Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
 
 
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75int selinux_policycap_alwaysnetwork;
  76
  77static DEFINE_RWLOCK(policy_rwlock);
  78
  79static struct sidtab sidtab;
  80struct policydb policydb;
  81int ss_initialized;
  82
  83/*
  84 * The largest sequence number that has been used when
  85 * providing an access decision to the access vector cache.
  86 * The sequence number only changes when a policy change
  87 * occurs.
  88 */
  89static u32 latest_granting;
  90
  91/* Forward declaration. */
  92static int context_struct_to_string(struct context *context, char **scontext,
  93				    u32 *scontext_len);
  94
  95static void context_struct_compute_av(struct context *scontext,
  96					struct context *tcontext,
  97					u16 tclass,
  98					struct av_decision *avd,
  99					struct extended_perms *xperms);
 100
 101struct selinux_mapping {
 102	u16 value; /* policy value */
 103	unsigned num_perms;
 104	u32 perms[sizeof(u32) * 8];
 105};
 106
 107static struct selinux_mapping *current_mapping;
 108static u16 current_mapping_size;
 109
 110static int selinux_set_mapping(struct policydb *pol,
 111			       struct security_class_mapping *map,
 112			       struct selinux_mapping **out_map_p,
 113			       u16 *out_map_size)
 114{
 115	struct selinux_mapping *out_map = NULL;
 116	size_t size = sizeof(struct selinux_mapping);
 117	u16 i, j;
 118	unsigned k;
 119	bool print_unknown_handle = false;
 120
 121	/* Find number of classes in the input mapping */
 122	if (!map)
 123		return -EINVAL;
 124	i = 0;
 125	while (map[i].name)
 126		i++;
 127
 128	/* Allocate space for the class records, plus one for class zero */
 129	out_map = kcalloc(++i, size, GFP_ATOMIC);
 130	if (!out_map)
 131		return -ENOMEM;
 132
 133	/* Store the raw class and permission values */
 134	j = 0;
 135	while (map[j].name) {
 136		struct security_class_mapping *p_in = map + (j++);
 137		struct selinux_mapping *p_out = out_map + j;
 138
 139		/* An empty class string skips ahead */
 140		if (!strcmp(p_in->name, "")) {
 141			p_out->num_perms = 0;
 142			continue;
 143		}
 144
 145		p_out->value = string_to_security_class(pol, p_in->name);
 146		if (!p_out->value) {
 147			printk(KERN_INFO
 148			       "SELinux:  Class %s not defined in policy.\n",
 149			       p_in->name);
 150			if (pol->reject_unknown)
 151				goto err;
 152			p_out->num_perms = 0;
 153			print_unknown_handle = true;
 154			continue;
 155		}
 156
 157		k = 0;
 158		while (p_in->perms && p_in->perms[k]) {
 159			/* An empty permission string skips ahead */
 160			if (!*p_in->perms[k]) {
 161				k++;
 162				continue;
 163			}
 164			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 165							    p_in->perms[k]);
 166			if (!p_out->perms[k]) {
 167				printk(KERN_INFO
 168				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 169				       p_in->perms[k], p_in->name);
 170				if (pol->reject_unknown)
 171					goto err;
 172				print_unknown_handle = true;
 173			}
 174
 175			k++;
 176		}
 177		p_out->num_perms = k;
 178	}
 179
 180	if (print_unknown_handle)
 181		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 182		       pol->allow_unknown ? "allowed" : "denied");
 183
 184	*out_map_p = out_map;
 185	*out_map_size = i;
 186	return 0;
 187err:
 188	kfree(out_map);
 189	return -EINVAL;
 190}
 191
 192/*
 193 * Get real, policy values from mapped values
 194 */
 195
 196static u16 unmap_class(u16 tclass)
 197{
 198	if (tclass < current_mapping_size)
 199		return current_mapping[tclass].value;
 200
 201	return tclass;
 202}
 203
 204/*
 205 * Get kernel value for class from its policy value
 206 */
 207static u16 map_class(u16 pol_value)
 208{
 209	u16 i;
 210
 211	for (i = 1; i < current_mapping_size; i++) {
 212		if (current_mapping[i].value == pol_value)
 213			return i;
 214	}
 215
 216	return SECCLASS_NULL;
 217}
 218
 219static void map_decision(u16 tclass, struct av_decision *avd,
 220			 int allow_unknown)
 221{
 222	if (tclass < current_mapping_size) {
 223		unsigned i, n = current_mapping[tclass].num_perms;
 224		u32 result;
 225
 226		for (i = 0, result = 0; i < n; i++) {
 227			if (avd->allowed & current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229			if (allow_unknown && !current_mapping[tclass].perms[i])
 230				result |= 1<<i;
 231		}
 232		avd->allowed = result;
 233
 234		for (i = 0, result = 0; i < n; i++)
 235			if (avd->auditallow & current_mapping[tclass].perms[i])
 236				result |= 1<<i;
 237		avd->auditallow = result;
 238
 239		for (i = 0, result = 0; i < n; i++) {
 240			if (avd->auditdeny & current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242			if (!allow_unknown && !current_mapping[tclass].perms[i])
 243				result |= 1<<i;
 244		}
 245		/*
 246		 * In case the kernel has a bug and requests a permission
 247		 * between num_perms and the maximum permission number, we
 248		 * should audit that denial
 249		 */
 250		for (; i < (sizeof(u32)*8); i++)
 251			result |= 1<<i;
 252		avd->auditdeny = result;
 253	}
 254}
 255
 256int security_mls_enabled(void)
 257{
 258	return policydb.mls_enabled;
 259}
 260
 261/*
 262 * Return the boolean value of a constraint expression
 263 * when it is applied to the specified source and target
 264 * security contexts.
 265 *
 266 * xcontext is a special beast...  It is used by the validatetrans rules
 267 * only.  For these rules, scontext is the context before the transition,
 268 * tcontext is the context after the transition, and xcontext is the context
 269 * of the process performing the transition.  All other callers of
 270 * constraint_expr_eval should pass in NULL for xcontext.
 271 */
 272static int constraint_expr_eval(struct context *scontext,
 273				struct context *tcontext,
 274				struct context *xcontext,
 275				struct constraint_expr *cexpr)
 276{
 277	u32 val1, val2;
 278	struct context *c;
 279	struct role_datum *r1, *r2;
 280	struct mls_level *l1, *l2;
 281	struct constraint_expr *e;
 282	int s[CEXPR_MAXDEPTH];
 283	int sp = -1;
 284
 285	for (e = cexpr; e; e = e->next) {
 286		switch (e->expr_type) {
 287		case CEXPR_NOT:
 288			BUG_ON(sp < 0);
 289			s[sp] = !s[sp];
 290			break;
 291		case CEXPR_AND:
 292			BUG_ON(sp < 1);
 293			sp--;
 294			s[sp] &= s[sp + 1];
 295			break;
 296		case CEXPR_OR:
 297			BUG_ON(sp < 1);
 298			sp--;
 299			s[sp] |= s[sp + 1];
 300			break;
 301		case CEXPR_ATTR:
 302			if (sp == (CEXPR_MAXDEPTH - 1))
 303				return 0;
 304			switch (e->attr) {
 305			case CEXPR_USER:
 306				val1 = scontext->user;
 307				val2 = tcontext->user;
 308				break;
 309			case CEXPR_TYPE:
 310				val1 = scontext->type;
 311				val2 = tcontext->type;
 312				break;
 313			case CEXPR_ROLE:
 314				val1 = scontext->role;
 315				val2 = tcontext->role;
 316				r1 = policydb.role_val_to_struct[val1 - 1];
 317				r2 = policydb.role_val_to_struct[val2 - 1];
 318				switch (e->op) {
 319				case CEXPR_DOM:
 320					s[++sp] = ebitmap_get_bit(&r1->dominates,
 321								  val2 - 1);
 322					continue;
 323				case CEXPR_DOMBY:
 324					s[++sp] = ebitmap_get_bit(&r2->dominates,
 325								  val1 - 1);
 326					continue;
 327				case CEXPR_INCOMP:
 328					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 329								    val2 - 1) &&
 330						   !ebitmap_get_bit(&r2->dominates,
 331								    val1 - 1));
 332					continue;
 333				default:
 334					break;
 335				}
 336				break;
 337			case CEXPR_L1L2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[0]);
 340				goto mls_ops;
 341			case CEXPR_L1H2:
 342				l1 = &(scontext->range.level[0]);
 343				l2 = &(tcontext->range.level[1]);
 344				goto mls_ops;
 345			case CEXPR_H1L2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[0]);
 348				goto mls_ops;
 349			case CEXPR_H1H2:
 350				l1 = &(scontext->range.level[1]);
 351				l2 = &(tcontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L1H1:
 354				l1 = &(scontext->range.level[0]);
 355				l2 = &(scontext->range.level[1]);
 356				goto mls_ops;
 357			case CEXPR_L2H2:
 358				l1 = &(tcontext->range.level[0]);
 359				l2 = &(tcontext->range.level[1]);
 360				goto mls_ops;
 361mls_ops:
 362			switch (e->op) {
 363			case CEXPR_EQ:
 364				s[++sp] = mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_NEQ:
 367				s[++sp] = !mls_level_eq(l1, l2);
 368				continue;
 369			case CEXPR_DOM:
 370				s[++sp] = mls_level_dom(l1, l2);
 371				continue;
 372			case CEXPR_DOMBY:
 373				s[++sp] = mls_level_dom(l2, l1);
 374				continue;
 375			case CEXPR_INCOMP:
 376				s[++sp] = mls_level_incomp(l2, l1);
 377				continue;
 378			default:
 379				BUG();
 380				return 0;
 381			}
 382			break;
 383			default:
 384				BUG();
 385				return 0;
 386			}
 387
 388			switch (e->op) {
 389			case CEXPR_EQ:
 390				s[++sp] = (val1 == val2);
 391				break;
 392			case CEXPR_NEQ:
 393				s[++sp] = (val1 != val2);
 394				break;
 395			default:
 396				BUG();
 397				return 0;
 398			}
 399			break;
 400		case CEXPR_NAMES:
 401			if (sp == (CEXPR_MAXDEPTH-1))
 402				return 0;
 403			c = scontext;
 404			if (e->attr & CEXPR_TARGET)
 405				c = tcontext;
 406			else if (e->attr & CEXPR_XTARGET) {
 407				c = xcontext;
 408				if (!c) {
 409					BUG();
 410					return 0;
 411				}
 412			}
 413			if (e->attr & CEXPR_USER)
 414				val1 = c->user;
 415			else if (e->attr & CEXPR_ROLE)
 416				val1 = c->role;
 417			else if (e->attr & CEXPR_TYPE)
 418				val1 = c->type;
 419			else {
 420				BUG();
 421				return 0;
 422			}
 423
 424			switch (e->op) {
 425			case CEXPR_EQ:
 426				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			case CEXPR_NEQ:
 429				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 430				break;
 431			default:
 432				BUG();
 433				return 0;
 434			}
 435			break;
 436		default:
 437			BUG();
 438			return 0;
 439		}
 440	}
 441
 442	BUG_ON(sp != 0);
 443	return s[0];
 444}
 445
 446/*
 447 * security_dump_masked_av - dumps masked permissions during
 448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 449 */
 450static int dump_masked_av_helper(void *k, void *d, void *args)
 451{
 452	struct perm_datum *pdatum = d;
 453	char **permission_names = args;
 454
 455	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 456
 457	permission_names[pdatum->value - 1] = (char *)k;
 458
 459	return 0;
 460}
 461
 462static void security_dump_masked_av(struct context *scontext,
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(current->audit_context,
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct context *scontext,
 541				     struct context *tcontext,
 542				     u16 tclass,
 543				     struct av_decision *avd)
 544{
 545	struct context lo_scontext;
 546	struct context lo_tcontext;
 547	struct av_decision lo_avd;
 548	struct type_datum *source;
 549	struct type_datum *target;
 550	u32 masked = 0;
 551
 552	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 553				    scontext->type - 1);
 554	BUG_ON(!source);
 555
 556	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 557				    tcontext->type - 1);
 558	BUG_ON(!target);
 559
 560	if (source->bounds) {
 561		memset(&lo_avd, 0, sizeof(lo_avd));
 562
 563		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 564		lo_scontext.type = source->bounds;
 565
 566		context_struct_compute_av(&lo_scontext,
 567					  tcontext,
 568					  tclass,
 569					  &lo_avd,
 570					  NULL);
 571		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 572			return;		/* no masked permission */
 573		masked = ~lo_avd.allowed & avd->allowed;
 574	}
 575
 576	if (target->bounds) {
 577		memset(&lo_avd, 0, sizeof(lo_avd));
 578
 579		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 580		lo_tcontext.type = target->bounds;
 581
 582		context_struct_compute_av(scontext,
 583					  &lo_tcontext,
 584					  tclass,
 585					  &lo_avd,
 586					  NULL);
 587		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 588			return;		/* no masked permission */
 589		masked = ~lo_avd.allowed & avd->allowed;
 590	}
 591
 592	if (source->bounds && target->bounds) {
 593		memset(&lo_avd, 0, sizeof(lo_avd));
 594		/*
 595		 * lo_scontext and lo_tcontext are already
 596		 * set up.
 597		 */
 598
 599		context_struct_compute_av(&lo_scontext,
 600					  &lo_tcontext,
 601					  tclass,
 602					  &lo_avd,
 603					  NULL);
 604		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 605			return;		/* no masked permission */
 606		masked = ~lo_avd.allowed & avd->allowed;
 607	}
 608
 609	if (masked) {
 610		/* mask violated permissions */
 611		avd->allowed &= ~masked;
 612
 613		/* audit masked permissions */
 614		security_dump_masked_av(scontext, tcontext,
 615					tclass, masked, "bounds");
 616	}
 617}
 618
 619/*
 620 * flag which drivers have permissions
 621 * only looking for ioctl based extended permssions
 622 */
 623void services_compute_xperms_drivers(
 624		struct extended_perms *xperms,
 625		struct avtab_node *node)
 626{
 627	unsigned int i;
 628
 629	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 630		/* if one or more driver has all permissions allowed */
 631		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 632			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 633	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 634		/* if allowing permissions within a driver */
 635		security_xperm_set(xperms->drivers.p,
 636					node->datum.u.xperms->driver);
 637	}
 638
 639	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 640	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 641		xperms->len = 1;
 642}
 643
 644/*
 645 * Compute access vectors and extended permissions based on a context
 646 * structure pair for the permissions in a particular class.
 647 */
 648static void context_struct_compute_av(struct context *scontext,
 649					struct context *tcontext,
 650					u16 tclass,
 651					struct av_decision *avd,
 652					struct extended_perms *xperms)
 653{
 654	struct constraint_node *constraint;
 655	struct role_allow *ra;
 656	struct avtab_key avkey;
 657	struct avtab_node *node;
 658	struct class_datum *tclass_datum;
 659	struct ebitmap *sattr, *tattr;
 660	struct ebitmap_node *snode, *tnode;
 661	unsigned int i, j;
 662
 663	avd->allowed = 0;
 664	avd->auditallow = 0;
 665	avd->auditdeny = 0xffffffff;
 666	if (xperms) {
 667		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 668		xperms->len = 0;
 669	}
 670
 671	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 672		if (printk_ratelimit())
 673			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 674		return;
 675	}
 676
 677	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 678
 679	/*
 680	 * If a specific type enforcement rule was defined for
 681	 * this permission check, then use it.
 682	 */
 683	avkey.target_class = tclass;
 684	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 685	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 686	BUG_ON(!sattr);
 687	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 688	BUG_ON(!tattr);
 689	ebitmap_for_each_positive_bit(sattr, snode, i) {
 690		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 691			avkey.source_type = i + 1;
 692			avkey.target_type = j + 1;
 693			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 694			     node;
 695			     node = avtab_search_node_next(node, avkey.specified)) {
 696				if (node->key.specified == AVTAB_ALLOWED)
 697					avd->allowed |= node->datum.u.data;
 698				else if (node->key.specified == AVTAB_AUDITALLOW)
 699					avd->auditallow |= node->datum.u.data;
 700				else if (node->key.specified == AVTAB_AUDITDENY)
 701					avd->auditdeny &= node->datum.u.data;
 702				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 703					services_compute_xperms_drivers(xperms, node);
 704			}
 705
 706			/* Check conditional av table for additional permissions */
 707			cond_compute_av(&policydb.te_cond_avtab, &avkey,
 708					avd, xperms);
 709
 710		}
 711	}
 712
 713	/*
 714	 * Remove any permissions prohibited by a constraint (this includes
 715	 * the MLS policy).
 716	 */
 717	constraint = tclass_datum->constraints;
 718	while (constraint) {
 719		if ((constraint->permissions & (avd->allowed)) &&
 720		    !constraint_expr_eval(scontext, tcontext, NULL,
 721					  constraint->expr)) {
 722			avd->allowed &= ~(constraint->permissions);
 723		}
 724		constraint = constraint->next;
 725	}
 726
 727	/*
 728	 * If checking process transition permission and the
 729	 * role is changing, then check the (current_role, new_role)
 730	 * pair.
 731	 */
 732	if (tclass == policydb.process_class &&
 733	    (avd->allowed & policydb.process_trans_perms) &&
 734	    scontext->role != tcontext->role) {
 735		for (ra = policydb.role_allow; ra; ra = ra->next) {
 736			if (scontext->role == ra->role &&
 737			    tcontext->role == ra->new_role)
 738				break;
 739		}
 740		if (!ra)
 741			avd->allowed &= ~policydb.process_trans_perms;
 742	}
 743
 744	/*
 745	 * If the given source and target types have boundary
 746	 * constraint, lazy checks have to mask any violated
 747	 * permission and notice it to userspace via audit.
 748	 */
 749	type_attribute_bounds_av(scontext, tcontext,
 750				 tclass, avd);
 751}
 752
 753static int security_validtrans_handle_fail(struct context *ocontext,
 754					   struct context *ncontext,
 755					   struct context *tcontext,
 756					   u16 tclass)
 757{
 758	char *o = NULL, *n = NULL, *t = NULL;
 759	u32 olen, nlen, tlen;
 760
 761	if (context_struct_to_string(ocontext, &o, &olen))
 762		goto out;
 763	if (context_struct_to_string(ncontext, &n, &nlen))
 764		goto out;
 765	if (context_struct_to_string(tcontext, &t, &tlen))
 766		goto out;
 767	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 768		  "op=security_validate_transition seresult=denied"
 769		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 770		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 771out:
 772	kfree(o);
 773	kfree(n);
 774	kfree(t);
 775
 776	if (!selinux_enforcing)
 777		return 0;
 778	return -EPERM;
 779}
 780
 781static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 782					  u16 orig_tclass, bool user)
 783{
 784	struct context *ocontext;
 785	struct context *ncontext;
 786	struct context *tcontext;
 787	struct class_datum *tclass_datum;
 788	struct constraint_node *constraint;
 789	u16 tclass;
 790	int rc = 0;
 791
 792	if (!ss_initialized)
 793		return 0;
 794
 795	read_lock(&policy_rwlock);
 796
 797	if (!user)
 798		tclass = unmap_class(orig_tclass);
 799	else
 800		tclass = orig_tclass;
 801
 802	if (!tclass || tclass > policydb.p_classes.nprim) {
 
