Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 
 11#include <linux/gfp.h>
 12#include <linux/export.h>
 
 13#include <linux/blkdev.h>
 14#include <linux/backing-dev.h>
 15#include <linux/task_io_accounting_ops.h>
 16#include <linux/pagevec.h>
 17#include <linux/pagemap.h>
 18#include <linux/syscalls.h>
 19#include <linux/file.h>
 20#include <linux/mm_inline.h>
 21
 22#include "internal.h"
 23
 24/*
 25 * Initialise a struct file's readahead state.  Assumes that the caller has
 26 * memset *ra to zero.
 27 */
 28void
 29file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 30{
 31	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 32	ra->prev_pos = -1;
 33}
 34EXPORT_SYMBOL_GPL(file_ra_state_init);
 35
 
 
 36/*
 37 * see if a page needs releasing upon read_cache_pages() failure
 38 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 39 *   before calling, such as the NFS fs marking pages that are cached locally
 40 *   on disk, thus we need to give the fs a chance to clean up in the event of
 41 *   an error
 42 */
 43static void read_cache_pages_invalidate_page(struct address_space *mapping,
 44					     struct page *page)
 45{
 46	if (page_has_private(page)) {
 47		if (!trylock_page(page))
 48			BUG();
 49		page->mapping = mapping;
 50		do_invalidatepage(page, 0, PAGE_SIZE);
 51		page->mapping = NULL;
 52		unlock_page(page);
 53	}
 54	put_page(page);
 55}
 56
 57/*
 58 * release a list of pages, invalidating them first if need be
 59 */
 60static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 61					      struct list_head *pages)
 62{
 63	struct page *victim;
 64
 65	while (!list_empty(pages)) {
 66		victim = lru_to_page(pages);
 67		list_del(&victim->lru);
 68		read_cache_pages_invalidate_page(mapping, victim);
 69	}
 70}
 71
 72/**
 73 * read_cache_pages - populate an address space with some pages & start reads against them
 74 * @mapping: the address_space
 75 * @pages: The address of a list_head which contains the target pages.  These
 76 *   pages have their ->index populated and are otherwise uninitialised.
 77 * @filler: callback routine for filling a single page.
 78 * @data: private data for the callback routine.
 79 *
 80 * Hides the details of the LRU cache etc from the filesystems.
 81 */
 82int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 83			int (*filler)(void *, struct page *), void *data)
 84{
 85	struct page *page;
 86	int ret = 0;
 87
 88	while (!list_empty(pages)) {
 89		page = lru_to_page(pages);
 90		list_del(&page->lru);
 91		if (add_to_page_cache_lru(page, mapping, page->index,
 92				mapping_gfp_constraint(mapping, GFP_KERNEL))) {
 93			read_cache_pages_invalidate_page(mapping, page);
 94			continue;
 95		}
 96		put_page(page);
 97
 98		ret = filler(data, page);
 99		if (unlikely(ret)) {
100			read_cache_pages_invalidate_pages(mapping, pages);
101			break;
102		}
103		task_io_account_read(PAGE_SIZE);
104	}
105	return ret;
106}
107
108EXPORT_SYMBOL(read_cache_pages);
109
110static int read_pages(struct address_space *mapping, struct file *filp,
111		struct list_head *pages, unsigned nr_pages)
112{
113	struct blk_plug plug;
114	unsigned page_idx;
115	int ret;
116
117	blk_start_plug(&plug);
118
119	if (mapping->a_ops->readpages) {
120		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
121		/* Clean up the remaining pages */
122		put_pages_list(pages);
123		goto out;
124	}
125
126	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
127		struct page *page = lru_to_page(pages);
128		list_del(&page->lru);
129		if (!add_to_page_cache_lru(page, mapping, page->index,
130				mapping_gfp_constraint(mapping, GFP_KERNEL))) {
131			mapping->a_ops->readpage(filp, page);
132		}
133		put_page(page);
134	}
135	ret = 0;
136
137out:
138	blk_finish_plug(&plug);
139
140	return ret;
141}
142
143/*
144 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
145 * the pages first, then submits them all for I/O. This avoids the very bad
146 * behaviour which would occur if page allocations are causing VM writeback.
