Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 
 11#include <linux/gfp.h>
 12#include <linux/export.h>
 13#include <linux/blkdev.h>
 14#include <linux/backing-dev.h>
 15#include <linux/task_io_accounting_ops.h>
 16#include <linux/pagevec.h>
 17#include <linux/pagemap.h>
 18#include <linux/syscalls.h>
 19#include <linux/file.h>
 20#include <linux/mm_inline.h>
 
 
 
 21
 22#include "internal.h"
 23
 24/*
 25 * Initialise a struct file's readahead state.  Assumes that the caller has
 26 * memset *ra to zero.
 27 */
 28void
 29file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 30{
 31	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 32	ra->prev_pos = -1;
 33}
 34EXPORT_SYMBOL_GPL(file_ra_state_init);
 35
 36/*
 37 * see if a page needs releasing upon read_cache_pages() failure
 38 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 39 *   before calling, such as the NFS fs marking pages that are cached locally
 40 *   on disk, thus we need to give the fs a chance to clean up in the event of
 41 *   an error
 42 */
 43static void read_cache_pages_invalidate_page(struct address_space *mapping,
 44					     struct page *page)
 45{
 46	if (page_has_private(page)) {
 47		if (!trylock_page(page))
 48			BUG();
 49		page->mapping = mapping;
 50		do_invalidatepage(page, 0, PAGE_SIZE);
 51		page->mapping = NULL;
 52		unlock_page(page);
 53	}
 54	put_page(page);
 55}
 56
 57/*
 58 * release a list of pages, invalidating them first if need be
 59 */
 60static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 61					      struct list_head *pages)
 62{
 63	struct page *victim;
 64
 65	while (!list_empty(pages)) {
 66		victim = lru_to_page(pages);
 67		list_del(&victim->lru);
 68		read_cache_pages_invalidate_page(mapping, victim);
 69	}
 70}
 71
 72/**
 73 * read_cache_pages - populate an address space with some pages & start reads against them
 74 * @mapping: the address_space
 75 * @pages: The address of a list_head which contains the target pages.  These
 76 *   pages have their ->index populated and are otherwise uninitialised.
 77 * @filler: callback routine for filling a single page.
 78 * @data: private data for the callback routine.
 79 *
 80 * Hides the details of the LRU cache etc from the filesystems.
 
 
 81 */
 82int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 83			int (*filler)(void *, struct page *), void *data)
 84{
 85	struct page *page;
 86	int ret = 0;
 87
 88	while (!list_empty(pages)) {
 89		page = lru_to_page(pages);
 90		list_del(&page->lru);
 91		if (add_to_page_cache_lru(page, mapping, page->index,
 92				mapping_gfp_constraint(mapping, GFP_KERNEL))) {
 93			read_cache_pages_invalidate_page(mapping, page);
 94			continue;
 95		}
 96		put_page(page);
 97
 98		ret = filler(data, page);
 99		if (unlikely(ret)) {
100			read_cache_pages_invalidate_pages(mapping, pages);
101			break;
102		}
103		task_io_account_read(PAGE_SIZE);
104	}
105	return ret;
106}
107
108EXPORT_SYMBOL(read_cache_pages);
109
110static int read_pages(struct address_space *mapping, struct file *filp,
111		struct list_head *pages, unsigned nr_pages)
112{
 
 
113	struct blk_plug plug;
114	unsigned page_idx;
115	int ret;
 
116
117	blk_start_plug(&plug);
118
119	if (mapping->a_ops->readpages) {
120		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 
 
 
 
 
 
 
 
121		/* Clean up the remaining pages */
122		put_pages_list(pages);
123		goto out;
124	}
125
126	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
127		struct page *page = lru_to_page(pages);
128		list_del(&page->lru);
129		if (!add_to_page_cache_lru(page, mapping, page->index,
130				mapping_gfp_constraint(mapping, GFP_KERNEL))) {
131			mapping->a_ops->readpage(filp, page);
132		}
133		put_page(page);
134	}
135	ret = 0;
136
137out:
138	blk_finish_plug(&plug);
139
140	return ret;
 
 
 
 
 
141}
142
143/*
144 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
145 * the pages first, then submits them all for I/O. This avoids the very bad
146 * behaviour which would occur if page allocations are causing VM writeback.
147 * We really don't want to intermingle reads and writes like that.
148 *
149 * Returns the number of pages requested, or the maximum amount of I/O allowed.
150 */
151int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
152			pgoff_t offset, unsigned long nr_to_read,
153			unsigned long lookahead_size)
 
 
 
 
 
 
 
