Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
  20#include <linux/profile.h>
  21#include <linux/sched.h>
  22#include <linux/module.h>
  23#include <linux/irq_work.h>
  24#include <linux/posix-timers.h>
  25#include <linux/context_tracking.h>
  26
  27#include <asm/irq_regs.h>
  28
  29#include "tick-internal.h"
  30
  31#include <trace/events/timer.h>
  32
  33/*
  34 * Per cpu nohz control structure
  35 */
  36static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  37
 
 
 
 
 
  38struct tick_sched *tick_get_tick_sched(int cpu)
  39{
  40	return &per_cpu(tick_cpu_sched, cpu);
  41}
  42
  43#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  44/*
  45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  46 */
  47static ktime_t last_jiffies_update;
  48
  49/*
  50 * Must be called with interrupts disabled !
  51 */
  52static void tick_do_update_jiffies64(ktime_t now)
  53{
  54	unsigned long ticks = 0;
  55	ktime_t delta;
  56
  57	/*
  58	 * Do a quick check without holding jiffies_lock:
  59	 */
  60	delta = ktime_sub(now, last_jiffies_update);
  61	if (delta.tv64 < tick_period.tv64)
  62		return;
  63
  64	/* Reevalute with jiffies_lock held */
  65	write_seqlock(&jiffies_lock);
  66
  67	delta = ktime_sub(now, last_jiffies_update);
  68	if (delta.tv64 >= tick_period.tv64) {
  69
  70		delta = ktime_sub(delta, tick_period);
  71		last_jiffies_update = ktime_add(last_jiffies_update,
  72						tick_period);
  73
  74		/* Slow path for long timeouts */
  75		if (unlikely(delta.tv64 >= tick_period.tv64)) {
  76			s64 incr = ktime_to_ns(tick_period);
  77
  78			ticks = ktime_divns(delta, incr);
  79
  80			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  81							   incr * ticks);
  82		}
  83		do_timer(++ticks);
  84
  85		/* Keep the tick_next_period variable up to date */
  86		tick_next_period = ktime_add(last_jiffies_update, tick_period);
  87	} else {
  88		write_sequnlock(&jiffies_lock);
  89		return;
  90	}
  91	write_sequnlock(&jiffies_lock);
  92	update_wall_time();
  93}
  94
  95/*
  96 * Initialize and return retrieve the jiffies update.
  97 */
  98static ktime_t tick_init_jiffy_update(void)
  99{
 100	ktime_t period;
 101
 102	write_seqlock(&jiffies_lock);
 103	/* Did we start the jiffies update yet ? */
 104	if (last_jiffies_update.tv64 == 0)
 105		last_jiffies_update = tick_next_period;
 106	period = last_jiffies_update;
 107	write_sequnlock(&jiffies_lock);
 108	return period;
 109}
 110
 111
 112static void tick_sched_do_timer(ktime_t now)
 113{
 114	int cpu = smp_processor_id();
 115
 116#ifdef CONFIG_NO_HZ_COMMON
 117	/*
 118	 * Check if the do_timer duty was dropped. We don't care about
 119	 * concurrency: This happens only when the cpu in charge went
 120	 * into a long sleep. If two cpus happen to assign themself to
 121	 * this duty, then the jiffies update is still serialized by
 122	 * jiffies_lock.
 123	 */
 124	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 125	    && !tick_nohz_full_cpu(cpu))
 126		tick_do_timer_cpu = cpu;
 127#endif
 128
 129	/* Check, if the jiffies need an update */
 130	if (tick_do_timer_cpu == cpu)
 131		tick_do_update_jiffies64(now);
 132}
 133
 134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 135{
 136#ifdef CONFIG_NO_HZ_COMMON
 137	/*
 138	 * When we are idle and the tick is stopped, we have to touch
 139	 * the watchdog as we might not schedule for a really long
 140	 * time. This happens on complete idle SMP systems while
 141	 * waiting on the login prompt. We also increment the "start of
 142	 * idle" jiffy stamp so the idle accounting adjustment we do
 143	 * when we go busy again does not account too much ticks.
 144	 */
 145	if (ts->tick_stopped) {
 146		touch_softlockup_watchdog_sched();
 147		if (is_idle_task(current))
 148			ts->idle_jiffies++;
 149	}
 150#endif
 151	update_process_times(user_mode(regs));
 152	profile_tick(CPU_PROFILING);
 153}
 154#endif
 155
 156#ifdef CONFIG_NO_HZ_FULL
 157cpumask_var_t tick_nohz_full_mask;
 158cpumask_var_t housekeeping_mask;
 159bool tick_nohz_full_running;
 160static atomic_t tick_dep_mask;
 161
 162static bool check_tick_dependency(atomic_t *dep)
 163{
 164	int val = atomic_read(dep);
 165
 166	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 167		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 168		return true;
 169	}
 170
 171	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 172		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 173		return true;
 174	}
 175
 176	if (val & TICK_DEP_MASK_SCHED) {
 177		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 178		return true;
 179	}
 180
 181	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 182		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 183		return true;
 184	}
 185
 186	return false;
 187}
 188
 189static bool can_stop_full_tick(struct tick_sched *ts)
 190{
 191	WARN_ON_ONCE(!irqs_disabled());
 192
 193	if (check_tick_dependency(&tick_dep_mask))
 194		return false;
 195
 196	if (check_tick_dependency(&ts->tick_dep_mask))
 197		return false;
 198
 199	if (check_tick_dependency(&current->tick_dep_mask))
 200		return false;
 201
 202	if (check_tick_dependency(&current->signal->tick_dep_mask))
 203		return false;
 204
 205	return true;
 206}
 207
 208static void nohz_full_kick_func(struct irq_work *work)
 209{
 210	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 211}
 212
 213static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 214	.func = nohz_full_kick_func,
 215};
 216
 217/*
 218 * Kick this CPU if it's full dynticks in order to force it to
 219 * re-evaluate its dependency on the tick and restart it if necessary.
 220 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 221 * is NMI safe.
 222 */
 223static void tick_nohz_full_kick(void)
 224{
 225	if (!tick_nohz_full_cpu(smp_processor_id()))
 226		return;
 227
 228	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 229}
 230
 231/*
 232 * Kick the CPU if it's full dynticks in order to force it to
 233 * re-evaluate its dependency on the tick and restart it if necessary.
 234 */
 235void tick_nohz_full_kick_cpu(int cpu)
 236{
 237	if (!tick_nohz_full_cpu(cpu))
 238		return;
 239
 240	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 241}
 242
 243/*
 244 * Kick all full dynticks CPUs in order to force these to re-evaluate
 245 * their dependency on the tick and restart it if necessary.
 246 */
 247static void tick_nohz_full_kick_all(void)
 248{
 249	int cpu;
 250
 251	if (!tick_nohz_full_running)
 252		return;
 253
 254	preempt_disable();
 255	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 256		tick_nohz_full_kick_cpu(cpu);
 257	preempt_enable();
 258}
 259
 260static void tick_nohz_dep_set_all(atomic_t *dep,
 261				  enum tick_dep_bits bit)
 262{
 263	int prev;
 264
 265	prev = atomic_fetch_or(dep, BIT(bit));
 266	if (!prev)
 267		tick_nohz_full_kick_all();
 268}
 269
 270/*
 271 * Set a global tick dependency. Used by perf events that rely on freq and
 272 * by unstable clock.
 273 */
 274void tick_nohz_dep_set(enum tick_dep_bits bit)
 275{
 276	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 277}
 278
 279void tick_nohz_dep_clear(enum tick_dep_bits bit)
 280{
 281	atomic_andnot(BIT(bit), &tick_dep_mask);
 282}
 283
 284/*
 285 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 286 * manage events throttling.
 287 */
 288void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 289{
 290	int prev;
 291	struct tick_sched *ts;
 292
 293	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 294
 295	prev = atomic_fetch_or(&ts->tick_dep_mask, BIT(bit));
 296	if (!prev) {
 297		preempt_disable();
 298		/* Perf needs local kick that is NMI safe */
 299		if (cpu == smp_processor_id()) {
 300			tick_nohz_full_kick();
 301		} else {
 302			/* Remote irq work not NMI-safe */
 303			if (!WARN_ON_ONCE(in_nmi()))
 304				tick_nohz_full_kick_cpu(cpu);
 305		}
 306		preempt_enable();
 307	}
 308}
 309
 310void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 311{
 312	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 313
 314	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 315}
 316
 317/*
 318 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 319 * per task timers.
 320 */
 321void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 322{
 323	/*
 324	 * We could optimize this with just kicking the target running the task
 325	 * if that noise matters for nohz full users.
 326	 */
 327	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 328}
 329
 330void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 331{
 332	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 333}
 334
 335/*
 336 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 337 * per process timers.
 338 */
 339void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 340{
 341	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 342}
 343
 344void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 345{
 346	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 347}
 348
 349/*
 350 * Re-evaluate the need for the tick as we switch the current task.
 351 * It might need the tick due to per task/process properties:
 352 * perf events, posix cpu timers, ...
 353 */
 354void __tick_nohz_task_switch(void)
 355{
 356	unsigned long flags;
 357	struct tick_sched *ts;
 358
 359	local_irq_save(flags);
 360
 361	if (!tick_nohz_full_cpu(smp_processor_id()))
 362		goto out;
 363
 364	ts = this_cpu_ptr(&tick_cpu_sched);
 365
 366	if (ts->tick_stopped) {
 367		if (atomic_read(&current->tick_dep_mask) ||
 368		    atomic_read(&current->signal->tick_dep_mask))
 369			tick_nohz_full_kick();
 370	}
 371out:
 372	local_irq_restore(flags);
 373}
 374
 375/* Parse the boot-time nohz CPU list from the kernel parameters. */
 376static int __init tick_nohz_full_setup(char *str)
 377{
 378	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 379	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
 380		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
 381		free_bootmem_cpumask_var(tick_nohz_full_mask);
 382		return 1;
 383	}
 384	tick_nohz_full_running = true;
 385
 386	return 1;
 387}
 388__setup("nohz_full=", tick_nohz_full_setup);
 389
 390static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
 391				       unsigned long action,
 392				       void *hcpu)
 393{
 394	unsigned int cpu = (unsigned long)hcpu;
 395
 396	switch (action & ~CPU_TASKS_FROZEN) {
 397	case CPU_DOWN_PREPARE:
 398		/*
 399		 * The boot CPU handles housekeeping duty (unbound timers,
 400		 * workqueues, timekeeping, ...) on behalf of full dynticks
 401		 * CPUs. It must remain online when nohz full is enabled.
 402		 */
 403		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 404			return NOTIFY_BAD;
 405		break;
 406	}
 407	return NOTIFY_OK;
 408}
 409
 410static int tick_nohz_init_all(void)
 411{
 412	int err = -1;
 413
 414#ifdef CONFIG_NO_HZ_FULL_ALL
 415	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
 416		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
 417		return err;
 418	}
 419	err = 0;
 420	cpumask_setall(tick_nohz_full_mask);
 421	tick_nohz_full_running = true;
 422#endif
 423	return err;
 424}
 425
 426void __init tick_nohz_init(void)
 427{
 428	int cpu;
 429
 430	if (!tick_nohz_full_running) {
 431		if (tick_nohz_init_all() < 0)
 432			return;
 433	}
 434
 435	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
 436		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
 437		cpumask_clear(tick_nohz_full_mask);
 438		tick_nohz_full_running = false;
 439		return;
 440	}
 441
 442	/*
 443	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 444	 * locking contexts. But then we need irq work to raise its own
 445	 * interrupts to avoid circular dependency on the tick
 446	 */
 447	if (!arch_irq_work_has_interrupt()) {
 448		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 449		cpumask_clear(tick_nohz_full_mask);
 450		cpumask_copy(housekeeping_mask, cpu_possible_mask);
 451		tick_nohz_full_running = false;
 452		return;
 453	}
 454
 455	cpu = smp_processor_id();
 456
 457	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 458		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
 459			cpu);
 460		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 461	}
 462
 463	cpumask_andnot(housekeeping_mask,
 464		       cpu_possible_mask, tick_nohz_full_mask);
 465
 466	for_each_cpu(cpu, tick_nohz_full_mask)
 467		context_tracking_cpu_set(cpu);
 468
 469	cpu_notifier(tick_nohz_cpu_down_callback, 0);
 470	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 471		cpumask_pr_args(tick_nohz_full_mask));
 472
 473	/*
 474	 * We need at least one CPU to handle housekeeping work such
 475	 * as timekeeping, unbound timers, workqueues, ...
 476	 */
 477	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
 478}
 479#endif
 480
 481/*
 482 * NOHZ - aka dynamic tick functionality
 483 */
 484#ifdef CONFIG_NO_HZ_COMMON
 485/*
 486 * NO HZ enabled ?
 487 */
 488bool tick_nohz_enabled __read_mostly  = true;
 489unsigned long tick_nohz_active  __read_mostly;
 490/*
 491 * Enable / Disable tickless mode
 492 */
 493static int __init setup_tick_nohz(char *str)
 494{
 495	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 
 