147 * We really don't want to intermingle reads and writes like that.
148 *
149 * Returns the number of pages requested, or the maximum amount of I/O allowed.
150 */
151int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
 
152			pgoff_t offset, unsigned long nr_to_read,
153			unsigned long lookahead_size)
154{
155	struct inode *inode = mapping->host;
156	struct page *page;
157	unsigned long end_index;	/* The last page we want to read */
158	LIST_HEAD(page_pool);
159	int page_idx;
160	int ret = 0;
161	loff_t isize = i_size_read(inode);
162
163	if (isize == 0)
164		goto out;
165
166	end_index = ((isize - 1) >> PAGE_SHIFT);
167
168	/*
169	 * Preallocate as many pages as we will need.
170	 */
171	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172		pgoff_t page_offset = offset + page_idx;
173
174		if (page_offset > end_index)
175			break;
176
177		rcu_read_lock();
178		page = radix_tree_lookup(&mapping->page_tree, page_offset);
179		rcu_read_unlock();
180		if (page && !radix_tree_exceptional_entry(page))
181			continue;
182
183		page = page_cache_alloc_readahead(mapping);
184		if (!page)
185			break;
186		page->index = page_offset;
187		list_add(&page->lru, &page_pool);
188		if (page_idx == nr_to_read - lookahead_size)
189			SetPageReadahead(page);
190		ret++;
191	}
192
193	/*
194	 * Now start the IO.  We ignore I/O errors - if the page is not
195	 * uptodate then the caller will launch readpage again, and
196	 * will then handle the error.
197	 */
198	if (ret)
199		read_pages(mapping, filp, &page_pool, ret);
200	BUG_ON(!list_empty(&page_pool));
201out:
202	return ret;
203}
204
205/*
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
208 */
209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210		pgoff_t offset, unsigned long nr_to_read)
211{
 
 
212	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
213		return -EINVAL;
214
215	nr_to_read = min(nr_to_read, inode_to_bdi(mapping->host)->ra_pages);
216	while (nr_to_read) {
217		int err;
218
219		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
220
221		if (this_chunk > nr_to_read)
222			this_chunk = nr_to_read;
223		err = __do_page_cache_readahead(mapping, filp,
224						offset, this_chunk, 0);
225		if (err < 0)
226			return err;
227
 
 
228		offset += this_chunk;
229		nr_to_read -= this_chunk;
230	}
231	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232}
233
234/*
235 * Set the initial window size, round to next power of 2 and square
236 * for small size, x 4 for medium, and x 2 for large
237 * for 128k (32 page) max ra
238 * 1-8 page = 32k initial, > 8 page = 128k initial
239 */
240static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
241{
242	unsigned long newsize = roundup_pow_of_two(size);
243
244	if (newsize <= max / 32)
245		newsize = newsize * 4;
246	else if (newsize <= max / 4)
247		newsize = newsize * 2;
248	else
249		newsize = max;
250
251	return newsize;
252}
253
254/*
255 *  Get the previous window size, ramp it up, and
256 *  return it as the new window size.
257 */
258static unsigned long get_next_ra_size(struct file_ra_state *ra,
259						unsigned long max)
260{
261	unsigned long cur = ra->size;
262	unsigned long newsize;
263
264	if (cur < max / 16)
265		newsize = 4 * cur;
266	else
267		newsize = 2 * cur;
268
269	return min(newsize, max);
270}
271
272/*
273 * On-demand readahead design.
274 *
275 * The fields in struct file_ra_state represent the most-recently-executed
276 * readahead attempt:
277 *
278 *                        |<----- async_size ---------|
279 *     |------------------- size -------------------->|
280 *     |==================#===========================|
281 *     ^start             ^page marked with PG_readahead
282 *
283 * To overlap application thinking time and disk I/O time, we do
284 * `readahead pipelining': Do not wait until the application consumed all
285 * readahead pages and stalled on the missing page at readahead_index;
286 * Instead, submit an asynchronous readahead I/O as soon as there are
287 * only async_size pages left in the readahead window. Normally async_size
288 * will be equal to size, for maximum pipelining.
