Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 
 11#include <linux/gfp.h>
 12#include <linux/export.h>
 13#include <linux/blkdev.h>
 14#include <linux/backing-dev.h>
 15#include <linux/task_io_accounting_ops.h>
 16#include <linux/pagevec.h>
 17#include <linux/pagemap.h>
 18#include <linux/syscalls.h>
 19#include <linux/file.h>
 20#include <linux/mm_inline.h>
 
 
 
 21
 22#include "internal.h"
 23
 24/*
 25 * Initialise a struct file's readahead state.  Assumes that the caller has
 26 * memset *ra to zero.
 27 */
 28void
 29file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 30{
 31	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 32	ra->prev_pos = -1;
 33}
 34EXPORT_SYMBOL_GPL(file_ra_state_init);
 35
 36/*
 37 * see if a page needs releasing upon read_cache_pages() failure
 38 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 39 *   before calling, such as the NFS fs marking pages that are cached locally
 40 *   on disk, thus we need to give the fs a chance to clean up in the event of
 41 *   an error
 42 */
 43static void read_cache_pages_invalidate_page(struct address_space *mapping,
 44					     struct page *page)
 45{
 46	if (page_has_private(page)) {
 47		if (!trylock_page(page))
 48			BUG();
 49		page->mapping = mapping;
 50		do_invalidatepage(page, 0, PAGE_SIZE);
 51		page->mapping = NULL;
 52		unlock_page(page);
 53	}
 54	put_page(page);
 55}
 56
 57/*
 58 * release a list of pages, invalidating them first if need be
 59 */
 60static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 61					      struct list_head *pages)
 62{
 63	struct page *victim;
 64
 65	while (!list_empty(pages)) {
 66		victim = lru_to_page(pages);
 67		list_del(&victim->lru);
 68		read_cache_pages_invalidate_page(mapping, victim);
 69	}
 70}
 71
 72/**
 73 * read_cache_pages - populate an address space with some pages & start reads against them
 74 * @mapping: the address_space
 75 * @pages: The address of a list_head which contains the target pages.  These
 76 *   pages have their ->index populated and are otherwise uninitialised.
 77 * @filler: callback routine for filling a single page.
 78 * @data: private data for the callback routine.
 79 *
 80 * Hides the details of the LRU cache etc from the filesystems.
 
 
 81 */
 82int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 83			int (*filler)(void *, struct page *), void *data)
 84{
 85	struct page *page;
 86	int ret = 0;
 87
 88	while (!list_empty(pages)) {
 89		page = lru_to_page(pages);
 90		list_del(&page->lru);
 91		if (add_to_page_cache_lru(page, mapping, page->index,
 92				mapping_gfp_constraint(mapping, GFP_KERNEL))) {
 93			read_cache_pages_invalidate_page(mapping, page);
 94			continue;
 95		}
 96		put_page(page);
 97
 98		ret = filler(data, page);
 99		if (unlikely(ret)) {
100			read_cache_pages_invalidate_pages(mapping, pages);
101			break;
102		}
103		task_io_account_read(PAGE_SIZE);
104	}
105	return ret;
106}
107
108EXPORT_SYMBOL(read_cache_pages);
109
110static int read_pages(struct address_space *mapping, struct file *filp,
111		struct list_head *pages, unsigned nr_pages)
112{
 
 
113	struct blk_plug plug;
114	unsigned page_idx;
115	int ret;
 
116
117	blk_start_plug(&plug);
118
119	if (mapping->a_ops->readpages) {
120		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 
 
 
 
 
 
 
 
121		/* Clean up the remaining pages */
122		put_pages_list(pages);
123		goto out;
124	}
125
126	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
127		struct page *page = lru_to_page(pages);
128		list_del(&page->lru);
129		if (!add_to_page_cache_lru(page, mapping, page->index,
130				mapping_gfp_constraint(mapping, GFP_KERNEL))) {
131			mapping->a_ops->readpage(filp, page);
132		}
133		put_page(page);
134	}
135	ret = 0;
136
137out:
138	blk_finish_plug(&plug);
139
140	return ret;
 
 
 
 
 
141}
142
143/*
144 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
145 * the pages first, then submits them all for I/O. This avoids the very bad
146 * behaviour which would occur if page allocations are causing VM writeback.
147 * We really don't want to intermingle reads and writes like that.
 
