Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v4.6
 
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
 
 
 
 
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define	NR_RAID1_BIOS 256
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49/* when we get a read error on a read-only array, we redirect to another
  50 * device without failing the first device, or trying to over-write to
  51 * correct the read error.  To keep track of bad blocks on a per-bio
  52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  53 */
  54#define IO_BLOCKED ((struct bio *)1)
  55/* When we successfully write to a known bad-block, we need to remove the
  56 * bad-block marking which must be done from process context.  So we record
  57 * the success by setting devs[n].bio to IO_MADE_GOOD
  58 */
  59#define IO_MADE_GOOD ((struct bio *)2)
 
 
 
 
 
 
 
 
  60
  61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
 
  62
  63/* When there are this many requests queue to be written by
  64 * the raid1 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68
  69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  70			  sector_t bi_sector);
  71static void lower_barrier(struct r1conf *conf);
 
 
 
 
 
  72
  73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  74{
  75	struct pool_info *pi = data;
  76	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  77
  78	/* allocate a r1bio with room for raid_disks entries in the bios array */
  79	return kzalloc(size, gfp_flags);
  80}
  81
  82static void r1bio_pool_free(void *r1_bio, void *data)
  83{
  84	kfree(r1_bio);
  85}
  86
  87#define RESYNC_BLOCK_SIZE (64*1024)
  88#define RESYNC_DEPTH 32
  89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
  93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
  94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
  95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
  96
  97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  98{
  99	struct pool_info *pi = data;
 100	struct r1bio *r1_bio;
 101	struct bio *bio;
 102	int need_pages;
 103	int i, j;
 
 104
 105	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 106	if (!r1_bio)
 107		return NULL;
 108
 
 
 
 
 
 109	/*
 110	 * Allocate bios : 1 for reading, n-1 for writing
 111	 */
 112	for (j = pi->raid_disks ; j-- ; ) {
 113		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 114		if (!bio)
 115			goto out_free_bio;
 
 116		r1_bio->bios[j] = bio;
 117	}
 118	/*
 119	 * Allocate RESYNC_PAGES data pages and attach them to
 120	 * the first bio.
 121	 * If this is a user-requested check/repair, allocate
 122	 * RESYNC_PAGES for each bio.
 123	 */
 124	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 125		need_pages = pi->raid_disks;
 126	else
 127		need_pages = 1;
 128	for (j = 0; j < need_pages; j++) {
 
 
 129		bio = r1_bio->bios[j];
 130		bio->bi_vcnt = RESYNC_PAGES;
 131
 132		if (bio_alloc_pages(bio, gfp_flags))
 133			goto out_free_pages;
 134	}
 135	/* If not user-requests, copy the page pointers to all bios */
 136	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 137		for (i=0; i<RESYNC_PAGES ; i++)
 138			for (j=1; j<pi->raid_disks; j++)
 139				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 140					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 
 141	}
 142
 143	r1_bio->master_bio = NULL;
 144
 145	return r1_bio;
 146
 147out_free_pages:
 148	while (--j >= 0) {
 149		struct bio_vec *bv;
 150
 151		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
 152			__free_page(bv->bv_page);
 
 
 153	}
 
 154
 155out_free_bio:
 156	while (++j < pi->raid_disks)
 157		bio_put(r1_bio->bios[j]);
 158	r1bio_pool_free(r1_bio, data);
 159	return NULL;
 160}
 161
 162static void r1buf_pool_free(void *__r1_bio, void *data)
 163{
 164	struct pool_info *pi = data;
 165	int i,j;
 166	struct r1bio *r1bio = __r1_bio;
 
 167
 168	for (i = 0; i < RESYNC_PAGES; i++)
 169		for (j = pi->raid_disks; j-- ;) {
 170			if (j == 0 ||
 171			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 172			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 173				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 174		}
 175	for (i=0 ; i < pi->raid_disks; i++)
 176		bio_put(r1bio->bios[i]);
 177
 178	r1bio_pool_free(r1bio, data);
 
 
 
 179}
 180
 181static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 182{
 183	int i;
 184
 185	for (i = 0; i < conf->raid_disks * 2; i++) {
 186		struct bio **bio = r1_bio->bios + i;
 187		if (!BIO_SPECIAL(*bio))
 188			bio_put(*bio);
 189		*bio = NULL;
 190	}
 191}
 192
 193static void free_r1bio(struct r1bio *r1_bio)
 194{
 195	struct r1conf *conf = r1_bio->mddev->private;
 196
 197	put_all_bios(conf, r1_bio);
 198	mempool_free(r1_bio, conf->r1bio_pool);
 199}
 200
 201static void put_buf(struct r1bio *r1_bio)
 202{
 203	struct r1conf *conf = r1_bio->mddev->private;
 
 204	int i;
 205
 206	for (i = 0; i < conf->raid_disks * 2; i++) {
 207		struct bio *bio = r1_bio->bios[i];
 208		if (bio->bi_end_io)
 209			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 210	}
 211
 212	mempool_free(r1_bio, conf->r1buf_pool);
 213
 214	lower_barrier(conf);
 215}
 216
 217static void reschedule_retry(struct r1bio *r1_bio)
 218{
 219	unsigned long flags;
 220	struct mddev *mddev = r1_bio->mddev;
 221	struct r1conf *conf = mddev->private;
 
 222
 
 223	spin_lock_irqsave(&conf->device_lock, flags);
 224	list_add(&r1_bio->retry_list, &conf->retry_list);
 225	conf->nr_queued ++;
 226	spin_unlock_irqrestore(&conf->device_lock, flags);
 227
 228	wake_up(&conf->wait_barrier);
 229	md_wakeup_thread(mddev->thread);
 230}
 231
 232/*
 233 * raid_end_bio_io() is called when we have finished servicing a mirrored
 234 * operation and are ready to return a success/failure code to the buffer
 235 * cache layer.
 236 */
 237static void call_bio_endio(struct r1bio *r1_bio)
 238{
 239	struct bio *bio = r1_bio->master_bio;
 240	int done;
 241	struct r1conf *conf = r1_bio->mddev->private;
 242	sector_t start_next_window = r1_bio->start_next_window;
 243	sector_t bi_sector = bio->bi_iter.bi_sector;
 244
 245	if (bio->bi_phys_segments) {
 246		unsigned long flags;
 247		spin_lock_irqsave(&conf->device_lock, flags);
 248		bio->bi_phys_segments--;
 249		done = (bio->bi_phys_segments == 0);
 250		spin_unlock_irqrestore(&conf->device_lock, flags);
 251		/*
 252		 * make_request() might be waiting for
 253		 * bi_phys_segments to decrease
 254		 */
 255		wake_up(&conf->wait_barrier);
 256	} else
 257		done = 1;
 258
 259	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 260		bio->bi_error = -EIO;
 261
 262	if (done) {
 263		bio_endio(bio);
 264		/*
 265		 * Wake up any possible resync thread that waits for the device
 266		 * to go idle.
 267		 */
 268		allow_barrier(conf, start_next_window, bi_sector);
 269	}
 270}
 271
 272static void raid_end_bio_io(struct r1bio *r1_bio)
 273{
 274	struct bio *bio = r1_bio->master_bio;
 
 
 275
 276	/* if nobody has done the final endio yet, do it now */
 277	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 278		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 279			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 280			 (unsigned long long) bio->bi_iter.bi_sector,
 281			 (unsigned long long) bio_end_sector(bio) - 1);
 282
 283		call_bio_endio(r1_bio);
 284	}
 
 285	free_r1bio(r1_bio);
 
 
 
 
 
 286}
 287
 288/*
 289 * Update disk head position estimator based on IRQ completion info.
 290 */
 291static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 292{
 293	struct r1conf *conf = r1_bio->mddev->private;
 294
 295	conf->mirrors[disk].head_position =
 296		r1_bio->sector + (r1_bio->sectors);
 297}
 298
 299/*
 300 * Find the disk number which triggered given bio
 301 */
 302static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 303{
 304	int mirror;
 305	struct r1conf *conf = r1_bio->mddev->private;
 306	int raid_disks = conf->raid_disks;
 307
 308	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 309		if (r1_bio->bios[mirror] == bio)
 310			break;
 311
 312	BUG_ON(mirror == raid_disks * 2);
 313	update_head_pos(mirror, r1_bio);
 314
 315	return mirror;
 316}
 317
 318static void raid1_end_read_request(struct bio *bio)
 319{
 320	int uptodate = !bio->bi_error;
 321	struct r1bio *r1_bio = bio->bi_private;
 322	int mirror;
 323	struct r1conf *conf = r1_bio->mddev->private;
 
 324
 325	mirror = r1_bio->read_disk;
 326	/*
 327	 * this branch is our 'one mirror IO has finished' event handler:
 328	 */
 329	update_head_pos(mirror, r1_bio);
 330
 331	if (uptodate)
 332		set_bit(R1BIO_Uptodate, &r1_bio->state);
 
 
 
 
 
 333	else {
 334		/* If all other devices have failed, we want to return
 335		 * the error upwards rather than fail the last device.
 336		 * Here we redefine "uptodate" to mean "Don't want to retry"
 337		 */
 338		unsigned long flags;
 339		spin_lock_irqsave(&conf->device_lock, flags);
 340		if (r1_bio->mddev->degraded == conf->raid_disks ||
 341		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 342		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
 343			uptodate = 1;
 344		spin_unlock_irqrestore(&conf->device_lock, flags);
 345	}
 346
 347	if (uptodate) {
 348		raid_end_bio_io(r1_bio);
 349		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 350	} else {
 351		/*
 352		 * oops, read error:
 353		 */
 354		char b[BDEVNAME_SIZE];
 355		printk_ratelimited(
 356			KERN_ERR "md/raid1:%s: %s: "
 357			"rescheduling sector %llu\n",
 358			mdname(conf->mddev),
 359			bdevname(conf->mirrors[mirror].rdev->bdev,
 360				 b),
 361			(unsigned long long)r1_bio->sector);
 362		set_bit(R1BIO_ReadError, &r1_bio->state);
 363		reschedule_retry(r1_bio);
 364		/* don't drop the reference on read_disk yet */
 365	}
 366}
 367
 368static void close_write(struct r1bio *r1_bio)
 369{
 370	/* it really is the end of this request */
 371	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 372		/* free extra copy of the data pages */
 373		int i = r1_bio->behind_page_count;
 374		while (i--)
 375			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 376		kfree(r1_bio->behind_bvecs);
 377		r1_bio->behind_bvecs = NULL;
 378	}
 379	/* clear the bitmap if all writes complete successfully */
 380	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 381			r1_bio->sectors,
 382			!test_bit(R1BIO_Degraded, &r1_bio->state),
 383			test_bit(R1BIO_BehindIO, &r1_bio->state));
 384	md_write_end(r1_bio->mddev);
 385}
 386
 387static void r1_bio_write_done(struct r1bio *r1_bio)
 388{
 389	if (!atomic_dec_and_test(&r1_bio->remaining))
 390		return;
 391
 392	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 393		reschedule_retry(r1_bio);
 394	else {
 395		close_write(r1_bio);
 396		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 397			reschedule_retry(r1_bio);
 398		else
 399			raid_end_bio_io(r1_bio);
 400	}
 401}
 402
 403static void raid1_end_write_request(struct bio *bio)
 404{
 405	struct r1bio *r1_bio = bio->bi_private;
 406	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 407	struct r1conf *conf = r1_bio->mddev->private;
 408	struct bio *to_put = NULL;
 
 
 
 
 
 409
 410	mirror = find_bio_disk(r1_bio, bio);
 411
 412	/*
 413	 * 'one mirror IO has finished' event handler:
 414	 */
 415	if (bio->bi_error) {
 416		set_bit(WriteErrorSeen,
 417			&conf->mirrors[mirror].rdev->flags);
 418		if (!test_and_set_bit(WantReplacement,
 419				      &conf->mirrors[mirror].rdev->flags))
 420			set_bit(MD_RECOVERY_NEEDED, &
 421				conf->mddev->recovery);
 422
 423		set_bit(R1BIO_WriteError, &r1_bio->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424	} else {
 425		/*
 426		 * Set R1BIO_Uptodate in our master bio, so that we
 427		 * will return a good error code for to the higher
 428		 * levels even if IO on some other mirrored buffer
 429		 * fails.
 430		 *
 431		 * The 'master' represents the composite IO operation
 432		 * to user-side. So if something waits for IO, then it
 433		 * will wait for the 'master' bio.
 434		 */
 435		sector_t first_bad;
 436		int bad_sectors;
 437
 438		r1_bio->bios[mirror] = NULL;
 439		to_put = bio;
 440		/*
 441		 * Do not set R1BIO_Uptodate if the current device is
 442		 * rebuilding or Faulty. This is because we cannot use
 443		 * such device for properly reading the data back (we could
 444		 * potentially use it, if the current write would have felt
 445		 * before rdev->recovery_offset, but for simplicity we don't
 446		 * check this here.
 447		 */
 448		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
 449		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
 450			set_bit(R1BIO_Uptodate, &r1_bio->state);
 451
 452		/* Maybe we can clear some bad blocks. */
 453		if (is_badblock(conf->mirrors[mirror].rdev,
 454				r1_bio->sector, r1_bio->sectors,
 455				&first_bad, &bad_sectors)) {
 456			r1_bio->bios[mirror] = IO_MADE_GOOD;
 457			set_bit(R1BIO_MadeGood, &r1_bio->state);
 458		}
 459	}
 460
 461	if (behind) {
 462		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 
 
 463			atomic_dec(&r1_bio->behind_remaining);
 464
 465		/*
 466		 * In behind mode, we ACK the master bio once the I/O
 467		 * has safely reached all non-writemostly
 468		 * disks. Setting the Returned bit ensures that this
 469		 * gets done only once -- we don't ever want to return
 470		 * -EIO here, instead we'll wait
 471		 */
 472		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 473		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 474			/* Maybe we can return now */
 475			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 476				struct bio *mbio = r1_bio->master_bio;
 477				pr_debug("raid1: behind end write sectors"
 478					 " %llu-%llu\n",
 479					 (unsigned long long) mbio->bi_iter.bi_sector,
 480					 (unsigned long long) bio_end_sector(mbio) - 1);
 481				call_bio_endio(r1_bio);
 482			}
 483		}
 484	}
 
 485	if (r1_bio->bios[mirror] == NULL)
 486		rdev_dec_pending(conf->mirrors[mirror].rdev,
 487				 conf->mddev);
 488
 489	/*
 490	 * Let's see if all mirrored write operations have finished
 491	 * already.
 492	 */
 493	r1_bio_write_done(r1_bio);
 494
 495	if (to_put)
 496		bio_put(to_put);
 497}
 498
 499/*
 500 * This routine returns the disk from which the requested read should
 501 * be done. There is a per-array 'next expected sequential IO' sector
 502 * number - if this matches on the next IO then we use the last disk.
 503 * There is also a per-disk 'last know head position' sector that is
 504 * maintained from IRQ contexts, both the normal and the resync IO
 505 * completion handlers update this position correctly. If there is no
 506 * perfect sequential match then we pick the disk whose head is closest.
 507 *
 508 * If there are 2 mirrors in the same 2 devices, performance degrades
 509 * because position is mirror, not device based.
 510 *
 511 * The rdev for the device selected will have nr_pending incremented.
 512 */
 513static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 514{
 515	const sector_t this_sector = r1_bio->sector;
 516	int sectors;
 517	int best_good_sectors;
 518	int best_disk, best_dist_disk, best_pending_disk;
 519	int has_nonrot_disk;
 520	int disk;
 521	sector_t best_dist;
 522	unsigned int min_pending;
 523	struct md_rdev *rdev;
 524	int choose_first;
 525	int choose_next_idle;
 526
 527	rcu_read_lock();
 528	/*
 529	 * Check if we can balance. We can balance on the whole
 530	 * device if no resync is going on, or below the resync window.
 531	 * We take the first readable disk when above the resync window.
 532	 */
 533 retry:
 534	sectors = r1_bio->sectors;
 535	best_disk = -1;
 536	best_dist_disk = -1;
 537	best_dist = MaxSector;
 538	best_pending_disk = -1;
 539	min_pending = UINT_MAX;
 540	best_good_sectors = 0;
 541	has_nonrot_disk = 0;
 542	choose_next_idle = 0;
 543
 544	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 545	    (mddev_is_clustered(conf->mddev) &&
 546	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 547		    this_sector + sectors)))
 548		choose_first = 1;
 549	else
 550		choose_first = 0;
 
 
 
 
 
 
 
 551
 552	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 553		sector_t dist;
 554		sector_t first_bad;
 555		int bad_sectors;
 556		unsigned int pending;
 557		bool nonrot;
 558
 559		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 560		if (r1_bio->bios[disk] == IO_BLOCKED
 561		    || rdev == NULL
 562		    || test_bit(Faulty, &rdev->flags))
 563			continue;
 564		if (!test_bit(In_sync, &rdev->flags) &&
 565		    rdev->recovery_offset < this_sector + sectors)
 
 566			continue;
 567		if (test_bit(WriteMostly, &rdev->flags)) {
 568			/* Don't balance among write-mostly, just
 569			 * use the first as a last resort */
 570			if (best_dist_disk < 0) {
 571				if (is_badblock(rdev, this_sector, sectors,
 572						&first_bad, &bad_sectors)) {
 573					if (first_bad <= this_sector)
 574						/* Cannot use this */
 575						continue;
 576					best_good_sectors = first_bad - this_sector;
 577				} else
 578					best_good_sectors = sectors;
 579				best_dist_disk = disk;
 580				best_pending_disk = disk;
 581			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583		}
 584		/* This is a reasonable device to use.  It might
 585		 * even be best.
 
 
 586		 */
 587		if (is_badblock(rdev, this_sector, sectors,
 588				&first_bad, &bad_sectors)) {
 589			if (best_dist < MaxSector)
 590				/* already have a better device */
 591				continue;
 592			if (first_bad <= this_sector) {
 593				/* cannot read here. If this is the 'primary'
 594				 * device, then we must not read beyond
 595				 * bad_sectors from another device..
 596				 */
 597				bad_sectors -= (this_sector - first_bad);
 598				if (choose_first && sectors > bad_sectors)
 599					sectors = bad_sectors;
 600				if (best_good_sectors > sectors)
 601					best_good_sectors = sectors;
 602
 603			} else {
 604				sector_t good_sectors = first_bad - this_sector;
 605				if (good_sectors > best_good_sectors) {
 606					best_good_sectors = good_sectors;
 607					best_disk = disk;
 608				}
 609				if (choose_first)
 610					break;
 611			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612			continue;
 613		} else
 614			best_good_sectors = sectors;
 615
 616		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 617		has_nonrot_disk |= nonrot;
 
 
 618		pending = atomic_read(&rdev->nr_pending);
 619		dist = abs(this_sector - conf->mirrors[disk].head_position);
 620		if (choose_first) {
 621			best_disk = disk;
 622			break;
 623		}
 624		/* Don't change to another disk for sequential reads */
 625		if (conf->mirrors[disk].next_seq_sect == this_sector
 626		    || dist == 0) {
 627			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 628			struct raid1_info *mirror = &conf->mirrors[disk];
 629
 630			best_disk = disk;
 631			/*
 632			 * If buffered sequential IO size exceeds optimal
 633			 * iosize, check if there is idle disk. If yes, choose
 634			 * the idle disk. read_balance could already choose an
 635			 * idle disk before noticing it's a sequential IO in
 636			 * this disk. This doesn't matter because this disk
 637			 * will idle, next time it will be utilized after the
 638			 * first disk has IO size exceeds optimal iosize. In
 639			 * this way, iosize of the first disk will be optimal
 640			 * iosize at least. iosize of the second disk might be
 641			 * small, but not a big deal since when the second disk
 642			 * starts IO, the first disk is likely still busy.
 643			 */
 644			if (nonrot && opt_iosize > 0 &&
 645			    mirror->seq_start != MaxSector &&
 646			    mirror->next_seq_sect > opt_iosize &&
 647			    mirror->next_seq_sect - opt_iosize >=
 648			    mirror->seq_start) {
 649				choose_next_idle = 1;
 650				continue;
 651			}
 652			break;
 653		}
 654		/* If device is idle, use it */
 655		if (pending == 0) {
 656			best_disk = disk;
 657			break;
 658		}
 659
 660		if (choose_next_idle)
 661			continue;
 662
 663		if (min_pending > pending) {
 664			min_pending = pending;
 665			best_pending_disk = disk;
 666		}
 667
 668		if (dist < best_dist) {
 669			best_dist = dist;
 670			best_dist_disk = disk;
 671		}
 672	}
 673
 674	/*
 
 
 
 
 
 
 
 675	 * If all disks are rotational, choose the closest disk. If any disk is
 676	 * non-rotational, choose the disk with less pending request even the
 677	 * disk is rotational, which might/might not be optimal for raids with
 678	 * mixed ratation/non-rotational disks depending on workload.
 679	 */
 680	if (best_disk == -1) {
 681		if (has_nonrot_disk)
 682			best_disk = best_pending_disk;
 683		else
 684			best_disk = best_dist_disk;
 685	}
 686
 687	if (best_disk >= 0) {
 688		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 689		if (!rdev)
 690			goto retry;
 691		atomic_inc(&rdev->nr_pending);
 692		if (test_bit(Faulty, &rdev->flags)) {
 693			/* cannot risk returning a device that failed
 694			 * before we inc'ed nr_pending
 695			 */
 696			rdev_dec_pending(rdev, conf->mddev);
 697			goto retry;
 698		}
 699		sectors = best_good_sectors;
 
 
 
 
 
 
 
 
 
 700
 701		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 702			conf->mirrors[best_disk].seq_start = this_sector;
 703
 704		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 
 
 
 
 
 
 
 
 
 705	}
 706	rcu_read_unlock();
 707	*max_sectors = sectors;
 708
 709	return best_disk;
 
 
 
 
 
 
 
 
 
 710}
 711
 712static int raid1_congested(struct mddev *mddev, int bits)
 713{
 714	struct r1conf *conf = mddev->private;
 715	int i, ret = 0;
 716
 717	if ((bits & (1 << WB_async_congested)) &&
 718	    conf->pending_count >= max_queued_requests)
 719		return 1;
 720
 721	rcu_read_lock();
 722	for (i = 0; i < conf->raid_disks * 2; i++) {
 723		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 724		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 725			struct request_queue *q = bdev_get_queue(rdev->bdev);
 726
 727			BUG_ON(!q);
 
 728
 729			/* Note the '|| 1' - when read_balance prefers
 730			 * non-congested targets, it can be removed
 731			 */
 732			if ((bits & (1 << WB_async_congested)) || 1)
 733				ret |= bdi_congested(&q->backing_dev_info, bits);
 734			else
 735				ret &= bdi_congested(&q->backing_dev_info, bits);
 736		}
 737	}
 738	rcu_read_unlock();
 739	return ret;
 740}
 741
 742static void flush_pending_writes(struct r1conf *conf)
 743{
 744	/* Any writes that have been queued but are awaiting
 745	 * bitmap updates get flushed here.
 746	 */
 747	spin_lock_irq(&conf->device_lock);
 748
 749	if (conf->pending_bio_list.head) {
 
 750		struct bio *bio;
 
 751		bio = bio_list_get(&conf->pending_bio_list);
 752		conf->pending_count = 0;
 753		spin_unlock_irq(&conf->device_lock);
 754		/* flush any pending bitmap writes to
 755		 * disk before proceeding w/ I/O */
 756		bitmap_unplug(conf->mddev->bitmap);
 757		wake_up(&conf->wait_barrier);
 758
 759		while (bio) { /* submit pending writes */
 760			struct bio *next = bio->bi_next;
 761			bio->bi_next = NULL;
 762			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 763			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 764				/* Just ignore it */
 765				bio_endio(bio);
 766			else
 767				generic_make_request(bio);
 768			bio = next;
 769		}
 
 
 770	} else
 771		spin_unlock_irq(&conf->device_lock);
 772}
 773
 774/* Barriers....
 775 * Sometimes we need to suspend IO while we do something else,
 776 * either some resync/recovery, or reconfigure the array.
 777 * To do this we raise a 'barrier'.
 778 * The 'barrier' is a counter that can be raised multiple times
 779 * to count how many activities are happening which preclude
 780 * normal IO.
 781 * We can only raise the barrier if there is no pending IO.
 782 * i.e. if nr_pending == 0.
 783 * We choose only to raise the barrier if no-one is waiting for the
 784 * barrier to go down.  This means that as soon as an IO request
 785 * is ready, no other operations which require a barrier will start
 786 * until the IO request has had a chance.
 787 *
 788 * So: regular IO calls 'wait_barrier'.  When that returns there
 789 *    is no backgroup IO happening,  It must arrange to call
 790 *    allow_barrier when it has finished its IO.
 791 * backgroup IO calls must call raise_barrier.  Once that returns
 792 *    there is no normal IO happeing.  It must arrange to call
 793 *    lower_barrier when the particular background IO completes.
 
 
 
 794 */
 795static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
 796{
 
 
 797	spin_lock_irq(&conf->resync_lock);
 798
 799	/* Wait until no block IO is waiting */
 800	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 
 801			    conf->resync_lock);
 802
 803	/* block any new IO from starting */
 804	conf->barrier++;
 805	conf->next_resync = sector_nr;
 
 
 
 
 
 
 
 
 806
 807	/* For these conditions we must wait:
 808	 * A: while the array is in frozen state
 809	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 810	 *    the max count which allowed.
 811	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 812	 *    next resync will reach to the window which normal bios are
 813	 *    handling.
 814	 * D: while there are any active requests in the current window.
 815	 */
 816	wait_event_lock_irq(conf->wait_barrier,
 817			    !conf->array_frozen &&
 818			    conf->barrier < RESYNC_DEPTH &&
 819			    conf->current_window_requests == 0 &&
 820			    (conf->start_next_window >=
 821			     conf->next_resync + RESYNC_SECTORS),
 822			    conf->resync_lock);
 823
 824	conf->nr_pending++;
 
 
 
 
 
 
 
 825	spin_unlock_irq(&conf->resync_lock);
 
 
 826}
 827
 828static void lower_barrier(struct r1conf *conf)
 829{
 830	unsigned long flags;
 831	BUG_ON(conf->barrier <= 0);
 832	spin_lock_irqsave(&conf->resync_lock, flags);
 833	conf->barrier--;
 834	conf->nr_pending--;
 835	spin_unlock_irqrestore(&conf->resync_lock, flags);
 836	wake_up(&conf->wait_barrier);
 837}
 838
 839static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 840{
 841	bool wait = false;
 842
 843	if (conf->array_frozen || !bio)
 844		wait = true;
 845	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 846		if ((conf->mddev->curr_resync_completed
 847		     >= bio_end_sector(bio)) ||
 848		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
 849		     <= bio->bi_iter.bi_sector))
 850			wait = false;
 851		else
 852			wait = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853	}
 854
 855	return wait;
 
 
 856}
 857
 858static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 859{
 860	sector_t sector = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 861
 862	spin_lock_irq(&conf->resync_lock);
 863	if (need_to_wait_for_sync(conf, bio)) {
 864		conf->nr_waiting++;
 865		/* Wait for the barrier to drop.
 866		 * However if there are already pending
 867		 * requests (preventing the barrier from
 868		 * rising completely), and the
 869		 * per-process bio queue isn't empty,
 870		 * then don't wait, as we need to empty
 871		 * that queue to allow conf->start_next_window
 872		 * to increase.
 873		 */
 
 
 
 874		wait_event_lock_irq(conf->wait_barrier,
 875				    !conf->array_frozen &&
 876				    (!conf->barrier ||
 877				     ((conf->start_next_window <
 878				       conf->next_resync + RESYNC_SECTORS) &&
 879				      current->bio_list &&
 880				      !bio_list_empty(current->bio_list))),
 881				    conf->resync_lock);
 882		conf->nr_waiting--;
 883	}
 884
 885	if (bio && bio_data_dir(bio) == WRITE) {
 886		if (bio->bi_iter.bi_sector >= conf->next_resync) {
 887			if (conf->start_next_window == MaxSector)
 888				conf->start_next_window =
 889					conf->next_resync +
 890					NEXT_NORMALIO_DISTANCE;
 891
 892			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 893			    <= bio->bi_iter.bi_sector)
 894				conf->next_window_requests++;
 895			else
 896				conf->current_window_requests++;
 897			sector = conf->start_next_window;
 898		}
 899	}
 900
 901	conf->nr_pending++;
 902	spin_unlock_irq(&conf->resync_lock);
 903	return sector;
 904}
 905
 906static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 907			  sector_t bi_sector)
 908{
 909	unsigned long flags;
 910
 911	spin_lock_irqsave(&conf->resync_lock, flags);
 912	conf->nr_pending--;
 913	if (start_next_window) {
 914		if (start_next_window == conf->start_next_window) {
 915			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 916			    <= bi_sector)
 917				conf->next_window_requests--;
 918			else
 919				conf->current_window_requests--;
 920		} else
 921			conf->current_window_requests--;
 922
 923		if (!conf->current_window_requests) {
 924			if (conf->next_window_requests) {
 925				conf->current_window_requests =
 926					conf->next_window_requests;
 927				conf->next_window_requests = 0;
 928				conf->start_next_window +=
 929					NEXT_NORMALIO_DISTANCE;
 930			} else
 931				conf->start_next_window = MaxSector;
 932		}
 933	}
 934	spin_unlock_irqrestore(&conf->resync_lock, flags);
 935	wake_up(&conf->wait_barrier);
 
 
 
 
 
 
 
 
 
 
 
 936}
 937
 938static void freeze_array(struct r1conf *conf, int extra)
 939{
 940	/* stop syncio and normal IO and wait for everything to
 941	 * go quite.
 942	 * We wait until nr_pending match nr_queued+extra
 943	 * This is called in the context of one normal IO request
 944	 * that has failed. Thus any sync request that might be pending
 945	 * will be blocked by nr_pending, and we need to wait for
 946	 * pending IO requests to complete or be queued for re-try.
 947	 * Thus the number queued (nr_queued) plus this request (extra)
 948	 * must match the number of pending IOs (nr_pending) before
 949	 * we continue.
 
