spin_unlock_irqrestore(&conf->resync_lock, flags);
 836	wake_up(&conf->wait_barrier);
 837}
 838
 839static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 840{
 841	bool wait = false;
 842
 843	if (conf->array_frozen || !bio)
 844		wait = true;
 845	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 846		if ((conf->mddev->curr_resync_completed
 847		     >= bio_end_sector(bio)) ||
 848		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
 849		     <= bio->bi_iter.bi_sector))
 850			wait = false;
 851		else
 852			wait = true;
 853	}
 854
 855	return wait;
 856}
 857
 858static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 859{
 860	sector_t sector = 0;
 861
 862	spin_lock_irq(&conf->resync_lock);
 863	if (need_to_wait_for_sync(conf, bio)) {
 864		conf->nr_waiting++;
 865		/* Wait for the barrier to drop.
 866		 * However if there are already pending
 867		 * requests (preventing the barrier from
 868		 * rising completely), and the
 869		 * per-process bio queue isn't empty,
 870		 * then don't wait, as we need to empty
 871		 * that queue to allow conf->start_next_window
 872		 * to increase.
 873		 */
 874		wait_event_lock_irq(conf->wait_barrier,
 875				    !conf->array_frozen &&
 876				    (!conf->barrier ||
 877				     ((conf->start_next_window <
 878				       conf->next_resync + RESYNC_SECTORS) &&
 879				      current->bio_list &&
 880				      !bio_list_empty(current->bio_list))),
 881				    conf->resync_lock);
 882		conf->nr_waiting--;
 883	}
 884
 885	if (bio && bio_data_dir(bio) == WRITE) {
 886		if (bio->bi_iter.bi_sector >= conf->next_resync) {
 887			if (conf->start_next_window == MaxSector)
 888				conf->start_next_window =
 889					conf->next_resync +
 890					NEXT_NORMALIO_DISTANCE;
 891
 892			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 893			    <= bio->bi_iter.bi_sector)
 894				conf->next_window_requests++;
 895			else
 896				conf->current_window_requests++;
 897			sector = conf->start_next_window;
 898		}
 899	}
 900
 901	conf->nr_pending++;
 902	spin_unlock_irq(&conf->resync_lock);
 903	return sector;
 904}
 905
 906static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 907			  sector_t bi_sector)
 908{
 909	unsigned long flags;
 910
 911	spin_lock_irqsave(&conf->resync_lock, flags);
 912	conf->nr_pending--;
 913	if (start_next_window) {
 914		if (start_next_window == conf->start_next_window) {
 915			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 916			    <= bi_sector)
 917				conf->next_window_requests--;
 918			else
 919				conf->current_window_requests--;
 920		} else
 921			conf->current_window_requests--;
 922
 923		if (!conf->current_window_requests) {
 924			if (conf->next_window_requests) {
 925				conf->current_window_requests =
 926					conf->next_window_requests;
 927				conf->next_window_requests = 0;
 928				conf->start_next_window +=
 929					NEXT_NORMALIO_DISTANCE;
 930			} else
 931				conf->start_next_window = MaxSector;
 932		}
 933	}
 934	spin_unlock_irqrestore(&conf->resync_lock, flags);
 935	wake_up(&conf->wait_barrier);
 936}
 937
 938static void freeze_array(struct r1conf *conf, int extra)
 939{
 940	/* stop syncio and normal IO and wait for everything to
 941	 * go quite.
 942	 * We wait until nr_pending match nr_queued+extra
 
 943	 * This is called in the context of one normal IO request
 944	 * that has failed. Thus any sync request that might be pending
 945	 * will be blocked by nr_pending, and we need to wait for
 946	 * pending IO requests to complete or be queued for re-try.
 947	 * Thus the number queued (nr_queued) plus this request (extra)
 948	 * must match the number of pending IOs (nr_pending) before
 949	 * we continue.
 950	 */
 951	spin_lock_irq(&conf->resync_lock);
 952	conf->array_frozen = 1;
 953	wait_event_lock_irq_cmd(conf->wait_barrier,
 954				conf->nr_pending == conf->nr_queued+extra,
 955				conf->resync_lock,
 956				flush_pending_writes(conf));
 
 957	spin_unlock_irq(&conf->resync_lock);
 958}
 959static void unfreeze_array(struct r1conf *conf)
 960{
 961	/* reverse the effect of the freeze */
 962	spin_lock_irq(&conf->resync_lock);
 963	conf->array_frozen = 0;
 
 964	wake_up(&conf->wait_barrier);
 965	spin_unlock_irq(&conf->resync_lock);
 966}
 967
 968/* duplicate the data pages for behind I/O
 
 969 */
 970static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
 971{
 972	int i;
 973	struct bio_vec *bvec;
 974	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 975					GFP_NOIO);
 976	if (unlikely(!bvecs))
 977		return;
 978
 979	bio_for_each_segment_all(bvec, bio, i) {
 980		bvecs[i] = *bvec;
 981		bvecs[i].bv_page = alloc_page(GFP_NOIO);
 982		if (unlikely(!bvecs[i].bv_page))
 983			goto do_sync_io;
 984		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 985		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 986		kunmap(bvecs[i].bv_page);
 987		kunmap(bvec->bv_page);
 988	}
 989	r1_bio->behind_bvecs = bvecs;
 990	r1_bio->behind_page_count = bio->bi_vcnt;
 991	set_bit(R1BIO_BehindIO, &r1_bio->state);
 992	return;
 993
 994do_sync_io:
 995	for (i = 0; i < bio->bi_vcnt; i++)
 996		if (bvecs[i].bv_page)
 997			put_page(bvecs[i].bv_page);
 998	kfree(bvecs);
 999	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000		 bio->bi_iter.bi_size);
1001}
1002
1003struct raid1_plug_cb {
1004	struct blk_plug_cb	cb;
1005	struct bio_list		pending;
1006	int			pending_cnt;
1007};
1008
1009static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010{
1011	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1012						  cb);
1013	struct mddev *mddev = plug->cb.data;
1014	struct r1conf *conf = mddev->private;
1015	struct bio *bio;
1016
1017	if (from_schedule || current->bio_list) {
1018		spin_lock_irq(&conf->device_lock);
1019		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020		conf->pending_count += plug->pending_cnt;
1021		spin_unlock_irq(&conf->device_lock);
1022		wake_up(&conf->wait_barrier);
1023		md_wakeup_thread(mddev->thread);
1024		kfree(plug);
1025		return;
1026	}
1027
1028	/* we aren't scheduling, so we can do the write-out directly. */
1029	bio = bio_list_get(&plug->pending);
1030	bitmap_unplug(mddev->bitmap);
1031	wake_up(&conf->wait_barrier);
1032
1033	while (bio) { /* submit pending writes */
1034		struct bio *next = bio->bi_next;
1035		bio->bi_next = NULL;
1036		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1037		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038			/* Just ignore it */
1039			bio_endio(bio);
1040		else
1041			generic_make_request(bio);
1042		bio = next;
1043	}
1044	kfree(plug);
1045}
1046
1047static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1048{
1049	struct r1conf *conf = mddev->private;
1050	struct raid1_info *mirror;
1051	struct r1bio *r1_bio;
1052	struct bio *read_bio;
1053	int i, disks;
1054	struct bitmap *bitmap;
1055	unsigned long flags;
1056	const int rw = bio_data_dir(bio);
1057	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1058	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1059	const unsigned long do_discard = (bio->bi_rw
1060					  & (REQ_DISCARD | REQ_SECURE));
1061	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1062	struct md_rdev *blocked_rdev;
1063	struct blk_plug_cb *cb;
1064	struct raid1_plug_cb *plug = NULL;
1065	int first_clone;
1066	int sectors_handled;
1067	int max_sectors;
1068	sector_t start_next_window;
1069
1070	/*
1071	 * Register the new request and wait if the reconstruction
1072	 * thread has put up a bar for new requests.
1073	 * Continue immediately if no resync is active currently.
1074	 */
1075
1076	md_write_start(mddev, bio); /* wait on superblock update early */
1077
1078	if (bio_data_dir(bio) == WRITE &&
1079	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1080	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1081	    (mddev_is_clustered(mddev) &&
1082	     md_cluster_ops->area_resyncing(mddev, WRITE,
1083		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1084		/* As the suspend_* range is controlled by
1085		 * userspace, we want an interruptible
1086		 * wait.
1087		 */
1088		DEFINE_WAIT(w);
1089		for (;;) {
1090			flush_signals(current);
1091			prepare_to_wait(&conf->wait_barrier,
1092					&w, TASK_INTERRUPTIBLE);
1093			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1094			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1095			    (mddev_is_clustered(mddev) &&
1096			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1097				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1098				break;
1099			schedule();
1100		}
1101		finish_wait(&conf->wait_barrier, &w);
1102	}
1103
1104	start_next_window = wait_barrier(conf, bio);
1105
1106	bitmap = mddev->bitmap;
1107
1108	/*
1109	 * make_request() can abort the operation when READA is being
1110	 * used and no empty request is available.
1111	 *
1112	 */
1113	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1114
1115	r1_bio->master_bio = bio;
1116	r1_bio->sectors = bio_sectors(bio);
1117	r1_bio->state = 0;
1118	r1_bio->mddev = mddev;
1119	r1_bio->sector = bio->bi_iter.bi_sector;
1120
1121	/* We might need to issue multiple reads to different
1122	 * devices if there are bad blocks around, so we keep
1123	 * track of the number of reads in bio->bi_phys_segments.
1124	 * If this is 0, there is only one r1_bio and no locking
1125	 * will be needed when requests complete.  If it is
1126	 * non-zero, then it is the number of not-completed requests.
1127	 */
1128	bio->bi_phys_segments = 0;
1129	bio_clear_flag(bio, BIO_SEG_VALID);
1130
1131	if (rw == READ) {
1132		/*
1133		 * read balancing logic:
1134		 */
1135		int rdisk;
1136
1137read_again:
1138		rdisk = read_balance(conf, r1_bio, &max_sectors);
1139
1140		if (rdisk < 0) {
1141			/* couldn't find anywhere to read from */
1142			raid_end_bio_io(r1_bio);
1143			return;
1144		}
1145		mirror = conf->mirrors + rdisk;
1146
1147		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1148		    bitmap) {
1149			/* Reading from a write-mostly device must
1150			 * take care not to over-take any writes
1151			 * that are 'behind'
1152			 */
1153			wait_event(bitmap->behind_wait,
1154				   atomic_read(&bitmap->behind_writes) == 0);
1155		}
1156		r1_bio->read_disk = rdisk;
1157		r1_bio->start_next_window = 0;
1158
1159		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1160		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1161			 max_sectors);
1162
1163		r1_bio->bios[rdisk] = read_bio;
1164
1165		read_bio->bi_iter.bi_sector = r1_bio->sector +
1166			mirror->rdev->data_offset;
1167		read_bio->bi_bdev = mirror->rdev->bdev;
1168		read_bio->bi_end_io = raid1_end_read_request;
1169		read_bio->bi_rw = READ | do_sync;
1170		read_bio->bi_private = r1_bio;
1171
1172		if (max_sectors < r1_bio->sectors) {
1173			/* could not read all from this device, so we will
1174			 * need another r1_bio.
1175			 */
1176
1177			sectors_handled = (r1_bio->sector + max_sectors
1178					   - bio->bi_iter.bi_sector);
1179			r1_bio->sectors = max_sectors;
1180			spin_lock_irq(&conf->device_lock);
1181			if (bio->bi_phys_segments == 0)
1182				bio->bi_phys_segments = 2;
1183			else
1184				bio->bi_phys_segments++;
1185			spin_unlock_irq(&conf->device_lock);
1186			/* Cannot call generic_make_request directly
1187			 * as that will be queued in __make_request
1188			 * and subsequent mempool_alloc might block waiting
1189			 * for it.  So hand bio over to raid1d.
1190			 */
1191			reschedule_retry(r1_bio);
1192
1193			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1194
1195			r1_bio->master_bio = bio;
1196			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1197			r1_bio->state = 0;
1198			r1_bio->mddev = mddev;
1199			r1_bio->sector = bio->bi_iter.bi_sector +
1200				sectors_handled;
1201			goto read_again;
1202		} else
1203			generic_make_request(read_bio);
1204		return;
1205	}
1206
1207	/*
1208	 * WRITE:
1209	 */
1210	if (conf->pending_count >= max_queued_requests) {
1211		md_wakeup_thread(mddev->thread);
1212		wait_event(conf->wait_barrier,
1213			   conf->pending_count < max_queued_requests);
1214	}
1215	/* first select target devices under rcu_lock and
1216	 * inc refcount on their rdev.  Record them by setting
1217	 * bios[x] to bio
1218	 * If there are known/acknowledged bad blocks on any device on
1219	 * which we have seen a write error, we want to avoid writing those
1220	 * blocks.
1221	 * This potentially requires several writes to write around
1222	 * the bad blocks.  Each set of writes gets it's own r1bio
1223	 * with a set of bios attached.
1224	 */
1225
1226	disks = conf->raid_disks * 2;
1227 retry_write:
1228	r1_bio->start_next_window = start_next_window;
1229	blocked_rdev = NULL;
1230	rcu_read_lock();
1231	max_sectors = r1_bio->sectors;
1232	for (i = 0;  i < disks; i++) {
1233		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1234		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1235			atomic_inc(&rdev->nr_pending);
1236			blocked_rdev = rdev;
1237			break;
1238		}
1239		r1_bio->bios[i] = NULL;
1240		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 
1241			if (i < conf->raid_disks)
1242				set_bit(R1BIO_Degraded, &r1_bio->state);
1243			continue;
1244		}
1245
1246		atomic_inc(&rdev->nr_pending);
1247		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1248			sector_t first_bad;
1249			int bad_sectors;
1250			int is_bad;
1251
1252			is_bad = is_badblock(rdev, r1_bio->sector,
1253					     max_sectors,
1254					     &first_bad, &bad_sectors);
1255			if (is_bad < 0) {
1256				/* mustn't write here until the bad block is
1257				 * acknowledged*/
1258				set_bit(BlockedBadBlocks, &rdev->flags);
1259				blocked_rdev = rdev;
1260				break;
1261			}
1262			if (is_bad && first_bad <= r1_bio->sector) {
1263				/* Cannot write here at all */
1264				bad_sectors -= (r1_bio->sector - first_bad);
1265				if (bad_sectors < max_sectors)
1266					/* mustn't write more than bad_sectors
1267					 * to other devices yet
1268					 */
1269					max_sectors = bad_sectors;
1270				rdev_dec_pending(rdev, mddev);
1271				/* We don't set R1BIO_Degraded as that
1272				 * only applies if the disk is
1273				 * missing, so it might be re-added,
1274				 * and we want to know to recover this
1275				 * chunk.
1276				 * In this case the device is here,
1277				 * and the fact that this chunk is not
1278				 * in-sync is recorded in the bad
1279				 * block log
1280				 */
1281				continue;
1282			}
1283			if (is_bad) {
1284				int good_sectors = first_bad - r1_bio->sector;
1285				if (good_sectors < max_sectors)
1286					max_sectors = good_sectors;
1287			}
1288		}
1289		r1_bio->bios[i] = bio;
1290	}
1291	rcu_read_unlock();
1292
1293	if (unlikely(blocked_rdev)) {
1294		/* Wait for this device to become unblocked */
1295		int j;
1296		sector_t old = start_next_window;
1297
1298		for (j = 0; j < i; j++)
1299			if (r1_bio->bios[j])
1300				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1301		r1_bio->state = 0;
1302		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1303		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1304		start_next_window = wait_barrier(conf, bio);
1305		/*
1306		 * We must make sure the multi r1bios of bio have
1307		 * the same value of bi_phys_segments
1308		 */
1309		if (bio->bi_phys_segments && old &&
1310		    old != start_next_window)
1311			/* Wait for the former r1bio(s) to complete */
1312			wait_event(conf->wait_barrier,
1313				   bio->bi_phys_segments == 1);
1314		goto retry_write;
1315	}
1316
1317	if (max_sectors < r1_bio->sectors) {
1318		/* We are splitting this write into multiple parts, so
1319		 * we need to prepare for allocating another r1_bio.
1320		 */
1321		r1_bio->sectors = max_sectors;
1322		spin_lock_irq(&conf->device_lock);
1323		if (bio->bi_phys_segments == 0)
1324			bio->bi_phys_segments = 2;
1325		else
1326			bio->bi_phys_segments++;
1327		spin_unlock_irq(&conf->device_lock);
1328	}
1329	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1330
1331	atomic_set(&r1_bio->remaining, 1);
1332	atomic_set(&r1_bio->behind_remaining, 0);
1333
1334	first_clone = 1;
1335	for (i = 0; i < disks; i++) {
1336		struct bio *mbio;
1337		if (!r1_bio->bios[i])
1338			continue;
1339
1340		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1341		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1342
1343		if (first_clone) {
1344			/* do behind I/O ?
1345			 * Not if there are too many, or cannot
1346			 * allocate memory, or a reader on WriteMostly
1347			 * is waiting for behind writes to flush */
1348			if (bitmap &&
1349			    (atomic_read(&bitmap->behind_writes)
1350			     < mddev->bitmap_info.max_write_behind) &&
1351			    !waitqueue_active(&bitmap->behind_wait))
1352				alloc_behind_pages(mbio, r1_bio);
1353
1354			bitmap_startwrite(bitmap, r1_bio->sector,
1355					  r1_bio->sectors,
1356					  test_bit(R1BIO_BehindIO,
1357						   &r1_bio->state));
1358			first_clone = 0;
1359		}
1360		if (r1_bio->behind_bvecs) {
1361			struct bio_vec *bvec;
1362			int j;
1363
1364			/*
1365			 * We trimmed the bio, so _all is legit
 
 
 
 
1366			 */
1367			bio_for_each_segment_all(bvec, mbio, j)
1368				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1369			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1370				atomic_inc(&r1_bio->behind_remaining);
1371		}
1372
1373		r1_bio->bios[i] = mbio;
1374
1375		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1376				   conf->mirrors[i].rdev->data_offset);
1377		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1378		mbio->bi_end_io	= raid1_end_write_request;
1379		mbio->bi_rw =
1380			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1381		mbio->bi_private = r1_bio;
1382
1383		atomic_inc(&r1_bio->remaining);
1384
1385		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1386		if (cb)
1387			plug = container_of(cb, struct raid1_plug_cb, cb);
1388		else
1389			plug = NULL;
1390		spin_lock_irqsave(&conf->device_lock, flags);
1391		if (plug) {
1392			bio_list_add(&plug->pending, mbio);
1393			plug->pending_cnt++;
1394		} else {
1395			bio_list_add(&conf->pending_bio_list, mbio);
1396			conf->pending_count++;
1397		}
1398		spin_unlock_irqrestore(&conf->device_lock, flags);
1399		if (!plug)
1400			md_wakeup_thread(mddev->thread);
1401	}
1402	/* Mustn't call r1_bio_write_done before this next test,
1403	 * as it could result in the bio being freed.
1404	 */
1405	if (sectors_handled < bio_sectors(bio)) {
1406		r1_bio_write_done(r1_bio);
1407		/* We need another r1_bio.  It has already been counted
1408		 * in bio->bi_phys_segments
1409		 */
1410		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1411		r1_bio->master_bio = bio;
1412		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1413		r1_bio->state = 0;
1414		r1_bio->mddev = mddev;
1415		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1416		goto retry_write;
1417	}
1418
1419	r1_bio_write_done(r1_bio);
1420
1421	/* In case raid1d snuck in to freeze_array */
1422	wake_up(&conf->wait_barrier);
1423}
1424
1425static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1426{
1427	struct r1conf *conf = mddev->private;
1428	int i;
1429
1430	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1431		   conf->raid_disks - mddev->degraded);
1432	rcu_read_lock();
1433	for (i = 0; i < conf->raid_disks; i++) {
1434		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1435		seq_printf(seq, "%s",
1436			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1437	}
1438	rcu_read_unlock();
1439	seq_printf(seq, "]");
1440}
1441
1442static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
 
1443{
1444	char b[BDEVNAME_SIZE];
1445	struct r1conf *conf = mddev->private;
1446	unsigned long flags;
1447
1448	/*
1449	 * If it is not operational, then we have already marked it as dead
1450	 * else if it is the last working disks, ignore the error, let the
1451	 * next level up know.
1452	 * else mark the drive as failed
1453	 */
1454	if (test_bit(In_sync, &rdev->flags)
1455	    && (conf->raid_disks - mddev->degraded) == 1) {
1456		/*
1457		 * Don't fail the drive, act as though we were just a
1458		 * normal single drive.
1459		 * However don't try a recovery from this drive as
1460		 * it is very likely to fail.
1461		 */
1462		conf->recovery_disabled = mddev->recovery_disabled;
1463		return;
1464	}
1465	set_bit(Blocked, &rdev->flags);
1466	spin_lock_irqsave(&conf->device_lock, flags);
1467	if (test_and_clear_bit(In_sync, &rdev->flags)) {
 
 
1468		mddev->degraded++;
1469		set_bit(Faulty, &rdev->flags);
 
 
 
 
 