 
 803		rc = -EINVAL;
 804		goto out;
 805	}
 806	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 807
 808	ocontext = sidtab_search(&sidtab, oldsid);
 809	if (!ocontext) {
 810		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 811			__func__, oldsid);
 812		rc = -EINVAL;
 813		goto out;
 814	}
 815
 816	ncontext = sidtab_search(&sidtab, newsid);
 817	if (!ncontext) {
 818		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 819			__func__, newsid);
 820		rc = -EINVAL;
 821		goto out;
 822	}
 823
 824	tcontext = sidtab_search(&sidtab, tasksid);
 825	if (!tcontext) {
 826		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 827			__func__, tasksid);
 828		rc = -EINVAL;
 829		goto out;
 830	}
 831
 832	constraint = tclass_datum->validatetrans;
 833	while (constraint) {
 834		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 835					  constraint->expr)) {
 836			if (user)
 837				rc = -EPERM;
 838			else
 839				rc = security_validtrans_handle_fail(ocontext,
 840								     ncontext,
 841								     tcontext,
 842								     tclass);
 843			goto out;
 844		}
 845		constraint = constraint->next;
 846	}
 847
 848out:
 849	read_unlock(&policy_rwlock);
 850	return rc;
 851}
 852
 853int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 854					u16 tclass)
 855{
 856	return security_compute_validatetrans(oldsid, newsid, tasksid,
 857						tclass, true);
 858}
 859
 860int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 861				 u16 orig_tclass)
 862{
 863	return security_compute_validatetrans(oldsid, newsid, tasksid,
 864						orig_tclass, false);
 865}
 866
 867/*
 868 * security_bounded_transition - check whether the given
 869 * transition is directed to bounded, or not.
 870 * It returns 0, if @newsid is bounded by @oldsid.
 871 * Otherwise, it returns error code.
 872 *
 873 * @oldsid : current security identifier
 874 * @newsid : destinated security identifier
 875 */
 876int security_bounded_transition(u32 old_sid, u32 new_sid)
 877{
 878	struct context *old_context, *new_context;
 879	struct type_datum *type;
 880	int index;
 881	int rc;
 882
 883	read_lock(&policy_rwlock);
 884
 885	rc = -EINVAL;
 886	old_context = sidtab_search(&sidtab, old_sid);
 887	if (!old_context) {
 888		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 889		       __func__, old_sid);
 890		goto out;
 891	}
 892
 893	rc = -EINVAL;
 894	new_context = sidtab_search(&sidtab, new_sid);
 895	if (!new_context) {
 896		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 897		       __func__, new_sid);
 898		goto out;
 899	}
 900
 901	rc = 0;
 902	/* type/domain unchanged */
 903	if (old_context->type == new_context->type)
 904		goto out;
 905
 906	index = new_context->type;
 907	while (true) {
 908		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 909					  index - 1);
 910		BUG_ON(!type);
 911
 912		/* not bounded anymore */
 913		rc = -EPERM;
 914		if (!type->bounds)
 915			break;
 916
 917		/* @newsid is bounded by @oldsid */
 918		rc = 0;
 919		if (type->bounds == old_context->type)
 920			break;
 921
 922		index = type->bounds;
 923	}
 924
 925	if (rc) {
 926		char *old_name = NULL;
 927		char *new_name = NULL;
 928		u32 length;
 929
 930		if (!context_struct_to_string(old_context,
 931					      &old_name, &length) &&
 932		    !context_struct_to_string(new_context,
 933					      &new_name, &length)) {
 934			audit_log(current->audit_context,
 935				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 936				  "op=security_bounded_transition "
 937				  "seresult=denied "
 938				  "oldcontext=%s newcontext=%s",
 939				  old_name, new_name);
 940		}
 941		kfree(new_name);
 942		kfree(old_name);
 943	}
 944out:
 945	read_unlock(&policy_rwlock);
 946
 947	return rc;
 948}
 949
 950static void avd_init(struct av_decision *avd)
 951{
 952	avd->allowed = 0;
 953	avd->auditallow = 0;
 954	avd->auditdeny = 0xffffffff;
 955	avd->seqno = latest_granting;
 956	avd->flags = 0;
 957}
 958
 959void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 960					struct avtab_node *node)
 961{
 962	unsigned int i;
 963
 964	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 965		if (xpermd->driver != node->datum.u.xperms->driver)
 966			return;
 967	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 968		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 969					xpermd->driver))
 970			return;
 971	} else {
 972		BUG();
 973	}
 974
 975	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 976		xpermd->used |= XPERMS_ALLOWED;
 977		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 978			memset(xpermd->allowed->p, 0xff,
 979					sizeof(xpermd->allowed->p));
 980		}
 981		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 982			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 983				xpermd->allowed->p[i] |=
 984					node->datum.u.xperms->perms.p[i];
 985		}
 986	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 987		xpermd->used |= XPERMS_AUDITALLOW;
 988		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 989			memset(xpermd->auditallow->p, 0xff,
 990					sizeof(xpermd->auditallow->p));
 991		}
 992		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 993			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 994				xpermd->auditallow->p[i] |=
 995					node->datum.u.xperms->perms.p[i];
 996		}
 997	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 998		xpermd->used |= XPERMS_DONTAUDIT;
 999		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000			memset(xpermd->dontaudit->p, 0xff,
1001					sizeof(xpermd->dontaudit->p));
1002		}
1003		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005				xpermd->dontaudit->p[i] |=
1006					node->datum.u.xperms->perms.p[i];
1007		}
1008	} else {
1009		BUG();
1010	}
1011}
1012
1013void security_compute_xperms_decision(u32 ssid,
1014				u32 tsid,
1015				u16 orig_tclass,
1016				u8 driver,
1017				struct extended_perms_decision *xpermd)
1018{
1019	u16 tclass;
1020	struct context *scontext, *tcontext;
1021	struct avtab_key avkey;
1022	struct avtab_node *node;
1023	struct ebitmap *sattr, *tattr;
1024	struct ebitmap_node *snode, *tnode;
1025	unsigned int i, j;
1026
1027	xpermd->driver = driver;
1028	xpermd->used = 0;
1029	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1030	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1031	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1032
1033	read_lock(&policy_rwlock);
1034	if (!ss_initialized)
1035		goto allow;
1036
1037	scontext = sidtab_search(&sidtab, ssid);
1038	if (!scontext) {
1039		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1040		       __func__, ssid);
1041		goto out;
1042	}
1043
1044	tcontext = sidtab_search(&sidtab, tsid);
1045	if (!tcontext) {
1046		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1047		       __func__, tsid);
1048		goto out;
1049	}
1050
1051	tclass = unmap_class(orig_tclass);
1052	if (unlikely(orig_tclass && !tclass)) {
1053		if (policydb.allow_unknown)
1054			goto allow;
1055		goto out;
1056	}
1057
1058
1059	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1060		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1061		goto out;
1062	}
1063
1064	avkey.target_class = tclass;
1065	avkey.specified = AVTAB_XPERMS;
1066	sattr = flex_array_get(policydb.type_attr_map_array,
1067				scontext->type - 1);
1068	BUG_ON(!sattr);
1069	tattr = flex_array_get(policydb.type_attr_map_array,
1070				tcontext->type - 1);
1071	BUG_ON(!tattr);
1072	ebitmap_for_each_positive_bit(sattr, snode, i) {
1073		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1074			avkey.source_type = i + 1;
1075			avkey.target_type = j + 1;
1076			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1077			     node;
1078			     node = avtab_search_node_next(node, avkey.specified))
1079				services_compute_xperms_decision(xpermd, node);
1080
1081			cond_compute_xperms(&policydb.te_cond_avtab,
1082						&avkey, xpermd);
1083		}
1084	}
1085out:
1086	read_unlock(&policy_rwlock);
1087	return;
1088allow:
1089	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1090	goto out;
1091}
1092
1093/**
1094 * security_compute_av - Compute access vector decisions.
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1100 *
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103 */
1104void security_compute_av(u32 ssid,
1105			 u32 tsid,
1106			 u16 orig_tclass,
1107			 struct av_decision *avd,
1108			 struct extended_perms *xperms)
1109{
1110	u16 tclass;
1111	struct context *scontext = NULL, *tcontext = NULL;
1112
1113	read_lock(&policy_rwlock);
1114	avd_init(avd);
1115	xperms->len = 0;
1116	if (!ss_initialized)
1117		goto allow;
1118
1119	scontext = sidtab_search(&sidtab, ssid);
1120	if (!scontext) {
1121		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1122		       __func__, ssid);
1123		goto out;
1124	}
1125
1126	/* permissive domain? */
1127	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1128		avd->flags |= AVD_FLAGS_PERMISSIVE;
1129
1130	tcontext = sidtab_search(&sidtab, tsid);
1131	if (!tcontext) {
1132		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133		       __func__, tsid);
1134		goto out;
1135	}
1136
1137	tclass = unmap_class(orig_tclass);
1138	if (unlikely(orig_tclass && !tclass)) {
1139		if (policydb.allow_unknown)
1140			goto allow;
1141		goto out;
1142	}
1143	context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1144	map_decision(orig_tclass, avd, policydb.allow_unknown);
1145out:
1146	read_unlock(&policy_rwlock);
1147	return;
1148allow:
1149	avd->allowed = 0xffffffff;
1150	goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
1154			      u32 tsid,
1155			      u16 tclass,
1156			      struct av_decision *avd)
1157{
1158	struct context *scontext = NULL, *tcontext = NULL;
1159
1160	read_lock(&policy_rwlock);
1161	avd_init(avd);
1162	if (!ss_initialized)
1163		goto allow;
1164
1165	scontext = sidtab_search(&sidtab, ssid);
1166	if (!scontext) {
1167		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1168		       __func__, ssid);
1169		goto out;
1170	}
1171
1172	/* permissive domain? */
1173	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1174		avd->flags |= AVD_FLAGS_PERMISSIVE;
1175
1176	tcontext = sidtab_search(&sidtab, tsid);
1177	if (!tcontext) {
1178		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1179		       __func__, tsid);
1180		goto out;
1181	}
1182
1183	if (unlikely(!tclass)) {
1184		if (policydb.allow_unknown)
1185			goto allow;
1186		goto out;
1187	}
1188
1189	context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1190 out:
1191	read_unlock(&policy_rwlock);
1192	return;
1193allow:
1194	avd->allowed = 0xffffffff;
1195	goto out;
1196}
1197
1198/*
1199 * Write the security context string representation of
1200 * the context structure `context' into a dynamically
1201 * allocated string of the correct size.  Set `*scontext'
1202 * to point to this string and set `*scontext_len' to
1203 * the length of the string.
1204 */
1205static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1206{
1207	char *scontextp;
1208
1209	if (scontext)
1210		*scontext = NULL;
1211	*scontext_len = 0;
1212
1213	if (context->len) {
1214		*scontext_len = context->len;
1215		if (scontext) {
1216			*scontext = kstrdup(context->str, GFP_ATOMIC);
1217			if (!(*scontext))
1218				return -ENOMEM;
1219		}
1220		return 0;
1221	}
1222
1223	/* Compute the size of the context. */
1224	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1225	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1226	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1227	*scontext_len += mls_compute_context_len(context);
1228
1229	if (!scontext)
1230		return 0;
1231
1232	/* Allocate space for the context; caller must free this space. */
1233	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1234	if (!scontextp)
1235		return -ENOMEM;
1236	*scontext = scontextp;
1237
1238	/*
1239	 * Copy the user name, role name and type name into the context.
1240	 */
1241	scontextp += sprintf(scontextp, "%s:%s:%s",
1242		sym_name(&policydb, SYM_USERS, context->user - 1),
1243		sym_name(&policydb, SYM_ROLES, context->role - 1),
1244		sym_name(&policydb, SYM_TYPES, context->type - 1));
 
 
 
1245
1246	mls_sid_to_context(context, &scontextp);
1247
1248	*scontextp = 0;
1249
1250	return 0;
1251}
1252
1253#include "initial_sid_to_string.h"
1254
1255const char *security_get_initial_sid_context(u32 sid)
1256{
1257	if (unlikely(sid > SECINITSID_NUM))
1258		return NULL;
1259	return initial_sid_to_string[sid];
1260}
1261
1262static int security_sid_to_context_core(u32 sid, char **scontext,
1263					u32 *scontext_len, int force)
1264{
1265	struct context *context;
1266	int rc = 0;
1267
1268	if (scontext)
1269		*scontext = NULL;
1270	*scontext_len  = 0;
1271
1272	if (!ss_initialized) {
1273		if (sid <= SECINITSID_NUM) {
1274			char *scontextp;
1275
1276			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1277			if (!scontext)
1278				goto out;
1279			scontextp = kmemdup(initial_sid_to_string[sid],
1280					    *scontext_len, GFP_ATOMIC);
1281			if (!scontextp) {
1282				rc = -ENOMEM;
1283				goto out;
1284			}
 
1285			*scontext = scontextp;
1286			goto out;
1287		}
1288		printk(KERN_ERR "SELinux: %s:  called before initial "
1289		       "load_policy on unknown SID %d\n", __func__, sid);
1290		rc = -EINVAL;
1291		goto out;
1292	}
1293	read_lock(&policy_rwlock);
1294	if (force)
1295		context = sidtab_search_force(&sidtab, sid);
1296	else
1297		context = sidtab_search(&sidtab, sid);
1298	if (!context) {
1299		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1300			__func__, sid);
1301		rc = -EINVAL;
1302		goto out_unlock;
1303	}
1304	rc = context_struct_to_string(context, scontext, scontext_len);
1305out_unlock:
1306	read_unlock(&policy_rwlock);
1307out:
1308	return rc;
1309
1310}
1311
1312/**
1313 * security_sid_to_context - Obtain a context for a given SID.
1314 * @sid: security identifier, SID
1315 * @scontext: security context
1316 * @scontext_len: length in bytes
1317 *
1318 * Write the string representation of the context associated with @sid
1319 * into a dynamically allocated string of the correct size.  Set @scontext
1320 * to point to this string and set @scontext_len to the length of the string.
1321 */
1322int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1323{
1324	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1325}
1326
1327int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1328{
1329	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1330}
1331
1332/*
1333 * Caveat:  Mutates scontext.
1334 */
1335static int string_to_context_struct(struct policydb *pol,
1336				    struct sidtab *sidtabp,
1337				    char *scontext,
1338				    u32 scontext_len,
1339				    struct context *ctx,
1340				    u32 def_sid)
1341{
1342	struct role_datum *role;
1343	struct type_datum *typdatum;
1344	struct user_datum *usrdatum;
1345	char *scontextp, *p, oldc;
1346	int rc = 0;
1347
1348	context_init(ctx);
1349
1350	/* Parse the security context. */
1351
1352	rc = -EINVAL;
1353	scontextp = (char *) scontext;
1354
1355	/* Extract the user. */
1356	p = scontextp;
1357	while (*p && *p != ':')
1358		p++;
1359
1360	if (*p == 0)
1361		goto out;
1362
1363	*p++ = 0;
1364
1365	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1366	if (!usrdatum)
1367		goto out;
1368
1369	ctx->user = usrdatum->value;
1370
1371	/* Extract role. */
1372	scontextp = p;
1373	while (*p && *p != ':')
1374		p++;
1375
1376	if (*p == 0)
1377		goto out;
1378
1379	*p++ = 0;
1380
1381	role = hashtab_search(pol->p_roles.table, scontextp);
1382	if (!role)
1383		goto out;
1384	ctx->role = role->value;
1385
1386	/* Extract type. */
1387	scontextp = p;
1388	while (*p && *p != ':')
1389		p++;
1390	oldc = *p;
1391	*p++ = 0;
1392
1393	typdatum = hashtab_search(pol->p_types.table, scontextp);
1394	if (!typdatum || typdatum->attribute)
1395		goto out;
1396
1397	ctx->type = typdatum->value;
1398
1399	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1400	if (rc)
1401		goto out;
1402
1403	rc = -EINVAL;
1404	if ((p - scontext) < scontext_len)
1405		goto out;
1406
1407	/* Check the validity of the new context. */
1408	if (!policydb_context_isvalid(pol, ctx))
1409		goto out;
1410	rc = 0;
1411out:
1412	if (rc)
1413		context_destroy(ctx);
1414	return rc;
1415}
1416
1417static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1418					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1419					int force)
1420{
1421	char *scontext2, *str = NULL;
1422	struct context context;
1423	int rc = 0;
1424
1425	/* An empty security context is never valid. */
1426	if (!scontext_len)
1427		return -EINVAL;
1428
1429	if (!ss_initialized) {
1430		int i;
1431
1432		for (i = 1; i < SECINITSID_NUM; i++) {
1433			if (!strcmp(initial_sid_to_string[i], scontext)) {
1434				*sid = i;
1435				return 0;
1436			}
1437		}
1438		*sid = SECINITSID_KERNEL;
1439		return 0;
1440	}
1441	*sid = SECSID_NULL;
1442
1443	/* Copy the string so that we can modify the copy as we parse it. */
1444	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1445	if (!scontext2)
1446		return -ENOMEM;
1447	memcpy(scontext2, scontext, scontext_len);
1448	scontext2[scontext_len] = 0;
1449
1450	if (force) {
1451		/* Save another copy for storing in uninterpreted form */
1452		rc = -ENOMEM;
1453		str = kstrdup(scontext2, gfp_flags);
1454		if (!str)
1455			goto out;
1456	}
1457
1458	read_lock(&policy_rwlock);
1459	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1460				      scontext_len, &context, def_sid);
1461	if (rc == -EINVAL && force) {
1462		context.str = str;
1463		context.len = scontext_len;
1464		str = NULL;
1465	} else if (rc)
1466		goto out_unlock;
1467	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1468	context_destroy(&context);
1469out_unlock:
1470	read_unlock(&policy_rwlock);
1471out:
1472	kfree(scontext2);
1473	kfree(str);
1474	return rc;
1475}
1476
1477/**
1478 * security_context_to_sid - Obtain a SID for a given security context.
1479 * @scontext: security context
1480 * @scontext_len: length in bytes
1481 * @sid: security identifier, SID
1482 * @gfp: context for the allocation
1483 *
1484 * Obtains a SID associated with the security context that
1485 * has the string representation specified by @scontext.
1486 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1487 * memory is available, or 0 on success.
1488 */
1489int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1490			    gfp_t gfp)
1491{
1492	return security_context_to_sid_core(scontext, scontext_len,
1493					    sid, SECSID_NULL, gfp, 0);
1494}
1495
1496int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1497{
1498	return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
1499}
1500
1501/**
1502 * security_context_to_sid_default - Obtain a SID for a given security context,
1503 * falling back to specified default if needed.
1504 *
1505 * @scontext: security context
1506 * @scontext_len: length in bytes
1507 * @sid: security identifier, SID
1508 * @def_sid: default SID to assign on error
1509 *
1510 * Obtains a SID associated with the security context that
1511 * has the string representation specified by @scontext.
1512 * The default SID is passed to the MLS layer to be used to allow
1513 * kernel labeling of the MLS field if the MLS field is not present
1514 * (for upgrading to MLS without full relabel).
1515 * Implicitly forces adding of the context even if it cannot be mapped yet.
1516 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1517 * memory is available, or 0 on success.
1518 */
1519int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1520				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1521{
1522	return security_context_to_sid_core(scontext, scontext_len,
1523					    sid, def_sid, gfp_flags, 1);
1524}
1525
1526int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1527				  u32 *sid)
1528{
1529	return security_context_to_sid_core(scontext, scontext_len,
1530					    sid, SECSID_NULL, GFP_KERNEL, 1);
1531}
1532
1533static int compute_sid_handle_invalid_context(
1534	struct context *scontext,
1535	struct context *tcontext,
1536	u16 tclass,
1537	struct context *newcontext)
1538{
1539	char *s = NULL, *t = NULL, *n = NULL;
1540	u32 slen, tlen, nlen;
1541
1542	if (context_struct_to_string(scontext, &s, &slen))
1543		goto out;
1544	if (context_struct_to_string(tcontext, &t, &tlen))
1545		goto out;
1546	if (context_struct_to_string(newcontext, &n, &nlen))
1547		goto out;
1548	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1549		  "op=security_compute_sid invalid_context=%s"
1550		  " scontext=%s"
1551		  " tcontext=%s"
1552		  " tclass=%s",
1553		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1554out:
1555	kfree(s);
1556	kfree(t);
1557	kfree(n);
1558	if (!selinux_enforcing)
1559		return 0;
1560	return -EACCES;
1561}
1562
1563static void filename_compute_type(struct policydb *p, struct context *newcontext,
1564				  u32 stype, u32 ttype, u16 tclass,
1565				  const char *objname)
1566{
1567	struct filename_trans ft;
1568	struct filename_trans_datum *otype;
1569
1570	/*
1571	 * Most filename trans rules are going to live in specific directories
1572	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1573	 * if the ttype does not contain any rules.
1574	 */
1575	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1576		return;
1577
1578	ft.stype = stype;
1579	ft.ttype = ttype;
1580	ft.tclass = tclass;
1581	ft.name = objname;
1582
1583	otype = hashtab_search(p->filename_trans, &ft);
1584	if (otype)
1585		newcontext->type = otype->otype;
1586}
1587
1588static int security_compute_sid(u32 ssid,
1589				u32 tsid,
1590				u16 orig_tclass,
1591				u32 specified,
1592				const char *objname,
1593				u32 *out_sid,
1594				bool kern)
1595{
1596	struct class_datum *cladatum = NULL;
1597	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1598	struct role_trans *roletr = NULL;
1599	struct avtab_key avkey;
1600	struct avtab_datum *avdatum;
1601	struct avtab_node *node;
1602	u16 tclass;
1603	int rc = 0;
1604	bool sock;
1605
1606	if (!ss_initialized) {
1607		switch (orig_tclass) {
1608		case SECCLASS_PROCESS: /* kernel value */
1609			*out_sid = ssid;
1610			break;
1611		default:
1612			*out_sid = tsid;
1613			break;
1614		}
1615		goto out;
1616	}
1617
1618	context_init(&newcontext);
1619
1620	read_lock(&policy_rwlock);
1621
1622	if (kern) {
1623		tclass = unmap_class(orig_tclass);
1624		sock = security_is_socket_class(orig_tclass);
1625	} else {
1626		tclass = orig_tclass;
1627		sock = security_is_socket_class(map_class(tclass));
1628	}
1629
1630	scontext = sidtab_search(&sidtab, ssid);
1631	if (!scontext) {
1632		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1633		       __func__, ssid);
1634		rc = -EINVAL;
1635		goto out_unlock;
1636	}
1637	tcontext = sidtab_search(&sidtab, tsid);
1638	if (!tcontext) {
1639		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1640		       __func__, tsid);
1641		rc = -EINVAL;
1642		goto out_unlock;
1643	}
1644
1645	if (tclass && tclass <= policydb.p_classes.nprim)
1646		cladatum = policydb.class_val_to_struct[tclass - 1];
1647
1648	/* Set the user identity. */
1649	switch (specified) {
1650	case AVTAB_TRANSITION:
1651	case AVTAB_CHANGE:
1652		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1653			newcontext.user = tcontext->user;
1654		} else {
1655			/* notice this gets both DEFAULT_SOURCE and unset */
1656			/* Use the process user identity. */
1657			newcontext.user = scontext->user;
1658		}
1659		break;
1660	case AVTAB_MEMBER:
1661		/* Use the related object owner. */
1662		newcontext.user = tcontext->user;
1663		break;
1664	}
1665
1666	/* Set the role to default values. */
1667	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
 