 
 
 
 
 
 
 
 
 
 
 
 950	 */
 951	spin_lock_irq(&conf->resync_lock);
 952	conf->array_frozen = 1;
 953	wait_event_lock_irq_cmd(conf->wait_barrier,
 954				conf->nr_pending == conf->nr_queued+extra,
 955				conf->resync_lock,
 956				flush_pending_writes(conf));
 
 
 957	spin_unlock_irq(&conf->resync_lock);
 958}
 959static void unfreeze_array(struct r1conf *conf)
 960{
 961	/* reverse the effect of the freeze */
 962	spin_lock_irq(&conf->resync_lock);
 963	conf->array_frozen = 0;
 964	wake_up(&conf->wait_barrier);
 965	spin_unlock_irq(&conf->resync_lock);
 
 966}
 967
 968/* duplicate the data pages for behind I/O
 969 */
 970static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
 971{
 972	int i;
 973	struct bio_vec *bvec;
 974	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 975					GFP_NOIO);
 976	if (unlikely(!bvecs))
 977		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978
 979	bio_for_each_segment_all(bvec, bio, i) {
 980		bvecs[i] = *bvec;
 981		bvecs[i].bv_page = alloc_page(GFP_NOIO);
 982		if (unlikely(!bvecs[i].bv_page))
 983			goto do_sync_io;
 984		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 985		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 986		kunmap(bvecs[i].bv_page);
 987		kunmap(bvec->bv_page);
 988	}
 989	r1_bio->behind_bvecs = bvecs;
 990	r1_bio->behind_page_count = bio->bi_vcnt;
 
 
 991	set_bit(R1BIO_BehindIO, &r1_bio->state);
 
 992	return;
 993
 994do_sync_io:
 995	for (i = 0; i < bio->bi_vcnt; i++)
 996		if (bvecs[i].bv_page)
 997			put_page(bvecs[i].bv_page);
 998	kfree(bvecs);
 999	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000		 bio->bi_iter.bi_size);
 
 
1001}
1002
1003struct raid1_plug_cb {
1004	struct blk_plug_cb	cb;
1005	struct bio_list		pending;
1006	int			pending_cnt;
1007};
1008
1009static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010{
1011	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1012						  cb);
1013	struct mddev *mddev = plug->cb.data;
1014	struct r1conf *conf = mddev->private;
1015	struct bio *bio;
1016
1017	if (from_schedule || current->bio_list) {
1018		spin_lock_irq(&conf->device_lock);
1019		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020		conf->pending_count += plug->pending_cnt;
1021		spin_unlock_irq(&conf->device_lock);
1022		wake_up(&conf->wait_barrier);
1023		md_wakeup_thread(mddev->thread);
1024		kfree(plug);
1025		return;
1026	}
1027
1028	/* we aren't scheduling, so we can do the write-out directly. */
1029	bio = bio_list_get(&plug->pending);
1030	bitmap_unplug(mddev->bitmap);
1031	wake_up(&conf->wait_barrier);
1032
1033	while (bio) { /* submit pending writes */
1034		struct bio *next = bio->bi_next;
1035		bio->bi_next = NULL;
1036		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1037		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038			/* Just ignore it */
1039			bio_endio(bio);
1040		else
1041			generic_make_request(bio);
1042		bio = next;
1043	}
1044	kfree(plug);
1045}
1046
1047static void raid1_make_request(struct mddev *mddev, struct bio * bio)
 
 
 
 
 
 
 
 
 
 
1048{
1049	struct r1conf *conf = mddev->private;
1050	struct raid1_info *mirror;
1051	struct r1bio *r1_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
1052	struct bio *read_bio;
1053	int i, disks;
1054	struct bitmap *bitmap;
1055	unsigned long flags;
1056	const int rw = bio_data_dir(bio);
1057	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1058	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1059	const unsigned long do_discard = (bio->bi_rw
1060					  & (REQ_DISCARD | REQ_SECURE));
1061	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1062	struct md_rdev *blocked_rdev;
1063	struct blk_plug_cb *cb;
1064	struct raid1_plug_cb *plug = NULL;
1065	int first_clone;
1066	int sectors_handled;
1067	int max_sectors;
1068	sector_t start_next_window;
 
 
1069
1070	/*
1071	 * Register the new request and wait if the reconstruction
1072	 * thread has put up a bar for new requests.
1073	 * Continue immediately if no resync is active currently.
1074	 */
1075
1076	md_write_start(mddev, bio); /* wait on superblock update early */
 
 
 
1077
1078	if (bio_data_dir(bio) == WRITE &&
1079	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1080	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1081	    (mddev_is_clustered(mddev) &&
1082	     md_cluster_ops->area_resyncing(mddev, WRITE,
1083		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1084		/* As the suspend_* range is controlled by
1085		 * userspace, we want an interruptible
1086		 * wait.
1087		 */
1088		DEFINE_WAIT(w);
1089		for (;;) {
1090			flush_signals(current);
1091			prepare_to_wait(&conf->wait_barrier,
1092					&w, TASK_INTERRUPTIBLE);
1093			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1094			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1095			    (mddev_is_clustered(mddev) &&
1096			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1097				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1098				break;
1099			schedule();
1100		}
1101		finish_wait(&conf->wait_barrier, &w);
1102	}
1103
1104	start_next_window = wait_barrier(conf, bio);
 
 
 
 
 
 
 
 
1105
1106	bitmap = mddev->bitmap;
 
 
 
 
1107
1108	/*
1109	 * make_request() can abort the operation when READA is being
1110	 * used and no empty request is available.
1111	 *
1112	 */
1113	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1114
1115	r1_bio->master_bio = bio;
1116	r1_bio->sectors = bio_sectors(bio);
1117	r1_bio->state = 0;
1118	r1_bio->mddev = mddev;
1119	r1_bio->sector = bio->bi_iter.bi_sector;
 
 
 
 
 
 
 
1120
1121	/* We might need to issue multiple reads to different
1122	 * devices if there are bad blocks around, so we keep
1123	 * track of the number of reads in bio->bi_phys_segments.
1124	 * If this is 0, there is only one r1_bio and no locking
1125	 * will be needed when requests complete.  If it is
1126	 * non-zero, then it is the number of not-completed requests.
1127	 */
1128	bio->bi_phys_segments = 0;
1129	bio_clear_flag(bio, BIO_SEG_VALID);
1130
1131	if (rw == READ) {
 
1132		/*
1133		 * read balancing logic:
 
1134		 */
1135		int rdisk;
 
 
 
1136
1137read_again:
1138		rdisk = read_balance(conf, r1_bio, &max_sectors);
 
 
 
 
 
 
 
1139
1140		if (rdisk < 0) {
1141			/* couldn't find anywhere to read from */
1142			raid_end_bio_io(r1_bio);
1143			return;
1144		}
1145		mirror = conf->mirrors + rdisk;
 
1146
1147		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1148		    bitmap) {
1149			/* Reading from a write-mostly device must
1150			 * take care not to over-take any writes
1151			 * that are 'behind'
1152			 */
1153			wait_event(bitmap->behind_wait,
1154				   atomic_read(&bitmap->behind_writes) == 0);
1155		}
1156		r1_bio->read_disk = rdisk;
1157		r1_bio->start_next_window = 0;
1158
1159		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1160		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1161			 max_sectors);
1162
1163		r1_bio->bios[rdisk] = read_bio;
1164
1165		read_bio->bi_iter.bi_sector = r1_bio->sector +
1166			mirror->rdev->data_offset;
1167		read_bio->bi_bdev = mirror->rdev->bdev;
1168		read_bio->bi_end_io = raid1_end_read_request;
1169		read_bio->bi_rw = READ | do_sync;
1170		read_bio->bi_private = r1_bio;
1171
1172		if (max_sectors < r1_bio->sectors) {
1173			/* could not read all from this device, so we will
1174			 * need another r1_bio.
1175			 */
1176
1177			sectors_handled = (r1_bio->sector + max_sectors
1178					   - bio->bi_iter.bi_sector);
1179			r1_bio->sectors = max_sectors;
1180			spin_lock_irq(&conf->device_lock);
1181			if (bio->bi_phys_segments == 0)
1182				bio->bi_phys_segments = 2;
1183			else
1184				bio->bi_phys_segments++;
1185			spin_unlock_irq(&conf->device_lock);
1186			/* Cannot call generic_make_request directly
1187			 * as that will be queued in __make_request
1188			 * and subsequent mempool_alloc might block waiting
1189			 * for it.  So hand bio over to raid1d.
1190			 */
1191			reschedule_retry(r1_bio);
1192
1193			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 
 
1194
1195			r1_bio->master_bio = bio;
1196			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1197			r1_bio->state = 0;
1198			r1_bio->mddev = mddev;
1199			r1_bio->sector = bio->bi_iter.bi_sector +
1200				sectors_handled;
1201			goto read_again;
1202		} else
1203			generic_make_request(read_bio);
1204		return;
 
 
 
 
 
1205	}
1206
1207	/*
1208	 * WRITE:
 
 
1209	 */
1210	if (conf->pending_count >= max_queued_requests) {
1211		md_wakeup_thread(mddev->thread);
1212		wait_event(conf->wait_barrier,
1213			   conf->pending_count < max_queued_requests);
1214	}
 
 
 
 
 
1215	/* first select target devices under rcu_lock and
1216	 * inc refcount on their rdev.  Record them by setting
1217	 * bios[x] to bio
1218	 * If there are known/acknowledged bad blocks on any device on
1219	 * which we have seen a write error, we want to avoid writing those
1220	 * blocks.
1221	 * This potentially requires several writes to write around
1222	 * the bad blocks.  Each set of writes gets it's own r1bio
1223	 * with a set of bios attached.
1224	 */
1225
1226	disks = conf->raid_disks * 2;
1227 retry_write:
1228	r1_bio->start_next_window = start_next_window;
1229	blocked_rdev = NULL;
1230	rcu_read_lock();
1231	max_sectors = r1_bio->sectors;
1232	for (i = 0;  i < disks; i++) {
1233		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
 
 
 
 
 
 
 
 
1234		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1235			atomic_inc(&rdev->nr_pending);
1236			blocked_rdev = rdev;
1237			break;
1238		}
1239		r1_bio->bios[i] = NULL;
1240		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1241			if (i < conf->raid_disks)
1242				set_bit(R1BIO_Degraded, &r1_bio->state);
1243			continue;
1244		}
1245
1246		atomic_inc(&rdev->nr_pending);
1247		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1248			sector_t first_bad;
1249			int bad_sectors;
1250			int is_bad;
1251
1252			is_bad = is_badblock(rdev, r1_bio->sector,
1253					     max_sectors,
1254					     &first_bad, &bad_sectors);
1255			if (is_bad < 0) {
1256				/* mustn't write here until the bad block is
1257				 * acknowledged*/
1258				set_bit(BlockedBadBlocks, &rdev->flags);
1259				blocked_rdev = rdev;
1260				break;
1261			}
1262			if (is_bad && first_bad <= r1_bio->sector) {
1263				/* Cannot write here at all */
1264				bad_sectors -= (r1_bio->sector - first_bad);
1265				if (bad_sectors < max_sectors)
1266					/* mustn't write more than bad_sectors
1267					 * to other devices yet
1268					 */
1269					max_sectors = bad_sectors;
1270				rdev_dec_pending(rdev, mddev);
1271				/* We don't set R1BIO_Degraded as that
1272				 * only applies if the disk is
1273				 * missing, so it might be re-added,
1274				 * and we want to know to recover this
1275				 * chunk.
1276				 * In this case the device is here,
1277				 * and the fact that this chunk is not
1278				 * in-sync is recorded in the bad
1279				 * block log
1280				 */
1281				continue;
1282			}
1283			if (is_bad) {
1284				int good_sectors = first_bad - r1_bio->sector;
1285				if (good_sectors < max_sectors)
1286					max_sectors = good_sectors;
1287			}
1288		}
1289		r1_bio->bios[i] = bio;
1290	}
1291	rcu_read_unlock();
1292
1293	if (unlikely(blocked_rdev)) {
1294		/* Wait for this device to become unblocked */
1295		int j;
1296		sector_t old = start_next_window;
1297
1298		for (j = 0; j < i; j++)
1299			if (r1_bio->bios[j])
1300				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1301		r1_bio->state = 0;
1302		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
 
 
 
 
 
 
 
1303		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1304		start_next_window = wait_barrier(conf, bio);
1305		/*
1306		 * We must make sure the multi r1bios of bio have
1307		 * the same value of bi_phys_segments
1308		 */
1309		if (bio->bi_phys_segments && old &&
1310		    old != start_next_window)
1311			/* Wait for the former r1bio(s) to complete */
1312			wait_event(conf->wait_barrier,
1313				   bio->bi_phys_segments == 1);
1314		goto retry_write;
1315	}
1316
1317	if (max_sectors < r1_bio->sectors) {
1318		/* We are splitting this write into multiple parts, so
1319		 * we need to prepare for allocating another r1_bio.
1320		 */
 
 
 
 
 
 
 
 
 
 
 
 
1321		r1_bio->sectors = max_sectors;
1322		spin_lock_irq(&conf->device_lock);
1323		if (bio->bi_phys_segments == 0)
1324			bio->bi_phys_segments = 2;
1325		else
1326			bio->bi_phys_segments++;
1327		spin_unlock_irq(&conf->device_lock);
1328	}
1329	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1330
 
 
1331	atomic_set(&r1_bio->remaining, 1);
1332	atomic_set(&r1_bio->behind_remaining, 0);
1333
1334	first_clone = 1;
 
1335	for (i = 0; i < disks; i++) {
1336		struct bio *mbio;
 
1337		if (!r1_bio->bios[i])
1338			continue;
1339
1340		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1341		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1342
1343		if (first_clone) {
1344			/* do behind I/O ?
1345			 * Not if there are too many, or cannot
1346			 * allocate memory, or a reader on WriteMostly
1347			 * is waiting for behind writes to flush */
1348			if (bitmap &&
1349			    (atomic_read(&bitmap->behind_writes)
1350			     < mddev->bitmap_info.max_write_behind) &&
1351			    !waitqueue_active(&bitmap->behind_wait))
1352				alloc_behind_pages(mbio, r1_bio);
 
1353
1354			bitmap_startwrite(bitmap, r1_bio->sector,
1355					  r1_bio->sectors,
1356					  test_bit(R1BIO_BehindIO,
1357						   &r1_bio->state));
1358			first_clone = 0;
1359		}
1360		if (r1_bio->behind_bvecs) {
1361			struct bio_vec *bvec;
1362			int j;
1363
1364			/*
1365			 * We trimmed the bio, so _all is legit
1366			 */
1367			bio_for_each_segment_all(bvec, mbio, j)
1368				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1369			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
 
1370				atomic_inc(&r1_bio->behind_remaining);
 
 
 
 
 
 
1371		}
1372
1373		r1_bio->bios[i] = mbio;
1374
1375		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1376				   conf->mirrors[i].rdev->data_offset);
1377		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1378		mbio->bi_end_io	= raid1_end_write_request;
1379		mbio->bi_rw =
1380			WRITE | do_flush_fua | do_sync | do_discard | do_same;
 
 
 
1381		mbio->bi_private = r1_bio;
1382
1383		atomic_inc(&r1_bio->remaining);
1384
1385		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1386		if (cb)
1387			plug = container_of(cb, struct raid1_plug_cb, cb);
1388		else
1389			plug = NULL;
1390		spin_lock_irqsave(&conf->device_lock, flags);
1391		if (plug) {
1392			bio_list_add(&plug->pending, mbio);
1393			plug->pending_cnt++;
1394		} else {
1395			bio_list_add(&conf->pending_bio_list, mbio);
1396			conf->pending_count++;
1397		}
1398		spin_unlock_irqrestore(&conf->device_lock, flags);
1399		if (!plug)
1400			md_wakeup_thread(mddev->thread);
1401	}
1402	/* Mustn't call r1_bio_write_done before this next test,
1403	 * as it could result in the bio being freed.
1404	 */
1405	if (sectors_handled < bio_sectors(bio)) {
1406		r1_bio_write_done(r1_bio);
1407		/* We need another r1_bio.  It has already been counted
1408		 * in bio->bi_phys_segments
1409		 */
1410		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1411		r1_bio->master_bio = bio;
1412		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1413		r1_bio->state = 0;
1414		r1_bio->mddev = mddev;
1415		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1416		goto retry_write;
1417	}
1418
1419	r1_bio_write_done(r1_bio);
1420
1421	/* In case raid1d snuck in to freeze_array */
1422	wake_up(&conf->wait_barrier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423}
1424
1425static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1426{
1427	struct r1conf *conf = mddev->private;
1428	int i;
1429
 
 
1430	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1431		   conf->raid_disks - mddev->degraded);
1432	rcu_read_lock();
1433	for (i = 0; i < conf->raid_disks; i++) {
1434		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
1435		seq_printf(seq, "%s",
1436			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1437	}
1438	rcu_read_unlock();
1439	seq_printf(seq, "]");
1440}
1441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1443{
1444	char b[BDEVNAME_SIZE];
1445	struct r1conf *conf = mddev->private;
1446	unsigned long flags;
1447
1448	/*
1449	 * If it is not operational, then we have already marked it as dead
1450	 * else if it is the last working disks, ignore the error, let the
1451	 * next level up know.
1452	 * else mark the drive as failed
1453	 */
1454	if (test_bit(In_sync, &rdev->flags)
1455	    && (conf->raid_disks - mddev->degraded) == 1) {
1456		/*
1457		 * Don't fail the drive, act as though we were just a
1458		 * normal single drive.
1459		 * However don't try a recovery from this drive as
1460		 * it is very likely to fail.
1461		 */
1462		conf->recovery_disabled = mddev->recovery_disabled;
1463		return;
1464	}
1465	set_bit(Blocked, &rdev->flags);
1466	spin_lock_irqsave(&conf->device_lock, flags);
1467	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1468		mddev->degraded++;
1469		set_bit(Faulty, &rdev->flags);
1470	} else
1471		set_bit(Faulty, &rdev->flags);
1472	spin_unlock_irqrestore(&conf->device_lock, flags);
1473	/*
1474	 * if recovery is running, make sure it aborts.
1475	 */
1476	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1477	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1478	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1479	printk(KERN_ALERT
1480	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1481	       "md/raid1:%s: Operation continuing on %d devices.\n",
1482	       mdname(mddev), bdevname(rdev->bdev, b),
1483	       mdname(mddev), conf->raid_disks - mddev->degraded);
1484}
1485
1486static void print_conf(struct r1conf *conf)
1487{
1488	int i;
1489
1490	printk(KERN_DEBUG "RAID1 conf printout:\n");
1491	if (!conf) {
1492		printk(KERN_DEBUG "(!conf)\n");
1493		return;
1494	}
1495	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1496		conf->raid_disks);
1497
1498	rcu_read_lock();
1499	for (i = 0; i < conf->raid_disks; i++) {
1500		char b[BDEVNAME_SIZE];
1501		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502		if (rdev)
1503			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1504			       i, !test_bit(In_sync, &rdev->flags),
1505			       !test_bit(Faulty, &rdev->flags),
1506			       bdevname(rdev->bdev,b));
1507	}
1508	rcu_read_unlock();
1509}
1510
1511static void close_sync(struct r1conf *conf)
1512{
1513	wait_barrier(conf, NULL);
1514	allow_barrier(conf, 0, 0);
1515
1516	mempool_destroy(conf->r1buf_pool);
1517	conf->r1buf_pool = NULL;
 
 
1518
1519	spin_lock_irq(&conf->resync_lock);
1520	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1521	conf->start_next_window = MaxSector;
1522	conf->current_window_requests +=
1523		conf->next_window_requests;
1524	conf->next_window_requests = 0;
1525	spin_unlock_irq(&conf->resync_lock);
1526}
1527
1528static int raid1_spare_active(struct mddev *mddev)
1529{
1530	int i;
1531	struct r1conf *conf = mddev->private;
1532	int count = 0;
1533	unsigned long flags;
1534
1535	/*
1536	 * Find all failed disks within the RAID1 configuration
1537	 * and mark them readable.
1538	 * Called under mddev lock, so rcu protection not needed.
1539	 * device_lock used to avoid races with raid1_end_read_request
1540	 * which expects 'In_sync' flags and ->degraded to be consistent.
1541	 */
1542	spin_lock_irqsave(&conf->device_lock, flags);
1543	for (i = 0; i < conf->raid_disks; i++) {
1544		struct md_rdev *rdev = conf->mirrors[i].rdev;
1545		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1546		if (repl
1547		    && !test_bit(Candidate, &repl->flags)
1548		    && repl->recovery_offset == MaxSector
1549		    && !test_bit(Faulty, &repl->flags)
1550		    && !test_and_set_bit(In_sync, &repl->flags)) {
1551			/* replacement has just become active */
1552			if (!rdev ||
1553			    !test_and_clear_bit(In_sync, &rdev->flags))
1554				count++;
1555			if (rdev) {
1556				/* Replaced device not technically
1557				 * faulty, but we need to be sure
1558				 * it gets removed and never re-added
1559				 */
1560				set_bit(Faulty, &rdev->flags);
1561				sysfs_notify_dirent_safe(
1562					rdev->sysfs_state);
1563			}
1564		}
1565		if (rdev
1566		    && rdev->recovery_offset == MaxSector
1567		    && !test_bit(Faulty, &rdev->flags)
1568		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1569			count++;
1570			sysfs_notify_dirent_safe(rdev->sysfs_state);
1571		}
1572	}
1573	mddev->degraded -= count;
1574	spin_unlock_irqrestore(&conf->device_lock, flags);
1575
1576	print_conf(conf);
1577	return count;
1578}
1579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1581{
1582	struct r1conf *conf = mddev->private;
1583	int err = -EEXIST;
1584	int mirror = 0;
1585	struct raid1_info *p;
1586	int first = 0;
1587	int last = conf->raid_disks - 1;
1588
1589	if (mddev->recovery_disabled == conf->recovery_disabled)
1590		return -EBUSY;
1591
1592	if (md_integrity_add_rdev(rdev, mddev))
1593		return -ENXIO;
1594
1595	if (rdev->raid_disk >= 0)
1596		first = last = rdev->raid_disk;
1597
1598	/*
1599	 * find the disk ... but prefer rdev->saved_raid_disk
1600	 * if possible.
1601	 */
1602	if (rdev->saved_raid_disk >= 0 &&
1603	    rdev->saved_raid_disk >= first &&
 
1604	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1605		first = last = rdev->saved_raid_disk;
1606
1607	for (mirror = first; mirror <= last; mirror++) {
1608		p = conf->mirrors+mirror;
1609		if (!p->rdev) {
 
 
 
1610
1611			if (mddev->gendisk)
1612				disk_stack_limits(mddev->gendisk, rdev->bdev,
1613						  rdev->data_offset << 9);
1614
1615			p->head_position = 0;
1616			rdev->raid_disk = mirror;
1617			err = 0;
1618			/* As all devices are equivalent, we don't need a full recovery
1619			 * if this was recently any drive of the array
1620			 */
1621			if (rdev->saved_raid_disk < 0)
1622				conf->fullsync = 1;
1623			rcu_assign_pointer(p->rdev, rdev);
1624			break;
1625		}
1626		if (test_bit(WantReplacement, &p->rdev->flags) &&
1627		    p[conf->raid_disks].rdev == NULL) {
1628			/* Add this device as a replacement */
1629			clear_bit(In_sync, &rdev->flags);
1630			set_bit(Replacement, &rdev->flags);
1631			rdev->raid_disk = mirror;
1632			err = 0;
1633			conf->fullsync = 1;
1634			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1635			break;
1636		}
1637	}
1638	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1639		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
 
 
 
 
 
 
 
 
1640	print_conf(conf);
1641	return err;
1642}
1643
1644static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1645{
1646	struct r1conf *conf = mddev->private;
1647	int err = 0;
1648	int number = rdev->raid_disk;
1649	struct raid1_info *p = conf->mirrors + number;
1650
1651	if (rdev != p->rdev)
1652		p = conf->mirrors + conf->raid_disks + number;
 
 
 
 
 
1653
1654	print_conf(conf);
1655	if (rdev == p->rdev) {
1656		if (test_bit(In_sync, &rdev->flags) ||
1657		    atomic_read(&rdev->nr_pending)) {
1658			err = -EBUSY;
1659			goto abort;
1660		}
1661		/* Only remove non-faulty devices if recovery
1662		 * is not possible.
1663		 */
1664		if (!test_bit(Faulty, &rdev->flags) &&
1665		    mddev->recovery_disabled != conf->recovery_disabled &&
1666		    mddev->degraded < conf->raid_disks) {
1667			err = -EBUSY;
1668			goto abort;
1669		}
1670		p->rdev = NULL;
1671		synchronize_rcu();
1672		if (atomic_read(&rdev->nr_pending)) {
1673			/* lost the race, try later */
1674			err = -EBUSY;
1675			p->rdev = rdev;
1676			goto abort;
1677		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1678			/* We just removed a device that is being replaced.
1679			 * Move down the replacement.  We drain all IO before
1680			 * doing this to avoid confusion.
1681			 */
1682			struct md_rdev *repl =
1683				conf->mirrors[conf->raid_disks + number].rdev;
1684			freeze_array(conf, 0);
 
 
 
 
 
 
 
 
 
 
 