1470	} else
1471		set_bit(Faulty, &rdev->flags);
1472	spin_unlock_irqrestore(&conf->device_lock, flags);
1473	/*
1474	 * if recovery is running, make sure it aborts.
1475	 */
1476	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1477	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1478	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1479	printk(KERN_ALERT
1480	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1481	       "md/raid1:%s: Operation continuing on %d devices.\n",
1482	       mdname(mddev), bdevname(rdev->bdev, b),
1483	       mdname(mddev), conf->raid_disks - mddev->degraded);
1484}
1485
1486static void print_conf(struct r1conf *conf)
1487{
1488	int i;
1489
1490	printk(KERN_DEBUG "RAID1 conf printout:\n");
1491	if (!conf) {
1492		printk(KERN_DEBUG "(!conf)\n");
1493		return;
1494	}
1495	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1496		conf->raid_disks);
1497
1498	rcu_read_lock();
1499	for (i = 0; i < conf->raid_disks; i++) {
1500		char b[BDEVNAME_SIZE];
1501		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502		if (rdev)
1503			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1504			       i, !test_bit(In_sync, &rdev->flags),
1505			       !test_bit(Faulty, &rdev->flags),
1506			       bdevname(rdev->bdev,b));
1507	}
1508	rcu_read_unlock();
1509}
1510
1511static void close_sync(struct r1conf *conf)
1512{
1513	wait_barrier(conf, NULL);
1514	allow_barrier(conf, 0, 0);
1515
1516	mempool_destroy(conf->r1buf_pool);
1517	conf->r1buf_pool = NULL;
1518
1519	spin_lock_irq(&conf->resync_lock);
1520	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1521	conf->start_next_window = MaxSector;
1522	conf->current_window_requests +=
1523		conf->next_window_requests;
1524	conf->next_window_requests = 0;
1525	spin_unlock_irq(&conf->resync_lock);
1526}
1527
1528static int raid1_spare_active(struct mddev *mddev)
1529{
1530	int i;
1531	struct r1conf *conf = mddev->private;
1532	int count = 0;
1533	unsigned long flags;
1534
1535	/*
1536	 * Find all failed disks within the RAID1 configuration
1537	 * and mark them readable.
1538	 * Called under mddev lock, so rcu protection not needed.
1539	 * device_lock used to avoid races with raid1_end_read_request
1540	 * which expects 'In_sync' flags and ->degraded to be consistent.
1541	 */
1542	spin_lock_irqsave(&conf->device_lock, flags);
1543	for (i = 0; i < conf->raid_disks; i++) {
1544		struct md_rdev *rdev = conf->mirrors[i].rdev;
1545		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1546		if (repl
1547		    && !test_bit(Candidate, &repl->flags)
1548		    && repl->recovery_offset == MaxSector
1549		    && !test_bit(Faulty, &repl->flags)
1550		    && !test_and_set_bit(In_sync, &repl->flags)) {
1551			/* replacement has just become active */
1552			if (!rdev ||
1553			    !test_and_clear_bit(In_sync, &rdev->flags))
1554				count++;
1555			if (rdev) {
1556				/* Replaced device not technically
1557				 * faulty, but we need to be sure
1558				 * it gets removed and never re-added
1559				 */
1560				set_bit(Faulty, &rdev->flags);
1561				sysfs_notify_dirent_safe(
1562					rdev->sysfs_state);
1563			}
1564		}
1565		if (rdev
1566		    && rdev->recovery_offset == MaxSector
1567		    && !test_bit(Faulty, &rdev->flags)
1568		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1569			count++;
1570			sysfs_notify_dirent_safe(rdev->sysfs_state);
1571		}
1572	}
 
1573	mddev->degraded -= count;
1574	spin_unlock_irqrestore(&conf->device_lock, flags);
1575
1576	print_conf(conf);
1577	return count;
1578}
1579
 
1580static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1581{
1582	struct r1conf *conf = mddev->private;
1583	int err = -EEXIST;
1584	int mirror = 0;
1585	struct raid1_info *p;
1586	int first = 0;
1587	int last = conf->raid_disks - 1;
 
1588
1589	if (mddev->recovery_disabled == conf->recovery_disabled)
1590		return -EBUSY;
1591
1592	if (md_integrity_add_rdev(rdev, mddev))
1593		return -ENXIO;
1594
1595	if (rdev->raid_disk >= 0)
1596		first = last = rdev->raid_disk;
1597
1598	/*
1599	 * find the disk ... but prefer rdev->saved_raid_disk
1600	 * if possible.
1601	 */
1602	if (rdev->saved_raid_disk >= 0 &&
1603	    rdev->saved_raid_disk >= first &&
1604	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1605		first = last = rdev->saved_raid_disk;
1606
1607	for (mirror = first; mirror <= last; mirror++) {
1608		p = conf->mirrors+mirror;
1609		if (!p->rdev) {
1610
1611			if (mddev->gendisk)
1612				disk_stack_limits(mddev->gendisk, rdev->bdev,
1613						  rdev->data_offset << 9);
1614
1615			p->head_position = 0;
1616			rdev->raid_disk = mirror;
1617			err = 0;
1618			/* As all devices are equivalent, we don't need a full recovery
1619			 * if this was recently any drive of the array
1620			 */
1621			if (rdev->saved_raid_disk < 0)
1622				conf->fullsync = 1;
1623			rcu_assign_pointer(p->rdev, rdev);
1624			break;
1625		}
1626		if (test_bit(WantReplacement, &p->rdev->flags) &&
1627		    p[conf->raid_disks].rdev == NULL) {
1628			/* Add this device as a replacement */
1629			clear_bit(In_sync, &rdev->flags);
1630			set_bit(Replacement, &rdev->flags);
1631			rdev->raid_disk = mirror;
1632			err = 0;
1633			conf->fullsync = 1;
1634			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1635			break;
1636		}
1637	}
1638	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1639		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
 
 
 
 
 
 
 
 
 
 
 
 
1640	print_conf(conf);
1641	return err;
1642}
1643
1644static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1645{
1646	struct r1conf *conf = mddev->private;
1647	int err = 0;
1648	int number = rdev->raid_disk;
1649	struct raid1_info *p = conf->mirrors + number;
1650
1651	if (rdev != p->rdev)
1652		p = conf->mirrors + conf->raid_disks + number;
1653
1654	print_conf(conf);
1655	if (rdev == p->rdev) {
1656		if (test_bit(In_sync, &rdev->flags) ||
1657		    atomic_read(&rdev->nr_pending)) {
1658			err = -EBUSY;
1659			goto abort;
1660		}
1661		/* Only remove non-faulty devices if recovery
1662		 * is not possible.
1663		 */
1664		if (!test_bit(Faulty, &rdev->flags) &&
1665		    mddev->recovery_disabled != conf->recovery_disabled &&
1666		    mddev->degraded < conf->raid_disks) {
1667			err = -EBUSY;
1668			goto abort;
1669		}
1670		p->rdev = NULL;
1671		synchronize_rcu();
1672		if (atomic_read(&rdev->nr_pending)) {
1673			/* lost the race, try later */
1674			err = -EBUSY;
1675			p->rdev = rdev;
1676			goto abort;
1677		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1678			/* We just removed a device that is being replaced.
1679			 * Move down the replacement.  We drain all IO before
1680			 * doing this to avoid confusion.
1681			 */
1682			struct md_rdev *repl =
1683				conf->mirrors[conf->raid_disks + number].rdev;
1684			freeze_array(conf, 0);
1685			clear_bit(Replacement, &repl->flags);
1686			p->rdev = repl;
1687			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1688			unfreeze_array(conf);
1689			clear_bit(WantReplacement, &rdev->flags);
1690		} else
1691			clear_bit(WantReplacement, &rdev->flags);
1692		err = md_integrity_register(mddev);
1693	}
1694abort:
1695
1696	print_conf(conf);
1697	return err;
1698}
1699
1700static void end_sync_read(struct bio *bio)
 
1701{
1702	struct r1bio *r1_bio = bio->bi_private;
1703
1704	update_head_pos(r1_bio->read_disk, r1_bio);
1705
1706	/*
1707	 * we have read a block, now it needs to be re-written,
1708	 * or re-read if the read failed.
1709	 * We don't do much here, just schedule handling by raid1d
1710	 */
1711	if (!bio->bi_error)
1712		set_bit(R1BIO_Uptodate, &r1_bio->state);
1713
1714	if (atomic_dec_and_test(&r1_bio->remaining))
1715		reschedule_retry(r1_bio);
1716}
1717
1718static void end_sync_write(struct bio *bio)
1719{
1720	int uptodate = !bio->bi_error;
1721	struct r1bio *r1_bio = bio->bi_private;
1722	struct mddev *mddev = r1_bio->mddev;
1723	struct r1conf *conf = mddev->private;
1724	int mirror=0;
1725	sector_t first_bad;
1726	int bad_sectors;
1727
1728	mirror = find_bio_disk(r1_bio, bio);
1729
1730	if (!uptodate) {
1731		sector_t sync_blocks = 0;
1732		sector_t s = r1_bio->sector;
1733		long sectors_to_go = r1_bio->sectors;
1734		/* make sure these bits doesn't get cleared. */
1735		do {
1736			bitmap_end_sync(mddev->bitmap, s,
1737					&sync_blocks, 1);
1738			s += sync_blocks;
1739			sectors_to_go -= sync_blocks;
1740		} while (sectors_to_go > 0);
1741		set_bit(WriteErrorSeen,
1742			&conf->mirrors[mirror].rdev->flags);
1743		if (!test_and_set_bit(WantReplacement,
1744				      &conf->mirrors[mirror].rdev->flags))
1745			set_bit(MD_RECOVERY_NEEDED, &
1746				mddev->recovery);
1747		set_bit(R1BIO_WriteError, &r1_bio->state);
1748	} else if (is_badblock(conf->mirrors[mirror].rdev,
1749			       r1_bio->sector,
1750			       r1_bio->sectors,
1751			       &first_bad, &bad_sectors) &&
1752		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1753				r1_bio->sector,
1754				r1_bio->sectors,
1755				&first_bad, &bad_sectors)
1756		)
1757		set_bit(R1BIO_MadeGood, &r1_bio->state);
1758
1759	if (atomic_dec_and_test(&r1_bio->remaining)) {
1760		int s = r1_bio->sectors;
1761		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1762		    test_bit(R1BIO_WriteError, &r1_bio->state))
1763			reschedule_retry(r1_bio);
1764		else {
1765			put_buf(r1_bio);
1766			md_done_sync(mddev, s, uptodate);
1767		}
1768	}
1769}
1770
1771static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1772			    int sectors, struct page *page, int rw)
1773{
1774	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1775		/* success */
1776		return 1;
1777	if (rw == WRITE) {
1778		set_bit(WriteErrorSeen, &rdev->flags);
1779		if (!test_and_set_bit(WantReplacement,
1780				      &rdev->flags))
1781			set_bit(MD_RECOVERY_NEEDED, &
1782				rdev->mddev->recovery);
1783	}
1784	/* need to record an error - either for the block or the device */
1785	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1786		md_error(rdev->mddev, rdev);
1787	return 0;
1788}
1789
1790static int fix_sync_read_error(struct r1bio *r1_bio)
1791{
1792	/* Try some synchronous reads of other devices to get
1793	 * good data, much like with normal read errors.  Only
1794	 * read into the pages we already have so we don't
1795	 * need to re-issue the read request.
1796	 * We don't need to freeze the array, because being in an
1797	 * active sync request, there is no normal IO, and
1798	 * no overlapping syncs.
1799	 * We don't need to check is_badblock() again as we
1800	 * made sure that anything with a bad block in range
1801	 * will have bi_end_io clear.
1802	 */
1803	struct mddev *mddev = r1_bio->mddev;
1804	struct r1conf *conf = mddev->private;
1805	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1806	sector_t sect = r1_bio->sector;
1807	int sectors = r1_bio->sectors;
1808	int idx = 0;
1809
1810	while(sectors) {
1811		int s = sectors;
1812		int d = r1_bio->read_disk;
1813		int success = 0;
1814		struct md_rdev *rdev;
1815		int start;
1816
1817		if (s > (PAGE_SIZE>>9))
1818			s = PAGE_SIZE >> 9;
1819		do {
1820			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1821				/* No rcu protection needed here devices
1822				 * can only be removed when no resync is
1823				 * active, and resync is currently active
1824				 */
1825				rdev = conf->mirrors[d].rdev;
1826				if (sync_page_io(rdev, sect, s<<9,
1827						 bio->bi_io_vec[idx].bv_page,
1828						 READ, false)) {
1829					success = 1;
1830					break;
1831				}
1832			}
1833			d++;
1834			if (d == conf->raid_disks * 2)
1835				d = 0;
1836		} while (!success && d != r1_bio->read_disk);
1837
1838		if (!success) {
1839			char b[BDEVNAME_SIZE];
1840			int abort = 0;
1841			/* Cannot read from anywhere, this block is lost.
1842			 * Record a bad block on each device.  If that doesn't
1843			 * work just disable and interrupt the recovery.
1844			 * Don't fail devices as that won't really help.
1845			 */
1846			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1847			       " for block %llu\n",
1848			       mdname(mddev),
1849			       bdevname(bio->bi_bdev, b),
1850			       (unsigned long long)r1_bio->sector);
1851			for (d = 0; d < conf->raid_disks * 2; d++) {
1852				rdev = conf->mirrors[d].rdev;
1853				if (!rdev || test_bit(Faulty, &rdev->flags))
1854					continue;
1855				if (!rdev_set_badblocks(rdev, sect, s, 0))
1856					abort = 1;
1857			}
1858			if (abort) {
1859				conf->recovery_disabled =
1860					mddev->recovery_disabled;
1861				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1862				md_done_sync(mddev, r1_bio->sectors, 0);
1863				put_buf(r1_bio);
1864				return 0;
1865			}
1866			/* Try next page */
1867			sectors -= s;
1868			sect += s;
1869			idx++;
1870			continue;
1871		}
1872
1873		start = d;
1874		/* write it back and re-read */
1875		while (d != r1_bio->read_disk) {
1876			if (d == 0)
1877				d = conf->raid_disks * 2;
1878			d--;
1879			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1880				continue;
1881			rdev = conf->mirrors[d].rdev;
1882			if (r1_sync_page_io(rdev, sect, s,
1883					    bio->bi_io_vec[idx].bv_page,
1884					    WRITE) == 0) {
1885				r1_bio->bios[d]->bi_end_io = NULL;
1886				rdev_dec_pending(rdev, mddev);
1887			}
1888		}
1889		d = start;
1890		while (d != r1_bio->read_disk) {
1891			if (d == 0)
1892				d = conf->raid_disks * 2;
1893			d--;
1894			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1895				continue;
1896			rdev = conf->mirrors[d].rdev;
1897			if (r1_sync_page_io(rdev, sect, s,
1898					    bio->bi_io_vec[idx].bv_page,
1899					    READ) != 0)
1900				atomic_add(s, &rdev->corrected_errors);
1901		}
1902		sectors -= s;
1903		sect += s;
1904		idx ++;
1905	}
1906	set_bit(R1BIO_Uptodate, &r1_bio->state);
1907	bio->bi_error = 0;
1908	return 1;
1909}
1910
1911static void process_checks(struct r1bio *r1_bio)
1912{
1913	/* We have read all readable devices.  If we haven't
1914	 * got the block, then there is no hope left.
1915	 * If we have, then we want to do a comparison
1916	 * and skip the write if everything is the same.
1917	 * If any blocks failed to read, then we need to
1918	 * attempt an over-write
1919	 */
1920	struct mddev *mddev = r1_bio->mddev;
1921	struct r1conf *conf = mddev->private;
1922	int primary;
1923	int i;
1924	int vcnt;
1925
1926	/* Fix variable parts of all bios */
1927	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1928	for (i = 0; i < conf->raid_disks * 2; i++) {
1929		int j;
1930		int size;
1931		int error;
1932		struct bio *b = r1_bio->bios[i];
1933		if (b->bi_end_io != end_sync_read)
1934			continue;
1935		/* fixup the bio for reuse, but preserve errno */
1936		error = b->bi_error;
1937		bio_reset(b);
1938		b->bi_error = error;
1939		b->bi_vcnt = vcnt;
1940		b->bi_iter.bi_size = r1_bio->sectors << 9;
1941		b->bi_iter.bi_sector = r1_bio->sector +
1942			conf->mirrors[i].rdev->data_offset;
1943		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1944		b->bi_end_io = end_sync_read;
1945		b->bi_private = r1_bio;
1946
1947		size = b->bi_iter.bi_size;
1948		for (j = 0; j < vcnt ; j++) {
1949			struct bio_vec *bi;
1950			bi = &b->bi_io_vec[j];
1951			bi->bv_offset = 0;
1952			if (size > PAGE_SIZE)
1953				bi->bv_len = PAGE_SIZE;
1954			else
1955				bi->bv_len = size;
1956			size -= PAGE_SIZE;
1957		}
1958	}
1959	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1960		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1961		    !r1_bio->bios[primary]->bi_error) {
1962			r1_bio->bios[primary]->bi_end_io = NULL;
1963			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1964			break;
1965		}
1966	r1_bio->read_disk = primary;
 
1967	for (i = 0; i < conf->raid_disks * 2; i++) {
1968		int j;
1969		struct bio *pbio = r1_bio->bios[primary];
1970		struct bio *sbio = r1_bio->bios[i];
1971		int error = sbio->bi_error;
1972
1973		if (sbio->bi_end_io != end_sync_read)
1974			continue;
1975		/* Now we can 'fixup' the error value */
1976		sbio->bi_error = 0;
1977
1978		if (!error) {
1979			for (j = vcnt; j-- ; ) {
1980				struct page *p, *s;
1981				p = pbio->bi_io_vec[j].bv_page;
1982				s = sbio->bi_io_vec[j].bv_page;
1983				if (memcmp(page_address(p),
1984					   page_address(s),
1985					   sbio->bi_io_vec[j].bv_len))
1986					break;
1987			}
1988		} else
1989			j = 0;
1990		if (j >= 0)
1991			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1992		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1993			      && !error)) {
1994			/* No need to write to this device. */
1995			sbio->bi_end_io = NULL;
1996			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1997			continue;
1998		}
1999
2000		bio_copy_data(sbio, pbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001	}
 
2002}
2003
2004static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2005{
2006	struct r1conf *conf = mddev->private;
2007	int i;
2008	int disks = conf->raid_disks * 2;
2009	struct bio *bio, *wbio;
2010
2011	bio = r1_bio->bios[r1_bio->read_disk];
2012
2013	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2014		/* ouch - failed to read all of that. */
2015		if (!fix_sync_read_error(r1_bio))
2016			return;
2017
2018	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2019		process_checks(r1_bio);
2020
2021	/*
2022	 * schedule writes
2023	 */
2024	atomic_set(&r1_bio->remaining, 1);
2025	for (i = 0; i < disks ; i++) {
2026		wbio = r1_bio->bios[i];
2027		if (wbio->bi_end_io == NULL ||
2028		    (wbio->bi_end_io == end_sync_read &&
2029		     (i == r1_bio->read_disk ||
2030		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2031			continue;
2032
2033		wbio->bi_rw = WRITE;
2034		wbio->bi_end_io = end_sync_write;
2035		atomic_inc(&r1_bio->remaining);
2036		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2037
2038		generic_make_request(wbio);
2039	}
2040
2041	if (atomic_dec_and_test(&r1_bio->remaining)) {
2042		/* if we're here, all write(s) have completed, so clean up */
2043		int s = r1_bio->sectors;
2044		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045		    test_bit(R1BIO_WriteError, &r1_bio->state))
2046			reschedule_retry(r1_bio);
2047		else {
2048			put_buf(r1_bio);
2049			md_done_sync(mddev, s, 1);
2050		}
2051	}
2052}
2053
2054/*
2055 * This is a kernel thread which:
2056 *
2057 *	1.	Retries failed read operations on working mirrors.
2058 *	2.	Updates the raid superblock when problems encounter.
2059 *	3.	Performs writes following reads for array synchronising.
2060 */
2061
2062static void fix_read_error(struct r1conf *conf, int read_disk,
2063			   sector_t sect, int sectors)
2064{
2065	struct mddev *mddev = conf->mddev;
2066	while(sectors) {
2067		int s = sectors;
2068		int d = read_disk;
2069		int success = 0;
2070		int start;
2071		struct md_rdev *rdev;
2072
2073		if (s > (PAGE_SIZE>>9))
2074			s = PAGE_SIZE >> 9;
2075
2076		do {
2077			/* Note: no rcu protection needed here
2078			 * as this is synchronous in the raid1d thread
2079			 * which is the thread that might remove
2080			 * a device.  If raid1d ever becomes multi-threaded....
2081			 */
2082			sector_t first_bad;
2083			int bad_sectors;
2084
2085			rdev = conf->mirrors[d].rdev;
2086			if (rdev &&
2087			    (test_bit(In_sync, &rdev->flags) ||
2088			     (!test_bit(Faulty, &rdev->flags) &&
2089			      rdev->recovery_offset >= sect + s)) &&
2090			    is_badblock(rdev, sect, s,
2091					&first_bad, &bad_sectors) == 0 &&
2092			    sync_page_io(rdev, sect, s<<9,
2093					 conf->tmppage, READ, false))
2094				success = 1;
2095			else {
2096				d++;
2097				if (d == conf->raid_disks * 2)
2098					d = 0;
2099			}
2100		} while (!success && d != read_disk);
2101
2102		if (!success) {
2103			/* Cannot read from anywhere - mark it bad */
2104			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2105			if (!rdev_set_badblocks(rdev, sect, s, 0))
2106				md_error(mddev, rdev);
2107			break;
2108		}
2109		/* write it back and re-read */
2110		start = d;
2111		while (d != read_disk) {
2112			if (d==0)
2113				d = conf->raid_disks * 2;
2114			d--;
2115			rdev = conf->mirrors[d].rdev;
2116			if (rdev &&
2117			    !test_bit(Faulty, &rdev->flags))
2118				r1_sync_page_io(rdev, sect, s,
2119						conf->tmppage, WRITE);
2120		}
2121		d = start;
2122		while (d != read_disk) {
2123			char b[BDEVNAME_SIZE];
2124			if (d==0)
2125				d = conf->raid_disks * 2;
2126			d--;
2127			rdev = conf->mirrors[d].rdev;
2128			if (rdev &&
2129			    !test_bit(Faulty, &rdev->flags)) {
2130				if (r1_sync_page_io(rdev, sect, s,
2131						    conf->tmppage, READ)) {
2132					atomic_add(s, &rdev->corrected_errors);
2133					printk(KERN_INFO
2134					       "md/raid1:%s: read error corrected "
2135					       "(%d sectors at %llu on %s)\n",
2136					       mdname(mddev), s,
2137					       (unsigned long long)(sect +
2138					           rdev->data_offset),
2139					       bdevname(rdev->bdev, b));
2140				}
2141			}
2142		}
2143		sectors -= s;
2144		sect += s;
2145	}
2146}
2147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148static int narrow_write_error(struct r1bio *r1_bio, int i)
2149{
2150	struct mddev *mddev = r1_bio->mddev;
2151	struct r1conf *conf = mddev->private;
2152	struct md_rdev *rdev = conf->mirrors[i].rdev;
 