 
154{
155	struct inode *inode = mapping->host;
156	struct page *page;
157	unsigned long end_index;	/* The last page we want to read */
158	LIST_HEAD(page_pool);
159	int page_idx;
160	int ret = 0;
161	loff_t isize = i_size_read(inode);
162
163	if (isize == 0)
164		goto out;
165
166	end_index = ((isize - 1) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
167
168	/*
169	 * Preallocate as many pages as we will need.
170	 */
171	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172		pgoff_t page_offset = offset + page_idx;
173
174		if (page_offset > end_index)
175			break;
176
177		rcu_read_lock();
178		page = radix_tree_lookup(&mapping->page_tree, page_offset);
179		rcu_read_unlock();
180		if (page && !radix_tree_exceptional_entry(page))
 
 
 
 
 
 
181			continue;
 
182
183		page = page_cache_alloc_readahead(mapping);
184		if (!page)
185			break;
186		page->index = page_offset;
187		list_add(&page->lru, &page_pool);
188		if (page_idx == nr_to_read - lookahead_size)
 
 
 
 
 
 
 
189			SetPageReadahead(page);
190		ret++;
191	}
192
193	/*
194	 * Now start the IO.  We ignore I/O errors - if the page is not
195	 * uptodate then the caller will launch readpage again, and
196	 * will then handle the error.
197	 */
198	if (ret)
199		read_pages(mapping, filp, &page_pool, ret);
200	BUG_ON(!list_empty(&page_pool));
201out:
202	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203}
204
205/*
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
208 */
209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210		pgoff_t offset, unsigned long nr_to_read)
211{
212	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
213		return -EINVAL;
 
214
215	nr_to_read = min(nr_to_read, inode_to_bdi(mapping->host)->ra_pages);
216	while (nr_to_read) {
217		int err;
218
 
 
 
 
 
 
 
219		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
220
221		if (this_chunk > nr_to_read)
222			this_chunk = nr_to_read;
223		err = __do_page_cache_readahead(mapping, filp,
224						offset, this_chunk, 0);
225		if (err < 0)
226			return err;
227
228		offset += this_chunk;
229		nr_to_read -= this_chunk;
230	}
231	return 0;
232}
233
234/*
235 * Set the initial window size, round to next power of 2 and square
236 * for small size, x 4 for medium, and x 2 for large
237 * for 128k (32 page) max ra
238 * 1-8 page = 32k initial, > 8 page = 128k initial
239 */
240static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
241{
242	unsigned long newsize = roundup_pow_of_two(size);
243
244	if (newsize <= max / 32)
245		newsize = newsize * 4;
246	else if (newsize <= max / 4)
247		newsize = newsize * 2;
248	else
249		newsize = max;
250
251	return newsize;
252}
253
254/*
255 *  Get the previous window size, ramp it up, and
256 *  return it as the new window size.
257 */
258static unsigned long get_next_ra_size(struct file_ra_state *ra,
259						unsigned long max)
260{
261	unsigned long cur = ra->size;
262	unsigned long newsize;
263
264	if (cur < max / 16)
265		newsize = 4 * cur;
266	else
267		newsize = 2 * cur;
268
269	return min(newsize, max);
270}
271
272/*
273 * On-demand readahead design.
274 *
275 * The fields in struct file_ra_state represent the most-recently-executed
276 * readahead attempt:
277 *
278 *                        |<----- async_size ---------|
279 *     |------------------- size -------------------->|
280 *     |==================#===========================|
281 *     ^start             ^page marked with PG_readahead
282 *
283 * To overlap application thinking time and disk I/O time, we do
284 * `readahead pipelining': Do not wait until the application consumed all
285 * readahead pages and stalled on the missing page at readahead_index;
286 * Instead, submit an asynchronous readahead I/O as soon as there are
287 * only async_size pages left in the readahead window. Normally async_size
288 * will be equal to size, for maximum pipelining.
289 *
290 * In interleaved sequential reads, concurrent streams on the same fd can
291 * be invalidating each other's readahead state. So we flag the new readahead
292 * page at (start+size-async_size) with PG_readahead, and use it as readahead
293 * indicator. The flag won't be set on already cached pages, to avoid the
294 * readahead-for-nothing fuss, saving pointless page cache lookups.
295 *
296 * prev_pos tracks the last visited byte in the _previous_ read request.
297 * It should be maintained by the caller, and will be used for detecting
298 * small random reads. Note that the readahead algorithm checks loosely
299 * for sequential patterns. Hence interleaved reads might be served as
300 * sequential ones.
301 *
302 * There is a special-case: if the first page which the application tries to
303 * read happens to be the first page of the file, it is assumed that a linear
304 * read is about to happen and the window is immediately set to the initial size
305 * based on I/O request size and the max_readahead.
306 *
307 * The code ramps up the readahead size aggressively at first, but slow down as
308 * it approaches max_readhead.
309 */
310
311/*
312 * Count contiguously cached pages from @offset-1 to @offset-@max,
313 * this count is a conservative estimation of
314 * 	- length of the sequential read sequence, or
315 * 	- thrashing threshold in memory tight systems
316 */
317static pgoff_t count_history_pages(struct address_space *mapping,
318				   pgoff_t offset, unsigned long max)
319{
320	pgoff_t head;
321
322	rcu_read_lock();
323	head = page_cache_prev_hole(mapping, offset - 1, max);
324	rcu_read_unlock();
325
326	return offset - 1 - head;
327}
328
329/*
330 * page cache context based read-ahead
331 */
332static int try_context_readahead(struct address_space *mapping,
333				 struct file_ra_state *ra,
334				 pgoff_t offset,
335				 unsigned long req_size,
336				 unsigned long max)
337{
338	pgoff_t size;
339
340	size = count_history_pages(mapping, offset, max);
341
342	/*
343	 * not enough history pages:
344	 * it could be a random read
345	 */
346	if (size <= req_size)
347		return 0;
348
349	/*
350	 * starts from beginning of file:
351	 * it is a strong indication of long-run stream (or whole-file-read)
352	 */
353	if (size >= offset)
354		size *= 2;
355
356	ra->start = offset;
357	ra->size = min(size + req_size, max);
358	ra->async_size = 1;
359
360	return 1;
361}
362
363/*
364 * A minimal readahead algorithm for trivial sequential/random reads.
365 */
366static unsigned long
367ondemand_readahead(struct address_space *mapping,
368		   struct file_ra_state *ra, struct file *filp,
369		   bool hit_readahead_marker, pgoff_t offset,
370		   unsigned long req_size)
371{
372	unsigned long max = ra->ra_pages;
373	pgoff_t prev_offset;
 