289 *
290 * In interleaved sequential reads, concurrent streams on the same fd can
291 * be invalidating each other's readahead state. So we flag the new readahead
292 * page at (start+size-async_size) with PG_readahead, and use it as readahead
293 * indicator. The flag won't be set on already cached pages, to avoid the
294 * readahead-for-nothing fuss, saving pointless page cache lookups.
295 *
296 * prev_pos tracks the last visited byte in the _previous_ read request.
297 * It should be maintained by the caller, and will be used for detecting
298 * small random reads. Note that the readahead algorithm checks loosely
299 * for sequential patterns. Hence interleaved reads might be served as
300 * sequential ones.
301 *
302 * There is a special-case: if the first page which the application tries to
303 * read happens to be the first page of the file, it is assumed that a linear
304 * read is about to happen and the window is immediately set to the initial size
305 * based on I/O request size and the max_readahead.
306 *
307 * The code ramps up the readahead size aggressively at first, but slow down as
308 * it approaches max_readhead.
309 */
310
311/*
312 * Count contiguously cached pages from @offset-1 to @offset-@max,
313 * this count is a conservative estimation of
314 * 	- length of the sequential read sequence, or
315 * 	- thrashing threshold in memory tight systems
316 */
317static pgoff_t count_history_pages(struct address_space *mapping,
 
318				   pgoff_t offset, unsigned long max)
319{
320	pgoff_t head;
321
322	rcu_read_lock();
323	head = page_cache_prev_hole(mapping, offset - 1, max);
324	rcu_read_unlock();
325
326	return offset - 1 - head;
327}
328
329/*
330 * page cache context based read-ahead
331 */
332static int try_context_readahead(struct address_space *mapping,
333				 struct file_ra_state *ra,
334				 pgoff_t offset,
335				 unsigned long req_size,
336				 unsigned long max)
337{
338	pgoff_t size;
339
340	size = count_history_pages(mapping, offset, max);
341
342	/*
343	 * not enough history pages:
344	 * it could be a random read
345	 */
346	if (size <= req_size)
347		return 0;
348
349	/*
350	 * starts from beginning of file:
351	 * it is a strong indication of long-run stream (or whole-file-read)
352	 */
353	if (size >= offset)
354		size *= 2;
355
356	ra->start = offset;
357	ra->size = min(size + req_size, max);
358	ra->async_size = 1;
359
360	return 1;
361}
362
363/*
364 * A minimal readahead algorithm for trivial sequential/random reads.
365 */
366static unsigned long
367ondemand_readahead(struct address_space *mapping,
368		   struct file_ra_state *ra, struct file *filp,
369		   bool hit_readahead_marker, pgoff_t offset,
370		   unsigned long req_size)
371{
372	unsigned long max = ra->ra_pages;
373	pgoff_t prev_offset;
374
375	/*
376	 * start of file
377	 */
378	if (!offset)
379		goto initial_readahead;
380
381	/*
382	 * It's the expected callback offset, assume sequential access.
383	 * Ramp up sizes, and push forward the readahead window.
384	 */
385	if ((offset == (ra->start + ra->size - ra->async_size) ||
386	     offset == (ra->start + ra->size))) {
387		ra->start += ra->size;
388		ra->size = get_next_ra_size(ra, max);
389		ra->async_size = ra->size;
390		goto readit;
391	}
392
393	/*
394	 * Hit a marked page without valid readahead state.
395	 * E.g. interleaved reads.
396	 * Query the pagecache for async_size, which normally equals to
397	 * readahead size. Ramp it up and use it as the new readahead size.
398	 */
399	if (hit_readahead_marker) {
400		pgoff_t start;
401
402		rcu_read_lock();
403		start = page_cache_next_hole(mapping, offset + 1, max);
404		rcu_read_unlock();
405
406		if (!start || start - offset > max)
407			return 0;
408
409		ra->start = start;
410		ra->size = start - offset;	/* old async_size */
411		ra->size += req_size;
412		ra->size = get_next_ra_size(ra, max);
413		ra->async_size = ra->size;
414		goto readit;
415	}
416
417	/*
418	 * oversize read
419	 */
420	if (req_size > max)
421		goto initial_readahead;
422
423	/*
424	 * sequential cache miss
425	 * trivial case: (offset - prev_offset) == 1
426	 * unaligned reads: (offset - prev_offset) == 0
427	 */
428	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
429	if (offset - prev_offset <= 1UL)
430		goto initial_readahead;
431
432	/*
433	 * Query the page cache and look for the traces(cached history pages)
434	 * that a sequential stream would leave behind.