 
 
 
 
148 *
149 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 
150 */
151int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
152			pgoff_t offset, unsigned long nr_to_read,
153			unsigned long lookahead_size)
154{
155	struct inode *inode = mapping->host;
156	struct page *page;
157	unsigned long end_index;	/* The last page we want to read */
158	LIST_HEAD(page_pool);
159	int page_idx;
160	int ret = 0;
161	loff_t isize = i_size_read(inode);
162
163	if (isize == 0)
164		goto out;
165
166	end_index = ((isize - 1) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
167
168	/*
169	 * Preallocate as many pages as we will need.
170	 */
171	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172		pgoff_t page_offset = offset + page_idx;
173
174		if (page_offset > end_index)
175			break;
176
177		rcu_read_lock();
178		page = radix_tree_lookup(&mapping->page_tree, page_offset);
179		rcu_read_unlock();
180		if (page && !radix_tree_exceptional_entry(page))
 
 
 
 
 
 
 
181			continue;
 
182
183		page = page_cache_alloc_readahead(mapping);
184		if (!page)
185			break;
186		page->index = page_offset;
187		list_add(&page->lru, &page_pool);
188		if (page_idx == nr_to_read - lookahead_size)
 
 
 
 
 
 
 
 
189			SetPageReadahead(page);
190		ret++;
191	}
192
193	/*
194	 * Now start the IO.  We ignore I/O errors - if the page is not
195	 * uptodate then the caller will launch readpage again, and
196	 * will then handle the error.
197	 */
198	if (ret)
199		read_pages(mapping, filp, &page_pool, ret);
200	BUG_ON(!list_empty(&page_pool));
201out:
202	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203}
204
205/*
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
208 */
209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210		pgoff_t offset, unsigned long nr_to_read)
211{
212	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
213		return -EINVAL;
 
 
214
215	nr_to_read = min(nr_to_read, inode_to_bdi(mapping->host)->ra_pages);
216	while (nr_to_read) {
217		int err;
218
 
 
 
 
 
 
 
 
219		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
220
221		if (this_chunk > nr_to_read)
222			this_chunk = nr_to_read;
223		err = __do_page_cache_readahead(mapping, filp,
224						offset, this_chunk, 0);
225		if (err < 0)
226			return err;
227
228		offset += this_chunk;
229		nr_to_read -= this_chunk;
230	}
231	return 0;
232}
233
234/*
235 * Set the initial window size, round to next power of 2 and square
236 * for small size, x 4 for medium, and x 2 for large
237 * for 128k (32 page) max ra
238 * 1-8 page = 32k initial, > 8 page = 128k initial
239 */
240static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
241{
242	unsigned long newsize = roundup_pow_of_two(size);
243
244	if (newsize <= max / 32)
245		newsize = newsize * 4;
246	else if (newsize <= max / 4)
247		newsize = newsize * 2;
248	else
249		newsize = max;
250
251	return newsize;
252}
253
254/*
255 *  Get the previous window size, ramp it up, and
256 *  return it as the new window size.
257 */
258static unsigned long get_next_ra_size(struct file_ra_state *ra,
259						unsigned long max)
260{
261	unsigned long cur = ra->size;
262	unsigned long newsize;
263
264	if (cur < max / 16)
265		newsize = 4 * cur;
266	else
267		newsize = 2 * cur;
268
269	return min(newsize, max);
270}
271
272/*
273 * On-demand readahead design.
274 *
275 * The fields in struct file_ra_state represent the most-recently-executed
276 * readahead attempt:
277 *
278 *                        |<----- async_size ---------|
279 *     |------------------- size -------------------->|
280 *     |==================#===========================|
281 *     ^start             ^page marked with PG_readahead
282 *
283 * To overlap application thinking time and disk I/O time, we do
284 * `readahead pipelining': Do not wait until the application consumed all
285 * readahead pages and stalled on the missing page at readahead_index;
286 * Instead, submit an asynchronous readahead I/O as soon as there are
287 * only async_size pages left in the readahead window. Normally async_size
288 * will be equal to size, for maximum pipelining.
289 *
290 * In interleaved sequential reads, concurrent streams on the same fd can
291 * be invalidating each other's readahead state. So we flag the new readahead
292 * page at (start+size-async_size) with PG_readahead, and use it as readahead
293 * indicator. The flag won't be set on already cached pages, to avoid the
294 * readahead-for-nothing fuss, saving pointless page cache lookups.
295 *
296 * prev_pos tracks the last visited byte in the _previous_ read request.
297 * It should be maintained by the caller, and will be used for detecting
298 * small random reads. Note that the readahead algorithm checks loosely
299 * for sequential patterns. Hence interleaved reads might be served as
300 * sequential ones.
301 *
302 * There is a special-case: if the first page which the application tries to
303 * read happens to be the first page of the file, it is assumed that a linear
304 * read is about to happen and the window is immediately set to the initial size
305 * based on I/O request size and the max_readahead.
306 *
307 * The code ramps up the readahead size aggressively at first, but slow down as
308 * it approaches max_readhead.
309 */
310
311/*
312 * Count contiguously cached pages from @offset-1 to @offset-@max,
313 * this count is a conservative estimation of
314 * 	- length of the sequential read sequence, or
315 * 	- thrashing threshold in memory tight systems
316 */
317static pgoff_t count_history_pages(struct address_space *mapping,
318				   pgoff_t offset, unsigned long max)
319{
320	pgoff_t head;
321
322	rcu_read_lock();
323	head = page_cache_prev_hole(mapping, offset - 1, max);
324	rcu_read_unlock();
325
326	return offset - 1 - head;
327}
328
329/*
330 * page cache context based read-ahead
331 */
332static int try_context_readahead(struct address_space *mapping,
333				 struct file_ra_state *ra,
334				 pgoff_t offset,
335				 unsigned long req_size,
336				 unsigned long max)
337{
338	pgoff_t size;
339
340	size = count_history_pages(mapping, offset, max);
341
342	/*
343	 * not enough history pages:
344	 * it could be a random read
345	 */
346	if (size <= req_size)
347		return 0;
348
349	/*
350	 * starts from beginning of file:
351	 * it is a strong indication of long-run stream (or whole-file-read)
352	 */
353	if (size >= offset)
354		size *= 2;
355
356	ra->start = offset;
357	ra->size = min(size + req_size, max);
358	ra->async_size = 1;
359
360	return 1;
361}
362
363/*
364 * A minimal readahead algorithm for trivial sequential/random reads.
365 */
366static unsigned long
367ondemand_readahead(struct address_space *mapping,
368		   struct file_ra_state *ra, struct file *filp,
369		   bool hit_readahead_marker, pgoff_t offset,
370		   unsigned long req_size)
371{
372	unsigned long max = ra->ra_pages;
373	pgoff_t prev_offset;
 
