Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include "i915_drv.h"
  30#include "intel_drv.h"
  31#include "../../../platform/x86/intel_ips.h"
  32#include <linux/module.h>
 
 
 
  33
  34/**
  35 * DOC: RC6
  36 *
  37 * RC6 is a special power stage which allows the GPU to enter an very
  38 * low-voltage mode when idle, using down to 0V while at this stage.  This
  39 * stage is entered automatically when the GPU is idle when RC6 support is
  40 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  41 *
  42 * There are different RC6 modes available in Intel GPU, which differentiate
  43 * among each other with the latency required to enter and leave RC6 and
  44 * voltage consumed by the GPU in different states.
  45 *
  46 * The combination of the following flags define which states GPU is allowed
  47 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  48 * RC6pp is deepest RC6. Their support by hardware varies according to the
  49 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  50 * which brings the most power savings; deeper states save more power, but
  51 * require higher latency to switch to and wake up.
  52 */
  53#define INTEL_RC6_ENABLE			(1<<0)
  54#define INTEL_RC6p_ENABLE			(1<<1)
  55#define INTEL_RC6pp_ENABLE			(1<<2)
  56
  57static void bxt_init_clock_gating(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
  58{
  59	struct drm_i915_private *dev_priv = dev->dev_private;
 
  60
  61	/* WaDisableSDEUnitClockGating:bxt */
  62	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  63		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
 
  64
  65	/*
  66	 * FIXME:
  67	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68	 */
  69	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  70		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
 
  71
  72	/*
  73	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
  74	 * to stay fully on.
 
  75	 */
  76	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  77		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  78			   PWM1_GATING_DIS | PWM2_GATING_DIS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79}
  80
  81static void i915_pineview_get_mem_freq(struct drm_device *dev)
  82{
  83	struct drm_i915_private *dev_priv = dev->dev_private;
  84	u32 tmp;
  85
  86	tmp = I915_READ(CLKCFG);
  87
  88	switch (tmp & CLKCFG_FSB_MASK) {
  89	case CLKCFG_FSB_533:
  90		dev_priv->fsb_freq = 533; /* 133*4 */
  91		break;
  92	case CLKCFG_FSB_800:
  93		dev_priv->fsb_freq = 800; /* 200*4 */
  94		break;
  95	case CLKCFG_FSB_667:
  96		dev_priv->fsb_freq =  667; /* 167*4 */
  97		break;
  98	case CLKCFG_FSB_400:
  99		dev_priv->fsb_freq = 400; /* 100*4 */
 100		break;
 101	}
 102
 103	switch (tmp & CLKCFG_MEM_MASK) {
 104	case CLKCFG_MEM_533:
 105		dev_priv->mem_freq = 533;
 106		break;
 107	case CLKCFG_MEM_667:
 108		dev_priv->mem_freq = 667;
 109		break;
 110	case CLKCFG_MEM_800:
 111		dev_priv->mem_freq = 800;
 112		break;
 113	}
 114
 115	/* detect pineview DDR3 setting */
 116	tmp = I915_READ(CSHRDDR3CTL);
 117	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 118}
 119
 120static void i915_ironlake_get_mem_freq(struct drm_device *dev)
 121{
 122	struct drm_i915_private *dev_priv = dev->dev_private;
 123	u16 ddrpll, csipll;
 124
 125	ddrpll = I915_READ16(DDRMPLL1);
 126	csipll = I915_READ16(CSIPLL0);
 127
 128	switch (ddrpll & 0xff) {
 129	case 0xc:
 130		dev_priv->mem_freq = 800;
 131		break;
 132	case 0x10:
 133		dev_priv->mem_freq = 1066;
 134		break;
 135	case 0x14:
 136		dev_priv->mem_freq = 1333;
 137		break;
 138	case 0x18:
 139		dev_priv->mem_freq = 1600;
 140		break;
 141	default:
 142		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 143				 ddrpll & 0xff);
 144		dev_priv->mem_freq = 0;
 145		break;
 146	}
 147
 148	dev_priv->ips.r_t = dev_priv->mem_freq;
 149
 150	switch (csipll & 0x3ff) {
 151	case 0x00c:
 152		dev_priv->fsb_freq = 3200;
 153		break;
 154	case 0x00e:
 155		dev_priv->fsb_freq = 3733;
 156		break;
 157	case 0x010:
 158		dev_priv->fsb_freq = 4266;
 159		break;
 160	case 0x012:
 161		dev_priv->fsb_freq = 4800;
 162		break;
 163	case 0x014:
 164		dev_priv->fsb_freq = 5333;
 165		break;
 166	case 0x016:
 167		dev_priv->fsb_freq = 5866;
 168		break;
 169	case 0x018:
 170		dev_priv->fsb_freq = 6400;
 171		break;
 172	default:
 173		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 174				 csipll & 0x3ff);
 175		dev_priv->fsb_freq = 0;
 176		break;
 177	}
 178
 179	if (dev_priv->fsb_freq == 3200) {
 180		dev_priv->ips.c_m = 0;
 181	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 182		dev_priv->ips.c_m = 1;
 183	} else {
 184		dev_priv->ips.c_m = 2;
 185	}
 186}
 187
 188static const struct cxsr_latency cxsr_latency_table[] = {
 189	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 190	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 191	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 192	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 193	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 194
 195	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 196	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 197	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 198	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 199	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 200
 201	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 202	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 203	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 204	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 205	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 206
 207	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 208	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 209	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 210	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 211	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 212
 213	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 214	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 215	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 216	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 217	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 218
 219	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 220	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 221	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 222	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 223	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 224};
 225
 226static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
 227							 int is_ddr3,
 228							 int fsb,
 229							 int mem)
 230{
 231	const struct cxsr_latency *latency;
 232	int i;
 233
 234	if (fsb == 0 || mem == 0)
 235		return NULL;
 236
 237	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 238		latency = &cxsr_latency_table[i];
 239		if (is_desktop == latency->is_desktop &&
 240		    is_ddr3 == latency->is_ddr3 &&
 241		    fsb == latency->fsb_freq && mem == latency->mem_freq)
 242			return latency;
 243	}
 244
 245	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 246
 247	return NULL;
 248}
 249
 250static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 251{
 252	u32 val;
 253
 254	mutex_lock(&dev_priv->rps.hw_lock);
 255
 256	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 257	if (enable)
 258		val &= ~FORCE_DDR_HIGH_FREQ;
 259	else
 260		val |= FORCE_DDR_HIGH_FREQ;
 261	val &= ~FORCE_DDR_LOW_FREQ;
 262	val |= FORCE_DDR_FREQ_REQ_ACK;
 263	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 264
 265	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 266		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 267		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
 268
 269	mutex_unlock(&dev_priv->rps.hw_lock);
 270}
 271
 272static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 273{
 274	u32 val;
 275
 276	mutex_lock(&dev_priv->rps.hw_lock);
 277
 278	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
 279	if (enable)
 280		val |= DSP_MAXFIFO_PM5_ENABLE;
 281	else
 282		val &= ~DSP_MAXFIFO_PM5_ENABLE;
 283	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
 284
 285	mutex_unlock(&dev_priv->rps.hw_lock);
 286}
 287
 288#define FW_WM(value, plane) \
 289	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 290
 291void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 292{
 293	struct drm_device *dev = dev_priv->dev;
 294	u32 val;
 295
 296	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
 297		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 298		POSTING_READ(FW_BLC_SELF_VLV);
 299		dev_priv->wm.vlv.cxsr = enable;
 300	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
 301		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 302		POSTING_READ(FW_BLC_SELF);
 303	} else if (IS_PINEVIEW(dev)) {
 304		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
 305		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
 306		I915_WRITE(DSPFW3, val);
 307		POSTING_READ(DSPFW3);
 308	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
 309		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 310			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 311		I915_WRITE(FW_BLC_SELF, val);
 312		POSTING_READ(FW_BLC_SELF);
 313	} else if (IS_I915GM(dev)) {
 314		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 315			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 316		I915_WRITE(INSTPM, val);
 317		POSTING_READ(INSTPM);
 318	} else {
 319		return;
 320	}
 321
 322	DRM_DEBUG_KMS("memory self-refresh is %s\n",
 323		      enable ? "enabled" : "disabled");
 324}
 325
 326
 327/*
 328 * Latency for FIFO fetches is dependent on several factors:
 329 *   - memory configuration (speed, channels)
 330 *   - chipset
 331 *   - current MCH state
 332 * It can be fairly high in some situations, so here we assume a fairly
 333 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 334 * set this value too high, the FIFO will fetch frequently to stay full)
 335 * and power consumption (set it too low to save power and we might see
 336 * FIFO underruns and display "flicker").
 337 *
 338 * A value of 5us seems to be a good balance; safe for very low end
 339 * platforms but not overly aggressive on lower latency configs.
 340 */
 341static const int pessimal_latency_ns = 5000;
 342
 343#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 344	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 345
 346static int vlv_get_fifo_size(struct drm_device *dev,
 347			      enum pipe pipe, int plane)
 348{
 349	struct drm_i915_private *dev_priv = dev->dev_private;
 350	int sprite0_start, sprite1_start, size;
 351
 352	switch (pipe) {
 353		uint32_t dsparb, dsparb2, dsparb3;
 354	case PIPE_A:
 355		dsparb = I915_READ(DSPARB);
 356		dsparb2 = I915_READ(DSPARB2);
 357		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 358		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 359		break;
 360	case PIPE_B:
 361		dsparb = I915_READ(DSPARB);
 362		dsparb2 = I915_READ(DSPARB2);
 363		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 364		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 365		break;
 366	case PIPE_C:
 367		dsparb2 = I915_READ(DSPARB2);
 368		dsparb3 = I915_READ(DSPARB3);
 369		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 370		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 371		break;
 372	default:
 373		return 0;
 374	}
 375
 376	switch (plane) {
 377	case 0:
 378		size = sprite0_start;
 379		break;
 380	case 1:
 381		size = sprite1_start - sprite0_start;
 382		break;
 383	case 2:
 384		size = 512 - 1 - sprite1_start;
 385		break;
 386	default:
 387		return 0;
 388	}
 389
 390	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
 391		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
 392		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
 393		      size);
 394
 395	return size;
 396}
 397
 398static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
 399{
 400	struct drm_i915_private *dev_priv = dev->dev_private;
 401	uint32_t dsparb = I915_READ(DSPARB);
 402	int size;
 403
 404	size = dsparb & 0x7f;
 405	if (plane)
 406		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 407
 408	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 409		      plane ? "B" : "A", size);
 410
 411	return size;
 412}
 413
 414static int i830_get_fifo_size(struct drm_device *dev, int plane)
 415{
 416	struct drm_i915_private *dev_priv = dev->dev_private;
 417	uint32_t dsparb = I915_READ(DSPARB);
 418	int size;
 419
 420	size = dsparb & 0x1ff;
 421	if (plane)
 422		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 423	size >>= 1; /* Convert to cachelines */
 424
 425	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 426		      plane ? "B" : "A", size);
 427
 428	return size;
 429}
 430
 431static int i845_get_fifo_size(struct drm_device *dev, int plane)
 432{
 433	struct drm_i915_private *dev_priv = dev->dev_private;
 434	uint32_t dsparb = I915_READ(DSPARB);
 435	int size;
 436
 437	size = dsparb & 0x7f;
 438	size >>= 2; /* Convert to cachelines */
 439
 440	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 441		      plane ? "B" : "A",
 442		      size);
 443
 444	return size;
 445}
 446
 447/* Pineview has different values for various configs */
 448static const struct intel_watermark_params pineview_display_wm = {
 449	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 450	.max_wm = PINEVIEW_MAX_WM,
 451	.default_wm = PINEVIEW_DFT_WM,
 452	.guard_size = PINEVIEW_GUARD_WM,
 453	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 454};
 455static const struct intel_watermark_params pineview_display_hplloff_wm = {
 456	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 457	.max_wm = PINEVIEW_MAX_WM,
 458	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 459	.guard_size = PINEVIEW_GUARD_WM,
 460	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 461};
 462static const struct intel_watermark_params pineview_cursor_wm = {
 463	.fifo_size = PINEVIEW_CURSOR_FIFO,
 464	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 465	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 466	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 467	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 468};
 469static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 470	.fifo_size = PINEVIEW_CURSOR_FIFO,
 471	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 472	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 473	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 474	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 475};
 476static const struct intel_watermark_params g4x_wm_info = {
 477	.fifo_size = G4X_FIFO_SIZE,
 478	.max_wm = G4X_MAX_WM,
 479	.default_wm = G4X_MAX_WM,
 480	.guard_size = 2,
 481	.cacheline_size = G4X_FIFO_LINE_SIZE,
 482};
 483static const struct intel_watermark_params g4x_cursor_wm_info = {
 484	.fifo_size = I965_CURSOR_FIFO,
 485	.max_wm = I965_CURSOR_MAX_WM,
 486	.default_wm = I965_CURSOR_DFT_WM,
 487	.guard_size = 2,
 488	.cacheline_size = G4X_FIFO_LINE_SIZE,
 489};
 490static const struct intel_watermark_params valleyview_wm_info = {
 491	.fifo_size = VALLEYVIEW_FIFO_SIZE,
 492	.max_wm = VALLEYVIEW_MAX_WM,
 493	.default_wm = VALLEYVIEW_MAX_WM,
 494	.guard_size = 2,
 495	.cacheline_size = G4X_FIFO_LINE_SIZE,
 496};
 497static const struct intel_watermark_params valleyview_cursor_wm_info = {
 498	.fifo_size = I965_CURSOR_FIFO,
 499	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
 500	.default_wm = I965_CURSOR_DFT_WM,
 501	.guard_size = 2,
 502	.cacheline_size = G4X_FIFO_LINE_SIZE,
 503};
 504static const struct intel_watermark_params i965_cursor_wm_info = {
 505	.fifo_size = I965_CURSOR_FIFO,
 506	.max_wm = I965_CURSOR_MAX_WM,
 507	.default_wm = I965_CURSOR_DFT_WM,
 508	.guard_size = 2,
 509	.cacheline_size = I915_FIFO_LINE_SIZE,
 510};
 511static const struct intel_watermark_params i945_wm_info = {
 512	.fifo_size = I945_FIFO_SIZE,
 513	.max_wm = I915_MAX_WM,
 514	.default_wm = 1,
 515	.guard_size = 2,
 516	.cacheline_size = I915_FIFO_LINE_SIZE,
 517};
 518static const struct intel_watermark_params i915_wm_info = {
 519	.fifo_size = I915_FIFO_SIZE,
 520	.max_wm = I915_MAX_WM,
 521	.default_wm = 1,
 522	.guard_size = 2,
 523	.cacheline_size = I915_FIFO_LINE_SIZE,
 524};
 525static const struct intel_watermark_params i830_a_wm_info = {
 526	.fifo_size = I855GM_FIFO_SIZE,
 527	.max_wm = I915_MAX_WM,
 528	.default_wm = 1,
 529	.guard_size = 2,
 530	.cacheline_size = I830_FIFO_LINE_SIZE,
 531};
 532static const struct intel_watermark_params i830_bc_wm_info = {
 533	.fifo_size = I855GM_FIFO_SIZE,
 534	.max_wm = I915_MAX_WM/2,
 535	.default_wm = 1,
 536	.guard_size = 2,
 537	.cacheline_size = I830_FIFO_LINE_SIZE,
 538};
 539static const struct intel_watermark_params i845_wm_info = {
 540	.fifo_size = I830_FIFO_SIZE,
 541	.max_wm = I915_MAX_WM,
 542	.default_wm = 1,
 543	.guard_size = 2,
 544	.cacheline_size = I830_FIFO_LINE_SIZE,
 545};
 546
 547/**
 548 * intel_calculate_wm - calculate watermark level
 549 * @clock_in_khz: pixel clock
 550 * @wm: chip FIFO params
 551 * @cpp: bytes per pixel
 552 * @latency_ns: memory latency for the platform
 553 *
 554 * Calculate the watermark level (the level at which the display plane will
 555 * start fetching from memory again).  Each chip has a different display
 556 * FIFO size and allocation, so the caller needs to figure that out and pass
 557 * in the correct intel_watermark_params structure.
 558 *
 559 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 560 * on the pixel size.  When it reaches the watermark level, it'll start
 561 * fetching FIFO line sized based chunks from memory until the FIFO fills
 562 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 563 * will occur, and a display engine hang could result.
 564 */
 565static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 566					const struct intel_watermark_params *wm,
 567					int fifo_size, int cpp,
 
 568					unsigned long latency_ns)
 569{
 570	long entries_required, wm_size;
 571
 572	/*
 573	 * Note: we need to make sure we don't overflow for various clock &
 574	 * latency values.
 575	 * clocks go from a few thousand to several hundred thousand.
 576	 * latency is usually a few thousand
 577	 */
 578	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
 579		1000;
 580	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 581
 582	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 583
 584	wm_size = fifo_size - (entries_required + wm->guard_size);
 585
 586	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 587
 588	/* Don't promote wm_size to unsigned... */
 589	if (wm_size > (long)wm->max_wm)
 590		wm_size = wm->max_wm;
 591	if (wm_size <= 0)
 592		wm_size = wm->default_wm;
 593
 594	/*
 595	 * Bspec seems to indicate that the value shouldn't be lower than
 596	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 597	 * Lets go for 8 which is the burst size since certain platforms
 598	 * already use a hardcoded 8 (which is what the spec says should be
 599	 * done).
 600	 */
 601	if (wm_size <= 8)
 602		wm_size = 8;
 603
 604	return wm_size;
 605}
 606
 607static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
 608{
 609	struct drm_crtc *crtc, *enabled = NULL;
 610
 611	for_each_crtc(dev, crtc) {
 612		if (intel_crtc_active(crtc)) {
 613			if (enabled)
 614				return NULL;
 615			enabled = crtc;
 616		}
 617	}
 618
 619	return enabled;
 620}
 621
 622static void pineview_update_wm(struct drm_crtc *unused_crtc)
 623{
 624	struct drm_device *dev = unused_crtc->dev;
 625	struct drm_i915_private *dev_priv = dev->dev_private;
 626	struct drm_crtc *crtc;
 627	const struct cxsr_latency *latency;
 628	u32 reg;
 629	unsigned long wm;
 630
 631	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
 632					 dev_priv->fsb_freq, dev_priv->mem_freq);
 633	if (!latency) {
 634		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 635		intel_set_memory_cxsr(dev_priv, false);
 636		return;
 637	}
 638
 639	crtc = single_enabled_crtc(dev);
 640	if (crtc) {
 641		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 642		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 643		int clock = adjusted_mode->crtc_clock;
 
 
 
 644
 645		/* Display SR */
 646		wm = intel_calculate_wm(clock, &pineview_display_wm,
 647					pineview_display_wm.fifo_size,
 648					cpp, latency->display_sr);
 649		reg = I915_READ(DSPFW1);
 650		reg &= ~DSPFW_SR_MASK;
 651		reg |= FW_WM(wm, SR);
 652		I915_WRITE(DSPFW1, reg);
 653		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
 654
 655		/* cursor SR */
 656		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
 657					pineview_display_wm.fifo_size,
 658					cpp, latency->cursor_sr);
 659		reg = I915_READ(DSPFW3);
 660		reg &= ~DSPFW_CURSOR_SR_MASK;
 661		reg |= FW_WM(wm, CURSOR_SR);
 662		I915_WRITE(DSPFW3, reg);
 663
 664		/* Display HPLL off SR */
 665		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
 666					pineview_display_hplloff_wm.fifo_size,
 667					cpp, latency->display_hpll_disable);
 668		reg = I915_READ(DSPFW3);
 669		reg &= ~DSPFW_HPLL_SR_MASK;
 670		reg |= FW_WM(wm, HPLL_SR);
 671		I915_WRITE(DSPFW3, reg);
 672
 673		/* cursor HPLL off SR */
 674		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
 675					pineview_display_hplloff_wm.fifo_size,
 676					cpp, latency->cursor_hpll_disable);
 677		reg = I915_READ(DSPFW3);
 678		reg &= ~DSPFW_HPLL_CURSOR_MASK;
 679		reg |= FW_WM(wm, HPLL_CURSOR);
 680		I915_WRITE(DSPFW3, reg);
 681		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
 682
 683		intel_set_memory_cxsr(dev_priv, true);
 
 
 
 684	} else {
 685		intel_set_memory_cxsr(dev_priv, false);
 
 686	}
 687}
 688
 689static bool g4x_compute_wm0(struct drm_device *dev,
 690			    int plane,
 691			    const struct intel_watermark_params *display,
 692			    int display_latency_ns,
 693			    const struct intel_watermark_params *cursor,
 694			    int cursor_latency_ns,
 695			    int *plane_wm,
 696			    int *cursor_wm)
 697{
 698	struct drm_crtc *crtc;
 699	const struct drm_display_mode *adjusted_mode;
 700	int htotal, hdisplay, clock, cpp;
 701	int line_time_us, line_count;
 702	int entries, tlb_miss;
 703
 704	crtc = intel_get_crtc_for_plane(dev, plane);
 705	if (!intel_crtc_active(crtc)) {
 706		*cursor_wm = cursor->guard_size;
 707		*plane_wm = display->guard_size;
 708		return false;
 709	}
 710
 711	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 712	clock = adjusted_mode->crtc_clock;
 713	htotal = adjusted_mode->crtc_htotal;
 714	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 715	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 716
 717	/* Use the small buffer method to calculate plane watermark */
 718	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
 719	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
 720	if (tlb_miss > 0)
 721		entries += tlb_miss;
 722	entries = DIV_ROUND_UP(entries, display->cacheline_size);
 723	*plane_wm = entries + display->guard_size;
 724	if (*plane_wm > (int)display->max_wm)
 725		*plane_wm = display->max_wm;
 726
 727	/* Use the large buffer method to calculate cursor watermark */
 728	line_time_us = max(htotal * 1000 / clock, 1);
 729	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
 730	entries = line_count * crtc->cursor->state->crtc_w * cpp;
 731	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
 732	if (tlb_miss > 0)
 733		entries += tlb_miss;
 734	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 735	*cursor_wm = entries + cursor->guard_size;
 736	if (*cursor_wm > (int)cursor->max_wm)
 737		*cursor_wm = (int)cursor->max_wm;
 738
 739	return true;
 740}
 741
 742/*
 743 * Check the wm result.
 744 *
 745 * If any calculated watermark values is larger than the maximum value that
 746 * can be programmed into the associated watermark register, that watermark
 747 * must be disabled.
 748 */
 749static bool g4x_check_srwm(struct drm_device *dev,
 750			   int display_wm, int cursor_wm,
 751			   const struct intel_watermark_params *display,
 752			   const struct intel_watermark_params *cursor)
 753{
 754	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
 755		      display_wm, cursor_wm);
 756
 757	if (display_wm > display->max_wm) {
 758		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
 759			      display_wm, display->max_wm);
 760		return false;
 761	}
 762
 763	if (cursor_wm > cursor->max_wm) {
 764		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
 765			      cursor_wm, cursor->max_wm);
 766		return false;
 767	}
 768
 769	if (!(display_wm || cursor_wm)) {
 770		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
 771		return false;
 772	}
 773
 774	return true;
 775}
 776
 777static bool g4x_compute_srwm(struct drm_device *dev,
 778			     int plane,
 779			     int latency_ns,
 780			     const struct intel_watermark_params *display,
 781			     const struct intel_watermark_params *cursor,
 782			     int *display_wm, int *cursor_wm)
 783{
 784	struct drm_crtc *crtc;
 785	const struct drm_display_mode *adjusted_mode;
 786	int hdisplay, htotal, cpp, clock;
 787	unsigned long line_time_us;
 788	int line_count, line_size;
 789	int small, large;
 790	int entries;
 791
 792	if (!latency_ns) {
 793		*display_wm = *cursor_wm = 0;
 794		return false;
 795	}
 796
 797	crtc = intel_get_crtc_for_plane(dev, plane);
 798	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 799	clock = adjusted_mode->crtc_clock;
 800	htotal = adjusted_mode->crtc_htotal;
 801	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
 802	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
 803
 804	line_time_us = max(htotal * 1000 / clock, 1);
 805	line_count = (latency_ns / line_time_us + 1000) / 1000;
 806	line_size = hdisplay * cpp;
 807
 808	/* Use the minimum of the small and large buffer method for primary */
 809	small = ((clock * cpp / 1000) * latency_ns) / 1000;
 810	large = line_count * line_size;
 811
 812	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
 813	*display_wm = entries + display->guard_size;
 814
 815	/* calculate the self-refresh watermark for display cursor */
 816	entries = line_count * cpp * crtc->cursor->state->crtc_w;
 817	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 818	*cursor_wm = entries + cursor->guard_size;
 819
 820	return g4x_check_srwm(dev,
 821			      *display_wm, *cursor_wm,
 822			      display, cursor);
 823}
 824
 825#define FW_WM_VLV(value, plane) \
 826	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
 827
 828static void vlv_write_wm_values(struct intel_crtc *crtc,
 829				const struct vlv_wm_values *wm)
 
 830{
 831	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 832	enum pipe pipe = crtc->pipe;
 833
 834	I915_WRITE(VLV_DDL(pipe),
 835		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
 836		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
 837		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
 838		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
 839
 840	I915_WRITE(DSPFW1,
 841		   FW_WM(wm->sr.plane, SR) |
 842		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
 843		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
 844		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
 845	I915_WRITE(DSPFW2,
 846		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
 847		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
 848		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
 849	I915_WRITE(DSPFW3,
 850		   FW_WM(wm->sr.cursor, CURSOR_SR));
 851
 852	if (IS_CHERRYVIEW(dev_priv)) {
 853		I915_WRITE(DSPFW7_CHV,
 854			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 855			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 856		I915_WRITE(DSPFW8_CHV,
 857			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
 858			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
 859		I915_WRITE(DSPFW9_CHV,
 860			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
 861			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
 862		I915_WRITE(DSPHOWM,
 863			   FW_WM(wm->sr.plane >> 9, SR_HI) |
 864			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
 865			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
 866			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
 867			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 868			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 869			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 870			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 871			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 872			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 873	} else {
 874		I915_WRITE(DSPFW7,
 875			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
 876			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
 877		I915_WRITE(DSPHOWM,
 878			   FW_WM(wm->sr.plane >> 9, SR_HI) |
 879			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
 880			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
 881			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
 882			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
 883			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
 884			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
 885	}
 886
 887	/* zero (unused) WM1 watermarks */
 888	I915_WRITE(DSPFW4, 0);
 889	I915_WRITE(DSPFW5, 0);
 890	I915_WRITE(DSPFW6, 0);
 891	I915_WRITE(DSPHOWM1, 0);
 892
 893	POSTING_READ(DSPFW1);
 894}
 895
 896#undef FW_WM_VLV
 897
 898enum vlv_wm_level {
 899	VLV_WM_LEVEL_PM2,
 900	VLV_WM_LEVEL_PM5,
 901	VLV_WM_LEVEL_DDR_DVFS,
 902};
 903
 904/* latency must be in 0.1us units. */
 905static unsigned int vlv_wm_method2(unsigned int pixel_rate,
 906				   unsigned int pipe_htotal,
 907				   unsigned int horiz_pixels,
 908				   unsigned int cpp,
 909				   unsigned int latency)
 910{
 911	unsigned int ret;
 912
 913	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
 914	ret = (ret + 1) * horiz_pixels * cpp;
 915	ret = DIV_ROUND_UP(ret, 64);
 916
 917	return ret;
 918}
 919
 920static void vlv_setup_wm_latency(struct drm_device *dev)
 921{
 922	struct drm_i915_private *dev_priv = dev->dev_private;
 923
 924	/* all latencies in usec */
 925	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
 926
 927	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
 928
 929	if (IS_CHERRYVIEW(dev_priv)) {
 930		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
 931		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
 932
 933		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
 934	}
 935}
 936
 937static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
 938				     struct intel_crtc *crtc,
 939				     const struct intel_plane_state *state,
 940				     int level)
 941{
 942	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
 943	int clock, htotal, cpp, width, wm;
 944
 945	if (dev_priv->wm.pri_latency[level] == 0)
 946		return USHRT_MAX;
 947
 948	if (!state->visible)
 949		return 0;
 950
 951	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
 952	clock = crtc->config->base.adjusted_mode.crtc_clock;
 953	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
 954	width = crtc->config->pipe_src_w;
 955	if (WARN_ON(htotal == 0))
 956		htotal = 1;
 957
 958	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
 959		/*
 960		 * FIXME the formula gives values that are
 961		 * too big for the cursor FIFO, and hence we
 962		 * would never be able to use cursors. For
 963		 * now just hardcode the watermark.
 964		 */
 965		wm = 63;
 966	} else {
 967		wm = vlv_wm_method2(clock, htotal, width, cpp,
 968				    dev_priv->wm.pri_latency[level] * 10);
 969	}
 970
 971	return min_t(int, wm, USHRT_MAX);
 972}
 973
 974static void vlv_compute_fifo(struct intel_crtc *crtc)
 975{
 976	struct drm_device *dev = crtc->base.dev;
 977	struct vlv_wm_state *wm_state = &crtc->wm_state;
 978	struct intel_plane *plane;
 979	unsigned int total_rate = 0;
 980	const int fifo_size = 512 - 1;
 981	int fifo_extra, fifo_left = fifo_size;
 982
 983	for_each_intel_plane_on_crtc(dev, crtc, plane) {
 984		struct intel_plane_state *state =
 985			to_intel_plane_state(plane->base.state);
 986
 987		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
 988			continue;
 989
 990		if (state->visible) {
 991			wm_state->num_active_planes++;
 992			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
 993		}
 994	}
 995
 996	for_each_intel_plane_on_crtc(dev, crtc, plane) {
 997		struct intel_plane_state *state =
 998			to_intel_plane_state(plane->base.state);
 999		unsigned int rate;
1000
1001		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1002			plane->wm.fifo_size = 63;
1003			continue;
1004		}
1005
1006		if (!state->visible) {
1007			plane->wm.fifo_size = 0;
1008			continue;
1009		}
1010
1011		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1012		plane->wm.fifo_size = fifo_size * rate / total_rate;
1013		fifo_left -= plane->wm.fifo_size;
1014	}
1015
1016	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1017
1018	/* spread the remainder evenly */
1019	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1020		int plane_extra;
1021
1022		if (fifo_left == 0)
1023			break;
1024
1025		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1026			continue;
1027
1028		/* give it all to the first plane if none are active */
1029		if (plane->wm.fifo_size == 0 &&
1030		    wm_state->num_active_planes)
1031			continue;
1032
1033		plane_extra = min(fifo_extra, fifo_left);
1034		plane->wm.fifo_size += plane_extra;
1035		fifo_left -= plane_extra;
1036	}
1037
1038	WARN_ON(fifo_left != 0);
1039}
1040
1041static void vlv_invert_wms(struct intel_crtc *crtc)
1042{
1043	struct vlv_wm_state *wm_state = &crtc->wm_state;
1044	int level;
1045
1046	for (level = 0; level < wm_state->num_levels; level++) {
1047		struct drm_device *dev = crtc->base.dev;
1048		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1049		struct intel_plane *plane;
1050
1051		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1052		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1053
1054		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1055			switch (plane->base.type) {
1056				int sprite;
1057			case DRM_PLANE_TYPE_CURSOR:
1058				wm_state->wm[level].cursor = plane->wm.fifo_size -
1059					wm_state->wm[level].cursor;
1060				break;
1061			case DRM_PLANE_TYPE_PRIMARY:
1062				wm_state->wm[level].primary = plane->wm.fifo_size -
1063					wm_state->wm[level].primary;
1064				break;
1065			case DRM_PLANE_TYPE_OVERLAY:
1066				sprite = plane->plane;
1067				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1068					wm_state->wm[level].sprite[sprite];
1069				break;
1070			}
1071		}
1072	}
1073}
1074
1075static void vlv_compute_wm(struct intel_crtc *crtc)
1076{
1077	struct drm_device *dev = crtc->base.dev;
1078	struct vlv_wm_state *wm_state = &crtc->wm_state;
1079	struct intel_plane *plane;
1080	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1081	int level;
1082
1083	memset(wm_state, 0, sizeof(*wm_state));
1084
1085	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1086	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1087
1088	wm_state->num_active_planes = 0;
1089
1090	vlv_compute_fifo(crtc);
1091
1092	if (wm_state->num_active_planes != 1)
1093		wm_state->cxsr = false;
1094
1095	if (wm_state->cxsr) {
1096		for (level = 0; level < wm_state->num_levels; level++) {
1097			wm_state->sr[level].plane = sr_fifo_size;
1098			wm_state->sr[level].cursor = 63;
1099		}
1100	}
1101
1102	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1103		struct intel_plane_state *state =
1104			to_intel_plane_state(plane->base.state);
1105
1106		if (!state->visible)
1107			continue;
1108
1109		/* normal watermarks */
1110		for (level = 0; level < wm_state->num_levels; level++) {
1111			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1112			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1113
1114			/* hack */
1115			if (WARN_ON(level == 0 && wm > max_wm))
1116				wm = max_wm;
1117
1118			if (wm > plane->wm.fifo_size)
1119				break;
1120
1121			switch (plane->base.type) {
1122				int sprite;
1123			case DRM_PLANE_TYPE_CURSOR:
1124				wm_state->wm[level].cursor = wm;
1125				break;
1126			case DRM_PLANE_TYPE_PRIMARY:
1127				wm_state->wm[level].primary = wm;
1128				break;
1129			case DRM_PLANE_TYPE_OVERLAY:
1130				sprite = plane->plane;
1131				wm_state->wm[level].sprite[sprite] = wm;
1132				break;
1133			}
1134		}
1135
1136		wm_state->num_levels = level;
1137
1138		if (!wm_state->cxsr)
1139			continue;
 
1140
1141		/* maxfifo watermarks */
1142		switch (plane->base.type) {
1143			int sprite, level;
1144		case DRM_PLANE_TYPE_CURSOR:
1145			for (level = 0; level < wm_state->num_levels; level++)
1146				wm_state->sr[level].cursor =
1147					wm_state->wm[level].cursor;
1148			break;
1149		case DRM_PLANE_TYPE_PRIMARY:
1150			for (level = 0; level < wm_state->num_levels; level++)
1151				wm_state->sr[level].plane =
1152					min(wm_state->sr[level].plane,
1153					    wm_state->wm[level].primary);
1154			break;
1155		case DRM_PLANE_TYPE_OVERLAY:
1156			sprite = plane->plane;
1157			for (level = 0; level < wm_state->num_levels; level++)
1158				wm_state->sr[level].plane =
1159					min(wm_state->sr[level].plane,
1160					    wm_state->wm[level].sprite[sprite]);
1161			break;
1162		}
1163	}
1164
1165	/* clear any (partially) filled invalid levels */
1166	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1167		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1168		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1169	}
 
 
 
 
 
1170
1171	vlv_invert_wms(crtc);
1172}
1173
1174#define VLV_FIFO(plane, value) \
1175	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
 
 
 
 
 
1176
1177static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1178{
1179	struct drm_device *dev = crtc->base.dev;
1180	struct drm_i915_private *dev_priv = to_i915(dev);
1181	struct intel_plane *plane;
1182	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1183
1184	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1185		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1186			WARN_ON(plane->wm.fifo_size != 63);
1187			continue;
1188		}
1189
1190		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1191			sprite0_start = plane->wm.fifo_size;
1192		else if (plane->plane == 0)
1193			sprite1_start = sprite0_start + plane->wm.fifo_size;
1194		else
1195			fifo_size = sprite1_start + plane->wm.fifo_size;
1196	}
1197
1198	WARN_ON(fifo_size != 512 - 1);
1199
1200	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1201		      pipe_name(crtc->pipe), sprite0_start,
1202		      sprite1_start, fifo_size);
1203
1204	switch (crtc->pipe) {
1205		uint32_t dsparb, dsparb2, dsparb3;
1206	case PIPE_A:
1207		dsparb = I915_READ(DSPARB);
1208		dsparb2 = I915_READ(DSPARB2);
1209
1210		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1211			    VLV_FIFO(SPRITEB, 0xff));
1212		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1213			   VLV_FIFO(SPRITEB, sprite1_start));
1214
1215		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1216			     VLV_FIFO(SPRITEB_HI, 0x1));
1217		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1218			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1219
1220		I915_WRITE(DSPARB, dsparb);
1221		I915_WRITE(DSPARB2, dsparb2);
1222		break;
1223	case PIPE_B:
1224		dsparb = I915_READ(DSPARB);
1225		dsparb2 = I915_READ(DSPARB2);
1226
1227		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1228			    VLV_FIFO(SPRITED, 0xff));
1229		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1230			   VLV_FIFO(SPRITED, sprite1_start));
1231
1232		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1233			     VLV_FIFO(SPRITED_HI, 0xff));
1234		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1235			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1236
1237		I915_WRITE(DSPARB, dsparb);
1238		I915_WRITE(DSPARB2, dsparb2);
1239		break;
1240	case PIPE_C:
1241		dsparb3 = I915_READ(DSPARB3);
1242		dsparb2 = I915_READ(DSPARB2);
1243
1244		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1245			     VLV_FIFO(SPRITEF, 0xff));
1246		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1247			    VLV_FIFO(SPRITEF, sprite1_start));
1248
1249		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1250			     VLV_FIFO(SPRITEF_HI, 0xff));
1251		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1252			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1253
1254		I915_WRITE(DSPARB3, dsparb3);
1255		I915_WRITE(DSPARB2, dsparb2);
1256		break;
1257	default:
1258		break;
1259	}
1260}
1261
1262#undef VLV_FIFO
1263
1264static void vlv_merge_wm(struct drm_device *dev,
1265			 struct vlv_wm_values *wm)
1266{
1267	struct intel_crtc *crtc;
1268	int num_active_crtcs = 0;
1269
1270	wm->level = to_i915(dev)->wm.max_level;
1271	wm->cxsr = true;
1272
1273	for_each_intel_crtc(dev, crtc) {
1274		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1275
1276		if (!crtc->active)
1277			continue;
1278
1279		if (!wm_state->cxsr)
1280			wm->cxsr = false;
1281
1282		num_active_crtcs++;
1283		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1284	}
1285
1286	if (num_active_crtcs != 1)
1287		wm->cxsr = false;
1288
1289	if (num_active_crtcs > 1)
1290		wm->level = VLV_WM_LEVEL_PM2;
1291
1292	for_each_intel_crtc(dev, crtc) {
1293		struct vlv_wm_state *wm_state = &crtc->wm_state;
1294		enum pipe pipe = crtc->pipe;
1295
1296		if (!crtc->active)
1297			continue;
1298
1299		wm->pipe[pipe] = wm_state->wm[wm->level];
1300		if (wm->cxsr)
1301			wm->sr = wm_state->sr[wm->level];
1302
1303		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1304		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1305		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1306		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1307	}
1308}
1309
1310static void vlv_update_wm(struct drm_crtc *crtc)
1311{
1312	struct drm_device *dev = crtc->dev;
 
1313	struct drm_i915_private *dev_priv = dev->dev_private;
1314	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1315	enum pipe pipe = intel_crtc->pipe;
1316	struct vlv_wm_values wm = {};
1317
1318	vlv_compute_wm(intel_crtc);
1319	vlv_merge_wm(dev, &wm);
1320
1321	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1322		/* FIXME should be part of crtc atomic commit */
1323		vlv_pipe_set_fifo_size(intel_crtc);
1324		return;
1325	}
1326
1327	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1328	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1329		chv_set_memory_dvfs(dev_priv, false);
1330
1331	if (wm.level < VLV_WM_LEVEL_PM5 &&
1332	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1333		chv_set_memory_pm5(dev_priv, false);
1334
1335	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1336		intel_set_memory_cxsr(dev_priv, false);
1337
1338	/* FIXME should be part of crtc atomic commit */
1339	vlv_pipe_set_fifo_size(intel_crtc);
1340
1341	vlv_write_wm_values(intel_crtc, &wm);
1342
1343	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1344		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1345		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1346		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1347		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1348
1349	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1350		intel_set_memory_cxsr(dev_priv, true);
 
 
 
1351
1352	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1353	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1354		chv_set_memory_pm5(dev_priv, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355
1356	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1357	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1358		chv_set_memory_dvfs(dev_priv, true);
 
1359
1360	dev_priv->wm.vlv = wm;
 
 
 
 
 
 
 
 
 
 
1361}
1362
1363#define single_plane_enabled(mask) is_power_of_2(mask)
1364
1365static void g4x_update_wm(struct drm_crtc *crtc)
1366{
1367	struct drm_device *dev = crtc->dev;
1368	static const int sr_latency_ns = 12000;
1369	struct drm_i915_private *dev_priv = dev->dev_private;
1370	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1371	int plane_sr, cursor_sr;
1372	unsigned int enabled = 0;
1373	bool cxsr_enabled;
1374
1375	if (g4x_compute_wm0(dev, PIPE_A,
1376			    &g4x_wm_info, pessimal_latency_ns,
1377			    &g4x_cursor_wm_info, pessimal_latency_ns,
1378			    &planea_wm, &cursora_wm))
1379		enabled |= 1 << PIPE_A;
1380
1381	if (g4x_compute_wm0(dev, PIPE_B,
1382			    &g4x_wm_info, pessimal_latency_ns,
1383			    &g4x_cursor_wm_info, pessimal_latency_ns,
1384			    &planeb_wm, &cursorb_wm))
1385		enabled |= 1 << PIPE_B;
1386
1387	if (single_plane_enabled(enabled) &&
1388	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1389			     sr_latency_ns,
1390			     &g4x_wm_info,
1391			     &g4x_cursor_wm_info,
1392			     &plane_sr, &cursor_sr)) {
1393		cxsr_enabled = true;
1394	} else {
1395		cxsr_enabled = false;
1396		intel_set_memory_cxsr(dev_priv, false);
1397		plane_sr = cursor_sr = 0;
1398	}
1399
1400	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1401		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1402		      planea_wm, cursora_wm,
1403		      planeb_wm, cursorb_wm,
1404		      plane_sr, cursor_sr);
1405
1406	I915_WRITE(DSPFW1,
1407		   FW_WM(plane_sr, SR) |
1408		   FW_WM(cursorb_wm, CURSORB) |
1409		   FW_WM(planeb_wm, PLANEB) |
1410		   FW_WM(planea_wm, PLANEA));
1411	I915_WRITE(DSPFW2,
1412		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1413		   FW_WM(cursora_wm, CURSORA));
1414	/* HPLL off in SR has some issues on G4x... disable it */
1415	I915_WRITE(DSPFW3,
1416		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1417		   FW_WM(cursor_sr, CURSOR_SR));
1418
1419	if (cxsr_enabled)
1420		intel_set_memory_cxsr(dev_priv, true);
1421}
1422
1423static void i965_update_wm(struct drm_crtc *unused_crtc)
1424{
1425	struct drm_device *dev = unused_crtc->dev;
1426	struct drm_i915_private *dev_priv = dev->dev_private;
1427	struct drm_crtc *crtc;
1428	int srwm = 1;
1429	int cursor_sr = 16;
1430	bool cxsr_enabled;
1431
1432	/* Calc sr entries for one plane configs */
1433	crtc = single_enabled_crtc(dev);
1434	if (crtc) {
1435		/* self-refresh has much higher latency */
1436		static const int sr_latency_ns = 12000;
1437		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
 
1438		int clock = adjusted_mode->crtc_clock;
1439		int htotal = adjusted_mode->crtc_htotal;
1440		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1441		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1442		unsigned long line_time_us;
1443		int entries;
1444
1445		line_time_us = max(htotal * 1000 / clock, 1);
1446
1447		/* Use ns/us then divide to preserve precision */
1448		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449			cpp * hdisplay;
1450		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1451		srwm = I965_FIFO_SIZE - entries;
1452		if (srwm < 0)
1453			srwm = 1;
1454		srwm &= 0x1ff;
1455		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1456			      entries, srwm);
1457
1458		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459			cpp * crtc->cursor->state->crtc_w;
1460		entries = DIV_ROUND_UP(entries,
1461					  i965_cursor_wm_info.cacheline_size);
1462		cursor_sr = i965_cursor_wm_info.fifo_size -
1463			(entries + i965_cursor_wm_info.guard_size);
1464
1465		if (cursor_sr > i965_cursor_wm_info.max_wm)
1466			cursor_sr = i965_cursor_wm_info.max_wm;
1467
1468		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1469			      "cursor %d\n", srwm, cursor_sr);
1470
1471		cxsr_enabled = true;
 
1472	} else {
1473		cxsr_enabled = false;
1474		/* Turn off self refresh if both pipes are enabled */
1475		intel_set_memory_cxsr(dev_priv, false);
 
 
1476	}
1477
1478	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1479		      srwm);
1480
1481	/* 965 has limitations... */
1482	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1483		   FW_WM(8, CURSORB) |
1484		   FW_WM(8, PLANEB) |
1485		   FW_WM(8, PLANEA));
1486	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1487		   FW_WM(8, PLANEC_OLD));
1488	/* update cursor SR watermark */
1489	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1490
1491	if (cxsr_enabled)
1492		intel_set_memory_cxsr(dev_priv, true);
1493}
1494
1495#undef FW_WM
1496
1497static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1498{
1499	struct drm_device *dev = unused_crtc->dev;
1500	struct drm_i915_private *dev_priv = dev->dev_private;
1501	const struct intel_watermark_params *wm_info;
1502	uint32_t fwater_lo;
1503	uint32_t fwater_hi;
1504	int cwm, srwm = 1;
1505	int fifo_size;
1506	int planea_wm, planeb_wm;
1507	struct drm_crtc *crtc, *enabled = NULL;
1508
1509	if (IS_I945GM(dev))
1510		wm_info = &i945_wm_info;
1511	else if (!IS_GEN2(dev))
1512		wm_info = &i915_wm_info;
1513	else
1514		wm_info = &i830_a_wm_info;
1515
1516	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1517	crtc = intel_get_crtc_for_plane(dev, 0);
1518	if (intel_crtc_active(crtc)) {
1519		const struct drm_display_mode *adjusted_mode;
1520		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1521		if (IS_GEN2(dev))
1522			cpp = 4;
1523
1524		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1525		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1526					       wm_info, fifo_size, cpp,
1527					       pessimal_latency_ns);
1528		enabled = crtc;
1529	} else {
1530		planea_wm = fifo_size - wm_info->guard_size;
1531		if (planea_wm > (long)wm_info->max_wm)
1532			planea_wm = wm_info->max_wm;
1533	}
1534
1535	if (IS_GEN2(dev))
1536		wm_info = &i830_bc_wm_info;
1537
1538	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1539	crtc = intel_get_crtc_for_plane(dev, 1);
1540	if (intel_crtc_active(crtc)) {
1541		const struct drm_display_mode *adjusted_mode;
1542		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1543		if (IS_GEN2(dev))
1544			cpp = 4;
1545
1546		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1547		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548					       wm_info, fifo_size, cpp,
1549					       pessimal_latency_ns);
1550		if (enabled == NULL)
1551			enabled = crtc;
1552		else
1553			enabled = NULL;
1554	} else {
1555		planeb_wm = fifo_size - wm_info->guard_size;
1556		if (planeb_wm > (long)wm_info->max_wm)
1557			planeb_wm = wm_info->max_wm;
1558	}
1559
1560	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1561
1562	if (IS_I915GM(dev) && enabled) {
1563		struct drm_i915_gem_object *obj;
1564
1565		obj = intel_fb_obj(enabled->primary->state->fb);
1566
1567		/* self-refresh seems busted with untiled */
1568		if (obj->tiling_mode == I915_TILING_NONE)
1569			enabled = NULL;
1570	}
1571
1572	/*
1573	 * Overlay gets an aggressive default since video jitter is bad.
1574	 */
1575	cwm = 2;
1576
1577	/* Play safe and disable self-refresh before adjusting watermarks. */
1578	intel_set_memory_cxsr(dev_priv, false);
 
 
 
1579
1580	/* Calc sr entries for one plane configs */
1581	if (HAS_FW_BLC(dev) && enabled) {
1582		/* self-refresh has much higher latency */
1583		static const int sr_latency_ns = 6000;
1584		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
 
1585		int clock = adjusted_mode->crtc_clock;
1586		int htotal = adjusted_mode->crtc_htotal;
1587		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1588		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1589		unsigned long line_time_us;
1590		int entries;
1591
1592		line_time_us = max(htotal * 1000 / clock, 1);
1593
1594		/* Use ns/us then divide to preserve precision */
1595		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1596			cpp * hdisplay;
1597		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1598		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1599		srwm = wm_info->fifo_size - entries;
1600		if (srwm < 0)
1601			srwm = 1;
1602
1603		if (IS_I945G(dev) || IS_I945GM(dev))
1604			I915_WRITE(FW_BLC_SELF,
1605				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1606		else if (IS_I915GM(dev))
1607			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1608	}
1609
1610	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1611		      planea_wm, planeb_wm, cwm, srwm);
1612
1613	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1614	fwater_hi = (cwm & 0x1f);
1615
1616	/* Set request length to 8 cachelines per fetch */
1617	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1618	fwater_hi = fwater_hi | (1 << 8);
1619
1620	I915_WRITE(FW_BLC, fwater_lo);
1621	I915_WRITE(FW_BLC2, fwater_hi);
1622
1623	if (enabled)
1624		intel_set_memory_cxsr(dev_priv, true);
 
 
 
 
 
 
 
 
 
1625}
1626
1627static void i845_update_wm(struct drm_crtc *unused_crtc)
1628{
1629	struct drm_device *dev = unused_crtc->dev;
1630	struct drm_i915_private *dev_priv = dev->dev_private;
1631	struct drm_crtc *crtc;
1632	const struct drm_display_mode *adjusted_mode;
1633	uint32_t fwater_lo;
1634	int planea_wm;
1635
1636	crtc = single_enabled_crtc(dev);
1637	if (crtc == NULL)
1638		return;
1639
1640	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1641	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1642				       &i845_wm_info,
1643				       dev_priv->display.get_fifo_size(dev, 0),
1644				       4, pessimal_latency_ns);
1645	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1646	fwater_lo |= (3<<8) | planea_wm;
1647
1648	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1649
1650	I915_WRITE(FW_BLC, fwater_lo);
1651}
1652
1653uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
 