435	 */
436	if (try_context_readahead(mapping, ra, offset, req_size, max))
437		goto readit;
438
439	/*
440	 * standalone, small random read
441	 * Read as is, and do not pollute the readahead state.
442	 */
443	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
444
445initial_readahead:
446	ra->start = offset;
447	ra->size = get_init_ra_size(req_size, max);
448	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
449
450readit:
451	/*
452	 * Will this read hit the readahead marker made by itself?
453	 * If so, trigger the readahead marker hit now, and merge
454	 * the resulted next readahead window into the current one.
455	 */
456	if (offset == ra->start && ra->size == ra->async_size) {
457		ra->async_size = get_next_ra_size(ra, max);
458		ra->size += ra->async_size;
459	}
460
461	return ra_submit(ra, mapping, filp);
462}
463
464/**
465 * page_cache_sync_readahead - generic file readahead
466 * @mapping: address_space which holds the pagecache and I/O vectors
467 * @ra: file_ra_state which holds the readahead state
468 * @filp: passed on to ->readpage() and ->readpages()
469 * @offset: start offset into @mapping, in pagecache page-sized units
470 * @req_size: hint: total size of the read which the caller is performing in
471 *            pagecache pages
472 *
473 * page_cache_sync_readahead() should be called when a cache miss happened:
474 * it will submit the read.  The readahead logic may decide to piggyback more
475 * pages onto the read request if access patterns suggest it will improve
476 * performance.
477 */
478void page_cache_sync_readahead(struct address_space *mapping,
479			       struct file_ra_state *ra, struct file *filp,
480			       pgoff_t offset, unsigned long req_size)
481{
482	/* no read-ahead */
483	if (!ra->ra_pages)
484		return;
485
486	/* be dumb */
487	if (filp && (filp->f_mode & FMODE_RANDOM)) {
488		force_page_cache_readahead(mapping, filp, offset, req_size);
489		return;
490	}
491
492	/* do read-ahead */
493	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
494}
495EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
496
497/**
498 * page_cache_async_readahead - file readahead for marked pages
499 * @mapping: address_space which holds the pagecache and I/O vectors
500 * @ra: file_ra_state which holds the readahead state
501 * @filp: passed on to ->readpage() and ->readpages()
502 * @page: the page at @offset which has the PG_readahead flag set
503 * @offset: start offset into @mapping, in pagecache page-sized units
504 * @req_size: hint: total size of the read which the caller is performing in
505 *            pagecache pages
506 *
507 * page_cache_async_readahead() should be called when a page is used which
508 * has the PG_readahead flag; this is a marker to suggest that the application
509 * has used up enough of the readahead window that we should start pulling in
510 * more pages.
511 */
512void
513page_cache_async_readahead(struct address_space *mapping,
514			   struct file_ra_state *ra, struct file *filp,
515			   struct page *page, pgoff_t offset,
516			   unsigned long req_size)
517{
518	/* no read-ahead */
519	if (!ra->ra_pages)
520		return;
521
522	/*
523	 * Same bit is used for PG_readahead and PG_reclaim.
524	 */
525	if (PageWriteback(page))
526		return;
527
528	ClearPageReadahead(page);
529
530	/*
531	 * Defer asynchronous read-ahead on IO congestion.
