Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
 
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
 
  20#include <linux/profile.h>
  21#include <linux/sched.h>
 
 
 
 
  22#include <linux/module.h>
  23#include <linux/irq_work.h>
  24#include <linux/posix-timers.h>
  25#include <linux/context_tracking.h>
 
  26
  27#include <asm/irq_regs.h>
  28
  29#include "tick-internal.h"
  30
  31#include <trace/events/timer.h>
  32
  33/*
  34 * Per cpu nohz control structure
  35 */
  36static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  37
  38struct tick_sched *tick_get_tick_sched(int cpu)
  39{
  40	return &per_cpu(tick_cpu_sched, cpu);
  41}
  42
  43#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  44/*
  45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 
 
  46 */
  47static ktime_t last_jiffies_update;
  48
  49/*
  50 * Must be called with interrupts disabled !
  51 */
  52static void tick_do_update_jiffies64(ktime_t now)
  53{
  54	unsigned long ticks = 0;
  55	ktime_t delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57	/*
  58	 * Do a quick check without holding jiffies_lock:
 
  59	 */
  60	delta = ktime_sub(now, last_jiffies_update);
  61	if (delta.tv64 < tick_period.tv64)
  62		return;
 
  63
  64	/* Reevalute with jiffies_lock held */
  65	write_seqlock(&jiffies_lock);
  66
  67	delta = ktime_sub(now, last_jiffies_update);
  68	if (delta.tv64 >= tick_period.tv64) {
 
 
  69
  70		delta = ktime_sub(delta, tick_period);
  71		last_jiffies_update = ktime_add(last_jiffies_update,
  72						tick_period);
  73
  74		/* Slow path for long timeouts */
  75		if (unlikely(delta.tv64 >= tick_period.tv64)) {
  76			s64 incr = ktime_to_ns(tick_period);
 
 
 
  77
  78			ticks = ktime_divns(delta, incr);
 
  79
  80			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  81							   incr * ticks);
  82		}
  83		do_timer(++ticks);
  84
  85		/* Keep the tick_next_period variable up to date */
  86		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 
 
 
 
 
 
  87	} else {
  88		write_sequnlock(&jiffies_lock);
  89		return;
 
 
 
  90	}
  91	write_sequnlock(&jiffies_lock);
 
 
 
 
 
 
 
 
 
 
  92	update_wall_time();
  93}
  94
  95/*
  96 * Initialize and return retrieve the jiffies update.
  97 */
  98static ktime_t tick_init_jiffy_update(void)
  99{
 100	ktime_t period;
 101
 102	write_seqlock(&jiffies_lock);
 103	/* Did we start the jiffies update yet ? */
 104	if (last_jiffies_update.tv64 == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 105		last_jiffies_update = tick_next_period;
 
 106	period = last_jiffies_update;
 107	write_sequnlock(&jiffies_lock);
 
 
 
 108	return period;
 109}
 110
 
 
 
 
 
 111
 112static void tick_sched_do_timer(ktime_t now)
 
 113{
 114	int cpu = smp_processor_id();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115
 116#ifdef CONFIG_NO_HZ_COMMON
 117	/*
 118	 * Check if the do_timer duty was dropped. We don't care about
 119	 * concurrency: This happens only when the cpu in charge went
 120	 * into a long sleep. If two cpus happen to assign themself to
 121	 * this duty, then the jiffies update is still serialized by
 122	 * jiffies_lock.
 
 
 
 123	 */
 124	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 125	    && !tick_nohz_full_cpu(cpu))
 126		tick_do_timer_cpu = cpu;
 
 
 127#endif
 
 
 
 128
 129	/* Check, if the jiffies need an update */
 130	if (tick_do_timer_cpu == cpu)
 131		tick_do_update_jiffies64(now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132}
 133
 134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 135{
 136#ifdef CONFIG_NO_HZ_COMMON
 137	/*
 138	 * When we are idle and the tick is stopped, we have to touch
 139	 * the watchdog as we might not schedule for a really long
 140	 * time. This happens on complete idle SMP systems while
 141	 * waiting on the login prompt. We also increment the "start of
 142	 * idle" jiffy stamp so the idle accounting adjustment we do
 143	 * when we go busy again does not account too much ticks.
 144	 */
 145	if (ts->tick_stopped) {
 
 146		touch_softlockup_watchdog_sched();
 147		if (is_idle_task(current))
 148			ts->idle_jiffies++;
 
 
 
 
 
 
 149	}
 150#endif
 151	update_process_times(user_mode(regs));
 152	profile_tick(CPU_PROFILING);
 153}
 154#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155
 156#ifdef CONFIG_NO_HZ_FULL
 157cpumask_var_t tick_nohz_full_mask;
 158cpumask_var_t housekeeping_mask;
 159bool tick_nohz_full_running;
 
 160static atomic_t tick_dep_mask;
 161
 162static bool check_tick_dependency(atomic_t *dep)
 163{
 164	int val = atomic_read(dep);
 165
 166	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 167		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 168		return true;
 169	}
 170
 171	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 172		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 173		return true;
 174	}
 175
 176	if (val & TICK_DEP_MASK_SCHED) {
 177		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 178		return true;
 179	}
 180
 181	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 182		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 183		return true;
 184	}
 185
 
 
 
 
 
 
 
 
 
 
 186	return false;
 187}
 188
 189static bool can_stop_full_tick(struct tick_sched *ts)
 190{
 191	WARN_ON_ONCE(!irqs_disabled());
 
 
 
 192
 193	if (check_tick_dependency(&tick_dep_mask))
 194		return false;
 195
 196	if (check_tick_dependency(&ts->tick_dep_mask))
 197		return false;
 198
 199	if (check_tick_dependency(&current->tick_dep_mask))
 200		return false;
 201
 202	if (check_tick_dependency(&current->signal->tick_dep_mask))
 203		return false;
 204
 205	return true;
 206}
 207
 208static void nohz_full_kick_func(struct irq_work *work)
 209{
 210	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 211}
 212
 213static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 214	.func = nohz_full_kick_func,
 215};
 216
 217/*
 218 * Kick this CPU if it's full dynticks in order to force it to
 219 * re-evaluate its dependency on the tick and restart it if necessary.
 220 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 221 * is NMI safe.
 222 */
 223static void tick_nohz_full_kick(void)
 224{
 225	if (!tick_nohz_full_cpu(smp_processor_id()))
 226		return;
 227
 228	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 229}
 230
 231/*
 232 * Kick the CPU if it's full dynticks in order to force it to
 233 * re-evaluate its dependency on the tick and restart it if necessary.
 234 */
 235void tick_nohz_full_kick_cpu(int cpu)
 236{
 237	if (!tick_nohz_full_cpu(cpu))
 238		return;
 239
 240	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 241}
 242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243/*
 244 * Kick all full dynticks CPUs in order to force these to re-evaluate
 245 * their dependency on the tick and restart it if necessary.
 246 */
 247static void tick_nohz_full_kick_all(void)
 248{
 249	int cpu;
 250
 251	if (!tick_nohz_full_running)
 252		return;
 253
 254	preempt_disable();
 255	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 256		tick_nohz_full_kick_cpu(cpu);
 257	preempt_enable();
 258}
 259
 260static void tick_nohz_dep_set_all(atomic_t *dep,
 261				  enum tick_dep_bits bit)
 262{
 263	int prev;
 264
 265	prev = atomic_fetch_or(dep, BIT(bit));
 266	if (!prev)
 267		tick_nohz_full_kick_all();
 268}
 269
 270/*
 271 * Set a global tick dependency. Used by perf events that rely on freq and
 272 * by unstable clock.
 273 */
 274void tick_nohz_dep_set(enum tick_dep_bits bit)
 275{
 276	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 277}
 278
 279void tick_nohz_dep_clear(enum tick_dep_bits bit)
 280{
 281	atomic_andnot(BIT(bit), &tick_dep_mask);
 282}
 283
 284/*
 285 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 286 * manage events throttling.
 287 */
 288void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 289{
 290	int prev;
 291	struct tick_sched *ts;
 292
 293	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 294
 295	prev = atomic_fetch_or(&ts->tick_dep_mask, BIT(bit));
 296	if (!prev) {
 297		preempt_disable();
 298		/* Perf needs local kick that is NMI safe */
 299		if (cpu == smp_processor_id()) {
 300			tick_nohz_full_kick();
 301		} else {
 302			/* Remote irq work not NMI-safe */
 303			if (!WARN_ON_ONCE(in_nmi()))
 304				tick_nohz_full_kick_cpu(cpu);
 305		}
 306		preempt_enable();
 307	}
 308}
 
 309
 310void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 311{
 312	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 313
 314	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 315}
 
 316
 317/*
 318 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 319 * per task timers.
 320 */
 321void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 322{
 323	/*
 324	 * We could optimize this with just kicking the target running the task
 325	 * if that noise matters for nohz full users.
 326	 */
 327	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 328}
 
 329
 330void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 331{
 332	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 333}
 
 334
 335/*
 336 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 337 * per process timers.
 338 */
 339void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 
 340{
 341	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 
 
 
 
 
 
 
 
 
 