1668		newcontext.role = scontext->role;
1669	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1670		newcontext.role = tcontext->role;
1671	} else {
1672		if ((tclass == policydb.process_class) || (sock == true))
1673			newcontext.role = scontext->role;
1674		else
1675			newcontext.role = OBJECT_R_VAL;
1676	}
1677
1678	/* Set the type to default values. */
1679	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1680		newcontext.type = scontext->type;
1681	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1682		newcontext.type = tcontext->type;
1683	} else {
1684		if ((tclass == policydb.process_class) || (sock == true)) {
1685			/* Use the type of process. */
1686			newcontext.type = scontext->type;
1687		} else {
1688			/* Use the type of the related object. */
1689			newcontext.type = tcontext->type;
1690		}
1691	}
1692
1693	/* Look for a type transition/member/change rule. */
1694	avkey.source_type = scontext->type;
1695	avkey.target_type = tcontext->type;
1696	avkey.target_class = tclass;
1697	avkey.specified = specified;
1698	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1699
1700	/* If no permanent rule, also check for enabled conditional rules */
1701	if (!avdatum) {
1702		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1703		for (; node; node = avtab_search_node_next(node, specified)) {
1704			if (node->key.specified & AVTAB_ENABLED) {
1705				avdatum = &node->datum;
1706				break;
1707			}
1708		}
1709	}
1710
1711	if (avdatum) {
1712		/* Use the type from the type transition/member/change rule. */
1713		newcontext.type = avdatum->u.data;
1714	}
1715
1716	/* if we have a objname this is a file trans check so check those rules */
1717	if (objname)
1718		filename_compute_type(&policydb, &newcontext, scontext->type,
1719				      tcontext->type, tclass, objname);
1720
1721	/* Check for class-specific changes. */
1722	if (specified & AVTAB_TRANSITION) {
1723		/* Look for a role transition rule. */
1724		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1725			if ((roletr->role == scontext->role) &&
1726			    (roletr->type == tcontext->type) &&
1727			    (roletr->tclass == tclass)) {
1728				/* Use the role transition rule. */
1729				newcontext.role = roletr->new_role;
1730				break;
1731			}
1732		}
1733	}
1734
1735	/* Set the MLS attributes.
1736	   This is done last because it may allocate memory. */
1737	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1738			     &newcontext, sock);
1739	if (rc)
1740		goto out_unlock;
1741
1742	/* Check the validity of the context. */
1743	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1744		rc = compute_sid_handle_invalid_context(scontext,
1745							tcontext,
1746							tclass,
1747							&newcontext);
1748		if (rc)
1749			goto out_unlock;
1750	}
1751	/* Obtain the sid for the context. */
1752	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1753out_unlock:
1754	read_unlock(&policy_rwlock);
1755	context_destroy(&newcontext);
1756out:
1757	return rc;
1758}
1759
1760/**
1761 * security_transition_sid - Compute the SID for a new subject/object.
1762 * @ssid: source security identifier
1763 * @tsid: target security identifier
1764 * @tclass: target security class
1765 * @out_sid: security identifier for new subject/object
1766 *
1767 * Compute a SID to use for labeling a new subject or object in the
1768 * class @tclass based on a SID pair (@ssid, @tsid).
1769 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1770 * if insufficient memory is available, or %0 if the new SID was
1771 * computed successfully.
1772 */
1773int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1774			    const struct qstr *qstr, u32 *out_sid)
1775{
1776	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1777				    qstr ? qstr->name : NULL, out_sid, true);
1778}
1779
1780int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1781				 const char *objname, u32 *out_sid)
1782{
1783	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1784				    objname, out_sid, false);
1785}
1786
1787/**
1788 * security_member_sid - Compute the SID for member selection.
1789 * @ssid: source security identifier
1790 * @tsid: target security identifier
1791 * @tclass: target security class
1792 * @out_sid: security identifier for selected member
1793 *
1794 * Compute a SID to use when selecting a member of a polyinstantiated
1795 * object of class @tclass based on a SID pair (@ssid, @tsid).
1796 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1797 * if insufficient memory is available, or %0 if the SID was
1798 * computed successfully.
1799 */
1800int security_member_sid(u32 ssid,
1801			u32 tsid,
1802			u16 tclass,
1803			u32 *out_sid)
1804{
1805	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1806				    out_sid, false);
1807}
1808
1809/**
1810 * security_change_sid - Compute the SID for object relabeling.
1811 * @ssid: source security identifier
1812 * @tsid: target security identifier
1813 * @tclass: target security class
1814 * @out_sid: security identifier for selected member
1815 *
1816 * Compute a SID to use for relabeling an object of class @tclass
1817 * based on a SID pair (@ssid, @tsid).
1818 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1819 * if insufficient memory is available, or %0 if the SID was
1820 * computed successfully.
1821 */
1822int security_change_sid(u32 ssid,
1823			u32 tsid,
1824			u16 tclass,
1825			u32 *out_sid)
1826{
1827	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1828				    out_sid, false);
1829}
1830
1831/* Clone the SID into the new SID table. */
1832static int clone_sid(u32 sid,
1833		     struct context *context,
1834		     void *arg)
1835{
1836	struct sidtab *s = arg;
1837
1838	if (sid > SECINITSID_NUM)
1839		return sidtab_insert(s, sid, context);
1840	else
1841		return 0;
1842}
1843
1844static inline int convert_context_handle_invalid_context(struct context *context)
1845{
1846	char *s;
1847	u32 len;
1848
1849	if (selinux_enforcing)
1850		return -EINVAL;
1851
1852	if (!context_struct_to_string(context, &s, &len)) {
1853		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1854		kfree(s);
1855	}
1856	return 0;
1857}
1858
1859struct convert_context_args {
1860	struct policydb *oldp;
1861	struct policydb *newp;
1862};
1863
1864/*
1865 * Convert the values in the security context
1866 * structure `c' from the values specified
1867 * in the policy `p->oldp' to the values specified
1868 * in the policy `p->newp'.  Verify that the
1869 * context is valid under the new policy.
1870 */
1871static int convert_context(u32 key,
1872			   struct context *c,
1873			   void *p)
1874{
1875	struct convert_context_args *args;
1876	struct context oldc;
1877	struct ocontext *oc;
1878	struct mls_range *range;
1879	struct role_datum *role;
1880	struct type_datum *typdatum;
1881	struct user_datum *usrdatum;
1882	char *s;
1883	u32 len;
1884	int rc = 0;
1885
1886	if (key <= SECINITSID_NUM)
1887		goto out;
1888
1889	args = p;
1890
1891	if (c->str) {
1892		struct context ctx;
1893
1894		rc = -ENOMEM;
1895		s = kstrdup(c->str, GFP_KERNEL);
1896		if (!s)
1897			goto out;
1898
1899		rc = string_to_context_struct(args->newp, NULL, s,
1900					      c->len, &ctx, SECSID_NULL);
1901		kfree(s);
1902		if (!rc) {
1903			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1904			       c->str);
1905			/* Replace string with mapped representation. */
1906			kfree(c->str);
1907			memcpy(c, &ctx, sizeof(*c));
1908			goto out;
1909		} else if (rc == -EINVAL) {
1910			/* Retain string representation for later mapping. */
1911			rc = 0;
1912			goto out;
1913		} else {
1914			/* Other error condition, e.g. ENOMEM. */
1915			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1916			       c->str, -rc);
1917			goto out;
1918		}
1919	}
1920
1921	rc = context_cpy(&oldc, c);
1922	if (rc)
1923		goto out;
1924
1925	/* Convert the user. */
1926	rc = -EINVAL;
1927	usrdatum = hashtab_search(args->newp->p_users.table,
1928				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1929	if (!usrdatum)
1930		goto bad;
1931	c->user = usrdatum->value;
1932
1933	/* Convert the role. */
1934	rc = -EINVAL;
1935	role = hashtab_search(args->newp->p_roles.table,
1936			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1937	if (!role)
1938		goto bad;
1939	c->role = role->value;
1940
1941	/* Convert the type. */
1942	rc = -EINVAL;
1943	typdatum = hashtab_search(args->newp->p_types.table,
1944				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1945	if (!typdatum)
1946		goto bad;
1947	c->type = typdatum->value;
1948
1949	/* Convert the MLS fields if dealing with MLS policies */
1950	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1951		rc = mls_convert_context(args->oldp, args->newp, c);
1952		if (rc)
1953			goto bad;
1954	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1955		/*
1956		 * Switching between MLS and non-MLS policy:
1957		 * free any storage used by the MLS fields in the
1958		 * context for all existing entries in the sidtab.
1959		 */
1960		mls_context_destroy(c);
1961	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1962		/*
1963		 * Switching between non-MLS and MLS policy:
1964		 * ensure that the MLS fields of the context for all
1965		 * existing entries in the sidtab are filled in with a
1966		 * suitable default value, likely taken from one of the
1967		 * initial SIDs.
1968		 */
1969		oc = args->newp->ocontexts[OCON_ISID];
1970		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1971			oc = oc->next;
1972		rc = -EINVAL;
1973		if (!oc) {
1974			printk(KERN_ERR "SELinux:  unable to look up"
1975				" the initial SIDs list\n");
1976			goto bad;
1977		}
1978		range = &oc->context[0].range;
1979		rc = mls_range_set(c, range);
1980		if (rc)
1981			goto bad;
1982	}
1983
1984	/* Check the validity of the new context. */
1985	if (!policydb_context_isvalid(args->newp, c)) {
1986		rc = convert_context_handle_invalid_context(&oldc);
1987		if (rc)
1988			goto bad;
1989	}
1990
1991	context_destroy(&oldc);
1992
1993	rc = 0;
1994out:
1995	return rc;
1996bad:
1997	/* Map old representation to string and save it. */
1998	rc = context_struct_to_string(&oldc, &s, &len);
1999	if (rc)
2000		return rc;
2001	context_destroy(&oldc);
2002	context_destroy(c);
2003	c->str = s;
2004	c->len = len;
2005	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2006	       c->str);
2007	rc = 0;
2008	goto out;
2009}
2010
2011static void security_load_policycaps(void)
2012{
2013	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
2014						  POLICYDB_CAPABILITY_NETPEER);
2015	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
2016						  POLICYDB_CAPABILITY_OPENPERM);
2017	selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2018						  POLICYDB_CAPABILITY_ALWAYSNETWORK);
2019}
2020
 
2021static int security_preserve_bools(struct policydb *p);
2022
2023/**
2024 * security_load_policy - Load a security policy configuration.
2025 * @data: binary policy data
2026 * @len: length of data in bytes
2027 *
2028 * Load a new set of security policy configuration data,
2029 * validate it and convert the SID table as necessary.
2030 * This function will flush the access vector cache after
2031 * loading the new policy.
2032 */
2033int security_load_policy(void *data, size_t len)
2034{
2035	struct policydb *oldpolicydb, *newpolicydb;
2036	struct sidtab oldsidtab, newsidtab;
2037	struct selinux_mapping *oldmap, *map = NULL;
2038	struct convert_context_args args;
2039	u32 seqno;
2040	u16 map_size;
2041	int rc = 0;
2042	struct policy_file file = { data, len }, *fp = &file;
2043
2044	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2045	if (!oldpolicydb) {
2046		rc = -ENOMEM;
2047		goto out;
2048	}
2049	newpolicydb = oldpolicydb + 1;
2050
2051	if (!ss_initialized) {
2052		avtab_cache_init();
2053		rc = policydb_read(&policydb, fp);
2054		if (rc) {
2055			avtab_cache_destroy();
2056			goto out;
2057		}
2058
2059		policydb.len = len;
2060		rc = selinux_set_mapping(&policydb, secclass_map,
2061					 &current_mapping,
2062					 &current_mapping_size);
2063		if (rc) {
2064			policydb_destroy(&policydb);
2065			avtab_cache_destroy();
2066			goto out;
2067		}
2068
2069		rc = policydb_load_isids(&policydb, &sidtab);
2070		if (rc) {
2071			policydb_destroy(&policydb);
2072			avtab_cache_destroy();
2073			goto out;
2074		}
2075
2076		security_load_policycaps();
2077		ss_initialized = 1;
2078		seqno = ++latest_granting;
2079		selinux_complete_init();
2080		avc_ss_reset(seqno);
2081		selnl_notify_policyload(seqno);
2082		selinux_status_update_policyload(seqno);
2083		selinux_netlbl_cache_invalidate();
2084		selinux_xfrm_notify_policyload();
2085		goto out;
2086	}
2087
2088#if 0
2089	sidtab_hash_eval(&sidtab, "sids");
2090#endif
2091
2092	rc = policydb_read(newpolicydb, fp);
2093	if (rc)
2094		goto out;
2095
2096	newpolicydb->len = len;
2097	/* If switching between different policy types, log MLS status */
2098	if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2099		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2100	else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2101		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2102
2103	rc = policydb_load_isids(newpolicydb, &newsidtab);
2104	if (rc) {
2105		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2106		policydb_destroy(newpolicydb);
2107		goto out;
2108	}
2109
2110	rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2111	if (rc)
2112		goto err;
2113
2114	rc = security_preserve_bools(newpolicydb);
2115	if (rc) {
2116		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2117		goto err;
2118	}
2119
2120	/* Clone the SID table. */
2121	sidtab_shutdown(&sidtab);
2122
2123	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2124	if (rc)
2125		goto err;
2126
2127	/*
2128	 * Convert the internal representations of contexts
2129	 * in the new SID table.
2130	 */
2131	args.oldp = &policydb;
2132	args.newp = newpolicydb;
2133	rc = sidtab_map(&newsidtab, convert_context, &args);
2134	if (rc) {
2135		printk(KERN_ERR "SELinux:  unable to convert the internal"
2136			" representation of contexts in the new SID"
2137			" table\n");
2138		goto err;
2139	}
2140
2141	/* Save the old policydb and SID table to free later. */
2142	memcpy(oldpolicydb, &policydb, sizeof(policydb));
2143	sidtab_set(&oldsidtab, &sidtab);
2144
2145	/* Install the new policydb and SID table. */
2146	write_lock_irq(&policy_rwlock);
2147	memcpy(&policydb, newpolicydb, sizeof(policydb));
2148	sidtab_set(&sidtab, &newsidtab);
2149	security_load_policycaps();
2150	oldmap = current_mapping;
2151	current_mapping = map;
2152	current_mapping_size = map_size;
2153	seqno = ++latest_granting;
2154	write_unlock_irq(&policy_rwlock);
2155
2156	/* Free the old policydb and SID table. */
2157	policydb_destroy(oldpolicydb);
2158	sidtab_destroy(&oldsidtab);
2159	kfree(oldmap);
2160
2161	avc_ss_reset(seqno);
2162	selnl_notify_policyload(seqno);
2163	selinux_status_update_policyload(seqno);
2164	selinux_netlbl_cache_invalidate();
2165	selinux_xfrm_notify_policyload();
2166
2167	rc = 0;
2168	goto out;
2169
2170err:
2171	kfree(map);
2172	sidtab_destroy(&newsidtab);
2173	policydb_destroy(newpolicydb);
2174
2175out:
2176	kfree(oldpolicydb);
2177	return rc;
 
2178}
2179
2180size_t security_policydb_len(void)
2181{
2182	size_t len;
2183
2184	read_lock(&policy_rwlock);
2185	len = policydb.len;
2186	read_unlock(&policy_rwlock);
2187
2188	return len;
2189}
2190
2191/**
2192 * security_port_sid - Obtain the SID for a port.
2193 * @protocol: protocol number
2194 * @port: port number
2195 * @out_sid: security identifier
2196 */
2197int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2198{
2199	struct ocontext *c;
2200	int rc = 0;
2201
2202	read_lock(&policy_rwlock);
2203
2204	c = policydb.ocontexts[OCON_PORT];
2205	while (c) {
2206		if (c->u.port.protocol == protocol &&
2207		    c->u.port.low_port <= port &&
2208		    c->u.port.high_port >= port)
2209			break;
2210		c = c->next;
2211	}
2212
2213	if (c) {
2214		if (!c->sid[0]) {
2215			rc = sidtab_context_to_sid(&sidtab,
2216						   &c->context[0],
2217						   &c->sid[0]);
2218			if (rc)
2219				goto out;
2220		}
2221		*out_sid = c->sid[0];
2222	} else {
2223		*out_sid = SECINITSID_PORT;
2224	}
2225
2226out:
2227	read_unlock(&policy_rwlock);
2228	return rc;
2229}
2230
2231/**
2232 * security_netif_sid - Obtain the SID for a network interface.
2233 * @name: interface name
2234 * @if_sid: interface SID
2235 */
2236int security_netif_sid(char *name, u32 *if_sid)
2237{
2238	int rc = 0;
2239	struct ocontext *c;
2240
2241	read_lock(&policy_rwlock);
2242
2243	c = policydb.ocontexts[OCON_NETIF];
2244	while (c) {
2245		if (strcmp(name, c->u.name) == 0)
2246			break;
2247		c = c->next;
2248	}
2249
2250	if (c) {
2251		if (!c->sid[0] || !c->sid[1]) {
2252			rc = sidtab_context_to_sid(&sidtab,
2253						  &c->context[0],
2254						  &c->sid[0]);
2255			if (rc)
2256				goto out;
2257			rc = sidtab_context_to_sid(&sidtab,
2258						   &c->context[1],
2259						   &c->sid[1]);
2260			if (rc)
2261				goto out;
2262		}
2263		*if_sid = c->sid[0];
2264	} else
2265		*if_sid = SECINITSID_NETIF;
2266
2267out:
2268	read_unlock(&policy_rwlock);
2269	return rc;
2270}
2271
2272static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2273{
2274	int i, fail = 0;
2275
2276	for (i = 0; i < 4; i++)
2277		if (addr[i] != (input[i] & mask[i])) {
2278			fail = 1;
2279			break;
2280		}
2281
2282	return !fail;
2283}
2284
2285/**
2286 * security_node_sid - Obtain the SID for a node (host).
2287 * @domain: communication domain aka address family
2288 * @addrp: address
2289 * @addrlen: address length in bytes
2290 * @out_sid: security identifier
2291 */
2292int security_node_sid(u16 domain,
2293		      void *addrp,
2294		      u32 addrlen,
2295		      u32 *out_sid)
2296{
2297	int rc;
2298	struct ocontext *c;
2299
2300	read_lock(&policy_rwlock);
2301
2302	switch (domain) {
2303	case AF_INET: {
2304		u32 addr;
2305
2306		rc = -EINVAL;
2307		if (addrlen != sizeof(u32))
2308			goto out;
2309
2310		addr = *((u32 *)addrp);
2311
2312		c = policydb.ocontexts[OCON_NODE];
2313		while (c) {
2314			if (c->u.node.addr == (addr & c->u.node.mask))
2315				break;
2316			c = c->next;
2317		}
2318		break;
2319	}
2320
2321	case AF_INET6:
2322		rc = -EINVAL;
2323		if (addrlen != sizeof(u64) * 2)
2324			goto out;
2325		c = policydb.ocontexts[OCON_NODE6];
2326		while (c) {
2327			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2328						c->u.node6.mask))
2329				break;
2330			c = c->next;
2331		}
2332		break;
2333
2334	default:
2335		rc = 0;
2336		*out_sid = SECINITSID_NODE;
2337		goto out;
2338	}
2339
2340	if (c) {
2341		if (!c->sid[0]) {
2342			rc = sidtab_context_to_sid(&sidtab,
2343						   &c->context[0],
2344						   &c->sid[0]);
2345			if (rc)
2346				goto out;
2347		}
2348		*out_sid = c->sid[0];
2349	} else {
2350		*out_sid = SECINITSID_NODE;
2351	}
2352
2353	rc = 0;
2354out:
2355	read_unlock(&policy_rwlock);
2356	return rc;
2357}
2358
2359#define SIDS_NEL 25
2360
2361/**
2362 * security_get_user_sids - Obtain reachable SIDs for a user.
2363 * @fromsid: starting SID
2364 * @username: username
2365 * @sids: array of reachable SIDs for user
2366 * @nel: number of elements in @sids
2367 *
2368 * Generate the set of SIDs for legal security contexts
2369 * for a given user that can be reached by @fromsid.
2370 * Set *@sids to point to a dynamically allocated
2371 * array containing the set of SIDs.  Set *@nel to the
2372 * number of elements in the array.
2373 */
2374
2375int security_get_user_sids(u32 fromsid,
2376			   char *username,
2377			   u32 **sids,
2378			   u32 *nel)
2379{
2380	struct context *fromcon, usercon;
2381	u32 *mysids = NULL, *mysids2, sid;
2382	u32 mynel = 0, maxnel = SIDS_NEL;
2383	struct user_datum *user;
2384	struct role_datum *role;
2385	struct ebitmap_node *rnode, *tnode;
2386	int rc = 0, i, j;
2387
2388	*sids = NULL;
2389	*nel = 0;
2390
2391	if (!ss_initialized)
2392		goto out;
2393
2394	read_lock(&policy_rwlock);
2395
2396	context_init(&usercon);
2397
2398	rc = -EINVAL;
2399	fromcon = sidtab_search(&sidtab, fromsid);
2400	if (!fromcon)
2401		goto out_unlock;
2402
2403	rc = -EINVAL;
2404	user = hashtab_search(policydb.p_users.table, username);
2405	if (!user)
2406		goto out_unlock;
2407
2408	usercon.user = user->value;
2409
2410	rc = -ENOMEM;
2411	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2412	if (!mysids)
2413		goto out_unlock;
2414
2415	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2416		role = policydb.role_val_to_struct[i];
2417		usercon.role = i + 1;
2418		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2419			usercon.type = j + 1;
2420
2421			if (mls_setup_user_range(fromcon, user, &usercon))
2422				continue;
2423
2424			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2425			if (rc)
2426				goto out_unlock;
2427			if (mynel < maxnel) {
2428				mysids[mynel++] = sid;
2429			} else {
2430				rc = -ENOMEM;
2431				maxnel += SIDS_NEL;
2432				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2433				if (!mysids2)
2434					goto out_unlock;
2435				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2436				kfree(mysids);
2437				mysids = mysids2;
2438				mysids[mynel++] = sid;
2439			}
2440		}
2441	}
2442	rc = 0;
2443out_unlock:
2444	read_unlock(&policy_rwlock);
2445	if (rc || !mynel) {
2446		kfree(mysids);
2447		goto out;
2448	}
2449
2450	rc = -ENOMEM;
2451	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2452	if (!mysids2) {
2453		kfree(mysids);
2454		goto out;
2455	}
2456	for (i = 0, j = 0; i < mynel; i++) {
2457		struct av_decision dummy_avd;
2458		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2459					  SECCLASS_PROCESS, /* kernel value */
2460					  PROCESS__TRANSITION, AVC_STRICT,
2461					  &dummy_avd);
2462		if (!rc)
2463			mysids2[j++] = mysids[i];
2464		cond_resched();
2465	}
2466	rc = 0;
2467	kfree(mysids);
2468	*sids = mysids2;
2469	*nel = j;
2470out:
2471	return rc;
2472}
2473
2474/**
2475 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2476 * @fstype: filesystem type
2477 * @path: path from root of mount
2478 * @sclass: file security class
2479 * @sid: SID for path
2480 *
2481 * Obtain a SID to use for a file in a filesystem that
2482 * cannot support xattr or use a fixed labeling behavior like
2483 * transition SIDs or task SIDs.
2484 *
2485 * The caller must acquire the policy_rwlock before calling this function.
2486 */
2487static inline int __security_genfs_sid(const char *fstype,
2488				       char *path,
2489				       u16 orig_sclass,
2490				       u32 *sid)
2491{
2492	int len;
2493	u16 sclass;
2494	struct genfs *genfs;
2495	struct ocontext *c;
2496	int rc, cmp = 0;
2497
2498	while (path[0] == '/' && path[1] == '/')
2499		path++;
2500
 
 
2501	sclass = unmap_class(orig_sclass);
2502	*sid = SECINITSID_UNLABELED;
2503
2504	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2505		cmp = strcmp(fstype, genfs->fstype);
2506		if (cmp <= 0)
2507			break;
2508	}
2509
2510	rc = -ENOENT;
2511	if (!genfs || cmp)
2512		goto out;
2513
2514	for (c = genfs->head; c; c = c->next) {
2515		len = strlen(c->u.name);
2516		if ((!c->v.sclass || sclass == c->v.sclass) &&
2517		    (strncmp(c->u.name, path, len) == 0))
2518			break;
2519	}
2520
2521	rc = -ENOENT;
2522	if (!c)
2523		goto out;
2524
2525	if (!c->sid[0]) {
2526		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2527		if (rc)
2528			goto out;
2529	}
2530
2531	*sid = c->sid[0];
2532	rc = 0;
2533out:
2534	return rc;
2535}
2536
2537/**
2538 * security_genfs_sid - Obtain a SID for a file in a filesystem
2539 * @fstype: filesystem type
2540 * @path: path from root of mount
2541 * @sclass: file security class
2542 * @sid: SID for path
2543 *
2544 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2545 * it afterward.
2546 */
2547int security_genfs_sid(const char *fstype,
2548		       char *path,
2549		       u16 orig_sclass,
2550		       u32 *sid)
2551{
2552	int retval;
2553
2554	read_lock(&policy_rwlock);
2555	retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2556	read_unlock(&policy_rwlock);
2557	return retval;
2558}
2559
2560/**
2561 * security_fs_use - Determine how to handle labeling for a filesystem.
2562 * @sb: superblock in question
 