532	 */
533	if (inode_read_congested(mapping->host))
534		return;
535
536	/* do read-ahead */
537	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
538}
539EXPORT_SYMBOL_GPL(page_cache_async_readahead);
540
541static ssize_t
542do_readahead(struct address_space *mapping, struct file *filp,
543	     pgoff_t index, unsigned long nr)
544{
545	if (!mapping || !mapping->a_ops)
546		return -EINVAL;
547
548	return force_page_cache_readahead(mapping, filp, index, nr);
549}
550
551SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
552{
553	ssize_t ret;
554	struct fd f;
555
556	ret = -EBADF;
557	f = fdget(fd);
558	if (f.file) {
559		if (f.file->f_mode & FMODE_READ) {
560			struct address_space *mapping = f.file->f_mapping;
561			pgoff_t start = offset >> PAGE_SHIFT;
562			pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
563			unsigned long len = end - start + 1;
564			ret = do_readahead(mapping, f.file, start, len);
565		}
566		fdput(f);
567	}
568	return ret;
569}
v3.1
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/fs.h>
 12#include <linux/gfp.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <linux/blkdev.h>
 16#include <linux/backing-dev.h>
 17#include <linux/task_io_accounting_ops.h>
 18#include <linux/pagevec.h>
 19#include <linux/pagemap.h>
 
 
 
 
 
 20
 21/*
 22 * Initialise a struct file's readahead state.  Assumes that the caller has
 23 * memset *ra to zero.
 24 */
 25void
 26file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 27{
 28	ra->ra_pages = mapping->backing_dev_info->ra_pages;
 29	ra->prev_pos = -1;
 30}
 31EXPORT_SYMBOL_GPL(file_ra_state_init);
 32
 33#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
 34
 35/*
 36 * see if a page needs releasing upon read_cache_pages() failure
 37 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 38 *   before calling, such as the NFS fs marking pages that are cached locally
 39 *   on disk, thus we need to give the fs a chance to clean up in the event of
 40 *   an error
 41 */
 42static void read_cache_pages_invalidate_page(struct address_space *mapping,
 43					     struct page *page)
 44{
 45	if (page_has_private(page)) {
 46		if (!trylock_page(page))
 47			BUG();
 48		page->mapping = mapping;
 49		do_invalidatepage(page, 0);
 50		page->mapping = NULL;
 51		unlock_page(page);
 52	}
 53	page_cache_release(page);
 54}
 55
 56/*
 57 * release a list of pages, invalidating them first if need be
 58 */
 59static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 60					      struct list_head *pages)
 61{
 62	struct page *victim;
 63
 64	while (!list_empty(pages)) {
 65		victim = list_to_page(pages);
 66		list_del(&victim->lru);
 67		read_cache_pages_invalidate_page(mapping, victim);
 68	}
 69}
 70
 71/**
 72 * read_cache_pages - populate an address space with some pages & start reads against them
 73 * @mapping: the address_space
 74 * @pages: The address of a list_head which contains the target pages.  These
 75 *   pages have their ->index populated and are otherwise uninitialised.
 76 * @filler: callback routine for filling a single page.
 77 * @data: private data for the callback routine.
 78 *
 79 * Hides the details of the LRU cache etc from the filesystems.
 80 */
 81int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 82			int (*filler)(void *, struct page *), void *data)
 83{
 84	struct page *page;
 85	int ret = 0;
 86
 87	while (!list_empty(pages)) {
 88		page = list_to_page(pages);
 89		list_del(&page->lru);
 90		if (add_to_page_cache_lru(page, mapping,
 91					page->index, GFP_KERNEL)) {
 92			read_cache_pages_invalidate_page(mapping, page);
 93			continue;
 94		}
 95		page_cache_release(page);
 96
 97		ret = filler(data, page);
 98		if (unlikely(ret)) {
 99			read_cache_pages_invalidate_pages(mapping, pages);
100			break;
101		}
102		task_io_account_read(PAGE_CACHE_SIZE);
103	}
104	return ret;
105}
106
107EXPORT_SYMBOL(read_cache_pages);
108
109static int read_pages(struct address_space *mapping, struct file *filp,
110		struct list_head *pages, unsigned nr_pages)
111{
112	struct blk_plug plug;
113	unsigned page_idx;
114	int ret;
115
116	blk_start_plug(&plug);
117
118	if (mapping->a_ops->readpages) {
119		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
120		/* Clean up the remaining pages */
121		put_pages_list(pages);
122		goto out;
123	}
124
125	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
126		struct page *page = list_to_page(pages);
127		list_del(&page->lru);
128		if (!add_to_page_cache_lru(page, mapping,
129					page->index, GFP_KERNEL)) {
130			mapping->a_ops->readpage(filp, page);
131		}
132		page_cache_release(page);
133	}
134	ret = 0;
135
136out:
137	blk_finish_plug(&plug);
138
139	return ret;
140}
141
142/*
143 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
144 * the pages first, then submits them all for I/O. This avoids the very bad
145 * behaviour which would occur if page allocations are causing VM writeback.