 
2153
2154	/* bio has the data to be written to device 'i' where
2155	 * we just recently had a write error.
2156	 * We repeatedly clone the bio and trim down to one block,
2157	 * then try the write.  Where the write fails we record
2158	 * a bad block.
2159	 * It is conceivable that the bio doesn't exactly align with
2160	 * blocks.  We must handle this somehow.
2161	 *
2162	 * We currently own a reference on the rdev.
2163	 */
2164
2165	int block_sectors;
2166	sector_t sector;
2167	int sectors;
2168	int sect_to_write = r1_bio->sectors;
2169	int ok = 1;
2170
2171	if (rdev->badblocks.shift < 0)
2172		return 0;
2173
2174	block_sectors = roundup(1 << rdev->badblocks.shift,
2175				bdev_logical_block_size(rdev->bdev) >> 9);
2176	sector = r1_bio->sector;
2177	sectors = ((sector + block_sectors)
2178		   & ~(sector_t)(block_sectors - 1))
2179		- sector;
2180
 
 
 
 
 
 
 
 
 
 
 
2181	while (sect_to_write) {
2182		struct bio *wbio;
2183		if (sectors > sect_to_write)
2184			sectors = sect_to_write;
2185		/* Write at 'sector' for 'sectors'*/
2186
2187		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2188			unsigned vcnt = r1_bio->behind_page_count;
2189			struct bio_vec *vec = r1_bio->behind_bvecs;
2190
2191			while (!vec->bv_page) {
2192				vec++;
2193				vcnt--;
2194			}
2195
2196			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2197			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2198
2199			wbio->bi_vcnt = vcnt;
2200		} else {
2201			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2202		}
2203
2204		wbio->bi_rw = WRITE;
2205		wbio->bi_iter.bi_sector = r1_bio->sector;
2206		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
 
2207
2208		bio_trim(wbio, sector - r1_bio->sector, sectors);
2209		wbio->bi_iter.bi_sector += rdev->data_offset;
2210		wbio->bi_bdev = rdev->bdev;
2211		if (submit_bio_wait(WRITE, wbio) < 0)
2212			/* failure! */
2213			ok = rdev_set_badblocks(rdev, sector,
2214						sectors, 0)
2215				&& ok;
2216
2217		bio_put(wbio);
2218		sect_to_write -= sectors;
2219		sector += sectors;
2220		sectors = block_sectors;
2221	}
2222	return ok;
2223}
2224
2225static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2226{
2227	int m;
2228	int s = r1_bio->sectors;
2229	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2230		struct md_rdev *rdev = conf->mirrors[m].rdev;
2231		struct bio *bio = r1_bio->bios[m];
2232		if (bio->bi_end_io == NULL)
2233			continue;
2234		if (!bio->bi_error &&
2235		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2236			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2237		}
2238		if (bio->bi_error &&
2239		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2240			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2241				md_error(conf->mddev, rdev);
2242		}
2243	}
2244	put_buf(r1_bio);
2245	md_done_sync(conf->mddev, s, 1);
2246}
2247
2248static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2249{
2250	int m;
2251	bool fail = false;
2252	for (m = 0; m < conf->raid_disks * 2 ; m++)
2253		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2254			struct md_rdev *rdev = conf->mirrors[m].rdev;
2255			rdev_clear_badblocks(rdev,
2256					     r1_bio->sector,
2257					     r1_bio->sectors, 0);
2258			rdev_dec_pending(rdev, conf->mddev);
2259		} else if (r1_bio->bios[m] != NULL) {
2260			/* This drive got a write error.  We need to
2261			 * narrow down and record precise write
2262			 * errors.
2263			 */
2264			fail = true;
2265			if (!narrow_write_error(r1_bio, m)) {
2266				md_error(conf->mddev,
2267					 conf->mirrors[m].rdev);
2268				/* an I/O failed, we can't clear the bitmap */
2269				set_bit(R1BIO_Degraded, &r1_bio->state);
2270			}
2271			rdev_dec_pending(conf->mirrors[m].rdev,
2272					 conf->mddev);
2273		}
2274	if (fail) {
2275		spin_lock_irq(&conf->device_lock);
2276		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2277		conf->nr_queued++;
2278		spin_unlock_irq(&conf->device_lock);
2279		md_wakeup_thread(conf->mddev->thread);
2280	} else {
2281		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2282			close_write(r1_bio);
2283		raid_end_bio_io(r1_bio);
2284	}
2285}
2286
2287static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2288{
2289	int disk;
2290	int max_sectors;
2291	struct mddev *mddev = conf->mddev;
2292	struct bio *bio;
2293	char b[BDEVNAME_SIZE];
2294	struct md_rdev *rdev;
2295
2296	clear_bit(R1BIO_ReadError, &r1_bio->state);
2297	/* we got a read error. Maybe the drive is bad.  Maybe just
2298	 * the block and we can fix it.
2299	 * We freeze all other IO, and try reading the block from
2300	 * other devices.  When we find one, we re-write
2301	 * and check it that fixes the read error.
2302	 * This is all done synchronously while the array is
2303	 * frozen
2304	 */
2305	if (mddev->ro == 0) {
2306		freeze_array(conf, 1);
2307		fix_read_error(conf, r1_bio->read_disk,
2308			       r1_bio->sector, r1_bio->sectors);
2309		unfreeze_array(conf);
2310	} else
2311		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2312	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2313
2314	bio = r1_bio->bios[r1_bio->read_disk];
2315	bdevname(bio->bi_bdev, b);
2316read_more:
2317	disk = read_balance(conf, r1_bio, &max_sectors);
2318	if (disk == -1) {
2319		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2320		       " read error for block %llu\n",
2321		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2322		raid_end_bio_io(r1_bio);
2323	} else {
2324		const unsigned long do_sync
2325			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2326		if (bio) {
2327			r1_bio->bios[r1_bio->read_disk] =
2328				mddev->ro ? IO_BLOCKED : NULL;
2329			bio_put(bio);
2330		}
2331		r1_bio->read_disk = disk;
2332		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2333		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2334			 max_sectors);
2335		r1_bio->bios[r1_bio->read_disk] = bio;
2336		rdev = conf->mirrors[disk].rdev;
2337		printk_ratelimited(KERN_ERR
2338				   "md/raid1:%s: redirecting sector %llu"
2339				   " to other mirror: %s\n",
2340				   mdname(mddev),
2341				   (unsigned long long)r1_bio->sector,
2342				   bdevname(rdev->bdev, b));
2343		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2344		bio->bi_bdev = rdev->bdev;
2345		bio->bi_end_io = raid1_end_read_request;
2346		bio->bi_rw = READ | do_sync;
2347		bio->bi_private = r1_bio;
2348		if (max_sectors < r1_bio->sectors) {
2349			/* Drat - have to split this up more */
2350			struct bio *mbio = r1_bio->master_bio;
2351			int sectors_handled = (r1_bio->sector + max_sectors
2352					       - mbio->bi_iter.bi_sector);
2353			r1_bio->sectors = max_sectors;
2354			spin_lock_irq(&conf->device_lock);
2355			if (mbio->bi_phys_segments == 0)
2356				mbio->bi_phys_segments = 2;
2357			else
2358				mbio->bi_phys_segments++;
2359			spin_unlock_irq(&conf->device_lock);
2360			generic_make_request(bio);
2361			bio = NULL;
2362
2363			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2364
2365			r1_bio->master_bio = mbio;
2366			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
 
2367			r1_bio->state = 0;
2368			set_bit(R1BIO_ReadError, &r1_bio->state);
2369			r1_bio->mddev = mddev;
2370			r1_bio->sector = mbio->bi_iter.bi_sector +
2371				sectors_handled;
2372
2373			goto read_more;
2374		} else
2375			generic_make_request(bio);
2376	}
2377}
2378
2379static void raid1d(struct md_thread *thread)
2380{
2381	struct mddev *mddev = thread->mddev;
2382	struct r1bio *r1_bio;
2383	unsigned long flags;
2384	struct r1conf *conf = mddev->private;
2385	struct list_head *head = &conf->retry_list;
2386	struct blk_plug plug;
2387
2388	md_check_recovery(mddev);
2389
2390	if (!list_empty_careful(&conf->bio_end_io_list) &&
2391	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2392		LIST_HEAD(tmp);
2393		spin_lock_irqsave(&conf->device_lock, flags);
2394		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2395			while (!list_empty(&conf->bio_end_io_list)) {
2396				list_move(conf->bio_end_io_list.prev, &tmp);
2397				conf->nr_queued--;
2398			}
2399		}
2400		spin_unlock_irqrestore(&conf->device_lock, flags);
2401		while (!list_empty(&tmp)) {
2402			r1_bio = list_first_entry(&tmp, struct r1bio,
2403						  retry_list);
2404			list_del(&r1_bio->retry_list);
2405			if (mddev->degraded)
2406				set_bit(R1BIO_Degraded, &r1_bio->state);
2407			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2408				close_write(r1_bio);
2409			raid_end_bio_io(r1_bio);
2410		}
2411	}
2412
2413	blk_start_plug(&plug);
2414	for (;;) {
2415
2416		flush_pending_writes(conf);
 
2417
2418		spin_lock_irqsave(&conf->device_lock, flags);
2419		if (list_empty(head)) {
2420			spin_unlock_irqrestore(&conf->device_lock, flags);
2421			break;
2422		}
2423		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2424		list_del(head->prev);
2425		conf->nr_queued--;
2426		spin_unlock_irqrestore(&conf->device_lock, flags);
2427
2428		mddev = r1_bio->mddev;
2429		conf = mddev->private;
2430		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2431			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2432			    test_bit(R1BIO_WriteError, &r1_bio->state))
2433				handle_sync_write_finished(conf, r1_bio);
2434			else
2435				sync_request_write(mddev, r1_bio);
2436		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2437			   test_bit(R1BIO_WriteError, &r1_bio->state))
2438			handle_write_finished(conf, r1_bio);
2439		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2440			handle_read_error(conf, r1_bio);
2441		else
2442			/* just a partial read to be scheduled from separate
2443			 * context
2444			 */
2445			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2446
2447		cond_resched();
2448		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2449			md_check_recovery(mddev);
2450	}
2451	blk_finish_plug(&plug);
2452}
2453
 
2454static int init_resync(struct r1conf *conf)
2455{
2456	int buffs;
2457
2458	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2459	BUG_ON(conf->r1buf_pool);
2460	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2461					  conf->poolinfo);
2462	if (!conf->r1buf_pool)
2463		return -ENOMEM;
2464	conf->next_resync = 0;
2465	return 0;
2466}
2467
2468/*
2469 * perform a "sync" on one "block"
2470 *
2471 * We need to make sure that no normal I/O request - particularly write
2472 * requests - conflict with active sync requests.
2473 *
2474 * This is achieved by tracking pending requests and a 'barrier' concept
2475 * that can be installed to exclude normal IO requests.
2476 */
2477
2478static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2479				   int *skipped)
2480{
2481	struct r1conf *conf = mddev->private;
2482	struct r1bio *r1_bio;
2483	struct bio *bio;
2484	sector_t max_sector, nr_sectors;
2485	int disk = -1;
2486	int i;
2487	int wonly = -1;
2488	int write_targets = 0, read_targets = 0;
2489	sector_t sync_blocks;
2490	int still_degraded = 0;
2491	int good_sectors = RESYNC_SECTORS;
2492	int min_bad = 0; /* number of sectors that are bad in all devices */
2493
2494	if (!conf->r1buf_pool)
2495		if (init_resync(conf))
2496			return 0;
2497
2498	max_sector = mddev->dev_sectors;
2499	if (sector_nr >= max_sector) {
2500		/* If we aborted, we need to abort the
2501		 * sync on the 'current' bitmap chunk (there will
2502		 * only be one in raid1 resync.
2503		 * We can find the current addess in mddev->curr_resync
2504		 */
2505		if (mddev->curr_resync < max_sector) /* aborted */
2506			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2507						&sync_blocks, 1);
2508		else /* completed sync */
2509			conf->fullsync = 0;
2510
2511		bitmap_close_sync(mddev->bitmap);
2512		close_sync(conf);
2513
2514		if (mddev_is_clustered(mddev)) {
2515			conf->cluster_sync_low = 0;
2516			conf->cluster_sync_high = 0;
2517		}
2518		return 0;
2519	}
2520
2521	if (mddev->bitmap == NULL &&
2522	    mddev->recovery_cp == MaxSector &&
2523	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2524	    conf->fullsync == 0) {
2525		*skipped = 1;
2526		return max_sector - sector_nr;
2527	}
2528	/* before building a request, check if we can skip these blocks..
2529	 * This call the bitmap_start_sync doesn't actually record anything
2530	 */
2531	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2532	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2533		/* We can skip this block, and probably several more */
2534		*skipped = 1;
2535		return sync_blocks;
2536	}
2537
2538	/* we are incrementing sector_nr below. To be safe, we check against
2539	 * sector_nr + two times RESYNC_SECTORS
 
2540	 */
 
 
2541
2542	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2543		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2544	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
 
2545
2546	raise_barrier(conf, sector_nr);
2547
2548	rcu_read_lock();
2549	/*
2550	 * If we get a correctably read error during resync or recovery,
2551	 * we might want to read from a different device.  So we
2552	 * flag all drives that could conceivably be read from for READ,
2553	 * and any others (which will be non-In_sync devices) for WRITE.
2554	 * If a read fails, we try reading from something else for which READ
2555	 * is OK.
2556	 */
2557
2558	r1_bio->mddev = mddev;
2559	r1_bio->sector = sector_nr;
2560	r1_bio->state = 0;
2561	set_bit(R1BIO_IsSync, &r1_bio->state);
2562
2563	for (i = 0; i < conf->raid_disks * 2; i++) {
2564		struct md_rdev *rdev;
2565		bio = r1_bio->bios[i];
2566		bio_reset(bio);
 
 
 
 
 
 
 
 
 
 
 
2567
2568		rdev = rcu_dereference(conf->mirrors[i].rdev);
2569		if (rdev == NULL ||
2570		    test_bit(Faulty, &rdev->flags)) {
2571			if (i < conf->raid_disks)
2572				still_degraded = 1;
2573		} else if (!test_bit(In_sync, &rdev->flags)) {
2574			bio->bi_rw = WRITE;
2575			bio->bi_end_io = end_sync_write;
2576			write_targets ++;
2577		} else {
2578			/* may need to read from here */
2579			sector_t first_bad = MaxSector;
2580			int bad_sectors;
2581
2582			if (is_badblock(rdev, sector_nr, good_sectors,
2583					&first_bad, &bad_sectors)) {
2584				if (first_bad > sector_nr)
2585					good_sectors = first_bad - sector_nr;
2586				else {
2587					bad_sectors -= (sector_nr - first_bad);
2588					if (min_bad == 0 ||
2589					    min_bad > bad_sectors)
2590						min_bad = bad_sectors;
2591				}
2592			}
2593			if (sector_nr < first_bad) {
2594				if (test_bit(WriteMostly, &rdev->flags)) {
2595					if (wonly < 0)
2596						wonly = i;
2597				} else {
2598					if (disk < 0)
2599						disk = i;
2600				}
2601				bio->bi_rw = READ;
2602				bio->bi_end_io = end_sync_read;
2603				read_targets++;
2604			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607				/*
2608				 * The device is suitable for reading (InSync),
2609				 * but has bad block(s) here. Let's try to correct them,
2610				 * if we are doing resync or repair. Otherwise, leave
2611				 * this device alone for this sync request.
2612				 */
2613				bio->bi_rw = WRITE;
2614				bio->bi_end_io = end_sync_write;
2615				write_targets++;
2616			}
2617		}
2618		if (bio->bi_end_io) {
2619			atomic_inc(&rdev->nr_pending);
2620			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621			bio->bi_bdev = rdev->bdev;
2622			bio->bi_private = r1_bio;
2623		}
2624	}
2625	rcu_read_unlock();
2626	if (disk < 0)
2627		disk = wonly;
2628	r1_bio->read_disk = disk;
2629
2630	if (read_targets == 0 && min_bad > 0) {
2631		/* These sectors are bad on all InSync devices, so we
2632		 * need to mark them bad on all write targets
2633		 */
2634		int ok = 1;
2635		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637				struct md_rdev *rdev = conf->mirrors[i].rdev;
2638				ok = rdev_set_badblocks(rdev, sector_nr,
2639							min_bad, 0
2640					) && ok;
2641			}
2642		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643		*skipped = 1;
2644		put_buf(r1_bio);
2645
2646		if (!ok) {
2647			/* Cannot record the badblocks, so need to
2648			 * abort the resync.
2649			 * If there are multiple read targets, could just
2650			 * fail the really bad ones ???
2651			 */
2652			conf->recovery_disabled = mddev->recovery_disabled;
2653			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654			return 0;
2655		} else
2656			return min_bad;
2657
2658	}
2659	if (min_bad > 0 && min_bad < good_sectors) {
2660		/* only resync enough to reach the next bad->good
2661		 * transition */
2662		good_sectors = min_bad;
2663	}
2664
2665	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666		/* extra read targets are also write targets */
2667		write_targets += read_targets-1;
2668
2669	if (write_targets == 0 || read_targets == 0) {
2670		/* There is nowhere to write, so all non-sync
2671		 * drives must be failed - so we are finished
2672		 */
2673		sector_t rv;
2674		if (min_bad > 0)
2675			max_sector = sector_nr + min_bad;
2676		rv = max_sector - sector_nr;
2677		*skipped = 1;
2678		put_buf(r1_bio);
2679		return rv;
2680	}
2681
2682	if (max_sector > mddev->resync_max)
2683		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684	if (max_sector > sector_nr + good_sectors)
2685		max_sector = sector_nr + good_sectors;
2686	nr_sectors = 0;
2687	sync_blocks = 0;
2688	do {
2689		struct page *page;
2690		int len = PAGE_SIZE;
2691		if (sector_nr + (len>>9) > max_sector)
2692			len = (max_sector - sector_nr) << 9;
2693		if (len == 0)
2694			break;
2695		if (sync_blocks == 0) {
2696			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697					       &sync_blocks, still_degraded) &&
2698			    !conf->fullsync &&
2699			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700				break;
 
2701			if ((len >> 9) > sync_blocks)
2702				len = sync_blocks<<9;
2703		}
2704
2705		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2706			bio = r1_bio->bios[i];
2707			if (bio->bi_end_io) {
2708				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2709				if (bio_add_page(bio, page, len, 0) == 0) {
2710					/* stop here */
2711					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2712					while (i > 0) {
2713						i--;
2714						bio = r1_bio->bios[i];
2715						if (bio->bi_end_io==NULL)
2716							continue;
2717						/* remove last page from this bio */
2718						bio->bi_vcnt--;
2719						bio->bi_iter.bi_size -= len;
2720						bio_clear_flag(bio, BIO_SEG_VALID);
2721					}
2722					goto bio_full;
2723				}
2724			}
2725		}
2726		nr_sectors += len>>9;
2727		sector_nr += len>>9;
2728		sync_blocks -= (len>>9);
2729	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2730 bio_full:
2731	r1_bio->sectors = nr_sectors;
2732
2733	if (mddev_is_clustered(mddev) &&
2734			conf->cluster_sync_high < sector_nr + nr_sectors) {
2735		conf->cluster_sync_low = mddev->curr_resync_completed;
2736		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2737		/* Send resync message */
2738		md_cluster_ops->resync_info_update(mddev,
2739				conf->cluster_sync_low,
2740				conf->cluster_sync_high);
2741	}
2742
2743	/* For a user-requested sync, we read all readable devices and do a
2744	 * compare
2745	 */
2746	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2747		atomic_set(&r1_bio->remaining, read_targets);
2748		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2749			bio = r1_bio->bios[i];
2750			if (bio->bi_end_io == end_sync_read) {
2751				read_targets--;
2752				md_sync_acct(bio->bi_bdev, nr_sectors);
2753				generic_make_request(bio);
2754			}
2755		}
2756	} else {
2757		atomic_set(&r1_bio->remaining, 1);
2758		bio = r1_bio->bios[r1_bio->read_disk];
2759		md_sync_acct(bio->bi_bdev, nr_sectors);
2760		generic_make_request(bio);
2761
2762	}
2763	return nr_sectors;
2764}
2765
2766static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2767{
2768	if (sectors)
2769		return sectors;
2770
2771	return mddev->dev_sectors;
2772}
2773
2774static struct r1conf *setup_conf(struct mddev *mddev)
2775{
2776	struct r1conf *conf;
2777	int i;
2778	struct raid1_info *disk;
2779	struct md_rdev *rdev;
2780	int err = -ENOMEM;
2781
2782	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2783	if (!conf)
2784		goto abort;
2785
2786	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2787				* mddev->raid_disks * 2,
2788				 GFP_KERNEL);
2789	if (!conf->mirrors)
2790		goto abort;
2791
2792	conf->tmppage = alloc_page(GFP_KERNEL);
2793	if (!conf->tmppage)
2794		goto abort;
2795
2796	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2797	if (!conf->poolinfo)
2798		goto abort;
2799	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2800	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2801					  r1bio_pool_free,
2802					  conf->poolinfo);
2803	if (!conf->r1bio_pool)
2804		goto abort;
2805
2806	conf->poolinfo->mddev = mddev;
2807
2808	err = -EINVAL;
2809	spin_lock_init(&conf->device_lock);
2810	rdev_for_each(rdev, mddev) {
2811		struct request_queue *q;
2812		int disk_idx = rdev->raid_disk;
2813		if (disk_idx >= mddev->raid_disks
2814		    || disk_idx < 0)
2815			continue;
2816		if (test_bit(Replacement, &rdev->flags))
2817			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2818		else
2819			disk = conf->mirrors + disk_idx;
2820
2821		if (disk->rdev)
2822			goto abort;
2823		disk->rdev = rdev;
2824		q = bdev_get_queue(rdev->bdev);
 
 
2825
2826		disk->head_position = 0;
2827		disk->seq_start = MaxSector;
2828	}
2829	conf->raid_disks = mddev->raid_disks;
2830	conf->mddev = mddev;
2831	INIT_LIST_HEAD(&conf->retry_list);
2832	INIT_LIST_HEAD(&conf->bio_end_io_list);
2833
2834	spin_lock_init(&conf->resync_lock);
2835	init_waitqueue_head(&conf->wait_barrier);
2836
2837	bio_list_init(&conf->pending_bio_list);
2838	conf->pending_count = 0;
2839	conf->recovery_disabled = mddev->recovery_disabled - 1;
2840
2841	conf->start_next_window = MaxSector;
2842	conf->current_window_requests = conf->next_window_requests = 0;
2843
2844	err = -EIO;
 