 
 
 
 
 
 
 
374
375	/*
376	 * start of file
377	 */
378	if (!offset)
379		goto initial_readahead;
380
381	/*
382	 * It's the expected callback offset, assume sequential access.
383	 * Ramp up sizes, and push forward the readahead window.
384	 */
385	if ((offset == (ra->start + ra->size - ra->async_size) ||
386	     offset == (ra->start + ra->size))) {
387		ra->start += ra->size;
388		ra->size = get_next_ra_size(ra, max);
389		ra->async_size = ra->size;
390		goto readit;
391	}
392
393	/*
394	 * Hit a marked page without valid readahead state.
395	 * E.g. interleaved reads.
396	 * Query the pagecache for async_size, which normally equals to
397	 * readahead size. Ramp it up and use it as the new readahead size.
398	 */
399	if (hit_readahead_marker) {
400		pgoff_t start;
401
402		rcu_read_lock();
403		start = page_cache_next_hole(mapping, offset + 1, max);
404		rcu_read_unlock();
405
406		if (!start || start - offset > max)
407			return 0;
408
409		ra->start = start;
410		ra->size = start - offset;	/* old async_size */
411		ra->size += req_size;
412		ra->size = get_next_ra_size(ra, max);
413		ra->async_size = ra->size;
414		goto readit;
415	}
416
417	/*
418	 * oversize read
419	 */
420	if (req_size > max)
421		goto initial_readahead;
422
423	/*
424	 * sequential cache miss
425	 * trivial case: (offset - prev_offset) == 1
426	 * unaligned reads: (offset - prev_offset) == 0
427	 */
428	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
429	if (offset - prev_offset <= 1UL)
430		goto initial_readahead;
431
432	/*
433	 * Query the page cache and look for the traces(cached history pages)
434	 * that a sequential stream would leave behind.
435	 */
436	if (try_context_readahead(mapping, ra, offset, req_size, max))
437		goto readit;
438
439	/*
440	 * standalone, small random read
441	 * Read as is, and do not pollute the readahead state.
442	 */
443	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 
444
445initial_readahead:
446	ra->start = offset;
447	ra->size = get_init_ra_size(req_size, max);
448	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
449
450readit:
451	/*
452	 * Will this read hit the readahead marker made by itself?
453	 * If so, trigger the readahead marker hit now, and merge
454	 * the resulted next readahead window into the current one.
 
455	 */
456	if (offset == ra->start && ra->size == ra->async_size) {
457		ra->async_size = get_next_ra_size(ra, max);
458		ra->size += ra->async_size;
 
 
 
 
 
 
459	}
460
461	return ra_submit(ra, mapping, filp);
462}
463
464/**
465 * page_cache_sync_readahead - generic file readahead
466 * @mapping: address_space which holds the pagecache and I/O vectors
467 * @ra: file_ra_state which holds the readahead state
468 * @filp: passed on to ->readpage() and ->readpages()
469 * @offset: start offset into @mapping, in pagecache page-sized units
470 * @req_size: hint: total size of the read which the caller is performing in
471 *            pagecache pages
472 *
473 * page_cache_sync_readahead() should be called when a cache miss happened:
474 * it will submit the read.  The readahead logic may decide to piggyback more
475 * pages onto the read request if access patterns suggest it will improve
476 * performance.
477 */
478void page_cache_sync_readahead(struct address_space *mapping,
479			       struct file_ra_state *ra, struct file *filp,
480			       pgoff_t offset, unsigned long req_size)
481{
482	/* no read-ahead */
483	if (!ra->ra_pages)
484		return;
485
 