1654{
 
1655	uint32_t pixel_rate;
1656
1657	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1658
1659	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1660	 * adjust the pixel_rate here. */
1661
1662	if (pipe_config->pch_pfit.enabled) {
1663		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1664		uint32_t pfit_size = pipe_config->pch_pfit.size;
1665
1666		pipe_w = pipe_config->pipe_src_w;
1667		pipe_h = pipe_config->pipe_src_h;
1668
 
 
1669		pfit_w = (pfit_size >> 16) & 0xFFFF;
1670		pfit_h = pfit_size & 0xFFFF;
1671		if (pipe_w < pfit_w)
1672			pipe_w = pfit_w;
1673		if (pipe_h < pfit_h)
1674			pipe_h = pfit_h;
1675
1676		if (WARN_ON(!pfit_w || !pfit_h))
1677			return pixel_rate;
1678
1679		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1680				     pfit_w * pfit_h);
1681	}
1682
1683	return pixel_rate;
1684}
1685
1686/* latency must be in 0.1us units. */
1687static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
 
1688{
1689	uint64_t ret;
1690
1691	if (WARN(latency == 0, "Latency value missing\n"))
1692		return UINT_MAX;
1693
1694	ret = (uint64_t) pixel_rate * cpp * latency;
1695	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1696
1697	return ret;
1698}
1699
1700/* latency must be in 0.1us units. */
1701static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1702			       uint32_t horiz_pixels, uint8_t cpp,
1703			       uint32_t latency)
1704{
1705	uint32_t ret;
1706
1707	if (WARN(latency == 0, "Latency value missing\n"))
1708		return UINT_MAX;
1709	if (WARN_ON(!pipe_htotal))
1710		return UINT_MAX;
1711
1712	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1713	ret = (ret + 1) * horiz_pixels * cpp;
1714	ret = DIV_ROUND_UP(ret, 64) + 2;
1715	return ret;
1716}
1717
1718static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1719			   uint8_t cpp)
1720{
1721	/*
1722	 * Neither of these should be possible since this function shouldn't be
1723	 * called if the CRTC is off or the plane is invisible.  But let's be
1724	 * extra paranoid to avoid a potential divide-by-zero if we screw up
1725	 * elsewhere in the driver.
1726	 */
1727	if (WARN_ON(!cpp))
1728		return 0;
1729	if (WARN_ON(!horiz_pixels))
1730		return 0;
1731
1732	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1733}
1734
 
 
 
 
 
 
 
 
 
1735struct ilk_wm_maximums {
1736	uint16_t pri;
1737	uint16_t spr;
1738	uint16_t cur;
1739	uint16_t fbc;
1740};
1741
 
 
 
 
 
 
 
1742/*
1743 * For both WM_PIPE and WM_LP.
1744 * mem_value must be in 0.1us units.
1745 */
1746static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1747				   const struct intel_plane_state *pstate,
1748				   uint32_t mem_value,
1749				   bool is_lp)
1750{
1751	int cpp = pstate->base.fb ?
1752		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1753	uint32_t method1, method2;
1754
1755	if (!cstate->base.active || !pstate->visible)
1756		return 0;
1757
1758	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
 
 
1759
1760	if (!is_lp)
1761		return method1;
1762
1763	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1764				 cstate->base.adjusted_mode.crtc_htotal,
1765				 drm_rect_width(&pstate->dst),
1766				 cpp, mem_value);
 
1767
1768	return min(method1, method2);
1769}
1770
1771/*
1772 * For both WM_PIPE and WM_LP.
1773 * mem_value must be in 0.1us units.
1774 */
1775static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1776				   const struct intel_plane_state *pstate,
1777				   uint32_t mem_value)
1778{
1779	int cpp = pstate->base.fb ?
1780		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1781	uint32_t method1, method2;
1782
1783	if (!cstate->base.active || !pstate->visible)
1784		return 0;
1785
1786	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1787	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1788				 cstate->base.adjusted_mode.crtc_htotal,
1789				 drm_rect_width(&pstate->dst),
1790				 cpp, mem_value);
 
 
 
1791	return min(method1, method2);
1792}
1793
1794/*
1795 * For both WM_PIPE and WM_LP.
1796 * mem_value must be in 0.1us units.
1797 */
1798static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1799				   const struct intel_plane_state *pstate,
1800				   uint32_t mem_value)
1801{
1802	/*
1803	 * We treat the cursor plane as always-on for the purposes of watermark
1804	 * calculation.  Until we have two-stage watermark programming merged,
1805	 * this is necessary to avoid flickering.
1806	 */
1807	int cpp = 4;
1808	int width = pstate->visible ? pstate->base.crtc_w : 64;
1809
1810	if (!cstate->base.active)
1811		return 0;
1812
1813	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1814			      cstate->base.adjusted_mode.crtc_htotal,
1815			      width, cpp, mem_value);
 
 
1816}
1817
1818/* Only for WM_LP. */
1819static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1820				   const struct intel_plane_state *pstate,
1821				   uint32_t pri_val)
1822{
1823	int cpp = pstate->base.fb ?
1824		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1825
1826	if (!cstate->base.active || !pstate->visible)
1827		return 0;
1828
1829	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
 
 
1830}
1831
1832static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1833{
1834	if (INTEL_INFO(dev)->gen >= 8)
1835		return 3072;
1836	else if (INTEL_INFO(dev)->gen >= 7)
1837		return 768;
1838	else
1839		return 512;
1840}
1841
1842static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1843					 int level, bool is_sprite)
1844{
1845	if (INTEL_INFO(dev)->gen >= 8)
1846		/* BDW primary/sprite plane watermarks */
1847		return level == 0 ? 255 : 2047;
1848	else if (INTEL_INFO(dev)->gen >= 7)
1849		/* IVB/HSW primary/sprite plane watermarks */
1850		return level == 0 ? 127 : 1023;
1851	else if (!is_sprite)
1852		/* ILK/SNB primary plane watermarks */
1853		return level == 0 ? 127 : 511;
1854	else
1855		/* ILK/SNB sprite plane watermarks */
1856		return level == 0 ? 63 : 255;
1857}
1858
1859static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1860					  int level)
1861{
1862	if (INTEL_INFO(dev)->gen >= 7)
1863		return level == 0 ? 63 : 255;
1864	else
1865		return level == 0 ? 31 : 63;
1866}
1867
1868static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1869{
1870	if (INTEL_INFO(dev)->gen >= 8)
1871		return 31;
1872	else
1873		return 15;
1874}
1875
1876/* Calculate the maximum primary/sprite plane watermark */
1877static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1878				     int level,
1879				     const struct intel_wm_config *config,
1880				     enum intel_ddb_partitioning ddb_partitioning,
1881				     bool is_sprite)
1882{
1883	unsigned int fifo_size = ilk_display_fifo_size(dev);
 
1884
1885	/* if sprites aren't enabled, sprites get nothing */
1886	if (is_sprite && !config->sprites_enabled)
1887		return 0;
1888
1889	/* HSW allows LP1+ watermarks even with multiple pipes */
1890	if (level == 0 || config->num_pipes_active > 1) {
1891		fifo_size /= INTEL_INFO(dev)->num_pipes;
1892
1893		/*
1894		 * For some reason the non self refresh
1895		 * FIFO size is only half of the self
1896		 * refresh FIFO size on ILK/SNB.
1897		 */
1898		if (INTEL_INFO(dev)->gen <= 6)
1899			fifo_size /= 2;
1900	}
1901
1902	if (config->sprites_enabled) {
1903		/* level 0 is always calculated with 1:1 split */
1904		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1905			if (is_sprite)
1906				fifo_size *= 5;
1907			fifo_size /= 6;
1908		} else {
1909			fifo_size /= 2;
1910		}
1911	}
1912
1913	/* clamp to max that the registers can hold */
1914	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
 
 
 
 
 
 
 
 
 
 
 
 
1915}
1916
1917/* Calculate the maximum cursor plane watermark */
1918static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1919				      int level,
1920				      const struct intel_wm_config *config)
1921{
1922	/* HSW LP1+ watermarks w/ multiple pipes */
1923	if (level > 0 && config->num_pipes_active > 1)
1924		return 64;
1925
1926	/* otherwise just report max that registers can hold */
1927	return ilk_cursor_wm_reg_max(dev, level);
 
 
 
 
 
 
 
 
 
 
 
 
 
1928}
1929
1930static void ilk_compute_wm_maximums(const struct drm_device *dev,
1931				    int level,
1932				    const struct intel_wm_config *config,
1933				    enum intel_ddb_partitioning ddb_partitioning,
1934				    struct ilk_wm_maximums *max)
1935{
1936	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1937	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1938	max->cur = ilk_cursor_wm_max(dev, level, config);
1939	max->fbc = ilk_fbc_wm_reg_max(dev);
1940}
1941
1942static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1943					int level,
1944					struct ilk_wm_maximums *max)
1945{
1946	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1947	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1948	max->cur = ilk_cursor_wm_reg_max(dev, level);
1949	max->fbc = ilk_fbc_wm_reg_max(dev);
1950}
1951
1952static bool ilk_validate_wm_level(int level,
1953				  const struct ilk_wm_maximums *max,
1954				  struct intel_wm_level *result)
1955{
1956	bool ret;
1957
1958	/* already determined to be invalid? */
1959	if (!result->enable)
1960		return false;
1961
1962	result->enable = result->pri_val <= max->pri &&
1963			 result->spr_val <= max->spr &&
1964			 result->cur_val <= max->cur;
1965
1966	ret = result->enable;
1967
1968	/*
1969	 * HACK until we can pre-compute everything,
1970	 * and thus fail gracefully if LP0 watermarks
1971	 * are exceeded...
1972	 */
1973	if (level == 0 && !result->enable) {
1974		if (result->pri_val > max->pri)
1975			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1976				      level, result->pri_val, max->pri);
1977		if (result->spr_val > max->spr)
1978			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1979				      level, result->spr_val, max->spr);
1980		if (result->cur_val > max->cur)
1981			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1982				      level, result->cur_val, max->cur);
1983
1984		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1985		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1986		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1987		result->enable = true;
1988	}
1989
1990	return ret;
1991}
1992
1993static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1994				 const struct intel_crtc *intel_crtc,
1995				 int level,
1996				 struct intel_crtc_state *cstate,
1997				 struct intel_plane_state *pristate,
1998				 struct intel_plane_state *sprstate,
1999				 struct intel_plane_state *curstate,
2000				 struct intel_wm_level *result)
2001{
2002	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2003	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2004	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2005
2006	/* WM1+ latency values stored in 0.5us units */
2007	if (level > 0) {
2008		pri_latency *= 5;
2009		spr_latency *= 5;
2010		cur_latency *= 5;
2011	}
2012
2013	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2014					     pri_latency, level);
2015	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2016	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2017	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2018	result->enable = true;
2019}
2020
2021static uint32_t
2022hsw_compute_linetime_wm(struct drm_device *dev,
2023			struct intel_crtc_state *cstate)
2024{
2025	struct drm_i915_private *dev_priv = dev->dev_private;
2026	const struct drm_display_mode *adjusted_mode =
2027		&cstate->base.adjusted_mode;
2028	u32 linetime, ips_linetime;
2029
2030	if (!cstate->base.active)
2031		return 0;
2032	if (WARN_ON(adjusted_mode->crtc_clock == 0))
2033		return 0;
2034	if (WARN_ON(dev_priv->cdclk_freq == 0))
2035		return 0;
2036
2037	/* The WM are computed with base on how long it takes to fill a single
2038	 * row at the given clock rate, multiplied by 8.
2039	 * */
2040	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2041				     adjusted_mode->crtc_clock);
2042	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2043					 dev_priv->cdclk_freq);
2044
2045	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2046	       PIPE_WM_LINETIME_TIME(linetime);
2047}
2048
2049static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2050{
2051	struct drm_i915_private *dev_priv = dev->dev_private;
2052
2053	if (IS_GEN9(dev)) {
2054		uint32_t val;
2055		int ret, i;
2056		int level, max_level = ilk_wm_max_level(dev);
2057
2058		/* read the first set of memory latencies[0:3] */
2059		val = 0; /* data0 to be programmed to 0 for first set */
2060		mutex_lock(&dev_priv->rps.hw_lock);
2061		ret = sandybridge_pcode_read(dev_priv,
2062					     GEN9_PCODE_READ_MEM_LATENCY,
2063					     &val);
2064		mutex_unlock(&dev_priv->rps.hw_lock);
2065
2066		if (ret) {
2067			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2068			return;
2069		}
2070
2071		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2072		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2073				GEN9_MEM_LATENCY_LEVEL_MASK;
2074		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2075				GEN9_MEM_LATENCY_LEVEL_MASK;
2076		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2077				GEN9_MEM_LATENCY_LEVEL_MASK;
2078
2079		/* read the second set of memory latencies[4:7] */
2080		val = 1; /* data0 to be programmed to 1 for second set */
2081		mutex_lock(&dev_priv->rps.hw_lock);
2082		ret = sandybridge_pcode_read(dev_priv,
2083					     GEN9_PCODE_READ_MEM_LATENCY,
2084					     &val);
2085		mutex_unlock(&dev_priv->rps.hw_lock);
2086		if (ret) {
2087			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2088			return;
2089		}
2090
2091		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2092		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2093				GEN9_MEM_LATENCY_LEVEL_MASK;
2094		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2095				GEN9_MEM_LATENCY_LEVEL_MASK;
2096		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2097				GEN9_MEM_LATENCY_LEVEL_MASK;
2098
2099		/*
2100		 * WaWmMemoryReadLatency:skl
2101		 *
2102		 * punit doesn't take into account the read latency so we need
2103		 * to add 2us to the various latency levels we retrieve from
2104		 * the punit.
2105		 *   - W0 is a bit special in that it's the only level that
2106		 *   can't be disabled if we want to have display working, so
2107		 *   we always add 2us there.
2108		 *   - For levels >=1, punit returns 0us latency when they are
2109		 *   disabled, so we respect that and don't add 2us then
2110		 *
2111		 * Additionally, if a level n (n > 1) has a 0us latency, all
2112		 * levels m (m >= n) need to be disabled. We make sure to
2113		 * sanitize the values out of the punit to satisfy this
2114		 * requirement.
2115		 */
2116		wm[0] += 2;
2117		for (level = 1; level <= max_level; level++)
2118			if (wm[level] != 0)
2119				wm[level] += 2;
2120			else {
2121				for (i = level + 1; i <= max_level; i++)
2122					wm[i] = 0;
2123
2124				break;
2125			}
2126	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2127		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2128
2129		wm[0] = (sskpd >> 56) & 0xFF;
2130		if (wm[0] == 0)
2131			wm[0] = sskpd & 0xF;
2132		wm[1] = (sskpd >> 4) & 0xFF;
2133		wm[2] = (sskpd >> 12) & 0xFF;
2134		wm[3] = (sskpd >> 20) & 0x1FF;
2135		wm[4] = (sskpd >> 32) & 0x1FF;
2136	} else if (INTEL_INFO(dev)->gen >= 6) {
2137		uint32_t sskpd = I915_READ(MCH_SSKPD);
2138
2139		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2140		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2141		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2142		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2143	} else if (INTEL_INFO(dev)->gen >= 5) {
2144		uint32_t mltr = I915_READ(MLTR_ILK);
2145
2146		/* ILK primary LP0 latency is 700 ns */
2147		wm[0] = 7;
2148		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2149		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2150	}
2151}
2152
2153static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2154{
2155	/* ILK sprite LP0 latency is 1300 ns */
2156	if (INTEL_INFO(dev)->gen == 5)
2157		wm[0] = 13;
2158}
2159
2160static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2161{
2162	/* ILK cursor LP0 latency is 1300 ns */
2163	if (INTEL_INFO(dev)->gen == 5)
2164		wm[0] = 13;
2165
2166	/* WaDoubleCursorLP3Latency:ivb */
2167	if (IS_IVYBRIDGE(dev))
2168		wm[3] *= 2;
2169}
2170
2171int ilk_wm_max_level(const struct drm_device *dev)
2172{
2173	/* how many WM levels are we expecting */
2174	if (INTEL_INFO(dev)->gen >= 9)
2175		return 7;
2176	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2177		return 4;
2178	else if (INTEL_INFO(dev)->gen >= 6)
2179		return 3;
2180	else
2181		return 2;
2182}
2183
2184static void intel_print_wm_latency(struct drm_device *dev,
2185				   const char *name,
2186				   const uint16_t wm[8])
2187{
2188	int level, max_level = ilk_wm_max_level(dev);
2189
2190	for (level = 0; level <= max_level; level++) {
2191		unsigned int latency = wm[level];
2192
2193		if (latency == 0) {
2194			DRM_ERROR("%s WM%d latency not provided\n",
2195				  name, level);
2196			continue;
2197		}
2198
2199		/*
2200		 * - latencies are in us on gen9.
2201		 * - before then, WM1+ latency values are in 0.5us units
2202		 */
2203		if (IS_GEN9(dev))
2204			latency *= 10;
2205		else if (level > 0)
2206			latency *= 5;
2207
2208		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2209			      name, level, wm[level],
2210			      latency / 10, latency % 10);
2211	}
2212}
2213
2214static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2215				    uint16_t wm[5], uint16_t min)
2216{
2217	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2218
2219	if (wm[0] >= min)
2220		return false;
2221
2222	wm[0] = max(wm[0], min);
2223	for (level = 1; level <= max_level; level++)
2224		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2225
2226	return true;
2227}
2228
2229static void snb_wm_latency_quirk(struct drm_device *dev)
2230{
2231	struct drm_i915_private *dev_priv = dev->dev_private;
2232	bool changed;
2233
2234	/*
2235	 * The BIOS provided WM memory latency values are often
2236	 * inadequate for high resolution displays. Adjust them.
2237	 */
2238	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2239		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2240		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2241
2242	if (!changed)
2243		return;
2244
2245	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2246	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2247	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2248	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2249}
2250
2251static void ilk_setup_wm_latency(struct drm_device *dev)
2252{
2253	struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2256
2257	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2258	       sizeof(dev_priv->wm.pri_latency));
2259	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2260	       sizeof(dev_priv->wm.pri_latency));
2261
2262	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2263	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2264
2265	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2266	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2267	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2268
2269	if (IS_GEN6(dev))
2270		snb_wm_latency_quirk(dev);
2271}
2272
2273static void skl_setup_wm_latency(struct drm_device *dev)
 
 
2274{
2275	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2276
2277	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2278	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
 
 
 
 
 
 
 
 
 
 
2279}
2280
2281/* Compute new watermarks for the pipe */
2282static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2283			       struct drm_atomic_state *state)
 
2284{
2285	struct intel_pipe_wm *pipe_wm;
2286	struct drm_device *dev = intel_crtc->base.dev;
2287	const struct drm_i915_private *dev_priv = dev->dev_private;
2288	struct intel_crtc_state *cstate = NULL;
2289	struct intel_plane *intel_plane;
2290	struct drm_plane_state *ps;
2291	struct intel_plane_state *pristate = NULL;
2292	struct intel_plane_state *sprstate = NULL;
2293	struct intel_plane_state *curstate = NULL;
2294	int level, max_level = ilk_wm_max_level(dev);
2295	/* LP0 watermark maximums depend on this pipe alone */
2296	struct intel_wm_config config = {
2297		.num_pipes_active = 1,
 
 
2298	};
2299	struct ilk_wm_maximums max;
2300
2301	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2302	if (IS_ERR(cstate))
2303		return PTR_ERR(cstate);
2304
2305	pipe_wm = &cstate->wm.optimal.ilk;
2306	memset(pipe_wm, 0, sizeof(*pipe_wm));
2307
2308	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2309		ps = drm_atomic_get_plane_state(state,
2310						&intel_plane->base);
2311		if (IS_ERR(ps))
2312			return PTR_ERR(ps);
2313
2314		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2315			pristate = to_intel_plane_state(ps);
2316		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2317			sprstate = to_intel_plane_state(ps);
2318		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2319			curstate = to_intel_plane_state(ps);
2320	}
2321
2322	config.sprites_enabled = sprstate->visible;
2323	config.sprites_scaled = sprstate->visible &&
2324		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2325		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2326
2327	pipe_wm->pipe_enabled = cstate->base.active;
2328	pipe_wm->sprites_enabled = config.sprites_enabled;
2329	pipe_wm->sprites_scaled = config.sprites_scaled;
2330
2331	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2332	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2333		max_level = 1;
2334
2335	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2336	if (config.sprites_scaled)
2337		max_level = 0;
2338
2339	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2340			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
 
2341
2342	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2343		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2344
2345	/* LP0 watermarks always use 1/2 DDB partitioning */
2346	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2347
2348	/* At least LP0 must be valid */
2349	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2350		return -EINVAL;
2351
2352	ilk_compute_wm_reg_maximums(dev, 1, &max);
2353
2354	for (level = 1; level <= max_level; level++) {
2355		struct intel_wm_level wm = {};
2356
2357		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2358				     pristate, sprstate, curstate, &wm);
2359
2360		/*
2361		 * Disable any watermark level that exceeds the
2362		 * register maximums since such watermarks are
2363		 * always invalid.
2364		 */
2365		if (!ilk_validate_wm_level(level, &max, &wm))
2366			break;
2367
2368		pipe_wm->wm[level] = wm;
2369	}
2370
2371	return 0;
2372}
2373
2374/*
2375 * Merge the watermarks from all active pipes for a specific level.
2376 */
2377static void ilk_merge_wm_level(struct drm_device *dev,
2378			       int level,
2379			       struct intel_wm_level *ret_wm)
2380{
2381	const struct intel_crtc *intel_crtc;
2382
2383	ret_wm->enable = true;
2384
2385	for_each_intel_crtc(dev, intel_crtc) {
2386		const struct intel_crtc_state *cstate =
2387			to_intel_crtc_state(intel_crtc->base.state);
2388		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2389		const struct intel_wm_level *wm = &active->wm[level];
2390
2391		if (!active->pipe_enabled)
2392			continue;
2393
2394		/*
2395		 * The watermark values may have been used in the past,
2396		 * so we must maintain them in the registers for some
2397		 * time even if the level is now disabled.
2398		 */
2399		if (!wm->enable)
2400			ret_wm->enable = false;
2401
2402		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2403		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2404		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2405		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2406	}
 
 
2407}
2408
2409/*
2410 * Merge all low power watermarks for all active pipes.
2411 */
2412static void ilk_wm_merge(struct drm_device *dev,
2413			 const struct intel_wm_config *config,
2414			 const struct ilk_wm_maximums *max,
2415			 struct intel_pipe_wm *merged)
2416{
2417	struct drm_i915_private *dev_priv = dev->dev_private;
2418	int level, max_level = ilk_wm_max_level(dev);
2419	int last_enabled_level = max_level;
2420
2421	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2422	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2423	    config->num_pipes_active > 1)
2424		return;
2425
2426	/* ILK: FBC WM must be disabled always */
2427	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2428
2429	/* merge each WM1+ level */
2430	for (level = 1; level <= max_level; level++) {
2431		struct intel_wm_level *wm = &merged->wm[level];
2432
2433		ilk_merge_wm_level(dev, level, wm);
2434
2435		if (level > last_enabled_level)
2436			wm->enable = false;
2437		else if (!ilk_validate_wm_level(level, max, wm))
2438			/* make sure all following levels get disabled */
2439			last_enabled_level = level - 1;
2440
2441		/*
2442		 * The spec says it is preferred to disable
2443		 * FBC WMs instead of disabling a WM level.
2444		 */
2445		if (wm->fbc_val > max->fbc) {
2446			if (wm->enable)
2447				merged->fbc_wm_enabled = false;
2448			wm->fbc_val = 0;
2449		}
2450	}
2451
2452	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2453	/*
2454	 * FIXME this is racy. FBC might get enabled later.
2455	 * What we should check here is whether FBC can be
2456	 * enabled sometime later.
2457	 */
2458	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2459	    intel_fbc_is_active(dev_priv)) {
2460		for (level = 2; level <= max_level; level++) {
2461			struct intel_wm_level *wm = &merged->wm[level];
2462
2463			wm->enable = false;
2464		}
2465	}
2466}
2467
2468static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2469{
2470	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2471	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2472}
2473
2474/* The value we need to program into the WM_LPx latency field */
2475static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2476{
2477	struct drm_i915_private *dev_priv = dev->dev_private;
2478
2479	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2480		return 2 * level;
2481	else
2482		return dev_priv->wm.pri_latency[level];
2483}
2484
2485static void ilk_compute_wm_results(struct drm_device *dev,
2486				   const struct intel_pipe_wm *merged,
2487				   enum intel_ddb_partitioning partitioning,
2488				   struct ilk_wm_values *results)
2489{
2490	struct intel_crtc *intel_crtc;
2491	int level, wm_lp;
2492
2493	results->enable_fbc_wm = merged->fbc_wm_enabled;
2494	results->partitioning = partitioning;
2495
2496	/* LP1+ register values */
2497	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2498		const struct intel_wm_level *r;
2499
2500		level = ilk_wm_lp_to_level(wm_lp, merged);
2501
2502		r = &merged->wm[level];
 
 
2503
2504		/*
2505		 * Maintain the watermark values even if the level is
2506		 * disabled. Doing otherwise could cause underruns.
2507		 */
2508		results->wm_lp[wm_lp - 1] =
2509			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2510			(r->pri_val << WM1_LP_SR_SHIFT) |
2511			r->cur_val;
2512
2513		if (r->enable)
2514			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2515
2516		if (INTEL_INFO(dev)->gen >= 8)
2517			results->wm_lp[wm_lp - 1] |=
2518				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2519		else
2520			results->wm_lp[wm_lp - 1] |=
2521				r->fbc_val << WM1_LP_FBC_SHIFT;
2522
2523		/*
2524		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2525		 * level is disabled. Doing otherwise could cause underruns.
2526		 */
2527		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2528			WARN_ON(wm_lp != 1);
2529			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2530		} else
2531			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2532	}
2533
2534	/* LP0 register values */
2535	for_each_intel_crtc(dev, intel_crtc) {
2536		const struct intel_crtc_state *cstate =
2537			to_intel_crtc_state(intel_crtc->base.state);
2538		enum pipe pipe = intel_crtc->pipe;
2539		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
 
2540
2541		if (WARN_ON(!r->enable))
2542			continue;
2543
2544		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2545
2546		results->wm_pipe[pipe] =
2547			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2548			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2549			r->cur_val;
2550	}
2551}
2552
2553/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2554 * case both are at the same level. Prefer r1 in case they're the same. */
2555static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2556						  struct intel_pipe_wm *r1,
2557						  struct intel_pipe_wm *r2)
2558{
2559	int level, max_level = ilk_wm_max_level(dev);
2560	int level1 = 0, level2 = 0;
2561
2562	for (level = 1; level <= max_level; level++) {
2563		if (r1->wm[level].enable)
2564			level1 = level;
2565		if (r2->wm[level].enable)
2566			level2 = level;
2567	}
2568
2569	if (level1 == level2) {
2570		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2571			return r2;
2572		else
2573			return r1;
2574	} else if (level1 > level2) {
2575		return r1;
2576	} else {
2577		return r2;
2578	}
2579}
2580
2581/* dirty bits used to track which watermarks need changes */
2582#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2583#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2584#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2585#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2586#define WM_DIRTY_FBC (1 << 24)
2587#define WM_DIRTY_DDB (1 << 25)
2588
2589static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2590					 const struct ilk_wm_values *old,
2591					 const struct ilk_wm_values *new)
2592{
2593	unsigned int dirty = 0;
2594	enum pipe pipe;
2595	int wm_lp;
2596
2597	for_each_pipe(dev_priv, pipe) {
2598		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2599			dirty |= WM_DIRTY_LINETIME(pipe);
2600			/* Must disable LP1+ watermarks too */
2601			dirty |= WM_DIRTY_LP_ALL;
2602		}
2603
2604		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2605			dirty |= WM_DIRTY_PIPE(pipe);
2606			/* Must disable LP1+ watermarks too */
2607			dirty |= WM_DIRTY_LP_ALL;
2608		}
2609	}
2610
2611	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2612		dirty |= WM_DIRTY_FBC;
2613		/* Must disable LP1+ watermarks too */
2614		dirty |= WM_DIRTY_LP_ALL;
2615	}
2616
2617	if (old->partitioning != new->partitioning) {
2618		dirty |= WM_DIRTY_DDB;
2619		/* Must disable LP1+ watermarks too */
2620		dirty |= WM_DIRTY_LP_ALL;
2621	}
2622
2623	/* LP1+ watermarks already deemed dirty, no need to continue */
2624	if (dirty & WM_DIRTY_LP_ALL)
2625		return dirty;
2626
2627	/* Find the lowest numbered LP1+ watermark in need of an update... */
2628	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2629		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2630		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2631			break;
2632	}
2633
2634	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2635	for (; wm_lp <= 3; wm_lp++)
2636		dirty |= WM_DIRTY_LP(wm_lp);
2637
2638	return dirty;
2639}
2640
2641static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2642			       unsigned int dirty)
2643{
2644	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2645	bool changed = false;
2646
2647	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2648		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2649		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2650		changed = true;
2651	}
2652	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2653		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2654		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2655		changed = true;
2656	}
2657	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2658		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2659		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2660		changed = true;
2661	}
2662
2663	/*
2664	 * Don't touch WM1S_LP_EN here.
2665	 * Doing so could cause underruns.
2666	 */
2667
2668	return changed;
2669}
2670
2671/*
2672 * The spec says we shouldn't write when we don't need, because every write
2673 * causes WMs to be re-evaluated, expending some power.
2674 */
2675static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2676				struct ilk_wm_values *results)
2677{
2678	struct drm_device *dev = dev_priv->dev;
2679	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2680	unsigned int dirty;
2681	uint32_t val;
2682
2683	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2684	if (!dirty)
2685		return;
2686
2687	_ilk_disable_lp_wm(dev_priv, dirty);
2688
2689	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2690		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2691	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2692		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2693	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2694		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2695
2696	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2697		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2698	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2699		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2700	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2701		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2702
2703	if (dirty & WM_DIRTY_DDB) {
2704		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2705			val = I915_READ(WM_MISC);
2706			if (results->partitioning == INTEL_DDB_PART_1_2)
2707				val &= ~WM_MISC_DATA_PARTITION_5_6;
2708			else
2709				val |= WM_MISC_DATA_PARTITION_5_6;
2710			I915_WRITE(WM_MISC, val);
2711		} else {
2712			val = I915_READ(DISP_ARB_CTL2);
2713			if (results->partitioning == INTEL_DDB_PART_1_2)
2714				val &= ~DISP_DATA_PARTITION_5_6;
2715			else
2716				val |= DISP_DATA_PARTITION_5_6;
2717			I915_WRITE(DISP_ARB_CTL2, val);
2718		}
2719	}
2720
2721	if (dirty & WM_DIRTY_FBC) {
2722		val = I915_READ(DISP_ARB_CTL);
2723		if (results->enable_fbc_wm)
2724			val &= ~DISP_FBC_WM_DIS;
2725		else
2726			val |= DISP_FBC_WM_DIS;
2727		I915_WRITE(DISP_ARB_CTL, val);
2728	}
2729
2730	if (dirty & WM_DIRTY_LP(1) &&
2731	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2732		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2733
2734	if (INTEL_INFO(dev)->gen >= 7) {
2735		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2736			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2737		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2738			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2739	}
2740
2741	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2742		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2743	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2744		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2745	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2746		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2747
2748	dev_priv->wm.hw = *results;
2749}
2750
2751static bool ilk_disable_lp_wm(struct drm_device *dev)
2752{
2753	struct drm_i915_private *dev_priv = dev->dev_private;
2754
2755	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2756}
2757
2758/*
2759 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2760 * different active planes.
2761 */
2762
2763#define SKL_DDB_SIZE		896	/* in blocks */
2764#define BXT_DDB_SIZE		512
2765
2766/*
2767 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2768 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2769 * other universal planes are in indices 1..n.  Note that this may leave unused
2770 * indices between the top "sprite" plane and the cursor.
2771 */
2772static int
2773skl_wm_plane_id(const struct intel_plane *plane)
2774{
2775	switch (plane->base.type) {
2776	case DRM_PLANE_TYPE_PRIMARY:
2777		return 0;
2778	case DRM_PLANE_TYPE_CURSOR:
2779		return PLANE_CURSOR;
2780	case DRM_PLANE_TYPE_OVERLAY:
2781		return plane->plane + 1;
2782	default:
2783		MISSING_CASE(plane->base.type);
2784		return plane->plane;
2785	}
2786}
2787
2788static void
2789skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2790				   const struct intel_crtc_state *cstate,
2791				   const struct intel_wm_config *config,
2792				   struct skl_ddb_entry *alloc /* out */)
2793{
2794	struct drm_crtc *for_crtc = cstate->base.crtc;
2795	struct drm_crtc *crtc;
2796	unsigned int pipe_size, ddb_size;
2797	int nth_active_pipe;
2798
2799	if (!cstate->base.active) {
2800		alloc->start = 0;
2801		alloc->end = 0;
2802		return;
2803	}
2804
2805	if (IS_BROXTON(dev))
2806		ddb_size = BXT_DDB_SIZE;
2807	else
2808		ddb_size = SKL_DDB_SIZE;
2809
2810	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2811
2812	nth_active_pipe = 0;
2813	for_each_crtc(dev, crtc) {
2814		if (!to_intel_crtc(crtc)->active)
2815			continue;
2816
2817		if (crtc == for_crtc)
2818			break;
2819
2820		nth_active_pipe++;
2821	}
2822
2823	pipe_size = ddb_size / config->num_pipes_active;
2824	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2825	alloc->end = alloc->start + pipe_size;
2826}
2827
2828static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2829{
2830	if (config->num_pipes_active == 1)
2831		return 32;
2832
2833	return 8;
2834}
2835
2836static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2837{
2838	entry->start = reg & 0x3ff;
2839	entry->end = (reg >> 16) & 0x3ff;
2840	if (entry->end)
2841		entry->end += 1;
2842}
2843
2844void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2845			  struct skl_ddb_allocation *ddb /* out */)
2846{
2847	enum pipe pipe;
2848	int plane;
2849	u32 val;
2850
2851	memset(ddb, 0, sizeof(*ddb));
2852
2853	for_each_pipe(dev_priv, pipe) {
2854		enum intel_display_power_domain power_domain;
2855
2856		power_domain = POWER_DOMAIN_PIPE(pipe);
2857		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2858			continue;
2859
2860		for_each_plane(dev_priv, pipe, plane) {
2861			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2862			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2863						   val);
2864		}
2865
2866		val = I915_READ(CUR_BUF_CFG(pipe));
2867		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2868					   val);
2869
2870		intel_display_power_put(dev_priv, power_domain);
2871	}
2872}
2873
2874static unsigned int
2875skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2876			     const struct drm_plane_state *pstate,
2877			     int y)
2878{
2879	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2880	struct drm_framebuffer *fb = pstate->fb;
2881	uint32_t width = 0, height = 0;
2882
2883	width = drm_rect_width(&intel_pstate->src) >> 16;
2884	height = drm_rect_height(&intel_pstate->src) >> 16;
2885
2886	if (intel_rotation_90_or_270(pstate->rotation))
2887		swap(width, height);
2888
2889	/* for planar format */
2890	if (fb->pixel_format == DRM_FORMAT_NV12) {
2891		if (y)  /* y-plane data rate */
2892			return width * height *
2893				drm_format_plane_cpp(fb->pixel_format, 0);
2894		else    /* uv-plane data rate */
2895			return (width / 2) * (height / 2) *
2896				drm_format_plane_cpp(fb->pixel_format, 1);
2897	}
2898
2899	/* for packed formats */
2900	return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2901}
2902
2903/*
2904 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2905 * a 8192x4096@32bpp framebuffer:
2906 *   3 * 4096 * 8192  * 4 < 2^32
2907 */
2908static unsigned int
2909skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2910{
2911	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2912	struct drm_device *dev = intel_crtc->base.dev;
2913	const struct intel_plane *intel_plane;
2914	unsigned int total_data_rate = 0;
2915
2916	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2917		const struct drm_plane_state *pstate = intel_plane->base.state;
2918
2919		if (pstate->fb == NULL)
2920			continue;
2921
2922		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2923			continue;
2924
2925		/* packed/uv */
2926		total_data_rate += skl_plane_relative_data_rate(cstate,
2927								pstate,
2928								0);
2929
2930		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2931			/* y-plane */
2932			total_data_rate += skl_plane_relative_data_rate(cstate,
2933									pstate,
2934									1);
2935	}
2936
2937	return total_data_rate;
2938}
2939
2940static void
2941skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2942		      struct skl_ddb_allocation *ddb /* out */)
2943{
2944	struct drm_crtc *crtc = cstate->base.crtc;
2945	struct drm_device *dev = crtc->dev;
2946	struct drm_i915_private *dev_priv = to_i915(dev);
2947	struct intel_wm_config *config = &dev_priv->wm.config;
2948	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2949	struct intel_plane *intel_plane;
2950	enum pipe pipe = intel_crtc->pipe;
2951	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2952	uint16_t alloc_size, start, cursor_blocks;
2953	uint16_t minimum[I915_MAX_PLANES];
2954	uint16_t y_minimum[I915_MAX_PLANES];
2955	unsigned int total_data_rate;
2956
2957	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2958	alloc_size = skl_ddb_entry_size(alloc);
2959	if (alloc_size == 0) {
2960		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2961		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2962		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2963		return;
2964	}
2965
2966	cursor_blocks = skl_cursor_allocation(config);
2967	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2968	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2969
2970	alloc_size -= cursor_blocks;
2971	alloc->end -= cursor_blocks;
2972
2973	/* 1. Allocate the mininum required blocks for each active plane */
2974	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2975		struct drm_plane *plane = &intel_plane->base;
2976		struct drm_framebuffer *fb = plane->state->fb;
2977		int id = skl_wm_plane_id(intel_plane);
2978
2979		if (!to_intel_plane_state(plane->state)->visible)
2980			continue;
2981
2982		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2983			continue;
2984
2985		minimum[id] = 8;
2986		alloc_size -= minimum[id];
2987		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2988		alloc_size -= y_minimum[id];
2989	}
2990
2991	/*
2992	 * 2. Distribute the remaining space in proportion to the amount of
2993	 * data each plane needs to fetch from memory.
2994	 *
2995	 * FIXME: we may not allocate every single block here.
2996	 */
2997	total_data_rate = skl_get_total_relative_data_rate(cstate);
2998
2999	start = alloc->start;
3000	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3001		struct drm_plane *plane = &intel_plane->base;
3002		struct drm_plane_state *pstate = intel_plane->base.state;
3003		unsigned int data_rate, y_data_rate;
3004		uint16_t plane_blocks, y_plane_blocks = 0;
3005		int id = skl_wm_plane_id(intel_plane);
3006
3007		if (!to_intel_plane_state(pstate)->visible)
3008			continue;
3009		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3010			continue;
3011
3012		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3013
3014		/*
3015		 * allocation for (packed formats) or (uv-plane part of planar format):
3016		 * promote the expression to 64 bits to avoid overflowing, the
3017		 * result is < available as data_rate / total_data_rate < 1
3018		 */
3019		plane_blocks = minimum[id];
3020		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3021					total_data_rate);
3022
3023		ddb->plane[pipe][id].start = start;
3024		ddb->plane[pipe][id].end = start + plane_blocks;
3025
3026		start += plane_blocks;
3027
3028		/*
3029		 * allocation for y_plane part of planar format:
3030		 */
3031		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3032			y_data_rate = skl_plane_relative_data_rate(cstate,
3033								   pstate,
3034								   1);
3035			y_plane_blocks = y_minimum[id];
3036			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3037						total_data_rate);
3038
3039			ddb->y_plane[pipe][id].start = start;
3040			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3041
3042			start += y_plane_blocks;
3043		}
3044
3045	}
3046
3047}
3048
3049static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3050{
3051	/* TODO: Take into account the scalers once we support them */
3052	return config->base.adjusted_mode.crtc_clock;
3053}
3054
3055/*
3056 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3057 * for the read latency) and cpp should always be <= 8, so that
3058 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3059 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3060*/
3061static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3062{
3063	uint32_t wm_intermediate_val, ret;
3064
3065	if (latency == 0)
3066		return UINT_MAX;
3067
3068	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3069	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3070
3071	return ret;
3072}
3073
3074static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3075			       uint32_t horiz_pixels, uint8_t cpp,
3076			       uint64_t tiling, uint32_t latency)
3077{
3078	uint32_t ret;
3079	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3080	uint32_t wm_intermediate_val;
3081
3082	if (latency == 0)
3083		return UINT_MAX;
3084
3085	plane_bytes_per_line = horiz_pixels * cpp;
3086
3087	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3088	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3089		plane_bytes_per_line *= 4;
3090		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3091		plane_blocks_per_line /= 4;
3092	} else {
3093		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3094	}
3095
3096	wm_intermediate_val = latency * pixel_rate;
3097	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3098				plane_blocks_per_line;
3099
3100	return ret;
3101}
3102
3103static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3104				       const struct intel_crtc *intel_crtc)
3105{
3106	struct drm_device *dev = intel_crtc->base.dev;
3107	struct drm_i915_private *dev_priv = dev->dev_private;
3108	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3109
3110	/*
3111	 * If ddb allocation of pipes changed, it may require recalculation of
3112	 * watermarks
3113	 */
3114	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3115		return true;
3116
3117	return false;
3118}
3119
3120static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3121				 struct intel_crtc_state *cstate,
3122				 struct intel_plane *intel_plane,
3123				 uint16_t ddb_allocation,
3124				 int level,
3125				 uint16_t *out_blocks, /* out */
3126				 uint8_t *out_lines /* out */)
3127{
3128	struct drm_plane *plane = &intel_plane->base;
3129	struct drm_framebuffer *fb = plane->state->fb;
3130	struct intel_plane_state *intel_pstate =
3131					to_intel_plane_state(plane->state);
3132	uint32_t latency = dev_priv->wm.skl_latency[level];
3133	uint32_t method1, method2;
3134	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3135	uint32_t res_blocks, res_lines;
3136	uint32_t selected_result;
3137	uint8_t cpp;
3138	uint32_t width = 0, height = 0;
3139
3140	if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3141		return false;
3142
3143	width = drm_rect_width(&intel_pstate->src) >> 16;
3144	height = drm_rect_height(&intel_pstate->src) >> 16;
3145
3146	if (intel_rotation_90_or_270(plane->state->rotation))
3147		swap(width, height);
3148
3149	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3150	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3151				 cpp, latency);
3152	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3153				 cstate->base.adjusted_mode.crtc_htotal,
3154				 width,
3155				 cpp,
3156				 fb->modifier[0],
3157				 latency);
3158
3159	plane_bytes_per_line = width * cpp;
3160	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3161
3162	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3163	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3164		uint32_t min_scanlines = 4;
3165		uint32_t y_tile_minimum;
3166		if (intel_rotation_90_or_270(plane->state->rotation)) {
3167			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3168				drm_format_plane_cpp(fb->pixel_format, 1) :
3169				drm_format_plane_cpp(fb->pixel_format, 0);
3170
3171			switch (cpp) {
3172			case 1:
3173				min_scanlines = 16;
3174				break;
3175			case 2:
3176				min_scanlines = 8;
3177				break;
3178			case 8:
3179				WARN(1, "Unsupported pixel depth for rotation");
3180			}
3181		}
3182		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3183		selected_result = max(method2, y_tile_minimum);
3184	} else {
3185		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3186			selected_result = min(method1, method2);
3187		else
3188			selected_result = method1;
3189	}
3190
3191	res_blocks = selected_result + 1;
3192	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3193
3194	if (level >= 1 && level <= 7) {
3195		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3196		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3197			res_lines += 4;
3198		else
3199			res_blocks++;
3200	}
3201
3202	if (res_blocks >= ddb_allocation || res_lines > 31)
3203		return false;
3204
3205	*out_blocks = res_blocks;
3206	*out_lines = res_lines;
3207
3208	return true;
3209}
3210
3211static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3212				 struct skl_ddb_allocation *ddb,
3213				 struct intel_crtc_state *cstate,
3214				 int level,
3215				 struct skl_wm_level *result)
3216{
3217	struct drm_device *dev = dev_priv->dev;
3218	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3219	struct intel_plane *intel_plane;
3220	uint16_t ddb_blocks;
3221	enum pipe pipe = intel_crtc->pipe;
3222
3223	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3224		int i = skl_wm_plane_id(intel_plane);
3225
3226		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3227
3228		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3229						cstate,
3230						intel_plane,
3231						ddb_blocks,
3232						level,
3233						&result->plane_res_b[i],
3234						&result->plane_res_l[i]);
3235	}
3236}
3237
3238static uint32_t
3239skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3240{
3241	if (!cstate->base.active)
3242		return 0;
3243
3244	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3245		return 0;
3246
3247	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3248			    skl_pipe_pixel_rate(cstate));
3249}
3250
3251static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3252				      struct skl_wm_level *trans_wm /* out */)
3253{
3254	struct drm_crtc *crtc = cstate->base.crtc;
3255	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256	struct intel_plane *intel_plane;
3257
3258	if (!cstate->base.active)
3259		return;
3260
3261	/* Until we know more, just disable transition WMs */
3262	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3263		int i = skl_wm_plane_id(intel_plane);
3264
3265		trans_wm->plane_en[i] = false;
3266	}
3267}
3268
3269static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3270				struct skl_ddb_allocation *ddb,
3271				struct skl_pipe_wm *pipe_wm)
3272{
3273	struct drm_device *dev = cstate->base.crtc->dev;
3274	const struct drm_i915_private *dev_priv = dev->dev_private;
3275	int level, max_level = ilk_wm_max_level(dev);
3276
3277	for (level = 0; level <= max_level; level++) {
3278		skl_compute_wm_level(dev_priv, ddb, cstate,
3279				     level, &pipe_wm->wm[level]);
3280	}
3281	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3282
3283	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3284}
3285
3286static void skl_compute_wm_results(struct drm_device *dev,
3287				   struct skl_pipe_wm *p_wm,
3288				   struct skl_wm_values *r,
3289				   struct intel_crtc *intel_crtc)
3290{
3291	int level, max_level = ilk_wm_max_level(dev);
3292	enum pipe pipe = intel_crtc->pipe;
3293	uint32_t temp;
3294	int i;
3295
3296	for (level = 0; level <= max_level; level++) {
3297		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3298			temp = 0;
3299
3300			temp |= p_wm->wm[level].plane_res_l[i] <<
3301					PLANE_WM_LINES_SHIFT;
3302			temp |= p_wm->wm[level].plane_res_b[i];
3303			if (p_wm->wm[level].plane_en[i])
3304				temp |= PLANE_WM_EN;
3305
3306			r->plane[pipe][i][level] = temp;
3307		}
3308
3309		temp = 0;
3310
3311		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3312		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3313
3314		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3315			temp |= PLANE_WM_EN;
3316
3317		r->plane[pipe][PLANE_CURSOR][level] = temp;
3318
3319	}
3320
3321	/* transition WMs */
3322	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3323		temp = 0;
3324		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3325		temp |= p_wm->trans_wm.plane_res_b[i];
3326		if (p_wm->trans_wm.plane_en[i])
3327			temp |= PLANE_WM_EN;
3328
3329		r->plane_trans[pipe][i] = temp;
3330	}
3331
3332	temp = 0;
3333	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3334	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3335	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3336		temp |= PLANE_WM_EN;
3337
3338	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3339
3340	r->wm_linetime[pipe] = p_wm->linetime;
3341}
3342
3343static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3344				i915_reg_t reg,
3345				const struct skl_ddb_entry *entry)
3346{
3347	if (entry->end)
3348		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3349	else
3350		I915_WRITE(reg, 0);
3351}
3352
3353static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3354				const struct skl_wm_values *new)
3355{
3356	struct drm_device *dev = dev_priv->dev;
3357	struct intel_crtc *crtc;
3358
3359	for_each_intel_crtc(dev, crtc) {
3360		int i, level, max_level = ilk_wm_max_level(dev);
3361		enum pipe pipe = crtc->pipe;
3362
3363		if (!new->dirty[pipe])
3364			continue;
3365
3366		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3367
3368		for (level = 0; level <= max_level; level++) {
3369			for (i = 0; i < intel_num_planes(crtc); i++)
3370				I915_WRITE(PLANE_WM(pipe, i, level),
3371					   new->plane[pipe][i][level]);
3372			I915_WRITE(CUR_WM(pipe, level),
3373				   new->plane[pipe][PLANE_CURSOR][level]);
3374		}
3375		for (i = 0; i < intel_num_planes(crtc); i++)
3376			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3377				   new->plane_trans[pipe][i]);
3378		I915_WRITE(CUR_WM_TRANS(pipe),
3379			   new->plane_trans[pipe][PLANE_CURSOR]);
3380
3381		for (i = 0; i < intel_num_planes(crtc); i++) {
3382			skl_ddb_entry_write(dev_priv,
3383					    PLANE_BUF_CFG(pipe, i),
3384					    &new->ddb.plane[pipe][i]);
3385			skl_ddb_entry_write(dev_priv,
3386					    PLANE_NV12_BUF_CFG(pipe, i),
3387					    &new->ddb.y_plane[pipe][i]);
3388		}
3389
3390		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3391				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3392	}
3393}
3394
3395/*
3396 * When setting up a new DDB allocation arrangement, we need to correctly
3397 * sequence the times at which the new allocations for the pipes are taken into
3398 * account or we'll have pipes fetching from space previously allocated to
3399 * another pipe.
3400 *
3401 * Roughly the sequence looks like:
3402 *  1. re-allocate the pipe(s) with the allocation being reduced and not
3403 *     overlapping with a previous light-up pipe (another way to put it is:
3404 *     pipes with their new allocation strickly included into their old ones).
3405 *  2. re-allocate the other pipes that get their allocation reduced
3406 *  3. allocate the pipes having their allocation increased
3407 *
3408 * Steps 1. and 2. are here to take care of the following case:
3409 * - Initially DDB looks like this:
3410 *     |   B    |   C    |
3411 * - enable pipe A.
3412 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3413 *   allocation
3414 *     |  A  |  B  |  C  |
3415 *
3416 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3417 */
3418
3419static void
3420skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3421{
3422	int plane;
3423
3424	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3425
3426	for_each_plane(dev_priv, pipe, plane) {
3427		I915_WRITE(PLANE_SURF(pipe, plane),
3428			   I915_READ(PLANE_SURF(pipe, plane)));
3429	}
3430	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3431}
3432
3433static bool
3434skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3435			    const struct skl_ddb_allocation *new,
3436			    enum pipe pipe)
3437{
3438	uint16_t old_size, new_size;
3439
3440	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3441	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3442
3443	return old_size != new_size &&
3444	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3445	       new->pipe[pipe].end <= old->pipe[pipe].end;
3446}
3447
3448static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3449				struct skl_wm_values *new_values)
3450{
3451	struct drm_device *dev = dev_priv->dev;
3452	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3453	bool reallocated[I915_MAX_PIPES] = {};
3454	struct intel_crtc *crtc;
3455	enum pipe pipe;
3456
3457	new_ddb = &new_values->ddb;
3458	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3459
3460	/*
3461	 * First pass: flush the pipes with the new allocation contained into
3462	 * the old space.
3463	 *
3464	 * We'll wait for the vblank on those pipes to ensure we can safely
3465	 * re-allocate the freed space without this pipe fetching from it.
3466	 */
3467	for_each_intel_crtc(dev, crtc) {
3468		if (!crtc->active)
3469			continue;
3470
3471		pipe = crtc->pipe;
3472
3473		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3474			continue;
3475
3476		skl_wm_flush_pipe(dev_priv, pipe, 1);
3477		intel_wait_for_vblank(dev, pipe);
3478
3479		reallocated[pipe] = true;
3480	}
3481
3482
3483	/*
3484	 * Second pass: flush the pipes that are having their allocation
3485	 * reduced, but overlapping with a previous allocation.
3486	 *
3487	 * Here as well we need to wait for the vblank to make sure the freed
3488	 * space is not used anymore.
3489	 */
3490	for_each_intel_crtc(dev, crtc) {
3491		if (!crtc->active)
3492			continue;
3493
3494		pipe = crtc->pipe;
3495
3496		if (reallocated[pipe])
3497			continue;
3498
3499		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3500		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3501			skl_wm_flush_pipe(dev_priv, pipe, 2);
3502			intel_wait_for_vblank(dev, pipe);
3503			reallocated[pipe] = true;
3504		}
3505	}
3506
3507	/*
3508	 * Third pass: flush the pipes that got more space allocated.
3509	 *
3510	 * We don't need to actively wait for the update here, next vblank
3511	 * will just get more DDB space with the correct WM values.
3512	 */
3513	for_each_intel_crtc(dev, crtc) {
3514		if (!crtc->active)
3515			continue;
3516
3517		pipe = crtc->pipe;
3518
3519		/*
3520		 * At this point, only the pipes more space than before are
3521		 * left to re-allocate.
3522		 */
3523		if (reallocated[pipe])
3524			continue;
3525
3526		skl_wm_flush_pipe(dev_priv, pipe, 3);
3527	}
3528}
3529
3530static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3531			       struct skl_ddb_allocation *ddb, /* out */
3532			       struct skl_pipe_wm *pipe_wm /* out */)
3533{
3534	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3535	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3536
3537	skl_allocate_pipe_ddb(cstate, ddb);
3538	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3539
3540	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3541		return false;
3542
3543	intel_crtc->wm.active.skl = *pipe_wm;
3544
3545	return true;
3546}
3547
3548static void skl_update_other_pipe_wm(struct drm_device *dev,
3549				     struct drm_crtc *crtc,
3550				     struct skl_wm_values *r)
3551{
3552	struct intel_crtc *intel_crtc;
3553	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3554
3555	/*
3556	 * If the WM update hasn't changed the allocation for this_crtc (the
3557	 * crtc we are currently computing the new WM values for), other
3558	 * enabled crtcs will keep the same allocation and we don't need to
3559	 * recompute anything for them.
3560	 */
3561	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3562		return;
3563
3564	/*
3565	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3566	 * other active pipes need new DDB allocation and WM values.
3567	 */
3568	for_each_intel_crtc(dev, intel_crtc) {
3569		struct skl_pipe_wm pipe_wm = {};
3570		bool wm_changed;
3571
3572		if (this_crtc->pipe == intel_crtc->pipe)
3573			continue;
3574
3575		if (!intel_crtc->active)
3576			continue;
3577
3578		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3579						&r->ddb, &pipe_wm);
3580
3581		/*
3582		 * If we end up re-computing the other pipe WM values, it's
3583		 * because it was really needed, so we expect the WM values to
3584		 * be different.
3585		 */
3586		WARN_ON(!wm_changed);
3587
3588		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3589		r->dirty[intel_crtc->pipe] = true;
3590	}
3591}
3592
3593static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3594{
3595	watermarks->wm_linetime[pipe] = 0;
3596	memset(watermarks->plane[pipe], 0,
3597	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3598	memset(watermarks->plane_trans[pipe],
3599	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3600	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3601
3602	/* Clear ddb entries for pipe */
3603	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3604	memset(&watermarks->ddb.plane[pipe], 0,
3605	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3606	memset(&watermarks->ddb.y_plane[pipe], 0,
3607	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3608	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3609	       sizeof(struct skl_ddb_entry));
3610
3611}
3612
3613static void skl_update_wm(struct drm_crtc *crtc)
3614{
3615	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3616	struct drm_device *dev = crtc->dev;
3617	struct drm_i915_private *dev_priv = dev->dev_private;
3618	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3619	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3620	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3621
 