 
 
 
 
 
 
 
 
 
 
374
375	/*
376	 * start of file
377	 */
378	if (!offset)
379		goto initial_readahead;
380
381	/*
382	 * It's the expected callback offset, assume sequential access.
383	 * Ramp up sizes, and push forward the readahead window.
384	 */
385	if ((offset == (ra->start + ra->size - ra->async_size) ||
386	     offset == (ra->start + ra->size))) {
387		ra->start += ra->size;
388		ra->size = get_next_ra_size(ra, max);
389		ra->async_size = ra->size;
390		goto readit;
391	}
392
393	/*
394	 * Hit a marked page without valid readahead state.
395	 * E.g. interleaved reads.
396	 * Query the pagecache for async_size, which normally equals to
397	 * readahead size. Ramp it up and use it as the new readahead size.
398	 */
399	if (hit_readahead_marker) {
400		pgoff_t start;
401
402		rcu_read_lock();
403		start = page_cache_next_hole(mapping, offset + 1, max);
 
404		rcu_read_unlock();
405
406		if (!start || start - offset > max)
407			return 0;
408
409		ra->start = start;
410		ra->size = start - offset;	/* old async_size */
411		ra->size += req_size;
412		ra->size = get_next_ra_size(ra, max);
413		ra->async_size = ra->size;
414		goto readit;
415	}
416
417	/*
418	 * oversize read
419	 */
420	if (req_size > max)
421		goto initial_readahead;
422
423	/*
424	 * sequential cache miss
425	 * trivial case: (offset - prev_offset) == 1
426	 * unaligned reads: (offset - prev_offset) == 0
427	 */
428	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
429	if (offset - prev_offset <= 1UL)
430		goto initial_readahead;
431
432	/*
433	 * Query the page cache and look for the traces(cached history pages)
434	 * that a sequential stream would leave behind.
435	 */
436	if (try_context_readahead(mapping, ra, offset, req_size, max))
 
437		goto readit;
438
439	/*
440	 * standalone, small random read
441	 * Read as is, and do not pollute the readahead state.
442	 */
443	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 
444
445initial_readahead:
446	ra->start = offset;
447	ra->size = get_init_ra_size(req_size, max);
448	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
449
450readit:
451	/*
452	 * Will this read hit the readahead marker made by itself?
453	 * If so, trigger the readahead marker hit now, and merge
454	 * the resulted next readahead window into the current one.
 
455	 */
456	if (offset == ra->start && ra->size == ra->async_size) {
457		ra->async_size = get_next_ra_size(ra, max);
458		ra->size += ra->async_size;
 
 
 
 
 
 
459	}
460
461	return ra_submit(ra, mapping, filp);
 
462}
463
464/**
465 * page_cache_sync_readahead - generic file readahead
466 * @mapping: address_space which holds the pagecache and I/O vectors
467 * @ra: file_ra_state which holds the readahead state
468 * @filp: passed on to ->readpage() and ->readpages()
469 * @offset: start offset into @mapping, in pagecache page-sized units
470 * @req_size: hint: total size of the read which the caller is performing in
471 *            pagecache pages
472 *
473 * page_cache_sync_readahead() should be called when a cache miss happened:
474 * it will submit the read.  The readahead logic may decide to piggyback more
475 * pages onto the read request if access patterns suggest it will improve
476 * performance.
477 */
478void page_cache_sync_readahead(struct address_space *mapping,
479			       struct file_ra_state *ra, struct file *filp,
480			       pgoff_t offset, unsigned long req_size)
481{
482	/* no read-ahead */
483	if (!ra->ra_pages)
484		return;
 
 
 
 
 
 
 
 
 
 
 