1685			clear_bit(Replacement, &repl->flags);
1686			p->rdev = repl;
1687			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1688			unfreeze_array(conf);
1689			clear_bit(WantReplacement, &rdev->flags);
1690		} else
1691			clear_bit(WantReplacement, &rdev->flags);
1692		err = md_integrity_register(mddev);
1693	}
1694abort:
1695
1696	print_conf(conf);
1697	return err;
1698}
1699
1700static void end_sync_read(struct bio *bio)
1701{
1702	struct r1bio *r1_bio = bio->bi_private;
1703
1704	update_head_pos(r1_bio->read_disk, r1_bio);
1705
1706	/*
1707	 * we have read a block, now it needs to be re-written,
1708	 * or re-read if the read failed.
1709	 * We don't do much here, just schedule handling by raid1d
1710	 */
1711	if (!bio->bi_error)
1712		set_bit(R1BIO_Uptodate, &r1_bio->state);
1713
1714	if (atomic_dec_and_test(&r1_bio->remaining))
1715		reschedule_retry(r1_bio);
1716}
1717
1718static void end_sync_write(struct bio *bio)
1719{
1720	int uptodate = !bio->bi_error;
1721	struct r1bio *r1_bio = bio->bi_private;
1722	struct mddev *mddev = r1_bio->mddev;
1723	struct r1conf *conf = mddev->private;
1724	int mirror=0;
1725	sector_t first_bad;
1726	int bad_sectors;
1727
1728	mirror = find_bio_disk(r1_bio, bio);
1729
1730	if (!uptodate) {
1731		sector_t sync_blocks = 0;
1732		sector_t s = r1_bio->sector;
1733		long sectors_to_go = r1_bio->sectors;
1734		/* make sure these bits doesn't get cleared. */
1735		do {
1736			bitmap_end_sync(mddev->bitmap, s,
1737					&sync_blocks, 1);
1738			s += sync_blocks;
1739			sectors_to_go -= sync_blocks;
1740		} while (sectors_to_go > 0);
1741		set_bit(WriteErrorSeen,
1742			&conf->mirrors[mirror].rdev->flags);
1743		if (!test_and_set_bit(WantReplacement,
1744				      &conf->mirrors[mirror].rdev->flags))
1745			set_bit(MD_RECOVERY_NEEDED, &
1746				mddev->recovery);
1747		set_bit(R1BIO_WriteError, &r1_bio->state);
1748	} else if (is_badblock(conf->mirrors[mirror].rdev,
1749			       r1_bio->sector,
1750			       r1_bio->sectors,
1751			       &first_bad, &bad_sectors) &&
1752		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1753				r1_bio->sector,
1754				r1_bio->sectors,
1755				&first_bad, &bad_sectors)
1756		)
1757		set_bit(R1BIO_MadeGood, &r1_bio->state);
1758
 
 
1759	if (atomic_dec_and_test(&r1_bio->remaining)) {
 
1760		int s = r1_bio->sectors;
 
1761		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1762		    test_bit(R1BIO_WriteError, &r1_bio->state))
1763			reschedule_retry(r1_bio);
1764		else {
1765			put_buf(r1_bio);
1766			md_done_sync(mddev, s, uptodate);
1767		}
1768	}
1769}
1770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1772			    int sectors, struct page *page, int rw)
1773{
1774	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1775		/* success */
1776		return 1;
1777	if (rw == WRITE) {
1778		set_bit(WriteErrorSeen, &rdev->flags);
1779		if (!test_and_set_bit(WantReplacement,
1780				      &rdev->flags))
1781			set_bit(MD_RECOVERY_NEEDED, &
1782				rdev->mddev->recovery);
1783	}
1784	/* need to record an error - either for the block or the device */
1785	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1786		md_error(rdev->mddev, rdev);
1787	return 0;
1788}
1789
1790static int fix_sync_read_error(struct r1bio *r1_bio)
1791{
1792	/* Try some synchronous reads of other devices to get
1793	 * good data, much like with normal read errors.  Only
1794	 * read into the pages we already have so we don't
1795	 * need to re-issue the read request.
1796	 * We don't need to freeze the array, because being in an
1797	 * active sync request, there is no normal IO, and
1798	 * no overlapping syncs.
1799	 * We don't need to check is_badblock() again as we
1800	 * made sure that anything with a bad block in range
1801	 * will have bi_end_io clear.
1802	 */
1803	struct mddev *mddev = r1_bio->mddev;
1804	struct r1conf *conf = mddev->private;
1805	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
 
1806	sector_t sect = r1_bio->sector;
1807	int sectors = r1_bio->sectors;
1808	int idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1809
1810	while(sectors) {
1811		int s = sectors;
1812		int d = r1_bio->read_disk;
1813		int success = 0;
1814		struct md_rdev *rdev;
1815		int start;
1816
1817		if (s > (PAGE_SIZE>>9))
1818			s = PAGE_SIZE >> 9;
1819		do {
1820			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1821				/* No rcu protection needed here devices
1822				 * can only be removed when no resync is
1823				 * active, and resync is currently active
1824				 */
1825				rdev = conf->mirrors[d].rdev;
1826				if (sync_page_io(rdev, sect, s<<9,
1827						 bio->bi_io_vec[idx].bv_page,
1828						 READ, false)) {
1829					success = 1;
1830					break;
1831				}
1832			}
1833			d++;
1834			if (d == conf->raid_disks * 2)
1835				d = 0;
1836		} while (!success && d != r1_bio->read_disk);
1837
1838		if (!success) {
1839			char b[BDEVNAME_SIZE];
1840			int abort = 0;
1841			/* Cannot read from anywhere, this block is lost.
1842			 * Record a bad block on each device.  If that doesn't
1843			 * work just disable and interrupt the recovery.
1844			 * Don't fail devices as that won't really help.
1845			 */
1846			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1847			       " for block %llu\n",
1848			       mdname(mddev),
1849			       bdevname(bio->bi_bdev, b),
1850			       (unsigned long long)r1_bio->sector);
1851			for (d = 0; d < conf->raid_disks * 2; d++) {
1852				rdev = conf->mirrors[d].rdev;
1853				if (!rdev || test_bit(Faulty, &rdev->flags))
1854					continue;
1855				if (!rdev_set_badblocks(rdev, sect, s, 0))
1856					abort = 1;
1857			}
1858			if (abort) {
1859				conf->recovery_disabled =
1860					mddev->recovery_disabled;
1861				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1862				md_done_sync(mddev, r1_bio->sectors, 0);
1863				put_buf(r1_bio);
1864				return 0;
1865			}
1866			/* Try next page */
1867			sectors -= s;
1868			sect += s;
1869			idx++;
1870			continue;
1871		}
1872
1873		start = d;
1874		/* write it back and re-read */
1875		while (d != r1_bio->read_disk) {
1876			if (d == 0)
1877				d = conf->raid_disks * 2;
1878			d--;
1879			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1880				continue;
1881			rdev = conf->mirrors[d].rdev;
1882			if (r1_sync_page_io(rdev, sect, s,
1883					    bio->bi_io_vec[idx].bv_page,
1884					    WRITE) == 0) {
1885				r1_bio->bios[d]->bi_end_io = NULL;
1886				rdev_dec_pending(rdev, mddev);
1887			}
1888		}
1889		d = start;
1890		while (d != r1_bio->read_disk) {
1891			if (d == 0)
1892				d = conf->raid_disks * 2;
1893			d--;
1894			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1895				continue;
1896			rdev = conf->mirrors[d].rdev;
1897			if (r1_sync_page_io(rdev, sect, s,
1898					    bio->bi_io_vec[idx].bv_page,
1899					    READ) != 0)
1900				atomic_add(s, &rdev->corrected_errors);
1901		}
1902		sectors -= s;
1903		sect += s;
1904		idx ++;
1905	}
1906	set_bit(R1BIO_Uptodate, &r1_bio->state);
1907	bio->bi_error = 0;
1908	return 1;
1909}
1910
1911static void process_checks(struct r1bio *r1_bio)
1912{
1913	/* We have read all readable devices.  If we haven't
1914	 * got the block, then there is no hope left.
1915	 * If we have, then we want to do a comparison
1916	 * and skip the write if everything is the same.
1917	 * If any blocks failed to read, then we need to
1918	 * attempt an over-write
1919	 */
1920	struct mddev *mddev = r1_bio->mddev;
1921	struct r1conf *conf = mddev->private;
1922	int primary;
1923	int i;
1924	int vcnt;
1925
1926	/* Fix variable parts of all bios */
1927	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1928	for (i = 0; i < conf->raid_disks * 2; i++) {
1929		int j;
1930		int size;
1931		int error;
1932		struct bio *b = r1_bio->bios[i];
 
1933		if (b->bi_end_io != end_sync_read)
1934			continue;
1935		/* fixup the bio for reuse, but preserve errno */
1936		error = b->bi_error;
1937		bio_reset(b);
1938		b->bi_error = error;
1939		b->bi_vcnt = vcnt;
1940		b->bi_iter.bi_size = r1_bio->sectors << 9;
1941		b->bi_iter.bi_sector = r1_bio->sector +
1942			conf->mirrors[i].rdev->data_offset;
1943		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1944		b->bi_end_io = end_sync_read;
1945		b->bi_private = r1_bio;
 
1946
1947		size = b->bi_iter.bi_size;
1948		for (j = 0; j < vcnt ; j++) {
1949			struct bio_vec *bi;
1950			bi = &b->bi_io_vec[j];
1951			bi->bv_offset = 0;
1952			if (size > PAGE_SIZE)
1953				bi->bv_len = PAGE_SIZE;
1954			else
1955				bi->bv_len = size;
1956			size -= PAGE_SIZE;
1957		}
1958	}
1959	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1960		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1961		    !r1_bio->bios[primary]->bi_error) {
1962			r1_bio->bios[primary]->bi_end_io = NULL;
1963			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1964			break;
1965		}
1966	r1_bio->read_disk = primary;
1967	for (i = 0; i < conf->raid_disks * 2; i++) {
1968		int j;
1969		struct bio *pbio = r1_bio->bios[primary];
1970		struct bio *sbio = r1_bio->bios[i];
1971		int error = sbio->bi_error;
 
 
 
 
 
1972
1973		if (sbio->bi_end_io != end_sync_read)
1974			continue;
1975		/* Now we can 'fixup' the error value */
1976		sbio->bi_error = 0;
 
 
 
1977
1978		if (!error) {
1979			for (j = vcnt; j-- ; ) {
1980				struct page *p, *s;
1981				p = pbio->bi_io_vec[j].bv_page;
1982				s = sbio->bi_io_vec[j].bv_page;
1983				if (memcmp(page_address(p),
1984					   page_address(s),
1985					   sbio->bi_io_vec[j].bv_len))
1986					break;
1987			}
1988		} else
1989			j = 0;
1990		if (j >= 0)
1991			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1992		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1993			      && !error)) {
1994			/* No need to write to this device. */
1995			sbio->bi_end_io = NULL;
1996			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1997			continue;
1998		}
1999
2000		bio_copy_data(sbio, pbio);
2001	}
2002}
2003
2004static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2005{
2006	struct r1conf *conf = mddev->private;
2007	int i;
2008	int disks = conf->raid_disks * 2;
2009	struct bio *bio, *wbio;
2010
2011	bio = r1_bio->bios[r1_bio->read_disk];
2012
2013	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2014		/* ouch - failed to read all of that. */
2015		if (!fix_sync_read_error(r1_bio))
2016			return;
2017
2018	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2019		process_checks(r1_bio);
2020
2021	/*
2022	 * schedule writes
2023	 */
2024	atomic_set(&r1_bio->remaining, 1);
2025	for (i = 0; i < disks ; i++) {
2026		wbio = r1_bio->bios[i];
2027		if (wbio->bi_end_io == NULL ||
2028		    (wbio->bi_end_io == end_sync_read &&
2029		     (i == r1_bio->read_disk ||
2030		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2031			continue;
 
 
 
 
 
 
 
 
2032
2033		wbio->bi_rw = WRITE;
2034		wbio->bi_end_io = end_sync_write;
2035		atomic_inc(&r1_bio->remaining);
2036		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2037
2038		generic_make_request(wbio);
2039	}
2040
2041	if (atomic_dec_and_test(&r1_bio->remaining)) {
2042		/* if we're here, all write(s) have completed, so clean up */
2043		int s = r1_bio->sectors;
2044		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045		    test_bit(R1BIO_WriteError, &r1_bio->state))
2046			reschedule_retry(r1_bio);
2047		else {
2048			put_buf(r1_bio);
2049			md_done_sync(mddev, s, 1);
2050		}
2051	}
2052}
2053
2054/*
2055 * This is a kernel thread which:
2056 *
2057 *	1.	Retries failed read operations on working mirrors.
2058 *	2.	Updates the raid superblock when problems encounter.
2059 *	3.	Performs writes following reads for array synchronising.
2060 */
2061
2062static void fix_read_error(struct r1conf *conf, int read_disk,
2063			   sector_t sect, int sectors)
2064{
 
 
 
2065	struct mddev *mddev = conf->mddev;
 
 
 
 
 
 
 
2066	while(sectors) {
2067		int s = sectors;
2068		int d = read_disk;
2069		int success = 0;
2070		int start;
2071		struct md_rdev *rdev;
2072
2073		if (s > (PAGE_SIZE>>9))
2074			s = PAGE_SIZE >> 9;
2075
2076		do {
2077			/* Note: no rcu protection needed here
2078			 * as this is synchronous in the raid1d thread
2079			 * which is the thread that might remove
2080			 * a device.  If raid1d ever becomes multi-threaded....
2081			 */
2082			sector_t first_bad;
2083			int bad_sectors;
2084
2085			rdev = conf->mirrors[d].rdev;
2086			if (rdev &&
2087			    (test_bit(In_sync, &rdev->flags) ||
2088			     (!test_bit(Faulty, &rdev->flags) &&
2089			      rdev->recovery_offset >= sect + s)) &&
2090			    is_badblock(rdev, sect, s,
2091					&first_bad, &bad_sectors) == 0 &&
2092			    sync_page_io(rdev, sect, s<<9,
2093					 conf->tmppage, READ, false))
2094				success = 1;
2095			else {
2096				d++;
2097				if (d == conf->raid_disks * 2)
2098					d = 0;
2099			}
2100		} while (!success && d != read_disk);
 
 
 
 
2101
2102		if (!success) {
2103			/* Cannot read from anywhere - mark it bad */
2104			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2105			if (!rdev_set_badblocks(rdev, sect, s, 0))
2106				md_error(mddev, rdev);
2107			break;
2108		}
2109		/* write it back and re-read */
2110		start = d;
2111		while (d != read_disk) {
2112			if (d==0)
2113				d = conf->raid_disks * 2;
2114			d--;
2115			rdev = conf->mirrors[d].rdev;
2116			if (rdev &&
2117			    !test_bit(Faulty, &rdev->flags))
 
2118				r1_sync_page_io(rdev, sect, s,
2119						conf->tmppage, WRITE);
 
 
2120		}
2121		d = start;
2122		while (d != read_disk) {
2123			char b[BDEVNAME_SIZE];
2124			if (d==0)
2125				d = conf->raid_disks * 2;
2126			d--;
2127			rdev = conf->mirrors[d].rdev;
2128			if (rdev &&
2129			    !test_bit(Faulty, &rdev->flags)) {
 
2130				if (r1_sync_page_io(rdev, sect, s,
2131						    conf->tmppage, READ)) {
2132					atomic_add(s, &rdev->corrected_errors);
2133					printk(KERN_INFO
2134					       "md/raid1:%s: read error corrected "
2135					       "(%d sectors at %llu on %s)\n",
2136					       mdname(mddev), s,
2137					       (unsigned long long)(sect +
2138					           rdev->data_offset),
2139					       bdevname(rdev->bdev, b));
2140				}
 
2141			}
2142		}
2143		sectors -= s;
2144		sect += s;
2145	}
2146}
2147
2148static int narrow_write_error(struct r1bio *r1_bio, int i)
2149{
2150	struct mddev *mddev = r1_bio->mddev;
2151	struct r1conf *conf = mddev->private;
2152	struct md_rdev *rdev = conf->mirrors[i].rdev;
2153
2154	/* bio has the data to be written to device 'i' where
2155	 * we just recently had a write error.
2156	 * We repeatedly clone the bio and trim down to one block,
2157	 * then try the write.  Where the write fails we record
2158	 * a bad block.
2159	 * It is conceivable that the bio doesn't exactly align with
2160	 * blocks.  We must handle this somehow.
2161	 *
2162	 * We currently own a reference on the rdev.
2163	 */
2164
2165	int block_sectors;
2166	sector_t sector;
2167	int sectors;
2168	int sect_to_write = r1_bio->sectors;
2169	int ok = 1;
2170
2171	if (rdev->badblocks.shift < 0)
2172		return 0;
2173
2174	block_sectors = roundup(1 << rdev->badblocks.shift,
2175				bdev_logical_block_size(rdev->bdev) >> 9);
2176	sector = r1_bio->sector;
2177	sectors = ((sector + block_sectors)
2178		   & ~(sector_t)(block_sectors - 1))
2179		- sector;
2180
2181	while (sect_to_write) {
2182		struct bio *wbio;
2183		if (sectors > sect_to_write)
2184			sectors = sect_to_write;
2185		/* Write at 'sector' for 'sectors'*/
2186
2187		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2188			unsigned vcnt = r1_bio->behind_page_count;
2189			struct bio_vec *vec = r1_bio->behind_bvecs;
2190
2191			while (!vec->bv_page) {
2192				vec++;
2193				vcnt--;
2194			}
2195
2196			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2197			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2198
2199			wbio->bi_vcnt = vcnt;
2200		} else {
2201			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
 
2202		}
2203
2204		wbio->bi_rw = WRITE;
2205		wbio->bi_iter.bi_sector = r1_bio->sector;
2206		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2207
2208		bio_trim(wbio, sector - r1_bio->sector, sectors);
2209		wbio->bi_iter.bi_sector += rdev->data_offset;
2210		wbio->bi_bdev = rdev->bdev;
2211		if (submit_bio_wait(WRITE, wbio) < 0)
2212			/* failure! */
2213			ok = rdev_set_badblocks(rdev, sector,
2214						sectors, 0)
2215				&& ok;
2216
2217		bio_put(wbio);
2218		sect_to_write -= sectors;
2219		sector += sectors;
2220		sectors = block_sectors;
2221	}
2222	return ok;
2223}
2224
2225static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2226{
2227	int m;
2228	int s = r1_bio->sectors;
2229	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2230		struct md_rdev *rdev = conf->mirrors[m].rdev;
2231		struct bio *bio = r1_bio->bios[m];
2232		if (bio->bi_end_io == NULL)
2233			continue;
2234		if (!bio->bi_error &&
2235		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2236			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2237		}
2238		if (bio->bi_error &&
2239		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2240			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2241				md_error(conf->mddev, rdev);
2242		}
2243	}
2244	put_buf(r1_bio);
2245	md_done_sync(conf->mddev, s, 1);
2246}
2247
2248static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2249{
2250	int m;
2251	bool fail = false;
 
2252	for (m = 0; m < conf->raid_disks * 2 ; m++)
2253		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2254			struct md_rdev *rdev = conf->mirrors[m].rdev;
2255			rdev_clear_badblocks(rdev,
2256					     r1_bio->sector,
2257					     r1_bio->sectors, 0);
2258			rdev_dec_pending(rdev, conf->mddev);
2259		} else if (r1_bio->bios[m] != NULL) {
2260			/* This drive got a write error.  We need to
2261			 * narrow down and record precise write
2262			 * errors.
2263			 */
2264			fail = true;
2265			if (!narrow_write_error(r1_bio, m)) {
2266				md_error(conf->mddev,
2267					 conf->mirrors[m].rdev);
2268				/* an I/O failed, we can't clear the bitmap */
2269				set_bit(R1BIO_Degraded, &r1_bio->state);
2270			}
2271			rdev_dec_pending(conf->mirrors[m].rdev,
2272					 conf->mddev);
2273		}
2274	if (fail) {
2275		spin_lock_irq(&conf->device_lock);
2276		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2277		conf->nr_queued++;
 
2278		spin_unlock_irq(&conf->device_lock);
 
 
 
 
 
2279		md_wakeup_thread(conf->mddev->thread);
2280	} else {
2281		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2282			close_write(r1_bio);
2283		raid_end_bio_io(r1_bio);
2284	}
2285}
2286
2287static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2288{
2289	int disk;
2290	int max_sectors;
2291	struct mddev *mddev = conf->mddev;
2292	struct bio *bio;
2293	char b[BDEVNAME_SIZE];
2294	struct md_rdev *rdev;
 
2295
2296	clear_bit(R1BIO_ReadError, &r1_bio->state);
2297	/* we got a read error. Maybe the drive is bad.  Maybe just
2298	 * the block and we can fix it.
2299	 * We freeze all other IO, and try reading the block from
2300	 * other devices.  When we find one, we re-write
2301	 * and check it that fixes the read error.
2302	 * This is all done synchronously while the array is
2303	 * frozen
2304	 */
2305	if (mddev->ro == 0) {
2306		freeze_array(conf, 1);
2307		fix_read_error(conf, r1_bio->read_disk,
2308			       r1_bio->sector, r1_bio->sectors);
2309		unfreeze_array(conf);
2310	} else
2311		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2312	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2313
2314	bio = r1_bio->bios[r1_bio->read_disk];
2315	bdevname(bio->bi_bdev, b);
2316read_more:
2317	disk = read_balance(conf, r1_bio, &max_sectors);
2318	if (disk == -1) {
2319		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2320		       " read error for block %llu\n",
2321		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2322		raid_end_bio_io(r1_bio);
2323	} else {
2324		const unsigned long do_sync
2325			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2326		if (bio) {
2327			r1_bio->bios[r1_bio->read_disk] =
2328				mddev->ro ? IO_BLOCKED : NULL;
2329			bio_put(bio);
2330		}
2331		r1_bio->read_disk = disk;
2332		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2333		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2334			 max_sectors);
2335		r1_bio->bios[r1_bio->read_disk] = bio;
2336		rdev = conf->mirrors[disk].rdev;
2337		printk_ratelimited(KERN_ERR
2338				   "md/raid1:%s: redirecting sector %llu"
2339				   " to other mirror: %s\n",
2340				   mdname(mddev),
2341				   (unsigned long long)r1_bio->sector,
2342				   bdevname(rdev->bdev, b));
2343		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2344		bio->bi_bdev = rdev->bdev;
2345		bio->bi_end_io = raid1_end_read_request;
2346		bio->bi_rw = READ | do_sync;
2347		bio->bi_private = r1_bio;
2348		if (max_sectors < r1_bio->sectors) {
2349			/* Drat - have to split this up more */
2350			struct bio *mbio = r1_bio->master_bio;
2351			int sectors_handled = (r1_bio->sector + max_sectors
2352					       - mbio->bi_iter.bi_sector);
2353			r1_bio->sectors = max_sectors;
2354			spin_lock_irq(&conf->device_lock);
2355			if (mbio->bi_phys_segments == 0)
2356				mbio->bi_phys_segments = 2;
2357			else
2358				mbio->bi_phys_segments++;
2359			spin_unlock_irq(&conf->device_lock);
2360			generic_make_request(bio);
2361			bio = NULL;
2362
2363			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2364
2365			r1_bio->master_bio = mbio;
2366			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2367			r1_bio->state = 0;
2368			set_bit(R1BIO_ReadError, &r1_bio->state);
2369			r1_bio->mddev = mddev;
2370			r1_bio->sector = mbio->bi_iter.bi_sector +
2371				sectors_handled;
2372
2373			goto read_more;
2374		} else
2375			generic_make_request(bio);
 
 
 
 
 
 
 
2376	}
 
 
 
 
 
 
 
 
 
2377}
2378
2379static void raid1d(struct md_thread *thread)
2380{
2381	struct mddev *mddev = thread->mddev;
2382	struct r1bio *r1_bio;
2383	unsigned long flags;
2384	struct r1conf *conf = mddev->private;
2385	struct list_head *head = &conf->retry_list;
2386	struct blk_plug plug;
 
2387
2388	md_check_recovery(mddev);
2389
2390	if (!list_empty_careful(&conf->bio_end_io_list) &&
2391	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2392		LIST_HEAD(tmp);
2393		spin_lock_irqsave(&conf->device_lock, flags);
2394		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2395			while (!list_empty(&conf->bio_end_io_list)) {
2396				list_move(conf->bio_end_io_list.prev, &tmp);
2397				conf->nr_queued--;
2398			}
2399		}
2400		spin_unlock_irqrestore(&conf->device_lock, flags);
2401		while (!list_empty(&tmp)) {
2402			r1_bio = list_first_entry(&tmp, struct r1bio,
2403						  retry_list);
2404			list_del(&r1_bio->retry_list);
 
 
2405			if (mddev->degraded)
2406				set_bit(R1BIO_Degraded, &r1_bio->state);
2407			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2408				close_write(r1_bio);
2409			raid_end_bio_io(r1_bio);
2410		}
2411	}
2412
2413	blk_start_plug(&plug);
2414	for (;;) {
2415
2416		flush_pending_writes(conf);
2417
2418		spin_lock_irqsave(&conf->device_lock, flags);
2419		if (list_empty(head)) {
2420			spin_unlock_irqrestore(&conf->device_lock, flags);
2421			break;
2422		}
2423		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2424		list_del(head->prev);
2425		conf->nr_queued--;
 
2426		spin_unlock_irqrestore(&conf->device_lock, flags);
2427
2428		mddev = r1_bio->mddev;
2429		conf = mddev->private;
2430		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2431			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2432			    test_bit(R1BIO_WriteError, &r1_bio->state))
2433				handle_sync_write_finished(conf, r1_bio);
2434			else
2435				sync_request_write(mddev, r1_bio);
2436		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2437			   test_bit(R1BIO_WriteError, &r1_bio->state))
2438			handle_write_finished(conf, r1_bio);
2439		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2440			handle_read_error(conf, r1_bio);
2441		else
2442			/* just a partial read to be scheduled from separate
2443			 * context
2444			 */
2445			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2446
2447		cond_resched();
2448		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2449			md_check_recovery(mddev);
2450	}
2451	blk_finish_plug(&plug);
2452}
2453
2454static int init_resync(struct r1conf *conf)
2455{
2456	int buffs;
2457
2458	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2459	BUG_ON(conf->r1buf_pool);
2460	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2461					  conf->poolinfo);
2462	if (!conf->r1buf_pool)
2463		return -ENOMEM;
2464	conf->next_resync = 0;
2465	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466}
2467
2468/*
2469 * perform a "sync" on one "block"
2470 *
2471 * We need to make sure that no normal I/O request - particularly write
2472 * requests - conflict with active sync requests.
2473 *
2474 * This is achieved by tracking pending requests and a 'barrier' concept
2475 * that can be installed to exclude normal IO requests.
2476 */
2477
2478static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2479				   int *skipped)
2480{
2481	struct r1conf *conf = mddev->private;
2482	struct r1bio *r1_bio;
2483	struct bio *bio;
2484	sector_t max_sector, nr_sectors;
2485	int disk = -1;
2486	int i;
2487	int wonly = -1;
2488	int write_targets = 0, read_targets = 0;
2489	sector_t sync_blocks;
2490	int still_degraded = 0;
2491	int good_sectors = RESYNC_SECTORS;
2492	int min_bad = 0; /* number of sectors that are bad in all devices */
 