 
2563 */
2564int security_fs_use(struct super_block *sb)
 
 
 
2565{
2566	int rc = 0;
2567	struct ocontext *c;
2568	struct superblock_security_struct *sbsec = sb->s_security;
2569	const char *fstype = sb->s_type->name;
2570
2571	read_lock(&policy_rwlock);
2572
2573	c = policydb.ocontexts[OCON_FSUSE];
2574	while (c) {
2575		if (strcmp(fstype, c->u.name) == 0)
2576			break;
2577		c = c->next;
2578	}
2579
2580	if (c) {
2581		sbsec->behavior = c->v.behavior;
2582		if (!c->sid[0]) {
2583			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2584						   &c->sid[0]);
2585			if (rc)
2586				goto out;
2587		}
2588		sbsec->sid = c->sid[0];
2589	} else {
2590		rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2591					  &sbsec->sid);
2592		if (rc) {
2593			sbsec->behavior = SECURITY_FS_USE_NONE;
2594			rc = 0;
2595		} else {
2596			sbsec->behavior = SECURITY_FS_USE_GENFS;
2597		}
2598	}
2599
2600out:
2601	read_unlock(&policy_rwlock);
2602	return rc;
2603}
2604
2605int security_get_bools(int *len, char ***names, int **values)
2606{
2607	int i, rc;
2608
2609	read_lock(&policy_rwlock);
2610	*names = NULL;
2611	*values = NULL;
2612
2613	rc = 0;
2614	*len = policydb.p_bools.nprim;
2615	if (!*len)
2616		goto out;
2617
2618	rc = -ENOMEM;
2619	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2620	if (!*names)
2621		goto err;
2622
2623	rc = -ENOMEM;
2624	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2625	if (!*values)
2626		goto err;
2627
2628	for (i = 0; i < *len; i++) {
 
 
2629		(*values)[i] = policydb.bool_val_to_struct[i]->state;
 
2630
2631		rc = -ENOMEM;
2632		(*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
2633		if (!(*names)[i])
2634			goto err;
 
 
 
2635	}
2636	rc = 0;
2637out:
2638	read_unlock(&policy_rwlock);
2639	return rc;
2640err:
2641	if (*names) {
2642		for (i = 0; i < *len; i++)
2643			kfree((*names)[i]);
2644	}
2645	kfree(*values);
2646	goto out;
2647}
2648
2649
2650int security_set_bools(int len, int *values)
2651{
2652	int i, rc;
2653	int lenp, seqno = 0;
2654	struct cond_node *cur;
2655
2656	write_lock_irq(&policy_rwlock);
2657
2658	rc = -EFAULT;
2659	lenp = policydb.p_bools.nprim;
2660	if (len != lenp)
2661		goto out;
2662
2663	for (i = 0; i < len; i++) {
2664		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2665			audit_log(current->audit_context, GFP_ATOMIC,
2666				AUDIT_MAC_CONFIG_CHANGE,
2667				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2668				sym_name(&policydb, SYM_BOOLS, i),
2669				!!values[i],
2670				policydb.bool_val_to_struct[i]->state,
2671				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2672				audit_get_sessionid(current));
2673		}
2674		if (values[i])
2675			policydb.bool_val_to_struct[i]->state = 1;
2676		else
2677			policydb.bool_val_to_struct[i]->state = 0;
2678	}
2679
2680	for (cur = policydb.cond_list; cur; cur = cur->next) {
2681		rc = evaluate_cond_node(&policydb, cur);
2682		if (rc)
2683			goto out;
2684	}
2685
2686	seqno = ++latest_granting;
2687	rc = 0;
2688out:
2689	write_unlock_irq(&policy_rwlock);
2690	if (!rc) {
2691		avc_ss_reset(seqno);
2692		selnl_notify_policyload(seqno);
2693		selinux_status_update_policyload(seqno);
2694		selinux_xfrm_notify_policyload();
2695	}
2696	return rc;
2697}
2698
2699int security_get_bool_value(int bool)
2700{
2701	int rc;
2702	int len;
2703
2704	read_lock(&policy_rwlock);
2705
2706	rc = -EFAULT;
2707	len = policydb.p_bools.nprim;
2708	if (bool >= len)
2709		goto out;
2710
2711	rc = policydb.bool_val_to_struct[bool]->state;
2712out:
2713	read_unlock(&policy_rwlock);
2714	return rc;
2715}
2716
2717static int security_preserve_bools(struct policydb *p)
2718{
2719	int rc, nbools = 0, *bvalues = NULL, i;
2720	char **bnames = NULL;
2721	struct cond_bool_datum *booldatum;
2722	struct cond_node *cur;
2723
2724	rc = security_get_bools(&nbools, &bnames, &bvalues);
2725	if (rc)
2726		goto out;
2727	for (i = 0; i < nbools; i++) {
2728		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2729		if (booldatum)
2730			booldatum->state = bvalues[i];
2731	}
2732	for (cur = p->cond_list; cur; cur = cur->next) {
2733		rc = evaluate_cond_node(p, cur);
2734		if (rc)
2735			goto out;
2736	}
2737
2738out:
2739	if (bnames) {
2740		for (i = 0; i < nbools; i++)
2741			kfree(bnames[i]);
2742	}
2743	kfree(bnames);
2744	kfree(bvalues);
2745	return rc;
2746}
2747
2748/*
2749 * security_sid_mls_copy() - computes a new sid based on the given
2750 * sid and the mls portion of mls_sid.
2751 */
2752int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2753{
2754	struct context *context1;
2755	struct context *context2;
2756	struct context newcon;
2757	char *s;
2758	u32 len;
2759	int rc;
2760
2761	rc = 0;
2762	if (!ss_initialized || !policydb.mls_enabled) {
2763		*new_sid = sid;
2764		goto out;
2765	}
2766
2767	context_init(&newcon);
2768
2769	read_lock(&policy_rwlock);
2770
2771	rc = -EINVAL;
2772	context1 = sidtab_search(&sidtab, sid);
2773	if (!context1) {
2774		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2775			__func__, sid);
2776		goto out_unlock;
2777	}
2778
2779	rc = -EINVAL;
2780	context2 = sidtab_search(&sidtab, mls_sid);
2781	if (!context2) {
2782		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2783			__func__, mls_sid);
2784		goto out_unlock;
2785	}
2786
2787	newcon.user = context1->user;
2788	newcon.role = context1->role;
2789	newcon.type = context1->type;
2790	rc = mls_context_cpy(&newcon, context2);
2791	if (rc)
2792		goto out_unlock;
2793
2794	/* Check the validity of the new context. */
2795	if (!policydb_context_isvalid(&policydb, &newcon)) {
2796		rc = convert_context_handle_invalid_context(&newcon);
2797		if (rc) {
2798			if (!context_struct_to_string(&newcon, &s, &len)) {
2799				audit_log(current->audit_context,
2800					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
2801					  "op=security_sid_mls_copy "
2802					  "invalid_context=%s", s);
2803				kfree(s);
2804			}
2805			goto out_unlock;
2806		}
2807	}
2808
2809	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2810out_unlock:
2811	read_unlock(&policy_rwlock);
2812	context_destroy(&newcon);
2813out:
2814	return rc;
2815}
2816
2817/**
2818 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2819 * @nlbl_sid: NetLabel SID
2820 * @nlbl_type: NetLabel labeling protocol type
2821 * @xfrm_sid: XFRM SID
2822 *
2823 * Description:
2824 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2825 * resolved into a single SID it is returned via @peer_sid and the function
2826 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2827 * returns a negative value.  A table summarizing the behavior is below:
2828 *
2829 *                                 | function return |      @sid
2830 *   ------------------------------+-----------------+-----------------
2831 *   no peer labels                |        0        |    SECSID_NULL
2832 *   single peer label             |        0        |    <peer_label>
2833 *   multiple, consistent labels   |        0        |    <peer_label>
2834 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2835 *
2836 */
2837int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2838				 u32 xfrm_sid,
2839				 u32 *peer_sid)
2840{
2841	int rc;
2842	struct context *nlbl_ctx;
2843	struct context *xfrm_ctx;
2844
2845	*peer_sid = SECSID_NULL;
2846
2847	/* handle the common (which also happens to be the set of easy) cases
2848	 * right away, these two if statements catch everything involving a
2849	 * single or absent peer SID/label */
2850	if (xfrm_sid == SECSID_NULL) {
2851		*peer_sid = nlbl_sid;
2852		return 0;
2853	}
2854	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2855	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2856	 * is present */
2857	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2858		*peer_sid = xfrm_sid;
2859		return 0;
2860	}
2861
2862	/* we don't need to check ss_initialized here since the only way both
2863	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2864	 * security server was initialized and ss_initialized was true */
2865	if (!policydb.mls_enabled)
2866		return 0;
2867
2868	read_lock(&policy_rwlock);
2869
2870	rc = -EINVAL;
2871	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2872	if (!nlbl_ctx) {
2873		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2874		       __func__, nlbl_sid);
2875		goto out;
2876	}
2877	rc = -EINVAL;
2878	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2879	if (!xfrm_ctx) {
2880		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2881		       __func__, xfrm_sid);
2882		goto out;
2883	}
2884	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2885	if (rc)
2886		goto out;
2887
2888	/* at present NetLabel SIDs/labels really only carry MLS
2889	 * information so if the MLS portion of the NetLabel SID
2890	 * matches the MLS portion of the labeled XFRM SID/label
2891	 * then pass along the XFRM SID as it is the most
2892	 * expressive */
2893	*peer_sid = xfrm_sid;
2894out:
2895	read_unlock(&policy_rwlock);
2896	return rc;
2897}
2898
2899static int get_classes_callback(void *k, void *d, void *args)
2900{
2901	struct class_datum *datum = d;
2902	char *name = k, **classes = args;
2903	int value = datum->value - 1;
2904
2905	classes[value] = kstrdup(name, GFP_ATOMIC);
2906	if (!classes[value])
2907		return -ENOMEM;
2908
2909	return 0;
2910}
2911
2912int security_get_classes(char ***classes, int *nclasses)
2913{
2914	int rc;
2915
2916	read_lock(&policy_rwlock);
2917
2918	rc = -ENOMEM;
2919	*nclasses = policydb.p_classes.nprim;
2920	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2921	if (!*classes)
2922		goto out;
2923
2924	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2925			*classes);
2926	if (rc) {
2927		int i;
2928		for (i = 0; i < *nclasses; i++)
2929			kfree((*classes)[i]);
2930		kfree(*classes);
2931	}
2932
2933out:
2934	read_unlock(&policy_rwlock);
2935	return rc;
2936}
2937
2938static int get_permissions_callback(void *k, void *d, void *args)
2939{
2940	struct perm_datum *datum = d;
2941	char *name = k, **perms = args;
2942	int value = datum->value - 1;
2943
2944	perms[value] = kstrdup(name, GFP_ATOMIC);
2945	if (!perms[value])
2946		return -ENOMEM;
2947
2948	return 0;
2949}
2950
2951int security_get_permissions(char *class, char ***perms, int *nperms)
2952{
2953	int rc, i;
2954	struct class_datum *match;
2955
2956	read_lock(&policy_rwlock);
2957
2958	rc = -EINVAL;
2959	match = hashtab_search(policydb.p_classes.table, class);
2960	if (!match) {
2961		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2962			__func__, class);
2963		goto out;
2964	}
2965
2966	rc = -ENOMEM;
2967	*nperms = match->permissions.nprim;
2968	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2969	if (!*perms)
2970		goto out;
2971
2972	if (match->comdatum) {
2973		rc = hashtab_map(match->comdatum->permissions.table,
2974				get_permissions_callback, *perms);
2975		if (rc)
2976			goto err;
2977	}
2978
2979	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2980			*perms);
2981	if (rc)
2982		goto err;
2983
2984out:
2985	read_unlock(&policy_rwlock);
2986	return rc;
2987
2988err:
2989	read_unlock(&policy_rwlock);
2990	for (i = 0; i < *nperms; i++)
2991		kfree((*perms)[i]);
2992	kfree(*perms);
2993	return rc;
2994}
2995
2996int security_get_reject_unknown(void)
2997{
2998	return policydb.reject_unknown;
2999}
3000
3001int security_get_allow_unknown(void)
3002{
3003	return policydb.allow_unknown;
3004}
3005
3006/**
3007 * security_policycap_supported - Check for a specific policy capability
3008 * @req_cap: capability
3009 *
3010 * Description:
3011 * This function queries the currently loaded policy to see if it supports the
3012 * capability specified by @req_cap.  Returns true (1) if the capability is
3013 * supported, false (0) if it isn't supported.
3014 *
3015 */
3016int security_policycap_supported(unsigned int req_cap)
3017{
3018	int rc;
3019
3020	read_lock(&policy_rwlock);
3021	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3022	read_unlock(&policy_rwlock);
3023
3024	return rc;
3025}
3026
3027struct selinux_audit_rule {
3028	u32 au_seqno;
3029	struct context au_ctxt;
3030};
3031
3032void selinux_audit_rule_free(void *vrule)
3033{
3034	struct selinux_audit_rule *rule = vrule;
3035
3036	if (rule) {
3037		context_destroy(&rule->au_ctxt);
3038		kfree(rule);
3039	}
3040}
3041
3042int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3043{
3044	struct selinux_audit_rule *tmprule;
3045	struct role_datum *roledatum;
3046	struct type_datum *typedatum;
3047	struct user_datum *userdatum;
3048	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3049	int rc = 0;
3050
3051	*rule = NULL;
3052
3053	if (!ss_initialized)
3054		return -EOPNOTSUPP;
3055
3056	switch (field) {
3057	case AUDIT_SUBJ_USER:
3058	case AUDIT_SUBJ_ROLE:
3059	case AUDIT_SUBJ_TYPE:
3060	case AUDIT_OBJ_USER:
3061	case AUDIT_OBJ_ROLE:
3062	case AUDIT_OBJ_TYPE:
3063		/* only 'equals' and 'not equals' fit user, role, and type */
3064		if (op != Audit_equal && op != Audit_not_equal)
3065			return -EINVAL;
3066		break;
3067	case AUDIT_SUBJ_SEN:
3068	case AUDIT_SUBJ_CLR:
3069	case AUDIT_OBJ_LEV_LOW:
3070	case AUDIT_OBJ_LEV_HIGH:
3071		/* we do not allow a range, indicated by the presence of '-' */
3072		if (strchr(rulestr, '-'))
3073			return -EINVAL;
3074		break;
3075	default:
3076		/* only the above fields are valid */
3077		return -EINVAL;
3078	}
3079
3080	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3081	if (!tmprule)
3082		return -ENOMEM;
3083
3084	context_init(&tmprule->au_ctxt);
3085
3086	read_lock(&policy_rwlock);
3087
3088	tmprule->au_seqno = latest_granting;
3089
3090	switch (field) {
3091	case AUDIT_SUBJ_USER:
3092	case AUDIT_OBJ_USER:
3093		rc = -EINVAL;
3094		userdatum = hashtab_search(policydb.p_users.table, rulestr);
3095		if (!userdatum)
3096			goto out;
3097		tmprule->au_ctxt.user = userdatum->value;
3098		break;
3099	case AUDIT_SUBJ_ROLE:
3100	case AUDIT_OBJ_ROLE:
3101		rc = -EINVAL;
3102		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3103		if (!roledatum)
3104			goto out;
3105		tmprule->au_ctxt.role = roledatum->value;
3106		break;
3107	case AUDIT_SUBJ_TYPE:
3108	case AUDIT_OBJ_TYPE:
3109		rc = -EINVAL;
3110		typedatum = hashtab_search(policydb.p_types.table, rulestr);
3111		if (!typedatum)
3112			goto out;
3113		tmprule->au_ctxt.type = typedatum->value;
3114		break;
3115	case AUDIT_SUBJ_SEN:
3116	case AUDIT_SUBJ_CLR:
3117	case AUDIT_OBJ_LEV_LOW:
3118	case AUDIT_OBJ_LEV_HIGH:
3119		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3120		if (rc)
3121			goto out;
3122		break;
3123	}
3124	rc = 0;
3125out:
3126	read_unlock(&policy_rwlock);
3127
3128	if (rc) {
3129		selinux_audit_rule_free(tmprule);
3130		tmprule = NULL;
3131	}
3132
3133	*rule = tmprule;
3134
3135	return rc;
3136}
3137
3138/* Check to see if the rule contains any selinux fields */
3139int selinux_audit_rule_known(struct audit_krule *rule)
3140{
3141	int i;
3142
3143	for (i = 0; i < rule->field_count; i++) {
3144		struct audit_field *f = &rule->fields[i];
3145		switch (f->type) {
3146		case AUDIT_SUBJ_USER:
3147		case AUDIT_SUBJ_ROLE:
3148		case AUDIT_SUBJ_TYPE:
3149		case AUDIT_SUBJ_SEN:
3150		case AUDIT_SUBJ_CLR:
3151		case AUDIT_OBJ_USER:
3152		case AUDIT_OBJ_ROLE:
3153		case AUDIT_OBJ_TYPE:
3154		case AUDIT_OBJ_LEV_LOW:
3155		case AUDIT_OBJ_LEV_HIGH:
3156			return 1;
3157		}
3158	}
3159
3160	return 0;
3161}
3162
3163int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3164			     struct audit_context *actx)
3165{
3166	struct context *ctxt;
3167	struct mls_level *level;
3168	struct selinux_audit_rule *rule = vrule;
3169	int match = 0;
3170
3171	if (unlikely(!rule)) {
3172		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
 
3173		return -ENOENT;
3174	}
3175
3176	read_lock(&policy_rwlock);
3177
3178	if (rule->au_seqno < latest_granting) {
 
 
3179		match = -ESTALE;
3180		goto out;
3181	}
3182
3183	ctxt = sidtab_search(&sidtab, sid);
3184	if (unlikely(!ctxt)) {
3185		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
 
3186			  sid);
3187		match = -ENOENT;
3188		goto out;
3189	}
3190
3191	/* a field/op pair that is not caught here will simply fall through
3192	   without a match */
3193	switch (field) {
3194	case AUDIT_SUBJ_USER:
3195	case AUDIT_OBJ_USER:
3196		switch (op) {
3197		case Audit_equal:
3198			match = (ctxt->user == rule->au_ctxt.user);
3199			break;
3200		case Audit_not_equal:
3201			match = (ctxt->user != rule->au_ctxt.user);
3202			break;
3203		}
3204		break;
3205	case AUDIT_SUBJ_ROLE:
3206	case AUDIT_OBJ_ROLE:
3207		switch (op) {
3208		case Audit_equal:
3209			match = (ctxt->role == rule->au_ctxt.role);
3210			break;
3211		case Audit_not_equal:
3212			match = (ctxt->role != rule->au_ctxt.role);
3213			break;
3214		}
3215		break;
3216	case AUDIT_SUBJ_TYPE:
3217	case AUDIT_OBJ_TYPE:
3218		switch (op) {
3219		case Audit_equal:
3220			match = (ctxt->type == rule->au_ctxt.type);
3221			break;
3222		case Audit_not_equal:
3223			match = (ctxt->type != rule->au_ctxt.type);
3224			break;
3225		}
3226		break;
3227	case AUDIT_SUBJ_SEN:
3228	case AUDIT_SUBJ_CLR:
3229	case AUDIT_OBJ_LEV_LOW:
3230	case AUDIT_OBJ_LEV_HIGH:
3231		level = ((field == AUDIT_SUBJ_SEN ||
3232			  field == AUDIT_OBJ_LEV_LOW) ?
3233			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3234		switch (op) {
3235		case Audit_equal:
3236			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3237					     level);
3238			break;
3239		case Audit_not_equal:
3240			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3241					      level);
3242			break;
3243		case Audit_lt:
3244			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3245					       level) &&
3246				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3247					       level));
3248			break;
3249		case Audit_le:
3250			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3251					      level);
3252			break;
3253		case Audit_gt:
3254			match = (mls_level_dom(level,
3255					      &rule->au_ctxt.range.level[0]) &&
3256				 !mls_level_eq(level,
3257					       &rule->au_ctxt.range.level[0]));
3258			break;
3259		case Audit_ge:
3260			match = mls_level_dom(level,
3261					      &rule->au_ctxt.range.level[0]);
3262			break;
3263		}
3264	}
3265
3266out:
3267	read_unlock(&policy_rwlock);
3268	return match;
3269}
3270
3271static int (*aurule_callback)(void) = audit_update_lsm_rules;
3272
3273static int aurule_avc_callback(u32 event)
 
3274{
3275	int err = 0;
3276
3277	if (event == AVC_CALLBACK_RESET && aurule_callback)
3278		err = aurule_callback();
3279	return err;
3280}
3281
3282static int __init aurule_init(void)
3283{
3284	int err;
3285
3286	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
 