146 * We really don't want to intermingle reads and writes like that.
147 *
148 * Returns the number of pages requested, or the maximum amount of I/O allowed.
149 */
150static int
151__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
152			pgoff_t offset, unsigned long nr_to_read,
153			unsigned long lookahead_size)
154{
155	struct inode *inode = mapping->host;
156	struct page *page;
157	unsigned long end_index;	/* The last page we want to read */
158	LIST_HEAD(page_pool);
159	int page_idx;
160	int ret = 0;
161	loff_t isize = i_size_read(inode);
162
163	if (isize == 0)
164		goto out;
165
166	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
167
168	/*
169	 * Preallocate as many pages as we will need.
170	 */
171	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172		pgoff_t page_offset = offset + page_idx;
173
174		if (page_offset > end_index)
175			break;
176
177		rcu_read_lock();
178		page = radix_tree_lookup(&mapping->page_tree, page_offset);
179		rcu_read_unlock();
180		if (page)
181			continue;
182
183		page = page_cache_alloc_readahead(mapping);
184		if (!page)
185			break;
186		page->index = page_offset;
187		list_add(&page->lru, &page_pool);
188		if (page_idx == nr_to_read - lookahead_size)
189			SetPageReadahead(page);
190		ret++;
191	}
192
193	/*
194	 * Now start the IO.  We ignore I/O errors - if the page is not
195	 * uptodate then the caller will launch readpage again, and
196	 * will then handle the error.
197	 */
198	if (ret)
199		read_pages(mapping, filp, &page_pool, ret);
200	BUG_ON(!list_empty(&page_pool));
201out:
202	return ret;
203}
204
205/*
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
208 */
209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210		pgoff_t offset, unsigned long nr_to_read)
211{
212	int ret = 0;
213
214	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
215		return -EINVAL;
216
217	nr_to_read = max_sane_readahead(nr_to_read);
218	while (nr_to_read) {
219		int err;
220
221		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
222
223		if (this_chunk > nr_to_read)
224			this_chunk = nr_to_read;
225		err = __do_page_cache_readahead(mapping, filp,
226						offset, this_chunk, 0);
227		if (err < 0) {
228			ret = err;
229			break;
230		}
231		ret += err;
232		offset += this_chunk;
233		nr_to_read -= this_chunk;
234	}
235	return ret;
236}
237
238/*
239 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
240 * sensible upper limit.
241 */
242unsigned long max_sane_readahead(unsigned long nr)
243{
244	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
245		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
246}
247
248/*
249 * Submit IO for the read-ahead request in file_ra_state.
250 */
251unsigned long ra_submit(struct file_ra_state *ra,
252		       struct address_space *mapping, struct file *filp)
253{
254	int actual;
255
256	actual = __do_page_cache_readahead(mapping, filp,
257					ra->start, ra->size, ra->async_size);
258
259	return actual;
260}
261
262/*
263 * Set the initial window size, round to next power of 2 and square
264 * for small size, x 4 for medium, and x 2 for large
265 * for 128k (32 page) max ra
266 * 1-8 page = 32k initial, > 8 page = 128k initial
267 */
268static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
269{
270	unsigned long newsize = roundup_pow_of_two(size);
271
272	if (newsize <= max / 32)
273		newsize = newsize * 4;
274	else if (newsize <= max / 4)
275		newsize = newsize * 2;
276	else
277		newsize = max;
278
279	return newsize;
280}
281
282/*
283 *  Get the previous window size, ramp it up, and
284 *  return it as the new window size.
285 */
286static unsigned long get_next_ra_size(struct file_ra_state *ra,
287						unsigned long max)
288{
289	unsigned long cur = ra->size;
290	unsigned long newsize;
291
292	if (cur < max / 16)
293		newsize = 4 * cur;
294	else
295		newsize = 2 * cur;
296
297	return min(newsize, max);
298}
299
300/*
301 * On-demand readahead design.