 
 
 
 
 496}
 497
 498__setup("nohz=", setup_tick_nohz);
 499
 500int tick_nohz_tick_stopped(void)
 501{
 502	return __this_cpu_read(tick_cpu_sched.tick_stopped);
 503}
 504
 505/**
 506 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 507 *
 508 * Called from interrupt entry when the CPU was idle
 509 *
 510 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 511 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 512 * value. We do this unconditionally on any cpu, as we don't know whether the
 513 * cpu, which has the update task assigned is in a long sleep.
 514 */
 515static void tick_nohz_update_jiffies(ktime_t now)
 516{
 
 
 517	unsigned long flags;
 518
 519	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 
 520
 521	local_irq_save(flags);
 522	tick_do_update_jiffies64(now);
 523	local_irq_restore(flags);
 524
 525	touch_softlockup_watchdog_sched();
 526}
 527
 528/*
 529 * Updates the per cpu time idle statistics counters
 530 */
 531static void
 532update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 533{
 534	ktime_t delta;
 535
 536	if (ts->idle_active) {
 537		delta = ktime_sub(now, ts->idle_entrytime);
 
 538		if (nr_iowait_cpu(cpu) > 0)
 539			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 540		else
 541			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 542		ts->idle_entrytime = now;
 543	}
 544
 545	if (last_update_time)
 546		*last_update_time = ktime_to_us(now);
 547
 548}
 549
 550static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 551{
 552	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 
 
 553	ts->idle_active = 0;
 554
 555	sched_clock_idle_wakeup_event(0);
 556}
 557
 558static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
 559{
 560	ktime_t now = ktime_get();
 
 
 
 
 561
 562	ts->idle_entrytime = now;
 563	ts->idle_active = 1;
 564	sched_clock_idle_sleep_event();
 565	return now;
 566}
 567
 568/**
 569 * get_cpu_idle_time_us - get the total idle time of a cpu
 570 * @cpu: CPU number to query
 571 * @last_update_time: variable to store update time in. Do not update
 572 * counters if NULL.
 573 *
 574 * Return the cummulative idle time (since boot) for a given
 575 * CPU, in microseconds.
 