3287	if (err)
3288		panic("avc_add_callback() failed, error %d\n", err);
3289
3290	return err;
3291}
3292__initcall(aurule_init);
3293
3294#ifdef CONFIG_NETLABEL
3295/**
3296 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3297 * @secattr: the NetLabel packet security attributes
3298 * @sid: the SELinux SID
3299 *
3300 * Description:
3301 * Attempt to cache the context in @ctx, which was derived from the packet in
3302 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3303 * already been initialized.
3304 *
3305 */
3306static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3307				      u32 sid)
3308{
3309	u32 *sid_cache;
3310
3311	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3312	if (sid_cache == NULL)
3313		return;
3314	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3315	if (secattr->cache == NULL) {
3316		kfree(sid_cache);
3317		return;
3318	}
3319
3320	*sid_cache = sid;
3321	secattr->cache->free = kfree;
3322	secattr->cache->data = sid_cache;
3323	secattr->flags |= NETLBL_SECATTR_CACHE;
3324}
3325
3326/**
3327 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3328 * @secattr: the NetLabel packet security attributes
3329 * @sid: the SELinux SID
3330 *
3331 * Description:
3332 * Convert the given NetLabel security attributes in @secattr into a
3333 * SELinux SID.  If the @secattr field does not contain a full SELinux
3334 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3335 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3336 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3337 * conversion for future lookups.  Returns zero on success, negative values on
3338 * failure.
3339 *
3340 */
3341int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3342				   u32 *sid)
3343{
3344	int rc;
3345	struct context *ctx;
3346	struct context ctx_new;
3347
3348	if (!ss_initialized) {
3349		*sid = SECSID_NULL;
3350		return 0;
3351	}
3352
3353	read_lock(&policy_rwlock);
3354
3355	if (secattr->flags & NETLBL_SECATTR_CACHE)
3356		*sid = *(u32 *)secattr->cache->data;
3357	else if (secattr->flags & NETLBL_SECATTR_SECID)
3358		*sid = secattr->attr.secid;
3359	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3360		rc = -EIDRM;
3361		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3362		if (ctx == NULL)
3363			goto out;
3364
3365		context_init(&ctx_new);
3366		ctx_new.user = ctx->user;
3367		ctx_new.role = ctx->role;
3368		ctx_new.type = ctx->type;
3369		mls_import_netlbl_lvl(&ctx_new, secattr);
3370		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3371			rc = mls_import_netlbl_cat(&ctx_new, secattr);
 
3372			if (rc)
3373				goto out;
 
 
 
3374		}
3375		rc = -EIDRM;
3376		if (!mls_context_isvalid(&policydb, &ctx_new))
3377			goto out_free;
3378
3379		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3380		if (rc)
3381			goto out_free;
3382
3383		security_netlbl_cache_add(secattr, *sid);
3384
3385		ebitmap_destroy(&ctx_new.range.level[0].cat);
3386	} else
3387		*sid = SECSID_NULL;
3388
3389	read_unlock(&policy_rwlock);
3390	return 0;
3391out_free:
3392	ebitmap_destroy(&ctx_new.range.level[0].cat);
3393out:
3394	read_unlock(&policy_rwlock);
3395	return rc;
3396}
3397
3398/**
3399 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3400 * @sid: the SELinux SID
3401 * @secattr: the NetLabel packet security attributes
3402 *
3403 * Description:
3404 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3405 * Returns zero on success, negative values on failure.
3406 *
3407 */
3408int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3409{
3410	int rc;
3411	struct context *ctx;
3412
3413	if (!ss_initialized)
3414		return 0;
3415
3416	read_lock(&policy_rwlock);
3417
3418	rc = -ENOENT;
3419	ctx = sidtab_search(&sidtab, sid);
3420	if (ctx == NULL)
3421		goto out;
3422
3423	rc = -ENOMEM;
3424	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3425				  GFP_ATOMIC);
3426	if (secattr->domain == NULL)
3427		goto out;
3428
3429	secattr->attr.secid = sid;
3430	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3431	mls_export_netlbl_lvl(ctx, secattr);
3432	rc = mls_export_netlbl_cat(ctx, secattr);
3433out:
3434	read_unlock(&policy_rwlock);
3435	return rc;
3436}
3437#endif /* CONFIG_NETLABEL */
3438
3439/**
3440 * security_read_policy - read the policy.
3441 * @data: binary policy data
3442 * @len: length of data in bytes
3443 *
3444 */
3445int security_read_policy(void **data, size_t *len)
3446{
3447	int rc;
3448	struct policy_file fp;
3449
3450	if (!ss_initialized)
3451		return -EINVAL;
3452
3453	*len = security_policydb_len();
3454
3455	*data = vmalloc_user(*len);
3456	if (!*data)
3457		return -ENOMEM;
3458
3459	fp.data = *data;
3460	fp.len = *len;
3461
3462	read_lock(&policy_rwlock);
3463	rc = policydb_write(&policydb, &fp);
3464	read_unlock(&policy_rwlock);
3465
3466	if (rc)
3467		return rc;
3468
3469	*len = (unsigned long)fp.data - (unsigned long)*data;
3470	return 0;
3471
3472}
v3.1
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73extern void selnl_notify_policyload(u32 seqno);
  74
  75int selinux_policycap_netpeer;
  76int selinux_policycap_openperm;
 
  77
  78static DEFINE_RWLOCK(policy_rwlock);
  79
  80static struct sidtab sidtab;
  81struct policydb policydb;
  82int ss_initialized;
  83
  84/*
  85 * The largest sequence number that has been used when
  86 * providing an access decision to the access vector cache.
  87 * The sequence number only changes when a policy change
  88 * occurs.
  89 */
  90static u32 latest_granting;
  91
  92/* Forward declaration. */
  93static int context_struct_to_string(struct context *context, char **scontext,
  94				    u32 *scontext_len);
  95
  96static void context_struct_compute_av(struct context *scontext,
  97				      struct context *tcontext,
  98				      u16 tclass,
  99				      struct av_decision *avd);
 
 100
 101struct selinux_mapping {
 102	u16 value; /* policy value */
 103	unsigned num_perms;
 104	u32 perms[sizeof(u32) * 8];
 105};
 106
 107static struct selinux_mapping *current_mapping;
 108static u16 current_mapping_size;
 109
 110static int selinux_set_mapping(struct policydb *pol,
 111			       struct security_class_mapping *map,
 112			       struct selinux_mapping **out_map_p,
 113			       u16 *out_map_size)
 114{
 115	struct selinux_mapping *out_map = NULL;
 116	size_t size = sizeof(struct selinux_mapping);
 117	u16 i, j;
 118	unsigned k;
 119	bool print_unknown_handle = false;
 120
 121	/* Find number of classes in the input mapping */
 122	if (!map)
 123		return -EINVAL;
 124	i = 0;
 125	while (map[i].name)
 126		i++;
 127
 128	/* Allocate space for the class records, plus one for class zero */
 129	out_map = kcalloc(++i, size, GFP_ATOMIC);
 130	if (!out_map)
 131		return -ENOMEM;
 132
 133	/* Store the raw class and permission values */
 134	j = 0;
 135	while (map[j].name) {
 136		struct security_class_mapping *p_in = map + (j++);
 137		struct selinux_mapping *p_out = out_map + j;
 138
 139		/* An empty class string skips ahead */
 140		if (!strcmp(p_in->name, "")) {
 141			p_out->num_perms = 0;
 142			continue;
 143		}
 144
 145		p_out->value = string_to_security_class(pol, p_in->name);
 146		if (!p_out->value) {
 147			printk(KERN_INFO
 148			       "SELinux:  Class %s not defined in policy.\n",
 149			       p_in->name);
 150			if (pol->reject_unknown)
 151				goto err;
 152			p_out->num_perms = 0;
 153			print_unknown_handle = true;
 154			continue;
 155		}
 156
 157		k = 0;
 158		while (p_in->perms && p_in->perms[k]) {
 159			/* An empty permission string skips ahead */
 160			if (!*p_in->perms[k]) {
 161				k++;
 162				continue;
 163			}
 164			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 165							    p_in->perms[k]);
 166			if (!p_out->perms[k]) {
 167				printk(KERN_INFO
 168				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 169				       p_in->perms[k], p_in->name);
 170				if (pol->reject_unknown)
 171					goto err;
 172				print_unknown_handle = true;
 173			}
 174
 175			k++;
 176		}
 177		p_out->num_perms = k;
 178	}
 179
 180	if (print_unknown_handle)
 181		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 182		       pol->allow_unknown ? "allowed" : "denied");
 183
 184	*out_map_p = out_map;
 185	*out_map_size = i;
 186	return 0;
 187err:
 188	kfree(out_map);
 189	return -EINVAL;
 190}
 191
 192/*
 193 * Get real, policy values from mapped values
 194 */
 195
 196static u16 unmap_class(u16 tclass)
 197{
 198	if (tclass < current_mapping_size)
 199		return current_mapping[tclass].value;
 200
 201	return tclass;
 202}
 203
 204/*
 205 * Get kernel value for class from its policy value
 206 */
 207static u16 map_class(u16 pol_value)
 208{
 209	u16 i;
 210
 211	for (i = 1; i < current_mapping_size; i++) {
 212		if (current_mapping[i].value == pol_value)
 213			return i;
 214	}
 215
 216	return SECCLASS_NULL;
 217}
 218
 219static void map_decision(u16 tclass, struct av_decision *avd,
 220			 int allow_unknown)
 221{
 222	if (tclass < current_mapping_size) {
 223		unsigned i, n = current_mapping[tclass].num_perms;
 224		u32 result;
 225
 226		for (i = 0, result = 0; i < n; i++) {
 227			if (avd->allowed & current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229			if (allow_unknown && !current_mapping[tclass].perms[i])
 230				result |= 1<<i;
 231		}
 232		avd->allowed = result;
 233
 234		for (i = 0, result = 0; i < n; i++)
 235			if (avd->auditallow & current_mapping[tclass].perms[i])
 236				result |= 1<<i;
 237		avd->auditallow = result;
 238
 239		for (i = 0, result = 0; i < n; i++) {
 240			if (avd->auditdeny & current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242			if (!allow_unknown && !current_mapping[tclass].perms[i])
 243				result |= 1<<i;
 244		}
 245		/*
 246		 * In case the kernel has a bug and requests a permission
 247		 * between num_perms and the maximum permission number, we
 248		 * should audit that denial
 249		 */
 250		for (; i < (sizeof(u32)*8); i++)
 251			result |= 1<<i;
 252		avd->auditdeny = result;
 253	}
 254}
 255
 256int security_mls_enabled(void)
 257{
 258	return policydb.mls_enabled;
 259}
 260
 261/*
 262 * Return the boolean value of a constraint expression
 263 * when it is applied to the specified source and target
 264 * security contexts.
 265 *
 266 * xcontext is a special beast...  It is used by the validatetrans rules
 267 * only.  For these rules, scontext is the context before the transition,
 268 * tcontext is the context after the transition, and xcontext is the context
 269 * of the process performing the transition.  All other callers of
 270 * constraint_expr_eval should pass in NULL for xcontext.
 271 */
 272static int constraint_expr_eval(struct context *scontext,
 273				struct context *tcontext,
 274				struct context *xcontext,
 275				struct constraint_expr *cexpr)
 276{
 277	u32 val1, val2;
 278	struct context *c;
 279	struct role_datum *r1, *r2;
 280	struct mls_level *l1, *l2;
 281	struct constraint_expr *e;
 282	int s[CEXPR_MAXDEPTH];
 283	int sp = -1;
 284
 285	for (e = cexpr; e; e = e->next) {
 286		switch (e->expr_type) {
 287		case CEXPR_NOT:
 288			BUG_ON(sp < 0);
 289			s[sp] = !s[sp];
 290			break;
 291		case CEXPR_AND:
 292			BUG_ON(sp < 1);
 293			sp--;
 294			s[sp] &= s[sp + 1];
 295			break;
 296		case CEXPR_OR:
 297			BUG_ON(sp < 1);
 298			sp--;
 299			s[sp] |= s[sp + 1];
 300			break;
 301		case CEXPR_ATTR:
 302			if (sp == (CEXPR_MAXDEPTH - 1))
 303				return 0;
 304			switch (e->attr) {
 305			case CEXPR_USER:
 306				val1 = scontext->user;
 307				val2 = tcontext->user;
 308				break;
 309			case CEXPR_TYPE:
 310				val1 = scontext->type;
 311				val2 = tcontext->type;
 312				break;
 313			case CEXPR_ROLE:
 314				val1 = scontext->role;
 315				val2 = tcontext->role;
 316				r1 = policydb.role_val_to_struct[val1 - 1];
 317				r2 = policydb.role_val_to_struct[val2 - 1];
 318				switch (e->op) {
 319				case CEXPR_DOM:
 320					s[++sp] = ebitmap_get_bit(&r1->dominates,
 321								  val2 - 1);
 322					continue;
 323				case CEXPR_DOMBY:
 324					s[++sp] = ebitmap_get_bit(&r2->dominates,
 325								  val1 - 1);
 326					continue;
 327				case CEXPR_INCOMP:
 328					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 329								    val2 - 1) &&
 330						   !ebitmap_get_bit(&r2->dominates,
 331								    val1 - 1));
 332					continue;
 333				default:
 334					break;
 335				}
 336				break;
 337			case CEXPR_L1L2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[0]);
 340				goto mls_ops;
 341			case CEXPR_L1H2:
 342				l1 = &(scontext->range.level[0]);
 343				l2 = &(tcontext->range.level[1]);
 344				goto mls_ops;
 345			case CEXPR_H1L2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[0]);
 348				goto mls_ops;
 349			case CEXPR_H1H2:
 350				l1 = &(scontext->range.level[1]);
 351				l2 = &(tcontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L1H1:
 354				l1 = &(scontext->range.level[0]);
 355				l2 = &(scontext->range.level[1]);
 356				goto mls_ops;
 357			case CEXPR_L2H2:
 358				l1 = &(tcontext->range.level[0]);
 359				l2 = &(tcontext->range.level[1]);
 360				goto mls_ops;
 361mls_ops:
 362			switch (e->op) {
 363			case CEXPR_EQ:
 364				s[++sp] = mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_NEQ:
 367				s[++sp] = !mls_level_eq(l1, l2);
 368				continue;
 369			case CEXPR_DOM:
 370				s[++sp] = mls_level_dom(l1, l2);
 371				continue;
 372			case CEXPR_DOMBY:
 373				s[++sp] = mls_level_dom(l2, l1);
 374				continue;
 375			case CEXPR_INCOMP:
 376				s[++sp] = mls_level_incomp(l2, l1);
 377				continue;
 378			default:
 379				BUG();
 380				return 0;
 381			}
 382			break;
 383			default:
 384				BUG();
 385				return 0;
 386			}
 387
 388			switch (e->op) {
 389			case CEXPR_EQ:
 390				s[++sp] = (val1 == val2);
 391				break;
 392			case CEXPR_NEQ:
 393				s[++sp] = (val1 != val2);
 394				break;
 395			default:
 396				BUG();
 397				return 0;
 398			}
 399			break;
 400		case CEXPR_NAMES:
 401			if (sp == (CEXPR_MAXDEPTH-1))
 402				return 0;
 403			c = scontext;
 404			if (e->attr & CEXPR_TARGET)
 405				c = tcontext;
 406			else if (e->attr & CEXPR_XTARGET) {
 407				c = xcontext;
 408				if (!c) {
 409					BUG();
 410					return 0;
 411				}
 412			}
 413			if (e->attr & CEXPR_USER)
 414				val1 = c->user;
 415			else if (e->attr & CEXPR_ROLE)
 416				val1 = c->role;
 417			else if (e->attr & CEXPR_TYPE)
 418				val1 = c->type;
 419			else {
 420				BUG();
 421				return 0;
 422			}
 423
 424			switch (e->op) {
 425			case CEXPR_EQ:
 426				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			case CEXPR_NEQ:
 429				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 430				break;
 431			default:
 432				BUG();
 433				return 0;
 434			}
 435			break;
 436		default:
 437			BUG();
 438			return 0;
 439		}
 440	}
 441
 442	BUG_ON(sp != 0);
 443	return s[0];
 444}
 445
 446/*
 447 * security_dump_masked_av - dumps masked permissions during
 448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 449 */
 450static int dump_masked_av_helper(void *k, void *d, void *args)
 451{
 452	struct perm_datum *pdatum = d;
 453	char **permission_names = args;
 454
 455	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 456
 457	permission_names[pdatum->value - 1] = (char *)k;
 458
 459	return 0;
 460}
 461
 462static void security_dump_masked_av(struct context *scontext,
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(current->audit_context,
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct context *scontext,
 541				     struct context *tcontext,
 542				     u16 tclass,
 543				     struct av_decision *avd)
 544{
 545	struct context lo_scontext;
 546	struct context lo_tcontext;
 547	struct av_decision lo_avd;
 548	struct type_datum *source;
 549	struct type_datum *target;
 550	u32 masked = 0;
 551
 552	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 553				    scontext->type - 1);
 554	BUG_ON(!source);
 555
 556	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 557				    tcontext->type - 1);
 558	BUG_ON(!target);
 559
 560	if (source->bounds) {
 561		memset(&lo_avd, 0, sizeof(lo_avd));
 562
 563		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 564		lo_scontext.type = source->bounds;
 565
 566		context_struct_compute_av(&lo_scontext,
 567					  tcontext,
 568					  tclass,
 569					  &lo_avd);
 
 570		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 571			return;		/* no masked permission */
 572		masked = ~lo_avd.allowed & avd->allowed;
 573	}
 574
 575	if (target->bounds) {
 576		memset(&lo_avd, 0, sizeof(lo_avd));
 577
 578		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 579		lo_tcontext.type = target->bounds;
 580
 581		context_struct_compute_av(scontext,
 582					  &lo_tcontext,
 583					  tclass,
 584					  &lo_avd);
 
 585		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 586			return;		/* no masked permission */
 587		masked = ~lo_avd.allowed & avd->allowed;
 588	}
 589
 590	if (source->bounds && target->bounds) {
 591		memset(&lo_avd, 0, sizeof(lo_avd));
 592		/*
 593		 * lo_scontext and lo_tcontext are already
 594		 * set up.
 595		 */
 596
 597		context_struct_compute_av(&lo_scontext,
 598					  &lo_tcontext,
 599					  tclass,
 600					  &lo_avd);
 
 601		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 602			return;		/* no masked permission */
 603		masked = ~lo_avd.allowed & avd->allowed;
 604	}
 605
 606	if (masked) {
 607		/* mask violated permissions */
 608		avd->allowed &= ~masked;
 609
 610		/* audit masked permissions */
 611		security_dump_masked_av(scontext, tcontext,
 612					tclass, masked, "bounds");
 613	}
 614}
 615
 616/*
 617 * Compute access vectors based on a context structure pair for
 618 * the permissions in a particular class.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619 */
 620static void context_struct_compute_av(struct context *scontext,
 621				      struct context *tcontext,
 622				      u16 tclass,
 623				      struct av_decision *avd)
 
 624{
 625	struct constraint_node *constraint;
 626	struct role_allow *ra;
 627	struct avtab_key avkey;
 628	struct avtab_node *node;
 629	struct class_datum *tclass_datum;
 630	struct ebitmap *sattr, *tattr;
 631	struct ebitmap_node *snode, *tnode;
 632	unsigned int i, j;
 633
 634	avd->allowed = 0;
 635	avd->auditallow = 0;
 636	avd->auditdeny = 0xffffffff;
 
 
 
 
 637
 638	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 639		if (printk_ratelimit())
 640			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 641		return;
 642	}
 643
 644	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 645
 646	/*
 647	 * If a specific type enforcement rule was defined for
 648	 * this permission check, then use it.
 649	 */
 650	avkey.target_class = tclass;
 651	avkey.specified = AVTAB_AV;
 652	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 653	BUG_ON(!sattr);
 654	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 655	BUG_ON(!tattr);
 656	ebitmap_for_each_positive_bit(sattr, snode, i) {
 657		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 658			avkey.source_type = i + 1;
 659			avkey.target_type = j + 1;
 660			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 661			     node;
 662			     node = avtab_search_node_next(node, avkey.specified)) {
 663				if (node->key.specified == AVTAB_ALLOWED)
 664					avd->allowed |= node->datum.data;
 665				else if (node->key.specified == AVTAB_AUDITALLOW)
 666					avd->auditallow |= node->datum.data;
 667				else if (node->key.specified == AVTAB_AUDITDENY)
 668					avd->auditdeny &= node->datum.data;
 
 
 669			}
 670
 671			/* Check conditional av table for additional permissions */
 672			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 
 673
 674		}
 675	}
 676
 677	/*
 678	 * Remove any permissions prohibited by a constraint (this includes
 679	 * the MLS policy).
 680	 */
 681	constraint = tclass_datum->constraints;
 682	while (constraint) {
 683		if ((constraint->permissions & (avd->allowed)) &&
 684		    !constraint_expr_eval(scontext, tcontext, NULL,
 685					  constraint->expr)) {
 686			avd->allowed &= ~(constraint->permissions);
 687		}
 688		constraint = constraint->next;
 689	}
 690
 691	/*
 692	 * If checking process transition permission and the
 693	 * role is changing, then check the (current_role, new_role)
 694	 * pair.
 695	 */
 696	if (tclass == policydb.process_class &&
 697	    (avd->allowed & policydb.process_trans_perms) &&
 698	    scontext->role != tcontext->role) {
 699		for (ra = policydb.role_allow; ra; ra = ra->next) {
 700			if (scontext->role == ra->role &&
 701			    tcontext->role == ra->new_role)
 702				break;
 703		}
 704		if (!ra)
 705			avd->allowed &= ~policydb.process_trans_perms;
 706	}
 707
 708	/*
 709	 * If the given source and target types have boundary
 710	 * constraint, lazy checks have to mask any violated
 711	 * permission and notice it to userspace via audit.
 712	 */
 713	type_attribute_bounds_av(scontext, tcontext,
 714				 tclass, avd);
 715}
 716
 717static int security_validtrans_handle_fail(struct context *ocontext,
 718					   struct context *ncontext,
 719					   struct context *tcontext,
 720					   u16 tclass)
 721{
 722	char *o = NULL, *n = NULL, *t = NULL;
 723	u32 olen, nlen, tlen;
 724
 725	if (context_struct_to_string(ocontext, &o, &olen))
 726		goto out;
 727	if (context_struct_to_string(ncontext, &n, &nlen))
 728		goto out;
 729	if (context_struct_to_string(tcontext, &t, &tlen))
 730		goto out;
 731	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 732		  "security_validate_transition:  denied for"
 733		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 734		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 735out:
 736	kfree(o);
 737	kfree(n);
 738	kfree(t);
 739
 740	if (!selinux_enforcing)
 741		return 0;
 742	return -EPERM;
 743}
 744
 745int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 746				 u16 orig_tclass)
 747{
 748	struct context *ocontext;
 749	struct context *ncontext;
 750	struct context *tcontext;
 751	struct class_datum *tclass_datum;
 752	struct constraint_node *constraint;
 753	u16 tclass;
 754	int rc = 0;
 755
 756	if (!ss_initialized)
 757		return 0;
 758
 759	read_lock(&policy_rwlock);
 760
 761	tclass = unmap_class(orig_tclass);
 
 
 