 
 
3622
3623	/* Clear all dirty flags */
3624	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3625
3626	skl_clear_wm(results, intel_crtc->pipe);
3627
3628	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3629		return;
3630
3631	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3632	results->dirty[intel_crtc->pipe] = true;
3633
3634	skl_update_other_pipe_wm(dev, crtc, results);
3635	skl_write_wm_values(dev_priv, results);
3636	skl_flush_wm_values(dev_priv, results);
3637
3638	/* store the new configuration */
3639	dev_priv->wm.skl_hw = *results;
3640}
3641
3642static void ilk_compute_wm_config(struct drm_device *dev,
3643				  struct intel_wm_config *config)
3644{
3645	struct intel_crtc *crtc;
3646
3647	/* Compute the currently _active_ config */
3648	for_each_intel_crtc(dev, crtc) {
3649		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3650
3651		if (!wm->pipe_enabled)
3652			continue;
3653
3654		config->sprites_enabled |= wm->sprites_enabled;
3655		config->sprites_scaled |= wm->sprites_scaled;
3656		config->num_pipes_active++;
3657	}
3658}
3659
3660static void ilk_program_watermarks(struct intel_crtc_state *cstate)
3661{
3662	struct drm_crtc *crtc = cstate->base.crtc;
3663	struct drm_device *dev = crtc->dev;
3664	struct drm_i915_private *dev_priv = to_i915(dev);
3665	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3666	struct ilk_wm_maximums max;
3667	struct intel_wm_config config = {};
3668	struct ilk_wm_values results = {};
3669	enum intel_ddb_partitioning partitioning;
3670
3671	ilk_compute_wm_config(dev, &config);
3672
3673	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3674	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3675
3676	/* 5/6 split only in single pipe config on IVB+ */
3677	if (INTEL_INFO(dev)->gen >= 7 &&
3678	    config.num_pipes_active == 1 && config.sprites_enabled) {
3679		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3680		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3681
3682		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3683	} else {
3684		best_lp_wm = &lp_wm_1_2;
3685	}
3686
3687	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3688		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3689
3690	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3691
3692	ilk_write_wm_values(dev_priv, &results);
3693}
3694
3695static void ilk_update_wm(struct drm_crtc *crtc)
 
 
 
3696{
3697	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3699
3700	WARN_ON(cstate->base.active != intel_crtc->active);
 
 
 
3701
3702	/*
3703	 * IVB workaround: must disable low power watermarks for at least
3704	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3705	 * when scaling is disabled.
3706	 *
3707	 * WaCxSRDisabledForSpriteScaling:ivb
3708	 */
3709	if (cstate->disable_lp_wm) {
3710		ilk_disable_lp_wm(crtc->dev);
3711		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3712	}
3713
3714	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3715
3716	ilk_program_watermarks(cstate);
3717}
3718
3719static void skl_pipe_wm_active_state(uint32_t val,
3720				     struct skl_pipe_wm *active,
3721				     bool is_transwm,
3722				     bool is_cursor,
3723				     int i,
3724				     int level)
3725{
3726	bool is_enabled = (val & PLANE_WM_EN) != 0;
3727
3728	if (!is_transwm) {
3729		if (!is_cursor) {
3730			active->wm[level].plane_en[i] = is_enabled;
3731			active->wm[level].plane_res_b[i] =
3732					val & PLANE_WM_BLOCKS_MASK;
3733			active->wm[level].plane_res_l[i] =
3734					(val >> PLANE_WM_LINES_SHIFT) &
3735						PLANE_WM_LINES_MASK;
3736		} else {
3737			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3738			active->wm[level].plane_res_b[PLANE_CURSOR] =
3739					val & PLANE_WM_BLOCKS_MASK;
3740			active->wm[level].plane_res_l[PLANE_CURSOR] =
3741					(val >> PLANE_WM_LINES_SHIFT) &
3742						PLANE_WM_LINES_MASK;
3743		}
3744	} else {
3745		if (!is_cursor) {
3746			active->trans_wm.plane_en[i] = is_enabled;
3747			active->trans_wm.plane_res_b[i] =
3748					val & PLANE_WM_BLOCKS_MASK;
3749			active->trans_wm.plane_res_l[i] =
3750					(val >> PLANE_WM_LINES_SHIFT) &
3751						PLANE_WM_LINES_MASK;
3752		} else {
3753			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3754			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3755					val & PLANE_WM_BLOCKS_MASK;
3756			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3757					(val >> PLANE_WM_LINES_SHIFT) &
3758						PLANE_WM_LINES_MASK;
3759		}
3760	}
3761}
3762
3763static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3764{
3765	struct drm_device *dev = crtc->dev;
3766	struct drm_i915_private *dev_priv = dev->dev_private;
3767	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3768	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3769	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3770	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3771	enum pipe pipe = intel_crtc->pipe;
3772	int level, i, max_level;
3773	uint32_t temp;
3774
3775	max_level = ilk_wm_max_level(dev);
3776
3777	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3778
3779	for (level = 0; level <= max_level; level++) {
3780		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3781			hw->plane[pipe][i][level] =
3782					I915_READ(PLANE_WM(pipe, i, level));
3783		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3784	}
3785
3786	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3787		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3788	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3789
3790	if (!intel_crtc->active)
3791		return;
3792
3793	hw->dirty[pipe] = true;
3794
3795	active->linetime = hw->wm_linetime[pipe];
3796
3797	for (level = 0; level <= max_level; level++) {
3798		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3799			temp = hw->plane[pipe][i][level];
3800			skl_pipe_wm_active_state(temp, active, false,
3801						false, i, level);
3802		}
3803		temp = hw->plane[pipe][PLANE_CURSOR][level];
3804		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3805	}
3806
3807	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3808		temp = hw->plane_trans[pipe][i];
3809		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3810	}
3811
3812	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3813	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3814
3815	intel_crtc->wm.active.skl = *active;
3816}
3817
3818void skl_wm_get_hw_state(struct drm_device *dev)
3819{
3820	struct drm_i915_private *dev_priv = dev->dev_private;
3821	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3822	struct drm_crtc *crtc;
3823
3824	skl_ddb_get_hw_state(dev_priv, ddb);
3825	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3826		skl_pipe_wm_get_hw_state(crtc);
3827}
3828
3829static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3830{
3831	struct drm_device *dev = crtc->dev;
3832	struct drm_i915_private *dev_priv = dev->dev_private;
3833	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3834	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3835	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3836	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3837	enum pipe pipe = intel_crtc->pipe;
3838	static const i915_reg_t wm0_pipe_reg[] = {
3839		[PIPE_A] = WM0_PIPEA_ILK,
3840		[PIPE_B] = WM0_PIPEB_ILK,
3841		[PIPE_C] = WM0_PIPEC_IVB,
3842	};
3843
3844	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3845	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3846		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3847
3848	active->pipe_enabled = intel_crtc->active;
3849
3850	if (active->pipe_enabled) {
3851		u32 tmp = hw->wm_pipe[pipe];
3852
3853		/*
3854		 * For active pipes LP0 watermark is marked as
3855		 * enabled, and LP1+ watermaks as disabled since
3856		 * we can't really reverse compute them in case
3857		 * multiple pipes are active.
3858		 */
3859		active->wm[0].enable = true;
3860		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3861		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3862		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3863		active->linetime = hw->wm_linetime[pipe];
3864	} else {
3865		int level, max_level = ilk_wm_max_level(dev);
3866
3867		/*
3868		 * For inactive pipes, all watermark levels
3869		 * should be marked as enabled but zeroed,
3870		 * which is what we'd compute them to.
3871		 */
3872		for (level = 0; level <= max_level; level++)
3873			active->wm[level].enable = true;
3874	}
3875
3876	intel_crtc->wm.active.ilk = *active;
3877}
3878
3879#define _FW_WM(value, plane) \
3880	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3881#define _FW_WM_VLV(value, plane) \
3882	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3883
3884static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3885			       struct vlv_wm_values *wm)
3886{
3887	enum pipe pipe;
3888	uint32_t tmp;
3889
3890	for_each_pipe(dev_priv, pipe) {
3891		tmp = I915_READ(VLV_DDL(pipe));
3892
3893		wm->ddl[pipe].primary =
3894			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3895		wm->ddl[pipe].cursor =
3896			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3897		wm->ddl[pipe].sprite[0] =
3898			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3899		wm->ddl[pipe].sprite[1] =
3900			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3901	}
3902
3903	tmp = I915_READ(DSPFW1);
3904	wm->sr.plane = _FW_WM(tmp, SR);
3905	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3906	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3907	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3908
3909	tmp = I915_READ(DSPFW2);
3910	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3911	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3912	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3913
3914	tmp = I915_READ(DSPFW3);
3915	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3916
3917	if (IS_CHERRYVIEW(dev_priv)) {
3918		tmp = I915_READ(DSPFW7_CHV);
3919		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3920		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3921
3922		tmp = I915_READ(DSPFW8_CHV);
3923		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3924		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3925
3926		tmp = I915_READ(DSPFW9_CHV);
3927		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3928		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3929
3930		tmp = I915_READ(DSPHOWM);
3931		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3932		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3933		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3934		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3935		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3936		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3937		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3938		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3939		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3940		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3941	} else {
3942		tmp = I915_READ(DSPFW7);
3943		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3944		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3945
3946		tmp = I915_READ(DSPHOWM);
3947		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3948		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3949		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3950		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3951		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3952		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3953		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3954	}
3955}
3956
3957#undef _FW_WM
3958#undef _FW_WM_VLV
3959
3960void vlv_wm_get_hw_state(struct drm_device *dev)
3961{
3962	struct drm_i915_private *dev_priv = to_i915(dev);
3963	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3964	struct intel_plane *plane;
3965	enum pipe pipe;
3966	u32 val;
3967
3968	vlv_read_wm_values(dev_priv, wm);
3969
3970	for_each_intel_plane(dev, plane) {
3971		switch (plane->base.type) {
3972			int sprite;
3973		case DRM_PLANE_TYPE_CURSOR:
3974			plane->wm.fifo_size = 63;
3975			break;
3976		case DRM_PLANE_TYPE_PRIMARY:
3977			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3978			break;
3979		case DRM_PLANE_TYPE_OVERLAY:
3980			sprite = plane->plane;
3981			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3982			break;
3983		}
3984	}
3985
3986	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3987	wm->level = VLV_WM_LEVEL_PM2;
3988
3989	if (IS_CHERRYVIEW(dev_priv)) {
3990		mutex_lock(&dev_priv->rps.hw_lock);
3991
3992		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3993		if (val & DSP_MAXFIFO_PM5_ENABLE)
3994			wm->level = VLV_WM_LEVEL_PM5;
3995
3996		/*
3997		 * If DDR DVFS is disabled in the BIOS, Punit
3998		 * will never ack the request. So if that happens
3999		 * assume we don't have to enable/disable DDR DVFS
4000		 * dynamically. To test that just set the REQ_ACK
4001		 * bit to poke the Punit, but don't change the
4002		 * HIGH/LOW bits so that we don't actually change
4003		 * the current state.
4004		 */
4005		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4006		val |= FORCE_DDR_FREQ_REQ_ACK;
4007		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4008
4009		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4010			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4011			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4012				      "assuming DDR DVFS is disabled\n");
4013			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4014		} else {
4015			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4016			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4017				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4018		}
4019
4020		mutex_unlock(&dev_priv->rps.hw_lock);
4021	}
4022
4023	for_each_pipe(dev_priv, pipe)
4024		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4025			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4026			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4027
4028	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4029		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4030}
4031
4032void ilk_wm_get_hw_state(struct drm_device *dev)
4033{
4034	struct drm_i915_private *dev_priv = dev->dev_private;
4035	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4036	struct drm_crtc *crtc;
4037
4038	for_each_crtc(dev, crtc)
4039		ilk_pipe_wm_get_hw_state(crtc);
4040
4041	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4042	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4043	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4044
4045	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4046	if (INTEL_INFO(dev)->gen >= 7) {
4047		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4048		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4049	}
4050
4051	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4052		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4053			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4054	else if (IS_IVYBRIDGE(dev))
4055		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4056			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4057
4058	hw->enable_fbc_wm =
4059		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4060}
4061
4062/**
4063 * intel_update_watermarks - update FIFO watermark values based on current modes
4064 *
4065 * Calculate watermark values for the various WM regs based on current mode
4066 * and plane configuration.
4067 *
4068 * There are several cases to deal with here:
4069 *   - normal (i.e. non-self-refresh)
4070 *   - self-refresh (SR) mode
4071 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4072 *   - lines are small relative to FIFO size (buffer can hold more than 2
4073 *     lines), so need to account for TLB latency
4074 *
4075 *   The normal calculation is:
4076 *     watermark = dotclock * bytes per pixel * latency
4077 *   where latency is platform & configuration dependent (we assume pessimal
4078 *   values here).
4079 *
4080 *   The SR calculation is:
4081 *     watermark = (trunc(latency/line time)+1) * surface width *
4082 *       bytes per pixel
4083 *   where
4084 *     line time = htotal / dotclock
4085 *     surface width = hdisplay for normal plane and 64 for cursor
4086 *   and latency is assumed to be high, as above.
4087 *
4088 * The final value programmed to the register should always be rounded up,
4089 * and include an extra 2 entries to account for clock crossings.
4090 *
4091 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4092 * to set the non-SR watermarks to 8.
4093 */
4094void intel_update_watermarks(struct drm_crtc *crtc)
4095{
4096	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4097
4098	if (dev_priv->display.update_wm)
4099		dev_priv->display.update_wm(crtc);
4100}
4101
4102/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4103 * Lock protecting IPS related data structures
4104 */
4105DEFINE_SPINLOCK(mchdev_lock);
4106
4107/* Global for IPS driver to get at the current i915 device. Protected by
4108 * mchdev_lock. */
4109static struct drm_i915_private *i915_mch_dev;
4110
4111bool ironlake_set_drps(struct drm_device *dev, u8 val)
4112{
4113	struct drm_i915_private *dev_priv = dev->dev_private;
4114	u16 rgvswctl;
4115
4116	assert_spin_locked(&mchdev_lock);
4117
4118	rgvswctl = I915_READ16(MEMSWCTL);
4119	if (rgvswctl & MEMCTL_CMD_STS) {
4120		DRM_DEBUG("gpu busy, RCS change rejected\n");
4121		return false; /* still busy with another command */
4122	}
4123
4124	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4125		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4126	I915_WRITE16(MEMSWCTL, rgvswctl);
4127	POSTING_READ16(MEMSWCTL);
4128
4129	rgvswctl |= MEMCTL_CMD_STS;
4130	I915_WRITE16(MEMSWCTL, rgvswctl);
4131
4132	return true;
4133}
4134
4135static void ironlake_enable_drps(struct drm_device *dev)
4136{
4137	struct drm_i915_private *dev_priv = dev->dev_private;
4138	u32 rgvmodectl;
4139	u8 fmax, fmin, fstart, vstart;
4140
4141	spin_lock_irq(&mchdev_lock);
4142
4143	rgvmodectl = I915_READ(MEMMODECTL);
4144
4145	/* Enable temp reporting */
4146	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4147	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4148
4149	/* 100ms RC evaluation intervals */
4150	I915_WRITE(RCUPEI, 100000);
4151	I915_WRITE(RCDNEI, 100000);
4152
4153	/* Set max/min thresholds to 90ms and 80ms respectively */
4154	I915_WRITE(RCBMAXAVG, 90000);
4155	I915_WRITE(RCBMINAVG, 80000);
4156
4157	I915_WRITE(MEMIHYST, 1);
4158
4159	/* Set up min, max, and cur for interrupt handling */
4160	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4161	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4162	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4163		MEMMODE_FSTART_SHIFT;
4164
4165	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4166		PXVFREQ_PX_SHIFT;
4167
4168	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4169	dev_priv->ips.fstart = fstart;
4170
4171	dev_priv->ips.max_delay = fstart;
4172	dev_priv->ips.min_delay = fmin;
4173	dev_priv->ips.cur_delay = fstart;
4174
4175	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4176			 fmax, fmin, fstart);
4177
4178	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4179
4180	/*
4181	 * Interrupts will be enabled in ironlake_irq_postinstall
4182	 */
4183
4184	I915_WRITE(VIDSTART, vstart);
4185	POSTING_READ(VIDSTART);
4186
4187	rgvmodectl |= MEMMODE_SWMODE_EN;
4188	I915_WRITE(MEMMODECTL, rgvmodectl);
4189
4190	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4191		DRM_ERROR("stuck trying to change perf mode\n");
4192	mdelay(1);
4193
4194	ironlake_set_drps(dev, fstart);
4195
4196	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4197		I915_READ(DDREC) + I915_READ(CSIEC);
4198	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4199	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4200	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4201
4202	spin_unlock_irq(&mchdev_lock);
4203}
4204
4205static void ironlake_disable_drps(struct drm_device *dev)
4206{
4207	struct drm_i915_private *dev_priv = dev->dev_private;
4208	u16 rgvswctl;
4209
4210	spin_lock_irq(&mchdev_lock);
4211
4212	rgvswctl = I915_READ16(MEMSWCTL);
4213
4214	/* Ack interrupts, disable EFC interrupt */
4215	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4216	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4217	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4218	I915_WRITE(DEIIR, DE_PCU_EVENT);
4219	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4220
4221	/* Go back to the starting frequency */
4222	ironlake_set_drps(dev, dev_priv->ips.fstart);
4223	mdelay(1);
4224	rgvswctl |= MEMCTL_CMD_STS;
4225	I915_WRITE(MEMSWCTL, rgvswctl);
4226	mdelay(1);
4227
4228	spin_unlock_irq(&mchdev_lock);
4229}
4230
4231/* There's a funny hw issue where the hw returns all 0 when reading from
4232 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4233 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4234 * all limits and the gpu stuck at whatever frequency it is at atm).
4235 */
4236static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4237{
4238	u32 limits;
4239
4240	/* Only set the down limit when we've reached the lowest level to avoid
4241	 * getting more interrupts, otherwise leave this clear. This prevents a
4242	 * race in the hw when coming out of rc6: There's a tiny window where
4243	 * the hw runs at the minimal clock before selecting the desired
4244	 * frequency, if the down threshold expires in that window we will not
4245	 * receive a down interrupt. */
4246	if (IS_GEN9(dev_priv->dev)) {
4247		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4248		if (val <= dev_priv->rps.min_freq_softlimit)
4249			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4250	} else {
4251		limits = dev_priv->rps.max_freq_softlimit << 24;
4252		if (val <= dev_priv->rps.min_freq_softlimit)
4253			limits |= dev_priv->rps.min_freq_softlimit << 16;
4254	}
4255
4256	return limits;
4257}
4258
4259static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4260{
4261	int new_power;
4262	u32 threshold_up = 0, threshold_down = 0; /* in % */
4263	u32 ei_up = 0, ei_down = 0;
4264
4265	new_power = dev_priv->rps.power;
4266	switch (dev_priv->rps.power) {
4267	case LOW_POWER:
4268		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4269			new_power = BETWEEN;
4270		break;
4271
4272	case BETWEEN:
4273		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4274			new_power = LOW_POWER;
4275		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4276			new_power = HIGH_POWER;
4277		break;
4278
4279	case HIGH_POWER:
4280		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4281			new_power = BETWEEN;
4282		break;
4283	}
4284	/* Max/min bins are special */
4285	if (val <= dev_priv->rps.min_freq_softlimit)
4286		new_power = LOW_POWER;
4287	if (val >= dev_priv->rps.max_freq_softlimit)
4288		new_power = HIGH_POWER;
4289	if (new_power == dev_priv->rps.power)
4290		return;
4291
4292	/* Note the units here are not exactly 1us, but 1280ns. */
4293	switch (new_power) {
4294	case LOW_POWER:
4295		/* Upclock if more than 95% busy over 16ms */
4296		ei_up = 16000;
4297		threshold_up = 95;
4298
4299		/* Downclock if less than 85% busy over 32ms */
4300		ei_down = 32000;
4301		threshold_down = 85;
 
 
 
 
 
 
 
 
4302		break;
4303
4304	case BETWEEN:
4305		/* Upclock if more than 90% busy over 13ms */
4306		ei_up = 13000;
4307		threshold_up = 90;
4308
4309		/* Downclock if less than 75% busy over 32ms */
4310		ei_down = 32000;
4311		threshold_down = 75;
 
 
 
 
 
 
 
 
4312		break;
4313
4314	case HIGH_POWER:
4315		/* Upclock if more than 85% busy over 10ms */
4316		ei_up = 10000;
4317		threshold_up = 85;
4318
4319		/* Downclock if less than 60% busy over 32ms */
4320		ei_down = 32000;
4321		threshold_down = 60;
 
 
 
 
 
 
 
 
4322		break;
4323	}
4324
4325	I915_WRITE(GEN6_RP_UP_EI,
4326		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4327	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4328		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4329
4330	I915_WRITE(GEN6_RP_DOWN_EI,
4331		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4332	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4333		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4334
4335	 I915_WRITE(GEN6_RP_CONTROL,
4336		    GEN6_RP_MEDIA_TURBO |
4337		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4338		    GEN6_RP_MEDIA_IS_GFX |
4339		    GEN6_RP_ENABLE |
4340		    GEN6_RP_UP_BUSY_AVG |
4341		    GEN6_RP_DOWN_IDLE_AVG);
4342
4343	dev_priv->rps.power = new_power;
4344	dev_priv->rps.up_threshold = threshold_up;
4345	dev_priv->rps.down_threshold = threshold_down;
4346	dev_priv->rps.last_adj = 0;
4347}
4348
4349static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4350{
4351	u32 mask = 0;
4352
4353	if (val > dev_priv->rps.min_freq_softlimit)
4354		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4355	if (val < dev_priv->rps.max_freq_softlimit)
4356		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4357
4358	mask &= dev_priv->pm_rps_events;
 
 
 
 
4359
4360	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4361}
4362
4363/* gen6_set_rps is called to update the frequency request, but should also be
4364 * called when the range (min_delay and max_delay) is modified so that we can
4365 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4366static void gen6_set_rps(struct drm_device *dev, u8 val)
4367{
4368	struct drm_i915_private *dev_priv = dev->dev_private;
4369
4370	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4371	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4372		return;
4373
4374	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4375	WARN_ON(val > dev_priv->rps.max_freq);
4376	WARN_ON(val < dev_priv->rps.min_freq);
4377
4378	/* min/max delay may still have been modified so be sure to
4379	 * write the limits value.
4380	 */
4381	if (val != dev_priv->rps.cur_freq) {
4382		gen6_set_rps_thresholds(dev_priv, val);
4383
4384		if (IS_GEN9(dev))
4385			I915_WRITE(GEN6_RPNSWREQ,
4386				   GEN9_FREQUENCY(val));
4387		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4388			I915_WRITE(GEN6_RPNSWREQ,
4389				   HSW_FREQUENCY(val));
4390		else
4391			I915_WRITE(GEN6_RPNSWREQ,
4392				   GEN6_FREQUENCY(val) |
4393				   GEN6_OFFSET(0) |
4394				   GEN6_AGGRESSIVE_TURBO);
4395	}
4396
4397	/* Make sure we continue to get interrupts
4398	 * until we hit the minimum or maximum frequencies.
4399	 */
4400	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4401	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4402
4403	POSTING_READ(GEN6_RPNSWREQ);
4404
4405	dev_priv->rps.cur_freq = val;
4406	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4407}
4408
4409static void valleyview_set_rps(struct drm_device *dev, u8 val)
 
 
 
 
 
 
 
 
 
4410{
4411	struct drm_i915_private *dev_priv = dev->dev_private;
4412
4413	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4414	WARN_ON(val > dev_priv->rps.max_freq);
4415	WARN_ON(val < dev_priv->rps.min_freq);
4416
4417	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4418		      "Odd GPU freq value\n"))
4419		val &= ~1;
4420
4421	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
 
4422
4423	if (val != dev_priv->rps.cur_freq) {
4424		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4425		if (!IS_CHERRYVIEW(dev_priv))
4426			gen6_set_rps_thresholds(dev_priv, val);
 
 
 
 
 
4427	}
4428
4429	dev_priv->rps.cur_freq = val;
4430	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4431}
4432
4433/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4434 *
4435 * * If Gfx is Idle, then
4436 * 1. Forcewake Media well.
4437 * 2. Request idle freq.
4438 * 3. Release Forcewake of Media well.
4439*/
4440static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4441{
4442	u32 val = dev_priv->rps.idle_freq;
4443
4444	if (dev_priv->rps.cur_freq <= val)
4445		return;
 
 
 
 
 
 
4446
4447	/* Wake up the media well, as that takes a lot less
4448	 * power than the Render well. */
4449	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4450	valleyview_set_rps(dev_priv->dev, val);
4451	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4452}
4453
4454void gen6_rps_busy(struct drm_i915_private *dev_priv)
4455{
 
 
4456	mutex_lock(&dev_priv->rps.hw_lock);
4457	if (dev_priv->rps.enabled) {
4458		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4459			gen6_rps_reset_ei(dev_priv);
4460		I915_WRITE(GEN6_PMINTRMSK,
4461			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
 
4462	}
4463	mutex_unlock(&dev_priv->rps.hw_lock);
4464}
4465
4466void gen6_rps_idle(struct drm_i915_private *dev_priv)
4467{
4468	struct drm_device *dev = dev_priv->dev;
4469
4470	mutex_lock(&dev_priv->rps.hw_lock);
4471	if (dev_priv->rps.enabled) {
4472		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4473			vlv_set_rps_idle(dev_priv);
4474		else
4475			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4476		dev_priv->rps.last_adj = 0;
4477		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4478	}
4479	mutex_unlock(&dev_priv->rps.hw_lock);
 
4480
4481	spin_lock(&dev_priv->rps.client_lock);
4482	while (!list_empty(&dev_priv->rps.clients))
4483		list_del_init(dev_priv->rps.clients.next);
4484	spin_unlock(&dev_priv->rps.client_lock);
4485}
4486
4487void gen6_rps_boost(struct drm_i915_private *dev_priv,
4488		    struct intel_rps_client *rps,
4489		    unsigned long submitted)
4490{
4491	/* This is intentionally racy! We peek at the state here, then
4492	 * validate inside the RPS worker.
4493	 */
4494	if (!(dev_priv->mm.busy &&
4495	      dev_priv->rps.enabled &&
4496	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4497		return;
4498
4499	/* Force a RPS boost (and don't count it against the client) if
4500	 * the GPU is severely congested.
4501	 */
4502	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4503		rps = NULL;
4504
4505	spin_lock(&dev_priv->rps.client_lock);
4506	if (rps == NULL || list_empty(&rps->link)) {
4507		spin_lock_irq(&dev_priv->irq_lock);
4508		if (dev_priv->rps.interrupts_enabled) {
4509			dev_priv->rps.client_boost = true;
4510			queue_work(dev_priv->wq, &dev_priv->rps.work);
4511		}
4512		spin_unlock_irq(&dev_priv->irq_lock);
4513
4514		if (rps != NULL) {
4515			list_add(&rps->link, &dev_priv->rps.clients);
4516			rps->boosts++;
4517		} else
4518			dev_priv->rps.boosts++;
4519	}
4520	spin_unlock(&dev_priv->rps.client_lock);
4521}
4522
4523void intel_set_rps(struct drm_device *dev, u8 val)
4524{
4525	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4526		valleyview_set_rps(dev, val);
4527	else
4528		gen6_set_rps(dev, val);
4529}
4530
4531static void gen9_disable_rps(struct drm_device *dev)
4532{
4533	struct drm_i915_private *dev_priv = dev->dev_private;
4534
4535	I915_WRITE(GEN6_RC_CONTROL, 0);
4536	I915_WRITE(GEN9_PG_ENABLE, 0);
 
 
 
 
 
 
 
 
 
 
 
4537}
4538
4539static void gen6_disable_rps(struct drm_device *dev)
4540{
4541	struct drm_i915_private *dev_priv = dev->dev_private;
4542
4543	I915_WRITE(GEN6_RC_CONTROL, 0);
4544	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4545}
4546
4547static void cherryview_disable_rps(struct drm_device *dev)
4548{
4549	struct drm_i915_private *dev_priv = dev->dev_private;
4550
4551	I915_WRITE(GEN6_RC_CONTROL, 0);
4552}
4553
4554static void valleyview_disable_rps(struct drm_device *dev)
4555{
4556	struct drm_i915_private *dev_priv = dev->dev_private;
4557
4558	/* we're doing forcewake before Disabling RC6,
4559	 * This what the BIOS expects when going into suspend */
4560	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4561
4562	I915_WRITE(GEN6_RC_CONTROL, 0);
4563
4564	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4565}
4566
4567static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4568{
4569	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4570		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4571			mode = GEN6_RC_CTL_RC6_ENABLE;
4572		else
4573			mode = 0;
4574	}
4575	if (HAS_RC6p(dev))
4576		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4577			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4578			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4579			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4580
4581	else
4582		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4583			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4584}
4585
4586static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
4587{
4588	struct drm_i915_private *dev_priv = dev->dev_private;
4589	bool enable_rc6 = true;
4590	unsigned long rc6_ctx_base;
4591
4592	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4593		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4594		enable_rc6 = false;
4595	}
4596
4597	/*
4598	 * The exact context size is not known for BXT, so assume a page size
4599	 * for this check.
4600	 */
4601	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4602	if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
4603	      (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
4604					dev_priv->gtt.stolen_reserved_size))) {
4605		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4606		enable_rc6 = false;
4607	}
4608
4609	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4610	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4611	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4612	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4613		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4614		enable_rc6 = false;
4615	}
4616
4617	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4618					    GEN6_RC_CTL_HW_ENABLE)) &&
4619	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4620	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4621		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4622		enable_rc6 = false;
4623	}
4624
4625	return enable_rc6;
4626}
4627
4628int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4629{
4630	/* No RC6 before Ironlake and code is gone for ilk. */
4631	if (INTEL_INFO(dev)->gen < 6)
4632		return 0;
4633
4634	if (!enable_rc6)
4635		return 0;
4636
4637	if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4638		DRM_INFO("RC6 disabled by BIOS\n");
4639		return 0;
4640	}
4641
4642	/* Respect the kernel parameter if it is set */
4643	if (enable_rc6 >= 0) {
4644		int mask;
4645
4646		if (HAS_RC6p(dev))
4647			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4648			       INTEL_RC6pp_ENABLE;
4649		else
4650			mask = INTEL_RC6_ENABLE;
4651
4652		if ((enable_rc6 & mask) != enable_rc6)
4653			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4654				      enable_rc6 & mask, enable_rc6, mask);
4655
4656		return enable_rc6 & mask;
4657	}
4658
4659	if (IS_IVYBRIDGE(dev))
4660		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4661
4662	return INTEL_RC6_ENABLE;
4663}
4664
4665int intel_enable_rc6(const struct drm_device *dev)
4666{
4667	return i915.enable_rc6;
4668}
4669
4670static void gen6_init_rps_frequencies(struct drm_device *dev)
4671{
4672	struct drm_i915_private *dev_priv = dev->dev_private;
4673	uint32_t rp_state_cap;
4674	u32 ddcc_status = 0;
4675	int ret;
4676
4677	/* All of these values are in units of 50MHz */
4678	dev_priv->rps.cur_freq		= 0;
4679	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4680	if (IS_BROXTON(dev)) {
4681		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4682		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4683		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4684		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4685	} else {
4686		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4687		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4688		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4689		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4690	}
4691
4692	/* hw_max = RP0 until we check for overclocking */
4693	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4694
4695	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4696	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4697	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4698		ret = sandybridge_pcode_read(dev_priv,
4699					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4700					&ddcc_status);
4701		if (0 == ret)
4702			dev_priv->rps.efficient_freq =
4703				clamp_t(u8,
4704					((ddcc_status >> 8) & 0xff),
4705					dev_priv->rps.min_freq,
4706					dev_priv->rps.max_freq);
4707	}
4708
4709	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4710		/* Store the frequency values in 16.66 MHZ units, which is
4711		   the natural hardware unit for SKL */
4712		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4713		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4714		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4715		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4716		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4717	}
4718
4719	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4720
4721	/* Preserve min/max settings in case of re-init */
4722	if (dev_priv->rps.max_freq_softlimit == 0)
4723		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4724
4725	if (dev_priv->rps.min_freq_softlimit == 0) {
4726		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4727			dev_priv->rps.min_freq_softlimit =
4728				max_t(int, dev_priv->rps.efficient_freq,
4729				      intel_freq_opcode(dev_priv, 450));
4730		else
4731			dev_priv->rps.min_freq_softlimit =
4732				dev_priv->rps.min_freq;
4733	}
4734}
4735
4736/* See the Gen9_GT_PM_Programming_Guide doc for the below */
4737static void gen9_enable_rps(struct drm_device *dev)
4738{
4739	struct drm_i915_private *dev_priv = dev->dev_private;
4740
4741	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4742
4743	gen6_init_rps_frequencies(dev);
4744
4745	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4746	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4747		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4748		return;
4749	}
4750
4751	/* Program defaults and thresholds for RPS*/
4752	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4753		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4754
4755	/* 1 second timeout*/
4756	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4757		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4758
4759	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4760
4761	/* Leaning on the below call to gen6_set_rps to program/setup the
4762	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4763	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4764	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4765	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4766
4767	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4768}
4769
4770static void gen9_enable_rc6(struct drm_device *dev)
4771{
4772	struct drm_i915_private *dev_priv = dev->dev_private;
4773	struct intel_engine_cs *ring;
4774	uint32_t rc6_mask = 0;
4775	int unused;
4776
4777	/* 1a: Software RC state - RC0 */
4778	I915_WRITE(GEN6_RC_STATE, 0);
4779
4780	/* 1b: Get forcewake during program sequence. Although the driver
4781	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4782	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4783
4784	/* 2a: Disable RC states. */
4785	I915_WRITE(GEN6_RC_CONTROL, 0);
4786
4787	/* 2b: Program RC6 thresholds.*/
4788
4789	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4790	if (IS_SKYLAKE(dev))
4791		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4792	else
4793		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4794	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4795	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4796	for_each_ring(ring, dev_priv, unused)
4797		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4798
4799	if (HAS_GUC_UCODE(dev))
4800		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4801
4802	I915_WRITE(GEN6_RC_SLEEP, 0);
4803
4804	/* 2c: Program Coarse Power Gating Policies. */
4805	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4806	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4807
4808	/* 3a: Enable RC6 */
4809	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4810		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4811	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4812	/* WaRsUseTimeoutMode */
4813	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4814	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4815		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4816		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4817			   GEN7_RC_CTL_TO_MODE |
4818			   rc6_mask);
4819	} else {
4820		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4821		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4822			   GEN6_RC_CTL_EI_MODE(1) |
4823			   rc6_mask);
4824	}
4825
4826	/*
4827	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4828	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4829	 */
4830	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4831		I915_WRITE(GEN9_PG_ENABLE, 0);
4832	else
4833		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4834				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4835
4836	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837
 
 
 
 
 
4838}
4839
4840static void gen8_enable_rps(struct drm_device *dev)
4841{
4842	struct drm_i915_private *dev_priv = dev->dev_private;
4843	struct intel_engine_cs *ring;
4844	uint32_t rc6_mask = 0;
4845	int unused;
4846
4847	/* 1a: Software RC state - RC0 */
4848	I915_WRITE(GEN6_RC_STATE, 0);
4849
4850	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4851	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4852	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4853
4854	/* 2a: Disable RC states. */
4855	I915_WRITE(GEN6_RC_CONTROL, 0);
4856
4857	/* Initialize rps frequencies */
4858	gen6_init_rps_frequencies(dev);
4859
4860	/* 2b: Program RC6 thresholds.*/
4861	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4862	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4863	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4864	for_each_ring(ring, dev_priv, unused)
4865		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4866	I915_WRITE(GEN6_RC_SLEEP, 0);
4867	if (IS_BROADWELL(dev))
4868		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4869	else
4870		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4871
4872	/* 3: Enable RC6 */
4873	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4874		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4875	intel_print_rc6_info(dev, rc6_mask);
4876	if (IS_BROADWELL(dev))
4877		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4878				GEN7_RC_CTL_TO_MODE |
4879				rc6_mask);
4880	else
4881		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4882				GEN6_RC_CTL_EI_MODE(1) |
4883				rc6_mask);
4884
4885	/* 4 Program defaults and thresholds for RPS*/
4886	I915_WRITE(GEN6_RPNSWREQ,
4887		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4888	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4889		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4890	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4891	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4892
4893	/* Docs recommend 900MHz, and 300 MHz respectively */
4894	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4895		   dev_priv->rps.max_freq_softlimit << 24 |
4896		   dev_priv->rps.min_freq_softlimit << 16);
4897
4898	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4899	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4900	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4901	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4902
4903	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4904
4905	/* 5: Enable RPS */
4906	I915_WRITE(GEN6_RP_CONTROL,
4907		   GEN6_RP_MEDIA_TURBO |
4908		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4909		   GEN6_RP_MEDIA_IS_GFX |
4910		   GEN6_RP_ENABLE |
4911		   GEN6_RP_UP_BUSY_AVG |
4912		   GEN6_RP_DOWN_IDLE_AVG);
4913
4914	/* 6: Ring frequency + overclocking (our driver does this later */
4915
4916	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4917	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
 
4918
4919	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4920}
4921
4922static void gen6_enable_rps(struct drm_device *dev)
4923{
4924	struct drm_i915_private *dev_priv = dev->dev_private;
4925	struct intel_engine_cs *ring;
 
 
4926	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4927	u32 gtfifodbg;
4928	int rc6_mode;
4929	int i, ret;
4930
4931	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4932
4933	/* Here begins a magic sequence of register writes to enable
4934	 * auto-downclocking.
4935	 *
4936	 * Perhaps there might be some value in exposing these to
4937	 * userspace...
4938	 */
4939	I915_WRITE(GEN6_RC_STATE, 0);
4940
4941	/* Clear the DBG now so we don't confuse earlier errors */
4942	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4943		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4944		I915_WRITE(GTFIFODBG, gtfifodbg);
4945	}
4946
4947	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4948
4949	/* Initialize rps frequencies */
4950	gen6_init_rps_frequencies(dev);
4951
4952	/* disable the counters and set deterministic thresholds */
4953	I915_WRITE(GEN6_RC_CONTROL, 0);
4954
4955	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4956	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4957	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4958	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4959	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4960
4961	for_each_ring(ring, dev_priv, i)
4962		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4963
4964	I915_WRITE(GEN6_RC_SLEEP, 0);
4965	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4966	if (IS_IVYBRIDGE(dev))
4967		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4968	else
4969		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4970	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4971	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4972
4973	/* Check if we are enabling RC6 */
4974	rc6_mode = intel_enable_rc6(dev_priv->dev);
4975	if (rc6_mode & INTEL_RC6_ENABLE)
4976		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4977
4978	/* We don't use those on Haswell */
4979	if (!IS_HASWELL(dev)) {
4980		if (rc6_mode & INTEL_RC6p_ENABLE)
4981			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4982
4983		if (rc6_mode & INTEL_RC6pp_ENABLE)
4984			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4985	}
4986
4987	intel_print_rc6_info(dev, rc6_mask);
4988
4989	I915_WRITE(GEN6_RC_CONTROL,
4990		   rc6_mask |
4991		   GEN6_RC_CTL_EI_MODE(1) |
4992		   GEN6_RC_CTL_HW_ENABLE);
4993
4994	/* Power down if completely idle for over 50ms */
4995	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4996	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4997
4998	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4999	if (ret)
5000		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5001
5002	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5003	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5004		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5005				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5006				 (pcu_mbox & 0xff) * 50);
5007		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5008	}
5009
5010	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5011	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
 
 
5012
5013	rc6vids = 0;
5014	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5015	if (IS_GEN6(dev) && ret) {
5016		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5017	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5018		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5019			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5020		rc6vids &= 0xffff00;
5021		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5022		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5023		if (ret)
5024			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5025	}
5026
5027	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5028}
5029
5030static void __gen6_update_ring_freq(struct drm_device *dev)
5031{
5032	struct drm_i915_private *dev_priv = dev->dev_private;
5033	int min_freq = 15;
5034	unsigned int gpu_freq;
5035	unsigned int max_ia_freq, min_ring_freq;
5036	unsigned int max_gpu_freq, min_gpu_freq;
5037	int scaling_factor = 180;
5038	struct cpufreq_policy *policy;
5039
5040	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5041
5042	policy = cpufreq_cpu_get(0);
5043	if (policy) {
5044		max_ia_freq = policy->cpuinfo.max_freq;
5045		cpufreq_cpu_put(policy);
5046	} else {
5047		/*
5048		 * Default to measured freq if none found, PCU will ensure we
5049		 * don't go over
5050		 */
5051		max_ia_freq = tsc_khz;
5052	}
5053
5054	/* Convert from kHz to MHz */
5055	max_ia_freq /= 1000;
5056
5057	min_ring_freq = I915_READ(DCLK) & 0xf;
5058	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5059	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5060
5061	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5062		/* Convert GT frequency to 50 HZ units */
5063		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5064		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5065	} else {
5066		min_gpu_freq = dev_priv->rps.min_freq;
5067		max_gpu_freq = dev_priv->rps.max_freq;
5068	}
5069
5070	/*
5071	 * For each potential GPU frequency, load a ring frequency we'd like
5072	 * to use for memory access.  We do this by specifying the IA frequency
5073	 * the PCU should use as a reference to determine the ring frequency.
5074	 */
5075	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5076		int diff = max_gpu_freq - gpu_freq;
 