 576 *
 577 * This time is measured via accounting rather than sampling,
 578 * and is as accurate as ktime_get() is.
 579 *
 580 * This function returns -1 if NOHZ is not enabled.
 581 */
 582u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 583{
 584	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 585	ktime_t now, idle;
 586
 587	if (!tick_nohz_active)
 588		return -1;
 589
 590	now = ktime_get();
 591	if (last_update_time) {
 592		update_ts_time_stats(cpu, ts, now, last_update_time);
 593		idle = ts->idle_sleeptime;
 594	} else {
 595		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 596			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 597
 598			idle = ktime_add(ts->idle_sleeptime, delta);
 599		} else {
 600			idle = ts->idle_sleeptime;
 601		}
 602	}
 603
 604	return ktime_to_us(idle);
 605
 
 606}
 607EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 608
 609/**
 610 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 611 * @cpu: CPU number to query
 612 * @last_update_time: variable to store update time in. Do not update
 613 * counters if NULL.
 614 *
 615 * Return the cummulative iowait time (since boot) for a given
 616 * CPU, in microseconds.
 617 *
 618 * This time is measured via accounting rather than sampling,
 619 * and is as accurate as ktime_get() is.
 620 *
 621 * This function returns -1 if NOHZ is not enabled.
 622 */
 623u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 624{
 625	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 626	ktime_t now, iowait;
 627
 628	if (!tick_nohz_active)
 629		return -1;
 630
 631	now = ktime_get();
 632	if (last_update_time) {
 633		update_ts_time_stats(cpu, ts, now, last_update_time);
 634		iowait = ts->iowait_sleeptime;
 635	} else {
 636		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 637			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 638
 639			iowait = ktime_add(ts->iowait_sleeptime, delta);
 640		} else {
 641			iowait = ts->iowait_sleeptime;
 642		}
 643	}
 644
 645	return ktime_to_us(iowait);
 646}
 647EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 648
 649static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 650{
 651	hrtimer_cancel(&ts->sched_timer);
 652	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 653
 654	/* Forward the time to expire in the future */
 655	hrtimer_forward(&ts->sched_timer, now, tick_period);
 656
 657	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 658		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 659	else
 660		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 661}
 662
 663static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
 664					 ktime_t now, int cpu)
 665{
 666	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 667	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 668	unsigned long seq, basejiff;
 669	ktime_t	tick;
 670
 671	/* Read jiffies and the time when jiffies were updated last */
 672	do {
 673		seq = read_seqbegin(&jiffies_lock);
 674		basemono = last_jiffies_update.tv64;
 675		basejiff = jiffies;
 676	} while (read_seqretry(&jiffies_lock, seq));
 677	ts->last_jiffies = basejiff;
 678
 679	if (rcu_needs_cpu(basemono, &next_rcu) ||
 680	    arch_needs_cpu() || irq_work_needs_cpu()) {
 681		next_tick = basemono + TICK_NSEC;
 682	} else {
 683		/*
 684		 * Get the next pending timer. If high resolution
 685		 * timers are enabled this only takes the timer wheel
 686		 * timers into account. If high resolution timers are
 687		 * disabled this also looks at the next expiring
 688		 * hrtimer.
 689		 */
 690		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 691		ts->next_timer = next_tmr;
 692		/* Take the next rcu event into account */
 693		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 694	}
 695
 696	/*
 697	 * If the tick is due in the next period, keep it ticking or
 698	 * force prod the timer.
 699	 */
 700	delta = next_tick - basemono;
 701	if (delta <= (u64)TICK_NSEC) {
 702		tick.tv64 = 0;
 703		/*
 704		 * We've not stopped the tick yet, and there's a timer in the
 705		 * next period, so no point in stopping it either, bail.
 706		 */
 707		if (!ts->tick_stopped)
 708			goto out;
 709
 710		/*
 711		 * If, OTOH, we did stop it, but there's a pending (expired)
 712		 * timer reprogram the timer hardware to fire now.
 713		 *
 714		 * We will not restart the tick proper, just prod the timer
 715		 * hardware into firing an interrupt to process the pending
 716		 * timers. Just like tick_irq_exit() will not restart the tick
 717		 * for 'normal' interrupts.
 718		 *
 719		 * Only once we exit the idle loop will we re-enable the tick,
 720		 * see tick_nohz_idle_exit().
 721		 */
 722		if (delta == 0) {
 723			tick_nohz_restart(ts, now);
 724			goto out;
 725		}
 726	}
 727
 728	/*
 729	 * If this cpu is the one which updates jiffies, then give up
 730	 * the assignment and let it be taken by the cpu which runs
 731	 * the tick timer next, which might be this cpu as well. If we
 732	 * don't drop this here the jiffies might be stale and
 733	 * do_timer() never invoked. Keep track of the fact that it
 734	 * was the one which had the do_timer() duty last. If this cpu
 735	 * is the one which had the do_timer() duty last, we limit the
 736	 * sleep time to the timekeeping max_deferement value.
 737	 * Otherwise we can sleep as long as we want.
 738	 */
 739	delta = timekeeping_max_deferment();
 740	if (cpu == tick_do_timer_cpu) {
 741		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 742		ts->do_timer_last = 1;
 743	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 744		delta = KTIME_MAX;
 745		ts->do_timer_last = 0;
 746	} else if (!ts->do_timer_last) {
 747		delta = KTIME_MAX;
 748	}
 749
 750#ifdef CONFIG_NO_HZ_FULL
 751	/* Limit the tick delta to the maximum scheduler deferment */
 752	if (!ts->inidle)
 753		delta = min(delta, scheduler_tick_max_deferment());
 754#endif
 755
 756	/* Calculate the next expiry time */
 757	if (delta < (KTIME_MAX - basemono))
 758		expires = basemono + delta;
 759	else
 760		expires = KTIME_MAX;
 761
 762	expires = min_t(u64, expires, next_tick);
 763	tick.tv64 = expires;
 764
 765	/* Skip reprogram of event if its not changed */
 766	if (ts->tick_stopped && (expires == dev->next_event.tv64))
 767		goto out;
 768
 769	/*
 770	 * nohz_stop_sched_tick can be called several times before
 771	 * the nohz_restart_sched_tick is called. This happens when
 772	 * interrupts arrive which do not cause a reschedule. In the
 773	 * first call we save the current tick time, so we can restart
 774	 * the scheduler tick in nohz_restart_sched_tick.
 775	 */
 776	if (!ts->tick_stopped) {
 777		nohz_balance_enter_idle(cpu);
 778		calc_load_enter_idle();
 779
 780		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 781		ts->tick_stopped = 1;
 782		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 783	}
 784
 785	/*
 786	 * If the expiration time == KTIME_MAX, then we simply stop
 787	 * the tick timer.
 788	 */
 789	if (unlikely(expires == KTIME_MAX)) {
 790		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 791			hrtimer_cancel(&ts->sched_timer);
 792		goto out;
 793	}
 794
 795	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 796		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
 797	else
 798		tick_program_event(tick, 1);
 799out:
 800	/* Update the estimated sleep length */
 801	ts->sleep_length = ktime_sub(dev->next_event, now);
 802	return tick;
 803}
 804
 805static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
 806{
 807	/* Update jiffies first */
 808	tick_do_update_jiffies64(now);
 809	update_cpu_load_nohz(active);
 810
 811	calc_load_exit_idle();
 812	touch_softlockup_watchdog_sched();
 813	/*
 814	 * Cancel the scheduled timer and restore the tick
 815	 */
 816	ts->tick_stopped  = 0;
 817	ts->idle_exittime = now;
 818
 819	tick_nohz_restart(ts, now);
 820}
 821
 822static void tick_nohz_full_update_tick(struct tick_sched *ts)
 823{
 824#ifdef CONFIG_NO_HZ_FULL
 825	int cpu = smp_processor_id();
 826
 827	if (!tick_nohz_full_cpu(cpu))
 828		return;
 829
 830	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 831		return;
 832
 833	if (can_stop_full_tick(ts))
 834		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
 835	else if (ts->tick_stopped)
 836		tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
 837#endif
 838}
 839
 840static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 841{
 842	/*
 843	 * If this cpu is offline and it is the one which updates
 844	 * jiffies, then give up the assignment and let it be taken by
 845	 * the cpu which runs the tick timer next. If we don't drop
 846	 * this here the jiffies might be stale and do_timer() never
 847	 * invoked.
 848	 */
 849	if (unlikely(!cpu_online(cpu))) {
 850		if (cpu == tick_do_timer_cpu)
 851			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 852		return false;
 853	}
 854
 855	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
 856		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
 857		return false;
 858	}
 859
 860	if (need_resched())
 861		return false;
 862
 863	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 864		static int ratelimit;
 865
 866		if (ratelimit < 10 &&
 867		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 868			pr_warn("NOHZ: local_softirq_pending %02x\n",
 869				(unsigned int) local_softirq_pending());
 870			ratelimit++;
 871		}
 872		return false;
 873	}
 874
 875	if (tick_nohz_full_enabled()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876		/*
 877		 * Keep the tick alive to guarantee timekeeping progression
 878		 * if there are full dynticks CPUs around
 