 
 
486	/* be dumb */
487	if (filp && (filp->f_mode & FMODE_RANDOM)) {
488		force_page_cache_readahead(mapping, filp, offset, req_size);
489		return;
490	}
491
492	/* do read-ahead */
493	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
494}
495EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
496
497/**
498 * page_cache_async_readahead - file readahead for marked pages
499 * @mapping: address_space which holds the pagecache and I/O vectors
500 * @ra: file_ra_state which holds the readahead state
501 * @filp: passed on to ->readpage() and ->readpages()
502 * @page: the page at @offset which has the PG_readahead flag set
503 * @offset: start offset into @mapping, in pagecache page-sized units
504 * @req_size: hint: total size of the read which the caller is performing in
505 *            pagecache pages
506 *
507 * page_cache_async_readahead() should be called when a page is used which
508 * has the PG_readahead flag; this is a marker to suggest that the application
509 * has used up enough of the readahead window that we should start pulling in
510 * more pages.
511 */
512void
513page_cache_async_readahead(struct address_space *mapping,
514			   struct file_ra_state *ra, struct file *filp,
515			   struct page *page, pgoff_t offset,
516			   unsigned long req_size)
517{
518	/* no read-ahead */
519	if (!ra->ra_pages)
520		return;
521
522	/*
523	 * Same bit is used for PG_readahead and PG_reclaim.
524	 */
525	if (PageWriteback(page))
526		return;
527
528	ClearPageReadahead(page);
529
530	/*
531	 * Defer asynchronous read-ahead on IO congestion.
532	 */
533	if (inode_read_congested(mapping->host))
534		return;
535
 
 
 
536	/* do read-ahead */
537	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
538}
539EXPORT_SYMBOL_GPL(page_cache_async_readahead);
540
541static ssize_t
542do_readahead(struct address_space *mapping, struct file *filp,
543	     pgoff_t index, unsigned long nr)
544{
545	if (!mapping || !mapping->a_ops)
546		return -EINVAL;
547
548	return force_page_cache_readahead(mapping, filp, index, nr);
549}
550
551SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
552{
553	ssize_t ret;
554	struct fd f;
555
556	ret = -EBADF;
557	f = fdget(fd);
558	if (f.file) {
559		if (f.file->f_mode & FMODE_READ) {
560			struct address_space *mapping = f.file->f_mapping;
561			pgoff_t start = offset >> PAGE_SHIFT;
562			pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
563			unsigned long len = end - start + 1;
564			ret = do_readahead(mapping, f.file, start, len);
565		}
566		fdput(f);
567	}
 
 
 
 
 
 
568	return ret;
 
 
 
 
 