485
486	/* be dumb */
487	if (filp && (filp->f_mode & FMODE_RANDOM)) {
488		force_page_cache_readahead(mapping, filp, offset, req_size);
489		return;
490	}
491
492	/* do read-ahead */
493	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
494}
495EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
496
497/**
498 * page_cache_async_readahead - file readahead for marked pages
499 * @mapping: address_space which holds the pagecache and I/O vectors
500 * @ra: file_ra_state which holds the readahead state
501 * @filp: passed on to ->readpage() and ->readpages()
502 * @page: the page at @offset which has the PG_readahead flag set
503 * @offset: start offset into @mapping, in pagecache page-sized units
504 * @req_size: hint: total size of the read which the caller is performing in
505 *            pagecache pages
506 *
507 * page_cache_async_readahead() should be called when a page is used which
508 * has the PG_readahead flag; this is a marker to suggest that the application
509 * has used up enough of the readahead window that we should start pulling in
510 * more pages.
511 */
512void
513page_cache_async_readahead(struct address_space *mapping,
514			   struct file_ra_state *ra, struct file *filp,
515			   struct page *page, pgoff_t offset,
516			   unsigned long req_size)
517{
518	/* no read-ahead */
519	if (!ra->ra_pages)
520		return;
521
522	/*
523	 * Same bit is used for PG_readahead and PG_reclaim.
524	 */
525	if (PageWriteback(page))
526		return;
527
528	ClearPageReadahead(page);
529
530	/*
531	 * Defer asynchronous read-ahead on IO congestion.
532	 */
533	if (inode_read_congested(mapping->host))
 
 
 
534		return;
535
536	/* do read-ahead */
537	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
538}
539EXPORT_SYMBOL_GPL(page_cache_async_readahead);
540
541static ssize_t
542do_readahead(struct address_space *mapping, struct file *filp,
543	     pgoff_t index, unsigned long nr)
544{
545	if (!mapping || !mapping->a_ops)
546		return -EINVAL;
547
548	return force_page_cache_readahead(mapping, filp, index, nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549}
550
551SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
552{
553	ssize_t ret;
554	struct fd f;
555
556	ret = -EBADF;
557	f = fdget(fd);
558	if (f.file) {
559		if (f.file->f_mode & FMODE_READ) {
560			struct address_space *mapping = f.file->f_mapping;
561			pgoff_t start = offset >> PAGE_SHIFT;
562			pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
563			unsigned long len = end - start + 1;
564			ret = do_readahead(mapping, f.file, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565		}
566		fdput(f);
567	}
568	return ret;
569}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/readahead.c - address_space-level file readahead.
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 09Apr2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/export.h>
 15#include <linux/blkdev.h>
 16#include <linux/backing-dev.h>
 17#include <linux/task_io_accounting_ops.h>
 18#include <linux/pagevec.h>
 19#include <linux/pagemap.h>
 20#include <linux/syscalls.h>
 21#include <linux/file.h>
 22#include <linux/mm_inline.h>
 23#include <linux/blk-cgroup.h>
 24#include <linux/fadvise.h>
 25#include <linux/sched/mm.h>
 26
 27#include "internal.h"
 28
 29/*
 30 * Initialise a struct file's readahead state.  Assumes that the caller has
 31 * memset *ra to zero.
 32 */
 33void
 34file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 35{
 36	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 37	ra->prev_pos = -1;
 38}
 39EXPORT_SYMBOL_GPL(file_ra_state_init);
 40
 41/*
 42 * see if a page needs releasing upon read_cache_pages() failure
 43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 44 *   before calling, such as the NFS fs marking pages that are cached locally
 45 *   on disk, thus we need to give the fs a chance to clean up in the event of
 46 *   an error
 47 */
 48static void read_cache_pages_invalidate_page(struct address_space *mapping,
 49					     struct page *page)
 50{
 51	if (page_has_private(page)) {
 52		if (!trylock_page(page))
 53			BUG();
 54		page->mapping = mapping;
 55		do_invalidatepage(page, 0, PAGE_SIZE);
 56		page->mapping = NULL;
 57		unlock_page(page);
 58	}
 59	put_page(page);
 60}
 61
 62/*
 63 * release a list of pages, invalidating them first if need be
 64 */
 65static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 66					      struct list_head *pages)
 67{
 68	struct page *victim;
 69
 70	while (!list_empty(pages)) {
 71		victim = lru_to_page(pages);
 72		list_del(&victim->lru);
 73		read_cache_pages_invalidate_page(mapping, victim);
 74	}
 75}
 76
 77/**
 78 * read_cache_pages - populate an address space with some pages & start reads against them
 79 * @mapping: the address_space
 80 * @pages: The address of a list_head which contains the target pages.  These
 81 *   pages have their ->index populated and are otherwise uninitialised.
 82 * @filler: callback routine for filling a single page.
 83 * @data: private data for the callback routine.
 84 *
 85 * Hides the details of the LRU cache etc from the filesystems.
 86 *
 87 * Returns: %0 on success, error return by @filler otherwise
 88 */
 89int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 90			int (*filler)(void *, struct page *), void *data)
 91{
 92	struct page *page;
 93	int ret = 0;
 94
 95	while (!list_empty(pages)) {
 96		page = lru_to_page(pages);
 97		list_del(&page->lru);
 98		if (add_to_page_cache_lru(page, mapping, page->index,
 99				readahead_gfp_mask(mapping))) {
100			read_cache_pages_invalidate_page(mapping, page);
101			continue;
102		}
103		put_page(page);
104
105		ret = filler(data, page);
106		if (unlikely(ret)) {
107			read_cache_pages_invalidate_pages(mapping, pages);
108			break;
109		}
110		task_io_account_read(PAGE_SIZE);
111	}
112	return ret;
113}
114
115EXPORT_SYMBOL(read_cache_pages);
116
117static void read_pages(struct readahead_control *rac, struct list_head *pages,
118		bool skip_page)
119{
120	const struct address_space_operations *aops = rac->mapping->a_ops;
121	struct page *page;
122	struct blk_plug plug;
123
124	if (!readahead_count(rac))
125		goto out;
126
127	blk_start_plug(&plug);
128
129	if (aops->readahead) {
130		aops->readahead(rac);
131		/* Clean up the remaining pages */
132		while ((page = readahead_page(rac))) {
133			unlock_page(page);
134			put_page(page);
135		}
136	} else if (aops->readpages) {
137		aops->readpages(rac->file, rac->mapping, pages,
138				readahead_count(rac));
139		/* Clean up the remaining pages */
140		put_pages_list(pages);
141		rac->_index += rac->_nr_pages;
142		rac->_nr_pages = 0;
143	} else {
144		while ((page = readahead_page(rac))) {
145			aops->readpage(rac->file, page);
146			put_page(page);
 