2845	for (i = 0; i < conf->raid_disks * 2; i++) {
2846
2847		disk = conf->mirrors + i;
2848
2849		if (i < conf->raid_disks &&
2850		    disk[conf->raid_disks].rdev) {
2851			/* This slot has a replacement. */
2852			if (!disk->rdev) {
2853				/* No original, just make the replacement
2854				 * a recovering spare
2855				 */
2856				disk->rdev =
2857					disk[conf->raid_disks].rdev;
2858				disk[conf->raid_disks].rdev = NULL;
2859			} else if (!test_bit(In_sync, &disk->rdev->flags))
2860				/* Original is not in_sync - bad */
2861				goto abort;
2862		}
2863
2864		if (!disk->rdev ||
2865		    !test_bit(In_sync, &disk->rdev->flags)) {
2866			disk->head_position = 0;
2867			if (disk->rdev &&
2868			    (disk->rdev->saved_raid_disk < 0))
2869				conf->fullsync = 1;
2870		}
 
 
 
 
 
2871	}
2872
 
 
 
 
 
2873	err = -ENOMEM;
2874	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2875	if (!conf->thread) {
2876		printk(KERN_ERR
2877		       "md/raid1:%s: couldn't allocate thread\n",
2878		       mdname(mddev));
2879		goto abort;
2880	}
2881
2882	return conf;
2883
2884 abort:
2885	if (conf) {
2886		mempool_destroy(conf->r1bio_pool);
 
2887		kfree(conf->mirrors);
2888		safe_put_page(conf->tmppage);
2889		kfree(conf->poolinfo);
2890		kfree(conf);
2891	}
2892	return ERR_PTR(err);
2893}
2894
2895static void raid1_free(struct mddev *mddev, void *priv);
2896static int raid1_run(struct mddev *mddev)
2897{
2898	struct r1conf *conf;
2899	int i;
2900	struct md_rdev *rdev;
2901	int ret;
2902	bool discard_supported = false;
2903
2904	if (mddev->level != 1) {
2905		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2906		       mdname(mddev), mddev->level);
2907		return -EIO;
2908	}
2909	if (mddev->reshape_position != MaxSector) {
2910		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2911		       mdname(mddev));
2912		return -EIO;
2913	}
2914	/*
2915	 * copy the already verified devices into our private RAID1
2916	 * bookkeeping area. [whatever we allocate in run(),
2917	 * should be freed in raid1_free()]
2918	 */
2919	if (mddev->private == NULL)
2920		conf = setup_conf(mddev);
2921	else
2922		conf = mddev->private;
2923
2924	if (IS_ERR(conf))
2925		return PTR_ERR(conf);
2926
2927	if (mddev->queue)
2928		blk_queue_max_write_same_sectors(mddev->queue, 0);
2929
2930	rdev_for_each(rdev, mddev) {
2931		if (!mddev->gendisk)
2932			continue;
2933		disk_stack_limits(mddev->gendisk, rdev->bdev,
2934				  rdev->data_offset << 9);
2935		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2936			discard_supported = true;
2937	}
2938
2939	mddev->degraded = 0;
2940	for (i=0; i < conf->raid_disks; i++)
2941		if (conf->mirrors[i].rdev == NULL ||
2942		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2943		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2944			mddev->degraded++;
2945
2946	if (conf->raid_disks - mddev->degraded == 1)
2947		mddev->recovery_cp = MaxSector;
2948
2949	if (mddev->recovery_cp != MaxSector)
2950		printk(KERN_NOTICE "md/raid1:%s: not clean"
2951		       " -- starting background reconstruction\n",
2952		       mdname(mddev));
2953	printk(KERN_INFO
2954		"md/raid1:%s: active with %d out of %d mirrors\n",
2955		mdname(mddev), mddev->raid_disks - mddev->degraded,
2956		mddev->raid_disks);
2957
2958	/*
2959	 * Ok, everything is just fine now
2960	 */
2961	mddev->thread = conf->thread;
2962	conf->thread = NULL;
2963	mddev->private = conf;
2964
2965	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2966
2967	if (mddev->queue) {
2968		if (discard_supported)
2969			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2970						mddev->queue);
2971		else
2972			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2973						  mddev->queue);
2974	}
2975
2976	ret =  md_integrity_register(mddev);
2977	if (ret) {
2978		md_unregister_thread(&mddev->thread);
2979		raid1_free(mddev, conf);
2980	}
2981	return ret;
2982}
2983
2984static void raid1_free(struct mddev *mddev, void *priv)
2985{
2986	struct r1conf *conf = priv;
 
 
 
 
 
 
 
 
 
 
2987
2988	mempool_destroy(conf->r1bio_pool);
 
 
 
 
 
2989	kfree(conf->mirrors);
2990	safe_put_page(conf->tmppage);
2991	kfree(conf->poolinfo);
2992	kfree(conf);
 
 
2993}
2994
2995static int raid1_resize(struct mddev *mddev, sector_t sectors)
2996{
2997	/* no resync is happening, and there is enough space
2998	 * on all devices, so we can resize.
2999	 * We need to make sure resync covers any new space.
3000	 * If the array is shrinking we should possibly wait until
3001	 * any io in the removed space completes, but it hardly seems
3002	 * worth it.
3003	 */
3004	sector_t newsize = raid1_size(mddev, sectors, 0);
3005	if (mddev->external_size &&
3006	    mddev->array_sectors > newsize)
3007		return -EINVAL;
3008	if (mddev->bitmap) {
3009		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3010		if (ret)
3011			return ret;
3012	}
3013	md_set_array_sectors(mddev, newsize);
3014	set_capacity(mddev->gendisk, mddev->array_sectors);
3015	revalidate_disk(mddev->gendisk);
3016	if (sectors > mddev->dev_sectors &&
3017	    mddev->recovery_cp > mddev->dev_sectors) {
3018		mddev->recovery_cp = mddev->dev_sectors;
3019		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3020	}
3021	mddev->dev_sectors = sectors;
3022	mddev->resync_max_sectors = sectors;
3023	return 0;
3024}
3025
3026static int raid1_reshape(struct mddev *mddev)
3027{
3028	/* We need to:
3029	 * 1/ resize the r1bio_pool
3030	 * 2/ resize conf->mirrors
3031	 *
3032	 * We allocate a new r1bio_pool if we can.
3033	 * Then raise a device barrier and wait until all IO stops.
3034	 * Then resize conf->mirrors and swap in the new r1bio pool.
3035	 *
3036	 * At the same time, we "pack" the devices so that all the missing
3037	 * devices have the higher raid_disk numbers.
3038	 */
3039	mempool_t *newpool, *oldpool;
3040	struct pool_info *newpoolinfo;
3041	struct raid1_info *newmirrors;
3042	struct r1conf *conf = mddev->private;
3043	int cnt, raid_disks;
3044	unsigned long flags;
3045	int d, d2, err;
3046
3047	/* Cannot change chunk_size, layout, or level */
3048	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3049	    mddev->layout != mddev->new_layout ||
3050	    mddev->level != mddev->new_level) {
3051		mddev->new_chunk_sectors = mddev->chunk_sectors;
3052		mddev->new_layout = mddev->layout;
3053		mddev->new_level = mddev->level;
3054		return -EINVAL;
3055	}
3056
3057	if (!mddev_is_clustered(mddev)) {
3058		err = md_allow_write(mddev);
3059		if (err)
3060			return err;
3061	}
3062
3063	raid_disks = mddev->raid_disks + mddev->delta_disks;
3064
3065	if (raid_disks < conf->raid_disks) {
3066		cnt=0;
3067		for (d= 0; d < conf->raid_disks; d++)
3068			if (conf->mirrors[d].rdev)
3069				cnt++;
3070		if (cnt > raid_disks)
3071			return -EBUSY;
3072	}
3073
3074	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3075	if (!newpoolinfo)
3076		return -ENOMEM;
3077	newpoolinfo->mddev = mddev;
3078	newpoolinfo->raid_disks = raid_disks * 2;
3079
3080	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3081				 r1bio_pool_free, newpoolinfo);
3082	if (!newpool) {
3083		kfree(newpoolinfo);
3084		return -ENOMEM;
3085	}
3086	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3087			     GFP_KERNEL);
3088	if (!newmirrors) {
3089		kfree(newpoolinfo);
3090		mempool_destroy(newpool);
3091		return -ENOMEM;
3092	}
3093
3094	freeze_array(conf, 0);
3095
3096	/* ok, everything is stopped */
3097	oldpool = conf->r1bio_pool;
3098	conf->r1bio_pool = newpool;
3099
3100	for (d = d2 = 0; d < conf->raid_disks; d++) {
3101		struct md_rdev *rdev = conf->mirrors[d].rdev;
3102		if (rdev && rdev->raid_disk != d2) {
3103			sysfs_unlink_rdev(mddev, rdev);
3104			rdev->raid_disk = d2;
3105			sysfs_unlink_rdev(mddev, rdev);
3106			if (sysfs_link_rdev(mddev, rdev))
3107				printk(KERN_WARNING
3108				       "md/raid1:%s: cannot register rd%d\n",
3109				       mdname(mddev), rdev->raid_disk);
3110		}
3111		if (rdev)
3112			newmirrors[d2++].rdev = rdev;
3113	}
3114	kfree(conf->mirrors);
3115	conf->mirrors = newmirrors;
3116	kfree(conf->poolinfo);
3117	conf->poolinfo = newpoolinfo;
3118
3119	spin_lock_irqsave(&conf->device_lock, flags);
3120	mddev->degraded += (raid_disks - conf->raid_disks);
3121	spin_unlock_irqrestore(&conf->device_lock, flags);
3122	conf->raid_disks = mddev->raid_disks = raid_disks;
3123	mddev->delta_disks = 0;
3124
3125	unfreeze_array(conf);
 
3126
3127	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3128	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129	md_wakeup_thread(mddev->thread);
3130
3131	mempool_destroy(oldpool);
3132	return 0;
3133}
3134
3135static void raid1_quiesce(struct mddev *mddev, int state)
3136{
3137	struct r1conf *conf = mddev->private;
3138
3139	switch(state) {
3140	case 2: /* wake for suspend */
3141		wake_up(&conf->wait_barrier);
3142		break;
3143	case 1:
3144		freeze_array(conf, 0);
3145		break;
3146	case 0:
3147		unfreeze_array(conf);
3148		break;
3149	}
3150}
3151
3152static void *raid1_takeover(struct mddev *mddev)
3153{
3154	/* raid1 can take over:
3155	 *  raid5 with 2 devices, any layout or chunk size
3156	 */
3157	if (mddev->level == 5 && mddev->raid_disks == 2) {
3158		struct r1conf *conf;
3159		mddev->new_level = 1;
3160		mddev->new_layout = 0;
3161		mddev->new_chunk_sectors = 0;
3162		conf = setup_conf(mddev);
3163		if (!IS_ERR(conf))
3164			/* Array must appear to be quiesced */
3165			conf->array_frozen = 1;
3166		return conf;
3167	}
3168	return ERR_PTR(-EINVAL);
3169}
3170
3171static struct md_personality raid1_personality =
3172{
3173	.name		= "raid1",
3174	.level		= 1,
3175	.owner		= THIS_MODULE,
3176	.make_request	= raid1_make_request,
3177	.run		= raid1_run,
3178	.free		= raid1_free,
3179	.status		= raid1_status,
3180	.error_handler	= raid1_error,
3181	.hot_add_disk	= raid1_add_disk,
3182	.hot_remove_disk= raid1_remove_disk,
3183	.spare_active	= raid1_spare_active,
3184	.sync_request	= raid1_sync_request,
3185	.resize		= raid1_resize,
3186	.size		= raid1_size,
3187	.check_reshape	= raid1_reshape,
3188	.quiesce	= raid1_quiesce,
3189	.takeover	= raid1_takeover,
3190	.congested	= raid1_congested,
3191};
3192
3193static int __init raid_init(void)
3194{
3195	return register_md_personality(&raid1_personality);
3196}
3197
3198static void raid_exit(void)
3199{
3200	unregister_md_personality(&raid1_personality);
3201}
3202
3203module_init(raid_init);
3204module_exit(raid_exit);
3205MODULE_LICENSE("GPL");
3206MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3207MODULE_ALIAS("md-personality-3"); /* RAID1 */
3208MODULE_ALIAS("md-raid1");
3209MODULE_ALIAS("md-level-1");
3210
3211module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
v3.5.6
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define	NR_RAID1_BIOS 256
  48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49/* When there are this many requests queue to be written by
  50 * the raid1 thread, we become 'congested' to provide back-pressure
  51 * for writeback.
  52 */
  53static int max_queued_requests = 1024;
  54
  55static void allow_barrier(struct r1conf *conf);
 
  56static void lower_barrier(struct r1conf *conf);
  57
  58static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  59{
  60	struct pool_info *pi = data;
  61	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  62
  63	/* allocate a r1bio with room for raid_disks entries in the bios array */
  64	return kzalloc(size, gfp_flags);
  65}
  66
  67static void r1bio_pool_free(void *r1_bio, void *data)
  68{
  69	kfree(r1_bio);
  70}
  71
  72#define RESYNC_BLOCK_SIZE (64*1024)
  73//#define RESYNC_BLOCK_SIZE PAGE_SIZE
  74#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  75#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  76#define RESYNC_WINDOW (2048*1024)
 
 
 
 
  77
  78static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  79{
  80	struct pool_info *pi = data;
  81	struct page *page;
  82	struct r1bio *r1_bio;
  83	struct bio *bio;
 
  84	int i, j;
  85
  86	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  87	if (!r1_bio)
  88		return NULL;
  89
  90	/*
  91	 * Allocate bios : 1 for reading, n-1 for writing
  92	 */
  93	for (j = pi->raid_disks ; j-- ; ) {
  94		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  95		if (!bio)
  96			goto out_free_bio;
  97		r1_bio->bios[j] = bio;
  98	}
  99	/*
 100	 * Allocate RESYNC_PAGES data pages and attach them to
 101	 * the first bio.
 102	 * If this is a user-requested check/repair, allocate
 103	 * RESYNC_PAGES for each bio.
 104	 */
 105	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 106		j = pi->raid_disks;
 107	else
 108		j = 1;
 109	while(j--) {
 110		bio = r1_bio->bios[j];
 111		for (i = 0; i < RESYNC_PAGES; i++) {
 112			page = alloc_page(gfp_flags);
 113			if (unlikely(!page))
 114				goto out_free_pages;
 115
 116			bio->bi_io_vec[i].bv_page = page;
 117			bio->bi_vcnt = i+1;
 118		}
 119	}
 120	/* If not user-requests, copy the page pointers to all bios */
 121	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 122		for (i=0; i<RESYNC_PAGES ; i++)
 123			for (j=1; j<pi->raid_disks; j++)
 124				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 125					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 126	}
 127
 128	r1_bio->master_bio = NULL;
 129
 130	return r1_bio;
 131
 132out_free_pages:
 133	for (j=0 ; j < pi->raid_disks; j++)
 134		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
 135			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
 136	j = -1;
 
 
 
 137out_free_bio:
 138	while (++j < pi->raid_disks)
 139		bio_put(r1_bio->bios[j]);
 140	r1bio_pool_free(r1_bio, data);
 141	return NULL;
 142}
 143
 144static void r1buf_pool_free(void *__r1_bio, void *data)
 145{
 146	struct pool_info *pi = data;
 147	int i,j;
 148	struct r1bio *r1bio = __r1_bio;
 149
 150	for (i = 0; i < RESYNC_PAGES; i++)
 151		for (j = pi->raid_disks; j-- ;) {
 152			if (j == 0 ||
 153			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 154			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 155				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 156		}
 157	for (i=0 ; i < pi->raid_disks; i++)
 158		bio_put(r1bio->bios[i]);
 159
 160	r1bio_pool_free(r1bio, data);
 161}
 162
 163static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 164{
 165	int i;
 166
 167	for (i = 0; i < conf->raid_disks * 2; i++) {
 168		struct bio **bio = r1_bio->bios + i;
 169		if (!BIO_SPECIAL(*bio))
 170			bio_put(*bio);
 171		*bio = NULL;
 172	}
 173}
 174
 175static void free_r1bio(struct r1bio *r1_bio)
 176{
 177	struct r1conf *conf = r1_bio->mddev->private;
 178
 179	put_all_bios(conf, r1_bio);
 180	mempool_free(r1_bio, conf->r1bio_pool);
 181}
 182
 183static void put_buf(struct r1bio *r1_bio)
 184{
 185	struct r1conf *conf = r1_bio->mddev->private;
 186	int i;
 187
 188	for (i = 0; i < conf->raid_disks * 2; i++) {
 189		struct bio *bio = r1_bio->bios[i];
 190		if (bio->bi_end_io)
 191			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 192	}
 193
 194	mempool_free(r1_bio, conf->r1buf_pool);
 195
 196	lower_barrier(conf);
 197}
 198
 199static void reschedule_retry(struct r1bio *r1_bio)
 200{
 201	unsigned long flags;
 202	struct mddev *mddev = r1_bio->mddev;
 203	struct r1conf *conf = mddev->private;
 204
 205	spin_lock_irqsave(&conf->device_lock, flags);
 206	list_add(&r1_bio->retry_list, &conf->retry_list);
 207	conf->nr_queued ++;
 208	spin_unlock_irqrestore(&conf->device_lock, flags);
 209
 210	wake_up(&conf->wait_barrier);
 211	md_wakeup_thread(mddev->thread);
 212}
 213
 214/*
 215 * raid_end_bio_io() is called when we have finished servicing a mirrored
 216 * operation and are ready to return a success/failure code to the buffer
 217 * cache layer.
 218 */
 219static void call_bio_endio(struct r1bio *r1_bio)
 220{
 221	struct bio *bio = r1_bio->master_bio;
 222	int done;
 223	struct r1conf *conf = r1_bio->mddev->private;
 
 
 224
 225	if (bio->bi_phys_segments) {
 226		unsigned long flags;
 227		spin_lock_irqsave(&conf->device_lock, flags);
 228		bio->bi_phys_segments--;
 229		done = (bio->bi_phys_segments == 0);
 230		spin_unlock_irqrestore(&conf->device_lock, flags);
 
 
 
 
 
 231	} else
 232		done = 1;
 233
 234	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 235		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 
 236	if (done) {
 237		bio_endio(bio, 0);
 238		/*
 239		 * Wake up any possible resync thread that waits for the device
 240		 * to go idle.
 241		 */
 242		allow_barrier(conf);
 243	}
 244}
 245
 246static void raid_end_bio_io(struct r1bio *r1_bio)
 247{
 248	struct bio *bio = r1_bio->master_bio;
 249
 250	/* if nobody has done the final endio yet, do it now */
 251	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 252		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 253			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 254			 (unsigned long long) bio->bi_sector,
 255			 (unsigned long long) bio->bi_sector +
 256			 (bio->bi_size >> 9) - 1);
 257
 258		call_bio_endio(r1_bio);
 259	}
 260	free_r1bio(r1_bio);
 261}
 262
 263/*
 264 * Update disk head position estimator based on IRQ completion info.
 265 */
 266static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 267{
 268	struct r1conf *conf = r1_bio->mddev->private;
 269
 270	conf->mirrors[disk].head_position =
 271		r1_bio->sector + (r1_bio->sectors);
 272}
 273
 274/*
 275 * Find the disk number which triggered given bio
 276 */
 277static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 278{
 279	int mirror;
 280	struct r1conf *conf = r1_bio->mddev->private;
 281	int raid_disks = conf->raid_disks;
 282
 283	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 284		if (r1_bio->bios[mirror] == bio)
 285			break;
 286
 287	BUG_ON(mirror == raid_disks * 2);
 288	update_head_pos(mirror, r1_bio);
 289
 290	return mirror;
 291}
 292
 293static void raid1_end_read_request(struct bio *bio, int error)
 294{
 295	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 296	struct r1bio *r1_bio = bio->bi_private;
 297	int mirror;
 298	struct r1conf *conf = r1_bio->mddev->private;
 299
 300	mirror = r1_bio->read_disk;
 301	/*
 302	 * this branch is our 'one mirror IO has finished' event handler:
 303	 */
 304	update_head_pos(mirror, r1_bio);
 305
 306	if (uptodate)
 307		set_bit(R1BIO_Uptodate, &r1_bio->state);
 308	else {
 309		/* If all other devices have failed, we want to return
 310		 * the error upwards rather than fail the last device.
 311		 * Here we redefine "uptodate" to mean "Don't want to retry"
 312		 */
 313		unsigned long flags;
 314		spin_lock_irqsave(&conf->device_lock, flags);
 315		if (r1_bio->mddev->degraded == conf->raid_disks ||
 316		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 317		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 318			uptodate = 1;
 319		spin_unlock_irqrestore(&conf->device_lock, flags);
 320	}
 321
 322	if (uptodate)
 323		raid_end_bio_io(r1_bio);
 324	else {
 
 325		/*
 326		 * oops, read error:
 327		 */
 328		char b[BDEVNAME_SIZE];
 329		printk_ratelimited(
 330			KERN_ERR "md/raid1:%s: %s: "
 331			"rescheduling sector %llu\n",
 332			mdname(conf->mddev),
 333			bdevname(conf->mirrors[mirror].rdev->bdev,
 334				 b),
 335			(unsigned long long)r1_bio->sector);
 336		set_bit(R1BIO_ReadError, &r1_bio->state);
 337		reschedule_retry(r1_bio);
 