 
2493
2494	if (!conf->r1buf_pool)
2495		if (init_resync(conf))
2496			return 0;
2497
2498	max_sector = mddev->dev_sectors;
2499	if (sector_nr >= max_sector) {
2500		/* If we aborted, we need to abort the
2501		 * sync on the 'current' bitmap chunk (there will
2502		 * only be one in raid1 resync.
2503		 * We can find the current addess in mddev->curr_resync
2504		 */
2505		if (mddev->curr_resync < max_sector) /* aborted */
2506			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2507						&sync_blocks, 1);
2508		else /* completed sync */
2509			conf->fullsync = 0;
2510
2511		bitmap_close_sync(mddev->bitmap);
2512		close_sync(conf);
2513
2514		if (mddev_is_clustered(mddev)) {
2515			conf->cluster_sync_low = 0;
2516			conf->cluster_sync_high = 0;
2517		}
2518		return 0;
2519	}
2520
2521	if (mddev->bitmap == NULL &&
2522	    mddev->recovery_cp == MaxSector &&
2523	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2524	    conf->fullsync == 0) {
2525		*skipped = 1;
2526		return max_sector - sector_nr;
2527	}
2528	/* before building a request, check if we can skip these blocks..
2529	 * This call the bitmap_start_sync doesn't actually record anything
2530	 */
2531	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2532	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2533		/* We can skip this block, and probably several more */
2534		*skipped = 1;
2535		return sync_blocks;
2536	}
2537
 
 
 
 
 
 
 
2538	/* we are incrementing sector_nr below. To be safe, we check against
2539	 * sector_nr + two times RESYNC_SECTORS
2540	 */
2541
2542	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2543		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2544	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2545
2546	raise_barrier(conf, sector_nr);
2547
2548	rcu_read_lock();
 
 
 
 
2549	/*
2550	 * If we get a correctably read error during resync or recovery,
2551	 * we might want to read from a different device.  So we
2552	 * flag all drives that could conceivably be read from for READ,
2553	 * and any others (which will be non-In_sync devices) for WRITE.
2554	 * If a read fails, we try reading from something else for which READ
2555	 * is OK.
2556	 */
2557
2558	r1_bio->mddev = mddev;
2559	r1_bio->sector = sector_nr;
2560	r1_bio->state = 0;
2561	set_bit(R1BIO_IsSync, &r1_bio->state);
 
 
2562
2563	for (i = 0; i < conf->raid_disks * 2; i++) {
2564		struct md_rdev *rdev;
2565		bio = r1_bio->bios[i];
2566		bio_reset(bio);
2567
2568		rdev = rcu_dereference(conf->mirrors[i].rdev);
2569		if (rdev == NULL ||
2570		    test_bit(Faulty, &rdev->flags)) {
2571			if (i < conf->raid_disks)
2572				still_degraded = 1;
2573		} else if (!test_bit(In_sync, &rdev->flags)) {
2574			bio->bi_rw = WRITE;
2575			bio->bi_end_io = end_sync_write;
2576			write_targets ++;
2577		} else {
2578			/* may need to read from here */
2579			sector_t first_bad = MaxSector;
2580			int bad_sectors;
2581
2582			if (is_badblock(rdev, sector_nr, good_sectors,
2583					&first_bad, &bad_sectors)) {
2584				if (first_bad > sector_nr)
2585					good_sectors = first_bad - sector_nr;
2586				else {
2587					bad_sectors -= (sector_nr - first_bad);
2588					if (min_bad == 0 ||
2589					    min_bad > bad_sectors)
2590						min_bad = bad_sectors;
2591				}
2592			}
2593			if (sector_nr < first_bad) {
2594				if (test_bit(WriteMostly, &rdev->flags)) {
2595					if (wonly < 0)
2596						wonly = i;
2597				} else {
2598					if (disk < 0)
2599						disk = i;
2600				}
2601				bio->bi_rw = READ;
2602				bio->bi_end_io = end_sync_read;
2603				read_targets++;
2604			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607				/*
2608				 * The device is suitable for reading (InSync),
2609				 * but has bad block(s) here. Let's try to correct them,
2610				 * if we are doing resync or repair. Otherwise, leave
2611				 * this device alone for this sync request.
2612				 */
2613				bio->bi_rw = WRITE;
2614				bio->bi_end_io = end_sync_write;
2615				write_targets++;
2616			}
2617		}
2618		if (bio->bi_end_io) {
2619			atomic_inc(&rdev->nr_pending);
2620			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621			bio->bi_bdev = rdev->bdev;
2622			bio->bi_private = r1_bio;
 
2623		}
2624	}
2625	rcu_read_unlock();
2626	if (disk < 0)
2627		disk = wonly;
2628	r1_bio->read_disk = disk;
2629
2630	if (read_targets == 0 && min_bad > 0) {
2631		/* These sectors are bad on all InSync devices, so we
2632		 * need to mark them bad on all write targets
2633		 */
2634		int ok = 1;
2635		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637				struct md_rdev *rdev = conf->mirrors[i].rdev;
2638				ok = rdev_set_badblocks(rdev, sector_nr,
2639							min_bad, 0
2640					) && ok;
2641			}
2642		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643		*skipped = 1;
2644		put_buf(r1_bio);
2645
2646		if (!ok) {
2647			/* Cannot record the badblocks, so need to
2648			 * abort the resync.
2649			 * If there are multiple read targets, could just
2650			 * fail the really bad ones ???
2651			 */
2652			conf->recovery_disabled = mddev->recovery_disabled;
2653			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654			return 0;
2655		} else
2656			return min_bad;
2657
2658	}
2659	if (min_bad > 0 && min_bad < good_sectors) {
2660		/* only resync enough to reach the next bad->good
2661		 * transition */
2662		good_sectors = min_bad;
2663	}
2664
2665	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666		/* extra read targets are also write targets */
2667		write_targets += read_targets-1;
2668
2669	if (write_targets == 0 || read_targets == 0) {
2670		/* There is nowhere to write, so all non-sync
2671		 * drives must be failed - so we are finished
2672		 */
2673		sector_t rv;
2674		if (min_bad > 0)
2675			max_sector = sector_nr + min_bad;
2676		rv = max_sector - sector_nr;
2677		*skipped = 1;
2678		put_buf(r1_bio);
2679		return rv;
2680	}
2681
2682	if (max_sector > mddev->resync_max)
2683		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684	if (max_sector > sector_nr + good_sectors)
2685		max_sector = sector_nr + good_sectors;
2686	nr_sectors = 0;
2687	sync_blocks = 0;
2688	do {
2689		struct page *page;
2690		int len = PAGE_SIZE;
2691		if (sector_nr + (len>>9) > max_sector)
2692			len = (max_sector - sector_nr) << 9;
2693		if (len == 0)
2694			break;
2695		if (sync_blocks == 0) {
2696			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697					       &sync_blocks, still_degraded) &&
2698			    !conf->fullsync &&
2699			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700				break;
2701			if ((len >> 9) > sync_blocks)
2702				len = sync_blocks<<9;
2703		}
2704
2705		for (i = 0 ; i < conf->raid_disks * 2; i++) {
 
 
2706			bio = r1_bio->bios[i];
 
2707			if (bio->bi_end_io) {
2708				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2709				if (bio_add_page(bio, page, len, 0) == 0) {
2710					/* stop here */
2711					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2712					while (i > 0) {
2713						i--;
2714						bio = r1_bio->bios[i];
2715						if (bio->bi_end_io==NULL)
2716							continue;
2717						/* remove last page from this bio */
2718						bio->bi_vcnt--;
2719						bio->bi_iter.bi_size -= len;
2720						bio_clear_flag(bio, BIO_SEG_VALID);
2721					}
2722					goto bio_full;
2723				}
2724			}
2725		}
2726		nr_sectors += len>>9;
2727		sector_nr += len>>9;
2728		sync_blocks -= (len>>9);
2729	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2730 bio_full:
2731	r1_bio->sectors = nr_sectors;
2732
2733	if (mddev_is_clustered(mddev) &&
2734			conf->cluster_sync_high < sector_nr + nr_sectors) {
2735		conf->cluster_sync_low = mddev->curr_resync_completed;
2736		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2737		/* Send resync message */
2738		md_cluster_ops->resync_info_update(mddev,
2739				conf->cluster_sync_low,
2740				conf->cluster_sync_high);
2741	}
2742
2743	/* For a user-requested sync, we read all readable devices and do a
2744	 * compare
2745	 */
2746	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2747		atomic_set(&r1_bio->remaining, read_targets);
2748		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2749			bio = r1_bio->bios[i];
2750			if (bio->bi_end_io == end_sync_read) {
2751				read_targets--;
2752				md_sync_acct(bio->bi_bdev, nr_sectors);
2753				generic_make_request(bio);
 
 
2754			}
2755		}
2756	} else {
2757		atomic_set(&r1_bio->remaining, 1);
2758		bio = r1_bio->bios[r1_bio->read_disk];
2759		md_sync_acct(bio->bi_bdev, nr_sectors);
2760		generic_make_request(bio);
2761
 
2762	}
2763	return nr_sectors;
2764}
2765
2766static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2767{
2768	if (sectors)
2769		return sectors;
2770
2771	return mddev->dev_sectors;
2772}
2773
2774static struct r1conf *setup_conf(struct mddev *mddev)
2775{
2776	struct r1conf *conf;
2777	int i;
2778	struct raid1_info *disk;
2779	struct md_rdev *rdev;
2780	int err = -ENOMEM;
2781
2782	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2783	if (!conf)
2784		goto abort;
2785
2786	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2787				* mddev->raid_disks * 2,
2788				 GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2789	if (!conf->mirrors)
2790		goto abort;
2791
2792	conf->tmppage = alloc_page(GFP_KERNEL);
2793	if (!conf->tmppage)
2794		goto abort;
2795
2796	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2797	if (!conf->poolinfo)
2798		goto abort;
2799	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2800	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2801					  r1bio_pool_free,
2802					  conf->poolinfo);
2803	if (!conf->r1bio_pool)
 
 
 
2804		goto abort;
2805
2806	conf->poolinfo->mddev = mddev;
2807
2808	err = -EINVAL;
2809	spin_lock_init(&conf->device_lock);
 
2810	rdev_for_each(rdev, mddev) {
2811		struct request_queue *q;
2812		int disk_idx = rdev->raid_disk;
2813		if (disk_idx >= mddev->raid_disks
2814		    || disk_idx < 0)
2815			continue;
2816		if (test_bit(Replacement, &rdev->flags))
2817			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2818		else
2819			disk = conf->mirrors + disk_idx;
2820
2821		if (disk->rdev)
 
2822			goto abort;
2823		disk->rdev = rdev;
2824		q = bdev_get_queue(rdev->bdev);
2825
2826		disk->head_position = 0;
2827		disk->seq_start = MaxSector;
2828	}
2829	conf->raid_disks = mddev->raid_disks;
2830	conf->mddev = mddev;
2831	INIT_LIST_HEAD(&conf->retry_list);
2832	INIT_LIST_HEAD(&conf->bio_end_io_list);
2833
2834	spin_lock_init(&conf->resync_lock);
2835	init_waitqueue_head(&conf->wait_barrier);
2836
2837	bio_list_init(&conf->pending_bio_list);
2838	conf->pending_count = 0;
2839	conf->recovery_disabled = mddev->recovery_disabled - 1;
2840
2841	conf->start_next_window = MaxSector;
2842	conf->current_window_requests = conf->next_window_requests = 0;
2843
2844	err = -EIO;
2845	for (i = 0; i < conf->raid_disks * 2; i++) {
2846
2847		disk = conf->mirrors + i;
2848
2849		if (i < conf->raid_disks &&
2850		    disk[conf->raid_disks].rdev) {
2851			/* This slot has a replacement. */
2852			if (!disk->rdev) {
2853				/* No original, just make the replacement
2854				 * a recovering spare
2855				 */
2856				disk->rdev =
2857					disk[conf->raid_disks].rdev;
2858				disk[conf->raid_disks].rdev = NULL;
2859			} else if (!test_bit(In_sync, &disk->rdev->flags))
2860				/* Original is not in_sync - bad */
2861				goto abort;
2862		}
2863
2864		if (!disk->rdev ||
2865		    !test_bit(In_sync, &disk->rdev->flags)) {
2866			disk->head_position = 0;
2867			if (disk->rdev &&
2868			    (disk->rdev->saved_raid_disk < 0))
2869				conf->fullsync = 1;
2870		}
2871	}
2872
2873	err = -ENOMEM;
2874	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2875	if (!conf->thread) {
2876		printk(KERN_ERR
2877		       "md/raid1:%s: couldn't allocate thread\n",
2878		       mdname(mddev));
2879		goto abort;
2880	}
2881
2882	return conf;
2883
2884 abort:
2885	if (conf) {
2886		mempool_destroy(conf->r1bio_pool);
2887		kfree(conf->mirrors);
2888		safe_put_page(conf->tmppage);
2889		kfree(conf->poolinfo);
 
 
 
 
 
2890		kfree(conf);
2891	}
2892	return ERR_PTR(err);
2893}
2894
 
 
 
 
 
 
 
 
 
 
2895static void raid1_free(struct mddev *mddev, void *priv);
2896static int raid1_run(struct mddev *mddev)
2897{
2898	struct r1conf *conf;
2899	int i;
2900	struct md_rdev *rdev;
2901	int ret;
2902	bool discard_supported = false;
2903
2904	if (mddev->level != 1) {
2905		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2906		       mdname(mddev), mddev->level);
2907		return -EIO;
2908	}
2909	if (mddev->reshape_position != MaxSector) {
2910		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2911		       mdname(mddev));
2912		return -EIO;
2913	}
 
2914	/*
2915	 * copy the already verified devices into our private RAID1
2916	 * bookkeeping area. [whatever we allocate in run(),
2917	 * should be freed in raid1_free()]
2918	 */
2919	if (mddev->private == NULL)
2920		conf = setup_conf(mddev);
2921	else
2922		conf = mddev->private;
2923
2924	if (IS_ERR(conf))
2925		return PTR_ERR(conf);
2926
2927	if (mddev->queue)
2928		blk_queue_max_write_same_sectors(mddev->queue, 0);
2929
2930	rdev_for_each(rdev, mddev) {
2931		if (!mddev->gendisk)
2932			continue;
2933		disk_stack_limits(mddev->gendisk, rdev->bdev,
2934				  rdev->data_offset << 9);
2935		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2936			discard_supported = true;
2937	}
2938
2939	mddev->degraded = 0;
2940	for (i=0; i < conf->raid_disks; i++)
2941		if (conf->mirrors[i].rdev == NULL ||
2942		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2943		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2944			mddev->degraded++;
 
 
 
 
 
 
 
 
2945
2946	if (conf->raid_disks - mddev->degraded == 1)
2947		mddev->recovery_cp = MaxSector;
2948
2949	if (mddev->recovery_cp != MaxSector)
2950		printk(KERN_NOTICE "md/raid1:%s: not clean"
2951		       " -- starting background reconstruction\n",
2952		       mdname(mddev));
2953	printk(KERN_INFO
2954		"md/raid1:%s: active with %d out of %d mirrors\n",
2955		mdname(mddev), mddev->raid_disks - mddev->degraded,
2956		mddev->raid_disks);
2957
2958	/*
2959	 * Ok, everything is just fine now
2960	 */
2961	mddev->thread = conf->thread;
2962	conf->thread = NULL;
2963	mddev->private = conf;
 
2964
2965	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2966
2967	if (mddev->queue) {
2968		if (discard_supported)
2969			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2970						mddev->queue);
2971		else
2972			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2973						  mddev->queue);
2974	}
2975
2976	ret =  md_integrity_register(mddev);
2977	if (ret) {
2978		md_unregister_thread(&mddev->thread);
2979		raid1_free(mddev, conf);
2980	}
 
 
 
 
2981	return ret;
2982}
2983
2984static void raid1_free(struct mddev *mddev, void *priv)
2985{
2986	struct r1conf *conf = priv;
2987
2988	mempool_destroy(conf->r1bio_pool);
2989	kfree(conf->mirrors);
2990	safe_put_page(conf->tmppage);
2991	kfree(conf->poolinfo);
 
 
 
 
 
2992	kfree(conf);
2993}
2994
2995static int raid1_resize(struct mddev *mddev, sector_t sectors)
2996{
2997	/* no resync is happening, and there is enough space
2998	 * on all devices, so we can resize.
2999	 * We need to make sure resync covers any new space.
3000	 * If the array is shrinking we should possibly wait until
3001	 * any io in the removed space completes, but it hardly seems
3002	 * worth it.
3003	 */
3004	sector_t newsize = raid1_size(mddev, sectors, 0);
3005	if (mddev->external_size &&
3006	    mddev->array_sectors > newsize)
3007		return -EINVAL;
3008	if (mddev->bitmap) {
3009		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3010		if (ret)
3011			return ret;
3012	}
3013	md_set_array_sectors(mddev, newsize);
3014	set_capacity(mddev->gendisk, mddev->array_sectors);
3015	revalidate_disk(mddev->gendisk);
3016	if (sectors > mddev->dev_sectors &&
3017	    mddev->recovery_cp > mddev->dev_sectors) {
3018		mddev->recovery_cp = mddev->dev_sectors;
3019		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3020	}
3021	mddev->dev_sectors = sectors;
3022	mddev->resync_max_sectors = sectors;
3023	return 0;
3024}
3025
3026static int raid1_reshape(struct mddev *mddev)
3027{
3028	/* We need to:
3029	 * 1/ resize the r1bio_pool
3030	 * 2/ resize conf->mirrors
3031	 *
3032	 * We allocate a new r1bio_pool if we can.
3033	 * Then raise a device barrier and wait until all IO stops.
3034	 * Then resize conf->mirrors and swap in the new r1bio pool.
3035	 *
3036	 * At the same time, we "pack" the devices so that all the missing
3037	 * devices have the higher raid_disk numbers.
3038	 */
3039	mempool_t *newpool, *oldpool;
3040	struct pool_info *newpoolinfo;
3041	struct raid1_info *newmirrors;
3042	struct r1conf *conf = mddev->private;
3043	int cnt, raid_disks;
3044	unsigned long flags;
3045	int d, d2, err;
 
 
 
 
3046
3047	/* Cannot change chunk_size, layout, or level */
3048	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3049	    mddev->layout != mddev->new_layout ||
3050	    mddev->level != mddev->new_level) {
3051		mddev->new_chunk_sectors = mddev->chunk_sectors;
3052		mddev->new_layout = mddev->layout;
3053		mddev->new_level = mddev->level;
3054		return -EINVAL;
3055	}
3056
3057	if (!mddev_is_clustered(mddev)) {
3058		err = md_allow_write(mddev);
3059		if (err)
3060			return err;
3061	}
3062
3063	raid_disks = mddev->raid_disks + mddev->delta_disks;
3064
3065	if (raid_disks < conf->raid_disks) {
3066		cnt=0;
3067		for (d= 0; d < conf->raid_disks; d++)
3068			if (conf->mirrors[d].rdev)
3069				cnt++;
3070		if (cnt > raid_disks)
3071			return -EBUSY;
3072	}
3073
3074	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3075	if (!newpoolinfo)
3076		return -ENOMEM;
3077	newpoolinfo->mddev = mddev;
3078	newpoolinfo->raid_disks = raid_disks * 2;
3079
3080	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3081				 r1bio_pool_free, newpoolinfo);
3082	if (!newpool) {
3083		kfree(newpoolinfo);
3084		return -ENOMEM;
3085	}
3086	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
 
3087			     GFP_KERNEL);
3088	if (!newmirrors) {
3089		kfree(newpoolinfo);
3090		mempool_destroy(newpool);
3091		return -ENOMEM;
3092	}
3093
3094	freeze_array(conf, 0);
3095
3096	/* ok, everything is stopped */
3097	oldpool = conf->r1bio_pool;
3098	conf->r1bio_pool = newpool;
3099
3100	for (d = d2 = 0; d < conf->raid_disks; d++) {
3101		struct md_rdev *rdev = conf->mirrors[d].rdev;
3102		if (rdev && rdev->raid_disk != d2) {
3103			sysfs_unlink_rdev(mddev, rdev);
3104			rdev->raid_disk = d2;
3105			sysfs_unlink_rdev(mddev, rdev);
3106			if (sysfs_link_rdev(mddev, rdev))
3107				printk(KERN_WARNING
3108				       "md/raid1:%s: cannot register rd%d\n",
3109				       mdname(mddev), rdev->raid_disk);
3110		}
3111		if (rdev)
3112			newmirrors[d2++].rdev = rdev;
3113	}
3114	kfree(conf->mirrors);
3115	conf->mirrors = newmirrors;
3116	kfree(conf->poolinfo);
3117	conf->poolinfo = newpoolinfo;
3118
3119	spin_lock_irqsave(&conf->device_lock, flags);
3120	mddev->degraded += (raid_disks - conf->raid_disks);
3121	spin_unlock_irqrestore(&conf->device_lock, flags);
3122	conf->raid_disks = mddev->raid_disks = raid_disks;
3123	mddev->delta_disks = 0;
3124
3125	unfreeze_array(conf);
3126
3127	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3128	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129	md_wakeup_thread(mddev->thread);
3130
3131	mempool_destroy(oldpool);
3132	return 0;
3133}
3134
3135static void raid1_quiesce(struct mddev *mddev, int state)
3136{
3137	struct r1conf *conf = mddev->private;
3138
3139	switch(state) {
3140	case 2: /* wake for suspend */
3141		wake_up(&conf->wait_barrier);
3142		break;
3143	case 1:
3144		freeze_array(conf, 0);
3145		break;
3146	case 0:
3147		unfreeze_array(conf);
3148		break;
3149	}
3150}
3151
3152static void *raid1_takeover(struct mddev *mddev)
3153{
3154	/* raid1 can take over:
3155	 *  raid5 with 2 devices, any layout or chunk size
3156	 */
3157	if (mddev->level == 5 && mddev->raid_disks == 2) {
3158		struct r1conf *conf;
3159		mddev->new_level = 1;
3160		mddev->new_layout = 0;
3161		mddev->new_chunk_sectors = 0;
3162		conf = setup_conf(mddev);
3163		if (!IS_ERR(conf))
3164			/* Array must appear to be quiesced */
3165			conf->array_frozen = 1;
 
 
 
3166		return conf;
3167	}
3168	return ERR_PTR(-EINVAL);
3169}
3170
3171static struct md_personality raid1_personality =
3172{
3173	.name		= "raid1",
3174	.level		= 1,
3175	.owner		= THIS_MODULE,
3176	.make_request	= raid1_make_request,
3177	.run		= raid1_run,
3178	.free		= raid1_free,
3179	.status		= raid1_status,
3180	.error_handler	= raid1_error,
3181	.hot_add_disk	= raid1_add_disk,
3182	.hot_remove_disk= raid1_remove_disk,
3183	.spare_active	= raid1_spare_active,
3184	.sync_request	= raid1_sync_request,
3185	.resize		= raid1_resize,
3186	.size		= raid1_size,
3187	.check_reshape	= raid1_reshape,
3188	.quiesce	= raid1_quiesce,
3189	.takeover	= raid1_takeover,
3190	.congested	= raid1_congested,
3191};
3192
3193static int __init raid_init(void)
3194{
3195	return register_md_personality(&raid1_personality);
3196}
3197
3198static void raid_exit(void)
3199{
3200	unregister_md_personality(&raid1_personality);
3201}
3202
3203module_init(raid_init);
3204module_exit(raid_exit);
3205MODULE_LICENSE("GPL");
3206MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3207MODULE_ALIAS("md-personality-3"); /* RAID1 */
3208MODULE_ALIAS("md-raid1");
3209MODULE_ALIAS("md-level-1");
3210
3211module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32#include <linux/interval_tree_generic.h>
  33
  34#include <trace/events/block.h>
  35
  36#include "md.h"
  37#include "raid1.h"
  38#include "md-bitmap.h"
  39
  40#define UNSUPPORTED_MDDEV_FLAGS		\
  41	((1L << MD_HAS_JOURNAL) |	\
  42	 (1L << MD_JOURNAL_CLEAN) |	\
  43	 (1L << MD_HAS_PPL) |		\
  44	 (1L << MD_HAS_MULTIPLE_PPLS))
  45
  46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  48
  49#define RAID_1_10_NAME "raid1"
  50#include "raid1-10.c"
  51
  52#define START(node) ((node)->start)
  53#define LAST(node) ((node)->last)
  54INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
  55		     START, LAST, static inline, raid1_rb);
  56
  57static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
  58				struct serial_info *si, int idx)
  59{
  60	unsigned long flags;
  61	int ret = 0;
  62	sector_t lo = r1_bio->sector;
  63	sector_t hi = lo + r1_bio->sectors;
  64	struct serial_in_rdev *serial = &rdev->serial[idx];
  65
  66	spin_lock_irqsave(&serial->serial_lock, flags);
  67	/* collision happened */
  68	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
  69		ret = -EBUSY;
  70	else {
  71		si->start = lo;
  72		si->last = hi;
  73		raid1_rb_insert(si, &serial->serial_rb);
  74	}
  75	spin_unlock_irqrestore(&serial->serial_lock, flags);
  76
  77	return ret;
  78}
  79
  80static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
  81{
  82	struct mddev *mddev = rdev->mddev;
  83	struct serial_info *si;
  84	int idx = sector_to_idx(r1_bio->sector);
  85	struct serial_in_rdev *serial = &rdev->serial[idx];
  86
  87	if (WARN_ON(!mddev->serial_info_pool))
  88		return;
  89	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
  90	wait_event(serial->serial_io_wait,
  91		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
  92}
  93
  94static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
  95{
  96	struct serial_info *si;
  97	unsigned long flags;
  98	int found = 0;
  99	struct mddev *mddev = rdev->mddev;
 100	int idx = sector_to_idx(lo);
 101	struct serial_in_rdev *serial = &rdev->serial[idx];
 102
 103	spin_lock_irqsave(&serial->serial_lock, flags);
 104	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 105	     si; si = raid1_rb_iter_next(si, lo, hi)) {
 106		if (si->start == lo && si->last == hi) {
 107			raid1_rb_remove(si, &serial->serial_rb);
 108			mempool_free(si, mddev->serial_info_pool);
 109			found = 1;
 110			break;
 111		}
 112	}
 113	if (!found)
 114		WARN(1, "The write IO is not recorded for serialization\n");
 115	spin_unlock_irqrestore(&serial->serial_lock, flags);
 116	wake_up(&serial->serial_io_wait);
 117}
 118
 119/*
 120 * for resync bio, r1bio pointer can be retrieved from the per-bio
 121 * 'struct resync_pages'.
 122 */
 123static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 124{
 125	return get_resync_pages(bio)->raid_bio;
 126}
 127
 128static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 129{
 130	struct pool_info *pi = data;
 131	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 132
 133	/* allocate a r1bio with room for raid_disks entries in the bios array */
 134	return kzalloc(size, gfp_flags);
 135}
 136
 
 
 
 
 
 
 137#define RESYNC_DEPTH 32
 138#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 
 139#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 140#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 141#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 142#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 
 143
 144static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 145{
 146	struct pool_info *pi = data;
 147	struct r1bio *r1_bio;
 148	struct bio *bio;
 149	int need_pages;
 150	int j;
 151	struct resync_pages *rps;
 152
 153	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 154	if (!r1_bio)
 155		return NULL;
 156
 157	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 158			    gfp_flags);
 159	if (!rps)
 160		goto out_free_r1bio;
 161
 162	/*
 163	 * Allocate bios : 1 for reading, n-1 for writing
 164	 */
 165	for (j = pi->raid_disks ; j-- ; ) {
 166		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 167		if (!bio)
 168			goto out_free_bio;
 169		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 170		r1_bio->bios[j] = bio;
 171	}
 172	/*
 173	 * Allocate RESYNC_PAGES data pages and attach them to
 174	 * the first bio.
 175	 * If this is a user-requested check/repair, allocate
 176	 * RESYNC_PAGES for each bio.
 177	 */
 178	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 179		need_pages = pi->raid_disks;
 180	else
 181		need_pages = 1;
 182	for (j = 0; j < pi->raid_disks; j++) {
 183		struct resync_pages *rp = &rps[j];
 184
 185		bio = r1_bio->bios[j];
 