 
 
147		}
 
148	}
 
149
 
150	blk_finish_plug(&plug);
151
152	BUG_ON(!list_empty(pages));
153	BUG_ON(readahead_count(rac));
154
155out:
156	if (skip_page)
157		rac->_index++;
158}
159
160/**
161 * page_cache_ra_unbounded - Start unchecked readahead.
162 * @ractl: Readahead control.
163 * @nr_to_read: The number of pages to read.
164 * @lookahead_size: Where to start the next readahead.
165 *
166 * This function is for filesystems to call when they want to start
167 * readahead beyond a file's stated i_size.  This is almost certainly
168 * not the function you want to call.  Use page_cache_async_readahead()
169 * or page_cache_sync_readahead() instead.
170 *
171 * Context: File is referenced by caller.  Mutexes may be held by caller.
172 * May sleep, but will not reenter filesystem to reclaim memory.
173 */
174void page_cache_ra_unbounded(struct readahead_control *ractl,
175		unsigned long nr_to_read, unsigned long lookahead_size)
 
176{
177	struct address_space *mapping = ractl->mapping;
178	unsigned long index = readahead_index(ractl);
 
179	LIST_HEAD(page_pool);
180	gfp_t gfp_mask = readahead_gfp_mask(mapping);
181	unsigned long i;
 
 
 
 
182
183	/*
184	 * Partway through the readahead operation, we will have added
185	 * locked pages to the page cache, but will not yet have submitted
186	 * them for I/O.  Adding another page may need to allocate memory,
187	 * which can trigger memory reclaim.  Telling the VM we're in
188	 * the middle of a filesystem operation will cause it to not
189	 * touch file-backed pages, preventing a deadlock.  Most (all?)
190	 * filesystems already specify __GFP_NOFS in their mapping's
191	 * gfp_mask, but let's be explicit here.
192	 */
193	unsigned int nofs = memalloc_nofs_save();
194
195	/*
196	 * Preallocate as many pages as we will need.
197	 */
198	for (i = 0; i < nr_to_read; i++) {
199		struct page *page = xa_load(&mapping->i_pages, index + i);
 
 
 