 342}
 343
 344void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 345{
 346	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 347}
 348
 349/*
 350 * Re-evaluate the need for the tick as we switch the current task.
 351 * It might need the tick due to per task/process properties:
 352 * perf events, posix cpu timers, ...
 353 */
 354void __tick_nohz_task_switch(void)
 355{
 356	unsigned long flags;
 357	struct tick_sched *ts;
 358
 359	local_irq_save(flags);
 360
 361	if (!tick_nohz_full_cpu(smp_processor_id()))
 362		goto out;
 363
 364	ts = this_cpu_ptr(&tick_cpu_sched);
 365
 366	if (ts->tick_stopped) {
 367		if (atomic_read(&current->tick_dep_mask) ||
 368		    atomic_read(&current->signal->tick_dep_mask))
 369			tick_nohz_full_kick();
 370	}
 371out:
 372	local_irq_restore(flags);
 373}
 374
 375/* Parse the boot-time nohz CPU list from the kernel parameters. */
 376static int __init tick_nohz_full_setup(char *str)
 377{
 378	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 379	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
 380		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
 381		free_bootmem_cpumask_var(tick_nohz_full_mask);
 382		return 1;
 383	}
 384	tick_nohz_full_running = true;
 385
 386	return 1;
 387}
 388__setup("nohz_full=", tick_nohz_full_setup);
 389
 390static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
 391				       unsigned long action,
 392				       void *hcpu)
 393{
 394	unsigned int cpu = (unsigned long)hcpu;
 395
 396	switch (action & ~CPU_TASKS_FROZEN) {
 397	case CPU_DOWN_PREPARE:
 398		/*
 399		 * The boot CPU handles housekeeping duty (unbound timers,
 400		 * workqueues, timekeeping, ...) on behalf of full dynticks
 401		 * CPUs. It must remain online when nohz full is enabled.
 402		 */
 403		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 404			return NOTIFY_BAD;
 405		break;
 406	}
 407	return NOTIFY_OK;
 408}
 409
 410static int tick_nohz_init_all(void)
 411{
 412	int err = -1;
 413
 414#ifdef CONFIG_NO_HZ_FULL_ALL
 415	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
 416		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
 417		return err;
 418	}
 419	err = 0;
 420	cpumask_setall(tick_nohz_full_mask);
 421	tick_nohz_full_running = true;
 422#endif
 423	return err;
 424}
 425
 426void __init tick_nohz_init(void)
 427{
 428	int cpu;
 429
 430	if (!tick_nohz_full_running) {
 431		if (tick_nohz_init_all() < 0)
 432			return;
 433	}
 434
 435	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
 436		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
 437		cpumask_clear(tick_nohz_full_mask);
 438		tick_nohz_full_running = false;
 439		return;
 440	}
 441
 442	/*
 443	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 444	 * locking contexts. But then we need irq work to raise its own
 445	 * interrupts to avoid circular dependency on the tick
 446	 */
 447	if (!arch_irq_work_has_interrupt()) {
 448		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 449		cpumask_clear(tick_nohz_full_mask);
 450		cpumask_copy(housekeeping_mask, cpu_possible_mask);
 451		tick_nohz_full_running = false;
 452		return;
 453	}
 454
 455	cpu = smp_processor_id();
 456
 457	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 458		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
 459			cpu);
 460		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 
 
 
 461	}
 462
 463	cpumask_andnot(housekeeping_mask,
 464		       cpu_possible_mask, tick_nohz_full_mask);
 465
 466	for_each_cpu(cpu, tick_nohz_full_mask)
 467		context_tracking_cpu_set(cpu);
 468
 469	cpu_notifier(tick_nohz_cpu_down_callback, 0);
 
 
 
 470	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 471		cpumask_pr_args(tick_nohz_full_mask));
 472
 473	/*
 474	 * We need at least one CPU to handle housekeeping work such
 475	 * as timekeeping, unbound timers, workqueues, ...
 476	 */
 477	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
 478}
 479#endif
 480
 481/*
 482 * NOHZ - aka dynamic tick functionality
 483 */
 484#ifdef CONFIG_NO_HZ_COMMON
 485/*
 486 * NO HZ enabled ?
 487 */
 488bool tick_nohz_enabled __read_mostly  = true;
 489unsigned long tick_nohz_active  __read_mostly;
 490/*
 491 * Enable / Disable tickless mode
 492 */
 493static int __init setup_tick_nohz(char *str)
 494{
 495	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 496}
 497
 498__setup("nohz=", setup_tick_nohz);
 499
 500int tick_nohz_tick_stopped(void)
 
 
 
 
 
 
 
 501{
 502	return __this_cpu_read(tick_cpu_sched.tick_stopped);
 
 
 503}
 504
 505/**
 506 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 
 507 *
 508 * Called from interrupt entry when the CPU was idle
 509 *
 510 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 511 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 512 * value. We do this unconditionally on any cpu, as we don't know whether the
 513 * cpu, which has the update task assigned is in a long sleep.
 514 */
 515static void tick_nohz_update_jiffies(ktime_t now)
 516{
 517	unsigned long flags;
 518
 519	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 520
 521	local_irq_save(flags);
 522	tick_do_update_jiffies64(now);
 523	local_irq_restore(flags);
 524
 525	touch_softlockup_watchdog_sched();
 526}
 527
 528/*
 529 * Updates the per cpu time idle statistics counters
 530 */
 531static void
 532update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 533{
 534	ktime_t delta;
 535
 536	if (ts->idle_active) {
 537		delta = ktime_sub(now, ts->idle_entrytime);
 538		if (nr_iowait_cpu(cpu) > 0)
 539			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 540		else
 541			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 542		ts->idle_entrytime = now;
 543	}
 544
 545	if (last_update_time)
 546		*last_update_time = ktime_to_us(now);
 547
 
 
 
 
 
 
 
 
 
 
 
 548}
 549
 550static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 551{
 552	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 553	ts->idle_active = 0;
 
 
 554
 555	sched_clock_idle_wakeup_event(0);
 556}
 557
 558static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
 
 559{
 560	ktime_t now = ktime_get();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 561
 562	ts->idle_entrytime = now;
 563	ts->idle_active = 1;
 564	sched_clock_idle_sleep_event();
 565	return now;
 566}
 567
 568/**
 569 * get_cpu_idle_time_us - get the total idle time of a cpu
 570 * @cpu: CPU number to query
 571 * @last_update_time: variable to store update time in. Do not update
 572 * counters if NULL.
 573 *
 574 * Return the cummulative idle time (since boot) for a given
 575 * CPU, in microseconds.
 
 
 
 576 *
 577 * This time is measured via accounting rather than sampling,
 578 * and is as accurate as ktime_get() is.
 579 *
 580 * This function returns -1 if NOHZ is not enabled.
 581 */
 582u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 583{
 584	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 585	ktime_t now, idle;
 586
 587	if (!tick_nohz_active)
 588		return -1;
 589
 590	now = ktime_get();
 591	if (last_update_time) {
 592		update_ts_time_stats(cpu, ts, now, last_update_time);
 593		idle = ts->idle_sleeptime;
 594	} else {
 595		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 596			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 597
 598			idle = ktime_add(ts->idle_sleeptime, delta);
 599		} else {
 600			idle = ts->idle_sleeptime;
 601		}
 602	}
 603
 604	return ktime_to_us(idle);
 605
 
 
 606}
 607EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 608
 609/**
 610 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 611 * @cpu: CPU number to query
 612 * @last_update_time: variable to store update time in. Do not update
 613 * counters if NULL.
 614 *
 615 * Return the cummulative iowait time (since boot) for a given
 616 * CPU, in microseconds.
 
 
 
 617 *
 618 * This time is measured via accounting rather than sampling,
 619 * and is as accurate as ktime_get() is.
 620 *
 621 * This function returns -1 if NOHZ is not enabled.
 622 */
 623u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 624{
 625	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 626	ktime_t now, iowait;
 627
 628	if (!tick_nohz_active)
 629		return -1;
 630
 631	now = ktime_get();
 632	if (last_update_time) {
 633		update_ts_time_stats(cpu, ts, now, last_update_time);
 634		iowait = ts->iowait_sleeptime;
 635	} else {
 636		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 637			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 638
 639			iowait = ktime_add(ts->iowait_sleeptime, delta);
 640		} else {
 641			iowait = ts->iowait_sleeptime;
 642		}
 643	}
 644
 645	return ktime_to_us(iowait);
 646}
 647EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 648
 649static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 650{
 651	hrtimer_cancel(&ts->sched_timer);
 652	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 653
 654	/* Forward the time to expire in the future */
 655	hrtimer_forward(&ts->sched_timer, now, tick_period);
 656
 657	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 658		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 659	else
 
 660		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 
 
 
 
 
 
 
 661}
 662
 663static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
 664					 ktime_t now, int cpu)
 665{
 666	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 667	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 668	unsigned long seq, basejiff;
 669	ktime_t	tick;
 
 
 
 
 
 
 
 670
 671	/* Read jiffies and the time when jiffies were updated last */
 672	do {
 673		seq = read_seqbegin(&jiffies_lock);
 674		basemono = last_jiffies_update.tv64;
 675		basejiff = jiffies;
 676	} while (read_seqretry(&jiffies_lock, seq));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677	ts->last_jiffies = basejiff;
 
 678
 679	if (rcu_needs_cpu(basemono, &next_rcu) ||
 680	    arch_needs_cpu() || irq_work_needs_cpu()) {
 
 
 
 
 
 
 
 
 
 
 681		next_tick = basemono + TICK_NSEC;
 682	} else {
 683		/*
 684		 * Get the next pending timer. If high resolution
 685		 * timers are enabled this only takes the timer wheel
 686		 * timers into account. If high resolution timers are
 687		 * disabled this also looks at the next expiring
 688		 * hrtimer.
 689		 */
 690		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 691		ts->next_timer = next_tmr;
 692		/* Take the next rcu event into account */
 693		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 694	}
 695
 
 
 
 
 696	/*
 697	 * If the tick is due in the next period, keep it ticking or
 698	 * force prod the timer.
 699	 */
 700	delta = next_tick - basemono;
 701	if (delta <= (u64)TICK_NSEC) {
 702		tick.tv64 = 0;
 703		/*
 704		 * We've not stopped the tick yet, and there's a timer in the
 705		 * next period, so no point in stopping it either, bail.
 706		 */
 707		if (!ts->tick_stopped)
 708			goto out;
 709
 710		/*
 711		 * If, OTOH, we did stop it, but there's a pending (expired)
 712		 * timer reprogram the timer hardware to fire now.
 713		 *
 714		 * We will not restart the tick proper, just prod the timer
 715		 * hardware into firing an interrupt to process the pending
 716		 * timers. Just like tick_irq_exit() will not restart the tick
 717		 * for 'normal' interrupts.
 718		 *
 719		 * Only once we exit the idle loop will we re-enable the tick,
 720		 * see tick_nohz_idle_exit().
 721		 */
 722		if (delta == 0) {
 723			tick_nohz_restart(ts, now);
 724			goto out;
 725		}
 726	}
 727
 728	/*
 729	 * If this cpu is the one which updates jiffies, then give up
 730	 * the assignment and let it be taken by the cpu which runs
 731	 * the tick timer next, which might be this cpu as well. If we
 732	 * don't drop this here the jiffies might be stale and
 733	 * do_timer() never invoked. Keep track of the fact that it
 734	 * was the one which had the do_timer() duty last. If this cpu
 735	 * is the one which had the do_timer() duty last, we limit the
 736	 * sleep time to the timekeeping max_deferement value.
 737	 * Otherwise we can sleep as long as we want.
 738	 */
 739	delta = timekeeping_max_deferment();
 740	if (cpu == tick_do_timer_cpu) {
 741		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 742		ts->do_timer_last = 1;
 743	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 744		delta = KTIME_MAX;
 745		ts->do_timer_last = 0;
 746	} else if (!ts->do_timer_last) {
 747		delta = KTIME_MAX;
 748	}
 749
 750#ifdef CONFIG_NO_HZ_FULL
 751	/* Limit the tick delta to the maximum scheduler deferment */
 752	if (!ts->inidle)
 753		delta = min(delta, scheduler_tick_max_deferment());
 754#endif
 755
 756	/* Calculate the next expiry time */
 757	if (delta < (KTIME_MAX - basemono))
 758		expires = basemono + delta;
 759	else
 760		expires = KTIME_MAX;
 761
 762	expires = min_t(u64, expires, next_tick);
 763	tick.tv64 = expires;
 