 186
 187		if (j < need_pages) {
 188			if (resync_alloc_pages(rp, gfp_flags))
 189				goto out_free_pages;
 190		} else {
 191			memcpy(rp, &rps[0], sizeof(*rp));
 192			resync_get_all_pages(rp);
 193		}
 194
 195		rp->raid_bio = r1_bio;
 196		bio->bi_private = rp;
 197	}
 198
 199	r1_bio->master_bio = NULL;
 200
 201	return r1_bio;
 202
 203out_free_pages:
 204	while (--j >= 0)
 205		resync_free_pages(&rps[j]);
 206
 207out_free_bio:
 208	while (++j < pi->raid_disks) {
 209		bio_uninit(r1_bio->bios[j]);
 210		kfree(r1_bio->bios[j]);
 211	}
 212	kfree(rps);
 213
 214out_free_r1bio:
 215	rbio_pool_free(r1_bio, data);
 
 
 216	return NULL;
 217}
 218
 219static void r1buf_pool_free(void *__r1_bio, void *data)
 220{
 221	struct pool_info *pi = data;
 222	int i;
 223	struct r1bio *r1bio = __r1_bio;
 224	struct resync_pages *rp = NULL;
 225
 226	for (i = pi->raid_disks; i--; ) {
 227		rp = get_resync_pages(r1bio->bios[i]);
 228		resync_free_pages(rp);
 229		bio_uninit(r1bio->bios[i]);
 230		kfree(r1bio->bios[i]);
 231	}
 
 
 
 232
 233	/* resync pages array stored in the 1st bio's .bi_private */
 234	kfree(rp);
 235
 236	rbio_pool_free(r1bio, data);
 237}
 238
 239static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 240{
 241	int i;
 242
 243	for (i = 0; i < conf->raid_disks * 2; i++) {
 244		struct bio **bio = r1_bio->bios + i;
 245		if (!BIO_SPECIAL(*bio))
 246			bio_put(*bio);
 247		*bio = NULL;
 248	}
 249}
 250
 251static void free_r1bio(struct r1bio *r1_bio)
 252{
 253	struct r1conf *conf = r1_bio->mddev->private;
 254
 255	put_all_bios(conf, r1_bio);
 256	mempool_free(r1_bio, &conf->r1bio_pool);
 257}
 258
 259static void put_buf(struct r1bio *r1_bio)
 260{
 261	struct r1conf *conf = r1_bio->mddev->private;
 262	sector_t sect = r1_bio->sector;
 263	int i;
 264
 265	for (i = 0; i < conf->raid_disks * 2; i++) {
 266		struct bio *bio = r1_bio->bios[i];
 267		if (bio->bi_end_io)
 268			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 269	}
 270
 271	mempool_free(r1_bio, &conf->r1buf_pool);
 272
 273	lower_barrier(conf, sect);
 274}
 275
 276static void reschedule_retry(struct r1bio *r1_bio)
 277{
 278	unsigned long flags;
 279	struct mddev *mddev = r1_bio->mddev;
 280	struct r1conf *conf = mddev->private;
 281	int idx;
 282
 283	idx = sector_to_idx(r1_bio->sector);
 284	spin_lock_irqsave(&conf->device_lock, flags);
 285	list_add(&r1_bio->retry_list, &conf->retry_list);
 286	atomic_inc(&conf->nr_queued[idx]);
 287	spin_unlock_irqrestore(&conf->device_lock, flags);
 288
 289	wake_up(&conf->wait_barrier);
 290	md_wakeup_thread(mddev->thread);
 291}
 292
 293/*
 294 * raid_end_bio_io() is called when we have finished servicing a mirrored
 295 * operation and are ready to return a success/failure code to the buffer
 296 * cache layer.
 297 */
 298static void call_bio_endio(struct r1bio *r1_bio)
 299{
 300	struct bio *bio = r1_bio->master_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301
 302	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 303		bio->bi_status = BLK_STS_IOERR;
 304
 305	bio_endio(bio);
 
 
 
 
 
 
 
 306}
 307
 308static void raid_end_bio_io(struct r1bio *r1_bio)
 309{
 310	struct bio *bio = r1_bio->master_bio;
 311	struct r1conf *conf = r1_bio->mddev->private;
 312	sector_t sector = r1_bio->sector;
 313
 314	/* if nobody has done the final endio yet, do it now */
 315	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 316		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 317			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 318			 (unsigned long long) bio->bi_iter.bi_sector,
 319			 (unsigned long long) bio_end_sector(bio) - 1);
 320
 321		call_bio_endio(r1_bio);
 322	}
 323
 324	free_r1bio(r1_bio);
 325	/*
 326	 * Wake up any possible resync thread that waits for the device
 327	 * to go idle.  All I/Os, even write-behind writes, are done.
 328	 */
 329	allow_barrier(conf, sector);
 330}
 331
 332/*
 333 * Update disk head position estimator based on IRQ completion info.
 334 */
 335static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 336{
 337	struct r1conf *conf = r1_bio->mddev->private;
 338
 339	conf->mirrors[disk].head_position =
 340		r1_bio->sector + (r1_bio->sectors);
 341}
 342
 343/*
 344 * Find the disk number which triggered given bio
 345 */
 346static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 347{
 348	int mirror;
 349	struct r1conf *conf = r1_bio->mddev->private;
 350	int raid_disks = conf->raid_disks;
 351
 352	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 353		if (r1_bio->bios[mirror] == bio)
 354			break;
 355
 356	BUG_ON(mirror == raid_disks * 2);
 357	update_head_pos(mirror, r1_bio);
 358
 359	return mirror;
 360}
 361
 362static void raid1_end_read_request(struct bio *bio)
 363{
 364	int uptodate = !bio->bi_status;
 365	struct r1bio *r1_bio = bio->bi_private;
 
 366	struct r1conf *conf = r1_bio->mddev->private;
 367	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 368
 
 369	/*
 370	 * this branch is our 'one mirror IO has finished' event handler:
 371	 */
 372	update_head_pos(r1_bio->read_disk, r1_bio);
 373
 374	if (uptodate)
 375		set_bit(R1BIO_Uptodate, &r1_bio->state);
 376	else if (test_bit(FailFast, &rdev->flags) &&
 377		 test_bit(R1BIO_FailFast, &r1_bio->state))
 378		/* This was a fail-fast read so we definitely
 379		 * want to retry */
 380		;
 381	else {
 382		/* If all other devices have failed, we want to return
 383		 * the error upwards rather than fail the last device.
 384		 * Here we redefine "uptodate" to mean "Don't want to retry"
 385		 */
 386		unsigned long flags;
 387		spin_lock_irqsave(&conf->device_lock, flags);
 388		if (r1_bio->mddev->degraded == conf->raid_disks ||
 389		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 390		     test_bit(In_sync, &rdev->flags)))
 391			uptodate = 1;
 392		spin_unlock_irqrestore(&conf->device_lock, flags);
 393	}
 394
 395	if (uptodate) {
 396		raid_end_bio_io(r1_bio);
 397		rdev_dec_pending(rdev, conf->mddev);
 398	} else {
 399		/*
 400		 * oops, read error:
 401		 */
 402		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
 403				   mdname(conf->mddev),
 404				   rdev->bdev,
 405				   (unsigned long long)r1_bio->sector);
 
 
 
 
 406		set_bit(R1BIO_ReadError, &r1_bio->state);
 407		reschedule_retry(r1_bio);
 408		/* don't drop the reference on read_disk yet */
 409	}
 410}
 411
 412static void close_write(struct r1bio *r1_bio)
 413{
 414	/* it really is the end of this request */
 415	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 416		bio_free_pages(r1_bio->behind_master_bio);
 417		bio_put(r1_bio->behind_master_bio);
 418		r1_bio->behind_master_bio = NULL;
 
 
 
 419	}
 420	/* clear the bitmap if all writes complete successfully */
 421	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 422			   r1_bio->sectors,
 423			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 424			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 425	md_write_end(r1_bio->mddev);
 426}
 427
 428static void r1_bio_write_done(struct r1bio *r1_bio)
 429{
 430	if (!atomic_dec_and_test(&r1_bio->remaining))
 431		return;
 432
 433	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 434		reschedule_retry(r1_bio);
 435	else {
 436		close_write(r1_bio);
 437		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 438			reschedule_retry(r1_bio);
 439		else
 440			raid_end_bio_io(r1_bio);
 441	}
 442}
 443
 444static void raid1_end_write_request(struct bio *bio)
 445{
 446	struct r1bio *r1_bio = bio->bi_private;
 447	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 448	struct r1conf *conf = r1_bio->mddev->private;
 449	struct bio *to_put = NULL;
 450	int mirror = find_bio_disk(r1_bio, bio);
 451	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 452	bool discard_error;
 453	sector_t lo = r1_bio->sector;
 454	sector_t hi = r1_bio->sector + r1_bio->sectors;
 455
 456	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 457
 458	/*
 459	 * 'one mirror IO has finished' event handler:
 460	 */
 461	if (bio->bi_status && !discard_error) {
 462		set_bit(WriteErrorSeen,	&rdev->flags);
 463		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 
 
 464			set_bit(MD_RECOVERY_NEEDED, &
 465				conf->mddev->recovery);
 466
 467		if (test_bit(FailFast, &rdev->flags) &&
 468		    (bio->bi_opf & MD_FAILFAST) &&
 469		    /* We never try FailFast to WriteMostly devices */
 470		    !test_bit(WriteMostly, &rdev->flags)) {
 471			md_error(r1_bio->mddev, rdev);
 472		}
 473
 474		/*
 475		 * When the device is faulty, it is not necessary to
 476		 * handle write error.
 477		 */
 478		if (!test_bit(Faulty, &rdev->flags))
 479			set_bit(R1BIO_WriteError, &r1_bio->state);
 480		else {
 481			/* Fail the request */
 482			set_bit(R1BIO_Degraded, &r1_bio->state);
 483			/* Finished with this branch */
 484			r1_bio->bios[mirror] = NULL;
 485			to_put = bio;
 486		}
 487	} else {
 488		/*
 489		 * Set R1BIO_Uptodate in our master bio, so that we
 490		 * will return a good error code for to the higher
 491		 * levels even if IO on some other mirrored buffer
 492		 * fails.
 493		 *
 494		 * The 'master' represents the composite IO operation
 495		 * to user-side. So if something waits for IO, then it
 496		 * will wait for the 'master' bio.
 497		 */
 
 
 
 498		r1_bio->bios[mirror] = NULL;
 499		to_put = bio;
 500		/*
 501		 * Do not set R1BIO_Uptodate if the current device is
 502		 * rebuilding or Faulty. This is because we cannot use
 503		 * such device for properly reading the data back (we could
 504		 * potentially use it, if the current write would have felt
 505		 * before rdev->recovery_offset, but for simplicity we don't
 506		 * check this here.
 507		 */
 508		if (test_bit(In_sync, &rdev->flags) &&
 509		    !test_bit(Faulty, &rdev->flags))
 510			set_bit(R1BIO_Uptodate, &r1_bio->state);
 511
 512		/* Maybe we can clear some bad blocks. */
 513		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
 514		    !discard_error) {
 
 515			r1_bio->bios[mirror] = IO_MADE_GOOD;
 516			set_bit(R1BIO_MadeGood, &r1_bio->state);
 517		}
 518	}
 519
 520	if (behind) {
 521		if (test_bit(CollisionCheck, &rdev->flags))
 522			remove_serial(rdev, lo, hi);
 523		if (test_bit(WriteMostly, &rdev->flags))
 524			atomic_dec(&r1_bio->behind_remaining);
 525
 526		/*
 527		 * In behind mode, we ACK the master bio once the I/O
 528		 * has safely reached all non-writemostly
 529		 * disks. Setting the Returned bit ensures that this
 530		 * gets done only once -- we don't ever want to return
 531		 * -EIO here, instead we'll wait
 532		 */
 533		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 534		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 535			/* Maybe we can return now */
 536			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 537				struct bio *mbio = r1_bio->master_bio;
 538				pr_debug("raid1: behind end write sectors"
 539					 " %llu-%llu\n",
 540					 (unsigned long long) mbio->bi_iter.bi_sector,
 541					 (unsigned long long) bio_end_sector(mbio) - 1);
 542				call_bio_endio(r1_bio);
 543			}
 544		}
 545	} else if (rdev->mddev->serialize_policy)
 546		remove_serial(rdev, lo, hi);
 547	if (r1_bio->bios[mirror] == NULL)
 548		rdev_dec_pending(rdev, conf->mddev);
 
 549
 550	/*
 551	 * Let's see if all mirrored write operations have finished
 552	 * already.
 553	 */
 554	r1_bio_write_done(r1_bio);
 555
 556	if (to_put)
 557		bio_put(to_put);
 558}
 559
 560static sector_t align_to_barrier_unit_end(sector_t start_sector,
 561					  sector_t sectors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 562{
 563	sector_t len;
 
 
 
 
 
 
 
 
 
 
 564
 565	WARN_ON(sectors == 0);
 566	/*
 567	 * len is the number of sectors from start_sector to end of the
 568	 * barrier unit which start_sector belongs to.
 569	 */
 570	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 571	      start_sector;
 572
 573	if (len > sectors)
 574		len = sectors;
 575
 576	return len;
 577}
 578
 579static void update_read_sectors(struct r1conf *conf, int disk,
 580				sector_t this_sector, int len)
 581{
 582	struct raid1_info *info = &conf->mirrors[disk];
 583
 584	atomic_inc(&info->rdev->nr_pending);
 585	if (info->next_seq_sect != this_sector)
 586		info->seq_start = this_sector;
 587	info->next_seq_sect = this_sector + len;
 588}
 589
 590static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
 591			     int *max_sectors)
 592{
 593	sector_t this_sector = r1_bio->sector;
 594	int len = r1_bio->sectors;
 595	int disk;
 596
 597	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 598		struct md_rdev *rdev;
 599		int read_len;
 
 
 
 600
 601		if (r1_bio->bios[disk] == IO_BLOCKED)
 
 
 
 602			continue;
 603
 604		rdev = conf->mirrors[disk].rdev;
 605		if (!rdev || test_bit(Faulty, &rdev->flags))
 606			continue;
 607
 608		/* choose the first disk even if it has some bad blocks. */
 609		read_len = raid1_check_read_range(rdev, this_sector, &len);
 610		if (read_len > 0) {
 611			update_read_sectors(conf, disk, this_sector, read_len);
 612			*max_sectors = read_len;
 613			return disk;
 614		}
 615	}
 616
 617	return -1;
 618}
 619
 620static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
 621			  int *max_sectors)
 622{
 623	sector_t this_sector = r1_bio->sector;
 624	int best_disk = -1;
 625	int best_len = 0;
 626	int disk;
 627
 628	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 629		struct md_rdev *rdev;
 630		int len;
 631		int read_len;
 632
 633		if (r1_bio->bios[disk] == IO_BLOCKED)
 634			continue;
 635
 636		rdev = conf->mirrors[disk].rdev;
 637		if (!rdev || test_bit(Faulty, &rdev->flags) ||
 638		    test_bit(WriteMostly, &rdev->flags))
 639			continue;
 640
 641		/* keep track of the disk with the most readable sectors. */
 642		len = r1_bio->sectors;
 643		read_len = raid1_check_read_range(rdev, this_sector, &len);
 644		if (read_len > best_len) {
 645			best_disk = disk;
 646			best_len = read_len;
 647		}
 648	}
 649
 650	if (best_disk != -1) {
 651		*max_sectors = best_len;
 652		update_read_sectors(conf, best_disk, this_sector, best_len);
 653	}
 654
 655	return best_disk;
 656}
 657
 658static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
 659			    int *max_sectors)
 660{
 661	sector_t this_sector = r1_bio->sector;
 662	int bb_disk = -1;
 663	int bb_read_len = 0;
 664	int disk;
 665
 666	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 667		struct md_rdev *rdev;
 668		int len;
 669		int read_len;
 670
 671		if (r1_bio->bios[disk] == IO_BLOCKED)
 672			continue;
 673
 674		rdev = conf->mirrors[disk].rdev;
 675		if (!rdev || test_bit(Faulty, &rdev->flags) ||
 676		    !test_bit(WriteMostly, &rdev->flags))
 677			continue;
 678
 679		/* there are no bad blocks, we can use this disk */
 680		len = r1_bio->sectors;
 681		read_len = raid1_check_read_range(rdev, this_sector, &len);
 682		if (read_len == r1_bio->sectors) {
 683			update_read_sectors(conf, disk, this_sector, read_len);
 684			return disk;
 685		}
 686
 687		/*
 688		 * there are partial bad blocks, choose the rdev with largest
 689		 * read length.
 690		 */
 691		if (read_len > bb_read_len) {
 692			bb_disk = disk;
 693			bb_read_len = read_len;
 694		}
 695	}
 696
 697	if (bb_disk != -1) {
 698		*max_sectors = bb_read_len;
 699		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
 700	}
 701
 702	return bb_disk;
 703}
 704
 705static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
 706{
 707	/* TODO: address issues with this check and concurrency. */
 708	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
 709	       conf->mirrors[disk].head_position == r1_bio->sector;
 710}
 711
 712/*
 713 * If buffered sequential IO size exceeds optimal iosize, check if there is idle
 714 * disk. If yes, choose the idle disk.
 715 */
 716static bool should_choose_next(struct r1conf *conf, int disk)
 717{
 718	struct raid1_info *mirror = &conf->mirrors[disk];
 719	int opt_iosize;
 720
 721	if (!test_bit(Nonrot, &mirror->rdev->flags))
 722		return false;
 723
 724	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
 725	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
 726	       mirror->next_seq_sect > opt_iosize &&
 727	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
 728}
 729
 730static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
 731{
 732	if (!rdev || test_bit(Faulty, &rdev->flags))
 733		return false;
 734
 735	/* still in recovery */
 736	if (!test_bit(In_sync, &rdev->flags) &&
 737	    rdev->recovery_offset < r1_bio->sector + r1_bio->sectors)
 738		return false;
 739
 740	/* don't read from slow disk unless have to */
 741	if (test_bit(WriteMostly, &rdev->flags))
 742		return false;
 743
 744	/* don't split IO for bad blocks unless have to */
 745	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
 746		return false;
 747
 748	return true;
 749}
 750
 751struct read_balance_ctl {
 752	sector_t closest_dist;
 753	int closest_dist_disk;
 754	int min_pending;
 755	int min_pending_disk;
 756	int sequential_disk;
 757	int readable_disks;
 758};
 759
 760static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
 761{
 762	int disk;
 763	struct read_balance_ctl ctl = {
 764		.closest_dist_disk      = -1,
 765		.closest_dist           = MaxSector,
 766		.min_pending_disk       = -1,
 767		.min_pending            = UINT_MAX,
 768		.sequential_disk	= -1,
 769	};
 770
 771	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 772		struct md_rdev *rdev;
 773		sector_t dist;
 774		unsigned int pending;
 775
 776		if (r1_bio->bios[disk] == IO_BLOCKED)
 777			continue;
 778
 779		rdev = conf->mirrors[disk].rdev;
 780		if (!rdev_readable(rdev, r1_bio))
 781			continue;
 
 
 782
 783		/* At least two disks to choose from so failfast is OK */
 784		if (ctl.readable_disks++ == 1)
 785			set_bit(R1BIO_FailFast, &r1_bio->state);
 786
 787		pending = atomic_read(&rdev->nr_pending);
 788		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
 789
 
 
 
 790		/* Don't change to another disk for sequential reads */
 791		if (is_sequential(conf, disk, r1_bio)) {
 792			if (!should_choose_next(conf, disk))
 793				return disk;
 
 794
 
 795			/*
 796			 * Add 'pending' to avoid choosing this disk if
 797			 * there is other idle disk.
 
 
 
 
 
 
 
 
 
 798			 */
 799			pending++;
 800			/*
 801			 * If there is no other idle disk, this disk
 802			 * will be chosen.
 803			 */
 804			ctl.sequential_disk = disk;
 
 
 
 
 
 
 
 
 805		}
 806
 807		if (ctl.min_pending > pending) {
 808			ctl.min_pending = pending;
 809			ctl.min_pending_disk = disk;
 
 
 
 810		}
 811
 812		if (ctl.closest_dist > dist) {
 813			ctl.closest_dist = dist;
 814			ctl.closest_dist_disk = disk;
 815		}
 816	}
 817
 818	/*
 819	 * sequential IO size exceeds optimal iosize, however, there is no other
 820	 * idle disk, so choose the sequential disk.
 821	 */
 822	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
 823		return ctl.sequential_disk;
 824
 825	/*
 826	 * If all disks are rotational, choose the closest disk. If any disk is
 827	 * non-rotational, choose the disk with less pending request even the
 828	 * disk is rotational, which might/might not be optimal for raids with
 829	 * mixed ratation/non-rotational disks depending on workload.
 830	 */
 831	if (ctl.min_pending_disk != -1 &&
 832	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
 833		return ctl.min_pending_disk;
 834	else
 835		return ctl.closest_dist_disk;
 836}
 837
 838/*
 839 * This routine returns the disk from which the requested read should be done.
 840 *
 841 * 1) If resync is in progress, find the first usable disk and use it even if it
 842 * has some bad blocks.
 843 *
 844 * 2) Now that there is no resync, loop through all disks and skipping slow
 845 * disks and disks with bad blocks for now. Only pay attention to key disk
 846 * choice.
 847 *
 848 * 3) If we've made it this far, now look for disks with bad blocks and choose
 849 * the one with most number of sectors.
 850 *
 851 * 4) If we are all the way at the end, we have no choice but to use a disk even
 852 * if it is write mostly.
 853 *
 854 * The rdev for the device selected will have nr_pending incremented.
 855 */
 856static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
 857			int *max_sectors)
 858{
 859	int disk;
 860
 861	clear_bit(R1BIO_FailFast, &r1_bio->state);
 
 862
 863	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
 864				    r1_bio->sectors))
 865		return choose_first_rdev(conf, r1_bio, max_sectors);
 866
 867	disk = choose_best_rdev(conf, r1_bio);
 868	if (disk >= 0) {
 869		*max_sectors = r1_bio->sectors;
 870		update_read_sectors(conf, disk, r1_bio->sector,
 871				    r1_bio->sectors);
 872		return disk;
 873	}
 
 
 874
 875	/*
 876	 * If we are here it means we didn't find a perfectly good disk so
 877	 * now spend a bit more time trying to find one with the most good
 878	 * sectors.
 879	 */
 880	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
 881	if (disk >= 0)
 882		return disk;
 883
 884	return choose_slow_rdev(conf, r1_bio, max_sectors);
 885}
 886
 887static void wake_up_barrier(struct r1conf *conf)
 888{
 889	if (wq_has_sleeper(&conf->wait_barrier))
 890		wake_up(&conf->wait_barrier);
 891}
 
 
 
 892
 893static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 894{
 895	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 896	raid1_prepare_flush_writes(conf->mddev->bitmap);
 897	wake_up_barrier(conf);
 898
 899	while (bio) { /* submit pending writes */
 900		struct bio *next = bio->bi_next;
 901
 902		raid1_submit_write(bio);
 903		bio = next;
 904		cond_resched();
 
 
 
 
 
 905	}
 
 
 906}
 907
 908static void flush_pending_writes(struct r1conf *conf)
 909{
 910	/* Any writes that have been queued but are awaiting
 911	 * bitmap updates get flushed here.
 912	 */
 913	spin_lock_irq(&conf->device_lock);
 914
 915	if (conf->pending_bio_list.head) {
 916		struct blk_plug plug;
 917		struct bio *bio;
 918
 919		bio = bio_list_get(&conf->pending_bio_list);
 
 920		spin_unlock_irq(&conf->device_lock);
 
 
 
 
 921
 922		/*
 923		 * As this is called in a wait_event() loop (see freeze_array),
 924		 * current->state might be TASK_UNINTERRUPTIBLE which will
 925		 * cause a warning when we prepare to wait again.  As it is
 926		 * rare that this path is taken, it is perfectly safe to force
 927		 * us to go around the wait_event() loop again, so the warning
 928		 * is a false-positive.  Silence the warning by resetting
 929		 * thread state
 930		 */
 931		__set_current_state(TASK_RUNNING);
 932		blk_start_plug(&plug);
 933		flush_bio_list(conf, bio);
 934		blk_finish_plug(&plug);
 935	} else
 936		spin_unlock_irq(&conf->device_lock);
 937}
 938
 939/* Barriers....
 940 * Sometimes we need to suspend IO while we do something else,
 941 * either some resync/recovery, or reconfigure the array.
 942 * To do this we raise a 'barrier'.
 943 * The 'barrier' is a counter that can be raised multiple times
 944 * to count how many activities are happening which preclude
 945 * normal IO.
 946 * We can only raise the barrier if there is no pending IO.
 947 * i.e. if nr_pending == 0.
 948 * We choose only to raise the barrier if no-one is waiting for the
 949 * barrier to go down.  This means that as soon as an IO request
 950 * is ready, no other operations which require a barrier will start
 951 * until the IO request has had a chance.
 952 *
 953 * So: regular IO calls 'wait_barrier'.  When that returns there
 954 *    is no backgroup IO happening,  It must arrange to call
 955 *    allow_barrier when it has finished its IO.
 956 * backgroup IO calls must call raise_barrier.  Once that returns
 957 *    there is no normal IO happeing.  It must arrange to call
 958 *    lower_barrier when the particular background IO completes.
 959 *
 960 * If resync/recovery is interrupted, returns -EINTR;
 961 * Otherwise, returns 0.
 962 */
 963static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 964{
 965	int idx = sector_to_idx(sector_nr);
 966
 967	spin_lock_irq(&conf->resync_lock);
 968
 969	/* Wait until no block IO is waiting */
 970	wait_event_lock_irq(conf->wait_barrier,
 971			    !atomic_read(&conf->nr_waiting[idx]),
 972			    conf->resync_lock);
 973
 974	/* block any new IO from starting */
 975	atomic_inc(&conf->barrier[idx]);
 976	/*
 977	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 978	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 979	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 980	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 981	 * be fetched before conf->barrier[idx] is increased. Otherwise
 982	 * there will be a race between raise_barrier() and _wait_barrier().
 983	 */
 984	smp_mb__after_atomic();
 985
 986	/* For these conditions we must wait:
 987	 * A: while the array is in frozen state
 988	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 989	 *    existing in corresponding I/O barrier bucket.
 990	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 991	 *    max resync count which allowed on current I/O barrier bucket.
 