200
201		if (page && !xa_is_value(page)) {
202			/*
203			 * Page already present?  Kick off the current batch
204			 * of contiguous pages before continuing with the
205			 * next batch.  This page may be the one we would
206			 * have intended to mark as Readahead, but we don't
207			 * have a stable reference to this page, and it's
208			 * not worth getting one just for that.
209			 */
210			read_pages(ractl, &page_pool, true);
211			i = ractl->_index + ractl->_nr_pages - index - 1;
212			continue;
213		}
214
215		page = __page_cache_alloc(gfp_mask);
216		if (!page)
217			break;
218		if (mapping->a_ops->readpages) {
219			page->index = index + i;
220			list_add(&page->lru, &page_pool);
221		} else if (add_to_page_cache_lru(page, mapping, index + i,
222					gfp_mask) < 0) {
223			put_page(page);
224			read_pages(ractl, &page_pool, true);
225			i = ractl->_index + ractl->_nr_pages - index - 1;
226			continue;
227		}
228		if (i == nr_to_read - lookahead_size)
229			SetPageReadahead(page);
230		ractl->_nr_pages++;
231	}
232
233	/*
234	 * Now start the IO.  We ignore I/O errors - if the page is not
235	 * uptodate then the caller will launch readpage again, and
236	 * will then handle the error.
237	 */
238	read_pages(ractl, &page_pool, false);
239	memalloc_nofs_restore(nofs);
240}
241EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
242
243/*
244 * do_page_cache_ra() actually reads a chunk of disk.  It allocates
245 * the pages first, then submits them for I/O. This avoids the very bad
246 * behaviour which would occur if page allocations are causing VM writeback.
247 * We really don't want to intermingle reads and writes like that.
248 */
249void do_page_cache_ra(struct readahead_control *ractl,
250		unsigned long nr_to_read, unsigned long lookahead_size)
251{
252	struct inode *inode = ractl->mapping->host;
253	unsigned long index = readahead_index(ractl);
254	loff_t isize = i_size_read(inode);
255	pgoff_t end_index;	/* The last page we want to read */
256
257	if (isize == 0)
258		return;
259
260	end_index = (isize - 1) >> PAGE_SHIFT;
261	if (index > end_index)
262		return;
263	/* Don't read past the page containing the last byte of the file */
264	if (nr_to_read > end_index - index)
265		nr_to_read = end_index - index + 1;
266
267	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
268}
269
270/*
271 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
272 * memory at once.
273 */
274void force_page_cache_ra(struct readahead_control *ractl,
275		unsigned long nr_to_read)
276{
277	struct address_space *mapping = ractl->mapping;
278	struct file_ra_state *ra = ractl->ra;
279	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
280	unsigned long max_pages, index;
281
282	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
283			!mapping->a_ops->readahead))
284		return;
285
286	/*
287	 * If the request exceeds the readahead window, allow the read to
288	 * be up to the optimal hardware IO size
289	 */
290	index = readahead_index(ractl);
291	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
292	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
293	while (nr_to_read) {
294		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
295
296		if (this_chunk > nr_to_read)
297			this_chunk = nr_to_read;
298		ractl->_index = index;
299		do_page_cache_ra(ractl, this_chunk, 0);
 
 
300
301		index += this_chunk;
302		nr_to_read -= this_chunk;
303	}
 
304}
305
306/*
307 * Set the initial window size, round to next power of 2 and square
308 * for small size, x 4 for medium, and x 2 for large
309 * for 128k (32 page) max ra
310 * 1-8 page = 32k initial, > 8 page = 128k initial
311 */
312static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
313{
314	unsigned long newsize = roundup_pow_of_two(size);
315
316	if (newsize <= max / 32)
317		newsize = newsize * 4;
318	else if (newsize <= max / 4)
319		newsize = newsize * 2;
320	else
321		newsize = max;
322
323	return newsize;
324}
325
326/*
327 *  Get the previous window size, ramp it up, and
328 *  return it as the new window size.
329 */
330static unsigned long get_next_ra_size(struct file_ra_state *ra,
331				      unsigned long max)
332{
333	unsigned long cur = ra->size;
 
334
335	if (cur < max / 16)
336		return 4 * cur;
337	if (cur <= max / 2)
338		return 2 * cur;
339	return max;
 