 
 
 
 
 
 
 
 
 
 
 
 764
 765	/* Skip reprogram of event if its not changed */
 766	if (ts->tick_stopped && (expires == dev->next_event.tv64))
 767		goto out;
 768
 769	/*
 770	 * nohz_stop_sched_tick can be called several times before
 771	 * the nohz_restart_sched_tick is called. This happens when
 772	 * interrupts arrive which do not cause a reschedule. In the
 773	 * first call we save the current tick time, so we can restart
 774	 * the scheduler tick in nohz_restart_sched_tick.
 775	 */
 776	if (!ts->tick_stopped) {
 777		nohz_balance_enter_idle(cpu);
 778		calc_load_enter_idle();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779
 780		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 781		ts->tick_stopped = 1;
 782		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 783	}
 784
 
 
 785	/*
 786	 * If the expiration time == KTIME_MAX, then we simply stop
 787	 * the tick timer.
 788	 */
 789	if (unlikely(expires == KTIME_MAX)) {
 790		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 791			hrtimer_cancel(&ts->sched_timer);
 792		goto out;
 
 
 
 
 
 
 
 793	}
 
 794
 795	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 796		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
 
 
 
 
 
 
 
 
 797	else
 798		tick_program_event(tick, 1);
 799out:
 800	/* Update the estimated sleep length */
 801	ts->sleep_length = ktime_sub(dev->next_event, now);
 802	return tick;
 803}
 
 804
 805static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
 806{
 807	/* Update jiffies first */
 808	tick_do_update_jiffies64(now);
 809	update_cpu_load_nohz(active);
 810
 811	calc_load_exit_idle();
 812	touch_softlockup_watchdog_sched();
 813	/*
 814	 * Cancel the scheduled timer and restore the tick
 
 815	 */
 816	ts->tick_stopped  = 0;
 817	ts->idle_exittime = now;
 818
 
 
 
 
 
 819	tick_nohz_restart(ts, now);
 820}
 821
 822static void tick_nohz_full_update_tick(struct tick_sched *ts)
 
 823{
 824#ifdef CONFIG_NO_HZ_FULL
 825	int cpu = smp_processor_id();
 826
 827	if (!tick_nohz_full_cpu(cpu))
 
 
 
 
 
 
 
 
 
 828		return;
 829
 830	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 831		return;
 832
 833	if (can_stop_full_tick(ts))
 834		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
 835	else if (ts->tick_stopped)
 836		tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
 837#endif
 838}
 839
 840static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 
 
 
 
 
 
 
 
 
 
 841{
 842	/*
 843	 * If this cpu is offline and it is the one which updates
 844	 * jiffies, then give up the assignment and let it be taken by
 845	 * the cpu which runs the tick timer next. If we don't drop
 846	 * this here the jiffies might be stale and do_timer() never
 847	 * invoked.
 848	 */
 849	if (unlikely(!cpu_online(cpu))) {
 850		if (cpu == tick_do_timer_cpu)
 851			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 852		return false;
 
 
 
 
 
 
 853	}
 854
 855	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
 856		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
 857		return false;
 858	}
 859
 860	if (need_resched())
 
 861		return false;
 862
 863	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 864		static int ratelimit;
 
 865
 866		if (ratelimit < 10 &&
 867		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 868			pr_warn("NOHZ: local_softirq_pending %02x\n",
 869				(unsigned int) local_softirq_pending());
 870			ratelimit++;
 871		}
 
 
 
 
 
 
 
 
 872		return false;
 873	}
 874
 875	if (tick_nohz_full_enabled()) {
 
 
 876		/*
 877		 * Keep the tick alive to guarantee timekeeping progression
 878		 * if there are full dynticks CPUs around
 879		 */
 880		if (tick_do_timer_cpu == cpu)
 881			return false;
 882		/*
 883		 * Boot safety: make sure the timekeeping duty has been
 884		 * assigned before entering dyntick-idle mode,
 885		 */
 886		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 887			return false;
 888	}
 889
 890	return true;
 891}
 892
 893static void __tick_nohz_idle_enter(struct tick_sched *ts)
 
 
 
 
 
 894{
 895	ktime_t now, expires;
 896	int cpu = smp_processor_id();
 
 897
 898	now = tick_nohz_start_idle(ts);
 
 
 
 
 
 
 
 
 
 899
 900	if (can_stop_idle_tick(cpu, ts)) {
 901		int was_stopped = ts->tick_stopped;
 902
 903		ts->idle_calls++;
 
 904
 905		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
 906		if (expires.tv64 > 0LL) {
 907			ts->idle_sleeps++;
 908			ts->idle_expires = expires;
 909		}
 910
 911		if (!was_stopped && ts->tick_stopped)
 912			ts->idle_jiffies = ts->last_jiffies;
 
 
 
 
 913	}
 914}
 915
 
 
 
 
 
 916/**
 917 * tick_nohz_idle_enter - stop the idle tick from the idle task
 918 *
 919 * When the next event is more than a tick into the future, stop the idle tick
 920 * Called when we start the idle loop.
 921 *
 922 * The arch is responsible of calling:
 923 *
 924 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 925 *  to sleep.
 926 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
 927 */
 928void tick_nohz_idle_enter(void)
 929{
 930	struct tick_sched *ts;
 931
 932	WARN_ON_ONCE(irqs_disabled());
 933
 934	/*
 935 	 * Update the idle state in the scheduler domain hierarchy
 936 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 937 	 * State will be updated to busy during the first busy tick after
 938 	 * exiting idle.
 939 	 */
 940	set_cpu_sd_state_idle();
 941
 942	local_irq_disable();
 943
 944	ts = this_cpu_ptr(&tick_cpu_sched);
 945	ts->inidle = 1;
 946	__tick_nohz_idle_enter(ts);
 
 
 
 947
 948	local_irq_enable();
 949}
 950
 951/**
 952 * tick_nohz_irq_exit - update next tick event from interrupt exit
 
 
 
 
 
 
 
 
 
 
 
 953 *
 954 * When an interrupt fires while we are idle and it doesn't cause
 955 * a reschedule, it may still add, modify or delete a timer, enqueue
 956 * an RCU callback, etc...
 957 * So we need to re-calculate and reprogram the next tick event.
 958 */
 959void tick_nohz_irq_exit(void)
 960{
 961	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 962
 963	if (ts->inidle)
 964		__tick_nohz_idle_enter(ts);
 965	else
 966		tick_nohz_full_update_tick(ts);
 967}
 968
 969/**
 970 * tick_nohz_get_sleep_length - return the length of the current sleep
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971 *
 972 * Called from power state control code with interrupts disabled
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973 */
 974ktime_t tick_nohz_get_sleep_length(void)
 975{
 
 976	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 
 
 
 
 
 
 
 
 
 
 977
 978	return ts->sleep_length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979}
 980
 981static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982{
 983#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 984	unsigned long ticks;
 985
 986	if (vtime_accounting_cpu_enabled())
 
 
 987		return;
 988	/*
 989	 * We stopped the tick in idle. Update process times would miss the
 990	 * time we slept as update_process_times does only a 1 tick
 991	 * accounting. Enforce that this is accounted to idle !
 992	 */
 993	ticks = jiffies - ts->idle_jiffies;
 994	/*
 995	 * We might be one off. Do not randomly account a huge number of ticks!
 996	 */
 997	if (ticks && ticks < LONG_MAX)
 998		account_idle_ticks(ticks);
 999#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000}
1001
1002/**
1003 * tick_nohz_idle_exit - restart the idle tick from the idle task
 
 
 
 
 
 
 
 
 
 
 
 
1004 *
1005 * Restart the idle tick when the CPU is woken up from idle
1006 * This also exit the RCU extended quiescent state. The CPU
1007 * can use RCU again after this function is called.
1008 */
1009void tick_nohz_idle_exit(void)
1010{
1011	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
1012	ktime_t now;
1013
1014	local_irq_disable();
1015
1016	WARN_ON_ONCE(!ts->inidle);
 
1017
1018	ts->inidle = 0;
 
 
1019
1020	if (ts->idle_active || ts->tick_stopped)
1021		now = ktime_get();
1022
1023	if (ts->idle_active)
1024		tick_nohz_stop_idle(ts, now);
1025
1026	if (ts->tick_stopped) {
1027		tick_nohz_restart_sched_tick(ts, now, 0);
1028		tick_nohz_account_idle_ticks(ts);
1029	}
1030
1031	local_irq_enable();
1032}
1033
1034/*
1035 * The nohz low res interrupt handler
 
 
 
1036 */
1037static void tick_nohz_handler(struct clock_event_device *dev)
1038{
1039	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1040	struct pt_regs *regs = get_irq_regs();
1041	ktime_t now = ktime_get();
1042
1043	dev->next_event.tv64 = KTIME_MAX;
1044
1045	tick_sched_do_timer(now);
1046	tick_sched_handle(ts, regs);
1047
1048	/* No need to reprogram if we are running tickless  */
1049	if (unlikely(ts->tick_stopped))
1050		return;
1051
1052	hrtimer_forward(&ts->sched_timer, now, tick_period);
1053	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1054}
1055
1056static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1057{
1058	if (!tick_nohz_enabled)
1059		return;
1060	ts->nohz_mode = mode;
1061	/* One update is enough */
1062	if (!test_and_set_bit(0, &tick_nohz_active))
1063		timers_update_migration(true);
1064}
1065
1066/**
1067 * tick_nohz_switch_to_nohz - switch to nohz mode
1068 */
1069static void tick_nohz_switch_to_nohz(void)
1070{
1071	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1072	ktime_t next;
1073
1074	if (!tick_nohz_enabled)
1075		return;
1076
1077	if (tick_switch_to_oneshot(tick_nohz_handler))
1078		return;
1079
1080	/*
1081	 * Recycle the hrtimer in ts, so we can share the
1082	 * hrtimer_forward with the highres code.
1083	 */
1084	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1085	/* Get the next period */
1086	next = tick_init_jiffy_update();
1087
1088	hrtimer_set_expires(&ts->sched_timer, next);
1089	hrtimer_forward_now(&ts->sched_timer, tick_period);
1090	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1091	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1092}
1093
1094/*
1095 * When NOHZ is enabled and the tick is stopped, we need to kick the
1096 * tick timer from irq_enter() so that the jiffies update is kept
1097 * alive during long running softirqs. That's ugly as hell, but
1098 * correctness is key even if we need to fix the offending softirq in
1099 * the first place.
1100 *
1101 * Note, this is different to tick_nohz_restart. We just kick the
1102 * timer and do not touch the other magic bits which need to be done
1103 * when idle is left.
1104 */
1105static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1106{
1107#if 0
1108	/* Switch back to 2.6.27 behaviour */
1109	ktime_t delta;
1110
1111	/*
1112	 * Do not touch the tick device, when the next expiry is either
1113	 * already reached or less/equal than the tick period.
1114	 */
1115	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1116	if (delta.tv64 <= tick_period.tv64)
1117		return;
1118
1119	tick_nohz_restart(ts, now);
1120#endif
1121}
1122
1123static inline void tick_nohz_irq_enter(void)
1124{
1125	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1126	ktime_t now;
1127
1128	if (!ts->idle_active && !ts->tick_stopped)
1129		return;
1130	now = ktime_get();
1131	if (ts->idle_active)
1132		tick_nohz_stop_idle(ts, now);
1133	if (ts->tick_stopped) {
 