 
 
 
 
 
 
 
 
 879		 */
 880		if (tick_do_timer_cpu == cpu)
 881			return false;
 
 
 
 
 
 
 
 
 882		/*
 883		 * Boot safety: make sure the timekeeping duty has been
 884		 * assigned before entering dyntick-idle mode,
 
 
 
 885		 */
 886		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 887			return false;
 888	}
 
 
 
 
 
 
 
 
 889
 890	return true;
 891}
 
 
 892
 893static void __tick_nohz_idle_enter(struct tick_sched *ts)
 894{
 895	ktime_t now, expires;
 896	int cpu = smp_processor_id();
 897
 898	now = tick_nohz_start_idle(ts);
 
 
 899
 900	if (can_stop_idle_tick(cpu, ts)) {
 901		int was_stopped = ts->tick_stopped;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902
 903		ts->idle_calls++;
 
 904
 905		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
 906		if (expires.tv64 > 0LL) {
 907			ts->idle_sleeps++;
 908			ts->idle_expires = expires;
 
 
 
 
 909		}
 910
 911		if (!was_stopped && ts->tick_stopped)
 912			ts->idle_jiffies = ts->last_jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
 
 913	}
 
 
 
 
 
 
 
 914}
 915
 916/**
 917 * tick_nohz_idle_enter - stop the idle tick from the idle task
 918 *
 919 * When the next event is more than a tick into the future, stop the idle tick
 920 * Called when we start the idle loop.
 921 *
 922 * The arch is responsible of calling:
 923 *
 924 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 925 *  to sleep.
 926 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
 927 */
 928void tick_nohz_idle_enter(void)
 929{
 930	struct tick_sched *ts;
 931
 932	WARN_ON_ONCE(irqs_disabled());
 933
 934	/*
 935 	 * Update the idle state in the scheduler domain hierarchy
 936 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 937 	 * State will be updated to busy during the first busy tick after
 938 	 * exiting idle.
 939 	 */
 940	set_cpu_sd_state_idle();
 941
 942	local_irq_disable();
 943
 944	ts = this_cpu_ptr(&tick_cpu_sched);
 945	ts->inidle = 1;
 946	__tick_nohz_idle_enter(ts);
 947
 948	local_irq_enable();
 949}
 950
 951/**
 952 * tick_nohz_irq_exit - update next tick event from interrupt exit
 953 *
 954 * When an interrupt fires while we are idle and it doesn't cause
 955 * a reschedule, it may still add, modify or delete a timer, enqueue
 956 * an RCU callback, etc...
 957 * So we need to re-calculate and reprogram the next tick event.
 958 */
 959void tick_nohz_irq_exit(void)
 960{
 961	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 962
 963	if (ts->inidle)
 964		__tick_nohz_idle_enter(ts);
 965	else
 966		tick_nohz_full_update_tick(ts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967}
 968
 969/**
 970 * tick_nohz_get_sleep_length - return the length of the current sleep
 971 *
 972 * Called from power state control code with interrupts disabled
 973 */
 974ktime_t tick_nohz_get_sleep_length(void)
 975{
 976	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 
 
 
 
 977
 978	return ts->sleep_length;
 979}
 
 980
 981static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 982{
 983#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 984	unsigned long ticks;
 985
 986	if (vtime_accounting_cpu_enabled())
 
 
 987		return;
 
 
 
 
 
 
 
 
 
 
 
 
 988	/*
 989	 * We stopped the tick in idle. Update process times would miss the
 990	 * time we slept as update_process_times does only a 1 tick
 991	 * accounting. Enforce that this is accounted to idle !
 992	 */
 993	ticks = jiffies - ts->idle_jiffies;
 994	/*
 995	 * We might be one off. Do not randomly account a huge number of ticks!
 996	 */
 997	if (ticks && ticks < LONG_MAX)
 998		account_idle_ticks(ticks);
 999#endif
1000}
1001
1002/**
1003 * tick_nohz_idle_exit - restart the idle tick from the idle task
1004 *
1005 * Restart the idle tick when the CPU is woken up from idle
1006 * This also exit the RCU extended quiescent state. The CPU
1007 * can use RCU again after this function is called.
1008 */
1009void tick_nohz_idle_exit(void)
1010{
1011	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1012	ktime_t now;
1013
1014	local_irq_disable();
1015
1016	WARN_ON_ONCE(!ts->inidle);
1017
1018	ts->inidle = 0;
1019
1020	if (ts->idle_active || ts->tick_stopped)
1021		now = ktime_get();
1022
1023	if (ts->idle_active)
1024		tick_nohz_stop_idle(ts, now);
1025
1026	if (ts->tick_stopped) {
1027		tick_nohz_restart_sched_tick(ts, now, 0);
1028		tick_nohz_account_idle_ticks(ts);
1029	}
1030
1031	local_irq_enable();
1032}
1033
 
 
 
 
 
 
1034/*
1035 * The nohz low res interrupt handler
1036 */
1037static void tick_nohz_handler(struct clock_event_device *dev)
1038{
1039	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1040	struct pt_regs *regs = get_irq_regs();
 
1041	ktime_t now = ktime_get();
1042
1043	dev->next_event.tv64 = KTIME_MAX;
1044
1045	tick_sched_do_timer(now);
1046	tick_sched_handle(ts, regs);
 
 
 
 
 
 
 
1047
1048	/* No need to reprogram if we are running tickless  */
1049	if (unlikely(ts->tick_stopped))
1050		return;
1051
1052	hrtimer_forward(&ts->sched_timer, now, tick_period);
1053	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1054}
 
 
 
 
 
 
 
 
 
1055
1056static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1057{
1058	if (!tick_nohz_enabled)
1059		return;
1060	ts->nohz_mode = mode;
1061	/* One update is enough */
1062	if (!test_and_set_bit(0, &tick_nohz_active))
1063		timers_update_migration(true);
1064}
1065
1066/**
1067 * tick_nohz_switch_to_nohz - switch to nohz mode
1068 */
1069static void tick_nohz_switch_to_nohz(void)
1070{
1071	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1072	ktime_t next;
1073
1074	if (!tick_nohz_enabled)
1075		return;
1076
1077	if (tick_switch_to_oneshot(tick_nohz_handler))
 
 
1078		return;
 
 
 
1079
1080	/*
1081	 * Recycle the hrtimer in ts, so we can share the
1082	 * hrtimer_forward with the highres code.
1083	 */
1084	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1085	/* Get the next period */
1086	next = tick_init_jiffy_update();
1087
1088	hrtimer_set_expires(&ts->sched_timer, next);
1089	hrtimer_forward_now(&ts->sched_timer, tick_period);
1090	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1091	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
 