340}
341
342/*
343 * On-demand readahead design.
344 *
345 * The fields in struct file_ra_state represent the most-recently-executed
346 * readahead attempt:
347 *
348 *                        |<----- async_size ---------|
349 *     |------------------- size -------------------->|
350 *     |==================#===========================|
351 *     ^start             ^page marked with PG_readahead
352 *
353 * To overlap application thinking time and disk I/O time, we do
354 * `readahead pipelining': Do not wait until the application consumed all
355 * readahead pages and stalled on the missing page at readahead_index;
356 * Instead, submit an asynchronous readahead I/O as soon as there are
357 * only async_size pages left in the readahead window. Normally async_size
358 * will be equal to size, for maximum pipelining.
359 *
360 * In interleaved sequential reads, concurrent streams on the same fd can
361 * be invalidating each other's readahead state. So we flag the new readahead
362 * page at (start+size-async_size) with PG_readahead, and use it as readahead
363 * indicator. The flag won't be set on already cached pages, to avoid the
364 * readahead-for-nothing fuss, saving pointless page cache lookups.
365 *
366 * prev_pos tracks the last visited byte in the _previous_ read request.
367 * It should be maintained by the caller, and will be used for detecting
368 * small random reads. Note that the readahead algorithm checks loosely
369 * for sequential patterns. Hence interleaved reads might be served as
370 * sequential ones.
371 *
372 * There is a special-case: if the first page which the application tries to
373 * read happens to be the first page of the file, it is assumed that a linear
374 * read is about to happen and the window is immediately set to the initial size
375 * based on I/O request size and the max_readahead.
376 *
377 * The code ramps up the readahead size aggressively at first, but slow down as
378 * it approaches max_readhead.
379 */
380
381/*
382 * Count contiguously cached pages from @index-1 to @index-@max,
383 * this count is a conservative estimation of
384 * 	- length of the sequential read sequence, or
385 * 	- thrashing threshold in memory tight systems
386 */
387static pgoff_t count_history_pages(struct address_space *mapping,
388				   pgoff_t index, unsigned long max)
389{
390	pgoff_t head;
391
392	rcu_read_lock();
393	head = page_cache_prev_miss(mapping, index - 1, max);
394	rcu_read_unlock();
395
396	return index - 1 - head;
397}
398
399/*
400 * page cache context based read-ahead
401 */
402static int try_context_readahead(struct address_space *mapping,
403				 struct file_ra_state *ra,
404				 pgoff_t index,
405				 unsigned long req_size,
406				 unsigned long max)
407{
408	pgoff_t size;
409
410	size = count_history_pages(mapping, index, max);
411
412	/*
413	 * not enough history pages:
414	 * it could be a random read
415	 */
416	if (size <= req_size)
417		return 0;
418
419	/*
420	 * starts from beginning of file:
421	 * it is a strong indication of long-run stream (or whole-file-read)
422	 */
423	if (size >= index)
424		size *= 2;
425
426	ra->start = index;
427	ra->size = min(size + req_size, max);
428	ra->async_size = 1;
429
430	return 1;
431}
432
433/*
434 * A minimal readahead algorithm for trivial sequential/random reads.
435 */
436static void ondemand_readahead(struct readahead_control *ractl,
437		bool hit_readahead_marker, unsigned long req_size)
 
 
 
438{
439	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
440	struct file_ra_state *ra = ractl->ra;
441	unsigned long max_pages = ra->ra_pages;
442	unsigned long add_pages;
443	unsigned long index = readahead_index(ractl);
444	pgoff_t prev_index;
445
446	/*
447	 * If the request exceeds the readahead window, allow the read to
448	 * be up to the optimal hardware IO size
449	 */
450	if (req_size > max_pages && bdi->io_pages > max_pages)
451		max_pages = min(req_size, bdi->io_pages);
452
453	/*
454	 * start of file
455	 */
456	if (!index)
457		goto initial_readahead;
458
459	/*
460	 * It's the expected callback index, assume sequential access.
461	 * Ramp up sizes, and push forward the readahead window.
462	 */
463	if ((index == (ra->start + ra->size - ra->async_size) ||
464	     index == (ra->start + ra->size))) {
465		ra->start += ra->size;
466		ra->size = get_next_ra_size(ra, max_pages);
467		ra->async_size = ra->size;
468		goto readit;
469	}
470
471	/*
472	 * Hit a marked page without valid readahead state.
473	 * E.g. interleaved reads.
474	 * Query the pagecache for async_size, which normally equals to
475	 * readahead size. Ramp it up and use it as the new readahead size.
476	 */
477	if (hit_readahead_marker) {
478		pgoff_t start;
479
480		rcu_read_lock();
481		start = page_cache_next_miss(ractl->mapping, index + 1,
482				max_pages);
483		rcu_read_unlock();
484
485		if (!start || start - index > max_pages)
486			return;
487
488		ra->start = start;
489		ra->size = start - index;	/* old async_size */
490		ra->size += req_size;
491		ra->size = get_next_ra_size(ra, max_pages);
492		ra->async_size = ra->size;
493		goto readit;
494	}
495
496	/*
497	 * oversize read
498	 */
499	if (req_size > max_pages)
500		goto initial_readahead;
501
502	/*
503	 * sequential cache miss
504	 * trivial case: (index - prev_index) == 1
505	 * unaligned reads: (index - prev_index) == 0
506	 */
507	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
508	if (index - prev_index <= 1UL)
509		goto initial_readahead;
510
511	/*
512	 * Query the page cache and look for the traces(cached history pages)
513	 * that a sequential stream would leave behind.
514	 */
515	if (try_context_readahead(ractl->mapping, ra, index, req_size,
516			max_pages))
517		goto readit;
518
519	/*
520	 * standalone, small random read
521	 * Read as is, and do not pollute the readahead state.
522	 */
523	do_page_cache_ra(ractl, req_size, 0);
524	return;
525
526initial_readahead:
527	ra->start = index;
528	ra->size = get_init_ra_size(req_size, max_pages);
529	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
530
531readit:
532	/*
533	 * Will this read hit the readahead marker made by itself?
534	 * If so, trigger the readahead marker hit now, and merge
535	 * the resulted next readahead window into the current one.
536	 * Take care of maximum IO pages as above.
537	 */
538	if (index == ra->start && ra->size == ra->async_size) {
539		add_pages = get_next_ra_size(ra, max_pages);
540		if (ra->size + add_pages <= max_pages) {
541			ra->async_size = add_pages;
542			ra->size += add_pages;
543		} else {
544			ra->size = max_pages;
545			ra->async_size = max_pages >> 1;
546		}
547	}
548
549	ractl->_index = ra->start;
550	do_page_cache_ra(ractl, ra->size, ra->async_size);
551}
552
553void page_cache_sync_ra(struct readahead_control *ractl,
554		unsigned long req_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555{
556	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
557
558	/*
559	 * Even if read-ahead is disabled, issue this request as read-ahead
560	 * as we'll need it to satisfy the requested range. The forced
561	 * read-ahead will do the right thing and limit the read to just the
562	 * requested range, which we'll set to 1 page for this case.
563	 */
564	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
565		if (!ractl->file)
566			return;
567		req_count = 1;
568		do_forced_ra = true;
569	}
570
571	/* be dumb */
572	if (do_forced_ra) {
573		force_page_cache_ra(ractl, req_count);
574		return;
575	}
576
577	/* do read-ahead */
578	ondemand_readahead(ractl, false, req_count);
579}
580EXPORT_SYMBOL_GPL(page_cache_sync_ra);
581
582void page_cache_async_ra(struct readahead_control *ractl,
583		struct page *page, unsigned long req_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584{
585	/* no read-ahead */
586	if (!ractl->ra->ra_pages)
587		return;
588
589	/*
590	 * Same bit is used for PG_readahead and PG_reclaim.
591	 */
592	if (PageWriteback(page))
593		return;
594
595	ClearPageReadahead(page);
596
597	/*
598	 * Defer asynchronous read-ahead on IO congestion.
599	 */
600	if (inode_read_congested(ractl->mapping->host))
601		return;
602
603	if (blk_cgroup_congested())
604		return;
605
606	/* do read-ahead */
607	ondemand_readahead(ractl, true, req_count);
608}
609EXPORT_SYMBOL_GPL(page_cache_async_ra);
610
611ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
 