 
 992	 */
 993	wait_event_lock_irq(conf->wait_barrier,
 994			    (!conf->array_frozen &&
 995			     !atomic_read(&conf->nr_pending[idx]) &&
 996			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 997				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 
 998			    conf->resync_lock);
 999
1000	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1001		atomic_dec(&conf->barrier[idx]);
1002		spin_unlock_irq(&conf->resync_lock);
1003		wake_up(&conf->wait_barrier);
1004		return -EINTR;
1005	}
1006
1007	atomic_inc(&conf->nr_sync_pending);
1008	spin_unlock_irq(&conf->resync_lock);
1009
1010	return 0;
1011}
1012
1013static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1014{
1015	int idx = sector_to_idx(sector_nr);
1016
1017	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1018
1019	atomic_dec(&conf->barrier[idx]);
1020	atomic_dec(&conf->nr_sync_pending);
1021	wake_up(&conf->wait_barrier);
1022}
1023
1024static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1025{
1026	bool ret = true;
1027
1028	/*
1029	 * We need to increase conf->nr_pending[idx] very early here,
1030	 * then raise_barrier() can be blocked when it waits for
1031	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1032	 * conf->resync_lock when there is no barrier raised in same
1033	 * barrier unit bucket. Also if the array is frozen, I/O
1034	 * should be blocked until array is unfrozen.
1035	 */
1036	atomic_inc(&conf->nr_pending[idx]);
1037	/*
1038	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1039	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1040	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1041	 * barrier is necessary here to make sure conf->barrier[idx] won't be
1042	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1043	 * will be a race between _wait_barrier() and raise_barrier().
1044	 */
1045	smp_mb__after_atomic();
1046
1047	/*
1048	 * Don't worry about checking two atomic_t variables at same time
1049	 * here. If during we check conf->barrier[idx], the array is
1050	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1051	 * 0, it is safe to return and make the I/O continue. Because the
1052	 * array is frozen, all I/O returned here will eventually complete
1053	 * or be queued, no race will happen. See code comment in
1054	 * frozen_array().
1055	 */
1056	if (!READ_ONCE(conf->array_frozen) &&
1057	    !atomic_read(&conf->barrier[idx]))
1058		return ret;
1059
1060	/*
1061	 * After holding conf->resync_lock, conf->nr_pending[idx]
1062	 * should be decreased before waiting for barrier to drop.
1063	 * Otherwise, we may encounter a race condition because
1064	 * raise_barrer() might be waiting for conf->nr_pending[idx]
1065	 * to be 0 at same time.
1066	 */
1067	spin_lock_irq(&conf->resync_lock);
1068	atomic_inc(&conf->nr_waiting[idx]);
1069	atomic_dec(&conf->nr_pending[idx]);
1070	/*
1071	 * In case freeze_array() is waiting for
1072	 * get_unqueued_pending() == extra
1073	 */
1074	wake_up_barrier(conf);
1075	/* Wait for the barrier in same barrier unit bucket to drop. */
1076
1077	/* Return false when nowait flag is set */
1078	if (nowait) {
1079		ret = false;
1080	} else {
1081		wait_event_lock_irq(conf->wait_barrier,
1082				!conf->array_frozen &&
1083				!atomic_read(&conf->barrier[idx]),
1084				conf->resync_lock);
1085		atomic_inc(&conf->nr_pending[idx]);
1086	}
1087
1088	atomic_dec(&conf->nr_waiting[idx]);
1089	spin_unlock_irq(&conf->resync_lock);
1090	return ret;
1091}
1092
1093static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1094{
1095	int idx = sector_to_idx(sector_nr);
1096	bool ret = true;
1097
1098	/*
1099	 * Very similar to _wait_barrier(). The difference is, for read
1100	 * I/O we don't need wait for sync I/O, but if the whole array
1101	 * is frozen, the read I/O still has to wait until the array is
1102	 * unfrozen. Since there is no ordering requirement with
1103	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1104	 */
1105	atomic_inc(&conf->nr_pending[idx]);
1106
1107	if (!READ_ONCE(conf->array_frozen))
1108		return ret;
1109
1110	spin_lock_irq(&conf->resync_lock);
1111	atomic_inc(&conf->nr_waiting[idx]);
1112	atomic_dec(&conf->nr_pending[idx]);
1113	/*
1114	 * In case freeze_array() is waiting for
1115	 * get_unqueued_pending() == extra
1116	 */
1117	wake_up_barrier(conf);
1118	/* Wait for array to be unfrozen */
1119
1120	/* Return false when nowait flag is set */
1121	if (nowait) {
1122		/* Return false when nowait flag is set */
1123		ret = false;
1124	} else {
1125		wait_event_lock_irq(conf->wait_barrier,
1126				!conf->array_frozen,
1127				conf->resync_lock);
1128		atomic_inc(&conf->nr_pending[idx]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129	}
1130
1131	atomic_dec(&conf->nr_waiting[idx]);
1132	spin_unlock_irq(&conf->resync_lock);
1133	return ret;
1134}
1135
1136static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
 
1137{
1138	int idx = sector_to_idx(sector_nr);
1139
1140	return _wait_barrier(conf, idx, nowait);
1141}
 
 
 
 
 
 
 
 
 
1142
1143static void _allow_barrier(struct r1conf *conf, int idx)
1144{
1145	atomic_dec(&conf->nr_pending[idx]);
1146	wake_up_barrier(conf);
1147}
1148
1149static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1150{
1151	int idx = sector_to_idx(sector_nr);
1152
1153	_allow_barrier(conf, idx);
1154}
1155
1156/* conf->resync_lock should be held */
1157static int get_unqueued_pending(struct r1conf *conf)
1158{
1159	int idx, ret;
1160
1161	ret = atomic_read(&conf->nr_sync_pending);
1162	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1163		ret += atomic_read(&conf->nr_pending[idx]) -
1164			atomic_read(&conf->nr_queued[idx]);
1165
1166	return ret;
1167}
1168
1169static void freeze_array(struct r1conf *conf, int extra)
1170{
1171	/* Stop sync I/O and normal I/O and wait for everything to
1172	 * go quiet.
1173	 * This is called in two situations:
1174	 * 1) management command handlers (reshape, remove disk, quiesce).
1175	 * 2) one normal I/O request failed.
1176
1177	 * After array_frozen is set to 1, new sync IO will be blocked at
1178	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1179	 * or wait_read_barrier(). The flying I/Os will either complete or be
1180	 * queued. When everything goes quite, there are only queued I/Os left.
1181
1182	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1183	 * barrier bucket index which this I/O request hits. When all sync and
1184	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1185	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1186	 * in handle_read_error(), we may call freeze_array() before trying to
1187	 * fix the read error. In this case, the error read I/O is not queued,
1188	 * so get_unqueued_pending() == 1.
1189	 *
1190	 * Therefore before this function returns, we need to wait until
1191	 * get_unqueued_pendings(conf) gets equal to extra. For
1192	 * normal I/O context, extra is 1, in rested situations extra is 0.
1193	 */
1194	spin_lock_irq(&conf->resync_lock);
1195	conf->array_frozen = 1;
1196	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1197	wait_event_lock_irq_cmd(
1198		conf->wait_barrier,
1199		get_unqueued_pending(conf) == extra,
1200		conf->resync_lock,
1201		flush_pending_writes(conf));
1202	spin_unlock_irq(&conf->resync_lock);
1203}
1204static void unfreeze_array(struct r1conf *conf)
1205{
1206	/* reverse the effect of the freeze */
1207	spin_lock_irq(&conf->resync_lock);
1208	conf->array_frozen = 0;
 
1209	spin_unlock_irq(&conf->resync_lock);
1210	wake_up(&conf->wait_barrier);
1211}
1212
1213static void alloc_behind_master_bio(struct r1bio *r1_bio,
1214					   struct bio *bio)
 
1215{
1216	int size = bio->bi_iter.bi_size;
1217	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1218	int i = 0;
1219	struct bio *behind_bio = NULL;
1220
1221	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1222				      &r1_bio->mddev->bio_set);
1223
1224	/* discard op, we don't support writezero/writesame yet */
1225	if (!bio_has_data(bio)) {
1226		behind_bio->bi_iter.bi_size = size;
1227		goto skip_copy;
1228	}
1229
1230	while (i < vcnt && size) {
1231		struct page *page;
1232		int len = min_t(int, PAGE_SIZE, size);
1233
1234		page = alloc_page(GFP_NOIO);
1235		if (unlikely(!page))
1236			goto free_pages;
1237
1238		if (!bio_add_page(behind_bio, page, len, 0)) {
1239			put_page(page);
1240			goto free_pages;
1241		}
1242
1243		size -= len;
1244		i++;
 
 
 
 
 
 
 
1245	}
1246
1247	bio_copy_data(behind_bio, bio);
1248skip_copy:
1249	r1_bio->behind_master_bio = behind_bio;
1250	set_bit(R1BIO_BehindIO, &r1_bio->state);
1251
1252	return;
1253
1254free_pages:
 
 
 
 
1255	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1256		 bio->bi_iter.bi_size);
1257	bio_free_pages(behind_bio);
1258	bio_put(behind_bio);
1259}
1260
 
 
 
 
 
 
1261static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1262{
1263	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1264						  cb);
1265	struct mddev *mddev = plug->cb.data;
1266	struct r1conf *conf = mddev->private;
1267	struct bio *bio;
1268
1269	if (from_schedule) {
1270		spin_lock_irq(&conf->device_lock);
1271		bio_list_merge(&conf->pending_bio_list, &plug->pending);
 
1272		spin_unlock_irq(&conf->device_lock);
1273		wake_up_barrier(conf);
1274		md_wakeup_thread(mddev->thread);
1275		kfree(plug);
1276		return;
1277	}
1278
1279	/* we aren't scheduling, so we can do the write-out directly. */
1280	bio = bio_list_get(&plug->pending);
1281	flush_bio_list(conf, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
1282	kfree(plug);
1283}
1284
1285static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1286{
1287	r1_bio->master_bio = bio;
1288	r1_bio->sectors = bio_sectors(bio);
1289	r1_bio->state = 0;
1290	r1_bio->mddev = mddev;
1291	r1_bio->sector = bio->bi_iter.bi_sector;
1292}
1293
1294static inline struct r1bio *
1295alloc_r1bio(struct mddev *mddev, struct bio *bio)
1296{
1297	struct r1conf *conf = mddev->private;
 
1298	struct r1bio *r1_bio;
1299
1300	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1301	/* Ensure no bio records IO_BLOCKED */
1302	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1303	init_r1bio(r1_bio, mddev, bio);
1304	return r1_bio;
1305}
1306
1307static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1308			       int max_read_sectors, struct r1bio *r1_bio)
1309{
1310	struct r1conf *conf = mddev->private;
1311	struct raid1_info *mirror;
1312	struct bio *read_bio;
1313	struct bitmap *bitmap = mddev->bitmap;
1314	const enum req_op op = bio_op(bio);
1315	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
 
 
 
 
 
 
 
 
 
 
 
1316	int max_sectors;
1317	int rdisk;
1318	bool r1bio_existed = !!r1_bio;
1319	char b[BDEVNAME_SIZE];
1320
1321	/*
1322	 * If r1_bio is set, we are blocking the raid1d thread
1323	 * so there is a tiny risk of deadlock.  So ask for
1324	 * emergency memory if needed.
1325	 */
1326	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1327
1328	if (r1bio_existed) {
1329		/* Need to get the block device name carefully */
1330		struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1331
1332		if (rdev)
1333			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1334		else
1335			strcpy(b, "???");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336	}
1337
1338	/*
1339	 * Still need barrier for READ in case that whole
1340	 * array is frozen.
1341	 */
1342	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1343				bio->bi_opf & REQ_NOWAIT)) {
1344		bio_wouldblock_error(bio);
1345		return;
1346	}
1347
1348	if (!r1_bio)
1349		r1_bio = alloc_r1bio(mddev, bio);
1350	else
1351		init_r1bio(r1_bio, mddev, bio);
1352	r1_bio->sectors = max_read_sectors;
1353
1354	/*
1355	 * make_request() can abort the operation when read-ahead is being
1356	 * used and no empty request is available.
 
1357	 */
1358	rdisk = read_balance(conf, r1_bio, &max_sectors);
1359
1360	if (rdisk < 0) {
1361		/* couldn't find anywhere to read from */
1362		if (r1bio_existed) {
1363			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1364					    mdname(mddev),
1365					    b,
1366					    (unsigned long long)r1_bio->sector);
1367		}
1368		raid_end_bio_io(r1_bio);
1369		return;
1370	}
1371	mirror = conf->mirrors + rdisk;
1372
1373	if (r1bio_existed)
1374		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1375				    mdname(mddev),
1376				    (unsigned long long)r1_bio->sector,
1377				    mirror->rdev->bdev);
 
 
 
 
1378
1379	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1380	    bitmap) {
1381		/*
1382		 * Reading from a write-mostly device must take care not to
1383		 * over-take any writes that are 'behind'
1384		 */
1385		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1386		wait_event(bitmap->behind_wait,
1387			   atomic_read(&bitmap->behind_writes) == 0);
1388	}
1389
1390	if (max_sectors < bio_sectors(bio)) {
1391		struct bio *split = bio_split(bio, max_sectors,
1392					      gfp, &conf->bio_split);
1393		bio_chain(split, bio);
1394		submit_bio_noacct(bio);
1395		bio = split;
1396		r1_bio->master_bio = bio;
1397		r1_bio->sectors = max_sectors;
1398	}
1399
1400	r1_bio->read_disk = rdisk;
1401	if (!r1bio_existed) {
1402		md_account_bio(mddev, &bio);
1403		r1_bio->master_bio = bio;
1404	}
1405	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1406				   &mddev->bio_set);
1407
1408	r1_bio->bios[rdisk] = read_bio;
 
 
 
 
 
 
 
 
 
 
1409
1410	read_bio->bi_iter.bi_sector = r1_bio->sector +
1411		mirror->rdev->data_offset;
1412	read_bio->bi_end_io = raid1_end_read_request;
1413	read_bio->bi_opf = op | do_sync;
1414	if (test_bit(FailFast, &mirror->rdev->flags) &&
1415	    test_bit(R1BIO_FailFast, &r1_bio->state))
1416	        read_bio->bi_opf |= MD_FAILFAST;
1417	read_bio->bi_private = r1_bio;
1418	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1419	submit_bio_noacct(read_bio);
1420}
 
 
 
 
 
 
1421
1422static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1423				int max_write_sectors)
1424{
1425	struct r1conf *conf = mddev->private;
1426	struct r1bio *r1_bio;
1427	int i, disks;
1428	struct bitmap *bitmap = mddev->bitmap;
1429	unsigned long flags;
1430	struct md_rdev *blocked_rdev;
1431	int first_clone;
1432	int max_sectors;
1433	bool write_behind = false;
1434	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
 
 
1435
1436	if (mddev_is_clustered(mddev) &&
1437	     md_cluster_ops->area_resyncing(mddev, WRITE,
1438		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1439
1440		DEFINE_WAIT(w);
1441		if (bio->bi_opf & REQ_NOWAIT) {
1442			bio_wouldblock_error(bio);
1443			return;
1444		}
1445		for (;;) {
1446			prepare_to_wait(&conf->wait_barrier,
1447					&w, TASK_IDLE);
1448			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1449							bio->bi_iter.bi_sector,
1450							bio_end_sector(bio)))
1451				break;
1452			schedule();
1453		}
1454		finish_wait(&conf->wait_barrier, &w);
1455	}
1456
1457	/*
1458	 * Register the new request and wait if the reconstruction
1459	 * thread has put up a bar for new requests.
1460	 * Continue immediately if no resync is active currently.
1461	 */
1462	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1463				bio->bi_opf & REQ_NOWAIT)) {
1464		bio_wouldblock_error(bio);
1465		return;
1466	}
1467
1468 retry_write:
1469	r1_bio = alloc_r1bio(mddev, bio);
1470	r1_bio->sectors = max_write_sectors;
1471
1472	/* first select target devices under rcu_lock and
1473	 * inc refcount on their rdev.  Record them by setting
1474	 * bios[x] to bio
1475	 * If there are known/acknowledged bad blocks on any device on
1476	 * which we have seen a write error, we want to avoid writing those
1477	 * blocks.
1478	 * This potentially requires several writes to write around
1479	 * the bad blocks.  Each set of writes gets it's own r1bio
1480	 * with a set of bios attached.
1481	 */
1482
1483	disks = conf->raid_disks * 2;
 
 
1484	blocked_rdev = NULL;
 
1485	max_sectors = r1_bio->sectors;
1486	for (i = 0;  i < disks; i++) {
1487		struct md_rdev *rdev = conf->mirrors[i].rdev;
1488
1489		/*
1490		 * The write-behind io is only attempted on drives marked as
1491		 * write-mostly, which means we could allocate write behind
1492		 * bio later.
1493		 */
1494		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1495			write_behind = true;
1496
1497		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1498			atomic_inc(&rdev->nr_pending);
1499			blocked_rdev = rdev;
1500			break;
1501		}
1502		r1_bio->bios[i] = NULL;
1503		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1504			if (i < conf->raid_disks)
1505				set_bit(R1BIO_Degraded, &r1_bio->state);
1506			continue;
1507		}
1508
1509		atomic_inc(&rdev->nr_pending);
1510		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1511			sector_t first_bad;
1512			int bad_sectors;
1513			int is_bad;
1514
1515			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
 
1516					     &first_bad, &bad_sectors);
1517			if (is_bad < 0) {
1518				/* mustn't write here until the bad block is
1519				 * acknowledged*/
1520				set_bit(BlockedBadBlocks, &rdev->flags);
1521				blocked_rdev = rdev;
1522				break;
1523			}
1524			if (is_bad && first_bad <= r1_bio->sector) {
1525				/* Cannot write here at all */
1526				bad_sectors -= (r1_bio->sector - first_bad);
1527				if (bad_sectors < max_sectors)
1528					/* mustn't write more than bad_sectors
1529					 * to other devices yet
1530					 */
1531					max_sectors = bad_sectors;
1532				rdev_dec_pending(rdev, mddev);
1533				/* We don't set R1BIO_Degraded as that
1534				 * only applies if the disk is
1535				 * missing, so it might be re-added,
1536				 * and we want to know to recover this
1537				 * chunk.
1538				 * In this case the device is here,
1539				 * and the fact that this chunk is not
1540				 * in-sync is recorded in the bad
1541				 * block log
1542				 */
1543				continue;
1544			}
1545			if (is_bad) {
1546				int good_sectors = first_bad - r1_bio->sector;
1547				if (good_sectors < max_sectors)
1548					max_sectors = good_sectors;
1549			}
1550		}
1551		r1_bio->bios[i] = bio;
1552	}
 
1553
1554	if (unlikely(blocked_rdev)) {
1555		/* Wait for this device to become unblocked */
1556		int j;
 
1557
1558		for (j = 0; j < i; j++)
1559			if (r1_bio->bios[j])
1560				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1561		mempool_free(r1_bio, &conf->r1bio_pool);
1562		allow_barrier(conf, bio->bi_iter.bi_sector);
1563
1564		if (bio->bi_opf & REQ_NOWAIT) {
1565			bio_wouldblock_error(bio);
1566			return;
1567		}
1568		mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1569				blocked_rdev->raid_disk);
1570		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1571		wait_barrier(conf, bio->bi_iter.bi_sector, false);
 
 
 
 
 
 
 
 
 
1572		goto retry_write;
1573	}
1574
1575	/*
1576	 * When using a bitmap, we may call alloc_behind_master_bio below.
1577	 * alloc_behind_master_bio allocates a copy of the data payload a page
1578	 * at a time and thus needs a new bio that can fit the whole payload
1579	 * this bio in page sized chunks.
1580	 */
1581	if (write_behind && bitmap)
1582		max_sectors = min_t(int, max_sectors,
1583				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1584	if (max_sectors < bio_sectors(bio)) {
1585		struct bio *split = bio_split(bio, max_sectors,
1586					      GFP_NOIO, &conf->bio_split);
1587		bio_chain(split, bio);
1588		submit_bio_noacct(bio);
1589		bio = split;
1590		r1_bio->master_bio = bio;
1591		r1_bio->sectors = max_sectors;
 
 
 
 
 
 
1592	}
 
1593
1594	md_account_bio(mddev, &bio);
1595	r1_bio->master_bio = bio;
1596	atomic_set(&r1_bio->remaining, 1);
1597	atomic_set(&r1_bio->behind_remaining, 0);
1598
1599	first_clone = 1;
1600
1601	for (i = 0; i < disks; i++) {
1602		struct bio *mbio = NULL;
1603		struct md_rdev *rdev = conf->mirrors[i].rdev;
1604		if (!r1_bio->bios[i])
1605			continue;
1606
 
 
 
1607		if (first_clone) {
1608			/* do behind I/O ?
1609			 * Not if there are too many, or cannot
1610			 * allocate memory, or a reader on WriteMostly
1611			 * is waiting for behind writes to flush */
1612			if (bitmap && write_behind &&
1613			    (atomic_read(&bitmap->behind_writes)
1614			     < mddev->bitmap_info.max_write_behind) &&
1615			    !waitqueue_active(&bitmap->behind_wait)) {
1616				alloc_behind_master_bio(r1_bio, bio);
1617			}
1618
1619			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1620					     test_bit(R1BIO_BehindIO, &r1_bio->state));
 
 
1621			first_clone = 0;
1622		}
 
 
 
1623
1624		if (r1_bio->behind_master_bio) {
1625			mbio = bio_alloc_clone(rdev->bdev,
1626					       r1_bio->behind_master_bio,
1627					       GFP_NOIO, &mddev->bio_set);
1628			if (test_bit(CollisionCheck, &rdev->flags))
1629				wait_for_serialization(rdev, r1_bio);
1630			if (test_bit(WriteMostly, &rdev->flags))
1631				atomic_inc(&r1_bio->behind_remaining);
1632		} else {
1633			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1634					       &mddev->bio_set);
1635
1636			if (mddev->serialize_policy)
1637				wait_for_serialization(rdev, r1_bio);
1638		}
1639
1640		r1_bio->bios[i] = mbio;
1641
1642		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
 
 
1643		mbio->bi_end_io	= raid1_end_write_request;
1644		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1645		if (test_bit(FailFast, &rdev->flags) &&
1646		    !test_bit(WriteMostly, &rdev->flags) &&
1647		    conf->raid_disks - mddev->degraded > 1)
1648			mbio->bi_opf |= MD_FAILFAST;
1649		mbio->bi_private = r1_bio;
1650
1651		atomic_inc(&r1_bio->remaining);
1652		mddev_trace_remap(mddev, mbio, r1_bio->sector);
1653		/* flush_pending_writes() needs access to the rdev so...*/
1654		mbio->bi_bdev = (void *)rdev;
1655		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1656			spin_lock_irqsave(&conf->device_lock, flags);
 
 
 
 
 
 
1657			bio_list_add(&conf->pending_bio_list, mbio);
1658			spin_unlock_irqrestore(&conf->device_lock, flags);
 
 
 
1659			md_wakeup_thread(mddev->thread);
1660		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1661	}
1662
1663	r1_bio_write_done(r1_bio);
1664
1665	/* In case raid1d snuck in to freeze_array */
1666	wake_up_barrier(conf);
1667}
1668
1669static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1670{
1671	sector_t sectors;
1672
1673	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1674	    && md_flush_request(mddev, bio))
1675		return true;
1676
1677	/*
1678	 * There is a limit to the maximum size, but
1679	 * the read/write handler might find a lower limit
1680	 * due to bad blocks.  To avoid multiple splits,
1681	 * we pass the maximum number of sectors down
1682	 * and let the lower level perform the split.
1683	 */
1684	sectors = align_to_barrier_unit_end(
1685		bio->bi_iter.bi_sector, bio_sectors(bio));
1686
1687	if (bio_data_dir(bio) == READ)
1688		raid1_read_request(mddev, bio, sectors, NULL);
1689	else {
1690		if (!md_write_start(mddev,bio))
1691			return false;
1692		raid1_write_request(mddev, bio, sectors);
1693	}
1694	return true;
1695}
1696
1697static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1698{
1699	struct r1conf *conf = mddev->private;
1700	int i;
1701
1702	lockdep_assert_held(&mddev->lock);
1703
1704	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1705		   conf->raid_disks - mddev->degraded);
 
1706	for (i = 0; i < conf->raid_disks; i++) {
1707		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1708
1709		seq_printf(seq, "%s",
1710			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1711	}
 
1712	seq_printf(seq, "]");
1713}
1714
1715/**
1716 * raid1_error() - RAID1 error handler.
1717 * @mddev: affected md device.
1718 * @rdev: member device to fail.
1719 *
1720 * The routine acknowledges &rdev failure and determines new @mddev state.
1721 * If it failed, then:
1722 *	- &MD_BROKEN flag is set in &mddev->flags.
1723 *	- recovery is disabled.
1724 * Otherwise, it must be degraded:
1725 *	- recovery is interrupted.
1726 *	- &mddev->degraded is bumped.
1727 *
1728 * @rdev is marked as &Faulty excluding case when array is failed and
1729 * &mddev->fail_last_dev is off.
1730 */
1731static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1732{
 
1733	struct r1conf *conf = mddev->private;
1734	unsigned long flags;
1735
1736	spin_lock_irqsave(&conf->device_lock, flags);
1737
1738	if (test_bit(In_sync, &rdev->flags) &&
1739	    (conf->raid_disks - mddev->degraded) == 1) {
1740		set_bit(MD_BROKEN, &mddev->flags);
1741
1742		if (!mddev->fail_last_dev) {
1743			conf->recovery_disabled = mddev->recovery_disabled;
1744			spin_unlock_irqrestore(&conf->device_lock, flags);
1745			return;
1746		}
 
 
 
 
 
1747	}
1748	set_bit(Blocked, &rdev->flags);
1749	if (test_and_clear_bit(In_sync, &rdev->flags))
 
1750		mddev->degraded++;
1751	set_bit(Faulty, &rdev->flags);
 
 
1752	spin_unlock_irqrestore(&conf->device_lock, flags);
1753	/*
1754	 * if recovery is running, make sure it aborts.
1755	 */
1756	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1757	set_mask_bits(&mddev->sb_flags, 0,
1758		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1759	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1760		"md/raid1:%s: Operation continuing on %d devices.\n",
1761		mdname(mddev), rdev->bdev,
1762		mdname(mddev), conf->raid_disks - mddev->degraded);
 
1763}
1764
1765static void print_conf(struct r1conf *conf)
1766{
1767	int i;
1768
1769	pr_debug("RAID1 conf printout:\n");
1770	if (!conf) {
1771		pr_debug("(!conf)\n");
1772		return;
1773	}
1774	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1775		 conf->raid_disks);
1776
1777	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1778	for (i = 0; i < conf->raid_disks; i++) {
1779		struct md_rdev *rdev = conf->mirrors[i].rdev;
 
1780		if (rdev)
1781			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1782				 i, !test_bit(In_sync, &rdev->flags),
1783				 !test_bit(Faulty, &rdev->flags),
1784				 rdev->bdev);
1785	}
 
1786}
1787
1788static void close_sync(struct r1conf *conf)
1789{
1790	int idx;
 
1791
1792	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1793		_wait_barrier(conf, idx, false);
1794		_allow_barrier(conf, idx);
1795	}
1796
1797	mempool_exit(&conf->r1buf_pool);
 
 
 
 
 