 
 
 
 
 
 
1134		tick_nohz_update_jiffies(now);
1135		tick_nohz_kick_tick(ts, now);
1136	}
1137}
1138
1139#else
1140
1141static inline void tick_nohz_switch_to_nohz(void) { }
1142static inline void tick_nohz_irq_enter(void) { }
1143static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1144
1145#endif /* CONFIG_NO_HZ_COMMON */
1146
1147/*
1148 * Called from irq_enter to notify about the possible interruption of idle()
1149 */
1150void tick_irq_enter(void)
1151{
1152	tick_check_oneshot_broadcast_this_cpu();
1153	tick_nohz_irq_enter();
1154}
1155
1156/*
1157 * High resolution timer specific code
1158 */
1159#ifdef CONFIG_HIGH_RES_TIMERS
1160/*
1161 * We rearm the timer until we get disabled by the idle code.
1162 * Called with interrupts disabled.
1163 */
1164static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1165{
1166	struct tick_sched *ts =
1167		container_of(timer, struct tick_sched, sched_timer);
1168	struct pt_regs *regs = get_irq_regs();
1169	ktime_t now = ktime_get();
1170
1171	tick_sched_do_timer(now);
1172
1173	/*
1174	 * Do not call, when we are not in irq context and have
1175	 * no valid regs pointer
1176	 */
1177	if (regs)
1178		tick_sched_handle(ts, regs);
1179
1180	/* No need to reprogram if we are in idle or full dynticks mode */
1181	if (unlikely(ts->tick_stopped))
1182		return HRTIMER_NORESTART;
1183
1184	hrtimer_forward(timer, now, tick_period);
1185
1186	return HRTIMER_RESTART;
1187}
1188
1189static int sched_skew_tick;
1190
1191static int __init skew_tick(char *str)
1192{
1193	get_option(&str, &sched_skew_tick);
1194
1195	return 0;
1196}
1197early_param("skew_tick", skew_tick);
1198
1199/**
1200 * tick_setup_sched_timer - setup the tick emulation timer
 
1201 */
1202void tick_setup_sched_timer(void)
1203{
1204	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1205	ktime_t now = ktime_get();
1206
1207	/*
1208	 * Emulate tick processing via per-CPU hrtimers:
1209	 */
1210	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1211	ts->sched_timer.function = tick_sched_timer;
1212
1213	/* Get the next period (per cpu) */
 
 
 
 
 
1214	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1215
1216	/* Offset the tick to avert jiffies_lock contention. */
1217	if (sched_skew_tick) {
1218		u64 offset = ktime_to_ns(tick_period) >> 1;
1219		do_div(offset, num_possible_cpus());
1220		offset *= smp_processor_id();
1221		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1222	}
1223
1224	hrtimer_forward(&ts->sched_timer, now, tick_period);
1225	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1226	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
 
 
 
1227}
1228#endif /* HIGH_RES_TIMERS */
1229
1230#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1231void tick_cancel_sched_timer(int cpu)
 
 
 
1232{
 
1233	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
 
 
1234
1235# ifdef CONFIG_HIGH_RES_TIMERS
1236	if (ts->sched_timer.base)
1237		hrtimer_cancel(&ts->sched_timer);
1238# endif
1239
 
 
 
 
 
 
 
 
 
 
 
1240	memset(ts, 0, sizeof(*ts));
 
 
 
 
1241}
1242#endif
1243
1244/**
1245 * Async notification about clocksource changes
1246 */
1247void tick_clock_notify(void)
1248{
1249	int cpu;
1250
1251	for_each_possible_cpu(cpu)
1252		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1253}
1254
1255/*
1256 * Async notification about clock event changes
1257 */
1258void tick_oneshot_notify(void)
1259{
1260	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1261
1262	set_bit(0, &ts->check_clocks);
1263}
1264
1265/**
1266 * Check, if a change happened, which makes oneshot possible.
1267 *
1268 * Called cyclic from the hrtimer softirq (driven by the timer
1269 * softirq) allow_nohz signals, that we can switch into low-res nohz
1270 * mode, because high resolution timers are disabled (either compile
1271 * or runtime). Called with interrupts disabled.
1272 */
1273int tick_check_oneshot_change(int allow_nohz)
1274{
1275	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1276
1277	if (!test_and_clear_bit(0, &ts->check_clocks))
1278		return 0;
1279
1280	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1281		return 0;
1282
1283	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1284		return 0;
1285
1286	if (!allow_nohz)
1287		return 1;
1288
1289	tick_nohz_switch_to_nohz();
1290	return 0;
1291}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  NOHZ implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
 
 
  10 */
  11#include <linux/compiler.h>
  12#include <linux/cpu.h>
  13#include <linux/err.h>
  14#include <linux/hrtimer.h>
  15#include <linux/interrupt.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/percpu.h>
  18#include <linux/nmi.h>
  19#include <linux/profile.h>
  20#include <linux/sched/signal.h>
  21#include <linux/sched/clock.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/nohz.h>
  24#include <linux/sched/loadavg.h>
  25#include <linux/module.h>
  26#include <linux/irq_work.h>
  27#include <linux/posix-timers.h>
  28#include <linux/context_tracking.h>
  29#include <linux/mm.h>
  30
  31#include <asm/irq_regs.h>
  32
  33#include "tick-internal.h"
  34
  35#include <trace/events/timer.h>
  36
  37/*
  38 * Per-CPU nohz control structure
  39 */
  40static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  41
  42struct tick_sched *tick_get_tick_sched(int cpu)
  43{
  44	return &per_cpu(tick_cpu_sched, cpu);
  45}
  46
 
  47/*
  48 * The time when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 1;
  60	ktime_t delta, nextp;
  61
  62	/*
  63	 * 64-bit can do a quick check without holding the jiffies lock and
  64	 * without looking at the sequence count. The smp_load_acquire()
  65	 * pairs with the update done later in this function.
  66	 *
  67	 * 32-bit cannot do that because the store of 'tick_next_period'
  68	 * consists of two 32-bit stores, and the first store could be
  69	 * moved by the CPU to a random point in the future.
  70	 */
  71	if (IS_ENABLED(CONFIG_64BIT)) {
  72		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73			return;
  74	} else {
  75		unsigned int seq;
  76
  77		/*
  78		 * Avoid contention on 'jiffies_lock' and protect the quick
  79		 * check with the sequence count.
  80		 */
  81		do {
  82			seq = read_seqcount_begin(&jiffies_seq);
  83			nextp = tick_next_period;
  84		} while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86		if (ktime_before(now, nextp))
  87			return;
  88	}
  89
  90	/* Quick check failed, i.e. update is required. */
  91	raw_spin_lock(&jiffies_lock);
  92	/*
  93	 * Re-evaluate with the lock held. Another CPU might have done the
  94	 * update already.
  95	 */
  96	if (ktime_before(now, tick_next_period)) {
  97		raw_spin_unlock(&jiffies_lock);
  98		return;
  99	}
 100
 101	write_seqcount_begin(&jiffies_seq);
 
 102
 103	delta = ktime_sub(now, tick_next_period);
 104	if (unlikely(delta >= TICK_NSEC)) {
 105		/* Slow path for long idle sleep times */
 106		s64 incr = TICK_NSEC;
 107
 108		ticks += ktime_divns(delta, incr);
 
 
 109
 110		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111						   incr * ticks);
 112	} else {
 113		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114						   TICK_NSEC);
 115	}
 116
 117	/* Advance jiffies to complete the 'jiffies_seq' protected job */
 118	jiffies_64 += ticks;
 119
 120	/* Keep the tick_next_period variable up to date */
 121	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 
 
 122
 123	if (IS_ENABLED(CONFIG_64BIT)) {
 124		/*
 125		 * Pairs with smp_load_acquire() in the lockless quick
 126		 * check above, and ensures that the update to 'jiffies_64' is
 127		 * not reordered vs. the store to 'tick_next_period', neither
 128		 * by the compiler nor by the CPU.
 129		 */
 130		smp_store_release(&tick_next_period, nextp);
 131	} else {
 132		/*
 133		 * A plain store is good enough on 32-bit, as the quick check
 134		 * above is protected by the sequence count.
 135		 */
 136		tick_next_period = nextp;
 137	}
 138
 139	/*
 140	 * Release the sequence count. calc_global_load() below is not
 141	 * protected by it, but 'jiffies_lock' needs to be held to prevent
 142	 * concurrent invocations.
 143	 */
 144	write_seqcount_end(&jiffies_seq);
 145
 146	calc_global_load();
 147
 148	raw_spin_unlock(&jiffies_lock);
 149	update_wall_time();
 150}
 151
 152/*
 153 * Initialize and return retrieve the jiffies update.
 154 */
 155static ktime_t tick_init_jiffy_update(void)
 156{
 157	ktime_t period;
 158
 159	raw_spin_lock(&jiffies_lock);
 160	write_seqcount_begin(&jiffies_seq);
 161
 162	/* Have we started the jiffies update yet ? */
 163	if (last_jiffies_update == 0) {
 164		u32 rem;
 165
 166		/*
 167		 * Ensure that the tick is aligned to a multiple of
 168		 * TICK_NSEC.
 169		 */
 170		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
 171		if (rem)
 172			tick_next_period += TICK_NSEC - rem;
 173
 174		last_jiffies_update = tick_next_period;
 175	}
 176	period = last_jiffies_update;
 177
 178	write_seqcount_end(&jiffies_seq);
 179	raw_spin_unlock(&jiffies_lock);
 180
 181	return period;
 182}
 183
 184static inline int tick_sched_flag_test(struct tick_sched *ts,
 185				       unsigned long flag)
 186{
 187	return !!(ts->flags & flag);
 188}
 189
 190static inline void tick_sched_flag_set(struct tick_sched *ts,
 191				       unsigned long flag)
 192{
 193	lockdep_assert_irqs_disabled();
 194	ts->flags |= flag;
 195}
 196
 197static inline void tick_sched_flag_clear(struct tick_sched *ts,
 198					 unsigned long flag)
 199{
 200	lockdep_assert_irqs_disabled();
 201	ts->flags &= ~flag;
 202}
 203
 204#define MAX_STALLED_JIFFIES 5
 205
 206static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 207{
 208	int tick_cpu, cpu = smp_processor_id();
 209
 