 762
 763	if (!tclass || tclass > policydb.p_classes.nprim) {
 764		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 765			__func__, tclass);
 766		rc = -EINVAL;
 767		goto out;
 768	}
 769	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 770
 771	ocontext = sidtab_search(&sidtab, oldsid);
 772	if (!ocontext) {
 773		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 774			__func__, oldsid);
 775		rc = -EINVAL;
 776		goto out;
 777	}
 778
 779	ncontext = sidtab_search(&sidtab, newsid);
 780	if (!ncontext) {
 781		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 782			__func__, newsid);
 783		rc = -EINVAL;
 784		goto out;
 785	}
 786
 787	tcontext = sidtab_search(&sidtab, tasksid);
 788	if (!tcontext) {
 789		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 790			__func__, tasksid);
 791		rc = -EINVAL;
 792		goto out;
 793	}
 794
 795	constraint = tclass_datum->validatetrans;
 796	while (constraint) {
 797		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 798					  constraint->expr)) {
 799			rc = security_validtrans_handle_fail(ocontext, ncontext,
 800							     tcontext, tclass);
 
 
 
 
 
 801			goto out;
 802		}
 803		constraint = constraint->next;
 804	}
 805
 806out:
 807	read_unlock(&policy_rwlock);
 808	return rc;
 809}
 810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811/*
 812 * security_bounded_transition - check whether the given
 813 * transition is directed to bounded, or not.
 814 * It returns 0, if @newsid is bounded by @oldsid.
 815 * Otherwise, it returns error code.
 816 *
 817 * @oldsid : current security identifier
 818 * @newsid : destinated security identifier
 819 */
 820int security_bounded_transition(u32 old_sid, u32 new_sid)
 821{
 822	struct context *old_context, *new_context;
 823	struct type_datum *type;
 824	int index;
 825	int rc;
 826
 827	read_lock(&policy_rwlock);
 828
 829	rc = -EINVAL;
 830	old_context = sidtab_search(&sidtab, old_sid);
 831	if (!old_context) {
 832		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 833		       __func__, old_sid);
 834		goto out;
 835	}
 836
 837	rc = -EINVAL;
 838	new_context = sidtab_search(&sidtab, new_sid);
 839	if (!new_context) {
 840		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 841		       __func__, new_sid);
 842		goto out;
 843	}
 844
 845	rc = 0;
 846	/* type/domain unchanged */
 847	if (old_context->type == new_context->type)
 848		goto out;
 849
 850	index = new_context->type;
 851	while (true) {
 852		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 853					  index - 1);
 854		BUG_ON(!type);
 855
 856		/* not bounded anymore */
 857		rc = -EPERM;
 858		if (!type->bounds)
 859			break;
 860
 861		/* @newsid is bounded by @oldsid */
 862		rc = 0;
 863		if (type->bounds == old_context->type)
 864			break;
 865
 866		index = type->bounds;
 867	}
 868
 869	if (rc) {
 870		char *old_name = NULL;
 871		char *new_name = NULL;
 872		u32 length;
 873
 874		if (!context_struct_to_string(old_context,
 875					      &old_name, &length) &&
 876		    !context_struct_to_string(new_context,
 877					      &new_name, &length)) {
 878			audit_log(current->audit_context,
 879				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 880				  "op=security_bounded_transition "
 881				  "result=denied "
 882				  "oldcontext=%s newcontext=%s",
 883				  old_name, new_name);
 884		}
 885		kfree(new_name);
 886		kfree(old_name);
 887	}
 888out:
 889	read_unlock(&policy_rwlock);
 890
 891	return rc;
 892}
 893
 894static void avd_init(struct av_decision *avd)
 895{
 896	avd->allowed = 0;
 897	avd->auditallow = 0;
 898	avd->auditdeny = 0xffffffff;
 899	avd->seqno = latest_granting;
 900	avd->flags = 0;
 901}
 902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904/**
 905 * security_compute_av - Compute access vector decisions.
 906 * @ssid: source security identifier
 907 * @tsid: target security identifier
 908 * @tclass: target security class
 909 * @avd: access vector decisions
 
 910 *
 911 * Compute a set of access vector decisions based on the
 912 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 913 */
 914void security_compute_av(u32 ssid,
 915			 u32 tsid,
 916			 u16 orig_tclass,
 917			 struct av_decision *avd)
 
 918{
 919	u16 tclass;
 920	struct context *scontext = NULL, *tcontext = NULL;
 921
 922	read_lock(&policy_rwlock);
 923	avd_init(avd);
 
 924	if (!ss_initialized)
 925		goto allow;
 926
 927	scontext = sidtab_search(&sidtab, ssid);
 928	if (!scontext) {
 929		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 930		       __func__, ssid);
 931		goto out;
 932	}
 933
 934	/* permissive domain? */
 935	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 936		avd->flags |= AVD_FLAGS_PERMISSIVE;
 937
 938	tcontext = sidtab_search(&sidtab, tsid);
 939	if (!tcontext) {
 940		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 941		       __func__, tsid);
 942		goto out;
 943	}
 944
 945	tclass = unmap_class(orig_tclass);
 946	if (unlikely(orig_tclass && !tclass)) {
 947		if (policydb.allow_unknown)
 948			goto allow;
 949		goto out;
 950	}
 951	context_struct_compute_av(scontext, tcontext, tclass, avd);
 952	map_decision(orig_tclass, avd, policydb.allow_unknown);
 953out:
 954	read_unlock(&policy_rwlock);
 955	return;
 956allow:
 957	avd->allowed = 0xffffffff;
 958	goto out;
 959}
 960
 961void security_compute_av_user(u32 ssid,
 962			      u32 tsid,
 963			      u16 tclass,
 964			      struct av_decision *avd)
 965{
 966	struct context *scontext = NULL, *tcontext = NULL;
 967
 968	read_lock(&policy_rwlock);
 969	avd_init(avd);
 970	if (!ss_initialized)
 971		goto allow;
 972
 973	scontext = sidtab_search(&sidtab, ssid);
 974	if (!scontext) {
 975		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 976		       __func__, ssid);
 977		goto out;
 978	}
 979
 980	/* permissive domain? */
 981	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 982		avd->flags |= AVD_FLAGS_PERMISSIVE;
 983
 984	tcontext = sidtab_search(&sidtab, tsid);
 985	if (!tcontext) {
 986		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 987		       __func__, tsid);
 988		goto out;
 989	}
 990
 991	if (unlikely(!tclass)) {
 992		if (policydb.allow_unknown)
 993			goto allow;
 994		goto out;
 995	}
 996
 997	context_struct_compute_av(scontext, tcontext, tclass, avd);
 998 out:
 999	read_unlock(&policy_rwlock);
1000	return;
1001allow:
1002	avd->allowed = 0xffffffff;
1003	goto out;
1004}
1005
1006/*
1007 * Write the security context string representation of
1008 * the context structure `context' into a dynamically
1009 * allocated string of the correct size.  Set `*scontext'
1010 * to point to this string and set `*scontext_len' to
1011 * the length of the string.
1012 */
1013static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1014{
1015	char *scontextp;
1016
1017	if (scontext)
1018		*scontext = NULL;
1019	*scontext_len = 0;
1020
1021	if (context->len) {
1022		*scontext_len = context->len;
1023		*scontext = kstrdup(context->str, GFP_ATOMIC);
1024		if (!(*scontext))
1025			return -ENOMEM;
 
 
1026		return 0;
1027	}
1028
1029	/* Compute the size of the context. */
1030	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033	*scontext_len += mls_compute_context_len(context);
1034
1035	if (!scontext)
1036		return 0;
1037
1038	/* Allocate space for the context; caller must free this space. */
1039	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040	if (!scontextp)
1041		return -ENOMEM;
1042	*scontext = scontextp;
1043
1044	/*
1045	 * Copy the user name, role name and type name into the context.
1046	 */
1047	sprintf(scontextp, "%s:%s:%s",
1048		sym_name(&policydb, SYM_USERS, context->user - 1),
1049		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055	mls_sid_to_context(context, &scontextp);
1056
1057	*scontextp = 0;
1058
1059	return 0;
1060}
1061
1062#include "initial_sid_to_string.h"
1063
1064const char *security_get_initial_sid_context(u32 sid)
1065{
1066	if (unlikely(sid > SECINITSID_NUM))
1067		return NULL;
1068	return initial_sid_to_string[sid];
1069}
1070
1071static int security_sid_to_context_core(u32 sid, char **scontext,
1072					u32 *scontext_len, int force)
1073{
1074	struct context *context;
1075	int rc = 0;
1076
1077	if (scontext)
1078		*scontext = NULL;
1079	*scontext_len  = 0;
1080
1081	if (!ss_initialized) {
1082		if (sid <= SECINITSID_NUM) {
1083			char *scontextp;
1084
1085			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086			if (!scontext)
1087				goto out;
1088			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
 
1089			if (!scontextp) {
1090				rc = -ENOMEM;
1091				goto out;
1092			}
1093			strcpy(scontextp, initial_sid_to_string[sid]);
1094			*scontext = scontextp;
1095			goto out;
1096		}
1097		printk(KERN_ERR "SELinux: %s:  called before initial "
1098		       "load_policy on unknown SID %d\n", __func__, sid);
1099		rc = -EINVAL;
1100		goto out;
1101	}
1102	read_lock(&policy_rwlock);
1103	if (force)
1104		context = sidtab_search_force(&sidtab, sid);
1105	else
1106		context = sidtab_search(&sidtab, sid);
1107	if (!context) {
1108		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109			__func__, sid);
1110		rc = -EINVAL;
1111		goto out_unlock;
1112	}
1113	rc = context_struct_to_string(context, scontext, scontext_len);
1114out_unlock:
1115	read_unlock(&policy_rwlock);
1116out:
1117	return rc;
1118
1119}
1120
1121/**
1122 * security_sid_to_context - Obtain a context for a given SID.
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1126 *
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size.  Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1130 */
1131int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1132{
1133	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1134}
1135
1136int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1137{
1138	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1139}
1140
1141/*
1142 * Caveat:  Mutates scontext.
1143 */
1144static int string_to_context_struct(struct policydb *pol,
1145				    struct sidtab *sidtabp,
1146				    char *scontext,
1147				    u32 scontext_len,
1148				    struct context *ctx,
1149				    u32 def_sid)
1150{
1151	struct role_datum *role;
1152	struct type_datum *typdatum;
1153	struct user_datum *usrdatum;
1154	char *scontextp, *p, oldc;
1155	int rc = 0;
1156
1157	context_init(ctx);
1158
1159	/* Parse the security context. */
1160
1161	rc = -EINVAL;
1162	scontextp = (char *) scontext;
1163
1164	/* Extract the user. */
1165	p = scontextp;
1166	while (*p && *p != ':')
1167		p++;
1168
1169	if (*p == 0)
1170		goto out;
1171
1172	*p++ = 0;
1173
1174	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175	if (!usrdatum)
1176		goto out;
1177
1178	ctx->user = usrdatum->value;
1179
1180	/* Extract role. */
1181	scontextp = p;
1182	while (*p && *p != ':')
1183		p++;
1184
1185	if (*p == 0)
1186		goto out;
1187
1188	*p++ = 0;
1189
1190	role = hashtab_search(pol->p_roles.table, scontextp);
1191	if (!role)
1192		goto out;
1193	ctx->role = role->value;
1194
1195	/* Extract type. */
1196	scontextp = p;
1197	while (*p && *p != ':')
1198		p++;
1199	oldc = *p;
1200	*p++ = 0;
1201
1202	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203	if (!typdatum || typdatum->attribute)
1204		goto out;
1205
1206	ctx->type = typdatum->value;
1207
1208	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209	if (rc)
1210		goto out;
1211
1212	rc = -EINVAL;
1213	if ((p - scontext) < scontext_len)
1214		goto out;
1215
1216	/* Check the validity of the new context. */
1217	if (!policydb_context_isvalid(pol, ctx))
1218		goto out;
1219	rc = 0;
1220out:
1221	if (rc)
1222		context_destroy(ctx);
1223	return rc;
1224}
1225
1226static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228					int force)
1229{
1230	char *scontext2, *str = NULL;
1231	struct context context;
1232	int rc = 0;
1233
 
 
 
 
1234	if (!ss_initialized) {
1235		int i;
1236
1237		for (i = 1; i < SECINITSID_NUM; i++) {
1238			if (!strcmp(initial_sid_to_string[i], scontext)) {
1239				*sid = i;
1240				return 0;
1241			}
1242		}
1243		*sid = SECINITSID_KERNEL;
1244		return 0;
1245	}
1246	*sid = SECSID_NULL;
1247
1248	/* Copy the string so that we can modify the copy as we parse it. */
1249	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250	if (!scontext2)
1251		return -ENOMEM;
1252	memcpy(scontext2, scontext, scontext_len);
1253	scontext2[scontext_len] = 0;
1254
1255	if (force) {
1256		/* Save another copy for storing in uninterpreted form */
1257		rc = -ENOMEM;
1258		str = kstrdup(scontext2, gfp_flags);
1259		if (!str)
1260			goto out;
1261	}
1262
1263	read_lock(&policy_rwlock);
1264	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265				      scontext_len, &context, def_sid);
1266	if (rc == -EINVAL && force) {
1267		context.str = str;
1268		context.len = scontext_len;
1269		str = NULL;
1270	} else if (rc)
1271		goto out_unlock;
1272	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273	context_destroy(&context);
1274out_unlock:
1275	read_unlock(&policy_rwlock);
1276out:
1277	kfree(scontext2);
1278	kfree(str);
1279	return rc;
1280}
1281
1282/**
1283 * security_context_to_sid - Obtain a SID for a given security context.
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
 
1287 *
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1292 */
1293int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
 
1294{
1295	return security_context_to_sid_core(scontext, scontext_len,
1296					    sid, SECSID_NULL, GFP_KERNEL, 0);
 
 
 
 
 
1297}
1298
1299/**
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1302 *
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
1307 *
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1316 */
1317int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319{
1320	return security_context_to_sid_core(scontext, scontext_len,
1321					    sid, def_sid, gfp_flags, 1);
1322}
1323
1324int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325				  u32 *sid)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329}
1330
1331static int compute_sid_handle_invalid_context(
1332	struct context *scontext,
1333	struct context *tcontext,
1334	u16 tclass,
1335	struct context *newcontext)
1336{
1337	char *s = NULL, *t = NULL, *n = NULL;
1338	u32 slen, tlen, nlen;
1339
1340	if (context_struct_to_string(scontext, &s, &slen))
1341		goto out;
1342	if (context_struct_to_string(tcontext, &t, &tlen))
1343		goto out;
1344	if (context_struct_to_string(newcontext, &n, &nlen))
1345		goto out;
1346	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347		  "security_compute_sid:  invalid context %s"
1348		  " for scontext=%s"
1349		  " tcontext=%s"
1350		  " tclass=%s",
1351		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352out:
1353	kfree(s);
1354	kfree(t);
1355	kfree(n);
1356	if (!selinux_enforcing)
1357		return 0;
1358	return -EACCES;
1359}
1360
1361static void filename_compute_type(struct policydb *p, struct context *newcontext,
1362				  u32 stype, u32 ttype, u16 tclass,
1363				  const char *objname)
1364{
1365	struct filename_trans ft;
1366	struct filename_trans_datum *otype;
1367
1368	/*
1369	 * Most filename trans rules are going to live in specific directories
1370	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371	 * if the ttype does not contain any rules.
1372	 */
1373	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374		return;
1375
1376	ft.stype = stype;
1377	ft.ttype = ttype;
1378	ft.tclass = tclass;
1379	ft.name = objname;
1380
1381	otype = hashtab_search(p->filename_trans, &ft);
1382	if (otype)
1383		newcontext->type = otype->otype;
1384}
1385
1386static int security_compute_sid(u32 ssid,
1387				u32 tsid,
1388				u16 orig_tclass,
1389				u32 specified,
1390				const char *objname,
1391				u32 *out_sid,
1392				bool kern)
1393{
 
1394	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1395	struct role_trans *roletr = NULL;
1396	struct avtab_key avkey;
1397	struct avtab_datum *avdatum;
1398	struct avtab_node *node;
1399	u16 tclass;
1400	int rc = 0;
1401	bool sock;
1402
1403	if (!ss_initialized) {
1404		switch (orig_tclass) {
1405		case SECCLASS_PROCESS: /* kernel value */
1406			*out_sid = ssid;
1407			break;
1408		default:
1409			*out_sid = tsid;
1410			break;
1411		}
1412		goto out;
1413	}
1414
1415	context_init(&newcontext);
1416
1417	read_lock(&policy_rwlock);
1418
1419	if (kern) {
1420		tclass = unmap_class(orig_tclass);
1421		sock = security_is_socket_class(orig_tclass);
1422	} else {
1423		tclass = orig_tclass;
1424		sock = security_is_socket_class(map_class(tclass));
1425	}
1426
1427	scontext = sidtab_search(&sidtab, ssid);
1428	if (!scontext) {
1429		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1430		       __func__, ssid);
1431		rc = -EINVAL;
1432		goto out_unlock;
1433	}
1434	tcontext = sidtab_search(&sidtab, tsid);
1435	if (!tcontext) {
1436		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1437		       __func__, tsid);
1438		rc = -EINVAL;
1439		goto out_unlock;
1440	}
1441
 
 
 
1442	/* Set the user identity. */
1443	switch (specified) {
1444	case AVTAB_TRANSITION:
1445	case AVTAB_CHANGE:
1446		/* Use the process user identity. */
1447		newcontext.user = scontext->user;
 
 
 
 
 
1448		break;
1449	case AVTAB_MEMBER:
1450		/* Use the related object owner. */
1451		newcontext.user = tcontext->user;
1452		break;
1453	}
1454
1455	/* Set the role and type to default values. */
1456	if ((tclass == policydb.process_class) || (sock == true)) {
1457		/* Use the current role and type of process. */
1458		newcontext.role = scontext->role;
 
 
 
 
 
 
 
 
 
 
 
1459		newcontext.type = scontext->type;
 
 
1460	} else {
1461		/* Use the well-defined object role. */
1462		newcontext.role = OBJECT_R_VAL;
1463		/* Use the type of the related object. */
1464		newcontext.type = tcontext->type;
 
 
 