 
 
 
 
1092}
1093
1094/*
1095 * When NOHZ is enabled and the tick is stopped, we need to kick the
1096 * tick timer from irq_enter() so that the jiffies update is kept
1097 * alive during long running softirqs. That's ugly as hell, but
1098 * correctness is key even if we need to fix the offending softirq in
1099 * the first place.
1100 *
1101 * Note, this is different to tick_nohz_restart. We just kick the
1102 * timer and do not touch the other magic bits which need to be done
1103 * when idle is left.
1104 */
1105static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1106{
1107#if 0
1108	/* Switch back to 2.6.27 behaviour */
 
 
1109	ktime_t delta;
1110
1111	/*
1112	 * Do not touch the tick device, when the next expiry is either
1113	 * already reached or less/equal than the tick period.
1114	 */
1115	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1116	if (delta.tv64 <= tick_period.tv64)
1117		return;
1118
1119	tick_nohz_restart(ts, now);
1120#endif
1121}
1122
1123static inline void tick_nohz_irq_enter(void)
1124{
1125	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1126	ktime_t now;
1127
1128	if (!ts->idle_active && !ts->tick_stopped)
1129		return;
1130	now = ktime_get();
1131	if (ts->idle_active)
1132		tick_nohz_stop_idle(ts, now);
1133	if (ts->tick_stopped) {
1134		tick_nohz_update_jiffies(now);
1135		tick_nohz_kick_tick(ts, now);
1136	}
1137}
1138
1139#else
1140
1141static inline void tick_nohz_switch_to_nohz(void) { }
1142static inline void tick_nohz_irq_enter(void) { }
1143static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1144
1145#endif /* CONFIG_NO_HZ_COMMON */
1146
1147/*
1148 * Called from irq_enter to notify about the possible interruption of idle()
1149 */
1150void tick_irq_enter(void)
1151{
1152	tick_check_oneshot_broadcast_this_cpu();
1153	tick_nohz_irq_enter();
1154}
1155
1156/*
1157 * High resolution timer specific code
1158 */
1159#ifdef CONFIG_HIGH_RES_TIMERS
1160/*
1161 * We rearm the timer until we get disabled by the idle code.
1162 * Called with interrupts disabled.
1163 */
1164static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1165{
1166	struct tick_sched *ts =
1167		container_of(timer, struct tick_sched, sched_timer);
1168	struct pt_regs *regs = get_irq_regs();
1169	ktime_t now = ktime_get();
 
1170
1171	tick_sched_do_timer(now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172
1173	/*
1174	 * Do not call, when we are not in irq context and have
1175	 * no valid regs pointer
1176	 */
1177	if (regs)
1178		tick_sched_handle(ts, regs);
1179
1180	/* No need to reprogram if we are in idle or full dynticks mode */
1181	if (unlikely(ts->tick_stopped))
1182		return HRTIMER_NORESTART;
 
 
 
 
 
 
 
 
 
 
1183
1184	hrtimer_forward(timer, now, tick_period);
1185
1186	return HRTIMER_RESTART;
1187}
1188
1189static int sched_skew_tick;
1190
1191static int __init skew_tick(char *str)
1192{
1193	get_option(&str, &sched_skew_tick);
1194
1195	return 0;
1196}
1197early_param("skew_tick", skew_tick);
1198
1199/**
1200 * tick_setup_sched_timer - setup the tick emulation timer
1201 */
1202void tick_setup_sched_timer(void)
1203{
1204	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1205	ktime_t now = ktime_get();
1206
1207	/*
1208	 * Emulate tick processing via per-CPU hrtimers:
1209	 */
1210	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1211	ts->sched_timer.function = tick_sched_timer;
1212
1213	/* Get the next period (per cpu) */
1214	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1215
1216	/* Offset the tick to avert jiffies_lock contention. */
1217	if (sched_skew_tick) {
1218		u64 offset = ktime_to_ns(tick_period) >> 1;
1219		do_div(offset, num_possible_cpus());
1220		offset *= smp_processor_id();
1221		hrtimer_add_expires_ns(&ts->sched_timer, offset);
 
 
1222	}
1223
1224	hrtimer_forward(&ts->sched_timer, now, tick_period);
1225	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1226	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
 
 
 
1227}
1228#endif /* HIGH_RES_TIMERS */
1229
1230#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1231void tick_cancel_sched_timer(int cpu)
1232{
1233	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1234
1235# ifdef CONFIG_HIGH_RES_TIMERS
1236	if (ts->sched_timer.base)
1237		hrtimer_cancel(&ts->sched_timer);
1238# endif
1239
1240	memset(ts, 0, sizeof(*ts));
1241}
1242#endif
1243
1244/**
1245 * Async notification about clocksource changes
1246 */
1247void tick_clock_notify(void)
1248{
1249	int cpu;
1250
1251	for_each_possible_cpu(cpu)
1252		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1253}
1254
1255/*
1256 * Async notification about clock event changes
1257 */
1258void tick_oneshot_notify(void)
1259{
1260	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1261
1262	set_bit(0, &ts->check_clocks);
1263}
1264
1265/**
1266 * Check, if a change happened, which makes oneshot possible.
1267 *
1268 * Called cyclic from the hrtimer softirq (driven by the timer
1269 * softirq) allow_nohz signals, that we can switch into low-res nohz
1270 * mode, because high resolution timers are disabled (either compile
1271 * or runtime). Called with interrupts disabled.
1272 */
1273int tick_check_oneshot_change(int allow_nohz)
1274{
1275	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1276
1277	if (!test_and_clear_bit(0, &ts->check_clocks))
1278		return 0;
1279
1280	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1281		return 0;
1282
1283	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1284		return 0;
1285
1286	if (!allow_nohz)
1287		return 1;
1288
1289	tick_nohz_switch_to_nohz();
1290	return 0;
1291}
v3.1
  1/*
  2 *  linux/kernel/time/tick-sched.c
  3 *
  4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
  7 *
  8 *  No idle tick implementation for low and high resolution timers
  9 *
 10 *  Started by: Thomas Gleixner and Ingo Molnar
 11 *
 12 *  Distribute under GPLv2.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/percpu.h>
 20#include <linux/profile.h>
 21#include <linux/sched.h>
 22#include <linux/module.h>
 
 
 
 23
 24#include <asm/irq_regs.h>
 25
 26#include "tick-internal.h"
 27
 
 
 28/*
 29 * Per cpu nohz control structure
 30 */
 31static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
 32
 33/*
 34 * The time, when the last jiffy update happened. Protected by xtime_lock.
 35 */
 36static ktime_t last_jiffies_update;
 37
 38struct tick_sched *tick_get_tick_sched(int cpu)
 39{
 40	return &per_cpu(tick_cpu_sched, cpu);
 41}
 42
 
 
 
 
 
 
 43/*
 44 * Must be called with interrupts disabled !
 45 */
 46static void tick_do_update_jiffies64(ktime_t now)
 47{
 48	unsigned long ticks = 0;
 49	ktime_t delta;
 50
 51	/*
 52	 * Do a quick check without holding xtime_lock:
 53	 */
 54	delta = ktime_sub(now, last_jiffies_update);
 55	if (delta.tv64 < tick_period.tv64)
 56		return;
 57
 58	/* Reevalute with xtime_lock held */
 59	write_seqlock(&xtime_lock);
 60
 61	delta = ktime_sub(now, last_jiffies_update);
 62	if (delta.tv64 >= tick_period.tv64) {
 63
 64		delta = ktime_sub(delta, tick_period);
 65		last_jiffies_update = ktime_add(last_jiffies_update,
 66						tick_period);
 67
 68		/* Slow path for long timeouts */
 69		if (unlikely(delta.tv64 >= tick_period.tv64)) {
 70			s64 incr = ktime_to_ns(tick_period);
 71
 72			ticks = ktime_divns(delta, incr);
 73
 74			last_jiffies_update = ktime_add_ns(last_jiffies_update,
 75							   incr * ticks);
 76		}
 77		do_timer(++ticks);
 78
 79		/* Keep the tick_next_period variable up to date */
 80		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 
 