5077		unsigned int ia_freq = 0, ring_freq = 0;
5078
5079		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5080			/*
5081			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5082			 * No floor required for ring frequency on SKL.
5083			 */
5084			ring_freq = gpu_freq;
5085		} else if (INTEL_INFO(dev)->gen >= 8) {
5086			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5087			ring_freq = max(min_ring_freq, gpu_freq);
5088		} else if (IS_HASWELL(dev)) {
5089			ring_freq = mult_frac(gpu_freq, 5, 4);
5090			ring_freq = max(min_ring_freq, ring_freq);
5091			/* leave ia_freq as the default, chosen by cpufreq */
5092		} else {
5093			/* On older processors, there is no separate ring
5094			 * clock domain, so in order to boost the bandwidth
5095			 * of the ring, we need to upclock the CPU (ia_freq).
5096			 *
5097			 * For GPU frequencies less than 750MHz,
5098			 * just use the lowest ring freq.
5099			 */
5100			if (gpu_freq < min_freq)
5101				ia_freq = 800;
5102			else
5103				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5104			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5105		}
5106
5107		sandybridge_pcode_write(dev_priv,
5108					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5109					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5110					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5111					gpu_freq);
5112	}
5113}
5114
5115void gen6_update_ring_freq(struct drm_device *dev)
5116{
5117	struct drm_i915_private *dev_priv = dev->dev_private;
5118
5119	if (!HAS_CORE_RING_FREQ(dev))
5120		return;
5121
5122	mutex_lock(&dev_priv->rps.hw_lock);
5123	__gen6_update_ring_freq(dev);
5124	mutex_unlock(&dev_priv->rps.hw_lock);
5125}
5126
5127static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5128{
5129	struct drm_device *dev = dev_priv->dev;
5130	u32 val, rp0;
5131
5132	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5133
5134	switch (INTEL_INFO(dev)->eu_total) {
5135	case 8:
5136		/* (2 * 4) config */
5137		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5138		break;
5139	case 12:
5140		/* (2 * 6) config */
5141		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5142		break;
5143	case 16:
5144		/* (2 * 8) config */
5145	default:
5146		/* Setting (2 * 8) Min RP0 for any other combination */
5147		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5148		break;
5149	}
5150
5151	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5152
5153	return rp0;
5154}
5155
5156static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5157{
5158	u32 val, rpe;
5159
5160	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5161	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5162
5163	return rpe;
5164}
5165
5166static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5167{
5168	u32 val, rp1;
5169
5170	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5171	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5172
5173	return rp1;
5174}
5175
5176static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5177{
5178	u32 val, rp1;
5179
5180	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5181
5182	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5183
5184	return rp1;
5185}
5186
5187static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5188{
5189	u32 val, rp0;
5190
5191	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5192
5193	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5194	/* Clamp to max */
5195	rp0 = min_t(u32, rp0, 0xea);
5196
5197	return rp0;
5198}
5199
5200static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5201{
5202	u32 val, rpe;
5203
5204	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5205	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5206	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5207	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5208
5209	return rpe;
5210}
5211
5212static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5213{
5214	u32 val;
5215
5216	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5217	/*
5218	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5219	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5220	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5221	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5222	 * to make sure it matches what Punit accepts.
5223	 */
5224	return max_t(u32, val, 0xc0);
5225}
5226
5227/* Check that the pctx buffer wasn't move under us. */
5228static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5229{
5230	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5231
5232	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5233			     dev_priv->vlv_pctx->stolen->start);
5234}
5235
5236
5237/* Check that the pcbr address is not empty. */
5238static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5239{
5240	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5241
5242	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5243}
5244
5245static void cherryview_setup_pctx(struct drm_device *dev)
5246{
5247	struct drm_i915_private *dev_priv = dev->dev_private;
5248	unsigned long pctx_paddr, paddr;
5249	struct i915_gtt *gtt = &dev_priv->gtt;
5250	u32 pcbr;
5251	int pctx_size = 32*1024;
5252
5253	pcbr = I915_READ(VLV_PCBR);
5254	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5255		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5256		paddr = (dev_priv->mm.stolen_base +
5257			 (gtt->stolen_size - pctx_size));
5258
5259		pctx_paddr = (paddr & (~4095));
5260		I915_WRITE(VLV_PCBR, pctx_paddr);
5261	}
5262
5263	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5264}
5265
5266static void valleyview_setup_pctx(struct drm_device *dev)
5267{
5268	struct drm_i915_private *dev_priv = dev->dev_private;
5269	struct drm_i915_gem_object *pctx;
5270	unsigned long pctx_paddr;
5271	u32 pcbr;
5272	int pctx_size = 24*1024;
5273
5274	mutex_lock(&dev->struct_mutex);
5275
5276	pcbr = I915_READ(VLV_PCBR);
5277	if (pcbr) {
5278		/* BIOS set it up already, grab the pre-alloc'd space */
5279		int pcbr_offset;
5280
5281		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5282		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5283								      pcbr_offset,
5284								      I915_GTT_OFFSET_NONE,
5285								      pctx_size);
5286		goto out;
5287	}
5288
5289	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5290
5291	/*
5292	 * From the Gunit register HAS:
5293	 * The Gfx driver is expected to program this register and ensure
5294	 * proper allocation within Gfx stolen memory.  For example, this
5295	 * register should be programmed such than the PCBR range does not
5296	 * overlap with other ranges, such as the frame buffer, protected
5297	 * memory, or any other relevant ranges.
5298	 */
5299	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5300	if (!pctx) {
5301		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5302		goto out;
5303	}
5304
5305	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5306	I915_WRITE(VLV_PCBR, pctx_paddr);
5307
5308out:
5309	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5310	dev_priv->vlv_pctx = pctx;
5311	mutex_unlock(&dev->struct_mutex);
5312}
5313
5314static void valleyview_cleanup_pctx(struct drm_device *dev)
5315{
5316	struct drm_i915_private *dev_priv = dev->dev_private;
5317
5318	if (WARN_ON(!dev_priv->vlv_pctx))
5319		return;
5320
5321	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5322	dev_priv->vlv_pctx = NULL;
5323}
5324
5325static void valleyview_init_gt_powersave(struct drm_device *dev)
5326{
5327	struct drm_i915_private *dev_priv = dev->dev_private;
5328	u32 val;
5329
5330	valleyview_setup_pctx(dev);
5331
5332	mutex_lock(&dev_priv->rps.hw_lock);
5333
5334	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5335	switch ((val >> 6) & 3) {
5336	case 0:
5337	case 1:
5338		dev_priv->mem_freq = 800;
5339		break;
5340	case 2:
5341		dev_priv->mem_freq = 1066;
5342		break;
5343	case 3:
5344		dev_priv->mem_freq = 1333;
5345		break;
5346	}
5347	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5348
5349	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5350	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5351	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5352			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5353			 dev_priv->rps.max_freq);
5354
5355	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5356	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5357			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5358			 dev_priv->rps.efficient_freq);
5359
5360	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5361	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5362			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5363			 dev_priv->rps.rp1_freq);
5364
5365	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5366	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5367			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5368			 dev_priv->rps.min_freq);
5369
5370	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5371
5372	/* Preserve min/max settings in case of re-init */
5373	if (dev_priv->rps.max_freq_softlimit == 0)
5374		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5375
5376	if (dev_priv->rps.min_freq_softlimit == 0)
5377		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5378
5379	mutex_unlock(&dev_priv->rps.hw_lock);
5380}
5381
5382static void cherryview_init_gt_powersave(struct drm_device *dev)
5383{
5384	struct drm_i915_private *dev_priv = dev->dev_private;
5385	u32 val;
5386
5387	cherryview_setup_pctx(dev);
5388
5389	mutex_lock(&dev_priv->rps.hw_lock);
5390
5391	mutex_lock(&dev_priv->sb_lock);
5392	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5393	mutex_unlock(&dev_priv->sb_lock);
5394
5395	switch ((val >> 2) & 0x7) {
5396	case 3:
5397		dev_priv->mem_freq = 2000;
5398		break;
5399	default:
5400		dev_priv->mem_freq = 1600;
5401		break;
5402	}
5403	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5404
5405	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5406	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5407	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5408			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5409			 dev_priv->rps.max_freq);
5410
5411	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5412	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5413			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5414			 dev_priv->rps.efficient_freq);
5415
5416	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5417	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5418			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5419			 dev_priv->rps.rp1_freq);
5420
5421	/* PUnit validated range is only [RPe, RP0] */
5422	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5423	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5424			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5425			 dev_priv->rps.min_freq);
5426
5427	WARN_ONCE((dev_priv->rps.max_freq |
5428		   dev_priv->rps.efficient_freq |
5429		   dev_priv->rps.rp1_freq |
5430		   dev_priv->rps.min_freq) & 1,
5431		  "Odd GPU freq values\n");
5432
5433	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5434
5435	/* Preserve min/max settings in case of re-init */
5436	if (dev_priv->rps.max_freq_softlimit == 0)
5437		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5438
5439	if (dev_priv->rps.min_freq_softlimit == 0)
5440		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5441
5442	mutex_unlock(&dev_priv->rps.hw_lock);
5443}
5444
5445static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5446{
5447	valleyview_cleanup_pctx(dev);
5448}
5449
5450static void cherryview_enable_rps(struct drm_device *dev)
5451{
5452	struct drm_i915_private *dev_priv = dev->dev_private;
5453	struct intel_engine_cs *ring;
5454	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5455	int i;
5456
5457	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5458
5459	gtfifodbg = I915_READ(GTFIFODBG);
5460	if (gtfifodbg) {
5461		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5462				 gtfifodbg);
5463		I915_WRITE(GTFIFODBG, gtfifodbg);
5464	}
5465
5466	cherryview_check_pctx(dev_priv);
5467
5468	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5469	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5470	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5471
5472	/*  Disable RC states. */
5473	I915_WRITE(GEN6_RC_CONTROL, 0);
5474
5475	/* 2a: Program RC6 thresholds.*/
5476	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5477	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5478	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5479
5480	for_each_ring(ring, dev_priv, i)
5481		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5482	I915_WRITE(GEN6_RC_SLEEP, 0);
5483
5484	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5485	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5486
5487	/* allows RC6 residency counter to work */
5488	I915_WRITE(VLV_COUNTER_CONTROL,
5489		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5490				      VLV_MEDIA_RC6_COUNT_EN |
5491				      VLV_RENDER_RC6_COUNT_EN));
5492
5493	/* For now we assume BIOS is allocating and populating the PCBR  */
5494	pcbr = I915_READ(VLV_PCBR);
5495
5496	/* 3: Enable RC6 */
5497	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5498						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5499		rc6_mode = GEN7_RC_CTL_TO_MODE;
5500
5501	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5502
5503	/* 4 Program defaults and thresholds for RPS*/
5504	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5505	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5506	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5507	I915_WRITE(GEN6_RP_UP_EI, 66000);
5508	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5509
5510	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5511
5512	/* 5: Enable RPS */
5513	I915_WRITE(GEN6_RP_CONTROL,
5514		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5515		   GEN6_RP_MEDIA_IS_GFX |
5516		   GEN6_RP_ENABLE |
5517		   GEN6_RP_UP_BUSY_AVG |
5518		   GEN6_RP_DOWN_IDLE_AVG);
5519
5520	/* Setting Fixed Bias */
5521	val = VLV_OVERRIDE_EN |
5522		  VLV_SOC_TDP_EN |
5523		  CHV_BIAS_CPU_50_SOC_50;
5524	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5525
5526	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5527
5528	/* RPS code assumes GPLL is used */
5529	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5530
5531	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5532	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5533
5534	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5535	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5536			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5537			 dev_priv->rps.cur_freq);
5538
5539	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5540			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5541			 dev_priv->rps.efficient_freq);
5542
5543	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5544
5545	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5546}
5547
5548static void valleyview_enable_rps(struct drm_device *dev)
5549{
5550	struct drm_i915_private *dev_priv = dev->dev_private;
5551	struct intel_engine_cs *ring;
5552	u32 gtfifodbg, val, rc6_mode = 0;
5553	int i;
5554
5555	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5556
5557	valleyview_check_pctx(dev_priv);
5558
5559	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5560		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5561				 gtfifodbg);
5562		I915_WRITE(GTFIFODBG, gtfifodbg);
5563	}
5564
5565	/* If VLV, Forcewake all wells, else re-direct to regular path */
5566	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5567
5568	/*  Disable RC states. */
5569	I915_WRITE(GEN6_RC_CONTROL, 0);
5570
5571	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5572	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5573	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5574	I915_WRITE(GEN6_RP_UP_EI, 66000);
5575	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5576
5577	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5578
5579	I915_WRITE(GEN6_RP_CONTROL,
5580		   GEN6_RP_MEDIA_TURBO |
5581		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5582		   GEN6_RP_MEDIA_IS_GFX |
5583		   GEN6_RP_ENABLE |
5584		   GEN6_RP_UP_BUSY_AVG |
5585		   GEN6_RP_DOWN_IDLE_CONT);
5586
5587	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5588	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5589	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5590
5591	for_each_ring(ring, dev_priv, i)
5592		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5593
5594	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5595
5596	/* allows RC6 residency counter to work */
5597	I915_WRITE(VLV_COUNTER_CONTROL,
5598		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5599				      VLV_RENDER_RC0_COUNT_EN |
5600				      VLV_MEDIA_RC6_COUNT_EN |
5601				      VLV_RENDER_RC6_COUNT_EN));
5602
5603	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5604		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5605
5606	intel_print_rc6_info(dev, rc6_mode);
5607
5608	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5609
5610	/* Setting Fixed Bias */
5611	val = VLV_OVERRIDE_EN |
5612		  VLV_SOC_TDP_EN |
5613		  VLV_BIAS_CPU_125_SOC_875;
5614	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5615
5616	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5617
5618	/* RPS code assumes GPLL is used */
5619	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5620
5621	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5622	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5623
5624	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5625	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5626			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5627			 dev_priv->rps.cur_freq);
5628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5629	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5630			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5631			 dev_priv->rps.efficient_freq);
5632
5633	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5634
5635	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5636}
5637
5638static unsigned long intel_pxfreq(u32 vidfreq)
5639{
5640	unsigned long freq;
5641	int div = (vidfreq & 0x3f0000) >> 16;
5642	int post = (vidfreq & 0x3000) >> 12;
5643	int pre = (vidfreq & 0x7);
5644
5645	if (!pre)
5646		return 0;
5647
5648	freq = ((div * 133333) / ((1<<post) * pre));
5649
5650	return freq;
5651}
5652
5653static const struct cparams {
5654	u16 i;
5655	u16 t;
5656	u16 m;
5657	u16 c;
5658} cparams[] = {
5659	{ 1, 1333, 301, 28664 },
5660	{ 1, 1066, 294, 24460 },
5661	{ 1, 800, 294, 25192 },
5662	{ 0, 1333, 276, 27605 },
5663	{ 0, 1066, 276, 27605 },
5664	{ 0, 800, 231, 23784 },
5665};
5666
5667static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5668{
5669	u64 total_count, diff, ret;
5670	u32 count1, count2, count3, m = 0, c = 0;
5671	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5672	int i;
5673
5674	assert_spin_locked(&mchdev_lock);
5675
5676	diff1 = now - dev_priv->ips.last_time1;
5677
5678	/* Prevent division-by-zero if we are asking too fast.
5679	 * Also, we don't get interesting results if we are polling
5680	 * faster than once in 10ms, so just return the saved value
5681	 * in such cases.
5682	 */
5683	if (diff1 <= 10)
5684		return dev_priv->ips.chipset_power;
5685
5686	count1 = I915_READ(DMIEC);
5687	count2 = I915_READ(DDREC);
5688	count3 = I915_READ(CSIEC);
5689
5690	total_count = count1 + count2 + count3;
5691
5692	/* FIXME: handle per-counter overflow */
5693	if (total_count < dev_priv->ips.last_count1) {
5694		diff = ~0UL - dev_priv->ips.last_count1;
5695		diff += total_count;
5696	} else {
5697		diff = total_count - dev_priv->ips.last_count1;
5698	}
5699
5700	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5701		if (cparams[i].i == dev_priv->ips.c_m &&
5702		    cparams[i].t == dev_priv->ips.r_t) {
5703			m = cparams[i].m;
5704			c = cparams[i].c;
5705			break;
5706		}
5707	}
5708
5709	diff = div_u64(diff, diff1);
5710	ret = ((m * diff) + c);
5711	ret = div_u64(ret, 10);
5712
5713	dev_priv->ips.last_count1 = total_count;
5714	dev_priv->ips.last_time1 = now;
5715
5716	dev_priv->ips.chipset_power = ret;
5717
5718	return ret;
5719}
5720
5721unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5722{
5723	struct drm_device *dev = dev_priv->dev;
5724	unsigned long val;
5725
5726	if (INTEL_INFO(dev)->gen != 5)
5727		return 0;
5728
5729	spin_lock_irq(&mchdev_lock);
5730
5731	val = __i915_chipset_val(dev_priv);
5732
5733	spin_unlock_irq(&mchdev_lock);
5734
5735	return val;
5736}
5737
5738unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5739{
5740	unsigned long m, x, b;
5741	u32 tsfs;
5742
5743	tsfs = I915_READ(TSFS);
5744
5745	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5746	x = I915_READ8(TR1);
5747
5748	b = tsfs & TSFS_INTR_MASK;
5749
5750	return ((m * x) / 127) - b;
5751}
5752
5753static int _pxvid_to_vd(u8 pxvid)
5754{
5755	if (pxvid == 0)
5756		return 0;
5757
5758	if (pxvid >= 8 && pxvid < 31)
5759		pxvid = 31;
5760
5761	return (pxvid + 2) * 125;
5762}
5763
5764static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5765{
5766	struct drm_device *dev = dev_priv->dev;
5767	const int vd = _pxvid_to_vd(pxvid);
5768	const int vm = vd - 1125;
5769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5770	if (INTEL_INFO(dev)->is_mobile)
5771		return vm > 0 ? vm : 0;
5772
5773	return vd;
5774}
5775
5776static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5777{
5778	u64 now, diff, diffms;
 
 
5779	u32 count;
5780
5781	assert_spin_locked(&mchdev_lock);
5782
5783	now = ktime_get_raw_ns();
5784	diffms = now - dev_priv->ips.last_time2;
5785	do_div(diffms, NSEC_PER_MSEC);
5786
5787	/* Don't divide by 0 */
 
5788	if (!diffms)
5789		return;
5790
5791	count = I915_READ(GFXEC);
5792
5793	if (count < dev_priv->ips.last_count2) {
5794		diff = ~0UL - dev_priv->ips.last_count2;
5795		diff += count;
5796	} else {
5797		diff = count - dev_priv->ips.last_count2;
5798	}
5799
5800	dev_priv->ips.last_count2 = count;
5801	dev_priv->ips.last_time2 = now;
5802
5803	/* More magic constants... */
5804	diff = diff * 1181;
5805	diff = div_u64(diff, diffms * 10);
5806	dev_priv->ips.gfx_power = diff;
5807}
5808
5809void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5810{
5811	struct drm_device *dev = dev_priv->dev;
5812
5813	if (INTEL_INFO(dev)->gen != 5)
5814		return;
5815
5816	spin_lock_irq(&mchdev_lock);
5817
5818	__i915_update_gfx_val(dev_priv);
5819
5820	spin_unlock_irq(&mchdev_lock);
5821}
5822
5823static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5824{
5825	unsigned long t, corr, state1, corr2, state2;
5826	u32 pxvid, ext_v;
5827
5828	assert_spin_locked(&mchdev_lock);
5829
5830	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5831	pxvid = (pxvid >> 24) & 0x7f;
5832	ext_v = pvid_to_extvid(dev_priv, pxvid);
5833
5834	state1 = ext_v;
5835
5836	t = i915_mch_val(dev_priv);
5837
5838	/* Revel in the empirically derived constants */
5839
5840	/* Correction factor in 1/100000 units */
5841	if (t > 80)
5842		corr = ((t * 2349) + 135940);
5843	else if (t >= 50)
5844		corr = ((t * 964) + 29317);
5845	else /* < 50 */
5846		corr = ((t * 301) + 1004);
5847
5848	corr = corr * ((150142 * state1) / 10000 - 78642);
5849	corr /= 100000;
5850	corr2 = (corr * dev_priv->ips.corr);
5851
5852	state2 = (corr2 * state1) / 10000;
5853	state2 /= 100; /* convert to mW */
5854
5855	__i915_update_gfx_val(dev_priv);
5856
5857	return dev_priv->ips.gfx_power + state2;
5858}
5859
5860unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5861{
5862	struct drm_device *dev = dev_priv->dev;
5863	unsigned long val;
5864
5865	if (INTEL_INFO(dev)->gen != 5)
5866		return 0;
5867
5868	spin_lock_irq(&mchdev_lock);
5869
5870	val = __i915_gfx_val(dev_priv);
5871
5872	spin_unlock_irq(&mchdev_lock);
5873
5874	return val;
5875}
5876
5877/**
5878 * i915_read_mch_val - return value for IPS use
5879 *
5880 * Calculate and return a value for the IPS driver to use when deciding whether
5881 * we have thermal and power headroom to increase CPU or GPU power budget.
5882 */
5883unsigned long i915_read_mch_val(void)
5884{
5885	struct drm_i915_private *dev_priv;
5886	unsigned long chipset_val, graphics_val, ret = 0;
5887
5888	spin_lock_irq(&mchdev_lock);
5889	if (!i915_mch_dev)
5890		goto out_unlock;
5891	dev_priv = i915_mch_dev;
5892
5893	chipset_val = __i915_chipset_val(dev_priv);
5894	graphics_val = __i915_gfx_val(dev_priv);
5895
5896	ret = chipset_val + graphics_val;
5897
5898out_unlock:
5899	spin_unlock_irq(&mchdev_lock);
5900
5901	return ret;
5902}
5903EXPORT_SYMBOL_GPL(i915_read_mch_val);
5904
5905/**
5906 * i915_gpu_raise - raise GPU frequency limit
5907 *
5908 * Raise the limit; IPS indicates we have thermal headroom.
5909 */
5910bool i915_gpu_raise(void)
5911{
5912	struct drm_i915_private *dev_priv;
5913	bool ret = true;
5914
5915	spin_lock_irq(&mchdev_lock);
5916	if (!i915_mch_dev) {
5917		ret = false;
5918		goto out_unlock;
5919	}
5920	dev_priv = i915_mch_dev;
5921
5922	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5923		dev_priv->ips.max_delay--;
5924
5925out_unlock:
5926	spin_unlock_irq(&mchdev_lock);
5927
5928	return ret;
5929}
5930EXPORT_SYMBOL_GPL(i915_gpu_raise);
5931
5932/**
5933 * i915_gpu_lower - lower GPU frequency limit
5934 *
5935 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5936 * frequency maximum.
5937 */
5938bool i915_gpu_lower(void)
5939{
5940	struct drm_i915_private *dev_priv;
5941	bool ret = true;
5942
5943	spin_lock_irq(&mchdev_lock);
5944	if (!i915_mch_dev) {
5945		ret = false;
5946		goto out_unlock;
5947	}
5948	dev_priv = i915_mch_dev;
5949
5950	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5951		dev_priv->ips.max_delay++;
5952
5953out_unlock:
5954	spin_unlock_irq(&mchdev_lock);
5955
5956	return ret;
5957}
5958EXPORT_SYMBOL_GPL(i915_gpu_lower);
5959
5960/**
5961 * i915_gpu_busy - indicate GPU business to IPS
5962 *
5963 * Tell the IPS driver whether or not the GPU is busy.
5964 */
5965bool i915_gpu_busy(void)
5966{
5967	struct drm_i915_private *dev_priv;
5968	struct intel_engine_cs *ring;
5969	bool ret = false;
5970	int i;
5971
5972	spin_lock_irq(&mchdev_lock);
5973	if (!i915_mch_dev)
5974		goto out_unlock;
5975	dev_priv = i915_mch_dev;
5976
5977	for_each_ring(ring, dev_priv, i)
5978		ret |= !list_empty(&ring->request_list);
5979
5980out_unlock:
5981	spin_unlock_irq(&mchdev_lock);
5982
5983	return ret;
5984}
5985EXPORT_SYMBOL_GPL(i915_gpu_busy);
5986
5987/**
5988 * i915_gpu_turbo_disable - disable graphics turbo
5989 *
5990 * Disable graphics turbo by resetting the max frequency and setting the
5991 * current frequency to the default.
5992 */
5993bool i915_gpu_turbo_disable(void)
5994{
5995	struct drm_i915_private *dev_priv;
5996	bool ret = true;
5997
5998	spin_lock_irq(&mchdev_lock);
5999	if (!i915_mch_dev) {
6000		ret = false;
6001		goto out_unlock;
6002	}
6003	dev_priv = i915_mch_dev;
6004
6005	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6006
6007	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6008		ret = false;
6009
6010out_unlock:
6011	spin_unlock_irq(&mchdev_lock);
6012
6013	return ret;
6014}
6015EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6016
6017/**
6018 * Tells the intel_ips driver that the i915 driver is now loaded, if
6019 * IPS got loaded first.
6020 *
6021 * This awkward dance is so that neither module has to depend on the
6022 * other in order for IPS to do the appropriate communication of
6023 * GPU turbo limits to i915.
6024 */
6025static void
6026ips_ping_for_i915_load(void)
6027{
6028	void (*link)(void);
6029
6030	link = symbol_get(ips_link_to_i915_driver);
6031	if (link) {
6032		link();
6033		symbol_put(ips_link_to_i915_driver);
6034	}
6035}
6036
6037void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6038{
6039	/* We only register the i915 ips part with intel-ips once everything is
6040	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6041	spin_lock_irq(&mchdev_lock);
6042	i915_mch_dev = dev_priv;
6043	spin_unlock_irq(&mchdev_lock);
6044
6045	ips_ping_for_i915_load();
6046}
6047
6048void intel_gpu_ips_teardown(void)
6049{
6050	spin_lock_irq(&mchdev_lock);
6051	i915_mch_dev = NULL;
6052	spin_unlock_irq(&mchdev_lock);
6053}
6054
6055static void intel_init_emon(struct drm_device *dev)
6056{
6057	struct drm_i915_private *dev_priv = dev->dev_private;
6058	u32 lcfuse;
6059	u8 pxw[16];
6060	int i;
6061
6062	/* Disable to program */
6063	I915_WRITE(ECR, 0);
6064	POSTING_READ(ECR);
6065
6066	/* Program energy weights for various events */
6067	I915_WRITE(SDEW, 0x15040d00);
6068	I915_WRITE(CSIEW0, 0x007f0000);
6069	I915_WRITE(CSIEW1, 0x1e220004);
6070	I915_WRITE(CSIEW2, 0x04000004);
6071
6072	for (i = 0; i < 5; i++)
6073		I915_WRITE(PEW(i), 0);
6074	for (i = 0; i < 3; i++)
6075		I915_WRITE(DEW(i), 0);
6076
6077	/* Program P-state weights to account for frequency power adjustment */
6078	for (i = 0; i < 16; i++) {
6079		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6080		unsigned long freq = intel_pxfreq(pxvidfreq);
6081		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6082			PXVFREQ_PX_SHIFT;
6083		unsigned long val;
6084
6085		val = vid * vid;
6086		val *= (freq / 1000);
6087		val *= 255;
6088		val /= (127*127*900);
6089		if (val > 0xff)
6090			DRM_ERROR("bad pxval: %ld\n", val);
6091		pxw[i] = val;
6092	}
6093	/* Render standby states get 0 weight */
6094	pxw[14] = 0;
6095	pxw[15] = 0;
6096
6097	for (i = 0; i < 4; i++) {
6098		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6099			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6100		I915_WRITE(PXW(i), val);
6101	}
6102
6103	/* Adjust magic regs to magic values (more experimental results) */
6104	I915_WRITE(OGW0, 0);
6105	I915_WRITE(OGW1, 0);
6106	I915_WRITE(EG0, 0x00007f00);
6107	I915_WRITE(EG1, 0x0000000e);
6108	I915_WRITE(EG2, 0x000e0000);
6109	I915_WRITE(EG3, 0x68000300);
6110	I915_WRITE(EG4, 0x42000000);
6111	I915_WRITE(EG5, 0x00140031);
6112	I915_WRITE(EG6, 0);
6113	I915_WRITE(EG7, 0);
6114
6115	for (i = 0; i < 8; i++)
6116		I915_WRITE(PXWL(i), 0);
6117
6118	/* Enable PMON + select events */
6119	I915_WRITE(ECR, 0x80000019);
6120
6121	lcfuse = I915_READ(LCFUSE02);
6122
6123	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6124}
6125
6126void intel_init_gt_powersave(struct drm_device *dev)
6127{
6128	struct drm_i915_private *dev_priv = dev->dev_private;
6129
6130	/*
6131	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6132	 * requirement.
6133	 */
6134	if (!i915.enable_rc6) {
6135		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6136		intel_runtime_pm_get(dev_priv);
6137	}
6138
6139	if (IS_CHERRYVIEW(dev))
6140		cherryview_init_gt_powersave(dev);
6141	else if (IS_VALLEYVIEW(dev))
6142		valleyview_init_gt_powersave(dev);
6143}
6144
6145void intel_cleanup_gt_powersave(struct drm_device *dev)
6146{
6147	struct drm_i915_private *dev_priv = dev->dev_private;
6148
6149	if (IS_CHERRYVIEW(dev))
6150		return;
6151	else if (IS_VALLEYVIEW(dev))
6152		valleyview_cleanup_gt_powersave(dev);
6153
6154	if (!i915.enable_rc6)
6155		intel_runtime_pm_put(dev_priv);
6156}
6157
6158static void gen6_suspend_rps(struct drm_device *dev)
6159{
6160	struct drm_i915_private *dev_priv = dev->dev_private;
6161
6162	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6163
6164	gen6_disable_rps_interrupts(dev);
6165}
6166
6167/**
6168 * intel_suspend_gt_powersave - suspend PM work and helper threads
6169 * @dev: drm device
6170 *
6171 * We don't want to disable RC6 or other features here, we just want
6172 * to make sure any work we've queued has finished and won't bother
6173 * us while we're suspended.
6174 */
6175void intel_suspend_gt_powersave(struct drm_device *dev)
6176{
6177	struct drm_i915_private *dev_priv = dev->dev_private;
6178
6179	if (INTEL_INFO(dev)->gen < 6)
6180		return;
6181
6182	gen6_suspend_rps(dev);
6183
6184	/* Force GPU to min freq during suspend */
6185	gen6_rps_idle(dev_priv);
6186}
6187
6188void intel_disable_gt_powersave(struct drm_device *dev)
6189{
6190	struct drm_i915_private *dev_priv = dev->dev_private;
6191
 
 
 
6192	if (IS_IRONLAKE_M(dev)) {
6193		ironlake_disable_drps(dev);
 
6194	} else if (INTEL_INFO(dev)->gen >= 6) {
6195		intel_suspend_gt_powersave(dev);
6196
6197		mutex_lock(&dev_priv->rps.hw_lock);
6198		if (INTEL_INFO(dev)->gen >= 9)
6199			gen9_disable_rps(dev);
6200		else if (IS_CHERRYVIEW(dev))
6201			cherryview_disable_rps(dev);
6202		else if (IS_VALLEYVIEW(dev))
6203			valleyview_disable_rps(dev);
6204		else
6205			gen6_disable_rps(dev);
6206
6207		dev_priv->rps.enabled = false;
6208		mutex_unlock(&dev_priv->rps.hw_lock);
6209	}
6210}
6211
6212static void intel_gen6_powersave_work(struct work_struct *work)
6213{
6214	struct drm_i915_private *dev_priv =
6215		container_of(work, struct drm_i915_private,
6216			     rps.delayed_resume_work.work);
6217	struct drm_device *dev = dev_priv->dev;
6218
6219	mutex_lock(&dev_priv->rps.hw_lock);
6220
6221	gen6_reset_rps_interrupts(dev);
6222
6223	if (IS_CHERRYVIEW(dev)) {
6224		cherryview_enable_rps(dev);
6225	} else if (IS_VALLEYVIEW(dev)) {
6226		valleyview_enable_rps(dev);
6227	} else if (INTEL_INFO(dev)->gen >= 9) {
6228		gen9_enable_rc6(dev);
6229		gen9_enable_rps(dev);
6230		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6231			__gen6_update_ring_freq(dev);
6232	} else if (IS_BROADWELL(dev)) {
6233		gen8_enable_rps(dev);
6234		__gen6_update_ring_freq(dev);
6235	} else {
6236		gen6_enable_rps(dev);
6237		__gen6_update_ring_freq(dev);
6238	}
6239
6240	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6241	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6242
6243	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6244	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6245
6246	dev_priv->rps.enabled = true;
6247
6248	gen6_enable_rps_interrupts(dev);
6249
6250	mutex_unlock(&dev_priv->rps.hw_lock);
6251
6252	intel_runtime_pm_put(dev_priv);
6253}
6254
6255void intel_enable_gt_powersave(struct drm_device *dev)
6256{
6257	struct drm_i915_private *dev_priv = dev->dev_private;
6258
6259	/* Powersaving is controlled by the host when inside a VM */
6260	if (intel_vgpu_active(dev))
6261		return;
6262
6263	if (IS_IRONLAKE_M(dev)) {
6264		ironlake_enable_drps(dev);
6265		mutex_lock(&dev->struct_mutex);
6266		intel_init_emon(dev);
6267		mutex_unlock(&dev->struct_mutex);
6268	} else if (INTEL_INFO(dev)->gen >= 6) {
6269		/*
6270		 * PCU communication is slow and this doesn't need to be
6271		 * done at any specific time, so do this out of our fast path
6272		 * to make resume and init faster.
6273		 *
6274		 * We depend on the HW RC6 power context save/restore
6275		 * mechanism when entering D3 through runtime PM suspend. So
6276		 * disable RPM until RPS/RC6 is properly setup. We can only
6277		 * get here via the driver load/system resume/runtime resume
6278		 * paths, so the _noresume version is enough (and in case of
6279		 * runtime resume it's necessary).
6280		 */
6281		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6282					   round_jiffies_up_relative(HZ)))
6283			intel_runtime_pm_get_noresume(dev_priv);
6284	}
6285}
6286
6287void intel_reset_gt_powersave(struct drm_device *dev)
6288{
6289	struct drm_i915_private *dev_priv = dev->dev_private;
6290
6291	if (INTEL_INFO(dev)->gen < 6)
6292		return;
6293
6294	gen6_suspend_rps(dev);
6295	dev_priv->rps.enabled = false;
6296}
6297
6298static void ibx_init_clock_gating(struct drm_device *dev)
6299{
6300	struct drm_i915_private *dev_priv = dev->dev_private;
6301
6302	/*
6303	 * On Ibex Peak and Cougar Point, we need to disable clock
6304	 * gating for the panel power sequencer or it will fail to
6305	 * start up when no ports are active.
6306	 */
6307	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6308}
6309
6310static void g4x_disable_trickle_feed(struct drm_device *dev)
6311{
6312	struct drm_i915_private *dev_priv = dev->dev_private;
6313	enum pipe pipe;
6314
6315	for_each_pipe(dev_priv, pipe) {
6316		I915_WRITE(DSPCNTR(pipe),
6317			   I915_READ(DSPCNTR(pipe)) |
6318			   DISPPLANE_TRICKLE_FEED_DISABLE);
6319
6320		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6321		POSTING_READ(DSPSURF(pipe));
6322	}
6323}
6324
6325static void ilk_init_lp_watermarks(struct drm_device *dev)
6326{
6327	struct drm_i915_private *dev_priv = dev->dev_private;
6328
6329	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6330	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6331	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6332
6333	/*
6334	 * Don't touch WM1S_LP_EN here.
6335	 * Doing so could cause underruns.
6336	 */
6337}
6338
6339static void ironlake_init_clock_gating(struct drm_device *dev)
6340{
6341	struct drm_i915_private *dev_priv = dev->dev_private;
6342	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6343
6344	/*
6345	 * Required for FBC
6346	 * WaFbcDisableDpfcClockGating:ilk
6347	 */
6348	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6349		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6350		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6351
6352	I915_WRITE(PCH_3DCGDIS0,
6353		   MARIUNIT_CLOCK_GATE_DISABLE |
6354		   SVSMUNIT_CLOCK_GATE_DISABLE);
6355	I915_WRITE(PCH_3DCGDIS1,
6356		   VFMUNIT_CLOCK_GATE_DISABLE);
6357
6358	/*
6359	 * According to the spec the following bits should be set in
6360	 * order to enable memory self-refresh
6361	 * The bit 22/21 of 0x42004
6362	 * The bit 5 of 0x42020
6363	 * The bit 15 of 0x45000
6364	 */
6365	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6366		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6367		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6368	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6369	I915_WRITE(DISP_ARB_CTL,
6370		   (I915_READ(DISP_ARB_CTL) |
6371		    DISP_FBC_WM_DIS));
6372
6373	ilk_init_lp_watermarks(dev);
6374
6375	/*
6376	 * Based on the document from hardware guys the following bits
6377	 * should be set unconditionally in order to enable FBC.
6378	 * The bit 22 of 0x42000
6379	 * The bit 22 of 0x42004
6380	 * The bit 7,8,9 of 0x42020.
6381	 */
6382	if (IS_IRONLAKE_M(dev)) {
6383		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6384		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6385			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6386			   ILK_FBCQ_DIS);
6387		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6388			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6389			   ILK_DPARB_GATE);
6390	}
6391
6392	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6393
6394	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6395		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6396		   ILK_ELPIN_409_SELECT);
6397	I915_WRITE(_3D_CHICKEN2,
6398		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6399		   _3D_CHICKEN2_WM_READ_PIPELINED);
6400
6401	/* WaDisableRenderCachePipelinedFlush:ilk */
6402	I915_WRITE(CACHE_MODE_0,
6403		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6404
6405	/* WaDisable_RenderCache_OperationalFlush:ilk */
6406	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6407
6408	g4x_disable_trickle_feed(dev);
6409
6410	ibx_init_clock_gating(dev);
6411}
6412
6413static void cpt_init_clock_gating(struct drm_device *dev)
6414{
6415	struct drm_i915_private *dev_priv = dev->dev_private;
6416	int pipe;
6417	uint32_t val;
6418
6419	/*
6420	 * On Ibex Peak and Cougar Point, we need to disable clock
6421	 * gating for the panel power sequencer or it will fail to
6422	 * start up when no ports are active.
6423	 */
6424	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6425		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6426		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6427	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6428		   DPLS_EDP_PPS_FIX_DIS);
6429	/* The below fixes the weird display corruption, a few pixels shifted
6430	 * downward, on (only) LVDS of some HP laptops with IVY.
6431	 */
6432	for_each_pipe(dev_priv, pipe) {
6433		val = I915_READ(TRANS_CHICKEN2(pipe));
6434		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6435		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6436		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6437			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6438		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6439		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6440		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6441		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6442	}
6443	/* WADP0ClockGatingDisable */
6444	for_each_pipe(dev_priv, pipe) {
6445		I915_WRITE(TRANS_CHICKEN1(pipe),
6446			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6447	}
6448}
6449
6450static void gen6_check_mch_setup(struct drm_device *dev)
6451{
6452	struct drm_i915_private *dev_priv = dev->dev_private;
6453	uint32_t tmp;
6454
6455	tmp = I915_READ(MCH_SSKPD);
6456	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6457		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6458			      tmp);
 
 
6459}
6460
6461static void gen6_init_clock_gating(struct drm_device *dev)
6462{
6463	struct drm_i915_private *dev_priv = dev->dev_private;
6464	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6465
6466	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6467
6468	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6469		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6470		   ILK_ELPIN_409_SELECT);
6471
6472	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6473	I915_WRITE(_3D_CHICKEN,
6474		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6475
6476	/* WaDisable_RenderCache_OperationalFlush:snb */
6477	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
 
 
6478
6479	/*
6480	 * BSpec recoomends 8x4 when MSAA is used,
6481	 * however in practice 16x4 seems fastest.
6482	 *
6483	 * Note that PS/WM thread counts depend on the WIZ hashing
6484	 * disable bit, which we don't touch here, but it's good
6485	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6486	 */
6487	I915_WRITE(GEN6_GT_MODE,
6488		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6489
6490	ilk_init_lp_watermarks(dev);
6491
6492	I915_WRITE(CACHE_MODE_0,
6493		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6494
6495	I915_WRITE(GEN6_UCGCTL1,
6496		   I915_READ(GEN6_UCGCTL1) |
6497		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6498		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6499
6500	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6501	 * gating disable must be set.  Failure to set it results in
6502	 * flickering pixels due to Z write ordering failures after
6503	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6504	 * Sanctuary and Tropics, and apparently anything else with
6505	 * alpha test or pixel discard.
6506	 *
6507	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6508	 * but we didn't debug actual testcases to find it out.
6509	 *
6510	 * WaDisableRCCUnitClockGating:snb
6511	 * WaDisableRCPBUnitClockGating:snb
6512	 */
6513	I915_WRITE(GEN6_UCGCTL2,
6514		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6515		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6516
6517	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6518	I915_WRITE(_3D_CHICKEN3,
6519		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6520
6521	/*
6522	 * Bspec says:
6523	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6524	 * 3DSTATE_SF number of SF output attributes is more than 16."
6525	 */
6526	I915_WRITE(_3D_CHICKEN3,
6527		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6528
6529	/*
6530	 * According to the spec the following bits should be
6531	 * set in order to enable memory self-refresh and fbc:
6532	 * The bit21 and bit22 of 0x42000
6533	 * The bit21 and bit22 of 0x42004
6534	 * The bit5 and bit7 of 0x42020
6535	 * The bit14 of 0x70180
6536	 * The bit14 of 0x71180
6537	 *
6538	 * WaFbcAsynchFlipDisableFbcQueue:snb
6539	 */
6540	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6541		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6542		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6543	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6544		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6545		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6546	I915_WRITE(ILK_DSPCLK_GATE_D,
6547		   I915_READ(ILK_DSPCLK_GATE_D) |
6548		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6549		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6550
6551	g4x_disable_trickle_feed(dev);
6552
6553	cpt_init_clock_gating(dev);
6554
6555	gen6_check_mch_setup(dev);
6556}
6557
6558static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6559{
6560	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6561
6562	/*
6563	 * WaVSThreadDispatchOverride:ivb,vlv
6564	 *
6565	 * This actually overrides the dispatch
6566	 * mode for all thread types.
6567	 */
6568	reg &= ~GEN7_FF_SCHED_MASK;
6569	reg |= GEN7_FF_TS_SCHED_HW;
6570	reg |= GEN7_FF_VS_SCHED_HW;
6571	reg |= GEN7_FF_DS_SCHED_HW;
6572
6573	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6574}
6575
6576static void lpt_init_clock_gating(struct drm_device *dev)
6577{
6578	struct drm_i915_private *dev_priv = dev->dev_private;
6579
6580	/*
6581	 * TODO: this bit should only be enabled when really needed, then
6582	 * disabled when not needed anymore in order to save power.
6583	 */
6584	if (HAS_PCH_LPT_LP(dev))
6585		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6586			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6587			   PCH_LP_PARTITION_LEVEL_DISABLE);
6588
6589	/* WADPOClockGatingDisable:hsw */
6590	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6591		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6592		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6593}
6594
6595static void lpt_suspend_hw(struct drm_device *dev)
6596{
6597	struct drm_i915_private *dev_priv = dev->dev_private;
6598
6599	if (HAS_PCH_LPT_LP(dev)) {
6600		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6601
6602		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6603		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6604	}
6605}
6606
6607static void broadwell_init_clock_gating(struct drm_device *dev)
6608{
6609	struct drm_i915_private *dev_priv = dev->dev_private;
6610	enum pipe pipe;
6611	uint32_t misccpctl;
6612
6613	ilk_init_lp_watermarks(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6614
6615	/* WaSwitchSolVfFArbitrationPriority:bdw */
6616	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6617
6618	/* WaPsrDPAMaskVBlankInSRD:bdw */
6619	I915_WRITE(CHICKEN_PAR1_1,
6620		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6621
6622	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6623	for_each_pipe(dev_priv, pipe) {
6624		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6625			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6626			   BDW_DPRS_MASK_VBLANK_SRD);
6627	}
6628
 
 
 
 
 
 
 
 
6629	/* WaVSRefCountFullforceMissDisable:bdw */
6630	/* WaDSRefCountFullforceMissDisable:bdw */
6631	I915_WRITE(GEN7_FF_THREAD_MODE,
6632		   I915_READ(GEN7_FF_THREAD_MODE) &
6633		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6634
 
 
 
 
 
 
 
 
 
 
 
6635	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6636		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6637
6638	/* WaDisableSDEUnitClockGating:bdw */
6639	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6640		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6641
6642	/*
6643	 * WaProgramL3SqcReg1Default:bdw
6644	 * WaTempDisableDOPClkGating:bdw
6645	 */
6646	misccpctl = I915_READ(GEN7_MISCCPCTL);
6647	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6648	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6649	/*
6650	 * Wait at least 100 clocks before re-enabling clock gating. See
6651	 * the definition of L3SQCREG1 in BSpec.
6652	 */
6653	POSTING_READ(GEN8_L3SQCREG1);
6654	udelay(1);
6655	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6656
6657	/*
6658	 * WaGttCachingOffByDefault:bdw
6659	 * GTT cache may not work with big pages, so if those
6660	 * are ever enabled GTT cache may need to be disabled.
6661	 */
6662	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6663
6664	lpt_init_clock_gating(dev);
6665}
6666
6667static void haswell_init_clock_gating(struct drm_device *dev)
6668{
6669	struct drm_i915_private *dev_priv = dev->dev_private;
6670
6671	ilk_init_lp_watermarks(dev);
6672
6673	/* L3 caching of data atomics doesn't work -- disable it. */
6674	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6675	I915_WRITE(HSW_ROW_CHICKEN3,
6676		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6677
6678	/* This is required by WaCatErrorRejectionIssue:hsw */
6679	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6680			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6681			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6682
6683	/* WaVSRefCountFullforceMissDisable:hsw */
6684	I915_WRITE(GEN7_FF_THREAD_MODE,
6685		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6686
6687	/* WaDisable_RenderCache_OperationalFlush:hsw */
6688	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6689
6690	/* enable HiZ Raw Stall Optimization */
6691	I915_WRITE(CACHE_MODE_0_GEN7,
6692		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6693
6694	/* WaDisable4x2SubspanOptimization:hsw */
6695	I915_WRITE(CACHE_MODE_1,
6696		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6697
6698	/*
6699	 * BSpec recommends 8x4 when MSAA is used,
6700	 * however in practice 16x4 seems fastest.
6701	 *
6702	 * Note that PS/WM thread counts depend on the WIZ hashing
6703	 * disable bit, which we don't touch here, but it's good
6704	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6705	 */
6706	I915_WRITE(GEN7_GT_MODE,
6707		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6708
6709	/* WaSampleCChickenBitEnable:hsw */
6710	I915_WRITE(HALF_SLICE_CHICKEN3,
6711		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6712
6713	/* WaSwitchSolVfFArbitrationPriority:hsw */
6714	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6715
6716	/* WaRsPkgCStateDisplayPMReq:hsw */
6717	I915_WRITE(CHICKEN_PAR1_1,
6718		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6719
6720	lpt_init_clock_gating(dev);
6721}
6722
6723static void ivybridge_init_clock_gating(struct drm_device *dev)
6724{
6725	struct drm_i915_private *dev_priv = dev->dev_private;
6726	uint32_t snpcr;
6727
6728	ilk_init_lp_watermarks(dev);
6729
6730	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6731
6732	/* WaDisableEarlyCull:ivb */
6733	I915_WRITE(_3D_CHICKEN3,
6734		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6735
6736	/* WaDisableBackToBackFlipFix:ivb */
6737	I915_WRITE(IVB_CHICKEN3,
6738		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6739		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6740
6741	/* WaDisablePSDDualDispatchEnable:ivb */
6742	if (IS_IVB_GT1(dev))
6743		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6744			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6745
6746	/* WaDisable_RenderCache_OperationalFlush:ivb */
6747	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6748
6749	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6750	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6751		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6752
6753	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6754	I915_WRITE(GEN7_L3CNTLREG1,
6755			GEN7_WA_FOR_GEN7_L3_CONTROL);
6756	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6757		   GEN7_WA_L3_CHICKEN_MODE);
6758	if (IS_IVB_GT1(dev))
6759		I915_WRITE(GEN7_ROW_CHICKEN2,
6760			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6761	else {
6762		/* must write both registers */
6763		I915_WRITE(GEN7_ROW_CHICKEN2,
6764			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6765		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6766			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6767	}
6768
6769	/* WaForceL3Serialization:ivb */
6770	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6771		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6772
6773	/*
6774	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6775	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6776	 */
6777	I915_WRITE(GEN6_UCGCTL2,
6778		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6779
6780	/* This is required by WaCatErrorRejectionIssue:ivb */
6781	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6782			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6783			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6784
6785	g4x_disable_trickle_feed(dev);
6786
6787	gen7_setup_fixed_func_scheduler(dev_priv);
6788
6789	if (0) { /* causes HiZ corruption on ivb:gt1 */
6790		/* enable HiZ Raw Stall Optimization */
6791		I915_WRITE(CACHE_MODE_0_GEN7,
6792			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6793	}
6794
6795	/* WaDisable4x2SubspanOptimization:ivb */
6796	I915_WRITE(CACHE_MODE_1,
6797		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6798
6799	/*
6800	 * BSpec recommends 8x4 when MSAA is used,
6801	 * however in practice 16x4 seems fastest.
6802	 *
6803	 * Note that PS/WM thread counts depend on the WIZ hashing
6804	 * disable bit, which we don't touch here, but it's good
6805	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6806	 */
6807	I915_WRITE(GEN7_GT_MODE,
6808		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6809
6810	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6811	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6812	snpcr |= GEN6_MBC_SNPCR_MED;
6813	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6814
6815	if (!HAS_PCH_NOP(dev))
6816		cpt_init_clock_gating(dev);
6817
6818	gen6_check_mch_setup(dev);
6819}
6820
6821static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6822{
6823	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6824
6825	/*
6826	 * Disable trickle feed and enable pnd deadline calculation
6827	 */
6828	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6829	I915_WRITE(CBR1_VLV, 0);
6830}
6831
6832static void valleyview_init_clock_gating(struct drm_device *dev)
6833{
6834	struct drm_i915_private *dev_priv = dev->dev_private;
 