569}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/readahead.c - address_space-level file readahead.
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 09Apr2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/export.h>
 15#include <linux/blkdev.h>
 16#include <linux/backing-dev.h>
 17#include <linux/task_io_accounting_ops.h>
 18#include <linux/pagevec.h>
 19#include <linux/pagemap.h>
 20#include <linux/syscalls.h>
 21#include <linux/file.h>
 22#include <linux/mm_inline.h>
 23#include <linux/blk-cgroup.h>
 24#include <linux/fadvise.h>
 25#include <linux/sched/mm.h>
 26
 27#include "internal.h"
 28
 29/*
 30 * Initialise a struct file's readahead state.  Assumes that the caller has
 31 * memset *ra to zero.
 32 */
 33void
 34file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 35{
 36	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 37	ra->prev_pos = -1;
 38}
 39EXPORT_SYMBOL_GPL(file_ra_state_init);
 40
 41/*
 42 * see if a page needs releasing upon read_cache_pages() failure
 43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 44 *   before calling, such as the NFS fs marking pages that are cached locally
 45 *   on disk, thus we need to give the fs a chance to clean up in the event of
 46 *   an error
 47 */
 48static void read_cache_pages_invalidate_page(struct address_space *mapping,
 49					     struct page *page)
 50{
 51	if (page_has_private(page)) {
 52		if (!trylock_page(page))
 53			BUG();
 54		page->mapping = mapping;
 55		do_invalidatepage(page, 0, PAGE_SIZE);
 56		page->mapping = NULL;
 57		unlock_page(page);
 58	}
 59	put_page(page);
 60}
 61
 62/*
 63 * release a list of pages, invalidating them first if need be
 64 */
 65static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 66					      struct list_head *pages)
 67{
 68	struct page *victim;
 69
 70	while (!list_empty(pages)) {
 71		victim = lru_to_page(pages);
 72		list_del(&victim->lru);
 73		read_cache_pages_invalidate_page(mapping, victim);
 74	}
 75}
 76
 77/**
 78 * read_cache_pages - populate an address space with some pages & start reads against them
 79 * @mapping: the address_space
 80 * @pages: The address of a list_head which contains the target pages.  These
 81 *   pages have their ->index populated and are otherwise uninitialised.
 82 * @filler: callback routine for filling a single page.
 83 * @data: private data for the callback routine.
 84 *
 85 * Hides the details of the LRU cache etc from the filesystems.
 86 *
 87 * Returns: %0 on success, error return by @filler otherwise
 88 */
 89int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 90			int (*filler)(void *, struct page *), void *data)
 91{
 92	struct page *page;
 93	int ret = 0;
 94
 95	while (!list_empty(pages)) {
 96		page = lru_to_page(pages);
 97		list_del(&page->lru);
 98		if (add_to_page_cache_lru(page, mapping, page->index,
 99				readahead_gfp_mask(mapping))) {
100			read_cache_pages_invalidate_page(mapping, page);
101			continue;
102		}
103		put_page(page);
104
105		ret = filler(data, page);
106		if (unlikely(ret)) {
107			read_cache_pages_invalidate_pages(mapping, pages);
108			break;
109		}
110		task_io_account_read(PAGE_SIZE);
111	}
112	return ret;
113}
114
115EXPORT_SYMBOL(read_cache_pages);
116
117static void read_pages(struct readahead_control *rac, struct list_head *pages,
118		bool skip_page)
119{
120	const struct address_space_operations *aops = rac->mapping->a_ops;
121	struct page *page;
122	struct blk_plug plug;
123
124	if (!readahead_count(rac))
125		goto out;
126
127	blk_start_plug(&plug);
128
129	if (aops->readahead) {
130		aops->readahead(rac);
131		/* Clean up the remaining pages */
132		while ((page = readahead_page(rac))) {
133			unlock_page(page);
134			put_page(page);
135		}
136	} else if (aops->readpages) {
137		aops->readpages(rac->file, rac->mapping, pages,
138				readahead_count(rac));
139		/* Clean up the remaining pages */
140		put_pages_list(pages);
141		rac->_index += rac->_nr_pages;
142		rac->_nr_pages = 0;
143	} else {
144		while ((page = readahead_page(rac))) {
145			aops->readpage(rac->file, page);
146			put_page(page);
 
 
 
147		}
 
148	}
 
149
 
150	blk_finish_plug(&plug);
151
152	BUG_ON(!list_empty(pages));
153	BUG_ON(readahead_count(rac));
154
155out:
156	if (skip_page)
157		rac->_index++;
158}
159
160/**
161 * page_cache_readahead_unbounded - Start unchecked readahead.
162 * @mapping: File address space.
163 * @file: This instance of the open file; used for authentication.
164 * @index: First page index to read.
165 * @nr_to_read: The number of pages to read.
166 * @lookahead_size: Where to start the next readahead.
167 *
168 * This function is for filesystems to call when they want to start
169 * readahead beyond a file's stated i_size.  This is almost certainly
170 * not the function you want to call.  Use page_cache_async_readahead()
171 * or page_cache_sync_readahead() instead.
172 *
173 * Context: File is referenced by caller.  Mutexes may be held by caller.
174 * May sleep, but will not reenter filesystem to reclaim memory.
175 */
176void page_cache_readahead_unbounded(struct address_space *mapping,
177		struct file *file, pgoff_t index, unsigned long nr_to_read,
178		unsigned long lookahead_size)
179{
 
 
 
180	LIST_HEAD(page_pool);
181	gfp_t gfp_mask = readahead_gfp_mask(mapping);
182	struct readahead_control rac = {
183		.mapping = mapping,
184		.file = file,
185		._index = index,
186	};
187	unsigned long i;
188
189	/*
190	 * Partway through the readahead operation, we will have added
191	 * locked pages to the page cache, but will not yet have submitted
192	 * them for I/O.  Adding another page may need to allocate memory,
193	 * which can trigger memory reclaim.  Telling the VM we're in
194	 * the middle of a filesystem operation will cause it to not
195	 * touch file-backed pages, preventing a deadlock.  Most (all?)
196	 * filesystems already specify __GFP_NOFS in their mapping's
197	 * gfp_mask, but let's be explicit here.
198	 */
199	unsigned int nofs = memalloc_nofs_save();
200
201	/*
202	 * Preallocate as many pages as we will need.
203	 */
204	for (i = 0; i < nr_to_read; i++) {
205		struct page *page = xa_load(&mapping->i_pages, index + i);
206
207		BUG_ON(index + i != rac._index + rac._nr_pages);
 