 
 81	}
 82	write_sequnlock(&xtime_lock);
 
 83}
 84
 85/*
 86 * Initialize and return retrieve the jiffies update.
 87 */
 88static ktime_t tick_init_jiffy_update(void)
 89{
 90	ktime_t period;
 91
 92	write_seqlock(&xtime_lock);
 93	/* Did we start the jiffies update yet ? */
 94	if (last_jiffies_update.tv64 == 0)
 95		last_jiffies_update = tick_next_period;
 96	period = last_jiffies_update;
 97	write_sequnlock(&xtime_lock);
 98	return period;
 99}
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101/*
102 * NOHZ - aka dynamic tick functionality
103 */
104#ifdef CONFIG_NO_HZ
105/*
106 * NO HZ enabled ?
107 */
108static int tick_nohz_enabled __read_mostly  = 1;
109
110/*
111 * Enable / Disable tickless mode
112 */
113static int __init setup_tick_nohz(char *str)
114{
115	if (!strcmp(str, "off"))
116		tick_nohz_enabled = 0;
117	else if (!strcmp(str, "on"))
118		tick_nohz_enabled = 1;
119	else
120		return 0;
121	return 1;
122}
123
124__setup("nohz=", setup_tick_nohz);
125
 
 
 
 
 
126/**
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128 *
129 * Called from interrupt entry when the CPU was idle
130 *
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
135 */
136static void tick_nohz_update_jiffies(ktime_t now)
137{
138	int cpu = smp_processor_id();
139	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140	unsigned long flags;
141
142	cpumask_clear_cpu(cpu, nohz_cpu_mask);
143	ts->idle_waketime = now;
144
145	local_irq_save(flags);
146	tick_do_update_jiffies64(now);
147	local_irq_restore(flags);
148
149	touch_softlockup_watchdog();
150}
151
152/*
153 * Updates the per cpu time idle statistics counters
154 */
155static void
156update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
157{
158	ktime_t delta;
159
160	if (ts->idle_active) {
161		delta = ktime_sub(now, ts->idle_entrytime);
162		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
163		if (nr_iowait_cpu(cpu) > 0)
164			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 
 
165		ts->idle_entrytime = now;
166	}
167
168	if (last_update_time)
169		*last_update_time = ktime_to_us(now);
170
171}
172
173static void tick_nohz_stop_idle(int cpu, ktime_t now)
174{
175	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176
177	update_ts_time_stats(cpu, ts, now, NULL);
178	ts->idle_active = 0;
179
180	sched_clock_idle_wakeup_event(0);
181}
182
183static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184{
185	ktime_t now;
186
187	now = ktime_get();
188
189	update_ts_time_stats(cpu, ts, now, NULL);
190
191	ts->idle_entrytime = now;
192	ts->idle_active = 1;
193	sched_clock_idle_sleep_event();
194	return now;
195}
196
197/**
198 * get_cpu_idle_time_us - get the total idle time of a cpu
199 * @cpu: CPU number to query
200 * @last_update_time: variable to store update time in
 
201 *
202 * Return the cummulative idle time (since boot) for a given
203 * CPU, in microseconds. The idle time returned includes
204 * the iowait time (unlike what "top" and co report).
205 *
206 * This time is measured via accounting rather than sampling,
207 * and is as accurate as ktime_get() is.
208 *
209 * This function returns -1 if NOHZ is not enabled.
210 */
211u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
212{
213	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
214
215	if (!tick_nohz_enabled)
216		return -1;
217
218	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
220	return ktime_to_us(ts->idle_sleeptime);
221}
222EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
223
224/*
225 * get_cpu_iowait_time_us - get the total iowait time of a cpu
226 * @cpu: CPU number to query
227 * @last_update_time: variable to store update time in
 
228 *
229 * Return the cummulative iowait time (since boot) for a given
230 * CPU, in microseconds.
231 *
232 * This time is measured via accounting rather than sampling,
233 * and is as accurate as ktime_get() is.
234 *
235 * This function returns -1 if NOHZ is not enabled.
236 */
237u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
238{
239	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
240
241	if (!tick_nohz_enabled)
242		return -1;
243
244	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
 
 
 
 
 
 
 
 
 
 
 
 
245
246	return ktime_to_us(ts->iowait_sleeptime);
247}
248EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
249
250/**
251 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
252 *
253 * When the next event is more than a tick into the future, stop the idle tick
254 * Called either from the idle loop or from irq_exit() when an idle period was
255 * just interrupted by an interrupt which did not cause a reschedule.
256 */
257void tick_nohz_stop_sched_tick(int inidle)
 
 
 
 
 
 
 
 
258{
259	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
260	struct tick_sched *ts;
261	ktime_t last_update, expires, now;
262	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
263	u64 time_delta;
264	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265
266	local_irq_save(flags);
 
 
 
 
 
 
 
 
 
 
 
 
267
268	cpu = smp_processor_id();
269	ts = &per_cpu(tick_cpu_sched, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270
271	/*
272	 * Call to tick_nohz_start_idle stops the last_update_time from being
273	 * updated. Thus, it must not be called in the event we are called from
274	 * irq_exit() with the prior state different than idle.
 
 
 
 
 
 
275	 */
276	if (!inidle && !ts->inidle)
277		goto end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
279	/*
280	 * Set ts->inidle unconditionally. Even if the system did not
281	 * switch to NOHZ mode the cpu frequency governers rely on the
282	 * update of the idle time accounting in tick_nohz_start_idle().
 
 
283	 */
284	ts->inidle = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
286	now = tick_nohz_start_idle(cpu, ts);
 
 
 
 
287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288	/*
289	 * If this cpu is offline and it is the one which updates
290	 * jiffies, then give up the assignment and let it be taken by
291	 * the cpu which runs the tick timer next. If we don't drop
292	 * this here the jiffies might be stale and do_timer() never
293	 * invoked.
294	 */
295	if (unlikely(!cpu_online(cpu))) {
296		if (cpu == tick_do_timer_cpu)
297			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 
298	}
299
300	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
301		goto end;
 
 
302
303	if (need_resched())
304		goto end;
305
306	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
307		static int ratelimit;
308
309		if (ratelimit < 10) {
310			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
311			       (unsigned int) local_softirq_pending());
 