 210	/*
 211	 * Check if the do_timer duty was dropped. We don't care about
 212	 * concurrency: This happens only when the CPU in charge went
 213	 * into a long sleep. If two CPUs happen to assign themselves to
 214	 * this duty, then the jiffies update is still serialized by
 215	 * 'jiffies_lock'.
 216	 *
 217	 * If nohz_full is enabled, this should not happen because the
 218	 * 'tick_do_timer_cpu' CPU never relinquishes.
 219	 */
 220	tick_cpu = READ_ONCE(tick_do_timer_cpu);
 221
 222	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
 223#ifdef CONFIG_NO_HZ_FULL
 224		WARN_ON_ONCE(tick_nohz_full_running);
 225#endif
 226		WRITE_ONCE(tick_do_timer_cpu, cpu);
 227		tick_cpu = cpu;
 228	}
 229
 230	/* Check if jiffies need an update */
 231	if (tick_cpu == cpu)
 232		tick_do_update_jiffies64(now);
 233
 234	/*
 235	 * If the jiffies update stalled for too long (timekeeper in stop_machine()
 236	 * or VMEXIT'ed for several msecs), force an update.
 237	 */
 238	if (ts->last_tick_jiffies != jiffies) {
 239		ts->stalled_jiffies = 0;
 240		ts->last_tick_jiffies = READ_ONCE(jiffies);
 241	} else {
 242		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
 243			tick_do_update_jiffies64(now);
 244			ts->stalled_jiffies = 0;
 245			ts->last_tick_jiffies = READ_ONCE(jiffies);
 246		}
 247	}
 248
 249	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
 250		ts->got_idle_tick = 1;
 251}
 252
 253static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 254{
 
 255	/*
 256	 * When we are idle and the tick is stopped, we have to touch
 257	 * the watchdog as we might not schedule for a really long
 258	 * time. This happens on completely idle SMP systems while
 259	 * waiting on the login prompt. We also increment the "start of
 260	 * idle" jiffy stamp so the idle accounting adjustment we do
 261	 * when we go busy again does not account too many ticks.
 262	 */
 263	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
 264	    tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 265		touch_softlockup_watchdog_sched();
 266		if (is_idle_task(current))
 267			ts->idle_jiffies++;
 268		/*
 269		 * In case the current tick fired too early past its expected
 270		 * expiration, make sure we don't bypass the next clock reprogramming
 271		 * to the same deadline.
 272		 */
 273		ts->next_tick = 0;
 274	}
 275
 276	update_process_times(user_mode(regs));
 277	profile_tick(CPU_PROFILING);
 278}
 279
 280/*
 281 * We rearm the timer until we get disabled by the idle code.
 282 * Called with interrupts disabled.
 283 */
 284static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
 285{
 286	struct tick_sched *ts =	container_of(timer, struct tick_sched, sched_timer);
 287	struct pt_regs *regs = get_irq_regs();
 288	ktime_t now = ktime_get();
 289
 290	tick_sched_do_timer(ts, now);
 291
 292	/*
 293	 * Do not call when we are not in IRQ context and have
 294	 * no valid 'regs' pointer
 295	 */
 296	if (regs)
 297		tick_sched_handle(ts, regs);
 298	else
 299		ts->next_tick = 0;
 300
 301	/*
 302	 * In dynticks mode, tick reprogram is deferred:
 303	 * - to the idle task if in dynticks-idle
 304	 * - to IRQ exit if in full-dynticks.
 305	 */
 306	if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
 307		return HRTIMER_NORESTART;
 308
 309	hrtimer_forward(timer, now, TICK_NSEC);
 310
 311	return HRTIMER_RESTART;
 312}
 313
 314static void tick_sched_timer_cancel(struct tick_sched *ts)
 315{
 316	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
 317		hrtimer_cancel(&ts->sched_timer);
 318	else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
 319		tick_program_event(KTIME_MAX, 1);
 320}
 321
 322#ifdef CONFIG_NO_HZ_FULL
 323cpumask_var_t tick_nohz_full_mask;
 324EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 325bool tick_nohz_full_running;
 326EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 327static atomic_t tick_dep_mask;
 328
 329static bool check_tick_dependency(atomic_t *dep)
 330{
 331	int val = atomic_read(dep);
 332
 333	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 334		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 335		return true;
 336	}
 337
 338	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 339		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 340		return true;
 341	}
 342
 343	if (val & TICK_DEP_MASK_SCHED) {
 344		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 345		return true;
 346	}
 347
 348	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 349		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 350		return true;
 351	}
 352
 353	if (val & TICK_DEP_MASK_RCU) {
 354		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 355		return true;
 356	}
 357
 358	if (val & TICK_DEP_MASK_RCU_EXP) {
 359		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
 360		return true;
 361	}
 362
 363	return false;
 364}
 365
 366static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 367{
 368	lockdep_assert_irqs_disabled();
 369
 370	if (unlikely(!cpu_online(cpu)))
 371		return false;
 372
 373	if (check_tick_dependency(&tick_dep_mask))
 374		return false;
 375
 376	if (check_tick_dependency(&ts->tick_dep_mask))
 377		return false;
 378
 379	if (check_tick_dependency(&current->tick_dep_mask))
 380		return false;
 381
 382	if (check_tick_dependency(&current->signal->tick_dep_mask))
 383		return false;
 384
 385	return true;
 386}
 387
 388static void nohz_full_kick_func(struct irq_work *work)
 389{
 390	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 391}
 392
 393static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 394	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 
 395
 396/*
 397 * Kick this CPU if it's full dynticks in order to force it to
 398 * re-evaluate its dependency on the tick and restart it if necessary.
 399 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 400 * is NMI safe.
 401 */
 402static void tick_nohz_full_kick(void)
 403{
 404	if (!tick_nohz_full_cpu(smp_processor_id()))
 405		return;
 406
 407	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 408}
 409
 410/*
 411 * Kick the CPU if it's full dynticks in order to force it to
 412 * re-evaluate its dependency on the tick and restart it if necessary.
 413 */
 414void tick_nohz_full_kick_cpu(int cpu)
 415{
 416	if (!tick_nohz_full_cpu(cpu))
 417		return;
 418
 419	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 420}
 421
 422static void tick_nohz_kick_task(struct task_struct *tsk)
 423{
 424	int cpu;
 425
 426	/*
 427	 * If the task is not running, run_posix_cpu_timers()
 428	 * has nothing to elapse, and an IPI can then be optimized out.
 429	 *
 430	 * activate_task()                      STORE p->tick_dep_mask
 431	 *   STORE p->on_rq
 432	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
 433	 *   LOCK rq->lock                      LOAD p->on_rq
 434	 *   smp_mb__after_spin_lock()
 435	 *   tick_nohz_task_switch()
 436	 *     LOAD p->tick_dep_mask
 437	 */
 438	if (!sched_task_on_rq(tsk))
 439		return;
 440
 441	/*
 442	 * If the task concurrently migrates to another CPU,
 443	 * we guarantee it sees the new tick dependency upon
 444	 * schedule.
 445	 *
 446	 * set_task_cpu(p, cpu);
 447	 *   STORE p->cpu = @cpu
 448	 * __schedule() (switch to task 'p')
 449	 *   LOCK rq->lock
 450	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
 451	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
 452	 *      LOAD p->tick_dep_mask           LOAD p->cpu
 453	 */
 454	cpu = task_cpu(tsk);
 455
 456	preempt_disable();
 457	if (cpu_online(cpu))
 458		tick_nohz_full_kick_cpu(cpu);
 459	preempt_enable();
 460}
 461
 462/*
 463 * Kick all full dynticks CPUs in order to force these to re-evaluate
 464 * their dependency on the tick and restart it if necessary.
 465 */
 466static void tick_nohz_full_kick_all(void)
 467{
 468	int cpu;
 469
 470	if (!tick_nohz_full_running)
 471		return;
 472
 473	preempt_disable();
 474	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 475		tick_nohz_full_kick_cpu(cpu);
 476	preempt_enable();
 477}
 478
 479static void tick_nohz_dep_set_all(atomic_t *dep,
 480				  enum tick_dep_bits bit)
 481{
 482	int prev;
 483
 484	prev = atomic_fetch_or(BIT(bit), dep);
 485	if (!prev)
 486		tick_nohz_full_kick_all();
 487}
 488
 489/*
 490 * Set a global tick dependency. Used by perf events that rely on freq and
 491 * unstable clocks.
 492 */
 493void tick_nohz_dep_set(enum tick_dep_bits bit)
 494{
 495	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 496}
 497
 498void tick_nohz_dep_clear(enum tick_dep_bits bit)
 499{
 500	atomic_andnot(BIT(bit), &tick_dep_mask);
 501}
 502
 503/*
 504 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 505 * manage event-throttling.
 506 */
 507void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 508{
 509	int prev;
 510	struct tick_sched *ts;
 511
 512	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 513
 514	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 515	if (!prev) {
 516		preempt_disable();
 517		/* Perf needs local kick that is NMI safe */
 518		if (cpu == smp_processor_id()) {
 519			tick_nohz_full_kick();
 520		} else {
 521			/* Remote IRQ work not NMI-safe */
 522			if (!WARN_ON_ONCE(in_nmi()))
 523				tick_nohz_full_kick_cpu(cpu);
 524		}
 525		preempt_enable();
 526	}
 527}
 528EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 529
 530void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 531{
 532	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 533
 534	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 535}
 536EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 537
 538/*
 539 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
 540 * in order to elapse per task timers.
 541 */
 542void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 543{
 544	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
 545		tick_nohz_kick_task(tsk);
 
 
 
 546}
 547EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 548
 549void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 550{
 551	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 552}
 553EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 554
 555/*
 556 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 557 * per process timers.
 558 */
 559void tick_nohz_dep_set_signal(struct task_struct *tsk,
 560			      enum tick_dep_bits bit)
 561{
 562	int prev;
 563	struct signal_struct *sig = tsk->signal;
 564
 565	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
 566	if (!prev) {
 567		struct task_struct *t;
 568
 569		lockdep_assert_held(&tsk->sighand->siglock);
 570		__for_each_thread(sig, t)
 571			tick_nohz_kick_task(t);
 572	}
 573}
 574
 575void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 576{
 577	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 578}
 579
 580/*
 581 * Re-evaluate the need for the tick as we switch the current task.
 582 * It might need the tick due to per task/process properties:
 583 * perf events, posix CPU timers, ...
 584 */
 585void __tick_nohz_task_switch(void)
 586{
 