1465	}
1466
1467	/* Look for a type transition/member/change rule. */
1468	avkey.source_type = scontext->type;
1469	avkey.target_type = tcontext->type;
1470	avkey.target_class = tclass;
1471	avkey.specified = specified;
1472	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1473
1474	/* If no permanent rule, also check for enabled conditional rules */
1475	if (!avdatum) {
1476		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1477		for (; node; node = avtab_search_node_next(node, specified)) {
1478			if (node->key.specified & AVTAB_ENABLED) {
1479				avdatum = &node->datum;
1480				break;
1481			}
1482		}
1483	}
1484
1485	if (avdatum) {
1486		/* Use the type from the type transition/member/change rule. */
1487		newcontext.type = avdatum->data;
1488	}
1489
1490	/* if we have a objname this is a file trans check so check those rules */
1491	if (objname)
1492		filename_compute_type(&policydb, &newcontext, scontext->type,
1493				      tcontext->type, tclass, objname);
1494
1495	/* Check for class-specific changes. */
1496	if (specified & AVTAB_TRANSITION) {
1497		/* Look for a role transition rule. */
1498		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1499			if ((roletr->role == scontext->role) &&
1500			    (roletr->type == tcontext->type) &&
1501			    (roletr->tclass == tclass)) {
1502				/* Use the role transition rule. */
1503				newcontext.role = roletr->new_role;
1504				break;
1505			}
1506		}
1507	}
1508
1509	/* Set the MLS attributes.
1510	   This is done last because it may allocate memory. */
1511	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1512			     &newcontext, sock);
1513	if (rc)
1514		goto out_unlock;
1515
1516	/* Check the validity of the context. */
1517	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1518		rc = compute_sid_handle_invalid_context(scontext,
1519							tcontext,
1520							tclass,
1521							&newcontext);
1522		if (rc)
1523			goto out_unlock;
1524	}
1525	/* Obtain the sid for the context. */
1526	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1527out_unlock:
1528	read_unlock(&policy_rwlock);
1529	context_destroy(&newcontext);
1530out:
1531	return rc;
1532}
1533
1534/**
1535 * security_transition_sid - Compute the SID for a new subject/object.
1536 * @ssid: source security identifier
1537 * @tsid: target security identifier
1538 * @tclass: target security class
1539 * @out_sid: security identifier for new subject/object
1540 *
1541 * Compute a SID to use for labeling a new subject or object in the
1542 * class @tclass based on a SID pair (@ssid, @tsid).
1543 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1544 * if insufficient memory is available, or %0 if the new SID was
1545 * computed successfully.
1546 */
1547int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1548			    const struct qstr *qstr, u32 *out_sid)
1549{
1550	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1551				    qstr ? qstr->name : NULL, out_sid, true);
1552}
1553
1554int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1555				 const char *objname, u32 *out_sid)
1556{
1557	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1558				    objname, out_sid, false);
1559}
1560
1561/**
1562 * security_member_sid - Compute the SID for member selection.
1563 * @ssid: source security identifier
1564 * @tsid: target security identifier
1565 * @tclass: target security class
1566 * @out_sid: security identifier for selected member
1567 *
1568 * Compute a SID to use when selecting a member of a polyinstantiated
1569 * object of class @tclass based on a SID pair (@ssid, @tsid).
1570 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1571 * if insufficient memory is available, or %0 if the SID was
1572 * computed successfully.
1573 */
1574int security_member_sid(u32 ssid,
1575			u32 tsid,
1576			u16 tclass,
1577			u32 *out_sid)
1578{
1579	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1580				    out_sid, false);
1581}
1582
1583/**
1584 * security_change_sid - Compute the SID for object relabeling.
1585 * @ssid: source security identifier
1586 * @tsid: target security identifier
1587 * @tclass: target security class
1588 * @out_sid: security identifier for selected member
1589 *
1590 * Compute a SID to use for relabeling an object of class @tclass
1591 * based on a SID pair (@ssid, @tsid).
1592 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1593 * if insufficient memory is available, or %0 if the SID was
1594 * computed successfully.
1595 */
1596int security_change_sid(u32 ssid,
1597			u32 tsid,
1598			u16 tclass,
1599			u32 *out_sid)
1600{
1601	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1602				    out_sid, false);
1603}
1604
1605/* Clone the SID into the new SID table. */
1606static int clone_sid(u32 sid,
1607		     struct context *context,
1608		     void *arg)
1609{
1610	struct sidtab *s = arg;
1611
1612	if (sid > SECINITSID_NUM)
1613		return sidtab_insert(s, sid, context);
1614	else
1615		return 0;
1616}
1617
1618static inline int convert_context_handle_invalid_context(struct context *context)
1619{
1620	char *s;
1621	u32 len;
1622
1623	if (selinux_enforcing)
1624		return -EINVAL;
1625
1626	if (!context_struct_to_string(context, &s, &len)) {
1627		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1628		kfree(s);
1629	}
1630	return 0;
1631}
1632
1633struct convert_context_args {
1634	struct policydb *oldp;
1635	struct policydb *newp;
1636};
1637
1638/*
1639 * Convert the values in the security context
1640 * structure `c' from the values specified
1641 * in the policy `p->oldp' to the values specified
1642 * in the policy `p->newp'.  Verify that the
1643 * context is valid under the new policy.
1644 */
1645static int convert_context(u32 key,
1646			   struct context *c,
1647			   void *p)
1648{
1649	struct convert_context_args *args;
1650	struct context oldc;
1651	struct ocontext *oc;
1652	struct mls_range *range;
1653	struct role_datum *role;
1654	struct type_datum *typdatum;
1655	struct user_datum *usrdatum;
1656	char *s;
1657	u32 len;
1658	int rc = 0;
1659
1660	if (key <= SECINITSID_NUM)
1661		goto out;
1662
1663	args = p;
1664
1665	if (c->str) {
1666		struct context ctx;
1667
1668		rc = -ENOMEM;
1669		s = kstrdup(c->str, GFP_KERNEL);
1670		if (!s)
1671			goto out;
1672
1673		rc = string_to_context_struct(args->newp, NULL, s,
1674					      c->len, &ctx, SECSID_NULL);
1675		kfree(s);
1676		if (!rc) {
1677			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1678			       c->str);
1679			/* Replace string with mapped representation. */
1680			kfree(c->str);
1681			memcpy(c, &ctx, sizeof(*c));
1682			goto out;
1683		} else if (rc == -EINVAL) {
1684			/* Retain string representation for later mapping. */
1685			rc = 0;
1686			goto out;
1687		} else {
1688			/* Other error condition, e.g. ENOMEM. */
1689			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1690			       c->str, -rc);
1691			goto out;
1692		}
1693	}
1694
1695	rc = context_cpy(&oldc, c);
1696	if (rc)
1697		goto out;
1698
1699	/* Convert the user. */
1700	rc = -EINVAL;
1701	usrdatum = hashtab_search(args->newp->p_users.table,
1702				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1703	if (!usrdatum)
1704		goto bad;
1705	c->user = usrdatum->value;
1706
1707	/* Convert the role. */
1708	rc = -EINVAL;
1709	role = hashtab_search(args->newp->p_roles.table,
1710			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1711	if (!role)
1712		goto bad;
1713	c->role = role->value;
1714
1715	/* Convert the type. */
1716	rc = -EINVAL;
1717	typdatum = hashtab_search(args->newp->p_types.table,
1718				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1719	if (!typdatum)
1720		goto bad;
1721	c->type = typdatum->value;
1722
1723	/* Convert the MLS fields if dealing with MLS policies */
1724	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1725		rc = mls_convert_context(args->oldp, args->newp, c);
1726		if (rc)
1727			goto bad;
1728	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1729		/*
1730		 * Switching between MLS and non-MLS policy:
1731		 * free any storage used by the MLS fields in the
1732		 * context for all existing entries in the sidtab.
1733		 */
1734		mls_context_destroy(c);
1735	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1736		/*
1737		 * Switching between non-MLS and MLS policy:
1738		 * ensure that the MLS fields of the context for all
1739		 * existing entries in the sidtab are filled in with a
1740		 * suitable default value, likely taken from one of the
1741		 * initial SIDs.
1742		 */
1743		oc = args->newp->ocontexts[OCON_ISID];
1744		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1745			oc = oc->next;
1746		rc = -EINVAL;
1747		if (!oc) {
1748			printk(KERN_ERR "SELinux:  unable to look up"
1749				" the initial SIDs list\n");
1750			goto bad;
1751		}
1752		range = &oc->context[0].range;
1753		rc = mls_range_set(c, range);
1754		if (rc)
1755			goto bad;
1756	}
1757
1758	/* Check the validity of the new context. */
1759	if (!policydb_context_isvalid(args->newp, c)) {
1760		rc = convert_context_handle_invalid_context(&oldc);
1761		if (rc)
1762			goto bad;
1763	}
1764
1765	context_destroy(&oldc);
1766
1767	rc = 0;
1768out:
1769	return rc;
1770bad:
1771	/* Map old representation to string and save it. */
1772	rc = context_struct_to_string(&oldc, &s, &len);
1773	if (rc)
1774		return rc;
1775	context_destroy(&oldc);
1776	context_destroy(c);
1777	c->str = s;
1778	c->len = len;
1779	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1780	       c->str);
1781	rc = 0;
1782	goto out;
1783}
1784
1785static void security_load_policycaps(void)
1786{
1787	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1788						  POLICYDB_CAPABILITY_NETPEER);
1789	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1790						  POLICYDB_CAPABILITY_OPENPERM);
 
 
1791}
1792
1793extern void selinux_complete_init(void);
1794static int security_preserve_bools(struct policydb *p);
1795
1796/**
1797 * security_load_policy - Load a security policy configuration.
1798 * @data: binary policy data
1799 * @len: length of data in bytes
1800 *
1801 * Load a new set of security policy configuration data,
1802 * validate it and convert the SID table as necessary.
1803 * This function will flush the access vector cache after
1804 * loading the new policy.
1805 */
1806int security_load_policy(void *data, size_t len)
1807{
1808	struct policydb oldpolicydb, newpolicydb;
1809	struct sidtab oldsidtab, newsidtab;
1810	struct selinux_mapping *oldmap, *map = NULL;
1811	struct convert_context_args args;
1812	u32 seqno;
1813	u16 map_size;
1814	int rc = 0;
1815	struct policy_file file = { data, len }, *fp = &file;
1816
 
 
 
 
 
 
 
1817	if (!ss_initialized) {
1818		avtab_cache_init();
1819		rc = policydb_read(&policydb, fp);
1820		if (rc) {
1821			avtab_cache_destroy();
1822			return rc;
1823		}
1824
1825		policydb.len = len;
1826		rc = selinux_set_mapping(&policydb, secclass_map,
1827					 &current_mapping,
1828					 &current_mapping_size);
1829		if (rc) {
1830			policydb_destroy(&policydb);
1831			avtab_cache_destroy();
1832			return rc;
1833		}
1834
1835		rc = policydb_load_isids(&policydb, &sidtab);
1836		if (rc) {
1837			policydb_destroy(&policydb);
1838			avtab_cache_destroy();
1839			return rc;
1840		}
1841
1842		security_load_policycaps();
1843		ss_initialized = 1;
1844		seqno = ++latest_granting;
1845		selinux_complete_init();
1846		avc_ss_reset(seqno);
1847		selnl_notify_policyload(seqno);
1848		selinux_status_update_policyload(seqno);
1849		selinux_netlbl_cache_invalidate();
1850		selinux_xfrm_notify_policyload();
1851		return 0;
1852	}
1853
1854#if 0
1855	sidtab_hash_eval(&sidtab, "sids");
1856#endif
1857
1858	rc = policydb_read(&newpolicydb, fp);
1859	if (rc)
1860		return rc;
1861
1862	newpolicydb.len = len;
1863	/* If switching between different policy types, log MLS status */
1864	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1865		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1866	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1867		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1868
1869	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1870	if (rc) {
1871		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1872		policydb_destroy(&newpolicydb);
1873		return rc;
1874	}
1875
1876	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1877	if (rc)
1878		goto err;
1879
1880	rc = security_preserve_bools(&newpolicydb);
1881	if (rc) {
1882		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1883		goto err;
1884	}
1885
1886	/* Clone the SID table. */
1887	sidtab_shutdown(&sidtab);
1888
1889	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1890	if (rc)
1891		goto err;
1892
1893	/*
1894	 * Convert the internal representations of contexts
1895	 * in the new SID table.
1896	 */
1897	args.oldp = &policydb;
1898	args.newp = &newpolicydb;
1899	rc = sidtab_map(&newsidtab, convert_context, &args);
1900	if (rc) {
1901		printk(KERN_ERR "SELinux:  unable to convert the internal"
1902			" representation of contexts in the new SID"
1903			" table\n");
1904		goto err;
1905	}
1906
1907	/* Save the old policydb and SID table to free later. */
1908	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1909	sidtab_set(&oldsidtab, &sidtab);
1910
1911	/* Install the new policydb and SID table. */
1912	write_lock_irq(&policy_rwlock);
1913	memcpy(&policydb, &newpolicydb, sizeof policydb);
1914	sidtab_set(&sidtab, &newsidtab);
1915	security_load_policycaps();
1916	oldmap = current_mapping;
1917	current_mapping = map;
1918	current_mapping_size = map_size;
1919	seqno = ++latest_granting;
1920	write_unlock_irq(&policy_rwlock);
1921
1922	/* Free the old policydb and SID table. */
1923	policydb_destroy(&oldpolicydb);
1924	sidtab_destroy(&oldsidtab);
1925	kfree(oldmap);
1926
1927	avc_ss_reset(seqno);
1928	selnl_notify_policyload(seqno);
1929	selinux_status_update_policyload(seqno);
1930	selinux_netlbl_cache_invalidate();
1931	selinux_xfrm_notify_policyload();
1932
1933	return 0;
 
1934
1935err:
1936	kfree(map);
1937	sidtab_destroy(&newsidtab);
1938	policydb_destroy(&newpolicydb);
 
 
 
1939	return rc;
1940
1941}
1942
1943size_t security_policydb_len(void)
1944{
1945	size_t len;
1946
1947	read_lock(&policy_rwlock);
1948	len = policydb.len;
1949	read_unlock(&policy_rwlock);
1950
1951	return len;
1952}
1953
1954/**
1955 * security_port_sid - Obtain the SID for a port.
1956 * @protocol: protocol number
1957 * @port: port number
1958 * @out_sid: security identifier
1959 */
1960int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1961{
1962	struct ocontext *c;
1963	int rc = 0;
1964
1965	read_lock(&policy_rwlock);
1966
1967	c = policydb.ocontexts[OCON_PORT];
1968	while (c) {
1969		if (c->u.port.protocol == protocol &&
1970		    c->u.port.low_port <= port &&
1971		    c->u.port.high_port >= port)
1972			break;
1973		c = c->next;
1974	}
1975
1976	if (c) {
1977		if (!c->sid[0]) {
1978			rc = sidtab_context_to_sid(&sidtab,
1979						   &c->context[0],
1980						   &c->sid[0]);
1981			if (rc)
1982				goto out;
1983		}
1984		*out_sid = c->sid[0];
1985	} else {
1986		*out_sid = SECINITSID_PORT;
1987	}
1988
1989out:
1990	read_unlock(&policy_rwlock);
1991	return rc;
1992}
1993
1994/**
1995 * security_netif_sid - Obtain the SID for a network interface.
1996 * @name: interface name
1997 * @if_sid: interface SID
1998 */
1999int security_netif_sid(char *name, u32 *if_sid)
2000{
2001	int rc = 0;
2002	struct ocontext *c;
2003
2004	read_lock(&policy_rwlock);
2005
2006	c = policydb.ocontexts[OCON_NETIF];
2007	while (c) {
2008		if (strcmp(name, c->u.name) == 0)
2009			break;
2010		c = c->next;
2011	}
2012
2013	if (c) {
2014		if (!c->sid[0] || !c->sid[1]) {
2015			rc = sidtab_context_to_sid(&sidtab,
2016						  &c->context[0],
2017						  &c->sid[0]);
2018			if (rc)
2019				goto out;
2020			rc = sidtab_context_to_sid(&sidtab,
2021						   &c->context[1],
2022						   &c->sid[1]);
2023			if (rc)
2024				goto out;
2025		}
2026		*if_sid = c->sid[0];
2027	} else
2028		*if_sid = SECINITSID_NETIF;
2029
2030out:
2031	read_unlock(&policy_rwlock);
2032	return rc;
2033}
2034
2035static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2036{
2037	int i, fail = 0;
2038
2039	for (i = 0; i < 4; i++)
2040		if (addr[i] != (input[i] & mask[i])) {
2041			fail = 1;
2042			break;
2043		}
2044
2045	return !fail;
2046}
2047
2048/**
2049 * security_node_sid - Obtain the SID for a node (host).
2050 * @domain: communication domain aka address family
2051 * @addrp: address
2052 * @addrlen: address length in bytes
2053 * @out_sid: security identifier
2054 */
2055int security_node_sid(u16 domain,
2056		      void *addrp,
2057		      u32 addrlen,
2058		      u32 *out_sid)
2059{
2060	int rc;
2061	struct ocontext *c;
2062
2063	read_lock(&policy_rwlock);
2064
2065	switch (domain) {
2066	case AF_INET: {
2067		u32 addr;
2068
2069		rc = -EINVAL;
2070		if (addrlen != sizeof(u32))
2071			goto out;
2072
2073		addr = *((u32 *)addrp);
2074
2075		c = policydb.ocontexts[OCON_NODE];
2076		while (c) {
2077			if (c->u.node.addr == (addr & c->u.node.mask))
2078				break;
2079			c = c->next;
2080		}
2081		break;
2082	}
2083
2084	case AF_INET6:
2085		rc = -EINVAL;
2086		if (addrlen != sizeof(u64) * 2)
2087			goto out;
2088		c = policydb.ocontexts[OCON_NODE6];
2089		while (c) {
2090			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2091						c->u.node6.mask))
2092				break;
2093			c = c->next;
2094		}
2095		break;
2096
2097	default:
2098		rc = 0;
2099		*out_sid = SECINITSID_NODE;
2100		goto out;
2101	}
2102
2103	if (c) {
2104		if (!c->sid[0]) {
2105			rc = sidtab_context_to_sid(&sidtab,
2106						   &c->context[0],
2107						   &c->sid[0]);
2108			if (rc)
2109				goto out;
2110		}
2111		*out_sid = c->sid[0];
2112	} else {
2113		*out_sid = SECINITSID_NODE;
2114	}
2115
2116	rc = 0;
2117out:
2118	read_unlock(&policy_rwlock);
2119	return rc;
2120}
2121
2122#define SIDS_NEL 25
2123
2124/**
2125 * security_get_user_sids - Obtain reachable SIDs for a user.
2126 * @fromsid: starting SID
2127 * @username: username
2128 * @sids: array of reachable SIDs for user
2129 * @nel: number of elements in @sids
2130 *
2131 * Generate the set of SIDs for legal security contexts
2132 * for a given user that can be reached by @fromsid.
2133 * Set *@sids to point to a dynamically allocated
2134 * array containing the set of SIDs.  Set *@nel to the
2135 * number of elements in the array.
2136 */
2137
2138int security_get_user_sids(u32 fromsid,
2139			   char *username,
2140			   u32 **sids,
2141			   u32 *nel)
2142{
2143	struct context *fromcon, usercon;
2144	u32 *mysids = NULL, *mysids2, sid;
2145	u32 mynel = 0, maxnel = SIDS_NEL;
2146	struct user_datum *user;
2147	struct role_datum *role;
2148	struct ebitmap_node *rnode, *tnode;
2149	int rc = 0, i, j;
2150
2151	*sids = NULL;
2152	*nel = 0;
2153
2154	if (!ss_initialized)
2155		goto out;
2156
2157	read_lock(&policy_rwlock);
2158
2159	context_init(&usercon);
2160
2161	rc = -EINVAL;
2162	fromcon = sidtab_search(&sidtab, fromsid);
2163	if (!fromcon)
2164		goto out_unlock;
2165
2166	rc = -EINVAL;
2167	user = hashtab_search(policydb.p_users.table, username);
2168	if (!user)
2169		goto out_unlock;
2170
2171	usercon.user = user->value;
2172
2173	rc = -ENOMEM;
2174	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2175	if (!mysids)
2176		goto out_unlock;
2177
2178	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2179		role = policydb.role_val_to_struct[i];
2180		usercon.role = i + 1;
2181		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2182			usercon.type = j + 1;
2183
2184			if (mls_setup_user_range(fromcon, user, &usercon))
2185				continue;
2186
2187			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2188			if (rc)
2189				goto out_unlock;
2190			if (mynel < maxnel) {
2191				mysids[mynel++] = sid;
2192			} else {
2193				rc = -ENOMEM;
2194				maxnel += SIDS_NEL;
2195				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2196				if (!mysids2)
2197					goto out_unlock;
2198				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2199				kfree(mysids);
2200				mysids = mysids2;
2201				mysids[mynel++] = sid;
2202			}
2203		}
2204	}
2205	rc = 0;
2206out_unlock:
2207	read_unlock(&policy_rwlock);
2208	if (rc || !mynel) {
2209		kfree(mysids);
2210		goto out;
2211	}
2212
2213	rc = -ENOMEM;
2214	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2215	if (!mysids2) {
2216		kfree(mysids);
2217		goto out;
2218	}
2219	for (i = 0, j = 0; i < mynel; i++) {
2220		struct av_decision dummy_avd;
2221		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2222					  SECCLASS_PROCESS, /* kernel value */
2223					  PROCESS__TRANSITION, AVC_STRICT,
2224					  &dummy_avd);
2225		if (!rc)
2226			mysids2[j++] = mysids[i];
2227		cond_resched();
2228	}
2229	rc = 0;
2230	kfree(mysids);
2231	*sids = mysids2;
2232	*nel = j;
2233out:
2234	return rc;
2235}
2236
2237/**
2238 * security_genfs_sid - Obtain a SID for a file in a filesystem
2239 * @fstype: filesystem type
2240 * @path: path from root of mount
2241 * @sclass: file security class
2242 * @sid: SID for path
2243 *
2244 * Obtain a SID to use for a file in a filesystem that
2245 * cannot support xattr or use a fixed labeling behavior like
2246 * transition SIDs or task SIDs.
 
 
2247 */
2248int security_genfs_sid(const char *fstype,
2249		       char *path,
2250		       u16 orig_sclass,
2251		       u32 *sid)
2252{
2253	int len;
2254	u16 sclass;
2255	struct genfs *genfs;
2256	struct ocontext *c;
2257	int rc, cmp = 0;
2258
2259	while (path[0] == '/' && path[1] == '/')
2260		path++;
2261
2262	read_lock(&policy_rwlock);
2263
2264	sclass = unmap_class(orig_sclass);
2265	*sid = SECINITSID_UNLABELED;
2266
2267	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2268		cmp = strcmp(fstype, genfs->fstype);
2269		if (cmp <= 0)
2270			break;
2271	}
2272
2273	rc = -ENOENT;
2274	if (!genfs || cmp)
2275		goto out;
2276
2277	for (c = genfs->head; c; c = c->next) {
2278		len = strlen(c->u.name);
2279		if ((!c->v.sclass || sclass == c->v.sclass) &&
2280		    (strncmp(c->u.name, path, len) == 0))
2281			break;
2282	}
2283
2284	rc = -ENOENT;
2285	if (!c)
2286		goto out;
2287
2288	if (!c->sid[0]) {
2289		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2290		if (rc)
2291			goto out;
2292	}
2293
2294	*sid = c->sid[0];
2295	rc = 0;
2296out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2297	read_unlock(&policy_rwlock);
2298	return rc;
2299}
2300
2301/**
2302 * security_fs_use - Determine how to handle labeling for a filesystem.
2303 * @fstype: filesystem type
2304 * @behavior: labeling behavior
2305 * @sid: SID for filesystem (superblock)
2306 */
2307int security_fs_use(
2308	const char *fstype,
2309	unsigned int *behavior,
2310	u32 *sid)
2311{
2312	int rc = 0;
2313	struct ocontext *c;
 
 
2314
2315	read_lock(&policy_rwlock);
2316
2317	c = policydb.ocontexts[OCON_FSUSE];
2318	while (c) {
2319		if (strcmp(fstype, c->u.name) == 0)
2320			break;
2321		c = c->next;
2322	}
2323
2324	if (c) {
2325		*behavior = c->v.behavior;
2326		if (!c->sid[0]) {
2327			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2328						   &c->sid[0]);
2329			if (rc)
2330				goto out;
2331		}
2332		*sid = c->sid[0];
2333	} else {
2334		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
 