 338	}
 339
 340	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 341}
 342
 343static void close_write(struct r1bio *r1_bio)
 344{
 345	/* it really is the end of this request */
 346	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 347		/* free extra copy of the data pages */
 348		int i = r1_bio->behind_page_count;
 349		while (i--)
 350			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 351		kfree(r1_bio->behind_bvecs);
 352		r1_bio->behind_bvecs = NULL;
 353	}
 354	/* clear the bitmap if all writes complete successfully */
 355	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 356			r1_bio->sectors,
 357			!test_bit(R1BIO_Degraded, &r1_bio->state),
 358			test_bit(R1BIO_BehindIO, &r1_bio->state));
 359	md_write_end(r1_bio->mddev);
 360}
 361
 362static void r1_bio_write_done(struct r1bio *r1_bio)
 363{
 364	if (!atomic_dec_and_test(&r1_bio->remaining))
 365		return;
 366
 367	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 368		reschedule_retry(r1_bio);
 369	else {
 370		close_write(r1_bio);
 371		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 372			reschedule_retry(r1_bio);
 373		else
 374			raid_end_bio_io(r1_bio);
 375	}
 376}
 377
 378static void raid1_end_write_request(struct bio *bio, int error)
 379{
 380	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 381	struct r1bio *r1_bio = bio->bi_private;
 382	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 383	struct r1conf *conf = r1_bio->mddev->private;
 384	struct bio *to_put = NULL;
 385
 386	mirror = find_bio_disk(r1_bio, bio);
 387
 388	/*
 389	 * 'one mirror IO has finished' event handler:
 390	 */
 391	if (!uptodate) {
 392		set_bit(WriteErrorSeen,
 393			&conf->mirrors[mirror].rdev->flags);
 394		if (!test_and_set_bit(WantReplacement,
 395				      &conf->mirrors[mirror].rdev->flags))
 396			set_bit(MD_RECOVERY_NEEDED, &
 397				conf->mddev->recovery);
 398
 399		set_bit(R1BIO_WriteError, &r1_bio->state);
 400	} else {
 401		/*
 402		 * Set R1BIO_Uptodate in our master bio, so that we
 403		 * will return a good error code for to the higher
 404		 * levels even if IO on some other mirrored buffer
 405		 * fails.
 406		 *
 407		 * The 'master' represents the composite IO operation
 408		 * to user-side. So if something waits for IO, then it
 409		 * will wait for the 'master' bio.
 410		 */
 411		sector_t first_bad;
 412		int bad_sectors;
 413
 414		r1_bio->bios[mirror] = NULL;
 415		to_put = bio;
 416		set_bit(R1BIO_Uptodate, &r1_bio->state);
 
 
 
 
 
 
 
 
 
 
 417
 418		/* Maybe we can clear some bad blocks. */
 419		if (is_badblock(conf->mirrors[mirror].rdev,
 420				r1_bio->sector, r1_bio->sectors,
 421				&first_bad, &bad_sectors)) {
 422			r1_bio->bios[mirror] = IO_MADE_GOOD;
 423			set_bit(R1BIO_MadeGood, &r1_bio->state);
 424		}
 425	}
 426
 427	if (behind) {
 428		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 429			atomic_dec(&r1_bio->behind_remaining);
 430
 431		/*
 432		 * In behind mode, we ACK the master bio once the I/O
 433		 * has safely reached all non-writemostly
 434		 * disks. Setting the Returned bit ensures that this
 435		 * gets done only once -- we don't ever want to return
 436		 * -EIO here, instead we'll wait
 437		 */
 438		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 439		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 440			/* Maybe we can return now */
 441			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 442				struct bio *mbio = r1_bio->master_bio;
 443				pr_debug("raid1: behind end write sectors"
 444					 " %llu-%llu\n",
 445					 (unsigned long long) mbio->bi_sector,
 446					 (unsigned long long) mbio->bi_sector +
 447					 (mbio->bi_size >> 9) - 1);
 448				call_bio_endio(r1_bio);
 449			}
 450		}
 451	}
 452	if (r1_bio->bios[mirror] == NULL)
 453		rdev_dec_pending(conf->mirrors[mirror].rdev,
 454				 conf->mddev);
 455
 456	/*
 457	 * Let's see if all mirrored write operations have finished
 458	 * already.
 459	 */
 460	r1_bio_write_done(r1_bio);
 461
 462	if (to_put)
 463		bio_put(to_put);
 464}
 465
 466
 467/*
 468 * This routine returns the disk from which the requested read should
 469 * be done. There is a per-array 'next expected sequential IO' sector
 470 * number - if this matches on the next IO then we use the last disk.
 471 * There is also a per-disk 'last know head position' sector that is
 472 * maintained from IRQ contexts, both the normal and the resync IO
 473 * completion handlers update this position correctly. If there is no
 474 * perfect sequential match then we pick the disk whose head is closest.
 475 *
 476 * If there are 2 mirrors in the same 2 devices, performance degrades
 477 * because position is mirror, not device based.
 478 *
 479 * The rdev for the device selected will have nr_pending incremented.
 480 */
 481static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 482{
 483	const sector_t this_sector = r1_bio->sector;
 484	int sectors;
 485	int best_good_sectors;
 486	int start_disk;
 487	int best_disk;
 488	int i;
 489	sector_t best_dist;
 
 490	struct md_rdev *rdev;
 491	int choose_first;
 
 492
 493	rcu_read_lock();
 494	/*
 495	 * Check if we can balance. We can balance on the whole
 496	 * device if no resync is going on, or below the resync window.
 497	 * We take the first readable disk when above the resync window.
 498	 */
 499 retry:
 500	sectors = r1_bio->sectors;
 501	best_disk = -1;
 
 502	best_dist = MaxSector;
 
 
 503	best_good_sectors = 0;
 
 
 504
 505	if (conf->mddev->recovery_cp < MaxSector &&
 506	    (this_sector + sectors >= conf->next_resync)) {
 
 
 507		choose_first = 1;
 508		start_disk = 0;
 509	} else {
 510		choose_first = 0;
 511		start_disk = conf->last_used;
 512	}
 513
 514	for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
 515		sector_t dist;
 516		sector_t first_bad;
 517		int bad_sectors;
 518
 519		int disk = start_disk + i;
 520		if (disk >= conf->raid_disks * 2)
 521			disk -= conf->raid_disks * 2;
 522
 523		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 524		if (r1_bio->bios[disk] == IO_BLOCKED
 525		    || rdev == NULL
 526		    || test_bit(Unmerged, &rdev->flags)
 527		    || test_bit(Faulty, &rdev->flags))
 528			continue;
 529		if (!test_bit(In_sync, &rdev->flags) &&
 530		    rdev->recovery_offset < this_sector + sectors)
 531			continue;
 532		if (test_bit(WriteMostly, &rdev->flags)) {
 533			/* Don't balance among write-mostly, just
 534			 * use the first as a last resort */
 535			if (best_disk < 0) {
 536				if (is_badblock(rdev, this_sector, sectors,
 537						&first_bad, &bad_sectors)) {
 538					if (first_bad < this_sector)
 539						/* Cannot use this */
 540						continue;
 541					best_good_sectors = first_bad - this_sector;
 542				} else
 543					best_good_sectors = sectors;
 544				best_disk = disk;
 
 545			}
 546			continue;
 547		}
 548		/* This is a reasonable device to use.  It might
 549		 * even be best.
 550		 */
 551		if (is_badblock(rdev, this_sector, sectors,
 552				&first_bad, &bad_sectors)) {
 553			if (best_dist < MaxSector)
 554				/* already have a better device */
 555				continue;
 556			if (first_bad <= this_sector) {
 557				/* cannot read here. If this is the 'primary'
 558				 * device, then we must not read beyond
 559				 * bad_sectors from another device..
 560				 */
 561				bad_sectors -= (this_sector - first_bad);
 562				if (choose_first && sectors > bad_sectors)
 563					sectors = bad_sectors;
 564				if (best_good_sectors > sectors)
 565					best_good_sectors = sectors;
 566
 567			} else {
 568				sector_t good_sectors = first_bad - this_sector;
 569				if (good_sectors > best_good_sectors) {
 570					best_good_sectors = good_sectors;
 571					best_disk = disk;
 572				}
 573				if (choose_first)
 574					break;
 575			}
 576			continue;
 577		} else
 578			best_good_sectors = sectors;
 579
 
 
 
 580		dist = abs(this_sector - conf->mirrors[disk].head_position);
 581		if (choose_first
 582		    /* Don't change to another disk for sequential reads */
 583		    || conf->next_seq_sect == this_sector
 584		    || dist == 0
 585		    /* If device is idle, use it */
 586		    || atomic_read(&rdev->nr_pending) == 0) {
 587			best_disk = disk;
 588			break;
 589		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 590		if (dist < best_dist) {
 591			best_dist = dist;
 592			best_disk = disk;
 593		}
 594	}
 595
 
 
 
 
 
 
 
 
 
 
 
 
 
 596	if (best_disk >= 0) {
 597		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 598		if (!rdev)
 599			goto retry;
 600		atomic_inc(&rdev->nr_pending);
 601		if (test_bit(Faulty, &rdev->flags)) {
 602			/* cannot risk returning a device that failed
 603			 * before we inc'ed nr_pending
 604			 */
 605			rdev_dec_pending(rdev, conf->mddev);
 606			goto retry;
 607		}
 608		sectors = best_good_sectors;
 609		conf->next_seq_sect = this_sector + sectors;
 610		conf->last_used = best_disk;
 
 
 
 611	}
 612	rcu_read_unlock();
 613	*max_sectors = sectors;
 614
 615	return best_disk;
 616}
 617
 618static int raid1_mergeable_bvec(struct request_queue *q,
 619				struct bvec_merge_data *bvm,
 620				struct bio_vec *biovec)
 621{
 622	struct mddev *mddev = q->queuedata;
 623	struct r1conf *conf = mddev->private;
 624	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 625	int max = biovec->bv_len;
 626
 627	if (mddev->merge_check_needed) {
 628		int disk;
 629		rcu_read_lock();
 630		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
 631			struct md_rdev *rdev = rcu_dereference(
 632				conf->mirrors[disk].rdev);
 633			if (rdev && !test_bit(Faulty, &rdev->flags)) {
 634				struct request_queue *q =
 635					bdev_get_queue(rdev->bdev);
 636				if (q->merge_bvec_fn) {
 637					bvm->bi_sector = sector +
 638						rdev->data_offset;
 639					bvm->bi_bdev = rdev->bdev;
 640					max = min(max, q->merge_bvec_fn(
 641							  q, bvm, biovec));
 642				}
 643			}
 644		}
 645		rcu_read_unlock();
 646	}
 647	return max;
 648
 649}
 650
 651int md_raid1_congested(struct mddev *mddev, int bits)
 652{
 653	struct r1conf *conf = mddev->private;
 654	int i, ret = 0;
 655
 656	if ((bits & (1 << BDI_async_congested)) &&
 657	    conf->pending_count >= max_queued_requests)
 658		return 1;
 659
 660	rcu_read_lock();
 661	for (i = 0; i < conf->raid_disks * 2; i++) {
 662		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 663		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 664			struct request_queue *q = bdev_get_queue(rdev->bdev);
 665
 666			BUG_ON(!q);
 667
 668			/* Note the '|| 1' - when read_balance prefers
 669			 * non-congested targets, it can be removed
 670			 */
 671			if ((bits & (1<<BDI_async_congested)) || 1)
 672				ret |= bdi_congested(&q->backing_dev_info, bits);
 673			else
 674				ret &= bdi_congested(&q->backing_dev_info, bits);
 675		}
 676	}
 677	rcu_read_unlock();
 678	return ret;
 679}
 680EXPORT_SYMBOL_GPL(md_raid1_congested);
 681
 682static int raid1_congested(void *data, int bits)
 683{
 684	struct mddev *mddev = data;
 685
 686	return mddev_congested(mddev, bits) ||
 687		md_raid1_congested(mddev, bits);
 688}
 689
 690static void flush_pending_writes(struct r1conf *conf)
 691{
 692	/* Any writes that have been queued but are awaiting
 693	 * bitmap updates get flushed here.
 694	 */
 695	spin_lock_irq(&conf->device_lock);
 696
 697	if (conf->pending_bio_list.head) {
 698		struct bio *bio;
 699		bio = bio_list_get(&conf->pending_bio_list);
 700		conf->pending_count = 0;
 701		spin_unlock_irq(&conf->device_lock);
 702		/* flush any pending bitmap writes to
 703		 * disk before proceeding w/ I/O */
 704		bitmap_unplug(conf->mddev->bitmap);
 705		wake_up(&conf->wait_barrier);
 706
 707		while (bio) { /* submit pending writes */
 708			struct bio *next = bio->bi_next;
 709			bio->bi_next = NULL;
 710			generic_make_request(bio);
 
 
 
 
 
 711			bio = next;
 712		}
 713	} else
 714		spin_unlock_irq(&conf->device_lock);
 715}
 716
 717/* Barriers....
 718 * Sometimes we need to suspend IO while we do something else,
 719 * either some resync/recovery, or reconfigure the array.
 720 * To do this we raise a 'barrier'.
 721 * The 'barrier' is a counter that can be raised multiple times
 722 * to count how many activities are happening which preclude
 723 * normal IO.
 724 * We can only raise the barrier if there is no pending IO.
 725 * i.e. if nr_pending == 0.
 726 * We choose only to raise the barrier if no-one is waiting for the
 727 * barrier to go down.  This means that as soon as an IO request
 728 * is ready, no other operations which require a barrier will start
 729 * until the IO request has had a chance.
 730 *
 731 * So: regular IO calls 'wait_barrier'.  When that returns there
 732 *    is no backgroup IO happening,  It must arrange to call
 733 *    allow_barrier when it has finished its IO.
 734 * backgroup IO calls must call raise_barrier.  Once that returns
 735 *    there is no normal IO happeing.  It must arrange to call
 736 *    lower_barrier when the particular background IO completes.
 737 */
 738#define RESYNC_DEPTH 32
 739
 740static void raise_barrier(struct r1conf *conf)
 741{
 742	spin_lock_irq(&conf->resync_lock);
 743
 744	/* Wait until no block IO is waiting */
 745	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 746			    conf->resync_lock, );
 747
 748	/* block any new IO from starting */
 749	conf->barrier++;
 
 750
 751	/* Now wait for all pending IO to complete */
 
 
 
 
 
 
 
 
 752	wait_event_lock_irq(conf->wait_barrier,
 753			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 754			    conf->resync_lock, );
 
 
 
 
 755
 
 756	spin_unlock_irq(&conf->resync_lock);
 757}
 758
 759static void lower_barrier(struct r1conf *conf)
 760{
 761	unsigned long flags;
 762	BUG_ON(conf->barrier <= 0);
 763	spin_lock_irqsave(&conf->resync_lock, flags);
 764	conf->barrier--;
 
 765	spin_unlock_irqrestore(&conf->resync_lock, flags);
 766	wake_up(&conf->wait_barrier);
 767}
 768
 769static void wait_barrier(struct r1conf *conf)
 770{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771	spin_lock_irq(&conf->resync_lock);
 772	if (conf->barrier) {
 773		conf->nr_waiting++;
 774		/* Wait for the barrier to drop.
 775		 * However if there are already pending
 776		 * requests (preventing the barrier from
 777		 * rising completely), and the
 778		 * pre-process bio queue isn't empty,
 779		 * then don't wait, as we need to empty
 780		 * that queue to get the nr_pending
 781		 * count down.
 782		 */
 783		wait_event_lock_irq(conf->wait_barrier,
 784				    !conf->barrier ||
 785				    (conf->nr_pending &&
 786				     current->bio_list &&
 787				     !bio_list_empty(current->bio_list)),
 788				    conf->resync_lock,
 789			);
 
 790		conf->nr_waiting--;
 791	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792	conf->nr_pending++;
 793	spin_unlock_irq(&conf->resync_lock);
 
 794}
 795
 796static void allow_barrier(struct r1conf *conf)
 
 797{
 798	unsigned long flags;
 
 799	spin_lock_irqsave(&conf->resync_lock, flags);
 800	conf->nr_pending--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801	spin_unlock_irqrestore(&conf->resync_lock, flags);
 802	wake_up(&conf->wait_barrier);
 803}
 804
 805static void freeze_array(struct r1conf *conf)
 806{
 807	/* stop syncio and normal IO and wait for everything to
 808	 * go quite.
 809	 * We increment barrier and nr_waiting, and then
 810	 * wait until nr_pending match nr_queued+1
 811	 * This is called in the context of one normal IO request
 812	 * that has failed. Thus any sync request that might be pending
 813	 * will be blocked by nr_pending, and we need to wait for
 814	 * pending IO requests to complete or be queued for re-try.
 815	 * Thus the number queued (nr_queued) plus this request (1)
 816	 * must match the number of pending IOs (nr_pending) before
 817	 * we continue.
 818	 */
 819	spin_lock_irq(&conf->resync_lock);
 820	conf->barrier++;
 821	conf->nr_waiting++;
 822	wait_event_lock_irq(conf->wait_barrier,
 823			    conf->nr_pending == conf->nr_queued+1,
 824			    conf->resync_lock,
 825			    flush_pending_writes(conf));
 826	spin_unlock_irq(&conf->resync_lock);
 827}
 828static void unfreeze_array(struct r1conf *conf)
 829{
 830	/* reverse the effect of the freeze */
 831	spin_lock_irq(&conf->resync_lock);
 832	conf->barrier--;
 833	conf->nr_waiting--;
 834	wake_up(&conf->wait_barrier);
 835	spin_unlock_irq(&conf->resync_lock);
 836}
 837
 838
 839/* duplicate the data pages for behind I/O 
 840 */
 841static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
 842{
 843	int i;
 844	struct bio_vec *bvec;
 845	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 846					GFP_NOIO);
 847	if (unlikely(!bvecs))
 848		return;
 849
 850	bio_for_each_segment(bvec, bio, i) {
 851		bvecs[i] = *bvec;
 852		bvecs[i].bv_page = alloc_page(GFP_NOIO);
 853		if (unlikely(!bvecs[i].bv_page))
 854			goto do_sync_io;
 855		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 856		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 857		kunmap(bvecs[i].bv_page);
 858		kunmap(bvec->bv_page);
 859	}
 860	r1_bio->behind_bvecs = bvecs;
 861	r1_bio->behind_page_count = bio->bi_vcnt;
 862	set_bit(R1BIO_BehindIO, &r1_bio->state);
 863	return;
 864
 865do_sync_io:
 866	for (i = 0; i < bio->bi_vcnt; i++)
 867		if (bvecs[i].bv_page)
 868			put_page(bvecs[i].bv_page);
 869	kfree(bvecs);
 870	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
 
 871}
 872
 873static void make_request(struct mddev *mddev, struct bio * bio)
 
 
 
 
 
 
 874{
 
 
 
 875	struct r1conf *conf = mddev->private;
 876	struct mirror_info *mirror;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877	struct r1bio *r1_bio;
 878	struct bio *read_bio;
 879	int i, disks;
 880	struct bitmap *bitmap;
 881	unsigned long flags;
 882	const int rw = bio_data_dir(bio);
 883	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 884	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
 
 
 
 885	struct md_rdev *blocked_rdev;
 
 
 886	int first_clone;
 887	int sectors_handled;
 888	int max_sectors;
 
 889
 890	/*
 891	 * Register the new request and wait if the reconstruction
 892	 * thread has put up a bar for new requests.
 893	 * Continue immediately if no resync is active currently.
 894	 */
 895
 896	md_write_start(mddev, bio); /* wait on superblock update early */
 897
 898	if (bio_data_dir(bio) == WRITE &&
 899	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
 900	    bio->bi_sector < mddev->suspend_hi) {
 
 
 
 901		/* As the suspend_* range is controlled by
 902		 * userspace, we want an interruptible
 903		 * wait.
 904		 */
 905		DEFINE_WAIT(w);
 906		for (;;) {
 907			flush_signals(current);
 908			prepare_to_wait(&conf->wait_barrier,
 909					&w, TASK_INTERRUPTIBLE);
 910			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
 911			    bio->bi_sector >= mddev->suspend_hi)
 
 
 
 912				break;
 913			schedule();
 914		}
 915		finish_wait(&conf->wait_barrier, &w);
 916	}
 917
 918	wait_barrier(conf);
 919
 920	bitmap = mddev->bitmap;
 921
 922	/*
 923	 * make_request() can abort the operation when READA is being
 924	 * used and no empty request is available.
 925	 *
 926	 */
 927	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 928
 929	r1_bio->master_bio = bio;
 930	r1_bio->sectors = bio->bi_size >> 9;
 931	r1_bio->state = 0;
 932	r1_bio->mddev = mddev;
 933	r1_bio->sector = bio->bi_sector;
 934
 935	/* We might need to issue multiple reads to different
 936	 * devices if there are bad blocks around, so we keep
 937	 * track of the number of reads in bio->bi_phys_segments.
 938	 * If this is 0, there is only one r1_bio and no locking
 939	 * will be needed when requests complete.  If it is
 940	 * non-zero, then it is the number of not-completed requests.
 941	 */
 942	bio->bi_phys_segments = 0;
 943	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
 944
 945	if (rw == READ) {
 946		/*
 947		 * read balancing logic:
 948		 */
 949		int rdisk;
 950
 951read_again:
 952		rdisk = read_balance(conf, r1_bio, &max_sectors);
 953
 954		if (rdisk < 0) {
 955			/* couldn't find anywhere to read from */
 956			raid_end_bio_io(r1_bio);
 957			return;
 958		}
 959		mirror = conf->mirrors + rdisk;
 960
 961		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
 962		    bitmap) {
 963			/* Reading from a write-mostly device must
 964			 * take care not to over-take any writes
 965			 * that are 'behind'
 966			 */
 967			wait_event(bitmap->behind_wait,
 968				   atomic_read(&bitmap->behind_writes) == 0);
 969		}
 970		r1_bio->read_disk = rdisk;
 
 971
 972		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 973		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
 974			    max_sectors);
 975
 976		r1_bio->bios[rdisk] = read_bio;
 977
 978		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
 