 587	struct tick_sched *ts;
 588
 
 
 589	if (!tick_nohz_full_cpu(smp_processor_id()))
 590		return;
 591
 592	ts = this_cpu_ptr(&tick_cpu_sched);
 593
 594	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 595		if (atomic_read(&current->tick_dep_mask) ||
 596		    atomic_read(&current->signal->tick_dep_mask))
 597			tick_nohz_full_kick();
 598	}
 
 
 599}
 600
 601/* Get the boot-time nohz CPU list from the kernel parameters. */
 602void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 603{
 604	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 605	cpumask_copy(tick_nohz_full_mask, cpumask);
 
 
 
 
 606	tick_nohz_full_running = true;
 
 
 607}
 
 608
 609bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
 
 
 610{
 611	/*
 612	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
 613	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 614	 * CPUs. It must remain online when nohz full is enabled.
 615	 */
 616	if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
 617		return false;
 618	return true;
 
 
 
 
 
 
 619}
 620
 621static int tick_nohz_cpu_down(unsigned int cpu)
 622{
 623	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 624}
 625
 626void __init tick_nohz_init(void)
 627{
 628	int cpu, ret;
 
 
 
 
 
 629
 630	if (!tick_nohz_full_running)
 
 
 
 631		return;
 
 632
 633	/*
 634	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
 635	 * locking contexts. But then we need IRQ work to raise its own
 636	 * interrupts to avoid circular dependency on the tick.
 637	 */
 638	if (!arch_irq_work_has_interrupt()) {
 639		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
 640		cpumask_clear(tick_nohz_full_mask);
 
 641		tick_nohz_full_running = false;
 642		return;
 643	}
 644
 645	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 646			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 647		cpu = smp_processor_id();
 648
 649		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 650			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 651				"for timekeeping\n", cpu);
 652			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 653		}
 654	}
 655
 
 
 
 656	for_each_cpu(cpu, tick_nohz_full_mask)
 657		ct_cpu_track_user(cpu);
 658
 659	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 660					"kernel/nohz:predown", NULL,
 661					tick_nohz_cpu_down);
 662	WARN_ON(ret < 0);
 663	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 664		cpumask_pr_args(tick_nohz_full_mask));
 
 
 
 
 
 
 665}
 666#endif /* #ifdef CONFIG_NO_HZ_FULL */
 667
 668/*
 669 * NOHZ - aka dynamic tick functionality
 670 */
 671#ifdef CONFIG_NO_HZ_COMMON
 672/*
 673 * NO HZ enabled ?
 674 */
 675bool tick_nohz_enabled __read_mostly  = true;
 676unsigned long tick_nohz_active  __read_mostly;
 677/*
 678 * Enable / Disable tickless mode
 679 */
 680static int __init setup_tick_nohz(char *str)
 681{
 682	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 683}
 684
 685__setup("nohz=", setup_tick_nohz);
 686
 687bool tick_nohz_tick_stopped(void)
 688{
 689	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 690
 691	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 692}
 693
 694bool tick_nohz_tick_stopped_cpu(int cpu)
 695{
 696	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 697
 698	return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 699}
 700
 701/**
 702 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 703 * @now: current ktime_t
 704 *
 705 * Called from interrupt entry when the CPU was idle
 706 *
 707 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 708 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 709 * value. We do this unconditionally on any CPU, as we don't know whether the
 710 * CPU, which has the update task assigned, is in a long sleep.
 711 */
 712static void tick_nohz_update_jiffies(ktime_t now)
 713{
 714	unsigned long flags;
 715
 716	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 717
 718	local_irq_save(flags);
 719	tick_do_update_jiffies64(now);
 720	local_irq_restore(flags);
 721
 722	touch_softlockup_watchdog_sched();
 723}
 724
 725static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 
 
 
 
 726{
 727	ktime_t delta;
 728
 729	if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
 730		return;
 
 
 
 
 
 
 731
 732	delta = ktime_sub(now, ts->idle_entrytime);
 
 733
 734	write_seqcount_begin(&ts->idle_sleeptime_seq);
 735	if (nr_iowait_cpu(smp_processor_id()) > 0)
 736		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 737	else
 738		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 739
 740	ts->idle_entrytime = now;
 741	tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
 742	write_seqcount_end(&ts->idle_sleeptime_seq);
 743
 744	sched_clock_idle_wakeup_event();
 745}
 746
 747static void tick_nohz_start_idle(struct tick_sched *ts)
 748{
 749	write_seqcount_begin(&ts->idle_sleeptime_seq);
 750	ts->idle_entrytime = ktime_get();
 751	tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
 752	write_seqcount_end(&ts->idle_sleeptime_seq);
 753
 754	sched_clock_idle_sleep_event();
 755}
 756
 757static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
 758				 bool compute_delta, u64 *last_update_time)
 759{
 760	ktime_t now, idle;
 761	unsigned int seq;
 762
 763	if (!tick_nohz_active)
 764		return -1;
 765
 766	now = ktime_get();
 767	if (last_update_time)
 768		*last_update_time = ktime_to_us(now);
 769
 770	do {
 771		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
 772
 773		if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
 774			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 775
 776			idle = ktime_add(*sleeptime, delta);
 777		} else {
 778			idle = *sleeptime;
 779		}
 780	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
 781
 782	return ktime_to_us(idle);
 783
 
 
 
 
 784}
 785
 786/**
 787 * get_cpu_idle_time_us - get the total idle time of a CPU
 788 * @cpu: CPU number to query
 789 * @last_update_time: variable to store update time in. Do not update
 790 * counters if NULL.
 791 *
 792 * Return the cumulative idle time (since boot) for a given
 793 * CPU, in microseconds. Note that this is partially broken due to
 794 * the counter of iowait tasks that can be remotely updated without
 795 * any synchronization. Therefore it is possible to observe backward
 796 * values within two consecutive reads.
 797 *
 798 * This time is measured via accounting rather than sampling,
 799 * and is as accurate as ktime_get() is.
 800 *
 801 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
 802 */
 803u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 804{
 805	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806
 807	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
 808				     !nr_iowait_cpu(cpu), last_update_time);
 809}
 810EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 811
 812/**
 813 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 814 * @cpu: CPU number to query
 815 * @last_update_time: variable to store update time in. Do not update
 816 * counters if NULL.
 817 *
 818 * Return the cumulative iowait time (since boot) for a given
 819 * CPU, in microseconds. Note this is partially broken due to
 820 * the counter of iowait tasks that can be remotely updated without
 821 * any synchronization. Therefore it is possible to observe backward
 822 * values within two consecutive reads.
 823 *
 824 * This time is measured via accounting rather than sampling,
 825 * and is as accurate as ktime_get() is.
 826 *
 827 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
 828 */
 829u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 830{
 831	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
 
 
 
 832
 833	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
 834				     nr_iowait_cpu(cpu), last_update_time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 835}
 836EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 837
 838static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 839{
 840	hrtimer_cancel(&ts->sched_timer);
 841	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 842
 843	/* Forward the time to expire in the future */
 844	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 845
 846	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
 847		hrtimer_start_expires(&ts->sched_timer,
 848				      HRTIMER_MODE_ABS_PINNED_HARD);
 849	} else {
 850		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 851	}
 852
 853	/*
 854	 * Reset to make sure the next tick stop doesn't get fooled by past
 855	 * cached clock deadline.
 856	 */
 857	ts->next_tick = 0;
 858}
 859
 860static inline bool local_timer_softirq_pending(void)
 
 861{
 862	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 863}
 864
 865/*
 866 * Read jiffies and the time when jiffies were updated last
 867 */
 868u64 get_jiffies_update(unsigned long *basej)
 869{
 870	unsigned long basejiff;
 871	unsigned int seq;
 872	u64 basemono;
 873
 
 874	do {
 875		seq = read_seqcount_begin(&jiffies_seq);
 876		basemono = last_jiffies_update;
 877		basejiff = jiffies;
 878	} while (read_seqcount_retry(&jiffies_seq, seq));
 879	*basej = basejiff;
 880	return basemono;
 881}
 882
 883/**
 884 * tick_nohz_next_event() - return the clock monotonic based next event
 885 * @ts:		pointer to tick_sched struct
 886 * @cpu:	CPU number
 887 *
 888 * Return:
 889 * *%0		- When the next event is a maximum of TICK_NSEC in the future
 890 *		  and the tick is not stopped yet
 891 * *%next_event	- Next event based on clock monotonic
 892 */
 893static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 894{
 895	u64 basemono, next_tick, delta, expires;
 896	unsigned long basejiff;
 897	int tick_cpu;
 898
 899	basemono = get_jiffies_update(&basejiff);
 900	ts->last_jiffies = basejiff;
 901	ts->timer_expires_base = basemono;
 902
 903	/*
 904	 * Keep the periodic tick, when RCU, architecture or irq_work
 905	 * requests it.
 906	 * Aside of that, check whether the local timer softirq is
 907	 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
 908	 * because there is an already expired timer, so it will request
 909	 * immediate expiry, which rearms the hardware timer with a
 910	 * minimal delta, which brings us back to this place
 911	 * immediately. Lather, rinse and repeat...
 912	 */
 913	if (rcu_needs_cpu() || arch_needs_cpu() ||
 914	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 915		next_tick = basemono + TICK_NSEC;
 916	} else {
 917		/*
 918		 * Get the next pending timer. If high resolution
 919		 * timers are enabled this only takes the timer wheel
 920		 * timers into account. If high resolution timers are
 921		 * disabled this also looks at the next expiring
 922		 * hrtimer.
 923		 */
 924		next_tick = get_next_timer_interrupt(basejiff, basemono);
 925		ts->next_timer = next_tick;
 
 
 926	}
 927
 928	/* Make sure next_tick is never before basemono! */
 929	if (WARN_ON_ONCE(basemono > next_tick))
 930		next_tick = basemono;
 931
 932	/*
 933	 * If the tick is due in the next period, keep it ticking or
 934	 * force prod the timer.
 935	 */
 936	delta = next_tick - basemono;
 937	if (delta <= (u64)TICK_NSEC) {
 
 938		/*
 939		 * We've not stopped the tick yet, and there's a timer in the
 940		 * next period, so no point in stopping it either, bail.
 941		 */
 942		if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
 943			ts->timer_expires = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944			goto out;
 945		}
 946	}
 947
 948	/*
 949	 * If this CPU is the one which had the do_timer() duty last, we limit
 950	 * the sleep time to the timekeeping 'max_deferment' value.
 