6835
6836	vlv_init_display_clock_gating(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6837
6838	/* WaDisableEarlyCull:vlv */
6839	I915_WRITE(_3D_CHICKEN3,
6840		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6841
6842	/* WaDisableBackToBackFlipFix:vlv */
6843	I915_WRITE(IVB_CHICKEN3,
6844		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6845		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6846
6847	/* WaPsdDispatchEnable:vlv */
6848	/* WaDisablePSDDualDispatchEnable:vlv */
6849	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6850		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6851				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6852
6853	/* WaDisable_RenderCache_OperationalFlush:vlv */
6854	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6855
6856	/* WaForceL3Serialization:vlv */
6857	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6858		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6859
6860	/* WaDisableDopClockGating:vlv */
6861	I915_WRITE(GEN7_ROW_CHICKEN2,
6862		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6863
6864	/* This is required by WaCatErrorRejectionIssue:vlv */
6865	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6866		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6867		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6868
6869	gen7_setup_fixed_func_scheduler(dev_priv);
6870
6871	/*
6872	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6873	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6874	 */
6875	I915_WRITE(GEN6_UCGCTL2,
6876		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6877
6878	/* WaDisableL3Bank2xClockGate:vlv
6879	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6880	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6881	I915_WRITE(GEN7_UCGCTL4,
6882		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6883
6884	/*
6885	 * BSpec says this must be set, even though
6886	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6887	 */
6888	I915_WRITE(CACHE_MODE_1,
6889		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6890
6891	/*
6892	 * BSpec recommends 8x4 when MSAA is used,
6893	 * however in practice 16x4 seems fastest.
6894	 *
6895	 * Note that PS/WM thread counts depend on the WIZ hashing
6896	 * disable bit, which we don't touch here, but it's good
6897	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6898	 */
6899	I915_WRITE(GEN7_GT_MODE,
6900		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6901
6902	/*
6903	 * WaIncreaseL3CreditsForVLVB0:vlv
6904	 * This is the hardware default actually.
6905	 */
6906	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6907
6908	/*
6909	 * WaDisableVLVClockGating_VBIIssue:vlv
6910	 * Disable clock gating on th GCFG unit to prevent a delay
6911	 * in the reporting of vblank events.
6912	 */
6913	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6914}
6915
6916static void cherryview_init_clock_gating(struct drm_device *dev)
6917{
6918	struct drm_i915_private *dev_priv = dev->dev_private;
6919
6920	vlv_init_display_clock_gating(dev_priv);
6921
6922	/* WaVSRefCountFullforceMissDisable:chv */
6923	/* WaDSRefCountFullforceMissDisable:chv */
6924	I915_WRITE(GEN7_FF_THREAD_MODE,
6925		   I915_READ(GEN7_FF_THREAD_MODE) &
6926		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6927
6928	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6929	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6930		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6931
6932	/* WaDisableCSUnitClockGating:chv */
6933	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6934		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6935
6936	/* WaDisableSDEUnitClockGating:chv */
6937	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6938		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6939
6940	/*
6941	 * GTT cache may not work with big pages, so if those
6942	 * are ever enabled GTT cache may need to be disabled.
6943	 */
6944	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6945}
6946
6947static void g4x_init_clock_gating(struct drm_device *dev)
6948{
6949	struct drm_i915_private *dev_priv = dev->dev_private;
6950	uint32_t dspclk_gate;
6951
6952	I915_WRITE(RENCLK_GATE_D1, 0);
6953	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6954		   GS_UNIT_CLOCK_GATE_DISABLE |
6955		   CL_UNIT_CLOCK_GATE_DISABLE);
6956	I915_WRITE(RAMCLK_GATE_D, 0);
6957	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6958		OVRUNIT_CLOCK_GATE_DISABLE |
6959		OVCUNIT_CLOCK_GATE_DISABLE;
6960	if (IS_GM45(dev))
6961		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6962	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6963
6964	/* WaDisableRenderCachePipelinedFlush */
6965	I915_WRITE(CACHE_MODE_0,
6966		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6967
6968	/* WaDisable_RenderCache_OperationalFlush:g4x */
6969	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6970
6971	g4x_disable_trickle_feed(dev);
6972}
6973
6974static void crestline_init_clock_gating(struct drm_device *dev)
6975{
6976	struct drm_i915_private *dev_priv = dev->dev_private;
6977
6978	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6979	I915_WRITE(RENCLK_GATE_D2, 0);
6980	I915_WRITE(DSPCLK_GATE_D, 0);
6981	I915_WRITE(RAMCLK_GATE_D, 0);
6982	I915_WRITE16(DEUC, 0);
6983	I915_WRITE(MI_ARB_STATE,
6984		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6985
6986	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6987	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6988}
6989
6990static void broadwater_init_clock_gating(struct drm_device *dev)
6991{
6992	struct drm_i915_private *dev_priv = dev->dev_private;
6993
6994	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6995		   I965_RCC_CLOCK_GATE_DISABLE |
6996		   I965_RCPB_CLOCK_GATE_DISABLE |
6997		   I965_ISC_CLOCK_GATE_DISABLE |
6998		   I965_FBC_CLOCK_GATE_DISABLE);
6999	I915_WRITE(RENCLK_GATE_D2, 0);
7000	I915_WRITE(MI_ARB_STATE,
7001		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7002
7003	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7004	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7005}
7006
7007static void gen3_init_clock_gating(struct drm_device *dev)
7008{
7009	struct drm_i915_private *dev_priv = dev->dev_private;
7010	u32 dstate = I915_READ(D_STATE);
7011
7012	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7013		DSTATE_DOT_CLOCK_GATING;
7014	I915_WRITE(D_STATE, dstate);
7015
7016	if (IS_PINEVIEW(dev))
7017		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7018
7019	/* IIR "flip pending" means done if this bit is set */
7020	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7021
7022	/* interrupts should cause a wake up from C3 */
7023	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7024
7025	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7026	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7027
7028	I915_WRITE(MI_ARB_STATE,
7029		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7030}
7031
7032static void i85x_init_clock_gating(struct drm_device *dev)
7033{
7034	struct drm_i915_private *dev_priv = dev->dev_private;
7035
7036	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7037
7038	/* interrupts should cause a wake up from C3 */
7039	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7040		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7041
7042	I915_WRITE(MEM_MODE,
7043		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7044}
7045
7046static void i830_init_clock_gating(struct drm_device *dev)
7047{
7048	struct drm_i915_private *dev_priv = dev->dev_private;
7049
7050	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7051
7052	I915_WRITE(MEM_MODE,
7053		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7054		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7055}
7056
7057void intel_init_clock_gating(struct drm_device *dev)
7058{
7059	struct drm_i915_private *dev_priv = dev->dev_private;
7060
7061	if (dev_priv->display.init_clock_gating)
7062		dev_priv->display.init_clock_gating(dev);
7063}
7064
7065void intel_suspend_hw(struct drm_device *dev)
7066{
7067	if (HAS_PCH_LPT(dev))
7068		lpt_suspend_hw(dev);
7069}
7070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7071/* Set up chip specific power management-related functions */
7072void intel_init_pm(struct drm_device *dev)
7073{
7074	struct drm_i915_private *dev_priv = dev->dev_private;
7075
7076	intel_fbc_init(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7077
7078	/* For cxsr */
7079	if (IS_PINEVIEW(dev))
7080		i915_pineview_get_mem_freq(dev);
7081	else if (IS_GEN5(dev))
7082		i915_ironlake_get_mem_freq(dev);
7083
7084	/* For FIFO watermark updates */
7085	if (INTEL_INFO(dev)->gen >= 9) {
7086		skl_setup_wm_latency(dev);
7087
7088		if (IS_BROXTON(dev))
7089			dev_priv->display.init_clock_gating =
7090				bxt_init_clock_gating;
7091		dev_priv->display.update_wm = skl_update_wm;
7092	} else if (HAS_PCH_SPLIT(dev)) {
7093		ilk_setup_wm_latency(dev);
7094
7095		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7096		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7097		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7098		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7099			dev_priv->display.update_wm = ilk_update_wm;
7100			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7101			dev_priv->display.program_watermarks = ilk_program_watermarks;
7102		} else {
7103			DRM_DEBUG_KMS("Failed to read display plane latency. "
7104				      "Disable CxSR\n");
7105		}
7106
7107		if (IS_GEN5(dev))
7108			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7109		else if (IS_GEN6(dev))
7110			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7111		else if (IS_IVYBRIDGE(dev))
7112			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7113		else if (IS_HASWELL(dev))
7114			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7115		else if (INTEL_INFO(dev)->gen == 8)
7116			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7117	} else if (IS_CHERRYVIEW(dev)) {
7118		vlv_setup_wm_latency(dev);
7119
7120		dev_priv->display.update_wm = vlv_update_wm;
7121		dev_priv->display.init_clock_gating =
7122			cherryview_init_clock_gating;
7123	} else if (IS_VALLEYVIEW(dev)) {
7124		vlv_setup_wm_latency(dev);
7125
7126		dev_priv->display.update_wm = vlv_update_wm;
7127		dev_priv->display.init_clock_gating =
7128			valleyview_init_clock_gating;
7129	} else if (IS_PINEVIEW(dev)) {
7130		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7131					    dev_priv->is_ddr3,
7132					    dev_priv->fsb_freq,
7133					    dev_priv->mem_freq)) {
7134			DRM_INFO("failed to find known CxSR latency "
7135				 "(found ddr%s fsb freq %d, mem freq %d), "
7136				 "disabling CxSR\n",
7137				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7138				 dev_priv->fsb_freq, dev_priv->mem_freq);
7139			/* Disable CxSR and never update its watermark again */
7140			intel_set_memory_cxsr(dev_priv, false);
7141			dev_priv->display.update_wm = NULL;
7142		} else
7143			dev_priv->display.update_wm = pineview_update_wm;
7144		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7145	} else if (IS_G4X(dev)) {
7146		dev_priv->display.update_wm = g4x_update_wm;
7147		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7148	} else if (IS_GEN4(dev)) {
7149		dev_priv->display.update_wm = i965_update_wm;
7150		if (IS_CRESTLINE(dev))
7151			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7152		else if (IS_BROADWATER(dev))
7153			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7154	} else if (IS_GEN3(dev)) {
7155		dev_priv->display.update_wm = i9xx_update_wm;
7156		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7157		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7158	} else if (IS_GEN2(dev)) {
7159		if (INTEL_INFO(dev)->num_pipes == 1) {
7160			dev_priv->display.update_wm = i845_update_wm;
7161			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7162		} else {
7163			dev_priv->display.update_wm = i9xx_update_wm;
7164			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7165		}
7166
7167		if (IS_I85X(dev) || IS_I865G(dev))
7168			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7169		else
7170			dev_priv->display.init_clock_gating = i830_init_clock_gating;
7171	} else {
7172		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7173	}
7174}
7175
7176int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7177{
7178	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7179
7180	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7181		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7182		return -EAGAIN;
7183	}
7184
7185	I915_WRITE(GEN6_PCODE_DATA, *val);
7186	I915_WRITE(GEN6_PCODE_DATA1, 0);
7187	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7188
7189	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7190		     500)) {
7191		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7192		return -ETIMEDOUT;
7193	}
7194
7195	*val = I915_READ(GEN6_PCODE_DATA);
7196	I915_WRITE(GEN6_PCODE_DATA, 0);
7197
7198	return 0;
7199}
7200
7201int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7202{
7203	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7204
7205	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7206		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7207		return -EAGAIN;
7208	}
7209
7210	I915_WRITE(GEN6_PCODE_DATA, val);
7211	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7212
7213	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7214		     500)) {
7215		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7216		return -ETIMEDOUT;
7217	}
7218
7219	I915_WRITE(GEN6_PCODE_DATA, 0);
7220
7221	return 0;
7222}
7223
7224static int vlv_gpu_freq_div(unsigned int czclk_freq)
7225{
7226	switch (czclk_freq) {
7227	case 200:
7228		return 10;
7229	case 267:
7230		return 12;
7231	case 320:
7232	case 333:
7233		return 16;
7234	case 400:
7235		return 20;
 
 
 
7236	default:
7237		return -1;
7238	}
7239}
7240
7241static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7242{
7243	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7244
7245	div = vlv_gpu_freq_div(czclk_freq);
7246	if (div < 0)
7247		return div;
7248
7249	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7250}
7251
7252static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7253{
7254	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7255
7256	mul = vlv_gpu_freq_div(czclk_freq);
7257	if (mul < 0)
7258		return mul;
7259
7260	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7261}
7262
7263static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7264{
7265	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7266
7267	div = vlv_gpu_freq_div(czclk_freq);
7268	if (div < 0)
7269		return div;
7270	div /= 2;
7271
7272	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7273}
7274
7275static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7276{
7277	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7278
7279	mul = vlv_gpu_freq_div(czclk_freq);
7280	if (mul < 0)
7281		return mul;
7282	mul /= 2;
7283
7284	/* CHV needs even values */
7285	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7286}
7287
7288int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7289{
7290	if (IS_GEN9(dev_priv->dev))
7291		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7292					 GEN9_FREQ_SCALER);
7293	else if (IS_CHERRYVIEW(dev_priv->dev))
7294		return chv_gpu_freq(dev_priv, val);
7295	else if (IS_VALLEYVIEW(dev_priv->dev))
7296		return byt_gpu_freq(dev_priv, val);
7297	else
7298		return val * GT_FREQUENCY_MULTIPLIER;
7299}
7300
7301int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7302{
7303	if (IS_GEN9(dev_priv->dev))
7304		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7305					 GT_FREQUENCY_MULTIPLIER);
7306	else if (IS_CHERRYVIEW(dev_priv->dev))
7307		return chv_freq_opcode(dev_priv, val);
7308	else if (IS_VALLEYVIEW(dev_priv->dev))
7309		return byt_freq_opcode(dev_priv, val);
7310	else
7311		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7312}
7313
7314struct request_boost {
7315	struct work_struct work;
7316	struct drm_i915_gem_request *req;
7317};
7318
7319static void __intel_rps_boost_work(struct work_struct *work)
7320{
7321	struct request_boost *boost = container_of(work, struct request_boost, work);
7322	struct drm_i915_gem_request *req = boost->req;
7323
7324	if (!i915_gem_request_completed(req, true))
7325		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7326			       req->emitted_jiffies);
7327
7328	i915_gem_request_unreference__unlocked(req);
7329	kfree(boost);
7330}
7331
7332void intel_queue_rps_boost_for_request(struct drm_device *dev,
7333				       struct drm_i915_gem_request *req)
7334{
7335	struct request_boost *boost;
7336
7337	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7338		return;
7339
7340	if (i915_gem_request_completed(req, true))
7341		return;
7342
7343	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7344	if (boost == NULL)
7345		return;
7346
7347	i915_gem_request_reference(req);
7348	boost->req = req;
7349
7350	INIT_WORK(&boost->work, __intel_rps_boost_work);
7351	queue_work(to_i915(dev)->wq, &boost->work);
7352}
7353
7354void intel_pm_setup(struct drm_device *dev)
7355{
7356	struct drm_i915_private *dev_priv = dev->dev_private;
7357
7358	mutex_init(&dev_priv->rps.hw_lock);
7359	spin_lock_init(&dev_priv->rps.client_lock);
7360
7361	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7362			  intel_gen6_powersave_work);
7363	INIT_LIST_HEAD(&dev_priv->rps.clients);
7364	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7365	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7366
7367	dev_priv->pm.suspended = false;
7368	atomic_set(&dev_priv->pm.wakeref_count, 0);
7369	atomic_set(&dev_priv->pm.atomic_seq, 0);
7370}
v3.15
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include "i915_drv.h"
  30#include "intel_drv.h"
  31#include "../../../platform/x86/intel_ips.h"
  32#include <linux/module.h>
  33#include <linux/vgaarb.h>
  34#include <drm/i915_powerwell.h>
  35#include <linux/pm_runtime.h>
  36
  37/**
 
 
  38 * RC6 is a special power stage which allows the GPU to enter an very
  39 * low-voltage mode when idle, using down to 0V while at this stage.  This
  40 * stage is entered automatically when the GPU is idle when RC6 support is
  41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  42 *
  43 * There are different RC6 modes available in Intel GPU, which differentiate
  44 * among each other with the latency required to enter and leave RC6 and
  45 * voltage consumed by the GPU in different states.
  46 *
  47 * The combination of the following flags define which states GPU is allowed
  48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  49 * RC6pp is deepest RC6. Their support by hardware varies according to the
  50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  51 * which brings the most power savings; deeper states save more power, but
  52 * require higher latency to switch to and wake up.
  53 */
  54#define INTEL_RC6_ENABLE			(1<<0)
  55#define INTEL_RC6p_ENABLE			(1<<1)
  56#define INTEL_RC6pp_ENABLE			(1<<2)
  57
  58/* FBC, or Frame Buffer Compression, is a technique employed to compress the
  59 * framebuffer contents in-memory, aiming at reducing the required bandwidth
  60 * during in-memory transfers and, therefore, reduce the power packet.
  61 *
  62 * The benefits of FBC are mostly visible with solid backgrounds and
  63 * variation-less patterns.
  64 *
  65 * FBC-related functionality can be enabled by the means of the
  66 * i915.i915_enable_fbc parameter
  67 */
  68
  69static void i8xx_disable_fbc(struct drm_device *dev)
  70{
  71	struct drm_i915_private *dev_priv = dev->dev_private;
  72	u32 fbc_ctl;
  73
  74	/* Disable compression */
  75	fbc_ctl = I915_READ(FBC_CONTROL);
  76	if ((fbc_ctl & FBC_CTL_EN) == 0)
  77		return;
  78
  79	fbc_ctl &= ~FBC_CTL_EN;
  80	I915_WRITE(FBC_CONTROL, fbc_ctl);
  81
  82	/* Wait for compressing bit to clear */
  83	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  84		DRM_DEBUG_KMS("FBC idle timed out\n");
  85		return;
  86	}
  87
  88	DRM_DEBUG_KMS("disabled FBC\n");
  89}
  90
  91static void i8xx_enable_fbc(struct drm_crtc *crtc)
  92{
  93	struct drm_device *dev = crtc->dev;
  94	struct drm_i915_private *dev_priv = dev->dev_private;
  95	struct drm_framebuffer *fb = crtc->primary->fb;
  96	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  97	struct drm_i915_gem_object *obj = intel_fb->obj;
  98	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  99	int cfb_pitch;
 100	int i;
 101	u32 fbc_ctl;
 102
 103	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
 104	if (fb->pitches[0] < cfb_pitch)
 105		cfb_pitch = fb->pitches[0];
 106
 107	/* FBC_CTL wants 32B or 64B units */
 108	if (IS_GEN2(dev))
 109		cfb_pitch = (cfb_pitch / 32) - 1;
 110	else
 111		cfb_pitch = (cfb_pitch / 64) - 1;
 112
 113	/* Clear old tags */
 114	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
 115		I915_WRITE(FBC_TAG + (i * 4), 0);
 116
 117	if (IS_GEN4(dev)) {
 118		u32 fbc_ctl2;
 119
 120		/* Set it up... */
 121		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
 122		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
 123		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
 124		I915_WRITE(FBC_FENCE_OFF, crtc->y);
 125	}
 126
 127	/* enable it... */
 128	fbc_ctl = I915_READ(FBC_CONTROL);
 129	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
 130	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
 131	if (IS_I945GM(dev))
 132		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
 133	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
 134	fbc_ctl |= obj->fence_reg;
 135	I915_WRITE(FBC_CONTROL, fbc_ctl);
 136
 137	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
 138		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
 139}
 140
 141static bool i8xx_fbc_enabled(struct drm_device *dev)
 142{
 143	struct drm_i915_private *dev_priv = dev->dev_private;
 144
 145	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
 146}
 147
 148static void g4x_enable_fbc(struct drm_crtc *crtc)
 149{
 150	struct drm_device *dev = crtc->dev;
 151	struct drm_i915_private *dev_priv = dev->dev_private;
 152	struct drm_framebuffer *fb = crtc->primary->fb;
 153	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 154	struct drm_i915_gem_object *obj = intel_fb->obj;
 155	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 156	u32 dpfc_ctl;
 157
 158	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
 159	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
 160		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
 161	else
 162		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
 163	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
 164
 165	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
 166
 167	/* enable it... */
 168	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 169
 170	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
 171}
 172
 173static void g4x_disable_fbc(struct drm_device *dev)
 174{
 175	struct drm_i915_private *dev_priv = dev->dev_private;
 176	u32 dpfc_ctl;
 177
 178	/* Disable compression */
 179	dpfc_ctl = I915_READ(DPFC_CONTROL);
 180	if (dpfc_ctl & DPFC_CTL_EN) {
 181		dpfc_ctl &= ~DPFC_CTL_EN;
 182		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
 183
 184		DRM_DEBUG_KMS("disabled FBC\n");
 185	}
 186}
 187
 188static bool g4x_fbc_enabled(struct drm_device *dev)
 189{
 190	struct drm_i915_private *dev_priv = dev->dev_private;
 191
 192	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
 193}
 194
 195static void sandybridge_blit_fbc_update(struct drm_device *dev)
 196{
 197	struct drm_i915_private *dev_priv = dev->dev_private;
 198	u32 blt_ecoskpd;
 199
 200	/* Make sure blitter notifies FBC of writes */
 201
 202	/* Blitter is part of Media powerwell on VLV. No impact of
 203	 * his param in other platforms for now */
 204	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
 205
 206	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
 207	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
 208		GEN6_BLITTER_LOCK_SHIFT;
 209	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 210	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
 211	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 212	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
 213			 GEN6_BLITTER_LOCK_SHIFT);
 214	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 215	POSTING_READ(GEN6_BLITTER_ECOSKPD);
 216
 217	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
 218}
 219
 220static void ironlake_enable_fbc(struct drm_crtc *crtc)
 221{
 222	struct drm_device *dev = crtc->dev;
 223	struct drm_i915_private *dev_priv = dev->dev_private;
 224	struct drm_framebuffer *fb = crtc->primary->fb;
 225	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 226	struct drm_i915_gem_object *obj = intel_fb->obj;
 227	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 228	u32 dpfc_ctl;
 229
 230	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
 231	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
 232		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
 233	else
 234		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
 235	dpfc_ctl |= DPFC_CTL_FENCE_EN;
 236	if (IS_GEN5(dev))
 237		dpfc_ctl |= obj->fence_reg;
 238
 239	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
 240	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
 241	/* enable it... */
 242	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 243
 244	if (IS_GEN6(dev)) {
 245		I915_WRITE(SNB_DPFC_CTL_SA,
 246			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
 247		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
 248		sandybridge_blit_fbc_update(dev);
 249	}
 250
 251	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
 252}
 253
 254static void ironlake_disable_fbc(struct drm_device *dev)
 255{
 256	struct drm_i915_private *dev_priv = dev->dev_private;
 257	u32 dpfc_ctl;
 258
 259	/* Disable compression */
 260	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
 261	if (dpfc_ctl & DPFC_CTL_EN) {
 262		dpfc_ctl &= ~DPFC_CTL_EN;
 263		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
 264
 265		DRM_DEBUG_KMS("disabled FBC\n");
 266	}
 267}
 268
 269static bool ironlake_fbc_enabled(struct drm_device *dev)
 270{
 271	struct drm_i915_private *dev_priv = dev->dev_private;
 272
 273	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
 274}
 275
 276static void gen7_enable_fbc(struct drm_crtc *crtc)
 277{
 278	struct drm_device *dev = crtc->dev;
 279	struct drm_i915_private *dev_priv = dev->dev_private;
 280	struct drm_framebuffer *fb = crtc->primary->fb;
 281	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 282	struct drm_i915_gem_object *obj = intel_fb->obj;
 283	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 284	u32 dpfc_ctl;
 285
 286	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
 287	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
 288		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
 289	else
 290		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
 291	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
 292
 293	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 294
 295	if (IS_IVYBRIDGE(dev)) {
 296		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
 297		I915_WRITE(ILK_DISPLAY_CHICKEN1,
 298			   I915_READ(ILK_DISPLAY_CHICKEN1) |
 299			   ILK_FBCQ_DIS);
 300	} else {
 301		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
 302		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
 303			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
 304			   HSW_FBCQ_DIS);
 305	}
 306
 307	I915_WRITE(SNB_DPFC_CTL_SA,
 308		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
 309	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
 310
 311	sandybridge_blit_fbc_update(dev);
 312
 313	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
 314}
 315
 316bool intel_fbc_enabled(struct drm_device *dev)
 317{
 318	struct drm_i915_private *dev_priv = dev->dev_private;
 319
 320	if (!dev_priv->display.fbc_enabled)
 321		return false;
 322
 323	return dev_priv->display.fbc_enabled(dev);
 324}
 325
 326static void intel_fbc_work_fn(struct work_struct *__work)
 327{
 328	struct intel_fbc_work *work =
 329		container_of(to_delayed_work(__work),
 330			     struct intel_fbc_work, work);
 331	struct drm_device *dev = work->crtc->dev;
 332	struct drm_i915_private *dev_priv = dev->dev_private;
 333
 334	mutex_lock(&dev->struct_mutex);
 335	if (work == dev_priv->fbc.fbc_work) {
 336		/* Double check that we haven't switched fb without cancelling
 337		 * the prior work.
 338		 */
 339		if (work->crtc->primary->fb == work->fb) {
 340			dev_priv->display.enable_fbc(work->crtc);
 341
 342			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
 343			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
 344			dev_priv->fbc.y = work->crtc->y;
 345		}
 346
 347		dev_priv->fbc.fbc_work = NULL;
 348	}
 349	mutex_unlock(&dev->struct_mutex);
 350
 351	kfree(work);
 352}
 353
 354static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
 355{
 356	if (dev_priv->fbc.fbc_work == NULL)
 357		return;
 358
 359	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
 360
 361	/* Synchronisation is provided by struct_mutex and checking of
 362	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
 363	 * entirely asynchronously.
 364	 */
 365	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
 366		/* tasklet was killed before being run, clean up */
 367		kfree(dev_priv->fbc.fbc_work);
 368
 369	/* Mark the work as no longer wanted so that if it does
 370	 * wake-up (because the work was already running and waiting
 371	 * for our mutex), it will discover that is no longer
 372	 * necessary to run.
 373	 */
 374	dev_priv->fbc.fbc_work = NULL;
 375}
 376
 377static void intel_enable_fbc(struct drm_crtc *crtc)
 378{
 379	struct intel_fbc_work *work;
 380	struct drm_device *dev = crtc->dev;
 381	struct drm_i915_private *dev_priv = dev->dev_private;
 382
 383	if (!dev_priv->display.enable_fbc)
 384		return;
 385
 386	intel_cancel_fbc_work(dev_priv);
 387
 388	work = kzalloc(sizeof(*work), GFP_KERNEL);
 389	if (work == NULL) {
 390		DRM_ERROR("Failed to allocate FBC work structure\n");
 391		dev_priv->display.enable_fbc(crtc);
 392		return;
 393	}
 394
 395	work->crtc = crtc;
 396	work->fb = crtc->primary->fb;
 397	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
 398
 399	dev_priv->fbc.fbc_work = work;
 400
 401	/* Delay the actual enabling to let pageflipping cease and the
 402	 * display to settle before starting the compression. Note that
 403	 * this delay also serves a second purpose: it allows for a
 404	 * vblank to pass after disabling the FBC before we attempt
 405	 * to modify the control registers.
 406	 *
 407	 * A more complicated solution would involve tracking vblanks
 408	 * following the termination of the page-flipping sequence
 409	 * and indeed performing the enable as a co-routine and not
 410	 * waiting synchronously upon the vblank.
 411	 *
 412	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
 413	 */
 414	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
 415}
 416
 417void intel_disable_fbc(struct drm_device *dev)
 418{
 419	struct drm_i915_private *dev_priv = dev->dev_private;
 420
 421	intel_cancel_fbc_work(dev_priv);
 422
 423	if (!dev_priv->display.disable_fbc)
 424		return;
 425
 426	dev_priv->display.disable_fbc(dev);
 427	dev_priv->fbc.plane = -1;
 428}
 429
 430static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
 431			      enum no_fbc_reason reason)
 432{
 433	if (dev_priv->fbc.no_fbc_reason == reason)
 434		return false;
 435
 436	dev_priv->fbc.no_fbc_reason = reason;
 437	return true;
 438}
 439
 440/**
 441 * intel_update_fbc - enable/disable FBC as needed
 442 * @dev: the drm_device
 443 *
 444 * Set up the framebuffer compression hardware at mode set time.  We
 445 * enable it if possible:
 446 *   - plane A only (on pre-965)
 447 *   - no pixel mulitply/line duplication
 448 *   - no alpha buffer discard
 449 *   - no dual wide
 450 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
 451 *
 452 * We can't assume that any compression will take place (worst case),
 453 * so the compressed buffer has to be the same size as the uncompressed
 454 * one.  It also must reside (along with the line length buffer) in
 455 * stolen memory.
 456 *
 457 * We need to enable/disable FBC on a global basis.
 458 */
 459void intel_update_fbc(struct drm_device *dev)
 460{
 461	struct drm_i915_private *dev_priv = dev->dev_private;
 462	struct drm_crtc *crtc = NULL, *tmp_crtc;
 463	struct intel_crtc *intel_crtc;
 464	struct drm_framebuffer *fb;
 465	struct intel_framebuffer *intel_fb;
 466	struct drm_i915_gem_object *obj;
 467	const struct drm_display_mode *adjusted_mode;
 468	unsigned int max_width, max_height;
 469
 470	if (!HAS_FBC(dev)) {
 471		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
 472		return;
 473	}
 474
 475	if (!i915.powersave) {
 476		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
 477			DRM_DEBUG_KMS("fbc disabled per module param\n");
 478		return;
 479	}
 480
 481	/*
 482	 * If FBC is already on, we just have to verify that we can
 483	 * keep it that way...
 484	 * Need to disable if:
 485	 *   - more than one pipe is active
 486	 *   - changing FBC params (stride, fence, mode)
 487	 *   - new fb is too large to fit in compressed buffer
 488	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
 489	 */
 490	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
 491		if (intel_crtc_active(tmp_crtc) &&
 492		    to_intel_crtc(tmp_crtc)->primary_enabled) {
 493			if (crtc) {
 494				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
 495					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
 496				goto out_disable;
 497			}
 498			crtc = tmp_crtc;
 499		}
 500	}
 501
 502	if (!crtc || crtc->primary->fb == NULL) {
 503		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
 504			DRM_DEBUG_KMS("no output, disabling\n");
 505		goto out_disable;
 506	}
 507
 508	intel_crtc = to_intel_crtc(crtc);
 509	fb = crtc->primary->fb;
 510	intel_fb = to_intel_framebuffer(fb);
 511	obj = intel_fb->obj;
 512	adjusted_mode = &intel_crtc->config.adjusted_mode;
 513
 514	if (i915.enable_fbc < 0 &&
 515	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
 516		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
 517			DRM_DEBUG_KMS("disabled per chip default\n");
 518		goto out_disable;
 519	}
 520	if (!i915.enable_fbc) {
 521		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
 522			DRM_DEBUG_KMS("fbc disabled per module param\n");
 523		goto out_disable;
 524	}
 525	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
 526	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
 527		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
 528			DRM_DEBUG_KMS("mode incompatible with compression, "
 529				      "disabling\n");
 530		goto out_disable;
 531	}
 532
 533	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 534		max_width = 4096;
 535		max_height = 2048;
 536	} else {
 537		max_width = 2048;
 538		max_height = 1536;
 539	}
 540	if (intel_crtc->config.pipe_src_w > max_width ||
 541	    intel_crtc->config.pipe_src_h > max_height) {
 542		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
 543			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
 544		goto out_disable;
 545	}
 546	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
 547	    intel_crtc->plane != PLANE_A) {
 548		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
 549			DRM_DEBUG_KMS("plane not A, disabling compression\n");
 550		goto out_disable;
 551	}
 552
 553	/* The use of a CPU fence is mandatory in order to detect writes
 554	 * by the CPU to the scanout and trigger updates to the FBC.
 555	 */
 556	if (obj->tiling_mode != I915_TILING_X ||
 557	    obj->fence_reg == I915_FENCE_REG_NONE) {
 558		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
 559			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
 560		goto out_disable;
 561	}
 562
 563	/* If the kernel debugger is active, always disable compression */
 564	if (in_dbg_master())
 565		goto out_disable;
 566
 567	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
 568		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
 569			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
 570		goto out_disable;
 571	}
 572
 573	/* If the scanout has not changed, don't modify the FBC settings.
 574	 * Note that we make the fundamental assumption that the fb->obj
 575	 * cannot be unpinned (and have its GTT offset and fence revoked)
 576	 * without first being decoupled from the scanout and FBC disabled.
 577	 */
 578	if (dev_priv->fbc.plane == intel_crtc->plane &&
 579	    dev_priv->fbc.fb_id == fb->base.id &&
 580	    dev_priv->fbc.y == crtc->y)
 581		return;
 582
 583	if (intel_fbc_enabled(dev)) {
 584		/* We update FBC along two paths, after changing fb/crtc
 585		 * configuration (modeswitching) and after page-flipping
 586		 * finishes. For the latter, we know that not only did
 587		 * we disable the FBC at the start of the page-flip
 588		 * sequence, but also more than one vblank has passed.
 589		 *
 590		 * For the former case of modeswitching, it is possible
 591		 * to switch between two FBC valid configurations
 592		 * instantaneously so we do need to disable the FBC
 593		 * before we can modify its control registers. We also
 594		 * have to wait for the next vblank for that to take
 595		 * effect. However, since we delay enabling FBC we can
 596		 * assume that a vblank has passed since disabling and
 597		 * that we can safely alter the registers in the deferred
 598		 * callback.
 599		 *
 600		 * In the scenario that we go from a valid to invalid
 601		 * and then back to valid FBC configuration we have
 602		 * no strict enforcement that a vblank occurred since
 603		 * disabling the FBC. However, along all current pipe
 604		 * disabling paths we do need to wait for a vblank at
 605		 * some point. And we wait before enabling FBC anyway.
 606		 */
 607		DRM_DEBUG_KMS("disabling active FBC for update\n");
 608		intel_disable_fbc(dev);
 609	}
 610
 611	intel_enable_fbc(crtc);
 612	dev_priv->fbc.no_fbc_reason = FBC_OK;
 613	return;
 614
 615out_disable:
 616	/* Multiple disables should be harmless */
 617	if (intel_fbc_enabled(dev)) {
 618		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
 619		intel_disable_fbc(dev);
 620	}
 621	i915_gem_stolen_cleanup_compression(dev);
 622}
 623
 624static void i915_pineview_get_mem_freq(struct drm_device *dev)
 625{
 626	struct drm_i915_private *dev_priv = dev->dev_private;
 627	u32 tmp;
 628
 629	tmp = I915_READ(CLKCFG);
 630
 631	switch (tmp & CLKCFG_FSB_MASK) {
 632	case CLKCFG_FSB_533:
 633		dev_priv->fsb_freq = 533; /* 133*4 */
 634		break;
 635	case CLKCFG_FSB_800:
 636		dev_priv->fsb_freq = 800; /* 200*4 */
 637		break;
 638	case CLKCFG_FSB_667:
 639		dev_priv->fsb_freq =  667; /* 167*4 */
 640		break;
 641	case CLKCFG_FSB_400:
 642		dev_priv->fsb_freq = 400; /* 100*4 */
 643		break;
 644	}
 645
 646	switch (tmp & CLKCFG_MEM_MASK) {
 647	case CLKCFG_MEM_533:
 648		dev_priv->mem_freq = 533;
 649		break;
 650	case CLKCFG_MEM_667:
 651		dev_priv->mem_freq = 667;
 652		break;
 653	case CLKCFG_MEM_800:
 654		dev_priv->mem_freq = 800;
 655		break;
 656	}
 657
 658	/* detect pineview DDR3 setting */
 659	tmp = I915_READ(CSHRDDR3CTL);
 660	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 661}
 662
 663static void i915_ironlake_get_mem_freq(struct drm_device *dev)
 664{
 665	struct drm_i915_private *dev_priv = dev->dev_private;
 666	u16 ddrpll, csipll;
 667
 668	ddrpll = I915_READ16(DDRMPLL1);
 669	csipll = I915_READ16(CSIPLL0);
 670
 671	switch (ddrpll & 0xff) {
 672	case 0xc:
 673		dev_priv->mem_freq = 800;
 674		break;
 675	case 0x10:
 676		dev_priv->mem_freq = 1066;
 677		break;
 678	case 0x14:
 679		dev_priv->mem_freq = 1333;
 680		break;
 681	case 0x18:
 682		dev_priv->mem_freq = 1600;
 683		break;
 684	default:
 685		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 686				 ddrpll & 0xff);
 687		dev_priv->mem_freq = 0;
 688		break;
 689	}
 690
 691	dev_priv->ips.r_t = dev_priv->mem_freq;
 692
 693	switch (csipll & 0x3ff) {
 694	case 0x00c:
 695		dev_priv->fsb_freq = 3200;
 696		break;
 697	case 0x00e:
 698		dev_priv->fsb_freq = 3733;
 699		break;
 700	case 0x010:
 701		dev_priv->fsb_freq = 4266;
 702		break;
 703	case 0x012:
 704		dev_priv->fsb_freq = 4800;
 705		break;
 706	case 0x014:
 707		dev_priv->fsb_freq = 5333;
 708		break;
 709	case 0x016:
 710		dev_priv->fsb_freq = 5866;
 711		break;
 712	case 0x018:
 713		dev_priv->fsb_freq = 6400;
 714		break;
 715	default:
 716		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 717				 csipll & 0x3ff);
 718		dev_priv->fsb_freq = 0;
 719		break;
 720	}
 721
 722	if (dev_priv->fsb_freq == 3200) {
 723		dev_priv->ips.c_m = 0;
 724	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 725		dev_priv->ips.c_m = 1;
 726	} else {
 727		dev_priv->ips.c_m = 2;
 728	}
 729}
 730
 731static const struct cxsr_latency cxsr_latency_table[] = {
 732	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 733	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 734	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 735	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 736	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 737
 738	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 739	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 740	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 741	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 742	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 743
 744	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 745	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 746	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 747	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 748	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 749
 750	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 751	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 752	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 753	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 754	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 755
 756	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 757	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 758	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 759	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 760	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 761
 762	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 763	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 764	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 765	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 766	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 767};
 768
 769static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
 770							 int is_ddr3,
 771							 int fsb,
 772							 int mem)
 773{
 774	const struct cxsr_latency *latency;
 775	int i;
 776
 777	if (fsb == 0 || mem == 0)
 778		return NULL;
 779
 780	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 781		latency = &cxsr_latency_table[i];
 782		if (is_desktop == latency->is_desktop &&
 783		    is_ddr3 == latency->is_ddr3 &&
 784		    fsb == latency->fsb_freq && mem == latency->mem_freq)
 785			return latency;
 786	}
 787
 788	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 789
 790	return NULL;
 791}
 792
 793static void pineview_disable_cxsr(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794{
 795	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796
 797	/* deactivate cxsr */
 798	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
 799}
 800
 
 801/*
 802 * Latency for FIFO fetches is dependent on several factors:
 803 *   - memory configuration (speed, channels)
 804 *   - chipset
 805 *   - current MCH state
 806 * It can be fairly high in some situations, so here we assume a fairly
 807 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 808 * set this value too high, the FIFO will fetch frequently to stay full)
 809 * and power consumption (set it too low to save power and we might see
 810 * FIFO underruns and display "flicker").
 811 *
 812 * A value of 5us seems to be a good balance; safe for very low end
 813 * platforms but not overly aggressive on lower latency configs.
 814 */
 815static const int latency_ns = 5000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816
 817static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
 818{
 819	struct drm_i915_private *dev_priv = dev->dev_private;
 820	uint32_t dsparb = I915_READ(DSPARB);
 821	int size;
 822
 823	size = dsparb & 0x7f;
 824	if (plane)
 825		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 826
 827	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 828		      plane ? "B" : "A", size);
 829
 830	return size;
 831}
 832
 833static int i830_get_fifo_size(struct drm_device *dev, int plane)
 834{
 835	struct drm_i915_private *dev_priv = dev->dev_private;
 836	uint32_t dsparb = I915_READ(DSPARB);
 837	int size;
 838
 839	size = dsparb & 0x1ff;
 840	if (plane)
 841		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 842	size >>= 1; /* Convert to cachelines */
 843
 844	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 845		      plane ? "B" : "A", size);
 846
 847	return size;
 848}
 849
 850static int i845_get_fifo_size(struct drm_device *dev, int plane)
 851{
 852	struct drm_i915_private *dev_priv = dev->dev_private;
 853	uint32_t dsparb = I915_READ(DSPARB);
 854	int size;
 855
 856	size = dsparb & 0x7f;
 857	size >>= 2; /* Convert to cachelines */
 858
 859	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 860		      plane ? "B" : "A",
 861		      size);
 862
 863	return size;
 864}
 865
 866/* Pineview has different values for various configs */
 867static const struct intel_watermark_params pineview_display_wm = {
 868	PINEVIEW_DISPLAY_FIFO,
 869	PINEVIEW_MAX_WM,
 870	PINEVIEW_DFT_WM,
 871	PINEVIEW_GUARD_WM,
 872	PINEVIEW_FIFO_LINE_SIZE
 873};
 874static const struct intel_watermark_params pineview_display_hplloff_wm = {
 875	PINEVIEW_DISPLAY_FIFO,
 876	PINEVIEW_MAX_WM,
 877	PINEVIEW_DFT_HPLLOFF_WM,
 878	PINEVIEW_GUARD_WM,
 879	PINEVIEW_FIFO_LINE_SIZE
 880};
 881static const struct intel_watermark_params pineview_cursor_wm = {
 882	PINEVIEW_CURSOR_FIFO,
 883	PINEVIEW_CURSOR_MAX_WM,
 884	PINEVIEW_CURSOR_DFT_WM,
 885	PINEVIEW_CURSOR_GUARD_WM,
 886	PINEVIEW_FIFO_LINE_SIZE,
 887};
 888static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 889	PINEVIEW_CURSOR_FIFO,
 890	PINEVIEW_CURSOR_MAX_WM,
 891	PINEVIEW_CURSOR_DFT_WM,
 892	PINEVIEW_CURSOR_GUARD_WM,
 893	PINEVIEW_FIFO_LINE_SIZE
 894};
 895static const struct intel_watermark_params g4x_wm_info = {
 896	G4X_FIFO_SIZE,
 897	G4X_MAX_WM,
 898	G4X_MAX_WM,
 899	2,
 900	G4X_FIFO_LINE_SIZE,
 901};
 902static const struct intel_watermark_params g4x_cursor_wm_info = {
 903	I965_CURSOR_FIFO,
 904	I965_CURSOR_MAX_WM,
 905	I965_CURSOR_DFT_WM,
 906	2,
 907	G4X_FIFO_LINE_SIZE,
 908};
 909static const struct intel_watermark_params valleyview_wm_info = {
 910	VALLEYVIEW_FIFO_SIZE,
 911	VALLEYVIEW_MAX_WM,
 912	VALLEYVIEW_MAX_WM,
 913	2,
 914	G4X_FIFO_LINE_SIZE,
 915};
 916static const struct intel_watermark_params valleyview_cursor_wm_info = {
 917	I965_CURSOR_FIFO,
 918	VALLEYVIEW_CURSOR_MAX_WM,
 919	I965_CURSOR_DFT_WM,
 920	2,
 921	G4X_FIFO_LINE_SIZE,
 922};
 923static const struct intel_watermark_params i965_cursor_wm_info = {
 924	I965_CURSOR_FIFO,
 925	I965_CURSOR_MAX_WM,
 926	I965_CURSOR_DFT_WM,
 927	2,
 928	I915_FIFO_LINE_SIZE,
 929};
 930static const struct intel_watermark_params i945_wm_info = {
 931	I945_FIFO_SIZE,
 932	I915_MAX_WM,
 933	1,
 934	2,
 935	I915_FIFO_LINE_SIZE
 936};
 937static const struct intel_watermark_params i915_wm_info = {
 938	I915_FIFO_SIZE,
 939	I915_MAX_WM,
 940	1,
 941	2,
 942	I915_FIFO_LINE_SIZE
 943};
 944static const struct intel_watermark_params i830_wm_info = {
 945	I855GM_FIFO_SIZE,
 946	I915_MAX_WM,
 947	1,
 948	2,
 949	I830_FIFO_LINE_SIZE
 
 
 
 
 
 
 
 950};
 951static const struct intel_watermark_params i845_wm_info = {
 952	I830_FIFO_SIZE,
 953	I915_MAX_WM,
 954	1,
 955	2,
 956	I830_FIFO_LINE_SIZE
 957};
 958
 959/**
 960 * intel_calculate_wm - calculate watermark level
 961 * @clock_in_khz: pixel clock
 962 * @wm: chip FIFO params
 963 * @pixel_size: display pixel size
 964 * @latency_ns: memory latency for the platform
 965 *
 966 * Calculate the watermark level (the level at which the display plane will
 967 * start fetching from memory again).  Each chip has a different display
 968 * FIFO size and allocation, so the caller needs to figure that out and pass
 969 * in the correct intel_watermark_params structure.
 970 *
 971 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 972 * on the pixel size.  When it reaches the watermark level, it'll start
 973 * fetching FIFO line sized based chunks from memory until the FIFO fills
 974 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 975 * will occur, and a display engine hang could result.
 976 */
 977static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 978					const struct intel_watermark_params *wm,
 979					int fifo_size,
 980					int pixel_size,
 981					unsigned long latency_ns)
 982{
 983	long entries_required, wm_size;
 984
 985	/*
 986	 * Note: we need to make sure we don't overflow for various clock &
 987	 * latency values.
 988	 * clocks go from a few thousand to several hundred thousand.
 989	 * latency is usually a few thousand
 990	 */
 991	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
 992		1000;
 993	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 994
 995	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 996
 997	wm_size = fifo_size - (entries_required + wm->guard_size);
 998
 999	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1000
1001	/* Don't promote wm_size to unsigned... */
1002	if (wm_size > (long)wm->max_wm)
1003		wm_size = wm->max_wm;
1004	if (wm_size <= 0)
1005		wm_size = wm->default_wm;
 
 
 
 
 
 
 
 
 
 
 
1006	return wm_size;
1007}
1008
1009static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1010{
1011	struct drm_crtc *crtc, *enabled = NULL;
1012
1013	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1014		if (intel_crtc_active(crtc)) {
1015			if (enabled)
1016				return NULL;
1017			enabled = crtc;
1018		}
1019	}
1020
1021	return enabled;
1022}
1023
1024static void pineview_update_wm(struct drm_crtc *unused_crtc)
1025{
1026	struct drm_device *dev = unused_crtc->dev;
1027	struct drm_i915_private *dev_priv = dev->dev_private;
1028	struct drm_crtc *crtc;
1029	const struct cxsr_latency *latency;
1030	u32 reg;
1031	unsigned long wm;
1032
1033	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1034					 dev_priv->fsb_freq, dev_priv->mem_freq);
1035	if (!latency) {
1036		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1037		pineview_disable_cxsr(dev);
1038		return;
1039	}
1040
1041	crtc = single_enabled_crtc(dev);
1042	if (crtc) {
1043		const struct drm_display_mode *adjusted_mode;
1044		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1045		int clock;
1046
1047		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1048		clock = adjusted_mode->crtc_clock;
1049
1050		/* Display SR */
1051		wm = intel_calculate_wm(clock, &pineview_display_wm,
1052					pineview_display_wm.fifo_size,
1053					pixel_size, latency->display_sr);
1054		reg = I915_READ(DSPFW1);
1055		reg &= ~DSPFW_SR_MASK;
1056		reg |= wm << DSPFW_SR_SHIFT;
1057		I915_WRITE(DSPFW1, reg);
1058		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1059
1060		/* cursor SR */
1061		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1062					pineview_display_wm.fifo_size,
1063					pixel_size, latency->cursor_sr);
1064		reg = I915_READ(DSPFW3);
1065		reg &= ~DSPFW_CURSOR_SR_MASK;
1066		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1067		I915_WRITE(DSPFW3, reg);
1068
1069		/* Display HPLL off SR */
1070		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1071					pineview_display_hplloff_wm.fifo_size,
1072					pixel_size, latency->display_hpll_disable);
1073		reg = I915_READ(DSPFW3);
1074		reg &= ~DSPFW_HPLL_SR_MASK;
1075		reg |= wm & DSPFW_HPLL_SR_MASK;
1076		I915_WRITE(DSPFW3, reg);
1077
1078		/* cursor HPLL off SR */
1079		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1080					pineview_display_hplloff_wm.fifo_size,
1081					pixel_size, latency->cursor_hpll_disable);
1082		reg = I915_READ(DSPFW3);
1083		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1084		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1085		I915_WRITE(DSPFW3, reg);
1086		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1087
1088		/* activate cxsr */
1089		I915_WRITE(DSPFW3,
1090			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1091		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1092	} else {
1093		pineview_disable_cxsr(dev);
1094		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1095	}
1096}
1097
1098static bool g4x_compute_wm0(struct drm_device *dev,
1099			    int plane,
1100			    const struct intel_watermark_params *display,
1101			    int display_latency_ns,
1102			    const struct intel_watermark_params *cursor,
1103			    int cursor_latency_ns,
1104			    int *plane_wm,
1105			    int *cursor_wm)
1106{
1107	struct drm_crtc *crtc;
1108	const struct drm_display_mode *adjusted_mode;
1109	int htotal, hdisplay, clock, pixel_size;
1110	int line_time_us, line_count;
1111	int entries, tlb_miss;
1112
1113	crtc = intel_get_crtc_for_plane(dev, plane);
1114	if (!intel_crtc_active(crtc)) {
1115		*cursor_wm = cursor->guard_size;
1116		*plane_wm = display->guard_size;
1117		return false;
1118	}
1119
1120	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1121	clock = adjusted_mode->crtc_clock;
1122	htotal = adjusted_mode->crtc_htotal;
1123	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1124	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1125
1126	/* Use the small buffer method to calculate plane watermark */
1127	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1128	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1129	if (tlb_miss > 0)
1130		entries += tlb_miss;
1131	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1132	*plane_wm = entries + display->guard_size;
1133	if (*plane_wm > (int)display->max_wm)
1134		*plane_wm = display->max_wm;
1135
1136	/* Use the large buffer method to calculate cursor watermark */
1137	line_time_us = max(htotal * 1000 / clock, 1);
1138	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1139	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1140	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1141	if (tlb_miss > 0)
1142		entries += tlb_miss;
1143	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1144	*cursor_wm = entries + cursor->guard_size;
1145	if (*cursor_wm > (int)cursor->max_wm)
1146		*cursor_wm = (int)cursor->max_wm;
1147
1148	return true;
1149}
1150
1151/*
1152 * Check the wm result.
1153 *
1154 * If any calculated watermark values is larger than the maximum value that
1155 * can be programmed into the associated watermark register, that watermark
1156 * must be disabled.
1157 */
1158static bool g4x_check_srwm(struct drm_device *dev,
1159			   int display_wm, int cursor_wm,
1160			   const struct intel_watermark_params *display,
1161			   const struct intel_watermark_params *cursor)
1162{
1163	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1164		      display_wm, cursor_wm);
1165
1166	if (display_wm > display->max_wm) {
1167		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1168			      display_wm, display->max_wm);
1169		return false;
1170	}
1171
1172	if (cursor_wm > cursor->max_wm) {
1173		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1174			      cursor_wm, cursor->max_wm);
1175		return false;
1176	}
1177
1178	if (!(display_wm || cursor_wm)) {
1179		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1180		return false;
1181	}
1182
1183	return true;
1184}
1185
1186static bool g4x_compute_srwm(struct drm_device *dev,
1187			     int plane,
1188			     int latency_ns,
1189			     const struct intel_watermark_params *display,
1190			     const struct intel_watermark_params *cursor,
1191			     int *display_wm, int *cursor_wm)
1192{
1193	struct drm_crtc *crtc;
1194	const struct drm_display_mode *adjusted_mode;
1195	int hdisplay, htotal, pixel_size, clock;
1196	unsigned long line_time_us;
1197	int line_count, line_size;
1198	int small, large;
1199	int entries;
1200
1201	if (!latency_ns) {
1202		*display_wm = *cursor_wm = 0;
1203		return false;
1204	}
1205
1206	crtc = intel_get_crtc_for_plane(dev, plane);
1207	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1208	clock = adjusted_mode->crtc_clock;
1209	htotal = adjusted_mode->crtc_htotal;
1210	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1212
1213	line_time_us = max(htotal * 1000 / clock, 1);
1214	line_count = (latency_ns / line_time_us + 1000) / 1000;
1215	line_size = hdisplay * pixel_size;
1216
1217	/* Use the minimum of the small and large buffer method for primary */
1218	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1219	large = line_count * line_size;
1220
1221	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1222	*display_wm = entries + display->guard_size;
1223
1224	/* calculate the self-refresh watermark for display cursor */
1225	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1226	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1227	*cursor_wm = entries + cursor->guard_size;
1228
1229	return g4x_check_srwm(dev,
1230			      *display_wm, *cursor_wm,
1231			      display, cursor);
1232}
1233
1234static bool vlv_compute_drain_latency(struct drm_device *dev,
1235				     int plane,
1236				     int *plane_prec_mult,
1237				     int *plane_dl,
1238				     int *cursor_prec_mult,
1239				     int *cursor_dl)
1240{
1241	struct drm_crtc *crtc;
1242	int clock, pixel_size;
1243	int entries;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244
1245	crtc = intel_get_crtc_for_plane(dev, plane);
1246	if (!intel_crtc_active(crtc))
1247		return false;
1248
1249	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1250	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251
1252	entries = (clock / 1000) * pixel_size;
1253	*plane_prec_mult = (entries > 256) ?
1254		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1256						     pixel_size);
1257
1258	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1259	*cursor_prec_mult = (entries > 256) ?
1260		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1261	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1262
1263	return true;
1264}
1265
1266/*
1267 * Update drain latency registers of memory arbiter
1268 *
1269 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1270 * to be programmed. Each plane has a drain latency multiplier and a drain
1271 * latency value.
1272 */
1273
1274static void vlv_update_drain_latency(struct drm_device *dev)
1275{
1276	struct drm_i915_private *dev_priv = dev->dev_private;
1277	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1278	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1279	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1280							either 16 or 32 */
1281
1282	/* For plane A, Cursor A */
1283	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1284				      &cursor_prec_mult, &cursora_dl)) {
1285		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1286			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1287		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1288			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1289
1290		I915_WRITE(VLV_DDL1, cursora_prec |
1291				(cursora_dl << DDL_CURSORA_SHIFT) |
1292				planea_prec | planea_dl);
1293	}
1294
1295	/* For plane B, Cursor B */
1296	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1297				      &cursor_prec_mult, &cursorb_dl)) {
1298		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1299			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1300		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1301			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1302
1303		I915_WRITE(VLV_DDL2, cursorb_prec |
1304				(cursorb_dl << DDL_CURSORB_SHIFT) |
1305				planeb_prec | planeb_dl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306	}
1307}
1308
1309#define single_plane_enabled(mask) is_power_of_2(mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310
1311static void valleyview_update_wm(struct drm_crtc *crtc)
1312{
1313	struct drm_device *dev = crtc->dev;
1314	static const int sr_latency_ns = 12000;
1315	struct drm_i915_private *dev_priv = dev->dev_private;
1316	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1317	int plane_sr, cursor_sr;
1318	int ignore_plane_sr, ignore_cursor_sr;
1319	unsigned int enabled = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320
1321	vlv_update_drain_latency(dev);
1322
1323	if (g4x_compute_wm0(dev, PIPE_A,
1324			    &valleyview_wm_info, latency_ns,
1325			    &valleyview_cursor_wm_info, latency_ns,
1326			    &planea_wm, &cursora_wm))
1327		enabled |= 1 << PIPE_A;
1328
1329	if (g4x_compute_wm0(dev, PIPE_B,
1330			    &valleyview_wm_info, latency_ns,
1331			    &valleyview_cursor_wm_info, latency_ns,
1332			    &planeb_wm, &cursorb_wm))
1333		enabled |= 1 << PIPE_B;
1334
1335	if (single_plane_enabled(enabled) &&
1336	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1337			     sr_latency_ns,
1338			     &valleyview_wm_info,
1339			     &valleyview_cursor_wm_info,
1340			     &plane_sr, &ignore_cursor_sr) &&
1341	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1342			     2*sr_latency_ns,
1343			     &valleyview_wm_info,
1344			     &valleyview_cursor_wm_info,
1345			     &ignore_plane_sr, &cursor_sr)) {
1346		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1347	} else {
1348		I915_WRITE(FW_BLC_SELF_VLV,
1349			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1350		plane_sr = cursor_sr = 0;
1351	}
1352
1353	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1354		      planea_wm, cursora_wm,
1355		      planeb_wm, cursorb_wm,
1356		      plane_sr, cursor_sr);
1357
1358	I915_WRITE(DSPFW1,
1359		   (plane_sr << DSPFW_SR_SHIFT) |
1360		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1361		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1362		   planea_wm);
1363	I915_WRITE(DSPFW2,
1364		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1365		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1366	I915_WRITE(DSPFW3,
1367		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1368		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1369}
1370
 