208
209		if (page && !xa_is_value(page)) {
210			/*
211			 * Page already present?  Kick off the current batch
212			 * of contiguous pages before continuing with the
213			 * next batch.  This page may be the one we would
214			 * have intended to mark as Readahead, but we don't
215			 * have a stable reference to this page, and it's
216			 * not worth getting one just for that.
217			 */
218			read_pages(&rac, &page_pool, true);
219			continue;
220		}
221
222		page = __page_cache_alloc(gfp_mask);
223		if (!page)
224			break;
225		if (mapping->a_ops->readpages) {
226			page->index = index + i;
227			list_add(&page->lru, &page_pool);
228		} else if (add_to_page_cache_lru(page, mapping, index + i,
229					gfp_mask) < 0) {
230			put_page(page);
231			read_pages(&rac, &page_pool, true);
232			continue;
233		}
234		if (i == nr_to_read - lookahead_size)
235			SetPageReadahead(page);
236		rac._nr_pages++;
237	}
238
239	/*
240	 * Now start the IO.  We ignore I/O errors - if the page is not
241	 * uptodate then the caller will launch readpage again, and
242	 * will then handle the error.
243	 */
244	read_pages(&rac, &page_pool, false);
245	memalloc_nofs_restore(nofs);
246}
247EXPORT_SYMBOL_GPL(page_cache_readahead_unbounded);
248
249/*
250 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
251 * the pages first, then submits them for I/O. This avoids the very bad
252 * behaviour which would occur if page allocations are causing VM writeback.
253 * We really don't want to intermingle reads and writes like that.
254 */
255void __do_page_cache_readahead(struct address_space *mapping,
256		struct file *file, pgoff_t index, unsigned long nr_to_read,
257		unsigned long lookahead_size)
258{
259	struct inode *inode = mapping->host;
260	loff_t isize = i_size_read(inode);
261	pgoff_t end_index;	/* The last page we want to read */
262
263	if (isize == 0)
264		return;
265
266	end_index = (isize - 1) >> PAGE_SHIFT;
267	if (index > end_index)
268		return;
269	/* Don't read past the page containing the last byte of the file */
270	if (nr_to_read > end_index - index)
271		nr_to_read = end_index - index + 1;
272
273	page_cache_readahead_unbounded(mapping, file, index, nr_to_read,
274			lookahead_size);
275}
276
277/*
278 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
279 * memory at once.
280 */
281void force_page_cache_readahead(struct address_space *mapping,
282		struct file *filp, pgoff_t index, unsigned long nr_to_read)
283{
284	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
285	struct file_ra_state *ra = &filp->f_ra;
286	unsigned long max_pages;
287
288	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
289			!mapping->a_ops->readahead))
290		return;
291
292	/*
293	 * If the request exceeds the readahead window, allow the read to
294	 * be up to the optimal hardware IO size
295	 */
296	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
297	nr_to_read = min(nr_to_read, max_pages);
298	while (nr_to_read) {
299		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
300
301		if (this_chunk > nr_to_read)
302			this_chunk = nr_to_read;
303		__do_page_cache_readahead(mapping, filp, index, this_chunk, 0);
 
 
 
304
305		index += this_chunk;
306		nr_to_read -= this_chunk;
307	}
 
308}
309
310/*
311 * Set the initial window size, round to next power of 2 and square
312 * for small size, x 4 for medium, and x 2 for large
313 * for 128k (32 page) max ra
314 * 1-8 page = 32k initial, > 8 page = 128k initial
315 */
316static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
317{
318	unsigned long newsize = roundup_pow_of_two(size);
319
320	if (newsize <= max / 32)
321		newsize = newsize * 4;
322	else if (newsize <= max / 4)
323		newsize = newsize * 2;
324	else
325		newsize = max;
326
327	return newsize;
328}
329
330/*
331 *  Get the previous window size, ramp it up, and
332 *  return it as the new window size.
333 */
334static unsigned long get_next_ra_size(struct file_ra_state *ra,
335				      unsigned long max)
336{
337	unsigned long cur = ra->size;
 
338
339	if (cur < max / 16)
340		return 4 * cur;
341	if (cur <= max / 2)
342		return 2 * cur;
343	return max;
 