302 *
303 * The fields in struct file_ra_state represent the most-recently-executed
304 * readahead attempt:
305 *
306 *                        |<----- async_size ---------|
307 *     |------------------- size -------------------->|
308 *     |==================#===========================|
309 *     ^start             ^page marked with PG_readahead
310 *
311 * To overlap application thinking time and disk I/O time, we do
312 * `readahead pipelining': Do not wait until the application consumed all
313 * readahead pages and stalled on the missing page at readahead_index;
314 * Instead, submit an asynchronous readahead I/O as soon as there are
315 * only async_size pages left in the readahead window. Normally async_size
316 * will be equal to size, for maximum pipelining.
317 *
318 * In interleaved sequential reads, concurrent streams on the same fd can
319 * be invalidating each other's readahead state. So we flag the new readahead
320 * page at (start+size-async_size) with PG_readahead, and use it as readahead
321 * indicator. The flag won't be set on already cached pages, to avoid the
322 * readahead-for-nothing fuss, saving pointless page cache lookups.
323 *
324 * prev_pos tracks the last visited byte in the _previous_ read request.
325 * It should be maintained by the caller, and will be used for detecting
326 * small random reads. Note that the readahead algorithm checks loosely
327 * for sequential patterns. Hence interleaved reads might be served as
328 * sequential ones.
329 *
330 * There is a special-case: if the first page which the application tries to
331 * read happens to be the first page of the file, it is assumed that a linear
332 * read is about to happen and the window is immediately set to the initial size
333 * based on I/O request size and the max_readahead.
334 *
335 * The code ramps up the readahead size aggressively at first, but slow down as
336 * it approaches max_readhead.
337 */
338
339/*
340 * Count contiguously cached pages from @offset-1 to @offset-@max,
341 * this count is a conservative estimation of
342 * 	- length of the sequential read sequence, or
343 * 	- thrashing threshold in memory tight systems
344 */
345static pgoff_t count_history_pages(struct address_space *mapping,
346				   struct file_ra_state *ra,
347				   pgoff_t offset, unsigned long max)
348{
349	pgoff_t head;
350
351	rcu_read_lock();
352	head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
353	rcu_read_unlock();
354
355	return offset - 1 - head;
356}
357
358/*
359 * page cache context based read-ahead
360 */
361static int try_context_readahead(struct address_space *mapping,
362				 struct file_ra_state *ra,
363				 pgoff_t offset,
364				 unsigned long req_size,
365				 unsigned long max)
366{
367	pgoff_t size;
368
369	size = count_history_pages(mapping, ra, offset, max);
370
371	/*
372	 * no history pages:
373	 * it could be a random read
374	 */
375	if (!size)
376		return 0;
377
378	/*
379	 * starts from beginning of file:
380	 * it is a strong indication of long-run stream (or whole-file-read)
381	 */
382	if (size >= offset)
383		size *= 2;
384
385	ra->start = offset;
386	ra->size = get_init_ra_size(size + req_size, max);
387	ra->async_size = ra->size;
388
389	return 1;
390}
391
392/*
393 * A minimal readahead algorithm for trivial sequential/random reads.
394 */
395static unsigned long
396ondemand_readahead(struct address_space *mapping,
397		   struct file_ra_state *ra, struct file *filp,
398		   bool hit_readahead_marker, pgoff_t offset,
399		   unsigned long req_size)
400{
401	unsigned long max = max_sane_readahead(ra->ra_pages);
 
402
403	/*
404	 * start of file
405	 */
406	if (!offset)
407		goto initial_readahead;
408
409	/*
410	 * It's the expected callback offset, assume sequential access.
411	 * Ramp up sizes, and push forward the readahead window.
412	 */
413	if ((offset == (ra->start + ra->size - ra->async_size) ||
414	     offset == (ra->start + ra->size))) {
415		ra->start += ra->size;
416		ra->size = get_next_ra_size(ra, max);
417		ra->async_size = ra->size;
418		goto readit;
419	}
420
421	/*
422	 * Hit a marked page without valid readahead state.
423	 * E.g. interleaved reads.
424	 * Query the pagecache for async_size, which normally equals to
425	 * readahead size. Ramp it up and use it as the new readahead size.