 
1371static void g4x_update_wm(struct drm_crtc *crtc)
1372{
1373	struct drm_device *dev = crtc->dev;
1374	static const int sr_latency_ns = 12000;
1375	struct drm_i915_private *dev_priv = dev->dev_private;
1376	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377	int plane_sr, cursor_sr;
1378	unsigned int enabled = 0;
 
1379
1380	if (g4x_compute_wm0(dev, PIPE_A,
1381			    &g4x_wm_info, latency_ns,
1382			    &g4x_cursor_wm_info, latency_ns,
1383			    &planea_wm, &cursora_wm))
1384		enabled |= 1 << PIPE_A;
1385
1386	if (g4x_compute_wm0(dev, PIPE_B,
1387			    &g4x_wm_info, latency_ns,
1388			    &g4x_cursor_wm_info, latency_ns,
1389			    &planeb_wm, &cursorb_wm))
1390		enabled |= 1 << PIPE_B;
1391
1392	if (single_plane_enabled(enabled) &&
1393	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1394			     sr_latency_ns,
1395			     &g4x_wm_info,
1396			     &g4x_cursor_wm_info,
1397			     &plane_sr, &cursor_sr)) {
1398		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1399	} else {
1400		I915_WRITE(FW_BLC_SELF,
1401			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1402		plane_sr = cursor_sr = 0;
1403	}
1404
1405	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
 
1406		      planea_wm, cursora_wm,
1407		      planeb_wm, cursorb_wm,
1408		      plane_sr, cursor_sr);
1409
1410	I915_WRITE(DSPFW1,
1411		   (plane_sr << DSPFW_SR_SHIFT) |
1412		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1413		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1414		   planea_wm);
1415	I915_WRITE(DSPFW2,
1416		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1417		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1418	/* HPLL off in SR has some issues on G4x... disable it */
1419	I915_WRITE(DSPFW3,
1420		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1421		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
 
 
 
1422}
1423
1424static void i965_update_wm(struct drm_crtc *unused_crtc)
1425{
1426	struct drm_device *dev = unused_crtc->dev;
1427	struct drm_i915_private *dev_priv = dev->dev_private;
1428	struct drm_crtc *crtc;
1429	int srwm = 1;
1430	int cursor_sr = 16;
 
1431
1432	/* Calc sr entries for one plane configs */
1433	crtc = single_enabled_crtc(dev);
1434	if (crtc) {
1435		/* self-refresh has much higher latency */
1436		static const int sr_latency_ns = 12000;
1437		const struct drm_display_mode *adjusted_mode =
1438			&to_intel_crtc(crtc)->config.adjusted_mode;
1439		int clock = adjusted_mode->crtc_clock;
1440		int htotal = adjusted_mode->crtc_htotal;
1441		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1442		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1443		unsigned long line_time_us;
1444		int entries;
1445
1446		line_time_us = max(htotal * 1000 / clock, 1);
1447
1448		/* Use ns/us then divide to preserve precision */
1449		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450			pixel_size * hdisplay;
1451		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452		srwm = I965_FIFO_SIZE - entries;
1453		if (srwm < 0)
1454			srwm = 1;
1455		srwm &= 0x1ff;
1456		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457			      entries, srwm);
1458
1459		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460			pixel_size * to_intel_crtc(crtc)->cursor_width;
1461		entries = DIV_ROUND_UP(entries,
1462					  i965_cursor_wm_info.cacheline_size);
1463		cursor_sr = i965_cursor_wm_info.fifo_size -
1464			(entries + i965_cursor_wm_info.guard_size);
1465
1466		if (cursor_sr > i965_cursor_wm_info.max_wm)
1467			cursor_sr = i965_cursor_wm_info.max_wm;
1468
1469		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470			      "cursor %d\n", srwm, cursor_sr);
1471
1472		if (IS_CRESTLINE(dev))
1473			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1474	} else {
 
1475		/* Turn off self refresh if both pipes are enabled */
1476		if (IS_CRESTLINE(dev))
1477			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1478				   & ~FW_BLC_SELF_EN);
1479	}
1480
1481	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1482		      srwm);
1483
1484	/* 965 has limitations... */
1485	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1486		   (8 << 16) | (8 << 8) | (8 << 0));
1487	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
 
 
 
1488	/* update cursor SR watermark */
1489	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
 
 
 
1490}
1491
 
 
1492static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1493{
1494	struct drm_device *dev = unused_crtc->dev;
1495	struct drm_i915_private *dev_priv = dev->dev_private;
1496	const struct intel_watermark_params *wm_info;
1497	uint32_t fwater_lo;
1498	uint32_t fwater_hi;
1499	int cwm, srwm = 1;
1500	int fifo_size;
1501	int planea_wm, planeb_wm;
1502	struct drm_crtc *crtc, *enabled = NULL;
1503
1504	if (IS_I945GM(dev))
1505		wm_info = &i945_wm_info;
1506	else if (!IS_GEN2(dev))
1507		wm_info = &i915_wm_info;
1508	else
1509		wm_info = &i830_wm_info;
1510
1511	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1512	crtc = intel_get_crtc_for_plane(dev, 0);
1513	if (intel_crtc_active(crtc)) {
1514		const struct drm_display_mode *adjusted_mode;
1515		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1516		if (IS_GEN2(dev))
1517			cpp = 4;
1518
1519		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1520		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1521					       wm_info, fifo_size, cpp,
1522					       latency_ns);
1523		enabled = crtc;
1524	} else
1525		planea_wm = fifo_size - wm_info->guard_size;
 
 
 
 
 
 
1526
1527	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1528	crtc = intel_get_crtc_for_plane(dev, 1);
1529	if (intel_crtc_active(crtc)) {
1530		const struct drm_display_mode *adjusted_mode;
1531		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1532		if (IS_GEN2(dev))
1533			cpp = 4;
1534
1535		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1536		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537					       wm_info, fifo_size, cpp,
1538					       latency_ns);
1539		if (enabled == NULL)
1540			enabled = crtc;
1541		else
1542			enabled = NULL;
1543	} else
1544		planeb_wm = fifo_size - wm_info->guard_size;
 
 
 
1545
1546	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1547
1548	if (IS_I915GM(dev) && enabled) {
1549		struct intel_framebuffer *fb;
1550
1551		fb = to_intel_framebuffer(enabled->primary->fb);
1552
1553		/* self-refresh seems busted with untiled */
1554		if (fb->obj->tiling_mode == I915_TILING_NONE)
1555			enabled = NULL;
1556	}
1557
1558	/*
1559	 * Overlay gets an aggressive default since video jitter is bad.
1560	 */
1561	cwm = 2;
1562
1563	/* Play safe and disable self-refresh before adjusting watermarks. */
1564	if (IS_I945G(dev) || IS_I945GM(dev))
1565		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1566	else if (IS_I915GM(dev))
1567		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1568
1569	/* Calc sr entries for one plane configs */
1570	if (HAS_FW_BLC(dev) && enabled) {
1571		/* self-refresh has much higher latency */
1572		static const int sr_latency_ns = 6000;
1573		const struct drm_display_mode *adjusted_mode =
1574			&to_intel_crtc(enabled)->config.adjusted_mode;
1575		int clock = adjusted_mode->crtc_clock;
1576		int htotal = adjusted_mode->crtc_htotal;
1577		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1578		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1579		unsigned long line_time_us;
1580		int entries;
1581
1582		line_time_us = max(htotal * 1000 / clock, 1);
1583
1584		/* Use ns/us then divide to preserve precision */
1585		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586			pixel_size * hdisplay;
1587		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1588		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1589		srwm = wm_info->fifo_size - entries;
1590		if (srwm < 0)
1591			srwm = 1;
1592
1593		if (IS_I945G(dev) || IS_I945GM(dev))
1594			I915_WRITE(FW_BLC_SELF,
1595				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1596		else if (IS_I915GM(dev))
1597			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1598	}
1599
1600	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1601		      planea_wm, planeb_wm, cwm, srwm);
1602
1603	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1604	fwater_hi = (cwm & 0x1f);
1605
1606	/* Set request length to 8 cachelines per fetch */
1607	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1608	fwater_hi = fwater_hi | (1 << 8);
1609
1610	I915_WRITE(FW_BLC, fwater_lo);
1611	I915_WRITE(FW_BLC2, fwater_hi);
1612
1613	if (HAS_FW_BLC(dev)) {
1614		if (enabled) {
1615			if (IS_I945G(dev) || IS_I945GM(dev))
1616				I915_WRITE(FW_BLC_SELF,
1617					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1618			else if (IS_I915GM(dev))
1619				I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1620			DRM_DEBUG_KMS("memory self refresh enabled\n");
1621		} else
1622			DRM_DEBUG_KMS("memory self refresh disabled\n");
1623	}
1624}
1625
1626static void i845_update_wm(struct drm_crtc *unused_crtc)
1627{
1628	struct drm_device *dev = unused_crtc->dev;
1629	struct drm_i915_private *dev_priv = dev->dev_private;
1630	struct drm_crtc *crtc;
1631	const struct drm_display_mode *adjusted_mode;
1632	uint32_t fwater_lo;
1633	int planea_wm;
1634
1635	crtc = single_enabled_crtc(dev);
1636	if (crtc == NULL)
1637		return;
1638
1639	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1640	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641				       &i845_wm_info,
1642				       dev_priv->display.get_fifo_size(dev, 0),
1643				       4, latency_ns);
1644	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645	fwater_lo |= (3<<8) | planea_wm;
1646
1647	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649	I915_WRITE(FW_BLC, fwater_lo);
1650}
1651
1652static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1653				    struct drm_crtc *crtc)
1654{
1655	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1656	uint32_t pixel_rate;
1657
1658	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1659
1660	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1661	 * adjust the pixel_rate here. */
1662
1663	if (intel_crtc->config.pch_pfit.enabled) {
1664		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1665		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
 
 
 
1666
1667		pipe_w = intel_crtc->config.pipe_src_w;
1668		pipe_h = intel_crtc->config.pipe_src_h;
1669		pfit_w = (pfit_size >> 16) & 0xFFFF;
1670		pfit_h = pfit_size & 0xFFFF;
1671		if (pipe_w < pfit_w)
1672			pipe_w = pfit_w;
1673		if (pipe_h < pfit_h)
1674			pipe_h = pfit_h;
1675
 
 
 
1676		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1677				     pfit_w * pfit_h);
1678	}
1679
1680	return pixel_rate;
1681}
1682
1683/* latency must be in 0.1us units. */
1684static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1685			       uint32_t latency)
1686{
1687	uint64_t ret;
1688
1689	if (WARN(latency == 0, "Latency value missing\n"))
1690		return UINT_MAX;
1691
1692	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1693	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1694
1695	return ret;
1696}
1697
1698/* latency must be in 0.1us units. */
1699static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1700			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1701			       uint32_t latency)
1702{
1703	uint32_t ret;
1704
1705	if (WARN(latency == 0, "Latency value missing\n"))
1706		return UINT_MAX;
 
 
1707
1708	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1709	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1710	ret = DIV_ROUND_UP(ret, 64) + 2;
1711	return ret;
1712}
1713
1714static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1715			   uint8_t bytes_per_pixel)
1716{
1717	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
 
 
 
 
 
 
 
 
 
 
 
1718}
1719
1720struct ilk_pipe_wm_parameters {
1721	bool active;
1722	uint32_t pipe_htotal;
1723	uint32_t pixel_rate;
1724	struct intel_plane_wm_parameters pri;
1725	struct intel_plane_wm_parameters spr;
1726	struct intel_plane_wm_parameters cur;
1727};
1728
1729struct ilk_wm_maximums {
1730	uint16_t pri;
1731	uint16_t spr;
1732	uint16_t cur;
1733	uint16_t fbc;
1734};
1735
1736/* used in computing the new watermarks state */
1737struct intel_wm_config {
1738	unsigned int num_pipes_active;
1739	bool sprites_enabled;
1740	bool sprites_scaled;
1741};
1742
1743/*
1744 * For both WM_PIPE and WM_LP.
1745 * mem_value must be in 0.1us units.
1746 */
1747static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
 
1748				   uint32_t mem_value,
1749				   bool is_lp)
1750{
 
 
1751	uint32_t method1, method2;
1752
1753	if (!params->active || !params->pri.enabled)
1754		return 0;
1755
1756	method1 = ilk_wm_method1(params->pixel_rate,
1757				 params->pri.bytes_per_pixel,
1758				 mem_value);
1759
1760	if (!is_lp)
1761		return method1;
1762
1763	method2 = ilk_wm_method2(params->pixel_rate,
1764				 params->pipe_htotal,
1765				 params->pri.horiz_pixels,
1766				 params->pri.bytes_per_pixel,
1767				 mem_value);
1768
1769	return min(method1, method2);
1770}
1771
1772/*
1773 * For both WM_PIPE and WM_LP.
1774 * mem_value must be in 0.1us units.
1775 */
1776static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
 
1777				   uint32_t mem_value)
1778{
 
 
1779	uint32_t method1, method2;
1780
1781	if (!params->active || !params->spr.enabled)
1782		return 0;
1783
1784	method1 = ilk_wm_method1(params->pixel_rate,
1785				 params->spr.bytes_per_pixel,
1786				 mem_value);
1787	method2 = ilk_wm_method2(params->pixel_rate,
1788				 params->pipe_htotal,
1789				 params->spr.horiz_pixels,
1790				 params->spr.bytes_per_pixel,
1791				 mem_value);
1792	return min(method1, method2);
1793}
1794
1795/*
1796 * For both WM_PIPE and WM_LP.
1797 * mem_value must be in 0.1us units.
1798 */
1799static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
 
1800				   uint32_t mem_value)
1801{
1802	if (!params->active || !params->cur.enabled)
 
 
 
 
 
 
 
 
1803		return 0;
1804
1805	return ilk_wm_method2(params->pixel_rate,
1806			      params->pipe_htotal,
1807			      params->cur.horiz_pixels,
1808			      params->cur.bytes_per_pixel,
1809			      mem_value);
1810}
1811
1812/* Only for WM_LP. */
1813static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
 
1814				   uint32_t pri_val)
1815{
1816	if (!params->active || !params->pri.enabled)
 
 
 
1817		return 0;
1818
1819	return ilk_wm_fbc(pri_val,
1820			  params->pri.horiz_pixels,
1821			  params->pri.bytes_per_pixel);
1822}
1823
1824static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1825{
1826	if (INTEL_INFO(dev)->gen >= 8)
1827		return 3072;
1828	else if (INTEL_INFO(dev)->gen >= 7)
1829		return 768;
1830	else
1831		return 512;
1832}
1833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834/* Calculate the maximum primary/sprite plane watermark */
1835static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1836				     int level,
1837				     const struct intel_wm_config *config,
1838				     enum intel_ddb_partitioning ddb_partitioning,
1839				     bool is_sprite)
1840{
1841	unsigned int fifo_size = ilk_display_fifo_size(dev);
1842	unsigned int max;
1843
1844	/* if sprites aren't enabled, sprites get nothing */
1845	if (is_sprite && !config->sprites_enabled)
1846		return 0;
1847
1848	/* HSW allows LP1+ watermarks even with multiple pipes */
1849	if (level == 0 || config->num_pipes_active > 1) {
1850		fifo_size /= INTEL_INFO(dev)->num_pipes;
1851
1852		/*
1853		 * For some reason the non self refresh
1854		 * FIFO size is only half of the self
1855		 * refresh FIFO size on ILK/SNB.
1856		 */
1857		if (INTEL_INFO(dev)->gen <= 6)
1858			fifo_size /= 2;
1859	}
1860
1861	if (config->sprites_enabled) {
1862		/* level 0 is always calculated with 1:1 split */
1863		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1864			if (is_sprite)
1865				fifo_size *= 5;
1866			fifo_size /= 6;
1867		} else {
1868			fifo_size /= 2;
1869		}
1870	}
1871
1872	/* clamp to max that the registers can hold */
1873	if (INTEL_INFO(dev)->gen >= 8)
1874		max = level == 0 ? 255 : 2047;
1875	else if (INTEL_INFO(dev)->gen >= 7)
1876		/* IVB/HSW primary/sprite plane watermarks */
1877		max = level == 0 ? 127 : 1023;
1878	else if (!is_sprite)
1879		/* ILK/SNB primary plane watermarks */
1880		max = level == 0 ? 127 : 511;
1881	else
1882		/* ILK/SNB sprite plane watermarks */
1883		max = level == 0 ? 63 : 255;
1884
1885	return min(fifo_size, max);
1886}
1887
1888/* Calculate the maximum cursor plane watermark */
1889static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1890				      int level,
1891				      const struct intel_wm_config *config)
1892{
1893	/* HSW LP1+ watermarks w/ multiple pipes */
1894	if (level > 0 && config->num_pipes_active > 1)
1895		return 64;
1896
1897	/* otherwise just report max that registers can hold */
1898	if (INTEL_INFO(dev)->gen >= 7)
1899		return level == 0 ? 63 : 255;
1900	else
1901		return level == 0 ? 31 : 63;
1902}
1903
1904/* Calculate the maximum FBC watermark */
1905static unsigned int ilk_fbc_wm_max(const struct drm_device *dev)
1906{
1907	/* max that registers can hold */
1908	if (INTEL_INFO(dev)->gen >= 8)
1909		return 31;
1910	else
1911		return 15;
1912}
1913
1914static void ilk_compute_wm_maximums(const struct drm_device *dev,
1915				    int level,
1916				    const struct intel_wm_config *config,
1917				    enum intel_ddb_partitioning ddb_partitioning,
1918				    struct ilk_wm_maximums *max)
1919{
1920	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1921	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1922	max->cur = ilk_cursor_wm_max(dev, level, config);
1923	max->fbc = ilk_fbc_wm_max(dev);
 
 
 
 
 
 
 
 
 
 
1924}
1925
1926static bool ilk_validate_wm_level(int level,
1927				  const struct ilk_wm_maximums *max,
1928				  struct intel_wm_level *result)
1929{
1930	bool ret;
1931
1932	/* already determined to be invalid? */
1933	if (!result->enable)
1934		return false;
1935
1936	result->enable = result->pri_val <= max->pri &&
1937			 result->spr_val <= max->spr &&
1938			 result->cur_val <= max->cur;
1939
1940	ret = result->enable;
1941
1942	/*
1943	 * HACK until we can pre-compute everything,
1944	 * and thus fail gracefully if LP0 watermarks
1945	 * are exceeded...
1946	 */
1947	if (level == 0 && !result->enable) {
1948		if (result->pri_val > max->pri)
1949			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1950				      level, result->pri_val, max->pri);
1951		if (result->spr_val > max->spr)
1952			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1953				      level, result->spr_val, max->spr);
1954		if (result->cur_val > max->cur)
1955			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1956				      level, result->cur_val, max->cur);
1957
1958		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1959		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1960		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1961		result->enable = true;
1962	}
1963
1964	return ret;
1965}
1966
1967static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
 
1968				 int level,
1969				 const struct ilk_pipe_wm_parameters *p,
 
 
 
1970				 struct intel_wm_level *result)
1971{
1972	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1973	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1974	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1975
1976	/* WM1+ latency values stored in 0.5us units */
1977	if (level > 0) {
1978		pri_latency *= 5;
1979		spr_latency *= 5;
1980		cur_latency *= 5;
1981	}
1982
1983	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1984	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1985	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1986	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
 
1987	result->enable = true;
1988}
1989
1990static uint32_t
1991hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
 
1992{
1993	struct drm_i915_private *dev_priv = dev->dev_private;
1994	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1995	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
1996	u32 linetime, ips_linetime;
1997
1998	if (!intel_crtc_active(crtc))
 
 
 
 
1999		return 0;
2000
2001	/* The WM are computed with base on how long it takes to fill a single
2002	 * row at the given clock rate, multiplied by 8.
2003	 * */
2004	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2005				     mode->crtc_clock);
2006	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2007					 intel_ddi_get_cdclk_freq(dev_priv));
2008
2009	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2010	       PIPE_WM_LINETIME_TIME(linetime);
2011}
2012
2013static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2014{
2015	struct drm_i915_private *dev_priv = dev->dev_private;
2016
2017	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2018		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2019
2020		wm[0] = (sskpd >> 56) & 0xFF;
2021		if (wm[0] == 0)
2022			wm[0] = sskpd & 0xF;
2023		wm[1] = (sskpd >> 4) & 0xFF;
2024		wm[2] = (sskpd >> 12) & 0xFF;
2025		wm[3] = (sskpd >> 20) & 0x1FF;
2026		wm[4] = (sskpd >> 32) & 0x1FF;
2027	} else if (INTEL_INFO(dev)->gen >= 6) {
2028		uint32_t sskpd = I915_READ(MCH_SSKPD);
2029
2030		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2031		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2032		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2033		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2034	} else if (INTEL_INFO(dev)->gen >= 5) {
2035		uint32_t mltr = I915_READ(MLTR_ILK);
2036
2037		/* ILK primary LP0 latency is 700 ns */
2038		wm[0] = 7;
2039		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2040		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2041	}
2042}
2043
2044static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2045{
2046	/* ILK sprite LP0 latency is 1300 ns */
2047	if (INTEL_INFO(dev)->gen == 5)
2048		wm[0] = 13;
2049}
2050
2051static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2052{
2053	/* ILK cursor LP0 latency is 1300 ns */
2054	if (INTEL_INFO(dev)->gen == 5)
2055		wm[0] = 13;
2056
2057	/* WaDoubleCursorLP3Latency:ivb */
2058	if (IS_IVYBRIDGE(dev))
2059		wm[3] *= 2;
2060}
2061
2062static int ilk_wm_max_level(const struct drm_device *dev)
2063{
2064	/* how many WM levels are we expecting */
2065	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
 
 
2066		return 4;
2067	else if (INTEL_INFO(dev)->gen >= 6)
2068		return 3;
2069	else
2070		return 2;
2071}
2072
2073static void intel_print_wm_latency(struct drm_device *dev,
2074				   const char *name,
2075				   const uint16_t wm[5])
2076{
2077	int level, max_level = ilk_wm_max_level(dev);
2078
2079	for (level = 0; level <= max_level; level++) {
2080		unsigned int latency = wm[level];
2081
2082		if (latency == 0) {
2083			DRM_ERROR("%s WM%d latency not provided\n",
2084				  name, level);
2085			continue;
2086		}
2087
2088		/* WM1+ latency values in 0.5us units */
2089		if (level > 0)
 
 
 
 
 
2090			latency *= 5;
2091
2092		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2093			      name, level, wm[level],
2094			      latency / 10, latency % 10);
2095	}
2096}
2097
2098static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2099				    uint16_t wm[5], uint16_t min)
2100{
2101	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2102
2103	if (wm[0] >= min)
2104		return false;
2105
2106	wm[0] = max(wm[0], min);
2107	for (level = 1; level <= max_level; level++)
2108		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2109
2110	return true;
2111}
2112
2113static void snb_wm_latency_quirk(struct drm_device *dev)
2114{
2115	struct drm_i915_private *dev_priv = dev->dev_private;
2116	bool changed;
2117
2118	/*
2119	 * The BIOS provided WM memory latency values are often
2120	 * inadequate for high resolution displays. Adjust them.
2121	 */
2122	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2123		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2124		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2125
2126	if (!changed)
2127		return;
2128
2129	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2130	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2131	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2132	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2133}
2134
2135static void ilk_setup_wm_latency(struct drm_device *dev)
2136{
2137	struct drm_i915_private *dev_priv = dev->dev_private;
2138
2139	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2140
2141	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2142	       sizeof(dev_priv->wm.pri_latency));
2143	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2144	       sizeof(dev_priv->wm.pri_latency));
2145
2146	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2147	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2148
2149	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2150	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2151	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2152
2153	if (IS_GEN6(dev))
2154		snb_wm_latency_quirk(dev);
2155}
2156
2157static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2158				      struct ilk_pipe_wm_parameters *p,
2159				      struct intel_wm_config *config)
2160{
2161	struct drm_device *dev = crtc->dev;
2162	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2163	enum pipe pipe = intel_crtc->pipe;
2164	struct drm_plane *plane;
2165
2166	p->active = intel_crtc_active(crtc);
2167	if (p->active) {
2168		p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2169		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2170		p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2171		p->cur.bytes_per_pixel = 4;
2172		p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2173		p->cur.horiz_pixels = intel_crtc->cursor_width;
2174		/* TODO: for now, assume primary and cursor planes are always enabled. */
2175		p->pri.enabled = true;
2176		p->cur.enabled = true;
2177	}
2178
2179	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2180		config->num_pipes_active += intel_crtc_active(crtc);
2181
2182	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2183		struct intel_plane *intel_plane = to_intel_plane(plane);
2184
2185		if (intel_plane->pipe == pipe)
2186			p->spr = intel_plane->wm;
2187
2188		config->sprites_enabled |= intel_plane->wm.enabled;
2189		config->sprites_scaled |= intel_plane->wm.scaled;
2190	}
2191}
2192
2193/* Compute new watermarks for the pipe */
2194static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2195				  const struct ilk_pipe_wm_parameters *params,
2196				  struct intel_pipe_wm *pipe_wm)
2197{
2198	struct drm_device *dev = crtc->dev;
 
2199	const struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
2200	int level, max_level = ilk_wm_max_level(dev);
2201	/* LP0 watermark maximums depend on this pipe alone */
2202	struct intel_wm_config config = {
2203		.num_pipes_active = 1,
2204		.sprites_enabled = params->spr.enabled,
2205		.sprites_scaled = params->spr.scaled,
2206	};
2207	struct ilk_wm_maximums max;
2208
2209	/* LP0 watermarks always use 1/2 DDB partitioning */
2210	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2211
2212	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2213	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2214		max_level = 1;
2215
2216	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2217	if (params->spr.scaled)
2218		max_level = 0;
2219
2220	for (level = 0; level <= max_level; level++)
2221		ilk_compute_wm_level(dev_priv, level, params,
2222				     &pipe_wm->wm[level]);
2223
2224	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2225		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
 
 
 
2226
2227	/* At least LP0 must be valid */
2228	return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2229}
2230
2231/*
2232 * Merge the watermarks from all active pipes for a specific level.
2233 */
2234static void ilk_merge_wm_level(struct drm_device *dev,
2235			       int level,
2236			       struct intel_wm_level *ret_wm)
2237{
2238	const struct intel_crtc *intel_crtc;
2239
2240	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2241		const struct intel_wm_level *wm =
2242			&intel_crtc->wm.active.wm[level];
 
 
 
 
2243
 
 
 
 
 
 
 
 
2244		if (!wm->enable)
2245			return;
2246
2247		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2248		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2249		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2250		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2251	}
2252
2253	ret_wm->enable = true;
2254}
2255
2256/*
2257 * Merge all low power watermarks for all active pipes.
2258 */
2259static void ilk_wm_merge(struct drm_device *dev,
2260			 const struct intel_wm_config *config,
2261			 const struct ilk_wm_maximums *max,
2262			 struct intel_pipe_wm *merged)
2263{
 
2264	int level, max_level = ilk_wm_max_level(dev);
 
2265
2266	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2267	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2268	    config->num_pipes_active > 1)
2269		return;
2270
2271	/* ILK: FBC WM must be disabled always */
2272	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2273
2274	/* merge each WM1+ level */
2275	for (level = 1; level <= max_level; level++) {
2276		struct intel_wm_level *wm = &merged->wm[level];
2277
2278		ilk_merge_wm_level(dev, level, wm);
2279
2280		if (!ilk_validate_wm_level(level, max, wm))
2281			break;
 
 
 
2282
2283		/*
2284		 * The spec says it is preferred to disable
2285		 * FBC WMs instead of disabling a WM level.
2286		 */
2287		if (wm->fbc_val > max->fbc) {
2288			merged->fbc_wm_enabled = false;
 
2289			wm->fbc_val = 0;
2290		}
2291	}
2292
2293	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2294	/*
2295	 * FIXME this is racy. FBC might get enabled later.
2296	 * What we should check here is whether FBC can be
2297	 * enabled sometime later.
2298	 */
2299	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
 
2300		for (level = 2; level <= max_level; level++) {
2301			struct intel_wm_level *wm = &merged->wm[level];
2302
2303			wm->enable = false;
2304		}
2305	}
2306}
2307
2308static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2309{
2310	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2311	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2312}
2313
2314/* The value we need to program into the WM_LPx latency field */
2315static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2316{
2317	struct drm_i915_private *dev_priv = dev->dev_private;
2318
2319	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2320		return 2 * level;
2321	else
2322		return dev_priv->wm.pri_latency[level];
2323}
2324
2325static void ilk_compute_wm_results(struct drm_device *dev,
2326				   const struct intel_pipe_wm *merged,
2327				   enum intel_ddb_partitioning partitioning,
2328				   struct ilk_wm_values *results)
2329{
2330	struct intel_crtc *intel_crtc;
2331	int level, wm_lp;
2332
2333	results->enable_fbc_wm = merged->fbc_wm_enabled;
2334	results->partitioning = partitioning;
2335
2336	/* LP1+ register values */
2337	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2338		const struct intel_wm_level *r;
2339
2340		level = ilk_wm_lp_to_level(wm_lp, merged);
2341
2342		r = &merged->wm[level];
2343		if (!r->enable)
2344			break;
2345
2346		results->wm_lp[wm_lp - 1] = WM3_LP_EN |
 
 
 
 
2347			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2348			(r->pri_val << WM1_LP_SR_SHIFT) |
2349			r->cur_val;
2350
 
 
 
2351		if (INTEL_INFO(dev)->gen >= 8)
2352			results->wm_lp[wm_lp - 1] |=
2353				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2354		else
2355			results->wm_lp[wm_lp - 1] |=
2356				r->fbc_val << WM1_LP_FBC_SHIFT;
2357
 
 
 
 
2358		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2359			WARN_ON(wm_lp != 1);
2360			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2361		} else
2362			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2363	}
2364
2365	/* LP0 register values */
2366	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
 
 
2367		enum pipe pipe = intel_crtc->pipe;
2368		const struct intel_wm_level *r =
2369			&intel_crtc->wm.active.wm[0];
2370
2371		if (WARN_ON(!r->enable))
2372			continue;
2373
2374		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2375
2376		results->wm_pipe[pipe] =
2377			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2378			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2379			r->cur_val;
2380	}
2381}
2382
2383/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2384 * case both are at the same level. Prefer r1 in case they're the same. */
2385static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2386						  struct intel_pipe_wm *r1,
2387						  struct intel_pipe_wm *r2)
2388{
2389	int level, max_level = ilk_wm_max_level(dev);
2390	int level1 = 0, level2 = 0;
2391
2392	for (level = 1; level <= max_level; level++) {
2393		if (r1->wm[level].enable)
2394			level1 = level;
2395		if (r2->wm[level].enable)
2396			level2 = level;
2397	}
2398
2399	if (level1 == level2) {
2400		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2401			return r2;
2402		else
2403			return r1;
2404	} else if (level1 > level2) {
2405		return r1;
2406	} else {
2407		return r2;
2408	}
2409}
2410
2411/* dirty bits used to track which watermarks need changes */
2412#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2413#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2414#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2415#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2416#define WM_DIRTY_FBC (1 << 24)
2417#define WM_DIRTY_DDB (1 << 25)
2418
2419static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2420					 const struct ilk_wm_values *old,
2421					 const struct ilk_wm_values *new)
2422{
2423	unsigned int dirty = 0;
2424	enum pipe pipe;
2425	int wm_lp;
2426
2427	for_each_pipe(pipe) {
2428		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2429			dirty |= WM_DIRTY_LINETIME(pipe);
2430			/* Must disable LP1+ watermarks too */
2431			dirty |= WM_DIRTY_LP_ALL;
2432		}
2433
2434		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2435			dirty |= WM_DIRTY_PIPE(pipe);
2436			/* Must disable LP1+ watermarks too */
2437			dirty |= WM_DIRTY_LP_ALL;
2438		}
2439	}
2440
2441	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2442		dirty |= WM_DIRTY_FBC;
2443		/* Must disable LP1+ watermarks too */
2444		dirty |= WM_DIRTY_LP_ALL;
2445	}
2446
2447	if (old->partitioning != new->partitioning) {
2448		dirty |= WM_DIRTY_DDB;
2449		/* Must disable LP1+ watermarks too */
2450		dirty |= WM_DIRTY_LP_ALL;
2451	}
2452
2453	/* LP1+ watermarks already deemed dirty, no need to continue */
2454	if (dirty & WM_DIRTY_LP_ALL)
2455		return dirty;
2456
2457	/* Find the lowest numbered LP1+ watermark in need of an update... */
2458	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2459		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2460		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2461			break;
2462	}
2463
2464	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2465	for (; wm_lp <= 3; wm_lp++)
2466		dirty |= WM_DIRTY_LP(wm_lp);
2467
2468	return dirty;
2469}
2470
2471static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2472			       unsigned int dirty)
2473{
2474	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2475	bool changed = false;
2476
2477	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2478		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2479		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2480		changed = true;
2481	}
2482	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2483		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2484		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2485		changed = true;
2486	}
2487	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2488		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2489		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2490		changed = true;
2491	}
2492
2493	/*
2494	 * Don't touch WM1S_LP_EN here.
2495	 * Doing so could cause underruns.
2496	 */
2497
2498	return changed;
2499}
2500
2501/*
2502 * The spec says we shouldn't write when we don't need, because every write
2503 * causes WMs to be re-evaluated, expending some power.
2504 */
2505static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2506				struct ilk_wm_values *results)
2507{
2508	struct drm_device *dev = dev_priv->dev;
2509	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2510	unsigned int dirty;
2511	uint32_t val;
2512
2513	dirty = ilk_compute_wm_dirty(dev, previous, results);
2514	if (!dirty)
2515		return;
2516
2517	_ilk_disable_lp_wm(dev_priv, dirty);
2518
2519	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2520		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2521	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2522		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2523	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2524		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2525
2526	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2527		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2528	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2529		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2530	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2531		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2532
2533	if (dirty & WM_DIRTY_DDB) {
2534		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2535			val = I915_READ(WM_MISC);
2536			if (results->partitioning == INTEL_DDB_PART_1_2)
2537				val &= ~WM_MISC_DATA_PARTITION_5_6;
2538			else
2539				val |= WM_MISC_DATA_PARTITION_5_6;
2540			I915_WRITE(WM_MISC, val);
2541		} else {
2542			val = I915_READ(DISP_ARB_CTL2);
2543			if (results->partitioning == INTEL_DDB_PART_1_2)
2544				val &= ~DISP_DATA_PARTITION_5_6;
2545			else
2546				val |= DISP_DATA_PARTITION_5_6;
2547			I915_WRITE(DISP_ARB_CTL2, val);
2548		}
2549	}
2550
2551	if (dirty & WM_DIRTY_FBC) {
2552		val = I915_READ(DISP_ARB_CTL);
2553		if (results->enable_fbc_wm)
2554			val &= ~DISP_FBC_WM_DIS;
2555		else
2556			val |= DISP_FBC_WM_DIS;
2557		I915_WRITE(DISP_ARB_CTL, val);
2558	}
2559
2560	if (dirty & WM_DIRTY_LP(1) &&
2561	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2562		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2563
2564	if (INTEL_INFO(dev)->gen >= 7) {
2565		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2566			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2567		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2568			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2569	}
2570
2571	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2572		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2573	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2574		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2575	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2576		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2577
2578	dev_priv->wm.hw = *results;
2579}
2580
2581static bool ilk_disable_lp_wm(struct drm_device *dev)
2582{
2583	struct drm_i915_private *dev_priv = dev->dev_private;
2584
2585	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2586}
2587
2588static void ilk_update_wm(struct drm_crtc *crtc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2589{
2590	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2591	struct drm_device *dev = crtc->dev;
2592	struct drm_i915_private *dev_priv = dev->dev_private;
2593	struct ilk_wm_maximums max;
2594	struct ilk_pipe_wm_parameters params = {};
2595	struct ilk_wm_values results = {};
2596	enum intel_ddb_partitioning partitioning;
2597	struct intel_pipe_wm pipe_wm = {};
2598	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2599	struct intel_wm_config config = {};
2600
2601	ilk_compute_wm_parameters(crtc, &params, &config);
 
2602
2603	intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2604
2605	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2606		return;
2607
2608	intel_crtc->wm.active = pipe_wm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609
2610	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2611	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2612
2613	/* 5/6 split only in single pipe config on IVB+ */
2614	if (INTEL_INFO(dev)->gen >= 7 &&
2615	    config.num_pipes_active == 1 && config.sprites_enabled) {
2616		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2617		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2618
2619		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2620	} else {
2621		best_lp_wm = &lp_wm_1_2;
2622	}
2623
2624	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2625		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2626
2627	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2628
2629	ilk_write_wm_values(dev_priv, &results);
2630}
2631
2632static void ilk_update_sprite_wm(struct drm_plane *plane,
2633				     struct drm_crtc *crtc,
2634				     uint32_t sprite_width, int pixel_size,
2635				     bool enabled, bool scaled)
2636{
2637	struct drm_device *dev = plane->dev;
2638	struct intel_plane *intel_plane = to_intel_plane(plane);
2639
2640	intel_plane->wm.enabled = enabled;
2641	intel_plane->wm.scaled = scaled;
2642	intel_plane->wm.horiz_pixels = sprite_width;
2643	intel_plane->wm.bytes_per_pixel = pixel_size;
2644
2645	/*
2646	 * IVB workaround: must disable low power watermarks for at least
2647	 * one frame before enabling scaling.  LP watermarks can be re-enabled
2648	 * when scaling is disabled.
2649	 *
2650	 * WaCxSRDisabledForSpriteScaling:ivb
2651	 */
2652	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2653		intel_wait_for_vblank(dev, intel_plane->pipe);
 
 
 
 
2654
2655	ilk_update_wm(crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2656}
2657
2658static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2659{
2660	struct drm_device *dev = crtc->dev;
2661	struct drm_i915_private *dev_priv = dev->dev_private;
2662	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2663	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2664	struct intel_pipe_wm *active = &intel_crtc->wm.active;
 
2665	enum pipe pipe = intel_crtc->pipe;
2666	static const unsigned int wm0_pipe_reg[] = {
2667		[PIPE_A] = WM0_PIPEA_ILK,
2668		[PIPE_B] = WM0_PIPEB_ILK,
2669		[PIPE_C] = WM0_PIPEC_IVB,
2670	};
2671
2672	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2673	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2674		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2675
2676	if (intel_crtc_active(crtc)) {
 
 
2677		u32 tmp = hw->wm_pipe[pipe];
2678
2679		/*
2680		 * For active pipes LP0 watermark is marked as
2681		 * enabled, and LP1+ watermaks as disabled since
2682		 * we can't really reverse compute them in case
2683		 * multiple pipes are active.
2684		 */
2685		active->wm[0].enable = true;
2686		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2687		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2688		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2689		active->linetime = hw->wm_linetime[pipe];
2690	} else {
2691		int level, max_level = ilk_wm_max_level(dev);
2692
2693		/*
2694		 * For inactive pipes, all watermark levels
2695		 * should be marked as enabled but zeroed,
2696		 * which is what we'd compute them to.
2697		 */
2698		for (level = 0; level <= max_level; level++)
2699			active->wm[level].enable = true;
2700	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2701}
2702
2703void ilk_wm_get_hw_state(struct drm_device *dev)
2704{
2705	struct drm_i915_private *dev_priv = dev->dev_private;
2706	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2707	struct drm_crtc *crtc;
2708
2709	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2710		ilk_pipe_wm_get_hw_state(crtc);
2711
2712	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2713	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2714	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2715
2716	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2717	hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2718	hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
 
 
2719
2720	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2721		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2722			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2723	else if (IS_IVYBRIDGE(dev))
2724		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2725			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2726
2727	hw->enable_fbc_wm =
2728		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2729}
2730
2731/**
2732 * intel_update_watermarks - update FIFO watermark values based on current modes
2733 *
2734 * Calculate watermark values for the various WM regs based on current mode
2735 * and plane configuration.
2736 *
2737 * There are several cases to deal with here:
2738 *   - normal (i.e. non-self-refresh)
2739 *   - self-refresh (SR) mode
2740 *   - lines are large relative to FIFO size (buffer can hold up to 2)
2741 *   - lines are small relative to FIFO size (buffer can hold more than 2
2742 *     lines), so need to account for TLB latency
2743 *
2744 *   The normal calculation is:
2745 *     watermark = dotclock * bytes per pixel * latency
2746 *   where latency is platform & configuration dependent (we assume pessimal
2747 *   values here).
2748 *
2749 *   The SR calculation is:
2750 *     watermark = (trunc(latency/line time)+1) * surface width *
2751 *       bytes per pixel
2752 *   where
2753 *     line time = htotal / dotclock
2754 *     surface width = hdisplay for normal plane and 64 for cursor
2755 *   and latency is assumed to be high, as above.
2756 *
2757 * The final value programmed to the register should always be rounded up,
2758 * and include an extra 2 entries to account for clock crossings.
2759 *
2760 * We don't use the sprite, so we can ignore that.  And on Crestline we have
2761 * to set the non-SR watermarks to 8.
2762 */
2763void intel_update_watermarks(struct drm_crtc *crtc)
2764{
2765	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2766
2767	if (dev_priv->display.update_wm)
2768		dev_priv->display.update_wm(crtc);
2769}
2770
2771void intel_update_sprite_watermarks(struct drm_plane *plane,
2772				    struct drm_crtc *crtc,
2773				    uint32_t sprite_width, int pixel_size,
2774				    bool enabled, bool scaled)
2775{
2776	struct drm_i915_private *dev_priv = plane->dev->dev_private;
2777
2778	if (dev_priv->display.update_sprite_wm)
2779		dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2780						   pixel_size, enabled, scaled);
2781}
2782
2783static struct drm_i915_gem_object *
2784intel_alloc_context_page(struct drm_device *dev)
2785{
2786	struct drm_i915_gem_object *ctx;
2787	int ret;
2788
2789	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2790
2791	ctx = i915_gem_alloc_object(dev, 4096);
2792	if (!ctx) {
2793		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2794		return NULL;
2795	}
2796
2797	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2798	if (ret) {
2799		DRM_ERROR("failed to pin power context: %d\n", ret);
2800		goto err_unref;
2801	}
2802
2803	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2804	if (ret) {
2805		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2806		goto err_unpin;
2807	}
2808
2809	return ctx;
2810
2811err_unpin:
2812	i915_gem_object_ggtt_unpin(ctx);
2813err_unref:
2814	drm_gem_object_unreference(&ctx->base);
2815	return NULL;
2816}
2817
2818/**
2819 * Lock protecting IPS related data structures
2820 */
2821DEFINE_SPINLOCK(mchdev_lock);
2822
2823/* Global for IPS driver to get at the current i915 device. Protected by
2824 * mchdev_lock. */
2825static struct drm_i915_private *i915_mch_dev;
2826
2827bool ironlake_set_drps(struct drm_device *dev, u8 val)
2828{
2829	struct drm_i915_private *dev_priv = dev->dev_private;
2830	u16 rgvswctl;
2831
2832	assert_spin_locked(&mchdev_lock);
2833
2834	rgvswctl = I915_READ16(MEMSWCTL);
2835	if (rgvswctl & MEMCTL_CMD_STS) {
2836		DRM_DEBUG("gpu busy, RCS change rejected\n");
2837		return false; /* still busy with another command */
2838	}
2839
2840	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2841		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2842	I915_WRITE16(MEMSWCTL, rgvswctl);
2843	POSTING_READ16(MEMSWCTL);
2844
2845	rgvswctl |= MEMCTL_CMD_STS;
2846	I915_WRITE16(MEMSWCTL, rgvswctl);
2847
2848	return true;
2849}
2850
2851static void ironlake_enable_drps(struct drm_device *dev)
2852{
2853	struct drm_i915_private *dev_priv = dev->dev_private;
2854	u32 rgvmodectl = I915_READ(MEMMODECTL);
2855	u8 fmax, fmin, fstart, vstart;
2856
2857	spin_lock_irq(&mchdev_lock);
2858
 