 
1798}
1799
1800static int raid1_spare_active(struct mddev *mddev)
1801{
1802	int i;
1803	struct r1conf *conf = mddev->private;
1804	int count = 0;
1805	unsigned long flags;
1806
1807	/*
1808	 * Find all failed disks within the RAID1 configuration
1809	 * and mark them readable.
1810	 * Called under mddev lock, so rcu protection not needed.
1811	 * device_lock used to avoid races with raid1_end_read_request
1812	 * which expects 'In_sync' flags and ->degraded to be consistent.
1813	 */
1814	spin_lock_irqsave(&conf->device_lock, flags);
1815	for (i = 0; i < conf->raid_disks; i++) {
1816		struct md_rdev *rdev = conf->mirrors[i].rdev;
1817		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1818		if (repl
1819		    && !test_bit(Candidate, &repl->flags)
1820		    && repl->recovery_offset == MaxSector
1821		    && !test_bit(Faulty, &repl->flags)
1822		    && !test_and_set_bit(In_sync, &repl->flags)) {
1823			/* replacement has just become active */
1824			if (!rdev ||
1825			    !test_and_clear_bit(In_sync, &rdev->flags))
1826				count++;
1827			if (rdev) {
1828				/* Replaced device not technically
1829				 * faulty, but we need to be sure
1830				 * it gets removed and never re-added
1831				 */
1832				set_bit(Faulty, &rdev->flags);
1833				sysfs_notify_dirent_safe(
1834					rdev->sysfs_state);
1835			}
1836		}
1837		if (rdev
1838		    && rdev->recovery_offset == MaxSector
1839		    && !test_bit(Faulty, &rdev->flags)
1840		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1841			count++;
1842			sysfs_notify_dirent_safe(rdev->sysfs_state);
1843		}
1844	}
1845	mddev->degraded -= count;
1846	spin_unlock_irqrestore(&conf->device_lock, flags);
1847
1848	print_conf(conf);
1849	return count;
1850}
1851
1852static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1853			   bool replacement)
1854{
1855	struct raid1_info *info = conf->mirrors + disk;
1856
1857	if (replacement)
1858		info += conf->raid_disks;
1859
1860	if (info->rdev)
1861		return false;
1862
1863	if (bdev_nonrot(rdev->bdev)) {
1864		set_bit(Nonrot, &rdev->flags);
1865		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1866	}
1867
1868	rdev->raid_disk = disk;
1869	info->head_position = 0;
1870	info->seq_start = MaxSector;
1871	WRITE_ONCE(info->rdev, rdev);
1872
1873	return true;
1874}
1875
1876static bool raid1_remove_conf(struct r1conf *conf, int disk)
1877{
1878	struct raid1_info *info = conf->mirrors + disk;
1879	struct md_rdev *rdev = info->rdev;
1880
1881	if (!rdev || test_bit(In_sync, &rdev->flags) ||
1882	    atomic_read(&rdev->nr_pending))
1883		return false;
1884
1885	/* Only remove non-faulty devices if recovery is not possible. */
1886	if (!test_bit(Faulty, &rdev->flags) &&
1887	    rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1888	    rdev->mddev->degraded < conf->raid_disks)
1889		return false;
1890
1891	if (test_and_clear_bit(Nonrot, &rdev->flags))
1892		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1893
1894	WRITE_ONCE(info->rdev, NULL);
1895	return true;
1896}
1897
1898static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1899{
1900	struct r1conf *conf = mddev->private;
1901	int err = -EEXIST;
1902	int mirror = 0, repl_slot = -1;
1903	struct raid1_info *p;
1904	int first = 0;
1905	int last = conf->raid_disks - 1;
1906
1907	if (mddev->recovery_disabled == conf->recovery_disabled)
1908		return -EBUSY;
1909
1910	if (md_integrity_add_rdev(rdev, mddev))
1911		return -ENXIO;
1912
1913	if (rdev->raid_disk >= 0)
1914		first = last = rdev->raid_disk;
1915
1916	/*
1917	 * find the disk ... but prefer rdev->saved_raid_disk
1918	 * if possible.
1919	 */
1920	if (rdev->saved_raid_disk >= 0 &&
1921	    rdev->saved_raid_disk >= first &&
1922	    rdev->saved_raid_disk < conf->raid_disks &&
1923	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1924		first = last = rdev->saved_raid_disk;
1925
1926	for (mirror = first; mirror <= last; mirror++) {
1927		p = conf->mirrors + mirror;
1928		if (!p->rdev) {
1929			err = mddev_stack_new_rdev(mddev, rdev);
1930			if (err)
1931				return err;
1932
1933			raid1_add_conf(conf, rdev, mirror, false);
 
 
 
 
 
 
1934			/* As all devices are equivalent, we don't need a full recovery
1935			 * if this was recently any drive of the array
1936			 */
1937			if (rdev->saved_raid_disk < 0)
1938				conf->fullsync = 1;
 
1939			break;
1940		}
1941		if (test_bit(WantReplacement, &p->rdev->flags) &&
1942		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1943			repl_slot = mirror;
 
 
 
 
 
 
 
 
1944	}
1945
1946	if (err && repl_slot >= 0) {
1947		/* Add this device as a replacement */
1948		clear_bit(In_sync, &rdev->flags);
1949		set_bit(Replacement, &rdev->flags);
1950		raid1_add_conf(conf, rdev, repl_slot, true);
1951		err = 0;
1952		conf->fullsync = 1;
1953	}
1954
1955	print_conf(conf);
1956	return err;
1957}
1958
1959static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1960{
1961	struct r1conf *conf = mddev->private;
1962	int err = 0;
1963	int number = rdev->raid_disk;
1964	struct raid1_info *p = conf->mirrors + number;
1965
1966	if (unlikely(number >= conf->raid_disks))
1967		goto abort;
1968
1969	if (rdev != p->rdev) {
1970		number += conf->raid_disks;
1971		p = conf->mirrors + number;
1972	}
1973
1974	print_conf(conf);
1975	if (rdev == p->rdev) {
1976		if (!raid1_remove_conf(conf, number)) {
 
1977			err = -EBUSY;
1978			goto abort;
1979		}
1980
1981		if (number < conf->raid_disks &&
1982		    conf->mirrors[conf->raid_disks + number].rdev) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1983			/* We just removed a device that is being replaced.
1984			 * Move down the replacement.  We drain all IO before
1985			 * doing this to avoid confusion.
1986			 */
1987			struct md_rdev *repl =
1988				conf->mirrors[conf->raid_disks + number].rdev;
1989			freeze_array(conf, 0);
1990			if (atomic_read(&repl->nr_pending)) {
1991				/* It means that some queued IO of retry_list
1992				 * hold repl. Thus, we cannot set replacement
1993				 * as NULL, avoiding rdev NULL pointer
1994				 * dereference in sync_request_write and
1995				 * handle_write_finished.
1996				 */
1997				err = -EBUSY;
1998				unfreeze_array(conf);
1999				goto abort;
2000			}
2001			clear_bit(Replacement, &repl->flags);
2002			WRITE_ONCE(p->rdev, repl);
2003			conf->mirrors[conf->raid_disks + number].rdev = NULL;
2004			unfreeze_array(conf);
2005		}
2006
2007		clear_bit(WantReplacement, &rdev->flags);
2008		err = md_integrity_register(mddev);
2009	}
2010abort:
2011
2012	print_conf(conf);
2013	return err;
2014}
2015
2016static void end_sync_read(struct bio *bio)
2017{
2018	struct r1bio *r1_bio = get_resync_r1bio(bio);
2019
2020	update_head_pos(r1_bio->read_disk, r1_bio);
2021
2022	/*
2023	 * we have read a block, now it needs to be re-written,
2024	 * or re-read if the read failed.
2025	 * We don't do much here, just schedule handling by raid1d
2026	 */
2027	if (!bio->bi_status)
2028		set_bit(R1BIO_Uptodate, &r1_bio->state);
2029
2030	if (atomic_dec_and_test(&r1_bio->remaining))
2031		reschedule_retry(r1_bio);
2032}
2033
2034static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2035{
2036	sector_t sync_blocks = 0;
2037	sector_t s = r1_bio->sector;
2038	long sectors_to_go = r1_bio->sectors;
 
 
 
 
 
 
2039
2040	/* make sure these bits don't get cleared. */
2041	do {
2042		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
2043		s += sync_blocks;
2044		sectors_to_go -= sync_blocks;
2045	} while (sectors_to_go > 0);
2046}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2047
2048static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2049{
2050	if (atomic_dec_and_test(&r1_bio->remaining)) {
2051		struct mddev *mddev = r1_bio->mddev;
2052		int s = r1_bio->sectors;
2053
2054		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2055		    test_bit(R1BIO_WriteError, &r1_bio->state))
2056			reschedule_retry(r1_bio);
2057		else {
2058			put_buf(r1_bio);
2059			md_done_sync(mddev, s, uptodate);
2060		}
2061	}
2062}
2063
2064static void end_sync_write(struct bio *bio)
2065{
2066	int uptodate = !bio->bi_status;
2067	struct r1bio *r1_bio = get_resync_r1bio(bio);
2068	struct mddev *mddev = r1_bio->mddev;
2069	struct r1conf *conf = mddev->private;
2070	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2071
2072	if (!uptodate) {
2073		abort_sync_write(mddev, r1_bio);
2074		set_bit(WriteErrorSeen, &rdev->flags);
2075		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2076			set_bit(MD_RECOVERY_NEEDED, &
2077				mddev->recovery);
2078		set_bit(R1BIO_WriteError, &r1_bio->state);
2079	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2080		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2081				      r1_bio->sector, r1_bio->sectors)) {
2082		set_bit(R1BIO_MadeGood, &r1_bio->state);
2083	}
2084
2085	put_sync_write_buf(r1_bio, uptodate);
2086}
2087
2088static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2089			   int sectors, struct page *page, blk_opf_t rw)
2090{
2091	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2092		/* success */
2093		return 1;
2094	if (rw == REQ_OP_WRITE) {
2095		set_bit(WriteErrorSeen, &rdev->flags);
2096		if (!test_and_set_bit(WantReplacement,
2097				      &rdev->flags))
2098			set_bit(MD_RECOVERY_NEEDED, &
2099				rdev->mddev->recovery);
2100	}
2101	/* need to record an error - either for the block or the device */
2102	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2103		md_error(rdev->mddev, rdev);
2104	return 0;
2105}
2106
2107static int fix_sync_read_error(struct r1bio *r1_bio)
2108{
2109	/* Try some synchronous reads of other devices to get
2110	 * good data, much like with normal read errors.  Only
2111	 * read into the pages we already have so we don't
2112	 * need to re-issue the read request.
2113	 * We don't need to freeze the array, because being in an
2114	 * active sync request, there is no normal IO, and
2115	 * no overlapping syncs.
2116	 * We don't need to check is_badblock() again as we
2117	 * made sure that anything with a bad block in range
2118	 * will have bi_end_io clear.
2119	 */
2120	struct mddev *mddev = r1_bio->mddev;
2121	struct r1conf *conf = mddev->private;
2122	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2123	struct page **pages = get_resync_pages(bio)->pages;
2124	sector_t sect = r1_bio->sector;
2125	int sectors = r1_bio->sectors;
2126	int idx = 0;
2127	struct md_rdev *rdev;
2128
2129	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2130	if (test_bit(FailFast, &rdev->flags)) {
2131		/* Don't try recovering from here - just fail it
2132		 * ... unless it is the last working device of course */
2133		md_error(mddev, rdev);
2134		if (test_bit(Faulty, &rdev->flags))
2135			/* Don't try to read from here, but make sure
2136			 * put_buf does it's thing
2137			 */
2138			bio->bi_end_io = end_sync_write;
2139	}
2140
2141	while(sectors) {
2142		int s = sectors;
2143		int d = r1_bio->read_disk;
2144		int success = 0;
 
2145		int start;
2146
2147		if (s > (PAGE_SIZE>>9))
2148			s = PAGE_SIZE >> 9;
2149		do {
2150			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2151				/* No rcu protection needed here devices
2152				 * can only be removed when no resync is
2153				 * active, and resync is currently active
2154				 */
2155				rdev = conf->mirrors[d].rdev;
2156				if (sync_page_io(rdev, sect, s<<9,
2157						 pages[idx],
2158						 REQ_OP_READ, false)) {
2159					success = 1;
2160					break;
2161				}
2162			}
2163			d++;
2164			if (d == conf->raid_disks * 2)
2165				d = 0;
2166		} while (!success && d != r1_bio->read_disk);
2167
2168		if (!success) {
 
2169			int abort = 0;
2170			/* Cannot read from anywhere, this block is lost.
2171			 * Record a bad block on each device.  If that doesn't
2172			 * work just disable and interrupt the recovery.
2173			 * Don't fail devices as that won't really help.
2174			 */
2175			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2176					    mdname(mddev), bio->bi_bdev,
2177					    (unsigned long long)r1_bio->sector);
 
 
2178			for (d = 0; d < conf->raid_disks * 2; d++) {
2179				rdev = conf->mirrors[d].rdev;
2180				if (!rdev || test_bit(Faulty, &rdev->flags))
2181					continue;
2182				if (!rdev_set_badblocks(rdev, sect, s, 0))
2183					abort = 1;
2184			}
2185			if (abort) {
2186				conf->recovery_disabled =
2187					mddev->recovery_disabled;
2188				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2189				md_done_sync(mddev, r1_bio->sectors, 0);
2190				put_buf(r1_bio);
2191				return 0;
2192			}
2193			/* Try next page */
2194			sectors -= s;
2195			sect += s;
2196			idx++;
2197			continue;
2198		}
2199
2200		start = d;
2201		/* write it back and re-read */
2202		while (d != r1_bio->read_disk) {
2203			if (d == 0)
2204				d = conf->raid_disks * 2;
2205			d--;
2206			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2207				continue;
2208			rdev = conf->mirrors[d].rdev;
2209			if (r1_sync_page_io(rdev, sect, s,
2210					    pages[idx],
2211					    REQ_OP_WRITE) == 0) {
2212				r1_bio->bios[d]->bi_end_io = NULL;
2213				rdev_dec_pending(rdev, mddev);
2214			}
2215		}
2216		d = start;
2217		while (d != r1_bio->read_disk) {
2218			if (d == 0)
2219				d = conf->raid_disks * 2;
2220			d--;
2221			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2222				continue;
2223			rdev = conf->mirrors[d].rdev;
2224			if (r1_sync_page_io(rdev, sect, s,
2225					    pages[idx],
2226					    REQ_OP_READ) != 0)
2227				atomic_add(s, &rdev->corrected_errors);
2228		}
2229		sectors -= s;
2230		sect += s;
2231		idx ++;
2232	}
2233	set_bit(R1BIO_Uptodate, &r1_bio->state);
2234	bio->bi_status = 0;
2235	return 1;
2236}
2237
2238static void process_checks(struct r1bio *r1_bio)
2239{
2240	/* We have read all readable devices.  If we haven't
2241	 * got the block, then there is no hope left.
2242	 * If we have, then we want to do a comparison
2243	 * and skip the write if everything is the same.
2244	 * If any blocks failed to read, then we need to
2245	 * attempt an over-write
2246	 */
2247	struct mddev *mddev = r1_bio->mddev;
2248	struct r1conf *conf = mddev->private;
2249	int primary;
2250	int i;
2251	int vcnt;
2252
2253	/* Fix variable parts of all bios */
2254	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2255	for (i = 0; i < conf->raid_disks * 2; i++) {
2256		blk_status_t status;
 
 
2257		struct bio *b = r1_bio->bios[i];
2258		struct resync_pages *rp = get_resync_pages(b);
2259		if (b->bi_end_io != end_sync_read)
2260			continue;
2261		/* fixup the bio for reuse, but preserve errno */
2262		status = b->bi_status;
2263		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2264		b->bi_status = status;
 
 
2265		b->bi_iter.bi_sector = r1_bio->sector +
2266			conf->mirrors[i].rdev->data_offset;
 
2267		b->bi_end_io = end_sync_read;
2268		rp->raid_bio = r1_bio;
2269		b->bi_private = rp;
2270
2271		/* initialize bvec table again */
2272		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
 
 
 
 
 
 
 
 
 
2273	}
2274	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2275		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2276		    !r1_bio->bios[primary]->bi_status) {
2277			r1_bio->bios[primary]->bi_end_io = NULL;
2278			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2279			break;
2280		}
2281	r1_bio->read_disk = primary;
2282	for (i = 0; i < conf->raid_disks * 2; i++) {
2283		int j = 0;
2284		struct bio *pbio = r1_bio->bios[primary];
2285		struct bio *sbio = r1_bio->bios[i];
2286		blk_status_t status = sbio->bi_status;
2287		struct page **ppages = get_resync_pages(pbio)->pages;
2288		struct page **spages = get_resync_pages(sbio)->pages;
2289		struct bio_vec *bi;
2290		int page_len[RESYNC_PAGES] = { 0 };
2291		struct bvec_iter_all iter_all;
2292
2293		if (sbio->bi_end_io != end_sync_read)
2294			continue;
2295		/* Now we can 'fixup' the error value */
2296		sbio->bi_status = 0;
2297
2298		bio_for_each_segment_all(bi, sbio, iter_all)
2299			page_len[j++] = bi->bv_len;
2300
2301		if (!status) {
2302			for (j = vcnt; j-- ; ) {
2303				if (memcmp(page_address(ppages[j]),
2304					   page_address(spages[j]),
2305					   page_len[j]))
 
 
 
2306					break;
2307			}
2308		} else
2309			j = 0;
2310		if (j >= 0)
2311			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2312		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2313			      && !status)) {
2314			/* No need to write to this device. */
2315			sbio->bi_end_io = NULL;
2316			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2317			continue;
2318		}
2319
2320		bio_copy_data(sbio, pbio);
2321	}
2322}
2323
2324static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2325{
2326	struct r1conf *conf = mddev->private;
2327	int i;
2328	int disks = conf->raid_disks * 2;
2329	struct bio *wbio;
 
 
2330
2331	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2332		/* ouch - failed to read all of that. */
2333		if (!fix_sync_read_error(r1_bio))
2334			return;
2335
2336	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2337		process_checks(r1_bio);
2338
2339	/*
2340	 * schedule writes
2341	 */
2342	atomic_set(&r1_bio->remaining, 1);
2343	for (i = 0; i < disks ; i++) {
2344		wbio = r1_bio->bios[i];
2345		if (wbio->bi_end_io == NULL ||
2346		    (wbio->bi_end_io == end_sync_read &&
2347		     (i == r1_bio->read_disk ||
2348		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2349			continue;
2350		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2351			abort_sync_write(mddev, r1_bio);
2352			continue;
2353		}
2354
2355		wbio->bi_opf = REQ_OP_WRITE;
2356		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2357			wbio->bi_opf |= MD_FAILFAST;
2358
 
2359		wbio->bi_end_io = end_sync_write;
2360		atomic_inc(&r1_bio->remaining);
2361		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2362
2363		submit_bio_noacct(wbio);
2364	}
2365
2366	put_sync_write_buf(r1_bio, 1);
 
 
 
 
 
 
 
 
 
 
2367}
2368
2369/*
2370 * This is a kernel thread which:
2371 *
2372 *	1.	Retries failed read operations on working mirrors.
2373 *	2.	Updates the raid superblock when problems encounter.
2374 *	3.	Performs writes following reads for array synchronising.
2375 */
2376
2377static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
 
2378{
2379	sector_t sect = r1_bio->sector;
2380	int sectors = r1_bio->sectors;
2381	int read_disk = r1_bio->read_disk;
2382	struct mddev *mddev = conf->mddev;
2383	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2384
2385	if (exceed_read_errors(mddev, rdev)) {
2386		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2387		return;
2388	}
2389
2390	while(sectors) {
2391		int s = sectors;
2392		int d = read_disk;
2393		int success = 0;
2394		int start;
 
2395
2396		if (s > (PAGE_SIZE>>9))
2397			s = PAGE_SIZE >> 9;
2398
2399		do {
 
 
 
 
 
 
 
 
2400			rdev = conf->mirrors[d].rdev;
2401			if (rdev &&
2402			    (test_bit(In_sync, &rdev->flags) ||
2403			     (!test_bit(Faulty, &rdev->flags) &&
2404			      rdev->recovery_offset >= sect + s)) &&
2405			    rdev_has_badblock(rdev, sect, s) == 0) {
2406				atomic_inc(&rdev->nr_pending);
2407				if (sync_page_io(rdev, sect, s<<9,
2408					 conf->tmppage, REQ_OP_READ, false))
2409					success = 1;
2410				rdev_dec_pending(rdev, mddev);
2411				if (success)
2412					break;
 
2413			}
2414
2415			d++;
2416			if (d == conf->raid_disks * 2)
2417				d = 0;
2418		} while (d != read_disk);
2419
2420		if (!success) {
2421			/* Cannot read from anywhere - mark it bad */
2422			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2423			if (!rdev_set_badblocks(rdev, sect, s, 0))
2424				md_error(mddev, rdev);
2425			break;
2426		}
2427		/* write it back and re-read */
2428		start = d;
2429		while (d != read_disk) {
2430			if (d==0)
2431				d = conf->raid_disks * 2;
2432			d--;
2433			rdev = conf->mirrors[d].rdev;
2434			if (rdev &&
2435			    !test_bit(Faulty, &rdev->flags)) {
2436				atomic_inc(&rdev->nr_pending);
2437				r1_sync_page_io(rdev, sect, s,
2438						conf->tmppage, REQ_OP_WRITE);
2439				rdev_dec_pending(rdev, mddev);
2440			}
2441		}
2442		d = start;
2443		while (d != read_disk) {
 
2444			if (d==0)
2445				d = conf->raid_disks * 2;
2446			d--;
2447			rdev = conf->mirrors[d].rdev;
2448			if (rdev &&
2449			    !test_bit(Faulty, &rdev->flags)) {
2450				atomic_inc(&rdev->nr_pending);
2451				if (r1_sync_page_io(rdev, sect, s,
2452						conf->tmppage, REQ_OP_READ)) {
2453					atomic_add(s, &rdev->corrected_errors);
2454					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2455						mdname(mddev), s,
2456						(unsigned long long)(sect +
2457								     rdev->data_offset),
2458						rdev->bdev);
 
 
2459				}
2460				rdev_dec_pending(rdev, mddev);
2461			}
2462		}
2463		sectors -= s;
2464		sect += s;
2465	}
2466}
2467
2468static int narrow_write_error(struct r1bio *r1_bio, int i)
2469{
2470	struct mddev *mddev = r1_bio->mddev;
2471	struct r1conf *conf = mddev->private;
2472	struct md_rdev *rdev = conf->mirrors[i].rdev;
2473
2474	/* bio has the data to be written to device 'i' where
2475	 * we just recently had a write error.
2476	 * We repeatedly clone the bio and trim down to one block,
2477	 * then try the write.  Where the write fails we record
2478	 * a bad block.
2479	 * It is conceivable that the bio doesn't exactly align with
2480	 * blocks.  We must handle this somehow.
2481	 *
2482	 * We currently own a reference on the rdev.
2483	 */
2484
2485	int block_sectors;
2486	sector_t sector;
2487	int sectors;
2488	int sect_to_write = r1_bio->sectors;
2489	int ok = 1;
2490
2491	if (rdev->badblocks.shift < 0)
2492		return 0;
2493
2494	block_sectors = roundup(1 << rdev->badblocks.shift,
2495				bdev_logical_block_size(rdev->bdev) >> 9);
2496	sector = r1_bio->sector;
2497	sectors = ((sector + block_sectors)
2498		   & ~(sector_t)(block_sectors - 1))
2499		- sector;
2500
2501	while (sect_to_write) {
2502		struct bio *wbio;
2503		if (sectors > sect_to_write)
2504			sectors = sect_to_write;
2505		/* Write at 'sector' for 'sectors'*/
2506
2507		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2508			wbio = bio_alloc_clone(rdev->bdev,
2509					       r1_bio->behind_master_bio,
2510					       GFP_NOIO, &mddev->bio_set);
 
 
 
 
 
 
 
 
 
2511		} else {
2512			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2513					       GFP_NOIO, &mddev->bio_set);
2514		}
2515
2516		wbio->bi_opf = REQ_OP_WRITE;
2517		wbio->bi_iter.bi_sector = r1_bio->sector;
2518		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2519
2520		bio_trim(wbio, sector - r1_bio->sector, sectors);
2521		wbio->bi_iter.bi_sector += rdev->data_offset;
2522
2523		if (submit_bio_wait(wbio) < 0)
2524			/* failure! */
2525			ok = rdev_set_badblocks(rdev, sector,
2526						sectors, 0)
2527				&& ok;
2528
2529		bio_put(wbio);
2530		sect_to_write -= sectors;
2531		sector += sectors;
2532		sectors = block_sectors;
2533	}
2534	return ok;
2535}
2536
2537static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2538{
2539	int m;
2540	int s = r1_bio->sectors;
2541	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2542		struct md_rdev *rdev = conf->mirrors[m].rdev;
2543		struct bio *bio = r1_bio->bios[m];
2544		if (bio->bi_end_io == NULL)
2545			continue;
2546		if (!bio->bi_status &&
2547		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2548			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2549		}
2550		if (bio->bi_status &&
2551		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2552			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2553				md_error(conf->mddev, rdev);
2554		}
2555	}
2556	put_buf(r1_bio);
2557	md_done_sync(conf->mddev, s, 1);
2558}
2559
2560static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2561{
2562	int m, idx;
2563	bool fail = false;
2564
2565	for (m = 0; m < conf->raid_disks * 2 ; m++)
2566		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2567			struct md_rdev *rdev = conf->mirrors[m].rdev;
2568			rdev_clear_badblocks(rdev,
2569					     r1_bio->sector,
2570					     r1_bio->sectors, 0);
2571			rdev_dec_pending(rdev, conf->mddev);
2572		} else if (r1_bio->bios[m] != NULL) {
2573			/* This drive got a write error.  We need to
2574			 * narrow down and record precise write
2575			 * errors.
2576			 */
2577			fail = true;
2578			if (!narrow_write_error(r1_bio, m)) {
2579				md_error(conf->mddev,
2580					 conf->mirrors[m].rdev);
2581				/* an I/O failed, we can't clear the bitmap */
2582				set_bit(R1BIO_Degraded, &r1_bio->state);
2583			}
2584			rdev_dec_pending(conf->mirrors[m].rdev,
2585					 conf->mddev);
2586		}
2587	if (fail) {
2588		spin_lock_irq(&conf->device_lock);
2589		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2590		idx = sector_to_idx(r1_bio->sector);
2591		atomic_inc(&conf->nr_queued[idx]);
2592		spin_unlock_irq(&conf->device_lock);
2593		/*
2594		 * In case freeze_array() is waiting for condition
2595		 * get_unqueued_pending() == extra to be true.
2596		 */
2597		wake_up(&conf->wait_barrier);
2598		md_wakeup_thread(conf->mddev->thread);
2599	} else {
2600		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2601			close_write(r1_bio);
2602		raid_end_bio_io(r1_bio);
2603	}
2604}
2605
2606static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2607{
 
 
2608	struct mddev *mddev = conf->mddev;
2609	struct bio *bio;
 
2610	struct md_rdev *rdev;
2611	sector_t sector;
2612
2613	clear_bit(R1BIO_ReadError, &r1_bio->state);
2614	/* we got a read error. Maybe the drive is bad.  Maybe just
2615	 * the block and we can fix it.
2616	 * We freeze all other IO, and try reading the block from
2617	 * other devices.  When we find one, we re-write
2618	 * and check it that fixes the read error.
2619	 * This is all done synchronously while the array is
2620	 * frozen
2621	 */
 
 
 
 
 
 
 
 
2622
2623	bio = r1_bio->bios[r1_bio->read_disk];
2624	bio_put(bio);
2625	r1_bio->bios[r1_bio->read_disk] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2626
2627	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2628	if (mddev->ro == 0
2629	    && !test_bit(FailFast, &rdev->flags)) {
2630		freeze_array(conf, 1);
2631		fix_read_error(conf, r1_bio);
2632		unfreeze_array(conf);
2633	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2634		md_error(mddev, rdev);
2635	} else {
2636		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2637	}
2638
2639	rdev_dec_pending(rdev, conf->mddev);
2640	sector = r1_bio->sector;
2641	bio = r1_bio->master_bio;
2642
2643	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2644	r1_bio->state = 0;
2645	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2646	allow_barrier(conf, sector);
2647}
2648
2649static void raid1d(struct md_thread *thread)
2650{
2651	struct mddev *mddev = thread->mddev;
2652	struct r1bio *r1_bio;
2653	unsigned long flags;
2654	struct r1conf *conf = mddev->private;
2655	struct list_head *head = &conf->retry_list;
2656	struct blk_plug plug;
2657	int idx;
2658
2659	md_check_recovery(mddev);
2660
2661	if (!list_empty_careful(&conf->bio_end_io_list) &&
2662	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2663		LIST_HEAD(tmp);
2664		spin_lock_irqsave(&conf->device_lock, flags);
2665		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2666			list_splice_init(&conf->bio_end_io_list, &tmp);
 
 
 