426	 */
427	if (hit_readahead_marker) {
428		pgoff_t start;
429
430		rcu_read_lock();
431		start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
432		rcu_read_unlock();
433
434		if (!start || start - offset > max)
435			return 0;
436
437		ra->start = start;
438		ra->size = start - offset;	/* old async_size */
439		ra->size += req_size;
440		ra->size = get_next_ra_size(ra, max);
441		ra->async_size = ra->size;
442		goto readit;
443	}
444
445	/*
446	 * oversize read
447	 */
448	if (req_size > max)
449		goto initial_readahead;
450
451	/*
452	 * sequential cache miss
 
 
453	 */
454	if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
 
455		goto initial_readahead;
456
457	/*
458	 * Query the page cache and look for the traces(cached history pages)
459	 * that a sequential stream would leave behind.
460	 */
461	if (try_context_readahead(mapping, ra, offset, req_size, max))
462		goto readit;
463
464	/*
465	 * standalone, small random read
466	 * Read as is, and do not pollute the readahead state.
467	 */
468	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
469
470initial_readahead:
471	ra->start = offset;
472	ra->size = get_init_ra_size(req_size, max);
473	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
474
475readit:
476	/*
477	 * Will this read hit the readahead marker made by itself?
478	 * If so, trigger the readahead marker hit now, and merge
479	 * the resulted next readahead window into the current one.
480	 */
481	if (offset == ra->start && ra->size == ra->async_size) {
482		ra->async_size = get_next_ra_size(ra, max);
483		ra->size += ra->async_size;
484	}
485
486	return ra_submit(ra, mapping, filp);
487}
488
489/**
490 * page_cache_sync_readahead - generic file readahead
491 * @mapping: address_space which holds the pagecache and I/O vectors
492 * @ra: file_ra_state which holds the readahead state
493 * @filp: passed on to ->readpage() and ->readpages()
494 * @offset: start offset into @mapping, in pagecache page-sized units
495 * @req_size: hint: total size of the read which the caller is performing in
496 *            pagecache pages
497 *
498 * page_cache_sync_readahead() should be called when a cache miss happened:
499 * it will submit the read.  The readahead logic may decide to piggyback more
500 * pages onto the read request if access patterns suggest it will improve
501 * performance.
502 */
503void page_cache_sync_readahead(struct address_space *mapping,
504			       struct file_ra_state *ra, struct file *filp,
505			       pgoff_t offset, unsigned long req_size)
506{
507	/* no read-ahead */
508	if (!ra->ra_pages)
509		return;
510
511	/* be dumb */
512	if (filp && (filp->f_mode & FMODE_RANDOM)) {
513		force_page_cache_readahead(mapping, filp, offset, req_size);
514		return;
515	}
516
517	/* do read-ahead */
518	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
519}
520EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
521
522/**
523 * page_cache_async_readahead - file readahead for marked pages
524 * @mapping: address_space which holds the pagecache and I/O vectors
525 * @ra: file_ra_state which holds the readahead state
526 * @filp: passed on to ->readpage() and ->readpages()
527 * @page: the page at @offset which has the PG_readahead flag set
528 * @offset: start offset into @mapping, in pagecache page-sized units
529 * @req_size: hint: total size of the read which the caller is performing in
530 *            pagecache pages
531 *
532 * page_cache_async_readahead() should be called when a page is used which
533 * has the PG_readahead flag; this is a marker to suggest that the application
534 * has used up enough of the readahead window that we should start pulling in
535 * more pages.
536 */
537void
538page_cache_async_readahead(struct address_space *mapping,
539			   struct file_ra_state *ra, struct file *filp,
540			   struct page *page, pgoff_t offset,
541			   unsigned long req_size)
542{
543	/* no read-ahead */
544	if (!ra->ra_pages)
545		return;
546
547	/*
548	 * Same bit is used for PG_readahead and PG_reclaim.
549	 */
550	if (PageWriteback(page))
551		return;
552
553	ClearPageReadahead(page);
554
555	/*
556	 * Defer asynchronous read-ahead on IO congestion.
557	 */
558	if (bdi_read_congested(mapping->backing_dev_info))
559		return;
560
561	/* do read-ahead */
562	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
563}
564EXPORT_SYMBOL_GPL(page_cache_async_readahead);