 979		read_bio->bi_bdev = mirror->rdev->bdev;
 980		read_bio->bi_end_io = raid1_end_read_request;
 981		read_bio->bi_rw = READ | do_sync;
 982		read_bio->bi_private = r1_bio;
 983
 984		if (max_sectors < r1_bio->sectors) {
 985			/* could not read all from this device, so we will
 986			 * need another r1_bio.
 987			 */
 988
 989			sectors_handled = (r1_bio->sector + max_sectors
 990					   - bio->bi_sector);
 991			r1_bio->sectors = max_sectors;
 992			spin_lock_irq(&conf->device_lock);
 993			if (bio->bi_phys_segments == 0)
 994				bio->bi_phys_segments = 2;
 995			else
 996				bio->bi_phys_segments++;
 997			spin_unlock_irq(&conf->device_lock);
 998			/* Cannot call generic_make_request directly
 999			 * as that will be queued in __make_request
1000			 * and subsequent mempool_alloc might block waiting
1001			 * for it.  So hand bio over to raid1d.
1002			 */
1003			reschedule_retry(r1_bio);
1004
1005			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1006
1007			r1_bio->master_bio = bio;
1008			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1009			r1_bio->state = 0;
1010			r1_bio->mddev = mddev;
1011			r1_bio->sector = bio->bi_sector + sectors_handled;
 
1012			goto read_again;
1013		} else
1014			generic_make_request(read_bio);
1015		return;
1016	}
1017
1018	/*
1019	 * WRITE:
1020	 */
1021	if (conf->pending_count >= max_queued_requests) {
1022		md_wakeup_thread(mddev->thread);
1023		wait_event(conf->wait_barrier,
1024			   conf->pending_count < max_queued_requests);
1025	}
1026	/* first select target devices under rcu_lock and
1027	 * inc refcount on their rdev.  Record them by setting
1028	 * bios[x] to bio
1029	 * If there are known/acknowledged bad blocks on any device on
1030	 * which we have seen a write error, we want to avoid writing those
1031	 * blocks.
1032	 * This potentially requires several writes to write around
1033	 * the bad blocks.  Each set of writes gets it's own r1bio
1034	 * with a set of bios attached.
1035	 */
1036
1037	disks = conf->raid_disks * 2;
1038 retry_write:
 
1039	blocked_rdev = NULL;
1040	rcu_read_lock();
1041	max_sectors = r1_bio->sectors;
1042	for (i = 0;  i < disks; i++) {
1043		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1044		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1045			atomic_inc(&rdev->nr_pending);
1046			blocked_rdev = rdev;
1047			break;
1048		}
1049		r1_bio->bios[i] = NULL;
1050		if (!rdev || test_bit(Faulty, &rdev->flags)
1051		    || test_bit(Unmerged, &rdev->flags)) {
1052			if (i < conf->raid_disks)
1053				set_bit(R1BIO_Degraded, &r1_bio->state);
1054			continue;
1055		}
1056
1057		atomic_inc(&rdev->nr_pending);
1058		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1059			sector_t first_bad;
1060			int bad_sectors;
1061			int is_bad;
1062
1063			is_bad = is_badblock(rdev, r1_bio->sector,
1064					     max_sectors,
1065					     &first_bad, &bad_sectors);
1066			if (is_bad < 0) {
1067				/* mustn't write here until the bad block is
1068				 * acknowledged*/
1069				set_bit(BlockedBadBlocks, &rdev->flags);
1070				blocked_rdev = rdev;
1071				break;
1072			}
1073			if (is_bad && first_bad <= r1_bio->sector) {
1074				/* Cannot write here at all */
1075				bad_sectors -= (r1_bio->sector - first_bad);
1076				if (bad_sectors < max_sectors)
1077					/* mustn't write more than bad_sectors
1078					 * to other devices yet
1079					 */
1080					max_sectors = bad_sectors;
1081				rdev_dec_pending(rdev, mddev);
1082				/* We don't set R1BIO_Degraded as that
1083				 * only applies if the disk is
1084				 * missing, so it might be re-added,
1085				 * and we want to know to recover this
1086				 * chunk.
1087				 * In this case the device is here,
1088				 * and the fact that this chunk is not
1089				 * in-sync is recorded in the bad
1090				 * block log
1091				 */
1092				continue;
1093			}
1094			if (is_bad) {
1095				int good_sectors = first_bad - r1_bio->sector;
1096				if (good_sectors < max_sectors)
1097					max_sectors = good_sectors;
1098			}
1099		}
1100		r1_bio->bios[i] = bio;
1101	}
1102	rcu_read_unlock();
1103
1104	if (unlikely(blocked_rdev)) {
1105		/* Wait for this device to become unblocked */
1106		int j;
 
1107
1108		for (j = 0; j < i; j++)
1109			if (r1_bio->bios[j])
1110				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1111		r1_bio->state = 0;
1112		allow_barrier(conf);
1113		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1114		wait_barrier(conf);
 
 
 
 
 
 
 
 
 
1115		goto retry_write;
1116	}
1117
1118	if (max_sectors < r1_bio->sectors) {
1119		/* We are splitting this write into multiple parts, so
1120		 * we need to prepare for allocating another r1_bio.
1121		 */
1122		r1_bio->sectors = max_sectors;
1123		spin_lock_irq(&conf->device_lock);
1124		if (bio->bi_phys_segments == 0)
1125			bio->bi_phys_segments = 2;
1126		else
1127			bio->bi_phys_segments++;
1128		spin_unlock_irq(&conf->device_lock);
1129	}
1130	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1131
1132	atomic_set(&r1_bio->remaining, 1);
1133	atomic_set(&r1_bio->behind_remaining, 0);
1134
1135	first_clone = 1;
1136	for (i = 0; i < disks; i++) {
1137		struct bio *mbio;
1138		if (!r1_bio->bios[i])
1139			continue;
1140
1141		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1142		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1143
1144		if (first_clone) {
1145			/* do behind I/O ?
1146			 * Not if there are too many, or cannot
1147			 * allocate memory, or a reader on WriteMostly
1148			 * is waiting for behind writes to flush */
1149			if (bitmap &&
1150			    (atomic_read(&bitmap->behind_writes)
1151			     < mddev->bitmap_info.max_write_behind) &&
1152			    !waitqueue_active(&bitmap->behind_wait))
1153				alloc_behind_pages(mbio, r1_bio);
1154
1155			bitmap_startwrite(bitmap, r1_bio->sector,
1156					  r1_bio->sectors,
1157					  test_bit(R1BIO_BehindIO,
1158						   &r1_bio->state));
1159			first_clone = 0;
1160		}
1161		if (r1_bio->behind_bvecs) {
1162			struct bio_vec *bvec;
1163			int j;
1164
1165			/* Yes, I really want the '__' version so that
1166			 * we clear any unused pointer in the io_vec, rather
1167			 * than leave them unchanged.  This is important
1168			 * because when we come to free the pages, we won't
1169			 * know the original bi_idx, so we just free
1170			 * them all
1171			 */
1172			__bio_for_each_segment(bvec, mbio, j, 0)
1173				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1174			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1175				atomic_inc(&r1_bio->behind_remaining);
1176		}
1177
1178		r1_bio->bios[i] = mbio;
1179
1180		mbio->bi_sector	= (r1_bio->sector +
1181				   conf->mirrors[i].rdev->data_offset);
1182		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1183		mbio->bi_end_io	= raid1_end_write_request;
1184		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
 
1185		mbio->bi_private = r1_bio;
1186
1187		atomic_inc(&r1_bio->remaining);
 
 
 
 
 
 
1188		spin_lock_irqsave(&conf->device_lock, flags);
1189		bio_list_add(&conf->pending_bio_list, mbio);
1190		conf->pending_count++;
 
 
 
 
 
1191		spin_unlock_irqrestore(&conf->device_lock, flags);
1192		if (!mddev_check_plugged(mddev))
1193			md_wakeup_thread(mddev->thread);
1194	}
1195	/* Mustn't call r1_bio_write_done before this next test,
1196	 * as it could result in the bio being freed.
1197	 */
1198	if (sectors_handled < (bio->bi_size >> 9)) {
1199		r1_bio_write_done(r1_bio);
1200		/* We need another r1_bio.  It has already been counted
1201		 * in bio->bi_phys_segments
1202		 */
1203		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1204		r1_bio->master_bio = bio;
1205		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1206		r1_bio->state = 0;
1207		r1_bio->mddev = mddev;
1208		r1_bio->sector = bio->bi_sector + sectors_handled;
1209		goto retry_write;
1210	}
1211
1212	r1_bio_write_done(r1_bio);
1213
1214	/* In case raid1d snuck in to freeze_array */
1215	wake_up(&conf->wait_barrier);
1216}
1217
1218static void status(struct seq_file *seq, struct mddev *mddev)
1219{
1220	struct r1conf *conf = mddev->private;
1221	int i;
1222
1223	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1224		   conf->raid_disks - mddev->degraded);
1225	rcu_read_lock();
1226	for (i = 0; i < conf->raid_disks; i++) {
1227		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1228		seq_printf(seq, "%s",
1229			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1230	}
1231	rcu_read_unlock();
1232	seq_printf(seq, "]");
1233}
1234
1235
1236static void error(struct mddev *mddev, struct md_rdev *rdev)
1237{
1238	char b[BDEVNAME_SIZE];
1239	struct r1conf *conf = mddev->private;
 
1240
1241	/*
1242	 * If it is not operational, then we have already marked it as dead
1243	 * else if it is the last working disks, ignore the error, let the
1244	 * next level up know.
1245	 * else mark the drive as failed
1246	 */
1247	if (test_bit(In_sync, &rdev->flags)
1248	    && (conf->raid_disks - mddev->degraded) == 1) {
1249		/*
1250		 * Don't fail the drive, act as though we were just a
1251		 * normal single drive.
1252		 * However don't try a recovery from this drive as
1253		 * it is very likely to fail.
1254		 */
1255		conf->recovery_disabled = mddev->recovery_disabled;
1256		return;
1257	}
1258	set_bit(Blocked, &rdev->flags);
 
1259	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1260		unsigned long flags;
1261		spin_lock_irqsave(&conf->device_lock, flags);
1262		mddev->degraded++;
1263		set_bit(Faulty, &rdev->flags);
1264		spin_unlock_irqrestore(&conf->device_lock, flags);
1265		/*
1266		 * if recovery is running, make sure it aborts.
1267		 */
1268		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1269	} else
1270		set_bit(Faulty, &rdev->flags);
 
 
 
 
 
1271	set_bit(MD_CHANGE_DEVS, &mddev->flags);
 
1272	printk(KERN_ALERT
1273	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1274	       "md/raid1:%s: Operation continuing on %d devices.\n",
1275	       mdname(mddev), bdevname(rdev->bdev, b),
1276	       mdname(mddev), conf->raid_disks - mddev->degraded);
1277}
1278
1279static void print_conf(struct r1conf *conf)
1280{
1281	int i;
1282
1283	printk(KERN_DEBUG "RAID1 conf printout:\n");
1284	if (!conf) {
1285		printk(KERN_DEBUG "(!conf)\n");
1286		return;
1287	}
1288	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1289		conf->raid_disks);
1290
1291	rcu_read_lock();
1292	for (i = 0; i < conf->raid_disks; i++) {
1293		char b[BDEVNAME_SIZE];
1294		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1295		if (rdev)
1296			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1297			       i, !test_bit(In_sync, &rdev->flags),
1298			       !test_bit(Faulty, &rdev->flags),
1299			       bdevname(rdev->bdev,b));
1300	}
1301	rcu_read_unlock();
1302}
1303
1304static void close_sync(struct r1conf *conf)
1305{
1306	wait_barrier(conf);
1307	allow_barrier(conf);
1308
1309	mempool_destroy(conf->r1buf_pool);
1310	conf->r1buf_pool = NULL;
 
 
 
 
 
 
 
 
1311}
1312
1313static int raid1_spare_active(struct mddev *mddev)
1314{
1315	int i;
1316	struct r1conf *conf = mddev->private;
1317	int count = 0;
1318	unsigned long flags;
1319
1320	/*
1321	 * Find all failed disks within the RAID1 configuration 
1322	 * and mark them readable.
1323	 * Called under mddev lock, so rcu protection not needed.
 
 
1324	 */
 
1325	for (i = 0; i < conf->raid_disks; i++) {
1326		struct md_rdev *rdev = conf->mirrors[i].rdev;
1327		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1328		if (repl
 
1329		    && repl->recovery_offset == MaxSector
1330		    && !test_bit(Faulty, &repl->flags)
1331		    && !test_and_set_bit(In_sync, &repl->flags)) {
1332			/* replacement has just become active */
1333			if (!rdev ||
1334			    !test_and_clear_bit(In_sync, &rdev->flags))
1335				count++;
1336			if (rdev) {
1337				/* Replaced device not technically
1338				 * faulty, but we need to be sure
1339				 * it gets removed and never re-added
1340				 */
1341				set_bit(Faulty, &rdev->flags);
1342				sysfs_notify_dirent_safe(
1343					rdev->sysfs_state);
1344			}
1345		}
1346		if (rdev
 
1347		    && !test_bit(Faulty, &rdev->flags)
1348		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1349			count++;
1350			sysfs_notify_dirent_safe(rdev->sysfs_state);
1351		}
1352	}
1353	spin_lock_irqsave(&conf->device_lock, flags);
1354	mddev->degraded -= count;
1355	spin_unlock_irqrestore(&conf->device_lock, flags);
1356
1357	print_conf(conf);
1358	return count;
1359}
1360
1361
1362static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1363{
1364	struct r1conf *conf = mddev->private;
1365	int err = -EEXIST;
1366	int mirror = 0;
1367	struct mirror_info *p;
1368	int first = 0;
1369	int last = conf->raid_disks - 1;
1370	struct request_queue *q = bdev_get_queue(rdev->bdev);
1371
1372	if (mddev->recovery_disabled == conf->recovery_disabled)
1373		return -EBUSY;
1374
 
 
 
1375	if (rdev->raid_disk >= 0)
1376		first = last = rdev->raid_disk;
1377
1378	if (q->merge_bvec_fn) {
1379		set_bit(Unmerged, &rdev->flags);
1380		mddev->merge_check_needed = 1;
1381	}
 
 
 
 
1382
1383	for (mirror = first; mirror <= last; mirror++) {
1384		p = conf->mirrors+mirror;
1385		if (!p->rdev) {
1386
1387			disk_stack_limits(mddev->gendisk, rdev->bdev,
1388					  rdev->data_offset << 9);
 
1389
1390			p->head_position = 0;
1391			rdev->raid_disk = mirror;
1392			err = 0;
1393			/* As all devices are equivalent, we don't need a full recovery
1394			 * if this was recently any drive of the array
1395			 */
1396			if (rdev->saved_raid_disk < 0)
1397				conf->fullsync = 1;
1398			rcu_assign_pointer(p->rdev, rdev);
1399			break;
1400		}
1401		if (test_bit(WantReplacement, &p->rdev->flags) &&
1402		    p[conf->raid_disks].rdev == NULL) {
1403			/* Add this device as a replacement */
1404			clear_bit(In_sync, &rdev->flags);
1405			set_bit(Replacement, &rdev->flags);
1406			rdev->raid_disk = mirror;
1407			err = 0;
1408			conf->fullsync = 1;
1409			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1410			break;
1411		}
1412	}
1413	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1414		/* Some requests might not have seen this new
1415		 * merge_bvec_fn.  We must wait for them to complete
1416		 * before merging the device fully.
1417		 * First we make sure any code which has tested
1418		 * our function has submitted the request, then
1419		 * we wait for all outstanding requests to complete.
1420		 */
1421		synchronize_sched();
1422		raise_barrier(conf);
1423		lower_barrier(conf);
1424		clear_bit(Unmerged, &rdev->flags);
1425	}
1426	md_integrity_add_rdev(rdev, mddev);
1427	print_conf(conf);
1428	return err;
1429}
1430
1431static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1432{
1433	struct r1conf *conf = mddev->private;
1434	int err = 0;
1435	int number = rdev->raid_disk;
1436	struct mirror_info *p = conf->mirrors+ number;
1437
1438	if (rdev != p->rdev)
1439		p = conf->mirrors + conf->raid_disks + number;
1440
1441	print_conf(conf);
1442	if (rdev == p->rdev) {
1443		if (test_bit(In_sync, &rdev->flags) ||
1444		    atomic_read(&rdev->nr_pending)) {
1445			err = -EBUSY;
1446			goto abort;
1447		}
1448		/* Only remove non-faulty devices if recovery
1449		 * is not possible.
1450		 */
1451		if (!test_bit(Faulty, &rdev->flags) &&
1452		    mddev->recovery_disabled != conf->recovery_disabled &&
1453		    mddev->degraded < conf->raid_disks) {
1454			err = -EBUSY;
1455			goto abort;
1456		}
1457		p->rdev = NULL;
1458		synchronize_rcu();
1459		if (atomic_read(&rdev->nr_pending)) {
1460			/* lost the race, try later */
1461			err = -EBUSY;
1462			p->rdev = rdev;
1463			goto abort;
1464		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1465			/* We just removed a device that is being replaced.
1466			 * Move down the replacement.  We drain all IO before
1467			 * doing this to avoid confusion.
1468			 */
1469			struct md_rdev *repl =
1470				conf->mirrors[conf->raid_disks + number].rdev;
1471			raise_barrier(conf);
1472			clear_bit(Replacement, &repl->flags);
1473			p->rdev = repl;
1474			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1475			lower_barrier(conf);
1476			clear_bit(WantReplacement, &rdev->flags);
1477		} else
1478			clear_bit(WantReplacement, &rdev->flags);
1479		err = md_integrity_register(mddev);
1480	}
1481abort:
1482
1483	print_conf(conf);
1484	return err;
1485}
1486
1487
1488static void end_sync_read(struct bio *bio, int error)
1489{
1490	struct r1bio *r1_bio = bio->bi_private;
1491
1492	update_head_pos(r1_bio->read_disk, r1_bio);
1493
1494	/*
1495	 * we have read a block, now it needs to be re-written,
1496	 * or re-read if the read failed.
1497	 * We don't do much here, just schedule handling by raid1d
1498	 */
1499	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1500		set_bit(R1BIO_Uptodate, &r1_bio->state);
1501
1502	if (atomic_dec_and_test(&r1_bio->remaining))
1503		reschedule_retry(r1_bio);
1504}
1505
1506static void end_sync_write(struct bio *bio, int error)
1507{
1508	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1509	struct r1bio *r1_bio = bio->bi_private;
1510	struct mddev *mddev = r1_bio->mddev;
1511	struct r1conf *conf = mddev->private;
1512	int mirror=0;
1513	sector_t first_bad;
1514	int bad_sectors;
1515
1516	mirror = find_bio_disk(r1_bio, bio);
1517
1518	if (!uptodate) {
1519		sector_t sync_blocks = 0;
1520		sector_t s = r1_bio->sector;
1521		long sectors_to_go = r1_bio->sectors;
1522		/* make sure these bits doesn't get cleared. */
1523		do {
1524			bitmap_end_sync(mddev->bitmap, s,
1525					&sync_blocks, 1);
1526			s += sync_blocks;
1527			sectors_to_go -= sync_blocks;
1528		} while (sectors_to_go > 0);
1529		set_bit(WriteErrorSeen,
1530			&conf->mirrors[mirror].rdev->flags);
1531		if (!test_and_set_bit(WantReplacement,
1532				      &conf->mirrors[mirror].rdev->flags))
1533			set_bit(MD_RECOVERY_NEEDED, &
1534				mddev->recovery);
1535		set_bit(R1BIO_WriteError, &r1_bio->state);
1536	} else if (is_badblock(conf->mirrors[mirror].rdev,
1537			       r1_bio->sector,
1538			       r1_bio->sectors,
1539			       &first_bad, &bad_sectors) &&
1540		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1541				r1_bio->sector,
1542				r1_bio->sectors,
1543				&first_bad, &bad_sectors)
1544		)
1545		set_bit(R1BIO_MadeGood, &r1_bio->state);
1546
1547	if (atomic_dec_and_test(&r1_bio->remaining)) {
1548		int s = r1_bio->sectors;
1549		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1550		    test_bit(R1BIO_WriteError, &r1_bio->state))
1551			reschedule_retry(r1_bio);
1552		else {
1553			put_buf(r1_bio);
1554			md_done_sync(mddev, s, uptodate);
1555		}
1556	}
1557}
1558
1559static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1560			    int sectors, struct page *page, int rw)
1561{
1562	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1563		/* success */
1564		return 1;
1565	if (rw == WRITE) {
1566		set_bit(WriteErrorSeen, &rdev->flags);
1567		if (!test_and_set_bit(WantReplacement,
1568				      &rdev->flags))
1569			set_bit(MD_RECOVERY_NEEDED, &
1570				rdev->mddev->recovery);
1571	}
1572	/* need to record an error - either for the block or the device */
1573	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1574		md_error(rdev->mddev, rdev);
1575	return 0;
1576}
1577
1578static int fix_sync_read_error(struct r1bio *r1_bio)
1579{
1580	/* Try some synchronous reads of other devices to get
1581	 * good data, much like with normal read errors.  Only
1582	 * read into the pages we already have so we don't
1583	 * need to re-issue the read request.
1584	 * We don't need to freeze the array, because being in an
1585	 * active sync request, there is no normal IO, and
1586	 * no overlapping syncs.
1587	 * We don't need to check is_badblock() again as we
1588	 * made sure that anything with a bad block in range
1589	 * will have bi_end_io clear.
1590	 */
1591	struct mddev *mddev = r1_bio->mddev;
1592	struct r1conf *conf = mddev->private;
1593	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1594	sector_t sect = r1_bio->sector;
1595	int sectors = r1_bio->sectors;
1596	int idx = 0;
1597
1598	while(sectors) {
1599		int s = sectors;
1600		int d = r1_bio->read_disk;
1601		int success = 0;
1602		struct md_rdev *rdev;
1603		int start;
1604
1605		if (s > (PAGE_SIZE>>9))
1606			s = PAGE_SIZE >> 9;
1607		do {
1608			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1609				/* No rcu protection needed here devices
1610				 * can only be removed when no resync is
1611				 * active, and resync is currently active
1612				 */
1613				rdev = conf->mirrors[d].rdev;
1614				if (sync_page_io(rdev, sect, s<<9,
1615						 bio->bi_io_vec[idx].bv_page,
1616						 READ, false)) {
1617					success = 1;
1618					break;
1619				}
1620			}
1621			d++;
1622			if (d == conf->raid_disks * 2)
1623				d = 0;
1624		} while (!success && d != r1_bio->read_disk);
1625
1626		if (!success) {
1627			char b[BDEVNAME_SIZE];
1628			int abort = 0;
1629			/* Cannot read from anywhere, this block is lost.
1630			 * Record a bad block on each device.  If that doesn't
1631			 * work just disable and interrupt the recovery.
1632			 * Don't fail devices as that won't really help.
1633			 */
1634			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1635			       " for block %llu\n",
1636			       mdname(mddev),
1637			       bdevname(bio->bi_bdev, b),
1638			       (unsigned long long)r1_bio->sector);
1639			for (d = 0; d < conf->raid_disks * 2; d++) {
1640				rdev = conf->mirrors[d].rdev;
1641				if (!rdev || test_bit(Faulty, &rdev->flags))
1642					continue;
1643				if (!rdev_set_badblocks(rdev, sect, s, 0))
1644					abort = 1;
1645			}
1646			if (abort) {
1647				conf->recovery_disabled =
1648					mddev->recovery_disabled;
1649				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1650				md_done_sync(mddev, r1_bio->sectors, 0);
1651				put_buf(r1_bio);
1652				return 0;
1653			}
1654			/* Try next page */
1655			sectors -= s;
1656			sect += s;
1657			idx++;
1658			continue;
1659		}
1660
1661		start = d;
1662		/* write it back and re-read */
1663		while (d != r1_bio->read_disk) {
1664			if (d == 0)
1665				d = conf->raid_disks * 2;
1666			d--;
1667			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1668				continue;
1669			rdev = conf->mirrors[d].rdev;
1670			if (r1_sync_page_io(rdev, sect, s,
1671					    bio->bi_io_vec[idx].bv_page,
1672					    WRITE) == 0) {
1673				r1_bio->bios[d]->bi_end_io = NULL;
1674				rdev_dec_pending(rdev, mddev);
1675			}
1676		}
1677		d = start;
1678		while (d != r1_bio->read_disk) {
1679			if (d == 0)
1680				d = conf->raid_disks * 2;
1681			d--;
1682			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1683				continue;
1684			rdev = conf->mirrors[d].rdev;
1685			if (r1_sync_page_io(rdev, sect, s,
1686					    bio->bi_io_vec[idx].bv_page,
1687					    READ) != 0)
1688				atomic_add(s, &rdev->corrected_errors);
1689		}
1690		sectors -= s;
1691		sect += s;
1692		idx ++;
1693	}
1694	set_bit(R1BIO_Uptodate, &r1_bio->state);
1695	set_bit(BIO_UPTODATE, &bio->bi_flags);
1696	return 1;
1697}
1698
1699static int process_checks(struct r1bio *r1_bio)
1700{
1701	/* We have read all readable devices.  If we haven't
1702	 * got the block, then there is no hope left.
1703	 * If we have, then we want to do a comparison
1704	 * and skip the write if everything is the same.
1705	 * If any blocks failed to read, then we need to
1706	 * attempt an over-write
1707	 */
1708	struct mddev *mddev = r1_bio->mddev;
1709	struct r1conf *conf = mddev->private;
1710	int primary;
1711	int i;
1712	int vcnt;
1713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1715		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1716		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1717			r1_bio->bios[primary]->bi_end_io = NULL;
1718			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1719			break;
1720		}
1721	r1_bio->read_disk = primary;
1722	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1723	for (i = 0; i < conf->raid_disks * 2; i++) {
1724		int j;
1725		struct bio *pbio = r1_bio->bios[primary];
1726		struct bio *sbio = r1_bio->bios[i];
1727		int size;
1728
1729		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1730			continue;
 