 
2667		spin_unlock_irqrestore(&conf->device_lock, flags);
2668		while (!list_empty(&tmp)) {
2669			r1_bio = list_first_entry(&tmp, struct r1bio,
2670						  retry_list);
2671			list_del(&r1_bio->retry_list);
2672			idx = sector_to_idx(r1_bio->sector);
2673			atomic_dec(&conf->nr_queued[idx]);
2674			if (mddev->degraded)
2675				set_bit(R1BIO_Degraded, &r1_bio->state);
2676			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2677				close_write(r1_bio);
2678			raid_end_bio_io(r1_bio);
2679		}
2680	}
2681
2682	blk_start_plug(&plug);
2683	for (;;) {
2684
2685		flush_pending_writes(conf);
2686
2687		spin_lock_irqsave(&conf->device_lock, flags);
2688		if (list_empty(head)) {
2689			spin_unlock_irqrestore(&conf->device_lock, flags);
2690			break;
2691		}
2692		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2693		list_del(head->prev);
2694		idx = sector_to_idx(r1_bio->sector);
2695		atomic_dec(&conf->nr_queued[idx]);
2696		spin_unlock_irqrestore(&conf->device_lock, flags);
2697
2698		mddev = r1_bio->mddev;
2699		conf = mddev->private;
2700		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2701			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2702			    test_bit(R1BIO_WriteError, &r1_bio->state))
2703				handle_sync_write_finished(conf, r1_bio);
2704			else
2705				sync_request_write(mddev, r1_bio);
2706		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2707			   test_bit(R1BIO_WriteError, &r1_bio->state))
2708			handle_write_finished(conf, r1_bio);
2709		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2710			handle_read_error(conf, r1_bio);
2711		else
2712			WARN_ON_ONCE(1);
 
 
 
2713
2714		cond_resched();
2715		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2716			md_check_recovery(mddev);
2717	}
2718	blk_finish_plug(&plug);
2719}
2720
2721static int init_resync(struct r1conf *conf)
2722{
2723	int buffs;
2724
2725	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2726	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2727
2728	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2729			    r1buf_pool_free, conf->poolinfo);
2730}
2731
2732static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2733{
2734	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2735	struct resync_pages *rps;
2736	struct bio *bio;
2737	int i;
2738
2739	for (i = conf->poolinfo->raid_disks; i--; ) {
2740		bio = r1bio->bios[i];
2741		rps = bio->bi_private;
2742		bio_reset(bio, NULL, 0);
2743		bio->bi_private = rps;
2744	}
2745	r1bio->master_bio = NULL;
2746	return r1bio;
2747}
2748
2749/*
2750 * perform a "sync" on one "block"
2751 *
2752 * We need to make sure that no normal I/O request - particularly write
2753 * requests - conflict with active sync requests.
2754 *
2755 * This is achieved by tracking pending requests and a 'barrier' concept
2756 * that can be installed to exclude normal IO requests.
2757 */
2758
2759static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2760				   int *skipped)
2761{
2762	struct r1conf *conf = mddev->private;
2763	struct r1bio *r1_bio;
2764	struct bio *bio;
2765	sector_t max_sector, nr_sectors;
2766	int disk = -1;
2767	int i;
2768	int wonly = -1;
2769	int write_targets = 0, read_targets = 0;
2770	sector_t sync_blocks;
2771	int still_degraded = 0;
2772	int good_sectors = RESYNC_SECTORS;
2773	int min_bad = 0; /* number of sectors that are bad in all devices */
2774	int idx = sector_to_idx(sector_nr);
2775	int page_idx = 0;
2776
2777	if (!mempool_initialized(&conf->r1buf_pool))
2778		if (init_resync(conf))
2779			return 0;
2780
2781	max_sector = mddev->dev_sectors;
2782	if (sector_nr >= max_sector) {
2783		/* If we aborted, we need to abort the
2784		 * sync on the 'current' bitmap chunk (there will
2785		 * only be one in raid1 resync.
2786		 * We can find the current addess in mddev->curr_resync
2787		 */
2788		if (mddev->curr_resync < max_sector) /* aborted */
2789			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2790					   &sync_blocks, 1);
2791		else /* completed sync */
2792			conf->fullsync = 0;
2793
2794		md_bitmap_close_sync(mddev->bitmap);
2795		close_sync(conf);
2796
2797		if (mddev_is_clustered(mddev)) {
2798			conf->cluster_sync_low = 0;
2799			conf->cluster_sync_high = 0;
2800		}
2801		return 0;
2802	}
2803
2804	if (mddev->bitmap == NULL &&
2805	    mddev->recovery_cp == MaxSector &&
2806	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2807	    conf->fullsync == 0) {
2808		*skipped = 1;
2809		return max_sector - sector_nr;
2810	}
2811	/* before building a request, check if we can skip these blocks..
2812	 * This call the bitmap_start_sync doesn't actually record anything
2813	 */
2814	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2815	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2816		/* We can skip this block, and probably several more */
2817		*skipped = 1;
2818		return sync_blocks;
2819	}
2820
2821	/*
2822	 * If there is non-resync activity waiting for a turn, then let it
2823	 * though before starting on this new sync request.
2824	 */
2825	if (atomic_read(&conf->nr_waiting[idx]))
2826		schedule_timeout_uninterruptible(1);
2827
2828	/* we are incrementing sector_nr below. To be safe, we check against
2829	 * sector_nr + two times RESYNC_SECTORS
2830	 */
2831
2832	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2833		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
 
2834
 
2835
2836	if (raise_barrier(conf, sector_nr))
2837		return 0;
2838
2839	r1_bio = raid1_alloc_init_r1buf(conf);
2840
2841	/*
2842	 * If we get a correctably read error during resync or recovery,
2843	 * we might want to read from a different device.  So we
2844	 * flag all drives that could conceivably be read from for READ,
2845	 * and any others (which will be non-In_sync devices) for WRITE.
2846	 * If a read fails, we try reading from something else for which READ
2847	 * is OK.
2848	 */
2849
2850	r1_bio->mddev = mddev;
2851	r1_bio->sector = sector_nr;
2852	r1_bio->state = 0;
2853	set_bit(R1BIO_IsSync, &r1_bio->state);
2854	/* make sure good_sectors won't go across barrier unit boundary */
2855	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2856
2857	for (i = 0; i < conf->raid_disks * 2; i++) {
2858		struct md_rdev *rdev;
2859		bio = r1_bio->bios[i];
 
2860
2861		rdev = conf->mirrors[i].rdev;
2862		if (rdev == NULL ||
2863		    test_bit(Faulty, &rdev->flags)) {
2864			if (i < conf->raid_disks)
2865				still_degraded = 1;
2866		} else if (!test_bit(In_sync, &rdev->flags)) {
2867			bio->bi_opf = REQ_OP_WRITE;
2868			bio->bi_end_io = end_sync_write;
2869			write_targets ++;
2870		} else {
2871			/* may need to read from here */
2872			sector_t first_bad = MaxSector;
2873			int bad_sectors;
2874
2875			if (is_badblock(rdev, sector_nr, good_sectors,
2876					&first_bad, &bad_sectors)) {
2877				if (first_bad > sector_nr)
2878					good_sectors = first_bad - sector_nr;
2879				else {
2880					bad_sectors -= (sector_nr - first_bad);
2881					if (min_bad == 0 ||
2882					    min_bad > bad_sectors)
2883						min_bad = bad_sectors;
2884				}
2885			}
2886			if (sector_nr < first_bad) {
2887				if (test_bit(WriteMostly, &rdev->flags)) {
2888					if (wonly < 0)
2889						wonly = i;
2890				} else {
2891					if (disk < 0)
2892						disk = i;
2893				}
2894				bio->bi_opf = REQ_OP_READ;
2895				bio->bi_end_io = end_sync_read;
2896				read_targets++;
2897			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2898				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2899				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2900				/*
2901				 * The device is suitable for reading (InSync),
2902				 * but has bad block(s) here. Let's try to correct them,
2903				 * if we are doing resync or repair. Otherwise, leave
2904				 * this device alone for this sync request.
2905				 */
2906				bio->bi_opf = REQ_OP_WRITE;
2907				bio->bi_end_io = end_sync_write;
2908				write_targets++;
2909			}
2910		}
2911		if (rdev && bio->bi_end_io) {
2912			atomic_inc(&rdev->nr_pending);
2913			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2914			bio_set_dev(bio, rdev->bdev);
2915			if (test_bit(FailFast, &rdev->flags))
2916				bio->bi_opf |= MD_FAILFAST;
2917		}
2918	}
 
2919	if (disk < 0)
2920		disk = wonly;
2921	r1_bio->read_disk = disk;
2922
2923	if (read_targets == 0 && min_bad > 0) {
2924		/* These sectors are bad on all InSync devices, so we
2925		 * need to mark them bad on all write targets
2926		 */
2927		int ok = 1;
2928		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2929			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2930				struct md_rdev *rdev = conf->mirrors[i].rdev;
2931				ok = rdev_set_badblocks(rdev, sector_nr,
2932							min_bad, 0
2933					) && ok;
2934			}
2935		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2936		*skipped = 1;
2937		put_buf(r1_bio);
2938
2939		if (!ok) {
2940			/* Cannot record the badblocks, so need to
2941			 * abort the resync.
2942			 * If there are multiple read targets, could just
2943			 * fail the really bad ones ???
2944			 */
2945			conf->recovery_disabled = mddev->recovery_disabled;
2946			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2947			return 0;
2948		} else
2949			return min_bad;
2950
2951	}
2952	if (min_bad > 0 && min_bad < good_sectors) {
2953		/* only resync enough to reach the next bad->good
2954		 * transition */
2955		good_sectors = min_bad;
2956	}
2957
2958	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2959		/* extra read targets are also write targets */
2960		write_targets += read_targets-1;
2961
2962	if (write_targets == 0 || read_targets == 0) {
2963		/* There is nowhere to write, so all non-sync
2964		 * drives must be failed - so we are finished
2965		 */
2966		sector_t rv;
2967		if (min_bad > 0)
2968			max_sector = sector_nr + min_bad;
2969		rv = max_sector - sector_nr;
2970		*skipped = 1;
2971		put_buf(r1_bio);
2972		return rv;
2973	}
2974
2975	if (max_sector > mddev->resync_max)
2976		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2977	if (max_sector > sector_nr + good_sectors)
2978		max_sector = sector_nr + good_sectors;
2979	nr_sectors = 0;
2980	sync_blocks = 0;
2981	do {
2982		struct page *page;
2983		int len = PAGE_SIZE;
2984		if (sector_nr + (len>>9) > max_sector)
2985			len = (max_sector - sector_nr) << 9;
2986		if (len == 0)
2987			break;
2988		if (sync_blocks == 0) {
2989			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2990						  &sync_blocks, still_degraded) &&
2991			    !conf->fullsync &&
2992			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2993				break;
2994			if ((len >> 9) > sync_blocks)
2995				len = sync_blocks<<9;
2996		}
2997
2998		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2999			struct resync_pages *rp;
3000
3001			bio = r1_bio->bios[i];
3002			rp = get_resync_pages(bio);
3003			if (bio->bi_end_io) {
3004				page = resync_fetch_page(rp, page_idx);
3005
3006				/*
3007				 * won't fail because the vec table is big
3008				 * enough to hold all these pages
3009				 */
3010				__bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
3011			}
3012		}
3013		nr_sectors += len>>9;
3014		sector_nr += len>>9;
3015		sync_blocks -= (len>>9);
3016	} while (++page_idx < RESYNC_PAGES);
3017
3018	r1_bio->sectors = nr_sectors;
3019
3020	if (mddev_is_clustered(mddev) &&
3021			conf->cluster_sync_high < sector_nr + nr_sectors) {
3022		conf->cluster_sync_low = mddev->curr_resync_completed;
3023		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3024		/* Send resync message */
3025		md_cluster_ops->resync_info_update(mddev,
3026				conf->cluster_sync_low,
3027				conf->cluster_sync_high);
3028	}
3029
3030	/* For a user-requested sync, we read all readable devices and do a
3031	 * compare
3032	 */
3033	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3034		atomic_set(&r1_bio->remaining, read_targets);
3035		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3036			bio = r1_bio->bios[i];
3037			if (bio->bi_end_io == end_sync_read) {
3038				read_targets--;
3039				md_sync_acct_bio(bio, nr_sectors);
3040				if (read_targets == 1)
3041					bio->bi_opf &= ~MD_FAILFAST;
3042				submit_bio_noacct(bio);
3043			}
3044		}
3045	} else {
3046		atomic_set(&r1_bio->remaining, 1);
3047		bio = r1_bio->bios[r1_bio->read_disk];
3048		md_sync_acct_bio(bio, nr_sectors);
3049		if (read_targets == 1)
3050			bio->bi_opf &= ~MD_FAILFAST;
3051		submit_bio_noacct(bio);
3052	}
3053	return nr_sectors;
3054}
3055
3056static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3057{
3058	if (sectors)
3059		return sectors;
3060
3061	return mddev->dev_sectors;
3062}
3063
3064static struct r1conf *setup_conf(struct mddev *mddev)
3065{
3066	struct r1conf *conf;
3067	int i;
3068	struct raid1_info *disk;
3069	struct md_rdev *rdev;
3070	int err = -ENOMEM;
3071
3072	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3073	if (!conf)
3074		goto abort;
3075
3076	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3077				   sizeof(atomic_t), GFP_KERNEL);
3078	if (!conf->nr_pending)
3079		goto abort;
3080
3081	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3082				   sizeof(atomic_t), GFP_KERNEL);
3083	if (!conf->nr_waiting)
3084		goto abort;
3085
3086	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3087				  sizeof(atomic_t), GFP_KERNEL);
3088	if (!conf->nr_queued)
3089		goto abort;
3090
3091	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3092				sizeof(atomic_t), GFP_KERNEL);
3093	if (!conf->barrier)
3094		goto abort;
3095
3096	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3097					    mddev->raid_disks, 2),
3098				GFP_KERNEL);
3099	if (!conf->mirrors)
3100		goto abort;
3101
3102	conf->tmppage = alloc_page(GFP_KERNEL);
3103	if (!conf->tmppage)
3104		goto abort;
3105
3106	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3107	if (!conf->poolinfo)
3108		goto abort;
3109	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3110	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3111			   rbio_pool_free, conf->poolinfo);
3112	if (err)
3113		goto abort;
3114
3115	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3116	if (err)
3117		goto abort;
3118
3119	conf->poolinfo->mddev = mddev;
3120
3121	err = -EINVAL;
3122	spin_lock_init(&conf->device_lock);
3123	conf->raid_disks = mddev->raid_disks;
3124	rdev_for_each(rdev, mddev) {
 
3125		int disk_idx = rdev->raid_disk;
3126
3127		if (disk_idx >= conf->raid_disks || disk_idx < 0)
3128			continue;
 
 
 
 
3129
3130		if (!raid1_add_conf(conf, rdev, disk_idx,
3131				    test_bit(Replacement, &rdev->flags)))
3132			goto abort;
 
 
 
 
 
3133	}
 
3134	conf->mddev = mddev;
3135	INIT_LIST_HEAD(&conf->retry_list);
3136	INIT_LIST_HEAD(&conf->bio_end_io_list);
3137
3138	spin_lock_init(&conf->resync_lock);
3139	init_waitqueue_head(&conf->wait_barrier);
3140
3141	bio_list_init(&conf->pending_bio_list);
 
3142	conf->recovery_disabled = mddev->recovery_disabled - 1;
3143
 
 
 
3144	err = -EIO;
3145	for (i = 0; i < conf->raid_disks * 2; i++) {
3146
3147		disk = conf->mirrors + i;
3148
3149		if (i < conf->raid_disks &&
3150		    disk[conf->raid_disks].rdev) {
3151			/* This slot has a replacement. */
3152			if (!disk->rdev) {
3153				/* No original, just make the replacement
3154				 * a recovering spare
3155				 */
3156				disk->rdev =
3157					disk[conf->raid_disks].rdev;
3158				disk[conf->raid_disks].rdev = NULL;
3159			} else if (!test_bit(In_sync, &disk->rdev->flags))
3160				/* Original is not in_sync - bad */
3161				goto abort;
3162		}
3163
3164		if (!disk->rdev ||
3165		    !test_bit(In_sync, &disk->rdev->flags)) {
3166			disk->head_position = 0;
3167			if (disk->rdev &&
3168			    (disk->rdev->saved_raid_disk < 0))
3169				conf->fullsync = 1;
3170		}
3171	}
3172
3173	err = -ENOMEM;
3174	rcu_assign_pointer(conf->thread,
3175			   md_register_thread(raid1d, mddev, "raid1"));
3176	if (!conf->thread)
 
 
3177		goto abort;
 
3178
3179	return conf;
3180
3181 abort:
3182	if (conf) {
3183		mempool_exit(&conf->r1bio_pool);
3184		kfree(conf->mirrors);
3185		safe_put_page(conf->tmppage);
3186		kfree(conf->poolinfo);
3187		kfree(conf->nr_pending);
3188		kfree(conf->nr_waiting);
3189		kfree(conf->nr_queued);
3190		kfree(conf->barrier);
3191		bioset_exit(&conf->bio_split);
3192		kfree(conf);
3193	}
3194	return ERR_PTR(err);
3195}
3196
3197static int raid1_set_limits(struct mddev *mddev)
3198{
3199	struct queue_limits lim;
3200
3201	blk_set_stacking_limits(&lim);
3202	lim.max_write_zeroes_sectors = 0;
3203	mddev_stack_rdev_limits(mddev, &lim);
3204	return queue_limits_set(mddev->gendisk->queue, &lim);
3205}
3206
3207static void raid1_free(struct mddev *mddev, void *priv);
3208static int raid1_run(struct mddev *mddev)
3209{
3210	struct r1conf *conf;
3211	int i;
 
3212	int ret;
 
3213
3214	if (mddev->level != 1) {
3215		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3216			mdname(mddev), mddev->level);
3217		return -EIO;
3218	}
3219	if (mddev->reshape_position != MaxSector) {
3220		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3221			mdname(mddev));
3222		return -EIO;
3223	}
3224
3225	/*
3226	 * copy the already verified devices into our private RAID1
3227	 * bookkeeping area. [whatever we allocate in run(),
3228	 * should be freed in raid1_free()]
3229	 */
3230	if (mddev->private == NULL)
3231		conf = setup_conf(mddev);
3232	else
3233		conf = mddev->private;
3234
3235	if (IS_ERR(conf))
3236		return PTR_ERR(conf);
3237
3238	if (!mddev_is_dm(mddev)) {
3239		ret = raid1_set_limits(mddev);
3240		if (ret)
3241			goto abort;
 
 
 
 
 
 
3242	}
3243
3244	mddev->degraded = 0;
3245	for (i = 0; i < conf->raid_disks; i++)
3246		if (conf->mirrors[i].rdev == NULL ||
3247		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3248		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3249			mddev->degraded++;
3250	/*
3251	 * RAID1 needs at least one disk in active
3252	 */
3253	if (conf->raid_disks - mddev->degraded < 1) {
3254		md_unregister_thread(mddev, &conf->thread);
3255		ret = -EINVAL;
3256		goto abort;
3257	}
3258
3259	if (conf->raid_disks - mddev->degraded == 1)
3260		mddev->recovery_cp = MaxSector;
3261
3262	if (mddev->recovery_cp != MaxSector)
3263		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3264			mdname(mddev));
3265	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
 
 
3266		mdname(mddev), mddev->raid_disks - mddev->degraded,
3267		mddev->raid_disks);
3268
3269	/*
3270	 * Ok, everything is just fine now
3271	 */
3272	rcu_assign_pointer(mddev->thread, conf->thread);
3273	rcu_assign_pointer(conf->thread, NULL);
3274	mddev->private = conf;
3275	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3276
3277	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3278
3279	ret = md_integrity_register(mddev);
 
 
 
 
 
 
 
 
 
3280	if (ret) {
3281		md_unregister_thread(mddev, &mddev->thread);
3282		goto abort;
3283	}
3284	return 0;
3285
3286abort:
3287	raid1_free(mddev, conf);
3288	return ret;
3289}
3290
3291static void raid1_free(struct mddev *mddev, void *priv)
3292{
3293	struct r1conf *conf = priv;
3294
3295	mempool_exit(&conf->r1bio_pool);
3296	kfree(conf->mirrors);
3297	safe_put_page(conf->tmppage);
3298	kfree(conf->poolinfo);
3299	kfree(conf->nr_pending);
3300	kfree(conf->nr_waiting);
3301	kfree(conf->nr_queued);
3302	kfree(conf->barrier);
3303	bioset_exit(&conf->bio_split);
3304	kfree(conf);
3305}
3306
3307static int raid1_resize(struct mddev *mddev, sector_t sectors)
3308{
3309	/* no resync is happening, and there is enough space
3310	 * on all devices, so we can resize.
3311	 * We need to make sure resync covers any new space.
3312	 * If the array is shrinking we should possibly wait until
3313	 * any io in the removed space completes, but it hardly seems
3314	 * worth it.
3315	 */
3316	sector_t newsize = raid1_size(mddev, sectors, 0);
3317	if (mddev->external_size &&
3318	    mddev->array_sectors > newsize)
3319		return -EINVAL;
3320	if (mddev->bitmap) {
3321		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3322		if (ret)
3323			return ret;
3324	}
3325	md_set_array_sectors(mddev, newsize);
 
 
3326	if (sectors > mddev->dev_sectors &&
3327	    mddev->recovery_cp > mddev->dev_sectors) {
3328		mddev->recovery_cp = mddev->dev_sectors;
3329		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330	}
3331	mddev->dev_sectors = sectors;
3332	mddev->resync_max_sectors = sectors;
3333	return 0;
3334}
3335
3336static int raid1_reshape(struct mddev *mddev)
3337{
3338	/* We need to:
3339	 * 1/ resize the r1bio_pool
3340	 * 2/ resize conf->mirrors
3341	 *
3342	 * We allocate a new r1bio_pool if we can.
3343	 * Then raise a device barrier and wait until all IO stops.
3344	 * Then resize conf->mirrors and swap in the new r1bio pool.
3345	 *
3346	 * At the same time, we "pack" the devices so that all the missing
3347	 * devices have the higher raid_disk numbers.
3348	 */
3349	mempool_t newpool, oldpool;
3350	struct pool_info *newpoolinfo;
3351	struct raid1_info *newmirrors;
3352	struct r1conf *conf = mddev->private;
3353	int cnt, raid_disks;
3354	unsigned long flags;
3355	int d, d2;
3356	int ret;
3357
3358	memset(&newpool, 0, sizeof(newpool));
3359	memset(&oldpool, 0, sizeof(oldpool));
3360
3361	/* Cannot change chunk_size, layout, or level */
3362	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3363	    mddev->layout != mddev->new_layout ||
3364	    mddev->level != mddev->new_level) {
3365		mddev->new_chunk_sectors = mddev->chunk_sectors;
3366		mddev->new_layout = mddev->layout;
3367		mddev->new_level = mddev->level;
3368		return -EINVAL;
3369	}
3370
3371	if (!mddev_is_clustered(mddev))
3372		md_allow_write(mddev);
 
 
 
3373
3374	raid_disks = mddev->raid_disks + mddev->delta_disks;
3375
3376	if (raid_disks < conf->raid_disks) {
3377		cnt=0;
3378		for (d= 0; d < conf->raid_disks; d++)
3379			if (conf->mirrors[d].rdev)
3380				cnt++;
3381		if (cnt > raid_disks)
3382			return -EBUSY;
3383	}
3384
3385	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3386	if (!newpoolinfo)
3387		return -ENOMEM;
3388	newpoolinfo->mddev = mddev;
3389	newpoolinfo->raid_disks = raid_disks * 2;
3390
3391	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3392			   rbio_pool_free, newpoolinfo);
3393	if (ret) {
3394		kfree(newpoolinfo);
3395		return ret;
3396	}
3397	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3398					 raid_disks, 2),
3399			     GFP_KERNEL);
3400	if (!newmirrors) {
3401		kfree(newpoolinfo);
3402		mempool_exit(&newpool);
3403		return -ENOMEM;
3404	}
3405
3406	freeze_array(conf, 0);
3407
3408	/* ok, everything is stopped */
3409	oldpool = conf->r1bio_pool;
3410	conf->r1bio_pool = newpool;
3411
3412	for (d = d2 = 0; d < conf->raid_disks; d++) {
3413		struct md_rdev *rdev = conf->mirrors[d].rdev;
3414		if (rdev && rdev->raid_disk != d2) {
3415			sysfs_unlink_rdev(mddev, rdev);
3416			rdev->raid_disk = d2;
3417			sysfs_unlink_rdev(mddev, rdev);
3418			if (sysfs_link_rdev(mddev, rdev))
3419				pr_warn("md/raid1:%s: cannot register rd%d\n",
3420					mdname(mddev), rdev->raid_disk);
 
3421		}
3422		if (rdev)
3423			newmirrors[d2++].rdev = rdev;
3424	}
3425	kfree(conf->mirrors);
3426	conf->mirrors = newmirrors;
3427	kfree(conf->poolinfo);
3428	conf->poolinfo = newpoolinfo;
3429
3430	spin_lock_irqsave(&conf->device_lock, flags);
3431	mddev->degraded += (raid_disks - conf->raid_disks);
3432	spin_unlock_irqrestore(&conf->device_lock, flags);
3433	conf->raid_disks = mddev->raid_disks = raid_disks;
3434	mddev->delta_disks = 0;
3435
3436	unfreeze_array(conf);
3437
3438	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3439	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3440	md_wakeup_thread(mddev->thread);
3441
3442	mempool_exit(&oldpool);
3443	return 0;
3444}
3445
3446static void raid1_quiesce(struct mddev *mddev, int quiesce)
3447{
3448	struct r1conf *conf = mddev->private;
3449
3450	if (quiesce)
 
 
 
 
3451		freeze_array(conf, 0);
3452	else
 
3453		unfreeze_array(conf);
 
 
3454}
3455
3456static void *raid1_takeover(struct mddev *mddev)
3457{
3458	/* raid1 can take over:
3459	 *  raid5 with 2 devices, any layout or chunk size
3460	 */
3461	if (mddev->level == 5 && mddev->raid_disks == 2) {
3462		struct r1conf *conf;
3463		mddev->new_level = 1;
3464		mddev->new_layout = 0;
3465		mddev->new_chunk_sectors = 0;
3466		conf = setup_conf(mddev);
3467		if (!IS_ERR(conf)) {
3468			/* Array must appear to be quiesced */
3469			conf->array_frozen = 1;
3470			mddev_clear_unsupported_flags(mddev,
3471				UNSUPPORTED_MDDEV_FLAGS);
3472		}
3473		return conf;
3474	}
3475	return ERR_PTR(-EINVAL);
3476}
3477
3478static struct md_personality raid1_personality =
3479{
3480	.name		= "raid1",
3481	.level		= 1,
3482	.owner		= THIS_MODULE,
3483	.make_request	= raid1_make_request,
3484	.run		= raid1_run,
3485	.free		= raid1_free,
3486	.status		= raid1_status,
3487	.error_handler	= raid1_error,
3488	.hot_add_disk	= raid1_add_disk,
3489	.hot_remove_disk= raid1_remove_disk,
3490	.spare_active	= raid1_spare_active,
3491	.sync_request	= raid1_sync_request,
3492	.resize		= raid1_resize,
3493	.size		= raid1_size,
3494	.check_reshape	= raid1_reshape,
3495	.quiesce	= raid1_quiesce,
3496	.takeover	= raid1_takeover,
 
3497};
3498
3499static int __init raid_init(void)
3500{
3501	return register_md_personality(&raid1_personality);
3502}
3503
3504static void raid_exit(void)
3505{
3506	unregister_md_personality(&raid1_personality);
3507}
3508
3509module_init(raid_init);
3510module_exit(raid_exit);
3511MODULE_LICENSE("GPL");
3512MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3513MODULE_ALIAS("md-personality-3"); /* RAID1 */
3514MODULE_ALIAS("md-raid1");
3515MODULE_ALIAS("md-level-1");