 
 
 
 
 
 951	 * Otherwise we can sleep as long as we want.
 952	 */
 953	delta = timekeeping_max_deferment();
 954	tick_cpu = READ_ONCE(tick_do_timer_cpu);
 955	if (tick_cpu != cpu &&
 956	    (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
 
 
 
 
 957		delta = KTIME_MAX;
 
 
 
 
 
 
 
 958
 959	/* Calculate the next expiry time */
 960	if (delta < (KTIME_MAX - basemono))
 961		expires = basemono + delta;
 962	else
 963		expires = KTIME_MAX;
 964
 965	ts->timer_expires = min_t(u64, expires, next_tick);
 966
 967out:
 968	return ts->timer_expires;
 969}
 970
 971static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 972{
 973	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 974	unsigned long basejiff = ts->last_jiffies;
 975	u64 basemono = ts->timer_expires_base;
 976	bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
 977	int tick_cpu;
 978	u64 expires;
 979
 980	/* Make sure we won't be trying to stop it twice in a row. */
 981	ts->timer_expires_base = 0;
 982
 983	/*
 984	 * Now the tick should be stopped definitely - so the timer base needs
 985	 * to be marked idle as well to not miss a newly queued timer.
 986	 */
 987	expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
 988	if (expires > ts->timer_expires) {
 989		/*
 990		 * This path could only happen when the first timer was removed
 991		 * between calculating the possible sleep length and now (when
 992		 * high resolution mode is not active, timer could also be a
 993		 * hrtimer).
 994		 *
 995		 * We have to stick to the original calculated expiry value to
 996		 * not stop the tick for too long with a shallow C-state (which
 997		 * was programmed by cpuidle because of an early next expiration
 998		 * value).
 999		 */
1000		expires = ts->timer_expires;
1001	}
1002
1003	/* If the timer base is not idle, retain the not yet stopped tick. */
1004	if (!timer_idle)
1005		return;
1006
1007	/*
1008	 * If this CPU is the one which updates jiffies, then give up
1009	 * the assignment and let it be taken by the CPU which runs
1010	 * the tick timer next, which might be this CPU as well. If we
1011	 * don't drop this here, the jiffies might be stale and
1012	 * do_timer() never gets invoked. Keep track of the fact that it
1013	 * was the one which had the do_timer() duty last.
1014	 */
1015	tick_cpu = READ_ONCE(tick_do_timer_cpu);
1016	if (tick_cpu == cpu) {
1017		WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1018		tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1019	} else if (tick_cpu != TICK_DO_TIMER_NONE) {
1020		tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1021	}
1022
1023	/* Skip reprogram of event if it's not changed */
1024	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1025		/* Sanity check: make sure clockevent is actually programmed */
1026		if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1027			return;
1028
1029		WARN_ON_ONCE(1);
1030		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
1031			    basemono, ts->next_tick, dev->next_event,
1032			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
1033	}
1034
1035	/*
1036	 * tick_nohz_stop_tick() can be called several times before
1037	 * tick_nohz_restart_sched_tick() is called. This happens when
1038	 * interrupts arrive which do not cause a reschedule. In the first
1039	 * call we save the current tick time, so we can restart the
1040	 * scheduler tick in tick_nohz_restart_sched_tick().
1041	 */
1042	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1043		calc_load_nohz_start();
1044		quiet_vmstat();
1045
1046		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1047		tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1048		trace_tick_stop(1, TICK_DEP_MASK_NONE);
1049	}
1050
1051	ts->next_tick = expires;
1052
1053	/*
1054	 * If the expiration time == KTIME_MAX, then we simply stop
1055	 * the tick timer.
1056	 */
1057	if (unlikely(expires == KTIME_MAX)) {
1058		tick_sched_timer_cancel(ts);
1059		return;
1060	}
1061
1062	if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1063		hrtimer_start(&ts->sched_timer, expires,
1064			      HRTIMER_MODE_ABS_PINNED_HARD);
1065	} else {
1066		hrtimer_set_expires(&ts->sched_timer, expires);
1067		tick_program_event(expires, 1);
1068	}
1069}
1070
1071static void tick_nohz_retain_tick(struct tick_sched *ts)
1072{
1073	ts->timer_expires_base = 0;
1074}
1075
1076#ifdef CONFIG_NO_HZ_FULL
1077static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1078{
1079	if (tick_nohz_next_event(ts, cpu))
1080		tick_nohz_stop_tick(ts, cpu);
1081	else
1082		tick_nohz_retain_tick(ts);
 
 
 
 
1083}
1084#endif /* CONFIG_NO_HZ_FULL */
1085
1086static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1087{
1088	/* Update jiffies first */
1089	tick_do_update_jiffies64(now);
 
1090
 
 
1091	/*
1092	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1093	 * the clock forward checks in the enqueue path:
1094	 */
1095	timer_clear_idle();
 
1096
1097	calc_load_nohz_stop();
1098	touch_softlockup_watchdog_sched();
1099
1100	/* Cancel the scheduled timer and restore the tick: */
1101	tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1102	tick_nohz_restart(ts, now);
1103}
1104
1105static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1106					 ktime_t now)
1107{
1108#ifdef CONFIG_NO_HZ_FULL
1109	int cpu = smp_processor_id();
1110
1111	if (can_stop_full_tick(cpu, ts))
1112		tick_nohz_full_stop_tick(ts, cpu);
1113	else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1114		tick_nohz_restart_sched_tick(ts, now);
1115#endif
1116}
1117
1118static void tick_nohz_full_update_tick(struct tick_sched *ts)
1119{
1120	if (!tick_nohz_full_cpu(smp_processor_id()))
1121		return;
1122
1123	if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1124		return;
1125
1126	__tick_nohz_full_update_tick(ts, ktime_get());
 
 
 
 
1127}
1128
1129/*
1130 * A pending softirq outside an IRQ (or softirq disabled section) context
1131 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1132 * reach this code due to the need_resched() early check in can_stop_idle_tick().
1133 *
1134 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1135 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1136 * triggering the code below, since wakep_softirqd() is ignored.
1137 *
1138 */
1139static bool report_idle_softirq(void)
1140{
1141	static int ratelimit;
1142	unsigned int pending = local_softirq_pending();
1143
1144	if (likely(!pending))
 
 
 
 
 
 
1145		return false;
1146
1147	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1148	if (!cpu_active(smp_processor_id())) {
1149		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1150		if (!pending)
1151			return false;
1152	}
1153
1154	if (ratelimit >= 10)
 
1155		return false;
 
1156
1157	/* On RT, softirq handling may be waiting on some lock */
1158	if (local_bh_blocked())
1159		return false;
1160
1161	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1162		pending);
1163	ratelimit++;
1164
1165	return true;
1166}
1167
1168static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1169{
1170	WARN_ON_ONCE(cpu_is_offline(cpu));
1171
1172	if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1173		return false;
1174
1175	if (need_resched())
1176		return false;
1177
1178	if (unlikely(report_idle_softirq()))
1179		return false;
 
1180
1181	if (tick_nohz_full_enabled()) {
1182		int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1183
1184		/*
1185		 * Keep the tick alive to guarantee timekeeping progression
1186		 * if there are full dynticks CPUs around
1187		 */
1188		if (tick_cpu == cpu)
1189			return false;
1190
1191		/* Should not happen for nohz-full */
1192		if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
 
 
1193			return false;
1194	}
1195
1196	return true;
1197}
1198
1199/**
1200 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1201 *
1202 * When the next event is more than a tick into the future, stop the idle tick
1203 */
1204void tick_nohz_idle_stop_tick(void)
1205{
1206	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1207	int cpu = smp_processor_id();
1208	ktime_t expires;
1209
1210	/*
1211	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1212	 * tick timer expiration time is known already.
1213	 */
1214	if (ts->timer_expires_base)
1215		expires = ts->timer_expires;
1216	else if (can_stop_idle_tick(cpu, ts))
1217		expires = tick_nohz_next_event(ts, cpu);
1218	else
1219		return;
1220
1221	ts->idle_calls++;
 
1222
1223	if (expires > 0LL) {
1224		int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1225
1226		tick_nohz_stop_tick(ts, cpu);
1227
1228		ts->idle_sleeps++;
1229		ts->idle_expires = expires;
 
1230
1231		if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1232			ts->idle_jiffies = ts->last_jiffies;
1233			nohz_balance_enter_idle(cpu);
1234		}
1235	} else {
1236		tick_nohz_retain_tick(ts);
1237	}
1238}
1239
1240void tick_nohz_idle_retain_tick(void)
1241{
1242	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1243}
1244
1245/**
1246 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1247 *
 
1248 * Called when we start the idle loop.
 
 
 
 
 
 
1249 */
1250void tick_nohz_idle_enter(void)
1251{
1252	struct tick_sched *ts;
1253
1254	lockdep_assert_irqs_enabled();
 
 
 
 
 
 
 