344}
345
346/*
347 * On-demand readahead design.
348 *
349 * The fields in struct file_ra_state represent the most-recently-executed
350 * readahead attempt:
351 *
352 *                        |<----- async_size ---------|
353 *     |------------------- size -------------------->|
354 *     |==================#===========================|
355 *     ^start             ^page marked with PG_readahead
356 *
357 * To overlap application thinking time and disk I/O time, we do
358 * `readahead pipelining': Do not wait until the application consumed all
359 * readahead pages and stalled on the missing page at readahead_index;
360 * Instead, submit an asynchronous readahead I/O as soon as there are
361 * only async_size pages left in the readahead window. Normally async_size
362 * will be equal to size, for maximum pipelining.
363 *
364 * In interleaved sequential reads, concurrent streams on the same fd can
365 * be invalidating each other's readahead state. So we flag the new readahead
366 * page at (start+size-async_size) with PG_readahead, and use it as readahead
367 * indicator. The flag won't be set on already cached pages, to avoid the
368 * readahead-for-nothing fuss, saving pointless page cache lookups.
369 *
370 * prev_pos tracks the last visited byte in the _previous_ read request.
371 * It should be maintained by the caller, and will be used for detecting
372 * small random reads. Note that the readahead algorithm checks loosely
373 * for sequential patterns. Hence interleaved reads might be served as
374 * sequential ones.
375 *
376 * There is a special-case: if the first page which the application tries to
377 * read happens to be the first page of the file, it is assumed that a linear
378 * read is about to happen and the window is immediately set to the initial size
379 * based on I/O request size and the max_readahead.
380 *
381 * The code ramps up the readahead size aggressively at first, but slow down as
382 * it approaches max_readhead.
383 */
384
385/*
386 * Count contiguously cached pages from @index-1 to @index-@max,
387 * this count is a conservative estimation of
388 * 	- length of the sequential read sequence, or
389 * 	- thrashing threshold in memory tight systems
390 */
391static pgoff_t count_history_pages(struct address_space *mapping,
392				   pgoff_t index, unsigned long max)
393{
394	pgoff_t head;
395
396	rcu_read_lock();
397	head = page_cache_prev_miss(mapping, index - 1, max);
398	rcu_read_unlock();
399
400	return index - 1 - head;
401}
402
403/*
404 * page cache context based read-ahead
405 */
406static int try_context_readahead(struct address_space *mapping,
407				 struct file_ra_state *ra,
408				 pgoff_t index,
409				 unsigned long req_size,
410				 unsigned long max)
411{
412	pgoff_t size;
413
414	size = count_history_pages(mapping, index, max);
415
416	/*
417	 * not enough history pages:
418	 * it could be a random read
419	 */
420	if (size <= req_size)
421		return 0;
422
423	/*
424	 * starts from beginning of file:
425	 * it is a strong indication of long-run stream (or whole-file-read)
426	 */
427	if (size >= index)
428		size *= 2;
429
430	ra->start = index;
431	ra->size = min(size + req_size, max);
432	ra->async_size = 1;
433
434	return 1;
435}
436
437/*
438 * A minimal readahead algorithm for trivial sequential/random reads.
439 */
440static void ondemand_readahead(struct address_space *mapping,
441		struct file_ra_state *ra, struct file *filp,
442		bool hit_readahead_marker, pgoff_t index,
443		unsigned long req_size)
444{
445	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
446	unsigned long max_pages = ra->ra_pages;
447	unsigned long add_pages;
448	pgoff_t prev_index;
449
450	/*
451	 * If the request exceeds the readahead window, allow the read to
452	 * be up to the optimal hardware IO size
453	 */
454	if (req_size > max_pages && bdi->io_pages > max_pages)
455		max_pages = min(req_size, bdi->io_pages);
456
457	/*
458	 * start of file
459	 */
460	if (!index)
461		goto initial_readahead;
462
463	/*
464	 * It's the expected callback index, assume sequential access.
465	 * Ramp up sizes, and push forward the readahead window.
466	 */
467	if ((index == (ra->start + ra->size - ra->async_size) ||
468	     index == (ra->start + ra->size))) {
469		ra->start += ra->size;
470		ra->size = get_next_ra_size(ra, max_pages);
471		ra->async_size = ra->size;
472		goto readit;
473	}
474
475	/*
476	 * Hit a marked page without valid readahead state.
477	 * E.g. interleaved reads.
478	 * Query the pagecache for async_size, which normally equals to
479	 * readahead size. Ramp it up and use it as the new readahead size.
480	 */
481	if (hit_readahead_marker) {
482		pgoff_t start;
483
484		rcu_read_lock();
485		start = page_cache_next_miss(mapping, index + 1, max_pages);
486		rcu_read_unlock();
487
488		if (!start || start - index > max_pages)
489			return;
490
491		ra->start = start;
492		ra->size = start - index;	/* old async_size */
493		ra->size += req_size;
494		ra->size = get_next_ra_size(ra, max_pages);
495		ra->async_size = ra->size;
496		goto readit;
497	}
498
499	/*
500	 * oversize read
501	 */
502	if (req_size > max_pages)
503		goto initial_readahead;
504
505	/*
506	 * sequential cache miss
507	 * trivial case: (index - prev_index) == 1
508	 * unaligned reads: (index - prev_index) == 0
509	 */
510	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
511	if (index - prev_index <= 1UL)
512		goto initial_readahead;
513
514	/*
515	 * Query the page cache and look for the traces(cached history pages)
516	 * that a sequential stream would leave behind.
517	 */
518	if (try_context_readahead(mapping, ra, index, req_size, max_pages))
519		goto readit;
520
521	/*
522	 * standalone, small random read
523	 * Read as is, and do not pollute the readahead state.
524	 */
525	__do_page_cache_readahead(mapping, filp, index, req_size, 0);
526	return;
527
528initial_readahead:
529	ra->start = index;
530	ra->size = get_init_ra_size(req_size, max_pages);
531	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
532
533readit:
534	/*
535	 * Will this read hit the readahead marker made by itself?
536	 * If so, trigger the readahead marker hit now, and merge
537	 * the resulted next readahead window into the current one.
538	 * Take care of maximum IO pages as above.
539	 */
540	if (index == ra->start && ra->size == ra->async_size) {
541		add_pages = get_next_ra_size(ra, max_pages);
542		if (ra->size + add_pages <= max_pages) {
543			ra->async_size = add_pages;
544			ra->size += add_pages;
545		} else {
546			ra->size = max_pages;
547			ra->async_size = max_pages >> 1;
548		}
549	}
550
551	ra_submit(ra, mapping, filp);
552}
553
554/**
555 * page_cache_sync_readahead - generic file readahead
556 * @mapping: address_space which holds the pagecache and I/O vectors
557 * @ra: file_ra_state which holds the readahead state
558 * @filp: passed on to ->readpage() and ->readpages()
559 * @index: Index of first page to be read.
560 * @req_count: Total number of pages being read by the caller.
 