 
2859	/* Enable temp reporting */
2860	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2861	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2862
2863	/* 100ms RC evaluation intervals */
2864	I915_WRITE(RCUPEI, 100000);
2865	I915_WRITE(RCDNEI, 100000);
2866
2867	/* Set max/min thresholds to 90ms and 80ms respectively */
2868	I915_WRITE(RCBMAXAVG, 90000);
2869	I915_WRITE(RCBMINAVG, 80000);
2870
2871	I915_WRITE(MEMIHYST, 1);
2872
2873	/* Set up min, max, and cur for interrupt handling */
2874	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2875	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2876	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2877		MEMMODE_FSTART_SHIFT;
2878
2879	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2880		PXVFREQ_PX_SHIFT;
2881
2882	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2883	dev_priv->ips.fstart = fstart;
2884
2885	dev_priv->ips.max_delay = fstart;
2886	dev_priv->ips.min_delay = fmin;
2887	dev_priv->ips.cur_delay = fstart;
2888
2889	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2890			 fmax, fmin, fstart);
2891
2892	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2893
2894	/*
2895	 * Interrupts will be enabled in ironlake_irq_postinstall
2896	 */
2897
2898	I915_WRITE(VIDSTART, vstart);
2899	POSTING_READ(VIDSTART);
2900
2901	rgvmodectl |= MEMMODE_SWMODE_EN;
2902	I915_WRITE(MEMMODECTL, rgvmodectl);
2903
2904	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2905		DRM_ERROR("stuck trying to change perf mode\n");
2906	mdelay(1);
2907
2908	ironlake_set_drps(dev, fstart);
2909
2910	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2911		I915_READ(0x112e0);
2912	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2913	dev_priv->ips.last_count2 = I915_READ(0x112f4);
2914	getrawmonotonic(&dev_priv->ips.last_time2);
2915
2916	spin_unlock_irq(&mchdev_lock);
2917}
2918
2919static void ironlake_disable_drps(struct drm_device *dev)
2920{
2921	struct drm_i915_private *dev_priv = dev->dev_private;
2922	u16 rgvswctl;
2923
2924	spin_lock_irq(&mchdev_lock);
2925
2926	rgvswctl = I915_READ16(MEMSWCTL);
2927
2928	/* Ack interrupts, disable EFC interrupt */
2929	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2930	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2931	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2932	I915_WRITE(DEIIR, DE_PCU_EVENT);
2933	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2934
2935	/* Go back to the starting frequency */
2936	ironlake_set_drps(dev, dev_priv->ips.fstart);
2937	mdelay(1);
2938	rgvswctl |= MEMCTL_CMD_STS;
2939	I915_WRITE(MEMSWCTL, rgvswctl);
2940	mdelay(1);
2941
2942	spin_unlock_irq(&mchdev_lock);
2943}
2944
2945/* There's a funny hw issue where the hw returns all 0 when reading from
2946 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2947 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2948 * all limits and the gpu stuck at whatever frequency it is at atm).
2949 */
2950static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2951{
2952	u32 limits;
2953
2954	/* Only set the down limit when we've reached the lowest level to avoid
2955	 * getting more interrupts, otherwise leave this clear. This prevents a
2956	 * race in the hw when coming out of rc6: There's a tiny window where
2957	 * the hw runs at the minimal clock before selecting the desired
2958	 * frequency, if the down threshold expires in that window we will not
2959	 * receive a down interrupt. */
2960	limits = dev_priv->rps.max_freq_softlimit << 24;
2961	if (val <= dev_priv->rps.min_freq_softlimit)
2962		limits |= dev_priv->rps.min_freq_softlimit << 16;
 
 
 
 
 
 
2963
2964	return limits;
2965}
2966
2967static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2968{
2969	int new_power;
 
 
2970
2971	new_power = dev_priv->rps.power;
2972	switch (dev_priv->rps.power) {
2973	case LOW_POWER:
2974		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
2975			new_power = BETWEEN;
2976		break;
2977
2978	case BETWEEN:
2979		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
2980			new_power = LOW_POWER;
2981		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
2982			new_power = HIGH_POWER;
2983		break;
2984
2985	case HIGH_POWER:
2986		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
2987			new_power = BETWEEN;
2988		break;
2989	}
2990	/* Max/min bins are special */
2991	if (val == dev_priv->rps.min_freq_softlimit)
2992		new_power = LOW_POWER;
2993	if (val == dev_priv->rps.max_freq_softlimit)
2994		new_power = HIGH_POWER;
2995	if (new_power == dev_priv->rps.power)
2996		return;
2997
2998	/* Note the units here are not exactly 1us, but 1280ns. */
2999	switch (new_power) {
3000	case LOW_POWER:
3001		/* Upclock if more than 95% busy over 16ms */
3002		I915_WRITE(GEN6_RP_UP_EI, 12500);
3003		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3004
3005		/* Downclock if less than 85% busy over 32ms */
3006		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3007		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3008
3009		I915_WRITE(GEN6_RP_CONTROL,
3010			   GEN6_RP_MEDIA_TURBO |
3011			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3012			   GEN6_RP_MEDIA_IS_GFX |
3013			   GEN6_RP_ENABLE |
3014			   GEN6_RP_UP_BUSY_AVG |
3015			   GEN6_RP_DOWN_IDLE_AVG);
3016		break;
3017
3018	case BETWEEN:
3019		/* Upclock if more than 90% busy over 13ms */
3020		I915_WRITE(GEN6_RP_UP_EI, 10250);
3021		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3022
3023		/* Downclock if less than 75% busy over 32ms */
3024		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3025		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3026
3027		I915_WRITE(GEN6_RP_CONTROL,
3028			   GEN6_RP_MEDIA_TURBO |
3029			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3030			   GEN6_RP_MEDIA_IS_GFX |
3031			   GEN6_RP_ENABLE |
3032			   GEN6_RP_UP_BUSY_AVG |
3033			   GEN6_RP_DOWN_IDLE_AVG);
3034		break;
3035
3036	case HIGH_POWER:
3037		/* Upclock if more than 85% busy over 10ms */
3038		I915_WRITE(GEN6_RP_UP_EI, 8000);
3039		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3040
3041		/* Downclock if less than 60% busy over 32ms */
3042		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3043		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3044
3045		I915_WRITE(GEN6_RP_CONTROL,
3046			   GEN6_RP_MEDIA_TURBO |
3047			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3048			   GEN6_RP_MEDIA_IS_GFX |
3049			   GEN6_RP_ENABLE |
3050			   GEN6_RP_UP_BUSY_AVG |
3051			   GEN6_RP_DOWN_IDLE_AVG);
3052		break;
3053	}
3054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3055	dev_priv->rps.power = new_power;
 
 
3056	dev_priv->rps.last_adj = 0;
3057}
3058
3059static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3060{
3061	u32 mask = 0;
3062
3063	if (val > dev_priv->rps.min_freq_softlimit)
3064		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3065	if (val < dev_priv->rps.max_freq_softlimit)
3066		mask |= GEN6_PM_RP_UP_THRESHOLD;
3067
3068	/* IVB and SNB hard hangs on looping batchbuffer
3069	 * if GEN6_PM_UP_EI_EXPIRED is masked.
3070	 */
3071	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3072		mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3073
3074	return ~mask;
3075}
3076
3077/* gen6_set_rps is called to update the frequency request, but should also be
3078 * called when the range (min_delay and max_delay) is modified so that we can
3079 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3080void gen6_set_rps(struct drm_device *dev, u8 val)
3081{
3082	struct drm_i915_private *dev_priv = dev->dev_private;
3083
 
 
 
 
3084	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3085	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3086	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3087
3088	/* min/max delay may still have been modified so be sure to
3089	 * write the limits value.
3090	 */
3091	if (val != dev_priv->rps.cur_freq) {
3092		gen6_set_rps_thresholds(dev_priv, val);
3093
3094		if (IS_HASWELL(dev))
 
 
 
3095			I915_WRITE(GEN6_RPNSWREQ,
3096				   HSW_FREQUENCY(val));
3097		else
3098			I915_WRITE(GEN6_RPNSWREQ,
3099				   GEN6_FREQUENCY(val) |
3100				   GEN6_OFFSET(0) |
3101				   GEN6_AGGRESSIVE_TURBO);
3102	}
3103
3104	/* Make sure we continue to get interrupts
3105	 * until we hit the minimum or maximum frequencies.
3106	 */
3107	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3108	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3109
3110	POSTING_READ(GEN6_RPNSWREQ);
3111
3112	dev_priv->rps.cur_freq = val;
3113	trace_intel_gpu_freq_change(val * 50);
3114}
3115
3116/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3117 *
3118 * * If Gfx is Idle, then
3119 * 1. Mask Turbo interrupts
3120 * 2. Bring up Gfx clock
3121 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3122 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3123 * 5. Unmask Turbo interrupts
3124*/
3125static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3126{
3127	/*
3128	 * When we are idle.  Drop to min voltage state.
3129	 */
 
 
3130
3131	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3132		return;
 
3133
3134	/* Mask turbo interrupt so that they will not come in between */
3135	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3136
3137	/* Bring up the Gfx clock */
3138	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3139		I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
3140				VLV_GFX_CLK_FORCE_ON_BIT);
3141
3142	if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
3143		I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
3144			DRM_ERROR("GFX_CLK_ON request timed out\n");
3145		return;
3146	}
3147
3148	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
 
 
3149
3150	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3151					dev_priv->rps.min_freq_softlimit);
 
 
 
 
 
 
 
 
3152
3153	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3154				& GENFREQSTATUS) == 0, 5))
3155		DRM_ERROR("timed out waiting for Punit\n");
3156
3157	/* Release the Gfx clock */
3158	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3159		I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
3160				~VLV_GFX_CLK_FORCE_ON_BIT);
3161
3162	I915_WRITE(GEN6_PMINTRMSK,
3163		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
 
 
 
3164}
3165
3166void gen6_rps_idle(struct drm_i915_private *dev_priv)
3167{
3168	struct drm_device *dev = dev_priv->dev;
3169
3170	mutex_lock(&dev_priv->rps.hw_lock);
3171	if (dev_priv->rps.enabled) {
3172		if (IS_VALLEYVIEW(dev))
3173			vlv_set_rps_idle(dev_priv);
3174		else
3175			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3176		dev_priv->rps.last_adj = 0;
3177	}
3178	mutex_unlock(&dev_priv->rps.hw_lock);
3179}
3180
3181void gen6_rps_boost(struct drm_i915_private *dev_priv)
3182{
3183	struct drm_device *dev = dev_priv->dev;
3184
3185	mutex_lock(&dev_priv->rps.hw_lock);
3186	if (dev_priv->rps.enabled) {
3187		if (IS_VALLEYVIEW(dev))
3188			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3189		else
3190			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3191		dev_priv->rps.last_adj = 0;
 
3192	}
3193	mutex_unlock(&dev_priv->rps.hw_lock);
3194}
3195
3196void valleyview_set_rps(struct drm_device *dev, u8 val)
3197{
3198	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3199
3200	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3201	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3202	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
 
 
3203
3204	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3205			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3206			 dev_priv->rps.cur_freq,
3207			 vlv_gpu_freq(dev_priv, val), val);
 
 
 
 
3208
3209	if (val != dev_priv->rps.cur_freq)
3210		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
 
 
 
 
 
 
3211
3212	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3213
3214	dev_priv->rps.cur_freq = val;
3215	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
 
 
3216}
3217
3218static void gen6_disable_rps_interrupts(struct drm_device *dev)
3219{
3220	struct drm_i915_private *dev_priv = dev->dev_private;
3221
3222	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3223	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3224				~dev_priv->pm_rps_events);
3225	/* Complete PM interrupt masking here doesn't race with the rps work
3226	 * item again unmasking PM interrupts because that is using a different
3227	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3228	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3229
3230	spin_lock_irq(&dev_priv->irq_lock);
3231	dev_priv->rps.pm_iir = 0;
3232	spin_unlock_irq(&dev_priv->irq_lock);
3233
3234	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3235}
3236
3237static void gen6_disable_rps(struct drm_device *dev)
3238{
3239	struct drm_i915_private *dev_priv = dev->dev_private;
3240
3241	I915_WRITE(GEN6_RC_CONTROL, 0);
3242	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
 
 
 
 
 
3243
3244	gen6_disable_rps_interrupts(dev);
3245}
3246
3247static void valleyview_disable_rps(struct drm_device *dev)
3248{
3249	struct drm_i915_private *dev_priv = dev->dev_private;
3250
 
 
 
 
3251	I915_WRITE(GEN6_RC_CONTROL, 0);
3252
3253	gen6_disable_rps_interrupts(dev);
3254}
3255
3256static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3257{
3258	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3259		 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3260		 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3261		 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3262}
3263
3264int intel_enable_rc6(const struct drm_device *dev)
3265{
3266	/* No RC6 before Ironlake */
3267	if (INTEL_INFO(dev)->gen < 5)
 
 
 
3268		return 0;
3269
 
 
 
 
 
3270	/* Respect the kernel parameter if it is set */
3271	if (i915.enable_rc6 >= 0)
3272		return i915.enable_rc6;
 
 
 
 
 
 
3273
3274	/* Disable RC6 on Ironlake */
3275	if (INTEL_INFO(dev)->gen == 5)
3276		return 0;
 
 
 
3277
3278	if (IS_IVYBRIDGE(dev))
3279		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3280
3281	return INTEL_RC6_ENABLE;
3282}
3283
3284static void gen6_enable_rps_interrupts(struct drm_device *dev)
 
 
 
 
 
3285{
3286	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287
3288	spin_lock_irq(&dev_priv->irq_lock);
3289	WARN_ON(dev_priv->rps.pm_iir);
3290	snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3291	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3292	spin_unlock_irq(&dev_priv->irq_lock);
3293}
3294
3295static void gen8_enable_rps(struct drm_device *dev)
3296{
3297	struct drm_i915_private *dev_priv = dev->dev_private;
3298	struct intel_ring_buffer *ring;
3299	uint32_t rc6_mask = 0, rp_state_cap;
3300	int unused;
3301
3302	/* 1a: Software RC state - RC0 */
3303	I915_WRITE(GEN6_RC_STATE, 0);
3304
3305	/* 1c & 1d: Get forcewake during program sequence. Although the driver
3306	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3307	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3308
3309	/* 2a: Disable RC states. */
3310	I915_WRITE(GEN6_RC_CONTROL, 0);
3311
3312	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
 
3313
3314	/* 2b: Program RC6 thresholds.*/
3315	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3316	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3317	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3318	for_each_ring(ring, dev_priv, unused)
3319		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3320	I915_WRITE(GEN6_RC_SLEEP, 0);
3321	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
 
 
 
3322
3323	/* 3: Enable RC6 */
3324	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3325		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3326	intel_print_rc6_info(dev, rc6_mask);
3327	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3328				    GEN6_RC_CTL_EI_MODE(1) |
3329				    rc6_mask);
 
 
 
 
 
3330
3331	/* 4 Program defaults and thresholds for RPS*/
3332	I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3333	I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
 
 
3334	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3335	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3336
3337	/* Docs recommend 900MHz, and 300 MHz respectively */
3338	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3339		   dev_priv->rps.max_freq_softlimit << 24 |
3340		   dev_priv->rps.min_freq_softlimit << 16);
3341
3342	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3343	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3344	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3345	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3346
3347	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3348
3349	/* 5: Enable RPS */
3350	I915_WRITE(GEN6_RP_CONTROL,
3351		   GEN6_RP_MEDIA_TURBO |
3352		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3353		   GEN6_RP_MEDIA_IS_GFX |
3354		   GEN6_RP_ENABLE |
3355		   GEN6_RP_UP_BUSY_AVG |
3356		   GEN6_RP_DOWN_IDLE_AVG);
3357
3358	/* 6: Ring frequency + overclocking (our driver does this later */
3359
3360	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3361
3362	gen6_enable_rps_interrupts(dev);
3363
3364	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3365}
3366
3367static void gen6_enable_rps(struct drm_device *dev)
3368{
3369	struct drm_i915_private *dev_priv = dev->dev_private;
3370	struct intel_ring_buffer *ring;
3371	u32 rp_state_cap;
3372	u32 gt_perf_status;
3373	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3374	u32 gtfifodbg;
3375	int rc6_mode;
3376	int i, ret;
3377
3378	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3379
3380	/* Here begins a magic sequence of register writes to enable
3381	 * auto-downclocking.
3382	 *
3383	 * Perhaps there might be some value in exposing these to
3384	 * userspace...
3385	 */
3386	I915_WRITE(GEN6_RC_STATE, 0);
3387
3388	/* Clear the DBG now so we don't confuse earlier errors */
3389	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3390		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3391		I915_WRITE(GTFIFODBG, gtfifodbg);
3392	}
3393
3394	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3395
3396	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3397	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3398
3399	/* All of these values are in units of 50MHz */
3400	dev_priv->rps.cur_freq		= 0;
3401	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3402	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
3403	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
3404	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
3405	/* XXX: only BYT has a special efficient freq */
3406	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
3407	/* hw_max = RP0 until we check for overclocking */
3408	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
3409
3410	/* Preserve min/max settings in case of re-init */
3411	if (dev_priv->rps.max_freq_softlimit == 0)
3412		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3413
3414	if (dev_priv->rps.min_freq_softlimit == 0)
3415		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3416
3417	/* disable the counters and set deterministic thresholds */
3418	I915_WRITE(GEN6_RC_CONTROL, 0);
3419
3420	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3421	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3422	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3423	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3424	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3425
3426	for_each_ring(ring, dev_priv, i)
3427		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3428
3429	I915_WRITE(GEN6_RC_SLEEP, 0);
3430	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3431	if (IS_IVYBRIDGE(dev))
3432		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3433	else
3434		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3435	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3436	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3437
3438	/* Check if we are enabling RC6 */
3439	rc6_mode = intel_enable_rc6(dev_priv->dev);
3440	if (rc6_mode & INTEL_RC6_ENABLE)
3441		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3442
3443	/* We don't use those on Haswell */
3444	if (!IS_HASWELL(dev)) {
3445		if (rc6_mode & INTEL_RC6p_ENABLE)
3446			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3447
3448		if (rc6_mode & INTEL_RC6pp_ENABLE)
3449			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3450	}
3451
3452	intel_print_rc6_info(dev, rc6_mask);
3453
3454	I915_WRITE(GEN6_RC_CONTROL,
3455		   rc6_mask |
3456		   GEN6_RC_CTL_EI_MODE(1) |
3457		   GEN6_RC_CTL_HW_ENABLE);
3458
3459	/* Power down if completely idle for over 50ms */
3460	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3461	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3462
3463	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3464	if (ret)
3465		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3466
3467	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3468	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3469		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3470				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3471				 (pcu_mbox & 0xff) * 50);
3472		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3473	}
3474
3475	dev_priv->rps.power = HIGH_POWER; /* force a reset */
3476	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3477
3478	gen6_enable_rps_interrupts(dev);
3479
3480	rc6vids = 0;
3481	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3482	if (IS_GEN6(dev) && ret) {
3483		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3484	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3485		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3486			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3487		rc6vids &= 0xffff00;
3488		rc6vids |= GEN6_ENCODE_RC6_VID(450);
3489		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3490		if (ret)
3491			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3492	}
3493
3494	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3495}
3496
3497void gen6_update_ring_freq(struct drm_device *dev)
3498{
3499	struct drm_i915_private *dev_priv = dev->dev_private;
3500	int min_freq = 15;
3501	unsigned int gpu_freq;
3502	unsigned int max_ia_freq, min_ring_freq;
 
3503	int scaling_factor = 180;
3504	struct cpufreq_policy *policy;
3505
3506	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3507
3508	policy = cpufreq_cpu_get(0);
3509	if (policy) {
3510		max_ia_freq = policy->cpuinfo.max_freq;
3511		cpufreq_cpu_put(policy);
3512	} else {
3513		/*
3514		 * Default to measured freq if none found, PCU will ensure we
3515		 * don't go over
3516		 */
3517		max_ia_freq = tsc_khz;
3518	}
3519
3520	/* Convert from kHz to MHz */
3521	max_ia_freq /= 1000;
3522
3523	min_ring_freq = I915_READ(DCLK) & 0xf;
3524	/* convert DDR frequency from units of 266.6MHz to bandwidth */
3525	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3526
 
 
 
 
 
 
 
 
 
3527	/*
3528	 * For each potential GPU frequency, load a ring frequency we'd like
3529	 * to use for memory access.  We do this by specifying the IA frequency
3530	 * the PCU should use as a reference to determine the ring frequency.
3531	 */
3532	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3533	     gpu_freq--) {
3534		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3535		unsigned int ia_freq = 0, ring_freq = 0;
3536
3537		if (INTEL_INFO(dev)->gen >= 8) {
 
 
 
 
 
 
3538			/* max(2 * GT, DDR). NB: GT is 50MHz units */
3539			ring_freq = max(min_ring_freq, gpu_freq);
3540		} else if (IS_HASWELL(dev)) {
3541			ring_freq = mult_frac(gpu_freq, 5, 4);
3542			ring_freq = max(min_ring_freq, ring_freq);
3543			/* leave ia_freq as the default, chosen by cpufreq */
3544		} else {
3545			/* On older processors, there is no separate ring
3546			 * clock domain, so in order to boost the bandwidth
3547			 * of the ring, we need to upclock the CPU (ia_freq).
3548			 *
3549			 * For GPU frequencies less than 750MHz,
3550			 * just use the lowest ring freq.
3551			 */
3552			if (gpu_freq < min_freq)
3553				ia_freq = 800;
3554			else
3555				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3556			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3557		}
3558
3559		sandybridge_pcode_write(dev_priv,
3560					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3561					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3562					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3563					gpu_freq);
3564	}
3565}
3566
3567int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3568{
3569	u32 val, rp0;
3570
3571	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3572
3573	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3574	/* Clamp to max */
3575	rp0 = min_t(u32, rp0, 0xea);
3576
3577	return rp0;
3578}
3579
3580static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3581{
3582	u32 val, rpe;
3583
3584	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3585	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3586	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3587	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3588
3589	return rpe;
3590}
3591
3592int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3593{
3594	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
 
 
 
 
 
 
 
 
 
 
3595}
3596
3597/* Check that the pctx buffer wasn't move under us. */
3598static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3599{
3600	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3601
3602	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3603			     dev_priv->vlv_pctx->stolen->start);
3604}
3605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3606static void valleyview_setup_pctx(struct drm_device *dev)
3607{
3608	struct drm_i915_private *dev_priv = dev->dev_private;
3609	struct drm_i915_gem_object *pctx;
3610	unsigned long pctx_paddr;
3611	u32 pcbr;
3612	int pctx_size = 24*1024;
3613
3614	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3615
3616	pcbr = I915_READ(VLV_PCBR);
3617	if (pcbr) {
3618		/* BIOS set it up already, grab the pre-alloc'd space */
3619		int pcbr_offset;
3620
3621		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3622		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3623								      pcbr_offset,
3624								      I915_GTT_OFFSET_NONE,
3625								      pctx_size);
3626		goto out;
3627	}
3628
 
 
3629	/*
3630	 * From the Gunit register HAS:
3631	 * The Gfx driver is expected to program this register and ensure
3632	 * proper allocation within Gfx stolen memory.  For example, this
3633	 * register should be programmed such than the PCBR range does not
3634	 * overlap with other ranges, such as the frame buffer, protected
3635	 * memory, or any other relevant ranges.
3636	 */
3637	pctx = i915_gem_object_create_stolen(dev, pctx_size);
3638	if (!pctx) {
3639		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3640		return;
3641	}
3642
3643	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3644	I915_WRITE(VLV_PCBR, pctx_paddr);
3645
3646out:
 
3647	dev_priv->vlv_pctx = pctx;
 
3648}
3649
3650static void valleyview_cleanup_pctx(struct drm_device *dev)
3651{
3652	struct drm_i915_private *dev_priv = dev->dev_private;
3653
3654	if (WARN_ON(!dev_priv->vlv_pctx))
3655		return;
3656
3657	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3658	dev_priv->vlv_pctx = NULL;
3659}
3660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3661static void valleyview_enable_rps(struct drm_device *dev)
3662{
3663	struct drm_i915_private *dev_priv = dev->dev_private;
3664	struct intel_ring_buffer *ring;
3665	u32 gtfifodbg, val, rc6_mode = 0;
3666	int i;
3667
3668	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3669
3670	valleyview_check_pctx(dev_priv);
3671
3672	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3673		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3674				 gtfifodbg);
3675		I915_WRITE(GTFIFODBG, gtfifodbg);
3676	}
3677
3678	/* If VLV, Forcewake all wells, else re-direct to regular path */
3679	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
 
 
 
3680
 
3681	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3682	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3683	I915_WRITE(GEN6_RP_UP_EI, 66000);
3684	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3685
3686	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3687
3688	I915_WRITE(GEN6_RP_CONTROL,
3689		   GEN6_RP_MEDIA_TURBO |
3690		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3691		   GEN6_RP_MEDIA_IS_GFX |
3692		   GEN6_RP_ENABLE |
3693		   GEN6_RP_UP_BUSY_AVG |
3694		   GEN6_RP_DOWN_IDLE_CONT);
3695
3696	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3697	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3698	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3699
3700	for_each_ring(ring, dev_priv, i)
3701		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3702
3703	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3704
3705	/* allows RC6 residency counter to work */
3706	I915_WRITE(VLV_COUNTER_CONTROL,
3707		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
 
3708				      VLV_MEDIA_RC6_COUNT_EN |
3709				      VLV_RENDER_RC6_COUNT_EN));
 
3710	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3711		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3712
3713	intel_print_rc6_info(dev, rc6_mode);
3714
3715	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3716
 
 
 
 
 
 
3717	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3718
3719	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
 
 
 
3720	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3721
3722	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
3723	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3724			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3725			 dev_priv->rps.cur_freq);
3726
3727	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3728	dev_priv->rps.rp0_freq  = dev_priv->rps.max_freq;
3729	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3730			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3731			 dev_priv->rps.max_freq);
3732
3733	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3734	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3735			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3736			 dev_priv->rps.efficient_freq);
3737
3738	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3739	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3740			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3741			 dev_priv->rps.min_freq);
3742
3743	/* Preserve min/max settings in case of re-init */
3744	if (dev_priv->rps.max_freq_softlimit == 0)
3745		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3746
3747	if (dev_priv->rps.min_freq_softlimit == 0)
3748		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3749
3750	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3751			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3752			 dev_priv->rps.efficient_freq);
3753
3754	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
3755
3756	gen6_enable_rps_interrupts(dev);
3757
3758	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3759}
3760
3761void ironlake_teardown_rc6(struct drm_device *dev)
3762{
3763	struct drm_i915_private *dev_priv = dev->dev_private;
3764
3765	if (dev_priv->ips.renderctx) {
3766		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3767		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3768		dev_priv->ips.renderctx = NULL;
3769	}
3770
3771	if (dev_priv->ips.pwrctx) {
3772		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3773		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3774		dev_priv->ips.pwrctx = NULL;
3775	}
3776}
3777
3778static void ironlake_disable_rc6(struct drm_device *dev)
3779{
3780	struct drm_i915_private *dev_priv = dev->dev_private;
3781
3782	if (I915_READ(PWRCTXA)) {
3783		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3784		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3785		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3786			 50);
3787
3788		I915_WRITE(PWRCTXA, 0);
3789		POSTING_READ(PWRCTXA);
3790
3791		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3792		POSTING_READ(RSTDBYCTL);
3793	}
3794}
3795
3796static int ironlake_setup_rc6(struct drm_device *dev)
3797{
3798	struct drm_i915_private *dev_priv = dev->dev_private;
3799
3800	if (dev_priv->ips.renderctx == NULL)
3801		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3802	if (!dev_priv->ips.renderctx)
3803		return -ENOMEM;
3804
3805	if (dev_priv->ips.pwrctx == NULL)
3806		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3807	if (!dev_priv->ips.pwrctx) {
3808		ironlake_teardown_rc6(dev);
3809		return -ENOMEM;
3810	}
3811
3812	return 0;
3813}
3814
3815static void ironlake_enable_rc6(struct drm_device *dev)
3816{
3817	struct drm_i915_private *dev_priv = dev->dev_private;
3818	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3819	bool was_interruptible;
3820	int ret;
3821
3822	/* rc6 disabled by default due to repeated reports of hanging during
3823	 * boot and resume.
3824	 */
3825	if (!intel_enable_rc6(dev))
3826		return;
3827
3828	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3829
3830	ret = ironlake_setup_rc6(dev);
3831	if (ret)
3832		return;
3833
3834	was_interruptible = dev_priv->mm.interruptible;
3835	dev_priv->mm.interruptible = false;
3836
3837	/*
3838	 * GPU can automatically power down the render unit if given a page
3839	 * to save state.
3840	 */
3841	ret = intel_ring_begin(ring, 6);
3842	if (ret) {
3843		ironlake_teardown_rc6(dev);
3844		dev_priv->mm.interruptible = was_interruptible;
3845		return;
3846	}
3847
3848	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3849	intel_ring_emit(ring, MI_SET_CONTEXT);
3850	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3851			MI_MM_SPACE_GTT |
3852			MI_SAVE_EXT_STATE_EN |
3853			MI_RESTORE_EXT_STATE_EN |
3854			MI_RESTORE_INHIBIT);
3855	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3856	intel_ring_emit(ring, MI_NOOP);
3857	intel_ring_emit(ring, MI_FLUSH);
3858	intel_ring_advance(ring);
3859
3860	/*
3861	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3862	 * does an implicit flush, combined with MI_FLUSH above, it should be
3863	 * safe to assume that renderctx is valid
3864	 */
3865	ret = intel_ring_idle(ring);
3866	dev_priv->mm.interruptible = was_interruptible;
3867	if (ret) {
3868		DRM_ERROR("failed to enable ironlake power savings\n");
3869		ironlake_teardown_rc6(dev);
3870		return;
3871	}
3872
3873	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3874	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3875
3876	intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
3877}
3878
3879static unsigned long intel_pxfreq(u32 vidfreq)
3880{
3881	unsigned long freq;
3882	int div = (vidfreq & 0x3f0000) >> 16;
3883	int post = (vidfreq & 0x3000) >> 12;
3884	int pre = (vidfreq & 0x7);
3885
3886	if (!pre)
3887		return 0;
3888
3889	freq = ((div * 133333) / ((1<<post) * pre));
3890
3891	return freq;
3892}
3893
3894static const struct cparams {
3895	u16 i;
3896	u16 t;
3897	u16 m;
3898	u16 c;
3899} cparams[] = {
3900	{ 1, 1333, 301, 28664 },
3901	{ 1, 1066, 294, 24460 },
3902	{ 1, 800, 294, 25192 },
3903	{ 0, 1333, 276, 27605 },
3904	{ 0, 1066, 276, 27605 },
3905	{ 0, 800, 231, 23784 },
3906};
3907
3908static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3909{
3910	u64 total_count, diff, ret;
3911	u32 count1, count2, count3, m = 0, c = 0;
3912	unsigned long now = jiffies_to_msecs(jiffies), diff1;
3913	int i;
3914
3915	assert_spin_locked(&mchdev_lock);
3916
3917	diff1 = now - dev_priv->ips.last_time1;
3918
3919	/* Prevent division-by-zero if we are asking too fast.
3920	 * Also, we don't get interesting results if we are polling
3921	 * faster than once in 10ms, so just return the saved value
3922	 * in such cases.
3923	 */
3924	if (diff1 <= 10)
3925		return dev_priv->ips.chipset_power;
3926
3927	count1 = I915_READ(DMIEC);
3928	count2 = I915_READ(DDREC);
3929	count3 = I915_READ(CSIEC);
3930
3931	total_count = count1 + count2 + count3;
3932
3933	/* FIXME: handle per-counter overflow */
3934	if (total_count < dev_priv->ips.last_count1) {
3935		diff = ~0UL - dev_priv->ips.last_count1;
3936		diff += total_count;
3937	} else {
3938		diff = total_count - dev_priv->ips.last_count1;
3939	}
3940
3941	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3942		if (cparams[i].i == dev_priv->ips.c_m &&
3943		    cparams[i].t == dev_priv->ips.r_t) {
3944			m = cparams[i].m;
3945			c = cparams[i].c;
3946			break;
3947		}
3948	}
3949
3950	diff = div_u64(diff, diff1);
3951	ret = ((m * diff) + c);
3952	ret = div_u64(ret, 10);
3953
3954	dev_priv->ips.last_count1 = total_count;
3955	dev_priv->ips.last_time1 = now;
3956
3957	dev_priv->ips.chipset_power = ret;
3958
3959	return ret;
3960}
3961
3962unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3963{
3964	struct drm_device *dev = dev_priv->dev;
3965	unsigned long val;
3966
3967	if (INTEL_INFO(dev)->gen != 5)
3968		return 0;
3969
3970	spin_lock_irq(&mchdev_lock);
3971
3972	val = __i915_chipset_val(dev_priv);
3973
3974	spin_unlock_irq(&mchdev_lock);
3975
3976	return val;
3977}
3978
3979unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3980{
3981	unsigned long m, x, b;
3982	u32 tsfs;
3983
3984	tsfs = I915_READ(TSFS);
3985
3986	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3987	x = I915_READ8(TR1);
3988
3989	b = tsfs & TSFS_INTR_MASK;
3990
3991	return ((m * x) / 127) - b;
3992}
3993
3994static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
 
 
 
 
 
 
 
 
 
 
 
3995{
3996	struct drm_device *dev = dev_priv->dev;
3997	static const struct v_table {
3998		u16 vd; /* in .1 mil */
3999		u16 vm; /* in .1 mil */
4000	} v_table[] = {
4001		{ 0, 0, },
4002		{ 375, 0, },
4003		{ 500, 0, },
4004		{ 625, 0, },
4005		{ 750, 0, },
4006		{ 875, 0, },
4007		{ 1000, 0, },
4008		{ 1125, 0, },
4009		{ 4125, 3000, },
4010		{ 4125, 3000, },
4011		{ 4125, 3000, },
4012		{ 4125, 3000, },
4013		{ 4125, 3000, },
4014		{ 4125, 3000, },
4015		{ 4125, 3000, },
4016		{ 4125, 3000, },
4017		{ 4125, 3000, },
4018		{ 4125, 3000, },
4019		{ 4125, 3000, },
4020		{ 4125, 3000, },
4021		{ 4125, 3000, },
4022		{ 4125, 3000, },
4023		{ 4125, 3000, },
4024		{ 4125, 3000, },
4025		{ 4125, 3000, },
4026		{ 4125, 3000, },
4027		{ 4125, 3000, },
4028		{ 4125, 3000, },
4029		{ 4125, 3000, },
4030		{ 4125, 3000, },
4031		{ 4125, 3000, },
4032		{ 4125, 3000, },
4033		{ 4250, 3125, },
4034		{ 4375, 3250, },
4035		{ 4500, 3375, },
4036		{ 4625, 3500, },
4037		{ 4750, 3625, },
4038		{ 4875, 3750, },
4039		{ 5000, 3875, },
4040		{ 5125, 4000, },
4041		{ 5250, 4125, },
4042		{ 5375, 4250, },
4043		{ 5500, 4375, },
4044		{ 5625, 4500, },
4045		{ 5750, 4625, },
4046		{ 5875, 4750, },
4047		{ 6000, 4875, },
4048		{ 6125, 5000, },
4049		{ 6250, 5125, },
4050		{ 6375, 5250, },
4051		{ 6500, 5375, },
4052		{ 6625, 5500, },
4053		{ 6750, 5625, },
4054		{ 6875, 5750, },
4055		{ 7000, 5875, },
4056		{ 7125, 6000, },
4057		{ 7250, 6125, },
4058		{ 7375, 6250, },
4059		{ 7500, 6375, },
4060		{ 7625, 6500, },
4061		{ 7750, 6625, },
4062		{ 7875, 6750, },
4063		{ 8000, 6875, },
4064		{ 8125, 7000, },
4065		{ 8250, 7125, },
4066		{ 8375, 7250, },
4067		{ 8500, 7375, },
4068		{ 8625, 7500, },
4069		{ 8750, 7625, },
4070		{ 8875, 7750, },
4071		{ 9000, 7875, },
4072		{ 9125, 8000, },
4073		{ 9250, 8125, },
4074		{ 9375, 8250, },
4075		{ 9500, 8375, },
4076		{ 9625, 8500, },
4077		{ 9750, 8625, },
4078		{ 9875, 8750, },
4079		{ 10000, 8875, },
4080		{ 10125, 9000, },
4081		{ 10250, 9125, },
4082		{ 10375, 9250, },
4083		{ 10500, 9375, },
4084		{ 10625, 9500, },
4085		{ 10750, 9625, },
4086		{ 10875, 9750, },
4087		{ 11000, 9875, },
4088		{ 11125, 10000, },
4089		{ 11250, 10125, },
4090		{ 11375, 10250, },
4091		{ 11500, 10375, },
4092		{ 11625, 10500, },
4093		{ 11750, 10625, },
4094		{ 11875, 10750, },
4095		{ 12000, 10875, },
4096		{ 12125, 11000, },
4097		{ 12250, 11125, },
4098		{ 12375, 11250, },
4099		{ 12500, 11375, },
4100		{ 12625, 11500, },
4101		{ 12750, 11625, },
4102		{ 12875, 11750, },
4103		{ 13000, 11875, },
4104		{ 13125, 12000, },
4105		{ 13250, 12125, },
4106		{ 13375, 12250, },
4107		{ 13500, 12375, },
4108		{ 13625, 12500, },
4109		{ 13750, 12625, },
4110		{ 13875, 12750, },
4111		{ 14000, 12875, },
4112		{ 14125, 13000, },
4113		{ 14250, 13125, },
4114		{ 14375, 13250, },
4115		{ 14500, 13375, },
4116		{ 14625, 13500, },
4117		{ 14750, 13625, },
4118		{ 14875, 13750, },
4119		{ 15000, 13875, },
4120		{ 15125, 14000, },
4121		{ 15250, 14125, },
4122		{ 15375, 14250, },
4123		{ 15500, 14375, },
4124		{ 15625, 14500, },
4125		{ 15750, 14625, },
4126		{ 15875, 14750, },
4127		{ 16000, 14875, },
4128		{ 16125, 15000, },
4129	};
4130	if (INTEL_INFO(dev)->is_mobile)
4131		return v_table[pxvid].vm;
4132	else
4133		return v_table[pxvid].vd;
4134}
4135
4136static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4137{
4138	struct timespec now, diff1;
4139	u64 diff;
4140	unsigned long diffms;
4141	u32 count;
4142
4143	assert_spin_locked(&mchdev_lock);
4144
4145	getrawmonotonic(&now);
4146	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
 
4147
4148	/* Don't divide by 0 */
4149	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4150	if (!diffms)
4151		return;
4152
4153	count = I915_READ(GFXEC);
4154
4155	if (count < dev_priv->ips.last_count2) {
4156		diff = ~0UL - dev_priv->ips.last_count2;
4157		diff += count;
4158	} else {
4159		diff = count - dev_priv->ips.last_count2;
4160	}
4161
4162	dev_priv->ips.last_count2 = count;
4163	dev_priv->ips.last_time2 = now;
4164
4165	/* More magic constants... */
4166	diff = diff * 1181;
4167	diff = div_u64(diff, diffms * 10);
4168	dev_priv->ips.gfx_power = diff;
4169}
4170
4171void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4172{
4173	struct drm_device *dev = dev_priv->dev;
4174
4175	if (INTEL_INFO(dev)->gen != 5)
4176		return;
4177
4178	spin_lock_irq(&mchdev_lock);
4179
4180	__i915_update_gfx_val(dev_priv);
4181
4182	spin_unlock_irq(&mchdev_lock);
4183}
4184
4185static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4186{
4187	unsigned long t, corr, state1, corr2, state2;
4188	u32 pxvid, ext_v;
4189
4190	assert_spin_locked(&mchdev_lock);
4191
4192	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4193	pxvid = (pxvid >> 24) & 0x7f;
4194	ext_v = pvid_to_extvid(dev_priv, pxvid);
4195
4196	state1 = ext_v;
4197
4198	t = i915_mch_val(dev_priv);
4199
4200	/* Revel in the empirically derived constants */
4201
4202	/* Correction factor in 1/100000 units */
4203	if (t > 80)
4204		corr = ((t * 2349) + 135940);
4205	else if (t >= 50)
4206		corr = ((t * 964) + 29317);
4207	else /* < 50 */
4208		corr = ((t * 301) + 1004);
4209
4210	corr = corr * ((150142 * state1) / 10000 - 78642);
4211	corr /= 100000;
4212	corr2 = (corr * dev_priv->ips.corr);
4213
4214	state2 = (corr2 * state1) / 10000;
4215	state2 /= 100; /* convert to mW */
4216
4217	__i915_update_gfx_val(dev_priv);
4218
4219	return dev_priv->ips.gfx_power + state2;
4220}
4221
4222unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4223{
4224	struct drm_device *dev = dev_priv->dev;
4225	unsigned long val;
4226
4227	if (INTEL_INFO(dev)->gen != 5)
4228		return 0;
4229
4230	spin_lock_irq(&mchdev_lock);
4231
4232	val = __i915_gfx_val(dev_priv);
4233
4234	spin_unlock_irq(&mchdev_lock);
4235
4236	return val;
4237}
4238
4239/**
4240 * i915_read_mch_val - return value for IPS use
4241 *
4242 * Calculate and return a value for the IPS driver to use when deciding whether
4243 * we have thermal and power headroom to increase CPU or GPU power budget.
4244 */
4245unsigned long i915_read_mch_val(void)
4246{
4247	struct drm_i915_private *dev_priv;
4248	unsigned long chipset_val, graphics_val, ret = 0;
4249
4250	spin_lock_irq(&mchdev_lock);
4251	if (!i915_mch_dev)
4252		goto out_unlock;
4253	dev_priv = i915_mch_dev;
4254
4255	chipset_val = __i915_chipset_val(dev_priv);
4256	graphics_val = __i915_gfx_val(dev_priv);
4257
4258	ret = chipset_val + graphics_val;
4259
4260out_unlock:
4261	spin_unlock_irq(&mchdev_lock);
4262
4263	return ret;
4264}
4265EXPORT_SYMBOL_GPL(i915_read_mch_val);
4266
4267/**
4268 * i915_gpu_raise - raise GPU frequency limit
4269 *
4270 * Raise the limit; IPS indicates we have thermal headroom.
4271 */
4272bool i915_gpu_raise(void)
4273{
4274	struct drm_i915_private *dev_priv;
4275	bool ret = true;
4276
4277	spin_lock_irq(&mchdev_lock);
4278	if (!i915_mch_dev) {
4279		ret = false;
4280		goto out_unlock;
4281	}
4282	dev_priv = i915_mch_dev;
4283
4284	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4285		dev_priv->ips.max_delay--;
4286
4287out_unlock:
4288	spin_unlock_irq(&mchdev_lock);
4289
4290	return ret;
4291}
4292EXPORT_SYMBOL_GPL(i915_gpu_raise);
4293
4294/**
4295 * i915_gpu_lower - lower GPU frequency limit
4296 *
4297 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4298 * frequency maximum.
4299 */
4300bool i915_gpu_lower(void)
4301{
4302	struct drm_i915_private *dev_priv;
4303	bool ret = true;
4304
4305	spin_lock_irq(&mchdev_lock);
4306	if (!i915_mch_dev) {
4307		ret = false;
4308		goto out_unlock;
4309	}
4310	dev_priv = i915_mch_dev;
4311
4312	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4313		dev_priv->ips.max_delay++;
4314
4315out_unlock:
4316	spin_unlock_irq(&mchdev_lock);
4317
4318	return ret;
4319}
4320EXPORT_SYMBOL_GPL(i915_gpu_lower);
4321
4322/**
4323 * i915_gpu_busy - indicate GPU business to IPS
4324 *
4325 * Tell the IPS driver whether or not the GPU is busy.
4326 */
4327bool i915_gpu_busy(void)
4328{
4329	struct drm_i915_private *dev_priv;
4330	struct intel_ring_buffer *ring;
4331	bool ret = false;
4332	int i;
4333
4334	spin_lock_irq(&mchdev_lock);
4335	if (!i915_mch_dev)
4336		goto out_unlock;
4337	dev_priv = i915_mch_dev;
4338
4339	for_each_ring(ring, dev_priv, i)
4340		ret |= !list_empty(&ring->request_list);
4341
4342out_unlock:
4343	spin_unlock_irq(&mchdev_lock);
4344
4345	return ret;
4346}
4347EXPORT_SYMBOL_GPL(i915_gpu_busy);
4348
4349/**
4350 * i915_gpu_turbo_disable - disable graphics turbo
4351 *
4352 * Disable graphics turbo by resetting the max frequency and setting the
4353 * current frequency to the default.
4354 */
4355bool i915_gpu_turbo_disable(void)
4356{
4357	struct drm_i915_private *dev_priv;
4358	bool ret = true;
4359
4360	spin_lock_irq(&mchdev_lock);
4361	if (!i915_mch_dev) {
4362		ret = false;
4363		goto out_unlock;
4364	}
4365	dev_priv = i915_mch_dev;
4366
4367	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4368
4369	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4370		ret = false;
4371
4372out_unlock:
4373	spin_unlock_irq(&mchdev_lock);
4374
4375	return ret;
4376}
4377EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4378
4379/**
4380 * Tells the intel_ips driver that the i915 driver is now loaded, if
4381 * IPS got loaded first.
4382 *
4383 * This awkward dance is so that neither module has to depend on the
4384 * other in order for IPS to do the appropriate communication of
4385 * GPU turbo limits to i915.
4386 */
4387static void
4388ips_ping_for_i915_load(void)
4389{
4390	void (*link)(void);
4391
4392	link = symbol_get(ips_link_to_i915_driver);
4393	if (link) {
4394		link();
4395		symbol_put(ips_link_to_i915_driver);
4396	}
4397}
4398
4399void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4400{
4401	/* We only register the i915 ips part with intel-ips once everything is
4402	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4403	spin_lock_irq(&mchdev_lock);
4404	i915_mch_dev = dev_priv;
4405	spin_unlock_irq(&mchdev_lock);
4406
4407	ips_ping_for_i915_load();
4408}
4409
4410void intel_gpu_ips_teardown(void)
4411{
4412	spin_lock_irq(&mchdev_lock);
4413	i915_mch_dev = NULL;
4414	spin_unlock_irq(&mchdev_lock);
4415}
4416
4417static void intel_init_emon(struct drm_device *dev)
4418{
4419	struct drm_i915_private *dev_priv = dev->dev_private;
4420	u32 lcfuse;
4421	u8 pxw[16];
4422	int i;
4423
4424	/* Disable to program */
4425	I915_WRITE(ECR, 0);
4426	POSTING_READ(ECR);
4427
4428	/* Program energy weights for various events */
4429	I915_WRITE(SDEW, 0x15040d00);
4430	I915_WRITE(CSIEW0, 0x007f0000);
4431	I915_WRITE(CSIEW1, 0x1e220004);
4432	I915_WRITE(CSIEW2, 0x04000004);
4433
4434	for (i = 0; i < 5; i++)
4435		I915_WRITE(PEW + (i * 4), 0);
4436	for (i = 0; i < 3; i++)
4437		I915_WRITE(DEW + (i * 4), 0);
4438
4439	/* Program P-state weights to account for frequency power adjustment */
4440	for (i = 0; i < 16; i++) {
4441		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4442		unsigned long freq = intel_pxfreq(pxvidfreq);
4443		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4444			PXVFREQ_PX_SHIFT;
4445		unsigned long val;
4446
4447		val = vid * vid;
4448		val *= (freq / 1000);
4449		val *= 255;
4450		val /= (127*127*900);
4451		if (val > 0xff)
4452			DRM_ERROR("bad pxval: %ld\n", val);
4453		pxw[i] = val;
4454	}
4455	/* Render standby states get 0 weight */
4456	pxw[14] = 0;
4457	pxw[15] = 0;
4458
4459	for (i = 0; i < 4; i++) {
4460		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4461			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4462		I915_WRITE(PXW + (i * 4), val);
4463	}
4464
4465	/* Adjust magic regs to magic values (more experimental results) */
4466	I915_WRITE(OGW0, 0);
4467	I915_WRITE(OGW1, 0);
4468	I915_WRITE(EG0, 0x00007f00);
4469	I915_WRITE(EG1, 0x0000000e);
4470	I915_WRITE(EG2, 0x000e0000);
4471	I915_WRITE(EG3, 0x68000300);
4472	I915_WRITE(EG4, 0x42000000);
4473	I915_WRITE(EG5, 0x00140031);
4474	I915_WRITE(EG6, 0);
4475	I915_WRITE(EG7, 0);
4476
4477	for (i = 0; i < 8; i++)
4478		I915_WRITE(PXWL + (i * 4), 0);
4479
4480	/* Enable PMON + select events */
4481	I915_WRITE(ECR, 0x80000019);
4482
4483	lcfuse = I915_READ(LCFUSE02);
4484
4485	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4486}
4487
4488void intel_init_gt_powersave(struct drm_device *dev)
4489{
4490	if (IS_VALLEYVIEW(dev))
4491		valleyview_setup_pctx(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
4492}
4493
4494void intel_cleanup_gt_powersave(struct drm_device *dev)
4495{
4496	if (IS_VALLEYVIEW(dev))
4497		valleyview_cleanup_pctx(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4498}
4499
4500void intel_disable_gt_powersave(struct drm_device *dev)
4501{
4502	struct drm_i915_private *dev_priv = dev->dev_private;
4503
4504	/* Interrupts should be disabled already to avoid re-arming. */
4505	WARN_ON(dev->irq_enabled);
4506
4507	if (IS_IRONLAKE_M(dev)) {
4508		ironlake_disable_drps(dev);
4509		ironlake_disable_rc6(dev);
4510	} else if (INTEL_INFO(dev)->gen >= 6) {
4511		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4512		cancel_work_sync(&dev_priv->rps.work);
4513		mutex_lock(&dev_priv->rps.hw_lock);
4514		if (IS_VALLEYVIEW(dev))
 
 
 
 
4515			valleyview_disable_rps(dev);
4516		else
4517			gen6_disable_rps(dev);
 
4518		dev_priv->rps.enabled = false;
4519		mutex_unlock(&dev_priv->rps.hw_lock);
4520	}
4521}
4522
4523static void intel_gen6_powersave_work(struct work_struct *work)
4524{
4525	struct drm_i915_private *dev_priv =
4526		container_of(work, struct drm_i915_private,
4527			     rps.delayed_resume_work.work);
4528	struct drm_device *dev = dev_priv->dev;
4529
4530	mutex_lock(&dev_priv->rps.hw_lock);
4531
4532	if (IS_VALLEYVIEW(dev)) {
 
 
 
 
4533		valleyview_enable_rps(dev);
 
 
 
 
 
4534	} else if (IS_BROADWELL(dev)) {
4535		gen8_enable_rps(dev);
4536		gen6_update_ring_freq(dev);
4537	} else {
4538		gen6_enable_rps(dev);
4539		gen6_update_ring_freq(dev);
4540	}
 
 
 
 
 
 
 
4541	dev_priv->rps.enabled = true;
 
 
 
4542	mutex_unlock(&dev_priv->rps.hw_lock);
 
 
4543}
4544
4545void intel_enable_gt_powersave(struct drm_device *dev)
4546{
4547	struct drm_i915_private *dev_priv = dev->dev_private;
4548
 
 
 
 
4549	if (IS_IRONLAKE_M(dev)) {
4550		ironlake_enable_drps(dev);
4551		ironlake_enable_rc6(dev);
4552		intel_init_emon(dev);
4553	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
 
4554		/*
4555		 * PCU communication is slow and this doesn't need to be
4556		 * done at any specific time, so do this out of our fast path
4557		 * to make resume and init faster.
 