2335		if (rc) {
2336			*behavior = SECURITY_FS_USE_NONE;
2337			rc = 0;
2338		} else {
2339			*behavior = SECURITY_FS_USE_GENFS;
2340		}
2341	}
2342
2343out:
2344	read_unlock(&policy_rwlock);
2345	return rc;
2346}
2347
2348int security_get_bools(int *len, char ***names, int **values)
2349{
2350	int i, rc;
2351
2352	read_lock(&policy_rwlock);
2353	*names = NULL;
2354	*values = NULL;
2355
2356	rc = 0;
2357	*len = policydb.p_bools.nprim;
2358	if (!*len)
2359		goto out;
2360
2361	rc = -ENOMEM;
2362	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2363	if (!*names)
2364		goto err;
2365
2366	rc = -ENOMEM;
2367	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2368	if (!*values)
2369		goto err;
2370
2371	for (i = 0; i < *len; i++) {
2372		size_t name_len;
2373
2374		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2375		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2376
2377		rc = -ENOMEM;
2378		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2379		if (!(*names)[i])
2380			goto err;
2381
2382		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2383		(*names)[i][name_len - 1] = 0;
2384	}
2385	rc = 0;
2386out:
2387	read_unlock(&policy_rwlock);
2388	return rc;
2389err:
2390	if (*names) {
2391		for (i = 0; i < *len; i++)
2392			kfree((*names)[i]);
2393	}
2394	kfree(*values);
2395	goto out;
2396}
2397
2398
2399int security_set_bools(int len, int *values)
2400{
2401	int i, rc;
2402	int lenp, seqno = 0;
2403	struct cond_node *cur;
2404
2405	write_lock_irq(&policy_rwlock);
2406
2407	rc = -EFAULT;
2408	lenp = policydb.p_bools.nprim;
2409	if (len != lenp)
2410		goto out;
2411
2412	for (i = 0; i < len; i++) {
2413		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2414			audit_log(current->audit_context, GFP_ATOMIC,
2415				AUDIT_MAC_CONFIG_CHANGE,
2416				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2417				sym_name(&policydb, SYM_BOOLS, i),
2418				!!values[i],
2419				policydb.bool_val_to_struct[i]->state,
2420				audit_get_loginuid(current),
2421				audit_get_sessionid(current));
2422		}
2423		if (values[i])
2424			policydb.bool_val_to_struct[i]->state = 1;
2425		else
2426			policydb.bool_val_to_struct[i]->state = 0;
2427	}
2428
2429	for (cur = policydb.cond_list; cur; cur = cur->next) {
2430		rc = evaluate_cond_node(&policydb, cur);
2431		if (rc)
2432			goto out;
2433	}
2434
2435	seqno = ++latest_granting;
2436	rc = 0;
2437out:
2438	write_unlock_irq(&policy_rwlock);
2439	if (!rc) {
2440		avc_ss_reset(seqno);
2441		selnl_notify_policyload(seqno);
2442		selinux_status_update_policyload(seqno);
2443		selinux_xfrm_notify_policyload();
2444	}
2445	return rc;
2446}
2447
2448int security_get_bool_value(int bool)
2449{
2450	int rc;
2451	int len;
2452
2453	read_lock(&policy_rwlock);
2454
2455	rc = -EFAULT;
2456	len = policydb.p_bools.nprim;
2457	if (bool >= len)
2458		goto out;
2459
2460	rc = policydb.bool_val_to_struct[bool]->state;
2461out:
2462	read_unlock(&policy_rwlock);
2463	return rc;
2464}
2465
2466static int security_preserve_bools(struct policydb *p)
2467{
2468	int rc, nbools = 0, *bvalues = NULL, i;
2469	char **bnames = NULL;
2470	struct cond_bool_datum *booldatum;
2471	struct cond_node *cur;
2472
2473	rc = security_get_bools(&nbools, &bnames, &bvalues);
2474	if (rc)
2475		goto out;
2476	for (i = 0; i < nbools; i++) {
2477		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2478		if (booldatum)
2479			booldatum->state = bvalues[i];
2480	}
2481	for (cur = p->cond_list; cur; cur = cur->next) {
2482		rc = evaluate_cond_node(p, cur);
2483		if (rc)
2484			goto out;
2485	}
2486
2487out:
2488	if (bnames) {
2489		for (i = 0; i < nbools; i++)
2490			kfree(bnames[i]);
2491	}
2492	kfree(bnames);
2493	kfree(bvalues);
2494	return rc;
2495}
2496
2497/*
2498 * security_sid_mls_copy() - computes a new sid based on the given
2499 * sid and the mls portion of mls_sid.
2500 */
2501int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2502{
2503	struct context *context1;
2504	struct context *context2;
2505	struct context newcon;
2506	char *s;
2507	u32 len;
2508	int rc;
2509
2510	rc = 0;
2511	if (!ss_initialized || !policydb.mls_enabled) {
2512		*new_sid = sid;
2513		goto out;
2514	}
2515
2516	context_init(&newcon);
2517
2518	read_lock(&policy_rwlock);
2519
2520	rc = -EINVAL;
2521	context1 = sidtab_search(&sidtab, sid);
2522	if (!context1) {
2523		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2524			__func__, sid);
2525		goto out_unlock;
2526	}
2527
2528	rc = -EINVAL;
2529	context2 = sidtab_search(&sidtab, mls_sid);
2530	if (!context2) {
2531		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2532			__func__, mls_sid);
2533		goto out_unlock;
2534	}
2535
2536	newcon.user = context1->user;
2537	newcon.role = context1->role;
2538	newcon.type = context1->type;
2539	rc = mls_context_cpy(&newcon, context2);
2540	if (rc)
2541		goto out_unlock;
2542
2543	/* Check the validity of the new context. */
2544	if (!policydb_context_isvalid(&policydb, &newcon)) {
2545		rc = convert_context_handle_invalid_context(&newcon);
2546		if (rc) {
2547			if (!context_struct_to_string(&newcon, &s, &len)) {
2548				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2549					  "security_sid_mls_copy: invalid context %s", s);
 
 
2550				kfree(s);
2551			}
2552			goto out_unlock;
2553		}
2554	}
2555
2556	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2557out_unlock:
2558	read_unlock(&policy_rwlock);
2559	context_destroy(&newcon);
2560out:
2561	return rc;
2562}
2563
2564/**
2565 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2566 * @nlbl_sid: NetLabel SID
2567 * @nlbl_type: NetLabel labeling protocol type
2568 * @xfrm_sid: XFRM SID
2569 *
2570 * Description:
2571 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2572 * resolved into a single SID it is returned via @peer_sid and the function
2573 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2574 * returns a negative value.  A table summarizing the behavior is below:
2575 *
2576 *                                 | function return |      @sid
2577 *   ------------------------------+-----------------+-----------------
2578 *   no peer labels                |        0        |    SECSID_NULL
2579 *   single peer label             |        0        |    <peer_label>
2580 *   multiple, consistent labels   |        0        |    <peer_label>
2581 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2582 *
2583 */
2584int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2585				 u32 xfrm_sid,
2586				 u32 *peer_sid)
2587{
2588	int rc;
2589	struct context *nlbl_ctx;
2590	struct context *xfrm_ctx;
2591
2592	*peer_sid = SECSID_NULL;
2593
2594	/* handle the common (which also happens to be the set of easy) cases
2595	 * right away, these two if statements catch everything involving a
2596	 * single or absent peer SID/label */
2597	if (xfrm_sid == SECSID_NULL) {
2598		*peer_sid = nlbl_sid;
2599		return 0;
2600	}
2601	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2602	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2603	 * is present */
2604	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2605		*peer_sid = xfrm_sid;
2606		return 0;
2607	}
2608
2609	/* we don't need to check ss_initialized here since the only way both
2610	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2611	 * security server was initialized and ss_initialized was true */
2612	if (!policydb.mls_enabled)
2613		return 0;
2614
2615	read_lock(&policy_rwlock);
2616
2617	rc = -EINVAL;
2618	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2619	if (!nlbl_ctx) {
2620		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2621		       __func__, nlbl_sid);
2622		goto out;
2623	}
2624	rc = -EINVAL;
2625	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2626	if (!xfrm_ctx) {
2627		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2628		       __func__, xfrm_sid);
2629		goto out;
2630	}
2631	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2632	if (rc)
2633		goto out;
2634
2635	/* at present NetLabel SIDs/labels really only carry MLS
2636	 * information so if the MLS portion of the NetLabel SID
2637	 * matches the MLS portion of the labeled XFRM SID/label
2638	 * then pass along the XFRM SID as it is the most
2639	 * expressive */
2640	*peer_sid = xfrm_sid;
2641out:
2642	read_unlock(&policy_rwlock);
2643	return rc;
2644}
2645
2646static int get_classes_callback(void *k, void *d, void *args)
2647{
2648	struct class_datum *datum = d;
2649	char *name = k, **classes = args;
2650	int value = datum->value - 1;
2651
2652	classes[value] = kstrdup(name, GFP_ATOMIC);
2653	if (!classes[value])
2654		return -ENOMEM;
2655
2656	return 0;
2657}
2658
2659int security_get_classes(char ***classes, int *nclasses)
2660{
2661	int rc;
2662
2663	read_lock(&policy_rwlock);
2664
2665	rc = -ENOMEM;
2666	*nclasses = policydb.p_classes.nprim;
2667	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2668	if (!*classes)
2669		goto out;
2670
2671	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2672			*classes);
2673	if (rc) {
2674		int i;
2675		for (i = 0; i < *nclasses; i++)
2676			kfree((*classes)[i]);
2677		kfree(*classes);
2678	}
2679
2680out:
2681	read_unlock(&policy_rwlock);
2682	return rc;
2683}
2684
2685static int get_permissions_callback(void *k, void *d, void *args)
2686{
2687	struct perm_datum *datum = d;
2688	char *name = k, **perms = args;
2689	int value = datum->value - 1;
2690
2691	perms[value] = kstrdup(name, GFP_ATOMIC);
2692	if (!perms[value])
2693		return -ENOMEM;
2694
2695	return 0;
2696}
2697
2698int security_get_permissions(char *class, char ***perms, int *nperms)
2699{
2700	int rc, i;
2701	struct class_datum *match;
2702
2703	read_lock(&policy_rwlock);
2704
2705	rc = -EINVAL;
2706	match = hashtab_search(policydb.p_classes.table, class);
2707	if (!match) {
2708		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2709			__func__, class);
2710		goto out;
2711	}
2712
2713	rc = -ENOMEM;
2714	*nperms = match->permissions.nprim;
2715	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2716	if (!*perms)
2717		goto out;
2718
2719	if (match->comdatum) {
2720		rc = hashtab_map(match->comdatum->permissions.table,
2721				get_permissions_callback, *perms);
2722		if (rc)
2723			goto err;
2724	}
2725
2726	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2727			*perms);
2728	if (rc)
2729		goto err;
2730
2731out:
2732	read_unlock(&policy_rwlock);
2733	return rc;
2734
2735err:
2736	read_unlock(&policy_rwlock);
2737	for (i = 0; i < *nperms; i++)
2738		kfree((*perms)[i]);
2739	kfree(*perms);
2740	return rc;
2741}
2742
2743int security_get_reject_unknown(void)
2744{
2745	return policydb.reject_unknown;
2746}
2747
2748int security_get_allow_unknown(void)
2749{
2750	return policydb.allow_unknown;
2751}
2752
2753/**
2754 * security_policycap_supported - Check for a specific policy capability
2755 * @req_cap: capability
2756 *
2757 * Description:
2758 * This function queries the currently loaded policy to see if it supports the
2759 * capability specified by @req_cap.  Returns true (1) if the capability is
2760 * supported, false (0) if it isn't supported.
2761 *
2762 */
2763int security_policycap_supported(unsigned int req_cap)
2764{
2765	int rc;
2766
2767	read_lock(&policy_rwlock);
2768	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2769	read_unlock(&policy_rwlock);
2770
2771	return rc;
2772}
2773
2774struct selinux_audit_rule {
2775	u32 au_seqno;
2776	struct context au_ctxt;
2777};
2778
2779void selinux_audit_rule_free(void *vrule)
2780{
2781	struct selinux_audit_rule *rule = vrule;
2782
2783	if (rule) {
2784		context_destroy(&rule->au_ctxt);
2785		kfree(rule);
2786	}
2787}
2788
2789int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2790{
2791	struct selinux_audit_rule *tmprule;
2792	struct role_datum *roledatum;
2793	struct type_datum *typedatum;
2794	struct user_datum *userdatum;
2795	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2796	int rc = 0;
2797
2798	*rule = NULL;
2799
2800	if (!ss_initialized)
2801		return -EOPNOTSUPP;
2802
2803	switch (field) {
2804	case AUDIT_SUBJ_USER:
2805	case AUDIT_SUBJ_ROLE:
2806	case AUDIT_SUBJ_TYPE:
2807	case AUDIT_OBJ_USER:
2808	case AUDIT_OBJ_ROLE:
2809	case AUDIT_OBJ_TYPE:
2810		/* only 'equals' and 'not equals' fit user, role, and type */
2811		if (op != Audit_equal && op != Audit_not_equal)
2812			return -EINVAL;
2813		break;
2814	case AUDIT_SUBJ_SEN:
2815	case AUDIT_SUBJ_CLR:
2816	case AUDIT_OBJ_LEV_LOW:
2817	case AUDIT_OBJ_LEV_HIGH:
2818		/* we do not allow a range, indicated by the presence of '-' */
2819		if (strchr(rulestr, '-'))
2820			return -EINVAL;
2821		break;
2822	default:
2823		/* only the above fields are valid */
2824		return -EINVAL;
2825	}
2826
2827	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2828	if (!tmprule)
2829		return -ENOMEM;
2830
2831	context_init(&tmprule->au_ctxt);
2832
2833	read_lock(&policy_rwlock);
2834
2835	tmprule->au_seqno = latest_granting;
2836
2837	switch (field) {
2838	case AUDIT_SUBJ_USER:
2839	case AUDIT_OBJ_USER:
2840		rc = -EINVAL;
2841		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2842		if (!userdatum)
2843			goto out;
2844		tmprule->au_ctxt.user = userdatum->value;
2845		break;
2846	case AUDIT_SUBJ_ROLE:
2847	case AUDIT_OBJ_ROLE:
2848		rc = -EINVAL;
2849		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2850		if (!roledatum)
2851			goto out;
2852		tmprule->au_ctxt.role = roledatum->value;
2853		break;
2854	case AUDIT_SUBJ_TYPE:
2855	case AUDIT_OBJ_TYPE:
2856		rc = -EINVAL;
2857		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2858		if (!typedatum)
2859			goto out;
2860		tmprule->au_ctxt.type = typedatum->value;
2861		break;
2862	case AUDIT_SUBJ_SEN:
2863	case AUDIT_SUBJ_CLR:
2864	case AUDIT_OBJ_LEV_LOW:
2865	case AUDIT_OBJ_LEV_HIGH:
2866		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2867		if (rc)
2868			goto out;
2869		break;
2870	}
2871	rc = 0;
2872out:
2873	read_unlock(&policy_rwlock);
2874
2875	if (rc) {
2876		selinux_audit_rule_free(tmprule);
2877		tmprule = NULL;
2878	}
2879
2880	*rule = tmprule;
2881
2882	return rc;
2883}
2884
2885/* Check to see if the rule contains any selinux fields */
2886int selinux_audit_rule_known(struct audit_krule *rule)
2887{
2888	int i;
2889
2890	for (i = 0; i < rule->field_count; i++) {
2891		struct audit_field *f = &rule->fields[i];
2892		switch (f->type) {
2893		case AUDIT_SUBJ_USER:
2894		case AUDIT_SUBJ_ROLE:
2895		case AUDIT_SUBJ_TYPE:
2896		case AUDIT_SUBJ_SEN:
2897		case AUDIT_SUBJ_CLR:
2898		case AUDIT_OBJ_USER:
2899		case AUDIT_OBJ_ROLE:
2900		case AUDIT_OBJ_TYPE:
2901		case AUDIT_OBJ_LEV_LOW:
2902		case AUDIT_OBJ_LEV_HIGH:
2903			return 1;
2904		}
2905	}
2906
2907	return 0;
2908}
2909
2910int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2911			     struct audit_context *actx)
2912{
2913	struct context *ctxt;
2914	struct mls_level *level;
2915	struct selinux_audit_rule *rule = vrule;
2916	int match = 0;
2917
2918	if (!rule) {
2919		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2920			  "selinux_audit_rule_match: missing rule\n");
2921		return -ENOENT;
2922	}
2923
2924	read_lock(&policy_rwlock);
2925
2926	if (rule->au_seqno < latest_granting) {
2927		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2928			  "selinux_audit_rule_match: stale rule\n");
2929		match = -ESTALE;
2930		goto out;
2931	}
2932
2933	ctxt = sidtab_search(&sidtab, sid);
2934	if (!ctxt) {
2935		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2936			  "selinux_audit_rule_match: unrecognized SID %d\n",
2937			  sid);
2938		match = -ENOENT;
2939		goto out;
2940	}
2941
2942	/* a field/op pair that is not caught here will simply fall through
2943	   without a match */
2944	switch (field) {
2945	case AUDIT_SUBJ_USER:
2946	case AUDIT_OBJ_USER:
2947		switch (op) {
2948		case Audit_equal:
2949			match = (ctxt->user == rule->au_ctxt.user);
2950			break;
2951		case Audit_not_equal:
2952			match = (ctxt->user != rule->au_ctxt.user);
2953			break;
2954		}
2955		break;
2956	case AUDIT_SUBJ_ROLE:
2957	case AUDIT_OBJ_ROLE:
2958		switch (op) {
2959		case Audit_equal:
2960			match = (ctxt->role == rule->au_ctxt.role);
2961			break;
2962		case Audit_not_equal:
2963			match = (ctxt->role != rule->au_ctxt.role);
2964			break;
2965		}
2966		break;
2967	case AUDIT_SUBJ_TYPE:
2968	case AUDIT_OBJ_TYPE:
2969		switch (op) {
2970		case Audit_equal:
2971			match = (ctxt->type == rule->au_ctxt.type);
2972			break;
2973		case Audit_not_equal:
2974			match = (ctxt->type != rule->au_ctxt.type);
2975			break;
2976		}
2977		break;
2978	case AUDIT_SUBJ_SEN:
2979	case AUDIT_SUBJ_CLR:
2980	case AUDIT_OBJ_LEV_LOW:
2981	case AUDIT_OBJ_LEV_HIGH:
2982		level = ((field == AUDIT_SUBJ_SEN ||
2983			  field == AUDIT_OBJ_LEV_LOW) ?
2984			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2985		switch (op) {
2986		case Audit_equal:
2987			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2988					     level);
2989			break;
2990		case Audit_not_equal:
2991			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2992					      level);
2993			break;
2994		case Audit_lt:
2995			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2996					       level) &&
2997				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2998					       level));
2999			break;
3000		case Audit_le:
3001			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3002					      level);
3003			break;
3004		case Audit_gt:
3005			match = (mls_level_dom(level,
3006					      &rule->au_ctxt.range.level[0]) &&
3007				 !mls_level_eq(level,
3008					       &rule->au_ctxt.range.level[0]));
3009			break;
3010		case Audit_ge:
3011			match = mls_level_dom(level,
3012					      &rule->au_ctxt.range.level[0]);
3013			break;
3014		}
3015	}
3016
3017out:
3018	read_unlock(&policy_rwlock);
3019	return match;
3020}
3021
3022static int (*aurule_callback)(void) = audit_update_lsm_rules;
3023
3024static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
3025			       u16 class, u32 perms, u32 *retained)
3026{
3027	int err = 0;
3028
3029	if (event == AVC_CALLBACK_RESET && aurule_callback)
3030		err = aurule_callback();
3031	return err;
3032}
3033
3034static int __init aurule_init(void)
3035{
3036	int err;
3037
3038	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
3039			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
3040	if (err)
3041		panic("avc_add_callback() failed, error %d\n", err);
3042
3043	return err;
3044}
3045__initcall(aurule_init);
3046
3047#ifdef CONFIG_NETLABEL
3048/**
3049 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3050 * @secattr: the NetLabel packet security attributes
3051 * @sid: the SELinux SID
3052 *
3053 * Description:
3054 * Attempt to cache the context in @ctx, which was derived from the packet in
3055 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3056 * already been initialized.
3057 *
3058 */
3059static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3060				      u32 sid)
3061{
3062	u32 *sid_cache;
3063
3064	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3065	if (sid_cache == NULL)
3066		return;
3067	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3068	if (secattr->cache == NULL) {
3069		kfree(sid_cache);
3070		return;
3071	}
3072
3073	*sid_cache = sid;
3074	secattr->cache->free = kfree;
3075	secattr->cache->data = sid_cache;
3076	secattr->flags |= NETLBL_SECATTR_CACHE;
3077}
3078
3079/**
3080 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3081 * @secattr: the NetLabel packet security attributes
3082 * @sid: the SELinux SID
3083 *
3084 * Description:
3085 * Convert the given NetLabel security attributes in @secattr into a
3086 * SELinux SID.  If the @secattr field does not contain a full SELinux
3087 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3088 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3089 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3090 * conversion for future lookups.  Returns zero on success, negative values on
3091 * failure.
3092 *
3093 */
3094int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3095				   u32 *sid)
3096{
3097	int rc;
3098	struct context *ctx;
3099	struct context ctx_new;
3100
3101	if (!ss_initialized) {
3102		*sid = SECSID_NULL;
3103		return 0;
3104	}
3105
3106	read_lock(&policy_rwlock);
3107
3108	if (secattr->flags & NETLBL_SECATTR_CACHE)
3109		*sid = *(u32 *)secattr->cache->data;
3110	else if (secattr->flags & NETLBL_SECATTR_SECID)
3111		*sid = secattr->attr.secid;
3112	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3113		rc = -EIDRM;
3114		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3115		if (ctx == NULL)
3116			goto out;
3117
3118		context_init(&ctx_new);
3119		ctx_new.user = ctx->user;
3120		ctx_new.role = ctx->role;
3121		ctx_new.type = ctx->type;
3122		mls_import_netlbl_lvl(&ctx_new, secattr);
3123		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3124			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3125						   secattr->attr.mls.cat);
3126			if (rc)
3127				goto out;
3128			memcpy(&ctx_new.range.level[1].cat,
3129			       &ctx_new.range.level[0].cat,
3130			       sizeof(ctx_new.range.level[0].cat));
3131		}
3132		rc = -EIDRM;
3133		if (!mls_context_isvalid(&policydb, &ctx_new))
3134			goto out_free;
3135
3136		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3137		if (rc)
3138			goto out_free;
3139
3140		security_netlbl_cache_add(secattr, *sid);
3141
3142		ebitmap_destroy(&ctx_new.range.level[0].cat);
3143	} else
3144		*sid = SECSID_NULL;
3145
3146	read_unlock(&policy_rwlock);
3147	return 0;
3148out_free:
3149	ebitmap_destroy(&ctx_new.range.level[0].cat);
3150out:
3151	read_unlock(&policy_rwlock);
3152	return rc;
3153}
3154
3155/**
3156 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3157 * @sid: the SELinux SID
3158 * @secattr: the NetLabel packet security attributes
3159 *
3160 * Description:
3161 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3162 * Returns zero on success, negative values on failure.
3163 *
3164 */
3165int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3166{
3167	int rc;
3168	struct context *ctx;
3169
3170	if (!ss_initialized)
3171		return 0;
3172
3173	read_lock(&policy_rwlock);
3174
3175	rc = -ENOENT;
3176	ctx = sidtab_search(&sidtab, sid);
3177	if (ctx == NULL)
3178		goto out;
3179
3180	rc = -ENOMEM;
3181	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3182				  GFP_ATOMIC);
3183	if (secattr->domain == NULL)
3184		goto out;
3185
3186	secattr->attr.secid = sid;
3187	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3188	mls_export_netlbl_lvl(ctx, secattr);
3189	rc = mls_export_netlbl_cat(ctx, secattr);
3190out:
3191	read_unlock(&policy_rwlock);
3192	return rc;
3193}
3194#endif /* CONFIG_NETLABEL */
3195
3196/**
3197 * security_read_policy - read the policy.
3198 * @data: binary policy data
3199 * @len: length of data in bytes
3200 *
3201 */
3202int security_read_policy(void **data, size_t *len)
3203{
3204	int rc;
3205	struct policy_file fp;
3206
3207	if (!ss_initialized)
3208		return -EINVAL;
3209
3210	*len = security_policydb_len();
3211
3212	*data = vmalloc_user(*len);
3213	if (!*data)
3214		return -ENOMEM;
3215
3216	fp.data = *data;
3217	fp.len = *len;
3218
3219	read_lock(&policy_rwlock);
3220	rc = policydb_write(&policydb, &fp);
3221	read_unlock(&policy_rwlock);
3222
3223	if (rc)
3224		return rc;
3225
3226	*len = (unsigned long)fp.data - (unsigned long)*data;
3227	return 0;
3228
3229}