 
1255
1256	local_irq_disable();
1257
1258	ts = this_cpu_ptr(&tick_cpu_sched);
1259
1260	WARN_ON_ONCE(ts->timer_expires_base);
1261
1262	tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1263	tick_nohz_start_idle(ts);
1264
1265	local_irq_enable();
1266}
1267
1268/**
1269 * tick_nohz_irq_exit - Notify the tick about IRQ exit
1270 *
1271 * A timer may have been added/modified/deleted either by the current IRQ,
1272 * or by another place using this IRQ as a notification. This IRQ may have
1273 * also updated the RCU callback list. These events may require a
1274 * re-evaluation of the next tick. Depending on the context:
1275 *
1276 * 1) If the CPU is idle and no resched is pending, just proceed with idle
1277 *    time accounting. The next tick will be re-evaluated on the next idle
1278 *    loop iteration.
1279 *
1280 * 2) If the CPU is nohz_full:
1281 *
1282 *    2.1) If there is any tick dependency, restart the tick if stopped.
1283 *
1284 *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
1285 *         stop/update it accordingly.
1286 */
1287void tick_nohz_irq_exit(void)
1288{
1289	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1290
1291	if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1292		tick_nohz_start_idle(ts);
1293	else
1294		tick_nohz_full_update_tick(ts);
1295}
1296
1297/**
1298 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1299 *
1300 * Return: %true if the tick handler has run, otherwise %false
1301 */
1302bool tick_nohz_idle_got_tick(void)
1303{
1304	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1305
1306	if (ts->got_idle_tick) {
1307		ts->got_idle_tick = 0;
1308		return true;
1309	}
1310	return false;
1311}
1312
1313/**
1314 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1315 * or the tick, whichever expires first. Note that, if the tick has been
1316 * stopped, it returns the next hrtimer.
1317 *
1318 * Called from power state control code with interrupts disabled
1319 *
1320 * Return: the next expiration time
1321 */
1322ktime_t tick_nohz_get_next_hrtimer(void)
1323{
1324	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1325}
1326
1327/**
1328 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1329 * @delta_next: duration until the next event if the tick cannot be stopped
1330 *
1331 * Called from power state control code with interrupts disabled.
1332 *
1333 * The return value of this function and/or the value returned by it through the
1334 * @delta_next pointer can be negative which must be taken into account by its
1335 * callers.
1336 *
1337 * Return: the expected length of the current sleep
1338 */
1339ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1340{
1341	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1342	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1343	int cpu = smp_processor_id();
1344	/*
1345	 * The idle entry time is expected to be a sufficient approximation of
1346	 * the current time at this point.
1347	 */
1348	ktime_t now = ts->idle_entrytime;
1349	ktime_t next_event;
1350
1351	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1352
1353	*delta_next = ktime_sub(dev->next_event, now);
1354
1355	if (!can_stop_idle_tick(cpu, ts))
1356		return *delta_next;
1357
1358	next_event = tick_nohz_next_event(ts, cpu);
1359	if (!next_event)
1360		return *delta_next;
1361
1362	/*
1363	 * If the next highres timer to expire is earlier than 'next_event', the
1364	 * idle governor needs to know that.
1365	 */
1366	next_event = min_t(u64, next_event,
1367			   hrtimer_next_event_without(&ts->sched_timer));
1368
1369	return ktime_sub(next_event, now);
1370}
1371
1372/**
1373 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1374 * for a particular CPU.
1375 * @cpu: target CPU number
1376 *
1377 * Called from the schedutil frequency scaling governor in scheduler context.
1378 *
1379 * Return: the current idle calls counter value for @cpu
1380 */
1381unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1382{
1383	struct tick_sched *ts = tick_get_tick_sched(cpu);
1384
1385	return ts->idle_calls;
1386}
1387
1388/**
1389 * tick_nohz_get_idle_calls - return the current idle calls counter value
1390 *
1391 * Called from the schedutil frequency scaling governor in scheduler context.
1392 *
1393 * Return: the current idle calls counter value for the current CPU
1394 */
1395unsigned long tick_nohz_get_idle_calls(void)
1396{
1397	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1398
1399	return ts->idle_calls;
1400}
1401
1402static void tick_nohz_account_idle_time(struct tick_sched *ts,
1403					ktime_t now)
1404{
 
1405	unsigned long ticks;
1406
1407	ts->idle_exittime = now;
1408
1409	if (vtime_accounting_enabled_this_cpu())
1410		return;
1411	/*
1412	 * We stopped the tick in idle. update_process_times() would miss the
1413	 * time we slept, as it does only a 1 tick accounting.
1414	 * Enforce that this is accounted to idle !
1415	 */
1416	ticks = jiffies - ts->idle_jiffies;
1417	/*
1418	 * We might be one off. Do not randomly account a huge number of ticks!
1419	 */
1420	if (ticks && ticks < LONG_MAX)
1421		account_idle_ticks(ticks);
1422}
1423
1424void tick_nohz_idle_restart_tick(void)
1425{
1426	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1427
1428	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1429		ktime_t now = ktime_get();
1430		tick_nohz_restart_sched_tick(ts, now);
1431		tick_nohz_account_idle_time(ts, now);
1432	}
1433}
1434
1435static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1436{
1437	if (tick_nohz_full_cpu(smp_processor_id()))
1438		__tick_nohz_full_update_tick(ts, now);
1439	else
1440		tick_nohz_restart_sched_tick(ts, now);
1441
1442	tick_nohz_account_idle_time(ts, now);
1443}
1444
1445/**
1446 * tick_nohz_idle_exit - Update the tick upon idle task exit
1447 *
1448 * When the idle task exits, update the tick depending on the
1449 * following situations:
1450 *
1451 * 1) If the CPU is not in nohz_full mode (most cases), then
1452 *    restart the tick.
1453 *
1454 * 2) If the CPU is in nohz_full mode (corner case):
1455 *   2.1) If the tick can be kept stopped (no tick dependencies)
1456 *        then re-evaluate the next tick and try to keep it stopped
1457 *        as long as possible.
1458 *   2.2) If the tick has dependencies, restart the tick.
1459 *
 
 
 
1460 */
1461void tick_nohz_idle_exit(void)
1462{
1463	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1464	bool idle_active, tick_stopped;
1465	ktime_t now;
1466
1467	local_irq_disable();
1468
1469	WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1470	WARN_ON_ONCE(ts->timer_expires_base);
1471
1472	tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1473	idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1474	tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1475
1476	if (idle_active || tick_stopped)
1477		now = ktime_get();
1478
1479	if (idle_active)
1480		tick_nohz_stop_idle(ts, now);
1481
1482	if (tick_stopped)
1483		tick_nohz_idle_update_tick(ts, now);
 
 
1484
1485	local_irq_enable();
1486}
1487
1488/*
1489 * In low-resolution mode, the tick handler must be implemented directly
1490 * at the clockevent level. hrtimer can't be used instead, because its
1491 * infrastructure actually relies on the tick itself as a backend in
1492 * low-resolution mode (see hrtimer_run_queues()).
1493 */
1494static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1495{
1496	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 
1497
1498	dev->next_event = KTIME_MAX;
 
 
 
 
 
 
 
1499
1500	if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1501		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1502}
1503
1504static inline void tick_nohz_activate(struct tick_sched *ts)
1505{
1506	if (!tick_nohz_enabled)
1507		return;
1508	tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1509	/* One update is enough */
1510	if (!test_and_set_bit(0, &tick_nohz_active))
1511		timers_update_nohz();
1512}
1513
1514/**
1515 * tick_nohz_switch_to_nohz - switch to NOHZ mode
1516 */
1517static void tick_nohz_switch_to_nohz(void)
1518{
 
 
 
1519	if (!tick_nohz_enabled)
1520		return;
1521
1522	if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1523		return;
1524
1525	/*
1526	 * Recycle the hrtimer in 'ts', so we can share the
1527	 * highres code.
1528	 */
1529	tick_setup_sched_timer(false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530}
1531
1532static inline void tick_nohz_irq_enter(void)
1533{
1534	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1535	ktime_t now;
1536
1537	if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1538		return;
1539	now = ktime_get();
1540	if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1541		tick_nohz_stop_idle(ts, now);
1542	/*
1543	 * If all CPUs are idle we may need to update a stale jiffies value.
1544	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1545	 * alive but it might be busy looping with interrupts disabled in some
1546	 * rare case (typically stop machine). So we must make sure we have a
1547	 * last resort.
1548	 */
1549	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1550		tick_nohz_update_jiffies(now);
 
 
1551}
1552
1553#else
1554
1555static inline void tick_nohz_switch_to_nohz(void) { }
1556static inline void tick_nohz_irq_enter(void) { }
1557static inline void tick_nohz_activate(struct tick_sched *ts) { }
1558
1559#endif /* CONFIG_NO_HZ_COMMON */
1560
1561/*
1562 * Called from irq_enter() to notify about the possible interruption of idle()
1563 */
1564void tick_irq_enter(void)
1565{
1566	tick_check_oneshot_broadcast_this_cpu();
1567	tick_nohz_irq_enter();
1568}
1569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570static int sched_skew_tick;
1571
1572static int __init skew_tick(char *str)
1573{
1574	get_option(&str, &sched_skew_tick);
1575
1576	return 0;
1577}
1578early_param("skew_tick", skew_tick);
1579
1580/**
1581 * tick_setup_sched_timer - setup the tick emulation timer
1582 * @hrtimer: whether to use the hrtimer or not
1583 */
1584void tick_setup_sched_timer(bool hrtimer)
1585{
1586	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
1587
1588	/* Emulate tick processing via per-CPU hrtimers: */
1589	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
 
 
 
1590
1591	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
1592		tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1593		ts->sched_timer.function = tick_nohz_handler;
1594	}
1595
1596	/* Get the next period (per-CPU) */
1597	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1598
1599	/* Offset the tick to avert 'jiffies_lock' contention. */
1600	if (sched_skew_tick) {
1601		u64 offset = TICK_NSEC >> 1;
1602		do_div(offset, num_possible_cpus());
1603		offset *= smp_processor_id();
1604		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1605	}
1606
1607	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1608	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1609		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1610	else
1611		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1612	tick_nohz_activate(ts);
1613}
 
1614
1615/*
1616 * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1617 * duty before disabling IRQs in idle for the last time.
1618 */
1619void tick_sched_timer_dying(int cpu)
1620{
1621	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
1622	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1623	struct clock_event_device *dev = td->evtdev;
1624	ktime_t idle_sleeptime, iowait_sleeptime;
1625	unsigned long idle_calls, idle_sleeps;
1626
1627	/* This must happen before hrtimers are migrated! */
1628	tick_sched_timer_cancel(ts);
 
 
1629
1630	/*
1631	 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
1632	 * make sure not to call low-res tick handler.
1633	 */
1634	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1635		dev->event_handler = clockevents_handle_noop;
1636
1637	idle_sleeptime = ts->idle_sleeptime;
1638	iowait_sleeptime = ts->iowait_sleeptime;
1639	idle_calls = ts->idle_calls;
1640	idle_sleeps = ts->idle_sleeps;
1641	memset(ts, 0, sizeof(*ts));
1642	ts->idle_sleeptime = idle_sleeptime;
1643	ts->iowait_sleeptime = iowait_sleeptime;
1644	ts->idle_calls = idle_calls;
1645	ts->idle_sleeps = idle_sleeps;
1646}
 
1647
1648/*
1649 * Async notification about clocksource changes
1650 */
1651void tick_clock_notify(void)
1652{
1653	int cpu;
1654
1655	for_each_possible_cpu(cpu)
1656		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1657}
1658
1659/*
1660 * Async notification about clock event changes
1661 */
1662void tick_oneshot_notify(void)
1663{
1664	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1665
1666	set_bit(0, &ts->check_clocks);
1667}
1668
1669/*
1670 * Check if a change happened, which makes oneshot possible.
1671 *
1672 * Called cyclically from the hrtimer softirq (driven by the timer
1673 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1674 * mode, because high resolution timers are disabled (either compile
1675 * or runtime). Called with interrupts disabled.
1676 */
1677int tick_check_oneshot_change(int allow_nohz)
1678{
1679	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1680
1681	if (!test_and_clear_bit(0, &ts->check_clocks))
1682		return 0;
1683
1684	if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1685		return 0;
1686
1687	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1688		return 0;
1689
1690	if (!allow_nohz)
1691		return 1;
1692
1693	tick_nohz_switch_to_nohz();
1694	return 0;
1695}