312			ratelimit++;
313		}
314		goto end;
315	}
316
317	ts->idle_calls++;
318	/* Read jiffies and the time when jiffies were updated last */
319	do {
320		seq = read_seqbegin(&xtime_lock);
321		last_update = last_jiffies_update;
322		last_jiffies = jiffies;
323		time_delta = timekeeping_max_deferment();
324	} while (read_seqretry(&xtime_lock, seq));
325
326	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
327	    arch_needs_cpu(cpu)) {
328		next_jiffies = last_jiffies + 1;
329		delta_jiffies = 1;
330	} else {
331		/* Get the next timer wheel timer */
332		next_jiffies = get_next_timer_interrupt(last_jiffies);
333		delta_jiffies = next_jiffies - last_jiffies;
334	}
335	/*
336	 * Do not stop the tick, if we are only one off
337	 * or if the cpu is required for rcu
338	 */
339	if (!ts->tick_stopped && delta_jiffies == 1)
340		goto out;
341
342	/* Schedule the tick, if we are at least one jiffie off */
343	if ((long)delta_jiffies >= 1) {
344
345		/*
346		 * If this cpu is the one which updates jiffies, then
347		 * give up the assignment and let it be taken by the
348		 * cpu which runs the tick timer next, which might be
349		 * this cpu as well. If we don't drop this here the
350		 * jiffies might be stale and do_timer() never
351		 * invoked. Keep track of the fact that it was the one
352		 * which had the do_timer() duty last. If this cpu is
353		 * the one which had the do_timer() duty last, we
354		 * limit the sleep time to the timekeeping
355		 * max_deferement value which we retrieved
356		 * above. Otherwise we can sleep as long as we want.
357		 */
358		if (cpu == tick_do_timer_cpu) {
359			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
360			ts->do_timer_last = 1;
361		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
362			time_delta = KTIME_MAX;
363			ts->do_timer_last = 0;
364		} else if (!ts->do_timer_last) {
365			time_delta = KTIME_MAX;
366		}
367
368		/*
369		 * calculate the expiry time for the next timer wheel
370		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
371		 * that there is no timer pending or at least extremely
372		 * far into the future (12 days for HZ=1000). In this
373		 * case we set the expiry to the end of time.
374		 */
375		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
376			/*
377			 * Calculate the time delta for the next timer event.
378			 * If the time delta exceeds the maximum time delta
379			 * permitted by the current clocksource then adjust
380			 * the time delta accordingly to ensure the
381			 * clocksource does not wrap.
382			 */
383			time_delta = min_t(u64, time_delta,
384					   tick_period.tv64 * delta_jiffies);
385		}
386
387		if (time_delta < KTIME_MAX)
388			expires = ktime_add_ns(last_update, time_delta);
389		else
390			expires.tv64 = KTIME_MAX;
391
392		if (delta_jiffies > 1)
393			cpumask_set_cpu(cpu, nohz_cpu_mask);
 
 
394
395		/* Skip reprogram of event if its not changed */
396		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
397			goto out;
398
399		/*
400		 * nohz_stop_sched_tick can be called several times before
401		 * the nohz_restart_sched_tick is called. This happens when
402		 * interrupts arrive which do not cause a reschedule. In the
403		 * first call we save the current tick time, so we can restart
404		 * the scheduler tick in nohz_restart_sched_tick.
405		 */
406		if (!ts->tick_stopped) {
407			select_nohz_load_balancer(1);
408
409			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
410			ts->tick_stopped = 1;
411			ts->idle_jiffies = last_jiffies;
412			rcu_enter_nohz();
413		}
414
415		ts->idle_sleeps++;
416
417		/* Mark expires */
418		ts->idle_expires = expires;
419
420		/*
421		 * If the expiration time == KTIME_MAX, then
422		 * in this case we simply stop the tick timer.
423		 */
424		 if (unlikely(expires.tv64 == KTIME_MAX)) {
425			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
426				hrtimer_cancel(&ts->sched_timer);
427			goto out;
428		}
429
430		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
431			hrtimer_start(&ts->sched_timer, expires,
432				      HRTIMER_MODE_ABS_PINNED);
433			/* Check, if the timer was already in the past */
434			if (hrtimer_active(&ts->sched_timer))
435				goto out;
436		} else if (!tick_program_event(expires, 0))
437				goto out;
438		/*
439		 * We are past the event already. So we crossed a
440		 * jiffie boundary. Update jiffies and raise the
441		 * softirq.
442		 */
443		tick_do_update_jiffies64(ktime_get());
444		cpumask_clear_cpu(cpu, nohz_cpu_mask);
445	}
446	raise_softirq_irqoff(TIMER_SOFTIRQ);
447out:
448	ts->next_jiffies = next_jiffies;
449	ts->last_jiffies = last_jiffies;
450	ts->sleep_length = ktime_sub(dev->next_event, now);
451end:
452	local_irq_restore(flags);
453}
454
455/**
456 * tick_nohz_get_sleep_length - return the length of the current sleep
 
 
 
 
 
457 *
458 * Called from power state control code with interrupts disabled
 
 
459 */
460ktime_t tick_nohz_get_sleep_length(void)
461{
462	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 
 
 
 
 
 
 
 
 
 
463
464	return ts->sleep_length;
 
 
 
 
 
 
465}
466
467static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 
 
 
 
 
 
 
 
468{
469	hrtimer_cancel(&ts->sched_timer);
470	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
471
472	while (1) {
473		/* Forward the time to expire in the future */
474		hrtimer_forward(&ts->sched_timer, now, tick_period);
475
476		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
477			hrtimer_start_expires(&ts->sched_timer,
478					      HRTIMER_MODE_ABS_PINNED);
479			/* Check, if the timer was already in the past */
480			if (hrtimer_active(&ts->sched_timer))
481				break;
482		} else {
483			if (!tick_program_event(
484				hrtimer_get_expires(&ts->sched_timer), 0))
485				break;
486		}
487		/* Update jiffies and reread time */
488		tick_do_update_jiffies64(now);
489		now = ktime_get();
490	}
491}
492
493/**
494 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
495 *
496 * Restart the idle tick when the CPU is woken up from idle
497 */
498void tick_nohz_restart_sched_tick(void)
499{
500	int cpu = smp_processor_id();
501	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
502#ifndef CONFIG_VIRT_CPU_ACCOUNTING
503	unsigned long ticks;
504#endif
505	ktime_t now;
506
507	local_irq_disable();
508	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
509		now = ktime_get();
510
511	if (ts->idle_active)
512		tick_nohz_stop_idle(cpu, now);
 
 
513
514	if (!ts->inidle || !ts->tick_stopped) {
515		ts->inidle = 0;
516		local_irq_enable();
517		return;
518	}
519
520	ts->inidle = 0;
521
522	rcu_exit_nohz();
523
524	/* Update jiffies first */
525	select_nohz_load_balancer(0);
526	tick_do_update_jiffies64(now);
527	cpumask_clear_cpu(cpu, nohz_cpu_mask);
528
529#ifndef CONFIG_VIRT_CPU_ACCOUNTING
530	/*
531	 * We stopped the tick in idle. Update process times would miss the
532	 * time we slept as update_process_times does only a 1 tick
533	 * accounting. Enforce that this is accounted to idle !
534	 */
535	ticks = jiffies - ts->idle_jiffies;
536	/*
537	 * We might be one off. Do not randomly account a huge number of ticks!
538	 */
539	if (ticks && ticks < LONG_MAX)
540		account_idle_ticks(ticks);
541#endif
 
542
543	touch_softlockup_watchdog();
544	/*
545	 * Cancel the scheduled timer and restore the tick
546	 */
547	ts->tick_stopped  = 0;
548	ts->idle_exittime = now;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549
550	tick_nohz_restart(ts, now);
 
 
 
551
552	local_irq_enable();
553}
554
555static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
556{
557	hrtimer_forward(&ts->sched_timer, now, tick_period);
558	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
559}
560
561/*
562 * The nohz low res interrupt handler
563 */
564static void tick_nohz_handler(struct clock_event_device *dev)
565{
566	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
567	struct pt_regs *regs = get_irq_regs();
568	int cpu = smp_processor_id();
569	ktime_t now = ktime_get();
570
571	dev->next_event.tv64 = KTIME_MAX;
572
573	/*
574	 * Check if the do_timer duty was dropped. We don't care about
575	 * concurrency: This happens only when the cpu in charge went
576	 * into a long sleep. If two cpus happen to assign themself to
577	 * this duty, then the jiffies update is still serialized by
578	 * xtime_lock.
579	 */
580	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
581		tick_do_timer_cpu = cpu;
582
583	/* Check, if the jiffies need an update */
584	if (tick_do_timer_cpu == cpu)
585		tick_do_update_jiffies64(now);
586
587	/*
588	 * When we are idle and the tick is stopped, we have to touch
589	 * the watchdog as we might not schedule for a really long
590	 * time. This happens on complete idle SMP systems while
591	 * waiting on the login prompt. We also increment the "start
592	 * of idle" jiffy stamp so the idle accounting adjustment we
593	 * do when we go busy again does not account too much ticks.
594	 */
595	if (ts->tick_stopped) {
596		touch_softlockup_watchdog();
597		ts->idle_jiffies++;
598	}
599
600	update_process_times(user_mode(regs));
601	profile_tick(CPU_PROFILING);
602
603	while (tick_nohz_reprogram(ts, now)) {
604		now = ktime_get();
605		tick_do_update_jiffies64(now);
606	}
 