 
 
 
 
 
 
4558		 */
4559		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4560				      round_jiffies_up_relative(HZ));
 
4561	}
4562}
4563
 
 
 
 
 
 
 
 
 
 
 
4564static void ibx_init_clock_gating(struct drm_device *dev)
4565{
4566	struct drm_i915_private *dev_priv = dev->dev_private;
4567
4568	/*
4569	 * On Ibex Peak and Cougar Point, we need to disable clock
4570	 * gating for the panel power sequencer or it will fail to
4571	 * start up when no ports are active.
4572	 */
4573	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4574}
4575
4576static void g4x_disable_trickle_feed(struct drm_device *dev)
4577{
4578	struct drm_i915_private *dev_priv = dev->dev_private;
4579	int pipe;
4580
4581	for_each_pipe(pipe) {
4582		I915_WRITE(DSPCNTR(pipe),
4583			   I915_READ(DSPCNTR(pipe)) |
4584			   DISPPLANE_TRICKLE_FEED_DISABLE);
4585		intel_flush_primary_plane(dev_priv, pipe);
 
 
4586	}
4587}
4588
4589static void ilk_init_lp_watermarks(struct drm_device *dev)
4590{
4591	struct drm_i915_private *dev_priv = dev->dev_private;
4592
4593	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4594	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4595	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4596
4597	/*
4598	 * Don't touch WM1S_LP_EN here.
4599	 * Doing so could cause underruns.
4600	 */
4601}
4602
4603static void ironlake_init_clock_gating(struct drm_device *dev)
4604{
4605	struct drm_i915_private *dev_priv = dev->dev_private;
4606	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4607
4608	/*
4609	 * Required for FBC
4610	 * WaFbcDisableDpfcClockGating:ilk
4611	 */
4612	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4613		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4614		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4615
4616	I915_WRITE(PCH_3DCGDIS0,
4617		   MARIUNIT_CLOCK_GATE_DISABLE |
4618		   SVSMUNIT_CLOCK_GATE_DISABLE);
4619	I915_WRITE(PCH_3DCGDIS1,
4620		   VFMUNIT_CLOCK_GATE_DISABLE);
4621
4622	/*
4623	 * According to the spec the following bits should be set in
4624	 * order to enable memory self-refresh
4625	 * The bit 22/21 of 0x42004
4626	 * The bit 5 of 0x42020
4627	 * The bit 15 of 0x45000
4628	 */
4629	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4630		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
4631		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4632	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4633	I915_WRITE(DISP_ARB_CTL,
4634		   (I915_READ(DISP_ARB_CTL) |
4635		    DISP_FBC_WM_DIS));
4636
4637	ilk_init_lp_watermarks(dev);
4638
4639	/*
4640	 * Based on the document from hardware guys the following bits
4641	 * should be set unconditionally in order to enable FBC.
4642	 * The bit 22 of 0x42000
4643	 * The bit 22 of 0x42004
4644	 * The bit 7,8,9 of 0x42020.
4645	 */
4646	if (IS_IRONLAKE_M(dev)) {
4647		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
4648		I915_WRITE(ILK_DISPLAY_CHICKEN1,
4649			   I915_READ(ILK_DISPLAY_CHICKEN1) |
4650			   ILK_FBCQ_DIS);
4651		I915_WRITE(ILK_DISPLAY_CHICKEN2,
4652			   I915_READ(ILK_DISPLAY_CHICKEN2) |
4653			   ILK_DPARB_GATE);
4654	}
4655
4656	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4657
4658	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4659		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4660		   ILK_ELPIN_409_SELECT);
4661	I915_WRITE(_3D_CHICKEN2,
4662		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4663		   _3D_CHICKEN2_WM_READ_PIPELINED);
4664
4665	/* WaDisableRenderCachePipelinedFlush:ilk */
4666	I915_WRITE(CACHE_MODE_0,
4667		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4668
 
 
 
4669	g4x_disable_trickle_feed(dev);
4670
4671	ibx_init_clock_gating(dev);
4672}
4673
4674static void cpt_init_clock_gating(struct drm_device *dev)
4675{
4676	struct drm_i915_private *dev_priv = dev->dev_private;
4677	int pipe;
4678	uint32_t val;
4679
4680	/*
4681	 * On Ibex Peak and Cougar Point, we need to disable clock
4682	 * gating for the panel power sequencer or it will fail to
4683	 * start up when no ports are active.
4684	 */
4685	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4686		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4687		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
4688	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4689		   DPLS_EDP_PPS_FIX_DIS);
4690	/* The below fixes the weird display corruption, a few pixels shifted
4691	 * downward, on (only) LVDS of some HP laptops with IVY.
4692	 */
4693	for_each_pipe(pipe) {
4694		val = I915_READ(TRANS_CHICKEN2(pipe));
4695		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4696		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4697		if (dev_priv->vbt.fdi_rx_polarity_inverted)
4698			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4699		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4700		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4701		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4702		I915_WRITE(TRANS_CHICKEN2(pipe), val);
4703	}
4704	/* WADP0ClockGatingDisable */
4705	for_each_pipe(pipe) {
4706		I915_WRITE(TRANS_CHICKEN1(pipe),
4707			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4708	}
4709}
4710
4711static void gen6_check_mch_setup(struct drm_device *dev)
4712{
4713	struct drm_i915_private *dev_priv = dev->dev_private;
4714	uint32_t tmp;
4715
4716	tmp = I915_READ(MCH_SSKPD);
4717	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4718		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4719		DRM_INFO("This can cause pipe underruns and display issues.\n");
4720		DRM_INFO("Please upgrade your BIOS to fix this.\n");
4721	}
4722}
4723
4724static void gen6_init_clock_gating(struct drm_device *dev)
4725{
4726	struct drm_i915_private *dev_priv = dev->dev_private;
4727	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4728
4729	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4730
4731	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4732		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4733		   ILK_ELPIN_409_SELECT);
4734
4735	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4736	I915_WRITE(_3D_CHICKEN,
4737		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4738
4739	/* WaSetupGtModeTdRowDispatch:snb */
4740	if (IS_SNB_GT1(dev))
4741		I915_WRITE(GEN6_GT_MODE,
4742			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4743
4744	/*
4745	 * BSpec recoomends 8x4 when MSAA is used,
4746	 * however in practice 16x4 seems fastest.
4747	 *
4748	 * Note that PS/WM thread counts depend on the WIZ hashing
4749	 * disable bit, which we don't touch here, but it's good
4750	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4751	 */
4752	I915_WRITE(GEN6_GT_MODE,
4753		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4754
4755	ilk_init_lp_watermarks(dev);
4756
4757	I915_WRITE(CACHE_MODE_0,
4758		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4759
4760	I915_WRITE(GEN6_UCGCTL1,
4761		   I915_READ(GEN6_UCGCTL1) |
4762		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4763		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4764
4765	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4766	 * gating disable must be set.  Failure to set it results in
4767	 * flickering pixels due to Z write ordering failures after
4768	 * some amount of runtime in the Mesa "fire" demo, and Unigine
4769	 * Sanctuary and Tropics, and apparently anything else with
4770	 * alpha test or pixel discard.
4771	 *
4772	 * According to the spec, bit 11 (RCCUNIT) must also be set,
4773	 * but we didn't debug actual testcases to find it out.
4774	 *
4775	 * WaDisableRCCUnitClockGating:snb
4776	 * WaDisableRCPBUnitClockGating:snb
4777	 */
4778	I915_WRITE(GEN6_UCGCTL2,
4779		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4780		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4781
4782	/* WaStripsFansDisableFastClipPerformanceFix:snb */
4783	I915_WRITE(_3D_CHICKEN3,
4784		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4785
4786	/*
4787	 * Bspec says:
4788	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4789	 * 3DSTATE_SF number of SF output attributes is more than 16."
4790	 */
4791	I915_WRITE(_3D_CHICKEN3,
4792		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4793
4794	/*
4795	 * According to the spec the following bits should be
4796	 * set in order to enable memory self-refresh and fbc:
4797	 * The bit21 and bit22 of 0x42000
4798	 * The bit21 and bit22 of 0x42004
4799	 * The bit5 and bit7 of 0x42020
4800	 * The bit14 of 0x70180
4801	 * The bit14 of 0x71180
4802	 *
4803	 * WaFbcAsynchFlipDisableFbcQueue:snb
4804	 */
4805	I915_WRITE(ILK_DISPLAY_CHICKEN1,
4806		   I915_READ(ILK_DISPLAY_CHICKEN1) |
4807		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4808	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4809		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4810		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4811	I915_WRITE(ILK_DSPCLK_GATE_D,
4812		   I915_READ(ILK_DSPCLK_GATE_D) |
4813		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4814		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4815
4816	g4x_disable_trickle_feed(dev);
4817
4818	cpt_init_clock_gating(dev);
4819
4820	gen6_check_mch_setup(dev);
4821}
4822
4823static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4824{
4825	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4826
4827	/*
4828	 * WaVSThreadDispatchOverride:ivb,vlv
4829	 *
4830	 * This actually overrides the dispatch
4831	 * mode for all thread types.
4832	 */
4833	reg &= ~GEN7_FF_SCHED_MASK;
4834	reg |= GEN7_FF_TS_SCHED_HW;
4835	reg |= GEN7_FF_VS_SCHED_HW;
4836	reg |= GEN7_FF_DS_SCHED_HW;
4837
4838	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4839}
4840
4841static void lpt_init_clock_gating(struct drm_device *dev)
4842{
4843	struct drm_i915_private *dev_priv = dev->dev_private;
4844
4845	/*
4846	 * TODO: this bit should only be enabled when really needed, then
4847	 * disabled when not needed anymore in order to save power.
4848	 */
4849	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4850		I915_WRITE(SOUTH_DSPCLK_GATE_D,
4851			   I915_READ(SOUTH_DSPCLK_GATE_D) |
4852			   PCH_LP_PARTITION_LEVEL_DISABLE);
4853
4854	/* WADPOClockGatingDisable:hsw */
4855	I915_WRITE(_TRANSA_CHICKEN1,
4856		   I915_READ(_TRANSA_CHICKEN1) |
4857		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4858}
4859
4860static void lpt_suspend_hw(struct drm_device *dev)
4861{
4862	struct drm_i915_private *dev_priv = dev->dev_private;
4863
4864	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4865		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4866
4867		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4868		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4869	}
4870}
4871
4872static void gen8_init_clock_gating(struct drm_device *dev)
4873{
4874	struct drm_i915_private *dev_priv = dev->dev_private;
4875	enum pipe pipe;
 
4876
4877	I915_WRITE(WM3_LP_ILK, 0);
4878	I915_WRITE(WM2_LP_ILK, 0);
4879	I915_WRITE(WM1_LP_ILK, 0);
4880
4881	/* FIXME(BDW): Check all the w/a, some might only apply to
4882	 * pre-production hw. */
4883
4884	/* WaDisablePartialInstShootdown:bdw */
4885	I915_WRITE(GEN8_ROW_CHICKEN,
4886		   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
4887
4888	/* WaDisableThreadStallDopClockGating:bdw */
4889	/* FIXME: Unclear whether we really need this on production bdw. */
4890	I915_WRITE(GEN8_ROW_CHICKEN,
4891		   _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
4892
4893	/*
4894	 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
4895	 * pre-production hardware
4896	 */
4897	I915_WRITE(HALF_SLICE_CHICKEN3,
4898		   _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4899	I915_WRITE(HALF_SLICE_CHICKEN3,
4900		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4901	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4902
4903	I915_WRITE(_3D_CHICKEN3,
4904		   _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4905
4906	I915_WRITE(COMMON_SLICE_CHICKEN2,
4907		   _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4908
4909	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4910		   _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4911
4912	/* WaSwitchSolVfFArbitrationPriority:bdw */
4913	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4914
4915	/* WaPsrDPAMaskVBlankInSRD:bdw */
4916	I915_WRITE(CHICKEN_PAR1_1,
4917		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4918
4919	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4920	for_each_pipe(pipe) {
4921		I915_WRITE(CHICKEN_PIPESL_1(pipe),
4922			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
4923			   BDW_DPRS_MASK_VBLANK_SRD);
4924	}
4925
4926	/* Use Force Non-Coherent whenever executing a 3D context. This is a
4927	 * workaround for for a possible hang in the unlikely event a TLB
4928	 * invalidation occurs during a PSD flush.
4929	 */
4930	I915_WRITE(HDC_CHICKEN0,
4931		   I915_READ(HDC_CHICKEN0) |
4932		   _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
4933
4934	/* WaVSRefCountFullforceMissDisable:bdw */
4935	/* WaDSRefCountFullforceMissDisable:bdw */
4936	I915_WRITE(GEN7_FF_THREAD_MODE,
4937		   I915_READ(GEN7_FF_THREAD_MODE) &
4938		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
4939
4940	/*
4941	 * BSpec recommends 8x4 when MSAA is used,
4942	 * however in practice 16x4 seems fastest.
4943	 *
4944	 * Note that PS/WM thread counts depend on the WIZ hashing
4945	 * disable bit, which we don't touch here, but it's good
4946	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4947	 */
4948	I915_WRITE(GEN7_GT_MODE,
4949		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4950
4951	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
4952		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
4953
4954	/* WaDisableSDEUnitClockGating:bdw */
4955	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
4956		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
4957
4958	/* Wa4x4STCOptimizationDisable:bdw */
4959	I915_WRITE(CACHE_MODE_1,
4960		   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4961}
4962
4963static void haswell_init_clock_gating(struct drm_device *dev)
4964{
4965	struct drm_i915_private *dev_priv = dev->dev_private;
4966
4967	ilk_init_lp_watermarks(dev);
4968
4969	/* L3 caching of data atomics doesn't work -- disable it. */
4970	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4971	I915_WRITE(HSW_ROW_CHICKEN3,
4972		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4973
4974	/* This is required by WaCatErrorRejectionIssue:hsw */
4975	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4976			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4977			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4978
4979	/* WaVSRefCountFullforceMissDisable:hsw */
4980	I915_WRITE(GEN7_FF_THREAD_MODE,
4981		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
4982
 
 
 
4983	/* enable HiZ Raw Stall Optimization */
4984	I915_WRITE(CACHE_MODE_0_GEN7,
4985		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
4986
4987	/* WaDisable4x2SubspanOptimization:hsw */
4988	I915_WRITE(CACHE_MODE_1,
4989		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4990
4991	/*
4992	 * BSpec recommends 8x4 when MSAA is used,
4993	 * however in practice 16x4 seems fastest.
4994	 *
4995	 * Note that PS/WM thread counts depend on the WIZ hashing
4996	 * disable bit, which we don't touch here, but it's good
4997	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4998	 */
4999	I915_WRITE(GEN7_GT_MODE,
5000		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
 
 
 
 
5001
5002	/* WaSwitchSolVfFArbitrationPriority:hsw */
5003	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5004
5005	/* WaRsPkgCStateDisplayPMReq:hsw */
5006	I915_WRITE(CHICKEN_PAR1_1,
5007		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5008
5009	lpt_init_clock_gating(dev);
5010}
5011
5012static void ivybridge_init_clock_gating(struct drm_device *dev)
5013{
5014	struct drm_i915_private *dev_priv = dev->dev_private;
5015	uint32_t snpcr;
5016
5017	ilk_init_lp_watermarks(dev);
5018
5019	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5020
5021	/* WaDisableEarlyCull:ivb */
5022	I915_WRITE(_3D_CHICKEN3,
5023		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5024
5025	/* WaDisableBackToBackFlipFix:ivb */
5026	I915_WRITE(IVB_CHICKEN3,
5027		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5028		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
5029
5030	/* WaDisablePSDDualDispatchEnable:ivb */
5031	if (IS_IVB_GT1(dev))
5032		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5033			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5034
 
 
 
5035	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5036	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5037		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5038
5039	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5040	I915_WRITE(GEN7_L3CNTLREG1,
5041			GEN7_WA_FOR_GEN7_L3_CONTROL);
5042	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5043		   GEN7_WA_L3_CHICKEN_MODE);
5044	if (IS_IVB_GT1(dev))
5045		I915_WRITE(GEN7_ROW_CHICKEN2,
5046			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5047	else {
5048		/* must write both registers */
5049		I915_WRITE(GEN7_ROW_CHICKEN2,
5050			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5051		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5052			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5053	}
5054
5055	/* WaForceL3Serialization:ivb */
5056	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5057		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5058
5059	/*
5060	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5061	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5062	 */
5063	I915_WRITE(GEN6_UCGCTL2,
5064		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5065
5066	/* This is required by WaCatErrorRejectionIssue:ivb */
5067	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5068			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5069			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5070
5071	g4x_disable_trickle_feed(dev);
5072
5073	gen7_setup_fixed_func_scheduler(dev_priv);
5074
5075	if (0) { /* causes HiZ corruption on ivb:gt1 */
5076		/* enable HiZ Raw Stall Optimization */
5077		I915_WRITE(CACHE_MODE_0_GEN7,
5078			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5079	}
5080
5081	/* WaDisable4x2SubspanOptimization:ivb */
5082	I915_WRITE(CACHE_MODE_1,
5083		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5084
5085	/*
5086	 * BSpec recommends 8x4 when MSAA is used,
5087	 * however in practice 16x4 seems fastest.
5088	 *
5089	 * Note that PS/WM thread counts depend on the WIZ hashing
5090	 * disable bit, which we don't touch here, but it's good
5091	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5092	 */
5093	I915_WRITE(GEN7_GT_MODE,
5094		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5095
5096	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5097	snpcr &= ~GEN6_MBC_SNPCR_MASK;
5098	snpcr |= GEN6_MBC_SNPCR_MED;
5099	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5100
5101	if (!HAS_PCH_NOP(dev))
5102		cpt_init_clock_gating(dev);
5103
5104	gen6_check_mch_setup(dev);
5105}
5106
 
 
 
 
 
 
 
 
 
 
 
5107static void valleyview_init_clock_gating(struct drm_device *dev)
5108{
5109	struct drm_i915_private *dev_priv = dev->dev_private;
5110	u32 val;
5111
5112	mutex_lock(&dev_priv->rps.hw_lock);
5113	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5114	mutex_unlock(&dev_priv->rps.hw_lock);
5115	switch ((val >> 6) & 3) {
5116	case 0:
5117	case 1:
5118		dev_priv->mem_freq = 800;
5119		break;
5120	case 2:
5121		dev_priv->mem_freq = 1066;
5122		break;
5123	case 3:
5124		dev_priv->mem_freq = 1333;
5125		break;
5126	}
5127	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5128
5129	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5130
5131	/* WaDisableEarlyCull:vlv */
5132	I915_WRITE(_3D_CHICKEN3,
5133		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5134
5135	/* WaDisableBackToBackFlipFix:vlv */
5136	I915_WRITE(IVB_CHICKEN3,
5137		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5138		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
5139
5140	/* WaPsdDispatchEnable:vlv */
5141	/* WaDisablePSDDualDispatchEnable:vlv */
5142	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5143		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5144				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5145
 
 
 
5146	/* WaForceL3Serialization:vlv */
5147	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5148		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5149
5150	/* WaDisableDopClockGating:vlv */
5151	I915_WRITE(GEN7_ROW_CHICKEN2,
5152		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5153
5154	/* This is required by WaCatErrorRejectionIssue:vlv */
5155	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5156		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5157		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5158
5159	gen7_setup_fixed_func_scheduler(dev_priv);
5160
5161	/*
5162	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5163	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5164	 */
5165	I915_WRITE(GEN6_UCGCTL2,
5166		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5167
5168	/* WaDisableL3Bank2xClockGate:vlv */
5169	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5170
5171	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
 
5172
5173	/*
5174	 * BSpec says this must be set, even though
5175	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
5176	 */
5177	I915_WRITE(CACHE_MODE_1,
5178		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5179
5180	/*
 
 
 
 
 
 
 
 
 
 
 
5181	 * WaIncreaseL3CreditsForVLVB0:vlv
5182	 * This is the hardware default actually.
5183	 */
5184	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5185
5186	/*
5187	 * WaDisableVLVClockGating_VBIIssue:vlv
5188	 * Disable clock gating on th GCFG unit to prevent a delay
5189	 * in the reporting of vblank events.
5190	 */
5191	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5192}
5193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5194static void g4x_init_clock_gating(struct drm_device *dev)
5195{
5196	struct drm_i915_private *dev_priv = dev->dev_private;
5197	uint32_t dspclk_gate;
5198
5199	I915_WRITE(RENCLK_GATE_D1, 0);
5200	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5201		   GS_UNIT_CLOCK_GATE_DISABLE |
5202		   CL_UNIT_CLOCK_GATE_DISABLE);
5203	I915_WRITE(RAMCLK_GATE_D, 0);
5204	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5205		OVRUNIT_CLOCK_GATE_DISABLE |
5206		OVCUNIT_CLOCK_GATE_DISABLE;
5207	if (IS_GM45(dev))
5208		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5209	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5210
5211	/* WaDisableRenderCachePipelinedFlush */
5212	I915_WRITE(CACHE_MODE_0,
5213		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5214
 
 
 
5215	g4x_disable_trickle_feed(dev);
5216}
5217
5218static void crestline_init_clock_gating(struct drm_device *dev)
5219{
5220	struct drm_i915_private *dev_priv = dev->dev_private;
5221
5222	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5223	I915_WRITE(RENCLK_GATE_D2, 0);
5224	I915_WRITE(DSPCLK_GATE_D, 0);
5225	I915_WRITE(RAMCLK_GATE_D, 0);
5226	I915_WRITE16(DEUC, 0);
5227	I915_WRITE(MI_ARB_STATE,
5228		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
 
 
 
5229}
5230
5231static void broadwater_init_clock_gating(struct drm_device *dev)
5232{
5233	struct drm_i915_private *dev_priv = dev->dev_private;
5234
5235	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5236		   I965_RCC_CLOCK_GATE_DISABLE |
5237		   I965_RCPB_CLOCK_GATE_DISABLE |
5238		   I965_ISC_CLOCK_GATE_DISABLE |
5239		   I965_FBC_CLOCK_GATE_DISABLE);
5240	I915_WRITE(RENCLK_GATE_D2, 0);
5241	I915_WRITE(MI_ARB_STATE,
5242		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
 
 
 
5243}
5244
5245static void gen3_init_clock_gating(struct drm_device *dev)
5246{
5247	struct drm_i915_private *dev_priv = dev->dev_private;
5248	u32 dstate = I915_READ(D_STATE);
5249
5250	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5251		DSTATE_DOT_CLOCK_GATING;
5252	I915_WRITE(D_STATE, dstate);
5253
5254	if (IS_PINEVIEW(dev))
5255		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5256
5257	/* IIR "flip pending" means done if this bit is set */
5258	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
 
 
 
 
 
 
 
 
 
5259}
5260
5261static void i85x_init_clock_gating(struct drm_device *dev)
5262{
5263	struct drm_i915_private *dev_priv = dev->dev_private;
5264
5265	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
 
 
 
 
 
 
 
5266}
5267
5268static void i830_init_clock_gating(struct drm_device *dev)
5269{
5270	struct drm_i915_private *dev_priv = dev->dev_private;
5271
5272	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
 
 
 
 
5273}
5274
5275void intel_init_clock_gating(struct drm_device *dev)
5276{
5277	struct drm_i915_private *dev_priv = dev->dev_private;
5278
5279	dev_priv->display.init_clock_gating(dev);
 
5280}
5281
5282void intel_suspend_hw(struct drm_device *dev)
5283{
5284	if (HAS_PCH_LPT(dev))
5285		lpt_suspend_hw(dev);
5286}
5287
5288#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
5289	for (i = 0;							\
5290	     i < (power_domains)->power_well_count &&			\
5291		 ((power_well) = &(power_domains)->power_wells[i]);	\
5292	     i++)							\
5293		if ((power_well)->domains & (domain_mask))
5294
5295#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5296	for (i = (power_domains)->power_well_count - 1;			 \
5297	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5298	     i--)							 \
5299		if ((power_well)->domains & (domain_mask))
5300
5301/**
5302 * We should only use the power well if we explicitly asked the hardware to
5303 * enable it, so check if it's enabled and also check if we've requested it to
5304 * be enabled.
5305 */
5306static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5307				   struct i915_power_well *power_well)
5308{
5309	return I915_READ(HSW_PWR_WELL_DRIVER) ==
5310		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5311}
5312
5313bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5314				    enum intel_display_power_domain domain)
5315{
5316	struct i915_power_domains *power_domains;
5317
5318	power_domains = &dev_priv->power_domains;
5319
5320	return power_domains->domain_use_count[domain];
5321}
5322
5323bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5324				 enum intel_display_power_domain domain)
5325{
5326	struct i915_power_domains *power_domains;
5327	struct i915_power_well *power_well;
5328	bool is_enabled;
5329	int i;
5330
5331	if (dev_priv->pm.suspended)
5332		return false;
5333
5334	power_domains = &dev_priv->power_domains;
5335
5336	is_enabled = true;
5337
5338	mutex_lock(&power_domains->lock);
5339	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5340		if (power_well->always_on)
5341			continue;
5342
5343		if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5344			is_enabled = false;
5345			break;
5346		}
5347	}
5348	mutex_unlock(&power_domains->lock);
5349
5350	return is_enabled;
5351}
5352
5353/*
5354 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5355 * when not needed anymore. We have 4 registers that can request the power well
5356 * to be enabled, and it will only be disabled if none of the registers is
5357 * requesting it to be enabled.
5358 */
5359static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5360{
5361	struct drm_device *dev = dev_priv->dev;
5362	unsigned long irqflags;
5363
5364	/*
5365	 * After we re-enable the power well, if we touch VGA register 0x3d5
5366	 * we'll get unclaimed register interrupts. This stops after we write
5367	 * anything to the VGA MSR register. The vgacon module uses this
5368	 * register all the time, so if we unbind our driver and, as a
5369	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
5370	 * console_unlock(). So make here we touch the VGA MSR register, making
5371	 * sure vgacon can keep working normally without triggering interrupts
5372	 * and error messages.
5373	 */
5374	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5375	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5376	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5377
5378	if (IS_BROADWELL(dev)) {
5379		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5380		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5381			   dev_priv->de_irq_mask[PIPE_B]);
5382		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5383			   ~dev_priv->de_irq_mask[PIPE_B] |
5384			   GEN8_PIPE_VBLANK);
5385		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5386			   dev_priv->de_irq_mask[PIPE_C]);
5387		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5388			   ~dev_priv->de_irq_mask[PIPE_C] |
5389			   GEN8_PIPE_VBLANK);
5390		POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5391		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5392	}
5393}
5394
5395static void reset_vblank_counter(struct drm_device *dev, enum pipe pipe)
5396{
5397	assert_spin_locked(&dev->vbl_lock);
5398
5399	dev->vblank[pipe].last = 0;
5400}
5401
5402static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5403{
5404	struct drm_device *dev = dev_priv->dev;
5405	enum pipe pipe;
5406	unsigned long irqflags;
5407
5408	/*
5409	 * After this, the registers on the pipes that are part of the power
5410	 * well will become zero, so we have to adjust our counters according to
5411	 * that.
5412	 *
5413	 * FIXME: Should we do this in general in drm_vblank_post_modeset?
5414	 */
5415	spin_lock_irqsave(&dev->vbl_lock, irqflags);
5416	for_each_pipe(pipe)
5417		if (pipe != PIPE_A)
5418			reset_vblank_counter(dev, pipe);
5419	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5420}
5421
5422static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5423			       struct i915_power_well *power_well, bool enable)
5424{
5425	bool is_enabled, enable_requested;
5426	uint32_t tmp;
5427
5428	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5429	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5430	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5431
5432	if (enable) {
5433		if (!enable_requested)
5434			I915_WRITE(HSW_PWR_WELL_DRIVER,
5435				   HSW_PWR_WELL_ENABLE_REQUEST);
5436
5437		if (!is_enabled) {
5438			DRM_DEBUG_KMS("Enabling power well\n");
5439			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5440				      HSW_PWR_WELL_STATE_ENABLED), 20))
5441				DRM_ERROR("Timeout enabling power well\n");
5442		}
5443
5444		hsw_power_well_post_enable(dev_priv);
5445	} else {
5446		if (enable_requested) {
5447			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5448			POSTING_READ(HSW_PWR_WELL_DRIVER);
5449			DRM_DEBUG_KMS("Requesting to disable the power well\n");
5450
5451			hsw_power_well_post_disable(dev_priv);
5452		}
5453	}
5454}
5455
5456static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5457				   struct i915_power_well *power_well)
5458{
5459	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5460
5461	/*
5462	 * We're taking over the BIOS, so clear any requests made by it since
5463	 * the driver is in charge now.
5464	 */
5465	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5466		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5467}
5468
5469static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5470				  struct i915_power_well *power_well)
5471{
5472	hsw_set_power_well(dev_priv, power_well, true);
5473}
5474
5475static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5476				   struct i915_power_well *power_well)
5477{
5478	hsw_set_power_well(dev_priv, power_well, false);
5479}
5480
5481static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5482					   struct i915_power_well *power_well)
5483{
5484}
5485
5486static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5487					     struct i915_power_well *power_well)
5488{
5489	return true;
5490}
5491
5492static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5493			       struct i915_power_well *power_well, bool enable)
5494{
5495	enum punit_power_well power_well_id = power_well->data;
5496	u32 mask;
5497	u32 state;
5498	u32 ctrl;
5499
5500	mask = PUNIT_PWRGT_MASK(power_well_id);
5501	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5502			 PUNIT_PWRGT_PWR_GATE(power_well_id);
5503
5504	mutex_lock(&dev_priv->rps.hw_lock);
5505
5506#define COND \
5507	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5508
5509	if (COND)
5510		goto out;
5511
5512	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5513	ctrl &= ~mask;
5514	ctrl |= state;
5515	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5516
5517	if (wait_for(COND, 100))
5518		DRM_ERROR("timout setting power well state %08x (%08x)\n",
5519			  state,
5520			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5521
5522#undef COND
5523
5524out:
5525	mutex_unlock(&dev_priv->rps.hw_lock);
5526}
5527
5528static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5529				   struct i915_power_well *power_well)
5530{
5531	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5532}
5533
5534static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5535				  struct i915_power_well *power_well)
5536{
5537	vlv_set_power_well(dev_priv, power_well, true);
5538}
5539
5540static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5541				   struct i915_power_well *power_well)
5542{
5543	vlv_set_power_well(dev_priv, power_well, false);
5544}
5545
5546static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5547				   struct i915_power_well *power_well)
5548{
5549	int power_well_id = power_well->data;
5550	bool enabled = false;
5551	u32 mask;
5552	u32 state;
5553	u32 ctrl;
5554
5555	mask = PUNIT_PWRGT_MASK(power_well_id);
5556	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5557
5558	mutex_lock(&dev_priv->rps.hw_lock);
5559
5560	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5561	/*
5562	 * We only ever set the power-on and power-gate states, anything
5563	 * else is unexpected.
5564	 */
5565	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5566		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5567	if (state == ctrl)
5568		enabled = true;
5569
5570	/*
5571	 * A transient state at this point would mean some unexpected party
5572	 * is poking at the power controls too.
5573	 */
5574	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5575	WARN_ON(ctrl != state);
5576
5577	mutex_unlock(&dev_priv->rps.hw_lock);
5578
5579	return enabled;
5580}
5581
5582static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5583					  struct i915_power_well *power_well)
5584{
5585	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5586
5587	vlv_set_power_well(dev_priv, power_well, true);
5588
5589	spin_lock_irq(&dev_priv->irq_lock);
5590	valleyview_enable_display_irqs(dev_priv);
5591	spin_unlock_irq(&dev_priv->irq_lock);
5592
5593	/*
5594	 * During driver initialization we need to defer enabling hotplug
5595	 * processing until fbdev is set up.
5596	 */
5597	if (dev_priv->enable_hotplug_processing)
5598		intel_hpd_init(dev_priv->dev);
5599
5600	i915_redisable_vga_power_on(dev_priv->dev);
5601}
5602
5603static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5604					   struct i915_power_well *power_well)
5605{
5606	struct drm_device *dev = dev_priv->dev;
5607	enum pipe pipe;
5608
5609	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5610
5611	spin_lock_irq(&dev_priv->irq_lock);
5612	for_each_pipe(pipe)
5613		__intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
5614
5615	valleyview_disable_display_irqs(dev_priv);
5616	spin_unlock_irq(&dev_priv->irq_lock);
5617
5618	spin_lock_irq(&dev->vbl_lock);
5619	for_each_pipe(pipe)
5620		reset_vblank_counter(dev, pipe);
5621	spin_unlock_irq(&dev->vbl_lock);
5622
5623	vlv_set_power_well(dev_priv, power_well, false);
5624}
5625
5626static void check_power_well_state(struct drm_i915_private *dev_priv,
5627				   struct i915_power_well *power_well)
5628{
5629	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5630
5631	if (power_well->always_on || !i915.disable_power_well) {
5632		if (!enabled)
5633			goto mismatch;
5634
5635		return;
5636	}
5637
5638	if (enabled != (power_well->count > 0))
5639		goto mismatch;
5640
5641	return;
5642
5643mismatch:
5644	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5645		  power_well->name, power_well->always_on, enabled,
5646		  power_well->count, i915.disable_power_well);
5647}
5648
5649void intel_display_power_get(struct drm_i915_private *dev_priv,
5650			     enum intel_display_power_domain domain)
5651{
5652	struct i915_power_domains *power_domains;
5653	struct i915_power_well *power_well;
5654	int i;
5655
5656	intel_runtime_pm_get(dev_priv);
5657
5658	power_domains = &dev_priv->power_domains;
5659
5660	mutex_lock(&power_domains->lock);
5661
5662	for_each_power_well(i, power_well, BIT(domain), power_domains) {
5663		if (!power_well->count++) {
5664			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5665			power_well->ops->enable(dev_priv, power_well);
5666		}
5667
5668		check_power_well_state(dev_priv, power_well);
5669	}
5670
5671	power_domains->domain_use_count[domain]++;
5672
5673	mutex_unlock(&power_domains->lock);
5674}
5675
5676void intel_display_power_put(struct drm_i915_private *dev_priv,
5677			     enum intel_display_power_domain domain)
5678{
5679	struct i915_power_domains *power_domains;
5680	struct i915_power_well *power_well;
5681	int i;
5682
5683	power_domains = &dev_priv->power_domains;
5684
5685	mutex_lock(&power_domains->lock);
5686
5687	WARN_ON(!power_domains->domain_use_count[domain]);
5688	power_domains->domain_use_count[domain]--;
5689
5690	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5691		WARN_ON(!power_well->count);
5692
5693		if (!--power_well->count && i915.disable_power_well) {
5694			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
5695			power_well->ops->disable(dev_priv, power_well);
5696		}
5697
5698		check_power_well_state(dev_priv, power_well);
5699	}
5700
5701	mutex_unlock(&power_domains->lock);
5702
5703	intel_runtime_pm_put(dev_priv);
5704}
5705
5706static struct i915_power_domains *hsw_pwr;
5707
5708/* Display audio driver power well request */
5709void i915_request_power_well(void)
5710{
5711	struct drm_i915_private *dev_priv;
5712
5713	if (WARN_ON(!hsw_pwr))
5714		return;
5715
5716	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5717				power_domains);
5718	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
5719}
5720EXPORT_SYMBOL_GPL(i915_request_power_well);
5721
5722/* Display audio driver power well release */
5723void i915_release_power_well(void)
5724{
5725	struct drm_i915_private *dev_priv;
5726
5727	if (WARN_ON(!hsw_pwr))
5728		return;
5729
5730	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5731				power_domains);
5732	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
5733}
5734EXPORT_SYMBOL_GPL(i915_release_power_well);
5735
5736#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
5737
5738#define HSW_ALWAYS_ON_POWER_DOMAINS (			\
5739	BIT(POWER_DOMAIN_PIPE_A) |			\
5740	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
5741	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
5742	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
5743	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
5744	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
5745	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
5746	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
5747	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
5748	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
5749	BIT(POWER_DOMAIN_PORT_CRT) |			\
5750	BIT(POWER_DOMAIN_INIT))
5751#define HSW_DISPLAY_POWER_DOMAINS (				\
5752	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
5753	BIT(POWER_DOMAIN_INIT))
5754
5755#define BDW_ALWAYS_ON_POWER_DOMAINS (			\
5756	HSW_ALWAYS_ON_POWER_DOMAINS |			\
5757	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
5758#define BDW_DISPLAY_POWER_DOMAINS (				\
5759	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
5760	BIT(POWER_DOMAIN_INIT))
5761
5762#define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
5763#define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK
5764
5765#define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
5766	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
5767	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
5768	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
5769	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
5770	BIT(POWER_DOMAIN_PORT_CRT) |		\
5771	BIT(POWER_DOMAIN_INIT))
5772
5773#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
5774	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
5775	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
5776	BIT(POWER_DOMAIN_INIT))
5777
5778#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
5779	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
5780	BIT(POWER_DOMAIN_INIT))
5781
5782#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
5783	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
5784	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
5785	BIT(POWER_DOMAIN_INIT))
5786
5787#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
5788	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
5789	BIT(POWER_DOMAIN_INIT))
5790
5791static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
5792	.sync_hw = i9xx_always_on_power_well_noop,
5793	.enable = i9xx_always_on_power_well_noop,
5794	.disable = i9xx_always_on_power_well_noop,
5795	.is_enabled = i9xx_always_on_power_well_enabled,
5796};
5797
5798static struct i915_power_well i9xx_always_on_power_well[] = {
5799	{
5800		.name = "always-on",
5801		.always_on = 1,
5802		.domains = POWER_DOMAIN_MASK,
5803		.ops = &i9xx_always_on_power_well_ops,
5804	},
5805};
5806
5807static const struct i915_power_well_ops hsw_power_well_ops = {
5808	.sync_hw = hsw_power_well_sync_hw,
5809	.enable = hsw_power_well_enable,
5810	.disable = hsw_power_well_disable,
5811	.is_enabled = hsw_power_well_enabled,
5812};
5813
5814static struct i915_power_well hsw_power_wells[] = {
5815	{
5816		.name = "always-on",
5817		.always_on = 1,
5818		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5819		.ops = &i9xx_always_on_power_well_ops,
5820	},
5821	{
5822		.name = "display",
5823		.domains = HSW_DISPLAY_POWER_DOMAINS,
5824		.ops = &hsw_power_well_ops,
5825	},
5826};
5827
5828static struct i915_power_well bdw_power_wells[] = {
5829	{
5830		.name = "always-on",
5831		.always_on = 1,
5832		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5833		.ops = &i9xx_always_on_power_well_ops,
5834	},
5835	{
5836		.name = "display",
5837		.domains = BDW_DISPLAY_POWER_DOMAINS,
5838		.ops = &hsw_power_well_ops,
5839	},
5840};
5841
5842static const struct i915_power_well_ops vlv_display_power_well_ops = {
5843	.sync_hw = vlv_power_well_sync_hw,
5844	.enable = vlv_display_power_well_enable,
5845	.disable = vlv_display_power_well_disable,
5846	.is_enabled = vlv_power_well_enabled,
5847};
5848
5849static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
5850	.sync_hw = vlv_power_well_sync_hw,
5851	.enable = vlv_power_well_enable,
5852	.disable = vlv_power_well_disable,
5853	.is_enabled = vlv_power_well_enabled,
5854};
5855
5856static struct i915_power_well vlv_power_wells[] = {
5857	{
5858		.name = "always-on",
5859		.always_on = 1,
5860		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
5861		.ops = &i9xx_always_on_power_well_ops,
5862	},
5863	{
5864		.name = "display",
5865		.domains = VLV_DISPLAY_POWER_DOMAINS,
5866		.data = PUNIT_POWER_WELL_DISP2D,
5867		.ops = &vlv_display_power_well_ops,
5868	},
5869	{
5870		.name = "dpio-common",
5871		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
5872		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
5873		.ops = &vlv_dpio_power_well_ops,
5874	},
5875	{
5876		.name = "dpio-tx-b-01",
5877		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5878			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5879			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5880			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5881		.ops = &vlv_dpio_power_well_ops,
5882		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
5883	},
5884	{
5885		.name = "dpio-tx-b-23",
5886		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5887			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5888			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5889			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5890		.ops = &vlv_dpio_power_well_ops,
5891		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
5892	},
5893	{
5894		.name = "dpio-tx-c-01",
5895		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5896			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5897			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5898			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5899		.ops = &vlv_dpio_power_well_ops,
5900		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
5901	},
5902	{
5903		.name = "dpio-tx-c-23",
5904		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5905			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5906			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5907			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5908		.ops = &vlv_dpio_power_well_ops,
5909		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
5910	},
5911};
5912
5913#define set_power_wells(power_domains, __power_wells) ({		\
5914	(power_domains)->power_wells = (__power_wells);			\
5915	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
5916})
5917
5918int intel_power_domains_init(struct drm_i915_private *dev_priv)
5919{
5920	struct i915_power_domains *power_domains = &dev_priv->power_domains;
5921
5922	mutex_init(&power_domains->lock);
5923
5924	/*
5925	 * The enabling order will be from lower to higher indexed wells,
5926	 * the disabling order is reversed.
5927	 */
5928	if (IS_HASWELL(dev_priv->dev)) {
5929		set_power_wells(power_domains, hsw_power_wells);
5930		hsw_pwr = power_domains;
5931	} else if (IS_BROADWELL(dev_priv->dev)) {
5932		set_power_wells(power_domains, bdw_power_wells);
5933		hsw_pwr = power_domains;
5934	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
5935		set_power_wells(power_domains, vlv_power_wells);
5936	} else {
5937		set_power_wells(power_domains, i9xx_always_on_power_well);
5938	}
5939
5940	return 0;
5941}
5942
5943void intel_power_domains_remove(struct drm_i915_private *dev_priv)
5944{
5945	hsw_pwr = NULL;
5946}
5947
5948static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
5949{
5950	struct i915_power_domains *power_domains = &dev_priv->power_domains;
5951	struct i915_power_well *power_well;
5952	int i;
5953
5954	mutex_lock(&power_domains->lock);
5955	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
5956		power_well->ops->sync_hw(dev_priv, power_well);
5957	mutex_unlock(&power_domains->lock);
5958}
5959
5960void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
5961{
5962	/* For now, we need the power well to be always enabled. */
5963	intel_display_set_init_power(dev_priv, true);
5964	intel_power_domains_resume(dev_priv);
5965}
5966
5967void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5968{
5969	intel_runtime_pm_get(dev_priv);
5970}
5971
5972void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5973{
5974	intel_runtime_pm_put(dev_priv);
5975}
5976
5977void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5978{
5979	struct drm_device *dev = dev_priv->dev;
5980	struct device *device = &dev->pdev->dev;
5981
5982	if (!HAS_RUNTIME_PM(dev))
5983		return;
5984
5985	pm_runtime_get_sync(device);
5986	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
5987}
5988
5989void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5990{
5991	struct drm_device *dev = dev_priv->dev;
5992	struct device *device = &dev->pdev->dev;
5993
5994	if (!HAS_RUNTIME_PM(dev))
5995		return;
5996
5997	pm_runtime_mark_last_busy(device);
5998	pm_runtime_put_autosuspend(device);
5999}
6000
6001void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6002{
6003	struct drm_device *dev = dev_priv->dev;
6004	struct device *device = &dev->pdev->dev;
6005
6006	if (!HAS_RUNTIME_PM(dev))
6007		return;
6008
6009	pm_runtime_set_active(device);
6010
6011	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6012	pm_runtime_mark_last_busy(device);
6013	pm_runtime_use_autosuspend(device);
6014
6015	pm_runtime_put_autosuspend(device);
6016}
6017
6018void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6019{
6020	struct drm_device *dev = dev_priv->dev;
6021	struct device *device = &dev->pdev->dev;
6022
6023	if (!HAS_RUNTIME_PM(dev))
6024		return;
6025
6026	/* Make sure we're not suspended first. */
6027	pm_runtime_get_sync(device);
6028	pm_runtime_disable(device);
6029}
6030
6031/* Set up chip specific power management-related functions */
6032void intel_init_pm(struct drm_device *dev)
6033{
6034	struct drm_i915_private *dev_priv = dev->dev_private;
6035
6036	if (HAS_FBC(dev)) {
6037		if (INTEL_INFO(dev)->gen >= 7) {
6038			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6039			dev_priv->display.enable_fbc = gen7_enable_fbc;
6040			dev_priv->display.disable_fbc = ironlake_disable_fbc;
6041		} else if (INTEL_INFO(dev)->gen >= 5) {
6042			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6043			dev_priv->display.enable_fbc = ironlake_enable_fbc;
6044			dev_priv->display.disable_fbc = ironlake_disable_fbc;
6045		} else if (IS_GM45(dev)) {
6046			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6047			dev_priv->display.enable_fbc = g4x_enable_fbc;
6048			dev_priv->display.disable_fbc = g4x_disable_fbc;
6049		} else {
6050			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6051			dev_priv->display.enable_fbc = i8xx_enable_fbc;
6052			dev_priv->display.disable_fbc = i8xx_disable_fbc;
6053
6054			/* This value was pulled out of someone's hat */
6055			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6056		}
6057	}
6058
6059	/* For cxsr */
6060	if (IS_PINEVIEW(dev))
6061		i915_pineview_get_mem_freq(dev);
6062	else if (IS_GEN5(dev))
6063		i915_ironlake_get_mem_freq(dev);
6064
6065	/* For FIFO watermark updates */
6066	if (HAS_PCH_SPLIT(dev)) {
 
 
 
 
 
 
 
6067		ilk_setup_wm_latency(dev);
6068
6069		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6070		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6071		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6072		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6073			dev_priv->display.update_wm = ilk_update_wm;
6074			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
 
6075		} else {
6076			DRM_DEBUG_KMS("Failed to read display plane latency. "
6077				      "Disable CxSR\n");
6078		}
6079
6080		if (IS_GEN5(dev))
6081			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6082		else if (IS_GEN6(dev))
6083			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6084		else if (IS_IVYBRIDGE(dev))
6085			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6086		else if (IS_HASWELL(dev))
6087			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6088		else if (INTEL_INFO(dev)->gen == 8)
6089			dev_priv->display.init_clock_gating = gen8_init_clock_gating;
 
 
 
 
 
 
6090	} else if (IS_VALLEYVIEW(dev)) {
6091		dev_priv->display.update_wm = valleyview_update_wm;
 
 
6092		dev_priv->display.init_clock_gating =
6093			valleyview_init_clock_gating;
6094	} else if (IS_PINEVIEW(dev)) {
6095		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6096					    dev_priv->is_ddr3,
6097					    dev_priv->fsb_freq,
6098					    dev_priv->mem_freq)) {
6099			DRM_INFO("failed to find known CxSR latency "
6100				 "(found ddr%s fsb freq %d, mem freq %d), "
6101				 "disabling CxSR\n",
6102				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6103				 dev_priv->fsb_freq, dev_priv->mem_freq);
6104			/* Disable CxSR and never update its watermark again */
6105			pineview_disable_cxsr(dev);
6106			dev_priv->display.update_wm = NULL;
6107		} else
6108			dev_priv->display.update_wm = pineview_update_wm;
6109		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6110	} else if (IS_G4X(dev)) {
6111		dev_priv->display.update_wm = g4x_update_wm;
6112		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6113	} else if (IS_GEN4(dev)) {
6114		dev_priv->display.update_wm = i965_update_wm;
6115		if (IS_CRESTLINE(dev))
6116			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6117		else if (IS_BROADWATER(dev))
6118			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6119	} else if (IS_GEN3(dev)) {
6120		dev_priv->display.update_wm = i9xx_update_wm;
6121		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6122		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6123	} else if (IS_GEN2(dev)) {
6124		if (INTEL_INFO(dev)->num_pipes == 1) {
6125			dev_priv->display.update_wm = i845_update_wm;
6126			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6127		} else {
6128			dev_priv->display.update_wm = i9xx_update_wm;
6129			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6130		}
6131
6132		if (IS_I85X(dev) || IS_I865G(dev))
6133			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6134		else
6135			dev_priv->display.init_clock_gating = i830_init_clock_gating;
6136	} else {
6137		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6138	}
6139}
6140
6141int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6142{
6143	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6144
6145	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6146		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6147		return -EAGAIN;
6148	}
6149
6150	I915_WRITE(GEN6_PCODE_DATA, *val);
 
6151	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6152
6153	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6154		     500)) {
6155		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6156		return -ETIMEDOUT;
6157	}
6158
6159	*val = I915_READ(GEN6_PCODE_DATA);
6160	I915_WRITE(GEN6_PCODE_DATA, 0);
6161
6162	return 0;
6163}
6164
6165int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6166{
6167	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6168
6169	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6170		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6171		return -EAGAIN;
6172	}
6173
6174	I915_WRITE(GEN6_PCODE_DATA, val);
6175	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6176
6177	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6178		     500)) {
6179		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6180		return -ETIMEDOUT;
6181	}
6182
6183	I915_WRITE(GEN6_PCODE_DATA, 0);
6184
6185	return 0;
6186}
6187
6188int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6189{
6190	int div;
6191
6192	/* 4 x czclk */
6193	switch (dev_priv->mem_freq) {
6194	case 800:
6195		div = 10;
6196		break;
6197	case 1066:
6198		div = 12;
6199		break;
6200	case 1333:
6201		div = 16;
6202		break;
6203	default:
6204		return -1;
6205	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6206
6207	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6208}
6209
6210int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6211{
6212	int mul;
6213
6214	/* 4 x czclk */
6215	switch (dev_priv->mem_freq) {
6216	case 800:
6217		mul = 10;
6218		break;
6219	case 1066:
6220		mul = 12;
6221		break;
6222	case 1333:
6223		mul = 16;
6224		break;
6225	default:
6226		return -1;
6227	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6228
6229	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
 
6230}
6231
6232void intel_pm_setup(struct drm_device *dev)
6233{
6234	struct drm_i915_private *dev_priv = dev->dev_private;
6235
6236	mutex_init(&dev_priv->rps.hw_lock);
 
6237
6238	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6239			  intel_gen6_powersave_work);
 
 
 
6240
6241	dev_priv->pm.suspended = false;
6242	dev_priv->pm.irqs_disabled = false;
 
6243}