 
612{
613	ssize_t ret;
614	struct fd f;
615
616	ret = -EBADF;
617	f = fdget(fd);
618	if (!f.file || !(f.file->f_mode & FMODE_READ))
619		goto out;
620
621	/*
622	 * The readahead() syscall is intended to run only on files
623	 * that can execute readahead. If readahead is not possible
624	 * on this file, then we must return -EINVAL.
625	 */
626	ret = -EINVAL;
627	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
628	    !S_ISREG(file_inode(f.file)->i_mode))
629		goto out;
630
631	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
632out:
633	fdput(f);
634	return ret;
635}
636
637SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
638{
639	return ksys_readahead(fd, offset, count);
640}
641
642/**
643 * readahead_expand - Expand a readahead request
644 * @ractl: The request to be expanded
645 * @new_start: The revised start
646 * @new_len: The revised size of the request
647 *
648 * Attempt to expand a readahead request outwards from the current size to the
649 * specified size by inserting locked pages before and after the current window
650 * to increase the size to the new window.  This may involve the insertion of
651 * THPs, in which case the window may get expanded even beyond what was
652 * requested.
653 *
654 * The algorithm will stop if it encounters a conflicting page already in the
655 * pagecache and leave a smaller expansion than requested.
656 *
657 * The caller must check for this by examining the revised @ractl object for a
658 * different expansion than was requested.
659 */
660void readahead_expand(struct readahead_control *ractl,
661		      loff_t new_start, size_t new_len)
662{
663	struct address_space *mapping = ractl->mapping;
664	struct file_ra_state *ra = ractl->ra;
665	pgoff_t new_index, new_nr_pages;
666	gfp_t gfp_mask = readahead_gfp_mask(mapping);
667
668	new_index = new_start / PAGE_SIZE;
669
670	/* Expand the leading edge downwards */
671	while (ractl->_index > new_index) {
672		unsigned long index = ractl->_index - 1;
673		struct page *page = xa_load(&mapping->i_pages, index);
674
675		if (page && !xa_is_value(page))
676			return; /* Page apparently present */
677
678		page = __page_cache_alloc(gfp_mask);
679		if (!page)
680			return;
681		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
682			put_page(page);
683			return;
684		}
685
686		ractl->_nr_pages++;
687		ractl->_index = page->index;
688	}
689
690	new_len += new_start - readahead_pos(ractl);
691	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
692
693	/* Expand the trailing edge upwards */
694	while (ractl->_nr_pages < new_nr_pages) {
695		unsigned long index = ractl->_index + ractl->_nr_pages;
696		struct page *page = xa_load(&mapping->i_pages, index);
697
698		if (page && !xa_is_value(page))
699			return; /* Page apparently present */
700
701		page = __page_cache_alloc(gfp_mask);
702		if (!page)
703			return;
704		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
705			put_page(page);
706			return;
707		}
708		ractl->_nr_pages++;
709		if (ra) {
710			ra->size++;
711			ra->async_size++;
712		}
 
713	}
 
714}
715EXPORT_SYMBOL(readahead_expand);