 
1731
1732		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1733			for (j = vcnt; j-- ; ) {
1734				struct page *p, *s;
1735				p = pbio->bi_io_vec[j].bv_page;
1736				s = sbio->bi_io_vec[j].bv_page;
1737				if (memcmp(page_address(p),
1738					   page_address(s),
1739					   sbio->bi_io_vec[j].bv_len))
1740					break;
1741			}
1742		} else
1743			j = 0;
1744		if (j >= 0)
1745			mddev->resync_mismatches += r1_bio->sectors;
1746		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1747			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1748			/* No need to write to this device. */
1749			sbio->bi_end_io = NULL;
1750			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1751			continue;
1752		}
1753		/* fixup the bio for reuse */
1754		sbio->bi_vcnt = vcnt;
1755		sbio->bi_size = r1_bio->sectors << 9;
1756		sbio->bi_idx = 0;
1757		sbio->bi_phys_segments = 0;
1758		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1759		sbio->bi_flags |= 1 << BIO_UPTODATE;
1760		sbio->bi_next = NULL;
1761		sbio->bi_sector = r1_bio->sector +
1762			conf->mirrors[i].rdev->data_offset;
1763		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1764		size = sbio->bi_size;
1765		for (j = 0; j < vcnt ; j++) {
1766			struct bio_vec *bi;
1767			bi = &sbio->bi_io_vec[j];
1768			bi->bv_offset = 0;
1769			if (size > PAGE_SIZE)
1770				bi->bv_len = PAGE_SIZE;
1771			else
1772				bi->bv_len = size;
1773			size -= PAGE_SIZE;
1774			memcpy(page_address(bi->bv_page),
1775			       page_address(pbio->bi_io_vec[j].bv_page),
1776			       PAGE_SIZE);
1777		}
1778	}
1779	return 0;
1780}
1781
1782static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1783{
1784	struct r1conf *conf = mddev->private;
1785	int i;
1786	int disks = conf->raid_disks * 2;
1787	struct bio *bio, *wbio;
1788
1789	bio = r1_bio->bios[r1_bio->read_disk];
1790
1791	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1792		/* ouch - failed to read all of that. */
1793		if (!fix_sync_read_error(r1_bio))
1794			return;
1795
1796	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1797		if (process_checks(r1_bio) < 0)
1798			return;
1799	/*
1800	 * schedule writes
1801	 */
1802	atomic_set(&r1_bio->remaining, 1);
1803	for (i = 0; i < disks ; i++) {
1804		wbio = r1_bio->bios[i];
1805		if (wbio->bi_end_io == NULL ||
1806		    (wbio->bi_end_io == end_sync_read &&
1807		     (i == r1_bio->read_disk ||
1808		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1809			continue;
1810
1811		wbio->bi_rw = WRITE;
1812		wbio->bi_end_io = end_sync_write;
1813		atomic_inc(&r1_bio->remaining);
1814		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1815
1816		generic_make_request(wbio);
1817	}
1818
1819	if (atomic_dec_and_test(&r1_bio->remaining)) {
1820		/* if we're here, all write(s) have completed, so clean up */
1821		int s = r1_bio->sectors;
1822		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1823		    test_bit(R1BIO_WriteError, &r1_bio->state))
1824			reschedule_retry(r1_bio);
1825		else {
1826			put_buf(r1_bio);
1827			md_done_sync(mddev, s, 1);
1828		}
1829	}
1830}
1831
1832/*
1833 * This is a kernel thread which:
1834 *
1835 *	1.	Retries failed read operations on working mirrors.
1836 *	2.	Updates the raid superblock when problems encounter.
1837 *	3.	Performs writes following reads for array synchronising.
1838 */
1839
1840static void fix_read_error(struct r1conf *conf, int read_disk,
1841			   sector_t sect, int sectors)
1842{
1843	struct mddev *mddev = conf->mddev;
1844	while(sectors) {
1845		int s = sectors;
1846		int d = read_disk;
1847		int success = 0;
1848		int start;
1849		struct md_rdev *rdev;
1850
1851		if (s > (PAGE_SIZE>>9))
1852			s = PAGE_SIZE >> 9;
1853
1854		do {
1855			/* Note: no rcu protection needed here
1856			 * as this is synchronous in the raid1d thread
1857			 * which is the thread that might remove
1858			 * a device.  If raid1d ever becomes multi-threaded....
1859			 */
1860			sector_t first_bad;
1861			int bad_sectors;
1862
1863			rdev = conf->mirrors[d].rdev;
1864			if (rdev &&
1865			    (test_bit(In_sync, &rdev->flags) ||
1866			     (!test_bit(Faulty, &rdev->flags) &&
1867			      rdev->recovery_offset >= sect + s)) &&
1868			    is_badblock(rdev, sect, s,
1869					&first_bad, &bad_sectors) == 0 &&
1870			    sync_page_io(rdev, sect, s<<9,
1871					 conf->tmppage, READ, false))
1872				success = 1;
1873			else {
1874				d++;
1875				if (d == conf->raid_disks * 2)
1876					d = 0;
1877			}
1878		} while (!success && d != read_disk);
1879
1880		if (!success) {
1881			/* Cannot read from anywhere - mark it bad */
1882			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1883			if (!rdev_set_badblocks(rdev, sect, s, 0))
1884				md_error(mddev, rdev);
1885			break;
1886		}
1887		/* write it back and re-read */
1888		start = d;
1889		while (d != read_disk) {
1890			if (d==0)
1891				d = conf->raid_disks * 2;
1892			d--;
1893			rdev = conf->mirrors[d].rdev;
1894			if (rdev &&
1895			    test_bit(In_sync, &rdev->flags))
1896				r1_sync_page_io(rdev, sect, s,
1897						conf->tmppage, WRITE);
1898		}
1899		d = start;
1900		while (d != read_disk) {
1901			char b[BDEVNAME_SIZE];
1902			if (d==0)
1903				d = conf->raid_disks * 2;
1904			d--;
1905			rdev = conf->mirrors[d].rdev;
1906			if (rdev &&
1907			    test_bit(In_sync, &rdev->flags)) {
1908				if (r1_sync_page_io(rdev, sect, s,
1909						    conf->tmppage, READ)) {
1910					atomic_add(s, &rdev->corrected_errors);
1911					printk(KERN_INFO
1912					       "md/raid1:%s: read error corrected "
1913					       "(%d sectors at %llu on %s)\n",
1914					       mdname(mddev), s,
1915					       (unsigned long long)(sect +
1916					           rdev->data_offset),
1917					       bdevname(rdev->bdev, b));
1918				}
1919			}
1920		}
1921		sectors -= s;
1922		sect += s;
1923	}
1924}
1925
1926static void bi_complete(struct bio *bio, int error)
1927{
1928	complete((struct completion *)bio->bi_private);
1929}
1930
1931static int submit_bio_wait(int rw, struct bio *bio)
1932{
1933	struct completion event;
1934	rw |= REQ_SYNC;
1935
1936	init_completion(&event);
1937	bio->bi_private = &event;
1938	bio->bi_end_io = bi_complete;
1939	submit_bio(rw, bio);
1940	wait_for_completion(&event);
1941
1942	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1943}
1944
1945static int narrow_write_error(struct r1bio *r1_bio, int i)
1946{
1947	struct mddev *mddev = r1_bio->mddev;
1948	struct r1conf *conf = mddev->private;
1949	struct md_rdev *rdev = conf->mirrors[i].rdev;
1950	int vcnt, idx;
1951	struct bio_vec *vec;
1952
1953	/* bio has the data to be written to device 'i' where
1954	 * we just recently had a write error.
1955	 * We repeatedly clone the bio and trim down to one block,
1956	 * then try the write.  Where the write fails we record
1957	 * a bad block.
1958	 * It is conceivable that the bio doesn't exactly align with
1959	 * blocks.  We must handle this somehow.
1960	 *
1961	 * We currently own a reference on the rdev.
1962	 */
1963
1964	int block_sectors;
1965	sector_t sector;
1966	int sectors;
1967	int sect_to_write = r1_bio->sectors;
1968	int ok = 1;
1969
1970	if (rdev->badblocks.shift < 0)
1971		return 0;
1972
1973	block_sectors = 1 << rdev->badblocks.shift;
 
1974	sector = r1_bio->sector;
1975	sectors = ((sector + block_sectors)
1976		   & ~(sector_t)(block_sectors - 1))
1977		- sector;
1978
1979	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1980		vcnt = r1_bio->behind_page_count;
1981		vec = r1_bio->behind_bvecs;
1982		idx = 0;
1983		while (vec[idx].bv_page == NULL)
1984			idx++;
1985	} else {
1986		vcnt = r1_bio->master_bio->bi_vcnt;
1987		vec = r1_bio->master_bio->bi_io_vec;
1988		idx = r1_bio->master_bio->bi_idx;
1989	}
1990	while (sect_to_write) {
1991		struct bio *wbio;
1992		if (sectors > sect_to_write)
1993			sectors = sect_to_write;
1994		/* Write at 'sector' for 'sectors'*/
1995
1996		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1997		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1998		wbio->bi_sector = r1_bio->sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1999		wbio->bi_rw = WRITE;
2000		wbio->bi_vcnt = vcnt;
2001		wbio->bi_size = r1_bio->sectors << 9;
2002		wbio->bi_idx = idx;
2003
2004		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2005		wbio->bi_sector += rdev->data_offset;
2006		wbio->bi_bdev = rdev->bdev;
2007		if (submit_bio_wait(WRITE, wbio) == 0)
2008			/* failure! */
2009			ok = rdev_set_badblocks(rdev, sector,
2010						sectors, 0)
2011				&& ok;
2012
2013		bio_put(wbio);
2014		sect_to_write -= sectors;
2015		sector += sectors;
2016		sectors = block_sectors;
2017	}
2018	return ok;
2019}
2020
2021static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2022{
2023	int m;
2024	int s = r1_bio->sectors;
2025	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2026		struct md_rdev *rdev = conf->mirrors[m].rdev;
2027		struct bio *bio = r1_bio->bios[m];
2028		if (bio->bi_end_io == NULL)
2029			continue;
2030		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2031		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2032			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2033		}
2034		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2035		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2036			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2037				md_error(conf->mddev, rdev);
2038		}
2039	}
2040	put_buf(r1_bio);
2041	md_done_sync(conf->mddev, s, 1);
2042}
2043
2044static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2045{
2046	int m;
 
2047	for (m = 0; m < conf->raid_disks * 2 ; m++)
2048		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2049			struct md_rdev *rdev = conf->mirrors[m].rdev;
2050			rdev_clear_badblocks(rdev,
2051					     r1_bio->sector,
2052					     r1_bio->sectors, 0);
2053			rdev_dec_pending(rdev, conf->mddev);
2054		} else if (r1_bio->bios[m] != NULL) {
2055			/* This drive got a write error.  We need to
2056			 * narrow down and record precise write
2057			 * errors.
2058			 */
 
2059			if (!narrow_write_error(r1_bio, m)) {
2060				md_error(conf->mddev,
2061					 conf->mirrors[m].rdev);
2062				/* an I/O failed, we can't clear the bitmap */
2063				set_bit(R1BIO_Degraded, &r1_bio->state);
2064			}
2065			rdev_dec_pending(conf->mirrors[m].rdev,
2066					 conf->mddev);
2067		}
2068	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2069		close_write(r1_bio);
2070	raid_end_bio_io(r1_bio);
 
 
 
 
 
 
 
 
2071}
2072
2073static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2074{
2075	int disk;
2076	int max_sectors;
2077	struct mddev *mddev = conf->mddev;
2078	struct bio *bio;
2079	char b[BDEVNAME_SIZE];
2080	struct md_rdev *rdev;
2081
2082	clear_bit(R1BIO_ReadError, &r1_bio->state);
2083	/* we got a read error. Maybe the drive is bad.  Maybe just
2084	 * the block and we can fix it.
2085	 * We freeze all other IO, and try reading the block from
2086	 * other devices.  When we find one, we re-write
2087	 * and check it that fixes the read error.
2088	 * This is all done synchronously while the array is
2089	 * frozen
2090	 */
2091	if (mddev->ro == 0) {
2092		freeze_array(conf);
2093		fix_read_error(conf, r1_bio->read_disk,
2094			       r1_bio->sector, r1_bio->sectors);
2095		unfreeze_array(conf);
2096	} else
2097		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
 
2098
2099	bio = r1_bio->bios[r1_bio->read_disk];
2100	bdevname(bio->bi_bdev, b);
2101read_more:
2102	disk = read_balance(conf, r1_bio, &max_sectors);
2103	if (disk == -1) {
2104		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2105		       " read error for block %llu\n",
2106		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2107		raid_end_bio_io(r1_bio);
2108	} else {
2109		const unsigned long do_sync
2110			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2111		if (bio) {
2112			r1_bio->bios[r1_bio->read_disk] =
2113				mddev->ro ? IO_BLOCKED : NULL;
2114			bio_put(bio);
2115		}
2116		r1_bio->read_disk = disk;
2117		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2118		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
 
2119		r1_bio->bios[r1_bio->read_disk] = bio;
2120		rdev = conf->mirrors[disk].rdev;
2121		printk_ratelimited(KERN_ERR
2122				   "md/raid1:%s: redirecting sector %llu"
2123				   " to other mirror: %s\n",
2124				   mdname(mddev),
2125				   (unsigned long long)r1_bio->sector,
2126				   bdevname(rdev->bdev, b));
2127		bio->bi_sector = r1_bio->sector + rdev->data_offset;
2128		bio->bi_bdev = rdev->bdev;
2129		bio->bi_end_io = raid1_end_read_request;
2130		bio->bi_rw = READ | do_sync;
2131		bio->bi_private = r1_bio;
2132		if (max_sectors < r1_bio->sectors) {
2133			/* Drat - have to split this up more */
2134			struct bio *mbio = r1_bio->master_bio;
2135			int sectors_handled = (r1_bio->sector + max_sectors
2136					       - mbio->bi_sector);
2137			r1_bio->sectors = max_sectors;
2138			spin_lock_irq(&conf->device_lock);
2139			if (mbio->bi_phys_segments == 0)
2140				mbio->bi_phys_segments = 2;
2141			else
2142				mbio->bi_phys_segments++;
2143			spin_unlock_irq(&conf->device_lock);
2144			generic_make_request(bio);
2145			bio = NULL;
2146
2147			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2148
2149			r1_bio->master_bio = mbio;
2150			r1_bio->sectors = (mbio->bi_size >> 9)
2151					  - sectors_handled;
2152			r1_bio->state = 0;
2153			set_bit(R1BIO_ReadError, &r1_bio->state);
2154			r1_bio->mddev = mddev;
2155			r1_bio->sector = mbio->bi_sector + sectors_handled;
 
2156
2157			goto read_more;
2158		} else
2159			generic_make_request(bio);
2160	}
2161}
2162
2163static void raid1d(struct mddev *mddev)
2164{
 
2165	struct r1bio *r1_bio;
2166	unsigned long flags;
2167	struct r1conf *conf = mddev->private;
2168	struct list_head *head = &conf->retry_list;
2169	struct blk_plug plug;
2170
2171	md_check_recovery(mddev);
2172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2173	blk_start_plug(&plug);
2174	for (;;) {
2175
2176		if (atomic_read(&mddev->plug_cnt) == 0)
2177			flush_pending_writes(conf);
2178
2179		spin_lock_irqsave(&conf->device_lock, flags);
2180		if (list_empty(head)) {
2181			spin_unlock_irqrestore(&conf->device_lock, flags);
2182			break;
2183		}
2184		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2185		list_del(head->prev);
2186		conf->nr_queued--;
2187		spin_unlock_irqrestore(&conf->device_lock, flags);
2188
2189		mddev = r1_bio->mddev;
2190		conf = mddev->private;
2191		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2192			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2193			    test_bit(R1BIO_WriteError, &r1_bio->state))
2194				handle_sync_write_finished(conf, r1_bio);
2195			else
2196				sync_request_write(mddev, r1_bio);
2197		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2198			   test_bit(R1BIO_WriteError, &r1_bio->state))
2199			handle_write_finished(conf, r1_bio);
2200		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2201			handle_read_error(conf, r1_bio);
2202		else
2203			/* just a partial read to be scheduled from separate
2204			 * context
2205			 */
2206			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2207
2208		cond_resched();
2209		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2210			md_check_recovery(mddev);
2211	}
2212	blk_finish_plug(&plug);
2213}
2214
2215
2216static int init_resync(struct r1conf *conf)
2217{
2218	int buffs;
2219
2220	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2221	BUG_ON(conf->r1buf_pool);
2222	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2223					  conf->poolinfo);
2224	if (!conf->r1buf_pool)
2225		return -ENOMEM;
2226	conf->next_resync = 0;
2227	return 0;
2228}
2229
2230/*
2231 * perform a "sync" on one "block"
2232 *
2233 * We need to make sure that no normal I/O request - particularly write
2234 * requests - conflict with active sync requests.
2235 *
2236 * This is achieved by tracking pending requests and a 'barrier' concept
2237 * that can be installed to exclude normal IO requests.
2238 */
2239
2240static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
 
2241{
2242	struct r1conf *conf = mddev->private;
2243	struct r1bio *r1_bio;
2244	struct bio *bio;
2245	sector_t max_sector, nr_sectors;
2246	int disk = -1;
2247	int i;
2248	int wonly = -1;
2249	int write_targets = 0, read_targets = 0;
2250	sector_t sync_blocks;
2251	int still_degraded = 0;
2252	int good_sectors = RESYNC_SECTORS;
2253	int min_bad = 0; /* number of sectors that are bad in all devices */
2254
2255	if (!conf->r1buf_pool)
2256		if (init_resync(conf))
2257			return 0;
2258
2259	max_sector = mddev->dev_sectors;
2260	if (sector_nr >= max_sector) {
2261		/* If we aborted, we need to abort the
2262		 * sync on the 'current' bitmap chunk (there will
2263		 * only be one in raid1 resync.
2264		 * We can find the current addess in mddev->curr_resync
2265		 */
2266		if (mddev->curr_resync < max_sector) /* aborted */
2267			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2268						&sync_blocks, 1);
2269		else /* completed sync */
2270			conf->fullsync = 0;
2271
2272		bitmap_close_sync(mddev->bitmap);
2273		close_sync(conf);
 
 
 
 
 
2274		return 0;
2275	}
2276
2277	if (mddev->bitmap == NULL &&
2278	    mddev->recovery_cp == MaxSector &&
2279	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2280	    conf->fullsync == 0) {
2281		*skipped = 1;
2282		return max_sector - sector_nr;
2283	}
2284	/* before building a request, check if we can skip these blocks..
2285	 * This call the bitmap_start_sync doesn't actually record anything
2286	 */
2287	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2288	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2289		/* We can skip this block, and probably several more */
2290		*skipped = 1;
2291		return sync_blocks;
2292	}
2293	/*
2294	 * If there is non-resync activity waiting for a turn,
2295	 * and resync is going fast enough,
2296	 * then let it though before starting on this new sync request.
2297	 */
2298	if (!go_faster && conf->nr_waiting)
2299		msleep_interruptible(1000);
2300
2301	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
 