607}
608
609/**
610 * tick_nohz_switch_to_nohz - switch to nohz mode
611 */
612static void tick_nohz_switch_to_nohz(void)
613{
614	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
615	ktime_t next;
616
617	if (!tick_nohz_enabled)
618		return;
619
620	local_irq_disable();
621	if (tick_switch_to_oneshot(tick_nohz_handler)) {
622		local_irq_enable();
623		return;
624	}
625
626	ts->nohz_mode = NOHZ_MODE_LOWRES;
627
628	/*
629	 * Recycle the hrtimer in ts, so we can share the
630	 * hrtimer_forward with the highres code.
631	 */
632	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
633	/* Get the next period */
634	next = tick_init_jiffy_update();
635
636	for (;;) {
637		hrtimer_set_expires(&ts->sched_timer, next);
638		if (!tick_program_event(next, 0))
639			break;
640		next = ktime_add(next, tick_period);
641	}
642	local_irq_enable();
643
644	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
645}
646
647/*
648 * When NOHZ is enabled and the tick is stopped, we need to kick the
649 * tick timer from irq_enter() so that the jiffies update is kept
650 * alive during long running softirqs. That's ugly as hell, but
651 * correctness is key even if we need to fix the offending softirq in
652 * the first place.
653 *
654 * Note, this is different to tick_nohz_restart. We just kick the
655 * timer and do not touch the other magic bits which need to be done
656 * when idle is left.
657 */
658static void tick_nohz_kick_tick(int cpu, ktime_t now)
659{
660#if 0
661	/* Switch back to 2.6.27 behaviour */
662
663	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
664	ktime_t delta;
665
666	/*
667	 * Do not touch the tick device, when the next expiry is either
668	 * already reached or less/equal than the tick period.
669	 */
670	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
671	if (delta.tv64 <= tick_period.tv64)
672		return;
673
674	tick_nohz_restart(ts, now);
675#endif
676}
677
678static inline void tick_check_nohz(int cpu)
679{
680	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
681	ktime_t now;
682
683	if (!ts->idle_active && !ts->tick_stopped)
684		return;
685	now = ktime_get();
686	if (ts->idle_active)
687		tick_nohz_stop_idle(cpu, now);
688	if (ts->tick_stopped) {
689		tick_nohz_update_jiffies(now);
690		tick_nohz_kick_tick(cpu, now);
691	}
692}
693
694#else
695
696static inline void tick_nohz_switch_to_nohz(void) { }
697static inline void tick_check_nohz(int cpu) { }
 
698
699#endif /* NO_HZ */
700
701/*
702 * Called from irq_enter to notify about the possible interruption of idle()
703 */
704void tick_check_idle(int cpu)
705{
706	tick_check_oneshot_broadcast(cpu);
707	tick_check_nohz(cpu);
708}
709
710/*
711 * High resolution timer specific code
712 */
713#ifdef CONFIG_HIGH_RES_TIMERS
714/*
715 * We rearm the timer until we get disabled by the idle code.
716 * Called with interrupts disabled and timer->base->cpu_base->lock held.
717 */
718static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
719{
720	struct tick_sched *ts =
721		container_of(timer, struct tick_sched, sched_timer);
722	struct pt_regs *regs = get_irq_regs();
723	ktime_t now = ktime_get();
724	int cpu = smp_processor_id();
725
726#ifdef CONFIG_NO_HZ
727	/*
728	 * Check if the do_timer duty was dropped. We don't care about
729	 * concurrency: This happens only when the cpu in charge went
730	 * into a long sleep. If two cpus happen to assign themself to
731	 * this duty, then the jiffies update is still serialized by
732	 * xtime_lock.
733	 */
734	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
735		tick_do_timer_cpu = cpu;
736#endif
737
738	/* Check, if the jiffies need an update */
739	if (tick_do_timer_cpu == cpu)
740		tick_do_update_jiffies64(now);
741
742	/*
743	 * Do not call, when we are not in irq context and have
744	 * no valid regs pointer
745	 */
746	if (regs) {
747		/*
748		 * When we are idle and the tick is stopped, we have to touch
749		 * the watchdog as we might not schedule for a really long
750		 * time. This happens on complete idle SMP systems while
751		 * waiting on the login prompt. We also increment the "start of
752		 * idle" jiffy stamp so the idle accounting adjustment we do
753		 * when we go busy again does not account too much ticks.
754		 */
755		if (ts->tick_stopped) {
756			touch_softlockup_watchdog();
757			ts->idle_jiffies++;
758		}
759		update_process_times(user_mode(regs));
760		profile_tick(CPU_PROFILING);
761	}
762
763	hrtimer_forward(timer, now, tick_period);
764
765	return HRTIMER_RESTART;
766}
767
 
 
 
 
 
 
 
 
 
 
768/**
769 * tick_setup_sched_timer - setup the tick emulation timer
770 */
771void tick_setup_sched_timer(void)
772{
773	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
774	ktime_t now = ktime_get();
775
776	/*
777	 * Emulate tick processing via per-CPU hrtimers:
778	 */
779	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
780	ts->sched_timer.function = tick_sched_timer;
781
782	/* Get the next period (per cpu) */
783	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
784
785	for (;;) {
786		hrtimer_forward(&ts->sched_timer, now, tick_period);
787		hrtimer_start_expires(&ts->sched_timer,
788				      HRTIMER_MODE_ABS_PINNED);
789		/* Check, if the timer was already in the past */
790		if (hrtimer_active(&ts->sched_timer))
791			break;
792		now = ktime_get();
793	}
794
795#ifdef CONFIG_NO_HZ
796	if (tick_nohz_enabled) {
797		ts->nohz_mode = NOHZ_MODE_HIGHRES;
798		printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
799	}
800#endif
801}
802#endif /* HIGH_RES_TIMERS */
803
804#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
805void tick_cancel_sched_timer(int cpu)
806{
807	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
808
809# ifdef CONFIG_HIGH_RES_TIMERS
810	if (ts->sched_timer.base)
811		hrtimer_cancel(&ts->sched_timer);
812# endif
813
814	ts->nohz_mode = NOHZ_MODE_INACTIVE;
815}
816#endif
817
818/**
819 * Async notification about clocksource changes
820 */
821void tick_clock_notify(void)
822{
823	int cpu;
824
825	for_each_possible_cpu(cpu)
826		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
827}
828
829/*
830 * Async notification about clock event changes
831 */
832void tick_oneshot_notify(void)
833{
834	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
835
836	set_bit(0, &ts->check_clocks);
837}
838
839/**
840 * Check, if a change happened, which makes oneshot possible.
841 *
842 * Called cyclic from the hrtimer softirq (driven by the timer
843 * softirq) allow_nohz signals, that we can switch into low-res nohz
844 * mode, because high resolution timers are disabled (either compile
845 * or runtime).
846 */
847int tick_check_oneshot_change(int allow_nohz)
848{
849	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
850
851	if (!test_and_clear_bit(0, &ts->check_clocks))
852		return 0;
853
854	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
855		return 0;
856
857	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
858		return 0;
859
860	if (!allow_nohz)
861		return 1;
862
863	tick_nohz_switch_to_nohz();
864	return 0;
865}