561 *
562 * page_cache_sync_readahead() should be called when a cache miss happened:
563 * it will submit the read.  The readahead logic may decide to piggyback more
564 * pages onto the read request if access patterns suggest it will improve
565 * performance.
566 */
567void page_cache_sync_readahead(struct address_space *mapping,
568			       struct file_ra_state *ra, struct file *filp,
569			       pgoff_t index, unsigned long req_count)
570{
571	/* no read-ahead */
572	if (!ra->ra_pages)
573		return;
574
575	if (blk_cgroup_congested())
576		return;
577
578	/* be dumb */
579	if (filp && (filp->f_mode & FMODE_RANDOM)) {
580		force_page_cache_readahead(mapping, filp, index, req_count);
581		return;
582	}
583
584	/* do read-ahead */
585	ondemand_readahead(mapping, ra, filp, false, index, req_count);
586}
587EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
588
589/**
590 * page_cache_async_readahead - file readahead for marked pages
591 * @mapping: address_space which holds the pagecache and I/O vectors
592 * @ra: file_ra_state which holds the readahead state
593 * @filp: passed on to ->readpage() and ->readpages()
594 * @page: The page at @index which triggered the readahead call.
595 * @index: Index of first page to be read.
596 * @req_count: Total number of pages being read by the caller.
 
597 *
598 * page_cache_async_readahead() should be called when a page is used which
599 * is marked as PageReadahead; this is a marker to suggest that the application
600 * has used up enough of the readahead window that we should start pulling in
601 * more pages.
602 */
603void
604page_cache_async_readahead(struct address_space *mapping,
605			   struct file_ra_state *ra, struct file *filp,
606			   struct page *page, pgoff_t index,
607			   unsigned long req_count)
608{
609	/* no read-ahead */
610	if (!ra->ra_pages)
611		return;
612
613	/*
614	 * Same bit is used for PG_readahead and PG_reclaim.
615	 */
616	if (PageWriteback(page))
617		return;
618
619	ClearPageReadahead(page);
620
621	/*
622	 * Defer asynchronous read-ahead on IO congestion.
623	 */
624	if (inode_read_congested(mapping->host))
625		return;
626
627	if (blk_cgroup_congested())
628		return;
629
630	/* do read-ahead */
631	ondemand_readahead(mapping, ra, filp, true, index, req_count);
632}
633EXPORT_SYMBOL_GPL(page_cache_async_readahead);
634
635ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
 
 
 
 
 
 
 
 
 
 
636{
637	ssize_t ret;
638	struct fd f;
639
640	ret = -EBADF;
641	f = fdget(fd);
642	if (!f.file || !(f.file->f_mode & FMODE_READ))
643		goto out;
644
645	/*
646	 * The readahead() syscall is intended to run only on files
647	 * that can execute readahead. If readahead is not possible
648	 * on this file, then we must return -EINVAL.
649	 */
650	ret = -EINVAL;
651	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
652	    !S_ISREG(file_inode(f.file)->i_mode))
653		goto out;
654
655	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
656out:
657	fdput(f);
658	return ret;
659}
660
661SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
662{
663	return ksys_readahead(fd, offset, count);
664}