2302	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2303	raise_barrier(conf);
2304
2305	conf->next_resync = sector_nr;
2306
2307	rcu_read_lock();
2308	/*
2309	 * If we get a correctably read error during resync or recovery,
2310	 * we might want to read from a different device.  So we
2311	 * flag all drives that could conceivably be read from for READ,
2312	 * and any others (which will be non-In_sync devices) for WRITE.
2313	 * If a read fails, we try reading from something else for which READ
2314	 * is OK.
2315	 */
2316
2317	r1_bio->mddev = mddev;
2318	r1_bio->sector = sector_nr;
2319	r1_bio->state = 0;
2320	set_bit(R1BIO_IsSync, &r1_bio->state);
2321
2322	for (i = 0; i < conf->raid_disks * 2; i++) {
2323		struct md_rdev *rdev;
2324		bio = r1_bio->bios[i];
2325
2326		/* take from bio_init */
2327		bio->bi_next = NULL;
2328		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2329		bio->bi_flags |= 1 << BIO_UPTODATE;
2330		bio->bi_rw = READ;
2331		bio->bi_vcnt = 0;
2332		bio->bi_idx = 0;
2333		bio->bi_phys_segments = 0;
2334		bio->bi_size = 0;
2335		bio->bi_end_io = NULL;
2336		bio->bi_private = NULL;
2337
2338		rdev = rcu_dereference(conf->mirrors[i].rdev);
2339		if (rdev == NULL ||
2340		    test_bit(Faulty, &rdev->flags)) {
2341			if (i < conf->raid_disks)
2342				still_degraded = 1;
2343		} else if (!test_bit(In_sync, &rdev->flags)) {
2344			bio->bi_rw = WRITE;
2345			bio->bi_end_io = end_sync_write;
2346			write_targets ++;
2347		} else {
2348			/* may need to read from here */
2349			sector_t first_bad = MaxSector;
2350			int bad_sectors;
2351
2352			if (is_badblock(rdev, sector_nr, good_sectors,
2353					&first_bad, &bad_sectors)) {
2354				if (first_bad > sector_nr)
2355					good_sectors = first_bad - sector_nr;
2356				else {
2357					bad_sectors -= (sector_nr - first_bad);
2358					if (min_bad == 0 ||
2359					    min_bad > bad_sectors)
2360						min_bad = bad_sectors;
2361				}
2362			}
2363			if (sector_nr < first_bad) {
2364				if (test_bit(WriteMostly, &rdev->flags)) {
2365					if (wonly < 0)
2366						wonly = i;
2367				} else {
2368					if (disk < 0)
2369						disk = i;
2370				}
2371				bio->bi_rw = READ;
2372				bio->bi_end_io = end_sync_read;
2373				read_targets++;
 
 
 
 
 
 
 
 
 
 
 
 
2374			}
2375		}
2376		if (bio->bi_end_io) {
2377			atomic_inc(&rdev->nr_pending);
2378			bio->bi_sector = sector_nr + rdev->data_offset;
2379			bio->bi_bdev = rdev->bdev;
2380			bio->bi_private = r1_bio;
2381		}
2382	}
2383	rcu_read_unlock();
2384	if (disk < 0)
2385		disk = wonly;
2386	r1_bio->read_disk = disk;
2387
2388	if (read_targets == 0 && min_bad > 0) {
2389		/* These sectors are bad on all InSync devices, so we
2390		 * need to mark them bad on all write targets
2391		 */
2392		int ok = 1;
2393		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2394			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2395				struct md_rdev *rdev = conf->mirrors[i].rdev;
2396				ok = rdev_set_badblocks(rdev, sector_nr,
2397							min_bad, 0
2398					) && ok;
2399			}
2400		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2401		*skipped = 1;
2402		put_buf(r1_bio);
2403
2404		if (!ok) {
2405			/* Cannot record the badblocks, so need to
2406			 * abort the resync.
2407			 * If there are multiple read targets, could just
2408			 * fail the really bad ones ???
2409			 */
2410			conf->recovery_disabled = mddev->recovery_disabled;
2411			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2412			return 0;
2413		} else
2414			return min_bad;
2415
2416	}
2417	if (min_bad > 0 && min_bad < good_sectors) {
2418		/* only resync enough to reach the next bad->good
2419		 * transition */
2420		good_sectors = min_bad;
2421	}
2422
2423	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2424		/* extra read targets are also write targets */
2425		write_targets += read_targets-1;
2426
2427	if (write_targets == 0 || read_targets == 0) {
2428		/* There is nowhere to write, so all non-sync
2429		 * drives must be failed - so we are finished
2430		 */
2431		sector_t rv;
2432		if (min_bad > 0)
2433			max_sector = sector_nr + min_bad;
2434		rv = max_sector - sector_nr;
2435		*skipped = 1;
2436		put_buf(r1_bio);
2437		return rv;
2438	}
2439
2440	if (max_sector > mddev->resync_max)
2441		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2442	if (max_sector > sector_nr + good_sectors)
2443		max_sector = sector_nr + good_sectors;
2444	nr_sectors = 0;
2445	sync_blocks = 0;
2446	do {
2447		struct page *page;
2448		int len = PAGE_SIZE;
2449		if (sector_nr + (len>>9) > max_sector)
2450			len = (max_sector - sector_nr) << 9;
2451		if (len == 0)
2452			break;
2453		if (sync_blocks == 0) {
2454			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2455					       &sync_blocks, still_degraded) &&
2456			    !conf->fullsync &&
2457			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2458				break;
2459			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2460			if ((len >> 9) > sync_blocks)
2461				len = sync_blocks<<9;
2462		}
2463
2464		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2465			bio = r1_bio->bios[i];
2466			if (bio->bi_end_io) {
2467				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2468				if (bio_add_page(bio, page, len, 0) == 0) {
2469					/* stop here */
2470					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2471					while (i > 0) {
2472						i--;
2473						bio = r1_bio->bios[i];
2474						if (bio->bi_end_io==NULL)
2475							continue;
2476						/* remove last page from this bio */
2477						bio->bi_vcnt--;
2478						bio->bi_size -= len;
2479						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2480					}
2481					goto bio_full;
2482				}
2483			}
2484		}
2485		nr_sectors += len>>9;
2486		sector_nr += len>>9;
2487		sync_blocks -= (len>>9);
2488	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2489 bio_full:
2490	r1_bio->sectors = nr_sectors;
2491
 
 
 
 
 
 
 
 
 
 
2492	/* For a user-requested sync, we read all readable devices and do a
2493	 * compare
2494	 */
2495	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2496		atomic_set(&r1_bio->remaining, read_targets);
2497		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2498			bio = r1_bio->bios[i];
2499			if (bio->bi_end_io == end_sync_read) {
2500				read_targets--;
2501				md_sync_acct(bio->bi_bdev, nr_sectors);
2502				generic_make_request(bio);
2503			}
2504		}
2505	} else {
2506		atomic_set(&r1_bio->remaining, 1);
2507		bio = r1_bio->bios[r1_bio->read_disk];
2508		md_sync_acct(bio->bi_bdev, nr_sectors);
2509		generic_make_request(bio);
2510
2511	}
2512	return nr_sectors;
2513}
2514
2515static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2516{
2517	if (sectors)
2518		return sectors;
2519
2520	return mddev->dev_sectors;
2521}
2522
2523static struct r1conf *setup_conf(struct mddev *mddev)
2524{
2525	struct r1conf *conf;
2526	int i;
2527	struct mirror_info *disk;
2528	struct md_rdev *rdev;
2529	int err = -ENOMEM;
2530
2531	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2532	if (!conf)
2533		goto abort;
2534
2535	conf->mirrors = kzalloc(sizeof(struct mirror_info)
2536				* mddev->raid_disks * 2,
2537				 GFP_KERNEL);
2538	if (!conf->mirrors)
2539		goto abort;
2540
2541	conf->tmppage = alloc_page(GFP_KERNEL);
2542	if (!conf->tmppage)
2543		goto abort;
2544
2545	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2546	if (!conf->poolinfo)
2547		goto abort;
2548	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2549	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2550					  r1bio_pool_free,
2551					  conf->poolinfo);
2552	if (!conf->r1bio_pool)
2553		goto abort;
2554
2555	conf->poolinfo->mddev = mddev;
2556
2557	err = -EINVAL;
2558	spin_lock_init(&conf->device_lock);
2559	rdev_for_each(rdev, mddev) {
2560		struct request_queue *q;
2561		int disk_idx = rdev->raid_disk;
2562		if (disk_idx >= mddev->raid_disks
2563		    || disk_idx < 0)
2564			continue;
2565		if (test_bit(Replacement, &rdev->flags))
2566			disk = conf->mirrors + conf->raid_disks + disk_idx;
2567		else
2568			disk = conf->mirrors + disk_idx;
2569
2570		if (disk->rdev)
2571			goto abort;
2572		disk->rdev = rdev;
2573		q = bdev_get_queue(rdev->bdev);
2574		if (q->merge_bvec_fn)
2575			mddev->merge_check_needed = 1;
2576
2577		disk->head_position = 0;
 
2578	}
2579	conf->raid_disks = mddev->raid_disks;
2580	conf->mddev = mddev;
2581	INIT_LIST_HEAD(&conf->retry_list);
 
2582
2583	spin_lock_init(&conf->resync_lock);
2584	init_waitqueue_head(&conf->wait_barrier);
2585
2586	bio_list_init(&conf->pending_bio_list);
2587	conf->pending_count = 0;
2588	conf->recovery_disabled = mddev->recovery_disabled - 1;
2589
 
 
 
2590	err = -EIO;
2591	conf->last_used = -1;
2592	for (i = 0; i < conf->raid_disks * 2; i++) {
2593
2594		disk = conf->mirrors + i;
2595
2596		if (i < conf->raid_disks &&
2597		    disk[conf->raid_disks].rdev) {
2598			/* This slot has a replacement. */
2599			if (!disk->rdev) {
2600				/* No original, just make the replacement
2601				 * a recovering spare
2602				 */
2603				disk->rdev =
2604					disk[conf->raid_disks].rdev;
2605				disk[conf->raid_disks].rdev = NULL;
2606			} else if (!test_bit(In_sync, &disk->rdev->flags))
2607				/* Original is not in_sync - bad */
2608				goto abort;
2609		}
2610
2611		if (!disk->rdev ||
2612		    !test_bit(In_sync, &disk->rdev->flags)) {
2613			disk->head_position = 0;
2614			if (disk->rdev &&
2615			    (disk->rdev->saved_raid_disk < 0))
2616				conf->fullsync = 1;
2617		} else if (conf->last_used < 0)
2618			/*
2619			 * The first working device is used as a
2620			 * starting point to read balancing.
2621			 */
2622			conf->last_used = i;
2623	}
2624
2625	if (conf->last_used < 0) {
2626		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2627		       mdname(mddev));
2628		goto abort;
2629	}
2630	err = -ENOMEM;
2631	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2632	if (!conf->thread) {
2633		printk(KERN_ERR
2634		       "md/raid1:%s: couldn't allocate thread\n",
2635		       mdname(mddev));
2636		goto abort;
2637	}
2638
2639	return conf;
2640
2641 abort:
2642	if (conf) {
2643		if (conf->r1bio_pool)
2644			mempool_destroy(conf->r1bio_pool);
2645		kfree(conf->mirrors);
2646		safe_put_page(conf->tmppage);
2647		kfree(conf->poolinfo);
2648		kfree(conf);
2649	}
2650	return ERR_PTR(err);
2651}
2652
2653static int stop(struct mddev *mddev);
2654static int run(struct mddev *mddev)
2655{
2656	struct r1conf *conf;
2657	int i;
2658	struct md_rdev *rdev;
2659	int ret;
 
2660
2661	if (mddev->level != 1) {
2662		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2663		       mdname(mddev), mddev->level);
2664		return -EIO;
2665	}
2666	if (mddev->reshape_position != MaxSector) {
2667		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2668		       mdname(mddev));
2669		return -EIO;
2670	}
2671	/*
2672	 * copy the already verified devices into our private RAID1
2673	 * bookkeeping area. [whatever we allocate in run(),
2674	 * should be freed in stop()]
2675	 */
2676	if (mddev->private == NULL)
2677		conf = setup_conf(mddev);
2678	else
2679		conf = mddev->private;
2680
2681	if (IS_ERR(conf))
2682		return PTR_ERR(conf);
2683
 
 
 
2684	rdev_for_each(rdev, mddev) {
2685		if (!mddev->gendisk)
2686			continue;
2687		disk_stack_limits(mddev->gendisk, rdev->bdev,
2688				  rdev->data_offset << 9);
 
 
2689	}
2690
2691	mddev->degraded = 0;
2692	for (i=0; i < conf->raid_disks; i++)
2693		if (conf->mirrors[i].rdev == NULL ||
2694		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2695		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2696			mddev->degraded++;
2697
2698	if (conf->raid_disks - mddev->degraded == 1)
2699		mddev->recovery_cp = MaxSector;
2700
2701	if (mddev->recovery_cp != MaxSector)
2702		printk(KERN_NOTICE "md/raid1:%s: not clean"
2703		       " -- starting background reconstruction\n",
2704		       mdname(mddev));
2705	printk(KERN_INFO 
2706		"md/raid1:%s: active with %d out of %d mirrors\n",
2707		mdname(mddev), mddev->raid_disks - mddev->degraded, 
2708		mddev->raid_disks);
2709
2710	/*
2711	 * Ok, everything is just fine now
2712	 */
2713	mddev->thread = conf->thread;
2714	conf->thread = NULL;
2715	mddev->private = conf;
2716
2717	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2718
2719	if (mddev->queue) {
2720		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2721		mddev->queue->backing_dev_info.congested_data = mddev;
2722		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
 
 
 
2723	}
2724
2725	ret =  md_integrity_register(mddev);
2726	if (ret)
2727		stop(mddev);
 
 
2728	return ret;
2729}
2730
2731static int stop(struct mddev *mddev)
2732{
2733	struct r1conf *conf = mddev->private;
2734	struct bitmap *bitmap = mddev->bitmap;
2735
2736	/* wait for behind writes to complete */
2737	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2738		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2739		       mdname(mddev));
2740		/* need to kick something here to make sure I/O goes? */
2741		wait_event(bitmap->behind_wait,
2742			   atomic_read(&bitmap->behind_writes) == 0);
2743	}
2744
2745	raise_barrier(conf);
2746	lower_barrier(conf);
2747
2748	md_unregister_thread(&mddev->thread);
2749	if (conf->r1bio_pool)
2750		mempool_destroy(conf->r1bio_pool);
2751	kfree(conf->mirrors);
 
2752	kfree(conf->poolinfo);
2753	kfree(conf);
2754	mddev->private = NULL;
2755	return 0;
2756}
2757
2758static int raid1_resize(struct mddev *mddev, sector_t sectors)
2759{
2760	/* no resync is happening, and there is enough space
2761	 * on all devices, so we can resize.
2762	 * We need to make sure resync covers any new space.
2763	 * If the array is shrinking we should possibly wait until
2764	 * any io in the removed space completes, but it hardly seems
2765	 * worth it.
2766	 */
2767	sector_t newsize = raid1_size(mddev, sectors, 0);
2768	if (mddev->external_size &&
2769	    mddev->array_sectors > newsize)
2770		return -EINVAL;
2771	if (mddev->bitmap) {
2772		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2773		if (ret)
2774			return ret;
2775	}
2776	md_set_array_sectors(mddev, newsize);
2777	set_capacity(mddev->gendisk, mddev->array_sectors);
2778	revalidate_disk(mddev->gendisk);
2779	if (sectors > mddev->dev_sectors &&
2780	    mddev->recovery_cp > mddev->dev_sectors) {
2781		mddev->recovery_cp = mddev->dev_sectors;
2782		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2783	}
2784	mddev->dev_sectors = sectors;
2785	mddev->resync_max_sectors = sectors;
2786	return 0;
2787}
2788
2789static int raid1_reshape(struct mddev *mddev)
2790{
2791	/* We need to:
2792	 * 1/ resize the r1bio_pool
2793	 * 2/ resize conf->mirrors
2794	 *
2795	 * We allocate a new r1bio_pool if we can.
2796	 * Then raise a device barrier and wait until all IO stops.
2797	 * Then resize conf->mirrors and swap in the new r1bio pool.
2798	 *
2799	 * At the same time, we "pack" the devices so that all the missing
2800	 * devices have the higher raid_disk numbers.
2801	 */
2802	mempool_t *newpool, *oldpool;
2803	struct pool_info *newpoolinfo;
2804	struct mirror_info *newmirrors;
2805	struct r1conf *conf = mddev->private;
2806	int cnt, raid_disks;
2807	unsigned long flags;
2808	int d, d2, err;
2809
2810	/* Cannot change chunk_size, layout, or level */
2811	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2812	    mddev->layout != mddev->new_layout ||
2813	    mddev->level != mddev->new_level) {
2814		mddev->new_chunk_sectors = mddev->chunk_sectors;
2815		mddev->new_layout = mddev->layout;
2816		mddev->new_level = mddev->level;
2817		return -EINVAL;
2818	}
2819
2820	err = md_allow_write(mddev);
2821	if (err)
2822		return err;
 
 
2823
2824	raid_disks = mddev->raid_disks + mddev->delta_disks;
2825
2826	if (raid_disks < conf->raid_disks) {
2827		cnt=0;
2828		for (d= 0; d < conf->raid_disks; d++)
2829			if (conf->mirrors[d].rdev)
2830				cnt++;
2831		if (cnt > raid_disks)
2832			return -EBUSY;
2833	}
2834
2835	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2836	if (!newpoolinfo)
2837		return -ENOMEM;
2838	newpoolinfo->mddev = mddev;
2839	newpoolinfo->raid_disks = raid_disks * 2;
2840
2841	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2842				 r1bio_pool_free, newpoolinfo);
2843	if (!newpool) {
2844		kfree(newpoolinfo);
2845		return -ENOMEM;
2846	}
2847	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2848			     GFP_KERNEL);
2849	if (!newmirrors) {
2850		kfree(newpoolinfo);
2851		mempool_destroy(newpool);
2852		return -ENOMEM;
2853	}
2854
2855	raise_barrier(conf);
2856
2857	/* ok, everything is stopped */
2858	oldpool = conf->r1bio_pool;
2859	conf->r1bio_pool = newpool;
2860
2861	for (d = d2 = 0; d < conf->raid_disks; d++) {
2862		struct md_rdev *rdev = conf->mirrors[d].rdev;
2863		if (rdev && rdev->raid_disk != d2) {
2864			sysfs_unlink_rdev(mddev, rdev);
2865			rdev->raid_disk = d2;
2866			sysfs_unlink_rdev(mddev, rdev);
2867			if (sysfs_link_rdev(mddev, rdev))
2868				printk(KERN_WARNING
2869				       "md/raid1:%s: cannot register rd%d\n",
2870				       mdname(mddev), rdev->raid_disk);
2871		}
2872		if (rdev)
2873			newmirrors[d2++].rdev = rdev;
2874	}
2875	kfree(conf->mirrors);
2876	conf->mirrors = newmirrors;
2877	kfree(conf->poolinfo);
2878	conf->poolinfo = newpoolinfo;
2879
2880	spin_lock_irqsave(&conf->device_lock, flags);
2881	mddev->degraded += (raid_disks - conf->raid_disks);
2882	spin_unlock_irqrestore(&conf->device_lock, flags);
2883	conf->raid_disks = mddev->raid_disks = raid_disks;
2884	mddev->delta_disks = 0;
2885
2886	conf->last_used = 0; /* just make sure it is in-range */
2887	lower_barrier(conf);
2888
 
2889	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2890	md_wakeup_thread(mddev->thread);
2891
2892	mempool_destroy(oldpool);
2893	return 0;
2894}
2895
2896static void raid1_quiesce(struct mddev *mddev, int state)
2897{
2898	struct r1conf *conf = mddev->private;
2899
2900	switch(state) {
2901	case 2: /* wake for suspend */
2902		wake_up(&conf->wait_barrier);
2903		break;
2904	case 1:
2905		raise_barrier(conf);
2906		break;
2907	case 0:
2908		lower_barrier(conf);
2909		break;
2910	}
2911}
2912
2913static void *raid1_takeover(struct mddev *mddev)
2914{
2915	/* raid1 can take over:
2916	 *  raid5 with 2 devices, any layout or chunk size
2917	 */
2918	if (mddev->level == 5 && mddev->raid_disks == 2) {
2919		struct r1conf *conf;
2920		mddev->new_level = 1;
2921		mddev->new_layout = 0;
2922		mddev->new_chunk_sectors = 0;
2923		conf = setup_conf(mddev);
2924		if (!IS_ERR(conf))
2925			conf->barrier = 1;
 
2926		return conf;
2927	}
2928	return ERR_PTR(-EINVAL);
2929}
2930
2931static struct md_personality raid1_personality =
2932{
2933	.name		= "raid1",
2934	.level		= 1,
2935	.owner		= THIS_MODULE,
2936	.make_request	= make_request,
2937	.run		= run,
2938	.stop		= stop,
2939	.status		= status,
2940	.error_handler	= error,
2941	.hot_add_disk	= raid1_add_disk,
2942	.hot_remove_disk= raid1_remove_disk,
2943	.spare_active	= raid1_spare_active,
2944	.sync_request	= sync_request,
2945	.resize		= raid1_resize,
2946	.size		= raid1_size,
2947	.check_reshape	= raid1_reshape,
2948	.quiesce	= raid1_quiesce,
2949	.takeover	= raid1_takeover,
 
2950};
2951
2952static int __init raid_init(void)
2953{
2954	return register_md_personality(&raid1_personality);
2955}
2956
2957static void raid_exit(void)
2958{
2959	unregister_md_personality(&raid1_personality);
2960}
2961
2962module_init(raid_init);
2963module_exit(raid_exit);
2964MODULE_LICENSE("GPL");
2965MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2966MODULE_ALIAS("md-personality-3"); /* RAID1 */
2967MODULE_ALIAS("md-raid1");
2968MODULE_ALIAS("md-level-1");
2969
2970module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);